Academia.eduAcademia.edu
1 Supplementary Material (Motherwell et al.) 7. Discussion of results and methodology by each participant Each subsection has been prepared by the named author. The principal programs used are given in parentheses after the author surname . 7.1 Ammon (MOLPAK/WMIN/DMAREL) General Procedures Our basic procedures for structure predictions had been given in the previous paper (Lommerse et al., 2000), but will be briefly outlined here. Structure prediction is a three step process: (1) construct a so-called search probe, a geometry optimized model, for the molecule of interest; (2) determine thousands of hypothetical packing structures with predetermined symmetries for the search probe; (3) refine the best of the hypothetical structures by minimization of the crystal lattice energies. Step (1): A preliminary model was built with the PC Spartan Pro program (Wavefunction Inc., 1999) followed by ab initio geometry optimization with either the Gaussian94 (Frisch et al., 1995) or Gaussian98W (Frisch et al., 1998) programs. The optimizations used the non-local DFT method and 6-31G* basis sets (B3LYP/6-31G* option in Gaussian). The optimized structures were modified by adjusting C(sp3)-H, C(sp2)-H and N-H lengths to the standard values of 1.098, 1.084 and 1.013 Å, respectively, to give the search probe models. Step (2): Detailed analyses of many triclinic, monoclinic and orthorhombic crystal structures revealed a relatively small number of common molecular coordination geometries or patterns with 14 as the most prevalent coordination number. The MOLPAK program (Holden, Du & Ammon, 1993) was designed to build the highest density, hypothetical packing arrangements from the search probe and known coordination geometries. There are 29 commonly used geometries which span the following space groups (# of geometries): P1 (1), P-1 (2), P21 (2), P21/c (5), C2 (1), Cc (1), C2/c (3), P212121 (2), P21212 (3), Pna21 (3), Pca21 (2), Pbcn (2) and Pbca (2). For each geometry, all unique orientations of a search probe are utilized by rotations of 180° in 10° steps about three Eulerian axes leading to 6859 (193) hypothetical packing arrangements. The packing calculations were accelerated by the use of only the repulsive term of a standard 6-12 potential and predetermined repulsion energy thresholds. The drawbacks of this repulsion-only procedure are evident in H-bonded structures and caused a particular problem for (IV). Step (3): For each of the 29 coordination geometries, the 150-200 highest density packing arrangements were refined by lattice energy minimization with the WMIN (Busing,1981) (single charge per atom electrostatic model) or DMAREL3 (Willock, Price, Leslie & Catlow,1995) (distributed multipole charge model) programs. The three structures contained functionality not originally recognized by the programs. For WMIN, force field coefficients were determined for the imide functionality in (IV), Br in (V) and sulfonimine (-SO2-N=C) functionalities in (V) and (VI). New coefficients for S, Br and H-N (H on N) were determined for DMAREL3. Results Attempts to predict the structure for (IV) based on the ab initio search probe model were unsuccessful. The structure of (IV) has a strong intermolecular O…H-N bond of 2.11 Å (based on the observed N-H length of 0.87 Å); the H…O distance is 1.97 Å with a more realistic N-H of 1.013 Å. To a large extent, this failure can be attributed to the inability of the repulsion-only docking potential used in MOLPAK to yield an appropriate set of initial hypothetical structures for refinement. However, a search probe based on the experimental structure with C-H and N-H bond adjusted to 1.098 and 1.013 Å, respectively, and a MOLPAK + WMIN search did yield the correct crystal structure. This solution (E = -25.92 kcal/mol) was far from that with the lowest energy of –27.23 kcal/mol. A MOLPAK + DMAREL3 run failed to duplicate this success, perhaps because the preliminary refinement stage of WMIN involves a step minimization and provides a reasonably large convergence radius. A DMAREL3 calculation 2 starting with the WMIN refined structure gave a correct result with O…H of 1.95 Å. The reasons for the failure of the ab initio search probe and partially successful use of the experimental search probe are unclear given that both models are virtually identical. Perhaps blame can be placed with the MOLPAK potential which is just on the edge of being unable to handle a structure with the strong H-bonding of (IV). The structure of (V) was readily determined with a search probe model obtained by geometry optimization with Gaussian94. From a MOLPAK + WMIN calculation, the solutions with the three lowest lattice energies in acentric space groups were C2 (-32.58 kcal/mol), Cc (-31.72) and P212121 (-31.64). The C2 solution was rejected as being unlikely based on a low crystal density of 1.558 g/cc compared to a volume additivity prediction (Ammon, 2001) of 1.651 g/cc. The correct solution was P212121. It should be noted that the lowest energy solution for the racemate was in P21/c at –34.34 kcal/mol. The two lowest energy, acentric space group solutions from a MOLPAK + DMAREL3 calculations for (V) were Cc (-33.54 kcal/mol) followed by the correct P212121 (-33.40). Again the lowest energy solution for the racemate was P21/c at –34.37 kcal/mol. The DMAREL3 calculations used newly determined force field coefficients for S and Br; it is probable that an improved prediction could have resulted from the determination of specific cross-terms interactions for Br with H, C, N, O, S and Br. The results reported by Price for (V), which are more elegant than those reported here, indicate the importance of an anisotropic potential for Br. It should be noted the original submission of results for (V) did not recognize that the structure is a pure enantiomer limited to Sonhke space groups. The top three solutions submitted were in space groups P21/c, P21/c and Cc. The correct P212121 solution was fourth. Predictions for (VI) used two possible conformations, both of which were quite far from the experimental. However, with the observed structure as the search probe, a test of the MOLPAK + WMIN and MOLPAK + DMAREL3 procedures found the correct structure as the second lowest energy for WMIN and lowest energy for DMAREL3. 7.2 Dunitz & Schweizer (Zip-Promet ) Compound IV As a preliminary guide to choosing between dimeric and catemeric hydrogen-bonded crystal structures for this compound, we made a CSD search for molecules similar to (IV). The search fragment was defined as a glutarimide moiety substituted with 4-connected C atoms at the 3- and 5-positions of the ring. This search produced five hits (BAHFIZ, LERDIF, PIVFIJ, RERYES, YUFYED), all containing centrosymmetric or pseudo-centrosymmetric hydrogen-bonded dimers in the respective crystal structures. The crystal structure generation for (IV) was therefore limited to space groups P-1, P21/c, C2/c and Pbca. Molecular dimensions were taken from results of an ab initio calculation (MACSPARTAN, 6-31* basis set, assuming molecular Cs symmetry). In most of the calculations, and especially in the final ones, library potentials were supplemented by R-1 terms over atomic point charges obtained by a fit to the electrostatic potential. Contrary to our expectation based on the result of the CSD search, most of the low-energy structures generated by PROMET contained catemeric hydrogen-bonded arrangements rather than dimeric ones. Nevertheless, influenced by the result of the CSD search, we focussed our attention on the relatively few dimeric structures generated by the program and finally selected the three lowest energy structures of this type as our predictions. After the experimental structure had been announced, re-examination of our listing of calculated structures revealed that the lowest energy structure obtained in our calculations was indeed close to the experimental structure although cell dimensions were somewhat expanded, presumably due to inaccurate potentials. Clearly, in this case we would have done better not to use the CSD as a guide. 7.3 Dzyabchenko (PMC) The PMC program (Dzyabchenko et al., 1999, Dzyabchenko, 2001) has been designed to minimize the potential energy of a crystal composed of several generally distinct molecular units with fixed internal geometry, interacting with one another via only the non-bonded atom-atom potentials of van der Waals (6-12 3 / 6-exp type) and electrostatic type. These units can be defined as integral molecules or fragments of a flexible molecule within which they are additionally held together by the 'link' potentials of quadratic type to preserve standard geometry around such a link. The molecular geometry of IV and V was taken basically the same with that reported for chemical analogues of these compounds found in the CSD (Allen et al.,1991): glutarimide (Petersen, 1971) and its 4,4-dimethyl derivative (Bocelli & Grenier-Loustalot, 1981) for IV, and camphorsulphonimine (Chakraborty et al., 1997) for V. Molecule VI was constructed from three rigid fragments: the central SO2 group, the phenyl ring and the planar heteroaromatic system, their geometry was taken from the crystal structures of cis (Basak et al., 1984) and trans (Bar, 1985) isomers of the 4-phenylamino analogue. The list of non-bonded atom-atom potential parameters used in this work is reported in Supplementary Material. The net atomic charges were calculated for free molecules IV-VI with Gaussian 98 (Frisch et.al., 1998) at the 6-31G level. Preliminary, the accuracy of this force-field was assessed by its application to the known crystal structures of the named analogues, whose minimized structures were compared by energy with other minima from the respective ab initio searches (although restricted to the P21/c, Pbca, and P-1 space groups only because of time limitations). The strategy of global search followed essentially that described in an early paper on benzene structures (Dzyabchenko, 1984). For IV and VI, the space groups P21/c, Pbca, P-1, C2/c, P212121, P21, Pna21, Cc, and C2 have been selected. In addition, to avoid structures with large beta angles, the list of monoclinic groups was extended with some in non-standard settings: P21/n, C2/n, I2/c, Cn, Ic, and I2. For enantiomorphous V only P212121 and P21 were selected. The starting cells were taken rectangular, their dimensions allowed the cell shape to be one of the four selected types ('cubic', 'brick', 'plate', and 'stick') and scaled to give the density 1.2 - 1.5 times as great as the minimized-structure density. The starting centre-ofmolecule positions were taken at the eight vertices of the asymmetric unit of the Cheshire-group cell (Hirshfeld, 1968): 0,0,0; 1/4,1/4,1/4; 0,1/4,1/4; 1/4,0,1/4; 1/4,1/4,0; 1/4,0,0; 0,1/4,0; and 0,0,1/4. The starting orientations were assigned within the symmetry-adapted ranges of the three Euler angles (Hirshfeld, 1968; Dzyabchenko, 1983, 1984), with a 30-degree step in each angle. The starting grid structures were optimised with the VA09 procedure (Fletcher, 1972) with analytical 1st derivatives. The optimised structures were sorted by energy. The same-energy minima were compared with each other with CRYCOM to screen out the non-unique solutions. Results of ab initio search Compound IV. The three lowest-energy structures submitted as ab initio predictions contained hydrogenbonded (HB) dimers closed cyclically about the symmetry centres. This is in contrast to the experimental structure ranked 31, stabilised with H-bonds in infinite chains mediated by the glide planes. Remarkably, most other structures, of those predicted lower in energy than I-31, contained cyclic dimers as well, while minor portion was represented by motifs with HB-chains mediated by a screw axis or a glide plane. Overall, the dimeric packings were more stable then the packings built of infinite chains. Of the chain packings, those due to a screw axis were more stable than the glide-plane ones. This packing hierarchy looks reasonable from the point of view of stabilization energy caused by the electrostatic interactions. For comparison, the chains in glutarimide are mediated by screw axis while the chains in its dimethyl derivative are glide-plane. To explain the observation of chains rather than more stable dimers, one can suggest that the former are favoured kinetically when crystallised from polar media. Compound V. The energy differences of the several most stable minima are rather small here again, and the ranking could be affected by the thermal factor ignored in this calculation. At the same time, the ranking was found sensitive to small variation in the van der Waals potentials for bromine. Compound VI. It was initially intended to perform the global search with a set of fixed conformations first and then refine the minima found with flexible molecule. However, it was soon understood that such a stepwise strategy was not in fact optimal with our software, and we turned to the flexible-molecule minimizations straightforwardly from the grid structures. Of the two isomers considered, the trans isomer has been correctly selected as more stable in solid state. However, the observed structure occurred as a less symmetrical and rather loosely packed than the predicted Pbca structures. It was identified on the powderassisted step as one of the energy minima, rather high in energy and heavily distorted with respect to the experimental structure. Powder-assisted results for IV-VI The powder spectra treated with the powder-indexing program TREOR (Werner et. al. 1985) has resulted in cell parameters and space group symmetry which made it possible to recognise the true solutions for IV and V among the structures found ab initio. The correct structure of VI was also found at this stage, though 4 additional refinement of the ab initio P21/c structures was in fact necessary by the energy minimisation based on the true cell dimensions. To conclude, the ab initio search has defined the three observed structures as local energy minima, of energy rankings beyond 3. To improve these results, more accuracy in the force field for V (bromine), and of VI (adding a torsional potential) is necessary. With regard to IV, the result could hardly be improved without taking into consideration the kinetic factor. With the experimental powder cell parameters, the force-field pitfalls become of less significance, for the energy-based prediction delivers the structures correctly in the three test cases. This table is intended for supplementary material to Section 4.3 Dzyabchenko (PMC) Table PMC-1. Non-bonded potential parameters for IV-VI Atom pair (a,b) H H H H H H H C C C C C C N N N N N O O O O S S S Br Br H* a H C N O S Br H* C N O S Br H* N O S Br H* O S Br H* S Br H* Br H* H* Type r0, A ε, kcal/mol 6-12 6-12 6-12 6-12 6-12 6-exp 6-12 6-12 6-12 6-12 6-12 6-exp 6-12 6-12 6-12 6-12 6-exp 6-12 6-12 6-12 6-exp 6-12 6-12 6-exp 6-12 6-exp 6-exp 6-12 2.930 3.315 3.460 2.75 3.540 3.900 2.805 3.700 3.845 3.410 3.925 4.200 3.190 3.990 3.555 4.070 4.200 3.335 3.120 3.635 4.100 1.900 4.150 4.300 3.415 4.500 3.349 2.680 -0.0359 -0.0474 -0.0357 -0.0400 -0.0787 -0.1000 -0.0467 -0.0722 -0.0567 -0.1170 -0.1263 -0.2000 -0.0597 -0.0450 -0.0906 -0.1007 -0.2000 -0.0445 -0.2001 -0.1996 -0.2000 -1.1100 -0.2257 -0.3000 -0.0977 -0.5000 -0.1407 -0.0614 α, A-1 3.55 3.50 3.50 3.50 3.50 3.60 3.55 H and H* stand for hydrogens attached to carbon and nitrogen, respectively. b Shortened bond length of 1.5Å was accepted for C-Br to adapt anisotropy of bromine interactions. 5 7.4 Erk (SySe/PP) All calculations were performed using CERIUS2 version 4.2 (Accelrys Inc., 2001). The Dreiding2.21force field (Mayo, Olafson & Goddard, 1990) was used in all cases. Bonding parameters for sulfur were changed to achieve a better match of the bonding situation in sulfur containing molecules. Electrostatics were calculated by Ewald summation based on atom charges. Two charge models, MNDO-ESP (Besler, Merz & Kollman, 1990) and charge equilibration charges (QEQ) (Rappe & Goddard, 1991), were evaluated by checking their suitability to reproduce the crystal structures of related molecules. The molecules used for evaluation and the charge model applied in the simulation are listed in Table. For each of the three molecules a systematic search (SySe) (Erk, 1999) and the Polymorph Predictor (Verwer & Leusen, 1998) were used to generate initial packings. For the SySe the molecular model was placed in a rectangular unit cell large enough to allow the molecules to be rotated without interference with their symmetry related copies. The molecular model was centered at (¼, ¼, ¼) and aligned in such a way that its maximum moment of inertia was parallel to the a-axis. Structures were generated by changing the orientation of the molecule in steps of 30° with respect to each axis, which is usually sufficient to perform an exhaustive global minimization. However, in the present case the structure generation procedure was repeated with the molecule initially turned by 15°. The packing energy of these low density structures was minimized using the CERIUS2 module Crystal-Packer step by step, first with respect to the cell axis (permuting the order of the axis), secondly the cell angles (as required by the crystal system) and finally the orientation of the molecule. A representative tcl script for CERIUS2 4.2 as used in the CSP is given in the annex. In the case of molecule VI the resulting packings were further minimized allowing full molecular flexibility. Polymorph Predictor runs were performed once for each space group considered. A representative tcl script file for these runs is also in the annex. In a subsequent stage, all generated structures were energy minimized allowing the full flexibility of the molecule. The results of the SySe , molecules IV,V, were clustered by having identical energy components and the same density within limits of 0.1 kcal/mol and 0.001 g/cm3 respectively. In the cases where molecular flexibility has been considered (Polymorph Predictor, SySe molecule VI), structures were clustered based on a radial distribution function. To avoid the loss of results, the most selective parameters were chosen for the clustering. Molecule IV The CSD entry GLUTIM was used as a reference for molecule IV. The molecular geometry calculated using PM3 was found to match almost perfectly the experimentally determined one. For the same reason MNDO-ESP charges were found to be superior to QEQ atom charges. A Polymorph Predictor test run in space group P21/c followed by clustering after the simulated annealing procedure did not yield the correct structure. Upon minimisation of all generated packings, the experimentally determined catemer structure was on the list of calculated structures. However it was ranked by energy at place #38 (highly selective clustering which did not remove all redundant packings suggested rank #95). Using the same force field as for the GLUTIM validation, structures for IV were calculated using the SySe and with the Polymorph Predictor in all 10 space groups. Additionally, structures were predicted with the SySe using the centrosymmetric hydrogen bonded dimer as a fixed unit. In the SySe with one molecule as the modeling unit 20160 packings have been generated and were energy minimized within 46 hours and 35 minutes CPU time on a 270 MHz R12000 SGI O2 workstation. In the Polymorph Predictor run 24771 structures were generated and minimized within 125 hours and 9 minutes. The higher demand in CPU time for the Polymorph Predictor is presumably due to the more costly minimization of the molecular structure as well as the crystal packing. The time factor between both methods depends highly on the complexity of the space group and ranges from close to unity for P almost four in Pbcn. 1 to The three best structures ranked by energy of these different approaches were compared and it was found that they were basically identical for the Polymorph Predictor and the 2 SySe runs. The three lowest energy structures were proposed for the test. The minimum energy structure corresponding to the experimental structure was found by both methods. It was ranked by the force field of SySe 6 kcal/mol and by the Polymorph Predictor (considering full flexibility) 5.5 kcal/mol above the respective global minimum. 6 Molecule V Force field validation for V was carried out using the CSD structures ROLBOJ and SURJOE. Because of the poor geometrical accuracy of the sulfone group, Dreiding2.21 was modified as follows: bond minimum S_3O_2 = 143 pm, angle minimum X-S_3-X = 90°, torsion X-C_3-S_3-X, 2 kcal/mol, 3 periods, minimum at 0°. The molecular model for V was derived from the coordinates of the structure of SURJOE, to which the bromine atom was added. The positions of the bromine and the hydrogen atoms have been optimized. QEQ charges in combination with the modified Dreiding force field were found to yield sufficiently accurate structures for both validation models. Runs in the SySe and the Polymorph Predictor were carried out in the two space groups considered. Again the three lowest energy structures were identical for both methods and were proposed. Only in the SySe procedure the structure correlating with the experimental structure was found. However the geometrical similarity of experimental and calculated structure was very poor. The “correct” calculated structure was 4.6 kcal/mol above the global minimum. Any obvious reasons for the failure of the Polymorph Predictor could not be found. However, the calculated structure corresponding to the experimental packing was found to be 5.3 kcal/mol higher in energy than the global minimum in the current run. Molecule VI Force field validation was carried out using the isomeric series of sulfapyridine polymorphs (BEWKUJ). Because of poor geometrical accuracy, the force field was modified further (including the modifications for V) as follows: bond minimum S_3-N_2 = 160 pm, torsion X-S_3-C_R-X, 30 kcal/mol, 2 periods, minimum at 0°. This modified force field in combination with QEQ atom charges calculated with the molecular geometry of the respective isomer yielded good matching packings for all BEWKUJ polymorphs (E- and Zdiastereoisomers). The molecular model for the E-Isomer was calculated using the modified Dreiding force field. The model for the Z-isomer was constructed from BEWKUJ04 by moving the amino group and optimizing the amino nitrogen and all hydrogen atom positions. Thus a representative configuration for the phenyl group in VI should have been ensured. For both models QEQ atom charges were calculated. SySe runs were performed for both isomers in all space groups followed by minimizations of all unique structures allowing full molecular flexibility. Polymorph Predictor runs were carried out in the 5 most promising space groups only. Energy ranking of the calculated structures was found to be nonsensical. The lowest energy structures were all crowded with an irrationally high number of hydrogen bonds and other objective selection criteria could not be found. Finally three subjectively selected structures were proposed. Both methods yielded the packing corresponding to the experimental structure at 2.7 (SySe) and 2.1 kcal/mol (Polymorph Predictor) above the global minimum Mol V Polymorph Predictor.log mol2_start.msi Tcl script und input file for Polymorph Predictor run on molecule V. SySe Mol IV Mol V E-Mol VI molecular model charge model space groups considered global minimum exptl. min calculated molecular flexibility PM3 modified SURJOE modified Dreiding MNDO-ESP all -108.2 -102.3 no QEQ P21, P212121 -138.0 -133.4 no QEQ all -141.9 -121.2 no 7 Z-Mol VI BEWKUJ04 QEQ all -14.0 not eval. -11.3 not eval. yes yes MNDO-ESP all -109.0 -103.5 yes QEQ P21, P212121 -137.3 -132.0 yes PolPred Mol IV Mol V PM3 modified SURJOE E-Mol VI modified Dreiding QEQ P 21/c, P 1 C2/c, P bca P 212121 -16.2 -14.1 yes Z-Mol VI BEWKUJ04 QEQ P 21/c, P 1 C2/c, P bca P 212121 not eval. not eval. yes 8 7.5 Gavezzotti (Zip-Promet) Compound V The program package used was Zip-Promet in its standard formulation, as described in the previous paper (Acta B, previous results). The molecular model for V was taken from the crystal structure of the un-brominated compound in the CSD, ROLBOJ. Hydrogen positions were standardized: staggered methyl hydrogens, all C-H’s 1.08 Å. The bromine atom was added at C-Br 1.91 Å and reasonable bond angles. Potentials used were the chargeless UNI set (Gavezzotti & Filippini, 1994). Molecular volume is 201 Å3 and molecular surface 227 Å2, so the expected average cell volume per molecule is 201/0.7 = 287 Å3. The expected lattice energy is (0.322 x 227 + 37.2) = 110 kJ/mol (Gavezzotti,1994). In space group P21 three searches were performed: 1) standard: 1384 structures reduced to 47 after cycles of optimization and sorting; 2) shortest screw translation 5 Å: 989 structures reduced to 31 after optimization and sorting. 3) shortest screw translation 7 Å: 1618 structures, reduced to 22 after optimization and sorting. After further merging and sorting, 84 final optimized crystal structures were left, of which 21 crystal structures between E = -100 and E = -109.3 kJ/mol. In space group P212121 two searches were performed: 1) standard search: 13455 structures reduced to 50 after merging and optimization; 2) shortest screw translation 5: 3873 structures. After final merging and sorting, 71 independent optimized crystal structures were left of which 36 structures between E = -100 and E = -110.4 kJ/mol. Comments A crystal structure close but not quite similar to the experimental one was found with energy rank 14; the difference is presumably due to slight differences in the molecular model. The rank became 4 when the energy minimisation was repeated including point charge parameters from a standard MO 6-31G calculation with Mulliken population analysis. However, the absolute values of energies and the densities obtained in the calculations with point charges were too high. A search run using the experimental cell parameters and space group quickly found the correct crystal structure. In post-analysis, energy minimization of the experimental crystal structure gave E = -108.2 kJ/mol, or 2.2 kJ/mol less stable than the best calculated structure. However, such small energy differences can hardly be considered significant, being almost within the error window of the search and optimization routines. 7.6 Hofmann (FlexCryst ) FlexCryst performs three steps. First, a large number of crystal structures is generated. Secondly, the structures are scored and sorted according their score. Finally, high ranking structures are refined. The generation follows the nuclei concept of Gavezzotti. First, chains are constructed. These are extended to planes fulfilling the constraints of an assumed space group. Finally, these planes are stacked to result in three-dimensional crystal structures. The scan for favorable structures is executed in the discrete space, i.e. the space is superimposed with a mesh. For each vector that connects two mesh points and represents a unit cell vector, the energy of the resulting chain, plane or structure is scored. The mesh size (1A) is chosen to trade off the accuracy of the search against the required computing time. The scoring function is trained on existing crystal structure data. The training procedure optimizes the scoring function for the discrimination between observed structures and distorted structures (decoys), that are not observed in nature. This function performs better than statistical potentials and, at present, has the same quality as common force fields. The score is much faster to evaluate for the trained potentials as the energy expression of force fields. It is in this approach just the vector product between weight factors and occurring intermolecular distances. The score of the function is proportional to the energy values computed by force fields and the energy of a given structure can be obtained by multiplying the score by a factor. 9 Structure refinement is performed via reduction of the grid constant. The algorithm of structure generation requires, that cell vectors are lying on whole-numbered grid points. During the refinement the adjacent grid point on the finer grid sh (0.1 A) are screened for structures with a lower score until the refinement converges in a local minimum. Ab initio results The main goal of FlexCryst is producing an approximate structure among the 1000 high ranking structures for further refinement with highly accurate methods. The calculations have been redone with the correct structure and have been restraint to the correct space group. In this case the program succeeded in the two cases of structure IV (rank 358) and structure V (rank 746). The third structure is too heavily distorted and no similar structure has been generated. An attractive property of FlexCryst is the very short calculation times for this application (roughly 3h for structure IV and 1h for structure V). Powder assisted results The 'experimental' powder pattern and the calculated powder patterns were compared automatically. For similarity we used a combined similarity measurement of the differences in the powder diffraction profile and the crystal structure energy. The structures were refined to optimize the similarity measurement. For the first two structures we retained a similar cell and a similar powder diffraction. But the orientation of the molecules in the cell shows different stacking patterns. Finally we tested Flexcryst for crystal structure determination after successful indexing of the powder pattern. In all three cases the structure ranked first is similar to the experimental structure. The huge difference in the score for the experimental structure (-162.27) and the calculated structure (-173.11) for example VI reflects the inaccuracy of this structure. 7.7 Leusen (PP-CVFF) The search for crystal packing alternatives was performed using the Polymorph Predictor (PP) technology as implemented in the Cerius2 molecular modeling environment (Verwer & Leusen, 1998, Accelrys Inc., 2000). In contrast to the contributions of Verwer and Mooij, who utilized the Dreiding force field (Mayo, Olafson & Goddard, 1990) in combination with non-transferable, quantum mechanically derived atomic charges (Verwer) or atomic multipoles (Mooij) to rank the various potential polymorphs, the Consistent Valence Force Field (CVFF) (Dauber-Osguthorpe et al., 1988) was used for this submission. In CVFF, atomic charges are assigned from bond increments which were fitted together with all other parameters in the original force field fitting procedure. All parameters in CVFF are therefore fully transferable. The advantages are twofold. Firstly, the charge assignment is instantaneous, thus saving computer time – although this saving is insignificant in view of the computer time needed for the polymorph simulations. Secondly, the CVFF atomic charges are independent of molecular conformation, which enables a direct comparison of lattice energies calculated for conformational polymorphs. A major drawback of the electrostatic treatment in CVFF is its lack of accuracy in comparison to specifically derived, nontransferable, electrostatic models. CVFF uses a Lennard-Jones 12-6 potential to describe van der Waals interactions, and it does not have a special hydrogen bond term. To describe intra-molecular interactions, the force field features the usual diagonal terms to represent bond stretching, angle bending, rotation around torsions, and out-of-plane interactions. In addition, CVFF has a number of cross terms to represent couplings between deformations of internal coordinates, e.g., stretch-stretch, bend-bend, and stretch-bendstretch couplings. The force field was chosen for this contribution in order to compare the results obtained with different electrostatic models: ‘cheap’ atomic charges from bond increments versus ‘expensive’ atomic charges and multipoles from high-level quantum mechanical calculations. Prior to the disclosure of the experimental crystal structures the expectation was that CVFF would perform worse than the two Dreiding submissions because of its simple electrostatic model, with the possible exception of the flexible molecule VI, where the consistency of the CVFF charges with the rest of the force field, together with its more sophisticated intra-molecular potentials, might tip the balance in its favor. All polymorph simulations were carried out with one molecule in the asymmetric unit and Ewald summation of both the van der Waals r-6 and electrostatic terms. Molecules were kept rigid during the initial Monte 10 Carlo Simulated Annealing (MCSA) search, but were treated as fully flexible during the final lattice energy minimization step. CVFF was used without any modifications for all three compounds. For molecule IV, the MCSA search was performed in the ten space groups specified. The sampling proved difficult, and it was necessary to run the search six times to ensure that all relevant minima were located. Based on previous experience, this indicates that the compound is difficult to crystallize. A total of 47,138 crystal structures were lattice energy minimized with respect to all degrees of freedom. The energy separation between the various crystal packing alternatives was very small: 28 structures were found within 1 kcal/mol of the global minimum structure. This suggests that the compound may well show polymorphic behavior. The three lowest energy structures were submitted with relative energies of 0, 0.06, and 0.11 kcal/mol per asymmetric unit. When the powder diffraction data was released and compared to powder patterns simulated for the list of predicted structures, a good fit was found with the third submitted structure. Comparison with the experimental structure revealed that the thirds submitted structure was indeed correct. This result is in line with expectations for this simple and rigid molecule. For the enantiomerically pure molecule V, only three space groups had to be considered: P212121, P21, and C2. Sampling was straightforward: all relevant minima were located in each of the three runs performed. A total of 16,920 structures were optimized. Only four structures were found within 1 kcal/mol of the global minimum. The three lowest energy structures were submitted with relative energies of 0, 0.17, and 0.82 kcal/mol asymmetric unit. Upon release of the powder diffraction data, it became clear that the experimentally determined structure was not among the three submitted, but it was found by powder pattern comparison as structure 70 (ranked by calculated lattice energy) with an energy difference of 2.48 kcal/mol relative to the global minimum. This significant error is larger than anticipated and may be attributed to the ‘exotic’ =N-SO2- group for which the force field is not well parameterized, compounded by the presence of a bromine substituent. Conformational analysis with CVFF on molecule VI revealed four low-energy conformers. For the cis (SN=C-N at 0°) isomer, two conformers were identified with relative energies of 0 and 0.5 kcal/mol in the gas phase (Ph-S-N=C at 180° and 71°, respectively, and Ph-Ph-S-N at 90° and 63°, respectively). For the trans (S-N=C-N at 180°) isomer there were two additional conformers with relative energies of 1.1 and 3.1 kcal/mol (Ph-S-N=C at 180° and 71°, respectively, and Ph-Ph-S-N at 90° and 56°, respectively). The search for possible crystal structures was carried out for each of the four conformers in each of the ten space groups specified. Sampling did not pose any problems as all relevant minima were found in each of the three runs performed. A total of 138,559 crystal structures were lattice energy minimized with respect to all degrees of freedom. Only four structures were found within 1 kcal/mol of the global minimum structure. The three lowest energy structures, all three containing the cis isomer, were submitted with relative energies of 0, 0.26, and 0.93 kcal/mol asymmetric unit. Comparison of the powder pattern with those of the list of predicted structures did not yield any obvious fits. After disclosure of the experimental structure, it became clear that this structure had not been sampled because CVFF proved inadequate for molecule VI: the CVFF minimized experimental structure has a lattice energy of 9.16 kcal/mol above the global minimum located in the search. It is not surprising that the structure was not found, since the MCSA procedure is designed to explore the low-energy region of phase space, while it tries to avoid high-energy regions. The magnitude of the error in calculated lattice energy, however, is alarming. The error cannot be explained solely by the presence of the ‘exotic’ =N-SO2- function (which is also present in molecule V, where the error in lattice energy is 2.48 kcal/mol). Comparison of the gas phase conformational analysis to high-level quantum mechanical calculations suggests that CVFF makes an error of several kcal/mol in the conformational energies. A contributing factor is the balance between forming an intra-molecular hydrogen bond in structures containing the cis isomer versus establishing an inter-molecular hydrogen bond in structures containing the trans isomer. CVFF seems to erroneously favor structures with the intra-molecular hydrogen bond. 7.8 PackStar Lommerse It has been established that the crystal lattice energy is generally the most important parameter which determines the formation of the final crystal structure from the dissolved state, melted state or gas phase. Indeed, most programs applied in this and previous crystal structure prediction (Lommerse et al., 2000) work relatively successful on the assumption that an experimental crystal structure will have the lowest possible lattice energy for a given molecular structure. However, the neglected entropy effects and kinetic factors may be decisive to select the correct prediction from a series of calculated, and in terms of lattice energy, 11 nearly equivalent crystal structures. Using statistical information of real crystal structures, PackStar attempts to account implicitly for these effects . Two aspects of PackStar have changed since CSP1999. Firstly, the initial random sampling of crystal structures is now based on simple fitting of hard-sphere molecules in a unit cell. Subsequently, the highest density structures are optimised on basis of the more expensive PackStar cost calculation. The second change is that the interaction between interacting groups and atoms has been extended from 0.5 Å up to 1.0 Å. All statistical IsoStar data still act on interactions distances less then or equal to 0.5 Å (CSP1999), but an e artificial 'attractive' function has been added: F(r) = (1.0 - r) where r is the shortest intermolecular distance between interacting groups minus the sum of the van der Waals radii of interacting atoms and e=2.718. In effect, it means that there is an extra contribution of 1.0 to the propensity for van der Waals contacts between interacting fragments which gradually diminishes to 0.0 for a intermolecular interaction at r = 1.0 Å, the fixed boundary of the interaction space. There is no fundamental physical reasoning behind this function, but it has been empirically tested and found to work satisfactorily. Crystal structure predictions were run for compounds IV and V only, as PackStar cannot handle flexible molecules. IsoStar central and contact group information was stored in grids, for which the mesh was optimised such that at least four contacts in each grid cube are present if the interaction would have been completely random. The following contact groups were used (mesh of the grid in brackets). Compound I, any aliphatic C-H (0.30 Å), methylene (0.60 Å), any C=O (0.50 Å) and any N-H (0.40 Å). For compound IV: methyl, methylene, any C-H any C-Br, any C=O (to mimic S=O), aromatic/N-sp2 and substituted aromatic carbon, all in a grid of mesh 0.50 Å. No contact group representations for the remaining three adjacent ring-bridging carbons were available for this compound. The (fixed) conformations of the compounds were calculated using GAUSSIAN98 at the 6311-G basis set level. Initial hard-sphere searches for each compound were performed starting from cubic boxes. Cell parameters, orientation and positions in agreement with space group symmetry were density optimised. For each spacegroup 1000 different high density structures were stored. A structure was considered different if at least one of the differences of following parameters exceeded a certain limit: either cell length > 1.6 Å o (compound IV) / 1.9 Å (compound V), or cell angle > 18 , or fractional position in cell > 0.1 or rotational o position in cell > 72 . The 200 densest structures were optimised using the PackStar cost function. Due to time constraints, this procedure was applied only once for compound IV in space groups C2, Cc, P-1, P21, P212121, P21/c, Pbca, Pbcn and Pna21 (1800 final minima ranked by PackStar cost), and for compound V three times in space groups P21 and P212121 (1200 ranked minima). The lowest cost structures were analysed visually. In general all C-H…H-C contacts were considered to be bad, as well as C…C contacts. CSD analysis suggested that in general planar CO-NH-CO- containing compounds prefer dimer formation in crystal structures, whereas non-planar compounds, like compound IV, often form chains throughout the structure. However, the first 40 crystal structures of compound IV all had dimer motives, so two dimers and only one chain structure were chosen. For compound V many C-H…O=S were considered to be important, especially if the hydrogen is more 'acidic' (C-H adjacent to the SO2 group). None of the selected structures were near the experimental coordinates Even if the search method had been successful in identifying the correct solutions, the correct structures would not have been chosen on basis of the PackStar cost (cost of submitted structures for compound IV: -42.4, -44.9, -48.3, calculated cost of the experimental structure is –30.8; cost of submitted structures for compound V: -40.0, -37.5, -34.3, calculated cost of the experimental structure is –29.2). Nevertheless, the author still believes in the merits of statistical approach of the crystal structure prediction problem. Much more efforts should be put in development of a better cost function, which can handle the statistical gaps. Even so, it is not likely that the statistical approach will get as accurate as well developed energy calculations. At best, statistical data could be helpful in selecting the right instances from a list of low energy structures. This has already shown to be potentially powerful in ligand protein interaction studies (Boer, Kroon, Cole, Smith & Verdonk, 2001; Verdonk, Cole, Watson, Gillet & Willett, 2001). 7.9 Mooij (PP-Multipoles/Dreiding) Methods 12 Possible crystal packings were optimized in a model that focuses on an accurate description of electrostatic interactions, combined with full molecular flexibility. To this end atomic multipoles were combined with a generic force field, viz. Dreiding (Mayo, Olafson & Goddard, 1990). The Dreiding2.21 force field as implemented in the Cerius2 suite of programs (Accelrys Inc., 2000) was used with the following modifications: a) the 6-exp formulation of the van der Waals potential was used, with the parameters as given in the original Dreiding paper. b) the hydrogen-bond potential was disabled; instead specific polar hydrogen 6 exp parameters were used (the FIT parameters from Coombes, Price, Willock & Lesley, 1996). This Multipoles/Dreiding model was tested on the 1999 edition of the blind test, with rather satisfactory result (Mooij & Leusen, 2001). The bond, angle, torsion, and inversion terms were left unchanged. Only for compound VI, some torsional energy terms were modified to reproduce relative DFT energies for various conformations as calculated by DMol3 at the PW91/DNP level. The modified torsional energy terms are supplied in the supplementary material. Calculations with the Multipoles/Dreiding force field were performed using a previously described crystal energy minimizer (Mooij, van Eijck & Kroon, 1999), that uses the polarizable multipole electrostatic code as implemented in TINKER (Ponder, 2000) Ewald summation was used for all multipole-multipole interactions, as well as for the van der Waals r-6 term. Multipole model The atomic multipole models were derived by fitting to the electrostatic potential on a grid outside the van der Waals surface of the molecules. The fitting program allows for a fit to multiple conformations at the same time, a functionality that has been used for compound VI. This ESP grid was calculated by the DMol3 program (Delly,1990; Delly, 1991; Accelrys Inc., 2000), using the PW91 (Perdew & Wang, 1992) gradientcorrected functional with the DNP basis set. Molecular geometries were optimized at the same level of theory. For compound VI both cis and trans forms were optimized in the two different C-S=N-C conformations. In addition, two geometry optimizations were performed for the cis form with the phenyl group constrained at a Phe-S-N torsional angle of 0°, which is ~90° rotated with respect to the fully optimized geometry. The optimizations for compound VI were performed at the PW91/DND level, constraining the NH2 to be planar. The preference for non-planar NH2 conformations in DMol3 was suppressed to resemble the rather planar conformation that is enforced by the Dreiding force field. The multipole model for compound VI was fit to the ESP grids for all these six conformations simultaneously. Sampling For compounds IV and V, the 500 lowest-energy structures from both Verwer's and Leusen's lists were taken as starting points. Results were largely indifferent to the starting set: all low-energy structures were reached from both lists. The three lowest-energy structures were submitted. For compound VI a maximum of 750 structures per conformation and space group from one Polymorph Predictor run of Leusen were minimized (~20 000 structures), augmented with the 3000 most favorable structures in Leusen's final list (based on a number of Polymorph Predictor runs). In addition, the crude output of one Monte Carlo run in the space groups P 21/c and P-1 (~10 000 each) was used without full minimization in the CVFF force field. Finally, the 1000 most favorable structures from Verwer's list were also taken. The two lowest-energy structures were submitted together with the lowest-energy trans structure (7th overall). Results and discussion For compound IV the second most favorable structure corresponds to the experimental structure. The energy for this structure is only 0.19 kJ/mol higher than the global minimum. It is interesting to compare the result with the other multipole-based submissions (Price, and Ammon). They both used intermolecular potentials that are very similar to the one used here (note the C, H, N, and O van der Waals potentials of Dreiding are based on Williams' parameters). So, the use of rigid molecular geometries by DMAREL is the most important difference. Therefore, the problems in the prediction using these other methods indicate that it is important to allow for molecular flexibility, even for an essentially rigid molecule like this one. Another interesting observation is that Dreiding with point charges failed in the prediction for this compound (see Verwer). Analysis indicated that the high relative energy of the experimental structure could partially be attributed to the Dreiding hydrogen-bond term, and partly to the use of an electrostatic point-charge model. For compound V, the ninth lowest-energy structure corresponds to the experimental structure. The relative energy for this structure was 6.6 kJ/mol. So, the force field appears to be substantially in error. Although force field errors had to be expected for a compound with a bromine and an SO2 group, the large energy spread of the first three structure gave some (false) hope for the predictions for this compound: it is not often that the second and the third lowest-energy structure have relative energies of 2.8 and 4.1 kJ/mol respectively. Considering that the other multipole based models have been more successful for this 13 compound, it seems likely that the Br and S van der Waals parameters are the main source of error in our model. It was tempting to see a compensation of errors between errors in the isotropy of repulsion and electrostatics for bromine: successful predictions have been obtained either with isotropic repulsion and point charges (Williams), or with anisotropic repulsion and multipoles (Price). In addition, Dreiding with point charges (Verwer) performed better than Multipoles/Dreiding. Nevertheless, Price's analysis indicated that the anisotropic repulsion is not an essential factor for correct prediction, which is also supported by the DMAREL results of Ammon. For compound VI, no structure was recognized as the experimental structure: the energy-minimized experimental structure has not been sampled in the search procedure. Afterwards, its energy turned out to be 16.6 kJ/mol relative to the global energy minimum found. Obviously, the Multipoles/Dreiding model was just not accurate enough for this compound. One of the reasons for not sampling the experimental structure is this high energy. More serious is probably that most of the structures were generated within the CVFF force field, which ranks the experimental structure at a relative energy of a much as 38 kJ/mol (see Leusen): the Monte Carlo simulated annealing procedure is not designed to sample all local minima at such high relative energies. Powder-assisted results The supplied powder patterns were automatically compared to simulated powder patterns for all the hypothetical structures in the list. This was done using the CMACS utility in Cerius2. Visual inspection of the best-scoring patterns then easily led to the identification of structures for compounds IV and V. For compound VI no matching powder pattern was found. Indeed, as discussed above, the experimental structured turned out to be not present in the list of generated structures. For compound IV, the second most favorable structure, already submitted at the ab initio stage of the test, was identified as the experimental structure. For compound V, the 9th structure matched the experimental pattern, and was submitted. So, for two of the three compounds the structure could be solved based on an un-indexed powder pattern. For this purpose the exact energy ordering, of utmost importance for success at the ab initio stage, is much less important than an excellent reproduction of the geometry of the crystal packing. Obviously, the force field should be accurate enough to allow the sampling algorithm to produce the experimental packing somewhere in the list of possible crystal structures. 7.10 Motherwell (Rancel) Methodology The Rancel program was used to perform a search for low energy crystal structures in a set of named space groups, using a rigid molecular model so compound VI was not attempted. The search method is a genetic algorithm, which is run on fixed population of 100 structures, for a maximum of 100 generations, and repeating the runs for 50 random starting sets (Motherwell, 1999). In this work a deliberate emphasis was placed not on the accuracy of the force field used, but on selection from the low energy set of structures on the basis of patterns found in the CSD. The empirical potentials of Gavezzotti (Gavezzotti,1994) were used, with no electrostatic charges, as these were found to give acceptably accurate locations of minima on many molecules of similar size and chemical type in the CSD, e.g. GLUTIM, EACLEZ, but of course not reliable in energy ranking as a predictive criterion. Results Compound IV was modeled as a rigid body using the CSD structure HIYKEF, removing side-chains and calculating all hydrogens at idealized geometric positions with C-H 1.083, N-H 1.009. The search gave many structures where dimer or catemer H-bond motifs were present within a low energy range of 10 kJ/mole. Examination of a set of CSD molecules containing rings with –CO-NH-CO- showed that both types of motif are represented, with no clear preference. A contact distance frequency scoring function was set up using a set of molecules of similar size and functionality (AZMCHO10, DTHPIM, EACLEZ, HPTLIM, NAPOIM, PHALIM, PHPYRO, PHYPHM, SUCCIN, TUPQEA, YUFNES), and a chi-squared fit, S, of the frequency distributions was calculated as a possible indicator for the most likely polymorph. A penalty function, P, were also devised to give the lowest score for the largest number of CH…O contacts less than the van der Waals radii sum, and a combined score function Q = S + P was calculated as a criterion. The submitted structures in order of ranking were (i) the lowest Q and also the lowest global energy found, a 14 catemer in P212121, with a closely planar chain arrangement, (ii) low Q and planar catemer in P21, and (iii) the lowest Q for a dimer in the set, in Pbca. Unfortunately the correct structure was not generated in the search, which was found in post-analysis runs, but not with the lowest Q score, so this criterion as calculated could not have succeeded. Compound V was modeled using the de-brominated derivative, ROLBOJ, and re-calculating hydrogen postions as before. A crude approximation was used where the energy curves of Br treated as S. The selection criteria applied to the low energy sets derived for space groups P21 and P212121 were as follows, (1) P212121 , the global lowest energy, lowest cell volume, but with little confidence as various devised scoring functions Q did not perform well, and there were close Br…O contacts not seen in CSD, (2) P212121, global energy rank 2, good scoring function, low volume, and contacts Br…O compatible with similar CSD molecules, (3) P21, lowest energy in P21, low volume, but not lowest Q, and no Br…O contacts which were thought to be likely from CSD. Post-analysis also showed that the correct structure was not in the low energy set, and also that the Q functions would not have succeeded. 7.11 Price ( MOLPAK/DMAREL) Methodology The main distinguishing feature of our approach was the use of accurate anisotropic atom-atom models for the intermolecular potential, including anisotropic repulsion for the Br atom in V, plus careful consideration of the mechanical and morphological properties of the low energy structures. The search for minima in the lattice energy required a rigid molecular model and so no attempt was made for VI. This molecular model was obtained by ab initio optimization using a MP2 6-31G** wavefunction for IV and a SCF 6-31G** wavefunction for V. Sets of atomic charges, dipoles, quadrupoles, octupoles and hexadecapoles were obtained by a Distributed Multipole Analysis (DMA) (Stone and Alderton 1985) of each ab initio charge density, and used to evaluate the electrostatic contribution to the lattice energy. For V, the atomic multipoles were multiplied by a factor of 0.9 to approximately correct for the neglect of electron correlation on the charge density. The only other terms used to represent the intermolecular potential were a 6-exp atom-atom repulsion-dispersion model. The empirically fitted parameters due to Williams were used for C,H,N (Williams and Cox 1984) and O (Cox, Hsu, and Williams 1981), and consistently fitted parameters for the polar hydrogen HN (Coombes et al. 1996) were used for IV. The same parameters for C, H, N and O were used for the interactions of the hydrocarbon groups and the oxygen and nitrogen atoms for V, leaving the S and Br atom interactions to be modeled non-empirically. Since the S atom was buried, its repulsion was unlikely to be significant, and so the same parameters as used in the previous blind tests (Lommerse et al., 2000) were used. However, the Br atom seemed likely to have a major effect on the packing, and was expected to have an elliptical van der Waals surface (Nyburg and Faerman, 1985), so its interactions with all other atom-types were determined non-empirically. The dispersion coefficients were obtained using atomic polarisabilities (Miller, 1990) in the Slater-Kirkwood formulae. The repulsion parameters were determined by assuming it was proportional to the overlap between two methyl bromide molecules for Br..Br, Br..C and Br..H interactions and between methylbromide and methanesulfonamide for Br interacting with N, O and S. The proportionality parameters were obtained by fitting to the exchange-repulsion energies calculated by Intermolecular Perturbation Theory (Hayes, Hurst, and Stone 1984)for 30 randomly chosen repulsive contacts for each pair of molecules. This overlap model approach (Mitchell and Price, 2000) has the great advantage that the total molecular overlaps can be sub-divided into atom-atom contributions, using a Gaussian Multipole representation of the molecular charge densities. This allows each atom-atom contribution to be fitted separately, allowing the determination of whether the isotropic exponential form is adequate. In this case, we determined both an isotropic and anisotropic potential for Br interactions. The anisotropic Br potential corresponded to the Br atom having an elliptical shape, with the same functional form as the anisotropic Cl potential which has recently been developed using the same methodology (Mitchell et al., 2001). The atom-atom repulsion-dispersion potential for V is summarized in the Supplementary Material. The lattice energy minima search was conducted using the starting points generated by MOLPAK (Holden, Du, & Ammon, 1993), using the latest version kindly supplied by Ammon, and then using a new version of DMAREL to find the corresponding lattice energy minima. About 1500 minimisations were carried out for IV, and only 375 in the chiral space-groups for V. The Hessian matrix was examined at the end of each minimization, and used either to lower the symmetry constraints if a saddle point had been found, or to calculate the elastic constant matrix of the minimum energy structure. The growth morphology of the low energy structures was estimated using the attachment energy model within the Cerius2 software (Accelrys Ltd, 2000). 15 Results The search for IV was unsuccessful, as the MOLPAK procedure did not produce an appropriate starting point. The minimum found by using our molecular model and model potential in the experimental structure reproduces it quite well, but is 4 kJ/mol more stable than the best catemer structure found in the MOLPAK search. This appears to be because the purely repulsive MOLPAK model generates relatively few catemer starting points. We found that only 21 of the 108 P21/c minima were catemer structures. The model potential was also deficient, as the experimental structure was 8 kJ/mol higher than the global minimum, and so outside the group of 14 low energy structures which were considered for submission. These were all dimer structures. The calculated lattice energy of the experimental structure is sensitive to the location of the hydrogen atoms, since the experimental molecular structure with the hydrogen bond lengths standardized to neutron values, produces a minimum within 4 kJ/mol of the global minimum. Thus, the use of a rigid gas phase molecular structure, with empirical hydrogen interactions at the nuclei, is not quite accurate enough for the experimental crystal structure to have appeared within the energy range of plausible structures. We successfully predicted V as our first ranked submission. The global minimum found in the search was the experimental structure (Table 4), with a rms. cell length error of 2.6%. The lattice energy of –110.1 kJ/mol was 1.7 kJ/mol lower than any other found, hence it was submitted with about as much confidence as can reasonably be given to lattice energy search results at the moment. The energetically favoured structures (14 structures for IV and 16 for V within 10 kJ/mol of the global minimum ) did not show any marked variations in growth rate and none were particularly susceptible to mechanical distortion. Hence consideration of the kinetics of crystallite growth and mechanical stability was not helpful in distinguishing between the hypothetical low energy structures in these cases, unlike that of paracetamol (Beyer, Day, & Price, 2001). The successful prediction of V as a clear global minimum in the lattice energy reflects the reduced number of packing motifs for this lumpy chiral molecule and the accuracy of the model intermolecular potential. The novel modeling of the anisotropic shape of the repulsive wall around Br was not crucial to the success of the model, as the experimental structure remained the global minimum, albeit by a slightly smaller margin of 1.3 kJ/mol when the isotropic Br model was used. The electrostatic energy is only a minor component of the lattice energy, with our first and second guesses having electrostatic energies of -38.1 and –39.1 kJ/mol respectively, significantly lower than the third guess at –30.2 kJ/mol. So although the realistic representation of the electrostatic energy is important, the relative strength of the dispersion contribution also needed to be reasonable. Since Ammon also found the experimental structure as the global minimum for the chiral space groups, using distributed multipoles and an empirically derived repulsion-dispersion potential, we must conclude that the relative lattice energies can be well predicted by carefully developed potentials. The anisotropic Br potentials used in the successful prediction of V by Price Atoms ι Cικ /kJ molBικ/ Å-1 Aικ / kJ 1Å mol-1 and κ Br…Br 10488.71 3.9726 16984474 Br…C 4138.34 4.0950 5597582 Br.. .H 1383.02 3.8338 279723 Br…N 4433.63 4.0047 4693682 Br…O 2963.29 4.1074 4967420 Br…S 10052.46 4.1016 6580190 S…S 5790.66 3.3007 401033 The potential used had the form: U = ∑i∈A,k∈B Aικ exp(− Bικ ( Rik − ρ ικ (Ω ik )) − Cικ / Rik6 + U elec DMA, Ω ik , Rikn , n ≤ 5) ( ) ρικ(Ωik) = ρ1ι (zi·Rik) + ρ1κ(-zk·Rik) + ρ2ι (3[zi·Rik]2-1)/2 + ρ2κ(3[zk.Rik]21)/2 with the anisotropy in the repulsion on Br being represented by 16 where ρ1Br = 0.014085Å , ρ2Br = −0.088952Åand all other anisotropy coefficients being zero. The local z axis is along the C-Br bond, and the unit inter-atomic vector Rik is from atom i of type ι to atom k of type κ. The remaining repulsion-dispersion parameters were taken from (Williams & Cox, 1984, and Cox, Hsu, & Williams 1981), or the S parameters given above, assuming the combining rules used in (Williams & Cox 1984). 7.12 Scheraga (CRYSTALG) Program details The CRYSTALG program predicts crystal structures by global optimization of a potential energy function without assuming any symmetry information. The number of molecules in the unit cell (Z) is a parameter, i.e. several runs for different values of Z are carried out, and the value of Z that leads to the lowest energy per molecule is selected. In the current version of the program, we use a newly developed global optimization method, Conformation-Family Monte Carlo (CFMC) (Pillardy, Czaplewski, Wedemeyer & Scheraga,2000; Pillardy, Arnautova, Czaplewski, Gibson & Scheraga, 2001). We are still working on improving this method. The program has been tested on crystal structure prediction calculations for a number of rigid and flexible H, C, N, O-containing molecules. The CFMC method can be considered as an extension of the Monte Carlo-Minimization (MCM) method. The most important differences between the classical MCM and the CFMC are that the CFMC method does not use a single conformation for a Monte Carlo step; instead, it uses the whole family of conformations (and, consequently, only the moves between families are accepted or rejected). Any two structures belong to the same family of structures if they are different representations of the same crystal structure. The database of the families and structures encountered during the calculations is maintained throughout the simulation. The structure-family database for a CFMC run is initialized by successively generating a set of random structures, and the database is updated by structures generated during the MCM procedure. All structures in the database are locally minimized. A total of 5000 local minimizations was carried out for each run. The potential energy is assumed to be a sum of pairwise interatomic interactions, and includes electrostatic, nonbonded, and torsional terms. The electrostatic interatomic interactions were modeled by the Coulomb formula in which qi and qj are point charges positioned on the atom sites. The electrostatic energy was calculated using the Ewald summation without including the dipole moment correction term. The atomic charges were obtained by fitting to the molecular electrostatic potential calculated ab initio (HF 631G*). The torsional energy was calculated using a third-order Fourier expansion with coefficients obtained by fitting the torsional energy to the difference between the ab initio and molecular mechanic (sum of nonbonded and electrostatic) profiles. Ab initio quantum chemistry calculations were carried out for the target molecules to obtain molecular geometries. Our results showed that the two methods used [Hartree-Fock (HF) and Möller-Plesset perturbation theory up to the second order (MP2) methods with 6-31G* basis set] gave very similar values of the geometrical parameters. For both methods, the mean deviations of the bond lengths, valence and torsional angles from their experimental values did not exceed 4%. We also evaluated the relative stabilities of two possible conformations of the six-carbon ring of compound IV (boat and chair). The chair conformation was much more stable and it was chosen for further calculations. As the first part of our crystal structure prediction procedure, we carried out a refinement of the potential parameters for some atom types present in the target molecules using our recently-developed Monte Carlo-based method for refining potential parameters (Arnautova, Pillardy, Czaplewski & Scheraga, 2002). The main idea of the method is to derive parameters that satisfy the following criteria: (1) the potential should reproduce the experimental structure within a certain accuracy; (2) the crystal structures corresponding to the lowest-energy minima found for the potential should represent possible crystal structures, and one of them, possibly the global minimum, should correspond to the observed structure; (3) the energy value for the observed structure should be close to the experimental enthalpy of sublimation. To obtain a potential satisfying these requirements, we have to optimize a vector function including three main components: the first one depends on the order and relative position of the minima; the second is the penalty function providing the best fit to heats of sublimation, and the last is a measure of similarity between the experimental and minimized experimental structures. Our method allows us to minimize all three components simultaneously for an arbitrary number of molecules. 17 Crystal structure prediction calculations for the three target molecules were carried out in several steps. 1. A search of the Cambridge Structural Database was carried out in order to find experimental crystal data for molecules containing functional groups and atom types similar to those in our targets (test molecules). We chose 1,2,3,6-tetrahydro-phthalimide (CSD reference code PHYPHM) as a test molecule for compound (IV), α-1,2,3,4,5,6-hexabromocyclohexane (LIDCIK) and 2,3,5,6tetrabromonorbornane (BAVJUD) for compound (V), and 8,8-dimethyl-3,3a,4,5,6,7-hexahydro-3a,6methanobenz(c)-isothiazole s,s-dioxide (ROLBOJ) for compounds (V) and (VI). 2. For the test molecules we carried out crystal structure prediction calculations using the AMBER (Cornell et al., 1995) and Williams (Williams & Cox, 1984) force fields in order to evaluate the quality of these potentials and effectiveness of our search method. We ran computations for Z equal to 2 and 4. In the case of PHYPHM, the molecule similar to the first target, both potentials were “good”, i.e. the minimized experimental structure corresponded to the lowest minimum of the lattice energy, and structural deviations from the experimental structure were quite small. We chose the AMBER force field for crystal structure prediction of the first target. For ROLBOJ, the minimized experimental structure was minimum number three for Z=2. In the case of bromine-containing molecules, we had to obtain potential parameters for bromine because they were not included in either the Williams or the AMBER force fields. We ran several global optimization computations using the AMBER, Williams, and Dreiding (Rappe, Casewit, Colwell, Goddard & Skiff, 1992) potentials. None of them were satisfactory. The minimized experimental structures were more than 1 kcal/mol higher than the lowest minimum found, and quite large structural deviations from the experimental structure were observed for all potentials. In the case of the AMBER and Dreiding potentials utilizing the ‘6-12’ functional form, the structural deviations were somewhat larger, and the symmetries of the experimental structures were not preserved during local minimization. It appears that the ‘6-exp’ form of the potential is more suitable for crystal calculations of these molecules. 3. For ROLBOJ, BAVJUD and LIDCIK, we tried to improve the potential parameters using our potential optimization method. In the first round of potential optimization, the parameters for the N, S and O atoms in the ROLBOJ molecule were improved. As a result, the minimized experimental structure was found as the global minimum during global optimization carried out with the new set of parameters. In the second round, we tried to refine the parameters for bromine. Although the values of all components of our vector function were decreasing, we were not able to change the order of the minima. This result may be due to the presence of specific Br...Br interactions in the crystals of these molecules which contain a large number of bromine atoms. Use of rules for heteroatomic parameters might not enable us to obtain correct values for the parameters ABrBr and BBrBr. For crystal structure prediction (compounds V and VI), we used the improved parameters for N, O, S and William’s (Hsu & Williams, 1980) chlorine parameters for Br. Compound (IV). In order to predict the crystal structure of this compound, we used our global optimization CRYSTALG program with the AMBER force field. The lowest-energy minima for the molecule (PHYPHM) similar to compound (IV) were not always reproducible by our method; so, we checked the quality of our search for compound (IV) by carrying out additional systematic searches in the most common space groups provided by the organizers of this exercise. The PMC program of Dzyabchenko (Dzyabchenko, Agafonov & Davydov, 1999) was used. The lowest-energy structures found by the systematic search were subjected to subsequent energy minimization without any symmetry constraints. As a result, we submitted the list of the three lowest-energy structures obtained by both systematic (first two structures) and global (structure number three) search. All submitted structures contain dimers of molecules connected by hydrogen bonds and look plausible. The experimental structure (catemer hydrogen bond motif) was not present on this list although the structure found as minimum number three in our global search (minimum number 5 in the joint list) corresponds to the experimental structure minimized with the AMBER potentials. Compound (V). Crystal structure prediction calculations for compound (V) were carried out using our improved Williams potential. To assess the success of the crystal structure prediction for this compound, the experimental structure was subjected to local energy minimization with the improved potential. The resulting structure was not present among the structures submitted as the predictions. It was also not found among our higher-energy structures although its energy suggests that the rank of this structure can be somewhere around 5. Compound (VI). Our CRYSTALG program enables us to conduct a global search for flexible molecules; however, at the time of the “blind” test, the program was still under development, and this influenced the results of our predictions. Global optimization runs carried out for Z=2 and Z=4 for compound (VI) (with the 18 improved Williams potential supplemented by parameters of Price (Mitchell & Price, 1990) for hydrogen attached to nitrogen), produced only low-symmetry structures (number of symmetry independent molecules in the unit cell ≥2) built of molecules in the cis-conformation (C=N bond). Therefore, we carried out a systematic search in the most common space groups considering only the more stable cis-conformation. Energy minimization of the experimental structure (with molecules in the trans-conformation) with our potential showed that it is much more stable than any structure that we found. Table Scheraga. Potential parameters for N, O, and S before and after improvement (A in kcal·mol-1·Å6, B in kcal·mol-1, C in Å-1). Parameters for H and C were taken from D.E. Williams, S.R. Cox. Acta Crystallogr. 1984, B40, 404; parameters for hydrogen H* attached to nitrogen were taken from J.B.O. Mitchell, S.L. Price. J. Comput. Chem. 1990, 11, 1217. Atom type Parameter initial improved H A 32.60 32.60 B 2861.140 2861.14 C 3.74 3.74 A 5.14 5.14 B 1202.10 1202.10 C 2.73 2.73 A 583.13 583.13 B 88370.69 88370.69 C 3.60 3.60 A 329.45 270.64 B 60833.89 101388.51 C 3.78 3.78 A 268.55 153.17 B 54986.62 48514.29 C 3.96 3.96 A 2788.48 2006.96 B 41424.47 56525.26 C 2.90 2.90 H * C N O S Eij = − Aij rij6 + Bij exp(−Cijrij ) + qiqj rij 19 7.13 Schmidt (CRYSCA) CRYSCA program The program CRYSCA ("Crystal Structure Calculations") performs global energy optimisations for flexible molecules, starting from random crystal structures (Schmidt, 1995; Schmidt & Englert, 1996; Schmidt, 1999). The starting set consists of several hundred random crystal structures with random values for lattice parameters, orientation and position of the molecules as well as for the intramolecular degrees of freedom. The user selects, which intramolecular degrees of freedom (distances, angles or rotations) are to be considered. All starting values are inside sensible ranges. The crystal symmetry is included from the beginning. All crystallographic symmetries can be handled, including scarce space groups, molecules on special positions, supersymmetries, disorders etc.. For crystal structure predictions, where the space group is not known, all common space groups are tested separately. The energy is minimised by a special steepestdescent algorithm. The minima are sorted according to energy, and checked for higher symmetries, meaningful molecular conformations and reliable intermolecular interactions. The packings having the lowest energy are regarded as 'predicted' crystal structures. The molecular geometries are constructed with respect to crystal structure data of similar compounds or fragments, which were found by extensive CSD searches. In addition, quantum mechanical calculations were carried out. For compound IV and compound V, the geometry calculated by AM1 showed similar bond distances and angles as found in the CSD. These AM1 geometries were chosen as a basis for the energy minimisations. For compound V the calculated S=O, C-CH3 and C-Br distances were corrected manually to correspond to the values from the CSD. Molecule VI was constructed according to the crystal data of form(ii) of sulfapyridine (Bar & Bernstein, 1985, CSD reference code BEWKUJ11). In all cases the positions of the hydrogen atoms were idealised with C-H and N-H distances of 1.04 and 1.01 Å, resp. Molecules IV and V were treated as rigid. For molecule VI three intramolecular degrees of freedom were considered: (1) rotation around the S-N bond, (2) rotation around the Ph-S bond, (3) twisting around the N=C double bond. Intramolecular van der Waals interactions between C and H atoms were included, to prevent the two 6-membered rings to come too close together. The twisting around the N=C double bond was described by a harmonic potential with a force constant of f = 0.1 kJ⋅mol-1 ⋅ (°)-2 and a minimum at 0° or 180° for the cis and trans conformations, resp. For the rotations around the single bonds (1) and (2), CSD searches were carried out to determine the preferred conformations in the solid state. For both rotations, the torsion angles C-S-N=C (for (1)) and C-C-S-N (for (2)) typically adopt values between 60° and 90°. The intramolecular potentials were chosen in order to represent these distributions: Harmonic potentials were set up with f = 0.01 kJ⋅mol-1 ⋅ (°)-2 and minima at 60° for (1) and 90° for (2), resp. With these intramolecular potentials, the energy minimum of a single molecule VI (trans conformation) converged at torsion angles of 76.5° each for (1) and (2); these values lie well inside the experimental torsion angle distributions. ∑∑ (− Aij rij−6 + Bij e The lattice energy is calculated by CRYSCA by the formula E= 1 2 i j − C ij rij + 4π ε ε 0 1 qi q j rij ) where A, B, and C are empirical van der Waals parameters (Schmidt & Englert, 1996, Schmidt, 1999), q resembles the atomic charge, and rij stands for the interatomic distance between the atoms i and j. The dielectric constant ε is set to 1.0. Van der Waals parameters for bromine were taken from Giglio (1970), after test calculations on three model compounds showed, that these parameters should work fairly well. For sulphur, the following parameters were used: A(S...S)= 6000 kJ⋅ mol-1⋅Å6, B(S...S)= 1⋅106 kJ⋅ mol-1, C(S...S) = 3.56 Å-1. The charges are calculated for compound IV by the charge-iteration procedure using the program ICON (Howell et al., 1977), and scaled by 1.1. It had been shown (Schmidt, 1995), that these charges generally work well in combination with the applied van der Waals parameters. For compound V and VI, charges were calculated by the Gasteiger method and scaled by 0.5. For the N-H groups in IV and VI, the charge separation between hydrogen and nitrogen was increased manually in order to get a better description of hydrogen bond interactions. The energy minimisations were carried out in the common space groups P21/c , P-1, P212121, C2/c, P21, Pbca, Pna21, Pbcn, Cc and C2. For molecule V only the solutions in , P212121, P21, and C2 were relevant because the compound was enantiomerically pure. Molecule VI was calculated in P21/c , P-1, C2/c and Cc only due to computer time limitations. 20 For compound IV, preliminary calculations in P21/c showed, that all low-energy packings consisted of 'dimers': two CONH groups form an 8-membered hydrogen-bonded ring around an inversion centre. This structural motif seemed to be much more advantageous than a chain topology of hydrogen bonds. Consequently, only space groups having an inversion centre were considered further (P21/c, P-1, C2/c, Pbca, Pbcn). Although the experimental structure shows a chain topology, it was found in the calculations. The structure was not predicted a priori because of slightly worse energy (see table 6), but it could easily be recognised by comparison of the experimental and the calculated X-ray powder diagrams. Compound V correct structure was found in the calculations, too, but with a non-favourable energy. Hence the structure could not be predicted a priori. The comparison with the given experimental X-ray powder diagram did not help, because the diagram of the calculated correct packing was not similar to the diagram of the experimental structure. The reason for the distortion of the packing might be that the van der Waals interactions of the bromine atoms are not well described by the atom-atom potential method. Compound VI was not found in the crystal structure predictions, because the experimental structure shows an unusual conformation: The torsion angle C-C-S-N, describing the rotation around the Ph-S bond, exhibits a value of 27°, which is by far outside the range given by other similar compounds (60° to 90°). Correspondingly, the used harmonic intramolecular potential is not suitable; the calculated intramolecular energy would be about +40 kJ⋅ mol-1. This prevents the crystal structure from being found as a minimum with reasonable energy. When the intramolecular potential for the rotation around the Ph-S bond is neglected, the crystal structure can be found (see Table 8). In many cases, it is useful to look into the CSD in order to focus the search on those conformations, which are statistically preferred in the solid state. However, for compound VI, this approach led to an exclusion of the correct solution. 7.14 Van Eijck (UPACK) Structure generation The random search technique implemented in the UPACK program (van Eijck & Kroon, 2000) was used. The two torsional degrees of freedom in compound VI were set to random values in each starting structure, but cis and trans forms about S-N=C-N were treated separately. For each compound 5000 structures were generated in each of the qualifying space groups, and subjected to a preliminary energy minimization with fully flexible molecules. This was sufficient to find all low-energy structures several times, except for compound VI in space group P21/c where 10000 additional structures had to be created. Equivalent structures were removed by clustering, after which the energy minimization was continued for structures within an energy window of 30 kJ/mol. A second clustering delivered the final lists of possible structures. Force fields Models of the free molecules were constructed by geometry optimisation of suitable molecular fragments at the 6-31G* level, combined with average geometrical parameters from the CSD database (Allen & Kennard, 1993). Force field parameters for bond distances and bond angles were adjusted to reproduce these geometries, and reasonable values were guessed for the corresponding force constants. Charges were obtained from ESP fittings, using MOLDEN (Schaftenaar & Noordik, 2000) on wave functions for the complete molecules (STO-6G for compound V and 6-31G** for compounds IV and VI). Since these charges were expected to overestimate the true values, an overall dielectric constant of 1.5 was employed. All torsional angles involving sp2 C and N atoms were restrained to planarity with aid of a harmonic potential. The dihedral force constants for the puckering of the five-membered ring C-C-C=N-S in compound V were set to zero. Intermolecular Lennard-Jones parameters were taken from the all-atom OPLS force field (Jorgensen et al, 1996), augmented with values from GROMOS96 (van Gunsteren et al, 1996) for bromine and sulphur. Mixing parameters from different force fields is generally not a good idea, but no better method could be implemented within a reasonable amount of time. Initially no dihedral angle force constants were defined for the angles ψ = C-C-S-N and ϕ = C-S-N-C in compound VI. In the database 82 fragments PhSO2N=C were found which were not embedded in a larger 21 ring structure. Both ψ and ϕ showed maxima around 90o; for ψ the distribution ranged between 30o and 150o, for ϕ between 70o and 170o. To determine the necessary torsional parameters, 1000 preliminary structures were generated in P21/c. After energy minimisation it was found that the distribution of ϕ-values corresponded nicely with the histogram from the database, but the ψ-values were almost evenly distributed. A better correspondence was obtained by adding a term Vψ cos 2ψ, with Vψ = 1 kcal/mol. In order to test the force field, preliminary structure predictions were done for related molecules found in the database. For compound IV AZMCHO and GLUTIM represent the glutarimide fragment. ROLBOJ corresponds to compound V with Br replaced by H; BRMACA and REZNIT were studied to find a possible improvement for the van der Waals parameters of the bromine atom. For compound VI no suitable fragments were found. The results (Table Eijck-1 of the Supplementary Material), although no worse than might be expected from the ad-hoc force field, were not encouraging: there were too many low-energy structures to obtain anything like a reliable structure prediction. In all cases the correspondence between the observed and calculated cell parameters and molecular positions was reasonable. For the most promising structures of GLUTIM ab initio energies were calculated, as detailed recently (van Eijck et al, 2001a). Here intramolecular energies were obtained directly at the 6-31G* level, whereas intermolecular energies came from the parameterization developed by Coombes et al (1996). In this model the experimental structure ranked second in the list of energies. The corrections from energies to free energies (at 300 K) were also estimated. This was done by calculating the harmonic frequencies of the lattice vibrations (van Eijck, 2001) from the force-field. For unsaturated hydrogen-bonded systems this approach has led to improved ab initio structure predictions (van Eijck et al, 2001b). Here, however, the ab initio results for GLUTIM deteriorated upon considering the free energy (although all empirical rankings improved). So for compound IV no corrections to free energies were applied. Results The number of structures within 10 kJ/mol was 160 for compound IV and 106 for compound V. For compound VI the conformation around the S-N=C-N bond may be either cis or trans. The two possibilities might correspond to chemically distinct substances, but both cases were investigated as no experimental information was available. Neglecting any possible torsional force constants for the double bond, the global minimum was found for the cis form. The best trans structure was 8.5 kJ/mol higher in energy. There were 15 cis structures and 166 trans structures within 10 kJ/mol of their respective global minima. For compound IV, ab initio energies were calculated in the same way as for GLUTIM. For all compounds the three submitted structures were selected with the criterion that they should occur consistently with low (free) energy on all available lists. For compound VI one trans structure was included. After the submission, the simulated powder diffraction diagrams of the experimental structures were compared visually with similar diagrams for the hypothetical structures. For compound IV an almost perfect match was seen for a structure in space group P21/c. This structure was the fifth in energy, and it was identified with near certainty. But for compounds V and VI no satisfactory match was found, and structures with remotely acceptable powder diffraction diagrams were selected without much confidence. Post-analysis The observed structures were energy-minimized to enable comparison with the lists of generated structures. All three were found to be present. Furthermore, the energies of all structures proposed by the other participants were minimized. All structures within 10 kJ/mol from the respective global minima were present. For compounds IV and V only one structure was missing, indicating that the search was essentially complete. However, for compound VI about half of all submitted structures were not traceable in the list. The geometry differences between observed and "predicted" structures are given in Tables 6-8. It is seen that structure IV is well reproduced. Contrarily, structure V is deformed to such an extent that the powder diffraction pattern was not recognized. The main reason for this failure is that the puckering of the fivemembered ring C-C-C=N-S is all wrong. No potential had been set for the five dihedral angles involved; if they had been restrained to the values observed in ROLBOJ the results would have been much better. Structure VI is reasonably well reproduced, apart from the peculiar bond distances. The rankings and energy differences with respect to the global minima are given in Table Eijck-2 of the Supplementary Material. For compound IV the first submitted structure had the lowest empirical energy as well as the lowest ab initio energy, and it was disappointing that it was not the observed polymorph. Eight 22 other participants have also submitted variants of this structure (Table 9). Consideration of the free energy would have given no improvement. Contrarily, for compound V use of the free energy criterion led to submission of the correct structure as the first choice. However, this structure is correct only in the sense that it is identical with the energy-minimized experimental structure, but is was not good enough to allow recognition of the corresponding powder diffraction pattern. For structure VI the relative energy is unexpectedly large. Nevertheless, the calculated powder diffraction pattern might well have been recognized if the inspection of these diagrams had not been given up after about 250 structures. VAN EIJCK – Supplementary Material (Free) energy differences ∆A, ∆E (kJ/mol) and rankings RE, RA refer to the energy-minimized experimental structure with respect to the global (free) energy minimum at 300 K. _____________________________________________________________ Table Eijck-1. Results of preliminary crystal structure predictions. _____________________________________________________________ ∆A Space group ∆E RE AZMCHO GLUTIM GLUTIM (ab initio) ROLBOJ BRMACA BRMACA01 REZNIT Pccn P21/c P21/c P21 P21/c Pccn 8.1 C2/c 3.1 2.6 0.5 9.1 0 3.0 6 15 32 2 32 1 47 2.1 1.8 2.4 7.7 RA 5 13 5 21 _____________________________________________________________ Table Eijck-2. Status of the experimental structures in the blind test. _____________________________________________________________ ∆A RA Submitted ∆E RE IV IV (ab initio) V VI (trans only) 13.0 VI (trans + cis) 21.3 2.0 2.0 1.2 340 413 5 6 4 11.0 20.1 2.4 2.8 0 278 358 12 12 1 No Only after powder data As first choice 23 7.15 Verwer (MSI-PP/Dreiding) The method used is similar to that used by Leusen, and by Mooij, since all three use the Accelrys Polymorph Predictor to obtain their structures, which has been described elsewhere (Leusen, 1996; Leusen et al., 1999). The difference is in the ranking of predicted structures, where different force fields and charge models have been used. In this case, the Dreiding 2.21 force field (Mayo et al., 1990) was used, in combination with atomic charges fitted to the MEPs of the optimized molecules. Dreiding is a generic force field, which uses force constants and geometric parameters based on simple hybridization considerations rather than the particular combination of atoms involved in the bond, angle, or torsion. Despite its simplicity, encouraging results where obtained in the 1999 blind test (Lommerse et al., 2000). Atomic charges where obtained by optimizing the molecules at the HF 6-31G* level using Gaussian94 (Frisch et al., 1995), and fitting atomic charges to the resulting MEP, using the molecular dipole moment as an additional constraint. The ChelpG method (Breneman and Wiberg, 1990) was used to do so. The atomic radius of bromine had to be supplied by hand for the calculation on molecule V, and was set to 1.85 Å. Molecule VI has two rotatable torsions, and the possibility of cis-trans tautomerization around the CN double bond. Based on a very limited (9 hits) search in the CSD (Allen et al., 1991) and time considerations, it was decided to do the quantum mechanical calculations on the conformer which has ∠(CSNC)= 180º, ∠ (CCSN)= ±90º, and S-N=C-N trans. Predictions were carried out on each model applying space-group symmetry, taking a single molecule per asymmetric unit, and were repeated until no new structures of low energy were found, to ensure that sampling, which is based on a Monte Carlo algorithm, could be considered complete. For molecule IV, predictions where carried out in the 10 suggested space groups, and had to be repeated 8 times to achieve completeness. In total ca. 88000 structures were generated and optimized, leading to ca. 3400 structures that were considered unique after optimization. Structures ranked 1, 2, and 3 were selected, with relative energies of 0, 0.25 and 0.38 kcal/mol. The correct structure was in the predicted set, ranked 209, with a relative energy of 1.30 kcal/mol, deviations in cell parameters of 1-2%, and small deviations in atomic positions. Given the type of molecule, the ranking was worse than expected. Molecule V was used in predictions in only those three space groups in the top ten which lack inversions and mirrors. To prevent the SO2 group from heavily deforming, the NSO2 unit was defined to be rigid in the energy minimizations. Three prediction runs in the allowed space groups were done, all yielding the same set of low-energy structures. In total ca. 11500 structures were optimized, producing a set of ca. 2000 unique structures. Structures ranked 1, 2, and 4 were selected (number 3 turns out to be indistinguishable from number 2), with relative energies of 0, 0.088 and 0.094 kcal/mol. The correct structure was predicted ranked 6, at a relative energy of 0.30 kcal/mol, in close geometric correspondence. Given earlier experience with the Dreiding force field, this is an expected result. As with molecule V, the SO2 group in molecule VI had to be put into a rigid NSO2 unit to avoid large geometric deviations. The CSD search suggested that the phenyl group may rotate ca. 30º both ways from the optimized position, which can be easily achieved from this starting point. Besides its value used in the quantum mechanical calculation, the C-S-N=C torsion has two additional energy minima, which are symmetry related. To avoid the energy barrier involved from hampering a complete sampling of structures, this other conformer was also used as initial structure in the predictions. Two prediction runs in ten space groups turned out to be sufficient to obtain adequate sampling starting from one conformer, producing a number of structures where the molecule had obtained the different conformation described above as well. A run starting from the other conformation produced no new structures. Apparently, the energy barrier is small enough to be overcome during optimization, after all. About 39000 structures were generated and optimized, and ca. 6000 unique structures were obtained. Energy calculations on this molecule turned out to be problematic: structures ranked 1, 2, 5, and 6 by energy all had a very unlikely orientation of the phenyl ring, and were therefore discarded. Structures ranked 3, 4 and 7 were selected, with relative energies of 0, 0.08 and 0.26 kcal/mol. The correct structure turned out not to be in the predicted set, which is surprising given earlier results with the polymorph predictor, and most likely due to the inadequate performance of the force field for this molecule. The correct structure was calculated to have a relative energy of 7.79 kcal/mol, ranking it at position 733 had it been added to the set. In our experience, sampling of structures with such high energies is usually far worse compared to the low-energy range. After optimization, cell parameters were off by up to 4.2 % and 4.3º, but the molecular conformation was retained quite well. Given the type of the molecule a slightly better, but still inadequate result was expected. 24 7.16 Williams (MPA) First, each of the three molecules was optimized by ab initio quantum mechanics using HF-631g** wavefunctions (Frisch et al., 1995). The conformations of IV and V seemed straightforward. For molecule VI , a model with the two rings coplanar to the SO2 bisector was obtained. Intermolecular energy minimization was done by off-ridge eigenvector minimization (Williams, 1972b), steepest descents, or Newton-Raphson as internally selected by the MPA program (Williams,1972b; Williams, 1992; Williams, 1996). Crystal structure prediction was carried out automatically in two stages. In the first stage, the starting molecule was initially placed in a large orthogonal cell, e.g. 24x24x24A, avoiding close proximity to symmetry operators, and rotated to a Lattman grid point (Williams,1973). While holding the rotational position of the molecule and cell angles, the three cell edge lengths were optimized. In the second stage all crystal structure variables consistent with the space group were included and optimized. This procedure was repeated for a Lattman grid of 536 points with spacing of about 29 degrees, and for each space group. Often, several starting grid points led to the same minimum, but still there were many subsidiary energy minima. Intermolecular force field W99 was used (Williams, 2001). This force field uses (exp-6-1) terms based on foreshortened X-H distances (Starr & Williams, 1977) and extra charge sites. Atomic and extra charge sites were obtained using program Pdm97 (Williams, 1997). Extra charge sites were placed on CH2 groups (Williams, 1994; Williams & Abraha, 1999) and bent digonal nitrogen (Williams & Weller, 1983). For molecule V the bromine atom force field was transferred from krypton (Williams, 1972a). For molecule VI the sulfur atom force field was taken from a study of Sn molecules (Abraha & Williams, 1999). Molecule IV. The molecular structure had error 0.049A rms with maximum error 0.104. Although none of the three lowest energy structures were correct, the rank 4 prediction was successful. When the starting molecular structure was replaced by the observed molecular structure, no better results were obtained. Molecule V. The molecular structure had error 0.106A rms with maximum error 0.315. The rank 3 prediction was successful. When the starting molecular structure was replaced by the observed molecular structure, the rank 1 prediction was successful. This suggests that the original rank 3 placement is an artifact of the slightly incorrect molecular structure. Molecule VI . The starting molecular structure was completely wrong, and needed adjustment about three significant torsion angles. However, predictions were based on allowing only two torsion angles, and all failed. When the starting molecular structure was replaced by the observed molecular structure, no better results were obtained. 25 References (Complete list for Main Paper & Supplementary text) Abraha, A., Williams, D. E. (1999). Inorg. Chem. 38, 4224-4228. Accelrys Inc. (2000), Cerius2. Accelrys Ltd, Cambridge, UK. Allen, F.H. & Kennard, O. (1993) Chemical Design Automation News 8, 1&31-37 (1993). Allen, F. H., Davies, J. E., Johnson, O. J., Kennard, O., Macrae, C. F., Mitchell, E. M., Mitchell, G. F., Smith, J. M. & Watson, D. G. (1991). J. Chem. Inf. Comput. Sci. 31, 187-204. Allen, F. H., Motherwell, W.D.S., Raithby, P.R., Shields, G.P. & Taylor, R. (1999) New. J. Chem , 2534. Ammon, H. L. (2001). Structural Chem., 12, in press. Apostolakis, J., Hofmann, D.W.M. & Lengauer,T. (2001). . Acta Cryst. A57, 442-450 Bar, I., Bernstein, J. (1985). J. Pharmaceutical Sci., 74, 255-263. Arnautova, Y.A., Pillardy, J., Czaplewski, C., & Scheraga, H.A. (2002) J. Phys. Chem., manuscript in preparation. Basak, A.K., Chaudhuri, S., Mazumdar, S.K. (1984). Acta Cryst., C40, 1848-1851. Besler, B.H., Merz, K.M. & Kollman ,P.A. (1990). J. Comput. Chem., 11, 431-439. Beyer T., Day G.M. & Price S.L. (2001). J. Amer. Chem. Soc. 123, 5086-5094. Blake, A.J., Clark, B.A.J., Gierens, H., Gould, R. O., Hunter, G.A., McNab, H., Morrow, M. & Sommerville, C.C. (1999). Acta Cryst. B55, 963-974 . Bocelli, G., Grenier-Loustalot, M.F. (1981). Acta Cryst., B37, 1302-1304. Boer, D.R., Kroon, J., Cole, J.C., Smith, B. & Verdonk, M.L. (2001). J. Mol. Biol. 312, 275-287. Boese, R. & Garbarczyk, J. (1998). Private communication Boese, R., Weiss, H.-C. & Blaser, D. (1999) Angew. Chem. Int. Ed. Engl. 38, 988-992. Breneman, C. M., & Wiberg, K. B. (1990). J. Comput. Chem. 11, 361-373. Busing, W. R. (1981). WMIN. Report ORNL-5747. Oak Ridge National Laboratory, Oak Ridge, TN, USA. Chakraborty, A., Ray, J.K., Chinnakali, K., Razak, I.A., Fun, H.-K. (1997) Acta Cryst. C53, 17251726 Clegg, W., Marder, T. B., Scott, A. J., Wiesauer, C. & Weissensteiner, W. (2001). Acta Cryst. E57, o63-o65 Coombes, D. S., Price,S. L., Willock, D.J., & Leslie, M. (1996). J. Phys. Chem. 100, 7352-7360. Cornell, W.D., Cieplak, P., Bayly, C.I.., Gould, I.R, Merz, K.M., Ferguson, D.M., Spellmeyer, D.C., Fox, T., Caldwell, J.W. & Kollman P.A.. (1995). J. Am. Chem. Soc., 117, 5179-5197. Cox, S. R., Hsu, L.Y. & Williams, D.E. (1981). Acta Cryst A 37, 293-301. Dauber-Osguthorpe, P., Roberts, V.A., Osguthorpe, D.J., Wolff, J., Genest, M. & Hagler, A.T. (1988). Proteins: Structure, Function and Genetics 4, 31 – 47. David, W.I.F., Shankland, K. & Shankland, N. (1998). Chem. Commun. 8, 931-932. Delley, B. (1990). J. Chem. Phys. 92, 508-517. Delley, B. (1991). J. Chem. Phys. 94, 7245-7250. Desiraju, G.R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311-2327. Dunitz, J. & Bernstein, J. (1995). Acc. Chem. Res. 28, 193-200. 26 Dzyabchenko, A.V. (1983). Acta Cryst. A39, 941-946. Dzyabchenko, A.V. (1984). J. Struct. Chem. 25, 416-420. Dzyabchenko, A.V. (1994). Acta Cryst., B50, 414-425. Dzyabchenko, A.V., Agafonov, V., Davydov, V.A. (1999). J. Phys. Chem. A, 103, 2812-2820. Dzyabchenko, A.V. PMC (Version July 2001). User's guide. Karpov Institute of Physical Chemistry. Moscow 2001. Eijck, B. P. van & Kroon, J. (2000). Acta Cryst. B56, 535-542. Eijck, B. P. van (2001). J. Comput. Chem. 22, 816-826. Eijck, B. P. van, Mooij, W. T. M. & Kroon, J. (2001a). J. Comput. Chem. 22, 805-815. Eijck, B. P. van, Mooij, W. T. M. & Kroon, J. (2001b). J. Phys. Chem. B 105, 10573-10578. Engel, G.E., Wilke, S., Konig,O., Harris, K.D.M.. & Leusen, F.J.J. (1999). J. Appl. Cryst. 32, 11691179. Erk,P. (1999). Crystal Engineering: From molecules and crystals to materials. NATO Science Series C 538, pp. 143-161. Dordrecht: Kluwer AP. Fletcher, R. (1972). Fortran Subroutines for Minimization by Quasi- Newton. Theoretical Physics Division, Harwell, Berkshire, Atomic Energy Research Establishment, AERE-R7125. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Grill, P. M. W., Johnson, B. G., Robb, M. A., Cheesman, J. R., Keith, T., Petersson, G. A., Montgomery, J. A. Jr, Raghavachari, K., Al-Laham, M. A., Zakrzewski, V. G., Ortiz, J. V., Foresman, J. B., Cioslowski, J., Stefanov, B. B., Nanayakkara, A., Challacombe, M., Peng, C. Y., Ayala, P. Y., Chen, W., Wong, M. W., Andres, J. L., Replogle, E. S., Gomperts, R., Martin, R. L., Fox, D. J., Binkley, J. S., Defrees, D. J., Baker, J., Stewart, J. P., HeadGordon, M., Gonzalez, C. & Pople, J. A. (1995). Gaussian94. Revision D.4. Gaussian Inc., Pittsburgh, PA, USA. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheesman, J. R., Zakrzewski, V. G., Montgomery, J. A. Jr, Stratmann, R. E., Burant, J. C., Dapprich, S., Millam, J. M., Daniels, A. D., Kudin, K. N., Strain, M. C., Farkas, O., Tomasi, J., Barone, V., Cossi, M., Cammi, R., Mennucci, B., Pomelli, C., Adamo, C., Clifford, S., Ochterski, J., Petersson, G. A., Avala, P. Y., Cui, Q., Morokuma, K., Malik, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Cioslowski, J., Ortiz, J. V., Stefanov, B. B., Lui, G., Liashenko, A., Piskorz, P., Komaromi, I., Gomperts, R., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A., Gonzalez, C., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Andres, J. L., Gonzalez, C., Head-Gordon, M., Replogle, E. S. & Pople, J. A. (1998). Gaussian98W. Revision A.6. Gaussian Inc., Pittsburgh, PA, USA. Fronczek, F.R. & Garcia, J.G. (2001). Acta Cryst. E57, o886-o887. Gavezzotti, A. (1991). J. Amer. Chem.Soc. 113, 4622-4629. Gavezzotti, A. (1994) Acc. Chem. Res. 27, 309-314. Gavezzotti, A. & Filippini,G. (1994). J. Phys. Chem. 98,4831. Gdanitz, R.J. (1997). Theoretical Aspects and Computer Modeling of the Molecular Solid State, pp. 185-202. New York: John Wiley & Sons. Giglio, E. (1970). Z. Kristallogr. 131, 385-396. Gunsteren, W. F. van, Billeter, S. R., Eising, A. A., Hünenberger, P. H., Krüger, P., Mark, A. E., Scott, W. R. P. & Tironi, I. G. (1996). Biomolecular simulation: The GROMOS96 manual and user guide. Hochschulverlag, Zürich. Hayes, I. C., Hurst, G.J.B. & Stone, A.J.. (1984). Molec. Phys 53, 107-127. Hirshfeld F.L. (1968) Acta Cryst. A24, 301-311. Howie, R.A. & Skakle, J.M.S. (2001) Acta Cryst. E57, o822-o824. Howell, J., Rossi, A., Wallace, D., Haraki, K., Hoffmann, R. (1977). Quantum Chemical Programs Exchange 11, 344, QCPE Program No. 517. Hofmann, D. & Lengauer, T. (1997). Acta Cryst. A53, 225-235. 27 Holden, J. R., Du, Z.Y. & Ammon, H.L. (1993). J. Comput. Chem. 14, 422-437. Hsu, L.-Y. & Williams D.E. (1980). Acta Cryst. A36, 277-281. Hursthouse, M. (2001) Private communication. Jorgensen, W. L., Maxwell, D. S. & Tirado-Rives, J. (1996). J. Am. Chem. Soc. 118, 11225-11236. Leusen, F. J. J. (1996). J. Cryst. Growth 166, 900-903. Leusen, F. J. J., Wilke, S., Verwer, P., & Engel, G. E. (1999). Implications of Molecular and Materials Structure for New Technologies, NATO Science Series E, Vol 360, edited by J. A. K. Howard, F. H. Allen & G. P. Shields, pp 303-314. Dordrecht: Kluwer Academic Publishers. Lommerse, J. P. M., Motherwell, W. D. S., Ammon, H. L., Dunitz, J. D., Gavezzotti, A., Hofmann, D. W. M., Leusen, F. J. J., Mooji, W. T. M., Price, S. L., Schweizer, B., Schmidt, M. U., van Eijck, B. P., Verwer, P. & Williams, D. E. (2000). Acta Cryst. B56, 697-714. Maddox, J. (1988) Nature 335, 201-201. Mayo, S. L. Olafson, B. D. & Goddard III, W. A. (1990). J. Phys. Chem. 94, 8897-8909. Miller, K. J. (1990). J. Am. Chem. Soc. 112, 8533-8542. Mitchell, J.B.O. & Price, S.L. (1990). J. Comput. Chem. 11, 1217-1233. Mitchell, J.B.O. & Price, S.L. (2000). J. Phys. Chem. A 104, 10958-10971. Mitchell, J.B.O., Price, S.L., Leslie,M., Buttar, D. & Roberts, R.J. (2001). J. Phys. Chem. A 105, 99619971. Mooij, W.T.M., van Eijck, B.P., Kroon, J. (1999). J. Phys. Chem. A103, 9883-9890. Mooij, W.T.M., van Eijck, B.P., Price, S.L., Verwer, P. & Kroon, J. (1998). J. Comp. Chem. 19, 459474. Mooij, W.T.M. & Leusen, F.J.J. (2001). Phys. Chem. Chem. Phys. 3, 5063-5066 Motherwell, W.D.S. (2001). Mol. Cryst. Liq. Cryst. 356, 559-567. Nyburg, S. C. & Faerman, C.H. (1985). Acta Cryst. B 41, 274-279. Orengo, C.A., Bray, J.E., Hubbard, T., LoConte, L. & Sillitoe, I. (1999). Proteins: Structure, Function and Genetics Suppl. 3, 149-170. Perdew, J.P. & Wang, Y. (1992). Phys. Rev. B 45, 13244-13249. Petersen, C.S. (1971). Acta Chem. Scand., 25, 379-389. Pillardy, J., Czaplewski C., Wedemeyer W. J. & Scheraga H.A. (2000). Helv. Chim. Acta 83, 22142230. Pillardy,J., Arnautova, Y.A., Czaplewski, C., Gibson, K.D. & Scheraga, H.A. (2001). Proc. Natl. Acad. Sci. USA, 98, 12351-12356. Ponder, J.W. (2000). TINKER: Software Tools for Molecular Design, Version 3.8, Washington University of Medicine, USA, 2000, TINKER is available via the Internet at http://dasher.wustl.edu/tinker/. Rappe, A.K., Casewit, C.J., Colwell, K.S., Goddard, W.A. III & Skiff ,W.M. (1992) J. Am. Chem. Soc. 114, 10024-10035. Schaftenaar, G. & Noordik, J. H. (2000). J. Comput.-Aided Mol. Design 14, 123-134. MOLDEN is available via the Internet at http://www/cmbi.kun.nl/~schaft/molden/molden.html. Schmidt, M.U. (1995). Kristallstrukturberechnungen metallorganischer Molekülverbindungen, Verlag Shaker, Aachen, Germany, ISBN 3-8265-0588-3. Schmidt, M.U. (1999), Crystal Engineering: From Molecules and Crystals to Materials (Ed: D. Braga, G. Orpen), Kluwer Academic Publishers, Dordrecht, pp. 331-348. Schmidt, M.U., Englert, U. (1996). J. Chem. Soc. Dalton Trans. , 2077-82. 28 Starr, T. L., Williams, D. E. (1977). J. Chem. Phys. 66, 2054-2057. Stone, A. J. & Alderton, M. (1985). Molecular Phys. 56, 1047-1064. Verdonk, M.L., Cole, J.C., Watson, P., Gillet, V. & Willett, P. (2001). J. Mol. Biol. 307, 841-859. Verwer, P. & Leusen, F.J.J. (1998). Reviews in Computational Chemistry, 12, 327-365. Wavefunction Inc. (1999). PC Spartan Pro. Wavefunction Inc., Irvine, CA, USA. Werner, P.-E., Eriksson, L. and Westdahl, M. (1985). J. Appl. Cryst. 18, 367-370. Williams, D. E. (1972a). Acta Cryst. A28, 84-88. Williams, D. E. (1972b). Acta Cryst. A28, 629-635. Williams, D. E. (1973). Acta Cryst. A29, 408-414. Williams, D. E. (1992). Chem. Phys. Let. 192, 538-543. Williams, D. E. (1994). J. Comp. Chem. 15, 719-732 Williams, D. E. (1996). Acta Cryst. A52, 326-328. Williams, D. E. (1997). Pdm97. University of Louisville, Kentucky, USA. Williams, D. E. (2001). J. Comp. Chem. 22, 1154-1166. Williams, D. E.; Abraha, A. (1999). J. Comp. Chem. 20, 579-585. Williams, D. E., & Cox, S.R. (1984). Acta Cryst. B40, 404-417. Williams, D. E.; Weller, R. R. (1983). J. Amer. Chem. Soc. 105, 4143-4148. Willock, D.J., Price, S.L., Leslie, M., Catlow, C.R.A. (1995) J. Comput. Chem. 16, 628-647. 29 EXPERIMENTAL STRUCTURES (CIF – FORMAT) # Experimental coords for Molecule IV (Howie) data_pred4 _publ_requested_journal test _audit_creation_method SHELXL-97 _chemical_name_systematic ; C8 H11 N O2 ; _chemical_name_common 'C8 H11 N O2' _chemical_formula_moiety 'C8 H11 N O2' _chemical_formula_sum 'C8 H11 N O2' _chemical_formula_weight 153.18 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source 'C' 'C' 0.0033 0.0016 'International Tables Vol C Tables 'H' 'H' 0.0000 0.0000 'International Tables Vol C Tables 'N' 'N' 0.0061 0.0033 'International Tables Vol C Tables 'O' 'O' 0.0106 0.0060 'International Tables Vol C Tables _symmetry_cell_setting _symmetry_space_group_name_H-M 4.2.6.8 and 6.1.1.4' 4.2.6.8 and 6.1.1.4' 4.2.6.8 and 6.1.1.4' 4.2.6.8 and 6.1.1.4' monoclinic P2(1)/a loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' 'x+1/2, -y+1/2, z' '-x, -y, -z' '-x-1/2, y-1/2, -z' _cell_length_a _cell_length_b _cell_length_c _cell_angle_alpha _cell_angle_beta _cell_angle_gamma _cell_volume _cell_formula_units_Z _cell_measurement_temperature _cell_measurement_reflns_used _cell_measurement_theta_min _cell_measurement_theta_max 7.7046(5) 10.6062(7) 9.3384(6) 90.00 95.033(2) 90.00 760.16(9) 4 297(2) 2072 2.189 30.250 _exptl_crystal_description _exptl_crystal_colour _exptl_crystal_size_max _exptl_crystal_size_mid _exptl_crystal_size_min block colourless 0.30 0.20 0.20 30 _exptl_crystal_density_meas _exptl_crystal_density_diffrn _exptl_crystal_density_method _exptl_crystal_F_000 _exptl_absorpt_coefficient_mu _exptl_absorpt_correction_type _exptl_absorpt_process_details _exptl_absorpt_correction_T_min _exptl_absorpt_correction_T_max 'not measured' 1.338 'not measured' 328 0.097 'multi-scan' '(SADABS; Bruker, 1999)' 0.9716 0.9810 _exptl_special_details ; ? ; _diffrn_ambient_temperature _diffrn_radiation_wavelength _diffrn_radiation_type _diffrn_radiation_source _diffrn_radiation_monochromator _diffrn_measurement_device_type _diffrn_measurement_method _diffrn_detector_area_resol_mean _diffrn_standards_number _diffrn_standards_interval_count _diffrn_standards_interval_time _diffrn_standards_decay_% _diffrn_reflns_number _diffrn_reflns_av_R_equivalents _diffrn_reflns_av_sigmaI/netI _diffrn_reflns_limit_h_min _diffrn_reflns_limit_h_max _diffrn_reflns_limit_k_min _diffrn_reflns_limit_k_max _diffrn_reflns_limit_l_min _diffrn_reflns_limit_l_max _diffrn_reflns_theta_min _diffrn_reflns_theta_max _reflns_number_total _reflns_number_gt _reflns_threshold_expression 297(2) 0.71073 MoK\a 'fine-focus sealed tube' graphite 'Bruker SMART area CCD detector' /f-/w ? ? ? ? none 7616 0.0265 0.0341 -11 11 -16 7 -14 13 2.91 32.48 2736 1584 >2sigma(I) _computing_data_collection _computing_cell_refinement _computing_data_reduction _computing_structure_solution _computing_structure_refinement _computing_molecular_graphics _computing_publication_material 'SMART (Bruker, 1999)' 'SAINT (Bruker, 1999)' 'SAINT (Bruker, 1999)' 'SHELXS-97 (Sheldrick, 1990)' 'SHELXL-97 (Sheldrick, 1997)' 'Ortex in OSCAIL (McArdle, 1999)' 'SHELXL-97 (Sheldrick, 1997)' _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is 31 not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and Rfactors based on ALL data will be even larger. In this refinement, all H atoms were located from the difference Fourier map and refined freely ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0713P)^2^+0.0000P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens difmap _refine_ls_hydrogen_treatment refall _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_number_reflns 2736 _refine_ls_number_parameters 144 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.0829 _refine_ls_R_factor_gt 0.0442 _refine_ls_wR_factor_ref 0.1228 _refine_ls_wR_factor_gt 0.1080 _refine_ls_goodness_of_fit_ref 0.897 _refine_ls_restrained_S_all 0.897 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group N1 N 0.02396(11) 0.91167(9) 0.80857(11) 0.0385(2) Uani 1 d . . . H1 H -0.0638(18) 0.8594(15) 0.8056(14) 0.050(4) Uiso 1 d . . . C1 C 0.18817(13) 0.85911(11) 0.80639(12) 0.0382(3) Uani 1 d . . . O1 O 0.20290(11) 0.74477(8) 0.80006(12) 0.0609(3) Uani 1 d . . . C2 C 0.34028(13) 0.94791(11) 0.80811(13) 0.0385(3) Uani 1 d . . . H2 H 0.4424(18) 0.9025(14) 0.8598(15) 0.053(4) Uiso 1 d . . . C3 C 0.30016(16) 1.07024(13) 0.88224(14) 0.0444(3) Uani 1 d . . . H3A H 0.3990(18) 1.1311(14) 0.8794(15) 0.055(4) Uiso 1 d . . . H3B H 0.2842(19) 1.0561(13) 0.9866(16) 0.054(4) Uiso 1 d . . . C4 C 0.13820(16) 1.12782(11) 0.80265(14) 0.0422(3) Uani 1 d . . . H4 H 0.104(2) 1.2013(16) 0.8467(16) 0.065(5) Uiso 1 d . . . C5 C -0.01396(14) 1.03949(10) 0.80730(12) 0.0366(2) Uani 1 d . . . O2 O -0.16431(11) 1.07333(9) 0.80802(11) 0.0541(3) Uani 1 d . . . 32 C6 C 0.17033(17) 1.15664(13) 0.64610(15) 0.0496(3) Uani 1 d . . . H6A H 0.265(2) 1.2262(16) 0.6532(17) 0.068(5) Uiso 1 d . . . H6B H 0.060(2) 1.1914(14) 0.5992(15) 0.060(4) Uiso 1 d . . . C7 C 0.23386(16) 1.04282(15) 0.56749(14) 0.0501(3) Uani 1 d . . . H7A H 0.138(2) 0.9814(14) 0.5506(14) 0.052(4) Uiso 1 d . . . H7B H 0.271(2) 1.0673(16) 0.477(2) 0.075(5) Uiso 1 d . . . C8 C 0.38276(14) 0.97485(14) 0.65318(14) 0.0458(3) Uani 1 d . . . H8A H 0.4140(18) 0.8940(16) 0.6085(15) 0.053(4) Uiso 1 d . . . H8B H 0.4879(19) 1.0233(14) 0.6595(14) 0.049(4) Uiso 1 d . . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 N1 0.0256(4) 0.0312(5) 0.0591(6) 0.0022(4) 0.0054(4) -0.0018(3) C1 0.0283(5) 0.0336(6) 0.0526(7) 0.0024(5) 0.0025(4) 0.0021(4) O1 0.0378(4) 0.0326(5) 0.1127(9) 0.0038(5) 0.0093(5) 0.0042(4) C2 0.0246(4) 0.0417(6) 0.0484(6) 0.0027(5) -0.0018(4) -0.0014(4) C3 0.0409(6) 0.0468(7) 0.0450(7) -0.0063(5) 0.0009(5) -0.0114(5) C4 0.0433(6) 0.0280(5) 0.0561(7) -0.0061(5) 0.0092(5) -0.0028(5) C5 0.0356(5) 0.0326(6) 0.0424(6) 0.0008(4) 0.0084(4) 0.0027(4) O2 0.0377(4) 0.0472(5) 0.0791(6) 0.0063(5) 0.0157(4) 0.0119(4) C6 0.0410(6) 0.0452(7) 0.0628(8) 0.0172(6) 0.0061(6) -0.0027(5) C7 0.0386(6) 0.0710(10) 0.0411(7) 0.0051(6) 0.0063(5) -0.0028(6) C8 0.0294(5) 0.0553(7) 0.0539(7) -0.0038(6) 0.0103(5) -0.0011(5) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag N1 C1 1.3843(13) . ? N1 C5 1.3866(14) . ? N1 H1 0.873(15) . ? C1 O1 1.2199(14) . ? C1 C2 1.5025(15) . ? C2 C3 1.5151(18) . ? C2 C8 1.5379(17) . ? C2 H2 1.009(14) . ? C3 C4 1.5231(18) . ? 33 C3 C3 C4 C4 C4 C5 C6 C6 C6 C7 C7 C7 C8 C8 H3A 1.001(15) . ? H3B 1.004(14) . ? C5 1.5042(16) . ? C6 1.5348(19) . ? H4 0.929(17) . ? O2 1.2133(13) . ? C7 1.516(2) . ? H6A 1.038(16) . ? H6B 0.992(15) . ? C8 1.5215(18) . ? H7A 0.990(15) . ? H7B 0.952(18) . ? H8A 0.993(16) . ? H8B 0.957(15) . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag C1 N1 C5 125.86(9) . . ? C1 N1 H1 116.8(10) . . ? C5 N1 H1 117.3(10) . . ? O1 C1 N1 119.35(10) . . ? O1 C1 C2 123.22(10) . . ? N1 C1 C2 117.41(10) . . ? C1 C2 C3 110.58(9) . . ? C1 C2 C8 109.67(9) . . ? C3 C2 C8 109.85(10) . . ? C1 C2 H2 106.3(9) . . ? C3 C2 H2 111.8(8) . . ? C8 C2 H2 108.5(8) . . ? C2 C3 C4 108.16(10) . . ? C2 C3 H3A 110.8(8) . . ? C4 C3 H3A 108.7(8) . . ? C2 C3 H3B 111.3(8) . . ? C4 C3 H3B 111.6(8) . . ? H3A C3 H3B 106.3(12) . . ? C5 C4 C3 110.09(10) . . ? C5 C4 C6 110.05(10) . . ? C3 C4 C6 110.55(10) . . ? C5 C4 H4 105.1(10) . . ? C3 C4 H4 111.7(9) . . ? C6 C4 H4 109.2(10) . . ? O2 C5 N1 119.32(10) . . ? O2 C5 C4 124.25(11) . . ? N1 C5 C4 116.42(9) . . ? C7 C6 C4 112.86(10) . . ? C7 C6 H6A 109.9(8) . . ? C4 C6 H6A 104.7(9) . . ? C7 C6 H6B 112.5(9) . . ? C4 C6 H6B 107.0(9) . . ? H6A C6 H6B 109.7(12) . . ? C6 C7 C8 112.53(11) . . ? C6 C7 H7A 109.3(8) . . ? C8 C7 H7A 107.0(8) . . ? C6 C7 H7B 110.3(10) . . ? C8 C7 H7B 109.2(10) . . ? 34 H7A C7 H7B 108.4(12) C7 C8 C2 111.71(9) . C7 C8 H8A 112.8(8) . C2 C8 H8A 108.3(8) . C7 C8 H8B 111.9(9) . C2 C8 H8B 106.9(8) . H8A C8 H8B 104.7(11) . . . . . . . . ? ? ? ? ? ? . ? _diffrn_measured_fraction_theta_max _diffrn_reflns_theta_full _diffrn_measured_fraction_theta_full _refine_diff_density_max 0.241 _refine_diff_density_min -0.196 _refine_diff_density_rms 0.041 0.990 32.48 0.990 # Experimental coordinates Molecule V data_Gabriel45 (Fronczek) _audit_creation_method _chemical_name_systematic ; ? ; _chemical_name_common _chemical_compound_source _chemical_melting_point _chemical_formula_moiety _chemical_formula_sum _chemical_formula_weight SHELXL-97 ? 'local laboratory' ? 'C10 H14 Br N O2 S' 'C10 H14 Br N O2 S' 292.19 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source 'C' 'C' 0.0181 0.0091 'International Tables Vol C Tables 'H' 'H' 0.0000 0.0000 'International Tables Vol C Tables 'O' 'O' 0.0492 0.0322 'International Tables Vol C Tables 'Br' 'Br' -0.6763 1.2805 'International Tables Vol C Tables 'N' 'N' 0.0311 0.0180 'International Tables Vol C Tables 'S' 'S' 0.3331 0.5567 'International Tables Vol C Tables _symmetry_cell_setting _symmetry_space_group_name_H-M _symmetry_space_group_name_Hall loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x+1/2, -y, z+1/2' 'x+1/2, -y+1/2, -z' '-x, y+1/2, -z+1/2' 4.2.6.8 and 6.1.1.4' 4.2.6.8 and 6.1.1.4' 4.2.6.8 and 6.1.1.4' 4.2.6.8 and 6.1.1.4' 4.2.6.8 and 6.1.1.4' 4.2.6.8 and 6.1.1.4' orthorhombic 'P 21 21 21' ' P 2ac 2ab' 35 _cell_length_a _cell_length_b _cell_length_c _cell_angle_alpha _cell_angle_beta _cell_angle_gamma _cell_volume _cell_formula_units_Z _cell_measurement_temperature _cell_measurement_reflns_used _cell_measurement_theta_min _cell_measurement_theta_max 7.2643(4) 10.6393(6) 15.6331(13) 90 90 90 1208.24(14) 4 296 25 11.3 34.0 _exptl_crystal_description _exptl_crystal_colour _exptl_crystal_size_max _exptl_crystal_size_mid _exptl_crystal_size_min _exptl_crystal_density_meas _exptl_crystal_density_diffrn _exptl_crystal_density_method _exptl_crystal_F_000 _exptl_absorpt_coefficient_mu _exptl_absorpt_correction_type _exptl_absorpt_correction_T_min _exptl_absorpt_correction_T_max _exptl_absorpt_process_details fragment 'colorless' 0.23 0.22 0.15 ? 1.606 'not measured' 592 6.111 'psi scans' 0.257 0.399 'North, et al. (1968)' _exptl_special_details ; ? ; _diffrn_ambient_temperature _diffrn_radiation_wavelength _diffrn_radiation_type _diffrn_radiation_source _diffrn_radiation_monochromator _diffrn_measurement_device _diffrn_measurement_method _diffrn_detector_area_resol_mean _diffrn_standards_number _diffrn_standards_interval_count _diffrn_standards_interval_time _diffrn_standards_decay_% _diffrn_reflns_number _diffrn_reflns_av_R_equivalents _diffrn_reflns_av_sigmaI/netI _diffrn_reflns_limit_h_min _diffrn_reflns_limit_h_max _diffrn_reflns_limit_k_min _diffrn_reflns_limit_k_max _diffrn_reflns_limit_l_min _diffrn_reflns_limit_l_max _diffrn_reflns_theta_min _diffrn_reflns_theta_max _reflns_number_total _reflns_number_gt _reflns_threshold_expression 296 1.54184 CuK\a 'fine-focus sealed tube' graphite 'Enraf-Nonius CAD4' \q/2\q ? 3 ? 120 9.0 5380 0.057 0.0093 0 9 -13 13 -19 19 5.0 74.9 2484 2348 >2sigma(I) 36 _computing_data_collection _computing_cell_refinement _computing_data_reduction _computing_structure_solution al., 1989)' _computing_structure_refinement _computing_molecular_graphics _computing_publication_material 'CAD4 (Enraf-Nonius, 1994)' 'CAD4_(Enraf-Nonius,_1994)' 'maXus (Mackay et al., 1999)' 'Direct methods (SIR, Burla et 'SHELXL-97 (Sheldrick, 1997)' ? ? _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and Rfactors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0977P)^2^+0.6776P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment constr _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_abs_structure_details 'Flack H D (1983), Acta Cryst. A39, 876-881' _refine_ls_abs_structure_Flack 0.02(4) _refine_ls_number_reflns 2484 _refine_ls_number_parameters 138 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.061 _refine_ls_R_factor_gt 0.057 _refine_ls_wR_factor_ref 0.162 _refine_ls_wR_factor_gt 0.152 _refine_ls_goodness_of_fit_ref 1.152 _refine_ls_restrained_S_all 1.152 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type 37 _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group Br Br 0.59132(12) 0.63333(8) 0.01579(5) 0.1019(3) Uani 1 1 d . . . S S 0.53225(19) 0.45051(10) 0.30589(7) 0.0622(3) Uani 1 1 d . . . O1 O 0.6825(7) 0.3659(4) 0.2999(3) 0.0865(12) Uani 1 1 d . . . O2 O 0.5099(10) 0.5173(5) 0.3830(3) 0.1043(17) Uani 1 1 d . . . N N 0.5533(5) 0.5566(3) 0.2262(2) 0.0523(8) Uani 1 1 d . . . C1 C 0.3829(7) 0.5989(4) 0.0899(3) 0.0557(10) Uani 1 1 d . . . H1 H 0.3270 0.6792 0.1064 0.067 Uiso 1 1 calc R . . C2 C 0.4345(5) 0.5295(3) 0.1694(2) 0.0462(8) Uani 1 1 d . . . C3 C 0.3080(6) 0.4175(4) 0.1775(3) 0.0559(10) Uani 1 1 d . . . C4 C 0.3776(9) 0.3256(4) 0.1077(4) 0.0745(15) Uani 1 1 d . . . H4A H 0.5101 0.3151 0.1108 0.089 Uiso 1 1 calc R . . H4B H 0.3193 0.2439 0.1131 0.089 Uiso 1 1 calc R . . C5 C 0.3207(12) 0.3906(5) 0.0238(4) 0.0860(18) Uani 1 1 d . . . H5A H 0.4272 0.4062 -0.0121 0.103 Uiso 1 1 calc R . . H5B H 0.2332 0.3397 -0.0077 0.103 Uiso 1 1 calc R . . C6 C 0.2327(8) 0.5144(4) 0.0527(3) 0.0667(13) Uani 1 1 d . . . H6 H 0.1540 0.5548 0.0098 0.080 Uiso 1 1 calc R . . C7 C 0.3199(8) 0.3770(5) 0.2696(4) 0.0685(12) Uani 1 1 d . . . H7A H 0.3266 0.2862 0.2744 0.082 Uiso 1 1 calc R . . H7B H 0.2150 0.4071 0.3021 0.082 Uiso 1 1 calc R . . C8 C 0.1301(6) 0.4733(4) 0.1372(4) 0.0654(12) Uani 1 1 d . . . C9 C 0.0480(7) 0.5805(5) 0.1894(5) 0.0823(17) Uani 1 1 d . . . H9A H -0.0494 0.6195 0.1575 0.123 Uiso 1 1 calc R . . H9B H 0.1419 0.6415 0.2015 0.123 Uiso 1 1 calc R . . H9C H -0.0001 0.5480 0.2422 0.123 Uiso 1 1 calc R . . C10 C -0.0240(10) 0.3749(6) 0.1239(6) 0.105(3) Uani 1 1 d . . . H10A H 0.0293 0.2969 0.1056 0.157 Uiso 1 1 calc R . . H10B H -0.1084 0.4045 0.0812 0.157 Uiso 1 1 calc R . . H10C H -0.0886 0.3623 0.1768 0.157 Uiso 1 1 calc R . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 Br 0.1102(6) 0.1140(6) 0.0815(5) 0.0414(4) 0.0237(4) 0.0030(4) S 0.0850(7) 0.0506(5) 0.0511(5) 0.0113(4) -0.0022(5) -0.0087(5) O1 0.086(2) 0.072(2) 0.101(3) 0.030(2) -0.017(2) 0.006(2) O2 0.169(5) 0.092(3) 0.0521(19) -0.0027(19) 0.011(3) -0.031(3) N 0.0623(19) 0.0404(14) 0.0540(18) 0.0081(13) 0.0009(15) -0.0051(15) C1 0.066(2) 0.0450(18) 0.057(2) 0.0058(17) -0.0018(19) 0.0077(17) C2 0.0517(18) 0.0362(14) 0.0507(19) 0.0020(14) 0.0037(16) 0.0042(15) C3 0.060(2) 0.0390(18) 0.069(3) -0.0031(17) -0.001(2) -0.0045(17) C4 0.088(3) 0.043(2) 0.093(4) -0.015(2) -0.006(3) 0.014(2) C5 0.126(5) 0.055(3) 0.077(3) -0.027(3) -0.009(3) 0.014(3) C6 0.085(3) 0.050(2) 0.065(3) -0.014(2) -0.022(2) 0.015(2) C7 0.078(3) 0.049(2) 0.078(3) 0.014(2) 0.012(3) -0.011(2) C8 0.055(2) 0.0415(18) 0.100(4) -0.014(2) -0.009(2) -0.0058(17) C9 0.055(2) 0.063(3) 0.129(5) -0.024(3) 0.004(3) 0.006(2) C10 0.076(3) 0.079(4) 0.159(7) -0.022(4) -0.029(4) -0.020(3) _geom_special_details 38 ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag Br C1 1.941(5) . ? S O2 1.408(5) . ? S O1 1.418(5) . ? S N 1.687(3) . ? S C7 1.820(6) . ? N C2 1.271(6) . ? C1 C2 1.494(6) . ? C1 C6 1.529(7) . ? C1 H1 0.9800 . ? C2 C3 1.510(5) . ? C3 C7 1.505(7) . ? C3 C4 1.550(7) . ? C3 C8 1.556(7) . ? C4 C5 1.539(9) . ? C4 H4A 0.9700 . ? C4 H4B 0.9700 . ? C5 C6 1.532(7) . ? C5 H5A 0.9700 . ? C5 H5B 0.9700 . ? C6 C8 1.578(9) . ? C6 H6 0.9800 . ? C7 H7A 0.9700 . ? C7 H7B 0.9700 . ? C8 C9 1.524(7) . ? C8 C10 1.547(7) . ? C9 H9A 0.9600 . ? C9 H9B 0.9600 . ? C9 H9C 0.9600 . ? C10 H10A 0.9600 . ? C10 H10B 0.9600 . ? C10 H10C 0.9600 . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag 39 O2 S O1 117.7(4) . . ? O2 S N 107.7(2) . . ? O1 S N 107.8(2) . . ? O2 S C7 112.7(4) . . ? O1 S C7 111.1(2) . . ? N S C7 97.7(2) . . ? C2 N S 107.6(3) . . ? C2 C1 C6 101.8(4) . . ? C2 C1 Br 113.2(3) . . ? C6 C1 Br 116.1(3) . . ? C2 C1 H1 108.4 . . ? C6 C1 H1 108.4 . . ? Br C1 H1 108.4 . . ? N C2 C1 129.7(4) . . ? N C2 C3 122.2(4) . . ? C1 C2 C3 107.9(4) . . ? C7 C3 C2 105.7(4) . . ? C7 C3 C4 118.4(4) . . ? C2 C3 C4 103.9(4) . . ? C7 C3 C8 123.0(5) . . ? C2 C3 C8 99.8(3) . . ? C4 C3 C8 103.1(4) . . ? C5 C4 C3 103.2(4) . . ? C5 C4 H4A 111.1 . . ? C3 C4 H4A 111.1 . . ? C5 C4 H4B 111.1 . . ? C3 C4 H4B 111.1 . . ? H4A C4 H4B 109.1 . . ? C6 C5 C4 104.4(4) . . ? C6 C5 H5A 110.9 . . ? C4 C5 H5A 110.9 . . ? C6 C5 H5B 110.9 . . ? C4 C5 H5B 110.9 . . ? H5A C5 H5B 108.9 . . ? C1 C6 C5 108.6(5) . . ? C1 C6 C8 100.5(4) . . ? C5 C6 C8 101.8(4) . . ? C1 C6 H6 114.8 . . ? C5 C6 H6 114.8 . . ? C8 C6 H6 114.8 . . ? C3 C7 S 102.9(3) . . ? C3 C7 H7A 111.2 . . ? S C7 H7A 111.2 . . ? C3 C7 H7B 111.2 . . ? S C7 H7B 111.2 . . ? H7A C7 H7B 109.1 . . ? C9 C8 C10 107.2(5) . . ? C9 C8 C3 113.2(5) . . ? C10 C8 C3 113.4(4) . . ? C9 C8 C6 115.2(4) . . ? C10 C8 C6 114.7(6) . . ? C3 C8 C6 93.0(4) . . ? C8 C9 H9A 109.5 . . ? C8 C9 H9B 109.5 . . ? H9A C9 H9B 109.5 . . ? C8 C9 H9C 109.5 . . ? H9A C9 H9C 109.5 . . ? H9B C9 H9C 109.5 . . ? C8 C10 H10A 109.5 . . ? C8 C10 H10B 109.5 . . ? H10A C10 H10B 109.5 . . ? 40 C8 C10 H10C 109.5 . . ? H10A C10 H10C 109.5 . . ? H10B C10 H10C 109.5 . . ? loop_ _geom_torsion_atom_site_label_1 _geom_torsion_atom_site_label_2 _geom_torsion_atom_site_label_3 _geom_torsion_atom_site_label_4 _geom_torsion _geom_torsion_site_symmetry_1 _geom_torsion_site_symmetry_2 _geom_torsion_site_symmetry_3 _geom_torsion_site_symmetry_4 _geom_torsion_publ_flag O2 S N C2 -126.6(4) . . . . ? O1 S N C2 105.3(3) . . . . ? C7 S N C2 -9.8(3) . . . . ? S N C2 C1 173.9(3) . . . . ? S N C2 C3 -1.6(5) . . . . ? C6 C1 C2 N -179.8(4) . . . . ? Br C1 C2 N 54.8(5) . . . . ? C6 C1 C2 C3 -3.7(4) . . . . ? Br C1 C2 C3 -129.1(3) . . . . ? N C2 C3 C7 14.9(5) . . . . ? C1 C2 C3 C7 -161.5(4) . . . . ? N C2 C3 C4 -110.4(5) . . . . ? C1 C2 C3 C4 73.2(4) . . . . ? N C2 C3 C8 143.4(4) . . . . ? C1 C2 C3 C8 -33.0(5) . . . . ? C7 C3 C4 C5 172.9(5) . . . . ? C2 C3 C4 C5 -70.3(5) . . . . ? C8 C3 C4 C5 33.4(5) . . . . ? C3 C4 C5 C6 2.3(7) . . . . ? C2 C1 C6 C5 -67.8(5) . . . . ? Br C1 C6 C5 55.6(5) . . . . ? C2 C1 C6 C8 38.6(4) . . . . ? Br C1 C6 C8 162.0(3) . . . . ? C4 C5 C6 C1 68.9(6) . . . . ? C4 C5 C6 C8 -36.5(6) . . . . ? C2 C3 C7 S -18.6(4) . . . . ? C4 C3 C7 S 97.2(4) . . . . ? C8 C3 C7 S -131.8(4) . . . . ? O2 S C7 C3 130.3(4) . . . . ? O1 S C7 C3 -95.2(4) . . . . ? N S C7 C3 17.4(3) . . . . ? C7 C3 C8 C9 50.5(6) . . . . ? C2 C3 C8 C9 -65.6(5) . . . . ? C4 C3 C8 C9 -172.5(5) . . . . ? C7 C3 C8 C10 -71.8(7) . . . . ? C2 C3 C8 C10 172.1(5) . . . . ? C4 C3 C8 C10 65.2(7) . . . . ? C7 C3 C8 C6 169.6(4) . . . . ? C2 C3 C8 C6 53.5(4) . . . . ? C4 C3 C8 C6 -53.4(4) . . . . ? C1 C6 C8 C9 60.2(5) . . . . ? C5 C6 C8 C9 172.0(5) . . . . ? C1 C6 C8 C10 -174.7(4) . . . . ? C5 C6 C8 C10 -62.9(6) . . . . ? C1 C6 C8 C3 -57.2(4) . . . . ? C5 C6 C8 C3 54.6(5) . . . . ? 41 _diffrn_measured_fraction_theta_max _diffrn_reflns_theta_full _diffrn_measured_fraction_theta_full _refine_diff_density_max 0.89 _refine_diff_density_min -0.81 _refine_diff_density_rms 0.117 # END OF CIF 1.000 74.9 1.000 # Experimental coords for Molecule VI CSP2001 (Hursthouse) data_s92 _audit_creation_method _chemical_name_systematic ; ? ; _chemical_name_common _chemical_melting_point _chemical_formula_moiety _chemical_formula_sum 'C11 H11 N3 O2 S' _chemical_formula_weight SHELXL-97 ? ? ? 249.29 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source 'C' 'C' 0.0033 0.0016 'International Tables Vol C Tables 'H' 'H' 0.0000 0.0000 'International Tables Vol C Tables 'N' 'N' 0.0061 0.0033 'International Tables Vol C Tables 'O' 'O' 0.0106 0.0060 'International Tables Vol C Tables 'S' 'S' 0.1246 0.1234 'International Tables Vol C Tables _symmetry_cell_setting _symmetry_space_group_name_H-M 4.2.6.8 and 6.1.1.4' 4.2.6.8 and 6.1.1.4' 4.2.6.8 and 6.1.1.4' 4.2.6.8 and 6.1.1.4' 4.2.6.8 and 6.1.1.4' monoclinic P21/c loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, y+1/2, -z+1/2' '-x, -y, -z' 'x, -y-1/2, z-1/2' _cell_length_a _cell_length_b _cell_length_c _cell_angle_alpha _cell_angle_beta _cell_angle_gamma _cell_volume _cell_formula_units_Z _cell_measurement_temperature _cell_measurement_reflns_used 8.2506(17) 8.9643(18) 15.087(3) 90.00 91.21(3) 90.00 1115.6(4) 4 293(2) ? 42 _cell_measurement_theta_min _cell_measurement_theta_max ? ? _exptl_crystal_description _exptl_crystal_colour _exptl_crystal_size_max _exptl_crystal_size_mid _exptl_crystal_size_min _exptl_crystal_density_meas _exptl_crystal_density_diffrn _exptl_crystal_density_method _exptl_crystal_F_000 _exptl_absorpt_coefficient_mu _exptl_absorpt_correction_type _exptl_absorpt_correction_T_min _exptl_absorpt_correction_T_max _exptl_absorpt_process_details ? ? ? ? ? ? 1.484 'not measured' 520 0.283 ? ? ? ? _exptl_special_details ; ? ; _diffrn_ambient_temperature _diffrn_radiation_wavelength _diffrn_radiation_type _diffrn_radiation_source _diffrn_radiation_monochromator _diffrn_measurement_device_type _diffrn_measurement_method _diffrn_detector_area_resol_mean _diffrn_standards_number _diffrn_standards_interval_count _diffrn_standards_interval_time _diffrn_standards_decay_% _diffrn_reflns_number _diffrn_reflns_av_R_equivalents _diffrn_reflns_av_sigmaI/netI _diffrn_reflns_limit_h_min _diffrn_reflns_limit_h_max _diffrn_reflns_limit_k_min _diffrn_reflns_limit_k_max _diffrn_reflns_limit_l_min _diffrn_reflns_limit_l_max _diffrn_reflns_theta_min _diffrn_reflns_theta_max _reflns_number_total _reflns_number_gt _reflns_threshold_expression 293(2) 0.71073 MoK\a 'fine-focus sealed tube' graphite ? ? ? ? ? ? ? 982 0.0425 0.0812 -8 8 -11 10 -16 17 3.53 27.32 736 467 >2sigma(I) _computing_data_collection _computing_cell_refinement _computing_data_reduction _computing_structure_solution _computing_structure_refinement _computing_molecular_graphics _computing_publication_material ? ? ? ? 'SHELXL-97 (Sheldrick, 1997)' ? ? _refine_special_details ; 43 Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and Rfactors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0386P)^2^+0.0000P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment mixed _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_number_reflns 736 _refine_ls_number_parameters 158 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.0805 _refine_ls_R_factor_gt 0.0416 _refine_ls_wR_factor_ref 0.1095 _refine_ls_wR_factor_gt 0.0933 _refine_ls_goodness_of_fit_ref 1.005 _refine_ls_restrained_S_all 1.005 _refine_ls_shift/su_max 0.006 _refine_ls_shift/su_mean 0.001 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group H17 H 0.996(11) 0.524(6) 0.683(3) 0.030(17) Uiso 1 C17 C 0.8407(10) 0.3998(7) 0.6170(3) 0.041(2) Uani C18 C 0.9149(11) 0.6559(7) 0.5945(4) 0.048(3) Uani C19 C 0.8232(14) 0.6610(8) 0.5209(4) 0.062(3) Uani H19 H 0.8149 0.7483 0.4878 0.075 Uiso 1 1 calc R . C20 C 0.7441(12) 0.5393(8) 0.4958(4) 0.059(3) Uani H20 H 0.6809 0.5430 0.4440 0.071 Uiso 1 1 calc R . C21 C 0.7508(13) 0.4045(8) 0.5434(3) 0.058(3) Uani 1 1 1 1 . 1 . 1 d 1 1 1 . d d d . . . . . . . . . . . 1 d . . . 1 d . . . 44 H21 H 0.6937 0.3210 0.5236 0.070 Uiso 1 1 calc R . . C14 C 0.5989(10) 0.1234(7) 0.6598(3) 0.0334(19) Uani 1 1 d . . . C15 C 0.5199(13) 0.0139(8) 0.6141(5) 0.053(3) Uani 1 1 d . . . H13 H 0.5760 -0.0548 0.5803 0.063 Uiso 1 1 calc R . . C16 C 0.3629(14) 0.0087(10) 0.6195(5) 0.076(4) Uani 1 1 d . . . H12 H 0.3071 -0.0663 0.5892 0.092 Uiso 1 1 calc R . . C11 C 0.2784(13) 0.1066(13) 0.6666(5) 0.071(3) Uani 1 1 d . . . H11 H 0.1661 0.0993 0.6677 0.085 Uiso 1 1 calc R . . C12 C 0.353(2) 0.2142(12) 0.7119(8) 0.101(6) Uani 1 1 d . . . H16 H 0.2938 0.2815 0.7451 0.121 Uiso 1 1 calc R . . C13 C 0.5127(14) 0.2249(7) 0.7096(5) 0.062(4) Uani 1 1 d . . . H15 H 0.5665 0.2999 0.7410 0.075 Uiso 1 1 calc R . . N12 N 0.8651(8) 0.2887(5) 0.6764(3) 0.044(2) Uani 1 1 d . . . N13 N 0.9200(10) 0.5264(5) 0.6396(3) 0.0389(19) Uani 1 1 d . . . N14 N 0.9991(10) 0.7682(6) 0.6249(3) 0.060(2) Uani 1 1 d . . . H18B H 0.9975 0.8519 0.5970 0.072 Uiso 1 1 calc R . . H18A H 1.0563 0.7587 0.6729 0.072 Uiso 1 1 calc R . . O11 O 0.8553(9) 0.0380(4) 0.7313(3) 0.0572(18) Uani 1 1 d . . . O12 O 0.8571(7) 0.0691(4) 0.5714(2) 0.0509(18) Uani 1 1 d . . . S11 S 0.8065(3) 0.12706(17) 0.65712(10) 0.0433(7) Uani 1 1 d . . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 C17 0.034(8) 0.044(4) 0.043(3) -0.006(3) -0.007(4) -0.004(3) C18 0.053(9) 0.036(4) 0.055(4) -0.001(3) 0.011(5) 0.000(4) C19 0.082(10) 0.047(4) 0.057(4) 0.013(3) -0.004(6) 0.001(5) C20 0.047(10) 0.076(6) 0.053(3) 0.012(3) -0.028(4) 0.000(5) C21 0.067(10) 0.052(4) 0.056(3) 0.003(3) -0.009(5) -0.005(4) C14 0.017(7) 0.043(4) 0.039(2) 0.012(3) -0.018(4) 0.004(4) C15 0.039(10) 0.063(5) 0.056(3) -0.014(3) -0.007(5) -0.020(4) C16 0.069(14) 0.103(7) 0.057(4) 0.008(4) 0.004(7) -0.024(6) C11 0.032(10) 0.107(7) 0.074(5) 0.026(5) -0.005(6) -0.016(6) C12 0.083(16) 0.092(7) 0.131(9) 0.020(7) 0.057(11) 0.024(7) C13 0.060(12) 0.054(4) 0.074(4) -0.016(4) 0.000(7) -0.005(5) N12 0.041(7) 0.033(3) 0.058(3) 0.005(2) -0.009(3) -0.006(3) N13 0.036(6) 0.036(3) 0.044(3) 0.000(2) -0.010(4) 0.001(3) N14 0.075(8) 0.034(3) 0.071(3) 0.010(3) -0.011(4) 0.000(3) O11 0.055(6) 0.040(3) 0.076(2) 0.014(2) -0.027(3) -0.008(3) O12 0.041(5) 0.046(2) 0.065(2) -0.012(2) -0.001(3) 0.004(2) S11 0.034(2) 0.0354(9) 0.0597(9) 0.0005(7) -0.0105(11) -0.0003(9) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. 45 ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag C17 C21 1.324(11) . ? C17 N13 1.350(8) . ? C17 N12 1.352(7) . ? C18 N14 1.302(9) . ? C18 C19 1.331(12) . ? C18 N13 1.347(7) . ? C19 C20 1.323(11) . ? C20 C21 1.406(9) . ? C14 C15 1.358(10) . ? C14 C13 1.386(9) . ? C14 S11 1.715(8) . ? C15 C16 1.301(14) . ? C16 C11 1.335(12) . ? C11 C12 1.326(15) . ? C12 C13 1.321(19) . ? N12 S11 1.553(5) . ? O11 S11 1.425(5) . ? O12 S11 1.462(4) . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag C21 C17 N13 116.4(6) . . ? C21 C17 N12 130.8(7) . . ? N13 C17 N12 112.8(6) . . ? N14 C18 C19 123.9(7) . . ? N14 C18 N13 118.6(8) . . ? C19 C18 N13 117.6(7) . . ? C20 C19 C18 118.6(7) . . ? C19 C20 C21 123.3(8) . . ? C17 C21 C20 118.2(8) . . ? C15 C14 C13 120.2(9) . . ? C15 C14 S11 118.1(6) . . ? C13 C14 S11 121.7(7) . . ? C16 C15 C14 117.5(7) . . ? C15 C16 C11 122.8(10) . . ? C12 C11 C16 120.7(11) . . ? C13 C12 C11 119.5(9) . . ? C12 C13 C14 119.3(11) . . ? C17 N12 S11 121.4(4) . . ? C18 N13 C17 126.0(7) . . ? O11 S11 O12 114.4(3) . . ? O11 S11 N12 107.1(3) . . ? O12 S11 N12 113.8(3) . . ? O11 S11 C14 103.7(3) . . ? O12 S11 C14 108.6(4) . . ? N12 S11 C14 108.7(3) . . ? 46 _diffrn_measured_fraction_theta_max _diffrn_reflns_theta_full _diffrn_measured_fraction_theta_full _refine_diff_density_max 0.106 _refine_diff_density_min -0.120 _refine_diff_density_rms 0.031 0.292 27.32 0.292 ALL PARTICIPANTS – SUBMITTED STRUCTURES LISTS of crystal structures of the test molecules IV, V, VI submitted by the participants of CSP2001 CONTENTS I. II. III. IV. Ab initio submission Powder-assisted submission Post-predicted (high-rank and minimized experimental) structures Comparison of predicted coordinates with experimental Line 13 4518 5369 6411 I. Ab initio submission ======================= TITL Ammon IV 1 CELL 10.158564 7.926620 9.899114 90.000000 76.987421 90.000000 SPACEGROUP P21/c ATOM C1 0.624759 0.837068 0.785428 ATOM C2 0.805525 1.055741 0.753368 ATOM C3 0.861977 0.763570 0.643003 ATOM C4 0.916249 0.920354 0.704331 ATOM C5 0.730929 0.696159 0.737203 ATOM C6 0.685749 0.978626 0.858136 ATOM C7 0.575891 0.907231 0.661988 ATOM C8 0.758361 1.127984 0.629622 ATOM H1 0.535302 0.781695 0.854439 ATOM H2 0.843915 0.794220 0.540523 ATOM H3 0.955518 0.883736 0.794780 ATOM H4 0.753510 0.639372 0.830597 ATOM H5 0.720375 0.927266 0.947146 ATOM H6 0.849790 1.162149 0.798676 ATOM H7 0.939155 0.664066 0.625399 ATOM H8 1.000765 0.976139 0.628525 ATOM H9 0.686907 0.596457 0.684178 ATOM Ha 0.609542 1.075256 0.898378 ATOM Hb 0.615480 1.094088 0.514622 ATOM O1 0.813128 1.245045 0.559388 ATOM O2 0.483858 0.846704 0.617775 ATOM N1 0.646363 1.048027 0.597803 ENERGY -24.09 kcal/mol with distributed multipole electrostatics. COMMENT d = 1.310 g/cc. Lowest E and highest density structure. COMMENT Volume additivity calcns suggest d = 1.349 g/cc. COMMENT This structure is essentially the same as that obtained COMMENT with atom-centered monopoles. N-H..O = 1.885 Angs is COMMENT reasonable for the expected strong intermolecular contact. TITL Ammon IV 2 CELL 7.623809 12.255159 8.340882 SPACEGROUP P212121 ATOM C1 0.915423 0.518840 ATOM C2 1.114238 0.621518 ATOM C3 1.063854 0.693754 ATOM C4 1.191295 0.686902 ATOM C5 0.987452 0.581640 ATOM C6 1.059378 0.506900 ATOM C7 0.757056 0.578169 ATOM C8 0.957761 0.681817 90.000000 0.157254 0.340433 0.054865 0.197587 0.009791 0.285022 0.226762 0.411678 90.000000 90.000000 47 ATOM H1 0.866658 0.438946 0.117763 ATOM H2 0.956642 0.750264 0.083692 ATOM H3 1.312396 0.645621 0.160193 ATOM H4 1.090228 0.530896 -0.044478 ATOM H5 1.172800 0.463839 0.234267 ATOM H6 1.212575 0.617561 0.436444 ATOM H7 1.131489 0.729019 -0.049149 ATOM H8 1.228460 0.768988 0.237932 ATOM H9 0.883260 0.590721 -0.080100 ATOM Ha 1.012220 0.458175 0.386744 ATOM Hb 0.689590 0.693253 0.394845 ATOM O1 0.969480 0.752340 0.513745 ATOM O2 0.607310 0.565322 0.180084 ATOM N1 0.794017 0.652546 0.349424 ENERGY -23.17 kcal/mol with distributed multipole electrostatics. COMMENT d = 1.287 g/cc. N-H..O = 1.96 Angs is very reasonable COMMENT for the expected strong intermolecular contact. COMMENT This structure is essentially the same as that obtained COMMENT with atom-centered monopoles (E = -23.62 kcal/mol, d = COMMENT 1.308 g/cc. TITL Ammon IV 3 CELL 7.306599 5.834670 10.233157 76.803283 95.125085 111.483947 SPACEGROUP P-1 ATOM C1 0.071529 0.105811 0.696283 ATOM C2 0.326638 0.292311 0.858950 ATOM C3 0.316465 0.557822 0.622427 ATOM C4 0.445785 0.506001 0.744394 ATOM C5 0.184238 0.314792 0.577631 ATOM C6 0.217013 0.051141 0.805893 ATOM C7 -0.075844 0.185456 0.753537 ATOM C8 0.181691 0.373721 0.917735 ATOM H1 -0.016248 -0.063610 0.658329 ATOM H2 0.224916 0.655261 0.646719 ATOM H3 0.559722 0.447945 0.713998 ATOM H4 0.274655 0.239533 0.532226 ATOM H5 0.322352 -0.006788 0.764050 ATOM H6 0.427582 0.260864 0.941319 ATOM H7 0.410101 0.687825 0.538687 ATOM H8 0.521960 0.678136 0.782899 ATOM H9 0.079034 0.354310 0.500473 ATOM Ha 0.139540 -0.104627 0.887534 ATOM Hb -0.103149 0.364089 0.897971 ATOM O1 0.222512 0.491816 1.006700 ATOM O2 -0.242188 0.152091 0.710406 ATOM N1 -0.006724 0.307873 0.860482 ENERGY -23.17 kcal/mol with distributed multipole electrostatics. COMMENT d = 1.287 g/cc. COMMENT Volume additivity calcns suggest d = 1.349 g/cc. COMMENT N-H..O = 1.866 Angs is reasonable for the expected COMMENT strong intermolecular contact. COMMENT This structure is essentially the same as that obtained COMMENT with atom-centered monopoles (E = -23.63 kcal/mol & COMMENT d = 1.326 g/cc). TITL Dzyabchenko IV 1 SPACEGROUP P21/c CELL 8.980 7.840 13.047 90.00 126.11 90.00 ATOM O1 0.54827 0.21851 0.50752 ATOM O2 0.17854 -0.10842 0.16440 ATOM N1 0.36075 0.06322 0.33146 ATOM H1 0.39372 -0.03836 0.38740 ATOM C3 0.39405 0.37006 0.30859 ATOM C5 0.18753 0.18745 0.11693 ATOM C8 0.44325 0.21390 0.39296 ATOM C9 0.23904 0.03333 0.20344 ATOM C1 0.04095 0.36366 0.20739 ATOM C4 1.34846 1.31074 1.18247 ATOM C2 0.22155 0.45939 0.28583 ATOM C6 0.01538 0.27709 0.09449 ATOM H11 0.51103 0.45526 0.35612 ATOM H12 0.15779 0.14291 0.02830 ATOM H2 0.02981 0.27299 0.26488 ATOM H10 -0.07075 0.45259 0.17384 ATOM H5 0.31313 0.42038 0.12204 ATOM H6 0.46773 0.25439 0.19470 48 ATOM H4 0.25174 0.49278 0.37661 ATOM H7 -0.09562 0.18563 0.05424 ATOM H3 0.20703 0.57924 0.23994 ATOM H8 -0.02894 0.37059 0.02094 ENERGY -29.52 kcal/mol COMMENT Density 1.371 g/cm3 COMMENT Confidence level 5 (1-10), by energy TITL Dzyabchenko IV 2 SPACEGROUP P21/c CELL 9.232 8.550 12.156 90.00 127.69 90.00 ATOM O1 0.21776 0.02842 0.60089 ATOM O2 -0.18637 0.33081 0.23464 ATOM N1 0.02398 0.18399 0.41851 ATOM H1 -0.07888 0.12963 0.40928 ATOM C3 0.35508 0.21487 0.54038 ATOM C5 0.12934 0.38378 0.33580 ATOM C8 0.19673 0.13280 0.52514 ATOM C9 -0.02648 0.29982 0.32285 ATOM C1 0.28388 0.49357 0.58608 ATOM C4 1.28815 1.27088 1.39805 ATOM C2 0.41694 0.35882 0.63876 ATOM C6 0.19158 0.52744 0.43453 ATOM H11 0.46586 0.13213 0.58321 ATOM H12 0.07975 0.42104 0.23328 ATOM H2 0.18399 0.47221 0.60345 ATOM H10 0.35742 0.59662 0.64644 ATOM H5 0.39922 0.32937 0.40785 ATOM H6 0.25121 0.17312 0.32920 ATOM H4 0.45477 0.31890 0.73750 ATOM H7 0.07509 0.60300 0.39340 ATOM H3 0.54227 0.40023 0.65993 ATOM H8 0.28434 0.59323 0.42617 ENERGY -29.33 kcal/mol COMMENT Density 1.340 g/cm3 COMMENT Confidence level 3 (1-10), by energy TITL Dzyabchenko IV 3 SPACEGROUP P-1 CELL 5.667 6.450 10.918 86.77 81.74 79.16 ATOM O1 0.61970 -0.12624 0.16138 ATOM O2 0.22141 0.14121 0.51947 ATOM N1 0.40975 0.01368 0.33683 ATOM H1 0.54389 -0.06331 0.38153 ATOM C3 0.23639 0.10234 0.14197 ATOM C5 0.01391 0.25173 0.34198 ATOM C8 0.44000 -0.01441 0.21136 ATOM C9 0.22002 0.13331 0.40914 ATOM C1 0.28049 0.48186 0.19762 ATOM C4 1.00105 1.12765 1.23004 ATOM C2 0.29044 0.32530 0.09825 ATOM C6 0.06834 0.47444 0.29793 ATOM H11 0.22814 0.01035 0.06355 ATOM H12 -0.15238 0.26587 0.40567 ATOM H2 0.44903 0.45704 0.23625 ATOM H10 0.26272 0.63889 0.15588 ATOM H5 -0.14405 0.21047 0.18180 ATOM H6 -0.04604 -0.02431 0.25801 ATOM H4 0.46478 0.30613 0.04109 ATOM H7 0.09058 0.55740 0.37751 ATOM H3 0.15936 0.38974 0.03703 ATOM H8 -0.09484 0.56043 0.26558 ENERGY -29.23 kcal/mol COMMENT Density 1.312 g/cm3 COMMENT Confidence level 1 (1-10), by energy TITL ERK IV/1 CELL 9.0960 8.1460 10.6500 SPACEGROUP P21/n ATOM C1 0.54858 0.21472 ATOM C2 0.58420 0.36661 ATOM C3 0.66831 0.31816 ATOM C4 0.56832 0.18893 ATOM C5 0.53669 0.05039 ATOM H6 0.50609 -0.02354 ATOM H7 0.65466 0.44394 90.0000 0.11625 0.19322 0.32532 0.38270 0.29145 0.11457 0.14217 97.1230 90.0000 49 ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM END C8 H9 H10 C11 H12 N13 O14 O15 C16 H17 H18 H19 H20 H21 H22 0.44209 0.77609 0.68963 0.42298 0.62704 0.52773 0.53422 0.51854 0.33893 0.27625 0.25917 0.37988 0.47503 0.45097 0.34828 0.46429 0.26387 0.42507 0.27575 0.13950 0.06988 0.20990 -0.09416 0.36655 0.27665 0.45082 0.49805 0.57895 0.36380 0.18599 TITL ERK IV/2 CELL 10.0650 8.0210 10.1460 SPACEGROUP P21/a ATOM C1 0.12750 -0.11587 ATOM C2 0.24488 -0.05982 ATOM C3 0.35856 0.01996 ATOM C4 0.28603 0.16000 ATOM C5 0.16617 0.08698 ATOM H6 0.01845 -0.08002 ATOM H7 0.28656 -0.16962 ATOM C8 0.20120 0.07398 ATOM H9 0.40259 -0.07357 ATOM H10 0.44324 0.06881 ATOM C11 0.24207 0.30166 ATOM H12 0.35786 0.20886 ATOM N13 0.09425 -0.04042 ATOM O14 0.05061 -0.23442 ATOM O15 0.12273 0.13772 ATOM C16 0.14699 0.23769 ATOM H17 0.04414 0.21523 ATOM H18 0.13680 0.33449 ATOM H19 0.12247 0.02252 ATOM H20 0.28965 0.10456 ATOM H21 0.33401 0.35706 ATOM H22 0.19003 0.40118 END TITL ERK IV/3 CELL 12.0309 11.5265 SPACEGROUP Pbca ATOM C1 0.12619 ATOM C2 0.19958 ATOM C3 0.16391 ATOM C4 0.16948 ATOM C5 0.10038 ATOM H6 0.03832 ATOM H7 0.18859 ATOM C8 0.32527 ATOM H9 0.07905 ATOM H10 0.21801 ATOM C11 0.29389 ATOM H12 0.13482 ATOM N13 0.08363 ATOM O14 0.09765 ATOM O15 0.05387 ATOM C16 0.35048 ATOM H17 0.32169 ATOM H18 0.44016 ATOM H19 0.35285 ATOM H20 0.37437 ATOM H21 0.34009 ATOM H22 0.30010 END 11.7185 0.47362 0.38396 0.26129 0.26694 0.36619 0.52112 0.38894 0.40145 0.24095 0.19328 0.28057 0.18729 0.46112 0.56494 0.36891 0.38892 0.46668 0.38344 0.48676 0.33684 0.20325 0.28665 TITL Hofmann IV 1 SPACEGROUP P-1 CELL 6.946 6.801 8.124 ATOM C1 -0.49306 -0.19726 ATOM C2 -0.36358 -0.38129 ATOM C3 -0.27807 -0.34967 0.21622 0.31387 0.38737 0.41162 0.47024 0.16747 -0.00128 0.32313 0.29558 0.23424 0.32916 0.12541 0.26538 0.48805 0.44631 90.0000 104.7850 90.0000 0.25252 0.19763 0.31519 0.37817 0.41988 0.38755 0.15892 0.08220 0.39230 0.27734 0.26971 0.46901 0.35596 0.20522 0.51691 0.13286 0.14609 0.05543 -0.00273 0.04250 0.24913 0.31051 90.0000 90.0000 90.0000 0.23764 0.29109 0.24722 0.11396 0.07294 0.10321 0.38335 0.26110 0.27482 0.28123 0.07738 0.07836 0.13411 0.28588 -0.02167 0.13126 0.08683 0.11792 0.29028 0.30734 0.10315 -0.01545 87.407 0.25086 0.19983 0.02901 89.492 85.143 50 ATOM N4 -0.10370 -0.27364 0.00807 ATOM C5 0.00091 -0.22250 0.13829 ATOM C6 -0.07298 -0.24898 0.31370 ATOM C7 -0.19383 -0.06107 0.36810 ATOM C8 -0.19979 -0.42389 0.32595 ATOM O9 -0.36602 -0.39274 -0.09105 ATOM O10 0.15535 -0.15456 0.11326 ATOM H11 -0.56332 -0.22988 0.37138 ATOM H12 -0.61008 -0.16239 0.15868 ATOM H13 -0.45132 -0.51061 0.19760 ATOM H14 -0.04946 -0.25316 -0.11067 ATOM H15 0.05410 -0.28049 0.39604 ATOM H16 -0.23479 -0.08034 0.50009 ATOM H17 -0.10481 0.06760 0.35670 ATOM H18 -0.25903 -0.44351 0.45287 ATOM H19 -0.11195 -0.56316 0.29735 ATOM C20 -0.37834 -0.01477 0.26497 ATOM H21 -0.33924 0.04202 0.13973 ATOM H22 -0.47155 0.10437 0.32258 ENERGY -74.48 COMMENT d=1.332g/cc. Lowest energy structure. TITL Hofmann IV 2 SPACEGROUP P-1 CELL 6.819 5.937 10.416 ATOM C1 -0.19653 -0.23802 ATOM C2 -0.02889 -0.18945 ATOM C3 -0.00595 -0.29785 ATOM N4 -0.13590 -0.15505 ATOM C5 -0.29143 0.08935 ATOM C6 -0.32612 0.21392 ATOM C7 -0.50253 0.17730 ATOM C8 -0.10763 0.09775 ATOM O9 0.13022 -0.51506 ATOM O10 -0.40388 0.20870 ATOM H11 -0.19858 -0.17145 ATOM H12 -0.14377 -0.44518 ATOM H13 0.13618 -0.28232 ATOM H14 -0.11655 -0.23529 ATOM H15 -0.38098 0.41966 ATOM H16 -0.53457 0.28455 ATOM H17 -0.66053 0.25620 ATOM H18 -0.13019 0.18253 ATOM H19 0.01783 0.13629 ATOM C20 -0.43172 -0.10316 ATOM H21 -0.44084 -0.20180 ATOM H22 -0.54925 -0.11599 ENERGY -71.19 COMMENT d=1.358g/cc. TITL Hofmann IV 3 SPACEGROUP P-1 CELL 6.892 6.423 10.368 ATOM C1 -0.45097 0.40178 ATOM C2 -0.23977 0.27744 ATOM C3 -0.27153 0.13815 ATOM N4 -0.21949 -0.09899 ATOM C5 -0.13770 -0.22093 ATOM C6 -0.10023 -0.09656 ATOM C7 -0.30726 0.01669 ATOM C8 -0.04662 0.10387 ATOM O9 -0.34429 0.23908 ATOM O10 -0.09456 -0.43210 ATOM H11 -0.42736 0.51480 ATOM H12 -0.59321 0.52442 ATOM H13 -0.20035 0.41646 ATOM H14 -0.24394 -0.18901 ATOM H15 0.04248 -0.23394 ATOM H16 -0.26959 0.09199 ATOM H17 -0.35053 -0.12585 ATOM H18 -0.35053 -0.12585 ATOM H19 0.11015 0.02386 ATOM C20 -0.50858 0.21851 ATOM H21 -0.57398 0.13762 ATOM H22 -0.64228 0.31435 ENERGY -70.11 COMMENT d=1.296g/cc. 90.463 92.421 0.37529 0.29936 0.16515 0.06426 0.07904 0.20969 0.28296 0.29035 0.14711 -0.01381 0.47554 0.38030 0.35010 -0.02641 0.19436 0.37416 0.22441 0.38771 0.24310 0.31389 0.22439 0.38061 62.810 77.203 82.764 -0.28905 -0.20578 -0.07321 -0.05840 -0.16104 -0.29727 -0.38323 -0.28345 0.02128 -0.14302 -0.38138 -0.23278 -0.18639 0.03365 -0.34581 -0.48479 -0.39185 -0.39185 -0.22894 -0.32556 -0.23635 -0.39917 61.310 51 TITL Leusen IV 1 SPACEGROUP P21/a (P 1 21/a 1) CELL 9.958 7.596 10.474 90.000 105.163 90.000 ATOM C1 0.74440 0.06093 0.68707 ATOM C2 0.69721 -0.08075 0.57623 ATOM C3 0.63841 -0.25061 0.62359 ATOM C4 0.73156 -0.32077 0.75634 ATOM C5 0.77825 -0.17512 0.86393 ATOM C6 0.85698 -0.02912 0.80392 ATOM C7 0.62214 0.13395 0.74094 ATOM N8 0.58827 0.05018 0.84073 ATOM C9 0.65375 -0.08898 0.90777 ATOM O10 0.61649 -0.14602 1.00273 ATOM O11 0.55819 0.26653 0.69341 ATOM H12 0.79216 0.17326 0.64827 ATOM H13 0.61979 -0.02488 0.49017 ATOM H14 0.78782 -0.11537 0.53823 ATOM H15 0.53229 -0.22427 0.63354 ATOM H16 0.62396 -0.35389 0.54676 ATOM H17 0.67832 -0.42942 0.79370 ATOM H18 0.82551 -0.38208 0.73773 ATOM H19 0.85111 -0.23169 0.95209 ATOM H20 0.94214 -0.08655 0.76788 ATOM H21 0.90568 0.06875 0.88013 ATOM H22 0.50935 0.10338 0.87419 ENERGY -19.65 kcal/mol asymmetric unit DENSITY 1.331 g/(cm^3) COMMENT Lowest energy structure according to CVFF950 force field. COMMENT 0 dimensional dimer hydrogen bonding motif. COMMENT Sampling difficult in this space group and small energy gap, COMMENT indicating that this polymorph would be difficult to crystallize. TITL Leusen IV 2 SPACEGROUP P212121 CELL 11.538 5.955 11.346 90.000 90.000 90.000 ATOM C1 0.25358 0.39036 0.61940 ATOM C2 0.13573 0.30127 0.66774 ATOM C3 0.10786 0.05601 0.63244 ATOM C4 0.13525 0.00065 0.50230 ATOM C5 0.25333 0.09475 0.45823 ATOM C6 0.25207 0.35667 0.48079 ATOM C7 0.36133 0.26556 0.67366 ATOM N8 0.40089 0.07912 0.62150 ATOM C9 0.36122 -0.01237 0.52162 ATOM O10 0.41005 -0.17725 0.48036 ATOM O11 0.40994 0.33771 0.76212 ATOM H12 0.26175 0.57110 0.64014 ATOM H13 0.13313 0.31666 0.76486 ATOM H14 0.06586 0.41297 0.63529 ATOM H15 0.15679 -0.06115 0.68922 ATOM H16 0.01571 0.01940 0.65073 ATOM H17 0.13088 -0.18319 0.48896 ATOM H18 0.06571 0.06839 0.44538 ATOM H19 0.26089 0.06124 0.36295 ATOM H20 0.17495 0.43632 0.44070 ATOM H21 0.32876 0.43641 0.43999 ATOM H22 0.47125 0.00241 0.65933 ENERGY -19.60 kcal/mol asymmetric unit DENSITY 1.305 g/(cm^3) COMMENT Second lowest energy structure according to CVFF950 force field. COMMENT 1 dimensional spiral hydrogen bonding motif. COMMENT Good sampling in this space group, but hampered by small energy gap. COMMENT This polymorph might be easier to crystallize than the other two. TITL Leusen IV 3 SPACEGROUP P21/a (P 1 21/a 1) CELL 8.024 10.509 9.182 90.000 83.015 90.000 ATOM C1 0.16420 0.44371 0.80552 ATOM C2 0.11871 0.47805 0.65000 ATOM C3 0.25731 0.55442 0.55565 ATOM C4 0.33032 0.66484 0.63976 ATOM C5 0.36700 0.62927 0.79784 ATOM C6 0.20000 0.57342 0.88293 ATOM C7 0.32093 0.35331 0.80167 ATOM N8 0.47455 0.40424 0.79868 ATOM C9 0.51162 0.52859 0.80013 52 ATOM O10 0.65745 0.56220 0.80346 ATOM O11 0.30281 0.23742 0.79994 ATOM H12 0.05616 0.39564 0.86838 ATOM H13 0.08904 0.39093 0.59053 ATOM H14 0.00053 0.53388 0.66350 ATOM H15 0.35896 0.48809 0.51394 ATOM H16 0.20879 0.59182 0.45628 ATOM H17 0.44484 0.70260 0.57465 ATOM H18 0.24015 0.74500 0.64800 ATOM H19 0.40225 0.71602 0.85458 ATOM H20 0.09447 0.64057 0.88145 ATOM H21 0.21493 0.55735 0.99962 ATOM H22 0.57420 0.34332 0.79798 ENERGY -19.54 kcal/mol asymmetric unit DENSITY 1.324 g/(cm^3) COMMENT Third lowest energy structure according to CVFF950 force field. COMMENT 1 dimensional zig-zag hydrogen bonding motif. COMMENT Sampling difficult in this space group and small energy gap, COMMENT indicating that this polymorph would be difficult to crystallize. TITL LOMMERSE IV-1 SPACEGROUP P212121 CELL 8.091 9.500 9.998 90.000 90.000 ATOM C1 0.38543 0.34916 0.26124 ATOM C2 0.27432 0.46093 0.19622 ATOM C3 0.17848 0.40286 0.07568 ATOM C4 0.09190 0.26147 0.10664 ATOM C5 0.21793 0.15348 0.15708 ATOM C6 0.29333 0.20920 0.28725 ATOM C7 0.15898 0.22993 0.38996 ATOM C8 -0.04148 0.28195 0.21022 ATOM N1 0.00368 0.26284 0.34211 ATOM O1 0.18258 0.22063 0.50996 ATOM O2 -0.18271 0.31542 0.18244 ATOM H1 0.43643 0.38843 0.35395 ATOM H2 0.48872 0.32604 0.19579 ATOM H3 0.34903 0.54938 0.16477 ATOM H4 0.18847 0.50207 0.26967 ATOM H5 0.08823 0.47879 0.04174 ATOM H6 0.26287 0.38465 -0.00672 ATOM H7 0.03036 0.22467 0.01763 ATOM H8 0.15955 0.05239 0.17330 ATOM H9 0.31369 0.13807 0.08312 ATOM H10 0.37853 0.13432 0.32981 ATOM H11 -0.08470 0.27617 0.41014 COMM Ranked[43] [010214206237] P212121 -42.369 COMM Chain structure, to be expected COMM Bad H..H contact (2.2 A). END 90.000 0.000 TITL LOMMERSE IV-2 SPACEGROUP Pbca CELL 11.579 11.785 11.145 90.000 90.000 90.000 ATOM C1 0.43728 0.30935 0.29629 ATOM C2 0.38080 0.35706 0.41030 ATOM C3 0.25044 0.33348 0.41482 ATOM C4 0.22090 0.20824 0.38717 ATOM C5 0.27108 0.17373 0.26535 ATOM C6 0.40275 0.18475 0.27181 ATOM C7 0.44903 0.10819 0.36901 ATOM C8 0.26806 0.13157 0.48382 ATOM N1 0.37712 0.08761 0.46536 ATOM O1 0.54520 0.06637 0.36617 ATOM O2 0.21542 0.10896 0.57539 ATOM H1 0.53023 0.31596 0.30213 ATOM H2 0.41052 0.35899 0.21928 ATOM H3 0.39564 0.44758 0.41494 ATOM H4 0.42220 0.32127 0.48887 ATOM H5 0.21587 0.35656 0.50155 ATOM H6 0.20662 0.38532 0.34863 ATOM H7 0.12842 0.19775 0.38889 ATOM H8 0.24640 0.08772 0.24293 ATOM H9 0.23739 0.22822 0.19562 ATOM H10 0.44275 0.15716 0.18948 ATOM H11 0.40785 0.03689 0.52919 COMM Ranked[19] [010227045947] Pbca -44.949 0.000 53 COMM Dimer, which is not to be expected COMM Nice layered structure END TITL LOMMERSE IV-3 SPACEGROUP P21/c CELL 6.567 10.529 12.407 90.000 77.425 90.000 ATOM C1 -0.00189 0.25958 0.28686 ATOM C2 0.06064 0.37850 0.34361 ATOM C3 0.29832 0.39256 0.32627 ATOM C4 0.41152 0.37636 0.20404 ATOM C5 0.35474 0.24836 0.15978 ATOM C6 0.11932 0.24693 0.16568 ATOM C7 0.06268 0.35373 0.09666 ATOM C8 0.35347 0.48253 0.13483 ATOM N1 0.18607 0.46106 0.08654 ATOM O1 -0.08512 0.34923 0.05208 ATOM O2 0.44477 0.58395 0.12165 ATOM H1 -0.16769 0.26003 0.28998 ATOM H2 0.03086 0.17542 0.33046 ATOM H3 -0.00798 0.37440 0.43110 ATOM H4 -0.00425 0.46225 0.31295 ATOM H5 0.33742 0.48376 0.35630 ATOM H6 0.35849 0.32055 0.37347 ATOM H7 0.57740 0.38420 0.19768 ATOM H8 0.44056 0.23386 0.07576 ATOM H9 0.39644 0.17182 0.20889 ATOM H10 0.07233 0.16048 0.13138 ATOM H11 0.14848 0.53121 0.04077 COMM Ranked[3] [010129113879] P21/c -48.252 0.000 COMM Dimer, which is not to be expected END TITL Mooy-IV-1 SPACEGROUP P21/c CELL 10.247 7.706 9.962 90.000 76.334 90.000 ATOM C1 0.36742 0.74740 0.63996 ATOM C2 0.23423 0.81851 0.73157 ATOM C3 0.12706 0.67423 0.77710 ATOM C4 0.18530 0.52952 0.85276 ATOM C5 0.30415 0.44541 0.74817 ATOM C6 0.41718 0.58248 0.70221 ATOM C7 0.08541 0.59574 0.65822 ATOM N8 0.15148 0.45751 0.59104 ATOM C9 0.25509 0.37951 0.62948 ATOM O10 -0.01223 0.65525 0.61784 ATOM O11 0.30933 0.25186 0.56087 ATOM H12 0.35254 0.71599 0.53773 ATOM H13 0.44408 0.84802 0.62649 ATOM H14 0.25528 0.87819 0.82359 ATOM H15 0.19464 0.91970 0.67564 ATOM H16 0.03931 0.72846 0.84801 ATOM H17 0.22002 0.58335 0.93915 ATOM H18 0.10837 0.43321 0.89424 ATOM H19 0.34166 0.33692 0.79817 ATOM H20 0.45531 0.61980 0.79161 ATOM H21 0.50029 0.52524 0.62611 ATOM H22 0.12188 0.41111 0.51230 ENERGY -9.57 kcal/mol COMMENT Density 1.331 g/cc COMMENT Lowest-energy structure in Dreiding+Multipole force field COMMENT Good confidence in the energy function used COMMENT Confidence (1-3) : 2 TITL Mooy-IV-2 SPACEGROUP P21/c CELL 9.229 10.406 ATOM C1 -0.06033 ATOM C2 -0.15164 ATOM C3 -0.30683 ATOM C4 -0.38478 ATOM C5 -0.30326 ATOM C6 -0.14458 ATOM C7 -0.30257 ATOM N8 -0.30331 ATOM C9 -0.30630 ATOM O10 -0.29571 7.963 90.000 83.870 90.000 0.45132 0.73833 0.52637 0.88062 0.55827 0.83536 0.43183 0.79787 0.37229 0.63719 0.33759 0.66868 0.64324 0.68588 0.59394 0.52859 0.46613 0.49822 0.76249 0.70317 54 ATOM O11 -0.31031 0.42869 0.34956 ATOM H12 -0.02776 0.51826 0.63600 ATOM H13 0.03870 0.41488 0.78484 ATOM H14 -0.16135 0.46885 0.99589 ATOM H15 -0.09520 0.61537 0.90567 ATOM H16 -0.36787 0.60560 0.94238 ATOM H17 -0.38339 0.36547 0.90350 ATOM H18 -0.49846 0.45043 0.77956 ATOM H19 -0.36027 0.28524 0.60621 ATOM H20 -0.14837 0.25896 0.75924 ATOM H21 -0.08487 0.30348 0.55143 ATOM H22 -0.30201 0.65224 0.43261 ENERGY -9.53 kcal/mol COMMENT Density 1.338 g/cc COMMENT 2nd lowest-energy structure in Dreiding+Multipole force field TITL Mooy-IV-3 SPACEGROUP Pbca CELL 11.974 11.366 11.560 90.000 90.000 90.000 ATOM C1 0.84875 0.39797 0.87335 ATOM C2 0.79364 0.28751 0.92742 ATOM C3 0.67013 0.27152 0.88951 ATOM C4 0.66220 0.26870 0.75612 ATOM C5 0.70110 0.38962 0.71006 ATOM C6 0.82585 0.40861 0.74165 ATOM C7 0.59992 0.36913 0.93223 ATOM N8 0.58384 0.46662 0.86736 ATOM C9 0.62858 0.48125 0.76100 ATOM O10 0.55379 0.36239 1.02902 ATOM O11 0.60570 0.57318 0.70633 ATOM H12 0.81648 0.47618 0.91690 ATOM H13 0.93857 0.39464 0.88858 ATOM H14 0.84087 0.20994 0.90142 ATOM H15 0.79848 0.29445 1.02141 ATOM H16 0.63767 0.18883 0.92351 ATOM H17 0.71554 0.19939 0.72166 ATOM H18 0.57648 0.25017 0.72891 ATOM H19 0.69184 0.39133 0.61630 ATOM H20 0.87551 0.34260 0.69630 ATOM H21 0.85277 0.49512 0.71177 ATOM H22 0.53681 0.52887 0.89815 ENERGY -9.34 kcal/mol COMMENT Density 1.294 g/cc COMMENT 3rd lowest-energy structure in Dreiding+Multipole force field TITL Motherwell IV 1 SPACEGROUP P212121 CELL 8.037 6.527 14.097 90.000 90.000 90.000 ATOM O1 0.65252 0.11763 0.14765 ATOM O2 0.28386 -0.25834 -0.02090 ATOM N1 0.46766 -0.06525 0.06169 ATOM C1 0.17136 0.04357 0.05242 ATOM C2 0.24621 0.25529 0.06767 ATOM C3 0.37288 0.25083 0.14733 ATOM C4 0.28552 0.18579 0.24014 ATOM C5 0.18776 -0.01524 0.23581 ATOM C6 0.08341 -0.02731 0.14422 ATOM C11 0.51037 0.10050 0.12146 ATOM C12 0.30836 -0.10616 0.02758 ATOM H1N1 0.55976 -0.16150 0.04220 ATOM H1C1 0.08181 0.04978 -0.00492 ATOM H1C2 0.14795 0.36196 0.08566 ATOM H2C2 0.30667 0.30468 0.00293 ATOM H1C3 0.42713 0.40107 0.15761 ATOM H1C4 0.19972 0.30644 0.25985 ATOM H2C4 0.37990 0.17012 0.29449 ATOM H1C5 0.10556 -0.02413 0.29654 ATOM H2C5 0.27417 -0.14250 0.23745 ATOM H1C6 -0.02593 0.06736 0.15395 ATOM H2C6 0.04587 -0.18526 0.13449 ENERGY -47.2 Kcal/mole COMMENT Lowest energy globally. Low volume. Good scoring functions. COMMENT Found several times in P212121 runs. COMMENT Good planar H-bonding motif, via screw axis. COMMENT ID=182359 55 TITL Motherwell IV 2 SPACEGROUP P21 CELL 6.288 7.926 7.668 90.000 100.706 90.000 ATOM O1 0.17961 0.38245 0.27341 ATOM O2 0.48884 -0.00356 -0.03512 ATOM N1 0.32812 0.18872 0.11623 ATOM C1 0.21942 -0.11302 0.11927 ATOM C2 0.00755 -0.03743 0.15159 ATOM C3 0.05003 0.09823 0.29316 ATOM C4 0.16747 0.01882 0.46876 ATOM C5 0.37462 -0.07904 0.45848 ATOM C6 0.34234 -0.19307 0.29280 ATOM C11 0.18750 0.23621 0.23168 ATOM C12 0.35682 0.02456 0.05976 ATOM H1N1 0.41450 0.28092 0.07118 ATOM H1C1 0.18571 -0.20904 0.01739 ATOM H1C2 -0.09017 -0.13609 0.19458 ATOM H2C2 -0.07849 0.01744 0.02929 ATOM H1C3 -0.10063 0.15296 0.31503 ATOM H1C4 0.05592 -0.06716 0.51479 ATOM H2C4 0.20922 0.11953 0.56445 ATOM H1C5 0.41753 -0.15661 0.57603 ATOM H2C5 0.50402 0.00958 0.45201 ATOM H1C6 0.25299 -0.30362 0.32050 ATOM H2C6 0.50077 -0.23078 0.27075 ENERGY -46.5 kcal/mole COMMENT Good energy, volume, scoring functions COMMENT Good planar screw axis chain motif for H-bonds. COMMENT ID=155622 TITL Motherwell IV 3 SPACEGROUP Pbca CELL 11.748 11.638 11.152 90.000 90.000 90.000 ATOM O1 0.07154 0.13135 -0.04701 ATOM O2 0.11985 -0.07831 0.29055 ATOM N1 0.09415 0.02921 0.12352 ATOM C1 0.21676 0.10342 0.28819 ATOM C2 0.18184 0.21936 0.23674 ATOM C3 0.19265 0.21930 0.10128 ATOM C4 0.31814 0.19744 0.06689 ATOM C5 0.37251 0.08978 0.12104 ATOM C6 0.34201 0.07824 0.25494 ATOM C11 0.11583 0.12595 0.05037 ATOM C12 0.14102 0.01055 0.23664 ATOM H1N1 0.04053 -0.03108 0.09131 ATOM H1C1 0.20803 0.10506 0.38485 ATOM H1C2 0.23636 0.28559 0.27355 ATOM H2C2 0.09428 0.23687 0.26099 ATOM H1C3 0.16688 0.30146 0.06464 ATOM H1C4 0.36747 0.27104 0.09573 ATOM H2C4 0.32262 0.18997 -0.02980 ATOM H1C5 0.46412 0.09546 0.11190 ATOM H2C5 0.34189 0.01479 0.07343 ATOM H1C6 0.39524 0.13742 0.30466 ATOM H2C6 0.36099 -0.00898 0.28226 ENERGY -46.5 kcal/mole COMMENT Lowest energy in Pbca. Witnin top 5 globally. Low volume. COMMENT Good score functions. COMMENT Dimer H-bond motif. Chosen as best energy structure showing dimer. COMMENT ID=182944 TITL Price IV 1 SPACEGROUP P21/c CELL 11.1287 6.1423 ATOM N1 0.610273 ATOM C1 0.669765 ATOM C2 0.912024 ATOM C3 0.959058 ATOM C4 0.764790 ATOM C5 0.805521 ATOM C6 0.615253 ATOM C7 0.737611 ATOM C8 0.544742 ATOM O1 0.789897 ATOM O2 0.440218 ATOM H1 0.565995 ATOM H2 1.020473 15.5307 90.0000 0.728550 1.037122 0.669736 0.889316 0.691417 1.006572 0.812755 0.876145 0.679699 0.891209 0.535018 0.637625 0.601298 134.3100 0.577910 0.730627 0.861676 0.845492 0.850658 0.730180 0.735228 0.621167 0.626276 0.573392 0.582669 0.506187 0.949365 90.0000 56 ATOM H3 0.879930 0.554230 0.794691 ATOM H4 0.804785 0.783416 0.927393 ATOM H5 1.012489 0.995004 0.921882 ATOM H6 0.723500 0.531551 0.852184 ATOM H7 1.054411 0.868635 0.843411 ATOM H8 0.514204 0.824964 0.731853 ATOM H9 0.845298 1.162224 0.723067 ATOM H10 0.719156 1.132935 0.808953 ATOM H11 0.562747 1.126040 0.650567 ENERGY -138.96 kJ/mol COMMENT Global minimum found in search. COMMENT High confidence in the dimer structure, as found in all low energy COMMENT structures. Fairly low confidence in packing of dimers because COMMENT there are 13 other local minima found within 5 kJ/mol. However, COMMENT several of these higher energy structures have similar packing COMMENT to the global minimum. TITL Price IV 2 SPACEGROUP P21/c CELL 6.1439 7.0935 18.1478 90.0000 87.3960 90.0000 ATOM N1 0.776880 0.047310 0.954100 ATOM C1 0.520430 0.332670 0.906140 ATOM C2 0.887840 0.245440 0.799360 ATOM C3 0.655180 0.178920 0.787530 ATOM C4 0.890910 0.416760 0.850500 ATOM C5 0.523850 0.150930 0.860980 ATOM C6 0.754730 0.383870 0.922670 ATOM C7 0.623080 -0.007830 0.903970 ATOM C8 0.857100 0.228280 0.966490 ATOM O1 0.579100 -0.174750 0.895760 ATOM O2 1.003380 0.253340 1.009110 ATOM H1 0.847130 -0.058350 0.982230 ATOM H2 0.968840 0.280260 0.746330 ATOM H3 0.981890 0.130690 0.822460 ATOM H4 0.822380 0.538710 0.822840 ATOM H5 0.570350 0.284420 0.755500 ATOM H6 1.057630 0.452750 0.863420 ATOM H7 0.656120 0.047620 0.756150 ATOM H8 0.761120 0.509930 0.956950 ATOM H9 0.359390 0.104590 0.849620 ATOM H10 0.446930 0.446240 0.875070 ATOM H11 0.421930 0.314780 0.957310 ENERGY 138.22 kJ/mol COMMENT Second lowest energy structure. Relative E = +0.74 kJ/mol COMMENT A similar motif to structure 1, but a distinct packing with COMMENT no low energy transformation to the global minimum. TITL Price IV 3 SPACEGROUP Pbca CELL 11.5256 11.8586 11.4818 90.0000 90.0000 90.0000 ATOM N1 0.051909 0.956228 0.128658 ATOM C1 0.123920 0.770529 0.249488 ATOM C2 0.319030 0.886996 0.130335 ATOM C3 0.297382 0.899298 0.261154 ATOM C4 0.265368 0.778526 0.082397 ATOM C5 0.168342 0.884589 0.292265 ATOM C6 0.136968 0.766308 0.117179 ATOM C7 0.098521 0.979319 0.238406 ATOM C8 0.066708 0.859417 0.060940 ATOM O1 0.084093 1.071599 0.284104 ATOM O2 0.026456 0.854236 -0.037659 ATOM H1 0.006699 1.019887 0.090938 ATOM H2 0.412180 0.887536 0.113123 ATOM H3 0.283270 0.959796 0.084325 ATOM H4 0.312129 0.705627 0.117107 ATOM H5 0.346362 0.834748 0.308233 ATOM H6 0.272877 0.775535 -0.012312 ATOM H7 0.327443 0.981258 0.292182 ATOM H8 0.102957 0.687668 0.081561 ATOM H9 0.157533 0.893490 0.386215 ATOM H10 0.174001 0.702530 0.289438 ATOM H11 0.033290 0.758510 0.274509 ENERGY 136.827 kJ/mol COMMENT Fifth lowest energy structure, but #3 and #4 are very similar COMMENT to the global minimum in structure, so not included. This crystal COMMENT also has much greater attachment energies for it's dominant faces, COMMENT so may be favoured by growth rate. 57 TITL Scheraga IV 1 SPACEGROUP P21/c CELL 10.112 7.918 9.697 90.00 77.04 90.00 ATOM C1 -.26798 .13153 .37728 ATOM C2 -.31338 .06158 .24975 ATOM O3 -.32669 .24085 .45096 ATOM C4 -.19075 -.00433 .14067 ATOM C5 -.41828 -.08080 .29533 ATOM H6 -.36155 .16587 .20793 ATOM C7 -.12382 -.14408 .21012 ATOM H8 -.22293 -.05365 .04904 ATOM H9 -.11924 .09702 .10339 ATOM C10 -.07778 -.07418 .33729 ATOM C11 -.22349 -.29209 .25491 ATOM H12 -.03296 -.19097 .13913 ATOM N13 -.15279 .05920 .40641 ATOM O14 .01599 -.12927 .37874 ATOM H15 -.12352 .10411 .49124 ATOM H16 -.45614 -.11634 .20297 ATOM C17 -.35748 -.23617 .35270 ATOM H18 -.50410 -.03311 .37357 ATOM H19 -.17552 -.38942 .30545 ATOM H20 -.24375 -.34697 .15898 ATOM H21 -.42975 -.33952 .36620 ATOM H22 -.34129 -.20906 .45752 ENERGY 28.09 kcal/mol COMMENT Lowest energy structure. COMMENT The packing seems reasonable. COMMENT Confidence level (1-10): 8, by energy TITL Scheraga IV 2 SPACEGROUP Pbca CELL 12.0030 11.1960 11.3790 90.0000 90.0000 ATOM C1 .40998 .37197 .07671 ATOM C2 .34037 .27061 .12609 ATOM O3 .45048 .37051 -.01896 ATOM C4 .34998 .26807 .26013 ATOM C5 .21746 .28491 .08891 ATOM H6 .37356 .18985 .08720 ATOM C7 .30764 .38750 .30782 ATOM H8 .30068 .19525 .29558 ATOM H9 .43566 .25268 .28690 ATOM C10 .37748 .48892 .25897 ATOM C11 .18387 .40523 .27551 ATOM H12 .31663 .39245 .40237 ATOM N13 .42371 .46996 .14925 ATOM O14 .39219 .58098 .30934 ATOM H15 .46870 .53729 .11635 ATOM H16 .17323 .20533 .11755 ATOM C17 .16268 .39595 .14284 ATOM H18 .21176 .28773 -.00616 ATOM H19 .15516 .49071 .30856 ATOM H20 .13648 .33664 .32105 ATOM H21 .07364 .39374 .12640 ATOM H22 .19346 .47571 .09919 ENERGY 27.69 kcal/mol COMMENT Relative E=+0.40 kcal/mol. COMMENT Confidence level (1-10): 5, by energy TITL Scheraga IV 3 SPACEGROUP P-1 CELL 9.9760 7.1730 ATOM C1 .47380 ATOM C2 .39428 ATOM O3 .58277 ATOM C4 .30477 ATOM C5 .30349 ATOM H6 .47179 ATOM C7 .20373 ATOM H8 .24833 ATOM H9 .36862 ATOM C10 .28306 ATOM C11 .10779 ATOM H12 .14119 ATOM N13 .41161 ATOM O14 .23947 5.7070 -.09028 -.27405 -.09527 -.23411 -.33671 -.38924 -.06250 -.36571 -.19852 .12166 -.11902 -.02262 .08923 .28635 109.9000 104.1200 -.15681 -.20719 -.21024 -.01152 -.48098 -.19035 -.03721 -.04644 .18103 .01426 -.30644 .10412 -.04562 .09841 90.0000 83.9200 58 ATOM H15 .46333 .21052 -.01457 ATOM H16 .25832 -.47758 -.51504 ATOM C17 .18802 -.18373 -.52008 ATOM H18 .36780 -.36281 -.61783 ATOM H19 .03777 .00447 -.32338 ATOM H20 .04475 -.24009 -.32493 ATOM H21 .11724 -.24546 -.70321 ATOM H22 .23166 -.05495 -.53036 ENERGY 27.33 kcal/mol COMMENT Releative E=+0.76 kcal/mol COMMENT Confidence level (1-10): 4, by energy. TITL Dunitz/Schweizer IV 1 SPACEGROUP P21/c CELL 8.43380 6.54250 15.77380 90.00000 88.44550 90.00000 ATOM H1 0.0987 -0.1865 -0.1698 ATOM C2 0.1549 -0.0443 -0.1526 ATOM C3 0.3336 0.1346 -0.0548 ATOM C4 0.3348 0.2406 -0.2111 ATOM C5 0.4309 0.2251 -0.1302 ATOM C6 0.2473 0.0411 -0.2306 ATOM C7 0.2665 -0.0740 -0.0786 ATOM C8 0.2000 0.2783 -0.0288 ATOM H9 0.2501 0.3652 -0.2050 ATOM H10 0.5327 0.1259 -0.1416 ATOM H11 0.3324 -0.0748 -0.2510 ATOM H12 0.3620 -0.1773 -0.0970 ATOM C13 0.0209 0.0992 -0.1267 ATOM H14 0.4087 0.1238 -0.0004 ATOM H15 0.4133 0.2801 -0.2644 ATOM H16 0.4767 0.3738 -0.1130 ATOM H17 0.1670 0.0637 -0.2823 ATOM H18 0.2037 -0.1429 -0.0248 ATOM O19 -0.1073 0.0935 -0.1565 ATOM N20 0.0558 0.2432 -0.0658 ATOM O21 0.2151 0.4165 0.0198 ATOM H22 -0.0318 0.3394 -0.0495 ENERGY -111.1 kcal/mol COMMENT lowest energy structure found in P21/c with UNI FF + ES charges TITL Dunitz Schweizer IV 2 SPACEGROUP P21/c CELL 6.19860 15.10100 10.35160 90.00000 116.91800 ATOM H1 -0.4232 -0.0907 0.1754 ATOM C2 -0.2400 -0.1027 0.1923 ATOM C3 0.1250 -0.1976 0.3039 ATOM C4 0.0142 -0.1263 0.0574 ATOM C5 0.1368 -0.2048 0.1585 ATOM C6 -0.2383 -0.1072 0.0438 ATOM C7 -0.1376 -0.1882 0.2772 ATOM C8 0.2724 -0.1191 0.3902 ATOM H9 0.1270 -0.0679 0.0966 ATOM H10 0.0470 -0.2661 0.1068 ATOM H11 -0.3622 -0.1595 -0.0183 ATOM H12 -0.2432 -0.2445 0.2159 ATOM C13 -0.0932 -0.0239 0.2783 ATOM H14 0.2098 -0.2554 0.3689 ATOM H15 0.0004 -0.1399 -0.0490 ATOM H16 0.3238 -0.2104 0.1787 ATOM H17 -0.3086 -0.0459 -0.0148 ATOM H18 -0.1484 -0.1871 0.3791 ATOM O19 -0.1742 0.0489 0.2676 ATOM N20 0.1472 -0.0406 0.3714 ATOM O21 0.4841 -0.1224 0.4690 ATOM H22 0.2448 0.0115 0.4268 ENERGY -106.0 kcal/mol COMMENT another dimeric structure in P21/c TITL Dunitz/Schweizer IV 3 SPACEGROUP C2/c CELL 11.29500 12.27080 12.96470 90.00000 ATOM H1 -0.1967 -0.1979 -0.2873 ATOM C2 -0.2185 -0.1346 -0.2296 ATOM C3 -0.2137 0.0625 -0.1881 ATOM C4 -0.3928 -0.0517 -0.1064 ATOM C5 -0.3481 0.0615 -0.1444 ATOM C6 -0.3532 -0.1410 -0.1871 81.74900 90.00000 90.00000 59 ATOM C7 -0.1871 -0.0216 -0.2755 ATOM C8 -0.1395 0.0384 -0.1021 ATOM H9 -0.3603 -0.0707 -0.0336 ATOM H10 -0.3967 0.0885 -0.2063 ATOM H11 -0.4020 -0.1324 -0.2529 ATOM H12 -0.2397 -0.0041 -0.3372 ATOM C13 -0.1442 -0.1590 -0.1438 ATOM H14 -0.1884 0.1436 -0.2153 ATOM H15 -0.4896 -0.0511 -0.0889 ATOM H16 -0.3660 0.1206 -0.0817 ATOM H17 -0.3742 -0.2208 -0.1536 ATOM H18 -0.0935 -0.0180 -0.3099 ATOM O19 -0.1170 -0.2488 -0.1209 ATOM N20 -0.1097 -0.0696 -0.0902 ATOM O21 -0.1085 0.1064 -0.0461 ATOM H22 -0.0622 -0.0858 -0.0326 ENERGY -106.48 kcal/mol COMMENT best structure in C2/c (dimeric) TITL Schmidt IV 1 SPACEGROUP P21/c CELL 10.0865 7.4148 9.7931 90.000 103.627 90.000 ATOM C1 0.31206 -0.05042 0.24659 ATOM C2 0.26766 -0.13370 0.37082 ATOM N3 0.15734 -0.05741 0.41368 ATOM C4 0.08525 0.09176 0.34704 ATOM C5 0.12899 0.17587 0.22272 ATOM C6 0.23265 0.32507 0.27336 ATOM C7 0.36691 0.25524 0.36153 ATOM C8 0.42072 0.09260 0.29788 ATOM C9 0.19019 0.03291 0.14469 ATOM O10 0.32662 -0.26614 0.43528 ATOM O11 -0.01161 0.15193 0.39118 ATOM H12 0.35341 -0.15364 0.19784 ATOM H13 0.04214 0.23111 0.15725 ATOM H14 0.19176 0.41834 0.33138 ATOM H15 0.24973 0.39131 0.18546 ATOM H16 0.35490 0.22202 0.46109 ATOM H17 0.43905 0.35793 0.37463 ATOM H18 0.45842 0.13335 0.21267 ATOM H19 0.50117 0.03590 0.37172 ATOM H20 0.22140 0.09151 0.06097 ATOM H21 0.11806 -0.06546 0.10445 ATOM H22 0.12800 -0.11306 0.49600 ENERGY -98.21 kJ/mol COMMENT Relatively small unit cell volume (V=178.0 A3/mol). COMMENT Good van der Waals packing (vdW energy = -74.5 kJ/mol) COMMENT Hydrogen bonds less favorable than in prediction 2 and 3 COMMENT (Distance O...H =1.81 Angstroem). COMMENT Confidence level (1-10): 3, by energy COMMENT Confidence level for all predictions of IV is relatively low, COMMENT because the force field is not designed for H bridges. TITL Schmidt IV 2 SPACEGROUP Pbca CELL 11.3928 11.6958 10.9476 90.000 90.000 ATOM C1 0.30354 0.30874 0.11763 ATOM C2 0.25407 0.38027 0.01343 ATOM N3 0.14190 0.42726 0.02601 ATOM C4 0.07308 0.41202 0.13048 ATOM C5 0.12188 0.34059 0.23510 ATOM C6 0.08606 0.21600 0.21958 ATOM C7 0.14224 0.15988 0.10935 ATOM C8 0.27269 0.18327 0.09889 ATOM C9 0.25489 0.35024 0.23908 ATOM O10 0.30989 0.39757 -0.08212 ATOM O11 -0.02574 0.45643 0.13492 ATOM H12 0.39429 0.31815 0.11558 ATOM H13 0.08542 0.37232 0.31532 ATOM H14 -0.00478 0.21086 0.21205 ATOM H15 0.11041 0.17211 0.29823 ATOM H16 0.10041 0.18821 0.03053 ATOM H17 0.12891 0.07203 0.11422 ATOM H18 0.31749 0.13580 0.16431 ATOM H19 0.30224 0.15702 0.01350 ATOM H20 0.28783 0.30020 0.30973 ATOM H21 0.27996 0.43443 0.25502 90.000 60 ATOM H22 0.10936 0.47479 -0.04317 ENERGY -97.60 kJ/mol COMMENT Larger unit cell volume (V=182.4 A3/mol). COMMENT Worse van der Waals packing (vdW energy = -70.8 kJ/mol). COMMENT Hydrogen bonds better than in prediction 1 (O...H =1.60 Angstroem). COMMENT Confidence level (1-10): 2.5, by energy and chemical intuition COMMENT (good hydrogen bonds) TITL Schmidt IV 3 SPACEGROUP P21/c CELL 9.2842 8.5413 11.7212 90.000 128.088 90.000 ATOM C1 0.84705 0.20151 0.02738 ATOM C2 0.69115 0.12363 0.01609 ATOM N3 0.51329 0.18014 -0.08613 ATOM C4 0.47175 0.30477 -0.17927 ATOM C5 0.62685 0.38332 -0.16871 ATOM C6 0.70280 0.51992 -0.06285 ATOM C7 0.79807 0.46859 0.09228 ATOM C8 0.92902 0.33315 0.13860 ATOM C9 0.77801 0.26577 -0.11938 ATOM O10 0.71728 0.01248 0.09505 ATOM O11 0.31045 0.34837 -0.26723 ATOM H12 0.94621 0.11627 0.06193 ATOM H13 0.57181 0.42539 -0.27146 ATOM H14 0.59692 0.59641 -0.09435 ATOM H15 0.79490 0.58022 -0.06928 ATOM H16 0.70026 0.43709 0.10472 ATOM H17 0.86988 0.56306 0.16098 ATOM H18 1.04592 0.37297 0.15424 ATOM H19 0.96907 0.28915 0.23704 ATOM H20 0.88451 0.32050 -0.11064 ATOM H21 0.72911 0.17552 -0.19444 ATOM H22 0.41012 0.12814 -0.09350 ENERGY -96.35 kJ/mol COMMENT Larger unit cell volume (V=182.9 A3/mol). COMMENT Worse van der Waals packing (vdW energy = -71.1 kJ/mol) COMMENT Hydrogen bonds better than in prediction 1 (O...H =1.68 Angstroem). COMMENT Confidence level (1-10): 1.5, by energy COMMENT There are 6 further packings with energies < -95 kJ/mol. TITL Van Eijck IV 1 SPACEGROUP P21/c CELL 10.26230 7.53718 9.82555 90.000 104.517 90.000 ATOM C1 .304299 .029929 .856145 ATOM H2 .267959 .088740 .940561 ATOM H3 .379294 -.068752 .903737 ATOM C4 .367176 .172683 .782473 ATOM H5 .453551 .227189 .858423 ATOM C6 .187240 -.056367 .749131 ATOM H7 .146738 -.163095 .800757 ATOM C8 .263510 .320525 .733005 ATOM H9 .304974 .419458 .674753 ATOM H10 .245821 .388525 .824642 ATOM C11 .077325 .083906 .698700 ATOM H12 .034494 .119422 .785984 ATOM H13 -.004407 .026849 .617699 ATOM C14 .128189 .253478 .642233 ATOM H15 .136867 .228989 .535557 ATOM H16 .053518 .357933 .634306 ATOM C17 .415189 .092442 .660599 ATOM O18 .509970 .145106 .621381 ATOM C19 .236059 -.136310 .627846 ATOM O20 .187754 -.264826 .563100 ATOM N21 .344120 -.052618 .594675 ATOM H22 .376767 -.105332 .515500 ENERGY -210.913 kJ/mol COMMENT The lowest energy in the empirical as well as ab initio force field. COMMENT Second best are 1.5 and 0.9 kJ/mol higher, respectively. COMMENT This is not much, but there are at least two indications. TITL Van Eijck IV 2 SPACEGROUP P212121 CELL 11.23151 11.29203 ATOM C1 .500569 ATOM H2 .579875 ATOM H3 .423689 ATOM C4 .499699 5.91571 .738352 .700027 .696835 .713787 90.000 .606806 .683335 .685916 .353029 90.000 90.000 61 ATOM H5 .496112 .618401 .327239 ATOM C6 .498375 .872317 .645969 ATOM H7 .493465 .889110 .827164 ATOM C8 .615634 .759991 .249823 ATOM H9 .610388 .753437 .066357 ATOM H10 .688187 .702003 .300907 ATOM C11 .614220 .925688 .555568 ATOM H12 .686621 .901653 .669226 ATOM H13 .607460 1.021823 .561008 ATOM C14 .647367 .887813 .314204 ATOM H15 .605192 .947577 .194011 ATOM H16 .742845 .899493 .293334 ATOM C17 .390231 .770003 .243194 ATOM O18 .341262 .731343 .079893 ATOM C19 .389486 .928231 .533644 ATOM O20 .340553 1.015818 .600768 ATOM N21 .347074 .871882 .342735 ATOM H22 .275777 .908971 .267401 ENERGY -209.397 kJ/mol COMMENT The best free energy if we discard a structure with six imaginary COMMENT frequencies. It is also the second best in energy. COMMENT But it is very bad (#22) in the ab-initio force field. TITL Van Eijck IV 3 SPACEGROUP P21/c CELL 9.07146 7.84339 12.59642 90.000 56.006 90.000 ATOM C1 .161777 .660894 .678929 ATOM H2 .200331 .546768 .619710 ATOM H3 .044934 .714080 .686741 ATOM C4 .312819 .791405 .616765 ATOM H5 .340013 .826449 .523597 ATOM C6 .116999 .615954 .812206 ATOM H7 .003821 .529210 .858461 ATOM C8 .481315 .712927 .596899 ATOM H9 .578665 .813545 .571340 ATOM H10 .540870 .627691 .514784 ATOM C11 .276071 .524377 .797887 ATOM H12 .286263 .397379 .759231 ATOM H13 .251096 .506100 .892471 ATOM C14 .454680 .616103 .712223 ATOM H15 .472381 .704713 .770918 ATOM H16 .560314 .521864 .676358 ATOM C17 .257217 .951139 .699738 ATOM O18 .305354 1.092440 .659723 ATOM C19 .066507 .776423 .894548 ATOM O20 -.032345 .779441 1.009027 ATOM N21 .141680 .927253 .829994 ATOM H22 .107314 1.033353 .883755 ENERGY -209.270 kJ/mol COMMENT The third energy and also the third free energy. COMMENT But it is only fifth in the ab-initio force field. TITL Verwer IV 1 SPACEGROUP P21/n CELL 9.1319 8.1080 10.6618 90.0000 ATOM C1 0.16369 0.36176 0.70817 ATOM C2 0.07926 0.27486 0.59064 ATOM C3 -0.06819 0.19208 0.61671 ATOM C4 -0.16533 0.32045 0.67754 ATOM C5 -0.08171 0.36903 0.80892 ATOM C6 0.06263 0.46201 0.78791 ATOM C7 -0.03947 0.05164 0.70642 ATOM N8 -0.02964 0.06996 0.83077 ATOM C9 -0.04836 0.21518 0.88383 ATOM O10 -0.02312 -0.09332 0.67324 ATOM O11 -0.03139 0.20920 1.00124 ATOM H12 0.22245 0.26850 0.76885 ATOM H13 0.24607 0.44417 0.67641 ATOM H14 0.05458 0.36579 0.51563 ATOM H15 0.15185 0.18297 0.55568 ATOM H16 -0.12808 0.14767 0.52815 ATOM H17 -0.18664 0.42857 0.61668 ATOM H18 -0.27215 0.26553 0.68954 ATOM H19 -0.15123 0.44922 0.85891 ATOM H20 0.03296 0.57820 0.73942 ATOM H21 0.12441 0.49278 0.87920 96.9903 90.0000 62 ATOM H22 -0.00878 -0.02487 0.88317 ENERGY -136.13 kcal/mol COMMENT d=1.298 g/cc COMMENT structure ranked nr. 1 by energy TITL Verwer IV 2 SPACEGROUP P21/c CELL 10.1714 7.9904 10.0337 90.0000 75.8960 ATOM C1 0.36442 0.73535 0.64622 ATOM C2 0.22895 0.79920 0.74152 ATOM C3 0.12248 0.65708 0.78820 ATOM C4 0.18678 0.51578 0.85852 ATOM C5 0.30438 0.43704 0.74664 ATOM C6 0.41734 0.57205 0.70054 ATOM C7 0.08014 0.58284 0.66872 ATOM N8 0.14438 0.45541 0.59650 ATOM C9 0.24871 0.38048 0.62961 ATOM O10 -0.01677 0.63443 0.62480 ATOM O11 0.29746 0.26355 0.55148 ATOM H12 0.34921 0.71134 0.54392 ATOM H13 0.44087 0.83344 0.63496 ATOM H14 0.25102 0.85647 0.83258 ATOM H15 0.18620 0.89718 0.68896 ATOM H16 0.03379 0.70602 0.86179 ATOM H17 0.22448 0.56493 0.94366 ATOM H18 0.11044 0.42180 0.90139 ATOM H19 0.34503 0.32894 0.78958 ATOM H20 0.45851 0.60431 0.78826 ATOM H21 0.50076 0.52019 0.62164 ATOM H22 0.11277 0.41575 0.51977 ENERGY -135.88 kcal/mol COMMENT d= 1.2865 g/cc COMMENT structure ranked nr. 2 by energy TITL Verwer IV 3 SPACEGROUP P21/c CELL 6.2259 10.9005 12.4816 90.0000 76.8224 ATOM C1 0.91058 0.12214 0.65813 ATOM C2 0.66670 0.07967 0.67234 ATOM C3 0.53210 0.08196 0.79437 ATOM C4 0.54628 0.21282 0.84297 ATOM C5 0.79211 0.23637 0.84559 ATOM C6 0.93381 0.24010 0.72524 ATOM C7 0.62262 -0.00645 0.86405 ATOM N8 0.78425 0.02221 0.91288 ATOM C9 0.86656 0.13478 0.90858 ATOM O10 0.55533 -0.11349 0.88194 ATOM O11 1.02001 0.14487 0.95664 ATOM H12 1.00483 0.04810 0.68474 ATOM H13 0.98331 0.13801 0.57101 ATOM H14 0.58577 0.13996 0.62360 ATOM H15 0.66470 -0.01265 0.63850 ATOM H16 0.36016 0.05905 0.79693 ATOM H17 0.48708 0.28190 0.79355 ATOM H18 0.44236 0.21907 0.92610 ATOM H19 0.80553 0.32384 0.88645 ATOM H20 0.88333 0.31948 0.68340 ATOM H21 1.10705 0.25292 0.72654 ATOM H22 0.84053 -0.03858 0.95432 ATOM END 0.00000 0.00000 0.00000 ENERGY -135.75 kcal/mol COMMENT d=1.2336 g/cc COMMENT structure ranked nr. 3 by energy TITL IV 1 Williams SPACEGROUP P21/c CELL 10.42 7.48 ATOM H5 0.37342 ATOM H6 0.27756 ATOM C4 0.30662 ATOM H3 0.15142 ATOM H7 0.44385 ATOM O2 0.18125 ATOM C3 0.18946 ATOM C8 0.23456 ATOM H13 0.36844 9.91 0.43035 0.57219 0.52229 0.33996 0.72252 0.24061 0.44059 0.36296 0.39935 90.00 0.11048 0.06608 0.14634 0.20738 0.16103 0.43891 0.24887 0.37192 0.47910 90.0000 90.0000 77.05 90.00 63 ATOM N1 ATOM C7 ATOM O1 ATOM C5 ATOM H2 ATOM H10 ATOM C2 ATOM C6 ATOM H1 ATOM H9 ATOM C1 ATOM H12 ATOM H11 ENERGY -87.76 0.34249 0.41026 0.49782 0.36486 0.04818 0.24359 0.08187 0.26220 0.00760 0.30025 0.13381 0.14795 0.06651 TITL IV 2 Williams SPACEGROUP P21/n CELL 6.37 12.16 ATOM H5 0.89318 ATOM H6 0.94969 ATOM C4 0.84442 ATOM H3 0.61843 ATOM H7 0.97010 ATOM O2 0.30190 ATOM C3 0.62137 ATOM C8 0.45986 ATOM H13 0.40667 ATOM N1 0.50344 ATOM C7 0.67113 ATOM O1 0.68257 ATOM C5 0.83228 ATOM H2 0.65177 ATOM H10 0.88662 ATOM C2 0.55230 ATOM C6 0.76903 ATOM H1 0.40772 ATOM H9 0.75945 ATOM C1 0.55771 ATOM H12 0.43577 ATOM H11 0.53675 ENERGY -86.29 0.44416 0.59265 0.65444 0.67001 0.61900 0.87463 0.58285 0.81870 0.52929 0.91204 0.74747 0.71755 0.84232 0.40534 0.34405 0.38867 0.22108 0.21615 0.18528 0.29763 0.26913 0.36462 0.31836 0.36077 0.45339 0.37556 10.18 0.43648 0.31401 0.35948 0.37200 0.33450 0.45325 0.34585 0.41640 0.47647 0.43558 0.39395 0.41281 0.32339 0.18273 0.15769 0.22400 0.20092 0.21637 0.17891 0.17552 0.20439 0.09526 90.00 0.39277 0.44108 0.37968 0.50248 0.20712 0.34635 0.41152 0.31739 0.13567 0.19195 0.14002 0.02678 0.23437 0.46925 0.27181 0.39907 0.21690 0.41839 0.12276 0.26070 0.19337 0.26244 102.02 90.00 90.00 0.35313 0.26334 0.22944 0.19806 0.16708 0.04613 0.11754 0.06650 0.00908 0.04124 0.04801 0.01285 0.09898 -0.02859 -0.04939 -0.06946 -0.08860 -0.14128 -0.17235 -0.20182 -0.26727 -0.30692 96.19 90.00 118.0947 90.0000 TITL IV 3 Williams SPACEGROUP C2/c CELL 22.28 10.29 6.89 ATOM H5 0.12853 0.23765 ATOM H6 0.15778 0.36134 ATOM C4 0.13681 0.27880 ATOM H3 0.21407 0.16734 ATOM H7 0.04981 0.35676 ATOM O2 0.16996 -0.03622 ATOM C3 0.17654 0.19104 ATOM C8 0.14431 0.06375 ATOM H13 0.06285 -0.00610 ATOM N1 0.08195 0.06904 ATOM C7 0.04564 0.17748 ATOM O1 -0.00781 0.16870 ATOM C5 0.07801 0.30462 ATOM H2 0.21742 0.33607 ATOM H10 0.10764 0.46257 ATOM C2 0.19242 0.25961 ATOM C6 0.09112 0.37632 ATOM H1 0.21746 0.20176 ATOM H9 0.05306 0.39118 ATOM C1 0.13622 0.30314 ATOM H12 0.11632 0.22679 ATOM H11 0.14843 0.35899 ENERGY -84.78 TITL Ammon V 1 SPACEGROUP P21/n CELL 9.1367 7.5432 19.6806 90.0000 ATOM H1 -0.12113 0.15094 -0.29590 ATOM C2 -0.10837 0.17125 -0.23810 ATOM C3 0.01100 0.32775 -0.19533 ATOM C4 -0.02274 0.01003 -0.18579 ATOM H5 -0.23352 0.19184 -0.24489 64 ATOM C6 -0.03503 0.02941 -0.11028 ATOM C7 0.15592 0.23634 -0.12441 ATOM H8 0.05914 0.39190 -0.23084 ATOM H9 -0.04756 0.43146 -0.17720 ATOM H10 -0.06654 -0.11934 -0.21359 ATOM C11 0.16714 0.04904 -0.15672 ATOM H12 0.00780 -0.08925 -0.07378 ATOM C13 0.28652 -0.08050 -0.09494 ATOM C14 0.21539 0.05396 -0.22175 ATOM C15 0.30684 0.34836 -0.07495 ATOM C16 0.08092 0.18379 -0.07224 ATOM BR17 -0.25991 0.06768 -0.12252 ATOM H18 0.26665 -0.21583 -0.11814 ATOM H19 0.27441 -0.08340 -0.04203 ATOM H20 0.41586 -0.04556 -0.07795 ATOM H21 0.20432 -0.07907 -0.24634 ATOM H22 0.34535 0.09516 -0.19887 ATOM H23 0.13929 0.14426 -0.26909 ATOM H24 0.42385 0.27384 -0.05013 ATOM H25 0.31892 0.47064 -0.10218 ATOM S26 0.27260 0.41543 0.00759 ATOM N27 0.12108 0.25633 -0.00751 ATOM O28 0.41907 0.37571 0.08063 ATOM O29 0.19472 0.59056 -0.00700 ENERGY -33.41 kcal/mol based on atom-centered charges for electrostatics. COMMENT d = 1.622 g/cc. Next to lowest E structure. COMMENT Previously, we had depended too much on the highest density COMMENT to identify the best structure. Volume additivity calcns COMMENT suggest d = 1.651 g/cc. Lowest E structure (-34.34 kcal/mol) COMMENT had too low a density (d = 1.596 g/cc) for our tastes. This COMMENT is a compromise. TITL Ammon V 2 SPACEGROUP P21/n CELL 7.0990 15.8103 10.7066 90.0000 100.6034 90.0000 ATOM H1 0.21881 0.50481 -0.08133 ATOM C2 0.11248 0.46583 -0.14333 ATOM C3 0.07294 0.38124 -0.07811 ATOM C4 0.19083 0.43636 -0.26170 ATOM H5 -0.01729 0.50439 -0.17020 ATOM C6 0.02534 0.39537 -0.35695 ATOM C7 0.14093 0.31246 -0.16452 ATOM H8 0.15577 0.37608 0.01886 ATOM H9 -0.07862 0.37269 -0.07210 ATOM H10 0.26692 0.48542 -0.30541 ATOM C11 0.31452 0.35642 -0.21083 ATOM H12 0.06556 0.38092 -0.44887 ATOM C13 0.39342 0.30646 -0.31355 ATOM C14 0.48496 0.37684 -0.10414 ATOM C15 0.14597 0.22159 -0.11872 ATOM C16 -0.00773 0.31476 -0.28775 ATOM BR17 -0.20848 0.46449 -0.40455 ATOM H18 0.48921 0.34664 -0.35753 ATOM H19 0.28266 0.28140 -0.38980 ATOM H20 0.47843 0.25222 -0.27101 ATOM H21 0.59137 0.41476 -0.14186 ATOM H22 0.55618 0.31819 -0.06606 ATOM H23 0.44550 0.41187 -0.02422 ATOM H24 0.26228 0.18407 -0.14575 ATOM H25 0.14398 0.21366 -0.01709 ATOM S26 -0.08159 0.17589 -0.20766 ATOM N27 -0.12652 0.25540 -0.32282 ATOM O28 -0.04382 0.09731 -0.27054 ATOM O29 -0.23031 0.18001 -0.12964 ENERGY -32.33 kcal/mol COMMENT d = 1.643 g/cc. Close to lowest E structure and with a COMMENT good density in comparison to volume additivity calcns of COMMENT d = 1.651 g/cc. TITL Ammon V 3 SPACEGROUP Cc CELL 7.1513 16.0805 13.7236 90.0000 ATOM H1 0.16372 0.25162 0.11935 ATOM C2 -0.00247 0.21322 0.05807 ATOM C3 0.02394 0.13045 0.12505 ATOM C4 -0.04352 0.18350 -0.06175 ATOM H5 -0.15683 0.25127 0.03165 130.3932 90.0000 65 ATOM C6 -0.30100 0.14310 -0.15608 ATOM C7 0.00466 0.06227 0.03797 ATOM H8 0.20204 0.12568 0.22225 ATOM H9 -0.11889 0.12239 0.13247 ATOM H10 -0.01253 0.23138 -0.10698 ATOM C11 0.12887 0.10491 -0.01066 ATOM H12 -0.35318 0.12836 -0.24901 ATOM C13 0.10401 0.05512 -0.11447 ATOM C14 0.40266 0.12514 0.09539 ATOM C15 0.05549 -0.02685 0.08504 ATOM C16 -0.26429 0.06426 -0.08516 ATOM BR17 -0.57830 0.21130 -0.20283 ATOM H18 0.15414 0.09422 -0.16005 ATOM H19 -0.08080 0.03035 -0.19025 ATOM H20 0.23007 0.00183 -0.07171 ATOM H21 0.46946 0.16203 0.05604 ATOM H22 0.51073 0.06753 0.13378 ATOM H23 0.44357 0.16006 0.17601 ATOM H24 0.14287 -0.06412 0.05717 ATOM H25 0.15495 -0.03416 0.18769 ATOM S26 -0.25663 -0.07174 -0.00235 ATOM N27 -0.41581 0.00596 -0.11898 ATOM O28 -0.28208 -0.14939 -0.06532 ATOM O29 -0.32487 -0.06701 0.07759 ENERGY -31.72 kcal/mol COMMENT d = 1.615 g/cc. There really was no obvious choice for COMMENT guess # 3. This was a compromise between E and d. COMMENT A better guess in C2 has E = -32.58 kcal/mol, but d = COMMENT 1.558 g/cc. COMMENT – AMMON WAS ALLOWED A SECOND SUBMISSION SELECTING ONLY SOHNKE SPACEGPS TITL Ammon V 1 (second submission) SPACEGROUP P212121 CELL 10.3943 16.3540 7.1279 90.0000 90.0000 ATOM H1 -0.17877 -0.50079 0.19626 ATOM C2 -0.11790 -0.46774 0.29676 ATOM C3 -0.17851 -0.38437 0.35483 ATOM C4 0.01095 -0.44261 0.20483 ATOM H5 -0.10222 -0.50842 0.41716 ATOM C6 0.10244 -0.41005 0.35927 ATOM C7 -0.07902 -0.32028 0.28224 ATOM H8 -0.27214 -0.37396 0.28765 ATOM H9 -0.19306 -0.37874 0.50686 ATOM H10 0.05539 -0.49020 0.11760 ATOM C11 -0.02547 -0.36121 0.09854 ATOM H12 0.20040 -0.39906 0.30741 ATOM C13 0.08947 -0.31570 0.01065 ATOM C14 -0.12629 -0.37341 -0.05684 ATOM C15 -0.11641 -0.23081 0.29397 ATOM C16 0.03775 -0.33025 0.41108 ATOM Br17 0.12990 -0.48295 0.57636 ATOM H18 0.13627 -0.35438 -0.09517 ATOM H19 0.16326 -0.29670 0.11189 ATOM H20 0.05660 -0.26016 -0.06138 ATOM H21 -0.08502 -0.40945 -0.17201 ATOM H22 -0.15498 -0.31404 -0.11537 ATOM H23 -0.21399 -0.40471 -0.00978 ATOM H24 -0.07788 -0.19355 0.17881 ATOM H25 -0.21971 -0.21913 0.31182 ATOM S26 -0.03469 -0.19462 0.51135 ATOM N27 0.07236 -0.27669 0.53014 ATOM O28 0.03986 -0.12072 0.47324 ATOM O29 -0.12402 -0.19828 0.66980 ENERGY -31.64 kcal/mol COMMENT d = 1.602 g/cc. Overall, the second lowest E COMMENT acentric structure without a glide plane. 90.0000 66 COMMENT COMMENT COMMENT COMMENT COMMENT COMMENT The lowest E acentric (C2, E = -32.58 kcal/mol, d =1.558 g/cc) had too low a density to be acceptable (volume additivity predicted d = 1.651 g/cc). We consider this to be the first lowest E with an acceptable density. TITL Ammon V 2 (second submission) SPACEGROUP P212121 CELL 10.7988 12.8019 8.6079 90.0000 90.0000 ATOM H1 0.03299 -0.19442 -0.01270 ATOM C2 -0.02338 -0.17218 0.08816 ATOM C3 0.03451 -0.21153 0.24326 ATOM C4 -0.15063 -0.22757 0.08357 ATOM H5 -0.03390 -0.08689 0.08527 ATOM C6 -0.23484 -0.17966 0.21063 ATOM C7 -0.06489 -0.28886 0.30728 ATOM H8 0.12228 -0.25298 0.22473 ATOM H9 0.05284 -0.14825 0.32624 ATOM H10 -0.19473 -0.22895 -0.03134 ATOM C11 -0.12078 -0.33813 0.15536 ATOM H12 -0.33083 -0.20756 0.20356 ATOM C13 -0.23502 -0.40766 0.18369 ATOM C14 -0.02813 -0.40223 0.05885 ATOM C15 -0.03083 -0.35271 0.44933 ATOM C16 -0.17312 -0.21927 0.35713 ATOM Br17 -0.25301 -0.02624 0.20606 ATOM H18 -0.28216 -0.42403 0.07333 ATOM H19 -0.30344 -0.37397 0.26363 ATOM H20 -0.20693 -0.48318 0.23282 ATOM H21 -0.07030 -0.42498 -0.05217 ATOM H22 -0.00375 -0.47445 0.12050 ATOM H23 0.05838 -0.36072 0.03266 ATOM H24 -0.07222 -0.43106 0.45048 ATOM H25 0.06873 -0.35740 0.47432 ATOM S26 -0.10388 -0.27974 0.61269 ATOM N27 -0.20422 -0.20522 0.49806 ATOM O28 -0.17853 -0.34997 0.70825 ATOM O29 -0.01323 -0.20934 0.68345 ENERGY -31.42 kcal/mol COMMENT d = 1.631 g/cc. Second lowest E soltuion COMMENT with an acceptable density. TITL Ammon V 3 (second submission) SPACEGROUP P212121 CELL 10.5948 11.5236 9.8832 90.0000 ATOM H1 -0.02926 -0.36291 0.27538 ATOM C2 0.04658 -0.31489 0.32637 ATOM C3 0.06016 -0.18929 0.26987 ATOM C4 0.17648 -0.37018 0.29563 ATOM H5 0.02598 -0.31622 0.43523 ATOM C6 0.27694 -0.31370 0.38853 ATOM C7 0.19563 -0.18840 0.20787 ATOM H8 -0.00962 -0.17027 0.19079 ATOM H9 0.05000 -0.12234 0.34817 ATOM H10 0.17784 -0.46537 0.29993 ATOM C11 0.21140 -0.31595 0.15392 ATOM H12 0.36902 -0.35708 0.38236 ATOM C13 0.34552 -0.34463 0.10381 90.0000 90.0000 90.0000 67 ATOM C14 0.11910 -0.34930 0.04031 ATOM C15 0.23431 -0.08224 0.12732 ATOM C16 0.28436 -0.19248 0.33004 ATOM Br17 0.23945 -0.31537 0.58419 ATOM H18 0.35618 -0.43873 0.09069 ATOM H19 0.42119 -0.31486 0.17131 ATOM H20 0.36260 -0.30454 0.00469 ATOM H21 0.12732 -0.44229 0.01775 ATOM H22 0.14249 -0.30196 -0.05279 ATOM H23 0.01977 -0.33143 0.06413 ATOM H24 0.29790 -0.10175 0.04260 ATOM H25 0.15607 -0.02707 0.09308 ATOM S26 0.32843 0.00461 0.25027 ATOM N27 0.35391 -0.10792 0.36578 ATOM O28 0.45006 0.03688 0.19163 ATOM O29 0.24778 0.09158 0.31484 ENERGY -30.75 kcal/mol COMMENT d = 1.608 g/cc. Third lowest E solution COMMENT with an acceptable density. TITL Dzyabchenko V 1 SPACEGROUP P212121 CELL 12.959 10.440 8.360 90.00 90.00 90.00 ATOM S1 0.45506 0.37632 0.87990 ATOM BR1 0.72742 0.47376 0.47134 ATOM O3 0.39318 0.46436 0.96857 ATOM O4 0.50961 0.28058 0.96841 ATOM N5 0.54041 0.46341 0.77409 ATOM C6 0.38454 0.30667 0.71503 ATOM C7 0.44954 0.34002 0.57044 ATOM C8 0.52760 0.43652 0.62675 ATOM C9 0.57574 0.49881 0.48202 ATOM C10 0.51342 0.43071 0.34771 ATOM C11 0.55335 0.29035 0.33670 ATOM C12 0.51124 0.22827 0.49154 ATOM C13 0.40626 0.41421 0.42286 ATOM C14 0.35153 0.53837 0.46551 ATOM C15 0.33108 0.33552 0.32377 ATOM H18 0.30762 0.34385 0.69722 ATOM H19 0.37521 0.20394 0.71991 ATOM H20 0.55727 0.59968 0.48159 ATOM H21 0.51619 0.48113 0.23499 ATOM H22 0.52616 0.24199 0.23056 ATOM H23 0.63648 0.28536 0.32977 ATOM H24 0.46347 0.14582 0.46701 ATOM H25 0.57230 0.19288 0.56755 ATOM H26 0.38915 0.59272 0.55839 ATOM H27 0.27262 0.51831 0.50409 ATOM H28 0.34653 0.59839 0.35890 ATOM H29 0.35893 0.24150 0.29407 ATOM H30 0.31544 0.38689 0.21221 ATOM H31 0.25779 0.32579 0.38656 ENERGY -122.90 kcal/mol COMMENT Density = 1.716 g/cm3 COMMENT Confidence level 5 (1-10), by energy COMMENT There is one more minimum slightly less deep in energy COMMENT (-122.78 kcal/mol) with nearly the same unit cell constants COMMENT and the molecule position/orientation but one methyl group COMMENT rotated by 10 degrees with respect to the present structure. COMMENT At non-zero temperature the two minima probably collapse into COMMENT a single free-energy minimum with average parameters. Therefore COMMENT we submit here only one of them. TITL Dzyabchenko V 2 SPACEGROUP P212121 CELL 7.906 8.931 15.959 90.00 90.00 90.00 68 ATOM S1 0.20690 0.61325 0.55040 ATOM BR1 0.14709 0.10476 0.42029 ATOM O3 0.34714 0.67219 0.59605 ATOM O4 0.04387 0.62267 0.58892 ATOM N5 0.25045 0.43250 0.52983 ATOM C6 0.20175 0.68233 0.44403 ATOM C7 0.20430 0.54115 0.39155 ATOM C8 0.24632 0.41538 0.45059 ATOM C9 0.29548 0.28014 0.39945 ATOM C10 0.28217 0.34804 0.30995 ATOM C11 0.09079 0.36643 0.28941 ATOM C12 0.03594 0.49739 0.34675 ATOM C13 0.34026 0.51030 0.32276 ATOM C14 0.52133 0.52798 0.35321 ATOM C15 0.32112 0.61022 0.24624 ATOM H18 0.30762 0.75170 0.42610 ATOM H19 0.09097 0.74677 0.42767 ATOM H20 0.42580 0.25187 0.41216 ATOM H21 0.35030 0.28401 0.26352 ATOM H22 0.06892 0.39050 0.22398 ATOM H23 0.01959 0.26560 0.30174 ATOM H24 -0.01769 0.58922 0.31164 ATOM H25 -0.06176 0.46469 0.39037 ATOM H26 0.54071 0.48805 0.41610 ATOM H27 0.55734 0.64617 0.35102 ATOM H28 0.60658 0.46770 0.31152 ATOM H29 0.20292 0.59757 0.21422 ATOM H30 0.42353 0.58601 0.20216 ATOM H31 0.33499 0.72709 0.26520 ENERGY -122.81 kcal/mol COMMENT Density=1.722 g/cm3 COMMENT Confidence level 3 (1-10), by energy TITL Dzyabchenko V 3 SPACEGROUP P212121 CELL 13.351 8.524 10.083 90.00 90.00 90.00 ATOM S1 0.39207 -0.10985 0.21608 ATOM BR1 0.03313 0.05487 0.26285 ATOM O3 0.43936 -0.18286 0.10515 ATOM O4 0.40415 -0.18318 0.34269 ATOM N5 0.26907 -0.09756 0.18105 ATOM C6 0.41983 0.09736 0.22424 ATOM C7 0.31748 0.17380 0.22275 ATOM C8 0.24434 0.04667 0.18676 ATOM C9 0.14634 0.12245 0.14874 ATOM C10 0.17614 0.29805 0.16273 ATOM C11 0.18408 0.33492 0.31358 ATOM C12 0.28027 0.24690 0.35582 ATOM C13 0.28599 0.29949 0.11817 ATOM C14 0.30356 0.24939 -0.02462 ATOM C15 0.33916 0.45566 0.13658 ATOM H18 0.46317 0.14301 0.14244 ATOM H19 0.45929 0.13494 0.31218 ATOM H20 0.13029 0.09739 0.04592 ATOM H21 0.12617 0.37603 0.11029 ATOM H22 0.18889 0.45927 0.33310 ATOM H23 0.11911 0.29571 0.36811 ATOM H24 0.33493 0.32443 0.39982 ATOM H25 0.26558 0.15924 0.43068 ATOM H26 0.30126 0.12287 -0.03654 ATOM H27 0.37483 0.29113 -0.06241 ATOM H28 0.24460 0.29915 -0.08709 ATOM H29 0.33836 0.49763 0.23741 ATOM H30 0.30342 0.54415 0.07399 ATOM H31 0.41691 0.44602 0.10447 ENERGY -122.47 kcal/mol COMMENT Density 1.691 g/cm3 COMMENT Confidence level 1 (1-10), by energy TITL ERK V/1 CELL 8.0400 10.5080 7.4460 SPACEGROUP P21 ATOM S1 -0.03605 0.14424 ATOM BR2 0.33041 -0.02216 ATOM O3 -0.00713 0.12910 ATOM O4 -0.20128 0.10907 90.0000 104.4450 0.41973 0.02197 0.61560 0.30749 90.0000 69 ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM END N5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 H16 H17 H18 H19 H20 H21 H22 H23 H24 H25 H26 H27 H28 H29 0.11527 0.02601 0.15601 0.19866 0.35913 0.39928 0.26534 0.09687 0.34205 0.44116 0.34773 -0.08627 0.08312 0.46053 0.53275 0.30150 0.25377 0.04128 -0.00086 0.42633 0.40102 0.57836 0.29178 0.28143 0.48118 TITL ERK V/2 CELL 0.0000 14.3190 SPACEGROUP P212121 ATOM S1 0.09572 ATOM BR2 -0.12466 ATOM O3 0.09570 ATOM O4 0.09579 ATOM N5 0.00123 ATOM C6 0.18499 ATOM C7 0.13094 ATOM C8 0.02953 ATOM C9 -0.02557 ATOM C10 0.05571 ATOM C11 0.09103 ATOM C12 0.14126 ATOM C13 0.13543 ATOM C14 0.11592 ATOM C15 0.22911 ATOM H16 0.23652 ATOM H17 0.21948 ATOM H18 -0.05967 ATOM H19 0.03733 ATOM H20 0.13809 ATOM H21 0.03464 ATOM H22 0.21446 ATOM H23 0.10800 ATOM H24 0.05912 ATOM H25 0.17716 ATOM H26 0.09967 ATOM H27 0.28377 ATOM H28 0.25511 ATOM H29 0.22506 END TITL ERK V/3 CELL 0.0000 7.4630 SPACEGROUP P212121 ATOM S1 0.37947 ATOM BR2 0.21516 ATOM O3 0.31600 ATOM O4 0.36405 ATOM N5 0.26781 ATOM C6 0.60270 ATOM C7 0.58153 ATOM C8 0.38329 ATOM C9 0.35313 ATOM C10 0.55037 ATOM C11 0.64329 ATOM C12 0.66169 ATOM C13 0.63619 0.05856 0.30062 0.27332 0.13421 0.10873 0.24618 0.28050 0.29674 0.32866 0.30464 0.47154 0.35239 0.35267 0.07469 0.25945 0.36751 0.20744 0.39147 0.22730 0.21043 0.37114 0.31961 0.52322 0.50646 0.50229 0.35356 0.35930 0.24812 0.27459 0.21012 0.15586 -0.02771 0.03466 0.29954 0.50430 0.26650 0.28073 0.48627 0.32662 0.14977 -0.08905 -0.13487 0.00183 -0.03289 0.55933 0.59811 0.51918 0.36443 0.13034 0.28930 11.0080 7.5710 0.48564 0.30051 0.46859 0.60792 0.41323 0.39580 0.31968 0.33503 0.23748 0.16809 0.24859 0.35440 0.17803 0.11709 0.12950 0.45498 0.33972 0.17940 0.07541 0.19789 0.28083 0.36176 0.44213 0.15599 0.12141 0.02111 0.14895 0.16429 0.03090 14.7160 -0.54747 -0.81840 -0.45676 -0.58617 -0.61340 -0.56202 -0.63854 -0.65219 -0.70941 -0.72084 -0.78851 -0.73265 -0.62966 90.0000 90.0000 90.0000 90.0000 90.0000 0.65581 0.22269 0.84271 0.59191 0.57587 0.54918 0.41770 0.46390 0.37047 0.27889 0.12357 0.21878 0.41346 0.59501 0.34912 0.48711 0.64822 0.46798 0.23986 0.03696 0.03800 0.17897 0.19040 0.67222 0.68076 0.57512 0.44567 0.22438 0.33435 10.9600 0.03372 0.28302 0.04988 -0.08553 0.13353 0.09442 0.18561 0.20152 0.31386 0.35700 0.26800 0.14908 0.32256 90.0000 70 ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM END C14 C15 H16 H17 H18 H19 H20 H21 H22 H23 H24 H25 H26 H27 H28 H29 0.55483 0.83830 0.69624 0.64409 0.27647 0.56244 0.77323 0.56648 0.80127 0.58627 0.41519 0.62832 0.56462 0.89152 0.91834 0.86823 -0.54529 -0.62516 -0.57802 -0.49901 -0.67051 -0.73972 -0.81053 -0.85100 -0.72712 -0.76347 -0.53034 -0.48347 -0.55404 -0.56142 -0.67834 -0.62710 0.38756 0.34146 0.02103 0.13837 0.38075 0.45321 0.30333 0.25399 0.11961 0.07366 0.36674 0.36438 0.48629 0.30550 0.29987 0.43900 TITL Gavezzotti Compound V first structure SPACEGROUP P212121 CELL 11.8582 7.0154 13.1776 90.0000 90.0000 90.0000 ATOM C1 -0.2103 0.0631 -0.1481 ATOM C2 -0.1445 -0.0886 -0.2025 ATOM S3 -0.0398 -0.1578 -0.1102 ATOM O4 0.0658 -0.0671 -0.1296 ATOM O5 -0.0389 -0.3597 -0.0952 ATOM N6 -0.0988 -0.0574 -0.0078 ATOM C7 -0.1813 0.0441 -0.0375 ATOM C8 -0.2678 0.1537 0.0219 ATOM BR9 -0.1977 0.3652 0.0879 ATOM C10 -0.3443 0.2258 -0.0642 ATOM C11 -0.2785 0.3846 -0.1186 ATOM C12 -0.1857 0.2760 -0.1736 ATOM C13 -0.3417 0.0595 -0.1414 ATOM C14 -0.3978 0.0995 -0.2436 ATOM C15 -0.3878 -0.1285 -0.1004 ATOM H16 -0.1990 -0.2085 -0.2179 ATOM H17 -0.1029 -0.0263 -0.2675 ATOM H18 -0.3147 0.0577 0.0702 ATOM H19 -0.4278 0.2663 -0.0401 ATOM H20 -0.3327 0.4522 -0.1735 ATOM H21 -0.2411 0.4776 -0.0625 ATOM H22 -0.1951 0.2974 -0.2543 ATOM H23 -0.1051 0.3152 -0.1416 ATOM H24 -0.4881 0.1097 -0.2335 ATOM H25 -0.3660 0.2323 -0.2740 ATOM H26 -0.3788 -0.0149 -0.2958 ATOM H27 -0.4782 -0.1171 -0.0908 ATOM H28 -0.3492 -0.1591 -0.0281 ATOM H29 -0.3691 -0.2418 -0.1532 ENERGY -110.0 kJ/mol COMMENT Plausible under all crystal stability criteria COMMENT Energy ordering irrelevant, 14 structures within 2 kJ/mol COMMENT If science is not wishful thinking, zero confidence level TITL Gavezzotti Compound V second structure SPACEGROUP P21 CELL 6.9771 12.0004 7.4216 90.0000 116.1241 ATOM C1 0.2110 -0.0023 0.3017 ATOM C2 0.2757 0.0799 0.4713 ATOM S3 0.0354 0.1595 0.4073 ATOM O4 -0.0777 0.1216 0.5161 ATOM O5 0.0750 0.2766 0.4097 ATOM N6 -0.0979 0.1195 0.1675 ATOM C7 0.0074 0.0413 0.1365 ATOM C8 -0.0294 -0.0196 -0.0524 ATOM BR9 -0.2798 -0.1095 -0.1377 ATOM C10 0.1698 -0.0944 0.0237 ATOM C11 0.1347 -0.1863 0.1505 ATOM C12 0.1571 -0.1239 0.3372 ATOM C13 0.3446 -0.0205 0.1821 ATOM C14 0.5576 -0.0781 0.3073 ATOM C15 0.3892 0.0874 0.0982 ATOM H16 0.3983 0.1339 0.4689 ATOM H17 0.3151 0.0354 0.6097 ATOM H18 -0.0254 0.0387 -0.1620 ATOM H19 0.2087 -0.1250 -0.0928 90.0000 71 ATOM H20 0.2610 -0.2471 0.1919 ATOM H21 -0.0263 -0.2180 0.0719 ATOM H22 0.2905 -0.1579 0.4666 ATOM H23 0.0051 -0.1243 0.3432 ATOM H24 0.6361 -0.0964 0.2137 ATOM H25 0.5294 -0.1551 0.3680 ATOM H26 0.6578 -0.0241 0.4287 ATOM H27 0.4686 0.0684 0.0056 ATOM H28 0.2404 0.1297 0.0093 ATOM H29 0.4901 0.1407 0.2207 ENERGY -109.3 kJ/mol COMMENT See comments to first structure TITL Gavezzotti Compound V third structure SPACEGROUP P212121 CELL 11.7203 9.3684 10.0578 90.0000 ATOM C1 0.2910 0.2176 0.1912 ATOM C2 0.3916 0.1234 0.2210 ATOM S3 0.4834 0.2380 0.3172 ATOM O4 0.5721 0.2977 0.2369 ATOM O5 0.5167 0.1717 0.4395 ATOM N6 0.3885 0.3660 0.3528 ATOM C7 0.2984 0.3418 0.2858 ATOM C8 0.1848 0.4154 0.2858 ATOM BR9 0.2004 0.6027 0.2127 ATOM C10 0.1179 0.3202 0.1887 ATOM C11 0.1637 0.3538 0.0491 ATOM C12 0.2824 0.2876 0.0510 ATOM C13 0.1656 0.1692 0.2176 ATOM C14 0.1269 0.0520 0.1223 ATOM C15 0.1460 0.1176 0.3596 ATOM H16 0.3640 0.0351 0.2821 ATOM H17 0.4338 0.0957 0.1291 ATOM H18 0.1472 0.4091 0.3836 ATOM H19 0.0263 0.3288 0.1979 ATOM H20 0.1119 0.2994 -0.0239 ATOM H21 0.1713 0.4678 0.0375 ATOM H22 0.2867 0.2051 -0.0238 ATOM H23 0.3452 0.3716 0.0434 ATOM H24 0.0374 0.0300 0.1377 ATOM H25 0.1401 0.0866 0.0209 ATOM H26 0.1757 -0.0438 0.1404 ATOM H27 0.0564 0.0954 0.3743 ATOM H28 0.1730 0.1993 0.4287 ATOM H29 0.1950 0.0217 0.3766 ENERGY -109.9 kJ/mol COMMENT See comments to first structure TITL Hofmann V 1 SPACEGROUP P-1 CELL 6.874 9.962 8.441 95.459 ATOM C1 0.04175 -0.15800 0.13489 ATOM C2 0.00917 -0.09641 0.31110 ATOM C3 -0.21492 -0.15323 0.37029 ATOM C4 -0.34635 -0.07894 0.28422 ATOM C5 -0.30431 -0.14307 0.11717 ATOM C6 -0.16479 -0.24519 0.11821 ATOM C7 -0.23985 -0.29955 0.28621 ATOM C8 -0.45861 -0.37776 0.31034 ATOM C9 -0.11162 -0.39491 0.34064 ATOM C10 -0.17241 -0.34529 -0.03136 ATOM S11 -0.34575 -0.28114 -0.13086 ATOM N12 -0.41463 -0.14903 0.00674 ATOM O13 -0.26907 -0.21050 -0.28979 ATOM O14 -0.54738 -0.37322 -0.15180 ATOM Br15 -0.28232 0.12014 0.29634 ATOM H16 0.08179 -0.07654 0.04732 ATOM H17 0.16213 -0.22162 0.11472 ATOM H18 0.10812 -0.13040 0.38562 ATOM H19 0.04338 0.01739 0.31871 ATOM H20 -0.25623 -0.14876 0.50347 ATOM H21 -0.50722 -0.10707 0.33295 ATOM H22 -0.46567 -0.48481 0.25798 ATOM H23 -0.51770 -0.38107 0.44073 ATOM H24 -0.56387 -0.33417 0.25148 ATOM H25 -0.12884 -0.49500 0.26986 ATOM H26 0.05049 -0.35527 0.32634 90.0000 80.576 100.305 90.0000 72 ATOM H27 -0.16165 -0.41362 ATOM H28 -0.02594 -0.33888 ATOM H29 -0.23225 -0.45212 ENERGY -105.73 COMMENT d=1.734g/cc. TITL Hofmann V 2 SPACEGROUP P21/c CELL 10.876 9.285 15.602 ATOM C1 -0.28059 -0.17633 ATOM C2 -0.42310 -0.13320 ATOM C3 -0.37148 -0.19273 ATOM C4 -0.23036 -0.09732 ATOM C5 -0.10064 -0.14475 ATOM C6 -0.16934 -0.25867 ATOM C7 -0.28637 -0.33588 ATOM C8 -0.20600 -0.41365 ATOM C9 -0.39778 -0.44932 ATOM C10 -0.03252 -0.34469 ATOM S11 0.14037 -0.25663 ATOM N12 0.05109 -0.13208 ATOM O13 0.24871 -0.16342 ATOM O14 0.25305 -0.34378 ATOM Br15 -0.26814 0.10990 ATOM H16 -0.21911 -0.07975 ATOM H17 -0.32044 -0.24583 ATOM H18 -0.53774 -0.18305 ATOM H19 -0.44419 -0.01474 ATOM H20 -0.47203 -0.20416 ATOM H21 -0.19872 -0.12746 ATOM H22 -0.15727 -0.52003 ATOM H23 -0.29576 -0.43226 ATOM H24 -0.10235 -0.35546 ATOM H25 -0.32751 -0.54546 ATOM H26 -0.46089 -0.41160 ATOM H27 -0.49093 -0.48445 ATOM H28 -0.03015 -0.33298 ATOM H29 -0.03325 -0.45979 ENERGY -104.60 COMMENT d=1.610g/cc. 0.46975 -0.11066 -0.00123 90.000 0.37700 0.38227 0.26979 0.17234 0.17431 0.26465 0.25586 0.14258 0.34818 0.24479 0.12207 0.09286 0.13170 0.01230 0.19105 0.37677 0.44889 0.45509 0.39172 0.26845 0.09138 0.14036 0.13137 0.06786 0.33629 0.43458 0.34348 0.31446 0.22642 TITL Hofmann V 3 SPACEGROUP P21/c CELL 10.718 9.285 16.000 90.000 ATOM C1 -0.28690 -0.12907 0.36435 ATOM C2 -0.42307 -0.08594 0.36070 ATOM C3 -0.35591 -0.14547 0.24677 ATOM C4 -0.20620 -0.05005 0.15426 ATOM C5 -0.08335 -0.09748 0.16465 ATOM C6 -0.16315 -0.21141 0.25439 ATOM C7 -0.27284 -0.28861 0.23772 ATOM C8 -0.17827 -0.36639 0.12481 ATOM C9 -0.39352 -0.40205 0.32679 ATOM C10 -0.03004 -0.29742 0.24248 ATOM S11 0.15391 -0.20936 0.12567 ATOM N12 0.07385 -0.08482 0.08949 ATOM O13 0.25523 -0.11615 0.14267 ATOM O14 0.27860 -0.29651 0.01849 ATOM Br15 -0.24509 0.15717 0.17134 ATOM H16 -0.22849 -0.03248 0.36806 ATOM H17 -0.33633 -0.19857 0.43672 ATOM H18 -0.54365 -0.13578 0.42924 ATOM H19 -0.44461 0.03252 0.36919 ATOM H20 -0.45116 -0.15689 0.23892 ATOM H21 -0.16310 -0.08019 0.07191 ATOM H22 -0.13164 -0.47276 0.12562 ATOM H23 -0.26168 -0.38500 0.10736 ATOM H24 -0.06780 -0.30820 0.05358 ATOM H25 -0.32488 -0.49819 0.3189 ATOM H26 -0.46738 -0.36433 0.41279 ATOM H27 -0.48121 -0.43719 0.31591 ATOM H28 -0.03902 -0.28571 0.31525 ATOM H29 -0.02777 -0.41252 0.22329 ENERGY -101.39 COMMENT d=1.610g/cc. TITL Leusen V 1 49.937 49.226 90.000 90.000 73 SPACEGROUP P212121 CELL 7.336 12.110 13.343 90.000 90.000 90.000 ATOM C1 0.79054 0.76005 0.07866 ATOM C2 0.84135 0.71322 0.18476 ATOM C3 0.75645 0.80108 0.25825 ATOM C4 0.87205 0.90509 0.24778 ATOM C5 0.82514 0.96048 0.14952 ATOM C6 0.68692 0.87153 0.10634 ATOM C7 0.57262 0.83531 0.20603 ATOM C8 0.46117 0.93025 0.25385 ATOM C9 0.42901 0.74419 0.18890 ATOM C10 0.76544 0.77133 0.36802 ATOM S11 0.97279 0.83780 0.40655 ATOM N12 0.98270 0.93502 0.31515 ATOM Br13 1.03560 0.98235 0.06413 ATOM O14 0.96088 0.89090 0.51494 ATOM O15 1.14120 0.75600 0.39882 ATOM H16 0.91161 0.77354 0.03131 ATOM H17 0.70024 0.70288 0.03759 ATOM H18 0.77997 0.63077 0.19629 ATOM H19 0.99034 0.70369 0.19450 ATOM H20 0.75870 1.04128 0.16103 ATOM H21 0.60161 0.90298 0.04460 ATOM H22 0.54137 1.00246 0.27744 ATOM H23 0.35642 0.96173 0.20150 ATOM H24 0.38887 0.90262 0.32216 ATOM H25 0.47757 0.67107 0.14786 ATOM H26 0.37547 0.71288 0.26091 ATOM H27 0.31105 0.77546 0.14576 ATOM H28 0.65234 0.80687 0.41178 ATOM H29 0.76829 0.68210 0.38357 ENERGY 8.96 kcal/mol asymmetric unit DENSITY 1.637 g/(cm^3) COMMENT Lowest energy structure according to CVFF950 force field. COMMENT Good sampling and good energy separation. COMMENT Confidence level: high. TITL Leusen V 2 SPACEGROUP P212121 CELL 12.391 6.924 13.628 90.000 90.000 90.000 ATOM C1 0.77544 0.40200 0.62850 ATOM C2 0.68884 0.27839 0.68451 ATOM C3 0.71538 0.06539 0.65106 ATOM C4 0.68049 0.05089 0.54409 ATOM C5 0.76045 0.15996 0.48160 ATOM C6 0.83621 0.24268 0.56546 ATOM C7 0.84176 0.06257 0.64331 ATOM C8 0.89739 -0.11861 0.60032 ATOM C9 0.90712 0.10356 0.73750 ATOM C10 0.65196 -0.08929 0.70370 ATOM S11 0.53897 -0.12158 0.62305 ATOM N12 0.59745 -0.04227 0.51818 ATOM Br13 0.69185 0.36085 0.40466 ATOM O14 0.49997 -0.33953 0.61708 ATOM O15 0.44371 0.02032 0.65247 ATOM H16 0.73915 0.51763 0.58346 ATOM H17 0.83189 0.47080 0.68067 ATOM H18 0.69829 0.29493 0.76480 ATOM H19 0.60546 0.32253 0.66589 ATOM H20 0.80492 0.06293 0.43178 ATOM H21 0.91576 0.29058 0.53849 ATOM H22 0.85861 -0.18164 0.53494 ATOM H23 0.98173 -0.08686 0.57905 ATOM H24 0.90094 -0.23689 0.65439 ATOM H25 0.88064 0.22917 0.78091 ATOM H26 0.90445 -0.01989 0.78895 ATOM H27 0.99300 0.12987 0.72014 ATOM H28 0.69516 -0.22784 0.70956 ATOM H29 0.62478 -0.04992 0.77777 ENERGY 9.13 kcal/mol asymmetric unit DENSITY 1.660 g/(cm^3) COMMENT Second lowest energy structure according to CVFF950 force field. COMMENT Good sampling and good energy separation. COMMENT Confidence level: high. TITL Leusen V 3 SPACEGROUP P21 74 CELL 7.158 10.485 8.247 90.000 76.096 90.000 ATOM C1 -0.04270 0.13263 0.24450 ATOM C2 0.03912 0.14802 0.40413 ATOM C3 0.26040 0.11805 0.33670 ATOM C4 0.27625 -0.02473 0.30081 ATOM C5 0.20554 -0.05132 0.14607 ATOM C6 0.14234 0.08813 0.10836 ATOM C7 0.31059 0.17636 0.15537 ATOM C8 0.51400 0.15201 0.04228 ATOM C9 0.28261 0.32114 0.13768 ATOM C10 0.38268 0.14304 0.45948 ATOM S11 0.41758 -0.01373 0.53474 ATOM N12 0.34737 -0.10155 0.38774 ATOM Br13 -0.00361 -0.17290 0.18746 ATOM O14 0.63660 -0.03990 0.53031 ATOM O15 0.28480 -0.04199 0.71496 ATOM H16 -0.16228 0.06364 0.26226 ATOM H17 -0.09679 0.22457 0.20829 ATOM H18 0.01631 0.24635 0.45371 ATOM H19 -0.03174 0.08296 0.50611 ATOM H20 0.32112 -0.08725 0.04272 ATOM H21 0.12777 0.10031 -0.02079 ATOM H22 0.56614 0.05317 0.04083 ATOM H23 0.52059 0.17712 -0.08938 ATOM H24 0.62412 0.20982 0.08215 ATOM H25 0.14574 0.36030 0.21189 ATOM H26 0.39587 0.37615 0.17666 ATOM H27 0.28910 0.34720 0.00657 ATOM H28 0.52495 0.18337 0.40077 ATOM H29 0.31574 0.20675 0.56337 ENERGY 9.78 kcal/mol asymmetric unit DENSITY 1.615 g/(cm^3) COMMENT Third lowest energy structure according to CVFF950 force field. COMMENT Good sampling; this structure is considerably higher in energy COMMENT than the first two; unlikely to be stable. TITL LOMMERSE IV-1 SPACEGROUP P21 CELL 7.711 10.744 8.160 90.000 97.706 ATOM C1 0.23340 -0.15228 0.09700 ATOM C2 0.36740 -0.08012 0.22072 ATOM C3 0.25223 0.01822 0.29512 ATOM C4 0.19941 0.10937 0.15477 ATOM C5 0.06578 0.04626 0.03150 ATOM C6 0.05916 -0.08442 0.10892 ATOM C7 0.07439 -0.05157 0.29802 ATOM C8 0.08583 -0.16601 0.41126 ATOM C9 -0.07342 0.03179 0.34506 ATOM C10 0.33908 0.09190 0.44167 ATOM N1 0.25497 0.21972 0.15354 ATOM Br1 0.11788 0.05328 -0.19892 ATOM S1 0.40041 0.24266 0.34740 ATOM O1 0.33043 0.36016 0.45047 ATOM O2 0.60668 0.23341 0.31379 ATOM H1 0.26716 -0.15066 -0.02665 ATOM H2 0.22449 -0.24867 0.13160 ATOM H3 0.43081 -0.13950 0.31738 ATOM H4 0.46904 -0.03619 0.16224 ATOM H5 -0.05706 0.09407 0.02409 ATOM H6 -0.05607 -0.13604 0.06042 ATOM H7 -0.03796 -0.21499 0.39490 ATOM H8 0.18612 -0.23124 0.38927 ATOM H9 0.11120 -0.13753 0.53954 ATOM H10 -0.19859 -0.01312 0.31044 ATOM H11 -0.05826 0.04609 0.47742 ATOM H12 -0.07952 0.12278 0.28845 ATOM H13 0.25320 0.11923 0.52861 ATOM H14 0.45963 0.05339 0.50127 COMM [2] [010126222072] P21 -39.984 0.000 COMM Ranked 2nd, with N..H contact END TITL LOMMERSE IV-2 SPACEGROUP P212121 CELL 9.486 11.243 ATOM C1 0.16664 ATOM C2 0.12888 11.584 0.36956 0.24617 90.000 90.000 0.35596 0.30449 90.000 90.000 75 ATOM C3 0.26423 0.21139 0.23671 ATOM C4 0.26666 0.29519 0.13372 ATOM C5 0.30611 0.41657 0.17713 ATOM C6 0.31578 0.39384 0.30828 ATOM C7 0.38533 0.26698 0.31106 ATOM C8 0.39875 0.21459 0.43279 ATOM C9 0.53149 0.26007 0.25397 ATOM C10 0.27122 0.08548 0.19088 ATOM N1 0.24619 0.26207 0.03107 ATOM Br1 0.17753 0.54488 0.12709 ATOM S1 0.21773 0.10124 0.03531 ATOM O1 0.33418 0.03387 -0.04749 ATOM O2 0.04754 0.07175 0.02461 ATOM H1 0.09286 0.43732 0.33066 ATOM H2 0.16794 0.36774 0.44900 ATOM H3 0.10755 0.18103 0.37067 ATOM H4 0.03808 0.24886 0.24840 ATOM H5 0.40502 0.44349 0.14077 ATOM H6 0.37314 0.46221 0.35335 ATOM H7 0.47572 0.26473 0.48167 ATOM H8 0.30177 0.21470 0.48103 ATOM H9 0.43583 0.12363 0.42817 ATOM H10 0.60312 0.32114 0.29609 ATOM H11 0.57507 0.17170 0.26342 ATOM H12 0.53175 0.28027 0.16286 ATOM H13 0.37545 0.04835 0.18708 ATOM H14 0.19643 0.02514 0.22821 COMM [14] [010314206685] P212121 -37.493 0.000 COMM Ranked 14th, P212121 seems less popular END TITL LOMMERSE IV-3 SPACEGROUP P21 CELL 7.481 9.233 9.095 90.000 97.139 ATOM C1 0.54376 0.05040 0.21100 ATOM C2 0.50395 0.00576 0.36820 ATOM C3 0.29540 -0.00988 0.34940 ATOM C4 0.22525 0.14432 0.32940 ATOM C5 0.25569 0.19356 0.17711 ATOM C6 0.35470 0.06137 0.12201 ATOM C7 0.25092 -0.06706 0.18687 ATOM C8 0.32972 -0.21669 0.16002 ATOM C9 0.04819 -0.07259 0.13164 ATOM C10 0.21370 -0.07602 0.47793 ATOM N1 0.14722 0.21059 0.42459 ATOM Br1 0.37924 0.38238 0.17256 ATOM S1 0.13655 0.08547 0.57917 ATOM O1 -0.07457 0.06217 0.60820 ATOM O2 0.29465 0.12638 0.71638 ATOM H1 0.61606 0.15111 0.21167 ATOM H2 0.62361 -0.02990 0.16301 ATOM H3 0.56634 -0.09601 0.40314 ATOM H4 0.54907 0.08504 0.45187 ATOM H5 0.12909 0.21362 0.11122 ATOM H6 0.35372 0.06019 0.00352 ATOM H7 0.30691 -0.24235 0.04306 ATOM H8 0.47212 -0.22541 0.19511 ATOM H9 0.26268 -0.29901 0.21796 ATOM H10 0.02791 -0.08190 0.01211 ATOM H11 -0.01248 -0.16678 0.17592 ATOM H12 -0.02659 0.02055 0.16176 ATOM H13 0.09279 -0.13728 0.44702 ATOM H14 0.30720 -0.13203 0.55716 COMM [XX] [010122215223] P21 -34.339 0.000 COMM Derived/optimised from ROLBOJ. END TITL Mooy-V-1 SPACEGROUP P212121 CELL 13.144 7.228 11.939 90.000 90.000 90.000 ATOM C1 0.41762 0.16891 0.76436 ATOM C2 0.31132 0.11966 0.71814 ATOM C3 0.24096 0.20079 0.81036 ATOM C4 0.25566 0.08392 0.90761 ATOM C5 0.35173 0.12108 0.96123 ATOM C6 0.39142 0.26828 0.87640 ATOM C7 0.29410 0.38242 0.84826 90.000 76 ATOM C8 0.12612 0.19946 0.78416 ATOM S9 0.08938 -0.01516 0.84844 ATOM N10 0.18529 -0.02855 0.93609 ATOM C11 0.24322 0.48309 0.94965 ATOM C12 0.30774 0.53281 0.75596 ATOM B13 0.43655 -0.09535 0.97869 ATOM O14 -0.01551 -0.00767 0.91412 ATOM O15 0.09757 -0.18263 0.76279 ATOM H16 0.45793 0.26032 0.70719 ATOM H17 0.46334 0.04547 0.77752 ATOM H18 0.29834 0.18655 0.63747 ATOM H19 0.30207 -0.02978 0.70878 ATOM H20 0.34030 0.18240 1.04365 ATOM H21 0.45441 0.35037 0.90869 ATOM H22 0.11015 0.19965 0.69475 ATOM H23 0.08668 0.31337 0.82529 ATOM H24 0.21747 0.38701 1.01383 ATOM H25 0.29732 0.57864 0.98747 ATOM H26 0.17714 0.56149 0.92157 ATOM H27 0.23326 0.57920 0.72744 ATOM H28 0.34962 0.48302 0.68346 ATOM H29 0.34881 0.65082 0.79039 ENERGY 37.94 kcal/mol COMMENT Density 1.31 g/cc COMMENT Lowest-energy structure in Dreiding+Multipole force field COMMENT First three structures span 1 kcal/mol in energy, increasing the COMMENT confidence in the prediction for this compound COMMENT Confidence (1-3) : 3 TITL Mooy-V-2 SPACEGROUP P21 CELL 7.096 10.549 8.545 90.000 112.826 90.000 ATOM C1 0.09045 -0.10802 0.58952 ATOM C2 0.23434 -0.16101 0.76348 ATOM C3 0.21683 -0.05911 0.88860 ATOM C4 0.32132 0.05240 0.86444 ATOM C5 0.21031 0.11143 0.70339 ATOM C6 0.02334 0.02005 0.64130 ATOM C7 -0.00907 -0.01334 0.80692 ATOM C8 0.31591 -0.09493 1.07856 ATOM S9 0.54248 0.00161 1.15187 ATOM N10 0.48345 0.09206 0.98365 ATOM C11 -0.06599 0.10244 0.89382 ATOM C12 -0.17569 -0.11580 0.78662 ATOM B13 0.36270 0.12259 0.55939 ATOM O14 0.55853 0.08748 1.30901 ATOM O15 0.74576 -0.07458 1.17814 ATOM H16 -0.04118 -0.16977 0.53065 ATOM H17 0.16858 -0.09610 0.50291 ATOM H18 0.18071 -0.25333 0.78655 ATOM H19 0.39070 -0.17015 0.77051 ATOM H20 0.16357 0.20646 0.72242 ATOM H21 -0.11024 0.06121 0.54182 ATOM H22 0.35741 -0.19477 1.09691 ATOM H23 0.21881 -0.06982 1.14631 ATOM H24 0.04484 0.17916 0.92238 ATOM H25 -0.21406 0.13911 0.80953 ATOM H26 -0.07605 0.07335 1.01271 ATOM H27 -0.18916 -0.13155 0.90785 ATOM H28 -0.14257 -0.20673 0.74295 ATOM H29 -0.32266 -0.08281 0.69501 ENERGY 38.60 kcal/mol COMMENT Density 1.26 g/cc COMMENT 2nd-lowest energy structure in Dreiding+Multipole force field TITL Mooy-V-3 SPACEGROUP P212121 CELL 10.746 9.982 10.848 90.000 90.000 90.000 ATOM C1 0.20320 0.59055 0.43236 ATOM C2 0.19207 0.53767 0.56595 ATOM C3 0.06159 0.47032 0.56368 ATOM C4 -0.02716 0.57916 0.55860 ATOM C5 -0.02626 0.64289 0.43988 ATOM C6 0.07421 0.55316 0.37728 ATOM C7 0.04832 0.41117 0.43159 ATOM C8 0.02766 0.38439 0.67682 ATOM S9 -0.07080 0.49602 0.76230 77 ATOM N10 -0.09775 0.60301 0.65073 ATOM C11 -0.08209 0.35111 0.39890 ATOM C12 0.14489 0.30069 0.39660 ATOM B13 0.01164 0.83173 0.44824 ATOM O14 -0.19594 0.42380 0.80216 ATOM O15 0.00116 0.56721 0.87214 ATOM H16 0.27784 0.53931 0.38360 ATOM H17 0.22094 0.69810 0.43003 ATOM H18 0.26553 0.46533 0.58579 ATOM H19 0.19682 0.61971 0.63260 ATOM H20 -0.11591 0.63043 0.39527 ATOM H21 0.07161 0.55759 0.27678 ATOM H22 0.10835 0.35310 0.73024 ATOM H23 -0.02705 0.29767 0.65011 ATOM H24 -0.15868 0.41118 0.43442 ATOM H25 -0.09216 0.34442 0.29919 ATOM H26 -0.09101 0.25078 0.43756 ATOM H27 0.12608 0.20939 0.44861 ATOM H28 0.24046 0.33002 0.41531 ATOM H29 0.13761 0.27818 0.29863 ENERGY 38.93 kcal/mol COMMENT Density 1.27 g/cc COMMENT 3rd-lowest energy structure in Dreiding+Multipole force field TITL Motherwell V 1 SPACEGROUP P212121 CELL 7.955 8.485 16.424 90.000 90.000 90.000 ATOM S1 0.22749 -0.07362 0.57650 ATOM O1 0.06945 -0.05910 0.61717 ATOM O2 0.36235 -0.14485 0.62092 ATOM N1 0.29074 0.10560 0.54652 ATOM C1 0.27466 0.11334 0.46953 ATOM C2 0.32289 0.24061 0.41052 ATOM C3 0.27793 0.16124 0.32924 ATOM C4 0.32099 -0.01406 0.34473 ATOM C5 0.08512 0.16133 0.32372 ATOM C6 0.03417 0.04001 0.38737 ATOM C7 0.20474 -0.02220 0.42117 ATOM C8 0.20316 -0.16196 0.47738 ATOM C9 0.26686 -0.12888 0.27799 ATOM C10 0.50568 -0.04459 0.36442 ATOM H3 0.33334 0.22179 0.27777 ATOM H4 0.02523 0.27373 0.33534 ATOM H5 0.04937 0.11868 0.26404 ATOM H6 -0.04371 0.08323 0.43663 ATOM H7 -0.02938 -0.06247 0.36293 ATOM H8 0.30976 -0.23543 0.46183 ATOM H9 0.08229 -0.22069 0.47742 ATOM H10 0.14282 -0.10920 0.25279 ATOM H11 0.28399 -0.24764 0.30069 ATOM H12 0.33792 -0.09200 0.22507 ATOM H13 0.52996 -0.16725 0.37835 ATOM H14 0.58349 -0.02325 0.31144 ATOM H15 0.55729 0.02689 0.41299 ATOM Br1 0.19278 0.43120 0.42787 ATOM H1C2 0.45231 0.27914 0.41517 ENERGY -54.4 kcal/mole COMMENT Global lowest E. Global Lowest Volume. COMMENT Reasonable atom contacts, but perhaps too closely COMMENT packed. Br shows two O contacts at 3.2, not seen in SO2...Br in CSD. COMMENT E(HH) reasonably low. COOMENT Not the best contact-score function. COMMENT ID=171329 TITL Motherwell V 2 SPACEGROUP P212121 CELL 7.602 14.106 ATOM S1 0.24644 ATOM O1 0.29324 ATOM O2 0.28992 ATOM N1 0.34045 ATOM C1 0.22037 ATOM C2 0.22755 ATOM C3 0.03202 ATOM C4 -0.06300 ATOM C5 -0.01165 ATOM C6 -0.00762 10.353 90.000 90.000 -0.15954 0.13847 -0.19329 0.26399 -0.21860 0.03067 -0.05349 0.11496 0.00925 0.12019 0.11421 0.09706 0.14024 0.11034 0.05289 0.05284 0.13435 0.25503 0.02825 0.28160 90.000 78 ATOM C7 0.03196 -0.01662 0.14717 ATOM C8 0.01966 -0.12245 0.13297 ATOM C9 -0.26278 0.05138 0.06915 ATOM C10 -0.02033 0.03380 -0.08888 ATOM H3 0.00401 0.21018 0.07243 ATOM H4 0.07778 0.17181 0.31847 ATOM H5 -0.14437 0.16023 0.26922 ATOM H6 0.08829 0.00474 0.35201 ATOM H7 -0.13267 -0.00135 0.31131 ATOM H8 -0.03927 -0.13713 0.03986 ATOM H9 -0.04490 -0.15487 0.21509 ATOM H10 -0.31113 0.07319 0.16295 ATOM H11 -0.30987 -0.01797 0.04054 ATOM H12 -0.30749 0.11282 0.01569 ATOM H13 -0.08294 -0.03005 -0.12439 ATOM H14 -0.07521 0.08877 -0.14980 ATOM H15 0.11850 0.03020 -0.11180 ATOM Br1 0.37029 0.17805 0.22590 ATOM H1C2 0.28646 0.13449 0.00591 ENERGY -52.6 kcal/mole COMMENT Ranked 2 in energy globally. Good contact-score functions. COMMENT Low volume, almost global lowest. COMMENT Good Br...O contact, as often seen in CSD. COMMENT ID=165306 TITL Motherwell V 3 SPACEGROUP P21 CELL 8.804 10.919 8.224 90.000 46.673 90.000 ATOM S1 0.13098 0.07039 0.53388 ATOM O1 -0.03170 0.00102 0.72863 ATOM O2 0.23239 0.16149 0.55647 ATOM N1 0.03490 0.13945 0.43857 ATOM C1 0.10857 0.08519 0.26010 ATOM C2 0.08718 0.11355 0.09801 ATOM C3 0.23110 0.01552 -0.08149 ATOM C4 0.40823 0.00453 -0.08447 ATOM C5 0.11493 -0.10704 0.01942 ATOM C6 0.12338 -0.13270 0.19501 ATOM C7 0.25143 -0.02350 0.17118 ATOM C8 0.31779 -0.02804 0.29763 ATOM C9 0.56307 -0.09990 -0.22599 ATOM C10 0.53162 0.12246 -0.14849 ATOM H3 0.26933 0.03500 -0.23522 ATOM H4 -0.04473 -0.10699 0.09329 ATOM H5 0.20388 -0.17654 -0.10940 ATOM H6 -0.02603 -0.13962 0.36576 ATOM H7 0.21023 -0.21418 0.16383 ATOM H8 0.47449 0.00885 0.18980 ATOM H9 0.29718 -0.11851 0.36431 ATOM H10 0.49518 -0.18654 -0.21240 ATOM H11 0.66094 -0.10745 -0.19094 ATOM H12 0.63566 -0.07796 -0.39463 ATOM H13 0.64818 0.11302 -0.13952 ATOM H14 0.62348 0.14439 -0.32264 ATOM H15 0.43829 0.20279 -0.05379 ATOM Br1 -0.19892 0.09457 0.23445 ATOM H1C2 0.12703 0.20673 0.03598 ENERGY -52.4 kcal/mole COMMENT Lowest energy in P21 - rank 3 globally. Lowest Volume in P21. COMMENT Reasonable contacts, but not best score function value. COMMENT No Br...O close contacts. COMMENT ID=165806 TITL PRICE V 1 SPACEGROUP P212121 CELL 16.222716 10.413043 7.177183 ATOM S1 0.943065 0.719405 ATOM O1 0.946974 0.631562 ATOM O2 0.869573 0.790736 ATOM N1 1.022748 0.822407 ATOM C1 1.077264 0.789474 ATOM C2 1.157527 0.854245 ATOM C3 1.190179 0.762299 ATOM C4 1.108780 0.726760 ATOM C5 1.214671 0.633792 ATOM C6 1.130566 0.574233 ATOM C7 1.067333 0.674142 90.000000 0.242668 0.090042 0.276540 0.225920 0.339707 0.389556 0.541573 0.647219 0.450515 0.394365 0.466623 90.000000 90.000000 79 ATOM C8 0.976440 0.639747 0.453524 ATOM C9 1.120816 0.626594 0.801643 ATOM C10 1.063749 0.841740 0.735390 ATOM Br1 1.229295 0.883351 0.176834 ATOM H1 1.145742 0.949238 0.442602 ATOM H2 1.237970 0.805394 0.626235 ATOM H3 1.254942 0.647537 0.332466 ATOM H4 1.247292 0.573784 0.548994 ATOM H5 1.124677 0.559784 0.245462 ATOM H6 1.120153 0.482085 0.460339 ATOM H7 0.940162 0.679230 0.566178 ATOM H8 0.963888 0.538389 0.438365 ATOM H9 1.152251 0.540564 0.756689 ATOM H10 1.061492 0.597973 0.857969 ATOM H11 1.156224 0.667970 0.915117 ATOM H12 1.009974 0.809294 0.811825 ATOM H13 1.103944 0.889675 0.834332 ATOM H14 1.042567 0.913043 0.636519 ENERGY AQ26 -110.1 kJ/mol COMMENT Global minumum in search by 1.7 kJ/mol COMMENT This should be the observed structure on COMMENT lattice energy assumption, unless there is COMMENT a problem with my search or potential. TITL PRICE V 2 SPACEGROUP P21 CELL 7.218408 10.703313 8.628916 90.000000 67.553694 90.000000 ATOM S1 0.072110 0.966357 0.852437 ATOM O1 0.221125 0.879426 0.854883 ATOM O2 0.105626 1.040964 0.707337 ATOM N1 0.014430 1.060919 1.020343 ATOM C1 -0.148855 1.026184 1.129490 ATOM C2 -0.273041 1.084125 1.296485 ATOM C3 -0.453730 0.993854 1.357857 ATOM C4 -0.483502 0.965732 1.190630 ATOM C5 -0.384653 0.866535 1.399884 ATOM C6 -0.250688 0.813867 1.225366 ATOM C7 -0.265075 0.915866 1.102879 ATOM C8 -0.167912 0.888497 0.916138 ATOM C9 -0.647490 0.868898 1.209617 ATOM C10 -0.530643 1.081288 1.106051 ATOM Br1 -0.127752 1.105719 1.443496 ATOM H1 -0.315738 1.177690 1.278213 ATOM H2 -0.582425 1.033219 1.457693 ATOM H3 -0.304424 0.876147 1.482242 ATOM H4 -0.512284 0.806842 1.462919 ATOM H5 -0.096935 0.798951 1.212188 ATOM H6 -0.306013 0.725585 1.198998 ATOM H7 -0.246895 0.930284 0.845015 ATOM H8 -0.140429 0.790713 0.884673 ATOM H9 -0.631059 0.782772 1.268363 ATOM H10 -0.648599 0.845593 1.087550 ATOM H11 -0.793433 0.907678 1.284261 ATOM H12 -0.556852 1.054043 0.995066 ATOM H13 -0.666595 1.125993 1.190766 ATOM H14 -0.413270 1.151167 1.066921 ENERGY AH3 -108.4 kJ/mol COMMENT Second lowest energy, but very easily found in search COMMENT from a range structures. Hence may be favoured by topology COMMENT of potential energy surface. TITL PRICE V 3 SPACEGROUP P212121 CELL 10.859691 12.906902 8.562079 ATOM S1 0.897032 0.719946 ATOM O1 0.984404 0.789716 ATOM O2 0.827711 0.652181 ATOM N1 0.798922 0.788332 ATOM C1 0.828304 0.776424 ATOM C2 0.765447 0.814386 ATOM C3 0.850513 0.767896 ATOM C4 0.882120 0.659641 ATOM C5 0.975650 0.824159 ATOM C6 1.033633 0.786321 ATOM C7 0.936157 0.709414 ATOM C8 0.969089 0.647733 ATOM C9 0.974939 0.596724 90.000000 0.884391 0.817354 0.786624 0.996547 1.136768 1.283218 1.409788 1.337220 1.405360 1.249808 1.186047 1.040670 1.433440 90.000000 90.000000 80 ATOM C10 0.769933 0.589276 1.308921 ATOM Br1 0.742231 0.963664 1.288622 ATOM H1 0.673264 0.783873 1.289203 ATOM H2 0.807614 0.765816 1.523859 ATOM H3 0.965073 0.907276 1.409101 ATOM H4 1.031226 0.802463 1.504992 ATOM H5 1.050553 0.848791 1.168047 ATOM H6 1.120531 0.746937 1.268009 ATOM H7 0.928789 0.571140 1.039363 ATOM H8 1.066503 0.643138 1.015995 ATOM H9 1.058427 0.638242 1.461449 ATOM H10 1.000989 0.527090 1.370489 ATOM H11 0.933039 0.572515 1.542642 ATOM H12 0.799256 0.514582 1.264427 ATOM H13 0.722059 0.575273 1.418227 ATOM H14 0.703583 0.619808 1.226472 ENERGY AQ2 -106.0 kJ/mol (4th in energy) COMMENT Choice between 3 structures between -106.5 and -105.8 difficult. COMMENT There is then an energy gap to -103.7 kJ/mol. COMMENT This choice based on density, after consideration of COMMENT elastic constants, attachment energies and structures COMMENT did not provide any differentiation in top 5. TITL Scheraga V 1 SPACEGROUP P21 CELL 7.2150 11.2660 8.8110 90.0000 60.3100 90.0000 ATOM C1 .09990 .18574 -.32455 ATOM C2 .04623 .11623 -.16128 ATOM H3 .02301 .27111 -.28969 ATOM C4 -.08090 .00800 -.15771 ATOM N5 .08082 .14042 -.03885 ATOM C6 .08352 -.07562 -.30078 ATOM C7 -.18748 -.03507 .03044 ATOM C8 -.20594 .06049 -.24445 ATOM C9 .13697 -.01046 -.47296 ATOM H10 .22207 -.08892 -.28551 ATOM H11 .01313 -.16209 -.29180 ATOM C12 .00357 .10416 -.40883 ATOM H13 .30516 .00805 -.55260 ATOM H14 .09055 -.06222 -.55212 ATOM H15 -.01857 .14924 -.50712 ATOM C16 -.33173 -.03114 -.28624 ATOM C17 -.36304 .16006 -.13852 ATOM H18 -.39931 .01086 -.35872 ATOM H19 -.23788 -.10588 -.36209 ATOM H20 -.46348 -.06568 -.16610 ATOM H21 -.40954 .20862 -.22076 ATOM H22 -.50725 .12287 -.03130 ATOM H23 -.30166 .22368 -.08223 ATOM Br24 .40054 .22299 -.46619 ATOM H25 -.34998 -.00436 .10813 ATOM H26 -.18039 -.12986 .04517 ATOM S27 -.03392 .03558 .11686 ATOM O28 .12798 -.04379 .10311 ATOM O29 -.17237 .09199 .27920 ENERGY 26.03 kcal/mol COMMENT Lowest energy structure. COMMENT The packing seems reasonable. Similar packings are found with COMMENT slightly higer E. COMMENT Confidence level (1-10): 6, by energy TITL Scheraga V 2 SPACEGROUP P212121 CELL 9.9670 11.5280 ATOM C1 .14448 ATOM C2 .07821 ATOM H3 .13443 ATOM C4 -.03847 ATOM N5 .10227 ATOM C6 .02674 ATOM C7 -.12498 ATOM C8 -.08388 ATOM C9 .09150 ATOM H10 .09911 ATOM H11 -.04909 ATOM C12 .06014 ATOM H13 .19798 10.7600 .06156 -.05613 .10482 -.05537 -.14083 -.05986 -.15771 .07360 .06199 -.12967 -.07547 .12028 .05750 90.0000 .02999 .03584 .11817 -.05459 .10512 -.18531 -.01552 -.04271 -.19844 -.19210 -.25542 -.07284 -.21601 90.0000 90.0000 81 ATOM H14 .04746 .11065 -.27409 ATOM H15 .07051 .21371 -.07301 ATOM C16 -.19095 .11118 -.13694 ATOM C17 -.13674 .10682 .08686 ATOM H18 -.20876 .20378 -.12900 ATOM H19 -.16510 .09318 -.23249 ATOM H20 -.28518 .06762 -.11739 ATOM H21 -.13946 .20053 .09633 ATOM H22 -.23853 .07558 .09910 ATOM H23 -.07832 .07266 .16343 ATOM Br24 .33650 .05484 .00245 ATOM H25 -.20793 -.13306 .04357 ATOM H26 -.16058 -.21089 -.09130 ATOM S27 -.01279 -.24484 .07818 ATOM O28 .04696 -.33270 .00270 ATOM O29 -.07533 -.27495 .19290 ENERGY 25.77 kcal/mol COMMENT Releative E=+0.26 kcal/mol COMMENT Confidence level (1-10): 5, by energy. TITL Scheraga V 3 SPACEGROUP P21 CELL 7.3090 10.2360 8.4540 90.0000 78.0300 ATOM C1 -.37932 .49802 -.26150 ATOM C2 -.27540 .53480 -.13111 ATOM H3 -.28213 .46305 -.36648 ATOM C4 -.29884 .68067 -.10272 ATOM N5 -.17489 .46639 -.06062 ATOM C6 -.50444 .69849 -.01177 ATOM C7 -.14568 .71768 -.01372 ATOM C8 -.30269 .72738 -.27757 ATOM C9 -.61778 .66749 -.14349 ATOM H10 -.53835 .63410 .09187 ATOM H11 -.52697 .79755 .03302 ATOM C12 -.46530 .63129 -.29203 ATOM H13 -.71654 .58904 -.10850 ATOM H14 -.69663 .75139 -.16941 ATOM H15 -.51094 .63437 -.40582 ATOM C16 -.35276 .87199 -.29090 ATOM C17 -.11927 .70357 -.40121 ATOM H18 -.36725 .89368 -.41340 ATOM H19 -.48088 .90114 -.21019 ATOM H20 -.24132 .93335 -.26521 ATOM H21 -.14356 .71215 -.52317 ATOM H22 -.01606 .77670 -.38808 ATOM H23 -.05585 .60913 -.39114 ATOM Br24 -.55292 .35444 -.20242 ATOM H25 -.02209 .75638 -.09269 ATOM H26 -.18985 .78214 .08820 ATOM S27 -.08007 .56304 .06226 ATOM O28 -.18079 .54464 .22452 ATOM O29 .11808 .54756 .02367 ENERGY 25.43kcal/mol COMMENT Releative E=+0.60 kcal/mol. COMMENT Confidence level (1-10): 4, by energy 90.0000 TITL Schmidt V 1 SPACEGROUP P212121 CELL 8.9201 9.2143 13.3322 90.0000 90.0000 90.0000 ATOM C1 0.23945 0.47667 0.16927 ATOM C2 0.32824 0.34680 0.12106 ATOM C3 0.22611 0.27888 0.04447 ATOM C4 0.08260 0.37375 0.05444 ATOM C5 0.00951 0.33965 0.15623 ATOM C6 0.11625 0.40590 0.23392 ATOM C7 0.15125 0.52876 0.07481 ATOM C8 0.35524 0.56724 0.22110 ATOM S9 0.52401 0.46401 0.22538 ATOM N10 0.46505 0.33276 0.14634 ATOM C11 0.03259 0.64482 0.09719 ATOM C12 0.25005 0.58459 -0.01109 ATOM O13 0.54593 0.41203 0.32538 ATOM O14 0.64173 0.54972 0.18305 ATOM Br15 0.19986 0.06809 0.05900 ATOM H16 0.27222 0.29123 -0.02666 ATOM H17 0.01158 0.36691 -0.00725 ATOM H18 -0.00363 0.22862 0.16717 82 ATOM H19 -0.09642 0.38642 0.16023 ATOM H20 0.06328 0.48366 0.27797 ATOM H21 0.16086 0.32738 0.28135 ATOM H22 0.37213 0.66425 0.18285 ATOM H23 0.32098 0.59444 0.29325 ATOM H24 -0.04050 0.61434 0.15420 ATOM H25 0.08512 0.74056 0.11890 ATOM H26 -0.03008 0.66499 0.03290 ATOM H27 0.18814 0.58733 -0.07717 ATOM H28 0.28703 0.68922 0.00450 ATOM H29 0.34420 0.52026 -0.02293 ENERGY -99.23 kJ/mol COMMENT Best energy, smallest unit cell volume. COMMENT Confidence level (1-10): 5, by energy and volume. TITL Schmidt V 2 SPACEGROUP P212121 CELL 6.7424 12.0180 13.6871 90.0000 90.0000 90.0000 ATOM C1 0.15099 0.44190 0.28888 ATOM C2 0.00685 0.34747 0.25308 ATOM C3 0.05936 0.32364 0.14830 ATOM C4 0.23058 0.40782 0.12973 ATOM C5 0.14124 0.52556 0.12855 ATOM C6 0.08342 0.54802 0.23510 ATOM C7 0.34106 0.40734 0.23133 ATOM C8 0.13787 0.44032 0.39805 ATOM S9 -0.06909 0.35573 0.43022 ATOM N10 -0.10595 0.30387 0.31704 ATOM C11 0.51017 0.49243 0.23747 ATOM C12 0.42524 0.29312 0.25932 ATOM O13 -0.22789 0.42596 0.46175 ATOM O14 -0.00279 0.27256 0.49742 ATOM Br15 -0.16595 0.32897 0.05725 ATOM H16 0.11217 0.24263 0.14230 ATOM H17 0.31815 0.38777 0.06971 ATOM H18 0.01920 0.53085 0.08231 ATOM H19 0.24571 0.58270 0.10389 ATOM H20 0.15579 0.61741 0.26321 ATOM H21 -0.06845 0.56043 0.24276 ATOM H22 0.26765 0.40873 0.42833 ATOM H23 0.12015 0.52030 0.42572 ATOM H24 0.46548 0.57234 0.21836 ATOM H25 0.56458 0.49518 0.30854 ATOM H26 0.62457 0.46874 0.19094 ATOM H27 0.52212 0.26595 0.20522 ATOM H28 0.50325 0.29874 0.32468 ATOM H29 0.31549 0.23319 0.26835 ENERGY -98.46 kJ/mol COMMENT Energy rank 2 COMMENT Confidence level (1-10): 4, by energy TITL Schmidt V 3 SPACEGROUP P212121 CELL 7.2768 8.7081 17.4610 90.0000 90.0000 90.0000 ATOM C1 0.27865 -0.03289 0.11899 ATOM C2 0.20486 0.08637 0.17920 ATOM C3 0.03878 0.16148 0.14410 ATOM C4 0.02870 0.08135 0.06457 ATOM C5 0.19190 0.13800 0.01625 ATOM C6 0.36093 0.06418 0.05361 ATOM C7 0.09151 -0.08724 0.08479 ATOM C8 0.40498 -0.13630 0.16278 ATOM S9 0.44609 -0.04894 0.25345 ATOM N10 0.28180 0.08678 0.24466 ATOM C11 0.11097 -0.19126 0.01435 ATOM C12 -0.03567 -0.16805 0.14210 ATOM O13 0.62746 0.01428 0.25390 ATOM O14 0.40354 -0.15838 0.31188 ATOM Br15 0.04511 0.38718 0.14399 ATOM H16 -0.07718 0.13454 0.17621 ATOM H17 -0.09932 0.09031 0.03847 ATOM H18 0.20129 0.25717 0.01607 ATOM H19 0.17694 0.10281 -0.04032 ATOM H20 0.43242 -0.00549 0.01551 ATOM H21 0.45162 0.14626 0.07468 ATOM H22 0.34655 -0.24442 0.16969 ATOM H23 0.52812 -0.15214 0.13360 83 ATOM H24 0.19400 -0.14357 -0.02789 ATOM H25 0.16854 -0.29562 0.03059 ATOM H26 -0.01802 -0.21193 -0.00915 ATOM H27 -0.16880 -0.17077 0.12047 ATOM H28 0.00781 -0.28046 0.15083 ATOM H29 -0.03871 -0.11390 0.19517 ENERGY -97.81 kJ/mol COMMENT Energy rank 3 COMMENT Confidence level (1-10): 3, by energy COMMENT There are 13 additional possible packings with energies < -95 kJ/mol COMMENT (10 packings in P212121, two in P21, one in C2). TITL Van Eijck V 1 SPACEGROUP P212121 CELL 9.98479 15.89078 7.11903 90.000 90.000 90.000 ATOM C1 .468909 .855063 .940382 ATOM C2 .596664 .811791 1.010379 ATOM H3 .668753 .798905 .899326 ATOM H4 .574063 .751646 1.077066 ATOM H5 .645764 .851712 1.114050 ATOM C6 .373298 .852212 1.108399 ATOM H7 .378771 .792207 1.182141 ATOM H8 .269260 .860358 1.067329 ATOM H9 .397525 .901836 1.208278 ATOM C10 .488498 .943963 .850116 ATOM H11 .533802 .989416 .945902 ATOM C12 .343985 .968076 .788518 ATOM H13 .342235 1.018370 .685238 ATOM H14 .283795 .987736 .908006 ATOM C15 .292692 .885576 .706184 ATOM H16 .198102 .866990 .770421 ATOM H17 .276873 .891497 .555457 ATOM C18 .406607 .821451 .751476 ATOM C19 .514890 .843431 .609149 ATOM C20 .576621 .924219 .674676 ATOM BR21 .587138 1.011535 .477122 ATOM H22 .679473 .912258 .718652 ATOM C23 .376850 .729933 .727366 ATOM H24 .386362 .696293 .859673 ATOM H25 .277454 .720013 .671032 ATOM N26 .553076 .788570 .488750 ATOM S27 .500100 .695550 .563970 ATOM O28 .439796 .650649 .411074 ATOM O29 .607513 .655757 .662157 ENERGY -318.983 kJ/mol COMMENT The best structure in free energy; the next one is 3.9 kJ/mol higher. COMMENT It is the fourth one in energy. TITL Van Eijck V 2 SPACEGROUP P212121 CELL 7.94880 11.38622 12.39743 ATOM C1 .782094 .450193 ATOM C2 .929851 .502344 ATOM H3 .905111 .589854 ATOM H4 1.040584 .510214 ATOM H5 .963370 .445796 ATOM C6 .861689 .346940 ATOM H7 .960653 .377937 ATOM H8 .772263 .298027 ATOM H9 .918011 .285386 ATOM C10 .619923 .420355 ATOM H11 .641672 .355248 ATOM C12 .491797 .378240 ATOM H13 .361413 .386454 ATOM H14 .513810 .286972 ATOM C15 .531142 .460386 ATOM H16 .569187 .411113 ATOM H17 .421440 .512546 ATOM C18 .678361 .538319 ATOM C19 .596540 .618168 ATOM C20 .568681 .543220 ATOM BR21 .341363 .559110 ATOM H22 .655820 .569690 ATOM C23 .764680 .617566 ATOM H24 .894709 .591501 ATOM H25 .698291 .619516 ATOM N26 .605142 .730126 90.000 .633773 .696914 .728480 .645514 .764511 .573505 .519811 .524694 .630469 .699718 .762418 .612956 .638871 .591479 .519009 .447676 .497800 .561751 .645801 .743549 .806051 .806819 .483052 .469755 .406682 .635859 90.000 90.000 84 ATOM S27 .754362 .758392 .545802 ATOM O28 .695036 .845470 .471523 ATOM O29 .907401 .785504 .601822 ENERGY -320.070 kJ/mol COMMENT The second best structure in free energy and also in energy. COMMENT But the energy differences with next ones are extremely small. TITL Van Eijck V 3 SPACEGROUP P212121 CELL 14.65069 8.52371 8.71607 90.000 90.000 90.000 ATOM C1 .661322 .846078 .576590 ATOM C2 .765579 .844874 .561542 ATOM H3 .789768 .788295 .457383 ATOM H4 .796961 .782905 .657667 ATOM H5 .791590 .964549 .561200 ATOM C6 .644735 .929878 .729533 ATOM H7 .694945 .895190 .815536 ATOM H8 .577983 .904013 .777384 ATOM H9 .649395 1.056507 .714462 ATOM C10 .606860 .913433 .436936 ATOM H11 .624860 1.034288 .409401 ATOM C12 .505651 .893343 .487918 ATOM H13 .457695 .900330 .392772 ATOM H14 .486418 .982435 .571520 ATOM C15 .506610 .730024 .559448 ATOM H16 .479532 .732233 .675915 ATOM H17 .465295 .648732 .492165 ATOM C18 .609894 .684204 .558254 ATOM C19 .629432 .643066 .391278 ATOM C20 .630232 .795695 .306026 ATOM BR21 .550189 .796866 .123634 ATOM H22 .698832 .818697 .263558 ATOM C23 .637857 .543810 .649653 ATOM H24 .675228 .578796 .751233 ATOM H25 .579596 .472885 .682967 ATOM N26 .662918 .507848 .358689 ATOM S27 .709095 .439268 .518860 ATOM O28 .694361 .273279 .530179 ATOM O29 .801435 .492912 .523310 ENERGY -320.391 kJ/mol COMMENT The first structure in energy and the third one in free energy. COMMENT But the energy differences with next ones are extremely small. TITL Verwer V 1 SPACEGROUP P212121 CELL 7.1776 13.3227 12.2159 90.0000 ATOM C1 0.40050 0.13422 0.77947 ATOM C2 0.29263 0.18810 0.68638 ATOM C3 0.08707 0.15417 0.70716 ATOM C4 0.07779 0.04818 0.67899 ATOM C5 0.17615 -0.01390 0.75606 ATOM C6 0.24147 0.07217 0.83470 ATOM C7 0.07231 0.14666 0.83515 ATOM C8 -0.06410 0.20878 0.63810 ATOM S9 -0.09298 0.12088 0.53162 ATOM N10 -0.01529 0.01788 0.59723 ATOM C11 -0.11370 0.10263 0.88334 ATOM C12 0.10004 0.24700 0.90101 ATOM BR13 0.36892 -0.09447 0.68861 ATOM O14 -0.28553 0.10724 0.50662 ATOM O15 0.03555 0.14567 0.44647 ATOM H16 0.46089 0.18764 0.83694 ATOM H17 0.51349 0.08796 0.74777 ATOM H18 0.30568 0.26943 0.69354 ATOM H19 0.34338 0.16535 0.60561 ATOM H20 0.07982 -0.06494 0.79682 ATOM H21 0.27951 0.04483 0.91599 ATOM H22 -0.02029 0.27901 0.60110 ATOM H23 -0.19827 0.21632 0.67846 ATOM H24 -0.16735 0.03768 0.83948 ATOM H25 -0.09234 0.08023 0.96837 ATOM H26 -0.22363 0.15871 0.88160 ATOM H27 -0.02092 0.29585 0.89218 ATOM H28 0.21942 0.29143 0.87572 ATOM H29 0.11786 0.23003 0.98759 ENERGY -114.56 kcal/mol COMMENT d= 1.6615 g/cc 90.0000 90.0000 85 COMMENT structure ranked nr. 1 by energy TITL Verwer V 2 SPACEGROUP P212121 CELL 12.8533 7.3814 12.3747 90.0000 90.0000 ATOM C1 0.41439 0.17170 0.76169 ATOM C2 0.30341 0.12171 0.72291 ATOM C3 0.23392 0.20572 0.81364 ATOM C4 0.25261 0.10031 0.91126 ATOM C5 0.35306 0.13828 0.95804 ATOM C6 0.39077 0.27518 0.86949 ATOM C7 0.29001 0.38756 0.84433 ATOM C8 0.11496 0.20002 0.79317 ATOM S9 0.08337 -0.00312 0.86023 ATOM N10 0.18294 -0.00401 0.94869 ATOM C11 0.24147 0.49599 0.94176 ATOM C12 0.30035 0.53325 0.75255 ATOM BR13 0.43966 -0.07216 0.98164 ATOM O14 -0.01167 0.01207 0.91913 ATOM O15 0.09756 -0.14860 0.78547 ATOM H16 0.45464 0.25692 0.70341 ATOM H17 0.46186 0.05149 0.77361 ATOM H18 0.28626 0.18302 0.64458 ATOM H19 0.29359 -0.02498 0.71572 ATOM H20 0.34400 0.20424 1.03655 ATOM H21 0.45672 0.35737 0.89528 ATOM H22 0.09226 0.18795 0.70906 ATOM H23 0.07212 0.30739 0.83351 ATOM H24 0.21146 0.40969 1.00569 ATOM H25 0.30017 0.58496 0.97702 ATOM H26 0.17610 0.57953 0.91549 ATOM H27 0.22316 0.57784 0.72695 ATOM H28 0.34019 0.48514 0.68090 ATOM H29 0.34338 0.65087 0.78183 ATOM END 0.00000 0.00000 0.00000 ENERGY -114.47 kcal/mol COMMENT d= 1.6531 g/cc COMMENT structure ranked nr. 2 by energy 90.0000 TITL Verwer V 3 SPACEGROUP P212121 CELL 11.1706 10.6788 10.0135 90.0000 90.0000 90.0000 ATOM C1 -0.06910 0.69951 0.08628 ATOM C2 0.06079 0.68794 0.03198 ATOM C3 0.06080 0.55328 -0.02986 ATOM C4 0.05650 0.46626 0.08183 ATOM C5 -0.05773 0.46774 0.14807 ATOM C6 -0.12015 0.56631 0.05533 ATOM C7 -0.06904 0.53579 -0.08709 ATOM C8 0.17183 0.51827 -0.11508 ATOM S9 0.25399 0.42639 -0.00154 ATOM N10 0.14406 0.39502 0.10859 ATOM C11 -0.10084 0.40213 -0.14370 ATOM C12 -0.10658 0.62730 -0.20285 ATOM BR13 -0.04983 0.50724 0.33642 ATOM O14 0.28922 0.31216 -0.06417 ATOM O15 0.34166 0.50327 0.06233 ATOM H16 -0.11978 0.77166 0.03431 ATOM H17 -0.07058 0.72292 0.19209 ATOM H18 0.07909 0.75916 -0.04353 ATOM H19 0.12707 0.69797 0.11186 ATOM H20 -0.09943 0.37596 0.13934 ATOM H21 -0.21781 0.56260 0.06129 ATOM H22 0.22676 0.59633 -0.14758 ATOM H23 0.15039 0.45660 -0.19763 ATOM H24 -0.06276 0.32538 -0.08615 ATOM H25 -0.19773 0.38950 -0.14519 ATOM H26 -0.06761 0.39056 -0.24540 ATOM H27 -0.05759 0.60521 -0.29434 ATOM H28 -0.08959 0.72551 -0.18236 ATOM H29 -0.20207 0.61836 -0.22317 ENERGY -114.47mkcal/mol COMMENT d=1.6248 g/cc COMMENT structure ranked nr. 3 by energy COMMENT Structure is nr. 4 in the clustered list. Structures nr. 2 and 3 COMMENT are identical, but have a different setting. The clustering COMMENT does not recognize them as identical; this has been corrected later 86 COMMENT on by hand. TITL Williams V 1 SPACEGROUP Cc CELL 6.91 15.97 10.53 ATOM C1 -0.13832 ATOM C2 -0.07283 ATOM C3 -0.11519 ATOM C4 -0.19409 ATOM C5 -0.02957 ATOM C6 0.00861 ATOM C7 -0.31279 ATOM C8 -0.14046 ATOM C9 -0.39487 ATOM C10 -0.48165 ATOM N1 0.12514 ATOM O1 0.05595 ATOM O2 0.23618 ATOM S1 0.08787 ATOM Br1 0.20221 ATOM H21 -0.15194 ATOM H22 0.06537 ATOM H31 -0.21649 ATOM H32 0.00111 ATOM H4 -0.26548 ATOM H5 -0.07570 ATOM H81 -0.14145 ATOM H82 -0.24600 ATOM H91 -0.28729 ATOM H92 -0.45525 ATOM H93 -0.49492 ATOM H101 -0.43026 ATOM H102 -0.58153 ATOM H103 -0.54186 ENERGY -128.95 90.00 0.43982 0.37282 0.28911 0.31746 0.35788 0.43690 0.39617 0.53095 0.44537 0.37606 0.49575 0.64886 0.56495 0.57140 0.28998 0.37827 0.37950 0.25663 0.25345 0.27397 0.37265 0.53970 0.56325 0.45860 0.49807 0.41113 0.34440 0.34195 0.42889 81.26 0.34894 0.43995 0.37419 0.25185 0.15570 0.22650 0.30127 0.39071 0.19545 0.41016 0.19351 0.24540 0.38665 0.30625 0.10526 0.52558 0.45032 0.42888 0.35505 0.21219 0.07503 0.48301 0.36115 0.12495 0.23182 0.16144 0.47872 0.37574 0.44613 TITL Williams V 2 SPACEGROUP P21 CELL 8.12 10.81 6.95 90.00 70.28 ATOM C1 0.12883 0.15139 0.76918 ATOM C2 0.27136 0.06179 0.78820 ATOM C3 0.44426 0.12715 0.66131 ATOM C4 0.38173 0.24770 0.58957 ATOM C5 0.30092 0.33592 0.77201 ATOM C6 0.13774 0.26582 0.89142 ATOM C7 0.21469 0.20274 0.55114 ATOM C8 -0.06101 0.11047 0.85515 ATOM C9 0.10871 0.30726 0.49755 ATOM C10 0.25310 0.10218 0.38463 ATOM N1 0.01780 0.29413 1.05323 ATOM O1 -0.30314 0.24495 1.13030 ATOM O2 -0.12170 0.10355 1.25498 ATOM S1 -0.14000 0.18557 1.10217 ATOM Br1 0.44848 0.37860 0.93106 ATOM H21 0.25865 -0.01893 0.72900 ATOM H22 0.26130 0.04779 0.93163 ATOM H31 0.50980 0.07724 0.54148 ATOM H32 0.52167 0.14260 0.74068 ATOM H4 0.47015 0.28837 0.47425 ATOM H5 0.26804 0.41526 0.72700 ATOM H81 -0.07840 0.02107 0.87673 ATOM H82 -0.13161 0.14190 0.77559 ATOM H91 0.08336 0.37241 0.60383 ATOM H92 -0.00257 0.27344 0.49110 ATOM H93 0.17710 0.34322 0.36323 ATOM H101 0.32126 0.03452 0.41778 ATOM H102 0.32121 0.13854 0.25052 ATOM H103 0.14155 0.06875 0.37839 ENERGY -128.55 TITL Williams V 3 SPACEGROUP P212121 CELL 10.66 6.93 15.58 90.00 90.00 ATOM C1 0.17521 0.93274 0.43578 ATOM C2 0.07944 0.86101 0.36819 ATOM C3 0.14133 0.91930 0.28175 ATOM C4 0.26637 1.01197 0.30930 90.00 90.00 90.00 87 ATOM C5 ATOM C6 ATOM C7 ATOM C8 ATOM C9 ATOM C10 ATOM N1 ATOM O1 ATOM O2 ATOM S1 ATOM Br1 ATOM H21 ATOM H22 ATOM H31 ATOM H32 ATOM H4 ATOM H5 ATOM H81 ATOM H82 ATOM H91 ATOM H92 ATOM H93 ATOM H101 ATOM H102 ATOM H103 ENERGY -128.43 0.35619 0.28926 0.22698 0.13915 0.33704 0.12591 0.32000 0.28012 0.12928 0.21482 0.39245 -0.00113 0.06385 0.09005 0.15337 0.30598 0.43818 0.04896 0.17434 0.40256 0.30664 0.37279 0.05470 0.16206 0.09592 0.85783 0.80341 1.11658 0.92134 1.20837 1.27155 0.68686 0.73546 0.54420 0.70212 0.63991 0.92763 0.72151 1.01548 0.80925 1.09214 0.91341 0.90905 1.02758 1.10975 1.25896 1.31549 1.21385 1.37854 1.32202 0.34600 0.42782 0.39277 0.52998 0.44208 0.37721 0.48550 0.64439 0.55883 0.56597 0.27182 0.37688 0.37311 0.25129 0.24303 0.26504 0.36006 0.54097 0.56403 0.45240 0.49774 0.40785 0.34552 0.34311 0.43299 TITL Ammon VI 1 CELL 11.5082 6.6764 7.6139 85.8993 95.2965 81.1586 SPACEGROUP P-1 ATOM H1 -0.47069 -0.28143 -0.31648 ATOM C2 -0.48194 -0.12522 -0.28241 ATOM C3 -0.38673 -0.05039 -0.19787 ATOM C4 -0.59063 0.00261 -0.31935 ATOM C5 -0.60354 0.20223 -0.27098 ATOM C6 -0.39863 0.14794 -0.14765 ATOM H7 -0.66528 -0.05376 -0.38477 ATOM S8 -0.24670 -0.21477 -0.14792 ATOM C9 -0.50788 0.27450 -0.18493 ATOM H10 -0.68832 0.30084 -0.29946 ATOM H11 -0.32345 0.19989 -0.07927 ATOM O12 -0.17704 -0.12454 -0.01064 ATOM O13 -0.27036 -0.42320 -0.11002 ATOM N14 -0.19526 -0.19350 -0.34421 ATOM H15 -0.51830 0.42879 -0.14611 ATOM C16 -0.08091 -0.23680 -0.35710 ATOM N17 -0.05303 -0.22274 -0.53176 ATOM C18 0.01873 -0.29536 -0.22673 ATOM C19 0.13055 -0.33369 -0.27904 ATOM C20 0.05781 -0.25865 -0.58496 ATOM H21 -0.12468 -0.19128 -0.62295 ATOM H22 0.00326 -0.30603 -0.08835 ATOM C23 0.15314 -0.31551 -0.45833 ATOM H24 0.20497 -0.37791 -0.17856 ATOM N25 0.06443 -0.24374 -0.76581 ATOM H26 0.24216 -0.34347 -0.49690 ATOM H27 0.14739 -0.24613 -0.80092 ATOM H28 0.00559 -0.13329 -0.83827 ENERGY -36.97 kcal/mol with atom-centered charges. COMMENT d = 1.444 g/cc. Lowest E and highest density structure. COMMENT Volume additivity calcns suggest d = 1.436 g/cc. COMMENT Conformation # 3 for N-S bond; no intramolecular H-bond. COMMENT Probably not the best structure based on only one COMMENT N-H...O of 2.363 Angs. TITL Ammon VI 2 CELL 7.5510 23.0988 6.7945 90.0000 SPACEGROUP P21/c ATOM H1 0.18648 0.01820 -0.26368 ATOM C2 0.21815 0.01031 -0.11494 ATOM C3 0.28329 0.05539 -0.00794 ATOM C4 0.19733 -0.04446 -0.02866 ATOM C5 0.24241 -0.05382 0.16181 ATOM C6 0.33009 0.04653 0.18162 ATOM H7 0.14706 -0.07983 -0.11033 ATOM S8 0.31246 0.12595 -0.11884 ATOM C9 0.30909 -0.00848 0.26643 82.4743 90.0000 88 ATOM H10 0.22657 -0.09652 0.22805 ATOM H11 0.38341 0.08225 0.25904 ATOM O12 0.43530 0.15856 -0.00766 ATOM O13 0.36180 0.11800 -0.33402 ATOM N14 0.10360 0.14995 -0.07336 ATOM H15 0.34547 -0.01592 0.41348 ATOM C16 0.07030 0.20595 -0.07291 ATOM N17 -0.11204 0.21873 -0.04391 ATOM C18 0.18512 0.25547 -0.09686 ATOM C19 0.11228 0.31004 -0.09140 ATOM C20 -0.18567 0.27280 -0.03640 ATOM H21 -0.19168 0.18330 -0.03724 ATOM H22 0.32832 0.24852 -0.11691 ATOM C23 -0.07385 0.32019 -0.06019 ATOM H24 0.20121 0.34705 -0.10985 ATOM N25 -0.37025 0.27527 -0.01434 ATOM H26 -0.12881 0.36361 -0.05340 ATOM H27 -0.42137 0.31534 0.01529 ATOM H28 -0.43586 0.24480 0.07443 ENERGY -36.63 kcal/mol with atom-centered charges. COMMENT d = 1.409 g/cc. Second lowest E. COMMENT Volume additivity calcns suggest d = 1.436 g/cc. COMMENT Conformation # 3 for N-S bond; no intramolecular H-bond. COMMENT Structure probably better than # 1 based on two COMMENT intermolecular N-H...O of 2.317 and 2.379 Angs. TITL Ammon VI 3 CELL 7.7390 6.6830 22.8172 90.0000 82.8960 90.0000 SPACEGROUP P21/c ATOM H1 -0.19415 -0.25650 -0.48096 ATOM C2 -0.22452 -0.10153 -0.48929 ATOM C3 -0.30645 0.01627 -0.44354 ATOM C4 -0.18530 -0.01754 -0.54530 ATOM C5 -0.22886 0.18150 -0.55523 ATOM C6 -0.35183 0.21460 -0.45292 ATOM H7 -0.12188 -0.10754 -0.58122 ATOM S8 -0.35924 -0.09139 -0.37138 ATOM C9 -0.31235 0.29709 -0.50918 ATOM H10 -0.19865 0.24597 -0.59889 ATOM H11 -0.41828 0.30068 -0.41665 ATOM O12 -0.49251 0.03762 -0.33836 ATOM O13 -0.40033 -0.30411 -0.37913 ATOM N14 -0.16653 -0.07070 -0.34685 ATOM H15 -0.34742 0.45092 -0.51706 ATOM C16 -0.15525 -0.07327 -0.28971 ATOM N17 0.01623 -0.06625 -0.27662 ATOM C18 -0.28471 -0.08228 -0.23921 ATOM C19 -0.23467 -0.08470 -0.18349 ATOM C20 0.06721 -0.06669 -0.22144 ATOM H21 0.10661 -0.07013 -0.31272 ATOM H22 -0.42060 -0.08494 -0.24632 ATOM C23 -0.05854 -0.07598 -0.17310 ATOM H24 -0.33443 -0.09161 -0.14577 ATOM N25 0.24486 -0.06725 -0.21886 ATOM H26 -0.02166 -0.07504 -0.12880 ATOM H27 0.27888 -0.04270 -0.17800 ATOM H28 0.31835 0.01417 -0.25005 ENERGY -36.46 kcal/mol with atom-centered charges. COMMENT d = 1.414 g/cc. Third lowest E. COMMENT Volume additivity calcns suggest d = 1.436 g/cc. COMMENT Conformation # 3 for N-S bond; no intramolecular H-bond. COMMENT Structure probably better than # 1 based on two COMMENT intermolecular N-H...O of 2.330 and 2.345 Angs. TITL Dzyabchenko VI 1 SPACEGROUP Pbca CELL 10.862 8.379 23.845 90.00 90.00 90.00 ATOM S1 0.41730 -0.07120 0.13130 ATOM O2 0.29420 -0.09369 0.15241 ATOM O3 0.49956 -0.20807 0.13421 ATOM N'4 0.41156 -0.01016 0.06606 ATOM C11 0.30945 0.05178 0.04181 ATOM N12 0.32787 0.10570 -0.01143 89 ATOM C13 0.23505 0.16614 -0.04402 ATOM C14 0.11937 0.17567 -0.02417 ATOM C15 0.09672 0.12576 0.03057 ATOM C16 0.18955 0.06620 0.06325 ATOM H17 0.41261 0.09909 -0.02767 ATOM N18 0.25956 0.21805 -0.09689 ATOM H19 0.34533 0.21209 -0.11198 ATOM H20 0.19180 0.26217 -0.12068 ATOM H26 0.04762 0.22152 -0.05107 ATOM H27 0.00519 0.13340 0.04805 ATOM H28 0.16830 0.03079 0.10571 ATOM C5 0.48691 0.08877 0.16840 ATOM C6 0.58569 0.05629 0.20303 ATOM C7 0.64582 0.17877 0.23061 ATOM C8 0.60790 0.33573 0.22412 ATOM C9 0.50797 0.36552 0.18992 ATOM C10 0.44733 0.24402 0.16240 ATOM H21 0.61605 -0.06544 0.20855 ATOM H22 0.72311 0.15161 0.25746 ATOM H23 0.65494 0.43223 0.24515 ATOM H24 0.47647 0.48682 0.18455 ATOM H25 0.36888 0.27044 0.13617 ENERGY -36.06 kcal/mol COMMENT Density 1.526 g/cm3 COMMENT Confidence level 5 (1-10), by energy TITL Dzyabchenko VI 2 SPACEGROUP Pbca CELL 9.317 9.850 24.697 90.00 90.00 90.00 ATOM S1 0.04150 0.38020 0.11230 ATOM O2 -0.03512 0.42299 0.06457 ATOM O3 0.05432 0.23457 0.12101 ATOM N4 0.20227 0.44693 0.11218 ATOM C11 0.31775 0.38886 0.08825 ATOM N12 0.43824 0.46713 0.08962 ATOM C13 0.56782 0.42431 0.06973 ATOM C14 0.58140 0.30058 0.04725 ATOM C15 0.46023 0.21831 0.04369 ATOM C16 0.33058 0.26134 0.06329 ATOM H17 0.43220 0.55926 0.10647 ATOM N18 0.68415 0.50744 0.07233 ATOM H19 0.67511 0.59984 0.08876 ATOM H20 0.77874 0.47619 0.05781 ATOM H26 0.68532 0.26862 0.03266 ATOM H27 0.46696 0.11898 0.02535 ATOM H28 0.23893 0.19504 0.05907 ATOM C5 -0.04320 0.45166 0.17010 ATOM C6 -0.08740 0.36611 0.21114 ATOM C7 -0.14753 0.41860 0.25786 ATOM C8 -0.16475 0.55754 0.26422 ATOM C9 -0.12164 0.64124 0.22245 ATOM C10 -0.06199 0.58966 0.17569 ATOM H21 -0.07489 0.25768 0.20668 ATOM H22 -0.18133 0.35048 0.28966 ATOM H23 -0.21056 0.59945 0.30075 ATOM H24 -0.13489 0.74970 0.22645 ATOM H25 -0.03001 0.65732 0.14346 ENERGY -35.21 kcal/mol COMMENT Density 1.461 g/cm3 COMMENT Confidence level 3 (1-10), by energy TITL Dzyabchenko VI 3 SPACEGROUP Pbca CELL 9.351 10.345 22.923 90.00 90.00 90.00 ATOM S1 0.05100 0.51770 0.41570 ATOM O2 0.03820 0.40339 0.45125 ATOM O3 -0.07136 0.60463 0.41478 ATOM N4 0.19369 0.59838 0.43455 ATOM C11 0.32841 0.55170 0.42939 ATOM N12 0.43202 0.63883 0.44349 ATOM C13 0.57470 0.60883 0.44357 ATOM C14 0.61933 0.48946 0.42909 ATOM C15 0.51749 0.39806 0.41289 ATOM C16 0.37498 0.42819 0.41249 ATOM H17 0.40246 0.72819 0.45496 90 ATOM N18 0.67287 0.70034 0.45809 ATOM H19 0.64089 0.78953 0.46871 ATOM H20 0.77703 0.67843 0.45815 ATOM H26 0.73229 0.46789 0.43040 ATOM H27 0.54971 0.30171 0.40038 ATOM H28 0.29973 0.35493 0.39891 ATOM C5 0.08405 0.46739 0.34260 ATOM C6 0.15854 0.54908 0.30590 ATOM C7 0.19203 0.51061 0.24976 ATOM C8 0.15122 0.38990 0.22937 ATOM C9 0.07521 0.31034 0.26646 ATOM C10 0.04107 0.34813 0.32243 ATOM H21 0.19073 0.64346 0.32117 ATOM H22 0.25059 0.57542 0.22159 ATOM H23 0.17792 0.35869 0.18575 ATOM H24 0.04166 0.21624 0.25133 ATOM H25 -0.01931 0.28437 0.35044 ENERGY -34.58 kcal/mol COMMENT Density 1.494 g/cm3 COMMENT Confidence level 1 (1-10), by energy COMMENT COMMENT The molecular structures VI 1-3 are all trans isomers COMMENT with regard to the S-N=C-N fragment (treated here with COMMENT fixed geometry). As concerns to the cis isomer, its packings COMMENT within all space groups were found of much smaller energy, COMMENT the difference could be hardly covered by its larger COMMENT intramolecular energy TITL ERK VI 1 CELL 12.6340 7.6702 24.8320 SPACEGROUP C2/c ATOM S1 0.08497 0.20491 ATOM O2 0.15830 0.33979 ATOM O3 -0.01867 0.27721 ATOM N4 0.08498 0.16547 ATOM N5 0.15159 0.10590 ATOM C6 0.08774 0.01828 ATOM C7 0.03853 -0.13687 ATOM C8 0.04033 -0.28734 ATOM C9 0.09175 -0.28389 ATOM C10 0.14114 -0.12980 ATOM C11 0.13864 0.02109 ATOM C12 0.17023 0.12154 ATOM C13 0.27542 0.09460 ATOM C14 0.35852 0.05374 ATOM C15 0.33549 0.03880 ATOM C16 0.22987 0.06546 ATOM H17 0.00111 -0.14045 ATOM H18 0.00476 -0.39957 ATOM H19 0.17928 -0.12786 ATOM H20 0.17381 0.13299 ATOM H21 0.29193 0.10497 ATOM N22 0.20240 0.05363 ATOM H23 0.39399 0.00939 ATOM H24 0.43468 0.03473 ATOM H25 0.08063 0.12571 ATOM H26 0.13637 0.10637 ATOM H27 0.24932 -0.00363 ATOM H28 0.09366 -0.39355 END 90.0000 81.0350 90.0000 62.5408 90.0000 0.61526 0.59424 0.61505 0.67898 0.75809 0.57490 0.59667 0.56410 0.50967 0.48775 0.52017 0.70291 0.67480 0.70431 0.76129 0.78705 0.63622 0.57997 0.44831 0.50379 0.63341 0.84073 0.78373 0.68451 0.77763 0.85761 0.86250 0.48606 TITL ERK VI 2 CELL 16.5053 10.8960 14.1392 90.0000 SPACEGROUP A2/n ATOM S1 0.09795 0.98999 -0.74826 ATOM O2 0.02368 1.01717 -0.77026 ATOM O3 0.05956 1.03096 -0.64028 ATOM N4 0.11815 0.84500 -0.76560 ATOM N5 0.07590 0.78200 -0.58817 ATOM C6 0.18781 1.08274 -0.83527 ATOM C7 0.26771 1.02983 -0.91621 ATOM C8 0.33849 1.10475 -0.98890 ATOM C9 0.33004 1.23321 -0.98141 ATOM C10 0.25080 1.28689 -0.90073 ATOM C11 0.18062 1.21168 -0.82740 ATOM C12 0.10951 0.75796 -0.69378 ATOM C13 0.13760 0.63752 -0.73073 91 ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM END C14 C15 C16 H17 H18 H19 H20 H21 N22 H23 H24 H25 H26 H27 H28 0.13168 0.09822 0.06947 0.27488 0.39641 0.24377 0.12336 0.16238 0.03346 0.09331 0.15093 0.05528 0.00965 0.02869 0.38175 0.54504 0.57484 0.69563 0.93664 1.06568 1.38020 1.25082 0.61730 0.72887 0.50994 0.45714 0.86455 0.81104 0.66959 1.28711 TITL ERK VI 3 CELL 9.3689 16.9826 SPACEGROUP P21/c ATOM S1 -0.76087 ATOM O2 -0.90174 ATOM O3 -0.65469 ATOM N4 -0.68499 ATOM H5 -0.88397 ATOM N6 -0.44367 ATOM C7 -0.80613 ATOM C8 -0.92754 ATOM C9 -0.95694 ATOM C10 -0.86373 ATOM C11 -0.74526 ATOM C12 -0.71526 ATOM C13 -0.54559 ATOM C14 -0.49416 ATOM C15 -0.35424 ATOM C16 -0.25666 ATOM C17 -0.30396 ATOM H18 -0.99446 ATOM H19 -1.04634 ATOM H20 -0.67825 ATOM H21 -0.62541 ATOM H22 -0.56372 ATOM N23 -0.21840 ATOM H24 -0.15151 ATOM H25 -0.31913 ATOM H26 -0.47475 ATOM H27 -0.11768 ATOM H28 -0.25674 END TITL Hofmann VI 1 SPACEGROUP P-1 CELL 10.886 ATOM C1 -0.52408 ATOM C2 -0.39889 ATOM C3 -0.54984 ATOM C4 -0.45171 ATOM C5 -0.32757 ATOM C6 -0.30117 ATOM N7 -0.31835 ATOM C8 -0.20534 ATOM C9 -0.17860 ATOM C10 -0.05765 ATOM C11 0.03525 ATOM C12 0.00547 ATOM N13 -0.11267 ATOM O14 -0.46070 ATOM O15 -0.28464 ATOM C16 -0.36721 ATOM N17 0.09857 ATOM H18 -0.60166 ATOM H19 -0.64613 ATOM H20 -0.47194 ATOM H21 -0.25164 ATOM H22 -0.20443 ATOM H23 -0.25156 ATOM H24 -0.03617 7.9324 -0.61717 -0.63147 -0.56160 -0.70227 -0.53043 -0.65168 -0.58325 -0.61697 -0.59800 -0.54418 -0.50839 -0.52792 -0.71093 -0.78740 -0.79731 -0.73380 -0.66163 -0.65767 -0.62372 -0.46783 -0.50249 -0.83496 -0.59725 -0.74197 -0.85268 -0.59973 -0.60098 -0.54666 -0.65830 -0.54993 -0.51711 -0.92238 -1.04697 -0.89555 -0.76897 -0.80962 -0.41552 -0.49553 -0.68406 -0.56405 -0.39492 -0.36242 -1.03472 90.0000 70.1234 90.0000 -0.91205 -0.94533 -1.03043 -0.91673 -0.20074 -0.92435 -0.69188 -0.55852 -0.38150 -0.33254 -0.46906 -0.64616 -0.90916 -0.88419 -0.87209 -0.88545 -0.91246 -0.59109 -0.28403 -0.43604 -0.74287 -0.87360 -0.92951 -0.87607 -0.85285 -0.94657 -0.92157 -0.95076 7.632 8.062 120.792 93.920 0.00127 0.23107 -0.01962 0.26256 0.18375 0.24738 0.34806 0.29638 0.33096 0.33017 0.14896 0.31410 -0.33969 0.06327 -0.31125 0.02679 -0.45283 -0.15756 -0.42986 -0.20066 -0.26495 -0.05885 -0.12503 0.12349 -0.15021 0.16249 -0.32619 0.25060 -0.16639 0.38407 -0.21724 0.24485 ! S16 ? 0.04515 0.26940 -0.12358 0.19504 0.19813 0.22288 0.48940 0.30935 0.45920 0.36956 0.13836 0.34206 -0.58019 -0.26625 -0.53892 -0.34294 97.608 92 ATOM H25 0.12935 -0.24473 ATOM H26 -0.13087 -0.03893 ATOM H27 0.18990 0.06850 ATOM H28 0.07624 0.15134 ENERGY -105.41 COMMENT d=1.352g/cc. -0.08994 0.29801 0.24276 0.40453 TITL Hofmann VI 2 SPACEGROUP P-1 CELL 5.385 11.543 10.840 69.779 65.184 ATOM C1 -0.21733 -0.08212 -0.32811 ATOM C2 -0.04300 -0.11918 -0.24887 ATOM C3 -0.18447 -0.14935 -0.42083 ATOM C4 0.02291 -0.25361 -0.43666 ATOM C5 0.19896 -0.29066 -0.36041 ATOM C6 0.16722 -0.22387 -0.26753 ATOM N7 -0.20375 -0.11813 -0.00049 ATOM C8 -0.08898 -0.21235 0.07668 ATOM C9 -0.25343 -0.26269 0.21583 ATOM C10 -0.13615 -0.36217 0.30276 ATOM C11 0.14457 -0.41050 0.24933 ATOM C12 0.30313 -0.35891 0.10954 ATOM N13 0.18515 -0.26217 0.02681 ATOM O14 -0.21347 0.05767 -0.16820 ATOM O15 0.16039 -0.03646 -0.16166 ATOM C16 -0.07400 -0.04837 -0.14594 ! S16 ? ATOM N17 0.58906 -0.40759 0.05274 ATOM H18 -0.37755 -0.00063 -0.31852 ATOM H19 -0.31925 -0.12018 -0.48104 ATOM H20 0.04831 -0.30535 -0.50879 ATOM H21 0.36099 -0.37103 -0.37362 ATOM H22 0.30657 -0.25315 -0.20974 ATOM H23 -0.47101 -0.22425 0.25599 ATOM H24 -0.26198 -0.40156 0.41062 ATOM H25 0.23857 -0.48765 0.31517 ATOM H26 0.30982 -0.22949 -0.07727 ATOM H27 0.68435 -0.48228 0.11393 ATOM H28 0.70694 -0.37046 -0.05199 ENERGY -104.64 COMMENT d=1.344g/cc. 73.649 TITL Hofmann VI 3 SPACEGROUP P21/c CELL 10.743 15.792 7.107 90.000 111.861 90.000 ATOM C1 -0.35326 -0.13206 -0.28303 ATOM C2 -0.21509 -0.11842 -0.17238 ATOM C3 -0.41476 -0.10020 -0.47974 ATOM C4 -0.34006 -0.05397 -0.56835 ATOM C5 -0.20382 -0.03908 -0.46035 ATOM C6 -0.14171 -0.07076 -0.26365 ATOM N7 -0.06143 -0.22603 0.04181 ATOM C8 0.05761 -0.22683 0.03401 ATOM C9 0.12013 -0.30519 0.04105 ATOM C10 0.24903 -0.30848 0.03730 ATOM C11 0.31393 -0.23325 0.02595 ATOM C12 0.24850 -0.15595 0.01749 ATOM N13 0.12321 -0.15414 0.02145 ATOM O14 -0.22638 -0.17293 0.12060 ATOM O15 -0.07002 -0.09649 0.14784 ATOM C16 -0.14437 -0.15273 0.04244 ! S16 ? ATOM N17 0.31248 -0.07862 0.00406 ATOM H18 -0.41334 -0.16698 -0.21611 ATOM H19 -0.52073 -0.11104 -0.56325 ATOM H20 -0.38802 -0.02920 -0.72057 ATOM H21 -0.14627 -0.00268 -0.52885 ATOM H22 -0.03609 -0.05822 -0.18103 ATOM H23 0.06866 -0.36309 0.04996 ATOM H24 0.29816 -0.36887 0.04293 ATOM H25 0.41369 -0.23468 0.02260 ATOM H26 0.07754 -0.09535 0.00915 ATOM H27 0.40849 -0.07831 -0.00018 ATOM H28 0.26327 -0.02096 -0.00505 ENERGY -102.89 COMMENT d=1.361g/cc. TITL Leusen VI 1 SPACEGROUP P21/a 93 CELL 15.941 8.976 7.801 90.000 86.034 90.000 ATOM C1 0.20780 0.38006 0.10256 ATOM H2 0.26250 0.44812 0.06908 ATOM C3 0.21735 0.23305 0.15612 ATOM H4 0.27985 0.18771 0.16556 ATOM C5 0.14667 0.14460 0.19595 ATOM H6 0.15473 0.02994 0.23451 ATOM C7 0.06655 0.20500 0.18241 ATOM S8 -0.02397 0.09665 0.22827 ATOM C9 0.05665 0.35224 0.12983 ATOM H10 -0.00556 0.39789 0.11931 ATOM C11 0.12750 0.43959 0.08981 ATOM H12 0.12103 0.55396 0.04828 ATOM N13 -0.00697 -0.08225 0.28856 ATOM O14 -0.08010 0.10252 0.06799 ATOM O15 -0.08209 0.17733 0.37338 ATOM C16 -0.06389 -0.17733 0.31745 ATOM C17 -0.04384 -0.32175 0.35456 ATOM C18 -0.10571 -0.42675 0.38900 ATOM C19 -0.18978 -0.39278 0.38701 ATOM C20 -0.21486 -0.25202 0.34852 ATOM N21 -0.15314 -0.13562 0.31302 ATOM N22 -0.29814 -0.21383 0.34086 ATOM H23 0.02167 -0.35585 0.35728 ATOM H24 -0.08781 -0.54052 0.41836 ATOM H25 -0.23625 -0.47970 0.41586 ATOM H26 -0.17103 -0.02996 0.28368 ATOM H27 -0.34374 -0.28895 0.38178 ATOM H28 -0.31097 -0.10690 0.30554 ENERGY -90.30 kcal/mol asymmetric unit DENSITY 1.487 g/(cm^3) COMMENT Lowest energy structure according to CVFF950 force field. COMMENT 1 dimensional ribbon hydrogen bonding motif. COMMENT Fair sampling and good energy separation, but molecular COMMENT flexibility and potential for complex hydrogen bonding COMMENT reduces confidence in prediction. TITL Leusen VI 2 SPACEGROUP P21/a CELL 11.893 13.649 7.569 90.000 114.040 90.000 ATOM C1 0.49941 0.39555 0.34674 ATOM H2 0.50152 0.42934 0.21909 ATOM C3 0.60887 0.37392 0.50511 ATOM H4 0.69599 0.39051 0.49825 ATOM C5 0.60562 0.33159 0.67067 ATOM H6 0.69079 0.31481 0.79303 ATOM C7 0.49186 0.31091 0.67534 ATOM S8 0.48625 0.24847 0.87340 ATOM C9 0.38175 0.33223 0.51723 ATOM H10 0.29372 0.31449 0.52023 ATOM C11 0.38614 0.37455 0.35281 ATOM H12 0.30206 0.39093 0.22816 ATOM N13 0.42970 0.13427 0.80155 ATOM O14 0.38363 0.29625 0.92990 ATOM O15 0.61409 0.24749 1.05850 ATOM C16 0.48999 0.06244 0.78340 ATOM C17 0.43176 -0.02430 0.70947 ATOM C18 0.49709 -0.10483 0.69447 ATOM C19 0.62273 -0.10223 0.75203 ATOM C20 0.68718 -0.01815 0.82473 ATOM N21 0.62427 0.06967 0.84246 ATOM N22 0.81273 -0.01215 0.88340 ATOM H23 0.33251 -0.03106 0.66193 ATOM H24 0.44772 -0.17277 0.63605 ATOM H25 0.67069 -0.16793 0.73931 ATOM H26 0.67338 0.13115 0.90493 ATOM H27 0.85984 -0.07310 0.87327 ATOM H28 0.85229 0.05510 0.92947 ENERGY -90.04 kcal/mol asymmetric unit DENSITY 1.476 g/(cm^3) COMMENT Second lowest energy structure according to CVFF950 force field. COMMENT 2 dimensional hydrogen bonding pattern. COMMENT Fair sampling and good energy separation, but molecular COMMENT flexibility and potential for complex hydrogen bonding COMMENT reduces confidence in prediction. Nevertheless, this structure COMMENT seems plausible. 94 TITL Leusen VI 3 SPACEGROUP P21/c CELL 8.086 8.674 16.118 90.000 98.043 90.000 ATOM C1 -0.53958 1.00119 0.38208 ATOM H2 -0.64399 1.01080 0.41717 ATOM C3 -0.40519 1.10332 0.39706 ATOM H4 -0.40454 1.19157 0.44458 ATOM C5 -0.27235 1.09237 0.35072 ATOM H6 -0.17010 1.17376 0.36133 ATOM C7 -0.27352 0.97608 0.29066 ATOM S8 -0.10469 0.95833 0.23430 ATOM C9 -0.40604 0.87217 0.27609 ATOM H10 -0.40469 0.77964 0.23117 ATOM C11 -0.53988 0.88615 0.32147 ATOM H12 -0.64348 0.80651 0.31041 ATOM N13 -0.11947 1.09869 0.16011 ATOM O14 -0.10417 0.79830 0.18660 ATOM O15 0.06569 0.97634 0.29597 ATOM C16 -0.00827 1.12758 0.11520 ATOM C17 -0.03215 1.24052 0.05513 ATOM C18 0.08988 1.27408 0.00619 ATOM C19 0.23985 1.19660 0.01490 ATOM C20 0.27382 1.08379 0.07390 ATOM N21 0.15092 1.04174 0.12692 ATOM N22 0.42499 1.00800 0.08744 ATOM H23 -0.14815 1.30632 0.04542 ATOM H24 0.06800 1.36486 -0.04096 ATOM H25 0.33180 1.22695 -0.02554 ATOM H26 0.17782 0.96391 0.17440 ATOM H27 0.52006 1.04371 0.05606 ATOM H28 0.44193 0.93244 0.13663 ENERGY -89.37 kcal/mol asymmetric unit DENSITY 1.479 g/(cm^3) COMMENT Third lowest energy structure according to CVFF950 force field. COMMENT 0 dimensional dimer hydrogen bonding motif. COMMENT This structure is considerably higher in energy than the first COMMENT two and exhibits an unfavorable hydrogen bonding pattern. COMMENT Unlikely to be stable. TITL Mooy-VI-1 SPACEGROUP P-1 CELL 10.663 8.738 9.473 92.346 55.726 60.248 ATOM C1 0.70697 0.41783 0.22925 ATOM H2 0.82895 0.27381 0.14573 ATOM C3 0.54802 0.48137 0.24640 ATOM H4 0.55464 0.38341 0.17439 ATOM C5 0.37969 0.67891 0.36268 ATOM H6 0.26412 0.72336 0.37508 ATOM C7 0.37078 0.81330 0.46165 ATOM S8 0.16591 1.05892 0.60496 ATOM C9 0.53003 0.74876 0.44475 ATOM H10 0.52472 0.84448 0.51762 ATOM C11 0.69861 0.55174 0.32735 ATOM H12 0.81478 0.50638 0.31410 ATOM N13 0.21015 1.19682 0.49747 ATOM O14 0.11287 1.13031 0.80029 ATOM O15 -0.01865 1.09596 0.65459 ATOM C16 0.21549 1.21131 0.35418 ATOM C17 0.25156 1.33415 0.28346 ATOM C18 0.26541 1.35034 0.13017 ATOM C19 0.24245 1.24134 0.04837 ATOM C20 0.20450 1.12074 0.12513 ATOM N21 0.19047 1.11083 0.27503 ATOM N22 0.18004 1.01598 0.05048 ATOM H23 0.26582 1.41086 0.34687 ATOM H24 0.29087 1.44143 0.07874 ATOM H25 0.25140 1.25133 -0.06362 ATOM H26 0.16038 1.02884 0.32834 ATOM H27 0.19346 1.02049 -0.05917 ATOM H28 0.14914 0.93543 0.10546 ENERGY -60.39 kcal/mol COMMENT Density 1.461 g/cc COMMENT Lowest-energy structure in Dreiding+Multipole force field COMMENT Less confidence in both the sampling and the accuracy of the COMMENT energy function for this flexible molecule COMMENT Confidence (1-3) : 1 95 TITL Mooy-VI-2 SPACEGROUP P21/c CELL 14.106 5.895 16.626 90.000 126.085 90.000 ATOM C1 0.02414 0.63938 0.90397 ATOM H2 0.09616 0.60011 0.97372 ATOM C3 -0.06669 0.48163 0.84963 ATOM H4 -0.06122 0.32784 0.88036 ATOM C5 -0.16449 0.53444 0.75327 ATOM H6 -0.22995 0.41820 0.71334 ATOM C7 -0.17259 0.74647 0.71162 ATOM S8 -0.29369 0.81794 0.59358 ATOM C9 -0.08156 0.90377 0.76621 ATOM H10 -0.08610 1.05824 0.73642 ATOM C11 0.01624 0.85065 0.86212 ATOM H12 0.08173 0.96666 0.90116 ATOM N13 -0.26586 0.77778 0.50872 ATOM O14 -0.32830 1.07481 0.59262 ATOM O15 -0.40385 0.67091 0.56445 ATOM C16 -0.30180 0.60173 0.44601 ATOM C17 -0.26487 0.59595 0.38499 ATOM C18 -0.29679 0.41478 0.31960 ATOM C19 -0.36786 0.24144 0.31422 ATOM C20 -0.40342 0.25605 0.37675 ATOM N21 -0.36946 0.43242 0.44018 ATOM N22 -0.47323 0.09592 0.37308 ATOM H23 -0.21439 0.72390 0.38981 ATOM H24 -0.26936 0.40989 0.27504 ATOM H25 -0.39225 0.10803 0.26641 ATOM H26 -0.39515 0.43714 0.48330 ATOM H27 -0.49505 -0.03583 0.33066 ATOM H28 -0.50087 0.11001 0.41428 ENERGY -60.00 kcal/mol COMMENT Density 1.482 g/cc COMMENT 2nd lowest-energy structure in Dreiding+Multipole force field TITL Mooy-VI-3 SPACEGROUP Pbca CELL 23.316 8.798 10.753 90.000 90.000 90.000 ATOM C1 0.26059 0.31598 0.47721 ATOM H2 0.23050 0.24926 0.51929 ATOM C3 0.30315 0.38649 0.54843 ATOM H4 0.30387 0.37169 0.64249 ATOM C5 0.34483 0.47671 0.49084 ATOM H6 0.37576 0.52709 0.54394 ATOM C7 0.34395 0.49711 0.36144 ATOM S8 0.39686 0.60264 0.28804 ATOM C9 0.30069 0.42821 0.29054 ATOM H10 0.29938 0.44267 0.19630 ATOM C11 0.25928 0.33738 0.34830 ATOM H12 0.22819 0.28651 0.29615 ATOM N13 0.43483 0.48567 0.19437 ATOM O14 0.44119 0.67085 0.38523 ATOM O15 0.37089 0.73535 0.20547 ATOM C16 0.42783 0.44922 0.07404 ATOM C17 0.38593 0.50898 -0.00413 ATOM C18 0.38146 0.45882 -0.12667 ATOM C19 0.41942 0.34898 -0.17106 ATOM C20 0.46101 0.29225 -0.08970 ATOM N21 0.46412 0.34493 0.02812 ATOM N22 0.49762 0.18408 -0.12746 ATOM H23 0.35936 0.58886 0.02861 ATOM H24 0.35079 0.50289 -0.18379 ATOM H25 0.41663 0.31150 -0.26055 ATOM H26 0.49384 0.30465 0.08264 ATOM H27 0.49130 0.13191 -0.20592 ATOM H28 0.52981 0.15509 -0.07532 ENERGY -59.62 kcal/mol COMMENT Density 1.501 g/cc COMMENT 7th lowest-energy structure in Dreiding+Multipole force field COMMENT Chosen because it is the first trans S-N=C-N conformer TITL Scheraga VI 1 SPACEGROUP P21/c CELL 9.0080 12.8570 15.8170 ATOM S1 .43688 .11149 ATOM C2 .56124 .05819 ATOM C3 .48019 -.03020 90.0000 133.5100 .18197 .32010 .32582 90.0000 96 ATOM C4 .57746 -.07255 .43356 ATOM C5 .75329 -.02640 .53433 ATOM C6 .83215 .06227 .52774 ATOM C7 .73600 .10512 .42013 ATOM H8 .34287 -.06437 .24720 ATOM H9 .51586 -.14102 .43894 ATOM H10 .82815 -.05943 .61796 ATOM H11 .96757 .09834 .60594 ATOM H12 .79404 .17438 .41366 ATOM O13 .43769 .03224 .11660 ATOM N14 .20896 .13220 .12745 ATOM O15 .53374 .20852 .20029 ATOM C16 .16492 .17756 .18157 ATOM C17 -.03339 .16435 .14028 ATOM C18 -.07833 .21087 .19713 ATOM C19 .06498 .27295 .29765 ATOM C20 .25227 .28621 .33532 ATOM N21 .29662 .23957 .27777 ATOM H22 -.14010 .11666 .06474 ATOM H23 -.22777 .20001 .16564 ATOM H24 .02823 .30843 .34267 ATOM N25 .40509 .34767 .42735 ATOM H26 .43018 .25539 .30144 ATOM H27 .37886 .38082 .47304 ATOM H28 .47033 .39593 .41171 ENERGY 35.12 kcal/mol COMMENT Lowest energy structure. COMMENT The packing seems reasonable. COMMENT Confidence level (1-10): 3, by energy TITL Scheraga VI 2 SPACEGROUP P21/c CELL 7.6560 11.1400 17.7970 90.0000 118.8100 S1 -.04130 .07237 .13176 C2 .17839 .16000 .18010 C3 .18545 .25889 .22885 C4 .35727 .32732 .26720 C5 .51960 .29723 .25636 C6 .51055 .19885 .20706 C7 .33916 .12956 .16855 H8 .05796 .28180 .23588 H9 .36424 .40415 .30507 H10 .65275 .35088 .28611 H11 .63595 .17617 .19824 H12 .32914 .05381 .12946 O13 -.07371 .02525 .20032 N14 -.20856 .16984 .07503 O15 -.02041 -.01354 .07668 C16 -.19263 .24828 .02436 C17 -.31853 .35168 -.00226 C18 -.30073 .43350 -.05436 C19 -.16014 .42127 -.08407 C20 -.04291 .32180 -.05936 N21 -.06164 .23964 -.00719 H22 -.42329 .36053 .02106 H23 -.39560 .51132 -.07368 H24 -.14597 .48743 -.12456 N25 .09358 .29294 -.08545 H26 .01597 .16267 .00606 H27 .11417 .35298 -.12204 H28 .08644 .20899 -.10597 ENERGY 34.26 kcal/mol COMMENT Releative E=+0.86 kcal/mol. COMMENT Confidence level (1-10): 2, by energy TITL Scheraga VI 3 SPACEGROUP P21/c CELL 7.9210 14.9370 ATOM S1 .35235 ATOM C2 .17781 ATOM C3 .01212 ATOM C4 -.12492 ATOM C5 -.09591 ATOM C6 .07008 ATOM C7 .20819 ATOM H8 -.00813 ATOM H9 -.25380 11.1970 .23211 .19023 .19939 .16723 .12595 .11654 .14877 .23060 .17397 90.0000 101.2700 .31309 .20434 .22597 .14091 .03576 .01543 .10001 .30833 .15683 90.0000 90.0000 97 ATOM H10 -.20281 .10082 -.03000 ATOM H11 .09240 .08398 -.06569 ATOM H12 .33764 .14118 .08615 ATOM O13 .32591 .32798 .32349 ATOM N14 .33039 .18033 .43525 ATOM O15 .50857 .20429 .27763 ATOM C16 .30337 .09467 .44303 ATOM C17 .23524 .06033 .54288 ATOM C18 .20603 -.02856 .55031 ATOM C19 .24012 -.09019 .46189 ATOM C20 .30711 -.05706 .36814 ATOM N21 .33671 .03228 .36118 ATOM H22 .20872 .10756 .60875 ATOM H23 .15392 -.05365 .62555 ATOM H24 .21459 -.16035 .46809 ATOM N25 .35542 -.10755 .27824 ATOM H26 .39681 .05537 .29629 ATOM H27 .33129 -.17306 .27924 ATOM H28 .47156 -.09396 .26131 ENERGY 33.85 kcal/mol COMMENT Releative E=+1.27 kcal/mol COMMENT Confidence level (1-10): 2, by energy. TITL Schmidt VI 1 SPACEGROUP C2/c CELL 22.8663 5.5332 16.7342 90.0000 91.3230 90.0000 ATOM S1 0.42176 0.48110 0.67397 ATOM O1 0.43457 0.71256 0.70977 ATOM O2 0.45051 0.42631 0.59943 ATOM N1 0.43788 0.25480 0.72989 ATOM C1 0.34565 0.46630 0.65640 ATOM C2 0.32314 0.27134 0.61436 ATOM C3 0.26338 0.24704 0.60242 ATOM C4 0.22518 0.41774 0.63217 ATOM C5 0.24858 0.61294 0.67312 ATOM C6 0.30811 0.63878 0.68507 ATOM C7 0.42248 0.24326 0.80747 ATOM C8 0.38894 0.40491 0.85209 ATOM C9 0.38073 0.36612 0.93182 ATOM C10 0.40455 0.16417 0.97007 ATOM C11 0.43518 0.00591 0.92663 ATOM N2 0.44369 0.04536 0.84693 ATOM N3 0.45927 -0.19609 0.95536 ATOM H2 0.35220 0.13828 0.59655 ATOM H3 0.24551 0.10100 0.57129 ATOM H4 0.18024 0.39962 0.62314 ATOM H5 0.22202 0.74529 0.69739 ATOM H6 0.32531 0.78879 0.71477 ATOM H8 0.37134 0.56067 0.82639 ATOM H9 0.35840 0.49985 0.96236 ATOM H10 0.39860 0.15624 1.03144 ATOM H72 0.46733 -0.07614 0.81626 ATOM H73 0.48169 -0.30618 0.91892 ATOM H74 0.45513 -0.23929 1.01359 ENERGY -117.12 kJ/mol COMMENT Not the best one in energy, but sensible hydrogen bond system. COMMENT Confidence level (1-10): 3, by energy and chemical intuition COMMENT (hydrogen bonds, molecular conformation) COMMENT No intramolecular H bond. Torsion angle Ph-S-N=C = -71 degree. TITL Schmidt VI 2 SPACEGROUP P-1 CELL 6.8517 7.7755 11.1569 83.7270 73.5560 69.9060 ATOM S1 0.24922 0.18263 0.17498 ATOM O1 0.28600 0.04570 0.08647 ATOM O2 0.06251 0.20775 0.28217 ATOM N1 0.44417 0.14844 0.23660 ATOM C1 0.22173 0.39305 0.09355 ATOM C2 0.11942 0.55286 0.16087 ATOM C3 0.10319 0.72082 0.10126 ATOM C4 0.18855 0.73166 -0.02674 ATOM C5 0.28768 0.57050 -0.09261 ATOM C6 0.30397 0.40258 -0.03391 ATOM C7 0.52323 -0.00911 0.29803 ATOM C8 0.45945 -0.16566 0.32037 ATOM C9 0.55394 -0.30854 0.39075 ATOM C10 0.71730 -0.30328 0.43989 98 ATOM C11 0.78245 -0.15548 0.41520 ATOM N2 0.68709 -0.01196 0.34536 ATOM N3 0.93918 -0.13452 0.45432 ATOM H2 0.06758 0.54153 0.25756 ATOM H3 0.02777 0.84275 0.15029 ATOM H4 0.17618 0.85796 -0.07160 ATOM H5 0.35632 0.57022 -0.18854 ATOM H6 0.37559 0.28222 -0.08479 ATOM H8 0.33510 -0.17394 0.28770 ATOM H9 0.49067 -0.41549 0.40987 ATOM H10 0.77165 -0.41359 0.49738 ATOM H72 0.73876 0.09752 0.32949 ATOM H73 0.97908 -0.01933 0.43191 ATOM H74 1.01821 -0.23381 0.50643 ENERGY -121.90 kJ/mol COMMENT Best energy, but one hydrogen bond is quite long. COMMENT Confidence level (1-10): 3, by energy and chemical intuition COMMENT (hydrogen bonds, molecular conformation) COMMENT No intramolecular H bond. Torsion angle Ph-S-N=C = -174 degree. TITL Schmidt VI 3 SPACEGROUP P21/c CELL 4.9458 9.3060 23.1190 90.000 96.542 90.000 ATOM S1 0.63531 0.30004 0.33481 ATOM O1 0.34837 0.30877 0.34024 ATOM O2 0.72015 0.19046 0.29575 ATOM N1 0.76319 0.44490 0.31229 ATOM C1 0.80527 0.26838 0.40475 ATOM C2 0.99442 0.15879 0.41172 ATOM C3 1.14150 0.13458 0.46536 ATOM C4 1.10123 0.21940 0.51295 ATOM C5 0.90871 0.32717 0.50529 ATOM C6 0.76075 0.35171 0.45199 ATOM C7 0.66761 0.57668 0.32431 ATOM C8 0.45698 0.61464 0.35728 ATOM C9 0.38170 0.75533 0.36181 ATOM C10 0.51469 0.86388 0.33473 ATOM C11 0.72170 0.82760 0.30462 ATOM N2 0.79613 0.68670 0.29979 ATOM N3 0.86878 0.92069 0.27765 ATOM H2 1.03295 0.10183 0.37483 ATOM H3 1.28587 0.05311 0.47147 ATOM H4 1.21164 0.20113 0.55331 ATOM H5 0.87171 0.39493 0.53928 ATOM H6 0.61279 0.43155 0.44696 ATOM H8 0.34835 0.53690 0.37725 ATOM H9 0.21405 0.77525 0.38399 ATOM H10 0.43454 0.96647 0.33807 ATOM H72 0.95100 0.66316 0.27645 ATOM H73 1.02147 0.88515 0.25587 ATOM H74 0.82769 1.02687 0.27898 ENERGY -117.12 kJ/mol COMMENT Not the best one in energy, but acceptable hydrogen bond system. COMMENT Confidence level (1-10): 2, by energy and chemical intuition COMMENT (hydrogen bonds, molecular conformation) COMMENT No intramolecular H bond. Torsion angle Ph-S-N=C = -87 degree. TITL Van Eijck VI 1 SPACEGROUP P-1 CELL 9.84721 30.49148 21.45812 4.868 ATOM C1 0.494229 -1.195248 1.927653 ATOM H2 0.582429 -1.429804 2.268802 ATOM C3 0.487087 -0.895477 1.449120 ATOM H4 0.569955 -0.899759 1.422588 ATOM C5 0.387228 -1.193018 1.966852 ATOM H6 0.392914 -1.424521 2.336453 ATOM C7 0.372367 -0.592266 1.008111 ATOM H8 0.365469 -0.359059 0.636237 ATOM C9 0.272252 -0.892285 1.529094 ATOM H10 0.188813 -0.893611 1.563317 ATOM C11 0.264619 -0.591659 1.049370 ATOM S12 0.120087 -0.212865 0.497013 ATOM O13 0.098831 -0.254243 0.489491 ATOM O14 0.008834 -0.427730 0.835496 ATOM N15 0.170429 0.349597 -0.276537 ATOM C16 0.171425 0.533722 -0.481261 ATOM C17 0.226348 1.052398 -1.208309 90.486 90.507 99 ATOM H18 0.261068 1.256529 -1.538129 ATOM C19 0.233276 1.282443 -1.477587 ATOM H20 0.273291 1.669411 -2.021010 ATOM C21 0.186369 1.006817 -1.032752 ATOM H22 0.191653 1.192314 -1.250248 ATOM C23 0.135129 0.528051 -0.360385 ATOM N24 0.090254 0.265039 0.060970 ATOM H25 0.052645 -0.094454 0.565673 ATOM H26 0.090284 0.439927 -0.144007 ATOM N27 0.128439 0.300119 -0.095679 ATOM H28 0.088153 -0.058680 0.409556 ENERGY -540.459 kJ/mol COMMENT The best S-N-C-N cis structure, both in energy and free energy. COMMENT Second best structures are more than 2 kJ/mol higher. COMMENT Nevertheless, for an ad-hoc force field it is just a long shot. TITL Van Eijck VI 2 SPACEGROUP P-1 CELL 9.33781 16.23431 8.37868 34.447 94.099 71.972 ATOM C1 0.789836 0.296724 1.282332 ATOM H2 0.885996 0.164935 1.566983 ATOM C3 0.675736 0.311469 1.130791 ATOM H4 0.684283 0.190777 1.298073 ATOM C5 0.779726 0.452197 1.066704 ATOM H6 0.868568 0.439271 1.186562 ATOM C7 0.550303 0.483211 0.761305 ATOM H8 0.461021 0.496346 0.641382 ATOM C9 0.654234 0.623789 0.697110 ATOM H10 0.644812 0.744810 0.528985 ATOM C11 0.539331 0.639454 0.544070 ATOM S12 0.379400 0.854106 0.079212 ATOM O13 0.210907 0.879192 0.011732 ATOM O14 0.347651 1.007336 -0.079712 ATOM N15 0.490805 0.802952 0.003851 ATOM C16 0.633718 0.791987 0.002817 ATOM C17 0.705992 0.740842 -0.071713 ATOM H18 0.637604 0.715523 -0.121982 ATOM C19 0.854355 0.726169 -0.081491 ATOM H20 0.905189 0.689363 -0.140097 ATOM C21 0.944314 0.761176 -0.014007 ATOM H22 1.062481 0.750384 -0.023431 ATOM C23 0.880039 0.808540 0.055607 ATOM N24 0.954744 0.845476 0.113185 ATOM H25 0.901013 0.884960 0.156467 ATOM H26 1.062900 0.842763 0.096643 ATOM N27 0.727737 0.824152 0.061724 ATOM H28 0.681191 0.862920 0.108941 ENERGY -538.030 kJ/mol COMMENT The second best S-N-C-N cis in free energy (and #3 in energy). TITL Van Eijck VI 3 SPACEGROUP P21/c CELL 13.02141 7.68092 11.94011 ATOM C1 .059817 .054095 ATOM H2 .017984 -.070778 ATOM C3 .134520 .082917 ATOM H4 .149958 -.019989 ATOM C5 .039045 .185785 ATOM H6 -.019243 .163412 ATOM C7 .188001 .245087 ATOM H8 .244971 .269382 ATOM C9 .093374 .347074 ATOM H10 .077814 .450012 ATOM C11 .167221 .377309 ATOM S12 .230772 .584050 ATOM O13 .170281 .702623 ATOM O14 .216943 .625984 ATOM N15 .365232 .549180 ATOM C16 .417666 .558411 ATOM C17 .362387 .600635 ATOM H18 .271027 .627024 ATOM C19 .422758 .611952 ATOM H20 .379747 .645319 ATOM C21 .545773 .580528 ATOM H22 .593866 .590703 ATOM C23 .599048 .539090 ATOM N24 .711332 .505521 90.000 .139062 .150930 .192034 .244298 .071060 .030875 .177726 .219327 .055990 .004085 .109813 .094990 .053179 .218063 -.000641 -.122865 -.201691 -.159491 -.327699 -.383645 -.387474 -.488432 -.318012 -.371336 62.973 90.000 100 ATOM H25 .749465 .461848 -.318540 ATOM H26 .759306 .509801 -.464940 ATOM N27 .535585 .528403 -.188620 ATOM H28 .575637 .496817 -.136805 ENERGY -531.502 kJ/mol COMMENT The best S-N-C-N trans structure in free energy without imaginary COMMENT frequencies (and second best in energy). COMMENT Many cis structures are much better. But a trans-structure may have COMMENT been synthesised and remain quite stable. COMMENT Whether the substance is cis or trans should have been known to the COMMENT chemist who made the compound, and might have been given. COMMENT Even with that knowledge the problem is still difficult enough. TITL Verwer VI 1 SPACEGROUP P21/a CELL 7.0103 24.5200 6.6567 90.0000 85.2087 90.0000 ATOM C1 0.82984 0.53734 -0.77117 ATOM C2 0.64883 0.56244 -0.76041 ATOM C3 0.48218 0.53031 -0.74933 ATOM C4 0.49601 0.47304 -0.75116 ATOM C5 0.67746 0.44764 -0.76369 ATOM C6 0.84440 0.48010 -0.77204 ATOM S7 0.69436 0.37681 -0.76761 ATOM N8 0.65293 0.35284 -0.53021 ATOM C9 0.65282 0.30021 -0.50062 ATOM C10 0.69191 0.25678 -0.63084 ATOM C11 0.66749 0.20363 -0.55908 ATOM C12 0.60281 0.19781 -0.35671 ATOM C13 0.57480 0.24394 -0.24399 ATOM N14 0.60083 0.29251 -0.31137 ATOM O15 0.90176 0.35795 -0.85645 ATOM O16 0.54101 0.35142 -0.90423 ATOM N17 0.51529 0.24271 -0.05854 ATOM H18 0.95098 0.56079 -0.77884 ATOM H19 0.63777 0.60403 -0.76050 ATOM H20 0.35096 0.54886 -0.73977 ATOM H21 0.37363 0.45001 -0.74349 ATOM H22 0.97704 0.46227 -0.77927 ATOM H23 0.73745 0.26375 -0.77522 ATOM H24 0.69485 0.17034 -0.65114 ATOM H25 0.57558 0.16087 -0.29310 ATOM H26 0.58059 0.32267 -0.22570 ATOM H27 0.48539 0.20809 0.00361 ATOM H28 0.50494 0.27677 0.01152 ENERGY -756.34 kcal/mol COMMENT d= 1.4522 g/cc COMMENT structure ranked nr. 3 by energy COMMENT structures nr. 1 and 2 have a very unlikely SO2-Ph torsion angle COMMENT and have therefore been skipped. TITL Verwer VI 2 SPACEGROUP An (A1n1) CELL 7.0544 24.5406 6.6024 90.0000 ATOM C1 -0.07830 0.54222 0.18082 ATOM C2 0.10596 0.56396 0.17637 ATOM C3 0.26330 0.52890 0.17394 ATOM C4 0.23703 0.47207 0.17505 ATOM C5 0.05232 0.45001 0.17917 ATOM C6 -0.10534 0.48539 0.18200 ATOM S7 0.01921 0.37970 0.17921 ATOM N8 -0.03360 0.35806 -0.06069 ATOM C9 -0.04504 0.30579 -0.09691 ATOM C10 -0.01250 0.26073 0.02730 ATOM C11 -0.04254 0.20863 -0.05221 ATOM C12 -0.10893 0.20545 -0.25508 ATOM C13 -0.13312 0.25288 -0.36075 ATOM N14 -0.10022 0.30046 -0.28706 ATOM O15 -0.14870 0.36304 0.31636 ATOM O16 0.20837 0.35034 0.26720 ATOM N17 -0.19425 0.25344 -0.54586 ATOM H18 -0.19291 0.56777 0.18266 ATOM H19 0.12639 0.60520 0.17476 ATOM H20 0.39702 0.54502 0.17166 ATOM H21 0.35316 0.44699 0.17319 ATOM H22 -0.24023 0.46997 0.18460 ATOM H23 0.03341 0.26561 0.17282 ATOM H24 -0.01788 0.17423 0.03473 93.8334 90.0000 101 ATOM H25 -0.14012 0.16947 -0.32455 ATOM H26 -0.11622 0.33147 -0.36942 ATOM H27 -0.22362 0.21910 -0.60995 ATOM H28 -0.20330 0.28798 -0.61296 ENERGY -756.26 kcal/mol COMMENT d= 1.451 g/cc COMMENT Structure ranked nr. 4 by energy (1 and 2 were left out) COMMENT Spacegroup is Cc, unique axis b, cell choice 2, giving An TITL Verwer VI 3 SPACEGROUP Pbca CELL 24.3839 7.1344 13.2808 90.0000 90.0000 90.0000 ATOM C1 -0.03229 0.72541 1.11970 ATOM C2 -0.06365 0.89013 1.12858 ATOM C3 -0.03744 1.06482 1.13693 ATOM C4 0.02015 1.07534 1.13787 ATOM C5 0.05190 0.91022 1.13098 ATOM C6 0.02539 0.73518 1.12091 ATOM S7 0.12321 0.92141 1.13397 ATOM N8 0.14782 0.87222 1.01812 ATOM C9 0.20044 0.88456 1.00175 ATOM C10 0.24411 0.92484 1.06483 ATOM C11 0.29718 0.92620 1.02584 ATOM C12 0.30253 0.88931 0.92335 ATOM C13 0.25615 0.84887 0.87037 ATOM N14 0.20770 0.84665 0.90736 ATOM O15 0.14711 0.77349 1.21222 ATOM O16 0.14340 1.12475 1.16652 ATOM N17 0.25681 0.80863 0.77728 ATOM H18 -0.05151 0.59857 1.11283 ATOM H19 -0.10555 0.88401 1.12868 ATOM H20 -0.06058 1.18420 1.14200 ATOM H21 0.03869 1.20376 1.14376 ATOM H22 0.04795 0.61445 1.11488 ATOM H23 0.23745 0.95214 1.13772 ATOM H24 0.33070 0.95511 1.07032 ATOM H25 0.33929 0.89301 0.88810 ATOM H26 0.17732 0.81694 0.86704 ATOM H27 0.29111 0.81434 0.74193 ATOM H28 0.22255 0.77902 0.74625 ENERGY -756.08 kcal/mol COMMENT d= 1.4334 g/cc COMMENT structure ranked nr. 7 by energy COMMENT structures ranked 5 and 6 (and 2,3) were discarded in view of COMMENT the unlikely SO2-Ph torsion angle. TITL Williams VI 1 SPACEGROUP P21/c CELL 13.31 12.03 7.15 ATOM H3 0.42383 ATOM H5 0.57320 ATOM N3 0.53404 ATOM H6 0.56300 ATOM C4 0.43475 ATOM C3 0.38665 ATOM N1 0.38156 ATOM H2 0.24694 ATOM H4 0.41530 ATOM C2 0.28247 ATOM C5 0.28027 ATOM N2 0.23144 ATOM S1 0.28928 ATOM C1 0.22981 ATOM H1 0.15740 ATOM C6 0.19146 ATOM O1 0.32171 ATOM O2 0.37046 ATOM C7 0.20769 ATOM C8 0.12657 ATOM C11 0.09564 ATOM C9 0.03095 ATOM C10 0.01544 ATOM H7 0.27583 ATOM H8 0.13749 ATOM H9 -0.02608 ATOM H10 -0.05232 ATOM H11 0.08527 90.00 101.26 90.00 0.44048 0.35819 0.31948 0.33676 0.25890 0.34119 0.19161 0.33647 0.27082 0.35455 0.37047 0.36223 0.17475 0.36040 0.43897 0.38170 0.11034 0.35508 0.36806 0.37606 0.16832 0.37379 0.07474 0.37909 -0.04206 0.36989 0.27197 0.38184 0.27007 0.39145 -0.13981 0.38165 -0.05480 0.18957 -0.05629 0.53475 -0.25340 0.38385 -0.32425 0.39327 -0.09614 0.38871 -0.28154 0.40035 -0.16739 0.39807 -0.28259 0.37876 -0.40485 0.39488 -0.33196 0.40700 -0.13709 0.40309 -0.01545 0.38705 102 ENERGY -168.14 COMMENT slightly nonplanar TITL Williams VI 2 SPACEGROUP P21/c CELL 14.06 11.73 6.98 90.00 76.54 ATOM H3 0.06041 0.43823 0.11615 ATOM H5 -0.08072 0.30363 0.18747 ATOM N3 -0.03853 0.24500 0.16302 ATOM H6 -0.06342 0.17429 0.17411 ATOM C4 0.05913 0.26475 0.11133 ATOM C3 0.10117 0.36985 0.09215 ATOM N1 0.11721 0.17107 0.07725 ATOM H2 0.23568 0.45029 0.02265 ATOM H4 0.08742 0.10294 0.09105 ATOM C2 0.20448 0.37539 0.03699 ATOM C5 0.21789 0.17231 0.02337 ATOM N2 0.27151 0.08083 -0.00826 ATOM S1 0.22079 -0.04247 0.01500 ATOM C1 0.26203 0.28165 0.00319 ATOM H1 0.33386 0.28529 -0.03517 ATOM C6 0.32317 -0.13443 -0.04276 ATOM O1 0.17110 -0.06248 0.21474 ATOM O2 0.15949 -0.05862 -0.12644 ATOM C7 0.41894 -0.09565 -0.09283 ATOM C8 0.49496 -0.17376 -0.13602 ATOM C11 0.30234 -0.24978 -0.03526 ATOM C9 0.47493 -0.28871 -0.12894 ATOM C10 0.37855 -0.32678 -0.07852 ATOM H7 0.43213 -0.01396 -0.09730 ATOM H8 0.56302 -0.14691 -0.17163 ATOM H9 0.52891 -0.34351 -0.15959 ATOM H10 0.36432 -0.40825 -0.07349 ATOM H11 0.23410 -0.27602 0.00046 ENERGY -166.11 COMMENT planar 90.00 TITL Williams VI 3 SPACEGROUP Pbca CELL 7.83 11.99 23.96 90.00 90.00 ATOM H3 0.35084 0.01483 0.05421 ATOM H5 0.23072 -0.05032 0.19611 ATOM N3 0.26944 -0.02790 0.25078 ATOM H6 0.24959 -0.03799 0.32193 ATOM C4 0.35465 0.01938 0.22465 ATOM C3 0.38859 0.03685 0.11855 ATOM N1 0.40833 0.05064 0.31263 ATOM H2 0.50444 0.10037 0.03028 ATOM H4 0.38410 0.03807 0.38159 ATOM C2 0.47916 0.08731 0.10598 ATOM C5 0.49671 0.09994 0.30448 ATOM N2 0.54641 0.12896 0.39060 ATOM S1 0.50538 0.10778 0.51517 ATOM C1 0.53238 0.11832 0.19406 ATOM H1 0.59536 0.15341 0.18554 ATOM C6 0.59791 0.16070 0.59842 ATOM O1 0.32332 0.10664 0.53531 ATOM O2 0.59098 0.05559 0.53821 ATOM C7 0.68092 0.20648 0.55374 ATOM C8 0.74991 0.24607 0.62519 ATOM C11 0.58290 0.15393 0.71312 ATOM C9 0.73559 0.23969 0.73945 ATOM C10 0.65202 0.19358 0.78348 ATOM H7 0.69018 0.21051 0.47260 ATOM H8 0.80892 0.27863 0.59413 ATOM H9 0.78456 0.26778 0.78954 ATOM H10 0.64184 0.18904 0.86446 ATOM H11 0.52371 0.12127 0.74360 ENERGY -162.27 COMMENT planar II. Powder-assisted submission ============================== TITL Dzyabchenko IV SPACEGROUP P21/C CELL 9.342 10.594 7.714 90. 95.00 90. 90.00 103 ATOM O1 0.30596 0.42314 -0.16281 ATOM O2 0.30134 0.75411 0.19920 ATOM N1 0.30376 0.58389 0.02637 ATOM H1 0.30242 0.64273 -0.07513 ATOM C3 0.30788 0.36661 0.14060 ATOM C5 0.30530 0.55148 0.34281 ATOM C8 0.30583 0.45750 -0.01327 ATOM C9 0.30328 0.64031 0.18668 ATOM C1 0.06138 0.43997 0.24412 ATOM C4 0.38242 0.43130 0.29888 ATOM C2 0.15027 0.33434 0.17704 ATOM C6 0.14769 0.51890 0.37891 ATOM H11 0.36472 0.28236 0.10770 ATOM H12 0.36031 0.59857 0.45357 ATOM H2 0.01522 0.49798 0.13848 ATOM H10 -0.02925 0.39967 0.30226 ATOM H5 0.38415 0.36776 0.40852 ATOM H6 0.49359 0.45027 0.28002 ATOM H4 0.09556 0.29471 0.06044 ATOM H7 0.09122 0.60566 0.40056 ATOM H3 0.15763 0.25850 0.27096 ATOM H8 0.15468 0.46974 0.50201 COMMENT The structure solution was obtained starting from one of COMMENT the energy minima (of the energy rank 31)found in space COMMENT group P21/c in the 'ab initio' search, whose cell dimensions COMMENT (a=3D9.16, b=3D10.57, c=3D7.72, beta=3D96.0) COMMENT were close to those determined from the PD COMMENT pattern. Structure optimisation with cell parameters based COMMENT on experimental resulted in a model whose simulated PD COMMENT pattern showed a similarity with experimental one. This COMMENT model was improved by a procedure in which the COMMENT potential energy was combined with an X-ray PD pattern COMMENT disagreement criterion. Note, the use of just an X-ray COMMENT fitting, while giving quite a marginal gain in the PD COMMENT quality fit, at the same time resulted in a markedly loss COMMENT of the potential energy (of 0.2 kcal mol) indicating the COMMENT loss of quality with respect to intermolecular contacts TITL Hofmann IV second turn SPACEGROUP P21/c CELL 10.596 9.438 7.699 95.174 90.000 90.000 ATOM C1 -0.31383 0.12874 -0.20607 ATOM C2 -0.32857 0.02867 -0.35353 ATOM C3 -0.18650 0.00316 -0.42533 ATOM N4 -0.09826 -0.09008 -0.35711 ATOM C5 -0.13296 -0.16393 -0.22219 ATOM C6 -0.27288 -0.14539 -0.14200 ATOM C7 -0.25650 -0.05050 0.01171 ATOM C8 -0.38625 -0.09484 -0.28094 ATOM O9 -0.15069 0.06660 -0.54550 ATOM O10 -0.05046 -0.24558 -0.16538 ATOM H11 -0.42090 0.15134 -0.16442 ATOM H12 -0.26943 0.21792 -0.25600 ATOM H13 -0.40381 0.06383 -0.46248 ATOM H14 -0.00140 -0.10485 -0.40888 ATOM H15 -0.30720 -0.23896 -0.09431 ATOM H16 -0.35795 -0.04545 0.07468 ATOM H17 -0.17265 -0.08475 0.11178 ATOM H18 -0.48912 -0.07794 -0.22412 ATOM H19 -0.40620 -0.16564 -0.38773 ATOM C20 -0.21681 0.08330 -0.04677 ATOM H21 -0.10406 0.08403 -0.07835 ATOM H22 -0.22504 0.15063 0.06278 ENERGY -79.6860 TITL Mooy IV powder SPACEGROUP P21/c CELL 9.229 10.406 ATOM C1 -0.06033 ATOM C2 -0.15164 ATOM C3 -0.30683 ATOM C4 -0.38478 ATOM C5 -0.30326 ATOM C6 -0.14458 ATOM C7 -0.30257 ATOM N8 -0.30331 7.963 90.000 83.870 90.000 0.45132 0.73833 0.52637 0.88062 0.55827 0.83536 0.43183 0.79787 0.37229 0.63719 0.33759 0.66868 0.64324 0.68588 0.59394 0.52859 104 ATOM C9 -0.30630 0.46613 0.49822 ATOM O10 -0.29571 0.76249 0.70317 ATOM O11 -0.31031 0.42869 0.34956 ATOM H12 -0.02776 0.51826 0.63600 ATOM H13 0.03870 0.41488 0.78484 ATOM H14 -0.16135 0.46885 0.99589 ATOM H15 -0.09520 0.61537 0.90567 ATOM H16 -0.36787 0.60560 0.94238 ATOM H17 -0.38339 0.36547 0.90350 ATOM H18 -0.49846 0.45043 0.77956 ATOM H19 -0.36027 0.28524 0.60621 ATOM H20 -0.14837 0.25896 0.75924 ATOM H21 -0.08487 0.30348 0.55143 ATOM H22 -0.30201 0.65224 0.43261 ENERGY -9.53 kcal/mol COMMENT This structure was already submitted in the first COMMENT round. It is the 2nd lowest-energy structure COMMENT in the DREIDING+Multipole model COMMENT Energy-minimized structure; not Rietveld refined TITLE Price IV powder CELL 9.372639 6.580034 13.997299 90.0 82.694186 90.0 SPACEGROUP P21/c ATOM N1 0.832327 0.584942 0.034838 ATOM C1 0.644465 0.694938 0.191694 ATOM C2 0.807846 1.047893 0.101658 ATOM C3 0.651678 1.006502 0.086581 ATOM C4 0.845389 0.948516 0.194058 ATOM C5 0.614639 0.778684 0.094406 ATOM C6 0.804377 0.721876 0.199678 ATOM C7 0.701993 0.664399 0.013187 ATOM C8 0.894323 0.606813 0.119895 ATOM O1 0.665890 0.643642 -0.067342 ATOM O2 1.014569 0.539232 0.126117 ATOM H1 0.892840 0.511191 -0.019651 ATOM H2 0.826091 1.211503 0.104448 ATOM H3 0.880069 0.991529 0.039907 ATOM H4 0.786580 1.024492 0.256573 ATOM H5 0.579467 1.086501 0.141662 ATOM H6 0.959934 0.964615 0.199700 ATOM H7 0.629942 1.063403 0.016617 ATOM H8 0.832496 0.658412 0.266839 ATOM H9 0.502354 0.757271 0.083666 ATOM H10 0.580184 0.776896 0.249953 ATOM H11 0.614247 0.534743 0.198546 ENERGY 129.31 kJ/mol COMMENT This structure, found in the original search, is COMMENT among the group of lowest energy packings. As it COMMENT gives a reasonable reproduction of the main features COMMENT of the powder pattern, we would have included this COMMENT in our guesses (replacing Price IV 3) had we had COMMENT the powder data to guide our selection of possible COMMENT structures. TITL Schmidt IV Final calculated structure (Lattic par. set to exp. values) SPACEGROUP P21/c CELL 9.3300 10.6000 7.6700 90.000 94.670 90.000 ATOM C1 0.29867 0.37156 0.12711 ATOM C2 0.29838 0.46517 -0.02353 ATOM N3 0.30301 0.59415 0.01458 ATOM C4 0.30865 0.64125 0.18525 ATOM C5 0.30898 0.54829 0.33665 ATOM C6 0.15557 0.52252 0.38108 ATOM C7 0.06717 0.45282 0.23715 ATOM C8 0.14499 0.34096 0.16582 ATOM C9 0.38092 0.42568 0.28934 ATOM O10 0.29349 0.43055 -0.17843 ATOM O11 0.31252 0.75705 0.20870 ATOM H12 0.34831 0.28982 0.08732 ATOM H13 0.36583 0.59029 0.44358 ATOM H14 0.10553 0.60748 0.40636 ATOM H15 0.16044 0.46927 0.49530 ATOM H16 0.03816 0.51508 0.13558 ATOM H17 -0.02769 0.42158 0.28519 ATOM H18 0.14869 0.26781 0.25645 ATOM H19 0.08810 0.30880 0.05223 ATOM H20 0.37924 0.36203 0.39235 105 ATOM H21 0.48770 0.44168 0.26627 ATOM H22 0.30298 0.65602 -0.08557 ENERGY -93.55 kJ/mol COMMENT With the calculated packing, the powder diagram could be indexed. COMMENT Using the reflections 100, 200, 020, 110 and 111 the cell parameters COMMENT of the calculated packing were corrected: COMMENT Old values: 8.9439 10.5165 7.6854 90. 95.375 90., V=719.7 COMMENT Corrected values: 9.33 10.60 7.67 90. 94.67 90., V=756.0 COMMENT Subsequently, the energy was minimized again, keeping the lattice COMMENT parameters fixed. COMMENT The structure was not fitted to the peak intensities. END TITL Schmidt IV Calculated minimum close to the experimental structure SPACEGROUP P21/c CELL 8.9439 10.5165 7.6854 90.000 95.375 90.000 ATOM C1 0.29990 0.36944 0.12932 ATOM C2 0.29799 0.46363 -0.02138 ATOM N3 0.30101 0.59371 0.01626 ATOM C4 0.30650 0.64142 0.18652 ATOM C5 0.30845 0.54789 0.33798 ATOM C6 0.14873 0.52033 0.38049 ATOM C7 0.05720 0.44898 0.23595 ATOM C8 0.13995 0.33700 0.16612 ATOM C9 0.38525 0.42503 0.29210 ATOM O10 0.29312 0.42852 -0.17594 ATOM O11 0.30891 0.75820 0.20957 ATOM H12 0.35284 0.28754 0.09051 ATOM H13 0.36737 0.59094 0.44529 ATOM H14 0.09529 0.60545 0.40479 ATOM H15 0.15478 0.46683 0.49475 ATOM H16 0.02584 0.51132 0.13398 ATOM H17 -0.04130 0.41654 0.28282 ATOM H18 0.14503 0.26341 0.25689 ATOM H19 0.08084 0.30387 0.05214 ATOM H20 0.38460 0.36097 0.39512 ATOM H21 0.49647 0.44227 0.27036 ATOM H22 0.29992 0.65596 -0.08392 ENERGY -95.32 kJ/mol COMMENT This minimum has energy rank 9, Volume rank 5 (V=719.70 A3). COMMENT This is the calculated packing, without fitting to powder data. COMMENT The simulated powder diagram is similar to the exp. diagram. COMMENT Using this calculated packing, the powder diagram could be indexed. END TITL Van Eijck IV 4 SPACEGROUP P21/c CELL 12.67161 10.50719 7.78715 90.000 45.453 90.000 ATOM C1 0.377679 0.925321 0.322606 ATOM H2 0.375340 0.859162 0.218136 ATOM H3 0.493447 0.941714 0.222352 ATOM C4 0.296765 0.868583 0.569123 ATOM H5 0.353317 0.781123 0.540413 ATOM C6 0.303533 1.050484 0.357101 ATOM H7 0.366462 1.093291 0.181143 ATOM C8 0.136392 0.836355 0.702883 ATOM H9 0.074558 0.810550 0.888689 ATOM H10 0.136229 0.752301 0.621567 ATOM C11 0.147423 1.021234 0.470393 ATOM H12 0.156063 0.969404 0.339651 ATOM H13 0.090437 1.110346 0.507139 ATOM C14 0.053575 0.943059 0.703174 ATOM H15 0.005894 1.007686 0.851384 ATOM H16 -0.039088 0.901058 0.739708 ATOM C17 0.303168 0.961368 0.712635 ATOM O18 0.306758 0.929745 0.856154 ATOM C19 0.302538 1.143218 0.509489 ATOM O20 0.300256 1.256716 0.495447 ATOM N21 0.302941 1.089530 0.671709 ATOM H22 0.303260 1.149767 0.771288 ENERGY -208.868 kJ/mol COMMENT The fifth in energy (sixth in ab-initio); bad in free energy. COMMENT But a very good powder diffraction pattern, especially after COMMENT adjusting the cell parameters to: 12.58 10.63 7.65 47.8 COMMENT This is almost certainly the correct structure. 106 TITL Van Eijck IV 5 SPACEGROUP C2/c CELL 18.62745 10.22354 8.04470 90.000 74.163 90.000 ATOM C1 0.938038 0.327937 0.632350 ATOM H2 0.934885 0.396811 0.736756 ATOM H3 0.996880 0.313698 0.566478 ATOM C4 0.897102 0.383406 0.507591 ATOM H5 0.924427 0.474293 0.455335 ATOM C6 0.902571 0.197789 0.703959 ATOM H7 0.934255 0.156396 0.786795 ATOM C8 0.815764 0.413356 0.605314 ATOM H9 0.784837 0.439752 0.512975 ATOM H10 0.814353 0.498968 0.686527 ATOM C11 0.822962 0.224362 0.813953 ATOM H12 0.825704 0.279207 0.928322 ATOM H13 0.795630 0.131741 0.859666 ATOM C14 0.775208 0.301021 0.719430 ATOM H15 0.753902 0.233133 0.640300 ATOM H16 0.726764 0.340885 0.814237 ATOM C17 0.902152 0.287341 0.359533 ATOM O18 0.902788 0.319063 0.216007 ATOM C19 0.904970 0.101699 0.556775 ATOM O20 0.906336 -0.014841 0.572805 ATOM N21 0.904648 0.156060 0.399079 ATOM H22 0.906431 0.094081 0.301607 ENERGY -207.915 kJ/mol COMMENT The tenth in energy (twelfth in ab-initio); bad in free energy. COMMENT But an acceptable powder diffraction pattern, especially after COMMENT adjusting the cell parameters to: 19.66 10.61 7.65 71.6 COMMENT A second possibility, but structure #4 is much more likely. COMMENT Of course, the two structures #4 and #5 are fairly similar. TITL Verwer IV 1 from powder diffraction data SPACEGROUP P21/a CELL 7.7013 10.6358 9.3457 90.0000 94.9502 90.0000 ATOM C1 0.74489 0.45225 0.06665 ATOM C2 0.88561 0.52683 0.15887 ATOM C3 0.83528 0.55645 0.30919 ATOM C4 0.79474 0.43168 0.38243 ATOM C5 0.63077 0.37616 0.29930 ATOM C6 0.66894 0.34198 0.14652 ATOM C7 0.68093 0.63865 0.30272 ATOM N8 0.52153 0.59382 0.29805 ATOM C9 0.49201 0.47146 0.29807 ATOM O10 0.69381 0.75426 0.29617 ATOM O11 0.33820 0.44291 0.29507 ATOM H12 0.64292 0.51722 0.03036 ATOM H13 0.79641 0.41576 -0.02699 ATOM H14 1.00358 0.47178 0.16933 ATOM H15 0.91179 0.61384 0.10511 ATOM H16 0.94194 0.60249 0.37137 ATOM H17 0.90206 0.36680 0.38393 ATOM H18 0.77267 0.44875 0.49190 ATOM H19 0.59408 0.29232 0.35360 ATOM H20 0.76096 0.26525 0.15253 ATOM H21 0.55225 0.30831 0.08526 ATOM H22 0.42438 0.64879 0.29488 ENERGY -133.08 kcal/mol COMMENT d=3D 1.279 g/cc COMMENT structure ranked nr. 209 by energy COMMENT R_P=3D9.01%, R_WP=3D11.57%. No large deviations from powder data after COMMENT refinement by DBWS. TITL Dzyabchenko V SPACEGROUP P212121 CELL 7.261 10.634 15.634 90. 90. 90. ATOM S1 0.53554 0.04820 0.18969 ATOM BR1 0.59558 -0.14307 0.48163 ATOM O3 0.47944 -0.01128 0.11210 ATOM O4 0.70486 0.11693 0.18831 ATOM N5 0.54912 -0.06467 0.26488 ATOM C6 0.35192 0.14027 0.23614 ATOM C7 0.33060 0.08537 0.32494 ATOM C8 0.44105 -0.03419 0.32566 107 ATOM C9 0.38615 -0.10983 0.40321 ATOM C10 0.23397 -0.02239 0.44013 ATOM C11 0.33166 0.09388 0.48016 ATOM C12 0.40163 0.16703 0.40103 ATOM C13 0.14430 0.03279 0.35962 ATOM C14 0.05162 -0.06513 0.29961 ATOM C15 0.00190 0.13506 0.37663 ATOM H18 0.22112 0.13435 0.20350 ATOM H19 0.37942 0.23973 0.24185 ATOM H20 0.32428 -0.19719 0.38282 ATOM H21 0.14298 -0.07011 0.48409 ATOM H22 0.23966 0.14964 0.51899 ATOM H23 0.44256 0.06751 0.52256 ATOM H24 0.34920 0.26203 0.39908 ATOM H25 0.54965 0.17700 0.40094 ATOM H26 0.14697 -0.14021 0.28537 ATOM H27 0.01058 -0.02061 0.24052 ATOM H28 -0.06876 -0.10435 0.33017 ATOM H29 0.05929 0.20602 0.41825 ATOM H30 -0.11824 0.09489 0.40684 ATOM H31 -0.03890 0.17864 0.31718 COMMENT The stucture solution was obtained starting from minimum 5 COMMENT of the 'ab inition' search, whose cell parameters (a=7.57, COMMENT b=10.01, and c=15.06 A) were close to experimental. By COMMENT fitting the structure to the experimental cell parameters COMMENT with energy minimization, we came to a model whose COMMENT simulated X-ray PD pattern was in reasonable agreement with COMMENT the experimental XPDP. The final list of coordinates was COMMENT then obtained by fitting simulated PD patterns to the COMMENT observed one with variation of the six rigid body COMMENT parameters TITL Hofmann V second turn SPACEGROUP P212121 CELL 15.778 7.284 10.629 90.000 90.000 90.000 ATOM C1 0.10282 -0.14398 -0.05630 ATOM C2 0.04989 -0.05183 -0.02070 ATOM C3 -0.02121 -0.01455 -0.14756 ATOM C4 0.14749 -0.00226 -0.23683 ATOM C5 0.18931 -0.09323 -0.26481 ATOM C6 0.04954 -0.14820 -0.19697 ATOM C7 -0.12242 -0.09156 -0.20647 ATOM C8 -0.19320 -0.07550 -0.34249 ATOM C9 -0.29152 -0.12237 -0.13051 ATOM C10 0.04582 -0.23709 -0.25548 ATOM S11 0.21961 -0.22693 -0.37476 ATOM N12 0.28098 -0.12024 -0.36004 ATOM O13 0.40320 -0.27493 -0.35945 ATOM O14 0.16307 -0.23513 -0.51435 ATOM BR15 0.35472 0.05931 -0.16520 ATOM H16 0.25272 -0.15584 -0.04270 ATOM H17 0.02543 -0.19116 0.00052 ATOM H18 -0.05925 -0.05006 0.05238 ATOM H19 0.16825 -0.01602 0.01900 ATOM H20 -0.10637 0.04352 -0.13701 ATOM H21 0.10630 0.03110 -0.32435 ATOM H22 -0.27572 -0.13007 -0.37657 ATOM H23 -0.28225 -0.01838 -0.34445 ATOM H24 -0.08352 -0.06718 -0.41382 ATOM H25 -0.35105 -0.18004 -0.17435 ATOM H26 -0.26252 -0.13906 -0.03157 ATOM H27 -0.39867 -0.07227 -0.12974 ATOM H28 0.08688 -0.28710 -0.18777 ATOM H29 -0.08791 -0.25242 -0.29962 ENERGY -54.9553 TITL Leusen V 70 SPACEGROUP P212121 CELL 7.359 10.941 15.586 90.000 90.000 90.000 ATOM C1 0.83818 0.40034 0.02737 ATOM C2 0.88451 0.34970 0.11938 ATOM C3 0.81219 0.45313 0.18099 ATOM C4 0.94037 0.56129 0.16931 ATOM C5 0.90024 0.62146 0.08434 ATOM C6 0.75107 0.52997 0.04956 ATOM C7 0.63341 0.49863 0.13584 ATOM C8 0.53436 0.61055 0.17484 108 ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM C9 C10 S11 N12 Br13 O14 O15 H16 H17 H18 H19 H20 H21 H22 H23 H24 H25 H26 H27 H28 H29 0.47937 0.81863 1.03224 1.05588 1.11162 1.02331 1.19106 0.95916 0.73847 0.81287 1.03152 0.84506 0.66969 0.62234 0.43297 0.45982 0.52052 0.41384 0.37207 0.70994 0.81281 0.40465 0.42373 0.48995 0.59077 0.63098 0.55837 0.39212 0.40666 0.34120 0.26249 0.33167 0.71436 0.56870 0.68772 0.64808 0.58571 0.31722 0.37998 0.44157 0.46894 0.32562 0.12225 0.27577 0.30708 0.22554 0.01083 0.39648 0.30594 -0.01433 -0.00580 0.13122 0.12746 0.09240 -0.00313 0.19322 0.12956 0.23397 0.09316 0.18358 0.07983 0.31266 0.29101 TITL Mooy V powder SPACEGROUP P212121 CELL 7.136 10.803 15.381 90.000 90.000 90.000 ATOM C1 -0.15069 -0.09325 0.02065 ATOM C2 -0.09760 -0.15468 0.10813 ATOM C3 -0.17425 -0.05961 0.17521 ATOM C4 -0.05345 0.04761 0.16795 ATOM C5 -0.08821 0.11505 0.08911 ATOM C6 -0.24385 0.02947 0.05165 ATOM C7 -0.35804 -0.00994 0.13353 ATOM C8 -0.17063 -0.10043 0.27146 ATOM S9 0.04100 -0.02665 0.30831 ATOM N10 0.05915 0.07470 0.22952 ATOM C11 -0.45558 0.09881 0.18308 ATOM C12 -0.51373 -0.10871 0.11720 ATOM BR13 0.13012 0.13449 0.01620 ATOM O14 0.02051 0.04286 0.39847 ATOM O15 0.21671 -0.11644 0.30570 ATOM H16 -0.24948 -0.15036 -0.01554 ATOM H17 -0.02769 -0.07705 -0.01988 ATOM H18 -0.16673 -0.24417 0.11492 ATOM H19 0.05379 -0.16745 0.11385 ATOM H20 -0.14431 0.20615 0.10401 ATOM H21 -0.32711 0.07502 0.00168 ATOM H22 -0.16342 -0.20058 0.27863 ATOM H23 -0.29004 -0.06397 0.30756 ATOM H24 -0.35623 0.16688 0.20741 ATOM H25 -0.55311 0.14581 0.13971 ATOM H26 -0.53349 0.06337 0.23871 ATOM H27 -0.57115 -0.13981 0.17903 ATOM H28 -0.46310 -0.18995 0.08276 ATOM H29 -0.62594 -0.06783 0.07870 ENERGY 39.52 kcal/mol COMMENT 9th lowest-energy structure in the Dreiding+Multipole model. COMMENT Energy-minimized structure; not Rietveld refined TITL Schmidt V Final calculated structure (Lattic par. set to exp. values) SPACEGROUP P212121 CELL 7.2600 10.6400 15.6400 90.000 90.000 90.000, V=1208.13 ATOM C1 0.29265 -0.07425 0.40717 -0.000060 ATOM C2 0.43319 -0.00916 0.34479 -0.003340 ATOM C3 0.38508 -0.05210 0.25588 0.052480 ATOM C4 0.21957 -0.14154 0.27295 -0.022750 ATOM C5 0.29341 -0.25964 0.31811 -0.048140 ATOM C6 0.34657 -0.21437 0.40787 -0.043180 ATOM C7 0.11831 -0.07248 0.34882 -0.039210 ATOM C8 0.30622 -0.00261 0.48929 -0.009910 ATOM S9 0.50507 0.09504 0.48265 1.442090 ATOM N10 0.54192 0.07159 0.37728 -0.391920 ATOM C11 -0.04503 -0.14692 0.38496 -0.032100 ATOM C12 0.04928 0.05936 0.32535 -0.032100 ATOM O13 0.64737 0.04251 0.53480 -0.566900 ATOM O14 0.45072 0.22139 0.50096 -0.566900 ATOM Br15 0.59262 -0.12223 0.19075 -0.082370 109 ATOM H16 0.34222 0.02453 0.21972 0.048810 ATOM H17 0.13916 -0.15832 0.21911 0.031840 ATOM H18 0.40567 -0.29798 0.28609 0.027020 ATOM H19 0.19183 -0.32846 0.32066 0.027020 ATOM H20 0.27444 -0.26196 0.45532 0.027570 ATOM H21 0.48659 -0.22569 0.41961 0.027570 ATOM H22 0.18860 0.05131 0.49905 0.017240 ATOM H23 0.31684 -0.06327 0.54120 0.017240 ATOM H24 -0.00992 -0.23846 0.40162 0.020000 ATOM H25 -0.09489 -0.10225 0.43939 0.020000 ATOM H26 -0.14989 -0.15071 0.33972 0.020000 ATOM H27 -0.03913 0.05359 0.27318 0.020000 ATOM H28 -0.02274 0.09819 0.37639 0.020000 ATOM H29 0.15580 0.12067 0.30993 0.020000 ENERGY -90.05 kJ/mol COMMENT The structure of V could not be determined without indexing the COMMENT powder diagram, because the search was incomplete. COMMENT The corresponding packing would have COMMENT a=6.8356, b=10.3457, c=15.7930, energy=-95.44 (energy rank 10), COMMENT with a powder diagram reasonably similar to the experimental COMMENT powder diagram; but this packing was not found in the crystal COMMENT structure prediction step (Calculation time too short?). COMMENT The structure given here is not part of the Blind test, since COMMENT it was found only in a energy minimization with COMMENT lattice parameters fixed to the experimental values, after COMMENT indexing the powder diagram. END TITL Van Eijck V 4 SPACEGROUP P212121 CELL 11.48923 6.99936 13.84368 90.000 90.000 90.000 ATOM C1 .913701 .547074 .621632 ATOM C2 .998033 .714077 .637238 ATOM H3 .955139 .849955 .650833 ATOM H4 1.052533 .734178 .573747 ATOM H5 1.055004 .684819 .698393 ATOM C6 .994383 .376828 .603024 ATOM H7 1.050881 .351522 .664760 ATOM H8 1.049760 .403899 .540590 ATOM H9 .947752 .245011 .588278 ATOM C10 .818093 .518639 .700878 ATOM H11 .854264 .495668 .772707 ATOM C12 .745939 .346575 .662341 ATOM H13 .660613 .335362 .695670 ATOM H14 .790742 .211274 .674135 ATOM C15 .736981 .394892 .554928 ATOM H16 .768818 .277709 .510503 ATOM H17 .646924 .423770 .534316 ATOM C18 .816152 .574842 .542835 ATOM C19 .745563 .738519 .585628 ATOM C20 .745675 .706346 .692507 ATOM BR21 .587359 .708953 .747903 ATOM H22 .791856 .822885 .727721 ATOM C23 .846845 .633664 .442252 ATOM H24 .937827 .604390 .426248 ATOM H25 .792361 .561765 .389550 ATOM N26 .729961 .891881 .536453 ATOM S27 .818905 .883880 .441834 ATOM O28 .755110 .935978 .356859 ATOM O29 .923113 .987888 .463792 ENERGY -314.629 kJ/mol COMMENT The powder spectrum has a certain resemblance to the observed one. TITL Van Eijck V 5 SPACEGROUP P212121 CELL 7.45973 13.16070 11.36013 ATOM C1 .034493 .882238 ATOM C2 .177583 .850445 ATOM H3 .299154 .820951 ATOM H4 .216782 .915175 ATOM H5 .125143 .791976 ATOM C6 -.126849 .915601 ATOM H7 -.097489 .916067 ATOM H8 -.168962 .992488 ATOM H9 -.241327 .865668 90.000 .084995 -.004605 .035699 -.058565 -.063304 .010584 -.083097 .032960 .023424 90.000 90.000 110 ATOM C10 -.007562 .804752 .185954 ATOM H11 -.053094 .731459 .152935 ATOM C12 -.150865 .861778 .260655 ATOM H13 -.165709 .830995 .348872 ATOM H14 -.282131 .859953 .218571 ATOM C15 -.074452 .969428 .263085 ATOM H16 -.172672 1.024088 .230844 ATOM H17 -.036826 .991534 .352182 ATOM C18 .092024 .963488 .179647 ATOM C19 .233799 .906671 .250212 ATOM C20 .173160 .798460 .254749 ATOM BR21 .168857 .744669 .417161 ATOM H22 .267710 .750892 .206644 ATOM C23 .177594 1.060931 .142530 ATOM H24 .153542 1.076051 .049740 ATOM H25 .129479 1.124423 .194392 ATOM N26 .387680 .947626 .268487 ATOM S27 .409516 1.040242 .170186 ATOM O28 .485225 1.128174 .225328 ATOM O29 .495441 1.000971 .067127 ENERGY -313.093 kJ/mol COMMENT The powder spectrum has a certain resemblance to the observed one. COMMENT It also looks remarkably like the one for structure #4. COMMENT In a certain force field the structures even become equivalent. TITL Verwer V 1 from powder diffraction data SPACEGROUP P212121 CELL 10.6350 15.6238 7.2584 90.0000 90.0000 90.0000 ATOM C88 0.39856 0.03225 0.84531 ATOM C89 0.34489 0.12219 0.89038 ATOM C90 0.44881 0.18330 0.81442 ATOM C91 0.55722 0.17238 0.93390 ATOM C92 0.61869 0.09160 0.90581 ATOM C93 0.52754 0.05649 0.75535 ATOM C94 0.49686 0.13731 0.63581 ATOM C95 0.41811 0.28046 0.81555 ATOM S96 0.49355 0.30943 1.02245 ATOM N97 0.59253 0.23163 1.04102 ATOM C98 0.61217 0.18028 0.53603 ATOM C99 0.39796 0.12383 0.47816 ATOM BR10 0.63892 0.02176 1.12295 ATOM O101 0.55915 0.39831 1.00108 ATOM O102 0.39408 0.30058 1.18010 ATOM H103 0.33804 -0.00266 0.75037 ATOM H104 0.40823 -0.00689 0.96853 ATOM H105 0.25646 0.13302 0.81855 ATOM H106 0.32897 0.13037 1.03804 ATOM H107 0.71221 0.10186 0.85002 ATOM H108 0.56986 0.00430 0.67789 ATOM H109 0.31913 0.29595 0.82684 ATOM H110 0.46277 0.31629 0.70538 ATOM H111 0.68177 0.20685 0.62950 ATOM H112 0.65957 0.13326 0.45010 ATOM H113 0.58205 0.23307 0.44835 ATOM H114 0.37094 0.18518 0.41968 ATOM H115 0.31165 0.09305 0.52141 ATOM H116 0.43764 0.08411 0.36957 ENERGY -114.266 kcal/mol COMMENT d=3D 1.610 g/cc COMMENT structure ranked nr. 5 by energy COMMENT R_P=3D23.91%; R_WP=3D29.88%; Refined using DBWS and partial energy COMMENT minimization. Although the rms fit is rather bad, the overall fit COMMENT looks sufficiently convincing. Some atomic coordinates may be COMMENT off by a few 0.1A, since no attempt has been made to refine atomic COMMENT positions. TITL Dzyabchenko SPACEGROUP=P21/C CELL 8.240 8.947 ATOM S1 .18190 ATOM O2 .12440 ATOM O3 .13631 ATOM N4 .11947 ATOM C11 .15646 ATOM N12 .07881 ATOM C13 .10509 VI 15.056 90. 91.21 90. .38660 .34030 .47516 .26614 .43654 .42832 .21529 .32745 .10232 .38422 -.02835 .36455 -.15749 .41156 111 ATOM C14 .21053 -.16033 .48097 ATOM C15 .28969 -.02844 .50498 ATOM C16 .26279 .10082 .45835 ATOM N18 .02357 -.28432 .38850 ATOM C5 .39450 .38029 .33404 ATOM C6 .48545 .48346 .38176 ATOM C7 .65314 .47898 .38052 ATOM C8 .73259 .37143 .33133 ATOM C9 .63952 .27054 .28316 ATOM C10 .47230 .27456 .28386 ATOM H17 -.03074 -.01742 .33678 ATOM H19 .02211 -.30908 .32372 ATOM H20 .04287 -.37367 .42630 ATOM H21 .42516 .56801 .42021 ATOM H22 .72269 .56019 .41832 ATOM H23 .86350 .36639 .33056 ATOM H24 .69898 .18643 .24398 ATOM H25 .40231 .19493 .24510 ATOM H26 .23080 -.26424 .51598 ATOM H27 .37377 -.02635 .56097 ATOM H28 .32510 .20105 .47993 COMMENT The structure was derived by starting from one marginal COMMENT (45th lowest-energy, 4 kcal/mol above the global one) COMMENT energy minimum in space group P21/c whose cell parameters, COMMENT a=3D 8.65, b=3D9.16, c=3D14.66, beta=3D94.4 deg, were close to COMMENT these determined from the Xray PD pattern. The energy COMMENT minimization based on experimental cell dimensions resulted COMMENT in a stucture whose simulated pattern showed a rough COMMENT agreement with experimental one. This agreement was then COMMENT improved by minimization of a penalty function combining COMMENT both disagreement factor for PD patterns and the COMMENT potential-energy function. At the same time our attempts to COMMENT refine the structure by using the X-ray criterion only were COMMENT unsuccessful since they resulted in inappropriate COMMENT interatomic distances. TITL Leusen VI PowderSolve SPACEGROUP P21/a (P 1 21/a 1) CELL 15.068 8.952 8.242 90.000 88.778 90.000 ATOM C1 0.28182 1.27081 -0.12549 ATOM C2 0.32541 1.37477 -0.22577 ATOM C3 0.37832 1.48576 -0.15799 ATOM C4 0.38878 1.49234 0.00994 ATOM C5 0.34530 1.38743 0.10836 ATOM C6 0.29147 1.27688 0.04232 ATOM S7 0.34311 1.37673 0.30760 ATOM N8 0.33074 1.22233 0.36359 ATOM C9 0.37971 1.09957 0.34701 ATOM C10 0.45805 1.09778 0.24801 ATOM C11 0.50771 0.96869 0.23367 ATOM C12 0.48307 0.83529 0.31314 ATOM C13 0.40623 0.83647 0.40952 ATOM N14 0.35859 0.96537 0.42423 ATOM O15 0.26290 1.46001 0.35479 ATOM O16 0.43079 1.43558 0.36233 ATOM N17 0.37355 0.71527 0.49150 ATOM H18 0.24001 1.18459 -0.17829 ATOM H19 0.31774 1.36956 -0.35713 ATOM H20 0.41173 1.56773 -0.23624 ATOM H21 0.42928 1.57871 0.06530 ATOM H22 0.25748 1.19754 0.12256 ATOM H23 0.47645 1.20081 0.18597 ATOM H24 0.56816 0.96943 0.15809 ATOM H25 0.52162 0.73287 0.29937 ATOM H26 0.30372 0.97372 0.50312 ATOM H27 0.40713 0.61686 0.48830 ATOM H28 0.31563 0.72043 0.55708 TITL Schmidt VI Final calculated structure (Lattic par. set to exp. values) SPACEGROUP P21/c CELL 8.2414 8.9510 15.0597 90.000 91.171 90.000 ATOM S1 0.40377 0.25018 0.13814 ATOM O1 0.54620 0.30668 0.18397 ATOM O2 0.42437 0.11600 0.08498 ATOM N1 0.25750 0.20847 0.20195 ATOM C1 0.32987 0.39300 0.06788 112 ATOM C2 0.23156 0.35410 -0.00380 ATOM C3 0.16490 0.46334 -0.05826 ATOM C4 0.19583 0.61326 -0.04204 ATOM C5 0.29610 0.64977 0.02923 ATOM C6 0.36338 0.54150 0.08368 ATOM C7 0.19614 0.30708 0.26065 ATOM C8 0.27750 0.40381 0.31996 ATOM C9 0.19216 0.49030 0.37761 ATOM C10 0.02327 0.48623 0.37780 ATOM C11 -0.05445 0.39678 0.31910 ATOM N2 0.03092 0.30954 0.26172 ATOM N3 -0.21504 0.38447 0.31113 ATOM H2 0.20223 0.24184 -0.01183 ATOM H3 0.08989 0.43651 -0.11231 ATOM H4 0.14581 0.69543 -0.08305 ATOM H5 0.32232 0.76038 0.04504 ATOM H6 0.44108 0.57015 0.13624 ATOM H8 0.40356 0.40820 0.32340 ATOM H9 0.25996 0.55280 0.42324 ATOM H10 -0.03069 0.54980 0.42687 ATOM H2 -0.03130 0.24276 0.21902 ATOM H3 -0.26459 0.31475 0.26535 ATOM H4 -0.28736 0.44487 0.35087 ENERGY -112.03 kJ/mol COMMENT The minimum with energy rank 3 shows a simulated powder diagram COMEMNT comparable to the experimental one. It was not submitted as COMMENT predicted crystal structure, because other structures with COMMENT similar energies seemed to be "intuitively more reliable". COMMENT With the calculated packing, the powder diagram could be indexed. COMMENT The lattice parameters were set to the experimental values. COMMENT Subsequently, the energy was minimized keeping the lattice parameters COMMENT fixed. COMMENT The structure was not fitted to the peak intensities. COMMENT The powder diagram is not reproduced as good as usual. COMMENT Perhaps the structure is wrong. END TITL Schmidt VI Calculated minimum close to the experimental structure SPACEGROUP P21/c CELL 7.7745 9.4058 15.5886 90.0000 109.2720 90.0000 ATOM S1 0.34296 0.23069 0.14821 1.495200 ATOM O1 0.51730 0.23960 0.21911 -0.564330 ATOM O2 0.31176 0.10678 0.08913 -0.564330 ATOM N1 0.17230 0.23041 0.18410 -0.567920 ATOM C1 0.31856 0.38372 0.08022 -0.035920 ATOM C2 0.19072 0.38231 -0.00582 -0.071250 ATOM C3 0.16133 0.50249 -0.05985 -0.063490 ATOM C4 0.25969 0.62594 -0.02877 -0.062380 ATOM C5 0.38853 0.62463 0.05695 -0.063490 ATOM C6 0.41897 0.50512 0.11112 -0.071250 ATOM C7 0.16124 0.31901 0.25058 0.094040 ATOM C8 0.28812 0.41874 0.30193 -0.022670 ATOM C9 0.25437 0.49368 0.36992 -0.055140 ATOM C10 0.09278 0.47456 0.38869 -0.021700 ATOM C11 -0.03083 0.38207 0.33760 0.101470 ATOM N2 0.00331 0.30642 0.26987 -0.529770 ATOM N3 -0.19172 0.35579 0.34720 -0.585230 ATOM H2 0.11107 0.29159 -0.02585 0.060970 ATOM H3 0.06508 0.50393 -0.12466 0.062220 ATOM H4 0.23773 0.71630 -0.06943 0.062270 ATOM H5 0.46509 0.71449 0.08410 0.062220 ATOM H6 0.51865 0.50455 0.17495 0.060970 ATOM H8 0.41219 0.43434 0.29153 0.066060 ATOM H9 0.35836 0.55959 0.40879 0.062540 ATOM H10 0.08316 0.53053 0.44446 0.066100 ATOM H2 -0.09186 0.23700 0.23332 0.369420 ATOM H3 -0.27749 0.28468 0.30613 0.357690 ATOM H4 -0.22803 0.40695 0.39556 0.357690 ENERGY -118.80 kJ/mol COMMENT This minimum has energy rank 3. It was not submitted as COMMENT predicted crystal structure, because other structures with COMMENT similar energies seemed to be "intuitively more reliable". COMMENT This is the calculated packing, without fitting to powder data. COMMENT The simulated powder diagram is similar to the exp. diagram. COMMENT Using this calculated packing, the powder diagram could be indexed. END 113 TITL Van Eijck VI 4 SPACEGROUP C2/c CELL 47.29542 10.62872 15.58563 90.000 15.895 90.000 ATOM C1 0.897459 0.499538 -0.543675 ATOM H2 0.925539 0.507329 -0.690651 ATOM C3 0.874576 0.607945 -0.429796 ATOM H4 0.884900 0.699506 -0.488415 ATOM C5 0.883760 0.380922 -0.466667 ATOM H6 0.900958 0.297491 -0.553665 ATOM C7 0.838026 0.597717 -0.239034 ATOM H8 0.819782 0.681084 -0.149395 ATOM C9 0.847688 0.370839 -0.276988 ATOM H10 0.836581 0.279707 -0.215347 ATOM C11 0.824804 0.479289 -0.162988 ATOM S12 0.777294 0.465856 0.081259 ATOM O13 0.832518 0.362828 -0.041117 ATOM O14 0.794435 0.584863 0.073185 ATOM N15 0.658503 0.434983 0.405429 ATOM C16 0.576946 0.500219 0.660537 ATOM C17 0.479445 0.446783 0.917249 ATOM H18 0.479517 0.357567 0.884090 ATOM C19 0.389090 0.505266 1.196092 ATOM H20 0.317676 0.462881 1.383945 ATOM C21 0.388679 0.624865 1.241921 ATOM H22 0.315852 0.670891 1.467346 ATOM C23 0.477538 0.677159 1.008688 ATOM N24 0.479186 0.786636 1.044972 ATOM H25 0.547141 0.824140 0.867159 ATOM H26 0.412123 0.832960 1.251814 ATOM N27 0.569524 0.615323 0.724464 ATOM H28 0.635508 0.654215 0.552335 ENERGY -532.749 kJ/mol COMMENT The powder spectrum has a certain resemblance to the observed one. COMMENT There are not many structures with this property. TITL Van Eijck VI 5 SPACEGROUP P21/c CELL 14.48583 10.56232 13.31071 90.000 32.350 90.000 ATOM C1 -0.690936 0.990273 1.085507 ATOM H2 -0.814841 0.985100 1.236324 ATOM C3 -0.610636 1.107521 0.998217 ATOM H4 -0.672410 1.192495 1.081516 ATOM C5 -0.610663 0.879889 0.977464 ATOM H6 -0.673212 0.789464 1.045108 ATOM C7 -0.450152 1.114676 0.803174 ATOM H8 -0.387264 1.204878 0.734401 ATOM C9 -0.449828 0.887092 0.782047 ATOM H10 -0.387604 0.802319 0.697875 ATOM C11 -0.369346 1.004520 0.694733 ATOM S12 -0.168418 1.017553 0.448894 ATOM O13 -0.077042 1.117382 0.416026 ATOM O14 -0.084454 0.896134 0.377440 ATOM N15 -0.237141 1.056334 0.402078 ATOM C16 -0.217392 0.996959 0.300032 ATOM C17 -0.293498 1.055469 0.281839 ATOM H18 -0.362014 1.143797 0.353302 ATOM C19 -0.278527 1.002254 0.176449 ATOM H20 -0.334402 1.047682 0.163103 ATOM C21 -0.185835 0.883921 0.080132 ATOM H22 -0.173040 0.842356 -0.005530 ATOM C23 -0.115800 0.826991 0.096083 ATOM N24 -0.031853 0.717737 0.011151 ATOM H25 0.019241 0.674847 0.025874 ATOM H26 -0.021087 0.675727 -0.066921 ATOM N27 -0.131795 0.883164 0.204067 ATOM H28 -0.078307 0.840759 0.214558 ENERGY -529.008 kJ/mol COMMENT The powder spectrum has a certain resemblance to the observed one. COMMENT It also looks remarkably like the one for structure #4. COMMENT Of course, these two structures are fairly similar. COMMENT But this one has a higher energy and is less probable. III. Post-predicted (high-rank and minimized experimental) structures ===================================================================== 114 TITL Dzyabchenko IV-31: ab initio minimum closest to experimental COMMENT Energy=-2.835994E+01 Density=1.36816 CELL: 9.158 10.570 7.725 90.00 95.95 90.00 SPACEGROUP P21/c at O1 .28226 .43881 -.17929 at O2 .30085 .76056 .20086 at N1 .29204 .59472 .01873 at H1 .28596 .65639 -.07992 at C3 .29975 .37400 .12186 at C5 .31014 .55372 .33420 at C8 .29052 .46920 -.02761 at C9 .30079 .64691 .18236 at C1 .05620 .44570 .24343 at C4 .38456 .43423 .27961 at C2 .14150 .34135 .16571 at C6 .15187 .52077 .37770 at H11c .35463 .29028 .08132 at H12c .37239 .59768 .44452 at H2 .00445 .50684 .14314 at H10c -.03307 .40415 .30481 at H5 .39142 .36762 .38616 at H6 .49650 .45328 .25535 at H4 .07932 .30502 .04990 at H7 .09679 .60731 .40706 at H3 .15309 .26283 .25556 at H8 .16495 .46818 .49818 end TITLE Erk 1 Polymorph Predictor, #62 in P21/c, #116 of 10 space groups CELL 7.8487 10.7661 9.4748 90.0000 96.1628 90.0000 SPACEGROUP P21/a !SYMM -X+0.500,+Y+0.500,-Z at C1 -0.51410 -0.52590 -0.20517 at C2 -0.37493 -0.62118 -0.20112 at C3 -0.20961 -0.56814 -0.11622 at C4 -0.17112 -0.44308 -0.18984 at C5 -0.32535 -0.36055 -0.19750 at H6 -0.58126 -0.35001 -0.20764 at H7 -0.41594 -0.70307 -0.14627 at C8 -0.33173 -0.65832 -0.35294 at H9 -0.23090 -0.55209 -0.00553 at H10 -0.10240 -0.63290 -0.11545 at C11 -0.11618 -0.47411 -0.33957 at H12 -0.06634 -0.39561 -0.12691 at N13 -0.48453 -0.40451 -0.20392 at O14 -0.66841 -0.55342 -0.21230 at O15 -0.31247 -0.24545 -0.20102 at C16 -0.25401 -0.54969 -0.43361 at H17 -0.35532 -0.48575 -0.47362 at H18 -0.19926 -0.58728 -0.52567 at H19 -0.44666 -0.69288 -0.41620 at H20 -0.23962 -0.73471 -0.34344 at H21 0.00272 -0.52788 -0.32640 at H22 -0.08938 -0.38795 -0.39420 END TITLE Erk 1-S Systematic Search, #47 in P 21/c, #76 of 10 space groups CELL 7.7469 10.9802 9.7430 90.0000 94.2288 90.0000 !SYMM -X+0.500,+Y+0.500,-Z SPACEGROUP P21/a at C1 -0.52430 -0.53578 -0.20159 at C2 -0.37100 -0.62252 -0.20187 at C3 -0.21536 -0.56809 -0.11836 at C4 -0.16811 -0.44736 -0.18349 at C5 -0.32021 -0.35959 -0.18305 at H6 -0.59163 -0.35088 -0.19081 at H7 -0.40856 -0.71020 -0.15410 at C8 -0.32433 -0.64781 -0.34911 at H9 -0.24334 -0.55528 -0.00948 at H10 -0.10421 -0.63169 -0.11668 at C11 -0.11741 -0.46916 -0.33035 at H12 -0.05577 -0.40564 -0.12214 at N13 -0.49133 -0.40820 -0.19146 at O14 -0.67588 -0.56656 -0.20889 at O15 -0.30797 -0.24907 -0.17539 at C16 -0.25745 -0.53525 -0.41935 115 at H17 at H18 at H19 at H20 at H21 at H22 END -0.36619 -0.20609 -0.43808 -0.22468 0.00386 -0.08627 -0.47226 -0.56175 -0.68515 -0.72041 -0.52310 -0.38138 -0.44762 -0.51819 -0.41067 -0.34586 -0.32516 -0.37878 TITLE Hofmann IV 358 CELL 9.220087 10.199856 7.632169 90.000000 SPACEGROUP P21/c ATOM N1 -0.305001 -0.090668 -0.011251 ATOM H2 -0.297769 -0.144709 0.077718 ATOM C3 -0.299389 -0.145107 -0.176724 ATOM O4 -0.284432 -0.263372 -0.190847 ATOM C5 -0.308326 -0.053101 -0.330963 ATOM H6 -0.357436 -0.103315 -0.433045 ATOM C7 -0.392255 0.069425 -0.290326 ATOM H8 -0.394305 0.132723 -0.390627 ATOM H9 -0.496505 0.048545 -0.272668 ATOM C10 -0.315692 0.133939 -0.128287 ATOM H11 -0.365590 0.207567 -0.093684 ATOM C12 -0.313222 0.042041 0.026086 ATOM O13 -0.315995 0.077140 0.177680 ATOM C14 -0.159909 0.173154 -0.163100 ATOM H15 -0.172636 0.244888 -0.259117 ATOM H16 -0.114805 0.212034 -0.052583 ATOM C17 -0.072176 0.059721 -0.227503 ATOM H18 -0.050174 -0.002984 -0.130478 ATOM H19 0.017219 0.090500 -0.266434 ATOM C20 -0.154071 -0.015935 -0.376192 ATOM H21 -0.102972 -0.097171 -0.407761 ATOM H22 -0.164455 0.033940 -0.482638 !ENERGY -107.854 COMMENT predicted COMMENT similarity 0.792 COMMENT rank 358 END TITLE Hofmann IV minimized CELL 9.200543 10.499852 7.731753 90.000000 SPACEGROUP P21/c ATOM N1 0.193251 0.594278 0.519769 ATOM H2 0.196477 0.647076 0.432249 ATOM C3 0.195076 0.647369 0.683428 ATOM O4 0.201473 0.762865 0.698028 ATOM C5 0.192968 0.557671 0.835077 ATOM H6 0.140209 0.603540 0.937555 ATOM C7 0.117747 0.434105 0.796063 ATOM H8 0.120398 0.372629 0.894552 ATOM H9 0.011755 0.448388 0.781531 ATOM C10 0.198995 0.375943 0.633568 ATOM H11 0.154321 0.301720 0.600058 ATOM C12 0.194631 0.465166 0.481953 ATOM O13 0.194256 0.430983 0.332090 ATOM C14 0.357974 0.346831 0.663530 ATOM H15 0.350536 0.276568 0.757993 ATOM H16 0.405886 0.311720 0.552932 ATOM C17 0.437691 0.461802 0.725821 ATOM H18 0.455079 0.523843 0.630043 ATOM H19 0.529541 0.437074 0.761649 ATOM C20 0.350277 0.530459 0.875378 ATOM H21 0.395598 0.612126 0.905929 ATOM H22 0.343606 0.481519 0.980268 END !ENERGY -106.041 !COMMENT minimized !COMMENT similarity 0.170 TITLE Price IV optimised SPACEGROUP P21/a CELL 7.913986 10.590148 9.315490 ATOM N1 0.033750 0.908462 ATOM H1 -0.065633 0.847852 ATOM H2 0.448412 0.897006 ATOM H3A 0.405098 1.132927 94.629784 90.000000 84.182823 90.000000 90.000000 0.811589 0.809607 0.866436 0.885023 94.521726 90.000000 116 ATOM H4 0.102847 1.212228 0.855755 ATOM H3B 0.274693 1.049877 0.997160 ATOM H6A 0.277689 1.227292 0.650226 ATOM H6B 0.064792 1.196960 0.590982 ATOM H7A 0.127824 0.973972 0.547638 ATOM H7B 0.273701 1.065642 0.462359 ATOM H8A 0.410178 0.881912 0.601657 ATOM H8B 0.494478 1.029528 0.656934 ATOM C1 0.193877 0.853086 0.810736 ATOM C2 0.340586 0.944730 0.809869 ATOM C3 0.298155 1.067655 0.884927 ATOM C4 0.141999 1.125899 0.803723 ATOM C5 -0.007414 1.036708 0.804519 ATOM C6 0.177792 1.155704 0.647254 ATOM C7 0.234693 1.038604 0.567876 ATOM C8 0.380559 0.970748 0.653508 ATOM O1 0.209235 0.738027 0.807864 ATOM O2 -0.155725 1.070937 0.796589 COMMENT Experimental structure minimised with same ab initio COMMENT molecular geometry, and same model potential (DMA + exp-6) COMMENT as used in submissions. COMMENT Calculated lattice energy -131.2 kJ/mol is too high relative COMMENT to global minimum of -139.0 kJ/mol, but reproduction of COMMENT structure is acceptable. end TITL Scheraga IV: Exp structure optimized with the force field (AMBER) !used for crystal structure prediction of target IV SPACEGROUP P21/a CELL 7.908 10.462 8.921 90.00 95.76 90.00 ATOM N1 -.00295 -.08925 .30514 ATOM H1 -.09038 -.14055 .29405 ATOM C1 -.03647 .04040 .29275 ATOM O1 -.18314 .07660 .26697 ATOM C2 .11292 .12985 .30810 ATOM H2 .06912 .21690 .35657 ATOM C3 .26034 .07089 .40583 ATOM H3A .36988 .13305 .41274 ATOM H3B .22957 .05739 .52001 ATOM C4 .30610 -.05494 .33411 ATOM H4 .40643 -.10446 .40181 ATOM C5 .15692 -.14479 .32546 ATOM O2 .16892 -.26028 .33309 ATOM C6 .36079 -.03191 .17606 ATOM H6A .47695 .02259 .19505 ATOM H6B .38782 -.12443 .13036 ATOM C7 .22988 .04215 .07490 ATOM H7A .12012 -.01750 .04536 ATOM H7B .28196 .07041 -.02746 ATOM C8 .16727 .16066 .15133 ATOM H8A .06205 .20656 .08587 ATOM H8B .26428 .23345 .16689 END TITL Scheraga IV crystal structure corresponding to minimum 5; !it is also the experimental structure of target IV optimized !with our molecular geometry and AMBER force field CELL 7.798 10.589 9.094 90.00 95.25 90.00 SPACEGROUP P21/a ATOM N1 -.00084 -.09077 .30759 ATOM H1 -.09930 -.15164 .29866 ATOM C1 -.04391 .03574 .29621 ATOM O1 -.19102 .06743 .27731 ATOM C2 .10574 .12782 .30717 ATOM H2 .05823 .21263 .35547 ATOM C3 .25787 .07197 .40396 ATOM H3A .36422 .13770 .41284 ATOM H3B .22330 .05503 .51457 ATOM C4 .31129 -.05108 .33270 ATOM H4 .41410 -.09740 .39982 ATOM C5 .16204 -.14353 .32131 ATOM O2 .17984 -.25538 .32214 ATOM C6 .37084 -.02472 .17843 ATOM H6A .48576 .03249 .19371 ATOM H6B .40669 -.11230 .12863 ATOM C7 .23371 .04426 .07653 ATOM H7A .13121 -.02034 .04047 117 ATOM ATOM ATOM ATOM END H7B C8 H8A H8B .28891 .15939 .05054 .25522 .07441 .15893 .19689 .23272 -.02234 .15204 .08423 .16477 TITLE Schweizer/Dunitz E=-113.33, d=1.235 SPACEGROUP P21/c CELL 9.4238 11.3517 7.7409 90.00 95.882 ATOM H1 -0.1636 0.1978 0.1118 ATOM C2 -0.2066 0.1290 0.1457 ATOM C3 -0.2030 -0.0354 0.3533 ATOM C4 -0.4414 0.0471 0.2286 ATOM C5 -0.3592 -0.0123 0.3842 ATOM C6 -0.3642 0.1537 0.1662 ATOM C7 -0.1312 0.0795 0.3135 ATOM C8 -0.1975 -0.1210 0.2060 ATOM H9 -0.4535 -0.0122 0.1350 ATOM H10 -0.3576 0.0349 0.4868 ATOM H11 -0.3619 0.2204 0.2577 ATOM H12 -0.1388 0.1380 0.4088 ATOM C13 -0.1948 0.0440 -0.0012 ATOM H14 -0.1537 -0.0751 0.4595 ATOM H15 -0.5333 0.0690 0.2585 ATOM H16 -0.4025 -0.0880 0.4155 ATOM H17 -0.4082 0.1834 0.0526 ATOM H18 -0.0265 0.0678 0.3050 ATOM O19 -0.1901 0.0730 -0.1514 ATOM N20 -0.1914 -0.0747 0.0415 ATOM O21 -0.2013 -0.2276 0.2247 ATOM H22 -0.1902 -0.1251 -0.0436 !ENERGY -113.33 Kcal/mol COMMENT Coordinates from compound IV refined COMMENT in PROMET/MINOPEC to test force field COMENT with correct structure END 90.00 TITLE Schweizer/Dunitz IV 9 868.41 -108.10, d= 1.172 SPACEGROUP P21/c CELL 9.73150 11.40970 7.85850 90.00000 95.58700 90.00000 ATOM H1 0.3494 0.0776 0.4725 ATOM C2 0.2984 0.0371 0.3588 ATOM C3 0.2964 -0.1255 0.1495 ATOM C4 0.0662 -0.0458 0.2323 ATOM C5 0.1437 -0.1524 0.1711 ATOM C6 0.1458 0.0146 0.3862 ATOM C7 0.3691 -0.0774 0.3164 ATOM C8 0.3065 -0.0377 0.0062 ATOM H9 0.0467 0.0165 0.1282 ATOM H10 0.1420 -0.2230 0.2640 ATOM H11 0.1443 -0.0407 0.4988 ATOM H12 0.3623 -0.1404 0.4188 ATOM C13 0.3085 0.1252 0.2159 ATOM H14 0.3459 -0.2044 0.1096 ATOM H15 -0.0346 -0.0729 0.2661 ATOM H16 0.0929 -0.1852 0.0515 ATOM H17 0.0964 0.0965 0.4144 ATOM H18 0.4782 -0.0632 0.3046 ATOM O19 0.3095 0.2286 0.2372 ATOM N20 0.3150 0.0788 0.0545 ATOM O21 0.3060 -0.0647 -0.1404 ATOM H22 0.3200 0.1369 -0.0402 !ENERGY -108.10 Kcal/mol COMMENT lowest energy structure found in COMMENT P21/c run. This structure has been COMMENT rejected because it did not form a COMMENT dimeric H-bond pattern. END TITL Williams IV observed relaxed with W99 force field SPACEGROUP P21/a CELL 7.7927 10.6101 9.1641 90.00 95.32 ATOM N1 0.02680 -0.08579 0.80917 ATOM H1 -0.06307 -0.13932 0.80584 ATOM C1 0.18871 -0.13891 0.80623 ATOM O1 0.20235 -0.25322 0.79892 ATOM C2 0.33976 -0.05070 0.80831 90.00 118 ATOM H2 ATOM C3 ATOM H3A ATOM H3B ATOM C4 ATOM H4 ATOM C5 ATOM O2 ATOM C6 ATOM H6A ATOM H6B ATOM C7 ATOM H7A ATOM H7B ATOM C8 ATOM H8A ATOM H8B !ENERGY -89.23 END 0.43895 0.30168 0.39879 0.28694 0.14131 0.10633 -0.00973 -0.15809 0.17189 0.26192 0.06295 0.23313 0.13748 0.27068 0.38057 0.41037 0.48855 -0.09587 0.07134 0.13121 0.05694 0.12988 0.20796 0.04211 0.07648 0.15937 0.22549 0.19466 0.04577 -0.01538 0.07156 -0.02314 -0.10365 0.02654 TITL Williams IV 4 !Rank 4 prediction for I SPACEGROUP P21/c CELL 9.2240 10.6794 7.7948 ATOM H5 0.48879 0.05580 ATOM H6 0.38557 0.13045 ATOM C4 0.38601 0.07188 ATOM H3 0.35992 -0.09317 ATOM H7 0.35394 0.20570 ATOM O2 0.30811 -0.25116 ATOM C3 0.30884 -0.04984 ATOM C8 0.31039 -0.14011 ATOM H13 0.31214 -0.13992 ATOM N1 0.31269 -0.08648 ATOM C7 0.30690 0.03939 ATOM O1 0.30183 0.07226 ATOM C5 0.30528 0.12940 ATOM H2 0.15548 0.02790 ATOM H10 0.15143 0.22756 ATOM C2 0.15090 -0.02274 ATOM C6 0.14720 0.16149 ATOM H1 0.10185 -0.10181 ATOM H9 0.09586 0.19717 ATOM C1 0.06400 0.04795 ATOM H12 0.03953 -0.00942 ATOM H11 -0.02970 0.07564 !ENERGY -84.59 END 0.85951 0.88486 0.88223 0.98970 0.80445 0.85290 0.80887 0.81016 0.64497 0.65219 0.59775 0.56387 0.54635 0.46799 0.65044 0.60435 0.65725 90.00 0.21685 0.10069 0.19833 0.05821 0.39522 0.29157 0.15715 0.30722 0.55747 0.46833 0.50964 0.65627 0.35929 0.01130 0.23659 0.11762 0.32551 0.09307 0.43045 0.26411 0.36166 0.22551 TITLE Dzyabchenko V rank 5 (ab initio) SPACEGROUP P212121 CELL 7.569 10.006 15.060 90.00 90.00 ATOM S1 -.01637 .04344 .31332 ATOM BR1 -.01197 -.06874 .01105 ATOM O3 -.00202 -.04728 .38610 ATOM O4 -.15295 .14204 .31761 ATOM N5 -.04460 -.04899 .22104 ATOM C6 .19410 .11784 .28579 ATOM C7 .21946 .08196 .18897 ATOM C8 .08043 -.02041 .16766 ATOM C9 .12780 -.08614 .08070 ATOM C10 .30524 -.01359 .06102 ATOM C11 .26019 .13204 .03253 ATOM C12 .19766 .19740 .12016 ATOM C13 .38515 .00571 .15373 ATOM C14 .42522 -.12276 .20369 ATOM C15 .55258 .08952 .15590 ATOM H18 .30556 .08067 .32314 ATOM H19 .20045 .22519 .29254 ATOM H20 .15339 -.19100 .09184 ATOM H21 .38623 -.06605 .01336 ATOM H22 .37251 .18323 .00426 ATOM H23 .15978 .13555 -.01837 ATOM H24 .27496 .28445 .13714 ATOM H25 .06319 .23294 .11593 ATOM H26 .30730 -.17313 .22699 ATOM H27 .51001 -.10393 .26062 84.90 90.00 90.00 119 ATOM H28 .49544 -.19132 .15963 ATOM H29 .54007 .18487 .12400 ATOM H30 .65882 .03390 .12333 ATOM H31 .59387 .10584 .22468 COMMENT ENERGY -1.240747E+02 Density=1.70168 END TITL Erk 2 Polymorph Predictor, not hit by during the prediction CELL 7.1990 10.6022 15.9858 90.0000 90.0000 90.0000 !LATT -1 !SYMM -X+0.500,-Y,+Z+0.500 !SYMM -X,+Y+0.500,-Z+0.500 !SYMM +X+0.500,-Y+0.500,-Z SPACEGROUP P212121 ATOM S1 0.57051 1.06033 0.21816 ATOM BR2 0.48888 1.08602 0.52333 ATOM O3 0.63622 1.15597 0.16350 ATOM O4 0.40602 0.99906 0.18941 ATOM N5 0.54748 1.12077 0.31185 ATOM C6 0.75594 0.95166 0.23893 ATOM C7 0.77579 0.96273 0.33509 ATOM C8 0.65815 1.06651 0.36279 ATOM C9 0.69882 1.10132 0.44811 ATOM C10 0.86566 1.00832 0.46233 ATOM C11 0.78868 0.87161 0.47447 ATOM C12 0.71507 0.84246 0.38517 ATOM C13 0.96470 1.00331 0.37490 ATOM C14 1.05246 1.13138 0.34473 ATOM C15 1.12825 0.90669 0.36670 ATOM H16 0.71554 0.85741 0.21863 ATOM H17 0.88155 0.98064 0.20600 ATOM H18 0.74575 1.19906 0.45039 ATOM H19 0.95722 1.03825 0.51338 ATOM H20 0.89830 0.80658 0.49383 ATOM H21 0.67984 0.86653 0.52200 ATOM H22 0.77666 0.75612 0.35990 ATOM H23 0.56410 0.83102 0.38468 ATOM H24 0.95337 1.20847 0.33897 ATOM H25 1.11668 1.12105 0.28324 ATOM H26 1.15973 1.16148 0.38878 ATOM H27 1.18428 0.90581 0.30332 ATOM H28 1.08875 0.81011 0.37995 ATOM H29 1.23977 0.93168 0.40981 END TITL Erk 2 Systematic Search, #6 in P 212121, #8 of 2 space groups CELL 7.1111 10.9543 15.9166 90.0000 90.0000 90.0000 !LATT -1 !SYMM -X+0.500,-Y,+Z+0.500 !SYMM -X,+Y+0.500,-Z+0.500 !SYMM +X+0.500,-Y+0.500,-Z SPACEGROUP P212121 ATOM S1 0.58294 1.06606 0.21577 ATOM BR2 0.50081 1.08729 0.52655 ATOM O3 0.63477 1.16391 0.16126 ATOM O4 0.41788 0.99811 0.19453 ATOM N5 0.55603 1.12562 0.31249 ATOM C6 0.77918 0.96611 0.23734 ATOM C7 0.79383 0.96786 0.33222 ATOM C8 0.66852 1.06981 0.36157 ATOM C9 0.71529 1.09766 0.45201 ATOM C10 0.87914 1.00573 0.46563 ATOM C11 0.79156 0.87571 0.47099 ATOM C12 0.72919 0.85032 0.37953 ATOM C13 0.97746 1.00393 0.37986 ATOM C14 1.06220 1.12817 0.35162 ATOM C15 1.13319 0.90914 0.37149 ATOM H16 0.75180 0.87534 0.21197 ATOM H17 0.90475 1.00345 0.20771 ATOM H18 0.76649 1.19134 0.45705 ATOM H19 0.96960 1.02889 0.51892 ATOM H20 0.89431 0.80891 0.49332 ATOM H21 0.67386 0.87014 0.51512 ATOM H22 0.79524 0.76806 0.35412 ATOM H23 0.57636 0.83769 0.37492 ATOM H24 0.96197 1.20181 0.34112 ATOM H25 1.13907 1.11901 0.29255 120 ATOM ATOM ATOM ATOM END H26 H27 H28 H29 1.16232 1.18530 1.09800 1.25108 1.16005 0.90630 0.81550 0.93429 0.39881 0.30697 0.38717 0.41196 TITL Gavezzotti compound 2 SPACEGROUP P212121 CELL 7.0548 10.3517 15.5275 90.0000 ATOM C1 -0.2031 0.0658 -0.1796 ATOM C2 -0.1864 0.1017 -0.2730 ATOM S3 0.0265 0.0194 -0.3065 ATOM O4 0.1854 0.1050 -0.3073 ATOM O5 -0.0055 -0.0572 -0.3817 ATOM N6 0.0478 -0.0811 -0.2223 ATOM C7 -0.0742 -0.0481 -0.1659 ATOM C8 -0.1265 -0.1092 -0.0816 ATOM BR9 0.0782 -0.0911 -0.0019 ATOM C10 -0.2926 -0.0226 -0.0538 ATOM C11 -0.2056 0.1069 -0.0256 ATOM C12 -0.1399 0.1658 -0.1103 ATOM C13 -0.3903 0.0109 -0.1404 ATOM C14 -0.5472 0.1124 -0.1353 ATOM C15 -0.4665 -0.1060 -0.1892 ATOM H16 -0.3059 0.0625 -0.3080 ATOM H17 -0.1653 0.2048 -0.2784 ATOM H18 -0.1768 -0.2065 -0.0925 ATOM H19 -0.3856 -0.0658 -0.0067 ATOM H20 -0.3147 0.1670 0.0022 ATOM H21 -0.0836 0.0883 0.0146 ATOM H22 -0.2153 0.2553 -0.1209 ATOM H23 0.0127 0.1722 -0.1102 ATOM H24 -0.6681 0.0725 -0.1019 ATOM H25 -0.4958 0.1959 -0.1010 ATOM H26 -0.5884 0.1403 -0.1998 ATOM H27 -0.5878 -0.1449 -0.1556 ATOM H28 -0.3574 -0.1790 -0.1933 ATOM H29 -0.5082 -0.0771 -0.2533 COMMENT Structure closest to experimental, COMMENT ranked 14th in my energy ordering COMMENT energy -105 kJ/mol END 90.0000 TITL Gavezzotti compound 2 optimized experimental SPACEGROUP P212121 CELL 6.9746 10.6970 15.2287 90.0000 90.0000 ATOM C1 -.1820 .0663 -.1912 ATOM C2 -.1693 .0999 -.2870 ATOM S3 .0512 .0236 -.3217 ATOM O4 .2084 .1075 -.3185 ATOM O5 .0274 -.0483 -.3985 ATOM N6 .0724 -.0762 -.2363 ATOM C7 -.0510 -.0447 -.1790 ATOM C8 -.1052 -.1077 -.0951 ATOM BR9 .1117 -.1372 -.0180 ATOM C10 -.2610 -.0206 -.0598 ATOM C11 -.1683 .1042 -.0345 ATOM C12 -.1087 .1625 -.1228 ATOM C13 -.3676 .0145 -.1479 ATOM C14 -.4539 -.0955 -.1976 ATOM C15 -.5274 .1137 -.1376 ATOM H16 -.2890 .0588 -.3215 ATOM H17 -.1532 .1998 -.2935 ATOM H18 -.1700 -.1967 -.1106 ATOM H19 -.3515 -.0610 -.0099 ATOM H20 -.2749 .1631 -.0039 ATOM H21 -.0415 .0862 .0041 ATOM H22 -.1840 .2499 -.1317 ATOM H23 .0458 .1672 -.1261 ATOM H24 -.5732 -.1331 -.1609 ATOM H25 -.3465 -.1672 -.2062 ATOM H26 -.5034 -.0644 -.2613 ATOM H27 -.6458 .0740 -.1015 ATOM H28 -.4716 .1934 -.1025 ATOM H29 -.5762 .1427 -.2018 COMMENT Optimized experimental structure COMMENT using UNI force field, Energy -108 kJ/mol 90.0000 90.0000 121 END TITL Scheraga minimized experimental structure target 2 SPACEGROUP P212121 CELL 7.071 10.575 16.112 90.00 90.00 90.00 ATOM Br1 .60865 .63121 .01522 ATOM S2 .51310 .46918 .30060 ATOM O3 .66385 .38078 .30028 ATOM O4 .48625 .54215 .37279 ATOM N5 .54690 .56972 .22059 ATOM C6 .38648 .60599 .08403 ATOM H7 .33137 .68892 .09647 ATOM C8 .42894 .54085 .16413 ATOM C9 .29323 .43143 .17297 ATOM C10 .36672 .33281 .10954 ATOM H11 .50188 .31985 .11541 ATOM H12 .30262 .25228 .11615 ATOM C13 .31902 .39332 .02521 ATOM H14 .43228 .40434 -.00798 ATOM H15 .22977 .34171 -.00542 ATOM C16 .23186 .52147 .04771 ATOM H17 .15692 .56059 .00341 ATOM C18 .29515 .39700 .26363 ATOM H19 .29737 .30599 .27119 ATOM H20 .18597 .43161 .29216 ATOM C21 .11699 .48817 .12882 ATOM C22 .03299 .60117 .17450 ATOM H23 -.06220 .64003 .14054 ATOM H24 .13105 .66143 .18615 ATOM H25 -.02268 .57320 .22570 ATOM C26 -.04445 .39145 .11599 ATOM H27 .00827 .31075 .10169 ATOM H28 -.12577 .41985 .07211 ATOM H29 -.11613 .38380 .16636 END TITL Schmidt V 46 ! Minimum rank 46, close to exp. structure SPACEGROUP P212121 CELL 6.8121 10.0585 16.7283 90.0000 90.0000 90.0000 ATOM C1 0.23980 0.41510 0.18131 ATOM C2 0.37380 0.53926 0.16446 ATOM C3 0.31534 0.59234 0.08381 ATOM C4 0.15133 0.49325 0.05852 ATOM C5 0.24816 0.35819 0.04111 ATOM C6 0.31184 0.30642 0.12335 ATOM C7 0.04674 0.46459 0.14087 ATOM C8 0.25766 0.38950 0.26916 ATOM S9 0.45761 0.48667 0.30522 ATOM N10 0.48509 0.57745 0.22109 ATOM C11 -0.11400 0.35819 0.13530 ATOM C12 -0.04351 0.58884 0.17931 ATOM O13 0.62116 0.40106 0.32012 ATOM O14 0.38910 0.56506 0.37086 ATOM Br15 0.53431 0.61607 0.00859 ATOM H16 0.25697 0.68727 0.09025 ATOM H17 0.06054 0.52944 0.01352 ATOM H18 0.36707 0.36744 0.00253 ATOM H19 0.14790 0.29435 0.01420 ATOM H20 0.24662 0.21573 0.13698 ATOM H21 0.46324 0.29447 0.12692 ATOM H22 0.12844 0.41492 0.29854 ATOM H23 0.28226 0.28920 0.28048 ATOM H24 -0.06489 0.27072 0.10887 ATOM H25 -0.16433 0.33521 0.19235 ATOM H26 -0.23096 0.39441 0.10179 ATOM H27 -0.14374 0.63158 0.14008 ATOM H28 -0.11722 0.56325 0.23152 ATOM H29 0.06106 0.66010 0.19401 END TITLE Hoffman V minimized CELL 7.200000 10.499906 15.499795 90.000000 SPACEGROUP P212121 ATOM BR1 0.596576 0.641240 0.027984 ATOM S2 0.536981 0.450441 0.318934 90.000000 90.000000 122 ATOM O3 0.688567 0.364832 ATOM O4 0.514432 0.516629 ATOM N5 0.558218 0.559458 ATOM C6 0.386304 0.604933 ATOM H7 0.329907 0.685973 ATOM C8 0.438362 0.533093 ATOM C9 0.310738 0.419463 ATOM C10 0.380956 0.327694 ATOM H11 0.514634 0.316996 ATOM H12 0.322138 0.244815 ATOM C13 0.323551 0.395161 ATOM H14 0.430997 0.411656 ATOM H15 0.235273 0.344196 ATOM C16 0.234768 0.520036 ATOM H17 0.155369 0.561792 ATOM C18 0.322744 0.376661 ATOM H19 0.329503 0.284573 ATOM H20 0.216911 0.406532 ATOM C21 0.131256 0.476772 ATOM C22 0.048427 0.584380 ATOM H23 -0.049839 0.624506 ATOM H24 0.143161 0.645950 ATOM H25 -0.000101 0.550438 ATOM C26 -0.024213 0.377332 ATOM H27 0.029560 0.298657 ATOM H28 -0.109364 0.408142 ATOM H29 -0.089388 0.363550 END !ENERGY -156.972 !COMMENT minimized !COMMENT similarity 0.241 0.312144 0.397292 0.239505 0.102420 0.119772 0.181982 0.189159 0.117951 0.120985 0.122674 0.033913 -0.002155 0.001694 0.064155 0.021248 0.281684 0.285721 0.314727 0.149010 0.202604 0.170778 0.215347 0.255565 0.134726 0.115579 0.091924 0.187964 TITL Williams V observed relaxed with W99 force field SPACEGROUP P212121 CELL 7.0099 10.6873 15.4042 90.00 90.00 90.00 ATOM Br 0.61847 0.64269 0.02254 ATOM S 0.54783 0.46093 0.31658 ATOM O1 0.70643 0.37883 0.31233 ATOM O2 0.51854 0.52736 0.39443 ATOM N 0.57047 0.56653 0.23575 ATOM C1 0.39980 0.60574 0.09549 ATOM H1 0.33853 0.68489 0.11145 ATOM C2 0.45126 0.53768 0.17686 ATOM C3 0.32334 0.42445 0.18390 ATOM C4 0.40199 0.33372 0.11404 ATOM H4A 0.54220 0.32498 0.11877 ATOM H4B 0.34273 0.24996 0.11914 ATOM C5 0.34540 0.39731 0.02816 ATOM H5A 0.45940 0.41456 -0.00784 ATOM H5B 0.25618 0.34420 -0.00536 ATOM C6 0.24884 0.51938 0.05626 ATOM H6 0.16753 0.55870 0.01135 ATOM C7 0.33211 0.38463 0.27756 ATOM H7A 0.34176 0.29346 0.28274 ATOM H7B 0.21969 0.41351 0.30963 ATOM C8 0.13944 0.47732 0.14094 ATOM C9 0.04829 0.58304 0.19277 ATOM H9A -0.05529 0.62153 0.15820 ATOM H9B 0.14592 0.64704 0.20637 ATOM H9C -0.00484 0.54920 0.24750 ATOM C10 -0.01637 0.37716 0.12594 ATOM H10A 0.04412 0.29776 0.10755 ATOM H10B -0.10522 0.40617 0.08021 ATOM H10C -0.08780 0.36348 0.18056 !ENERGY -130.31 END !Rank 1 prediction for V if observed molecular structure is used TITL Williams Va observed molecular structure SPACEGROUP P212121 CELL 15.4023 7.0097 10.6875 90.00 90.00 90.00 ATOM Br 0.02253 -0.11853 0.35730 ATOM S 0.31660 -0.04789 0.53906 ATOM O1 0.31236 -0.20650 0.62116 ATOM O2 0.39446 -0.01860 0.47263 ATOM N 0.23576 -0.07054 0.43347 ATOM C1 0.09549 0.10015 0.39425 123 ATOM H1 0.11145 0.16141 0.31511 ATOM C2 0.17686 0.04869 0.46232 ATOM C3 0.18391 0.17660 0.57554 ATOM C4 0.11404 0.09797 0.66627 ATOM H4A 0.11876 -0.04225 0.67501 ATOM H4B 0.11914 0.15723 0.75003 ATOM C5 0.02814 0.15454 0.60268 ATOM H5A -0.00786 0.04055 0.58542 ATOM H5B -0.00538 0.24378 0.65579 ATOM C6 0.05625 0.25111 0.48061 ATOM H6 0.01133 0.33243 0.44129 ATOM C7 0.27758 0.16783 0.61536 ATOM H7A 0.28275 0.15819 0.70653 ATOM H7B 0.30965 0.28026 0.58648 ATOM C8 0.14094 0.36051 0.52266 ATOM C9 0.19278 0.45167 0.41695 ATOM H9A 0.15821 0.55525 0.37846 ATOM H9B 0.20639 0.35403 0.35295 ATOM H9C 0.24751 0.50480 0.45079 ATOM C10 0.12594 0.51633 0.62282 ATOM H10A 0.10754 0.45584 0.70222 ATOM H10B 0.08021 0.60518 0.59381 ATOM H10C 0.18057 0.58776 0.63650 !ENERGY -130.44 END TITLE Dzyabchenko VI ab initio Energy=-3.443532E+01 Density=1.40403 SPACEGROUP P21/c CELL: 8.335 9.718 14.823 90.00 100.79 90.00 !SO2 a .3347 .1807 .1132 315.24 -31.79 304.08 !Pyr1a .3340 .1857 .1111 247.13 52.40 140.46 !Phe1a .3328 .1806 .1135 184.94 -62.99 256.43 AT S1 .33470 .18070 .11320 AT O2 .45482 .08600 .16042 AT O3 .31135 .18250 .01341 AT N4 .37936 .33593 .15248 AT N12 .42030 .56703 .14556 AT N18 .46778 .80689 .15510 AT C11 .36437 .45025 .09930 AT C13 .40954 .69424 .10506 AT C14 .34247 .70919 .01574 AT C15 .28738 .59218 -.03493 AT C16 .29894 .46497 .00537 AT C5 .14369 .14074 .14364 AT C6 .06480 .02170 .10908 AT C7 -.08743 -.01022 .12762 AT C8 -.16306 .07628 .18125 AT C9 -.08129 .19384 .21615 AT C10 .07069 .22617 .19819 AT H17 .46962 .55975 .21228 AT H26 .33324 .81095 -.01406 AT H27 .23453 .60027 -.10704 AT H28 .25668 .37672 -.03671 AT H21 .12243 -.04674 .06737 AT H22 -.14782 -.10353 .09997 AT H23 -.28249 .05269 .19546 AT H24 -.13759 .26219 .25853 AT H25 .13253 .31834 .22684 AT H20 .45992 .89976 .12554 AT H19 .51846 .79686 .22147 END TITL Erk 3A Polymorph Predictor, #24 in P21/c, #54 of 5 space groups CELL 8.5531 9.2111 15.0606 90.0000 88.0772 90.0000 !LATT 1 !SYMM -X,+Y+0.500,-Z+0.500 SPACEGROUP P21/c ATOM S1 0.79553 0.36941 0.14418 ATOM O2 0.87071 0.44496 0.07187 ATOM O3 0.84463 0.44981 0.21893 ATOM N4 0.86665 0.21094 0.16174 ATOM N5 0.92339 -0.02981 0.14310 ATOM C6 0.59267 0.38691 0.15151 ATOM C7 0.50047 0.28099 0.19603 ATOM C8 0.33669 0.29540 0.20192 ATOM C9 0.26471 0.41600 0.16321 ATOM C10 0.35556 0.52245 0.11896 -1.00000 -1.00000 -1.00000 124 ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM END C11 C12 C13 C14 C15 C16 H17 H18 H19 H20 H21 N22 H23 H24 H25 H26 H27 H28 0.51945 0.85065 0.76450 0.75393 0.82939 0.91376 0.55237 0.26967 0.30185 0.58569 0.71101 0.98541 0.82456 0.69312 0.98558 1.04496 0.97077 0.14567 0.50804 0.08980 0.07851 -0.05658 -0.17821 -0.16031 0.19331 0.21829 0.60969 0.58578 0.16724 -0.26863 -0.27755 -0.06590 -0.02291 -0.24966 -0.36702 0.42615 0.11343 0.11248 0.03413 -0.00920 0.02643 0.10402 0.22420 0.23408 0.09092 0.08166 0.00854 0.14433 -0.00325 -0.06623 0.19486 0.19650 0.12349 0.16692 TITL Erk 3A Systematic Search, #250 in P 21/c, #530 of 5 space groups CELL 8.7254 9.3808 16.6470 90.0000 89.6745 90.0000 !LATT 1 !SYMM -X,+Y+0.500,-Z+0.500 SPACEGROUP P21/c ATOM S1 0.84916 0.36138 0.14461 ATOM O2 0.89586 0.41651 0.06812 ATOM O3 0.93558 0.42922 0.20648 ATOM N4 0.89645 0.19681 0.15613 ATOM N5 0.92153 -0.04260 0.13322 ATOM C6 0.65593 0.38589 0.16814 ATOM C7 0.60519 0.37794 0.24866 ATOM C8 0.44908 0.39689 0.26780 ATOM C9 0.34282 0.42431 0.20640 ATOM C10 0.39250 0.43275 0.12595 ATOM C11 0.54866 0.41342 0.10696 ATOM C12 0.86811 0.08517 0.10724 ATOM C13 0.78838 0.09170 0.03352 ATOM C14 0.76580 -0.03403 -0.01114 ATOM C15 0.82297 -0.16414 0.01825 ATOM C16 0.90163 -0.16470 0.09175 ATOM H17 0.68213 0.35859 0.29348 ATOM H18 0.41292 0.39094 0.32632 ATOM H19 0.31511 0.45320 0.08136 ATOM H20 0.58435 0.41957 0.04845 ATOM H21 0.74732 0.18631 0.01236 ATOM N22 0.95910 -0.28341 0.12376 ATOM H23 0.80774 -0.25652 -0.01317 ATOM H24 0.70836 -0.03089 -0.06456 ATOM H25 0.97614 -0.04633 0.18347 ATOM H26 1.01289 -0.27924 0.17441 ATOM H27 0.94742 -0.37389 0.09644 ATOM H28 0.22934 0.43840 0.22028 END TITL Erk 3A Syst Search plus compl minim, #33 in P21/c, #77 of 5 spgrps CELL 8.0792 9.6002 15.9067 90.0000 104.4225 90.0000 !LATT 1 !SYMM -X,+Y+0.500,-Z+0.500 SPACEGROUP P21/c ATOM S1 0.84506 0.28607 0.12234 ATOM O2 0.83431 0.32619 0.03470 ATOM O3 0.99984 0.34777 0.17060 ATOM N4 0.88170 0.12424 0.14612 ATOM N5 0.89729 -0.11186 0.14000 ATOM C6 0.68556 0.35484 0.16667 ATOM C7 0.66185 0.30673 0.24659 ATOM C8 0.52209 0.35304 0.27726 ATOM C9 0.40629 0.44916 0.22810 ATOM C10 0.43296 0.50243 0.15022 ATOM C11 0.57442 0.45738 0.12088 ATOM C12 0.85528 0.00905 0.09582 ATOM C13 0.78880 0.00346 0.00473 ATOM C14 0.77148 -0.12656 -0.03797 ATOM C15 0.82002 -0.24882 0.01095 ATOM C16 0.88183 -0.23717 0.10132 ATOM H17 0.74600 0.23721 0.28224 125 ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM END H18 H19 H20 H21 N22 H23 H24 H25 H26 H27 H28 0.50338 0.34911 0.59671 0.75494 0.92857 0.81194 0.72585 0.93917 0.96423 0.92864 0.30241 0.31626 0.57298 0.49856 0.09220 -0.34445 -0.34407 -0.13239 -0.10982 -0.32770 -0.43878 0.48033 0.33461 0.11469 0.06578 -0.03035 0.15493 -0.01827 -0.10400 0.20204 0.21672 0.13329 0.24895 TITL Hofmann VI minimized CELL 8.300603 8.799930 15.003333 90.000000 SPACEGROUP P21/c ATOM H1 0.988519 0.514665 0.682230 ATOM C2 0.834300 0.388894 0.616399 ATOM C3 0.908105 0.650026 0.594302 ATOM C4 0.817118 0.656055 0.520922 ATOM H5 0.808942 0.745359 0.488041 ATOM C6 0.738549 0.532370 0.495722 ATOM H7 0.675843 0.536726 0.444069 ATOM C8 0.745103 0.394516 0.543005 ATOM H9 0.688389 0.309683 0.523141 ATOM C10 0.593883 0.106840 0.659937 ATOM C11 0.515455 -0.004183 0.614071 ATOM H12 0.571275 -0.073772 0.579439 ATOM C13 0.359408 -0.009553 0.620521 ATOM H14 0.304008 -0.085608 0.590124 ATOM C15 0.275336 0.089625 0.668832 ATOM H16 0.163724 0.082168 0.670653 ATOM C17 0.349392 0.198717 0.714317 ATOM H18 0.290492 0.266886 0.748362 ATOM C19 0.508116 0.209655 0.710989 ATOM H20 0.561526 0.285696 0.742505 ATOM N21 0.858423 0.275049 0.675524 ATOM N22 0.913074 0.517600 0.639103 ATOM N23 0.991732 0.764076 0.624760 ATOM H24 0.990204 0.849654 0.597050 ATOM H25 1.048482 0.753855 0.672610 ATOM O26 0.848557 0.019052 0.729795 ATOM O27 0.850673 0.052558 0.569120 ATOM S28 0.800213 0.110614 0.655882 END !ENERGY -170.248 !COMMENT minimized !COMMENT similarity 0.174 90.455475 90.000000 !Molecule VI: Not found. This is the experimental structure after !minimization: TITL Mooy VI MinimizedExperimental CELL 8.653 9.197 14.454 90.000 84.314 90.000 SPACEGROUP P21/c ATOM H1 0.97022 0.51481 0.70531 ATOM C2 0.84005 0.40249 0.62449 ATOM C3 0.91129 0.65026 0.60545 ATOM C4 0.83049 0.66306 0.52681 ATOM H5 0.82819 0.75940 0.49207 ATOM C6 0.75424 0.54068 0.49654 ATOM H7 0.69507 0.54638 0.43888 ATOM C8 0.76104 0.41040 0.54536 ATOM H9 0.70941 0.32079 0.52452 ATOM C10 0.58045 0.09584 0.65576 ATOM C11 0.52163 -0.03169 0.61926 ATOM H12 0.59471 -0.11390 0.59576 ATOM C13 0.36181 -0.04709 0.61458 ATOM H14 0.31879 -0.13983 0.58813 ATOM C15 0.26080 0.06523 0.64561 ATOM H16 0.14475 0.05493 0.64061 ATOM C17 0.31904 0.19148 0.68338 ATOM H18 0.24506 0.27271 0.70687 ATOM C19 0.47867 0.20700 0.68850 ATOM H20 0.52022 0.29994 0.71559 ATOM N21 0.84612 0.28233 0.67710 126 ATOM N22 0.91277 0.52199 0.65104 ATOM N23 0.98566 0.76684 0.63513 ATOM H24 0.98278 0.85777 0.60099 ATOM H25 1.04122 0.76249 0.69042 ATOM O26 0.82928 0.02587 0.74649 ATOM O27 0.87651 0.04859 0.57089 ATOM S28 0.77876 0.11300 0.66019 COMMENT Experimental structure of Molecule VI minimized in the COMMENT Dreiding + Multipole COMMENT model. Energy difference with COMMENT the global minimum: 4.0 kcal/mol Not sampled END TITL Van Eijck VI Prediction closest SPACEGROUP P21/c CELL 8.40817 9.17889 14.24270 ATOM C1 .273855 .890929 ATOM H2 .146572 .884764 ATOM C3 .339240 .991366 ATOM H4 .261683 1.062920 ATOM C5 .372594 .798392 ATOM H6 .320679 .721299 ATOM C7 .504374 .998455 ATOM H8 .556615 1.075962 ATOM C9 .537596 .806199 ATOM H10 .615100 .735411 ATOM C11 .603723 .905582 ATOM S12 .811852 .915398 ATOM O13 .842752 .988910 ATOM O14 .868478 .994642 ATOM N15 .873467 .748897 ATOM C16 .838797 .637302 ATOM C17 .726626 .635362 ATOM H18 .665311 .733884 ATOM C19 .698511 .511099 ATOM H20 .615638 .510732 ATOM C21 .779818 .377558 ATOM H22 .756767 .278357 ATOM C23 .884117 .377570 ATOM N24 .961023 .258485 ATOM H25 1.033596 .261180 ATOM H26 .939437 .160998 ATOM N27 .910773 .505371 ATOM H28 .989677 .505137 !ENERGY -518.982 kJ/mol END to the experimental structure, rank 340 90.000 .186617 .193401 .124965 .084629 .239765 .287343 .116048 .068799 .231098 .271921 .168792 .157202 .070579 .238108 .161103 .108554 .028552 .007750 -.020581 -.079915 .007448 -.031399 .080536 .110226 .167152 .078747 .128547 .183650 91.530 TITL Scheraga minimized experimental structure TARGET3 SPACEGROUP P21/c CELL 9.170 10.428 13.001 90.00 92.22 90.00 ATOM H17 .92282 .36524 .73713 ATOM C17 .78108 .27304 .64872 ATOM C18 .88644 .48174 .62726 ATOM C19 .82033 .49226 .53467 ATOM H19 .83147 .56575 .49520 ATOM C20 .73845 .39601 .49993 ATOM H20 .69313 .40336 .43488 ATOM C21 .71652 .28302 .55629 ATOM H21 .65834 .21716 .52925 ATOM C14 .52025 .06633 .67863 ATOM C15 .44420 -.02061 .62018 ATOM H13 .49124 -.08691 .58709 ATOM C16 .30315 -.00769 .61236 ATOM H12 .24936 -.06700 .57333 ATOM C11 .23229 .08723 .65788 ATOM H11 .13145 .09329 .64916 ATOM C12 .30426 .17302 .71550 ATOM H16 .25440 .23843 .74763 ATOM C13 .44785 .16464 .72706 ATOM H15 .49965 .22423 .76718 ATOM N12 .77577 .17890 .71998 ATOM N13 .86431 .37331 .68057 ATOM N14 .97051 .56971 .66861 ATOM H18B .98607 .63968 .63574 ATOM H18A 1.01046 .55788 .72882 ATOM O11 .72188 -.03054 .78429 ATOM O12 .75934 -.01250 .60093 ATOM S11 .70545 .04673 .69411 90.000 127 END TITL Schmidt VI minimized experimental !, Calculated packing, which corresponds to the !TITL experimental structure (calculated a posteriori, without !TITL intramolecular potential for the rotation around the Ph-S bond) SPACEGROUP P21/c CELL 8.2576 8.9015 14.8969 90.000 95.031 90.000 ATOM S1 0.79030 0.07938 0.65383 ATOM O1 0.78573 0.01333 0.56532 ATOM O2 0.88008 -0.00234 0.72675 ATOM N1 0.86798 0.24423 0.66063 ATOM C1 0.58815 0.09955 0.68083 ATOM C2 0.55869 0.18411 0.75539 ATOM C3 0.40109 0.20853 0.77660 ATOM C4 0.27044 0.14836 0.72368 ATOM C5 0.30253 0.06249 0.65014 ATOM C6 0.45929 0.03733 0.62871 ATOM C7 0.82195 0.35462 0.60124 ATOM C8 0.70508 0.35188 0.52685 ATOM C9 0.68227 0.47460 0.47187 ATOM C10 0.77217 0.60535 0.48919 ATOM C11 0.88061 0.60917 0.56203 ATOM N2 0.90416 0.48607 0.61680 ATOM N3 0.97195 0.72762 0.58719 ATOM H2 0.65747 0.23543 0.79115 ATOM H3 0.37619 0.27251 0.83216 ATOM H4 0.15192 0.16658 0.73967 ATOM H5 0.20929 0.01576 0.60761 ATOM H6 0.48217 -0.02976 0.57407 ATOM H8 0.63757 0.25564 0.51028 ATOM H9 0.60076 0.46216 0.41507 ATOM H10 0.75258 0.68988 0.44128 ATOM H72 0.98750 0.49240 0.67049 ATOM H73 1.05083 0.72189 0.64288 ATOM H74 0.96242 0.82321 0.55060 END IV. Comparison of predicted coordinates with experimental ========================================================= NOTES: Left part of each table presents experimental structure as reference. Right part (target) presents a predicted-structure coordinate list changed with CRYCOM (Dzyabchenko, Acta Cryst. 1994, B50, 414) from original (from above sections I-III) to make a numerical correspondence with reference. 'Matrix code' and 'Origin shift' define the transformation of unit-cell axes required to get such a correspondence. The sequence of atoms is also changed while their original labels are saved. The last column presents the relative deviations in the lattice dimensions and the absolute ones in atomic coordinats. The latter are given in angstroms, they are calculated from the three components of the deviation vector in unit space by converting it into the Cartesian space with a transformation matrix based on the mean cell dimensions of reference and target. 'r.m.s.d.' is the root-mean-square deviation found by averaging the atomic deviations over the molecule. TITL Leusen IV 3 REFERENCE Matrix code (Det) 655565556 Origin shift .0000 .0000 TARGET 1. .0000 655565556 .0000 .0000 New cell dimensions, A,deg: a 9.3380 b 10.6060 c 7.7050 alpha 90.00 beta 95.03 gamma 90.00 Atom O1 O2 N1 x .3001 .3080 .3086 y -.2552 .0733 -.0883 z .2029 -.1643 .0240 1. .0000 dp/p(%) -1.6706 -.9146 4.1402 .00 2.06 .00 9.1820 10.5090 8.0240 90.00 96.99 90.00 Atom O11 O10 N8 x .2999 .3035 .2987 y -.2626 .0622 -.0958 z .1972 -.1575 .0255 Dev,A .090 .137 .122 128 C1 C2 C3 C4 C5 C6 C7 C8 H1 H2 H3A H3B H4 H6A H6B H7A H7B H8A H8B .3064 .3081 .3822 .3026 .3073 .1461 .0675 .1532 .3056 .3598 .3794 .4866 .3467 .1532 .0992 .0506 -.0230 .1085 .1595 -.1409 -.0521 .0702 .1278 .0395 .1566 .0428 -.0252 -.1406 -.0975 .1311 .0561 .2013 .2262 .1914 -.0186 .0673 -.1060 .0233 .1882 .3403 .3002 .1382 -.0140 .1703 .2339 .3828 -.0638 .4424 .3990 .2842 .1040 .2650 .0600 .1380 .2710 .4140 .4879 C7 C1 C6 C5 C9 C4 C3 C2 H22 H12 H20 H21 H19 H18 H17 H15 H16 H13 H14 .3017 .3055 .3829 .2978 .3001 .1398 .0556 .1500 .2980 .3684 .3814 .4996 .3546 .1480 .0746 .0139 -.0437 .0905 .1635 -.1467 .1791 -.0563 .3358 .0734 .3000 .1293 .1330 .0286 -.0116 .1648 .1697 .0544 .2427 -.0220 .3813 -.1567 -.0742 -.1044 .4438 .1406 .4055 .0573 .2851 .2160 .0978 .2450 .2598 .2026 .0552 -.0119 .1410 .0918 .2912 -.1091 .4110 .0339 .4995 r.m.s.d.(A)= .101 .060 .035 .059 .135 .105 .183 .046 .198 .107 .113 .121 .181 .207 .256 .350 .368 .169 .146 .172 TITL Mooy-I-2 REFERENCE Matrix code (Det) 655565556 Origin shift .0000 .0000 TARGET 1. .0000 655565556 .0000 .0000 New cell dimensions, A,deg: a 9.3380 b 10.6060 c 7.7050 alpha 90.00 beta 95.03 gamma 90.00 Atom O1 O2 N1 C1 C2 C3 C4 C5 C6 C7 C8 H1 H2 H3A H3B H4 H6A H6B H7A H7B H8A H8B x .3001 .3080 .3086 .3064 .3081 .3822 .3026 .3073 .1461 .0675 .1532 .3056 .3598 .3794 .4866 .3467 .1532 .0992 .0506 -.0230 .1085 .1595 y -.2552 .0733 -.0883 -.1409 -.0521 .0702 .1278 .0395 .1566 .0428 -.0252 -.1406 -.0975 .1311 .0561 .2013 .2262 .1914 -.0186 .0673 -.1060 .0233 1. .0000 dp/p(%) -1.1673 -1.8857 3.3485 .00 1.15 .00 9.2290 10.4060 7.9630 90.00 96.13 90.00 z .2029 -.1643 .0240 .1882 .3403 .3002 .1382 -.0140 .1703 .2339 .3828 -.0638 .4424 .3990 .2842 .1040 .2650 .0600 .1380 .2710 .4140 .4879 Atom O10 O11 N8 C7 C3 C4 C5 C9 C6 C1 C2 H22 H16 H17 H18 H19 H20 H21 H12 H13 H15 H14 x .2957 .3103 .3033 .3026 .3068 .3848 .3033 .3063 .1446 .0603 .1516 .3020 .3679 .3834 .4985 .3603 .1484 .0849 .0278 -.0387 .0952 .1613 y z -.2625 .2032 .0713 -.1504 -.0939 .0286 -.1432 .1859 -.0583 .3354 .0682 .2979 .1277 .1372 .0339 -.0018 .1624 .1687 .0487 .2383 -.0264 .3806 -.1522 -.0674 -.1056 .4424 .1345 .4035 .0496 .2796 .2148 .1062 .2410 .2592 .1965 .0514 -.0183 .1360 .0851 .2848 -.1154 .4057 .0312 .4959 r.m.s.d.(A)= Dev,A .087 .111 .087 .046 .076 .038 .011 .114 .064 .100 .025 .129 .113 .060 .138 .189 .167 .153 .211 .267 .166 .104 .127 TITL Dzyabchenko IV (powder) REFERENCE Matrix code (Det) 655565556 Origin shift .0000 .0000 TARGET 1. .0000 655565556 .0000 .0000 New cell dimensions, A,deg: a 9.3380 b 10.6060 c 7.7050 alpha 90.00 beta 95.03 gamma 90.00 Atom x y z 1. .0000 dp/p(%) .0428 -.1131 .1168 .00 -.03 .00 9.3420 10.5940 7.7140 90.00 95.00 90.00 Atom x y z Dev,A 129 O1 O2 N1 C1 C2 C3 C4 C5 C6 C7 C8 H1 H2 H3A H3B H4 H6A H6B H7A H7B H8A H8B .3001 .3080 .3086 .3064 .3081 .3822 .3026 .3073 .1461 .0675 .1532 .3056 .3598 .3794 .4866 .3467 .1532 .0992 .0506 -.0230 .1085 .1595 TITL Mooy IV -.2552 .0733 -.0883 -.1409 -.0521 .0702 .1278 .0395 .1566 .0428 -.0252 -.1406 -.0975 .1311 .0561 .2013 .2262 .1914 -.0186 .0673 -.1060 .0233 .2029 -.1643 .0240 .1882 .3403 .3002 .1382 -.0140 .1703 .2339 .3828 -.0638 .4424 .3990 .2842 .1040 .2650 .0600 .1380 .2710 .4140 .4879 O2 O1 N1 C9 C5 C4 C3 C8 C2 C1 C6 H1 H12 H5 H6 H11 H3 H4 H2 H10 H7 H8 Matrix code (Det) 655565556 Origin shift .0000 .0000 .034 .044 .069 .031 .034 .019 .078 .035 .114 .209 .088 .093 .087 .083 .101 .241 .173 .151 .396 .432 .184 .142 .168 TARGET 1. .0000 655565556 .0000 .0000 New cell dimensions, A,deg: a 9.3380 b 10.6060 c 7.7050 alpha 90.00 beta 95.03 gamma 90.00 x .3001 .3080 .3086 .3064 .3081 .3822 .3026 .3073 .1461 .0675 .1532 .3056 .3598 .3794 .4866 .3467 .1532 .0992 .0506 -.0230 .1085 .1595 -.2541 .1992 .0769 -.1628 -.0839 .0264 -.1403 .1867 -.0515 .3428 .0687 .2989 .1334 .1406 .0425 -.0133 .1657 .1770 .0600 .2441 -.0189 .3789 -.1427 -.0751 -.0986 .4536 .1322 .4085 .0497 .2800 .2176 .1077 .2415 .2710 .2053 .0604 .0020 .1385 .1003 .3023 -.1057 .4006 .0303 .5020 r.m.s.d.(A)= powder REFERENCE Atom O1 O2 N1 C1 C2 C3 C4 C5 C6 C7 C8 H1 H2 H3A H3B H4 H6A H6B H7A H7B H8A H8B .3013 .3060 .3038 .3033 .3053 .3824 .3079 .3058 .1503 .0614 .1477 .3024 .3603 .3841 .4936 .3647 .1576 .0956 .0152 -.0292 .0912 .1547 y -.2552 .0733 -.0883 -.1409 -.0521 .0702 .1278 .0395 .1566 .0428 -.0252 -.1406 -.0975 .1311 .0561 .2013 .2262 .1914 -.0186 .0673 -.1060 .0233 1. .0000 dp/p(%) -1.1673 -1.8857 3.3485 .00 1.15 .00 9.2290 10.4060 7.9630 90.00 96.13 90.00 z .2029 -.1643 .0240 .1882 .3403 .3002 .1382 -.0140 .1703 .2339 .3828 -.0638 .4424 .3990 .2842 .1040 .2650 .0600 .1380 .2710 .4140 .4879 Atom O10 O11 N8 C7 C3 C4 C5 C9 C6 C1 C2 H22 H16 H17 H18 H19 H20 H21 H12 H13 H15 H14 x .2957 .3103 .3033 .3026 .3068 .3848 .3033 .3063 .1446 .0603 .1516 .3020 .3679 .3834 .4985 .3603 .1484 .0849 .0278 -.0387 .0952 .1613 y z -.2625 .2032 .0713 -.1504 -.0939 .0286 -.1432 .1859 -.0583 .3354 .0682 .2979 .1277 .1372 .0339 -.0018 .1624 .1687 .0487 .2383 -.0264 .3806 -.1522 -.0674 -.1056 .4424 .1345 .4035 .0496 .2796 .2148 .1062 .2410 .2592 .1965 .0514 -.0183 .1360 .0851 .2848 -.1154 .4057 .0312 .4959 r.m.s.d.(A)= Dev,A .087 .111 .087 .046 .076 .038 .011 .114 .064 .100 .025 .129 .113 .060 .138 .189 .167 .153 .211 .267 .166 .104 .127 TITL Schmidt IV Final calculated structure (Lattic par. set to exp. values) REFERENCE Matrix code (Det) 655565556 Origin shift .0000 .0000 New cell dimensions, A,deg: a 9.3380 b 10.6060 c 7.7050 alpha 90.00 beta 95.03 gamma 90.00 TARGET 1. .0000 655565556 .0000 .0000 9.3300 10.6000 7.6700 90.00 94.67 90.00 1. .0000 dp/p(%) -.0857 -.0566 -.4542 .00 -.38 .00 130 Atom O1 O2 N1 C1 C2 C3 C4 C5 C6 C7 C8 H1 H2 H3A H3B H4 H6A H6B H7A H7B H8A H8B x .3001 .3080 .3086 .3064 .3081 .3822 .3026 .3073 .1461 .0675 .1532 .3056 .3598 .3794 .4866 .3467 .1532 .0992 .0506 -.0230 .1085 .1595 y -.2552 .0733 -.0883 -.1409 -.0521 .0702 .1278 .0395 .1566 .0428 -.0252 -.1406 -.0975 .1311 .0561 .2013 .2262 .1914 -.0186 .0673 -.1060 .0233 z .2029 -.1643 .0240 .1882 .3403 .3002 .1382 -.0140 .1703 .2339 .3828 -.0638 .4424 .3990 .2842 .1040 .2650 .0600 .1380 .2710 .4140 .4879 Atom O11 O10 N3 C4 C5 C9 C1 C2 C8 C7 C6 H22 H13 H20 H21 H12 H18 H19 H16 H17 H14 H15 x .3125 .2935 .3030 .3086 .3090 .3809 .2987 .2984 .1450 .0672 .1556 .3030 .3658 .3792 .4877 .3483 .1487 .0881 .0382 -.0277 .1055 .1604 y z -.2571 .2087 .0694 -.1784 -.0941 .0146 -.1412 .1852 -.0483 .3367 .0743 .2893 .1284 .1271 .0348 -.0235 .1590 .1658 .0472 .2371 -.0225 .3811 -.1560 -.0856 -.0903 .4436 .1380 .3923 .0583 .2663 .2102 .0873 .2322 .2564 .1912 .0522 -.0151 .1356 .0784 .2852 -.1075 .4064 .0307 .4953 r.m.s.d.(A)= Dev,A .122 .171 .106 .032 .050 .094 .090 .117 .044 .053 .039 .234 .095 .089 .141 .161 .098 .115 .122 .169 .065 .097 .115 TITL Schmidt IV Calculated minimum close to the experimental structure REFERENCE Matrix code (Det) 655565556 Origin shift .0000 .0000 TARGET 1. .0000 655565556 .0000 .0000 New cell dimensions, A,deg: a 9.3380 b 10.6060 c 7.7050 alpha 90.00 beta 95.03 gamma 90.00 Atom O1 O2 N1 C1 C2 C3 C4 C5 C6 C7 C8 H1 H2 H3A H3B H4 H6A H6B H7A H7B H8A H8B TITL x .3001 .3080 .3086 .3064 .3081 .3822 .3026 .3073 .1461 .0675 .1532 .3056 .3598 .3794 .4866 .3467 .1532 .0992 .0506 -.0230 .1085 .1595 y -.2552 .0733 -.0883 -.1409 -.0521 .0702 .1278 .0395 .1566 .0428 -.0252 -.1406 -.0975 .1311 .0561 .2013 .2262 .1914 -.0186 .0673 -.1060 .0233 1. .0000 dp/p(%) -4.2204 -.8439 -.2544 .00 .35 .00 8.9439 10.5165 7.6854 90.00 95.37 90.00 z .2029 -.1643 .0240 .1882 .3403 .3002 .1382 -.0140 .1703 .2339 .3828 -.0638 .4424 .3990 .2842 .1040 .2650 .0600 .1380 .2710 .4140 .4879 Atom O11 O10 N3 C4 C5 C9 C1 C2 C8 C7 C6 H22 H13 H20 H21 H12 H18 H19 H16 H17 H14 H15 x .3089 .2931 .3010 .3065 .3085 .3853 .2999 .2980 .1400 .0572 .1487 .2999 .3674 .3846 .4965 .3528 .1450 .0808 .0258 -.0413 .0953 .1548 y z -.2582 .2096 .0715 -.1759 -.0937 .0163 -.1414 .1865 -.0479 .3380 .0750 .2921 .1306 .1293 .0364 -.0214 .1630 .1661 .0510 .2359 -.0203 .3805 -.1560 -.0839 -.0909 .4453 .1390 .3951 .0577 .2704 .2125 .0905 .2366 .2569 .1961 .0521 -.0113 .1340 .0835 .2828 -.1054 .4048 .0332 .4947 r.m.s.d.(A)= Dev,A .097 .157 .104 .014 .048 .087 .076 .103 .092 .130 .067 .227 .099 .102 .147 .170 .144 .180 .238 .261 .134 .126 .141 Van Eijck IV 4 REFERENCE Matrix code (Det) 655565556 Origin shift .0000 .0000 New cell dimensions, A,deg: a 9.3380 b 10.6060 c 7.7050 TARGET 1. .0000 655565556 .0000 .0000 9.0977 10.5072 7.7871 1. .0000 dp/p(%) -2.5734 -.9315 1.0655 131 alpha beta gamma Atom O1 O2 N1 C1 C2 C3 C4 C5 C6 C7 C8 H1 H2 H3A H3B H4 H6A H6B H7A H7B H8A H8B 90.00 95.03 90.00 x .3001 .3080 .3086 .3064 .3081 .3822 .3026 .3073 .1461 .0675 .1532 .3056 .3598 .3794 .4866 .3467 .1532 .0992 .0506 -.0230 .1085 .1595 y -.2552 .0733 -.0883 -.1409 -.0521 .0702 .1278 .0395 .1566 .0428 -.0252 -.1406 -.0975 .1311 .0561 .2013 .2262 .1914 -.0186 .0673 -.1060 .0233 90.00 96.96 90.00 z .2029 -.1643 .0240 .1882 .3403 .3002 .1382 -.0140 .1703 .2339 .3828 -.0638 .4424 .3990 .2842 .1040 .2650 .0600 .1380 .2710 .4140 .4879 Atom O20 O18 N21 C19 C6 C1 C4 C17 C8 C14 C11 H22 H7 H2 H3 H5 H10 H9 H15 H16 H13 H12 x .3003 .3068 .3029 .3025 .3035 .3777 .2968 .3032 .1364 .0536 .1474 .3033 .3665 .3753 .4934 .3533 .1362 .0746 .0059 -.0391 .0904 .1561 .00 2.03 .00 y z -.2567 .2043 .0702 -.1629 -.0895 .0254 -.1432 .1880 -.0505 .3394 .0747 .2997 .1314 .1341 .0386 -.0158 .1637 .1607 .0569 .2432 -.0212 .3822 -.1498 -.0746 -.0933 .4524 .1408 .4065 .0583 .2842 .2189 .1063 .2477 .2422 .1894 .0367 -.0077 .1427 .0989 .2994 -.1103 .4024 .0306 .5043 r.m.s.d.(A)= Dev,A .019 .036 .056 .043 .045 .063 .071 .040 .133 .214 .068 .128 .104 .126 .067 .196 .318 .275 .433 .434 .186 .155 .189 TITL Verwer IV 1 from powder diffraction data REFERENCE Matrix code (Det) 655565556 Origin shift .0000 .0000 TARGET 1. .0000 655565556 .0000 .0000 New cell dimensions, A,deg: a 9.3380 b 10.6060 c 7.7050 alpha 90.00 beta 95.03 gamma 90.00 Atom O1 O2 N1 C1 C2 C3 C4 C5 C6 C7 C8 H1 H2 H3A H3B H4 H6A H6B H7A H7B H8A H8B x .3001 .3080 .3086 .3064 .3081 .3822 .3026 .3073 .1461 .0675 .1532 .3056 .3598 .3794 .4866 .3467 .1532 .0992 .0506 -.0230 .1085 .1595 y -.2552 .0733 -.0883 -.1409 -.0521 .0702 .1278 .0395 .1566 .0428 -.0252 -.1406 -.0975 .1311 .0561 .2013 .2262 .1914 -.0186 .0673 -.1060 .0233 dp/p(%) .0825 .2810 -.0480 .00 -.09 .00 9.3457 10.6358 7.7013 90.00 94.95 90.00 z .2029 -.1643 .0240 .1882 .3403 .3002 .1382 -.0140 .1703 .2339 .3828 -.0638 .4424 .3990 .2842 .1040 .2650 .0600 .1380 .2710 .4140 .4879 TITL Dzyabchenko IV-31: 1. .0000 Atom O10 O11 N8 C7 C3 C4 C5 C9 C6 C1 C2 H22 H16 H17 H18 H19 H20 H21 H12 H13 H15 H14 x .2962 .2951 .2980 .3027 .3092 .3824 .2993 .2981 .1465 .0667 .1589 .2949 .3714 .3839 .4919 .3536 .1525 .0853 .0304 -.0270 .1051 .1693 y z -.2543 .1938 .0571 -.1618 -.0938 .0215 -.1387 .1809 -.0564 .3353 .0683 .2947 .1238 .1308 .0285 -.0080 .1580 .1689 .0477 .2449 -.0268 .3856 -.1488 -.0756 -.1025 .4419 .1332 .4021 .0512 .2727 .2077 .0941 .2348 .2610 .1917 .0523 -.0172 .1429 .0842 .2964 -.1138 .4118 .0282 .5036 r.m.s.d.(A)= Dev,A .077 .212 .115 .067 .062 .047 .075 .154 .019 .101 .058 .156 .121 .052 .117 .124 .096 .138 .197 .271 .090 .154 .128 ab initio minimum closest to experimental REFERENCE Matrix code (Det) 655565556 Origin shift .0000 .0000 New cell dimensions, A,deg: TARGET 1. .0000 655565556 .0000 .0000 1. .0000 dp/p(%) 132 a b c alpha beta gamma Atom O1 O2 N1 C1 C2 C3 C4 C5 C6 C7 C8 H1 H2 H3A H3B H4 H6A H6B H7A H7B H8A H8B 9.3380 10.6060 7.7050 90.00 95.03 90.00 x .3001 .3080 .3086 .3064 .3081 .3822 .3026 .3073 .1461 .0675 .1532 .3056 .3598 .3794 .4866 .3467 .1532 .0992 .0506 -.0230 .1085 .1595 y -.2552 .0733 -.0883 -.1409 -.0521 .0702 .1278 .0395 .1566 .0428 -.0252 -.1406 -.0975 .1311 .0561 .2013 .2262 .1914 -.0186 .0673 -.1060 .0233 9.1580 10.5700 7.7250 90.00 95.95 90.00 z .2029 -.1643 .0240 .1882 .3403 .3002 .1382 -.0140 .1703 .2339 .3828 -.0638 .4424 .3990 .2842 .1040 .2650 .0600 .1380 .2710 .4140 .4879 Atom O2 O1 N1 C9 C5 C4 C3 C8 C2 C1 C6 H1 H12C H5 H6 H11C H3 H4 H2 H10C H7 H8 x .3009 .2823 .2920 .3008 .3101 .3846 .2998 .2905 .1415 .0562 .1519 .2860 .3724 .3914 .4965 .3546 .1531 .0793 .0044 -.0331 .0968 .1649 -1.9276 -.3394 .2596 .00 .96 .00 y z -.2606 .2009 .0612 -.1793 -.0947 .0187 -.1469 .1824 -.0537 .3342 .0658 .2796 .1260 .1219 .0308 -.0276 .1586 .1657 .0543 .2434 -.0208 .3777 -.1564 -.0799 -.0977 .4445 .1324 .3862 .0467 .2553 .2097 .0813 .2372 .2556 .1950 .0499 -.0068 .1431 .0958 .3048 -.1073 .4071 .0318 .4982 r.m.s.d.(A)= Dev,A .059 .285 .169 .091 .055 .169 .128 .201 .057 .181 .062 .268 .116 .156 .268 .215 .137 .196 .450 .416 .117 .127 .207 TITLE Erk IV Polymorph Predictor, #62 in P21/c, #116 of 10 space groups REFERENCE Matrix code (Det) 655565556 Origin shift .0000 .0000 TARGET 1. .0000 655565556 .0000 .0000 New cell dimensions, A,deg: a 9.3380 b 10.6060 c 7.7050 alpha 90.00 beta 95.03 gamma 90.00 Atom O1 O2 N1 C1 C2 C3 C4 C5 C6 C7 C8 H1 H2 H3A H3B H4 H6A H6B H7A H7B H8A H8B x .3001 .3080 .3086 .3064 .3081 .3822 .3026 .3073 .1461 .0675 .1532 .3056 .3598 .3794 .4866 .3467 .1532 .0992 .0506 -.0230 .1085 .1595 y -.2552 .0733 -.0883 -.1409 -.0521 .0702 .1278 .0395 .1566 .0428 -.0252 -.1406 -.0975 .1311 .0561 .2013 .2262 .1914 -.0186 .0673 -.1060 .0233 1. .0000 dp/p(%) 1.4650 1.5095 1.8650 .00 1.19 .00 9.4748 10.7661 7.8487 90.00 96.16 90.00 z .2029 -.1643 .0240 .1882 .3403 .3002 .1382 -.0140 .1703 .2339 .3828 -.0638 .4424 .3990 .2842 .1040 .2650 .0600 .1380 .2710 .4140 .4879 Atom O15 O14 N13 C5 C4 C3 C2 C1 C8 C16 C11 H6 H12 H10 H9 H7 H20 H19 H17 H18 H22 H21 x .2990 .2877 .2961 .3025 .3102 .3838 .2989 .2948 .1471 .0664 .1604 .2924 .3731 .3846 .4945 .3537 .1566 .0838 .0264 -.0257 .1058 .1736 y z -.2546 .1875 .0534 -.1684 -.0955 .0155 -.1394 .1746 -.0569 .3289 .0681 .2904 .1212 .1251 .0259 -.0141 .1583 .1683 .0497 .2460 -.0259 .3838 -.1500 -.0813 -.1044 .4337 .1329 .3976 .0521 .2691 .2031 .0841 .2347 .2604 .1929 .0533 -.0143 .1447 .0873 .3007 -.1120 .4106 .0279 .5027 r.m.s.d.(A)= TITLE Erk 1-S Systematic Search, #47 in P 21/c, #76 of 10 space groups REFERENCE Matrix code (Det) 655565556 TARGET 1. 655565556 1. Dev,A .119 .285 .150 .109 .106 .082 .126 .187 .026 .121 .068 .202 .165 .054 .151 .175 .104 .150 .243 .318 .073 .174 .161 133 Origin shift .0000 .0000 .0000 .0000 New cell dimensions, A,deg: a 9.3380 b 10.6060 c 7.7050 alpha 90.00 beta 95.03 gamma 90.00 Atom O1 O2 N1 C1 C2 C3 C4 C5 C6 C7 C8 H1 H2 H3A H3B H4 H6A H6B H7A H7B H8A H8B x .3001 .3080 .3086 .3064 .3081 .3822 .3026 .3073 .1461 .0675 .1532 .3056 .3598 .3794 .4866 .3467 .1532 .0992 .0506 -.0230 .1085 .1595 y -.2552 .0733 -.0883 -.1409 -.0521 .0702 .1278 .0395 .1566 .0428 -.0252 -.1406 -.0975 .1311 .0561 .2013 .2262 .1914 -.0186 .0673 -.1060 .0233 .0000 .0000 dp/p(%) 4.3371 3.5282 .5438 .00 -.84 .00 9.7430 10.9802 7.7469 90.00 94.23 90.00 z .2029 -.1643 .0240 .1882 .3403 .3002 .1382 -.0140 .1703 .2339 .3828 -.0638 .4424 .3990 .2842 .1040 .2650 .0600 .1380 .2710 .4140 .4879 Atom O15 O14 N13 C5 C4 C3 C2 C1 C8 C16 C11 H6 H12 H10 H9 H7 H20 H19 H17 H18 H22 H21 x .3246 .2911 .3085 .3169 .3165 .3816 .2981 .2984 .1509 .0807 .1697 .3092 .3779 .3833 .4905 .3459 .1541 .0893 .0524 -.0182 .1212 .1748 y z -.2509 .1920 .0666 -.1759 -.0918 .0087 -.1404 .1798 -.0526 .3319 .0681 .2846 .1225 .1290 .0358 -.0243 .1478 .1757 .0353 .2426 -.0308 .3826 -.1491 -.0916 -.0944 .4442 .1317 .3958 .0553 .2567 .2102 .0914 .2204 .2753 .1851 .0619 -.0277 .1338 .0617 .2939 -.1186 .4137 .0231 .5039 r.m.s.d.(A)= Dev,A .259 .192 .124 .124 .107 .122 .098 .119 .112 .160 .168 .239 .175 .047 .219 .136 .101 .118 .106 .189 .183 .184 .158 TITLE Hofmann IV 358 REFERENCE Matrix code (Det) 655565556 Origin shift .0000 .0000 TARGET 1. .0000 655565556 .0000 .0000 New cell dimensions, A,deg: a 9.3380 b 10.6060 c 7.7050 alpha 90.00 beta 95.03 gamma 90.00 Atom O1 O2 N1 C1 C2 C3 C4 C5 C6 C7 C8 H1 H2 H3A H3B H4 H6A H6B H7A H7B H8A H8B x .3001 .3080 .3086 .3064 .3081 .3822 .3026 .3073 .1461 .0675 .1532 .3056 .3598 .3794 .4866 .3467 .1532 .0992 .0506 -.0230 .1085 .1595 y -.2552 .0733 -.0883 -.1409 -.0521 .0702 .1278 .0395 .1566 .0428 -.0252 -.1406 -.0975 .1311 .0561 .2013 .2262 .1914 -.0186 .0673 -.1060 .0233 z .2029 -.1643 .0240 .1882 .3403 .3002 .1382 -.0140 .1703 .2339 .3828 -.0638 .4424 .3990 .2842 .1040 .2650 .0600 .1380 .2710 .4140 .4879 1. .0000 9.2201 10.1999 7.6322 90.00 94.63 90.00 Atom O4 O13 N1 C3 C5 C7 C10 C12 C14 C17 C20 H2 H6 H8 H9 H11 H15 H16 H18 H19 H21 H22 TITLE Hoffmann IV minimized (ordered list) x .2844 .3160 .3050 .2994 .3083 .3923 .3157 .3132 .1599 .0722 .1541 .2978 .3574 .3943 .4965 .3656 .1726 .1148 .0502 -.0172 .1030 .1645 y z -.2634 .1909 .0771 -.1777 -.0907 .0113 -.1451 .1767 -.0531 .3310 .0694 .2903 .1339 .1283 .0420 -.0261 .1732 .1631 .0597 .2275 -.0159 .3762 -.1447 -.0777 -.1033 .4330 .1327 .3906 .0485 .2727 .2076 .0937 .2449 .2591 .2120 .0526 -.0030 .1305 .0905 .2664 -.0972 .4078 .0339 .4826 r.m.s.d.(A)= dp/p(%) -1.2626 -3.8290 -.9448 .00 -.42 .00 Dev,A .186 .138 .104 .114 .073 .125 .162 .115 .224 .189 .109 .131 .095 .158 .154 .209 .272 .268 .172 .250 .114 .128 .168 134 REFERENCE Matrix code (Det) 655565556 Origin shift .0000 .0000 TARGET 1. .0000 655565556 .0000 .0000 New cell dimensions, A,deg: a 9.3380 b 10.6060 c 7.7050 alpha 90.00 beta 95.03 gamma 90.00 Atom O1 O2 N1 C1 C2 C3 C4 C5 C6 C7 C8 H1 H2 H3A H3B H4 H6A H6B H7A H7B H8A H8B x .3001 .3080 .3086 .3064 .3081 .3822 .3026 .3073 .1461 .0675 .1532 .3056 .3598 .3794 .4866 .3467 .1532 .0992 .0506 -.0230 .1085 .1595 y -.2552 .0733 -.0883 -.1409 -.0521 .0702 .1278 .0395 .1566 .0428 -.0252 -.1406 -.0975 .1311 .0561 .2013 .2262 .1914 -.0186 .0673 -.1060 .0233 1. .0000 dp/p(%) -1.4725 -1.0004 .3478 .00 .83 .00 9.2005 10.4999 7.7318 90.00 95.82 90.00 z .2029 -.1643 .0240 .1882 .3403 .3002 .1382 -.0140 .1703 .2339 .3828 -.0638 .4424 .3990 .2842 .1040 .2650 .0600 .1380 .2710 .4140 .4879 Atom O4 O13 N1 C3 C5 C7 C10 C12 C14 C17 C20 H2 H6 H8 H9 H11 H15 H16 H18 H19 H21 H22 x .2985 .3057 .3067 .3049 .3070 .3823 .3010 .3054 .1420 .0623 .1497 .3035 .3598 .3796 .4882 .3457 .1495 .0941 .0449 -.0295 .1044 .1564 y z -.2629 .1980 .0690 -.1679 -.0943 .0198 -.1474 .1834 -.0577 .3351 .0659 .2961 .1241 .1336 .0348 -.0180 .1532 .1635 .0382 .2258 -.0305 .3754 -.1471 -.0677 -.1035 .4376 .1274 .3946 .0516 .2815 .1983 .1001 .2234 .2580 .1883 .0529 -.0238 .1300 .0629 .2617 -.1121 .4059 .0185 .4803 r.m.s.d.(A)= Dev,A .090 .056 .072 .078 .071 .056 .054 .060 .071 .089 .084 .077 .074 .052 .054 .044 .068 .076 .095 .101 .095 .081 .074 TITLE Price IV optimised REFERENCE Matrix code (Det) 655565556 Origin shift .0000 .0000 TARGET 1. .0000 655565556 .0000 .0000 New cell dimensions, A,deg: a 9.3380 b 10.6060 c 7.7050 alpha 90.00 beta 95.03 gamma 90.00 Atom O1 O2 N1 C1 C2 C3 C4 C5 C6 C7 C8 H1 H2 H3A H3B H4 H6A H6B H7A H7B H8A H8B x .3001 .3080 .3086 .3064 .3081 .3822 .3026 .3073 .1461 .0675 .1532 .3056 .3598 .3794 .4866 .3467 .1532 .0992 .0506 -.0230 .1085 .1595 y -.2552 .0733 -.0883 -.1409 -.0521 .0702 .1278 .0395 .1566 .0428 -.0252 -.1406 -.0975 .1311 .0561 .2013 .2262 .1914 -.0186 .0673 -.1060 .0233 z .2029 -.1643 .0240 .1882 .3403 .3002 .1382 -.0140 .1703 .2339 .3828 -.0638 .4424 .3990 .2842 .1040 .2650 .0600 .1380 .2710 .4140 .4879 1. .0000 dp/p(%) -.2410 -.1499 2.7125 .00 -.54 .00 9.3155 10.5901 7.9140 90.00 94.52 90.00 Atom O1 O2 N1 C1 C2 C3 C4 C5 C6 C7 C8 H1 H2 H3A H3B H4 H6A H6B H7A H7B H8A H8B x .3079 .2966 .3116 .3107 .3099 .3849 .3037 .3045 .1472 .0679 .1535 .3096 .3664 .3850 .4972 .3557 .1502 .0910 .0476 -.0376 .1017 .1569 y -.2620 .0709 -.0915 -.1469 -.0553 .0676 .1259 .0367 .1557 .0386 -.0292 -.1522 -.1030 .1329 .0499 .2122 .2273 .1970 -.0260 .0656 -.1181 .0295 z .2092 -.1557 .0338 .1939 .3406 .2982 .1420 -.0074 .1778 .2347 .3806 -.0656 .4484 .4051 .2747 .1028 .2777 .0648 .1278 .2737 .4102 .4945 Dev,A .111 .133 .086 .086 .037 .041 .037 .066 .059 .045 .047 .129 .095 .071 .144 .144 .106 .106 .114 .141 .145 .088 135 r.m.s.d.(A)= .099 TITL Scheraga IV : Exp structure optimized with the force field (AMBER) REFERENCE Matrix code (Det) 655565556 Origin shift .0000 .0000 TARGET 1. .0000 655565556 .0000 .0000 New cell dimensions, A,deg: a 9.3380 b 10.6060 c 7.7050 alpha 90.00 beta 95.03 gamma 90.00 Atom O1 O2 N1 C1 C2 C3 C4 C5 C6 C7 C8 H1 H2 H3A H3B H4 H6A H6B H7A H7B H8A H8B x .3001 .3080 .3086 .3064 .3081 .3822 .3026 .3073 .1461 .0675 .1532 .3056 .3598 .3794 .4866 .3467 .1532 .0992 .0506 -.0230 .1085 .1595 y -.2552 .0733 -.0883 -.1409 -.0521 .0702 .1278 .0395 .1566 .0428 -.0252 -.1406 -.0975 .1311 .0561 .2013 .2262 .1914 -.0186 .0673 -.1060 .0233 1. .0000 dp/p(%) -4.4656 -1.3577 2.6347 .00 .77 .00 8.9210 10.4620 7.9080 90.00 95.76 90.00 z .2029 -.1643 .0240 .1882 .3403 .3002 .1382 -.0140 .1703 .2339 .3828 -.0638 .4424 .3990 .2842 .1040 .2650 .0600 .1380 .2710 .4140 .4879 Atom O2 O1 N1 C5 C4 C3 C2 C1 C8 C7 C6 H1 H4 H3A H3B H2 H8B H8A H7A H7B H6B H6A x .3331 .2670 .3051 .3255 .3341 .4058 .3081 .2928 .1513 .0749 .1761 .2941 .4018 .4127 .5200 .3566 .1669 .0859 .0454 -.0275 .1304 .1951 y z -.2603 .1689 .0766 -.1831 -.0892 -.0030 -.1448 .1569 -.0549 .3061 .0709 .2603 .1299 .1129 .0404 -.0365 .1607 .1673 .0421 .2299 -.0319 .3608 -.1406 -.0904 -.1045 .4064 .1330 .3699 .0574 .2296 .2169 .0691 .2334 .2643 .2066 .0620 -.0175 .1201 .0704 .2820 -.1244 .3878 .0226 .4769 r.m.s.d.(A)= Dev,A .423 .391 .210 .316 .375 .395 .209 .210 .070 .077 .291 .224 .502 .397 .547 .337 .147 .202 .144 .103 .356 .343 .314 TITL Scheraga IV crystal structure corresponding to minimum 5; REFERENCE Matrix code (Det) 655565556 Origin shift .0000 .0000 TARGET 1. .0000 655565556 .0000 .0000 New cell dimensions, A,deg: a 9.3380 b 10.6060 c 7.7050 alpha 90.00 beta 95.03 gamma 90.00 Atom O1 O2 N1 C1 C2 C3 C4 C5 C6 C7 C8 H1 H2 H3A H3B H4 H6A H6B H7A x .3001 .3080 .3086 .3064 .3081 .3822 .3026 .3073 .1461 .0675 .1532 .3056 .3598 .3794 .4866 .3467 .1532 .0992 .0506 y -.2552 .0733 -.0883 -.1409 -.0521 .0702 .1278 .0395 .1566 .0428 -.0252 -.1406 -.0975 .1311 .0561 .2013 .2262 .1914 -.0186 z .2029 -.1643 .0240 .1882 .3403 .3002 .1382 -.0140 .1703 .2339 .3828 -.0638 .4424 .3990 .2842 .1040 .2650 .0600 .1380 1. .0000 dp/p(%) -2.6130 -.1603 1.2070 .00 .23 .00 9.0940 10.5890 7.7980 90.00 95.25 90.00 Atom O2 O1 N1 C5 C4 C3 C2 C1 C8 C7 C6 H1 H4 H3A H3B H2 H8B H8A H7A x .3221 .2773 .3076 .3213 .3327 .4040 .3072 .2962 .1520 .0765 .1784 .2987 .3998 .4128 .5146 .3555 .1648 .0842 .0405 y -.2554 .0674 -.0908 -.1435 -.0511 .0720 .1278 .0357 .1589 .0443 -.0247 -.1516 -.0974 .1377 .0550 .2126 .2327 .1969 -.0203 z .1798 -.1910 -.0008 .1620 .3113 .2579 .1057 -.0439 .1594 .2337 .3708 -.0993 .4141 .3642 .2233 .0582 .2552 .0505 .1312 Dev,A .282 .341 .194 .256 .333 .400 .259 .248 .108 .085 .258 .301 .446 .433 .558 .390 .153 .161 .105 136 H7B H8A H8B -.0230 .1085 .1595 .0673 -.1060 .0233 .2710 .4140 .4879 H7B H6B H6A TITLE Schweizer/Dunitz E=-113.33, -.0223 .1286 .1937 TARGET 1. .0000 655565556 .0000 .0000 New cell dimensions, A,deg: a 9.3380 b 10.6060 c 7.7050 alpha 90.00 beta 95.03 gamma 90.00 Atom O1 O2 N1 C1 C2 C3 C4 C5 C6 C7 C8 H1 H2 H3A H3B H4 H6A H6B H7A H7B H8A H8B x .3001 .3080 .3086 .3064 .3081 .3822 .3026 .3073 .1461 .0675 .1532 .3056 .3598 .3794 .4866 .3467 .1532 .0992 .0506 -.0230 .1085 .1595 y -.2552 .0733 -.0883 -.1409 -.0521 .0702 .1278 .0395 .1566 .0428 -.0252 -.1406 -.0975 .1311 .0561 .2013 .2262 .1914 -.0186 .0673 -.1060 .0233 TITLE Schweizer/Dunitz IV 9 Atom O21 O19 N20 C8 C3 C7 C2 C13 C6 C4 C5 H22 H14 H12 H18 H1 H11 H17 H9 H15 H16 H10 868.41 y -.2552 .0733 -.0883 -.1409 -.0521 .0702 .1278 .0395 .1566 .0428 -.0252 -.1406 -.0975 .1311 .0561 .2013 z .2029 -.1643 .0240 .1882 .3403 .3002 .1382 -.0140 .1703 .2339 .3828 -.0638 .4424 .3990 .2842 .1040 dp/p(%) .9188 7.0309 .4659 .00 .89 .00 d= y z -.2276 .2247 .0730 -.1514 -.0747 .0415 -.1210 .2060 -.0354 .3533 .0795 .3135 .1290 .1457 .0440 -.0012 .1537 .1662 .0471 .2286 -.0123 .3842 -.1251 -.0436 -.0751 .4595 .1380 .4088 .0678 .3050 .1978 .1118 .2204 .2577 .1834 .0526 -.0122 .1350 .0690 .2585 -.0880 .4155 .0349 .4868 r.m.s.d.(A)= Dev,A .348 .100 .201 .263 .238 .198 .109 .114 .104 .101 .184 .232 .312 .208 .247 .125 .161 .123 .082 .131 .224 .204 .196 1.172 TARGET 1. .0000 655565556 .0000 .0000 New cell dimensions, A,deg: a 9.3380 b 10.6060 c 7.7050 alpha 90.00 beta 95.03 gamma 90.00 x .3001 .3080 .3086 .3064 .3081 .3822 .3026 .3073 .1461 .0675 .1532 .3056 .3598 .3794 .4866 .3467 x .2987 .3099 .3086 .3025 .2970 .3688 .2934 .3052 .1358 .0586 .1408 .3098 .3463 .3612 .4735 .3364 .1381 .0918 .0465 -.0333 .0975 .1424 -108.10, REFERENCE Atom O1 O2 N1 C1 C2 C3 C4 C5 C6 C7 C8 H1 H2 H3A H3B H4 1. .0000 9.4238 11.3517 7.7409 90.00 95.88 90.00 z .2029 -.1643 .0240 .1882 .3403 .3002 .1382 -.0140 .1703 .2339 .3828 -.0638 .4424 .3990 .2842 .1040 .2650 .0600 .1380 .2710 .4140 .4879 Matrix code (Det) 655565556 Origin shift .0000 .0000 .158 .210 .332 .299 d=1.235 REFERENCE Matrix code (Det) 655565556 Origin shift .0000 .0000 .0744 .2889 -.1123 .4067 .0325 .4858 r.m.s.d.(A)= 1. .0000 dp/p(%) 4.2140 7.5778 1.9922 .00 .59 .00 9.7315 11.4097 7.8585 90.00 95.59 90.00 Atom O19 O21 N20 C13 C2 C7 C3 C8 C5 C4 C6 H22 H1 H12 H18 H14 x .3095 .3060 .3150 .3085 .2984 .3691 .2964 .3065 .1437 .0662 .1458 .3200 .3494 .3623 .4782 .3459 y -.2286 .0647 -.0788 -.1252 -.0371 .0774 .1255 .0377 .1524 .0458 -.0146 -.1369 -.0776 .1404 .0632 .2044 z .2372 -.1404 .0545 .2159 .3588 .3164 .1495 .0062 .1711 .2323 .3862 -.0402 .4725 .4188 .3046 .1096 Dev,A .401 .211 .261 .276 .243 .202 .113 .159 .052 .037 .140 .223 .342 .256 .200 .056 137 H6A H6B H7A H7B H8A H8B .1532 .0992 .0506 -.0230 .1085 .1595 .2262 .1914 -.0186 .0673 -.1060 .0233 .2650 .0600 .1380 .2710 .4140 .4879 H10 H16 H9 H15 H17 H11 .1420 .0929 .0467 -.0346 .0964 .1443 .2230 .2640 .1852 .0515 -.0165 .1282 .0729 .2661 -.0965 .4144 .0407 .4988 r.m.s.d.(A)= .112 .109 .085 .129 .156 .259 .205 TITL PRICE V 1 REFERENCE Matrix code (Det) 655565556 Origin shift .0000 .0000 TARGET 1. .0000 554565455 -1. .5000 -.5000 1.0000 New cell dimensions, A,deg: a 7.2640 b 10.6390 c 15.6330 alpha 90.00 beta 90.00 gamma 90.00 Atom BR1 S2 O3 O4 N5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 H16 H17 H18 H19 H20 H21 H22 H23 H24 H25 H26 H27 H28 H29 TITL x .5913 .5322 .6825 .5099 .5533 .3829 .4345 .3080 .3776 .3207 .2327 .3199 .1301 .0480 -.0240 .3270 .5101 .3193 .4272 .2332 .1540 .3266 .2150 -.0494 .1419 -.0001 .0293 -.1084 -.0886 y .6333 .4505 .3659 .5173 .5566 .5989 .5295 .4175 .3256 .3906 .5144 .3770 .4733 .5805 .3749 .6792 .3151 .2439 .4062 .3397 .5548 .2862 .4071 .6195 .6415 .5480 .2969 .4045 .3623 z .0158 .3059 .2999 .3830 .2262 .0899 .1694 .1775 .1077 .0238 .0527 .2696 .1372 .1894 .1239 .1064 .1108 .1131 -.0121 -.0077 .0098 .2744 .3021 .1575 .2015 .2422 .1056 .0812 .1768 Atom BR1 S1 O1 O2 N1 C2 C1 C7 C6 C5 C3 C8 C4 C10 C9 H1 H5 H6 H3 H4 H2 H8 H7 H13 H14 H12 H9 H11 H10 x .5732 .5073 .6600 .4735 .5241 .3604 .4103 .2834 .3556 .2995 .2084 .2965 .1028 .0146 -.0516 .3074 .5045 .2897 .4175 .2010 .1238 .3116 .1838 -.0843 .1135 -.0618 -.0067 -.1651 -.1080 y z .6334 .0207 .4694 .3069 .3816 .3030 .5407 .3804 .5724 .2273 .6042 .0925 .5395 .1727 .4241 .1827 .3242 .1194 .3838 .0353 .5123 .0598 .3897 .2736 .4768 .1412 .5917 .1863 .3766 .1292 .6992 .1043 .3098 .1253 .2321 .1298 .3975 -.0049 .3238 .0027 .5554 .0120 .2884 .2861 .4292 .3098 .6397 .1461 .6630 .2074 .5593 .2400 .2906 .0977 .4180 .0938 .3480 .1885 r.m.s.d.(A)= Dev,A .152 .269 .237 .363 .269 .176 .211 .208 .246 .250 .210 .225 .211 .273 .217 .256 .241 .364 .162 .331 .221 .217 .347 .377 .320 .463 .296 .477 .278 .283 Van Eijck V 1 REFERENCE Matrix code (Det) 655565556 Origin shift .0000 .0000 TARGET 1. .0000 655565556 .0000 .0000 New cell dimensions, A,deg: a 7.2640 b 10.6390 c 15.6330 alpha 90.00 beta 90.00 gamma 90.00 Atom BR1 S2 O3 O4 N5 dp/p(%) -1.1952 -2.1239 3.7722 .00 .00 .00 7.1772 10.4130 16.2227 90.00 90.00 90.00 x .5913 .5322 .6825 .5099 .5533 y .6333 .4505 .3659 .5173 .5566 z .0158 .3059 .2999 .3830 .2262 1. .0000 dp/p(%) -1.9961 -6.1472 1.6440 .00 .00 .00 7.1190 9.9850 15.8900 90.00 90.00 90.00 Atom BR21 S27 O28 O29 N26 x .5229 .4360 .5889 .3378 .5113 y .5871 .5001 .4398 .6075 .5531 z -.0115 .3045 .3494 .3443 .2114 Dev,A .809 .861 1.282 1.664 .383 138 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 H16 H17 H18 H19 H20 H21 H22 H23 H24 H25 H26 H27 H28 H29 .3829 .4345 .3080 .3776 .3207 .2327 .3199 .1301 .0480 -.0240 .3270 .5101 .3193 .4272 .2332 .1540 .3266 .2150 -.0494 .1419 -.0001 .0293 -.1084 -.0886 .5989 .5295 .4175 .3256 .3906 .5144 .3770 .4733 .5805 .3749 .6792 .3151 .2439 .4062 .3397 .5548 .2862 .4071 .6195 .6415 .5480 .2969 .4045 .3623 .0899 .1694 .1775 .1077 .0238 .0527 .2696 .1372 .1894 .1239 .1064 .1108 .1131 -.0121 -.0077 .0098 .2744 .3021 .1575 .2015 .2422 .1056 .0812 .1768 C20 C19 C18 C15 C12 C10 C23 C1 C2 C6 H22 H17 H16 H13 H14 H11 H25 H24 H5 H3 H4 H8 H9 H7 .3253 .3909 .2485 .2938 .2115 .1499 .2726 .0596 -.0104 -.1084 .2814 .4445 .2296 .3148 .0920 .0541 .3290 .1403 -.1141 .1007 -.0771 -.0673 -.2083 -.1821 .5766 .0758 .5149 .1564 .4066 .1786 .2927 .1144 .3440 .0319 .4885 .0560 .3768 .2700 .4689 .1449 .5967 .1882 .3733 .1478 .6795 .0873 .2769 .1085 .1981 .1330 .3422 -.0184 .2838 .0123 .5338 .0106 .2774 .2800 .3864 .3037 .6458 .1483 .6687 .2011 .5741 .2484 .2693 .1496 .3975 .0982 .3788 .2078 r.m.s.d.(A)= .523 .404 .443 .700 .929 .655 .340 .523 .452 .715 .445 .616 .859 1.048 1.209 .750 .128 .579 .558 .408 .623 1.022 .770 .848 .777 TITL Williams V 3 REFERENCE Matrix code (Det) 655565556 Origin shift .0000 .0000 TARGET 1. .0000 545655556 1.0000 .0000 New cell dimensions, A,deg: a 7.2640 b 10.6390 c 15.6330 alpha 90.00 beta 90.00 gamma 90.00 Atom BR1 S2 O3 O4 N5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 H16 H17 H18 H19 H20 H21 H22 H23 H24 H25 H26 H27 H28 H29 x .5913 .5322 .6825 .5099 .5533 .3829 .4345 .3080 .3776 .3207 .2327 .3199 .1301 .0480 -.0240 .3270 .5101 .3193 .4272 .2332 .1540 .3266 .2150 -.0494 .1419 -.0001 .0293 -.1084 -.0886 y .6333 .4505 .3659 .5173 .5566 .5989 .5295 .4175 .3256 .3906 .5144 .3770 .4733 .5805 .3749 .6792 .3151 .2439 .4062 .3397 .5548 .2862 .4071 .6195 .6415 .5480 .2969 .4045 .3623 z .0158 .3059 .2999 .3830 .2262 .0899 .1694 .1775 .1077 .0238 .0527 .2696 .1372 .1894 .1239 .1064 .1108 .1131 -.0121 -.0077 .0098 .2744 .3021 .1575 .2015 .2422 .1056 .0812 .1768 6.9300 10.6600 15.5800 90.00 90.00 90.00 Atom BR1 S1 O2 O1 N1 C5 C6 C1 C2 C3 C4 C8 C7 C9 C10 H5 H22 H21 H32 H31 H4 H81 H82 H93 H91 H92 H101 H102 H103 x .6101 .5479 .7058 .5145 .5631 .3922 .4466 .3173 .3890 .3307 .2380 .3287 .1334 .0416 -.0216 .3366 .5285 .3224 .4408 .2345 .1579 .3410 .2224 -.0655 .1402 -.0090 .0361 -.1285 -.0720 y z .6424 .0218 .4648 .3160 .3793 .3088 .5301 .3944 .5700 .2355 .6062 .0960 .5393 .1778 .4252 .1858 .3294 .1182 .3913 .0317 .5164 .0593 .3891 .2800 .4770 .1428 .5870 .1921 .3759 .1272 .6882 .1101 .3138 .1231 .2489 .1269 .4034 -.0070 .3400 .0013 .5560 .0150 .2990 .2910 .4243 .3140 .6228 .1578 .6526 .2024 .5566 .2477 .3047 .0955 .4121 .0931 .3459 .1830 r.m.s.d.(A)= TITL Dzyabchenko V (powder) REFERENCE 1. -.5000 TARGET dp/p(%) -4.5980 .1974 -.3390 .00 .00 .00 Dev,A .190 .246 .259 .227 .215 .139 .188 .167 .187 .143 .112 .216 .098 .093 .056 .131 .233 .223 .129 .141 .087 .309 .267 .120 .119 .141 .184 .248 .232 .187 139 Matrix code (Det) 655565556 Origin shift .0000 .0000 1. .0000 655545554 .0000 .5000 New cell dimensions, A,deg: a 7.2640 b 10.6390 c 15.6330 alpha 90.00 beta 90.00 gamma 90.00 Atom BR1 S2 O3 O4 N5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 H16 H17 H18 H19 H20 H21 H22 H23 H24 H25 H26 H27 H28 H29 x .5913 .5322 .6825 .5099 .5533 .3829 .4345 .3080 .3776 .3207 .2327 .3199 .1301 .0480 -.0240 .3270 .5101 .3193 .4272 .2332 .1540 .3266 .2150 -.0494 .1419 -.0001 .0293 -.1084 -.0886 y .6333 .4505 .3659 .5173 .5566 .5989 .5295 .4175 .3256 .3906 .5144 .3770 .4733 .5805 .3749 .6792 .3151 .2439 .4062 .3397 .5548 .2862 .4071 .6195 .6415 .5480 .2969 .4045 .3623 1. .5000 dp/p(%) -.0413 -.0470 .0064 .00 .00 .00 7.2610 10.6340 15.6340 90.00 90.00 90.00 z .0158 .3059 .2999 .3830 .2262 .0899 .1694 .1775 .1077 .0238 .0527 .2696 .1372 .1894 .1239 .1064 .1108 .1131 -.0121 -.0077 .0098 .2744 .3021 .1575 .2015 .2422 .1056 .0812 .1768 Atom BR1 S1 O4 O3 N5 C9 C8 C7 C12 C11 C10 C6 C13 C14 C15 H20 H25 H24 H23 H22 H21 H19 H18 H28 H26 H27 H29 H30 H31 x .5956 .5355 .7049 .4794 .5491 .3862 .4410 .3306 .4016 .3317 .2340 .3519 .1443 .0516 .0019 .3243 .5497 .3492 .4426 .2397 .1430 .3794 .2211 -.0688 .1470 .0106 .0593 -.1182 -.0389 y z .6431 .0184 .4518 .3103 .3831 .3117 .5113 .3879 .5647 .2351 .6098 .0968 .5342 .1743 .4146 .1751 .3330 .0990 .4061 .0198 .5224 .0599 .3597 .2639 .4672 .1404 .5651 .2004 .3649 .1234 .6972 .1172 .3230 .0991 .2380 .1009 .4325 -.0226 .3504 -.0190 .5701 .0159 .2603 .2581 .3656 .2965 .6043 .1698 .6402 .2146 .5206 .2595 .2940 .0818 .4051 .0932 .3214 .1828 r.m.s.d.(A)= Dev,A .116 .074 .306 .243 .167 .160 .104 .171 .235 .193 .141 .310 .132 .239 .216 .256 .351 .296 .343 .215 .205 .536 .452 .288 .209 .405 .433 .200 .573 .289 TITL Leusen V 70 REFERENCE Matrix code (Det) 655565556 Origin shift .0000 .0000 TARGET 1. .0000 655565556 -.5000 .0000 New cell dimensions, A,deg: a 7.2640 b 10.6390 c 15.6330 alpha 90.00 beta 90.00 gamma 90.00 Atom BR1 S2 O3 O4 N5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 H16 H17 H18 x .5913 .5322 .6825 .5099 .5533 .3829 .4345 .3080 .3776 .3207 .2327 .3199 .1301 .0480 -.0240 .3270 .5101 .3193 y .6333 .4505 .3659 .5173 .5566 .5989 .5295 .4175 .3256 .3906 .5144 .3770 .4733 .5805 .3749 .6792 .3151 .2439 z .0158 .3059 .2999 .3830 .2262 .0899 .1694 .1775 .1077 .0238 .0527 .2696 .1372 .1894 .1239 .1064 .1108 .1131 1. .0000 dp/p(%) 1.3078 2.8386 -.3006 .00 .00 .00 7.3590 10.9410 15.5860 90.00 90.00 90.00 Atom BR13 S11 O15 O14 N12 C5 C4 C3 C2 C1 C6 C10 C7 C8 C9 H20 H19 H18 x .6116 .5322 .6911 .5233 .5559 .4002 .4404 .3122 .3845 .3382 .2511 .3186 .1334 .0344 -.0206 .3451 .5315 .3129 y .6310 .4900 .3921 .5584 .5908 .6215 .5613 .4531 .3497 .4003 .5300 .4237 .4986 .6105 .4047 .7144 .3317 .2625 z .0108 .3071 .3059 .3965 .2255 .0843 .1693 .1810 .1194 .0274 .0496 .2758 .1358 .1748 .1222 .0924 .1275 .1312 Dev,A .169 .426 .305 .500 .369 .288 .346 .389 .322 .175 .221 .513 .275 .408 .323 .457 .352 .350 140 H19 H20 H21 H22 H23 H24 H25 H26 H27 H28 H29 .4272 .2332 .1540 .3266 .2150 -.0494 .1419 -.0001 .0293 -.1084 -.0886 TITL Mooy V .4062 .3397 .5548 .2862 .4071 .6195 .6415 .5480 .2969 .4045 .3623 -.0121 -.0077 .0098 .2744 .3021 .1575 .2015 .2422 .1056 .0812 .1768 H16 H17 H21 H29 H28 H23 H22 H24 H25 H27 H26 .4592 .2385 .1697 .3128 .2099 -.0670 .1223 -.0402 .0205 -.1279 -.0862 Matrix code (Det) 655565556 Origin shift .0000 .0000 TARGET 1. .0000 655565556 .5000 .5000 New cell dimensions, A,deg: a 7.2640 b 10.6390 c 15.6330 alpha 90.00 beta 90.00 gamma 90.00 x .5913 .5322 .6825 .5099 .5533 .3829 .4345 .3080 .3776 .3207 .2327 .3199 .1301 .0480 -.0240 .3270 .5101 .3193 .4272 .2332 .1540 .3266 .2150 -.0494 .1419 -.0001 .0293 -.1084 -.0886 .236 .051 .276 .508 .688 .549 .535 .518 .300 .425 .219 .387 powder REFERENCE Atom BR1 S2 O3 O4 N5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 H16 H17 H18 H19 H20 H21 H22 H23 H24 H25 H26 H27 H28 H29 .4067 -.0143 .3412 -.0058 .5687 -.0031 .3256 .2910 .4689 .3127 .6481 .1296 .6877 .1932 .5857 .2340 .3172 .0932 .4416 .0798 .3800 .1836 r.m.s.d.(A)= y .6333 .4505 .3659 .5173 .5566 .5989 .5295 .4175 .3256 .3906 .5144 .3770 .4733 .5805 .3749 .6792 .3151 .2439 .4062 .3397 .5548 .2862 .4071 .6195 .6415 .5480 .2969 .4045 .3623 1. .0000 dp/p(%) -1.7621 1.5415 -1.6120 .00 .00 .00 7.1360 10.8030 15.3810 90.00 90.00 90.00 z .0158 .3059 .2999 .3830 .2262 .0899 .1694 .1775 .1077 .0238 .0527 .2696 .1372 .1894 .1239 .1064 .1108 .1131 -.0121 -.0077 .0098 .2744 .3021 .1575 .2015 .2422 .1056 .0812 .1768 Atom BR13 S9 O15 O14 N10 C5 C4 C3 C2 C1 C6 C8 C7 C11 C12 H20 H19 H18 H17 H16 H21 H22 H23 H25 H24 H26 H28 H29 H27 x .6301 .5410 .7167 .5205 .5591 .4118 .4466 .3257 .4024 .3493 .2562 .3294 .1420 .0444 -.0137 .3557 .5538 .3333 .4723 .2505 .1729 .3366 .2100 -.0531 .1438 -.0335 .0369 -.1259 -.0712 y z .6345 .0162 .4733 .3083 .3836 .3057 .5429 .3985 .5747 .2295 .6151 .0891 .5476 .1680 .4404 .1752 .3453 .1081 .4067 .0207 .5295 .0517 .3996 .2715 .4901 .1335 .5988 .1831 .3913 .1172 .7061 .1040 .3325 .1139 .2558 .1149 .4229 -.0199 .3496 -.0155 .5750 .0017 .2994 .2786 .4360 .3076 .6458 .1397 .6669 .2074 .5634 .2387 .3101 .0828 .4322 .0787 .3602 .1790 r.m.s.d.(A)= Dev,A .280 .256 .323 .372 .205 .271 .214 .279 .277 .273 .234 .253 .207 .221 .217 .357 .369 .165 .390 .204 .285 .172 .324 .395 .287 .296 .385 .325 .132 .284 TITL Verwer V 1 from powder diffraction data REFERENCE Matrix code (Det) 655565556 Origin shift .0000 .0000 TARGET 1. .0000 556655565 -.5000 .0000 New cell dimensions, A,deg: a 7.2640 b 10.6390 c 15.6330 alpha 90.00 beta 90.00 gamma 90.00 Atom x y z 1. .0000 dp/p(%) -.0771 -.0376 -.0589 .00 .00 .00 7.2584 10.6350 15.6238 90.00 90.00 90.00 Atom x y z Dev,A 141 BR1 S2 O3 O4 N5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 H16 H17 H18 H19 H20 H21 H22 H23 H24 H25 H26 H27 H28 H29 .5913 .5322 .6825 .5099 .5533 .3829 .4345 .3080 .3776 .3207 .2327 .3199 .1301 .0480 -.0240 .3270 .5101 .3193 .4272 .2332 .1540 .3266 .2150 -.0494 .1419 -.0001 .0293 -.1084 -.0886 .6333 .4505 .3659 .5173 .5566 .5989 .5295 .4175 .3256 .3906 .5144 .3770 .4733 .5805 .3749 .6792 .3151 .2439 .4062 .3397 .5548 .2862 .4071 .6195 .6415 .5480 .2969 .4045 .3623 .0158 .3059 .2999 .3830 .2262 .0899 .1694 .1775 .1077 .0238 .0527 .2696 .1372 .1894 .1239 .1064 .1108 .1131 -.0121 -.0077 .0098 .2744 .3021 .1575 .2015 .2422 .1056 .0812 .1768 BR10 S96 O102 O101 N97 C92 C91 C90 C89 C88 C93 C95 C94 C98 C99 H107 H106 H105 H104 H103 H108 H109 H110 H112 H111 H113 H115 H116 H114 .6229 .5224 .6801 .5011 .5410 .4058 .4339 .3144 .3904 .3453 .2553 .3156 .1358 .0360 -.0218 .3500 .5380 .3185 .4685 .2504 .1779 .3268 .2054 -.0499 .1295 -.0516 .0214 -.1304 -.0803 .6389 .0218 .4936 .3094 .3941 .3006 .5591 .3983 .5925 .2316 .6187 .0916 .5572 .1724 .4488 .1833 .3449 .1222 .3986 .0322 .5275 .0565 .4181 .2805 .4969 .1373 .6122 .1803 .3980 .1238 .7122 .1019 .3290 .1304 .2565 .1330 .4082 -.0069 .3380 -.0027 .5699 .0043 .3191 .2959 .4628 .3163 .6596 .1333 .6818 .2069 .5821 .2331 .3117 .0931 .4376 .0841 .3709 .1852 r.m.s.d.(A)= .255 .467 .300 .509 .402 .270 .299 .348 .319 .238 .224 .470 .254 .376 .246 .395 .396 .339 .312 .149 .251 .486 .636 .570 .446 .540 .258 .390 .171 .375 TITLE Dzyabchenko V rank 5 (ab initio) REFERENCE Matrix code (Det) 655565556 Origin shift .0000 .0000 TARGET 1. .0000 455545556 .5000 .5000 New cell dimensions, A,deg: a 7.2640 b 10.6390 c 15.6330 alpha 90.00 beta 90.00 gamma 90.00 Atom BR1 S2 O3 O4 N5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 H16 H17 H18 H19 H20 H21 H22 H23 H24 H25 H26 H27 H28 H29 x .5913 .5322 .6825 .5099 .5533 .3829 .4345 .3080 .3776 .3207 .2327 .3199 .1301 .0480 -.0240 .3270 .5101 .3193 .4272 .2332 .1540 .3266 .2150 -.0494 .1419 -.0001 .0293 -.1084 -.0886 y .6333 .4505 .3659 .5173 .5566 .5989 .5295 .4175 .3256 .3906 .5144 .3770 .4733 .5805 .3749 .6792 .3151 .2439 .4062 .3397 .5548 .2862 .4071 .6195 .6415 .5480 .2969 .4045 .3623 z .0158 .3059 .2999 .3830 .2262 .0899 .1694 .1775 .1077 .0238 .0527 .2696 .1372 .1894 .1239 .1064 .1108 .1131 -.0121 -.0077 .0098 .2744 .3021 .1575 .2015 .2422 .1056 .0812 .1768 1. .0000 dp/p(%) 4.1988 -5.9498 -3.6653 .00 .00 .00 7.5690 10.0060 15.0600 90.00 90.00 90.00 Atom BR1 S1 O4 O3 N5 C9 C8 C7 C12 C11 C10 C6 C13 C14 C15 H20 H25 H24 H23 H22 H21 H19 H18 H28 H26 H27 H29 H30 H31 x .5120 .5164 .6529 .5020 .5446 .3722 .4196 .2805 .3023 .2398 .1948 .3059 .1149 .0748 -.0526 .3466 .4368 .2250 .3402 .1275 .1138 .2995 .1944 .0046 .1927 -.0100 -.0401 -.1588 -.0939 y .5687 .4566 .3580 .5473 .5490 .5861 .5204 .4180 .3026 .3680 .5136 .3822 .4943 .6228 .4105 .6910 .2671 .2156 .3645 .3168 .5660 .2748 .4193 .6913 .6731 .6039 .3151 .4661 .3942 z .0111 .3133 .3176 .3861 .2210 .0807 .1677 .1890 .1202 .0325 .0610 .2858 .1537 .2037 .1559 .0918 .1159 .1371 .0184 .0043 .0134 .2925 .3231 .1596 .2270 .2606 .1240 .1233 .2247 Dev,A .892 .175 .359 .319 .129 .209 .148 .269 .636 .658 .309 .275 .352 .527 .649 .293 .740 .843 .782 .839 .325 .363 .379 .843 .634 .647 .616 .981 .806 142 r.m.s.d.(A)= .581 TITL Erk 2 Polymorph Predictor, not hit by during the prediction REFERENCE Matrix code (Det) 655565556 Origin shift .0000 .0000 TARGET 1. .0000 455565554 1.0000 -.5000 New cell dimensions, A,deg: a 7.2640 b 10.6390 c 15.6330 alpha 90.00 beta 90.00 gamma 90.00 Atom BR1 S2 O3 O4 N5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 H16 H17 H18 H19 H20 H21 H22 H23 H24 H25 H26 H27 H28 H29 x .5913 .5322 .6825 .5099 .5533 .3829 .4345 .3080 .3776 .3207 .2327 .3199 .1301 .0480 -.0240 .3270 .5101 .3193 .4272 .2332 .1540 .3266 .2150 -.0494 .1419 -.0001 .0293 -.1084 -.0886 y .6333 .4505 .3659 .5173 .5566 .5989 .5295 .4175 .3256 .3906 .5144 .3770 .4733 .5805 .3749 .6792 .3151 .2439 .4062 .3397 .5548 .2862 .4071 .6195 .6415 .5480 .2969 .4045 .3623 1. .5000 dp/p(%) -.8948 -.3459 2.2568 .00 .00 .00 7.1990 10.6022 15.9858 90.00 90.00 90.00 z .0158 .3059 .2999 .3830 .2262 .0899 .1694 .1775 .1077 .0238 .0527 .2696 .1372 .1894 .1239 .1064 .1108 .1131 -.0121 -.0077 .0098 .2744 .3021 .1575 .2015 .2422 .1056 .0812 .1768 Atom BR2 S1 O4 O3 N5 C9 C8 C7 C12 C11 C10 C6 C13 C14 C15 H18 H23 H22 H21 H20 H19 H16 H17 H26 H24 H25 H28 H29 H27 x .5111 .4295 .5940 .3638 .4525 .3012 .3418 .2242 .2849 .2113 .1343 .2441 .0353 -.0525 -.1283 .2542 .4359 .2233 .3202 .1017 .0428 .2845 .1184 -.1597 .0466 -.1167 -.0888 -.2398 -.1843 y z .5860 -.0233 .5603 .2818 .4991 .3106 .6560 .3365 .6208 .1881 .6013 .0519 .5665 .1372 .4627 .1649 .3425 .1148 .3716 .0255 .5083 .0377 .4517 .2611 .5033 .1251 .6314 .1553 .4067 .1333 .6991 .0496 .3310 .1153 .2561 .1401 .3665 -.0220 .3066 .0062 .5382 -.0134 .3574 .2814 .4806 .2940 .6615 .1112 .7085 .1610 .6211 .2168 .3101 .1201 .4317 .0902 .4058 .1967 r.m.s.d.(A)= Dev,A .985 1.434 1.562 1.956 1.165 .843 .929 .798 .703 .817 .753 .974 .780 1.054 .839 1.062 .567 .825 .895 1.037 .901 .823 1.055 1.171 1.179 1.214 .895 1.003 .889 1.041 TITL Erk 2 Systematic Search, #6 in P 212121, #8 of 2 space groups REFERENCE Matrix code (Det) 655565556 Origin shift .0000 .0000 TARGET 1. .0000 655565556 .0000 .0000 New cell dimensions, A,deg: a 7.2640 b 10.6390 c 15.6330 alpha 90.00 beta 90.00 gamma 90.00 Atom BR1 S2 O3 O4 N5 C6 C7 C8 C9 C10 x .5913 .5322 .6825 .5099 .5533 .3829 .4345 .3080 .3776 .3207 y .6333 .4505 .3659 .5173 .5566 .5989 .5295 .4175 .3256 .3906 z .0158 .3059 .2999 .3830 .2262 .0899 .1694 .1775 .1077 .0238 1. .0000 dp/p(%) -2.1049 2.9636 1.8141 .00 .00 .00 7.1111 10.9543 15.9166 90.00 90.00 90.00 Atom BR2 S1 O4 O3 N5 C9 C8 C7 C12 C11 x .4992 .4171 .5821 .3652 .4440 .2847 .3315 .2062 .2708 .2084 y .5873 .5661 .4981 .6639 .6256 .5977 .5698 .4679 .3503 .3757 z -.0265 .2842 .3055 .3387 .1875 .0480 .1384 .1678 .1205 .0290 Dev,A 1.064 1.536 1.602 2.018 1.243 .967 .988 .925 .837 .827 143 C11 C12 C13 C14 C15 H16 H17 H18 H19 H20 H21 H22 H23 H24 H25 H26 H27 H28 H29 .2327 .3199 .1301 .0480 -.0240 .3270 .5101 .3193 .4272 .2332 .1540 .3266 .2150 -.0494 .1419 -.0001 .0293 -.1084 -.0886 .5144 .3770 .4733 .5805 .3749 .6792 .3151 .2439 .4062 .3397 .5548 .2862 .4071 .6195 .6415 .5480 .2969 .4045 .3623 .0527 .2696 .1372 .1894 .1239 .1064 .1108 .1131 -.0121 -.0077 .0098 .2744 .3021 .1575 .2015 .2422 .1056 .0812 .1768 C10 C6 C13 C14 C15 H18 H23 H22 H21 H20 H19 H17 H16 H26 H24 H25 H27 H28 H29 .1209 .2208 .0225 -.0622 -.1332 .2335 .4236 .2048 .3261 .1057 .0304 .0953 .2482 -.1623 .0380 -.1391 -.1853 -.0980 -.2511 .5057 .0344 .4661 .2627 .5039 .1201 .6282 .1484 .4091 .1285 .6913 .0430 .3377 .1251 .2681 .1459 .3701 -.0151 .3089 .0067 .5289 -.0189 .5034 .2923 .3753 .2880 .6600 .1012 .7018 .1589 .6190 .2075 .4063 .1930 .3155 .1128 .4343 .0880 r.m.s.d.(A)= .859 1.202 .883 1.145 .871 1.213 .705 1.007 .826 1.001 1.036 2.889 .473 1.280 1.197 1.373 2.383 1.085 1.982 1.325 TITL Gavezzotti compound 2 REFERENCE Matrix code (Det) 655565556 Origin shift .0000 .0000 TARGET 1. .0000 655545554 .5000 .5000 New cell dimensions, A,deg: a 7.2640 b 10.6390 c 15.6330 alpha 90.00 beta 90.00 gamma 90.00 Atom BR1 S2 O3 O4 N5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 H16 H17 H18 H19 H20 H21 H22 H23 H24 H25 H26 H27 H28 H29 x .5913 .5322 .6825 .5099 .5533 .3829 .4345 .3080 .3776 .3207 .2327 .3199 .1301 .0480 -.0240 .3270 .5101 .3193 .4272 .2332 .1540 .3266 .2150 -.0494 .1419 -.0001 .0293 -.1084 -.0886 y .6333 .4505 .3659 .5173 .5566 .5989 .5295 .4175 .3256 .3906 .5144 .3770 .4733 .5805 .3749 .6792 .3151 .2439 .4062 .3397 .5548 .2862 .4071 .6195 .6415 .5480 .2969 .4045 .3623 1. .0000 dp/p(%) -2.8800 -2.7004 -.6749 .00 .00 .00 7.0548 10.3517 15.5275 90.00 90.00 90.00 z .0158 .3059 .2999 .3830 .2262 .0899 .1694 .1775 .1077 .0238 .0527 .2696 .1372 .1894 .1239 .1064 .1108 .1131 -.0121 -.0077 .0098 .2744 .3021 .1575 .2015 .2422 .1056 .0812 .1768 Atom BR9 S3 O4 O5 N6 C8 C7 C1 C12 C11 C10 C2 C13 C15 C14 H18 H23 H22 H21 H20 H19 H17 H16 H27 H28 H29 H25 H24 H26 x .5782 .5265 .6854 .4945 .5478 .3735 .4258 .2969 .3601 .2944 .2074 .3136 .1097 .0335 -.0472 .3232 .5127 .2847 .4164 .1853 .1144 .3347 .1941 -.0878 .1426 -.0082 .0042 -.1681 -.0884 y z .5911 .0019 .4806 .3065 .3950 .3073 .5572 .3817 .5811 .2223 .6092 .0816 .5481 .1659 .4342 .1796 .3342 .1103 .3931 .0256 .5226 .0538 .3983 .2730 .4891 .1404 .6060 .1892 .3876 .1353 .7065 .0925 .3278 .1102 .2447 .1209 .4117 -.0146 .3330 -.0022 .5658 .0067 .2952 .2784 .4375 .3080 .6449 .1556 .6790 .1933 .5771 .2533 .3041 .1010 .4275 .1019 .3597 .1998 r.m.s.d.(A)= TITL Gavezzotti compound 2 optimized experimental REFERENCE Matrix code (Det) 655565556 Origin shift .0000 .0000 TARGET 1. .0000 655545554 .5000 .5000 1. .0000 Dev,A .502 .319 .327 .434 .267 .181 .212 .195 .160 .192 .201 .234 .227 .287 .277 .360 .135 .276 .104 .360 .310 .127 .364 .384 .414 .356 .208 .587 .359 .309 144 New cell dimensions, A,deg: a 7.2640 b 10.6390 c 15.6330 alpha 90.00 beta 90.00 gamma 90.00 Atom BR1 S2 O3 O4 N5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 H16 H17 H18 H19 H20 H21 H22 H23 H24 H25 H26 H27 H28 H29 x .5913 .5322 .6825 .5099 .5533 .3829 .4345 .3080 .3776 .3207 .2327 .3199 .1301 .0480 -.0240 .3270 .5101 .3193 .4272 .2332 .1540 .3266 .2150 -.0494 .1419 -.0001 .0293 -.1084 -.0886 y .6333 .4505 .3659 .5173 .5566 .5989 .5295 .4175 .3256 .3906 .5144 .3770 .4733 .5805 .3749 .6792 .3151 .2439 .4062 .3397 .5548 .2862 .4071 .6195 .6415 .5480 .2969 .4045 .3623 dp/p(%) -3.9840 .5452 -2.5862 .00 .00 .00 6.9746 10.6970 15.2287 90.00 90.00 90.00 z .0158 .3059 .2999 .3830 .2262 .0899 .1694 .1775 .1077 .0238 .0527 .2696 .1372 .1894 .1239 .1064 .1108 .1131 -.0121 -.0077 .0098 .2744 .3021 .1575 .2015 .2422 .1056 .0812 .1768 Atom BR9 S3 O4 O5 N6 C8 C7 C1 C12 C11 C10 C2 C13 C14 C15 H18 H23 H22 H21 H20 H19 H17 H16 H24 H25 H26 H28 H27 H29 x .6117 .5512 .7084 .5274 .5724 .3948 .4490 .3180 .3913 .3317 .2390 .3307 .1324 .0461 -.0274 .3300 .5458 .3160 .4585 .2251 .1485 .3468 .2110 -.0732 .1535 -.0034 .0284 -.1458 -.0762 y z .6372 .0180 .4764 .3217 .3925 .3185 .5483 .3985 .5762 .2363 .6077 .0951 .5447 .1790 .4337 .1912 .3375 .1228 .3958 .0345 .5206 .0598 .4001 .2870 .4855 .1479 .5955 .1976 .3863 .1376 .6967 .1106 .3328 .1261 .2501 .1317 .4138 -.0041 .3369 .0039 .5610 .0099 .3002 .2935 .4412 .3215 .6331 .1609 .6672 .2062 .5644 .2613 .3066 .1025 .4260 .1015 .3573 .2018 r.m.s.d.(A)= Dev,A .155 .393 .444 .427 .294 .150 .243 .282 .283 .191 .136 .372 .211 .204 .245 .199 .395 .295 .267 .190 .077 .360 .472 .229 .295 .344 .114 .471 .399 .301 TITLE Hofmann V minimized REFERENCE Matrix code (Det) 655565556 Origin shift .0000 .0000 TARGET 1. .0000 655565556 .0000 .0000 New cell dimensions, A,deg: a 7.2640 b 10.6390 c 15.6330 alpha 90.00 beta 90.00 gamma 90.00 Atom BR1 S2 O3 O4 N5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 H16 H17 H18 H19 H20 H21 x .5913 .5322 .6825 .5099 .5533 .3829 .4345 .3080 .3776 .3207 .2327 .3199 .1301 .0480 -.0240 .3270 .5101 .3193 .4272 .2332 .1540 y .6333 .4505 .3659 .5173 .5566 .5989 .5295 .4175 .3256 .3906 .5144 .3770 .4733 .5805 .3749 .6792 .3151 .2439 .4062 .3397 .5548 z .0158 .3059 .2999 .3830 .2262 .0899 .1694 .1775 .1077 .0238 .0527 .2696 .1372 .1894 .1239 .1064 .1108 .1131 -.0121 -.0077 .0098 1. .0000 dp/p(%) -.8811 -1.3074 -.8521 .00 .00 .00 7.2000 10.4999 15.4998 90.00 90.00 90.00 Atom BR1 S2 O3 O4 N5 C6 C8 C9 C10 C13 C16 C18 C21 C22 C26 H7 H11 H12 H14 H15 H17 x .5966 .5370 .6886 .5144 .5582 .3863 .4384 .3107 .3810 .3236 .2348 .3227 .1313 .0484 -.0242 .3299 .5146 .3221 .4310 .2353 .1554 y .6412 .4504 .3648 .5166 .5595 .6049 .5331 .4195 .3277 .3952 .5200 .3767 .4768 .5844 .3773 .6860 .3170 .2448 .4117 .3442 .5618 z .0280 .3189 .3121 .3973 .2395 .1024 .1820 .1892 .1180 .0339 .0642 .2817 .1490 .2026 .1347 .1198 .1210 .1227 -.0022 .0017 .0212 Dev,A .211 .206 .196 .225 .212 .207 .201 .184 .163 .166 .189 .189 .188 .210 .170 .221 .163 .151 .167 .154 .193 145 H22 H23 H24 H25 H26 H27 H28 H29 .3266 .2150 -.0494 .1419 -.0001 .0293 -.1084 -.0886 .2862 .4071 .6195 .6415 .5480 .2969 .4045 .3623 .2744 .3021 .1575 .2015 .2422 .1056 .0812 .1768 H19 H20 H23 H24 H25 H27 H28 H29 .3295 .2169 -.0498 .1432 -.0001 .0296 -.1094 -.0894 .2846 .2857 .4065 .3147 .6245 .1708 .6460 .2153 .5504 .2556 .2987 .1156 .4081 .0919 .3636 .1880 r.m.s.d.(A)= .178 .197 .213 .221 .210 .156 .171 .174 .190 TITL Scheraga minimized experimental structure target 2 REFERENCE Matrix code (Det) 655565556 Origin shift .0000 .0000 TARGET 1. .0000 655565556 .0000 .0000 New cell dimensions, A,deg: a 7.2640 b 10.6390 c 15.6330 alpha 90.00 beta 90.00 gamma 90.00 Atom BR1 S2 O3 O4 N5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 H16 H17 H18 H19 H20 H21 H22 H23 H24 H25 H26 H27 H28 H29 x .5913 .5322 .6825 .5099 .5533 .3829 .4345 .3080 .3776 .3207 .2327 .3199 .1301 .0480 -.0240 .3270 .5101 .3193 .4272 .2332 .1540 .3266 .2150 -.0494 .1419 -.0001 .0293 -.1084 -.0886 y .6333 .4505 .3659 .5173 .5566 .5989 .5295 .4175 .3256 .3906 .5144 .3770 .4733 .5805 .3749 .6792 .3151 .2439 .4062 .3397 .5548 .2862 .4071 .6195 .6415 .5480 .2969 .4045 .3623 1. .0000 dp/p(%) -2.6569 -.6016 3.0640 .00 .00 .00 7.0710 10.5750 16.1120 90.00 90.00 90.00 z .0158 .3059 .2999 .3830 .2262 .0899 .1694 .1775 .1077 .0238 .0527 .2696 .1372 .1894 .1239 .1064 .1108 .1131 -.0121 -.0077 .0098 .2744 .3021 .1575 .2015 .2422 .1056 .0812 .1768 Atom BR1 S2 O3 O4 N5 C6 C8 C9 C10 C13 C16 C18 C21 C22 C26 H7 H11 H12 H14 H15 H17 H19 H20 H23 H24 H25 H27 H28 H29 x .6087 .5131 .6639 .4863 .5469 .3865 .4289 .2932 .3667 .3190 .2319 .2952 .1170 .0330 -.0444 .3314 .5019 .3026 .4323 .2298 .1569 .2974 .1860 -.0622 .1311 -.0227 .0083 -.1258 -.1161 y z .6312 .0152 .4692 .3006 .3808 .3003 .5422 .3728 .5697 .2206 .6060 .0840 .5408 .1641 .4314 .1730 .3328 .1095 .3933 .0252 .5215 .0477 .3970 .2636 .4882 .1288 .6012 .1745 .3914 .1160 .6889 .0965 .3198 .1154 .2523 .1161 .4043 -.0080 .3417 -.0054 .5606 .0034 .3060 .2712 .4316 .2922 .6400 .1405 .6614 .1861 .5732 .2257 .3108 .1017 .4198 .0721 .3838 .1664 r.m.s.d.(A)= Dev,A .127 .255 .207 .353 .171 .122 .152 .195 .113 .038 .109 .292 .227 .340 .261 .191 .107 .157 .077 .049 .120 .301 .368 .358 .332 .408 .219 .251 .344 .239 TITL Schmidt V 46 REFERENCE Matrix code (Det) 655565556 Origin shift .0000 .0000 TARGET 1. .0000 655565556 .0000 .0000 New cell dimensions, A,deg: a 7.2640 b 10.6390 c 15.6330 alpha 90.00 beta 90.00 gamma 90.00 Atom BR1 S2 O3 x .5913 .5322 .6825 y .6333 .4505 .3659 z .0158 .3059 .2999 1. .0000 dp/p(%) -6.2211 -5.4563 7.0063 .00 .00 .00 6.8121 10.0585 16.7283 90.00 90.00 90.00 Atom BR15 S9 O13 x .5343 .4576 .6212 y .6161 .4867 .4011 z .0086 .3052 .3201 Dev,A .454 .645 .653 146 O4 N5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 H16 H17 H18 H19 H20 H21 H22 H23 H24 H25 H26 H27 H28 H29 .5099 .5533 .3829 .4345 .3080 .3776 .3207 .2327 .3199 .1301 .0480 -.0240 .3270 .5101 .3193 .4272 .2332 .1540 .3266 .2150 -.0494 .1419 -.0001 .0293 -.1084 -.0886 .5173 .5566 .5989 .5295 .4175 .3256 .3906 .5144 .3770 .4733 .5805 .3749 .6792 .3151 .2439 .4062 .3397 .5548 .2862 .4071 .6195 .6415 .5480 .2969 .4045 .3623 .3830 .2262 .0899 .1694 .1775 .1077 .0238 .0527 .2696 .1372 .1894 .1239 .1064 .1108 .1131 -.0121 -.0077 .0098 .2744 .3021 .1575 .2015 .2422 .1056 .0812 .1768 O14 N10 C3 C2 C1 C6 C5 C4 C8 C7 C12 C11 H16 H21 H20 H18 H19 H17 H23 H22 H27 H29 H28 H24 H26 H25 .3891 .4851 .3153 .3738 .2398 .3118 .2482 .1513 .2577 .0467 -.0435 -.1140 .2570 .4632 .2466 .3671 .1479 .0605 .2823 .1284 -.1437 .0611 -.1172 -.0649 -.2310 -.1643 .5651 .3709 .5774 .2211 .5923 .0838 .5393 .1645 .4151 .1813 .3064 .1234 .3582 .0411 .4933 .0585 .3895 .2692 .4646 .1409 .5888 .1793 .3582 .1353 .6873 .0903 .2945 .1269 .2157 .1370 .3674 .0025 .2943 .0142 .5294 .0135 .2892 .2805 .4149 .2985 .6316 .1401 .6601 .1940 .5633 .2315 .2707 .1089 .3944 .1018 .3352 .1924 r.m.s.d.(A)= 1.003 .533 .490 .446 .485 .564 .672 .620 .457 .597 .670 .682 .564 .472 .704 .629 .840 .711 .329 .617 .732 .613 .857 .718 .931 .653 .649 TITL Williams V observed relaxed with W99 force field REFERENCE Matrix code (Det) 655565556 Origin shift .0000 .0000 TARGET 1. .0000 655565556 .0000 .0000 New cell dimensions, A,deg: a 7.2640 b 10.6390 c 15.6330 alpha 90.00 beta 90.00 gamma 90.00 Atom BR1 S2 O3 O4 N5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 H16 H17 H18 H19 H20 H21 H22 H23 H24 H25 H26 H27 H28 H29 x .5913 .5322 .6825 .5099 .5533 .3829 .4345 .3080 .3776 .3207 .2327 .3199 .1301 .0480 -.0240 .3270 .5101 .3193 .4272 .2332 .1540 .3266 .2150 -.0494 .1419 -.0001 .0293 -.1084 -.0886 y .6333 .4505 .3659 .5173 .5566 .5989 .5295 .4175 .3256 .3906 .5144 .3770 .4733 .5805 .3749 .6792 .3151 .2439 .4062 .3397 .5548 .2862 .4071 .6195 .6415 .5480 .2969 .4045 .3623 z .0158 .3059 .2999 .3830 .2262 .0899 .1694 .1775 .1077 .0238 .0527 .2696 .1372 .1894 .1239 .1064 .1108 .1131 -.0121 -.0077 .0098 .2744 .3021 .1575 .2015 .2422 .1056 .0812 .1768 1. .0000 7.0099 10.6873 15.4042 90.00 90.00 90.00 Atom BR S O1 O2 N C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 H1 H4A H4B H5A H5B H6 H7A H7B H9A H9B H9C H10A H10B H10C x .6185 .5478 .7064 .5185 .5705 .3998 .4513 .3233 .4020 .3454 .2488 .3321 .1394 .0483 -.0164 .3385 .5422 .3427 .4594 .2562 .1675 .3418 .2197 -.0553 .1459 -.0048 .0441 -.1052 -.0878 y z .6427 .0225 .4609 .3166 .3788 .3123 .5274 .3944 .5665 .2358 .6057 .0955 .5377 .1769 .4245 .1839 .3337 .1140 .3973 .0282 .5194 .0563 .3846 .2776 .4773 .1409 .5830 .1928 .3772 .1259 .6849 .1115 .3250 .1188 .2500 .1191 .4146 -.0078 .3442 -.0054 .5587 .0114 .2935 .2827 .4135 .3096 .6215 .1582 .6470 .2064 .5492 .2475 .2978 .1076 .4062 .0802 .3635 .1806 r.m.s.d.(A)= dp/p(%) -3.4981 .4540 -1.4636 .00 .00 .00 Dev,A .242 .229 .292 .216 .220 .166 .188 .165 .218 .202 .138 .172 .098 .059 .067 .129 .281 .202 .255 .175 .108 .186 .139 .049 .100 .090 .110 .033 .060 .173 147 TITL Williams Va observed molecular structure REFERENCE Matrix code (Det) 655565556 Origin shift .0000 .0000 TARGET 1. .0000 545554655 .5000 1.0000 New cell dimensions, A,deg: a 7.2640 b 10.6390 c 15.6330 alpha 90.00 beta 90.00 gamma 90.00 Atom BR1 S2 O3 O4 N5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 H16 H17 H18 H19 H20 H21 H22 H23 H24 H25 H26 H27 H28 H29 x .5913 .5322 .6825 .5099 .5533 .3829 .4345 .3080 .3776 .3207 .2327 .3199 .1301 .0480 -.0240 .3270 .5101 .3193 .4272 .2332 .1540 .3266 .2150 -.0494 .1419 -.0001 .0293 -.1084 -.0886 y .6333 .4505 .3659 .5173 .5566 .5989 .5295 .4175 .3256 .3906 .5144 .3770 .4733 .5805 .3749 .6792 .3151 .2439 .4062 .3397 .5548 .2862 .4071 .6195 .6415 .5480 .2969 .4045 .3623 1. .0000 dp/p(%) -3.5008 .4559 -1.4757 .00 .00 .00 7.0097 10.6875 15.4023 90.00 90.00 90.00 z .0158 .3059 .2999 .3830 .2262 .0899 .1694 .1775 .1077 .0238 .0527 .2696 .1372 .1894 .1239 .1064 .1108 .1131 -.0121 -.0077 .0098 .2744 .3021 .1575 .2015 .2422 .1056 .0812 .1768 Atom BR S O1 O2 N C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 H1 H4A H4B H5A H5B H6 H7A H7B H9A H9B H9C H10A H10B H10C x .6185 .5479 .7065 .5186 .5705 .3999 .4513 .3234 .4020 .3455 .2489 .3322 .1395 .0483 -.0163 .3386 .5422 .3428 .4595 .2562 .1676 .3418 .2197 -.0552 .1460 -.0048 .0442 -.1052 -.0878 y z .6427 .0225 .4609 .3166 .3788 .3124 .5274 .3945 .5665 .2358 .6057 .0955 .5377 .1769 .4245 .1839 .3337 .1140 .3973 .0281 .5194 .0562 .3846 .2776 .4773 .1409 .5831 .1928 .3772 .1259 .6849 .1115 .3250 .1188 .2500 .1191 .4146 -.0079 .3442 -.0054 .5587 .0113 .2935 .2828 .4135 .3097 .6215 .1582 .6471 .2064 .5492 .2475 .2978 .1075 .4062 .0802 .3635 .1806 r.m.s.d.(A)= Dev,A .242 .229 .293 .217 .220 .166 .188 .166 .218 .202 .139 .172 .099 .059 .068 .129 .281 .203 .256 .175 .108 .186 .140 .048 .101 .090 .111 .033 .060 .174 TITL Dzyabchenko VI (powder) REFERENCE Matrix code (Det) 655565556 Origin shift .0000 .0000 TARGET 1. .0000 655565556 .0000 .0000 New cell dimensions, A,deg: a 8.2510 b 8.9640 c 15.0870 alpha 90.00 beta 91.21 gamma 90.00 Atom S1 O2 O3 N4 N5 N6 C7 C8 C9 C10 C11 C12 C13 x .3065 .3553 .3571 .3651 .4200 .4991 .3407 .4149 .3232 .2441 .2508 .0989 .0199 y .1271 .0380 .0691 .2887 .5264 .7682 .3998 .6559 .6610 .5393 .4045 .1234 .0139 z .1571 .2313 .0714 .1764 .1396 .1249 .1170 .0945 .0209 -.0042 .0434 .1598 .1141 1. .0000 dp/p(%) -.1333 -.1896 -.2055 .00 .00 .00 8.2400 8.9470 15.0560 90.00 91.21 90.00 Atom S1 O2 O3 N4 N12 N18 C11 C13 C14 C15 C16 C5 C6 x .3181 .3756 .3637 .3805 .4212 .4764 .3435 .3949 .2895 .2103 .2372 .1055 .0146 y .1134 .0248 .0635 .2847 .5283 .7843 .3977 .6575 .6603 .5284 .3992 .1197 .0165 z .1597 .2339 .0717 .1725 .1355 .1115 .1158 .0884 .0190 -.0050 .0417 .1660 .1182 Dev,A .160 .208 .074 .145 .066 .308 .036 .187 .279 .295 .124 .112 .081 148 C14 C15 C16 C17 H18 H19 H20 H21 H22 H23 H24 H25 H26 H27 H28 -.1371 -.2216 -.1470 .0127 .4960 .3149 .1809 .1937 .0760 -.1929 -.3339 -.2062 .0665 .4975 .5563 .0087 .1066 .2142 .2249 .5240 .7483 .5430 .3210 -.0548 -.0663 .0993 .2815 .2999 .8519 .7587 .1195 .1666 .2119 .2096 .1830 -.0122 -.0560 .0236 .0803 .0892 .1677 .2451 .2410 .0970 .1729 C7 C8 C9 C10 H17 H26 H27 H28 H21 H22 H23 H24 H25 H20 H19 -.1531 -.2326 -.1395 .0277 .5307 .2692 .1262 .1749 .0748 -.2227 -.3635 -.1990 .0977 .4571 .4779 .0210 .1195 .1286 .1687 .2295 .2168 .2254 .2161 .5174 .1632 .7642 -.0160 .5264 -.0610 .2989 .0201 -.0680 .0798 -.0602 .0817 .1336 .1694 .3136 .2560 .3051 .2549 .8737 .0737 .8091 .1763 r.m.s.d.(A)= .172 .219 .167 .157 .422 .406 .479 .256 .119 .274 .394 .336 .332 .517 .791 .303 TITL Leusen VI PowderSolve REFERENCE Matrix code (Det) 655565556 Origin shift .0000 .0000 TARGET 1. .0000 556545455 -1. .0000 1.5000 .5000 New cell dimensions, A,deg: a 8.2510 b 8.9640 c 15.0870 alpha 90.00 beta 91.21 gamma 90.00 Atom S1 O2 O3 N4 N5 N6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 H18 H19 H20 H21 H22 H23 H24 H25 H26 H27 H28 x .3065 .3553 .3571 .3651 .4200 .4991 .3407 .4149 .3232 .2441 .2508 .0989 .0199 -.1371 -.2216 -.1470 .0127 .4960 .3149 .1809 .1937 .0760 -.1929 -.3339 -.2062 .0665 .4975 .5563 y .1271 .0380 .0691 .2887 .5264 .7682 .3998 .6559 .6610 .5393 .4045 .1234 .0139 .0087 .1066 .2142 .2249 .5240 .7483 .5430 .3210 -.0548 -.0663 .0993 .2815 .2999 .8519 .7587 Dev -.0090 -.0120 -.0190 .00 .01 .00 8.2420 8.9520 15.0680 90.00 91.22 90.00 z .1571 .2313 .0714 .1764 .1396 .1249 .1170 .0945 .0209 -.0042 .0434 .1598 .1141 .1195 .1666 .2119 .2096 .1830 -.0122 -.0560 .0236 .0803 .0892 .1677 .2451 .2410 .0970 .1729 Atom S7 O15 O16 N8 N14 N17 C9 C13 C12 C11 C10 C5 C4 C3 C2 C1 C6 H26 H25 H24 H23 H21 H20 H19 H18 H22 H27 H28 x .3076 .3548 .3623 .3636 .4242 .4915 .3470 .4095 .3131 .2337 .2480 .1084 .0099 -.1580 -.2258 -.1255 .0423 .5031 .2994 .1581 .1860 .0653 -.2362 -.3571 -.1783 .1226 .4883 .5571 y z .1233 .1569 .0400 .2371 .0644 .0692 .2777 .1693 .5346 .1414 .7847 .1265 .4004 .1203 .6635 .0938 .6647 .0169 .5313 -.0077 .4022 .0419 .1126 .1547 .0077 .1112 .0142 .1217 .1252 .1746 .2292 .2182 .2231 .2085 .5263 .1963 .7671 -.0216 .5306 -.0682 .2992 .0236 -.0787 .0707 -.0677 .0883 .1304 .1823 .3154 .2600 .3025 .2425 .8831 .0929 .7796 .1844 r.m.s.d.(A)= Dev,A .035 .089 .069 .146 .086 .163 .071 .082 .107 .123 .037 .147 .108 .183 .209 .240 .246 .208 .253 .283 .206 .272 .358 .406 .440 .463 .296 .255 .231 TITLE Dzyabchenko VI ab initio Energy=-3.443532E+01 Density=1.40403 REFERENCE Matrix code (Det) 655565556 Origin shift .0000 .0000 New cell dimensions, A,deg: a 8.2510 b 8.9640 c 15.0870 alpha 90.00 beta 91.21 TARGET 1. .0000 655565556 .0000 .0000 8.3350 9.7180 14.8230 90.00 100.79 1. .0000 dp/p(%) 1.0180 8.4114 -1.7499 .00 10.50 149 gamma Atom S1 O2 O3 N4 N5 N6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 H18 H19 H20 H21 H22 H23 H24 H25 H26 H27 H28 90.00 x .3065 .3553 .3571 .3651 .4200 .4991 .3407 .4149 .3232 .2441 .2508 .0989 .0199 -.1371 -.2216 -.1470 .0127 .4960 .3149 .1809 .1937 .0760 -.1929 -.3339 -.2062 .0665 .4975 .5563 y .1271 .0380 .0691 .2887 .5264 .7682 .3998 .6559 .6610 .5393 .4045 .1234 .0139 .0087 .1066 .2142 .2249 .5240 .7483 .5430 .3210 -.0548 -.0663 .0993 .2815 .2999 .8519 .7587 90.00 z .1571 .2313 .0714 .1764 .1396 .1249 .1170 .0945 .0209 -.0042 .0434 .1598 .1141 .1195 .1666 .2119 .2096 .1830 -.0122 -.0560 .0236 .0803 .0892 .1677 .2451 .2410 .0970 .1729 Atom S1 O2 O3 N4 N12 N18 C11 C13 C14 C15 C16 C5 C6 C7 C8 C9 C10 H17 H26 H27 H28 H21 H22 H23 H24 H25 H20 H19 x .3347 .4548 .3113 .3794 .4203 .4678 .3644 .4095 .3425 .2874 .2989 .1437 .0648 -.0874 -.1631 -.0813 .0707 .4696 .3332 .2345 .2567 .1224 -.1478 -.2825 -.1376 .1325 .4599 .5185 .00 y z .1807 .1132 .0860 .1604 .1825 .0134 .3359 .1525 .5670 .1456 .8069 .1551 .4502 .0993 .6942 .1051 .7092 .0157 .5922 -.0349 .4650 .0054 .1407 .1436 .0217 .1091 -.0102 .1276 .0763 .1813 .1938 .2161 .2262 .1982 .5598 .2123 .8109 -.0141 .6003 -.1070 .3767 -.0367 -.0467 .0674 -.1035 .1000 .0527 .1955 .2622 .2585 .3183 .2268 .8998 .1255 .7969 .2215 r.m.s.d.(A)= Dev,A .877 1.479 1.396 .588 .390 .653 .584 .396 .487 .786 .922 .491 .394 .453 .585 .574 .527 .609 .606 1.067 1.207 .455 .524 .712 .611 .631 .712 .895 .742 TITL Erk 3A Polymorph Predictor, #24 in P21/c, #54 of 5 space groups REFERENCE Matrix code (Det) 655565556 Origin shift .0000 .0000 TARGET 1. .0000 655545556 -1. -.5000 .5000 .0000 New cell dimensions, A,deg: a 8.2510 b 8.9640 c 15.0870 alpha 90.00 beta 91.21 gamma 90.00 Atom S1 O2 O3 N4 N5 N6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 H18 H19 H20 H21 H22 H23 H24 H25 H26 H27 x .3065 .3553 .3571 .3651 .4200 .4991 .3407 .4149 .3232 .2441 .2508 .0989 .0199 -.1371 -.2216 -.1470 .0127 .4960 .3149 .1809 .1937 .0760 -.1929 -.3339 -.2062 .0665 .4975 y .1271 .0380 .0691 .2887 .5264 .7682 .3998 .6559 .6610 .5393 .4045 .1234 .0139 .0087 .1066 .2142 .2249 .5240 .7483 .5430 .3210 -.0548 -.0663 .0993 .2815 .2999 .8519 z .1571 .2313 .0714 .1764 .1396 .1249 .1170 .0945 .0209 -.0042 .0434 .1598 .1141 .1195 .1666 .2119 .2096 .1830 -.0122 -.0560 .0236 .0803 .0892 .1677 .2451 .2410 .0970 Dev .3021 .2471 -.0264 .00 -3.13 .00 8.5531 9.2111 15.0606 90.00 88.08 90.00 Atom S1 O3 O2 N4 N5 N22 C12 C16 C15 C14 C13 C6 C11 C10 C9 C8 C7 H25 H23 H24 H21 H20 H19 H28 H18 H17 H27 x .2955 .3446 .3707 .3666 .4234 .4854 .3507 .4138 .3294 .2539 .2645 .0927 .0195 -.1444 -.2353 -.1633 .0005 .4856 .3246 .1931 .2110 .0857 -.1982 -.3543 -.2303 .0524 .4708 y .1306 .0502 .0550 .2891 .5298 .7686 .4102 .6603 .6782 .5566 .4215 .1131 -.0080 -.0224 .0840 .2046 .2190 .5229 .7775 .5659 .3328 -.0858 -.1097 .0739 .2817 .3067 .8670 z .1442 .2189 .0719 .1617 .1431 .1443 .1125 .1040 .0264 -.0092 .0341 .1515 .1134 .1190 .1632 .2019 .1960 .1949 -.0032 -.0662 .0085 .0817 .0909 .1669 .2341 .2242 .1235 Dev,A .219 .235 .172 .221 .068 .314 .143 .149 .185 .193 .238 .165 .200 .290 .241 .222 .236 .199 .309 .278 .289 .294 .398 .288 .263 .287 .477 150 H28 .5563 .7587 .1729 H26 .5450 .7497 .1965 r.m.s.d.(A)= .377 .262 TITL Erk 3A Polymorph Predictor, #24 in P21/c, #54 of 5 space groups REFERENCE Matrix code (Det) 655565556 Origin shift .0000 .0000 TARGET 1. .0000 655545556 -1. -.5000 .5000 .0000 New cell dimensions, A,deg: a 8.2510 b 8.9640 c 15.0870 alpha 90.00 beta 91.21 gamma 90.00 Atom S1 O2 O3 N4 N5 N6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 x .3065 .3553 .3571 .3651 .4200 .4991 .3407 .4149 .3232 .2441 .2508 .0989 .0199 -.1371 -.2216 -.1470 .0127 y .1271 .0380 .0691 .2887 .5264 .7682 .3998 .6559 .6610 .5393 .4045 .1234 .0139 .0087 .1066 .2142 .2249 Dev .3021 .2471 -.0264 .00 -3.13 .00 8.5531 9.2111 15.0606 90.00 88.08 90.00 z .1571 .2313 .0714 .1764 .1396 .1249 .1170 .0945 .0209 -.0042 .0434 .1598 .1141 .1195 .1666 .2119 .2096 Atom S1 O3 O2 N4 N5 N22 C12 C16 C15 C14 C13 C6 C11 C10 C9 C8 C7 x .2955 .3446 .3707 .3666 .4234 .4854 .3507 .4138 .3294 .2539 .2645 .0927 .0195 -.1444 -.2353 -.1633 .0005 y z .1306 .1442 .0502 .2189 .0550 .0719 .2891 .1617 .5298 .1431 .7686 .1443 .4102 .1125 .6603 .1040 .6782 .0264 .5566 -.0092 .4215 .0341 .1131 .1515 -.0080 .1134 -.0224 .1190 .0840 .1632 .2046 .2019 .2190 .1960 r.m.s.d.(A)= Dev,A .219 .235 .172 .221 .068 .314 .143 .149 .185 .193 .238 .165 .200 .290 .241 .222 .236 .213 TITL Hofmann VI minimized REFERENCE Matrix code (Det) 655565556 Origin shift .0000 .0000 TARGET 1. .0000 655565556 -.5000 .0000 New cell dimensions, A,deg: a 8.2510 b 8.9640 c 15.0870 alpha 90.00 beta 91.21 gamma 90.00 Atom S1 O2 O3 N4 N5 N6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 H18 H19 H20 H21 H22 H23 x .3065 .3553 .3571 .3651 .4200 .4991 .3407 .4149 .3232 .2441 .2508 .0989 .0199 -.1371 -.2216 -.1470 .0127 .4960 .3149 .1809 .1937 .0760 -.1929 y .1271 .0380 .0691 .2887 .5264 .7682 .3998 .6559 .6610 .5393 .4045 .1234 .0139 .0087 .1066 .2142 .2249 .5240 .7483 .5430 .3210 -.0548 -.0663 z .1571 .2313 .0714 .1764 .1396 .1249 .1170 .0945 .0209 -.0042 .0434 .1598 .1141 .1195 .1666 .2119 .2096 .1830 -.0122 -.0560 .0236 .0803 .0892 1. -.5000 dp/p(%) .6012 -1.8303 -.5546 .00 -.83 .00 8.3006 8.7999 15.0033 90.00 90.46 90.00 Atom S28 O26 O27 N21 N22 N23 C2 C3 C4 C6 C8 C10 C11 C13 C15 C17 C19 H1 H5 H7 H9 H12 H14 x .3002 .3486 .3507 .3584 .4131 .4917 .3343 .4081 .3171 .2385 .2451 .0939 .0155 -.1406 -.2247 -.1506 .0081 .4885 .3089 .1758 .1884 .0713 -.1960 y .1106 .0191 .0526 .2750 .5176 .7641 .3889 .6500 .6561 .5324 .3945 .1068 -.0042 -.0096 .0896 .1987 .2097 .5147 .7454 .5367 .3097 -.0738 -.0856 z .1559 .2298 .0691 .1755 .1391 .1248 .1164 .0943 .0209 -.0043 .0430 .1599 .1141 .1205 .1688 .2143 .2110 .1822 -.0120 -.0559 .0231 .0794 .0901 Dev,A .156 .179 .160 .134 .097 .071 .111 .077 .067 .077 .101 .153 .165 .165 .157 .145 .142 .104 .056 .070 .110 .173 .174 151 H24 H25 H26 H27 H28 -.3339 -.2062 .0665 .4975 .5563 .0993 .2815 .2999 .8519 .7587 .1677 .2451 .2410 .0970 .1729 H16 H18 H20 H24 H25 -.3363 -.2095 .0615 .4902 .5485 .0822 .1707 .2669 .2484 .2857 .2425 .8497 .0971 .7539 .1726 r.m.s.d.(A)= .160 .142 .135 .064 .078 .128 TITL Mooy VI MinimizedExperimental REFERENCE Matrix code (Det) 655565556 Origin shift .0000 .0000 TARGET 1. .0000 655565556 -.5000 .0000 New cell dimensions, A,deg: a 8.2510 b 8.9640 c 15.0870 alpha 90.00 beta 91.21 gamma 90.00 Atom S1 O2 O3 N4 N5 N6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 H18 H19 H20 H21 H22 H23 H24 H25 H26 H27 H28 x .3065 .3553 .3571 .3651 .4200 .4991 .3407 .4149 .3232 .2441 .2508 .0989 .0199 -.1371 -.2216 -.1470 .0127 .4960 .3149 .1809 .1937 .0760 -.1929 -.3339 -.2062 .0665 .4975 .5563 y .1271 .0380 .0691 .2887 .5264 .7682 .3998 .6559 .6610 .5393 .4045 .1234 .0139 .0087 .1066 .2142 .2249 .5240 .7483 .5430 .3210 -.0548 -.0663 .0993 .2815 .2999 .8519 .7587 Atom S28 O26 O27 N21 N22 N23 C2 C3 C4 C6 C8 C10 C11 C13 C15 C17 C19 H1 H5 H7 H9 H12 H14 H16 H18 H20 H24 H25 x .2788 .3293 .3765 .3461 .4128 .4857 .3400 .4113 .3305 .2542 .2610 .0804 .0216 -.1382 -.2392 -.1810 -.0213 .4702 .3282 .1951 .2094 .0947 -.1812 -.3553 -.2549 .0202 .4828 .5412 TITL Scheraga minimized experimental structure REFERENCE x .3065 .3553 .3571 .3651 .4200 .4991 y .1271 .0380 .0691 .2887 .5264 .7682 z .1571 .2313 .0714 .1764 .1396 .1249 y z .1130 .1602 .0259 .2465 .0486 .0709 .2823 .1771 .5220 .1510 .7668 .1351 .4025 .1245 .6503 .1054 .6631 .0268 .5407 -.0035 .4104 .0454 .0958 .1558 -.0317 .1193 -.0471 .1146 .0652 .1456 .1915 .1834 .2070 .1885 .5148 .2053 .7594 -.0079 .5464 -.0611 .3208 .0245 -.1139 .0958 -.1398 .0881 .0549 .1406 .2727 .2069 .2999 .2156 .8578 .1010 .7625 .1904 r.m.s.d.(A)= Dev,A .269 .327 .248 .170 .182 .186 .113 .171 .110 .088 .107 .302 .421 .512 .513 .558 .462 .397 .165 .142 .134 .607 .675 .601 .716 .553 .146 .286 .379 TARGET3 TARGET 1. .0000 655565556 -.5000 .0000 New cell dimensions, A,deg: a 8.2510 b 8.9640 c 15.0870 alpha 90.00 beta 91.21 gamma 90.00 Atom S1 O2 O3 N4 N5 N6 Dev .4020 .2330 -.6330 .00 -6.90 .00 8.6530 9.1970 14.4540 90.00 84.31 90.00 z .1571 .2313 .0714 .1764 .1396 .1249 .1170 .0945 .0209 -.0042 .0434 .1598 .1141 .1195 .1666 .2119 .2096 .1830 -.0122 -.0560 .0236 .0803 .0892 .1677 .2451 .2410 .0970 .1729 Matrix code (Det) 655565556 Origin shift .0000 .0000 1. -.5000 1. -.5000 dp/p(%) 11.1380 16.3320 ******* .00 1.11 .00 9.1700 10.4280 13.0010 90.00 92.22 90.00 Atom S11 O11 O12 N12 N13 N14 x .2054 .2219 .2593 .2758 .3643 .4705 y .0467 -.0305 -.0125 .1789 .3733 .5697 z .1941 .2843 .1009 .2200 .1806 .1686 Dev,A 1.296 1.548 1.243 1.464 1.670 2.038 152 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 H18 H19 H20 H21 H22 H23 H24 H25 H26 H27 H28 .3407 .4149 .3232 .2441 .2508 .0989 .0199 -.1371 -.2216 -.1470 .0127 .4960 .3149 .1809 .1937 .0760 -.1929 -.3339 -.2062 .0665 .4975 .5563 .3998 .6559 .6610 .5393 .4045 .1234 .0139 .0087 .1066 .2142 .2249 .5240 .7483 .5430 .3210 -.0548 -.0663 .0993 .2815 .2999 .8519 .7587 .1170 .0945 .0209 -.0042 .0434 .1598 .1141 .1195 .1666 .2119 .2096 .1830 -.0122 -.0560 .0236 .0803 .0892 .1677 .2451 .2410 .0970 .1729 C17 C18 C19 C20 C21 C14 C15 C16 C11 C12 C13 H17 H19 H20 H21 H13 H12 H11 H16 H15 H18B H18A .2811 .3864 .3203 .2384 .2165 .0203 -.0558 -.1969 -.2677 -.1957 -.0522 .4228 .3315 .1931 .1583 -.0088 -.2506 -.3686 -.2456 -.0003 .4861 .5105 .2730 .1487 .4817 .1273 .4923 .0347 .3960 -.0001 .2830 .0563 .0663 .1786 -.0206 .1202 -.0077 .1124 .0872 .1579 .1730 .2155 .1646 .2271 .3652 .2371 .5658 -.0048 .4034 -.0651 .2172 .0293 -.0869 .0871 -.0670 .0733 .0933 .1492 .2384 .2476 .2242 .2672 .6397 .1357 .5579 .2288 r.m.s.d.(A)= 1.412 1.770 1.647 1.392 1.230 .925 .747 .551 .457 .586 .854 1.839 1.778 1.364 1.056 .810 .544 .397 .543 1.013 2.131 2.141 1.337 TITL Schmidt VI minimized experimental REFERENCE Matrix code (Det) 655565556 Origin shift .0000 .0000 TARGET 1. .0000 655565556 .0000 .0000 New cell dimensions, A,deg: a 8.2510 b 8.9640 c 15.0870 alpha 90.00 beta 91.21 gamma 90.00 Atom S1 O2 O3 N4 N5 N6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C17 C16 H18 H19 H20 H21 H22 H23 H24 H25 H26 H27 H28 TITL x .3065 .3553 .3571 .3651 .4200 .4991 .3407 .4149 .3232 .2441 .2508 .0989 .0199 -.1371 -.2216 .0127 -.1470 .4960 .3149 .1809 .1937 .0760 -.1929 -.3339 -.2062 .0665 .4975 .5563 y .1271 .0380 .0691 .2887 .5264 .7682 .3998 .6559 .6610 .5393 .4045 .1234 .0139 .0087 .1066 .2249 .2142 .5240 .7483 .5430 .3210 -.0548 -.0663 .0993 .2815 .2999 .8519 .7587 1. .0000 8.2576 8.9015 14.8969 90.00 95.03 90.00 z .1571 .2313 .0714 .1764 .1396 .1249 .1170 .0945 .0209 -.0042 .0434 .1598 .1141 .1195 .1666 .2096 .2119 .1830 -.0122 -.0560 .0236 .0803 .0892 .1677 .2451 .2410 .0970 .1729 Atom S1 O2 O1 N1 N2 N3 C7 C11 C10 C9 C8 C1 C6 C5 C4 C2 C3 H72 H10 H9 H8 H6 H5 H4 H3 H2 H74 H73 x .2903 .3801 .2857 .3680 .4042 .4719 .3219 .3806 .2722 .1823 .2051 .0882 -.0407 -.1975 -.2296 .0587 -.0989 .4875 .2526 .1008 .1376 -.0178 -.2907 -.3481 -.1238 .1575 .4624 .5508 y z .0794 .1538 -.0023 .2268 .0133 .0653 .2442 .1606 .4861 .1168 .7276 .0872 .3546 .1012 .6092 .0620 .6054 -.0108 .4746 -.0281 .3519 .0269 .0996 .1808 .0373 .1287 .0625 .1501 .1484 .2237 .1841 .2554 .2085 .2766 .4924 .1705 .6899 -.0587 .4622 -.0849 .2556 .0103 -.0298 .0741 .0158 .1076 .1666 .2397 .2725 .3322 .2354 .2912 .8232 .0506 .7219 .1429 r.m.s.d.(A)= dp/p(%) .0800 -.6972 -1.2600 .00 4.19 .00 Dev,A .448 .422 .773 .464 .509 .698 .489 .690 .793 .839 .644 .395 .595 .846 .939 .848 1.029 .344 .992 1.056 .765 .807 1.136 1.246 1.441 1.183 .782 .557 .831 Van Eijck VI Prediction closest to the experimental structure, rank 340 REFERENCE Matrix code (Det) 655565556 Origin shift .0000 .0000 TARGET 1. .0000 655545556 -1. -.5000 1.0000 .0000 153 New cell dimensions, A,deg: a 8.2510 b 8.9640 c 15.0870 alpha 90.00 beta 91.21 gamma 90.00 Atom S1 O2 O3 N4 N5 N6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 H18 H19 H20 H21 H22 H23 H24 H25 H26 H27 H28 x .3065 .3553 .3571 .3651 .4200 .4991 .3407 .4149 .3232 .2441 .2508 .0989 .0199 -.1371 -.2216 -.1470 .0127 .4960 .3149 .1809 .1937 .0760 -.1929 -.3339 -.2062 .0665 .4975 .5563 y .1271 .0380 .0691 .2887 .5264 .7682 .3998 .6559 .6610 .5393 .4045 .1234 .0139 .0087 .1066 .2142 .2249 .5240 .7483 .5430 .3210 -.0548 -.0663 .0993 .2815 .2999 .8519 .7587 Dev .1572 .2149 -.8443 .00 .32 .00 8.4082 9.1789 14.2427 90.00 91.53 90.00 z .1571 .2313 .0714 .1764 .1396 .1249 .1170 .0945 .0209 -.0042 .0434 .1598 .1141 .1195 .1666 .2119 .2096 .1830 -.0122 -.0560 .0236 .0803 .0892 .1677 .2451 .2410 .0970 .1729 Atom S12 O14 O13 N15 N27 N24 C16 C23 C21 C19 C17 C11 C7 C3 C1 C5 C9 H28 H22 H20 H18 H8 H4 H2 H6 H10 H26 H25 x .3119 .3685 .3428 .3735 .4108 .4610 .3388 .3841 .2798 .1985 .2266 .1037 .0044 -.1608 -.2261 -.1274 .0376 .4897 .2568 .1156 .1653 .0566 -.2383 -.3534 -.1793 .1151 .4394 .5336 y z .0846 .1572 .0054 .2381 .0111 .0706 .2511 .1611 .4946 .1285 .7415 .1102 .3627 .1086 .6224 .0805 .6224 .0074 .4889 -.0206 .3646 .0286 .0944 .1688 .0015 .1160 .0086 .1250 .1091 .1866 .2016 .2398 .1938 .2311 .4949 .1837 .7216 -.0314 .4893 -.0799 .2661 .0077 -.0760 .0688 -.0629 .0846 .1152 .1934 .2787 .2873 .2646 .2719 .8390 .0787 .7388 .1672 r.m.s.d.(A)= Dev,A .388 .330 .540 .415 .339 .450 .359 .444 .537 .638 .465 .296 .174 .215 .298 .451 .468 .270 .605 .804 .596 .300 .384 .439 .654 .681 .560 .273 .469 TITL Williams VI observed relaxed with W99 force field REFERENCE Matrix code (Det) 655565556 Origin shift .0000 .0000 TARGET 1. .0000 655565556 -.5000 .0000 New cell dimensions, A,deg: a 8.2510 b 8.9640 c 15.0870 alpha 90.00 beta 91.21 gamma 90.00 Atom S1 O2 O3 N4 N5 N6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 H18 H19 H20 H21 x .3065 .3553 .3571 .3651 .4200 .4991 .3407 .4149 .3232 .2441 .2508 .0989 .0199 -.1371 -.2216 -.1470 .0127 .4960 .3149 .1809 .1937 y .1271 .0380 .0691 .2887 .5264 .7682 .3998 .6559 .6610 .5393 .4045 .1234 .0139 .0087 .1066 .2142 .2249 .5240 .7483 .5430 .3210 z .1571 .2313 .0714 .1764 .1396 .1249 .1170 .0945 .0209 -.0042 .0434 .1598 .1141 .1195 .1666 .2119 .2096 .1830 -.0122 -.0560 .0236 1. -.5000 dp/p(%) 1.2095 .8590 -2.7573 .00 -1.49 .00 8.3508 9.0410 14.6710 90.00 89.85 90.00 Atom S11 O11 O12 N12 N13 N14 C17 C18 C19 C20 C21 C14 C15 C16 C11 C12 C13 H17 H19 H20 H21 x .3005 .3448 .3584 .3534 .4054 .4796 .3316 .4012 .3163 .2427 .2485 .0953 .0232 -.1321 -.2214 -.1535 .0041 .4774 .3084 .1812 .1926 y .1240 .0397 .0640 .2861 .5211 .7616 .3932 .6475 .6478 .5247 .3932 .1166 .0047 -.0031 .0943 .2041 .2176 .5220 .7373 .5250 .3040 z .1603 .2384 .0737 .1783 .1373 .1193 .1152 .0889 .0123 -.0125 .0386 .1609 .1148 .1188 .1647 .2104 .2096 .1829 -.0251 -.0693 .0179 Dev,A .075 .139 .059 .104 .134 .191 .099 .159 .184 .181 .126 .070 .088 .115 .115 .108 .097 .156 .222 .255 .175 154 H22 H23 H24 H25 H26 H27 H28 .0760 -.1929 -.3339 -.2062 .0665 .4975 .5563 -.0548 -.0663 .0993 .2815 .2999 .8519 .7587 .0803 .0892 .1677 .2451 .2410 .0970 .1729 H13 H12 H11 H16 H15 H18B H18A .0860 -.1860 -.3382 -.2195 .0558 .4783 .5349 -.0674 .0800 -.0839 .0865 .0845 .1647 .2747 .2445 .2984 .2429 .8471 .0879 .7549 .1717 r.m.s.d.(A)= .141 .173 .145 .126 .094 .212 .181 .148