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Partial differential equations (PDEs) are at the heart of
many mathematical and scientific advances. While great
progress has been made on the theory of PDEs of standard
types during the last eight decades, the analysis of nonlin-
ear PDEs ofmixed type is still in its infancy. The aim of this
expository paper is to show – through several longstand-
ing fundamental problems in fluid mechanics, differential
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geometry, and other areas – thatmany nonlinear PDEs aris-
ing in these areas are no longer of standard types, but lie
at the boundaries of the classification of PDEs or, indeed,
go beyond the classification and are of mixed type. Some
interrelated connections, historical perspectives, recent de-
velopments, and current trends in the analysis of nonlinear
PDEs of mixed type are also presented.

1. Linear Partial Differential Equations
of Mixed Type

Three of the basic types of PDEs are elliptic, hyperbolic,
and parabolic, following the classification introduced by
Jacques Salomon Hadamard in 1923 (see Figure 1).
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The prototype of second-order elliptic equations is the
Laplace equation:

Δ𝐱𝑢 ≔
𝑛
∑
𝑗=1

𝜕𝑥𝑗𝑥𝑗𝑢 = 0 for 𝐱 = (𝑥1, … , 𝑥𝑛) ∈ ℝ𝑛. (1.1)

This equation often describes physical equilibrium states
whose solutions are also called harmonic functions or po-
tential functions, where 𝜕𝑥𝑗𝑥𝑗 is the second-order partial
derivative in the 𝑥𝑗-variable, 𝑗 = 1, … , 𝑛. The simplest rep-
resentative of hyperbolic equations is the wave equation:

𝜕𝑡𝑡𝑢 − Δ𝐱𝑢 = 0 for (𝑡, 𝐱) ∈ ℝ𝑛+1, (1.2)

which governs the propagation of linear waves (such as
acoustic waves and electromagnetic waves). The prototype
of second-order parabolic equations is the heat equation:

𝜕𝑡𝑢 − Δ𝐱𝑢 = 0 for (𝑡, 𝐱) ∈ ℝ𝑛+1, (1.3)

which often describes the dynamics of temperature and dif-
fusion/stochastic processes.

Figure 1. Jacques Salomon
Hadamard (December 8,
1865–October 17, 1963) first
introduced the classification of
PDEs in [16].

At first glance, the forms
of the Laplace/heat equa-
tions and the wave equa-
tion look quite similar. In
particular, any steady solu-
tion of the wave/heat equa-
tions is a solution of the
Laplace equation, and a so-
lution of the Laplace equa-
tion often determines an as-
ymptotic state of the time-
dependent solutions of the
wave/heat equations. How-
ever, the properties of the
solutions of the Laplace/
heat equations and the
wave equation are signifi-
cantly different. One im-
portant difference is in

terms of the infinite versus finite speed of propagation of the
solution, while another pertains to the gain versus loss of reg-
ularity of the solution; see [14,16] and the references cited
therein. Since the solutions of elliptic/parabolic PDEs
share many common features, we focus mainly on PDEs
of mixed elliptic-hyperbolic type from now on.

The distinction between the elliptic and hyperbolic
types can be seen more clearly from the classification of
two-dimensional (2-D) constant-coefficient second-order
PDEs:

𝑎11𝜕𝑥1𝑥1𝑢 + 2𝑎12𝜕𝑥1𝑥2𝑢 + 𝑎22𝜕𝑥2𝑥2𝑢 = 𝑓(𝐱) (1.4)

for 𝐱 = (𝑥1, 𝑥2) ∈ ℝ2. Let 𝜆1 ≤ 𝜆2 be the two con-
stant eigenvalues of the 2 × 2 symmetric coefficient matrix

(𝑎𝑖𝑗)2×2. Then Equation (1.4) is classified as elliptic if

det(𝑎𝑖𝑗) > 0 ⟺ 𝜆1𝜆2 > 0 ⟺ 𝑎212 − 𝑎11𝑎22 < 0, (1.5)

while it is classified as hyperbolic if

det(𝑎𝑖𝑗) < 0 ⟺ 𝜆1𝜆2 < 0 ⟺ 𝑎212 − 𝑎11𝑎22 > 0. (1.6)

Notice that the left-hand side of Equation (1.4) is analo-
gous to the quadratic (homogeneous) form:

𝑎11𝜉21 + 2𝑎12𝜉1𝜉2 + 𝑎22𝜉22
for conic sections. Thus, the classification of Equation
(1.4) is consistent with the classification of conic sections
and quadratic forms in algebraic geometry, based on the
sign of the discriminant: 𝑎212 − 𝑎11𝑎22. The correspond-
ing quadratic curves are ellipses (incl. circles), hyperbolas,
and parabolas (see Figure 2).

Figure 2. Types of conic sections: parabolas, ellipses, and
hyperbolas.

This classification can also be seen by taking the Fourier
transform on both sides of Equation (1.4):

(𝑎11𝜉21 + 2𝑎12𝜉1𝜉2 + 𝑎22𝜉22)�̂�(𝜉) = − ̂𝑓(𝜉) (1.7)

for 𝜉 = (𝜉1, 𝜉2) ∈ ℝ2. Here �̂�(𝜉) = 1
2𝜋
∫ℝ2 𝑤(𝐱)𝑒−𝑖𝐱⋅𝜉 d𝐱 is

the Fourier transform of a function 𝑤(𝐱), such as 𝑢(𝐱) and
𝑓(𝐱) for (1.7). When Equation (1.4) is elliptic, the Fourier
transform �̂�(𝜉) of solution 𝑢(𝐱) gains two orders of decay
for the high Fourier frequencies (i.e., |𝜉| ≫ 1) so that the so-
lution gains the regularity of two orders from 𝑓(𝐱). When
Equation (1.4) is hyperbolic, �̂�(𝜉) fails to gain two orders of
decay for the high Fourier frequencies along the two char-
acteristic directions in which 𝑎11𝜉21 + 2𝑎12𝜉1𝜉2 + 𝑎22𝜉22 = 0,
even though it still gains two orders of decay for the high
Fourier frequencies away from these two characteristic di-
rections.

For the classification above, a general homogeneous
constant-coefficient second-order PDE (i.e., 𝑓(𝐱) = 0) with
(1.5) or (1.6) can be transformed correspondingly into the
Laplace equation (1.1) with 𝑛 = 2, or the wave equation
(1.2) with 𝑛 = 1, via the corresponding coordinate trans-
formations. This reveals the beauty of the classification
theory that was first introduced by Hadamard in [16].
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On the other hand, for general variable-coefficient
second-order PDEs:

𝑎11(𝐱)𝜕𝑥1𝑥1𝑢+2𝑎12(𝐱)𝜕𝑥1𝑥2𝑢+𝑎22(𝐱)𝜕𝑥2𝑥2𝑢 = 𝑓(𝐱), (1.8)
the situation is different. The classification depends upon
the signature of the eigenvalues 𝜆𝑗(𝐱), 𝑗 = 1, 2, of the
coefficient matrix (𝑎𝑖𝑗(𝐱)). In general, 𝜆1(𝐱)𝜆2(𝐱) may
change its sign as a function of 𝐱, which leads to themixed
elliptic-hyperbolic type of (1.8). Equation (1.8) is elliptic
when 𝜆1(𝐱)𝜆2(𝐱) > 0 and hyperbolic when 𝜆1(𝐱)𝜆2(𝐱) < 0
with a transition boundary/region where 𝜆1(𝐱)𝜆2(𝐱) = 0.

Three of the classical prototypes for linear PDEs of
mixed elliptic-hyperbolic type are as follows:

(i) The Lavrentyev-Bitsadze equation:

𝜕𝑥1𝑥1𝑢 + sign(𝑥1)𝜕𝑥2𝑥2𝑢 = 0.
This equation exhibits a jump transition at 𝑥1 = 0. It be-
comes the Laplace equation (1.1) in the half-plane 𝑥1 > 0
and the wave equation (1.2) in the half-plane 𝑥1 < 0,
and changes its type from elliptic to hyperbolic via the jump-
discontinuous coefficient sign(𝑥1).
(ii) The Tricomi equation: 𝜕𝑥1𝑥1𝑢 + 𝑥1𝜕𝑥2𝑥2𝑢 = 0.
This equation is of hyperbolic degeneracy at 𝑥1 = 0. It is
elliptic in the half-plane 𝑥1 > 0 and hyperbolic in the half-
plane 𝑥1 < 0, and changes its type from elliptic to hyperbolic
through the degenerate line 𝑥1 = 0. This equation is of
hyperbolic degeneracy in the domain 𝑥1 ≤ 0, where the
two characteristic families coincide perpendicularly to the
line 𝑥1 = 0. The degeneracy of the equation is determined
by the classical elliptic or hyperbolic Euler-Poisson-Darboux
equation:1

𝜕𝜏𝜏𝑢 ± 𝜕𝑥2𝑥2𝑢 +
𝛽
𝜏 𝜕𝜏𝑢 = 0, (1.9)

with 𝛽 = 1
3
for 𝜏 = 2

3
|𝑥1|

3
2 , and signs “±” corresponding to

the half-planes ±𝑥1 > 0 for 𝐱 to lie in.

(iii) The Keldysh equation: 𝑥1𝜕𝑥1𝑥1𝑢 + 𝜕𝑥2𝑥2𝑢 = 0.
This equation is of parabolic degeneracy at 𝑥1 = 0. It is
elliptic in the half-plane 𝑥1 > 0 and hyperbolic in the half-
plane 𝑥1 < 0, and changes its type from elliptic to hyper-
bolic through the degenerate line 𝑥1 = 0. This equation is
of parabolic degeneracy in the domain 𝑥1 ≤ 0, in which
the two characteristic families are quadratic parabolas ly-
ing in the half-plane 𝑥1 < 0, and tangential at contact
points to the degenerate line 𝑥1 = 0. Its degeneracy is
also determined by the classical elliptic or hyperbolic Euler-

Poisson-Darboux equation (1.9) with 𝛽 = − 1
4
for 𝜏 = 1

2
|𝑥1|

1
2 .

For such a linear PDE, the transition boundary (i.e., the
boundary between the elliptic and hyperbolic domains)
is known a priori. Thus, one traditional approach is

1J. Hadamard, La Théorie des Équations aux Dérivées Partielles, in French,
Éditions Scientifiques, Peking; Gauthier-Villars Éditeur, Paris, 1964.

to regard such a PDE as a degenerate elliptic or hyper-
bolic PDE in the corresponding domain, and then to ana-
lyze the solution behavior of these degenerate PDEs sepa-
rately in the elliptic and hyperbolic domains with degen-
eracy on the transition boundary, determined, say, by the
Euler-Poisson-Darboux type equations as (1.9). Another
successful approach for dealing with such a PDE is the
fundamental solution approach. With this approach, we
first understand the behavior of the fundamental solu-
tion of the mixed-type PDE, especially its singularity, from
which analytical/geometric properties of the solutions can
then be revealed, since the fundamental solution is a gen-
erator of all of the solutions of the linear PDE. Great ef-
fort and progress have been made in the analysis of linear
PDEs ofmixed type bymany leadingmathematicians since
the early 20th century (cf. [4, 6, 16,18] and the references
cited therein). Still, there are many important problems
regarding linear PDEs of mixed type which require further
understanding.

In the sections to come, we show, through several
longstanding fundamental problems in fluid mechanics,
differential geometry, and other areas, that many non-
linear PDEs arising in mathematics and science are no
longer of standard type, but are in fact of mixed type.
In contrast to the linear case, the transition boundary
for a nonlinear PDE of mixed type is often a priori un-
known, and the nonlinearity generates additional singu-
larities in general. Thus, many classical methods and tech-
niques for linear PDEs no longer work directly for non-
linear PDEs of mixed type. The lack of effective unified
approaches is one of the main obstacles for tackling the
elliptic/hyperbolic phases together for nonlinear PDEs of
mixed type. Over the course of the last eight decades, the
PDE research community has been largely partitioned ac-
cording to the approaches taken to the analysis of differ-
ent classes of PDEs (elliptic/hyperbolic/parabolic). How-
ever, advances in the analysis of nonlinear PDEs over the
last several decades have made it increasingly clear that
many difficult questions faced by the community lay at
the boundaries of this classification or, indeed, go be-
yond this classification. In particular, many important
nonlinear PDEs that arise in longstanding fundamental
problems across diverse areas are of mixed type. As we
will show in §2–§4, below, these problems include steady
transonic flow problems and shock reflection/diffraction
problems in gas dynamics, high-speed flow, and related
areas (cf. [2, 3, 6, 12, 13, 15, 18–20]), and isometric em-
bedding problems with optimal target dimensions and as-
signed regularity/curvatures in elasticity, geometric anal-
ysis, materials science, and other areas (cf. [11, 17]).
The solution to these problems will advance our under-
standing of shock reflection/diffraction phenomena, tran-
sonic flows, properties/classifications of elastic/biological
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surfaces/bodies/manifolds, and other scientific issues, and
lead to significant developments of these areas and related
mathematics. To achieve these goals, a deep understand-
ing of the underlying nonlinear PDEs of mixed type (for
instance, the solvability, the properties of solutions, etc.)
is key.

2. Nonlinear PDEs of Mixed Type and Steady
Transonic Flow Problems in Fluid Mechanics

In many applications, fluid flows are often regarded as
time-independent; this is the case for some longstanding
fundamental problems, such as that of transonic flows past
multi-dimensional (M-D) obstacles (wedges/conic bodies,
airfoils, etc.), or de Laval nozzles; see Figures 3–4. Fur-
thermore, steady-state solutions are often global attractors
as time-asymptotic equilibrium states, and serve as build-
ing blocks for constructing time-dependent solutions (cf.
[6,12,13,15]). The underlying nonlinear PDEs governing
these fluid flows are generically of mixed type.

Figure 3. NASA’s first Schlieren photo of shock waves
interacting between two aircraft (taken in March 2019).

Figure 4. Diagram of a de Laval nozzle for the approximate
flow velocity.

Our first example is steady potential fluid flows gov-
erned by the steady Euler equations of the conservation
law of mass and Bernoulli’s law:

div(𝜌∇𝜑) = 0, 12 |∇𝜑|
2 + 1

𝛾 − 1𝜌
𝛾−1 = 𝐵0

𝛾 − 1 (2.1)

for 𝐱 ∈ ℝ𝑛 after scaling, where 𝜌 is the density, 𝜑 is the
velocity potential (i.e., 𝑣 = ∇𝜑 is the velocity), 𝛾 > 1

Figure 5. Leonhard Euler
(April 15, 1707–September
18, 1783) formulated the
Euler equations for fluid
mechanics; these are
among the first PDEs to be
written down.

Figure 6. In 1936, Ludwig
Prandtl (February 4,
1875–August 15, 1953)
identified, via the shock
polar analysis, two oblique
shock configurations when
a steady uniform
supersonic gas flow
passes a solid wedge.

is the adiabatic exponent for the ideal gas, 𝐵0/(𝛾 − 1) is
the Bernoulli constant, and ∇ is the gradient in 𝐱. System
(2.1), along with its time-dependent version (see (3.1) be-
low), is one of the first PDEs to be written down by Eu-
ler (cf. Figure 5), and has been employed widely in aero-
dynamics and other areas in instances when the vorticity
waves are weak in the fluid flow under consideration (cf.
[3, 6, 12, 13, 15]). System (2.1) for the steady velocity po-
tential 𝜑 can be rewritten as

div (𝜌𝐵(|∇𝜑|)∇𝜑) = 0 (2.2)

with 𝜌𝐵(𝑞) = (𝐵0 − (𝛾 − 1)𝑞2/2)1/(𝛾−1). Equation (2.2) is a
nonlinear conservation law of mixed elliptic-hyperbolic type:

• strictly elliptic (subsonic) if |∇𝜑| < 𝑐∗ ≔ √2𝐵0/(𝛾 + 1);
• strictly hyperbolic (supersonic) if |∇𝜑| > 𝑐∗.

The transition boundary here is |∇𝜑| = 𝑐∗ (sonic), a de-
generate set of (2.2), which is a priori unknown, since it is
determined by the solution itself.

Similarly, the time-independent full Euler flows are gov-
erned by the steady Euler equations:

div(𝜌𝑣) = 0, div(𝜌𝑣⊗𝑣)+∇𝑝 = 0, div (𝜌𝑣(𝐸+ 𝑝
𝜌 )) = 0,

(2.3)
where 𝑝 is the pressure, 𝑣 is the velocity, and 𝐸 = 1

2
|𝑣|2 + 𝑒

is the energy with 𝑒 = 𝑝
(𝛾−1)𝜌

as the internal energy de-

termined by the thermodynamic constitutive equation of
state. System (2.3) is a system of conservation laws of mixed-
composite hyperbolic-elliptic type:

• strictly hyperbolic when |𝑣| > 𝑐 (supersonic);
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Figure 7. Two steady solutions with shocks around the solid
wedge with an angle 𝜃w ∈ (0, 𝜃sw) or even 𝜃w ∈ [𝜃sw, 𝜃dw).

• mixed-composite elliptic-hyperbolic (two of these are el-
liptic and the others are hyperbolic) when |𝑣| < 𝑐 (sub-
sonic),

where 𝑐 = √𝛾𝑝/𝜌 is the sonic speed. The transition bound-
ary between the supersonic/subsonic phase is |𝑣| = 𝑐, a
degenerate set of the solution of System (2.3), which is a
priori unknown.

Many fundamental transonic flowproblems in fluidme-
chanics involve these nonlinear PDEs of mixed type. One
of these is a classical shock problem in which an upstream
steady uniform supersonic gas flow passes a symmetric
straight-sided solid wedge

𝑊 ≔ {𝐱 = (𝑥1, 𝑥2) ∈ ℝ2 ∶ |𝑥2| < 𝑥1 tan 𝜃w, 𝑥1 > 0}, (2.4)

whose (half-wedge) angle 𝜃w is less than the detachment
angle 𝜃dw (cf. Figure 7).

Since this problem involves shocks, its global solution
should be a weak solution of Equation (2.2) or System
(2.3) in the distributional sense (which admits shocks)2

in the domain under consideration (see [7]). For exam-
ple, for Equation (2.2), a shock is a curve across which
∇𝜑 is discontinuous. If Λ+ and Λ−(≔ Λ ⧵ Λ+) are two
nonempty open subsets of a domain Λ ⊂ ℝ2, and 𝒮 ≔
𝜕Λ+ ∩ Λ is a 𝐶1-curve across which ∇𝜑 has a jump, then
𝜑 ∈ 𝐶1(Λ± ∪𝒮) ∩𝐶2(Λ±) is a global weak solution of (2.2)
in Λ if and only if 𝜑 is in𝑊1,∞

loc (Λ)3 and satisfies Equation
(2.2) in Λ± and the Rankine-Hugoniot conditions on 𝒮:

𝜑Λ+∩𝒮 = 𝜑Λ−∩𝒮,
𝜌𝐵(|∇𝜑|2)∇𝜑 ⋅ 𝜈|Λ+∩𝒮 = 𝜌𝐵(|∇𝜑|2)∇𝜑 ⋅ 𝜈|Λ−∩𝒮,

(2.5)

where 𝜈 is the unit normal to 𝒮 in the flow direction; i.e.,
∇𝜑 ⋅ 𝜈|Λ±∩𝒮 > 0. A piecewise smooth solution with dis-
continuities satisfying (2.5) is called an entropy solution of
(2.2) if it satisfies the following entropy condition: The
density 𝜌 increases in the flow direction of ∇𝜑Λ+∩𝒮 across any

2P. D. Lax, Hyperbolic Systems of Conservation Laws and the Mathemat-
ical Theory of Shock Waves, CBMS-RCSAM, No. 11, SIAM, Philadelphia,
Pennsylvania, 1973.
3A𝑊 𝑘,𝑝 function, for 1 ≤ 𝑝 ≤ ∞ and 𝑘 ≥ 1 integer, is a real-valued function
such that itself and its (weak) derivatives up to order 𝑘 are all 𝐿𝑝 functions.

Figure 8. Richard Courant (January 8, 1888–January 27, 1972)
and Kurt Otto Friedrichs (September 28, 1901–December 31,
1982); their monumental book [12] has had a great impact
upon the development of the M-D theory of shock waves and
nonlinear PDEs of hyperbolic/mixed types.

discontinuity. Then such a discontinuity is called a shock
(see [12]); see also Figure 8.4

For this problem, there are two configurations: theweak
oblique shock reflection with supersonic/subsonic down-
stream flow (determined by the sonic angle 𝜃sw), and the
strong oblique shock reflectionwith subsonic downstream
flow; both of these satisfy the entropy condition, as was
discovered by Prandtl (cf. Figure 6). The weak oblique
shock is transonic with subsonic downstream flow for
𝜃w ∈ (𝜃sw, 𝜃dw), while the weak oblique shock is supersonic
with supersonic downstream flow for 𝜃w ∈ (0, 𝜃sw). How-
ever, the strong oblique shock is always transonic with
subsonic downstream flow. The question of physical ad-
missibility of one or both of the strong/weak shock reflec-
tion configurations was hotly debated for eight decades in
the wake of Courant-Friedrichs [12] and von Neumann
[20], and has only recently been better understood (cf.
[7] and the references cited therein). There are two nat-
ural approaches to understanding this phenomenon: One
is to examine whether these configurations are stable un-
der steady perturbations, and the other is to determine
whether these configurations are attainable as large-time
asymptotic states (i.e., the Prandtl-Meyer problem); both ap-
proaches involve the analysis of nonlinear PDEs (2.2) or
(2.3) of mixed type.

Mathematically, the steady stability problem can be for-
mulated as a free boundary problem with the perturbed
shock-front:

𝒮 = {𝐱 ∶ 𝑥2 = 𝜎(𝑥1), 𝑥1 ≥ 0} (2.6)

with 𝜎(0) = 0 and 𝜎(𝑥1) > 0 for 𝑥1 > 0 as a free boundary

4Author of the picture: Konrad Jacobs. Source: Archives of the Mathematisches
Forschungsinstitut Oberwolfach.
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Figure 9. The leading steady shock 𝑥2 = 𝜎(𝑥1) as a free
boundary under the perturbation.

(with the Rankine-Hugoniot conditions, say (2.5), as free
boundary conditions) to determine the domain behind 𝒮:

Ω = {𝐱 ∈ ℝ2 ∶ 𝑏(𝑥1) < 𝑥2 < 𝜎(𝑥1), 𝑥1 > 0}, (2.7)

and the downstream flow in Ω for Equation (2.2) or Sys-
tem (2.3) of mixed elliptic-hyperbolic type, where 𝑥2 =
𝑏(𝑥1) is the perturbation of the flat wedge boundary 𝑥2 =
𝑥1 tan 𝜃w. Such a global solution of the free boundary
problem provides not only the global structural stability
of the steady oblique shock, but also a more detailed struc-
ture of the solution.

Supersonic (i.e., supersonic-supersonic) shocks corre-
spond to the case when 𝜃w ∈ (0, 𝜃sw); these are shocks of
weak strength. The local stability of such shocks was first
established in the 1960s. The global stability and unique-
ness of the supersonic oblique shocks for both Equation
(2.2) and System (2.3) have been solved for more gen-
eral perturbations of both the upstream steady flow and
the wedge boundary, even in 𝐵𝑉 ,5 by purely hyperbolic
methods and techniques (cf. [7] and the references cited
therein).

For transonic (i.e., supersonic-subsonic) shocks, it has
been proved that the oblique shock of weak strength is
always stable under general steady perturbations. How-
ever, the oblique shock of strong strength is stable only
conditionally for a certain class of steady perturbations
that require the exact match of the steady perturbations
near the wedge-vertex and the downstream condition at
infinity, which reveals one of the reasons why the strong
oblique shock solutions have not been observed experi-
mentally. In these stability problems for transonic shocks,
the PDEs (or parts of the systems) are expected to be ellip-
tic for global solutions in the domains determined by the
corresponding free boundary problems; that is, we solve
an expected elliptic free boundary problem. However, the
earlier methods and approaches for elliptic free boundary
problems do not directly apply to these problems, such as
the variational methods, the Harnack inequality approach,
and other elliptic methods/approaches. The main reason
for this is that the type of equations needs to be controlled

5A 𝐵𝑉 function is a real-valued function whose total variation is bounded.

before we can apply thesemethods, and this requires some
strong a priori estimates. To overcome these difficulties, the
global structure of the problems is exploited, which allows
us to derive certain properties of the solution so that the
type of equations and the geometry of the problem can be
controlled. With this, the free boundary problem, as de-
scribed above, has been solved by an iteration procedure;
see Chen-Feldman [7] and the references cited therein for
more details.

When a subsonic flow passes through a de Laval nozzle,
the flow may form a supersonic bubble with a transonic
shock (see Figure 4); full understanding of how the geom-
etry of the nozzle helps to create/stabilize/destabilize the
transonic shock requires a deep understanding of the non-
linear PDEs of mixed type. Likewise, for theMorawetz prob-
lem for a steady subsonic flow past an airfoil, experimen-
tal results show that a supersonic bubble may be formed
around the airfoil (see Figures 10–11), and the flow behav-
ior is determined by the solution of a nonlinear PDE of
mixed type.

Some fundamental problems for transonic flow posed
in the 1950s–60s (e.g., [3, 6, 12,15,19]) remain unsolved,
though some progress has been made in recent years (e.g.,
[6,7,13] and the references cited therein).

3. Nonlinear PDEs of Mixed Type and Shock
Reflection/Diffraction Problems in Fluid
Mechanics and Related Areas

In general, fluid flows are time-dependent. We now de-
scribe how some longstanding M-D time-dependent fun-
damental shock problems in fluidmechanics can naturally
be formulated as problems for nonlinear PDEs of mixed
type through a prototype: the shock reflection-diffraction
problem.

When a planar shock separating two constant states (0)
and (1), with constant velocities and densities 𝜌0 < 𝜌1
(state (0) is ahead or to the right of the shock, and state
(1) is behind the shock), moves in the flow direction (i.e.,
𝑣1 > 0) and hits a symmetric wedge (2.4) with (a half-
wedge) angle 𝜃w head-on at time 𝑡 = 0, a reflection-
diffraction process takes place for 𝑡 > 0. A fundamen-
tal question that arises is which types of wave patterns of
shock reflection-diffraction configurations may be formed
around the wedge. The complexity of these configura-
tions was first reported by Ernst Mach (cf. Figure 12),
who observed two patterns of shock reflection-diffraction
configurations: Regular reflection (two-shock configura-
tion) and Mach reflection (three-shock/one-vortex-sheet
configuration); these are shown in Figure 14, below.6

The issue remained dormant until the 1940s, when John
von Neumann [19, 20] (also cf. Figure 13) and other

6M. Van Dyke, An Album of Fluid Motion, The Parabolic Press, Stanford,
1982.
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Figure 10. Transonic flow patterns on an airfoil showing flow
patterns at and above the critical Mach number.

Figure 11. Aerodynamic condensation evidences of
supersonic expansion fans around a transonic aircraft.

mathematical/experimental scientists (cf. [2,6,12,15] and
the references cited therein) began extensive research into
all aspects of shock reflection-diffraction phenomena. It
has been found that the situation is much more compli-
cated than that which Mach originally observed; the shock
reflection can be divided into more specific subpatterns,
and various other patterns of shock reflection-diffraction
configurations such as supersonic regular reflection, sub-
sonic regular reflection, attached regular reflection, double
Mach reflection, von Neumann reflection, and Guderley
reflection may occur; see [2, 6, 12, 15] and the references
cited therein (also see Figures 14–19, below). Then the
fundamental scientific issues include:

(i) the structures of the shock reflection-diffraction con-
figurations;

(ii) the transition criteria between the different patterns of
the configurations;

Figure 12. Ernst Waldfried
Josef Wenzel Mach (18
February 1838 – 19
February 1916), who first
observed the complexity
of shock
reflection-diffraction
configurations (1878).

Figure 13. John von
Neumann (December 28,
1903–February 8, 1957),
who proposed the sonic
conjecture and the
detachment conjecture for
shock reflection-diffraction
configurations.

(iii) the dependence of the patterns upon physical param-
eters such as the wedge angle 𝜃w, the incident-shock-
wave Mach number (i.e., the strength of the incident
shock), and the adiabatic exponent 𝛾 > 1.

In particular, several transition criteria between the
different patterns of shock reflection-diffraction config-
urations have been proposed; these include the sonic
conjecture and the detachment conjecture, both put forward
by von Neumann [19] (see also [2,6]).

To present this more clearly, we now focus on the Eu-
ler equations for time-dependent compressible potential
flow, which consist of the conservation law of mass and
Bernoulli’s law:

𝜕𝑡𝜌 + div(𝜌∇Φ) = 0, 𝜕𝑡Φ + 1
2|∇Φ|

2 + 1
𝛾 − 1𝜌

𝛾−1 = 𝜌𝛾−10
𝛾 − 1
(3.1)

for (𝑡, 𝐱) ∈ ℝ+ × ℝ2 after scaling, where Φ is the time-
dependent velocity potential (i.e., 𝑣 = ∇Φ is the velocity).
Equivalently, System (3.1) can be reduced to the nonlinear
wave equation of second-order:

𝜕𝑡𝜌(𝜕𝑡Φ,∇𝐱Φ) + ∇𝐱 ⋅ (𝜌(𝜕𝑡Φ,∇𝐱Φ)∇𝐱Φ) = 0, (3.2)

with 𝜌(𝜕𝑡Φ,∇𝐱Φ) = (𝜌𝛾−10 − (𝛾 − 1)(𝜕𝑡Φ + 1
2
|∇𝐱Φ|2))

1
𝛾−1 ,

which is one of the original motivations for the extensive
study of nonlinear wave equations.

Mathematically, the shock reflection-diffraction prob-
lem is a 2-D lateral Riemann problem for (3.1) or (3.2)
in domain ℝ2 ⧵ 𝑊 with 𝜌0, 𝜌1, 𝑣1 > 0 satisfying

𝜌1 > 𝜌0, 𝑣1 = (𝜌1 − 𝜌0)
√√
√

2(𝜌𝛾−11 − 𝜌𝛾−10 )
𝜌21 − 𝜌20

. (3.3)

Problem 3.1 (Shock Reflection-Diffraction Problem).
Piecewise constant initial data, consisting of state (0) with
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Figure 14. Three patterns of shock reflection-diffraction configurations.

velocity 𝐯0 = (0, 0) and density 𝜌0 > 0 on {𝑥1 > 0} ⧵ 𝑊
and state (1) with velocity 𝐯1 = (𝑣1, 0) and density 𝜌1 > 0 on
{𝑥1 < 0} connected by a shock at 𝑥1 = 0, are prescribed at 𝑡 = 0,
satisfying (3.3). Seek a solution of the Euler system (3.1), or
Equation (3.2), for 𝑡 ≥ 0, subject to the initial data and the
boundary condition ∇Φ ⋅ 𝜈w = 0 on 𝜕𝑊 , where 𝜈w is the unit
outward normal to 𝜕𝑊 .

Problem 3.1 is invariant under scaling: (𝑡, 𝐱, Φ) →
(𝛼𝑡, 𝛼𝐱, Φ

𝛼
) for any 𝛼 ≠ 0. Thus the problem admits self-

similar solutions in the form:

Φ(𝑡, 𝐱) = 𝑡𝜙(𝜉) for 𝜉 = 𝐱
𝑡 . (3.4)

Then the pseudo-potential function 𝜑(𝜉) = 𝜙(𝜉) − 1
2
|𝜉|2

satisfies the equation:

div(𝜌𝐵(|D𝜑|2, 𝜑)D𝜑) + 2𝜌𝐵(|D𝜑|2, 𝜑) = 0, (3.5)

with 𝜌𝐵(|D𝜑|, 𝜑) = (𝜌𝛾−10 −(𝛾−1)( 1
2
|D𝜑|2+𝜑))

1
𝛾−1 ,where the

divergence div and gradient D are with respect to 𝜉 ∈ ℝ2.
Define the pseudo-sonic speed 𝑐 = 𝑐(|D𝜑|, 𝜑) by

𝑐2(|D𝜑|, 𝜑) = 𝜌𝛾−1(|D𝜑|2, 𝜑) = 𝐵0 − (𝛾 − 1)(12 |D𝜑|
2 + 𝜑).

(3.6)
Equation (3.5) is of mixed elliptic-hyperbolic type:

• strictly elliptic if |D𝜑| < 𝑐(|D𝜑|, 𝜑) (pseudo-subsonic);
• strictly hyperbolic if |D𝜑| > 𝑐(|D𝜑|, 𝜑) (pseudo-
supersonic).

The transition boundary between the pseudo-supersonic
and pseudo-subsonic phases is |D𝜑| = 𝑐(|D𝜑|, 𝜑) (i.e.,

|D𝜑| = √
2

𝛾+1
(𝐵0 − (𝛾 − 1)𝜑)), a degenerate set of the so-

lution of Equation (3.5), which is a priori unknown and
more delicate than that of Equation (2.2).

One class of solutions of (3.5) is that of constant states;
these are solutions with constant velocity 𝐯∗ ∈ ℝ2. Then
the pseudo-potential of a constant state satisfiesD𝜑 = 𝐯∗−
𝜉 so that

𝜑(𝜉) = −12 |𝜉|
2 + 𝐯∗ ⋅ 𝜉 + 𝐶, (3.7)

where 𝐶 is a constant. For this 𝜑, the density 𝜌 and sonic
speed 𝑐 = 𝜌(𝛾−1)/2 are positive constants, independent of 𝜉.
Then, from (3.7), the ellipticity condition for the constant
state is |𝜉 − 𝐯∗| < 𝑐. Thus, for a constant state 𝐯∗, Equation
(3.5) is elliptic inside the sonic circle, with center 𝐯∗ and
radius 𝑐, and it is hyperbolic outside this circle. Moreover, if
the density 𝜌 is a constant, then the solution is a constant
state; that is, the corresponding pseudo-potential 𝜑 is of
form (3.7).

Problem 3.1 involves transonic shocks such that its
global solution should be a weak solution of Equation
(3.5) in the distributional sense within the domain in the
𝜉–coordinates (see [7]). If Λ+ and Λ−(≔ Λ ⧵ Λ+) are
two nonempty open subsets of a domain Λ ⊂ ℝ2, and
𝒮 ≔ 𝜕Λ+ ∩ Λ is a 𝐶1-curve with a normal 𝜈 across which
D𝜑 has a jump, then 𝜑 ∈ 𝐶1(Λ± ∪ 𝒮) ∩ 𝐶2(Λ±) is a global
entropy solution of (3.5) in Λ with 𝒮 as a shock if and only
if 𝜑 is in 𝑊1,∞

loc (Λ) and satisfies Equation (3.5) in Λ±, the
Rankine-Hugoniot conditions on 𝒮:

𝜑Λ+∩𝒮 = 𝜑Λ−∩𝒮, (3.8)

𝜌(|D𝜑|2, 𝜑)D𝜑 ⋅ 𝜈|Λ+∩𝒮 = 𝜌(|D𝜑|2, 𝜑)D𝜑 ⋅ 𝜈|Λ−∩𝒮, (3.9)

and the entropy condition stating that the density 𝜌 increases
in the pseudo-flow direction of D𝜑Λ+∩𝒮 across any discontinuity.

We now show how such solutions of the nonlinear PDE
(3.5) of mixed elliptic-hyperbolic type in self-similar coor-
dinates 𝜉 = 𝐱

𝑡
can be constructed.

First, by the symmetry of the problem with respect to
the 𝜉1–axis, it suffices for us to focus only on the upper
half-plane {𝜉2 > 0}, and to prescribe the following slip
boundary condition: D𝜑 ⋅ 𝜈sym = 0 on the symmetry line
Γsym ≔ {𝜉2 = 0} for the interior unit normal 𝜈sym = (0, 1).
Then Problem3.1 can be reformulated as a boundary value
problem in the unbounded domain:

Λ ≔ ℝ2
+ ⧵ {𝜉 ∶ |𝜉2| ≤ 𝜉1 tan 𝜃w, 𝜉1 > 0}

in the self-similar coordinates 𝜉 = (𝜉1, 𝜉2), where ℝ2
+ ≔

ℝ2 ∩ {𝜉2 > 0}.

Problem 3.2 (Boundary Value Problem). Seek a solution
𝜑 of Equation (3.5) in the self-similar domain Λ with the slip
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Figure 15. Normal reflection configuration.

boundary condition: D𝜑 ⋅ 𝜈|𝜕Λ = 0 for the interior unit normal
𝜈 on 𝜕Λ, and the asymptotic boundary condition at infinity:

𝜑⟶ ̄𝜑={𝜑0 for 𝜉1>𝜉
0
1 , 𝜉2>𝜉1 tan 𝜃w,

𝜑1 for 𝜉1<𝜉01 , 𝜉2>0,
when |𝜉|!∞,

where 𝜑0 = − 1
2
|𝜉|2 and 𝜑1 = − 1

2
|𝜉|2 + 𝑣1(𝜉1 − 𝜉01 ) with

𝜉01 = 𝜌1𝑣1
𝜌1−𝜌0

, which is the location of the incident shock

𝒮0 = {𝜉1 = 𝜉01 } ∩ Λ determined by the Rankine-Hugoniot con-
ditions (3.8)–(3.9) between states (0) and (1) on 𝒮0.

The simplest case is when 𝜃w = 𝜋
2
; this is called normal

reflection (see Figure 15). In this case, the incident shock
normally reflects from the flat wall to become the flat re-
flected shock 𝜉1 = ̄𝜉1 < 0.

When 𝜃w ∈ (0, 𝜋
2
), a necessary condition for the exis-

tence of a regular reflection solution, whose configurations
are as shown in Figures 16–19, is the existence of the uni-
form state (2) with pseudo-potential 𝜑2 at 𝑃0, determined
by the three conditions at 𝑃0:
D𝜑2 ⋅ 𝜈w = 0, 𝜑2 = 𝜑1, 𝜌(|D𝜑2|2, 𝜑2)D𝜑2 ⋅ 𝜈𝒮1 = 𝜌1D𝜑1 ⋅ 𝜈𝒮1

(3.10)

for 𝜈𝒮1 = D(𝜑1−𝜑2)
|D(𝜑1−𝜑2)|

across the flat shock 𝒮1 = {𝜑1 = 𝜑2}
that separates state (2) from state (1) and satisfies the en-
tropy condition: 𝜌2 > 𝜌1. These conditions lead to the sys-
tem of algebraic equations (3.10) for the constant velocity
𝐯2 and the density 𝜌2 of state (2). For any fixed densities
0 < 𝜌0 < 𝜌1 of states (0) and (1), there exist a sonic angle
𝜃sw and a detachment angle 𝜃dw satisfying that

0 < 𝜃dw < 𝜃sw < 𝜋
2

such that the algebraic system (3.10) has two solutions for
each 𝜃w ∈ (𝜃dw,

𝜋
2
) which become equal when 𝜃w = 𝜃dw.

Thus, for each 𝜃w ∈ (𝜃dw,
𝜋
2
), there exist two states (2),

called weak and strong, with densities 0 < 𝜌1 < 𝜌weak2 <
𝜌strong2 (the entropy condition). The weak state (2) is su-
personic at the reflection point 𝑃0 for 𝜃w ∈ (𝜃sw,

𝜋
2
), sonic

for 𝜃w = 𝜃sw, and subsonic for 𝜃w ∈ (𝜃dw, ̂𝜃sw) for some
̂𝜃sw ∈ (𝜃dw, 𝜃sw]. The strong state (2) is always subsonic at 𝑃0

for all 𝜃w ∈ (𝜃dw,
𝜋
2
).

There had been a long debate to determine which of
the two states (2) for 𝜃w ∈ (𝜃dw,

𝜋
2
), the weak or the

strong, is physical for the local theory; see [2, 7, 12]. In-
deed, it has been shown in Chen-Feldman [5, 7] that the
weak shock reflection-diffraction configuration tends to
the unique normal reflection in Figure 15, but that the
strong one does not, when the wedge angle 𝜃w tends to
𝜋
2
. The strength of the corresponding reflected shock near

𝑃0 in the weak shock reflection-diffraction configuration
is relatively weak, compared to the shock given by the
strong state (2). From now on, for the given wedge angle
𝜃w ∈ (𝜃dw,

𝜋
2
), state (2) represents the unique weak state

(2), and 𝜑2 is its pseudo-potential.
If the weak state (2) is supersonic, the speeds of prop-

agation of the solution are finite, and state (2) is deter-
mined completely by the local information: state (1), state
(0), and the location of point 𝑃0. That is, any information
from the reflection-diffraction domain, particularly the dis-
turbance at corner 𝑃3, cannot travel towards the reflection
point 𝑃0. However, if it is subsonic, the information can
reach 𝑃0 and interact with it, potentially altering the sub-
sonic reflection-diffraction configuration. This argument
motivated the following conjectures by von Neumann in
[19] (see also [2,6]):

The von Neumann Sonic Conjecture: There exists a su-
personic regular shock reflection-diffraction configuration when
𝜃w ∈ (𝜃sw,

𝜋
2
) for 𝜃sw > 𝜃dw. That is, the supersonicity of the

weak state (2) implies the existence of a supersonic regular re-
flection solution, as shown in Figure 16.

Another conjecture is that the global regular shock
reflection-diffraction configuration is still possible when-
ever the local regular reflection at the reflection point is
possible; this is known as

The von Neumann Detachment Conjecture: There ex-
ists a subsonic regular shock reflection-diffraction configuration
for any wedge angle 𝜃w ∈ (𝜃dw, 𝜃sw). That is, the existence
of subsonic weak state (2) beyond the sonic angle implies the
existence of a subsonic regular reflection solution, as shown in
Figure 17.

State (2) determines the straight shock 𝒮1 and the sonic
arc Γsonic ≔ 𝑃1𝑃4 when state (2) is supersonic at 𝑃0, and
the slope of Γshock at 𝑃0 (arc Γsonic on the boundary of Ω
becomes a corner point 𝑃0) when state (2) is subsonic at
𝑃0. Thus, the unknowns are the domainΩ (or equivalently,
the curved part of the reflected-diffracted shock Γshock) and
the pseudo-potential 𝜑 in Ω. Then, from (3.8)–(3.9), in
order to construct a solution of Problem 3.2 for the super-
sonic/subsonic regular shock reflection-diffraction config-
urations, it suffices to solve the following problem:
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Figure 16. Supersonic regular reflection-diffraction
configuration [6].

Figure 17. Subsonic regular reflection-diffraction
configuration [6].

Problem 3.3 (Free Boundary Problem). For 𝜃w ∈ (𝜃dw,
𝜋
2
),

find a free boundary (curved reflected shock) Γshock ⊂ Λ∩{𝜉1 <
𝜉1𝑃1 } (Γshock = 𝑃1𝑃2 on Figure 16 and Γshock = 𝑃0𝑃2 on Figure
17) and a function 𝜑 defined in the domain Ω as shown in
Figures 16–17 such that

(i) Equation (3.5) is satisfied inΩ, and the equation is strictly
elliptic for 𝜑 in Ω ⧵ Γsonic;

(ii) 𝜑 = 𝜑1 and 𝜌D𝜑 ⋅ 𝜈s = 𝜌1D𝜑1 ⋅ 𝜈s on the free boundary
Γshock;

(iii) 𝜑 = 𝜑2 and D𝜑 = D𝜑2 on Γsonic in the supersonic case
as shown in Figure 16 and at 𝑃0 in the subsonic case as
shown in Figure 17;

(iv) D𝜑 ⋅ 𝜈w = 0 on Γwedge = 𝑃0𝑃3, and D𝜑 ⋅ 𝜈sym = 0 on
Γsym,

where 𝜈s is the interior unit normal to Ω on Γshock.

Indeed, if 𝜑 is a solution of Problem 3.3, we extend 𝜑
from Ω to Λ to become a global entropy solution (see Fig-
ures 16–17) by defining that

𝜑 =
⎧
⎨
⎩

𝜑0 for 𝜉1 > 𝜉01 and 𝜉2 > 𝜉1 tan 𝜃w,
𝜑1 for 𝜉1 < 𝜉01 and above curve 𝑃0𝑃1𝑃2,
𝜑2 in region 𝑃0𝑃1𝑃4.

(3.11)
For the subsonic reflection case, domain 𝑃0𝑃1𝑃4 is one

point, and curve 𝑃0𝑃1𝑃2 is 𝑃0𝑃2. Then the global solutions
involve two types of transonic (hyperbolic-elliptic) transi-
tion: One is from the hyperbolic to the elliptic phases via
Γshock, and the other is from the hyperbolic to the elliptic
phases via Γsonic.

The conditions in Problem 3.3(ii) are the Rankine-
Hugoniot conditions (3.8)–(3.9) on Γshock between 𝜑|Ω
and 𝜑1. Since Γshock is a free boundary and Equation (3.5)
is strictly elliptic for 𝜑 inΩ⧵Γsonic, then two conditions on
Γshock —theDirichlet and oblique derivative conditions—
are consistent with one-phase free boundary problems for
nonlinear elliptic PDEs of second order.

In the supersonic case, the conditions in Problem
3.3(iii) are the Rankine-Hugoniot conditions on Γsonic
(weak discontinuity) between 𝜑|Ω and 𝜑2 so that, if 𝜑 is
a solution of Problem 3.3, its extension by (3.11) is a weak
solution of Problem 3.2. Since Γsonic is not a free bound-
ary (its location is fixed), it is impossible in general to
prescribe the two conditions given in Problem 3.3(iii) on
Γsonic for a second-order elliptic PDE. In the iteration prob-
lem, we prescribe the condition that 𝜑 = 𝜑2 on Γsonic, and
then prove that D𝜑 = D𝜑2 on Γsonic by exploiting the ellip-
tic degeneracy on Γsonic.

We observe that there is an additional possibility to
the regular shock reflection-diffraction configurations (be-
yond the conjectures by von Neumann [19]): For some
wedge angle 𝜃aw ∈ (𝜃dw,

𝜋
2
), Γshock may attach to the wedge

vertex 𝑃3, as observed by experimental results (cf. [6]); see
Figs. 18–19. To describe the conditions of such an attach-
ment, we use the explicit expressions of (3.3) to see that,
for each 𝜌0, there exists 𝜌c > 𝜌0 such that

𝑣1 ≤ 𝑐1 if 𝜌1 ∈ (𝜌0, 𝜌c]; 𝑣1 > 𝑐1 if 𝜌1 ∈ (𝜌c,∞).
If 𝑣1 ≤ 𝑐1, we can rule out the solution with a shock at-
tached to 𝑃3 = (0, 0). This is based on the fact that, if
𝑣1 ≤ 𝑐1, then 𝑃3 lies within the sonic circle 𝐵𝑐1(𝐯1) of state
(1), and Γshock does not intersect with 𝐵𝑐1(𝐯1), as we show
below. If 𝑣1 > 𝑐1, there would be a possibility that Γshock
could be attached to 𝑃3, as the experiments show. Given
these facts, the following results have been obtained:

Theorem 3.4 (Chen-Feldman [5,6]). There are two cases:
(i) If 𝜌0 and 𝜌1 are such that 𝑣1 ≤ 𝑐1, then the super-

sonic/subsonic regular reflection solution exists for each
(half-wedge) angle 𝜃w ∈ (𝜃dw,

𝜋
2
). That is, for each

𝜃w ∈ (𝜃dw,
𝜋
2
), there exists a solution 𝜑 of Problem 3.3

such that

Φ(𝑡, 𝐱) = 𝑡𝜑(𝐱𝑡 ) +
|𝐱|2
2𝑡 for

𝐱
𝑡 ∈ Λ, 𝑡 > 0,

with 𝜌(𝑡, 𝐱) = (𝜌𝛾−10 − (𝛾 − 1)(𝜕𝑡Φ + 1
2
|∇𝐱Φ|2))

1
𝛾−1 , is a

global weak solution of Problem 3.1 satisfying the entropy
condition; that is, Φ(𝑡, 𝐱) is an entropy solution.

JANUARY 2023 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY 17



Figure 18. The attached supersonic regular
reflection-diffraction configuration [6].

Figure 19. The attached subsonic regular reflection-diffraction
configuration [6].

(ii) If 𝜌0 and 𝜌1 are such that 𝑣1 > 𝑐1, then there exists 𝜃aw ∈
[𝜃dw,

𝜋
2
) so that the regular reflection solution exists for each

angle 𝜃w ∈ (𝜃aw,
𝜋
2
), and the solution is of the self-similar

structure described in (i), above. Moreover, if 𝜃aw > 𝜃dw,
then, for the wedge angle 𝜃w = 𝜃aw, there exists an attached
solution; that is, 𝜑 is a solution of Problem 3.3 with 𝑃2 =
𝑃3.

The type of regular shock reflection-diffraction configurations
(supersonic as in Figure 16 and Figure 18, or subsonic as in
Figure 17 and Figure 19) is determined by the type of state (2)
at 𝑃0:
(a) For the supersonic/sonic reflection case, the reflected-

diffracted shock 𝑃0𝑃2 is 𝐶2,𝛼–smooth for some 𝛼 ∈ (0, 1)
and its curved part Γsonic is 𝐶∞ away from 𝑃1. The solu-
tion 𝜑 is in 𝐶1,𝛼(Ω) ∩ 𝐶∞(Ω), and is 𝐶1,1 across Γsonic
which is optimal; that is, 𝜑 is not 𝐶2 across Γsonic.

(b) For the subsonic reflection case (as in Figure 17 and Figure
19), the reflected-diffracted shock 𝑃0𝑃2 and solution 𝜑 inΩ
are in 𝐶1,𝛼 near 𝑃0 and 𝑃3 for some 𝛼 ∈ (0, 1), and 𝐶∞

away from {𝑃0, 𝑃3}.

Moreover, the regular reflection solution tends to the unique nor-
mal reflection (as in Figure 15) when the wedge angle 𝜃w tends
to

𝜋
2
. In addition, for both supersonic and subsonic reflection

cases,

𝜑2 < 𝜑 < 𝜑1 in Ω,
D(𝜑1 − 𝜑) ⋅ 𝐞 ≤ 0 in Ω for all 𝐞 ∈ 𝐶𝑜𝑛𝑒(𝐞𝜉2 , 𝐞𝒮1),

where 𝐶𝑜𝑛𝑒(𝐞𝜉2 , 𝐞𝒮1) ≔ {𝑎𝐞𝜉2 + 𝑏𝐞𝒮1 ∶ 𝑎, 𝑏 > 0} with 𝐞𝜉2 =
(0, 1) and with 𝐞𝒮1 as the tangent unit vector to 𝒮1.

Theorem 3.4 was established by solving Problem 3.3.
The first results on the existence of global solutions of the
free boundary problem (Problem 3.3) were obtained for
the wedge angles sufficiently close to

𝜋
2
in Chen-Feldman

[5]. Later, in Chen-Feldman [6], these results were ex-
tended up to the detachment angle, as stated in Theorem
3.4. For this extension, the techniques developed in [5],
notably the estimates near Γsonic, were the starting point.

To establish Theorem 3.4, a theory for free boundary
problems for nonlinear PDEs of mixed elliptic-hyperbolic
type has been developed, including new methods, tech-
niques, and related ideas. Some features of these methods
and techniques include:

(i) exploitation of the global structure of solutions to
ensure that the nonlinear PDE (3.5) is elliptic for the regu-
lar reflection solution in Ω enclosed by the free boundary
Γshock and the fixed boundary for all wedge angles 𝜃w up to
the detachment angle 𝜃dw for all physical cases (see Figures
16–19);

(ii) optimal regularity estimates for the solutions of the
degenerate elliptic PDE (3.5) both near Γsonic and at corner
𝑃1 between the free boundary Γshock and the elliptic de-
generate fixed boundary Γsonic for the supersonic reflection
case (see Figure 16 and Figure 18);

(iii) for fixed incident shock strength and 𝛾 > 1, the de-
pendence of the structural transition of the global solution
configurations on the wedge angle 𝜃w from the supersonic
to subsonic reflection cases, i.e., from the degenerate ellip-
tic to the uniformly elliptic Equation (3.5) near a part of
the boundary;

(iv) uniform a priori estimates required for all stages of
the structural transition between the different configura-
tions.

Based on the methods and techniques used to establish
Theorem 3.4, further approaches and related techniques
have been developed to prove that the steady weak oblique
transonic shocks (discussed in §2) are attainable as large-
time asymptotic states by constructing the global Prandtl-
Meyer reflection configurations in self-similar coordinates
in Bae-Chen-Feldman [1] and the references cited therein,
and that all of the self-similar transonic shocks and related
free boundaries in these problems are always convex in
Chen-Feldman-Xiang [8].
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These types of questions also arise in other shock re-
flection/diffraction problems, which can be formulated as
free boundary problems for transonic shocks for nonlinear
PDEs of mixed type. These problems have the following
important attributes: They are physically fundamental and
are supported by a wealth of experimental/numerical data
indicating diverse patterns of complicated configurations
(cf. Figures 14–19), and their solutions are building blocks
and asymptotic attractors of general solutions of M-D hy-
perbolic conservation laws whose mathematical theory is
also in its infancy (cf. [2,6,13,15]).

Similarly, for the full Euler case, a self-similar solution is
a solution of the form: (𝐕, 𝑝, 𝜌)(𝑡, 𝐱) = (𝑣 − 𝜉, 𝑝, 𝜌)(𝜉), 𝜉 =
𝐱/𝑡, governed by

⎧
⎨
⎩

∇ ⋅ (𝜌𝐕) + 𝑛𝜌 = 0,
∇ ⋅ (𝜌𝐕 ⊗ 𝐕) + ∇𝑝 + (𝑛 + 1)𝜌𝐕 = 0,
∇ ⋅ (𝜌𝐕(𝐸 + 𝑝

𝜌
)) + 𝑛𝜌(𝐸 + 𝑝

𝜌
) = 0.

(3.12)

System (3.12) is a system of conservation laws of mixed-
composite elliptic-hyperbolic type:

• strictly hyperbolic when |𝐕| > 𝑐 ≔ √𝛾𝑝/𝜌 (pseudo-
supersonic);

• mixed-composite elliptic-hyperbolic (two of them are el-
liptic and the others are hyperbolic) when |𝐕| < 𝑐 ≔
√𝛾𝑝/𝜌 (pseudo-subsonic).

The transition boundary between the pseudo-supersonic
and pseudo-subsonic phases is |𝐕| = 𝑐, a degenerate set of
the solution of System (3.12), which is unknown a priori.

Similar fundamental mixed problems arise in other ap-
plications, where nonlinear PDEs of mixed type are the
core parts of even more sophisticated systems; examples
include the relativistic Euler equations, the Euler-Poisson
equations, and the Euler-Maxwell equations.

4. Nonlinear PDEs of Mixed Type and Isometric
Embedding Problems in Differential
Geometry and Related Areas

Nonlinear PDEs of mixed type also arise naturally from
many longstanding problems in differential geometry and
related areas. In this section, we first show how the fun-
damental problem – the isometric embedding problem – in
differential geometry can be formulated in terms of prob-
lems for nonlinear PDEs of mixed type, or even of no type.

The isometric embedding problem can be stated as fol-
lows: Seek an embedding/immersion of an 𝑛-D (semi-) Rie-
mannian manifold (ℳ𝑛, 𝑔) with metric 𝑔 = (𝑔𝑖𝑗) > 0 into
an 𝑁-D (semi-) Euclidean space so that the metric, often along
with assigned regularity/curvatures, is preserved.

This problem has assumed a position of funda-
mental conceptual importance in differential geometry,
thanks in part to the works of Darboux (1894), Weyl
(1916), Janet (1926), and Cartan (1927). A classical

Figure 20. The Gauss curvature 𝐾 of a torus with mixed sign.

question is whether a smooth Riemannian manifold
(ℳ𝑛, 𝑔) can be embedded into ℝ𝑁 with sufficiently large
𝑁; for more on this, see Nash (1956), Gromov (1986),
and Günther (1989). A further fundamental issue is
whether (ℳ𝑛, 𝑔) can be embedded/immersed in ℝ𝑠𝑛

with the critical Janet dimension 𝑠𝑛 = 𝑛(𝑛+1)
2

and as-
signed regularity/curvatures. The solution to this issue
promises to advance our understanding of the properties
of (semi-)Riemannian manifolds and to provide frame-
works/approaches for real applications, including the
problems for realization/stability/rigidity/classification of
isometric embeddings in many important application ar-
eas (e.g. elasticity, materials science, optimal design, thin
shell/biological leaf growth, protein folding, cell/tissue or-
ganization, and manifold data analysis).

When 𝑛 = 2, following Darboux,7 the isometric embed-
ding problem on a chart can be reduced to finding a func-
tion 𝑢 that solves the nonlinear Monge-Ampère equation
(cf. [17]):

det(∇2𝑢) = |𝑔|(1 − |∇𝑢|2𝑔)𝐾, (4.1)

with |𝑔| = det(𝑔), |∇𝑢|𝑔 ≔ 1
|𝑔|
(𝑔22|𝜕𝑥1𝑢|2 − 2𝑔12𝜕𝑥1𝜕𝑥2𝑢 +

𝑔11|𝜕𝑥2𝑢|2) < 1 as required, and the Gauss curvature 𝐾 =
𝐾(𝑔) of metric 𝑔. Equation (4.1) is elliptic if 𝐾 > 0, hyper-
bolic if 𝐾 < 0, and degenerate when 𝐾 = 0. The sign change
of 𝐾 is very common for surfaces and is necessary for many
important cases; the simplest example of such a surface is
the torus shown in Figure 20.

Nirenberg (1953) first solved the Weyl problem, estab-
lishing that any smooth metric 𝑔 on 𝕊2 can be globally
embedded into ℝ3 smoothly if the Gauss curvature 𝐾 > 0.
One could then ask whether any 2-D Riemannian surface
is always embeddable into ℝ3. The answer is no if 𝐾 ≤ 0.
The embedding problem is still largely open for global re-
sults for general 𝐾, even though some local results have
been obtained; see [17] and the references therein.

7G. Darboux, Leçons sur la Théorie des Surface, Vol. 3, Gauthier-Villars,
Paris, 1894.
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Figure 21. Johann Carl Friedrich Gauss
(April 30, 1777–February 23, 1855)
introduced the notion of Gauss (or
Gaussian) curvature and the Theorema
Egregium.

Figure 22. Jean-Gaston Darboux
(August 14, 1842–February 23, 1917)
indicated the connection between the
isometric embedding and the
nonlinear Monge-Ampère equation.

Figure 23. John Forbes Nash Jr. (June
13, 1928–May 23, 2015) established the
Nash embedding theorems.

On the other hand, the fundamental theorem of surface
theory states that there exists a simply connected surface in ℝ3

whose first and second fundamental forms are 𝐼 = 𝑔𝑖𝑗𝑑𝑥𝑖𝑑𝑥𝑗
and 𝐼𝐼 = ℎ𝑖𝑗𝑑𝑥𝑖𝑑𝑥𝑗 on a domain for 𝑖, 𝑗 = 1, 2, provided that
the coefficients {ℎ𝑖𝑗}, together with metric 𝑔 = (𝑔𝑖𝑗) > 0, satisfy
the Gauss-Codazzi equations:

𝐿𝑁 −𝑀2 = 𝐾, (4.2)

{𝜕𝑥1𝑁 − 𝜕𝑥2𝑀 = −Γ122𝐿 + 2Γ112𝑀 − Γ111𝑁,
𝜕𝑥1𝑀 − 𝜕𝑥2𝐿 = Γ222𝐿 − 2Γ212𝑀 + Γ211𝑁,

(4.3)

where 𝐿 = ℎ11/√|𝑔|,𝑀 = ℎ12/√|𝑔|, and 𝑁 = ℎ22/√|𝑔|, and
Γ𝑘𝑖𝑗 are the Christoffel symbols for 𝑖, 𝑗, 𝑘 = 1, 2. This theo-
rem still holds for immersion even when {ℎ𝑖𝑗} is only in 𝐿𝑝
for 𝑝 > 2.8 Thus, given (𝑔𝑖𝑗) > 0, System (4.2)–(4.3) con-
sists of three nonlinear PDEs for the unknowns (𝐿,𝑀,𝑁)
determining {ℎ𝑖𝑗}, the knowledge of which gives the de-
sired immersion. Then the problem can be reduced to the
solvability of System (4.3) under constraint (4.2), which
is of mixed elliptic-hyperbolic type determined by the sign of
the Gauss curvature 𝐾. From the viewpoint of geometry,
(4.2) is a constraint condition, while (4.3) involves com-
patibility conditions.

System (4.2)–(4.3) has features similar to those in gas
dynamics in §2–§3. A natural question is whether or not
this system can be written in a gas dynamic formulation
to examine underlying interrelations and connections. In-
deed, a novel observation in Chen-Slemrod-Wang [11] has
indicated that this is indeed the case: The Codazzi system
(4.3) can be formulated as the familiar nonlinear balance

8S. Mardare, The fundamental theorem of surface theory for surfaces with
little regularity, J. Elasticity 73 (2003), 251–290.

laws of momentum:

⎧
⎪
⎨
⎪
⎩

𝜕𝑥1(𝜌𝑢2 + 𝑝) + 𝜕𝑥2(𝜌𝑢𝑣)
= −Γ122(𝜌𝑣2 + 𝑝) − 2Γ112𝜌𝑢𝑣 − Γ111(𝜌𝑢2 + 𝑝),

𝜕𝑥1(𝜌𝑢𝑣) + 𝜕𝑥2(𝜌𝑣2 + 𝑝)
= −Γ222(𝜌𝑣2 + 𝑝) − 2Γ212𝜌𝑢𝑣 − Γ211(𝜌𝑢2 + 𝑝),

(4.4)

and the Gauss equation (4.2) becomes the Bernoulli rela-

tion: 𝜌 = (𝑞2 +𝐾)−
1
2 if 𝑝 = − 1

𝜌
is chosen as the Chaplygin

pressure for 𝑞 = √𝑢2 + 𝑣2. In this case, define the sound
speed as 𝑐 = √𝑝′(𝜌) = 1

𝜌
. Then

• 𝑞 < 𝑐 and the flow is subsonic when 𝐾 > 0;
• 𝑞 > 𝑐 and the flow is supersonic when 𝐾 < 0;
• 𝑞 = 𝑐 and the flow is sonic when 𝐾 = 0.

A weak compactness framework has been introduced
and applied for establishing the existence and weak con-
tinuity/stability of isometric embeddings in 𝑊 2,𝑝, 𝑝 ≥ 2,
in [10, 11]; this has shown the high potential. In partic-
ular, the weak continuity/stability of the Gauss-Codazzi
equations (4.2)–(4.3) and isometric immersions of
(semi-)Riemannian manifolds, independent of local coor-
dinates, have been established in [9,10], even for the case
𝑝 = 2.

For the higher-dimensional case, the Gauss-Codazzi
equations for ℎ = {ℎ𝑎𝑖𝑗} are coupled with the Ricci equa-
tions for the coefficients 𝜅 = {𝜅𝑎𝑙𝑏} of the connection form
on the normal bundle to become the Gauss-Codazzi-Ricci
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equations in a local coordinate chart of the manifold:

ℎ𝑎𝑗𝑖ℎ𝑎𝑘𝑙 − ℎ𝑎𝑘𝑖ℎ𝑎𝑗𝑙 = 𝑅𝑖𝑗𝑘𝑙 (Gauss equations), (4.5)

𝜕𝑥𝑘ℎ
𝑎
𝑙𝑗 − 𝜕𝑥𝑙ℎ

𝑎
𝑘𝑗 = −Γ𝑚𝑙𝑗 ℎ𝑎𝑘𝑚 + Γ𝑚𝑘𝑗ℎ𝑎𝑙𝑚 − (𝜅𝑎𝑘𝑏ℎ𝑏𝑙𝑗 − 𝜅𝑎𝑙𝑏ℎ𝑏𝑘𝑗)

(Codazzi equations), (4.6)

𝜕𝑥𝑘𝜅
𝑎
𝑙𝑏 − 𝜕𝑥𝑙𝜅

𝑎
𝑘𝑏 = 𝑔𝑖𝑗(ℎ𝑎𝑙𝑖ℎ𝑏𝑘𝑗 − ℎ𝑎𝑘𝑖ℎ𝑏𝑙𝑗) + 𝜅𝑎𝑙𝑐𝜅𝑐𝑘𝑏 − 𝜅𝑎𝑘𝑐𝜅𝑐𝑙𝑏

(Ricci equations), (4.7)

where 𝜅𝑎𝑘𝑏 = −𝜅𝑏𝑘𝑎 are the coefficients of the connection
form on the normal bundle, 𝑅𝑖𝑗𝑘𝑙 is the Riemann curvature
tensor, the indices 𝑎, 𝑏, 𝑐 run from 1 to 𝑁, and 𝑖, 𝑗, 𝑘, 𝑙, 𝑚, 𝑛
run from 1 to 𝑑 ≥ 3. System (4.5)–(4.7) has no type, nei-
ther purely hyperbolic nor purely elliptic, for general Rie-
mann curvature tensor 𝑅𝑖𝑗𝑘𝑙. Nevertheless, the weak conti-
nuity of the nonlinear system (4.5)–(4.7) has been estab-
lished.

Theorem 4.1 (Chen-Slemrod-Wang [11]). Let (ℎ𝜀, 𝜅𝜀) be a
sequence of solutions of the Gauss-Codazzi-Ricci system (4.5)–
(4.7), which is uniformly bounded in 𝐿𝑝 for 𝑝 > 2. Then the
weak limit vector field (ℎ, 𝜅) of the sequence (ℎ𝜀, 𝜅𝜀) in 𝐿𝑝 is
still a solution of the Gauss-Codazzi-Ricci system (4.5)–(4.7).

The proof of this is based on the following key observa-
tion in [11] for the div-curl structure of System (4.5)–(4.7):
For fixed 𝑖, 𝑗, 𝑘, 𝑙, 𝑎, 𝑏, 𝑐,

div(
𝑘

⏞⎴⎴⏞⎴⎴⏞0,⋯ , 0, ℎ𝑎,𝜀𝑙𝑖 , 0,⋯ ,−ℎ𝑎,𝜀𝑘𝑖⏟⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⏟
𝑙

, 0,⋯ , 0) = 𝑅𝜀1, (4.8)

curl(ℎ𝑏,𝜀1𝑗 , ℎ
𝑏,𝜀
2𝑗 ,⋯ , ℎ𝑏,𝜀𝑑𝑗 ) = 𝑅𝜀2, (4.9)

div(
𝑘

⏞⎴⎴⏞⎴⎴⏞0,⋯ , 0, 𝜅𝑎,𝜀𝑙𝑐 , 0,⋯ ,−𝜅𝑎,𝜀𝑘𝑐⏟⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⏟
𝑙

, 0,⋯ , 0) = 𝑅𝜀3, (4.10)

curl(𝜅𝑐,𝜀1𝑏 , 𝜅
𝑐,𝜀
2𝑏 ,⋯ , 𝜅𝑐,𝜀𝑑𝑏) = 𝑅𝜀4, (4.11)

div(
𝑘

⏞⎴⎴⏞⎴⎴⏞0,⋯ , 0, ℎ𝑏,𝜀𝑙𝑗 , 0,⋯ ,−ℎ𝑏,𝜀𝑘𝑗⏟⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⏟
𝑙

, 0,⋯ , 0) = 𝑅𝜀5, (4.12)

curl(𝜅𝑎,𝜀1𝑏 , 𝜅
𝑎,𝜀
2𝑏 ,⋯ , 𝜅𝑎,𝜀𝑑𝑏 ) = 𝑅𝜀6, (4.13)

where𝑅𝑟, 𝑟 = 1, … , 6, consist of the three types of nonlinear
quadratic terms:

ℎ𝑎,𝜀𝑙𝑖 ℎ
𝑏,𝜀
𝑘𝑗 − ℎ𝑎,𝜀𝑘𝑖 ℎ

𝑏,𝜀
𝑙𝑗 , 𝜅𝑎,𝜀𝑙𝑐 𝜅

𝑐,𝜀
𝑘𝑏 − 𝜅

𝑎,𝜀
𝑘𝑐 𝜅

𝑐,𝜀
𝑙𝑏 , 𝜅𝑎,𝜀𝑘𝑏ℎ

𝑏,𝜀
𝑙𝑗 − 𝜅𝑎,𝜀𝑙𝑏 ℎ

𝑏,𝜀
𝑘𝑗 ,

as well as several linear terms involving (ℎ𝜀, 𝜅𝜀), while the
nonlinear quadratic terms are actually the scalar products
of the vector fields given on the left-hand sides of (4.8)–
(4.13). Therefore, this div-curl structure fits the follow-
ing classical div-curl lemma divinely (Murat 1978, Tartar
1979): Let Ω ⊂ ℝ𝑑, 𝑑 ≥ 2, be open and bounded. Let 𝑝, 𝑞 > 1
such that

1
𝑝
+ 1

𝑞
= 1. Assume that, for 𝜀 > 0, two fields

𝐮𝜀 ∈ 𝐿𝑝(Ω;ℝ𝑑) and 𝐯𝜀 ∈ 𝐿𝑞(Ω;ℝ𝑑) satisfy the conditions

that

(i) 𝐮𝜀 ⇀ 𝐮 weakly in 𝐿𝑝(Ω;ℝ𝑑) and 𝐯𝜀 ⇀ 𝐯 weakly in
𝐿𝑞(Ω;ℝ𝑑) as 𝜀 ! 0;

(ii) div 𝐮𝜀 are confined in a compact subset of 𝑊−1,𝑝
loc (Ω;ℝ);

(iii) curl 𝐯𝜀 are confined in a compact subset of
𝑊−1,𝑞
loc (Ω;ℝ𝑑×𝑑),

where 𝑊−1,𝑝(Ω;ℝ) is the dual space of 𝑊 1,𝑞(Ω;ℝ), and vice
versa. Then the scalar product of 𝐮𝜀 and 𝐯𝜀 is weakly continuous:
𝐮𝜀 ⋅ 𝐯𝜀 ⟶𝐮 ⋅ 𝐯 in the sense of distributions.

With this div-curl lemma, the weak continuity result in
Theorem 4.1 can be seen as follows: For the uniformly
bounded sequence (ℎ𝜀, 𝜅𝜀) in 𝐿𝑝, 𝑝 > 2, 𝑅𝜀𝑟, 𝑟 = 1, … , 6,
are uniformly bounded in 𝐿𝑝/2, which implies that 𝑅𝜀𝑟, 𝑟 =
1, … , 6, are compact in 𝑊−1,𝑞

loc for some 𝑞 ∈ (1, 2). On
the other hand, System (4.8)–(4.13) implies that 𝑅𝜀𝑟, 𝑟 =
1, … , 6, are uniformly bounded in 𝑊−1,𝑝

loc for 𝑝 > 2. Then
the interpolation compactness argument yields that

𝑅𝜀𝑟, 𝑟 = 1, … , 6, are confined in a compact set in 𝐻−1
loc(Ω).

With this, we can employ the div-curl lemma to conclude
that

(ℎ𝑎,𝜀𝑙𝑖 ℎ
𝑏,𝜀
𝑘𝑗 − ℎ𝑎,𝜀𝑘𝑖 ℎ

𝑏,𝜀
𝑙𝑗 , 𝜅

𝑎,𝜀
𝑙𝑐 𝜅

𝑐,𝜀
𝑘𝑏 − 𝜅𝑎,𝜀𝑘𝑐 𝜅

𝑐,𝜀
𝑙𝑏 , 𝜅

𝑎,𝜀
𝑘𝑏ℎ

𝑏,𝜀
𝑙𝑗 − 𝜅𝑎,𝜀𝑙𝑏 ℎ

𝑏,𝜀
𝑘𝑗 )

−⇀ (ℎ𝑎𝑙𝑖ℎ𝑏𝑘𝑗 − ℎ𝑎𝑘𝑖ℎ𝑏𝑙𝑗 , 𝜅𝑎𝑙𝑐𝜅𝑐𝑘𝑏 − 𝜅𝑎𝑘𝑐𝜅𝑐𝑙𝑏, 𝜅𝑎𝑘𝑏ℎ𝑏𝑙𝑗 − 𝜅𝑎𝑙𝑏ℎ𝑏𝑘𝑗),
in the sense of distributions, as 𝜀 ! 0. Then Theorem 4.1
follows.

This local weak continuity result can be extended to the
global weak continuity of the Gauss-Codazzi-Ricci system
(4.5)–(4.7) as follows:

Theorem 4.2 (Chen-Li [10]). Let (𝑀, 𝑔) be a Riemannian
manifold with 𝑔 ∈ 𝑊 1,𝑝 for 𝑝 > 2. Let (ℎ𝜀, 𝜅𝜀) be a sequence of
solutions (i.e., the coefficients of the second fundamental form
and the connection form on the normal bundle) in 𝐿𝑝 of the
Gauss-Codazzi-Ricci system (4.5)–(4.7) in the distributional
sense. Assume that, for any submanifold 𝐾 ⋐ 𝑀, there exists
𝐶𝐾 > 0 independent of 𝜀 such that

sup
𝜖>0

‖(ℎ𝜀, 𝜅𝜀)‖𝐿𝑝(𝐾) ≤ 𝐶𝐾 .

Then, when 𝜀 ! 0, there exists a subsequence of (ℎ𝜀, 𝜅𝜀) that
converges weakly in 𝐿𝑝 to a pair (ℎ, 𝜅) that is still a weak solu-
tion of the Gauss-Codazzi-Ricci system (4.5)–(4.7).

The proof is based on a compensated compactness the-
orem in Banach spaces, which leads directly to a globally
intrinsic div-curl lemma on Riemannian manifolds, devel-
oped in Chen-Li [10]. From the viewpoint of geometry,
the 𝐿𝑝 bounded requirement on the connection form on
the normal bundle 𝜅𝜀 is not intrinsic. Therefore, Theorem
4.2 has been reformulated as follows:

Theorem 4.3 (Chen-Giron [9]). Let (𝑀, 𝑔) be a Riemannian
manifold with 𝑔 ∈ 𝑊 1,𝑝 for 𝑝 > 2. Let (ℎ𝜀, 𝜅𝜀) be a sequence of
solutions (i.e., the coefficients of the second fundamental form
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and the connection form on the normal bundle) in 𝐿𝑝 of the
Gauss-Codazzi-Ricci system (4.5)–(4.7) in the distributional
sense. Assume that, for any submanifold 𝐾 ⋐ 𝑀, there exists
𝐶𝐾 > 0 independent of 𝜀 such that

sup
𝜖>0

‖ℎ𝜀‖𝐿𝑝(𝐾) ≤ 𝐶𝐾 .

Then there exists a refined sequence (ℎ̃𝜀, �̃�𝜀), each of which is
still a weak solution of the Gauss-Codazzi-Ricci system (4.5)–
(4.7), such that, when 𝜀 ! 0, (ℎ̃𝜀, �̃�𝜀) converges weakly in 𝐿𝑝
to a pair (ℎ, 𝜅) that is still a weak solution of the Gauss-Codazzi-
Ricci system (4.5)–(4.7).

As a direct corollary, the weak limit of isometrically im-
mersed surfaces with lower regularity in𝑊 2,𝑝 is still an iso-
metrically immersed surface in ℝ𝑑 governed by the Gauss-
Codazzi-Ricci system (4.5)–(4.7) for any 𝑅𝑖𝑗𝑘𝑙 (without
sign/type restriction) with respect only to the coefficients
of the second fundamental form. The weak continuity re-
sult in Theorem 4.3 is global and intrinsic, independent
of local coordinates, without restriction on both the Rie-
mann curvatures and the types of System (4.5)–(4.7). The
key to the proof is to exploit the invariance for a choice
of suitable gauge to control the full connection form and
to develop a non-abelian div-curl lemma on Riemannian
manifolds (see Chen-Giron [9]).

This approach and related observations have been mo-
tivated by the theory of polyconvexity in nonlinear elas-
ticity,9 intrinsic methods in elasticity and nonlinear Korn
inequalities,10 andUhlenbeck compactness andGauge the-
ory,11,12 among other ideas.

5. Further Connections, Unified Approaches,
and Current Trends

In §2–§4, we have presented several important sets of
nonlinear PDEs of mixed elliptic-hyperbolic type, or even
of no type, in shock wave problems in fluid mechanics
and isometric embedding problems in differential geom-
etry and related areas. Such nonlinear PDEs of mixed
type arise naturally in other problems in fluid mechan-
ics, differential geometry/topology, nonlinear elasticity,
materials science, mathematical physics, dynamical sys-
tems, and related areas.

We have shown in §2–§4 that free boundary methods,
weak convergence methods, and related techniques are

9J. Ball, Convexity conditions and existence theorems in nonlinear elas-
ticity, Arch. Ration. Mech. Anal. 63 (1976), 337–403.
10see P. G. Ciarlet, Mathematical Elasticity, Volume 1: Three–
Dimensional Elasticity, North-Holland, Amsterdam, 1988; An Intro-
duction to Differential Geometry with Applications to Elasticity,
Springer, Dordrecht, 2005.
11K. K. Uhlenbeck, Connections with 𝐿𝑝 bounds on curvature, Comm.
Math. Phys. 83 (1982), 31–42.
12S. K. Donaldson, An application of gauge theory to four-dimensional
topology, J. Diff. Geom. 18 (1983), 279–315.

useful as unified approaches for dealing with the non-
linear mixed problems involving both elliptic and hyper-
bolic phases. Friedrichs’s positive symmetric techniques
have also demonstrated high potential in solving mixed-
type problems.13 Entropy methods and kinetic meth-
ods have been useful for solving nonlinear PDEs of hy-
perbolic or mixed hyperbolic-parabolic type. Variational
approaches deserve to be further explored, especially for
handling transonic flow problems, since the solutions of
these problems are critical points of the corresponding
functionals. Some approximate methods, such as viscos-
ity methods, relaxation methods, shock capturing meth-
ods, stochastic methods, and related numerical methods
should be further analyzed/developed, and numerical cal-
culations/simulations should be performed to gain new
ideas and motivations. These methods, along with en-
ergy estimate techniques, functional analytical methods,
measure-theoretic techniques (esp. divergence-measure
fields), and other methods, should be developed into even
more powerful approaches, applicable to wider classes of
nonlinear PDEs of mixed type. The underlying structures
of the nonlinear PDEs of mixed type under considera-
tion here have been one of the main motivating factors
in developing new methods/techniques/ideas for unified
approaches. As mentioned earlier, the analysis of nonlin-
ear PDEs of mixed type is still in its early stages, and most
nonlinearmixed-type problems are wide open and ripe for
the development of new ideas, methods, and techniques.
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