
Engineer-to-Engineer Note EE-266

a

Technical notes on using Analog Devices DSPs, processors and development tools
Visit our Web resources http://www.analog.com/ee-notes and http://www.analog.com/processors or
e-mail processor.support@analog.com or processor.tools.support@analog.com for technical support.

Programming S/PDIF on ADSP-2136x and ADSP-21371 SHARC®
Processors
Contributed by Aseem Vasudev Prabhugaonkar Rev 2 – August 21, 2007

Copyright 2005-2007, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of
customers’ products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property
of their respective holders. Information furnished by Analog Devices applications and development tools engineers is believed to be accurate and reliable, however
no responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices Engineer-to-Engineer Notes.

Introduction
This EE-Note provides a basic description of the Sony Philips Digital Interface (S/PDIF), its frame
structure, and how to program S/PDIF on SHARC® ADSP-2136x and ADSP-21371 processors to
transmit and receive data. This EE-Note also explains the Precision Clock Generator (PCG) setup required
to provide necessary signals for an S/PDIF transmit section. Code examples are provided with this EE-
Note to demonstrate programming of the S/PDIF transmit and receive sections of SHARC ADSP-2136x
and ADSP-21371 processors. The examples consist of code that demonstrates talk-through and data
loopback performed on S/PDIF interface.

Basics of S/PDIF
S/PDIF is a standard that defines a serial interface for transferring digital audio data between various
audio equipment like CD players, DVD players, and amplifiers. S/PDIF describes a serial, uni-directional,
self-clocking interface for the interconnection of digital audio equipment for consumer and professional
applications that use linear PCM coded audio samples. The data can be transferred between devices
without having to convert it to an analog signal. This is the biggest advantage of S/PDIF. For instance,
when audio is transferred from a CD player to an audio amplifier over an analog link, noise is introduced;
filtering out this noise is not easy. This problem is overcome when audio data is transferred over a digital
link instead of an analog link.

S/PDIF is used to transmit digital signals of many formats, the most common being the 48 kHz sample
rate format used in digital audio tape (DAT) and the 44.1 kHz format used in CD audio. To support both
systems, as well as others that might be needed, the format has no defined data rate. Instead, the data is
sent using a bi-phase mark code, which has one or two transitions for every bit. This allows the original
word clock to be extracted from the signal itself. S/PDIF is also polarity independent, which makes it a lot
easier to work with.

S/PDIF was developed from the AES/EBU standard used in the professional audio field, which is
commonly used in DAT systems. S/PDIF remained identical at the protocol level, but changed the
physical connectors from XLR to electrical RCA jacks or optical TOSLINK, both of which cost less and
are easier to use. Essentially, S/PDIF is a consumer version of the AES/EBU format. The S/PDIF interface
specification consists mainly of the hardware and software. The software usually deals with S/PDIF frame
format, and the hardware interface is the actual physical connection medium used to transfer data between

http://www.answers.com/main/ntquery;jsessionid=19idfa0ag1s2q?method=4&dsid=2222&dekey=Bit&gwp=8&curtab=2222_1&sbid=lc01a
http://www.answers.com/main/ntquery;jsessionid=19idfa0ag1s2q?method=4&dsid=2222&dekey=Word+clock&gwp=8&curtab=2222_1&sbid=lc01a
http://www.answers.com/main/ntquery;jsessionid=19idfa0ag1s2q?method=4&dsid=2222&dekey=Protocol&gwp=8&curtab=2222_1&sbid=lc01a
http://www.answers.com/main/ntquery;jsessionid=19idfa0ag1s2q?method=4&dsid=2222&dekey=Electrical+connector&gwp=8&curtab=2222_1&sbid=lc01a
http://www.answers.com/main/ntquery;jsessionid=19idfa0ag1s2q?method=4&dsid=2222&dekey=RCA+jack&gwp=8&curtab=2222_1&sbid=lc01a

 a

Programming S/PDIF on ADSP-2136x and ADSP-21371 SHARC® Processors (EE-266) Page 2 of 14

two devices. The various interfaces used for the physical medium could be TTL (Transistor-Transistor
Logic), COAX (coaxial cable, 75-ohm cable connected with RCA plugs), and TOSLINK (an optical fiber
connection). The S/PDIF signal is independent of polarity; hence, you do not have to worry about the
absolute signal polarity.

S/PDIF Bi-Phase Encoding
S/PDIF is a single-wire serial interface, and the bit clock is embedded within the S/PDIF data stream. The
bit clock and the frame sync are recovered from the data stream at the receiver end. The simple coding of
digital data (i.e., 1 as logic high, and 0 as logic low) is not an ideal format, because another signal (a bit
clock) is required to transmit and sample data bits in the stream. This is where the bi-phase encoding
comes in; the bit clock is embedded within the transmitted stream and recovered at the receiver. Bi-phase
coded PCM has a mean voltage of zero, which eliminates DC on the interface, so the resulting data can be
AC-coupled through a transformer or series capacitor. Each data bit in the S/PDIF stream has a time slot
that begins with a transition and ends with a transition. The second transition serves as the beginning
transition for the next time slot. If the data bit is a 1, an additional transition is made in the middle of the
time slot; a data bit of 0 has no additional transition. Figure 1 illustrates bi-phase encoding. Unit interval
(UI) is the shortest interval between transitions.

Figure 1. Bi-Phase encoding in S/PDIF stream

As noted in Figure 1, even if the data is a stream of 0s, there will be transitions at each time slot, and the
direction of these transitions (signal polarity) becomes irrelevant.

S/PDIF Frame Format
Each S/PDIF frame is 64 timeslots (128 UIs). Each frame consists of two sub-frames, which are 32
timeslots (64 UIs). The sub-frame comprises a preamble, 24 bits of audio data, and 4 bits that carry other
information such as user data and channel status information. Figure 2 shows S/PDIF sub-frame format.

Figure 2. S/PDIF sub-frame format

The LSB of the audio data is driven first. The first four time slots of a sub-frame carry a distinctive data
pattern called a preamble, which is used to indicate sub-frame and block starts. There are three preambles,
each of which breaks the bi-phase coding rule by containing one or two pulses, which have duration of

 a

Programming S/PDIF on ADSP-2136x and ADSP-21371 SHARC® Processors (EE-266) Page 3 of 14

3 UIs. Breaking this rule would mean that the pattern cannot occur anywhere else in the stream. Figure 3
illustrates S/PDIF frame and block format.

Figure 3. S/PDIF frame and block format

Each sub-frame begins with a 4-bit preamble. Preamble Z indicates the start of a block and the start of
sub-frame channel A. Preamble X indicates the start of a channel A sub-frame when not at the start of a
block. Preamble Y indicates the start of a channel B sub-frame.

S/PDIF Transmitter and Receiver of ADSP-2136x and ADSP-21371
SHARC Processors
The S/PDIF transmitter in SHARC processors usually receives data from any serial input port, such as
SPORTs, SRC, IDP, or other serial inputs. The serial data input to the transmitter can be formatted as left-
justified, I2S, or right-justified with word widths of 16, 18, 20, or 24 bits. The serial data, clock, and frame
sync inputs to the S/PDIF transmitter are routed through the Signal Routing Unit (SRU). These inputs,
which are controlled by the SRU control registers, come from a variety of sources such as SPORTs,
external pins, the precision clock generator (PCG), or the sample rate converter (SRC). The S/PDIF
transmitter output may be routed to an output pin via the SRU and tied directly to the physical layer
interface of an end-user product. The output is also available to the S/PDIF receiver for loopback testing
through the SRU.

Figure 4. ADSP-2136x and ADSP-21371 processors S/PDIF transmitter block diagram

The S/PDIF receiver complies with all common serial digital audio interface standards, including IEC-
60958, IEC-61937, AES3, and AES11. These protocols encompass everything from simple stereo streams

 a

Programming S/PDIF on ADSP-2136x and ADSP-21371 SHARC® Processors (EE-266) Page 4 of 14

to high sample rate, and compressed surround sound, such as those defined by Dolby or DTS. The input to
the receiver is a bi-phase encoded signal that may contain any number of audio channels (compressed or
linear PCM) or non-audio data. The receiver decodes the single bi-phase encoded signal to produce serial
data, LRCLK, and high-frequency serial clocks. The receiver derives the clock from the on-chip digital
phased-locked loop (PLL). In applications that are not sensitive to moderate jitter, the on-chip PLL can
provide the clock source derived from the bi-phase encoded signal.

S/PDIF Receiver Status Control Bits
It is important to understand the significance of some of the status control bits in DIRSTAT register and
how to use them.

DIR_NOSTREAM – Asserted when there is no incoming data stream, such as when the cable is unplugged or
the transmitter is not sending data. If asserted when the input is linear PCM, the receiver performs a soft
mute (slowly and linearly decrementing the last valid audio sample to zero over a period of 4096 frames).
During this time, the PLL three-states the charge pumps until the soft mute has been completed. If
asserted for non-linear PCM audio data, the receiver sends out zeros after the last valid sample. This bit
can generate interrupts.

DIR_NOAUDIO – Asserted (bit 1=1) when input data is non-PCM. Each sub-frame in a data frame is
preceded by a preamble (96-bit-wide sync code), and the DIR_NOAUDIO bit is set once the complete
preamble is detected. Since this bit can generate interrupts, it is used in to count the number of received
frames, which, in turn, helps to detect frame sizes.

DIR_LOCK – This bit is set when the S/PDIF PLL is locked. The PLL can get unlocked when there is no
input stream (the DIR_NOSTREAM bit is asserted) and de-asserts the DIR_LOCK bit. When the PLL is
unlocked, audio data is handled according to bit setting of the lock error control bits (DIR_LOCK) in the
DIRCTL register. This also can generate interrupts.

S/PDIF Receiver PLL Lock
As mentioned earlier, the S/PDIF receiver contains an on-chip PLL. It is important that the PLL is locked
in order to obtain correct data from the S/PDIF Rx. Once the receiver is locked, the DIR_LOCK bit in the
DIRSTAT register is set, which can be polled to detect a LOCK condition. Another option is to use the
SPDIF_RX_LOCK_START interrupt in the DAI_IRPTL_H/L register. These trigger the DAI_INTH/L interrupt
once the receiver is locked. From this point on, the extracted output from the S/PDIF receiver becomes
valid.

S/PDIF Receiver DTS Frame Sizes
The SPDIF receiver supports the DTS stream. The DTS specifications support frame sizes of 256, 512,
1024, 2048, and 4096. But the on-chip SPDIF receiver supports only 256, 512, and 1024 DTS frames
sizes. According to DTS stream format, a sync code is present at the beginning of each block that may
contain 256, 512, 1024, 2048, or 4096 frames.

 a

Programming S/PDIF on ADSP-2136x and ADSP-21371 SHARC® Processors (EE-266) Page 5 of 14

4096 frames 4096 frames 4096 framesS
C

S
C

S
C

Checks for sync code after 1024
frames instead of 4096 frames

Figure 5. Block structure for 4096 frames

Since the SPDIF receiver hardware supports frame sizes up to 1024 only, it checks for the sync code after
every 1024 frames while the sync code is actually present after every 2048 or 4096 frames, depending on
the frame size of the received data. When a sync code is not found, the DIR_NOAUDIO bit gets de-asserted
which can cause non-PCM data to be mistaken for a PCM audio data. So for DTS test kit frames with
2048 and 4096 frame sizes can be detected by adding the sync-detection logic in software by using a
software counter to check for the DTS header every 2048 and 4096 frames, respectively. In this approach,
the frame sync of the DIR receiver is used to count the number of frames. The steps to implement the
same are as follows.

1. Initially enable the DIR_NOAUDIO interrupt for rising edge.

2. Route the frame sync output of the DIR receiver to another DAI interrupt. If another DAI interrupt is
not available, the same interrupt can be switched for both functionalities.

3. Inside the DIR_NOAUDIO interrupt service routine, enable the DAI interrupt corresponding to the frame
sync.

4. Increment a count inside the DAI frame sync interrupt service routine for every data frame.

5. When the count reaches 2048 or 4096 (depending on the frame size used), read the DIR_NOAUDIO bit.

6. If the DIR_NOAUDIO bit is high, the bit stream is OK. Now clear the count value and restart the
counting. This will be repeated every 2048 or 4096 frames.

7. If the DIR_NOAUDIO bit is low, the bit stream does not have the sync code. For this case, disable the
frame sync DAI interrupt and take the corrective action such as muting. Then re-enable the
DIR_NOAUDIO interrupt for the rising edge. This will restart the counting process with respect to the
next DIR_NOAUDIO interrupt.

The above approach can be implemented for any number of frame sizes.

 a

Programming S/PDIF on ADSP-2136x and ADSP-21371 SHARC® Processors (EE-266) Page 6 of 14

Figure 6. DIR_NOAUDIO _BIT functioning for different cases

For the first case in Figure 6, the DIR_NOAUDIO bit will be tested for every 4096 frames and the software
counter will be restarted.

For the second case in Figure 6, the DIR_NOAUDIO bit is not available after 4096 frames; hence, the
correction action should be taken and the DIR_NOAUDIO interrupt should be re-enabled.

For the third case in Figure 6, the DIR_NOAUDIO bit will be high for every 4096 frames and the software
counter can be restarted. It will not be detected as an error condition.

Interrupted Data Stream at the S/PDIF Receiver
When the SPDIF receiver data streams are interrupted, (e.g., when a cable is unplugged and reconnected),
it is necessary to take extra steps to ensure that the SPDIF receiver’s digital PLL will re-lock to the
stream. The steps to accomplish this are described below.
1. Set up interrupts within the DAI so that the SPDIF RX can generate an interrupt when the stream is

reconnected.

2. Within the interrupt service routine (ISR), stop and restart the digital PLL. This is accomplished by
setting and then clearing bit 7 of the SPDIF receiver control register.

3. Return from the ISR and continue normal operation.

This method of resetting the digital PLL has been shown to provide extremely reliable performance when
SPDIF inputs that are interrupted or unplugged occur momentarily. Listing 1 explains the procedure.

 a

Programming S/PDIF on ADSP-2136x and ADSP-21371 SHARC® Processors (EE-266) Page 7 of 14

1. Initialize the No Stream Interrupt
/* Enable interrupts (globally) */
 BIT SET MODE1 IRPTEN;

/* unmask DAI Hi=Priority Interrupt */
 bit set imask DAIHI;
 ustat1 = DIR_NOSTREAM_INT;

/* Enable no-stream Interrupt on Falling Edge. Interrupt occurs when the stream is
reconnected */
 dm(DAI_IRPTL_FE) = ustat1;

/* Enable Hi-priority DAI interrupt */
 dm(DAI_IRPTL_PRI) = ustat1;

/* This ISR is triggered when the DIR sets no_stream bit */
 _DAIisrH:

2. Reset the Digital PLL inside ISR
/* Reading DAI_IRPTL_H clears interrupt */
 r8=dm(DAI_IRPTL_H);
 ustat2=dm(DIRCTL);

/* bit_7 disables D pll only */
 bit set ustat2 DIR_PLLDIS;
 dm(DIRCTL)=ustat2;

/*re-enable the digital pll */
 bit clr ustat2 DIR_PLLDIS;
 dm(DIRCTL)=ustat2;

Listing 1. PLL re-lock code implementation

Interfacing S/PDIF Transmitter to SRCs
Consider the following while interfacing the SRC to the S/PDIF. The maximum data that is
transferred through the SRCs is 24 bits. When a 32-bit clock and data is provided to the 128 dB
SRC, the eight least significant bits (LSBs) are zero. However for a 140 dB SRC, the eight
LSBs bits contain the ratio information. So, if the eight LSBs are not zero, the SPDIF
transmitter channel status bytes will be affected.

A software workaround has been proposed to handle this situation. For 32-bit data, the 24 most significant
bits (MSBs) of data of the SRC output are connected to the DIT pin. But for the eight LSBs, the DIT pin is
connected low. This is implemented by connecting the frame sync of the SRC output to the DAI interrupt.
The DAI interrupt is enabled for both edges.

Once the DAI interrupt is fired on a particular edge, within the DAI ISR,

 The SRC output is connected to the DIT pin.

 A timer with a count equal to 24 SCLK cycles is started.

Once the MSB 24 bits have been transmitted, the Timer interrupt is fired. Within the Timer ISR,

 a

Programming S/PDIF on ADSP-2136x and ADSP-21371 SHARC® Processors (EE-266) Page 8 of 14

 The DIT input is connected to low.

 The timer is stopped.

Once the eight LSBs are transmitted and the FS changes edge, the DAI interrupt is fired again before
transmitting the next frame.

Consideration While Using the IDP with SPDIF
The Input Data Port (IDP) is another efficient method to transfer data to/from internal memory other than
SPORTs. It is critical as to when the IDP is enabled; otherwise, it can lead to wrong data latch and bit
shift.

Figure 7: Considerations for IDP initialization

Data keeps moving through the IDP input shift register continuously, regardless whether the IDP is
enabled. At the edge of the FS/LRCLK signal, the IDP checks for an enable bit. It takes about 4 PCLK
(8 core) cycles for the IDP to actually test for IDP enable. If found enabled, it loads the data of the
previous slot to internal memory (as shown in Figure 7). If the “L” or “R” channel slot should go to the
first location of the internal memory buffer, enable the IDP during the green time zone. If the IDP is
enabled during the red time zone, channel earlier to the one where it is enabled is written to the first
location of the memory buffer. Therefore, if the intent is to start receiving data from the channel slot
where the IDP is enabled, it should be enabled in the green zone within that channel slot.

It is difficult to predict when the IDP is enabled relative to the frame sync edge. The IDP may get enabled
during the red time zone or the green time zone – this is difficult to predict. This can cause channel
misalignment when the data is moved to internal memory.

Solution 1

Using the DAI interrupt to sense the FS/LRCLK edge ensures the time from the edge of FS/LRCLK where
IDP can be enabled. This can be mapped to a DAI high-priority interrupt so that it gets serviced
immediately. With this approach, you can ensure that the IDP always gets enabled in the same time zone.
Channels are never misaligned in internal memory.

 a

Programming S/PDIF on ADSP-2136x and ADS

Solution 2

Software application code can also read the channel status information of IDP buffers to find out whether
the IDP is working properly. If the channel status information shows L->R->L->R..., the IDP is working
properly. A channel status of R->L->R->L… means that there is a shift in the words received and the IDP
must be re-enabled.

Example: Loopback from Transmitter to Receiver
This section discusses programming the ADSP-2136x and ADSP-21371 SHARC processors’ S/PDIF
transmitter to receive data, bit clock, and frame sync from a SPORT to generate a bi-phase encoded data
stream. The Precision Clock Generators (PCG) are used to provide an over-sampling clock, frame sync,
and bit clock to the SPORT and S/PDIF TX. The DIT signal is the output of the S/PDIF transmitter, and
the bi-phase encoded data stream is sent over this signal. The DIT pin can be routed to any external DAI
pins. The S/PDIF receiver receives bi-phase encoded data on DIR, and it is an input signal to the S/PDIF
receiver.

Figure 8. S/PDIF TX – RX loopback se

The DIR pin can be routed to any of DAI
SPORT0 is configured to transmit data in
S/PDIF TX receive the bit clock and fram
clock signal to S/PDIF TX. The transmitte
for a specific frame sync (FS) frequency, H
The over-sampling ratio in S/PDIF transmi
The DIT_SMODE_IN bits, which determine t
to your processor's Hardware Reference [1][

DIT
DIR

SCLK
FS
Data
 DSP CLKIN
HFCK
SCLK
FS

Data

SPORT0

 TX

SPORT1

 RX

PCG A
PCG B
S/PDIF

TX

tup

S/PDIF

RX

P-21371 SHARC® Processors (EE-266) Page 9 of 14

pins or receive data from the DIT signal for internal loopback.
 I2S format with a data word length of 32 bits. SPORT0 and
e sync from PCG A. PCG B supplies an over-sampling HFCLK
r is configured for an over-sampling ratio of 256 x FS. Hence,
FCLK should be 256 x FS, and the bit-clock should be 64 x FS.
tter is determined by the DIT_FREQ bits of the DITCTL register.
he serial data input format, are configured for I2S format. Refer
2] for details on the DITCTL register bits.

 a

Programming S/PDIF on ADSP-2136x and ADSP-21371 SHARC® Processors (EE-266) Page 10 of 14

PCG A provides bit clock and frame sync signals to SPORT0 and S/PDIF TX. To comply with I2S format,
the PCG_CTLA1 register should also be programmed appropriately with the FSAPHASE_HI bits. This value
should align the rising edge of FS with the falling edge of SCLK from PCG A for I2S mode. For
programming details, control register bit settings, and so on, refer to main.c in the associated .ZIP file.
This file also has information on PCG, SPORT, and SRU configuration. Note that some of these signals
are also brought out on DAI pins to capture them on an oscilloscope. The screen captures were taken on
an oscilloscope during S/PDIF transmission.

Figure 9. SPORT0 and S/PDIF TX signals Figure 10. SCLK and FS relationship

Figure 11. FS, SCLK, DIT and HFCLK of S/PDIF TX

 a

Programming S/PDIF on ADSP-2136x and ADSP-21371 SHARC® Processors (EE-266) Page 11 of 14

Figure 12. Viewing received data and S/PDIF RX register values in VisualDSP++® development tools

 a

P

Example: Talk-Through Code
The following code example demonstrates the receipt of data on S/PDIF RX from an external source such
as a DVD player. The bi-phase encoded PCM stream is received by S/PDIF RX. SPORT1 is used to
receive data from S/PDIF RX. SPORT0 is used to transmit this data to S/PDIF TX. S/PDIF TX encodes
this data into a bi-phase stream, which is provided to AVR.

F

F
.
si

DSP CLKIN
rogramming S/PDIF on A

igure 13. S/PDIF talk-thr

or programming deta
ZIP file. This file also
gnals are also brought
SCLK
o

FS
Data
SPORT0

 TX

PCG A

PCG B
DSP-2136x an

ugh setup

ils, control re
has informatio
out on DAI pi

S/PDIF

TX

I

SCLK
FS
Data
SPORT1

 RX

S/PD
F

RX

HSCLK
AUDIO INPUT
FROM CD/DVD
d ADSP-21371 SHARC® Processors (EE-266) Page 12 of 14

gister bit settings, and so on, refer to main.c in the associated
n on PCG, SPORT, and SRU configuration. Note that some of these
ns to capture them on an oscilloscope.

 a

Programming S/PDIF on ADSP-2136x and ADSP-21371 SHARC® Processors (EE-266) Page 13 of 14

Figure 14. Example system configuration using S/PDIF

The block diagram in Figure 14 shows an example system configuration. The SHARC processor receives
the S/PDIF stream over its receiver, implements decode or post-decode algorithms on the received data,
and then sends the decoded audio data over serial ports in I2S or TDM mode to the codec.

Figure 15. Suggested S/PDIF RX input circuitry

The circuit diagram in Figure 15 shows a suggested receive circuitry in which an ADM3485E (RS-485
transceiver) is used.

To S/PDIF RX

 a

Programming S/PDIF on ADSP-2136x and ADSP-21371 SHARC® Processors (EE-266) Page 14 of 14

References
[1] ADSP-2136x SHARC® Processor Hardware Reference. Rev 1.0, October 2005. Analog Devices, Inc.

[2] ADSP-21368 SHARC® Processor Hardware Reference. Rev 1.0, September 2006. Analog Devices, Inc.

[3] ADSP-21364 Processor EZ-KIT Lite Evaluation System Manual. Rev 3.2, July 2007. Analog Devices, Inc.

[4] ADSP-21369 Processor EZ-KIT Lite Evaluation System Manual. Rev 2.1, August 2006. Analog Devices, Inc.

[5] TN-26 the AES3 and IEC60958 Digital Interface TECHNOTE. Julian Dunn, Audio Precision.

[6] International Standard, IEC, 60958-1. First edition1999-12.

Document History

Revision Description

Rev 2 – August 21, 2007
by Deepa Venkataraman

Made the EE-note generic for the ADSP-2136x and ADSP-21371 SHARC
processors, and updated title accordingly.

Rev 1 – April 1, 2005
by Aseem Vasudev Prabhugaonkar

Initial version.

	Introduction
	Basics of S/PDIF
	S/PDIF Bi-Phase Encoding
	S/PDIF Frame Format
	S/PDIF Transmitter and Receiver of ADSP-2136x and ADSP-21371
	S/PDIF Receiver Status Control Bits
	S/PDIF Receiver PLL Lock
	S/PDIF Receiver DTS Frame Sizes
	Interrupted Data Stream at the S/PDIF Receiver
	Interfacing S/PDIF Transmitter to SRCs
	Consideration While Using the IDP with SPDIF
	Solution 1
	Solution 2

	Example: Loopback from Transmitter to Receiver
	Example: Talk-Through Code
	References
	Document History

