8EHQ - 0800 - 373

AR 226-094-8

1621

AH y

SEPA-OTS

0008117850

3M Environmental Laboratory

Final Report- Analytical Study

Single-dose Intravenous Pharmacokinetic Study of T-6246 in Rabbits

In-Vivo Study Reference Number: HWI#6329-159

Study Number: AMDT-042095.1 Test Substance: FC-95 (T-6246)

Name and Address of Sponsor:

3M SCD Division 367 Grove Street St. Paul, MN 55106

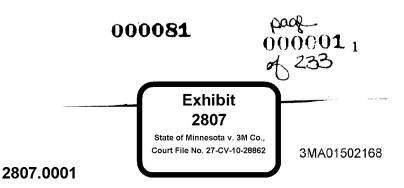
Name and Address of Testing Facility:

3M Environmental Technology & Services 935 Bush Avenue St. Paul, MN 55106

Method Numbers and Revisions:

Method Humbers	and the critical to be means of a Modified	
AMDT-M-1-0,	Thermal Extraction of Fluoride by means of a Modified	PH
AMDT-M-2-0,	Dohrmann DX2000 Organic Halide Analyzer-Liver Fluoride Measurement by Means of an Orion EA940	1 2: 31
AMDT-M-4-0, AMDT-M-8-0,	Expandable Ion Analyzer Extraction of Fluorochemicals from Rabbit Liver Analysis of Fluoride Using the Skalar Segmented Flow Anal	yzer
AMDT-M-14-0,	with Ion Selective Electrode Thermal Extraction of Fluoride by Means of a Modified Dohrmann DX2000 Organic Halide Analyzer-Serum	

Initiation Date: See attached protocol


Author: James D. Johnson

Approved By: ament

James D. Johnson Study Director

Contens No CEL

Completion Date

2000 DEC - 6

1.0 SUMMARY

Rabbit serum and liver were analyzed for fluorine content at various times after rabbits were dosed intravenously with a single dose of T-6246, a 0.12% solution of FC-95. Doses are expressed as FC-95 equivalents. The fluorine in serum was detected after a single dose of 0.12 mg/kg and after 0.60 mg/kg, but not after a 0.012 mg/kg dose at 28 days post dose. The method is not sensitive enough to detect and measure fluoride after the 0.012 mg/kg dose. The half-life of perfluorooctanesulfonate anion was found to be one month or greater in serum and liver.

The average liver fluoride ion concentration in Group 5 animals (0.60 mg/kg), at day 14 post dose was 1.48 ppm and for four other animals in the same group sacrificed at day 28 the concentration was 1.23 ppm. Thus, the decrease in concentration in liver from 14 days to 28 days post dose is slow; based on just these two points the half-life is greater than 1 month.

2.0 INTRODUCTION

This study was designed to provide information as to whether the perfluorooctanesulfonate anion does go to the liver and other tissues when the material is administered in an intravenous dose, and to ascertain the change in concentration with time after dose in serum and liver.

It is known from studies done previously with rats that the half-life of perfluorooctanesulfonate anion is quite long (>1 month). It was expected that the half-life in rabbits would also be long. Perfluorooctanesulfonate anion is a likely biotransformation product of several fluorochemicals that are to be tested for dermal absorption in other studies. The pharmacokinetics of the perfluorooctane-sulfonate anion is very relevant to these dermal absorption studies.

3.0 TEST MATERIALS

3.1 Test, Control, and Reference Substances and Matrices

3.1.1 Analytical Reference Substance: FC-95, lot 161 or 171. They are equivalent.

- 3.1.2 Analytical Reference Matrix: Bovine liver and bovine serum
- 3.1.3 Analytical Control Substance: None
- 3.1.4 Analytical Control Matrix: Bovine liver and bovine serum

000082

3.2 Source of Materials: 3M ICP/PCP Division For FC-95. Bovine liver from grocery store, bovine serum from Sigma Chemical Company

3.3. Purity and Strength of Reference Substance: Responsibility of Sponsor.

3.4 Stability of Reference Substance: To be determined by Sponsor.

3.5 Storage Conditions for Test Materials: Room temperature for FC-95. For biological samples, the storage is $-20\pm10^{\circ}$ C.

3.6 Disposition of Specimens: Biological tissues and fluids will be retained per GLP Regulation for the time period required for studies longer than 28 days.

4.0 EXPERIMENTAL-Overview

Serum and tissues from animals dosed as described (HWI#6329-159), were available for analysis for fluorine compounds. Since perfluorooctanesulfonate anion is not biotransformed, the analysis was accomplished with combustion and subsequent analysis for fluorine. The fluorine data are related directly to perfluorooctanesulfonate concentration. The fluorine analysis of serum collected at different time intervals after dosing provides data which can be interpreted pharmacokinetically. Additional analysis of liver samples provides evidence that the perfluorooctanesulfonate anion is still present at 28 days.

5.0 EXPERIMENTAL - Methods

5.1 AMDT-M-1-0, Thermal Extraction of Fluoride by Means of a Modified Dohrmann DX2000 Organic Halide Analyzer-Liver

5.2 AMDT-M-2-0, Fluoride Measurement by Means of an Orion EA940 Expandable Ion Analyzer

5.3 AMDT-M-4-0, Extraction of Fluorochemicals from Rabbit Liver

5.4 AMDT-M-8-0, Analysis of Fluoride Using the Skalar Segmented Flow Analyzer with Ion Selective Electrode

5.5 AMDT-M-14-0, Thermal Extraction of Fluoride by Means of a Modified Dohrmann DX2000 Organic Halide Analyzer-Serum

6.0 DATA ANALYSIS

Raw data are shown in Table I (Appendix 9.11). Doses are adjusted for the FC-95 equivalents. The administered dose was T-6246 which is a water solution of 0.12% FC-95. Serum concentrations are obviously not different than the control concentrations for the 0.006 and 0.012 mg/kg doses. The concentration in serum is plotted for Group 4 and Group 5 (see pages 140-141). For Group 5 (0.60 mg/kg dose), if the average concentration is fit to a least square regression Y=ae^{-kT}, $r^2 = 0.95$, a=1.62, $k=-1.099 \times 10^{-3}$, k=0.693 over $t_{1/2}$, and $t_{1/2}=26$ days. Similarly, $t_{1/2}=48$ days for Group 4. Thus, if Perfluorooctanesulfonate ion is formed from biotransformation, a large portion of the amount formed will be present in the serum at 28 days.

The average liver fluoride ion concentration in Group 5 animals, at day 14 post dose was 1.48 ppm and for four other animals in the same group sacrificed at day 28 the concentration was 1.23 ppm. Thus, the decrease in concentration in liver from 14 days to 28 days post dose is slow; based on just these two points the half-life is greater than 1 month.

Overall, for all time periods the serum and liver levels are as expected for the intravenous dose. The ability to detect levels in liver after an intravenous dose of 120 ug/kg suggests that when perfluorooctanesulfonate is the marker, dermal absorption studies will be quite sensitive.

6.1 Circumstances That May Affect the Quality of the Data: These values for concentration are from combustion analyses of the biological material. The recoveries are based on spiking the biological material with known amounts of FC-95. The fluorine is measured by selective ion electrode and the Orion meter is calibrated over a 5 point range. However, if there is a different response at different concentrations of FC-95 other than the point used as a calibration check, there could be a bias at those concentrations even though the amount of fluorine is being measured accurately. This can come from other variables in the method such as the efficiency of combustion. Thus, the values reported for concentration are not absolute values. The values are certainly sufficient to make the point that the perfluorooctanesulfonate anion is present at 28 days in liver and serum, that the halflife is on the order of a month or longer, and that the method can detect perfluorooctanesulfonate in serum after a dose somewhere between 0.012 and 0.12 mg/kg. This method allows sufficient sensitivity for dermal absorption studies where some of the applied fluorochemical is biotransformed to perfluorooctanesulfonate anion.

000084

7.0 CONCLUSION

The half-life of perfluorooctanesulfonate in liver and serum after an intravenous dose is one month or greater in rabbits. The perfluorooctanesulfonate anion can be detected by the combustion method and subsequent fluoride analysis at 28 days after either a 0.12 or a 0.60 mg/kg intravenous dose. The 0.012 mg/kg intravenous dose does not provide sufficient fluoride ion for this method. The method would probably be able to detect a dose somewhere between 0.012 and 0.12 mg/kg. Analysis of fluorine at 28 days in liver and serum provides a marker for dermal absorption for dermally applied fluorochemicals that are biotransformed to perfluorooctanesulfonate anion.

8.0 MAINTENANCE OF RAW DATA AND RECORDS

8.1 Raw Data and Data: Raw data, approved protocol, approved final report, appropriate specimens, and electronic data will be maintained in the AMDT Archives.

9.0 APPENDICES

9.1 Protocol and Amendments

9.1.1 Protocol and Final Report: HWI#6329-159 "Single Dose Intravenous Pharmacokinetic Study of T-6246 in Rabbits" (Protocol type TP8084.PK for dosing of animals, tissue collection, etc.)

- 9.1.2 Analytical protocol AMDT-042095.1
- 9.2 Signed Reports from Individual Scientists: None
- 9.3 Quality Assurance Unit Statement: See attached
- 9.4 Key Personnel Involved in the Study: See attached
- 9.5 Materials and Equipment: See methods
- 9.6 Solutions, Reagents, and Standards: See methods
- 9.7 Sample Preparation: See methods
- 9.8 Quality Control Practices: See methods

000085

5

9.9 Test Methods: See Protocol AMDT-042095.1

9.10 Instrument Settings: See methods

9.11 Data: See attached:

9.11.1 Summary and raw data; ug F⁻ in whole liver as determined by thermal extraction followed by analysis using Orion ion analyzer.

9.11.2 Summary and raw data; ug F in whole liver as determined by thermal extraction followed by analysis using Skalar segmented flow analyzer with ion selective electrode.

9.11.3 Summary and raw data; $ppm F^{-}$ in serum as determined by thermal extraction followed by analysis using Orion ion analyzer.

9.11.4 Summary and raw data; ppm F⁻ in serum as determined by thermal extraction followed by analysis using Skalar segmented flow analyzer with ion selective electrode.

9.1.1 Protocol and Final Report: HWI#6329-159 "Single Dose Intravenous Pharmacokinetic Study of T-6246 in Rabbits" (Protocol type TP8084.PK for dosing of animals, tissue collection, etc.)

•

000007

000087

ą

a CORNING Company

Sponsor:

3M St. Paul, Minnesota

FINAL REPORT

<u>Study Title</u>:

Single-Dose Intravenous Pharmacokinetic Study of T-6246 in Rabbits

<u>Author</u>:

Steven M. Glaza

Study Completion Date:

September 14, 1995

Performing Laboratory:

Hazleton Wisconsin, Inc. 3301 Kinsman Boulevard Madison, Wisconsin 53704

Laboratory Project Identification:

HWI 6329-159

Page 1 of 38

000008

 Phone
 608-241-4471
 Fax
 608-241-7227

 EXPRESS-MAIL
 DELIVERY:
 3301
 KINSMAN
 BLVD.
 MADISON,
 W1
 53704

000088

3MA01502175

QUALITY ASSURANCE STATEMENT

This report has been reviewed by the Quality Assurance Unit of Hazleton Wisconsin, Inc., in accordance with the Food and Drug Administration (FDA) Good Laboratory Practice Regulations, 21 CFR 58.35 (b) (6) (7). The following inspections were conducted and findings reported to the Study Director and management. Written status reports of inspections and findings are issued to Hazleton management monthly according to standard operating procedures.

Inspection Dates			Date Reported to	Date to	
<u> From </u>	<u>To</u>	Phase	<u>Study Director</u>	<u>Management</u>	
03/22/95 04/10/95 04/27/95 07/05/95 09/12/95	03/22/95 04/10/95 04/27/95 07/10/95 09/12/95	Protocol Review Protocol Amendment Animal Observation Data/Report Review Report Rereview	03/22/95 04/10/95 04/27/95 07/10/95 09/12/95	03/10/95 05/10/95 05/10/95 08/10/95 10/10/95	

Tenty

Representative, Quality Assurance Unit

×.

9.14.95 Date

000089

000009

STUDY IDENTIFICATION

Single-Dose Intravenous Pharmacokinetic Study of T-6246 in Rabbits

Test Material	T-6246
Sponsor	3M Toxicology Service Medical Department 3M Center, Bldg. 220-2E-02 P.O. Box 33220 St. Paul, MN 55133-3220
Sponsor's Representative	John L. Butenhoff, PhD 3M Toxicology Service Medical Department 3M Center, Bldg. 220-2E-02 P.O. Box 33220 St. Paul, MN 55133-3220 (612) 733-1962
Study Director	Steven M. Glaza Hazleton Wisconsin, Inc. P.O. Box 7545 Madison, WI 53707-7545 (608) 241-7292
Study Location	Hazleton Wisconsin, Inc. 3301 Kinsman Boulevard Madison, WI 53704
Study Timetable Study Initiation Date Experimental (In-life) Start Date In-life End Date Experimental Termination Date Study Completion Date	March 30, 1995 April 4, 1995 May 1, 1995 September 14, 1995 September 14, 1995

000090

Page 4 of 38

.

HWI 6329-159

KEY PERSONNEL

Acute Toxicology

Steven M. Glaza Study Director Manager

Francis (Bud) W. McDonald Study Coordinator

Patricia Padgham In-life Supervisor

Rose M. Bridge Report Supervisor

Toxicology Support

Kathy Myers Manager

Calvin L. Horton Supervisor

Quality Assurance

Sherry R. W. Petsel Manager

Laboratory Animal Medicine

Cindy J. Cary, DVM Diplomate, ACLAM Supervisor

Anatomical Pathology

Thomas E. Palmer, PhD Anatomical Pathologist

Jack Serfort/ Deborah L. Pirkel Supervisors Necropsy

Anne Mosher Supervisor Pathology Data

000011

Page 5 of 38

CONTENTS

	<u>Page</u>
Quality Assurance Statement Study Identification Key Personnel Summary Objective Regulatory Compliance Test and Control Materials Test System Procedures Results Discussion Signature Pathology Report	2 3 4 6 8 8 9 10 13 13 13 14 15
Table	
 Individual Body Weights (g) Individual Clinical Signs Individual Pathology Comments Individual Animal Tissue Weights and Bile Volumes 	16 18 21 22
Appendix A Protocol Deviations Protocol TP8084.PK Protocol Amendment No. 1	25 26 27 37

000092

SUMMARY

This study was done to assess the level of systemic exposure of T-6246 when administered by a single intravenous injection to rabbits.

The study was conducted using four male and four female acclimated rabbits of the Hra:(NZW)SPF strain for each treatment group as follows:

	Group	<u>Test Material</u>	Dose Level (mg/kg)	<u>Number (</u> Males	of Animals Females
2 3 4	(Control) (Low) (Medium) (High) (High)	Sterile water T-6246 T-6246 T-6246 T-6246 T-6246	0 5 10 100 500	4 4 4* 4*	4 4 4 4 4

 One animal sacrificed after treatment due to a possible broken back and replaced with another male animal.

The animals received a single intravenous injection of the test material at the indicated dose level into the marginal ear vein of the right ear. The dose volume was 0.5 mL/kg of body weight for Groups 1 through 4 and was 0.75 mL/kg for Group 5. Two animals/sex/dose level were sacrificed on Day 15 and the remaining animals (two animals/sex/dose level) were sacrificed on Day 28.

Clinical observations were conducted predose and at approximately 0.5, 2, and 4 hours after intravenous injection. Additional clinical observations and twice a day mortality checks were conducted daily thereafter until the scheduled sacrifice interval (Day 15 or Day 28). Body weights were determined on Day -7 for randomization purposes, before test or control material administration (Day 1), and at the scheduled sacrifice interval (Day 15 or Day 28). A blood sample (approximately 4 mL) was collected from a marginal ear vein (left ear) of the animals at 4-, 8-, 12-, 24-, and 48-hours post-injection, and on Day 8. An approximate 4-mL blood sample was also collected on Days 15 and 22 for the animals scheduled for sacrifice on Day 28. In addition, at the time of the scheduled sacrifice (Day 15 or Day 28), approximately 20 mL of blood was obtained from each animal. All samples were centrifuged, separated into serum and cellular fractions, and sent to the Sponsor. On Day 15 or 28, the animals were anesthetized with sodium pentobarbital, bled via the posterior vena cava, and exsanguinated. An abbreviated gross necropsy examination was not done, however, tissues were collected. The whole liver, bile, and both kidneys from each animal were collected, weighed (volume only determined for bile), and sent frozen to the Sponsor.

000093

Intravenous injection of T-6246 did not result in any test material-related changes in body weight gain. All animals appeared clinically normal throughout the study with the exception of one Group 4 and one Group 5 male animals that were sacrificed on Days 2 and 1, respectively, due to injury (possible broken backs). These animals were replaced and the replacement animals appeared clinically normal throughout the study.

-000014

3MA01502181

2807.0014

OBJECTIVE

The objective of this study was to assess the level of systemic exposure to the test material, T-6246, when administered as a single intravenous injection to rabbits.

REGULATORY COMPLIANCE

This study was conducted in accordance with the U.S. Food and Drug Administration's Good Laboratory Practice Regulations for Nonclinical Laboratory Studies, 21 CFR 58, with the exception that analysis of the test mixtures for concentration, homogeneity/solubility, and stability was not conducted. All procedures used in this study were in compliance with the Animal Welfare Act Regulations. In the opinion of the Sponsor and study director, the study did not unnecessarily duplicate any previous work.

TEST AND CONTROL MATERIALS

<u>Identification</u>

The test material was identified as T-6246 and described as a clear, colorless liquid. The control material was Sterile Water for Injection, USP (Abbott Laboratories, Lot No. 86-748-DM-02; Exp. April 1, 1996), and was described as a clear, colorless liquid.

Purity and Stability

The Sponsor assumes responsibility for test material purity and stability determinations (including under test conditions). Analysis of the test material mixtures for concentration, homogeneity/solubility, and stability was not conducted or requested by the Sponsor. The purity and stability of the control material were considered to be adequate for the purposes of this study.

Storage and Retention

The test material was stored at room temperature. The control material was stored refrigerated. Any unused test material was returned to the Sponsor after completion of all in-life testing according to Hazleton Wisconsin (HWI) Standard Operating Procedure (SOP). Any remaining vehicle may be used for other testing and will not be discarded after issuance of the final report.

000095

<u>Safety Precautions</u>

The test and control material handling procedures were according to HWI SOPs and policies.

TEST SYSTEM

<u>Test Animal</u>

Adult albino rabbits of the Hra:(NZW)SPF strain were received from HRP, Inc., Kalamazoo, Michigan on March 8, 1995 and maintained at the Hazleton Wisconsin facility at 3301 Kinsman Boulevard, Madison, Wisconsin.

Housing

After receipt, the animals were acclimated for a period of at least 7 days. During acclimation and throughout the study, the animals were individually housed in screen-bottom stainless steel cages in temperature- and humidity-controlled quarters. Environmental controls for the animal room were set to maintain a temperature of 19° to 23°C, a relative humidity of 50% \pm 20%, and a 12-hour light/12-hour dark lighting cycle. In cases where variations from these conditions existed, they were documented and considered to have had no adverse effect on the study outcome.

<u>Animal Diet</u>

The animals were provided access to water *ad libitum* and a measured amount of Laboratory Rabbit Diet HF #5326, PMI Feeds, Inc. The feed is routinely analyzed by the manufacturer for nutritional components and environmental contaminants. Samples of the water are periodically analyzed by HWI. There were no known contaminants in the feed or water at levels that would have interfered with or affected the results of the study.

Selection of Test Animals

The animals were identified by animal number and corresponding ear tag and were placed into study groups using a stratified body weight randomization program. The randomization body weights were determined on Day -7. The weight variation of the animals for each group of each sex selected for the study did not exceed ± 2 standard deviations of the mean weight, and the mean body weights for each group of each sex were not statistically different at the 5% probability level.

000096

<u>Study Design</u>

Animals weighing from 2,523 to 3,276 g at initiation of treatment were placed into the following study groups:

Group	Test/Control Material	Dose Level (mg/kg)	Dose Volume <u>(mL/kg)</u>	<u>Number of</u> <u>Males</u>	<u>FAnimals</u> ^a <u>Females</u>
1 (Control) 2 (Low) 3 (Medium) 4 (High) 5 (High)	Sterile water T-6246 T-6246 T-6246 T-6246 T-6246	0 5 10 100 500	0.5 0.5 0.5 0.5 0.75	4 4 4* 4*	4 4 4 4

* One animal sacrificed after treatment due to a possible broken back and replaced with another male animal.

a Two animals/sex/dose level were sacrificed on Day 15. The remaining animals (two animals/sex/dose level) were sacrificed on Day 28.

Justification for Species Selection

Historically, the New Zealand White albino rabbit has been the animal of choice because of the large amount of background information on this species.

PROCEDURES

Dose Preparation and Administration

The test material was diluted with sterile water to achieve a specific concentration for each dose level in Groups 2 to 5. An individual dose of each respective test solution or control was calculated for each animal based on its body weight on the day of treatment. The respective test solution was administered by intravenous injection into the marginal ear vein of the right ear over approximately 22 to 60 seconds. The prepared test solutions were stored at room temperature until administered. After administration, any remaining test solutions were discarded.

<u>Reason for Route of Administration</u>

Intravenous injection is an acceptable route to assess systemic exposure.

000097

Observations of Animals

Clinical observations were conducted predose and at approximately 0.5, 2, and 4 hours after intravenous injection. Additional clinical observations and twice a day mortality checks were conducted daily thereafter until the scheduled sacrifice interval (Day 15 or Day 28).

Body weights were determined on Day -7 for randomization purposes and before test or control material administration (Day 1). Additional body weights were determined at the scheduled sacrifice interval (Day 15 or Day 28) or at unscheduled sacrifices (when survival exceeded 1 day).

Sample Collections

A blood sample (approximately 4 mL) was collected from the marginal ear vein (left ear) of the animals at 4-, 8-, 12-, 24-, and 48-hours post-injection, and on Day 8. An approximate 4-mL blood sample was also collected on Days 15 and 22 for the animals scheduled for sacrifice on Day 28. In addition, at the time of necropsy, approximately 20 mL of blood was obtained from the posterior vena cava of each animal. All samples were stored at room temperature, and then centrifuged, separated into serum and cellular fractions. These samples were then stored in a freezer set to maintain a temperature of $-20^{\circ}C \pm 10^{\circ}C$ until shipped to the Sponsor.

Pathology

The animals sacrificed on Days 1 and 2 due to apparent broken backs were necropsied in the same manner as the animals surviving to the scheduled sacrifices with the exception that they received an abbreviated gross necropsy examination and any abnormalities were recorded.

On Day 15, the first two animals/sex assigned to each dose level (based on the group assignment randomization) were anesthetized with sodium pentobarbital (via injection in the marginal ear vein), bled via the posterior vena cava, and exsanguinated. An abbreviated gross necropsy examination was not done, however, tissues were collected. The whole liver, bile, and both kidneys from each animal were collected, weighed (volume only determined for bile), and immediately placed in a freezer set to maintain a temperature of $-20^{\circ}C \pm 10^{\circ}C$. After tissue/bile collection, the animals were discarded. The remaining two animals/sex/dose level were anesthetized, bled, and exsanguinated on Day 28 in the same manner as the animals sacrificed on Day 15.

000098

Page 12 of 38

Shipment of Tissues

After completion of the in-life phase, the blood samples (serum and cellular fractions), livers, bile, and kidneys were sent frozen (on dry ice) to the Sponsor (James D. Johnson, 3M E.E. & P.C., Bldg. 2-3E-09, 935 Bush Avenue, St. Paul, MN, 55106), along with their corresponding weights or volumes. The Sponsor is responsible for the retention and disposition of the samples. HWI does not accept any responsibility for the analysis of the samples collected in this study nor are these results presented in this report.

Statistical Analyses

No statistical analyses were required by the protocol.

Location of Raw Data, Records, and Final Report

The raw data, records, and an original signed copy of the final report will be retained in the archives of HWI in accordance with HWI SOP.

Page 13 of 38

HWI 6329-159

RESULTS

Body Weights

Individual body weights are in Table 1. There was no meaningful effect on body weight gain during the study.

<u>Clinical Observations</u>

Individual clinical signs are in Table 2. All animals appeared normal throughout the study with the following exceptions:

- One Group 4 male (No. F54106) treated with T-6246 at 100 mg/kg appeared to have injured its back on Day 2 and was sacrificed, necropsied, and replaced with No. F54099. The replacement animal appeared normal throughout the study.
- One Group 5 male (No. F54076) treated with T-6246 at 500 mg/kg appeared to have injured its back on the day of treatment and was sacrificed, necropsied, and replaced with No. F54112. The replacement animal appeared normal throughout the study.

Pathology

Individual animal pathology comments are presented in Table 3. Individual animal tissue weights and bile volumes are in Table 4. The necropsy of animal No. F54106 revealed the skeletal muscle surrounding the lumbar spinal cord was diffusely dark red. In animal No. F54076, the skeletal muscle surrounding both hind limbs and the sacral spinal cord was diffusely dark red. The remaining animals survived to their scheduled sacrifice and were not examined grossly, although tissues were saved.

Page 15 contains a pathology report by the study pathologist.

DISCUSSION

The level of systemic exposure of T-6246 was evaluated in male and female albino rabbits when administered as a single intravenous injection at levels of 5, 10, 100, and 500 mg/kg. There were no test material-related effects in any of the animals following administration of this material.

000100

SIGNATURE

Ĥ,

Steven M. Glaza Study Director Acute Toxicology

9-14-95 Date

000021

Page 15 of 38

HWI 6329-159

PATHOLOGY REPORT

There were two male rabbits sacrificed on Day 1 or Day 2 and necropsied. At necropsy, the skeletal muscle surrounding the lumbar spinal cord in Animal No. F54106 (100 mg/kg of body weight) was diffusely dark red. In Animal No. F54076 (500 mg/kg of body weight), the skeletal muscle surrounding both hind limbs and the sacral spinal cord was diffusely dark red. The findings in these animals are indicative of injury of undetermined etiology to the caudal region of the back. The liver, bile, and both kidneys from these animals were collected as required by protocol. After necropsy, the animals were discarded.

almen Thomas E. Palmer,

Pathologist

<u>9-14-95</u> Date

(6329-159.1hm) 051295

000102

000022

•

Table 1 Individual Body Weights (g)							
Sex	Animal <u>Number</u>	Random- ization <u>(Day -7)</u>	Initial <u>(Day 1)</u>	 Day_15	nal Day 28		
Group	<u>l (Contr</u>	<u>ol) – Sterile</u>	Water for I	<u>njection (O</u>	mg/kg)		
Male	F54105 F54075 F54081 F54107	2,603 2,531 2,373 2,544	2,761 2,539 2,526 2,731	2,933 2,703 - -	2,874 3,056		
Female	F54104 F54086 F54074 F54085	2,665 2,526 2,540 2,553	2,890 2,632 2,703 2,667	3,130 2,775 - -	2,990 3,014		
		<u>Group 2 - T-</u>	<u>6246 (5 mg/k</u>	<u>(q)</u>			
Male	F54083 F54100 F54077 F54094	2,381 2,675 2,459 2,466	2,598 2,869 2,592 2,601	2,538 3,030 - -	- 2,859 2,916		
Female	F54091 F54108 F54102 F54097	2,717 2,412 2,690 2,439	2,785 2,622 2,839 2,533	2,996 2,790 - -	- 3,290 2,928		
<u>Group 3 - T-6246 (10 mg/kg)</u>							
Male	F54071 F54093 F54095 F54101	2,487 2,652 2,662 2,622	2,523 2,776 2,772 2,642	2,709 2,993 - -	- 3,126 3,162		
Female	F54110 F54096 F54090 F54078	2,719 2,772 2,542 2,710	2,802 2,914 2,740 2,842	2,959 3,022 - -	- 3,022 3,244		

- Not required.

.

000103

000023

Table 1 (Continued) Individual Body Weights (g)

Sex	Animal <u>Number</u>	Random- ization (Day -7)	Initial <u>(Day 1)</u>	 Day 15	nal Day 28
	G	<u>roup 4 - T-6</u>	246 (100 mg/	'kg)	
Male	F54088 F54106 ^a F54089 F54087 F54099	2,494 2,677 2,597 2,578 2,360	2,582 2,833 2,662 2,665 2,764	2,771 2,803 ⁽²⁾ 3,004	- 2,911 3,060
Female	F54080 F54092 F54109 F54114	2,498 2,400 2,592 2,776	2,622 2,540 2,657 2,933	2,835 2,667 - -	- 2,979 3,296
	<u>G</u>	roup 5 - T-6	246 (500 mg/	<u>'kg)</u>	
Male	F54076 ^b F54113 F54082 F54111 F54112	2,655 2,667 2,734 2,547 2,996	2,678 2,753 2,843 2,784 3,276	2,896 - 3,530	3,216 3,228
Female	F54098 F54084 F54079 F54116	2,565 2,510 2,468 2,442	2,679 2,600 2,526 2,611	2,856 2,821 - -	2,959 3,002

- Not required.
- Animal No. F54106 was originally selected by the randomization program for use in the study and was treated. This animal was sacrificed on Day 2 due to a broken back and was replaced with No. F54099.
- () Number in superscripted parentheses indicates the day the body weight was taken.
- Animal No. F54076 was originally selected by the randomization program for use in the study and was treated. This animal was sacrificed on Day 1 due to a broken back and was replaced with No. F54112.

.

HWI 6329-159

Ta	able 2	
Individual	Clinical	Signs

Sex	Animal <u>Number</u>	Observation	<u>Hour</u>	<u>(Day</u>	1)	2	Day <u>3 to 15</u>	, <u>16 to 28</u>
	<u>Group l</u>	<u>(Control) - Ste</u>	erile Water	r for	Inje	tion	(O mg/kg)
Male	F54105	Appeared norm	al 🖌	1	1	1	1	*
	F54075	Appeared norm	al 🖌	1	1	1	1	*
	F54081	Appeared norm	al 🖌	1	1	1	1	1
	F54107	Appeared norm	al 🖌	1	1	1	1	1
Female	F54104	Appeared norm	al 🖌	1	1	1	1	*
	F54086	Appeared norm	al 🖌	1	1	1	1	*
	F54074	Appeared norm	al 🖌	1	1	1	1	1
	F54085	Appeared norm	al 🖌	1	1	1	1	1
		<u>Group 2</u>	- T-6246	(5 mg	<u>/kg)</u>			
Male	F54083	Appeared norm	al 🖌	1	1	1	1	*
	F54100	Appeared norm	al 🖌	\$	1	1	1	*
	F 54 077	Appeared norm	al 🖌	1	1	1	1	J
	F54094	Appeared norm	al 🖌	1	1	1	1	1
Female	F54091	Appeared norm	al 🗸	1	1	1	1	*
	F54108	Appeared norm	al 🗸	1	1	1	1	*
	F54102	Appeared norm	al 🖌	1		1	1	1
	F54097	Appeared norm	al 🖌	1	1	1	1	1

★ Animal sacrificed on Day 15.✓ Condition existed.

000105

Table 2 (Continued) Individual Clinical Signs

Sex	Animal <u>Number</u>	Observation	<u>Hour</u> 0.5	<u>(Day</u> 2	1)4	2	Day <u>3 to 15</u>	16 to 28
		<u>Group 3 - T-6</u>	5 <u>246 (</u>	<u>10 mg</u>	<u>/kg)</u>			
Male	F54071	Appeared normal	1	1	1	1	1	*
	F54093	Appeared normal	1	1	1	1	1	*
	F54095	Appeared normal	1	1	1	1	1	J.
	F54101	Appeared normal	1	1	1	1	1	1
Female	F54110	Appeared normal	1	1	1	1	1	*
	F54096	Appeared normal	1	1	1	1	1	*
	F54090	Appeared normal	1	\$	1	1	1	1
	F54078	Appeared normal	1	1	1	1	1	1
		<u>Group 4 - T-6</u>	246 (100 m	g/kg)		at.	
Male	F54088	Appeared normal	1	1	1	1	1	*
	F54106	Appeared normal Broken back	1	1	/	-		
		Moribund sacrifice	-	-	-	1		
	F54089	Appeared normal	1	1	1	1	✓	J
	F54087	Appeared normal	1	1	1	1	1	1
	F 54 099 ^a	Appeared normal	1	\$	1	1	1	*
Female	F54080	Appeared normal	J -	√ .	1	1	1	*
	F54092	Appeared normal	1	1	1	1	1	*
	F54109	Appeared normal	1	1	1	1	1	J
	F54114	Appeared normal	1	1	1	1	1	1

- ★ Animal sacrificed on Day 15.
 ✓ Condition existed.
 Condition not evident.
 a Replacement animal for Animal No. F54106.

000106

000026

Table 2 (Continued) Individual Clinical Signs

Sex	Animal <u>Number</u>	Observation	<u>Hour</u> 0.5	<u>(Day</u> 2	1)	2	Day <u>3 to 15</u>	<u>16 to 28</u>
		<u>Group 5 - T-6</u>	246 (500 m	<u>g/kg)</u>			
Male	F54076	Appeared normal Broken back Moribund sacrifice	/ - -	/ - -	✓ † †			
	F54113	Appeared normal	1	1	1	1	1	*
	F54082	Appeared normal	1	1	1	1	1	1
	F54111	Appeared normal	1	1	1	1	1	1
	F54112 ^a	Appeared normal	1	1	1	1	1	*
Female	F54098	Appeared normal	1	1	1	1	1	*
	F54084	Appeared normal	1	√	1	1	1	*
	F54079	Appeared normal	1	4	1	1	1	1
	F54116	Appeared normal	1	1	1	1	1	1

* Animal sacrificed on Day 15.✓ Condition existed.

- Condition not evident.
- † Condition evident at time of 12-hour bleeding interval. a Replacement animal for Animal No. F54076.

000107

Page 21 of 38

.

HWI 6329-159

Table 3 Individual Pathology Comments

Animal <u>Number</u>	<u>Sex</u>	Died	<u>Test Day</u> <u>Sacrificed</u>	Necropsy Observation
			<u> Group 4 - T-6246</u>	(100 mg/kg)
F54106	М	-	2	The skeletal muscle surrounding the lumbar spinal cord is diffusely dark red.
			<u>Group 5 - T-6246</u>	(500 mg/kg)
F54076	Μ	•	1	The skeletal muscle surrounding both hind limbs and sacral spinal cord is diffusely dark red.

000108

8\$0000

Sex	Animal <u>Number</u>	Sacrifice Day	<u>Weight</u> Liver	(g) <u>Kidneys</u>	Bile <u>Volume (mL)</u>
Group) 1 (Contro	<u>l) - Sterile</u>	Water for	Injection	<u>(0 mg/kg)</u>
Male	F54105	15	86.35	14.92	0.6
	F54075	15	60.25	15.97	0.1
	F54081	28	80.597	14.764	1.2
	F54107	28	80.649	15.620	0.4
Female	F54104	15	98.40	16.03	0.7
	F54086	15	77.30	15.23	0.7
	F54074	28	82.895	18.793	1.6
	F54085	28	80.950	14.925	1.3
	<u>G</u>	roup 2 - T-6	5246 (5 mg/k	<u>a)</u>	
Male	F54083	15	73.15	14.87	0.7
	F54100	15	77.90	17.62	0.7
	F54077	28	75.699	17.864	0.3
	F54094	28	78.689	17.213	0.8
Female	F54091	15	84.90	14.92	1.6
	F54108	15	79.90	15.40	0.4
	F54102	28	101.494	18.308	1.7
	F54097	28	73.621	16.214	1.4

Table 4 Individual Animal Tissue Weights and Bile Volumes

000109

000029

2807.0029

HWI 6329-159

Page 23 of 38

.

HWI 6329-159

Individual Animal Tissue Weights and Bile Volumes					
Sex	Animal <u>Number</u>	Sacrifice Day	Weigh _Liver_	t (q) <u>Kidneys</u>	Bile <u>Volume (mL)</u>
<u>Group 3 - T-6246 (10 mg/kg)</u>					
Male	F54071	15	77.10	15.88	0.5
	F54093	15	81.40	15.50	0.8
	F54095	28	85.504	15.561	1.2
	F54101	28	85.668	16.120	1.0
Female	F54110	15	83.68	15.79	1.4
	F54096	15	78.10	18.70	1.1
	F54090	28	76.220	15.878	2.1
	F54078	28	83.460	18.130	1.0
<u>Group 4 - T-6246 (100 mg/kg)</u>					
Male	F54088	15	84.26	16.98	0.4
	F54106	2	82.301	16.550	2.0
	F54089	28	71.796	16.434	1.0
	F54087	28	83.710	18.591	0.6
	F54099ª	15	82.143	16.038	0.5
Female	F5 4 080	15	75.42	18.32	1.2
	F54092	15	78.36	16.68	*
	F54109	28	73.958	16.915	1.6
	F54114	28	80.966	19.404	2,0

Table 4 (Continued)

Replacement animal for Animal No. F54106.
 * This animal had no gallbladder, so no bile was collected.

000110

Page 24 of 38

.

HWI 6329-159

			5		
_Sex	Animal <u>Number</u>	Sacrifice Day	<u>Weight</u> Liver	t (g) <u>Kidneys</u>	Bile <u>Volume (mL)</u>
		<u>Group 5 - </u>	T-6246 (500	mg/kg)	
Male	F54076	1	78.058	14.695	2.0
	F54113	15	91.52	16.57	1.0
	F54082	28	88.965	19.431	1.6
	F54111	28	83.823	19.405	1.5
	F54112ª	15	97.824	21.069	1.4
Female	F54098	15	78.95	14.72	1.2
	F54084	15	66.42	13.18	0.8
	F54079	28	83.117	14.785	1.8
	F54116	28	71.962	15.793	2.0

Table 4 (Continued) Individual Animal Tissue Weights and Bile Volumes

a Replacement animal for Animal No. F54076.

000111

000031

.

APPENDIX A

Protocol Deviations Protocol TP8084.PK Protocol Amendment No. 1

r

000112

000032

Page 26 of 38

.

HWI 6329-159

Protocol Deviations

Protocol

.

Actual Procedure

Page 6, 7. Experimental Design, C. Dosing Procedures, (1) Dosing Route. Intravenous injection into the marginal ear vein of the right ear over approximately 30 to 60 seconds.

.

The rate of injection for one
Group 5 female (No. F54098)
was 22 seconds. Also, the
time for dose administration
for one male animal (Group 4,
No. F54087) was incorrectly
recorded thus the exact
duration of dosing can not be
determined.

These deviations are not considered to have had an adverse effect on the outcome of the study.

000113

000033

i

)

a CORNING Company

Sponsor:

3M . St. Paul, Minnesota

PROTOCOL TP8084.EXT

<u>Study Title:</u>

Single-Dose Intravenous Pharmacokinetic Study of T-6246 in Rabbits

<u>Date</u>:

March 30, 1995

Performing Laboratory:

Hazleton Wisconsin, Inc. 3301 Kinsman Boulevard Madison, Wisconsin 53704

Laboratory Project Identification:

HWI 6329-159

000034

000114

.

PROBE 608-241 1471 Fax 608-241-7227 EXPRESS MALE DELIVERY 3301 KINSMAN BLVD MADISON, WI 53704

3MA01502201

TP8084.EXT Page 2

STUDY IDENTIFICATION

`)

.

)

)

Single-Dose Intravenous Pharmacokinetic Study of T-6246 in Rabbits

HWI No.	6329-159
Test Material	T-6246
Sponsor	3M Toxicology Service Medical Department 3M Center, Bldg. 220-2E-02 P.O. Box 33220 St. Paul, MN 55133-3220
Sponsor's Representative	John L. Butenhoff, PhD 3M Toxicology Service Medical Department 3M Center, Bldg. 220-2E-02 P.O. Box 33220 St. Paul, MN 55133-3220 (612) 733-1962
Study Director	Steven M. Glaza Hazleton Wisconsin, Inc. P.O. Box 7545 Madison, WI 53707-7545 (608) 241-7292
Study Location	Hazleton Wisconsin, Inc. 3301 Kinsman Boulevard Madison, WI 53704
Proposed Study Timetable Experimental Start Date Experimental Termination Date Draft Report Date	April 4, 1995 May 1, 1995 June 12, 1995

000115

TP8084.EXT Page 3

 <u>Study</u> Single-Dose Intravenous Pharmacokinetic Study in Rabbits

- <u>Purpose</u> To assess the level of systemic exposure when the test material is administered as a single intravenous injection to rabbits
- 3. <u>Regulatory Compliance</u>

j

ļ

This study will be conducted in accordance with the following Good-Laboratory Practice Regulations/Standards/Guidelines with the exception that analysis of the test material mixtures for concentration, solubility, homogeneity, and stability will not be conducted:

[] Conduct as a Nonregulated Study
[X] 21 CFR 58 (FDA)
[] 40 CFR 160 (EPA-FIFRA)
[] 40 CFR 792 (EPA-TSCA)
[] C(81)30 (Final) (OECD)
[] 59 Nohsan No. 3850 (Japanese MAFF)
[] Notification No. 313 (Japanese MOHW)

All procedures in this protocol are in compliance with the Animal Welfare Act Regulations. In the opinion of the Sponsor and study director, the study does not unnecessarily duplicate any previous work.

4. Quality Assurance

The protocol, study conduct, and the final report will be audited by the Quality Assurance Unit in accordance with Hazleton Wisconsin (HWI) Standard Operating Procedures (SOPs) and policies.

- 5. <u>Test Material</u>
 - A. <u>Identification</u> T-6246
 - <u>Physical Description</u> (To be documented in the raw data)
 - C. Purity and Stability

The Sponsor assumes responsibility for purity and stability determinations (including under test conditions). Samples of test material/vehicle mixture(s) for concentration, solubility, homogeneity, and stability analyses will be taken before administration if requested by the Sponsor. These samples (if taken) will be sent to the Sponsor after experimental termination.

D. <u>Storage</u> Room temperature

000116

E. <u>Reserve Samples</u> Reserve sample(s) of each batch/lot of test and control materials will be taken for this study.

The test and control material reserve samples will be stored at HWI in a freezer set to maintain a temperature of $-20^{\circ}C \pm 10^{\circ}C$ for 10 years per HWI SOP. The Sponsor will be contacted after 10 years for disposition in accordance with the appropriate regulatory Good Laboratory Practices.

- F. <u>Retention</u> Any unused test material will be returned to the Sponsor after completion of the in-life phase of the study.
- G. <u>Safety Precautions</u> As required by HWI SOPs and policies

6. Control Material

)

1

)

- A. <u>Identification</u> Sterile water for injection
- B. <u>Physical Description</u> Clear, colorless liquid
- C. <u>Purity and Stability</u> The purity and stability of this USP grade material is considered adequate for the purposes of this study.
- D. <u>Storage</u> Refrigerated
- E. <u>Reserve Samples</u> See Section 5. E. Reserve Samples
- F. <u>Retention</u> Any remaining control material may be used for other testing and will not be discarded after issuance of the final report.
- G. <u>Safety Precautions</u> As required by HWI SOPs and policies
- 7. Experimental Design
 - A. <u>Animals</u>
 - (1) Species
 Rabbit
 - (2) <u>Strain/Source</u> Hra:(NZW)SPF/HRP, Inc.

000117

000037

(3) <u>Age at Initiation</u> Adult

ì

j.

}

- (4) <u>Weight at Initiation</u> 2.5 to 3.5 kg
- (5) <u>Number and Sex</u> 20 males and 20 females
- (6) <u>Identification</u> Individual numbered ear tag
- (7) <u>Husbandry</u>
 - (a) <u>Housing</u> Individually, in screen-bottom stainless steel cages (heavy gauge)
 - (b) Food

A measured amount of Laboratory Rabbit Diet HF #5326 (PMI Feeds, Inc.). The food is routinely analyzed by the manufacturer for nutritional components and environmental contaminants.

(c) <u>Water</u>

Ad libitum from an automatic system. Samples of the water are analyzed by HWI for total dissolved solids, specified microbiological content, selected elements, heavy metals, organophosphates, and chlorinated hydrocarbons.

- (d) <u>Contaminants</u> There are no known contaminants in the food or water that would interfere with this study.
- (e) <u>Environment</u> Environmental controls for the animal room will be set to maintain a temperature of 19°C to 23°C, a relative humidity of 50% ±20%, and a 12-hour light/12-hour dark cycle.
- (f) <u>Acclimation</u> At least 7 days
- (8) <u>Selection of Test Animals</u> Based on health and body weight according to HWI SOPs. An adequate number of extra animals will be purchased so that no animal in obviously poor health is placed on test. The animals will be placed into study groups using a stratified body weight randomization program within nine days of study initiation.

000118

000038

(9) <u>Justification for Species Selection</u> Historically, the New Zealand White albino rabbit has been the animal of choice because of the large amount of background information on this species.

B. Dose Administration

)

j

)

(1) <u>Test Groups</u>

Group	Test/Control Material	Dose Level (mg/kg) ^a	<u>Number</u> Males	<u>of Animals^b Females</u>
1 (Control)	Sterile water	0	4	4
2 (Low)	T-6246	5	4	4
3 (Medium)	T-6246	10	4	4
4 (High)	T-6246	100	4	4
5 (High)	T-6246	500	4	4

a The dose volume will be 0.5 mL/kg of body weight.

- b Two animals/sex/dose level will be sacrificed on Day 15. The remaining animals (two animals/sex/dose level) will be sacrificed on Day 28.
- C. Dosing Procedures
 - <u>Dosing Route</u> Intravenous injection into the marginal ear vein of the right ear over approximately 30 to 60 seconds.
 - (2) <u>Reason for Dosing Route</u> Intravenous injection is an acceptable route to assess systemic exposure.
 - (3) <u>Dosing Duration</u> Single dose
 - (4) <u>Dose Preparation</u> The day of treatment wi

The day of treatment will be designated as Day 1. The Group 1 animals will be treated with sterile water at a dose volume of 0.5 mL/kg. The test material will be diluted with sterile water to achieve a specific concentration for each dose level in Groups 2-5. Individual doses will be calculated based on the animal's body weight taken just before test material administration. The prepared test mixtures will be stored at room temperature until administration.

000119

00003

D. Observation of Animals

ì

I

- (1) <u>Clinical Observations</u> The animals will be observed for clinical signs of toxicity before test or control material administration, at approximately 0.5, 2.0, 4.0 hours post-injection (Day 1), and daily thereafter for clinical signs and twice daily (a.m. and p.m.) for mortality until the scheduled sacrifice interval (Day 15 or Day 28). Observations may be extended when directed by the Study Director.
- (2) <u>Body Weights</u> For randomization, before test or control material injection (Day 1), at the scheduled sacrifice interval (Day 15 or Day 28), and at unscheduled death and sacrifices (when survival exceeds 1 day)
- (3) Sample Collections
 - (a) <u>Frequency</u>
 4-, 8-, 12-, 24-, and 48-hours post-injection, on Days 8, 15, 22, and at the scheduled sacrifice interval (Day 15 or Day 28)
 - (b) <u>Method of Collection/Number of Animals</u> Blood samples (approximately 4 mL) will be collected from the marginal ear vein (left ear) of all animals at 4-, 8-, 12-, 24-, and 48-hours post-injection, and on Day 8. Additional samples will be collected on Days 15 and 22 for the animals scheduled for sacrifice on Day 28.

Approximately 20 mL of blood (actual volume to be documented in the raw data) will be obtained from the posterior vena cava at the time of the scheduled sacrifice (Day 15 or Day 28). Approximately 20 mL of blood will be collected from moribund animals during the study, also, if possible.

The samples will be stored at room temperature and then centrifuged, and the separate serum and cellular fractions stored in a freezer set to maintain a temperature of $-20^{\circ}C \pm 10^{\circ}C$. The separated serum and cellular fractions will be sent frozen on dry ice to the Sponsor after experimental termination. The Sponsor is responsible for the retention and disposition of the samples.

000120

Samples will be shipped to:

James D. Johnson 3M E.E. & P.C. Bldg. 2-3E-09 935 Bush Avenue St. Paul, MN .55106

James D. Johnson or his alternate will be notified by telephone at (612) 778-5294 prior to the shipment of the samples.

E. <u>Termination</u>

)

)

(1) Unscheduled Sacrifices and Deaths

Any animal dying during the study or sacrificed in a moribund condition will be subjected to an abbreviated gross necropsy examination and all abnormalities will be recorded. Animals in a moribund condition will be anesthetized with sodium pentobarbital (via injection in the marginal ear vein), bled via the vena cava, and exsanguinated. Tissues, as described in section 7.E. (3) Sample Collection, will be collected from any animal dying during the study or sacrificed in a moribund condition. After necropsy, the animals will be discarded.

(2) <u>Scheduled Sacrifices</u>

On Day 15, the first two animals/sex assigned to each dose level (based on the group assignment randomization) will be anesthetized with sodium pentobarbital (via injection in the marginal ear vein), bled via the vena cava, and exsanguinated. The remaining two animals/sex/dose level will be anesthetized with sodium pentobarbital (via injection in the marginal ear vein), bled via the vena cava, and exsanguinated on Day 28. An abbreviated gross necropsy examination will not be done, however, tissues (as described in section 7.E. (3) Sample Collection) will be collected.

(3) <u>Sample Collection</u>

The whole liver, bile, and both kidneys from each animal will be collected, weighed (volume only determined for bile), and immediately placed in a freezer set to maintain a temperature of -20° C $\pm 10^{\circ}$ C. After sample collection, the animals will be discarded.

The samples (liver, bile, and kidneys) will be sent frozen on dry ice to the Sponsor after experimental termination. The samples and their corresponding weights or volumes will be shipped to the person listed in Section 7.D.(3).(b). The Sponsor is responsible for the retention and disposition of the samples.

000121

000041

F. <u>Statistical Analyses</u> No statistical analyses are required.

}

i

 <u>Report</u> A final report including those items listed below will be submitted.

Description of the test and control materials Description of the test system Procedures Dates of experimental initiation and termination Description of any toxic effects Gross pathology findings (if applicable) Gross pathology report (if applicable and requested by the Study Director) Individual animal tissue weights and bile volumes

9. Location of Raw Data, Records, and Final Report

Original data, or copies thereof, will be available at HWI to facilitate auditing the study during its progress and before acceptance of the final report. When the final report is completed, all original paper data, including those item listed below will be retained in the archives of HWI according to HWI SOP.

Protocol and protocol amendments Dose preparation records In-life records Body weights Dose administration Observations Sample collection records Shipping records Pathology Records Study correspondence Final report (original signed copy)

The following supporting records will be retained at HWI but will not be archived with the study data.

Animal receipt/acclimation records Water analysis records Animal room temperature and humidity records Refrigerator and freezer temperature records Instrument calibration and maintenance records

000122

CC0042

PROTOCOL APPROVAL

i

Hun 2. Kritenhold

John L. Butenhoff, PhD Sponsor's Representative 3M

.

ł

)

Steven M. Glaza Study Director Acute Toxicology Hazleton Wisconsin, Inc.

Representative Quality Assurance Unit Hazleton Wisconsin, Inc.

(6329-159.protdsk2)

-3-30-95 Date

3-30-95

Date

Date

00004

a CORNING Company

PROTOCOL TP8084.EXT

1

Single-Dose Intravenous Pharmacokinetic Study of T-6246 in Rabbits

HWI 6329-159

Sponsor

)

)

<u>Contractor</u>

3M Toxicology Service Medical Department
3M Center, Bldg. 220-2E-02
P.O. Box 33220
St. Paul, MN 55133-3220

Hazleton Wisconsin, Inc. 3301 Kinsman Boulevard Madison, WI 53704

Sponsor's Representative

John L. Butenhoff, PhD

Study Director

Steven M. Glaza

Amendment No. 1

This amendment modifies the following portions of the protocol:

Effective April 4, 1995

- <u>Page 6, 7. Experimental Design; B. Dose Administration; (1) Test Groups.</u> The test material mixture for Group 5 could not be prepared at the concentration needed to utilize a dose volume of 0.5 mL/kg. Modify footnote "a" in this section with the following underlined addition:
 - a The dose volume will be 0.5 mL/kg of body weight <u>for Groups</u> <u>1-4 and 0.75 mL/kg for Group 5.</u>

000124

000044

Phone 608-241-4471 EXPRESS-MAIL DELIVERY 3301 KINSMAN BLVD MADISON, WI 53704

Amendment No. 1

/ HWI 6329-159 Page 2

Effective April 5, 1995

2.

)

)

)

<u>Page 6, 7. Experimental Design; B. Dose Administration; (1) Test Groups.</u> Animal No. F54076 (Group 5 male) and Animal No. F54106 (Group 4 male) were sacrificed on Days 1 and 2, respectively, due to injuries (apparent broken backs). Add the following paragraph to this section:

Due to the sacrifice on Day 1 of one Group 5 male (Animal No. F54076) and on Day 2 of one Group 4 male (Animal No. F54106) because of injuries (apparent broken backs), replacement animals will be treated at the same dose levels in the same manner as for the initial animals in the study. The observations (clinical observations, body weights and sample collections) and the termination of the animals (unscheduled sacrifices and deaths, scheduled sacrifices, and sample collection) will be conducted in the same manner as for the other animals in the study terminating on Day 15.

PROTOCOL AMENDMENT APPROVAL

John 2. Butenhoff

John L. Butenhoff, PhD Sponsor's Representative 3M Toxicology Service Medical Department

Steven M. Glaza

Study Director Acute Toxicology Hazleton Wisconsin, Inc.

Representati#e

Quality Assurance Unit Hazleton Wisconsin, Inc.

(6329-159.Aml.dsk3)

5-2-95

Date

4-18-95 Date

<u>4.18.95</u> Date

000125

9.1.2 Analytical protocol AMDT-042095.1

•

~

000046

3M Environmental Laboratory

Protocol - Analytical Study

Single-dose Intravenous Pharmacokinetic Study of T-6246 in Rabbits

In-Vivo Study Reference Number: HWI#6329-159

Study Number: AMDT-042095.1 Test Substance: FC-95 (T-6246)

Name and Address of Sponsor:	3M SCD Division	
	367 Grove Street	
	St. Paul, MN 55106	

Name and Address of Testing Facility:

3M Environmental Technology and Services 935 Bush Avenue St. Paul, MN 55106

Proposed Initiation Date: July 25, 1995 Proposed Completion Date: August 25, 1995

Method Numbers and Revisions:

AMDT-M-1-0,	Thermal Extraction of Fluoride by Means of a Modified		
AMDT-M-2-0,	Dohrmann DX2000 Organic Halide Analyzer-Liver		
$A1 \times 10^{-1} \times 1^{-1} \times 1^{-2} \times 0^{-2}$	Fluoride Measurement by Means of an Orion EA940 Expandable Ion Analyzer		
AMDT-M-4-0,	Extraction of Fluorochemicals from Rabbit Liver		
AMDT-M-8-0,	Analysis of Fluoride Using the Skalar Segmented Flow Analyzer with Ion Selective Electrode		
AMDT-M-14-0,	Thermal Extraction of Fluoride by Means of a Modified		
	Dohrmann DX2000 Organic Halide Analyzer-Serum		

Author: James D. Johnson

Approved By: and

James D. Johnson Study Director

Date

John Butenhoff, PhD 11/20/95

Sponsor

Date

000127

000047 1

1.0 PURPOSE

This study is designed to provide information as to whether the perfluorooctanesulfonate anion does go to the rabbit liver and other tissues when the material is administered in an intravenous dose, and to ascertain the change in concentration with time after dose in serum and liver.

2.0 TEST MATERIALS

2.1 Test, Control, and Reference Substances and Matrices

2.1.1 Analytical Reference Substance: FC-95, lot 161 or 171. They are equivalent.

2.1.2 Analytical Reference Matrix: Bovine liver and bovine serum

2.1.3 Analytical Control Substance: None

2.1.4 Analytical Control Matrix: Bovine liver and bovine serum

2.2 Source of Materials: 3M ICP/PCP Division (2.1.1), grocery store (2.1.2, 2.1.4 liver), Sigma Chemical Company (2.1.2, 2.1.4 serum)

2.3 Number of Test and Control Samples: Liver and serum from 32 test animals and 8 control animals. Two animals were replaced at 24 hours (animal F54076 was replaced with animal F54112, and animal F54106 was replaced with animal F54099). Other biological tissues (kidney, bile, cellular fraction) will be available for analysis if deemed appropriate by the Study Director.

2.4 Identification of Test and Control Samples: The samples are identified using the HWI animal identification number which consists of a letter and five digit number, plus the tissue identity and day identity (serum).

2.5 Purity and Strength of Reference Substance: To be determined by Sponsor.

2.6 Stability of Reference Substance: To be determined by Sponsor.

2.7 Storage Conditions for Test Materials: Room temperature (2.1.1), $-20 \pm 10^{\circ}$ C (2.1.2, 2.1.4). Test and Control samples will be received according to AMDT-S-10-0.

2.8 Disposition of Specimens: Biological tissues and fluids will be retained per GLP Regulation for the time period required for studies longer than 28 days.

2.9 Safety Precautions: Refer to appropriate MSDS. Wear appropriate laboratory attire. Use caution when handling knives for cutting the samples.

3.0 EXPERIMENTAL - Overview

The tissues from animals dosed as described (HWI#6329-159), are available for analysis for fluorine compounds. At the discretion of the Study Director, a series of analytical tests can be performed. The screening for fluoride in liver via combustion (See Methods--next Section) is the appropriate analysis to present definitive data for fluorine in the liver. For these analyses, bovine liver appears to be a good approximation to rabbit liver for matrix spikes and recovery determinations. Since perfluorooctanesulfonate anion is not biotransformed, fluorine content will be an accurate estimate of the concentration of the compound.

4.0 EXPERIMENTAL - Methods

4.1 Liver and Serum screening methods: (attached)

4.1.1 AMDT-M-1-0, Thermal Extraction of Fluoride by Means of a Modified Dohrmann DX2000 Organic Halide Analyzer-Liver

4.1.2 AMDT-M-2-0, Fluoride Measurement by Means of an Orion EA940 Expandable Ion Analyzer

4.1.3 AMDT-M-4-0, Extraction of Fluorochemicals from Rabbit Liver

4.1.4 AMDT-M-8-0, Analysis of Fluoride Using the Skalar Segmented Flow Analyzer with Ion Selective Electrode

4.1.5 AMDT-M-14-0, Thermal Extraction of Fluoride by Means of a Modified Dohrmann DX2000 Organic Halide Analyzer-Serum

5.0 DATA ANALYSIS

з

5.1 Data Reporting: Data will be reported as a concentration (weight/weight) of fluoride per tissue or fluid, or as FC-95 per tissue or fluid. Statistics used, at the discretion of the Study Director, may include regression analysis of serum concentrations with time and averages and standard deviations of concentrations for

000129 000019

3

different dose groups. If necessary, simple statistical tests such as Student's t test may be applied to determine statistical difference. Half-life of disappearance from serum will be determined from the linear regression of the averages of the concentrations at different time points for the post distribution part of the serum concentration versus time curve.

6.0 MAINTENANCE OF RAW DATA AND RECORDS

6.1 Raw Data and Records: Raw data, approved protocol, appropriate specimens, approved final report, and electronic data will be maintained in the AMDT Archives.

7.0 REFERENCES

7.1 AMDT-S-10-0, Sample Tracking System

8.0 ATTACHMENTS

8.1 AMDT-M-1-0, Thermal Extraction of Fluoride by Means of a Modified Dohrmann DX2000 Organic Halide Analyzer-Liver

8.2 AMDT-M-2-0, Fluoride Measurement by Means of an Orion EA940 Expandable Ion Analyzer

8.3 AMDT-M-4-0, Extraction of Fluorochemicals from Rabbit Liver

8.4 AMDT-M-8-0, Analysis of Fluoride Using the Skalar Segmented Flow Analyzer with Ion Selective Electrode

8.5 AMDT-M-14-0, Thermal Extraction of Fluoride by Means of a Modified Dohrmann DX2000 Organic Halide Analyzer-Serum

CC0050 4

Method

Thermal Extraction of Fluoride by Means of a Modified Dohrmann DX2000 Organic Halide Analyzer - Liver

Method Identification Number: AMDT-M-1

Adoption Date: /0-4-95

10/3/95

0-4-41

Date

Revision Number: 0

Revision Date: None

Author: Rich Youngblom

Approved by:

Im Froup Leade

Cale from Fre

Quality Assurance

Software: MS Word 5.1a

Affected Documents: AMDT-M-2 Fluoride Measurement by Means of an Orion EA940 Expandable Ion Analyzer AMDT-EP-3 Routine Maintenance of a Modified Dohrmann DX2000 Organic Halide Analyzer

000131

1 000051

1.0 SCOPE, APPLICABLE COMPOUNDS, AND MATRICES

1.1 Scope: This method is for the operation of a Dohrmann DX2000 when it is used to extract fluoride from various matrices. The fluoride is typically collected in TISAB solution for analysis with an ion selective electrode.

1.2 Applicable Compounds: Fluorochemicals or other fluorinated compounds.1.3 Matrices: Biological tissues, particularly liver.

2.0 KEYWORDS

2.1 Fluoride, fluorine, extraction, pyrolysis, ionization, ion selective electrode, Dohrmann, halide, DX2000, fluorochemicals.

3.0 PRECAUTIONS

3.1 Glassware and exhaust gases can be extremely hot.

3.2 Glassware is fragile, broken glass may cause injuries.

3.3 Pressurized gases, proper compressed gas handling practices required.

3.4 Solvent based samples may flash, may need to allow them to dry down before starting run. 3.5 Potential biohazards due to the biological matrices. Use appropriate personal protective equipment.

4.0 SUPPLIES AND MATERIALS

4.1 Compressed Oxygen, Hydrocarbon free, regulated to 30 PSI.

4.2 Compressed Helium, High Purity Grade, regulated to 45 PSI.

4.3 Quartz glass sample boat with Teflon[™] tubing, Dohrmann 890-097 or equivalent.

4.4 Quartz glass combustion tube, Reliance Glass G-9405-012 or equivalent.

4.5 Orion 940999 Total Ionic Strength Adjustment Buffer (TISAB II) or equivalent.

4.6 Sample collection vials, HDPE.

4.7 Milli-Q[™] water

4.8 Polystyrene pipettes.

4.9 Activated Charcoal, E. Merck 2005 or equivalent.

4.10 Hamilton Syringe or equivalent.

4.11 Miscellaneous laboratory glassware

5.0 EQUIPMENT

5.1 Rosemount Dohrmann DX2000 Organic Halide Analyzer, modified for fluoride extraction.

5.2 IBM compatible 386 or 486 computer.

5.3 DX2000 software, version 1.00, modified for fluoride extraction.

5.4 Excel Spreadsheet, version 5.0 or greater

6.0 INTERFERENCES

6.1 Sample size is limited to approximately 150 mg, depending on sample moisture content. This may vary from matrix to matrix.

000132

00005

7.0 SAMPLE HANDLING

7.1 Samples are not to be handled with bare hands. Fluoride may leach from the skin to the sample. Use forceps or probe to transfer tissues.

7.2 Samples of liver are cut from frozen liver and placed in a tared and labeled weigh boat. Use a clean scalpel and cutting board. The cutting board and scalpel should be cleaned with water, methanol, or methanol-water solution after each liver is cut.

8.0 CALIBRATION AND STANDARDIZATION

8.1 Preparation of Calibration Standards

8.1.1 The standards required for each project will need to be appropriate for that individual project. Refer to protocol for that project.

8.1.2 Typically 50-500 ppm FC-95 in methanol standards are used.

8.1.3 For rabbit liver studies, use beef liver as the matrix. Cut a piece of frozen beef liver (100 - 150 mg) and weigh it in a labeled and tared weigh boat.

8.2 Calibration - Overview

The normal calibration is the fluoride curve (AMDT-M-2). However, if an optional spiked liver curve is required the procedure listed below is used.

8.2.1 A calibration curve for the DX2000 is generated by spiking samples with known standards and combusting them using the same methods and matrix type as the samples to be tested. **8.2.2** Typically, three replicates of each standard and five concentrations of standards will be spiked.

8.2.3 Standard curve will be plotted as Mass Spiked F (ug) on the x-axis and Standard Mass Recovered F (ug) on the y-axis. Generate a regression curve and calculate the equation for the line and the r^2 value.

8.2.4 Mass Spiked F (ug) = (Amount spiked in mL) x (Conc. of standard in ppm) x (0.6004)* *FC-95 is 60.04% F therefore 0.6004 is the factor used to convert FC-95 to F

8.2.5 Standard Mass Recovered F (ug) = (TISAB volume in mL) x (Orion reading in ppm)

8.3 Calibration - Procedure

8.3.1 Start Up

8.3.1.1 Run 2 or more Clean Cycles when starting instrument each day. More clean cycles may be used if the previous samples contained high concentrations of fluoride.

8.3.2 Blanks

8.3.2.1 Prepare sample using the same methods and type of matrix as the test sample.

8.3.2.2 For rabbit studies, use beef liver as the matrix. Prepare at least 3 samples of beef liver (100 - 150 mg) for blanks.

8.3.2.3 Put sample in Dohrmann boat. Combust each sample as described in section 9.0 and analyze sample according to method AMDT-M-2 for the ion selective electrode analysis.

000133

3 00005

8.3.2.4 For rabbit studies, the meter reading for a blank sample should be 0.03 ppm or lower before proceeding with the calibration. Burn samples until this limit is reached, or until in the judgement of the operator the reading is stable with respect to historical readings (previous 48 hours).

8.3.2.5 For non-rabbit studies, the blank readings should reach a predetermined ion concentration before proceeding with the calibration.

8.3.2.6 It may be necessary to mix approximately 50 mg of charcoal with the sample to aid combustion.

8.3.3 Standard Curve

8.3.3.1 Weigh out at least 15 matrix samples (5 standards with 3 replicates each) in tared and labeled weigh boats. For rabbit studies, weigh 100-150 mg beef liver samples. Record weights in study data. Store the matrix samples on dry ice or ice packs to keep them frozen until used.
8.3.3.2 Place weighed beef liver sample in Dohrmann sample boat.

8.3.3.3 Start with the lowest standard concentration. Using a Hamilton syringe, eject a fixed quantity of the standard on or in the matrix. For rabbit studies, use 4 uL of standard and eject it on or in the beef liver.

8.3.3.4 At least 3 replicates should be used for the lowest standard concentration; more replicates may be used at the discretion of the analyst.

8.3.3.5 Combust the sample as described in section 9.3 and analyze according to AMDT-M-2.8.3.3.6 Run all 15 standards. If one replicate is significantly different from the other two

replicates, run another sample for that standard. Indicate in data that the new replicate replaces the old replicate and that the new replicate will be used to calculate the regression curve.

8.3.3.7 When all standards have been run, calculate the r^2 . r^2 must be at least 0.95. If it is not at least 0.95, consult with supervisor.

8.3.3.8 A new standard curve should be run when the combustion tube or sample matrix is changed. New standard curve may also be run at the discretion of the analyst.

8.4 Storage Conditions for Standards

8.4.1 Storage requirements for standards are dependent on the individual standards used. Typically, standards are stored at room temperature in plastic screw top bottles.8.4.2 New FC-95 standards should be prepared at least once a month.

9.0 PROCEDURES

9.1 Typical Operating Conditions:

9.1.1 Combustion tube temperature = 950°C.

9.1.2 Oxygen and Helium flow = 50 cc/minute.

9.1.3 Vaporization/Drying time = 240 seconds.

9.1.4 Bake time = 300 seconds.

9.2 Start Up Procedure:

9.2.1 If the program is not started, start the EOX program on the PC.

9.2.2 Open the SYSTEM SETUP window.

9.2.3 Put the furnace module and the cell in the READY mode.

9.2.4 Close the SYSTEM SETUP window.

000134

9.2.5 When the oven has reached the READY temperature, run the CLEAN BOAT program found in the CELL CHECK menu.

9.2.6 See AMDT-EP-3 for details of the Dohrmann software.

9.3 Sample Extraction Procedure:

9.3.1 Open the SAMPLE HATCH and place the sample in the BOAT. It may be necessary to mix approximately 50 mg of charcoal with the sample to aid combustion. If this is done, charcoal should also be mixed in while establishing the baseline and when generating the standard curve. 9.3.2 Close SAMPLE HATCH.

9.3.3 Add appropriate volume of TISAB solution or 1:1 TISAB:Milli-QTM water mixture to a labeled sample collection vial. Typically 0.6 mL to 15 mL are used. For rabbit studies, use 1.0 or 2.0 mL of 1:1 TISAB:Milli-QTM water mixture.

9.3.4 Place the vial so that the tip of the COMBUSTION TUBE is in the TISAB at least 0.25 inches. Gases released during pyrolysis must bubble through the TISAB.

9.3.5 Run the EOX-SOLIDS program found in the RUN menu.

9.3.6 When the EOX program is finished, remove the collection vial from the combustion tube. 9.3.7 If undiluted TISAB was used to collect the sample, add an equal volume of Milli-QTM water to the TISAB to make 1:1 TISAB:Milli-QTM.

9.3.8 Rinse the end of the combustion tube with Milli- Q^{TM} water and wipe with a KIMWIPE to remove any TISAB remaining on the tube.

9.3.9 Open the sample hatch and remove any remaining ash from the boat. Ash can be removed with a cotton tipped applicator or vacuumed out. It may be necessary to scrap particles off the bottom with a spatula or other similar device. A drop of Milli-QTM water may be added to the boat to aid in the Clean Cycle.

9.3.10 Close the hatch.

9.3.11 Run the CLEAN BOAT program.

9.3.12 Sample is ready for analysis by ion selective electrode (AMDT-M-2).

9.4 Sample Calculations

9.4.1 Use the standard curve to calculate the sample value.

9.4.2 Sample Mass Recovered F (ug) = (TISAB vol in mL) x (Orion reading in ppm - intercept)

(Slope)

· · .

10.0 VALIDATION

10.1 Quality Control

10.1.1 Daily Start Up Check Samples: Once the standard curve is established, each day of analysis is started by analyzing QC samples. The QC samples are to be the same as the lowest concentration spiked samples used to generate the standard curve. Each concentration must be done in triplicate unless the first two replicates are within 20% of the standard curve, then a third replicate is not necessary.

10.2 Precision and Accuracy: See method development analysis and sample analysis in Fluoride Notebooks 2,3, and 5. Precision and accuracy varies when analyzing samples of different matrices and different reference compounds.

10.3 Other Validation Parameters: NA

000135

11.0 DATA ANALYSIS

11.1 Calculations

11.1.1 For the standard curve, use regression analysis in Excel, version 5.0 or greater. 11.1.2 To calculate the fluoride contraction in the sample, see method AMDT-M-2.

11.2 Analyzing the Data

11.2.1 r^2 must be at least 0.95 or greater. "Outliers" may be excluded if two of the three replicates are within 20% of each other and the outlier is greater than 200% of the average of those two or less than 50% of the average of those two. Any such outliers should be pointed out in the data and noted in the Final Report along with the reason it was considered an outlier.

12.0 ATTACHMENTS

None

13.0 REFERENCES

13.1 Rosemount Dohrmann DX2000 Organic Halide Analyzer Operator's Manual (Manual 915-349, revision B, December 1993)

13.2 AMDT-M-2 Fluoride Measurement by Means of an Orion EA940 Expandable Ion Analyzer

13.3 AMDT-EP-3 Routine Maintenance of a Modified Dohrmann DX2000 Organic Halide Analyzer

14.0 REVISIONS

Reason for Change

Revision Number

Revision Date

000136

6 0005

Method

Fluoride Measurement by Means of an Orion EA940 Expandable Ion Analyzer

Method Identification Number: AMDT-M-2

Adoption Date: 10-4-95

Revision Number: 0

Revision Date: None

Author: Rich Youngblom

Approved By:

Leader

Quality Assurance

Software: MS Word 5.1a

Affected Documents: AMDT-M-1 Thermal Extraction of Fluoride by Means of a Modified Dohrmann DX2000 Organic Halide Analyzer

000137

10-4-95

Date

10/3

00005 1

1.0 SCOPE, APPLICABLE COMPOUNDS, AND MATRICES

1.1 SCOPE: This method is for the calibration and operation of an Orion EA940 Expandable Ion Analyzer.

1.2 APPLICABLE COMPOUNDS: Fluoride.

1.3 APPLICABLE MATRICES: Liquid samples in an appropriate buffer solution. Preferred pH of 6.0.

2.0 KEYWORDS

2.1 Fluoride, fluorine, ion selective electrode

3.0 PRECAUTIONS

3.1 No hazards identified with this method.

4.0 SUPPLIES AND MATERIALS

4.1 Orion 940999 Total Ionic Strength Adjustment Buffer II (TISABII) or equivalent.

- 4.2 Orion Model 900001 electrode filling solution (AgCl) or equivalent.
- 4.3 Orion 940907 100 ppm fluoride standard or equivalent.
- 4.4 Milli-Q[™] water or equivalent.
- 4.5 Magnetic stir bars.
- 4.6 Lab tissues.
- 4.7 Sample collection vials.
- 4.8 Plastic 100 mL volumetric flasks.

4.9 Polystyrene pipettes.

4.10 Miscellaneous laboratory glassware.

5.0 EQUIPMENT

5.1 Orion Model EA940 Expandable Ion Analyzer or equivalent.

5.2 Orion Model 960900 Solid State Combination Fluoride electrode or equivalent.

5.3 Magnetic Stir Plate.

5.4 IBM compatible 386 or 486 computer (only needed if using Orion 3E software).

5.5 Orion RS232 interface cable (only needed if using Orion 3E software).

5.6 Microsoft Excel 5.0 (only needed if using Orion 3E software).

6.0 INTERFERENCES

6.1 It is recommended that the pH be at or near 6.0. A 1:1 mixture of TISAB and sample/Milli- Q^{TM} water will generally bring sample to pH of 6.0.

6.2 Sample temperature may effect fluoride measurement. It is recommended that the sample be at room temperature as the standards were when the meter was calibrated.

6.3 The rate the samples are stirred at should be consistent with the rate the standards were stirred.

000138

2

0000;

6.4 Air bubbles trapped under electrode can give erroneous readings. Make sure no air is trapped under electrode.

7.0 SAMPLE HANDLING

7.1 No special handling necessary.

8.0 CALIBRATION AND STANDARDIZATION

8.1 Preparation of Calibration Standards

8.1.1 Measure 50 mL of TISAB II into 5 100 mL plastic volumetric flasks.

8.1.2 Label the flasks as 0.05, 0.1, 0.5, 1.0, and 1.5 ppm F-, along with the date and your initials. 8.1.3 Pipette 0.05, 0.1, 0.5, 1.0, and 1.5 mL of 100 ppm fluoride standard into the appropriately labeled flasks.

8.1.4 Add approximately 30 mL of Milli-Q[™] water to each flask.

8.1.5 Shake the flasks to mix the solutions.

8.1.6 Eliminate air bubbles from the flasks by tipping the flasks on their sides and rolling the air in the flasks over the air bubbles.

8.1.7 Bring the volume in the flasks up to the 100 mL mark with Milli-Q[™] water.

8.1.8 Invert and shake the flasks for the final mixing.

8.1.9 Record standards in Standards Log Book.

8.2 Calibration

8.2.1 If necessary, remove tape from electrode filling hole.

8.2.2 Invert probe to wet top seal.

8.2.3 Eject a few drops of filling solution from bottom of electrode to wet lower seal.

8.2.4 Fill the electrode with filling solution.

8.2.5 The meter and the F- electrode are typically calibrated by direct measurement with no blank correction, using standards with concentrations of 0.05, 0.1, 0.5, 1.0, and 1.5 ppm F-, following the manufacturer's instructions.

8.2.6 Record the slope in the appropriate log book.

8.2.7 Clean the electrode by rinsing with Milli- Q^{TM} water and wiping the sides down with lab tissues.

8.3 Storage Conditions for Standards

8.3.1 Calibration standards are stored at room temperature.

9.0 PROCEDURES

9.1 Calibration and Measurement, Standard method:

9.1.1 The sample to be measured needs to be mixed with TISAB using the proportions recommended by the TISAB manufacturer.

9.1.2 Place a stir bar in the sample and place the sample on the stir plate.

9.1.3 Allow the sample to mix for a few seconds before inserting the electrode. When the electrode is inserted, make sure there are no air bubbles trapped under the electrode.

9.1.4 The sample should be the same temperature as the calibration standards and stirred at the same rate as the calibration standards.

9.1.5 When the readings have stabilized, record the reading in the appropriate log book.

000139

з 000075

9.2 Calibration And Measurement, Using Orion 3E Software:

9.2.1 Calibration:

9.2.1.1 Follow steps 8.2.1 to 8.2.4.

9.2.1.2 Press Function Key #8 (F8).

9.2.1.3 The computer screen will ask you to confirm the number of standards to be used, concentration of the standards, and whether or not a blank is to be included in the calibration. Make any necessary changes to the information presented and click on CONTINUE.

9.2.1.4 Place the electrode in the first standard on the stir plate and click on CONTINUE. **9.2.1.5** Observe the readings on the graphic display on the computer. When the readings have stabilized, press ACCEPT READING.

9.2.1.6 Repeat step 9.2.1.4 and 9.2.1.5 for the remaining standards.

9.2.1.7 After the final standard, the computer will display the slope of the curve, as well as the intercept and correlation. Record the slope, intercept, and correlation in the appropriate log book and click on CONTINUE. The calibration data is automatically copied to C:\Orion\Data\Calib.txt.

9.2.2 Data Spreadsheet:

9.2.2.1 Select either NEW or OPEN from the FILE menu to open a new or existing spreadsheet to store data in.

9.2.2.2 Record the name of the spreadsheet used in the appropriate log book.

9.2.3 Fluoride Measurement:

9.2.3.1 Follow steps 9.2.1 through 9.2.4

9.2.3.2 Enter the name of the sample in the appropriate place on the screen.

9.2.3.3 Click on the NEW SAMPLE button

9.2.3.4 When the readings have stabilized, click on the RECORD button and write the result in the appropriate log book.

10.0 VALIDATION

10.1 Quality Control:

10.2 Precision and Accuracy

10.3 Other Validation Parameters According to Reference 13.2, the range of detection is 0.02 ppm fluoride up to a saturated solution of fluoride.

11.0 DATA ANALYSIS

11.1 Calculations None necessary.

11.2 Analyzing the Data None necessary.

12.0 ATTACHMENTS

None

13.0 REFERENCES

000140

4 **COO**C²

13.1 Orion Model EA940 Expandable Ion Analyzer Instruction Manual, Orion Research Incorporated, 1991.

13.2 Orion Model 960900 Solid State Combination Fluoride Electrode Instruction Manual, Orion Research Incorporated, 1991.

14.0 REVISIONS

Revision Number Reason for Change

Revision Date

5 000061

Method

Extraction of Fluorochemicals from Rabbit Livers

SOP Identification Number: AMDT-M-4

Revision Number: 0

Adoption Date: 10-21-55

Revision Date: None

Author: Dave Christenson/Cynthia Weber

Approved By:

<u>10-31-25</u> Date A roup Leader 10-31-15 Quality Assurance Date

Software: MS Word, 6.0 Affected Documents: M-5, Analysis of Rabbit Extract for Fluorochemicals Using Electrospray Mass Spectroscopy.

1

1.0 SCOPE

- 1.1 Scope: This method is for the extraction of fluorochemicals from rabbit livers. Ethyl acetate is used to extract fluorochemicals from the livers for analysis by electrospray mass spectroscopy.
- 1.2 Applicable Compounds: Fluorochemicals or other fluorinated compounds.
- 1.3 Matrices: Rabbit Livers.

2.0 KEYWORDS

2.1 Fluorochemicals, rabbit livers, electrospray mass spectrometer, fluorinated compounds, extraction.

3.0 PRECAUTIONS

Use gloves when handling the rabbit livers, they may contain pathogens. 3.1

4.0 SUPPLIES AND MATERIALS

- 4.1 Supplies
 - 4.1.1 Syringe, capable of measuring 100 μL
 4.1.2 Eppendorf type or disposable pipets
 - 4.1.3 Gloves
 - 4.1.4 Plastic grinding tubes
 - 4.1.5 Plastic centrifuge tubes, 15 mL
 - 4.1.6 Labels
 - 4.1.7 Nitrogen
 - 4.1.8 Timer
 - 4.1.9 Filters, Titan nylon syringe filters, 0.2 μm.
 - 4.1.10 Analytical pipets: glass volumetric pipets.
 - 4.1.11 Disposable plastic 3 cc syringes.
 - 4.1.12 Crimp cap autovials.

4.2 Reagents

- 4.2.1 Aqueous Ammonium Acetate (Aldrich), approx. 250 ppm: Prepare a 2500 ppm aqueous solution of ammonium acetate by adding 250 mg ammonium acetate to a 100 mL volumetric flask and dilute to volume with Milli-Q water. Dilute this solution 1:10 for a 250 ppm solution.
- 4.2.2 Sodium carbonate/Sodium Bicarbonate Buffer (J.T. Baker), (Na₂CO₃/NaHCO₃) 0.25 M: Weigh 26.5 g of sodium carbonate (Na₂CO₃) and 21.0 g of sodium bicarbonate (NaHCO₃) into a 1 L volumetric flask and bring to volume with Milli-O water.
- 4.2.3 Dilute acetonitrile solution, dilute acetonitrile 1:1 with Milli-Q water.
- 4.2.4 Ethyl Acetate
- 4.2.5 Methanol
- 4.2.6 Milli-Q water
- 4.2.7 1H,1H,2H,2H perfluorooctanesulfonic acid (Aldrich)
- 4.2.8 FC-95 (3M Specialty Chemical Division)

000143

5.0 EOUIPMENT

- 5.1 Ultra-Turrax T25 Grinder for grinding liver samples.
- 5.2 Vortex mixer
- 5.3 Centrifuge
- 5.4 Shaker
- 5.5 Analytical Evaporator

6.0 INTERFERENCES

6.1 There are no known interferences at this time.

7.0 SAMPLE HANDLING

8.3

7.1 The rabbit livers are received frozen, and must be kept frozen until the extraction is performed.

8.0 CALIBRATION AND STANDARDIZATION 8.1

- **Preparation of Internal Standards**
 - 8.1.1 Prepare an internal standard of approximately 12 ppm 1H,1H,2H,2Hperfluorooctanesulphonic acid to be added to each liver sample.
 - 8.1.2 Weigh at least 0.1 g of 1H, 1H, 2H, 2H-perfluorooctanesulphonic acid into a 100 mL volumetric flask. Record the actual weight.
 - 8.1.3 Bring it up to volume with methanol, this is the stock standard.
 - 8.1.4 To a 250 mL volumetric flask, add 3 mLs of the stock standard and bring to volume with Milli-Q water. Calculate the actual concentration of the standard.

actual mg perfluoroctane-		
sulphonic acid	Х	
0.1 L		

3 mL =actual concentration, ppm 250 mL

8.2 Prepare FC-95 Anion Standards

- 8.2.1 Prepare FC-95 standards for the standard curve.
- 8.2.2 Weigh approximately 100 mg of FC-95 into a 100 mL volumetric flask. Record the actual weight.
- 8.2.3 Bring up to volume with dilute acetonitrile.
- 8.2.4 Dilute the solution with dilute acetonitrile 1:10 for a solution of approximately 100 ppm. Dilute this solution 1:10 with dilute acetonitrile for a solution of approx. 10 ppm.
- 8.2.5 Use the 10 ppm solution to make working standards with values close to 5.0 ppm, 1.0 ppm and 500 ppb.
- Prepare Beef Liver Homogenate to Use for Standards
 - 8.3.1 Weigh 40 g of Bovine liver into a 250 mL Nalgene bottle containing 200 mLs Milli-Q water. Grind to a homogenous solution.

000144

8.3.2 Add 1 mL of the solution to a 15 mL centrifuge tube. Prepare a total of eight 1 mL aliquots of the solution in 15 mL centrifuge tubes. Be sure to resuspend solution by shaking it between aliquots.

000064

8.3.3 Spike seven of the 1 mL aliquots with the following amounts of working standards in step 9.12 of the procedure. One 1 mL aliquot serves as the blank.

Working Standard (Approximate Conc.)	uL	Approximate final concentration of FC-95 in liver
-	-	Blank
500 ppb	100	0.292 ppm
500 ppb	200	0.584 ppm
500 ppb	300	0.877 ppm
500 ppb	400	1.168 ppm
1 ppm	500	2.924 ppm
5 ppm	200	5.848 ppm
5 ppm	300	8.772 ppm

8.4 Calculate the actual value of the standards:

<u>uL of standard x concentration (in ppm)</u> = final concentration (ppm) 171 mg liver / 1 ml homogenate of FC -95 in liver

*Average weight of bovine liver in solution as determined by weighing 1 mL homogenates of 40 mg liver in 200 mL of Milli-Q water. The amount of FC-95 is reported as equivalents of FC-95 potassium salt.

8.5 Calibration

- 8.5.1 Extract the spiked beef liver homogenate following 9.13 to 9.23 of this method. Use these standards to establish your curve on the mass spectrometer.
- 8.5.2 Alternatively, a standard curve may be generated using ratios of responses of the perfluorooctansulfonate anion and the internal standard anion versus concentration of the perfluorooctanesulfonate anion.

8.6 Storage Conditions for Standards

8.6.1 New standards are prepared with each analysis. Standards are stored in covered plastic centrifuge tubes until the analysis on the mass spectrometer is performed.

8.7 Storage Conditions for Standards

8.7.1 Beef liver homogenates may be frozen after preparation.

9.0 PROCEDURES

- Obtain frozen liver samples. In spent tissue, note that the liver has not been 9.1 packaged with other tissues. 9.2
- Use a dissecting scalpel and cut off approximately 1 g of liver. 9.3
- Weigh the sample directly into a tared plastic grinding tube.
- 9.4 Record the liver weight in the study note book.
- Put a label on the vial with the study number, weight, rabbit ID, date and analyst 9.5 initials.

00005

- 9.6 Add 2.5 mLs water.
- Grind the sample. Put the grinder probe in the sample and grind for about 2 9.7 minutes, until the sample is a homogeneous solution with no large chunks.
- Rinse the probe off into the sample with 2.5 mLs water using a pipet. 9.8
- Take the grinder apart and clean it with methanol after each sample. Follow 9.9 AMDT-EP-22.
- 9.10 Cap the sample and vortex for 15 seconds.
- 9.11 Pipet 1 mL into a 15 mL centrifuge tube. Label the centrifuge tube with the identical information as the grinding tube. (See AMDT-M-4 Worksheet for documenting the remaining steps.)
- 9.12 Spike the beef liver homogenates with the appropriate amount of FC-95 standard as described in 8.3.
- Spike the samples and beef liver homogenates with 100 uL of internal standard. 9.13 9.14
- Add 1 mL of the sodium carbonate/sodium bicarbonate buffer and 1 mL ammonium acetate.
- 9.15 Using an analytical pipet, add 5 mL ethyl acetate.
- 9.16 Cap the sample and vortex 20 to 30 seconds.
- 9.17 Put them in the shaker for 20 min.
- 9.18 Centrifuge for 20 to 25 minutes, until the layers are well separated. Set the power on the centrifuge to 25.
- 9.19 Remove 4 mLs of the top organic layer to a fresh 15 mL centrifuge tube with a 5 mL graduated glass pipet. Transfer the label to the fresh tube. 9.20
- Blow the sample down on the analytical evaporator to near dryness with nitrogen, approximately 30 to 40 minutes. 9.21
- Bring the remaining sample up in 1 mL dilute acetonitrile with an analytical pipet.
- 9.22 Vortex 15 seconds.
- 9.23 Transfer the sample to a 3 mL syringe. Attach a $0.2 \,\mu m$ nylon mesh filter, and filter the sample into a fresh centrifuge tube or a autovial. Label the tube or vial with the study number and animal number.
- 9.24 Cap and hold for analysis by electrospray mass spectroscopy.
- 9.25 Complete AMDT-M-4 worksheet and attach to page of study notebook.

10.0 VALIDATION

- 10.1 Quality Control not applicable
- 10.2 Precision and Accuracy- not applicable
- 10.3 Other Validation Parameters- not applicable

11.0 DATA ANALYSIS

11.1 None

12.0 ATTACHMENTS

12.1 Worksheet AMDT-M-4

13.0 REFERENCES

13.1 AMDT-EP-22 Routine Maintenance of Ultra-Turrax T-25

14.0 REVISIONS

Revision

Number <u>Reason for Change</u> Revision

Date

10006

Worksheet AMDT-M-4

Study #	Sample	FC-95	FC-95	FC-95	
	Number	approx 0.5 ppm	approx 1 ppm	approx. 5 ppm	Date and Initials for Std.
		actual ppm	actual ppm	actual ppm	initials for Std.
	set #	#W	#W	#W	
	Blank Liver	100 1	<u> </u>	-	
_		<u> </u>			
-		300 uL	-		
-		400 uL			
			500 µL	-	
	+		-	200 uL	
1		-	-	300 uL	
		-	-		
		-	-	-	
	<u> </u>		-		
				-	
		-			
				-	
				•	
	······				
		-			
1					
<u>study number v</u>	where the original	worksheet is located an	d place a copy.		
Liver Extraction	Process				
				Date	& Initials
Pipet 1 mL of Li	ver Solution				
Pipet 100 nL of	12 nom Internal	Chandrad			
			Std. #	·····	
Vortex, 15 sec.					
Pinet I mL of 2	50 ppm Ammoniu	m Acetate	Std. #		
Pipet 1 mL of 0 1	25 Na-CO-/0.25M	NUTCO D CC			
$\frac{1}{1} \frac{1}{10} $	2.2 Mac. (U./U. 2.5 M	NaHCO, Buffer			
Pipet 5 mL of Etl	hyl Acetate				
Vortex 20-30 sec.					
Shake 20 min.				······	
Shake 20 min.					
Centrifuge 20-25	min				

Remove a 4 mL a	liquot of organic	aver			
Blow down to neg	r damaga (c0.26	-T			
Blow down to near dryness (<0.25 mL) with N ₂					
Add 1 m of 1:1 Acetonitrile/H ₂ O TN#					
Vortex 15 sec					
Filter using a 3cc	B D syrings with	0.0.1			
THE USINE A DUC	D-D Synnee With	a 0.2um SRI filter into	<u>o a 1.5 mL autosam</u>	nle vial.	

000147

000067

3M Environmental Laboratory

Method

Analysis of Fluoride Using the Skalar Segmented Flow Analyzer With Ion Selective Electrode

Method Identification Number: AMDT-M-8

Revision Number: 0

Revision Date: None

10/5

Adoption Date: 10-5-95

Author: Deb Wright / Cynthia Weber

Approved By:

.eader

Quality Assurance

Software: IBM MS Word, 6.0 Affected Documents: AMDT-EP-26, Operation and Maintenance of the Skalar Segmented Flow Analyzer

000068

1

000148

....

Date

95

Date

- 1.1 This method is for the analysis for fluoride, thermally extracted from samples using the Dohrmann DX2000 (AMDT-M-1), and collected in TISAB for analysis with an Ion Selective Electrode (ISE). The analysis is performed using the Skalar Segmented Flow Analyzer with ISE.
- 1.2 Samples can be tissues, serum, biological material, or other materials extracted on the Dohrmann.

2.0 KEYWORDS

2.1 Skalar, segmented flow, fluoride.

3.0 PRECAUTIONS

3.1 Follow standard laboratory safety practices.

4.0 SUPPLIES AND MATERIALS

4.1 Supplies

- 4.1.1 Sample cups, 4 mL plastic cups with caps
- 4.1.2 Autopipets, oxford or equivalent with plastic tips
- 4.1.3 Polypropylene volumetric flasks, 100 mL
- 4.1.4 Cartridge components, refer to the Skalar Methods for components and part numbers.
- 4.1.5 Sample prefilters, Evergreen

4.2 Reagents

- 4.2.1 Brij 35, 30% S.F.A.S. Detergent
- 4.2.2 TISAB II buffer solution: Purchase TISAB II from Orion. To 1 liter of TISAB II add 2.5 mL or 100 ppm fluoride solution and 1 mL Brij.
- 4.2.3 Sampler rinsing solution: Dilute TISAB II 1:1 with Milli-Q water.
- 4.2.4 Nitric acid solution for decontamination, 1 N (lab grade): Slowly add 64 mLs concentrated nitric acid (HNO₃) to 250 mLs of Milli-Q water. Bring the volume up to 1 L with Milli-Q water.

4.3 Standards

- 4.3.1 Stock solution, 100 ppm F: purchased from Orion.
- 4.3.2 Intermediate standard, 10 ppm: Dilute 10 mLs of stock solution to 100 mLs with Milli-Q water. Use polypropylene volumetric flasks.
- 4.3.3 Working standard: Make up the following working standards by adding the volumes of intermediate or stock standard indicated on the table, using oxford or pumpmate pipets, to 50 mLs of TISAB and diluting to 100 mLs with Milli-O water.

Working Standard	mLs of Stock Standard	ml c of law of the
0.015 ppm		mLs of Intermediate Standard
0.03 ppm		0.15
0.06 ppm		0.3
0.09 ppm		0.6
0.12 ppm		0.9
0.15 ppm	-	1.2
0.3 ppm	0.3	1.5
0.6 ppm	0.6	

000149

1.2 ppm	12	
1.5 ppm	15	-
	1.5	

5.0 EOUIPMENT

5.1 Skalar Segmented Flow Auto Analyzer Sans^{Plus} System equipped with ISE

6.0 INTERFERENCES

6.1 High concentrations of alkalinity, chloride, phosphate, sulfate or iron can cause interferences.

7.0 SAMPLE HANDLING

7.1 Samples should be stored in polyethylene bottles. Samples should be analyzed within 30 days.

8.0 CALIBRATION AND STANDARDIZATION

8.1 Preparation of Calibration Standards
8.1.1 Prepare calibration standards as in section 4.3.

8.2 Calibration

- 8.2.1 The standards are analyzed at the beginning of the run.
- 8.3 Storage Conditions for Standards
 - 8.3.1 Standards are stored in capped polypropylene volumetric flasks. New standards are prepared at a minimum of every six months, or as necessary.

<u>9.0 PROCEDURE</u>

- 9.1 Start Up Procedure
 - 9.1.1 Clamp down the pumpdecks, air bars and sampler-pump tubing.
 - 9.1.2 Put the fluoride electrodes in the electrode chamber.
 - 9.1.3 Turn on the power of the sampler, pumps, offset potentiometer and heating bath.
 - 9.1.4 Put the reagent-lines in the appropriate bottles.
 - 9.1.5 Turn on the interface, computer, display and printer. Make sure you turn on the interface before the computer.
 - 9.1.6 Let the system stabilize for approximately 30 minutes.

9.2 Starting a Run

- 9.2.1 Create a sample table by selecting FILES, TABLE, and CREATE, type in the name of the file, and press ENTER.
- 9.2.2 Print the sample table, inserted in the system table by pushing ESC, PRINT, GROUP 1. This will print the entire run.
- 9.2.3 Dial the sampler settings to the appropriate number of samples, number of seconds for sample wash, and number of seconds for the sample.
- 9.2.4 Fill the sample tray with the standards, samples, washes and drifts. IW and FW/RUNOUT cups on the sampler do not need to be filled.
- 9.2.5 Set the baseline.

000150

C60021

- 9.2.5. I Select GRAPHICS, REAL TIME. If you cannot get real-time, you may be in the Data Handling Panel. Switch to the Analysis Panel by selecting CONTROL PANEL and pushing F7.
- 9.2.5.2 Use the small screwdriver for the offset potentiometer to set the base line. Adjust the baseline until it is approximately 3/4 inch from the bottom of the screen.
- 9.2.5.3 Check the highest standard and adjust the gain, if necessary, with the interface screw #3.
- 9.2.6 Go to CONTROL PANEL, and to analysis panel. Deselect the analysis that will not be run. (Select or deselect analysis by pressing ENTER.) Press Tab to return to the Analysis Panel.
- 9.2.7 Press the spacebar to bring up the local menu.
- 9.2.8 Select START to start the analysis.
- 9.2.9 Type your ID (initials), the sample table which you created under 9.2.1 (or press ENTER for choices), choose running with or without the system table and select START ANALYSIS.
- 9.2.10 After starting the software, start the sampler. Make sure that the sampler is set to the right number of samples and that the sample/wash/air times are OK.
- 9.2.11 Select GRAPHICS, REAL TIME to view the progress of the analysis.

9.3 Loading and Printing the Data-File

- 9.3.1 Go to CONTROL PANEL, press the spacebar to bring up the local menu and select LOAD. Select AUTOCALCULATION and enter the filename (or highlight the file to be printed and press ENTER).
- 9.3.2 To view the calibration curve, go to GRAPHICS, CALIBRATION CURVE.
- 9.3.3 To print the high level curve, push PRINT SCREEN.
- 9.3.4 To print the low level screen, push ESC to get out of graphics. Select SETTINGS. Change the max y value to approximately 900. Go to CAL CURVE and press ESC, and Enter. Press PRINT SCREEN.
- 9.3.5 Return to SETTINGS and change the max value back to 4095, go to EDIT, press ENTER and PRINT SCREEN to print sample peaks.
- 9.3.6 To print the results go to CONTROL PANEL, SPACEBAR, OUTPUT, OUTPUT. Select PRINTER for the Epson or PRN for the Laser.

9.4 Shutdown

- 9.4.1 Put all the reagent-lines in Milli-Q water.
- 9.4.2 Let the system rinse for approximately 30 minutes.
- 9.4.3 After the system has rinsed completely, turn off the sampler, pump and offset potentiometer. Turn off the heating bath on weekends. Leave liquid in the lines.
- 9.4.4 Take the electrode out and soak in 100 ppm F overnight.
- 9.4.5 Release the pump-decks, air bars and sampler pump-tubing.
- 9.4.6 Select FILES, press ALT F and select QUIT to exit the program.
- 9.4.7 On Friday, turn off the computer, display and interface for the weekend.

10.0 VALIDATION

- 10.1 Quality Control
 - 10.1. I Run a standard (mid to high concentration) every 10 samples. If a significant change in peak height occurs, only the samples before the last acceptable standard will be used. The remaining samples will be reanalyzed.

10.2 Precision and Accuracy

10.2.1See Method Validation Report number AMDT-M-8.0.V1

- 10.3 Other Validation Parameters
- 10.4 Refer to Method Validation Report Number AMDT-M-8.0.V1

11.0 DATA ANALYSIS

- 11.1 Calculations
 - 11.1.1 The standard curve is plotted by the Skalar software.
 - 11. 1. 2 All calculations are done by the Skalar software. r² should be 0.995 or better.
- 11.2 Prepare spreadsheets to summarize data. Include sample volume, weights used etc.
- 11.3 Write the study number on the printouts, initial, date the printout, and bind together with all package documents and place in the study folder. Make a copy of the summary sheet and tape into the study notebook. Back up all data and spreadsheets onto study disk and backup disks.
- 11.4 Electronic Data
 - 11.4. 1GLP studies: Electronic data is copied onto the Study floppy disk for each study, and also data is copied onto a floppy disk that is stored in the lab.
 11.4. 2 Other studies: All data is copied onto a floppy disk that is stored in the lab.

12.0 ATTACHMENTS

None

13.0 REFERENCES

- 13.1 AMDT-M-1, Thermal Extraction of Fluoride by Means of a Modified Dohrmann DX2000 Organic Halide Analyzer-Liver
- 13.2 Skalar Methods, #335, Skalar Methods Manual
- 13.3 AMDT-EP-26, Operation and Maintenance of the Skalar Segmented Flow Analyzer

14.0 REVISIONS

Revision Number Reason for change

Revision Date

Method

Thermal Extraction of Fluoride by Means of a Modified Dohrmann DX2000 Organic Halide Analyzer - Serum

Method Identification Number: AMDT-M-14

Adoption Date: /0-3-95

Revision Number: 0

Revision Date: None

Author: Rich Youngblom

Approved by:

Group Leader

Quality Assurance

Software: MS Word 5.1a

Affected Documents: AMDT-M-2 Fluoride Measurement by Means of an Orion EA940 Expandable Ion Analyzer AMDT-EP-3 Routine Maintenance of a Modified Dohrmann DX2000 Organic Halide Analyzer

000153

<u>/0/3</u> Date 95

9-27-15 Date

00007 1

1.0 SCOPE, APPLICABLE COMPOUNDS, AND MATRICES

1.1 Scope: This method is for the operation of a Dohrmann DX2000 when it is used to extract fluoride from various matrices. The fluoride is typically collected in TISAB solution for analysis with an ion selective electrode.

1.2 Applicable Compounds: Fluorochemicals or other fluorinated compounds.1.3 Matrices: Biological fluids, particularly serum.

2.0 KEYWORDS

2.1 Fluoride, fluorine, extraction, pyrolysis, ionization, ion selective electrode, Dohrmann, halide, DX2000, fluorochemicals.

3.0 PRECAUTIONS

3.1 Glassware and exhaust gases can be extremely hot.

3.2 Glassware is fragile, broken glass may cause injuries.

3.3 Pressurized gases, proper compressed gas handling practices required.

3.4 Solvent based samples may flash, may need to allow them to dry down before starting run.

3.5 Potential biohazards due to the biological matrices. Use appropriate personal protective equipment.

4.0 SUPPLIES AND MATERIALS

4.1 Compressed Oxygen, Hydrocarbon free, regulated to 30 PSI.

4.2 Compressed Helium, High Purity Grade, regulated to 45 PSI.

4.3 Quartz glass sample boat with Teflon[™] tubing, Dohrmann 890-097 or equivalent.

4.4 Quartz glass combustion tube, Reliance Glass G-9405-012 or equivalent.

4.5 Orion 940999 Total Ionic Strength Adjustment Buffer (TISAB II) or equivalent.

4.6 Sample collection vials, HDPE.

4.7 Milli-Q[™] water

4.8 Polystyrene pipettes.

4.9 Activated Charcoal, E. Merck 2005 or equivalent.

4.10 Hamilton Syringe or equivalent.

4.11 Miscellaneous laboratory glassware

5.0 EQUIPMENT

5.1 Rosemount Dohrmann DX2000 Organic Halide Analyzer, modified for fluoride extraction.

5.2 IBM compatible 386 or 486 computer.

5.3 DX2000 software, version 1.00, modified for fluoride extraction.

5.4 Excel Spreadsheet, version 5.0 or greater

6.0 INTERFERENCES

6.1 Sample size is limited to approximately 100 μ l. This may vary from matrix to matrix.

00007

7.0 SAMPLE HANDLING

7.1 Samples are to be handled with plastic pipettes. A new pipette is to be used for each sample.

8.0 CALIBRATION AND STANDARDIZATION

8.1 Preparation of Calibration Standards

8.1.1 The standards required for each project will need to be appropriate for that individual project. Refer to protocol for that project.

8.1.2 Typically 50-500 ppm FC-95 in methanol standards are used.

8.1.3 For rabbit serum studies, use beef serum as the matrix.

8.2 Calibration - Overview

The normal calibration is the fluoride curve (AMDT-M-2). However, if an optional spiked serum curve is required the procedure listed below is used.

8.2.1 A calibration curve for the DX2000 is generated by spiking samples with known standards and combusting them using the same methods and matrix type as the samples to be tested. **8.2.2** Typically, three replicates of each standard and five concentrations of standards will be spiked.

8.2.3 Standard curve will be plotted as Mass Spiked F (ug) on the x-axis and Standard Mass Recovered F (ug) on the y-axis. Generate a regression curve and calculate the equation for the line and the r^2 value.

8.2.4 Mass Spiked F (ug) = (Amount spiked in mL) x (Conc. of standard in ppm) x (0.6004)*
*FC-95 is 60.04% F therefore 0.6004 is the factor used to convert FC-95 to F
8.2.5 Standard Mass Recovered F (ug) = (TISAB volume in mL) x (Orion reading in ppm)

8.3 Calibration - Procedure

8.3.1 Start Up

8.3.1.1 Run 2 or more Clean Cycles when starting instrument each day. More clean cycles may be used if the previous samples contained high concentrations of fluoride.

8.3.2 Blanks

8.3.2.1 Prepare sample using the same methods and type of matrix as the test sample.

8.3.2.2 For rabbit studies, use beef serum as the matrix.

8.3.2.3 Put serum blank in Dohrmann boat. Combust sample as described in section 9.0 and analyze sample according to method AMDT-M-2 for the ion selective electrode analysis.

8.3.2.4 For rabbit studies, the meter reading for a blank sample should be 0.03 ppm or lower before proceeding with the calibration. Burn samples until this limit is reached, or until in the judgement of the operator the reading is stable with respect to historical readings (previous 48 hours).

8.3.2.5 For non-rabbit studies, the blank readings should reach a predetermined ion concentration before proceeding with the calibration.

8.3.2.6 It may be necessary to mix approximately 50 mg of charcoal with the sample to aid combustion.

000155

0000%

8.3.3 Standard Curve

8.3.3.1 If beef serum is frozen, that at least enough to complete the standard curve analysis for the day (\approx 30 mL).

8.3.3.2 Pipette 100µL of beef serum into Dohrmann sample boat.

8.3.3.3 Start with the lowest standard concentration. Using a Hamilton syringe, eject a fixed quantity of the standard on or in the matrix. For rabbit studies, use 4 uL of standard and eject it on or in the beef serum.

8.3.3.4 At least 3 replicates should be used for the lowest standard concentration; more replicates may be used at the discretion of the analyst.

8.3.3.5 Combust the sample as described in section 9.3 and analyze according to AMDT-M-2.

8.3.3.6 Run all 15 standards. If one replicate is significantly different from the other two replicates, run another sample for that standard. Indicate in data that the new replicate replaces the old replicate and that the new replicate will be used to calculate the regression curve.

8.3.3.7 When all standards have been run, calculate the r^2 . r^2 must be at least 0.95. If it is not at least 0.95, consult with supervisor.

8.3.3.8 A new standard curve should be run when the combustion tube or sample matrix is changed. New standard curve may also be run at the discretion of the analyst.

8.4 Storage Conditions for Standards

8.4.1 Storage requirements for standards are dependent on the individual standards used.

Typically, standards are stored at room temperature in plastic screw top bottles.

8.4.2 New FC-95 standards should be prepared at least once a month.

9.0 PROCEDURES

9.1 Typical Operating Conditions:

9.1.1 Combustion tube temperature = 950° C.

9.1.2 Oxygen and Helium flow = 50 cc/minute.

9.1.3 Vaporization/Drying time = 240 seconds.

9.1.4 Bake time = 300 seconds.

9.2 Start Up Procedure:

9.2.1 If the program is not started, start the EOX program on the PC.

9.2.2 Open the SYSTEM SETUP window.

9.2.3 Put the furnace module and the cell in the READY mode.

9.2.4 Close the SYSTEM SETUP window.

9.2.5 When the oven has reached the READY temperature, run the CLEAN BOAT program found in the CELL CHECK menu.

9.2.6 See AMDT-EP-3 for details of the Dohrmann software.

9.3 Sample Extraction Procedure:

9.3.1 Open the SAMPLE HATCH and pipette 100μ L of sample into the BOAT. It may be necessary to mix approximately 50 mg of charcoal with the sample to aid combustion. If this is done, charcoal should also be mixed in while establishing the baseline and when generating the standard curve.

9.3.2 Close SAMPLE HATCH.

000156

9.3.3 Add appropriate volume of TISAB solution or 1:1 TISAB:Milli-Q[™] water mixture to a labeled sample collection vial. Typically 0.6 mL to 15 mL are used. For rabbit studies, use 1.0 or 2.0 mL of 1:1 TISAB:Milli-Q[™] water mixture.

9.3.4 Place the vial so that the tip of the COMBUSTION TUBE is in the TISAB at least 0.25 inches. Gases released during pyrolysis must bubble through the TISAB.

9.3.5 Run the EOX-WATER program found in the RUN menu.

9.3.6 When the EOX program is finished, remove the collection vial from the combustion tube.

9.3.7 If undiluted TISAB was used to collect the sample, add an equal volume of Milli-Q[™] water to the TISAB to make 1:1 TISAB:Milli-Q[™].

9.3.8 Rinse the end of the combustion tube with Milli-Q[™] water and wipe with a KIMWIPE to remove any TISAB remaining on the tube.

9.3.9 Open the sample hatch and remove any remaining ash from the boat. Ash can be removed 'with a cotton tipped applicator and/or vacuumed out. It may be necessary to scrap particles off the bottom with a spatula or other similar device. A drop of Milli- Q^{TM} water may be added to the boat to aid in the Clean Cycle.

9.3.10 Close the hatch.

9.3.11 Run the CLEAN BOAT program.

9.3.12 Sample is ready for analysis by ion selective electrode (AMDT-M-2).

9.4 Sample Calculations

9.4.1 Use the standard curve to calculate the sample value.

9.4.2 Sample Mass Recovered F (ug) = (TISAB vol in mL) x (Orion reading in ppm - intercept) (Slope)

10.0 VALIDATION

10.1 Quality Control

10.1.1 Daily Start Up Check Samples: Once the standard curve is established, each day of analysis is started by analyzing QC samples. The QC samples are to be the same as the lowest concentration spiked samples used to generate the standard curve. Each concentration must be done in triplicate unless the first two replicates are within 20% of the standard curve, then a third replicate is not necessary.

10.2 Precision and Accuracy: See method development analysis and sample analysis in Fluoride Notebooks 2,3, and 5. Precision and accuracy varies when analyzing samples of different matrices and different reference compounds.

10.3 Other Validation Parameters: NA

11.0 DATA ANALYSIS

11.1 Calculations

11.1.1 For the standard curve, use regression analysis in Excel, version 5.0 or greater.

11.1.2 To calculate the fluoride contraction in the sample, see method AMDT-M-2.

11.2 Analyzing the Data

11.2.1 r^2 must be at least 0.95 or greater. "Outliers" may be excluded if two of the three replicates are within 20% of each other and the outlier is greater than 200% of the average of those two or less than 50% of the average of those two. Any such outliers should be pointed out in the data and noted in the Final Report along with the reason it was considered an outlier.

12.0 ATTACHMENTS

None

13.0 REFERENCES

13.1 Rosemount Dohrmann DX2000 Organic Halide Analyzer Operator's Manual (Manual 915-349, revision B, December 1993)

13.2 AMDT-M-2 Fluoride Measurement by Means of an Orion EA940 Expandable Ion Analyzer

13.3 AMDT-EP-3 Routine Maintenance of a Modified Dohrmann DX2000 Organic Halide Analyzer

14.0 REVISIONS

Revision Number Reason for Change Revision Date

9.3 Quality Assurance Unit Statement

000079

•

000159

3MA01502246

Attachment D

GLP Study Quality Assurance Statement

Completed by: QAU Auditor Original to: Study Director Copies to: QAU Files

Study Title: Single-dose Intravenous Pharmacokinetic Study of T-6246 in Rabbits

Study Number: AMDT-042095.1

Name of Auditor: Kari Rambo

This study has been inspected by the Quality Assurance Unit as indicated in the following table. The findings were reported to the study director and management.

Inspection	Dates		Date Inspectio	
From	<u>To</u> .	Phase	Management	Study Director
11-13-95	11-13-95	Final Report	11-13-95	11-13-95

AU Auditor Date

000080

1

2807.0080

9.4 Key Personnel Involved in the Study

.

000161

000081

3MA01502248

3M Environmental Laboratory

Key Personnel

Thermal extraction followed by analysis using Orion ion analyzer: Jim Johnson Deb Wright Rich Youngblom Deann Plummer

Thermal extraction followed by analysis using Skalar segmented flow analyzer with ion selective electrode:

Jim Johnson Deb Wright Rich Youngblom Deann Plummer

Documentation and Reporting:

Jim Johnson Rich Youngblom

Quality Assurance Unit:

Ğale Van Buskirk Cynthia Weber Kari Rambo

000162

9.11 Data

.

000163

000083

3MA01502250

9.11.1 Summary and raw data; ug F⁻ in whole liver as determined by thermal extraction followed by analysis using Orion ion analyzer.

.

000164

000084

Summary of Combustion Data - Liver AMDT-042095.1, HWI 6329-159 As Referenced in Final Report section 6.0 DATA ANALYSIS

> Total µg Fluoride in Whole Liver Mean per Dose Group per Day Sacrifised*

 $\begin{array}{c} \mu g \qquad \text{Std. Dev.} \\ \text{Control Group, Day 15**} \qquad 27.1 \pm 3.1 \end{array}$

Control Group, Day 28 38.7 ± 16.3

- 100 mg/kg dose (T6246), Day 15 37.4 ± 7.9 (0.12 mg/kg)***
- 100 mg/kg dose (T6246), Day 28 29.6 ± 1.3 (0.12 mg/kg)***
- 500 mg/kg dose (T6246), Day 15 123.1 ± 14.0 (0.60 mg/kg)***
- 500 mg/kg dose (T6246), Day 28 100.5 ± 5.9 (0.60 mg/kg)***

*Calculated as a mean triplicate samples from each of two male and two female rabbits. **Only two livers analyzed from this group.

***Test material is a 0.12% solution of FC-95, actual dose in parenthesis.

000165

000085

FC95		Actual	Average	liner	Whole	Total F- in	
ID	%	ppm F- in liver	ppm F- in liver	liver	liver	whole	Deces
U	rcvry	(W/W)	(W/W)	burned	weight	liver	Dosage
liver blank-1	leviy	0.776	(**/**)	(grams) 0.113	(grams)	(ug)	(mg/kg)
liver blank-2		0.500		0.113		•	
liver blank-3		0.480		0.131			
F54075-1		0.400		0.131	60.3		
F54075-2		0.523	0.412	0.131	60.3	24.8	0.0
F54075-3		0.313	0.412	0.120	60.3	24.0	0.0
F54081-1		0.308		0.125	80.6		
F54081-1		0.448	0.387	0.125	80.6	31.2	0.0
F54081-3		0.440	0.507	0.108	80.6	51.2	0.0
F54105-1		0.267		0.151	86.4		
F54105-2		0.431	0.339	0.105	86.4	29.3	0.0
F54105-3		0.319	0.555	0.117	86.4	23.3	0.0
F54107-1		1.34		0.107	80.6		
F54107-2		0.542	0.780	0.135	80.6	62.9	0.0
F54107-3		0.459	0.700	0.129	80.6	02.9	0.0
F54074-1		0.350		0.123	82.9		
F54074-2		0.265	0.336	0.123	82.9	2 7.9	0.0
F54074-3		0.393	0.000	0.111	82.9	21.3	0.0
F54085-1		0.312		0.149	81.0		
F54085-2		0.272	0.407	0.149	81.0	33.0	0.0
F540853		0.637	0.407	0.143	81.0	55.0	0.0
Liver Blk-1		0.437		0.097	01.0		
Liver Blk-2		0.185		0.148			
Liver Spk-1	40%	0.553		0.140			
Liver Spk-2	45%	0.469		0.145			
Liver Spk-2	40%	0.389		0.156			
Liver Spk-4	39%	0.418		0.142			
Liver Spk-5	54%	0.660		0.125			
blank 1	0.170	0.528		0.097			
blank 2		0.334		0.148			
spike-1	91%	1.26		0.110			
spike-2	106%	1.11		0.145			
spike-3	118%	1.15		0.156			
spike-4	97%	1.04		0.142			
spike-5	136%	1.65		0.125			
spike-6	96%	1.06		0.137			
blk 1		0.530		0.153			
blk 2		0.264		0.161			
spk 1	119%	1.15		0.157			
spk 2	113%	1.14		0.150			
spk 3	106%	0.979		0.164			
spk 4	103%	1.11		0.141			
F54082-1		1.22		0.160	89.0		
F54082-2		1.25	1.23	0.163	89.0	109.4	500
F54082-3		1.21		0.156	89.0		
F54111-1		1.21		0.121	83.8		
F54111-2		1.11	1.17	0.115	83.8	97.7	500
F54111-3		1.17		0.136	83.8		

Page 1

000166

		• • •					
FC95		Actual	Average		Whole	Total F- in	
	•	ppm F-	ppm F-	liver	liver	whole	_
ID	%	in liver	in liver	burned	weight	liver	Dosage
	rcvry	(W/W)	(W/W)	(grams)	(grams)	(ug)	(mg/kg)
F54079-1		1.17		0.157	83.1		
F54079-2		1.20	1.18	0.142	83.1	97.9	500
F54079-3		1.16		0.141	83.1		
F 54116-1		1.36		0.154	72.0		
F54116-2		1.33	1.35	0.140	72.0	97.1	500
F54116-3		1.36		0.157	72.0		
F54112-1		1.44		0.134	97.8		
F54112-2		1.55	1.46	0.158	97.8	142.9	500
F54112-3		1.40		0.146	97.8		
F54076-1		1.69		0.139	78.1		
F54076-2		1.81	1.76	0.124	78.1	137.4	500
F54076-3		1.78		0.114	78.1		
F54113-1		1.24		0.145	91.5		
F54113-2		1.33	1.33	0.123	91.5	121.7	500
F54113-3		1.42		0.117	91.5		
F54084-1		1.58		0.134	66.4		
F54084-2		1.73	1.66	0.140	6 6.4	110.4	500
F54084-3		1.68		0.120	66.4		
F54098-1		1.46		0.135	79.0		
F54098-2		1.39	1.49	0.147	79.0	117.3	500
F54098-3		1.61		0.125	79.0		
F54087-1		0.400		0.130	83.7		
F54087-2		0.346	0.376	0.131	83.7	31.5	100
F54087-3		0.382		0.135	83.7		
F54088-1		1.33		0.134	84.3		
F54088-2		0.485	0.765	0.148	84.3	64.4	100
F54088-3		0.482		0.134	84.3		
LIVER BLK 1		0.259		0.164			
LIVER BLK 2		0.132		0.158			
LIVER SPK 1	89%	1.05		0.128			
LIVER SPK 2	111%	1.30		0.129			
LIVER BLANK		0.243		0.140			
LIVER SPIKE 3	111%	1.27		0.133			
liver blank		0.355		0.111			
F54089-1		0.398		0.153	71.8		
F54089-2		0.394	0.394	0.157	71.8	28.3	100
F54089-3		0.391	0.001	0.147	71.8	20.0	100
F54099-1		0.502		0.139	82.1		
F54099-2		0.504	0.483	0.140	82.1	39.7	100
F54099-3		0.444	0.100	0.158	82.1	00.7	100
F54114-1		0.337		0.157	81.0		
F54114-2		0.372	0.359	0.136	81.0	29.0	100
F54114-3		0.367	0.000	0.155	81.0	20.0	100
F54109-1		0.383		0.133	74.0		
F54109-2		0.387	0.400	0.133	74.0	29.6	100
F54109-3		0.387	3.400	0.154	74.0	20.0	,00
F54080-1		0.460		0.132	75.4		
F54080-2		0.475	0.356	0.132	75.4	26.8	100
F54080-3		0.132	0.000	0.103	75.4	~0.0	.00

.

Page 2

000167

FC95		Actual	Average		Whole	Total F- in	
		ppm F-	ppm F-	liver	liver	whole	
ID	%	in liver	in liver	burned	weight	liver	Dosage
	rcvry	(W/W)	(W/W)	(grams)	(grams)	(ug)	(mg/kg)
F54092-1		0.537		0.117	78.4		
F54092-2		0.463	0.478	0.145	78.4	37.4	100
F54092-3		0.433		0.138	78.4		
F54106-1		0.639		0.134	82.3		
F54106-2		0.665	0.634	0.125	82.3	52.2	100
F54106-3		0.598		0.121	82.3		
Blank		0.181		0.133			
Liver spike 1	82%	1.09		0.113			
Liver spike 2	81%	0.755		0.158			
Liver spike 3	85%	0.897		0.144			
Liver spike 4	76%	1.47		0.156			
Liver spike 5	66%	1.36		0.147			
Liver spike 6	70%	1.40		0.152			
liver blank-1		0.549		0.147			
liver blank-2		0.454		0.133			
liver blank-3		0.278	,	0.110			
liver spike 63-1	103%	1.09		0.143			
liver spike 63-2	96%	1.11		0.132			
liver spike 63-3	159%	1.69		0.143			
liver spike 63-4	101%	1.41		0.108			
F54088-1		0.485		0.145	84.3		
F54088-2		0.655	0.544	0.123	84.3	45.8	100
F54088-3		0.491		0.132	84.3		
liver blank-4		0.292		0.123			
liver spike 63-1	117%	1.30		0.136			
liver spike 63-2	89%	0.972		0.139			
liver spike 63-3	89%	0.922		0.147			
liver spike 63-4	90%	0.910		0.149			

000088

Page 3

000168

.

9.11.2 Summary and raw data; ug F⁻ in whole liver as determined by thermal extraction followed by analysis using Skalar segmented flow analyzer with ion selective electrode.

.

000169

Ou 6/21/95 Skalar Onto

RE: 6329-159 LIVER SAMPLES AMDT 42095.1 Date of Analysis: 5-23 and 5-24-95 Analyst: DDW

The samples are burned in the Dohrman at 950 C using between 0.1 and 0.2 grams of the liver. The gas is collected in 2.0 mL of 1:1 TISAB/Milli-Q water. The samples are then analyzed on a Skalar Segmented Flow Analyzer using the Ion Specific Electrode (ISE) Method.

TISAB buffer is added to each sample as it proceeds through the system. The sample then goes through a heated mixing coil before the potential between the ion selective electrode and the reference electrode is measured. The signal is amplified and related to the fluoride concentration.

The instrument was calibrated in the ranges of 0.015 - 0.15 ppm and 0.15 - 1.50 ppm fluoride. The standard curve for the high range was plotted using the inverse logarithm option. The standard curve for the low range is linear. All standards and samples were then calculated by the Skalar software using these curves. All results below 0.0001 ppm appear on the raw data as #.####.

A quality control standard was analyzed every 10 samples to check for accuracy and drift.

Raw data is taken from the appropriate calibrated range of the Skalar printout and summarized on an Excel spreadsheet. The final results are adjusted for the collection volume and any subsequent dilutions.

Jaha Whight

000170

000090

 \mathcal{D} 130

3MA01502257

SUMMARY of 6329-159 LIVER SAMPLES AMDT 42095.1

		Sealar		Oty Sampi	Actual	Average	Total	Total F.	Average
	Sample	Result	final vol	(mL or	ppm F-	Actual	Dissue Wit	oper tissue	Total F-
	iD	(ppm)	(mL)	grams)	in Sample	ppm F-	(grams)	(ag)	per ussue
	ESAGE 1					un Sample			(ng)
	F54075-1	0.03	2.0	0.1311	0.50		60.2500	30.06	
	F54075-2	0.03	2.0	0.1197	0.55	0.52	60.2500	33.32	27.4
	F54075-3	0.02	2.0	0.1318	0.31		60.2500	18.93	
	F54081-1	0.02	2.0	0.1246	0.32		80.597	25.87	
	F54081-2	0.02	2.0	0.1161	0.36	0.33	80.597	29.30	26.8
	F54081-3	0.02	2.0	0.1075	0.31		80.597	25.34	
	F54105-1	0.02	2.0	0.1507	0.25		86.35	21.54	
	F54105-2	0.02	2.0	0.1053	0.46	0.36	86.35	39.53	31.2
GROUP 1	F54105-3	0.02	2.0	0.1173	0.38		86.35	32.39	
Dose Level : 0	F54107-1	0.45	2.0	0.1069	8.38		80.649	675.67	
	F54107-2	0.05	2.0	0.1351	0.75	3.19	80.649	60.53	257
	F54107-3	0.03	2.0	0.1286	0.43		80.649	34.37	
	F54074-1	0.02	2.0	0.1227	0.37		82.895	31.08	
	F54074-2	0.02	2.0	0.1441	0.25	0.34	82.895	21.05	28.3
	F54074-3	0.02	2.0	0.1110	0.40		82.895	32.86	
	F54085-1	0.02	2.0	0.1485	0.23		80.95	18.97	
	F54085-2	0.02	2.0	0.1490	0.30	1.81	80.95	23.90	45.8
	F54085-3	0.06	2.0	0.1005	1.17		80.95	94.40	
	F54087-1	0.04	2.0	0.1301	0.59		83.71	49.42	
	F54087-2	0.03	2.0	0.1314	0.47	0.52	83.71	39.24	43.7
	F54087-3	0.03	2.0	0.1351	0.51	0.54	83.71	42.51	43.7
	F54088-1	0.11	2.0	0.1339	1.70		84.26	42.51 143.47	
	F54088-2	0.05	2.0	0.1476	0.66	1.01	84.26	55.26	85.3
	F54088-3	0.05	2.0	0.1344	0.68	1.01	84.26	57.30	65.5
	F54092-1	0.06	2.0	0.1169	0.96		78.36	75.61	
	F54092-2	0.05	2.0	0.1453	0.69	0.75	78.36	54.15	58.8
	F54092-3	0.04	2.0	0.1381	0.60	0.75	78.36	46.75	50.0
	F54106-1	0.06	2.0	0.1336	0.85		82.301	70.35	
	F54106-2	0.06	2.0	0.1249	0.90	0.82	82.301	74.33	67.8
	F54106-3	0.04	2.0	0.1213	0.71	0.02	82.301	58.76	07.8
	F54088-1	0.05	2.0	0.1448	0.71		84.26	60.63	
GROUP 4	F54088-2	0.05	2.0	0.1228	0.89	0.75	84.26	75.07	63.1
Dose Level : 100 mg/kg	F54088-3	0.04	2.0	0.1223	0.63	0.75	84.26	53.49	05.1
Dose Lever : 100 mg/ng	F54089-1	0.03	2.0	0.1517	0.03		71.796	29.81	
	F54089-2	0.03	2.0	0.1552	0.42	0.41	71.796	29.31	29
	F54089-3	0.03	2.0	0.1308	0.39	0.41	71.796	29.12	29
	F54099-1	0.04	2.0	0.1386	0.56		82.143	46.35	
	F54099-2	0.04	2.0	0.1380	0.53	0.56	82.143 82.143	43.21	45.95
	F54099-3	0.05	2.0	0.1575	0.59	0.50	82.143	48.29	40.70
	F54114-1	0.03	2.0	0.1573	0.39		80.966	31.19	
	F54114-2	0.03	2.0	0.1359	0.38	0.38	80.966	31.19	31.5
	F54114-3	0.03	2.0	0.1552	0.30	0.00	80,966	32.14	5.5
	F54109-1	0.03	2.0	0.1326	0.38		73,958	28.45	
	F54109-2	0.03	2.0	0.1320	0.38	40.30	73.958	28.45	29.9
	F54109-3	0.03	2.0	0.1536	0.45	10,20	73.958	33.13	
		-							
			HWI-	159L.SUM				P	age 1
	0004 194							•	

000171

Page 1 000091 SUMMARY of 6329-159 LIVER SAMPLES AMDT 42095.1

					•				
		Skalar		Qty Sampi	Actual	Average	Total	Total F-	Average
	Sample	Result	final voi	imLor	ppm F-	Actual	Tissue WL	per tissue	Total F-
	ID	(ppm)	(mL)	grams)	in Sample	ppm F-	(grams)	(ug)	per assue
	F54080-1	0.03	2.0	0.1322	0,46		75.42	34.91	
	F54080-2	0.03	2.0	0.1323	0.50	0.32	75.42	37.74	24.2
	F54080-3	ND	2.0	0.1028	ND		75.42	ND	
	F54082-1	0.12	2.0	0.1595	1.44		99 065	128.40	
	F54082-1 F54082-2	0.12	2.0	0.1595	1.44	1 46	88.965	128.40	
	F54082-2 F54082-3	0.12	2.0	0.1558	1.48 1.47	1.46	88.965 88.965	131.75	130
	F54111-1	0.09	2.0					130.42	
	F54111-1 F54111-2	0.09	2.0	0.1207 0.1147	1.41	1.42	83.823 83.823	118.48	
	F54111-2 F54111-3	0.08	2.0	0.1147	1.34	1.44		112.69	119
	F54079-1	0.10	2.0		1.50		83.823	125.36	
	F54079-1 F54079-2	0.11		0.1571	1.46	1 4 9	83.117	121.58	1.2.2
			2.0	0.1420	1.52	1.48	83,117	126.67	123
	F54079-3	0.10	2.0	0.1406	1.46		83.117	121.07	
	F54116-1	0.13	2.0	0.1541	1.71	1.60	71.962	122.82	144
CDOUD 6	F54116-2	0.12	2.0	0.1403	1.68	1.69	71.962	121.15	122
GROUP 5	F54116-3	0.13	2.0	0.1570	1.68		71.962	120.73	
Dose Level : 500 mg/kg	F54112-1	0.12	2.0	0.1340	1.82	1.00	97.824	177.98	
	F54112-2	0.15	2.0	0.1583	1.84	1.82	97.824	180.45	178
	F54112-3	0.13	2.0	0.1458	1.79		97.824	175.25	
	F54076-1	0.15	2.0	0.1385	2.22		78.058	173.59	
	F54076-2	0.15	2.0	0.1243	2.43	2.33	78.058	189.65	182
	F54076-3	0.13	2.0	0.1136	2.35		78.058	183.60	
	F54113-1	0.12	2.0	0.1449	1.65		91.52	151.08	
	F54113-2	0.11	2.0	0.1227	1.85	1.81	91.52	169.17	166
	F54113-3	0.11	2.0	0.1171	1.94		91.52	177.26	
	F54084-1	0.14	2.0	0.1338	2.09		66.42	138,90	
	F54084-2	0.16	2.0	0.1402	2.24	2.18	66.42	148.76	145
	F54084-3	0.13	2.0	0.1200	2,22		66.42	147.23	
	F54098-1	0.13	2.0	0.1346	1,93		78.95	152.03	
	F54098-2	0.14	2.0	0.1469	1.88	1.98	78.95	148.33	156
	F54098-3	0.13	2.0	0.1253	2.12		78.95	167.23	

S
1
×.
أ
S,
ŝ
T
÷
3
÷
_

1995-06-13 10:27 OutPut of : 950523A1 Operator : DDW Date of the Analysis : 1995-05-23 10:18 Analysis File Name : C:\SKALAR\DATA\HWIDATA\LIVERS\950523A1

	Ê
	d Re D D
	2 × ·
	X 6. 9
	500 CC
	202
	C C R
	C H
	A
	5 0 E
	02
	TIS.
	C 600
	5.5
	<u> </u>
1	

30.06 33.32 18.93 25.87	29.30 25.34 21.54 39.53 32.39 675.67
60.2500 60.2500 60.2500 80.597	80.597 80.597 86.35 86.35 80.649
0.79 0.50 0.55 0.31 0.32	0.36 0.31 0.25 0.28 0.38 8.38
0.1332 0.1172 0.1313 0.1318 0.1318 0.1246	0.1161 0.1075 0.1507 0.1503 0.1173 0.1069
2.0 2.0 2.0 2.0 2.0	2.0 2.0 2.0 2.0
98% 98% 100% 102% 95% 102% 102% 102%	102%
1.47 1.48 0.00 0.03 0.03 0.03 0.03 0.03 0.04 0.00 0.04 0.00 0.03 0.03	0.02 0.02 1.53 0.00 0.02 0.02 0.02
1.50 1.50 0.015 0.03 0.15 0.15 0.12 1.50 1.50	1.50
Tracer Drift Wash Standard 1 Standard 2 Standard 3 Standard 4 Standard 6 Standard 6 Standard 9 Standard 9 Standard 10 Drift Wash BLK 1 BLK 1 BLK 2 BLK 2 F54075-1 F54075-2 F54075-3	F54081-2 F54081-3 F54105-1 Drift Wash F54105-2 F54105-3 F54107-1
000173	
	00000

0000 6/21)95 AMDT 42095.1 Skalar Summar 6329-159

Page 1

Sample D	31 F54107-2 32 F54107-3 33 F54074-1 34 F54074-2 35 F54074-3 35 F54074-3	F54085-2 Drift Wash BLK 1 BLK 1 SPK 1 SPK 1	SPK 3 SPK 4 SPK 5 BLK 1 Drift 1 BLK 2 BLK 2	SPK 1 SPK 2 SPK 2 SPK 3 SPK 4 F54082-1 F54082-2 F54111-1 F54111-1 F54111-2 Drift	Wash F54111-3 F54079-1 F54079-2
	267-26-				
Skalar Statdard (ppm)		1.50	1.50	1.50	
Statar Remit (rpm)	0.05 0.03 0.02 0.02 0.02	0.02 0.02 0.00 0.00 0.03 0.03 0.15	0.10 0.12 0.09 0.09 0.09 0.09 0.00 0.02	0.11 0.10 0.12 0.12 0.12 0.12 0.09 1.51	0.00 0.10 0.11
ek Recovery		101%	102%	101%	
DI [[]SAB fita] yol (tul)	2.0 2.0 2.0 2.0 2.0	2.0 2.0 2.0 2.0 2.0	2.0 2.0 2.0 2.0 2.0 2.0 2.0	2.0 2.0 2.0 2.0 2.0 2.0 2.0	2.0 2.0
(TISAB Oty Sampl ual yol (mL or (mL) grans)	0.1351 0.1286 0.1227 0.1441 0.111 0.111	0.149 0.149 0.1005 0.0971 0.1479 0.1096	0.1446 0.1556 0.1416 0.1246 0.1369 0.153 0.153	0.1568 0.1502 0.1636 0.1412 0.1595 0.1558 0.1558 0.1207 0.1147	0.136 0.1571 0.142
Actual ppm F- in Sample	0.75 0.43 0.37 0.25 0.40	0.30 0.30 0.50 0.39 2.67	1.36 1.21 1.21 1.32 0.58	1.37 1.135 1.117 1.51 1.44 1.48 1.47 1.41 1.41	1.50 1.46 1.52 Page 2
Total Tessue Wt (grans)	80.649 80.649 82.895 82.895 82.895 80.05	80.95		88.965 88.965 88.965 83.823 83.823	83.823 83.117 83.117
Total F- per tissue (ug)	60.53 34.37 31.08 21.05 32.86	23.90 24.40		128.40 131.75 130.42 118.48 112.69	125.36 121.58 126.67
mLFC95 Solition Spiked		0.004	0.004 0.004 0.004 0.004 0.004	0.004 0.004 0.004 0.004	
Conc PC 95 Sola (ippu)		63.00	63.00 63.00 63.00 63.00	63.00 63.00 63.00 63.00	
Mass Spikad (UEP-)		0.15	0.15 0.15 0.15 0.15 0.15	0.15 0.15 0.15 0.15	
Mass ?a Recovered Recover (ug P-)		0.29	0.20 0.17 0.18 0.18	0.22 0.20 0.19 0.21	
Recovery		194%	130% 143% 162% 119%	142% 134% 141%	

HWI-159L.XLS

3MA01502261

Sample San # I	-		Lakan			•••	73 F54					-	_			L .,		84	0 85 F54	86	87	88 f	1 68					<u> </u>	95 F54		97 M
ample Statend ID (ppm)	079-3	116-1	116-2	116-3	112-1	112-2	112-3	ift 1.50	/ash	076-1	076-2	076-3	113-1	113-2	113-3	084-1	084-2	084-3	098-1	ift 1.50	/ash	098-2	098-3	087-1	087-2	387-3	388-1	388-2	388-3	Drift 1.50	/ash
Result R (ppm)	0.10	0.13	0.12	0.13	0.12	0.15	0.13	1.48	00.0	0.15	0.15	0.13	0.12	0.11	0.11	0.14	0.16	0.13	0.13	1.49	0.00	0.14	0.13	0.04	0.03	0.03	0.11	0.05	0.05	1.49	0.00
decovery final ve (mL)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	%66		2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	%66		2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	%66	
an (mi. ar (0.1458												0.1346			0.1469									
pput F- fut Sample	1.46	1.71	1.68	1.68	1.82	1.84	1.79			2.22	2.43	2.35	1.65	1.85	1.94	2.09	2.24	2.22	1.93			1.88	2.12	0.59	0.47	0.51	1.70	0.66	0.68		
Lissue Wi. (grams)	83.117	71.962	71.962	71.962	97.824	97.824	97.824			78.058	78.058	78.058	91.52	91.52	91.52	66.42	66.42	66.42	78.95			78.95	78.95	83.71	83.71	83.71	84.26	84.26	84.26		
per ussue Soli funti Soli	121.07	122.82	121.15	120.73	177.98	180.45	175.25			173.59	189.65	183.60	151.08	169.17	177.26	138.90	148.76	147.23	152.03			148.33	167.23	49.42	39.24	42.51	143.47	55.26	57.30		

S
X
1
~
u)
<u> </u>
<u> </u>
2
2
I

Skalar % D1/TISAB Qry Sampl Actual Total Total P. 101 FC 95 Remit Recovery Jural vol. (mL or ppul F- Tissue Wit per tissue Solution.

Skalar Standard

Recovered

Saked Mass

000095

Page 3

HWI159L2.XLT

Skalar Skalar % DI/TISAB Qry Sympi Actual Total Total F. mil. FC 93 Conc Mass Mass 346

1995-06-13 10:27 OutPut of : 950524A1 Operator : DDW Date of the Analysis : 1995-05-24 07:50 Analysis File Name : C:\SKALAR\DATA\HWIDATA\LIVERS\950524A1

		QQ	42095.1 Juns
Record Hernery (ug F)		And T %001	-
Recoveru (uk E-)		0.15	0.29
Spiked (01.F.)		0.15 0.15	0.30
Solution FU 95 Solu Spiked (2001)		63.00 63.00 63.00	126.00
Solution Spiked		0.004 0.004	0.004
(Jaste Whi por Jaste (grants) (12)	75.61	54.15 46.75 70.35 74.33 58.76 58.76	
i issue Wi (graus)	78.36	78.36 78.36 82.301 82.301 82.301	
ppm F- in Sample	96. 0	0.69 0.60 0.85 0.90 0.71 1.34 1.34 0.99	1.89 1.72 1.82 1.82 Page 1
(mL or grams)	0.1169	0.1453 0.1381 0.1381 0.1336 0.1249 0.1213 0.1213 0.1213 0.1577 0.1577	
final voi (III)	0	5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.0
Recovery fine (II)	97% 98% 94% 101% 103% 97% 103% 100%		97%
Result (ppm)	1.45 0.00 0.03 0.03 0.16 0.03 0.06 0.03 0.06 0.00 0.00 0.00	0.05 0.06 0.06 0.08 0.08 0.08	0.00 0.15 0.13 0.13
Standard (1900)	1.50 1.50 0.015 0.03 0.05 0.12 0.12 0.12 0.12 1.50 1.50		1.50
Sample 10	Tracer Drift Vash Vash Standard 1 Standard 2 Standard 4 Standard 6 Standard 6 Standard 6 Standard 6 Standard 9 Standard 9 Standard 9 Standard 9 Standard 10 Vash F54092-1	F54092-2 F54092-3 F54106-1 F54106-2 F54106-2 F54106-3 BLK SPK 1 SPK 2 SPK 2 SPK 3	Drift Wash SPK 4 SPK 5 SPK 6
ejdin #	- N N 4 N O P 8 O C T C C Z Z Q Q	7 2 2 3 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	26 27 28 29 30
3	000 1 '7 6		000096

~

r,		118%	119%	192%	123%						154%	112%	112%	112%					112%	127%		129%	22%											
Mass %* Recovered Recover (ug. P.)		0.18	0.18	0.29	0.19						0.23	0.17	0,17	0.17					0.17	0.19		0,20	0.03											
Mass Spiked Re (ur.F.) (0.15	0.15	0.15	0.15						0.15	0.15	0.15	0.15					0.15	0.15		0.15	0.15											
u a		63.00	63.00	63.00	63.00						63.00	63.00	63,00	63.00					63.00	63.00		63.00	63.00										·	
		0.004	0.004	0.004	0.004						0.004	0.004	0.004	0.004					0.004	0.004		0.004	0.004											
Total F per tissue (ND)							60.63	75.07	53.49															29.81	29.12	28.15	46.35	43.21			48.29	31.19	31.10	
Actual Total ppn F. Tusse Wi u Sample (grano)					-		84.26	84.26	84.26															71.796	71.796	71.796	82.143	82.143			82.143	80.966	80.966	
Achual ppur P- iq Sample	0.70 0.52 0.29	1.25	1.36	2.03	1.73		0.72	0.89	0.63	0.35	1.71	1.22	1.15	1.14	0.24	0.06			1.32	1.49	0.24	1.48	0.30	0.42	0.41	0.39	0.56	0.53			0.59	0.39	0.38	Page 2
)(TUSAB (Yry Samp) final yr) (arf. Gr (ant.) grann)	0.1467 0.1328 0.1101	0.1425	0.1316	0.1428	0.10/9		0.1448	0.1228	0.1317	0.1227	0.1358	0.1393	0.1468	0.1494	0.1643	0.1578			0.1283	0.1292	0.1396	0.1325	0.1109	0.1532	0.1568	0.1474	0.1386	0.1403			0.1575	0.1573	0.1359	
DI TISAB fimi yol (nil.)	2.0 2.0	2.0	2.0	2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0			2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0			2.0	2.0	2.0	
t va					100%												%66												%66					
Skalar Result (tpm)	0.05 0.03 0.02	0.09	0.09	0.15	0.09	0.00	0.05	0.05	0.04	0.02	0.12	0.08	0.08	0.08	0.02	00.0	1.49	0.00	0.08	0.10	0.02	0.10	0.02	0.03	0.03	0.03	0.04	0.04	1.49	0.00	0.05	0.03	0.03	
Stalar Standard (ppm)					1 50												1.50												1.50					
Sample	LIVER BLK-1 LIVER BLK-2 LIVER BLK-3	SPK 63-1	SPK 63-2	SPK 63-3	SPK 63-4 Drift	Wash	F54088-1	F54088-2	F54088-3	BLK 4	SPK 63-1	SPK 63-2	SPK 63-3	SPK 63-4	BLK-1	BLK-2	Drift	Wash	SPK-1	SPK-2	BLK 3	SPK-3	SPK-4	F54089-1	F54089-2	F54089-3	F54099-1	F54099-2	Drift	Wash	F54099-3	F54114-1	F54114-2	
Sample #	31 L 32 L 33 L		35	36	37 38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63		65	66	
San La Carlor														,	0	0() 1	.'7	7											C	0	0()9	7

3MA01502264

(

	Mass % Recovered Recovery (UEP.)		
	Total F - mL FC 95 Conc Mass per tassue Solution, PC 93 Solia Spikod (ug) Spiked (1000) (ug P.)		
	mi FC 95 Cone 6 Solution, FC 93 St Spied (ptm)		
	Total F- per tissue (uff)	32.14 28.45 28.17 33.13 34.91 37.74 0.00	
Ŀ	Actual Total ppur F. Lusue Mi in Sample (grans)	80.966 73.958 73.958 75.42 75.42 75.42	
HWI159L2.XLT	Actual Inpu F. n Sample	0.40 0.38 0.38 0.45 0.45 0.46 0.50	
HWH	ti TISAB (Ay Sampi Baliyati (mi at (mi)) grane) i	0.1552 0.1326 0.1339 0.1323 0.1323 0.1028	
	JI TISAB Bulyul (mL)	2.0 2.0 2.0 2.0 2.0 2.0	
	9,6 D Recovery 4	%86	
	Skalar Result (ppm)	0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03	
	Skalat Standerd (ppm)	1.50	
	Sample	F54114-3 F54109-1 F54109-2 F54109-3 F54080-1 F54080-3 F54080-3 Vash Wash	
	t uple	67 69 71 72 73 75 75	

Page 3

000098

2807.0098

RQW6/21/95 995-05-23 15:26 OutPut of : 950523A1 AMDT 42095.1 6329-159 Line oftware : version 6.1 c1990,93 : DDW perator ate of the Analysis : 1995-05-23 10:18 nalysis File Name : C:\SKALAR\DATA\HWIDATA\LIVERS\950523A1 luoride 1.5 alibration order = Inverse Logarithm : s = #.##### lope г х - с1 x = corrected value of the sample c1 = corrected value of the concentration 1 esult = 10^{L} s = Slope of the electrode s 2 = -0.000001 = 0.000650 = -1.22333luoride L alibration order = 2correlation : r = 0.99847 $esult = a2 * x^{2} + a1 * x + a0$ 2 = -0.00000 1 = 0.00024 0 = -0.00181rype Number ampler : SA1000 : 1 Sample Time : 50 sec. Wash Time : 120 sec. Air Time : 1 sec. Take up sPecial : Single : None needle Height : 70 mm. iluter needle Height : 80 mm dilution Factor : 10 dilution Volume : 2.5 ml. Resample : 1 Dilution runs : 1 User file : . TXT Reproces : No

000179

000099

995-05-23 15:26

OutPut of : 950523A1

luoride 1.5	Path number : 3 Signal type : Debubbled Decolor : Yes system Number : 0 diLute : No Resample : No dil Threshold : 4095 diG output : 0 Window event : Off
· ·	<pre>\$1 sTandard : Ignore \$2 sTandard : Ignore \$3 sTandard : Ignore \$4 sTandard : Ignore \$5 sTandard : Ignore \$6 sTandard : 0.150 \$7 sTandard : 0.300 \$8 sTandard : 0.600 \$9 sTandard : 1.200 \$10 sTandard : 1.200 \$10 sTandard : 1.500 Order : Inverse Logarithm Dimension : PPM start Value : 500 DU trigger Limit : 1800 Sec Peak shape : Pointed stArt ignore : 60 Sec eNd ignore : 120 Sec Measure window : 75 % Filter : No Regeneration : No formUla : output : ##.###</pre>
luoride L	Path number : 0 Signal type : Debubbled Decolor : No system Number : 0 diLute : No Resample : No dil Threshold : 4095 diG output : 0 Window event : Off

000100

,

c1 cmandard 0 015	
s1 sTandard : 0.015	
s2 sTandard : 0.030	
s3 sTandard : 0.060	
s4 sTandard : 0.090	
s5 sTandard : 0.120	
s6 sTandard : 0.150	
s7 sTandard : Ignore	
s8 sTandard : Ignore	
s9 sTandard : Ignore	
s10 sTandard : Ignore	
Order : 2	
Dimension : PPM	
start Value : 500 DU	
trigger Limit : 1800 Se	С
Peak shape : Pointed	
stArt ignore : 60 Se	с
eNd ignore : 120 Se	č
Measure window : 75 %	•
Filter : No	
formUla : c4:=c3	
output : #.####	

r

000181

.

000101

i.

.

3MA01502268

. 1

OutPut of : 950523A1

Fluoride 1.5 Fluoride L

			PP	M		PP	М		
os	Түр	Ident	Ch	Result	F Time	Ch	Result	F Time	
7 3) 2 3 1 5 7 3 1	itdwssssssssdwuuuuuuuuuuuuuuuuuuuuuuuuuuu	Initial Wash Tracer Drift Wash Standard 1 Standard 2 Standard 3 Standard 4 Standard 5 Standard 6 Standard 7 Standard 8 Standard 9 Standard 10 Drift Wash BLK 1 BLK 2 BLK 3 F54075-1 F54075-2 F54075-3 F54081-1 F54081-2 F54081-3 F54081-3 F54081-3 F54105-2 F54081-3 F54105-2 F54105-3 F54107-2 F54107-2 F54107-3 F54074-1 F54074-2 F54085-1 F54085-1 F54085-2 Drift Wash F54085-1 F54085-1 F54085-1 SF54085-1 F54085-2 SF54085-1 F54085-2 SF54085-1 S754085-		0.060 1.472 1.476 0.060 0.068 0.071 0.088 0.127 0.154 0.285 0.611 1.2381 1.461 1.532 0.084 0.077 0.075 0.069 0.069 0.0669 0.0669 0.0669 0.0669 0.0669 0.0669 0.0669 0.0669 0.070 0.0683 0.070 0.0683 0.070 0.0683 0.070 0.0683 0.070 0.0683 0.070 0.0683 0.070 0.0683 0.070 0.0683 0.070 0.0683 0.070 0.0683 0.070 0.0680 0.0712 0.0871 0.069 0.0683 0.070 0.0680 0.0712 0.0871 0.069 0.0683 0.070 0.0680 0.0831 0.072 0.0687 0.0687 0.0683 0.0712 0.0680 0.0803 0.0900 0.0803 0.0903 0.0903 0.0903	$\begin{array}{c} 213\\ 389\\ 627\\ 740\\ 916\\ 1090\\ 1264\\ 1442\\ 1616\\ 1792\\ 1966\\ 2140\\ 2314\\ 2490\\ 2723\\ 2839\\ 3014\\ 3191\\ 3366\\ 3541\\ 3717\\ 3891\\ 4065\\ 4238\\ 4415\\ 4591\end{array}$	444444444444444444444444444444444444444	$\begin{array}{c} \textit{#} \textit{.} \textit{#} \textit{#} \textit{#} \\ \textit{0} . 55566 \\ \textit{#} . \textit{0} . 02597 \\ \textit{0} . 025917 \\ \textit{0} . 035566 \\ \textit{0} . 5566 \\ \textit{0} . 5566 \\ \textit{0} . 5566 \\ \textit{0} . 03327 \\ \textit{0} . 0032216 \\ \textit{0} . 022201 \\ \textit{0} . 022216 \\ \textit{0} . 022201 \\ \textit{0} . 02201 \\ \textit{0} . 022201 \\ \textit{0} . 02201 \\ \textit{0} . 02001 \\ \textit{0} . 02001 \\ \textit$	000000000000000000000000000000000000000	routs outs has has
	u u	BLK 2 SPK 1	3 3	0.069 C.119	9141 9319	4	0.0218 0.1076	0001 82	000102

4

5

õ

7

С

u

đ

W

rw

~

OutPut of : 950523A1

Fluoride 1.5 Fluoride L

			PPI	Ч			PPI	Ч		
os	Түр	Ident	Ch	Result	F	Time	Ch	Result	F	Time
4	u	SPK 2	3	0.114		9495	4	0.1015		0
5	u	SPK 3	3	0.110		9670	4	0.0956		0
6	u	SPK 4	3	0.118		9845	4	0.1065		0
7	u	F54082-1	3	0.124		10020	4	0.1151		0
3	u	F54082-2	3	0.128		10196	4	0.1204		0
Э	u '	F54082-3	3	0.124		10370	4	0.1142		0
Э	u	F54111-1	3	0.103		10546	4	0.0853		0
1	u	F54111-2	3	0.098		10720	4	0.0771		0
2	đ	Drift	3	1.512		10394	4	0.5633		0
3	W	Wash	3	0.060		11133	4	#.####		0
4	u	F54111-3	3	0.114		11245	4	0.1017		0
:	u	F54079-1	3	0.124		11420	4	0.1149		0
5 7	u	F54079-2	3	0.119		11595	4	0.1082		0
3	u	F54079-3	3	0.115		11770	4	0.1024		0
.э Э	u	F54116-1	3	0.138		11944	4	0.1315		0
9 0	u	F54116-2 F54116-3	3 3	0.127		12118	4	0.1181		0
1	u u	F54112-1	3 3	0.138		12296	4	0.1317		0
$\frac{1}{2}$		F54112-1 F54112-2	3	$0.130 \\ 0.150$		12470	4	0.1219		0
3	น น	F54112-3	3	0.130		12645 12821	4	0.1460		0
4	d	rJ4112-3 Drift	3	1.483		12995	4	0.1306		0
5	W	Wash	3	0.060		13234	4 4	0.5587 #.####		0
5	u	F54076-1	3	0.154		13347	4 4	<i>#.####</i> 0.1501		0 0
7	u	F54076-2	3	0.154		13520	4	0.1462		0
3	ū	F54076-3	3	0.139		13697	4	0.1335		0 0
9	u	F54113-1	3	0.128		13873	4	0.1196		0
J	u	F54113-2	3	0.123		14047	$\frac{1}{4}$	0.1134		0 0
1	u	F54113-3	3	0.123		14221	-4	0.1134		Ő
2	u	F54084-1	3	0.145		14397	4	0.1399		ŏ
3	u	F54084-2	3	0.157		14571	4	0.1530		Ō
4	u	F54084-3	3	0.139		14747	4	0.1330		Ō
5	u	F54098-1	3	0.136		14921	4	0.1296		Ó
ŝ	d	Drift	З	1.490		15095	4	0.5598		0
7	W	Wash	3	0.060		15327	4	#.####		0
3	u	F54098-2	3	0.143		15447	4	0.1380		0
}	u	F54098-3	3	0.139		15621	4	0.1327		0
0	u	F54087-1	3	0.077		15796	4	0.0384		0
L	u	F54037-2	3	0.073		15969	4	0.0308		0
2	u	F54087-3	3	0.075		16142	4			0
3	u	F54088-1	3	0.123		16322	$\overline{4}$	0.1140		0
1	u	F54088-2	3	0.082		16496	4	0 0484		<u>n</u>

000183

4 0.0484

4 0.0457

4 0.5596

4 #.####

4 #.####

0

0

0

0

0

16496

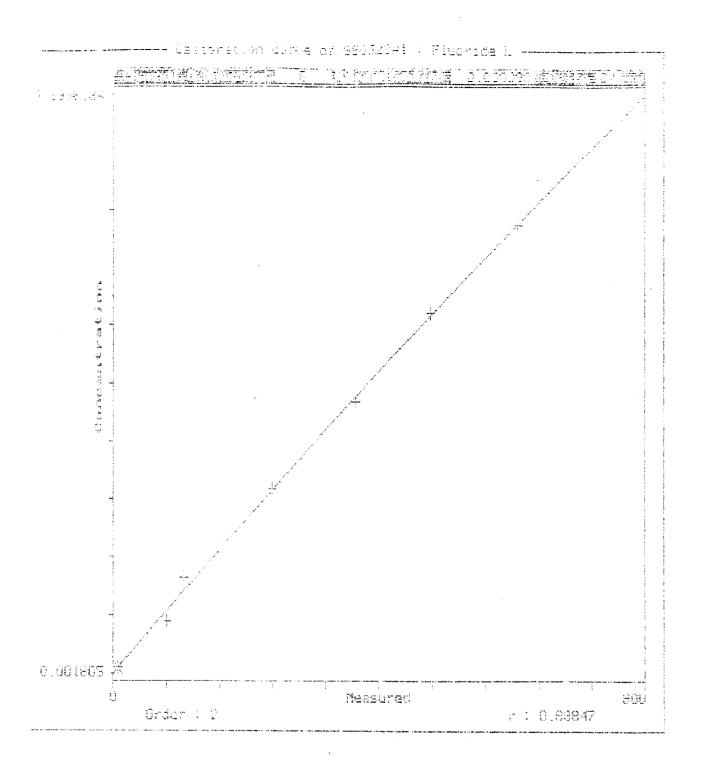
16672

16846

17079

17321

F54088-2 3 0.082

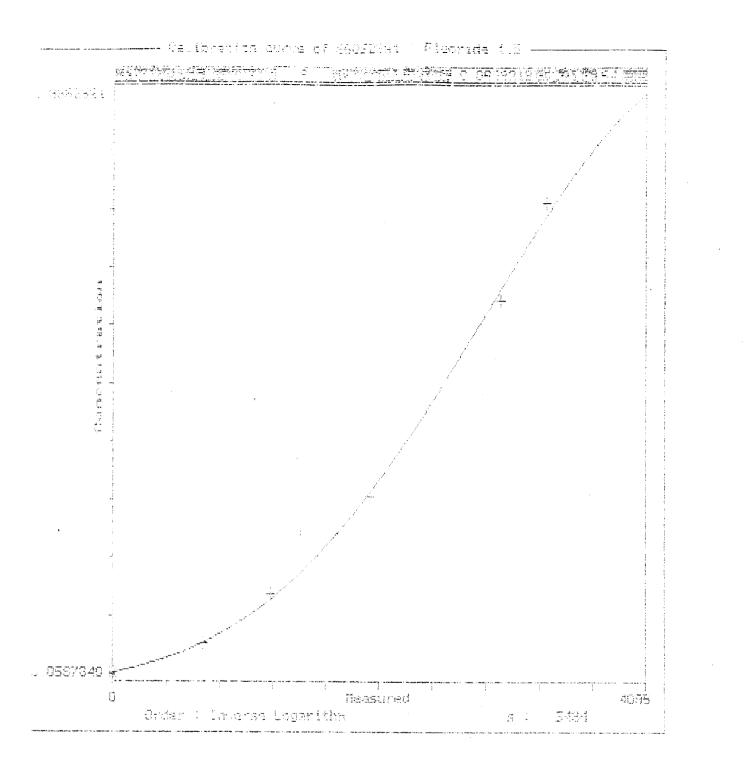

F54038-3 3 0.081

RunOut Wash 3 0.060

Drift 3 1.489

Wash 3 0.060

Δ.

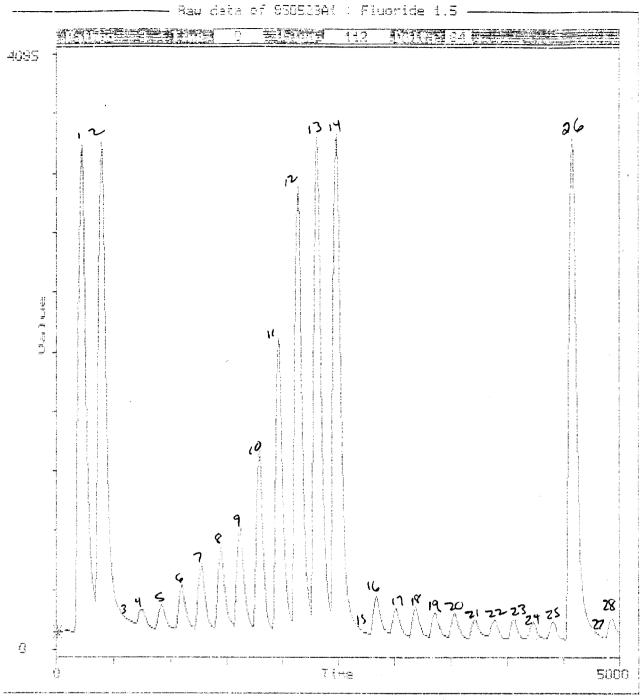


BEST COPY AVAILABLE

000184 0

000101

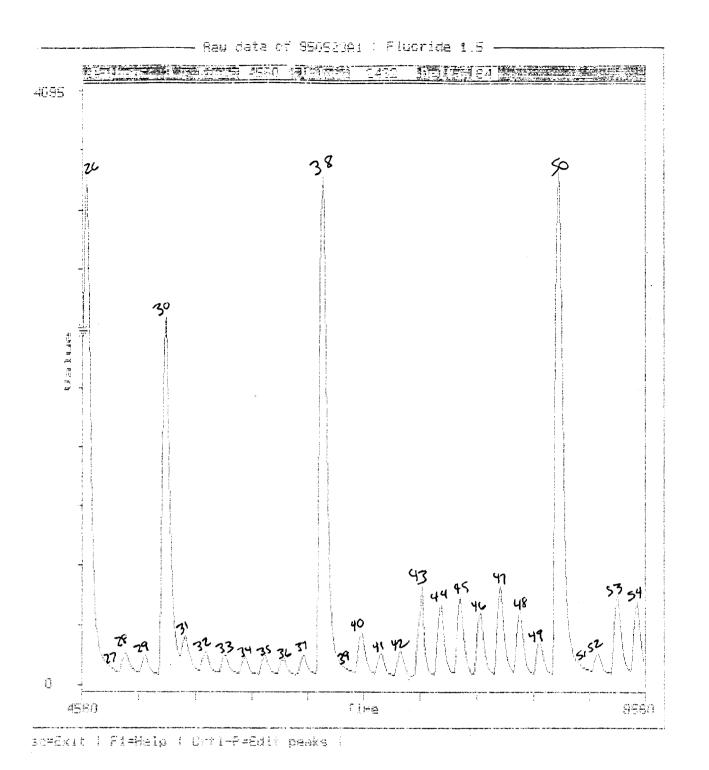
۰,

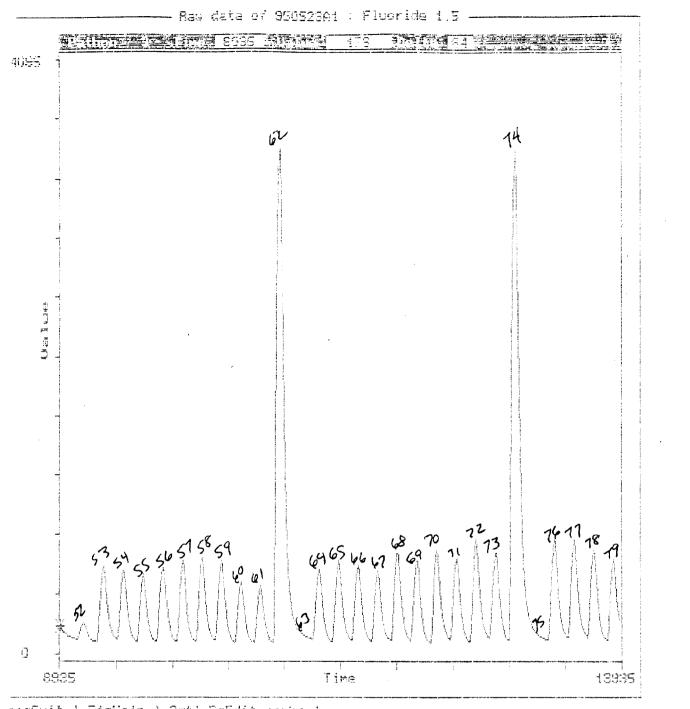

BEST COPY AVAILABLE

000185

000105

1

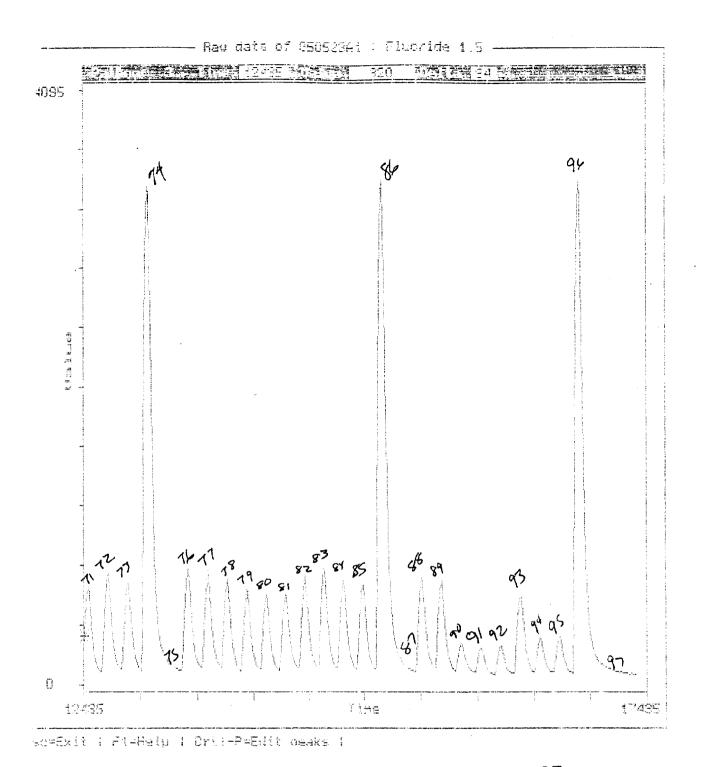

3MA01502272


sc=Exit : Fi=Help : Crtl-P-Edit peaks :

BEST COPY AVAILABLE

000186

ST COPY AVAILABLE



sc=Exit : Fi=Help : Crtl−F=Edit peaks :

BEST COPY AVAILABLE

000108

000188

000109

000189

3MA01502276

995-05-24 12	: 48	CutPut of : 950524A1	Que 6/21/95 AMDT 42095.1
oftware : v	ersion 6.1 c1990	,93	inna isa l'inn
perator	: DDW	BEST COPY AV	AILABLE
ate of the A	nalysis : 1995-05	-24 07:50	
nalysis File	Name : C:\SKAL	AR\DATA\HWIDATA\LIVERS\95052	4A1
luoride 1.5 alibration o	rder = Inverse Lo	garithm	
;lope :	s = #.#####		
esult = 10^{2}	$\frac{x - c1}{s} \right] \qquad \begin{array}{c} x \\ c1 \\ s \end{array}$	<pre>= corrected value of the samp = corrected value of the cond = Slope of the electrode</pre>	ple centration 1
$\begin{array}{rcl} 2 &=& -0.000\\ 1 &=& 0.000\\ 0 &=& -1.228 \end{array}$	65		- -
luoride L alibration of	rder = 2		
orrelation :	r = 0.99892		
esult = a2 *	$x^{2} + a1 + x + a0$		
$\begin{array}{rcl} 2 &=& 0.000\\ 1 &=& 0.000\\ 0 &=& -0.001 \end{array}$	21		
ampler	Air Time : Take up :	1 50 sec. 120 sec. 1 sec. Single None	
iluter	dilution Factor dilution Volume Resample Dilution runs User file :	: 2.5 ml. : 1	
	Reproces : No		

.

000110

995-05-24 12:48

		1	u	0	r	i	d	ę	1	•
--	--	---	---	---	---	---	---	---	---	---

Eluoride L

5	Path number : 3 Signal type : Debubbled Decolor : Yes system Number : 0 diLute : No
	Resample : No
	dil Threshold : 4095
	diGoutput : 0
	Window event : Off
	s1 sTandard : Ignore
	s2 sTandard : Ignore
	s3 sTandard : Ignore
	s4 sTandard : Ignore
	s5 sTandard : Ignore
	s6 sTandard : 0.150
	s7 sTandard : 0.300
	s8 sTandard : 0.600
	s9 sTandard : 1.200
	s10 sTandard : 1.500
	Order : Inverse Logarithm
	Dimension : PPM
	start Value : 500 DU
	trigger Limit : 1800 Sec
	Peak shape : Pointed
	stArt ignore : 60 Sec
	eNd ignore : 120 Sec
	Measure window : 75 %
	Filter : No
	Regeneration : No
	formUla :
	output ; ##.###
Ľ.	Path number : 0
	Signal type : Debubbled
	Decolor : No
	system Number : O
	diLute : No

diLute : No Resample : No dil Threshold : 4095

diG output : 0 Window event : Off

BEST COPY AVAILABLE

000111

~

OutPut of : 950524A1

	-	_					
s1	sTand	ard	;		0	. 0	15
s2	sTand	ard	:		0	. 0	30
s3	sTand				-	. 0	60
s4	sTand	ard	:		0	.0	90
s5	sTand	arđ	:		0	. 1	20
36	sTand	ard	:		0	. 1	50
s7	sTand	ard	:	Ι	gno	re	
s8	sTand				gno	re	
s9	sTand	ard	:	Ι	gno	re	
s10	sTand	ard	:	I	gno	re	
Order	: 2						
Dimer	nsion	: P	ΡM				
	t Valu				500		DU
trigg	ger Li	.mit		:	180	0	Sec
Peak	shape	•		:	Poi	nt	ed
stArt	t igno	re		:	60		Sec
eNd	igno	re		:	120		Sec
Measu	ire wi	ndo	W	:	75		ક
Filt	er			:	No		
Regen	nerati	on		:	No		
formi	Jla	: c	4:	=c	3		
outpu	at	: #	. #	##	#		

000112

*

•

OutPut of : 950524A1

			Flu	uoride 1	L.:	5	Flu	uoride I		
			PPI	М			PPI	Ч		
os	Түр	Ident	Ch	Result	F	Time	Ch	Result	F	Time
t	iw	Initial Wash	3	0.059		65		#.####		0
	ţ	Tracer	3	1.452		211		0.8505		0
	đ	Drift	3	1.469		387	4	0.8584		0
	W1	Wash	3	0.059 0.067		626 736	4	#.####		0
	s1 s2	Standard 1 Standard 2	3 3	0.087		736 912	4	0.0160		0 0
	sz s3	Standard 3	3	0.073		1086		0.0282		0
	s4	Standard 4		0.110		1262	4			ŏ
	s5	Standard 5	3	0.127		1438	4			Ő
	só	Standard 6	3	0.155		1612	4	0.1510		0
0	s7	Standard 7	3	0.283		1788		0.2712		. 0
L	s8	Standard 8	3	0.614		1964		0.4713		0
2	s9	Standard 9	3	1.237		2138		0.7522		0
3	s10	Standard 10	3	1.462		2312	4			0
4	d	Drift	3	1.495		2488	4	0.8710		0
5	W	Wash		0.059		2725	4	#.####		0
б	u	F54092-1	3	0.088		2838	4	0.0564		0
7	u	F54092-2		0.084		3014	4	0.0502		0
8	u	F54092-3		0.079		3190	4	0.0412		0
9	u	F54106-1		0.088		3367	4	0.0571		0 0
0 1	u	F54106-2 F54106-3		0.088 0.080		3541 3713	4 4	0.0564		0
<u>'</u> 2	u u	F54106-5 BLK		0.065		3883	4 4	0.0433		0
3	u	SPK 1	3	0.009		4063	4			Ő
4	u	SPK 2		0.101		4241	_	0.0784		Ő
5	ũ	SPK 3		0.105		4415	4			õ
6	d	Drift	3	1.454		4589	4	0.8511		0
7	W	Wash		0.059		4830	4			0
8	u	SPK 4	3	0.152		4939	4	0.1473		0
9	u	SPK 5	3	0.135		5113	4	0.1269		0
0	u	SPK 6		0.144		5291	4	0.1380		0
1	u	LIVER BLK-1				5463	4			0
2	u	LIVER BLK-2				5639	4	0.0346		0
3	u	LIVER BLK-3				5813		0.0162		0
4	u	.SPK 63-1	3	0.108		5992	4	0.0889		0
5 6	u u	SPK 63-2 SPK 63-3	3 3	$0.108 \\ 0.150$		6168 6342	4 4	0.0898		0
7	u	SPK 63-4		0.110		6516	4 4	0.0931		0
ŝ	đ	Drift	3	1.494		6692	4	0.8707		0
9	w	Wash		0.059		6923	4	#.####		õ
õ	u	F54088-1	3	0.085		7040	4	0.0521	;	Õ
1	u	F54088-2	3	0.087		7218	4	0.0547		Ō
2	u	F54088-3	3	0.080		7390	4	0.0418		0
3	u	BLK 4	3	0.069		7566	4	0.0217		0
4	u	SPK 63-1	3	0.127		7742	4	0.1162		0
5	u	SPK 63-2				7916	4	0.0847		0
ō	u	SPK 63-3	3	0.105		8092	4	0.0847		0
7	u	SPK 63-4	3	0.105		8268	4	0.0849		0

BLK-1 3 0.069

BLK-2 3 0.062

Drift 3 1.487

Wash 3 0.059

SPK-1 3 0.105

SPK-2 3 0.112

3

9

0

1 2

3

u

u

đ

W

u

u

7

000113

4 0.0198

4 0.0049

4 0.8670

4 #.####

4 0.0847

4 0.0960

0

0

0

0

0

000193

8442

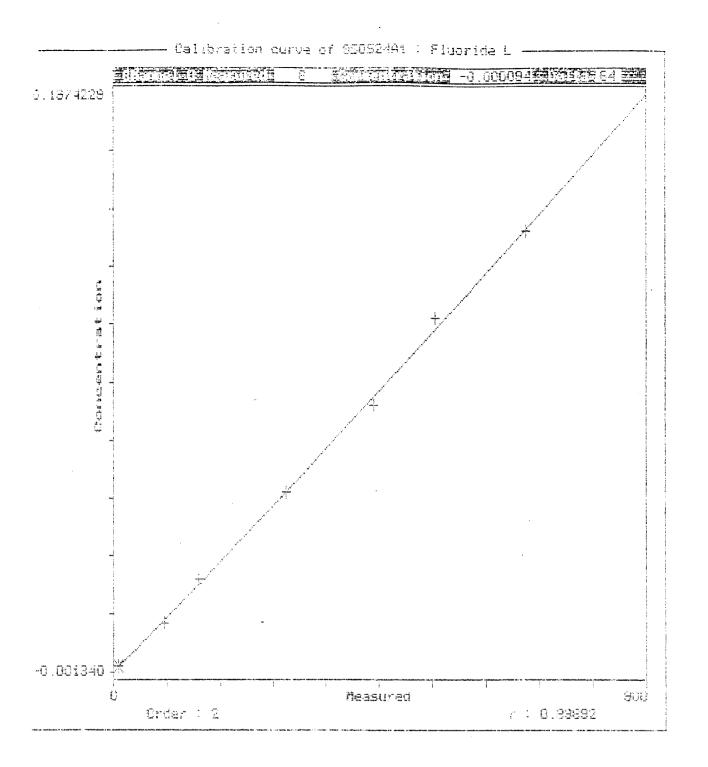
8614

8791

9029

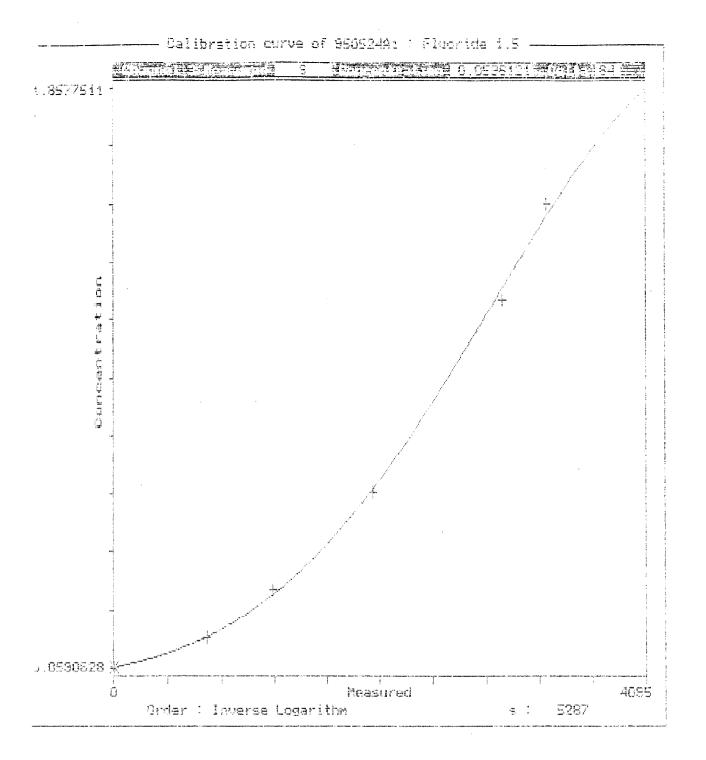
9143

OutPut of : 950524A1

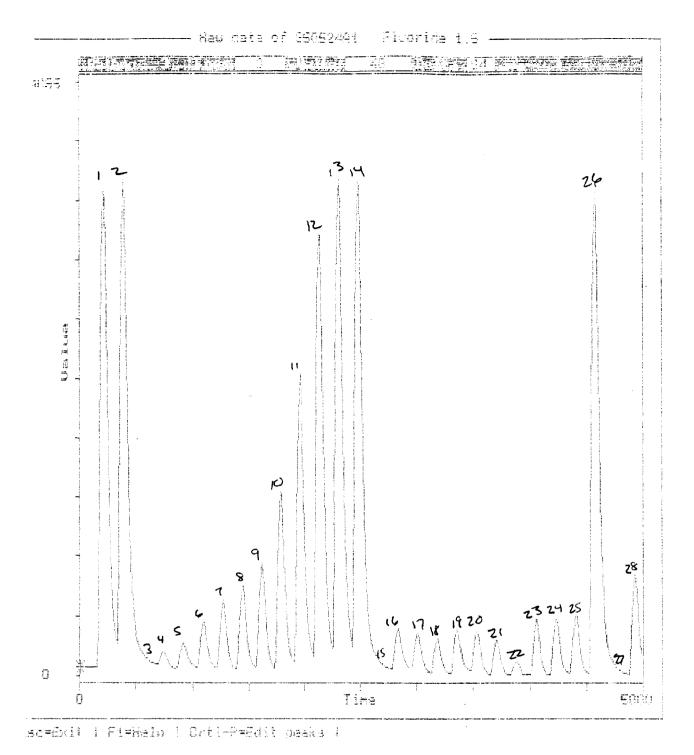

Fluoride 1.5 Fluoride L

			PPI	Ч			PPI	М	
os	Тур	Ident	Ch	Result	F	Time	Ch	Result 3	F Time
0 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8	ryp u u u u u u u u u u u u u u u u u u u	BLK 3 SPK-3 SPK-4 F54089-1 F54089-2 F54089-3 F54099-1 F54099-2 Drift Wash F54099-3 F54114-1 F54114-2 F54114-3 F54109-1		0.067 0.114 0.067 0.074 0.074 0.073 0.073 0.073 0.077 1.487 0.059 0.082 0.074 0.072 0.074 0.072	F	9491 9669 9839 10015 10193 10368 10544 10718 10893 11107 11244 11416 11594 11768 11940	44444444444444444444444444444444444444	0.0166 0.0979 0.0166 0.0318 0.0318 0.0289 0.0391 0.0369 0.8670 #.#### 0.0463 0.0303 0.0261 0.0308 0.0255	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9012345t	u u u u d w rw	F54109-2 F54109-3 F54080-1 F54080-2 F54080-3 Drift Wash RunOut Wash	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.071 0.076 0.074 0.075	A	12115 12296 12469 12645		0.0255 0.0344 0.0306 0.0331 #.#### 0.8578 #.#### #.####	

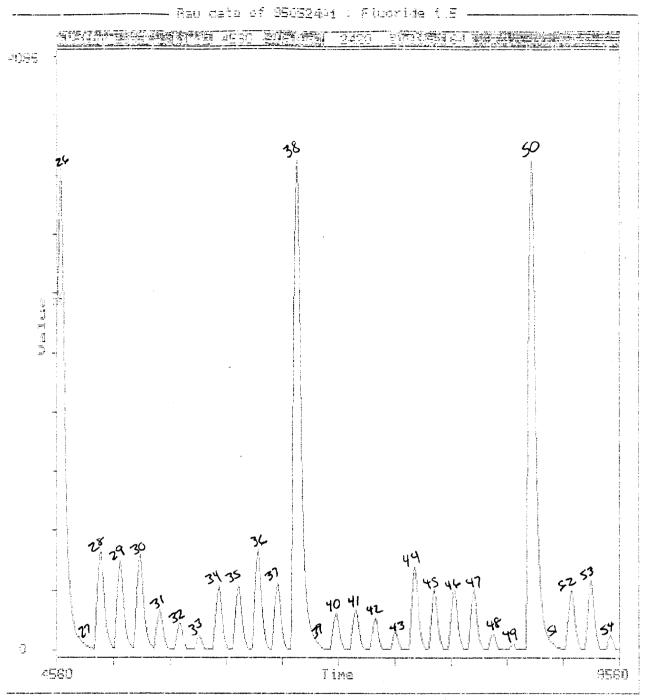
000194


000114

000195


000115

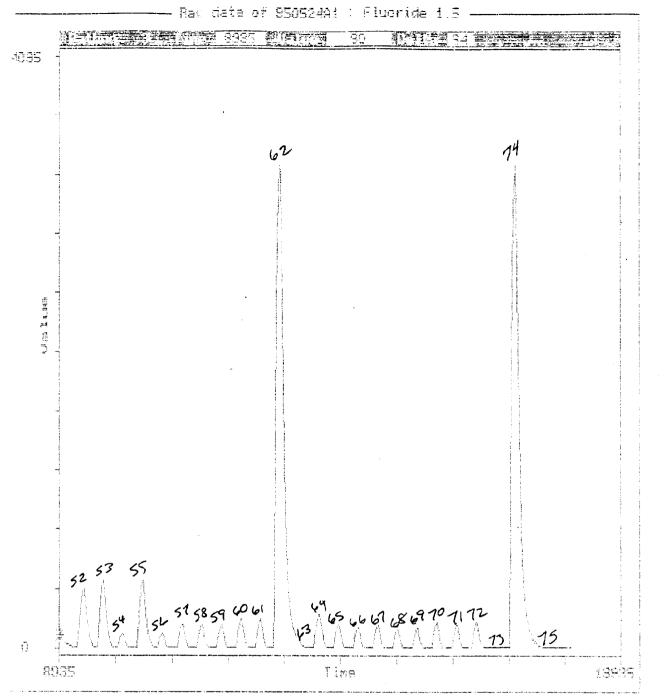
っ


000116

000196

000197

000117



000198

000118

، د

000199

000119

S

9.11.3 Summary and raw data; ppm F⁻ in serum as determined by thermal extraction followed by analysis using Orion ion analyzer.

•

.

000200

HWI 6329-159 AMDT 042095.1 Dohrmann Serum Analysis Analysis Dates: 04/28/95 - 05/10/95

All serum samples were thermally extracted by a modified Dohrmann DX2000 Organic Halide Analyzer and collected in a 1:1 milli Q water and TISAB solution. The samples were measured on an Orion EA940 expandable ion analyzer. The Dohrmann was calibrated using 32ppm, 63ppm, 126ppm, and 253ppm FC-95 standards. The Orion was calibrated by direct measurement with no blank correction using 0.05ppm, 0.1ppm, 0.5ppm, 1.0ppm and 1.5ppm F standards. The slope, intercept, and correlation were recorded in the appropriate logbook.

A summary table is included, showing the ppm F⁻ in each sample (see page 2). The value of "ND" has been entered for any sample with an Orion reading of below 0.05.

Pages 3 - 10 show the excel spreadsheet that was generated when the samples were analyzed. Pages 11 - 18 show the same spreadsheet with "ND" inserted where the Orion reading is below 0.05.

Deann K. Plummer

•

Page 1 of 18

000201

000121

3MA01502288

FC-95 PK	HWI 6329-159 Fluoride concentration in rabbit serum (ppm F-)										
Dosage: 0 mg/kg	Sample	4 hour	8 hour	12 hour	24 hour	48 hour	_				
	F54074 F54075 F54081 F54085 F54086	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND			•		
	F54104 F54105 F54107	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND					
Dosage: 5 mg/kg	Sample	4 hour	8 hour	12 hour	24 hour	_					
	F54077 F54083 F54091 F54094 F54097 F54100 F54102 F54108	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND						
Dosage: 10 mg/kg	Sample	4 hour	8 hour	12 hour	24 hour	_					
	F54071 F54078 F54090 F54093 F54095 F54096 F54101 F54110	ND ND ND ND ND ND ND	ND ND ND ND ND ND 1.5	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND						
Dosage: 100 mg/kg	Sample	4 hour	8 hour	12 hour	15 hour	24 hour	48 hours	Day 8	Day 22	Day 28	
	F54080 F54087 F54088 F54089 F54092 F54099	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND 1.5	ND ND ND ND ND	ND ND ND ND 1.7	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND		
	F54106 F54109 F54114	ND ND ND	ND ND ND	ND ND ND	ND ND	ND ND ND	ND ND	ND ND ND		ND ND	
Dosage: 500 mg/kg	Sample	4 hour	8 hour	12 hour	24 hour	48 hours	Day 8	360 hour	Day 22	Day 28	
	F54076 F54079 F54082 F54084 F54098	ND 2.3 1.1 1.3 ND	ND ND 1.3 ND 1.0	ND ND ND ND	1.2 1.1 1.2 1.3	1.2 1.3 1.8 1.3	1.4 1.5 1.5 1.3	1.3 ND 1.4 1.1	ND ND	ND ND	
	F54111 F54112 F54113 F54116	1.9 ND 1.6 2.0	ND 1.2 ND 3.4	ND 1.3 ND ND	1.3 1.0 1.3 1.3	1.5 1.3 1.4 1.7	1.3 1.2 1.6 1.3	1.3 ND 1.3 1.4	ND ND	ND ND	

000122

Ζ

384	mLof	Conc.	A		-				
J04	FC95	FC95	Actual Meter	Quantity sample	DI: TISAB	%	Actual	Mann	Masa
	solutio	solution	reading	(mL or	final	76 rcvry	ppm F-	Mass spiked	Mass rcvrd
ID.	spiked	(ppm)	(ppm F-)	(grams)	vol (mL)			(ug F-)	(ug F-)
serum blank-1	******	******	0.036	0.10	2.0	Y	0.72	******	0.072
serum blank-2			0.020	0.10	2.0		0.40		0.040
serum spike 63-1	0.004	63	0.070	0.10	2.0	93%	1.4	0.15	0.14
serum spike 63-2	0.004	63	0.070	0.10	2.0	92%	1.4	0.15	0.14
serum spike 94.5-1	0.004	94.5	0.063	0.10	2.0	56%	1.3	0.23	0.13
serum spike 94.5-2	0.004	94.5	0.046	0.10	2.0	41%	0.92	0.23	0.092
serum spike 126-1	0.004	126	0.15	0.10	2.0	101%	3.1	0.30	0.31
serum spike 126-2	0.004	126	0.099	0.10	2.0	65%	2.0	0.30	0.20
serum spike 126-3	0.004	126	0.15	0.10	2.0	98%	3.0	0.30	0.30
serum spike 126-4	0.004	126	0.13	0.10	2.0	85%	2.6	0.30	0.26
F54081-4			0.040	0.10	2.0		0.80		0.080
F54075-4			0.032	0.10	2.0		0.65		0.065
F54107-4			0.024	0.10	2.0		0.48		0.048
F54105-4			0.025	0.10	2.0		0.51		0.051
F54074-4			0.034	0.10	2.0		0.67		0.067
Blank 1			0.71	0.10	2.0		14		1.4
Blank 2		<i>2</i>	0.34	0.10	2.0		6.9		0.69
Blank 3			0.36	0.10	2.0		7.2		0.72
Blank 4			0.084	0.10	2.0		1.7		0.17
Blank 5			0.038	0.10	2.0		0.75		0.075
Blank 6			0.039	0.10	2.0		0.79		0.079
Serum Spk-1	0.004	63	0.055	0.10	2.0	73%	1.1	0.15	0.11
Serum Spk-2	0.004	63	0.068	0.10	2.0	90%	1.4	0.15	0.14
Serum Spk-3	0.004	63	0.073	0.10	2.0	96%	1.5	0.15	0.15
Serum Spk-4	0.004	126	0.10	0.10	2.0	67%	2.0	0.30	0.20
Serum Spk-5	0.004	126	0.11	0.10	2.0	74%	2.2	0.30	0.22
Serum Spk-6	0.004	126	0.11	0.10	2.0	73%	2.2	0.30	0.22
Serum Spk-7	0.004	126	0.11	0.10	2.0	72%	2.2	0.30	0.22
Serum Spk-8	0.004	126	0.098	0.10	2.0	65%	2.0	0.30	0.20
Serum Spk-9	0.004	126	0.12	0.10	2.0	77%	2.3	0.30	0.23
Serum Spk-10	0.004	126	0.10	0.10	2.0	68%	2.1	0.30	0.21
F54085-4			0.045	0.10	2.0		0.90		0.090
F54086-4			0.027	0.10	2.0		0.54		0.054
F54104-4			0.025	0.10	2.0		0.49		0.049
F54077-4			0.021	0.10	2.0		0.42		0.042
F54083-4			0.020	0.10	2.0		0.40		0.040
F54094-4			0.021	0.10	2.0		0.42		0.042
F54100-4			0.020	0.10	2.0		0.41		0.041
F54091-4			0.019	0.10	2.0		0.38		0.038
serum bik 1			0.029	0.10	2.0		0.59		0.059
serum blk 2	0.001	00	0.024	0.10	2.0		0.48		0.048
serum spk 1	0.004	63	0.071	0.10	2.0	94%	1.4	0.15	0.14
serum spk 2	0.004	63	0.072	0.10	2.0	95%	1.4	0.15	0.14
F54097-4			0.022	0.10	2.0		0.45		0.045
F54102-4			0.020	0.10	2.0		0.41		0.041
			11116	41 1 1 1	- 1 N		n 11		
F54108-4 F54071-4			0.016 0.017	0.10 0.10	2.0 2.0		0.32 0.34		0.032 0.034

000123

	384	mLof	Conc.	Actual	Quantity	DI:				
		FC95	FC95	Meter	sample	TISAB	%	Actual	Mass	Mass
		solutio	solution	reading	(mL or	final	rcvry	ppm F-	spiked	
	ID	spiked	(ppm)	(ppm F-)	(grams)	vol (mL)	(ug/ug)	in sample		(ug F-)
F54093-4				0.020	0.10	2.0		0.41	************	0.041
F54095-4				0.016	0.10	2.0		0.32		0.032
F54101-4				0.015	0.10	2.0		0.2 9		0.029
F54078-4				0.021	0.10	2.0		0.41		0.041
F54090-4				0.020	0.10	2.0		0.39		0.039
F54096-4				0.017	0.10	2.0		0.34		0.034
F54110-4				0.020	0.10	2.0		0.39		0.039
F54087-4				0.025	0.10	2.0		0.50		0.050
F54088-4				0.028	0.10	2.0		0.55		0.055
F54089-4				0.020	0.10	2.0		0.41		0.041
F54106-4				0.032	0.10	2.0		0.63		0.063
F54080-4				0.025	0.10	2.0		0.51		0.051
F54092-4				0.019	0.10	2.0		0.38		0.038
F54109-4				0.021	0.10	2.0		0.42		0.042
F54114-4				0.039	0.10	2.0		0.78		0.078
F54075-4				0.041	0.10	2.0		0.81		0.081
F54082-4				0.057	0.10	2.0		1.1		0.11
F54111-4				0.096	0.10	2.0		1.9		0.19
F54113-4				0.082	0.10	2.0		1.6		0.16
F54079-4				0.12	0.10	2.0		2.3		0.23
F54084-4 F54098-4				0.067	0.10	2.0		1.3		0.13
F54038-4 F54116-4				0.046 0.10	0.10	2.0		0.93		0.093
F54075-8				0.025	0.10	2.0		2.0		0.20
F54075-8				0.025	0.10 0.10	2.0		0.49		0.049
F54081-8				0.020	0.10	2.0		0.40		0.040
F54107-8				0.021	0.10	2.0		0.43		0.043
F54074-8				0.015	0.10	2.0		0.30		0.030
F54085-8				0.013	0.10	2.0 2.0		0.30		0.030
F54086-8				0.031	0.10	2.0		0.43		0.043
serum bik 1				0.029	0.10	2.0		0.62 0.58		0.062
serum bik 2				0.028	0.10	2.0		0.58		0.058
serum spk 1		0.004	63	0.080	0.10	2.0	106%	1.6	0.15	0.056
serum spk 2		0.004	63	0.069	0.10	2.0	91%	1.4	0.15	0.16
F54104-8	-	0.001	00	0.031	0.10	2.0	31/0	0.62	0.15	0.14
F54077-8				0.023	0.10	2.0		0.82		0.062
F54083-8				0.018	0.10	2.0		0.40		0.046
F54094-8				0.025	0.10	2.0		0.55		0.035 0.051
F54100-8				0.017	0.10	2.0		0.31		0.031
F54091-8				0.014	0.10	2.0		0.35		0.035
F54097-8				0.014	0.10	2.0		0.28		0.028
F54102-8				0.013	0.10	2.0		0.26		0.026
F54108-8				0.013	0.10	2.0		0.25		0.025
F54071-8				0.015	0.10	2.0		0.20		0.025
F54093 - 8				0.019	0.10	2.0		0.37		0.030
F54095 - 8				0.026	0.10	2.0		0.51		0.051
F54101-8				0.016	0.10	2.0		0.32		0.031
F54078-8				0.021	0.10	2.0		0.42		0.032
				· - ·						J.J.T.

000124

384	mLof	Conc.	Actual	Quantity	DI:				
	FC95	FC95	Meter	sample	TISAB	%	Actual	Mass	Mass
	solutio	solution	reading	(mL or	final	rcvry	ppm F-	spiked	rcvrd
ID	spiked	(ppm)	(ppm F-)		vol (mL)		in sample		(ug F-)
F54090- 8			0.021	0.10	2.0		0.42	440040000000000000000000000000000000000	0.042
F54096- 8			0.017	0.10	2.0		0.34		0.034
F54110-8			0.075	0.10	2.0		1.5		0.15
F54087- 8			0.022	0.10	2.0		0.44		0.044
F54088- 8			0.033	0.10	2.0		0.66		0.066
F54089- 8			0.031	0.10	2.0		0.62		0.062
F54080- 8			0.032	0.10	2.0		0.64		0.064
F54106- 8			0.043	0.10	2.0		0.86		0.086
F54092- 8			0.037	0.10	2.0		0.74		0.074
F54109-8			0.024	0.10	2.0		0.49		0.049
F54114-8			0.034	0.10	2.0		0.68		0.068
F54076-8			0.045	0.10	2.0		0.89		0.089
F54082- 8			0.063	0.10	2.0		1.3		0.13
F54111-8			0.044	0.10	2.0		0.88		0.088
F54113-8			0.048	0.10	2.0		0.95		0.10
F54079- 8			0.042	0.10	2.0		0.84		0.084
F54084- 8			0.045	0.10	2.0		0.89		0.089
F54098- 8			0.050	0.10	2.0		1.0		0.10
F54116-8			0.17	0.10	2.0		3.4		0.34
serum blk 1			0.012	0.10	2.0		0.25		0.025
serum bik 2			0.018	0.10	2.0		0.36		0.036
serum spk 1	0.004	63	0.066	0.10	2.0	87%	1.3	0.15	0.13
serum spk 2	0.004	63	0.070	0.10	2.0	93%	1.4	0.15	0.14
F54075-12			0.028	0.10	2.0		0.56		0.056
F54081-12			0.021	0.10	2.0		0.42		0.042
F54105-12			0.026	0.10	2.0		0.53		0.053
F54107-12			0.019	0.10	2.0		0.39		0.039
F54074-12			0.017	0.10	2.0		0.35		0.035
F54085-12			0.018	0.10	2.0		0.37		0.037
F54086-12			0.020	0.10	2.0		0.41		0.041
F54086-12			0.025	0.10	2.0		0.50		0.050
F54077-12			0.038	0.10	2.0		0.76		0.076
F54083-12			0.032	0.10	2.0		0.64		0.064
F54094-12			0.035	0.10	2.0		0.71		0.071
F54100-12			0.022	0.10	2.0		0.44		0.044
F54091-12			0.029	0.10	2.0		0.58		0.058
F54097-12			0.025	0.10	2.0		0.49		0.049
F54102-12			0.022	0.10	2.0	,	0.44		0.044
F54108-12			0.014	0.10	2.0		0.29		0.029
F54077-12			0.046	0.10	2.0		0.92		0.092
F54071-12			0.021	0.10	2.0		0.41		0.041
F54093-1 2			0.016	0.10	2.0		0.33		0.033
F54095-12			0.016	0.10	2.0		0.32		0.032
F54101-12			0.020	0.10	2.0		0.40		0.040
F54110-12			0.016	0.10	2.0		0.31		0.031
F54096-12			0.012	0.10	2.0		0.25		0.025
F54090-12			0.017	0.10	2.0		0.34		0.034
F54078-12			0.014	0.10	2.0		0.28		0.028

•

384	mL of FC95	Conc. FC95	Actual Meter	Quantity sample	DI: TISAB	%	Actual	Mass	Mass
	solutio	solution	reading	(mL or	final	revry	ppm F-	spiked	rcvrd
ID	spiked	(ppm)	(ppm:F-)		vol (mL)		in sample	(ug F-)	
54088-12			0.025	0.10	2.0	**********************	0.51	1000160000000000000000	0.051
54106-12			0.027	0.10	2.0		0.54		0.054
54089-12			0.019	0.10	2.0		0.38		0.038
54087-12			0.019	0.10	2.0		0.37		0.037
54080-12			0.018	0.10	2.0		0.36		0.036
54092-12			0.017	0.10	2.0		0.33		0.033
54109-12			0.021	0.10	2.0		0.41		0.041
54114-12			0.026	0.10	2.0		0.52		0.052
54075-12			0.027	0.10	2.0		0.55		0.055
54113-12			0.022	0.10	2.0		0.44		0.044
54082-12			0.034	0.10	2.0		0.69		0.069
54111-12			0.046	0.10	2.0		0.91		0.091
54098-12			0.042	0.10	2.0		0.84		0.084
54084-12			0.044	0.10	2.0		0.87		0.087
54079-12			0.043	0.10	2.0		0.85		0.085
54116-12			0.047	0.10	2.0		0.94		0.094
erum Blk-1			0.033	0.10	2.0		0.66		0.066
erum Bik-2			0.030	0.10	2.0		0.60		0.060
erum Spk-1	0.004	63	0.034	0.10	2.0	44%	0.67	0.15	0.067
arum Spk-2	0.004	63	0.040	0.10	2.0	52%	0.79	0.15	0.079
erum Spk-3	0.004	63	0.050	0.10	2.0	66%	0.99	0.15	0.10
erum Spk-4	0.004	63	0.054	0.10	2.0	72%	1.1	0.15	0.11
arum Spk-5	0.004	63	0.083	0.10	2.0	110%	1.7	0.15	0.17
arum Spk-6	0.004	63	0.053	0.10	2.0	71%	1.1	0.15	0.11
erum Spk-7	0.004	63	0.049	0.10	2.0	65%	0.99	0.15	0.10
erum Spk-8	0.004	63	0.055	0.10	2.0	73%	1.1	0.15	0.11
54105-24			0.041	0.10	2.0	/0/0	0.81	0.10	0.081
4075-24			0.022	0.10	2.0		0.44		0.044
54081-24			0.017	0.10	2.0		0.35		0.035
54107-24			0.015	0.10	2.0		0.30		0.030
54104-24			0.018	0.10	2.0		0.37		0.030
54086-24			0.016	0.10	2.0		0.33		0.033
54074-24			0.013	0.10	2.0		0.27		0.033
ank 1			0.031	0.10	2.0		0.61		0.061
ank 2			0.022	0.10	2.0		0.43		0.043
like 1	0.004	63	0.033	0.10	2.0	43%	0.45	0.15	0.043
ike 2	0.004	63	0.044	0.10	2.0	4 3 %	0.88		
ike 3	0.004 0.004	63	0.047	0.10	2.0	53 %	0.88	0.15	0.088
ike 4	0.004	63	0.047	0.10	2.0	62%	0.95 0. 9 4	0.15	0.095
ike 5	0.004	63	0.052	0.10	2.0	68%	1.0	0.15 0.15	0.094
ike 6	0.004	63	0.052	0.10	2.0	67%	1.0	0.15	0.10
ank 3	0.007	00	0.036	0.10	2.0	0770	0.72	0.15	0.10
ank 4			0.020	0.10	2.0		0.72		0.072
4085-24			0.020	0.10	2.0		0.39		
4083-24			0.021	0.10	2.0		0.41		0.041
4100-24			0.016	0.10	2.0		0.38		0.038
4077-24			0.010	0.10	2.0 2.0		0.32		0.032
4094-24			0.017	0.10	2.0				0.033
4091-24			0.015	0.10			0.31		0.031
			0.010	0.10	2.0		0.31		0.031

000206

0.031 000126

384	mLof	Conc.	Actual	Quantity	DI:				
	FC95	FC95	Meter	sample	TISAB	%	Actual	Mass	Mass
ID	solutio spiked	solution (ppm)	reading	(mL or	final	rcvry	pom F-	spiked	
F54108-24	Spiked	1ppnn	(ppm F-) 0.014	(grams) 0.10	2.0	ເບດູ/ບດູ)	in sample	(ug F-)	000000000000000000000000000000000000000
F54102-24			0.014	0.10	2.0 2.0		0.28		0.028
F54097-24			0.020	0.10	2.0		0.25 0.40		0.025
F54071-24			0.015	0.10	2.0		0.40		0.040
F54093-24			0.014	0.10	2.0		0.27		0.030 0.027
F54095-24			0.013	0.10	2.0		0.26		0.027
F54101-24			0.012	0.10	2.0		0.24		0.020
F54110-24			0.011	0.10	2.0		0.23		0.023
F54096-24			0.013	0.10	2.0		0.26		0.026
F54090-24			0.025	0.10	2.0		0.50		0.050
F54078-24			0.013	0.10	2.0		0.27		0.027
F54088-24			0.014	0.10	2.0		0.27		0.027
F54106-24			0.013	0.10	2.0		0.26		0.026
F54089-24			0.014	0.10	2.0		0.28		0.028
F54087-24			0.014	0.10	2.0		0.27		0.027
F54080-24			0.016	0.10	2.0		0.32		0.032
F54092-24			0.016	0.10	2.0		0.32		0.032
F54109-24			0.015	0.10	2.0		0.31		0.031
F54114-24			0.016	0.10	2.0		0.32		0.032
serum bik 1			0.039	0.10	2.0		0.77		0.077
serum blk 2			0.028	0.10	2.0		0.55		0.055
serum spk 1	0.004	63	0.071	0.10	2.0	94%	1.4	0.15	0.14
serum spk 2	0.004	63	0.082	0.10	2.0	109%	1.6	0.15	0.16
F54113-24			0.064	0.10	2.0		1.3		0.13
F54082-24			0.055	0.10	2.0		1.1		0.11
F54111-24			0.063	0.10	2.0		1.3		0.13
F54098-24 F54084-24			0.064	0.10	2.0		1.3		0.13
F54079-24			0.061	0.10	2.0		1.2		0.12
F54115-24			0.059	0.10	2.0		1.2		0.12
F54113-48			0.064 0.068	0.10	2.0		1.3		0.13
F54082-48			0.068	0.10	2.0		1.4		0.14
F54111-48			0.073	0.10 0.10	2.0		1.3		0.13
F54098-48			0.073	0.10	2.0 2.0		1.5		0.15
F54084-48			0.007	0.10	2.0		1.3		0.13
F54079-48			0.059	0.10	2.0		1.8 1.2		0.18
F54116-48			0.085	0.10	2.0		1.2		0.12
F54113-192			0.080	0.10	2.0		1.6		0.17 0.16
F54082-192			0.073	0.10	2.0		1.5		0.15
F54111-192			0.063	0.10	2.0		1.3		0.13
F54098-192			0.067	0.10	2.0		1.3		0.13
F54079-192			0.068	0.10	2.0		1.4		0.13
F54084-192			0.077	0.10	2.0		1.5		0.15
F54116-192			0.065	0.10	2.0		1.3		0.13
F54113-360			0.065	0.10	2.0		1.3		0.13
F54082-360			0.043	0.10	2.0		0.87		0.087
F54111-360			0.063	0.10	2.0		1.3		0.13
F54098-360			0.054	0.10	2.0		1.1		0.11
F54079-360			0.063	0.10	2.0		1.3		0.13
							-		

384	mLof	Conc.	Actual	Quantity	DI:				
	FC95	FC95	Meter	sample	TISAB	%	Actual	Mass	Mass
ID	solutio spiked	solution (ppm)	reading (ppm F-)	(mL or (grams)	final vol (mL)	(CVFY	ppm F-	spiked	
F54084-360			0.069	0.10	2.0	ល្បកពីរ	in sample 1.4	(ug F-)	00000000000000000000000
F54116-360			0.069	0.10	2.0		1.4		0.14
Serum Blk 1			0.025	0.10	2.0		0.50		0.14 0.050
Serum Blk 2			0.032	0.10	2.0		0.65		0.050
Serum Spk 1	0.004	63	0.069	0.10	2.0	91%	1.4	0.15	0.14
Serum Spk 2	0.004	63	0.076	0.10	2.0	101%	1.5	0.15	0.15
F54082-D22			0.046	0.10	2.0		0.91	0.10	0.091
F54111-D22			0.041	0.10	2.0		0.82		0.082
F54079-D22			0.040	0.10	2.0		0.81		0.081
F54116-D22			0.045	0.10	2.0		0.89		0.089
F54082-D28			0.048	0.10	2.0		0.96		0.10
F54111-D28			0.036	0.10	2.0		0.71		0.071
F54079-D28			0.033	0.10	2.0		0.66		0.066
F54116-D28			0.036	0.10	2.0		0.73		0.073
F54099-4			0.028	0.10	2.0		0.55		0.055
F54099-8			0.026	0.10	2.0		0.51		0.051
F54099-12			0.074	0.10	2.0		1.5		0.15
F54099-24			0.087	0.10	2.0		1.7		0.17
F54099-48			0.047	0.10	2.0		0.95		0.095
F54099-192			0.033	0.10	2.0		0.67		0.067
F54099-360			0.029	0.10	2.0		0.57		0.057
F54112-4			0.038	0.10	2.0		0.76		0.076
F54112-8			0.059	0.10	2.0		1.2		0.12
F54112-12			0.066	0.10	2.0		1.3		0.13
F54112-24			0.051	0.10	2.0		1.0		0.10
F54112-48			0.066	0.10	2.0		1.3		0.13
F54112-192			0.059	0.10	2.0		1.2		0.12
F54112-360			0.041	0.10	2.0		0.82		0.082
SERUM SPIKE-63-1	0.004	63	0.059	0.10	2.0	78%	1.2	0.15	0.12
SERUM SPIKE-63-2	0.004	63	0.079	0.10	2.0	105%	1.6	0.15	0.16
SERUM SPIKE-63-3	0.004	63	0.074	0.10	2.0	9 7%	1.5	0.15	0.15
SERUM SPIKE-126-1	0.004	126	0.083	0.10	2.0	55%	1.7	0.30	0.17
SERUM SPIKE-126-2	0.004	126	0.12	0.10	2.0	77%	2.3	0.30	0.23
SERUM SPIKE-126-3	0.004	126	0.12	0.10	2.0	79%	2.4	0.30	0.24
serum blank-1			0.10	0.10	2.0		2.0		0.20
serum blank-2			0.040	0.10	2.0		0.79		0.079
serum blank-3	0.004	.	0.019	0.10	2.0		0.39		0.039
spike 63-1	0.004	63 63	0.058	0.10	2.0	77%	1.2	0.15	0.12
spike 63-2	0.004	63 62	0.058	0.10	2.0	77%	1.2	0.15	0.12
spike 63-3 spike 63-4	0.004 0.004	63 62	0.092	0.10	2.0	121%	1.8	0.15	0.18
spike 63-4 spike 63-5	0.004	63 62	0.053	0.10	2.0	70%	1.1	0.15	0.11
spike 63-6	0.004	63 63	0.055	0.10	2.0	73%	1.1	0.15	0.11
spike 63-7	0.004	63	0.058 0.072	0.10	2.0	77%	1.2	0.15	0.12
spike 63-8	0.004	63	0.072	0.10	2.0	95% 70%	1.4	0.15	0.14
Serum bink 1	0.004	00	0.080	0.10	2.0	79%	1.2	0.15	0.12
Serum bink 2			0.045	0.10	2.0		0.90		0.090
Serum spike 63-1	0.004	63	0.12	0.10 0.10	2.0	1530/	0.33	0.45	0.033
Serum spike 63-2	0.004	63	0.12	0.10	2.0 2.0	153% 273%	2.3	0.15	0.23
····				0.10	2.0	21370	4.1	0.15	0.41

000128

Ś

384			Versen states server		torono <u>us</u> egeneo oue		****		and a second
304	mL of FC95	Conc. FC95	Actual Meter	Quantity		٢٧	A 1		
	solutio	solution	reading	sample (mL or	TISAB final	%	Actual	Mass	Mass
ID	spiked	(ppm)	(ppm F-)		vol (mL)	revry	ppm F- in sample	spiked	revrd
Serum blank 1	******		0.031	0.10	2.0	109/09/	0.62	(09 F-)	(ug F-)
Serum blank 2			0.021	0.10	2.0		0.82		0.062
Serum spike 1	0.004	63	0.074	0.10	2.0	98%	1.5	0.15	0.042
Serum spike 2	0.004	63	0.066	0.10	2.0	87%	1.3	0.15	0.15 0.13
Serum spike 3	0.004	63	0.065	0.10	2.0	86%	1.3	0.15	0.13
Serum spike 4	0.004	63	0.060	0.10	2.0	80%	1.2	0.15	0.13
Serum spike 5	0.004	63	0.070	0.10	2.0	93%	1.4	0.15	0.12
Serum spike 6	0.004	63	0.069	0.10	2.0	91%	1.4	0.15	0.14
Serum spike 7	0.0 04	63	0.068	0.10	2.0	90%	1.4	0.15	0.14
Serum blank 3			0.023	0.10	2.0	00,0	0.46	0.15	0.046
Serum blank 4			0.020	0.10	2.0		0.41		0.040
F54088-48			0.019	0.10	2.0		0.37		0.041
F54099-48			0.021	0.10	2.0		0.43		0.043
F54089-48			0.017	0.10	2.0		0.34		0.043
F54087-48			0.020	0.10	2.0		0.40		0.040
F54080-48			0.017	0.10	2.0		0.34		0.040
F54092-48			0.016	0.10	2.0		0.32		0.034
F54109-48			0.022	0.10	2.0		0.45		0.032
F54114-48			0.022	0.10	2.0		0.43		0.045
F54088 dy8			0.018	0.10	2.0		0.36		0.044
F54099 dy8			0.014	0.10	2.0		0.38		
serum spike 8	0.004	63	0.059	0.10	2.0	78%	1.2	0.15	0.028
serum spike 9	0.004	63	0.060	0.10	2.0	79%	1.2	0.15	0.12
serum spike 10	0.004	63	0.060	0.10	2.0	79%	1.2	0.15	0.12
SERUM BLK 1		••	0.031	0.10	2.0	1370	0.62	0.15	0.12
SERUM BLK 2			0.016	0.10	2.0		0.32		0.062 0.032
SERUM SPK 1	0.004	63	0.056	0.10	2.0	74%	1.1	0.15	0.032
SERUM SPK 2	0.004	63	0.069	0.10	2.0	91%	1.4	0.15	0.14
SERUM SPK 3	0.004	63	0.072	0.10	2.0	95%	1.4	0.15	0.14
F54089-DY8			0.026	0.10	2.0	35 /0	0.52	0.15	0.052
F54087-DY8			0.029	0.10	2.0		0.59		0.052
F54080-DY8			0.029	0.10	2.0		0.59		0.059
F54092-DY8			0.036	0.10	2.0		0.33		0.033
F54109-DY8			0.028	0.10	2.0		0.56		
F54114-DY8			0.035	0.10	2.0		0.69		0.056 0.069
F54088-15			0.010	0.10	2.0		0.03		0.009
F54099-15			0.026	0.10	2.0		0.52		0.021
F54089-15			0.022	0.10	2.0		0.43		0.032
F54087-15			0.021	0.10	2.0		0.43		
F54080-15			0.019	0.10	2.0		0.43		0.043 0.039
F54092-15			0.022	0.10	2.0		0.33		0.039
F54109-15			0.025	0.10	2.0		0.44		0.044
F54114-15			0.020	0.10	2.0		0.30		0.030
F54089-D22			0.019	0.10	2.0		0.40		0.040
F54087-D22			0.018	0.10	2.0		0.39		
F54109-D22			0.019	0.10	2.0		0.38		0.036
F54114-D22			0.019	0.10	2.0		0.37		0.037
F54089-d28			0.018	0.10	2.0		0.35		0.039
F54087-d28			0.018	0.10	2.0		0.35		0.036
				5.10	2.0		0.00		0.035

384	mLof	Conc.	Actual	Quantity	DI:				
	FC95	FC95	Meter	sample	TISAB	%	Actual	Mass	Mass
	solutio	solution	reading	(mL or	final	revry	ppm F-	spiked	rcvrd
ID	spiked	(ppm)	(ppm F-)	(grams)	vol (mL)	(ug/ug)	in sample	(ug F-)	(ug F-)
F54109-d28			0.020	0.10	2.0		0.41		0.041
F54114-d28			0.017	0.10	2.0		0.33		0.033
SERUM SPIKE 63-4	0.004	63	0.031	0.10	2.0	41%	0.62	0.15	0.062
SERUM SPIKE 63-5	0.004	63	0.049	0.10	2.0	65%	0.98	0.15	0.10
SERUM SPIKE 63-6	0.004	63	0.061	0.10	2.0	81%	1.2	0.15	0.12
SERUM SPIKE 63-7	0.004	63	0.059	0.10	2.0	78%	1.2	0.15	0.12
SERUM BLK 1			0.031	0.10	2.0		0.62		0.062
SERUM BLK 2			0.017	0.10	2.0		0.34		0.034
SERUM SPK 63-1	0.004	63	0.061	0.10	2.0	81%	1.2	0.15	0.12
SERUM SPK 63-2	0.0 04	63	0.078	0.10	2.0	103%	1.6	0.15	0.16
SERUM SPK 63-3	0.004	63	0.062	0.10	2.0	82%	1.2	0.15	0.12
F54105-48			0.021	0.10	2.0		0.42		0.042
F54075-48			0.026	0.10	2.0		0.52		0.052

000130

11.

3MA01502297

384	mL of	Conc.	Actual	Quantity	DI:				
	FC95	FC95	Meter	sample	TISAB	%	Actual	Mass	Mass
	solutio	solution	reading	(mL or	final	revry	ppm F-	spiked	rcvrd
ID.	spiked	(ppm)	(ppm F-)	(grams)	vol (mL)	(ug/ug)	in sample	(ug F-)	(ug F-)
serum blank-1			0.036	0.10	2.0		ND	*******	*****
serum blank-2			0.020	0.10	2.0		ND		
serum spike 63-1	0.004	63	0.070	0.10	2.0	93%	1.4	0.15	0.14
serum spike 63-2	0.004	63	0.070	0.10	2.0	92%	1.4	0.15	0.14
serum spike 94.5-1	0.004	94.5	0.063	0.10	2.0	56%	1.3	0.23	0.13
serum spike 94.5-2	0.004	94.5	0.046	0.10	2.0	41%	0.92	0.23	0.092
serum spike 126-1	0.004	126	0.15	0.10	2.0	101%	3.1	0.30	0.31
serum spike 126-2	0.004	126	0.099	0.10	2.0	65%	2.0	0.30	0.20
serum spike 126-3	0.004	126	0.15	0.10	2.0	98%	3.0	0.30	0.30
serum spike 126-4	0.004	126	0.13	0.10	2.0	85%	2.6	0.30	0.26
F54081-4			0.040	0.10	2.0		ND		ND
F54075-4			0.032	0.10	2.0		ND		ND
F54107-4			0.024	0.10	2.0		ND		ND
F54105-4			0.025	0.10	2.0		ND		ND
F54074-4			0.034	0.10	2.0		ND		ND
Blank 1			0.71	0.10	2.0		14		1.4
Blank 2			0.34	0.10	2.0		6.9		0.69
Blank 3			0.36	0.10	2.0		7.2		0.72
Blank 4			0.084	0.10	2.0		1.7		0.17
Blank 5			0.038	0.10	2.0		ND		ND
Blank 6			0.039	0.10	2.0		ND		ND
Serum Spk-1	0.004	63	0.055	0.10	2.0	73%	1.1	0.15	0.11
Serum Spk-2	0.004	63	0.068	0.10	2.0	9 0%	1.4	0.15	0.14
Serum Spk-3	0.004	63	0.073	0.10	2.0	9 6%	1.5	0.15	0.15
Serum Spk-4	0.004	126	0.10	0.10	2.0	67%	2.0	0.30	0.20
Serum Spk-5	0.004	126	0.11	0.10	2.0	74%	2.2	0.30	0.22
Serum Spk-6	0.004	126	0.11	0.10	2.0	73%	2.2	0.30	0.22
Serum Spk-7	0.004	126	0.11	0.10	2.0	72%	2.2	0.30	0.22
Serum Spk-8	0.004	126	0.098	0.10	2.0	6 5%	2.0	0.30	0.20
Serum Spk-9	0.004	126	0.12	0.10	2.0	77%	2.3	0.30	0.23
Serum Spk-10	0.004	126	0.10	0.10	2.0	68%	2.1	0.30	0.21
54085-4			0.045	0.10	2.0		ND		ND
54086-4			0.027	0.10	2.0		ND		ND
54104-4			0.025	0.10	2.0		ND		ND
54077-4			0.021	0.10	2.0		ND		ND
54083-4			0.020	0.10	2.0		ND		ND
54094-4			0.021	0.10	2.0		ND		ND
54100-4			0.020	0.10	2.0		ND		ND
540 91-4			0.019	0.10	2.0		ND		ND
erum bik 1			0.029	0.10	2.0		ND		ND
erum blk 2			0.024	0.10	2.0		ND		ND
erum spk 1	0.004	63	0.071	0.10	2.0	94%	1.4	0.15	0.14
erum spk 2	0.004	63	0.072	0.10	2.0	95%	1.4	0.15	0.14
54097-4			0.022	0.10	2.0		ND		ND
54102-4			0.020	0.10	2.0		ND		ND
54108-4			0.016	0.10	2.0		ND		ND
54071-4			0.017	0.10	2.0		ND		ND

000131

||

384	mL of FC95	Conc. FC95	Actual Meter	Quantity sample	DI: TISAB	%	Actual	Mass	Mass
	solutio	solution	reading	(mL or	final	гсугу	ppm F-	spiked	rcvrd
ID	spiked	(ppm)	(ppm F-)	*********************	vol (mL)		in sample		(ug F-)
F54093-4			0.020	0.10	2.0		ND		ND
F54095-4			0.016	0.10	2.0		ND		ND
F54101-4			0.015	0.10	2.0		ND		ND
F54078-4			0.021	0.10	2.0		ND		ND
F54090-4			0.020	0.10	2.0		ND		ND
F54096-4			0.017	0.10	2.0		ND		ND
F54110-4			0.020	0.10	2.0		ND		ND -
F54087-4			0.025	0.10	2.0		ND		ND
F54088-4			0.028	0.10	2.0		ND		ND
F54089-4			0.020	0.10	2.0		ND		ND
F54106-4			0.032	0.10	2.0		ND		ND
F54080-4			0.025	0.10	2.0		ND		ND
F54092-4			0.019	0.10	2.0		ND		ND
F54109-4 F54114-4			0.021	0.10	2.0		ND		ND
F54076-4			0.039	0.10	2.0		ND		ND
F54082-4			0.041 0.057	0.10	2.0		ND		ND
F54111-4				0.10	2.0		1.1		0.11
F54113-4			0.096 0.082	0.10	2.0		1.9		0.19
F54079-4			0.082	0.10 0.10	2.0		1.6		0.16
F54084-4			0.12	0.10	2.0		2.3		0.23
F54098-4			0.046	0.10	2.0 2.0		1.3		0.13
F54116-4			0.10	0.10	2.0		ND		ND 0.20
F54075-8			0.025	0.10	2.0		2.0		0.20
F54081-8			0.020	0.10	2.0		ND ND		ND
F54105-8			0.020	0.10	2.0		ND		ND
F54107-8			0.015	0.10	2.0		ND		
F54074-8			0.015	0.10	2.0		ND		ND
F54085-8			0.021	0.10	2.0		ND		ND ND
F54086-8			0.031	0.10	2.0		ND		ND
serum bik 1			0.029	0.10	2.0		ND		ND
serum blk 2			0.028	0.10	2.0		ND		ND
serum spk 1	0.004	63	0.080	0.10	2.0	106%	1.6	0.15	0.16
serum spk 2	0.004	63	0.069	0.10	2.0	91%	1.4	0.15	0.14
F54104-8			0.031	0.10	2.0	01/0	ND	0.10	ND
F54077-8			0.023	0.10	2.0		ND		ND
F54083-8			0.018	0.10	2.0		ND		ND
F54094-8			0.025	0.10	2.0		ND		ND
F54100-8			0.017	0.10	2.0		ND		ND
F54091-8			0.014	0.10	2.0		ND		ND
F54097-8			0.014	0.10	2.0		ND		ND
F54102-8			0.013	0.10	2.0		ND		ND
F54108-8			0.013	0.10	2.0		ND		ND
F54071- 8			0.015	0.10	2.0		ND		ND
F5409 3 - 8			0.019	0.10	2.0		ND		ND
F54095 - 8			0.026	0.10	2.0		ND		ND
F54101-8			0.016	0.10	2.0		ND		ND
F54078-8			0.021	0.10	2.0		ND		ND

000132

384	mL of	Conc.	Actual	Quantity	DI:				an a
	FC95	FC95	Meter	sample	TISAB	%	Actual	Mass	Mass
	solutio	solution	reading	(mL or	final	rcvry	ppm F-	spiked	rcvrd
D	spiked	(ppm)	(ppm F-)		vol (mL)		in sample.		(ug F-)
F54090- 8	*****		0.021	0.10	2.0		ND		ND
F54096-8			0.017	0.10	2.0		ND		ND
F54110-8			0.075	0.10	2.0		1.5		0.15
F54087- 8			0.022	0.10	2.0		ND		ND
F54088-8			0.033	0.10	2.0		ND		ND
F540 89- 8			0.031	0.10	2.0		ND		ND
F540 80- 8			0.032	0.10	2.0		ND		ND
F54106-8			0.043	0.10	2.0		ND		ND
F54092-8			0.037	0.10	2.0		ND		ND
F54109-8			0.024	0.10	2.0		ND		ND
F54114-8			0.034	0.10	2.0		ND		ND
F54076-8			0.045	0.10	2.0		ND		ND
F54082-8			0.063	0.10	2.0		1.3		0.13
F54111-8			0.044	0.10	2.0		ND		ND
F54113-8			0.048	0.10	2.0		ND		ND
F54079-8			0.042	0.10	2.0		ND		ND
F54084-8		~	0.045	0.10	2.0		ND		ND
F54098-8			0.050	0.10	2.0		1.0		0.10
F54116-8			0.17	0.10	2.0		3.4		0.34
serum blk 1			0.012	0.10	2.0		ND		ND
serum blk 2			0.018	0.10	2.0		ND		ND
serum spk 1	0.004	63	0.066	0.10	2.0	87%	1.3	0.15	0.13
serum spk 2	0.004	63	0.070	0.10	2.0	93%	1.4	0.15	0.14
F54075-12			0.028	0.10	2.0		ND		ND
F54081-12			0.021	0.10	2.0		ND		ND
F54105-12			0.026	0.10	2.0		ND		ND
F54107-12			0.019	0.10	2.0		ND		ND
F54074-12			0.017	0.10	2.0		ND		ND
F54085-12			0.018	0.10	2.0		ND		ND
F54086-12			0.020	0.10	2.0		ND		ND
F54086-12			0.025	0.10	2.0		ND		ND
F54077-12			0.038	0.10	2.0		ND		ND
F54083-12			0.032	0.10	2.0		ND		ND
F54094-12			0.035	0.10	2.0		ND		ND
F54100-12			0.022	0.10	2.0		ND		ND
F54091-12			0.029	0.10	2.0		ND		ND
F54097-12			0.025	0.10	2.0		ND		ND
F54102-12			0.022	0.10	2.0		ND		ND
F54108-12 F54077-12			0.014	0.10	2.0		ND		ND
F54077-12 F54071-12			0.046	0.10	2.0		ND		ND
F54093-12			0.021	0.10	2.0		ND		ND
F54095-12			0.016	0.10	2.0		ND		ND
F54101-12			0.016	0.10	2.0		ND		ND
F54110-12			0.020 0.016	0.10	2.0		ND		ND
F54096-12			0.018	0.10	2.0		ND		ND
F54090-12			0.012	0.10	2.0		ND		ND
F54078-12			0.017	0.10	2.0		ND		ND
			0.014	0.10	2.0		ND		ND

000213

384	mL of FC95	Conc. FC95	Actual Meter	Quantity sample	DI: TISAB	%	Actual	b <i>4</i>	
		solution	reading	(mL or	final	79 ICVIY	ppm F-	Mass spiked	Mass rcvrd
(D	spiked	(ppm)	(ppm F-)	************************************	vol (mL)		in sample	(ug F-)	20222220000000000000
F54088-12		**********************	0.025	0.10	2.0	***********************	ND		ND
F54106-12			0.027	0.10	2.0		ND		ND
F54089-12			0.019	0.10	2.0		ND		ND
F54087-12			0.019	0.10	2.0		ND		ND
F54080-12			0.018	0.10	2.0		ND		ND
F54092-12			0.017	0.10	2.0		ND		ND
F54109-12			0.021	0.10	2.0		ND		ND
F54114-12			0.026	0.10	2.0		ND		ND
F54076-12			0.027	0.10	2.0		ND		ND
F54113-12			0.022	0.10	2.0		ND		ND
F54082-12			0.034	0.10	2.0		ND		ND
F54111-12 F54098-12			0.046	0.10	2.0		ND		ND
F54084-12			0.042	0.10	2.0		ND		ND
F54079-12			0.044 0.043	0.10	2.0		ND		ND
F54116-12			0.043	0.10 0.10	2.0		ND		ND
Serum Blk-1			0.047	0.10	2.0 2.0		ND		ND
Serum Blk-2			0.030	0.10	2.0		ND ND		ND
Serum Spk-1	0.004	63	0.034	0.10	2.0	44%	0.67	0.15	ND 0.067
Serum Spk-2	0.004	63	0.040	0.10	2.0	52%	0.79	0.15	0.067 0.079
Serum Spk-3	0.004	63	0.050	0.10	2.0	66%	0.99	0.15	0.079
Serum Spk-4	0.004	63	0.054	0.10	2.0	72%	1.1	0.15	0.10
Serum Spk-5	0.004	63	0.083	0.10	2.0	110%	1.7	0.15	0.17
Serum Spk-6	0.004	63	0.053	0.10	2.0	71%	1.1	0.15	0.11
Serum Spk-7	0.004	63	0.049	0.10	2.0	65%	0.99	0.15	0.10
Serum Spk-8	0.004	63	0.055	0.10	2.0	73%	1.1	0.15	0.11
F54105-24			0.041	0.10	2.0		ND		ND
F54075-24			0.022	0.10	2.0		ND		ND
F54081-24			0.017	0.10	2.0		ND		ND
F54107-24			0.015	0.10	2.0		ND		ND
F54104-24			0.018	0.10	2.0		ND		ND
F54086-24			0.016	0.10	2.0		ND		ND
F54074-24			0.013	0.10	2.0		ND		ND
Blank 1			0.031	0.10	2.0		ND		ND
Blank 2	0.004	<u></u>	0.022	0.10	2.0		ND	_	ND
spike 1 spike 2	0.004	63 62	0.033	0.10	2.0	43%	0.65	0.15	0.065
spike 2 spike 3	0.004 0.004	63 63	0.044	0.10	2.0	58%	0.88	0.15	0.088
spike 3	0.004	63	0.047 0.047	0.10	2.0	63%	0.95	0.15	0.095
spike 5	0.004	63	0.047	0.10 0.10	2.0	62%	0.94	0.15	0.094
spike 6	0.004	63	0.051	0.10	2.0 2.0	68% 67%	1.0	0.15	0.10
Blank 3	0.004	00	0.036	0.10	2.0	67%	1.0 ND	0.15	0.10
Blank 4			0.020	0.10	2.0		ND		ND ND
F54085-24			0.021	0.10	2.0		ND		ND
F54083-24			0.019	0.10	2.0		ND		ND
F54100-24			0.016	0.10	2.0		ND		ND
F54077-24			0.017	0.10	2.0		ND		ND
F54094-24			0.015	0.10	2.0		ND		ND
F54091-24			0.016	0.10	2.0		ND		ND
									- 1

ND 000134

384	mL of	Conc.	Actual	Quantity	DI:			
	FC95	FC95	Meter	sample	TISAB	%	Actual	Mass Mass
ID	solutio spiked	solution (ppm)	(ppm F-)	(mL or (grams)	final	revry	ppm F- in sample	spiked rovrd
F54108-24	SPINO	12-2-11-1	0.014	0.10	2.0			(ug F-) (ug F-)
F54102-24			0.014	0.10	2.0		ND ND	ND
F54097-24			0.020	0.10	2.0		ND	ND
F54071-24			0.015	0.10	2.0		ND	ND ND
F54093-24			0.014	0.10	2.0		ND	ND
F54095-24			0.013	0.10	2.0		ND	ND
F54101-24			0.012	0.10	2.0		ND	ND .
F54110-24			0.011	0.10	2.0		ND	ND
F54096-24			0.013	0.10	2.0		ND	ND
F54090-24			0.025	0.10	2.0		ND	ND
F54078-24			0.013	0.10	2.0		ND	ND
F54088-24			0.014	0.10	2.0		ND	ND
F54106-24			0.013	0.10	2.0		ND	ND
F54089-24			0.014	0.10	2.0		ND	ND
F54087-24			0.014	0.10	2.0		ND	ND
F54080-24			0.016	0.10	2.0		ND	ND
F54092-24			0.016	0.10	2.0		ND	ND
F54109-24			0.015	0.10	2.0		ND	ND
F54114-24			0.016	0.10	2.0		ND	ND
serum blk 1			0.039	0.10	2.0		ND	ND
serum blk 2			0.028	0.10	2.0		ND	ND
serum spk 1	0.004	63	0.071	0.10	2.0	94%	1.4	0.15 0.14
serum spk 2	0.004	63	0.082	0.10	2.0	109%	1.6	0.15 0.16
F54113-24			0.064	0.10	2.0		1.3	0.13
F54082 -2 4			0.055	0.10	2.0		1.1	0.11
F54111-24			0.063	0.10	2.0		1.3	0.13
F54098-24			0.064	0.10	2.0		1.3	0.13
F54084-24			0.061	0.10	2.0		1.2	0.12
F54079-24			0.059	0.10	2.0		1.2	0.12
F54116-24			0.064	0.10	2.0		1.3	0.13
F54113-48			0.068	0.10	2.0		1.4	0.14
F54082-48			0.066	0.10	2.0		1.3	0.13
F54111-48			0.073	0.10	2.0		1.5	0.15
F54098-48			0.067	0.10	2.0		1.3	0.13
F54084-48			0.091	0.10	2.0		1.8	0.18
F54079-48			0.059	0.10	2.0		1.2	0.12
F54116-48			0.085	0.10	2.0		1.7	0.17
F54113-192			0.080	0.10	2.0		1.6	0.16
F54082-192			0.073	0.10	2.0		1.5	0.15
F54111-192			0.063	0.10	2.0		1.3	0.13
F54098-192			0.067	0.10	2.0		1.3	0.13
F54079-192			0.068	0.10	2.0		1.4	0.14
F54084-192			0.077	0.10	2.0		1.5	0.15
F54116-192			0.065	0.10	2.0		1.3	0.13
F54113-360			0.065	0.10	2.0		1.3	0.13
F54082-360			0.043	0.10	2.0		ND	0.087
F54111-360			0.063	0.10	2.0		1.3	0.13
F54098-360 F54079-360			0.054	0.10	2.0		1.1	0.11
104079-300			0.063	0.10	2.0		1.3	0.13
								-

3 COC133 IE

384	mL of	Conc.	Actual	Quantity	DI:				
	FC95 solutio	FC95 solution	Meter reading	sample	TISAB	%	Actual	Mass	Mass
ID	spiked	(ppm)	(ppm F-)	(mL or (grams)	final		ppm F- in sample	spiked (ug F-)	rcvrd (ug F-)
F54084-360	*****		0.069	0.10	2.0	(ug/ug/	1.4		0.14
F54116-360			0.069	0.10	2.0		1.4		0.14
Serum Blk 1			0.025	0.10	2.0		ND		ND
Serum Blk 2			0.032	0.10	2.0		ND		ND
Serum Spk 1	0.004	63	0.069	0.10	2.0	91%	1.4	0.15	0.14
Serum Spk 2	0.004	63	0.076	0.10	2.0	101%	1.5	0.15	0.14
F54082-D22	01001		0.046	0.10	2.0	101 /0	ND	0.15	ND
F54111-D22			0.041	0.10	2.0		ND		ND
F54079-D22			0.040	0.10	2.0		ND		ND
F54116-D22			0.045	0.10	2.0		ND		ND
F54082-D28			0.048	0.10	2.0		ND		ND
F54111-D28			0.036	0.10	2.0		ND		ND
F54079-D28			0.033	0.10	2.0		ND		ND
F54116-D28			0.036	0.10	2.0		ND		ND
F54099-4			0.028	0.10	2.0		ND		ND
F54099-8			0.026	0.10	2.0		ND		ND
F54099-12			0.074	0.10	2.0		1.5		0.15
F54099-24			0.087	0.10	2.0		1.7		0.17
F54099-48			0.047	0.10	2.0		ND		ND
F54099-192			0.033	0.10	2.0		ND		ND
F54099-360			0.029	0.10	2.0		ND		ND
F54112-4			0.038	0.10	2.0		ND		ND
F54112-8			0.059	0.10	2.0		1.2		0.12
F54112-12			0.066	0.10	2.0		1.3		0.13
F54112-24			0.051	0.10	2.0		1.0		0.10
F54112-48			0.066	0.10	2.0		1.3		0.13
F54112-192			0.059	0.10	2.0		1.2		0.12
F54112-360			0.041	0.10	2.0		ND		ND
SERUM SPIKE-63-1	0.004	63	0.059	0.10	2.0	78%	1.2	0.15	0.12
SERUM SPIKE-63-2	0.004	63	0.079	0.10	2.0	105%	1.6	0.15	0.16
SERUM SPIKE-63-3	0.004	63	0.074	0.10	2.0	97%	1.5	0.15	0.15
SERUM SPIKE-126-1	0.004	126	0.083	0.10	2.0	55%	1.7	0.30	0.17
SERUM SPIKE-126-2		126	0.12	0.10	2.0	77%	2.3	0.30	0.23
SERUM SPIKE-126-3	0.004	126	0.12	0.10	2.0	79%	2.4	0.30	0.24
serum blank-1			0.10	0.10	2.0		2.0		0.20
serum blank-2			0.040	0.10	2.0		ND		ND
serum blank-3			0.019	0.10	2.0		ND		ND
spike 63-1	0.004	63	0.058	0.10	2.0	77%	1.2	0.15	0.12
spike 63-2	0.004	63	0.058	0.10	2.0	77%	1.2	0.15	0.12
spike 63-3	0.004	63	0.092	0.10	2.0	121%	1.8	0.15	0.12
spike 63-4	0.004	63	0.053	0.10	2.0	70%	1.1	0.15	0.10
spike 63-5	0.004	63	0.055	0.10	2.0	73%	1.1	0.15	0.11
spike 63-6	0.004	63	0.058	0.10	2.0	77%	1.2	0.15	0.12
spike 63-7	0.004	63	0.072	0.10	2.0	95%	1.4	0.15	0.14
spike 63-8	0.004	63	0.060	0.10	2.0	79%	1.2	0.15	0.12
Serum blnk 1		-	0.045	0.10	2.0		ND		ND
Serum blnk 2			0.017	0.10	2.0		ND		ND
Serum spike 63-1	0.004	63	0.12	0.10	2.0	153%	2.3	0.15	0.23
Serum spike 63-2	0.004	63	0.21	0.10	2.0	273%	4.1	0.15	0.41
					0002				• •

000135

384	mLof	Conc.	Actual	Quantity	DI:				
	FC95	FC95	Meter	sample	TISAB	%	Actual	Mass	Mass
	solutio	solution		(mL or	final	rcvry	ppm F-	spiked	rcvrd
ID	spiked	(ppm)	(ppm F-)		vol (mL)	(ug/ug)	in sample	(ug F-)	(ug F-)
Serum blank 1			0.031	0.10	2.0		ND		ND
Serum blank 2			0.021	0.10	2.0		ND		ND
Serum spike 1	0.004	63	0.074	0.10	2.0	98%	1.5	0.15	0.15
Serum spike 2	0.004	63	0.066	0.10	2.0	87%	1.3	0.15	0.13
Serum spike 3	0.004	63	0.065	0.10	2.0	86%	1.3	0.15	0.13
Serum spike 4	0.004	63	0.060	0.10	2.0	80%	1.2	0.15	0.12
Serum spike 5	0.004	63	0.070	0.10	2.0	93%	1.4	0.15	0.14
Serum spike 6	0.004	63	0.069	0.10	2.0	91%	1.4	0.15	0.14
Serum spike 7	0.004	63	0.068	0.10	2.0	90%	1.4	0.15	0.14
Serum blank 3			0.023	0.10	2.0		ND		ND
Serum blank 4			0.020	0.10	2.0		ND		ND
F54088-48			0.019	0.10	2.0		ND		ND
F54099-48			0.021	0.10	2.0		ND	•	ND
F54089-48			0.017	0.10	2.0		ND		ND
F54087-48			0.020	0.10	2.0		ND		ND
F54080-48			0.017	0.10	2.0		ND		ND
F54092-48			0.016	0.10	2.0		ND		ND
F54109-48			0.022	0.10	2.0		ND		ND
F54114-48			0.022	0.10	2.0		ND		ND
F54088 dy8			0.018	0.10	2.0		ND		ND
F54099 dy8			0.014	0.10	2.0		ND		ND
serum spike 8	0.004	63	0.059	0.10	2.0	78%	1.2	0.15	0.12
serum spike 9	0.004	63	0.060	0.10	2.0	79%	1.2	0.15	0.12
serum spike 10	0.004	63	0.060	0.10	2.0	79%	1.2	0.15	0.12
SERUM BLK 1			0.031	0.10	2.0		ND	0.10	ND
SERUM BLK 2			0.016	0.10	2.0		ND		ND
SERUM SPK 1	0.004	63	0.056	0.10	2.0	74%	1.1	0.15	0.11
SERUM SPK 2	0.004	63	0.069	0.10	2.0	91%	1.4	0.15	0.14
SERUM SPK 3	0.004	63	0.072	0.10	2.0	95%	1.4	0.15	0.14
F54089-DY8		••	0.026	0.10	2.0	0070	ND	0.15	ND
F54087-DY8			0.029	0.10	2.0		ND		ND
F54080-DY8			0.029	0.10	2.0		ND		ND
F54092-DY8			0.036	0.10	2.0		ND		ND
F54109-DY8			0.028	0.10	2.0		ND		ND
F54114-DY8			0.035	0.10	2.0		ND		
F54088-15			0.010	0.10	2.0		ND		ND ND
F54099-15			0.026	0.10	2.0		ND		ND
F54089-15			0.022	0.10	2.0		ND		
F54087-15			0.021	0.10	2.0 2.0				ND
F54080-15			0.019	0.10			ND		ND
F54092-15			0.022	0.10	2.0		ND		ND
F54109-15	*		0.022	0.10	2.0		ND		ND
F54114-15			0.025	0.10	2.0		ND		
F54089-D22			0.020		2.0		ND		ND .
F54087-D22			0.019	0.10	2.0		ND		ND
F54109-D22				0.10	2.0		ND		ND
F54114-D22			0.019	0.10	2.0		ND		ND
F54089-d28			0.019	0.10	2.0		ND		ND
F54087-d28			0.018 0.018	0.10	2.0		ND		ND
- JTUUI "UZO			0.010	0.10	2.0		ND		ND

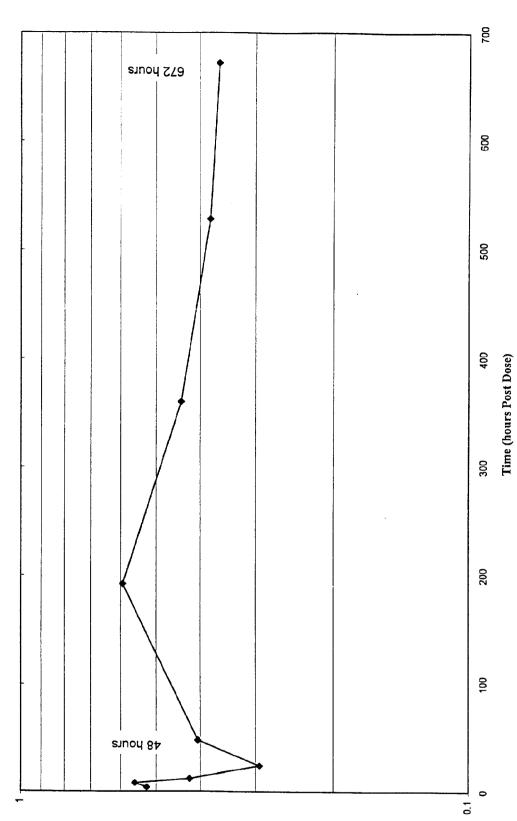
¹⁷

384	mL of	Conc.	Actual	Quantity					
	FC95	FC95	Meter	sample	TISAB	%	Actual	Mass	Mass
	solutio	solution	reading	(mL or	final	rcvry	ppm F-	spiked	n na Galai (Bir)
ID:	spiked	(ppm)	(ppm F-)	(grams)	vol (mL)	(ug/ug)	in sample	(ug F-)	(ug F-)
F54109-d28			0.020	0.10	2.0		ND		ND
F54114-d28			0.017	0.10	2.0		ND		ND
SERUM SPIKE 63-4	0.004	63	0.031	0.10	2.0	41%	0.62	0.15	0.062
SERUM SPIKE 63-5	0.004	63	0.049	0.10	2.0	65%	0.98	0.15	0.10
SERUM SPIKE 63-6	0.004	63	0.061	0.10	2.0	81%	1.2	0.15	0.12
SERUM SPIKE 63-7	0.004	63	0.059	0.10	2.0	78%	1.2	0.15	0.12
SERUM BLK 1			0.031	0.10	2.0		ND		ND
SERUM BLK 2			0.017	0.10	2.0		ND		ND
SERUM SPK 63-1	0.004	63	0.061	0.10	2.0	81%	1.2	0.15	0.12
SERUM SPK 63-2	0.004	63	0.078	0.10	2.0	103%	1.6	0.15	0.16
SERUM SPK 63-3	0.004	63	0.062	0.10	2.0	82%	1.2	0.15	0.12
F54105-48			0.021	0.10	2.0		ND		ND
F54075-48			0.026	0.10	2.0		ND		ND

,

000135

18


2807.0138

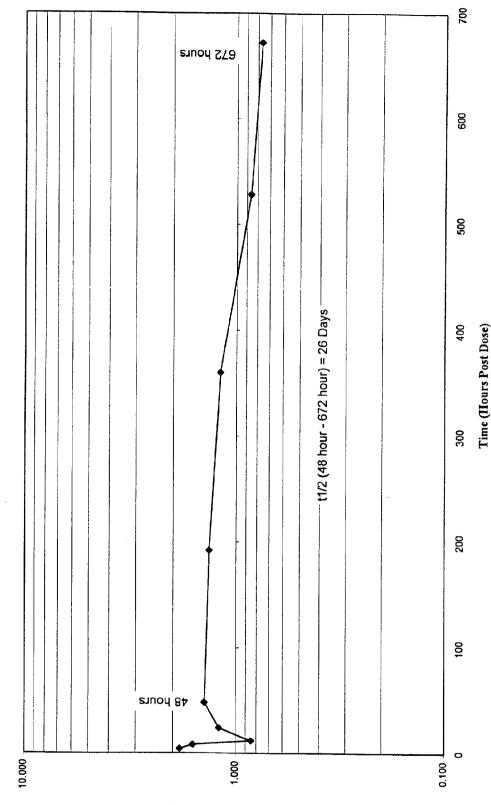
HWI 6329-159, AMDT 042095.1

ppm F- in serum

Control	4	0 1	12.1			-				
Control	4 hour	8 hour	12 hour	24 hour				rum analysi		t
F54074	0.670	0.304	0.346	0.268				summary is		
F54075	0.645	0.490	0.558	0.440				balf life, th		
F54081	0.800	0.398	0.416	0.346				alues which	1 are less	
F54085	0.898	0.428	0.366	0.412		than the de	etection lim	it.		
F54086	0.542	0.616	0.408	0.328						
F54104	0.492	0.616	0.502	0.366						
F54105	0.509	0.426	0.528	0.812						
F54107	0.484	0.304	0.388	0.304						
5 mg/kg	4 hour	8 hour	12 hour	24 hour						
F54077	0.416	0.458	0.839	0.330						
F54083	0.400	0.352	0.636	0.380						
F54091	0.384	0.282	0.576	0.314						
F54094	0.418	0.506	0.708	0.308						
F54097	0.446	0.278	0.492	0.400						
F54100	0.408	0.346	0.442	0.324						
F54102	0.406	0.258	0.436	0.250						
F54108	0.318	0.254	0.288	0.278						
10 mg/kg	4 hour	8 hour	12 hour	24 hour						
F54071	0.336	0.302	0.412	0.302						
F54093	0.408	0.374	0.328	0.274						
F54095	0.316	0.514	0.320	0.256						
F54101	0.290	0.322	0.404	0.240						
F54078	0.412	0.424	0.284	0.266						
F54090	0.390	0.424	0.342	0.500						
F54096	0.336	0.342	0.246	0.264						
F54110	0.392	1.500	0.312	0.226						
100 mg/kg	4 hour	8 hour	12 hour	24 hour	48 hour	19 2 hour	360 hour	528 hour	672 hou	ır
F54080	0.508	0.638	0.358	0.320						
F54087	0.496	0.438	0.372	0.270	0.398	0.588	0.426	0.362	0.350	
F54088	0.552	0.662	0.508	0.274	0.336	0.524	0.434	0.390	0.360	
F54089	0.406	0.624	0.380	0.278						
F54092	0.376	0.740	0.332	0.322						
F54 099	0.552	0.514	1.478	1.748	0.948	0.666	0.572			
F54106	0.630	0.860	0.536	0.256						
F54109	0.418	0.488	0.410	0.306	0.446	0.564	0.500	0.374	0.406	
F54114	0.776	0.676	0.524	0.322	0.438	0.694	0.400	0.390	0.330	
500	4 1	01.	10.1	~ /)						
500 mg/kg	4 hour	8 hour	12 hour	24 hour	48 hour	192 hour	360 hour	528 hour	672 hou	Ir
F54076	0.810	0.890	0.546	1.170	1 104	1.264	1.044	0.000	0.000	
F54079	2.320	0.838	0.852	1.170	1.184	1.364	1.266	0.808	0.660	
F54082	1.130	1.254	0.686	1.104	1.318	1.458	0.866	0.912	0.964	
F54084	1.344	0.890	0.870	1.222	1.824	1.546	1.370			
F54098	0.926	1.000	0.836	1.276	1.332	1.344	1.078	.		
F54111	1.914	0.878	0.912	1.252	1.452	1.256	1.252	0.822	0.710	
F54112	0.758	1.184	1.310	1.022	1.314	1.184	0.822			00013
F54113	1.638	0.954	0.436	1.276	1.364	1.596	1.292			
F54116	2.040	3.440	0.940	1.286	1.706	1.292	1.380	0.890	0.728	
					000	1240				

051000

Concentration (ppm F-)


Figure 2

ppm F- in Serum (Group 4)

3MA01502307

A-2-C-J|

T5T000

Concentration (ppm F-)

Figure 1

ppm F- in serum (Group 5)

.

3MA01502308

143-32-11

9.11.4 Summary and raw data; ppm F⁻ in serum as determined by thermal extraction followed by analysis using Skalar segmented flow analyzer with ion selective electrode.

.

•

000142

000222

3MA01502309

6-22-45 NO Skalar Data

RE: 6329-159 SERUM SAMPLES AMDT 42095.1 Date of Analysis: May 4, 8, 9, 11, 24 and May 25, 1995 Analyst: DDW

The samples are burned in the Dohrman at 950 C using 0.10 mL of the serum. The gas is collected in 2.0 mL of 1:1 TISAB/Milli-Q water. The samples are then analyzed on a Skalar Segmented Flow Analyzer using the Ion Specific Electrode (ISE) Method.

TISAB buffer is added to each sample as it proceeds through the system. The sample then goes through a heated mixing coil before the potential between the ion selective electrode and the reference electrode is measured. The signal is amplified and related to the fluoride concentration.

The instrument was calibrated in the ranges of 0.015 - 0.15 ppm and 0.15 - 1.50 ppm fluoride. The standard curve for the high range was plotted using the inverse logarithm option. The standard curve for the low range is linear. All standards and samples were then calculated by the Skalar software using these curves. All results below 0.0001 ppm appear on the raw data as #.####.

A quality control standard was analyzed every 10 samples to check for accuracy and drift.

Raw data is taken from the appropriate calibrated range of the Skalar printout and summarized on an Excel spreadsheet. The final results are adjusted for the collection volume and any sub<u>sequent dilutions</u>.

. Onight

000143

Pac. 1 1. 91

6-22-43 ULL Skalar

SUMMARY of 6329-159 SERUM SAMPLES AMDT 42095.1

.

	Sample	Flixvide	Elioride	Fluoride	Fluorite	Fhioride	Eluonde	Fluoride	Fluctide	Fluoride
	Ð	in Sample (ppre)	in Sample (ppm)	in Sample (ppm)	un Sample (ppun)	in Sample (ppm)	in Sample (ppm)	n Sample (550)	in Sample (ppm)	in Semple (ppm)
		4 hr	8ht//	///123w	24 Hz	48 hr	19214	360 hr	528 in	572 Ju
	F54074	0.51	0.35	0.42	0.70					
	F54075	0.61	0.64	0.63	0.47	0.52				
	F54080	0.84	0.40	0.43	0.40					
GROUP 1	F54085	0.98	0.62	0.29	0.00					
Dose Level: 0	F54085 F54086			0.70	0.31					
	F54104	0.58	0.73	0.70	0.35					
	F54104	0.34	0.55	0.81 0.60	0.47	0.26	٩			
	F54105	0.46	0.31	0.40	1.08 0.31	0.36				
	1.24107	0,40	0.51	0.40	0.31					
	F54077	0.53	0.58	1.22	0.34					
	F54077			0.39						
	F54083	0.33	0.43	0.98	0.00					
	F54083				0.42					
GROUP 2	F54091	0.36	0.12	0.90	0.28					
Dose Level : 5 mg/kg	F54094	0.36	0.45	1.03	0.27					
	F54097	0.40	0.05	0.67	0.48					
	F54100	0.39	0.41	0.62	0.00					
	F54100				0.31					
	F54102	0.38	0.29	0.46	0.18					
	F54108	0.20	0.01	0.20	0.27					
	F54071	0.24	0.16	0.00	0.24					
	F54078	0.39	0.22	0.32	0.52			•		
	F54090	0.28	0.20	0.49	1.02					
GROUP 3	F54093	0.43	0.29	0.00	0.21					
Dose Level : 10 mg/kg	F54095	0.24	0.41	0.00	0.42					
	F54096	0.13	0.00	0.04	0.23					
	F54101	0.15	0.13	0.00	0.34					
	F54110	0.25	1.85	0.00	0.30					
	F54080	0.56	0.73	0.53	1.21	0.28	0.65	0.21		
	F54080	0.57	0.75	0.55	1.21	0.28	0.05	0.21		
	F54087	0.50	0.41	0.64	0.81	0.38	0.66	0.35	0.27	0.34
	F54088	0.40	0.64	0.79	0.48	0.31	0.32	0.00	0.27	0.54
GROUP 4	F54089	0.36	0.75	0.65	0.99	0.22	0.49	0.33	0.32	0.23
Dose Level : 100 mg/kg	F54092	0.28	0.87	0.44	1.02	0.19	0.73	0.33	0.52	0.25
	F54099	0.63	0.60	1 79	2.15	1.14	0.74	0.61		
	F54099					0.47	0.34	0.53		
	F54106	0.68	1.05	0.96	0.88	0.17	9.9 T	0.00		
	F54109	0.32	0.67	0.64	0.78	0.43	0.56	0.50	0.29	0.34
	F54114	0.86	0.80	0.72	0.64	0.46	0.73	0.29	0.34	0.36

000224

SUMMARY of 6329-159 SERUM SAMPLES AMDT 42095.1

	Sample	Flooride	// Plustice//	Fluorzie	FLORIE		//P165666		Fluoride	
	Ð	in Sunple	in Sample	in Sample	an Sample		in Sample		an Sample	
		(ppro)	(ppm)	(ypra)	(ppu)	(DDIN)	(1000)	(ppm)	those .	
						~~~~~~~~~~	*****	*****		
	F54076	0.92	1.17	0.68						
	F54079	2.94	1.36	1.25	1.00	1.05	1.28	1.36	1.07	0.86
	F54082	1.40	1.75	0.95	0.86	1.37	1.28	0.71	1.17	1.21
GROUP 5	F54084	1.78	1.44	1.30	1.03	1.73	1.46	1.40		
Dose Level : 500 mg/kg	F54098	1.25	1.58	1.39	1.10	1.37	1.25	1.04		
	F54111	2.42	1.19	1.40	1.18	1.52	1.02	1.22	1.14	0.89
	F54112	1.05	1.47	1.65	1.25	1.63	1.45	0.90		
	F54113	2.23	1.40	0.66	1.17	1.44	1.55	1.17		
	F54116	2.61	4.56	1.32	1.20	1.69	1.15	1.92	. 1.08	1.00

000145

Page 2

HWI-159A.XLS

Date of the Analysis : 1995-05-04 08:18 Analysis File Name : C:\SKALAR\DATA\HWIDATA\SERUM\950504A1 **OutPut of : 950504A1** : DDW 1995-06-21 10:11 Operator

																								A	3	い 10 10 10 10 10	Ч	20	99	<b>s</b> .	1 any Ser	۔ مەنىيا
Activers																		91%	%16	65%	38%	113%	62%	89%	95%							
Mass Recovered (UE F-)																		0.14	0.15	0.15	0.09	0.34	0.19	0.27	0.29							
Mass Spiled (02.P.)																		0.15	0.15	0.23	0.23	0.30	0.30	0.30	0.30							
Cone (C 95 Soln (fgm)																		63.00	63.00	94.50	94.50	126.00	126.00	126.00	126.00							
mL PC 95 Solution Spited																		0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004							
Actual Ippul F- Ia Sample		~														0.77	0.48	1.37	1.47	1.46	0.87	3.42	1.87	2.69	2.86			0.84	0.61	0.46	0.34	
Ay Sampi (nil. ar Brand																0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10			0.10	0.10	0.10	0.10	Page 1
DI TISAB ( binlyn (ml)																2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0			2.0	2.0	2.0	2.0	<u>c</u>
es Recoracy	97%	98%		100%	101%	%66	%66	102%	%66	<b>%96</b>	102%	102%	<b>%8</b> 6	98%												95%						
Skaler Result (mm)	1.46	1.47	0.00	0.015	0.03	0.06	0.09	0.12	0.15	0.29	0.61	1.23	1.47	1.47	0.00	0.04	0.02	0.07	0.07	0.07	0.04	0.17	0.09	0.13	0.14	1.43	0.00	0.04	0.03	0.02	0.02	
Skalar Standard (ppro)	1.50	1.50		0.015	0.03	0.06	0.09	0.12	0.15	0.30	09.0	1.20	1.50	1.50												1.50						
Sample D	Tracer	Drift	Wash	Standard 1	Standard 2	Standard 3	Standard 4	Standard 5	Standard 6	Standard 7	Standard 8	Standard 9	Standard 10	Drift	Wash	Blk 1	Blk 2	Spk 63-1	Spk 63-2	Spk 94.5-1	Spk 94.5-2	Spk 126-1	Spk 126-2	Spk 126-3	Spk 126-4	Drift	Wash	F54081-4	F54075-4	F54107-4	F54105-4	
Sample #	1	2	3	4	\$	9	7	œ	6	10	11	12	13	14	15	16	17	18	- 19	20	21	22	23	24	25	26	27	28	29	30	31	

000226

Sample Kample Sta Barno Kample Sta B	32 F54074-4	33 Blk-1	34 Blk-2	35 Spk 63-1	36 Spk 63-2	37 Spk 63-3	Drift	39 Wash	40 Spk 126-1	41 Spk 126-2	42 Spk 126-3	43 Spk 126-4	44 Spk 126-5	45 Spk 126-6	46 Spk 126-7	47 F54085-4	48 F54080-4		50 Drift			53	54		56 F54091-4	57 Blk I	58 Blk 2		60 Spk 2	ίĽ4	62 Drift 1	0 63 Wash	C 64 F54102-4		66 F54080-4	67 F54106-4
Skalar Skalar Standard Result (tipm) (bjen)	0.03	0.83	0.40	0.08	0.09	0.10	1.50 1.46	0.00	0.14	0.14	0.14	0.15	0.13	0.15	0.12	0.05	0.03	0.03	1.50 1.47	0.00	0.03	0.02	0.02	0.02	0.02	0.02	0.01	0.08	0.08	0.02	1.50 1.44	0.00	0.02	0.01	0.03	0.03
Active DI TISA Recovery final ve (InU)							98%												%86												%96					
8		2.0 0.		2.0 0.													2.0 0.											2.0 0.						2.0 0.		
sy Sangal - Actual (mis of ppm [- grinns) in Sampl	0.10 0.51													10 3.07			0.10 0.56				0.10 0.53													0.10 0.28	0.10 0.57	0.10 0.68
	l	9								3 0.004			8 0.004		5	8	5	~			~	3	5	6	5	4	Ś	C	-	~			~	~	7	~
nl. FC 9.5 Conc Solution PC 95 Solu Spikod (ppm)				63.00	63.00	63.00			126.00	126.00	126.00	126.00	126.00	126.00																						
Mars Spiked (18 F.)				0.15	0.15	0.15			0.30	0.30	0.30	0.30	0.30	0.30																						
Mars % Reinstad Reinsty (08 F-)				0.15	0.19	0.19			0.28	0.28	0.27	0.29	0.26	0.31																						
% Recry				101%	123%	127%			92%	94%	%06	%16	85%	101%																						

HWI-159A.XLS

000227

000147

ç

	mLPC 95 Conc Mans Mags 9.	olulion FC 93 Sola Spiket - Razward Recover Selfat (2003) - 25 - 25 - 25 - 25 - 25 - 25 - 25 - 2		A TE DOW "Izilgs																											
2		ispan 1-c - >> 30 Samule		980	0.40	0.50	0.25	0.12	86.0	04.0		030	115	0.74	0.43		0.20	2.61	1.25	1 78	2.94	•		2.23	2.42	1.40	0.92	0.86	0 32		
	Of Sampl	CERT OF	1000 <b>-1000-1000-100</b> 0	0.10	010	010	010	010	010	24.2		0 10	010	01.0	010	010	010	010	010	0 10	0.10	1		0.10	0.10	0.10	0.10	0.10	0.10		
	DI:TISAB	(mL)		2.0	2.0	2.0	2.0	2.0	2.0			2.0	2.0	2.0	0 6	2.0	2.0	2.0	2.0	2.0	2.0			2.0	2.0	2.0	2.0	2.0	2.0		
	Na De seren	(Internet)								97%												%66					÷			98%	
	Skalar Bæult	(DDH)		0.02	0.02	0.02	0.01	0.01	0.01	1.46	0.00	0.02	0.01	0.01	0.02	0.01	0.01	0.13	0.06	0.09	0.15	1.48	0.00	0.11	0.12	0.07	0.05	0.04	0.02	1.47	0.00
	Malar	(thu)								1.50												1.50								1.50	
	Samic	D.	*	F541089-4	F54,1088-4	F542087-4	F54M10-4	F54096-4	F54090-4	Drift	Wash	F54078-4	F54101-4	F54095-4	F54093-4	F54071-4	F54108-4	F54116-4	F54098-4	F54084-4	F54079-4	Drift	Wash	F54113-4	F54111-4	F54082-4	F54076-4	F54114-4	F54109-4	Drift	Wash
	Sampie	.#		68	69	70	71	72	73	74	75	76	<i>LL</i>	78	<b>7</b> 9	80	81	82	83	84	85	86	87	88	89	06	16	92	93	94	95

à

HWI-159A.XLS

000228

000148

6

Page 3

HWI-159B.XLS

 1995-06-21
 10:15
 OutPut of : 950504B1

 Operator
 : DDW

 Date of the Analysis : 1995-05-04
 13:07

 Analysis File Name
 : C:\SKALAR\DATA\HWIDATA\SERUM\950504B1

																										F	łm	D	Т	4	2020	ی مر مه لې	5 5 . 1 	
1 Records																									132%									
Mass Recovered (IIE F.)																									0.20									
Mass Spikod (tig Fa)																									0.15									
Conc PC.95 Soli (900)																									63.00			•						
Solution Solution Spiked																									0.004									
Actual Ippur P- In Sample																0.64	0.40	0.55	0.31	0.35	0.62	0.71	0.42	1.33	2.00			1.55	0.73	0.58	0.43			
PTTISAB (Try Sampi Anal vol (truk of (truk) grame)																0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10			0.10	0.10	0.10	0.10		Page 1	
DI TISAE Attal yol (nt.)																2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0			2.0	2.0	2.0	2.0			
ac Recovery	<b>%8</b> 6	98%		93%	104%	103%	67%	101%	100%	<i>%L6</i>	101%	102%	98%	97%												96%								
Shalar Reault (ppm)	1.47	1.47	0.00	0.014	0.03	0.06	0.09	0.12	0.15	0.29	0.61	1.23	1.48	1.45	0.00	0.03	0.02	0.03	0.02	0.02	0.03	0.04	0.02	0.07	0.10	1.44	0.00	0.08	0.04	0.03	0.02			
Skalar Standard (ppm)	1.50	1.50		0.015	0.03	0.06	0.09	0.12	0.15	0.30	09.0	1.20	1.50	1.50												1.50								
Surgio UD	Tracer	Drift	Wash	Standard 1	Standard 2	Standard 3	Standard 4	Standard 5	Standard 6	Standard 7	Standard 8	Standard 9	Standard 10	Drift	Wash	F54075-8	F54081-8	F54105-8	F54107-8	F54074-8	F54085-8	F54086-8	BLK-1	BLK-2	SPK 1	Drift	Wash	SPK 2	F54104-8	F54077-8	F54083-8			
Sanpie #		2	ю	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31			

000229

		0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10
93% 93% 101%		11.11         13.11         13.11         13.11         13.11         13.11         13.11         13.11         13.11         13.11         13.11         13.11         13.11         13.11         13.11         13.11         13.11         13.11         13.11         13.11         13.11         13.11         13.11         13.11         13.11         13.11         13.11         13.11         13.11         13.11         13.11         13.11         13.11         13.11         13.11         13.11         13.11         13.11         13.11         13.11         13.11         13.11         13.11         13.11         13.11         13.11         13.11         13.11         13.11         13.11         13.11         13.11         13.11         13.11         13.11         13.11         13.11         13.11         13.11         13.11         13.11         13.11         13.11         13.11         13.11         13.11         13.11         13.11         13.11         13.11         13.11         13.11         13.11         13.11         13.11         13.11         13.11         13.11         13.11         13.11         13.11         13.11         13.11         13.11         13.11         13.11         13.11         13.11 <th< td=""></th<>

HWI-159B.XLS

3

Mass Govered

000150
--------

8

HWI-159B.XLS	DI-TISAE QP Shupt Actual mL PC 95 Conc. Mass. Mass. Mass. 6 fuel vol. (mL or ppm F- Solution FC 92 Sola Spikel Recovery (mL) grammin (a.Smikel (ppm)) (ag.F.) ((g.F.))					·			Page 3
	Recover	101%							
	Skalar Result (purt)	1.51 0.00							
	Skalar Standard (TPDI)	1.50							
	Stephe (1)	Drift Wash					·		
	Sample	68 69							
				00	00231		000	151	

HWI-159C.XLS

Date of the Analysis : 1995-05-08 07:30 Analysis File Name : C:\SKALAR\DATA\HWIDATA\SERUM\950508A1 OutPut of : 950508A1 MDD : 1995-06-13 13:25 Operator

																											Qu				<b>℃\</b> ⁰	
																											10					Sil many
																										56	32	4	مەن - 1	د >2	ien S	Sum
Na Record																		110%	117%							J		- 1		-		
Mass Recovered (up F1)																		0.17	0.18													
Mass Spiked (ug.F.A)																		0.15	0.15													
nd, FC, 95 Conc Solution FC 29 Solu Spikel (1911)																		63.00	63.00									•				
nd, FC 95 Solution Spiked																		0.004	0.004													·
Actual ppin.B-		-														09.0	0.26	1.66	1.77	0.63	0.43	09.0	0.40	0.42	0.29			0.70	0.81	1.22	0.98	
DI TISAB (by Sampl fund vol (mi, of fund) (mi.)																0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10			0.10	0.10	0.10	0.10	Page 1
																2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0			2.0	2.0	2.0	2.0	
Recovery	96%	98%		93%	104%	100%	104%	<b>%96</b>	103%	%96	101%	103%	<b>98%</b>	98%												%16						
Statar Result (tpm)	1.45	1.47	0.00	0.014	0.03	0.06	0.09	0.12	0.15	0.29	0.61	1.24	1.46	1.47	00.00	0.03	0.01	0.08	0.09	0.03	0.02	0.03	0.02	0.02	0.01	1.45	00.0	0.04	0.04	0.06	0.05	
Skalard Standard (pum)	1.5	1.5		0.015	0.03	0.06	0.09	0.12	0.15	0.3	0.6	1.2	1.5	1.50												1.50						
Samto	Tracer	Drift	Wash	Standard 1	Standard 2	Standard 3	Standard 4	Standard 5	Standard 6	Standard 7	Standard 8	Standard 9	Standard 10	Drift	Wash	BIK 1	BIK 2	Spk 1	Spk 2	F54075-12	F54081-12	F54105-12	F54107-12	F54074-12	F54085-12	Drift	Wash	F54086-12	F54104-12	F54077-12	F54083-12	
Sample #	-	5	с	4	5	9	7	80	თ	10	1	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	
																											~	~	<u> </u>		-0	

000232

000152

UQW 122195

S
$\overline{\mathbf{x}}$
8
9
ŝ
7
5
≥
-

Skalar

Skalar 

DI/TISAB Qis Sample Actual mi, FC 95 Conc. Mars Mars

Actual         Actual<																			0	0	);	23	IJ	5								;	0	0	01	15	រា	
Weiler (Main (1993)         No. DUTSAB (0: Samp) (19)         Amol (19)         Amol (19) <th< th=""><th>Sample</th><th>32</th><th>33</th><th>34</th><th>35</th><th>36</th><th>37</th><th>38</th><th>39</th><th>40</th><th>41</th><th>42</th><th>43</th><th>44</th><th>45</th><th>46</th><th>47</th><th>48</th><th>49</th><th>50</th><th>51</th><th>52</th><th>53</th><th>54</th><th>55</th><th>56</th><th>57</th><th>58</th><th>59</th><th>60</th><th>61</th><th>62</th><th>63</th><th>64</th><th>65</th><th>66</th><th>67</th><th></th></th<>	Sample	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	
Matrix         Matrix<	Sample	F54094-12	F54100-12	F54091-12	F54097-12	F54102-12	F54108-12	Drift	Wash	F54077-12	F54071-12	F54093-12	F54095-12	F54101-12	F54110-12	F54096-12	F54090-12	F54078-12	F54088-12	Drift	Wash	F54106-12	F54089-12	F54087-12	F54080-12	F54092-12	F54109-12	F54114-12	F54076-12	F54113-12	F54082-12	Drift	Wash	F54111-12	F54098-12	F54084-12	F54079-12	
Matrix         Matrix<	Malar Standard (fipol)							1.50												1.50												1.50						
Actual of FC 05 Conc. Max 103 103 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.66 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00		0.05	0.03	0.04	0.03	0.02	0.01	1.47	0.00	0.02	0.00	0.00	0.00	0.00	0.00	00.0	0.02	0.02	0.04	1.46	0.00	0.05	0.03	0.03	0.03	0.02	0.03	0.04	0.03	0.03	0.05	1.44	0.00	0.07	0.07	0.07	0.06	
Actual of FC 05 Conc. Max 103 103 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.66 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Roovery							%86												97%												%96						
Actual of FC 05 Conc. Max 103 103 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.66 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	DI TISAE final vol (mL)	2.0	2.0	2.0	2.0	2.0	2.0			2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0			2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0			2.0	2.0	2.0	2.0	
Actual of FC 05 Conc. Max 103 103 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.66 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	I Otv Saup (nl. st grans)	0.10	0.10	0.10	0.10	0.10	0.10			0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10			0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10			0.10	0.10	0.10	0.10	Page 2
A Sector	Actual ppm F- it: Sample	1.03	0.62	0.00	0.67	0.46	0.20		-	0.39	0.00	0.00	0.00	0.00	0.00	0.04	0.49	0.32	0.79			0.96	0.65	0.64	0.53	0.44	0.64	0.72	0.68	0.66	0.95		·	1.40	1.39	1.30	1.25	
	<u>e</u>																																					

.

j1

	DITISAB ON Sampi Actual mi FC 93 Conc. Mass. Mass. 94 final vol. (mi vr. ppm F. Solution FC 95 Solu. Stated Recovered Recovery (toL) scatus) in Sample Spiked (ppm) (uEF) (ng Fa).						
	Actual ppm F- th Sample	1.32				·	
HWI-159C.XLS	tys Sampl (mi. or grants)	0.10					
-IWH	% DITTSAB Qry Sampt excrets final vol (rul or (ach) grams)	2.0					
	% Recrycity	101%					
	Skalar Result (pun)	0.07 1.52 0.00					
	Statar Statar Standard Result (tput) (purt)	1.50					
	Sauple ID	F54116-12 Drift Wash					
	Sample #	68 69 70					

000154

Y

Page 3

HWI-159D.XLS

Date of the Analysis : 1995-05-09 09:48 Analysis File Name : C:\SKALAR\DATA\HWIDATA\SERUM\950509A1 OutPut of: 950509A1 : DDW 1995-06-13 10:27 Operator

																								A۴	10	5T	4	22	04	۹ ۲	5. (	
																								6	52 32	مبر ٩	-1	59	1 -	S	en	d Jan
Records																		58%	60%	77%	86%	134%	94%	84%	96%							
Mass Recovered GREPO																		0.09	0.09	0.12	0.13	0.20	0.14	0.13	0.15							
Mass Spiked (ug En)																		0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15							
Conc FC 95 Soly (000)																		63.00	63.00	63.00	63.00	63.00	63.00	63.00	63.00							
ml. PC 95 Solution Spitked																		0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004							
Actual Ipun F In Sample																06.0	0.62	0.87	0.91	1.17	1.30	2.03	1.43	1.27	1.46			1.08	0.47	0.40	0.31	
Oty Sempl (mL.or grans)																0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10			0.10	0.10	0.10	0.10	Page 1
DI TISAB final yol (tal)																2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0			2.0	2.0	2.0	2.0	
Recovery	<b>%8</b> 6	100%		94%	106%	<b>%8</b> 6	101%	%66	102%	97%	101%	103%	%86	103%												101%						
Stater Result (fbut)	1.47	1.50	0.00	0.014	0,03	0.06	0.09	0.12	0.15	0.29	0.61	1.23	1.47	1.55	0.00	0.05	0.03	0.04	0.05	0.06	0.07	0.10	0.07	0.06	0.07	1.51	0.00	0.05	0.02	0.02	0.02	
Statar Standard (pum)	1.5	1.5		0.015	0.03	0.06	0.09	0.12	0.15	0.3	0.6	1.2	1.5	1.5												1.50						
Sampie 10	Tracer	Drift	Wash	Standard 1	Standard 2	Standard 3	Standard 4	Standard 5	Standard 6	Standard 7	Standard 8	Standard 9	Standard 10	Drift	Wash	Serum blk 1	Serum blk 2	Serum spk 1	Serum spk 2	Serum spk 3	Serum spk 4	Serum spk 5	Serum spk 6	Serum spk 7	Serum spk 8	Drift	Wash	F54105-24	F54075-24	F54081-24	F54107-24	
Sample #	-	7	3	4	5	9	٢	8	6	10	Π	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	

000235

000155

۱

ked Recovered Recovery F.) (ug.F.)													0.15 0.12			15 0.13																					
Solution FC 95 Solv. Spiked Spiked (nom) (ug.F.)																<b>6</b> 3.00 <b>0</b> . ⁻														·			·				
20000000000000											0.004	0.004	0.004	0.004	0.004	0.004																					
ppin F- ) in Sample	0.47			0.00		00.00				0.27				1.18	1.35	1.32	0.82	0.31			0.42	0.31	0.34	0.27	0.28	0.27	0.18	0.48	0.24	0.21			0.42	0.34	0.30	0.23	
ol (ml. or grans)	0.10	0.10	0.10	0.10	0,10	0.10			0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10			0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10			0.10	0.10	0.10	0.10	Page 2
Recrety final vol (nil.)	2.0	2.0	2.0	2.0	2.0	2.0			2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	. 0		2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0				2.0	2.0	2.0	2.0	
t Room		_ `		_	_	_	<b>%8</b> 6	_											100%												100%						
rd Result	0.02	0.02	0.04	0.00	0.00	0.0	1.47	0.00	0.03	0.01	0.04	0.06	0.06	0.06	0.07	0.07	0.04	0.02	1.51	0.00	0.02	0.02	0.02	0.01	0.01	0.01	0.01	0.02	0.01	0.01	1.49	00.00	0.02	0.02	0.02	0.01	
Standard (ppm)							1.50												1.50												1.50						
Aanpie 10	F54104-24	F54086-24	F54074-24	F54085-24	F54083-24	F54100-24	Drift	Wash	BIk 1	BIK 2	Spk 1	Spk 2	Spk 3	Spk 4	Spk 5	Spk 6	BIK 3	F54085-24	Drift	Wash	F54083-24	F54100-24	F54077-24	F54094-24	F54091-24	F54108-24	F54102-24	F54097-24	F54071-24	F54093-24	Drift	Wash	F54095-24	F54101-24	F54110-24	F54096-24	
Sample #	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	<u>66</u>	67	

Mass

DI/TISAB Ob Sampl Actual ml/FC 95 Cone Mass

9%

Skalar

Skalar

HWI-159D.XLS

000236

000156

	Record															115%	141%																					
	Mars Recovered (08.Fc)															0.17	0.21																					
	Mass bpiked (ug.Fr.)															0.15	0.15																-					
	Conc FC 95 Sola (BBB)															63.00	63,00																					
	mL FC 9.5 Solution Spiled															0.004	0.004																					
	Actual ppm F- itt Sample	1.02	0.52	0.48	16.10	8.70	11.48			1.21	1.02	0.78	0.04	0.41	0.29	1.75	2.13	1.17	0.86			1.18	1.10	1.03	1.00	1.20					0.88	66.0	0.81					
HWI-159D.XLS	City Sampl (mL or grans)	0.10	0.10	0.10	0.10	0.10	0.10			0.10	0.10	0.10	01.0	0.10	0.10	0.10	0.10	0.10	0.10			0.10	0.10	0.10	0.10	01.0					0.10	0.10	0.10				Page 3	
MH	<ol> <li>DI TISAB ON Sample concry final vol (mL or (mL) gram)</li> </ol>	2.0	2.0	2.0	2.0	2.0	2.0			2.0	7.U	2.0	0.4 (	2.0	2.0	2.0	2.0	2.0	2.0			2.0	2.0	2.0	2.0	7.7					2.0	2.0	2.0					
	<ol> <li>DI TISAF Recovery final vol (mL)</li> </ol>							15%												95%						%16	)	101%	101%					108%				
	Skalar Rissult (prot)	0.05	0.03	0.02	0.81	0.44	0.57	0.22	0.00	0.06	().	0.04	0.00 0	0.02	10.0	0.09	0.11	0.06	0.04	1.42	0.00	0.06	0.05	0.05	0.05	1.46	0,00	1.51	1.52	0.00	0.04	0.05	0.04	1.62	00.00			
	Skelar Standard (ppm)							1.50				-								1.50						1.50		1.50	1.50					1.50				
	Sample ID	F54090-24	F54078-24	F54088-24	F54106-24	F54089-24	F54087-24	Drift	Wash	F54080-24 F54002 34	47-700471	F54109-24		BIK 1 Bil 2	BIK 2	Spk I	Spk 2	F54113-24	F54082-24	Drift	Wash	F54111-24	F54098-24	F54084-24	F54079-24 E54116-24	Drift	Wash	Tracer	Drift	Wash	F54106-24	F54089-24	F54087-24	Drift	Wash			
	Stample #	68	69	۶,	17	-	^	74	5	16		8/		08	81	82	83	84	85	86	87	88	89	90	16	33	94	1	2	3	4	5	9	7	80			
						Janoles not		loaded -	4 4.44.											0	0	0;	23	37	,									0	00	)1	.5	2

•

3MA01502324

### 2807.0157

HWI-159E.XLS

1995-06-13 10:27 OutPut of : 950511A1 Operator : DDW Date of the Analysis : 1995-05-11 08:16 Analysis File Name : C:\SKALAR\DATA\HWIDATA\SERUM\950511A1

6329159 Su learnered Recovery Mass Actual mLFC95 Conc Mass pum.P. Solution PC25 Soin Spiked n Sanoo 1.44 1.37 1.52 1.37 1.73 1.05 1.69 1.55 1.28 1.02 1.25 1.28 1.46 1.15 % DI TISAB Chy Sampi (uile Or 1112 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 Recovery final vol 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 96% 96% 102% 102% 96% 101% 103% 98% 98% 98% 101% 96% Rendi 0.016 Skalat Skalar (110115) 1.47 0.00 0.03 0.09 1.47 0.06 0.12 0.15 0.29  $\begin{array}{c} 1.23\\ 1.47\\ 1.51\\ 1.51\\ 0.07\\ 0.07\\ 0.08\\ 0.09\\ 0.09\\ 0.08\\ 0.08\\ 0.08\\ 0.08\end{array}$ 0.61 0.06 0.05 1.44 0.00 0.06 0.06 0.07 0.06 Standard (0000) 0.015 1.50 I.50 0.03 0.06 0.09 0.12 0.15 0.30 0.60 1.20 1.50 1.50 1.50 F54113-48 F54082-192 F54111-192 Standard 6 Standard 10 F54082-48 F54111-48 F54098-48 F54116-48 =54113-192 -54079-192 54084-192 -54116-192 Standard 2 Standard 3 Standard 4 Standard 5 Standard 7 Standard 8 Standard 9 =54084-48 54079-48 F54098-192 Standard 1 Samplo Wash Tracer Wash Wash Drift Drift Drift Sample e 000158 000238

١L

Page 1

- 24-2

42095.J

aus

																														_	exists.	561175,000							
	Se Records											%96	132%																		Jers,	<i>a</i>							
	Mars Recorded (06 F.)											0.15	0.20																		have a								
	Mass Spiked (ug F.)											0.15	0.15																		Blank insurbed in tray - no such sangle exists;								
	ni, FC 95 Conc Solution - FC 95 Soly Spikesi - Oppus											63.00	63.00																		فعالمعكم								
												0.004	0.004																	į	-Blank 1								
ŝ	Aunal ppm F. at Sample	1.17	0.71	1.22	1.04	1.36	1.40	-		1.92	0.38	1.45	2.00	1.17	1.14	1.07	1.08	1.21	0.89			0.86	1.00	0.63	09.0	1.79	2.15	1.14	0.74	0.61	86.0			1.05	1.47	1.65	1.25		
HWI-159E.XLS	DI TISAB ON Sanpi final vol (ni. or (ni.) grams)	0.10	0.10	0.10	0.10	0.10	0.10			0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10			0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	916			0.10	0.10	0.10	0.10	Page 2	
лн	DI TISAB final vol (mL)	2.0	2.0	2.0	2.0	2.0	2.0			2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0			2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0			2.0	2.0	2.0	2.0		
	Radivers							%66												101%												100%							
	Skatar Result (ppm)	0.06	0.04	0.06	0.05	0.07	0.07	1.48	0.00	0.10	0.02	0.07	0.10	0.06	0.06	0.05	0.05	0.06	0.04	1.52	00.0	0.04	0.05	0.03	0.03	0.09	0.11	0.06	0.04	0.03	0.00	1.50	0.00	0.05	0.07	0.08	0.06		
	Skalar Standard (ppm)							1.50												1.50												1.50							
	Sample	F54113-360	F54082-360	F54111-360	F54098-360	F54079-360	F54084-360	Drift	Wash	F54116-360	BLK 1	SPK 1	SPK 2	F54082-D22	F54111-D22	F54079-D22	F54116-D22	F54082-D28	F54111-D28	Drift	Wash	F54079-D28	F54116-D28	F54099-4	F54099-8	F54099-12	F54099-24	F54099-48	F54099-192	F54099-360	F54009-361	Drift	Wash	F54112-4	F54112-8	F54112-12	F54112-24		
	Sample #	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67		
																																		~	~	~	• •		

000179

3MA01502326

st Remer				%66	129%	%16			70%	96%	102%		
Mars (constand (06 P.)				0.15	0.19	0.14			0.21	0.29	0.31		
Mass Spiked (06 ED)				0.15	0.15	0.15			0.30	0.30	0.30		
Conc RC 95 Solo				63.00	63.00	63.00			126.00	126.00	126.00		
mL.PC.95 Solution Spiked				0.004	0.004	0.004			0.004	0.004	0.004		
Actual ppn F: ui Semple	1.63	1.45	0.90	1.50	1.95	1.38			2.12	2.90	3.07		
Qiy Sampl (nL or grans)	0.10	0.10	0.10	0.10	0.10	0.10			0.10	0.10	0.10		
DI,TTSAB fual vol (ml)	2.0	2.0	2.0	2.0	2.0	2.0			2.0	2.0	2.0		
Recrets							<b>%86</b>					100%	
Skatar Result (IPIM)	0.08	0.07	0.05	0.08	0.10	0.07	1.47	0.00	0.11	0.15	0.15	1.50	0.00
Skalar Standard (trem)							1.50					1.50	
Sanple ID	F54112-48	F54112-192	F54112-360	SPK 63-1	SPK 63-2	SPK 63-3	Drift	Wash	SPK 126-1	SPK 126-2	SPK 126-3	Drift	Wash
Sample	68	69	70	71	72	73	74	75	76	77	78	79	80

HWI-159E.XLS

000240

000160

Page 3

ť

HWI-159F.XLS

Analysis File Name : C:\SKALAR\DATA\HWIDATA\SERUM\950524A1 OutPut of: 950524A1 Date of the Analysis : 1995-05-24 11:39 : DDW 1995-06-13 12:41 Operator

Solution FC 95 Solin Spiked Recovered Recovery

Actual - n.l. PC 95 Conc ppre Possinipa - PC 95 Sola

DITISAB ON Sampl y final yob (rd. of

Statar % DITTISAR Q Result Recovery final vol

Skalar Standard

Sample Sample

Mass Mass 94

																					Ar S 6	10 10 10 10		-1	22 20 59		به ۲۵ ۲۵ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰	r r r
																	111%	101%	102%	%06	114%	110%	109%					
																	0.17	0.15	0.15	0.14	0.17	0.17	0.16					
																	0.15	0.15	0.15	0.15	0.15	0.15	0.15					
																	63.00	63.00	63.00	63.00	63.00	63.00	63.00					
																	0.004	0.004	0.004	0.004	0.004	0.004	0.004					
															0.66	0.34	1.69	1.52	1.54	1.37	1.72	1.66	1.64	0.53			0.55	
															0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0,10	0.10			0.10	Page 1
															2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0			2.0	
97%	98%		120%	92%	95%	105%	%66	103%	95%	102%	104%	%16	%96								٩.				97%			
1.45	1.47	00.00	0.018	0.03	0.06	0.09	0.12	0.16	0.28	0.61	1.24	1.46	1.44	0.00	0.03	0.02	0.08	0.08	0.08	0.07	0.09	0.08	0.08	0.03	1.46	0.00	0.03	
1.5	1.5		0.015	0.03	0.06	0.09	0.12	0.15	0.3	0.6	1.2	1.5	1.50												1.50			
Tracer	Drift	Wash	Standard 1	Standard 2	Standard 3	Standard 4	Standard 5	Standard 6	Standard 7	Standard 8	Standard 9	Standard 10	Drift	Wash	BLK 1	BLK 2	SPK 63-1	SPK 63-2	SPK 63-3	SPK 63-4	SPK 63-5	SPK 63-6	SPK 63-7	BLK 3	Drift	Wash	BLK 4	
I	7	٣	4	Ś	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	

000241

HWI-159F.XLS

*	Č Ž													<i>7</i> %	02%	104%			79%	11%	1%														
	50 B													I	I	10			1	10	11														
Mass	Rucove (i)E F:													0.16	0.15	0.16			0.12	0.15	0.17														
lass	piked ig F-}													0.15	0.15	0.15			0.15	0.15	0.15														
Y	ola Sr																																		
Conc	EC 85 S													63.00	63.00	63.00			63.00	63.00	63.00														
FC 05	hition 314.51													.004	004	0.004			0.004	004	004													÷	
Int	2 F 9													0	0	o			Ö	Ö	Ö														
Actual	ppin ^{F.} Ia Sang	0.31	0.47	0.22	0.38	0.28	0.19	0.43	0.46	0.32			0.34	1.62	1.55	1.58	0.55	0.17	1.19	1.53	1.68	0.49			0.66	0.65	0.73	0.56	0.73	0.00	0.53	0.33	0.35	0.21	
Sampl	L of	.10	.10	0.10	.10	.10	.10	.10	.10	.10			.10	.10	.10	.10	.10	.10	.10	.10	10	0.10			10	10	10	10	10	10	10	10	10	0.10	2
B QU	E 54	0	0	0	0	0	0	0	0	0			0	0	0	0	0	0	0	0	0	0			0	Ó	Ö	°.	Ö	O	0	Ö	0.	0.	Page 2
VSII IC	final vo (mL)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0			2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0			2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	
56 I	3 <b>3</b> 61)										%66												98%												
	Rec										6												6												
Skalar	Result (IPIN)	0.02	0.02	0.01	0.02	0.01	0.01	0.02	0.02	0.02	1.49	0.00	0.02	0.08	0.08	0.08	0.03	0.01	0.06	0.08	0.08	0.02	1.47	0.00	0.03	0.03	0.04	0.03	0.04	0.00	0.03	0.02	0.02	0.01	
Skalat	Standard (ppm)										1.50												1.50												
S	Stat (p									~	-		~									~~	μ.		~~										
	4	F54088-48	F54099-48	F54089-48	F54087-48	F54080-48	F54092-48	F54109-48	F54114-48	F54088-DY8	Drift	Wash	F54099-DY8	SPK 63-8	SPK 63-9	SPK 63-10	BLK 1	BLK 2	SPK 63-1	SPK 63-2	SPK 63-3	F54089-DY8	Drift	Wash	F54087-DY8	F54080-DY8	F54092-DY8	F54109-DY8	F54114-DY8	F54088-D15	F54099-D15	F54089-D15	F54087-D15	F54080-D15	
	Sample	F54(	F54	F540	D	-	F540	SPF	SPk	SPK	m	B	SPk	SPK	SPK	F540	D	2	F540	F540	F540	F541	F541	F540	F540	F540	F540	F540							
	Sample #	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	

000242

HWI-159F.XLS

74 DI TISAB QI, Sampi Actual rd. FC 95 Conc. Mass. Mass. 95

Skalar Skelar

Radered Recordery (1gT-)																50%	81%	101%	%66				
Acovered Dig T-)																0.08	0.12	0.15	0.15				
																0.15	0.15	0.15	0.15				
Solution, FC 93 South Spiked Spiked (ppm) (10235)																63.00	63.00	63.00	63.00				
Solution Spiked																0,004	0,004	0.004	0.004				
ito Sample			0.43	0.50	0.29	0.32	0.27	0.29	0.34	0.23	0.34	0.34			0.36	0.76	1.22	1.53	1.50	0.36	0.52		
(all of grams)			0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10			0.10	0.10	0.10	0.10	0.10	0.10	0.10		
final vol (m1)			2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0			2.0	2.0	2.0	2.0	2.0	2.0	2.0		
Recovery	98%												%16									94%	
Result (ppth)	1.47	0.00	0.02	0.02	0.01	0.02	10'0	0.01	0.02	0.01	0.02	0.02	1.46	0.00	0.02	0.04	0.06	0.08	0.08	0.02	0.03	1.41	0.00
Standard (PPm)	1.50												1.50									1.50	
	Drift	Wash	F54092-D15	F54109-D15	F54114-D15	F54089-D22	F54087-D22	F54109-D22	F54114-D22	F54089-D28	F54087-D28	F54109-D28	Drift	Wash	F54114-D28	SPK 63-4	SPK 63-5	SPK 63-6	SPK 63-7	F54105-48HR	F54075-48HR	Drift	Wash
bungte Sangte #	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	<i>LL</i>	78	79	80	81	82	83	84

000243

000163

3MA01502330

WWW ~122192 995-05-04 16:44 AMDT 42095.1 OutPut of : 950504A1 6329.159 Serva oftware : version 6.1 c1990,93 **BEST COPY AVAILABLE** : DDW perator ate of the Analysis : 1995-05-04 08:18 nalysis File Name : C:\SKALAR\DATA\HWIDATA\SERUM\950504A1 luoride 1.5 alibration order = Inverse Logarithm lope : s = #.##### x = corrected value of the sample r x - c1 7 c1 = corrected value of the concentration 1  $esult = 10^{L}$ s = Slope of the electrode 2 = -0.000001 = 0.00063 0 = -1.24458luoride L alibration order = 2 Correlation : r = 0.99928 $esult = a2 * x^{2} + a1 * x + a0$ 2 = 0.00000 0.00018 1 = 0 = -0.00141Type : SA1000 Number : 1 ampler Sample Time : 50 sec. Wash Time : 120 sec. Air Time : 1 sec. : Single Take up sPecial : None needle Height : 70 mm. iluter needle Height : 80 mm dilution Factor : 10 dilution Volume : 2.5 ml. : 1 Resample Dilution runs : 1 User file : . TXT Reproces : No

000164

#### 22

#### 995-05-04 1.6:44

luoride 1.5	Path number : 3 Signal type : Debubbled Decolor : Yes system Number : 0 diLute : No Resample : No dil Threshold : 4095 diG output : 0 Window event : Off
	<pre>s1 sTandard : Ignore s2 sTandard : Ignore s3 sTandard : Ignore s4 sTandard : Ignore s5 sTandard : Ignore s6 sTandard : 0.150 s7 sTandard : 0.300 s8 sTandard : 0.600 s9 sTandard : 1.200 s10 sTandard : 1.500 Order : Inverse Logarithm Dimension : PPM</pre>
	<pre>start Value : 500 DU trigger Limit : 1800 Sec Peak shape : Pointed stArt ignore : 60 Sec eNd ignore : 120 Sec Measure window : 75 % Filter : No Regeneration : No formUla : output : ##.###</pre>
luoride L	Path number : 0 Signal type : Debubbled Decolor : No system Number : 0 diLute : No Resample : No dil Threshold : 4095 diG output : 0 Window event : Off

# BEST COPY AVAILABLE

### 000245

### 000165

23

#### 2807.0165

s1 sTandard	: 0.015
s2 sTandard	: 0.030
s3 sTandard	: 0.060
s4 sTandard	: 0.090
s5 sTandard	: 0.120
s6 sTandard	: 0.150
s7 sTandard	: Ignore
s8 sTandard	: Ignore
s9 sTandard	: Ignore
s10 sTandard	: Ignore
Order : 2	
Dimension : PH	PM
start Value	: 500 DU
trigger Limit	: 1800 Sec
Peak shape	: Pointed
stArt ignore	: 60 Sec
eNd ignore	: 120 Sec
Measure window	w:75 %
Filter	: No
Regeneration	: No
	4:=c3
output : #.	.####

.

BEST COPY AVAILABLE

### 000246

000166

3MA01502333

2807.0166

OutPut of : 950504A1

BEST COPY AVAILABLE

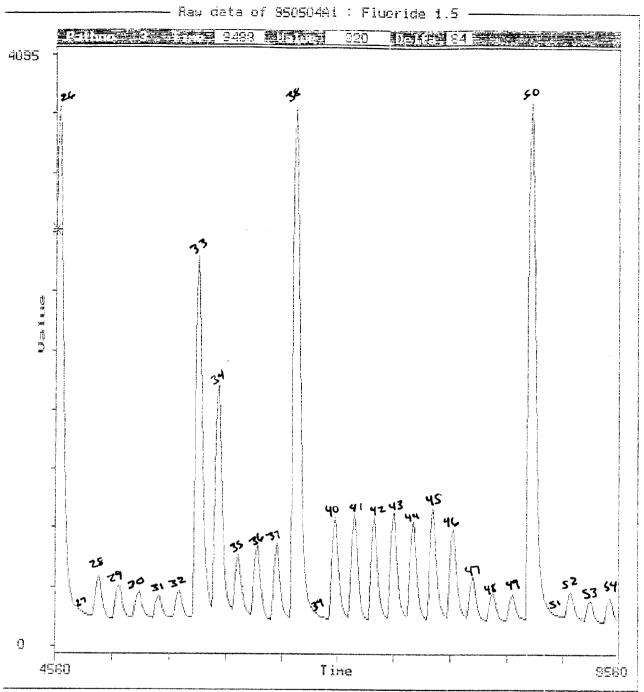
			Flu	uoride 1.5	5	Flu	loride L	
			PP.	м		PPI	м	
'os	Тур	Ident	Ch	Result F	Time	Ch	Result F Tim	e
t 012345678901234567890123456789012345678901234567890123	itdwssssssssdwuuuuuuuuuuuuuuuuuuuuuuuuuuu	Initial Wash Tracer Drift Wash Standard 1 Standard 2 Standard 3 Standard 4 Standard 5 Standard 6 Standard 7 Standard 8 Standard 7 Standard 8 Standard 9 Standard 10 Drift Wash Blk 1 Blk 2 Spk 63-1 Spk 63-2 Spk 94.5-2 Spk 94.5-2 Spk 126-1 Spk 126-2 Spk 126-3 Spk 126-3 Spk 126-4 Drift Wash F54081-4 F54075-4 F54075-4 F54075-4 F54075-4 F54075-4 F54074-4 Blk-1 Blk-2 Spk 63-2 Spk 63-3 Drift Wash Spk 126-1 Spk 63-2 Spk 63-3 Spk 63-3 Spk 63-3 Spk 126-2 Spk 126-3 Spk 126-5 Spk 126-5 Spk 126-7 F54085-4 F54080-4 F54080-4 F54080-4 F54080-4 F54080-4 F54080-4 F54080-4 F54083-4	333333333333333333333333333333333333333	0.057 1.462 1.467 0.057 0.065 0.073 0.090 0.109 0.132 0.153 0.288 0.609 1.226 1.474 1.472 0.057 0.070 0.095 0.098 0.098 0.098 0.098 0.099 0.095 0.098 0.098 0.099 0.070 0.095 0.098 0.098 0.099 0.070 0.070 0.070 0.070 0.070 0.070 0.095 0.098 0.098 0.098 0.098 0.098 0.098 0.098 0.070 0.073 0.066 0.070 0.1113 1.4647 0.144 0.151 0.129 0.072 1.467 0.057 0.072 1.467 0.057 0.072 1.467 0.057 0.072 1.467 0.057 0.072 1.467 0.057 0.072 1.29 0.072 1.467 0.057 0.072 1.467 0.057 0.072 1.467 0.057 0.072 1.467 0.057 0.072 1.467 0.057 0.072 1.467 0.057 0.072 1.467 0.057 0.072 1.467 0.072 1.467 0.072 1.467 0.072 1.467 0.072 1.467 0.072 1.467 0.072 1.467 0.072 1.0057 0.072 1.0057 0.072 1.467 0.072 1.0057 0.072 1.0057 0.072 1.0057 0.072 1.0057 0.072 1.0057 0.072 1.0057 0.072 1.0057 0.072 1.0057 0.072 1.0057 0.072 1.0057 0.072 1.0057 0.072 1.0057 0.072 1.0057 0.072 1.0057 0.072 1.0057 0.072 1.0057 0.072 1.0057 0.072 1.0057 0.072 1.0057 0.072 1.0057 0.072 1.0057 0.072 1.0057 0.072 1.0057 0.072 1.0057 0.072 1.0057 0.072 1.0057 0.072 1.0057 0.072 1.0057 0.072 1.0057 0.072 1.0057 0.072 1.0057 0.072 1.0057 0.072 1.0057 0.072 1.0057 0.072 1.0057 0.072 1.0057 0.072 1.0057 0.072 1.0057 0.072 0.072 1.0057 0.072 0.072 0.072 0.072 0.072 0.072 0.072 0.072 0.072 0.072 0.072 0.072 0.072 0.072 0.072 0.072 0.072 0.072 0.072 0.072 0.072 0.072 0.072 0.072 0.072 0.072 0.072 0.072 0.072 0.072 0.07	$\begin{array}{c} 652790\\ 912146783611711122222223333333344444555555566666667777777888888889993\\ 9026431171122222222333333333344444555555556666667777777888888889993\\ 9026423022222222333333333333444455555555556666666777777788888888999331\\ 90264230233333333333333333333333333333333$	***************************************	0.0963 1.0750 #.#### 0.1397 0.1417 0.1368 0.1467 0.1292 0.1533 0.1179 0.0492 0.0278 0.0291 1.0775 #.#### 0.0265	
								000247

000167

,

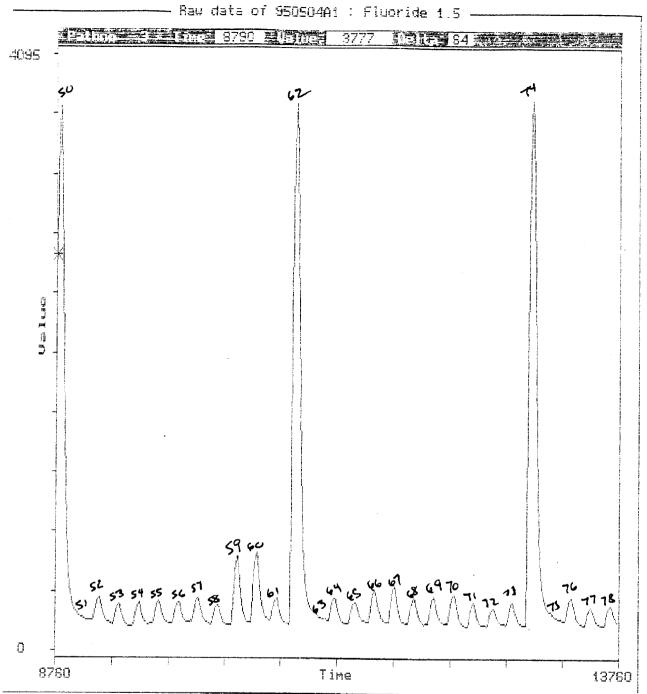
OutPut of : 950504A1

Fluoride 1.5 Fluoride L

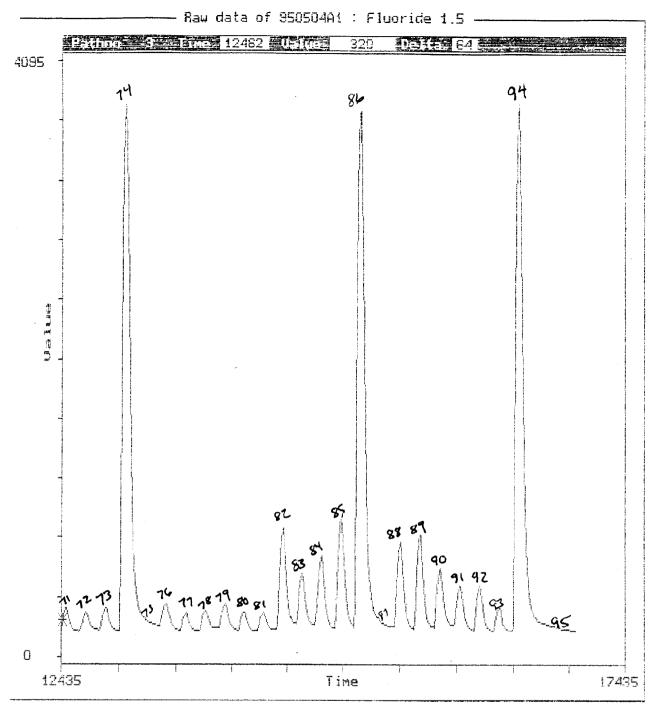

						-			
			PPI	М			PPI	M	
os	Тур	Ident	Ch	Result	F	Time	Ch	Result	F Time
4	u	F54094-4	3	0.067		9488	4	0.0181	0
5	u	F54100-4	3	0.067		9666	4		Ō
6	u	F54091-4	3	0.067		9842	4		0
7	u	Blk 1	3	0.069		10016	<b>4</b>		0
8	u	Blk 2	3	0.064		10191	4		0
9	u	Spk 1	3	0.103		10367	4	0.0800	0
0	u	Spk 2	3	0.105		10543	4	0.0835	0
1	u	F54097-4	3	0.067		10717	4	0.0200	0
2	d	Drift	3	1.436		10891	4	1.0537	0
3	W	Wash	3	0.057		11066	4	#.####	0
4	u	F54102-4		0.067		11241	4		0
ذ	u	F54092-4	3	0.064		11419	4		0
6	u	F54080-4	3	0.072		11591	4		0
7	u	F54106-4	3	0.075		11769	4		0
8	u 🔨	F542089-4		0.067		11942	4	0.0181	0
9	u 🌫	F54 <b>/</b> 088-4	3	0.067		12116	4	0.0200	0
0	u 🖈	F542087-4	3	0.070		12291	4		0
1	u ->-	F54/110-4	3	0.064		12462	4		0
2	u	F54096-4	3	0.061		12642	4		0
3	u	F54090-4		0.064		12818	4		0
4	đ	Drift	3	1.455		12992	4		0
5	W	Wash	3	0.057		13159	4		0
6	u	F54078-4		0.067		13342	4	* • • • • •	. 0
7	u	F54101-4	3	0.061		13516	4		0
8	u	F54095-4	3	0.063		13692	4		0
9 0	u	F54093-4	3	0.068		13868	4	0.0213	0
1	u	F54071-4	3 3	0.063		14042	4	0.0118	0
2	u	F54108-4 F54116-4	3	0.062		14213	4		0
3	น น	F54098-4	3	$0.139 \\ 0.091$		14393 14568	4	0.1307	0
4	u	F54084-4	3	0.108		14300 14744	4 4	0.0624 0.0889	0 0
5	u	F54079-4	3	0.103		14919	4 4		0
5	d	Drift	3	1.478		15093	4 4	1.0857	0
7	Ŵ	Wash	3	0.057		15332	4		0
8	u	F54113-4	3	0.124		15444	4		0
j	u	F54111-4		0.131		15619		0.1210	0 0
Ō	u	F54082-4	3	0.096		15795		0.0702	Ő
1	u	F54076-4	3	0.082		15967		0.0460	õ
2	u	F54114-4	3	0.080		16145		0.0431	0 0
3	u	F54109-4	3	0.065		16319	4	0.0160	õ
4	d	Drift	3	1.468		16493	4	1.0780	Õ
5	W	Wash	3	0.057		16650	4	#.####	ō
t	rw	RunOut Wash	3	0.057		16968	4	#.####	õ

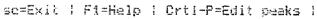
BEST COPT ANNUAL BEE

> DEW TE 5/4/95


000248

### 000168








sc=Exit : F1=Help : Crt1-P=Edit peaks :







### 2807.0171

995-05-04 16 oftware : v	:48 ersion 6.1 c199		of : 950504B1		Dow 4/22/95 AMDT 42095 6329-159 Su
perator	: DDW		<b>BEST C</b>	OPY AVAILABLE	
ate of the A	nalysis : 1995-0	05-04 13:0			
nalysis File	Name : C:\SK	ALAR\DATA	\HWIDATA\SERU	M\950504B1	
<b>luori</b> de 1.5 alibration o	rder = Inverse	Logarithm			
lope :	s = #.#####				
esult = 10	$\frac{x - c1}{s} \end{bmatrix} \qquad \begin{array}{c} x \\ c \\ s \\ s \end{array}$	= corred l = corred = Slope	cted value of cted value of of the elect	the sample the concentration rode	on 1
$\begin{array}{rcl} 2 &=& -0.000\\ 1 &=& 0.000\\ 0 &=& -1.246 \end{array}$	62				
luoride L alibration o	rder = 2				
orrelation :	r = 0.99962				
esult = a2 *	x² + a1 * x + a	<b>a</b> 0			
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	00 20 60				
ampler	Type Number Sample Time Wash Time Air Time Take up sPecial needle Height	: 1 : 50 sec : 120 sec : 1 sec : Single : None	с. З.		
iluter	needle Height dilution Facto dilution Volum Resample Dilution runs	or : 10 ne : 2.5 : 1	mm ml.		
	User file : Reproces : No		TXT		

•

### 000175

995-05-04 1.6:48

luoride 1.5	Path number : 3 Signal type : Debubbled Decolor : Yes system Number : 0 diLute : No Resample : No dil Threshold : 4095 diG output : 0 Window event : Off
	<pre>s1 sTandard : Ignore s2 sTandard : Ignore s3 sTandard : Ignore s4 sTandard : Ignore s5 sTandard : Ignore s6 sTandard : 0.150 s7 sTandard : 0.300 s8 sTandard : 0.600 s9 sTandard : 1.200 s10 sTandard : 1.500 Order : Inverse Logarithm Dimension : PPM start Value : 500 DU trigger Limit : 1800 Sec Peak shape : Pointed stArt ignore : 60 Sec eNd ignore : 120 Sec Measure window : 75 % Filter : No Regeneration : No formUla : output : ##.###</pre>
'luoride L	Path number : 0 Signal type : Debubbled Decolor : No system Number : 0 diluto : No

diLute : No Resample : No dil Threshold : 4095 diG output : O Window event : Off

### **BEST COPY AVAILABLE**

### 000176

Ad

#### 2807.0173

\$2 \$ \$3 \$ \$4 \$ \$5 \$ \$6 \$	Tandai Tandai Tandai Tandai Tandai Tandai	rd rd rd rd	::	0. 0. 0. 0.	015 030 060 090 120 150
	Tanda			Ignor	
	Tanda			Ignor	e
s9 s'	Tandai	rd	:	Ignor	e
s10 s'	Tanda	rd	:	Ignor	е
Order	: 2				
Dimens	ion :	PP	М		
start	Value		:	500	DU
trigge	r Lim:	it	:	1800	Sec
Peak s	hape		:	Poin	ited
stArt	ignore	э	:	60	Sec
eNd	ignore	Э	:	120	Sec
Measur	e wind	low	:	75	ક્ર
Filter			:	No	
Regene	ration	n	:	No	
formUl		c4	:=	c3	
output	:				

000177

20

3MA01502341

'os

't

;

i

.

}

.0

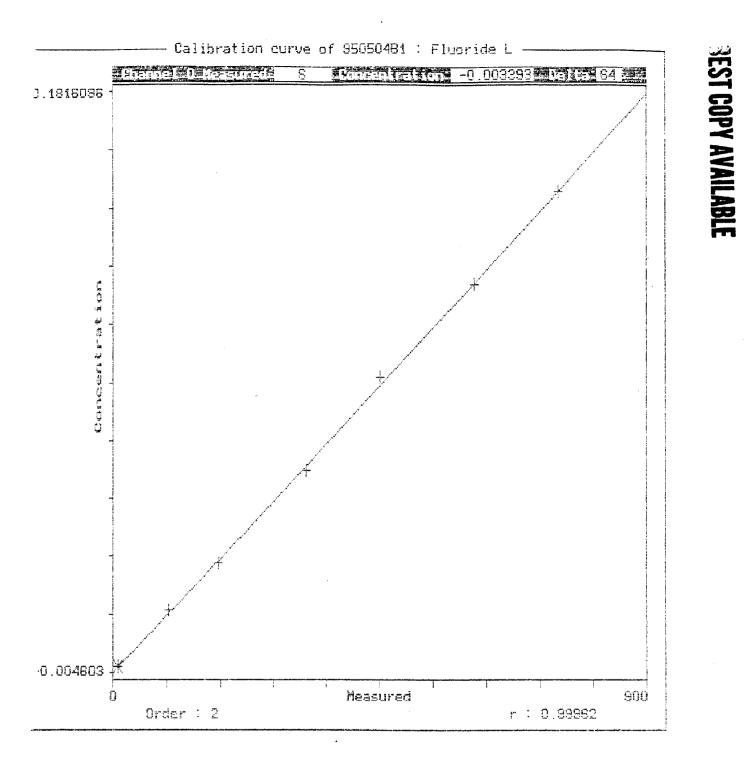
:6

;8

		Fluoride 1.5			Fluoride L			
		PPM			PPM			
Тур	Ident	Ch	Result F	Time	Ch	Result	F	Time
iw td w $1234567891$ d wuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu	Initial Wash Tracer Drift Wash Standard 1 Standard 2 Standard 3 Standard 3 Standard 4 Standard 5 Standard 6 Standard 7 Standard 8 Standard 9 Standard 10 Drift Wash F54075-8 F54081-8 F54074-8 F54075-8 F54085-8 F54085-8 F54085-8 F54086-8 BLK-1 BLK-2 SPK 1 Drift Wash SPK 2 F54104-8 F54077-8 F54083-8 F54094-8 F54091-8 F54091-8 F54091-8 F54093-8 F54093-8 F54093-8 F54093-8 F54093-8 F54096-8 F54088-8 Drift Wash F54088-8 Drift Wash	。	0.057 1.467 1.473 0.057 0.065 0.065 0.089 0.108 0.123 0.6028 1.475 0.291 1.448 0.073 0.066 1.475 1.448 0.075 0.066 0.075 0.066 0.075 0.066 0.075 0.066 0.075 0.066 0.075 0.066 0.075 0.066 0.075 0.066 0.075 0.066 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.066 0.065 0.065 0.065 0.066 0.065 0.065 0.066 0.065 0.065 0.066 0.065 0.065 0.065 0.066 0.065 0.065 0.065 0.066 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065	$\begin{array}{c} 652\\ 38290\\ 911111112224222233333333444445824121112377777777788888888888889\\ 1026441094848973361121780641598121112355555555555666666777777778888888888899\\ 1026441094848973361121771598123136555555555555556666667777777778888888888$	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	#.#### $0.0140$ $0.0311$ $0.0615$ $0.0877$ $0.1206$ $0.1501$ $0.2729$ $0.4486$ $0.7030$ $0.8073$ $0.7951$ #.#### $0.0199$ $0.0274$ $0.0199$ $0.0274$ $0.0176$ $0.0311$ $0.0357$ $0.0211$ $0.0663$ $0.1002$ $0.7912$ #.#### $0.0203$ $0.0227$ $0.0227$ $0.0227$ $0.0227$ $0.0227$ $0.0203$ $0.0061$		000000000000000000000000000000000000000
u	F54106-8	3	0.084	9315	4	0.0525		0



...

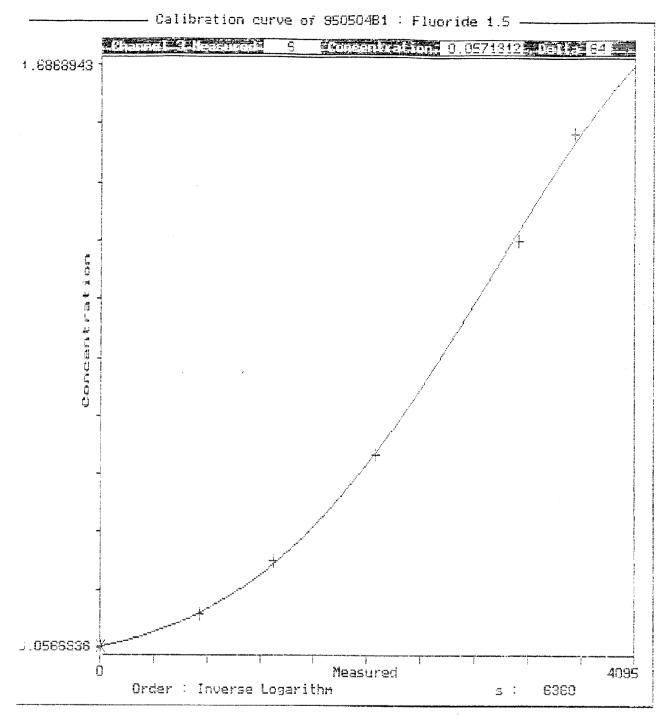

### OutPut of : 950504B1

			Fluoride 1.5			Fluoride L			
			PPM			PPM			
os	Түр	Ident	Ch	Result	F	Time	Ch Res	ult F	Time
4	u	F54080-8	_	0.075			4 0.0	364	0
5	u	F54092-8					4 0.0	433	0
6	u	F54109-8					4 0.0	333	0
7	u	F54114-8	3	0.077		10015	4 0.0	402	0
8	u	F54076-8	3	0.087		10193	4 0.0	585	0
9	u	F54082-8	3	0.105		10367	4 0.0	877	0
0	u	F54111-8	3	0.088		10543	4 0.0	593	0
1	u	F54113-8	3	0.094		10717	4 0.0	700	0
2	đ	Drift	3	1.512		10891	4 0.8	247	0
3	W	Wash	3	0.057		11093	4 #.#	###	0
4	u	F54079-8	3	0.093		11240	4 0.0	681	0
j	u	F54084-8	3	0.095		11416	4 0.0	718	0
6	u	F54098-8	3	0.099		11591	4 0.0	792	0
7	u	F54116-8	3	0.228		11766	4 0.2	236	0
8	d	Drift	3	1.512		11941	4 0.8	245	0
9	W	Wash	3	0.057		12097	4 #.#	###	Ō
t	rw	RunOut Wash	3				4 #.#		Ō



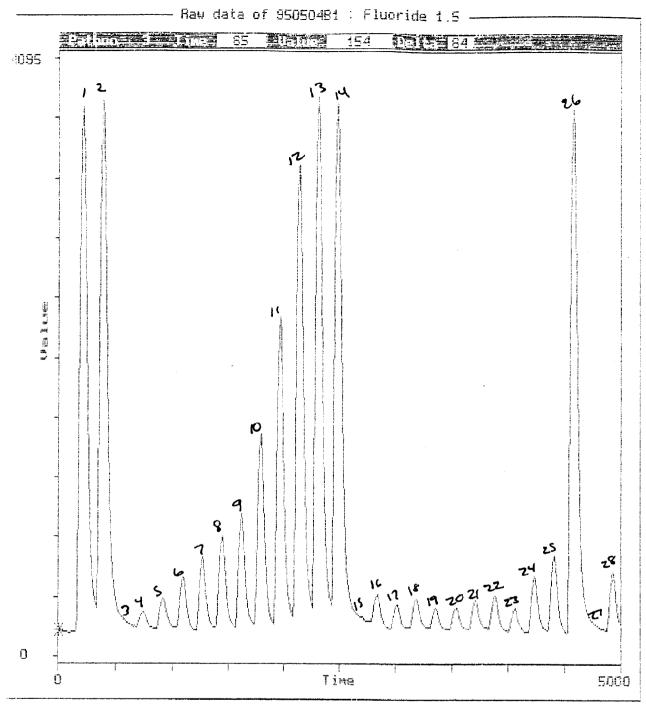
### 000256

### 000179




000180

28

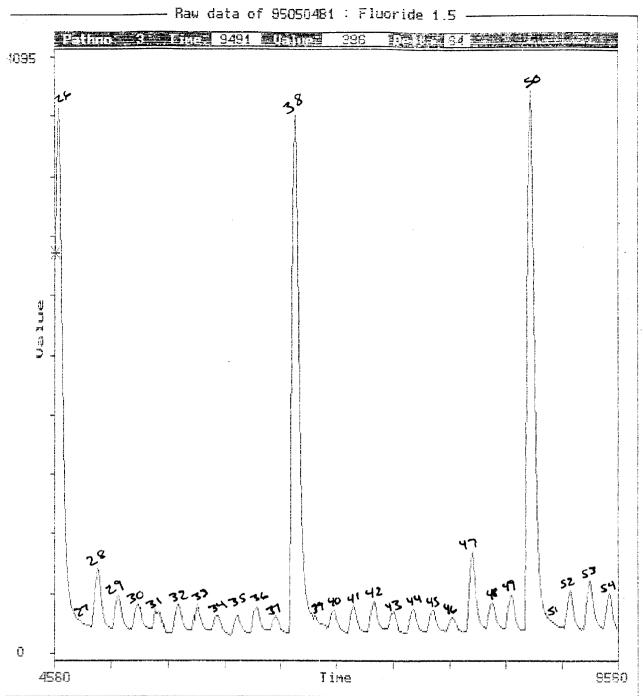

3MA01502344

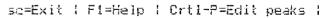
### 2807.0177



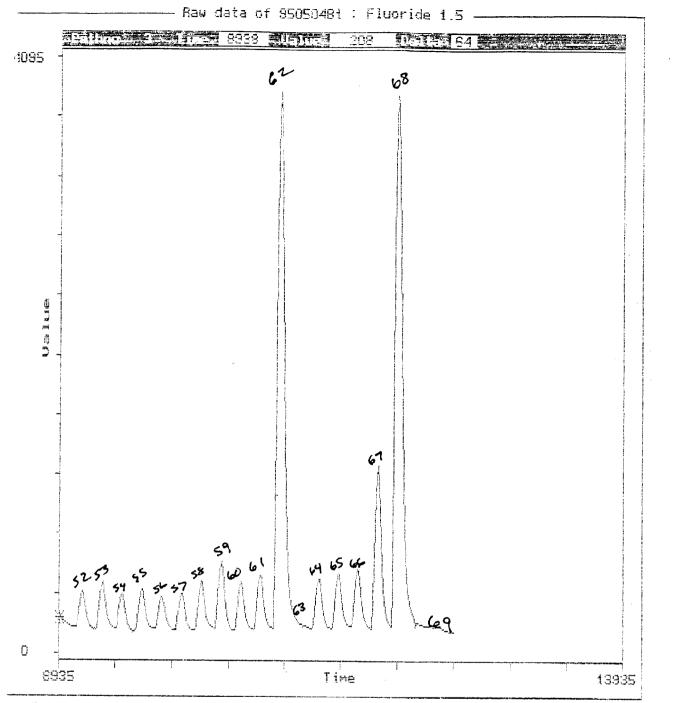
000258

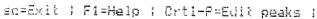
000181





sc=Exit | F1=Help | Crtl-P=Edit peaks |




000182


цУ





### 000260





3MA01502348

**BEST COPY AVAILABLE** 

995-05-08 12	:46	OutPut of :	950508A1		10,000 6/22/95 AND T 42095,1
oftware : v	ersion 6.1 c199	90,93		W 215255	6329-159 Seur
perator	: DDW		RE21 COL	Y AVAILABLE	
ate of the A	nalysis : 1995-0	05-08 07:30			
nalysis File	Name : C:\SKA	LAR\DATA\HWII	ATA\SERUM\950	0508A1	
luoride 1.5 alibration o	rder = Inverse [	Logarithm			
Slope :	s = #.#####				
$esult = 10^{2}$	$\frac{x - c1}{s} \end{bmatrix} \qquad \begin{array}{c} x \\ c1 \\ s \\ s \end{array}$	= corrected L = corrected = Slope of t	value of the value of the he electrode	sample concentratic	on 1
12 = -0.000 11 = 0.000 0 = -1.267	66				
'luoride L alibration o	rder = 2				
Correlation :	r = 0.99873				
esult = a2 *	x ² + a1 * x + a	10			
$\begin{array}{rcrr} 2 &=& -0.000\\ 1 &=& 0.000\\ 0 &=& -0.008 \end{array}$	21				
ampler	Type Number Sample Time Wash Time Air Time Take up sPecial needle Height	: 120 sec. : 1 sec. : Single : None			
iluter	needle Height dilution Facto dilution Volum Resample Dilution runs Vser file : Reproces : No	or : 10 ne : 2.5 ml. : 1 : 1 . TXT	· · ·		

.

000185

luoride 1.5	Path number : 3
	Signal type : Debubbled
	Decolor : Yes
	system Number : O
	diLute : No
	Resample : No
	dil Threshold : 4095
	diG output : 0
	Window event : Off
	4
	s1 sTandard : Ignore
	s2 sTandard : Ignore
	s3 sTandard : Ignore
	s4 sTandard : Ignore
	s5 sTandard : Ignore
	s6 sTandard : 0.150
	s7 sTandard : 0.300
	s8 sTandard : 0.600
	s9 sTandard : 1.200
	s10 sTandard : 1.500
	Order : Inverse Logarithm
	Dimension : PPM
	start Value : 500 DU
	trigger Limit : 1800 Sec
	Peak shape : Pointed
	stArt ignore : 60 Sec
	eNd ignore : 120 Sec
	Measure window : 75 %
	Filter : No
	Regeneration : No
	formUla :
	output : ##.###
'luoride L	Path number : 0
THATTHE D	Cignal turne . Debubbled

BEST COPY AVAILABLE

Signal type	: Debubbled
Decolor	: No
system Number	: 0
diLute	: No
Resample	: No
dil Threshold	: 4095
diG output	: 0
Window event	: Off

2807.0183

-

s1	sTandard	:	0.0	015
s2	sTandard	:	0.0	030
s3	sTandard	:	0.0	060
s4	sTandard	:		090
s5	sTandard	:	0.3	120
s6	sTandard	:	0.	150
s7	sTandard	:	Ignor	е
s8	sTandard		Ignor	
s9	sTandard	:	Ignor	e
s10	sTandard	;	Ignor	e
Order	r:2		-	
Dimer	nsion : PI	PM .		
star	t Value	:	500	DU
trig	ger Limit	:	1800	Sec
	shape	:		ted
stAr	t ignore	;	60	Sec
eNd	ignore		120	Sec
Measu	ure [~] windov		75	S
Filte		:	No	-
	neration	:	No	
form		4 : =		
outp		. # #		
	~~ · · · ·	• •• ••		

-

## 000187

Fluoride	1.5	Fluoride	L

			PPI	м			PPI	ч		
'os	Түр	Ident	Ch	Result	F	Time	Ch	Result	F	Time
t 0.1234567890123456789012345678901	T itdwsssssssdwuuuuuuuuuuuuuuuuuuuuuuuuuuuu	Initial Wash Tracer Drift Wash Standard 1 Standard 2 Standard 3 Standard 3 Standard 4 Standard 5 Standard 6 Standard 7 Standard 7 Standard 8 Standard 9 Standard 10 Drift Wash Blk 1 Blk 2 Spk 1 Spk 2 F54075-12 F54081-12 F54085-12 F54074-12 F54085-12 Drift Wash F54085-12 Drift Wash F54086-12 F54084-12 F54084-12 F54094-12 F54094-12 F54094-12 F54094-12 F54097-12 F54097-12 F54077-12 F54077-12 F54077-12 F54077-12 F54077-12 F54077-12 F54077-12 F54077-12 F54077-12 F54077-12 F54077-12 F54077-12 F54077-12 F54077-12 F54077-12 F54077-12 F54077-12 F54077-12 F54077-12 F54077-12 F54077-12 F54077-12 F54077-12 F54077-12 F54077-12 F54077-12 F54077-12 F54077-12	Ch 333333333333333333333333333333333333	Result 0.054 1.447 1.466 0.054 0.063 0.071 0.086 0.107 0.124 0.154 0.287 0.607 1.239 1.464 1.474 0.054 0.063 0.100 0.104 0.063 0.100 0.063 0.100 0.063 0.107 0.063 0.104 0.063 0.104 0.054 0.063 1.454 0.0654 0.066 0.071 0.066 0.066 0.071 0.066 0.067 0.066 0.067 0.066 0.067 0.066 0.067 0.066 0.067 0.066 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.066 0.066 0.071 0.066 0.071 0.066 0.071 0.066 0.071 0.066 0.066 0.071 0.066 0.066 0.075 0.075 0.075 0.067 0.066 0.066 0.066 0.075 0.075 0.075 0.075 0.067 0.066 0.066 0.075 0.075 0.075 0.067 0.067 0.066 0.066 0.075 0.075 0.075 0.075 0.067 0.067 0.066 0.066 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055		$\begin{array}{c} 65\\ 218\\ 323\\ 790\\ 1111\\ 1111\\ 222\\ 222\\ 233\\ 333\\ 333\\ 44\\ 44\\ 45\\ 55\\ 56\\ 319\\ 122\\ 631\\ 1111\\ 111\\ 222\\ 222\\ 223\\ 333\\ 333\\ $	Ch 4		F	Time 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-1 -2 -3 -4 -5 -6		F54071-12 F54093-12 F54095-12 F54101-12 F54110-12 F54096-12	3 3 3 3 3 3 3	$\begin{array}{c} 0.054 \\ 0.054 \\ 0.054 \\ 0.054 \\ 0.054 \\ 0.054 \\ 0.058 \end{array}$	A A A A A	7212 7387 7562 77 <b>3</b> 7 7912 8088				
-7 -8 -9 -0 1 -2 -3	u u d w u u	F54090-12 F54078-12 F54088-12 Drift Wash F54106-12 F54089-12	3 3 3 3 3 3 3 3 3 3 3 3	$\begin{array}{c} 0.068\\ 0.064\\ 0.075\\ 1.457\\ 0.054\\ 0.080\\ 0.072 \end{array}$		8264 8438 8611 8789 8995 9141 9315	4 4 4 4 4 4 4 4 4 4	0.0243 0.0160 0.0397 0.7356 #.#### 0.0478 0.0326		



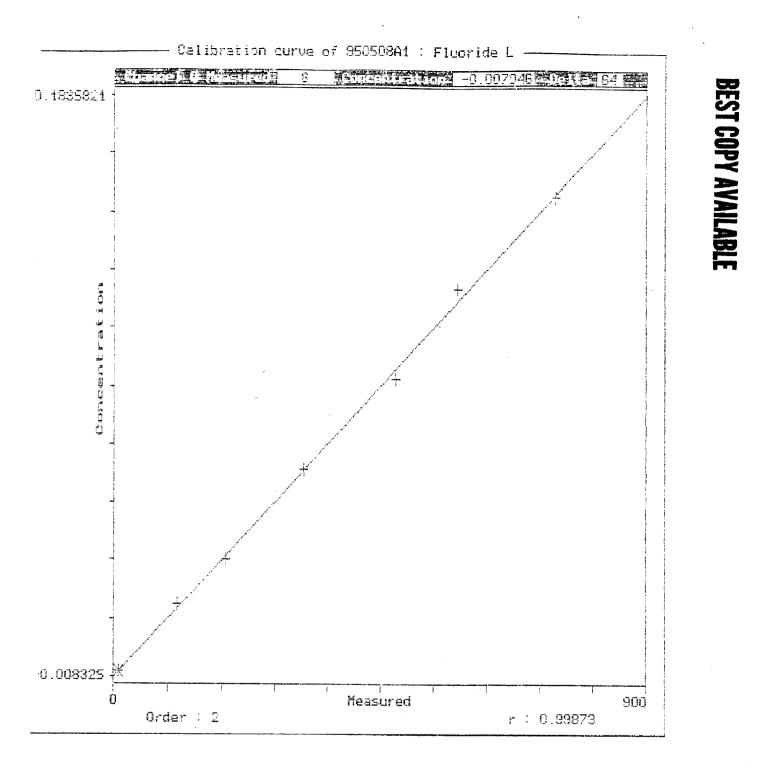
000265

٩

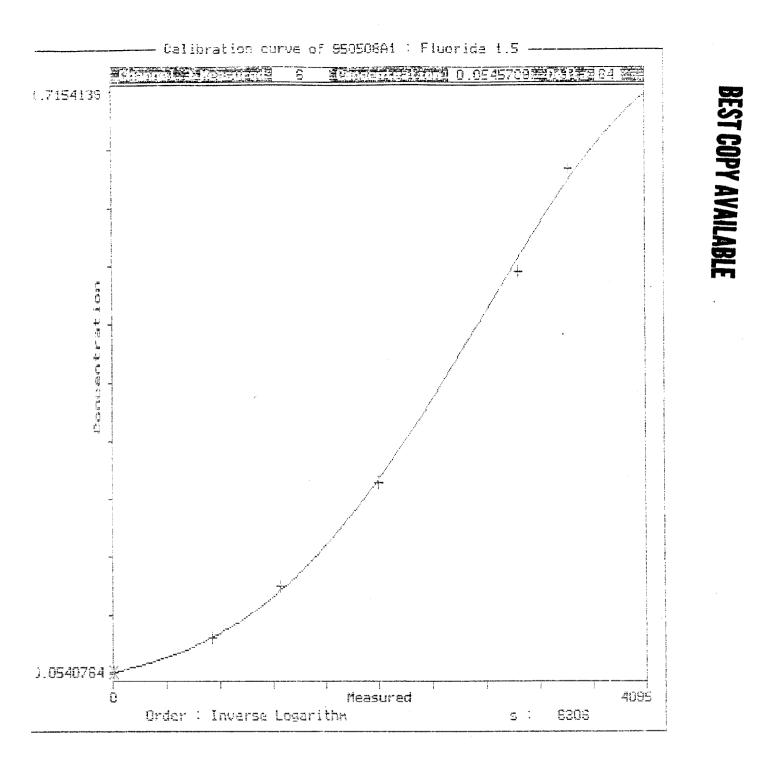
ŧ

#### OutPut of : 950508A1

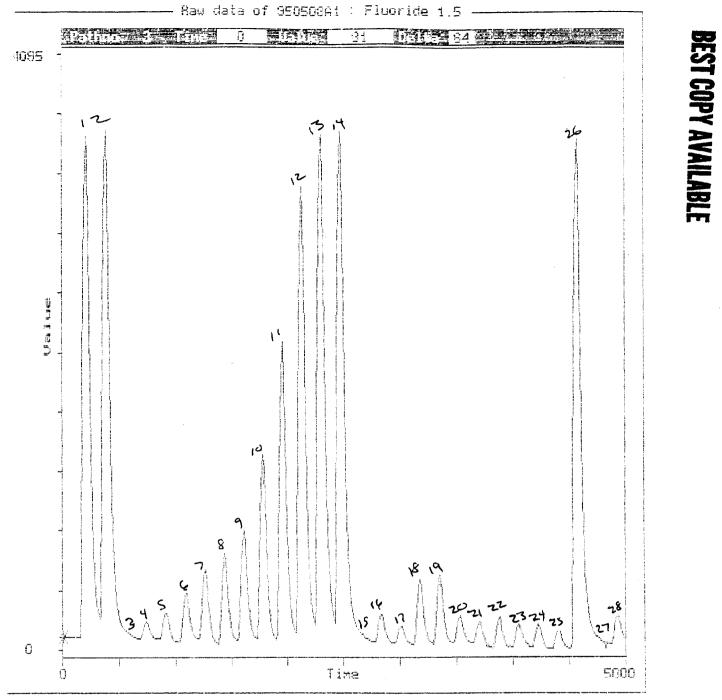
BEST COPY ANAILABLE


Fluoride	1.5	Fluoride	L
----------	-----	----------	---

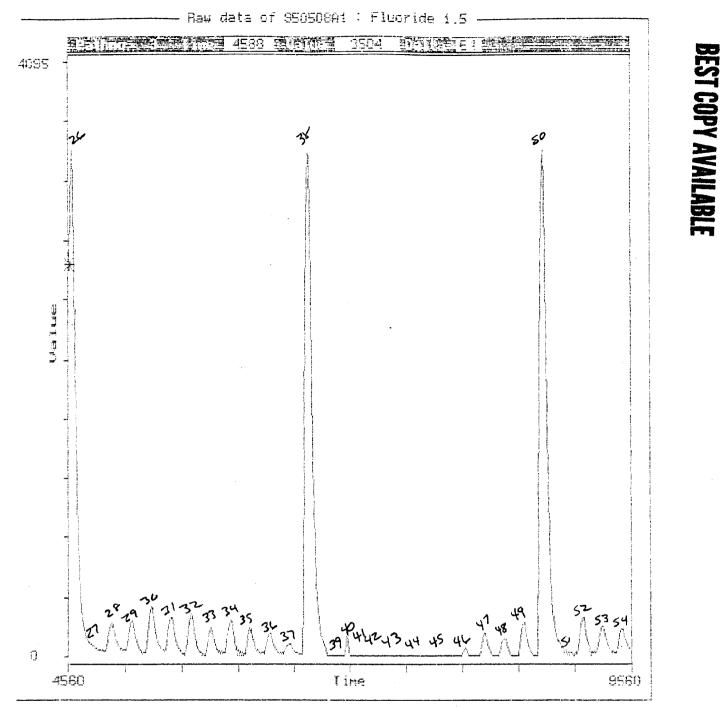
			PPI	Ч			PPI	4		
os,	Тур	Ident	Ch	Result	F	Time	Ch	Result	F	Time
. 4	u	F54087-12	3	0.072		9491	4	0.0320		0
5	u	F54080-12	3	0.069		9664	4	0.0266		0
6	u	F54092-12	3	0.067		9839	4	0.0222		0
7	u	F54109-12	3	0.072		10017	4	0.0322		0
8	u	F54114-12	3	0.074		10193	4	0.0362		0
9	u	F54076-12	3	0.073		10367	4	0.0341		0
0	u	F54113-12	3	0.072		10540	4	0.0330		0
1	u	F54082-12	3	0.080		10716	4	0.0475		0
2	d	Drift	3	1.442		10890	4	0.7301		0
3	W	Wash	3	0.054		11058	4	#.####		0
4	u	F54111-12	3	0.092		11242	4	0.0701		0
ڌ	u	F54098-12	3	0.092		11418	4	0.0697		0
6	u	F54084-12	3	0.089		11590	4	0.0650		0
7	u	F54079-12	3	0.088		11764	4	0.0623		0
8	u	F54116-12	3	0.090		11943	4	0.0659		0
9	d	Drift	3	1.515		12116	4	0.7597		0
0	W	Wash	3	0.054		12348	4	#.####		0
t	rw	RunOut Wash	3	0.054		12591	4	#.####		0

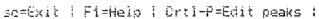

000189

3MA01502353


***** 1




000267




000191















	:09 ersion 6.1 c199				QQW 6/22/95 AMDT 42095.1 6329-159 Sewi
)perator	: DDW		BEST CO	PY AVAILABLE	
)ate of the A	nalysis : 1995-0	05-09 09:48			
Analysis File	Name : C:\SKA	ALAR\DATA\HWI	DATA\SERUM\95	0509A1	
'luoride 1.5 'alibration o	rder = Inverse I	Logarithm			
Slope :					
<pre>lesult = 10</pre>	$\frac{x - c1}{s} \end{bmatrix} \begin{bmatrix} x \\ c1 \\ s \end{bmatrix}$	= corrected L = corrected = Slope of	value of the value of the the electrode	sample concentration	n 1
$\begin{array}{rcl} 12 &=& -0.000\\ 11 &=& 0.000\\ 10 &=& -1.243\end{array}$	61				
<pre>?luoride L ;alibration o</pre>	rder = 2				
Correlation :	r = 0.99974				
<pre>lesult = a2 *</pre>	x ² + a1 * x + a	<b>a</b> 0			
i2 = 0.000 i1 = 0.000 i0 = -0.005	20				
;ampler	Type Number Sample Time Wash Time Air Time Take up sPecial needle Height	: 50 sec. : 120 sec. : 1 sec. : Single : None			
)iluter	needle Height dilution Facto dilution Volum Resample Dilution runs				
	User file : Reproces : No	. TXT			

995-05-09 15:09

luoride 1.5	Path number : 3 Signal type : Debubbled Decolor : Yes system Number : 0 diLute : No Resample : No dil Threshold : 4095 diG output : 0 Window event : Off
	s1 sTandard : Ignore
	s2 sTandard : Ignore
	s3 sTandard : Ignore
	s4 sTandard : Ignore
	s5 sTandard : Ignore
	s6 sTandard : 0.150
	s7 sTandard : 0.300
	s8 sTandard : 0.600
	s9 sTandard : 1.200
	s10 sTandard : 1.500
	Order : Inverse Logarithm
	Dimension : PPM
	start Value : 500 DU
	trigger Limit : 1800 Sec
	Peak shape : Pointed
	stArt ignore : 60 Sec
	eNd ignore : 120 Sec
	Measure window : 75 %
	Filter : No
	Regeneration : No
	formUla :
	output : ##.###
'luoride L	Path number : 0
	Signal type · Debubbled

BEST COPY AVAILABLE

Path number : 0 Signal type : Debubbled Decolor : No system Number : 0 diLute : No Resample : No dil Threshold : 4095 diG output : 0 Window event : Off

000273

000196

-

-1	amondord . 0.015
s1 s2	sTandard : 0.015
	sTandard : 0.030
s3	sTandard : 0.060
s4	sTandard : 0.090
<b>s</b> 5	sTandard : 0.120
s6	sTandard : 0.150
s7	sTandard : Ignore
s8	sTandard : Ignore
s9	sTandard : Ignore
s10	sTandard : Ignore
Ordei	: 2
Dimer	sion : PPM
start	Value : 500 DU
trigg	er Limit : 1800 Sec
Peak	shape : Pointed
stArt	ignore : 60 Sec
eNd	ignore : 120 Sec
Measu	re window : 75 %
Filte	
	eration : No
form	
outpu	
υμερι	.t : #.####

os

t

0

<u>1</u>2

3

4

5

б

7

8

9

0

1 2

3

4

5

6

7

8

9

0

1

2

3

4

ڌ

6

7

8 d

.9

.0

1

:2

.3

.4

-5

.7

.9 u

:0 d

,1

÷2

3

u

u

u

u

u

u

u

u

u

W

u

u

u

u

u

u .6 u

u

W

u

u

-3 u

Rluorido 1 5 Fluoride L

5111

5282

5464

5635

5814

5994

6336

6508

6688

6927

7038

7210

7391

7565

7739

7912

8091

8263

8439

8615

8789

9028

9142

9313

4 0.0236

4 0.0202

4 0.0153

4 0.0236

4 0.0175

4 0.0352

4 #.####

4 #.####

4 #.####

4 0.7909

4 #.####

4 0.0310

4 0.0137

4 0.0402

4 0.0553

4 0.0578

4 0.0592

4 0.0674

4 0.0658

4 0.0412

4 0.0155

4 0.8050

4 #.####

4 0.0208

4 0.0153

		Fluoride 1.5			Fluoride L			
		PPi	M		PPI	М		
Тур	Ident	Ch	Result F	Time	Ch	Result F	Time	
iw	Initial Wash	3	0.057	65	4	#.####	0	
t	Tracer	3	1.474	209	4	0.7917	0	
d	Drift	3	1.502	384	4	0.8031	0	
w	Wash	3	0.057	626	4	#.####	0	
s1	Standard 1	3	0.065	734	4	0.0141	0	
s2	Standard 2	3	0.074	910	4	0.0318	0	
s3	Standard 3	3	0.088	1082	4	0.0588	0	
s4	Standard 4	3	0.107	1260	4	0.0908	0	
s5	Standard 5	3	0.128	1435	4	0.1193	0	
s6	Standard 6	3	0.153	1610	4	0.1503	0	
s7	Standard 7	3	0.290	1787	4	0.2726	0	
s8	Standard 8	3	0.606	1960	4		0	
<b>s</b> 9	Standard 9	3	1.233	2135	4	0.6983	0	
s10	Standard 10	3	1.468	2310	4		0	
đ	Drift	3	1.548	2484	4	0.8224	0	
W	Wash	3	0.057	2726	4	# . # # # #	0	
u	Serum blk 1	3	0.080	2839	4	0.0451	C	
u	Serum blk 2		0.073	3011	4	0.0312	C	
u	Serum spk 1		0.080	3189	4	0.0436	C	
u	Serum spk 2		0.081	3361	4		C	
u	Serum spk 3	3	0.088	3537	4		C	
u	Serum spk 4		0.091	3712	4		C	
u	Serum spk 5	3	0.115	3887	4	0.1016	C	
u	Serum spk 6	3	0.095	4062	4	0.0713	C	
u	Serum spk 7	3	0.090	4236	4	0.0633	C	
u	Serum spk 8	3	0.096	4413	4	0.0728	C	
d	Drift	3	1.509	4587	4		C	
W	Wash		0.057	4813	4	#.####	C	
u	F54105-24	3	0.085	4939	4	0.0541	C	
		~	~ ~ ~ ~ ~					

F54075-24 3 0.070

3

3

3

3

3

3

3

3

3

3

3

3

3

F54081-24

F54107-24

F54104-24

F54086-24

F54074-24

F54085-24

F54083-24

F54100-24

Drift

Blk 1

Blk 2

Spk 1

Spk 2

Spk 3

Spk 4

Spk 5

Spk 6

Blk 3

Drift

Wash

F54100-24 3 0.066

F54085-24

F54083-24

Wash

3 0.068

3 0.067

3 0.075

3 0.055

3 0.055

1.472

0.057

0.073

0.065

0.078

0.086

0.087

0.088

0.093

0.092

1.506

3 0.078

3 0.066

3 0.057

3 0.068

0.066

0.070

3 0.055 A 6162

BEST COPPY ANAILABLE

0 0

0

0 0

0

0

0 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

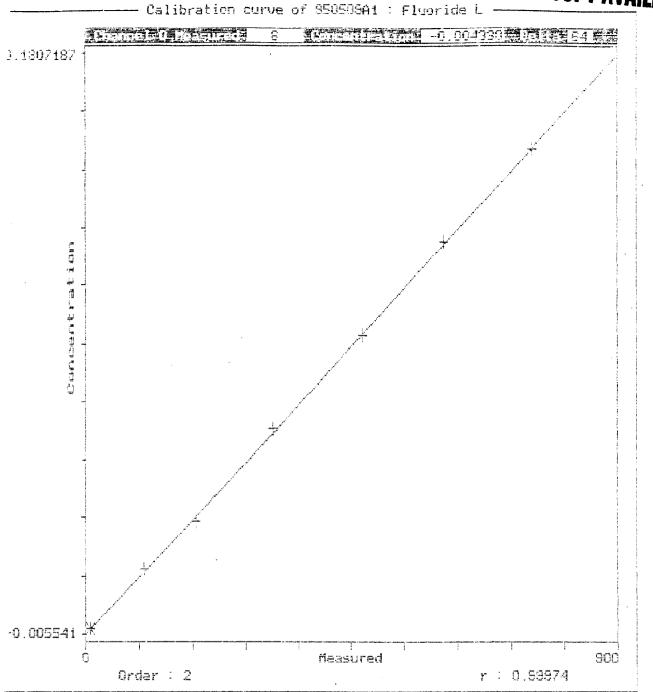
0

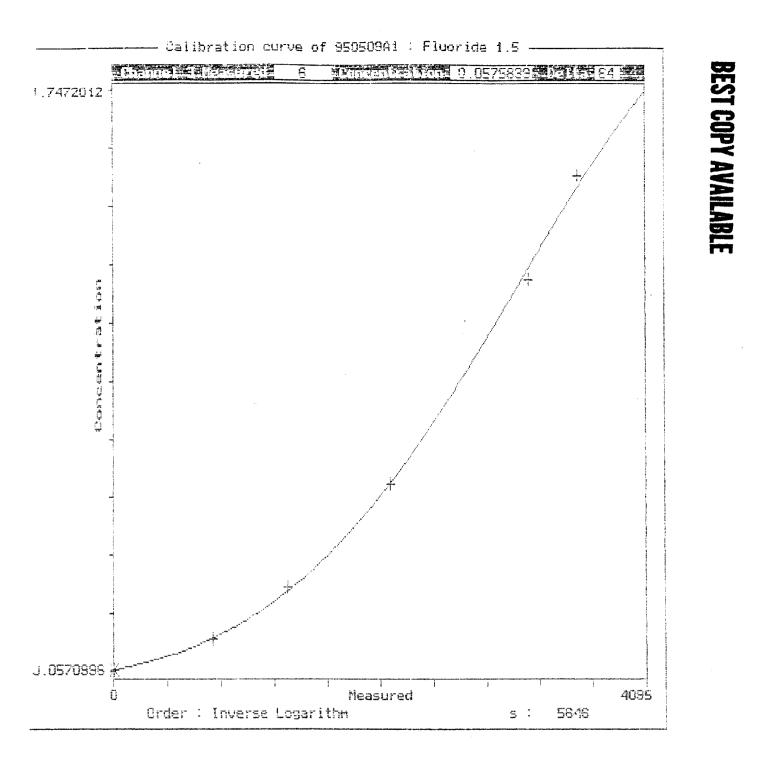
000275

#### 56

**.** 

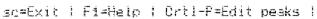
995-05-09 15:09 OutPut of : 950509A1 Page 2 of 2


								_		-	
			Flu	uoride 1.	5	Flu	loride I	L		Rra	
			PPI	м		PPI	Ч			ST CI	7.
os	Түр	Ident	Ch	Result F	Time	Ch	Result	F	Time	-0	AVAILABLE
4	u	F54077-24	3	0.067	9489		0.0169		0		ALADI
5	u	F54094-24	3	0.065	9663		0.0133		0		-015
6	u	F54091-24	3	0.065	9842		0.0139		0		•
7	u	F54108-24	3		10012		0.0135		0		
8	u	F54102-24	3		10188		0.0090		0		
9	u	F54097-24	3	0.070	10364		0.0242		0		
0	u	F54071-24	3	0.064	10540		0.0121		0		
1 2	u	F54093-24	3	0.064	10716		0.0106		0		
2	đ	Drift	3	1.493	10890		0.7997		0		
3	W	Wash	3	0.057	11098		#.####		0		
• 4	u	F54095-24	3	0.068	11236		0.0208		0		
j	u	F54101-24	3	0.067	11414		0.0171		0		
6	u	F54110-24	3	0.066	11590		0.0151		0		
7	u	F54096-24	3	0.064	11772		0.0117		0		
8	u	F54090-24	3	0.084	11943		0.0510		0		
9	u	F54078-24	3		12115		0.0261		0		
0	u	F54088-24	3	0.070	12282		0.0242		0		
1	u	F54106-24	3		12480		0.5348		0		
2	u	F54089-24	3	0.435	12655		0.3636		0		
3	u.	F54087-24	3	0.574	12830		0.4347		0		1-1And an alabely
4	đ	Drift	3	0.223	13006		0.2195		0	upror	filled completely
5	W	Wash	3	0.057	13117		#.####		U		
6	u	F54080-24	3	0.089	13335		0.0606		0		
7	u	F54092-24	3	0.084	13517		0.0510		0		-
8	u	F54109-24	3		13693		0.0389		0		
.9	u	F54114-24	3	0.074	13865		0.0322		0		
-0	u	Blk 1	3	0.068	14042		0.0204		0		
:1	u	Blk 2	3	0.066	14218		0.0145		0		
-2	u	Spk 1	3	0.105	14392		0.0873		0		
-3	u	Spk 2	3	0.118	14568		0.1063		0		
:4	u	F54113-24	3		14743		0.0584		0		
5 6	u a	F54082-24	3	0.079	14918		0.0430		0		
	d	Drift	3	1.423	15092		0.7713		0		
.7	W	Wash	3		15331		#.####		0		
.8	u	F54111-24	3	0.088	15442		0.0592		0		
Э	u	F54098-24	3	0.086	15618				0		
·0	u	F54084-24	3	0.084	15794	4			0		
	u	F54079-24	<b>3</b>	0.083	15968		0.0500		0		
) 2 +3	u a	F54116-24	3	0.088	16145		0.0598		0		
:3 )4	đ	Drift	3	1.457	16318	4	0.7849		0		
,4 /t	W	Wash RunOut Wash	3	0.057 0.057	16558		#.####		0		
16	rw	Runout wash	Э	0.057	16793	4	#.####		0		


000276

000199


. (

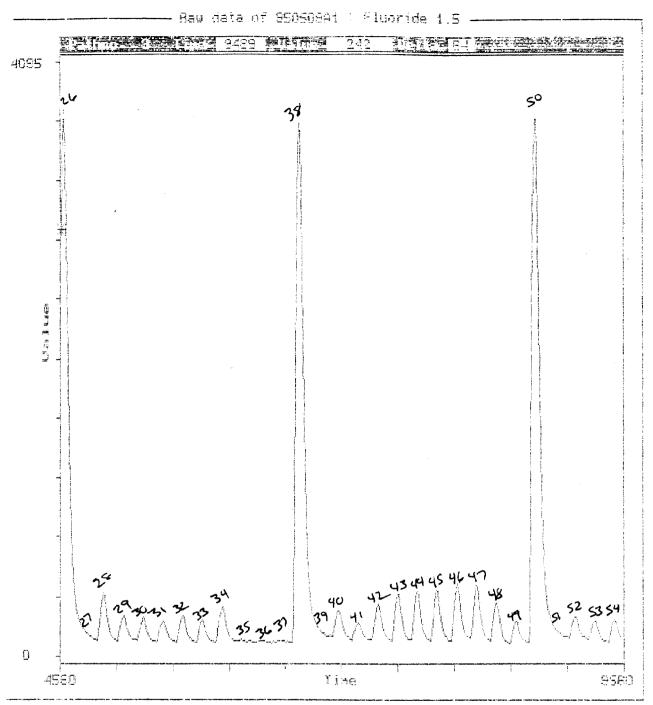






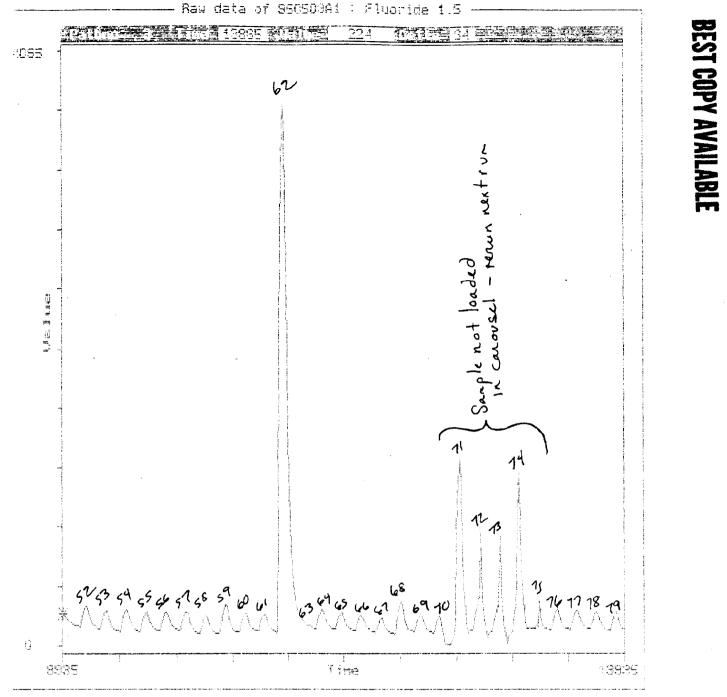

000201





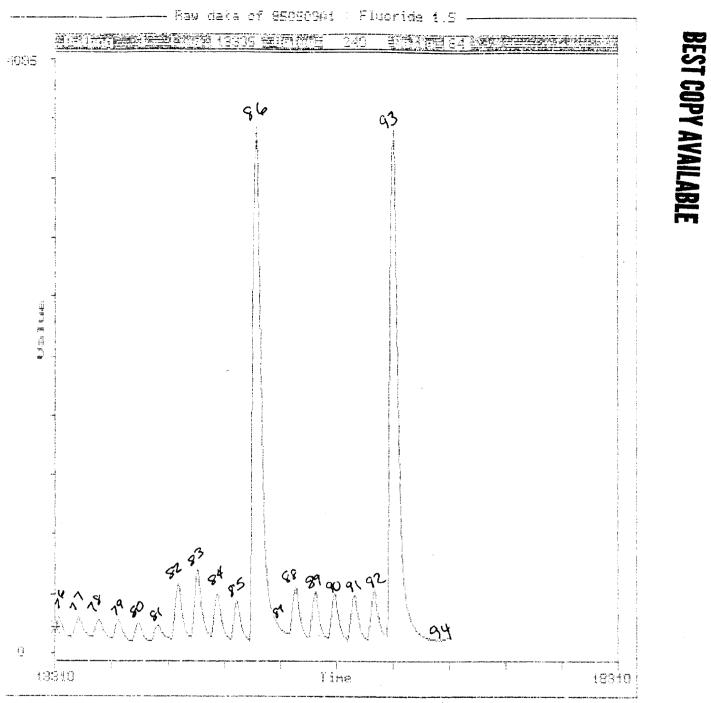

1.1

3MA01502366


#### 2807.0199

# **BEST COPY AVAILABLE**




sc=Exit : Fi=Help : Crtl-P=Edit peaks :

### 000280



sc=Exit 1 F1=Help ) Ort1-P=Edit peaks 1

### 000281



sc=Exit | Ft=Help | Crtl-P=Edit peaks |

## 000282

000205

61

995-05-09 1	5:59	OutPut of : 950509B1	BESTO
oftware : v	version 6.1 c199	00,93	COPY AVA
perator	: DDW		BEST COPY AVAILABLE
ate of the A	Analysis : 1995-0	5-09 15:08	-off
nalysis File	e Name : C:\SKA	LAR\DATA\HWIDATA\SERUM\	950509B1
'luoride 1.5 alibration c	original time-dat	e stamp : 1995-05-09 09:	: 48
'alibration o	order = Inverse L	ogarithm	
Slope .	: s = #.#####		
esult = 10	$\frac{x - c1}{s} \end{bmatrix} \qquad \begin{array}{c} x \\ c1 \\ s \end{array}$	<pre>= corrected value of th = corrected value of th = Slope of the electrod</pre>	ne sample ne concentration 1 le
$\begin{array}{rcl} 2 &= & -0.000\\ 1 &= & 0.000\\ 0 &= & -1.243 \end{array}$	61		
'luoride L Calibration o	original time-dat	e stamp : 1995-05-09 09:	48
alibration c	order = 2		
Correlation :	r = 0.99974		
esult = a2 *	x ² + a1 * x + a	0	
2 = 0.000 1 = 0.000 0 = -0.005	20		
ampler	Number Sample Time Wash Time Air Time Take up	: SA1000 : 1 : 50 sec. : 120 sec. : 1 sec. : Single : None : 70 mm.	
iluter	needle Height dilution Facto dilution Volum Resample Dilution runs User file :		
	Reproces : No		
			00020

#### 995-05-09 15:59

luoride 1.5	Path number : 3 Signal type : Debubbled Decolor : Yes system Number : 0 diLute : No Resample : No dil Threshold : 4095 diG output : 0 Window event : Off
	<pre>s1 sTandard : Ignore s2 sTandard : Ignore s3 sTandard : Ignore s4 sTandard : Ignore s5 sTandard : Ignore s6 sTandard : 0.150 s7 sTandard : 0.300 s8 sTandard : 0.600 s9 sTandard : 1.200 s10 sTandard : 1.200 s10 sTandard : 1.500 Order : Inverse Logarithm Dimension : PPM start Value : 500 DU trigger Limit : 1800 Sec Peak shape : Pointed stArt ignore : 60 Sec eNd ignore : 120 Sec Measure window : 75 % Filter : No Regeneration : No formUla : output : ##.###</pre>
'luoride L	Path number : 0 Signal type : Debubbled Decolor : No system Number : 0 diLute : No Resample : No dil Threshold : 4095 diG output : 0 Window event : Off



000284

000207

s1 s2	sTand sTand	lard		0.	015 030
s3 s4	sTand				060
	sTand				090
s5	sTand		:		120
sб	sTand	lard	:	Ο.	150
s7	sTand		-	Ignor	е
s8	sTand	lard	:	Ignor	e
s9	sTand	lard	:	Ignor	е
s10	sTand	lard	:	Ignor	e
Order	: : 2				
Dimer	nsion	: PI	РМ		
start	: Valu	le	:	500	DU
trigg	ger Li	.mit	:		Sec
Peak	shape	;	:	Poin	ted
stArt	: igno	re	:	60	Sec
eNd	igno	re	:	120	Sec
Measu	ire wi	ndov		75	S
Filte	er		:	No	
Reger	ierati	on	:	No	
form		: c4	1:=		
outpu			. ##		
oucpt		. п.	. <i>п</i> <b>п</b>	ππ	

000208

#### 2807.0205

•

OutPut of : 950509B1

BEST COPY AWAILABLE

Fluoride 1.5 Fluoride L

			PPM				PPM			
os	Түр	Ident	Ch	Result	F	Time	Ch	Result	F	Time
t	iw t d w u u u d w	Initial Wash Tracer Drift Wash F54106-24 F54089-24 F54087-24 Drift Wash	33333333333			65 212 386 651 745 944 1093 1262 1503	44444444	<pre>#.#### 0.8062 0.8106 #.#### 0.0438 0.0494 0.0496 0.8540 #.####</pre>		
t	rw	Run out wash	3	0.057		1737	4	#.####		0

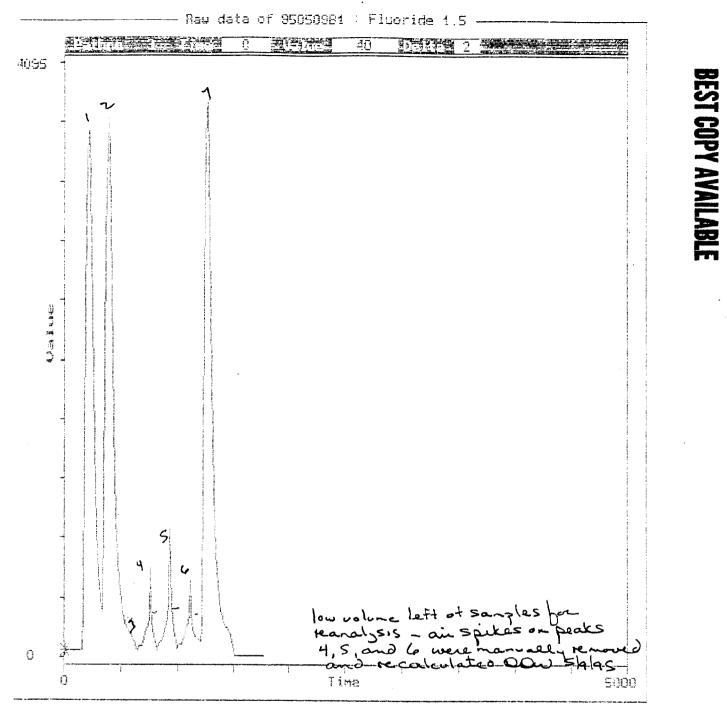
#### 000286

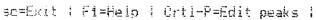
<u>00020</u>

OutPut of : 950509B1

Fluoride 1.5 Fluoride L

			PPM				PPM			
os	Тур	Ident	Ch	Result	F	Time	Ch	Result	F	Time
۰t	iw	Initial Wash	3	0.057		65	4	#.####		0
	t	Tracer	3	1.490		212	4	0.7985		0
	d	Drift	3	1.482		386	4	0.7951		0
	w	Wash	3	0.057		551	4	#.####		0
	u	F54106-24	3	0.113		751	4	0.0989		0
	u	F54089-24	3	0.159		926	4	0.1577		0
	u	F54087-24	3	0.108		1101	4	0.0916		0
	d	Drift	3	1.609		1262	4	0.8493		0
	w	Wash	3	0.057		1503	4	#.####		0
/t	rw	Run out wash	3	0.057		1737	4	#.####		0





low volumes left for reanalysi an spikes present in peaks 4-6. Manualy remove, recale and reprint 5/a/as Don

## 000287

### 000210

3MA01502374





000211

(_°

995-05-11 13 oftware : v	:19 OutPut of : 950511A1 ersion 6.1 c1990,93	DAW 6122195 AMDT 42095. 6329-159 Sun
perator	BEST COPY AVAILABL	F
ate of the A	nalysis : 1995-05-11 08:16	. <b>K</b>
nalysis File	Name : C:\SKALAR\DATA\HWIDATA\SERUM\950511A1	
l <b>uoride 1.5</b> alibration o	rder = Inverse Logarithm	
lope :	s = #.####	
esult = $10^{2}$	x=corrected value of the samplec1=corrected value of the concentratios=Slope of the electrode	on 1
$\begin{array}{rcrr} 2 &=& -0.000\\ 1 &=& 0.000\\ 0 &=& -1.247 \end{array}$	60	• •
<b>luoride L</b> alibration o	rder = 2	
orrelation :	r = 0.99962	
esult = a2 *	$x^{2} + a1 + x + a0$	
$\begin{array}{rcl} 2 &=& 0.000\\ 1 &=& 0.000\\ 0 &=& -0.000 \end{array}$	19	
ampler	Type : SA1000 Number : 1 Sample Time : 50 sec. Wash Time : 120 sec. Air Time : 1 sec. Take up : Single sPecial : None needle Height : 70 mm.	
iluter	needle Height : 80 mm dilution Factor : 10 dilution Volume : 2.5 ml. Resample : 1 Dilution runs : 1	
	User file : . TXT Reproces : No	

000212

-

#### 995-05-11 13:19

luoride	1.5	

Signa Decol syste diLut Resam dil T diG c	m Number .e		Yes 0 No 4095 0
Order Dimer start trigg Peak stArt eNd Measu filte	re window r Neration Ma :	::::::::::::::::::::::::::::::::::::::	1800 Sec Pointed 60 Sec 120 Sec

ST COPY AVAILABLE

luoride L

Path number : 0 Signal type : Debubbled Decolor : No system Number : 0 diLute : No Resample : No dil Threshold : 4095 diG output : 0 Window event : Off

.

s1	sTandar	d :	Ο.	015
s2	sTandar	d :	0.	030
s3	sTandar	d :	Ο.	060
s4	sTandar	d :	0.	090
s5	sTandar	d :	0.	120
s6	sTandar	d :	0.	150
s7	sTandar	d :	Ignor	e
s8	sTandar	d :	Ignor	e
s9	sTandar	d :		
s10	sTandar	d :	Ignor	e
Order	r:2		-	
Dime	nsion :	PPM		
stari	t Value	:	500	DU
trigg	ger Limi	t :	1800	) Sec
-	shape		Poir	nted
	t ignore	:	60	Sec
	ignore		120	Sec
	re wind		75	8
Filte			No	-
	neration			
form		c4:=		
outpu		#.##		

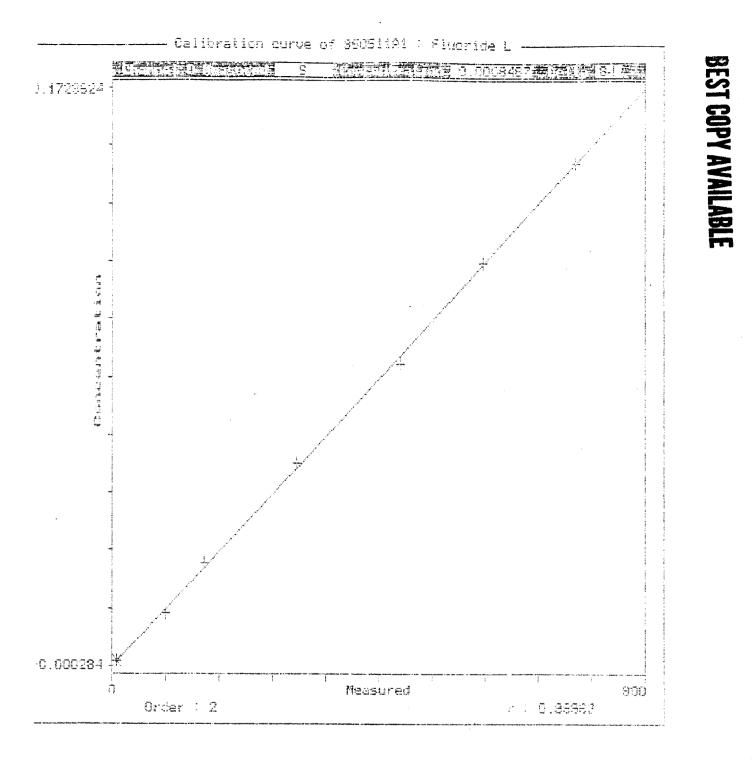
OutPut of : 950511A1

BEST COPY HUNHLABLE

			Flu	loride 1	1.5 Fluoride L			
			PPI	ч		PPI	м	
'os	Тур	Ident	Ch	Result	F Time	Ch	Result 1	7 Time
1 0 2345673901234567890123456789012345678901234567390123	itd wssssssssd wuuuuuuuuuuuuuuuuuuuuuuuuuu	Initial Wash Tracer Drift Wash Standard 1 Standard 2 Standard 3 Standard 4 Standard 5 Standard 6 Standard 7 Standard 7 Standard 7 Standard 9 Standard 10 Drift Wash F54113-48 F54082-48 F54082-48 F54082-48 F54084-48 F54084-48 F54084-48 F54082-192 F54082-192 F54082-192 F54079-192 F54084-192 F54084-192 F54084-192 F54082-360 F54098-360 F54098-360 F54098-360 F54098-360 F54079-350 F54084-360 Drift Wash F54082-360 F54082-360 F54079-360 F54084-360 Drift Wash F54082-22 F54082-D22 F54082-D22 F54110-D22 F54082-D22 F54111-D28 Drift Wash F54079-D22 F54116-D22 F54079-D28 F54116-D23	。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。	0.057 1.472 1.472 0.057 0.064 0.070 0.085 0.107 0.127 0.289 0.607 1.233 1.468 1.509 0.091 0.091 0.091 0.091 0.085 0.091 0.091 0.085 0.091 0.091 0.0889 0.0889 0.0889 0.0889 0.0889 0.0889 0.0889 0.0889 0.0889 0.0889 0.0889 0.0889 0.0889 0.0889 0.0889 0.0889 0.0889 0.0889 0.0889 0.0889 0.0889 0.0889 0.0889 0.0889 0.0889 0.0889 0.0889 0.0889 0.0889 0.0992 1.4817 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0883 0.0893 0.0893 0.0893 0.0893 0.0893 0.0893 0.0893 0.0893 0.0893 0.0893 0.0893 0.0893 0.0893 0.0893 0.0893 0.0893 0.0893 0.0893 0.0893 0.0893 0.0893 0.0893 0.0893 0.0893 0.0893 0.0893 0.0893 0.0893 0.0893 0.0893 0.0893 0.0893 0.0933 0.0933 0.0933 0.0933 0.0933 0.0933 0.0933 0.0933 0.0933 0.0933 0.0933 0.0933	$\begin{array}{c} 658\\ 2082\\ 629\\ 3824\\ 9185\\ 050\\ 1124310\\ 1111122222233333333442445555555566666677237777988243143597117173526168880444653166697723855925384231455555555555555555555555555555555555$	444444444444444444444444444444444444444	0.0586 0.0921 0.1194 0.1498 0.2642 0.4285 0.6527 0.7329 0.7476 #.#### 0.0722 0.0685 0.0685 0.0685 0.0685 0.0863 0.0523 0.0844 0.0775 0.0844 0.0775 0.0844 0.0775 0.0639 0.0512 0.7213 #.#### 0.0626	000000000000000000000000000000000000000

ſ

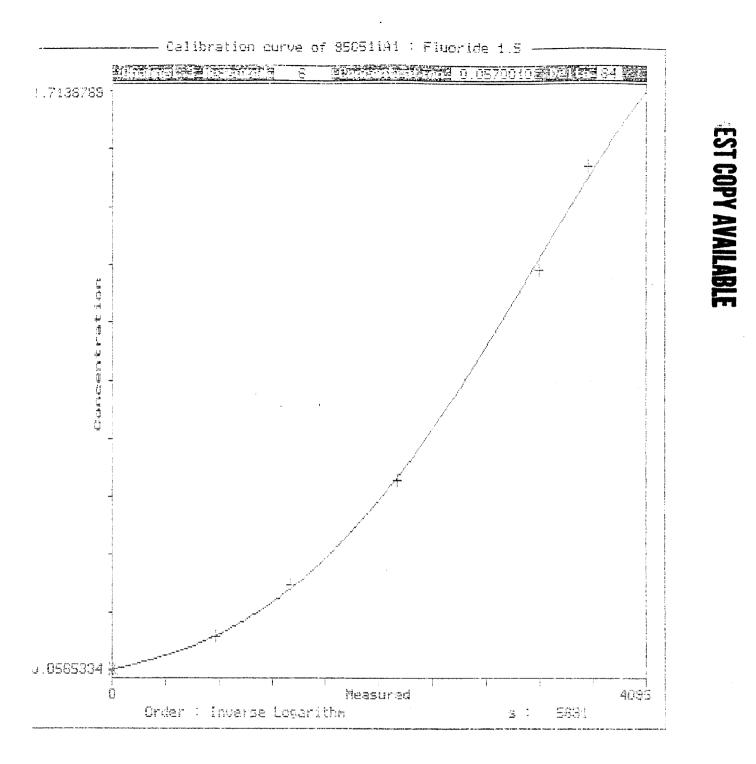
995-05-11 13:19 OutPut of : 950511A1

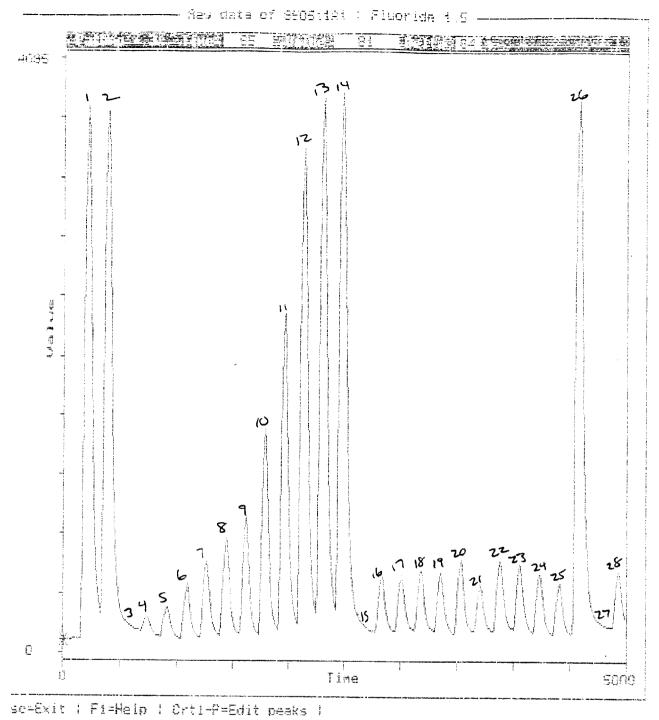

			Fluoride 1.5			Fluoride L		_	
			PPM			PPM		BE,	ST COPY AVAILABLE
os	Түр	Ident	Ch	Result	F Time	Ch	Result F	' Time	AVAILABLE
45678901234 56789012345673	u u u u u u d w u u u u u u u u d w u u u	F54099-4 F54099-8 F54099-24 F54099-24 F54099-48 F54099-48 F54099-360 F54099-360 F54099-361 Drift Wash F54112-4 F54112-4 F54112-24 F54112-24 F54112-24 F54112-360 SPK 63-1 SPK 63-2 SPK 63-3 Drift Wash SPK 126-1 SPK 126-2 SPK 126-2 SPK 126-3	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	0.071 0.070 0.105 0.118 0.084 0.074 0.070 0.051 1.504 0.057 0.082 0.094 0.100 0.094 0.078 0.094 0.095 0.110 0.092 1.469 0.057 0.117 0.149 0.157	9490 9662 9840 10015 10190 10362 10538 $\overline{)}$ $10715$ 10888 11129 11237 11415 11591 11765 12941 12115 12289 12465 12641 12817 12989 13166 13342 13518 13692	4 4			Blank inserted - no such sample exists Order
9 0 t	d W rw	Drift Wash RunOut Wash	3 3 3	1.496 0.057 0.057	13865 14107 14340	4 4 4	0.7427 #.#### #.####	0 0 0	

000293

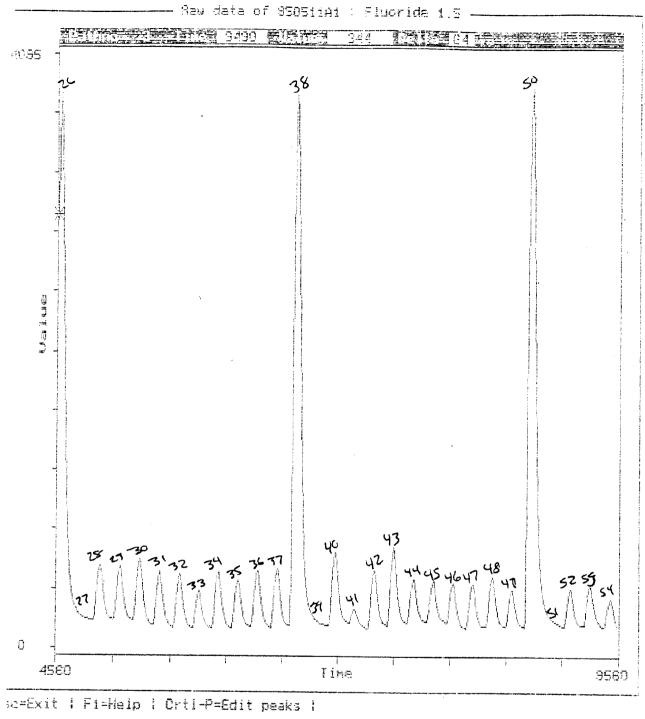
000216

•


 $\overline{}$ 

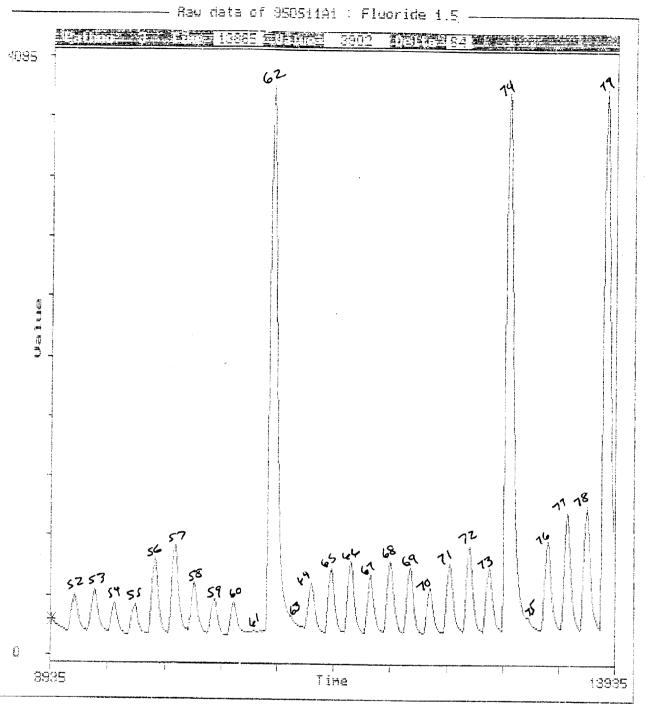


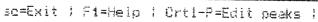

2807.0214


000294

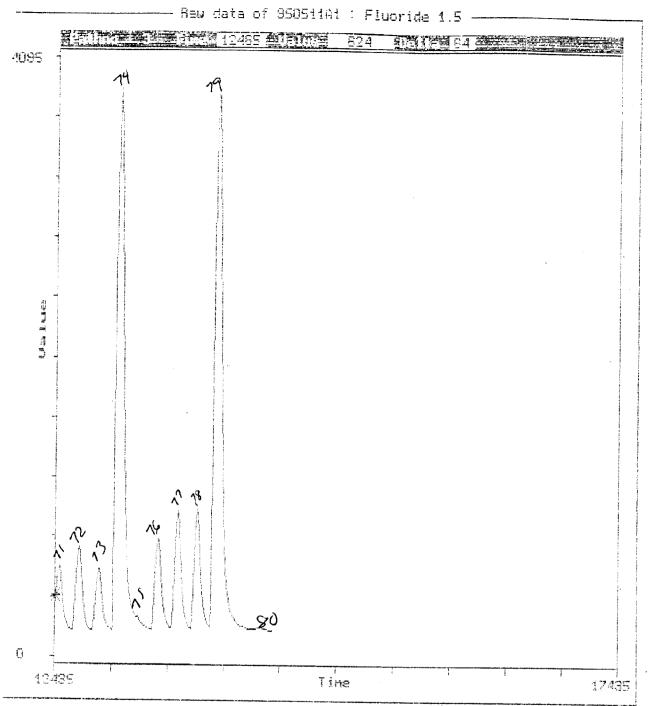
3MA01502381







## **BEST COPY AVAILABLE**




## **000297**

3MA01502384





## 000298



sc=Exit : Fi=Help : Crtl-P=Edit peaks :

## **BEST COPY AVAILABLE**

995-05-24-10	6 A.		05050		w 6/22/95
	version 6.1 c19		: 950524A1		07 42095.1 29-159 Sema
		90,93	REST COL	<b>PY AVAILABLE</b>	
perator	: DDW			TATAILADLE	
ate of the A	Analysis : 1995-	05-24 11:39			
nalysis File	e Name : C:\SK.	ALAR\DATA\HW	IDATA\SERUM\950	524A1	
luoride 1.5 alibration c	order = Inverse	Logarithm			
;lope	: 5 = #.#####				
esult = $10^{10}$	$\frac{x - c1}{s} \end{bmatrix} \begin{bmatrix} x \\ c \\ s \end{bmatrix}$	= correcte 1 = correcte = Slope of	d value of the d value of the the electrode	sample concentration	1
$\begin{array}{rcl} 2 &=& -0.000 \\ 1 &=& 0.000 \\ 0 &=& -1.225 \end{array}$	)64				
luoride L alibration c	order = 2				
orrelation :	r = 0.99786				
esult = a2 *	x ² + a1 * x + a	<b>a</b> 0			
$\begin{array}{rcrr} 2 &=& -0.000\\ 1 &=& 0.000\\ 0 &=& -0.006 \end{array}$	125				
ampler	Type Number Sample Time Wash Time Air Time Take up sPecial needle Height	: 1 : 50 sec. : 120 sec. : 1 sec. : Single : None			
iluter	needle Height dilution Facto dilution Volum Resample Dilution runs User file :	or : 10 ne : 2.5 ml : 1 : 1 . TX			
	Reproces : No	,			

000300

000223

.

## luoride 1.5 Path number : 3

	-		•	5	
Signa.	l typ	)e	:	Debub	bled
Decol	or		:	Yes	
system	m Num	nber	:	0	
diLut	e			No	
Resam	ple			No	
dil T		old	:	4095	
diG or			:	0	
Window				Ōff	
			•	011	
s1 :	sTand	ard	:	Ignor	e
	sTand				
	sTand				
	sTand				
s5 s	sTand	ard	:	Ignor	
	sTand			-	150
	sTand				300
	sTand				600
	sTand				200
s10 s					500
Order				Logar	
Dimens				boyar	LCIUU
start				500	DU
trigge					
				1800 Dein	
Peak s	-		:	Poin	cea
stArt				60	
eNd	-		;	120	
Measur		naov		75	CIO
Filter				No	
Regene		on	:	No	
formUl		:			
output	-	: ##	<b>;</b> ,#	##	

BEST COPY AVAILABLE

### luoride L Path nu

Decolor	0 Debubbled No 0 No
dil Threshold : diG output	No 4095 0 Off

## 000301

## 000224

s1 sTandard :	0.015
s2 sTandard :	0.030
s3 sTandard :	0.060
s4 sTandard :	0.090
s5 sTandard :	0.120
s6 sTandard :	0.150
s7 sTandard : Ig	nore
	nore
· · · · ·	nore
	nore
Order : 2	
Dimension : PPM	
start Value : 5	00 DU
	800 Sec
	ointed
-	-
eNd ignore : 1	-
Measure window : 7	5 %
Filter : N	0
Regeneration : N	0
formUla : $c4:=c3$	0
output : #.####	

.

## 000302

000225

.

.

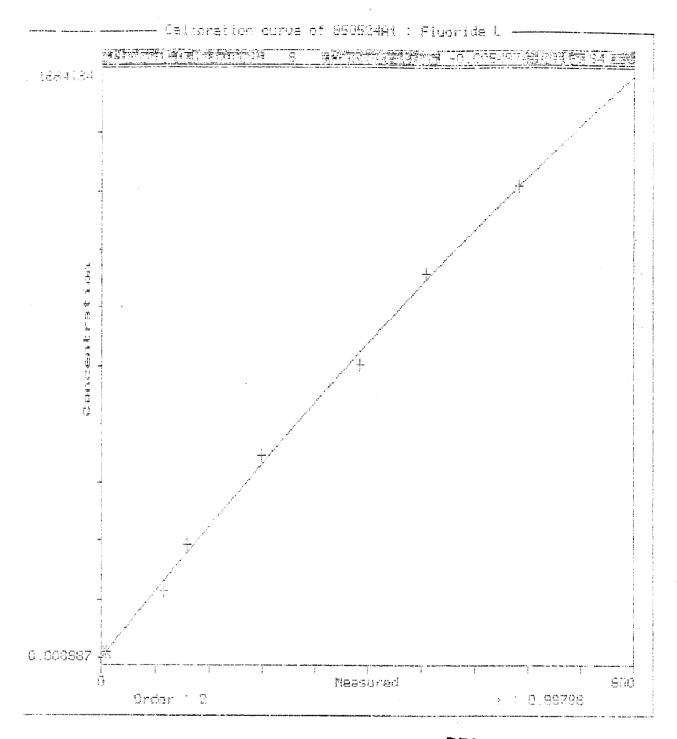
OutPut of : 950524A1

Fluoride 1.5 Fluoride L

0 ·

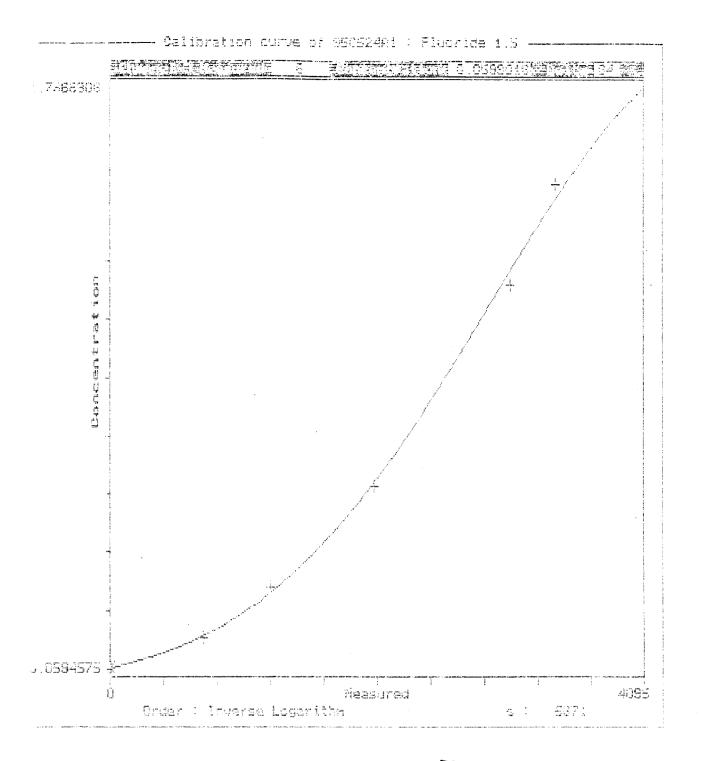
			11001100 1.5							
			PPI	M			PP	M		
os	Тур	Ident	Ch	Result	F	Time	Ch	Result	F	Time
t	iw	Initial Wash	3	0.059		65	4	#.####		0
	t	Tracer	3	1.452		215	4	0.4057		0
	d W	Drift Wash	3 3	$1.469 \\ 0.059$		389 621	4	0.4054		0
	s1	Standard 1	3	0.059		740	4 4	#.#### 0.0180		0
	s2	Standard 2	3	0.073		916	$\frac{1}{4}$	0.0180		0
	s3	Standard 3	3	0.087		1090	4	0.0569		õ
	s4	Standard 4	3	0.109		1269	4			0
	ສ5 ສິ	Standard 5	3	0.127		1442	4			0
0	ຮ6 ຮ7	Standard 6 Standard 7	3 3	$0.155 \\ 0.284$		1618 1790	4	0.1498		0
,	s8	Standard 8	3	0.204 0.612		1965	4 4	0.2417 0.3431		0 0
2	s9	Standard 9	3	1.242		2140	$\frac{1}{4}$	0.4037		0
3	s10	Standard 10	3	1.458		2314	4	0.4056		ŏ
4 5	d	Drift	3	1.442		2490	4	0.4058		0
5	W	Wash	3	0.059		2728	4	#.####		0
5 7	u	BLK 1 BLK 2	3	0.075		2841	4	0.0330		0
3	น น	SPK 63-1	3 3	0.068 0.103		3015 3191	4 4	$0.0168 \\ 0.0843$		0
9	ŭ	SPK 63-2	3	0.098		3365	4	0.0843		0 0
0	u	SPK 63-3	3	0.098		3539		0.0768		ŏ
1	u	SPK 63-4	3	0.093		3715		0.0683		0
2	u	SPK 63-5	3	0.104		3891	4	0.0860		0
3 4	u	SPK 63-6	3	0.102		4067	4	0.0829		0
÷ 5	u u	SPK 63-7 BLK 3	3 3	0.101 0.072		4243	4	0.0821		0
6	d	Drift	3	1.455		4415 4591	4 4	0.0264		0 0
7	W	Wash	3	0.059		4831	4	#.####		0
8	u	BLK 4	3	0.073		4939	4	0.0273		õ
9	u	F54088-48	3	0.068		5118	4	0.0156		0
0	u	F54099-48	3	0.071		5290	4	0.0233		0
1 2	u u	F54089-48 F54087-48	З З	0.066 0.069		$\begin{array}{c} 5466\\ 5644\end{array}$	4	0.0110		0
3	u	F54080-48	3	0.069		5812	4 4	0.0192		0 0
4	u	F54092-48	3	0.066		5988	4	0.0095		0
	u	F54109-48	З	0.070		6168	4	0.0216		õ
5	u	F54114-48	З	0.071		6344	4	0.0228		0
7 3	u a	F54088-DY8	3	0.068		6517	4	0.0158		0
э 9	d w	Drift Wash	3 3	1.485		6692 6020	4	0.4052		0
õ	ŭ	F54099-DY8	3	$0.059 \\ 0.069$		6930 7041	4 4	#.#### 0.0170		0 0
1	ū	SPK 63-8	3	0.101		7218	4	0.0812		0
2	u	SPK 63-9	3	0.099		7393		0.0774		Ő
3	u	SPK 63-10	3	0.100		7568		0.0790		0
4	u	BLK 1	3	0.073		7741		0.0276		0
5 6	u u	BLK 2 SPK 63-1	3 3	0.065 0.088		7915		0.0083		0
7	u	SPK 63-1 SPK 63-2	3	0.008		8093 8267	4 4	0.0597		0 0
3	u	SPK 63-3	3	0.102		8443		0.0838		· 0
9	u	F54089-DY8	3	0.072		8619		0.0247		Ő
0	đ	Drift	3	1.471		8793	4	0.4054		Ō
1	W	Wash	3	0.059		9028	4	#.####		0
2	u	F54087-DY8	3	0.075		9143	4	0.0328		0

u F54080-DYS 3 0.075


9319 4 0.0323

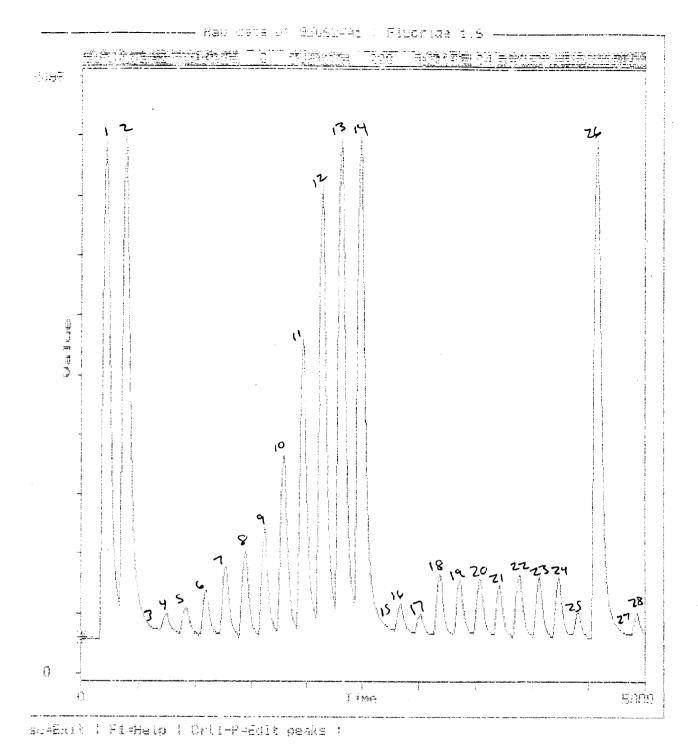
OutPut of : 950524A1

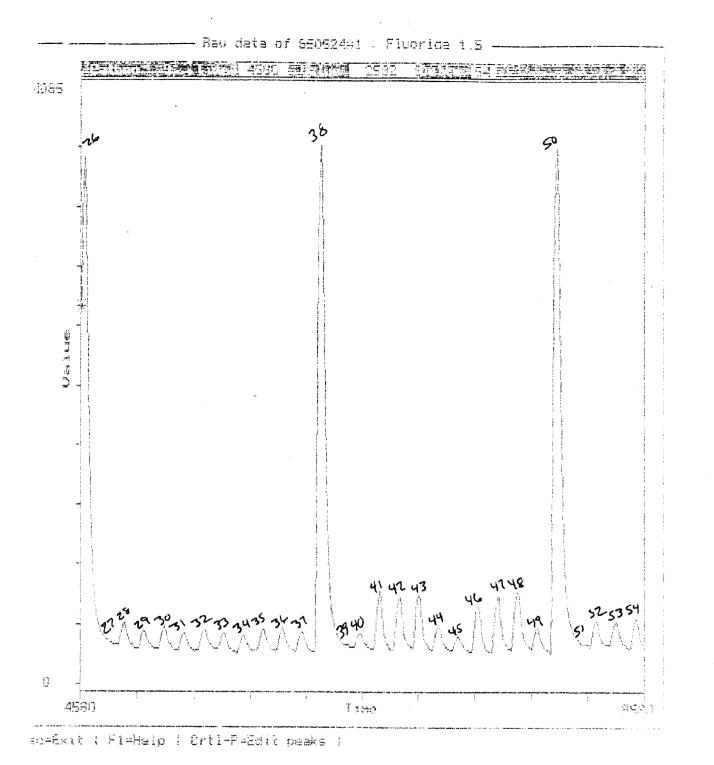
			Flu	loride 1	. 5	Flu	uoride L	BEST COPY AVAILABLE	
			PPI	М		PPI	Ч	AVAILABLE	<b>4</b> 1 1
۶	Typ	Ident	Ch	Result	F Time	Ch	Result F		
<b>&gt;</b> <b>+</b> <b>5</b> <b>7</b> <b>3</b> <b>3</b> <b>4</b> <b>5</b> <b>7</b> <b>3</b> <b>3</b> <b>4</b> <b>5</b> <b>7</b> <b>3</b> <b>3</b> <b>4</b> <b>5</b> <b>7</b> <b>3</b> <b>3</b> <b>4</b> <b>5</b> <b>7</b> <b>3</b> <b>3</b> <b>5</b> <b>7</b> <b>3</b> <b>3</b> <b>1</b> <b>5</b> <b>7</b> <b>3</b> <b>3</b> <b>1</b> <b>1</b> <b>5</b> <b>7</b> <b>3</b> <b>3</b> <b>1</b> <b>1</b> <b>5</b> <b>7</b> <b>3</b> <b>3</b> <b>1</b> <b>1</b> <b>5</b> <b>7</b> <b>3</b> <b>3</b> <b>1</b> <b>1</b> <b>1</b> <b>5</b> <b>7</b> <b>3</b> <b>1</b> <b>1</b> <b>1</b> <b>1</b> <b>1</b> <b>1</b> <b>1</b> <b>1</b>	<b>Тур</b>	Ident F54092-DY8 F54109-DY3 F54114-DY8 F54088-D15 F54089-D15 F54089-D15 F54087-D15 F54080-D15 Drift Wash F54092-D15 F54109-D15 F54109-D22 F54087-D22 F54087-D22 F54087-D22 F54087-D28 F54109-D28 F54109-D28 F54109-D28 F54109-D28 F54109-D28 SPK 63-7 SPK 63-7 F54105-48HR F54075-48HR	Ch 333333333333333333333333333333333333	Result 0.077 0.073 0.077 0.061 0.073 0.068 0.069 0.066 1.469 0.059 0.070 0.072 0.068 0.068 0.067 0.068 0.068 0.069 0.068 0.069 0.068 0.069 0.068 0.069 0.068 0.069 0.068 0.069 0.068 0.069 0.068 0.069 0.068 0.069 0.068 0.069 0.068 0.069 0.068 0.069 0.068 0.069 0.068 0.069 0.068 0.069 0.068 0.069 0.068 0.069 0.068 0.069 0.068 0.069 0.068 0.069 0.068 0.069 0.068 0.069 0.068 0.069 0.068 0.069 0.068 0.069 0.068 0.069 0.068 0.069 0.068 0.069 0.068 0.069 0.068 0.069 0.068 0.069 0.068 0.069 0.068 0.069 0.068 0.069 0.068 0.069 0.068 0.069 0.068 0.069 0.068 0.069 0.068 0.069 0.068 0.069 0.068 0.069 0.068 0.069 0.068 0.069 0.068 0.069 0.068 0.069 0.068 0.069 0.068 0.069 0.068 0.069 0.068 0.069 0.068 0.069 0.068 0.069 0.068 0.069 0.069 0.069 0.069 0.069 0.069 0.069 0.069 0.069 0.069 0.069 0.069 0.069 0.069 0.069 0.069 0.069 0.069 0.069 0.069 0.069 0.069 0.072 0.069 0.069 0.069 0.072 0.069 0.072 0.069 0.072 0.069 0.077 0.069 0.098 0.097 0.097 0.097 0.069 0.097 0.097 0.069 0.097 0.097 0.069 0.097 0.069 0.097 0.069 0.097 0.069 0.097 0.069 0.097 0.069 0.097 0.069 0.072	<pre>F Time 9493 9667 9843 10022 10194 10370 10542 10718 10893 11133 11244 11418 11594 11767 11944 12118 12296 12466 12642 12822 12994 13222 13345 13695 13872 14045 14224 14393</pre>	4444444444444444444444444444444444444	0.0365 0.0280 0.0365 #.### 0.0266 0.0165 0.0175 0.0107 0.4054 #.#### 0.0216 0.0249 0.0146 0.01249 0.0146 0.0158 0.0134 0.0170 0.0146 0.0170 0.0170 0.0168 0.0170 0.0170 0.0168 0.0170 0.0170 0.0168 0.0170 0.0170 0.0168 0.0170 0.0170 0.0168 0.0170 0.0182 0.0750 0.0180	' Time 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
3 4 2	d w rw	Drift Wash RunOut Wash	3 3 3	1.411 0.059 0.059	14569 14810 15044	4 4 4	0.4060 #.####	0 0 0	


000227

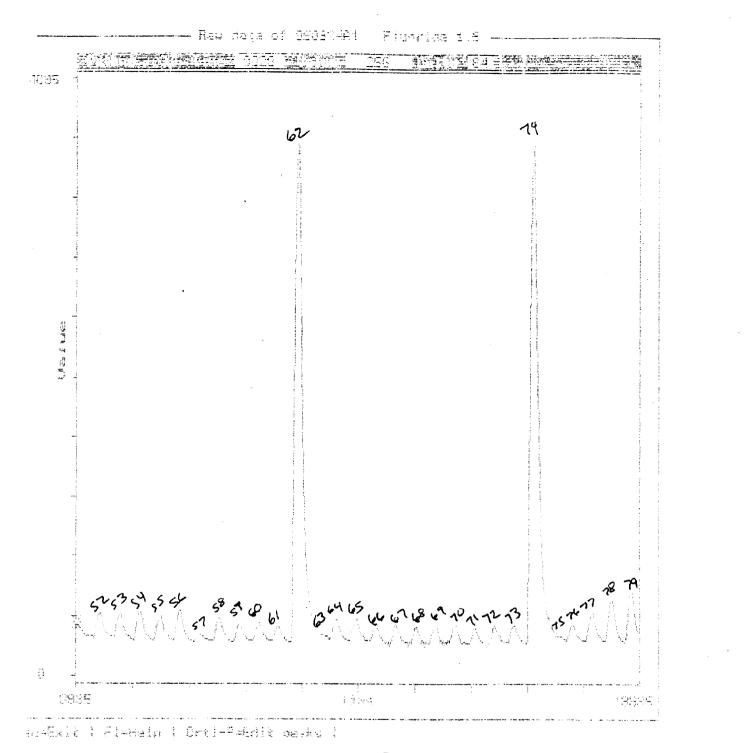
000304




000305


000225

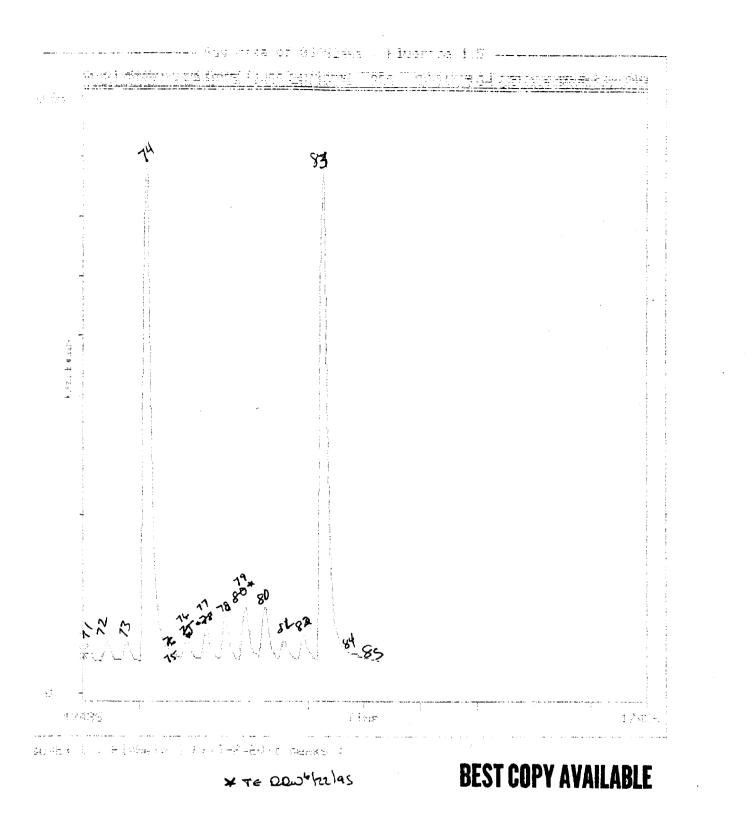



## 000306

000229






## 000308



000222

## 000309

۷



000223



a CORNING Company

Sponsor:

3M St. Paul, Minnesota



FINAL REPORT

#### Study Title:

Single-Dose Intravenous Pharmacokinetic Study of T-6246 in Rabbits

#### <u>Author</u>:

Steven M. Glaza

Study Completion Date:

September 14, 1995

Performing Laboratory:

Hazleton Wisconsin, Inc. 3301 Kinsman Boulevard Madison, Wisconsin 53704

Laboratory Project Identification:

HWI 6329-159

Page 1 of 38

 Phone
 603-241-4471
 Fax
 608-241-7227

 EXPRESS-MALL
 DELIVERY:
 3301
 KINSMAN
 BLVD
 MADISON,
 WI
 53704

## 000311

3MA01502398

#### QUALITY ASSURANCE STATEMENT

This report has been reviewed by the Quality Assurance Unit of Hazleton Wisconsin, Inc., in accordance with the Food and Drug Administration (FDA) Good Laboratory Practice Regulations, 21 CFR 58.35 (b) (6) (7). The following inspections were conducted and findings reported to the Study Director and management. Written status reports of inspections and findings are issued to Hazleton management monthly according to standard operating procedures.

Inspecti	on Dates		Date Reported to	Date to
<u>    From   </u>	To	Phase	<u>Study Director</u>	<u>Management</u>
03/22/95 04/10/95 04/27/95 07/05/95 09/12/95	03/22/95 04/10/95 04/27/95 07/10/95 09/12/95	Protocol Review Protocol Amendment Animal Observation Data/Report Review Report Rereview	03/22/95 04/10/95 04/27/95 07/10/95 09/12/95	03/10/95 05/10/95 05/10/95 08/10/95 10/10/95

Representative, Quality Assurance Unit

9.14.95 Date

Page 3 of 38

.

HWI 6329-159

## STUDY IDENTIFICATION

## Single-Dose Intravenous Pharmacokinetic Study of T-6246 in Rabbits

Test Material	T-6246
Sponsor	3M Toxicology Service Medical Department 3M Center, Bldg. 220-2E-02 P.O. Box 33220 St. Paul, MN 55133-3220
Sponsor's Representative	John L. Butenhoff, PhD 3M Toxicology Service Medical Department 3M Center, Bldg. 220-2E-02 P.O. Box 33220 St. Paul, MN 55133-3220 (612) 733-1962
Study Director	Steven M. Glaza Hazleton Wisconsin, Inc. P.O. Box 7545 Madison, WI 53707-7545 (608) 241-7292
Study Location	Hazleton Wisconsin, Inc. 3301 Kinsman Boulevard Madison, WI 53704
Study Timetable Study Initiation Date Experimental (In-life) Start Date In-life End Date Experimental Termination Date Study Completion Date	March 30, 1995 April 4, 1995 May 1, 1995 September 14, 1995 September 14, 1995

Page 4 of 38

HWI 6329-159

#### KEY PERSONNEL

Acute Toxicology

Steven M. Glaza Study Director Manager

Francis (Bud) W. McDonald Study Coordinator

Patricia Padgham In-life Supervisor

Rose M. Bridge Report Supervisor

## Toxicology Support

Kathy Myers Manager

Calvin L. Horton Supervisor

1

#### Quality Assurance

Sherry R. W. Petsel Manager

## Laboratory Animal Medicine

Cindy J. Cary, DVM Diplomate, ACLAM Supervisor

#### Anatomical Pathology

Thomas E. Palmer, PhD Anatomical Pathologist

Jack Serfort/ Deborah L. Pirkel Supervisors Necropsy

Anne Mosher Supervisor Pathology Data

Page 5 of 38

.

#### CONTENTS

	<u>Page</u>
Quality Assurance Statement Study Identification Key Personnel Summary Objective Regulatory Compliance Test and Control Materials Test System Procedures Results Discussion Signature Pathology Report	2 3 4 6 8 8 9 10 13 13 13 14
Table	10
l Individual Body Weights (g) 2 Individual Clinical Signs 3 Individual Pathology Comments 4 Individual Animal Tissue Weights and Bile Volumes	16 18 21 22
Appendix A Protocol Deviations Protocol TP8084.PK Protocol Amendment No. 1	25 26 27 37

#### SUMMARY

This study was done to assess the level of systemic exposure of T-6246 when administered by a single intravenous injection to rabbits.

The study was conducted using four male and four female acclimated rabbits of the Hra:(NZW)SPF strain for each treatment group as follows:

	Group	Test Material	Dose Level (mg/kg)	<u>Number</u> Males	of Animals Females
2 3 4	(Control) (Low) (Medium) (High) (High)	Sterile water T-6246 T-6246 T-6246 T-6246 T-6246	0 5 10 100 500	4 4 4* 4*	4 4 4 4

 One animal sacrificed after treatment due to a possible broken back and replaced with another male animal.

The animals received a single intravenous injection of the test material at the indicated dose level into the marginal ear vein of the right ear. The dose volume was 0.5 mL/kg of body weight for Groups 1 through 4 and was 0.75 mL/kg for Group 5. Two animals/sex/dose level were sacrificed on Day 15 and the remaining animals (two animals/sex/dose level) were sacrificed on Day 28.

Clinical observations were conducted predose and at approximately 0.5, 2, and 4 hours after intravenous injection. Additional clinical observations and twice a day mortality checks were conducted daily thereafter until the scheduled sacrifice interval (Day 15 or Day 28). Body weights were determined on Day -7 for randomization purposes, before test or control material administration (Day 1), and at the scheduled sacrifice interval (Day 15 or Day 28). A blood sample (approximately 4 mL) was collected from a marginal ear vein (left ear) of the animals at 4-, 8-, 12-, 24-, and 48-hours post-injection, and on Day 8. An approximate 4-mL blood sample was also collected on Days 15 and 22 for the animals scheduled for sacrifice on Day 28. In addition, at the time of the scheduled sacrifice (Day 15 or Day 28), approximately 20 mL of blood was obtained from each animal. All samples were centrifuged, separated into serum and cellular fractions, and sent to the Sponsor. On Day 15 or 28, the animals were anesthetized with sodium pentobarbital, bled via the posterior vena cava, and exsanguinated. An abbreviated gross necropsy examination was not done, however, tissues were collected. The whole liver, bile, and both kidneys from each animal were collected, weighed (volume only determined for bile), and sent frozen to the Sponsor.

Intravenous injection of T-6246 did not result in any test material-related changes in body weight gain. All animals appeared clinically normal throughout the study with the exception of one Group 4 and one Group 5 male animals that were sacrificed on Days 2 and 1, respectively, due to injury (possible broken backs). These animals were replaced and the replacement animals appeared clinically normal throughout the study.

#### OBJECTIVE

The objective of this study was to assess the level of systemic exposure to the test material, T-6246, when administered as a single intravenous injection to rabbits.

#### REGULATORY COMPLIANCE

This study was conducted in accordance with the U.S. Food and Drug Administration's Good Laboratory Practice Regulations for Nonclinical Laboratory Studies, 21 CFR 58, with the exception that analysis of the test mixtures for concentration, homogeneity/solubility, and stability was not conducted. All procedures used in this study were in compliance with the Animal Welfare Act Regulations. In the opinion of the Sponsor and study director, the study did not unnecessarily duplicate any previous work.

#### TEST AND CONTROL MATERIALS

#### <u>Identification</u>

The test material was identified as T-6246 and described as a clear, colorless liquid. The control material was Sterile Water for Injection, USP (Abbott Laboratories, Lot No. 86-748-DM-02; Exp. April 1, 1996), and was described as a clear, colorless liquid.

#### Purity and Stability

The Sponsor assumes responsibility for test material purity and stability determinations (including under test conditions). Analysis of the test material mixtures for concentration, homogeneity/solubility, and stability was not conducted or requested by the Sponsor. The purity and stability of the control material were considered to be adequate for the purposes of this study.

#### Storage and Retention

The test material was stored at room temperature. The control material was stored refrigerated. Any unused test material was returned to the Sponsor after completion of all in-life testing according to Hazleton Wisconsin (HWI) Standard Operating Procedure (SOP). Any remaining vehicle may be used for other testing and will not be discarded after issuance of the final report.

#### Safety Precautions

The test and control material handling procedures were according to HWI SOPs and policies.

#### TEST SYSTEM

#### <u>Test Animal</u>

Adult albino rabbits of the Hra:(NZW)SPF strain were received from HRP, Inc., Kalamazoo, Michigan on March 8, 1995 and maintained at the Hazleton Wisconsin facility at 3301 Kinsman Boulevard, Madison, Wisconsin.

#### Housing

After receipt, the animals were acclimated for a period of at least 7 days. During acclimation and throughout the study, the animals were individually housed in screen-bottom stainless steel cages in temperature- and humidity-controlled quarters. Environmental controls for the animal room were set to maintain a temperature of 19° to 23°C, a relative humidity of 50%  $\pm$ 20%, and a 12-hour light/12-hour dark lighting cycle. In cases where variations from these conditions existed, they were documented and considered to have had no adverse effect on the study outcome.

#### <u>Animal Diet</u>

The animals were provided access to water *ad libitum* and a measured amount of Laboratory Rabbit Diet HF #5326, PMI Feeds, Inc. The feed is routinely analyzed by the manufacturer for nutritional components and environmental contaminants. Samples of the water are periodically analyzed by HWI. There were no known contaminants in the feed or water at levels that would have interfered with or affected the results of the study.

#### Selection of Test Animals

The animals were identified by animal number and corresponding ear tag and were placed into study groups using a stratified body weight randomization program. The randomization body weights were determined on Day -7. The weight variation of the animals for each group of each sex selected for the study did not exceed  $\pm 2$  standard deviations of the mean weight, and the mean body weights for each group of each sex were not statistically different at the 5% probability level.

#### <u>Study Design</u>

Animals weighing from 2,523 to 3,276 g at initiation of treatment were placed into the following study groups:

Group	Test/Control Material	Dose Level _(mg/kg)	Dose Volume <u>(mL/kg)</u>	<u>Number o</u> <u>Males</u>	<u>f Animals</u> ^a <u>Females</u>
l (Control) 2 (Low) 3 (Medium)	Sterile water T-6246 T-6246	0 5 10	0.5 0.5 0.5	4 4	4
4 (High) 5 (High)	T-6246 T-6246	100 500	0.5 0.75	4* 4*	4 4 4

* One animal sacrificed after treatment due to a possible broken back and replaced with another male animal.

a Two animals/sex/dose level were sacrificed on Day 15. The remaining animals (two animals/sex/dose level) were sacrificed on Day 28.

#### Justification for Species Selection

Historically, the New Zealand White albino rabbit has been the animal of choice because of the large amount of background information on this species.

#### PROCEDURES

#### Dose Preparation and Administration

The test material was diluted with sterile water to achieve a specific concentration for each dose level in Groups 2 to 5. An individual dose of each respective test solution or control was calculated for each animal based on its body weight on the day of treatment. The respective test solution was administered by intravenous injection into the marginal ear vein of the right ear over approximately 22 to 60 seconds. The prepared test solutions were stored at room temperature until administered. After administration, any remaining test solutions were discarded.

#### Reason for Route of Administration

Intravenous injection is an acceptable route to assess systemic exposure.

#### Observations of Animals

Clinical observations were conducted predose and at approximately 0.5, 2, and 4 hours after intravenous injection. Additional clinical observations and twice a day mortality checks were conducted daily thereafter until the scheduled sacrifice interval (Day 15 or Day 28).

Body weights were determined on Day -7 for randomization purposes and before test or control material administration (Day 1). Additional body weights were determined at the scheduled sacrifice interval (Day 15 or Day 28) or at unscheduled sacrifices (when survival exceeded 1 day).

#### Sample Collections

A blood sample (approximately 4 mL) was collected from the marginal ear vein (left ear) of the animals at 4-, 8-, 12-, 24-, and 48-hours post-injection, and on Day 8. An approximate 4-mL blood sample was also collected on Days 15 and 22 for the animals scheduled for sacrifice on Day 28. In addition, at the time of necropsy, approximately 20 mL of blood was obtained from the posterior vena cava of each animal. All samples were stored at room temperature, and then centrifuged, separated into serum and cellular fractions. These samples were then stored in a freezer set to maintain a temperature of  $-20^{\circ}C \pm 10^{\circ}C$  until shipped to the Sponsor.

#### Pathology

The animals sacrificed on Days 1 and 2 due to apparent broken backs were necropsied in the same manner as the animals surviving to the scheduled sacrifices with the exception that they received an abbreviated gross necropsy examination and any abnormalities were recorded.

On Day 15, the first two animals/sex assigned to each dose level (based on the group assignment randomization) were anesthetized with sodium pentobarbital (via injection in the marginal ear vein), bled via the posterior vena cava, and exsanguinated. An abbreviated gross necropsy examination was not done, however, tissues were collected. The whole liver, bile, and both kidneys from each animal were collected, weighed (volume only determined for bile), and immediately placed in a freezer set to maintain a temperature of  $-20^{\circ}C \pm 10^{\circ}C$ . After tissue/bile collection, the animals were discarded. The remaining two animals/sex/dose level were anesthetized, bled, and exsanguinated on Day 28 in the same manner as the animals sacrificed on Day 15.

#### Page 12 of 38

HWI 6329-159

#### Shipment of Tissues

After completion of the in-life phase, the blood samples (serum and cellular fractions), livers, bile, and kidneys were sent frozen (on dry ice) to the Sponsor (James D. Johnson, 3M E.E. & P.C., Bldg. 2-3E-09, 935 Bush Avenue, St. Paul, MN, 55106), along with their corresponding weights or volumes. The Sponsor is responsible for the retention and disposition of the samples. HWI does not accept any responsibility for the analysis of the samples collected in this study nor are these results presented in this report.

#### <u>Statistical</u> Analyses

No statistical analyses were required by the protocol.

#### Location of Raw Data, Records, and Final Report

The raw data, records, and an original signed copy of the final report will be retained in the archives of HWI in accordance with HWI SOP.

Page 13 of 38

HWI 6329-159

#### RESULTS

#### Body Weights

Individual body weights are in Table 1. There was no meaningful effect on body weight gain during the study.

#### <u>Clinical</u> Observations

Individual clinical signs are in Table 2. All animals appeared normal throughout the study with the following exceptions:

- One Group 4 male (No. F54106) treated with T-6246 at 100 mg/kg appeared to have injured its back on Day 2 and was sacrificed, necropsied, and replaced with No. F54099. The replacement animal appeared normal throughout the study.
- One Group 5 male (No. F54076) treated with T-6246 at 500 mg/kg appeared to have injured its back on the day of treatment and was sacrificed, necropsied, and replaced with No. F54112. The replacement animal appeared normal throughout the study.

#### <u>Pathology</u>

Individual animal pathology comments are presented in Table 3. Individual animal tissue weights and bile volumes are in Table 4. The necropsy of animal No. F54106 revealed the skeletal muscle surrounding the lumbar spinal cord was diffusely dark red. In animal No. F54076, the skeletal muscle surrounding both hind limbs and the sacral spinal cord was diffusely dark red. The remaining animals survived to their scheduled sacrifice and were not examined grossly, although tissues were saved.

Page 15 contains a pathology report by the study pathologist.

#### DISCUSSION

The level of systemic exposure of T-6246 was evaluated in male and female albino rabbits when administered as a single intravenous injection at levels of 5, 10, 100, and 500 mg/kg. There were no test material-related effects in any of the animals following administration of this material.

SIGNATURE

Ula M N--Steven M. Glaza

•

Study Director Acute Toxicology

9-14-95 Date

Page 15 of 38

HWI 6329-159

#### PATHOLOGY REPORT

There were two male rabbits sacrificed on Day 1 or Day 2 and necropsied. At necropsy, the skeletal muscle surrounding the lumbar spinal cord in Animal No. F54106 (100 mg/kg of body weight) was diffusely dark red. In Animal No. F54076 (500 mg/kg of body weight), the skeletal muscle surrounding both hind limbs and the sacral spinal cord was diffusely dark red. The findings in these animals are indicative of injury of undetermined etiology to the caudal region of the back. The liver, bile, and both kidneys from these animals were collected as required by protocol. After necropsy, the animals were discarded.

almen Thomas E. Palmer,

Pathologist

9-14-95 Date

(6329-159.1hm) 051295

.

Table 1 Individual Body Weights (g)							
<u>Sex</u>	Animal <u>Number</u>	Random- ization <u>(Day -7)</u>	Initial <u>(Day 1)</u>	Termi Day 15	nal Day 28		
<u>Group</u>	<u>l (Contro</u>	<u>l) - Sterile</u>	Water for I	<u>njection (O</u>	<u>mg/kg)</u>		
Male	F54105 F54075 F54081 F54107	2,603 2,531 2,373 2,544	2,761 2,539 2,526 2,731	2,933 2,703 - -	- 2,874 3,056		
Female	F54104 F54086 F54074 F54085	2,665 2,526 2,540 2,553	2,890 2,632 2,703 2,667	3,130 2,775 - -	- 2,990 3,014		
		<u>Group 2 - T-</u>	<u>6246 (5 mg/k</u>	<u>(g)</u>			
Male	F54083 F54100 F54077 F54094	2,381 2,675 2,459 2,466	2,598 2,869 2,592 2,601	2,538 3,030 - -	- 2,859 2,916		
Female	F54091 F54108 F54102 F54097	2,717 2,412 2,690 2,439	2,785 2,622 2,839 2,533	2,996 2,790 - -	3,290 2,928		
<u>Group 3 - T-6246 (10 mg/kg)</u>							
Male	F54071 F54093 F54095 F54101	2,487 2,652 2,662 2,622	2,523 2,776 2,772 2,642	2,709 2,993 - -	- 3,126 3,162		
Female	F54110 F54096 F54090 F54078	2,719 2,772 2,542 2,710	2,802 2,914 2,740 2,842	2,959 3,022 - -	- 3,022 3,244		

- Not required.

## 000326

-

.

HWI 6329-159

Table	l (Cor	ntinued)	
Individual			(g)

<u>Sex</u>	Animal <u>Number</u>	Random- ization <u>(Day -7)</u>	Initial <u>(Day 1)</u>	Term Day 15	inal Day 28
	<u>G</u>	<u>roup 4 - T-6</u>	246 (100 mg/	/kg)	
Male	F54088 F54106 ^a F54089 F54087 F54099	2,494 2,677 2,597 2,578 2,360	2,582 2,833 2,662 2,665 2,764	2,771 2,803 ⁽²⁾ - 3,004	2,911 3,060
Female	F54080 F54092 F54109 F54114 G	2,498 2,400 2,592 2,776 roup <u>5</u> - T-6	2,622 2,540 2,657 2,933	2,835 2,667 - -	2,979 3,296
Male	F54076 ^b F54113 F54082 F54111 F54112	2,655 2,667 2,734 2,547 2,996	2,678 2,753 2,843 2,784 3,276	2,896 - 3,530	- 3,216 3,228 -
Female	F54098 F54084 F54079 F54116	2,565 2,510 2,468 2,442	2,679 2,600 2,526 2,611	2,856 2,821 - -	- 2,959 3,002

- Not required.
- Animal No. F54106 was originally selected by the randomization program for use in the study and was treated. This animal was sacrificed on Day 2 due to a broken back and was replaced with No. F54099.
- () Number in superscripted parentheses indicates the day the body weight was taken.
- Animal No. F54076 was originally selected by the randomization program for use in the study and was treated. This animal was sacrificed on Day 1 due to a broken back and was replaced with No. F54112.

Sex	Animal <u>Number</u>	Observation	<u>Hour</u> 0.5	<u>(Day</u>	<u>(1)</u> <u>4</u>	_2_	Day <u>3 to 15</u>	<u>16 to 28</u>
	<u>Group 1</u>	(Control) - Sterile	Wate	r for	Inje	ction	(0 mg/kg)	<u>l</u>
Male	F54105	Appeared normal	1	1	1	1	1	*.
	F54075	Appeared normal	1	1	1	1	1	*
	F54081	Appeared normal	1	1	1	1	1	1
	F54107	Appeared normal	1	1	1	1	1	1
Female	F54104	Appeared normal	1	1	1	1	1	*
	F54086	Appeared normal	1	1	1	1	1	*
	F54074	Appeared normal	1	1	1	1	1	1
	F54085	Appeared normal	1	1	1	1	1	1
		<u>Group 2 - T</u> -	6246	(5 mg	<u>/kg)</u>			
Male	F54083	Appeared normal	1	1	1	1	1	*
	F54100	Appeared normal	1	1	1	1	1	*
	F54077	Appeared normal	1	1	1	1	1	1
	F54094	Appeared normal	1	1	1	1	5	1
Female	F54091	Appeared normal	1	1	1	1	1	*
	F5 <b>4</b> 108	Appeared normal	1	1	1	5	1	*
	F54102	Appeared normal	1	1	1	1	1	1
	F54097	Appeared normal	1	1	1	1	1	1

## Table 2 Individual Clinical Signs

* Animal sacrificed on Day 15.
✓ Condition existed.

.

## 000328

#### Table 2 (Continued) Individual Clinical Signs

<u>Sex</u>	Animal <u>Number</u>	Observation	<u>Hour</u> 0.5	<u>(Day</u>	<u>· 1)</u> _4_	2	 <u>3 to 15</u>	16 to 28
		<u>Group 3 - T-6</u>	5246	(10 mc	<u>q/kg)</u>			•
Male	F54071	Appeared normal	1	1	1	1	1	*
	F54093	Appeared normal	1	1	1	1	1	*
	F54095	Appeared normal	1	1	1	1	1	1
	F54101	Appeared normal	1	1	1	1	1	1
Female	F54110	Appeared normal	1	1	1	1	1	*
	F54096	Appeared normal	1	1	1	1	1	*
	F54090	Appeared normal	1	1	1	1	1	1
	F54078	Appeared normal	1	1	1	1	1	1
		<u>Group 4 - T-6</u>	246 (	100 m	g/kg)			
Male	F54088	Appeared normal	1	1	1	1	1	*
	F54106	Appeared normal Broken back Moribund sacrifice	/ - -	-	✓ - -			
	F54089	Appeared normal	1	1	1	1	1	Ĵ
	F54087	Appeared normal	1	1	1	1	1	1
	F54099ª	Appeared normal	1	1	1	1	5	*
Female	F54080	Appeared normal	1	1	1	1	1	*
	F54092	Appeared normal	1	1	1	1	1	*
	F54109	Appeared normal	1	1	1	1	1	1
	F54114	Appeared normal	1	1	1	1	1	1
✓ Condi – Condi	tion exis tion not		F541(	06.		00	0729	

## Table 2 (Continued) Individual Clinical Signs

Sex	Animal <u>Number</u>	Observation	<u>Hour</u> 0.5	<u>(Day</u>	<u>1)</u> <u>4</u>	2	Day 3 to 15	16 to 28
		<u>Group 5 - T-6</u>	246 (	500 m	g/kg)			
Male	F54076	Appeared normal Broken back Moribund sacrifice	✓ - -	✓ - -	✓ † †			•
	F54113	Appeared normal	1	1	1	1	1	*
	F54082	Appeared normal	1	1	1	1	1	1
	F54111	Appeared normal	1	1	1	1	1	1
	F54112 ^ª	Appeared normal	1	1	\$	1	1	*
Female	F54098	Appeared normal	1	1	1	1	1	*
	F54084	Appeared normal	1	<b>√</b>	1	1	1	*
	F54079	Appeared normal	1	1	1	1	1	1
	F54116	Appeared normal	1	1	1	1	1	1

* Animal sacrificed on Day 15.✓ Condition existed.

- Condition not evident.
- † Condition evident at time of 12-hour bleeding interval. a Replacement animal for Animal No. F54076.

•

## Page 21 of 38

HWI 6329-159

### Table 3 Individual Pathology Comments

Animal <u>Number</u>	<u>Sex</u>	Died	<u>Test Day</u> <u>Sacrificed</u>	Necropsy Observation
			<u> Group 4 - T-6246</u>	(100 mg/kg)
F54106	М	-	2	The skeletal muscle surrounding the lumbar spinal cord is diffusely dark red.
			<u>Group 5 - T-6246</u>	(500 mg/kg)
F54076	M		1	The skeletal muscle surrounding both hind limbs and sacral spinal cord is diffusely dark red.

Page 22 of 38	rage	22	01	చర
---------------	------	----	----	----

Table 4 Individual Animal Tissue Weights and Bile Volumes							
Animal <u>Number</u>	Sacrifice Day	Weigh _Liver_	t (g) <u>Kidneys</u>	Bile <u>Volume (mL)</u>			
up 1 (Contro	<u>ol) - Steril</u>	<u>e Water for</u>	Injection (	(O_mg/kg)			
F54105	15	86.35	14.92	0.6			
F54075	15	60.25	15.97	0.1			
F54081	28	80.597	14.764	1.2			
F54107	28	80.649	15.620	0.4			
F54104	15	98.40	16.03	0.7			
F54086	15	77.30	15.23	0.7			
F54074	28	82.895	18.793	1.6			
F <b>54085</b>	28	80.950	14.925	1.3			
<u> </u>	<u>Group 2 - T-</u>	6246 (5 mg/	<u>kg)</u>				
F54083	15	73.15	14.87	0.7			
F54100	15	77.90	17.62	0.7			
F54077	28	75.699	17.864	0.3			
F54094	28	78.689	17.213	0.8			
F54091	15	84.90	14.92	1.6			
F54108	15	79.90	15.40	0.4			
F54102	28	101.494	18.308	1.7			
F54097	28	73.621	16.214	1.4			
	Animal Number up 1 (Contro F54105 F54075 F54081 F54107 F54104 F54086 F54074 F54085 F54083 F54083 F54000 F54077 F54094 F54091 F54088 F54102	Individual Animal Tiss         Animal Number       Sacrifice Day         up 1 (Control) - Steril         F54105       15         F54075       15         F54081       28         F54107       28         F54104       15         F54086       15         F54085       28         F54085       28         F54085       28         F54085       28         F54085       28         F54084       15         F54085       28         F54084       15         F54085       28         F54084       15         F54085       28         F54084       15         F54094       28         F54091       15         F54091       15         F54108       15         F54108       15         F54102       28	Individual Animal Tissue Weights a         Animal Number       Sacrifice Day       Weigh Liver         up 1 (Control) - Sterile Water for         F54105       15       86.35         F54075       15       60.25         F54081       28       80.597         F54107       28       80.649         F54107       28       80.649         F54104       15       98.40         F54086       15       77.30         F54086       15       77.30         F54074       28       82.895         F54085       28       80.950         Group 2 - T-6246 (5 mg/         F54083       15       73.15         F54094       28       78.689         F54091       15       84.90         F54091       15       79.90         F54102       28       101.494	Individual Animal Tissue Weights and Bile Vol         Animal Number       Sacrifice Day       Weight (g)         Liver       Kidneys         up 1 (Control) - Sterile Water for Injection (F54105)       15         F54105       15       86.35       14.92         F54075       15       60.25       15.97         F54081       28       80.597       14.764         F54107       28       80.649       15.620         F54104       15       98.40       16.03         F54086       15       77.30       15.23         F54085       28       80.950       14.925         Group 2 - T-6246 (5 mg/kg)         F54083       15       73.15       14.87         F54000       15       77.90       17.62         F54077       28       75.699       17.864         F54094       28       78.689       17.213         F54091       15       79.90       15.40         F54102       28       101.494       18.308			

## Table 4

## 000332

Table 4 (Continued) Individual Animal Tissue Weights and Bile Volumes						
Sex	Animal <u>Number</u>	Sacrifice Day	<u>Weight</u> Liver	t (g) <u>Kidneys</u>	Bile <u>Volume (mL)</u>	
<u>Group 3 - T-6246 (10 mg/kg)</u>						
Male	F54071	15	77.10	15.88	0.5	
	F54093	15	81.40	15.50	0.8	
	F54095	28	85.504	15.561	1.2	
	F54101	28	85.668	16.120	1.0	
Female	F54110	15	83.68	15.79	1.4	
	F54096	15	78.10	18.70	1.1	
	F54090	28	76.220	15.878	2.1	
	F54078	28	83.460	18.130	1.0	
<u>Group 4 - T-6246 (100 mg/kg)</u>						
Male	F54088	15	84.26	16.98	0.4	
	F54106	2	82.301	16.550	2.0	
	F54089	28	71.796	16.434	1.0	
	F54087	28	83.710	18.591	0.6	
	F54099ª	15	82.143	16.038	0.5	
Female	F54080	15	75.42	18.32	1.2	
	F54092	15	78.36	16.68	*	
	F54109	28	73.958	16.915	1.6	
	F54114	28	80.966	19.404	2.0	

Table 4 (Continued)

a Replacement animal for Animal No. F54106.
 * This animal had no gallbladder, so no bile was collected.

Page 24 of 38

.

HWI 6329-159

	Individual	Animal Tissu	(Continued) he Weights a	nd Bile Vo	lumes
Sex	Animal <u>Number</u>	Sacrifice <u>Day</u>	Weight Liver	t (g) <u>Kidneys</u>	Bile <u>Volume (mL)</u>
		<u>Group 5 -</u>	<u> 7-6246 (500</u>	<u>mg/kg)</u>	
Male	F54076	1	78.058	14.695	2.0
	F54113	15	91.52	16.57	1.0
	F54082	28	88.965	19.431	1.6
	F54111	28	83.823	19.405	1.5
	F54112 ^a	15	97.824	21.069	1.4
Female	F54098	15	78.95	14.72	1.2
	F54084	15	66.42	13.18	0.8
	F54079	28	83.117	14.785	1.8
	F54116	28	71.962	15.793	2.0

Table 4 (Continued)

a Replacement animal for Animal No. F54076.

HWI 6329-159

#### APPENDIX A

Protocol Deviations Protocol TP8084.PK Protocol Amendment No. 1

## 000335

HWI 6329-159

#### Protocol Deviations

Protocol

Actual Procedure

Page 6, 7. Experimental Design, C. Dosing Procedures, (1) Dosing Route. Intravenous injection into the marginal ear vein of the right ear over approximately 30 to 60 seconds. The rate of injection for one Group 5 female (No. F54098) was 22 seconds. Also, the time for dose administration for one male animal (Group 4, No. F54087) was incorrectly recorded thus the exact duration of dosing can not be determined.

These deviations are not considered to have had an adverse effect on the outcome of the study.



)

a CORNING Company

#### Sponsor:

3M St. Paul, Minnesota

PROTOCOL TP8084.EXT

#### Study Title:

Single-Dose Intravenous Pharmacokinetic Study of T-6246 in Rabbits

<u>Date</u>:

March 30, 1995

### Performing Laboratory:

Hazleton Wisconsin, Inc. 3301 Kinsman Boulevard Madison, Wisconsin 53704

Laboratory Project Identification:

HWI 6329-159

## 000337

 Phone
 608-241-4471
 Fax
 608-241-7227

 EXPRESS MAIL
 DELIVERY
 3301
 KINSMAN
 BLVD
 MADISON,
 WI
 53704

#### STUDY IDENTIFICATION

]

.

)

)

## Single-Dose Intravenous Pharmacokinetic Study of T-6246 in Rabbits

HWI No.	6329-159		
Test Material	T-6246		
Sponsor	3M Toxicology Service Medical Department 3M Center, Bldg. 220-2E-02 P.O. Box 33220 St. Paul, MN 55133-3220		
Sponsor's Representative	John L. Butenhoff, PhD 3M Toxicology Service Medical Department 3M Center, Bldg. 220-2E-02 P.O. Box 33220 St. Paul, MN 55133-3220 (612) 733-1962		
Study Director	Steven M. Glaza Hazleton Wisconsin, Inc. P.O. Box 7545 Madison, WI 53707-7545 (608) 241-7292		
Study Location	Hazleton Wisconsin, Inc. 3301 Kinsman Boulevard Madison, WI 53704		
Proposed Study Timetable Experimental Start Date Experimental Termination Date Draft Report Date	April 4, 1995 May 1, 1995 June 12, 1995		

- <u>Study</u> Single-Dose Intravenous Pharmacokinetic Study in Rabbits
- <u>Purpose</u> To assess the level of systemic exposure when the test material is administered as a single intravenous injection to rabbits
- 3. <u>Regulatory Compliance</u> This study will be conducted in accordance with the following Good Laboratory Practice Regulations/Standards/Guidelines with the exception that analysis of the test material mixtures for concentration, solubility, homogeneity, and stability will not be conducted:

[ ] Conduct as a Nonregulated Study
[X] 21 CFR 58 (FDA)
[ ] 40 CFR 160 (EPA-FIFRA)
[ ] 40 CFR 792 (EPA-TSCA)
[ ] C(81)30 (Final) (OECD)
[ ] 59 Nohsan No. 3850 (Japanese MAFF)
[ ] Notification No. 313 (Japanese MOHW)

All procedures in this protocol are in compliance with the Animal Welfare Act Regulations. In the opinion of the Sponsor and study director, the study does not unnecessarily duplicate any previous work.

- 4. <u>Quality Assurance</u> The protocol, study conduct, and the final report will be audited by the Quality Assurance Unit in accordance with Hazleton Wisconsin (HWI) Standard Operating Procedures (SOPs) and policies.
- 5. <u>Test Material</u>

1

)

- A. <u>Identification</u> T-6246
- <u>Physical Description</u> (To be documented in the raw data)

C. Purity and Stability

The Sponsor assumes responsibility for purity and stability determinations (including under test conditions). Samples of test material/vehicle mixture(s) for concentration, solubility, homogeneity, and stability analyses will be taken before administration if requested by the Sponsor. These samples (if taken) will be sent to the Sponsor after experimental termination.

D. <u>Storage</u> Room temperature

E. <u>Reserve Samples</u> Reserve sample(s) of each batch/lot of test and control materials will be taken for this study.

The test and control material reserve samples will be stored at HWI in a freezer set to maintain a temperature of  $-20^{\circ}C \pm 10^{\circ}C$  for 10 years per HWI SOP. The Sponsor will be contacted after 10 years for disposition in accordance with the appropriate regulatory Good Laboratory Practices.

- F. <u>Retention</u> Any unused test material will be returned to the Sponsor after completion of the in-life phase of the study.
- G. <u>Safety Precautions</u> As required by HWI SOPs and policies

#### 6. Control Material

)

)

- A. <u>Identification</u> Sterile water for injection
- B. <u>Physical Description</u> Clear, colorless liquid
- C. <u>Purity and Stability</u> The purity and stability of this USP grade material is considered adequate for the purposes of this study.
- D. <u>Storage</u> Refrigerated
- E. <u>Reserve Samples</u> See Section 5. E. Reserve Samples
- F. <u>Retention</u> Any remaining control material may be used for other testing and will not be discarded after issuance of the final report.
- G. <u>Safety Precautions</u> As required by HWI SOPs and policies

#### 7. Experimental Design

- A. <u>Animals</u>
  - (1) <u>Species</u> Rabbit
  - (2) <u>Strain/Source</u> Hra:(NZW)SPF/HRP, Inc.

(3) Age at Initiation Adult

)

ł

)

- (4) <u>Weight at Initiation</u> 2.5 to 3.5 kg
- (5) <u>Number and Sex</u> 20 males and 20 females
- (6) <u>Identification</u> Individual numbered ear tag
- (7) <u>Husbandry</u>
  - (a) <u>Housing</u> Individually, in screen-bottom stainless steel cages (heavy gauge)
  - (b) Food A measured amount of Laboratory Rabbit Diet HF #5326 (PMI Feeds, Inc.). The food is routinely analyzed by the manufacturer for nutritional components and environmental contaminants.
  - (c) <u>Water</u>

Ad libitum from an automatic system. Samples of the water are analyzed by HWI for total dissolved solids, specified microbiological content, selected elements, heavy metals, organophosphates, and chlorinated hydrocarbons.

- (d) <u>Contaminants</u> There are no known contaminants in the food or water that would interfere with this study.
- (e) <u>Environment</u> Environmental controls for the animal room will be set to maintain a temperature of 19°C to 23°C, a relative humidity of 50% ±20%, and a 12-hour light/12-hour dark cycle.
- (f) <u>Acclimation</u> At least 7 days
- (8) <u>Selection of Test Animals</u> Based on health and body weight according to HWI SOPs. An adequate number of extra animals will be purchased so that no animal in obviously poor health is placed on test. The animals will be placed into study groups using a stratified body weight randomization program within nine days of study initiation.

(9) <u>Justification for Species Selection</u> Historically, the New Zealand White albino rabbit has been the animal of choice because of the large amount of background information on this species.

#### B. Dose Administration

)

ţ

)

(1) <u>Test Groups</u>

Group	Test/Control Material	Dose Level (mg/kg) ^a	<u>Number</u> <u>Males</u>	<u>of Animals</u> b <u>Females</u>
l (Control)	Sterile water	0	4	4
2 (Low)	T-6246	5	4	4
3 (Medium)	T-6246	10	4	4
4 (High)	T-6246	100	4	4
5 (High)	T-6246	500	4	4

- a The dose volume will be 0.5 mL/kg of body weight.
- b Two animals/sex/dose level will be sacrificed on Day 15. The remaining animals (two animals/sex/dose level) will be sacrificed on Day 28.
- C. <u>Dosing Procedures</u>
  - (1) <u>Dosing Route</u> Intravenous injection into the marginal ear vein of the right ear over approximately 30 to 60 seconds.
  - (2) <u>Reason for Dosing Route</u> Intravenous injection is an acceptable route to assess systemic exposure.
  - (3) <u>Dosing Duration</u> Single dose

#### (4) Dose Preparation The day of treatment will be designated as Day 1. The Group 1 animals will be treated with sterile water at a dose volume of 0.5 mL/kg. The test material will be diluted with sterile water to achieve a specific concentration for each dose level in Groups 2-5. Individual doses will be calculated based on the animal's body weight taken just before test material administration. The prepared test mixtures will be stored at room temperature until administration.

#### D. <u>Observation of Animals</u>

ì

ļ

<u>Clinical Observations</u>
 The animals will be observed for clinical signs of toxicity before test or control material administration, at approximately 0.5, 2.0, 4.0 hours post-injection (Day 1), and daily thereafter for clinical signs and twice daily (a.m. and p.m.) for mortality until the scheduled sacrifice interval (Day 15 or Day 28). Observations may be extended when directed by the Study Director.

(2) <u>Body Weights</u> For randomization, before test or control material injection (Day 1), at the scheduled sacrifice interval (Day 15 or Day 28), and at unscheduled death and sacrifices (when survival exceeds 1 day)

- (3) <u>Sample Collections</u>
  - (a) <u>Frequency</u>
     4-, 8-, 12-, 24-, and 48-hours post-injection, on Days 8, 15, 22, and at the scheduled sacrifice interval (Day 15 or Day 28)
  - (b) <u>Method of Collection/Number of Animals</u> Blood samples (approximately 4 mL) will be collected from the marginal ear vein (left ear) of all animals at 4-, 8-, 12-, 24-, and 48-hours post-injection, and on Day 8. Additional samples will be collected on Days 15 and 22 for the animals scheduled for sacrifice on Day 28.

Approximately 20 mL of blood (actual volume to be documented in the raw data) will be obtained from the posterior vena cava at the time of the scheduled sacrifice (Day 15 or Day 28). Approximately 20 mL of blood will be collected from moribund animals during the study, also, if possible.

The samples will be stored at room temperature and then centrifuged, and the separate serum and cellular fractions stored in a freezer set to maintain a temperature of  $-20^{\circ}$ C  $\pm 10^{\circ}$ C. The separated serum and cellular fractions will be sent frozen on dry ice to the Sponsor after experimental termination. The Sponsor is responsible for the retention and disposition of the samples.

### 000343

Page 34 of 38

TP8084.EXT Page 8

Samples will be shipped to:

James D. Johnson 3M E.E. & P.C. Bldg. 2-3E-09 935 Bush Avenue St. Paul, MN ,55106

James D. Johnson or his alternate will be notified by telephone at (612) 778-5294 prior to the shipment of the samples.

E. <u>Termination</u>

)

)

(1) Unscheduled Sacrifices and Deaths

Any animal dying during the study or sacrificed in a moribund condition will be subjected to an abbreviated gross necropsy examination and all abnormalities will be recorded. Animals in a moribund condition will be anesthetized with sodium pentobarbital (via injection in the marginal ear vein), bled via the vena cava, and exsanguinated. Tissues, as described in section 7.E. (3) Sample Collection, will be collected from any animal dying during the study or sacrificed in a moribund condition. After necropsy, the animals will be discarded.

(2) <u>Scheduled Sacrifices</u>

On Day 15, the first two animals/sex assigned to each dose level (based on the group assignment randomization) will be anesthetized with sodium pentobarbital (via injection in the marginal ear vein), bled via the vena cava, and exsanguinated. The remaining two animals/sex/dose level will be anesthetized with sodium pentobarbital (via injection in the marginal ear vein), bled via the vena cava, and exsanguinated on Day 28. An abbreviated gross necropsy examination will not be done, however, tissues (as described in section 7.E. (3) Sample Collection) will be collected.

(3) <u>Sample Collection</u>

The whole liver, bile, and both kidneys from each animal will be collected, weighed (volume only determined for bile), and immediately placed in a freezer set to maintain a temperature of  $-20^{\circ}$ C  $\pm 10^{\circ}$ C. After sample collection, the animals will be discarded.

The samples (liver, bile, and kidneys) will be sent frozen on dry ice to the Sponsor after experimental termination. The samples and their corresponding weights or volumes will be shipped to the person listed in Section 7.D.(3).(b). The Sponsor is responsible for the retention and disposition of the samples.

000344

F. <u>Statistical Analyses</u> No statistical analyses are required.

)

Ì

 <u>Report</u> A final report including those items listed below will be submitted.

Description of the test and control materials Description of the test system Procedures Dates of experimental initiation and termination Description of any toxic effects Gross pathology findings (if applicable) Gross pathology report (if applicable and requested by the Study Director) Individual animal tissue weights and bile volumes

9. Location of Raw Data, Records, and Final Report Original data, or copies thereof, will be available at HWI to facilitate auditing the study during its progress and before acceptance of the final report. When the final report is completed, all original paper data, including those item listed below will be retained in the archives of HWI according to HWI SOP.

Protocol and protocol amendments Dose preparation records In-life records Body weights Dose administration Observations Sample collection records Shipping records Pathology Records Study correspondence Final report (original signed copy)

The following supporting records will be retained at HWI but will not be archived with the study data.

Animal receipt/acclimation records Water analysis records Animal room temperature and humidity records Refrigerator and freezer temperature records Instrument calibration and maintenance records

PROTOCOL APPROVAL

ï

Hun 2. Kutenhof

John L. Butenhoff, PhD ^f Sponsor's Representative 3M

ì

1

Ì

Steven M. Glaza Study Director Acute Toxicology Hazleton Wisconsin, Inc.

Shad

Representative Quality Assurance Unit Hazleton Wisconsin, Inc.

(6329-159.protdsk2)

4-4-95

Date

3.30-95

Date



a CORNING Company

#### PROTOCOL TP8084.EXT

1

Single-Dose Intravenous Pharmacokinetic Study of T-6246 in Rabbits

HWI 6329-159

Sponsor

)

)

#### <u>Contractor</u>

3M Toxicology Service Medical Department
3M Center, Bldg. 220-2E-02
P.O. Box 33220
St. Paul, MN 55133-3220

Hazleton Wisconsin, Inc. 3301 Kinsman Boulevard Madison, WI 53704

Sponsor's Representative

John L. Butenhoff, PhD

<u>Study Director</u> Steven M. Glaza

#### Amendment No. 1

This amendment modifies the following portions of the protocol:

#### Effective April 4, 1995

- 1. <u>Page 6, 7. Experimental Design; B. Dose Administration; (1) Test Groups.</u> The test material mixture for Group 5 could not be prepared at the concentration needed to utilize a dose volume of 0.5 mL/kg. Modify footnote "a" in this section with the following underlined addition:
  - a The dose volume will be 0.5 mL/kg of body weight <u>for Groups</u> <u>1-4 and 0.75 mL/kg for Group 5.</u>

## 000347

 Phone
 608-241-4471
 Fax
 608-241-7227

 EXPRESS MAIL
 DELIVERY
 3301
 KINSMAN
 BLVD
 MADISON,
 WI
 53704

Amendment No. 1

١

HWI 6329-159 Page 2

#### Effective April 5, 1995

 Page 6, 7. Experimental Design; B. Dose Administration; (1) Test Groups. Animal No. F54076 (Group 5 male) and Animal No. F54106 (Group 4 male) were sacrificed on Days 1 and 2, respectively, due to injuries (apparent broken backs). Add the following paragraph to this section:

> Due to the sacrifice on Day 1 of one Group 5 male (Animal No. F54076) and on Day 2 of one Group 4 male (Animal No. F54106) because of injuries (apparent broken backs), replacement animals will be treated at the same dose levels in the same manner as for the initial animals in the study. The observations (clinical observations, body weights and sample collections) and the termination of the animals (unscheduled sacrifices and deaths, scheduled sacrifices, and sample collection) will be conducted in the same manner as for the other animals in the study terminating on Day 15.

> > PROTOCOL AMENDMENT APPROVAL

John 2. Butenhoff

John L. Butenhoff, PhD Sponsor's Representative 3M Toxicology Service Medical Department

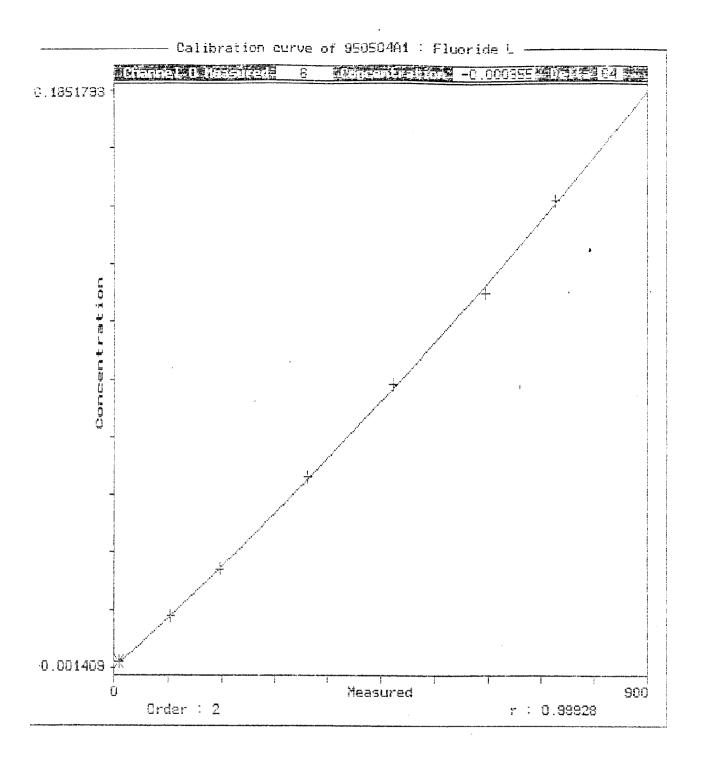
Steven M. Glaza

Study Director Acute Toxicology Hazleton Wisconsin, Inc.

Representative

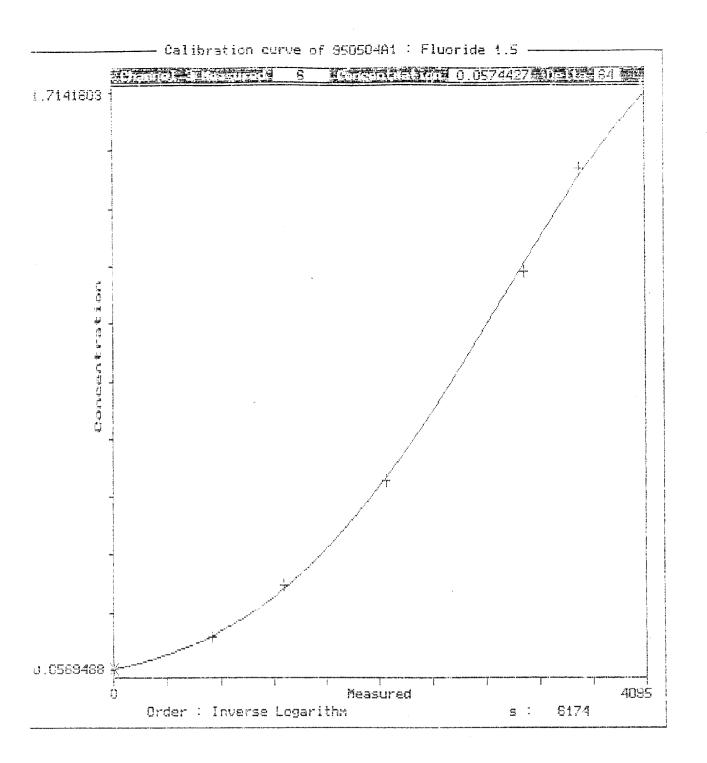
Quality Assurance Unit Hazleton Wisconsin, Inc.

(6329-159.Aml.dsk3)


5-2-95

Date

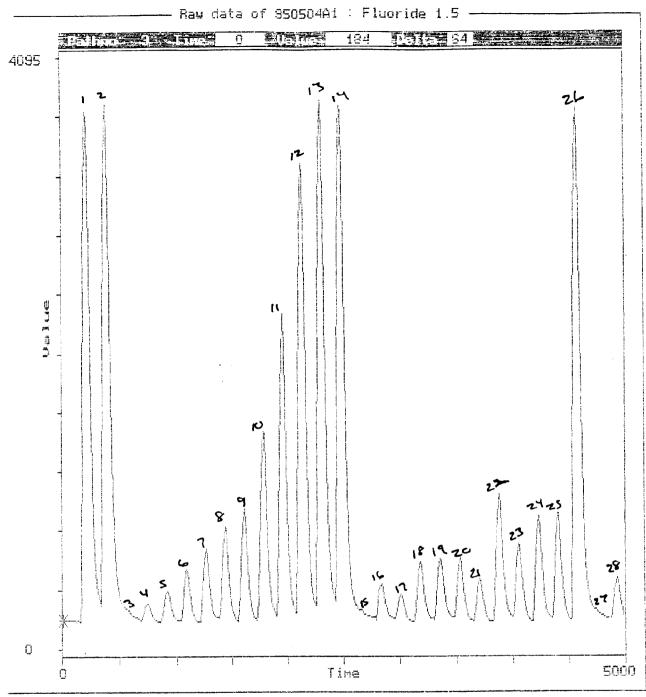
4-18-95 Date


4.18.95 Date

000348



000349


000169



## 000350

000170

28





# 000171

000351