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Abstract

Animals display rich and coordinated motor patterns during walking and running. Previous mod-

elling as well as experimental results suggest that the balance between excitation and inhibition in

neural networks may be critical for generating such structured motor patterns. However, biological

neural networks have an anatomical imbalance between excitatory and inhibitory neural populations.

We explore the influence of such an anatomical imbalance on the ability of a reservoir computing ar-

tificial neural network to learn human locomotor patterns for slow walking, fast walking and running.

We varied the numbers of neurons, connections percentages and connection strengths of excitatory

and inhibitory populations. We showed that performance depended on the network anatomy. First, it

deteriorated when the total number of neurons was too small or the total connection strength was too

large. Second, performance was critically dependent on the balance between excitation and inhibi-

tion. Imbalance towards excitation caused a reduction in the richness of internal network dynamics,

leading to a stereotypical motor output and poor overall performance. In contrast, rich internal dy-
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namics and good overall performance were found when the network anatomy was either balanced

or imbalanced towards inhibition. This suggests that motor pattern generation may be robust to in-

creased inhibition but not increased excitation in neural networks.

1 Author summary

How does the anatomy of the nervous system allow the generation of the complex motor patterns ob-

served during the movements of humans and other animals? We explore this question in a model of

the spinal cord in which we vary the neural anatomy. We find that movement generation requires the

neural network to have rich internal dynamics. Such rich internal dynamics emerge from the interac-

tion between the excitatory and inhibitory neurons in the network. Strong inhibition causes fluctua-

tions in the neural activity which allow rich motor patterns to be produced. However, strong excitation

quenches these fluctuations and causes a reduction in the variability of motor patterns. When both

excitation and inhibition are strong, the neural activity becomes chaotic, and dysfunctional, highly

variable motor patterns are produced. We therefore predict that diseases of the nervous system which

affect inhibitory and excitatory neurons differently will have a different signature in terms of motor

patterns. Diseases causing increased excitation in neural circuits should lead to stereotypical motor

behaviors, whereas diseases causing increased excitation and inhibition should lead to unstable mo-

tor patterns.

Keywords— EI balance, artificial neural networks, reservoir computing, inhibition, locomotion

2 Introduction

During walking and running, humans and other animals create rich and coordinate motor patterns,

with muscle contractions by and large repeated in every step. This results in a rhythmic pattern of mus-

cle contraction during locomotion. When walking faster or switching to running, not only does the

rhythm accelerate, but the exact pattern of muscle contraction also changes, i.e. the amplitude of the

contraction of each muscle changes, as well as its timing within the step cycle (Ivanenko et al., 2004,

2006; Lacquaniti et al., 2012). Neural systems able to produce various rhythms, called Central Pattern

Generators, have been identified within the spinal cord (Delcomyn, 1980; IJspeert, 2008; Grillner, 1985).
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The spinal cord is able to transform these basic rhythms into the rich and structured muscle contraction

patterns required for locomotion at different speeds.

How the neural circuits within the spinal cord transform such simple rhythmic signals into struc-

tured motor commands may be understood with the framework of “reservoir computing”. Simulation

studies have shown that recurrent neural networks are able to produce complex, high-dimensional sig-

nals, even when the input signal it receives is very simple or absent (Funahashi & Nakamura, 1993). In

reservoir computing (Verstraeten et al., 2007), such recurrent neural networks are used as a static reser-

voir, and only linear readouts of the network’s activity are trained to reproduce a variety of target signals,

without the need to adapt the internal connection weights in the network. For example, the reservoir ac-

tivity can be read out to reproduce the trajectories of markers placed on the human body during walking

and running (Sussillo & Abbott, 2009). Reservoir computing has been used to model how biological neu-

ral networks achieve a variety of tasks (Hinaut & Dominey, 2013; Boström, 2013; Wyffels & Schrauwen,

2009). It provides an interesting model as it captures three important properties of biological neural

networks: (1) they are recurrent (i.e. the neural units are interconnected), (2) with sparse connections

(i.e. there is a low probability for any two given neurons to be connected) and (3) random connection

strengths (also called synaptic weights). The neurons themselves can be modelled with varying degrees

of biological realism: Reservoir computing encompasses both echo state networks, which typically use

simple firing-rate descriptions of neural activity (Jaeger, 2010), and liquid state machines, which imple-

ment spiking neurons (Maass et al., 2002).

Neural network function is thought to depend on a functional balance between excitation and inhi-

bition. When balanced, the inhibitory and excitatory inputs to any neuron largely cancel each other out

(Rubin et al., 2017). As a result, small fluctuations in the input to a neuron have a comparatively large

effect on the neuron’s output (Van Vreeswijk & Sompolinsky, 1996; Shadlen & Newsome, 1998; Amit &

Brunel, 1997). This leads to a state of spontaneous chaotic activity (Van Vreeswijk & Sompolinsky, 1996),

which is beneficial for reservoir computing, provided the chaos is not too large (Sussillo & Abbott, 2009).

Within the reservoir computing framework, EI balance has been modelled with varying degrees of bi-

ological realism. Echo state networks typically do not have distinct excitatory and inhibitory neurons:

the outgoing connection weights of individual neurons are most often drawn from a random distribu-
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tion centered around zero (Sussillo & Abbott, 2009; Boström, 2013; Jaeger, 2010). As a result, any given

neuron exerts both excitatory and inhibitory influences. In these networks, functional EI balance is

thus imposed in a non-biological manner, through a strict anatomical balance between excitatory and

inhibitory connections.

Biological networks, on the other hand, consist of distinct excitatory and inhibitory neural popu-

lations. The outputs of any given neuron are either all excitatory or all inhibitory (Eccles, 1976), a phe-

nomenon known as Dale’s law. Activity within the network depends on a functional balance between ex-

citation and inhibition (Zhou & Yu, 2018). Anatomically, however, the excitatory and inhibitory popula-

tions are not equal. For instance, there are typically more excitatory than inhibitory neurons: inhibitory

neurons make up only 30 to 45 % of the neurons in laminae I to III of the rat spinal cord (Todd & Sullivan,

1990), and only around 20% of the neurons in the mammalian cerebral cortex (Marom & Shahaf, 2002;

Sahara et al., 2012; Marín, 2012; Wonders & Anderson, 2006; Meinecke & Peters, 1987). Moreover, exci-

tatory and inhibitory connection probabilities are not identical. For example, in the cortex, only one in

fifteen inputs to a given neuron is inhibitory (Megías et al., 2001; Peters, 2002). So, while the proper func-

tioning of biological neural networks depends on the ratio of excitation to inhibition, this is a functional

balance resulting from network dynamics, rather than the result of a strict anatomical balance.

The purpose of our study is to explore how anatomical differences in excitatory and inhibitory popu-

lations influence neural network dynamics and performance. We modified an echo state neural network

proposed by Sussillo & Abbott (2009) such that: (1) synaptic weights from any given neuron were either

all positive or all negative, and (2) the firing rates of all neurons were constrained to be positive. As a

result, individual neurons in the network could be considered either excitatory or inhibitory. We tested

whether the dynamics of the network are affected by the ratio of excitatory to inhibitory neuron num-

ber, connection percentage and connections strength. We showed that reservoir computing is robust to

increased inhibition, but not to increased excitation.

3 Results

Echo state networks with distinct excitatory and inhibitory neural populations were trained to repro-

duce three locomotor signals corresponding to slow walking, fast walking, and running, using the FORCE
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algorithm (Sussillo & Abbott, 2009). We varied the number of neurons (Figure 1A&B), the connection

strength (Figure 1C&D), and the connection percentage (Figure 1E&F) of the excitatory and inhibitory

neurons populations separately. The connection percentage and connection strength were varied for 5

different ratios of excitatory neuron number (NE ) to inhibitory neuron number (NI ). Results for the non

equal excitatory and inhibitory neuron numbers can be found in Figures S.2 and S.3. After learning, the

networks were tested on their ability to generate the aforementioned locomotor patterns when receiv-

ing a sinusoidal input at the corresponding stride frequency. The network performance was expressed

as the percentage of gait cycles that were successfully reproduced, i.e. with a root mean square error

(RMSE) smaller than 0.05. The richness of the internal network dynamics was quantified as the number

of principal components needed to explain 99% of temporal variance in the neuron firing rates, referred

to as Network Principal Components (NPCs) from now on.
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Figure 1 – Influence of network anatomy on performance and internal network dynamics. Network performance (top row) and
number of Network Principal Components (bottom row) as a function of (A. & B.) neuron number (with pE = pI = 0.1 and gE = g I =
1.5), (C. & D.) connection percentage (with NE = NI = 375 and gE = g I = 1.5), and (E. & F.) connection strength (with NE = NI = 375
and pE = pI = 0.1). Overlayed in all panels as a thick dashed-dotted black line is the contour line indicating 11 NPCS, which
corresponds to the number of principal components needed to explain 99% of variance in the target data.
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Figure 2 – Performance depends on the internal network dynamics. Performance as a function of the number of NPCs when
varying the Neuron Numbers (blue), Connection Percentages (green) and Connection Strengths (yellow).

3.1 The dependence of performance on network anatomy is mediated by the inter-

nal network dynamics

We found a strong correspondence between network performance and the number of NPCs. Varying

either the number of neurons (blue in Figure 2), the connection percentages (green in Figure 2), or the

connection strengths (yellow in Figure 2) led to networks with a large variety in the number of NPCs

(ranging from 2 to 410). Networks with less than 11 NPCs failed consistently (average performance of

4.4%), with performance rising sharply for networks with at least 11 NPCs. This transition corresponds

to the number of principal components necessary to account for 99% of the variance in the target loco-

motor patterns. In addition, performance deteriorates for networks with more than 40 NPCs, indicating

that these networks are too chaotic to support learning.

3.2 Networks with low neuron numbers have low performance because their inter-

nal dynamics are too poor

Across the three tested parameters, we identified three distinct regions where networks failed to repro-

duce locomotor patterns. First, networks were unsuccessful if the total neuron number (N = NE +NI ,

where NE and NI are the numbers of excitatory and inhibitory neurons) was too low (below 300, see Fig-

ure 1A, bottom left corner, & Figure 3A). These networks had a low number of NPCs (Figure 1.B, bottom
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left corner, & Figure 3B). An expanded view of the low neuron number region is presented in Supple-

mentary Figure S.1. Increasing the neuron number up to 300 neurons, there is a steady increase in both

NPCs (Figure 3B) and performance (Figure 3A). This suggests that, for networks with too few neurons,

the internal network dynamics are not rich enough to produce locomotor patterns. Therefore, networks

with less than 300 neurons were discarded from further analysis.

Figure 3 – Low performance for networks with a very small neuron number or a very high connection strength is mediated by
the number of NPCs. Networks with less than 300 neurons (vertical light blue line) have low performance (A.) and a low number
of Network Principal Components (B.) Networks with total connection strength larger than 3 (vertical yellow line) have low perfor-
mance (C.) and a very high number of Network Principal Components (D.). For all panels, each dot represents one network. For
connection strength, results for all five NE : NI ratios are shown. The dark blue and yellow bars indicate the median and standard
deviation per bin.

3.3 Networks with large connection strengths have low performance because their

dynamics are too chaotic

Second, networks were unsuccessful if the total connection strength (g =
√

g 2
E + g 2

I , where gE is the

connection strength of the excitatory and g I of the inhibitory population) of the networks was too high

(above 3, Figure 1C, right side red zone, and Figure 3C). These networks had a very large number of

NPCs (Figure 1D, right side blue to pink zone and Figure 3D). As previously described, while perfor-

mance initially improves when the number of NPCs rises, it decreases again when the number of prin-

cipal components becomes too high (Figure 2). The latter occurs when the total connection strength

of the network is too high: there is a dramatic increase in the number of NPCs for networks with in-
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creasing total connection strength (Figure 3D). As a result, the average network performance decreases

as connection strength increases beyond g ≈ 1, reaching a median performance of about 50% for g = 3

and then dropping sharply (Figure 3C). We thus limit our analyses to networks with a total connection

strength of 3 or lower.

3.4 Performance is robust to anatomical imbalance favoring inhibition but not ex-

citation

Finally, networks were unsuccessful when excitation was stronger than inhibition (Figure 1A,C,E, top

left red triangles). As derived in the Methods (Equation 3), the average recurrent input to a neuron (Ir ec )

depends on the average firing rate r and on the excitatory and inhibitory neuron numbers (NE and NI ),

connection percentages (pE and p I ) and connection strengths (gE and g I ). We defined the imbalance

between excitation and inhibition in the network as the ratio between the average recurrent input and

the average firing rate (Methods Equation 4):

Imbal ance =
√

2

π
(gE

√
pE NE − g I

√
p I NI )

Balanced networks (Imbalance = 0) had a good overall performance (Figure 4A). However, perfor-

mance deteriorated when excitation was markedly stronger than inhibition (Figure 4A, Imbalance > 3),

whether in terms of connection percentage (Figure 4A, in green), neuron number (Figure 4A, in blue) or

connection strength (Figure 4A, in yellow). This drop in performance corresponded to a sharp decrease

in the number of NPCs (Figure 4B). Indeed, when a network is strongly imbalanced towards excitation,

the mean input received by the neurons is large and positive (Figure 4C). Therefore, the average neural

firing rate saturates to its maximum value of one (Figure 4D) and the variance in firing rate drops close to

zero (Figure 4E). As a result, networks whose internal structure is too far imbalanced towards excitation

are not able to produce locomotor patterns (Figure 4A).

In contrast, network performance was very robust to an imbalance favoring inhibition. In networks

imbalanced towards inhibition (Imbalance < 0), the mean input received by the neurons is negative

(Figure 4C). The neurons’ firing rate is then driven purely by fluctuations in the recurrent input. This
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fluctuation-driven regime prevents the firing rates from saturating to their minimum value of zero (Fig-

ure 4D). Therefore, individual neurons maintain some temporal variability in their firing rate (Figure 4E),

enough for proper network variability (Figure 4B) to enable the network to produce the locomotor pat-

terns (Figure 4A).
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Figure 4 – Network performance is robust to inhibitory, but not excitatory, imbalance. Network performance (A), mean recurrent
input (B), firing rate (C), firing rate variance (D), and network principal components (E) as a function of imbalance. In each plot, the
mean and standard deviation per bin are shown for: Neuron Number (blue), with NE and NI ranging from 10 to 2000 in increasing
steps, pE = pI = 0.1 and gE = g I = 1.5; Connection Percentage (green), with pE and pI ranging from 0.05 to 0.5 in steps of 0.05,
and gE = g I = 1.5; Connection Strength (yellow), with gE and g I ranging from 0.1 to 10 in increasing steps and pE = pI = 0.1. For
connection percentage and strength, neuron numbers were varied with total network size NE +NI equal to 750: NE : NI = 600:150,
500:250, 375:375, 250:500 and 150:600.
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4 Discussion

The aim of this study was to model the influence of EI balance on the ability of an artificial neural net-

work to reproduce the locomotor patterns observed during human walking and running. We imple-

mented a classical network architecture used for reservoir computing (Sussillo & Abbott, 2009), and

modified the network anatomy so that it contains distinct excitatory and inhibitory pools. We then

varied the ratios of excitatory to inhibitory neuron numbers, connection percentages and connection

strengths. Altogether, network performance seems to rely on the network dynamics having both suffi-

cient richness (equal or more PCs than in the target output) and sufficient structure (in this case, less

than 40 NPS). Our findings show that rich internal dynamics are maintained in networks imbalanced to-

wards inhibition, but that this variability is quenched in networks imbalanced towards excitation. Net-

work performance is therefore robust to increased inhibition, but not to increased excitation.

4.1 Performance requires rich but structured neural network dynamics

We found that performance was well explained by the variability in the internal network dynamics (see

Figure 2). We quantified the richness and structure of the internal network dynamics by measuring the

number of principal components accounting for 99% of the variability in neuron firing rates (“network

principal components” or NPCs). Performance decreased when the number of NPCs decreased. Indeed,

the network’s task is to reproduce locomotor patterns through a linear readout of the internal dynamics.

These target locomotor patterns require 11 principal components to account for 99% of their variance.

Therefore, in principle, networks with fewer than 11 NPCs should not be able to successfully reproduce

all patterns. In practice, we found that network performance started to drop when the number of NPCs

decreased below 20. Moreover, performance decreased for networks with too many NPCs, suggesting

that the network dynamics become too chaotic for structured motor patterns to be read out.

4.2 Network anatomy determines network dynamics and therefore performance

The internal network dynamics, and therefore the network performance, depended on the network ar-

chitecture (total neuron number and total connection strength) and the overall anatomical balance be-
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tween excitation and inhibition in the network (described by Equation 4).

When varying the total neuron number, we found a decrease in the number of NPCs (Figure 3B) and

performance (Figure 3A) for networks with less than 300 neurons. This suggests that reservoir comput-

ing might not be an appropriate model for the generation of motor patterns in small neural networks,

such as the crab stomatogastric ganglion, which has only∼30 neurons (Selverston et al., 1976). Reservoir

computing has, however, successfully been used to model the function of mammalian cortical circuits

(Maass et al., 2002; Enel et al., 2016; Cazin et al., 2019; Dominey, 2021) and we suggest it may also be

used to model the function of the vertebrate spinal cord, which contains a few hundred million neurons

in humans.

When varying the total connection strength, we found a dramatic increase in the number of NPCs

(Figure 3D) and a corresponding decrease in performance (Figure 3C) for networks with large total con-

nection strengths. This confirms previous simulation results which show that large connection strengths

lead to a decrease in reservoir computing performance (Sussillo & Abbott, 2009; Lukoševičius, 2012).

When varying the anatomical balance between excitation and inhibition, we found that networks

were successful in two specific situations: (1) when excitation and inhibition in the network were bal-

anced (Figure 4A, Imbalance = 0), or (2) if networks had an overall anatomical imbalance favoring inhi-

bition (Figure 4A, negative Imbalance).

4.3 Overall anatomical balance can be achieved despite inequalities in individual

anatomical parameters

In the case of an overall anatomical balance between excitation and inhibition, the two opposing input

currents to any given neuron cancelled each other out on average. Such states of relative functional

EI-balance have been observed experimentally in numerous regions of the mammalian cortex (Herstel

& Wierenga, 2021; Isaacson & Scanziani, 2011; Wehr & Zador, 2003; Okun & Lampl, 2008, 2009; Atal-

lah & Scanziani, 2009). Moreover, simulation results indicate that such functional EI-balance may be

beneficial for a variety of neural network functions, such as the ability to respond quickly to changing

inputs (Tsodyks & Sejnowski, 1995; Van Vreeswijk & Sompolinsky, 1996; van Vreeswijk & Sompolinsky,

1998) and noise robustness (Rubin et al., 2017). It is, however, not known how this functional EI-balance
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arises from the network anatomy.

In biological neural networks, the anatomical characteristics of excitatory and inhibitory neurons

do not follow a 1-to-1 ratio. For example, in the mammalian cortex, there seems to be an approximately

4-to-1 ratio in both excitatory to inhibitory neuron numbers (Marom & Shahaf, 2002; Sahara et al., 2012;

Marín, 2012; Wonders & Anderson, 2006; Meinecke & Peters, 1987) and connection percentages (Megías

et al., 2001; Peters, 2002). Our results show that the net current to the neurons can still be balanced, even

if these individual anatomical parameters are not balanced.

In our model, we calculated the net average current from each of the two neuron pools (excitatory

and inhibitory), and found that this scales with the pool’s firing rate multiplied by an overall weight

that depends on the pool’s anatomical parameters (Equation 3). This weight scales linearly with the

connection strengths, but with the square root of the neuron number and connection percentage. This

suggests that the inequalities in the number of neurons and connection percentage can be compensated

for by an approximate 1-to-4 ratio in excitatory to inhibitory connections strengths (provided the total

connection strength does not become too large). There is indeed experimental evidence suggesting that

connection strengths may be larger for inhibitory than excitatory neurons in the mammalian cortex,

as they synapse closer to the axon somata (Beaulieu et al., 1992; Peters, 2002) thereby increasing their

effectiveness relative to the excitatory neurons (Chen et al., 2012; Markram et al., 2004).

We also explored networks with a net anatomical imbalance, resulting in a functional imbalance in

the average recurrent input to the neurons (Figure 4C), and showed that this did not necessarily lead to

a decrease in performance (Figure 4A).

4.4 Good performance is maintained when anatomical imbalance favors inhibi-

tion

While biological networks seem to operate close to a state of functional EI-balance globally, the exact

balance between excitatory and inhibitory seems to vary depending on, e.g., sensory stimulation and

the circadian rhythm (Adesnik, 2017; Bridi et al., 2020; Tatti et al., 2017), suggesting that strict functional

balance is not necessary for network performance.

Experimental manipulations of the EI-balance suggest that network function is robust to imbalance
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favoring inhibition, but not to imbalance favoring excitation. Both increased excitation and decreased

inhibition in the brain have been found to play a role in disorders such as epilepsy (Dichter & Ayala,

1987; Dudek & Sutula, 2007), autism (Casanova et al., 2003; Rubenstein, 2010; Rubenstein & Merzenich,

2003; Markicevic et al., 2020) and schizophrenia (Yizhar et al., 2011; Murray et al., 2014). In the spinal

cord, disinhibition has been shown to lead to allodynia (Lee et al., 2019; Yaksh, 1989). In the mouse pre-

frontal cortex, information processing is impaired when excitation is increased but not when inhibition

is increased Yizhar et al. (2011). In contrast, there is much more limited experimental evidence for im-

paired network function as a result of increased inhibition (but see for example Blundell et al. (2010) and

Tabuchi et al. (2007) who show that increased inhibition due to genetic deletion can lead to autism-like

behavior in mouse models). It is however not known why biological neural network function is robust

to increased inhibition but not excitation.

In our model, we explored the influence of functional imbalance on network performance, by study-

ing networks with an overall anatomical imbalance between excitation and inhibition (as described by

Equation 4). We varied the anatomical ratios in neuron number, connection percentage and connection

strength to achieve different states of overall anatomical imbalance between excitatory and inhibitory

input currents. Confirming the experimental findings described in the previous paragraph, our mod-

elling results show that network performance is highly robust to an anatomical imbalance favoring in-

hibition (Figure 4A, negative Imbalance). This leads to a nearly balanced functional state, in which in-

hibitory currents are only slightly larger than excitatory currents (Figure 4C, negative Imbalance). In

contrast, there is a strong deterioration of performance for networks with an anatomical imbalance fa-

voring excitation (Figure 4A, positive Imbalance). This leads to a highly unbalanced functional state, in

which excitatory currents are much larger than inhibitory currents (Figure 4C, positive Imbalance). As a

result, neural firing rates saturated to their maximal values (Figure 4D, positive Imbalance), resulting in

reduction in firing rate variability (Figure 4E, positive Imbalance).

4.5 Reduced locomotor complexity as a signature of excitatory imbalance

Interestingly, we identified a particular signature of excitatory imbalance in terms of the output locomo-

tor patterns. The muscle activation patterns observed during human locomotion typically vary within a
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subspace whose dimensionality is smaller than the number of recorded muscles (Ivanenko et al., 2004;

Neptune et al., 2009; Clark et al., 2010; Dominici et al., 2011; Chvatal & Ting, 2012). For example, in our

study, we found that 11 principal components account for 99% of the variance in muscle activations ob-

served during slow walking, fast walking and running. When we modified the neural network anatomy

to increase excitation, this resulted in a reduction in the variability of the internal network dynamics

(reduction in NPCs for positive Imbalance,Figure 4B), which led to a reduction in the variability of the

output motor patterns Figure S.4. Our modelling results therefore suggest that a dysfunctional reduc-

tion in motor variability (characterized by a disappearance of motor synergies) would be a signature of

increased excitation or decreased inhibition in neural motor circuits.

5 Methods

All data analysis described in the following sections was performed in Matlab (R2020a).

5.1 Reservoir Computing Neural network with asymmetric excitatory and inhibitory

populations

5.1.1 Network Dynamics

The reservoir networks consist of an excitatory population E with neuron number NE and an inhibitory

population I with neuron number NI . Any given neuron i receives an external input, output feedback

and recurrent input. The external input is J In
i ·S, where S is the sinusoidal input signal ranging from 0

to 2 at the target stride frequency (Figure 5, bottom left), and J In
i are the input weights drawn from a

Gaussian distribution with zero mean and unit variance. The output feedback is J F b
i Y , where Y is the

output of the network (Figure 5, bottom right) and the feedback weights J F b
i are drawn from a uniform

distribution between -1 and 1. The recurrent input can be split into an excitatory (J E
i r E ) and inhibitory

(J I
i r I ) component, where rE and r I are the firing rate of the two populations. The connection weights

J E
i j from any excitatory neuron j to any neuron i have a probability pE of being non-zero. For non-

zero weights, the value is the absolute value of a variable drawn from a Gaussian distribution of mean

zero and variance gE /(pE NE ), where gE will be referred to as the excitatory connection strength. In-
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hibitory weights J I
i j have a probability p I of being non-zero. If non-zero, their value is the negative of

the absolute value of a Gaussian random variable with mean zero and variance g I /(p I NI ), with g I the

inhibitory connection strength. Note that in the original network proposed by Sussillo & Abbott (2009),

all recurrent weights are drawn from a Gaussian distribution of mean zero and variance g /(pN ), there-

fore a given neuron can have both positive and negative output weights. In our network, the total input

received by a given neuron i is:

Ii = J In
i S + J F b

i Y +
NE∑
j=1

J E
i j r E

j −
NI∑
j=1

J I
i j r I

j (1)

The internal state qi of neuron i is initialized randomly, drawn from the standard normal distribution,

and follows the dynamics:

τ
d

d t
qi =−qi + Ii (2)

with time constant τ= 0.01. The differential equation was solved numerically using Euler-forward inte-

gration for each time step (∆t = 0.005s) to get the new neuron activation. The firing rate is tanh(qi ) if qi

is positive, and zero otherwise. In the original network proposed by Sussillo & Abbott (2009), the firing

rate is tanh(qi ) and can be positive or negative depending on the sign of qi .

5.1.2 Average input

Averaging across neurons, the mean external input and output feedback are both zero, as the weights

are centered around a zero mean. In the original network proposed by Sussillo & Abbott (2009), the

recurrent weights are also symmetrically distributed around zero. As a result, the net recurrent input

received by neurons in the Sussillo & Abbott (2009) network is on average zero, independent of total

neuron number, connection percentage or connection strength. In our networks, however, each neuron

receives on average pE ·NE non-zero excitatory weights, each with average value gE
√

2/(πpE NE ), and

p I NI non-zero inhibitory weights, each with average value −g I
√

2/(πp I NI ). Since the excitatory and

inhibitory neurons receive inputs with the same weights, the average firing rates of the excitatory and

inhibitory populations are the same, written here as r . The resulting average recurrent input to a neuron

(Ir ec ) is, therefore:

Ir ec = r

√
2

π
(gE

√
pE NE − g I

√
p I NI ) (3)
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We defined the imbalance between excitation and inhibition in the network as the ratio between the

average recurrent input and the average firing rate:

Imbal ance =
√

2

π
(gE

√
pE NE − g I

√
p I NI ) (4)

then,

Ir ec = r · Imbal ance (5)

Input (𝑺)
Target /

Output (𝒀)

Reservoir

𝑱𝑭𝑩

Running
Walking fast
Walking slow

For 8 bilateral muscles 
innervated by S1

Human Locomotion Recordings
(running, walking fast, walking slow)

One full gait cycle
per activity

Myonardo
Inverse Dynamics

Muscle 
activation

(n=16)

𝑱𝑰𝒏 𝑾

𝑱𝑰𝑬

𝑱𝑬𝑰

𝑱𝑰𝑰

𝑱𝑬𝑬

Figure 5 – Schematic overview of methods. Human locomotor signals were recorded from one subject during walking slowly, walk-
ing faster and running (top middle). Ground reaction forces were recorded using six Kistler Force Platforms (outlined in red) and
kinematics were recorded using a Qualisys measuring system. The recorded kinetics and kinematics were the input to the inverse
dynamics calculations (top right), which provided the required muscle activation for 8 bilateral muscles. These muscle activations
were used as the (16-dimensional) target output of the neural network (bottom right). The neural network (bottom middle) consists
of two connected excitatory (red, triangles) and inhibitory (blue, circles) populations. In the network, blue lines denote inhibitory
connections, while red lines denote excitatory connections. The input to the network (bottom left) was a sinusoid with a frequency
corresponding to the gait frequency for each activity: running (blue), fast walking (brown) and slow walking (yellow).

5.1.3 Network Parameters

Various ratios of excitation to inhibition were tested by varying the three different parameters that influ-

ence the excitatory to inhibitory (im)balance. First, the number of neurons was increased independently
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for both pools from 10 to 2000 (from 10 to 50 in steps of 10, from 75 to 250 in steps of 25, from 300 to

500 in steps of 50, from 600 to 1000 in steps of 1000, and from 1250 to 2000 in steps of 250). Connec-

tion percentage was set constant at pE = p I = 0.1, corresponding to connection ratios found in ex vivo

neural networks (Marom & Shahaf, 2002), and connection strength at gE = g I = 1.5, as this produced

good network performance in Sussillo & Abbott (2009). Second, the connection percentages pE and p I

were independently varied from p = 0.05 to 0.5 in steps of 0.05, for the inhibitory and excitatory popu-

lations independently. The effect of varying connection percentage was investigated for networks with

a total neuron number of N = 750 and neuron ratio varying from 4 : 1 to 1 : 4, namely: NE :NI = 600:150,

500:250, 375:375, 250:500 and 150:600. Finally, the connection strengths gE and g I were independently

varied from 0.1 to 10 in increasing steps (from 0.25 to 2 in steps of 0.25, from 2.5 to 5 in steps of 0.5,

and from 6 to 10 in steps of 1). Again, the tests were performed for networks with several NE :NI ratios

(600:150, 500:250, 375:375, 250:500 and 150:600) all with total size N = 750. The connection percentage

was set constant at pE = p I = 0.1. For each set of parameters, 20 networks were randomly generated

with the corresponding internal structure. Figure 1 and Figures S.1 to S.3 show the performance and

NPCs averaged across these 20 networks, whereas in Figure 3 each network is shown as an individual

dot.

5.2 Target signals

5.2.1 Experimental recording of human locomotion

Kinematics and ground reaction forces were recorded for three different locomotor activities: walking at

two different (self-chosen) speeds and running. Kinetics were recorded using six Kistler force platforms

(Type 9287CA, 90×60 cm, Kistler Instrumente AG, Winterthur, Switzerland - outlined in red in the photo

in Figure 5). Whole-body kinematics were recorded at 200 Hz (Qualisys, Göteborg, Sweden) using a

modified Plug-In Gait marker set (Vicon Motion Systems Ltd, Oxford, UK). A single participant (male,

26 years old, 1.96m tall and weighing 86kg) walked and ran across the length of the force-plates. This

data was obtained as part of another experiment that has been approved by the local ethics committee

of the Department of Sports Science and Psychology of the University of Münster (#2019-10-RD). The

participant signed the informed consent form.
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5.2.2 Target spinal pattern building blocks from inverse dynamics

Muscle activations were calculated from the recorded kinetics and kinematics using the inverse dynam-

ics function of the musculo-skeletal model Myonardo®. For more information on the musculo-skeletal

model and the performed calculations, see Appendix A. From the model output, we selected the bilat-

eral muscles that are innervated by the S1 spinal segment: (m. flexor hallucis longus, m. gastrocenemius,

m. gluteus maximus, m. gluteus medius, m. gluteus minimus, m. piriformis, m. semitendinosus, and m.

tensor fasciae latae) resulting in 16 target spinal signals.

For each of the three activities, a single stride from right heel strike to the following right heel strike

was selected as a building block, from which the full target signals were created in a later step. The

heel strikes were detected by finding the lowest point of the right heel marker, as recorded by the Qual-

isys system. The activity of each muscle was normalized by its maximal activity across the 3 locomotor

patterns.

5.2.3 Signal creation

The training and test signals were then assembled from the single-stride building blocks. To train the

networks, input and output signals were created where each of the three activities was repeated for

five consecutive strides. To test the networks, signals consisting of 20 gait cycles were created, with the

activity of each cycle chosen randomly, but with each activity represented for at least one cycle. The

same set of signals was used for all networks within one trial. The transitions between two consecutive

cycles were smoothed by leaving one-sample gaps between the different activities that were linearly

interpolated. The entire signal was filtered using a 20 Hz low-pass bi-directional Butterworth filter (2nd

order) to further smooth the signal. Finally, the first and last 50 samples were cut from all signals to

remove any unwanted filter artifacts. An example of a full test signal for one muscle can be found in

Figure S.4C.

5.3 Training and testing the Networks

We applied the FORCE learning algorithm (Sussillo & Abbott, 2009) to train the networks and assessed

the ability of reservoir networks with asymmetrical inhibitory and excitatory populations to produce a

given target spinal pattern when receiving a sinusoidal input whose frequency matches the target stride

19

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 22, 2022. ; https://doi.org/10.1101/2022.04.21.489087doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.21.489087
http://creativecommons.org/licenses/by-nc/4.0/


frequency (corresponding to either to slow walking, fast walking or running). For each combination of

network parameters, we tested 20 different recurrent networks, each with a random instantiation of the

connection weights.

5.3.1 FORCE Learning

The output weights of the networks were trained using the FORCE method (Sussillo & Abbott, 2009), a

technique that uses a recursive least squares algorithm (Haykin, 2014). Unlike the internal connection

weights, the output weights of the network were not restricted to be positive during training and can be

either negative or positive. All networks were trained over 15 consecutive repetitions. See Appendix B

for a more detailed description of FORCE learning.

5.3.2 Outcome parameters

The performance of each network was quantified as the percentage of successfully reproduced cycles.

First, the root-mean-square error (RMSE) between the predicted (dashed black lines, Figure 6) and target

(colored lines, Figure 6) output was calculated for each muscle and each of the 20 gait cycles in the

test signal. This error followed a roughly bimodal distribution (Figure S.4B). The threshold for success

was set at RMSE = 0.05, chosen to fall between the two first peaks of this distribution (solid black line

Figure S.4B). Using this criterion, the pattern produced by each muscle during each cycle was either

classified as a success (RMSE < 0.05, shaded in green in Figure 6 and Figure S.4C) or a failure (RMSE >

0.05, shaded in red in Figure 6 and Figure S.4C). The richness of the internal network dynamics was

quantified as the number of principal components that are necessary to account for 99% of the temporal

variance in the neuron firing rates.
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Input

Gastrocnemius

Flexor hallucis longus
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Time [s]

Tensor fasciae latae

Figure 6 – Performance calculation in an example output. The network is tested on its ability to reproduce the motor patterns of
randomly interleaved gait cycles. The input to the network (top row) and target motor outputs of three example muscles (bottom
rows) are shown in yellow for slow walking, brown for fast walking and blue for running. The actual network output is indicated
as a dashed black line (bottom rows). The transitions between cycles are indicated as dashed vertical black lines. For each cycle and
muscle, if the root mean square difference between the target and the motor output is less than 0.05, this is classified as a success,
indicated as a green background. Otherwise, it is classified as a failure, indicated as a red background. The performance of the
network is the percentage of successful cycles over all 20 test cycles and 16 muscles.
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Appendix A Calculation of spinal cord efferent and afferent signals

using computational musculo-skeletal model Myonardo

Myonardo is a Matlab-based, 3D computational musculo-skeletal model, that consists of 17 bone seg-

ments, 19 joints and 180 muscle-tendon-units. For the present study 8 of these muscle-tendon-units

were analyzed: m. flexor hallucis longus, m. gastrocenemius, m. gluteus maximus, m. gluteus medius,

m. gluteus minimus, m. piriformis, m. semitendinosus, and m. tensor fasciae latae. The relative mass

and size of the individual segments, as well as the muscular attachments were determined based on

the work of Shippen & May (2012). The entire model was scaled to the subject’s body mass and height

(Winter, 2009; Hatze, 1980).

As a first step, Myonardo calculated the muscle-tendon lengths, muscle-tendon velocities and the

muscular lever arms relative to the instantaneous joint center, based on the instantaneous joint angles

and joint angular velocities acquired from the 3D kinematics. The muscle line of action between the

origin and the insertion of each muscle-tendon unit is separated into muscle parts between via-points,

such that the muscle length was calculated as the sum of the length of each muscle part, i.e. the eu-

clidean distance between the attachments of the muscle part.

Based on these muscle lengths lm and velocities vm , the maximum possible muscle force fm,max ,

could then be calculated using the force-velocity relation ( fv ), as well as the active ( fl a) and passive

( fl p ) force-length relations as follows:

fm,max = Act (t ) · fv · fl a + fl p (6)

where Act (t ) - the activation of the muscle in the interval [0,1] - was set to 1. The Hill-type force-velocity

relation ( fv ) was calculated as:

fv (vm) =


c

vm+b −a if vm ≤ 0

C
vm−B + A if vm > 0

(7)

where properties a,b,c and A,B ,C were estimated from the isometric force fi so , resting length lopt ,

eccentric gain fecc and the ratio of fast-twitch to slow-twitch fibres F T %, using parameter values from

(Thaller & Wagner, 2004) and (Herzog, 1999). The active ( fl a) and passive ( fl p) force-length relations
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were calculated as:

fl a(lm) = exp

[
−(

(lm/lopt )k1 −1

k2
)k3

]
(8)

fl p (lm) = exp((lm − lopt )/k4) (9)

with k1 = 0.96, k2 = 0.35 , k3 = 2, fecc = 1.5, and F T % = 0.5. The remaining muscle properties fi so and

lopt were taken from Rajagopal et al. (2016).

Based on the maximum force fm,max for each muscle and the lever arms r , the maximum force that

each muscle can generate around a joint at a certain instance of time was calculated as Tmax = r ×

fm,max . Then a set of muscular activations Act (t ), within the boundary 0 ≤ Act ≤ 1, can be determined

for each joint, such that

Tnet =
n∑

i=1
Tmaxi · Acti (10)

with i indicating the n muscles that are acting at the given joint. The required net torque Tnet is known

from inverse dynamics and the maximum torque Tmax was calculated as described above. As there

are more muscles than degrees of freedom of a joint contributing to the joint-torques, the muscular

activation of these redundant muscles have to be distributed via optimization. In the present study, the

muscular activation was calculated by minimizing the sum of squared muscular activations for each

instant of time based on the linear least-squares solver (lsqlin):

mi n
Act

∥ Act ∥2 (11)

Appendix B FORCE learning algorithm

To train the network, we used the FORCE algorithm (Sussillo & Abbott, 2009), which is based on a recur-

sive least squares approach (Haykin, 2014)

The output signals were calculated by multiplying the [k × N ]-dimensional output weights matrix

W (t ) with the sigmoid-transformed neuron activations r (t ) =
[

r E
i j r I

i j

]
.

Y (t ) =W (t ) · r (t ) (12)

The output error ε (k-dimensional row vector) was calculated as the difference between the calcu-
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lated output Y (t ) and the target output Yt ar g et (t ).

ε(t ) = Y (t )−Yt ar g et (t ) (13)

The output weights W (t ) were updated based on the current activity, the output error ε, and the

learning rate matrix P (t ) ([NxN] matrix). P (t ) denotes an estimate of the inverse of the correlation matrix

of r (t ) with a regularization term Sussillo & Abbott (2009).

W (t +∆t ) =W (t )−ε(t )
P (t )r (t )

1+ r (t )T P (t )r (t )
(14)

P (t ) was updated according to the equation below.

P (t +∆t ) = P (t )− P (t )r (t ) · (P (t )r (t ))T

1+ r (t )T P (t )r (t )
(15)
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Appendix C Supplementary Figures
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Figure S.1 – Influence of neuron number in small networks on network performance and internal network dynamics (A-E.)
Network performance and (B-J.) Network Principal Components. The thick, dashed-dotted lines in both panels represent the contour
lines for 11 network principles components, corresponding to the number of components needed to explain 99% of variance in the
target output. This is a zoomed in version of Figure 1A&D.
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Figure S.2 – Influence of connection percentage on network performance and internal network dynamics (A-E.) Network per-
formance and (B-J.) Network Principal Components for five different ratios of excitatory to inhibitory neuron numbers. The thick,
dashed-dotted lines in all panels represent the contour lines for 11 network principles components, corresponding to the number of
components needed to explain 99% of variance in the target output.
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Figure S.3 – Influence of connection strength on network performance and internal network dynamics (A-E.) Network perfor-
mance and (B-J.) Network Principal Components for five different ratios of excitatory to inhibitory neuron numbers. The thick,
dashed-dotted lines in all panels represent the contour lines for 11 network principles components, corresponding to the number of
components needed to explain 99% of variance in the target output.
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Figure S.4 – Reduction in motor variability for excitatory imbalance. (A.) Performance of networks with varying connection per-
centage, NE = 600, NI = 150, and gE = g I = 150. (B.) Distribution of the RMSE per gait cycle over all tested networks. (C.) Example
motor output for three example networks; top row (star): network imbalanced towards inhibition with good performance; middle
row (square): network slightly imbalanced towards excitation with reduced motor variability; bottom row (triangle): network highly
imbalanced towards excitation with almost no motor variability. The connection percentages and RMSEs of the three example net-
works are indicated in panels (A) and (B) as a star, a square and a triangle.
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