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GERHARD X. RITTER(2)

ABSTRACT. This paper is devoted to the problem of classifying periodic

homeomorphisms which act freely on the 3-sphere.   The main result is the classi-

fication of free period eight actions and a generalization to free actions whose

squares are topologically equivalent to orthogonal transformations.   The result

characterizes those 3-manifolds which have the 3-sphere as universal covering

space and the cyclic group of order eight as fundamental group.

1. Introduction. This paper is devoted to the problem of classifying periodic

homeomorphisms which act freely on the 3-sphere. Thus far, only free actions of

period two and of period four have been classified. The main result of this paper

is the classification of free period eight actions and a generalization to free actions

whose squares are topologically equivalent to orthogonal transformations. The

result characterizes those 3-manifolds which have the cyclic group of order eight

as fundamental group and the 3-sphere as universal covering space.

It follows from the proofs of Corollaries 3.2 and 3.3 that the problem of show-

ing a periodic homeomorphism acting freely on the 3-sphere, S , to be topologically

an orthogonal transformation is equivalent to the problem of showing the existence

of an unknotted simple closed curve which remains invariant under that homeomor-

phism.  Roughly speaking, if  Z     acts freely on  S   ,  h £ Z    a generator, and  /  an

unknotted  simple  closed curve which remains invariant under  h, then there is a

whole toroidal neighborhood  N  of  J  which remains invariant under h.   The solid

torus   N  is an «-fold cover for the orbit space  N/Z     and, similarily, the solid torus

S  — N is an  72-fold cover for S    — N/Z  .   It will be shown that  N/Z    and
77 77

S    — N/Z    ate solid tori.  Since the orbit space  S /Z     is obtained from  N/Z_72_ r 77 72

and S-  — N/Z    by identifying their boundaries via the projection map, S /Z     is

topologically the lens space   L{n, m).  If p.   denotes the covering projection of this

construction and  p?  the covering projection for the standard construction of

L(?2, m), then there is a homeomorphism g  of S     onto itself such that  p, = pyg-
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The conjugation of  h with g will then be the required orthogonal map.  More pre-

cisely, if  T is the orthogonal transformation used for the construction of L(t7, m),

then  h = g~   Tg.  Our main theorem, therefore, shows the existence of an unknotted

simple closed curve which is invariant under a given free  Z     action.

2. Preliminaries.

Definitions and notation.  If  M  is a topological manifold, then the interior of

M will be denoted by  int M and the set M — int M  is called the boundary of M

and is denoted by  dM.

Two homeomorphisms   h,   and  h2  of S     onto itself are said to be topologi-

cally equivalent if there is a homeomorphism g  of 5     onto itself such that

h i - g~   h2g.  To say that a group  G acts freely on S    means that each g £ G,

g 4 identity of  G, is a fixed point free homeomorphism of S     onto itself.  If  G  is

cyclic of order  p  and  g £ G  a generator, then  g  is called a free  action of G  on

S     of period p.

We shall denote a cyclic group  G of order  p by Z  .  If Z     acts freely on the

closed combinatorial 3-manifold  M, then the orbit space  M   = Ní/Z     is also a

closed 3-manifold.   For let  M    have the natural piecewise linear structure induced

by the projection map  p: M —> M .  Let  v   be a vertex of M    and  v a vertex of  M

such that  v   = pv. Since  p is a local homeomorphism, the star of v in  M,

st(zv, M), is homeomorphic to  st (v , M ).  But  st(iz, zM)  is a 3-ball neighborhood of

v in  M, hence  st (v , M ) is a 3-ball neighborhood of v    in  M .  According to

R. H. Bing [l], M    can be triangulated and the triangulation can be lifted to M.

The action  h  of  Z     on  zM   is a deck-transformation on the covering space and

hence simplicial.   Thus, free actions on closed 3-manifolds are piecewise linear

homeomorphisms.  Henceforth, our objects (maps, embeddings, etc.) are always

considered from the piecewise linear point of view.

In order to study free actions on S     it will be convenient to view  S    as the

join of the two circles   \z\    - 1 -and   \zA    = 1, where  z     z.   are complex numbers

with  S   = !(zQ, 2j)|  \zA    + \z.\    = 1 \, and investigate the behavior of the actions

on these circles.  The map h: S    —> S   defined by h: (z , zf —, ie    ' pzQ, e q ' pzf,

where  p and  q ate relatively prime integers with p>0, rotates the circles  \zA   = 1

and   |z.|    =1   through an angle of 2n/p and  2qn/p, respectively.  It follows that

Ii  is a fixed point free homeomorphism of period  p   and we call  h the standard or

orthogonal (p, q)-action on S  .

The group of rotations on  S    generated by the standard (p, c/O-action is cyclic

of order  p and, hence, represented by  Zp.  Furthermore, h  is invariant on the two

solid tori   \zA    < |zj|     and   \z^\    < |zQ|2   with common boundary   |zQ|    =|zj|   .

Thus, the orbit space  S  /Z     is the lens space  L(p, q) and we call this construc-

tion of  L(p, q) the standard construction.
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Preliminary results.  The following result of Livesay [6] classifies free  Z

actions on 5   .

Theorem 2.1.   Every free action of Z     on S     is topologically equivalent to

the antipodal map.

Since results similar to the proposition below have appeared in numerous pub-

lished works [3], [4], [5], [8], [lO], we will omit its proof.

Proposition 2.2.   // Z     acts freely on the closed combinatorial manifold M

and P  is a subpolyhedron of M   invariant under a subgroup  G  of Z     then there is

an arbitrarily small isotopy of M which takes  P  onto a polyhedron Q  such that,

for each h £ Z  /G,  Q  is in general position with respect to hQ.  Furthermore, Q

is invariant under G.

Rice [8], using Theorem 2.1 and Proposition 2.2, classified free Z    actions

on S\

Theorem 2.3 (Rice).  Every free action of Z     on S     is topologically equiva-

lent to the orthogonal action.

If we consider S    CE    as the join of the two circles  x. + x, = 1   and x,   +

x    = 1, then  S    decomposes into two congruent solid tori having these circles as

centerlines.  The two congruent solid tori  V    and  V~   ate defined by the equations,

2 2 7 2 0707
x. + x, > x. + x,   and  x. + x, < x2 + x,, respectively; their common boundary  T

is defined by the equation  x   + x, = x    + x ..  If  h denotes the standard orthogonal

(4, l)-action on S   , then  h maps the point (x,, x2, x,, x  ) £ S     to the point

{-x2, Xy, -x  , xA) £ S  .  Here  z    = (xj, x2), z^ = (x,, x  )  and Xj + x2 + x    + x4 =

1.   It follows that  hT = T and  h  interchanges the closed complementary domains

V+ and  V~   of  T.

Theorem 2.4.   // Z     acts freely on S    and there is a torus  T C S    whose com-

plementary domains interchange under a generator h  of Z  , then p = 4k and there

is a (1, l)-cz2Ti7e 072  T which remains invariant under h.   In particular, h  is equiva-

lent to the standard {4k, 2k — l)-action.   Conversely, if h is equivalent to the

standard {4k, 2k — l)-action, then there is a torus  T C S    whose complementary

domains interchange under h.

Proof.  Let  V    and  V~  denote the closed complementary   domains of  T in S  .

Since  h  interchanges   V    and  V-,  p must be even and  T unknotted.  The action

h    generates  Z    /.   and, since   h  V   = V   , it follows from our introductory remarks

that  h     is topologically an orthogonal transformation.

We suppose that  h     is topologically equivalent to the standard  {p/2, r)-action,

where  r is some positive integer relatively prime to  p/2, that is  (p/2, r) = 1.  Any
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meridian simple closed curve   m  on the torus  diV  /Z    ,.)  lifts to  p/2   disjoint

meridian simple closed curves on  dV    which permute under  h  . We let  ttz., ttz,,

■ • • , OTfi/2   denote this collection of meridian curves and assume that the subscripts
■ 1 7

are arranged in an order such that  h  m   /, = m,   and  h  m. = m .  ,   for  i = 1, ■ ■ ■ ,
D p/¿ 1 2 2+1

p/2 — 1.  Denoting the image of  m. under  h by /.,then, since  hV    = V~,  /. is a

meridian simple closed curve on  dV~   and, hence, a longitudinal simple closed

curve for  V  .

We set  m., • • • , m   ,.   into general position with respect to the collection

/,,■••, I  j2  by adjusting the  ra.'s as follows. Let  X  be a component of ttz.  C /.

such that X  is not a crossing point of  zrz. \j  I      Let D  be a sufficiently small

polyhedral disc on  T such that the following four properties are satisfied:

(i)  X C int D  and  k* D O D = 0 for  z = 1, • ■ • , p/2 - 1.

(ii)  D O z7?.   is an arc  a such that  a Ci dD = da and  D n /.   is an arc  /3  such

that  ß Ci (9D = (9/3.

(iii) DCtœ. = DfW. = 0 for z = 2, • • •, p/2.

(iv)  If   Y  is a component of  m. n  L   and   Y 4 X, then   Yd D = 0.

Let  zz., c?7   and  b., ¿z    be the end points of  cl and  /3, respectively.   The set

a. u cz?  divides  (9D  into two arcs  ztv.   and  z¿7    and, similarly, b. U   è,   divides  c9D

into two arcs   ;;.   and  v2.  Either   v.   is a subset of izy     or  u<      or  w,   is a subset

of w,   or 777-, or  int f.   contains exactly one end point a .,   i = 1   or 2.   If zzz.   con-

tains  v., we adjust  m. (Figure 2.1) by replacing the arc  a by the arc w . Similarly,

if  v. C iz<7, we replace  a by w,.  We then copy this replacement in the images of

h   .   If  int v j   contains

igure 2.1

exactly one end point, we adjust ttz. by replacing cl by zcv (Figure 2.2) and, again,

copy this adjustment in the images of h . We repeat this process a finite number

of times until ztz. Ci /. consists of only a finite number of crossing points. In an

analogous fashion, we set zrz. in general position with respect to /. for i = 2, 3,

• • ■ , p/2. It follows that m . D I. consists of only a finite number of crossing points

as   i and  /' range over the set  il, 2, ■ • • , p/2 \.
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Figure 2.2

Since  /. is a longitudinal simple closed curve on  dV  , the number of cross-

ing points in  m.Cil. must be odd.  In particular, if  p/2   is odd, then the number

of crossing points in [Jl'_,   [((J^-l   w ^ n '■!  must be odd.  But this is impossible

since  h  is fixed point free, of even period, and invariant on U?_j ^U^-i  m.) C\l.].

Thus, p/2  is even and  p = 4k for some positive integer  k.

Since  h     is topologically the  {2k, r)-action, 772. and  h  rm . ate adjacent; that

is, there is an annulus  ACT with boundary components  722. and  h  rm . such thatJ r 1 1

w . O int A = 0  for / = 1, • • • , p/2.  Furthermore, since  {r, 2k) = 1,  h  r generates

Z  y2.  On the other hand,  (r, 2k) = 1   implies that  (r, p) = (7-, 2(2/e)) = {r, 2) = 1

and, hence, // also generates  Z     and interchanges   V     with   V~.  In the remaining

part of this proof we let  h. = hT and suppose that the subscripts of the meridians

7 7
and longitudes have been relabeled so that  h,m.-m.   ,   and  h,l.= l.   ,.

& 1    7 z+i 1  1       7+1

If  72 denotes the number of crossing points in  ttz. n /., then  72  is odd, and if

?2 > 1, then there are  (72 - l)-discs on dV     such that the boundary of each disc is

the union of two arcs  meeting only in their end points, one of which is a subset

of 772,   and the other of  /..  Suppose  D  is a disc with dD = a u ß, where  a C m.

and ß C /. are arcs for some   i = 1, 2, • • • , p/2, such that  int D n m . = int DO/.

for /=1,2,..., p/2.  We call such a disc innermost with respect to u  /..
7

Let  p,   and  p,   be the common end points of  a and  ß.  Let  p".   and  p2   be points

on  ?77. — a near  p.   and  p     respectively, such that the arc  a     on  777.   containing

a and having end points   p. , p     has the property that  a   O   /. = pj u p2   and

a.' n   I, = 0 for  j / i.  Let ß'  be an arc near ß satisfying the following three

properties:

(i) /3' n ttzj = pj u p2 = a/3'.

(ii) /3'n /. = /3' n ttz. = 0 for  z = I,---, p/2, / = 2,..., p/2.

(iii) h\ß' n 0' = 0 for 1 = 1,.... p/2 - 1.

Property (iii) is easily satisfied since  int /3  intersects no other meridian or

longitudinal simple closed curves and  A  is a free action.  We now adjust  772.   by

replacing  a    by  ß    (Figure 2.3).   If we again denote
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Figure 2.3

by  ttz,   the adjustment of  m., then  m.C\ I. contains two fewer crossing points.  We

copy this adjustment in all the images of h.  Repeating this process, we eliminate

all innermost discs with respect to m, U /. for all   i.  It now follows that each

m . D I -,  ii j - 1) 2, . . . , p/2, consists of exactly one crossing point.  For if some

m   n I    contained more than one crossing point, then there is an innermost disc  D

with respect to some  m.U I..  But, then, if  i + m = p/2,  h, D  is a disc inner-

most with respect to  ml u h.     +    I., contrary to our assumption that all discs

innermost with respect to  m. U /.,   z = 1, • • • , p/2, have been eliminated.

We now assume that each  m . n I.,  z, /' = 1, 2, • • • , p/2, consists of exactly

one point.  Let x £ m.n I., then  h.x e h.m. Cl tTj/j = /, Ci m2.  The points  x and

h.x divide /,   into two arcs.  We let a C /.   be the arc with the properties that

a Cl 772 a nm- h,x, and  a n ttz . 4 0,   i m 3» • • • » p/2.  The simple closed

curve  / = U--1   hl.CL (Figure 2.4) is clearly invariant under  h.   and, therefore, non-

trivial on  T. Thus  J  is a  (/z, c/)-curve on  T with respect to  V    and at least one

of  p  ot  q  is not 0.

5

2

igure 2.4

Since  />,/  is a (p, zj)-curve on  T with respect to  ¿jV    = V~,  hxJ  must be a

(<7, p)-curve on  T with respect to  V   .  But  hlJ = J  and, hence, p = q = 1. We note

that since  /  meets every meridian  zrz. and every longitude   /. exactly once in an

arc, it also follows from the construction of /  that /  must be a (1, l)-curve on   T.
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Finally, since  /  is invariant under  h.,  J  is invariant under every power of h.   and,

in particular, hj = /.  Again, by our introductory remarks, h  is equivalent to a stan-

dard  {4k, <?)-action and S /h = L{4k, q).  If  e: S   —> S /h denotes the natural pro-

jection, then, since  hV   - V~,  eT is one-sided and, therefore, a Klein bottle.   By

[2] this is possible only if q = + (2/e — l) mod 4k.

In order to prove the converse, let / be a homeomorphism of S     onto itself

defined by /: (z„, z.) —► (z., c   '    zA).  It follows that / is a free action of period

4k which interchanges the two solid tori   V    and   V~   defined by   |zj|    < \zA     and

\zA    < \zA   , respectively, and satisfying   \zA    +|z,|    =1.   By the first part of

the theorem, / is equivalent to  h. Hence there is a homeomorphism  g  of S     onto

itself such that f = g~   hg.  We now let  T = gidV ).  This verifies Theorem 2.4.

3. The main theorem.  We will divide the proof of the main theorem into four steps,

commencing each step with a statement of what is to be shown.

Theorem 3.1.   // h  is a homeomorphism of period eight acting freely on S  ,

then there is a polyhedral unknotted simple closed curve J   in S    such that bj = J.

Proof.  Since  h  acts freely on S   ,  h     is a free action of Z     on S    and, by

Theorem 2.3, we may assume that  h     is equivalent to the orthogonal (4, l)-action.

Hence, there is a polyhedral torus   T in S    with closed complementary domains

+ 2 7 + —
V    and  V~  such that  T is invariant under h    and h    interchanges   V    and   V~.

Furthermore, by Proposition 2.2, we may assume that  T is in general position with

respect to hT.

Step 1.   T O hT / 0. We suppose that   T n hT = 0.  Then either  hT C int V

or hT C int V.  If hT C int V +, then either (i) hV+ C int V +  or (ii) hV~ C int V+.

If we apply  h to (i), we obtain   V~ = h  V   C ¿(int V  ) C int V    which is a

contradiction.

If we apply h to (ii), we obtain V = h V~ C ¿(int V ). A second application of

h yields hV C int V~. Therefore, V C ¿(int V ) C hV C int V~ which is a con-

tradiction.

Similarly, hT cannot be contained in  int V~.

Step 2.  T can be adjusted so that every simple closed curve in  T n hT is a

(1, l)-curve on   T and  h    interchanges the closed complementary domains of  T.

Since   T is in general position with respect to  hT and  T O hT / 0,  TO hT

consists of a finite collection of simple closed curves.  If /   is a simple closed

curve in  T O hT, then  /  satisfies one and only one of the following three properties:

(i) /  is trivial on both  T and  hT.

(ii) /  is trivial on one of  T or  hT but not both.

(iii) /  is nontrivial on both  T and  hT.

If J  is a (p, zjO-curve on dV  , then  h J  is a (p, z?)-curve on  h idV ) = dV~
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and, hence, a (q, p)-cutve on dV  .  Since  dV    = dV~ = T and either  h  J = J  or

2 2
h  J D / = 0,  /& /  must be parallel to  /  on   77.   Therefore, p = q = 1  and all simple

closed curves in   T n ¿7"  which are nontrivial on  T are (1, l)-curves on  77.

If  /  is a simple closed curve of type (i) or (ii) in   T O hT such that  /  bounds

a disc  D  on  T or  hT with the property that  int D O (T O ¿T) =0, then  D  is

called an innermost disc with respect to  T O hT.  Our next step is to eliminate all

simple closed curves of type (i) in   T n hT—if there are such curves—which bound

innermost discs on  hT. We may then assume that there are no simple closed

curves of type (i) in  T O hT bounding innermost discs on  hT and it will then

follow that there are no simple closed curves of type (ii) and, hence, no simple

closed curves of type (i) in  T O hT.

We suppose that  /  is a simple closed curve of type (i) in  T O hT bounding

an innermost disc   D  on  hT. Since  D C hT and is innermost, either  D C V    or

D C V~   and we suppose, without loss of generality, that  D C V   .  We denote by  E

the disc on   T bounded by  /   and let  /    be a simple closed curve in  T — E  suffi-

ciently close to  /   such that the annulus  ACT bounded by  / U /   has the property

that A n hT = J.  Next, we choose a disc  D   C V    so close to  D that D   satisfies

D' n T = 3D' = /',  D' Ci hT = 0, and  hAD' n D' = 0.  This choice of D' is possible

since  h and  h     ate fixed point free and since there are no intersections of  T

with  hT on  int D.  Finally, we set  E   = E U A   and replace the disc  E    by  D

(Figure 3.1) and copy this replacement in the images of  h.  This adjustment of  T

results in the torus   T,

Figure 3.1

defined by

T, = [T-ÍFA u  h2E' U h4E' u h6E')] U ÍD' U h2D' U hAD' U h6D')

with closed complementary domains given by
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V¡= V + - ÍB U h4B)  U íh2B U h6B)

and

V- = V~ - íh2B U h6B) U (/3 U hAB),

where  B  is the ball in   V    bounded by  E   (j D . Since   V., V7   interchange under

the action of h  , it follows that  77.   is unknotted and that  7".  O hT.   contains four

fewer intersection curves of type (i) which bound innermost discs on  hT..  Repeat-

ing this process at most a finite number of times will then result in an unknotted

torus   T whose complementary domains interchange under h     and such that

T n hT contains no curves of type (i) which bound innermost discs on  hT.

We suppose that  / C T O hT  is a simple closed curve of type (ii) and assume

that  /   is nontrivial on   T.  The argument is analogous if  /   is nontrivial on ¿77.

Let  D denote the disc on  hT bounded by  /.  Since  /   is nontrivial on   77,   /   is a

(1, l)-curve on   T  and, hence, D   is not an innermost disc on  hT.   Thus, there is

a finite number of simple closed curves of  T n hT on  D  and, hence, one of these,

/ , must bound an innermost disc  D    on  D (Figure 3.2) and hence on  hT. Since

/    bounds a disc on  hT,  J    is trivial on  hT and since all type (i) simple closed

curves bounding innermost discs on  hT have been removed,

Figure 3.2

/    is also nontrivial on   T.  Therefore, /    is a (1, l)-curve on   T which bounds a

disc in one of the complementary domains of  7*.  But this is impossible and, there-

fore, no type (ii) curves exist.  Furthermore, since all type (i) curves bounding

innermost discs on  hT have been removed, all simple closed curves in   T O hT

ate nontrivial on   T and  hT.

Step 3.   There is an unknotted torus T C S     such that  T O hT  contains at

least one pair of simple closed curves which remain invariant as a pair under the

action of h.  Furthermore, h     interchanges the closed complementary domains of T.

We let T denote the torus obtained in Step 2 and let ?z be the number of simple

closed curves in T n hT. We may assume that n is even and set 7Z = 2r for some

positive integer r, for otherwise there is an arc  aC hT with both end points in
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int V    and piercing  dV     in only an odd number of points.   Furthermore, by Step 1,

r 4- 0.   The simple closed curves in   T n hT divide   T  into  n annuli and, hence,

divide   T U hT into  272 annuli.  Furthermore, if A  and A    ate any two of these

annuli with A /= A , then  int A n A   = 0.  The  27z  annuli divide  S     into  k closed

3-dimensional regions and any one such region is entirely contained in one of the

following four sets:   V+ n hV+,   V~ n hV+,   V~ O  hV~, and V+ n M'~.   Under the

action of h  on  S  , these sets permute as follows:

çV*Ci hV+ — V~ n  hV+ --> V" n fcV" -. V+ O èV~-|

Therefore, /e h 0 mod 4.

There are  2r annuli on  hT and if A   is any one of these annuli, then either

A C V    or A C V~.  Since  h  V    = V, there are exactly  r annuli on  hT which

must be contained in   V     and  r annuli on  hT which must be contained in   V~.  If

A C V    is an annulus on  hT, then  A   spans   V    and, therefore, divides   V    into

two 3-dimensional regions.  Hence, the  2r annuli on  hT divide   V   U V~ = S

into  2(r +l)  3-dimensional regions.   Therefore, 2(r + l) = i;0 mod 4 and r is odd.

We let  /,!•••)/   ! where  72 = 2r, denote the components of  T n hT and define

a permutation a £ Z n by  bj . = ]a , ...  Writing  a as a product of disjoint cycles,

o = a,, • • • , a. , we have  72 = S length ia. ) = S order io~. )  and the order of a is the
1 k ° 7 7

least common multiple of the orders of the  a.'s.  Since  a    =1, each o    must have

order   1, 2, 4  or 8.  If  some  a. has order  1, then there is a component / in T O hT

with  ¿/ = J.  But then there remains an odd number of components in T Pi ¿T whose

union is invariant under h.  Thus, since  b  has even period, there is another simple

closed curve  /    in  T n hT with  h]   = J ■  If some  a. has order2, then the con-

clusion of Step 3 follows trivially.  If each o. has order > 4, then  n  is divisible

by 4, contradicting the fact that  r is odd.

Before continuing our proof of Theorem 3-1, we note that if  P and Q  denote

the simple closed curves in   T O hT such that  P U Q  is invariant under  h, then

it is possible that each curve, P  and  Q, remains invariant under  h, thus establish-

ing the theorem.

Step 4.  If  P and  Q  ate simple closed curves in  T O hT pairwise invariant

under  h  with  hP /= P, then there is a torus   T   C S     such that  hT   = T   and  such

that  h  interchanges the closed complementary domains of  T .

The set   P U Q  divides   T into two annuli, A  and  B, and either  h A = A   or

h A = B.  If h A = A, we let  A   C ¿A   be an innermost annulus on  ¿T with respect

to  T n ¿T having   P for one of its boundary curves.  Either A   C V    or A   C V~,

and we suppose that A   C V     and, hence  ¿A   C V~.  But then, since  h  P = P

and  ¿  (¿A) = ¿A, ¿A   = A   C V  .  Similarly,  A    is not contained in   V~   and,

therefore, only  h A = B   is possible.
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In order to obtain  T    we shall consider the two cases   P U Q = T O hT and

P V Q C,T n hT separately.

Case (a).   T n AT = P U Q. Since  P  and Ç are disjoint, we may choose a

sufficiently small regular neighborhood  N of  P  such that  NO  hN = 0,  h N = zV

and  T O ¿T divides  d/V  into four annuli.  Such a neighborhood  A/ may be obtained

by choosing any regular neighborhood  N    of  P  and then taking a second derived

neighborhood of  P  in a second derived subdivision of N    on which ¿ is simplicial.

We let a,, a-! ax, and  fl¿  denote the four annuli on dN  so that

alQV+r\hV+,       a2 = h2axCV-n  hV~,

a,CV+nhV-,       aA = h2a2CV~ n  hV+,
i 4 3

and set  a . n hT = I. fot a = 1,2, and a . n T = / . for  7 = 3,4 (Figure 3-3). We
2 J   2 Z J   2 °

define  1   to be the
p

annulus on   T containing   P and such that dA    = /, U /,.  Similarly, we let  B

be the annulus on  hT containing  P and such that dB    = /j U J2-  The torus   T

defined by

T' = ((T U hT) - (A    Uß    u ttA,, u  hB)) u (a, u a, U  zb«, U ¿a,)P P P P \ ¿ i ¿

is clearly invariant under  h.  Furthermore, since

(V+_ hV + ) U ihV+ - V + ) = iV~ - hV~) U ihV~ - V~)
and

ÍV- - hV + ) U (/zV+- V-) = iv+ - hv~) u (¿v- - v + ),

the two closed complementary domains of  77    in S    given by



206 G. X. RITTER

V' + = «V+- hV + ) U ihV+ - V + ) U N) - hN

and

v'~ = ((V- - h\'+) u ih\'+ - V~) U fc/V) - N

(Figure 3.4) interchange under the action of h.

Case (b).   Pu  Q Ç T Cl  hT.   If  n   is the number of simple closed curves in

T D ¿T, then  n = 2r fot some positive integer  r > 1, and each A n ¿T and  B O ¿T

contains  r + 1   simple closed curves.  We order the simple closed curves in  A O hT

sequentially, letting   P - /„, / .,•••, J   = U, so that  / .  precedes   / .   .   as we

traverse  A   from   P  to  Q.   In a similar fashion we order the simple closed curves

in   B O hT   denoting them by   P = KQ, Kv ■ ■ ■ , Kr = Q.

Since  7 > 1   and, by Step 3, r is odd, hT contains at least six innermost annuli.

Hence, there is an innermost annulus  A     on  hT suchthat P O dA    = Q n dA .= 0.

The boundary of A     must be of one of the following three types:

Type I. ]{(j /  ; i, j = 1, 2, •.., r - 1 ; i 4 j-

Type 2.   Kku Kr k, I = 1,2,..., r - I; k/ I.

Type 3.   /     u K  ; ttz, 72 - 1, 2, • • . , r — 1.
j t j m n

Our next step is to eliminate all innermost annuli on hT with boundaries of

Type 1 or Type 2. It will then follow that we have either again Case (a), that is

T O hT consists of exactly two simple closed curves, or all innermost annuli on

hT have boundaries of Type 3.

We suppose that  A . C V     and has Type 1 boundary.   If  dA    = ] . u / , then

/ . u / . divides   T into two annuli which we denote by A    and B   with P U Q C int B .

We choose two simple closed curves  /.    and  / .    on   B , parallel and sufficiently

close to  / .  and  / ., respectively, satisfying the following property:   If   R .  and   R .

denote the two annuli on  B    bounded by  / • U / .    and  / . U / . , respectively, then

R . O hT = ] .,   R.Ci hT = 1 .,  h4R . = R., and  h4 R . = R ..   These last conditions are
1 ' l ' A '       A

easily satisfied by observing that, since   h A — A,  h  P = P  and  h  0 = 0, we must

have  h   ] . = I . and  h   I . = J .  Since  A ,   is innermost, hA , C\ int A , = 0.   Ifj i     j % ii i ^ i

hA , C\ 0A    / 0, then since  hA     is innermost on  7',  Mj C/l   and also  h A j C\

dhA. /. 0.   But this is impossible since  dh2A    C h2A = B.  Thus, hA % n A x = 0,

and we may choose an annulus  A     C V    close to A,   so that  A     O hT = 0,

A '   n T = dA j   = / '  U  / '   and  A j n  ¿A ^   = 0 (Figure 3-5).   Replacing the annulus

A   U R   U R .   by  A j    and copying this replacement in the image of  h     results in

the torus

T{ = {T - (A' u R. u Rj) J h2{A' u R. u R;)) u (A', u h2A\).

Since each of the annuli  A  , A. , R., and R . remain invariant under  h  , the torus

T,   remains invariant under  ¿     and   T,  O   hT.   contains at least four fewer simple
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closed curves than  T O hT.  Furthermore, if  V,   denotes the closed 3-dimensional

region in   V    bounded by  A j u Au R . U R ., then the two closed complementary

domains of  T,   in  S   , given by

v\=iV* -Vy) U h2Vy     and     V~ = ( V" - £2V A U V v

interchange under the action of  h   .  We reason analogously if A    C V~   and/or  A,

has Type 2 boundary.

If  T. O hT.   contains exactly two simple closed curves, we obtain the torus

T   by Case (a). Otherwise we replace   T by  T.   in Case (b) and repeat the entire

argument.  Since we started with only  2r intersection curves and the preceding

argument reduces the number of innermost annuli having Type 1 or Type 2 bound-

aries by at least two, a finite number of at most  (r - l)/2  repetitions of the above

argument must eventually yield a torus   T  such that either  T C hT  consists of

exactly two simple closed curves or all innermost annuli on  hT  have Type 3

boundary.

We now suppose that all innermost annuli on  hT  have Type 3 boundary.   If

c.CV     is an innermost annulus on  hT with respect to  T n hT and  oVj = P u /.,

then   i=l.  For if  i > 1, then there is an innermost annulus   c on  hT (Figure 3.6)

with  dc = /    u J  , k < i, contrary to our assumption that all innermost annuli on

hT have boundaries of Type 3.  Similarly, if  c.CV     is innermost on  hT  and

dc    = K   U / . (Figure 3.7), then  i = 2.  Continuing this argument for  i = 3, • • • , r,
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Figure 3.7

we see that if c. C V    is innermost on  hT, then dc. = K.    , U / ..
I 2 2- 1 '  I

If  c.CV    were innermost on  hT with de ^ = P U K., then, using the same

reasoning as above, the innermost annuli of hT in   V    would have boundaries of

form  J .   , U K ., where   i = 1, • • • , r.1  2— 1 2'

We shall assume that the innermost annuli of hT, contained in V , have bound-

aries of form K ._ , u / ., z = 1,•■ • , r (Figure 3.8) and argue analogously if, instead,

the boundaries are of the form  / ._ , U  K.,   i = 1, • • • , r.

Figure 3.8

We denote the innermost annuli on  T by  a . and   b ., where  a.C A,  da . = J .   ,
'     i i i i     J i— í

U /.,   b . C B, db . = K     ,  UK., and   z = 1, • • • , r. We are interested in the images

of the boundaries of these annuli under h.  Since  ha.   is innermost on  hT and

dha. = Q u hj y we must have either  hj, = /     ,   or  hj, = K _ ,   (Figure 3.9).

There is no loss of generality if we assume that  hj. = /    ,, since the case
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hj , = K _.   is argued in a likewise fashion.   Thus, dhb. — Q U ¿K, = (3  uK_j

and <9¿a- = /     , U K     -.
z       7 r— 1 r—2

It follows that

dh

Figure 3.9

l-ßU./r-l

dhan = J     , U   K
2 J r— 1

dha„ = K     -  U 7
3 r-2        J

r-1

r-3

dha.
J     t-    m u  K     -l*r- (z- 1 ) r-z'

\-(z 1)   U/t-

if   z  is even,

if   z  is odd.

K     ,.    ., U  /     .,     if  z  is even.
r-(z-l) J7-2'

7     ,.    , i U K     .,     if  z  is odd.
J r— (2 - 1 ) 7-2'

and     hK.

Similarly,

dhb. = Q  U K     ,     and     dhb.
1        ^ r — 1 z

In particular,

!/,_,-■     if  z  is odd,

K     .,     if   z is even,

Thus, since  r is odd, h   I . = K .  if  i is odd, and  h   1 . = J . if  i is even.   But
7   Z 2 '  Z *  1

Z7  A = B  and  zr   P = P  so  ¿   I . = K . which is a contradiction if  r > 1.  This
7   2 I

establishes Step 4 if Case (b) occurs.

We have shown that   T O hT contains a pair of unknotted simple closed curves,

P  and  0, remaining pairwise invariant under  h and either  hP = P or there is a

torus   T   C S     invariant under  h and such that  h  interchanges the closed comple-

if  i is odd.

/-_,•,     if  i is even.
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mentary domains of  T .  However, if the latter case occurs, then, by Theorem 2.4,

there is an unknotted simple closed curve  J C T    with  hj = ].  Thus, Theorem 3.1

has been verified.

We conclude this section by stating two easy corollaries of Theorem 3.1.

Corollary 3.2.   // Zg  acts freely on  S , then the orbit space S /Z     is either

homeomorphic to the lens space  L{8, 1)  or to the lens space  L{8, 3).

Proof.   If h is a generator of Z     then, by Theorem 3.1, there is an unknotted

simple closed curve  ] C S     invariant under  h.  We denote by  N .  a regular neigh-

borhood of  /   in  S" .  If  hN . 4 N ., we take a second derived subdivision which is

obtained from a lifting of a second derived subdivision of S /Z     and let  N be

the second derived neighborhood of  /.  Since  N  consists of all 3-simplexes which

intersect  /  and since  /   is invariant under  h, we must necessarily have N invariant

under  h.  The neighborhood  N  is a solid torus with torus boundary  dN.  Further-

more, if  vn, v,, • • • , v,   denote the vertices of   /  in this second derived subdivi-
0        1 k J

sion, then  B . = star iv ., N) is a 3-ball around  v. and  B . Pi B . 4 0  if and only if
it i i j J

either  i = i or  i — i = + 1.  Setting  D . = B . n B .   ,, then  D    is a disc and  D . Ci D.
' ' — °777+l I I 1

= 0 for  i 4 j.  Thus, zV = U B . and  N/h  is obtained by identifying two disjoint

discs in the boundary of a 3-cell.  By the Lefschetz fixed point theorem, h  is

orientation preserving and, therefore, N/h must be a solid torus. Similar considera-

tions show that S    — N/h  must also be a solid torus.  Thus, the solid torus   N  is

an 8-fold cover of the solid torus  N/h and, similarly, the solid torus  S    — N is

an 8-fold cover of the solid torus ÍS   — N)/h. The orbit space   S /Z     is obtained from

N/h and  {S    —  N)/h by identifying their boundaries via the projection map.

Hence, S /Z     is homeomorphic to the lens space   L(8, q) and by [9]  we may

assume that  q < 4 and relatively prime to 8.  Thus, either  q = 1   or  q = 3.  Further-

more, by [7], the lens spaces   L(8, 1) and   L(8, 3) are not homeomorphic.  This

proves Corollary 3.2.

Corollary 3.3.   Every free action of Z     on S     is topologically equivalent to

either the orthogonal (8, l)-action or the orthogonal (8, 3)-action.

Proof.   If  h  is a generator of  Z    then, by Corollary 3.2, the orbit space

SVZ     is either topologically the lens space  L(8, 1)  or the lens space   L(8, 3).

We denote by  t.   and  /    the orthogonal (8, 1)- and (8, 3)-actions, respectively,

and let  p.   and  p2   be the projections of S     onto the orbit spaces of  ij   and  t2,

respectively.  If the orbit space of  h is the lens space  L(8, 1)  and p the projec-

tion map of S    —* L(8, 1) given by  p(x) = phix), x £ S  , then, since  S     is a

universal covering space of  L(8, 1), there exists a homeomorphism  g  of S     onto

itself such that the following diagram commutes:
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s3_!_, s3

p\      /p,
L(8, 1)

It follows that  è = g~   t.g.

Similarly, if the orbit space of h  is the lens space  L(8, 3), then there is a

homeomorphism  g  such that  h = g~   t2g.  This proves Corollary 3.3.

4.   Free Z    actions on  S  .  We shall view  S    CE    as the join of the two circles
72 '

Xj 4- x, = 1   and  x    + x . = 1   and let z    = (x,, x  )  and  z    = (x2, x  ).  The trans-

formation f: S    —» S  , defined by  /: (zQ, Zj) —> (z., e77'  '"z.), interchanges the two

solid tori   V+: |zj|2 < |zj2   and   V~ : |zQ|2 < |zj|2, where   |zQ|2 + |zj|2 = 1.   It

follows from Theorem 2.4 that / is equivalent to an orthogonal (4p, a)-action, where

a = + (2/7 — l) mod 4p.  If  e: S    —> S3// = L(4/z, a)  is the natural projection, then

eidV )  is one-sided and, therefore, a Klein bottle.   It is known [2] that a Klein

bottle embeds   in    L(4p, q)  if and only if a = + (2p — 1) mod 4/j.   In particular, the

action which interchanged the closed complementary domains of the torus   T    in

the proof of Theorem 3.1    must be the action which is topologically equivalent to

the (8, 3)-action.  On the other hand, since there is no Klein bottle in   L(8, 1),

there is no join construction of S    such that the join circles interchange under the

orthogonal (8, l)-action.   It is this latter obstruction which prevents us from classi-

fying all free  Z   ,   actions on  S    using the methods developed in the preceding

section.  However, the method used for proving Theorem 3-1 does enable us to

extend the results of the last section to those free actions on  S    whose squares

interchange the two circles   \zA    = 1   and   |zJ    = 1.

Theorem 4.1.   Let Z    act freely on S  ,  tz = 4p,  p even and h eZ    a generator.

If h     is topologically equivalent to the orthogonal (2p, q)-action, where

1 - ± ip ~ 1) mocl 2p, then  h  is topologically equivalent to either the orthogonal

in, q)-action or the orthogonal (n, 2p — q)-action.

Proof.  For p = 2, the result follows immediately from Corollary 3.3. For p > 2,

there is a torus   T C S    whose complementary domains in  S     interchange under the

action of h  .  Hence, by an exact duplicate of the argument given for the proof of

Theorem 3.1, there is an unknotted simple closed curve in  S     which remains

invariant under the action of  h.  Furthermore, using the same reasoning as presented

in the proofs of Corollaries 3.2 and 3-3, the orbit space  S /Z   , is homeomorphic to

a lens space   L(n, a )  and  h is equivalent to an orthogonal  (n, a )-action.   By [7j,

[9], there is no loss of generality in assuming  a < p  and  q   < 2p.  Thus, since

,e29<í7i/n)2 = e<¡'Tri/pt   if   is topologically equivalent to the  (2p, a')-action.   There-

fore, q' = + q~    mod 2p  and, hence either  a   = a  or  a   = 2p — q.   Finally, since
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2p — q 4 ± q mod 4p for p > 2, the two orthogonal actions are topologically distinct.

This establishes Theorem 4.1.
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