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Human visual cortex is organized into dorsal, lateral, and ventral streams. A long-standing hypothesis10

is that the functional organization into streams emerged to support distinct visual behaviors. Here,11

we use a neural network-based computational model and a massive fMRI dataset to test how visual12

streams emerge. We find that models trained for stream-specific visual behaviors poorly capture neural13

responses and organization. Instead, a self-supervised Topographic Deep Artificial Neural Network, which14

encourages nearby units to respond similarly, successfully predicts neural responses, spatial segregation,15

and functional differentiation across streams. These findings challenge the prevailing view that streams16

evolved to separately support different behaviors, and suggest instead that functional organization arises17

from a single principle: balancing general representation learning with local spatial constraints.18
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Confronted by the blooming, buzzing confusion of the world around us, we perform a diverse range of computations21

on our visual inputs, including rapidly and accurately identifying objects in our surroundings, their locations, and22

their actions. The human brain is accordingly thought to be divided into three processing streams, beginning in23

early visual cortex and ascending through multiple areas to form different processing pathways: (1) a “what" Ventral24

stream ascending from early visual cortex to the inferior aspects of occipital and temporal cortices [1, 2], (2) a25

“where" or “visually-guided grasping” Dorsal stream extending superiorly along occipito-parietal cortex [1, 2], and (3)26

a Lateral stream, extending through lateral occipitotemporal cortex to the superior temporal sulcus (STS), thought to27

be involved in dynamic perception [3], particularly of actions [4], and social information [5, 6].28

The prevailing hypothesis (multiple behavioral demands hypothesis) suggests that the organization into streams is29

an outcome of evolutionary optimization for independent visual behaviors that can be done in parallel with dedicated30

neural machinery, yielding a fast and efficient visual system [1, 7, 8, 9, 10, 11, 12]). An alternative hypothesis31

suggests that a set of physical constraints, such as wiring length, could produce the functional organization of the32

brain into streams (spatial constraints hypothesis). According to Nelson and Bower [13], “if the brain’s estimated 1011
33

neurons were placed on the surface of a sphere and fully interconnected by individual axons 0.1 µm in radius, the34

sphere would have to have a diameter of more than 20 km to accommodate the connections.” As a result of physical35

constraints and a need for fast processing, there is a known bias in the brain toward short-range connections [14, 15].36

One way to minimize wiring length locally is to encourage nearby neurons to respond similarly [16]. Indeed, locally37

correlated responses are evident in the many cortical topographic maps, such as maps of the visual field [17, 18].38

From an information theoretic standpoint, positioning neurons frequently involved in processing related information39

close together also makes neural processing faster and more efficient [16, 19]. Thus, we ask: is the functional40

organization of visual cortex into streams due to optimization for multiple distinct behaviors, or due to balancing41

spatial and information constraints?42

To test these hypotheses, we use a Deep Artificial Neural Network (DANN) approach. We instantiate the multiple43

behavioral demands hypothesis by training three different models, each using a state-of-the-art DANN that is trained44

using supervision on the stream-specific visual behavior: Dorsal: object detection [22], Lateral: action recognition45

[23], Ventral: object categorization [24] (Fig. 1a). Each model is trained separately to encourage maximum46

differentiation of the learned representations. We instantiate the spatial constraints hypothesis using a topographic47

DANN (TDANN, [20, 25]), in which model units in each layer are assigned a position in a 2D simulated cortical sheet,48

and during training a spatial constraint is balanced together with contrastive self-supervised learning (SimCLR [26],49

Fig. 1b). The spatial constraint encourages nearby units to have more correlated responses than distant units, and50

SimCLR encourages two snapshots of the same image (differing in incidental properties such as color or field of51

view) to have similar representations that are distinct from others [26]. We choose SimCLR because it is one of52

the best performing self-supervised approaches, and because it generates broadly useful representations that are53

beneficial for a range of visual tasks [27].54

To evaluate whether the multi-behavior models or the TDANNs better predict brain responses to visual stimuli, as55

well as the cortical organization into different streams, we leverage the Natural Scenes Dataset (NSD) [28]. NSD is56

a massive, high-resolution, fMRI dataset that measured responses to tens of thousands of natural images across57

eight individuals. The same images are given as input to each of the candidate models. By comparing model and58

brain responses on these images, we can test which model best predicts cortical responses and spatial segregation59

into visual streams.60

A major challenge in comparing computational models to the brain lies in establishing a mapping between model61

representations and brain representations. We develop a new algorithm that estimates an optimal 1-to-1 mapping62

between model units and voxels. The algorithm matches each model unit to a voxel by finding pairings that have the63

highest response correlation using an iterative version of the Kuhn-Munkres algorithm [21] with an additional spatial64

prior (Fig. 1c, Alg. 1) and has several appealing features. First, this 1-to-1 mapping allows us to evaluate topographic65

organization, unlike typical approaches that either match a linear combination of model units to a brain voxel (linear66

regression, [11, 29]) or examine the distributed representational similarity structure across units/voxels [30], thus67

obscuring the topographic organization. Second, a unit in a neural network model abstracts neural computations;68

as such, it may be a good model for the aggregated neural response of a voxel (i.e., in the Goldilocks zone of69

computational abstraction [31]). Third, a 1-to-1 mapping provides a more stringent test of models [32, 33], allowing70

a more rigorous evaluation of equivalences between DANNs and brains [34].71

The multi-behavior models fail to capture the functional organization of cortex into streams, while the TDANN72

provides a much better match73

To evaluate whether models match the functional organization into streams, we quantify the spatial and functional74

correspondence between candidate models and the NSD across subjects, hemispheres, and model seeds,75
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Figure 1. To test competing theories, we use two candidate model classes: (a) Multi-behavior models: object detection, action recognition, & object
categorization. Units are sampled from the final convolutional layer of the backbone architecture for all models and pooled to create candidate source units that are
mapped to the brain. (b) Topographic Deep Artificial Neural Networks (TDANNs) developed in [20] contain units that are assigned positions on a simulated cortical
sheet prior to training and are trained to minimize the sum of a functional loss and a spatial loss, controlled by a free parameter α. Units from the final convolutional
layer are used as candidate source units for mapping to the brain. (c) Overview of 1-to-1 mapping approach for linking model to brain. 10,000s of images of
natural scenes were presented to 8 individuals and candidate models. Responses are extracted from model units and brain voxels, and correlations between each
unit-voxel pair computed. Correlations are transformed into an initial cost matrix (1−correlation). Using the Kuhn-Munkres optimization algorithm [21] we determine
an initial assignment such that each unit is assigned to a unique voxel and the average cost across all unit-voxel pairings is minimized (black: assignment). To promote
general smoothness in the mapping, neighboring units’ assigned voxels are used to calculate "spatially-valid zones", such that any voxels outside a unit’s zone are set
to have a prohibitive cost (indicated in white, see Alg. 1 for details). This updated cost matrix is used to redetermine assignments, repeated for 100 iterations.

evaluating 1216 model-to-brain mappings in total. Using the unique images seen by each participant, we first find76

the model-to-brain mapping between units in the model’s convolutional end-layer and voxels in anatomical regions77

of interest (ROIs) corresponding to the ends of each stream. We assess spatial correspondence qualitatively on78

the cortical sheet (Fig. 2a) and quantitatively by computing how many units are mapped into the corresponding79

stream (e.g. object categorization and Ventral, see Methods: Evaluating spatial correspondence for details; Fig.80

2b). We assess functional correspondence by evaluating the average correlation between unit responses and81

voxel responses on an independent set of 515 left-out images seen by all subjects (Fig. 2c). We hypothesize82

that the best model for the human brain is another human brain. That is, the between-subject spatial and functional83

correspondence can serve as a benchmark to evaluate shared organizational principles [35]. Thus, to estimate a84

noise ceiling reference point, we use the same 1-to-1 mapping algorithm to map from one subject’s brain to another85

subject’s brain (brain-to-brain noise ceiling; gray bars).86

Our analyses reveal that the multi-behavior model does not explain the organization of cortex into streams. We find87
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Figure 2. The TDANN better matches spatial and functional organization of human visual system into streams (a) Unit-to-voxel mapping on an example
subject flattened cortical surface. Left: multi-behavior models, each voxel is colored based on the training task for its assigned unit. Right: TDANN models, voxels
are colored by location on the simulated cortical sheet of the last convolutional layer; polar angle (red -> green -> blue) and eccentricity (opacity, which decreases
away from center). (b) Quantification of spatial correspondence. For multi-behavior models, we show the percentage of voxels for each stream that are assigned
to units from the model trained on their hypothesized task. For TDANNs, we show the percentage of voxels for each stream are assigned to the corresponding
third of the simulated cortical sheet (max correspondence, up to rotation and reflection). Each symbol represents a model-to-subject mapping. (c) Quantification of
functional correspondence. Unit-to-voxel correlations on the test set (left-out 515 images). For (b) and (c) error bars: mean across subjects and hemispheres ± SE.
Self-supervised and supervised TDANNs shown for an optimal weighting of the spatial loss (α = 0.25 for self-supervised, α = 2.5 for supervised).

that neither highly performant models based on ResNet-50 [24, 23, 22], nor models based on ResNet-18 matching88

the TDANN architecture [36, 20, 25], recapitulate stream organization (Fig. 2). While we expected that a higher89

proportion of units from a model implementing the visual behavior associated with a stream would be assigned to90

the corresponding stream than other streams (e.g., units trained on object categorization would be primarily assigned91

to the Ventral stream), we instead find that unit-to-voxel assignments for the ResNet-50 models are noisy (Fig. 2a)92

with spatial correspondence not different from chance across all three streams (ps > .2), except Lateral which is93

significantly lower than chance (t(7) =−4.9, p = 0.002; Fig. 2b). Functionally, unit-voxel correspondences (Fig. 2c)94

are also poor: below r = 0.13 for all streams and tasks. Surprisingly, there is no dissociation of stream by visual95

behavior, with units trained on object categorization yielding the highest correlations to brain responses across all96

three streams. While a multi-behavior model based on a shallower ResNet-18 architecture provides significantly97

better spatial correspondence across all three streams and significantly better functional correspondence in Dorsal98

and Lateral than the ResNet-50 model (all ps ≤ .018, Supplemental Tables 1 and 2), its correspondence remains99

lacking. Spatially, only about 50% of the units are assigned to their correct stream. And functionally, correspondence100
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remains low (at or below r = 0.15 for all streams and tasks), with again no dissociation of stream by visual behavior,101

as units trained on object categorization best match brain responses across all three streams.102

In contrast to the multi-behavior models, the self-supervised TDANN captures both stream function and topography.103

Three distinct clusters of TDANN units map to the three different streams, qualitatively more smoothly on the cortical104

sheet than multi-behavior models (Fig. 2a). Quantitatively, the self-supervised TDANN achieves significantly higher105

spatial correspondence than the multi-behavior models across all three streams (all ps ≤ .012, Supplemental Table106

1, Fig. 2b). Additionally, functional correspondence of model units from the self-supervised TDANN to cortex107

is significantly higher (Fig. 2c, Supplemental Table 2), almost doubling from the best multi-behavior ResNet-18108

models across streams (improvement, Dorsal: mean 91% increase, Lateral: 65%, Ventral: 133%). Notably, the109

functional correspondence approaches the brain-to-brain noise ceiling (Fig. 2c-gray bars) in both the Dorsal and110

Ventral streams, as does the spatial correspondence in the Ventral stream (Fig. 2b-gray bars).111

As the categorization task yields the best spatial and functional match among multi-behavior models, we112

also implement a TDANN trained on object categorization. This TDANN achieves significantly better spatial113

correspondence in the Dorsal and Ventral streams and better functional correspondence across all three streams114

than the corresponding ResNet-18 trained on categorization (all ps ≤ .044, Supplemental Tables 1 and 2). This115

difference between the object categorization TDANN and the standard object categorization model is particularly116

striking for the Ventral stream, suggesting that not only does the spatial constraint in the TDANN change the layout117

of units, but it also changes their response properties to be more “brain-like". Nonetheless, across models tested,118

the self-supervised TDANN provides the best functional and spatial match to the brain. The success of the TDANN119

in matching both functional and spatial brain organization, above and beyond the multi-behavior models, suggests a120

new explanation of why the brain is organized into visual processing streams.121

Both contrastive self-supervision and the spatial constraint during training are critical for functional122

organization into streams123

We next ask what factors contribute to the emergence of streams in TDANNs. The TDANN has two key components124

that may affect its performance: the training task and the relative strength of the spatial constraint. Thus, we test125

TDANN models (5 seeds each), trained with either supervised categorization or self-supervised SimCLR, across a126

range of spatial weightings (α) from α = 0, where the model is essentially a standard ResNet-18 minimizing only127

the task loss, to α = 25, at which point the task is dwarfed by the spatial constraint. Models are evaluated on both128

spatial (Fig. 3B-top panel) and functional (Fig. 3B-bottom panel) correspondence to the brain. As TDANNs contain129

simulated cortical sheets, we evaluate the model-to-brain spatial correspondence using a distance similarity metric130

that quantifies the similarity between the spatial topography of the model and that of the brain.131

Across all three streams, self-supervised TDANNs with a spatial weight 0.25 ≤ α ≤ 0.5 provide the best spatial132

and functional match to the brain. The clearest stream structure is evident for a self-supervised TDANN with133

α = 0.25, with each stream largely mapping to a distinct contiguous third of the simulated cortical sheet (Fig. 3a); this134

structure is also visible using a continuous spatial gradient without pre-assigning voxels into streams (Supplemental135

Fig. S4). Notably, there are significant and large gaps between self-supervised (purple) and supervised (gold)136

TDANNs in their spatial and functional correspondence to the brain. Additionally, correspondence significantly137

varies with the level of the spatial constraint and there is a significant interaction between the spatial constraint138

and training task (Supplemental Tables 3 to 8). Self-supervised TDANNs achieve peak functional and spatial139

correspondence at 0.25 ≤ α ≤ 0.5 (Fig. 3b). While a commonly-used, less strict mapping of model-units-to-brain140

functional correspondence using linear regression estimates a higher functional correspondence, it critically masks141

the effects of training task and spatial constraint (Fig. 3d). In fact, the improved functional correspondence to the142

brain between TDANNs trained with biologically-plausible self-supervised training and models trained on supervised143

object categorization nearly vanishes when models are evaluated using linear regression.144

Another characteristic of visual cortex as a computational system is that the dimensionality of its representational145

space, that is, the Effective Dimensionality (ED) of encoded information, is relatively low [37, 38, 39]. This146

characteristic is thought to allow the brain to be robust to noise and well-generalize to new input distributions. We147

postulate that if the TDANN is a good model of the brain, it should also exhibit this property. Thus, we hypothesize148

that TDANNs that are more functionally similar to the brain may also be more similar to the brain in ED. Fig. 3c-gray149

bars shows the functional similarity (horizontal bar) vs. the ED (vertical bar) of each stream. Comparing TDANNs to150

this brain data reveals that self-supervised TDANNs (Fig. 3c-purple) have lower ED than supervised categorization151

TDANNs (Fig. 3c-yellow), and increasing the spatial weighting in self-supervised TDANNs further decreases the ED.152

Strikingly, in all streams, TDANNs that produce the most brain-like functional correspondence also have the most153

brain-like ED.154
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Figure 3. Both self-supervised training and a mid-weight spatial constraint are key to predicting spatial and functional organization into streams. (a)
Mapping between TDANN and the brain for an example flattened right hemisphere. Voxels are colored by location on the simulated cortical sheet (see inset). Left:
TDANNs trained with no spatial weighting (α = 0); Middle: TDANNs trained with α = 0.25, best functional similarity for self-supervised TDANNs; Right: TDANNs
trained with α = 2.5, best functional similarity for TDANNs trained on categorization. (b) Across all three streams, the topographic and functional match to brain is
best for self-supervised TDANNs trained with 0.25 ≤ α ≤ 0.5. Top row: Distance similarity between unit-voxel pairings per stream. Data averaged over unit-voxel
pairing for lowest third of distances. Bottom row: average functional similarity (correlation) between unit-voxel pairings per stream. (c) TDANNs with most brain-like
functional similarity also have most brain-like effective dimensionality (ED). Horizontal shaded gray bar: brain-to-brain functional similarity, averaged across subjects
and hemispheres (±SE across target subjects). Vertical shaded gray bar: ED of brain responses by stream, averaged across subjects and hemispheres (±SE across
subjects). Each dot: one model seed and subject combination, averaged across hemispheres. Opaque points: models with the highest correspondence (b) for each
training task (0.25 ≤ α ≤ 0.5: self-supervised; α = 2.5: categorization). (d) Linear (ridge) regression mapping between model units and voxels for each stream. In
(b) and (d): Values are averaged across model seeds and hemispheres, error bars: SE across subjects.

Functional segregation emerges from the TDANN model155

Our findings suggest that visual processing streams can emerge in a network that learns via a single, self-supervised156

task, under a spatial constraint to minimize wiring. Nonetheless, empirical findings imply that there are functional157

differences across visual processing streams [1, 8, 5] such as differences in population receptive fields (pRFs [41,158

42]) and differences in task performance [1, 2]. Is the emergence of streams from a single training task at odds159

with functional differentiation across streams? To gain initial insights into this question, we test the extent to which160

TDANN model units assigned to different streams exhibit stream-relevant functional properties.161

As pRFs in face-selective regions in the Ventral stream are more central than those of face-selective regions in the162

Lateral stream [41, 42], we evaluate the mean eccentricity of receptive fields (overlapping an 8° x 8° stimulus) of163

TDANN face-selective units assigned to the Ventral and Lateral streams, respectively. Results show a qualitative164

model-to-brain correspondence: Ventral face-selective model units are significantly more foveal than Lateral ones165

(mean ± SE: Ventral = 2.82± 0.01; Lateral = 2.94± 0.007; t(15) = −8.2,p = 7.7x10−5). Next, we test whether166

TDANN units assigned to the Dorsal and Ventral streams contribute to stream-specific hypothesized behaviors: (1)167

determining the object’s position [40], associated with the Dorsal stream’s role in determining where an object is, and168

(2) determining the object’s category (a 1000-way Imagenet categorization task [43, 26]), associated with the Ventral169

stream role in determining what the object is. While position [40, 41] and category [44, 45] can be decoded from both170

Dorsal and Ventral streams, we hypothesize that units assigned to the Dorsal stream will outperform Ventral units for171
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Figure 4. Functional segregation, in alignment with known stream properties, emerges from the TDANN model. Data shown is for self-supervised TDANNs
trained with 0.25 ≤ α ≤ 0.5. (a) Average receptive field eccentricity for face-selective TDANN units is further from the center for those units assigned to the Lateral
vs. the Ventral stream. (b) Task transfer performance for TDANN units assigned to either the Dorsal or Ventral stream. Left: R2 on an object position prediction
task [40] (location in pixels of the object’s center). Right: 1000-way object categorization accuracy on the Imagenet validation set. Green: units mapped to Dorsal
stream; Blue: units mapped to Lateral stream; Red: units mapped to Ventral stream. Each dot: a model seed, subject, and hemisphere combination. Triangles: left
hemisphere; circles: right.

position prediction and units assigned to the Ventral stream [46, 45], will out-perform Dorsal stream units on object172

categorization. We find that this is indeed the case: Dorsal units achieve significantly higher performance than Ventral173

units on predicting object position (mean ± SE: Ventral = 48± 0.06%; Dorsal = 50%± 0.10%; t(7) = −16.4,p =174

7.7x10−7), whereas Ventral units achieve significantly higher accuracy than Dorsal units on object categorization175

(mean ± SE: Ventral = 43.6%± 0.04%; Dorsal = 43.0%± 0.10%; t(7) = 4.21,p = .004; Supplemental Fig. S5,176

extended results including Lateral).177

Discussion and conclusions178

We find that a single, biologically plausible, computational principle - self-supervised learning of the statistics of179

visual inputs under a spatial constraint that encourages nearby units to have correlated responses - better explains180

the functional and spatial organization of the human visual system into processing streams than a system trained to181

perform different visual behaviors in parallel. These data necessitate a rethinking of an inherent idea in philosophy182

[47], psychology [48, 49], computational theory [50, 12, 51], and neuroscience [52], that different portions of our183

visual system have explicitly evolved to support a collection of distinct visual behaviors. Instead, our results suggest184

an intriguing new idea that evolution may lead to the emergence of a flexible visual system that can learn a185

task-general representation in an self-supervised manner, while being constrained by the physical size and layout186

of cortical tissue. In this conception, the visual system can learn from visual input alone without necessitating187

human-unique inputs such as language [53]. Moreover, it still develops distinct streams with functional properties188

suitable for different visual behaviors [1, 2, 3, 4, 5], and it is information efficient [16, 19, 38].189

This understanding would not have been possible without conceptual, empirical, and methodological innovations,190

including a full end-to-end TDANN that is both trainable and simulates the topographic arrangement of units on191

the cortical sheet [20, 25], a massive fMRI dataset [28] that enables comparing DANNs to the human brain, and192

a 1-to-1 mapping algorithm between model units to brain voxels. Recent success of DANNs in explaining neural193

responses in the visual system [11, 30, 54, 29] has elicited excitement that this class of models has the potential194

to explain why the brain is organized the way it is [55, 52, 31, 51, 56, 57]. At the same time, there is considerable195

theoretical debate as how to evaluate if a model accurately explains the brain [35, 32, 31, 58] as commonly used196

metrics, such as linear regression between model units and brain responses, do not distinguish between models197

[29, 33]. Here we show that a more stringent criterion - a 1-to-1 mapping between model units and brain voxels -198

is able to distinguish between models of the brain, including providing evidence for a definitive advantage of a more199

biologically-plausible self-supervised training over the best-to-date supervised categorization training [27, 11, 30, 29]200

in explaining brain responses in visual cortex. These findings, together with computational-theoretical advancements201

in developing metrics to compare systems that preserve neural tuning [33, 32], not just representational space202
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[11, 12, 59, 29, 51, 60], underscore the necessity of using stricter metrics not only to adjudicate between putative203

models of the brain, but also to glean new understanding of biological systems.204

The success of the TDANN underscores the necessity of modeling not only brain functional responses, as is the205

prevalent approach [11, 30, 27, 52, 31, 57, 56], but also brain topography. This follows insights from several recent206

studies that have investigated the emergence of regional topographic maps in the ventral stream [61, 62, 25, 20]207

suggesting that wiring [61], smoothness [62], and a balancing of spatial and functional constraints [20] can produce208

topographic organization. The key insight from the present work is that a local spatial constraint that allows fast209

processing [16] and may contribute to minimizing local wiring length [63, 15] can percolate up to create broad-scale210

stream structure. As parallel processing streams exist in other species [64], cortical systems [65, 66, 67, 68], and211

spatial scales [69, 70], future research can test if the same principles trained on other sensory and multimodal inputs212

lead to the emergence of parallel processing streams across the brain. Overall, this study suggests a paradigm213

shift: any end-to-end computational model of the brain that learns from the sensory input needs to include physical214

constraints, and not just behavioral goals, in order to accurately predict brain function.215
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Materials and methods379

Code and data availability380

Original code for this study is available at https://github.com/dawnfinzi/spacestream. The neural381

data analyzed in this study comes from the Natural Scenes Dataset (NSD) [1] available at http://382

naturalscenesdataset.org/.383

"Training phase": Neural network architectures and training384

Multi-behavior models. To test the multiple behavioral demands hypothesis, we used three models, each trained on a385

different task: object categorization, action recognition, and object detection. We chose these tasks as these are the386

computer vision equivalents of the proposed behaviors each stream is thought to support (Ventral: what is it, Lateral:387

what is it doing, Dorsal: where is it).388

We used two versions of multi-behavior models: one version with a ResNet-50 base architecture, for optimal task389

performance, and one version with a ResNet-18 base architecture as a control to more closely match the TDANN390

architecture, and the number of visual areas in primate cortex [2, 3]. For the object categorization model, we used the391

base model (ResNet-50 or ResNet-18) [4] trained on object categorization on ILSVRC-2012 (ImageNet Large-Scale392

Visual Recognition Challenge [5]). For the action recognition model, we used the SlowFast model architecture [6],393

which is a dual-pathway network with a 3D ResNet backbone trained on the Kinetics-400 video dataset [7]. Finally,394

for the ResNet-50 object detection model, we used a Faster R-CNN [8] trained on MS-COCO [9]. For the ResNet-18395

object detection model, we used a single-stage object detection network, SSD [10], for greater correspondence with396

the other multi-behavior models, and trained on Pascal VOC (2007 and 2012) [11], in order to avoid any confounds397

with both training and testing on MS-COCO (as the NSD images are also from MS-COCO).398

We randomly subsampled an equal number of units from layer 4.1 or its equivalent from each network (ignoring399

any "visually non-responsive" units that did not respond to any of the images) so that the total number of units was400

equal to the total number of voxels. In order to allow for the most direct comparison against TDANN models, the401

units sampled from the task-trained models were assigned random positions on a two-dimensional simulated cortical402

sheet. We then followed the same pre-optimization procedure as in Initialization of model unit position: Stage 2 in403

order to be able to fairly apply the same mapping algorithm.404

Topographic Deep Artificial Neural Network (TDANN).405

Model architecture and training The TDANN model class, which we used to evaluate the spatial constraints406

hypothesis, is based on ResNet-18 architecture, with two key differences: (1) model units are assigned positions407

on a 2D simulated cortical sheet and (2) the model is trained to jointly minimize a spatial and a task loss. All TDANN408

models were built using the ResNet-18 [4] base architecture (from the torchvision implementation) and trained using409

modifications to the VISSL framework [12]. ResNet-18 was chosen because it has been shown to achieve strong410

task performance, accurately predict neuronal responses across the visual system [13], and has roughly comparable411

number of layers to stages (areas) in the primate visual system [14, 3]. Models were trained for 200 epochs using the412

ILSVRC-2012 [5] training set, with each model being trained from five different random initial seeds. We optimized413

the network parameters using stochastic gradient descent with momentum (with γ set to 0.9), a batch size of 512,414

and a learning rate initialized to 0.6, which then decayed according to a cosine learning schedule [15] Models were415

trained using a self-supervised contrastive objective "SimCLR" [16] or a supervised 1000-way object categorization416

task.417

Initialization of model unit position Prior to training, model units in each layer were assigned fixed positions in a418

two-dimensional simulated cortical sheet specific to that layer. The size of the cortical sheet in each layer, and the419

size of the "cortical zone" used during training (computation of the spatial loss is restricted to units within the same420

cortical zone), was determined by the presumed correspondence, based on previous work comparing convolutional421

neural networks (CNNs) and the primate visual system [17, 18, 19], between model layers and human visual areas422

(see [2] for further details). Positions were then assigned in a two-stage process.423

Stage 1: Retinoptopic initialization As each layer convolves over the outputs of the previous layer, the resulting424

responses are structured into spatial grids. To maintain this inherent organization, we assigned each model unit to a425

specific area of the simulated cortical sheet that aligns with its spatial receptive field.426

Stage 2: Pre-optimization of positions In CNNs, filter weights are shared between units at different locations, which427

means that local updates to one unit affect all units with the same filter weights. This global coordination constraint428

makes it challenging to achieve local smoothness when the units are arbitrarily positioned. To address this, a429

pre-optimization of unit positions was necessary to identify a set of positions that enables learning smooth cortical430
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maps. We spatially shuffled the units of a pre-trained CNN on the cortical sheet, so that nearby units had correlated431

responses to a set of sine grating images. The use of sine gratings is based on studies that show that propagating432

retinal waves drive development of the visual system in the womb in primates and other mammals [20, 21, 22, 23]433

The spatial shuffling works as follows: 1) Randomly select a cortical zone. 2) Compute pairwise response434

correlations for all units in the zone 3) Select a random pair of units, and swap their locations in the cortical sheet. 4)435

If swapping positions decreases local correlations (measured as an increase in the Spatial Loss function described436

below), undo the swap. 5) Repeat steps 3-4 500 times. 6) Repeat steps 1-5 10,000 times.437

Loss functions We trained the TDANN models using a weighted sum of two types of loss functions: a task loss,438

which served to encourage learning of visual representations and a spatial loss, which encourages local correlations439

in responses to visual inputs. Optimization on the total loss function leads to both successful visual representation440

learning and minimization of inter-layer wiring length [2].441

Spatial loss The spatial loss function encourages nearby model units on the simulated cortical sheet to be442

correlated in their responses to the training stimuli. Specifically, SLl is the spatial correlation loss computed for443

the l-th layer and SLl is computed on a given batch by randomly sampling a local cortical zone and calculating for444

pairs of units, (1) correlation (Pearson’s r) between the response profiles, (
−→
R ), and (2) the the stabilized reciprocal445

Euclidean distances (
−→
D ):446 −→

D = 1
(1+
−→
d )

(S1)

where
−→
d is the vector of pairwise cortical distances. These two terms are then related as follows:447

SLl = 1−Corr
(−→

R,
−→
D

)
(S2)

such that SLl is minimized when nearby units have correlated responses to the training stimuli.448

Task loss The task loss (TL) is computed from the output of the final model layer. We tested two candidate449

TLs: supervised object categorization cross-entropy loss [24] and the self-supervised SimCLR objective [16]. The450

SimCLR objective is a contrastive loss function which works by creating two "views", or augmentations, of each image451

in a batch, using random cropping, horizontal flips, color distortion, and Gaussian blur. These views are passed to452

the network and the final layer outputs are passed through a 2-layer multi-layer perceptron (MLP), producing a453

low-dimensional representation of each view which serves as the input to the loss function. The SimCLR loss454

function then attempts to maximize the similarity of representations for two views of the same source image, while455

pushing that representation away from all other images in the batch.456

Overview of training In sum, the TDANN is trained on Imagenet [5] to minimize this total loss, which is the sum of457

the weighted spatial loss for each layer and the task loss as follows:458

Total Loss = TL+α
∑

l∈layers
SLl (S3)

where α is the weight of the spatial loss component (fixed across all layers), and SLl is the spatial correlation loss459

computed for the l-th layer.460

The total model training process consists of 6 steps:461

1. The ResNet-18 model is trained using the task loss only.462

2. Positions are initialized to preserve coarse retinotopy in each layer (Stage 1).463

3. Positions are pre-optimized in an iterative process that preserves retinotopy while bringing together units with464

correlated responses to sine gratings (Stage 2).465

4. After pre-optimization, positions are permanently frozen.466

5. All network weights are randomly re-initialized.467

6. The network is trained to minimize the total loss.468

"Mapping phase": Linking model to brain469

Neural data. As our neural comparison, we used the Natural Scenes Dataset (NSD) [1], a high-resolution fMRI dataset470

that densely sampled responses to up to 10,000 natural images in each of eight individuals over the course of 32-40471

scan sessions. Full details on data collection and processing can be found in Allen et al. [1]. Briefly, scanning472
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was conducted at 7T using gradient-echo EPI at 1.8-mm isotropic resolution with whole-brain coverage. Images473

were taken from Microsoft’s COCO image database [9], square cropped to 425 pixels x 425 pixels, and presented474

at fixation at a size of 8.4° x 8.4° for 3 seconds with 1 second gaps in between images. Data were preprocessed475

using one temporal resampling (to correct for slice timing differences) and one spatial resampling (to correct for head476

motion, EPI distortions and gradient non-linearities), resulting in upsampled 1.0mm resolution (temporal resolution477

1.0 s). Single-trial beta weights were estimated using a general linear model approach designed to optimize the478

quality of single trial betas (GLMsingle [25]). The single-trial responses were then z-scored across images for each479

voxel and session and then averaged across 3 trial repeats. We used cortex-based alignment to align all data to the480

fsaverage surface. Throughout reporting of the results, we refer to the brain units of measurement as “voxels”, for481

interpretability, though they are more technically “vertices” as we are using the fsaverage preparation.482

ROIs We defined regions of interest (ROIs) for early, intermediate, and high-level visual cortex for each of the three483

streams based on a combination of anatomical landmarks, noise ceiling estimates (Supplemental Fig. S1), and a484

constraint to roughly match the number of voxels per stream. We focus only on the high-level visual ROIs for the485

purposes of this paper and compare the end point of the models to the end points of the processing stream in each486

brain. However, the full details for drawing all seven (one early, three intermediate and three higher-level) ROIs are487

included here for completeness and because the high-level ROIs share boundaries with the intermediate ROIs. ROIs488

were drawn on the fsaverage surface as follows:489

Early visual cortex ROI: The early visual cortex ROI was drawn as the union of the V1v, V1d, V2v, V2d, V3v and V3d490

ROIs from the Wang retinotopic atlas [26]. Additionally, V2v and V2d, as well as V3v and V3d, were connected such491

that the part of the occipital pole typically containing foveal representations was included in the ROIs.492

Intermediate ROIs: Three intermediate ROIs were drawn corresponding to each of the three streams: Ventral, Lateral493

and Dorsal. All three ROIs border the early visual cortex ROI on the posterior side. The intermediate Ventral ROI494

was drawn to reflect the inferior boundary of hV4 from the Wang atlas [26] and includes the inferior occipital gyrus495

(IOG), with the anterior border of the ROI drawn based on the anterior edge of the inferior occipital sulcus (IOS). The496

intermediate Lateral ROI was drawn directly superior to the intermediate ventral ROI, with the superior and anterior497

borders determined as the LO1 and LO2 boundaries from the Wang atlas [26]. The intermediate Dorsal ROI was498

drawn directly superior to that to include V3A and V3B from the Wang atlas.499

Higher-level ROIs: Three higher-level ROIs were drawn for each of the Ventral, Lateral and Dorsal streams, bordering500

their respective intermediate ROIs on their posterior edges. The ventral ROI was drawn to follow the anterior lingual501

sulcus (ALS), including the anterior lingual gyrus (ALG) on its inferior border and to follow the inferior lip of the inferior502

temporal sulcus (ITS) on its superior border. The anterior border was drawn based on the midpoint of the occipital503

temporal sulcus (OTS). The lateral ROI was drawn such that the higher-level ventral ROI was its inferior border and504

the superior lip of the superior temporal sulcus (STS) was used to mark the anterior/superior boundary. The rest of505

the superior boundary traced the edge of angular gyrus, up to the tip of the posterior STS (pSTS). The dorsal ROI506

was drawn to reflect the boundary of the lateral ROI on its inferior edge and to otherwise trace the borders of and507

include the union of IPS0, IPS1, IPS2, IPS3, IPS4, IPS5 and SPL1 from the Wang retinotopic atlas.508

The three higher-level ROI were then trimmed using the prepared noise ceiling maps for beta version b3 and the509

fsaverage surface [1]. The noise ceiling estimates represent the amount of variance contributed by the signal510

expressed as a percentage of the total amount of variance in the data, for the average of responses across three trial511

presentations. An approximate cutoff of 10% was used to guide trimming of the higher-level ROIs, such that we were512

left with reduced ROIs where all voxels had a noise ceiling ≥ 10% theoretically predictable variance. These ROIs513

were contiguous and roughly matched in size (number of voxels per ROI right hemisphere: Dorsal = 6688, Lateral =514

6839, Ventral = 5638; left hemisphere: Dorsal = 6182, Lateral = 5849, Ventral = 6126).515

Model data. For each of our neural network models, we extracted features in response to the same set of 73,000516

total NSD images seen by participants in the scanner. Features were extracted from layer 4.1 in ResNet18 and517

ResNet50 or equivalent. This layer was chosen as past work shows that it has the best functional correspondence518

to higher-level visual areas, including on the NSD [3, 2, 27]. This results in a matrix of features of the form number519

of images x number of units, where the number of units is 7 x 7 x 512 = 25,088, i.e. the total number of units in520

layer 4.1, for the TDANN models, and 19,164 total subsampled units for the multi-behavior models (6,388 units per521

model), which matches the maximum number of voxels per hemisphere. Thus, for all models, the number of source522

units was of the same order of magnitude as the number of target voxels [28, 29].523

1-to-1 mapping. Development of the mapping algorithm was done using the case of the brain-to-brain mapping, with524

the reasoning being that if we failed to recover an element of the functional organization in the model-to-brain case,525

we would not be able to arbitrate between a failure in the model and a failure in the mapping, unless we had already526
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shown that such functional organization could be captured in the brain-to-brain case using an identical mapping.527

We found that incorporation of the spatial prior (see below) into the mapping significantly improves accuracy in528

assignment (Supplemental Fig. S2). Once satisfied with the mapping algorithm in the brain-to-brain case, we used529

that algorithm with as few modifications as possible (neighborhood radius and stimuli used, detailed below) to map530

model-to-brain.531

For each pair of subjects (source subject mapped to target subject), we used the single-trial z-scored betas for532

each source voxel and each target voxel in response to the 515 images shared across all subjects (80% used for533

assignment, 20% used for evaluation) and computed the correlations between each pair of voxels. This correlation534

matrix was then transformed into a cost matrix (1 – correlation) and assignment was first attempted purely on the535

basis of this cost matrix ("functional only") using the Kuhn-Munkres algorithm [30], a combinatorial optimization536

algorithm which solves the assignment problem in polynomial time. The "functional only" algorithm performed above537

chance in assigning voxels to the correct streams but did not fully recover the spatial organization (Supplemental538

Fig. S2). We thus added a minimal smoothness constraint to the optimization procedure; the smoothness constraint539

encourages neighboring voxels in the target space to “pick” neighboring voxels in the source space (given a small540

local radius of 5 mm; full algorithm provided below:1). As this recovered more of the known spatial organization541

in the voxel-to-voxel case (Supplemental Fig. S2), this was the mapping algorithm we chose to then apply in the542

unit-to-voxel case. To convert the radius of 5 mm used in the voxel-to-voxel case to the model space, we calculated543

what percentage of the max voxel-to-voxel distance (237 mm) the brain radius cutoff was and then multiplied that544

percentage by the max model distance (12.9). This yielded a model radius cutoff of approximately 0.27, resulting in545

the following two radii used in the unit-to-voxel case, 5 mm for the brain distances and 0.27 for the model distances.546

Additionally, in the unit-to-voxel case, we leveraged the full set of unique images (up to 9485 per individual) to link547

models to individual brains. The 515 shared images were then reserved for evaluating theories ("Test phase").548

Algorithm 1 1-to-1 mapping with spatial prior (Fig. 1c)

Require: Cost matrix C of dimension Ns×Nt, where Ns is the number of source units and Nt is the number of
target units, and each entry in C is 1− the pairwise correlation of the response vectors. Source distance matrix,
Ds, of dimension Ns×Ns, with the pairwise distances between all units in the source space. Target distance
matrix, Dt, of dimension Nt×Nt, with the pairwise distances between all units in the target space. Radius r to
use as neighborhood size.
procedure MAPPING ALGORITHM(C,Ds,Dt, r)

Assignments A← Kuhn-Munkres(C) ▷ Initialized based on "functional only" mapping
while Mean movement of assignments from iteration to iteration has not converged do

Ctemp← C.copy()
for each target unit, vt do

Find all neighboring target units, Vtn within distance r
Initialize candidate matrix, Vsn

for each unit in Vtn do
Find their assigned source unit, vs, from A
vsn← all units in source space within distance r from vs

Append vs and vsn to Vsn

end for
Fit a 2D Gaussian, G, to point cloud, Vsn in source space
Msn← mahalanobis(Vsn,G)
for each unit, u, in Vsn do

if Msn[u] > 2 then
Remove u from Vsn

end if
end for
Ctemp[vt,¬Vsn] = 1000 ▷ all source units not in Vsn are set to have a prohibitive cost

end for
A← Kuhn-Munkres(Ctemp)

end while
return A

end procedure

Total models tested. We evaluated 5 instances initialized with different random seeds per each of the TDANNs across549

2 training tasks (SimCLR and categorization) and 7 levels of spatial weightings (α), as well as 2 base architectures550
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(Resnet-18 and ResNet-50) for each of the 3 multi-behavior models (detection/action/categorization). Each model551

was then mapped to the 2 hemispheres for each of the 8 participants, totaling 1216 model-to-brain mappings tested.552

"Test phase": Evaluating theories553

Evaluating spatial correspondence. We evaluated the spatial correspondence in two ways. First, to compare554

multi-behavior models and TDANNs directly we calculated a percentage spatial correspondence metric. In the case555

of multi-behavior models, this is calculated as the percentage of voxels for each stream that were assigned to the556

multi-behavior model trained using that stream’s corresponding task (i.e. Ventral and object categorization). In the557

case of TDANNs, we divided the simulated cortical sheet into three sections (candidate stream partition scheme),558

assuming a log-polar transform, and calculated the highest percentage of voxels that match the partition scheme559

across candidate partitions (reflection and 5° rotations).560

Second, when comparing across TDANNs that have simulated cortical sheets, we additionally calculated a distance561

similarity metric. The distance similarity metric measures, for each unit-to-voxel pairing, the correlation between562

the normalized distances on the model cortical sheet (from that unit to other units) and normalized distances on563

the actual cortical surface (for the assigned voxel to the other units’ assigned voxels), averaged across-unit-to-voxel564

pairings. For each unit, this metric is calculated across only the closest 33% of units, to simulate stream boundaries,565

which has the additional benefit of discounting high distances where there are few pairs. The same calculation566

was performed in the brain-to-brain case to determine the actual cortical level of distance similarity. We report the567

average distance similarity across unit-to-voxel pairings.568

Evaluating functional correspondence. To evaluate functional correspondence between candidate models and the569

brain, we report the 1-to-1 correlations calculated on the left-out set of 515 shared images, using the unit-to-voxel570

assignments determined by the mapping procedure. Each unit-to-voxel correlation was normalized by the individual571

voxel noise ceiling (r) of that assigned voxel (see [1] for information on the calculation of the intra-individual voxel572

noise ceilings in NSD). 1-to-1 correlations were calculated on an individual subject and hemisphere basis for each573

of the candidate models. The voxel-to-voxel assignments were used to calculate the overall inter-individual i.e.574

brain-to-brain noise ceiling (correlations evaluated on test set of 20% of the shared images, averaged across 5 splits575

for each source and target subject combination).576

Linear regression. To compare the 1-to-1 mapping results to the commonly used mapping method of linear regression577

between model units and the brain [18, 31, 13], we also calculated TDANN model to brain correspondence by578

regressing model responses from the final convolution layer onto individual voxel responses using ridge regression.579

As in [13], to decrease computational costs without sacrificing performance, we first projected unit activations into580

a lower dimensional space using a subsample of the ImageNet validation images and retained the first 1000 PCs.581

Performance was evaluated on a left-out test set (8/9 train, 1/9 test, shared images excluded, 10 splits) for each582

subject separately. Test R2 for each voxel is normalized by the individual voxel noise ceiling (R2). To evaluate the583

upper-bound model performance given the shared variance across subjects, we again calculated a brain-to-brain584

noise ceiling for each stream by repeating the same ridge regression procedure as for model-to-brain but instead585

using all other subjects’ responses to predict the left-out subject (80/20 train-test split using the set of 515 shared586

images, 10 splits).587

Effective dimensionality588

To calculate effective dimensionality, i.e. the dimensionality of the space of how information is represented by a589

system (also referred to as the latent dimensionality), we considered the responses of the subset of units assigned590

to each stream by subject. Using the unit activations (in the case of the models) or z-scored betas (in the case of591

the human subjects), we computed the eigenspectrum of these responses to the MSCOCO images used in NSD.592

Following [32] and [33], we computed effective dimensionality from the eigenvalues (λ) as:593

ED =

(∑N
i=1 λi

)2

∑N
i=1 λ2

i

(S4)

where N is the number of eigenvectors. Intuitively, if the eigenspectrum decays slowly, that means there are many594

informative dimensions, and the ED, which in words is simply the squared sum of the eigenvalues over the sum595

of squares of the eigenvalues, will be high. On the other hand, if the eigenspectrum decays rapidly, meaning that596

information is largely encoded in only a few dimensions, then the ED will be low.597
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Model unit selectivity and receptive field properties598

Previous studies reported that voxels in face-selective regions in the Lateral stream are more peripheral than those in599

face-selective regions of the Ventral stream [34]. To test if this functional feature was also present in the TDANN, we600

identified face-selective units in each stream and then estimated the eccentricity of their receptive fields. To identify601

face-selective units in the TDANN, we used the functional localizer (fLoc) stimulus set [35]. fLoc contains stimuli from602

five categories, each with two subcategories consisting of 144 images each. The categories are faces (adult and603

child faces), bodies (headless bodies and limbs), written characters (pseudowords and numbers), places (houses604

and corridors), and objects (string instruments and cars). These stimuli have been previously used to localize and605

describe category-selective responses in human higher visual cortex in fMRI studies [35, 34, 36]. Selectivity was606

assessed by computing the t-statistic over the set of functional localizer stimuli and defining a threshold above which607

units were considered selective.608

t = µon−µoff√
σ2

on
Non

+ σ2
off

Noff

, (S5)

where µon and µoff are the mean responses to the "on" categories (adult and child faces) and "off" categories (all609

non-face categories), respectively, σ2 are the associated variances of responses to exemplars from those categories,610

and N is the number of exemplars being averaged over. As in fMRI experiments, units with t > 3 were classified611

as face-selective. For each unit, eccentricity was then calculated based on the unit’s (x,y) position from the center612

of the 7x7 filter, converted to degrees of visual angle (by multiplying by 8° input stimulus / 7 grid size). From there,613

we divided these units based on which stream they were assigned to and report the mean eccentricity across614

face-selective units for each model seed x subject x hemisphere combination.615

Task transfer616

We tested performance of self-supervised TDANNs units mapped to the Dorsal and Ventral stream, on new tasks,617

position prediction and object categorization, respectively, associated with each stream (results for the Lateral stream618

and additional tasks in Supplementary Fig. S5). We refer to this as task transfer performance as the TDANN model619

was not trained on any of these tasks and model weights were frozen. Performance on the transfer task was tested620

for the self-supervised TDANNs which best match the brain (0.25 ≤ α ≤ 0.5 in Fig. 4, full results across spatial621

weightings in Supplementary Fig. S5) and each hemisphere of each subject.622

Position task. We evaluated the performance of TDANN units assigned to each stream on predicting the vertical and623

the horizontal locations in pixels of an object center in an image, using the stimulus set from Hong et al., which has624

also been used in the evaluation of neural network models of the mouse [38] and primate [31, 39] visual systems.625

This stimulus set consists of 5760 gray-scale images of 64 distinct objects chosen from one of eight categories626

(animals, boats, cars, chairs, faces, fruits, planes, tables) placed on randomly chosen, realistic background scene627

images. Object position, pose and size in this stimulus set varied at different levels from no variation, to medium628

variation and high variation levels.629

For each TDANN model and individual subject, smaller "stream models" were created for each of the three streams630

by selecting the 5000 units assigned to that stream with the highest correlations. We extracted activations from these631

units and reduced the dimensionality of the activations to 1000 dimensions using principal components analysis632

(PCA). We used Ridge regression, with the regularization parameter, α, cross-validated from633

α ∈ [0.01,0.1,1,10] (S6)

to predict the vertical and the horizontal locations in pixels of the object center in the image. We performed five-fold634

cross-validation on the training split of the no- and medium-variation image subsets, consisting of 3200 images,635

and computed performance on the test split of the high-variation set consisting of 1280 images. Ten different636

category-balanced train-test splits were randomly selected. We report R2 on the high-variation test set, averaged637

across the 10 splits.638

Categorization task. To evaluate the performance of TDANN units assigned to each stream on a downstream639

categorization task, we used the 1000-way ImageNet object categorization task [5]. For each TDANN model and640

individual subject, smaller "stream models" were created for each of the three streams as in the position prediction641

task. A single linear layer was then trained directly from the outputs of those units. The linear layer was trained for 28642

epochs of the ILSVRC-12 ImageNet training set (1,281,167 images) with a batch size of 1,024 and a learning rate643

which was initialized to 0.04 and decreased by a factor of 10 every eight epochs. We report the top-1 performance644

on the held-out validation set (50,000 images).645
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Supplementary tables646

Table 1. Linear mixed-effects model to test effect of candidate model type on spatial correspondence for each of the
three streams. To test if there were differences between candidate models on spatial correspondence with the brain, we used
linear mixed-effects models, with fixed effects for candidate model type (intercept denotes multi-behavior candidate model with
ResNet-18 base, i.e. MB ResNet-18) and a random intercept for each subject. Model specification was as follows: spatial
correspondence ∼ candidate model type + 1 | subject. A separate model was run for each of the three streams. Positive values
indicate better spatial correspondence than the MB ResNet-18 (first row) and negative values indicate worse spatial
correspondence. For example, the β coefficient of −15.87 for MB ResNet-50 in Dorsal indicates that there is an average
decrease of 15.87% in spatial correspondence for the MB ResNet-50 model relative to the MB ResNet-18 model, while the β

coefficient of 11.91 for the supervised TDANN indicates an average increase of 11.91%, again relative to the MB ResNet-18
value of 50.2%. Corrected p-values indicate p-values Bonferroni-corrected for multiple comparisons between candidate model
types. Significant predictors (p < .05) are shown in bold. MB = multi-behavior. These statistics are related to Fig 2b.

Coefficients±SE z-value p-value corrected p-value

Dorsal Intercept (MB ResNet-18) 50.20±1.54 32.61 2.6x10−233

MB ResNet-50 -15.87±2.12 -7.48 7.5x10−14 2.2x10−13

Self-supervised TDANN 6.13±2.12 2.89 .004 .012
Supervised TDANN 11.91±2.12 5.61 2.0x10−8 6.1x10−8

Lateral Intercept (MB ResNet-18) 50.58±1.43 35.28 1.3x10−272

MB ResNet-50 -19.89±1.65 -12.06 1.8x10−33 5.3x10−33

Self-supervised TDANN 7.71±1.65 4.67 3.0x10−6 8.9x10−6

Supervised TDANN -2.51±1.65 -1.52 0.13 0.38
Ventral Intercept (MB ResNet-18) 48.35±1.34 36.14 5.9x10−286

MB ResNet-50 -13.99±1.89 -7.39 1.4x10−13 4.3x10−13

Self-supervised TDANN 21.85±1.89 11.55 7.5x10−31 2.2x10−30

Supervised TDANN 18.22±1.89 9.63 6.1x10−22 1.8x10−21
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Table 2. Linear mixed-effects model to test effect of candidate model type on functional correspondence for each of the
three streams. To test if there were differences between candidate models on functional correspondence with the brain, we
used linear mixed-effects models, with fixed effects for candidate model type (intercept denotes multi-behavior candidate model
with ResNet-18 base, i.e. MB ResNet-18) and a random intercept for each subject. Model specification was as follows:
functional correspondence ∼ candidate model type + 1 | subject. A separate model was run for each of the three streams.
Positive values indicate better functional correspondence than the MB ResNet-18 (first row) and negative values indicate worse
functional correspondence. For example, the β coefficient of −0.01 for MB ResNet-50 in Ventral indicates that there is an
average decrease in the correlation with brain responses of 0.01 for the MB ResNet-50 model relative to the MB ResNet-18
model, while the β coefficient of 0.18 for the self-supervised TDANN indicates a massive average increase in correlation of 0.18,
again relative to the MB ResNet-18’s value of 0.14, meaning that the self-supervised TDANN had an average correlation across
subjects of 0.32 to Ventral brain responses. Corrected p-values indicate p-values Bonferroni-corrected for multiple comparisons
between candidate model types. Significant predictors (p < .05) are shown in bold. MB = multi-behavior. These statistics are
related to Fig 2c.

Coefficients±SE z-value p-value corrected p-value

Dorsal Intercept (MB ResNet-18) 0.11±0.00 24.86 1.8x10−136

MB ResNet-50 -0.01±0.01 -2.74 .01 .018
Self-supervised TDANN 0.10±0.01 21.26 2.7x10−100 8.2x10−100

Supervised TDANN 0.05±0.01 11.39 4.7x10−30 1.4x10−29

Lateral Intercept (MB ResNet-18) 0.15±0.01 19.82 2.1x10−87

MB ResNet-50 -0.03±0.01 -4.98 6.5x10−7 1.9x10−6

Self-supervised TDANN 0.09±0.01 15.30 7.9x10−53 2.4x10−52

Supervised TDANN 0.02±0.01 2.44 0.015 0.044
Ventral Intercept (MB ResNet-18) 0.14±0.01 22.42 2.6x10−111

MB ResNet-50 -0.01±0.01 -2.29 .022 .067
Self-supervised TDANN 0.18±0.01 31.74 4.0x10−221 1.2x10−220

Supervised TDANN 0.11±0.01 19.56 3.4x10−85 1.0x10−84
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To test for the effects of TDANN spatial weightings (α ∈ [0.0,0.1,0.25,0.5,1.25,2.5,25]) and training task647

(self-supervised simCLR vs. supervised object categorization) on (1) model-to-brain distance similarity (Fig.648

3b-top), (2) model-to-brain functional similarity (Fig. 3b-bottom), and (3) linear regression brain predictivity, we ran649

repeated-measures ANOVAs separately for each stream with the factors spatial weighting and training task. Results650

are reported in Tables 3-11. Num DF indicates numerator degrees of freedom and Den DF indicates denoinator651

degrees of freedom.652

Table 3. Distance similarity (r) for Dorsal.

F Num DF Den DF p-value

Spatial weighting 71.83 6.0 42.0 1.7x10−20

Training task 72.21 1.0 7.0 6.2x10−5

Spatial weighting:Training task 35.24 6.0 42.0 7.2x10−15

Table 4. Distance similarity (r) for Lateral.

F Num DF Den DF p-value

Spatial weighting 90.60 6.0 42.0 2.0x10−22

Training task 91.54 1.0 7.0 2.9x10−5

Spatial weighting:Training task 45.86 6.0 42.0 7.0x10−17

Table 5. Distance similarity (r) for Ventral.

F Num DF Den DF p-value

Spatial weighting 152.15 6.0 42.0 7.5x10−27

Training task 258.05 1.0 7.0 8.8x10−7

Spatial weighting:Training task 138.17 6.0 42.0 5.1x10−26

Table 6. Functional similarity (r) for Dorsal.

F Num DF Den DF p-value

Spatial weighting 210.92 6.0 42.0 1.0x10−29

Training task 520.02 1.0 7.0 7.9x10−8

Spatial weighting:Training task 370.10 6.0 42.0 1.1x10−34

Table 7. Functional similarity (r) for Lateral.

F Num DF Den DF p-value

Spatial weighting 189.58 6.0 42.0 9.0x10−29

Training task 548.94 1.0 7.0 6.6x10−8

Spatial weighting:Training task 523.86 6.0 42.0 8.2x10−38

Table 8. Functional similarity (r) for Ventral.

F Num DF Den DF p-value

Spatial weighting 487.47 6.0 42.0 3.6x10−37

Training task 890.56 1.0 7.0 1.2x10−8

Spatial weighting:Training task 694.57 6.0 42.0 2.4x10−40
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Table 9. Linear regression predictivity (R2) for Dorsal.

F Num DF Den DF p-value

Spatial weighting 264.61 6.0 42.0 1.0x10−31

Training task 17.10 1.0 7.0 .004
Spatial weighting:Training task 188.09 6.0 42.0 1.1x10−28

Table 10. Linear regression predictivity (R2) for Lateral.

F Num DF Den DF p-value

Spatial weighting 797.86 6.0 42.0 1.3x10−41

Training task 148.19 1.0 7.0 5.8x10−6

Spatial weighting:Training task 272.05 6.0 42.0 5.9x10−32

Table 11. Linear regression predictivity (R2) for Ventral.

F Num DF Den DF p-value

Spatial weighting 747.19 6.0 42.0 5.1x10−41

Training task 47.92 1.0 7.0 .0002
Spatial weighting:Training task 290.19 6.0 42.0 1.6x10−32

Finzi et al. | spacestream Supplementary Information | 23

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 20, 2023. ; https://doi.org/10.1101/2023.12.19.572460doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.19.572460
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary figures653

Figure S1. Voxel-wise noise ceiling estimates and ROI boundaries. Noise ceiling estimates (% explainable variance) across
all image repeats per subject and then averaged across subjects, visualized on the fsaverage surface. Values are thresholded at
10% explainable variance, the cutoff used to guide drawing of the higher-level ROI boundaries. Figure illustrates that, (1) by
design, much of the reliable signal is included in the ROIs drawn, and (2) the noise ceiling is high (minimum 10% explainable
variance and numerous voxels above 50% explainable variance) across Ventral, Lateral, and Dorsal. Dashed black line: region
shown in main text figures.

Finzi et al. | spacestream Supplementary Information | 24

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 20, 2023. ; https://doi.org/10.1101/2023.12.19.572460doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.19.572460
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S2. Representations differ across streams in NSD. (a) Multidimensional scaling of representation structure. For each
individual and ROI, we computed the similarity (Pearson’s r ) between distributed responses across the ROI to all pairs of shared
images, resulting in a representational similarity matrix (RSM) from which we extract the flattened lower triangle as a
representation vector. Representation vectors were correlated across all subject and ROI combinations (corrected by the
trial-to-trial reliability) to generate a 2nd-order RSM, which characterizes the similarity of representations across subjects and
ROIs. To visualize the structure, we computed a multidimensional scaling (MDS) of this matrix. We find a rough hierarchical
progression from early visual cortex (EVC) ROIs in the top-right (gray), to mid-level ROIs (light colors, middle), to high-level ROIs
in the lower-left. Additionally, there is a large-scale separation by stream for high-level ROIs, rather than subject or hemisphere,
with lateral high-level ROIs (blue) separated and more superior from a tight ventral cluster (magenta), which is in turn, largely
distinct from the dorsal ROIs (green, though these show greater between subject variability). (b) Comparison of ROIs as models
of each other, using representational similarity analysis (RSA) and linear regression (Ridge regression). Pearson’s r and R2

values are normalized by the respective noise ceilings (NC). Each dot represents a subject. White: within-ROI (i.e.
subject-to-subject noise ceiling); Gray and Black bars: ROI X’s prediction of ROI Y’s responses. (c) To further test whether each
stream showed a distinct representational structure, we parcellated cortex into 1000 equally spaced ROIs and then calculated
the correlation between each pair of parcels. Each comparison was grouped based on whether both parcels were located within
the same stream (black) or whether they were located in two different streams (white), revealing significantly higher correlations
within than across streams for this three-stream organization (main effect of within vs. across: p=4.19x10−7). The difference in
parcel correlations within vs. across streams did not simply reflect anatomical proximity, as the neighboring lateral and dorsal
streams showed the greatest differentiation.
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Figure S3. Validating the 1-to-1 mapping algorithm by testing how well it maps one brain onto another brain. (a) Right
hemisphere voxels in Target (Subj. 2) brain colored by their assignment to streams in Source (Subj. 1) right hemisphere voxels
using the algorithm [30] that matches each unit to a voxel solely based on functional similarity. Essentially, all spatial information
was removed and voxels in the Target brain were assigned to voxels from the Source brain purely on the basis of how correlated
they were in their responses to the shared stimuli across subjects. We refer to this mapping as functional only. (b) Right
hemisphere voxels in Target (Subj. 2) brain colored by their assignment to Source (Subj. 1) right hemisphere voxels using the
full algorithm that additionally incorporates a gentle smoothness constraint, which encourages neighboring voxels in the target
space to "pick" neighboring voxels in the source space (algorithm used in main text). (c) Spatial correspondence between brains
using the functional only or full algorithm. Bars: Comparison of right hemisphere voxel-to-voxel correspondence. Data show
substantially higher correspondences when using the full algorithm in both the right (Ventral: t(7) = 41.3,p = 1.3x10−9, Lateral:
t(7) = 15.6,p = 1.1x10−6, Dorsal: t(7) = 27.0,p = 2.5x10−8) and left hemisphere (panel f; Ventral: t(7) = 18.2,p = 3.7x10−7,
Lateral: t(7) = 18.1,p = 4.0x10−7, Dorsal: t(7) = 21.8,p = 1.1x10−7). Data plotted for high-level ROIs across three streams,
averaged across source subjects for each target subject. Color represents stream (pink: Ventral, blue: Lateral, and green:
Dorsal). Dotted line: chance level (33%). Error bar: 95% CI, each dot is a subject. Data show that the full algorithm achieves a
better brain-to-brain mapping. (d), (e), and (f), same for left hemisphere.
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Figure S4. Model-to-brain 1-to-1 mapping visualized on the simulated cortical sheet of the last convolutional layer of
the TDANN model. TDANN model-to-brain mapping visualized on the simulated cortical sheet, for TDANNs trained using the
self-supervised, SimCLR task (a) or the supervised, object categorization task (b). This visualization is the reverse of the
visualization in Fig. 2a and Fig. 3a of the main text. Here, each square panel shows model units (each dot is a model unit) on
the simulated cortical sheet. Units are colored based on the spatial location of their assigned voxel in an example target brain.
Opacity of the units reflects the strength of the model-to-brain correlation between responses to NSD images and units are
colored by stream (top) or superior-to-inferior spatial gradient (y-position in flat map, bottom). This second color scheme is
"stream-agnostic" in that it does not presuppose the existence of three streams, yet stream clustering emerges at
self-supervised 0.25 ≤ α ≤ 0.5. Each column displays the model-to-brain mapping for an example subject and model seed for a
particular spatial weight.
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Figure S5. Adding the spatial loss component to the TDANN during training can improve later transfer performance for
some tasks. Transfer performance for units from the self-supervised TDANNs across a range of weightings (α) on the spatial
loss function for four tasks: object categorization, object position estimation, object pose estimation (y-axis rotation), and object
size estimation. For three of the four tasks: position, pose, and size estimation, the addition of a spatial loss term improves
performance, with peak performance in the same range of weighting on the spatial loss term that leads to best correspondence
with the brain (0.25 ≤ α ≤ 1.25). Units were divided by their assigned stream and then assessed on transfer performance using
supervised linear readouts. Results are averaged across model seeds (5), subjects (8) and hemispheres (2) totaling 80 models
per point, with the exception of (a) where results represent only one model seed, due to compute constraints. Shaded error bar:
± SE. Larger circles indicate model by stream combinations evaluated main text Figure 4.
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