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FREE z_, ACTIONS ON $3 (1)

BY
GERHARD X. RITTER(?)

ABSTRACT. This paper is devoted to the problem of classifying periodic
homeomorphisms which act freely on the 3-sphere. The main result is the classi-
fication of free period eight actions and a generalization to free actions whose
squares are topologically equivalent to orthogonal transformations. The result
characterizes those 3-manifolds which have the 3-sphere as universal covering

space and the cyclic group of order eight as fundamental group.

1. Introduction. This paper is devoted to the problem of classifying periodic
homeomorphisms which act freely on the 3-sphere. Thus far, only free actions of
period two and of period four have been classified. The main result of this paper
is the classification of free period eight actions and a generalization to free actions
whose squares are topologically equivalent to orthogonal transformations. The
result characterizes those 3-manifolds which have the cyclic group of order eight
as fundamental group and the 3-sphere as universal covering space.

It follows from the proofs of Corollaries 3.2 and 3.3 that the problem of show-
ing a periodic homeomorphism acting freely on the 3-sphere, $3,to be topologically
an orthogonal transformation is equivalent to the problem of showing the existence
of an unknotted simple closed curve which remains invariant under that homeomor-
phism. Roughly speaking, if Z acts freely on 3, be Z  a generator, and | an
unknotted simple closed curve which remains invariant under b, then there is a
whole toroidal neighborhood N of ] which remains invariant under h. The solid

torus N is an n-fold cover for the orbit space N/Zn and, similarily, the solid torus

S~ N is an n-fold cover for m/zn. It will be shown that N/Z  and

$3 - N/Z_ are solid tori. Since the orbit space SS/Zn is obtained from N/Z

and §° — N/Z_ by identifying their boundaries via the projection map, SB/Zn is
topologically the lens space L(n, m). If p, denotes the covering projection of this
construction and p, the covering projection for the standard construction of

L(n, m), then there is a homeomorphism g of $3 onto itself such that by = 0,8
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196 G. X. RITTER

The conjugation of b with g will then be the required orthogonal map. More pre-
cisely, if T is the orthogonal transformation used for the construction of L(n, m),
then b =g~ ng. Our main theorem, therefore, shows the existence of an unknotted

simple closed curve which is invariant under a given free Z, action.

2. Preliminaries.

Definitions and notation. If M is a topological manifold, then the interior of
M will be denoted by int M and the set M — int M is called the boundary of M
and is denoted by JIM.

Two homeomorphisms b; and b, of $3 onto itself are said to be topologi-
cally equivalent if there is a homeomorphism g of $® onto itself such that
bhy=g" lbzg. To say that a group G acts freely on $? means that each g €gG,

g # identity of G, is a fixed point free homeomorphism of $3 onto itself. If G is
cyclic of order p and g € G a generator, then g is called a free action of G on
s3 of period p.

We shall denote a cyclic group G of order p by Zp. If Zp acts freely on the
closed combinatorial 3-manifold M, then the orbit space M' = M/Zp is also a
closed 3-manifold. For let M’ have the natural piecewise linear structure induced
by the projection map p: M — M'. Let v' be a vertex of M' and v a vertex of M
such that v’ = pv. Since p is a local homeomorphism, the star of v in M,
st(v, M), is homeomorphic to st(v', M'). But st(v, M) is a 3-ball neighborhood of
v in M, hence st(v', M') is a 3-ball neighborhood of v’ in M'. According to
R. H. Bing [1], M’ can be triangulated and the triangulation can be lifted to M.
The action b of Zp on M is a deck-transformation on the covering space and
hence simplicial. Thus, free actions on closed 3-manifolds are piecewise linear
homeomorphisms. Henceforth, our objects (maps, embeddings, etc.) are always
considered from the piecewise linear point of view.

In order to study free actions on §3 it will be convenient to view S> as the
join of the two circles |20|2 =1 and |zl|2 =1, where z, z; are complex numbers
with §% = {(zy5 2] lzo|2 + |zl|2 = 1}, and investigate the behavior of the actions
on these circles. The map b: s? ——>‘S3 defined by b: (zo, zl) — (ezm/pzo, ezqm/"zl),
where p and g are relatively prime integers with p > 0, rotates the circles |z0|2 =1
and |zll2 =1 through an angle of 27/p and 2gqm/p, respectively. It follows that
b is a fixed point free homeomorphism of period p and we call b the standard or
orthogonal (p, q)-action on s3.

The group of rotations on s? generated by the standard (p, ¢)-action is cyclic
of order p and, hence, represented by Z,. Furthermore, 5 is invariant on the two
solid tori ‘zolz < lzllz and lzll2 < |z4|? with common boundary lzo|2 = lzllz.
Thus, the orbit space S3/Zp is the lens space L(p, q) and we call this construc-

tion of L(p, q) the standard construction.
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Preliminary results. The following result of Livesay [6] classifies free z,

actions on S°.

Theorem 2.1. Every free action of Z.,, on §3 is topologically equivalent to
the antipodal map.

Since results similar to the proposition below have appeared in numerous pub-
lished works [3], [4], [5], [8], [10], we will omit its proof.

Proposition 2.2. If Zp acts freely on the closed combinatorial manifold M
and P is a subpolybedron of M invariant under a subgroup G of Zp, then there is
an arbitrarily small isotopy of M which takes P onto a polybedron Q such that,
for each b € Zp/G, Q is in general position with respect to hQ. Furthermore, Q

is invariant under G.

Rice (8], using Theorem 2.1 and Proposition 2.2, classified free Z4 actions
3
on S°.

Theorem 2.3 (Rice). Every free action of Z, on §3 is topologically equiva-
lent to the orthogonal action.

If we consider S> C E* as the join of the two circles x% + x% =1 and x% +

xf =1, then S decomposes into two congruent solid tori having these circles as
. . — - . .
centerlines. The two congruent solid tori V' and V7~ are defined by the equations,
2.2 2 2, .22, .2 o
X+ X3 4 and %7 + 523 <xy + Xy rezspecuvely, their common boundary T
is defined by the equation x] + xg = x% +xy. If b denotes the standard orthogonal

2
2x2+x

(4, 1)-action on 53, then b maps the point (xl, Xyy X35 x4) €53 to the point
(—Xz, Xp9 =X x3) 633. Here zg = (xl, x2), zZ) = (xs, x4) and xi + xg + xg + xi =
1. It follows that T = T and b interchanges the closed complementary domains

vYand V™ of T.

Theorem 2.4. If Zp acts freely on $3 and there is a torus T CS® whose com-
plementary domains interchange under a generator b of Zp, then p = 4k and there
is a (1, 1)-curve on T which remains invariant under b. In particular, b is equiva-
lent to the standard (4k, 2k — 1)-action. Conversely, if b is equivalent to the
standard (4k, 2k — 1)-action, then there is a torus T C $3 whose complementary

domains interchange under b.

Proof. Let V' and V™ denote the closed complementary domains of T in s3.
Since b interchanges V' and V™, p must be even and T unknotted. The action
B2 generates Zp/2 and, since 52V = V7, it follows from our introductory remarks
that b2 is topologically an orthogonal transformation.

We suppose that h? is topologically equivalent to the standard (p/2, r)-action,

where r is some positive integer relatively prime to p/2, that is (p/2, r) = 1. Any
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meridian simple closed curve m on the torus a(V+/Zp/2) lifts to p/2 disjoint
meridian simple closed curves on V' which permute under h2. We let mys mys

S My denote this collection of meridian curves and assume that the subscripts
are arranged in an order such that bzmp/2 =m, and bzml. =m,  for i= Lyeen,
p/2 — 1. Denoting the image of m_ under b by /., then, since t=v-, [ isa
meridian simple closed curve on dV~ and, hence, a longitudinal simple closed
curve for V¥,

We set my,-«+, My /o into general position with respect to the collection
Liseees lp/2 by adjusting the m s as follows. Let X be a component of m; N L
such that X is not a crossing point of m; U [,. Let D be a sufficiently small
polyhedral disc on T such that the following four properties are satisfied:

(i) XCint D and h’'DND =@ for i=1,--+, p/2 — 1.

(ii) D N'm, is an arc & such that aN 9D = da and DN I, is an arc B such
that BN dD = dB.

(iii) D N mi=D N li=Q for i=2,.++, p/2.

(iv) If Y is a component of m; N [, and Y # X, then YN D = &.

Let a;, a, and b, b, be the end points of @ and f3; respectively. The set

a, U a, divides dD into two arcs w; and w, and, similarly, b; U b, divides oD

1
into two arcs v, and v,. Either v, is a subset of w, or w,, or v, is a subset

of w, or w,, or int v, contains exactly one end point @, i=1 or 2. If w; con-
tains v, we adjust m; (Figure 2.1) by replacing the arc a by the arc w,. Similarly,

if v; Cw,, we replace a by w,. We then copy this replacement in the images of

b2, If int vy contains

b, 1Y
D ~_
Vi X -
P
l b, 4y 1

m m
Figure 2.1

exactly one end point, we adjust m, by replacing @ by w, (Figure 2.2) and, again,
copy this adjustment in the images of b2, We repeat this process a finite number
of times until m; N I, consists of only a finite number of crossing points. In an
analogous fashion, we set m, in general position with respect to ll. for i =2, 3,

<+, p/2. It follows that m; 0 [ consists of only a finite number of crossing points

as i and j range over the set {1, 2,..., p/21.
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Figure 2.2

Since ll. is a longitudinal simple closed curve on (9V+, the number of cross-
ing points in m. N I. must be odd. In particular, if p/2 is odd, then the number
of crossing points in [Jp/2 [([_Jp/2 ) N l ] must be odd. But this is impossible
since b is fixed point free, of even peuod and invariant on Up/2 [(Up/z ]) N ll]
Thus, p/2 is even and p = 4k for some positive integer k.

Since b’ is topologically the (2k, r)-action, m, and bzrmi are adjacent; that
is, there is an annulus A C T with boundary components m, and bzrmi such that
m; Nint A=¢g for j=1,.-., p/2. Furthermore, since (ry 28) =1, »27 generates
Z 0/2" On the other hand, (7, 2k) = 1 implies that (7, ) =(r,2Qk) =(r,2) =1
and hence, b” also generates Z and interchanges V' with V~. In the remaining
part of this proof we let b, = 5" and suppose that the subscripts of the meridians
and longitudes have been relabeled so that bfmi =m1 and b%li = li+1'

If n denotes the number of crossing points in m) N I, then » is odd, and if
n > 1, then there are (n — 1)-discs on 9v* such that the boundary of each disc is
the union of two arcs meeting only in their end points, one of which is a subset
of m, and the other of /. Suppose D is a disc with dD = a U 8, where @ C m,
and B C li are arcs for some i=1,2,+++, p/2, such that int D N m, = int DN l],
=@ for j=1,2,.++, p/2. We call such a disc innermost with respect to myU L.
Let p, and p, be the common end points of a and 3. Let p{ and pzl be points
on m; — @ near p, and p,, respectively, such that the arc a' on m, containing
a and having end points p{ , pz' has the property that a' N l,=p,U p, and
a'n l]. =& for j#i. Let B' be an arc near 8 satisfying the following three
properties:

@D B Am=p, Up, =98

() B'n i1 =p"n m. =@ for i= Lyeves /2, =250, p/2.

(ii) BIB' N B =g for i=1,--+, p/2 - 1.

Property (iii) is easily satisfied since int 3 intersects no other meridian or

longitudinal simple closed curves and b is a free action. We now adjust m; by

replacing a' by B' (Figure 2.3). If we again denote
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Figure 2.3
by m, the adjustment of m,, then m; N I, contains two fewer crossing points. We
copy this adjustment in all the images of 5. Repeating this process, we eliminate
all innermost discs with respect to m; U [, for all i. It now follows that each
m, N li’ is j=1,2,+++, p/2, consists of exactly one crossing point. For if some
m_ N I, contained more than one crossing point, then there is an innermost disc D
with respect to some m.U [.. But, then, if i + m = p/2, bi(’"“)D is a disc inner-
most with respect to m; U bf("”l)l,., contrary to our assumption that all discs
innermost with respect to m; U ll., i=1,.++, p/2, have been eliminated.

We now assume that each m. N lj, i»j=1,2,+++, p/2, consists of exactly
one point. Let x € m; N I, then h;x € bym, N h;l; =1, N m,. The points x and
h,x divide /; into two arcs. We let @ C I, be the arc with the properties that
anNmy =% aNmy=hx,and aNm, #0, i=3,..., p/2. The simple closed
curve | = Uf__{lz b'ia(Figure 2.4) is clearly invariant under by and, therefore, non-
trivial on T. Thus | is a (p, g)-curve on T with respect to V' and at least one

of p or g is not 0.

Figure 2.4

Since b,] is a (p, @)-curve on T with respect to hlV’L =V~, b,] mustbea
(g, p)-curve on T with respect to v'. But h,] =] and, hence, p =g =1. We note
that since | meets every meridian m_ and every longitude I, exactly once in an

arc, it also follows from the construction of | that | must be a (1, 1)-curve on T.
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Finally, since | is invariant under b, ] is invariant under every power of b, and,
in particular, ] = J. Again, by our introductory remarks, b is equivalent to a stan-
dard (4k, g)-action and S3/b = L(4k, q). If e: S> — S?/b denotes the natural pro-
jection, then, since vt = V™, eT is one-sided and, therefore, a Klein bottle. By
[2] this is possible only if g = + (2k — 1) mod 4&.

In order to prove the converse, let f be a homeomorphism of $ onto itself

”i/kzo). It follows that [ is a free action of period

defined by f: (zo, zl) — (Zl’ e
4k which interchanges the two solid tori V' and V™ defined by |z,|* <|z,]* and
|ZO|2 < Izllz, respectively, and satisfying lzolz + lzll2 = 1. By the first part of
the theorem, / is equivalent to h. Hence there is a homeomorphism g of s onto

itself such that [ = g~ 'hg. We now let T = g(dV"). This verifies Theorem 2.4.

3. The main theorem. We will divide the proof of the main theorem into four steps,

commencing each step with a statement of what is to be shown.

Theorem 3.1. If b is a homeomorphism of period eight acting freely on s3,
then there is a polybedral unknotted simple closed curve | in S® such that h] =].

Proof. Since b acts freely on S, b’ is a free action of Z, on $3 and, by
Theorem 2.3, we may assume that h? is equivalent to the orthogonal (4, 1)-action.
Hence, there is a polyhedral torus T in §3 with closed complementary domains
V' and V™ such that T is invariant under b and b’ interchanges vt and V.
Furthermore, by Proposition 2.2, we may assume that T is in general position with
respect to hT.

Step 1. T N hT £ B. We suppose that T N hT = &. Then either AT C int V'
or hT Cint V™. If hT Cint V¥, then either (i) V" Cint V¥ or (ii) bV~ Cine V™.

If we apply b to (i), we obtain V™ = b2V C blint V*) Ciint V* which is a
contradiction.

If we apply b to (ii), we obtain vt =52y~ Chlint V). A second application of
b yields BV Cint V™. Therefore, v C hline V) C hV* Cint V™ which is a con-
tradiction.

Similarly, AT cannot be contained in int V7,

Step 2. T can be adjusted so that every simple closed curve in T N 5T is a
(1, I)-curve on T and ? interchanges the closed complementary domains of T.

Since T is in general position with respect to AT and TN AT £ & TN bT
consists of a finite collection of simple closed curves. If | is a simple closed
curve in TN bT, then | satisfies one and only one of the following three properties:

(1) J is trivial on both T and AT.
(ii) J is trivial on one of T or AT but not both.

(iii) J is nontrivial on both T and AT.
If ] is a (p, g)-curve on 9v*, then b2] is a (p, q)-curve on p2v = av-
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and, hence, a (g, p)-curve on V", Since V' =9V~ = T and either »*J = ] or
b2] NnNJ=g, h2] must be parallel to | on T. Therefore, p = ¢ = 1 and all simple
closed curves in T N AT which are nontrivial on T are (1, 1)-curves on T.

If J is a simple closed curve of type (i) or (ii) in TN AT such that | bounds
adisc D on T or hT with the property that int DN (T N bhT) =, then D is
called an innermost disc with respect to T N AT. Our next step is to eliminate all
simple closed curves of type (i) in T N hT—if there are such curves—which bound
innermost discs on AT. We may then assume that there are no simple closed
curves of type (i) in T N hT bounding innermost discs on AT and it will then
follow that there are no simple closed curves of type (ii) and, hence, no simple
closed curves of type (i) in T N bT.

We suppose that | is a simple closed curve of type (i) in T N AT bounding
an innermost disc D on hT. Since D C hT and is innermost, either D C v or
D C V™ and we suppose, without loss of generality, that D C V*. We denote by E
the disc on T bounded by ] and let J' be a simple closed curve in T — E suffi-
ciently close to | such that the annulus A C T bounded by | U J' has the property
that A N bT = J. Next, we choose a disc D' C V' so close to D that D' satisfies
D'NT=9D" =]', D' N hT =g, and h*D' N D' = @. This choice of D' is possible
since b and h* are fixed point free and since there are no intersections of T
with AT on int D. Finally, we set E' = E U A and replace the disc E' by D'
(Figure 3.1) and copy this replacement in the images of h. This adjustment of T

results in the torus T1

Figure 3.1
defined by

T, = [T=(E'U h2E' U H*E' U KCE")] U (D' U H2D' U h%D" U KOD")

with closed complementary domains given by




FREE Zg ACTIONS ON §° 203

Vi=Vv'—(B U b*B) UB'B UKD

and

Vi=V~ - (*B Uk°B) U (B U KB,

where B is the ball in V' bounded by E' U D'. Since V;, V] interchange under
the action of bz, it follows that Tl is unknotted and that T, N AT, contains four
fewer intersection curves of type (i) which bound innermost discs on AT . Repeat-
ing this process at most a finite number of times will then result in an unknotted
torus T whose complementary domains interchange under h? and such that

T N bT contains no curves of type (i) which bound innermost discs on AT.

We suppose that | C T N hT is a simple closed curve of type (ii) and assume
that | is nontrivial on T. The argument is analogous if | is nontrivial on AT.
Let D denote the disc on AT bounded by J. Since | is nontrivial on T, | is a
(1, 1)-curve on T and, hence, D is not an innermost disc on AT. Thus, there is
a finite number of simple closed curves of T N AT on D and, hence, one of these,
J', must bound an innermost disc D' on D (Figure 3.2) and hence on AT. Since
J' bounds a disc on AT, J' is trivial on AT and since all type (i) simple closed

curves bounding innermost discs on AT have been removed,

D' %\\\ ]

Figure 3.2
J' is also nontrivial on T. Therefore, J' is a (1, 1)-curve on T which bounds a
disc in one of the complementary domains of T. But this is impossible and, there-
fore, no type (ii) curves exist. Furthermore, since all type (i) curves bounding
innermost discs on AT have been removed, all simple closed curves in TN AT
are nontrivial on T and AT.

Step 3. There is an unknotted torus T C $3 such that T N AT contains at
least one pair of simple closed curves which remain invariant as a pair under the
action of h. Furthermore, b interchanges the closed complementary domains of T.

We let T denote the torus obtained in Step 2 and let » be the number of simple

closed curves in T N hT. We may assume that n is even and set n = 2r for some

positive integer r, for otherwise there is an arc aC hT with both end points in
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int V' and piercing v’ in only an odd number of points. Furthermore, by Step 1,
r# 0. The simple closed curves in T N hT divide T into » annuli and, hence,
divide T U bT into 27 annuli. Furthermore, if A and A’ are any two of these
annuli with A £ A’ then int AN A' = @. The 2» annuli divide $3 into k closed
3-dimensional regions and any one such region is entirely contained in one of the
following four sets: vin v, von sV, VoA bV, and VYA BVT. Under the

action of b on S7, these sets permute as follows:

rv*n wrs vt s v-npv- =S vtn bV~

Therefore, k£ = 0 mod 4.

There are 27 annuli on AT and if A is any one of these annuli, then either
ACVY or ACV~. Since V' = V™, there are exactly r annuli on AT which
must be contained in V' and 7 annuli on AT which must be contained in V™. If
A CV" is an annulus on bT, then A spans v? and, therefore, divides v* into
two 3-dimensional regions. Hence, the 27 annuli on AT divide viuv- =53
into 2(r + 1) 3-dimensional regions. Therefore, 2(z + 1) = £ = 0 mod 4 and r is odd.

We let J;5+++5 ] » where n=2r, denote the components of T N AT and define
a permutation 0 € 2 n by hJ, = ], ;. Writing 0 as a product of disjoint cycles,

0=0,5++,0,, we have n = 2 length (01.) = 2 order (ai) and the order of o is the

s
leastlcommon multiple of the orders of the 0.'s. Since 08 =1, each o, must have
order 1,2, 4 or 8. If some 0, has order 1, then there is a component | in T N AT
with ] = J. But then there remains an odd number of components in T N AT whose
union is invariant under h. Thus, since b has even period, there is another simple
closed curve J' in TN AT with b]' = J'. If some o, has order 2, then the con-
clusion of Step 3 follows trivially. If each o, has order > 4, then = is divisible
by 4, contradicting the fact that r is odd.

Before continuing our proof of Theorem 3.1, we note that if P and Q denote
the simple closed curves in T N AT such that P U Q is invariant under b, then
it is possible that each curve, P and Q, remains invariant under b, thus establish-
ing the theorem.

Step 4. If P and Q are simple closed curves in T N hT pairwise invariant
under b with AP £ P, then there is a torus T' C S? such that AT’ = T' and such
that b interchanges the closed complementary domains of T'.

The set P U Q divides T into two annuli, A and B, and either h’A = A or
b2A = B. If h?A = A, we let A' C hA be an innermost annulus on AT with respect

to TN bT having P for one of its boundary curves. Either A' C V' or A’ C V™,
and we suppose that A’ C v? and, hence h?A' C V™. But then, since »2P =P
and h2(hA) = bA, h®A' = A’ C V™. Similarly, A’ is not contained in V™ and,
therefore, only h’A = B is possible.
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In order to obtain T' we shall consider the two cases PU Q = T N »T and
PuUQ ¢ T NhT separately.

Case (a). TN hT = Pu Q. Since P and Q are disjoint, we may choose a
sufficiently small regular neighborhood N of P such that NN AN = &, BN =N
and TN bT divides IN into four annuli. Such a neighborhood N may be obtained
by choosing any regular neighborhood Np of P and then taking a second derived
neighborhood of P in a second derived subdivision of Np on which 5 is simplicial.

Ve let a,, a,, as, and a, denote the four annuli on IN so that
a, CVvin V', a,=h*a, CVT N BV,

ay CViNbYT,  a,=hla, CVT O BV,
and set @, N AT =], for a=1,2,and a, NT =], for i =3, 4 (Figure 3.3). We

define Ap to be the

Figure 3.3 Figure 3.4

annulus on T containing P and such that HAP =J; U J4 Similarly, we let B
be the annulus on AT containing P and such that aBp =]J,u J,. The torus T'
defined by

T'=(T U bT) - (4, U B, U bA, U bB,) U (a; U a,u ha; U ba,)

is clearly invariant under h. Furthermore, since

WV-pwH o GV v = (v —bv) U BV - V)
and

(V== bV UGV v =) u bV - V),

the two closed complementary domains of T' in s? given by
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(G A708 WURVATANERTAS WURY) IS
and

VT (v pvD) U VT VYU AN) - N

(Figure 3.4) interchange under the action of h.

Case (b). PU QG TN AT. If n is the number of simple closed curves in
T N bT, then n = 2r for some positive integer r > 1, and each A N hT and B N HT
contains r + 1 simple closed curves. We order the simple closed curves in AN AT
sequentially, letting P = [, J;5-++5 ] =0, sothat J, precedes ], , as we
traverse A from P to Q. In a similar fashion we order the simple closed curves
in BN bT denoting them by P =K, K;,+++s K =0.

Since 7> 1 and, by Step 3, r is odd, AT contains at least six innermost annuli.
Hence, there is an innermost annulus A1 on AT such that PN 3/\1 =0nN 8A1 =d.
The boundary of A must be of one of the following three types:

Type 1. ] U],;i,j:l 20y =150 £ .

Type 2. K UK kyl=1,2,ccc,r=1; k£1L

Type 3. ]m U Kn, myn=1,2,+0057r—1.

Our next step is to eliminate all innermost annuli on AT with boundaries of
Type 1 or Type 2. It will then follow that we have either again Case (a), that is
T N hT consists of exactly two simple closed curves, or all innermost annuli on
hT have boundaries of Type 3.

We suppose that A, C V' and has Type 1 boundary, If dA, =7, u] then
I, v ] divides T into two annuli Wthh we denote by A’ and B’ thh P @] O Cint B'.
We choose two simple closed curves ] and ] on B', parallel and sufficiently
close to J, and ] respectlvely, satlsfymg the followmg property If R, and R
denote the two annuh on B' bounded by I, u] and ] u] , respectxvely, then
R.NbT =], R N bhT = ] b R, =R, and b4R = R These last conditions are
easdy sausfxed by obsetvmg that since h%A = A b P P and %0 = Q, we must
have b4] =], and b ] = ] Since A, is innermost, hbA; N int A} = & If
hA N aA # ¢, then smce bA is innermost on T, hA, C A and also h A N
abAl # ;Zi. But this is impossible since dh? A Ch 24 = B. Thus, hA | N AI = &,

and we may choose an annulus All cv® close to A1 so that A]' N »T =&,
Al AT=0A =7' U 7' and A! n bA! = & (Figure 3.5). Replacing the annulus
1 1 i i 1 1 8 p g
A"UR.UR. by A ' and copying this replacement in the image of b results in
i i 1 pying P 4

the torus

T, =(T-(A"U R, UR) 0 h*A" U R, UR)U (A} U h2A").

. . ' ' . . 4
Since each of the annuli A", A1 » R, and R,' remain invariant under 5", the torus

T, remains invariant under h* and T, N hT, contains at least four fewer simple
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Figure 3.5

closed curves than T N hT. Furthermore, if V, denotes the closed 3-dimensional
region in V" bounded by A,u AU R, U R," then the two closed complementary
domains of T, in s3, given by

Vi=(V'-v) U bV, and Vi=(V"-hV)UV,

interchange under the action of bh%. We reason analogously if A, C V7™ and/or A
has Type 2 boundary.

If T, N bT, contains exactly two simple closed curves, we obtain the torus
T' by Case (a). Otherwise we replace T by T, in Case (b) and repeat the entire
argument. Since we started with only 27 intersection curves and the preceding
argument reduces the number of innermost annuli having Type 1 or Type 2 bound-
aries by at least two, a finite number of at most (r — 1)/2 repetitions of the above
argument must eventually yield a torus T such that either T N AT consists of
exactly two simple closed curves or all innermost annuli on AT have Type 3
boundary.

We now suppose that all innermost annuli on AT have Type 3 boundary. If
c; C V' is an innermost annulus on AT with respect to T N hT and acl =Pu I
then i=1. For if i > 1, then there is an innermost annulus ¢ on AT (Figure 3.6)
with dec =] WY ]k’ k <1, contrary to our assumption that all innermost annuli on
hT have boundaries of Type 3. Similarly, if ¢, C V' is innermost on AT and
8c2 = K1 vJ, (Figure 3.7), then 7 = 2. Continuing this argument for i = 3,.+.,7,
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Figure 3.6 Figure 3.7

we see that if ¢, C V* is innermost on AT, then de,=K,_,U]J,;.

If ¢, C V" were innermost on AT with acl =Pu K., then, using the same
reasoning as above, the innermost annuli of AT in V* would have boundaries of
form J. ;U K, where i=1,-.-, 7.

We shall assume that the innermost annuli of AT, contained in V+, have bound-
aries of form K, _, U J,, i=1ly-c-57 (Figure 3.8) and argue analogously if, instead,

the boundaries are of the form J._, U K, i=1,-+., 7.

Figure 3.8

We denote the innermost annuli on T by a; and b, where @, CA, da = ].
U ]i’ b,CB, abi = Ki—l U KZ., and i=1,...; r. We are interested in the images
of the boundaries of these annuli under b. Since ha, is innermost on hT and
dba, = Q U b] |, we must have either ], =] _, or h]; =K __, (Figure 3.9).

There is no loss of generality if we assume that 5], = J,_,, since the case
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h] | = Kr_1 is argued in a likewise fashion. Thus, abbl =QU hK, = (ONV] Kr_

1
and dha, =] UK ,.

It follows that

]r~—(i—1) UK _, if iiseven.

0ha, .
Kr-(i—l) U J,._, if iis odd.

Similarly,
K _i-1yYJ],_; if i iseven.

b, =Q UK _, and Ibb, =
1=K e ' {]r_(l._l)uKr_i, if i is odd,

In particular,

J,_; if i is odd, K _; if i is odd.
b]: = . L. and bKl =

K _; if iis even, J,_; if iis even.
Thus, since r is odd, bZ]i = K, if i is odd, and b2]i= J; if i is even. But
b’A =B and h’P = P so h’],= K, which is a contradiction if > 1. This
establishes Step 4 if Case (b) occurs.

We have shown that T N hT contains a pair of unknotted simple closed curves,

P and Q, remaining pairwise invariant under » and either hP = P or there is a

torus T' C 3 invariant under b and such that b interchanges the closed comple-
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mentary domains of T'. However, if the latter case occurs, then, by Theorem 2.4,
there is an unknotted simple closed curve J C T' with hJ = J. Thus, Theorem 3.1
has been verified.

We conclude this section by stating two easy corollaries of Theorem 3.1.

Corollary 3.2. If Z acts freely on 3, then the orbit space SS/Z8 is either
homeomorphic to the lens space L(8, 1) or to the lens space L(8, 3).

Proof. If 5 is a generator of 28’ then, by Theorem 3.1, there is an unknotted
simple closed curve J C $? invariant under 5. We denote by N] a regular neigh-
borhood of | in s3I bN # N], we take a second derived subdivision which is
obtained from a lifting of a second derived subdivision of 53/2 and let N be
the second derived neighborhood of J. Since N consists of all S-Simplexes which
intersect | and since | is invariant under b, we must necessarily have N invariant
under h. The neighborhood N is a solid torus with torus boundary JN. Further-
more, if vy, vyseees vy denote the vertices of | in this second derived subdivi-
sion, then B, = star (v 2 N) is a 3-ball around v, and B.N B # & if and only if
either i =j or 1—]=+1 Setting D, =B, N B, RE then D, 1sadlsc and D, nD
=g for i #j. Thus, N = U B, and N/b is obtamed by 1dent1fymg two dls;omt
discs in the boundary of a 3- cell By the Lefschetz fixed point theorem, b is

orientation preserving and, therefore, N/b must be a solid torus. Similar considera-

tions show that S — N/h must also be a solid torus. Thus, the solid torus N is

an 8-fold cover of the solid torus N/b and, similarly, the solid torus $? N is

an 8-fold cover of the solid torus G N)/b. The orbit space 53/2 is obtained from
N/b and (53 — N)/b by identifying their boundaries via the projection map.
Hence, § /Z8 is homeomorphic to the lens space L(8, ¢) and by [9] we may
assume that ¢ <4 and relatively prime to 8. Thus, either ¢ =1 or g = 3. Further-
more, by [7], the lens spaces L(8, 1) and L(8, 3) are not homeomorphic. This
proves Corollary 3.2.

Corollary 3.3. Every free action of Zg on $? is topologically equivalent to
either the orthogonal (8, 1)-action or the orthogonal (8, 3)-action.

Proof. If b is a generator of Zg, then, by Corollary 3.2, the orbit space
S3/Z8 is either topologically the lens space L(8, 1) or the lens space L(8, 3).
We denote by ¢, and ¢, the orthogonal (8, 1)- and (8, 3)-actions, respectively,
and let p, and p, be the projections of S onto the orbit spaces of ¢t; and ¢,,
respectively. If the orbit space of b is the lens space L(8, 1) and p the projec-
tion map of $3 LG8, 1) given by p(x) = phlx), x € 3, then, since $?isa
universal covering space of L(8, 1), there exists a homeomorphism g of s onto

itself such that the following diagram commutes:
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8 ¢

N
L(8, 1)

It follows that h =g~ lllg.

Similarly, if the orbit space of b is the lens space L(8, 3), then there is a

homeomorphism g such that b = g-ltzg. This proves Corollary 3.3.

4. Free Z_ actions on S°, We shall view S C EY as the join of the two circles
xi+x§=l and x§+xi=l and let z; = (x,
formation f: §3 5 53, defined by f: (zo, Zl) - (zl, e"i/pzo), interchanges the two
solid tori V*: lzllz < |zol2 and V™~ |zo|2 < |z1|2, where |20|2 + lzl|2 =1. It
follows from Theorem 2.4 that [ is equivalent to an orthogonal (4p, ¢)-action, where
g=+(2p—1) mod 4p. If e: S> — S3/f = L(4p, q) is the natural projection, then

xs) and z, = (xz, x4). The trans-

eV is one-sided and, therefore, a Klein bottle. It is known [2] that a Klein
bottle embeds in L(4p, q) if and only if ¢ =+ (2p — 1) mod 4p. In particular, the
action which interchanged the closed complementary domains of the torus T' in
the proof of Theorem 3.1 must be the action which is topologically equivalent to
the (8, 3)-action. On the other hand, since there is no Klein bottle in L(8, 1),
there is no join construction of §3 such that the join circles interchange under the
orthogonal (8, 1)-action. It is this latter obstruction which prevents us from classi-
fying all free sz actions on §° using the methods developed in the preceding
section. However, the method used for proving Theorem 3.1 does enable us to
extend the results of the last section to those free actions on S whose squares

interchange the two circles |zo|2 =1 and lzl|2 =1.

Theorem 4.1. Let Z  act freely on S3, n=4p, p evenand b €Z  a generator.
If h? is topologically equivalent to the orthogonal (2p, q)-action, where
g =+ (p — 1) mod 2p, then h is topologically equivalent to either the orthogonal

(n, q)-action or the orthogonal (n, 2p — g)-action.

Proof. For p = 2, the result follows immediately from Corollary 3.3. For p > 2,
there is a torus T CS° whose complementary domains in s? interchange under the
action of h%. Hence, by an exact duplicate of the argument given for the proof of
Theorem 3.1, there is an unknotted simple closed curve in $? which remains
invariant under the action of . Furthermore, using the same reasoning as presented
in the proofs of Corollaries 3.2 and 3.3, the orbit space S3/Zn, is homeomorphic to
a lens space L(n, ¢') and b is equivalent to an orthogonal (n, q')-action. By [7],
[9], there is no loss of generality in assuming ¢ < p and q' <2p. Thus, since
(e29'i/m)2 _ a'Ti/bp2 o topologically equivalent to the (2p, ¢')-action. There-

fore, ¢' = + qil mod 2p and, hence either ¢ =q or ¢’ =2p — gq. Finally, since
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2p — q £+ q mod 4p for p > 2, the two orthogonal actions are topologically distinct.
This establishes Theorem 4.1.
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