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GENERIC REPRESENTATIONS ARE INDUCED FROM
SQUARE-INTEGRABLE REPRESENTATIONS

BY

RONALD L. LIPSMAN1

ABSTRACT. It is proven for arbitrary real algebraic groups that the generic

irreducible unitary representation is induced from a square-integrable represen-

tation (modulo the projective kernel). This generalizes the well-known result

for reductive groups that the generic representations are either discrete se-

ries, or induced from discrete series (modulo the nilradical) representations of

cuspidal parabolic subgroups.

1. Introduction. In this paper we shall prove the following result.

THEOREM A. Let G be a real algebraic group. Then, with the exception of a

Plancherel null set, every irreducible unitary representation of G has the property

that it is induced (from an algebraic subgroup) by a representation which is square-

integrable modulo its projective kernel.

The motivation for this result is the following. The Orbit Method, which has

had a flourishing development in recent years (see e.g., [2, 3, 8, 9, 14]), has as

its basic philosophy that harmonic analyses of all Lie groups have many features

in common. Indeed, many strong similarities have been discovered between the

construction and parametrization of the irreducible unitary representations, the

characters and Plancherel measure of reductive groups on one hand and solvable

groups on the other. Along these lines many classical results about semisimple

groups have been reformulated in the orbit language, which developed originally in

the solvable theory. Perhaps [14] is the most famous instance of this development.

In this paper, I should like to reverse the roles, i.e. I will formulate a new result

for solvable groups—indeed for general groups—based on a classical part of the

semisimple theory. Namely, one of the most important results about semisimple

groups is the description of the generic representations as members of several series.

They are either discrete series, or various principal series, the latter being induced

representations from cuspidal parabolics by representations which are trivial on

the unipotent radical and discrete series on a Levi factor. This can be summarized

by saying that the generic representations are induced by representations square-

integrable modulo their projective kernel. Theorem A asserts that this remains

true for any algebraic group. This result is already known for nilpotent groups

[13]. Actually it follows just from the existence of real polarizations. But Penney's

result is stronger, since his inducing subgroup is canonical (and much larger than a

polarization). One can also show the existence of a canonical inducing subgroup for
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reductive groups of the Harish-Chandra class. It is an interesting question (which

I hope to return to) as to whether such canonical groups always exist.

I would like to express my gratitude to Michel Duflo and Roger Howe. Duflo

first pointed out to me examples like those in Subsection 4a. But it was Howe who

strongly concurred with my original sentiment about the truth of Theorem A, and

who helped me over one or two rough spots in several letters and conversations.

2. Notation and terminology. G will denote a real algebraic group, that is

G — G(R), where G is a (complex) algebraic group def/R. G is, in particular,

a real Lie group. The Lie algebra of G is denoted by a, and its real dual by

0*. We consider the set AP(G) of admissible, well-polarizable linear functionals

<j> E 0*. The precise definition of the set AP(G) may be found in [2 or 9], but the

reader should think of its elements as "regular" and "integral" linear functionals.

Corresponding to each <j> G AP (G) there is associated a canonical finite set XG(d))

of irreducible unitary representations of a 2-fold cover of the stability group G^;

see [2, 9 or 10]. (XG(<f>) is naturally identified to the projective dual of G¿/G°

with a canonical 2-cocycle determined by <f>.) We set

B(G) = {(<f>,r): <j>eAP(G), reî1^)}.

B (G) is a G-space in a natural way. In [2] Duflo has constructed a map (</>, r) —»

it((¡>, t) from B(G) to the dual G of equivalence classes of irreducible unitary repre-

sentations of G. The map factors to an injection B(G)/G —» G. The image consists

of generic classes in the sense that its complement is of null Plancherel measure.

(Since algebraic groups are automatically type I, the Plancherel measure class is

well defined.) Duflo's construction of the class ir(<j>, t) is by induction on the di-

mension of G. Explicit realizations of the representations by harmonic induction

via polarizations is taken up in [9 and 11]. In this ppaer we show that there is

a Plancherel co-null set in G, contained in B(G)/G, whose classes have the prop-

erty that they can be realized by ordinary induction by a representation which is

square-integrable modulo its projective kernel.

Here is some more mundane notation and terminology. G° will denote the iden-

tity component (for the locally compact topology of G), Zq denotes the center of

G. More generally, if V is a G-space and W is a subset of V, then

ZgCW) = {geG: g-w = wVweW}.

We also write Ng("W) for the group elements that preserve W set-wise, and G„ for

the stability group of an element v &V. If ir is an irreducible unitary representation

of G, we put Kv = ker ■k and Pv — proj ker7r — {g EG: 7r(g) is a scalar operator}.

Such a representation n is called (resp.) square-integrable, square-integrable mod

its center, or square-integrable mod its projective kernel, if there exists a matrix

coefficient of 7r which is square-integrable (resp.) on G, G/ZG or G/Pn. These

are equivalent to the occurrence of ~k as a discrete summand in (resp.) the regular

representation of G, the representation Ind2GX, or bidp^x, where ^\p^ = \Id. We

remark that it is square-integrable mod P^ & n, considered as a representation of

G/Kn, is square-integrable mod its center. Finally, by a split torus A in G we shall

mean A = A(R)°, where A is a split (over R) torus in G in the usual sense. Such

a group is a vector group. The word torus by itself indicates a connected compact

abelian Lie group.
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3. The main result. The following is the main result of the paper.

THEOREM A. Let G be a real algebraic group. Then, with the exception of a

Plancherel null set, every irreducible unitary representation of G has the property

that it is induced (from an algebraic subgroup) by a representation which is square-

integrable modulo its projective kernel.

We call a representation with the property of Theorem A square-integrably in-

duced. The proof of Theorem A occupies this entire section, and proceeds by a

series of steps which we begin now.

3a. Reductive data. The following material is adapted from [11, §4]. Let (<f>, r) G

B(G), n = ir((t>, t). We let JV be the unipotent radical of G, n its Lie algebra,

9 = <j>\n. We set G1 = GeN, (¡>l = d,\gl. Then by [11, Proposition 4.1], we have

(j)1 G AP (G1) and there is an element r1 € £G1 ((/>*), canonically determined by r,

such that

7r((/.,T)=Indg17rG1(</.1,r1).

We repeat the procedure with (01,r1) 6 B(G1). Let N1 be the unipotent radical

of G1, 01 = 4*1 |ni,_The sequence stabilizes after a finite number of steps, say r,

Gr = (Gr)9rNr,      (4>r,Tr)eB(Gr);

and by induction in stages we obtain

7r(</.,r)=Indgr7rG,(^,rr).

Let Y = 7Tjv(ör) be the Kirillov representation of Nr determined by 6T. Then

select a Levi factor S of Gr which lies in (GT)e^, Gr = SNr. Since S fixes 0r, 7

extends canonically to a (perhaps projective) representation 7 of S on the space

of 7 [1]. Thus (by [12]) there is canonically determined a (perhaps projective)

irreducible unitary representation a; of S such that

ir(<j>r, rr) = u) ® 7 x 7.

We call (S,uj) the reductive data of tt, or of ((f>, t). We know that the order of

the cocycle for the representation u> is at most two. (These data are uniquely

determined only up to conjugation by certain elements of Nr, but that need not

concern us.)

By the above construction and an argument to be given in subsection 3d, we will

see it is enough to consider groups of the type GT. The first step in that direction

is the case of trivial unipotent radical. We take that up in the next subsection.

3b. Reductive groups. We shall prove Theorem A in this subsection under the

assumption that G is reductive. If G is connected, or more generally of the Harish-

Chandra class, then of course Theorem A is well known and, as discussed in the

introduction, is the inspiration for the result in general. The inducing subgroups

are then cuspidal parabolics, and the representations 7r(</>, t) are square-integrably

induced for every (<¡>,t) E B(G). But if G is not of the Harish-Chandra class,

the stability group G 4, may not leave any cuspidal parabolic subalgebra invariant.

That is because it may mix up the root spaces extensively if the action of G¿ on

the Cartan subalgebra $$ is too complicated.   But in that case, it follows that

generically the stability group in G^/Ci for the action on (G?) must be quite

small.  This line of thought may be pursued to show that generically one is able
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to realize the representations of G by inducing from (essentially) Harish-Chandra

class subgroups.

We begin with the simple—but instructive—case that G° is abelian. Let G be

a reductive algebraic group, and suppose a is abelian. What does it mean for G to

be of the Harish-Chandra class? The key defining condition (for a reductive group)

of the Harish-Chandra class is: AdflcG Ç Ad{jc. If g is abelian, that means G acts

trivially on n, or equivalently G° is central in G. For our purposes it will be enough

to arrange that a maximal split torus of G° is centralized by G. Here is the key

LEMMA B. Let F be a finite group of automorphisms of a vector group V. Then

there exists U Ç V, an open co-null subset, such that

FX = ZF(V),    Vxett.

PROOF. Let us write $: F —> Aut(V) to denote the action of F on V. Then the

lemma asserts the existence of an open co-null subset U in V such that Fx = Ker $

for all x S U. (Note: F acts on V by duality (/ • x)(v) = x(/_1 ' v), v € V, x € V.)
This can be proven rather easily by appealing to theorems on principal orbit types

for actions of compact groups. Here is an absolutely elementary proof due to N.

Markley.

Let W = {x G V: #(^1x) ^s minimum}. W is open and co-null. List the stability

groups that occur in W, say Fi,F2,..., Fr. Let Wi = {x G W: Fx = í¿}, 1 < t < r.

Then Wi is closed in W. Indeed, if Xn £ Wi and Xn —► X e W, then FXD F¿. Since

#(FX) = #(fi), we get x£W¡. But Ii1 is a disjoint union of the W¿; hence each "W,-

is open in V. Now a linear automorphism of a (real) vector space that pointwise

fixes a nonempty open set must be the identity. Hence Fx C Zp(V) Vx G W. By

duality we obtain Fx Ç Zf(V), Vx G W. The reverse inclusion is obvious, so the

lemma is proven.

How do we use the lemma to prove Theorem A for reductive algebraic groups

with abelian Lie algebra? Let G° be the identity component of G, T the maximal

torus of G°. Let F = Ad8 G. Then T is ^-invariant. Choose an F-invariant

complement 0 to t in a. Then V — exp t> is a closed G-invariant vector subgroup

of G°. Apply Lemma B: 3U Ç V, co-null, such that Gx = ZG(V), VX G U. The
representations of G that lie over U constitute a Plancherel co-null set and every

one of them is of the form

-ïï = Indw o,

where H = ZG(V), a G H, a\y = multiple of some x € U. It is obvious that a is

finite dimensional and that H/Zh is compact (since V Ç Zu)- In particular, a is

square-integrable mod its projective kernel (even mod its center).

Now we extend to arbitrary reductive algebraic groups G. Fix a Cartan subal-

gebra h of fl. We shall only consider <f> G AP (G) such that fl^ = h. Let T be the

maximal torus in the abelian group H = G®. Set F = Ng(Í))/H, and note that

G<t> Ç NG(b). T is invariant under F, so we can choose an F-invariant comple-

ment a in h. Set A = expo and apply Lemma B: 3U Ç A, co-null, such that A

is central in NG(b)x, xéÜ. Now consider the representations tt((J),t) for which

i<t>\a G log l/. Their complement in the part of G associated to h is a null set—and

if we vary over a set of conjugacy classes of Cartan subalgebras, these exhaust a

set, co-null with respect to Plancherel measure on G. So it is enough to show that
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every 7r(<p, r),i(j>\a G logU, is square-integrably induced. (Note: iîid)\a G log ¿i, then

A is centralized by G^.)

We realize n = n((f>, r) as a group extension representation over G°. There is

r° G XGo(4>) such that 7r lies over 7r° = nGo(4>,r°). Moreover, 7r° is induced from

a cuspidal parabolic subgroup of G° which we can specify as follows (see [2, III.3;

9, §4c]). Let °M = ZGo(a) and choose X G o such that if a root a of (ac,hc)

satisfies a(X) = 0, then a(a) — 0. Set u = (J2a(x)>o 8°) n fl' ^ = exPu- Then

°P = °M[/isa cuspidal parabolic subgroup of G° and 7r° = IndopfJ, where

c(U) = I, and ct\om is the square-integrable representation mod Zom associated

canonically to the data (4>\m, t°). a is obviously square-integrable mod its projective

kernel. Moreover, o (resp. 7r°) can be realized by harmonic induction from r° on

(G0)^ = (°M)0|m via a polarization for 0|m (resp. <j>) which is (G0)</,-invariant.

Now what is the stability group G^o of tt° in G? Clearly it is (G^oG0 Ç G^G0.

The only thing to be shown therefore is that any extension of 7r° to (G^i-oG0

is still square-integrably induced. The point is that the polarization for </> which

gives Xo can be chosen G^-invariant (e.g. because G¿ preserves the set of imaginary

roots which are positive with respect to d>\i, and G<¿, centralizes o, so X). So -k is

also harmonically induced (this time from r on G¿) by that polarization. More

precisely, using the technique of [9, §4c], we see that if we set P = °PG,p, then

the representation ir is induced from P by a representation which is trivial on U,

and on M = °MG^ is given by harmonic induction from r on G$. The latter is

squäre-integrable mod Zm- So 7r is square-integrably induced. That completes

the proof of Theorem A for reductive algebraic groups.

Let us summarize: If G is reductive algebraic, then aside from a Plancherel

null set every 7r G G is induced from a parabolic-type subgroup P = MU by a

representation a which satisfies <j(U) = 1, o is square-integrable mod Zm, and

there is a maximal split torus of Zm° which is contained in Zm- When the maximal

split torus is central in G° (i.e. the discrete series), then U = {1} and M = G<¡,G°

is of finite index in G (e.g. when g is abelian).

3c. Semidirect products. Now consider a group G = SN with N the unipotent

radical, S reductive, <f> G AP(G), 6 = <f>\n, and S fixes 6. We saw in subsection

3a that any ir(<j>, r) is of the form w <g> 7 x 7, 7 = 7Tjv(0). By passing to a 2-fold

covering if necessary, we may assume that w is an ordinary representation of S (see

the comment at the end of the proof of Proposition C below). Then if £ = <¡>\t,

there is an element v G 3tg(£), canonically determined by r, such that

ttg(</>,t) = 7rs(£,i/)<g>7 x 7

(see [2]).

PROPOSITION C. Let 7r(£, u) be square-integrably induced. Then the same is

true ofir(<j),T).

PROOF. According to the results of subsection 3b, there is: (i) a parabolic type

subgroup P = MU of S and a maximal split toral subgroup A of ZM° which is

centralized by M; and (ii) a representation a of P with o(U) = I and o\m square-

integrable mod Zm ; such that ir(£, v) = IndP 0. Now S, as well as any subgroup,

fixes 0; therefore by routine arguments we have

""(£.v) ® Ï x 1 - Ind$N(o 07x7)
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(see e.g. [7, Lemma 3.3 and §6], also [9, §3c]). So we may concentrate on the

representation o ® 7 x 7 of PN. The unipotent radical of the latter is UN. M is a

Levi factor, and the linear functional 0 + 9 on u + n is fixed by M. Thus, to prove

Proposition C, it will be enough to prove it under the assumption that S = M. We

shall achieve that by employing induction on the dimension of N.

The cases dim TV = 0 or 1 are taken care of by subsection 3b. Let N' be the Pen-

ney subgroup of N determined by 9 [13]. N' is canonically defined—in particular,

it is invariant under any automorphism of N that fixes 9. Furthermore,

lN(9)^Ind%,lN,(9'),        9' = 9\n,,

and 7' is square-integrable mod its projective kernel [13]. But much more is true.

In fact (if we continue to write o = 7r(£, u) G M), we have

o <g> 7 x 7 =i lnd$#,0- <g> 7' x 7'.

(This is standard—see the same references as cited above.) Thus, by the induction

assumption, we may assume N' = N, dimZjv = 1, and 7 is square-integrable mod

its center. Unfortunately, however, o ® 7 x 7 may not be square-integrable mod its

center (or projective kernel). This is because the center of M may not centralize

N. In particular, A may not be central in MN. The remainder of the proof deals

with this difficulty.
Let 3 = Centn and consider the ascending central series 3 Ç j'2' Ç •••. Diago-

nalize the action of A on 3^. Suppose there is a nontrivial eigenvalue, say

}W = {X G 3(2): a ■ X = a(a)X, a G A} ¿ {0},        a ^ 1.

Then the ideal xia — } + }a is normalized by M (since A is central in M); so is

the proper ideal na = Z„(tia ). Now the symplectic form Be(X,Y) = 9[X,Y] is

A-invariant and nondegenerate on n/3. It follows that na is abelian and contained

in nQ.  Furthermore, the stabilizer in n of 9\ m is na.  Therefore 7 = Ind$a 7°,

where Na — expna, and 7° = 7T/va(0|n°) is square-integrable mod its projective

kernel. Of course, we also have

o g 7 x 7 = IndMN- * ® T x Ia-

The conclusion follows then by induction.

But what if there is no nontrivial eigenvalue in 3^? Then we diagonalize the

action of A on 3^; say

if = {XG j<3>: a ■ X = 0(a)X, a G A} ± {0},        ß ¿ I.

Unfortunately, we cannot proceed exactly as with j'2'. Although y0' + 3 is an

algebra (since [3^ ',yß '] = 0; indeed, it is in ¡W which is fixed by A, so if X, Y G

}f\ then [X, Y] = a-[X,Y}= ß2(a)[X, Y] => [X, Y} = 0), it is not an ideal. Instead

we take nl = ¡^ + Á . This is obviously an ideal, but it may not be abelian.

Set 9ß — #|n(3), Nß = expnjj and 7^3 = -K^ß(9ß). Claim: The stabilizer TV3 in

N of 7/3 is a subgroup of positive codimension. Well, since 7 is square-integrable

mod ZN, we know N ■ 9 = 9 + i±.   Therefore dim TV • 0ß = dimn^3) - 1.   But
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dim Nß-9ß < dim nß - 2. This is because the group Zn exp3J, does not act on

9ß. This is clear for Zjv- Regarding exp3^ ', we have 9[yß ',nß '} =0 because: first

of all, [3¡,3),3¡,3)] = 0 (see above); and, second, if X G ¿2\ Y G if and 9[X,Y\ ¿ 0,

then ß(a)9[X, Y] = 9[X,a-Y}=a- 9{a-1 ■X,Y] = öfa"1 • X,Y] = 9[X, Y] (A fixes
3^.) By standard Mackey and Kirillov theory, we know that N@ = {n G N: n-9ß G

Nß ■ 9ß}. Hence (because dim/V • 9ß > dimNß • 9ß) we see that N& is of positive

codimension in N. Of course, 7 = IndNßi^Nß(9\Xiß). Since M fixes 9 and nß ,

we are once again in a position to apply the induction hypothesis. Thus either we

are done or A fixes 3^^. It is clear that by continuing up the ascending central

series either we conclude the argument by induction or we find that there are no

nontrivial eigenvalues for the action of A on n. In that case A is central in all of

MN, and the representation o ® 7 x 7 is square-integrable mod its center.

We remark finally that if w is a projective—not ordinary—representation, and

we had to pass to a 2-fold cover S of S, then the final result is of the form

■jr((h, t) — Ind^^,, o ® 7" x 7", where a <g) 7" x 7" is square-integrable mod its

center. Furthermore, o ® 7" is trivial on the 2-element central subgroup defining

the extensions of both M and S. Hence n(<j), t) = IndMN" ° ® 7" x l"- This

completes the proof of Proposition C.

REMARK. Roger Howe has shown me an alternate proof of Proposition C. In

his scheme, one replaces the Penney subgroup by canonical subquotients which

are Heisenberg groups [4]. Then the ascending central series is 'rather short'!

One can replace my diagonalization argument by something similar to [5, pp. 43

ff.]. Howe's argument is somewhat easier than that given above. However, the

inducing subgroups which emerge from his argument are rather small (think of a

real polarization rather than a Penney subgroup).

3d. Conclusion. It remains to combine the results of the preceding subsections

in order to arrive at a proof of Theorem A. First of all, if there is no unipotent

radical, then the theorem is true by the results of subsection 3b. So we may assume

that G has nontrivial unipotent radical N. We use the Plancherel theory for group

extensions [6]. It is enough to show that for every 9 G n*, almost all representations

of G lying over 7 — 7Tjv (9) are square-integrably induced. Equivalently it is enough

to substantiate the property for almost all representations that occur in Ind^ 7.

But, by [6], that is equivalent to proving the same thing for the representation

Indjv 7. Hence it is enough to show that for every 91 G (ti1)*, 91\n = 9, the

property is true for almost all representations that lie over 71 = ■kNi(91). That is,
G1      1

we need to show that almost all representations in IndNi 7 are square-integrably

induced. Continuing in this way, we see that the proof of Theorem A is reduced

to showing that almost every constituent of Ind^r Y is square-integrably induced.

But that follows immediately from Proposition C and the work in subsection 3b.

The argument is therefore complete and Theorem A is now proven.

REMARK. It is easy to trace back through the proof to see that in every instance

the inducing subgroup is algebraic. We leave that chore to the reader.

4. Examples. In this section we illustrate Theorem A with two examples.

The first is a reductive algebraic group G not of the Harish-Chandra class. We

exhibit (j) G AP (G) which do not possess invariant metric polarizations. Thus the
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corresponding representations ir((j>, r), for any t G XG(<f>), are not square-integrably

induced (from parabolic-type subgroups). Of course, by Theorem A the set of such

<f> contributes nothing to Plancherel measure. The second example is that of a

disconnected solvable group which exhibits similar behavior. One can construct

more complicated semidirect products with the same kind of features, but nothing

beyond the phenomena present in the two examples below is involved.

4a. A non-Harish-Chandra class reductive group. Let g be the Lie algebra of

SL(2, C), considered as a real Lie algebra. Consider the linear functionals <f> G g*

defined by

= Re(aa) = aiai + 020:2,        a = a\+ ia2,        a = ai + ia2 G C.

We assume (f> ̂  0, that is a ^ 0.   Then one computes readily that g^, = r) =

{(0 -a): a gC}. All such <f> are well polarizable. Admissibility of <f> amounts to an

integrability condition on Q2 which we shall not specify precisely.

Now let £ be the automorphism of SL(2, C) defined by

e(g)=tg-\       ogSL(2,C).

Let G be the corresponding semidirect product G = {e} • SL(2,C). ({e} denotes

the 2-element group generated by e.) Note that e preserves the Cartan subalgebra

h. Also, e fixes the linear functional 4> iff cx\ = 0. Hence

G*=    r\„    -1:"'        * = e*p*=       »     "      :aGC
-)

But there is no parabolic subalgebra of g which is invariant under e. It follows

that the representations -k((¡>, t), a\ = 0, are not square-integrably induced. The

representations corresponding to «i ^Oon the other hand are square-integrably

induced—e.g. from P = {(q™): uw ^ 0}. Note also that—in the notation of

subsection 3b—M = G^ and no maximal split torus of H is central in M if cti = 0.

4b. A disconnected solvable group. Let g be the split oscillator Lie algebra, i.e.

the solvable Lie algebra spanned by generators A,X,Y,Z satisfying commutation

relations: [A,X] = X, [A,Y] = -Y, [X,Y] = Z. We write G° for the corresponding

simply connected exponential solvable Lie group, and n for the unipotent radical,

n = RX + RY + RZ. Let F be the finite cyclic group of order 4 with generator e,

F = {e}. Let G be the semidirect product G = FG°, where F acts on g according

to

e: A^-A, X-+Y, Y -» -X, Z -> Z.

In this case AP(G) = g*. Let <j> G g* be specified by (j> = aA* + £X* + rjY* + cZ*.

Then we have

8, £ = V = Í = 0,
{xX + yY + zZen: xt = yr¡}, c = 0, ? + n2 ¿ 0,

{aA + xX + yY + zZ: x£ = yr¡, a(, = yç, ar¡ = xc}, ç^0.

Furthermore, if we write g = expo A expxX expyY expzZ G G°, then

g~l ■ cj> = (a - t:eax + r/e^y + cxy)A* + (£ea - cy)X* + (Ve~a + Çx)Y* + cZ\
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e"1 • <j) = -olA* + nX* - ÇY* + cZ\

Now we can describe the representations of G as follows:

(i) £ = V = Í = 0. If a = 0, we have the representations of G which are trivial

on G°, i.e. the characters of F. If a ^ 0, we have G<¿, = {e2}G° and we get two

finite-dimensional representations induced by a character of G^ trivial on exp n.

(ii) c — 0, £2 + r¡2 ^ 0. Then G<¡, = exp g<¿, and we get representations induced

from TV by characters which are trivial on expRZ.

The above representations constitute a set of Plancherel measure zero, although

they are all square-integrably induced.

(iii) Ç t¿ 0. We take as a cross-section for {à> G g*: c ^ 0}/G the set

C = {<t>GS*: t = V = 0, í#0, a>0}.

Then

G   = f {e2}expfl¿,       a^0,

*     |{£}expg¿,        a = 0.

If a ^ 0, then either of the algebras f) = RA + RX + RZ or h = RA + RF +
RZ is a G^-invariant polarization. Therefore the corresponding representations

are induced from {s2}H by characters—in particular they are square-integrably

induced. However if a = 0, there does not exist a G^-invariant polarization for </>. In

particular, the four representations of G that lie over 7Tg<>(0, 0,0, c) are not square-

integrably induced. Of course (even as ç varies) these form a set of null Plancherel

measure. Finally let us match these phenomena with the proof of Theorem A. For

every 9 G n*, 0|} ^ 0, 3 = RZ, we have GeN = SN, where S = {e} expRA.

For Xa(expaA) = etaa, a G R, we have: if a ^ 0, the representations of S over

Xa are induced from the subgroup {e2} expRA in which the maximal split torus

exp RA is central; but if a — 0, the corresponding representations of S are trivial

on expRA, i.e. are characters of {e}, and expRA is not central in 5.

REMARK. I close with the following two observations. It is obvious from our

presentation that the property of being square-integrably induced is related to

the existence of metric polarizations. The results of this paper suggest—although

invariant metric polarizations may fail to exist for some <¡> G AP (G)—that failure is

restricted to a set of Plancherel measure zero. Second, it is natural to ask whether

the subgroups which induce generic irreducible representations can be chosen in a

canonical fashion. Such is the case if G is connected nilpotent or reductive of the

Harish-Chandra class. Is it so general?
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