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Abstract

Multiscale modeling requires the coupling of models on different scales, often
based on different mathematical approaches and developed by different re-
search teams. This poses many challenges, such as defining interfaces for cou-
pling, reproducible exchange of submodels, efficient simulation of the models,
or reproducibility of results. Here, we present a multiscale digital twin of the
liver that couples a partial differential equation (PDE)-based porous media
approach for the hepatic lobule with cellular-scale ordinary differential equa-
tion (ODE)-based models. The models based on the theory of porous media
describe transport, tissue mechanical properties, and deformations at the lob-
ular scale, while the cellular models describe hepatic metabolism in terms of
drug metabolism and damage in terms of necrosis. The resulting multiscale
model of the liver was used to simulate perfusion-zonation-function relation-
ships in the liver spanning scales from single cell to the lobulus. The model
was applied to study the effects of (i) protein zonation patterns (metabolic
zonation) and (ii) drug concentration dependence on spatially heterogeneous
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liver damage in the form of necrosis. Depending on the zonation pattern,
different liver damage patterns could be reproduced, including periportal
and pericentral necrosis as seen in drug-induced liver injury (DILI). Increas-
ing the drug concentration led to an increase in the observed damage pat-
tern. A key point for the success was the integration of domain-specific
simulators based on standard exchange formats, i.e., libroadrunner for the
high-performance simulation of ODE-based systems and FEBio for the sim-
ulation of the continuum-biomechanical part. This allows a standardized
and reproducible exchange of cellular scale models in the Systems Biology
Markup Language (SBML) between research groups.

Keywords: liver, computational model, biomechanics, porous media, drug
metabolism, multiscale, digital twin, DILI, cytochrome P450

1. Introduction

The liver plays a pivotal role in maintaining metabolic homeostasis. It
orchestrates a multitude of metabolic processes that operate on multiple
scales and involve complex interactions. Blood is supplied to the liver by two
major vessels: the portal vein and the hepatic artery. These vessels branch
progressively, culminating in the terminal ends that carry blood to the liver
tissues, specifically the hepatic lobules.

Each hepatic lobule, structured in a hexagonal pattern, is a basic func-
tional unit of the liver. Blood inflow occurs at the periphery of the lobule,
entering through the portal tracts located at the corners of the lobule. From
here, blood flows through the sinusoidal pathways to the central vein located
at the core of the lobule. This unique architecture facilitates efficient blood
flow and metabolite exchange.

The sinusoids, lined with liver cells called hepatocytes, are the sites
of intense metabolic activity. Hepatocytes perform several essential func-
tions, including fat metabolism and detoxification of harmful substances.
Their strategic placement along the sinusoids ensures maximum exposure
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to nutrient-rich blood, allowing for efficient processing and conversion of
metabolites.

Hepatic zonation [1], a distinctive spatial organization of metabolic pro-
cesses within the hepatic lobule, plays a critical role in the liver’s multifaceted
functions, including metabolism, detoxification, and bile production. This
concept is pivotal in understanding how the liver optimizes its varied tasks
across different regions of the lobule.

The lobule can be traditionally segmented into three primary zones, each
specializing in specific metabolic activities. Zone 1, or the periportal area,
is characterized by high oxygen and nutrient content. This zone is a major
hub for oxidative metabolic processes such as gluconeogenesis and fatty acid
oxidation. In contrast, Zone 3, or the pericentral area, with its lower oxy-
gen levels, predominantly supports glycolysis, lipogenesis, and notably, the
activities of Cytochrome P450 (CYP) enzymes in drug detoxification [2, 3, 4].

CYP enzymes, particularly certain isoforms involved in drug activation
and steroid metabolism, exhibit a pronounced zonation pattern within the
liver. This distribution is especially notable in the pericentral zone, where
these enzymes are highly expressed and selectively induced. This specific lo-
calization and induction pattern are crucial for the liver’s capacity to metabo-
lize a wide array of pharmaceuticals and xenobiotics. The selective induction
and high expression of CYP isoforms in this zone underscore its vital role in
drug metabolism, impacting both drug efficacy and toxicity [5].

This zonal differentiation of CYP activity is not just a structural feature
but has significant functional implications. It affects how different drugs are
metabolized and detoxified, influencing both therapeutic outcomes and the
risk of DILI. Understanding the zonation of CYP enzymes is therefore key
to predicting drug behavior within the liver and forms a critical aspect of
pharmacological research and liver disease studies.

Mathematical models can be used to describe physiological processes
in the liver and to simulate liver diseases. Processes at different scales of
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the liver can be considered separately. Metabolic models allow to describe
the metabolic processes that take place within the liver cells, such as glu-
cose metabolism [6, 7], lipid metabolism [8], central metabolism [9], or drug
detoxification [10, 11]. Since liver tissue consists of a fluid saturated porous
tissue, porous media approaches can be implemented to simulate tissue be-
havior [12, 13]. Particular interest has been paid to permeability and micro-
circulation in porous liver tissue on a lobular scale [14, 15]. The perfusion in
liver lobules can therefore be modeled in sinusoids in healthy livers [16, 17]
or in fibrotic and cirrhotic livers [18]. An overview for cellular scales is given
in [19], for lobular scales in [19, 20, 21].

However, not only must the processes at each scale be considered sep-
arately, they also influence each other. Disturbances in perfusion directly
affect metabolism in liver cells. Conversely, changes in function, such as the
development of liver disease, lead to changes in perfusion [22, 19]. There-
fore, multiscale models spanning different size scales of the liver have been
presented to simulate the detoxification of substances in the liver at sub-
tissue, tissue, and whole body scales [23, 24]. By combining a porous me-
dia approach based on the theory of porous media (TPM) at the lobular
scale and systems biology models at the cellular scale, multiscale models are
able to describe the function-perfusion relationship with respect to glucose
metabolism [25], lipid metabolism [26, 20, 27] or acetaminophen (APAP)
detoxification [28, 29].

Most computational models of hepatic drug detoxification focus on APAP
which has been modeled by various mathematical approaches [30, 31, 32, 10,
33, 23, 34, 35, 36, 37, 38]. These models can be divided into three approaches:
i) Modeling the liver as a single compartment without spatial heterogeneity,
either as a model of APAP metabolism alone [10, 35] or coupled to a pharma-
cokinetic model [30, 32, 36]; ii) Modeling the liver as a linear chain of com-
partments allowing the study of gradients and zonated metabolism along
the sinusoid [31, 23, 33, 34], with most of the models including position-
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dependent changes in metabolism due to CYP2E1 zonation; iii) Modeling
the 2D/3D geometry of the liver lobule explicitly, which allows to study the
2D/3D patterns of zonation and DILI in APAP overdose [37, 38, 28, 29].
Most of these models include position-dependent changes in CYP2E1 and
APAP metabolism using different mathematical approaches. Similar 2D/3D
approaches have been used to study hepatic drug detoxification by other
groups, e.g. [39, 40, 41, 42].

While several 2D/3D models of the liver lobule have been used to investi-
gate the effect of perivenous CYP expression using CYP2E1 as an example,
none of the models have systematically investigated the effect of zonation
patterns on DILI. Fu et al. studied the effect of periportal, constant, and
perivenous zonation patterns on xenobiotic metabolism, but did not study
DILI in the form of necrosis [43].

Only the models by Reddyhoff et al. [10] (BIOMD0000000609) and Sluka
et al. [23] (BIOMD0000000624) were easily reusable, with models available
in SBML [44].

The aim of this study is to elucidate the histological patterns associated
with DILI and hepatotoxicity, particularly in relation to the zonal distribu-
tion of metabolic enzymes, with particular emphasis on those involved in
drug metabolism. This research focuses on the impact of zonal metabolism,
due to the spatial distribution of proteins, on morphological changes in liver
tissue using DILI as a model. Despite the critical role of enzymatic zonation
in liver function, a comprehensive analysis of its influence on tissue changes
remains unexplored. A deeper understanding of this interplay will improve
our understanding of the functional changes in hepatic metabolism that re-
sult from alterations in enzymatic zonation patterns. This includes under-
standing how variations in zonation patterns correlate with expected damage
manifestations such as necrosis, fibrosis, steatosis, or other pathologies.

5

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 7, 2024. ; https://doi.org/10.1101/2024.03.26.586870doi: bioRxiv preprint 

https://identifiers.org/biomodels.db/BIOMD0000000624
https://identifiers.org/biomodels.db/BIOMD0000000624
https://doi.org/10.1101/2024.03.26.586870


2. Methods

2.1. Model on cellular scale
At the cell scale, an ODE model was used to describe the biochemical

SPT reaction network for the irreversible conversion of substrate (S) to prod-
uct (P) and a toxic by-product (T) via the reaction named S2PT. Substrate
and product can be imported into the cell via reversible transporter processes
called SIM for S-importer and PEX for P-exporter. T can be detoxified by
an irreversible detoxification reaction called TDETOX. All reactions follow
Michaelis-Menten kinetics. The model units are time [min], substance [mmol],
extent [mmol], and volume [l].
The resulting reaction network and ODE system are shown below:

Sext
SIM−−−⇀↽−−− S

P PEX−−−−⇀↽−−−− Pext

S S2PT−−−−→ P + T

T TDETOX−−−−−−−−→ ∅

dSext

dt
= −SIM

V ext
dPext

dt
=

PEX

V ext
dS

dt
=

SIM

V li
− S2PT

V li
dP

dt
=

S2PT

V li
− PEX

V li
dT

dt
=

S2PT

V li
− TDETOX

V li

The reaction rates v are as follows:

vSIM =
fr · V li · SIMV max

SIMKm,S
· (Sext − S)

1 + Sext
SIMKm,S

+ S
SIMKm,S

vPEX =
fr · V li · PEXV max

PEXKm,P
· (P − Pext)

1 + Pext
PEXKm,P

+ P
PEXKm,P

vS2PT = fr · V li · (1− necrosis) · protein · S2PTV max · S
S + S2PTKm,S

vTDETOX = fr · V li · (1− necrosis) · TDETOXV max · T
TDETOX + TDETOXKm,T
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The following additional algebraic rules are defined in the model, defining the
relationship between the transport V max values and the V max value of the S2PT

conversion, the scaling factor fr, and the condition for necrosis (i.e., necrosis occurs
if the toxic compound T is above Ttreshold).

PEXV max = S2PTV max · 100

SIMV max = S2PTV max · 100

fr = (1− ftpm) · fmetabolism

necrosis =

1 if T > Tthreshold

0 otherwise

To simulate the influence of different spatial protein zonation patterns on cel-
lular metabolism, six different protein functions were defined depending on the
position p ∈ [0, 1] in the lobulus, where p = 0 corresponds to the periportal (PP)
and p = 1 to the perivenous (PV) position within the lobulus (see Fig. 1).

protein (p) =



f0 · 0.5 if pattern 0: constant

f1 · p if pattern 1: linear increase

f2 · (1−
(1− pγ)

(1− pγ + 0.25γ)
) if pattern 2: sharp perivenous

f3 · (1− p) if pattern 3: linear decrease

f4 · (1−
pγ

pγ + 0.25γ
) if pattern 4: sharp periportal

f5 · uniform(0, 1) if pattern 5: random

The total amount of protein within the lobules was normalized to the same
value for the different patterns using the normalization factors f0, ..., f5. The
function uniform(0, 1) returns a sample from a uniform distribution between 0 and
1. For the random pattern, a seed was used to reproduce the identical random
protein pattern for different substrate fluxes. The amount of protein affects the
rate of the SPT reaction, i.e., the more protein available at a position p, the faster
the conversion S → P + T at the given position. The values of all parameters and
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Figure 1: Zonation patterns. Protein amount depending on position protein(p). Nor-
malization ensures equal protein amount in the lobulus geometry.

initial conditions are given in Appendix A.1.
The SPT cell model is encoded in the Systems Biology Markup Language

(SBML) [45, 46], available under a CC-BY 4.0 license from https://github.com/
matthiaskoenig/spt-model, with version 0.5.4 of the model [47] used here. The
ODEs are solved numerically with the high performance SBML simulator libroad-
runner [48, 49]. For model development and visualization, sbmlutils [50], and
cy3sbml [51, 52] were used.

2.2. Model on tissue scale
At the tissue level, the liver consists of approximately hexagonal functional

units called hepatic lobules. Blood enters the liver lobules at the portal triads at
the corners of the lobules and flows to the centrally located central vein. This
perfusion through the liver lobules ensures that nutrients, oxygen, and other sub-
stances are transported past the liver cells located within the lobules. This is where
metabolic processes such as drug metabolism take place. To describe the coupled
interaction between structure and fluid, the TPM was used, a homogenization mix-
ture approach based on continuum biomechanics, see [53, 54, 55]. To describe flow
and transport of microscopic substances, we extend this approach to include micro-

8

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 7, 2024. ; https://doi.org/10.1101/2024.03.26.586870doi: bioRxiv preprint 

https://github.com/matthiaskoenig/spt-model
https://github.com/matthiaskoenig/spt-model
https://doi.org/10.1101/2024.03.26.586870


scopic solutes in blood and liver tissue. To simulate exchange processes between
different components, the TPM has been extended with mass exchange processes
for miscible [56, 57] and non-miscible substances [58, 59, 60, 61, 62].

In our coupled model we use the TPM for the mathematical calculation of liver
tissue containing the immersible phases liver tissue (S) and blood (F) as well as
a microscopic substance solved in the blood. This leads to the overall structure
of the mixture with all components, where the whole domain φ can be described
with

φ =
κ∑

α=1

φα :=

κ∑
α=1

[

ν−1∑
β=1

(φαβ) + φα] (1)

with κ = 2 immiscible phases φα = {S,F} and the microscopic solutes φαβ =

{SF
ext, P

F
ext}.

To describe the physical processes, the momentum balances for each phase and
solute can be formulated as

solid div TS + ρS bS + p̂S − ρ̂S x′
S =0,

fluid div TF + ρF bF + p̂F − ρ̂F x′
F =0,

fluid comp. div TFβ + ρFβ bF + p̂Fβ − ρ̂Fβ x′
F =0 .

(2)

In addition, the mass balances of the individual phases and solutes are added
as field equations. Here, exchange terms for the mass exchange between the solutes
ρ̂αβ are introduced to describe the metabolic processes.

solid (nS)′S + nS div(x)′S = 0 ,

fluid (nF)′F + nF div(x)′F = 0 ,

fluid comp. (nF)′F cFβ MFβ
mol + nF (cFβ)′Fβ MFβ

mol + grad nF wFβS cFβ MFβ
mol

− grad nF wFS cFβ MFβ
mol + nF cFβ MFβ

mol divx′
Fβ = ρ̂Fβmicromodel.

(3)
The extended TPM combines the classical mixture theory with the concept of

volume fraction, where each phase is defined a volume fraction nα. The sum of all
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volume fractions must equal to one, which is denoted in the saturation condition.

nS + nF = 1, nS =
ρS

ρSR , nF =
ρF

ρFR , (4)

Furthermore, interaction relations between phases have to be considered to incor-
porate processes in between the separated phases. Therefore, we include relations
for the interaction forces pα and mass exchange ρ̂α according to the metaphysical
principles of Truesdell [63] with

ρ̂S + ρ̂F + ρ̂Fβ = 0, p̂S + p̂F + p̂Fβ = 0. (5)

A more detailed derivation of the underlying TPM model can be found in [25,
29]. The continuum-biomechanical model on the lobular scale is solved using the
non linear finite element software FEBio [64], which is specifically focused on
biomechanics and biophysics. Key structural parameters for the TPM model at
the tissue level can be determined from MRI data, cf. [65].

The values of key parameters and initial conditions are given in Appendix A.2.

2.3. Multiscale coupling
The coupling of different processes on different scales requires a combination

of simulation programs and solvers. For the simulation of the coupled PDE-ODE
model, the nonlinear finite element software FEBio [64] was used, embedding the
libroadrunner [48, 49] solver for solving the cellular ODEs.

Special attention is given to the correct transfer of variables between scales.
The volume V, volume fractions nα and concentration values cαβ of the macroscopic
domain for a completed time step t serve as input to the cellular microsimulations,
as shown in Fig. 2C. The microsimulation calculates the source/sink terms as well
as their tangents for the time step t+δt and passes them to the corresponding weak
forms of the concentration balance of the macroscopic solver FEBio, where the
convergence criterion for the iteration takes place. If convergence is not achieved,
the microsimulations are reset and the same time step is attempted with a smaller
δt. In this context, our approach can be considered as weak or one-way coupling.

The existing multiphasic framework of FEBio was extended with the libroad-
runner library and invasive coupling code, i.e., getter and setter functions and
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micromodel initialization. The modified multiphasic model is outsourced from the
static FEBio library using the plugin functionality of FEBio [66] to achieve a flex-
ible framework. In this way, the C++ backend of libroadrunner can be compiled
as an additional external library without compiling the FEBio core. We follow
the object-oriented approach of FEBio by extending the class of material points or
integration points by the object of our microsimulation, namely a libroadrunner
instance.

The microsimulations are initialized analogous to the FEBio classes in a global
initialization function with the corresponding SPT model for each Gaussian point.
Variables like microvolume or volume fraction are used as arguments for the con-
structor of the microsimulation. The time step of the coupling scheme is shown in
Fig. 2C. The time step itself was controlled by the timestepper of FEBio.

A simplified version of the coupling code is provided in Appendix A.4.

2.4. Simulation, analysis, visualization
The simulations were performed on the NEC Cluster Vulcan at the HLRS High

Performance Computing Center Stuttgart on a Haswell XEON E5-2660v3 with 20
cores and 256 GiB memory.

Visualization and analysis of the FEM simulations were performed in Python
using the package porous_media [67], which also contains scripts for pre- and post-
processing. Visualizations of the meshes and VTK results were generated using
pyvista [68]. Mesh reading and writing was performed using meshio [69].

3. Results

3.1. Coupled multiscale model
We have developed a multiscale digital twin of the liver that couples a PDE-

based porous media approach for the hepatic lobule with cellular-scale ODE-based
models for the hepatocytes. An overview of the model and model coupling is
provided in Fig. 2. The porous media based models describe transport and tissue
mechanical properties and deformations at the lobular scale, while the cellular mod-
els describe hepatic drug metabolism and DILI in the form of necrosis (Fig. 2A).
The liver is modeled as a set of liver lobules, with a single lobule being modeled as
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Figure 2: SPT model and model coupling. A) Multi-scale model of the liver with
organ, lobule and cell scale. The liver is modeled as a set of liver lobules. A single lobule is
modeled by an integrated ODE-PDE model. Each point contains a metabolic SPT model
that converts S to P with the formation of a toxic by-product. The toxic compound T can
cause necrosis if the concentration reaches a threshold value. B) Protein zonation pattern
of the lobulus: 1. constant amount of protein; 2. linear increase of protein from periportal
(PP) to perivenous (PV). 3. strong PV localization of protein. 4. linear decrease of
protein from PP to PV. 5. sharp PV pattern. 6. random pattern of protein. C) Model
coupling and simulation. Outline of the two-scale coupling at the lobular and cellular scale.
The values for volume fraction and concentration are calculated on the macro scale and
communicated to the micro scale, while source and sink terms are calculated on the micro
scale and communicated to the macro scale.

12

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 7, 2024. ; https://doi.org/10.1101/2024.03.26.586870doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.26.586870


an integrated ODE-PDE model. Each mesh point contains a cellular drug detox-
ification model that can take up substrate S from the fluid phase and convert S
to a product P while forming a toxic by-product T (SPT model). The product P
can be exported in the fluid phase, while T can be detoxified via the cells. When
the toxic compound T reaches a critical threshold, the corresponding cell can be
damaged, resulting in necrosis.

The resulting multiscale model of the liver was applied to simulate perfusion-
zonation-function relationships in the liver spanning the scales from the single cell
to the lobulus. To illustrate the effect of zonation in drug metabolizing enzymes on
potential DILI, the model was simulated with different patterns of protein zonation
along the lobule (Fig. 2B).

3.2. Cellular simulation
First, the cellular SPT model was studied in isolation to better understand the

dependence on substrate concentration S (Fig. 3). Different drug substrate concen-
trations ranging from 0 to 10 mM were used as initial conditions and the system
response was studied over a period of 8 hours. As expected, the concentration of
substrate S as well as product P and toxic compound T increases with increas-
ing substrate concentration. At high substrate concentrations (red), the necrosis
threshold Tthreshold is reached, resulting in cell death. Necrosis is characterized by
the release of cell contents into the fluid phase and the inactivation of metabolism.
At low substrate concentrations (blue), the liver has sufficient detoxification po-
tential to prevent accumulation of the toxic compound until the threshold for cell
damage is reached. DILI can be avoided at low drug substrate concentrations. A
clear drug dose dependence can be observed with necrosis occurring above 5 mM
and no necrosis below ≤ 5 mM.

3.3. Multiscale simulation
We then run the coupled multiscale simulations for different zonation patterns

and drug (substrate) inputs. Fig. 4 illustrates the behavior of the coupled simula-
tion for the linearly increasing pattern at intermediate substrate flux. Over time,
substrate is converted to product with an increase in toxic compound T. After
crossing a threshold of 5 mM, local necrosis occurs.
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Figure 3: Substrate dependency of SPT metabolism. A) Time dependency of
drug substrate (S), product (P), protein, toxic compound (T), and necrosis under varying
substrate S concentrations. B) Substrate dose dependency at steady state.

The DILI pattern correlates with the time-independent protein pattern and the
concentration of toxic compound T. Over time, the toxic compound accumulates in
regions with high protein levels, i.e., pericentrally. The result is pericentral necrosis,
with the area affected increasing over time. The concentration profiles of substrate
S and product P are different because they are directly coupled to the external
concentration at the macro level, where diffusion processes eliminate the gradients.
The substrate has a low extraction fraction, with only a small amount cleared in a
single passage through the lobule, so the substrate and product gradients are not
very strong from periportal to perivenous.

The influence of the six zonation patterns on DILI damage at intermediate
drug concentrations is shown in Fig. 5. Six different patterns were investigated: 1.
constant amount of protein; 2. linear increase of protein from periportal (PP) to
perivenous (PV). 3. strong perivenous localization of protein. 4. linear decrease of
protein from PP to PV. 5. strong perivenous pattern. 6. random pattern of protein.
The different protein zonation patterns result in very different drug metabolism,
toxic compound accumulation, and necrosis patterns. Toxic compound production
occurs where protein levels of detoxifying enzymes are high. Over time, necrosis
occurs in all patterns, but with very different dynamics. Flat zonation patterns
result in a switch-like occurrence of necrosis throughout the lobulus, patterns with
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Figure 4: Time course of SPT metabolism (linear increasing pattern and mean
substrate flux). Substrate (S), product (P), protein, toxic compound (T) and necrosis
over time. Simulation of the PP-PV linearly increasing protein zonation pattern. Simu-
lation for mean substrate flux as boundary condition. T is formed and accumulates over
time. Pericentral necrosis forms due to high metabolic rate with high protein concentra-
tion (sim014). Simulation for 24 hours. Simulation sim014.
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Figure 5: Time course of SPT metabolism depending on zonation patterns. Sub-
strate (S), Product (P), Protein, Toxic Compound (T) and necrosis over time. Simulation
of the A) constant, B) linear increase, C) sharp perivenous, D) linear decrease, E) sharp
periportal and F) random zonation pattern. Simulation for 24 hours. Simulations sim006,
sim014, sim022, sim030, sim038, sim046.
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predominantly pericentral protein result in pericentral necrosis. Patterns with
predominantly periportal protein result in periportal necrosis. The random protein
pattern results in random areas of the lobulus being necrotic, corresponding to a
high concentration of protein. Over time, the affected area of necrosis increases
for periportal, perivenous, and random patterns.

3.4. Time dependency of DILI
We then performed a systematic comparison of the effect of protein zonation

patterns under different drug (substrate) challenges. Therefore, we first looked
at the time evolution of substrate, product, toxic compound, and necrosis area
(Fig. 6).

Fig. 6 shows the time dependent accumulation of substrate, product and toxin
for different drug concentrations. The values are integrated over the entire lobular
geometry. With increasing drug concentration, higher substrate concentrations
are reached, resulting in higher product concentrations and faster accumulation of
the toxic compound. At higher drug concentrations, necrosis occurs more rapidly
and a larger area of liver tissue is affected by DILI, as indicated by the area of
necrosis.

As cells die, a small increase in substrate concentration can be observed as
substrate is released within the cells. As the area affected by necrosis increases,
the product concentration decreases as fewer cells are available for substrate to
product conversion. The different zonation patterns show very different dynamics
in necrosis. In the case of the constant pattern, there is a rather rapid change from
an active to a necrotic state for the entire tissue. For all other protein patterns,
even at high drug concentrations, a fraction of the cells survives so that a remaining
fraction of the metabolic function can be performed in the lobule. The individual
amount of protein for the sharp zonation patterns has a greater variety than for
the linear patterns, which is necessary to provide the same average amount of
protein across the lobule for the different patterns. The protein remains constant
over time as intended. The sharp periportal and perivenous patterns localize most
of the protein to a small area affected by necrosis, while the rest of the lobulus is
intact. There is not much difference between drug concentrations, but most drug
concentrations cause the area of high protein to be necrotic.
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Figure 6: Time dependency of SPT metabolism and necrosis development. Dif-
ferent zonation patterns in rows. Data is mean ± SD over the lobulus geometry. Necrosis
fraction is volume averaged necrosis over the lobulus geometry. Curves correspond to
different substrate input fluxes with large substrate fluxes in dark, small substrate fluxes
in light colors. Simulation of the A) constant (black), B) linear increase (blue), C) sharp
perivenous (purple), D) linear decrease (red), E) sharp periportal (orange) and F) ran-
dom (green) zonation pattern.
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The linear and random patterns are much more affected by the different drug
concentrations. High drug concentrations result in large areas affected by necrosis,
while low concentrations result in smaller areas affected.

3.5. DILI patterns

Figure 7: Necrosis pattern depending on zonation pattern and drug (substrate)
inflow. Comparison of necrosis patterns at 24 hours for different zonation patterns (rows)
and substrate challenges (columns).

The different protein zonation patterns were challenged with different drug
(substrate) fluxes (ΓS) corresponding to increasing drug challenges with the sub-
strate S. In total, 8 different substrate fluxes were tested for the six different protein
zonation patterns, resulting in 48 different scenarios (Fig. 7).

The different zonation patterns and different substrate challenges result in
highly variable necrosis patterns. As expected, the proportion of necrotic tissue
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increases as the substrate flow increases from left to right, i.e. the higher the drug
dose, the stronger the DILI. For the constant pattern, the absence of intermediate
states is striking, so that the metabolic function of the lobule is either completely
ongoing or completely terminated across the different substrate fluxes. Periportal
protein zonation patterns result in periportal necrosis, pericentral patterns result
in pericentral necrosis. The random pattern results in random areas of the lobule
affected by necrosis, with the area increasing with increasing drug.

All results are available at https://doi.org/10.5281/zenodo.10933166 [70]
with an interactive web application at https://sptmodel.streamlit.app.

4. Discussion

In this article, we present a multiscale model of the human liver, including
the lobular and cellular scales, based on a PDE-ODE approach. Using the SPT
metabolism as a generic example of drug metabolism and DILI, we simulate dif-
ferent zonation patterns to demonstrate their influence on necrosis.

Consistent with other 2D/3D models of APAP detoxification [37, 38], our
model predicts pericentrally induced APAP damage (necrosis) as a consequence
of pericentral drug-metabolizing enzymes (CYP2E1).

While most DILI is reported as pericentral liver damage because most CYP
enzymes are preferentially expressed pericentrally, our model allowed the study of
periportal necrosis as a consequence of periportal DILI. Pericentral necrosis due
to DILI is the typical phenotype, but cases of periportal necrosis in DILI have
been reported. Examples are allyl alcohols [71, 5, 72] or methaprilene [73]. The
mainly percicentral DILI damage is consistent with most CYPs being reported to
be mainly expressed pericentrally, but evidence exists that some CYP isoforms are
mainly located periportal, such as CYP2F2, CYP17A1 or CYP2A12 in mammalian
liver [74]. An example of CYP-mediated periportal DILI could be methapyrilene,
which causes unusual dose-dependent periportal damage in adult male rats [75, 73,
76, 77], with data suggesting that the toxicity of methapyrilene is predominantly
dependent on the CYP2C11 isoform [75].

The concept of dynamic zonation, while not fully integrated in our current mi-
cromodel, is a critical aspect to consider for a more comprehensive understanding
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of liver function. In our study, we simplified the model by assuming spatially vari-
able but temporally constant protein zonation patterns within the hepatic lobule.
Although methodologically convenient, this approach overlooks the inherent dy-
namics of hepatic zonation in response to physiological stimuli. In reality, protein
content in hepatocytes is not static; it fluctuates in response to different physio-
logical states, such as feeding or fasting cycles, as well as according to circadian
rhythms [78]. These changes in protein expression and distribution can signifi-
cantly alter hepatic metabolism and detoxification processes. Thus, recognizing
and incorporating these dynamic aspects into future models would provide a more
accurate and nuanced understanding of liver physiology and its response to dif-
ferent metabolic states. For example, APAP, like many pharmaceutical agents, is
thought to exhibit variations in toxicity over a 24-hour (circadian) period [79]. The
daily variation in APAP hepatotoxicity (chronotoxicity) may be driven by oscilla-
tions in metabolism influenced by the circadian phases of feeding and fasting [80].

In this study, we used constant substrate flows and pressures as boundary
conditions for our simulations. However, in a real physiological context, both of
these variables are dynamic and influenced by the overall physiology of the body.
For example, changes in input substrate concentrations can occur due to factors
such as recirculation, distribution within the body, and the involvement of other
organs in drug detoxification, particularly renal elimination. Future efforts will aim
to incorporate physiologically based pharmacokinetic (PBPK) models [11, 81] to
provide dynamic boundary conditions that are more representative of whole-body
physiology, as exemplified by the work of Sluka et al. [23].

This study focuses primarily on biomechanical solute transport, incorporating
macro-micro coupling for reaction terms. However, it is important to recognize
that certain key mechanical processes relevant to liver simulations, such as tissue
growth and phase exchange, have not been included. These aspects, although
not addressed in this study, are of significant importance and will be the focus
of our future investigations. This expansion will improve the comprehensiveness
and applicability of our biomechanical models to more accurately understand and
simulate liver function.

A significant challenge in current 2D/3D liver modeling approaches lies in the
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reusability of model components and their adaptability to novel research questions.
Our study addresses this issue, with a particular emphasis on enhancing the repro-
ducibility of cellular models. This was achieved by encoding them in SBML [44]
and leveraging existing high-performance simulators designed for SBML [48, 49].
Such a methodology not only facilitated the adaptation of our developed model
to diverse research inquiries, such as ischemia-reperfusion injury [82], but also pro-
vided a streamlined process for updating the cellular models simply by modifying
the SBML files. This approach enabled domain experts in tissue-based TPM and
cellular ODE models to concentrate effectively on their respective areas of model
development.

Future research efforts will incorporate realistic lobular geometries and zona-
tion patterns derived from comprehensive whole slide image analysis [83]. This
advancement will allow a more nuanced exploration of how lobular structure in-
fluences zonation and drug detoxification processes, thereby deepening our under-
standing of the structure-function relationship within the liver lobule. In addition,
we plan to extend the application of our established workflow for modeling spatial
heterogeneity in drug detoxification to specific cases such as APAP. This approach
will also be instrumental in investigating the impact of altered metabolic zonation
patterns associated with pathologies such as fibrosis [84] and steatosis [85], thereby
contributing to a broader understanding of the mechanisms of liver disease.

In conclusion, this study has successfully developed a reusable and expandable
liver model specifically designed to study the interplay between perfusion and func-
tion and the spatial heterogeneity within the liver lobule. This model represents
a significant step forward in understanding liver functionality and its responses to
various pharmacological and pathological stimuli.
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Appendix A. Model details

Appendix A.1. Parameters of cell model
parameter description value unit
PEXKm,P Km for P export 0.5 mM
S2PTKm,S Km for S to P + T conversion 0.5 mM
S2PTV max Vmax for S to P + T conversion 0.05 mmol/l/min
SIMKm,S Km for S import 0.5 mM
TDETOXKm,T Km for T detoxification 0.5 mM
TDETOXV max Vmax for T detoxification 0.005 mmol/l/min
Tthreshold Vmax for T threshold for necrosis 5.0 mM
V ext plasma volume 1.5 l
V li liver volume 1.5 l
fmetabolism flag to turn metabolism off 1.0 -
ftpm flag for porous media modifications 0 -
pattern flag for zonation pattern ∈ (0, 1, 2, 3, 4, 5) -
position norm position between pp and pv ∈ [0, 1] -
proteinrandom random protein value uniform(0, 1) -
f0 normalization pattern 0 1.0 -
f1 normalization pattern 1 1.1406136 -
f2 normalization pattern 2 4.552802 -
f3 normalization pattern 3 0.8902508 -
f4 normalization pattern 4 2.3939743 -
f5 normalization pattern 5 1.0 -
γ function parameter 10 -
state variables
P [t = 0] product P 0 mM
Pext[t = 0] product P (plasma) 0 mM
S[t = 0] substrate S 0 mM
Sext[t = 0] substrate S (plasma) 0 mM
T [t = 0] toxic product T 0 mM
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Appendix A.2. Parameters of tissue model
parameter description value unit
f_fluid volume fraction fluid 0.3 -
f_tissue volume fraction tissue 0.7 -
p_in fluid pressure PP 1599 Pa
p_out fluid pressure PV 933 Pa
perm constant permeability 4.25e-11 m4/Ns
diffusivity solute diffusivity 6.16e-8 m2/s
vS0 substrate flux -3.797784e-06 mole/s/m2

vS1 substrate flux -4.6576515e-06 mole/s/m2

vS2 substrate flux -5.5176906e-06 mole/s/m2

vS3 substrate flux -7.2377693e-06 mole/s/m2

vS4 substrate flux -1.0677926e-05 mole/s/m2

vS5 substrate flux -1.4118084e-05 mole/s/m2

vS6 substrate flux -1.755824e-05 mole/s/m2

vS7 substrate flux -2.0938397e-05 mole/s/m2
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Appendix A.3. Overview simulations

simulation id zonation pattern substrate flux color
sim001 constant vS0

sim002 constant vS1

sim003 constant vS2

sim004 constant vS3

sim005 constant vS4

sim006 constant vS5

sim007 constant vS6

sim008 constant vS7

sim009 linear_increase vS0

sim010 linear_increase vS1

sim011 linear_increase vS2

sim012 linear_increase vS3

sim013 linear_increase vS4

sim014 linear_increase vS5

sim015 linear_increase vS6

sim016 linear_increase vS7

sim017 sharp_pericentral vS0

sim018 sharp_pericentral vS1

sim019 sharp_pericentral vS2

sim020 sharp_pericentral vS3

sim021 sharp_pericentral vS4

sim022 sharp_pericentral vS5

sim023 sharp_pericentral vS6

sim024 sharp_pericentral vS7

sim025 linear_decrease vS0

sim026 linear_decrease vS1

sim027 linear_decrease vS2

sim028 linear_decrease vS3

sim029 linear_decrease vS4

sim030 linear_decrease vS5

sim031 linear_decrease vS6

sim032 linear_decrease vS7

sim033 sharp_periportal vS0

sim034 sharp_periportal vS1

sim035 sharp_periportal vS2

sim036 sharp_periportal vS3

sim037 sharp_periportal vS4

sim038 sharp_periportal vS5

sim039 sharp_periportal vS6

sim040 sharp_periportal vS7

sim041 random vS0

sim042 random vS1

sim043 random vS2

sim044 random vS3

sim045 random vS4

sim046 random vS5

sim047 random vS6

sim048 random vS7
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Appendix A.4. Pseudocode for coupled simulation

1 #include "rr/rrRoadRunner.h"
2

3 /** Initialization of all n mesh points */
4 for k in range(n){
5 // load model, set flags, set zonation pattern
6 rr[k] = rr::RoadRunner roadrunner("spt_liver.xml")
7 rr[k].setValue("f_metabolism", 1)
8 rr[k].setValue("f_porous_media", 0)
9 rr[k].setValue("zonation_pattern", zonation_pattern)

10

11 // set position p based on mesh position
12 rr[k].setValue("position", norm_position[k])
13

14 // update volumes based on volume for mesh point
15 rr[k].setValue("Vext", vol_point[k]*f_fluid)
16 rr[k].setValue("Vli", vol_point[k]*f_tissue)
17

18 // set concentration of S and P based on fluid phase
19 rr[k].setValue("[S_ext]", tpm_S_fluid[k])
20 rr[k].setValue("[P_ext]", tpm_P_fluid[k])
21 rr[k].setValue("[S]", tpm_S_fluid[k])
22 rr[k].setValue("[P]", tpm_P_fluid[k])
23 }
24

25 /** Run simulation */
26 t = 0
27 while (t <= t_end) {
28 // run ODE simulations for mesh points
29 for k in range(n){
30 // update volume (due to deformation)
31 rr[k].setValue("Vext", vol_point[k]*f_fluid)
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32 rr[k].setValue("Vli", vol_point[k]*f_tissue)
33

34 // update external concentrations from fluid phase
35 rr[k].setValue("[S_ext]", tpm_S_fluid[k])
36 rr[k].setValue("[P_ext]", tpm_P_fluid[k])
37

38 // ODE simulation of time step using roadrunner
39 rr.oneStep(tsim, t_delta)
40

41 // use rates and tangents to update source/sink terms
42 FEBio.set(k, rr[k].getValue("S_ext'", "P_ext'", "uec(

SIM, S_ext)" , "uec(PEX, P_ext)")
43 }
44

45 // run TPM simulation with all source/sink terms
46 FEBio.run(t_start, t_delta)
47 t += t_delta
48 }

Listing 1: Pseudocode for model coupling. The code illustrates how the cellular SPT
models are initialized for every mesh point and the coupled model simulations is run.
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