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Abstract 

Rhythmic activity in the delta frequency range (0.5 – 3 Hz) is a prominent feature of brain 

dynamics. Here, we examined whether spontaneous delta oscillations, as found in invasive 

recordings in awake animals, can be observed in non-invasive recordings performed in humans with 

magnetoencephalography (MEG). In humans, delta activity is commonly reported when processing 

rhythmic sensory inputs, with direct relationships to behaviour. However, rhythmic brain dynamics 

observed during rhythmic sensory stimulation cannot be interpreted as an endogenous oscillation. 

To test for endogenous delta oscillations we analysed human MEG data during rest. For comparison, 

we additionally analysed two conditions in which participants engaged in spontaneous finger tapping 

and silent counting, arguing that internally rhythmic behaviours could incite an otherwise silent neural 

oscillator. A novel set of analysis steps allowed us to show narrow spectral peaks in the delta 

frequency range in rest, and during overt and covert rhythmic activity. Additional analyses in the time 

domain revealed that only the resting state condition warranted an interpretation of these peaks as 

endogenously periodic neural dynamics. In sum, this work shows that using advanced signal 

processing techniques, it is possible to observe endogenous delta oscillations in non-invasive 

recordings of human brain dynamics.  
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1. Introduction 

Delta-band activity is a prominent feature of neural dynamics traditionally observed 

during states of absence of consciousness, such as non-REM sleep in animals [1], [2] and 

humans [3]–[5]. Delta-band activity in the local field potential has also been reported during 

wakefulness in animals [6]–[8]. In humans, a number of brain regions including the frontal, 

temporal, and occipital areas as well as the hippocampus show delta-band activity [4], [9], [10], 

when recorded invasively with electrocorticography (ECoG) and intracranial 

electroencephalography (iEEG) in patients with treatment-resistant epilepsy.  

Rhythmic brain dynamics provide a natural biological implementation of temporal 

structures, which have long been assigned a functional role in perception and cognition [11]–

[13]. Delta-band activity (0.5 – 3 Hz) could be important in this respect, as its biophysical 

properties allow for the synchronization of larger networks of brain areas to a common 

temporal regime [14]–[16]. Seminal work in non-human primates has shown that delta 

oscillations emulate the temporal structure of sensory inputs by entraining to it [17], [18], [8], 

[19], [20]. Aligning the phase of slow oscillations to the temporal structure of external inputs 

tunes the excitability of the respective sensory areas to relevant inputs, locally modulating the 

spike rate of neurons [21], [22]. More globally, slow oscillations have also been shown to 

orchestrate an oscillatory hierarchy through phase-coupling [8], [23], [24].  

The frequency range of the delta band also coheres well with natural rhythms that 

constrain auditory inputs like speech or music [25]–[27], and active sensing [28], [29]. Building 

on the work in non-human primates, an important body of research demonstrated that delta 

band activity measured in the human magneto- / and electro- encephalogram (M/EEG) can 

phase-lock to periodic inputs, surfacing as increased stimulus-brain coherence in auditory and 

motor areas [30]–[42], a mechanism termed neural entrainment.  

Entrainment can implement a temporal structure in attention as postulated in the 

influential theory of dynamic attending [43], [44]. Crucially, entrainment in the narrow sense 

assumes an endogenous, physiological predisposition of the neural system to oscillate at 

particular frequency ranges, which can then emulate the exogenous input through phase shifts 

and phase alignment [45]–[48]. However, it is difficult to conclude on the existence of 

endogenous delta oscillations in the presence of periodic input signals, which passively drive 

brain activity leading to higher power in the same frequency range.  

An active role of delta phase entrainment is suggested by its modulation through top-

down influences such as the attended sensory modality [17], [31], [49], task demands [20], 

perceptual grouping [50], and hierarchical rhythmic structure of inputs [51]. Furthermore, 

entrainment can occur selectively to one frequency present in the input [40], and be sustained 
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after the offset of the periodic stimulus [52], but see [53]15/05/2023 17:26:00 and still affect 

behaviour [52], [54], [55], for a review see [56]. Finally, previous studies have shown that 

entrainment scales with the strength of temporal predictions, surfacing as enhanced phase 

coherence in anticipation of temporally predictive input [32], [35], [42]. Also, tonic increases in 

delta amplitude, observed during the reading of numbers and mental calculation, and a working 

memory task [3], [57], [58], suggest that there are experimental conditions devoid from periodic 

stimulation that can enhance delta-band activity, favouring the existence of endogenous delta 

oscillations.  

Still, there is a missing link between the invasively proven existence of spontaneous 

delta oscillations, and the delta-like signals revealed by non-invasive neuroimaging studies. 

The superposition of various signals in human M/EEG recordings makes it difficult to separate 

endogenously oscillatory from stimulus-evoked activity. This issue bears the risk of conflating 

pre-stimulus oscillatory signatures (i.e. delta phase) with post-stimulus evoked activity [59]–

[61], thereby challenging the interpretation of the above-described stimulus-brain coherence 

as an endogenous oscillation. Few studies have tested for the presence of endogenous 

oscillatory activity in the delta band [62], [63], [35], see also [64] for a similar approach in the 

theta band, [36], and none have unequivocally shown the existence of an endogenous delta 

oscillation underlying the observed effects. Hence, to date we do not know whether delta phase 

locking observed in human M/EEG recordings truly reflects the entrainment of an endogenous 

oscillation [46], [48].  

To start closing this gap, we set out to test the presence of endogenous oscillatory delta 

activity in human MEG signals, recorded at rest. It is however possible, that despite a pre-

disposition to oscillate at a particular frequency, the brain does not spontaneously do so, and 

hence we would not see oscillatory activity in the resting state recordings. Periodic (or quasi-

periodic) sensory input could incite an otherwise silent oscillator [36], [47], [65]. To avoid the 

above-described confound between endogenously periodic signals and the passive tracking 

of exogenous periodicities in sensory inputs, we additionally analysed MEG signals recorded 

while participants engaged in spontaneous overt or covert rhythmic behaviours. The frequency 

of such behaviours has been argued to reflect a stable internal prior [66]–[69], but see [70].  

Currently, the state-of-the-art criterion for periodic brain activity, or oscillations, is to 

observe a peak in the power spectrum in a narrow frequency range [71], a definition most 

commonly used to study alpha oscillations. Peaks in the delta frequency range are not 

spontaneously visible from M/EEG spectra recorded during wake, due to the generally higher 

amplitudes at low frequencies, the 1/f property [72], [73]. Dedicated signal processing 

techniques can overcome this issue IRASA, [74].  

From a set of data collected in the context of a different protocol [75], three conditions 

were selected, to reflect different degrees of participants' engagement in spontaneous 
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rhythmic behaviour: (1) resting (eyes open) – no rhythmic behaviour, (2) spontaneous finger 
tapping – overt engagement in rhythmic motor behaviour, and (3) silent counting – covert 

rhythmic behaviour. Using specifically adapted signal processing techniques, we were able to 

observe delta band peaks in the power spectrum in all three conditions, with meaningful 

topographies but heterogeneous peak frequencies. However, the interpretation of these peaks 

as strictly oscillatory remains somewhat questionable in the presence of evoked activity. In the 

resting condition, additional time-domain analyses [76] suggest the presence of endogenously 

periodic neural dynamics in the delta range.  
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2. Methods 

2.1. Participants and data acquisition 
MEG recordings of 22 right handed participants, recruited as part of a protocol 

assessing time perception [75], were used for this study. All participants had normal or 

corrected-to-normal vision without any known neurological or psychiatric disorders. The 

experimental protocol was approved by the local Ethics Committee on Human Research 

'Comité de Protection des Personnes Sud-Est VI' (protocol: CEA 100 049 / ID RCB: 2018-

A02586-49), and all participants provided written informed consent in accordance with this 

protocol, and in in conformity with the Declaration of Helsinki (2018).  

Two participants had noisy MEG data and two participants did not comply with the task, 

yielding a total of 18 participants for the final analysis (10 males; age  = 26 years, SD = 5). The 

MEG data were collected using the whole-head Elekta Neuromag Vector View 306 MEG 

system (Neuromag Elekta LTD, Helsinki) in a magnetically shielded room at a sampling rate 

of 1000 Hz. The MEG system had 204 planar gradiometers and 102 magnetometers that 

measure the relative magnetic field strength (fT/cm) and absolute magnetic fields (fT), 

respectively. The direct current (DC) method was adopted during recording such that no high-

pass filters were applied, to allow investigating low frequency components in the data. 

Horizontal and vertical electro-oculograms (EOG) and the electro-cardiogram (ECG) were 

recorded during the session. Participant’s head position was measured before each run by 

means of four head position indicator coils placed over the frontal and mastoid areas. For 

behavioural responses, participants pressed one button on a Fiber Optic Response Pad 

(Elekta), using the index finger of their right hand. 

From the original data set, we selected three runs per participant (runs 1, 5, and 7 in 

14 participants, runs 2, 4, and 6 in three participants, and runs 2, 7, and 6 in one participant 

due to a technical problem in run 4). The differences in run numbers were due to a change in 

the protocol after the initial participants. 

2.2. Experimental conditions and tasks 
The experiment (depicted in Figure 1) was presented through Psychtoolbox [77], [78] 

for Matlab R2016a. From the 12 conditions recorded in the original study (total duration: 34 

minutes), we chose three experimental conditions for this analysis: resting (eyes open), 

spontaneous finger tapping, and silent counting. The three conditions were chosen to vary 

the level of rhythmic behaviour, in order to examine the presence of delta oscillatory activity in 

the brain recordings. During rest, the participants were supposedly not engaged in any 

rhythmic activity, and hence this condition was selected to examine the presence of 

spontaneous endogenous delta oscillations in the absence of rhythmic behaviour. In the 

spontaneous tapping condition, participants were actively engaged in overtly rhythmic motor 
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behaviour, and we hypothesised that this condition was the most likely to result in a peak in 

the power spectrum at the individual tapping rate, possibly a signature of an endogenous 

neural oscillator. We also hypothesized that silent counting may engage participants' auditory 

and articulatory systems in a covertly rhythmic manner, which should result in a peak in the 

power spectrum around the counting rate.  

In all runs, the beginning and end were marked by the French word "début" ("start") 

appearing on the screen for 1 s followed by a black screen lasting 4 s. The participant was 

instructed to start resting, tapping, or counting when a red circle briefly appeared (0.5 s) on the 

screen and until the same circle reappeared to mark the end of the run. Participants were 

instructed to steadily fixate the cross on the screen for the whole time and to sit as still as 

possible. During resting blocks, participants were informed that the aim was to record their 

brain activity at rest, and were only instructed to fixate the cross on the screen between the 

two occurrences of the red circle. Spontaneous tapping was executed on a tablet with the 

index finger of the right hand, at the individual's own preferred pace. During silent counting, 

participants were asked to silently count without opening the mouth, and to report the final 

number after the run. Participants were not informed about the duration of each run.  

During both tapping and counting, participants were additionally asked to estimate the 

duration of the run in seconds, resulting in a dual-task situation. The final duration had to be 

stated out loud to the experimenter by the interphone system. During rest, participants were 

not informed that they had to estimate duration. Four participants were asked for a 

retrospective duration estimate after the end of the run, but then the experimental protocol was 

changed. Due to this change in the experimental protocol, the runs were of slightly different 

duration, lasting 120 s for resting (300 s in the four participants for whom run 2 was used), 

120 s for tapping (180 s if run 4 or 7 was used), and 240 s for counting (300 s if run 6 was 

used). As described below, we only used the first 120 s of MEG recordings from all runs.  

2.3. Analyses of the behavioural data 
2.4.1. Behavioural tapping rate 
Participants’ button presses were registered as time-stamped events with the MEG 

data, sampled at 1000 Hz. In accordance with the analyses of the MEG data (described below), 

the button-press time-series (coded as 0 when no button press occurred, and 1 when a press 

Figure 1. Experimental design. 
Experimental conditions selected from an 
existing dataset. We chose three 
conditions devoid of external stimulation, 
yet varying in the amount of internal 
rhythmic behaviour: Resting with eyes 
open (no rhythmic behaviour),  
spontaneous finger tapping (overt 
rhythmic behaviour), and silent counting 
(covert rhythmic behaviour).  
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occurred) were subjected to a spectral analysis, by computing the Welch periodogram with a 

frequency resolution of 0.1 Hz, as implemented in MNE Python [79], [80]. Resulting power 

values were transformed to decibel (dB). A peak detection algorithm implemented in Scipy [81] 

was used to detect all peaks in the frequency range between 0.1  and 4 Hz. Then, the most 

prominent peak (according to scipy's peak_prominences function) was retained as the 

behavioural tapping rate.  

2.4.2. Covert behavioural counting rate 
Assuming that individuals silently counted, the covert individual counting frequencies 

were estimated by dividing the final number reported by the participant by the run's duration 

(240 or 300 s). Since the counting was silent, we had no trace of the regularity of each 

individual's counting. This measure was not available for one participant, who did not report a 

final count.  

2.4.3. Relative subjective duration estimates 
To obtain the relative individual subjective duration estimates for the tapping and 

counting runs, we divided the duration in seconds reported by the participant by the duration 

of the corresponding run. This way, relative estimates below one reflect underestimation, and 

relative estimates above one reflect overestimation of the run's duration.  

2.4. MEG pre-processing 
MEG data were processed using MNE python [79], [80]. The pre-processing consisted 

of the following steps: applying spatial signal source separation (SSS), low pass filtering, down-

sampling, epoching, manual inspection and rejection of noisy epochs, and removal of ocular 

and cardiac artifacts using independent component analysis (ICA).  

The raw data (DC, no high-pass filter was used) were corrected for environmental noise 

through spatial signal source separation, using the Maxfilter algorithm as implemented in MNE 

python, with the middle run (tapping) being used as a reference run to re-align the head 

coordinates. The algorithm also interpolates bad sensors, which are typically characterized by 

heavy distortions, flux jumps, baseline drifts, etc., and were identified through visual inspection 

for each individual.  

Low-pass filtering was applied with a 100 Hz cut-off using a hamming windowed zero 

phase FIR filter. No high-pass filter was applied to avoid any signal distortion in the lower 

frequency ranges. The filtered data was down-sampled to 256 Hz. We then segmented the 

first 120 s of data from each run into 10 s long epochs with 8 s overlap, resulting in 168 epochs 

per participant. We subtracted the mean of each epoch for baseline correction, and applied 

linear detrending over the 10 s window. Noisy epochs were identified and rejected through 

visual inspection (21 epochs, in one participant only). For further analysis, we only used the 

102 magnetometers.  
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Importantly, a well-known artifact of physiological origin apparent in human MEG, 

cardiac activity, lies in the same frequency range as the delta-band activity of interest. 

Therefore we applied an extended ICA procedure to ensure its complete removal. ICA was run 

in two steps: first, we ran one ICA on the epoched data of all conditions jointly, to identify and 

remove ocular artifacts, and second, we ran another ICA to identify cardiac artifacts. All ICAs 

were run on the epoched data, high-pass filtered at 1 Hz only for this purpose. For the detection 

of artefacts related to the electro-oculogram (EOG), we used an inbuilt routine in MNE python, 

which uses the signal from the external electrodes to estimate a participant's typical EOG 

activity, and returns the ICA components that correlate with these typical events (threshold: 

3.0, z-score).  

In order to best identify and remove the cardiac artifacts, we then used the EOG-

cleaned data, and ran a set of ICAs, iterating over the number of ICA components, a parameter 

that determines the partition of variance explained by each component. Inspection of the ICA 

results had revealed that when using the same partition of variance for each participant, 

residual cardiac artifacts were left in the data. More specifically, the number of components 

parameter determines the number of principal components (during a pre-whitening principal 

component analysis, PCA) that are passed to the ICA algorithm during fitting, and is given as 

a proportion of variance explained, from 0 – 1. We here parametrized the proportion between 

0.849 – 0.999, in steps of 0.025. Components in the MEG data reflecting cardiac activity were 

estimated by computing the typical cardiac event from the external recordings of cardiac 

activity threshold 0.1, cross-trial phase statistics, [82]. For each decomposition, we then 

identified the components correlating best with the typical ECG event of each participant. To 

determine the best decomposition for each participant, we iterated across all versions of the 

data after running ICA and rejecting the cardiac components, and computed an ECG score: 

the power ratio at the individual ECG peak in the MEG data, before and after the removal of 

the ECG components. The individual ECG peak frequency was first determined based on the 

power spectrum computed directly on the ECG recording (Welch power spectral density). We 

then computed a spatial filter based on the peak's topography in the MEG data (activity 

distribution across sensors at the peak frequency). The power ratio of this peak (dot product 

of all sensors multiplied with the spatial filter) was computed before and after component 

removal via ICA, and the ICA solution which yielded the greatest reduction in the cardiac peak 

topography was retained for the participant.  

2.5.  Spectral analyses 
From the cleaned epochs we computed the power spectral density (PSD, see 

Figure 2A for an exemplary participant) using Welch's periodogram with a frequency 

resolution of 0.1 Hz, resulting in power estimates at 1281 frequency values. The power 
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spectrum for each magnetometer was obtained by averaging the power spectrums across all 

the epochs. Power spectra were cut at 45 Hz and transformed to decibel (dB).    

A major concern when analysing delta band activity in M/EEG data, is that the peaks 

assumed to reflect narrow-band periodic activity lie in the high-power region of the 1/f aperiodic 

spectral component. To separate aperiodic spectral components from periodic ones, we 

applied the irregular resampling technique IRASA, [74]. The IRASA technique consists in 

down-sampling the epoched data in the time domain at pairwise non-integer values (here:  0.1 

to 0.95 with a 0.05 increment), before computing the power spectrum. The 1/f power spectrum 

is obtained as the geometric mean of the power spectra at different resampling values (for an 

exemplary depiction see Figure 2B). 

To obtain the residual or oscillatory power spectra (Figure 2C), we subtracted for each 

participant and at each sensor the 1/f power spectrum from the full power spectrum. For further 

analysis, we divided the power spectrum into the canonical frequency bands, described in the 

literature [83], namely delta: 0.2 – 3.5 Hz, theta: 4 – 7 Hz, alpha: 8 – 12 Hz, beta: 15 – 30 Hz. 

The frequency range of delta activity was deliberately chosen slightly larger than the intended 

frequency band (0.5 – 3 Hz, with some variation in the literature) to allow the peak detection 

method described below to find peaks close to the desired cut-offs. Figure 2 (right column) 

depicts the average topographies per canonical frequency band for an exemplary participant. 

Note the similarities in topographies between the full and 1/f spectrum especially in the delta 

band, which confirm the dominance of 1/f activity in the low frequency range. The theta, alpha, 

and beta bands were analysed similarly to the delta band, to validate the analysis pipeline on 

frequency bands for which peaks are more commonly reported in the literature. 

 

 

 

 

 

 

 

Caption of Figure 2 (next page). Exemplary power spectra from a single participant in the tapping 
condition. A. Full power spectra (0.1 – 45 Hz). Left: Welch's power spectral density computed on 10 s 
long epochs, then averaged (grey lines depict the spectra of the 102 magnetometers, black line depicts 
average over sensors). The coloured shades depict the canonical frequency bands: delta (red, 
0.5 – 3 Hz), theta (grey, 4 – 7 Hz), alpha (green, 8 – 12 Hz), beta (purple, 15 – 30 Hz). Right: 
Topographies averaged within in the canonical frequency bands. B. 1/f power spectra. Left: Power 
spectra computed on irregularly resampled data to obtain only the aperiodic components (IRASA 
method). Right: Topographies averaged in the canonical frequency bands. C. Oscillatory power 
spectra, obtained from subtracting the 1/f power spectra (depicted in B) from the full power spectra 
(depicted in A). Right: Topographies averaged in the canonical frequency bands. 
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Figure 2. Exemplary power spectra. Caption on previous page. 
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2.6. Detection of spectral peaks 
Per participant and condition, we identified spectral peaks in a given canonical 

frequency range. We assumed that if an oscillation is present, it should be reflected in higher 

power for a narrow range of frequencies at several sensors, while spurious peaks should vary 

in frequency across sensors. We thus extracted from each sensor the most prominent peak 

using peak finding algorithms implemented in Scipy [81], and applied k-means clustering as 

implemented in Scikit-learn see also [36], [84], to then identify peaks with coherent frequency 

across sensors (see Figure 3). While peaks with coherent frequency across sensors are more 

likely to reflect an underlying oscillation, this procedure does not provide a statistical test for 

oscillatory activity. The reason for not performing statistics at this point is that the peaks are 

defined per individual, and they are highly heterogenous, which does not allow for robust group 

statistics, as done for instance in the analyses SSVEP or ASSR (visual / auditory evoked 

steady state responses), when the expected peak frequency is known precisely.  

To obtain the peak frequency for each sensor, we applied a peak finding algorithm 

(scipy function find_peaks) which can result in several peaks, and in a second step computed 

peak prominences (scipy function peak_prominence) to select one peak per sensor as the one 

with maximal prominence. This resulted in 102 spectral peaks per canonical frequency band 

and condition, i.e. one per magnetometer. Once 102 peaks were identified for a given 

frequency band and condition, we applied k-means clustering of peak frequencies to identify 

the most consistent peak frequencies across sensors.  

To determine the appropriate number of clusters, we used the so-called 'elbow method' 

(depicted by the inset in Figure 3A), which consists in iterating over a range of possible n-

clusters (here: 1 to 11), fitting the k-means algorithm for each n, and computing the inertia of 

the solution (automatically returned by Skicit-learn's KMeans function). The inertia of the 

solution is a measure of goodness of fit of the solution, quantified as the sum of squared 

distances of samples to their closest cluster centre. The obtained vector of inertias over n-

clusters was then examined for a flattening of the inertia values with higher n, i.e. an 'elbow', 

using Skicit-learn's KneeLocator function. Such a flattening reflects that the obtained solution 

does not improve strongly with higher n, and therefore the last n before the flattening is retained 

as the best and most parsimonious solution, and the k-means algorithm is fitted again with this 

n (average n across participants and conditions = 2.82, min = 2, max = 4, SD = 0.45). To 

characterize the clusters, we computed the peak frequency as the mode of the cluster (the 

frequency at which most of the contributing sensors showed a peak), the peak power as the 

average power over the contributing sensors at the peak frequency, as well as the strength 
of the peak as the number of sensors contributing to the cluster. The same method was 

applied to the theta, alpha, and beta bands (see Figures S1, S2, S3). 
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2.7. Peak sorting 
The k-means clustering procedure produced several clusters per canonical frequency 

band, identified by their peak frequency, and ordered by cluster size (i.e., the number of 

sensors showing a peak at or close to this frequency). Depending on the frequency band at 

hand, we made different assumptions to group clusters across participants for further analysis.  

2.8.1. Delta band 
We reasoned that the individual behavioural tapping frequency (see Figure 4) might 

result from an endogenously present oscillation at that frequency, or else, that spectral (MEG) 

peaks in the tapping condition reflect the periodically reoccurring tapping evoked response. 

Spectral peaks in the vicinity of the individual tapping rate were found for all participants, but 

varied in strength (hence cluster order), which prevented us from simply retaining the first 

cluster in the delta band. We thus identified for each participant one peak in the delta range 

(from the two to four peaks found by the k-means clustering) that was closest to the 
individual tapping rate. We further hypothesized that the individual tapping rate could reflect 

the stable frequency of an internal oscillator, which should then also be apparent in the resting 

and counting conditions in the absence of overt motor tapping. Thus we also identified peaks 

close to the individual tapping rate from the resting and counting runs. A second, higher delta 
peak was identified for all conditions, lying above the individual tapping rate. Here, we only 

selected peaks with higher frequencies, because for most participants the behavioural tapping 

rate was in the lower range of the delta band. A higher peak was not found in one participant 

in the tapping condition, and three participants in the resting condition, for which we then 

retreated to selecting the strongest cluster after removal of the tapping peak. Third, we 

identified the peak closest to the individual counting rate from all three runs. In sum, for 

delta, three types of peaks were obtained: the one closest to tapping, high delta,  and 

closest to counting (see Figure 5, Table 1). 

2.8.2. Theta and alpha bands 
For both the theta and the alpha bands, we retained the first cluster (largest number 

of sensors) as the peak (see Figure S4, S5, Table 1), as these frequency-bands were not of 

primary interest to the study.  

2.8.3. Beta band 
In the beta band, visual inspection showed that most participants' first two clusters 

captured two distinct frequency ranges, namely a lower beta, and a higher beta cluster. As the 

strength varied between those two clusters across participants, we grouped the first two 

clusters for each participant into low beta and high beta peaks (Figure S4, S5 Table 1).  
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2.8. Statistical comparisons between conditions 
To assess differences in delta-band activity between experimental conditions, we 

tested for condition differences in peak frequency, power, and the number of sensors 

contributing to a peak (Figure 6, Table 2). Paired two-sided t-tests were performed for all 

frequency bands and peak types, with a critical threshold of p < 0.01 to account for multiple 

testing.  

2.9. Correlation analyses 
We were interested in whether delta-band peak frequencies correlate between 

conditions, or with the behavioural signatures, notably tapping rate. Simply correlating the peak 

frequencies would be trivial, as we had selected the delta peaks by their closeness to the 

behavioural tapping rate, hence introducing a strong correlation between behavioural rates 

and the peak frequencies. Instead of correlating the frequency values, we thus computed 

residuals from the linear fit between the peak frequency and the behavioural tapping rate, and 

Figure 3. Peak finding method. Exemplary participant, delta-band. A: K-means clustering. Per 
condition (rest, tap, count, depicted as rows and in blue, red, and orange), spectral peaks identified per 
sensor were clustered using the k-means algorithm.  Histograms depict the sensor counts per cluster, 
the brightness codes for cluster strength (brighter = higher), with the largest clusters (number of sensors 
included in cluster) in saturated colours. The vertical dashed lines indicate the peak frequency per 
cluster (defined by the mode). The number of clusters were determined from the data by identifying an 
'elbow' in the goodness of fit (SSD, the sum of squared distances from each point to its assigned cluster 
centre, see inset). B: Oscillatory power spectra, extracted from all sensors (grey lines), and the 
sensors in each cluster (coloured lines). The vertical dashed lines depict the peak frequency of each 
cluster. C: Cluster topographies. Power distribution across all sensors at the cluster's peak frequency 
(± 0.1 Hz). The white circles depict the sensors selected as part of the cluster. 
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respectively also the counting rate (in Hz). To compare the residuals between conditions, we 

used paired two-sided t-tests, as well as Pearson correlation coefficients (significance tests for 

correlations were performed with respect to Student's t-distribution, with N−2 degrees of 

freedom) (Figure 7).  

2.10. Sensitivity analysis 
Likely, the relatively small sample size (N = 18) limited our ability to detect significant 

differences and correlations [85]. A sensitivity analysis using G-Power [86] indeed indicated 

that only correlations above 0.61 (0.55 for one-sided tests), and mean differences with an 

effect size of 0.89 (Cohen's d) could be detected with 80% power. 

2.11. Tapping evoked responses 
A spectral peak in the tapping condition would likely already result from the periodic 

occurrence of the sensorimotor evoked responses during tapping itself [87], [88]. To analyse 

the evoked response (see Figure 8) we epoched the data from the tapping conditions, time-

locked to the registered button presses (−2 to 4 s), baseline corrected (−2 to 0 s) and detrended 

the epochs linearly over the full window. We then applied the ICAs computed for all runs to 

these epochs and rejected the previously identified ocular and cardiac components. To 

compute the peak topography, we averaged the epochs for each participant and applied 

Scipy's peak detection algorithm in the window of 0 s to 0.25 s post-tap to extract the largest 

peak and compute its peak topography. We then correlated this topography (one amplitude 

value per sensor) with the peak topography at the delta peaks for each participant to test for 

spatial overlap.  

2.12. Analyses of oscillatory bursts 
We performed a confirmatory analysis (depicted in Figure 9) to further assess whether 

the spectral peaks we identified reflect endogenous periodicities in the time-domain data, 

which are likely not fully stationary. To this end, we quantified oscillatory bursts using the 

cycle-by-cycle toolbox [76]. To our knowledge, this method has so far not been used for 

frequencies as low as delta. To test whether the sensors identified as having a spectral peak 

in a given canonical frequency band really show stronger periodic activity, we assessed the 

time-domain signal of those sensors for bursts. The data were band-pass filtered between 0.5 

and 4.5 Hz prior to performing the analysis. The filter band was chosen somewhat larger than 

the band of interest to allow for transition bands. The cycle-by-cycle algorithm labels peaks 

and troughs in the filtered time-domain signals, and then computes several statistics to identify 

truly periodic episodes, defining oscillatory bursts. The threshold parameters used to detect 

episodes with bursts were adapted for the delta band: amplitude fraction threshold = 0.05, 

amplitude consistency threshold = 0.4, period consistency threshold = 0.4, monotonicity 

threshold = 0.95, minimum number of cycles = 2.  
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To confirm whether the peaks detected in the spectral analyses described above reflect 

endogenous periodicities, we computed the by-cycle analysis on the signals from the sensors 

identified as belonging to a given cluster (sensors with peak), and on a random selection of 

sensors of the same number not belonging to the cluster (no peak, averaged over 50 

repetitions of random selection for stability). We ran this analysis for all three conditions, and 

per participant (Figure 9, see Figure S6 for the other canonical frequency bands; thresholds 

for the theta/ alpha/ beta bands: amplitude fraction threshold = 0.3, amplitude consistency 

threshold = 0.6, period consistency threshold = 0.6, monotonicity threshold = 0.95). The 

detected burst episodes were summarized by the average burst amplitude, burst period, 

duration, and number of bursts, on which we performed paired samples t-tests between the 

two types of sensors (with peak and without peak, threshold p < 0.01).  
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3. Results 

3.1. Behavioural results 
3.1.1 Tapping and counting rates 
Individual tapping rates were estimated through spectral analyses of the button press 

times as illustrated in Figure 4A (mean rate = 1.17 Hz, SD = 0.6 Hz, Figure 4B shows the 

distributions). Individual covert counting rates were estimated by dividing the final count 

number reported by the participant by the duration of the task (mean = 0.93 Hz, SD = 0.3 Hz, 

measure available for 17 out of 18 participants, Figure 4B). Overt tapping and covert counting 

rates were found in the same range (no significant difference: T(16) = -1.21 , p = 0.45), and 

did not correlate within participants (Pearson's r(15) = -0.28, p = 0.28, Figure 4C).  

3.1.2. Subjective duration estimates 

The relative subjective duration estimates (estimated duration in seconds divided by 

the run's duration) were 1.14 s (SD = 0.40) and 0.91 s (SD = 0.34) for the tapping and counting 

runs, respectively. Relative duration estimates did not correlate significantly within participants 

between the tapping and counting runs (Pearson's r(16)  = 0.33, p = 0.19, not shown). In the 

tapping run, there was no significant correlation between the overt individual tapping rate and 

the relative duration estimate (r(16)  = −0.20, p = 0.42), in the counting run, there was a strong 

correlation between the covert counting rate and the estimated duration (r(15)  = 0.94, p < 

0.01). We also tested whether the spectral peak frequencies (reported in detail below) 

correlated with the subjective duration estimates for the respective runs, in all frequency bands, 

but no significant correlations were found (p > 0.09).  

  

Figure 4. Behavioural data (N = 18). A. Power spectral density of tapping 
behaviour, depicted for an exemplary participant (same participant as in Figures 
2 and 3). The vertical dashed line depicts the most prominent peak, indicating a 
tapping rate of 2.4 Hz. The peaks at higher frequencies reflect harmonics of the 
lowest peak. B. Distributions of tapping and counting frequencies across 
participants. Violin plots depict the distribution (kernel density estimation) of 
tapping (red) and counting (orange) frequencies across participants. White dots: 
median. Thick grey bar: interquartile range. C. Tapping versus counting 
frequencies. No significant correlation was found between individuals’ overt and 
covert behavioural rates. 
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3.2. Spectral peak detection  
Spectral peaks were identified for all participants in all conditions and frequency bands, 

including the delta range (see Table 1 for peak frequencies, power, and the number of sensors 

per peak cluster). As shown in Figure 5, the group topography, computed by averaging across 

participants' topographies at their individual delta peaks, shows a typical profile of frontocentral 

activity, likely emerging from motor and auditory regions. Importantly, and in particular for the 

delta band, the topographies of oscillatory activity averaged across the canonical frequency 

band resembled the topographies of the 1/f activity (see Figure 2), while the averaged 

topographies at individually detected peak frequencies show distinct frontocentral profiles 

(Figures 3, 5). Individual peak sensors (depicted by coloured markers on the topographies, 

Fig. 5) show that the sensors at which the strongest delta power was detected varies across 

participants, but generally cluster in accordance with the average topographies.  

As described in Section 2.7, three types of peaks were selected from the clustering 

procedure: one being closest to the individual's behavioural tapping rate, separately 

identified per condition (average peak frequencies in resting, tapping, counting runs: 1.25 Hz 

(SD = 0.43), 1.37 Hz (0.5), 1.56 Hz (0.56), respectively; average power in rest, tap, count: 3 dB 

(SD = 0.64), 3.69 dB (SD = 1), 2.75 dB (SD = 0.58), respectively, see Figure 6, Table 1). The 

second peak was selected as being above the individual's tapping rate (average peak 

Figure 5. Result of the peak sorting procedure, delta band. A: Peak closest to behavioural tapping 
rates. The topographies show the power distribution at the individually identified peak frequencies, averaged 
across participants for the resting (top row, blue), tapping (middle row, red), and counting (bottom row, orange) 
conditions. The sensors marked in blue, red, or orange on the topographies depict individual peak sensors. 
The line plots show single participants' oscillatory power spectral density averaged across all sensors in the 
cluster (coloured lines) and averaged across participants (black line). B: Higher delta peaks. A second cluster 
was identified as having a frequency above the individual tapping peak. C: Peaks closest to the behavioural 
counting rates. Independently from the peaks displayed in A and B, we also grouped peaks closest to the 
individual counting rates. 
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frequencies in resting, tapping, counting runs: 2.29 Hz (SD = 0.5), 2.35 Hz (SD = 0.53), 2.09 

(SD = 0.57), respectively; average power in rest, tap, count: 3.15 dB (SD = 1.04), 3.31 dB (SD 

= 1.06), 3.06 dB (SD = 1.29)). The third peak was selected as closest to the individual's 
counting rate (average peak frequencies in resting, tapping, counting runs: 1.22 Hz 

(SD = 0.32), 1.08 Hz (SD = 0.32), 1.15 (SD = 0.33), respectively; average power in rest, tap, 

count: 3.22 dB (SD = 0.73), 3.33 dB (SD = 0.96), 2.97 dB (SD = 0.65)). 

No significant differences in delta peak frequency (Figure 6A, Table 2), were found 

between the three conditions (two comparisons marginal: p = 0.023, 0.056, all other p-

values > 0.21), at all three peaks. The peak frequencies selected close to the counting rate 

were not significantly different from the peaks selected close to the tapping rate, although the 

difference was marginally significant for the data recorded from the counting condition (rest: 

T(16) = -0.04, p = 0.97; tap: T(16) = -1.64, p = 0.12; count: T(16) = -2.41, p = 0.03). 

Peak power at the individual tapping rate was significantly higher in the tapping 

condition (paired samples t-test, tapping > resting: T(17) = 3.0, p < 0.01; tapping > counting: 

T(17) = 3.49, p < 0.01, Figure 6B). We did not find a similar pattern for peaks identified by 

being close to the individual counting rate, that is no enhanced peak power in the counting 

condition (all p > 0.4). The number of sensors showing a peak at the detected frequency was 

marginally larger in the tapping condition compared to resting (tapping > resting: T(17) = 2.52, 

p = 0.02, Figure 6C).   

3.3. Delta peaks: correlation analyses 
As intended by the peak selection procedure, the spectral peaks identified as closest 

to the behavioural tapping rate showed strong correlations with the tapping rate in all conditions 

(Figure 7A). While this correlation is trivially related to our peak selection, it does reflect that 

in every participant a spectral peak could be found in the vicinity of the spontaneous tapping 

rate. The spectral peaks identified as closest to the behavioural counting rate showed no 

significant correlation with the counting rate in the resting and counting condition, but in the 

Figure 6. Peak frequency and power in the delta band across conditions. A: Peak frequency. 
Violin plots depict the distribution (kernel density estimation) of peak frequencies across participants. 
White dots: median. Thick grey bar: interquartile range. Frequency distributions are depicted for the 
peak selected as being closest to the individual behavioural tapping rate, the higher delta peak, and the 
peak at the counting rate.  
B. Peak power. As in A, but the y-axis reflects power. C. Number of sensors in cluster. As in A, but 
the y-axis reflects the number of sensors showing a peak at or close to this frequency. Significance 
values are indicated as follows: ** p < 0.01. 
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tapping condition (Figure 7B), suggesting that the spectral peaks in the counting runs did not 

result from covert counting, but rather overlapped with the tapping peaks.  

We then calculated the residual frequency differences after accounting for the 

correlation between tapping rates and peak frequencies (by subtracting the frequency values 

predicted by the linear fit). The residuals were significantly smaller in the tapping condition 

compared to rest and count (tap < rest: T(17) = 3.38, p < 0.01; tap < count: T(17) = 6.28, 

p < 0.01, Figure 7C), indicating that stronger activity around the individual behavioural tapping 

rate was present in the MEG recordings of the tapping condition. We performed the same 

analysis for the peaks selected as closest to the behavioural counting frequency, but the 

residuals frequency difference between the spectral peaks and counting rate were also 

Figure 7. Correlation analyses (delta band). 
A. Correlations between the individual 
tapping rate and the frequencies of the 
spectral peaks identified in the delta band, 
per condition. The coloured line indicates the 
estimated correlation and the grey line the 
unity-line. Each dot is one cluster per 
participant with brighter colours indicating 
stronger clusters. The number of clusters 
identified varied over participants, hence the 
number of dots vary between panels. 
Significance values are indicated as follows: 
* p < 0.05; ** p < 0.01; n.s. not significant.  
B. Correlations between the individual 
counting rate and the frequencies of the 
spectral peaks. Same as in A, but with 
respect to the behavioural counting rate. 
C. Residual differences between the 
frequency of the spectral peak identified as 
nearest to the individual tapping rate, and 
the behavioural tapping rate per condition. 
Residuals were significantly smaller in the 
tapping condition compared to resting and 
counting. D. Residual differences between 
the frequency of the spectral peak identified 
as nearest to the individual counting rate, 
and the behavioural counting rate per 
condition. Residuals were smallest in 
tapping. E. Pearson correlations between 
the spectral peak residuals, that is the 
frequency of the spectral peak identified as 
nearest to the individual tapping rate after 
accounting for the correlations shown in A, 
for pair-wise combinations of conditions. No 
significant correlations were found between 
conditions.  
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smallest in tapping and not counting (Figure 7D), confirming once more that the selected 

peaks did not distinctively result from covert counting.  

Only for the peaks identified by tapping behavior, we then further tested the residuals 

for correlations across conditions, hypothesizing that an endogenous oscillation present in all 

conditions would result in relatively stable peak frequencies (and hence stable residuals from 

the behavioural tapping rate) across conditions. However, no significant correlations were 

found (Figure 7E, tapping and counting: r(16)  = 0.44, p = 0.07; tapping and resting: r(16)  = -

0.18, p = 0.48; counting and resting: r(16) = 0.05, p = 0.84).  

In an additional control analysis (not shown), we also extracted the first peak, defined 

as the cluster with the largest number of sensors from the delta band instead of dividing peaks 

by their closeness to the behavioural tapping or counting rate. No significant correlations were 

found between the strongest spectral peak in the tapping condition and tapping behaviour 

(r(16) = 0.09, p = 0.72) or the strongest peak in the counting condition and counting behaviour 

(r(15) = -0.43, p = 0.12). The absence of a significant correlation, especially in the case of 

tapping, can be explained by the existence of multiple heterogeneous peaks per participant 

and condition. The clustering approach found a peak close to the behavioural tapping rate for 

each participant, but this was not necessarily the strongest cluster.  

3.4. Comparison of tapping evoked activity with spectral peaks 
To explore whether the spectral peaks observed in the MEG activity during tapping 

reflect the periodic occurrence of the tapping evoked response, or an ongoing oscillation, we 

compared the topographies of the two neural signatures (Figure 8). For the spectral peak at 

the tapping rate, correlations between the topographies of the tapping evoked response 

(Figure 8A) and the peak topography were found in the majority of participants (13/ 18, Figure 
8B/C top). The topography of the higher delta peak correlated with the topography of the 

tapping evoked response in eleven participants (Figure 8B/C bottom). While it was expected 

to see a correlation between the peak at the tapping rate and the tapping evoked response, it 

is more surprising that the topographies of the higher delta peaks also correlate with the 

tapping evoked response. Two explanations can be thought of: either the higher peak also 
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partially reflects the periodically occurring evoked response, or it reflects an oscillation in 

overlapping brain regions.  

3.5. Oscillatory bursts  
In a confirmatory analysis, we compared different statistics of oscillatory burst episodes 

in the delta band (burst amplitude, frequency, count, and duration) between sensors at which 

a spectral peak had been identified and a random selection of sensors without a peak (see 

Figure 9). For the delta peaks close to the individual tapping rate, the only significant difference 

was found in burst frequency in the tapping condition with a higher frequency at the no-peak 

sensors (T(17) = 3.32, p < 0.01). In the resting condition, we found significantly higher burst 

counts (T(17) = 3.5, p < 0.01) and longer burst duration (more cycles, T(17) = 3.29, p < 0.01, 

Figure 9B) for the higher delta band, in the sensors with peaks (marginally more bursts 

counted also in the counting condition: T(17) = 2.06, p = 0.06). The finding that the overall 

amplitude did not differ at the sensors with peaks compared to no peaks can be explained by 

the broader frequency range used in this analysis, while as reported above, the peak detection 

procedure showed variability in frequency across participants. 

  

Figure 8. Topographies of the average tapping evoked response, and the average delta peak. 
A. Average tapping evoked response (peak 0 – 0.25 s post tap-event). B. Averaged delta peak 
topographies (top: closest to behavioural tapping rate, bottom: high delta). C. Per-participant correlations 
between the tapping-evoked topography and delta-peak topography. Left: Pearson's r values, right: p-
values, FDR corrected across participants. The horizontal dashed line indicates the cut-off of p = 0.05. 
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3.6. Theta-, alpha-, beta-bands 
 

For validation of the approach, we also ran this analyses on the other canonical 

frequency bands (see supplementary Figure 5), and found strong differences in the alpha 

band for all burst statistics in the resting condition (all p < 0.01), marginally more and longer 

bursts in the low beta band (p = 0.05, 0.03), and marginally longer burst episodes in the high 

beta band (p = 0.05), for the tapping condition only. 

  

Figure 9. Analysis of oscillatory bursts, delta band, comparing the statistics resulting from the cycle-by-
cycle analysis (amplitude, burst amplitude, frequency, burst count, burst duration) at the sensors that were 
identified to have a peak in the delta frequency band (dark violins) versus a randomly sampled selection of 
other sensors (light violins). The columns show the two peak types identified in the delta range: tapping rate 
and higher delta. The rows show the three conditions, rest, tap, count. Significantly more and longer bursts 
were found in the peak-sensors for the higher delta band in the resting condition, as indicated by the red dotted 
square. 
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4. Discussion 

4.1. Summary 
Here, we assessed whether endogenous delta oscillations can be observed in non-

invasively recorded human brain dynamics. As per the current state of the art, we define 

oscillations by a narrow peak in the power spectral density [71]. We analysed an existing MEG 

dataset [75], from which we selected three runs during which participants either rested, or 

engaged in rhythmic behaviour through spontaneous finger tapping (overt engagement of the 

motor system) and silent counting (covert engagement of the auditory-motor system), and 

concurrent prospective timing. Dedicated signal processing techniques were applied, involving 

a multi-step procedure for removal of confounding artifacts in the delta frequency range 

(cardiac activity), and separation of aperiodic (1/f) components of the power spectrum from 

periodic components. Our results clearly show that narrow spectral peaks can be observed in 

the delta band in human MEG but require refined signal processing techniques. The peaks 

were heterogenous across conditions and participants, and partially overlapped with evoked 

activity, but intrinsic periodicities were identified during rest.  

4.2. Locally oscillating neural populations 
A first important observation was that several spectral peaks were detected in the delta 

band per participant and condition (Figures 3, 5). Peaks were heterogenous with respect to 

the peak frequency, topographical distribution across sensors, and strength, i.e., the number 

of sensors showing a peak at a given frequency. Crucially, on average, or in a group statistical 

approach, no coherent peaks could be found, while individual power spectra do show 

signatures of oscillatory activity. This suggests that what we pick up in the M/EEG is the 

synchronous signal from relatively small, and spatially local neuronal populations. This point 

has long been made by Hari et al., who reported "...that synchronous activity of 1% of cells in 

a cortical area of 1 cm2 would determine 96.5% of the total signal" [89], caption of Fig.12, p.60. 

The current literature often considers neural oscillations as a rather widespread phenomenon, 

but recent studies have started to separate local oscillators. For example, one study 

investigated local alpha oscillations in auditory areas in humans with depth electrodes 

implanted in temporal regions and reported two distinct oscillators in primary and secondary 

auditory areas [90], see also [91]. Another study used high density EEG to show that the 

seemingly paradoxical observation of theta oscillations surfacing during both rest and cognitive 

effort reflects separable neural dynamics [92]. The sparseness and variability of oscillating 

populations and their differential contributions to the recorded signals likely exacerbate 

divergences between existing human M/EEG studies, and should thus be taken into account 

more thoroughly. We hope that the work presented here provides an example and some 

possible guidelines in this direction, especially for the case of slow oscillations.  
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4.3. Do spectral peaks reflect endogenous periodicities? 
A critical question is whether the spectral peaks that we identified truly qualify as 

endogenous oscillations, versus reflect periodically occurring evoked activity. The peaks found 

in the tapping condition were closer to the individual tapping rate, and stronger in power 

compared to the resting and counting conditions (Figure 6, 7), reflecting enhanced delta 

activity when participants engaged in tapping. This is in line with previous studies that linked 

self-paced tapping to neural dynamics in the delta frequency range [93], [94], but did not 

distinguish between evoked responses and oscillatory dynamics. Here, we observed the 

strongest delta activity at central and frontal sensors, but the peak topographies correlated 

with the topographies of the tapping evoked response in the majority of participants (Figure 
8). This suggests that the spectral peak in the vicinity of the individual tapping rate reflects at 

least in part the periodically occurring sensorimotor evoked responses [59], [87], and neural 

signatures of spontaneous movement [95]. We thus cannot claim that the peaks in the tapping 

condition reflect endogenously periodic activity. This questions the commonly used practice to 

search for spectral peaks when analysing neural oscillations, at least in the presence of other 

potential sources of periodic activity. Future functional studies will be necessary to compare 

delta activity in MEG recordings across different tasks.  

To further investigate whether the spectral peaks reflect intrinsic periodicities, we 

performed a confirmatory analysis to classify non-stationary oscillatory delta band bursts in the 

time domain (Figure 9) [76]. We found significantly enhanced oscillatory activity in the high 

delta band during resting, namely more and longer burst episodes in the sensors that forming 

the peak cluster. While the application of this method to low frequency oscillation such as delta 

should be further validated, our finding provides preliminary evidence for spontaneous delta 

band oscillations in non-invasive human MEG recordings during rest.  

The topography of the high delta peaks during rest (Figure 5, top right panel), 

confirmed as oscillatory in the additional analysis, suggests motor, frontal, and possibly also 

auditory generators, in line with previous studies [9], [39], [96]. Notably, these oscillatory bursts 

occurred at frequencies above the behavioural tapping rate, pointing towards independency 

between tapping-evoked delta activity and endogenous oscillations. It might be the case that 

an activation of the auditory system by sensory inputs would have engaged internal oscillators 

in auditory regions more strongly, as endogenous delta oscillations have previously been 

reported in primary auditory cortices [8], an assumption that can be tested in future work.  

We also examined the hypothesis that spontaneous rhythmic activity is orchestrated 

by a stable internal frequency, i.e. a propensity of the relevant neural populations to oscillate 

at this frequency, by correlating peaks in tapping and counting behaviour and delta peaks 

across conditions [66]–[69], [97]. The behavioural frequencies measured in tapping (1.17 Hz) 

and counting (0.91 Hz) were clearly in the delta range, albeit somewhat lower than the 
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frequencies of the spectral peaks in the MEG data (avg. tapping peak: 1.39 Hz, avg. peak 

above tapping: 2.43 Hz, avg. counting peak. 1.24 Hz), and lower than the preferred frequency 

recently reported for auditory-motor synchronization 1.7 Hz, [69]. There was no correlation of 

peak frequencies across conditions after controlling for the peak selection frequencies (Figure 
7C), which would have been expected if the peaks observed in the three conditions resulted 

from a stable neural oscillation. The behavioural frequencies measured in tapping and counting 

also did not correlate within individuals (Figure 4). Thus, the assumption that spontaneous 

rhythmic motor behaviour (overt as in tapping, or covert as in counting) reflects the frequency 

of a common neural oscillator could not be confirmed here. However, it is possible that the 

small N underlying the correlation analyses prevented such an observation [85]. 

4.4. Comparison between the present results and previous invasive studies 
As mentioned before, the existence of endogenous delta oscillations and their roles for 

cognitive processing are derived from seminal animal work. In humans, the availability of 

invasive recordings is very limited, but several studies provided important insights from 

intracranial recordings in epilepsy patients. Our results align with these studies in several 

aspects, notably the observation of delta activities in various brain areas, and the variability of 

the oscillatory patterns over time. In a task-based study, Besle et al. [31] show indirect 

evidence for endogenous delta oscillations by observing phase resets in a wide-spread 

network including motor cortex, orbitofrontal cortex, angular gyrus, and parietal regions (70% 

of recording sites), suggesting endogenous delta oscillations occur in many brain regions. In 

the same line, a seminal investigation by Halgren et al. [9] addressed the generators of 

endogenous delta activity across cortical areas (frontal, parietal, temporal) and cortical layers. 

Delta (and theta) activity was prominently observed during sleep and wakefulness (rest) at all 

recording sites, with local generators in superficial cortical layers. Our results align with this 

work and underline the necessity to go beyond Fourier-based methods, to assess to what 

extent peaks observed in low frequency bands reflect intrinsic periodicities. In an analysis 

restricted to auditory areas, Neymotin and al. [98] identified 'oscillatory events' occurring 

regularly in the resting state data. Both the local field potentials (non-human primates) and 

intracranial EEG recordings (humans) during rest showed prominent delta activity. Yet, the 

oscillations were not stationary, and occur for 3 cycles on average in the delta band, which 

nicely matches with our time-domain analyses.  

In sum, there is clear evidence for endogenous delta oscillations in various areas of the 

human  brain, mostly supported by local invasive recordings, and in line with the host of task-

based studies describing activities in the delta band. As evidence converges that delta 

oscillations are local and not stationary, it will be crucial to take into account the biological 

properties of these dynamics in the study of cognitive dynamics in humans. 
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4.5. Theta, alpha, and beta bands 
For validation of the analysis pipeline, and comparison, the same analyses were run 

on three other canonical frequency bands (see supplementary Figures): theta (4 – 7 Hz), 

alpha (8 – 12 Hz), and beta (15 – 30 Hz). Most participants had several peaks per frequency 

band with considerable variation in the peak frequencies. Further examination of the time 

domain signal for intrinsic periodicities using the cycle-by-cycle method showed that besides 

the delta band, the only clearly oscillatory activity was found in the alpha band, confirming 

previous studies [75], [99].  

While recently new methods have been proposed for the analysis of neural oscillations 

[76], [98], [100], most have been validated in the alpha band but see [101] for a refined 

examination of neural dynamics in the the beta band. In the alpha range, dominant spectral 

peaks can be easily identified, and periodic activity can be spotted in the time domain with the 

naked eye. It is currently an open question whether those methods perform less well when 

detecting oscillations at slower frequencies, or whether dynamics in other frequency bands 

differ so strongly in their characteristics from the prominent alpha activity that it is even 

questionable whether they qualify as endogenous oscillations. A better understanding of the 

characteristics of neural oscillations beyond stationary sinusoids is required to move forward 

on these questions [102]. 

Surprisingly, we observed no enhanced beta power in the tapping condition, previously 

reported during auditory-motor synchronization [103]–[105]. Beta oscillations have also been 

reported to reflect explicit duration estimates [106]–[108], and implicit non-rhythmic temporal 

predictions [30], [32], [109]. As recently reported, beta oscillations occur as short bursts at 

specific moments in time, rather than as stationary oscillations [110], [111], which might explain 

why we did not observe increased power during the whole tapping run. This further supports 

the notion that Fourier based methods do not account well for the non-stationarities present in 

the brain dynamics and thus miss the presence of oscillations. In line with this assumption, the 

additional time domain analyses indicated at least marginally more and longer burst counts in 

beta during tapping (supplementary Figure S6, bottom left panel).  

4.6. Outlook 
Delta oscillations seem indicative of a critical balance between widely synchronized 

and local activity, where too much synchronization is a signature of pathological brain activity 

[112], but local oscillations appear crucial for engaging with a particular task. The presented 

results argue for the necessity characterize each delta oscillatory profiles per individual, 

namely in terms of peak frequency and topography. These individual profiles, obtained based 

on the methodological guidelines we outlined, can be used as the basis for future studies 

interested in the functional relevance of slow neural oscillations. The outlined procedures can 

be used to derive a spatio-spectral filter (or localizer), serving to extract the signal of interest, 
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for instance when interested in mechanisms of synchronization to external rhythms [113], or 

memory consolidation, functionally linked to delta oscillations. This approach can also be 

applied in the assessment of clinical populations that show characteristic alterations in delta 

oscillations [9], [114], [115], for instance in schizophrenia were increased delta oscillatory 

power is observed over frontal regions. The approach proposed here will hopefully help to 

promote a more unified reporting of the physiological characteristics of delta oscillations 

relevant to a particular task, or pathology, to eventually enable meta-analytic approaches as 

currently available for alpha oscillations [116]. 

4.7. Limitations 
Here, we present a first attempt to assess endogenous delta oscillations in non-invasive 

MEG recordings in humans. While our work shows that spectral peaks can be observed in the 

delta band, we would not want to assume that those peaks reflect endogenous oscillations in 

all experimental conditions. One particular limitation was the rather short recordings we used 

(2 min per condition and participant). Given the observation that oscillatory episodes might be 

transient [98], [101] short recordings might have resulted in a low signal to noise ratio. Longer 

datasets should be screened for endogenous delta oscillations with the same methods to 

observe their consistency over time, and their relationship with mental states and behavioural 

tasks in awake human participants. Longer datasets would also allow to address phase-

amplitude coupling between delta oscillations and higher band power, as previously observed 

[8], [9]. Furthermore, the small sample size (N = 18) might have limited our chances to find 

significant differences and correlations [85], which should be considered in interpreting the 

results.  

4.8. Conclusions 
Here we examined whether endogenous delta oscillations can be observed in non-

invasive MEG recordings in humans, by analysing human resting state recordings. To test 

whether spontaneous rhythmic behaviours incite an otherwise silent internal oscillator, we also 

selected conditions in which participants engaged in spontaneous finger tapping and silent 

counting. Narrow spectral peaks in the delta frequency range were found in all conditions, but 

additional analyses targeting non-stationary oscillations in the time domain showed that only 

the resting state data warranted an interpretation of endogenously periodic neural dynamics. 

We hope that the novel set of analyses steps and results presented here will foster a more 

detailed investigation of spontaneous oscillations in low frequency bands in humans, and thus 

contribute to better standards in characterizing the physiological signals underlying a 

hypothesized functional mechanism, and enable comparison across studies in healthy and 

clinical population. 
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4.9. Data and Code Availability 
Raw magnetoencephalography recordings, as well as the pre-processed epochs for all 

three runs per participant will be made available on the Open Science Framework together 

with the complete analysis pipeline (python code), and the behavioural data. The currently 

private repository will be made public upon acceptance of the manuscript for publication. 
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5. Tables 

Table 11: Results of the peak clustering and sorting procedure. Different peaks were identified per 
canonical frequency band (delta, theta, alpha, beta, left column) and condition. The table indicates the 
average peak frequency across participants, as well as its standard deviation (SD), average power, its 
standard deviation, as well as number of sensors per cluster and its SD. 
 
freq. 
band 

peak type condition freq. 
(mean, 
Hz) 

freq. 
(SD, Hz) 

power 
(mean, 
dB) 

power 
(SD, dB) 

number 
of 
sensors 
(mean) 

number 
of 
sensors 
(SD) 

DELTA tapping 

rate 

rest 1.25 0.43 3 0.64 11.06 5.07 

tap 1.37 0.5 3.69 1 18.11 12.94 

count 1.56 0.56 2.75 0.58 13.61 5.21 

high delta rest 2.29 0.5 2.97 1.04 13.67 5.04 

tap 2.35 0.53 3.05 1.06 12.72 6.02 
count 2.09 0.57 3.51 1.29 14.94 9.85 

 counting 

rate 

rest 1.22 0.32 3.22 0.73 11.47 4.13 

tap 1.08 0.32 3.33 0.96 11.41 7.03 

count 1.15 0.33 2.97 0.65 11.76 4.58 

THETA first rest 5.29 0.59 3.55 0.82 14.39 5.19 

tap 5.38 0.54 3.89 1.94 17.61 9.6 

count 5.31 0.35 3.55 0.81 15.78 5.73 

ALPHA first rest 10.33 0.8 12.46 4.53 24.89 13.36 

tap 10.48 0.62 11.75 4.28 22.17 10.47 

count 10.18 0.84 12.32 4.75 28.44 14.6 

BETA low rest 19.53 2.01 5.74 2 11.56 9.96 

tap 18.96 2.13 6.23 2.27 9.61 4.5 

count 19.16 2.49 5.43 1.82 8.89 4.79 

high rest 23.75 2.03 5.37 2.01 9.06 4.7 

tap 23.57 1.92 5.12 2.38 10.17 4.51 
count 23.24 2.08 5.44 2.5 9.78 4.06 
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Table 2. Statistical tests of peak frequency, peak power, and number of sensors between conditions 
per canonical frequency band (DF = degrees of freedom). 
 

 
 
  

freq. 
band 

peak 
type 

cond 1 cond 2 peak 
frequency 

peak 
power 

number of 
sensors 

DF 

    T P T P T P  
DELTA tapping 

rate  
rest tap -1.11 0.284 -3 0.008 -2.52 0.022 17 
rest count -2.49 0.023 1.38 0.186 -1.43 0.171 17  
tap count -2.05 0.056 3.49 0.003 1.21 0.242 17 

higher rest tap -0.39 0.702 -0.26 0.8 0.68 0.503 17  
rest count 1.01 0.328 -1.75 0.098 -0.49 0.629 17 
tap count 1.32 0.205 -1.25 0.228 -0.76 0.459 17  

counting 
rate 

rest tap 1.29 0.216 -0.35 0.732 0.04 0.970 16 
rest count 0.75 0.465 1.56 0.139 -0.21 0.835 16  
tap count -0.78 0.446 1.2 0.249 -0.27 0.793 16 

THETA first rest tap -0.53 0.606 -0.75 0.466 -1.32 0.203 17  
rest count -0.14 0.891 0.02 0.987 -0.74 0.472 17 
tap count 0.47 0.645 0.91 0.375 0.68 0.503 17  

ALPHA first rest tap -1.07 0.301 0.8 0.436 0.91 0.375 17 
rest count 1.43 0.17 0.18 0.857 -0.85 0.41 17  
tap count 1.91 0.074 -0.7 0.492 -2.37 0.03 17 

BETA low rest tap 1.06 0.303 -0.97 0.347 0.71 0.489 17  
rest count 0.57 0.574 0.69 0.502 1.05 0.31 17 
tap count -0.41 0.69 2.34 0.032 0.48 0.639 17  

high rest tap 0.39 0.699 0.56 0.582 -0.83 0.42 17 
rest count 0.89 0.384 -0.15 0.883 -0.49 0.63 17  
tap count 0.63 0.539 -0.92 0.372 0.38 0.711 17 
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