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Abstract 
 
The Human Pangenome Reference Consortium (HPRC) presents a first draft human 
pangenome reference. The pangenome contains 47 phased, diploid assemblies from a cohort 
of genetically diverse individuals. These assemblies cover more than 99% of the expected 
sequence and are more than 99% accurate at the structural and base-pair levels. Based on 
alignments of the assemblies, we generated a draft pangenome that captures known variants 
and haplotypes, reveals novel alleles at structurally complex loci, and adds 119 million base 
pairs of euchromatic polymorphic sequence and 1,529 gene duplications relative to the existing 
reference, GRCh38. Roughly 90 million of the additional base pairs derive from structural 
variation. Using our draft pangenome to analyze short-read data reduces errors when 
discovering small variants by 34% and boosts the detected structural variants per haplotype by 
104% compared to GRCh38-based workflows, and by 34% compared to using previous 
diversity sets of genome assemblies. 

Introduction  
 
The human reference genome has formed the backbone of human genomics since its initial 
draft release more than twenty years ago (International Human Genome Sequencing 
Consortium, 2001). The primary sequences are a mosaic representation of individual 
haplotypes containing one representative scaffold sequence for each chromosome. There are 
210 megabases (Mb) of gap/unknown (151 Mb) or computationally simulated sequence (59 Mb) 
within the current GRCh38 release, comprising 6.7% of the primary chromosome scaffolds (3.1 
gigabases (Gb)). Missing reference sequences create an observational bias, or streetlamp 
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effect, which limits studies to be within the boundaries of the reference. Recently, the Telomere-
to-Telomere (T2T) consortium finished the first complete sequence of a haploid human genome, 
T2T-CHM13, which provides a contiguous (no scaffold gaps) representation of each autosome 
and of chromosome X, with the exception of simulated ribosomal DNA arrays, totaling less than 
10 Mb, that remain to be fully resolved (Nurk et al., 2022). Using T2T-CHM13 directly improves 
genomic analyses; for example, discovering 3.7 million additional single-nucleotide 
polymorphisms (SNPs) in regions non-syntenic to GRCh38 and better representing the true 
copy-number variants (CNVs) of 1000 Genomes Project (1KG) samples when compared to 
GRCh38 (1000 Genomes Project Consortium et al., 2015; Aganezov et al., 2022). 
 
Although T2T-CHM13 represents a major achievement, no single complete genome can 
represent the genetic diversity of our species. Previous studies have identified tens of Mb of 
sequence contained within structural variants (SVs) that are polymorphic within the population 
(Ebert et al., 2021). Due to its repetitive nature and the absence of these alternative alleles and 
copy-number polymorphic paralogs from the reference genome, over two-thirds of SVs have 
been missed in studies using short-read data and the human reference assembly (Chaisson et 
al., 2019; Wenger et al., 2019; Zhao et al., 2021), despite individual SVs being more likely to 
impact gene function than either individual SNPs or short insertions and deletions (indels) 
(Chiang et al., 2017; Sudmant et al., 2015).  
 
To overcome reference bias a transition to a pangenomic reference has been envisioned 
(Computational Pan-Genomics Consortium, 2018; Paten et al., 2017). Pangenomic methods 
have progressed rapidly over the last few years (Eizenga et al., 2020; Wang et al., 2022) such 
that it is now practical to propose migrating common genomic analyses to use a pangenome. 
Here, we sequence and assemble a set of diverse individual genomes and present a draft 
human pangenome, the first release of the Human Pangenome Reference Consortium (HPRC) 
(Wang et al., 2022). These genomes represent an initial subset of the planned HPRC panel, 
which aims to better capture global genomic diversity across the 700 haplotypes of 350 
individuals.  

Results 

Assembling 47 diverse human genomes 
We assembled 47 fully phased diploid assemblies from genomes selected to represent global 
genetic diversity (Figure 1A) and consented for unrestricted access data release. All are made 
publicly available, along with all data and analyses. The assembly process, as well as 
downstream quality control, were organized to ensure a high degree of completeness, 
contiguity, phasing, and base-level accuracy. These assemblies include 29 samples with long 
and linked read sequencing data generated entirely by the HPRC, and 19 samples sequenced 
by other efforts (Porubsky et al., 2021; Shafin et al., 2020; J. M. Zook et al., 2016), denoted 
HPRC+. In some cases we supplemented the HPRC+ samples with additional sequencing. We 
selected the 29 HPRC samples from the 1KG lymphoblastoid cell lines, limiting selection to 
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those lines classified as karyotypically normal, with low passage (to avoid artifacts from cell 
culture), and which were derived from participants for which whole-genome sequencing data is 
available for both parents (for phasing). Cell lines meeting these criteria were prioritized by 
genetic and biogeographic diversity (Methods).  
 
We created a consistent set of deeply sequenced data types for every sample (Supplementary 
Table 1). The data included Pacific Biosciences (PacBio) high-fidelity (HiFi) and Oxford 
Nanopore Technologies (ONT) long-read sequencing, Bionano optical maps, and high coverage 
Hi-C Illumina short-read sequencing for all HPRC samples. We also gathered previously 
generated high-coverage Illumina sequencing data for both parents of each participant (Byrska-
Bishop et al., 2021). We generated on average 39.7X HiFi sequence depth of coverage for the 
46 HPRC/HPRC+ samples (excluding HG002, which had ~130X coverage) with a minimum of 
30.6X (for HG02109) and maximum of 51.7X (for HG03453). This depth of coverage is 
consistent with the requirements for high-quality, state-of-the-art assemblies (Cheng et al., 
2021) and facilitates comprehensive variant discovery irrespective of allele frequency. The N50 
of the HiFi read lengths range from 13.5 kilobases (kb) to 26.9 kb (Supplementary Table 1), 
with an average of 19.6 kb (excluding HG002 because it was sequenced using a different library 
preparation protocol).  
 
For the core assembler, we chose Trio-Hifiasm (Cheng et al., 2021) after detailed benchmarking 
of a large number of alternatives (Jarvis et al., 2022). Trio-Hifiasm uses PacBio HiFi long-reads 
and parental Illumina short-reads to produce near fully phased contig assemblies. The assembly 
process, as well as downstream quality control, were organized to ensure a high degree of 
completeness, contiguity, phasing, and base-level accuracy. The complete assembly pipeline 
(Supplementary Figure 1, Methods) includes steps to remove adaptor and non-human 
sequence contamination, and to ensure a single mitochondrial assembly per maternal 
assembly.  

Assembly Assessment 
 
We first searched for large-scale misassemblies, looking for large-scale gene duplication errors, 
phasing errors and interchromosomal misjoins (Methods). We fixed three large duplication 
errors and one large phasing error manually, while leaving smaller errors, which are hard to 
definitively distinguish from SVs. We found 217 putative interchromosomal joins. Only one of 
these joins (in the paternal assembly of HG02080) is located on euchromatic arms and was 
manually confirmed to be a misassembly. The remaining joins involve the short arms of the 
acrocentric chromosomes (Figure 1B; Supplementary Table 2) and may be the result of 
misalignment, nonallelic gene conversion, or other mechanisms that maintain large-scale 
homology between the short arms of the acrocentrics—a phenomenon which we study in detail 
in a companion manuscript (Guarracino, Buonaito, et al., 2022).  
 
To evaluate the resulting assemblies after manual error correction, we developed an automated 
assembly quality control pipeline that combines methods to assess the completeness, 
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contiguity, base-level quality, and phasing accuracy of each assembly (Methods, 
Supplementary Table 3). Haploid assemblies containing an X chromosome have an average 
total length of 3.04 Gb, and match 99.3% of the length of the T2T-CHM13 assembly (3.06 Gb) 
that also contains an X chromosome. Haploid assemblies containing a Y chromosome average 
a total length of 2.93 Gb, reflecting the difference in size between the sex chromosomes (Figure 
1C). The average NG50 – a widely used measure of contiguity, is 40 Mb – which is comparable 
to the 56 Mb NG50 of the contigs of GRCh38 (Figure 1D). Using short substrings (k-mers) 
derived from Illumina data, Yak (Cheng et al., 2021) estimates an average quality value (QV) of 
53.57 for the assemblies, corresponding to an average of one base error per 227,509 bases. 
The assemblies vary in QV between 50 and 57, with a strong correlation between the maternal 
and paternal assemblies, as expected (Figure 1E). To help validate these QV estimates, we 
benchmarked the HG002 and HG005 assembly-based variant calls against the Genome in a 
Bottle (GIAB) v4.2.1 small variants; we estimated QVs as 54 for HG002 and 55 for HG005, 
similar to the k-mer QVs estimated by Yak of 53 and 54 for the HG002 maternal and paternal 
haplotypes, and 54 and 54 for the HG005 maternal and paternal haplotypes, respectively. 
Consistent with our manual observation that most errors were primarily small indels in low 
complexity regions, we found ~32% of indel errors were in homopolymers longer than 5 bp and 
an additional 48% were in tandem repeats and low complexity regions. Also, ~42% of indel 
errors were genotype errors, mostly heterozygous variants incorrectly called as homozygous 
variants due to collapsed haplotypes in the two assemblies of an individual (Supplementary 
Table 4). Analyzing the phasing accuracy between the maternal and paternal assemblies using 
k-mers derived from Illumina sequencing of the parents, Yak finds an average haplotype switch 
error rate of 0.67% and a Hamming error rate of 0.79% (Figure 1F). We also calculated phase 
accuracy using Pstools (Garg, 2020, 2021), which uses Hi-C sequence data of the sample not 
used in creating the assembly. Pstools reports slightly lower switch error rates than Yak and 
comparable hamming error rates (Supplementary Figure 2). Taken together, the above results 
indicate that the assemblies are highly contiguous and accurate.  

Determining Regional Assembly Reliability 
To determine which portions of the assemblies are reliable, we developed a read-based 
pipeline, Flagger, that detects different types of misassemblies within a phased diploid assembly 
(Figure 1G; Methods). The pipeline works by mapping the HiFi reads to the combined maternal 
and paternal assembly in a haplotype-aware manner and then identifying coverage 
inconsistencies within these read mappings that are likely due to assembly errors. This process 
is similar to likelihood-based approaches that assess the assembly given the reads (Rahman & 
Pachter, 2013), but is adapted to work with long-reads and a diploid assembly where both 
parental haplotypes are resolved. We identified only 0.88% (26.4Mb) of each assembly as 
unreliable based on Flagger analysis (Figure 1H, Supplementary Table 5). Compared to the 
distribution of contig sizes, the unreliable blocks are relatively short (54.6 kb N50 averaged 
across assemblies). The HG02572 paternal assembly contained the highest number of 
unreliable bases (~77.6 Mb) and the HG01175 maternal assembly contained the lowest number 
(~9.76 Mb). We intersected the Flagger unreliable blocks in the assemblies with different repeat 
annotations to measure the percentage of each annotation assembled confidently (Figure 1I, 
Supplementary Table 6). We estimate that 95.4% of alpha satellites, 91.5% of human satellites 
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2 and 3, 97.7% of segmental duplications (SDs), 94.3% of variable number tandem repeats 
(VNTRs), 94.2% of short tandem repeats (STRs), and 98.8% of all human repeats (Smit, AFA, 
Hubley, R & Green, P, 2013-2015) are correctly assembled. To estimate the false positive rate 
of Flagger, we ran Flagger on the CHM13 HiFi alignments to the T2T-CHM13 reference. Since 
this reference was extensively validated, we expected Flagger to report almost the whole 
assembly as reliable. After excluding rDNA arrays and satellites that are not properly evaluated 
using Flagger (Methods), but are also largely missing from the HPRC assemblies, we find 2.82 
Mb (0.1%) of potentially (false positive) unreliable blocks in T2T-CHM13.  

Assembly Completeness and Copy-Number Variation 

To assess the completeness and copy-number polymorphism of the HPRC/HPRC+ assemblies 
we aligned them to the T2T-CHM13 reference and counted the number of reference bases with 
zero, one, two, and more than two alignments (Methods). The paternal assemblies of male 
samples cover ~92.8% of the reference (excluding chrX) on average with exactly one alignment; 
for all other assemblies (excluding chrY) ~94.1% on average is single-copy covered (Figure 1J, 
Supplementary Table 7). On average ~136 Mb (~4.4%) of the T2T-CHM13 reference is not 
covered by any alignment, showing that some parts of the genome are either systematically 
unassembled or cannot be reliably aligned to; ~90% of these regions are peri/centromeric 
(Supplementary Figure 3), with the active/inactive alpha satellites and human satellite 3 
comprising about ~50% of these bases, mainly due to their highly repetitive composition and 
also higher frequency compared to other satellites (Altemose et al., 2022). Other centromeric 
satellites, centromeric transition regions, and rDNA arrays accounted for another ~40% of the 
uncovered bases on average. Despite the majority of unaligned bases occurring within and 
around centromeres, on average 90% of divergent/monomeric alpha satellites, gamma 
satellites, and centromeric transition regions are covered by at least one alignment. On the 
other hand, rDNA arrays, which are by far the hardest repeat arrays to assemble, were the least 
covered repeat array (~8%). Excluding the T2T-CHM13 centromere and satellites (Nurk et al., 
2022) and including only the expected sex chromosome for each haploid assembly, on average 
~99.12% of the remaining reference is covered by exactly one alignment (Supplementary 
Table 7).  

The average number of the T2T-CHM13 bases with two and more than two alignments are 
~32.4 Mb (~1.0%) and ~20.0 Mb (~0.6%), respectively. On average per haploid assembly, 
these duplicated alignments had ~82.20% and ~39.82% overlap with the peri/centromeric 
satellites and SDs, respectively, and ~94.62% had overlap with either of them. Many of these 
duplicated alignments correspond to SDs. We then characterized the accuracy of regions 
aligned to SDs in T2T-CHM13 (excluding chromosome Y) using a liftover of the assembly read-
depth based evaluation (Supplementary Figure 4). On average we estimate that only 2.5% 
(4.99/199 Mb) of the SD sequence that can be lifted onto T2T-CHM13 is in error according to 
read depth. To identify SDs associated with these errors, we took all 5 kb windows across the 
unreliable regions and intersected them with the longest and most identical overlapping SD. The 
median length of SDs overlapping sequences in error is 3.0 times longer (288 kb vs. 96.3 kb) 
than those in correctly assembled SDs and 1.8% more identical (98.9 vs. 97.1), reinforcing 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 9, 2022. ; https://doi.org/10.1101/2022.07.09.499321doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.09.499321
http://creativecommons.org/licenses/by/4.0/


 

7 

earlier findings that length and identity of SDs play an important role in assembly accuracy 
(Alkan et al., 2011).  
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Figure 1 | 47 accurate and near-complete diverse diploid human genome assemblies. A) 
Selecting the HPRC samples. Left: The first two principal components of 1KG samples showing 
HPRC/HPRC+ (triangles) samples. Right: A summary of the HPRC/HPRC+ samples and their 
subpopulations (three letter abbreviations on Earth map) as defined by 1KG. B) 
Interchromosomal joins between acrocentric chromosome short arms. Red means the join is on 
the same strand; blue otherwise. C) Total assembled sequence per haploid phased assembly. 
D) Assembly contiguity shown as an NGx plot. T2T-CHM13 and the contigs of GRCh38 are 
included for comparison. E) Assembly quality values (QV), showing the base-level accuracy of 
each sample’s maternal and paternal assembly. F) Yak reported phasing accuracy, showing 
switch error % vs. Hamming error %. G) An overview of the Flagger read-based assembly 
evaluation pipeline. Coverage is calculated across the genome and a mixture model is fit to 
account for reliably assembled haploid sequence as well as various classes of unreliably 
assembled sequence. For each coverage block a label is assigned according to the most 
probable mixture component it belongs to: erroneous, (falsely) duplicated, (reliable) haploid, 
collapsed, and unknown. H) Estimating the reliability of the 47 HPRC/HPRC+ assemblies using 
read mapping. Regions flagged as haploid are reliable (colored green), on average they 
constitute more than 99% of each assembly. The Y axis is broken to show the dominance of the 
reliable haploid component and also the stratification of the unreliable blocks. I)  Evaluating the 
assembly reliability of 6 repeat annotations. The regions flagged as haploid by Flagger were 
intersected with 6 repeat annotations; the repeat annotations included alpha satellites, human 
satellites 2 and 3, SDs, the repeats characterized by RepeatMasker (Smit, AFA, Hubley, R & 
Green, P, 2013-2015), VNTRs, and STRs. J) Completeness of the HPRC assemblies. We 
aligned all HPRC assemblies to the T2T-CHM13 reference to assess their completeness. The 
number of reference bases covered by no, one, two, and more than two alignments are counted 
separately. 
 

Annotating 47 Diverse Genome Assemblies 

We developed a new Ensembl mapping pipeline to annotate GENCODE (Frankish et al., 2021) 
genes and transcripts within each new haploid assembly (Methods). To create high-confidence 
annotations, the pipeline clusters and maps spatially proximal genes in parallel (to help avoid 
issues with individually mapping near identical paralogues) and attempts to resolve inconsistent 
mappings by both considering the synteny of the gene neighborhood in relation to the GRCh38 
annotation and the identity and coverage of the underlying mappings. A median of 99.07% of 
protein-coding genes (minimum of 98.08%, maximum of 99.40%) and 99.42% of protein-coding 
transcripts (minimum of 98.29%, maximum of 99.66%) were unambiguously identifiable in each 
of the HPRC assemblies (Figure 2A; Supplementary Table 8). Similarly, a median of 98.16% 
of non-coding genes (minimum of 97.23%, maximum of 98.60%) and 98.96% of non-coding 
transcripts (minimum of 97.94%, maximum of 99.28%) were similarly annotated. By way of 
comparison, running this pipeline on T2T-CHM13 gives comparable, if slightly higher, results: 
we annotated 99.54% and 99.76% of protein-coding genes and transcripts, and 99.11% and 
99.52% of non-coding genes and transcripts in T2T-CHM13. Intersecting the HPRC/HPRC+ 
annotations with the assembly reliability predictions, a median of 99.53% of gene and 99.79% of 
transcript annotations occurred wholly within reliable regions, indicating that the vast majority of 
the annotated haplotypes are structurally correct. To examine transcriptome base accuracy, we 
looked for nonsense and frameshift mutations in the set of canonical transcripts (one 
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representative transcript per gene; Methods and Supplementary Table 8, Supplementary 
Figure 5). We found a median of 25 nonsense mutations per assembly, supporting the idea that 
there is a low level of base-level substitution error. A median of 21 (84%) of these nonsense 
mutations per assembly are supported by the independently generated Illumina variant call sets.  
We found a median of 72 frameshifts (0.37% of transcripts) mutations per genome, with a 
median of 67 of these being high-confidence frameshifts not occurring in the leading 5’ or 3’ 
ends of the transcript. A median of 58 (80%) of these frameshifts per assembly are supported 
by the same Illumina call sets. These numbers are within the range of previously reported 
numbers of loss-of-function mutations (between 10-150 per person, depending on the level of 
conservation of the mutation) (1000 Genomes Project Consortium et al., 2015; MacArthur et al., 
2012). Some of the non-confirmed frameshifts and nonsense mutations (a median of 14 
frameshifts and 4 nonsense mutations per assembly, or one error per ~1.7 million reference 
transcriptome bases) are likely assembly errors.  
 
There are 1,529 protein-coding gene families within the Flagger predicted reliable regions of the 
full set of assemblies that have a gain in copy number in at least one genome (Figure 2B). 
Each assembly has an average of 44 genes with a gain in copy number relative to GRCh38 
within its predicted reliable regions, with a bias towards rare, low-copy CNVs (Figure 2C); 80% 
of CNV genes appear in a single haplotype. Previous studies using read depth found that rare 
CNVs occur generally outside of regions annotated as being enriched in SDs (Sudmant et al., 
2010). The genome assemblies confirm this observation in sequence-resolved CNVs. When 
stratifying duplicated genes based on allele frequency (AF) into singleton (present in one 
haplotype), low frequency (< 10%), and high frequency, 13% (159/1,181) of the singleton CNVs 
map to SDs as annotated in GRCh38. Duplicated genes with a higher population frequency 
have a greater fraction in SDs: 40% (86/214) of low-frequency, and 81% (148/184) of high 
frequency. 63 genes are CNVs in 10% or more of haploid assemblies, and 17 genes are 
amplified in the majority of individuals relative to GRCh38 (Figure 2D; Supplementary Table 
9). Many of these genes are individually highly copy-number polymorphic and part of complex 
tandem duplications (Figure 2E). For example, the gene GPRIN2 is known to be copy-number 
polymorphic (Handsaker et al., 2015) based on read depth, and has sequence resolution of 1-3 
additional copies duplicated in tandem in the pangenome (Figure 2F). The gene SPDYE2 is 
similarly resolved as 1-4 additional copies duplicated in tandem (Figure 2G). Other copy 
number variable genes are not contiguously resolved and reflect limitations of the current 
assemblies (see Porubsky et al. companion). For example, the defensin gene DEFB107A has 
3-8 additional copies assembled across all samples, however this gene is assembled into 3-7 
separate contigs that do not reflect the global organization of this gene. 
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Figure 2 | Transcriptome annotation of the assemblies. A) Ensembl mapping pipeline 
results. Percentages of protein-coding and non-coding genes and transcripts annotated from the 
reference set in each of the HPRC assemblies. Orange points represent T2T-CHM13 for 
comparison. B) Assembled gene duplications per genome. The number of genomes containing 
a duplicated gene for 1529 protein-coding gene duplications indexed by increasing copy 
number, observed in the predicted reliable regions of the HPRC/HPRC+ genomes. C) Number 
of distinct duplicated genes or gene families per phased assembly relative to the number of 
duplicated genes annotated in GRCh38 (152). The GRCh38 gene duplications reflect families of 
duplicated genes, while the counts in other genomes reflect gene duplication polymorphisms. 
The assemblies are color coded according to their population of origin. D) The top 25 most 
commonly CNV genes or gene-families in the HPRC/HPRC+ assemblies, ordered by the 
number of samples with additional copies relative to GRCh38. Grey bars represent the number 
of samples with additional copies. Blue circles represent the number of additional copies per 
sample, with the size of the circle proportional to the number of samples. E) The top 30 most 
individually CNV genes or gene families in the HPRC/HPRC+ assemblies, ordered by total 
number of additional copies observed. Blue circles again represent the number of additional 
copies per sample, with the size of the circle proportional to the number of samples. The Grey 
bars represent the total number of additional copies summed over the samples. F) Dotplot 
illustrating haplotype-resolved GPRIN2 gains in the HG01361 assembly relative to GRCh38. G) 
Dotplot illustrating SPDYE2/SPDYE2B haplotype resolved gains within a tandem duplication 
cluster of the HG00621 assembly relative to GRCh38. 

Constructing a draft pangenome 
We use a sequence graph representation for pangenomes (Eizenga et al., 2020; Paten et al., 
2017) in which nodes correspond to segments of DNA. Each node has two possible 
orientations, forward and reverse, and there are four possible edges between any pair of nodes 
to reflect all combinations of orientations (bidirected graph). The underlying haplotype 
sequences can be represented as walks in the graph. The model represents a generalized 
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multiple alignment of the genome assemblies from which we build it: haplotypes are aligned 
where they co-occur on a given node (Figure 3A). 
 
The process of generating a combined pangenome representation is non-trivial because 
determining which alignments to include is not always obvious, particularly for recently 
duplicated and repetitive sequences. We applied three different graph construction methods:  
Minigraph (Li et al., 2020), Minigraph-Cactus (MC), and PanGenome Graph Builder (PGGB) 
(Methods). The availability of these three models provides us with multiple views into the 
homology relationships in the pangenome while supporting cross-validation of discovered 
variation. We included the GRCh38 and T2T-CHM13 assemblies within the pangenomes and 
three samples were held out from the pangenome graphs to permit their use in benchmarking: 
HG002, HG005, and NA19240. 

Minigraph and Minigraph-Cactus 
Minigraph builds a pangenome by starting from a reference assembly, here GRCh38, and 
iteratively and progressively adds in additional assemblies, recording only SVs larger than or 
equal to 50 bases. It admits complex variants, including duplications and inversions. MC 
extends the Minigraph pangenome with a base-level alignment of the homology relationships 
between the assemblies using the Cactus genome aligner (Armstrong et al., 2020), while 
retaining the structure of the Minigraph pangenome. To remove noisy alignments from the MC 
pangenome, long (≥100 kb) non-reference sequences identified either as being satellite, 
unassignable to a reference chromosome, or which appear unaligned to the remainder of the 
assemblies, were removed from the graph. The result is a pangenome with significantly reduced 
complexity that nevertheless maintains all sequences of the starting reference assembly and the 
large majority of those in the additional haplotypes. 

The PanGenome Graph Builder 
PGGB constructs a pangenome from an all-to-all alignment of the assemblies. Subsequent 
stages of refinement compress and normalize the graph using partial order alignment (Gao et 
al., 2021). Although both the CHM13 and GRCh38 reference are used to partition contigs into 
chromosomes, the PGGB graph does not base itself on a chosen reference assembly, and 
includes both references and all HPRC haplotypes in a single graph. Due to ambiguous 
placement of variation in all-to-all pairwise alignments, many SV hotspots, including the 
centromeres, are transitively collapsed into loops through a subgraph representing a single 
repeat copy, a feature which tends to reduce the size of variants found in repetitive sequences. 
The PGGB graph provides a lossless representation of the input assemblies, without filtering of 
rapidly-evolving satellite sequences or clipping of regions that do not reliably align. This 
increases its size and complexity relative to the MC graph, and adds a significant amount of 
“singleton” sequence relative to the Minigraph and MC graphs. However, this property allows for 
annotations and coordinates of all assemblies in the pangenome to be related to the graph 
structure and utilized in subsequent downstream analyses. 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 9, 2022. ; https://doi.org/10.1101/2022.07.09.499321doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.09.499321
http://creativecommons.org/licenses/by/4.0/


 

12 

Measuring Pangenome Variation 
The different algorithmic approaches for constructing a pangenome graph influence graph 
properties while representing the same underlying sequences. The basic properties of the three 
graphs produced with the different pangenome methods are shown in Supplementary Table 
10. The Minigraph graph, by virtue of being limited to structural variation, is smallest, with over 
two orders of magnitude fewer nodes and edges than the base-level graphs. Its length (3.24 
Gb), measured as the total bases of all nodes, is similar to the MC graph (3.29 Gb) because 
while the latter adds many small variants it also aligns together a significant number of 
sequences that were left unaligned by Minigraph. The PGGB graph contains roughly five 
gigabases more sequence because it includes highly structurally divergent satellite regions 
omitted from the other approaches, and does not implement any trimming or filtering of the input 
assembly contigs. 
 
To characterize the variants in these pangenome graphs we used graph decomposition to 
identify “bubble” subgraphs that correspond to non-overlapping variant sites (Methods). In the 
MC and PGGB graphs we classified the variant sites into small variants (<50 bp) and SVs (≥50 
bp); SV sites in all three graphs were further classified into various repeat classes using the 
longest allele for each site. We found similar numbers of each variant type in each pangenome, 
22 (21) million small variants in the MC (PGGB) graphs (Figure 3B), and 67 (73, 75) thousand 
SVs in the MC (PGGB, Minigraph) graphs (Figure 3C). We find a total of 90 (55, 86) 
megabases of non-reference sequence in the SV sites, excluding centromeric repeats (which 
are difficult to align), in the MC (PGGB, Minigraph) graph. Clustering the SV alleles by length 
and similarity, Alu, L1 and ERV SVs appear largely biallelic, however VNTRs frequently have 
three or more distinct alleles per site. The minor AF in the pangenomes of biallelic variants is 
similar for SNPs as well as L1s, Alus and VNTRs, although VNTRs show a slight shift toward 
more common alleles (Figure 3D).  
 
The MC and PGGB pangenome graphs encode the underlying 44 diploid genome assemblies 
used in their construction as paths within the graph. For these pangenomes it is therefore 
possible to trace each of these assemblies within the graph and decode their alleles as they visit 
variant sites (Methods). We find similar numbers of small variants and SVs in the Dipcall 
confident regions: 5.34 (5.35) million small variants per sample and 16.8 (17.4) thousand SVs 
per haplotype on average in the MC (PGGB) graph (Figure 3E-F), with the differences in the 
numbers of such variants recapitulating previously observed differences between the samples 
that are a result of their ancestry (1000 Genomes Project Consortium et al., 2015).  
 
We quantified the amount of euchromatic autosomal non-reference (GRCh38) sequence that 
each of the 44 diploid genomes incrementally contributes to the pangenome (Figure 3G, 
Methods) for both graphs. We limit to the euchromatic sequence because we are generally 
confident in its assembly and alignment. We roughly approximate the euchromatic regions as 
the sequences included in the MC graph, since the MC graph omits common centromeric 
satellites and other sequences that failed to align. Since the PGGB graph includes all 
assembled sequences for this analysis we pruned regions not contained in the MC graph from 
the PGGB graph. We then grouped genomes by their assigned super populations and 
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computed cumulative base pair lengths from the 1st to the 44th genome. Overall, the 
euchromatic autosomal non-reference sequence adds up to ~175 Mb in MC (and ~190 Mb in 
PGGB), out of which ~55 Mb (~105 Mb) are observed only on a single haplotype. Our analysis 
further suggests that ~5 Mb and ~70 Mb (~10 Mb and ~60 Mb) can be attributed to core 
(present in ≥95% of all haplotypes) and common genome (present in ≥5% of all haplotypes), 
respectively (Supplementary Table 11). We additionally estimate the growth of the 
euchromatic autosomal pangenome independent of genomes' order. To this end, we sampled 
200 permutations of genome orderings (Supplementary Figure 6) and recorded the median 
pangenome size across all samples in the MC graph. Our results indicate that the second 
genome adds ~23 Mb of euchromatic autosomal sequence to the pangenome while the last 
genome tends to add much less with only about ~0.64 Mb. These numbers are conservative, 
owing to additional highly polymorphic sequence residing in the sequence gaps of our 
assemblies. Extrapolating under Heaps’ Law  (“Comparative Genomics: The Bacterial Pan-
Genome,” 2008) (Methods), we expect at least an additional ~150 Mb of sequence in the 
pangenome graph when HPRC produces 700 haplotypes in future. 
 
We annotated the small variants overlapping the GIAB v3.0 “easy” regions (covering 74.35% of 
the primary chromosome scaffolds of GRCh38) with AFs from gnomAD v3.1.2 (Figure 3H; 
Supplementary Table 12). These variants are generally straightforward to annotate accurately. 
In the MC graph, about 60.2% (~9.7 million variants) have an AF of 1% or greater. About 35.7% 
are rare, having an AF less than 1% but above zero. About 1.7% are singleton. The remaining 
2.4% are missing from gnomAD. We find similar results with the PGGB graph, repeating this 
exercise with small variant calls by pairwise alignment of the assemblies directly to the 
reference using Dipcall (Li et al., 2018), and by calling small variants from the HiFi sequencing 
data using DeepVariant (Poplin et al., 2018). These missing variants are therefore likely mostly 
a mixture of variants missing from gnomAD and assembly errors.  
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Figure 3 | Pangenome Graphs Represent Diverse Variation. A) A pangenome variation 
graph. It is comprised of two elements: a sequence graph, whose nodes represent oriented 
DNA strings and whose bidirected edges represent the connectivity relationships, and 
embedded haplotype paths (colored lines) that represent the individual assemblies. B) Small 
variant sites in pangenome graphs, stratified by the variant type and by the number of alleles at 
each site. MNP: multi-nucleotide polymorphism. C) SV sites in pangenome graphs stratified by 
repeat class and by the number of alleles at each site. Other TE: a site involving mixed classes 
of transposable elements. VNTR: variable-number tandem repeat, a tandem repeat with the unit 
motif length ≥7bp. STR: short tandem repeat, a tandem repeat with the unit motif length ≤6bp. 
Other LCR: low-complexity regions with mixed VNTR/STR and low-complexity regions without a 
clear VNTR/STR pattern. Other repeat: a site involving mixed classes of repeats. SegDup: 
segmental duplication. Low repeat: a small fraction of the longest allele in a site involving 
repeats. D) Pangenome minor AF (MAF) spectrum for bi-allelic SNPs, VNTRs, L1s and Alus in 
the MC and PGGB graphs. E-F) Number of autosomal (E) small variants per sample and (F) 
SVs per haplotype in the pangenome. Variants restricted to the Dipcall confident regions. 
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Samples organized by 1KG populations. G) Pangenome growth curves for MC (left) and PGGB 
(right). Depth measures how often a segment is contained in any haplotype sequence, core is 
present in ≥95% of haplotypes, common is ≥5%. H) Small variants in the GIAB v3.0 easy 
regions annotated with allele frequencies from gnomAD v3.1.2.  
 
To further explore the quality of variant calls captured by assembly and graph construction, we 
compared pangenome decoded variants against GRCh38 to variant sets identified by 
conventional reference-based genotyping methods (Supplementary Figure 7, Methods). These 
reference-based call sets were generated from the PacBio HiFi reads and haplotype-resolved 
assemblies using different discovery methods: DeepVariant (Poplin et al., 2018), PBSV (Pacific 
Biosciences, 2021), Sniffles (Sedlazeck et al., 2018) with Iris (Kirsche et al., 2021), SVIM (Heller 
& Vingron, 2019), SVIM-asm (Heller & Vingron, 2020), PAV (Ebert et al., 2021), and the Hall-lab 
pipeline (Methods). For benchmarking small variants, we excluded regions containing SVs 
detected or implied by the alignment of that sample’s Hifiasm assembly to GRCh38, since 
current benchmarking tools do not account for different representations of small variants inside 
or near SVs (Methods). Comparing small variants (Figure 4A) and SVs (Figure 4B) from the 
pangenomes to the reference-based sets we see a high level of concordance that varies, as 
expected, by the relative repeat content of the surrounding genome. Overall, variant calling 
performance is extremely high in both the MC and PGGB graphs. For example, in relatively 
unique ‘easy’ genomic regions comprising 75.42% of the autosomal genome, samples show a 
mean of 99.64% recall and 99.64% precision for small variants in the MC graph, and in ‘high 
confidence’ regions (~90% of autosomal genome) they show 97.91% and 96.66%, respectively 
(Figure 4A). Performance is somewhat lower for SVs than for small variants (Figure 4B), as 
expected, but is still strong. Variant calling performance diminishes substantially (but is still 
respectable) in highly repetitive genome regions (3.87% of autosomal genome) (Figure 4A-B), 
for which more work will be required to achieve high quality variant maps. We further note that 
these are likely to be significant underestimates of variant calling quality considering known 
errors in the truth set due to the inherent limitations of reference-based variant callers (see 
below). Stratifying the insertion and deletion variants within the pangenome we observe 
relatively constant, high levels of agreement with the reference-based methods regardless of 
length (Figure 4C).  
 
An independent measure of pangenome graph quality is the extent to which sample haplotype 
paths through the graph are well supported by the raw sequencing data. We calculated the 
number of supporting reads by aligning them to the MC graph using GraphAligner (Methods; the 
inclusion of heterochromatic sequences in the PGGB graph made read mapping impractically 
slow). We found that over 97% of HiFi reads can be aligned to the MC graph after filtering 
(Figure 4D, left). Among these aligned reads, we further calculated the read depth of on- and 
off-target edges based on the sample paths in the graph. We found that on average over 94% of 
on-target edges were supported by at least five reads and observed two peaks in the read depth 
distribution of on-target edges (Figure 4D, middle): a minor peak corresponding to the edges in 
heterozygous regions and a major peak at twice the minor peak corresponding to the edges in 
homozygous regions. In contrast, only 7% or fewer off-target edges were supported by at least 
five reads (Figure 4D, right). In addition to HiFi reads, we also used ONT reads from 29 out of 
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the 44 samples to perform the same analysis and, despite the data being lower coverage, found 
similar results (Supplementary Figures 8 and 9).  
 
These data also show that the pangenome graphs perform better at capturing genome variation 
than the above benchmarking results imply. For example, a mean of 89.3% of putative false 
positive small variant calls are supported by ≥5 HiFi reads, and 75.3% by ≥10 reads (85.9% and 
73.8% for SVs), suggesting that most putative errors are in fact real variants that were missed 
by the reference-based callers used to create the truth set (Supplementary Figure 10; 
Supplementary Table 13). 
 
We used the Comparative Annotation Toolkit (CAT) (Fiddes, Armstrong, et al., 2018) to lift-over 
GENCODE v38 annotations using the MC pangenome graph onto the individual haplotype 
assemblies. CAT lifted and annotated a median of 99.5% of 86,757 protein-coding transcripts 
per assembly (Methods, Supplementary Figures 11 and 12, Supplementary Table 14), 
almost the same as the Ensembl mapping based pipeline (a median of 99.4% per assembly), 
supporting the idea that the MC pangenome captures most transcript homologies. 
 
 

 
Figure 4 | Pangenome graph evaluation. A-B) The precision and recall of autosomal (A) small 
variants and (B) SVs in the pangenomes relative to consensus variant sets. Small variants are 
compared to HiFi-DeepVariant calls. SVs are compared to the consensus of six reference-
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based SV callers (Methods). Comparisons are restricted to the Dipcall confident regions and 
then stratified by the GIAB v3.0 genomic context. C) Average SV precision, recall, and 
frequency in the Dipcall confident regions stratified by length, in the MC (top) and PGGB 
(bottom) graph relative to consensus SV sets. The histogram bin size is 50 bp for SVs <1 kb, 
and 500 bp for SVs ≥1 kb. D) HiFi read depth of on- and off-target edges in the MC graph. Left: 
fraction of reads aligned to the pangenome graph after filtering low-quality alignments. Middle: 
read depth distribution of on-target edges. Right: read depth distribution of off-target edges. 
Samples are sorted by sequencing coverage (Supplementary Table 1). 

Pangenomes Represent Complex Loci 
 
We annotated and visualized the structure of haplotypes in 5 clinically relevant multiallelic CNV 
loci, RHD/RHCE, HLA-A, CYP2D6/CYP2D7, C4, and LPA within the PGGB and MC 
pangenomes (Methods). For each locus and graph, we identified its location within the graph 
and then annotated paths within this subgraph with known genes. We then traced the individual 
haplotypes through the subgraph to reveal the structural haplotypes of each assembly. In 
CYP2D6/7 (Supplementary Figure 13), C4 (Supplementary Figure 14), and LPA 
(Supplementary Figure 15), we recapitulated previously described haplotypes. For CYP2D6/7, 
our calls matched 96% of haplotypes of 76 assemblies called by Cyrius using Illumina short-
reads data (Chen et al., 2021). Two discrepancies appear to be caused by errors from Cyrius, 
and the third is a false duplication in the HG01071#2 pangenome assembly revealed by 
Flagger. This comparison suggests the pangenomes faithfully agree with existing knowledge of 
this complex loci. In RHD/RHCE (Figure 5, top), in addition to previously described haplotypes, 
we also inferred the presence of 5 novel haplotypes, which included one duplication allele of the 
RHD gene, and one inversion allele occurring between the RHD and RHCE gene that results in 
the swapping of the last exon of both genes. Around HLA-A (Figure 5, bottom; 
Supplementary Figure 16), two deletion alleles have been previously described – albeit with 
imprecise breakpoints (Sudmant et al., 2015) – but an insertion allele carrying an HLA-Y 
pseudogene is previously unreported. The long sequence (65 kb) inserted with HLA-Y occurs at 
high frequency (28%) but has little homology to GRCh38. We compared the representation of 
these 5 loci in the MC and PGGB graphs (Supplementary Figure 17). Each graph 
independently recapitulated the same haplotype structures, but in general the PGGB graphs 
tend to use a single collapsed copy to represent adjacent homologous sequences. Assemblies 
that contain multiple copies of the homologous sequence traverse these nodes a corresponding 
number of times. MC maintains separate copies of these homologous sequences.  
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Figure 5 | Visualizing Complex Pangenome Loci. At top are structural haplotypes of 
RHD/RHCE called from the MC graph. A) Location of the RHD and RHCE gene within the MC 
subgraph. The color gradient is based on the relative position of a gene. Green represents the 
head of a gene. Blue represents the end of a gene. B) Different structural haplotypes take 
different paths through the graph. The color gradient is based on path position; red represents 
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the start of a path; blue represents the end of a path. C) Frequency and linear structural 
visualization of all structural haplotypes called by MC graph among 90 haploid assemblies. 
Asterisks in the count column indicate the novel haplotypes we found. Shown at bottom are 
structural haplotypes of HLA-A called from the PGGB graph. D) Location of genes within the 
PGGB subgraph. E) Different structural haplotypes take different paths through the graph. F) 
Frequency and linear structural visualization of all structural haplotypes called by the PGGB 
graph. 
 

Applications of the pangenome 

Pangenome-based short variant discovery 
Our pangenome reference aims to broadly improve downstream analysis workflows by 
removing mapping biases inherent to the use of a single linear reference genome such as 
GRCh38 or CHM13. As a first use case, we studied whether mapping against our pangenomes 
could improve small variant calling accuracy from short-reads. We aligned short-reads from the 
GIAB benchmark samples (J. M. Zook et al., 2016) to the MC pangenome graph with vg Giraffe 
(Sirén et al., 2021). For comparison, we aligned reads to GRCh38 using BWA-MEM (Li, 2013) 
and to Dragen Graph (Miller et al., 2015), which uses GRCh38 augmented with alternative 
haplotypes at variant sites. We called SNPs and indels with DeepVariant (Poplin et al., 2018) 
and the Dragen variant caller (Miller et al., 2015) (Methods).  Our pangenomic approach 
(Giraffe+DeepVariant) outperforms the other approaches on small variants (Figure 6A), with 
gains for both SNPs and indels (Supplementary Figure 18, Supplementary Table 15). For 
example, it made only 21,700 errors (false positives or false negatives) in the confident regions 
of the GIAB truth set using 30x reads from HG005. In contrast, 36,144 errors were made when 
DeepVariant used the reads aligned to GRCh38, and 26,852 errors when using the Dragen 
pipeline. In challenging medically relevant genes (Wagner, Olson, Harris, McDaniel, et al., 
2022), the increase in performance is even larger for both SNPs (F1 score of 0.985 for Giraffe-
DeepVariant vs <0.976 for other methods) and indels (F1 score of 0.961 for Giraffe-DeepVariant 
vs <0.958 for other methods) (Figure 6B). Many regions benefit from using pangenome 
mapping, but regions with errors in GRCh38 and large L1HS sequences benefit the most from 
the pangenomic approach (Supplementary Figure 19). Although the genotyping performance 
was lower for the short variants called that were not present in the pangenome, the pangenomic 
approach suffered less than other approaches, suggesting that novel variants also benefit from 
the pangenome (Supplementary Figure 20). 
 
We next benchmarked variant calling using parent-child trios. Using DeepTrio (Kolesnikov et al., 
2021) resulted in better performance relative to DeepVariant across all samples of the GIAB 
(Figure 6A) and the challenging medically-relevant genes benchmarks (Figure 6B, 
Supplementary Figure 18), with improvements that appear additive to those from the 
pangenome. For example, DeepTrio using HPRC+Giraffe alignments gave the highest calling 
accuracy, with the number of errors decreasing from 21,700 (single sample calling) to 10,098 
(trio calling) for HG005. 
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A pangenome resource across the 1000 Genomes Project cohort 
To create a community resource aiding method development and pangenome-based population 
genetic analyses, we used Giraffe to align high-coverage short-read data from 3,202 samples of 
the 1KG (Byrska-Bishop et al., 2021) to our pangenome graph and DeepVariant to call small 
variants (Methods/Data Availability). The Mendelian consistency computed across 100 trios 
from those samples was comparable to the one computed across samples from the GIAB truth 
set, indicating a comparable call set quality (Supplementary Figure 21 and 22). Given that our 
pangenome-based calls showed superior performance in challenging regions (Figure 6B), this 
call set across the 1KG cohort now provides the genetics and genomics communities with AF 
estimates for complex but medically-relevant loci. For instance, our approach was able to detect 
the gene conversion event covering the second exon of the RHCE gene, which was observed in 
about 25% of assembled haplotypes (Figure 5C; Supplementary Figure 23). The gene-
converted allele is indeed in the pangenome (Supplementary Figure 23 d-e) and a cluster of 
variants with 25% frequency is now visible (Supplementary Figure 23 c). Also in the KCNE1 
gene, we provide calls and frequencies in a 40 kb region, spanning three exons, that could not 
be assessed before due to the presence of a false duplication in GRCh38 (Supplementary 
Figure 24; See Vollger et al. companion for genome-wide analysis of interlocus gene 
conversion).  

Pangenome-based structural variant genotyping 
The ability to represent polymorphic SVs is a key advantage of a graph-based pangenome 
reference. To demonstrate the utility of the sequence-resolved SVs inherent to our pangenome, 
we used PanGenie (Ebler et al., 2022) to genotype the bubbles in the MC graph. We 
decomposed bubbles into their constituent variant alleles (Supplementary Figure 25 and 26) 
and found that 22,133,782 bubbles represented 20,194,117 SNP alleles, 6,848,115 indel 
alleles, and 413,809 SV alleles (Methods, Supplementary Figure 27). Of these non-reference 
SV alleles, 17,720 were observed in bi-allelic contexts and 396,089 at multi-allelic loci with more 
than one non-reference allele, including extreme cases where all 88 haplotypes showed distinct 
alleles (Supplementary Figure 27). In order to analyze PanGenie’s genotyping performance, 
we conducted a “leave-one-out” experiment in which we repeatedly removed one sample from 
the graph and re-genotyped it using the remaining haplotype paths in the graph and short-read 
data for the left out sample (Methods). In line with previous results (Ebert et al., 2021); (Ebler et 
al., 2022), we obtained high genotype concordances across all variant types and genomic 
contexts (Supplementary Figure 28). Furthermore, we used PanGenie to genotype HG002 
and evaluated genotypes based on SVs at challenging medically-relevant loci (Wagner, Olson, 
Harris, McDaniel, et al., 2022), resulting in a precision of 0.74 and an adjusted recall of 0.81 
(Methods).  
 
Next, we genotyped the 3,202 samples from the 1KG (Byrska-Bishop et al., 2021) (Methods). 
We filtered the resulting SV genotypes using a machine-learning approach (Ebert et al., 2021; 
Ebler et al., 2022) that assessed different statistics, including Mendelian consistency and 
concordance to assembly-based calls. As a result, we produced a filtered, high-quality subset of 
SV genotypes containing 28,434 deletion alleles, 84,752 insertion alleles, and 26,439 other SV 
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alleles (Supplementary Table 16, Methods). Expectedly, many of the alleles not included in the 
filtered set stem from complex, multi-allelic loci and are enriched for rare alleles. As independent 
quality control measures for genotypes in the filtered set, we assessed Hardy-Weinberg 
Equilibrium (Supplementary Figures 29, 30, and 31) and compared allele frequencies 
observed across the genotypes of all 2,504 unrelated samples to the respective allele 
frequencies of the 44 assembly samples contained in the graph and observed correlations 
(pearson) of 0.96, 0.93 and 0.90, respectively (Figure 6C), indicating high-quality genotypes. To 
quantify our ability to detect additional SVs, we compared our filtered set of genotypes to the 
HGSVC PanGenie genotypes (v2.0 “lenient” set, (Ebert et al., 2021)) and Illumina-based 1KG 
SV genotypes (Byrska-Bishop et al., 2021). The HGSVC and HPRC call sets are based on 
running PanGenie for re-genotyping variant calls produced from haplotype-resolved reference 
assemblies of disjoint sets of 32 and 44 samples, respectively, while the 1KG call set contains 
short-read based variant calls produced for each of the 3,202 1000 Genomes samples. In order 
to compare the call sets despite these differences, we analyzed the number of detected SV 
alleles in each sample (homozygous or heterozygous) and stratified by genome annotations 
from GIAB (Figure 6D, Methods) as well as using our own more detailed annotations 
(Supplementary Figure 32). Results show that both PanGenie-based call sets detect more 
SVs (HPRC: 18,483 SVs/sample, HGSVC: 12,997 SVs/sample) than the short-read-based 1KG 
call set (9,596 SVs/sample), with an especially pronounced advance for deletions < 300 bp and 
insertions (Figure 6E). The respective average numbers of SVs per haplotype are 12,439 for 
HPRC, 9,227 for HGSVC and 6,099 for the 1KG calls (Supplementary Figure 33); that is, a 
gain of 104.0% HPRC over 1KG and of 34.8% over HGSVC. This confirms that short-read 
based SV discovery relative to a linear reference genome misses a large portion of SVs 
(Chaisson et al., 2019; Ebert et al., 2021; Zhao et al., 2021). Expectedly, the number of SVs per 
sample within “easy” genomic regions is consistent across all three callsets, while especially in 
low mappability and tandem repeat regions, the use of our pangenome reference leads to 
pronounced gains (Figure 6D), including for common variants (Figure 6E, Supplementary 
Figure 34).  
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Figure 6 | Performance gains for pangenome-aided analysis of short-read whole-genome 
sequencing data. A-B) Precision-recall curves showing performance of different combinations 
of linear reference and various mappers and variant callers evaluated against (A) the GIAB 
v4.2.1 HG005 benchmark and (B) the challenging medically-relevant genes (CMRG) v1.0 
benchmark. Giraffe uses the MC graph, BWA MEM uses GRCh38 and DragenGRAPH uses 
GRCh38 with additional alternative haplotype sequences. C) Comparison of allele frequencies 
observed from the PanGenie genotypes for all 2,504 unrelated 1KG samples and the allele 
frequencies observed across the 44 assembly samples in the MC graph. The PanGenie 
genotypes include all variants contained in the filtered set (28,433 deletions, 84,755 insertions, 
32,431 other alleles). D) Shown are the number of SVs present (genotype 0/1 or 1/1) in each of 
the 3,202 1KG samples in the filtered HPRC genotypes (PanGenie), the HGSVC lenient set and 
the 1KG Illumina calls in GIAB regions. E) Shown is the length distribution of SV insertions and 
SV deletions contained in the filtered HPRC genotypes (PanGenie), the HGSVC lenient set and 
the 1KG Illumina calls. Only variants with an allele frequency > 5% across the 3,202 samples 
are considered. 

Improved representation of tandem repeats 
VNTRs are particularly variable between individuals and  challenging to access with short-
reads. The gains in the number of genotypable SVs in VNTRs (Figure 6D, Supplementary 
Figure 34) prompted us to investigate whether our pangenome reference would also improve 
read mapping in VNTR regions. To facilitate such an evaluation, we first established an 
orthology mapping between haplotypes in our pangenome reference using danbing-tk (Lu et al., 
2021). The orthology can be established for 94,452 out of the 98,021 VNTR loci (96.4%) 
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discovered by TRF (Benson, 1999). We then simulated paired-end error-free short-reads from 
each genome at ~30x coverage. When mapping to GRCh38 with BWA-MEM, the rate of 
unmapped reads is 6.6-8.5 times greater compared to mapping to the MC graph with vg giraffe 
(Figure 7A, Supplementary Table 17, Supplementary Figure 35). The graph approach also 
outperformed the alternative in terms of true positives (TP), true negatives (TN), and false 
negatives (FN) (Figure 7A): The TN was on average 1.9% higher than the GRCh38 approach, 
and the TP was on average 0.087% higher. The graph approach also reduced FN by 2.1 fold. 
The slight increase in FP is possibly due to the boundary annotation of VNTRs on assemblies.  
 
Given that the read depth over a locus is correlated with the copy number of a duplication, or 
the length of a tandem duplication, we evaluated how well length variants in VNTR regions can 
be estimated using either the MC graph or GRCh38. Using r2 to measure how well the 
estimated lengths correlate with the actual lengths, the results showed that the graph approach 
performed better for 80% of the loci (48,085/60,386) and increased the median r2 from 0.58 to 
0.70 (Supplementary figure 36). 

Improved RNA-seq mapping 
To evaluate the benefit of our pangenome reference on transcriptomics, we simulated RNA-seq 
reads and evaluated the gains from mapping to a pangenomic reference compared to a 
standard reference genome (Methods). We included a simple pangenome model based on 
previous 1KG variant calls for comparison purposes (Byrska-Bishop et al., 2021; Sibbesen et 
al., 2021). We observed a notable gain in precision of RNA-seq mapping when to the MC graph 
augmented with splice junctions compared to the one derived from the 1KG pangenome graph. 
Both pangenome-based pipelines achieve significantly lower false mapping rates than a linear-
reference pipeline using STAR (Dobin et al., 2013) (Figure 7B). With real sequencing data, 
mapping rates are more difficult to interpret in the absence of a ground truth (Supplementary 
Figure 37). Instead, we focus on the correlation in exon coverage to independent Iso-Seq data 
and find that the correlation is highest when mapping to a spliced pangenome graph derived 
from the MC graph (Supplementary Figure 38). The increase in correlation over the spliced 
pangenome graph derived from the 1000GP is modest but consistent across mapping quality 
(MAPQ) thresholds. 

Improved ChIP-seq analysis 
We used the pangenome to re-analyze H3K4me1 and H3K27ac ChIP-seq and ATAC-seq data 
from monocyte-derived macrophages obtained from 30 individuals (Groza et al., 2022). Overall, 
we observed a net increase in the number of peak calls, where, on average, 2 to 3% of peaks 
were found only when using the MC pangenome (Figure 7C). Moreover, the newly found peaks 
were replicated in more samples than expected by chance (Supplementary Figure 39). 
Additionally, we also used the pangenome to recover epigenomic features that were specific to 
alleles of SVs. For example, across all H3K4me1 samples, we assigned 1326 events to the SV 
allele, 1443 to the reference allele, and 2008 events to both alleles within heterozygous SVs 
(Figure 7D), with some replicated multiple times across samples (Supplementary Figure 40). 
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Figure 7 | Additional applications supported by the pangenome reference. A) Performance 
of read alignment in VNTR regions using the MC graph versus GRCh38. All statistics are 
expressed relative to the total number of reads simulated from each genome. B) Performance of 
RNA-seq read alignment. Mapping rate and false discovery rate are stratified by mapping 
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quality producing the curves shown. The MC graph is compared to a graph derived from the 
1KG variant calls and to GRCh38. Each reference is augmented with splice junctions. vg 
mpmap was used to map to the graphs, and STAR was used to map to the linear reference. C) 
Proportion of all ChIP-seq peaks that are called only in the MC graph. Each data point 
represents samples that were assayed for H3K4me1, H3K27ac histone marks or chromatin 
accessibility using ATAC-seq. D) H3K4me1 peaks that overlap an SV for which the sample is 
heterozygous. The reads within the peak are partitioned between the SV or reference allele. 
The red boundary represents regions where a binomial test assigns a peak to the SV allele, 
both alleles, or the reference allele. 

Discussion 
We have publicly released 94 de novo haplotype assemblies from a diverse group of 47 
individuals. This is the largest set of fully phased genome assemblies currently available, 
outperforming earlier efforts on many levels of assembly quality (Audano et al., 2019; Ebert et 
al., 2021; Shafin et al., 2020). For example, compared to Ebert et al., which was based primarily 
on more error-prone CLR instead of HiFi sequence data, the average median base-level 
accuracy is nearly an order of magnitude higher, the N50 measured contiguity of the phased 
assemblies is nearly double, and the assemblies are substantially more structurally accurate 
(see Porubsky et al. companion). These improvements are the result of recent major 
improvements in de novo assembly driven both by better sequencing technology and 
coordinated innovations in assembly algorithms (Cheng et al., 2021; Jarvis et al., 2022). To 
validate assembly structural accuracy we developed a new pipeline that maps low-error, long-
reads to each diploid assembly to support the predicted haplotypes. This pipeline indicates 
more than 99% of each assembly, and greater than 90% of the assembled sequence 
representing highly repetitive arrays, is structurally correct, even though some challenges 
around difficult loci harboring copy-number polymorphisms and/or inversions remain (see 
Porubsky et al. companion). Highly accurate haplotype-resolved assemblies allow us to access 
previously inaccessible regions highlighting novel forms of genetic variation (as in Figure 5) and 
providing new insights into mutational processes such as interlocus gene conversion (see 
Vollger et al, companion).  
 
Accompanying these assemblies are 94 sets of Ensembl gene annotations, representing the 
largest collection to date of de novo assembled human transcriptome annotations. Each 
transcriptome annotation is nearly complete, with fewer than 0.1% of GENCODE protein-coding 
genes and transcripts unannotated in each genome, and fewer than 0.2% of noncoding genes 
and transcripts missing. These putative transcriptome annotations allow us to analyze 
sequence-resolved copy-number variation; we assemble genic CNVs (mostly singletons) for 
1529 different protein-coding genes, confirming earlier mapping-based analyses that predict the 
majority of rare genic CNVs occur outside of known SDs (Sudmant et al., 2010). These CNV 
genes account for 0.6-8.4 Mb of additional genic sequences per haplotype compared to 
GRCh38. These contain genes known to have CNV associated with human health including 
amylase (Falchi et al., 2014) (4-10 copies), beta-defensin (Mohajeri et al., 2016) (3-8 copies, 
DEFB107A), and NOTCH2NLC/B (Fiddes, Lodewijk, et al., 2018) (1 additional copy). 
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The pangenomes presented are both a set of individual haploid genome assemblies and an 
alignment of these assemblies. The combination can be efficiently and elegantly described as a 
variation graph (Eizenga et al., 2020, 2021). A new set of exchange formats for pangenomics, 
including extensions of Graphical Fragment Format (GFA) that encode variation graphs, are 
emerging (Li et al., 2020). In a companion to this work, Siren et al. demonstrate that the 
pangenomes presented here can be losslessly stored using a compressed, binary 
representation of GFA in just ~3-6 gigabytes (Sirén & Paten, 2022) despite representing more 
than 282 billion bases of individual sequence, with strongly sublinear scaling as new genomes 
are added. Creating pangenome graphs is an active research topic so we developed multiple 
pipelines, with details of these methods further explored in companion papers (Garrison, 
Guarracino, et al., 2022; Hickey et al., 2022). We demonstrate concordance between these 
different construction approaches; the MC and PGGB pangenomes contain nearly the same 
number of small variants and SVs of various types. Further, these encoded pangenome variants 
show high levels of agreement with existing linear reference-based methods for variant 
discovery, particularly within the non-repetitive fraction of the genome. Where the pangenome 
drafts presented differ is principally in how they handle CNV sequences. The PGGB method will 
frequently merge copies of a CNV, while the MC graphs represent CNV copies as independent 
subgraphs. Both approaches have merits, and which approach to favor will take further 
experimentation and community input, and may vary by the specific application. The PGGB 
method retained all centromeric and satellite sequences, while the MC graph pruned much of 
this sequence. This made it practical with current methods to use the MC graphs for read 
alignment applications. However, pruning these sequences is not a satisfactory solution. 
Longer-term, more work is needed to determine how best to align and represent these large 
repeat arrays within pangenomes, particularly as T2T assembly becomes commonplace and 
these arrays are therefore finished. Furthermore, although the PGGB graph retained 
centromeric and satellite sequences, in principle enabling analysis of previously-inaccessible 
parts of the pangenome, our initial population-genetic analysis of these regions (Methods) 
leaves open questions about assembly accuracy and alignment especially in areas of the 
genome where mutation rates are thought to be an order of magnitude greater (Logsdon et al., 
2021). This suggests that significant care must be taken when studying them, and new methods 
may need to be developed to fully understand and characterize this component of the human 
pangenome. 
 
A near-term application of pangenome references will be to improve reference-based sequence 
mapping workflows. In these workflows, the pangenome can act as a drop-in replacement for 
existing references, with the read mappings projected from pangenome space back onto an 
existing linear reference for downstream processing. This is how the Giraffe-DeepVariant 
workflow functions: DeepVariant, the variant caller, never needs to consider the complexity of 
the pangenome, but the workflow benefits from a mapping step that accounts for sequences 
that are missing from the linear reference. Making the switch to using pangenome mapping is 
not significantly more expensive computationally (Sirén et al., 2021), and resulted in an average 
34% reduction in errors vs. using the standard reference methods (Supplementary Figure 41). 
These benefits were also greatest at complex loci: for example, we found the largest absolute 
increases in accuracy using the GIAB challenging medically relevant genes benchmark 
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(Wagner, Olson, Harris, McDaniel, et al., 2022). Pangenomes do not just improve variant 
calling: we build on recent work to further show that mapping to the pantranscriptome graph 
similarly improves transcript mapping accuracy (Sibbesen et al., 2021), and pangenome 
mapping can help improve the detection of ChIP-seq peaks (Groza et al., 2020).  
 
SVs have been mostly excluded from short-read studies because methods to genotype them 
using the linear reference have limited accuracy and sensitivity. Previous short-read, linear 
reference studies have discovered 7.5-9.5k SVs per sample (Byrska-Bishop et al., 2021; Collins 
et al., 2020) while long read-sequencing efforts have routinely discovered ~25k. Ebert et al. 
showed that using PanGenie, a pangenomic approach, with 32 samples a subset of these 
variants could be genotyped in short read genomes (~13k genotyped on average, ranging from 
12.0k to 15.0k per sample). Using the same PanGenie method, the HPRC pangenome 
increases this to ~18.5k (ranging from 16.9k to 24.9k) per sample using the same method, 
allowing the genotyping of the substantial majority of SVs discovered using long-reads per 
sample. The draft pangenome therefore delivers much better SV calling than earlier 
approaches, extracting latent information from short-read samples that are already available, 
and so in the future enabling the inclusion of tens of thousands of additional SV alleles into 
genome-wide association studies (GWAS). Relative to Ebert et al., it is likely this improvement 
is a combination of advances in sequencing (HiFi) and assembly, increased numbers of 
individuals in the pangenome and the full sequence-level representation of SV alleles in the 
pangenome graph, avoiding merging of similar but distinct alleles. Looking beyond short-reads, 
in the future, the combination of the pangenome and low-cost long-read sequencing should 
prove a potent combination for comprehensive SV genotyping. 
 
The openly accessible, diverse assemblies and pangenome graphs we present today form a 
draft of a pangenome reference. There are many remaining challenges in growing and refining 
this reference. For example, assembly reliability analysis revealed roughly an order of 
magnitude more erroneously assembled sequences in the HPRC assemblies than in the T2T-
CHM13 complete assembly. Furthermore, despite being predicted to have less than one base 
error per two hundred thousand assembled bases, base-level sequencing errors are still an 
issue. For example, in line with this error rate, we identified more than a dozen apparent 
frameshifts and nonsense mutations per genome annotation that are likely the result of 
sequencing errors. The cohort we present is also relatively small notwithstanding the significant 
effort to generate the underlying long-read sequencing resource. Our near-term goal is to 
expand the pangenome to a diverse cohort of 350 individuals (which should capture most 
common variants), to push toward T2T genomes for this cohort (to properly represent the entire 
genome in almost all individuals), and to refine the pangenome alignment methods (so that 
telomere-to-telomere alignment is possible capturing more complex regions of the genome). 
This will give us a dramatically more comprehensive representation of all types of human 
variation.  
 
We acknowledge that references generated from 1KG samples alone are insufficient to capture 
the extent of sequence diversity in the human population. To ensure that we are able to 
maximize our surveys of sample diversity, while abiding by principles of community engagement 
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and avoiding extractive practices (Eizenga et al., 2020; Wang et al., 2022), we will broaden our 
efforts to recruit new participants to improve the representation of human genetic diversity. A 
richer human reference map promises to improve our understanding of genomics and our ability 
to predict, diagnose and treat disease. A more diverse human reference map should also help 
to ensure that the eventual applications of genomic research and precision medicine are 
effective for all populations. We acknowledge that the value of this project will partly be in the 
future establishment of new standards for how we capture variant diversity, the opportunity to 
disseminate science into diverse communities, and continued efforts to engage with diverse 
voices in this ambitious goal to build a common global reference resource. In parallel with our 
efforts to reach a more comprehensive collection of diverse and highly accurate human 
reference genomes, we expect further optimization and rapid improvement of the pangenome 
reference, enabling an increasingly broad set of applications and use cases for both the 
research and clinical communities.  
 

Methods 

Sample Selection 
We identified 1KG parent-child trios in which the child cell line banked within NHGRI Sample 
Repository for Human Genetic Research at the Coriell Institute for Medical Research was listed 
as having zero expansions and 2 or fewer passages, and rank-ordered representative 
individuals as follows. Loci with minor AF (MAF) less than 0.05 were removed. MAF was 
measured in the full cohort (i.e. 2504 individuals, 26 subpopulations) regardless of each 
individual’s subpopulation labeling. For each chromosome, Principal Component Analysis (PCA) 
was performed for dimension reduction. This resulted in a matrix with 2200 features, which was 
then centered and scaled with smartPCA normalization. The matrix was further reduced to 100 
features through another round of PCA. 
 
We defined the representative individuals of a subpopulation as those who are similar to the 
other members in the group (which, in this scenario, is the subpopulation they belong to), as 
well as different from individuals outside the group. Group is defined by previous 1KG 
population labels (e.g “Gambian in Western Division”). We do this as follows. For each sample, 
we first calculate the intra-group distance dintra, which is the average of L2-norms between the 
sample and samples of the same subpopulation. Inter-group distance, dinter, is similarly defined 
as the average of L2-norms between the sample and samples from all other subpopulations. 
The L2-norms are derived in the PCA's feature space. The score of this sample is then defined 
as 10×dintra + dinter/(n - 1), where n is the number of subpopulations. For each subpopulation, if 
fewer than three trios are available, all are selected. Otherwise, trios are sorted by ranking 
children with max(paternalrank, maternalrank), where paternalrank, and maternalrank are the 
respective ranks of each parent’s score, selecting the three trios with maximum value. We 
ranked by parent scores because during the YR1 effort the child samples did not have 
sequencing data and therefore had to be represented by the parents.  
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At this point, ideally, we would like to select the same number of candidates from each 
subpopulation, and have an equal number of candidates from both genders. To correct for 
imbalances, we applied the following for each subpopulation's candidate set: a) when gender is 
unbalanced (i.e. off by more than one sample), we tried to swap in the next-best candidate of 
the less represented gender; do nothing if this is not possible. b) if a subpopulation has less 
individuals than the desired sample selection size (i.e. all candidates are selected), their unused 
slots will be distributed to other unsaturated subpopulations. The latter choice is arbitrary but 
should have little impact on the overall results. 

Sequencing 

Cell line expansion and banking for sequencing 
Lymphoblastoid cell lines used for sequencing from the 1KG collection (Supplementary Table 
1) were obtained from the NHGRI Sample Repository for Human Genetic Research at the 
Coriell Institute for Medical Research. HG002 (GM24385) and HG005 (GM24631) 
lymphoblastoid cell lines were obtained from the NIGMS Human Genetic Cell Repository at the 
Coriell Institute for Medical Research. All expansions for sequencing were derived from the 
original expansion culture lot to ensure the lowest possible number of passages and to reduce 
overall culturing time. Cells used for HiFi, Nanopore, Omni-C, Strand-seq, 10x Genomics, and 
Bionano production as well as g-banded karyotyping and Illumina Omni2.5 microarray were 
expanded to a total culture size of 4x108 cells, resulting in a total of five passages post-cell line 
establishment. Cells were split into production-specific sized vials: HiFi (2x107 cells), Nanopore 
(5x107 cells), Omni-C (5x106 cells), Strand-seq (1x107 cells), 10x Genomics (4x106 cells), and 
Bionano (4x106 cells). Cells for Strand-seq were stored in 65% RPMI-1640, 30% FBS, and 5% 
DMSO and frozen as viable cultures. All other cells were washed in PBS and flash frozen as dry 
cell pellets. Cells used for ONT-UL production were separately expanded from the original 
expansion culture lot to a bank of five vials of 5x106 cells. A single vial was subsequently 
expanded to a total culture size of 4x108 cells, resulting in a total of eight passages. Cells were 
also reserved for g-banded karyotyping and Illumina Omni2.5 microarray. 

Karyotyping and microarray 
G-banded karyotype analysis was performed on 5x106 cells harvested at passage 5 (for HiFi, 
Nanopore, and Omni-C) and passage 8 (for ONT-UL). For all cell lines, twenty metaphase cells 
were counted, and a minimum of five metaphase cells were analyzed and karyotyped. 
Chromosome analysis was performed at a resolution of 400 bands or greater. A pass/fail criteria 
was used before cell lines proceeded to sequencing. Cell lines with normal karyotypes (46,XX 
or 46,XY) or lines with benign polymorphisms that are frequently seen in apparently healthy 
individuals were classified as passes. Cell lines were classified as failures if two or more cells 
harbored the same chromosomal abnormality. DNA used for microarray was isolated from 
frozen cell pellets (3x106-7x106 cells) using the Maxwell RSC Cultured Cells DNA Kit on a 
Maxwell RSC 48 instrument (Promega). DNA was genotyped at the Children’s Hospital of 
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Philadelphia’s Center for Applied Genomics using the Infinium Omni2.5-8 v1.3 BeadChip 
(Illumina) on an iScan System instrument (Illumina). 

HiFi Sequencing 
Pacific Bioscience HiFi sequencing was distributed between two centers, Washington University 
in St Louis (WashU) and the University of Washington (UW). We describe the protocols used at 
each center separately. 

HiFi Production (Washington University in St Louis) 
High-molecular-weight DNA was isolated from frozen cell pellets using Qiagen MagAttract HMW 
DNA kit and sheared using Diagenode Megaruptor I to 20 kb mode size. At all steps, DNA 
quantity was checked on the Qubit Fluorometer I with the dsDNA HS Assay Kit (Thermo Fisher) 
and sizes were examined on FEMTO Pulse (Agilent Technologies) using the Genomic DNA 165 
kb Kit. SMRTbell libraries were prepared for sequencing according to the protocol ‘Procedure & 
Checklist – Preparing HiFi SMRTbell Libraries using the SMRTbell Express Template Prep Kit 
2.0’. After SMRTbell generation, material was size-selected on a SageELF system (Sage 
Science) using the “0.75% 1-18kb” program (target 3450 bp in well 12) and some combination 
of fraction3 (average size 15-21 kb), fraction 2 (average size 16-27 kb), and fraction 1 (average 
size 20-31 kb) were selected for sequencing, depending on empirical size measurements and 
available mass. The selected library fractions were bound with Sequencing Primer v2 and 
Sequel II Polymerase v2.0 and sequenced on Sequel II instruments (PacBio) on SMRT Cells 
8M using Sequencing Plate v2.0, diffusion loading, two hour pre-extension, and 30 hour movie 
times. Samples were sequenced to a minimum HiFi data amount of 108.5 Gbp (35X estimated 
genome coverage) on four SMRT Cells. 

HiFi Production (University of Washington) 
High-molecular-weight DNA was isolated from frozen cell pellets using a modified Gentra 
Puregene method and sheared using gTUBE (Covaris, Inc.) to 20 kb mode size. At all steps, 
DNA quantity was checked by fluorometry on the DS-11 FX instrument (DeNovix) with the Qubit 
dsDNA HS Assay Kit (Thermo Fisher) and sizes were examined on FEMTO Pulse (Agilent 
Technologies) using the Genomic DNA 165 kb Kit. SMRTbell libraries were prepared for 
sequencing according to the protocol ‘Procedure & Checklist – Preparing HiFi SMRTbell 
Libraries using the SMRTbell Express Template Prep Kit 2.0’. After SMRTbell generation, 
material was size-selected on a SageELF system (Sage Science) using the “0.75% 1-18kb” 
program (target 3400 bp in well 12) and fraction 2 (average size 17-20 kb) or fraction 1 (average 
size 18-20 kb) were selected for sequencing, depending on empirical size measurements and 
available mass. For some samples, the SageELF program “0.75% agarose, 10 kb-40 kb” (target 
10000 bp in well 10) was used and fractions 6 and 7 were pooled together for sequencing 
(average size 17-21 kb). The selected library fractions were bound with Sequencing Primer v2 
and Sequel II Polymerase v2.0 and sequenced on Sequel II instruments (PacBio) on SMRT 
Cells 8M using Sequencing Plate v2.0, diffusion loading, three- to four-hour pre-extension, and 
30 hour movie times. Samples were sequenced to a minimum HiFi data amount of 96 Gbp (30X 
estimated genome coverage) on at least four SMRT Cells. 
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HiFi Production methods comparisons 
Although subtle differences in HiFi data production methods exist between WashU and UW, the 
resulting data was remarkably similar with overlapping assembly statistics from most samples.  
These initial genomes were sequenced at a time when methods were being refined and 
optimized for HiFi sequencing, as it was a relatively new process.  The primary differences in 
protocols are part of the nucleic acid isolation, fragmentation, and size selection, with the 
downstream sequencing specific applications being much more consistent.  Both teams were 
closely engaged with each other as well as with our company associates to provide optimal end 
products.   

Nanopore Ultra-long sequencing protocol 
For the HPRC+ samples we used the nanopore unsheared long-read sequencing protocol 
(Shafin et al., 2020). This generated ~60x coverage of unsheared sequencing from 3 
PromethION flow cells, N50 ~44kb. For the HPRC samples we used the following protocol. 

DNA Extraction 
A 50 million cell pellet was resuspended in 200 µL of PBS and the resuspended cells aliquoted 
(40 µl) into 5x 1.5 ml DNA Lo-bind Eppendorf tubes. The following procedure for DNA extraction 
was completed for each of the 5 aliquots. Each tube contained sufficient DNA for 3 libraries 
loaded on 1 flow cell. In order, the following were added to each tube with pipette mixing (10X 
up and down) using a P200 wide-bore pipette: 40 μL of Proteinase K, 40 μL of Buffer CS; and 
40 μL of CLE3. The samples were then incubated at RT (18–25 °C) for 30 min. Next, 40 μL of 
RNase A were added to each tube with pipette mixing (10X) with a P200 wide-bore and then 
samples were incubated at RT for 3 min. Two hundred microliters of BL3 were mixed with 200 
μL PBS in a 1.5 mL Eppendorf tube. Four hundred microliters of this BL3/PBS mixture were 
then added to each sample and the samples pipet mixed 10X with a P1000 wide-bore pipette 
set to 600 μL.  
 
Samples were incubated for 10 minutes at RT and then pipette mixed 5X, then incubated at RT 
for 10 mins and pipette mixed 5X and then further incubated for 10 minutes at RT. A white 
precipitate may form after addition of BL3. This is completely normal.  A Nanobind disk is added 
to the cell lysate first then 600 μL of isopropanol and mixing is by inversion of the tube 5X. 
Tubes were further mixed on the tube rotator (9 rpm at RT for 10 min). The tubes were then 
placed on the magnetic tube rack and the nanobind disk positioned closer to the top of the tube 
to avoid inadvertent removal of the DNA bound to the nanobind disk. The supernatant was 
discarded with a pipette and 700 μL of Buffer CW1, was added to each tube. The tube in the 
magnetic rack is then inverted 4X for mixing. A second and third wash with 500 μL of Buffer 
CW2, (inversion mix 4X for each wash) was performed. After the 2nd CW2 wash, liquid was 
removed from the tube cap and the tubes spun on a mini-centrifuge for 2 s, and replaced on the 
magnetic rack. Residual liquid was removed from the bottom of the tube taking care to not 
remove DNA associated with the nanobind disk.  Elution from the nanobind disk was 
accomplished by adding 160 μL Circulomics EB + 0.02% Triton-X100 (make by mixing 316.8 μL 
EB + 3.2 μL 2% Triton-X100) and incubation at RT for at least 1 hour. Tubes were gently tapped 
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half way through elution. DNA was collected by transferring eluate with a P200 wide-bore 
pipette to a new 1.5 mL microcentrifuge tube. Some liquid and DNA remain on the Nanobind 
disk after pipetting. We spun the tube containing the Nanobind disk on a centrifuge at 10,000 x 
g for 5 s and also transferred any additional liquid that came off the disk to the eluate tube. This 
process was repeated if necessary until all DNA was removed. The samples were pipette mixed 
5X (approx. 10 seconds to aspirate and 10 seconds to dispense for each cycle) with a wide bore 
P200 pipette in order to homogenize the sample. Samples were further allowed to rest at RT 
overnight to allow DNA to solubilize (disperse). 

Library Preparation, DNA Tagmentation / FRA 
Circulomics EB+ (EB buffer with 0.02% Triton-X100) was prepared and 140.82 μL EB + 
aliquoted into a 1.5 ml Eppendorf DNA Lo-Bind tube. UHMW DNA (300 μL) from above was 
aliquoted into the same tube with a wide bore P200 pipette. The mixture was slowly pipetted up 
and down 3X with a wide bore P200 pipette set to 150 µL. In a separate 1.5 ml Eppendorf DNA 
Lo-Bind tube, in order, 144 μL of FRA Dilution Buffer, was added, 9.18 μL of 1 M MgCl2 was 
added, and 6 μL FRA was added. The tube was tapped to mix and spun down using a 
microcentrifuge. The EB/Triton/DNA mixture was added to the FRA Dilution Buffer/MgCl2/FRA 
mixture with a wide bore P200 pipette. This mixture was then pipette mixed 15-20X with a wide 
bore P1000 pipette set to 600 µL. The mixture appeared homogeneous when pipette mixing 
finished. The tube was then incubated for 15 min at RT. The mixture was then pipette mixed 5X 
with a wide bore P1000 pipette set to 600 µL and incubated at RT for an additional 15 mins. The 
mixture was then incubated at 30 °C for 1 min, followed by 80 °C for 1 min, and then held at 4 
°C.  

Library Preparation, FRA Reaction Cleanup 
Cleanup employed a Nanobind disk.  A 5 mm Nanobind disk was added to the reaction mixture 
above followed by 300 µL of Circulomics Buffer NAF10. The tube was gently tapped 10–20X to 
mix. The mixture was placed on a platform rocker at 20 rpm for 2 min at RT. A DNA “cloud” was 
visible on the Nanobind disk. The tube was spun for 1 – 2 sec using a benchtop microcentrifuge 
and placed on a magnetic rack. The binding solution was removed and discarded.  The 
Nanobind disk was washed by adding 350 µL ONT Long Fragment Buffer (LFB) and gentle 
tapping 5X to mix. The tube was spun for 1–2 sec using a microcentrifuge and placed on a 
magnetic rack. The ONT Long Fragment Buffer (LFB) was removed and discarded. Care was 
taken to not pipette DNA attached to the Nanobind disk. This LFB wash was repeated. The tube 
was then briefly spun (microcentrifuge) to move the Nanobind disk to the bottom of the tube. 
DNA was eluted from the Nanobind disk by addition of 125 µL of ONT Elution Buffer (EB) to the 
tube. The tube was incubated for 30 min at RT, then gently tapped 5X (mixing) and incubated 
for an additional 30 min at RT. Fluid was slowly aspirated 4X over the Nanobind disk before 
removing the eluate from the tube. The eluate was transferred to a new 1.5 ml Eppendorf DNA 
Lo-Bind tube using a wide bore P200 pipette. The eluate was then pipette mixed 2X with a wide 
bore P200 pipette. 
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Library Preparation, Adapter Attachment / RAP 
The RAP adaptor was next added to the DNA preparation. To 120 ul of eluate (from above), 3 
µL of ONT Rapid Adapter (RAP) was added. The mixture was pipette mixed 8X with a wide bore 
P200 pipette. The mixture was then incubated for 15 mins. at RT and then again pipette mixed 
8X with a wide bore P200 pipette. 

Library Preparation, RAP Reaction Cleanup with Nanobind 
Final library cleanup removes unligated adaptor. Add 120 µL Circulomics Buffer EB to the 123 
µL RAP reaction mixture from above. Slowly pipette mix 3X with a wide bore P1000 pipette set 
to 240 µL. Each aspiration should take ~10 sec and each dispense should take ~10 sec. A 5 
mm Nanobind disk was added to the reaction mixture followed by 120 µL Circulomics Buffer 
NAF10. Mixing was accomplished by gentle tapping. The tube was incubated for 5 min at RT 
without agitation/rotation. Gently tap 5X 2 – 3 times during the 5 min incubation. The tube was 
spun for 1 – 2 sec using a microcentrifuge and placed on a magnetic rack. The binding solution 
was discarded. Next 350 µL of ONT Long Fragment Buffer (LFB) was added to the tube and 
mixed by gentle tapping 5X. The tube was then spun for 1 – 2 sec using a microcentrifuge and 
placed on a magnetic rack. The ONT Long Fragment Buffer (LFB) was removed and discarded. 
Next the Nanobind disk was washed by adding 350 µL ONT Long Fragment Buffer (LFB). The 
tube was gently tapped 5X to move LFB over the surface of the disk. The tube was then 
incubated at RT for 5 min. The tube was then spun for 1 – 2 sec using a microcentrifuge and 
placed on a magnetic rack. The ONT Long Fragment Buffer (LFB) was removed and discarded. 
The tube was briefly spun using a microcentrifuge to move the Nanobind disk to the bottom of 
the tube. To elute DNA from the Nanobind disk, 126 µL ONT Elution Buffer (EB) buffer was 
added to the tube. The tube was incubated for 30 min at RT, then gently tapped 5 – 10X and 
incubated for an additional 1-2 hours at RT. The eluate was then transferred to a new 1.5 ml 
Eppendorf DNA Lo-Bind tube using a wide bore P200 pipette using the same technique 
described above for passing the eluate over the Nanobind disk before removing the eluate from 
the tube. The mixture was then pipette mixed 2 – 3X with a wide bore P200 pipette. The library 
was stored overnight at 4 ºC prior to sequencing to permit maximal dissolution of DNA. 

Flow Cell Loading and Sequencing 
ONT Sequencing Buffer (SQB) (68 µL) was added to 82 µL of the eluate from above. The 
mixture was pipette mixed 4X with a wide bore P200 pipette set to 150 µL. Each aspiration of 
150 µL should take ~10 – 20 sec, and each dispense of 150 µL should take ~10 – 20 sec. 
Samples were then incubated at RT for 10 min. Next the samples were again pipette mixed 8X 
with a wide bore P200 pipette set to 150 µL as above. Before loading the library, the flow cell 
was primed with flush buffer/flush tether mixture per Oxford Nanopore Technologies directions. 
The library was then added to the flow cell. The mixture was viscous, but loaded smoothly in 
about 1 min. Some samples took 2 mins max to load. The sequencing run had re-mux time set 
for every 6 hours. Basecalling was performed with Guppy version 4.0.11, using default 
parameters and the high-accuracy PromethION model (dna_r9.4.1_450bps_hac_prom.cfg). 
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Dovetail Omni-C 
We prepared Omni-C libraries from each cell line using the Dovetail Omni-C Kit (Dovetail 
Genomics, CA) with modifications as follows. First, we aliquoted 1 million cells for fixation with 
Formaldehyde and DSG. We digested chromatin with DNAse I until DNA fragments of a desired 
length were obtained. Per the protocol, we performed end repair on the chromatin, followed by 
the ligation of a biotinylated bridge oligo, followed by ligation of free chromatin ends. We 
reversed cross links and purified proximity ligated DNA. We converted the DNA into an Illumina 
sequencing library using the NEB Ultra II library preparation kit (NEB, Ipswich, MA) with a Y-
adaptor. We enriched for ligation products using streptavidin bead capture on the final library. 
Each capture reaction was then split into two replicates prior to the final PCR enrichment in 
order to preserve complexity. All libraries were uniquely dual indexed and sequenced on an 
Illumina Novaseq Platform with read lengths of 2x150bp. 

Phased Assembly Pipeline 
We describe the main automated and manual steps taken before, during, and after assembly. A 
combined set of Workflow Description Language (WDL) formatted assembly workflows is 
available from Dockstore that captures each of the steps for filtering adapter-contained reads 
and running hifiasm, 
(https://dockstore.org/organizations/HumanPangenome/collections/Hifiasm). All assemblies 
were generated using this workflow, running on AnVIL (Schatz et al., 2022). Cleaning 
assemblies and fixing some structural issues were performed through a combination of 
automated workflows and manual curation described below. 

Filtering adapter-contained reads and running Hifiasm 
Before producing the assemblies we detected and removed the reads containing PacBio 
adapters, using a bash script from the HiFiAdapterFilt repository (Sim, 2021) 
(commit:64d1c7b9f6511ed8934ed2faf09f301f459db43b). This script first creates a database 
of the PacBio adapter sequences, as illustrated below: 

 
>gnl|uv|NGB00972.1:1-45 Pacific Biosciences Blunt Adapter 
ATCTCTCTCTTTTCCTCCTCCTCCGTTGTTGTTGTTGAGAGAGAT 
>gnl|uv|NGB00973.1:1-35 Pacific Biosciences C2 Primer 
AAAAAAAAAAAAAAAAAATTAACGGAGGAGGAGGA 
 

It then runs blastn with tuned parameters to detect adapter-containing reads: 
 
blastn -db ${DATABASE} -query ${HIFI_FASTA} -task blastn -reward 1 -

penalty -5 -gapopen 3 -gapextend 3 -dust no -soft_masking true -evalue 700 -
searchsp 1750000000000 -outfmt 

 

For 43 samples (out of 47) we removed less than 0.15% of the reads; it is worth noting that all of 
the 29 HPRC samples are among these 43 samples, indicating the low level of adapter 
contamination in the HiFi data produced by the HPRC. HG005, which is an HPRC+ sample, had 
the highest contamination percentage, at  ~1%. (Supplementary Figure 42) 
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The removed reads were then aligned to the T2T-CHM13v2.0 reference to ensure that there is 
no chromosomal or locus-specific bias in the filtering process. (Supplementary Figure 43) 
shows a snapshot of the IGV browser (Robinson et al., 2017) illustrating the coverage of the 
adapter-containing reads along the genome. It shows that the locations of the reads are almost 
evenly distributed along the genome and, excluding centromeres, we barely find any region 
covered with more than 2 adapter-containing reads, even in HG005 which had the highest 
contamination percentage.  

 
The trio-binning mode of Hifiasm needs haplotype-specific kmers for trio phasing the assembly 
graph. To generate these kmers we used parental Illumina short-reads for the 47 HPRC/HPRC+ 
samples, which are publicly available from the 1KG dataset (Byrska-Bishop et al., 2021). For 
each parental short-read sample we used yak count (v0.1, (Li, 2020)) to generate the kmer 
hash tables, running it once for each of the paternal and maternal read sets. 

  
yak count -k31 -b37 -o pat.yak paternal.fq.gz 

yak count -k31 -b37 -o mat.yak maternal.fq.gz 

 
The adapter filtered HiFi reads along with the parental kmer tables were then given to Hifiasm-
v0.14 to produce haplotype-resolved assembly graphs. Only the sample HG002 was re-
assembled with Hifiasm-v0.14.1, which is explained in more detail in the next subsection. 

 
hifiasm -o ${SAMPLE_NAME} -t 48 -1 pat.yak -2 mat.yak hifi.fq.gz 
 

Hifiasm produces one graph per haplotype in GFA format. Each haplotype-specific GFA file is 
then converted to FASTA format using Gfatools (Li, 2021a). The assemblies produced by 
Hifiasm-v0.14 are released under v2 after doing the three cleaning steps described at the end of 
this section.  

Fixing issues manually 
We used paftools.js asmgene, from the minimap2 repository 
(https://github.com/lh3/minimap2/tree/master/misc) (Li, 2021b), to count the number of apparent 
gene duplications for each of the assemblies produced by Hifiasm-v0.14. This assessment 
acted as a proxy for detecting high-level duplication errors. We used the Ensembl v99 cDNA 
sequences (Cunningham et al., 2022) as the input gene set for running asmgene. 

 
# Aligning genes to GRCh38 and each Hifiasm haploid assembly 

minimap2 -cx splice:hq hs38.fa cdna.fa > hs38.paf 

minimap2 -cx splice:hq ${pat/mat}.fa cdna.fa > ${pat/mat}.paf 

 

# Detecting gene duplications 

paftools.js asmgene -a hs38.paf ${pat/mat}.paf 
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Three samples were detected as outliers in terms of the number of gene duplications. To 
identify the cause of this issue we aligned back the HiFi reads to those assemblies and checked 
the depth of coverages and mapping qualities. It showed that the samples HG01358, HG01123, 
and HG002 contained false duplications of length ~55Mb (in h1tg000058l contig), ~14Mb 
(h1tg000013l), and ~70Mb (h2tg000045l) respectively. In the assembly graphs of HG01358 
and HG01123 the duplicated HiFi reads appearing multiple times were used as anchors to 
manually determine the exact boundaries of the duplicated regions in the contigs. These two 
contigs were then fixed manually by breaking the contigs at the duplication start and end points 
and discarding the duplicated sequence from the assembly. In detail, for HG01123 for 
h1tg000013l we discarded the interval [94439457, contig end]. For HG01358 for 
h1tg000058l we kept the interval[0, 95732608), renaming the contig to h1tg000058l_1, 
we discarded the interval [95732608, 150395342) and kept the interval[150395342, 
contig end],  renaming it to h1tg000058l_2. To address the false duplication in HG002 we 
re-assembled it using a newer version of Hifiasm; v0.14.1, which was reported not to have this 
problem.  

 
We also evaluated the phasing accuracy of the assemblies by using yak trioeval (see 
below). We detected a single large misjoin in a maternal contig of the HG02080 assembly. It 
contained a ~22Mb long paternal block in the middle of the contig and as a result two switch 
errors at the edges of this block. This block was manually discarded from the assembly and the 
contig was broken into two smaller ones.  In detail, in HG02080 for the h2tg000053l contig 
we kept the interval [0, 41506503), renaming it to h2tg000053l_1, we discarded the 
interval [41506503, 63683095), and kept the interval [63683095, contig end],  
renaming it to h2tg000053l_2. 
 
!"#$%&'(()#*"'+,-".#$/+#%&0"+,-+/1/*/1'(#1%*2/%&*#3*%&4#0-"#1%&%4+'5-#5'&4"&/1"#6*""#7"(/8#

$/+#,/&*0+3,0%/&#."0'%(*9:#;&#<%&0"+,-+/1/*/1'(#1%*2/%&=#8'*#."$%&".#7)#'#,-%1"+%,#1%&%4+'5-#

'(%4&1"&0#6*""#7"(/89#,/&*%*0%&4#/$#>?@7#*37A'(%4&1"&0*#/&#.%$$"+"&0#,-+/1/*/1"*:# 

Cleaning steps 
 
To clean the raw assemblies we performed three additional steps. In summary, these steps 
consisted of masking the remaining HiFi adapters, dropping the contigs that were contaminated 
in their entirety, and removing any redundant mitochondrial contigs.  
 
In the first cleaning step, the sequence of PacBio SMRTbell adapter was aligned to each 
assembly using minimap2 with the parameters ‘-cxsr -f5000 -N2000 --
secondary=yes’. We extracted only the hits with less than or equal to 2 mismatches and 
which were longer than 42nt. In addition, eukaryotic adapters in each assembly were identified 
by VecScreen (VecScreen: Screen for Vector Contamination, n.d.). The combined minimap2 
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and VecScreen adaptor hits (when present) were hard-masked in the assemblies using a WDL 
of the bedtools maskfasta command (https://dockstore.org/workflows/github.com/human-
pangenomics/hpp_production_workflows/MaskAssembly:master?tab=info). 

 

bedtools maskfasta \ 

-fi ${inputFastaFN} \ 

-bed ~{adapterBed} \ 

-fo ~{outputFasta} 

 

In the second cleaning step, we used VecScreen to detect mitochondrial contigs and the 
contigs consisting non-human sequences from other organisms like bacteria, viruses, and fungi. 
These contigs were then dropped from the assemblies using a WDLized version of samtools 
faidx. It is worth noting that the contigs with nuclear mitochondrial DNAs within them were not 
dropped. 

 
samtools faidx \ 

$inputFastaFN \ 

`cat contigsToKeep.txt` | gzip \ 

> ~{outputFasta} 

In the last cleaning step, we selected one contig as the best mitochondrial contig per diploid 
assembly. To do this selection we aligned the sequence of the mitochondrial DNA (with the 
RefSeq ID of NC_012920.1) to each diploid assembly using minimap2 with the parameters ‘-
cx asm5 --cs’. Then we selected one contig with the highest mapping score and the lowest 
number of mismatches as the best mitochondrial contig (we selected one randomly if multiple 
best contigs exist). This contig was then rotated and flipped (if neccesary) to match the start and 
orientation of  NC_012920.1.fa and then added to the maternal assembly of the corresponding 
sample. Only the HG01071 sample did not produce any identifiable mitochondrial contig.  
 
Masked, cleaned, mito assemblies were then accessioned to Genbank where they underwent 
another round of adapter masking and removal of (mostly EBV) contamination. The final 
assemblies were downloaded from Genbank and the contig IDs were pre-pended with the 
sample name and haplotype integer (where 1=paternal, and 2=maternal). For example, a contig 
assigned the name JAGYVH010000025 in sample HG02257’s maternal assembly was renamed 
to be HG02257#2#JAGYVH010000025. The renamed assemblies were then released to our S3 
and GCP buckets. In the process of download from Genbank, three of the assemblies 
(HG00733 paternal, HG02630 paternal, NA21309 maternal) had their downloads prematurely 
stopped resulting in missing sequence. Notably, NA21309 is missing its mitochondrial contig. 
Details can be found on the HPRC’s Year 1 Assembly GitHub repository 
(https://github.com/human-pangenomics/HPP_Year1_Assemblies). The assemblies held in 
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INSDCs are not truncated, but the truncated copies were retained in S3 and GCP as they were 
used in construction of the pangenomes. 
 
After submission to Genbank, the assemblies were aligned against CHM13 using Winnowmap 
and multiple contigs were found to be unmapped. These contigs were BLASTed and found to 
be almost exclusively EBV sequence. Genbank confirmed [personal communication] that these 
unmapped contigs should have been dropped as contamination. A list of the contigs that should 
have been dropped can be found on the Y1 Assembly GitHub repository 
(https://github.com/human-
pangenomics/HPP_Year1_Assemblies/blob/main/genbank_changes/y1_genbank_remaining_p
otential_contamination.txt). 

Assembly Assessment Pipeline 
 
Several steps in assembly assessment were managed through a StandardQC workflow written 
using Workflow Description Language (WDL), run on AnVIL, and available in Dockstore 
(https://dockstore.org/workflows/github.com/human-
pangenomics/hpp_production_workflows/StandardQC).  Individual tools within the workflow 
were run in Docker containers with specific tool versions installed for consistency and 
reproducibility. Details are available within the Dockstore deposited workflow. The StandardQC 
workflow takes short-read data for parental and child samples, the two assembly haplotypes, 
and it produces an analysis over various quality metrics produced by the tools described below.  
For each task, the workflow produces a small human-readable summary file, which is also easy 
to parse for summarizing steps, as well as the full output from the tool for manual inspection. 
Specific tool invocations can be determined from the deposited workflow and are also described 
in the following sections. 

Measuring potential interchromosomal joins 
Contigs are aligned to CHM13 v2.0 with minigraph v0.18 and processed with the following 
command line: 
 
minigraph -cxasm chm13v2.0.fa contigs.fa | paftools.js misjoin - 
 

B-"#<1%*2/%&=#,/11'&.#+"5/+0*#'&#%&0"+,-+/1/*/1'(#2/%&#%$#'#,/&0%4#-'*#08/#>?@7#'(%4&1"&0*#

0/#08/#.%$$"+"&0#,-+/1/*/1"*C#+"*5",0%D"(): 

Assembly Contiguity Assessment 
 
Assembly contiguity was assessed for each haplotype using QUAST (Mikheenko et al., 2018).  
These statistics include total sequence assembled, total assembled contigs, and contig NG50 
(assuming a genome size of 3.1 Gb). All reference-based analyses were skipped.   
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QUAST was invoked with the following command: 
 
python /opt/quast/quast-5.0.2/quast-lg.py -t 16 -o <sample>.quast  --
large --est-ref-size 3100000000 --no-icarus 

Assembly Quality Value Assessment 
 
Assembly Quality Value (QV) was determined using two separate k-mer based tools.  The first 
is yak (Cheng et al., 2021).  Yak’s QV estimation happens separately on each haplotype. Kmer 
databases for yak are generated with the following command: 
 
yak count -t16 -b37 -o <sample>.yak <(cat <read_files>) <(cat 
<read_files>)  
 
QV estimation with yak is generated with the following command: 
 
yak qv -t 32 -p -K 3.2g -l 100k <sample>.yak 
<sample_assembly_haplotype> > <sample>.<haplotype>.yak.qv.txt 
 
Assembly QV was also determined using Meryl and Merqury (Rhie et al., 2020). Meryl 
generates kmer databases and Merqury determines haplotype QV jointly with both haplotypes. 
Kmer databases with Meryl are generated with the following commands. Databases were 
generated separately for each read file using meryl count and merge with meryl union-
sum. Parental-specific kmers (hapmers) were generated using meryl hapmer. 
 
meryl k=21 threads=64 memory=32 count output <sample>.meryl 
<read_file> 
meryl union-sum output <sample>.meryl <sample_read_meryl_files> 
bash hampers.sh maternal.meryl paternal.meryl sample.meryl 
 
QV estimation with Merqury is generated with the following command: 
 
merqury.sh sample.meryl maternal.meryl paternal.meryl 
<maternal_haplotype> <paternal_haplotype> <sample>.merqury 

GIAB-based Assembly Quality Assessment 
 
As a complementary and stratified assessment of assembly quality, we used the GIAB 
assembly benchmarking pipeline to compare assembly-based variant calls to GIAB’s v4.2.1 
small variant benchmarks for two GIAB samples assembled in this work - HG002 and HG005. 
We evaluated the HG002 and HG005 HPRC year 1 assemblies aligned to GRCh38. Variants 
were called from assemblies using Dipcall v0.3 (using mimimap2 v2.2.4) (Li et al., 2018). We 
used `-z200000,10000` parameter to improve alignment contiguity, as previously shown to 
improve variant recall in regions with dense variation like the Major Histocompatibility Complex 
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(Chin et al., 2020). Small variant evaluation was performed using hap.py v3.15 (Krusche et al., 
2019), benchmarking against v4.2.1 of high-confidence SNP, small indel, and homozygous 
reference calls for the GIAB samples HG002 and HG005.  Comparisons were performed with 
and without restriction to the associated dipcall region file (dip.bed) to assess recall within and 
outside assembled regions. For better comparisons of complex variants, hap.py was run using 
vcfeval (Cleary et al., 2015). Variant calls were stratified using GIAB stratifiations v3.0 (J. Zook, 
2021), stratifying true positive, false positive, and false negative variant calls in challenging and 
targeted regions of the the genome. 

Trio Based Assembly Phasing Assessment 
Assembly phasing was assessed using yak and is described using two statistics: switch error 
and Hamming error rates.  Switch error describes the number of times two adjacent phased 
variants incorrectly switch between maternal and paternal haplotypes. Hamming error rate 
relates to the total number of misphased variants per assembled contig. Yak generates phasing 
statistics separately for each haplotype using parental kmers gathered from Illumina short-read 
sequencing of the parents. 
 
Yak generates kmer databases for the sample and both parental haplotypes (as described 
above). Yak generates phasing metrics with the following command: 
 
yak trioeval -t 32 paternal.yak maternal.yak <haplotype_assembly> > 
<sample>.<haplotype>.yak_phasing.txt 

Hi-C Based Assembly Phasing Assessment 
An alternative approach for phasing evaluation is to use Hi-C reads that do not require trio 
information. We compute the switch error rate for local phasing evaluation and the hamming 
error rate for global phasing evaluation. We implement an efficient k-mer based method in 
pstools-v0.1 (Garg, 2020) and use maximum Hi-C read support to detect switch errors on 
heterozygous positions. In this procedure, first, we find heterozygous k-mers (hets) from phased 
assemblies using 31-mers. Then, we map Hi-C reads to the assemblies using these 31-mers. If 
there are >5 reads that support a switch between consecutive hets in assemblies, we consider a 
haplotype switch. For each het pair, we note if Hi-C reads support or do not support the phase. 
We consider a switch error when a het site has phase switched support relative to that of the 
previous heterozygous site. The switch error rate is the number of local switches divided by the 
number of heterozygous sites. We perform this operation for the whole contig over all contigs for 
switch calculations. In the hamming error calculations, we consider hamming distance on the 
whole contig level divided by the number of heterozygous sites. This measure gives a global 
view of phasing errors and implicitly penalizes any long switches in contigs. 

Flagger: Assembly Read-based evaluation 
The following describes generating and cleaning the HiFi alignments to the HPRC/HPRC+ 
assemblies and running Flagger-v0.1, a read-based pipeline for evaluating diploid/dual 
assemblies. All the WDL-based workflows for running these steps are deposited in the 
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dockstore collection (https://dockstore.org/organizations/HumanPangenome/collections/Flagger-
Secphase). 

Preparing the HiFi alignments: 
 
We aligned back the HiFi reads of each sample to its diploid assembly. The alignments were 
produced with winnowmap-v2.03 using these commands: 
 
 # making the k-mer table with meryl 
  meryl count k=15 output merylDB asm.fa 
  meryl print greater-than distinct=0.9998 merylDB > repetitive_k15.txt 
   
  # alignment with winnowmap 
  winnowmap -W repetitive_k15.txt -ax map-pb -Y -L --eqx --cs -I8g <(cat 
pat_asm.fa mat_asm.fa) reads.fq.gz | samtools view -hb > read_alignment.bam 

 
For all samples we used the full HiFi read sets mentioned in (Supplementary Table 1), except 
HG002 for which we downsampled the read set to 35X. 
 
In order to exclude unreliable alignments, we removed all chimeric alignments and alignments 
shorter than 2kb or with a gap-compressed mismatch ratio higher than 1%. Since the assembly 
is diploid and the reads aligned to the homozygous regions are expected to have low mapping 
qualities, we didn't filter alignments based on their mapping qualities. In (Supplementary 
Figure 44), we plotted the histograms of mapping qualities and the distributions of alignment 
identities for one sample, HG00438, as an example. The statistics of three sets of alignments 
are plotted; the alignments to the diploid assembly and to each haploid assembly (maternal and 
paternal) separately. It indicates that the reads have higher identities when the diploid assembly 
is used as reference but about 20% more reads have mapping qualities lower than 10. 
 
Generally in highly homozygous regions, the aligner may not be able to select the correct 
haplotype as the primary alignment because of either read errors or misassemblies. To detect 
these cases we searched for secondary alignments whose scores are almost as high as the 
primary alignment of the same read. For each such read, we made a pseudo-multiple alignment 
of the read sequence and the assembly blocks captured by all secondary and primary 
alignments. Using this alignment, we searched for the read bases that are mismatched in at 
least one alignment but not all alignments. We called such bases single nucleotide markers. For 
each alignment we calculated a consistency score by considering only the single nucleotide 
markers and taking the summation of their base qualities with a negative sign. We then sorted 
the alignments (regardless of being primary or secondary) based on this score. If the best 
alignment was a secondary alignment we assigned the primary tag to this alignment and 
removed the other alignments. The percentage of the total reads with swapped alignments 
ranges from 0.03% (HG03453) to 0.44% (HG005) across 47 HPRC/HPRC+ samples. This 
shows that only a small percentage of the reads needed to be relocalized using this method. 
This step is performed through the Secphase-v0.1 workflow which is available in the dockstore 
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collection(https://dockstore.org/organizations/HumanPangenome/collections/Flagger-
Secphase) . 

 
By calling variants it is possible to detect the regions that either need polishing (i.e. are errors) 
or that have alignments from the wrong haplotype because of mismappings. We used 
DeepVariant 1.3.0 with the parameter  --model_type="PACBIO" to call variants on these 
alignments. The variants were then filtered to include only the biallelic SNPs with variant 
frequency higher than 0.3 and genotype quality higher than 10. 

 

bcftools view -Ov -f PASS -m2 -M2 -v snps -e ‘FORMAT/VAF < 0.3 || 
FORMAT/GQ < 10’ ${OUTPUT_VCF} > ${SNPS_VCF} 

Having the biallelic SNPs we found the alignments with alternative alleles and removed them 
from the bam file. For this aim we implemented and used the program filter_alt_reads, 
running the command: 
 

filter_alt_reads -i ${INPUT_BAM} -o ${ALT_FILTERED_BAM} -f ${ALT_BAM} -
v ${SNPS_VCF} 

Running the evaluation pipeline 
To assess the read mappings resulting from our diploid alignment process we employed the 
following  steps, which are combined into a pipeline that we refer to as Flagger. Flagger 
essentially fits a mixture model to successive coverage blocks of the read-to-diploid assembly 
alignment and then classifies each block to a category predicting the accuracy of the assembly 
at that location. 

Step 1: Calculating depth of coverage 
After producing and cleaning the HiFi alignments we calculated the depth of coverage for each 
assembly base by samtools depth -aa. (-aa option allows outputting the bases with zero 
coverage) 
 
samtools depth -aa -Q 0 read_alignment.bam > read_alignment.depth 
 
The output of samtools depth was then converted into a more efficient format with the .cov 
suffix. This format is implemented specifically for Flagger and it is more efficient since the 
consecutive bases with the same coverage take only one line. We implemented a program 
called depth2cov for converting the output of samtools depth to the .cov format. 
 
 depth2cov -d read_alignment.depth -f asm.fa.fai -o read_alignment.cov 
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Step 2: Fitting the mixture model 
The frequencies of coverages can be calculated with cov2counts. The output file with .count 
suffix is a 2-column tab-delimited file; the first column shows coverages and the second column 
shows the frequencies of those coverages. 

 
cov2counts -i read_alignment.cov -o read_alignment.counts 
 

The python script fit_gmm.py takes a file .counts suffix, fits a Gaussian mixture model, and 
finds the best parameters through Expectation-Maximization (EM). This mixture model consists 
of 4 main components and each component represents a specific type of region. The 4 
components are 

1. Erroneous component, which is modeled by a Poisson distribution. To avoid 
overfitting, this mode only uses the coverages below 10 so its mean is limited to be 
between 0 and 10. It represents the regions with very low read support. 

2. (Falsely) Duplicated component, which is modeled by a Gaussian distribution whose 
mean is constrained to be half of the haploid component's mean. It should mainly 
represent the falsely duplicated regions.  

3. Haploid component, which is modeled by a Gaussian distribution. It represents blocks 
with the coverages that we expect for the blocks of an error-free assembly. 

4. Collapsed component, which is actually a set of components each of which follows a 
Gaussian distribution whose  mean is a multiple of the haploid component's mean.  It 
represents regions that have additional copies present in the underlying genome that 
have been “collapsed” into a single copy. 

It was noticed that the model components may change for different regions due to regional 
coverage differences and that the resulting systematic differences affect the accuracy of the 
partitioning process. In order to make the coverage thresholds more sensitive to the local 
patterns the diploid assembly was split into windows of length (5-10Mb) and a distinct model 
was fit for each window. Before fitting, we split the whole-genome coverage file produced in step 
1 into multiple coverage files for each window. We implemented and ran split_cov_by_window 
for splitting: 

split_cov_by_window -c read_alignment.cov -f asm.fa.fai -s 5000000 -p 
${OUTPUT_PREFIX} 

It will produce a list of coverage files, each of which ends with 
${CONTIG_NAME}_${WINDOW_START}_${WINDOW_END}.cov 

We then repeated steps above for each resulting coverage file. 

One important observation is that for short contigs the coverage distribution is generally too 
noisy to satisfactorily fit the mixture model. To address this issue we have done the window-
specific coverage analysis only for the contigs longer than 5Mb and for the shorter contigs we 
use the results of the whole-genome analysis. 
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Step 3: Extracting blocks of each component 

Using the fitted model we assigned each coverage value to one of the four components 
(erroneous, duplicated, haploid, and collapsed). To do so for each coverage value we picked 
the component with the highest probability. For example, the coverage value 0 is frequently 
assigned to the erroneous component. In (Supplementary Figure 45) the coverage intervals 
are colored based on their assigned component. 

Step 4: Incorporating coverage biases in HSats 

According to the recent complete human genome paper (Nurk et al., 2022), there exist some 
satellite arrays (e.g. HSAT1,2,3) where the HiFi coverage drops or increases systematically due 
to biases in sample preparation and sequencing. Such platform-specific biases mislead the 
pipeline. As a result, the falsely duplicated component may contain a mixture of falsely 
duplicated and coverage-biased blocks. Similarly for the collapsed component.  

To incorporate such coverage biases and correct the results in the corresponding regions, we 
first found the regions of each haploid assembly where a coverage bias is expected. To find 
such regions we lifted over the CHM13 HSat1, 2, and 3 annotation to each assembly by aligning 
the assembly contigs to the the reference T2T-CHM13v1.1 + GRCh38-chrY and projecting the 
HSat coordinates back to the assembly (using python script project_blocks.py). Then we ran 
fit_gmm.py to fit a mixture model for the blocks assigned to each HSat type and adjusted the 
parameter --coverage, the starting point of the EM process, based on the expected coverage in 
the corresponding HSat. For HSat1, 2 and 3 we set --coverage to 0.75, 1.25 and 1.25 times the 
average sequencing coverage respectively. Finally we decomposed each HSat based on the 
inferred coverage thresholds and replaced the previous assigned component by the new one. 

Step 5. Using high quality alignments to correct spurious flags 

In some cases the duplicated component is mixed up with the haploid one. It usually happens 
when the coverage in the haploid component drops systematically or the majority of a long 
contig is falsely duplicated. To address this issue we used another indicator of a false 
duplication, which is the accumulation of alignments with very low MAPQ. Therefore we have 
produced another coverage file using only the alignments with MAPQ > 20. Whenever we found 
a region flagged as duplicated with more than 5 high quality alignments we changed the flag to 
haploid.  

After the correction made in step 5 we merged each components’ blocks closer than 1k and the 
overlap of any two components after merging is flagged as Unknown to show that this block 
couldn't be assigned properly. The BED files produced by Flagger are available in the HPRC S3 
bucket (https://s3-us-west-2.amazonaws.com/human-
pangenomics/index.html?prefix=submissions/e9ad8022-1b30-11ec-ab04-0a13c5208311--
COVERAGE_ANALYSIS_Y1_GENBANK/FLAGGER/APR_08_2022/FINAL_HIFI_BASED/FLA
GGER_HIFI_ASM_SIMPLIFIED_BEDS/). 
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Assessing T2T-CHM13 Using Flagger 

To estimate the false positive rate of Flagger we applied it to the T2T-CHM13v1.1 
reference.The direct output of Flagger showed that about ~12.77Mb (~0.41%) of the T2T-
CHM13 reference assembly is flagged as potentially unreliable. The HPRC assemblies are 
almost free of rDNA arrays but there exist modeled sequences for rDNA arrays in the T2T-
CHM13v1.1 reference. These arrays are flagged as falsely duplicated in their entirety indicating 
that Flagger with HiFi reads may not be able to evaluate rDNA arrays correctly. Therefore to 
make a fair comparison we excluded rDNA arrays (~9.92Mb in total) from the reference 
evaluation, which decreased the number of unreliable bases to 5.58Mb (~0.18%). We 
additionally identified ~2.76Mb of a region beside Chr1-HSat2 that was mis-flagged as 
collapsed. This mis-flagging was the impact of the systematic coverage rise in the neighboring 
HSat2 that altered the fitted mixture model. By manually fixing this mis-flagging we had 
~2.82Mb (0.09%) of unreliable blocks in T2T-CHM13v1.1. This number is about 9.3 times lower 
than the average for the HPRC/HPRC+ assemblies. These unreliable blocks are mainly a 
combination of "Unknown" blocks which couldn't be assigned properly and also the regions with 
HiFi-specific coverage drops. The results of this analysis is available in the HPRC S3 bucket 
(https://s3-us-west-2.amazonaws.com/human-
pangenomics/index.html?prefix=submissions/e9ad8022-1b30-11ec-ab04-0a13c5208311--
COVERAGE_ANALYSIS_Y1_GENBANK/FLAGGER/APR_08_2022/FINAL_HIFI_BASED/T2T-
CHM13/). 

Repeat Masking 
Repeat masking on each assembly was performed iteratively by RepeatMasker 4.1.2-p1. The 
first step masked using the default human repeat library, and the second step using a repeat 
library augmented by CHM13 satellite DNA sequences on the original assemblies after hard-
masking the initial repeat masked DNA. The augmented repeat library is available at 
(https://zenodo.org/record/5537107#.YqNs13XMJrk), 
final_consensi_gap_nohsat_teucer.embl.txt, and a parallelized repeat masking pipeline is at 
(https://github.com/chaissonlab/segdupannotation), RepeatMaskGenome.snakefile.  The union 
of the two steps yields the complete repeat masking. 
 

Segmental Duplication Annotation 

SDs were annotated using sedef (Numanagic et al., 2018) after masking repeats in each 
assembly. Repeats annotated with more than 20 copies were excluded from the analysis. The 
pipeline for annotating SDs is available at 
(https://github.com/ChaissonLab/SegDupAnnotation/releases/tag/vHPRC) . 
 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 9, 2022. ; https://doi.org/10.1101/2022.07.09.499321doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.09.499321
http://creativecommons.org/licenses/by/4.0/


 

46 

Unreliable Segmental Duplication Analysis 

The reliable/unreliable regions for all haplotype assemblies were aligned to T2T-CHM13v2.0 
and then subdivided into 5 kb windows and intersected with the SD annotations for T2T-
CHM13. SD annotations were unavailable for chromosome Y on T2T-CHM13v2.0 at the time of 
analysis so chromosome Y was excluded. For each class of unreliable region (Unk,Err,Col,Hap) 
we calculated the average number of bp overlapping SDs across the haplotype assemblies, and 
annotated each 5 kb window with the most representative overlapping SD (the SD with the 
highest product of identity and length). Then using the most representative SD we calculated 
the average length and identity of SDs overlapping each class of unreliable region for all the 94 
haplotypes and compared the length of identity of SDs that overlapped the different types of 
errors in the assembly. The code for this analysis is made available on github: 
(https://gist.github.com/mrvollger/3bdd2d34f312932c12917a4379a55973) 

Ensembl Mapping Pipeline for Assembly Annotation 
A reference gene set was created from a subset of the GENCODE 38 (Frankish et al., 2021) 
genes, which was mapped to the HPRC assemblies via a 2-pass alignment process. This 
excluded readthrough genes and genes on patches or haplotypes, and only included one copy 
of the genes on the X/Y PAR region (only one copy, the X, is modeled in the Ensembl 
representation of the PAR genes). 
 
Firstly, in order to minimize the difficulty of mapping near identical paralogues, a jumping 
window of 100kb in length was used to identify clusters of genes to map in parallel (see 
Supplementary Figure 46). The initial window was positioned at the start of the most 5’ gene 
for each chromosome in the GRCh38 reference and extended 100kb from the start of the gene. 
Any genes fully or partially overlapping the window were then included in the cluster. The next 3' 
gene that did not overlap the previous window was then identified and a new window was 
created and the process repeated. This resulted in both clustered genes and non-clustered 
genes (genes were considered not clustered when there was only one gene within the window). 
The regions to map were then identified based on the start of the most 5’ gene and the end of 
the most 3’ gene in each cluster (or simply the 5’ and 3’ end of the gene in the case of non-
clustered genes). 
 
For each region defined in the previous step, anchor points were then selected to help map the 
region on the target genome. Two 10kb anchor points were created 5kb from the 5’ and 3’ edge 
of the region, and a central 10kb anchor was created around the midpoint of the region in the 
GRCh38 genome. The sequences of these anchors were them mapped against the target 
genome with minimap2 (Li, 2018b) using the following command: 
 
minimap2 --cs —secondary=yes -N 10 -x map-ont [genome_index] [anchor_file] > 
[alignment_file] 

 
The resulting hits were examined to determine high confidence regions in the target genome. 
High-confidence regions were ones in which all three anchors were on the same top-level 
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sequence, in co-linear order, with >= 99 percent sequence identity and >= 50 percent hit 
coverage, and with a similar distance between the anchors when compared to the reference 
genome. If no suitable candidate region was found with all three anchors, pairs of mapped 
anchors were then assessed in a similar manner. 
 
The sequence selected region or regions were then retrieved and aligned against the 
corresponding GRCh38 region using MAFFT. For each gene, the corresponding exons were 
retrieved and the coordinates were projected through the alignment of the two regions. 
Transcripts were then reconstructed from the projected exons. For each transcript, the coverage 
and identity when aligned to the parent transcript from GRCh38 was calculated. 
 
If the resulting transcript had either a coverage or < 98 percent or identity of < 99 percent, the 
parent transcripts were aligned to the target region using minimap2 in splice-aware mode, with 
the high quality setting for Iso-Seq/cDNA style transcripts enabled. The maximum intron size 
was set to 100kb by default. For transcripts with reference introns larger than 100kb, the max 
intron size was scaled and set as 1.5 times the length of the longest intron (to allow some 
variability). 
 
minimap2 --cs --secondary=no -G [max_intron_size] -ax splice:hq -u b 
[expected_target_region] [transcript_sequences] > [sam_file] 

 
For each transcript that mapped to the target genome, the quality of the mapping was assessed 
based on aligning the original reference sequence with the newly identified target sequence. 
Again, if the coverage or identity of the aligned sequence was < 98/99 percent, the reference 
transcript sequence was re-aligned to the target region, this time using Exonerate (Slater & 
Birney, 2005). Exonerate, while slower than minimap2, has the ability to handle very small 
exons and also can incorporate CDS data to preserve the CDS (introducing pseudo-introns as 
needed). The following command was used: 
 
exonerate -options --model cdna2genome --forwardcoordinates FALSE --
softmasktarget TRUE --exhaustive FALSE --score 500 --saturatethreshold 100 --
dnawordlen 15 --codonwordlen 15 --dnahspthreshold 60 --bestn 1 --maxintron 
[max_intron_size] -coverage_by_aligned 1 --querytype dna --targettype 
[target_type] --query [query_file] --target [target_file] --annotation 
[annotation_file] > [output_file] 

 
 
When more than one approach was used to model the transcript, the mapping with the highest 
combined identity and coverage was selected. 
 
For genes not mapped through the initial regional anchors, a second approach was used. The 
expected location of the gene was located using high confidence genes mapped during the first 
phase. High confidence mappings were those which the there was a single mapped copy of the 
gene, all the transcripts had mapping scores of 99 percent coverage and identity on average 
and the gene also had a similar gene neighborhood to the neighborhood in the reference (at 
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least 80 percent of the of the same genes in common for the 100 closest neighboring genes in 
the reference). After this, the entire genome region underlying the missing gene, including 5kb 
flanking sequence, was mapped it against the target genome using minimap2: 
 
minimap2 --cs —secondary=yes -x map-ont [genome_index] 
[gene_genomic_sequence] > [alignment_file] 

 
The resulting hits were then filtered based on overlap with the expected region the missing gene 
should lie in. If there was no expected region calculated (cases where no pair of high confidence 
genes could be found to define the 5’ and 3’ boundaries of the expected location of the missing 
gene, e.g. at the edge of a scaffold), or no hit overlapping the expected region was found, the 
top reported hit was used providing it passed an identity cut-off of 99 percent. The selected hit 
or hits were then extended based on how much of the original reference gene they covered, to 
ensure minor local variants between the reference and target regions did not lead to the target 
region being truncated. Once extended, the remaining hits were then clustered based on 
genomic overlap and merged into unique regions. The missing genes were then attempted to be 
mapped to these regions using an identical process as described above for the initial mappings, 
involving MAFFT, minimap2 and Exonerate. 
 
In order to try and minimize the occurrences of mismapped paralogues, each gene was 
checked in terms of the genes with exon overlap in both the target and the reference. If the 
overlapping genes were not identical at a locus between the reference and the target then a 
conflict was identified. For each gene present, filtering was done to reduce or remove the 
conflict based on a number of factors including whether the genes were in the expected 
location, whether the genes were high confidence mappings, the average percent identity and 
coverage of the transcript for the genes and the neighborhood score. When it was not possible 
to resolve a conflict between two genes, both were kept. This concluded the primary mapping 
process. 
 
After this potential recent duplications were identified. To search for recent duplications, the 
canonical transcript of each gene (the longest transcript in the case of non-coding genes, or the 
transcript with the longest translation followed by the longest overall sequence for protein-
coding genes) was selected, and aligned across the genome using minimap2 in a splice-aware 
manner: 
 
minimap2 --cs --secondary=no -G [max_intron_size] -ax splice:hq -u b 
[genome_index] [input_file] > [sam_file] 

 
Mappings that had exon overlap with existing annotations from the primary mapping process on 
the target genome were removed. For new mappings that did not overlap existing annotations, 
the quality of the alignment was then assessed by aligning the mapped transcript sequence to 
the corresponding reference transcript to calculate the coverage and percent identity of the 
mapping. Different coverage and percent identity cutoffs were used for these mappings,  based 
on the type of transcript mapped. The cutoffs for retaining were as follows: 
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Transcript type Coverage cutoff (%) Identity cutoff (%) 

Protein coding 95 95 

Long non-coding 90 90 

Small non-coding 95 95 

Pseudogene 80 90 
 
 
When looking for new paralogues, in case that multiple canonical transcripts mapped to a locus, 
a single representative transcript was selected. This was based on the following heirarchy of 
gene biotype groups: 

● Coding 
● Long non-coding 
● Pseudogene 
● Small non-coding 
● Misc/Undefined 

 
If there were multiple transcripts for the highest represented group, the transcript with the 
longest sequence was selected as the representative. 

Gene annotation quality analysis 

Frameshifts 
For the Ensembl and CAT gene annotation sets, we identified the locations of frameshifting 
insertions and deletions by iterating over the coding sequence of each transcript and looking for 
any gaps in the alignment. If the gap had a length that was not a multiple of 3, and its length 
was less than 30 base pairs long (to remove likely introns from consideration), the gap is 
determined to be a frameshift and its location is saved to a BED file.  

Nonsense mutations 
We also analyzed the number of nonsense mutations that would cause early stop codons in 
both the Ensembl and CAT gene annotation sets. We identified the nonsense mutations by 
iterating through each codon in the coding sequence of the predicted transcripts, and if there 
was an early stop codon before the canonical stop codon at the end of the transcript, we saved 
the location in a BED file.  

Validation of mutations with Illumina  
For both sets of mutations, we then lifted over the coordinates of the mutations to be on the 
GRCh38 reference so that we could use existing variant callsets on GRCh38. We used 
halLiftover to lift over each set of coordinates, using the GRCh38-based HAL file from the 
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cactus-minigraph alignment. Then, we used bedtools intersect to intersect with the 
variant call file for each of the assemblies. 
 
Sample commands:  
halLiftover GRCh38-f1g-90-mc-aug11.hal <GENOME_NAME> 
<MUTATION_BED_FILE> GRCh38 <LIFTED_OVER_BED_FILE> 
 
bedtools intersect -wo -a <LIFTED_OVER_BED_FILE> -b 
<SAMPLE_MERGED_VCF>  > <OVERLAP_OUTPUT_TXT_FILE>  
 
The VCF files used in this intersection were downloaded from the 1KG: 
(ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000G_2504_high_coverage/working/
20201028_3202_raw_GT_with_annot/20201028_CCDG_14151_B01_GRM_WGS_2020-08-
05_chr$i.recalibrated_variants.vcf.gz)  
Where $i was replaced with each chromosome number. From there, each chromosome vcf 
was split so that each sample was in its own file using bcftools view. The chromosome files 
for each sample were combined into one VCF using bcftools concat.  

Gene Duplication Analysis 
Duplicated genes were detected as multi-mapped coding sequences using Liftoff (Shumate & 
Salzberg, 2020) supplemented by a complementary approach (gb-map) using multi-mapped 
gene bodies. The combined set was formed by including all liftoff gene duplications and 
duplicated genes detected by gb-map. 

Liftoff 
We ran Liftoff (commit 35a4e5536414c4ac3b49873f427388d54bc24fd7) to annotate extra gene 
copies in each of the assemblies. Liftoff was run with the flag -sc = 0.90 to find additional 
copies of genes, with an identity threshold of at least 90%. An example command is below:  
 
liftoff -p 10 -sc 0.90 -copies -db <GENCODE_V38_DATABASE> -u <UNMAPPED_FILE> 
-o <OUTPUT_GFF3> -polish <GENOME_FASTA> <GRCh38_FASTA> 

 
The additional copies of the genes are identified as such in the output gff3 with the field 
extra_copy_number (equal to anything other than 0). For this analysis, we also only 
considered genes that were multi-exon, protein-coding genes. The additional gene copies were 
further filtered to remove any genes outside of the “reliable”, haploid regions as determined by 
the Flagger pipeline.  

gb-map 
The gene-body mapping pipeline identifies duplicated genes by first aligning transcripts of 
protein coding and pseudogenes (GENCODE v38) to each assembly, and then multi-mapping 
the genomic sequences of each corresponding gene. Alignments of at least 90% identity and 
90% of the length of the original duplication are considered candidate duplicated genes. 
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Candidates are removed if they overlap previously mapped transcripts from other genes, low-
quality duplications, and genes identified through CAT and liftoff analysis. 

Gene family analysis 
To account for gene duplications in high-identity gene families, gene families are identified 
based on sequence alignments from gb-map. Genes that map reciprocally with 90% identity and 
90% length are considered a gene family. A single gene is selected as the representative gene 
for the family, and any gene duplication in the family is counted towards that gene.  

Pangenome Graph Construction  

Minigraph 
Minigraph can quickly perform assembly-to-graph mappings using a generalization of the 
minimap2 algorithm (Li et al., 2020). Novel SVs of at least 50 bp detected in the mapping can 
then be added to the graph. To construct a pangenome graph, one chosen reference assembly, 
GRCh38 in this case, is used as a starting graph, and the mapping and SV addition steps are 
repeated for each additional assembly, greedily. This iterative approach is analogous to Partial 
Order Alignment (POA) (Lee et al., 2002). Graphs constructed in this way describe the structural 
variation within the samples and provide a coordinate system across the reference and all 
insertions. Minigraph does not produce self-alignments. That is, it will never align a portion of 
the reference assembly onto another portion of the reference assembly. In this way all reference 
positions have a unique location within the created pangenome. Minigraph version v0.14 was 
used with -xggs options.  The input order was GRCh38, CHM13 then the remainder in 
lexicographic order by sample name. 

Minigraph-Cactus  

E+'5-*#,/&*0+3,0".#7)#@%&%4+'5-#/&()#,/&0'%&#*0+3,03+'(#D'+%'0%/&#6>FG#759#7)#."$'3(0:#B-"#'%1#

/$#0-"#@H#5%5"(%&"#%*#0/#+"$%&"#@%&%4+'5-I*#/30530#%&#/+."+#0/#%&,(3."#*1'(("+#D'+%'&0*C#./8&#0/#

0-"#JKL#("D"(:#M/%&4#*/#'((/8*#0-"#4+'5-#0/#,/15+"-"&*%D"()#+"5+"*"&0#1/*0#D'+%'0%/&C#'*#8"((#

'*#0/#"17".#0-"#%&530#-'5(/0)5"*#8%0-%&#%0#'*#5'0-*C#8-%,-#%*#%15/+0'&0#$/+#*/1"#'55(%,'0%/&*#
(Sirén et al., 2021). This pipeline is composed of the five following steps, and is described in 
more detail in (Hickey et al., in preparation). The script and commands to reproduce can be 
found at 
(https://github.com/ComparativeGenomicsToolkit/cactus/blob/81903cb82ae80da342515109cde
e5a85b2fde625/doc/pangenome.md#hprc-version-10-graphs). A newer, simpler version of the 
pipeline that no longer requires satellite masking can be found at 
(https://github.com/ComparativeGenomicsToolkit/cactus/blob/5fed950471f04e9892bb90531e8f6
3be911857e1/doc/pangenome.md#hprc-graph). 
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Paths from the reference, GRCh38, are acyclic in the MC graph. Paths from any other 
haplotypes can contain cycles (as a result of different query segments mapping to the same 
target), but they are relatively rare. 
 

1. Satellite Masking: Minigraph is unable to map through highly repetitive sequence such 
as centromeres and telomeres and, since these regions are also enriched for 
misassemblies (see Assembly Assessment subsection of Results), we decided to 
explicitly exclude them from the MC graphs used in this work. dna-brnn is a tool that 
uses a Recurrent Neural Network (RNN) to quickly identify alpha satellite as well as 
human satellite I and II (Li, 2019c). We ran it with its default parameters on all input 
sequences and cut out any identified regions >= 100kb, except on the reference. The 
three satellite families that dna-brnn detects account for the vast majority of satellite 
sequence, but not all. As such, gaps >=100kb in minigraph mappings were also 
removed. They were detected by mapping each assembly, after having removed the 
dna-brnn regions, to the minigraph (using the procedure described below). In all, an 
average of 188.6mb of sequence from each (non-reference) assembly was excluded 
from the graph.  

2. Assembly-to-Graph Mapping: Minigraph generalizes minimap2’s fast seeding and 
chaining algorithms, but it does not currently produce exact alignments in cigar strings or 
otherwise. For this work, an option, –write-mz, was added to report chains of 
minimizers, which in this case are 15bp exact matches, and all assemblies were mapped 
to the minigraph graph using it. The resulting minimizers were then converted into PAF 
files with cigars representing exact pairwise alignments between the query contigs and 
minigraph node sequences, and all mappings with MAPQ<5 were excluded, as were 
overlapping query regions>10kb.  

3. Chromosome Decomposition: The Minigraph graphs do not contain inter-
chromosomal rearrangements, but the mappings performed in the previous steps can 
imply them: i.e. a contig can partially map to multiple chromosomes. In most cases, 
these mappings involve similarity across different acrocentric short arms. In order to 
avoid introducing misleading interchromosomal events, and because it is necessary to 
run the subsequent steps individually on chromosomes due to memory requirements, 
the mappings were divided by reference chromosome. This was done by splitting the 
minigraph into connected components and using the RN tags to determine their 
corresponding chromosome names. The PAF mappings were used to determine the 
coverage of each query contig with each chromosome component. This coverage was 
used to assign each query contig to a single chromosome by choosing the chromosome 
with the highest coverage. Contigs with insufficient coverage to any chromosome (<90% 
for contigs with lengths in [1,10kb); <80% for [10kb,100kb), <75% for [100kb,1mb) and 
<70% for >=mb.) were considered ambiguous and not included in the graph.. In the 
GRCh38-based graph, all unplaced and random contigs were grouped together into the 
same component.  

4. Cactus Base Alignment: Cactus is a tool that uses a graph-based approach to combine 
sets of pairwise alignments obtained from lastz into a multiple genome alignment  
(Armstrong et al., 2020). When aligning different species, it uses a phylogenetic tree to 
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progressively decompose the alignment into a subproblem for each ancestral node in 
the tree. We adapted it to also accept chromosome-scale sequence-to-minigraph 
mappings as produced above, and improved its runtime on alignments of many 
sequences by replacing its base aligner with abPOA (Gao et al., 2021). The core 
algorithm described in (Armstrong et al., 2020) remains unchanged: the pairwise 
alignments are used to induce a sequence graph, then filtered using the Cactus 
Alignment Filtering (CAF) algorithm, and components of unaligned sequence are then 
processed by the Base Alignment and Refinement (BAR) algorithm. The resulting graph 
is used to infer an ancestral sequence (not explicitly used in this work), and then 
exported to a Hierarchical ALignment (HAL) file (Hickey et al., 2013). We implemented a 
converter, hal2vg (Hickey, 2021) that converts the HAL alignment into a sequence graph 
in vg format. 

5. Post-processing and Whole-Genome Indexing: The following post-processing steps 
were performed on each chromosome graph. First, unaligned sequence >10kb in length, 
including sequence not aligned to minigraph, was removed in order to filter out any 
under-alignment artifacts that might later be mistaken for insertions. Next, GFAffix was 
used to normalize the graphs by merging together redundant node prefixes and suffixes. 
Nodes were flipped as necessary to ensure that reference paths always visit their 
forward orientations. The chromosomes were combined into a whole-genome graph, 
indexed and exported to VCF, all using vg. Patched versions of both the GRCh38- and 
CHM13-based graphs were created when it was discovered that short contigs split-
mapping to distant locations had induced large deletions. The deletions were removed 
using vg clip -D 10000000 (and the pipeline has since been corrected to no longer 
produce them). Allele-filtered graphs, used for short-read mapping, were produced (from 
the patched graphs) by removing all nodes traversed by fewer than 9 haplotype paths 
(minimum AF=10%) using vg clip -d 9 -m 10000. The chromosome HAL files were also 
combined into a whole-genome HAL file using halMergeChroms, and clipped sequences 
added back (in order to facilitate running CAT) using halUnclip.  

PanGenome Graph Builder (PGGB) 
The Pangenome Graph Builder (PGGB) uses a symmetric, all-to-all comparison of genomes to 
generate and refine a pangenome. We applied it to build a pangenome graph from all genome 
assemblies and references (both GRCh38 and CHM13) in the HPRC year-1 freeze. The 
resulting PGGB graph represents all alignment relationships between input genomes in a single 
graph. The PGGB graph is a lossless model of the input assemblies that represents all 
equivalently. This arrangement allows for all of our pangenome assemblies to be used as 
reference systems, a property that we used to explore the scope of pangenome variation in a 
total way. We apply the PGGB model to investigate the full pangenome and integrate 
annotations established de novo on the diverse assemblies into a single model for analyses of 
pangenome diversity, and also of complex structurally-variable loci (MHC and 8p inversion). 
 
PGGB generates a pangenome graph in three phases. (1) alignment: In the first, phase the 
wfmash aligner is used to generate all-vs-all alignments of input sequences. This method, 
wfmash, applies MashMap2’s mapping algorithm to find homologies at a specified length and 
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percent identity. It then derives base-level alignments using a high-order version of the WFA 
algorithm (wflign) which first aligns sequences in segments of 256bp, then patching up the 
base-level alignment with local application of WFA. wfmash was designed and developed 
specifically for the problem of building all-to-all alignments for large pangenomes. (2) graph 
induction: The input FASTA sequences and PAF-format alignments produced by wfmash are 
converted to a graph (in GFA format) using seqwish. This losslessly transforms the input 
alignments and sequences into a graph. (3) graph normalization: We finally apply a 
normalization algorithm—smoothxg—to simplify complex motifs that occur in STRs and other 
repetitive sequences, as well as mitigate underalignment. The graph is first sorted using a “path-
guided” stochastic gradient descent method (Guarracino, Heumos, et al., 2022) that organizes 
the graph in 1 dimension so as to optimize path distances and graph distances. This sort 
provides a way to partition the graph into smaller pieces over which we apply a multiple 
sequence alignment algorithm (abPOA). These pieces are laced back into a final graph. We 
iterate this process twice using different target POA lengths to remove boundary effects caused 
at the borders of the MSA problems. Finally, we apply GFAffix to remove redundant furcations 
from the topology of the graph. 
 
To build the HPRCy1 PGGB graph, we used both the CHM13 and GRCh38 references as a 
target and mapped all contigs against these with wfmash requiring a full length mapping at 90% 
total identity, collecting all contigs that mapped to a given chromosome. Contigs which did not 
map under this arrangement were then partitioned using a split mapping approach, requiring 
90% identity over 50kb to seed the mappings, and putting the contig into the chromosome bin 
for which it had the best split mapping. We thus initially partition the data into 25 chromosome 
sets: one for each autosome, one for each sex chromosome, and finally the mitochondria. 
 
We then applied PGGB (version 0.2.0+531f85f) to each partition to build a chromosome specific 
graph. Run in parallel over 6 PowerEdge R6515 AMD EPYC 7402P 24-core nodes with 384GB 
of RAM, this process requires 22.49 system days, or around 3.7 days wallclock. (To develop a 
robust process to build the HPRCy1 graph, the pggb team iterated the build 88 times.) The final 
chromosome graphs were compacted into a single ID space using `vg ids -j`, then for each 
reference (GRCh38 and CHM13) a combined VCF file was generated from the graph with vg 
deconstruct (version 1.36.0 / commit 375cad7). 
 
A handful of key parameters define the shape of the resulting graph. First, in wfmash we require 
>100kb mappings at 98% identity. We map each contig to all the other 89 input haplotypes. To 
reduce complexity, as well as false positive SNPs resulting from misaligned regions, we apply a 
minimium match length filter (in seqwish) of 311bp. This means that the graph which we induce 
is rather “underaligned” locally, and only via normalization in smoothxg do we compress the 
bubble structures that are produced. For smoothxg, our first iteration attempts to generate 
13033bp-long POA problems, while the second is 13177bp. These lengths provided a balanced 
tradeoff between runtime and variant detection accuracy. 
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In addition to a graph (in GFA), PGGB generates visualizations of the graph in 1D and 2D which 
show both the topology (2D) and path-to-graph relationship (1D). A code-level description of the 
build process is provided at (https://github.com/pangenome/HPRCyear1v2genbank).  

Pangenome Graph Assessment 

Annotating variant sites in pangenome graphs 
Variant sites in Minigraph and MC/PGGB graphs were discovered using gfatools bubble 
(v0.5, (Li, 2021a)) and vg deconstruct (Paten et al., 2018), respectively. Large (>10 Mb) 
spurious deletions in MC/PGGB graphs were removed using vcfbub (v0.1.0, (Garrison, 2021)) 
with options -l 0 -r 10000000. Next, variant sites were classified into small variant (<50 bp) 

and SV (!"#$%&) sites. The SV sites were then annotated as described in the Methods section 

of minigraph paper (Li et al., 2020). In brief, the longest allele sequence of each SV site was 
extracted and stored in the FASTA format. The interspersed repeats, low-complexity regions 
(LCRs), exact tandem repeats, centromeric satellites, and gaps in the longest allele sequences 
were then identified using RepeatMasker (v4.1.2-p1) with NCBI/RMBLAST (v2.10.0) search 
engine and Dfam (v3.3) database, SDUST (v0.1, (Li, 2019b)), ETRF (Li, 2019a), dna-brnn (v0.1, 
(Li, 2019c)), and seqtk gap (v1.3, (Li, 2018a)9C#+"*5",0%D"():#JM*#8"+"#%."&0%$%".#%$#0/0'(#&/."#

("&40-#%&#'#*%0"#%*#>?GGG75#'&.#>NGO#/$#7'*"*#/$#0-"*"#&/."*#'+"#annotated as SD in the 
reference or in individual assembly (Methods). To find hits to the GRCh38 reference genome, 
minimap2 (v2.24) with options -cxasm20 -r2k --cs was used to align the longest allele 
sequences to the reference genome. Based on the identified features, SV sites were classified 
into various repeat classes using mgutils.js anno 
(https://github.com/lh3/minigraph/blob/master/misc/mgutils.js) with minor modifications to enable 
it to work with the files derived from MC and PGGB graphs. 

Pangenome Size and Growth 
We use the “heaps” tool of the odgi pangenome analysis toolkit (Guarracino, Heumos, et al., 
2022) to estimate how the euchromatic autosomal pangenome grows with each additional 
genome assembly added. Here we approximate euchromatic regions by non-satellite DNA, 
which has been identified by dna-brnn in the construction of the MC graph (cf. Section 
Minigraph-Cactus) While the MC non-reference haplotypes of the MC graph do not contain 
satellite DNA, the PGGB graph does. Consequently, we subset the PGGB graph to segments 
contained in the MC graph. We additionally exclude reference haplotypes (GRCh38, CHM13) 
from the analysis. We then sampled permutations of the 88 non-reference haplotypes. In each 
permutation, we calculate the size of the pangenome after adding the first 1, 2, …, N haplotypes 
in both graphs. This yields a collection of saturation curves from which we derived a median 
saturation curve onto which we fitted a power law function known as Heaps’ Law. The exponent 
of this function is generally understood to represent the degree of openness—or diversity—of a 
pangenome (“Comparative Genomics: The Bacterial Pan-Genome,” 2008). Summing up, we 
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called odgi heaps -i <graphs.gfa> -S -n200  to generate pangenome saturation 
curves for 200 permutations. 
Next to calculating a non-permuted cumulative base count, we also counted the number of 
common (>#FO#/$#'((#&/&A+"$"+"&,"#-'5(/0)5"*9#'&.#,/+"#6>#PFO#/$#'((#&/&A+"$"+"&,"#

-'5(/0)5"*9#bases  in the pangenome graphs. To this end, we used a tool called “pangenome-
growth” (Doerr, 2022) and supplied a list of the samples in which they are grouped according to 
their assigned superpopulation (pangenome-growth -m -t bp <graph.gfa> <sample 

order>). We repeated the count, this time including only segments of depth >#NC#%:":C#,/&0'%&".#

'0#("'*0#08%,"#%&#'&)#-'5(/0)5"#*"Q3"&,":# 

Decomposing pangenome graphs based on allele traversals 
Pangenome graphs were decomposed topologically into a set of nested subgraphs, termed 
snarls, that each correspond to one or a collection of genetic variants. These snarls were then 
converted to VCF format using vg deconstruct (Paten et al., 2018). Large (>100 kb) 
deletions in MC/PGGB graphs were removed using vcfbub (v0.1.0, (Garrison, 2021)) with 
options -r 100000. To ease the comparison of variants with other call sets for each individual, 
the multi-sample VCF files were converted to per-sample VCF files using bcftools view -a 
-I -s <sample name> and the multiallelic sites were splitted into biallelic records using 
bcftools norm -m -any. Due to the limitations of snarl decomposition, snarls may contain 
multiple variants that cannot be further decomposed into nested snarls using vg 
deconstruct. If snarls of this kind are compared with truth calls, the evaluation will not be 
accurate. We solved this problem by comparing reference and alternate allele traversals for 
each snarl to infer the minimalist representation of variants (Supplementary Figure 47). 

Annotating small variants in pangenome graphs with allele frequencies from gnomAD 
Variant sites in MC/PGGB graphs were discovered using vg deconstruct (Paten et al., 
2018). The resulting VCF files were then decomposed based on allele traversals (Methods). 
The multi-nucleotide polymorphisms and complex indels were further decomposed into SNPs 
and simple indels using vcfdecompose --break-mnps --break-indels from RTG Tools 
(v3.12.1), (Cleary et al., 2015), so that they can be annotated with gnomAD later. For 
comparison, variants called from PacBio HiFi reads using DeepVariant and from haplotype-
resolved assemblies using Dipcall were also used. For each discovery method, small variants 
(<50 bp) were extracted and normalized using bcftools norm -c s -f <reference 
sequence in FASTA format> -m -any. Next, all per-sample VCF files were combined into 
one VCF file using bcftools concat -a -D after dropping individual genotype information 
using bcftools view -G. To annotate small variants with allele frequencies from gnomAD 
(Karczewski et al., 2020), the gnomAD v3.1.2 per-chromosome VCF files were downloaded and 
concatenated into one VCF file using bcftools concat. The VCF file was then compressed 
into a file in the gnotate format using make-gnotate from slivar (v0.2.7, (Pedersen et al., 
2021)) with options --field AC:gnomad_ac --field AN:gnomad_an --field 
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AF:gnomad_af --field nhomalt:gnomad_nhomalt. The small variants were annotated 
with gnomAD using slivar expr --gnotate <gnotate file>. 
 

Variant benchmarking 

Calling variants from PacBio HiFi reads 
The PacBio HiFi reads were aligned to the GRCh38 human reference genome with no 
alternates using Winnowmap2 (v2.03, (Jain et al., 2022)) with -x map-pb -a -Y -L --eqx 
--cs. The MD tags required by Sniffles were calculated using samtools calmd. The resulting 
BAM files were sorted and indexed using SAMtools. 
 
For small variants, the two-pass mode of DeepVariant (v1.1.0, (Jain et al., 2022)) with 
WhatsHap (v1.1, (Martin et al., 2016)) was used to call SNPs and indels from the PacBio HiFi 
read alignments. The resulting VCF files were used as truth sets for small variant 
benchmarking. 
 
Three discovery methods were used to call SVs from the PacBio HiFi read alignments. For 
PBSV (v2.6.2, (Pacific Biosciences, 2021)), SV signatures were identified using pbsv 
discover with --tandem-repeats <GRCh38 TRF BED file> to improve the calling 
performance in repetitive regions. SV were then detected using pbsv call with --ccs --
preserve-non-acgt -t DEL,INS,INV,DUP,BND -m 40 from the signatures. For SVIM 
(v2.0.0, (Heller & Vingron, 2019)), SV were called using svim alignment with --
read_names --zmws --interspersed_duplications_as_insertions --
cluster_max_distance 0.5 --minimum_depth 4 --min_sv_size 40. In contrast to 
PBSV and Sniffles, SVIM outputs all calls no matter their quality. To determine the threshold 
used for filtering low-quality calls, a precision-recall curve was generated across various quality 
scores by comparing with the GIAB v0.6 Tier 1 SV benchmark set for HG002 (Supplementary 
Figure 48). Consequently, SVIM calls with a quality score lower than 10 were excluded. For 
Sniffles (v1.0.12b, (Sedlazeck et al., 2018)), SV were discovered with -s 4 -l 40 -n -1 --
cluster --ccs_reads. Unlike PBSV and SVIM, Sniffles doesn’t generate consensus 
sequences of insertions from aggregating multiple supporting reads. Therefore, Iris (v1.0.4, 
(Kirsche et al., 2021)) was used to refine the breakpoints and insertion sequences with --hifi 
--also_deletions --rerunracon --keep_long_variants. All resulting VCF files were 
sorted and indexed using BCFtools. 
 

Calling SVs from haplotype-resolved assemblies 
Three discovery methods were used to call SVs from the haplotype-resolved assemblies 
generated by Hifiasm. 
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For SVIM-asm (v1.0.2, (Heller & Vingron, 2020)), assemblies were aligned to the GRCh38 
human reference genome with no alternates using minimap2 (v2.21, (Li, 2018b)) with -x asm5 
-a --eqx --cs and then sorted and indexed using SAMtools. SV were called using svim-
asm diploid with --query_names --interspersed_duplications_as_insertions 
--min_sv_size 40. The resulting VCF files were sorted and indexed using BCFtools. 
 
For PAV (v0.9.1, (Ebert et al., 2021)), assemblies were aligned to the GRCh38 human 
reference genome with no alternates using minimap2 (v2.21, (Li, 2018b)) with options -x 
asm20 -m 10000 -z 10000,50 -r 50000 --end-bonus=100 --secondary=no -a 
--eqx -Y -O 5,56 -E 4,1 -B 5. These alignments are then trimmed to reduce 
redundancy of records and increase contiguity of alignments. SVs, indels, and single-nucleotide 
variants were called by using cigar string parsing of the trimmed alignments. Inversion calling in 
PAV uses a novel k-mer density assessment to resolve inner and outer breakpoints of flanking 
repeats, which does not rely on alignment breaks to identify inversion sites. This is designed to 
overcome limitations in alignment methodologies and expand inversion calls which result in 
duplications and deletions of sequence on the boundaries. 
 
The Hall-lab pipeline is as documented in the WDL workflow  (https://github.com/hall-
lab/competitive-alignment/blob/master/call_assembly_variants.wdl)  (commit 0acce55).Briefly, 
the maternal and paternal assemblies were  aligned to the GRCh38 human reference genome 
using minimap2 (v2.1 (Li, 2018b)) with options  -ax asm5 -L --cs. Large indels (>50 bp) 
were detected using the ‘call_small_variants’ task, based on paftools (v2.17-r949-dirty). For 
large SV, breakpoints were mapped based on split alignments of assembly contigs to the 
reference genome and classified as SVs using a series of custom python scripts in the ‘call_sv’ 
task. The breakpoint-mapped SVs were then filtered based on the coverage of the reference 
genome by the assembly contigs (calculated using bedtools genomecov, v2.28.0). For each 
haplotype assembly, a BED file of ‘exclude regions’ was defined comprising genomic regions 
covered by more than one distinct contig or with more than 3X coverage by a single contig. 
Breakpoint-mapped SV where either breakpoint or >50% of the outer span intersected an 
exclude region were filtered. 

Merging SV call sets 
To integrate per-sample VCF files generated by three HiFi-based and three assembly-based SV 
callers, svtools (Larson et al., 2019) was used. For each individual, VCF files from the 6 callers 
were jointly sorted and then merged using svtools lsort and lmerge, first using a strict 
criterion (svtools lmerge -f 20), followed by a more lenient second merge (svtools 
lmerge -f 100 -w carrier_wt). The autosomal SV calls supported by at least two callers 
were included in the consensus SV call set for comparison. 

Defining confident regions for variant benchmarking 
For SVs, confident regions were generated using Dipcall. While useful for small variants, current 
benchmarking tools like hap.py/vcfeval cannot properly compare different representations of 
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small variants in and around SVs. Therefore, for each sample, the confident regions from 
Dipcall were further processed as follows: 
 

1. Exclude any SD, self-chain, tandem repeat longer than 10 kb, or satellite DNA, if there 
are any breaks in the Dipcall BED file in the repeat region +15 kb flanking sequence on 
each side. The rationale is that breaks in the Dipcall BED file are generally caused by 
missing sequence or errors in the assembly or reference, or by large SVs or CNVs 
where we do not have tools to benchmark small variants in these regions 

2. Exclude 15 kb around all breaks in the Dipcall BED file for the same reason as previous 
3. Exclude 15 kb around all gaps in GRCh38 because alignments are unreliable 
4. Exclude variants >49 bp in the Dipcall VCF file and any  tandem repeats overlapping 

SVs +50 bp on each side 

Benchmarking variants 
Variant sites in MC/PGGB graphs were discovered using vg deconstruct (Paten et al., 
2018). Variant sites with alleles larger than 100kb in MC/PGGB graphs were then removed 
using vcfbub (v0.1.0, (Garrison, 2021)) with options -l 0 -a 100000. The resulting VCF files 
were further processed using vcfwave from vcflib (Garrison, Kronenberg, et al., 2022) with 
option -I 1000. In brief, vcfwave realigned alternate alleles against the reference allele for 
each variant site using the bidirectional wavefront alignment (BiWFA) algorithm (Marco-Sola et 
al., 2022) to decompose complex alleles into primitive ones. The multi-sample VCF files were 
then converted to per-sample VCF files using bcftools view -a -I -s <sample name> 
and the multiallelic sites were splitted into biallelic records using bcftools norm -m -any. 
Next, the autosomal small variants (<50 bp) from a given pangenome graph (query set) were 
compared to the HiFi-DeepVariant call set (truth set) using vcfeval from RTG Tools (v3.12.1, 
(Cleary et al., 2015)) with options -m annotate --all-records --ref-overlap --no-
roc. Note that the multi-nucleotide polymorphisms and complex indels were reduced to SNPs 
and simple indels using vcfdecompose --break-mnps --break-indels from RTG Tools 
(v3.12.1), (Cleary et al., 2015)The comparison was performed independently for each individual. 
Recall and precision were calculated within the refined Dipcall confident regions (Methods) and 

then stratified by the GIAB v3.0 genomic context. To evaluate the SV (!50 bp) calling 

performance, the autosomal SVs from a given pangenome graph (query set) were compared to 
the consensus SV call set (truth set) for each individual using truvari bench (v3.2.0, 
(English et al., 2022)) with options --multimatch -r 1000 -C 1000 -O 0.0 -p 0.0 -P 
0.3 -s 50 -S 15 --sizemax 100000 --includebed <Dipcall confident 
regions>. Recall and precision were then stratified by the GIAB v3 genomic context and by 
variant length. 
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Alignment of long-reads to pangenome graphs 

PacBio HiFi reads 
PacBio HiFi reads from 44 HPRC/HPRC+ samples were aligned to the Minigraph-Cactus graph 
using GraphAligner (v1.0.13, (Rautiainen & Marschall, 2020)) with option -x vg and stored in 
the GAF format (Li et al., 2020). A read might align to multiple places in the graph, the one with 
highest alignment score was kept and those with lower alignment score were dropped. To 
further remove low-quality alignments, a read with <80% of read length aligned to the graph was 
discarded. After filtering the read-to-graph alignments, the read depth of each edge was 
calculated using vg pack (v1.33.0, (Hickey et al., 2020)) with options -Q -1 -D. Note that the 
resulting GAF files didn’t contain a mapping quality (encoded as 255 for missing) for each 
alignment, therefore the option -Q -1 was given to vg pack to ensure that these alignments 
were used during read depth calculation. Next, the edges of each sample were classified into 
either on-target or off-target depending on whether they are on the sample paths (encoded as 
W-lines in Minigraph-Cactus GFA files) or not. 

Oxford nanopore reads 
ONT reads obtained from 29 HPRC/HPRC+ samples were aligned against the Minigraph-
Cactus graph. The alignments were produced using GraphAligner v.1.0.13 with parameter 
settings “-x vg --multimap-score-fraction 1 --multiseed-DP 1”. The number of 
reads in these data sets range between 1M and 5.4M and have an average read length of 
28.4kb. 
On average 99.68% of the reads received hits from one or more locations in the graph. For 
each read, we determined its best hit based on alignment score and discarded all its lower-
scoring alignments in subsequent analysis. The alignment identities of these best hits peak well 
above 95% with an average ratio of alignment-length-to-read-length (ALRL) of 0.880 (std 0.302) 
and average MAPQ value of 59.35. The alignment set was further quality-pruned by discarding 
alignments that either had an ALRL lower than 0.8 or a MAPQ value lower than 50. The 
surviving alignments have an overall average ALRL of 0.968 (std 0.047) and effectuate an 
overall genome coverage between 10.5- and 43-fold across the 29 samples (Supplementary 
Figure 49).  

Annotating genes within pangenome graphs 
 
We ran the Comparative Annotation Toolkit (CAT)  (Fiddes, Armstrong, et al., 2018) to annotate 
each of the genomes within a pangenome graph. CAT projects a reference annotation, in this 
case GENCODE v38, to each of the haplotypes using the underlying alignments within the 
graph. CAT was run on both of the Minigraph-Cactus based pangenome graphs (the GRCh38-
based graph and the CHM13-based graph). 
 
CAT was run using commit eb2fc8752b6646f6385c12c5168dce579eb435a6. For each graph, the 
autosomes were first run all together, and then the sex chromosomes were run on the 
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appropriate haplotypes. The parameters used were default parameters, except as shown below. 
An example CAT command run is:  
 
luigi --module cat RunCat --hal=CHM13-f1g-90-mc-aug11.hal --ref-genome=GRCh38 --workers=8 --
config=cat-hprc.gencode38.autosomes.config --work-dir work-hprc-gencode38-chm13 --out-dir out-
hprc-gencode38-chm13 --local-scheduler --assembly-hub --maxCores 8 --binary-mode local > 
cat.hprc.gencode38.autosomes.chm13.log  

Analysis of 5 complex loci 

Visualization of graph structures of 5 loci 
We extracted subgraphs and paths of 5 loci in MC and PGGB graphs using gfabase(v0.6.0, 
(Lin, 2021)) and odgi (v0.6.2, (Guarracino, Heumos, et al., 2022)) respectively with the following 
commands:  
gfabase sub GRCh38-f1g-90-mc-aug11.gfab GRCh38.chr1:25240000-25460000 --range --connected --view 
--cutpoints 1 --guess-ranges -o RH_locus.walk.gfa  
odgi extract -i chr1.pan.fa.a2fb268.4030258.6a1ecc2.smooth.og -o chr1.pan.RH_locus.og -b 
chr1.RH_locus.bed -E -P 

We then visualized the graph structures of the subgraphs using bandage (v0.8.1, (Wick et al., 
2015)). 

Alignment of genes to graphs 
We aligned Ensembl (release 106, (Cunningham et al., 2022)) GRCh38 version gene 
sequences to the MC graph and PGGB graph using GraphAligner (v1.0.13, (Rautiainen & 
Marschall, 2020)) with parameter settings “-x vg --try-all-seeds --multimap-score-fraction 0.1” 
to identify the gene positions within the graphs.  

Structural haplotypes identification 
Sequences of each assembly are represented by paths in a gfa file. Structural haplotypes, such 
as insertions, deletions, inversions and CNVs, of each assembly are identified by tracing these 
paths through different big bubbles (>5,000 bp) in either MC graph or PGGB graph within those 
gene regions. An example command to identify big bubbles at RH locus was:  
bcftools filter hprc-v1.0-mc-grch38.vcf.gz -r chr1:25240000-25460000 |grep LV=0 |awk '{OFS="\t"; 
print $1,$2,$3,$4,$5}' |tr "," "\t" |awk '{OFS="\t"; for (i=1;i<=NF;i++) {len=length($i); if 
(len>5000) {print $1,$2,$3; next}}}'  

Gene conversion detection  
Since gene conversion is not shown in a form of bubbles in the graph, to reveal gene 
conversion events, we identified nodes that were different between a gene and its homologous 
gene (e.g. RHD and RHCE), which are referred to as paralogous sequence variants (PSVs). A 
gene conversion event is detected if a path of a gene goes through more than 4 PSVs of its 
homologous gene in a row 
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Visualization of linear gene structures 
Linear gene structures are visualized using gggenes (v0.4.1, (Wilkins, 2022)) based on 
structural haplotypes and gene conversions of each assembly. The length of intervals between 
genes is fixed (except for TMEM50A and RHCE, because those two genes are right next to 
each other). Lengths of genes are proportional to gene lengths in GRCh38. 

Point genotyping with Giraffe/DeepVariant/DeepTrio  

Alignment of reads to the pangenome 
The short-reads were first split in chunks to parallelize the read mapping to the “allele-filtered 
graph” pangenome defined above in “Minigraph-Cactus Pangenome Pipeline”, and is identified 
in the dataset accompanying this paper as “clip.d9.m1000.D10M.m1000”. Mapping was 
performed with vg giraffe (Sirén et al., 2021) from vg release v1.37.0. For trio-based runs, the 
trio-sample sets of short-reads were mapped to the pangenome using vg giraffe from vg release 
v1.38.0. Note that the core vg algorithms for Giraffe mapping and surjection (conversion from 
graph space to linear space) are the same in both vg v1.37.0 and v1.38.0. The output 
alignments, surjected to GRCh38 in BAM format as explained below, are available at 
(s3://human-pangenomics/publications/PANGENOME_2022/DeepTrio/samples/) in the “bam” 
directory of each sample’s directory, and are organized by aligner. 

Surjection to GRCh38 and indel realignment 
In order to perform variant calling, GAM alignments were surjected onto the chromosomal paths 
from GRCh38 (chr 1-22, X, Y) using vg surject and the --prune-low-cplx option to 
prune short and low complexity anchors during realignment. The BAM files were sorted and split 
by chromosome using samtools (v1.3.1), (Li et al., 2009). The reads were realigned, first  using 
bamleftalign from FreeBayes (v1.2.0), (Garrison & Marth, 2012), and then with ABRA 
(v2.23), (Mose et al., 2014) on target regions that were identified using RealignerTargetCreator 
from GATK (v3.8.1), (Poplin et al., 2017) and expanded by 160 nucleotides with bedtools slop 
(v2.21.0), (Quinlan & Hall, 2010). 

Model training 
To do variant calling with DeepVariant and DeepTrio, we trained machine learning models 
specific to our graph reference and vg giraffe alignment pipeline, based on our alignments. For 
all models, chromosome 20 was entirely held out from all input samples, to provide a control. 
 
Training was performed on Google’s internal cluster, using unreleased Google “Tensor 
Processing Unit” (TPU) accelerators, from a “cold start” (i.e. without using a pre-trained model 
as input). We believe that nothing about the way in which we executed the training is essential 
to the results obtained. Cold start training is estimated to be feasible outside of the Google 
environment, and thus the claims we present here are falsifiable, but it is not expected to be 
cost-effective. Researchers looking to independently replicate our training should consider doing 
“warm start” training from a base model trained on other data, using commercially available 
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Graphics Processing Unit (GPU) accelerators. An example procedure can be found in the 
DeepVariant training tutorial at 
(https://github.com/google/deepvariant/blob/r1.3/docs/deepvariant-training-case-study.md). We 
predict that this more accessible method would yield equivalent results. 
 
For both DeepVariant and DeepTrio, the true variant calls being trained against came from the 
GIAB benchmark v4.2.1. 
 
For DeepVariant, we trained on the HG002, HG004, HG005, HG006, and HG007 samples, with 
HG003 held out. The trained DeepVariant model is available at (s3://human-
pangenomics/publications/PANGENOME_2022/DeepVariant/DEEPVARIANT_MC_Y1/). 
 
For DeepTrio, we trained two sets of models: one on HG002, HG003, HG004, HG005, HG006 
and HG007, with HG001 held out, and one on HG001, HG005, HG006, and HG007, with the 
HG002/3/4 trio held out. Each DeepTrio model set included parental and child models. The two 
trained child deeptrio models are available at (s3://human-
pangenomics/publications/PANGENOME_2022/DeepTrio/models/deeptrio/child/)  and 
(s3://human-pangenomics/publications/PANGENOME_2022/DeepTrio/models/deeptrio-no-
HG002-HG003-HG004/child/), respectively. The two trained parental deeptrio models are 
available at (s3://human-
pangenomics/publications/PANGENOME_2022/DeepTrio/models/deeptrio/parent/) and 
(s3://human-pangenomics/publications/PANGENOME_2022/DeepTrio/models/deeptrio-no-
HG002-HG003-HG004//parent/, respectively).  

Variant calling with DeepVariant 
DeepVariant (v.1.3) was evaluated on HG003, using the model we trained with HG003 held out 
(see “Model training”). We used the --keep_legacy_allele_counter_behavior flag 
(introduced to support this analysis) and a minimum mapping quality of 1 in the 
make_examples step, before calling the variants with call_variants. Both VCFs and 
gVCFs were produced. The WDL workflow used for single sample mapping and variant calling 
was deposited on dockstore (github.com/vgteam/vg_wdl/GiraffeDeepVariantLite, 2022).  

Variant calling on GRCh38 with BWA-MEM and DeepVariant 
Small variants were also called using a more traditional pipeline. We aligned reads with  BWA-
MEM (Li, 2013) to GRCh38 with decoys but no ALTs. DeepVariant then called small variants 
from the aligned reads. The same version and parameters were used for DeepVariant. Only the 
model was changed, to the default DeepVariant model. 

Variant calling with DeepTrio 
Small variants were also called with DeepTrio (v1.3). For HG001, we used the DeepTrio models 
we trained with HG001 held out (see “Model training”). For the HG002/3/4 and HG005/6/7 trios, 
we used the models trained with the HG002/3/4 trio held out; the HG005/6/7 trio (except for 
chr20) was still included in the training set. We used the --
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keep_legacy_allele_counter_behavior and a minimum mapping quality of 1 in the 
make_examples step before calling the variants with call_variants. Both VCFs and gVCFs 
were produced and are available at (s3://human-
pangenomics/publications/PANGENOME_2022/DeepTrio/samples/) in the “vcf” directory of 
each sample’s directory, and are organized by mapping and calling condition. The WDL 
workflow used for trio-based mapping and variant calling was deposited on dockstore 
(https://doi.org/10.5281/ZENODO.6655962). 

Variant calling on GRCh38 with BWA-MEM, Dragen Graph, and DeepTrio 
For DeepTrio, small variants were also called using a more traditional pipeline and a graph-
based implementation of Illumina’s Dragen platform (v3.7.5). The conditions evaluated were 
each a combination of a mapper and a reference. The Giraffe-HPRC condition used VG Giraffe 
(v1.38.0, (Sirén et al., 2021)) to align reads to the HPRC reference. The BWA-MEM condition 
used BWA-MEM (v0.7.17-r1188), (Li, 2013) to align reads to the hs38d1 human reference 
genome with decoys but no ALTs. The Dragen-DeepTrioCall condition used Illumina’s Dragen 
platform (v3.7.5), (Miller et al., 2015) against their default graph, which was constructed using 
the same GRCh38 reference with decoys but no ALTs, and population contigs, SNPs and 
liftover sequences from datasets internal to their platform. DeepTrio then called small variants 
from the aligned reads. The same version and parameters were used for DeepTrio (v1.3). Only 
the default model was used for these conditions. We also applied the native Dragen caller and 
joint genotyper to the Dragen Graph based alignments for comparison purposes, referred to as 
Dragen-DragenCall and Dragen-DragenJointCall, respectively. Dragen-DragenCall implements 
a single-sample based method and is what is the default use-case for processing Dragen-graph 
mapped data. Dragen-DragenJointCall uses a pedigree-backed implementation that informs 
which variants are likely denovo and which are erroneous given the genotype information of the 
parents. In order to make a more fair comparison with Dragen, we tested these configurations to 
assess what implementation of Dragen variant calling can produce the best results given the 
available trio data. 

Evaluation using the Genome in a Bottle benchmark 
The small variants calls were evaluated on HG001-7 with the GIAB benchmark v4.2.1 (Wagner, 
Olson, Harris, Khan, et al., 2022), on HG002 in Challenging Medically-Relevant Autosomal 
Genes (Wagner, Olson, Harris, McDaniel, et al., 2022), and on HG002 using a preliminary draft 
assembly-based benchmark. For the draft assembly-based benchmark, we used dipcall to align 
a scaffolded, high-coverage trio-hifiasm assembly (Jarvis et al., 2022) to GRCh38 and call 
variants, and then we excluded structurally variant regions from the dip.bed file as described 
above for the benchmarking of small variants from the pangenome graph. The comparison 
between the callsets and truth set was made with RTG’s vcfeval (Cleary et al., 2015) and 
Illumina’s hap.py tool (Krusche et al., 2019) on confident regions of the benchmark. We used 
high-coverage read sets of the GIAB HG001, HG002 and HG005 trio child samples and 
evaluated performance within the held-out Chromosome 20 for the GIAB v4.2.1 truth set, or the 
whole genome for the reduced truth set of the Challenging Medically-Relevant Autosomal 
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Genes. The evaluation was also stratified using the set of regions provided by the GIAB at 
(https://github.com/genome-in-a-bottle/genome-stratifications) (Olson et al., 2022).  

Variant calls across samples from the 1000 Genomes Project 
We applied our small variant calling pipeline to the high-coverage read sets for the 3,202 
samples of the 1KG (1000 Genomes Project Consortium et al., 2015). The output alignments, in 
the GAM format, and the VCFs were saved in public buckets at (gs://brain-genomics-
public/research/cohort/1KGP/vg/graph_to_grch38/).  We selected 100 trios among those 
samples to further evaluate the quality of the calls. We tested all variants that have at least one 
alternate allele in a trio for Mendelian consistency. In addition, for each variant, we only 
considered trios where the child’s genotype was different from the genotype of at least one of 
the parents, to minimize bias created by systematic calls (e.g. all homozygous or all 
heterozygous). We look at the fraction of variants-trios that fail Mendelian consistency in the 
whole genome and in sites that don’t overlap simple repeats as defined by the “simpleRepeat” 
track downloaded from the UCSC Genome Browser. The results are compared with Mendelian 
consistency of calls provided by the 1KG that used GATK HaplotypeCaller on the reads aligned 
to GRCh38. We also repeated this analysis on the two trios of the GIAB v4.2.1 benchmark 
(HG002-7) and across the different methods of our evaluation described above (BWA-MEM, 
DragenGraph mappers; DeepVariant, DeepTrio, Dragen variant callers). 

SV genotyping with PanGenie 

VCF preprocessing 
We used a VCF file created based on the snarl traversal of the MC graph as a basis for 
genotyping. The records contained in this VCF represent bubbles in the underlying pangenome 
graph as well as their nested variants, derived from the snarl tree. Each variant is marked 
according to their level in this tree. Variants annotated by "LV=0" correspond to the top-level 
bubbles. We used vcfbub (version 0.1.0, (Garrison, 2021)) with parameters -l 0 and -r 
100000 in order to filter the VCF. This removes all non-top-level bubbles from the VCF, unless 
they are nested inside a top-level bubble with a reference length exceeding 100kb, i.e. top-level 
bubbles longer than that are replaced by their child nodes in the snarl tree. The VCF also 
contains the haplotypes for all 44 assembly samples, representing paths in the pangenome 
graph. We additionally remove all records for which more than 80% of all 88 haplotypes carry a 
missing allele (“.”). This resulted in a set of 22,133,782 bubbles. In a next step, we used 
PanGenie (Ebler et al., 2022) (v1.0.0), to genotype these bubbles across all 3,202 samples from 
the 1KG based on high coverage Illumina reads (Byrska-Bishop et al., 2021). 

Decomposition of variants 
Genotyping results in genotypes for all top-level bubbles across all 1000 Genomes samples. 
While bi-allelic bubbles can be easily classified representing SNPs, indels or SVs, this becomes 
more difficult for multi-allelic bubbles contained in the VCF. Especially larger multi-allelic 
bubbles can contain a high number of nested variant alleles overlapping across haplotypes, 
represented as a single bubble in the graph. This is especially problematic when comparing the 
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genotypes computed for the whole bubble to external callsets, as coordinates of the bubble do 
not necessarily represent the exact coordinates of individual variant alleles carried by a sample 
in this region (Supplementary Figure 25). 
 
In order to tackle this problem, we have implemented a decomposition approach which aims at 
detecting all variant alleles nested inside of multi-allelic top-level records. The idea is to detect 
variants from the node traversals of the reference and alternative alleles of all top level bubbles. 
Given the node traversals of a reference and alternative path through a bubble, our approach is 
to match each reference node to its leftmost occurrence in the alternative traversal, resulting in 
an alignment of the node traversals (Supplementary Figure 26-a). Nested alleles can then be 
determined based on insertions, deletions and mismatches in this alignment. Since the node 
traversals of the alternative alleles can visit the same node more than once (which is not the 
case for the reference alleles of the MC graph), this approach is not guaranteed to reconstruct 
the optimal sequence alignment underlying the nodes in these repeated regions.  
 
As an output, the decomposition process generates two VCF files. The first one is a multi-allelic 
VCF which contains exactly the same variant records as the input VCF, just that annotations for 
all alternative alleles of a record were added to the ID tag in the INFO field. For each alternative 
allele, the ID tag contains IDs encoding all nested variants it is composed of, separated by a 
colon. The second VCF is bi-allelic and contains a separate record for each nested variant ID 
defining reference and alternative allele of the respective variant (Supplementary Figure 26-b). 
Both VCFs are different representations of the same genomic variation, i.e. before and after 
decomposition. We applied this decomposition method to the MC-based VCF file, use the multi-
allelic output VCF as input for PanGenie to genotype bubbles, and use the bi-allelic VCF as well 
as the IDs in order to translate PanGenie’s genotypes for bubbles to genotypes for all individual 
nested variant alleles. All downstream analyses of the genotypes are based on this bi-allelic 
representation (i.e. after decomposition). 
 
While the majority of short bubbles (< 10 bp) are bi-allelic, especially large bubbles (> 1000 bp) 
tend to be multi-allelic. Sometimes each of the 88 haplotypes contained in the graph covers a 
different path through such a bubble (Supplementary Figure 27-a), leading to a VCF record 
with 88 alternative alleles listed. We determined the number of variant alleles located inside of 
bi-allelic and multi-allelic bubbles in the pangenome after decomposition. As expected, the 
majority of SV alleles is located inside of the more complex, multi-allelic regions of the 
pangenome (Supplementary Figure 27-b).  
 

Genotyping Evaluation based on assembly samples 
We conducted a “leave-one-out” experiment in order to evaluate PanGenie’s genotyping 
performance for the callset samples. For this purpose, we repeatedly removed one of the panel 
samples from the MC VCF and genotyped it using only the remaining samples as an input panel 
for PanGenie. We later used the genotypes of the left-out sample as ground truth for evaluation. 
We repeated this experiment for five of the callset samples (HG00438, HG00733, HG02717, 
NA20129 and HG03453) using 1000 Genomes high coverage Illumina reads (Byrska-Bishop et 
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al., 2021). PanGenie is a re-genotyping method. Therefore, like every other re-typer, it can only 
genotype variants contained in the input panel VCF, that is, it is not able to detect variants 
unique to the genotyped sample. For this reason we removed all variant alleles (after 
decomposition) unique to the left-out sample contained in the truth set for evaluation. In order to 
evaluate the genotype performance, we used the weighted genotype concordance (Ebler et al., 
2022). (Supplementary Figure 28)  shows the results stratified by different regions. 
(Supplementary Figure 28-A) shows concordances in biallelic and multiallelic regions of the 
MC VCF. The biallelic regions include only bubbles with two branches. The multiallelic regions 
include all bubbles in which haplotypes cover more than two different paths. (Supplementary 
Figure 28-B) shows the same results stratified by genomic regions defined by GIAB that we 
obtained from: 
easy: (https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/genome-
stratifications/v3.0/GRCh38/union/GRCh38_notinalldifficultregions.bed.gz) 
low-mappability: (https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/genome-
stratifications/v3.0/GRCh38/union/GRCh38_alllowmapandsegdupregions.bed.gz) 
repeats: (https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/genome-
stratifications/v3.0/GRCh38/LowComplexity/GRCh38_AllTandemRepeats_gt100bp_slop5.bed.g
z) 
other-difficult: (https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/genome-
stratifications/v3.0/GRCh38/OtherDifficult/GRCh38_allOtherDifficultregions.bed.gz) 
 
Here and in the following, we consider results for SNPs, indels (1-49bp), SV deletions, SV 
insertions and other SV alleles, defined as follows: SV deletions include all alleles for which 
length(REF) >= 50bp and length(ALT) = 1. SV insertions include all alleles for which 
length(REF) = 1 and length(ALT) >= 50. All other alleles with a length >= 50bp are included in 
“others”. 

Overall, weighted genotype concordances are high for all variant types. Especially variant 
alleles in biallelic regions of the graph are very well genotypable. Alleles inside of multiallelic 
bubbles are more difficult to genotype correctly since PanGenie needs to decide between 
several possible alternative paths, while there is only two such paths for biallelic regions 
(Supplementary Figure 28-A). Furthermore, genotyping accuracy depends on the genomic 
context (Supplementary Figure 28-B). Regions with low mappability, repetitive regions and 
other difficult regions are harder to genotype than regions classified as “easy” by GIAB. 

Creating a high quality subset 
We generated genotypes for all 3,202 1000 Genomes samples with PanGenie and defined a 
high quality subset of SV alleles that we can reliably genotype. For this purpose, we applied a 
machine learning approach similar to what we have presented previously (Ebert et al., 2021; 
Ebler et al., 2022). We define positive and negative subsets of variants based on the following 
filters: 

● ac0_fail: a variant allele was genotyped with an AF of 0.0 across all samples 
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● mendel_fail: the mendelian consistency across trios is less than 80% for a variant 
allele. Here, we use a strict definition of mendelian consistency which excludes all trios 
with only 0/0, only 0/1 and only 1/1 genotypes.  

● gq_fail: less than 50 high quality genotypes were reported for this variant allele 
● self_fail: genotyping accuracy of a variant allele across the panel samples is less than 

90% 
● nonref_fail: not a single non-0/0 genotype was genotyped correctly across all panel 

samples 
 
The positive set includes all variant alleles that passed all five filters. The negative set contains 
all variant alleles that passed the ac0_fail filter but failed at least three of the other filters. We 
trained a support vector regression (SVR) approach based on these two sets that uses multiple 
features including allele frequencies, mendelian consistencies or the number of alternative 
alleles transmitted from parents to children. We applied this method to all remaining variant 
alleles genotyped with an AF > 0, resulting in a score between -1 (bad) and 1 (good) for each. 
We finally define a filtered set of variants which includes the positive set, as well as all variant 
alleles with a score of >= -0.5.  
 
We show the number of variant alleles contained in the unfiltered set, the positive set as well as 
the filtered set in Supplementary Table 16. Since our focus is on SVs and since 65% of all 
SNPs and indels are already contained in the positive set, we applied our machine learning 
approach only to SVs. We found that 50%, 33% and 26% of all deletion, insertion and “other” 
alleles were contained in the final, filtered set of variants, respectively. Note that these numbers 
take all distinct SV alleles contained in the callsets into account. Especially for insertions and 
“other” SVs, many of these alleles are very similar, with sometimes only a single base pair 
differing. Therefore, it is likely that many of these actually represent the same events. Our 
genotyping and filtering approach helps to remove such redundant alleles. 
 
In order to evaluate the quality of the PanGenie genotypes, we compared the allele frequencies 
observed for the SV alleles across all 2,504 unrelated 1000 Genomes samples to their allele 
frequencies observed across the 44 assembly samples in the MC callset. (Supplementary 
Figures 29, 30, and 31) show the results for SV deletions, insertions and other SV alleles. We 
observed that the allele frequencies between both sets match well, resulting in correlations 
(pearson) of 0.93, 0.87 and 0.81 for deletions, insertions and “other” alleles contained in the 
unfiltered set. For the filtered set, we observed correlations of 0.96, 0.93 and 0.90, respectively. 
We also analyzed the heterozygosity of the PanGenie genotypes across all 2,504 unrelated 
1000 Genomes samples and observed a relationship close to what is expected by Hardy-
Weinberg equilibrium (Supplementary Figures 29, 30, and 31, lower panel). 

Number of SVs per sample 
We compared our filtered set of variant alleles to the HGSVC PanGenie genotypes (v2.0 
“lenient” set, (Ebert et al., 2021)) and Illumina-based SV genotypes (Byrska-Bishop et al., 2021). 
A direct comparison of the three callsets is difficult. The HGSVC and HPRC callsets are based 
on variant calls produced from haplotype-resolved assemblies of 32 and 44 samples, 
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respectively (Ebert et al., 2021). For each callset, variants were re-genotyped across all 3,202 
1000 Genomes samples. Note that the callset samples for HPRC and HGSVC are disjoint. 
Since re-genotyping cannot discover novel variants, both callsets will miss variants carried by 
3,202 samples that were not seen in the assembly samples. In contrast, the 1KG callset 
contains short-read based variant calls produced for each of the 3,202 1000 Genomes samples. 
Another difference between the HGSVC and HPRC callsets is that in the HGSVC callset, highly 
similar alleles are merged into a single record to correct for representation differences across 
different samples or haplotypes. The HPRC callset however, keeps all these alleles separately 
even if there is only a single basepair difference between them. To make the callsets better 
comparable, we merged clusters of highly similar alleles in the HPRC filtered set prior to 
comparisons with other callsets. This was done with truvari ((English et al., 2022), version 
v3.1.0) using the command: truvari collapse -r 500 -p 0.95 -P 0.95 -s 50 -S 
100000. 
 
In order to be able to properly compare the callsets despite their differences, we counted the 
number of SV alleles present in each sample (genotype 0/1 or 1/1) in each callset and plotted 
the corresponding distributions stratified by genome annotations from GIAB (same as above, 
Figure 6D). We also generated the same plot including only common SV alleles with an AF > 
5% across all 3,202 samples (Supplementary Figure 34). Both plots show that both assembly-
based callsets (HPRC, HGSVC) are able to access more SVs across the genome than the 
short-read-based 1KG callset, especially deletions < 300bp and insertions (Figure 6E). This 
confirms that SV callers based on short-reads alone miss a large portion of SVs located in 
regions inaccessible by short-read alignments, which has been reported previously by several 
studies (Ebert et al., 2021; Zhao et al., 2021). In the “easy” regions, the number of SVs per 
sample is consistent across all three callsets. For the other regions however, results indicate 
that the HPRC filtered genotypes give access to more variant alleles than the HGSVC lenient 
set, especially insertions and variants in regions of low mappability and tandem repeats (Figure 
6D, Figure 6E). 

Evaluation based on medically relevant SVs 
In addition to all 3,202 1000 Genomes samples we also genotyped sample HG002 based on 
Illumina reads from (J. M. Zook et al., 2016). We used the GIAB CMRG benchmark containing 
medically relevant SVs (Wagner, Olson, Harris, McDaniel, et al., 2022), downloaded from: 
(https://ftp-
trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/AshkenazimTrio/HG002_NA24385_son/
CMRG_v1.00/GRCh38/StructuralVariant/) for evaluation. Like for the 1000 Genomes samples, 
we used the MC-based VCF (see above) containing variant bubbles and haplotypes of 44 
assembly samples as an input panel for PanGenie. We extracted all variant alleles with a length 
>= 50bp from our genotyped VCF (biallelic version, after decomposition). We converted the 
ground truth VCF into a biallelic representation using bcftools norm -m -any and kept all 
alleles with length >= 50bp. We used truvari ((English et al., 2022), version v3.1.0) with 
parameters --multimatch --includebed <medically-relevant-sv-bed> -r 2000 
--no-ref a -C 2000 --passonly in order to compare our genotype predictions to the 
medically relevant SVs. Results are shown in (Supplementary Table 18, left). Since PanGenie 
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is a re-typing method, it can only genotype variants provided in the input and thus cannot detect 
novel alleles. Since HG002 is not among the panel samples, the input VCF misses variants 
unique to NA24385. Thus, these unique variants cannot be genotyped by PanGenie and will be 
counted as false negatives during evaluation. Therefore, we computed an “adjusted” version of 
the recall which excludes SV alleles unique to HG002 (i.e. alleles not in the graph) from the truth 
set for evaluation. In order to identify which SV alleles were unique, we compared each of the 
44 panel samples to the ground truth VCF using truvari in order to identify the false negatives 
for each sample. Then we computed the intersection of false negative calls across all samples. 
The resulting set then contains all variant alleles unique to the HG002 ground truth set. We 
found 15 such unique SV alleles among the GIAB CMRG variants. We removed these alleles 
from the ground truth set and recomputed precision/recall statistics for our genotypes. Adjusted 
precision/recall values are shown in (Supplementary Table 18, right). 

Read mapping at VNTR regions 

Simulating and mapping VNTR reads 
Raw VNTR coordinates on GRCh38 (chr1-22 and sex chromosomes only) were generated 
using TRF v4.09 (Benson, 1999) with command: trf hg38.fa 2 7 7 80 10 50 500 -f 
-d. Only repeats with period size between (6,10k) bp, total length > 100bp and not overlapping 
with centromeric regions were selected, leaving a total number of 98,021 non-overlapping loci. 
Using the raw VNTR coordinates on GRCh38 as input, VNTR regions across 96 haplotypes 
(including GRCh38) were annotated using the build module in danbing-tk v1.3 (Lu et al., 2021) 
(dist_scan=700, dist_merge=1, TRwindow=100000, MBE_th1=0.3, MBE_th2=0.6).  
 
Whole-genome paired-end error-free short-reads were simulated at ~30x for each genome, or 
equivalently ~15x for each haplotype. A read pair was generated for every 20 bp with fragment 
size = 500 bp and read length = 150bp. Paired-end read mapping to the mc graph was done 
using vg giraffe v1.39.0 (Sirén et al., 2021) using the command vg giraffe -x $pref.xg -
g $pref.gg -H $pref.gbwt -m $pref.min -d $pref.dist -p -f <(zcat $h1 
$h2) -i -t 16) while mapping to GRCh38 was done using bwa-mem v0.7.17-r1188 (Li, 
2013) using the command bwa mem -t 16 -Y -K 100000000 -p $ref <(zcat $h1 
$h2). For a fair comparison, GRCh38 plus decoy minus alt/HLA contigs were used as 
reference to match the paths included in the mc graph.  

Evaluating read mapping accuracy at VNTR regions 
To evaluate the performance of read mapping using the mc graph plus giraffe, the VNTR 
information from danbing-tk were used to annotate each node in the graph by traversing each 
haplotype path. Every node that covers a VNTR region has a tuple that denotes the intersected 
interval; any aligned reads overlapping with the interval were considered mapped to the VNTR. 
Similarly, a read simulated from an interval overlapping with a VNTR was considered derived 
from the VNTR. To evaluate the performance of GRCh38 plus bwa-mem, the mapped region by 
each read was obtained using the bamtobed submodule in bedtools v2.30.0 (Quinlan & Hall, 
2010). The VNTR annotations on GRCh38 were used to determine whether a read was mapped 
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to a VNTR. 
 
For each read, we tracked its source and mapped VNTR(s), and used this information to 
compute accuracy . Only VNTRs present in danbing-tk’s annotations were tracked; otherwise 
they were labeled “untracked” the same as non-VNTR regions. A true positive denotes mapping 
from a VNTR to its original VNTR. An exogenous false positive denotes mapping from 
untracked regions to a VNTR. An endogenous false positive denotes mapping from a VNTR to 
another VNTR. A false negative denotes mapping from untracked regions to untracked regions. 
Any alignments in the json output of giraffe that did not contain the “mapping” field were 
considered unmapped. The two ends of a read pair that did not map to the same chromosome 
by bwa-mem were also considered unmapped. 

Estimating VNTR length variants from read depths 
The whole-genome sequencing (WGS) samples for 35 genomes (HG00438, HG00621, 
HG00673, HG00733, HG00735, HG01071, HG01106, HG01109, HG01175, HG01243, 
HG01258, HG01361, HG01891, HG01928, HG01952, HG01978, HG02055, HG02080, 
HG02145, HG02148, HG02257, HG02572, HG02622, HG02630, HG02717, HG02723, 
HG02818, HG02886, HG03098, HG03453, HG03486, HG03492, HG03579, NA18906, 
NA19240) were mapped to the mc graph using vg giraffe as described in the “Point genotyping 
with Giraffe/DeepVariant/DeepTrio” section. Using the VNTR annotations described in the 
previous section, the number of reads mapped to each VNTR region in the mc graph was 
calculated as a proxy for VNTR length. VNTRs with invariant length across the 35 genomes 
were removed from analysis, leaving a total of 60,861 loci.  
 
As a baseline control, the read depth of each VNTR region for the 35 WGS samples produced 
by mapping reads to GRCh38 was also computed with mosdepth v0.3.1 (Pedersen & Quinlan, 
2018) using the command mosdepth -t 4 -b $VNTR_bed -x -f $hg38 $pref $cram. 
To be able to compare with the graph-based approach, VNTRs with missing annotation on 
GRCh38 were further removed, leaving a total of 60,386 VNTRs. 

RNA-seq mapping evaluation 
We augmented the “allele-filtered graph” (see Point genotyping section) with edges for splice 
junctions to create a spliced pangenome graph using the rna subcommand in the vg toolkit 
v1.38.0 with a maximum node length set to 32 (vg rna -k 32) (Sibbesen et al., 2021). The 
transcript annotations that were used to define the splice junctions consisted of the CAT 
transcript annotations on each assembly together with splice junctions from the GENCODE 
(v38) annotation (Frankish et al., 2021). Transcripts from the GENCODE (v38) annotation were 
further added as paths to the spliced pangenome graph. For comparison, we created two other 
references/graphs. A spliced reference constructed from the reference sequence, and a spliced 
pangenome graph constructed from the high coverage 1KG (1000GP) phased variant set 
created by the New York Genome Center (https://www.internationalgenome.org/data-
portal/data-collection/30x-grch38) (Byrska-Bishop et al., 2021). Both were constructed using the 
GENCODE (v38) transcript annotation, and a minimum AF filter of 0.001 was used for the 
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1000GP graph. For chromosomes Y and MT, we used the unphased 1000GP variant set and 
only included variants that passed all filters. In addition, the trio NA12878, NA12891 and 
NA12892 were filtered from the 1000GP variant set since RNA-seq data from NA12878 were 
used for the mapping evaluation. BCFtools v1.9 was used for filtering the variant sets (Danecek 
et al., 2021). For each graph we created the indexes needed for mapping using the vg toolkit 
v1.38.0 with default parameters, except when pruning where edges on embedded paths were 
restored (vg prune -r). Furthermore, for the spliced HPRC pangenome graph it was 
necessary to use stricter pruning parameters (vg prune -r -k 64 -M 64). For the spliced 
reference we created the index needed by the RNA-seq mapper STAR using default 
parameters. 
 
We simulated RNA-seq reads with a pipeline that was designed to preserve complex genome 
variation in the simulated data. The transcript sequences used for the simulation were derived 
from the GENCODE (v38) transcript annotations projected onto assembled haplotypes from 
HG002. Specifically, we used minigraph-cactus to create an alignment between GRCh38 and 
the two HG002 haplotypes, which were held out of the main pangenome graph for 
benchmarking. We then used CAT to lift the transcript annotations over to these haplotypes. We 
constructed a spliced personal genome graph using the vg rna subcommand, and then we 
simulated reads using vg sim (commit 2cea1e2), using an Illumina NovaSeq cDNA read set 
(SRR18109271) to fit model parameters. This essentially amounts to simulating directly from the 
projected transcript sequences. The transcripts were simulated with uniform expression, split 
evenly between the two haplotypes. This expression profile is not biologically realistic, but it 
avoids the difficulty of choosing a particular expression profile as representative for all tissues 
and stages of development. Moreover, existing estimated profiles would be biased toward the 
tools that were used to estimate them. We simulated 5,000,000 paired-end 150bp RNA-seq 
reads.  
 
Both simulated and real Illumina RNA-seq reads were mapped to the graphs using vg mpmap 
(commit 2cea1e2) with default parameters. In addition, the reads were mapped to the spliced 
reference using STAR (version 2.7.10a) with default parameters (Dobin et al., 2013). For the 
real data we used NA12878 RNA-seq data from both Tilgner, et al. (SRR1153470) (Tilgner et 
al., 2014) and the ENCODE project (ENCSR000AED, replicate 1) (Davis et al., 2018; ENCODE 
Project Consortium, 2012).  
 
We used the same approach as described in Sibbesen, et al. (Sibbesen et al., 2021) to evaluate 
the alignments. Briefly, for the simulated data the graph alignments were compared to the truth 
alignments by estimating their overlap on the reference genome paths. The graph alignments 
were projected to the reference paths using vg surject -S. An alignment was considered 
correct if it overlapped 90% of the truth alignment. For the real data, the average read coverage 
of each exon on the reference path calculated from the projected graph alignments were 
compared to the corresponding coverages estimated from long-read alignments. For the long-
read data we used PacBio Iso-Seq alignments from the ENCODE project (ENCSR706ANY, all 
replicates), which come from the same cell line as the Illumina data. The long-read alignments 
were used to define the exons, and only primary long-read alignments with a mapping quality of 
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at least 30 were used. The alignments for the four Iso-Seq replicates (ENCFF247TLH, 
ENCFF431IOE, ENCFF520MMC, ENCFF626GWM) were combined and filtered using 
SAMtools v1.15 (Danecek et al., 2021). BEDTools v2.30.0 was used to convert the alignments 
to exons coordinates (Quinlan & Hall, 2010).  
 
The scripts that was used for graph construction, read simulation, mapping and evaluation are 
available at (https://github.com/jonassibbesen/hprc-rnaseq-analyses-scripts). 

ChIP-seq analysis 
We aligned H3K4me1, H3K27ac and ATAC-seq obtained from monocyte-derived macrophages 
from 30 individuals (Groza et al., 2022) using vg map (Garrison et al., 2018) to the hg38 
reference genome graph and to the HPRC genome graph. Then, we called peaks using Graph 
Peak Caller v1.2.3 (Grytten et al., 2019) on both sets of alignments for each of the 30 
H3K4me1, H3K27ac, and ATAC-seq samples. To identify HPRC-only peaks, we projected 
HPRC coordinates to the hg38 path using Graph Peak Caller and compared intervals using 
bedtools (Quinlan & Hall, 2010). We named HPRC peaks that overlap hg38 peaks as common 
peaks and those that do not as HPRC-only. We calculated the expected frequency (as inverse 
cumulative distributions) of common and HPRC-only peaks among the 30 samples by 
resampling the peaks of each sample from the peaks of all the samples and re-counted the 
number of overlaps. We repeated this simulation 100 times and plotted the average curves. We 
determined heterozygous variants in our samples by aligning WGS datasets for each sample to 
the HPRC graph using vg map and genotyping the variants using vg call -a. We narrowed the 
list of heterozygous SVs above 50 bp in each sample with the aim of looking for allelic-specific 
peaks. For each epigenomic sample, we obtained allelic-specific read counts within peaks that 
lie on the previously identified loci by running vg call -a on the epigenomic HPRC alignments, 
which outputs the numbers of reads on each path in a bubble (DP and AD fields in the VCF 
output). We then assigned peaks to the SV or reference allele, or both alleles with a two-tailed 
binomial test parameterized on the sum of reads on both alleles and p = 0.05. Any peak with 
reads on one allele, but not on the other was assigned to the allele with the reads. Read counts 
were proportionally adjusted for the difference in length between the reference and SV alleles. 
Processed data, scripts and code for the above steps are available on Zenodo (Groza & 
Bourque, 2022). 

Population genetic analyses 

Overview 
Although our pangenome contains a relatively small number of genomes (N=44), the high 
quality and contiguity of its component assemblies in principle allows us to consider variation in 
regions that were previously inaccessible to study. We thus undertook a basic survey of 
population genetic features relative to chromosomal regions. We used the PGGB graph due to 
its  inclusion of all input contigs and our ability to apply Flagger assembly annotations to its 
embedded paths. We generated a T2T-CHM13 based VCF from the subset of the PGGB graph 
containing only Flagger confident regions. For each chromosome-scale region, both whole 
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chromosomes and the short (p) and long (q) arms, we computed a PCA and evaluated the first 
two principal components (Supplementary Figure 50). Labeling genomes by 1000 Genomes 
population revealed a consistent set of superpopulation clusters in metacentric p- and q-arms, 
and in acrocentrics q-arms. However, in acrocentric p-arms, traditional population stratification 
breaks down. A quantitative evaluation based on k-means clustering (Supplementary Figure 
51) shows that the optimal number of clusters is significantly lower (Wilcoxon p = 0.013) on the 
acrocentric than metacentric p-arms, a distinction not found elsewhere (Supplementary Figure 
52). Although our restriction of the analysis to Flagger confident regions should mitigate effects 
of assembly error, this pattern may represent alignment error or difficulty in chromosome 
assignment related to patterns of “misjoins” observed in the initial assemblies (Figure 1B). 
However, an underlying biological mechanism driving homogenization between these regions 
cannot be ruled out, and would be consistent with prior studies of satellite sequences in these 
regions (Choo et al., 1988, 1989). In total, this indicates significant difficulty in utilizing these 
regions for population genetic study.  

Analysis approach 
Although the size of the population sample represented in our pangenome is small, it provides 
unprecedented access to previously under-ascertained regions of the genome. We sought to 
understand the potential utility of these regions for future population genetic studies using 
regional principal components analysis (PCA) based on variants called vs. the CHM13 and 
GRCh38 references. For these analyses we considered both the PGGB (whole pangenome, 
combined) and minigraph/cactus (reference-based, distinct CHM13 and GRCh38) graphs. For 
both graph models, the CHM13 VCFs provide access to regions that were not previously 
observed by studies based on GRCh38, where short-read based studies may have difficulty 
reliably aligning and calling variants. In combination, these two graphs provide cross-validation 
of implied population genetic patterns in these new regions, which we explore here. 
 
To understand chromosome-specific patterns of variation, we applied PCA to each autosomal 
chromosome independently, to the VCFs from PGGB (PGGB-CHM13, PGGB-GRCh38). 
To ensure that observed patterns were not derived from higher rates of assembly error in the 
repetitive regions of acrocentric p-arms, we used our Flagger confident region annotations to 
prune the PGGB graph (using odgi inject to inject the confident regions as subpaths and then 
odgi prune to remove the full original paths that were including unreliable regions) to only 
confident regions of assemblies. We then reapplied vg deconstruct to this graph to obtain a new 
set of SNPs (the code for the PGGB graphs pruning and variant calling on the pruned graphs 
can be found at the following link: 
https://github.com/pangenome/HPRCyear1v2genbank/blob/main/workflows/confident_variants.
md). Genome-wide, we find that pruning reduced the number of called SNPs by only 1.188% 
(previous N=23,272,652, pruned N=22,996,113). The total reduction in the acrocentrics was 
higher, with 6.29% fewer SNPs (previous N=3,735,605, pruned N=3,676,746), indicating 
difficulty in assembling these regions. We note that the PCA sample distributions remain 
virtually identical (not shown), indicating that the patterns observed in the full graph are 
maintained despite assembly issues. In these filtered PGGB-CHM13 and PGGB-GRCh38 
VCFs, We considered all biallelic SNPs relative to the chosen reference, regardless of variant 
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nesting level (not shown: filtering for only SNPs LV=0 or LV>0 yielded nearly identical results). A 
qualitative evaluation suggested no significant differences in PCA patterns across the 
metacentric chromosomes (Supplementary Figure 50). However, in the p-arms of the 
acrocentrics (chr13, chr14, chr15, chr21, and chr22), which are accessible in the PGGB-CHM13 
VCF, we observed a reduction in population differentiation and a higher rate of variance 
explained in the lowest principal component. 
 
To investigate this quantitatively, we measured the number of clusters implied by the PCA for 
the PGGB-CHM13 VCFs, using K-Means Clustering to automatically determine the optimal 
number of clusters for each PCA (“gap_stat” clustering in the fviz_nbclust function of the 
factoextra R package) (analysis code: https://github.com/SilviaBuonaiuto/hprcPopGenAnalysis). 
Applying this approach to 3 PCAs per chromosome VCF, we obtain optimal cluster counts for 
the p-arm, q-arm, and whole chromosome. In metacentric chromosomes, we usually observe 
optimal numbers of clusters approximately corresponding to the number of expected world 
population groupings in the input genomes (3-5, as in Supplementary Figure 51). However, in 
the p-arms of the acrocentrics, we observe many fewer, in general only one cluster, indicative of 
reduced population differentiation compared to other parts of the acrocentric chromosomes. 
This pattern is only apparent in the PGGB graph based on CHM13. To evaluate the difference 
quantitatively, we apply a Wilcoxon rank-sum test to compare the differences between cluster 
count distributions in metacentric vs. acrocentric chromosomes across the whole chromosome, 
the q-arm, and the p-arm. We find insignificant differences between the distributions between 
acrocentric and metacentric chromosomes at a chromosome scale, and in the q-arms, but a 
significant difference (Wilcoxon p = 0.013) in the case of acrocentric p-arms (Supplementary 
Figure 52). 
 
This analysis indicates that significant challenges remain for the use of these new regions in 
population genetic studies. Patterns observed in PCA projections of the pangenome across all 
chromosomes suggests a distinct process of variation sharing between populations within the 
short arms of the acrocentrics. In effect, we observe a more homogenous population in these 
regions when using the CHM13 assembly as a reference. This reference contains real 
sequences in these regions while GRCh38 contains gaps which render analysis impossible. The 
apparent population homogenization could be driven by error. We have mitigated this issue by 
utilizing only SNPs found in Flagger confident regions, but this does not guard against potential 
sources of alignment error that are likely to be amplified by the repetitive sequences in these 
loci. It is additionally possible that the chromosome specific partitioning process applied by both 
graph models is failing to correctly partition contigs on these short arms. The known homology 
between the short arms bolsters the possibility of ongoing sequence information exchange 
between non-homologous chromosomes (Nurk et al., 2022), which would be consistent with the 
patterns we observe. In sum, this analysis shows that, when using CHM13 as a reference, the 
behavior of sequences on the short arms of the acrocentrics in the PGGB graph is not similar to 
that of other sequences in the pangenome. 
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