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COMPLEX INTERPOLATION FOR 
NORMED AND QUASI-NORMED SPACES 

IN SEVERAL DIMENSIONS. III. 
REGULARITY RESULTS FOR HARMONIC INTERPOLATION 

ZBIGNIEW SLODKOWSKl 

ABSTRACT. The paper continues the study of one of the complex interpolation 
methods for families of finite-dimensional normed spaces {Cn , II • liz} zEG ' 

where G is open and bounded in Ck . The main result asserts that (under a 
mild assumption on the datum) the norm function (z, w) -+ IIwll; belongs 
to some anisotropic Sobolew class and is characterized by a nonlinear PDE of 
second order. The proof uses the duality theorem for the harmonic interpolation 
method (obtained earlier by the author). A new, simpler, proof of this duality 
relation is also presented in the paper. 

INTRODUCTION 

This paper is a continuation of [17, 19]. As in those papers, we study interpo-
lation families of finite-dimensional normed spaces of the form {Cn , 11·11 z} zEG ' 

where G is an open subset of Ck • To set our results in perspective, we start 
with some historical comments. 

The basis work of Coifman et al. [3] dealt with the case of G = the unit disc. 
Rochberg reinterpreted and expanded their results using a notion of curvature 
for complex Finsler bundles, due to Kobayashi [21]. He has shown, among 
other things (see Rochberg [12], Rochberg and Weiss [13]), that interpolation 
families [3] are characterized by a vanishing curvature condition which is a 
relation between second-order derivatives of f(z, w) = !lIwll;. If the norms 
are defined by inner product, i.e., Ilwll; = (Q(z)w, w), where Q(z) is an 
n x n matrix, z E G, the characterization takes the particularly simple form 
8(Q(z)-18Q(z)) = O. Coifman has proposed the following generalization of 
this equation to higher dimensions: 

k 
2::8/Q(Z)-18iQ(z)) = 0, 
i=l 
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k 
Z = (Zl ' ... , zk) E Q c C . 
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He considered this condition as a right way to define interpolation families over 
G c ek in case of inner product spaces and posed the problem of developing 
a general interpolation method extending this idea. However, it remained open 
for some time. 

In the winter and spring of 1985, the author constructed, in the case of a 
strictly pseudoconvex domain G in ek , k distinct interpolation methods by 
means of the Perron procedure applied to some families of set-valued func-
tions; see [14a, b; 17, §7]. (This construction was also new in the case of a 
planar domain G.) Expanding this approach in the winter and spring of 1986, 
the author obtained a variety of interpolation methods (see [14c, 17]), one of 
which, called harmonic interpolation, is consistent with condition (0;0) in the 
case of inner product norms Ilwll; = (Q(z)w, w). For further information 
on harmonic interpolation see [17, §8] and [19]. The harmonic interpolation 
method has been independently obtained and studied by Coifman and Semmes 
[5], who have also solved (among many other things) equation (0.0) by PDE 
techniques. 

A harmonic interpolation family (G, 11·11 z) zEG can be characterized by a dif-
ferential equation resembling (0.0) even if the norms are non-Hilbertian. Con-
sider, for any (z, w) E Gxen , the complex Hessian form of f(z, w) = !lIwll; 
at (z, w). The coefficient matrix of this form, with respect to the coordi-
nate system z, ' z2' ... , zk; w" ... , wn is naturally divided into blocks HI! ' 
H'2' H 2), H 22 . In case the norm function f(z, w) has classical derivatives 
at a point (zo, w o) and H22 is positive definite, then 

(0.1 ) 

(at this point). Otherwise, condition (0.1) can be interpreted as holding in a 
certain, rather weak, sense; see [17, 18]. 

Equation (0.1) is a nonlinear degenerate elliptic equation and, at present, 
there seems to be no general theory with which to treat it. Equation (0.1) 
reduces to (0.0) in the case of inner product norms IIwll; = (Q(z)w, w). Ex-
plicit solutions of (0.1) are rare. If n ;= 1, then IIwll; = w(z)lwI 2 and (0.1) 
is equivalent to .1(logw) = o. If the boundary norms are IP, say IIwll, = 
(2:;=, Iwl(O)'/P('), 'E 8G, then the solution is IIwllz = (2:;=, Iw/(Z))'/P(Z) , 
z E G, where IjjJ(z) is the harmonic extension of 1jp(() to G [5,11,19]. 
In case of one variable (k = 1), equation (0.1) is equivalent to Rochberg's 
vanishing curvature condition mentioned above (some work is needed to check 
this); in fact (for k ~ 1), the matrix H,) - HI2H;' H2, is closely related to the 
Kobayashi curvature form of the Finsler bundle (G x en, IIwll;) [21]. 

The purpose of this paper is to show that, under mild regularity properties of 
the boundary data, the harmonic interpolation family satisfies condition (0.1) 
in the usual sense. We also present a simpler proof of the duality theorem for 
harmonic interpolation (obtained earlier by the author in [17, §6]). 
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We will now review definitions and results related to the harmonic interpo-
lation method which will be used below, and then formulate the main results 
of this paper. 

Definition 0.1. Let U C Ck X Cn be open. We say that u E Psubh (U) if u( z , w) 
is an usc (= upper semicontinuous) function on U and for every holomorphic 
function z -+ f( z): G -+ Cn , G C Ck , the function z -+ u( z , f( z)) is subhar-
monic in {z: (z, f(z)) E G}. 

Remark. It is enough to consider in this definition only C-affine functions. 

Definition 0.2. An usc compact-valued function z -+ K(z): G -+ 2en (briefly, 
multifunction) is called harmonic if, for every compact set B such that B n 
X is compact, where X = gr(K) = {(z, w): z E G, W E K(z)}, and for 
every function u( z , w) which is Psubh near B, it holds that max ulB n X :::; 
max ul(8B) n X . 

Theorem 0.3. Let G C Ck be open, bounded, and regular with respect to the usual 
Dirichlet problem. Let {P,(')}'E8G be a continuous family of norms on Cn , with 
p,(eifJw) = p,(w), e E R, WE Cn . Denote B(() = {w E Cn : p,(w) :::; I} and 

- en - en 
define z -+ W (z): G -+ 2 as the union of all usc multifunctions K: G -+ 2 
which are harmonic on G and such that K(O c W(O, (E 8G. Then 

(a) z -+ W(z): G -+ 2en is a continuous family of compact, convex, circled 
sets such that WI8G = B; 

(b) W (.) is a harmonic multifunction on G; 
(c) if pz(') is the Minkowskifunction of W(z), then the function (z, w) -+ 

logp z (w) is continuous and Psubh on G x Cn . 

Definition 0.4. The unique family of normed spaces {Cn , pz(·)} zEG described 
in the above theorem is called the harmonic interpolation family extending (cor-
responding to) the given family {Cn , P,(')}'E8G' 

See [17, §§ 1, 8; 19; 3; 11] for background and further information. 
We now formulate two characterizations of harmonic interpolation families, 

which we will use below. 

Characterization 0.5. Let {Cn , p z (.)} zEG' G c ck , be a continuous family of 
normed (or quasinormed) spaces. Then it is a harmonic interpolation family 
if and only if the function (z, w) -+ logpz(w) lies in Psubh(G X Cn) and z -+ 

W(z): G -+ 2en is a harmonic multifunction, where W(z) = {w: pz(w):::; I}. 
This is a conclusion from [17, Remark 3.4 and Theorems 3.5, 4.1]. 

Characterization 0.6. Let {Cn , II . liz} zEG be a continuous family of normed 
spaces. Then it is a harmonic interpolation family if and only if both f( z , w) = 
!lIwll;, (z, w) E G x Cn , and g(z, ¢) = !I¢I;, (z, ¢) E G x Cn , are functions 
of class Psubh ' where I· Iz denotes the dual norm to II· liz. 

The proof is given at the end of §2. 
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One of the main results of [17, Theorem 6.1] was a duality theorem for a 
class of complex interpolation methods. Specified to the harmonic interPolation 
case, it reads as follows. 

Theorem 0.7. Let {Cn , 1I·llz} zEG be a harmonic interpolation family ofnormed 
spaces. Then the dual normed spaces {Cn , 1·lz} zEG form a harmonic interpola-
tion family. 

In §2 we present a new, direct proof of this fact, considerably simpler than 
the general one given in [17, §2). It is based on elementary analysis of quadratic 
forms, carried out in § 1. 

The major part of the paper is devoted to the proof of regularity results, 
Theorems 0.10 and 0.11. Their setup is motivated by the following observation 
from [19, Corollary 2.11, Theorem 2.12). 

Property 0.8. Let {Cn , II . liz} zEG be a harmonic interpolation family, with G 
bounded. Assume that the boundary norms are uniformly convex and uniformly 
smooth, in the following sense: 

2 2 2fc(W) + 2elhl ~ fc(w + h) + fc(w - h) ~ 2fc(w) + 2Klhl , 

, E 0 G, w, h E Cn , 
(0.2) 

with e > 0, K < +00 independent of , , where fz(w) = tllwll;, Z E G. Then 
fz (.), Z E G, satisfy condition (0.2) with the same constants. 

Notation 0.9. If f( Z , w) is an LI~c function on a subset of Ck X Cn , we 
denote by HlIf, H12f, H2J, and H22f the matrix-valued distributions 
(0 2 f/ozioZ)ij' (0 2 f/OZiOWq)iq' (0 2 f/owpoz)pj' and (0 2 f/owpOWq)pq 
(which are "blocks" of the complex Hessian of f, of sizes k x k, k x n, 
n x k, and n x n, respectively). In case the distribution Hijf is represented 
by an LIloc (matrix-valued) function, we denote the corresponding function by 
Hijf(z, w), or simply by Hijf. 

Theorem 0.10. Let {Cn , II . liz} zEG be a harmonic interpolation family, with 
boundary norms II ·11" 'E oG, uniformly convex and uniformly smooth as in 
Property 0.8. Denote Hij = Hijf, i, j = 1,2, where f(z, w) = tllwll;. Then 
H22 , H;I E L oo , H 12 , H21 E L~c' and trHl1 E L lloc ' on G x Cn , and 

-I n 
(0.3) tr HII - tr H12H22 H21 = 0 a.e. on G xC. 

The next theorem is, in a sense, a converse result. 

Theorem 0.11. In the notation of the last theorem, if {Cn , II . II z} ZEG is a con-
tinuous family of normed spaces such that H22 , H;I E L;:(G x Cn ), H 12 , 
H21 E L~c(G x Cn ), tr HII E Llloc(G x Cn ), and (0.3) holds a.e. in G x Cn , then 
spaces {Cn , II . liz} ZEG form a harmonic interpolation family. 

The essential idea of the proof of both theorems consists in showing that the 
quantity (0.3) computed for the dual function til· II; is equal to the negative 
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of (0.3) (composed with the gradient mapping). Then Characterization 0.6 is 
used. The main argument is carried out in §4. The computation of the real 
Hessian of the norm function relies on some delicate forms of chain rule, in 
particular, on the following inverse function lemma (proved in §5). 

Lemma 0.12. Let G: n x R n -+ n x R n , where n c Rk is open, be a homeo-
morphism, with G(x, y) = (x, GJy)). Denote F = G- 1 • Assume that the 
maps G x: Rn -+ R n are locally uniformly (in x, y) bi-Lipschitz, and that 
8G/8xj E L~c(n x Rn) (as distributions). Then the distributions 8F /8x j , 

i = 1, ... , k, and 8 F / 8 y j' j = 1 , ... , n, lie in L~oc and L:, respectively, 
and for a.a. (x, y) E n x R n the Jacobian matrix of F at (x, y) is equal to 
the inverse of the Jacobian matrix of G at F(x, y). 

Finally, the information on the dual complex Hessian is extracted from that 
on the real Hessian through an algebraic formalism described in §3. 

1. DECOMPOSITION OF A SYMMETRIC BILINEAR FORM 
RELATIVE TO A PROJECTION 

The essential part of the proof of duality for harmonic interpolation families 
relies on the following fact. 

Lemma 1.1. Let M be an open subset of e k and u: M x en x em -+ R be a e(2)_ 

smooth function. Define v(z, ~) = infw u(z, ~, w), (z,~) E Mxen , WE em . 
Assume that m $ n and that for every (z,~) E M x en, the slice function 
W -+ u(z, ~,w) is strongly convex. Fix (zo' ~o' wo) E M x en x em and 
denote by Hu and Hv the complex Hessian forms of u and v at (zo' ~o' wo) 
and (zo' ~o) , respectively. Then v is e(2) -smooth and either Hv is degenerate 
in some direction (0,0) =I- (0, ~I) E {O} x en (i.e., Hv(OEB~I' OEB~I) = 0) or 
there exist e-linear maps So: e k -+ en and S = (So' SI): e k -+ en x em, such 
that for every vector z E e k 

(1.1 ) 

For the proof (which is given at the end of this section) we have to relate 
the Hessian forms of u and v. To facilitate this, as well as other instances 
of dealing with Hessian forms, we introduce the notion of decomposition of a 
quadratic form, which we discuss first. 

Definition 1.2. (a) Let E, Z be finite-dimensional real vector spaces, n: E -+ 

Z an epimorphism, and b: E x E -+ R a symmetric bilinear form. Denote 
W = ker n . A representation 

( 1.2) b(x, x) = bo(nx, nx) + bl (x, x) 

is called a canonical decomposition of b relative to n if bo: Z x Z -+ Rand 
b l : E x E -+ R are symmetric bilinear forms and there exists a linear map 
p: E -+ W such that plW = idw and bl(x, x) = b(px, px). 
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(b) By the next lemma, if a canonical decomposition relative to n e.xists, it 
is unique. In such an instance, the unique form bo is called the projection of 
b under n and denoted nb. 

Lemma 1.3. In the situation of Definition 1.2, denote by D and Dw the degener-
acy spaces of the forms band bl W x W, respectively, i.e., D = {xo: b(xo ' x) = 
0, x E E}, Dw = {wo: b(wo' w) = 0 for WE W}. Then a canonical decom-
position exists if and only if Dw cD. Furthermore, if Dw CD, then 

(a) Nn W = Dw = Dn W, N + W = E, where N = {x E E: b(x, w) = 0 
for WE W}; 

(b) there is a linear map s: Z ---+ N, such that ns = idz ; 
( c) the forms 

bo(z, z) = b(sz, sZ), ZEZ, 

and 
bl (x, x) = b((l- sn)x, (l- sn)x), xEE, 

are independent of the choice of s satisfying (b) and 

(1.3) b(x,x)=bo(nx,nx)+bl(x,x), xEE; 

(d) the representation (1.2) is the unique canonical decomposition. 

Proof. If a canonical decomposition (1.2) exists, we get by polarization b( Wo ' x) 
= bo(nwo' nx) + b(pwo' px) = 0 + b(wo' px), if Wo E W. If Wo E Dw, then 
b(wo' px) = 0, because px E W. Hence, the condition Dw cD is necessary. 
Its sufficiency will follow from parts (a) through (d). We assume Dw cD for 
the rest of the proof. 

(a) The relations NnW = Dw and D n W c Dw are obvious. Hence, 
D n W = Dw = NnW. If N, TV, E denote respectively the quotient spaces 
NjDw' WjDw' EjDw' then N n TV = [0]. Since Dw is contained in the 
degeneracy space of b, the latter defines a symmetric bilinear form b: E x 
E ---+ R (where b(x + Dw ' y + Dw) = b(x, y)). It is clear that N = ([x] E 

E: b([x], [y]) = 0 for [y] E E}. Since Nn W = [0], the form blW x W is 
nondegenerate and so dim N = dim E - dim W , and consequently N + TV = E . 
Thus N + W = E. 

(b) Since n(N) = n(N + W) = n(E) = Z , the existence of s: Z ---+ N with 
ns = idz is obvious. 

(c) The independence of bo' hI of the choice of s follows from (d). Fur-
thermore, 

b(x, x) = b(snx + (l - sn)x, snx + (l - sn)x) 
= b(snx, snx) + b((l- sn)x, (l- sn)x) + 2b(snx, (l- Sn)x) 
= bo(nx, nx) + bl (x, x) 

for b(snx, (l - sn)x) = 0, since snx E Nand (l - sn)x E ker n = W. 
(d) Let (1.2) be a canonical decomposition of b and let DI = {xo E E: 

b l (xo' x) = 0, for x E E} (the degeneracy space of b l ). If Xo E DI and 
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w E W, then b(xo' w) = bo('lrxo , nw) + bl(xo , w) = 0 and so DI eN. 
Clearly, ker pc DI' and since plW = idw ' ker p+ W = E. Hence, DI + W = 
E. Furthermore, DI n W = D n W because, if Wo E W, then bl (wo' x) = 
b(wo' px) and px E W. Since D n W = NnW (by (a)), we obtain that 
DI eN, DI + W = N + W, and DI n W = Nn W. Thus DI = N. If we now 
choose any map s: Z ---. N satisfying condition (b), we get bl (sz, sz) = 0, and 
so b(sx, sx) = bo(z, z). This proves the uniqueness of bo (and so of bl) , as 
well as its independence of the choice of s. Q.E.D. 

Corollary 1.4. If, in the situation of Definition 1.2, the restriction of the form b 
to W is nondegenerate (i.e., Dw = (0)), then the canonical decomposition of b 
relative to n exists, the map s: Z ---. N such that ns = idz is unique, and 

( 1.4) (nb)(z, z) = bo(z, z) = b(sz, sz). 

Furthermore, for every z E Z, s z is the unique critical point of the function 
x ---. b(x, x): n- I (z) ---. R. 

Proof. By Lemma 1.3(a), if Dw = (0) , then NnW == (0) and the uniqueness 
of s is obvious, namely 

( 1.5) -I N n n (z) = {s(z)} , for z E Z. 

Fix z E Z and Xo E n-I(z). If we parametrize n-I(z) by x = Xo + w, 
w E W, then b(x, x) = b(xo' xo) + 2b(xo' w) + b(w, w), and the gradient 
of bln-I(z) is the linear form w ---. 2b(xo'w): W ---. R, which vanishes 
identically if and only if Xo EN. By this and (1.5), Xo is a critical point if 
and only if Xo = s(z). Q.E.D. 

The next observation, which follows directly from the last corollary, hints 
at a connection between Lemma 1.1 and the operation of projection defined 
above. 

Remark 1.5. With E, Z , n, b as in Definition 1.2, assume, in addition, that 
the restriction of the form b to ker n is positive definite. Then 

(nb)(z, z) = inf{b(x, x): x E n-I(z)}, ZEZ. 

Proposition 1.6. Let E = ZE9W, n(zE9w) = z, (zE9w) E E. Let b: ExE ---. R 
be a symmetric bilinear form, whose block representation with respect to the 
decomposition E = Z E9 W is 

(1.6) b(x, x') = (BII Z, Zl) + (B12w, Zl) + (B2l Z, w') + (B22W, w'), 

h I I I Z Z* B W Z* B Z W* were x = z E9 w, x = z E9 w , B II : ---. , 12 : ---. , 21 : ---. , 

B22 : W ---. W* , and BD = Bji' i = 1, 2. (BT denotes the dual or transpose 
operator.) Then b is nondegenerate on ker n if and only if B22 is nonsingular. 
If B22 is nonsingular, then the projection of b under n is 

(1. 7) ZEZ. 
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Furthermore, s(z) = z EI1 (-B':;/ B21 z), z E Z, and the canonical decomposition 
of b relative to n is 

b(x, x) = (nb)(z, z) + (B22 (W + B:;} B21 z), w + B:;} B21 z). 

Proof (sketch). Letting x' = 0 EI1 w', x = z EI1 w in (1.6), we get b(x, w') = 
(B21 Z + B22W, w'), and so x E N (see Lemma 1.3(a)), if and only if B21 z + 
B22W = O. By this and Lemma 1.3(b), sz = z EI1 (-B;I B21 z). The remaining 
statements then follow from Lemma 1.3(c). Q.E.D. 

Remark 1.7. Let u(x, y) be a C(2)-smooth function on DxRn ,where J) c Rk 
is open. Assume that u is strongly convex on every hyperplane {x} x Rn , 

xED. Define v(x) = inf{u(x, y): y ERn}, xED. Then v is C(2)-smooth 
in D and, for every a ED, the Hessian form of v at a is the projection under 
n of the Hessian form of u at (a, b) ,where n: Rk X Rn --4 Rk is the standard 
projection map and b denotes the unique point, such that u(a, b) = v(a). 

(This is a reinterpretation of a well-known consequence of the implicit func-
tion theorem [17, equation (5.1)] in terms of Proposition 1.6, in particular 
equation (1. 7).) 

Proof of Lemma 1.1. Let E = Ck EI1Cn EI1Cm , Z = Ck EI1Cn , and let n: E --4 Z be 
defined by n(x) = ZEl1C;, for x = (zEl1C;EI1w) E E. Let b: ExE --4 R be the real 
Hessian form of u at (zo' C;o' wo)' Since the function u(z, e, w) is strongly 
convex in w, the restriction of the form b to W = kern = (0) EI1 (0) EI1 Cm 

is nondegenerate. Spaces E and Z also have a complex structure and we let 
J: E --4 E and J: Z --4 Z denote the operators of multiplication by i, so 
that J2 = - id. Let h (', .) and a(·, .) denote, respectively, the Hermitian and 
anti-Hermitian parts of b(·, .), i.e., b(x, x) = h(x, x)+a(x, x), h(Jx, Jx) = 
h(x, x), a(Jx, Jx) = -a(x, x), x E E. 

Let NeE and s: Z --4 N be defined as in Lemma 1.3. Since b is non-
degenerate on W, s(Z) = N (see Corollary 1.4). Denote by Nh and Na the 
annihilators of W = ker n relative to h and a, respectively, i.e., 

Nh ={x E E: h(x, w) = 0 for WE W}, 
Na ={x E E: a(x, w) = 0 for WE W}. 

Since the forms h and a are, respectively, Hermitian and anti-Hermitian and 
J(W) = W, both Nh and Na must be complex subspaces of E with 
(1.8) codime Nh :::; m, codime Na :::; m. 

Observe now that, if x E NhnNa , then for every WE W, b(x, w) = h(x, w)+ 
a(x, w) = 0, and so Nh n Na eN. By (1.4), if x E Nh n Na , then snx = x, 
and so 
( 1.9) (nb)(nx, nx) = h(x, x) + a(x, x), 

Let P: Ck+n --4 Ck denote the standard projection map. By (1.8), 
dime n(Nh n Na) = dimC<Nh n Na) ~ k (note n ~ m), and so either 
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n(NhnNa)n{O}xCn contains a nonzero vector OEB~I or n(NhnNa)n{O}xCn = 
(0) and P(n(Nh n Na)) = Ck • 

In the first case, applying (1.9) to x = s(O EB ~I) and x = s(O EB J~I)' one 
obtains (nb)(OEB~I' OEB~I) = 0, (nb)(OEBJ~I' OEBJ~I) = 0, which means that 
the Hermitian part of nb, which is equal to Hv by Remark 1.7, vanishes in 
the direction of 0 EB ~I E Ck EB Cn , as required. 

In the second case, the subspace n(Nh n Na) is equal to the graph of a 
C-linear map So: Ck ~ Cn • Since sin (Nh n Na) is the inverse of a bijective C-
linear map nlNh n Na (note that Nh n Na is a complex subspace), sln(Nh n Na) 
is C-linear and of the form s(z EB Soz) = z EB Soz EB SI Z, z E Ck , where 
SI: Ck ~ Cm is C-linear. Let Sz = SoZEBSI z. Then (nb)(zEBSoz, ZEBSoz) = 
b(s(z EB Soz, z EB Soz)) = h(z EB Sz, z EB Sz) + a(z EB Sz, z EB Sz). Since the 
complex Hessian Hv of v at (zo, ~o) is equal to the Hermitian part of !nb 
(see Remark 1.7) and since z ~ a(zEBSz, zEBSz) is anti-Hermitian, we obtain 
Hv(z EB Soz, z EB Soz) = h(z EB Sz, z EB Sz) = Hu(z EB Sz, z EB Sz). Q.E.D. 

2. DUALITY FOR HARMONIC INTERPOLATION 

In this section we give a new, direct proof of the duality theorem for the 
harmonic interpolation method, which has already been obtained as a special 
case of a more general duality result for a class of complex interpolation methods 
in [17, Theorem 6.1, §8.2(b)]; see also [19, Theorem 2.9]. The present proof 
is based on a minimum principle for functions of the class Psubh (Lemma 2.1 
below), which, as in [17, Theorem 5.1], was inspired by a minimum principle 
for plurisubharmonic functions due to Kiselman [9, Theorem 2.2]. For the 
properties of the class Psubh ' the reader is referred to [19, Introduction and § 1]. 
Recall that a function v(z,~), (z,~) E U C Ck X Cn , belongs to the dual 
class PS: bh (U) if for every function f( z ,~) of class Psubh (V) the sum v + f 
has local maximum property on Un V. (See [16, Definition 1.1] for a general 
definition of the dual class of functions.) 
Lemma 2.1. Let u( z , ~ , w) be a function of class Psubh (G x Cn+m ), where G 
is open in Ck . Assume that m ~ n and that for every (z,~) E G x Cn 

the slice function w ~ u(z, ~,w) is convex. Then the function v(z,~) = 
inf{u(z, ~, w): W E Ck } belongs to Ps:bh(G X Cn). 

Proof. We first prove the claim when u is C(2)-smooth and the slice functions 
W ~ u(z, ~" w), (z,~) E G x Cn , are strongly convex. We use the following 
assertion. (Its proof is practically identical to that of Assertion 2, given below, 
and is omitted.) 

Assertion 1. If f E Psubh (V), V C Ck X Cn , then there exist functions 
Is E (Psubh n COO)(~), s = 1,2, ... , where ~ = {x E V: dist(x, ~) > lis}' 
such that for every compact K c V 
(2.1 ) (z, ~) E K, s? N(K). 
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Suppose that for a compact K c U n V and Is as above, 

(2.2) max(v + 1s)IK > max(v + 1s)18K. 

By [13, Lemma 4.5], there are e > 0, a point (zo' ~o) E IntK, and an R-affine 
function /: ek+n ---+ R such that 

(2.3) (Z, ~) E K. 

We use Lemma 1.1 to show that this is impossible. This is obvious in case 
there is a nonzero vector 0 EEl ~1' such that Hessc v(zo' ~o) vanishes in its 
direction. (Recall that v is a e(2) -smooth function by Remark 1.7.) Since the 
slice function Zo ---+ Is(zo'~) is plurisubharmonic by [19, (1.5)], we conclude 
that Hessc(v + Is + /), at (zo, ~o) , is positive semidefinite in the direction of 
o EEl ~1 ' which contradicts (2.3). 

In the remaining case there exist e-linear maps So and S as in Lemma 1.1; 
in particular, (1.1) holds. By the definition of Psubh ' the function z ---+ u( z EElS z) 
is subharmonic, and so the form z ---+ Hu(z EEl Sz, z EEl Sz) has nonnegative 
trace. By (1.1), the form z ---+ Hv(z EEl Soz, z EEl Soz) has nonnegative trace 
(recall that Hv = Hessc v(zo' ~o))· Since Is E e(2) n Psubh ' the form z ---+ 

Hfs (ZEEISoZ' zEEISoz) also has nonnegative trace (where Hfs = Hessc Is(zo' ~o)) . 
Consequently, z ---+ Hv+fs+l(z EEl Soz, z EEl Soz) has nonnegative trace, which 
contradicts (2.3) and (2.2). Consequently, max(v + 1s)IK ~ max(v + 1s)18K , 
and by (2.1), 

(2.4) max(v + f)IK ~ max(v + f)18K, 

and so v E PS:bh(G X en), when u is smooth and strongly convex in w. To 
handle the case of general u, we need the next assertion. 

Assertion 2. Fix <5 > 0 and denote ut5 (z, ~, w) = max(u(z, ~, w), -1/(5) + 
<5lwl2 and vt5(z,~) = inf{ut5 (z, ~, w): w E em}, (z, ~, w) E G x en x em . 
Then there exist functions Us E (eoo n Psubh)(Gs X en x em), s = 1,2, ... , 
where Gs = {x E G: dist(x, G) > lis}, which are strongly convex in wand 
such that for every compact LeG x en 

t5 
us(z,~, w) "'. u (z,~, w), (z, ~, w) E L x em, s > no(L). 

Assuming this, apply (2.4) to vs(z,~) = inf{us(z, ~, w): w E em} and 
obtain 

(2.5) max(vs + f)IL ~ max(vs + f)18L. 

By the properties of Us and the special construction of ut5 , we get vs(z,~) "'. 
t5 t5 f u (z,~), (z,~) E L, for s large enough, and so by (2.5), max(v + )IL ~ 

max(v t5 + f)18L. It is also clear that vt5(z,~) "'. v(z,~), (z,~) E G x en, 
and so max(v + f)IL ~ max(v + f)18L, as required. 
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As for Assertion 2, the special form of the functions ut5 , 0 > 0, is not used 
in the proof (of the assertion), only the fact that each of them is bounded from 
below. 

Let Ks ' s = 1, 2, ... , be the standard, radically symmetric smooth non-
negative convolution kernels on Ck+n+m with decreasing supports, constructed 
as in Hayman and Kennedy [7, Theorem 3.8]. Seeing that function ut5 is, in 
particular, subharmonic in the usual sense on G x Cn x Cm [19, (1.6)], we get 
by [7, Theorem 3.8] that (ut5 * Ks)(z, C;, w) ",. ut5(z, C;, w), for s ~ N, if 
dist( z , {) G) > 1/ N. Since the class F of all functions u (z , C; , w) , which are 
of class Psubh and convex in w, is closed with respect to translations, addition 
(i.e., F + F c F), and multiplication by nonnegative constants, we conclude 
that ut5 * Ks E F(Gs x cn+m ) , and so functions (uo * Ks)(z, C;, w) + a + blwl2 

belong to F(Gs x Cn+m ). 

It is now easy to see that the functions us(z, C;, w) = (ut5 * Ks)(z, C; , w) + 
l/s + (1/s)lwI 2 satisfy all the requirements of Assertion 2. Q.E.D. 

Corollary 2.2. Let F E Psubh (G x Cn), where G c Ck is open. Assume that for 
every z, the function fz(w) = f(z, w) is convex on Cn . Then the function 
(2.6) g(z, C;) = inf{f(z, w) - Re[c;, w]: w E Cn} 

is of class PS~bh (G x Cn) (the dual class to Psubh )' where [C;, w] = C; 1 WI + ... + 
C;nwn· 
Remark. The function C; ...... g(z, C;) is equal to -(fz)* , where (fz)* denotes 
the Fenchel conjugate function to fz; see Day [6, Chapter VII, §2]. 

Proof. Observe that the function u(z, c;, w) = f(z, c;) - Re[c;, w] belongs to 
Psubh(G X C2n ) , by [19, (1.1) and (1.2)]. (Note that the function (z, C;, w) ...... 
Re[c; ,w] is plurisubharmonic and so of class Psubh). Since 

g(z, C;) = inf{u(z, C;, w): w E Cn }, 

Lemma 2.1 yields the conclusion. Q.E.D. 

Recall that {Cn , p z} zEG is called a harmonic subinterpolation family if the 
function (z, w) ...... logpz(w) is of class Psubh(G X Cn ), and that {Cn , Pz}zEG 
is a harmonic superinterpolation family if the multifunction z ...... W (z): G ...... 
w cn ,where W (z) = {w E Cn : p Z (w) ~ I}, is harmonic. By Characterization 
0.5, {Cn , PzLEG is an interpolation family if and only if it is both a sub in-
terpolation and a superinterpolation family. (See [17, §§3, 4] and [19, §2] for 
background and further properties of these notions.) 

Theorem 2.3. If the normed spaces {Cn , pJ zEG form a harmonic subinterpola-
tion family, then their dual spaces {Cn , qz} zEG form a harmonic superinterpo-
lation family. 
Proof. We have to show that z ...... V(z) if a harmonic multifunction, where 
V(z) = {w E Cn : qz(w) ~ I} and qz(C;) = sup{I(c;, w)l: pz(w) ~ I}. 
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One easily computes that the Fenchel conjugate of the norm p Z (.) is 

* { 0 if ~ E W (z) , 
pz(~) = +00 if ~ ff. W(z) 

(see also Day [6, Chapter VII, §2( 15)h]); that is, glX = 0 and giG x Cn \ X = 
-00, if X = gr(V) , and g(z, ~) = -p;(~). By Lemma 2.2, g E P!bh' and so, 
if Band u(z, w) are as in Definition 0.2, then 

maxulX n B = max(u + g)IB ~ max(u + g)18B = maxul(8B) n X, 

which shows that V(.) is a harmonic multifunction. Q.E.D. 

Proof of Theorem 0.7. In view of the last theorem and comments preceding it, 
we have only to show that, if {Cn , p z (. ) } zEG is a harmonic superinterpolation 
family, then its dual {Cn , qz(·)} is a harmonic subinterpolation family. (The 
argument we are about to sketch is practically the same as the more general one 
in [17, Corollary 2.4]). 

In view of Definition 0.1, we have to prove that whenever ~ = f( z) is 
an analytic mapping, the function v(z) = qz(f(z)) is subharmonic. Clearly, 
this is equivalent to showing that for every harmonic function h(z) and every 
compact set Fe dom(v) n dom(h), max(v + h)1F ~ max(v + h)18F . Now the 
function u(z, w) = I(w, f(z))1 + h(z) is of class Psubh and so, seeing that the 
multifunction z - W(z), where W(z) = {w E Cn: pz(w) ~ I}, is harmonic 
(we have superinterpolation family), we get, by Definition 0.2, max( v + h) IF = 
maxulgr(W)n(FxCn) ~ maxulgr(W)n(8FxCn) = max(v+h)18F. Q.E.D. 

Proof of Characterization 0.6. In view of the duality properties of subinterpo-
lation and superinterpolation families, it is now clear that {Cn , p z} zEG is a 
harmonic interpolation family if and only if it is a subinterpolation family and 
the dual spaces {Cn , qz}zEG form a subinterpolation family. This observation 
reduces Characterization 0.6 to the next assertion. 

Assertion. The function (z, w) - logpz(w) lies in Psubh(G X Cn) if and 
only if the function (z, w) - !p z (W)2 is of class Psubh ' 

Denote f(z, w) = !pz(W)2. Since f(z, w) = exp(! logpz(w)) , necessity 
is clear. Conversely, since f is homogeneous, of order 2 in w, the function 
(z, w) -li(Z)lf(z, w) = f(z, e(I/2)h(z)w) is of class Psubh ' which easily yields 
that logf lies in P subh ; see [18, Lemma 5.3]. Q.E.D. 

The reader who does not want to consult [17] can skip Remark 2.4 and 
Lemma 2.5. 

Remark 2.4. Obvious modifications of the above arguments would yield easily 
a new proof of the following result (which is a special class of [17, Theorem 
6.1]): if Q is a pseudoconvex class of functions on Ck satisfying conditions [17, 
(1.1)-(1.12)] and such that Q+Q c Q, then {Cn , Pz}zEG is a p~O-interpolation 
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familyofnormedspacesifandonlyifthedualspaces {Cn , qz}zEG forma P;';-
interpolation family (see [17, §2] for notation and definition). The key element 
of proof is the following generalization of Lemma 2.1. 

Lemma 2.5. If Q is as in Remark 2.4 (in particular, Q + Q c Q, u E 
p~Sh(GxCn+m)) and is convex in the direction {O} x {O} Xcm , then v E (p~~h)d , 
where V(Z, ~) = inf{u(z, ~ , W): W E Cm }, (Z,~) E G x Cn . 

The proof proceeds along the lines of the proof of Lemma 2.1. The property 
Q + Q c Q is used only to obtain analogs of Assertions 1 and 2, namely in the 
statement that uJ * Ks E PQ • We omit further details. 

3. COMPLEX HESSIAN AND DUALITY 

Lemma 3.1. Let Z, W be finite-dimensional complex vector spaces. Let 

(3.1 ) 

be a real symmetric bilinear form (where B jj are as' in Proposition 1.6), with 
Hermitian part equal to 

(3.2) 

where H;2 = H21 , H;2 = H22 . Assume that B22 is positive definite. Let 

(3.3) (Ho' z, z') + (HI2~ , z') + (H21 z , ~') + (H22~ , ~') 
denote the Hermitian part of the form 

(3.4) H(-BI2B;IB2Iz, z') + (BI2B;I~, z') + (B;IB2Iz,~) + (_B;I~, ~')}. 
- - --I - -I Then Ho - H12H22 H21 = -H12H22 H21 · 

This admittedly technical formulation is motivated by the convenience of 
application in §4. (In particular, terms Bll , HII are omitted because they 
have no local sense in the context of §4.) Before proving the lemma, we give 
some comments which should explain its meaning. 

Note first that the pairing (, ) is real valued, and so forms (3.2), (3.3) are 
actually the real parts of usual, complex-valued Hermitian forms. Complex 
structure is given by an operator J, e.g., J: Z -> Z with J2 = -land H jj 

are J -antilinear operators; e.g., operator ! B 12: W -> Z* splits uniquely into 
!B12 = HI2 + A 12 , where J HI2 = -H12 J, J A12 = A 12 J. (The pairing (, ) 
satisfies (Jx, Jy) = -(x, y) .) 

In view of §1, if h(z EB w, z EB w) is a Hermitian form with the four blocks 
equal respectively to HII ' H 12 , H21 ' H22 , then the term HII - HI2 H; I H21 = 
7th , the projection of h onto Z under the map 7t: Z EB W -> Z. The next 
proposition is a special case of the results from [18, Lemmas 4.11(ii) and 
4.12(ii)], reformulated in the language of projections. 
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Proposition 3.2. Let f(z, w) be a e(2)-smooth on U c ek+n, U open. Then 
(i) if f is strictly plurisubharmonic in w, then f E Psubh (U) if and only if 

trn(Hessc f(z, w)) ~ 0 in U; 
(ii) if f is strictly plurisuperharmonic in w, then f E (PSUbh)d (U), if and 

only if trn(Hessc f(z, w)) ~ 0 in U. 

The next proposition explains the role of Lemma 3.1 in the smooth case. 

Proposition 3.3. Let f(z, w) be a e(2)-function on G x en, G c e k . Assume 
that f is strongly convex in wand let g(z, c;) = inf{f(z, w) - Re[c; , w]: WE 
en}. Denote by w(c;) the unique point where the infimum is attained. Then the 
projections, onto e k , of the forms Hessc f(zo' wo) and Hessc g(zo' C;o), where 
Wo = w(C;o), under the maps n(z, w) = z and ir(z, c;) = z are equal. 

Proof(sketch). If the real Hessian of f at (zo' wo) has block components BII ' 
B J2 , B21 , B22 as in (1.6), one can compute, using the implicit function theo-
rem (Remark 1.5 and Proposition 1.6), that !- HessR g(zo' c;o) = !-(BII Z, z') + 
terms (3.4), and so its Hermitian part differs from (3.3) by the term (HI I Z, z') . 
With these observations, Lemma 3.1 now implies immediately that both 
n(!-HessC f(zo' wo)) and ir(!-Hessc g(zo' c;o)) are equal to HII-HI2H2~IH21· 
Q.E.D. 

Remark 3.4. Combining Propositions 3.2 and 3.3, we obtain a new proof of 
Corollary 2.2 

ProofofLemma 3.1. Represent !-Bij = Hij+Aj' where -HijJ = JHij , AijJ = 
J Aij . Note that H22 is positive definite as the Hermitian part of the positive 
definite !-B22 . (See e.g., the proof of the assertion below.) Represent, further, 
2B;! = S + N, where -S J = J S, N J = J N . Then, by direct computation, 

(3.5) flo = -H12SH21 - A 12SA21 - AI2NH21 - H12NA21 , 

(3.6) 

(3.7) 

Further computation yields 
- - --I - -I (3.8) Ho - H12H22 H21 = -HI2 (S - NS N)H21 · 

To evaluate this, identify Sand N. Let If/ = H; I A22 . Then 
-I -I -I --I -I 2B22 = (H22(/ + H22 A22 )) = (J + If/) H22 · 

Assertion. Spectraj radius of If/ is smaller than one. 
Assuming the assertion, we get 

-I (~ r r) -I (~2r) -I (~2r)-1 2B22 = f:o' ( -1) If/ H22 = f:o' If/ H22 - If/ f:o' If/ H22 · 
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Since /If J = -J /If, we conclude that S = (I - /lf2) -I and N = /If (I - /lf2) -I H2~ I . 

Hence, 

S - NS-IN = (I - /lf 2)-IH:;/ 
2 -I -I 2 2 -I -I 

- (-1) /If (I - /If) H22 H22 (I - /If )(-1) /If (I - /If) H22 
2 -I -I 2 2 -I -I -I 

= (I - /If) H22 - /If (l - /If) H22 = H22 . 

Substituting this into (3.8), we get Ho - HI 2 H:;/ H21 = -HI2H2~1 H21 ' as 
required. 

It remains to check the assertion. Since (B22W, w) > 0 and (B22(JW) , 
Jw) > 0 for W =f. 0, WE W, we get 

0< (!B22 (W I - w2), (WI - W2)) + (!B22 (JW I + Jw2), JW I + Jw2) 
= (H22 (W I - w 2), WI - W2) + (A 22 (W I - w 2), WI - W2) 

+ (H22 (W I + W2), WI + W2) - (A 22 (W I + W2), WI + W2) 
= 2(H22WI ' WI) + 2(H22W2' W2) - 2(A22WI' W2) - 2(A22W2' WI)· 

unless WI + W2 = 0 = WI - w2' i.e., unless WI = w2 = O. Since Af2 = A22 and 
A22/1f = H22 , we conclude that I (H22/1fWI ' w2 )1 < 1 whenever (H22WI' WI) = 
1 = (H22W2' w2). This means that the operator norm of /If, relative to the 
norm W -+ (H22w, W)I/2 on W, is smaller than one, and so is its spectral 
radius. Q.E.D. 

4. CHARACTERIZATION OF HARMONIC INTERPOLATION FAMILIES 
IN TERMS OF SECOND-ORDER DERIVATIVES 

We first characterize functions of class Psubh in terms of their complex Hes-
sian (Lemma 4.4) and then compute real and complex Hessians of the partial 
Fenchel conjugate (Lemma 4.6). From these two facts, Theorems 0.10 and 0.11 
will follow quickly. 

Notation 4.1. If f(x, y) is an LI~c function defined on a subset of RK x 
R N , we denote (in analogy with Notation 0.9) by Bllf, B12f, B21f, B22f 
the blocks of the distributional real Hessian of f(x, y), namely the matrix-
valued distributions (0 2 f/ox;OX)ij' (0 2 f/oxjOYq)jq' (0 2 floYpox)Pi' and 
(0 2 f/oYpoYq)pq (of sizes K x K, K x N, N x K, and N x N, respectively). 

Proposition 4.2. Let f: n x RN -+ R, with n c RK open, be continuous and 
such that lim1yl-too f(x, y)/lyl = +00, for x En. Assume further that f(x, y) 
is locally uniformly smooth and locally uniformly convex in y, that is, 

(4.1 ) 2 2f(x, y) + 2elhl ~ f(x, y + h) + f(x, y - h) 
2 

~ 2f(x, y) + 2Klhl, Ihl ~", 
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with K < +00 and e, 1] > 0, uniformly on compact subsets of Q x RN.. Then 
(i) the distribution B22f is represented by an L:, matrix-valued function, 

with B22f(x, y) positive definite for a.a. (x, y) E Q X R N , and (B22f)-' E 
L:; 

(ii) the map y ----> GJy): RN ----> R N , where 

(4.2) N (x, y) E Q x R , 

is locally bi-Lipschitz, with Lipschitz constants locally uniformly bounded in 
(x, y); 

(iii) the map 

(4.3) N N G: Q x R ----> Q x R, where G(x, y) = (x, GJy)) , 

is a homeomorphism onto. 

Proof (sketch). As is well known, (4.1) is equivalent to both functions y ----> 

KlyI2-f(x,y) andy---->f(x,y)- elyI 2 being convex for (x,y) near (xo'Yo)' 
Since a function in RN is convex if and only if its real Hessian is a matrix-
valued distribution with positive semidefinite values, (i) holds; in particular, 

( 4.4) 2 2 elhl :S (B22 (x , y)h, h) :S Klhl 

for (x, y) near (xo' Yo)' These inequalities imply ely - Yol :S IGx(Y)-
Gx(Yo)1 :S Kly - Yol for y near Yo' Finally, (iii) is geometrically obvious. 
Q.E.D. 

Remark 4.3. Observe that, if {Cn , 11'll z } zEG is a harmonic interpolation family 
satisfying assumptions of Property 0.8, then the function f( z , w) = -! Ilw II~ 
satisfies assumptions of Proposition 4.2. In particular, (4.4) holds, and so 

(4.5) H22f E L:c(G x Cn ), 

(4.6) 

This motivates the setup of the next lemma. 

Lemma 4.4. Let u(z, w) be a continuous function on U C Ck X Cn satisjjJing 
condition (4.5). Then 

(a) u E Psubh (U) if and only if, for every (constant) n x k complex matrix 
S, the distribution 

( 4.7) 

is (represented by) a nonnegative Borel measure on U; 
(b) if u E Psubh(U) , then the distributions H 12 u, H21 u, 8 2u/8z/lwp , 

i = 1, ... , k, p = 1, ... , n, are (represented by) L~oc( U) functions and the 
(distributional) "partial Laplacian" tr(H" u) = 2:7=1 8 2u/8zi8 Zi is a nonnega-
tive Borel measure on U; 
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(c) if 8 2u/fJzi8wj E L~oc(U), i = 1, ... , k, p = 1, ... , n, and tr(HII u) 
is a Borel measure on U, then u E Psubh (U) if and only if 

(4.8) the measure tr(Hllu) - tr(H12u)(x)(H22u)(x)-I(H2I u)(x)dm 
is nonnegative. 

We will use the following observations (presumably well known) in the proof 
of Lemma 4.4. 

Remark 4.5. (a) If u: G x H ---+ R, G C Rk , H c Rn , is a continuous function, 
then for every y E H, the function x ---+ u(x, y): G ---+ R is subharmonic if 
and only if the distribution CL7=1 8 2/8x;)u is represented by a nonnegative 
Borel measure fl on G x H . 

(b) If u(x, y) is a bounded, upper-semicontinuous function on G x H C 

Rk X R n , which is subharmonic in x, then the partial gradient \7 xU = (8u/8x, 
... , 8u/8xk) is locally square-integrable. Moreover, if E is relatively compact 
in G, then 

sup ess ( r 1(\7 xU)(x, Y)1 2 dm(X)) 1/2 ~ Cellulloo , 
yEH iE 

where C depends only on G and E. 
(c) If u(z, w) is continuous on G x HeCk X Cn , \7zu E L~oc' and 

8 2u/8Wj 8z i E L~oc' then 8 2u/8w j8zi E L~oc· 

Proof (sketch). (a) is obtained by Fubini-like modification of the standard 
characterization of subharmonic functions in terms of the distributional Lapla-
cian; see [7, §3.5, Lemma 3.6]; 

(b) is proved by the identity Llxeu = eU LlxU + eUILlxu12; and 
(c) is obtained by using the Fourier transform of u (multiplied by a smooth 

cutoff function) and the fact that L 00 functions are multipliers for the Fourier 
transforms of L 2 functions. Q.E.D. 

Proof of Lemma 4.4. (a) By Remark 4.5(a), we conclude that u E Psubh if and 
only if the distribution 

(4.9) ( 
k 82 ) 
~ 8z i8z j [u(z, w) + S(z)] 

is a nonnegative measure on U. By standard computations on test functions, 
distribution (4.9) is equal to the composition of the distribution 

(4.10) 

with the affine map (z, w) ---+ (z, W +s(z)). The latter map being nonsingular, 
distribution (4.9) is a nonnegative measure if and only if so is distribution 
( 4.10). 
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(b) Substituting S = 0, we get that tr(H11 u) = 2::;=1 riu/Oz/)zi is rep-
resented by a nonnegative measure, say J.l. Now fix i, j with 1 ::; i ::; k, 
1 ::; j ::; n, and let S = (apq ) , where apq = arJiprJjq , 1 ::; P ::; k, 1 ::; q ::; n, 
with a E C. Then (4.7) reduces to 

(4.11 ) 

This being a Borel measure for every a E C, the distribution o2U/OZiOWj must 
be represented by a complex Borel measure, say J.lij. (Recall that o2U/OWiOWj 
E L 00 .) 

Observe that J.lij is absolutely continuous with respect to the Lebesgue mea-
sure m. Indeed, let F be a compact set with m(F) = O. The integral of 
the function IF with respect to the measure (4.11), which is equal to J.l(F) + 
2 Re(aJ.lij(F)) , must be nonnegative for every a E C. Hence, J.lij(F) = 0, as 
required. 

Using LI~c matrix-valued functions Hij(x) , i, j = 1, 2, we can interpret 
(4.10) as 

dJ.l * * (4.12) dm(x)+tr((HI2u)(x)S+S (H2I u)(x)+S (H22U)(X)S) ~ 0, a.e. dm. 

Assume first that (H22 U)(X) is a nonsingular matrix for a.a. x (and so, positive 
definite a.e.); (4.12) is equivalent to 

[ dJ.l -I] * 0::; dm (x) - tr(HI2u)(x)(H22 u)(x) (H21 u)(x) + tr R(x) R(x) 

( dJ.l 1/2 2) * = dm (x)- III (H22U)(X) (H21 u)(x) III + tr R(x) R(x) , 

where R(x) = (H22U)(X)-1/2(H2I u)(x) + (H22 u)(X)I/2S, and III· III stands for 
the Hilbert-Schmidt norm of a matrix. Since S is arbitrary, we get 
III (H22U)(X)-1/2(H21 u)(x) 1112::; dJ.l(x)/dm, a.e. dm. Since H22 (·) E L:, we 
conclude that (H21 u)(x) is a square-integrable (matrix-valued) function. 

In case not all (H22 U)(X) are nonsingular, let v(z, w) = u(z, w) + IwI2 . 
Then, v E Psubh(U) , and (H22V)(X) = (H22 u)(X) + (rJi) is a nonsingular matrix 
a.e. dm. Since (H21 v)(x) = (H21 u)(x) , the previous argument implies that 

2 (H21 u)(·) E L 10c (as well as H 12 u = H21 u) . 
By Remark 4.5(b), ou/ozi E L~oc' and since o2U/oWjOZi E L~oc' Remark 

4.5(c) implies that o2U/ow jOZi E L~oc. 
(c) The arguments used above imply also that, under the assumptions of 

(c), conditions (4.7) and (4.8) are equivalent. We omit further details. Q.E.D. 

For the proofs of Theorems 0.10 and 0.11, we now compute the real and 
complex Hessians of the partial Fenchel conjugate under weak differentiability 
assumptions suggested by conclusions of Lemma 4.4. 
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If F: G I ---+ G is a continuous map and Ji I is a Radon measure on G, we 
denote by F.JiI the continuous image of Jil under F, that is, (F.JiI )(B) = 
Ji l (F-I(B), for a Borel subset BeG; see [8, §12.45]. 

Lemma 4.6. (a) Let f: n x RN ---+ R, n c R K , be as in Proposition 4.2; in 
particular B22f, (B22f) -I E L:. Assume further that Y' xf E L~c' BI2f E L~c 
and that tr B II f is a Radon measure on n x RN. Let 

( 4.13) N (x, t7) E G x R , 

and let F = G- I ; see (4.3). Denote Bij = Bijg, Bij = Bijf, i, j = 1,2. 
- - I 00 - 2 - N Then B22 , B; E L loc ' B i2 E L loc ' and tr B II is a Radon measure on n x R . 

Furthermore, 

( 4.14) 

- -I - -I (4.15) BI2 = (Bi2 of)(B22 of) a.e., B21 = (B21 of)(B22 of) , a.e., 

( 4.16) 

where m is the Lebesgue measure in n x RN and X = dG.(m)/dm. 
(b) If, in addition, RK = R2k = e k and RN = R 2n = en , denote Hij = 

Hijf, iiij = Hijg, i, j = 1, 2; see Notation (0.9). Assume further that 
I - I tr HII E L loc . Then tr HII E L loc ' and 

( 4.17) 

The proof is based on the next three propositions and Lemma 0.12, which 
play the role of chain rule in our context. 

Definition 4.7. Let F: G I ---+ G be a homeomorphism, G, G I C Rn. Denote 
by m and m l the Lebesgue measure on G and GI ' respectively. We say that 
F has locally bounded volume distortion if the measures m and F.ml are 
mutually absolutely continuous and dm/d(F.ml)' d(F.ml)/dm E L:. 

Proposition 4.8. Under assumptions of Proposition 4.2, the map G and its inverse 
(see (4.2), (4.3)) have locally bounded volume distortion. 

Lemma 4.9. Let F: G I ---+ G, G I' G c R n , be a homeomorphism with locally 
bounded volume distortion. 

(a) IfuELfoc(G,m),then uoFELfoc(Gpml), l~p~+oo. 
(b) If p E [1, +00] and un ---+ u in Lfoc(G, m), then un of ---+ uoF in 

Lfoc(GI , m l )· 
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(c) If p, q E [1, +00], (1 I p) + (1 I q) = 1, i E {1, 2, ... , '!}, u E 
Ll~C ( G, m), a u I a y I ' ... , a u I a y n E L~c ( G, m), a FI I a Xi' ... , a Fn I a Xi E 
Lfoc( G I ' m I) (where all the derivatives are in the sense of distributions), then the 
distributional derivative a(uoF)laXi is represented by an Ll1oc( GI ' m) function, 
namely 

( 4.18) a n (aU) of -;:;-(u 0 F) = L -;:;- 0 F -;:;- a.e. dm. uX· uy uX 
I j=1 I I 

Lemma 4.10. Let G, F, Q be as in Lemma 0.12 and let Y = (YI , .•. , Yk ) E 

Ll~c(Q x Rn). Assume that a Y laYj E L~oc' j = 1 , ... , n, and that the distri-

bution div x Y = 2:7= I a Y) a Xi is represented by a Radon measure on Q x R n . 
Then Yo F E Ll~C and divx(Y 0 F) E L~oc' Furthermore, 

k 

(4.19) divx(Y 0 F) - X -IGJdivx Y) = L \ (V'yYi ) 0 F, a~Fx) dm, 
i=1 I 

as measures, where X = dG*(m)ldm. In case divx Y E LI~c' 
k 

(4.20) divx(Y 0 F) - (divx Y) 0 F = L \ (V'yYi) 0 F, ~:x ) , 
i=1 I 

as functions, a.e. 

The proofs of Proposition 4.8 and Lemmas 4.9,4.10 are delayed to §5. 

Proof of Lemma 4.6(a). It is well known that under the assumptions of Propo-
sition 4.2 

g(X, X) = f 0 F(x, tl) - (tl, Fx(tl))· 

By the assumptions and by Lemma 0.12, V' f E L~oc and D f E L~oc' Thus, the 
chain rule (4.18) is applicable and yields 

ag of N (of )aF a(x, tl) = a 0 F(x, tl) + Lao F(x, tl) - tlj a(x, tl) a.e., 
~ Xi j=l Yj Xi 

where F(x, tl) = (x, Fx(tl)) = (x, FI (x, tl), ... ,FN(x, tl))· Since G(F(x, tl)) 
= (x, tl), ( a fI a Y) 0 F (x, tl) - tl j = 0, j = 1 , .. . , N , an d so 

2 (4.21) V' xg = (V' xf) 0 F a.e., and V' xg E L 1oc ' 

Proceeding in like manner (or using the standard facts on the Fenchel conju-
gate), we get 

( 4.22) N (x, tl) E Q x R . 

In our notation the (distributional) Jacobian matrix of G is 

DG ~ (:" n:J 
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By Lemma 0.12, the (distributional) Jacobian matrix of F = G- I is represented 
by an L~c matrix-valued function which is 

( 4.23) o ) of. 
B- 1 

22 

This and (4.22) yield (4.14). By (4.21) E21 = Y' x Y' '1 g (x, 11) = -Y' xFx(x, 11) = 
-(B:;,/ B21 ) of(x , 11) a.e., by (4.23). By symmetry, EI2 = -(BJ2B;I) of(x , 11) . 

To obtain (4.16), we apply Lemma 4.10 to vector field Y = Y' xf E L~oc' 
Clearly, div x Y = tr BII is a Radon measure by the assumptions. On the other 
hand, by (4.21), tr Ell = div x Y' x g = divx(Y 0 F). By Lemma 4.10, tr Ell is a 
Radon measure and (4.19) becomes 

trEII -x-IG*(trBII ) = t((Y'YY)'F, 8:,Fx) dm. 
i=1 I 

Since Y'yYi is the ith row of BI2 and, by (4.23), 8Fx/8xi is the ith column 
of -B22B21 ' (4.16) follows. 

(b) If tr HII is represented by an LI~c function, then both tr B II = 4 tr HII 
and tr Ell = 4 tr HI I are Llloc functions, by (4.16), which can now be written 
as tr Ell = (tr Bll ) 0 F - tr(BJ2B;1 B21 ) 0 F , a.e. in n x RN (where all terms 
are now functions). By this 

(4.24) 
~ ~ ~-I ~ I 

tr HII - tr HJ2H22 H21 = '4 tr Bll 0 F 
I -I ~ ~-I ~ 

- '4 tr(Bl2 0 F)(B22 0 F) (B21 0 F) - tr HJ2H22 H21 
~ ~ ~-I ~ 

= (tr HII ) 0 F + (tr Ho - tr HJ2H22 H21 ), 

where the equations hold a.e. and Ho denotes the Hermitian part of -!BI2 o 
I ~ ~ ~ 

F(z, ~)(B22oF(z, ~))- (B2IoF)(z,~). Hence H22 (z, ~), H J2 (z, ~), H21 (z, ~) 
are Hermitian parts of 

-!(B22 oF)-I, !(BI2 oF)(B22 oF)-I, !(B22 oF)-I(B2I oF), 

by (4.14) and (4.15), we can apply Lemma 3.1 pointwise a.e. and get trHo-
trHJ2H;I H21 = -tr(HJ2H2~IH21) 0 F, a.e. Substituting this in (4.24) yields 
(4.17). Q.E.D. 

Proof of Theorem 0.10. Let f(z, w) = !lIwll; and g(z, w) = -!I~I;, where 
l'l z denotes the dual norm to 1I·ll z ' z E G, w, ~ E en . As is well known, the 
function !I'I; is the Fenchel dual to !II'II; (apply, e.g., Asplund [1, Lemma 2] to 
y(t) = !t2) , and so (4.13) holds. By Characterization 0.6, both f and (-g) lie 
in Psubh,andso trHllf=!trBII and trHII(-g)=-!trEII are nonnegative 
Radon measures. Since (- tr Ell) + X -I G. (tr B II) is the sum of two nonnegative 
terms and, by (4.16), is absolutely continuous with respect to Lebesgue measure, 
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each term is absolutely continuous, and so tr Hll ' tr HI 1 E Ll~C ' and s.o (4.17) 
makes sense and holds. (Recall that functions f and g satisfy assumptions of 
Lemma 4.6; we contin~e to use notation of this lemma.) Since f, (-g) E Psubh ' 
by Lemma 4.4 the right-hand side of (4.17) is nonnegative, while the left-hand 
side is nonpositive a.e.; thus, both are zero a.e., that is, tr Hll - tr H12H;/ H21 = 
O. (Note that Hij = -Hij(-g).) Q.E.D. 

Remark. Careful examination of the last proof would show that Lemma 0.12 
is actually not needed for the proof of Theorem 0.10. 

Proof of Theorem 0.11. By Lemma 4.6(a) and the preceding proof, function 
-g(z,e) = !Iel; satisfies assumptions of Lemma 4.4(c). Since trHll -
tr H12H;'/ H21 = 0 a.e., (4.17) implies that 

-1 tr Hll (-g) - tr H12( -g)H22( -g) H21 (-g) ~ 0, 

and so -g E Psubh ' by Lemma 4.4(c). By the same lemma, f E Psubh ' and 
so (Cn , II· IIZ)zEG is a harmonic interpolation family by Characterization 0.6. 
Q.E.D. 

5. TECHNICAL PROOFS 

This section contains proofs of Proposition 4.8 and Lemmas 4.9, 4.10, and 
0.12. 

Proof of Proposition 4.8 (sketch). If E c n x RN is compact, represent 

(5.1 ) N Ex cR . 

If K is the (uniform) Lipschitz constant for Fx' Fx- l , then 

-N N (5.2) K mN(Ex ) ~ mN(FJ) ~ K mN(Ex )' 

By (5.1), (5.2), and the Fubini theorem K-N m(E) ~ m(F(E)) ~ KN m(E). 
Q.E.D. 

Proof of Lemma 4.9 (sketch). (a) Since m l and F 0 m are mutually absolutely 
continuous, U 0 F is measurable and its equivalence class depends only on the 
class of u. Let E be a relatively compact subset of Gl and let p(y) be the 
Radon-Nikodym derivative dm/d(Fm l ). Integration by substitution [7, §20.3] 
yields IE luoF(x)IP poF(x) dm l = IF(E) lu(y)IP dm. Since e := infess plF(E) > 
0, we get IIuoFIILp(E,m1) ~ el/PllullLP{F(E),m), which proves (a) and implies (b). 

(c) By [10, §1.15, Theorem 1], there exist smooth functions Uk E COO(G), 
k = 1,2, ... , such that Uk -+ u in LI~c(G) and oudoYj -+ ou/oYj in L;oc(G) 
for j = 1, ... , n. A result of Vol/pert [20, Theorem 13.2] implies that the 
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distributional derivatives 8(uk oF)/8xi are represented by LI~c(GI) functions 
and, furthermore, 

(5.3) 8 ~ (8Uk ) 8Fj -8 (uk of) = ~ -8 of-8 a.e. dm l· x· Y· x. 
I j=1 ] I 

By (a), Uk of E Llloc(GI , m l ), (8uk/8y)oF E L~c(GI' m l ), k = 1,2, ... , 
j = 1, ... , n. By (b), uk of ---+ U of in LI~c and (8ud8y) 0 F ---+ (8u/8yj ) 0 

F in L~c' j = 1, ... , n. Thus, the right-hand side of (5.3) converges in 
LI~(GI ,ml ) to L~=l (8u/8y) 0 F 8F/8xi . The latter function represents 
8(u oF)/8xi' because 8(uk of)/8xi ---+ 8(uoF)/8xi' as distributions. Q.E.D. 

Proof of Lemma 4.10. Denote by yo, e > 0 , the standard convolution-regular-
izations of Y, as in [l0, §1.1.5]. Then yo E COO(no x R m ), where no = {x E 
n: dist(x, 8n) > e} and yo ---+ Y in LI~c' 8Yo /8Yj ---+ 8Y/8Yj in L~c' 
j = 1, ... , n. By the chain rule (4.18), we get 

k 

divx(Yo 0 F) - (divx yO) 0 F = E ((VyYt) 0 F, 8~Fx). 
i=1 I 

By Lemma 4.9(a), (b), YoF E LI~c' (VyYi) of E L~oc' and yo of ---+ YoF in 
LI~c' (VyYt) 0 F ---+ (VyY;) 0 F in L~c. Since 8Fx/8xi E L~oc' we obtain that 
(5.4) 

k 

divx(yooF)-(divxyO)oF convergesinLI~c to E((VyY)OF, 8~.Fx). 
i=l I 

Assertion. In the notation and under assumptions of Definition 4.7 and 
Lemma 4.9, if In E LI~c(G), n = 1,2, ... , and In dm ---+ dll in weak conver-
gence of measures (i.e., for every compactly supported function g, f gin d m ---+ 

f gdll) , then (In of) dm l converges weakly to the measure (I/Xo)d(F- 1).Il, 
where Xo is the Radon-Nikodym derivative d(F-1).m/dm l • 

The assertion follows easily from standard theorems; see [8, §§ 12.45, 20.3]. 
By the assertion, the measures (div x YO) 0 F d m converge weakly (as e ---+ 0) 

to the Radon measure (1/ X)G. (div Y) , while div x (yo 0 F) ---+ div x (Y 0 F) in 
the topology of distributions on n x Rn. In view of these observations and 
(5.4), divx(Y 0 F) is represented by a Radon measure and 

k 

(5.5) divx(YoF)-X-IG.(divxY) = E((VyY)OF, 8~.Fx) dm, 
i=l I 

where X = dG.(m)/dm. 
Observe finally that, if div x Y = k d m , where k E LI~c ' then X -\ G. (k d m) 

= (k 0 F) dm. Then also div xCY 0 F) is represented by an Ll~C function. 
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Then identifying div x Y and div x (Y 0 F) with corresponding functions, we 
can rewrite (5.5) as 

k 

(5.6) divx(YoF)-(divxY)oF= E\(VyY).F, ()~Fx) a.e. Q.E.D. 
i=1 I 

The remainder of this section is devoted to the proof of Lemma 0.12. First, 
we make some rather obvious observations. 

Remark 5.1. In the context of Lemma 0.12, the following integration by sub-
stitution formula is valid: 

r f(x' , y') dx' dy' = r (f 0 G)(x , y)w(x , y) dx dy 
io.XRn io. XRn 

for every f E LI(O X Rn ), where w(x, y) is equal a.e. to the Jacobian deter-
minant of G. 

The proof follows from the fact that the Jacobian matrix of G(x, y) = 
(x, Gx(Y)) has the block lower-triangular form relative to the decomposition 
Rk X R n , and the diagonal blocks are the identity matrix and the Jacobian ma-
trix of the map y ~ Gx(Y): Rn ~ Rn • Thus, w(x, y) = J(Gx(Y)) a.e. Since 
G x: Rn ~ Rn is bi-Lipschitz, it is well known that 

1 I I I 1 I f(x ,y ) dy = f(x , Gx(y))J(Gx(Y)) dy a.e. 
Rn Rn 

(with x = x' here). Integration with respect to dx' yields the desired formula. 

Remark 5.2. The inverse of the Jacobian matrix of G has the block lower-
triangular form with respect to the decomposition of Rk X Rn , namely 

(DG)(x, y)-I = (I 0) 
-(C- I B)(x, y) C(x, y)-I 

where I, 0, B(x, y), C(x, y) are the blocks of (DG)(x, y), of sizes k x k, 
k x n, n x k ,and n x n ,respectively. Since G x is bi-Lipschitz (locally uniformly 
in x), C, C- I E L;:, and since B E L~c' by assumptions, (-C- I B) E L~c. 

Proof of Lemma 4.13 (sketch). To make the argument more transparent, we will 
employ the specific structure of our maps G, F only at the end of the proof. 
Thus, at the beginning we assume only that G is a homeomorphism of °1 onto 
Q, where °1 , Q C RN , with the inverse F(v) = u. (Eventually, we will let 
RN = Rk X Rn , u = (x, y).) We assume also that the distributional Jacobian 
matrix is represented by a locally square-integrable matrix-valued function, de-
noted (DG)(u) , whose determinant w(u) is positive a.e. Assume further that 
w, w- I E L;:(QI) and that the formula 

(5.7) 1 f(v) dv = 1 (f 0 G)(u)w(u) du 
0. 0.1 
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holds for f E L~(Q) (= LI functions with compact support in 0.). Assume, 
furthermore, that the matrix-valued function T(v) = [(DG)(Fv)r l is locally 
square-integrable. (All this holds by Remarks 5.1, S.2, and Lemma 4.9.) 

We intend to show that the matrix-valued function T(·) actually represents 
the distributional Jacobian matrix of F. The necessary and sufficient condition 
for this is that the vector equation 

(S.8) ! T(v)g(v) dv = - ! (div g)F(v) dv 

holds for all g = (gl' ... , gN) E C;;"(Q). in order to prove this identity, we 
will first reduce it to a statement on G(·). 

Substituting v = G(u) in (S.8), we obtain, by (S.7), that Eq. (S.8) is equiva-
lent to 

(S.9) ! T(G(u))(g 0 G)(u)w(u) du = - ! (div g) 0 G(u)F 0 G(u) duo 

Denote p(u) = (g 0 G)(u). Clearly, p E CO(QI) (= continuous functions on 
RN with compact support in 0.1) and, by Lemma 4.9 (in particular, the chain 
rule (4.18)), Dp E L2. Furthermore, F 0 G(u) = u, T(Gu) = (DG)(U)-I , 
and one can easily compute that div g(G(u)) = tr[(Dp)(u)(DG)(u)-I]. Now 
let A(u) = (Aij(u)) denote the transpose of the adjoint matrix of (DG)(u) , 

i.e., Aij(u) = (_l)i+j Mji(u) , where Mij(u) is the ij minor of (DG)(u). Then 
w(u)(DG)(U)-1 = A(u). Applying all these observations to (S.9), we obtain 
that (S.8) is equivalent to the vector equation 

(5.10) In (A(u)p(u) + [tr(Dp)(u)A(u)]u) du = O. 

2 (As already observed, p has compact support and Dp E L 1oc ; furthermore, 
A E L~oc. Hence, the integral makes sense.) 

Denote by a the exterior differential form 

(5.11) a = (A(u)p(u) + [tr(Dp)(u)A(u)]u) dU I A··· A dUN. 

We have to show that In a = 0, which we will do by constructing a sequence 
of smooth and exact forms ae(n) , with compact support in Q, so that the 
coefficient functions of ae(n) converge to those of a, in the weak-star topology 
of L1(Q) .. 

Let Ge , e > 0, be the standard regularizations of the vector-valued function 
G (by convolution with smooth kernels of small support; see [10, § 1.1. S]). Fix 
E, a compact subset of Q x Rn (we will now use the special features of the map 
G, in the setting RN = Rk X Rn) , such that supp pc Int(E). Then Ge ---- G in 
L1(E). Furthermore, 8(G;)/8uj = (8G;l8u)e, and for each pair of indices 
ij, functions 8(G;)/8uj converge to 8G;l8uj in every LP(E) space to which 
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aGJaUj belongs, provided 1 ~ P < +00. In particular, 

( 5.12) 

On the other hand, since aGx(y)/aYj E LOO(E) , the approximations 
a[Gx(y)t/ayj, e > 0, form a bounded subset of LOO(E) , which also forms 
a norm-convergent net, to aGx(y)/aYi' in LP(E) , for every p E (1, +00). 
Using the proof of [8, Theorem (13.11)], we can select a sequence e(s) '\. 0, 
s = 1 , 2, ... (which we fix for the rest of the proof) such that for j = 1 , ... , n 

(5.13) 

Note, finally, that the k x k block of the matrix D(Ge) is the identity matrix, 
while the k x n block is the zero matrix. 

Now denote by Ae(u) , where U = (x, y), the transpose of the adjoint matrix 
to D(Ge)(u) and let 

ue = {Ae(u)/(u) + [tr(D/)(u)Ae(u»)u} dU I /\ ... /\ dUN' 

where l(u) is the convolution-regularization of u. (Note, however, that Ae(·) 
is not a convolution of A(·) with a smooth kernel.) We will show now that 
Ue(s) , S = 1, 2, ... , converge to U in the weak-star topology of the space of 
forms with coefficients in L 1 (E). It is the only part of the proof in which we 
have to utilize the special properties of the map G( x , y) = (x , G x (y» . 

By writing down in the standard way each minor M ij , e(s) of Ae(s) as the 
sum of (N - I)! products, each consisting of N - 1 factors, we represent 
each coefficient function of ue(s) (and parallely those of u) as a sum of some 
products. If we discount all those zero products which contain at least one of 
the zero entries of the k x n block of the matrix D[G(u)e(s)) (or DG(u» , the 
remaining products are of the following two kinds: 

First kind contains at most one term a[G~(y)e(s))/axi' i = 1, ... , k, 
j = 1, ... , n, one term pp(x, y)e(s) , and several terms of the form 
a[G;(y)e(s))/aYj. 

Second kind is similar, but factor pp(x, y)e(s) is replaced by a p;(S) /aUq 

(Uq = Xi or Yi) and factor u, is added. 
We now claim that each such product in u is the limit, in the weak-star 

topology of L 1 (E) , of the corresponding products in Ue(s) , S = 1 , 2, .... The 
following observations make it clear. 

(a) Since l -+ p uniformly on E and 8(l)/8uj -+ a p/auj in L2(E) , 
and by (5.12), we obtain that both 

~ci( )e(s). e(s) -+ ~Gj( ). . Ll(E) 
ax. x y Pp ax. x Y Pp In 

I I 
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and 
a Gj ( )e(s) a e(s) a G () a in L 1(E). 

ax. x y . au Pp -+ ax. x y . au Pp 
I q I q 

(b) The product of several uniformly bounded, pointwise a.e. convergent 
sequences of functions on E , (e.g., of the form (5.13)) is a uniformly bounded, 
pointwise a.e. convergent sequence of functions on E. 

(c) By (a) and (b), either of the products of first or second kind in O!e(s) , 
S = 1,2, ... , or O!, is now reduced to the form as(u)bs(u), u = 1, 2, ... , or 
a(u)b(u), u E E , where 

(5.14) sup Ilasll oo ~ C < +00, as(u) -+ a(u) a.e. on E; 
s 

(5.15) 

The proof of the next assertion is an easy exercise. 
Assertion If (5.14), (5.15) hold, then asbs -+ ab weak-star in L 1(E). 
Thus, O!e(s) -+ O! weak-star, as required. 
It remains to check that every O!e(s) , S = 1 , 2, ... , is an exact form. Without 

loss of generality, we can just show that the form O!, defined by (5.11), is exact, 
provided the maps G and P are smooth. It turns out that O! = d P , where 

N 
~ j+1 • P = L.) -1) Mji(u)Pj(u)u dU I /\ ... /\ dUi /\ ... /\ dUN' 
ij=1 

(Note that P is vector-valued; it has compact support because P does.) Exterior 
differentiation yields easily that O! = d P + A , where 

~ i+j a A= L..,..(-1) a(Mj)Pj(u)du l /\···/\ dUN' 
ij ui 

The proof is concluded by observing that A = 0 , as a direct consequence of the 
identities 

N i a 
~(-1) -M .. = 0, 
~ au. JI 
j=l J 

(5.16) i = 1,2, '" ,N. 

To prove these is an exercise in the algebra of determinants. Q.E.D. 
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