1	TITLE PAGE
2	
3	Pezzini <i>et al.</i> Evolutionary History of Tropical Dry Forest
4	
5	Research article: Phylogeny and biogeography of Ceiba Mill. (Malvaceae, Bombacoideae)
6	
7	Flávia Fonseca Pezzini ^{1,2,8} , Kyle G. Dexter ³ , Jefferson G. de Carvalho-Sobrinho ⁴ , Catherine A. Kidner ^{1,2} ,
8	James A. Nicholls ⁵ , Luciano P. de Queiroz ⁶ , R. Toby Pennington ^{1,7}
9	
10	¹ Royal Botanic Garden Edinburgh, Edinburgh, United Kingdom
11	² School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
12	³ School of GeoSciences, University of Edinburgh, Edinburgh, United Kingdom.
13	⁴ Colegiado de Ciências Biológicas, Universidade Federal do Vale do São Francisco, Petrolina, Brazil
14	⁵ Australian National Insect Collection, CSIRO, Acton, Australia
15	⁶ Herbario, Universidade Estadual de Feira de Santana, Feira de Santana, Brazil
16	⁷ Geography, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
17 18	⁸ Corresponding author: flaviapezzini@gmail.com 20a Inverleith Row Edinburgh, EH3 5LR, UK
19	ABSTRACT
20	The Neotropics is the most species-rich area in the world and the mechanisms that generated and
21	maintain its biodiversity are still debated. This paper contributes to the debate by investigating
22	the evolutionary and biogeographic history of the genus Ceiba Mill. (Malvaceae:
23	Bombacoideae). Ceiba comprises 18 mostly neotropical species endemic to two major biomes,
24	seasonally dry tropical forests (SDTFs) and rain forests and its species are one of the most

25	characteristic elements of neotropical SDTF, one of the most threatened biomes in the tropics.
26	Phylogenetic analyses of DNA sequence data from the nuclear ribosomal internal transcribed
27	spacers (ITS) for 30 accessions representing 14 species of Ceiba recovered the genus as
28	monophyletic and showed geographical and ecological structure in three main clades: (i) a rain
29	forest lineage of nine accessions of C. pentandra sister to the remaining species; (ii) a highly
30	supported clade composed of C. schottii and C. aesculifolia from Central American and Mexican
31	SDTF plus two accessions of C. samauma from inter Andean valleys from Peru; and (iii) a
32	highly supported South American SDTF clade including 10 species showing little sequence
33	variation. Within this South American clade, no species represented by multiple accessions were
34	resolved as monophyletic. We demonstrate that the patterns of species age, monophyly and
35	geographical structure previously reported for SDTF species within the Leguminosae family are
36	not shared by Ceiba, suggesting that further phylogenetic studies of unrelated groups are
37	required.
37 38	required.
37 38 39	required. HIGHLIGHTS
37 38 39	required. HIGHLIGHTS
37 38 39 40	required. HIGHLIGHTS • This paper provides a well sampled phylogeny of the iconic genus <i>Ceiba</i> , one of the most
37 38 39 40 41	required. HIGHLIGHTS • This paper provides a well sampled phylogeny of the iconic genus <i>Ceiba</i> , one of the most characteristic tree genera of neotropical Seasonally Dry Tropical Forest (SDTF).
37 38 39 40 41 42	 required. HIGHLIGHTS This paper provides a well sampled phylogeny of the iconic genus <i>Ceiba</i>, one of the most characteristic tree genera of neotropical Seasonally Dry Tropical Forest (SDTF). There is a clear phylogenetic signal for biome preference and geographic structure in
37 38 39 40 41 42 43	 required. HIGHLIGHTS This paper provides a well sampled phylogeny of the iconic genus <i>Ceiba</i>, one of the most characteristic tree genera of neotropical Seasonally Dry Tropical Forest (SDTF). There is a clear phylogenetic signal for biome preference and geographic structure in <i>Ceiba</i>.
37 38 39 40 41 42 43 44	 required. HIGHLIGHTS This paper provides a well sampled phylogeny of the iconic genus <i>Ceiba</i>, one of the most characteristic tree genera of neotropical Seasonally Dry Tropical Forest (SDTF). There is a clear phylogenetic signal for biome preference and geographic structure in <i>Ceiba</i>. We estimate a mid Miocene origin for <i>Ceiba</i>, with the stem node age of the genus
 37 38 39 40 41 42 43 44 45 	 required. HIGHLIGHTS This paper provides a well sampled phylogeny of the iconic genus <i>Ceiba</i>, one of the most characteristic tree genera of neotropical Seasonally Dry Tropical Forest (SDTF). There is a clear phylogenetic signal for biome preference and geographic structure in <i>Ceiba</i>. We estimate a mid Miocene origin for <i>Ceiba</i>, with the stem node age of the genus estimated at 21.1 Ma and the crown node age at 12.7 Ma.
 37 38 39 40 41 42 43 44 45 46 	 required. HIGHLIGHTS This paper provides a well sampled phylogeny of the iconic genus <i>Ceiba</i>, one of the most characteristic tree genera of neotropical Seasonally Dry Tropical Forest (SDTF). There is a clear phylogenetic signal for biome preference and geographic structure in <i>Ceiba</i>. We estimate a mid Miocene origin for <i>Ceiba</i>, with the stem node age of the genus estimated at 21.1 Ma and the crown node age at 12.7 Ma. <i>Ceiba</i> species have young stem ages in the SDTF clade but old stem ages in rain forest

• I adding of species age, monophyty, ecological and geographical structure reported for
SDTF species are only partially shared by Ceiba, an iconic genus of neotropical SDTF.
KEY WORDS
Seasonally Dry Tropical Forests; rain forest; radiation; neotropics; Caatinga.
INTRODUCTION
THE NEOTROPICS IS THE MOST SPECIES-RICH REGION IN THE WORLD AND THE MECHANISMS THAT
generated and maintain its biodiversity are under constant discussion. Through evolutionary
time, the Neotropics have been climatically and geologically dynamic, resulting in a diversity of
biomes, from deserts to tropical rain forests (Hughes et al. 2013, Rangel et al. 2018). To
understand the history and dynamics of those biomes, molecular phylogenetic and
phylogeographic approaches have been used, because the relationships of taxa allow inferences
to be made of the historical relationships amongst biomes and areas (Pennington et al. 2006). In
recent years the dichotomy regarding the 'cradle' vs. 'museum' debate (Stebbins 1974)
explaining neotropical diversity has given way to a more nuanced approach, considering that
plant diversification patterns may be recent, old, slow or rapid, even within individual clades
(Hughes et al. 2013, Koenen et al. 2015). As suggested in the literature more than 10 years ago
(Wiens and Donoghue 2004, Pennington et al. 2006), this heterogeneity in diversification timing
and rate within and among clades may be related not only to climatic and geological events, but
also to the age and ecological differences of the biomes. For example, geologically old biomes

71 (e.g., rain forest) are likely to have provided lineages that colonised newer biomes (e.g., 72 savannas) and the relative difficulty of evolving adaptations such as drought tolerance or the 73 ability to survive fire might determine whether a lineage can adapt to a new biome (niche 74 evolution; Simon et al. 2009, Pennington & Lavin 2016) or remains confined to the same biome 75 (niche conservatism) over evolutionary timescales (Crisp et al. 2009). 76 Clades endemic to two of the major Neotropical biomes, seasonally dry tropical forests 77 (SDTFs) and rain forests, give good examples of different and distinctive phylogenetic and 78 biogeographic patterns, suggesting an interaction of ecology and phylogeny over evolutionary 79 timescales (Pennington et al. 2011, Pennington and Lavin 2016, Dexter et al. 2017). SDTFs 80 occur on fertile soils and are characterized by the absence of fire adaptation in the flora and a 81 predominantly continuous tree canopy, which becomes more open in the drier sites, with plants 82 shedding up to 90–95% of their leaves during the five to six month long dry season (Murphy and 83 Lugo 1986, Pennington et al. 2009). This biome has been one of the least studied, but is one of 84 the most threatened in the tropics (Miles et al. 2006, DRYFLOR 2016). It occurs in disjunct 85 areas throughout the Neotropics and has high beta-diversity and plant species endemism 86 (Pennington et al., 2009; DRYFLOR, 2016). Leguminosae and Bignoniaceae are often the most 87 species rich and dominant families in SDTF, but species from the Bombacoideae clade 88 (Malvaceae), the subject of this paper, are often common and distinctive. 89 SDTF-confined clades contain species that often resolve as monophyletic and with old 90 stem ages in DNA-sequence-based phylogenies (Pennington and Lavin 2016). In addition, the 91 geographically structured phylogenetic pattern characteristic of clades in this biome suggests 92 dispersal-limitation caused by the stable ecological conditions of the biome maintained over long 93 evolutionary timescales (Pennington et al. 2010, Hughes et al. 2013). By contrast, tree clades

- 94 confined to the Amazon rain forest, the largest expanse of tropical forest in the world, are
- 95 suggested to contain more non-monophyletic species, more species with young stem ages and
- 96 clades that lack geographical phylogenetic structure (Dexter et al. 2017). These rain forest
- 97 patterns might be explained by frequent dispersal and subsequent successful colonization over
- 98 evolutionary timescales (Pennington & Lavin, 2015) (Fig. 1).

Ecological structure of phylogenies

Figure 1. Two hypothetical islands, each with an area of seasonally dry tropical forest and rain forest. Intotal eight different species occur in the two biomes and the different islands and are represented by

different colours (dark green species 1, dark green species 2, dark purple 3, etc.). Hypothetical
phylogenies showing patterns of presence or absence of geographical and ecological structures (after
Graham & Fine 2008).

105

106 The neotropical genus Ceiba Mill. (Malvaceae: Bombacoideae) comprises 18 species 107 grouped into taxonomic sections Ceiba and Campylanthera (Schott & Endl.) K. Schum. based on 108 morphological characters of pollen and staminal appendages. It is one of the most characteristic 109 elements of many neotropical SDTFs. However, it also contains species confined to the Amazon 110 rain forest and is therefore a good case study to investigate biome-specific differences in the 111 nature of species and their diversification trajectories. 112 *Ceiba* species have digitate leaves, aculeate spines on the trunk and branches and can 113 vary from 50 m canopy emergents in seasonally flooded várzea forests in the Amazon (C. 114 *pentandra*) to 2 m treelets on rocky outcrops (campos rupestres) in Minas Gerais, Brazil (C. 115 jasminodora). In some species (C. chodatii, C. pubiflora, C. glaziovii, C. speciosa) the trunk can 116 be ventricose (swollen), explaining its vernacular names barriguda ("swollen belly"; Brazil) and 117 palo borracho ("drunken tree"; Peru). Most species are deciduous and flower when leafless. They 118 occur mostly in SDTF, with the exception of the widespread C. samauma, C. speciosa and C. 119 *pentandra* that also occur in more humid environments, and C. *lupuna*, which is the only species 120 restricted to rain forests (Fig. 2). On average, each of the thirteen SDTF species have a narrower 121 geographical distribution when compared to the five rain-forest-inhabiting species (Fig. 2).

Figure 2. Distribution of 18 *Ceiba* species in three maps: (A) three species from SDTFs in Central
America and North America, (B) ten species from SDTFs in South America and (C) five species from
rain forests from Latin America. Grey areas represent the distribution of SDTF following DRYFLOR
(2016). Occurrence records adapted from Gibbs and Semir (2003).

128

129 Previous Bayesian analyses of sequence data from the nuclear ribosomal internal and 130 external transcribed spacers (ITS and ETS) and plastid markers (matK, trnL-F, trnS-trnG) for 13 131 species recovered *Ceiba* as monophyletic and sister to *Neobuchia paullinae* (Duarte et al. 2011, 132 Carvalho-Sobrinho et al. 2016). Together with Spirotheca, Pochota fendleri sensu Alverson and 133 Duarte (2015), and *Pseudobombax*, these taxa form the well supported "striated bark" clade 134 (Carvalho-Sobrinho et al. 2016). However, relationships within Ceiba were poorly resolved and 135 only one individual per species was included in the phylogeny. *Ceiba* has a historically complex 136 taxonomy with species boundaries still confused, which is aggravated by the fact that herbarium 137 specimens are often incomplete because individuals produce flowers and fruits when leafless.

Therefore, a well sampled phylogeny with multiple accessions per species could be a useful toolto explore the nature of species in *Ceiba*.

This paper investigates the evolutionary history of *Ceiba* species. We aim to assess
whether the *Ceiba* phylogeny is geographically or ecologically structured and if species confined

to SDTFs are resolved differently in the phylogeny as compared with rain forest species (i.e.,

143 monophyletic on long stem lineages).

144

145 **METHODS**

146

147 TAXON SAMPLING - We present the best sampled phylogeny of the genus *Ceiba* to date, covering 148 30 accessions representing 14 of the 18 species described for the genus. Critically, this study is 149 the first to sample multiple individuals per species for six species (Table S1). As outgroups, we 150 included 10 accessions representing species of the closest sister clades (Carvalho-Sobrinho et al. 151 2016): Pseudobombax, Spirotheca, Eriotheca, and Pochota fendleri. The full data set represents 152 a combination of new sequence data from field surveys as well as from herbarium specimens, 153 doubling the number of accessions of Ceiba in relation to the previous study by Carvalho-154 Sobrinho et al. (2016).

155

DNA SEQUENCE DATA - We used the ITS region to investigate species relationships in *Ceiba*. In
Bombacoideae, this region has been widely explored to help elucidate relationships among
genera and species (Baum et al. 1998, Duarte et al. 2011, Carvalho-Sobrinho et al. 2016), and to
investigate genetic structure among populations (Dick et al. 2007). Previous systematic studies in
Bombacoideae used a combination of nuclear (ITS, ETS) and plastid (matK, trnS-trnG and trnL-

trnF) markers and ITS had the highest number of informative characters (Duarte et al. 2011,
Carvalho-Sobrinho et al. 2016). In spite of having drawbacks related to potential paralogous
copies (Álvarez 2003, Buckler et al. 1997), ITS can still play an important role in the
investigation of species relationships if analysed carefully, for example identifying pseudogenes
and assessing orthology in the case of intra-individual polymorphism (Bailey 2003, Feliner and
Rosselló 2007).

167

168 Genomic DNA extraction was performed for 36 herbarium and silica-gel dried leaf 169 samples using Qiagen DNeasy Plant Mini Kits following the manufacturer's protocol, with the 170 following changes: twice the volume of buffer AP1 in addition to a small amount of PVPP 171 (polyvinyl polypyrrolidone) added at the lyse step followed by an incubation of 30 minutes; 172 addition of 1uL of Riboshredder in the lysate solution followed by incubation at 37°C for 20 173 minutes; addition of twice the volume of buffer P3; and final elution in 46 uL of EB buffer run 174 through the column twice to increase yield. Each 20 uL PCR amplification reaction contained 0.5 175 uL of template, 2 uL of dNTPs (2 mM), 2 uL of 10x reaction buffer, 1 uL of MgCl2 (50 mM), 176 0.65 uL of both forward primer and reverse primer solutions (10 uM), 0.1 uL of Taq polymerase, 177 4 uL of CES buffer and 9.1 uL of ddH2O. Amplification followed the same procedure described 178 in Carvalho-Sobrinho et al. (2016). Samples were submitted to the Edinburgh Genomics 179 laboratory at the University of Edinburgh for sequencing. For low quality sequences, we tested 180 variations of the protocol (e.g. diminishing the amount of template in the PCR reaction or 181 varying the sequencing primer). High quality sequences were recovered for 13 out of the 36 182 samples from which DNA was extracted for the ITS region.

183 All the inter-accession polymorphisms detected were validated visually by checking the 184 electropherograms. Sequences were edited with Sequencher 5.4.1 (Gene Codes Corp., Ann 185 Arbor, Michigan) and alignments were performed manually in Mesquite (Maddison and 186 Maddison 2015). We investigated the potential presence of ITS pseudogenes by conducting 187 phylogenetic analysis in separate partitions representing the 5.8S (conserved region) and the ITS 188 1 and ITS 2 regions (fast evolving regions). In pseudogenes, the conserved and the fast evolving 189 regions are expected to show similar rate of evolution whereas in functional genes the conserved 190 region is expected to have a lower rate of evolution compared to the fast evolving regions 191 (Bailey et al. 2003). We assigned partitions by comparison with the annotated accession of 192 Pseudobombax tomentosum (GenBank KM453206), and checked for differences in rates of 193 evolution in the partition scheme proposed with PartitionFinder2 version 2.1.1 (Lanfear et al. 194 2017) using PhyML version 3.0 (Guindon et al. 2010) and the greedy search algorithm (Lanfear 195 et al. 2012).

196

197 PHYLOGENETIC ANALYSIS AND MOLECULAR DATING - We implemented maximum likelihood 198 (ML) and Bayesian Inference (BI) analysis. To determine best fitting model of sequence 199 evolution for each of the three partitions, we used PartitionFinder2 version 2.1.1 (Lanfear et al. 200 2017) in the ML analysis and the reversible jump model selection (RB) implemented in BEAST2 201 version 2.5.1 (Bouckaert et al. 2019) under the Bayesian framework. IQ-TREE version 2.0.3 202 (Nguyen et al. 2015, Minh et al. 2020) was used to run the ML analysis with 1,000 bootstrap 203 replicates and using the partition model option (-p) (Chernomor et al. 2016) with substitution 204 models specified as follows: GTR+G for ITS1, K80+G for 5.8S and HKY+G for ITS2, as 205 inferred with PartitionFinder2 (see above). BEAST2 version 2.5.1 (Bouckaert et al. 2019) was

206 used to perform BI analysis and temporally calibrate the phylogeny. Different combinations of 207 relaxed clock models (Uncorrelated Exponential Distribution - UCED and Uncorrelated Log 208 Normal Distribution - UCLD (Drummond et al. 2006)) and tree priors (Yule and Birth-Death) 209 were compared. Few studies have objectively contrasted the effect of different models in the 210 divergence time estimation, and a poorly inferred time-calibrated phylogeny can have serious 211 consequences for our understanding of diversification history of lineages (Louca and Pennell 212 2020). For example, different tree priors resulted in impressive differences in age estimation for 213 cycads, with the Yule prior inferring ages three times older than the Birth-Death prior 214 (Condamine et al. 2015). In Bayesian analysis, the most suitable model can be selected by 215 comparing the Bayes Factor (BF). The BF is equal to the ratio of the Marginal Likelihood 216 Estimate (MLE) of two models (BF=MLE1/MLE2) or to the difference of MLEs in log space 217 (log(BF)=log(MLE1) – log(MLE2)). Positive values of BF would favour MLE1, and different 218 values have different strengths. Values above five indicates that one model is significantly 219 favoured over the other (Kass and Raftery 1995, Condamine et al. 2015), values above 20 220 indicate strong support and values above 150 overwhelming support. We estimated the Marginal 221 Likelihood using the Nested Sampling algorithm (Skilling 2006) implemented in the NS package 222 version 1.0.4 (Russel et al. 2019) for BEAST2 version 2.5.1 with 60 particles and 10,000 chain 223 length. The NS package also calculates the standard deviation (SD) of the estimated Marginal 224 Likelihood, which allows us to have confidence in the BF values calculated. For each 225 combination of priors, we ran two independent runs of 10 million generations, sampled every 226 1,000 generations and visually inspected convergence of MCMC and ensured effective sample 227 size > 200 for all parameters of each run using Tracer v1.7.1 (Rambaut et al. 2018). Resulting 228 trees and log files from each run were combined using LogCombiner with a burn-in of 10% and

the Maximum Clade Credibility Tree was summarized in TreeAnnotator with node heights as
mean heights. We used r8s (Sanderson 2004) to implement the penalised likelihood method
(Sanderson 2002) and calculate substitutions rates. We used the phylogram derived from the ML
analysis as input and conducted a cross-validation analysis to find the best smoothing parameter.
We used the fossil flower of Eriotheca prima (Duarte 1974) from the middle to late
Eocene (de Lima and Salard-Cheboldaeff 1981) of Brazil as a primary calibration for our
BEAST2 analysis. The flower was identified as Eriotheca based on its small size (Bombacopsis
and Pachira have larger flowers) and androecium organisation, which is a synapomorphy for the
extant species of the genus (Robyns 1963, Duarte et al. 2011, Carvalho-Sobrinho et al. 2016). In
previous studies, Eriotheca was resolved as sister to a clade comprising Pseudobombax,
Spirotheca, Ceiba, and Pochota fendleri (Duarte et al. 2011, Carvalho-Sobrinho et al. 2016).
Because the dating of this fossil is imprecise (middle to late Eocene: 33-56 million years old
(Ma), we assigned the offset age of 33 Ma as a minimum age to the stem node (Renner 2005,
Pennington et al. 2006) of Eriotheca (the crown node of the clade comprising Eriotheca,
Spirotheca, Pseudobombax, Pochotoa fendleri and Ceiba), which is equivalent to the root node
of the outgroups and ingroup of this study. We assigned a log-normal distribution with a mean of
1.542 and standard deviation of 1.5. This fossil calibration is conservative, with 95% of the prior
distribution comprised between 33 and 47 Ma and thus the ages estimated here are considered
minimum ages estimates. In order to explore the effects of using the medium and maximum ages
of the Eriotheca fossil on phylogenetic age estimates, we also ran analyses assigning minimum
ages of 47 Ma and 56 Ma to the <i>Eriotheca</i> stem (Figs. S1 and S2). We followed the dates on the
Geologic Time Scale v. 5.0 (Gradstein et al. 2012).

252 PHYLOGENETIC SIGNAL TEST.- We tested for strength of phylogenetic signal for the binary traits 253 related to ecology (rain vs dry forests) and geography (Central and North America vs South 254 America) using the *D* value proposed by Fritz and Purvis (2010), and implemented using the 255 Caper package (v. 1.0.1) (Orme 2013) in R, with 5,000 permutations. Under a null model of 256 Brownian motion evolution of a binary trait, D has an expected value of 0. A negative D value 257 indicates a strongly clustered phylogenetic pattern for a given binary trait (perhaps due to some 258 process of evolutionary constraint), a value of one indicates a completely random pattern with 259 respect to the phylogeny (i.e. no correlation between phylogeny and the trait at all) and values 260 above one indicate an overdispersed phylogenetic pattern (perhaps due to divergent selection). 261 We assigned species to ecological and geographical categories following Gibbs and Semir 262 (2003) (Table S1). Despite occurring mainly in rain forests, *Ceiba speciosa* is also recorded in 263 dry semi-deciduous woodland (Figure 2). To check for possible bias in the ecological affinity of 264 C. speciosa, we also conducted a phylogenetic signal analysis assigning this species to dry forest, 265 observing no difference when comparing to the analysis run assigning the species to rain forest. 266 267 RESULTS 268

The total length of the aligned sequences was 814 nucleotides, of which 283 were variable and 178 (22%) were parsimony-informative characters. The ML and BI trees showed congruent topologies (Figs. 3 and 4). *Ceiba* was strongly supported as monophyletic, with posterior probability (pp) = 1 and bootstrap value = 100 and was recovered as sister to *Pseudobombax* (Fig. 3). The UCLD and UCED clock models and Yule and Birth-Death tree models inferred similar crown and stem ages with overlapping credibility intervals (95% Highest Posterior

275	Density (HDP), Table 1). For the UCLD clock prior, the Bayes Factor value of 6.15 support the
276	Yule tree prior as the most suitable tree model. For the UCED clock prior, the Bayes Factor of
277	1.15 indicates that the neither tree model is favoured (Table 1). Therefore, results shown
278	onwards for Bayesian analysis are those inferred using the UCLD clock model and the Yule tree
279	model. Using the 33 Ma fossil calibration, the stem node age of Ceiba is 21.1 (14.7-27.1 [95%
280	HPD]) Ma, the crown node age is 12.7 (8.2-17.6 [95% HPD]) Ma (Table 1, Fig. 4), and
281	substitution rates estimated in 1.592 x10 ⁻⁹ substitutions per site per year (s/s/y). Ceiba shows
282	slow substitution rates for ITS when compared to other tropical tree species. For example, for the
283	rain forest tree genus Inga (Leguminosae), substitution rates have been estimated in 2.34×10^{-9}
284	s/s/y (Richardson et al. 2001) and in 7.1-7.9 x 10 ⁻⁹ s/s/y (Lavin 2006), and for the dry forest
285	genus Coursetia (Leguminosae) in 5.0-8.2 x 10 ⁻⁹ (Lavin 2006).
286	
287	
288	
289	
290	
291	
292	
293	
294	
295	
296	
297	

298	Table 1. Absolute ag	ges estimate for ten	nodes under	different tree ((Yule and Birth-Death) and clock	priors
					(= ···· = ···· = = ··· = = ····	/	

- 299 (UCLD Uncorrelated Lognormal Distribution and UCED Uncorrelated Exponential
- 300 Distribution). Ages are reported in million years as mean ages followed by the 95% Highest Posterior
- 301 Density (HDP) as a result of the combined independent runs for each tree and clock priors. MLE (SD):
- 302 marginal likelihood estimated followed by standard deviation; BF: Bayes factor calculated as the
- 303 difference between the MLE of the Yule and the Birth-Death prior for each clock prior UCLD and
- 304 UCED. Values above five indicates that one model is significantly favoured over the other.

Clock prior	UC	LD	UCED		
Tree prior Yule Birth-dea		Birth-death	Yule	Birth-death	
MLE (SD)	-3844.31 (1.85)	-3838.15 (1.79)	-3838.74 (1.88)	-3837.62 (1.76)	
BF	6.15		1.15		
<i>Ceiba</i> crown	12.7 (8.2-17.6)	10.9 (6.5-15.7)	13.5 (8.6-18.8)	11.5 (6.1-17.4)	
<i>Ceiba</i> stem	21.1 (14.7-27.1)	20.3 (13.5-26.9)	21.0 (14.4-27.5)	19.1 (11.3-26.9)	
SDTF SA crown	8.6 (5.0-12.5)	7.0 (3.6-10.7)	9.6 (5.6-14.1)	7.8 (3.8-12.5)	
SDTF SA stem	11.2 (7.2-15.6)	9.5 (5.6-13.9)	12.0 (7.5-16.7)	10.0 (5.2-15.4)	
C. aesculifolia crown	1.5 (0.2-3.2)	1.2 (0.2-2.3)	1.7 (0.3-3.9)	1.3 (0.2-2.9)	
C. aesculifolia stem	6.3 (3.1-9.8)	5.1 (2.1-8.3)	7.6 (3.7-12.0)	4.7 (1.7-8.3)	
C. samauma crown	0.4 (0.0001-1.4)	0.3 (0.0001-1.0)	0.5 (0.0001-1.7)	0.3 (0.0001-1.2)	
C. samauma stem	6.3 (3.1-9.8)	5.1 (2.1-8.3)	6.3 (2.6-10.2)	6.1 (2.4-10.3)	
C. pentandra crown	3.9 (1.6-6.5)	3.0 (1.1-5.2)	5.5 (2.3-9.2)	4.2 (1.5-7.5)	
C. pentandra stem	12.7 (8.2-17.6)	10.9 (6.5-15.7)	13.5 (8.6-18.9)	11.5 (6.1-17.4)	

305

306 *Ceiba* comprises three main clades: (i) a rain forest lineage of the three accessions of *C*.

307 *pentandra*, which are strongly supported as monophyletic [posterior probability (pp) = 1 and

308	bootstrap value = 100] and sister to the remaining species and with stem node age of 12,7 (8,2-
309	17,6 [95% HPD]) Ma and crown node age of 3,9 (1.6–6,5 [95% HPD]) Ma.; (ii) a highly
310	supported clade [posterior probability (pp) = 1 and bootstrap value = 92] composed of C. schottii
311	and C. aesculifolia from Central American and Mexican SDTF plus two accessions of C.
312	samauma from inter-Andean valleys in Peru, with stem node age of 11,2 (7,2-15,6 [95% HPD])
313	Ma and crown age of 7,3 (3,7-11.0 [95% HPD]) Ma; and (iii) a highly supported [posterior
314	probability (pp) = 0.99 and bootstrap value = 81] South American SDTF clade including 10
315	species showing little sequence variation, with stem node age of 11,2 (7,2–15,6 [95% HPD]) Ma
316	and crown node of 8,6 (5,0–12,5 [95% HPD]) Ma. Within this South American clade, C .
317	rubriflora, C. pubiflora and C. insignis, which were represented by multiple accessions, were
318	resolved as monophyletic. The South American clade represents SDTF species, except for C .
319	lupuna, a species with a distribution restricted to rain forest (Figs. 3 and 4). Ceiba aesculifolia
320	was the only SDTF species recovered as monophyletic with stem node age of $6.3 (3.1-9.8 [95\%)$
321	HPD]) Ma and crown node of 1.5 (0.2–3.2 [95% HPD]) Ma.
322	The D test shows significant phylogenetic signal for both ecological preference ($D =$
323	0.1247542, P (D=1) = 0.001, P (D=0) = 0.3422) and geographical occurrence (<i>D</i> = 0.2204991, P
324	(D=1) = 0.0176, P $(D=0) = 0.3152$). Both <i>D</i> values are statistically indistinguishable from zero,
325	which indicates that closely related species are more likely to show the same ecological
326	preference or geographical occurrence, as expected under a Brownian model of evolution,
327	whereby there would be a constant rate of state switching over time and any given lineage is
328	more likely to stay within the same biome and geographic region per unit time than to switch to
329	the alternative biome or geographic region.

- 330 The phylogeny supports the monophyly of the two sections of the genus, *Ceiba* and
- 331 Campylanthera, which are based on pollen and staminal appendages characters. However, it
- does not support monophyly of the 'insignis' species complex (Gibbs and Semir 2003). This
- 333 species aggregate includes seven species (C. pubiflora, C. chodatii, C. insignis, C. ventricosa, C.
- 334 *lupuna*, *C. speciosa* and *C. crispiflora*, indicated with an asterisk in Figs. 3 and 4) characterized
- by their entire staminal tube terminating in a collar of anthers, with the exception of *C. pubiflora*
- 336 which has free stamens.

Figure 3. Maximum likelihood phylogram derived from analysis of nuclear ribosomal ITS sequence data
sets for 14 species of *Ceiba*. Species with asterisk belong to the *Ceiba insignis* species aggregate. Values

- 340 above branches represent bootstrap values for internal nodes. Tree symbols in front of accessions
- 341 represent species occurring in SDTF (purple) and rain forests (green).
- 342

- 345 sequence data sets for 14 species of *Ceiba*, 33 Ma offset calibration, using Yule tree prior and the
- 346 Uncorrelated Lognormal Distribution clock model. Values above branches represent nodes ages reported
- in million years as mean ages. Circles represent posterior probabilities for internal nodes: black ≥ 0.95 ;
- 348 grey < 0.95 and >= 0.75, and white < 0.75.
- 349

DISCUSSION

352	GEOGRAPHIC AND ECOLOGICAL STRUCTURE - The D test shows clear phylogenetic signal for
353	ecological preference and geographic phylogenetic structure (i.e., clear Central and South
354	American clades) in Ceiba. However, our data suggest multiple shifts from dry to rain forests
355	within Ceiba (Figs. 3 and 4) because rain forest species are nested within the two dry forest
356	clades. For example, the two accessions representing C. samauma, occurring in rain and riverine
357	forest in South America, are nested within the Central American and Mexican clade and the rain
358	forest species C. lupuna and C. speciosa, are nested within the South American SDTF clade.
359	
360	BIOME-SPECIFIC DIFFERENCES IN THE NATURE OF SPECIES AND THEIR DIVERSIFICATION
361	TRAJECTORIES - Our results show young crown and stem ages for species in the SDTF clade.
362	Rain forest species such as Ceiba pentandra and C. samauma show patterns of long stems with
363	shallow crown groups (Table 1). These patterns contrast to previous studies of individual SDTF
364	species that showed them to be older, with stem ages of 5-10my (e.g., Pennington et al. 2010, de
365	Queiroz & Lavin 2011), and runs contrary to the prediction of Pennington and Lavin (2016) that
366	rain forest species might, on average, tend to have more recent origins.
367	The stem age of C. pentandra is estimated at 12.7 Ma (Table 1). The long stem and
368	shallow crown suggest this is an old rain forest lineage with low levels of extant genetic diversity
369	populations. Likewise, C. samauma was recovered as monophyletic, and has a crown node age
370	estimated as 0.4 Ma and a stem node age of 6,3 Ma. Both species therefore contrast with the
371	suggested predominant patterns for rain forest species. Our result, recovering C. pentandra as
372	monophyletic, with low sequence divergence amongst accessions, is consistent with that of Dick

373 et al. (2007) who showed C. pentandra to have extremely weak phylogeographical structure 374 based on ITS and chloroplast *psb*B-*psb*F for 51 individuals. In addition to that, the disjunct 375 distribution of this species in Africa was demonstrated to be due to relatively recent long 376 distance dispersal because of low genetic divergence of the African populations. 377 Within the two predominantly SDTF clades, there is little evidence for old lineages 378 representing morphologically recognized species with long stems and monophyletic crown 379 groups, as predicted by Pennington and Lavin (2016). The crown age of the South American 380 SDTF clade, containing 10 species, is estimated at 8.6 Ma, and the Mexican SDTF clade, 381 containing 2 species, is estimated at 7.9 Ma with a stem age for both estimated at 11.2 Ma. Only 382 one species from SDTF were recovered as monophyletic, *Ceiba aesculifolia* with a crown age 383 estimated at 1.5 Ma and stem age at 6.3 Ma. Even when assigning a minimum age of 56 Ma to 384 the *Eriotheca* stem, the same pattern is observed (Fig. S2). The crown age of the South American 385 SDTF clade is estimated at 14.9 Ma and the Mexican SDTF clade, containing two species, is 386 estimated at 12.6 Ma with a stem age for both estimated at 19.5 Ma. The crown age of Ceiba 387 aesculifolia was estimated at 2.7 Ma and stem age at 10.79 Ma (Fig. S2). 388 The lack of resolution among the dry forest accessions, with most species being recovered 389 as non-monophyletic, indicates absence of intraspecific coalescence for the ITS locus. 390 Explanations for this include incomplete lineage sorting after speciation events, paralogous gene 391 copies, inaccurate species delimitation and/or hybridization followed by introgression (Naciri 392 and Linder 2015, Pennington and Lavin 2016). We eliminated sequences with possible 393 paralogues by visual inspection of the electropherograms and by comparing substitution rates 394 along branch lengths following Bailey et al. (2003). Some species of Ceiba are hypothesised to 395 be interfertile and hybridise (Gibbs and Semir 2003), especially within the *insignis* species

396	aggregate. However, it is also suggested that those species diverge in time of anthesis and
397	pollinator type as well, and we have seen no evidence of putative hybrids in the field (Pezzini,
398	pers. obs.). Eight out of the ten species within the South American SDTF clade are from Brazil
399	and of these, four are distributed in the Caatinga, the largest area of SDTF in the Neotropics
400	(700,000km2) (Silva de Miranda et al. 2018). Ceiba species such as C. pubiflora are often
401	widespread (Fig. 2) and abundant (Lima et al. 2010). Taken together, this evidence suggests that
402	the non-monophyly of Ceiba species found in SDTF such as C. pubiflora may be a reflection of
403	large effective population sizes and hence a longer time to coalescence (Naciri and Linder 2015,
404	Pennington and Lavin 2016), rather than due to hybridisation or ITS paralogy.
405	Our study illustrates that the general patterns of species age, monophyly and geographical
406	structure reported for species belonging to the Leguminosae family and endemic to SDTF
407	(Pennington and Lavin 2016) are not shared by one of the most characteristic SDTF tree genera
408	and suggests that further phylogenetic studies of unrelated groups are required.
409	
410	TAXONOMIC IMPLICATIONS Our data support: (i) the circumscription of <i>Chorisia</i> within <i>Ceiba</i> ,
411	as proposed by Gibbs et al. (1988), Ravenna (1998) and Gibbs and Semir (2003) and confirmed
412	by recent molecular studies (Carvalho-Sobrinho et al. 2016); (ii) the non-monophyly of the C .
413	insignis aggregate species proposed by Gibbs & Semir (2003). Our data suggest that C .
414	boliviana, C. erianthos and C. rubriflora, not included by Gibbs and Semir (2003) are also part
415	of the <i>insignis</i> clade (Fig. 3). It is suggested that those species are interfertile but also diverge in
416	time of anthesis and pollinator type (Gibbs and Semir 2003). Five of the seven species within
417	this complex are restricted to the SDTF patches of South America, while C. speciosa is
418	widespread and C. lupuna occurs in riverine rain forests in the Peruvian and Brazilian Amazon

419	(Fig. 2); and (iii) the monophyly of the section Campylanthera (Gibbs and Semir 2003) that
420	includes the Central American species C. aesculifolia, C. schottii and the widespread C.
421	samauma.
422	
423	ACKNOWLEDGMENTS
424	
425	This paper is part of the PhD thesis of F.P. F.P. acknowledges the support of the Brazilian
426	National Research Council (CNPq) for funding her PhD at the University of Edinburgh and the
427	Royal Botanic Garden Edinburgh under the Science without Borders programme (process
428	206954/2014-0 - GDE). Fieldwork was partially supported by Fundação de Amparo à Pesquisa
429	do Estado da Bahia (FAPESB - process APP0006/2011). F.P. thanks F.C. Diniz for fieldwork
430	collaboration, A. Griffths for help with the phylogenetic signal analysis and E. Koenen for
431	insightful discussions. The authors are thankful to the reviewers who helped improve the
432	manuscript.
433	
434	Author contributions: F.F.P. and R.T.P conceived the original idea; F.F.P. executed fieldwork,
435	data collection, laboratory work and data analysis with input from K.G.D; F.F.P. led the writing
436	of the manuscript with input, comments and review from K.G.D., J.G.CS., C.A.K., J.A.N.
437	L.P.Q. and R.T.P.
438	
439	DATA AVAILABILITY STATEMENT
440	
441	Data Availability: The data used in this study are archived at Genbank (accession numbers XXX

442	- numbers will be inserted on final accepted version). Scripts for analysis conducted here and for
443	making figures are available in F.F.P.'s GitHub page (https://github.com/fpezzini).
444	
445	Supplementary Materials
446	The following materials are available as part of the online article: Supplementary Table 1.
447	Collection details of each accession and ecological preference for the species of <i>Ceiba</i> ; Figure S1.
448	Maximum clade credibility tree resulting from BEAST2 analysis of nuclear ribosomal ITS
449	sequence data sets for 14 species of Ceiba for 47 Ma offset calibration, using Yule tree prior and
450	the Uncorrelated Lognormal Distribution clock model; Figure S2. Maximum clade credibility tree
451	resulting from BEAST2 analysis of nuclear ribosomal ITS sequence data sets for 14 species of
452	Ceiba for 56 Ma offset calibration, using Yule tree prior and the Uncorrelated Lognormal
453	Distribution clock model.
454	
455	LITERATURE CITED
456	
457	Álvarez, I. (2003) Ribosomal ITS sequences and plant phylogenetic inference. Molecular
458	Phylogenetics and Evolution 29, 417–434.
459	
	Alverson, W.S. & Duarte, M.C. (2015) Hello Again Pochota , Farewell Bombacopsis
460	Alverson, W.S. & Duarte, M.C. (2015) Hello Again Pochota , Farewell Bombacopsis (Malvaceae). Novon: A Journal for Botanical Nomenclature 24, 115–119.
460 461	 Alverson, W.S. & Duarte, M.C. (2015) Hello Again Pochota , Farewell Bombacopsis (Malvaceae). Novon: A Journal for Botanical Nomenclature 24, 115–119. Bailey, C. (2003) Characterization of angiosperm nrDNA polymorphism, paralogy, and
460 461 462	 Alverson, W.S. & Duarte, M.C. (2015) Hello Again Pochota, Farewell Bombacopsis (Malvaceae). Novon: A Journal for Botanical Nomenclature 24, 115–119. Bailey, C. (2003) Characterization of angiosperm nrDNA polymorphism, paralogy, and pseudogenes. Molecular Phylogenetics and Evolution 29, 435–455.
460 461 462 463	 Alverson, W.S. & Duarte, M.C. (2015) Hello Again Pochota, Farewell Bombacopsis (Malvaceae). Novon: A Journal for Botanical Nomenclature 24, 115–119. Bailey, C. (2003) Characterization of angiosperm nrDNA polymorphism, paralogy, and pseudogenes. Molecular Phylogenetics and Evolution 29, 435–455. Baum, D.A., Small, R.L. & Wendel, J.F. (1998) Biogeography and Floral Evolution of Baobabs
460 461 462 463 464	 Alverson, W.S. & Duarte, M.C. (2015) Hello Again Pochota , Farewell Bombacopsis (Malvaceae). Novon: A Journal for Botanical Nomenclature 24, 115–119. Bailey, C. (2003) Characterization of angiosperm nrDNA polymorphism, paralogy, and pseudogenes. Molecular Phylogenetics and Evolution 29, 435–455. Baum, D.A., Small, R.L. & Wendel, J.F. (1998) Biogeography and Floral Evolution of Baobabs Adansonia, Bombacaceae as Inferred From Multiple Data Sets D. Cannatella (ed.).

- 465 Systematic Biology 47, 181–207.
- 466 Bouckaert, R., Vaughan, T.G., Barido-Sottani, J., et al. (2019) BEAST 2.5: An advanced
- 467 software platform for Bayesian evolutionary analysis M. Pertea (ed.). PLOS Computational
- 468 Biology 15, e1006650.
- Buckler, E.S., Ippolito, A. & Holtsford, T.P. (1997) The evolution of ribosomal DNA: divergent
 paralogues and phylogenetic implications. Genetics 145, 821–32.
- 471 Carvalho-Sobrinho, J.G., Alverson, W.S., Alcantara, S., Queiroz, L.P., Mota, A.C. & Baum,
- 472 D.A. (2016) Revisiting the phylogeny of Bombacoideae (Malvaceae): Novel relationships,
- 473 morphologically cohesive clades, and a new tribal classification based on multilocus
- 474 phylogenetic analyses. Molecular Phylogenetics and Evolution 101, 56–74.
- 475 Chernomor, O., von Haeseler, A. & Minh, B.Q. (2016) Terrace Aware Data Structure for
- 476 Phylogenomic Inference from Supermatrices. Systematic Biology 65, 997–1008.
- 477 Condamine, F.L., Nagalingum, N.S., Marshall, C.R. & Morlon, H. (2015) Origin and
- 478 diversification of living cycads: A cautionary tale on the impact of the branching process
- 479 prior in Bayesian molecular dating. BMC Evolutionary Biology 15, 1–18.
- 480 Crisp, M.D., Arroyo, M.T.K., Cook, L.G., Gandolfo, M.A., Jordan, G.J., McGlone, M.S.,
- 481 Weston, P.H., Westoby, M., Wilf, P. & Linder, H.P. (2009) Phylogenetic biome
- 482 conservatism on a global scale. Nature 458, 754–756.
- 483 Dexter, K.G., Lavin, M., Torke, B.M., Twyford, A.D., Kursar, T.A., Coley, P.D., Drake, C.,
- 484 Hollands, R. & Pennington, R.T. (2017) Dispersal assembly of rain forest tree communities
- 485 across the Amazon basin. Proceedings of the National Academy of Sciences 114, 2645–
- 486 2650.
- 487 Dick, C.W., Bermingham, E., Lemes, M.R. & Gribel, R. (2007) Extreme long-distance dispersal

- 488 of the lowland tropical rainforest tree Ceiba pentandra L. (Malvaceae) in Africa and the
- 489 Neotropics. Molecular ecology 16, 3039–49.
- 490 Drummond, A.J., Ho, S.Y.W., Phillips, M.J. & Rambaut, A. (2006) Relaxed Phylogenetics and
- 491 Dating with Confidence D. Penny (ed.). PLoS Biology 4, e88.
- 492 DRYFLOR (2016) Plant diversity patterns in neotropical dry forests and their conservation
- 493 implications. Science 353, 1383–1387.
- 494 Duarte, L. (1974) Sobre uma flor de Bombacaceae da Bacia Terciária de Fonseca, MG. Anais da
 495 Academia Brasileira de Ciências 46, 407–411.
- 496 Duarte, M.C., Esteves, G.L., Salatino, M.L.F., Walsh, K.C. & Baum, D. a. (2011) Phylogenetic
- 497 Analyses of Eriotheca and Related Genera (Bombacoideae, Malvaceae). Systematic Botany
 498 36, 690–701.
- 499 Feliner, G.N. & Rosselló, J.A. (2007) Better the devil you know? Guidelines for insightful
- 500 utilization of nrDNA ITS in species-level evolutionary studies in plants. Molecular
- 501 Phylogenetics and Evolution 44, 911–919.
- 502 Fritz, S.A. & Purvis, A. (2010) Selectivity in Mammalian Extinction Risk and Threat Types: a
- New Measure of Phylogenetic Signal Strength in Binary Traits. Conservation Biology 24,
 1042–1051.
- 505 Gibbs, P. & Semir, J. (2003) A taxonomic revision of the genus Ceiba Mill. (Bombacaceae).
- 506Anales del Jardín Botánico de Madrid 60, 259–300.
- 507 Gibbs, P.E., Semir, J. & Da Cruz, N.D. (1988) A proposal to unite the genera Chorisia Knuth
- with Ceiba Miller (Bombacaceae). Notes from the Royal Botanic Garden Edinburgh 45,
 125–136.
- 510 Gradstein, F.M., Ogg, J.G., Schmitz, M.D. & Ogg, G.M. (2012) The Geologic Time Scale,

- 511 Elsevier.
- 512 Graham, C.H. & Fine, P.V.A. (2008) Phylogenetic beta diversity: linking ecological and
- evolutionary processes across space in time. Ecology Letters 11, 1265–1277.
- 514 Guindon, S., Dufayard, J.-F., Lefort, V., Anisimova, M., Hordijk, W. & Gascuel, O. (2010) New
- 515 Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the
- 516 Performance of PhyML 3.0. Systematic Biology 59, 307–321.
- Hughes, C.E., Pennington, R.T. & Antonelli, A. (2013) Neotropical Plant Evolution: Assembling
 the Big Picture. Botanical Journal of the Linnean Society 171, 1–18.
- 519 Kass, R.E. & Raftery, A.E. (1995) Bayes Factors. Journal of the American Statistical Association
 520 90, 773–795.
- 521 Koenen, E.J.M., Clarkson, J.J., Pennington, T.D. & Chatrou, L.W. (2015) Recently evolved

522 diversity and convergent radiations of rainforest mahoganies (Meliaceae) shed new light on

the origins of rainforest hyperdiversity. New Phytologist 207, 327–339.

- 524 Lanfear, R., Calcott, B., Ho, S.Y.W. & Guindon, S. (2012) PartitionFinder: Combined Selection
- of Partitioning Schemes and Substitution Models for Phylogenetic Analyses. Molecular
 Biology and Evolution 29, 1695–1701.
- 527 Lanfear, R., Frandsen, P.B., Wright, A.M., Senfeld, T. & Calcott, B. (2017) Partitionfinder 2:
- 528 New methods for selecting partitioned models of evolution for molecular and
- 529 morphological phylogenetic analyses. Molecular Biology and Evolution 34, 772–773.
- 530 Lavin, M. (2006) Floristic and Geographical Stability of Discontinuous Seasonally Dry Tropical
- 531 Forests Explains Patterns of Plant Phylogeny and Endemism. In: R.T. Pennington, G.P.
- 532 Lewis, & J.A. Ratter (eds.) Neotropical Savannas and Seasonally Dry Forests: Plant
- 533 Diversity, Biogeography, and Conservation. Boca Raton: CRC Press, pp. 433–447.

- 4 de Lima, M.R. & Salard-Cheboldaeff, M. (1981) Palynologie des bassins de Gandarela et
- 535 Fonseca (Eocene de l'etat de Minas Gerais, Bresil). Boletim IG 12, 33–54.
- 536 Lima, M.S. de, Damasceno-Júnior, G.A. & Tanaka, M.O. (2010) Aspectos estruturais da
- 537 comunidade arbórea em remanescentes de floresta estacional decidual, em Corumbá, MS,
- 538 Brasil. Revista Brasileira de Botânica 33, 437–453.
- 539 Louca, S. & Pennell, M.W. (2020) Extant timetrees are consistent with a myriad of
- 540 diversification histories. Nature 11.
- 541 Maddison, W.P. & Maddison, D.R. (2015) Mesquite: A Modular System for Evolutionary
 542 Analysis.
- 543 Miles, L., Newton, A.C., DeFries, R.S., Ravilious, C., May, I., Blyth, S., Kapos, V. & Gordon,
- J.E. (2006) A global overview of the conservation status of tropical dry forests. Journal of
 Biogeography 33, 491–505.
- 546 Minh, B.Q., Schmidt, H.A., Chernomor, O., Schrempf, D., Woodhams, M.D., von Haeseler, A.
- 547 & Lanfear, R. (2020) IQ-TREE 2: New Models and Efficient Methods for Phylogenetic
- 548 Inference in the Genomic Era E. Teeling (ed.). Molecular Biology and Evolution 37, 1530–
 549 1534.
- Murphy, P.G. & Lugo, A.E. (1986) Ecology of Tropical Dry Forest. Annual Review of Ecology
 and Systematics 17, 67–88.
- Naciri, Y. & Linder, H.P. (2015) Species delimitation and relationships: The dance of the seven
 veils. Taxon 64, 3–16.
- 554 Nguyen, L.-T., Schmidt, H.A., von Haeseler, A. & Minh, B.Q. (2015) IQ-TREE: A Fast and
- 555 Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies.
- 556 Molecular Biology and Evolution 32, 268–274.

- 557 Orme, C.D.L. (2013) The caper package: comparative analyses in phylogenetics and evolution in
 558 R. Http://Caper.R-Forge.R-Project.Org/., 1–36.
- 559 Pennington, R.T., Daza, A., Reynel, C. & Lavin, M. (2011) Poissonia eriantha (Leguminosae)
- 560 From Cuzco, Peru: An Overlooked Species Underscores a Pattern of Narrow Endemism
- 561 Common to Seasonally Dry Neotropical Vegetation. Systematic Botany 36, 59–68.
- 562 Pennington, R.T. & Lavin, M. (2016) The contrasting nature of woody plant species in different
- neotropical forest biomes reflects differences in ecological stability. New Phytologist 210,
 25–37.
- 565 Pennington, R.T., Lavin, M. & Oliveira-Filho, A. (2009) Woody Plant Diversity, Evolution, and
- Ecology in the Tropics: Perspectives from Seasonally Dry Tropical Forests. Annual Review
 of Ecology, Evolution, and Systematics 40, 437–457.
- 568 Pennington, R.T., Lavin, M., Sarkinen, T., Lewis, G.P., Klitgaard, B.B. & Hughes, C.E. (2010)
- 569 Contrasting plant diversification histories within the Andean biodiversity hotspot.
- 570 Proceedings of the National Academy of Sciences 107, 13783–13787.
- 571 Pennington, R.T., Richardson, J.E. & Lavin, M. (2006) Insights into the historical construction of
- 572 species-rich biomes from dated plant phylogenies, neutral ecological theory and
- 573 phylogenetic community structure. New Phytologist 172, 605–616.
- 574 de Queiroz, L.P. & Lavin, M. (2011) Coursetia (Leguminosae) From Eastern Brazil: Nuclear
- 575Ribosomal and Chloroplast DNA Sequence Analysis reveal the Monophyly of Three
- 576 Caatinga-inhabiting Species. Systematic Botany 36, 69–79.
- 577 Rambaut, A., Drummond, A.J., Xie, D., Baele, G. & Suchard, M.A. (2018) Posterior
- 578 Summarization in Bayesian Phylogenetics Using Tracer 1.7 E. Susko (ed.). Systematic
- 579 Biology 67, 901–904.

580	Rangel, T.F.	. Edwards, N.R.	. Holden, P.I	Diniz-Filho.	J.A.F., 0	Gosling.	W.D.,	Coelho, l	M.T.P.,
		,,	,					<i>coomo</i> , <i>i</i>	

- 581 Cassemiro, F.A.S., Rahbek, C. & Colwell, R.K. (2018) Modeling the ecology and evolution
- of biodiversity: Biogeographical cradles, museums, and graves. Science 361, eaar5452.
- 583 Ravenna, P. (1998) On the identity, validity, and actual placement in Ceiba of several Chorisia
- 584 species (Bombacaceae), and description of two new south american species. Onira 3, 42–51.
- 585 Renner, S.S. (2005) Relaxed molecular clocks for dating historical plant dispersal events. Trends
- 586 in Plant Science 10, 550–558.
- 587 Richardson, J.E., Pennington, R.T., Pennington, T.D. & Hollingsworth, P.M. (2001) Rapid
- 588 Diversification of a Species-Rich Genus of Neotropical Rain Forest Trees. Science 293,
- 589 2242–2245.
- Robyns, A. (1963) Essai de monographie du genre Bombax s.l. (Bombacaceae) (Suite). Bulletin
 du Jardin botanique de l'État a Bruxelles 33, 145.
- 592 Russel, P.M., Brewer, B.J., Klaere, S. & Bouckaert, R.R. (2019) Model Selection and Parameter
- 593 Inference in Phylogenetics Using Nested Sampling T. Stadler (ed.). Systematic Biology 68,
 594 219–233.
- 595 Sanderson, M.J. (2002) Estimating Absolute Rates of Molecular Evolution and Divergence
- 596 Times: A Penalized Likelihood Approach. Molecular Biology and Evolution 19, 101–109.
- 597 Sanderson, M.J. (2004) r8s, version 1.70, User's Manual., 1–42.
- 598 Silva de Miranda, P.L., Oliveira-Filho, A.T., Pennington, R.T., Neves, D.M., Baker, T.R. &
- 599 Dexter, K.G. (2018) Using tree species inventories to map biomes and assess their climatic
- 600 overlaps in lowland tropical South America. Global Ecology and Biogeography 27, 899–
- 601 912.
- 602 Simon, M.F., Grether, R., de Queiroz, L.P., Skema, C., Pennington, R.T. & Hughes, C.E. (2009)

603	Recent assembly of the Cerrado, a neotropical plant diversity hotspot, by in situ evolution of					
604	adaptations to fire. Proceedings of the National Academy of Sciences 106, 20359–20364.					
605	Skilling, J. (2006) Nested sampling for general Bayesian computation. Bayesian Analysis 1,					
606	833–859.					
607	Stebbins, G.L. (1974) Flowering plants: evolution above the species level. T.B.P. of H.U. Press					
608	(ed.), Cambridge, MA.					
609	Wiens, J.J. & Donoghue, M.J. (2004) Historical biogeography, ecology and species richness.					
610	Trends in Ecology & Evolution 19, 639–644.					
611						
612						
613						
614						
615						
616						
617						
618						
619						
620						
621						
622						
623						
624						
625						

626

627 Supplementary Material

628 Supplementary Table 1. Collection details of each accession and ecological preference for the

629 species of *Ceiba*.

n	Acession	Species	Locality	Country	GenBank accession	Collector name + number (Herbarium)	Ecological preference
1	HQ658384	Ceiba aesculifolia	-	-	HQ658384	Fairchild Botanical Gardens acc. no. 83301	SDTF
2	HQ696700	Ceiba aesculifolia accession2	-	-	HQ696700	Fairchild Botanical Gardens acc. no. X-2-206	SDTF
3	TP1871	Ceiba boliviana	Huancavelica	Peru	in process of submission	Pennington, R. Toby (E)	SDTF
4	HQ658387	Ceiba crispiflora	-	-	HQ658387	Pacific Tropical Garden acc. no. 750726001	rain forests
5	KM453167	Ceiba erianthos	Bahia	Brazil	KM453167	E.R.Souza 710 (HUEFS)	SDTF
6	KD6144	Ceiba insignis	Pucacaca	Peru	in process of submission	Dexter, K.G. (E)	SDTF
7	KM488629	Ceiba insignis	Cajamarca	Peru	KM488629	J. Campos & P. López 4953 (US)	SDTF
8	KM453168	Ceiba jasminodora	Rio de Janeiro	Brazil	KM453168	Carvalho-Sobrinho 3070 (HUEFS)	SDTF
9	CF6838	Ceiba lupuna	Acre	Brazil	in process of submission	Daly, D.C. 6838 (E)	rain forests
10	FP51	Ceiba pentandra	Piauí	Brazil	in process of submission	Pezzini, F.F. 51 (HUEFS)	rain forests
11	SS664	Ceiba pentandra	Minas	Brazil	in process of submission	Sant'ana, S.C. (E)	rain forests
12	KM453169	Ceiba pentandra	-	-	KM453169	Carvalho-Sobrinho s.n. (HUEFS)	rain forests
13	DQ284818	Ceiba pentandra	Camuy	Puerto Rico	DQ284818	-	rain forests
14	DQ284848	Ceiba pentandra	Kourou	French Guiana	DQ284848	-	rain forests
15	DQ284844	Ceiba pentandra	Castanhal Veado (Rio Trombetas)	Brazil	DQ284844	-	rain forests
16	DQ284827	Ceiba pentandra	Borbon	Ecuador	DQ284827	-	rain forests
17	DQ284820	Ceiba pentandra	Morelos	Mexico	DQ284820	-	rain forests
18	AY635497	Ceiba pentandra	Jobero	Panama	AY635497	-	rain forests
19	FP13	Ceiba pubiflora	Bahia	Brazil	in process of submission	Pezzini, F.F. 13 (HUEFS)	SDTF
20	JR6428	Ceiba pubiflora	Minas	Brazil	in process of submission	Ratter, J. (E)	SDTF
21	AP2799	Ceiba pubiflora	Minas	Brazil	in process of submission	A. Pott (E)	SDTF
22	KM453170	Ceiba pubiflora	Bahia	Brazil	KM453170	Carvalho-Sobrinho 3066 (HUEFS)	SDTF
23	FP96	Ceiba rubriflora	Minas	Brazil	in process of submission	Pezzini, F.F. 96 (HUEFS)	SDTF
24	FP100	Ceiba rubriflora	Minas	Brazil	in process of submission	Pezzini, F.F. 100(HUEFS)	SDTF
25	KM453171	Ceiba rubriflora	Bahia	Brazil	KM453171	Carvalho-Sobrinho 574 (HUEFS)	SDTF
26	KD6067	Ceiba samauma	Buenos Aires	Peru	in process of submission	Dexter, K.G. (E)	rain forests
27	KD6774	Ceiba samauma	Echarate	Peru	in process of submission	Dexter, K.G. (E)	rain forests
28	HQ696703	Ceiba schottii	-	-	HQ696703	Fairchild Botanical Gardens acc. no. 83302	SDTF
29	HQ658388	Ceiba speciosa	-	Brazil	HQ658388	W.S. Alverson s.n. (WIS)	rain forests
30	KM453172	Ceiba ventricosa	Bahia	Brazil	KM453172	Carvalho-Sobrinho 3124 (HUEFS)	SDTF
31	HQ658401	Eriotheca parvifolia	-	-	HQ658401	M.C. Duarte 109 (SP)	-
32	HQ658397	Eriotheca pubescens	-	-	HQ658397	M.C. Duarte 115 (SP)	-
33	KM453184	Pochotoa fendleri	-	-	KM453184	P.E. Kaminski s.n (HUEFS)	-
34	KM453191	Pseudobombax grandiflorum	-	-	KM453191	Carvalho-Sobrinho 2946 HUEFS	-
35	KM453197	Pseudobombax marginatum	-	-	KM453197	L.P. Queiroz 14753 (HUEFS)	-
36	KM453206	Pseudobombax tomentosum	-	-	KM453206	Carvalho-Sobrinho 2874 HUEFS	-
37	KM453208	Spirotheca elegans	-	-	KM453208	Carvalho-Sobrinho 2964 HUEFS	-
38	KM453209	Spirotheca rivieri	-	-	KM453209	Carvalho-Sobrinho s.n. HUEFS	-
39	TP1995	Spirotheca rosea	Junin	Peru	in process of submission	Pennington, R. Toby (E)	-
40	HQ658378	Spirotheca rosea	-	-	HQ658378	W.S. Alverson 2185 (WIS)	-

630

Supplementary Figure 1. Maximum clade credibility tree resulting from BEAST2 analysis of nuclear ribosomal ITS sequence data sets for 14 species of *Ceiba* and 47 Ma offset calibration, using Yule tree prior and the Uncorrelated Lognormal Distribution clock model. Values above branches represent nodes ages reported in million years as mean ages. Circles represent posterior probabilities for internal nodes: black >= 0.95; grey < 0.95 and >= 0.75, and white < 0.75.

638

641Supplementary Figure 2. Maximum clade credibility tree resulting from BEAST2 analysis of nuclear642ribosomal ITS sequence data sets for 14 species of *Ceiba* and 56 Ma offset calibration, using Yule tree643prior and the Uncorrelated Lognormal Distribution clock model. Values above branches represent nodes644ages reported in million years as mean ages. Circles represent posterior probabilities for internal nodes:645black >= 0.95; grey < 0.95 and >= 0.75, and white < 0.75.</td>