FREE Z_{8} ACTIONS ON $S^{3}(1)$

BY
GERHARD X. RITTER $\left({ }^{2}\right)$
ABSTRACT. This paper is devoted to the problem of classifying periodic homeomorphisms which act freely on the 3 -sphere. The main result is the classification of free period eight actions and a generalization to free actions whose squares are topologically equivalent to orthogonal transformations. The result characterizes those 3 -manifolds which have the 3 -sphere as universal covering space and the cyclic group of order eight as fundamental group.

1. Introduction. This paper is devoted to the problem of classifying periodic homeomorphisms which act freely on the 3-sphere. Thus far, only free actions of period two and of period four have been classified. The main result of this paper is the classification of free period eight actions and a generalization to free actions whose squares are topologically equivalent to orthogonal transformations. The result characterizes those 3 -manifolds which have the cyclic group of order eight as fundamental group and the 3 -sphere as universal covering space.

It follows from the proofs of Corollaries 3.2 and 3.3 that the problem of showing a periodic homeomorphism acting freely on the 3 -sphere, S^{3}, to be topologically an orthogonal transformation is equivalent to the problem of showing the existence of an unknotted simple closed curve which remains invariant under that homeomorphism. Roughly speaking, if Z_{n} acts freely on $S^{3}, b \in Z_{n}$ a generator, and J an unknotted simple closed curve which remains invariant under h, then there is a whole toroidal neighborhood N of J which remains invariant under h. The solid torus N is an n-fold cover for the orbit space N / Z_{n} and, similarily, the solid torus $\overline{s^{3}-N}$ is an n-fold cover for $\overline{s^{3}-N} / Z_{n}$. It will be shown that N / Z_{n} and $\overline{S^{3}-N} / Z_{n}$ are solid tori. Since the orbit space S^{3} / Z_{n} is obtained from N / Z_{n} and $\overline{S^{3}-N} / Z_{n}$ by identifying their boundaries via the projection map, s^{3} / Z_{n} is topologically the lens space $L(n, m)$. If p_{1} denotes the covering projection of this construction and p_{2} the covering projection for the standard construction of $L(n, m)$, then there is a homeomorphism g of S^{3} onto itself such that $p_{1}=p_{2} g$.

Presented to the Society, January 20, 1973 under the title Free cyclic actions of S^{3}; received by the editors October 14, 1971 and, in revised form, June 29, 1972.

AMS (MOS) subject classifications (1970). Primary 57A10, 55C35, 57E25; Secondary 55A40.

Key words and phrases. Three-sphere, free action, orthogonal (p, q)-action, knot, lens space, general position, topologically equivalent.
${ }^{(1)}$ This is essentially the author's doctoral dissertation at the University of Wisconsin at Madison under the supervision of Professor J. M. Martin.
${ }^{(2)}$ The author wishes to thank the referee for his helpful suggestions.

The conjugation of b with g will then be the required orthogonal map. More precisely, if T is the orthogonal transformation used for the construction of $L(n, m)$, then $b=g^{-1} T g$. Our main theorem, therefore, shows the existence of an unknotted simple closed curve which is invariant under a given free Z_{8} action.

2. Preliminaries.

Definitions and notation. If M is a topological manifold, then the interior of M will be denoted by int M and the set M - int M is called the boundary of M and is denoted by ∂M.

Two homeomorphisms h_{1} and h_{2} of S^{3} onto itself are said to be topologically equivalent if there is a homeomorphism g of S^{3} onto itself such that $b_{1}=g^{-1} h_{2} g$. To say that a group G acts freely on S^{3} means that each $g \in G$, $g \neq$ identity of G, is a fixed point free homeomorphism of S^{3} onto itself. If G is cyclic of order p and $g \in G$ a generator, then g is called a free action of G on S^{3} of period p.

We shall denote a cyclic group G of order p by Z_{p}. If Z_{p} acts freely on the closed combinatorial 3-manifold M, then the orbit space $M^{\prime}=M / Z_{p}$ is also a closed 3-manifold. For let M^{\prime} have the natural piecewise linear structure induced by the projection map $p: M \rightarrow M^{\prime}$. Let v^{\prime} be a vertex of M^{\prime} and v a vertex of M such that $v^{\prime}=p v$. Since p is a local homeomorphism, the star of v in M, st (v, M), is homeomorphic to st $\left(v^{\prime}, M^{\prime}\right)$. But $\operatorname{st}(v, M)$ is a 3-ball neighborhood of v in M, hence st $\left(v^{\prime}, M^{\prime}\right)$ is a 3-ball neighborhood of v^{\prime} in M^{\prime}. According to R. H. Bing [1], M^{\prime} can be triangulated and the triangulation can be lifted to M. The action b of Z_{p} on M is a deck-transformation on the covering space and hence simplicial. Thus, free actions on closed 3 -manifolds are piecewise linear homeomorphisms. Henceforth, our objects (maps, embeddings, etc.) are always considered from the piecewise linear point of view.

In order to study free actions on S^{3} it will be convenient to view S^{3} as the join of the two circles $\left|z_{0}\right|^{2}=1$ and $\left|z_{1}\right|^{2}=1$, where z_{0}, z_{1} are complex numbers with $S^{3}=\left\{\left.\left(z_{0}, z_{1}\right)| | z_{0}\right|^{2}+\left|z_{1}\right|^{2}=1\right\}$, and investigate the behavior of the actions on these circles. The map $b: S^{3} \rightarrow S^{3}$ defined by $b:\left(z_{0}, z_{1}\right) \rightarrow\left(e^{2 \pi i / p} z_{0}, e^{2 q \pi i / p} z_{1}\right)$, where p and q are relatively prime integers with $p>0$, rotates the circles $\left|z_{0}\right|^{2}=1$ and $\left|z_{1}\right|^{2}=1$ through an angle of $2 \pi / p$ and $2 q \pi / p$, respectively. It follows that b is a fixed point free homeomorphism of period p and we call b the standard or orthogonal (p, q)-action on S^{3}.

The group of rotations on S^{3} generated by the standard (p, q)-action is cyclic of order p and, hence, represented by Z_{p}. Furthermore, b is invariant on the two solid tori $\left|z_{0}\right|^{2} \leq\left|z_{1}\right|^{2}$ and $\left|z_{1}\right|^{2} \leq\left|z_{0}\right|^{2}$ with common boundary $\left|z_{0}\right|^{2}=\left|z_{1}\right|^{2}$. Thus, the orbit space S^{3} / Z_{p} is the lens space $L(p, q)$ and we call this construction of $L(p, q)$ the standard construction.

Preliminary results. The following result of Livesay [6] classifies free Z_{2} actions on S^{3}.

Theorem 2.1. Every free action of Z_{2} on S^{3} is topologically equivalent to the antipodal map.

Since results similar to the proposition below have appeared in numerous published works [3], [4], [5], [8], [10], we will omit its proof.

Proposition 2.2. If Z_{p} acts freely on the closed combinatorial munifold M and P is a subpolybedron of M invariant under a subgroup G of Z_{p}, then there is an arbitrarily small isotopy of M which takes P onto a polybedron Q such that, for each $b \in Z_{p} / G, Q$ is in general position with respect to $b Q$. Furthermore, Q is invariant under G.

Rice [8], using Theorem 2.1 and Proposition 2.2, classified free Z_{4} actions on S^{3}.

Theorem 2.3 (Rice). Every free action of Z_{4} on S^{3} is topologically equivalent to the orthogonal action.

If we consider $S^{3} \subset E^{4}$ as the join of the two circles $x_{1}^{2}+x_{3}^{2}=1$ and $x_{2}^{2}+$ $x_{4}^{2}=1$, then S^{3} decomposes into two congruent solid tori having these circles as centerlines. The two congruent solid tori V^{+}and V^{-}are defined by the equations, $x_{1}^{2}+x_{3}^{2} \geq x_{2}^{2}+x_{4}^{2}$ and $x_{1}^{2}+x_{3}^{2} \leq x_{2}^{2}+x_{4}^{2}$, respectively; their common boundary T is defined by the equation $x_{1}^{2}+x_{3}^{2}=x_{2}^{2}+x_{4}^{2}$. If b denotes the standard orthogonal (4, 1)-action on S^{3}, then b maps the point $\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in S^{3}$ to the point $\left(-x_{2}, x_{1},-x_{4}, x_{3}\right) \in S^{3}$. Here $z_{0}=\left(x_{1}, x_{2}\right), z_{1}=\left(x_{3}, x_{4}\right)$ and $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=$ 1. It follows that $b T=T$ and b interchanges the closed complementary domains V^{+}and V^{-}of T.

Theorem 2.4. If Z_{p} acts freely on S^{3} and there is a torus $T \subset S^{3}$ whose complementary domains interchange under a generator b of Z_{p}, then $p=4 k$ and there is $a(1,1)$-curve on T which remains invariant under b. In particular, b is equivalent to the standard $(4 k, 2 k-1)$-action. Conversely, if b is equivalent to the standard ($4 k, 2 k-1$)-action, then there is a torus $T \subset S^{3}$ whose complementary domains interchange under b.

Proof. Let V^{+}and V^{-}denote the closed complementary domains of T in S^{3}. Since b interchanges V^{+}and V^{-}, p must be even and T unknotted. The action b^{2} generates $Z_{p / 2}$ and, since $b^{2} V^{+}=V^{+}$, it follows from our introductory remarks that b^{2} is topologically an orthogonal transformation.

We suppose that b^{2} is topologically equivalent to the standard ($p / 2, r$) -action, where r is some positive integer relatively prime to $p / 2$, that is $(p / 2, r)=1$. Any
meridian simple closed curve m on the torus $\partial\left(V^{+} / Z_{p / 2}\right)$ lifts to $p / 2$ disjoint meridian simple closed curves on ∂V^{+}which permute under b^{2}. We let m_{1}, m_{2}, $\cdots, m_{p / 2}$ denote this collection of meridian curves and assume that the subscripts are arranged in an order such that $b^{2} m_{p / 2}=m_{1}$ and $b^{2} m_{i}=m_{i+1}$ for $i=1, \ldots$, $p / 2-1$. Denoting the image of m_{i} under b by l_{i}, then, since $b V^{+}=V^{-}, l_{i}$ is a meridian simple closed curve on ∂V^{-}and, hence, a longitudinal simple closed curve for V^{+}.

We set $m_{1}, \cdots, m_{p / 2}$ into general position with respect to the collection $l_{1}, \ldots, l_{p / 2}$ by adjusting the m_{i}^{\prime} 's as follows. Let X be a component of $m_{1} \cap l_{1}$ such that X is not a crossing point of $m_{1} \cup l_{1}$. Let D be a sufficiently small polyhedral disc on T such that the following four properties are satisfied:
(i) $X \subset$ int D and $b^{i} D \cap D=\varnothing$ for $i=1, \ldots, p / 2-1$.
(ii) $D \cap m_{1}$ is an arc α such that $\alpha \cap \partial D=\partial \alpha$ and $D \cap l_{1}$ is an arc β such that $\beta \cap \partial D=\partial \beta$.
(iii) $D \cap m_{i}=D \cap l_{i}=\varnothing$ for $i=2, \ldots, p / 2$.
(iv) If Y is a component of $m_{1} \cap l_{1}$ and $Y \neq X$, then $Y \cap D=\varnothing$.

Let a_{1}, a_{2} and b_{1}, b_{2} be the end points of α and β, respectively. The set $a_{1} \cup a_{2}$ divides ∂D into two arcs w_{1} and w_{2} and, similarly, $b_{1} \cup b_{2}$ divides ∂D into two arcs v_{1} and v_{2}. Either v_{1} is a subset of w_{1} or w_{2}, or v_{2} is a subset of w_{1} or w_{2}, or int v_{1} contains exactly one end point $a_{i}, i=1$ or 2 . If w_{1} contains v_{1}, we adjust m_{1} (Figure 2.1) by replacing the arc α by the arc w_{2}. Similarly, if $v_{1} \subset w_{2}$, we replace α by w_{1}. We then copy this replacement in the images of b^{2}. If int v_{1} contains

Figure 2.1
exactly one end point, we adjust m_{1} by replacing α by w_{1} (Figure 2.2) and, again, copy this adjustment in the images of b^{2}. We repeat this process a finite number of times until $m_{1} \cap l_{1}$ consists of only a finite number of crossing points. In an analogous fashion, we set m_{1} in general position with respect to l_{i} for $i=2,3$, $\cdots, p / 2$. It follows that $m_{j} \cap l_{i}$ consists of only a finite number of crossing points as i and j range over the set $\{1,2, \ldots, p / 2\}$.

Figure 2.2
Since l_{i} is a longitudinal simple closed curve on ∂V^{+}, the number of crossing points in $m_{j} \cap l_{i}$ must be odd. In particular, if $p / 2$ is odd, then the number of crossing points in $\bigcup_{i=1}^{p / 2}\left[\left(\bigcup_{j=1}^{p / 2} m_{j}\right) \cap l_{i}\right]$ must be odd. But this is impossible since b is fixed point free, of even period, and invariant on $\bigcup_{i=1}^{p / 2}\left[\left(\bigcup_{j=1}^{p / 2} m_{j}\right) \cap l_{i}\right]$. Thus, $p / 2$ is even and $p=4 k$ for some positive integer k.

Since b^{2} is topologically the ($2 k, r$)-action, m_{i} and $b^{2 r} m_{i}$ are adjacent; that is, there is an annulus $A \subset T$ with boundary components m_{i} and $b^{2 r} m_{i}$ such that $m_{j} \cap$ int $A=\varnothing$ for $j=1, \cdots, p / 2$. Furthermore, since $(r, 2 k)=1, b^{2 r}{ }^{i}$ generates $Z_{p / 2}$. On the other hand, $(r, 2 k)=1$ implies that $(r, p)=(r, 2(2 k))=(r, 2)=1$ and, hence, b^{r} also generates Z_{p} and interchanges V^{+}with V^{-}. In the remaining part of this proof we let $h_{1}=b^{r}$ and suppose that the subscripts of the meridians and longitudes have been relabeled so that $b_{1}^{2} m_{i}=m_{i+1}$ and $b_{1}^{2} l_{i}=l_{i+1}$.

If n denotes the number of crossing points in $m_{1} \cap l_{i}$, then n is odd, and if $n>1$, then there are ($n-1$)-discs on ∂V^{+}such that the boundary of each disc is the union of two arcs meeting only in their end points, one of which is a subset of m_{1} and the other of l_{i}. Suppose D is a disc with $\partial D=\alpha \cup \beta$, where $\alpha \subset m_{1}$ and $\beta \subset l_{i}$ are arcs for some $i=1,2, \ldots, p / 2$, such that int $D \cap m_{j}=$ int $D \cap l_{j}$ $=\varnothing$ for $j=1,2, \ldots, p / 2$. We call such a disc innermost with respect to $m_{1} \cup l_{i}$. Let p_{1} and p_{2} be the common end points of α and β. Let p_{1}^{\prime} and p_{2}^{\prime} be points on $m_{1}-\alpha$ near p_{1} and p_{2}, respectively, such that the arc α^{\prime} on m_{1} containing α and having end points $p_{1}^{\prime}, p_{2}^{\prime}$ has the property that $\alpha^{\prime} \cap l_{i}=p_{1} \cup p_{2}$ and $\alpha^{\prime} \cap l_{j}=\varnothing$ for $j \neq i$. Let β^{\prime} be an arc near β satisfying the following three properties:
(i) $\beta^{\prime} \cap m_{1}=p_{1}^{\prime} \cup p_{2}^{\prime}=\partial \beta^{\prime}$.
(ii) $\beta^{\prime} \cap l_{i}=\beta^{\prime} \cap m_{j}=\varnothing$ for $i=1, \ldots, p / 2, j=2, \ldots, p / 2$.
(iii) $b_{1}^{i} \beta^{\prime} \cap \beta^{\prime}=\varnothing$ for $i=1, \ldots, p / 2-1$.

Property (iii) is easily satisfied since int β intersects no other meridian or longitudinal simple closed curves and b is a free action. We now adjust m_{1} by replacing α^{\prime} by β^{\prime} (Figure 2.3). If we again denote

Figure 2.3
by m_{1} the adjustment of m_{1}, then $m_{1} \cap l_{i}$ contains two fewer crossing points. We copy this adjustment in all the images of h. Repeating this process, we eliminate all innermost discs with respect to $m_{1} \cup l_{i}$ for all i. It now follows that each $m_{i} \cap l_{j}, i, j=1,2, \ldots, p / 2$, consists of exactly one crossing point. For if some $m_{r} \cap l_{s}$ contained more than one crossing point, then there is an innermost disc D with respect to some $m_{i} \cup l_{j}$. But, then, if $i+m=p / 2, b_{1}^{2(m+1)} D$ is a disc innermost with respect to $m_{1} \cup b_{1}^{j 2(m+1)} l_{j}$, contrary to our assumption that all discs innermost with respect to $m_{1} \cup l_{i}, i=1, \ldots, p / 2$, have been eliminated.

We now assume that each $m_{i} \cap l, i, j=1,2, \cdots, p / 2$, consists of exactly one point. Let $x \in m_{1} \cap l_{1}$, then $b_{1} x \in h_{1} m_{1} \cap b_{1} l_{1}=l_{1} \cap m_{2}$. The points x and $b_{1} x$ divide l_{1} into two arcs. We let $\alpha \subset l_{1}$ be the arc with the properties that $\alpha \cap m_{1}=x, a \cap m_{2}=b_{1} x$, and $\alpha \cap m_{i} \neq 0, i=3, \cdots, p / 2$. The simple closed curve $J=\bigcup_{i=1}^{p / 2} b_{1}^{i} \alpha$ (Figure 2.4) is clearly invariant under b_{1} and, therefore, nontrivial on T. Thus J is a (p, q)-curve on T with respect to V^{+}and at least one of p or q is not 0 .

Figure 2.4
Since $b_{1} J$ is a (p, q)-curve on T with respect to $b_{1} V^{+}=V^{-}, b_{1} J$ must be a (q, p)-curve on T with respect to V^{+}. But $b_{1} J=J$ and, hence, $p=q=1$. We note that since J meets every meridian m_{i} and every longitude l_{i} exactly once in an arc, it also follows from the construction of J that J must be a $(1,1)$-curve on T.

Finally, since J is invariant under b_{1}, J is invariant under every power of b_{1} and, in particular, $b J=J$. Again, by our introductory remarks, b is equivalent to a standard ($4 k, q$)-action and $S^{3} / b=L(4 k, q)$. If $e: S^{3} \rightarrow S^{3} / b$ denotes the natural projection, then, since $b V^{+}=V^{-}, e T$ is one-sided and, therefore, a Kle in bottle. By [2] this is possible only if $q \equiv \pm(2 k-1) \bmod 4 k$.

In order to prove the converse, let f be a homeomorphism of S^{3} onto itself defined by $f:\left(z_{0}, z_{1}\right) \rightarrow\left(z_{1}, e^{\pi i / k} z_{0}\right)$. It follows that f is a free action of period $4 k$ which interchanges the two solid tori V^{+}and V^{-}defined by $\left|z_{1}\right|^{2} \leq\left|z_{0}\right|^{2}$ and $\left|z_{0}\right|^{2} \leq\left|z_{1}\right|^{2}$, respectively, and satisfying $\left|z_{0}\right|^{2}+\left|z_{1}\right|^{2}=1$. By the first part of the theorem, f is equivalent to h. Hence there is a homeomorphism g of S^{3} onto itself such that $f=g^{-1} h g$. We now let $T=g\left(\partial V^{+}\right)$. This verifies Theorem 2.4.
3. The main theorem. We will divide the proof of the main theorem into four steps, commencing each step with a statement of what is to be shown.

Theorem 3.1. If b is a bomeomorphism of period eight acting freely on S^{3}, then there is a polybedral unknotted simple closed curve J in S^{3} such that $b J=J$.

Proof. Since b acts freely on S^{3}, b^{2} is a free action of Z_{4} on S^{3} and, by Theorem 2.3, we may assume that b^{2} is equivalent to the orthogonal (4, 1)-action. Hence, there is a polyhedral torus T in S^{3} with closed complementary domains V^{+}and V^{-}such that T is invariant under b^{2} and b^{2} interchanges V^{+}and V^{-}. Furthermore, by Proposition 2.2, we may assume that T is in general position with respect to $b T$.

Step 1. $T \cap b T \neq \varnothing$. We suppose that $T \cap b T=\varnothing$. Then either $b T \subset$ int V^{+} or $b T \subset$ int V^{-}. If $b T \subset$ int V^{+}, then either (i) $b V^{+} \subset$ int V^{+}or (ii) $b V^{-} \subset$ int V^{+}.

If we apply b to (i), we obtain $V^{-}=b^{2} V^{+} \subset b\left(\right.$ int $\left.V^{+}\right) \subset$ int V^{+}which is a contradiction.

If we apply b to (ii), we obtain $V^{+}=b^{2} V^{-} \subset b\left(\right.$ int $\left.V^{+}\right)$. A second application of b yields $b V^{+} \subset$ int V^{-}. Therefore, $V^{+} \subset b\left(\right.$ int $\left.V^{+}\right) \subset b V^{+} \subset$ int V^{-}which is a contradiction.

Similarly, $b T$ cannot be contained in int V^{-}.
Step 2. T can be adjusted so that every simple closed curve in $T \cap b T$ is a (1, 1)-curve on T and b^{2} interchanges the closed complementary domains of T.

Since T is in general position with respect to $h T$ and $T \cap b T \neq \varnothing, T \cap b T$ consists of a finite collection of simple closed curves. If J is a simple closed curve in $T \cap b T$, then J satisfies one and only one of the following three properties:
(i) J is trivial on both T and $b T$.
(ii) J is trivial on one of T or $b T$ but not both.
(iii) J is nontrivial on both T and $b T$.

If J is a (p, q)-curve on ∂V^{+}, then $b^{2} J$ is a (p, q)-curve on $b^{2}\left(\partial V^{+}\right)=\partial V^{-}$
and, hence, a (q, p)-curve on ∂V^{+}. Since $\partial V^{+}=\partial V^{-}=T$ and either $b^{2} J=J$ or $b^{2} J \cap J=\varnothing, b^{2} J$ must be parallel to J on T. Therefore, $p=q=1$ and all simple closed curves in $T \cap b T$ which are nontrivial on T are (1,1)-curves on T.

If J is a simple closed curve of type (i) or (ii) in $T \cap b T$ such that J bounds a disc D on T or $b T$ with the property that int $D \cap(T \cap b T)=\varnothing$, then D is called an innermost disc with respect to $T \cap b T$. Our next step is to eliminate all simple closed curves of type (i) in $T \cap b T$-if there are such curves-which bound innermost discs on $b T$. We may then assume that there are no simple closed curves of type (i) in $T \cap b T$ bounding innermost discs on $b T$ and it will then follow that there are no simple closed curves of type (ii) and, hence, no simple closed curves of type (i) in $T \cap b T$.

We suppose that J is a simple closed curve of type (i) in $T \cap b T$ bounding an innermost disc D on $b T$. Since $D \subset b T$ and is innermost, either $D \subset V^{+}$or $D \subset V^{-}$and we suppose, without loss of generality, that $D \subset V^{+}$. We denote by E the disc on T bounded by J and let J^{\prime} be a simple closed curve in $T-E$ sufficiently close to J such that the annulus $A \subset T$ bounded by $J \cup J^{\prime}$ has the property that $A \cap b T=J$. Next, we choose a disc $D^{\prime} \subset V^{+}$so close to D that D^{\prime} satisfies $D^{\prime} \cap T=\partial D^{\prime}=J^{\prime}, D^{\prime} \cap b T=\varnothing$, and $b^{4} D^{\prime} \cap D^{\prime}=\varnothing$. This choice of D^{\prime} is possible since b and b^{4} are fixed point free and since there are no intersections of T with $b T$ on int D. Finally, we set $E^{\prime}=E \cup A$ and replace the disc E^{\prime} by D^{\prime} (Figure 3.1) and copy this replacement in the images of b. This adjustment of T results in the torus T_{1}

Figure 3.1
defined by

$$
T_{1}=\left[T-\left(E^{\prime} \cup b^{2} E^{\prime} \cup b^{4} E^{\prime} \cup b^{6} E^{\prime}\right)\right] \cup\left(D^{\prime} \cup b^{2} D^{\prime} \cup b^{4} D^{\prime} \cup b^{6} D^{\prime}\right)
$$

with closed complementary domains given by

$$
V_{1}^{+}=\overline{V^{+}-\left(B \cup b^{4} B\right)} \cup\left(b^{2} B \cup b^{6} B\right)
$$

and

$$
V_{1}^{-}=\overline{V^{-}-\left(b^{2} B \cup b^{6} B\right)} \cup\left(B \cup b^{4} B\right)
$$

where B is the ball in V^{+}bounded by $E^{\prime} \cup D^{\prime}$. Since V_{1}^{+}, V_{1}^{-}interchange under the action of b^{2}, it follows that T_{1} is unknotted and that $T_{1} \cap b T_{1}$ contains four fewer intersection curves of type (i) which bound innermost discs on $b T_{1}$. Repeating this process at most a finite number of times will then result in anknotted torus T whose complementary domains interchange under b^{2} and such that $T \cap b T$ contains no curves of type (i) which bound innermost discs on $b T$.

We suppose that $J \subset T \cap b T$ is a simple closed curve of type (ii) and assume that J is nontrivial on T. The argument is analogous if J is nontrivial on $b T$. Let D denote the disc on $b T$ bounded by J. Since J is nontrivial on T, J is a (1,1)-curve on T and, hence, D is not an innermost disc on $b T$. Thus, there is a finite number of simple closed curves of $T \cap b T$ on D and, hence, one of these, J^{\prime}, must bound an innermost disc D^{\prime} on D (Figure 3.2) and hence on $b T$. Since J^{\prime} bounds a disc on $b T, J^{\prime}$ is trivial on $b T$ and since all type (i) simple closed curves bounding innermost discs on $b T$ have been removed,

Figure 3.2
J^{\prime} is also nontrivial on T. Therefore, J^{\prime} is a $(1,1)$-curve on T which bounds a disc in one of the complementary domains of T. But this is impossible and, therefore, no type (ii) curves exist. Furthermore, since all type (i) curves bounding innermost discs on $b T$ have been removed, all simple closed curves in $T \cap b T$ are nontrivial on T and $b T$.

Step 3. There is an unknotted torus $T \subset S^{3}$ such that $T \cap b T$ contains at least one pair of simple closed curves which remain invariant as a pair under the action of b. Furthermore, b^{2} interchanges the closed complementary domains of T.

We let T denote the torus obtained in Step 2 and let n be the number of simple closed curves in $T \cap b T$. We may assume that n is even and set $n=2 r$ for some positive integer r, for otherwise there is an arc $\alpha \subset b T$ with both end points in
int V^{+}and piercing ∂V^{+}in only an odd number of points. Furthermore, by Step 1, $r \neq 0$. The simple closed curves in $T \cap b T$ divide T into n annuli and, hence, divide $T \cup b T$ into $2 n$ annuli. Furthermore, if A and A^{\prime} are any two of these annuli with $A \neq A^{\prime}$, then int $A \cap A^{\prime}=\varnothing$. The $2 n$ annuli divide S^{3} into k closed 3 -dimensional regions and any one such region is entirely contained in one of the following four sets: $V^{+} \cap b V^{+}, V^{-} \cap b V^{+}, V^{-} \cap b V^{-}$, and $V^{+} \cap b V^{-}$. Under the action of b on S^{3}, these sets permute as follows:

$$
\left[V^{+} \cap b V^{+} \rightarrow V^{-} \cap b V^{+} \rightarrow V^{-} \cap b V^{-} \rightarrow V^{+} \cap b V^{-}\right]
$$

Therefore, $k \equiv 0 \bmod 4$.
There are $2 r$ annuli on $b T$ and if A is any one of these annuli, then either $A \subset V^{+}$or $A \subset V^{-}$. Since $b^{2} V^{+}=V^{-}$, there are exactly r annuli on $b T$ which must be contained in V^{+}and r annuli on $b T$ which must be contained in V^{-}. If $A \subset V^{+}$is an annulus on $b T$, then A spans V^{+}and, therefore, divides V^{+}into two 3-dimensional regions. Hence, the $2 r$ annuli on $b T$ divide $V^{+} \cup V^{-}=S^{3}$ into $2(r+1) 3$-dimensional regions. Therefore, $2(r+1)=k \equiv 0 \bmod 4$ and r is odd.

We let J_{1}, \cdots, J_{n}, where $n=2 r$, denote the components of $T \cap b T$ and define a permutation $\sigma \in \Sigma n_{n}^{n}$ by $b J_{i}=J_{\sigma(i)}$. Writing σ as a product of disjoint cycles, $\sigma=\sigma_{1}, \cdots, \sigma_{k}$, we have $n=\Sigma$ length $\left(\sigma_{i}\right)=\Sigma$ order $\left(\sigma_{i}\right)$ and the order of σ is the least common multiple of the orders of the σ_{i} 's. Since $\sigma^{8}=1$, each σ_{i} must have order $1,2,4$ or 8 . If some σ_{i} has order 1 , then there is a component J in $T \cap b T$ with $b J=J$. But then there remains an odd number of components in $T \cap b T$ whose union is invariant under b. Thus, since b has even period, there is another simple closed curve J^{\prime} in $T \cap b T$ with $b J^{\prime}=J^{\prime}$. If some σ_{i} has order 2 , then the conclusion of Step 3 follows trivially. If each σ_{i} has order ≥ 4, then n is divisible by 4 , contradicting the fact that r is odd.

Before continuing our proof of Theorem 3.1, we note that if P and Q denote the simple closed curves in $T \cap b T$ such that $P \cup Q$ is invariant under h, then it is possible that each curve, P and Q, remains invariant under h, thus establishing the theorem.

Step 4. If P and Q are simple closed curves in $T \cap b T$ pairwise invariant under b with $b P \neq P$, then there is a torus $T^{\prime} \subset S^{3}$ such that $b T^{\prime}=T^{\prime}$ and such that b interchanges the closed complementary domains of T^{\prime}.

The set $P \cup Q$ divides T into two annuli, A and B, and either $b^{2} A=A$ or $b^{2} A=B$. If $b^{2} A=A$, we let $A^{\prime} \subset b A$ be an innermost annulus on $b T$ with respect to $T \cap b T$ having P for one of its boundary curves. Either $A^{\prime} \subset V^{+}$or $A^{\prime} \subset V^{-}$, and we suppose that $A^{\prime} \subset V^{+}$and, hence $b^{2} A^{\prime} \subset V^{-}$. But then, since $b^{2} P=P$ and $b^{2}(b A)=b A, b^{2} A^{\prime}=A^{\prime} \subset V^{+}$. Similarly, A^{\prime} is not contained in V^{-}and, therefore, only $b^{2} A=B$ is possible.

In order to obtain T^{\prime} we shall consider the two cases $P \cup Q=T \cap b T$ and $P \cup Q q T \cap b T$ separately.

Case (a). $T \cap b T=P \cup Q$. Since P and Q are disjoint, we may choose a sufficiently small regular neighborhood N of P such that $N \cap b N=\varnothing, b^{2} N=N$ and $T \cap h T$ divides ∂N into four annuli. Such a neighborhood N may be obtained by choosing any regular neighborhood N_{p} of P and then taking a second derived neighborhood of P in a second derived subdivision of N_{p} on which b is simplicial. We let a_{1}, a_{2}, a_{3}, and a_{4} denote the four annuli on ∂N so that

$$
\begin{array}{ll}
a_{1} \subset V^{+} \cap b V^{+}, & a_{2}=b^{2} a_{1} \subset V^{-} \cap b V^{-}, \\
a_{3} \subset V^{+} \cap b V^{-}, & a_{4}=b^{2} a_{3} \subset V^{-} \cap b V^{+},
\end{array}
$$

and set $a_{i} \cap b T=J_{i}$ for $a=1,2$, and $a_{i} \cap T=J_{i}$ for $i=3,4$ (Figure 3.3). We define A_{p} to be the

Figure 3.3

Figure 3.4
annulus on T containing P and such that $\partial A_{p}=J_{3} \cup J_{4}$. Similarly, we let B_{p} be the annulus on $b T$ containing P and such that $\partial B_{p}=J_{1} \cup J_{2}$. The torus T^{\prime} defined by

$$
T^{\prime}=\left((T \cup b T)-\left(A_{p} \cup B_{p} \cup b A_{p} \cup b B_{p}\right)\right) \cup\left(a_{1} \cup a_{2} \cup b a_{1} \cup b a_{2}\right)
$$

is clearly invariant under h. Furthermore, since

$$
\overline{\left(V^{+}-b V^{+}\right) \cup\left(b V^{+}-V^{+}\right)}=\overline{\left(V^{-}-b V^{-}\right) \cup\left(b V^{-}-V^{-}\right)}
$$

and

$$
\overline{\left(V^{-}-b V^{+}\right) \cup\left(b V^{+}-V^{-}\right)}=\overline{\left(V^{+}-b V^{-}\right) \cup\left(b V^{-}-V^{+}\right)},
$$

the two closed complementary domains of T^{\prime} in S^{3} given by

$$
V^{\prime+}=\overline{\left(\left(V^{+}-b V^{+}\right) \cup\left(b V^{+}-V^{+}\right) \cup N\right)-b N}
$$

and

$$
V^{\prime-}=\overline{\left(\left(V^{-}-b V^{+}\right) \cup\left(b V^{+}-V^{-}\right) \cup b N\right)-N}
$$

(Figure 3.4) interchange under the action of b.
Case (b). $P \cup Q \subsetneq T \cap b T$. If n is the number of simple closed curves in $T \cap b T$, then $n=2 r$ for some positive integer $r>1$, and each $A \cap b T$ and $B \cap b T$ contains $r+1$ simple closed curves. We order the simple closed curves in $A \cap b T$ sequentially, letting $P=J_{0}, J_{1}, \cdots, J_{r}=Q$, so that J_{i} precedes J_{i+1} as we traverse A from P to Q. In a similar fashion we order the simple closed curves in $B \cap b T$ denoting them by $P=K_{0}, K_{1}, \cdots, K_{r}=Q$.

Since $r>1$ and, by Step 3, r is odd, $b T$ contains at least six innermost annuli. Hence, there is an innermost annulus A_{1} on $b T$ such that $P \cap \partial A_{1}=Q \cap \partial A_{1}=\varnothing$. The boundary of A_{1} must be of one of the following three types:

Type 1. $J_{i} \cup J_{j} ; i, j=1,2, \ldots, r-1 ; i \neq j$.
Type 2. $K_{k} \cup K_{l} ; k, l=1,2, \cdots, r-1 ; k \neq l$.
Type 3. $J_{m} \cup K_{n} ; m, n=1,2, \ldots, r-1$.
Our next step is to eliminate all innermost annuli on $b T$ with boundaries of Type 1 or Type 2. It will then follow that we have either again Case (a), that is $T \cap b T$ consists of exactly two simple closed curves, or all innermost annuli on $b T$ have boundaries of Type 3 .

We suppose that $A_{1} \subset V^{+}$and has Type 1 boundary, If $\partial A_{1}=J_{i} \cup J_{j}$, then $J_{i} \cup J_{j}$ divides T into two annuli which we denote by A^{\prime} and B^{\prime} with $P \cup Q \subset$ int B^{\prime}. We choose two simple closed curves J_{i}^{\prime} and J_{j}^{\prime} on B^{\prime}, parallel and sufficiently close to J_{i} and J_{j}, respectively, satisfying the following property: If R_{i} and R_{j} denote the two annuli on B^{\prime} bounded by $J_{i} \cup J_{i}^{\prime}$ and $J_{j} \cup J_{j}^{\prime}$, respectively, then $R_{i} \cap b T=J_{i}, R_{j} \cap b T=J_{j}, b^{4} R_{i}=R_{i}$, and $b^{4} R_{j}=R_{j}$. These last conditions are easily satisfied by observing that, since $b^{4} A=A, b^{4} P=P$ and $b^{4} Q=Q$, we must have $b^{4} J_{i}=J_{i}$ and $b^{4} J_{j}=J_{j}$. Since A_{1} is innermost, $b A_{1} \cap$ int $A_{1}=\varnothing$. If $b A_{1} \cap \partial A_{1} \neq \varnothing$, then since $b A_{1}$ is innermost on $T, b A_{1} \subset A$ and also $b^{2} A_{1} \cap$ $\partial b A_{1} \neq \varnothing$. But this is impossible since $\partial b^{2} A_{1} \subset b^{2} A=B$. Thus, $b A_{1} \cap A_{1}=\varnothing$, and we may choose an annulus $A_{1}^{\prime} \subset V^{+}$close to A_{1} so that $A_{1}^{\prime} \cap b T=\varnothing$, $A_{1}^{\prime} \cap T=\partial A_{1}^{\prime}=J_{i}^{\prime} \cup J_{j}^{\prime}$ and $A_{1}^{\prime} \cap b A_{1}^{\prime}=\varnothing$ (Figure 3.5). Replacing the annulus $A^{\prime} \cup R_{i} \cup R_{j}$ by A_{1}^{\prime} and copying this replacement in the image of b^{2} results in the torus

$$
T_{1}=\left(T-\left(A^{\prime} \cup R_{i} \cup R_{j}\right) \cup b^{2}\left(A^{\prime} \cup R_{i} \cup R_{j}\right)\right) \cup\left(A_{1}^{\prime} \cup b^{2} A_{1}^{\prime}\right)
$$

Since each of the annuli $A^{\prime}, A_{1}^{\prime}, R_{i}$, and R_{j} remain invariant under b^{4}, the torus T_{1} remains invariant under b^{2} and $T_{1} \cap b T_{1}$ contains at least four fewer simple

Figure 3.5
closed curves than $T \cap b T$. Furthermore, if V_{1} denotes the closed 3-dimensional region in V^{+}bounded by $A_{1} \cup A \cup R_{i} \cup R_{j}$, then the two closed complementary domains of T_{1} in S^{3}, given by

$$
V_{1}^{+}=\left(V^{+}-V_{1}\right) \cup b^{2} V_{1} \quad \text { and } \quad V_{1}^{-}=\left(V^{-}-b^{2} V_{1}\right) \cup V_{1},
$$

interchange under the action of b^{2}. We reason analogously if $A_{1} \subset V^{-}$and/or A_{1} has Type 2 boundary.

If $T_{1} \cap b T_{1}$ contains exactly two simple closed curves, we obtain the torus T^{\prime} by Case (a). Otherwise we replace T by T_{1} in Case (b) and repeat the entire argument. Since we started with only $2 r$ intersection curves and the preceding argument reduces the number of innermost annuli having Type 1 or Type 2 boundaries by at least two, a finite number of at most $(r-1) / 2$ repetitions of the above argument must eventually yield a torus T such that either $T \cap b T$ consists of exactly two simple closed curves or all innermost annuli on $b T$ have Type 3 boundary.

We now suppose that all innermost annuli on $b T$ have Type 3 boundary. If $c_{1} \subset V^{+}$is an innermost annulus on $b T$ with respect to $T \cap b T$ and $\partial c_{1}=P \cup J_{i}$, then $i=1$. For if $i>1$, then there is an innermost annulus c on $b T$ (Figure 3.6) with $\partial c=J_{1} \cup J_{k}, k<i$, contrary to our assumption that all innermost annuli on $b T$ have boundaries of Type 3. Similarly, if $c_{2} \subset V^{+}$is innermost on $b T$ and $\partial c_{2}=K_{1} \cup J_{i}$ (Figure 3.7), then $i=2$. Continuing this argument for $i=3, \cdots, r$,

Figure 3.6

Figure 3.7
we see that if $c_{i} \subset V^{+}$is innermost on $b T$, then $\partial c_{i}=K_{i-1} \cup J_{i}$.
If $c_{1} \subset V^{+}$were innermost on $b T$ with $\partial c_{1}=P \cup K_{i}$, then, using the same reasoning as above, the innermost annuli of $b T$ in V^{+}would have boundaries of form $J_{i-1} \cup K_{i}$, where $i=1, \ldots, r$.

We shall assume that the innermost annuli of $b T$, contained in V^{+}, have boundaries of form $K_{i-1} \cup J_{i}, i=1, \cdots, r$ (Figure 3.8) and argue analogously if, instead, the boundaries are of the form $J_{i-1} \cup K_{i}, i=1, \ldots, r$.

Figure 3.8
We denote the innermost annuli on T by a_{i} and b_{i}, where $a_{i} \subset A, \partial a_{i}=J_{i-1}$ $\cup J_{i}, b_{i} \subset B, \partial b_{i}=K_{i-1} \cup K_{i}$, and $i=1, \ldots, r$. We are interested in the images of the boundaries of these annuli under b. Since $b a_{1}$ is innermost on $b T$ and $\partial b a_{1}=Q \cup b J_{1}$, we must have either $b J_{1}=J_{r-1}$ or $b J_{1}=K_{r-1}$ (Figure 3.9). There is no loss of generality if we assume that $b J_{1}=J_{r-1}$, since the case
$b J_{1}=K_{r-1}$ is argued in a likewise fashion. Thus, $\partial b b_{1}=Q \cup b K_{1}=Q \cup K_{r-1}$ and $\partial b a_{2}=J_{r-1} \cup K_{r-2}$.

Figure 3.9
It follows that

$$
\begin{aligned}
& \partial h a_{1}=Q \cup J_{r-1} \\
& \partial b a_{2}=J_{r-1} \cup K_{r-2} \\
& \partial b a_{3}=K_{r-2} \cup J_{r-3} \\
& \vdots \\
& \vdots
\end{aligned} \begin{aligned}
& \vdots \\
& \partial a_{i}
\end{aligned}= \begin{cases}J_{r-(i-1)} \cup K_{r-i}, & \text { if } i \text { is even. } \\
K_{r-(i-1)} \cup J_{r-i}, & \text { if } i \text { is odd. }\end{cases}
$$

Similarly,

$$
\partial b b_{1}=Q \cup K_{r-1} \quad \text { and } \quad \partial b b_{i}= \begin{cases}K_{r-(i-1)} \cup J_{r-i}, & \text { if } i \text { is even. } \\ J_{r-(i-1)} \cup K_{r-i}, & \text { if } i \text { is odd } .\end{cases}
$$

In particular,

$$
b J_{i}=\left\{\begin{array}{ll}
J_{r-i}, & \text { if } i \text { is odd, } \\
K_{r-i}, & \text { if } i \text { is even, }
\end{array} \text { and } b K_{i}= \begin{cases}K_{r-i}, & \text { if } i \text { is odd. } \\
J_{r-i}, & \text { if } i \text { is even. }\end{cases}\right.
$$

Thus, since r is odd, $b^{2} J_{i}=K_{i}$ if i is odd, and $b^{2} J_{i}=J_{i}$ if i is even. But $b^{2} A=B$ and $b^{2} P=P$ so $b^{2} J_{i}=K_{i}$ which is a contradiction if $r>1$. This establishes Step 4 if Case (b) occurs.

We have shown that $T \cap b T$ contains a pair of unknotted simple closed curves, P and Q, remaining pairwise invariant under b and either $b P=P$ or there is a torus $T^{\prime} \subset S^{3}$ invariant under b and such that b interchanges the closed comple-
mentary domains of T^{\prime}. However, if the latter case occurs, then, by Theorem 2.4, there is an unknotted simple closed curve $J \subset T^{\prime}$ with $b J=J$. Thus, Theorem 3.1 has been verified.

We conclude this section by stating two easy corollaries of Theorem 3.1.
Corollary 3.2. If Z_{8} acts freely on S^{3}, then the orbit space S^{3} / Z_{8} is either bomeomorphic to the lens space $L(8,1)$ or to the lens space $L(8,3)$.

Proof. If b is a generator of Z_{8}, then, by Theorem 3.1, there is an unknotted simple closed curve $J \subset S^{3}$ invariant under b. We denote by N_{J} a regular neighborhood of J in S^{3}. If $b N_{J} \neq N_{J}$, we take a second derived subdivision which is obtained from a lifting of a second derived subdivision of S^{3} / Z_{8} and let N be the second derived neighborhood of J. Since N consists of all 3-simplexes which intersect J and since J is invariant under b, we must necessarily have N invariant under h. The neighborhood N is a solid torus with torus boundary ∂N. Furthermore, if $v_{0}, v_{1}, \cdots, v_{k}$ denote the vertices of J in this second derived subdivision, then $B_{i}=\operatorname{star}\left(v_{i}, N\right)$ is a 3 -ball around v_{i} and $B_{i} \cap B_{j} \neq \varnothing$ if and only if either $i=j$ or $i-j= \pm 1$. Setting $D_{i}=B_{i} \cap B_{i+1}$, then D_{i} is a disc and $D_{i} \cap D_{j}$ $=\varnothing$ for $i \neq j$. Thus, $N=\bigcup B_{i}$ and N / h is obtained by identifying two disjoint discs in the boundary of a 3-cell. By the Lefschetz fixed point theorem, b is orientation preserving and, therefore, N / h must be a solid torus. Similar considerations show that $\overline{S^{3}-N / h}$ must also be a solid torus. Thus, the solid torus N is an 8 -fold cover of the solid torus N / b and, similarly, the solid torus $\overline{S^{3}-N}$ is an 8 -fold cover of the solid torus $\left(\overline{S^{3}-N}\right) / h$. The orbit space S^{3} / Z_{8} is obtained from N / h and $\left(\overline{S^{3}-N}\right) / b$ by identifying their boundaries via the projection map. Hence, S^{3} / Z_{8} is homeomorphic to the lens space $L(8, q)$ and by [9] we may assume that $q \leq 4$ and relatively prime to 8 . Thus, either $q=1$ or $q=3$. Furthermore, by [7], the lens spaces $L(8,1)$ and $L(8,3)$ are not homeomorphic. This proves Corollary 3.2.

Corollary 3.3. Every free action of Z_{8} on S^{3} is topologically equivalent to either the orthogonal $(8,1)$-action or the orthogonal $(8,3)$-action.

Proof. If b is a generator of Z_{8}, then, by Corollary 3.2 , the orbit space S^{3} / Z_{8} is either topologically the lens space $L(8,1)$ or the lens space $L(8,3)$. We denote by t_{1} and t_{2} the orthogonal $(8,1)$ - and $(8,3)$-actions, respectively, and let p_{1} and p_{2} be the projections of S^{3} onto the orbit spaces of t_{1} and t_{2}, respectively. If the orbit space of b is the lens space $L(8,1)$ and p the projection map of $S^{3} \rightarrow L(8,1)$ given by $p(x)=p b(x), x \in S^{3}$, then, since S^{3} is a universal covering space of $L(8,1)$, there exists a homeomorphism g of S^{3} onto itself such that the following diagram commutes:

It follows that $b=g^{-1} t_{1} g$.
Similarly, if the orbit space of b is the lens space $L(8,3)$, then there is a homeomorphism g such that $b=g^{-1} t_{2} g$. This proves Corollary 3.3.
4. Free Z_{n} actions on S^{3}. We shall view $S^{3} \subset E^{4}$ as the join of the two circles $x_{1}^{2}+x_{3}^{2}=1$ and $x_{2}^{2}+x_{4}^{2}=1$ and let $z_{0}=\left(x_{1}, x_{3}\right)$ and $z_{1}=\left(x_{2}, x_{4}\right)$. The transformation $f: S^{3} \rightarrow S^{3}$, defined by $f:\left(z_{0}, z_{1}\right) \rightarrow\left(z_{1}, e^{\pi i / p} z_{0}\right)$, interchanges the two solid tori $V^{+}:\left|z_{1}\right|^{2} \leq\left|z_{0}\right|^{2}$ and $V^{-}:\left|z_{0}\right|^{2} \leq\left|z_{1}\right|^{2}$, where $\left|z_{0}\right|^{2}+\left|z_{1}\right|^{2}=1$. It follows from Theorem 2.4 that f is equivalent to an orthogonal ($4 p, q$)-action, where $q \equiv \pm(2 p-1) \bmod 4 p$. If $e: S^{3} \rightarrow S^{3} / f=L(4 p, q)$ is the natural projection, then $e\left(\partial V^{+}\right)$is one-sided and, therefore, a Klein bottle. It is known [2] that a Klein bottle embeds in $L(4 p, q)$ if and only if $q \equiv \pm(2 p-1) \bmod 4 p$. In particular, the action which interchanged the closed complementary domains of the torus T^{\prime} in the proof of Theorem 3.1 must be the action which is topologically equivalent to the $(8,3)$-action. On the other hand, since there is no Klein bottle in $L(8,1)$, there is no join construction of S^{3} such that the join circles interchange under the orthogonal (8,1)-action. It is this latter obstruction which prevents us from classifying all free $Z_{2 k}$ actions on S^{3} using the methods developed in the preceding section. However, the method used for proving Theorem 3.1 does enable us to extend the results of the last section to those free actions on S^{3} whose squares interchange the two circles $\left|z_{0}\right|^{2}=1$ and $\left|z_{1}\right|^{2}=1$.

Theorem 4.1. Let Z_{n} act freely on $S^{3}, n=4 p, p$ even and $b \in Z_{n}$ a generator. If b^{2} is topologically equivalent to the orthogonal $(2 p, q)$-action, where $q \equiv \pm(p-1) \bmod 2 p$, then b is topologically equivalent to either the orthogonal (n, q)-action or the orthogonal ($n, 2 p-q$)-action.

Proof. For $p=2$, the result follows immediately from Corollary 3.3. For $p>2$, there is a torus $T \subset S^{3}$ whose complementary domains in S^{3} interchange under the action of b^{2}. Hence, by an exact duplicate of the argument given for the proof of Theorem 3.1, there is an unknotted simple closed curve in S^{3} which remains invariant under the action of h. Furthermore, using the same reasoning as presented in the proofs of Corollaries 3.2 and 3.3 , the orbit space S^{3} / Z_{n}, is homeomorphic to a lens space $L\left(n, q^{\prime}\right)$ and b is equivalent to an orthogonal ($\left.n, q^{\prime}\right)$-action. By [7], [9], there is no loss of generality in assuming $q<p$ and $q^{\prime}<2 p$. Thus, since $\left(e^{2 q^{\prime} \pi i / n}\right)^{2}=e^{q^{\prime} \pi i / p}, b^{2}$ is topologically equivalent to the $\left(2 p, q^{\prime}\right)$-action. Therefore, $q^{\prime} \equiv \pm q^{ \pm 1} \bmod 2 p$ and, hence either $q^{\prime}=q$ or $q^{\prime}=2 p-q$. Finally, since
$2 p-q \not \equiv \pm q \bmod 4 p$ for $p \geq 2$, the two orthogonal actions are topologically distinct. This establishes Theorem 4.1.

BIBLIOGRAPHY

1. R. H. Bing, An alternative proof that 3-manifolds can be triangulated, Ann. of Math. (2) 69 (1959), 37-65. MR 20 \#7269.
2. G. E. Bredon and J. W. Wood, Non-orientable surfaces in orientable 3-manifolds, Invent. Math. 7 (1969), 83-110. MR 39 \#7616.
3. D. W. Henderson, Extensions of Dehn's lemma and the loop theorem, Trans. Amer. Math. Soc. 120 (1965), 448-469. MR 32 \#4686.
4. ——, Relative general position, Pacific J. Math. 18 (1966), 513-523. MR 34 \#819.
5. J. F. P. Hudson, Piecewise linear topology, Benjamin, New York, 1969. MR 40 \# 2094.
6. G. R. Livesay, Fixed point free involutions on the 3-sphere, Ann. of Math. (2) 72 (1960), 603-611. MR 22 \#7131.
7. K. Reidemeister, Homotopieringe und Linsenräume, Abh. Math. Sem. Univ. Hamburg 11 (1935), 102-109.
8. P. M. Rice, Free actions of Z_{4} on S^{3}, Duke Math. J. 36 (1969), 749-751. MR 40 \#2064.
9. H. Seifert and W. Threlfall, Lehrbuch der Topologie, Teubner Verlag, Leipzig, 1934.
10. E. C. Zeeman, Seminar on combinatorial topology, Mimeographed Notes, Inst. Hautes Études Sci., Paris, 1963.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF FLORIDA, GAINESVILLE, FLORIDA 32601

