Academia.eduAcademia.edu
LIST OF PUBLICA TIONS Articles marked with asterisk (*), will be included in the thesis Cocrystallized Dinuclear-Mononuclear Cu 3 Na and Double-Decker-Triple-Decker 1*JIHGFEDCBA Cu'^K^ Complexes Derived from AUV-Ethylenebis(3-ethoxysalicylaldimine) Hazra, S.; Koner, R.; Nayak, M .; Sparkes, H. A.; Howard, J. A. K.; M ohanta, S. Cryst. Growth Des. 2009, 9, 3603 - 3608. 2* Syntheses and Crystal Structures of CunBiln, CullBaIICu", [CunPbn] 2 , and Cocrystallized (UVI02)2.4Cun Complexes: Structural Diversity of the Coordination Compounds Derived from 7V,./V'-Ethylenebis(3-Ethoxysalicylaldiimine) Hazra, S.; Sasmal, S.; Nayak, M .; Sparkes, H. A.; Howard, J. A. K.; M ohanta, S. CrystEngComm 2010, 12, 470 - 477. 3* Role of W ater and Solvent for the Formation of Three M ononuclear Copper(II) Crystals: a New Type of Hydrate Isomerism in Coordination Chemistry Hazra, S.; Koner, R.; Nayak, M .; Sparkes, H. A.; Howard, J. A. K.; Dutta, S.; M ohanta, S. Eur. J. Inorg. Chem. 2009, 4887 - 4894. 4* Syntheses, Structures, and M agnetic Properties of Heterobridged Dinuclear and Cubane Type Tetranuclear Complexes of Nickel(II) Derived from a Schiff Base Ligand Hazra, S.; Koner, R.: Lemoine, P.; Carolina Sanudo, E.; M ohanta, S. Eur. J. Inorg. Chem. 2009, 3458 - 3466. 5* M agnetic and Electrochemical Properties of a Heterobridged l1-Phenoxido-1,1Azide Dinickel(II) Compound: A Unique Example Demonstrating the Bridge Distance Dependency of Exchange Integral Koner, R.; Hazra, S.: Fleck, M .; Jana, A.; Lucas, C. R.; M ohanta, S. Eur. J. Inorg. Chem., 2009, 4982 - 4988. 6* Syntheses, Structures, Absorption, and Emission Properties of a Tetraiminodiphenol M acrocyclic Ligand and Its Dinuclear Zn(II) and Pb(II) Complexes Hazra, S.; M ajumder, S.; Fleck, M .; Koner, R.; M ohanta, S. Polyhedron 2009, 28. 2871 - 2878. 7* Synthesis, M olecular and Supramolecular Structures, Electrochemistry, and M agnetic Properties of Two M acrocyclic Supramolecular Assembly Dicopper(II) Complexes: M icroporous Hazra, S.; M ajumder, S.; Fleck, M .; Aliaga-Alcalde, N.; M ohanta, S. Polyhedron 2009, 28. 3707 - 3714. 8* Synthesis, M olecular and Supramolecular Structure, Spectroscopy, Electrochemistry of a Dialkoxo-bridged Diuranyl(VI) Compound Hazra, S.; M ajumder, S.; Fleck, M .; M ohanta, S. Polyhedron 2008, 27. 1408 - 1414. and 9NMLKJIHGFEDCBA * Syntheses, Structures, and Electrochemistry of a Dinuclear Compound and a M ononuclear-M ononuclear Cocrystalline Compound of Uranyl(Vl) Fleck, M.; Hazra, S.; Majumder, S.; Mohanta, S. Cryst. Res. Technol. 2008, 43, 1220 - 1229. 10 Self-assembled [2x1+ 1x2] Fleterotetranuclear Cu'^Mn" / Cu'^Co" and [2x2+1 x3] Heptanuclear Cu U7 Compounds Derived from A(./V-o-Phenylenebis(3- ethoxysalicylaldimine): Structures and Magnetic Properties Nayak, M.; Hazra, S.; Lemoine, P.; Koner, R.; Lucas, C. R.; Mohanta, S. Polyhedron 2008. 27. 1201 - 1213. 11 Syntheses, Structures, and Electrochemistry of Manganese(III) Complexes Derived from AGV'-o-Phenylenebis(3-ethoxysalicylaldimine): Efficient Catalyst for Styrene Epoxidation M ajumder, S.; Hazra, S.; Dutta, S.; Biswas, P.; Mohanta, S. Polyhedron 2009, 28. 2473 - 2479. 12 Designed Synthesis, Structure and Three-dimensional Topology of a Supramolecular Dimer and Inorganic-organic Cocrystal Sasmal, S.; Hazra, S.; Sarkar, S.; Mohanta, S. J. Coord. Chem. 2010, 1-12. 13 Tetrametallic [2x 1 + 1x2], octametallic double-decker-triple-decker [5x 1+3x1], hexametallic quadruple-decker and dimetallic-based one-dimensional complexes of copper(II) and s block metal ions derived from AfvM-ethylenebis(3ethoxysalicylaldimine) Sasmal, S.; Majumder, S.; Hazra, S.; Sparkes, H. A.; Howard, J. A. K.; Nayak, M.; Mohanta, S. CrystEngComm 2010 (in press). 14 Syntheses and crystal structures of dinuclear, trinuclear [2xl+lxi] and tetranuclear [2x1+1 x2] copper(II)-d10 complexes (d10 => Zn", Cd", Hg11 and Ag1) derived from ACV'-ethylenebis(3-ethoxysalicylaldimine) Nayak, M.; Sarkar, S.; Hazra, S.; Sparkes, H. A.; Howard, J. A. K.; Mohanta, S. CrystEngComm 2010 (in press). 15 16 A Unique Example of Three Component Cocrystal of Metal Complexes Nayak, M.; Jana, A.; Fleck, M.; Hazra, S.; Mohanta, S. CrystEngComm 2010, 12, 1416- 1421. Syntheses, Structures and Magnetic Properties of Trinuclear CuIIMIICu11 (M = Cu, Ni, Co and Fe) and Tetranuclear [2x 1+1x2] CuI,M nI1-2Cu11 Complexes Derived from a Compartmental Ligand: The Schiff Base 3-Methoxysalicylaldehyde Diamine Can also Stabilize a Cocrystal Biswas, A.; Ghosh, M.; Lemoine, P.; Sarkar, S.; Hazra, S.; Mohanta, S. Eur. J. Inorg. Chem. 2010, 3125-3134. 17 Role of Coordinated W ater and Hydrogen-Bonding Interaction in Stabilizing M onophenoxo-Bridged Triangular Cu'W Cu" Compounds (M = Cu, Co, Ni or Fe) Derived from 7Vr/V'-Ethylenebis(3-Methoxysalicylaldimine): Syntheses, Structures, and M agnetic Properties Majumder, S.; Koner, R.; Lemoine, P.; Nayak, M.; Ghosh, M.; Hazra, S.; Lucas, C. R.; Mohanta, S. Eur. J. Inorg. Chem. 2009, 3447 - 3457. Supporting Informations CCDC Numbers of 18 crystal structures included in this thesis. Reprints of nine published articles included in this thesis. 1. CCDC Numbers of 18 Crystal StructuresONMLKJIHGFEDCBA A d d itio n al c ry sta llo g ra p h ic in fo rm a tio n s a re a v a ila b le fro m th e C a m b rid g e C ry sta llo g ra p h ic D a ta C e n te r, 1 2 U n io n R o a d , C a m b rid g e C B 2 1 E Z , U . K . (In te rn e t: w w w .e e d c.a c .u k /d ata _ re q u e st/c if ; Fax: (+ 4 4 ) 1 2 2 3 -3 3 6 -0 3 3 ; E -m a il: d e p o sit@ c c d c .ca m .a c .u k) T h e C C D C n u m b e r o f th e stru c tu re s a lre a d y p u b lish e d is m e n tio n e d in th e fo llo w in g ta b le . CCDC N um ber D isc u sse d in 724889 C h a p te r 2 [C u "L '] (3 ) 724890 C h a p te r 2 [C u IIL 1B iIII(N 0 3)3] (4 ) 735468 C h a p te r 3 [ ( C u V )2B a n (N O 3)2]-0 .2 H 2O (5 ) 735469 C h a p te r 3 [C u 1,L 1P b n (p -N 0 3)(N 0 3)]2 (6 ) 735470 C h a p te r 3 [ ( C u ^ N a ^ O ),} { C u V } 2](N 0 3) (7 ) 748616 C h a p te r 3 [(U V I0 2)2(p -H 20 )2(N 0 3)4] • 4 [C u !IL 1 e (H 20 )] (8 ) 735471 C h a p te r 3 [ { (C u 'L ^ K 'X N O s)]- [ { (C u 11L 1)3K 12(p -N 0 3)} (N 0 3)j ■ 0 .2 H 2O 748617 C h a p te r 3 [N iII2(H L 2)3(p iji-N 3)],3 H 20 (1 0 ) 735096 C h a p te r 4 [N in 2(H L 2)3(p -N C 0 )]-2 H 20 (1 1 ) 715539 C h a p te r 4 [N i1,4(L 2)2(H L 2)2(S e C N )2(H 20 )2]-C 3H 7N 0 - 4 H 20 (1 2 ) 715540 C h a p te r 4 [H 4L 3](C 1 0 4)2 (1 3 ) 731565 C h a p te r 5 [Z n ,12L 3(N 0 3)(H 20 )3 (C 1 0 4)2 (1 5 ) 731566 C h a p te r 5 [Cu u 2L3(H20)(C104)] • C104- 2H20 (17) 727360 C h a p te r 5 [C u n 2L 3(N 3)2]-2 H 20 (1 8 ) 727361 C h a p te r 5 [(U02)(L4)(H20)c (H20)] • [(U02)(L4)(H20)] (19) 696816 C h a p te r 6 [(U 0 2)2(L s)2(d m f)2] (2 0 ) 696817 C h a p te r 6 [(U 0 2)2(L 2)2 (d m f)2] (2 1 ) 666667 C h a p te r 6 C om pound [Oillh\n2o)] (2 ) (9 ) Reprints of Published Articles Included in this Thesis — i Cocrystallized Dinuclear—Mononuclear Cu^Na' and Double-Decker—Triple-Decker Cu'hKh Complexes Derived from AyV'-Ethylenebis(3-etho\ysalicyIaldimine) S u s a n ta H a z r a ,4 R a je s h K o n e r ,^ M a la b ik a N a y a k .x H a z e l A J u d ith A K H o w a rd .* a n d S a s a n k a s e k lia r M o h a n ta 4 4 " S p a rk e s ,* Department of Chemistry, University of Calcutta, 92 A P C Road, Kolkata 700 009, Imlta, and Department of Chemistry, University of Durham, University Science Laboratories, South Road, Durham, DHI 3LE, United Kingdom Received March 26, 2009, Revised Manuscript Received June 10, 2009 ABSTRACT: T h e s y n th e s e s a n d s tru c tu r e s o f a [ 2 x l + lx 2 J c o c r y s ta l [{ C u llL lN a ,( H 2 0 ) 2 ) |C u M L l ) 2 ](N 0 1) (1) a n d [ 3 x l + 5 x l ] c o c r y s ta l [{(Cu i 1 Li )2 K 1 }(NOi )]-[{(Cu i ,Li )!KI2 (m -NO1 ) ) ( N O ; ) ] - 0 2 H 2 0 (2 ) d e r iv e d f r o m th e h e x a d e n ta te S c h ilT b a s e c o m p a r tm e n ta l lig a n d A C V '- e th y le n e b is ld -e th o x y sa h c y la ld m im e ) ( H 2 L ') a re d e s c r ib e d C o m p o u n d s 1 a n d 2 c r y s ta lliz e m tn c lim c P I a n d m o n o c lim c Fife s y s te m s , r e s p e c tiv e ly T h e s tr u c tu r e o f 1 c o n s is ts o f th e [ C u n L 1 N a l( H 2 0 ) ? ]+ c a tio n a n d tw o m o n o n u c le a r [ C u 1 IL ’ ] m o ie tie s . In th e d in u c le a r [ C u " L lN a ,( H 2 0 ) i ] + c a tio n , th e m e ta l c e n te r s a r e d o u b ly b r id g e d b y th e tw o p h e n o la te o x y g e n a to m s E a c h o f th e tw o D o w n lo a d e d b y U N I V O F C A L C U T T A o n A u g u s t 13, 2 0 0 9 P u b l i s h e d o n J u ly 6 , 2 0 0 9 o n h tt p / / p u b s a c s o rg | d o i 1 0 1 0 2 1 /c g 9 0 0 3 4 1 r c o o r d in a te d w a te r m o le c u le s o f th e d in u c le a r u n it is e n c a p s u la te d in th e 0 4 c a v itie s o f th e tw o m o n o n u c le a r [ C u H L '] m o ie tie s r e s u ltin g in th e f o r m a tio n o f a [ 2 x 1 + 1 x 2 ] c o c r y s ta l a n d o n e p e n ta m ic le a r tr ip le - d e c k e r s y s te m [ In c o m p o u n d 2 , o n e tn n u c le a r d o u b le - d e c k e r s y s te m ] { ( C u llL l) 2 K 1 ) ( N O i) ] {(Cu ,i L1 ) 1 K I 2 (m -NO-,))(NO,)] a re c o c iy s ta lliz e d . E v id e n tly , c o m p o u n d 2 is a |3 x 1 + 5 x 1 ] c o c r y s ta l S tru c tu r a l r e s e m b la n c e o f 3 d m e ta l io n s w ith N r.(l) a n d a r a te e x a m p le o f d o u b le - d e c k e r— tr ip le - d e c k e r c o c r y s ta l a r e th e m a jo r o u tc o m e s o f th e p r e s e n t in v e s tig a tio n Introduction Chart 1. Chemical Structure of ICE1 S tu d ie s o f s e lf - a s s e m b le d o rg a n ic a n d m e ta l— o rg a n ic s y s te m s h a v e a ttr a c te d v a s t f a s c in a tio n in r e c e n t y e a r s B ecause o f 1 -2 e x te n s iv e d e v e lo p m e n ts in le c e n t y e a rs , it h a s b e e n p o s s ib le in m a n y c a s e s f o r th e d e s ig n e d s y n th e s is o f a ta r g e t a s s e m b ly w h ic h , in tu rn , m a y b e u s c lu l a s f u n c tio n a l m a te r ia ls 1 -1 M u ltic o m p o n e n t c r y s ta ls , w h ic h a re k n o w n a s c o c r y s ta ls , a re im p o rta n t d u e to th e ir a p p lic a tio n s a s p h a r m a c e u tic a ls , n o n lin e a r o p tic a l m a te r ia ls , a n d c h a r g e - tr a n s fe r s o lid s 4 A lth o u g h th e f o r m a tio n o f c o c r y s ta ls c a n b e d e s ig n e d m s o m e c a s e s, m a n y tim e s it is a c c id e n ta l T h e o r g a n ic c o c r y s la ls , 4 - 6 in p a r tic u la r , c a n b e d e s ig n e d b y u tiliz in g th e c o n c e p ts o f m te r m o le c u la i in te r a c tio n s H o w e v e r , th e f o r m a tio n o f c o c r y s ta ls c o n ta in in g m e ta l c o m p le x e s 7 a s th e c o m p o n e n ts a r e u s u a lly a c c id e n ta l a n d th e r e a s o n o f c o e x is te n c e th e r e in c a n n o t b e u n d e r s to o d in m o s t c a s e s It s h o u ld a ls o b e n o te d th a t, in c o m p a r is o n to th e la r g e T h e S c lu tl b a s e lig a n d s o b ta in e d b y c o n d e n s a tio n o l 3 - c th o x - n u m b e r o f o r g a n ic c o c r y s ta ls , th e ie a re o n ly a fe w m e ta l- y s a h c y la ld e h y d e a n d d ia m in e s a re k n o w n to s ta b iliz e d is c r e te c o n ta m in g c o c r y s ta ls . 7 d in u c le a r 3 d - 4 f c o m p le x e s — in w h ic h a 3 d m e ta l io n o c c u p ie s S a n d w ic h s y s te m s a re w e ll-k n o w n in c o o r d in a tio n and th e N n O i c a v ity a n d a 4 f m e ta l io n o c c u p ie s th e O 4 c a v ity . In o r g a n o m e ta llic c h e m is try F e r r o c e n e a n d o th e i m e ta llo c e n e s a rc th e c o u r s e o l e x p lo r in g th e 3 d -3 d c o m p le x e s d e r iv e d f r o m th is w e ll- s tu d ie d e x a m p le s in th is a r e a s T h e s a n d w ic h c o m p le x e s ty p e o f lig a n d e n v ir o n m e n t, w e h a v e p r e v io u s ly u s e d m a y b e d o u b le - d e c k e r , 7 - 1 2 tr ip le - d e c k e r , 1 ' - 1 4 o r m u ltip le - d e ­ e th y le n e b is (3 - e th o x y s a lie y la ld im in e ) ( H 2 L 1, C h a r t 1 ) a n d c k e r 1 7 Jli T h e r e a re a ls o e x a m p le s o f d o u b le - d e c k e r a n d trip le - o - p h e n y le n c b is ( 3 - e th o x y s a lic y la ld im m e ) a n d o b s e r v e d th a t p o ­ d e c k e r b a s e d p o ly m e r ic c o m p o u n d s w h ic h a re fo rm e d d u e to te n tia l e n c a p s u la tio n o t a w a te r m o le c u le re s u lts in th e to r m a lio n NJ9'N,N'- in h e r e n t s e lf- a s se m b ly o r th e in te rlin k in g o f th e in d iv id u a l u n its o f te tr a n u c le a i o r h e p ta n u c le a r s y s te m s c o n s is tin g o f c o c r y s ta ls b y in o r g a n ic b r id g in g a n io n s T o th e b e s t o f o u r k n o w le d g e , o f d in u c le a r a n d m o n o n u c le a r m o ie tie s 7 4 ,b A s th e c o m p o s itio n s th e r e is o n ly o n e e x a m p le o t th e c o e x is te n c e o t d o u b le - d e c k e r o f 3 d - 4 f a n d 3 d - 3 d s y s te m s a re e n tir e ly d if fe r e n t, w e w e re a n d tr ip le - d e c k e r s y s te m s in a s in g le c r y s ta l 20 in te r e s te d in th e n a tu r e o l th e p r o d u c ts o b ta in e d b y r e a c tin g a n o te d o f th e th a t, a lth o u g h th e r e 17 a ie e x a m p le s It m a y a ls o b e s a n d w ic h c o m p le x e s o f 3 d o r m a in g r o u p m e ta l io n s ,'J -U ),l2 -l4 ,l7 -,li th is f a m ily is d o m in a te d b y la n th a n id e io n s m o n o n u c le a r 3 d c o m p le x w ith a lk a li m e ta l to n s , w ill th e s e b e 3 d - 4 f lik e d in u c le a r " o r 3 d -3 d lik e c o c r y s ta ls 'l,b a s o b s e r v e d m s y s te m s d e riv e d fro m 3 -e lh o x y s a lic y la ld e h y d e -d ia m in e lig a n d s 11 1 7 2 1 o r d in u c le a r , d o u b le - d e c k e r tr in u c le a r a n d s a n d w ic h - b a s e d p o ly n u c le a i a s o b s e r v e d in 3 d - a lk a li m e ta l s y s te m s 2 2 d e r iv e d * T o w h o m c o rr e sp o n d e n c e s h o u ld b e a d d re s s e d y a h o o c o m , fa x 9 J -3 3 -2 3 5 1 9 7 5 5 ‘ U n iv e rsity o f C a lc u tta ? U n iv e r s ity o f D u rh a m E -m m l sn c_ cu _ch cm < 7 f r o m 3 - m e th o x y s a h c y I a ld e h y d c - d ia m in e lig a n d s '/ T o a d d r e s s th e a b o v e - m e n tio n e d q u e r ie s , w e h a v e r e a c te d th e m o n o n u c le a r in c lu s io n p ro d u c t [ C u ^ L 'c t+ E O ) ] 7 1 1 w ith a lk a li 1 0 1 0 2 1 /c g 9 0 0 3 4 1 r C C C $ 4 0 7 5 © 2 0 0 9 A m e ric a n C h e m ic a l S o c ie ty P u b lis h e d o n W e b 0 7 /0 6 /2 0 0 9 Crystal Growth 3604 <£ Design, Vol 9, No 8, 2009 H a /.ra e t a l Table 1 Crystallographic Data for 1 and 2 o c c u p a n c y o f K ( 3 A ) a n d th e o c c u p a n c ie s o f K ( 3 A ) a n d K ( 3 B ) w e r e th e a n is o tr o p ic d is p la c e m e n t p a r a m e te rs c o n s ir a m c d to b e th e s a m e e m p i r ic a l f o r m u l a C;,.lhlN1Ol7(AU\d C W 5 ! i t , , \ H O ty b u t r e f in in g th r o u g h o u t T h e p r e s e n c e o l a w a te r o x y g e n a to m a tta c h e d i\v 1 374 84 2396 21 to K ( 3 B ) w a s d e te rm in e d o n th e b a s ts o f a q - p e a k m th e d if f e r e n c e c r y s ta l c o b r d a rk re d d a rk re d c r y s ta l b y s a e m u ic lin tL m o n o c lm ic sp a ce g ro u p P\ P 2 ,/< 1 2 1 5 0 9 (1 3 ) 21 7 5 6 (2) 1 5 .2 8 4 ( 2 ) 2 5 2 2 9 (2 ) a w a y to b in d s tr o n g ly to th e o x y g e n a to m s o f th e m o n o n u c le a r m o ie tie s S in th e s a m e m a n n e r a s s e e n to r K { 3 A > ). it s e e m s c h e m ic a lly r e a s o n a b le A .A a. b F o u rie r m a p c o n s is te n t w ith th e p r e s e n c e o f — 1 /5 o f a n o x y g e n a to m in a g e o m e tr ic a lly s e n s ib le lo c a tio n T h e o c c u p a n c y o f th is o x y g e n w a s f ix e d to b e th e s a m e a s K ( 3 B ) I n v ie w o f th e f a c t th a t K ( 3 B ) is to o f a r c, A 1 7 5 9 7 (2 ) 1 8 3 7 7 (2) a, deg 8 7 5 3 1 (9 ) 90 00 th a t th e O r lig a n d c a v ity m a y c o n ta in a w a te r m o le c u le ( a s s e e n m /» . c le g 8 3 9 0 6 (7 ) 9 4 6 5 4 (7) o th e r e x a m p le s o l s im ila r c o m p o u n d s w h e r e h y d r o g e n - b o n d e d w a te r s y. 6 9 0 0 5 (6 ) 90 00 a r e f r e q u e n tly f o u n d , c g „ in 1 ) H o w e v e r , h y d r o g e n a to m s w e r e u n a b le V, A1 3 0 3 3 7 (6 ) 1 0 0 5 3 5 (1 6 ) to b e lo c a te d p r o b a b ly d u e to th e ir lo w o c c u p a n c y . T h e d is o rd e r m th e Z 2 4 1 2 0 (2 ) 1 2 0 (2 ) 2 8 6 - 6 0 (K ) 7 0 4 -5 0 06 / / , m m -1 1 126 1 252 PuA d 1 505 1 5S3 0 ( 2 2 A ) , a n d ( ) ( 2 3 A )J a n d [ N ( l I B ), 0 ( 2 1 B t 0 ( 2 2 B ) . a n d 0 ( 2 3 B ) J to F{ C 0 0 ) 1426 4946 be 1 a b s o rp tio n -c o rre c tio n m u ltts ea n m u l tt s e a n but r ia n 0 694 0712 d is p la c e m e n t p a r a m e te r s a s w e r e th e s ix o x y g e n a to m s T h e o c c u p a n c y rm.,A 0 798 in d e x r a n g e s -1 4 deg k r, 20 g c m "’ -2 1 D o w n lo a d e d b y U N iV O F C A L C U T T A o n A u g u s l 13, 2 0 0 9 P u b lis h e d o n J u ly 6 , 2 0 0 9 o n h ttp //'p u b s a c s o r g | d o i 10 1 0 2 1 /c g 9 0 0 3 4 1 r f ix e d a t 8 0 f f a n d 2 0 5 8 r e s p e c tiv e ly m a ll lu r th e r r e lin e tn e n l c y c le s w ith 2 1 r e fle c tio n 's c o l le c t e d b o u n d n itra te ( N ( l I ) ) w a s id e n tif ie d o n th e b a s is o f r e s id u a l p e a k s in th e F o u r ie r d if f e r e n c e m a p T h e o c c u p a n c ie s w e re , d e te r m in e d b y s e ttin g th e s u m o f m e o c c u p a n c ie s f o r th e tw o n itr a te g r o u p s [ N (t l A ) , 0 ( 2 tA ) , 0 882 < h < \6 < k < 2! -2 5 -2 9 < -2 2 < / < 24 -2 1 31665 74755 h < k < w e r e c o n s tr a in e d to have th e s a m e o c c u p a n c ie s f o r th e tw o g r o u p s w e r e f ix e d a t 8 0 2 0 , c o n s is te n t w ith 30 th e p o ta s s iu m < / < 21 1 6 3 9 1 (0 0 3 0 8 ) 1 7 7 0 1 (00 7 0 5 ) 0 0 4 7 3 /0 1 2 3 8 0 0 4 0 4 /0 1 0 4 7 0 0 6 9 7 /0 1 3 7 8 0 0 6 0 9 /0 1 2 0 0 FJ) a to m s 25 in d e p e n d e n t r e f le c t io n s (/? ,,„ ) (fo r a ll n itr o g e n f o r th e f ir s t n itr a te g r o u p ( N ( l I A ) ) r e f in e d to 0 .7 5 7 ( 4 ) ; h o w e v e r , th e < RflviRJ' (/ > 2 o -(0 ) D u r in g th is th e d is p la c e m e n t, p a r a m e te rs w e r e a llo w e d to r e f in e , th e tw o a to m to w in c h th e y w e r e a tta c h e d I n a d d itio n to a c h ie v in g c o n s is te n c y w ith th e p o ta s s iu m a to m o c c u p a n c ie s , p a r t o f th e r e a s o n f o r f ix in g th e o c c u p a n c ie s a t 8 0 2 0 w a s th a t th e F o u r ie r d if le rc n c c m a p in th is r e g io n is s lig h tly n o is y a n d th e re m a y b e s o m e a d d itio n a l d is o r d e r o f th e n itr a te g r o u p s ( w h ic h h a v e r e la tiv e ly la r g e a n is o tro p ic d is p la c e m e n t p a r a m e te r ) th a t c o u ld n o t b e s e n s ib ly m o d e le d Ri = m\FJ - \F0l\F,i\ h w i? . = |V w t/-* ,r - Fer&wFoT' I n r e la tio n to tin s , th e s e c o n d n itr a te g r o u p ( N ( l I B ) ) r e q u ire d r e s tr a in ts to k e e p th e N — O a n d 0 - - - 0 d is ta n c e s c o n s is te n t w ith th o s e f o u n d m m e la l s a lts a n d h a v e b e e n a b le to c r y s t a ll i z e tw o c o m p le x e s c o n t a i n in g s o d iu m and p o ta s siu m . H e re in , we re p o rt th e th e f ir s t n itr a te g r o u p ( N i l !A ) ) w h e n a n a n is o tr o p ic r e f in e m e n t w a s e a r n e d o u t T h e o c c u p a n c ie s o f th e o x y g e n a to m s f o r th e f r e e n itra te s ( N ( 1 2 ) a n d N f 1 3 )) w e r e d e te r m in e d u s in g th e s a m e r e f in e m e n t s tra te g y s y n th e s e s a n d s t r u c tu r e s o t t h e s e tw o c o m p o u n d s . a s d e s c r ib e d a b o v e f o r K ( 3 ) a n d th e n itr a te g r o u p N ’t o x y g e n a to m s lin k e d in g r o u p s o l 3 11), w ith th e H e r e e a c h s e t o f th r e e o x y g e n a to m s w e r e c o n s tr a in e d to h a v e th e s a m e o c c u p a n c y , w ith th e s u m o f Experimental Section th e o c c u p a n c ie s c o n s tra in e d to b e I a n d th e is o tr o p ic d is p la c e m e n t and p a r a m e te rs c o n s tra in e d to b e th e s a m e T h e s ite o c c u p a tio n f o r 0 ( 2 5 A ). s o lv e n ts w e r e p u r c h a s e d f r o m c o m m e r c ia l s o u r c e s a n d u s e d a s tc c e iv c d 0 ( 2 6 A ) , a n d 0 ( 2 7 A ) r e f in e d to 0 5 4 8 ( 5 ) a n d w a s f ix e d a t 0 5 5 . w h ile M a te r ia ls and P h y s ic a l M e a s u r e m e n ts A ll th e r e a g e n ts T h e m o n o n u c le a r in c lu s io n p r o d u c t [ C u n l J c ( H ; 0 ) j w a s s y n th e s iz e d th e s u e o c c u p a tio n f o r 0 ( 2 8 A ) , 0 ( 2 9 A ) a n d O ( 3 0 A ) r e f in e d to 0 6 6 8 ( 5 ) b y th e r e p o r te d p r o c e d u r e M E le m e n ta l ( C a n d w a s f ix e d a ! 0 6 7 H , a n d N ) a n a ly s e s w e r e A ll h y d r o g e n a to m s , e x c e p t th e s o lv e n t w a te r p e rf o rm e d o n a P e r k m - E lm e r 2 4 0 0 II a n a ly z e r I R s p e c tr a w e r e r e c o rd e d h y d r o g e n a to m s in th e r e g io n 4 0 0 - 4 0 0 0 c m " 1 o n a P e r k in - E Iin e r R X I F T s p e c tr o p h o ­ 0 9 5 A , e th y l C — H 0 9 9 to m e te r w ith s a m p le s a s K B r d is k s a r id in g m o d e l w ith th e is o tr o p ic d is p la c e m e n t p a r a m e te rs f ix e d a t M a g n e tic s u s c e p tib ility m e a s u re ­ 111 1 , w e r e p o s itio n e d g e o m e tr ic a lly ( a r o m a tic C m e th y l C — H 0 9 8 A) a n d 11 r e f in e d u s in g m e n ts a t 3 0 0 K w e r e c a r r ie d o u t w ith a S h e r w o o d S c ie n tif ic C o . U K f./, .,(T 1 ) = m a g n e tic s u s c e p tib ility b a la n c e b lc c ir o m c s p e c tra w e r e o b ta in e d w ith a n d e th y l h y d r o g e n s a n d f/, ( H i = 1 5 tim e s (7 ,: o f th e p a r e n t c a r b o n a H ita c h i U - 3 5 0 1 s p e c tro p h o to m e te r a to m f o r th e m e th y l h y d r o g e n s T h e s o lv e n t w a te r O — H a to m s w e r e S y n th e s e s . [ { C u l!L !N a l( H 2 0 ) ;} { C u M L i } » l< N 0 3 ) ( I ) . T o a s tirr e d lo c a te d m 1 2 tim e s A, a n d o f th e p a r e n t c a r b o n a to m f o r th e a r o m a tic th e F o u r ie r d if fe r e n c e m a p . th e O — H A d is ta n c e s w e re s u s p e n s io n o f [ C n ’H J c O h O ) ] ( 0 2 1 S g 0 5 m m o l) m a c e to n e ( 2 0 m L ) r e s tra in e d to 0 8 6 w a s a d d e d f in e ly p o w d e re d s o d iu m n itr a te ( 0 1 7 g , 2 m m o l) A f te r b e in g f ix e d to £ 4 „ ( H ) = 1 2 tim e s f /u | o t th e p a r e n t o x y g e n a to m s tir r e d f o r 1 h , th e m ix tu r e w a s f ilte r e d to r e m o v e th e u n r e a c te d N a N O * le a s t- s q u a r e s r e f in e m e n ts ( 7 6 ) b a s e d o n / > 2 c t (/) c o n v e r g e d to 0 0 ) 7 3 a n d th e c le a r r e d c o lo r e d f iltr a te w a s k e p t f o r s lo w e v a p o r a tio n a n d 0 0 4 0 4 f o r 1 a n d 2 r e s p e c tiv e ly A f te r a n d th e is o tro p ic d is p la c e m e n t p a r a m e te r s w e r e T h e f in a l a f e w h o u r s , d a r k r e d c r y s ta llin e c o m p o u n d s c o n ta in in g d if ir a c ta b le s in g le c r y s ta ls th a t d e p o s ite d w e r e c o lle c te d b v f iltr a tio n Y ie ld 0 1 9 5 e ( 8 5 % ) ’ A n a l C a lc d f o r C ^ ty n N iO n C ih N a C , 5 2 4 2 , H , 5 1 3 , N , 7 13 Found C , 52 50, H 5 04. N 7 20 I R ( c m " 1, K B r ) K H 20 ), 3 4 7 6 m , t - ( C -N ) , 1 6 3 0 v s . i'(m tr a te ) , 1 4 5 0 s , 1 3 2 4 s « L ir 3 O S /O i [{(Cu,iL,hK,HNO,)]-[{(Cu"L,)3K,:f//-NOj)}(NO1)]-0.2HJO (2). T h is c o m p o u n d w a s p r e p a re d in th e s a m e w a y a s d e s c r ib e d a b o v e f o r Results and Discussion Syntheses and Characterization. T h e m o n o n u c le a r in c lu s io n com pound r e a c tio n b e tw e e n th e [ C u n L 1c ( H 2 0 ) ] and so- d iu m ( I ) n itr a te p r o d u c e s th e le d - c o lo r e d h e tc r o n u e le a r c o m ­ 1 e x c e p t u s in g K N O -, in s te a d o f N a N O -, C o lo r d a r k r e d Y ie ld 0 1 9 2 p o u n d [ ( C u llL lN a l( H e O h H C u llL 1 ) ;] ( N C h ) ( 1 ) S im ila r r e a c tio n g ( 8 0 % ) A n a l C a lc d to r C 1„ „ H „ „ 4 N 1, 0 ;, 2C u s K i- C , 5 0 1 2 , H , 4 6 4 , o f th e m o n o n u c le a r c o m p o u n d with p o ta s s iu m ( I ) n itr a te p r o ­ N , 7 6 0 ro u n d C 50 20. H , 4 71. N 3 4 6 1 w , i ( C = .\) I6 2 9 v s 7 52 I R ( c m - 1 , K B r ) i'(H 2 0 ) , H m tr a tc ) . 1 4 5 5 s . 1 5 4 5 s n :M . 3 9 5 /q . Crystal Structure Determination of 1 and 2. C r y s ta llo g r a p h ic d a ta I X - r a y d if fr a c tio n d a ta f o r 1 a n d 2 w e r e d u c e s th e r e d - c o lo r e d h e le r o n u c ie a r c o m p o u n d [ { ( C u ^ L ^ jK 1 ) ( N O ,) ] - [ { ( C u llL 1) ,K l* f - N O i) ) ( N O ,) ] - 0 2 H 2 0 (2) T h e I R s p e c ­ a r e s u m m a r iz e d in T a b le tr u m o f [ C u '^ 'c lH i O ) ] e x h ib its o n e s tr o n g a b s o r p tio n a t 1 6 2 0 c o lle c te d a t 1 2 0 K o n B r o k e r S m a r t 1 K M P E X C C D d if f r a c to m e te r s c m -1 d u e to i 'o n v ib r a tio n r e s p e c tiv e ly to !'c =n a p p e a r s a t s lig h tly h ig h e r e n e r g y ( c a u s in g Mo K a r a d ia tio n D a ta w e r e p r o c e s s e d u s in g S A I N T 2 2 T h e s tr u c tu re s w e r e s o lv e d b y d ir e c t m e th o d s m S H E L X S a n d r e f in e d b y lu ll m a trix le a s t- s q u a r e s o n F2 in S H H L X L 2 5 T h e s tr u c tu r e o t 2 c o n ta in e d s o n ic d is o rd e r in c lu d in g tw o p o s itio n s f o r K ( 3 ) , a n d th e o c c u p a n c ie s o f th e tw o a to m ic s ite s w e r e c o n s tra in e d to e q u a l o n e , s in c e th e is o tr o p ic d is p la c e m e n t p a r a m e te rs a r e c lo s e ly lin k e d to s ite o c c u p a n c y th e d is p la c e m e n t p a r a m e te r s w e ie c o n s tra in e d to b e th e s a m e b u t a llo w e d to r e fin e T h is g a v e a v a lu e of 0 8 0 3 ( 2 ) f o r th e In c o m p a r is o n , th e v ib r a tio n d u e 1630 cm-1) fo r b o th Ih e c o m p le x e s 1 a n d 2 T h e w a te r s tr e tc h in g s in c o m p o u n d 1 a p p e a r a s a m e d iu m in te n s ity b a n d a t 3 4 7 6 c m - 1 . A s w ill b e d is c u s s e d b e lo w , p e r m o le c u le o f c o m p o u n d 2 c o n ta in s 0 .2 T T O H o w e v e r , th e p r e s e n c e o l w a te r in th is c o m p o u n d c a n b e e v id e n c e d b y a w e a k in te n s ity in f r a r e d b a n d a t 3 4 6 1 c m - 1 . T h e s ig n a ls f o r th e n itr a te to n s a r e o b s e r v e d a t 1 4 5 0 a n d 1 3 2 4 c m ” 1 Crystal Growth & Design, Vol A ,A /M ilb y ]e n e h is(3 -€ !h o x y s a h c y la ld im in e ; C o m p le x e s No 8, 2009 9, 3605 T a b le 2 . ( l e o m c t r i e s ( D i s t a n c e s i n ( A ) a n d A n g l e s i n ( ° )) i d t h e H y d ro g e n B o n d s in 1 UTSRQPONMLKJIHGFEDCBA D — H *** D — H ----- A D ****A H ****A 0 (5 )-H (5 A )* • • • 0 (7 ) 2 921 2 083 166 2 0 ( 5 )— H (5 A )- ■••0 (8 ) 2 942 2 389 122 9 0 ( 5 ) -H ( S B )“ ■••0 (9 ) 2 935 2 123 I5 S 4 0 ( 5 ) — H ( S B ) * '• • • 0 ( 1 0 ) 3 178 2 538 0 ( f t ) - H ( 6 B ; * '• • • 0 ( 1 1 1 3 106 2 393 141 4 1324 0 ( 6 ) - H < 6 B ; - '■ • • 0 ( 1 2 ) 2 883 2 121 1484 0 ( 6 ) - H ( 6 A } * '■ • • 0 ( 1 3 ) 2 955 2 365 126 3 0 ( 6 )— H (6 A J* • • • 0 0 4 ) 3 034 2 198 164 6 A) (0 0 0 — 0 0 3 o f t h e c o p p e r ( I I ) c e n te r f r o m t h e c o r r e s p o n d i n g l e a s t - s q u a r e s N 2 0 2 p l a n e i n d ic a te t h a t t h e c o o r d i n a t i o n e n v i r o n ­ m e n t o f t h e s e m e t a l i o n s d e v i a t e s o n l y b y a s m a ll a m o u n t f r o m th e id e a l v a lu e s A s a l r e a d y m e n t i o n e d , t h e s e c o n d m e ta l c e n te r ( N a ( l ) ) m th e d m u c le a r l C u " L 1 N a I( H 2 0 ) 2 | + c o re is h e x a c o o r d m a te d ( F ig u r e 1 a n d T a b l e s S I a n d S 2 , S u p p o r t in g I n f o r m a t i o n ) w i t h tw o b rid g in g p h e n o x o o x y g e n a to m s ( 0 ( 2 ) ) a n d 0 ( 3 )) , tw o e t h o x y o x y g e n a t o m s ( 0 ( 1 ) a n d 0 ( 4 ) ) , a n d t w o w a te r o x y g e n P ublished on July 6, 2 0 0 9 on http //pubs aes org D o w n loa d ed b y U N IV OF C A L C U T T A on A u gu st 13, 2 0 0 9 | doi 10 1 0 2 1/cg 90 0 34 1r F ig u r e 1 . C r y sta l str u c tu r e o f [{ C u ,lL lN a '(H J0 ) : ) {C u llL l);]tN O ;) (1 ) a to m s (0 (5 ) and 0 (6 )). T h e bond d i s ta n c e s i n v o lv i n g th e b u d g in g p h e n o x o o x y g e n a to m s ( N a (l)— 0 ( 2 ) = 2 3 7 3 (2 ) A , N a ( l) — 0 ( 3 ) fo r c o m p o u n d 1 a n d 1 4 5 5 a n d 1 3 4 5 c m -1 fo r c o m p o u n d 2 The v a l u e s o f m a g n e t ic m o m e n t a t 3 0 0 K o f 1 a n d 2 a r e 3 0 8 a n d 3 95 fin, r e s p e c ti v e l y , w i n c h a r e v e r y c l o s e t o t h e t h e o r e t ic a l = oxygen a to m s 2 3 2 7 (2 ) A) A) 2 .3 4 4 ( 2 ) (N a (l)-0 (5 ) and = th o s e in v o lv in g 2 3 6 1 (2 ) A) th e w a te r N a (l)-0 (6 ) = a r e s i g n i f i c a n t ly s h o r t e r t h a n t h e t w o M - O ( e t h o x y ) A, d i s ta n c e s ( N a ( l ) - O ( l ) = 2 6 9 2 ( 2 ) m a g n e t i c m o m e n t s ( 3 0 a n d 3 8 7 « n . t e s p e c t i v e ly ) t o t t h r e e ( i n A, N a (l)-0 (4 ) = 2 6 7 4 (2 ) T h e O — N a ( I ) — O a n g l e s i n t h e c o o r d i n a t io n e n v i r o n m e n t 1 ) a n d f i v e ( m 2 ) n o n c o r r e l a t e d c o p p e r ( l l ) c e n te r s . T h e a b s o r p ­ o f s o d m m ( I ) l i e i n t h e r a n g e 6 1 . 0 6 ( 6 ) — 1 3 3 .2 4 ( 8 ) ° t i o n b e h a v io r o f [ C i d 'L 'c C H iO ) ] , 1 , a n d 2 a r e c o m p a r e d m d i n a ti o n e n v i r o n m e n t c a n n o t b e m o d e l e d w i t h a n y o f t h e r e g u l a r F i g u r e S 2 , S u p p o r t in g I n f o r m a ti o n o r d is to rte d p o iy h e d ra T h e e l e c t r o n i c s p e c tr u m o f It m ay b e m e n ti o n e d T h e c o o r­ th a t th e C u — t h e m o n o n u e lc a t c o m p o u n d [ C u '^ 'c f H - O ) ! i s e h a r a c te n z e d b y O (p h c n o x o )— N a a b ro a d b a n d a t 5 7 5 n m a n d a s h a rp e r s ig n a l a t 3 7 3 n m . w h ic h 1 0 2 6 2 (8 )° , C u ( 1 )— 0 ( 3 )— N a ( 1 ) = 1 0 3 6 8 (8 )° ) lie m th e ra n g e a r i s e d u e t o d - d t i a n s t ti o n a n d C u " — O ( p h e n o l a te ) c h a r g e t r a n s f e r (9 1 8 2 ( 1 2 ) -1 0 5 2 9 (1 4 )° ) o f th e C u - 0 ( p h c n o x o ) - M t r a n s i ti o n , r e s p e c t iv e l y I n 1 a n d 2 , t h e C u 1'— O ( p h e n o l a t e ) c h a r g e a n g le s o b s e rv e d in th e d m u c le a r b rid g e a n g le s ( C u (l) — 0 ( 2 ) — N a ( l) [Cu "L,Mii(H2 0 ) ) ] 2 + t r a n s f e r i s s l ig h t l y s h i f t e d t o 3 7 1 n m . S i m i l a r l y , t h e d - d b a n d i s th e te tra n u c le a r c o m p o u n d s 4 — 6 s l ig h t l y s h i f t e d t o 5 6 5 a n d 5 7 0 n m , r e s p e c ti v e ly f o r 1 a n d 2 s e p a r a t io n i n 1 ( C u ( l ) * * * N a ( l ) = 3 3 5 0 9 ( 1 1 ) T h e m o l a r e x t in c t io n c o e f f i c i e n t ( e , M - 1 c m - 1 ) p e r m o l e o f lo n g e r th a n th e C u * * * M d is ta n c e s (3 0 9 - 3 2 2 1 , a n d 2 a r e n o t v e r y d i f f e r e n t, 6 9 1 , 6 5 6 , a n d 6 6 7 , r e s p e c t i v e ly , {Cu iiL1 ) 2 ) ( C 1 0 4 ) 2 fo r th e d -d b a n d a n d b i f u r c a te d 1 6 0 7 9 , r e s p e c t iv e l y , fo r (h e c h a rg e tra n sfe r b a n d b r id g e c o re s o f H o w e v e r , t h e m e ta l * “ m e t a l A) i s s i g n if ic a n t ly A) in 4 — 6 7 " S i m i l a r t o t h a t i n [ C u u L ‘ c ( H 2 0 ) ] (3 ) a n d [ ( C u “ L 1 M " ( H 2 0 ) , ) c o p p e r ( I I ) t o n f o r t h e s e t w o t y p e s o f b a n d s i n [ C u " l J c ( H :> 0 ) J , 16939, 1591 1, an d c o m p o u n d s ( 4 — 6 ) , w a te r e n c a p s u l a t i o n t h r o u g h h y d ro g e n bonds a lso o c c u rs m 1. B o th th e c o o r d i n a te d w a te r m o le c u l e s t n 1 a r e e n c a p s u la t e d m D e s c r i p t i o n o f S t r u c t u r e o f [ { C ii I ll 7 N u l( I t: ( ) ) i ) ( C u , ,I . l } : l = c a v i t y o f t w o [ C u “ L '] s p e c i e s ( F ig u r e 1) tw o th e 0 4 T h e g e o m e trie s o f (N O .O ( i). A s s h o w n i n F i g u r e 1 , t h e s t r u c t u r e o f 1 c o n s i s t s o f t h e h y d r o g e n b o n d s a r e s u m m a ri z e d m T a b l e 2 T h e O ( w a t e r ) * * * t h e h e te r o te t r a n u e le a r f { C u !1L 1 N a '( H 2 0 ) z } { C 7 u IIL I O f p h e n o x o / e t h o x y ) c o n t a c ts a n d t h e 0 - H * * * 0 a n g le s h e i n t h e o n e n itra te a n io n b rid g e d c a t io n a n d In th e te tia n u c le a r c a tio n , th e d tp h e n o x o - l C u " L , N a l( H 2 0 ) 2 ] + c a t io n is in te rlin k e d w ith tw o m o n o n u c l e a r [ C u u L '] s p e c ie s b y h y d r o g e n - b o n d i n g i n t e r a c t i o n s w eak fro m ( C u ( I ) ) o c c u p ie s t h e N 2 0 2 c a v it y , a n d t h e s e c o n d c o m p a r t m e n t a n d 1 2 2 9 — 1 6 6 2 ° , r e s p e c t iv e l y i n d i c a t i n g th a t s o m e h y d ro g e n b o n d s a rc m o d e ra te ly s tro n g a n d s o m e a re ( v id e i n l r a ) In th e C u u N a ' d m u c le a r c o r e , o n e c o p p c r ( II ) to n A ra n g e s2 8 8 — 3 18 T h e e x te n t o f e n c a p s u la tio n o f w a te r c a n b e u n d e rs to o d t h e d i s p la c e m e n t o f t h e w a te r o x y g e n f r o m th e le a s t- s q u a r e s 0 ( p li e n o x o ) 2 0 ( e t h o x y ) 2 p l a n e . T h e d i s p l a c e m e n t o f 0 ( 5 ) o f [ L 1 ] 2 ” i s o c c u p ie d b y o n e s o d i u m ( I ) t o n ( N a ( l ) ) . w h i c h i s a n d 0 ( 6 ) f r o m t h e c o r r e s p o n d in g 0 4 p l a n e s a r e 1 3 1 a n d 1 .3 0 c o o r d i n a te d t o t h e t w o b r i d g i n g p h e n o x o o x y g e n a t o m s , t w o A, e th o x y o x y g e n a to m s , a n d tw o w a te r m o le c u le s [ C u " L 'c ( H 2 0 ) ] (3 ), t h e o x y g e n a t o m o f t h e e n c a p s u l a t e d w a t e r T h e s e l e c te d b o n d l e n g th s a n d a n g l e s o f t h e c o o r d i n a t io n e n v i r o n m e n t o f t h r e e c o p p e r ( I I ) c e n te r s re s p e c tiv e ly In th e c a se o f th e p re v io u s ly re p o rte d c o m p o u n d lie s o n th e le a s t-s q u a re s 0 ( p h e n o x o )20 ( e th o x y ) 2 p la n e , w h ile ( C u (l) , C u (2 ), a n d t h e o x y g e n a t o m s o f t h e e n c a p s u la t e d a n d c o o r d i n a t e d w a t e r C ’u ( 3 ) ) m t h e N ; O i c o m p a r t m e n t a r c s u m m a r i z e d m T a b l e s S I m o le c u le s i n [ 1 Cu "L1Mi ,(H2 0 ) ,1 ) { C u " L ‘ b K C 1 0 4 ) 2 ( 4 - 6 ) a r e a n d S 2 , S u p p o r t in g I n f o r m a t i o n , r e s p e c ti v e ly d is p la c e d T he C u— N and by 0 92— 1 23 A fro m th e c o rre s p o n d in g C u — O b o n d le n g th s lie in th e ra n g e s 1 9 3 0 (2 )— 1 9 4 9 (2 ) A a n d 0 (p h e n o x o )2 0 ( e th o x y )2 p la n e , in d ic a tin g 1 8 9 7 ( 2 ) — 1 9 1 4 ( 2 ) A , r e s p e c t i v e ly . A s i n t h e i n c lu s i o n c o m ­ e n c a p s u l a ti o n m t h e m o n o n u c l e a r i n c lu s i o n p t o d u c t 3 i s m u c h p o u n d [ C u 1 IL l C ( H 2 0 ) ] ( 3 ) a n d [ 2 x 1 + 1 x 2 ] t e tr a n u c l e a r c o m ­ g r e a t e r t h a n t h a t i n c o m p o u n d s 1 a n d 4 — 6 . I t i s a l s o e v id e n t p o u n d s [ { C u n L I M ll( H 2 0 ) , H C u 1 ,L 1 } 2 ] ( a 0 4 ) 2 ( M = C u ( 4 ) , C o t h a t t h e e x t e n t o f e n c a p s u l a ti o n i n t h e p r e v i o u s l y r e p o r te d 3 d - ( 5 ) o r M n ( 6 ) ) d e r iv e d f r o m H 2 L ', e a c h o f t h e C u — N b o n d 3 d s e n e s 4 — 6 i s a l m o s t s i m i la r t o t h a t i n c o m p o u n d 1 7 ,1 l e n g th s a r e s l ig h t ly lo n g e r th a n d i s t a n c e 711 T h e r a n g e s o l t h e transotd ( 1 7 2 (0 0 2 — 0 0 8 D e s c r ip tio n o f th e S tr u c tu r e o f |j(C u I1L l!2 K l} (N O ,)J * (8 4 3 3 (9 )— 9 4 0 6 (9 )° ) a n d f{ (C u I 1 L 1 )jK , 2 (^ -N 0 3 )} (N 0 3 )]* 0 . 2 I I 2 0 (2 ). T h e c r y s t a l s t r u c ­ 8 4 ( 8 ) — 1 7 8 9 .3 ( 8 ) ° ) a n g l e s , t h e a v e ia g e d e v i a t i o n A ) o f th e donor e x te n t o f C u— O i ts r e s p e c t i v e cisoid traits th a t th e a to m s, and th e d i s p la c e m e n t t u r e o f 2 i s s h o w n i n F i g u r e 2 , w h i l e t h e s e l e c te d b o n d l e n g t h s a n d a n g l e s a r e l i s te d i n T a b l e S 3 a n d T a b l e s S 4 — S 5 , r e s p e c - Crystal Growth & Design, Vol 9, No 8, 2009 1 0 1 0 2 1 /c g 9 0 0 3 4 1 r H a z ra e t al F i g u r e 3 . A p e r s p e c ti x e v i e w d o w n t h e c r y s la l lo g r a p h ic doi [ b M is lo r b e tte r u n d e r s ta n d i n g o t t h e d o u b l e - d e c k e r a n d ( n p l e - d e c k e r n a l u r e o f t h e t w o s p e c i e s i n |( ( C u " L 1 ) . K , K N O , ) j- ll ( C u l,L 1 l , K ,, ( u - N O , ) ) ( . \ O , ) l- 0 2 H , O ( P u b lis h e d o n J u ly 6 , 2 0 0 9 o n h ttp //p u b s a c s o fg D o w n lo a d e d b y U N I V O F C A L C U T T A o n A u g u s t 13, 2 0 0 9 3606 F ig u re l. C r v s t a l s t r u c t u r e o f [ { ( C u " L ') ^ K , } ( N 0 s ) ] - [ l f C u 1 ,L , ) i K l ,( /< - N O i > J (t \'O i ) ]" 0 2 H 2 0 ( 2 ) liv e ly s p e c ie s , fo r K (3 A )) a n d tw o e th o x y o x y g e n a to m s ( 0 ( 9 ) a n d 0 ( 1 2 A ) fo r K (2 ), 0 ( 1 7 ) a n d 0 ( 2 0 ) fo r K (3 A )) o f e a c h o f th e tw o T h e s l r ti e l u r e s h o w s t h a l c o m p o u n d 2 c o n s i s t s o l iv v o d iffe re n t 2) one tn n u c le a r d o u b le -d e c k e r s y s te m t e r m i n a l m o n o n u c l e a r m o i e t ie s ( [ C u ( 3 ) L 1 ] f o r K ( l ) ; [ C u ( 5 ) L '] fo r K (3 A )) a n d to o n e p h e n o x o ( 0 ( 1 5 ) fo r K (2 ), 0 ( 1 4 ) fo r [ { ( C u llL ') 2 K l ) ( N 0 1 ) ] a n d o n e p e n t a n u c l e a r t n p l e - d e c k e r s y s t e m K (3 A )) a n d o n e e th o x y ( 0 ( 1 6 ) fo r K (2 ), 0 ( 1 3 ) fo r K (3 A )) [ { ( C u llL l ) - ,K l2 (iH - N O 0 } t N O ; ) ] D o u b l e - d e c k e r a n d t n p l e - d e c k e r o x y g e n a t o m o f t h e c e n t r a l m o n o n u c l e a r m o i e ty ( [ C u ( 4 ) L ‘ ] ) to p o lo g ie s o t th e tw o m o ie tie s c a n b e b e tte r u n d c is to o d Iro m E v i d e n t ly F ig u r e 3 A s w a s a l r e a d y m e n t i o n e d , c o m p o u n d 2 c o n t a i n s s o m e C u (5 )* " K (3 A ). a re d tp h e n o x o -b n d g e d . w h ile th e tw o c e n tra l th e tw o te rm in a l C t f - K p a irs . C u ( 3 ) * " K ( 2 ) a n d d is o rd e r, a n d h e n c e fo r c la rity o n ly th e m a jo r c o m p o n e n ts a re C u - " K p a irs . C u ( 4 ) -" K ( 2 ) a n d C u (4 )-“ K (3 A ), a re m o n o p h e - d e p ic te d m F ig u re s 2 a n d 3 n o x o -b n d g e d T h e tw o p o ta s s tu m (I) to n s , K (2 ) a n d K (3 A ), a re B o th p o s itio n s o f m a jo r (K (3 A )) a n d m in o r (K (3 B )) o c c u p a n c ie s o l th e p o ta s s iu m (I) to n a re s h o w n m F ig u re S I , S u p p o rtin g In fo rm a tio n T h e t n n u c l e a r d o u b le - d e c k e r s y s t e m b rid g e d to each o th e r b y a n itra te to n . In c o n tra st to th e o c ta c o o rd m a te d p o ta s s iu m (I) to n ( K ( l) ) in th e d o u b le -d e c k e r [ { ( C u u L 1 ) iiK l ) ( N O 0 ] c o n s i s t s o f t h e [ ( C u n L , ) > K 1] + c a t io n a n d a n i t r a te a n i o n c a t i o n [ ( C u " L l ) 2 K l] + . t h e t w o p o t a s s i u m ( I ) c e n t e r s ( K ( 2 ) a n d In th e K ( 3 A ) ) i n t h e t n p l e - d e e k e r c a t i o n [ { ( C u 1 IL ') s K I; ( / < - N O 0 } ] + i s c a t i o n , o n e p o t a s s iu m ( I ) i o n ( K { 1 ) ) i s c o o r d i n a t e d t o ( h e t w o h e p ta c o o rd m a le d b y th re e b o d g in g p h e n o x o o x y g e n a to m s, th re e p h e n o x o a n d tw o e th o x y o x y g e n a to m s o f e a c h o f th e tw o e t h o x y o x y g e n a t o m s a n d o n e o x y g e n o f b r i d g i n g n i t r a te [ C u l,L l ] t h e c o o r d i n a t i o n e n v i r o n m e n t o f K ( 2 ) , a s i n t h e c a s ’e o f K ( l ) , m o ie tie s , p o ta s s u tm (I) is [ C t iU f L 1 ] s a n d w ic h e d c o p p e r(II) s p e c ie s and m [C u (2 )L ‘], b e tw e e n tw o and th u s th e m o n o n u c le a r E v i d e n tl y , p o t a s s tu m ( l ) i o n i n t h i s d o u b l e - In t h e b o n d l e n g t h s i n v o lv i n g t h e e t h o x y o x y g e n a t o m s ( 2 8 5 7 ( 2 ) — 2 9 6 8 (2 ) A) a r e l o n g e r t h a n t h o s e i n v o lv i n g t h e p h e n o x o o x y g e n d e c k e r c a t i o n i s o c t a c o o r d m a t e d , b y f o u r b r i d g in g p h e n o x o a to m s (2 7 2 9 (2 )— 2 8 0 4 (2 ) A ). B e c a u s e o f d is o rd e r, it is n o t o x y g e n a to m s ( 0 ( 2 ) , 0 ( 3 ) , 0 ( 6 ) , a n d 0 ( 7 ) ) a n d fo u r e th o x y p o s s ib le to c o m p a re th e m o le c u la r g e o m e try o f th e c o o rd in a tio n o x y g e n a t o m s ( 0 ( 1 ) , 0 ( 4 ) , 0 ( 5 ) , a n d 0 ( 8 ) ) , w h i le t h e p a i r s o f e n v i r o n m e n t o f K ( 3 A ) o r K ( 3 B ) T h e b o n d d i s ta n c e i n v o l v i n g m e ta l io n s C u ( 1 ) — K (1 3 a n d C u ( 2 )• • - K (!) m th e C u ( l) ” * K (I)* * * C u (2 ) tn n u c le a i c o re a te d tp h e n o x o -b n d g e d T h e b o n d K ( 2 ) a n d n i t r a te o x y g e n s h o u l d a l s o n o t b e c o m p a r e d w i th o t h e r b o n d d i s t a n c e s d u e t o t h e d i s o r d e r m t h e b r i d g i n g n i t r a te a t o m s d is ta n c e s m th e c o o rd in a tio n e n v iro n m e n t o f th e K (I) to n s h e In th e d o u b le -d e c k e r s y s te m , th e C u — O ( p h e n o x o ) - K b rid g e in tw o d is tin c t ra n g e s , th e b o n d le n g th s in v o lv in g th e fo u r a n g l e s ( c a 1 0 0 ° ) a r e s l i g h t l y s m a l le r t h a n t h e C u — O — N a b r i d g e b r i d g i n g p h e n o x o o x y g e n a t o m s ( 2 .6 5 2 ( 2 ) — 2 6 9 9 ( 2 ) A) a re s i g n i f i c a n t ly s h o r t e r t h a n t h o s e i n v o l v i n g t h e f o u r e t h o x y o x y g e n a to m s ( 3 .0 0 3 ( 2 )— 3 1 6 6 (2 ) A) T h e ra n g e o f th e b o n d a n g le s m t h e c o o r d i n a ti o n e n v i r o n m e n t o f K ( l ) i s 5 1 . 4 8 ( 6 ) — 1 7 4 4 0 ( 7 ) ° T h e s t r u c t u r e o l [ { ( C u 1 IL l ) i K '2 ( / < - N O i ) l( N O ? ) ] u n i t c o n s i s t s o f t h e t n p le - d e c k e r c a t i o n a n io n [{(Cu i 1Li )1K[2(m -N0 1 ) } ] + a n d a n i t r a te I n t h e [ |( C u llL l ) 3 K 0 ( / < - N O i ) ] ] + c a t i o n , t h e t w o p o t a s - s t u m ( I ) t o n s a r c s a n d w i c h e d b e t w e e n a p a i r o f [ C ^ 'L 1 ! m o i e t i e s a n g l e ( c a . 1 0 3 ° ) tn c o m p o u n d 1 . T h e C u - O ( p h e n o x o ) — K ( 2 ) b o n d a n g l e s in i h e t n p l e - d e c k e r s y s t e m l i e i n t w o d i s t i n c t r a n g e s : th o s e (c a 1 0 3 ° ) i n v o lv i n g t h e t e r m i n a l c o p p e r ( ll ) c e n t e r s a r e m u c h s m a l l e r t h a n t h a t ( c a . 1 1 0 ° ) i n v o lv i n g t h e c e n t r a l c o p p e r ( I I ) c e n t e r . T h e C u - - - K d i s t a n c e s ( 3 5 2 — 3 .9 0 A) in v o lv in g K (I) a n d K (2 ) m 2 a re s ig n ific a n tly lo n g e r th a n th e C u - ” N a d is ta n c e ( 3 .3 5 A) in 1 . T h e m o le c u la r g e o m e try (T a b le s S 3 and S 4 , S u p p o rtin g E ach ot I n f o r m a t io n ) o f t h e s q u a r e p l a n a r c o o r d i n a ti o n e n v i r o n m e n t o f t h e t w o p o t a s s t u m ( I ) i o n s , K ( 2 ) a n d K ( 3 A ) , a r e c o o r d in a t e d to th e fiv e c o p p e r(Il) c e n te rs in 2 a re s im ila r to th a t in c o m p o u n d s th e tw o p h e n o x o ( 0 ( 1 0 ) a n d 0 ( 1 1 ) fo r K (2 ), 0 ( 1 8 ) a n d 0 ( 1 9 ) 1 a n d 4 — 6 7 a In th is c a s e a ls o , th e C u — N b o n d le n g th s a re r e s u l t in g in t h e l o r r n a u o n o l t h e t n p l e - d e c k e r s y s t e m Crystal Growth & Design, Vol A C V '-E th y le iie b is (3 -e th o x y s a lie y la ld im in e ) C o m p le x e s trails C u — O d is ta n c e T h e transoul a n g le s a n d th e a v e ra g e s lig h tly lo n g e r th a n its re s p e c tiv e ra n g e s o f th e asoid a n g le s , 9, No S, 2009 3607 e x a m p le c o n ta in in g a n a lk a li m e ta l to n ) a r e th e m a jo r o u tc o m e s o f th e p r e s e n t in v e s tig a tio n d e v ia tio n o f th e d o n o r c e n te rs , a n d th e d is p la c e m e n t o f th e m e ta l a rc , A c k n o w le d g m e n t. F in a n c ia l s u p p o r t f to m th e D e p a r tm e n t re s p e c tiv e ly , 8 4 1 1 (1 1 )— 9 4 5 8 (1 0 )° . 1 7 4 3 6 ( 1 0 ) -1 7 8 8 0 (1 0 )° . o f S c ie n c e a n d T e c h n o lo g y , (h e G o v e r n m e n t o f I n d ia ( S R /S 1 / io n fro m th e c o rre s p o n d in g 0 0 0 3 -0 082 A, a n d 0 0 0 4 -0 020 Cocrystallizalion in 3d b im e ta llic le a s t-s q u a re s s y s te m s 1 and N 20 2 p la n e A 1 C - 1 2 /2 0 0 8 ) , is g r a te f u lly a c k n o w le d g e d 2 . A s a lre a d y m e n tio n e d , th e 3 d - [ { C u " L ,M " ( H 2O h ) { C u n L 1 )2 ](C 1 0 4 ). ( 4 — 6 ) a re [ 2 x 1 + 1 x 2 ] s e lf-a s s e m b le d c o c ry s ta ls o f d m u d e a r ]Cu iiL1Mii(H>0 )< ]2 + c a tio n '* E n c a p s u la tio n o f m o ie tie s and tw o m o n o n u c le a r ]C u n L '] tw o o f th e th re e c o o rd in a te d w a te r m o le c u le s m th e tw o 0 4 c o m p a rtm e n ts o f tw o m o n o n u c le a r G o v e r n m e n t o f I n d ia , a n d R K SH th a n k s C S 1 R , th a n k s C e n tre f o r R e s e a r c h in N a n o s c ie n c e a n d N a n o te c h n o lo g y . U n iv e rs ity o f C a lc u tta , f o r p r o v id in g f e llo w s h ip s . J .A .K H and H A S w o u ld lik e to th a n k th e E P S R C E P /E 0 4 8 9 9 4 /1 f o r f in a n c ia l a s s is ta n c e S u p p o rtin g I n f o rm a tio n A v a ila b le : F ig u re s S I — S 2 , T a b le s S I — S 5 , s p e c ie s is th e re a so n fo r th e fo rm a tio n o f th e 3 d -3 d c o c rv s ta ls . a n d c ry s ta llo g ra p h ic d a ta 1 1 1 O F fo rm a t fo r c o m p o u n d s 1 a n d 2 T h e s e m a te ria ls a re a v a ila b le fre e o l c h a rg e v ia th e In te rn e t a t h ttp // In [ [ C u “ L lN a I(H 20 ) 2 } { C u ,,L 1 } 2J (N 0 ,!) (1 ), th e re a re tw o c o o r­ p u b s a c s o rg d in a te d w a te r m o le c u le s a n d e a c h o f th e s e a re e n c a p s u la te d m th e 0 4 c o m p a rtm e n t o f tw o m o n o n u c le a r s p e c ie s E v id e n tly , c o m p o u n d 1 . s im ila r to 4 — 6 . is a [ 2 x 1 + 1 x 2 ) c o c ry s ta l o f d tn u c le a r [C u ,IL lN a I(H 2 0 ) 2 ]+ [C u ^ L 1] m o ie tie s In th e c a tio n c a se of and tw o m o n o n u c le a r [ (( C u l,l J ) 2 K l} ( N 0 4) ] - [ { (C u n iJ )4K '2(/r-N C h )} (N O -,)] - 0 2 T + 0 (2 ), o n e m n u c le a r d o u b le D o w n lo a d e d b y U N IV O F C A L C U T T A on A u g u s t 13, 2 0 0 9 P u b lis h e d o n J u ly 6, 2 0 0 9 o n h ttp //p u b s a c s o rg j d o t 10 1 0 2 1 /cg 9 0 0 3 4 1 r d e c k e r c a tio n [(C u I1L 1)2 K ,]+ a n d o n e p e n ta n u c le a r tn p le - d e c k e r c a tio n [(C u IIL 1)3 K l2 (M -N C h )]+ c o e x is t in a s in g le c ry s ta l E v i­ d e n tly , c o m p o u n d 2 is a [ 3 x 1 + 5 x 1 ] c o c ry s ta l o f a d o u b le d e c k e r a n d a tn p le -d e c k e r s y s te m Conclusions T h e c o m p o s itio n o f 3 d -4 f a n d 3 d -3 d c o m p o u n d s d e n v e d fro m M N '-e th y lc n c b is (3 -e th o x y s a lic y la ld im m c ) (H 2 L ') a re d m u d e a r a n d te tra m e ta llic d m u d e a r— m o n o n u c le a r c o c ry s ta ls , re s p e c ­ tiv e ly W e s ta rte d th is in v e s tig a tio n to c x p lo ic th e c o m p o s itio n o f th e p io d u c ts o b ta in e d o n re a c tio n o f th e in c lu s io n c o m p o u n d f C u ^ U c f H iO ) ] a n d th e a lk a li m e ta l s a lts A s d is c u s s e d , th e c o m p o u n d [{ C u ilL lN a I( H 2 0 )2 H C u llL l } ;](N O i) (1 ) c o n ta in in g c o p p c r( ll) a n d s o d iu m (I) is a |2 x 1 + 1 x 2 J c o c ry s la l. s im ila r to th e 3 d -3 d c o m p le x e s . T h e ic a s o n o f th e c o c ry s ta lh z a tio n in 1 is s im ila r to th a t o f th e 3 d -3 d c o c r y sta ls It is in te re s tin g to n o te th a t te n d e n c y o f p o te n tia l e n c a p s u la tio n o f a w a te r m o le c u le in th e v a c a n t 0 4 c a v ity ol th e m o n o n u c le a r [C u IIL l] s p e c ie s e n fo rc e s s o d iu m (I) to b e h a v e s im ila rly lik e 3 d m e ta l 1 0 n s E v id e n tly , th is u n p re c e d e n te d s tru c tu ra l re se m b la n c e o f a n a lk a li m e ta l io n w ith 3 d m e ta l 1 0 1 1 s p o s s e s s e s im p o rta n c e in s tru c tu ra l c h e m is try . It m a y b e m e n tio n e d a t tin s p o in t th a t th e C u 1!N a ' c o m p o u n d s d e n v e d fro m 3 - m e th o x y s a h c y la ld e h y d e -d ia m m e lig a n d s a re d m u d e a r T h e s e c o n d title c o m p o u n d [{ (C u llL 1)2K 1} (N O i)]* [{ (C iiI,L 1) ,K 12 (/i-N O i)} (N O .0 ]* '0 .2 H 2O (2 ) is a c o c ry s ta l 0 1 a d o u b le -d e c k e r a n d a tn p le d e c k e r m o ie ty A s , to th e b e s t o f o u r k n o w le d g e , th e re is o n ly o n e le p o ite d e x a m p le o f d o u b le d e c k e r— trip le -d e c k e r c o c r y sta l, th e c o m p o s itio n o f th e c o m ­ p o u n d 2 is a lso a n im p o rta n t a s p e c t. T h e c o m p o s itio n o f c o m p o u n d 2 is d iffe re n t th a n th o s e o f th e c o m p o u n d s 1 a n d p re v io u sly re p o rte d te tra m e ta llic a s s e m b lie s [ ( C u ,IL 1M ll(H 20 ) ;) { C u " L ' } 2 ](C 1 0 4 ) , (M = C u (4 ), C o (5 ) o r M n ( 6 )) .7 a H o w e v e r, th e s im ila rity o f a ll th e 3 d -3 d o r 3 d -a lk a h m e ta l c o m p o u n d s 1 . 2 , a n d 4 - 6 is th a t th e s e a re c o c ry s ta ls It s e e m s th e re fo re th a t th e lig a n d s y s te m H 2 L ' h a s a p o te n tia l te n d e n c y to s ta b iliz e c o c rv sta ls o f d iff e r e n t c o m b in a tio n s o f m e ta l io n s a n d o f d iffe re n t c o m p o s itio n s It s h o u ld h o w e v e r b e n o te d th a t, w h ile th e c o e x is te n c e o f d if le re n t m o ie lie s m 1 and 4 — 6 can be e x p la in e d o n th e b a s is o f th e h y d ro g e n b o n d in g in te ra c tio n s o f th e 0 4 c a v ity o f [C u 11! -1] w ith th e w a te r h y d ro g e n s , th e re a so n f o r c o c ry s ta lh z a tio n o f a d o u b le - d e c k e r a n d a tn p le - d e c k e r u n it m 2 c a n n o t b e ra tio n a liz e d To s u m m a riz e , th e s tru c tu ra l re s e m b la n c e o f s o d u u n (l) w ith 3 d m e ta l to n s a n d a s e c o n d e x a m p le o f a d o u b le - d e c k e r— tn p le -d e c k e r c o c ry s ta l (th e first R e f e re n c e s (1 ) (a ) R o b so n , R In Comprehensive Supramolecular Chemistry A tw o o d J L . D a v ie s J 1: D M a c N ie o l, D D , V o g tie F T o d a K B , H d s . P e rg a m o n O x fo rd , U K ., 1 9 9 6 , V o l 6 p 7 3 3 tb ) B lak e . A J . O b a m p n e s s , N R , H u b h e rsle y P W ith e rs b y , M A ., S c h ro d e r, M Coord Cheat Rev 1 9 9 9 , 183, 1 1 7 (c ) S a u v u g e , J - P , E d Transition Metals ill Snpramotecular Chemistry, Perspectives lit Supramolecular Chemistry 5, Wiley L o n d o n , 1 9 9 9 (d ) D e sira jti, G R . E d The Crystal as a Snpramoleadar Entity Perspectives m Supramolecular Chemistry 2, W ile y L o n d o n , 1 9 9 6 (e ) B ra g a , D , G rc p io m , F , O rp e n , A G Crystal Engineering From Molecules and Crystals to Materials, K lu w e r A c a d e m ic D o rd re c h t T h e N e th e rla n d s. 1 9 9 9 (f) B ra g a , D , M a im , L ., P o lu o , M , S c a c c ia n o c e L , C o ja z z t, G G rc p io m , F Coord Client Rev 2 0 0 1 ,2 /6 .2 2 5 (g ) M o u lto n , B , Z a w o io tk o . M J Client Rev 2 0 0 1 101. 1 6 2 9 (2 ) (a ) M c M a n u s . G J , P e rry IV , J J , P e rry , M , P e rry . M , W a g n e r B D , Z a w o ro ik o M J J Am Client. Soc 2 0 0 7 , 129, 9 0 9 4 (b ) M a rv e l, ,V 1 R , L e s a g e , J B a c k , J , H n la s y a n ra m , P S , S te rn C L , P o e p p e lm e ie r, K R J. Am Chan Soc 2 1 H 1 7 , 129, 1 3 9 6 3 (c )N o u a i, F . E u b a n k . J F , B o u s q u e t T . W o H a ,, L , Z a w o ro ik o M J E d rfa o u d t, M J Am Chem Soc 2 0 0 8 ,' 130 1 8 3 1 (d ) U e m u ra , K . S a ilo , K , K ita g aw a S , K ita , H J Am Chem Soc 2 0 0 6 , 128, 1 6 1 2 2 (3 ) (a )M illw a rd A R .Y a g h i.O M J Am Chem Soc 2 0 0 5 . 127, 1 7 9 9 8 (b ) R o w s c ll, J L C Y a g h i. O M J Am Chem Soc 2 0 0 6 128, 1 1 0 4 (c ) N a y a k . M . K o n e r. R , S to e ck h -F .v a n s, H , M o h a n ta , S Crysl Growth Des 2 0 0 5 . 5 , 1 9 0 7 (d ) D u tla , B , A d h ik ary , B B a g , 1 > , F lo rk e . U N a g K J Chem Soc, Dalton Trans 2 0 0 2 , 2 7 6 0 (e ) A g n ih o tri. P , H rn ig n th o d i E . P a u l. P , G h o s h , P K Eur J Inorg Chem 2 0 0 6 , 3 3 6 9 " (4 ) (a ) R e m c n a r, J P , M o n s se tie , S L , P e ters o n , M L , M o u lto n , B , M a c P lie e , J M , G u z m an , H R , A lm a is s o n O J Am Chem. Soc 2 0 0 3 125. 8 4 5 6 (b ) K e y e s , T F .. F o rste r, R J , B o n d . A M . M ia o , W J Am. Chem Soc 2 0 0 1 . 123, 2 8 7 7 (e ) K o s fm n a , H M iy a m o to , H , Y a g i, I , U o s a k i, K Crysl Growth Des 2 0 0 4 . 4, 8 0 7 (d ) L e M a g u e re s, P „ H u b ig . S M , L m d e in stn , S V , V e y a . P K o c h i. J K J Am Chem Soc 2 0 0 0 . 122 , 1 0 0 7 3 (5 ) (a ) B is . J A M c L a u g h lin , D L , V ish w e s h w a r, P , Z a w o ro tk o , M J Crysl Growth Des 2 0 0 6 , 6 , 2 6 4 8 (b ) S tab ly , G P Cryst Growth Des 2 0 0 7 7 1 0 0 7 (c ) K a rk i S , F iib id n . L . F n s c f, T . J o n e s \V Org Lett 2 0 0 7 .9 ,3 1 3 3 (d ) V o g t, F G . C la w so n . J S S tro h n ic ie r, M , E d w a rd s A J , P h a m , 1 N , W a tso n . S A Cryst Growth Des 2 0 0 9 , 9 , 9 2 1 < e) W a n g , W -H , X i. P -H , S u , X -Y , L a n , J -B M a o , Z -H , Y o u , J -S , X ie , R -G Cryst Growth Des 2 0 0 7 7 , 7 4 1 (1 ) M a c G illiv ra v , I. R . P n p a e fstn tln o u , G S , F n 5 £ id , T H a m ilto n , T D , B u c a r, D -K , C h u , Q . V a rs h n e y D B . G e o rg ie v I G Ace. Chem Res 2 0 0 8 , 41, 2 8 0 (6 ) (a ) K o s h n n a , H , N a g a n o , M , A s a h i, T J Am. Client Soc 2 0 0 5 , 127, 2 4 5 5 (b ) C h ild s , S L , C h v a ll, L J D u n la p , J T , S m o len s k a y a . V N S ta h ly , B C , S ta h ly , G P J Am. Cltem Soc 2 0 0 4 126, 1 3 3 3 5 < c) R e m c n a r, 1 F , M o n s se tie , S I .. P e ters o n , M L , M o u llo n . B , M a c P lie e , i M , G u z m a n , H R , A ln ia rs so n . O J Am Chem. Soc 2 0 0 3 , 125. 8 4 5 6 (d ) K e y e s , T E F o rste r, R J . B o n d , A M . M iao , W J Am Chem Soc 2 0 0 1 123 2 8 7 7 (e ) O lc m k , B . B o e s e , R . S u slm a n n , R Cryst Growth Des 2 0 0 3 , 3, 1 7 5 It) P a n . F , W o n g . M S . G ia m h e h , V , B o ssh a rd . C . G u n te r. P J Am Chem. Soc 1 9 9 6 , 118. 6 3 1 5 (7 ) (a ) N a y a k , M . K o n e r R „ P in , H -H , F lo rk e , U . W e i, H -H M o h a n ta , S Inorg Chem 2 0 0 6 . 45, 1 0 7 6 4 (b ) N a v a k . M , H a z ra , S . L c m o in e , P K o n e r. R , L u c a s , C R . M o h a n ta s ' Polyhedron 2 0 0 8 , 2 7 , 1 2 0 1 (c ) C h o u . C -C . S u , C -C , T s a i. H - I ,, L n , K -H Inorg Chem 2005 3608 Crystal Giowth & Design, Vol 9, No 8, 2009 D o w n lo a d e d b y U N IV O f C A L C U T T A o n A u g u st 13, 2 0 0 9 P u b lish e d o n Ju ly 6, 2 0 0 9 o n h ttp //p u b s aes o rg j d o t 10 )0 2 1 /c g 9 0 0 3 4 1 r 44 6 2 8 (d ) P u U nM n d a v .ir. M B u tch e r, R J , A d d iso n A W Inorg Client 1 9 9 6 3 5 4 6 7 (e )H o !z R C T h o m p so n L C Inorg Chem 1 9 9 3 32 5 2 5 1 (f) J o n e s P V a g g R S W illia m s P A Inorg Client 1 9 8 4 , 23 4 1 1 0 tg ) E v a n s,"W J , B o y le T J , Z d le r. J \V Inorg Chon 1 9 9 2 3! 1 1 2 0 (8 ) H u h e e y E K e ite r, E A K e ite r. R L In Inorganic Chemistry Principles of Structure ami Reactivity 4 th e d H a rp e r C o llin s C o lle g e P u b lish e rs N e w Y o ik 1 9 9 3 . C h a p te r X V (9 ) B u c k . H H a u ik , T . N a th c r, C B a v in s Z A n ^ e w Chem, bit Ed 1997 56, 638 (1 0 ) (a ) L i. R . Z h a n g , Y . Z h o u Y D o n g S , Z h a n g , X , B ia n Y , Jia n g , J Cryst Growth Des 2 0 0 8 , 8 4 4 5 4 (b ) Je o n , Y -M , H c o , J . B ro w n . A M M irk m . C A Organometalhcs 2 0 0 6 2 5 2 7 2 9 (c ) M a tsu o . Y .T a h a ra K N a k a m u ra E J Am Chem Soc 2 0 0 6 , 128 7 1 5 4 (d ) M a rertak , R W ie lo p o h k i, M . G a y a th n , S S , G u ld i, D M M a tsu o , Y . M a tsu o K , T a h a ra , K . N a k a m u ra , E J Am Chem Soc. 2 0 0 8 , 130, 1 6 2 0 7 (1 1 ) (a )T ck e u c h i M Irn a d a . T S h m k a i, S Angew Chem, Int Ed 1 9 9 8 37 2 0 9 6 (b ) S p y ro u h a s G A C o tu sole lo s A G R a p to p o u lo u C P . T e rm , A Inorg Client 1 9 9 5 , 34, 2 4 7 6 (c ) Ish ik a w a N S u g U a M , O k u b ss T T a n a k a N lin o T K a i/a i, Y Inorg Client. 2 0 0 3 , 42, 2 4 4 0 . (d ) O tsu k i. J K a w ag u c h i S , Y a m a k a w a T A sa k a w a . M . M iy a k e K Langmuir 2 0 0 6 . 2 2 , 5 7 0 8 (e ) G re k , A G B a so v a , T . L u n e a u , D , Ix b n m , C K o P tso v E , Ilassa n . A K , A h sc n , V Inorg Client 2 0 0 6 45, 1 6 6 7 (1) Y e , T T a k am i. T , W a n g , R . Jia n g , J . W e iss. P S J Am Chem Soc 2 0 0 6 , 128, 1 0 9 8 4 (1 2 ) B u m Y L i I... D o u , J , C h e n g D Y Y U R M a C N g , I) K P , K o b a y a sh i, N . Jia n g , J Inorg Chem 2 0 0 4 , 43. 7 5 3 9 (1 3 ) (a ) V re b ro e k . H . B e h re n s, U , W e iss, E Angew Chem, Int Ed 1 9 9 4 , 3 3 .1 2 5 7 (h ) S itz m a n n , H . W a ite r M D , W o lm e rsh a u ser G A n g e iv Char, Int Ed 2 0 0 2 41, 2 3 1 5 (c ) F a ssle r, T , H o ffm a n n R , H o ffm a n n . S , W o rle , M Angew. Chem, bit Ed 2 0 0 0 , 39, 2 0 9 1 (d ) U a h e , G W , L ia b le -S a n d s, L M , fn c arv tto . C D , L a m , K -C , R h e tu g o ld A L Inorg Chem 1 9 9 9 38 4 3 4 2 (e ) D o h m e ic r C B a u m , E E c k er A . K o p p e R S c h n o c h e l H Organometalhcs 1 9 9 6 15, 4 7 0 2 (1 4 ) (a ) W o o d m a n T J T h o n ito n -P e lt M . B o c h m a n n M J Chem Soc, Chem. Comman 2 0 0 1 3 2 9 (b ) B re u m g, H J . B u rfo rd , N R o sie r R A ttg e ir Chem, bit Ed 2 0 0 0 3 9 , 4 1 4 8 (c ) Ile rb e n e h G E E c k e n ra th H J . E n g lc it, U Organometalhcs 1 9 9 7 , 16,4 2 9 2 (d )G o h , L Y ., W o n t* R C S C h u , C K J Chem Soc, Dalton Trans 1 9 9 0 , 9 7 7 >’e ) L iu , S L , N g \\ S C h u , H S . W e n T B X ia .H .Z h o u , Z Y e L n u .C P . h a , G Angew Chem, Int Ed 2 0 0 2 41, 1 5 8 9 (f) P n c g n , 1 L , D o c rrer 1. H , R e e s, L II , G re e n , M L H J Chan Soc, Chem. Common 2 0 0 0 , 7 7 9 (g ) L i S - D , M ia o , C -Q , R e n , G -M . G u o J -C Ear J Inorg Chem 2 0 0 6 2 5 6 7 (h ) C h a m b rie r, ! , H o g h e s D 1 -, S w a rts j C , Isa re B C o o k , M ) J Chem Soc, H azm et al (1 5 ) (1 6 ) (1 7 ) (1 8 ) (1 9 ) (2 0 ) (2 D (2 2 ) (2 3 ) (2 4 ) (2 5 ) Chem Common 2 0 0 6 .3 5 0 4 (i) H e ib e n c h , G E , E n g le rt, U , M a rk o n , P , H o fm a n n P Organometalhcs 1 9 9 3 , 7 2 , 4 0 3 9 (a ) Jia o g J , N g D . K . P Z e e Chem. Res 2 0 0 9 42, 7 9 (b ) L e i. S -B , D e n g , K , Y a n g . Y -1 ., Z e n g , Q -D , W a n g , C , Jia n g , J -Z . Nano Utt 2 0 0 8 . 8, 1 8 3 G (e.) C h e n , Y . L i, R , W a n g . R . M a , P D o n g , 5 G a o , Y , L i, X , Jia n g , J Langmuir 2 0 0 7 , 2 3 , 1 2 5 4 9 (d ) S c h w e ik a rt, K -H , M a lm o v sk n . V L . Y a sse n , A A . L i, J . L y se n k o . A B , Jlo c ia n , D F . L in d se y . J S Inorg Chem 2 0 0 3 ,4 2 7 4 3 1 (c ) L u , G C h e n , Y . Z h a n g , Y B a o , M , B ia n . Y , U . X , Jia n g J J Ant Chem Soc 2 0 0 8 , 130, 1 1 6 2 3 (a ) Jo n e s. J N , M o o re , J A , C o w ley . A H , M a c d o n a ld , C L B J Chen Soc., Dalton Trans 2 0 0 5 ,3 8 4 6 (b ) C o w le y , A H J Chem Soc, Chem Common 2 0 0 4 , 2 3 6 9 (a ) Z h e n g H W a n g R , Z h u P , L a i, Z H a n , J , C h o i, C -F , N g D K P , C u i, X , M a . C , Jia n g . J Inorg Chem 2 0 0 4 43, 4 7 4 0 (b ) K a u fm a n n , L V itz e , H , B o lte M , L e rn e r, H -W , W a g n e r, M Organometalhcs 2 0 0 7 2 6 ,1 7 7 1 (c )llk h e c h i A H , M e rce ro J M . S ila n e s, I . B o lte M S c h e ih itz , M , L e rn e r. H -W , U g a ld e , J M W a g n e r. M J Am Chem Soc 2 0 0 5 , 127, 1 0 6 5 6 (a ) T ik h o n o v a . I A , T u g ash o v , K I D o lg u sh in . F M . P e tro v sk u . P V .S h u r.V B Organometalhcs 2 0 0 7 , 26, 51 9 3 (b ) K u a , J . T o m lin , K M J Phys Chem A 2 0 0 6 , 110, 1 1 9 8 8 (c ) d e B ia rn . F F . C o rsm i, M , Z a n ello , P , Y 'ao , H , B lu h m M E , G rim e s, R N i Am Chem Soc 2 0 0 4 , 7 2 6 , 1 1 3 6 0 (a ) M iy a sak a , H , M a isu m o to , N , O k a w a , II , R e N , G a llo , E , F lo n a n i, C Angew Chem, Int Ed 1 9 9 5 . 34, 1 4 4 6 (b ) M iy a sak a , H , M a isu m o to , N , O k a w a , H . R e , N , G a llo , E . F lo n a n i. C J Am Chem Soc 1996, 118, 9 8 1 (c ) M iy a sa k a , H . M a isu m o to , N , R e N , G a llo E , F lo n a n i. C Inorg Chem 1 9 9 7 , 3 6 , 6 7 0 C h n ste d o u lo u , D ., G e o rg e , C , K e e fer L K J Chem Soc, Chem Commun 1 9 9 3 , 9 3 7 (a ) Y a n g , X -P Jo n e s, R A . O y e , M M . H o lm e s. A L , W o n g W -K Cryst Growth Des 2 0 0 6 , 6, 2122 (b ) Y a n g X , Jo n e s, R A J Am Chem. Soc 2 0 0 5 , 127, 7 6 8 6 (c ) Y a n g , X -P . Jo n e s, R A , W o n g , W -K J Chem Soc, Dalton Trans 2 0 0 8 , 1 6 7 6 (a ) K o n e r, R ., L in . H -H , W e i, H -H , M o h a n ia , S Inorg Chan 2 0 0 5 , 44. 3 5 2 4 (b ) K o n e r R , L e e , G -H W a n g . Y , W e i, H -H , M o h a n ta S Ear J Inorg Chan 2 0 0 5 1 5 0 0 (a ) C u n n in g h a m , D : M c A rd le, P . M itc h e ll M C h o n c h u b h air, N N O 'G a ia , M , F ran e e sc h i, F . F lo n a n i, C Inorg Chem 2 0 0 0 , 3 9 , 1 6 3 9 lb ) C o sie s, J -P , N o v itc h i, G , S h o v a. S , D a h u n , F , D o n n a d ie u . B T u c h u g u e s, J -P Inorg Chan 2 0 0 4 43, 7 7 9 2 Broker SAINT-Plus, V e rsio n 6 4 5 , B ro k e r A X S In c M a d iso n W isc o n sin , U S A , 2 0 0 3 S h e id rx k G M Acta Oystallogr 2 0 0 8 A64 1 1 2 C G 900341R w w w rs c .o rg /cry ste n g co m m PAPER | C ry s tE n g C o m m Syntheses and crystal structures of CunBiin, CunBanCun, [CunPbu]2 and cocrystallized (UVI02)2.4Cun complexes: structural diversity of the coordination compounds derived from \,A -ethylenebis(3-cthoxysalicylaldiiniine) i Susanta Hazra,“ Sujit Sasmal," Malabika Nayak,a Hazel A. Sparkes,* Judith A. K. Howard* and Sasankasekhar Mohanta*" Received 6th July 2009, Accepted IOth September 2009 First published as an Advance Article on the n eb 22nd September 2009 D O I: 1 0 .1 0 3 9 /b 91 3 4 0 8 e S y n th eses, c h a ra c te riz a tio n a n d stru c tu res o f h e te ro d m u c le ar c o m p o u n d [C u , 1 L ,B il"(N 0 3 ) 3 ] (1 ), sa n d w ic h ty p e h e te ro trin u c le a r c o m p o u n d [(C u "L ,)2B al,(N C > 3 )2] 0 2 H 20 (2 ), h e te ro te tra n u c le a r c o m p o u n d [{ C u n L 'P b n (|.i-N 0 3 )(N 0 3 )}2] (3 ) a n d h e te ro h e x a n u c lea r [2 x 1 + 1 x 4 ] c o c ry sta l [(U v,0 2)2(n -H 20 )2(N 0 3)4] 4 [Cu "L'c {H20 )] (4 ) a re d e sc rib e d in th is in v e stig a tio n (H 2L ' = N,N’- e th y le n e b is(3 -c th o x y sa lic y la ld iim m e )) C o m p o u n d s 1 a n d 4 c ry sta lliz e in o rth o rh o m b ic P 2 i2 i2 i a n d tric h m c Pi sy stem s, resp ectiv ely , w h ile th e sp a c e g ro u p o f c o m p o u n d s 2 a n d 3 is m o n o c lim c Fife T h e stru c tu re o f 1 c o n sists o f a d ip h c n o x o -b rid g e d C u 'W d in u c le a r c o re c o n ta in in g th re e c h e la tin g n itra te s a n d a 1 0 -c o o rd m a te b ism u th (lll) c e n tre T h e d in u c le a r c o re s a re se lf-a sse m b le d to tw o d im e n sio n s th ro u g h in te rm o le c u la r n itra te o x y g en c o p p e r(II) se m ic o o rd in a tio n a n d w e a k C -H • O h y d ro g e n b o n d s. C o m p o u n d 2 is a d o u b le -d e ck e r C u "B a "C u n sy stem in w h ich a b a riu m (II) io n is sa n d w ic h e d b etw een tw o m o n o n u c le a r [C u "L '] m o ieties T h e b a n u m (II) c e n tre is 11-c o o rd in a te , fo u r p h e n o x o a n d fo u r e th o xy o x y g en a to m s a n d o n e c h e la tin g a n d o n e m o n o d e n ta te n itra te io n s. C o m p o u n d 3 is a te tra n u c le a r sy ste m (d im er o f tw o d in u c le a r m o ie tie s) in w h ic h o n e n itra te is c h e la tin g , w h ile th e seco n d n itra te b e h a ve s a s b o th a c h e la tin g a n d b rid g in g lig a n d . T h e le a d (II) c e n tre is 9 -c o o rd in a te in th is c o m p o u n d C o m p o u n d 4 is a [2 x I + 1 x 4] c o c ry sta l o f o n e d ta q u a -b rid g e d d iu ra n y l(V I) m o iety , c o n ta in in g tw o c h e la tin g n itra te s a n d 8 -c o o rd in a ted h e x a g o n a l b ip y ra n n d a l u ra n ium (V I) c e n tre s a n d fo u r in c lu sio n sp ecies [C u u L 'c (H 20 )] T h e g o v e rn in g fa c to r fo r th e selfassem b led c o c ry sta lh z a tio n in 4 a re th e C -H -7c a n d C -H - O h y d ro g e n b o n d s T h e c o m p o u n d s re p o rte d in th is in v e stig a tio n a n d o th e r h e te ro n u c le a r sy stem s d e riv e d fro m A C V '-eth y len eb is(3 -e th o x y sa lic y la Id iin n n e ) in d ic a te th a t th is lig a n d sy ste m is a n im p o rta n t e x a m p le w h ic h g iv es rise to stru c tu ra lly d iv e rse h e te ro n u c le a r c o m p o u n d s In a d d itio n to th e stru c tu ral d iv e rsity , th e stru c tu ra l re se m b la n c e o f b ism u th (III) w ith la n th a m d e s(III) a n d u tiliza tio n o f n o n c o v a le n t in te ra c tio n s to fo rm self-assem b ly a n d c o c ry sta ls a re th e m a jo r o u tc o m e s o f th e p re se n t in v e stig a tio n s Introduction g o ld -g o ld , etc a re b e in g in c re a sin g ly u tilized to g e n e ra te self- a sse m b le d stru c tu res '~5 S tu d ies o n su p ra m o le c u la i in te ra c tio n s a n d self-assem b lies h a v e a ttra c te d m u c h a tte n tio n m re c e n t y e a rs 1-5 A e sth e tic b e a u ty , d e v e lo p m e n t o f n ew to p o lo g ie s a n d u tiliz a tio n a s fu n c tio n a l m a te ria ls o f th e su p ra m o le c u ia r a g g re g a te s a re th e m a jo r a sp e c ts in th is research a re a It m a y b e n o te d th a t n o n -c o v a lc n t in te r­ a c tio n s, n a m e ly , stro n g a n d w e a k h y d ro g e n b o n d s, C -H in te ra c tio n s, 7r ir sta ck in g , tc h a lo g e n -h a lo g e n , su lfu r-su lfu r, It is w ell k n o w n th a t so m e c ry sta ls m a y c o n ta in m o re th a n o n e c h e m ic a l sp ecies a n d th e se m u ltic o m p o n e n t c ry sta ls a re k n o w n a s c o c ry sta ls *“* It m a y a lso b e n o te d th a t, m c o m p a riso n to th e la rg e n u m b e r o f o rg a n ic c o c ry sta ls,M th e re a re o n ly a few m u ltic o m p o n e n t c o m p o u n d s c o n ta in in g o n ly m e ta l c o m p le x e s as th e c o m p o n e n ts9 T h e re fo re , w e feel th a t th is p o o rly e x p lo re d a re a d e se rve s m o re a tte n tio n The "Department of Chemistry, University of Calcutta, 92 A PC Road, Kolkata, 700 009. India E-mad sm.cti ehenslvvahoo co m, Fax' 5-9133-23519755 hDepartment of Chemistry, University of Durham, University Science Laboratories. South Road, Durham, DH1 3LE, United Kingdom f E le c tro n ic su p p le m e n ta ry in fo rm a tio n (E S I) a v a ila b le A d d itio n a l stru c tu ra l d e ta ils (T a b le S 1 -S 2 a n d F ig S 1 -S 3) C C D C re fe re n c e n u m b e rs 7 3 5 4 6 8 -7 3 5 4 7 1 fo r 1 -4 , re sp e c tiv ely F o r E S I a n d c ry sta llo g ra p h ic d a ta m C IF o r o th e r e le c tro n ic fo rm a t see D O I 10 1 0 3 9 /b 9 !3 4 0 8 e 4 7 0 | CrystEngComm, 2 0 1 0 , 1 2 , 4 7 0 -4 7 7 3d^4f com pounds d e riv e d fro m iV ,A "-eth y len eb is- (3 -e th o x y sa lic y la ld n m m e ) (H 2L \ S ch em e 1) a re d isc re te d m u c le a r sp e c ie s,10 w h ile th e 3 d -3 d c o m p o u n d s a re [2 x 1 + 1 x 2] c o c ry sta ls o f d in u c le a r a n d m o n o n u c le a r u n its9" R e c e n tly , w e h a v e a lso o b se rv e d th a t sim ila r [2 x 1 + 1 x 2] c o c ry sta lliz a tio n ta k e s p la c e in a 3 d -N a (I) c o m p o u n d in d ic a tin g e n fo rc e m e n t o f stru c tu ra l re se m bla n c e o f 3 d m e ta l io n s w ith a n a lk a li m e ta l to n 9c A g a in , in te re stin g e x a m p le s o f a [3 x 1 + 5 x 1] c o c ry sta l o f a d o u b le -d e c k e r a n d a trip le -d e c k e r sy stem s h a v e b een o b se rv e d T h is jo u rn a l is © T h e R o y al S o ciety o f C h e m istry 2 0 1 0 H , 2 .7 8 , N , 8 .7 0 . IR ( c m -1, K B r ) . n ( C = N ), 1 6 3 8 v s , i-(m tra tc ), 1449s, 1271s D a ta fo r 2 C o lo u r- d a rk re d Y ie ld - 0 2 1 5 g (7 8 % ). A n a l. C a lc d fo r C 4 0 H 4 4 4 N 6 0 [4 2 C u 2 B a C , 4 3 .6 0 , H , 4 0 6 , N , 7 6 3 . F o u n d C , 4 3 .6 7 ; H, 4 .1 1 , N, 7 55 IR ( c m 1, K B r) r(H 20 ), 3424w , i- ( C = N ), 1 6 3 2 v s ; K m tr a te ) , 1 4 4 9 s , 1 3 0 8 s D a ta fo r 3 C o lo u r, d a r k re d . Y ie ld 0 .2 8 1 g (7 5 % ). A n a l C a lc d fo r C 4O H 44 N 8O 2 0 C u 2 P b 2 : C , 3 2 0 7 ; H , 2 9 6 , N , 7 4 8 3 2 1 5 , H , 3 0 5 ; N , 7 .5 2 . IR ( c m -1, K B r ) Found. C , i< C = N ), 1637vs, ii( n itr a te ) , 1 4 5 1 s , 1 2 8 7 s . D a ta fo r 4 C o lo u r - d a r k re d Y ie ld 0 2 6 6 g ( 8 3 % ) A n a l C a lc d fo r C S U H i0 0 N 1 20 3 8C u 4 U 2 . C , 3 7 .4 2 , H , 3 9 2 , N , 6 5 5 F o u n d : C , 37 50; H, 3 85; N, 6 52. IR ( c m -1, K B r). i-(H 2 0 ) , 3398m ; j> (C — N ) , 1 6 3 1 v s ; K m tr a te ) , 1 4 6 7 s , 1 3 0 3 s ; K U = 0 ) ,9 2 2 m h 2l ‘WVUTSRQPONMLKJIHGFEDCBA C ry s ta l s tru c tu re d e te rm in a tio n s o f 1 4 S chem e 1 C ry s ta llo g ra p h ic d a ta fo r 1 - 4 a re s u m m a riz e d in T a b le 1 X -R a y d iffr a c tio n d a ta fo r a ll fo u r c o m p o u n d s w e re c o lle c te d a t 1 2 0 K m a 3 d - K ( I) c o m p o u n d d e riv e d fr o m th e s a m e lig a n d W e o n a B r u k e r A P E X C C D d iffr a c to m e te r a n tic ip a te d th e re fo re th a t th is lig a n d is a p o te n tia l m o ie ty to u s in g th e S M A R T s o ftw a re , w ith s u b s e q u e n t d a ta p ro c e s s in g s ta b iliz e c o c ry s ta ls I t w ill th e re fo re b e in te re s tin g to e x p lo re th e c a rrie d o u t m S A I N T 11 A ll o f th e s tru c tu re s w e re s o lv e d b y c o m p o s itio n o f th e h e te ro n u c le a r c o m p le x e s w ith o th e r m e ta l d ire c t m e th o d s m S H F .L X S -O ? 1 1' a n d re fin e d b y fu ll m a tr ix le a s t a to m s in d ie p e rio d ic ta b le , n a m e ly , a lk a lin e e a rth , p -b lo c k a n d s q u a re s o n F m S H E L X L -9 7 ia > C o m p o u n d 2 d is p la y e d d is o rd e r 5f A c c o rd in g ly , w e h a v e re a c te d th e m o n o n u c le a r in c lu s io n in th e N C H 2C H 2 N s e c tio n s o f b o th lig a n d s , th e o c c u p a n c ie s o f c o m p o u n d [C u ,,L l c ( H 2 0 ) ] w ith th e n itr a te s a lts o f b is m u th (lll) , th e tw o p o s itio n s w e re d e te rm in e d b y s e ttin g th e s u m o f th e b a n u m ( II) , s y n th e s e s , le a d (II) and u r a n y l( V I) . c h a ra c te riz a tio n and H e re in , s tru c tu re s we re p o rt o f th e th e p ro d u c ts o b ta in e d in th e s e re a c tio n s . D a ta w e re c o lle c te d o c c u p a n c ie s fo r th e tw o p o s itio n s [N ( 2 A ) , C (1 1 A ), C (1 0 A ) a n d N ( 2 B ) , C (1 1 B ), C (1 0 B )] to b e 1 . T h e is o tro p ic d is p la c e m e n t p a ra m e te rs o f th e tw o n itro g e n a to m s w e re re fin e d b u t c o n ­ s tra in e d to b e in g th e s a m e a s w e re th o s e fo r th e fo u r c a rb o n a to m s T h e o c c u p a n c ie s o f th e g ro u p c o n ta in in g N ( 2 A ) re fin e d to Experimental 0 7 1 3 (7 ) a n d th e o c c u p a n c ie s fo r th e tw o p o s itio n s w e re fix e d in a r a tio o f 7 1 2 9 re s p e c tiv e ly T h e d is p la c e m e n t p a ra m e te rs w e re M a te ria ls a n d p h y s ic a l m e a s u re m e n ts s u b s e q u e n tly a llo w e d to re fin e fre e ly A ll th e re a g e n ts a n d s o lv e n ts w e re p u rc h a s e d fr o m c o m m e rc ia l s o u rc e s and used as re c e iv e d The m o n o n u c le a r in c lu s io n p ro d u c t [C u "L 'C ( H 2 0 ) ] w a s s y n th e s iz e d b y th e re p o rte d p r o ­ c e d u re 90 E le m e n ta l (C , H a n d N ) a n a ly s e s w e re p e rfo rm e d o n a P e rk m -E lm e r 2 4 0 0 I I a n a ly z e r IR s p e c tra w e re re c o rd e d fro m K B r d is k s o f th e s a m p le s o v e r th e ra n g e 4 0 0 -4 0 0 0 e n f1 o n a P e rk m -E lm e r R X IF T s p e c tro p h o to m e te r T h e s a m e p ro c e d u re w a s fo llo w e d fo r N ( 3 A ) , C (3 0 A ), C (3 1 A ), N ( 4 A ) a n d N ( 3 B ) , C (3 0 B ), C (3 1 B ), N ( 4 B ) , w ith th e o c c u p a n c y o f th e g r o u p c o n ta in in g N ( 3 A ) re fin in g to 0 6 6 7 (6 ) a n d th e o c c u p a n c ie s w e re fix e d in a r a tio o f 6 7 3 3 re s p e c tiv e ly R e s tra in ts w e re a p p lie d to th e C - N a n d C - C b o n d d is ta n c e s in th e s e c o n d c o m p o n e n t ( N 3 B ) to m a in ta in c h e m ic a lly re a s o n a b le b o n d le n g th s a n d th e a n is o tro p ic d is p la c e m e n t p a ra m e te rs o f th e n itro g e n a to m s w e re c o n s tra in e d to b e th e s a m e a n d re s tra in e d to b e a p p ro x im a te ly is o tro p ic T h e c h e la tin g n itra te g ro u p s w e re a ls o d is o rd e re d a n d th e ir o c c u ­ S y n th e s e s p a n c ie s w e re tre a te d in th e s a m e m a n n e r a s d e s c rib e d a b o v e ( C u " L 1B i" ,( N O j) jl ( I), |{ C u '‘L 1P b '1( p -N 0 3 ) ( N 0 3 ) }2 ] ( N 0 3 ).i| 4 ]Cu "L' c (H2 0 ) | (2 ), [N ( 5 A ) , 0 ( 9 A ) , O (1 0 A ), 0 ( 1 1 A ) ] re fin e d to h a v e a n o c c u p a n c y o f [< U '" 0 2 )2 ( p - H 2 Q )2 - 0 5 7 4 (7 ) a n d w a s fix e d a t 5 7 % w ith th e c o rre s p o n d in g g ro u p l( C u " T ') ,B a " ( N 0 3 )2 I 0 .2 H 2 O (4 ). (3 ) and These fo u r com pounds w e re o c c u p a n c y fix e d at 43% 0 ( 1 4 A )] re fin e d to n itra te have g ro u p [N ( 6 A ) , 0 ( 1 2 A ), th e a p p ro p ria te m e ta l n itra te s ( B a ( N 0 3 )2 fo r 2 , P b ( N O j)2 fo r 0 7 9 5 (4 ) a n d w a s fix e d a t 8 0 % w ith th e c o rre s p o n d in g g r o u p fix e d 3 a n d U 0 2 ( N 0 3 )2 6 H 2 0 fo r 4 ) at 20% T o a s tirre d s u s p e n s io n o f [C u " L ' C ( H 2 0 ) ] (0 2 1 8 g , 0 5 m m o l) 0 ( 1 3 A ), T he second p re p a re d in th e s a m e w a y a s d e s c rib e d b e lo w fo r 1 , e x c e p t u s in g an occupancy of T h e o r ie n ta tio n o f th e d is o rd e re d n itra te g ro u p s [N ( 6 A ) a n d N ( 6 B ) ] w a s d iffe r e n t, th e m a jo r c o m p o n e n t c h e la te s to in a c e to n e (5 0 m L ) w a s a d d e d fin e ly p o w d e re d b is m u th ( III) b a riu m (II) th r o u g h 1 o x y g e n a to m , w h ile th e m in o r c o m p o n e n t n itr a te p e n ta h y d ra te (0 4 9 g , 1 m m o l) A fte r s tir rin g fo r 1 h , th e c h e la te s th r o u g h 2 o x y g e n a to m s . T h e d iffe r e n t c o o r d in a tio n o f m ix tu re w a s filte re d to re m o v e th e u n re a c te d m e ta l n itr a te a n d th e m in o r c o m p o n e n t c re a te s a d d itio n a l s p a c e in th e c le a r re d c o lo u re d filtra te w a s k e p t fo r s lo w e v a p o ra tio n la ttic e a n d th e re w a s a p e a k n e a r th e n itra te g ro u p s th a t c o rre ­ A fte r a fe w h o u rs , d a rk re d c ry s ta llin e c o m p o u n d s c o n ta in in g s p o n d e d to a p p ro x im a te ly 1 /5 o f a s o lv e n t w a te r o x y g e n a to m , s in g le c ry s ta ls s u ita b le fo r X - r a y d iffr a c tio n p re c ip ita te d a n d w h ic h w a s fix e d a t 2 0 % m lin e w ith th e o c c u p a n c y o f N ( 6 B ) It w e re c o lle c te d b y filtr a tio n Y ie ld -0 2 8 5 g (7 0 % ) A n a l. C a lc d fo r was C 2 „ H 2 2N 5 0 I3 Cu Bi d iffe re n c e m a p C, 29 55, H, 2 73; N, 8 6 2 . F o u n d C , 2 9 .6 5 , T h is jo u r n a l is © T h e R o y a l S o c ie ty o f C h e m is try 2 0 1 0 n o t p o s s ib le to lo c a te h y d ro g e n a to m s m th e c ry s ta l th e F o u rie r In b o th o f th e d is o rd e re d n itra te g ro u p s , th e OystEngComm, 2 0 1 0 , 12, 4 7 0 -4 7 7 j 4 7 1 T a b le 1 C ry s ta llo g ra p h ic d a ta fo r 1 -4 1 2 3 F o rm u la FW C -„ H „ N sO ,,C u B i C jn H jjN /.O ij -> C u ? B a 81295 1100 43 C .,„ H 4 4 N 80 ,o C u ,P b 2 1498 29 C ry s ta l c o lo u r C ry s ta l s y ste m D a rk re d O rth o rh o m b ic D a rk re d D a rk re d M o n o c lin ic M o n o c lim c S p a c e g ro u p P 2 ,2 ,2 t .P 2 |/c Plik T n c h n ic Pi a/k blA elk ar Hr71’. VIA1 Z TIK 20 8 5 7 9 5 (1 0 ) 1 3 7 5 3 4 (1 2 ) 11 7 0 0 8 (2 ) 1 4 3 6 8 (2 ) 1 2 6 8 8 1 (4 ) 3 1 3 6 6 6 (6 ) 1 3 5 9 0 (2 ) 1 3 5 5 9 8 (5 ) 2 0 8 2 9 9 (1 8 ) 1 2 3 4 8 7 (2 ) 1 5 .4 9 3 5 (7 ) 90 00 90 00 1 2 5 2 5 (2 ) 90 00 90 00 1 1 3 2 3 4 0 (1 0 ) 1 0 6 4 3 8 (7 ) 9 6 1 9 3 0 (1 0 ) 90 00 2 4 5 7 9 (4 ) 90 00 4 1 6 4 6 0 (1 3 ) 90 00 2 3 4 5 8 (7 ) 1 0 0 8 4 6 0 (1 0 ) 2 2 9 9 1 3 (1 5 ) 4 4 2 1 1 2 0 (2 ) 1 2 0 (2 ) 1 2 0 (2 ) 1 2 0 (2 ) 7 1 0 -5 6 5 6 7 12 50 06 8 095 2 197 2 024 7 1 0 -5 0 0 6 8 .1 3 8 4 513 ^ (M o K a )/m n r 1 P c-alcd /g C m '1) F (0 0 0 ) “ (Rtnl) 1 1 5 9 3 5 0 (1 0 ) 7 2 4 -5 0 0 6 1444 1 852 1264 M u lti-s c a n M u lti-s c a n M u lti-s c a n -1 3 == h == 1 3 - 3 7 == k == 3 7 - ! 7 = = /i< 1 7 — 15 < A s 15 -1 4 = = /= = 1 4 - 1 6 iS A -s 1 6 - 1 4 : = /= = 1 4 — 16 ^ k ^ 16 - 1 7 == /= = 1 8 23632 6 0 5 7 (0 .0 2 3 6 ) 34506 7 3 3 8 (0 0 3 9 2 ) 17279 4 1 1 4 (0 0 2 9 7 ) 17268 8 0 2 7 (0 0 1 5 8 ) 0 0 1 5 1 /D 0 3 5 3 0 0 2 8 3 /0 0 6 4 2 0 0 2 3 0 /0 0 5 4 8 0 0 1 8 7 /0 0 4 8 4 0 0 1 6 8 /D 0 3 5 S 0 0 3 8 9 /0 0 6 9 6 0 0 2 5 3 /0 0 5 5 8 0 0 2 0 1 /0 0 4 9 0 M u lti-s c a n -1 1 R e fle c tio n s c o lle c te d 2563 90 D a rk re d 2 121 11 - 1 8 == k < 18 - 2 7 := / £ 2 7 In d e p e n d e n t re fle c tio n s R> 2 c (I)] R!“lwR2'’[toT a ll F0-} CS0H96N i 2IHGFEDCBA O 3B CU 4U 2 1 755 2214 1572 A b s o rp tio n -c o rre c tio n In d e x ra n g e s 4 = E I|/y - |F c l|/D F o l) * w /i, = E w (F „ ’-,F c’)-/;rs v F 0 >]lc a n is o tro p ic d is p la c e m e n t p a ra m e te r s f o r th e n itro g e n a to m s w e r e m e ta l c e n tr e s a r e d o u b ly b r id g e d b y tw o p h e n o la te o x y g e n a to m s c o n s tr a in e d o f th e lig a n d to b e th e s a m e as th o s e f o r th e o x y g e n a to m s T h e in n e r s a le n -ty p e c a v ity is o c c u p ie d b y c o p - C o m p o u n d 3 a ls o c o n ta in e d a s m a ll a m o u n t o f d is o r d e r m o n e o f p e r ( I I ), w h ile b is m u t h (I I I) is p r e s e n t in th e O E t c h a in s [ 0 ( 1 ) , C ( 2 ) , C ( 1 )] w h ic h w a s tr e a te d in th e s a m e p o s itio n o f th e d in u c le a tm g c o m p a r tm e n ta l lig a n d [ L '] 2 ~ m a n n e r a s d e s c r ib e d a b o v e , th e o c c u p a n c ie s r e fin e d to 0 .6 6 4 (9 ) b is m u t h ( I I I) c e n tr e in 1 is 1 0 - c o o r d in a te d I n a d d itio n to th e tw o th e o p e n a n d la r g e r The a n d w e r e fix e d m a r a tio o f 6 6 3 4 T h e a n is o tr o p ic d is p la c e m e n t p h e n o la te o x y g e n a to m s , th e r e a re a ls o tw o e th o x y o x y g e n a to m s p a r a m e te r s o f th e o x y g e n a to m s w e r e c o n s tr a in e d to b e th e s a m e c o o r d in a tin g to th is m e ta l c e n tr e , a lo n g w it h tw m o x y g e n a to m s a s th o s e f o r th e tw o s e ts o f c a r b o n a to m s [C ( 2 A ) , C ( 2 B ) a n d f ro m e a c h o f th e th re e n itra te s c h e la tin g to b is m u t h (I I I) ( C (l A ) , C (1 B ) ] A ll h y d ro g e n a to m s , e x c e p t f o r th e s o lv e n t w a te r T h e s tr u c tu re o f [ ( C u " L ') 2 B a " ( N O 3 ) 2 ]- 0 .2 H 2 O ( 2 ) is a t r in u - h y d ro g e n a to m s in 4 , w e r e p o s itio n e d g e o m e tr ic a lly ( a r o m a tic c le a r d o u b le -d e c k e r s y s te m C - H 0 9 5 A , e th y l C - H 0 9 9 A a n d m e th y l C - H 0 .9 8 A ) a n d th is s tr u c tu re , w h ile F ig . 3 illu s tra te s th e d o u b le -d e c k e r to p o lo g y r e fin e d u s in g a r id in g m o d e l w it h th e is o tro p ic d is p la c e m e n t p a ra m e te r s fix e d a t f / „ „ ( H ) = 1 2 tim e s Ueq o f th e p a re n t c a rb o n a to m f o r th e a r o m a tic a n d e th y l h y d ro g e n s a n d t /„ „ ( H ) = tim e s Vcq 1 5 o f th e p a re n t c a r b o n a to m f o r th e m e th y l h y d r o g e n s F ig 2 s h o w s th e a to m la b e lin g f o r o f th e s p e c ie s m o r e c le a r ly . A s p r e v io u s ly m e n tio n e d , c o m p o u n d 2 c o n ta in s d is o r d e r, f o r c la r it y o n ly th e m a jo r c o m p o n e n t is s h o w n in F ig 2 a n d 3 . I n th is tr m u c le a r d o u b le -d e c k e r s y s te m [(C u 1'L l) 2 B a I1 ( N 0 3 ) 2 ], o n e b a riu m (I I ) to n ( B a (l) ) is c o o r d in a te d T h e s o lv e n t w a te r O - H a to m s m 4 w e r e lo c a te d m th e F o u r ie r t o th e tw o p h e n o x o a n d tw o e th o x y o x y g e n a to m s o f e a c h o f th e d iffe r e n c e m a p , th e O - H d is ta n c e s w e re r e s tr a in e d t o 0 8 4 A a n d tw o [ C u " L ‘] m o ie tie s , [ C u " ( l) L '] a n d [ C u " ( 2 ) L l] a n d th u s th e th e is o tr o p ic d is p la c e m e n t p a r a m e te rs w e r e fix e d t o l / t, „ (H ) = 1 2 tim e s V„, o f th e p a re n t o x y g e n a to m H y d r o g e n a to m s f o r th e b r id g in g w a te r m o le c u le ( 0 (1 9 )) m c o m p o u n d 4 c o u ld n o t b e lo c a te d in th e F o u r ie r d iffe r e n c e m a p a n d a r e h e n c e o m itte d T h e r e fin e m e n ts c o n v e r g e d t o a n R r v a lu e ( / > 2 a(f)) o f 0 0 1 5 1 , 0 0 2 8 3 , 0 0 2 3 0 a n d 0 0 1 8 7 f o r 1 - 4 , r e s p e c tiv e ly . R e s u lts a n d d is c u s s io n D e s c rip tio n o f c r y s ta l s tr u c tu re s o f | C u " I,’ B i" l( N O ,) , | ( 1 ) , [ ( C u " L ') 2 B a " (N 0 1 ) J 0 .2 H 2 O ( 2 ) a n d ( { C u l,L 'P b ,,( n - N 0 1 ) ( N O ,) h l ( 3 ) T h e s tr u c tu r e o f [ C u " L 1B iI,,( N O .,)3 ] ( 1 ) ( F ig 1 ) s h o w s th a t it is a d m u c le a r n e u tr a l c o m p le x o f c o p p e r ( II ) a n d b is m u t h ( I II ) T h e 472 | CrystEngComm, 2 0 1 0 , 12, 4 7 0 -4 7 7 F ig . 1 C ry s ta l s tru c tu re o f [Cu i,L‘Bi“'(N0 3)3 ] (1 ) A ll h y d ro g e n a to m s a n d fo u r e th o x y c a rb o n a to m s a re re m o v e d fo r c la n ty T h is jo u r n a l is © T h e R o y a l S o c ie ty o f C h e m is tr y 2 0 1 0 F ig . 2 C ry stal stru ctu re o f [(C u"L ')2 B a"(N 0 3)2] 0 2 H .O (2 ) A ll h y d ro g en ato m s an d eig h t eth o x y carb o n ato m s are o m itted fo r clarity D iso rd ered ato m s w ith lo w er o ccu p an cies are also o m itted F ig . 4 C ry stal stru ctu re o f f(C u "L lP b "(p -N O j)(N 03)}2] (3 ) A ll h y d ro g en a to m s an d eig h t eth o x y carb o n ato m s are o m itted fo r c la n ty D iso rd ered ato m s w ith lo w er o ccu p an cies a re also o m itted S y m m etry C , 1 — x, 1 - y, 2 - z N 3O 2 p lan es are in th e u su al ran g e, w h ich in d icate th a t th e F ig . 3 P ersp ectiv e v iew o f [(C u "L ')2 B a"(N 0 3)2] 0 2 H 20 (2) sh o w in g th e co o rd in atio n en v iro n m en ts o f th e co p p er(II) to n s in th ese co m p lex es are essen tially sq u are p lan ar T h e b o n d len g th s o f th e co o rd in atio n en v iro n m en ts o f B i"1, d o u b le-d eck er to p o lo g y B a11 an d P b 11 m co m p o un d s 1 -3 are listed m T ab le 3, w h ile th e b o n d an g les are su m m arized in T ab les S 1 an d S 2.f T h e o rd er o f m o n o nu clear m etal-O (p h en o late) b o n d d istan ces in co m p o u n d s 1 -3 is as co p p er(II) sp ecies T h e b ariu m (II) cen tre is 11-co o rd in ated ; in b ariu m (ir) is san d w ich ed in b etw een tw o follow s- C u -0 (1.893(2)— 1 911(3) A in 1 -3 ) < B i-0 (2 3 2 3 (2 )2 397(2) A in 1) < P b -O (2 4 2 7 (3 )-2 4 7 4 (3) A in 3 ) < B a-O ad d itio n to fo u r b rid g in g p h en o x o o x y g en ato m s an d fo u r eth o x y oxygen ato m s, tw o o x y g en ato m s o f o n e ch elatin g n itrate an d (2 7 7 1 (2 )-2 830(2) A in 2 ) S u ch d ifferen ces m b o n d d istan ces are o n e o x y g en ato m o f a m o n o d en tate n itrate co o rd in ate to ex p e cted d u e to th eir d ifferen ces in io n ic size. S im ilarly th e tren d o f th e b o n d d istan ces in v o lv in g eth o x y o x y g en ato m s (B i-O = 2 6 1 0 (2) and 2 702(2) A in 1 , P b -O = 2 735(10) and 2 764(3) A in 3 an d B a -O = 2 .8 9 3 (2 )-3 0 7 4 (2 ) A m 2) an d n itrate o x y g en th is m etaJ cen tre T h e p airs o f m etal io n s C u (l) -B a(l) an d C u(2 ) B a(l) in th e C u (l) • B a(l) • C u (2 ) tn n u clear co re are d tp h en o x o -brid g ed As sh o w n in F ig 4, th e stru ctu re of [{ C u "L 'P b 11 ato m s (B i-O = 2 .5 0 8 (2 }-2 .7 2 0(2 ) A A in 1, P b -O = 2 5 7 9 (3 )- 2 .9 0 9 (3 ) a d tp h en o x o -brid g ed d in u clear [C u "L 'P b "(N 0 3 )2 ] u n it, co p p er(II) an d !ead(II) o ccu p y , resp ectiv ely , th e N 2C>2 an d 0 4 o b serv ed T h e b o n d an g les in th e co o rd in atio n en v iro n m en ts o f co m p artm en ts o f th e lig an d In ad d itio n to th e tw o b rid g in g p h en ox o o x y g en ato m s an d tw o eth o x y o x y g en ato m s, tw o in 3 an d B a-O = 2 .7 3 6 (4 )-2 956(19) A (p -N 0 3)(N 0 3 )(2 ] (3) rev eals th a t it is a tetran u clear sy stem In in 2 ) is B i(III) m 1, B a(II) in 2 an d P b (II) m 3 lie in th e ran g es 48 4 9 (6 )163 16(7)", 51 7 5 (6 )-1 7 4 5(2)° an d 45 7 0 (1 0 )-1 7 2 06(15)°, resp ectiv ely . T h e p h en o x o b rid g e an g les in 1, 2 an d 3 v ary n itrates ch elate to th e lead (II) cen tre m th e d in u clear co re T h e b etw een 103 83(7) an d 106 57(7)° fo r 1, 100 9 1 (9 )-1 0 5 .9 6 (9 )° fo r th ird o x y g en ato m o f a ch elatin g n itrate m a d in u clear co re 2 an d 102.70(11) an d 104.32(11)° fo r 3 T h e co o rd in atio n g eo m etry o f th e b ariu m (Il) an d lead (II) c o o rd in a te w ith th e lead (II) cen tre o f a sy m m etry related u n it to in terlin k tw o d in u clear u n its, th u s g en eratin g tetran u clear in 3 m ay b e co n sid ered as a d im er o f tw o d in u clear m o ieties T h e cen tres in 2 an d 3 , resp ectiv ely , can n o t b e m o d eled w ith a reg u lar o r d isto rted p o ly g o n . H o w ev er, th e co o rd in atio n g eo m etry o f th e b ism u th (III) cen tre in 1 can be b est ap p ro x im ated as d isto rted bi- lead (II) cen tre in 3 is 9 -co o rd in ated . cap p ed sq u are an tip rism (F ig 5), th e tw o o p p o site sq u are p lan es stru ctu re in th is co m p o u n d E v id en tly , th e tetran u clear stru ctu re T h e b o n d len g th s an d b o n d an g les o f th e co o rd in atio n are d efin ed by, resp ectiv ely , 0 (1 )0 (5 )0 (8 )0 (1 1 ) an d en v iro n m en ts o f th e co p p er(II) cen tres in co m p o u n d s 1 -3 are 0 (2 )0 (4 )0 (7 )0 (1 3 ), w h ile 0 (3 ) an d 0 (1 0 ) can b e co n sid ered as listed in T ab le 2 th e cap p in g ato m s T h e d ih ed ral an g le b etw een th e tw o leastsq u ares O 4 p lan es in th is g eo m etry is 1.3° T h e ran g es o f th e C u -N /O b o n d len g th s (1 8 9 3 (2 )-1 936(6) A ), asoid an g les (83 3 (3 )-9 5 38(9)°) an d transoid an g les (169 36(14)— 179 53(9)°) as w ell as d ev iatio n o f T h e su p ram o lecu lar stru ctu re o f th e C u "B iln co m p o u n d 1 is th e d o n o r cen tres (0 0 7 8 -0 .1 7 5 A ) an d d isp lacem en t o f th e sh o w n m F ig 6 O n e n o n co o rd in ated n itrate o x y g en ato m o f m etal io n (0 0 0 0 -0 081 A ) fro m th e resp ectiv e least-sq u ares a n eig h b ou rin g m o lecu le (0 (9 E )) is sem ico o rd in ated to C u (l) T h is jo u rn al is © T h e R o y al S o ciety o f C h em istry 2 0 1 0 QystEngComm, 2 0 1 0 , 1 2 , 4 7 0 -4 77 | 4 7 3 T a b ic 2 B ond le n g th s (A ) a n d bond a n g le s (“ ) in th e c o o r d in a tio n e n v ir o n m e n ts o f th e c o p p e r ( I I ) c e n te r s in 1 - 4 T a b le 3 B o n d le n g th s ( A ) in th e c o o r d in a tio n e n v ir o n m e n ts o f th e b is - m u th ( I II ) in 1 , b a n u m ( ll) m S y m m e try c o d e s C om pound B o n d le n g th s I C u ( l) - N ( l) 1 9 1 0 (2 ) C u (l)-N (2 ) C u( 1 )0 (2 ) C u( 1 )0 (3 ) 2 4 C om pound B o n d le n g th s i B .( l) - 0 (1 ) 2 6 1 0 (2 ) B i(l)-0 (2 ) 2 3 2 3 (2 ) 8 6 5 6 (9 ) B i(l)-0 (3 ) 2 3 9 7 (2 ) 9 5 3 8 (9 ) B id > -0 (4 } 2 7 0 2 (2 ) 8 4 1 7 (7 ) B i( l> 0 ( 5 ) 2 5 0 8 (2 ) N (l)C u (I)-0 (3 ) 1 7 0 2 1 (9 ) 1 9 0 6 (2 ) N (2 )-C u ( 1 ) 0 ( 2 ) 1 7 9 5 3 (9 ) 1 9 0 5 (2 ) N ( l)- C u ( l) - 0 ( 2 ) 9 3 8 5 (8 ) 1 9 0 3 (2 ) N ( l)- C u ( l) - N (2 ) N (2 )-C u (l)-0 (3 ) 0 (2 > -C u 0 )-0 (3 ) C u (l)-N (l) 1 9 2 3 (3 ) N (l)-C u (I)-0 (3 ) 1 7 5 6 6 (1 2 ) B id > 0 ( 7 ) 2 5 1 1 (2 ) C u ( l) N ( 2 A ) 1 9280 0) I 8 9 3 (2 ) N (2 A )-C u ( I> 0 (2 ) 1 7 0 .9 (2 ) B i(l)-0 ($ ) 2 5 6 3 (2 ) C u< 1 )0 (2 ) N ( l) - C u d ) - 0 (2 ) 9 4 4 0 (1 2 ) N ( l) C u ( l) - N (2 A ) 8 3 3 (3 ) B i( l> 0 ( 1 0 ) B i( l) - 0 ( H ) 2 7 2 0 (2 ) C u( 1 )0 (3 ) 1 9 0 9 (2 ) C u (2 ) N (3 A ) 1 9 3 6 (6 ) N (2 A ) C u (l)-0 (3 ) 9 4 7 (3 ) C u (2 )-N (4 A ) 1 9 0 3 (6 ) 0 (2 > C u (l> 0 (3 ) C u (2 )-0 (6 ) 1 8 9 9 (2 ) N (3 A > C u (2 ) 0 (7 ) 1 7 3 8 3 (1 8 ) C u (2 )-0 (7 ) 1 9 0 8 (2 ) N (4 A )-C u (2 )-0 (6 ) N (3 A )-C u (2 ) 0 (6 ) 2 5 1 5 (2 5 2 8 9 3 (2 ) 2 7 8 2 (2 ) 1 7 0 9 9 (1 5 ) B a (l > 0 (2 ) B a (l > 0 (3 ) 9 1 5 4 (1 7 ) B a ( l> 0 ( 4 ) 3 0 7 2 (2 ) 8 5 8 (2 ) B a (l> 0 (5 ) 3 0 7 4 (2 ) N (4 A ) - C u (2 )-0 (7 ) 9 5 2 6 (1 6 ) B a ( l) - 0 ( 6 ) 2 7 7 1 (2 ) 0 (6 )-C u (2 )-0 (7 ) 8 8 2 6 (1 0 ) B a ( l) - 0 ( 7 ) 2 7 9 0 (2 ) 2 8 3 0 (2 ) C u ( l) - N d ) 1 9 0 8 (3 ) N (l)-C u (l)-0 (3 ) 1 6 9 3 6 (1 4 ) B a ( l> 0 ( 8 ) 2 9 7 4 (2 ) C u (l)-N (2 ) 1 9 2 3 (3 ) N ( 2 ) - C u ( l) - 0 ( 2 ) 1 6 9 4 8 (1 4 ) B a ( l> 0 ( 9 A ) 2 9 5 6 (1 9 ) C u ( l) - 0 ( 2 ) 1 9 1 1 (3 ) N (l)-C u (l)-0 (2 ) 9 4 4 6 (1 4 ) B a (l)-O d O A ) 2 8 4 0 (3 0 ) C u ( 1 )-0 (3 ) 1 9 0 8 (3 ) N ( I )-C u ( 1 )-N (2 ) 8 5 3 1 (1 4 ) B a ( l> 0 ( 1 2 A ) 2 7 3 6 (4 ) N (2 ) C u ( 1 )-0 (3 ) 9 4 7 4 (1 3 ) P b ( l> 0 ( lA ) 2 7 3 5 (1 0 ) 0 (2 )-C u (l)-0 (3 ) 8 7 4 2 (1 2 ) P b ( l) 0 ( 2 ) 2 4 2 7 (3 ) 3 C u ( l)- N ( l) 1 9 4 9 (2 ) N ( l)- C u ( l) - 0 ( 3 ) 1 7 5 2 1 (9 ) P b ( l) - 0 (3 ) 2 4 7 4 (3 ) C ti(l) N (2 ) 1 9 2 5 (2 ) N (2 ) C u (l)-0 (2 ) 1 7 7 3 3 (9 ) P b ( i> 0 ( 4 ) 2 7 6 4 (3 ) C u (I)-0 (2 ) 1 9 0 1 (2 ) N ( l)- C u ( l) - 0 ( 2 ) 9 3 2 1 (9 ) P b ( l> 0 ( 5 ) 2 6 1 1 (3 ) C u (l)-0 (3 ) 1 9 3 2 (2 ) N (l)-C u (l)-N (2 ) 8 4 7 7 (1 0 ) P b ( l> 0 ( 6 ) 2 8 2 0 (4 ) C u (2 )-N (3 ) 1 9 3 7 (2 ) N (2 ) C u (l)-0 (3 ) 9 2 3 4 (9 ) P b ( l> 0 ( 7 C ) 2 9 0 9 (3 ) C u (2 )-N (4 ) 1 9 3 4 (2 ) 0 ( 2 ) - C u ( l) 0 ( 3 ) 8 9 5 6 (7 ) P b { )> 0 (8 ) 2 5 7 9 (3 ) C u (2 )-0 (7 ) 1 9 0 2 (2 ) N (3 )-C u (2 ) 0 (8 ) 1 7 4 5 4 (9 ) P b (!)-0 (9 ) 2 8 9 7 (4 ) C u (2 ) 0 (8 ) 1 8 9 6 (2 ) N (4 )-C u (2 ) 0 (7 ) 1 7 6 6 4 (8 ) U (l> 0 (1 7 ) 1 7 7 2 (2 ) N (3 )-C u (2 )-0 (7 ) 9 2 8 6 (9 ) U (l> 0 (1 8 ) 1 7 7 0 (2 ) N (3 ) C u (2 )-N (4 ) 8 4 9 2 (9 ) U (l)-0 (1 1 ) 2 5 3 2 (2 ) N (4 )-C u (2 ) 0 (8 ) 9 3 6 3 (8 ) U (l> 0 (1 2 ) 2 5 5 9 (2 ) 0 (7 )-C u (2 ) 0 (8 ) 8 8 8 2 (8 ) U (l> 0 (1 4 ) 2 5 3 9 (2 ) U (1 > 0 (1 S ) 2 5 3 8 (2 ) U (l)-0 (1 9 ) 2 3 4 3 (2 ) U (1 > 0 (1 9 G ) 2 3 1 8 (2 ) 4 IHGFEDCBA S t r u c t u r a l r e s e m b la n c e o f b is m u th (I I I ) w ith la n th a n id e s ( IH ) Similar to the composition of the Cu"Binl compound [Cu"L'‘ Bim(N03)3] (1), the Cu"Ln111 compounds10-1 [CunL'Lnn'(N03)3] (Ln = Ce-Yb), are dmuclear systems (Fig SI) f Bismuth(III) in [CullLlBi11,(N03)3] (1) and lanthanidcs(III) m [CunL'Ln,,,fN0 3)3 ] are similarly 10-coordmated with comparable bond distances involving phenolate and ethoxy oxygen atoms | 2 5 9 0 (2 ) B i( l> 0 ( 1 3 ) B a (l> 0 (!) 2 8 8 1 9 (9 ) [Cu(l) 0(9E) = 2 924(2) A , E = x - !, y, z ,] Another noncoordinated nitrate oxygen atom (0(6)) forms two C-H O hydrogen bonds First one takes place with the H(10BD) bonded to C(10D) of the lateral duminoalkyl side chain of the same neighbouring molecule of the one-dimensional chain to which 0(9) is weakly coordinated with copper(II), while the second hydrogen bond is formed with imme hydrogen (H(12F)i of another adjacent molecule of a different chain (hydrogen bond geometries (distances in angstroms ( A ) , angles in degrees (")) H(10BD) 0(6) = 2 37, C(10D) 0(6) = 3 244(3), C(10D>H(10BD) 0(6) = 147 2, D = 1 + x, y, z; H(12F) 0(6) = 2 33, C(12F) 0(6) = 3 260(3), C(12F}-H(12F> -0(6) = 165 4, F = 3 - x, -0 5 + y, 1 5 - z ) Evidently, the combined effect of the nitrate semicoordination and weak hydrogen bonds is the generation of a two-dimensional self-assembly in 1 474 3 , a n d u ra m u m (V I) in 4 B o n d a n g le s N (3 A )-C u (2 )-N (4 A ) 3 2 , le a d (II) m C , 1 — x, 1 - y, 2 — z, G , -x , 1 - y, -z CrystEngComm, 2 0 1 0 , 1 2 , 4 7 0 -4 7 7 (Bi-O(phenolatc) = 2 323(2)—2 397(2) A , Ln-O(phenolate) = 2 270(7)-2 478(7) A ; Bi-0(ethoxy) = 2 610(2)-2 702(2) A , LnO(ethoxy) = 2.554(6)-2 700(7) A ) . However, the range of the bond distances involving the chelating nitrates are slightly different Bi-O(mtrate) = 2 508(2)—2 720(2) A , Ln-O(mtrate) = 2 3 4 8 ( 1 0 ) — 2 632(8) A ) Again, the coordination geometry of both Bim and Ln™ is bi-capped square antiprism with a similar set of atoms forming the geometry, 0(phenoxo)0(ethoxy> 0(mtrate)0(mtrate) and 0(ethoxy)0(nitrate)0(mtrate) O(mtrate) are the two square planes keeping the second O(phenoxo) and one O(nitrate) in the capping positions (Fig. S2) f In addition, the supramolecular structures of both the C^'Bi1" and Cu^Ln111 systems are similar due to Cu -O(nitrate) semicoordination and two hydrogen bonds, one C(alkane)-H O(mtrate) and one C(imme>H- -O(nitrate) (Fig. S3) t Evidently, Binl and Ln"1 form similar types of heteronuclear systems in these examples with respect to molecular and supra­ molecular structures and coordination environments With bisnuith(III) being a p-block metal ion and lanthamdes(III) being 4f metal ions, the observed structure similarity in this ligand system ts an interesting observation. T h is jo u r n a l is © T h e R o y a l S o c ie ty o f C h e m is tr y 2 0 1 0 [C u " ( l)L ' c is o c c u p ie d (H2 0 ) ] by a a n d [ C u " ( 2 ) L 'c ( H 2 0 ) ] , t h e s a le n t y p e c a v it y c o p p c r(II) io n and th e 0 4 c o m p a r t m e n t is o c c u p ie d b y a w a t e r m o le c u le d u e t o t h e f o r m a t io n o f b if u r c a t e d h y d r o g e n b o n d s b e t w e e n e a c h w a t e r h y d r o g e n a t o m s w ith o n e p h e n o x o a n d o n e e t h o x y o x y g e n a t o m s . T h e g e o m e t r ie s o f t h e s e h y d ro g e n bonds a c c e p to r c o n ta c ts a re s u m m a r iz e d a re m th e in T a b le ra n g e h y d r o g e n b o n d s c a n b e c o n s id e r e d a s s t r o n g w a te r m o le c u le s has been o b s e rv e d 4 The 2 5 4 9 -2 .9 7 3 donor A and p r e v io u s ly m th e m ono­ n u c le a r in c lu s io n p r o d u c t [ C u " L 'c ( H 2 0 ) ] a n d in t h e [ 2 x x 2] c o c r y s t a ls Co, or M n) th e S im ila r in c lu s io n o f [ { C u I , L M 1 ,( H 2 0 ) 3 } { C u " L } 2 ] ( C 1 0 4 ) 2 1 + 1 (M = C u , 9°'b T h e b o n d le n g t h s a n d b o n d a n g le s o f t h e c o o r d in a t io n e n v i­ r o n m e n t o f t h e c o p p e r ( T I ) c e n t r e s in 4 a r e s u m m a r iz e d in T a b le 2 . T h e r a n g e s o f C u - N / O b o n d d is t a n c e s , Fig. 5 Distorted hi-capped squarc-antipnsmitic coordination environ­ ment of the bismuth(III) centre in [CunL'Bini(NO.0.i] fl) cisoid a n g le s and tramoul a n g le s m t h e s e c a s e s a r e 1 8 9 6 ( 2 ) - 1 . 9 4 9 ( 2 ) A , 8 4 7 7 ( 1 0 ) — 9 3 6 3 ( 8 ) ° RQPONMLKJIHGFEDCBA a n d 1 7 4 5 4 ( 9 ) - 1 7 7 . 3 3 ( 9 ) ° , r e s p e c t iv e ly , w h ile t h e a v e r a g e d e v ia ­ t io n s o f t h e d o n o r c e n t r e s a n d d is p la c e m e n t s o f t h e m e t a l io n s f r o m t h e le a s t - s q u a r e s N 2 0 2 p la n e s lie m t h e r a n g e 0 0 1 8 - 0 0 6 4 A a n d 0 . 0 2 4 - 0 . 0 4 8 A , r e s p e c t iv e ly A ll th e b o n d le n g t h s a n d b o n d a n g le s o f t h e c o o r d in a t io n e n v ir o n m e n t o f t h e u r a n iu m ( V I ) c e n t r e s in 4 a r e lis t e d in T a b le s 3 a n d S 2 , f r e s p e c t iv e ly . T h e u r a n iu m ( V I ) c e n t r e in t h e [ ( U v l0 2 ) 2 ( |i- H 2 0 ) 2 ( N 0 3 )4 ] fra g m e n t of 4 is 8 -c o o rd m a te d w it h tw o b r id g in g w a t e r o x y g e n a t o m s , t w o u r a n y l o x y g e n a t o m s a n d f o u r o x y g e n a t o m s o f t w o c h e la t in g n it r a t e io n s T h e b o n d le n g t h s in v o lv in g u r a n iu m ( V I ) lie in t h r e e d is t in c t r a n g e s ; t h o s e in v o lv in g u ra n y l o x y g e n a to m s a re 1 7 7 0 ( 2 ) — 1 7 7 2 ( 2 ) A , t h o s e in v o lv in g b r id g in g w a t e r o x y g e n a t o m s a r e 2 3 1 8 ( 2 ) — 2 . 3 4 3 ( 2 ) A a n d t h o s e in v o lv in g th e 2 5 5 9 (2 ) A F ig . 6 c h e la t in g ( T a b le 3) n it r a t e The oxygen c o o r d in a t io n a to m s a re g e o m e try 2 .5 3 2 (2 )- o f th e u ra - P e r s p e c tiv e v ie w t o illu s t r a t e th e t w o - d im e n s io n a l s tr u c tu re o f n m m ( V I ) c e n t r e is a d is t o r t e d h e x a g o n a l b ip y r a m id , t h e h e x a g ­ [ C u llL 'B illl'N 0 3 ) 3 ] U ) H y d r o g e n a to m s , e x c e p t f o r th e t w o p a r t ic ip a t in g in h y d r o g e n b o n d s , a r e o m it t e d f o r c la r it y S y m m e tr y D , 1 + x , y , z , C , x o n a l p la n e is d e f in e d b y t h e t w o w a t e r o x y g e n a t o m s a n d f o u r - 1, y, z, F , 3 - x, -0 5 + y, 1 5 ~ z n it r a te o x y g e n a t o m s , w h ile t w o u r a n y l o x y g e n a t o m s o c c u p y t h e a x ia l p o s it io n s ( F ig . 8 l. T h e re a s o n Description of the crystal structure of [(UV[()2)2 ( p - H 2 0 ) 2 ; N 0 3 ) 4 ] 4 [Cu "L'c (H20)| (4) m o le c u la r A s s h o w n , in F ig c o n s is t in g of tw o p a ir s of s y m m e try in t e r a c t io n s [Cu "(1)L'c (H2 0 ) ] 7 , t h e s t r u c tu r e o f c o m p o u n d 4 is a c o c r y s t a l c o c r y s t a lh z c d f o r c o c r y s t a lliz a t io n o f fo u r c o p p e r(II) a n d d iu r a n y l( V I ) m o ie t ie s in 4 c a n b e u n d e r s t o o d f r o m a C -H r e la t e d Two m o n o n u c le a r one th e s u p ra - c o p p e r(II) s p e c ie s , a n d [ C u ''( 2 ) L 'c ( H 2 0 ) ] , f o r m a p a ir d u e t o 7 t in t e r a c t io n ( H n= 2 . 5 5 A ) in v o lv in g o n e h y d r o g e n m o n o n u c le a r in c lu s io n p r o d u c t [ C u , !L ' C ( H 2 0 ) ] a n d o n e d ia q u a - ( C ( 3 1 ) - H ( 3 1 A ) ) o f t h e la t e r a l d n m in o a t k y l s id e c h a in . T w o s u c h b r id g e d d iu r a n y l( V I ) c o m p o u n d [ ( U ^ O i^ g - H s C T b C N O ; ^ ] s y m m e try each o f th e c r y s t a llo g r a p h ic a lly d if f e r e n t c o p p e r ( I I ) In m o ie t ie s , m o ie t y r e la t e d due to p a ir s f iv e C -H a re O in t e r lin k e d h y d ro g e n w ith th e bonds d iu r a n y l( V I ) in v o lv in g th re e 09 OW0 011 OS/ ,1 071 --- A ' gi L i^ N4 N4 C u i f 'a t j , MS N3 Fig. 7 Crystal structure of [2 hydrogen bonds and C-H k x i + 1 x C30 5J1N >C31 Y J 012 017 ° ’3 4] cocrysta! [(Uvl0 2 )2 (g-H2 0 )2 (N0 3 )4] 4[CuuL‘ c(H20)] (4) AH hydrogen atoms, except those participate m interactions, and all the ethoxy carbon atoms are omitted for clarity Symmetry G, -x, 1 - y, -z T h is jo u r n a l is © T h e R o y a l S o c ie t y o f C h e m is tr y 2 0 1 0 CrystEngComm, 2010, 12, 4 7 0 -4 7 7 | 475 Table 4 Geometries (distances in (A) and angles in (')) of the hydrogen bonds m 4 Symmetry code. G, -x, ! - y, -z D H- A D A 0(5)-H(5A) 0(1) 0(5)-H(5A) 0(2) 0(5)-H(5B) ■ 0(3) 0(5)-H(5B) 0(4) O(10)-H(6D) 0(6) O(10)-H(6D) 0(7) O(10)-H(6C) 0(8) O(l0)-H(6C) 0(9) C(5) H(5) 0(18) C(6)-H(6) 0(17G) C(30)-H(30B) 0(11) C(30)T1(30B) 0(13) C(34)-H(34) 0(16G) 2 848(3) 2 666(3) 2 549(3) 2 757(3) 2 973(3) 2 813(3) 2 794(3) 2 914(3) 3 300(3) 3 490(3) 3 274(3) 3 466(3) 3 483(3) H • A D-H 2 15(2) 2.02(2) 1 77(2) 2 22(2) 2 23(2) 2 14(2) 2 06(2) 2 22(2) 2 49 2 58 2 52 2 50 2 57 142(3) 135(3) 156(3) 123(3) 150(3) 138(3) 146(3) 140(3) 143 161 133 167 162 A noncovalent interactions is a m ajor outcome of the present investigation K eeping copper(ll) m the salen type of cavity in /V,A''-ethylenebis(3-ethoxysalicy!aldnm m e), various types of heteronuclear compounds m ay be formed For exam ple, dm uclear com plexes with lanthamdes(IIl) and bismuth(IIl), trinuelear sandwich type system with barm m(II), tetranuclear com pound with lead(II), [2 x 1 + 1 x 2] cocrystal of dm uclear and m ononuclear units with 3d m etal ions and sodium(I), [3 x 1 + 5 x 1] cocrystal of doubledecker and triple-decker system with potassium(I) and [2x1 + 1 x 4] cocrystal of dinuclear and m ononuclear units with uranyl(V l) have been previously reported*^ or described in the present investigation Evidently, this ligand system is an impor­ tant example to give rise structurally diverse heteronuclear compounds. A s discussed, the CunBim and Cu"Ln'" compounds are structurally very similar. This structural resem blance of a tHf/iONMLKJIHGFEDCBA p-block m etal ion with 4f m etal ions is another interesting outcom e of the present investigation Acknowledgements Financial support from the Departm ent of Science and Tech­ nology, the G overnment of India (SR/S X/IC— 12/200S) is grate­ fully acknowledged S H and S.S thanks C SIR , G overnment of India thanks U G C, G overnm ent of India, for providing fellowships J A K H . and H A .S would like to thank the EPSRC EP/E048994/1 for financial assistance Fig. 8 Distorted hexagonal bipyramidal coordination environment of the uramum(Vl) centre in [(LvlO Jgn-l 4[Cu "L'C(H20)] (4) arom atic C -H (C (5)-H(S), C (6)-H (6) and C (34)-H {34)), one alkane C -H (C (30)-H (30B)), two uranyl oxygen atoms (0(17) and 0(18)) and three nitrate oxygen atoms (0(11), 0(13) and 0(16)) The geom etries of these hydrogen bonds are summ arized in Table 4 Conclusions The objective of the present investigation has been to understand the com position of the heteronuclear products obtained on reacting m ononuclear inclusion com pound [CuuL‘ c(H 20)] with p-b!ock m etal ton (Btm and Pb11), alkaline earth m etal ion (Ba11) and 5f m etal ton (UvlO s) It has been observed that dtnuclear [CunL'Bi,,l(NO.i).i] (1), sandwich type trinuelear [(Cu"Ll) 2Ba11 (N 03)J 0 2H 20 (2) and tetranuclear [{Cu11L1Pb11 (p-N 03)(N 03)}2] (3) compounds are formed m the cases of Binl, Ba" and Pb", respectively In contrast, uranyl(VI) does not interact with the 0 4 com partment of the ligand but the reaction of[CunL 'c(H ,0)] with uranyl nitrate produces a [2 x 1 + 1 x 4] cocrystal [(Uvl 02) 2(g-H 20 ) 2(N 03) 4• 4[Cu,,L, c(H ,0)] (4) In this case, the formation of the cocrystal can be understood from the C -H --it and C -H - O type of interactions A s the utilization of noncovalent interactions for self-assem bling different species is an im portant area in supram olecular chemistry, the existence of four 3d m oieties and one 5f m oiety in a single crystal due to 476 | CrystEngComm, 2010, 12, 470-477 References 1 (a) R Robson, in Comprehensive Siipramoletular Chemistry, ed J L Atwood, JED Davies, D D MacNicol, F Vogtle and R B Toda, Pergamon, Oxford, UK, 1996, Vol 6, p 733, (b) A J Blake, N R Champness, P Hubberstey, M A Withersby and M Schroder, Coord Client Rev, 1999, 183, 117, (c) Transition Metals in SupramoleiuUir Chemistry, Perspectives in Supramolecular Chemistry 5, ed J-P Sauvage, Wiley, London, 1999, (d) The Crystal as a Supramolecular Entity, Perspectives in Supramolecular Chemistry 2, ed G R Desiraju, Wiley, London, 1996, (cl D Braga, F Grepiom and A G Orpen, Crystal Engineering from Molecules and Crystals to Materials, Kluwer Academic, Dordrecht, The Netherlands, 1999, (J) D Braga, L Maim, M Pohto, L Scaccianoce, G Cojazzi and F Grepiom, Coord Chan Rev, 2001, 216-217, 225, (g) B Moulton and M J Zaworotko, Client Rev, 2001, 101, 1629 2 (a) G J McManus, J J Perry IV, M Perry, B D Wagner and M J Zaworotko, J Am Chem Soc, 2007, 129, 9094, (b) M R Marvel, J Lcsage, J Baek, P. S Halasyamam, C L Stern and K R Poeppelmeier, J Am Chem Soc, 2007, 129, 13963, (t) F Nouar, J F Eubank, T Bousquet, L. Wojlas, M J Zaworotko and M Eddaoudi, J Am Chem Sot, 2008, 130, 1833, (<I) K Uemura, K Saito, S Kitagawa and H Kita, J Am Chem Soc , 2006, 128, 16122 3 (rr) A R Millward and O M Yaghi, J Am Chem Soc, 2005, 127, 17998, (b) J L C Rowsell and O M Yaghi, J Am Client Sot, 2006, 128, 1304, (c) M Nayak, R Koner, H Stoeckli-Evans and S Mohanta, Cryst Growth Des, 2005, 5, 1907, (d) B Dutta, B Adhikary, P Bag, U Florke and K Nag, J Chem Soc, Dalton Tram, 2002, 2760, (c) P Agmhotn, E Ermgathodi, P Paul and P K Ghosh, Ear J Inorg. Chem , 2006, 3369 4 J A Thomas, in Encyclopedia of Supramolecular Chemistry, ed J L Atwood and J W. Steed, CRC Press, Boca Raton, FL, 2004, p 1248 5 R Bogue, Assent Autom , 2008,28,211 6 (a) J F Remenar, S L Monssctte, M L Peterson, B Moulton, J M MacPhee, H. R Guzman and O Almarsson, J Am Chem Soc, 2003, 125, 8456, (6) T E Keyes, R J Forster, A M Bond This journal is © The Royal Society of Chemistry 2010 a n d W M ia o , J Am Chem Soc, 2 0 0 1 , 123, 2 8 7 7 , (c) H K o sh im a , H . M iy a m o to , I Y ag i a n d K U o sa k i, Cryst Growth Dos , 2 0 0 4 , 4 , 8 0 7 , (if) P L M a g u e re s, S M H u b ig, S V L in d e m a n . P V cy a a n d J K K o c h i, J Am Chcm Soc , 2 0 0 0 , 122, 1 0 0 7 3 7 ( a) J A B is, O L M c L a u g h lin , P V ish w e sh w a r a n d M J Z a w o ro tk o , Cryst Growth Dcs, 2 0 0 6 , 6 , 2 6 4 8 , ( b) G P S ta h ly , Cryst Growth Des, 2 0 0 7 , 7 , 1 0 0 7 , (c) S K a rk i, L F a b ia n , T F n sc ic a n d W . Jo n e s, Org Lett, 2 0 0 7 , 9 , 3 1 3 3 , (</) F G V o g t, j S C la w son , M S tro h m e ie r, A J E d w a rd s, T N P h a m a n d S A W a tso n , Cryst Growth Des , 2 0 0 9 , 9 , 9 2 1 , (e) % V -H W a n g , P -H X i, X -Y S u , J -B L a n , Z -H . M a o , J -S Y o u and R -G X ie, Cryst Growth Des, 2 0 0 7 , 7 , 7 4 1 ; (J) L R M a c G illiv ra y, G S P a p a e fsta th io u , T F rtscicc, T D H a m ilto n , D -K B u c a r, Q C h u , D B V a rsh ne y a n d 1 G . G e o rg ie v , Acc Chcm Res , 2 0 0 8 , 4 1 , 2 8 0 8 (a) H K o sh im a , M N a g a n o a n d T A sa h i, J Am Chem Soc . 2 0 0 5 , 127, 2 4 5 5 , ( h) S L C h ild s, L J C h y a ll, J T D u n la p , V N S m o le n sk a y a , B C S ta h ly a n d G P S ta h ly , J Am Chem Soc, 2 0 0 4 , 126, 1 3 3 3 5 ; (e) B O le m k , R B o ese a n d R S u stm a n n , Cryst Growth Des, 2 0 0 3 , 3 , 175, (J) F P a n , M S W o n g , V G ra m h c h , C B o ssh a rd a n d P G u n te r, J Am Chem Soc., 1 9 9 6 , 1 1 8 ,6 3 1 5 T h is jo u rn a l is © T h e R o y al S o ciety o f C h e m istry 2 0 1 0 9 (« ) M N a y a k , R . K o n e r, H -ll L in , U F ld rk e , H -H W ei a n d S M o h a n ta , hwrg Chem. 2 0 0 6 , 45, 1 0 7 6 4 , (h) M . N a y a k , S Ila z ra , P L em o m e , R K o n e r, C R L u cas a n d S M o h a n ta , Polyhedron, 2 0 0 8 , 27, 1 2 0 1 , (c) S H a z ra , R K o n e r, M N a y a k , H A S p a rk es, J A K H o w a rd a n d S M o h a n ta , Cryst Growth Des, 2 0 0 9 , 9, 3 6 0 3 , (r/) C .-C C h o u , C .-C S u , H -L T sa i a n d K II. L u , Inorg Chem, 2 0 0 5 , 44, 6 2 8 , (e) M P a la m a n d a v a r, R J B u tc h e r a n d A W A d d ison , Inorg Client, 1 9 9 6 , 35, 4 6 7 , (J) R C H o lz a n d L C T h o m p so n, Inorg Chem , 1 9 9 3 , 32, 5 2 5 1 , (g) P Jo n e s, R S . V ag g a n d P . A . W illia m s, Inorg Chem, 1 9 8 4 , 23, 4 11 0, (ft) W J E v a n s, T J B o y le a n d J W Z ille r, Inorg Client, 1 9 9 2 ,3 1 ,1 1 2 0 10 Li) R K o n e r, H -H L in , H -H W ei a n d S M o h a n ta , Inorg Chem , 2 0 0 5 , 44, 3 5 2 4 , (6 ) R K o n e r, G -H L ee, Y W a n g , H -H W ei a n d S . M o h a n ta , Fur J Inorg Chem , 2 0 0 5 , 1 5 0 0 11 (a) B ru k e r-N o n iu s 2 0 0 4 , APEX-ll, SAINTPlus and TWINABS B ru k e r-N o m u s A X S In c , M a d iso n , W isco n sin , U S A , (b) B ru k e r 2 0 0 3 , SAINT- Plus V e rsio n 6 4 5 B ru k e r A X S In c , M a d iso n , W isc o n sin , U S A 1 2 (« )G M S h e ld ric k , Acta Crystullogr. Sect A Found CrystaUogr , 2 0 0 7 , 64, 1 1 2 , (b) G M S h e ld ric k , SIIELXL-97, Crystal Structure Refinement Program, U n iv ersity o f G o ttin g e n , 1997 CrystEngComm, 2 0 1 0 , 1 2 , 4 7 0 -4 7 7 ] 4 7 7 FULL PAPER DOI: 10.1002/ejic.200900353 Syntheses, Structures and Magnetic Properties of Heterobridged Dinuclear andVUTSRQPONMLKJIHGFEDC Cubane-Type Tetranuclear Complexes of Nickel(II) Derived from a Schiff Base Ligand Susanta Hazra,|a| Rajesh Koner,|a' Pascale Lemoine,|bl E. Carolina Sanudo,*|e| and Sasankasekhar Mohanta*,a| Keywords: M agnetic properties / B ridging ligands / S chiff bases / C age com pounds / S tructure elucidation S y n th eses, stru ctu res an d m ag n etic p ro p erties of a h etero b rid g ed p -p h en o x id o -p u -N C O d im ck el(ll) co m p o u n d [N in2(H L )3g i-N C 0 )]* 2 H 20 (lj an d a h e te rob n d g ed bis(n-r p h en sy stem , [N in.i(L)2(H L )2(S eC N )2(H 2 0 )2]*C 3H ?N 0 4 H 20 (2), co n tain ing a cu b an ety p e N in40 4 co re, d eriv ed fro m th e tetrad en tate S ch iff b ase o x id o )b is(m -alk ox id o )tetraT n ck el(II) co m p artm en tal lig an d N -{ 2 -h y d ro x y eth y ])-3 -m eth o x y sah cy lald im m e (H 2L ) w ere d esen b ed C o m p o u n d s 1 an d 2 cry s­ tallize in tn ch n ic P i an d m o n o ch m c P 2 t/c sy stem s, re sp ec­ tiv ely C o m p o u nd 2, m w h ich th e N i40 4 cu b an e co re is co m ­ Introduction S tudies o f the m agnetic properties o f exchange-coupled com pounds have attracted m uch attention to understand the intim ate role o f spin coupling and to develop m oleculebased m agnetic m aterials 11-71 A s m ost o f the reported ex­ change-coupled com pounds are antiferrom agnctically co u­ pled !11 designed synthesis o f system s exhibiting ferrom ag­ netic interaction is an im p o rtan t task. H eterobndged p-hydroxtdo/alkoxido/phenoxido-p-X (X = azide, thiocyanate, cyanate, pyrazolate, carboxylate, 7azaindolale, e tc) com pounds can be considered as a special class o f exchange-coupled system s because o f the involve­ m ent o f tw o pathw ays to govern the overall nature and m agnitude o f superexchange interaction M agnetic properties o f heterobndged p-hydroxido/alkoxido/phenoxido-p-X dtcopper(ll) com pounds have been extensively investigated and the m echanism o f interaction has been [a] D ep artm ent o f C hem istry, U niversity o f C alcutta, 92 A P C R oad, K olkata 700009, India F ax + 91-33-2351975 5 E -m ail s»i_cu_chem @ yahoo co in [b] U niversite P aris D escartes, L ab o rato ire de C ristallographie et R M N biologiques U M R 8015, F aculte de P harm acie, 4 avenue de l'O b sen ato ire, 75006 P aris. F rance [c] D ep artm en t de Q uim ica Inorgam ca l In stitu t de N anociencia i N anotecnologia. U m versital de B arcelona, D iagon al 647, 08028 B arcelona, S pain E -m ail C arolina sanudo@ qi u b es □ S upporting inform ation for this article is available on the W W W under h ttp //dx doi org/10 1002/ejic 200900353 3458 in terS cien ce' p o sed of tw o p3-p h en o x iclo an d tw o g3-alk o x id o m o ieties, rep resen ts th e so le ex am p le of th is ty p e T h e v ariab le-tem ­ p e ratu re {2-300 K ) m ag n etic su scep tib ilities an d m ag n etiza­ tio ns of th ese tw o co m p o u n d s w ere m easu red T h e in tera c­ tio n b etw een th e m etal cen tres in d in uclear co m po u n d 1 is w e ak ferro m ag netic, resu ltin g in an ST = 2 g ro u n d state at 2 K T h e o v erall in teractio n o b serv ed in 2 is w eak ferro m ag ­ n etic, lead in g to an u n u su al S T = 3 g ro u n d state (© W iley -V C H V erlag G m b H & C o K G aA , 69451 W em h eim , G erm an y , 2009) understood by the concept o f orbital com plem entarity and co u terco m p lem cn tarity 11,1,61 In co n trast, m agnetic propeities o f p-hydroxido/alkoxido/phenoxido-p-X com pounds o f other 3d m etal ions have n o t been explored m uch and there­ fore this area deserves m ore attention 17,?1 A s m entioned, one aim in m olecular m agnetism is to de­ velop m agnetic m aterials that obviously exhibit spontane­ ous m agnetization at higher tem peratures R xcept for a few dinuclear 3 d -4 f com pounds ,14,11 spontaneous m agnetization has been observed in assem bled system s, polym eric or huge spin clu sters 14,51 T herefore, designed synthesis and studies o f m agnetic properties o f exchange-coupled clusters is an im p o rtan t aspect T etranickel(II) com plexes having a N 14 O 4 cubane-hke core have attracted m uch atten tio n .19"211 F or com pounds of this type, the diam agnetic singlet state (S’,- = 0) and m axi­ m um spin containing nonate state (ST = 4) are the fre­ quently observed ground states R ecent observation o f sin­ gle m olecular m agnetic properties m som e o f the N i 4 0 4 cu­ bane com pounds19119dl indicates that these types o f system s should be explored m ore to develop m agnetic m aterials T he S chiff base ligand (Hy L. S chem e l )1221 obtained upon condensation o f 3-m ethoxysalicylaldchyde and ethanolam inc is in principle a tetradentate ligand H ow ever, the co o rd in atio n ability o f the ether oxygen atom to 3d m etal 10 ns is not high, and hence, in practice it w ill behave as a tn d en tate ligand T herefore, w e anticipated th at the com ­ bined effect o f H 2L and a pseudohahde m ay stabilize het- 1009 W iley-V C H V erlag G m bH & C o K G aA , W einheim Eur J hung Chcm 2009, 3453-3466 Ileterobridgcd Dinuclear and Cubane Type Tetranucle.tr Complexes of Ni" erobndged p-phenoxido-p-pseudohahde dmictal systems. We also anticipated that if, in addition to the phenoxido moiety, the alcohol moiety could be deprotonated, a pos­ sibility to derive a high nuclcanty cluster as a result of the simultaneous bridging of both the phenoxido and alkoxido groups might arise. In either of the heterobndged cases, pphenoxido-p-pseudohalide or p-phenoxido-p-alkoxido, the derived systems may be ferromagnetically coupled if the bridge .ingles are close to the angle required for orthogonal­ ity With these aims, the reactions between mckel(II) salt and H2L in the presence of a base and cyanatc or selenocyanate were carried out Whereas a heterobndged p-phenoxido-p-pseudohahdc dmickel(II) compound [Ni"2(lIL)3(Pu-NCOiJdlxO (1) was isolated, the product containing selcnocyanatc was a cubanc-typc heterobndged bis(p3phenoxido)bis(pj-alkoxido) tetranuclear system [Nin4(F)2(HL)2(SeCN)2(H20)2]-C3H7N04H;,0 (2), m which two selenocyanate moieties behave as terminal ligands to two dif­ ferent metal ions We report here the syntheses, structures and magnetic propeities of these two compounds 1 and 2 E“d!S, Description of the Structure of Compound 1 The stmeture of [Nin;,(HL>3(p1-rNe0)]-2II:0 (1, Fig­ ure 1) consists of two mckel(II) centres that are bridged by a phenoxido moiety and an end-on (p]rN) isocyanate ion Of the three phenolate oxygen atoms, 0(2) is coordinated to Ni(l) and 0(42) to Ni(2), whereas 0(22) bridges the two metal centres The two immo nitrogen atoms, N(S) and 14(28), are coordinated to Ni(l), whereas only N(48) is co­ ordinated to Ni(2) Again, of the three alcoholic oxygen atoms, 0(10) is coordinated to Ni(l) and 0(50) to Ni(2), whereas 0(30) remains uncoordinated Interestingly, the hcxacoordmation of the Ni(2) centre is achieved through the coordination of methoxy oxygen 0(20) Thus, m 1 the three ligands arc bonded differently to the two metal centres Scheme :i Chemical structure of 1C!, Results and Discussion Syntheses and Characterization Figure 1 Crystal structure of [Nin2(HL)3(p-NCO)]-2H20 (1) Hy­ drogen atoms and water molecules are omitted for clarity The dinuclcar mckel(II) complex [Ni’^dlLfTpij-NCO)]2H20 (1) is readily obtained m high yield from the reaction of the ZT2L ligand, mckel(II) perchlorate hexahydtate. triethylannne and NaOCN in a 3‘2 6’2 ratio Similarly, the reaction of II2L, nickel(II) perchlorate hexahydrate, tnelhylamine and KSeCN in a 1,1.2 0 8 ratio produces tetramckcl(II) compound 2 m high yield In 1, only the phenoxide groups of the three ligands are deprotonated Among the four ligands in 2, two are monodeprotonated, m which the phenoxido oxygen is deprotonated, and both the pheno! and alcohol groups are deprotonated foi the other two li­ gands The IR spectrum of the free IFF ligand exhibits one strong absorption band at 1 644 cm"1 due to a vc=N vibration.l22! In both complexes 1 and 2, the vibration due to v c =n appears in a slightly lower region (1637 cirr1 for I and 1630 cm-1 for 2). The presence of isocyanate in 1 and selenocyanate m 2 is evidenced by the appeal ance of a very strong signal at 2181 and 2112 cm-1, respectively The stretching mode for water for both complexes is observed as a broad band at 3396 and 3334 cm-1 for 1 and 2, respec­ tively Eur J Inorg Chan 2009,3458-3466 III the case of Ni(l), the best plane is provided by N(8) N(28)O(22)N(60), whereas m the case of Ni(2) the equato­ rial plane is defined by 0(22)N(60)N(48)0(20) The averagedeviation of the constituent atoms from their least-squares planes in the two cases is 0 07 and 0.10 A, whereas the Ni(I) and Ni(2) atoms are displaced from their respective basal planes by 0 OS and 0.15 A. Clearly, the two metal centres lack ideal coordination geometry Foi both metal centres, the axial positions arc occupied by a phenolate oxygen atom [0(2) for Ni(l) and 0(42) for Ni(2)] and an alcohol oxygen atom [0(10) for Ni(I) and 0(50) for Ni(2)] The bridge angles Ni(l}-0(22)-Ni(2) and Ni(l)-N(60>-Ni(2) in­ volving the phenoxide and isocyanate are 106 5(2) and 94 1(2)°, respectively The dihedral angle between these two bridges is 15 7°, whereas the separation between the metal centres is 3.182 A. A consideration of the bond lengths given m Table 1 re­ veals that while the phenoxido bridged Ni-O distances are almost identical [Ni(l)-0(22) 1 982(5) A, Ni(2)-0(22) 6 2009 Wiky-VCH VerLig GmbH & Co KGaA Weinheiiu xvwweurjic org 3459 FULL PAPER____________________ S Ha^ra, R Koner, P I em om e F O S.tmuJo, S M ohanta 1.990(5) A], the two isocyanate-bridged N t-N distances are unequal [N i(l)-N(60) 2 236(6) A. Ni(2)-N(60) 2.111(7) A] The two Ni-O(alcohol) distances are not m uch different INi(l)-O(10) 2.111(5) A, Ni(2)-O(50) 2 149(5) A], as are the two Ni-O(phenoldtc) distances [Ni( 1 >—0(2) 2.015(5) A. N t(2)-0(42) 1.977(5) A] Again, the two nnine N i-N dis­ tances are quite sim ilar [N i(l)-N (8) 1 995(6) A, N i(2)N(48) 1 971(7) A] In contrast, the bond length involving mime nitrogen N(28) to N i(l) [2 077(7) A] is longer. The unusually coordinating nrethoxy oxygen 0(20) is rather weakly bonded to Ni(2) [2 266(6) A] four phcnolate oxygen atom s. 0(12) and 0(22) behave as a p3-bridgm g centre, whereas 0(2) and 0(32) are coordinated term inally Again, the alkoxtdo oxygen atom s 0(10) and 0(40) are prbridgm g. whereas the nondeprotonated alcohol oxygen atom s 0(20) and 0(30) rem ain uncoordi­ nated In Figure 3, a sim plified representation of the coor­ dination environm ents around the four m etal centres is given. Table 1 Selected bond lengths [Aj and angles [°] for 1 2 111(5) 2 015(5) 1.982(5) 2 236(6) 1 995(6) 2 077(7) 172 0(2) 167 7(3) 166 6(3) 95 8(2) 92 1(3) 87 7(2) 93 6(3) 92 0(2) 79 9(3) 92 4(2) 88 2(2) 93 5(2) 77 4(2) 99 8(3) 89 2(3) 106.5(2) Ni(2)-O(50) Ni(2}~0(42) Ni(2F-0(22) Ni(2)-N{60) Ni(2)-N(48) Ni(2VO(20) O(42>-Ni(2)-O(50) 0(22>-Ni(2f-N(48) O(20)-Ni(2)-N(60) 0(42)-N i(2)-0(22) 0(42)-N i(2)-N (48) O(42)-Ni(2)-N(60) O(42)-Ni(2)-O(20) 0(50)-N l(2>-0(22) O(50)-Ni(2y-N(48) O (50)-N i(2)-N (60) O(50)-N i(2>-0(20) N(60)-Ni(2)-O(22) N(60)-Ni{2}-N(48) O(20)-Ni(2)-O(22) O (20f-N i(2)-N (48) N t(l)-N (60>-N i(2) N i(lH 3(lO ) N i(l)-0(2) N i(lK >(22) N i(!)-N (60) Ni(l>-N(S) Ni(l)-N(28S 0(2>-N t(l)-0(iO ) N(8)-Ni( l>-0(22) N (28)-N l(l)-N (60) 0(2)-N i(l)-0(22) 0(2)-N i(l}-N (8) O (2)-N i(l)-N (60) 0(2)-N i(l>-N (28) 0( 10)—TS i( 1)—0(22) O(10)-Ni{l)-N(8) 0( 10)-N i( 1 )-N(60) O (l0)-N i(l}-N (28) N (60)-Ni(l)-N (8) N (60>-Ni(lK )(22) N'(28)-N]f))—N(8) N (28)-N i(l)-0(22) N i(l)-0(22)-N i(2) 2 149i.5) 1 977(5) 1 9901.5) 2 lllt.7) 1 971(7) 2 266i 6) 170 9(2) 165 6i 3) 154 8(2) 102 6i,2) 91 6(3) 95 0(2) 89 7(2) 85 9(2) 79 7(3) 89 4(2) 89 7(2) 80 3(2) 101 3(3) 74 5(2) 103 4(3) 94 1(2) Distortions of the two nickel centres from ideal octahe­ dral geom etry are reflected in their turns angles, which vary between 166.6(3) and 172 0(2)° for N t(l) and between 154.8(2) and 170 9(2)° for Nt(2). Obviously, the geom etry of Nt(2) deviates far from a regular octahedral environ­ m ent The ranges of the cis angles [77 4(2)—99 8(3)° for N i(l) and 74 5(2)-103.4(3)° for Nt(2)J are also indicative of the greater distortion of the Ni(2) coordination environ­ m ent There are a num ber of hydrogen-bonding interactions in­ volving water m olecules, phenoxtdo, m ethoxy, alcohol and isocyanate oxygen atom s and one C-H m oiety A 2D net­ work resulting from all these hydrogen bridges is shown in Figure SI (Supporting Inform ation) Description of the Structure of Compound 2 The crystal structure of [NiII4(L)2(lIL)2(SeCN)2(H20)2]Cj II7N04H20 (2) is shown in Figure 2. As m ay be noted, this is a cubane-type structure consisting of four nickel(II) centres, two m onodeprotonated ligands [HLj", m which the phenoxido m oiety is deprotonated, two dideprotonated li­ gands [L]2~, m which both the phenol and alcohol m oieties are deprotonated, two m onodentate selenocyanate units acting as term inal ligands and two coordinated water m ole­ cules Com pound 2 contains four solvated water m olecules as well as an A^fV'-dimethylformamide m olecule. O f the 3460 vYwweiirjic org Figure 2 Crystal structure of [N i'bffJTH LFtSeCN JsftTO b]' O H jNC M lIiO (2) Hydrogen atom s, water and dm f m olecules are om itted for clarity Figure 3 Simplified representation ot the coordination environ­ m ent of the four m etal centres in [N f.itTM U LH SeCN lidTOb]C ,H 7N 0-4H ,0 (2) The coordination environm ents ot N t(l) and Ni(2) arc sim ilar. N t(l) is coordinated with p3-phenoxido oxygen atom s 0(12) and 0(22). pralkoxtdo oxygen 0(10), lmme nitrogen N(18), selenocyanate nitrogen N(44) and watei oxygen 0(47). Similarly, Ni(2) is bonded to the p3-phenoxido oxygen atom s 0(12) and 0(22), pj-alkoxido oxygen 0(40), tm tne nitrogen N(28). selenocyanate ntttogen N(41) and water oxygen 0(48) For the six-coordinate m etal centres, the basal planes for Ni(I) and Nt(2) are defined by N(18)N(44)0(10)0(12) and N(2S)N(4I)0(40)0(22), respec­ tively The average deviations of the constituent atom s from £ 2009 W ileyA CH Verlag G m bH & Co KG a A. W cinhenn Enr J Inorg Chcm 2009 , 3458-3466 EurJIC H e te r o b r .d g e d D in u c lc a r a n d C u b a n e T y p e T e tra n u c le a r C o m p le x e s o f N i11 A, w h e r e a s th e m e ta l A f r o m th e le a s t- s q u a r e s N i( 2 ) , th e c o o r d in a tio n e n v ir o n m e n ts o f N t( 3 ) a n d N i( 4 ) a r e p la n e s T h e b o n d le n g th s g iv e n m T a b le 2 in d ic a te th a t f o r a ls o s im ila r I n th e s e c a s e s , e a c h m e ta l c e n tr e is c o o r d in a te d th e r e s p e c tiv e p la n e s a r e 0 0 6 a n d 0 0 4 io n s a r e d is p la c e d b y 0 0 8 a n d 0 .0 9 L ik e th e s im ila r ity b e tw e e n th e g e o m e tr y o f N i ( l) a n d s im ila r d o n o r a to m s th e b o n d le n g th s f o r N i ( l ) a n d N i( 2 ) to tw o p 3 - jlk o x id o o x y g e n a to m s [ 0 ( 1 0 ) a n d 0 ( 4 0 ) ] , o n e a r e c o m p a r a b le I t m a y b e n o te d th a t f o r b o th N i ( l ) a n d p j- p h e n o x id o o x y g e n [ 0 ( 2 2 ) f o r N i( 3 ) a n d 0 ( 1 2 ) f o r N i( 4 ) J , N i( 2 ) th e a p ic a l b o n d le n g th in v o lv in g a p h e n o x id o o x y g e n o n e m u n o d e n ta le p h e n o x id o o x y g e n [ 0 ( 2 ) f o r N i( 3 ) a n d [ 0 ( 2 2 ) f o r N i ( l ) a n d 0 ( 1 2 ) f o r N i( 2 ) j is s ig n if ic a n tly lo n g e r 0 ( 3 2 ) f o r N i(4 ) J , o n e n n in o n itr o g e n [ N ( 8 ) f o r N i( 3 ) a n d [ 2 .2 6 5 ( 4 ) A f o r N i ( l) a n d 2 2 8 1 ( 4 ) A f o r N i( 2 )J th a n th e r e ­ m a in in g o th e r f iv e b o n d le n g th s [2 0 0 7 ( 6 )— 2 0 6 9 ( 5 ) N i(l) a n d 2 0 2 3 (6 )-2 0 7 5 (4 ) A f o r N i( 2 ) J N i( 2 ) c o o r d in a tio n e n v ir o n m e n t th e 1 6 1 0 1 ( 1 7 ) a n d 1 7 1 6 8 ( 1 9 ) ° a n d th e 7 5 8 1 (1 5 ) a n d 1 0 3 7 6 (1 6 )° > 1 (3 8 ) f o r N i( 4 ) [ a n d o n e m e th o x y o x y g e n [ 0 ( 2 1 ) f o r N i( S ) A for F o r th e N i ( l ) a n d trails a n g le s h e as a n g le s r a n g e and 0 ( 1 1 ) f o r N i( 4 ) j T h e c o o r d in a tio n e n v ir o n m e n t o f th e s e tw o m e ta l c e n tr e s is s ig n if ic a n tly d is to r te d o c ta h e d r a l, b e tw e e n in w h ic h N ( S )0 ( 1 0 ) 0 ( 2 2 ) 0 ( 2 ) a n d N ( 3 8 ) O ( 4 0 ) O (1 2 ) O ( 3 2 ) b e tw e e n a r c th e b a s a l p la n e s lo r m e ta l c e n tr e s N i( 3 ) a n d T a k e n to g e th e r w ith th e n b o n d N i(4 ) . r e s p e c tiv e ly T h e a v e r a g e d e v ia tio n o f th e c o n s titu e n t a to m s le n g th s , N i ( l ) a n d N i( 2 ) r e p r e s e n t a d is to r te d o c ta h e d r a l and g e o m e tr y ' s q u a r e s b a s a l p la n e s a r c c a th e d is p la c e m e n t o f th e m e ta l io n 0 14 A and fro m ca 0 05 th e le a s t- A. I n th e s e c a s e s a ls o , th e s im ila r m c ta l- h g a n d c o n ta c ts h a v e a lm o s t id e n tic a l v a lu e s . T h e T a b le 2 S e le c te d b o n d l e n g t h s [ A ] a n d a n g l e s [° ] f o r 2 and th e w id e nuns ra n g e s a n g le s [ 1 5 4 .7 3 ( 1 6 ) 4 7 4 5 5 (1 S )° ] of th e as a n g le s [7 3 2 5 ( 1 5 ) — 2 2 8 1 (4 ) 1 0 9 1 9 (1 9 )° ] a r e in d ic a tiv e o f s ig n if ic a n t d is to itio n o f th e N i(2 )-0 (4 8 > 2 0 4 3 (5 ) c o o id m a tio n e n v ir o n m e n t o f N t( 3 ) a n d N i( 4 ) T h e g r e a te r N i(2 )-O (4 0 ) 2 0 7 5 (4 ) d is to r tio n f o r N i( 3 ) a n d N i( 4 ) th a n th a t o f N i ( l ) a n d N i( 2 ) N i(2 )-0 (2 2 ) 2 0 4 3 (4 ) 2 0 6 9 (5 ) N i(2 )-N (2 8 ) 2 0 6 5 (5 ) 2 0 0 7 (6 ) N i ( 2 ) -N ( 4 1 ) 2 .0 2 3 (6 ) N i( 1 )— 0 ( 2 2 ) 2 2 6 5 (4 ) N i(2 )-0 (1 2 ) N i f I> — 0 ( 4 7 ) 2 0 6 9 (5 ) N i ( l) — 0 ( 1 0 ) 2 0 6 3 (4 ) N i(l)-0 (1 2 ) 2 0 4 6 (4 ) N i(l)-N (1 8 ) N i(l)~ N f4 4 ) is a ls o e v id e n t f r o m th e a b o v e - m e n tio n e d m e tr ic a l p a r a m ­ e te r s O f th e 1 2 e d g e s o f th e N 1 4 O 4 c u b a n e , th e 2 e d g e s N t ( l) - N i ( 3 ) -0 ( 2 1 ) 2 2 7 9 (4 ) N i(4 )-0 (1 1) 2 3 0 1 (4 ) N i(3 )-O (4 0 ) 2 0 9 0 (4 ) N i ( 4 ) -O ( 1 0 ) 2 0 9 0 (4 ) 0 (2 2 ) an d N i(3 )-0 (2 ) 1 9 5 9 (4 ) N i(4 )-0 (3 2 ) 1 9 6 8 (4 ) a n d 2 2 8 1 (4 ) N s(3)-N (8 ) 1 9 7 1 (5 ) N i( 4 } - N { 3 8 ) 1 9 6 8 (5 ) N i(3 M X !0 ) 2 0 4 2 (4 ) N i(4 K > (4 0 ) 2 0 2 5 (4 ) N i(3 )-O f2 2 ) 2 0 3 8 (4 ) N i(4 )-0 (1 2 ) 2 0 4 8 (4 ) N t( 2 ) - 0 ( 1 2 ) a r e s ig n if ic a n tly lo n g e r [ 2 .2 6 5 ( 4 ) A, r e s p e c tiv e ly ] r e la tiv e to th e 1 0 o th e r e d g e s , w h ic h lie m th e r a n g e 2 Q 0 7 ( 6 ) - 2 0 9 0 ( 4 ) A ( T a b le 2 ) The 1 )— 0 ( 4 7 ) 161 7 5 (1 9 ) 0 ( 1 2 ) - N i( 2 ) - 0 ( 4 8 ) 161 0 1 (1 7 ) in te r n a l a n g le s N 1 - O - N 1 a n d O - N i - O h e in th e r a n g e s 9 4 8 8 ( 1 6 )- - 1 0 4 3 7 ( 1 8 ) ° a n d 7 5 S l( 1 5 ) - 8 2 8 9 ( 1 5 ) ° A ll in Till, O (1 0 } -N ](l)-N (1 8 ) 1 6 9 7 3 (1 8 ) O ( 4 0 ) - N i ( 2 ) -N ( 2 8 ) 1 6 8 5 4 (1 8 ) th e N 1 4 O 4 c o r e is a d is to r te d c u b a n e 0 ( 1 2 )— N j( I ) - N ( 4 4 ) 171 4 (2 ) 0 (2 2 )-N i(2 )~ N (4 l) 171 6 8 (1 9 ) 0 ( 2 2 > ~ N i( l ) - 0 ( 1 0 ) 7 6 9 4 (1 4 ) 0 (1 2 )-N i(2 > -0 (4 0 ) 7 5 8 1 (1 5 ) 0 ( 2 2 } - N i(l) - 0 (1 2 ) 7 6 3 6 (1 4 ) 0 ( 1 2 ) - N i( 2 ) - 0 ( 2 2 ) 7 6 0 3 (1 4 ) n e tic e x c h a n g e in te r a c tio n s , it is r e le v a n t to s u m m a n z e th e 0 ( 2 2 V - N i ( l ) -N ( 1 8 ) 1 0 0 4 6 (1 6 ) 0 (1 2 )-N i(2 > -N (2 8 ) 9 9 2 0 (1 7 ) ty p e s o f b r id g e s a n d b r id g e a n g le s in 2 T w o m e ta l c e n tr e s 0 ( 2 2 ) - N i( t > — N ( 4 4 ) 9 5 0 3 (1 9 ) 0 ( 1 2 ) — N i( 2 )— N ( 4 1 ) 9 5 8 7 (1 8 ) a r e b r id g e d in th e f o llo w in g w a y s N i ( l ) — N i( 2 ) b y tw o p h e n ­ 0 (4 7 )-N i( 1 )-O t 1 0 ) 8 7 9 7 (1 9 ) O ( 4 8 ) - N i( 2 ) ~ O ( 4 0 ) 8 8 5 0 (1 8 ) o x id o b r id g e s , N i( 3 )— N i( 4 ) b y tw o a lk o x id o b r id g e s , N i( l )•* • 0 (4 7 > -N i(l)-0 (1 2 ) 9 1 8 (2 ) 0 (4 8 )-N i(2 )-0 (2 2 ) 9 1 4 4 (1 9 ) 0 ( 4 7 ) — N lf 1 )— N ( 1 8 ) 9 2 6 (2 ) 0 (4 8 )-N i(2 )-N (2 8 ) 9 4 2 (2 ) 0 (4 7 > -N i( 1 V N (4 4 ) 9 6 5 (2 ) 0 (4 8 )-N i(2 )-N (4 l) 9 5 9 (2 ) o n e p h e n o x id o a n d o n e a lk o x id o b r id g e T h e a v e r a g e b r id g e 0 ( 1 0 > - N i( 1 ) — 0 ( 1 2 ) 8 2 8 9 (1 5 ) O ( 2 2 ) - N i ( 2 ) -O ( 4 0 ) 8 1 9 6 (1 5 ) a n g le s f o r th e a b o v e p a ir s a r e 0 ( 10 )-N t( 1 )-N (4 4 ) 9 5 2 (2 ) O (4 0 )-N i(2 > -N (4 l) 9 4 3 2 (1 9 ) r e s p e c tiv e ly O f 1 2 )— N i( 1 )— N ( 1 8 ) 8 6 8 5 (1 9 ) 0 ( 2 2 ) -N i(2 )-N (2 8 ) 8 6 8 4 (1 8 ) N ( 1 8 )— N i ( 1 ) - N ( 4 4 ) 9 4 9 (2 ) N ( 2 8 ) - N l ( 2 ) - N ( 4 I) 9 6 5 (2 ) 0 (2 2 )-N i( I n a s m u c h a s th e b r id g e s p la y d o m in a tin g r o le s m m a g ­ N i( 3 ) , N i ( l ) - N i ( 4 ) , N i ( 2 ) - N i ( 3 ) a n d N i ( 2 ) - N i ( 4 ) e a c h b y 1 0 3 4 2 , 9 6 .8 5 a n d 9 8 0 8 ° , A n u m b e r o f N i4 0 4 c u b a n e - ly p e c o m p o u n d s h a v e b e e n O ( 2 1 ) -N i ( 3 ) -O ( 4 0 ) 1 5 4 7 3 (1 6 ) O ( 1 0 ) -N i ( 4 ) -O ( l 1 ) 1 5 4 8 2 (1 6 ) r e p o r te d m th e lite r a tu r e , th e m a jo r ity o f w h ic h a r e a lk o x ­ 0 (2 2 )-N i(3 )-N (8 ) 1 6 1 3 (2 ) 0 (1 2 )-N i(4 )-N (3 8 ) 161 8 (2 ) id o b r id g e d l9 -1 2 — ’! I h e r e a r e fe w e x a m p le s w h e r e th e b r id g ­ O (2 )-N n 3 K )(I0 ) 1 7 3 3 4 (1 8 ) 0 (3 2 } -N i(4 )-0 (4 0 ) 1 7 4 5 5 (1 8 ) in g m o ie tie s a r e e ith e r o f te tr a k is ( p 3 - p h e n o x td o ) ,i n 141 te t- 0 ( 2 1 } -N i(3 )-0 (2 ) 8 6 1 4 (1 7 ) 0 (1 l)-N i(4 )-0 (3 2 ) 8 5 8 1 (1 7 ) r a k is ( |i r h y d r o x ! d o ) ,|H l te tra k ! s ( p 3 - m e th o x id o ) ,|IM 8 ,2 ? 1 0 (2 1 )-N i(3 )-N (8 ) 9 6 0 7 (1 9 ) 0 ( 1 1 ) - N i (4 ) - N (3 8 ) 9 7 5 6 (1 9 ) O ( 2 1 ) - N 1 (3 ) - O { 1 0 ) 1 0 0 2 1 (1 5 ) 0 ( 1 1 )-N i(4 )-O (4 0 ) 9 9 0 2 (1 6 ) 0 (2 1 )-N i(3 } -0 (2 2 ) 7 3 8 0 (1 5 ) 0 (1 l)-N i(4 )-0 ( 12) 7 3 2 5 (1 5 ) o x id o ) b is ( p 3 - m c th o x id o ) l2 0 2 -1 ! T h e r e is o n ly o n e e x a m p le O ( 4 0 )- N r( 3 ) - O ( 2 ) 9 2 5 8 (1 7 ) 0 ( 10 )-N i(4 } -0 (3 2 ) 9 3 7 8 (1 7 ) w h e r e a ll th e b u d g e s ( h y d r o x id o , p h e n o x id o . a lk o x id o a n d O (4 0 )-X i(3 )-N (8 ) 1 0 9 1 9 (1 9 ) 0 ( 1 O j— N i(4 > — N ( 3 8 ) 1 0 7 6 0 (1 9 ) o x id o ) a r c d i f f e r e n t1211 T o th e b e s t o f o u r k n o w le d g e , c o m ­ 0 (4 0 )-N i(3 )-0 (1 0 ) 8 2 5 3 (1 5 ) ( > ( 1 0 ) — N i( 4 > — 0 ( 4 0 ) 8 2 9 5 (1 5 ) 0 (4 0 )-N i(3 } -0 (2 2 ) 81 7 2 (1 5 ) 0 ( 1 0 ) - N t( 4 ) - 0 ( 1 2 ) 8 2 2 1 (1 5 ) 0 ( 2 ) - N a ,3 ) - N ( 8 ) 9 3 7 (2 ) 0 ( .3 2 ) - N i ( 4 ) - N ( 3 8 ) 9 3 2 (2 ) tw o p 3 - p h e n o x td o a n d tw o p j- a lk o x id o m o ie tie s , r e p r e s e n ts 0 (2 )-N ii 3 )-0 (2 2 ) 101 0 7 (1 7 ) 0 ( 3 2 ) - N i( 4 ) - 0 ( 1 2 ) 101 5 9 (1 7 ) th e s o le e x a m p le o f th is ty p e N (8 )-N ii3 )-O (1 0 ) 8 3 7 (2 ) N ( 3 8 ) - N i ( 4 ) -O ( 4 0 ) S 3 7 (2 ) 0 ( 1 0 )-N i(3 )-O (2 2 ) 8 2 7 7 (1 6 ) O ( 1 2 ) -N i ( 4 ) -O ( 4 0 ) 8 2 3 4 (1 5 ) N i( 1 > - 0 ') 1 2 > — N i ( 2 ) 1 0 3 0 8 (1 6 ) N i ( 2 ) - 0 ( 2 2 )- N i( 3 ) 9 7 5 6 (1 6 ) b is ( p 3 - h y d r o x td o ) b is ( p 3 - a lk o x id o )il9 -2 J) and b is ( f i3 - p h e n - p o u n d 2 , m w h ic h th e N 1 4 O 4 c u b a n e c o r e is c o m p o s e d b y Magnetic Properties of 1 and 2 DC m a g n e tic s u s c e p tib ility d a ta w e r e c o lle c te d fo r a N i(l )-0 " 2 2 )-N i(2 ) 1 0 3 7 6 (1 6 ) N i(2 )-O (4 0 )-N i(3 ) 9 4 9 7 (1 6 ) N i(IV O :iO )-N i(3 ) 1 0 .3 0 0 ( 1 7 ) N i(2 )-0 ( I2 )-N i(4 ) 9 6 7 2 (1 5 ) c r u s h e d c r y s ta llin e c o m p o u n d o f 1 a t a n a p p lie d m a g n e tic N i(l )-0 (2 2 )-N i(3 ) 9 6 4 9 (1 5 ) N i (2 } - O ( 4 0 ) - N i ( 4 ) 1 0 4 3 7 (1 8 ) f ie ld o f t ) 7 T m th e 2 to 3 0 0 K te m p e ra tu ie r a n g e T h e d a ta N i(I)-O il0 )-N i(4 ) 9 4 8 8 (1 6 ) N i( 3 ) — 0 ( 1 ( ) ) ~ N i( 4 ) 9 6 6 0 (1 6 ) a r e s h o w n in F ig u r e 4 a s a N i (l ) - O i l2 ) - N i { 4 ) 9 6 7 0 (1 7 ) N i(3 )-O (4 0 )-N i(4 ) 9 7 1 1 (1 6 ) Uur J luorg Che/11 2009,3458-3466 1 5 2 0 0 9 W ile y - V C II X\tT v s . T p lo t The T v a lu e a t 3 0 0 K is 2 S S c n ^ K m o L 1 , s lig h tly a b o v e th a t e x p e c te d GmbH ,9 C o K iV .iA W e illh c im y .w w e u r jic o r g 3461 S FU LL PA PER ____________________ g- fo r tw o n o n in te r a c tin g N i11 c e n tr e s w ith 5 = 1 a n d A s th e te m p e ra tu re c re ase d u n til w a s d e c re a se d , th e it re ac h e d a yM T Ila z ra , R K o n e r . I* C l.e m o m e , F Sanudo. S M o h a n ta 2 2 p ro d u c t in ­ v a lu e of 3 0 6 c n f K m o h 1 a t 1 5 K . B e lo w th is te m p e ra tu re , th e m a x im u m yMT p r o d u c t c o n s ta n tly d r o p p e d to a v a lu e o f 1 7 7 c m 3 K m o l-1 at 2 K 1 'h e e x p e r i m e n t a l d a t a w e re fitte d by u s in g th e M A G P A C K p r o g r a m l251 w ith th e e x c h a n g e H a m ilto n ia n = -2J[Sj S2 J ZDS,,2 + H T h is s im u la tio n a ls o ta k e s in to a c ­ c o u n t th e s in g le -io n a n is o tro p y o f e a c h m e ta l c e n tre m th e c lu s te r. T h e 3 3 3 c m -1 b e s t-fittm g and O (N il) p a ra m e te rs w ere = = D ( N i2 ) g = 0 2 3 x 1 0 -3 ), re s u ltin g in a s p in g r o u n d s ta te o f d m u c le a r c o m p le x 1 J = (R = St = 2 f o r 2 .2 4 , |6 6 8 | e n r 1 In tc rm o le c u ia r in te ra c tio n s th ro u g h 1 1 - b o n d s ( F ig u r e S I , S u p p o r tin g I n f o r m a tio n ) w ith th e s o l­ v a te d w a te r m o le c u le s w e re in c lu d e d m th e m o d e l b y u s in g m e a n f ie ld t h e o r y a n d th e b e s t f i t ti n g , w h ic h g a v e -0 2 9 c m -1 z'J' = F ig u r e 5 M a g n e ti z a ti o n N C 0 )]-2 II> 0 (c irc le s) (I) a t 2 K vs fie ld T h e s o lid p lo t f o r [ N iu 2 ( H L ) ^ n - lin e s re p re s e n t th e s im u la te d c u rv e s T h e fie ld d e p e n d e n c e o f th e m a g n e tiz a tio n fo r 1 w a s a ls o s tu d ie d a t 2 K a n d is s h o w n in F ig u r e 5 S a tu ra ­ tio n is n o t f u lly r e a c h e d a t 5 T a n d th e c u r v e d o e s n o t c o n ­ th e N i- p h e n o x id o - N i a n d N i- is o c y a n a te - N i a n g le s a r e c a fo rm to a B n llo u m m o d e l a s a re s u lt o f th e m h e ie n t s m g le - 1 0 1 a n d 9 9 5 ° , i e s p e c t i v e l y is b l S u r p n s i n g l y . t h i s c o m p o u n d lo n w a s re p o rte d to b e m a g n e tic a lly n o n m te ra c tm g a n is o tro p y o f N i11 The f ittin g p a r a m e te r s o b ta in e d f r o m th e s u s c e p tib ility d a ta w e r e u s e d to s im u la te th e m a g ­ n e tiz a tio n w ith th e M A G PA C K g o o d a g ie e m e n t b e tw e e n d a ta s o ftw a re , w 'h i c h W lu le c o n s id e rin g m a g n e tic e x c h a n g e in te ra c tio n s in h e t- a e r o b n d g e d s y s te m s , th e b rid g e a n g le s fo r b o th th e e x c h a n g e th e c a lc u la te d a n d e x p e r im e n ta l p a th w a y s s h o u ld b e ta k e n in to c o n s id e ra tio n . I t is g e n e ra lly T h e c u r v e i s s h o w n i n F 'l g u r e 5 a s a s o l i d l i n e gave F ittin g h e ld th a t if th e o f th e s u s c e p tib ility d a ta w e r e a ls o d o n e w ith o u t ta k in g th e th a n 97°, s in g le -io n a n is o tro p ie s in to a c c o u n t, h o w e v e r, th e s e fa ile d c o n tr a s t, f c rio m a g n e tic e x c h a n g e is r e p o r te d in p ! r N ( is o - to m o d e l p r o p e r ly th e lo w - te m p e r a tu r e r e g io n o f th e s u s c e p ­ c y a n a te ) b r id g e d c o m p o u n d s w h e n th e b r id g e a n g le is le s s tib ility c u r v e a n d th e m a g n e tiz a tio n d a ta t h a n 1 0 0 ° [ 2 c '7 f l I n c o m p o u n d 1 , t h e p h e n o x i d o b r i d g e a n g l e N i- p h e n o x id o - N i b r id g e a n g le is g r e a te r a n tif e r r o m a g n e tic b e h a v io u r is e x p e c te d [2 b l I n is 1 0 6 5 ° , w h e r e a s th e is o c y a n a te b r id g e a n g le is 9 4 .1 ° T h u s , fo r th e tw o p e c te d p a th w a y s J v a lu e s o f d iffe re n t s ig n s a re e x ­ H o w e v e r , it is n o t p o s s ib le to p r e d ic t a p r io n w h ic h p a rtic u la r e x c h a n g e p a th w a y w ill b e d o m in a tin g . In th e o th e r r e p o r te d d m u c le a r N i( p -p h c n o x id o ) (p , ,- is o c y a n a te )N i c o m p o u n d , 1* 1'1 t h e p h e n o x i d o b r i d g e a n g l e i s 1 1 0 5 ° a n d th e is o c y a n a te b r id g e a n g le is 9 6 2 ° m T h e o v e r a ll in te ra c tio n th is c o m p o u n d is w e a k ly f e r r o m a g n e tic , a s is th e c a s e w ith c o m p o u n d 1 A g a in , in th e r e p o r te d d im e r o f d m u c le a r N i ( p - p h e n o x i d o ) ( p i r i s o c y a n a t e ) N i u n i t s , 1 8 1 ’1 b o t h t h e f e r r o ­ m a g n e tic ( is o c y a n a te b r id g e a n g le is 9 9 .5 ° ) a n d a n tif e r r o ­ m a g n e tic p a th w a y s (p h e n o x id o b rid g e a n g le 1 0 1 °) s h o u ld b e w e a k e r a n d b o th a re b a la n c e d to re s u lt in n o n m te ra c tm g m e ta l c e n tre s DC F ig u re 4 (1 ) /MT (c irc le s ) v s. T p lo t l o r [ N t 'b i H I d ^ g - N C C b l C I T O T h e s o lid lin e is t h e b e s t - f it lin e t o t h e e x p e r i m e n t a l d a t a , s e e m a g n e tic s u s c e p tib ility ot w e re c o lle c te d 1 T m th e 2 to 3 0 0 K te m p e ra tu re ra n g e s h o w n in F ig u r e d a s a te x t f o r f ittin g p a r a m e te rs d a ta fo r a c r u s h e d c r y s t a l l i n e s a m p l e o f 2 a t a n a p p l i e d m a g n e t i c f i e ld yMT v s T T h e d a ta a re T v a lu e p lo t. T h e at 3 0 0 K is 5 4 0 c m 3 K in o l- |> s lig h tly a b o v e th a t e x p e c te d fo i g = 2 2 As yMT p r o d u c t i n c r e a s e d fo u r n o n m te ra c tm g N iu c e n tre s w ith 5 = 1 a n d W e a r e a w a r e o f o n l y t w o c a s e s w h e r e p - 0 - |r - N ( i s o c v a n - th e te m p e ra tu re w a s d e c re a s e d , th e a te ) d in ic k e l( I l) u n its h a v e b e e n le p o r te d a n d b o th o f th e s e u n til it r e a c h e d h a v e a p - O f p h e n o x i d o ) - ^ r N ( i s o c y a n a t e ) b u d g i n g c o r e ,8 i 18 K a m a x im u m v a lu e o f 7 5 c m 3 K m o l" 1 B e lo w th is te m p e ra tu re , th e /MT p r o d u c t O n e o f th e s e c o m p o u n d , th a t is , 3 , is a d is c r e te d m u c le a r d ro p p e d to a v a lu e o f 3 2 c m 3 K m o H at 2 K h a v in g b rid g e a n g le s o f 1 1 0 4 5 a n d 9 6 1 9 ° fo r th e p h e n o x id o pendence 2 and s tu d ie d , a n d it is s h o w n in F ig m e 7 i s o c y a n a t e m o i e t i e s , r e s p e c t i v e l y 18 ‘9 In th is c a s e , th e o f th e m a g n e tiz a tio n fo r at at c o n s ta n tly T h e F ie ld d e ­ 2 K w as a ls o .A s c a n b e o b s e r v e d , m e ta l c e n tr e s a r e f e rr o m a g n e tic a llv e x c h a n g e c o u p le d w ith th e d a ta te n d s to s a tu r a tio n a t 5 T , w ith a M /N p B v a lu e o f J= 6 2 6 2 c m -1 T h e s e c o n d c o m p o u n d is a c a r b o n a te - b rid g e d d im e r o f p -p h e n o x id o -p , r is o c y a n a te d im c k e l(II) u n its a n d 3462 w w w e u rjic o rg ■C - 2 0 0 9 W ile y -V C H V e rla g G m b H T h is s e e m s to in d ic a te a n in te rm e d ia te s p in v a lu e o f 3 f o r te tia n u c le a r N i11 c lu s te r & Co K G a A , W e in h e u n 2 AC S-y m a g n e tic s u s c e p - Etir J Inorg Chan 2009, 3458-3466 EuriC H e te r o b r i d g e d D m u c l e a r a n d C u b a n e T y p e T e t r a n u d e a r C o m p l e x e s o f N i 11 s p in w h e r e 7 ( 1 - 2 ) is th e c o u p lin g c o n s ta n t b e tw e e n N i( l) a n d g ro u n d s ta te a n d th e k n o w n a n is o tro p y o f N i" c o m p le x e s t i b il i ty fo r 2 w as a ls o s tu d ie d , g iv e n N i( 2 ), 7 (3 ^ 4 -) is th e c o u p lin g c o n s ta n t b e tw e e n N i(3 ) a n d N o s i g n a l s w e r e o b s e r v e d m t h e A C m a g n e t i c s u s c e p t ib i l i ty N i ( 4 ) a n d 7 is th e c o u p lin g c o n s ta n t b e tw e e n N i( l) a n d m e a s u re m e n t a s a re s u lt o f th e la c k o f a b a rrie r fo r th e N i(3 ). N i( l) a n d re v e rs a l o f th e m a g n e tiz a tio n m N i(4 ) 2 th e n o n z e ro 1 'h i s c o u l d b e d u e t o s m a l l o r p o s i t iv e a n i s o t r o p y o f t h e N i 11 t e t r a n u d e a r d u s t e r N i(4 ). N i(2 ) a n d N i(3 ) a n d N i(2 ) a n d I h is f la m ilto n ia n w a s u s e d to fit th e e x p e iim e n ta l d a t a w i th t h e M A G P A C K X 5 ! s o f t w a r e a n d t h e b e s t - f i tt i n g g p a ra m e te rs w ith a fix e d -5 1 4 e n r 1, 7 (3 -4 ) = |6 6 g v a lu e o f 87 cm -1 = 2 2 5 w e re 7 (1 -2 ) = and 7 = 4 62 cm -1 and D= 6 9 |e i r r \ T h e a g r e e m e n t b e tw e e n th e e x p e r im e n ta l a n d c a l c u l a t e d d a t a i s e x c e l le n t (R = 0 16 X 1 O '1 ) W ith th e o b ­ ta in e d e x c h a n g e p a ra m c tc is , th e s p in g ro u n d s ta te o f c o m ­ p le x 2 is th e in te r m e d ia te s p in 5 , = 3 It s h o u ld b e n o te d , h o w e v e r , t h a t t h e f i r s t e x c i t e d s t a t e w i th 2 c m -1 5, = 4 is o n l y a b o v e th e g ro u n d s ta te The exchange p a ra m e te rs o b ta in e d fro m th e suscep­ tib ility d a ta w e re u s e d to s im u la te th e m a g n e tiz a tio n a t 2 K b y u s in g th e M A G P A C K p a c k a g e T h e s e p a ra m e te rs p ro ­ v i d e a g o o d s i m u l a t i o n o f t h e m a g n e t iz a t i o n d a t a , s h o w n a s a s o lid lin e tn F ig u r e 7 S im ila rly to o u r s tu d ie s o n c o m p le x 1 , t h e m a g n e t i c d a t a w 'e r e f i t t e d w i t h a t t v o - 7 m o d e l a n d F ig u re d . /m 3 " ( c ir c le s ) vs T w ith o u t p lo ts to r [ N i’V L H I I L ) 2 ( S c C N ) 2 - ( I T O l J 'C i H - N O H I T O ( 2 ) T h e s o l i d l i n e s r e p r e s e n t t h e s i m u l a te d ta k in g tib ility a n d c u rv e s. in to account s m g l e -1011 a n i s o t r o p i e s . th e T h e s e m o d e ls fa ile d to m o d e l p to p e rly b o th th e m a g n e tiz a tio n w ith th e s u s c e p ­ th e s a m e p a ra m e te rs a n d w e re th u s d is c a id e d T h e m o s t im p o r ta n t p a r a m e te r to g o v e r n th e s ig n a n d m a g n itu d e o f e x c h a n g e in te r a c tio n N i 404 c u b a n e o f th e c o r e s is t h e N i - O - N i a n g l e ; t h e i n t e r a c t i o n is f e r i o m a g n e t i c w h e n th is a n g le is d o s e to o ith o g o n a lity , w h e re a s a n a n tife rro m a g n e tic in te ra c tio n la rg e r th a n som e N 14O 4 is o b s e r v e d f o r b r id g in g a n g le s 9 9 ° ,9 “ 2 0 ' A c c o r d i n g l y , a l l t h e in te ra c tio n s m c u b a n e s a rc fe rro m a g n e tic le a d in g to a n 5 X = 4 s p i n g r o u n d s t a t e ,|9 - t6 l w h e r e a s t h e e x i s t e n c e o f b o t h f e r r o a n d a n tife rro m a g n e tic in te ra c tio n s m s o m e s y s te m s re s u lts m e i t h e r a n 5 X = 4 n ° ,7 -2 n | o r 5 X = 0 g r o u n d s t a t e s n 3 ’ l9 l I n 2, th e a v e ra g e N t( l) - 0 - N i( 2 ) a n g le is 1 0 3 4 2 ° , th e r e fo r e , a n a n tifc rio m a g n e lic in te ra c tio n e x p e c te d b e t w e e n N i ( l ) a n d N i ( 2 ) is T h e a v e r a g e v a l u e o f t h e N i ( 3 ) - 0 - N i ( 4 ) a n g l e is 9 6 8 5 ° , w h ic h p re d ic ts a w e a k te rro m a g n e tic in te ra c tio n b e ­ F i g u r e 7 M a g n e t i z a t i o n ( c ir c le s ) v s f i e l d p l o t s f o r [ N i 'f T L k H L T ( S e C N k H 2 d ) ,]- C ,H 7N 0 - 4 H 2 0 (2 ) a t 2 K T h e s o lid lin e is a s im u ­ tw e e n N i(3 ) a n d N i(4 ) A g a in , a s th e a v e ra g e b rid g e a n g le 1011s m o t h e r p a i r s is 9 8 0 8 ° , t h e i n t e r a c ­ b e tw e e n th e m e ta l tio n s h o u ld b e w e a k fe rro m a g n e tic l a ti o n In k e e p in g w ith th e s e e x p e c t a t io n s , t h e e x c h a n g e c o u p l i n g c o n s t a n t s o b t a i n e d m A s a lr e a d y m e n tio n e d , th e r e a r e th r e e s e ts o f n ic k d fll) p a ir s , a n d th e r e f o r e , th e m a g n e tic b e h a v io u r c a n b e m o d ­ 2 a rc 7 (1 -2 ) = - 5 .1 4 e n r 1, 7 (3 -4 ) = 6 .8 7 c m "1 and 7 = 4 62 e n r1 e lle d b y th re e d iffe re n t e x c h a n g e m tc g ia ls (S c h e m e d ), fo r w h ic h th e s p in H a m ilto n ia n , ta k in g in to a c c o u n t th e in d i­ v i d u a l s i n g l e - i o n a n i s o t r o p i e s , is g i v e n b y H = - 2 7 ( 1 - 2 X 5 ,5 ,) - 2JQ-A)(S3Sa) - 2 7 ( 5 ,5 , + 5 ,5 4 + Conclusions 5 2 5 , + 5 2 5 4) + I D S ,- 2 T h e a im o f th e p re s e n t s tu d y w a s to d e s ig n fe rro m a g - n e tic a lly c o u p le d h e te ro b r id g e d s y s te m s th io u g h th e s im u l­ t a n e o u s b r i d g i n g a b i l i ti e s o f t h e p h e n o x i d o a n d a l k o x i d o g ro u p s m th e lig a n d iV -(2 -h y d io x y e th y l)-3 -m e th o x y s a h c y l- a ld im m e ( ll- .i.) a lo n g w ith th e b r id g in g a b ilitie s o f th e c y a n a te a n d s e le n o c y a n a te c o -lig a n d s T w o n e w h e te io b n d g e d c o m p o u n d s [ N f f f H ^ d p i j - N C O J I 'H I z O f l ) a n d [ N i ’ V L ) ,( l l L ) 2 ( S e r N ) 2 ( I - I 2 0 ) 2 ] - C , H 7 N 0 - 4 I I , 0 ( 2) w e r e i s o l a t e d a n d s tru c tu ra lly c h a ra c te riz e d S chem e 2 M o d e l fo r e x c h a n g e c o u p lin g m 2 Eur J bars Chan 2 0 0 9 , 3 4 5 8 -3 4 6 6 ■ri W h e re a s 1 is a h e te ro b r id g e d p - p h e n o x id o -p u -N C O d im c k e l(ll) c o m p o u n d . 2 0 0 9 W ile y A C H \e r la fi, G m b H & Co K G aA W e in h e im wwweuijic org 2 is a h e t e r o - 3463 S H a z ra , FULL PAPERZYXWVUTSRQPONMLKJIHGFEDCBA bridged bis(p3 -phenoxido)b]s{p:,-dIkoxido)tetramckel(II) system containing the Ni,I404 cubane-type core Interest­ ingly, the bis(|a3-phenoxido)bis(p3 -dlkoxido) moiety in com­ pound 2 is the sole example of this type m the Nin404 cubane family It may be noted that even in Ni40.4 cubane-type compounds derived from Schiflf base ligands similar to H2L, the four metal ions are bridged by four alkoxido oxy­ gen atoms PWib.i21 The magnetic properties of the two com­ pounds were studied In 1, the exchange interactions involv­ ing the heterobndged pathways lead to overall weak ferro­ magnetic behaviour with an Sf = 2 ground state In con­ trast, complex 2 has competing antiferromagnctic and fer­ romagnetic interactions, which result m an unusual spin ground state of ST = 3 The observation of ferromagnetism in both 1 and 2 shows that the synthetic strategy and ligand design were successful m achieving ferromagnctically cou­ pled heterobndged complexes. R K o n c r , P I .e m o m e , F . 0 w ith w a t e r Y ie ld 0 2 8 0 g (8 0 % ) F T IR (K B r) H 4 75 N 7 11 v = 3 3 3 4 [ m , v ( F L O ) ] . 2 1 1 2 [ v s . v ( S e C N )] , 1 6 3 0 [ v s , v ( C = f s )[ c m 1 Crystal Structure Determination of 1 and 2: T h e c r y s ta ll o g r a p h i c d a t a o f t h e s e tw o c o m p o u n d s a rc s u m m a r iz e d in T a b le 3 tio n d a ta w e re c o lle c te d w ith an E n ra f-N o m u s D iffra c ­ CAD4 d if­ f r a c t o m e te r a t 2 9 3 K w i t h d a t a c o l l e c t io n a n d r e d u c t i o n b y u s in g th e C A D 4 E x p re s s E n ra f-N o n m s p ro g ra m s p a c k a g e a n d X C A D 4 All d a t a w e r e c o r r e c t e d f o r L o r e n t z p o l a r iz a t i o n e f f e c ts B o t h s t r u c ­ t u r e s w e r e s o lv e d b y d i r e c t m e t h o d s b y u s in g S l R 9 2 ‘- 'b J n j r e fin e d b y l e a s t- s q u a r e s m e t h o d s o n F2 b y u s in g S H E L X L - 9 7 |2 4 h l H y d r o ­ g e n a t o m s w e r e i n s e rt e d a t c a lc u l a te d p o s i t io n s w i t h i s o t r o p i c t h e r ­ m a l p a r a m e te r s a n d r e f in e d T h e h y d r o g e n a t o m s o l t h e w a tc i w e re n o t l o c a te d fro m m o le c u le s d if f e r e n c e F o u r ie r m a p The 0 ( \ V 2 ) a n d 0 ( W 3 ) o x y g e n a t o m s in 1 a n d t h e C ( 3 7 ) a n d 0 ( 5 6 ) c a r b o n a t o m s in 2 w e ie s t a t i c a l l y o r d y n a m ic a l ly d i s o r d e r e d a n d T h e f in a l r e f i n e m e n t c o n v e r g e d a n d -7 1 5 5 4 0 (fo i 1 and 2, to R, [ 7 > 2 o ( /) [ v a lu e s 1) r e s p e c tiv e ly C C D C - 7 1 S 5 3 9 ( f o r 2 ) c o n t a i n th e s u p p l e m e n t a ry c r y s ta llo g r a p h ic - d a t a f o r t h i s p a p e r. T h e s e d a t a c a n b e o b t a in e d f re e o f c h a r g e f ro m Materials and Physical Methods: fro m C n H ^ N i jO i v S e y ( 1 3 9 2 7 4 ) C 3 8 5 9 , H 4 6 8 . N 7 .0 0 . f o u n d C 3 9 2 8 e a le d 0 0 6 1 0 a n d 0 0 5 3 8 fo r p u rc h a sed M o h a n ta d ilT ra c la b le s in g le c r y s ta l s w a s c o l le c t e d b y n i t r a t i o n a n d w a s h e d s o lv e d Experimental Section Sanudo. S A ll r e a g e n t s a n d s o l v e n t s w e re c o m m e rc ia l s o u rc e s a n d u s e d a s r e c e iv e d The S c h iff b a s e l i g a n d ( I T L ) , w h ic h w a s u s e d p r e v i o u s l y b y u s t o d e r iv e T h e C a m b r i d g e C r y s t a l lo g r a p h i c D a t a C e n t r e v ia w w w c e d e c a m a c u k / d a ta _ r e q u c s t /c i f T a b le 3 C r y s t a ll o g r a p h i c i n f o r m a t i o n f o i I a n d 2 a d i u r a n y l ( V I ) c o m p o u n d , w a s s y n t h e s iz e d f o llo w in g t h e r e p o r t e d 1 2 F o r m u la C \ iH , (VN 4 0 , , N b F o r m u la w e ig h t 774 06 C 4 s I L s N , 0 „ S e , N i4 i 3 S> 2 7 4 t o m e t e r w ith s a m p le s a s K B r d i s k s V a r i a b le - te m p e r a l u r c m a g n e ti c C r y s ta l s y s te m S p a c e c ro u p tn c h n ic Tf m o n o d im c s u s c e p t i b i l it y a n d m a g n e t i z a t io n m e a s u re m e n ts w e r e e a r n e d o u t w ilh a Q u a n t u m D e s i g n M P M S S Q U I D m a g n e t o m e t e r D i a m a g ­ “ IA J 1 0 1 3 5 (2 ) 1 7 8 5 2 (3 ) n e t ic c o r r e c t i o n s w e r e e s t i m a te d f r o m t h e P a s c a l c o n s ta n t s . R is th e b [A ] ]2 /2 :[(/m 7 \ „ p l ]’ c [A ] 11 5 2 1 (3 ) 15 2 3 9 (3 ) 2 2 9 9 7 (5 ) 9 1 8 4 (2 ) 90 00 p r o c e d u r e I2 2 1 E l e m e n t a l ( C , H a n d N ) a n a ly s e s w e r e p e r fo r m e d w i t h a P e r k m - E l m e r 2 4 0 0 I I a n a l y z e r I R s p e c t ra w e re r e c o r d e d m t h e r e g io n 4 0 0 - 4 0 0 0 c m -1 w i th a Peikm—E l m e r a g r e e m e n t f a c t o r d e f in e d a s I [ ( y M 7 ) c x p , - 1Ni "2(HL).,(Mi ,.-NC0 ) 1 - 2 H , 0 R X l F f s p e c tr o p h o ­ ( 1 ): T o a s t i r re d A O V '- d im e th y llb rin - a m i d e ( d m f) s o lu t io n ( 5 m l ,) o f H 2 L ( 0 1 9 5 g . 1 m m o l) w a s a d d e d d r o p w i s e a d m f s o l u t i o n ( 3 m L ) o f m c k e l( I l ) p e r c h l o ra t e tie x a h y d r a t c ( 0 2 5 0 g , 0 O S m m o l ) , a n d t o t h e r e s u lt in g y e llo w is h g r e e n s o l u t i o n w a s a d d e d d r o p w i s e a d m f s o l u t i o n ( 2 m L ) o f t r i e th y l a m i n e ( 0 2 0 2 g , 2 m m o l) d e e p g re en A f te r T h e c o l o u r o f t h e s o l u t i o n c h a n g e d to 1 h , a n a q u e o u s s o lu t io n ( 5 m L ) o f N a O C N «n / 'n f n F [ .V ] z A sfa i [g u m -1] T e m p e ra tu re [ K ] 20 n ( 0 0 4 5 g , 0 0 8 m m o l) w a s a d d e d d r o p w is e t o t h e s t i r r e d s o l u t i o n [ m m '] 7 (0 0 0 ) A f te r s t i r r i n g f o r a n a d d i ti o n a l 2 I t, t h e d e e p - g r e e n s o l u t i o n w a s In d ex ran g e s 7 * 2 , Sc 1 4 1 0 5 (2 ) 9 6 0 2 (2 ) 9 5 7 5 (2 ) 9 5 4 7 (2 ) 90 00 1 7 5 9 .9 ( 7 ) 2 5 7 6 1 6 (1 8 ) 4 1 461 1 606 2 9 3 (2 ) 2 9 3 (2 ) 4 0 6 -5 5 0 0 4 0 4 -6 0 2 4 I 135 2 625 810 - 1 3 < /i < 1 3 -2 5 £ h< 19 / < 32 2832 f i lt e re d t o r e m o v e a n y s u s p e n d e d p a r ti c le s a n d w a l c r ( 1 0 m L ) w a s 0 £ k s 14 a d d e d t o i t T h e s o l u t i o n w a s k e p t a t r o o m t e m p e r a t u r e A f te r 2 d , - 1 9 £ Is 1 9 -1 9 -3 2 33787 a g r e e n c r y s t a l l i n e c o m p o u n d c o n t a i n in g d i f f r a c t a b ie c r y s t a l s w a s c o l le c te d b y f i l tr a ti o n a n d w a s h e d w i th w a te r Y ie ld 0 2 2 0 g ( 8 5 % ) C \ , H , v N 4 N i 2 O |s ( 7 7 4 0 6 ) e a l e d C 4 7 9 2 , I I 5 0 6 , N 7 2 1 47 70, H 5 12, N 7 32 F T IR (K B r) fo u n d C v = 3 3 9 6 [ w , v ( l T O ) ], 2 1 8 1 25 R e f le c tio n s c o lle c te d 8461 I n d e p e n d e n t r e fle c tio n s 8060 16832 ««i (0 0 8 0 8 ) (0 3 7 4 1 ) RjWiviR-.M [ / > 2 c i ( / ) j RWw RW ( a ll d a ta ) 0 0 6 1 0 /0 1 4 8 5 0 0 5 3 8 /0 0 9 6 4 0 3 0 9 9 /0 2 2 2 9 0 3 4 2 6 /0 1 4 9 4 ( v s , v ( O C N ) ] , 1 6 3 7 [ v s , v ( C = N ) ( c m -* lNi"4(I,),(HL);(SeCN),(H,0)2| C,n7N0-4H,0 (2): [ a ] R, = P ||F 0 | - |F J |/X |F „ |] [ b ] i r /? 2 = 1 2 > ( / v - F/mwFj]'12 A d m f s o lu ­ t i o n ( 2 m L ) o f n i c k e l( II ) p e r c h l o r a t e h e x a h y d r a t e ( 0 3 6 6 g , I m m o l) w as added to a s tirre d d m f s o l u ti o n (3 m L ) o f IT L (0 1 9 5 g , 1 m m o l) T o t h e r e s u l t i n g y e llo w is h g r e e n s o l u t i o n w a s a d d e d a d m f s o l u t i o n ( 2 m L ) o f t r i e t h y l a m m e ( 0 2 0 2 g , 2 m m o l) T h e c o l o u r o f th e s o lu tio n c h a n g e d to d e e p g re e n A fte r 3 0 m in , a n a q u e o u s s o lu ­ t io n ( 5 m L ) o f K S e C N ( 0 1 1 5 g Supporting Information ( s e e f o o t n o t e o il t h e f ir s t p a g e o f t h is a r ti ­ c le ) 2 D h y d io g e n - b o n d e d n e t w o r k a n d g e o m e t n e s o f t h e h y d r o g e n b o n d s in 1 0 8 m m o l) w a s a d d e d d r o p w is e to t h e s o l u t i o n w ith s t i r r i n g W i th i n 1 5 m m a g r e e n p r e c ip i t a t e s t a r t e d t o a p p e a r , w h ic h w a s d i s s o l v e d b y d r o p w i s e a d d i ti o n o f a r e q u ir e d Acknowledgments a m o u n t o f d m f T h e r e s u lt i n g g r e e n s o l u ti o n w a s fi lt e r e d t o r e m o v e a n y s u s p e n d e d p a r ti c le s , a n d t h e f il tr a te w a s k e p t a t r o o m t c m p e i a - F i n a n c i a l s u p p o r t f i o m t h e D e p a r t m e n t o f S c ie n c e a n d T e c h n o l ­ tu re ogy 3464 A fte r a few d a y s w w w e u rjic o rg a g r e e n c r y s ta l l in e c o m p o u n d c o n la m m g G o v e rn m e n t o f In d ia O 2 0 0 9 W i l e y A C H V e rh g G m b H & C o K G a A , W e m h c m i ( S R /S 1 /I C - 1 2 /2 0 0 8 ) a n d Ear J htorg Chan C e n te r 2009 fo r , 3 4 5 8 -3 4 6 0 H eterobridged D m uctear and C ubaiie T ype T etranuclear C om plexes of N i11 N anoseience and N anotechnology, U niversity of C alcutta is grate­ fully acknow ledged S H acknow ledges C SIR . G overnm ent of In­ dia and R K acknow ledges C enter for N anoseience and N ano­ technology U niversity of C alcutta for providing a fellow ship 1’ 1. thanks llm versite Pans D escartes L abniatoire de C nstallograplue et R M N biologiques U M R S015 K iculte de Pharm acie for sm glecrystal X -ray data collection E C S acknow ledges the financial suppoit of the Spanish G overnm ent (G iant C T Q 2006/03949B Q U and Juan de la C ierva fellow ship) [1] a) 0 K ahn. Molecular Magnetism V C H Publications. N ew Y oik, 1993 b) R D W illet, D G atteschi O K ahn (Eds.), Magneto-Structural Correlations in Exchange Coupled Systems, R eidcl, D ordrecht. I he N etherlands, 1985, c) C J O ’C onnor (E d ). Research Frontiers in Magnetochenustry W orld Scien­ tific. Singapore, 1993, d) C T C hen. K S Suslick, Coord Chem Rev 1993, 128. 293-322 [2] a) R . K oner, H -11 L m , H -H W ei, S M olunta. Inorg Chem 2005 44, 3524— 3536, b) K K N anda. L K T hom pson. J N B ndson, K N ag, J Chem Soc., Chem Comnnm 1994, 13371338; c) M 1 A rnoitua, R C oites J L M esa, L L ezam a, f R ojo, G V illeneuve, Transition Mel Chem 1988, 13. 371-374 [3] a) E. R uiz, J C irera. J C ano, S A lva; e/, C . L oose J K ortus, Client Common 2008, 52-54, bj J T ercero, C D iaz. J R ibas J M ahia. M M aestro, X Solans, J Chem Soc., Dalton Trims 2002, 2040-204 6, c) A Figuerola, C D iaz, M S El Fallah, J R ibas, M M aestro, J M ahia, Chem Comnnm 2001, 12041205. d) A A L ozano, M Saez. J Perez, L G arcia L Lczam a. T R ojo, G L opez, G G arcia. M D Santana. Dalton Tunis 2006 3906-3911 [4] a) R . W inpenny (E d.) Single-Molecule Magnets and Related Phenomena, Springer, B erlin, 2006, b) J S M iller (E d). Ex­ tended Linear Cham Compounds, Plenum . N ew Y oik, 1983. vol III. c) D G atteschi, O K ahn J S M iller, F Palacio (Eds). Mague lie Molecular Materials. K luw er A cadem ic Publishers, D ordrecht, 1991. d) D B A m abilm o, J V eciana in Magnetism Molecules to Materials II (Fils 5 S M iller M D rillon), W ilcyV C1-], W cinheim 2001, pp 1-60, e) II Iw am ura, K Inoue m Magnetism Molecules to Materials II (Eds. J S M iller, M D rillon), W iley-V C 1I, W em heim , 2001, pp 61-108 [5] a) J R ibas A Escuer, M M onfort. R . V icente, R C ortes, L L ezam a, I R ojo, Coord Chem Rev 1999, 193-195, 1027106&; b) M V erdaguer. A B leuzen, V M arvaud, J V aisscrm ann, M Sculcim an. C D esplanchcs A Scuiller, C Train. R G arde, G G alley, C L om enech, I R osenm an. P V eillet, C C arder, F V ilhnn Coord Chem Rer 1999, 190-192. 10231047, c) G R ajaram an, M M urugesu. E C Saudo, M Solcr. W W ernsdorfer, M H ellivvell, C M uryn, J R aftery, S J Teat, G C hristou E K B iechm , J Am Chem Soc 2004, 126. 15445-15457, d) D V enegas-Y azigi, E R uiz, J C ano. S A lva­ rez. Dalton Trans 2006, 2643-264 6. c) T C Stam atatos. V N aslopoulos, A J T asiopoulos, E E M oushi, W W ernsdorfer, G C hristou, S P Perlepes, Inorg Chem 2008, 47, 10081-10089 f) T C Stam atatos, D Foguet-A Ibiol S -C Lee, C C . Stoum pos. C P R aptopoulou, A Terzis, W W ernsdorfer, S O M ill, S P Perlepes, G C hristou, J Am Chem Soc 2007, 129, 9484— 9496 [6] a) Y .-C C hou, S -F H uang. R K oncr. G -H Lee. Y W ang, S M ohanta. II -M W ei, Inorg Chem 2004, 43. 2759-2761, b) V M cK ee, J V D agdician, R B au C A R eed, J Am Chem Soc. 1981. 103, 7000^-7001. c) W M azurek, B J K ennedy, K S M urray, M J. O ’C onnor J R R odgers M R Snow , A G W edd, P R Z w ack, Inorg Chem 1985, 24, 3258-326 4, d) Y N ishida, S K ida, J Chem Soc, Dalton Trans. 1986. 26332640; e) T N D om an, D E W illiam s J F B anks. R M B u­ chanan, 11-R C hang, R J W ebb. D N H endrickson. Inorg Chem 1990 .29. 1058-1062 [7] a) T. Sato, W M ori, Y X ie, N K anehisa, Y K ai M Fuji. S. G oto, E N agai. Y N .ikao, Inorg. Chun Acta 2006, 359 22712274, b) G A m brosi. P D apporto, M Form ica, V Fust, L. Eur J Inorg Chem 2009,3458-3466 G iorgi, A G uern. M M ichcloni, P Paoli, R Pontcllm i, P R ossi. Dalton Trans 2004, 3468-3474, c) A K B oudahs J -M C lem cnte-Jtian F D alian. J-P T uchagues, Inorg. Chan 2004, 43, 1574-1586, d) R B ouw m an, P E vans R A G dcG raaf, II K ooijm an, R Poinsot, P R abu. J R eedijk. A L Spek, In­ org Chan 1995, 34, 6302-6311 c) J M C lem cnte-Juan, C M ackievvicz, M V erelst, F D alian, A B ousseksou, Y Sanakis. J-P T uchagues. Inorg. Chem 2002. 41 1478-1491. f) M G B arandika, Z Serna, R C ortes L L ezam a, T. R ojo, M K U rtidga, M I A rnortud. Chem Comnnm 2001 45— 46 [8] a) S K D cy N M ondal, M S E Fallah. R V icente. A Esctiei, X Solans, M Foni-B aida, T M atsushita, V G ranilich S M itra, Inorg Chan 2004, 43. 2427-2434 b) S U ozum i, H . Furutuchi, M O hba H O kaw a, D E Fenton, K Shindo, S M urata, D J K itko, Inorg Chem. 1998, 37. 6281-6287 [9] a) F Paap, F, B ouw m an, W L D riessen, R A G . deG raaff, J R eedijk. J Chem Soc, Dalton Trans 1985, 737-741, b) M M oragues-C anovas, M . Ilellnvell, L R icard E R iviere, W W ernsdorfei, E B rechin. T M allali Eur J Inorg Chan 2004, 2219-2222, c) E -C Y ang, W W ernsdorfer. L N Z akharov, Y. K araki, A Y am aguchi, R M Isidro, G -D E li. S A W ilson, A L R hem gold H lshnnoto, D N H endrickson, Inorg Chem 2006, 45, 52«-546. d) F. -C Y ang, W W ernsdorfer. S H ill, R S E dw ards M N akano, S M accagnano, L N Z akh­ arov A L, R hem gold G C hristou, D N H endrickson, Poly­ hedron 2003, 22, 1727— 1734, e) J L aw rence, E -C Y ang, R E dw ards, M M O lm stead, C R am sey, N S D alai, P K G antzcl, S H ill, D N H endrickson, Inorg Chan. 2008, 47, 1965 -1974. 0 J-W R ail, S -Y Z hang, B X u, Y X ia, D G uo, J-Y Z hang, Y Li, Inorg Chem Comnnm. 2008, II. 73-76, g) A Escuer, M Font-B ardla. S B K um ar, X Solans, R V icente, Polyhedron 1999. IS 909-914 [10] C' B oskovic, E R usanov. II Stoeckli-Evans. H U G lide!./noig. Chan Commun 2002,5.881-886 [11] a) G S Papaefstathiou A E scuer F A M autner C R apto­ poulou. A ler/as, S P Perlepes, R V icente. Eur J Inorg Chem 2005. 879-893. b) S A kine, z\ A kim oto. T Shiga H O xhio, T N abeshnn.i Inorg Chem 2008. 47, 875-885 [12] B I- A braham s. T A H udson, R R obson, Chem Eur J 2006 12. 7095-7102 [13] G A rom i, A S B atsanov, P C hristian. M H ellivvell. O R oubeau, G A 1 im eo, R li P W inpenny, Dalton Trans 2003, 4466-4471 [14JA J A tkins. A J B lake, M Schroder, J Chem Soc, Chem Comnnm 1993 1662-1665 115] a) L B allestei, E C oronado, A G utierrez, A M ange. M F Perpm an E Pinilla. T R ico, Inoig Chem 1992, 31.2053—2056, b) J P W ikstrom . A Y N azarenko, W M R eiff, E V R vbakA kim ova Inorg Cliim Acta 2007, 360, 37.33-3740 [16] a) M S E Fallah. E R entschler, A C aneschi D G atteschi, Inorg Chun Acta 1996, 247, 231-235. b) G C haboussant, R Easier, H -U G udel. S O chsenbcm , A Parkin, S Paisons, G R ajaram an. A Sieber. A z\ Sm ith, G A T nnco, R E P W in­ penny, Dalton Trans. 2004 2758-2766 [17] T K Paine, E R entschler, T W evherm ulier, P C haudhun, Eur J Inorg Chem 2003, 3167-3178' [18] a) Z Lm , Z Li, H Z hang, Cryst Growth Des 2007, 7, 589591, b) W L G ladfelter M W L ynch, W P Schaefer, D N H endrickson, H B G ray, Inorg Chan. 1981, 20, 2390-2397 [19] J M C lem ente-Juan, B C hansou B D onnadieu. J-P T uchagues, Inorg Chem. 2000, 39, 5515-5519 [20] S M ukherjee, T W eyherm ullcr, E B othe, K W ieghardt, P C haudhun Eur J Inorg Chem 2003. 863-875 [21] S C ronue, b L aunay, V M cK ee, Chem Commun 2001, 19181919 [22] S H azra S M auim der M Fleck. S M ohanta Polyhedron 2008,27, 1408-1414 [23] T hose system s are consideied here as alkoxido-bridged, w here the alkoxido m oiety com es from the chelating ligand, w hereas f) 2009 W iley A C H V eil,ig G m bH & C o K O LA W c-m hem . w w w curjic org 3465 FULL PAPER S Hd7ra, R Koner, P 1 emoitie, F C Samido. S Mohanta compounds in which the metal centres are bridged by deprotonated methanol are classified here as methoxidobridged [24] a) A Altomarc, G Cascarano, C Giacova/'/o, A Guaghardi M. C. Burla, G Polidori. M Camaih, J Appl Crystallogr 1994, 27, 435-436. b) G M Sheldnck, SHELXL-97 A Pro­ 3466 wwweurjic org gram for Crystal Structure Refinement Univcisity of Gottingen Gottingen, Germany, 1997 [25] J J Borras-Almenar, J M Clemente-Juan K Coronado B S Tsukerblat, Inorg. Chem 1999, 38, 6081-6088 Received April 18 2009 Published Online July 7, 2009 £ 2009 Wiley-\CH Ycrlug GmbH & Co KG.iA, Wemheim Em J Inorg Chem 2009, 3458-3466 _FULL PAPERVUTSRQPONMLKJIHGF D O I: 1 0 .1 0 0 2 /e jic .2 0 0 9 0 0 4 3 2 Role of Water and Solvent in the Formation of Three Mononuclear Copper(II) Crystals: A New Type of Hydrate Isomerism in Coordination Chemistry Susanta Hazra,|a| Rajesh Koner,|a| Malabika Nayak,*3* Hazel A. Sparkes,|b| Judith A. K. Howard,|b| Supriya Dutta,*c* and Sasankasekhar Mohanta*13* Keywords: H y d rate iso m erism / H y d ro g e n b o n d s / C o p p e r / In clu sion c o m p o u n d s / T h e rm o c h e m istry R e flu x in g o f th e re d c o m p o u n d [C u nL ’C (H 20 )] (1) m a c e to n e fo rm s tw o n e w sp e c ie s g re e n [C u I1L 1(H 20 )] (2) a n d b ro w n [C u n L '] (3 ) [H jL 1 = N .N '-e th y le n e b isfii-e th o x y sa h c y la ld n ru n e )] W h e re a s b o th 1 a n d 2 a re c o n v e rte d in to 3 u p o n h e a tin g , 3 is c o n v e rte d b a c k in to 1 w h e n e x p o se d to air. T h e stru c tu re s o f all th re e c o m p o u n d s w e re d e te rm in e d c ry sta llo g ra p h ic a lly , fro m w h ic h th e in te re stin g h y d ra te iso m e n sm o f 1 a n d 2 a re id e n tifie d , m 1 a w a te r m o le c u le is e n c a p su la te d in to th e O j se c tio n o f th e lig a n d th ro u g h b ifu rc a te d h y d ro g e n b o n d in g , w h e re a s m 2 a w a te r m o le c u le c o o rd in a te s d ire c tly to th e m e ta l c e n tre D e sp ite th e m e ta l io n b in d in g to th e li­ g a n d m th e sa m e m a n n e r m all th re e c a se s, th e fo rm a tio n o f d iffe re n t m o n o n u c le a r c o m p le x e s re su ltin g fro m th e p re s­ e n c e o r a b se n c e o f w a te r a n d its c o o rd in a tio n o r e n c a p su l­ a tio n is a n in te re stin g o b se rv a tio n T h e rm o g ra v im e tn c a n a ly ­ se s o f c o m p o u n d s 1 a n d 2 sh o w e d th a t th e e n c a p su la te d w a te r m th e fo rm e r c o m p o u n d is re m o v e d a t slig h tly lo w e r te m p e ra tu re th a n th a t o f th e c o o rd in ate d w a te r m o le c u le , a s e x p e c ted A lth o u g h th re e c ry sta ls 1, 2 a n d 3 w e re iso la te d , th e c o m p o sitio n o f sp e c ie s m so lu tio n is p ro b a b ly th e sa m e a s e v id e n c ed b y 'H N M R sp e c tro sc o p y T h e refo re , th e fo rm a­ tio n o f th re e c ry sta ls a n d th e h y d ra te iso m e rism d e sc rib e d m th is in v e stig a tio n a re so lid -sta te p h e n o m e n a Introduction H y d rate iso m e n sm is o n e ty p e o f c o n stitu tio n a l iso m e r­ ism m w h ich th e iso m ers a rc d iffe re n t sp ecies w ith th e sa m e e m p iric a l fo rm u la b lit v ary in g n u m b e rs o f c o o id in a te d a n d so lv ated w a te r m o lecu les I'-51 R ecen t ex am p les o f h y d ra te iso m ers a re also k n o w n FI H o w ev er, to th e b e st o f o u r k n o w led g e, th e h y d rate iso m ers m all th e k n o w n cases are d ifferen t w ith resp ect to c o o rd in ate d a n d so lv ate d w ater m olecules, n o o th e r ty p e o f h y d rate iso m erism h a s b een re­ p o rte d to d a te F ro m th e tim e o f A lfred W ern er, iso m e n sm in c o o rd in a­ tio n c o m p o u n d s is an im p o rta n t a sp e c t !'~f‘l T h e classical iso m e n sm in c o o rd in a tion c o m p o u n d s c a n b e classified m ain ly in to tw o b ra n c he s, c o n stitu tio n a l iso m e n sm (stru c­ tu ra l iso m e n sm , c o m p o u n d s h av e th e sam e m o le cu la r fo im u ld b u t d iffe re n t a to m seq u en ces) a n d ste re o iso m e r­ ism .1 A lth o u g h classical iso m en sm w as estab lish ed m an y y ears ag o , n ew ex am p les o f th e k n o w n classical ty p e o f iso m e riza tio n are b ein g re p o rte d to e n ric h th is a re a I’~6) In c o n tra st, a few ty p es o f iso m erism , fo r ex am p le. Ja h n -T elle r iso m erism ,F I su p ra m o le cu la r iso m e n sm ,!8) m o le cu la r iso m ­ e n sm d u e to d ifferen ce m n u m b e r o l in te rstitia l so lv en t m o lecu les,!9) c a te n a tio n iso m en sm !*”1 a n d so o n h av e a t­ tra cte d m u c h a tten tio n m recen t y ears [a] D e p a rtm en t o f C h e m istry U m v e rsitv o f C a lc u tta , 9 2 A P C R o a d , K o lk u ta 7 0 0 0 0 9 . In d ia F ax + 9 1 -3 3 -2 3 5 1 9 7 5 5 E -m a il sm _ cu _ c h em @ y ah o o co in [b ] D e p a rtm en t o f C h e m istry , U n iv ersity o f D u rh am , U n iv e rsity S cien ce L a b o rato rie s, S o u th R o a d . D u rh a m , D ill 3 L E , U n ited K in g do m [c] D e p a rtm en t o f In o rg a n ic C h em istry ". In d ia n A sso c iatio n F ir th e C u ltiv a tio n o f S cien ce, K o lk a ta 7 0 0 0 3 2, In d ia □ S u p p o rtin g in fo rm atio n fo r th is a rtic le is av ailab le o n th e W W W u n d e r h ttp //d x d o i o rg /1 0 1 0 0 2 /ejic 2 0 0 9 00 4 3 2 Eur J lnorg Chan 2 0 0 9 , 4 S 8 7 -4 S 9 4 (© W ile y -V C H V e rla g G m b H & C o K G aA , 6 9 4 5 1 W e m h e im , G e rm a n y , 2 0 0 9 ) It sh o u ld b e m e n tio n e d th a t classical iso m e n sm ap p lies to a c o n c e p t th a t g en et ally refers to m o le c u la r c h e m istry ia th er th a n to so lid -sta te c h e m istry In o th e r w o rd s, each classical iso m er sh o u ld h av e a n id e ntity m so lu tio n H o w ­ ev er, th e c o n c e p t o f th is sta b ility c rite rio n h a s b e e n c h a n ge d m recen t tim es S u p ra m o le c u lar iso m erism ,)R) m o le cu la r iso m erism d u e to th e d ifferen ce in n u m b e r o f in te rstitia l so lv en t m o lecu les!9) a n tj c a ten a tio n iso m e rism 110) a re d e fi­ n itely so lid -sta te p h e n o m e n a , a n d th e fo rm er!8) h as b een a v ery in te restin g research a rea m re c e n t tim es In th e m o n o n u c le a i c o m p o u n d s d e riv e d fro m 3 -e th o x y / m e th o x y sa lie y la ld e h y d e -d ia m m e S c h iff b ase lig an d s, a 3 d m e ta l io n o c c up ie s th e N 20 2 c a v ity [l l"',J) In so m e o f th e m o n o n u c le a r c o m p o u n d s o f n ic k el(II), c o p p e r(II) a n d o x o v d n a d m m (lV ), o n e w a te r m o le cu le is e n c a p su late d w ith in th e 0 4 c o m p a rtm e n t, re su ltin g m th e fo rm a tio n o f a n in clu sio n c o m p o u n d (S ch em e 1) I11 12' In a d d itio n , th e re a re also a few ex am p les o l' lio n h y d ra tc d c o m p o u n d s o f th e '0 0 9 W ile y -Y C lI V erlag G m b H Sc C o K G a A . W ein h eim (?) ifterScience- 4887 S M ohanta et al FU LL PA PER sam e m etal ions derived from sim ilar ligands (.Schem e 1) lni H ovvevei; there is also one structurally characterized m ono­ nuclear com pound, derived from this class of ligand, w hich contains a coordinated w ater m olecule (Schem e 1)!UJ C learly, the presence ot absence of a w ater m olecule and the encapsulated or coordinated nature of the w ater m olecule is not a general phenom enon of this type of m ononuclear com pound but depends on the subtle effect characteristic of a particular com pound. a b e Schem e 1. C hem ical structures of three types of m ononuclear com ­ plexes derived from 3-ethoxy/m ethoxysalicyl.ildehyde-di.im ine Schiff base ligands (a) the m ononuclear w ater inclusion com pound [C ff'L’C ffLb)] (l),|llaI (b) a noiihvdrated m ononuclear com ­ pound,11,11 (c) a m ononuclear com pound containing coordinated w ater1141 W e have reported the synthesis, structiuc and pioperties of the inclusion product [C uuL ‘C(H ;.O y] !1; orthorhom bic Pbin space group, a - 12 800(2) A , b = 19.804(4) c 19 804(4) V = 1941.7(8) Z = 4}, w hich w as recrystalhzed from A 'rV '-dm iethylfo! m am tde {IL L1 = ;Y ,/V'-eth>lcnebis(3-ethoxysahcylaldunm e). Schem e 2| tu-'l W ith the aim to obtain the recrystalhzed product m ore quickly, vve chose the low -boiling solvent acetone H owever, upon relluxtng in acetone, the red com plex [C id'L'C flhO )] (1) w as converted into the green [C u1IL ’(H ;>0)] (2) and brow n [C uuL l| (3) com pound in single-crystalline form H erein, w e report on the crystal structures ol 2 and 3, a com parison of the structures, therm ogravim etric analyses, 'H N M R and infrared spectroscopic properties and m tcrconversioti be­ haviour of 1-3 A, A-\ A, Schem ed C hem ical slruclm e of A A '-cthylcnebisO -ethoxysalicyldldim m e) (ILL 1) 4888 wwweurjic org Results and Discussion Syntheses, 1R Spectra, N M R Spectra and Therm ogravim etric A nalyses lntcrconvcrsions of 1 , 2 and 3 m the solid state and in solution are dem onstrated in Schem e 3 From the refluxed solution or suspension of fC id'L 'C flhO )] (1) m acetone, starting com pound 1 along w ith either or both of the tw o new species [C u1,L1(H yO )] (2) and [C u11!,1] (3) separate as a function of tim e of isolation and volum e of acetone. For exam ple, w hen 100 nig of [C u’^ ’C lI-HO )] (1) is heated at leflux m 40 m L of acetone at 56 °C (boiling point of ace­ tone), a green solution is produced, from w hich 3 rapidly separates as brow n crystals A fter collecting [<TinL ’] (3), if the green filtrate is allowed to evaporate slow ly, the red starting com pound [C unL ’C (IL O )] (1) and a green com ­ pound [C i^L ’fl-^O )] (2) are deposited in single crystalline form It should also be noted that if com pound 3 is not collected im m ediately and the m ixture is left to stand open to the atm osphere, 3 converts gradually back into 1 and after a few days only com pounds 1 and 2 can be isolated. Evidently, the relative yields of 1 and 3 obtained upon heat­ ing of 1 m acetone are tim e dependent. In contrast, if the sam e am ount (100 m g) of 1 is heated at reflux in a sm aller am ount (20 m L) of acetone, a part of 1 is converted into 3 in suspension, w hereas both 1 and 3 separate from the fil­ trate In this case, com pound 2 is not form ed. A gain, if the am ount of acetone is increased (100 m g of 1 m 60 m L of acetone), the w hole am ount of 1 dissolves and com pounds 1 and 2 are deposited from the solution In this case, com ­ pound 3 cannot be isolated. Evidently, the conversion of 1 into 2 and 3 is also dependent on the volum e of acetone It m ay be m entioned that w hereas nonhydrated brow n com ­ pound 3 can be isolated separately, hydrated com pounds 1 and 2 are form ed sim ultaneously. H ow ever, as a result of their distinctly different colouts (green vs red) and single crystalline habits, 1 and 2 can be separated m echanically by hand under a m icroscope It m ay also be noted that a solution of green com pound IG dfL 'flL O )] (2) in chloroform or acetonitrile is initially green H ow ever, w ithin a very short tim e (1-2 m m ), the col­ our changes to brow n and from the brow n solution red in­ clusion com pound [C u"L1C (H 20)] (1) is deposited upon evaporation. Sim ilarly, ftom the brow n solution of the brow n com pound [C uuL l] (3) in chloroform or acetonitrile, com pound 1 is deposited A n m teiesting aspect of the form ation of 1, 2 and 3 from a solution of one com pound (that is, 1) is the role of sol­ vent U pon heating com pound 1 in m ethanol, aeetom tnle and A ryV '-dim ethylform am ide, only com pound 1 w as ob­ tained from the solution. C learly, the conversion is only possible in acetone. A s w ill be discussed below , com pounds 1 and 2 loose their w ater m olecule in the tem perature range 67-87 and 80-112 °C , respectively. T he product obtained after heating 1 at 90 °C and 2 at 115 °C lor a few hours is com pound 3 H ow ever, w hen 3 is exposed to an open atm osphere, it is converted upon absorbing w ater, into com pound 1. 1009 W iie>-VC H \eri.ig G m bH & C o K GaA , W em hcur Ear J Inorg. Chew 2009, 4887-4894 New Type of Hydrate Isomerism m Coordination Chemistry Scheme 3 Intercomersion of 1, 2 and 3 m the solid state and m solution As the water molecule is strongly encapsulated in [Cu11L'c(MiO)] (1), asymmetric and symmetric stretching bands of the water molecule appear separately as sharp signals at 3568 and 3518 cm-1 I11,1' In contrast, the 1R spectrum of [Cii"lJ(H20)] (2) exhibits one sharp absoiption at 3427 cm-1 As discussed below, the water molecule in 2 is partially encapsulated m the 04 cavity of a symmetry-re­ lated molecule As a matter of fact, the motion of the water molecule in 2 is not as restricted as that in 1. and therefore, the two stretching bands are not separated m the latter compound However, ill contrast to the broad water stretch­ ing bands m most of the crystal hydrates in general, the observation of sharp stretching vibrations m both 1 and 2 is related to encapsulation The 1R spectrum of 1 exhibits one strong absorption at 1620 cm-1 due to the vc=N vibration. In complexes 2 and 3 the eneigy of the vibration due to v c =n (1642 cm-1 for 2 and 1633 cm-’ for 3) is slightly increased The ‘H NMR spectra of I12L‘, [CunL'C(H;,0)] (1) and [Cu ii L1(H20)] (2) were recorded m CDClj These spectra along with the assignment of peaks aie shown in Fig­ ures S1-S3 (Supporting Information) The spectra of 1 and 2 were rccoided up to 250 ppm However, no signal appears above S ppm, and thciefore, parts of the lecorded spectra up to 8 ppm are shown m Figuies S2 and S3 (Supporting Information) One signal appears at 161, 141 and 1 44 ppm in the spectra of THL1, [CtOL'CTHiO)] (1) and [Cid’L'OnO)] (2). lespectively These peaks disappear when shaken with D20 (Figures S4 and S5 for 1 and 2, respec­ tively, Supporting Information), implying that these peaks appear due to the water present m the solvent, which was confirmed from blank spectra without and with D20. No other peak can be assigned to water molecules m the spec­ tra of 1 and 2 In fact, m both cases, the paramagnetic shift of the signals due to the copper(Il) centre accompanied by Ear J Inorg Chan 2009, 4S87-JS94 ________________________________________________ /■ EurJjC_ extreme bioademng of the signals led to the disappearance of the signals for the mime hydrogen atom and the water hydrogen atoms As a result of this paramagnetic shift and line broadening, the correct assignment of the NMR signals could not be done, approximate assignments are mentioned m Figures S2 and S3 (Supporting Information) Thus, de­ spite our best ellorts, we were unable to sec any signal either for the coordinated or encapsulated water molecule m com­ plexes I and 2, respectively Again, the spectra of 1 and 2 are essentially identical, indicating that the solution struc­ ture of both complexes are same, although it cannot be con­ firmed from NMR spectra which species exists m solution However, as already mentioned, a green solution of com­ pound 2 changes very quickly into a brown solution, from which compound 1 deposits, this indicates that probably inclusion pioduct 1 exists in solution Thermogiavimetnc (TG) analyses of [CuiIL*C(H20)] (1) and [Ctd'L'lT^O)] (2) weie carried out over the tempera­ ture 30 to 200 °C at a heating rate of 2 °Cmin 1 under a N2 atmosphere As illustrated in Figure 1, thermal decomposi­ tion of both 1 and 2 is characterized by loss of one water molecule in the temperature range 67-87 °C for 1 and 80112 °C for 2 The observed weight losses (4 13% for 1 and 4 15% for 2) are in agreement with the calculated value (4 13%). The requirement of a slightly higher temperature to remove the water molecule m 2 indicates that, as ex­ pected, the coordinated water molecule m 2 is more tightly bound than the encapsulated waiter molecule in 1 I (Hi 1 ........ .. - 40 80 120 160 200 Temperature / °C Figure 1 Thermogravimetnc analyses curves of [CunLlC(H20)] (1) ami [CunL,(H20)] (2) under a nitrogen atmosphere Heating rate 2 “Cmiir1, weight of the sample 8 225 mg for 1 and 7 626 mg for 2 The room-tempeiatuie (300 K) magnetic moment of complexes 1. 2 and 3 are 1.78. 1 72 and 1.65 BM, respec­ tively These values are almost equal to the spin-only value expected for an isolated coppcr(II) centre, indicating that neighbouring paramagnetic centres are magnetically nomnteractmg. As will be described below, the mononuclear copper(li) molecules m both 2 and 3 seif-assemble into dimeric species as a result of hydrogen-bondmg interactions and © 2009 Wiiey-VCH Verlag GmbH & Co KGaA, Wemheim wwweurjic org 4889 FULL PAPERMLKJIHGFEDCBA copper(I I)—phenoxido semieoordmalion, respectively However, paramagnetic centres interlinked by such weak in­ teractions should be either nonmtcracting or should inter­ act only vety weakly The title compounds were heated to 300 °C in a meltingpoint apparatus However, all three complexes char in the temperature range 250-260 °C and no melting takes place up to 3(10 °C. Description of the Structures of [CunL,C(H20)| (1), |Cu 1i L'(H20)I (2) and ICunL'l (3) The crystal structures of these thiee compounds are shown in Figure 2, whereas the selected bond lengths and angles of 2 and 3 are listed in Table 1. The structures icveal that all three complexes 1-3 are mononuclear coppcr(lf) compounds having the metal centie in the tetradentate NjO; section of the ligand [L'p~ W heieas compound 3 is nonhydrated, compounds 1 and 2 each contain one water molecule However, the water molecule is coordinated to the metal ion in 2, whereas the water molecule in 1 is encap­ sulated in the 0,( compartment of the ligand as a result of the formation of bifurcated hydrogen bonds involving water hydrogen atoms and phenoxido and ethoxy oxygen atoms In comparison to the four coordinate square-planar coordi­ nation environment of the metal centre in 1 and 3, the copper(ll) ion in 2 adopts a five-coordinate square-pyramidal geometry m winch the apical position is occupied by the water oxygen atom Whereas the N202 donors form a per­ fect plane and the metal centre lies exactly on this plane m the case of [Cu,lLlC(H20)] (1)/Mi'! the average deviation (0 02 A; of the constituent atoms and the displacement (0 05 Ai of the metal centre from the least-squares N202 plane are small In contrast, the N202 basal plane of the square pyramidal environment in 2 is more distorted, as evidenced from the average deviation (0 13 A) of the donor atoms and the displacement (0 17 A) of the metal centre from the least-square plane I he ranges of the cisoid angles for 1, 3 and 2 are almost identical [83 8(2)—93 98(12)° for 1, 84 58(1 1)—93 34(10)° for 3 and 83.56(9)-92 05(9)° for 2] However, whereas the tmtuoid angles m 1 [177 19(11)°] and S Mohanta et ai 3 [175 83(10) and 175 84(10)°! deviate only a little, the nunsold angles in 2 [161.79(7)° and 174 97(7)°] deviate ap­ preciably from the ideal value, which indicates the distor­ tion in the coordination environment of the metal ion in 2 The Cu-N bond lengths m f and 3 arc identical [1 945(3) A tor f and 1 940(3) and 1.945(3) A for 3] within experimental error, as arc the Cu-O bond lengths [1 911(2) A for 1 and 1.896(2) A and 1.918(2) A foi 3] In contrast, both the CuN [1 956(2) and 1 963(2) A] and Cu-0 [1 9302(18) and 1.9363(18) A] bond lengths in the basal plane of 2 are slightly longer In all these three complexes, the CuO(phenoxido) bond length ts slightly shorter than its tram Cti-N(mnne) bond length As expected, the Cu-O(apical) bond length [2 294(2) A[ is significantly longer than the bond lengths involving the basal atoms. Table 1 Selected bond lengths (2) and [CuL1] (3) Cu(l)-N(l) Cu(l}-N(2) Cu( I 4-0(2) Cu( 14-0(3) Cud >-0(5) Cud)-Cu(lA) N( 1)—Cu( I)—0(3) 0(2FCu(l)-N(2) N( I )-Cu( 14-0(2) Nd 4-Cud )-N{2) N(2)-Cu(l)-0(3) 0(2)-Cu(l)-0(S) 0(54Cu(l)-N(l) 0(54-Cu(l)-N(2) 0(5)-Cu( l)-0(2) 0(5>-Cu( 14-0(3) [A] and angles [°] of [CuIIL1(lFO)j [CuL'(H20)] (2) [CuL1] (3) 1 956(2) 1 963(2) 1 936(2) 1 930(2) 2 294(2) 4 699 174 9 7(7) 161 79(7) 92 05(9) 83.56(9) 91 79(9) 91.80(8) 89.14(8) 9S 79(9) 98 81(8) 93 47(7) 1 945(3) 1.940(3) 1 918(2) 1.896(2) 3 138 175 83(10) 175 84(10) 91 57(10) 84 58(11) 93 34(10) 90 40(9) As shown in Figure 2a, the water molecule in [CuI_ 'L'CfHiO)] (1) is encapsulated in the Oa compartment due to the formation of bifurcated hydrogen bonds of moderate strength (donor—acceptor contacts' 3 048 and 2 903 A) In the case of [Cu11L1(H20)J (2), each of the two hydrogen atoms of the coordinated water molecule [H20(5)[ forms bifurcated hydrogen bonds with one phenoxido and one ethoxy oxygen atoms of a symmetry-related mononuclear 2% a, 1 ^§\ <0 r-"*- (a) 3 At - *v (b) (c) Figure 2. Crystal struclures of (a) [Cu h L‘C(H20)] (1) (b) [Cu,,L1--H20)] (2) and (c) [CunL'l (3) 4890 wwweuriic oi'Ei C; 2009 W iieyACH Verlag GmbH & Co KGaA, Wemhenn Ear J Inorg Chcm 2009, 4887-4894 EurJIC New Type of Hydrate Isomerism in Coordination Chemistry molecule resulting in the encapsulation of the coordinated water molecule of one mononuclear species in the 04 com­ partment of a symmetry related mononuclear complex unit (Figure 3) Evidently, the mononuclear copper(Il) mole­ cules arc self-assembled to dimeric species due to hydicgenbondmg interactions The geometries of the hydrogen bonds are summarized in Table 2. The ranges of the donor—acceptor contacts in 2 arc 2 86-3 06 A, indicating that the hydrogen bonds in this case also aie moderately strong. The relative extent of the encapsulation of water in 1 and 2 may be understood from the displacement of the water oxygen atom from the least-squares 0(phcnoxtdc);0(cthoxy)2 plane. In the case of 1, the oxygen atom of the encapsulated water lies on the least-squares 0(phcnoxido)20(ethoxy)2 plane and the oxygen atom of the encapsulated water molecule in 2 is displaced by 1 00 A from the leastsquares 04 plane of the symmetry related mononuclear unit (Figure 3). indicating that the extent of encapsulation in 2 is much less than that in 1 It may also be mentioned that, as m 2, partial encapsulation of the coordinated water molecules was observed in the dmuclear-mononuclear cocrystals derived from the same ligand IFL1 111:11 Figure 3 Perspective view dem onstrating the self-assembled dim er in 2 resulted from the partial encapsulation of the coordinated water m olecule of one [CuI,L1(H;.0)j m olecule m the 04 cavity of a sym m etry related com plex unit Sym metry related atoms A v, ] -y, 2-: 1 - Table 2 Geom etries (distances in A and angles m °) ot the hydiogen bonds m [Cu’^JlH iO )] (2) Sym metry lelated atom s A 1 - x, D -H -A 0(5)-H (5A )-0(lA ) 0(5)-H (5A )— 0(2A ) 0(5H I(5B )-0(3A ) 0(5H I(5B )-0(4A ) n-A 3 2 2 3 055(3) 860(3) 866(3) 034(3) 2 2 2 2 H -A D -H -A 361(15) 120(12) 146(14) 327(15) 140(2) 146 9(19) 143 709) 142(2) As shown in Figure 4, two symmetry-related mononu­ clear copper(II) molecules of 3 are self-assembled due to phenoxido—copper(II) semicooidmation, which results m dimeric self-assembly It may be noted that the Cu(l)— 0(2A) distance (2 709 A) in the dimeric species of 3 is smaller than the sum (2 92 A) of the van der W aals radn of the two weakly interlinked atoms (1 40 and 1 52 A for Cu and O, respectively) Ear J Inorg Cheat 2009, 4887—4S94 Figure 4 Perspective view dem onstrating the self-assem bled dim er m 3 resulted from phenoxido-copper(II) sem icoordm ation Sym­ m etry related atoms A -a . 2 - _y, The supramolccular structure of 1 is 1D (Figure S6, Sup­ porting Information), resulting from one weak C-H—O hy­ drogen bond involving one hydrogen atom [H(8A)J linked with one carbon atom [C(S)[ of a lateral diimino chain and one phenoxido oxygen atom [0(115)] The geometry' of this hydrogen bond is as follows C(S)-0(1B) 3~247 A, II(8A)0(1 B) 2 408 A, C(8)-II(8A)—0(IB) 144 5°. As shown in Figure S7 (Suppoitmg Information), the dimeric species (Figure 3) in 2 aie further interlinked because of one CH—O hydrogen bond involving one hydrogen atom [11(11 A)] linked with one cat bon atom [C( 11)] of a lateral dninmo chain and one phenoxido oxygen atom [0(3D)[ to generate a 2D self-assembly I he geometry of this hydrogen bond is as follows C(11)-0(3D) 3 118 A, H(11 A )-0(3D) 2 519 A and C(11)-H(11A)-0(3D) 118 7° In the case of nonhychated compound 3, the dimeric species (Figured) are not inteilinked by any kind of supramolecular interac­ tion Entirely different types of crystal packing of the three complexes can be understood from the extended views of crystal packing down a particular crystallographic axis (Figure SS. Supporting Information). A New Type of Hydrate Isomerism: Interesting Aspects in the Composition of 1, 2 and 3 Numerous preorganized mono-, di- and ohgonuclcalmg ligands were designed for the synthesis of target metal com­ plexes I15-16! The coordination positions of the metal tons in these ligands are satisfied either by these primary preorga­ nized ligands or by both the primary and secondary auxil­ iary ltgand(s) The composition of the complexes derived from the same primary and auxiliary ligand is usually fixed. However, there are a few examples of the stabilization of different compositions derived from the same ligands.117-19! Three complexes1171 [Cu2(Sal)2(2.2'-bipyiidinc)2]'2H2Sal (4),117-'1 [Cu(SalX2,2'-bipyndine)]-C2H50H -H20 (5)1,7bl and [Cii2(HSal)(Sal)(2,2'-bipyndine)2](C104) (6),[l7cl two com­ plexes1181 [{Cu(L2)J2(p-Cl)JCl-4H20 (7) and [Cu (L2)C12] (8) and three complexes1191 [JCit(L3)Cl}(p-Cl){Cu(L3)Cl}]CF2[Cu(L3)Cl2] (9), [Cu(L3)Cl2Ti20] (10) and [Cu(L3)C1(PF6)] (11) {FI,Sal = salicylic acid, L2 = N,N’,N"-lnmethyltriazacyclononane, L3 = l-ammoethyl-3-methyl-3-(2pyrid>l)azetidine} may be mentioned as three sets of such © 2009 W iley-VCIl VeiLig G m bH & Co KGaA. W einheim v.ww eurjic org 4891 S M ohanta ct al FULL PAPER examples. Between these three cases, com pounds 4, 5 and 6 of the first set are produced front entirely different reaction m ixtures, reactants are different and solvents used are dif­ ferent In contrast, the form ation of com pounds 7 and 8 of the second set is only solvent dependent, whereas 7 can be rccryxtdlhzcd from polar solvents, slow evaporation ot a dichlorom ethanc solution of 7 produces 8 Evidently, for­ m ation of 4. 5 and 6 should not be considered as an unusual case because of the drastic change of reaction conditions. In contrast, as the conversion of 8 from 7 is only solvent dependent, this case is interesting The foim ation of three complexes m the last set (t e , 9, 10 and 11) is m ore m teiestmg. because these com pounds ate produced from the same reaction m ixture, although in different steps Regarding com pounds 1, 2 and 3 m the present study, although the volum e of solvent has a role to govern the relative yield, the conversion fioni one com pound (i e., 1) into others (t e, 2 and 3) takes place in the sam e solvent (acetone) M oreover, it was already m entioned that all three com pounds are form ed from a particular solution of 1 in acetone Evi­ dently, although the form ation of the three title com pounds under the sam e or alm ost the sam e reaction conditions is not an im usual phenom enon, the observation is interesting and am ong only a few rare cases of such examples Again, as already m entioned, the m ononuclear com­ plexes of copper(ll), ntckel(Il) and oxovanadiiim(LV) de­ rived ft o ju 3-m elhoxy/ethcxysahcylaldehyde-diam m e Sclntf base ligands are of three types considering the num ber and types of water m olecules nonhydrated, containing coordi­ nated water and containing encapsulated water However, form ation of three types of system s (t e , 1, 2 and 3) foi a particular m etal ton derived from the sam e ligand is a sur­ prising and interesting observation The difference in the structures of [Cu1IL1C(H;:0)J (1) and [CunL'(H20)] (2) is the location of the water m olecule Evidently, 1 and 2 are hydrate isom ers 1 lowever, the encap­ sulated water m 1 is a guest and not a solvent of crystalli­ zation Therefore, hydrate isom ers I and 2 have a varying num ber of coordinated and encapsulated water molecules This is in contrast to the existing concept of hydrate isom ers that differ by the num ber of coordinated and solvated water m olecules Clearly, com pounds 1 and 2 represent a new type of hydrate isom erism m cooidm ation chemistry. Conclusions As a function of num ber and types of water molecules, the form ation of three types of systems, [CuIIL1C(EI20)] (1), |Cu ,1L1(1I20)] (2) and [CunL‘] (3), for a particular m etal ion denved fiom the sam e ligand and the emergence of a new type of hydrate isom erism due to the varying num ber of cooidm ated and encapsulated water m olecules are the m ajor outcomes of the present investigation Al­ though three crystals ate isolated, the com position of spe­ cies in solution is probably the sam e as evidenced by N M R spectroscopy Therefore, the form ation of three crystals and the hydrate isom erism described in this investigation are so­ lid-state phenom ena 4892 www eurjic org Experimental Section Materials and Physical Methods: All the reagents and solvents were purchased from the com m ercial sources and used as received. The Schiff base ligand EEL1 and the inclusion product K lu'T1 C(H .O)] (1) were prepared according to the reported m ethod ,1Ij| Elem ental (C, H and N) analyses were performed with a Perkm -Elm er 2400 II analyzer IR spectra were recorded m the region 400-4000cm-1 with a Perkm -Elmer RX IFT spectrophotometer with sam ples as KBr disks, whereas the ‘It N M R (300 M Hz) spectra were recorded with a Biuker Avance DPX-300 spectrom eter Conversion of ICii "L'c (H20)1 (1) into |CullL'(H,0)| (2) and lCu"Ll| (3) in Acetone: A suspension of [CunL'C (H 20)] (1, 0 1 g, 0 23 m m ol) in acetone (40 m L) was heated under reflux for 20 m in. and the hot green solution was then filtered quickly through a sin­ tered crucible under vacuum After a few m inutes, brown com ­ pound 3 separated from the filtrate m single crystalline form Com ­ pound 3 was collected by filtration, washed with cold acetone and dried m vacuo [yield 0 057 g (60%)] The giccn filtrate was allowed to evaporate slowly m an open atmosphere. A fter a few days, red |C u"I.lC(H20)] (1) and green [Cu,[L,(H20)] (2), which crystallized out, were collected by filtration, washed with cold acetone and dried m vacuo [yield of 1. 0 03 g (30% ), yield of 2 only a few crystals] Conversion of |Cu"L'c(H20)| (1) into [Cu"L'(H20)I (2) in Ace­ tone: A suspension of [CuIIL1C(H20)] (1, 0 1 g, 0 23 m m ol) in ace­ tone (70 m l.) was heated under reflux for 20 m m , and the hot green solution was then filtered quickly through a sintered crucible under vacuum Upon standing m an open atm osphere for a few days, red com pound [CulitJc(H 20)J (1) and green com pound [Cu‘‘ 'L’OTO)] (2) separated from the filtrate in single crystalline form The products were collected by filtration, washed with cold acetone and dried m vacuo Com pounds I and 2 were separated by hand under a m icroscope [yield of 1 0.082 g (82%), yield of 2 0 01 g ( 10 % )] Conversion of [Cu"L‘C(H20)l (1) into [Cu11!.11 (3) in Acetone: A suspension of ]Cu,IL1C(H20)] (1, 0 1 g, 0 23 m m ol) in acetone (20 m l,) was heated under retlux for 1 h Although a part ot com­ pound 1 dissolved, a significant am ount of solid m aterial rem ained m the m ixture The solid m aterial, which is brown com pound 3. was collected by quick filtration of the hot suspension through a sintered crucible under vacuum [yield' 0 033 g (35% )] From the filtrate, com pound 3 separated rapidly in single crystalline form After isolating this crystalline com pound by filtration [yield 0 038 g (40% )], the filtrate was kept m an open atm osphere After a few hours, red com pound 1. which separated from the filtrate in single crystalline form , was isolated by filtration [yield 0.015 g (15% )] Data tor 1' C2„IE,CuN20 5 (435 95) ealed C 55 10, H 5 55, N 6 43, found C 55 16, H 5 48, N 6 47 IR (KBr) v = 3568 [m. v;ls(IUO)], 3518 [m. v„(H20)], 1620 [vs, v(C=N)] enr1 D ata for 2 C2q I I24C11N2O5 (435 95) ealed C 55 10, H 5 55, N 6 43, found Cl 55 02, H 5 50 N 6 37 IR (KBr) v = 3427 [m, v(H20)], 1642 [vs, v(C =N)]cnr' D ata for 3 C2t>H22CuN 204 (417 95) ealed C-57 48. H 5 31, N 6 70 found C 57 57. H 5 36, N 6 64 IR (KBr) v = 1633 [vs, v(C=N)| enr1 Solid-State Conversion: [Cu,,LIC(H20)] (1) and [Cu'M.'OEO)] (2) were heated at 90 and 115 °C, respectively, for 10 h and the prod­ ucts were cooled m a desiccator The IR spectra of the products m both cases are stiperiniposable with the spectrum of fCu"L,J (3). Again, when [Cu"L'] (3) was exposed to an open atm osphere for a few hours, the product was [Cu i ,L'c (H20)] (1) C 2009 W iley-\C H \erljg G m bH & Co K G aA , W einhenn Enr J Inorg Client 2009, 4887—4894 N e w T y p e o f H y d ra te Is o m e ris m in C o o r d in a tio n C h e m is try _ _ _ _ _ __ _ _ _ _ __ _ _ _ _ __ _ _ _ _ __ _ _ _ _ __ _ _ _ _ __ _ _ _ _ __ _ _ _ _ __ _ _ _ _ __ _ _ _ _ __ _ _ _ _ __ _ _ _ _ _ ’ EurjIC Crystal Structure Determinations of |Cu"Ll(H,0)| (2) and ICVl.'l (3): T h e c ry s ta llo g ra p h ic d a ta o f c o m p o u n d s 2 a n d 3 a ie s u m m a ­ riz e d m T a b le 3 D iffra c tio n d a ta fo r 2 w e re c o lle c te d w ith a P ro tc - a n d In d u s tria l R e s e a rc h (C S IR ). G o v e rn m e n t o f In d ia a n d R um M J A A P E X d iffra c to m c tc i w ith C C D a ic a d e te c to r a t 1 2 0 K . w h e re a s th e d a ta fo r 3 w e re c o lle c te d w ith a B ru k e r A P E X -II S M A R T d iffra c to m e te r w ith C C D a re a d e te c to r a t 1 0 0 K . F o r b o th K a c k n o w le d g e s th e C e n te r fo r R e s e a rc h m N a n o s c te n c e a n d N a n o ­ te c h n o lo g y , K U n iv e rs ity II an d H A S o f C a lc u tta fo r p ro v id in g fe llo w s h ip s . w o u ld lik e to th a n k th e E n g in e e rin g a n d P h y s ic a l S c ie n c e s R e s e a rc h C o u n c il (E P S R C ) fo r fin a n c ia l a s s ist­ ance c o m p o u n d s , d a ta c o lle c tio n s w e re p e r fo im c d b y u s in g S M A R 1 . w ith d a ta re d u c tio n c a rrie d o u t in S A I N T 1’0 ''1 B o th s tru c tu re s w e re s o lv e d b y d ire c t m e th o d s a n d s u b s e q u e n t F o u rie r a n d d iffe re n c e [1 ] on F- b y u s in g th e S n E L X T L l-o b l a n d S H E L X L -9 7 i:(U p a c k a g e s U s in g a n iso tro p ic tre a tm e n t o f th e n o n -h y d ro g e n a to m s , a rid in g m o d e l fo r th e h y d ro g e n a to m s in 2 a n d u n re stra in e d is o tro p ic tr e a t­ m e n t o f th e h y d ro g e n a to m s in R, 3, P u rc e ll. J C K o t/ m An Introduction to Inorganic S a u n d e rs C o lle g e P u b lish in g , P h ila d e lp h ia , 1 9 8 0 , b ) A v o n Z e le w s k y m Stereochemistry of Coordination Com­ pounds, W ile y . N e w Y o rk , 1 9 9 6 a) K [2 ] a ) .1 N H a rv e v . K M H c s lo p , A G O rp e n , P G P rin g le , 2 0 0 3 , 2 7 8 -2 7 9 , b ) H C h c v rc a u . C M a rtin s k v . A S e v in , C M in o t, B S tlv i New J Own 2 0 0 3 2 7 , 1 0 4 9 1 0 5 3 , c ) 1 C h a k ra b o rty , S S e n g u p ta . S D a s , S B a n e rje e , A C h a k ra v o rty , Dalton Trans 2 0 0 3 . 1 3 4 M 4 0 Client Commitn th e re fin e m e n t c o n v e rg e d to a n v a lu e [ /> 2 c (/) ] o f 0 0 3 6 5 a n d 0 0 3 6 8 fo r C C D C -6 0 3 2 4 8 (fo r l),l“ a l -7 2 4 8 8 9 (fo r 2) 2 and 3. re s p e c tiv e ly a n d -7 2 4 8 9 0 (fo r 3) ta in th e s u p p le m e n ta ry c ry s ta llo g ia p h ic d a ta fo r th is p a p e r con­ T hese d a ta c a n b e o b ta in e d fre e o f c h a rg e fro m T h e C a m b rid g e C ry s ta llo ­ A H a j, M Q u tro s , J M S a la s, J Own Soc., Dalton 2 0 0 2 , 4 7 4 0 -4 7 4 5 . b ) D S c h a m e l, T W o ik e . B D e lle v , C B o s k o v ic , H -I J G iid e l. Phys. Own Own. Phys 2 0 0 8 , 10, 5 5 3 1 -5 5 3 8 , c ) C J o n e s, D P M ills , A S ta sc h , Dalton Trans 2 0 0 8 , 4 7 9 9 -4 8 0 4 , d ) K F B o w e s . J M C o le S L G llu s h e e r , P R R a ith b y . T L S a v a re s e , I I A S p a rk e s . S .1 T e a t, J E W a rre n . Client Common 2 0 0 6 . 2 4 4 8 -2 4 5 0 [3 ] a) M Trans g ra p h ic D a ta C e n tre v ia w w w c e d e c a m a c u k /d a ta _ re q u e s t/c if fa b !e 3 C ry s ta llo g ra p h ic d a ta f o r |C u l,L ‘(H 2 0 )] (2 ) a n d [C u 11! .1) ( 3) [4 ] F o rm u la M o le c u la r w e ig h t C ry s ta l c o lo u r C rv s ta i s v s tc in S p a c e g ro u p a1A hi A ciA li rVI A ’ z 20 p! m tv r1 A - .,id I gun"' F (0 0 0 ) T e m p e ra tu re / K A b s o rp tio n c o n c c tio n Tmm T 1 m n .x In d e x ra n g e s R e fle c tio n s c o lle c te d In d e p e n d e n t re fle c tio n s [A m ] R ,W /i v R 2 lb l [ /> 2 rr(/)] Rf'l/wRfA (a ll d a ta ) 2 3 C f->1i C u N C O < 435 95 g re e n m o n o c lm ie C%„H„Oi N,04 P2,lc P2,k 1 3 1 5 4 (1 0 ) 11 6 2 2 (7 ) 1 3 9 9 0 (1 1 ) 1 1 4 1 8 0 (1 0 ) 1 9 5 1 (2 ) 4 1 2 4 2 2 7 (4 ) 1 3 6 9 0 8 (5 ) 1 0 6 1 9 4 (4 ) 9 7 1 1 4 0 (1 0 ) 1 7 9 2 2 1 (1 1 ) 4 3 3 0 -5 2 1 0 1 248 1 549 868 1 0 0 (2 ) m u ltis c a n 0 8959 0 9518 -1 5 £ h £ 15 -1 6 £ A £ 16 -1 3 £ / £ 13 22752 3536 (0 0 8 2 9 ) 0 0 3 6 8 /0 1 0 0 9 3 4 0 -5 2 7 4 1 154 1 484 908 1 2 0 (2 ) m u ltis c a n 0 717 0 812 -1 6 s h 4 16 -1 4 £ A £ 12 -1 7 4 I £ 16 11829 3992 (0 0 4 5 6 ) 0 0 3 6 5 /0 0 8 1 8 0 0 5 0 0 /0 0 8 7 4 F Chemistry, F o u rie r s y n th e s e s , fo llo w e d b y fu ll-m a trix le a s t-s q u a re s te fiiie m e n ts a ) M H C h is h o lm , J S D ’A c c h io li, C M H a d a d . N J P a t­ m o re , Dalton Trans 2 0 0 S , 1 8 5 2 -1 8 5 7 , b ) R B G o m e z -C o c a , L E K a p m o s , A H o ly , R A V ila p la n a . F G o n z a le z -V ilc h e z . I I S ig c l../ Chem Soc., Dalton Trans 2000, 2 0 7 7 -2 0 8 4 ; c ) K B c rn a u c r, A C a b o rt. N G u ic h e r, I I S to e c k li-E v a n s , G S u s s F m k . J Chan. Soc.. Dalton Trans 2 0 0 2 , 2 0 6 9 -2 0 7 3 417 94 b ro w n m o n o c h n tc [5 ] J K u c h a r, J C e r n a k , W M a s sa , n i4 1 8 -m 4 2 0 Acta Crystallogr, Sect C2 0 0 4 . 60. O r u n , W -J v a n Z e is t, F M B ic k e lh a tip t, Organomelal2 0 0 8 , 27, 4 0 2 8 -4 0 3 0 , b ) 0 C o r o n a d o , M C G im c n c z L o p e z , T K o rz e m a k , G L e v c h e n k o , F M R o m e ro , A S e g u ra , V G a r c ia - lla o n z a , J C Cezar, F M F de G io o t, A M iln e r, M P a z -P a s tc rn a k , J Am Chem Soc. 2 0 0 8 , 130, 1 5 5 1 9 -1 5 5 3 2 [6 ] a) L hes [7 ] K A w a a a . Y S u z u k i, I I H a c h is u k a , K 2 0 0 6 . 2 6 , 2 5 1 6 -2 5 2 1 T akcda, J Mater Chem [8 ] a) D J R in g . M C A ra a o n i, N R C h am p n ess, C W ils o n . CrystEngComm 2 0 0 5 . 103, 6 2 1 -6 2 3 , b ) B L i, Y P e n g , B L i. Y Z h a n g . Chem Commute 2 0 0 5 , 2 3 3 3 -2 3 3 5 , c ) C -B M a , C N C h e n , Q -T L iu , CrystEngComm 2 0 0 5 , 108, 6 5 0 -6 5 5 . d ) L C a rlu c c i, G C la m . D M P ro s e rp io , I. S p jd a c im , CrystEngComm 2 0 0 4 , 20. 9 6 -1 0 1 . e ) J M K n a u s t, S W K e lle r, CrystEngComm 2 0 0 3 , 81, 4 5 9 -4 6 5 . t) J .-P Z h a n g , S . K ita g a w a , J Am. Chem Soc. 2 0 0 8 , 130, 9 0 7 -9 1 7 [9 ] R D P o u ls e n , J O v e rg a a rd , A S c h u lm a n C O s te r g a a r d , C A M u rillo , M A S p a r k m a n . B B Iv c rs c n , J Am Chem. Soc. 2 0 0 9 , 131, 7 5 8 0 -7 5 9 1 [1 0 ] L M a W L in , J Am. Chem Soc. 2008. 130, 1 3 8 3 4 -1 3 8 3 5 fa] R, = p|FJ - |FCP|F„|| [b] »R, = |2ay<F„- - FfmwF.f]112 [1 1 ] a ) M N a y a k . R K o n e r, II -H L in , U F lo ik e , H - H W e t. S M o lia n ta , Inorg Chem 2 0 0 6 , 45, 1 0 7 6 4 -1 0 7 7 3 , b ) M N a y a k , S H a z ra . P L e m o m e . R K o n e r, C R L u c a s . S M o h a n ta , Polyhedron 2 0 0 8 , 2 7 , 1 2 0 1 -1 2 1 3 S u p p o rtin g In fo rm a tio n (s e c a ls o th e fo o tn o te o n tile firs t p a g e o f [1 2 ] a ) G H o s h in a . M T s u c h im o to . S O h b a , Bull Chem Soc Jpn. 2 0 0 0 , 73 3 6 9 -3 7 4 , b ) D . C u n n in g h a m , J F G a lla g h e r, T H ig ­ g in s , 1 ' M e A n ile . J M c C u n lc y , M O 'G a r a.J Chem Soc, Dal­ ton Trans 1 9 9 3 , 2 1 8 3 -2 1 9 0 , c ) J R Z a m ia n , E R D o c k a l, G C a s te lla n o , G O liv a , Polyhedron 1 9 9 5 , 14, 2 4 1 1 -2 4 1 8 0 0 6 7 8 /0 1 2 5 0 th is a rtic le ) 'H N M R s p e c tr a , s u p r a m o le c u la r s tr u c tu re a n d c ry s­ ta l p a c k in g d ia g ra m s . H o s h in a , M T s u c h im o to . S O lib a . Acta Crystallogr, 1 9 9 9 55. 1 8 1 2 -1 8 1 3 . b ) F I S c h m id t. M B a s h trp o o r, R e h d e r, J Chem. Soc., Dalton Trans 1 9 9 6 . 3 8 6 5 -3 8 7 0 [1 3 ] a ) G Sect C D Acknowledgments [1 4 ] B O le k s y n , F in a n c ia l s u p p o it fro m th e .D e p a rtm e n t o f S c ie n c e a n d te c h n o l­ o g y , th e G o v e rn m e n t o f I n d ia (S R /S 1 /IC -1 2 /2 0 0 8 ) is g ra te fu lly a c ­ k n o w le d g e d S H Eltr J tnorg Chem a n d S D a c k n o w le d g e th e C o u n c il o f S c ie n tific 2 0 9 9 , 4 8 8 7 -4 8 9 4 Hang Diff Conf 1976, 8, 19 [1 5 ] a ) P A V ig a to , S T a m b u rtn t. Coord Chem Rev 2 0 0 8 , 2 5 2 , 1 8 7 1 -1 9 9 5 , b ) P A V ig a to S T a m b u rim . L B e rto lo , Coord. Chem Rev 2 0 0 7 . 251, 1 3 1 1 -1 4 9 2 , c ) P A V ia a to , S T a m b m lm . Coord Chem Rev 2 0 0 4 , 248, 1 7 1 7 -2 1 2 8 0 2 0 0 9 W ile y -V C Il V e it.ig G m b H & C o K G .iA W ’e m h e im u w w o u rjic o rg 4893 S M ohanta et al FU LL PA PER f 16] a) R E P W m peim y. Chan. Soc Rev 1998. 27. 447-452 b) M Sakam oto. K M anscki, 11. O kaw a, Coord Client Rev 2001 219-221. 379 414 [ 17] a) Y . W ang. N O kabc, Ada Crystallogr. Sect. E 2004. 60. m i434-m 1436, b) M . G eraghtv. V Sheridan, M M cC ann M D evereux. V M cK ee, Polyhedron 1999. IS. 2931-293 9 c) N Palanisam i G Prabusankar, R M m ugavel. hwrg Chem Contnnm 2006, 9, 1002-1006 [18] J W Steed, A K G oeta. J L ipkow ski, D Sw ierc/.yiiski. V Panteleoij, S H anda Chem Comimtn 2007.813-815 4894 w w w eurjie org [191Y I I Ecc, J H arrow -field. Y. K im , VV T lam , Y C Park, P T hueiy, Dalton Trans 2009, 434 [20ja) SAINT-Phts (version 6 45), B ruker A X S Inc, M adison, W isconsin, U SA , 2003, b) SHELXTL (version 6 10), B ruker A X S In c, M adison, W isconsin, 2002, c) G . M Sheldrick, SIIELXL-97' A Program for Crystal Structure Refinement, U niversity of G ottinsen, G ottingen, G erm any, 1997 R eceived M ay 12, 2009 Published O nline' O ctober 8, 2009 2009 W iley A C H V erbg .im b ll & C o K G aA , W em lieim Bur J Inorg Chem 2009, 4887— 1894 FULL PA PER _ D O I: 10.1002/ejic,200900686 M agn etic and E lectroch em ical P rop erties o f a H eterob rid ged SRQPONMLKJIHGFEDCBA p -P h eno x id o -pi j-A zid e D in ickel(II) C om p oun d : A U n iqu e E xam p le D em on strating th e B rid ge D istan ce D ep en d en cy o f E xch an ge In tegral R ajesh K on er,|a| S u sa n ta H a zra ,|a| M ich el F leck ,,b| A rp ita J a n a ,|a| C . R ob ert L u ca s,*,cl an d S a sa n k a sek h a r M o h a n ta *|a| K eyw ord s: M ag n etic p ro p erties / E x ch an g e in teraction s / N ickel / S ch tff b ases / E lectro chem istry / A zides T h e syn thesis, structure, m agn etic an d electroch em ical p rop­ erties of th e h eterob ridged g-p hen oxid o-p, ,-azid e d m ickel(II) com p ou nd [N i’^ fH L 1) i(H i,i-N ,)]-3 H 20 (1) d erived from th e tetrad en tate S clnff b ase ligan d N -(2-h ydroxyeth y!)-3m ethoxysab cylald irm n e (I I2L 3) are d escrib ed T h e title com ­ p ou nd crystallizes in th e trichnic system (sp ace group P i) E lectrochem ical an alyses reveal that com p ou nd 1 exh ib its tw o-step q u asireversible cou ples m th e red u ction w in dow w ith E1/? values of -1 4 1 2 an d -1 7 6 2 m V T h e variab le-tem ­ p erature (2-300 K ) m agn etic su sceptib ilities at 1 T of th e title com p oun d w ere m easured T h e in teraction b etw een th e m etal cen tres is w eak ferrom agn etic (J = 5 0 cm -1, g = 2 23, Di = 29 2 cm -1 an d D, = 10 7 en r1) C om parison of th e ex­ ch an ge in tegral of 1 w ith that of th e on ly rep orted p -ph enox id o-p ] ,-azide dm ickel(II) com pou nd resu lts in th e em er­ g en ce of a u niqu e exam ple of th e d ep end en ce of stren gth of m agn etic exchan ge in teraction on th e m etal-ligan d b rid ge d istan ce (0 W iley-V C H V erlacj G m b H & C o K G aA , 69451 W em h eim , G erm any, 2009) In trod u ction terns. H o w ev ct. alth o u g h su ch in v estig atio n is p o ssib le th eo­ retically o n fix in g o th er p aram eters an d v ary in g o n e p u iam eter,1121 it is q u ite d ifficu lt in th e real sy stem s to attain th ese criteu a If su ch a sim ilarity can be attain ed fo r at least a p air o f sim ilar co m p o u n d s, th at sh o u ld be an im p o rtan t o b serv atio n in m o lecu lar m ag n etism M o lecu lar m ag n etism h as been a fro n tier research area. W h ereas d iscrete ex ch an g e-co u p led system s are im p o rtan t to u n d erstan d the n atu re an d m ag n itu de o f exchange in ter­ actio n an d to d eterm in e m ag n eto stru ctu ral co rrelatio n s, large spin clu sters an d p o ly m eric ag g reg ates o f in teractin g p aram ag n etic cen tres are im p o rtan t to d ev elo p m o lecu leb ased m ag n etic m aterials11-121 R eg ard in g d iscrete system s, as m o st o f th e rep o rted ex chan g e-co u pled co m p o u n d s are an tiferro m ag n etieally co u p led ,I11 th e d esig n ed sy n th esis o f s\stein s ex h ib itin g ferro m ag n etic in ter actio n is an im p o r­ tan t task It is k n o w n th at few m etrical p aram eters o f th e b rid g in g m o iety like b rid g e an g le, d ih ed ral an g le b etw een th e b asal p lan es an d in ctal-h g an d b rid g e d istan ce m ay g o v ern th e n a­ tu re an d m ag n itu d e o f ex ch an ge in teractio n 11,21 T o u n d er­ stan d th e ab so lu te ro le o f o n e p aram etei, o th ci p aram eters sh o u ld be co n stan t for th e related ex ch an g e-co u p led sys­ la] D ep artm en t o f C h em istry , U n iv ersity o f C alcu tta. 92 A P C R o ad , K o lk ata 700 009, In d ia F ax + 91-33-23519755 E -m .ul sm _ cu _ ch em (§ ;y d h o o co in [b] In stitu te fo r M in eralo g y an d C ry stallo g rap h y , U n iv ersity o f V ienn a. A lth an str 14, 1090 V ien n a, A u stria [c] D ep artm en t o f C h em istry , M em o rial U n iv ersity o f N ew fo un d ­ lan d . S t Jo h n s. N L , A tB 3X 7 C an ad a E -m ail rlu cas@ m im ca £ 2 S u p p o rtin g in form atio n fo r th is article is available o n th e W W W u n d er h ttp //tlx d o i o rg /1 0 1002/ejic 200900686 4 9 8 '’ \ ItiterS cien cc B ecause o f th e involvem ent o f tw o d ifferen t b rid g es, the fam ily o f h etero b rid g ed ex ch an g e-co u p led sy stem s is co n ­ sid ered as a sp ecial class m m o lecu lar m ag n etism f10'6"1 D In co n tiast to th e w idely ex p lo red m ag n etic p ro p erties o f h et­ ero b rid g ed p -h y d ro x id o /alk o x id o /p h en o x id o -p -X (X = az­ ide, th io cy an ate, cy an ate, p y razo late, carb o x y late, 7 -azain d o late e tc ) d ico p per(Il) co m p o u n d s,11 1-'-2-'.0] th o se o f h etero b n d g ed co m p o u n d s o f o th er 3d m etal io n s17-111 have b een less in v estig ated , an d th erefo re, th is area d eserv es m o re a t­ ten tio n . It m ay also b e n o ted th at electro ch em ical p ro p er­ ties o f h etero b ridg ed sy stem s are u n ex p lo red as w ell. H o w ­ ever, th e d ep en d en ce o f red o x p o ten tials an d th e stab ility o f m ixed v alen ce species o n th e tw o d ifferen t ty p es o f b rid g in g m o ieties m ay resu lt m in terestin g in fo rm atio n . W ith th e an ticip atio n th at th e co m b in ed effect o f N-(2h y d ro x y cth y l)-3 -m eth o x y sah cy lald im m e (H y L 1, S chem e 1), o b tain ed u p o n co n d en satio n o f 3 -m eth o x y sah cy lald ch y d e w ith eth an o lam in e an d a p seu d o h ah d e, m ay stab ilize h et­ ero b ridg ed system s, w e have rep o rted a rare ex am p le o f a h etero b rid g ed p -p h en o x id o -p ig -cy an ate d im ekel(II) co m ­ p o u n d [Nii ,2 (HL))3(h 1 p N C O y i^ Ih O an d a ctib an e-ty p e h etero b rid g ed tetran u clear system [N fld L '^H L 1),(S e C N h fH jO h j’Q d ^ N O 'd k h O , b o th o f w hich ex h ib it fer- 2009 W i!e\-V CH V crhg G m bH & C o K G aA , W em heim Ear J hiorg Chem 2009,4982—4988 A H c tc ro b rid g e d p -P h c n o x id o -g , j-A zid c D m ick e ld l) C o m p o u n d __________________ «; EurjjC_ O r/r.st-'f ro m ag n eiic in te rac tio n M o reo v er, th e c u b a n e c o m p o u n d is th e first ex am p le to c o n ta in a b is(p 3-p h e n o x id o )b is(g r alk o x id o ) b u d g in g m o ie ty a n d to ex h ib it a n Sr - 3 sp in g ro u n d state in th e tc tra n ic k el(II) sy stem S9id T h ese tw o c o m p o u n d s, h o w ev er, d o n o t ex h ib it an y sig n ifican t e le c tro ­ ch em ical resp o n se T o ex p lo re fu rth e r th e h ctcro b rid g ed d in ick cl(ll) c o m p o u n d s w ith th e aim to g et fcrro m ag n ctically co u p led an d clcctro ch cm ically activ e sy stem s, th e reactio n b etw een a n iek el(H ) salt a n d E E L 1 in th e p iesen ce o f a b ase a n d so d iu m azid e w as c a rrie d o u t H e rein , w e d escrib e th e sy n th esis, stru c tu re , m a g n etic a n d electio ch em ical p ro p e r­ ties o f th e p ro d u c t o f c o m p ositio n [N iIb (H L 1)3(p I ,-N 3y|- a to m s o f th e th re e [H L 'J~ , o n e [0 (I)| a c ts as a b rid g in g lig a n d, w h ereas th e o th e r tw o [0 (7 ) a n d 0 (4 )] b eh av e as te rm in a l lig an d s a n d c o o rd in a te to N i(l) a n d N i(2 ), resp ec­ tiv ely A m o n g th e th re e alco h o l o x y g en ato m s, 0 (8 ) a n d 0 (5 ) c o o rd in ate to N i(l) a n d N i(2 ), resp ectiv ely , w h ereas 0 (2 ) rem ain s u n c o o rd in a te d T h e tw o lrn in o n itro g en a to m s, N (l) a n d N (2 ), a re c o o rd in a te d to N i(2 ), w h ereas o n ly N (3 ) is c o o rd in a te d to N i(l) O f th e th re e e th ere al o x y ­ g en ato m s, 0 (3 ) is c o o rd ina te d to N i(l), w h ereas 0 (6 ) a n d 0 (9 ) a re u n c o o rd in a te d T h u s, th ree lig an d s a re b o n d e d d if­ feren tly to th e tw 'o in e ta l cen tres in 1. 31120(1) S ch em e 1. Results and Discussion Synthesis and Characterization T h e d m u clcai m c k e l(ll) co m p lex lN iII 2 (H L l)3(p 1j-N 3 )]3 H ,0 (I) is read ily o b ta in e d m h ig h y ield lio n t th e reactio n o f th e lig an d H jL 1, m ek el(II) p e rc h lo ra te h ex ah y d rate, trieth y lam in e a n d N a N 3 m 3 2 6 2 ta tio In 1, o n ly th e p h en o x id o g ro u ps o f th ree lig an d s a re d e p ro to n a ted . T h e E R sp e c tru m o f th e free lig an d H 2L ' ex h ib its o n e stro n g sig n al at 1 6 4 4 c u r' d u e to a v c= N v ib ia tio n ,[I3l w h ich F ig u re 1 C ry stal stru c tu re o f [N i'^ H L 'W p , ,-N -,)]-3 H 20 (1 ) T h ree w a ter m o lecu les a n d all h y d ro g en a to m s, ex cep t th o se o f th ree a lco h o l m o ieties, a re d e le te d fo r clarity a p p e ars in a slig h tly lo w er reg io n (1 6 36 c m -1) m th e d m u cleu r m ck el(II) co m p lex T h e p resen ce o f azid e m 1 is ev i­ d en ced b y th e a p p e a ra n c e o f a v ery stro n g b a n d at 2 0 6 5 cm -1, w h ereas th e stre tc h in g fo r w ater m o lecu les is o b ­ serv ed as a b ro a d b a n d c e n tred a t 3 3 9 2 cm -1 T h e c o o rd in atio n en v iro n m en t o f b o th th e m e ta l io n s is d isto rte d o c ta h e d ra l, in w h ich th e e q u a to ria l p lan es a re p ro ­ T h e p o o r c o n d u c tiv ity o f co m p lex 1 (ca 5 fi-1 cm 2 M -1) in A ',tV '-d im eth y ifo rm am id e (d m f) in d icates th a t th e c o m ­ v id ed b y 0 (1 )0 (3 )N (3 )N (4 ) a n d N (1 )N (2 )0 (1 )N (4 ) fo r N i(I) an d N i(2 ), resp ectiv ely (F ig u re 2 ). E v id en tly , b o th th e p o u n d rem ain s n e u tra l m so lu tio n also T h erefo re, azid e re­ m ain s in th e in n e r c o o rd in a tio n sp h e ie a n d ex p ected ly as th e b rid g in g lig an d S o th e p -p h e n o x id o -p , ,-N 3 b rid g in g c o re can b e co n sid ered as stab le in so lu tio n . b rid gin g a to m s [p h e n o la te o x y g en 0 (1 ) a n d azid e n itro g en N (4 )] o ccu p y tw o e q u a to ria l p o sitio n s fo r th e tw o m etal Description of the Structure of Compound 1 T h e cry stal stru c tu re o f [N d ^ H L 'ld p ij-N ^ -S H jO (1 ) is sh o w n in F ig u re 1. T h e stru c tm e o f 1 rev eals th a t it is a h e te ro b rid ge d p -p h e n o .\id o -g ]j-az id e d m iek el(II) c o m ­ p o u n d c o n ta in in g th ree m o n o d e p ro to n a te d [H L 1]- lig an d s, m w h ich th e p h e n o x id o m o iety is d e p ro to n a te d , o n e azid e a n io n , w h ich acts as an e n d -o n (p M ; E O ) b rid g in g lig an d , tw o n ick el(II) cen tres a n d th re e w 'ater m o lecu les as th e so l­ v en t o f c ry stalliz a tio n A m o n g th e th re e p h e n o la le o x y g en Ear J Itrjrg Chau 2009, 4 0 8 2 -4 9 8 8 io n s T h e ax ial p o sitio ns fo r b o th th e m e tal cen tres a re o c­ cu p ied b y a p h e n o la te o x y g en [0 (7 ) fo r N i(l) a n d 0 (4 ) fo r N i(2)] a n d a n a lc o h o l o x y g en [0 (8 ) fo r N t(l) a n d 0 (5 ) fo r N t(2 )[ T h e av erag e d e v ia tio n o f th e c o n stitu e n t a to m s fio m th e le a st-sq u a re s 0 (1 i0 (3 )N (3 )N (4 ) a n d N (1 )N (2 )0 (1 )N (4 ) p lan es a re 0 1 1 a n d 0 0 5 A , resp ectiv ely , w h ereas N i(l) a n d N i(2 ) a re d isp laced b y 0 14 a n d 0 0 9 A, resp ectiv ely , fio m th e ir c o rre sp o n d in g e q u a to ria l p lan es C leaily , th e c o o rd i­ n a tio n e n v iro n m e n t o fN i(l) is m o re d istorte d . T h e d ih e d ral an g le b etw een th e tw o e q u a to ria l p la n e s [0 (1 )0 (3 )N (3 )N (4 ) a n d N (1 )N (2 )0 (1 )N (4 )] a n d b etw een th e tw o p lan es [N i( 1) 0 (1 )N (4 ) a n d N i(2 )0 (l)N (4 )[ in v o lv in g a m e ta l io n a n d tw o b rid gin g a to m s a re a lm o st id en tical, 17.9° a n d 14 1°, resp ec­ tiv ely <0 2 0 0 9 W ilev -V C H V erlag G m b H & C o K G a A . W cm h eim w w v v eu r]ic o rg 4983 R K o n e r. S H a zra FULL PAPERZYXWVUTSRQPONMLKJIHGFEDCBA M . F lec k , A J a n a , C. R L u c a s, S M o h a n ta 1 6 5 2 5 ( 1 3 )— 171 4 4 (1 0 )° fo r N i(2 )] a re a lso in d ic a tiv e o f th e g re a te r d is to rtio n o f th e N i(l) c o o rd in a tio n e n v iro n m e n t T h e N i(l)-0 (1 )-N i(2 ) a n d N i(l)-N (4 )-N i(2 ) b rid g e a n g le s a re 1 0 6 9 2 (1 0 ) a n d 9 6 ,2 8 (1 2 )°, re sp e c tiv ely . It m a y b e m e n tio n e d th a t e ig h t h y d ro g e n b o n d s in v o lv in g w a te r m o le c u le s o f c ry sta lliz atio n a n d [H L 1] re su lt in th e fo rm a tio n o f a se lf-a sse m b le d ID to p o lo g y in th e title c o m ­ p o u n d (se c F ig u re S I a n d T a b ic S I in th e S u p p o rtin g In fo r­ F ig u re 2 P e rsp e ctiv e v ie w o f [N i'h U lL 'h ifii i -Ni )]*3 H ;0 (1 ) d e m ­ o n s tra tin g th e tw o e q u a to rial p la n es. O n ly tw o m e ta l io n s a n d th e c o o rd in a ted lig an d a to m s a re sh o w n m a tio n ) M a g n e tic P ro p e rtie s T h e b o n d le n g th s a n d b o n d a n g le s m th e c o o rd in a tio n e n v iro n m e n t o f N i(l) a n d N i(2 ) a re c o m p a re d m T a b le 1 T h e c o m p a riso n re v e a ls th a t a lth o u g h th e p h e n o x id o b rid g e d N i-O d ista n c es a re a lm o st id e n tic a l [N i(l)— 0 (1 ) 1 9 9 3 (2 ) A, N i(2 } -0 (1 ) 1 9 9 0 (2 ) A), th e tw o a z id e-b rid g e d N i-N d ista n c e s a re u n e q u a l [N i(l)-N (4 ) 2 0 8 8 (3 ) N i(2 )-N (4 ) 2 2 0 8 (3 ) A] A and T h e tw o N i-O (a le o h o l) d ista n c e s A a re n o t m u c h d iffe ren t [N id )-O (S ) 2 .1 5 6 (3 ) a n d N i(2 )0 (5 ) 2 1 2 2 (3) a s a re th e tw o N i-O (p h e n o late ) d istan c es Aj, [N i(l)-0 (7 ) 1 9 9 2 (3 ) A a n d N t(2 )-0 (4 ) 2 0 2 5 (3 ) A) A g a in , th e tw o m im e N i-N d ista n c e s a re q u ite sim ila r [N i(l)-N (3 ) A A] 1 .9 8 0 (3 ) a n d N i(2 )-N (2 ) I 9 9 3 (3 ) In c o n tra st, th e b o n d le n g th in v o lv in g th e m im e n itro g e n N (l) to N i(2 ) [2 0 7 9 (3 ) A] is lo n g e r o x y g e n 0 (3 ) is ra th e r T h e u n u su ally c o o rd in a tin g m e th o x y [2 A) C ry o m a g n e tic b e h a v io u r o f 1 is sh o w n m F ig u re 3 m th e yMT v s. T a n d y Nt v s. T p lo ts. T h e yMT v a lu e a t 1 K , w h ic h is slig h tly g re a te i th a n th e th e o re tic a l xxiT v a lu e (2 4 2 c m 3 m o F 1 K ) fo r tw o iso la te d n ick cl(II) c e n tre s w ith lo c a l sp in s S ) = S2 = 1 a n d g = 2 2 U p o n lo w erin g th e te m p e ra tu re fro m 3 0 0 K , Xm T re m a in s a lm o st c o n s ta n t u p to 1 2 0 K U p o n fu rth e r c o o lin g , T fo rm o f 3 0 0 K is 2 6.3 c m ’m o l in c re a ses slo w ly re a ch in g a m a x im u m v a lu e o f th e e x iste n c e o f a w e a k fe rro m a g n e tic in te ra c tio n b e ­ tw ee n th e m e ta l c e n tre s T h e v e ry sh a rp d e c re a se m th e v a lu e o f / m 7" b e lo w 2 7 K m a y b e d u e to th e sm g le -1 0 1 1 a n ­ iso tro p y o f th e m c k e l(II) io n T a k in g in to c o n sid era tio n th e w e a k ly b o n d ed to N i(l) 2 5 0 (3 ) C o n sid e rin g th e six b o n d s, th e b o n d le n g th s fo r N i(l) a n d e x c h a n g e in tera c tio n , Z e em a n sp littin g (w ith sa m e N i(2 ) c o o rd in a tio n e n v iro n m e n ts lie m th e la n g e s 1 9 8 0 (3 )2 2 5 0 (3 ) a n d 1 9 9 0 (2 )-2 2 0 8 (3 ) A , re sp e ctiv e ly C le a ily , a s g le -io n a n iso tro p ie s, th e H a m ilto n ia n fo r th is sy ste m is a lre ad y m e n tio n e d , th e N i(2 ) c o o rd in a tio n e n v iro n m e n t is g/SSi-B H = -2 7 (S p S 2) + + g/SSrB + Z b fo A r] + /» i-V - • ; 3 .0 i tnms a n g le s [1 5 3 1 1 (1 1 )-1 7 0 3 3 (1 1 )° fo r N i(l) a n d ► * *** 3s T a b le 1 S e lec ted b o n d le n g th s a n d a n g le s o f 1 N i(l)— 0 (7 ) N i(l >— 0 (8 ) U J it 1 J— 0 (3 ) N |(1 )-N (4 ) N i(lfo O d ) N i(l)-N (3 ) 9 9 2 (3 ) 1 5 6 (3 ) 2 5 0 (3 ) 0 8 8 (3 ) 9 9 3 (2 ) 9 8 0 (3 ) ; N i(2 > -0 (4 ) N i(2 )-0 (5 ) N i(2 f-N (l) N i(2 )~ N (4 ) N i(2 )-0 (1 ) N i(2 > -N (2 ) St *4r !% ■ B o n d len g th s / A 1 2 2 2 1 1 g v a lu e fo r th e tw o c e n tre s to a v o id o v e rp a ra m e triz a tio n ) a n d sra - le ss d isto rted T h e ra n g e s o f th e as a n g le s [7 4 4 9 (1 0 )1 0 4 6 0 (1 2 )° fo r N i(1 ) a n d 7 5 % (1 0 )-1 Q 1 1 6 (1 3)° fo r N i(2 )j and of 2 9 7 c m 3 m o l- ' K a t 2 7 K B e lo w 2 7 K , Xm T d e c rea se s ra p id ly to 0 8 0 c m 3 m o l_1 K a t 2 K . T h e p ro file is in d ic a tiv e 2 2 2 2 1 1 | h 0 2 5 (3 1 1 2 2 (3 ) 0 7 9 (3 1 2 0 8 (3 l 9 9 0 (2 1 9 9 3 (3 l - ■1 5 v 4 t 0 i -c ! 0 5 B o n d an g les / ° 0 (7 )-N i(l)-0 (8 ) 0 (3 fo N i(lfo N (4 ) 0 ( 1)— N i( 1)— U f(3 ) 0 (U -N i(l> -0 < 7 ) 0 (3 )-N i(l> -0 (7 ) N (3 )-N i(l)-0 (7 ) N (4 )-N i(l)-0 (7 ) 0 ( l) -N i(l)- 0 (8 ) 0 (3 )-N in )-0 < 8 ) N (3 )-N i(l } -0 (8 ) N (4 )-N i(l} -0 (S j 0 ( l) -N i(l)- 0 (3 ) 0 ( 1)— N i( I)— N (4 > 0 (3 )-N i(l)-N (3 ) N (3 )-N i(l)-N (4 ) N i(l)-O d )-N i(2 ) 4984 1 7 0 3 3 (1 1 ) 1 5 3 1 1 (1 1 ) 1 6 5 9 0 (12 ) 1 0 3 0 1 (1 1 ) 8 9 4 6 (1 1 ) 9 1 0 1 (12 ) 9 4 6 1 (12 ) 8 6 1 0 (1 2 ) 8 9 8 8 (11 ) 7 9 8 2 (13 ) 9 0 3 3 (12 ) 7 4 4 9 (1 0 ) 7 8 7 0 (H ) 1 0 4 6 0 (12 ) 101 9 0 (13 ) 1 0 6 9 2 (10 ) w w w enruc org v .«> it« i is o 3uo Ti K . 0 (4 )-N i(2 )-0 (5 ) N (l)-N i(2 )-N (4 ) 0 (1 > -N i(2 )-N (2 ) 0 (l)-N i(2 )-0 (4 ) N (l)-K i(2 > -0 (4 ) N (2 )-N i(2 )-0 (4 ) N (4 )-N i(2 )-0 (4 ) 0 (l)-N i(2 )-O (5 ) N (l)-N i(2 )-0 (5 ) N (2 )-N i(2 )-0 (5 ) N (4 )-N i(2 )-0 (5 ) O d j-N i(2 > -N (l) O f I } -N i(2 )-N (4 ) N (l)-N i(2 > -N '(2 ) N (2 )-N i(2 )-N (4 ) N i(U -N (4 )-N i(2 ) 171 4 4 (1 0 ) 1 6 5 2 5 (13 ) 1 6 6 5 5 (1 3) 9 5 8 6 (1 0) 9 4 3 5 (1 3 ) 9 1 7 2 (1 2 ) 8 8 6 4 (1 2 ) 9 2 3 9 (1 1) 8 8 0 0 (13 ) 7 9 7 5 (13 ) 9 1 1 7 (1 2 ) 8 9 3 6 (1 2) 7 5 9 6 (1 0 ) 101 1 6 (1 3 ) 9 3 1 8 (1 2 ) 9 6 2 8 (1 2) IS O F ig u re 3 / M r v s. T a n d / M v s. T p lo ts fo r [N ifo fH L 'F q q r N i)]' 3 H 20 (1 ) S y m b o ls a n d so lid lin e s re p re se n t th e o b se rv e d a n d c a l­ c u la te d d a ta, re sp e ctiv e ly U sin g th is H a m ilto n ia n , th e su sc e p tib ility d a ta w e re fit­ te d w ith J U L X so ftw are t,4! A fix ed te m p era tu re-in d e p e n ­ d e n t p a ra m a g n e tism o f 1 0 0 x ltr 6 c m 3 p e r m o l o f n ic k e l(II) w a s ta k en A s sh o w n b y th e so lid lin e s m F ig u re 3 , a g o o d J = 5 0 c m -1 , g = 2 2 3 , D\ = 2 9 .2 c u r 1 a n d D2 = 1 0 .7 c m _ i. If Dt = D2 is c o n sid ­ e re d , th e sim u la tio n c o n v e rg es w ith J — 3 5 c m -1 , g = 2 24, q u a lity sim u la tio n is o b ta in ed w ith D f = D 2 = 1 6 8 c m -1 C o m p a ris o n o f th e se tw o sim u la tio n s in F ig u re s S 2 (1 0 -3 0 0 K ) m id S 3 (2 -3 5 K , S u p p o rtin g In - 2009 W i!cy-V C T I V erL ig G m b H & C o K G dA , W cm heim Ear J Inorg Client 2009, 4 9 8 2 ^9 8 8 £ u r/7 C A H e te ro o ru ig c d p -P h cn o x ic io -p i p A z id e D m ic k e l(ll) C o m p o u n d fo rm a tio n ) in d ic a te s th a t s ig n ific a n t d iv e rg e n c e o f c a lc u ­ and 1):, a rc e q u a l = 5 .0 e n r 1, g=2 e r o b n d g e d s y s te m s, th e b rid g e a n g le s fo r b o th th e e x c h a n g e = 1 0 .7 c m -1 is lis h e d th a t if th e N i-p h e n o x id o - N i b rid g e a n g le is g re a te r T h e re fo re , th e s e t o f p a ra m e te r D2 2 3 , Z ), = 2 9 2 e n r 1 a n d ta k e n a s th e b e s t s o lu tio n W h ile c o n s id e rin g m a g n e tic e x c h a n g e in te r a c tio n s in h e t- Dx v a lu e s J la te d d a ta o c c u rs th r o u g h o u t th e te m p e ra tu re ra n g e if A s th e N i( l) c o o r d in a tio n e n v i­ D (D2 = p a th w a y s s h o u ld b e ta k e n in to c o n s id e ra tio n It is e s ta b ­ th a n 9 7 ° , a n tif e r r o m a g n e tie b e h a v io u r is e x p e c te d l-1’1 In ro n m e n t is m o re d is to rte d , it is lo g ic a l to a s s ig n a h ig h e r c o n tr a s t, th e in te r a c tio n is p re d ic te d to b e fe rro m a g n e tic fo r v a lu e ( Dt th e e n d - o n (E O ) a z id e -b rid g e d N i” c o m p le x e s,131' 121 w ith = 2 9 .2 c m -1 ) to N i(l) a n d a s m a lle r v a lu e 1 0 7 c m -1 ) to N i(2 ). J in c re a s in g u p o n in c re a sin g th e a n g le , y ie ld in g a m a x im u m It m a y b e re le v a n t to c o m p a re th e g and D v a lu e s o b ­ a t 1 0 4 ° 1121 I t h a s a ls o b e e n e s ta b lis h e d th e o re tic a lly th a t th e s e rv e d fo r 1 w ith th o s e o f th e r e p o r te d c a se s . A lth o u g h th e e x te n t o f fe rro m a g n e tic in te ra c tio n g N i11 c o m p le x e s v a lu e s m d is to r te d o c ta h e d r a l n ic k e l(II) c o n ta in in g c o m ­ d e c re a s e s lin e a rly in EO w ith a z id e -b rid g e d th e N i- N bond p o u n d s a r e u s u a lly le ss th a n o r e q u a l to 2 2 ,1 9 b J!1 ^ lld ’151 le n g th s1121 T h e se th re e g o v e rn in g s tru c tu r a l p a r a m e te rs o f la rg e r v a lu e s lik e 2 2 3 ,116-'1 2 2 6 ,19b-1 6 b l 2 .2 7 ,181,1 2 2 8 1 1 0 b JM 1 th e a n d e v e n 2 3 5 .[1<ibl 2 3 8 [1 5 dl a n d 2 3 9 l10ci h a v e b e e n o b s e rv e d w h ic h p re v io u s ly . R e g a rd in g w h e re e ith e r th is D th e D p a r a m e te r , th e re a re cases is n o t ta k e n in s im u la tio n o r th e v a lu e o f p a r a m e te r has been fo u n d to be v e ry s m a ll U « > .iid ,i5 b -i> d ,i6 j.i6 b ] H o w e v e r, c a s e s a r e k n o w n w h e re la rg e r D v a lu e s a r o u n d ]0 ,I,lli'|5b] 3 5 1 1 5b] a n sj e v e n 4 5 9 5 1 9 e n r 1 h a v e b e e n o b s e rv e d . C le a rly , and D2 g= 2 23, D\ = 29 2 c m -1 = 1 0 .7 c m -1 in c o m p o u n d 1 a re n o t u n u s u a l R e g a rd in g p - p h e n o x id o /a lk o x id o /h y d ro x id o -]i-a z id e m c k e l(II) fe w N in i0 , p o ly m e ta llic p - a lk o x id o -p - a z id e e x c h a n g e in te g ra ls n ic k e l(II) s y s te m s , fo r a re k n o w n , a re a ls o lis te d in T a b le 2 T h e e x c h a n g e in te g ra ls th ro u g h th e p - a lk o x id o -p - a z id e r o u te in th e N in 4 a n d Ni u 6 c o m p le x e s v a ry b e tw e e n 1 4 4 a n d 1 0 6 0 c m -1 . H o w e v e r, it is n o t p o s s ib le to ra tio n a liz e th e s e in te r a c tio n s w ith th e s tru c tu r a l p a r a m e te r s T h e c o o p ­ e ra tiv e e ffe c t o f th e o th e r s u p e re x c h a n g e p a th w a y s in th e s e c o m p o u n d s m a y b e a re a s o n n o t to fin d a n y m a e n e to s tr u c - A s a lre a d y m e n tio n e d , h e te r o b r id g e d c o m p o u n d s o f 3 d m e ta l io n s , o th e r th a n c o p p e r ( II ) , a re lim ite d p -a lk o x id o /p h e n o x id o ~ p -d 7 id e s y s te m s , N in w and tu r a l c o r re la tio n I t w ill th e re fo re b e m o re re le v a n t to c o m ­ p a re th e e x c h a n g e in te g ra l o b s e rv e d m th e title c o m p o u n d [Ni ,i 2 ( H L 1 )j !(pi ,-Nj )]*3H20 (1) v io u s ly r e p o rte d e x a m p le [Ni "2 (L 2 )2 (p , w ith th a t o f th e s o le p r e ­ o f a s im ila r d m ic k e l( ll) c o m ­ {2 . N d 'iiN c C c lu s te r s j1,,l o n e p - a lk o x id o - p - a z id e h e x a n ic k c l- pound (II) c o m p o u n d ,11 '"1 a fe w p - a lk o x id o -p - a z id e te tra n ic k e l(II) M e 3N ( C H 2 )2 N C H C 0 H 3( O -) (O C H 3) ) , th e re le v a n t d a ta o f s y s te m s ,11113-1 lcl th re e p - p h e n o x id o - p - a z id e r N 3 ) (N 3) ( H ,0 ) ] -H 2 0 L2 = d im c k e l(II) w h ic h a re lis te d in T a b le 2 181,1 A lth o u g h b o th 1 a n d 2 a rc c o m p o u n d s 181 a n d o n e h e x a m c k e l(II) c o m p o u n d 111,1 h a v in g fe rro m a g n e tie a lly c o u p le d , th e e x c h a n g e in te g ra ls m th e s e b o th p - a lk o x id o - p - a z id e a n d p - c a rb o n a to - p -a z id e b rid g in g tw o c o m p o u n d s a r e s ig n ific a n tly d iffe re n t; m o ie tie s a re k n o w n . A lth o u g h m a g n e tic m e a s u r e m e n ts o f 1 and th e N 1 1 1 N 1 11 ]4 a n d N d '^ N a C c lu s te r s h a v e b e e n c a rrie d v a lu e s o f th e tw o k e y s tru c tu r a l p a ra m e te rs , N i-O f p h e n o x - o u t a n d h ig h -s p in g ro u n d s ta te s lik e St - 10 or 6 have been J = 25 6 e n r 1 fo r 2 J= 5 .0 c m -1 fo r In s p ite o f th e a lm o st id e n tic a l id o ) -N i (1 0 6 9 ° f o r I a n d 1 0 6 T fo r 2 ) a n d N i- N ( a z id e )- N i o b s e rv e d , it w a s n o t p o s s ib le to d e te rm in e th e m a g n itu d e (9 6 3 ° fo r 1 a n d 9 6 5 ° fo r 2 ) b rid g e a n g le s , th e a p p re c ia b le o f e x c h a n g e in te g ra ls d iffe re n c e in th e m a g n e tic p ro p e rtie s is s u rp ris in g , a t le a st H o w e v e r, th e e x c h a n g e in te g ra ls m th e h e x a n u c le a r a n d te tr a n u c le a r s y s te m s h a v e b e e n re ­ a p p a re n tly A g a in , th e N i- O ( p h e n o x id o ) b o n d le n g th s in p o r te d , w h ic h a re liste d in T a b le 2 O n e m e ta l c e n tre m o n e th e b rid g in g c o re s o f th e se tw o c o m p o u n d s a re a ls o a lm o s t o f th e th re e p - p h e n o x id o - p - a z id e d m ic k e l(ll) c o m p o u n d s is id e n tic a l. 1 .9 9 3 (2 ) a n d d ia m a g n e tic a n d th is c o m p o u n d b e h a v e s m a g n e tic a lly lik e a 1 9 8 9 (2 ) m o n o n u c le a r m c k e l( ll) s y s te m fK bl A lth o u g h th e tw o m e ta l b o n d le n g th s m a y p la y <1 c ru c ia l ro le h e re . T h e tw o N i- A 2 fo r 1 9 9 0 (2 ) A fo r 1 a n d 1 9 8 4 (2 ) a n d T h e re fo re , it s e e m s th a t th e N i- N (a z id c ) le n g th s m 2 a re a lm o s t e q u a l, 2 c e n tre s in th e o th e r tw o c o m p o u n d s a re p a r a m a g n e tic , m a g ­ N (a z id e ) b o n d n e tic s tu d ie s o l o n e c o m p o u n d h a s n o t b e e n r e p o rte d ,181’1 2 .1 5 A 13 and w h e re a s c ry o m a g n e tic m e a s u re m e n ts o t th e re m a in in g c o m ­ s ig n ific a n tly d iffe re n t, 2 0 9 a n d 2 2 1 A p o u n d w a s e a rn e d o u t a n d th e e x c h a n g e in te g ra l o f th is b rid g e a n g le (c a s y s te m B lis te d m T a b le 2 j8 jl th a n th e a n g le o f a c c id e n ta l o r th o g o n a lity ,p b l th e m te ra c - In c o n tia s t, th e se tw o d is ta n c e s in c o m p o u n d 1 a re A s th e p h e n o x id o 1 0 6 ° ) m b o th 1 a n d 2 a re g re a te r b y 9 ° T a b le 2 M a g n e tic a n d s tru c tu ra l p a ra m ete rs o f th e n -p h e n o x id o /a Ik o x id o -g u -a zH le/c y ;m a te n ic k e l(Il) c o m p o u n d s 1 2 3 4 5 6 7 8 9 10 N u c le an ty B u d g in g m o ie ty J! c m 1 N i" , N i" , N i" , N i“ , N l» 4 Mi ", N i" , N i'r, N i" , N i11-, p -p h e n o x id o -jij r N -< ji-p lien o x u io -p j p N ; p -p S ic n o x id o -p i r N C O ji-p h c n o x id o -p j p N C O p -cilk o x id o -p j p N q p -alk o x id o -j.ii p -a lk o x id o -p i p N n p -d lk o x id o -ji) [ -N ; ji-n lk o x id o -p i p N -t p -a lk o x id o -ji| r N ? 50 25 6 33 6 .2 3 .5 7 .3 94 10 6 1 44 6 1 Ear J Inerg Chem 2 0 0 9 , 4 9 8 2 -4 9 8 8 Nh O-Ni a n g le / c 106 9 106 7 106 5 110 5 1004 100 6 9 4 7 -9 9 6 98 8 9 2 0 -9 3 5 9 1 5 -9 4 4 N i-N -N i a n g le / ° N r-O d ista n c e / A N i-N d ista n ce / A R ef. 96 3 96 5 94 1 96 2 102 4 101 8 10 3 2 97 6, 98 5 9 0 0 -9 0 2 9 1 2 -9 3 8 1 99. 1 99 198 199 198 199 2 .0 0 . 2 0 2 2 1 0 .2 14 2 10. 2 12 2 0 3 -2 .1 3 2 1 0 -2 12 2 0 5 -2 .0 6 2 0 2 -2 14 2 0 9 . 2 .2 1 2 1 3 .2 1 5 2 .1 1 ,2 2 4 2 0 2 .2 2 4 2 0 7 . 2 10 2 0 8 , 2 .1 1 2 06 2 07 2 1 1 -2 14 2 0 7 -2 12 2 0 3 -2 16 th is w o rk !*->) j<»] O 2 0 0 9 W iie> -V C H V eriag G m b H & C o K G aA . W em h eim w w vv eu n ic o rg [in .j IIU ] H W| [lie] p in ! in i] 4985 R Koner, S Ilazra. M Fleck, A Jana, C R Lucas, S M ohanta tion through the phenoxido bridge should be anlilerrom agnetic Therefore, the overall ferrom agnetic interaction in 1 and 2 is determ ined by the extent ot ferrom agnetic interac­ tion propagated through the azide bridge A ccording to the azide bridge angle, the ferrom agnetic interaction should be alm ost equal for the two com plexes However, due to one long and one short m ckcl(li)-azidc bond m 1, the azade bridge propagates less ferrom agnetic intet action than that m 2 in which the two nickel(II)-azide bond lengths are al­ m ost equal In addition to distances and angles involving m etal centres and bridging ligands, the dihedral angle (<5j) be­ tween the equatorial planes of the coordination environ­ m ents m ay also influence the nature and m agnitude of ex­ change coupling and therefore this param eter m 1 and 2 should be considered It is know n that as this dihedral angle iJ] increases from 0°, the interaction becom es m ore fetrom agnelic [laA,l The values m 1 and 2 are 17.9 and 10 0°, respectively Therefore, on the basis of <)|, interaction m 1 should be m ore ferrom agnetic than that in 2 Clearly, as the reverse order is observed, consideration of dihedral angle betw een the two equatorial planes strengthens the bridge distance dependency of the exchange integral of 1 and 2 It m ay be argued that the dihedral angle (ff.) between the two planes involving a m etal ion and tw o bridging atom s m ay also govern the exchange interaction It is well know n that this param eter b2 has the significant role to govern the m ag­ netic properties of 3d-4f com pounds, because the m agni­ tude of the exchange coupling is dependent on the exchange transfer integral between the lanthanide 5d orbitals and the 3d orbitals of 3d m etal 10 ns. w ith the m axim um value to be found when the two planes are c o p la n arIn contrast, S2 is not usually considered to com pare the m agnetic behav­ iour of 3d-3d system s However, the effect of S2 on ex­ change interaction of 3d-3d system s should be sim ilar to that of<h. which again strengthens (<>'2 = 14 1° for 1 and 5 9° for 2, d] = 17 9° for 1 and 10 0° for 2) the bridge distance dependency of the exchange integral ol 1 and 2 It is interesting to note that whereas the J values of the two p-phenoxido-pi razide dm ickcl(II) com pounds [N iII2(H L1).,(p1,1-N.,)]-3H20 (1, J = 5 0 cm -1) and [N 1 11,(L ^PurN jX ^X IH O ljdH O (2; J = 25 6 cm -1) arc signifi­ cantly different, the extent of feriom agnetic interaction of the two p-phenoxido-p( j-cyanate dm ickel(H) com pounds [Ni 112(HL1)3(p ,.1-NC0)]-2H20 (3, J = 3 3cnr>, Table 2)l9-9 and [N i'yL ^’X p, (-N C0)(NC 0)(H20)]-H 20 (4, J = 6 2 cm -1, Table 2) are com patatively closer Three types of m etrical param eters, phenoxido and cyanine budge angles and m ctal-cyanate distances, are different for the two com pounds (Table 2) The dihedral angle between the two equatorial planes in 3 and 4 are, respectively, 17 5 and 10 3° The com bined effect of these param eteis results in weak ferrom agnetic interaction tn both com pounds W hereas the two m etal-azide bond lengths are different and alm ost equal m 1 and 2, respectively, the two m etal-cyanate bond lengths m both the com pounds 3 and 4 are different (2.11 and 2 24 A for 3, 2.02 and 2 24 A for 4) M oreover, due to the difference 111 phenoxido and cyanate bridge 4986 w w w eurjic org angles in com pounds 3 and 4, it is not possible to under­ stand the role of a particular param eter m exchange interac­ tion In contrast, as already discussed, com pounds 1 and 2 represent a unique pair dem onstrating the role of m etalligand bridge distance in exchange interaction Electrochem istry The cyclic voltam m ctric (CV) m easurem ents of 1 were carried out m dm f at 25 °C under a nitrogen atm osphere w ith the use of glassy carbon and platinum w orking elec­ trodes for the reduction and oxidation windows, respec­ tively In the oxidation up to 2000 mV, no eleetiochem ical response was observed In contrast, m the potential window ranging from 0 to -2000 m V w ith scan rate of 100 m V s"1, two redox couples are observed. O bserving the peak poten­ tial values (vide infra), the scan w as done m the w indow ranging from -1000 to -2000 m V In this cyclic voltam m og­ ram (Figured), tw o cathodic responses at -1477 and -1838 m V and, m the return sweep, tw o anodic peaks at -1685 and-1348 m V were observed Evidently, the stepwise reductions N i^Ni11—>NinNi* and N iIIN il-s>Ni,N iI takes place at -1477 and -1838 m V, respectively, w hereas the stepwise oxidations N i'N i’-^N i'N i” and N i'N i11—>NiI,N i" take place at -1685 and -1348 mV, respectively. The £ 1/2 values of these two peaks are -1412 and -1762 mV, whereas the A £p values of these tw o peaks are 129 and 153 mV. respec­ tively indicating that both the peaks are quasirevcrsible It m ay be m entioned that there is no report of the electro­ chem ical properties of heterobridged com pounds related to the title com pound. C u rren t / j i A FU LL PA PER -It* -H *M -U. PoioUw!' V -t* *;,o Figure 4 Cyclic voltamm ogram (-1000 to -2000 m V ) of [N i'^H L’^ii] ]-N-*)]*3H20 (1) m dm f at a scan rate of 100 m V s_] Conclusions The title com pound [N i’^H L'E fpij-lsyj-SIHO (1) is only the second exam ple of a p-phenoxido/alkoxido/hydroxido-pi pdztde dinickel(ll) system having m agnetic ex­ change interaction. As the hctcrobridged com pounds of 3d m etal ions, other than copper(II), are lim ited, com pound 1 is an im portant addition m this rare fam ily A gain, as the electrochem ical properties of the heterobridged com pounds have not been studied previously, the data of cyclic voltam - C 2009 W iley-VCH Veriag G m bH & Co K G aA. W em henn Eur J Inorq Chum 2009, 49S2-W SS EurjlC A H e tero b rid g ed p -P h e n o x id o -p , ,-A zid e D im c k e l(II) C o m p o u n d C 4 5 3 2 , H 5 3 5 , N 1 0 51 m e tric m e a su re m e n ts o f 1 d e serv e s a tte n tio n , c o rre la tio n o f e ale d C 4 5 2 6 , H 5 3 2 . N 1 0 5 6 , fo u n d th e re d u ctio n p o te n tia l w ith s tru c tu ra l p a ra m e te rs a n d th e IR (K B r) v = 3 3 9 2 (w , v » JIU ) 2 0 6 5 (v s, v ,l/lA ) e n v iro n m en t o f th e lig a n d m a y b e p o ssib le fro m th e stu d ie s e n r1 o f a few m o re sim ila r sy ste m s T h e e x c h a n g e in te ra c tio n in C ry stal S tru c tu re D e term in a tio n : 1 in v o lv in g th e h e le io b rid g c d p a th w a y s le a d s to o v e rall rN in 2(H L l)l(p ,.,-iN ,)]-3 Il20 (1 ) a re liste d m T a b ic 3 S in g le -c ry sta l w ea k fe rro m a g n e tic b e h a v io u r. T h e o b se rv atio n o f fe rro ­ X -ra y in ten sity d a ta o f th e title c o m p o u n d w e re c o llec ted a t 2 9 3 K m a g n e tism in 1 sh o w 's th a t th e sy n th e tic stra te g y a n d lig a n d w ith a N o n iu s K a p p a d iffrac to m e ter w ith a C C 'D a re a d e te c to r, d e sig n h a v e b e e n su c c essfu l in a c h iev in g te rro m a g n ctic ally c o u p le d h e te ro b rid g e d c o m p le x e s l9,l) In sp ite o f th e fa ct th a t b o th th e p h e n o x id o a n d a z id e b o n d a n g le s a n d m e ta l- 1 6 3 6 (v s, v r= N ) 1 lie u y s ta llo g rap h ic d a ta u sin g 1 5 2 fa m e s w ith <j>- a n d ru -in c rem c n ts o f of 2° a n d a c o u n tin g lim e o f 8 0 s p e r fram e T h e c ry s ta l-to -d c tc c to r-d is ia n c e w a s 2 8 m m T h e re fle ctio n d a ta w e re p ro c e sse d w ith th e N o n iu s p ro g ram su ite D E N Z O -S M N a n d c o rrec ted fo r I o re n tz , p o lariza tio n , b a c k ­ p h c n o x id o b o n d le n g th s a re e q u a l fo r th e title c o m p o u n d g ro u n d a n d a b s o rp tio n e ffe c ts118,1 !S b| T h e c ry sta l s tiu ctu re w a s d e ­ [N in ;(H L !) 3 (p i j-N jU 'd H iO (1 ) a n d a p re v io u sly re p o rted te rm in e d b y d irec t m e th o d s a n d su b se q u e n t F o u rie r a n d d iffe re n c e a n a lo g o u s sy ste m [N i'^ fL ^ fp iu -N jX N jX l'^ C O l'H b O F o u rie r sy n th e se s, fo llo w e d b y fu ll-m a trix le ast-sq u a res re fin e m e n ts F2 u sin g S H E L X L -9 7 !l*c 1S<|I A ll th e h y d ro g en a to m s e x c e p t (2 ),!8 j1 th e stre n g th o f th e fe rro m a g n e tic in te ra c tio n in th e se on tw o c o m p o u n d s is sig n ific a n tly d iffe re n t, w h ic h is re la te d to th o se o f th e w a te r m o le c u le s [0 ( 1 0 ), 0 ( 1 1 ) a n d 0 ( 1 2 )] w e re in se rte d a lm o st-e q u a l v e rsu s d iffere n t m e tal-a zid e b o n d le n g th s m 2 a n d 1 , re sp e c tiv e ly E v id en tly , c o m p o u n d s 1 a n d 2 re p re sen t a t c a lc u la te d p o s itio n s w ith iso tro p ic th e rm a l p a ra m e te rs. A ll th e a u n iq u e p a ir d e m o n stratin g th e ro le o f m e ta l-lig a n d b rid g e d ista n ce o n sp in c o u p lin g , w h ic h is th e m a jo r o u tc o m e o f th e p re se n t in v e stig a tio n h y d ro g e n a to m s w e re re fin e d free ly U sin g a n iso tro p ic trea tm e n t o f th e n o n -H a to m s a n d u n re strain e d iso tro p ic trea tm e n t o f th e II a to m s, th e re fin e m e n t c o n v erg ed a t a n R v a lu e [ /> 2 a (/)] o f 0 0 5 3 4 C C D C -7 3 5 0 9 6 (fo r 1 ) c o n ta in s th e su p p le m en ta ry c ry sta llo g ra p h ic d a ta fo r th is p a p e r T h e se d a ta c a n b e o b ta in e d free o f c h a rg e fro m T h e C a m b rid g e C ry stallo g ra p h ic D a ta C e n tre v ia w w w c e d e c a m a c u k /d a ta je q u e s l/c if Experimental Section T a b le 3 C ry s ta llo g rap h ic d a ta fo r 1 M a te ria ls a n d P h y sic a l M e a su re m e n ts: A ll th e re ag e n ts a n d so lv e n ts F o rm u la F o rm u la w e ig h t C rv s ta l c o lo u r C ry stal sy ste m S p a c e g ro u p Ch H2|N,02.Ni m e n ts w e re c a rried o u t in d im e th y lfo rm a m id e so lu tio n w ith a aiA b(A cl A a/° pr • i° VI A 1 z th re e -e le c tro d e a sse m b ly c o m p risin g a g la ssy c a rb o n d isk w o rk in g T e m p e ratu re / e le ctro d e , a p latin u m a u x ilia ry e lec tro d e a n d a n a q u e o u s A g /A g C l ^ g C in ft / m m -1 T (0 0 0 ) 2 or R e fle c tio n s c o lle c te d In d e p en d e n t re fle ctio n s 1 0 1 2 7 (2 ) 11 5 1 4 (2) 15 3 2 8 (3) 91 6 0 (3 ) 9 6 1 1 (3 ) 9 5 5 0 (3 ) 1 7 6 7 6 (6 ) 4 2 9 3 (2 ) 1 496 1 134 832 8 1 8 -5 4 9 2 12622 7984 [0 0 3 2 1 ] m u h isc a n 0 9351 0 9561 -1 3 < l i£ 13 -1 4 ss k s 1 4 -1 9 s / s 18 0 0 5 3 4 /0 1 2 0 2 0 1 0 3 6 /0 1 4 1 1 w e re p u rc h a se d fro m c o m m e rc ia l so u rc es a n d u se d a s re c eiv e d 1 'h e S c h ifi'b ase lig a n d (I E L 1) w a s sy n th e siz e d fo llo w in g a re p o rte d p ro c e d ttreh v E le m e n tal (C , II a n d N ) a n a ly se s w e re p e rfo rm ed w ith a I’e rk in -E h n er 2 4 0 0 II a n a ly z er. IR s p e ctra w e re re co rd ed m th e re g io n 4 C O -4 0 0 0 e n r1 w ith a P e rk m -E im e r R X 1 F T s p e c tro p h o ­ to m e te r w ith sa m p le s a s K B r d isk s. C y c lic v o lla m m etric (C V ) m e a­ su rem e n ts w e re d o n e b y u sin g a B io a n aly tic a l S y stem E P S IL O N e le ctro c h e m ic a l a n a ly ze r T h e c o n c e n tra tio n o f th e s u p p o rtin g e le c tio ly te , te tra e th y la m m o m u m p e rc h lo ra te (T E A P ) w as 0 1 M, w h e re as th a t o f c o m p le x 1 w a s 1 h im C y c lic v o ltam m etric m e a s u re­ re fe ren c e e lec tro d e T h e re fe ren c e e le c tro d e w a s se p a ra te d fro m th e b u lk so lu tio n b y u sin g a T E A P sa lt b rid g e in a c eto n itrile M o la r c o n d u c tiv ity (/1 M ) o f a 1 m u s o lu tio n m d m f o f 1 w a s m e a su re d a t 2 5 °C w ith a S y stro n ics c o n d u c tiv ity b rid g e V a ria b le -te m p e ra tu re K ■ ^ e n te d m a g n e tic su sc ep tib ility m e asu re m e n ts a t fix e d field stre n g th o f 1 T L ^ im ] w e re e a rn e d o u t w ith a Q u a n tu m D e sig n M P M S S Q U ID m a g n e­ A b s o rp tio n c o rre c tio n to m e te r D ia m ag n e tic c o rrec tio n s w e re e stim ate d fro m th e P a sc a l -T 1 mm T„m c o n sta n ts. [Ni",(HI,,),(u1,-N,)I-3H20 (1): T o a s tirre d N.N'-d im e th y lfo rm ­ In d ex ra n g es a m id e (d m f) so lu tio n {5 m L ) o f H 2L ‘ (0 1 9 5 g , 1 m m o l) w a s a d d e d d ro p w ise a d m f s o lu tio n (3 m L ) o f n ie k e l(ll) p e rc h lo ra te h e x a h y d rate (0 2 5 0 g , 0 6 8 m m o l) a n d to th e resu ltin g y e llo w ish g ree n /^ '■ l /w /y u [ /> 2 a (/)] R ,l,lI/w R 2|b l (a ll d a ta) so lu tio n w a s a d d e d d ro p w ise a d m f s o lu tio n (2 m L ) o f tn e th y l- fa] a n n n e (0 .2 0 2 g , 2 m n ro l) d e e p g re en A fter 398 06 g ree n tn c lim c p\ R, = p ||F „ | - [F c||/L |f„ |] [b ] w /f2 = [X w Q V - /y X -ffiw f,,4]1'- T h e c o lo u r o f th e so lu tio n c h a n g ed to 1 h , a n a q u e o u s s o lu tio n (5 m L ) o f N a N i (0 0 4 5 g , 0 6 8 m m o l) w a s a d d e d d ro p w ise to th e stirre d so lu tio n S u p p o rtin g In fo rm atio n (see fo o tn o te o n th e first p a g e o f th is a rti­ c le ) S e lf-a ssem b le d 1 D to p o lo g y m th e title c o m p o u n d A fte r stirrin g fo r a n a d d itio n a l 2 h , th e d e e p g re en so lu tio n w a s filte re d to rem o v e a n y su sp e n d e d p a rticle s a n d w a te r (1 0 m l.) w a s a d d e d to it T h e so lu tio n w a s k e p t a t ro o m te m p era tu re A fter 2 d, Acknowledgments a g re en c ry stallin e c o m p o u n d th a t d e p o sited w a s c o lle c te d b y fil­ tratio n a n d w a sh e d w ith w a ter R e c ry sta lliz a tio n fro m d m f/w a ter F in a n cia l s u p p o rt fro m th e D e p artm en t o f S c ien c e a n d T e c h n o l­ y ie ld e d a g re en c ry stallin e c o m p o u n d c o n ta in in g d iffra ctio n -q u a lity o g y , th e G o v e rn m e n t o f In d ia (S R /S 1 /IC -1 2 /2 0 0 8 ) a n d C e n tre fo r sin g le c ry sta ls Y ie ld 0 2 0 7 g (7 S % ) Fur J Incrg Chcm 2 0 0 9 , 4 0 8 2 -4 9 8 8 C ,0 H 42 N(,Ni 2O,2 (796 11)- R e sea rch m N a n o scic n c e a n d N a n o te c h n o lo g y , U n iv ersity o f C a l- 1 0 0 9 \V i!e> -V C H V c rla g G m b H & C o K G aA . W e m h eim w w w eu rjic o rg 4987 R FULL PA PER c u tta is g ra te fu lly a c k n o w led g e d 2274, b) G S H . a m i A .1 a re th a n k fu l to th e C o u n c il fo r S c ien tific a n d In d u stria l R e se arc h , a n d R K 43, Ll e d g e d fo r c o lle c tio n o f th e v a riab le -tem p e ratu re m a g n e tic d a ta Molecular Magnetism, Y o rk . 1 9 9 3 . b ) R [2] R o jo . G a) E 1 A rn o rlu a, R V C II P u b lic atio n s. N ew G a tte sc lu , O . K a h n (E d s ), C o rte s. J L M e sa , L Transition Met. Chan V tlle n e u v e, 1988, R u iz , J C trc ra , J C a n o , S A lv are z , C Chein Conimim J M a h ia. M S o la ns, l-'ig u c ro la. C R ib a s, M M a h ia, am a, T Trans A L o z an o , M R o jo , G L opez D ia z, M S G a rc ia , M D F .i F a lla l). J Inorg. Chem a) S K D ey. N c u e r, X S o la n s, M a ) S H az ra, R M o n d a l, M S E Inorg Chem A ro m i, S L P a rso n s, W Tong B it. M M M o n fo rt, J M O h b a, S K ita g a w a . H L l, Q -J E scu e r, M R o jo , 1068, b) M V erd a g ue r, A ann. M M o n fo rt, R Dalton Trans M eng, S e u le im a n , C 1999 D e sp la n c h es, A G a lle y , C L o m e n e ch , I C C a rtier, F V ilia m 1047. c) G R a jata m an , M Coord Chem. Rev 1999, M u ru g c su , E C W W e rn sd o rfe r, M H e lh w e ll, C G B re c h m , C h ris to u . E K S c u tller, C T ra in . R Dalton Trans C P R a p to p o u lo u . A P e rlep e s. G C h risto u , 2004, 126, L e e , C C S to u m p o s, T e rz is, W W e rn sd o rfe r, S O J Am Chem Soc. M o h a n ta , H -II W e i. M cK ee, J V Soc 1981, M u rra y D a g d tg ta n 103, M J 2 0 0 7 , 129,9 4 8 4 -9 4 9 6 Chem 1990, D om an, D E 4988 2 7 5 9 -2 7 6 1 , b ) V R e ed , J Am Chem C hang, R j 29. R o d g e rs, M R , Snow , A G W illia m s, J F B a n k s, R . M W e b b. D . N H e n d rick so n , B u­ Inorg. 1 0 5 8 -1 0 6 2 a ) T S a to , W M o ri, Y . X te N G o to , E 43, L ee, Y W a ng , S Inorg Chem 1 9 8 5 , 24, 3 2 5 8 -3 2 6 4 ; d ) Y J Chem Soc., Dalton Trans 1 9 8 6 , 2 6 3 3 - Z w a ck , K td a, c h a n an , H -R 2004, B an, C A O ’C o n n o r, J R N isln d d 2640. c) T N R H ill. S P 7 0 0 0 -70 0 1 , c ) W M a z u rek , B J K e n n e d y , K S W e dd , P R S Inorg Chem. N agm , Y N akao, w w w eu rn c o rg K a n eh isa , Y K a t. M Inorg. Chun Acta 120, 48. 2009, 2006, 39, K C o s ta, X S o la n s G co rg o p o ttlo u . C P K B ond- A lv a rez , P A le m a n y J Am Client Soc 1 1 1 2 2 -1 11 2 9 H a zra , S 2008, [1 4 ] [1 5 ] 2005, m a n , G C h risto u , 891, d) M S o la n s, M 7, K la u ss, H P rttz k o w , 44, 5 1 9 -5 2 8 , c ) M A lia lc ro w J C H u ff­ Angew Client hit Ed Engl 1 9 9 5 34, 8 8 9 - M o n fo rt. 1 R e sm o . M S E l F a llah , J F o n t-B a rd ia , H S to e c k h -E v a n s R ib a s, X Chem Eur J 2001, 2 8 0 -2 8 7 [1 6 ] a ) C S H ong, Y. D o, 1 9 5 . b ) J R ib a s, M Chem hit Ed Engl fo rt. I R esm o . X Angew Chem hit Ed M o n fo rt, B K R a m a d e. O 1997, Chem H -H 36, 39. 38, 1 9 3 Angew S o la n s. 1996, 35, M a m g o t, M 1 6 5 -1 6 8 , e) R W e t, S M o h a n ta, K o n e r, G -H Inorg Client Inotg D u p u is. L e e , Y W a ng , Eur J Inorg Client. 2 0 0 5 , M in o r. Methods Encvniol [1 8 ] a ) Z O tw m o w sk i, W 3 0 7 -3 2 6 . b ) V N S o n a r, M M on­ D rtllo n . 2 5 2 0 -2 5 2 2 K a h n , Y Jc u n n tn , F . R o b ert. 9 3 0 -9 3 6 , b ) J -P C o ste s, F D a h a n , A 2000, 1999, 1 9 9 4 , 33, 2 0 8 7 -2 0 8 9 . c ) J R ib a s, M Angew. Chem hit. Ed. Engl [1 7 ] a ) 1 G h o sh , X S o la n s, P R a b u , F 1 5 0 0 -1 5 0 5 1 9 9 7 , 276, V e n k a tra j, S P a ria n , P A C ro o k s, Acta Crystalhgr, Sect C 2 0 0 7 63, o 4 9 3 -o 4 9 5 , c ) G M S lie k irte k , Acta Crystalhgr, Sect. A 2 0 0 8 , 64, 1 1 2 -1 2 2 , d ) G M S h e k iric k , SHELXL-97: Crystal Structure Refinement Pwgram, U n iv e rsity o f G o ttin g en , G o ttm g e n , G e rm a n y , 1 9 9 7 Fun, S 359, C o rte s, M 3 1 6 7 -3 17 6 m g g c le. F M e y er, C . M c n n crtc h , II -H 2 0 0 8 ,4 7 . 1 0 0 8 1 -1 0 0 8 9 , f) a ) Y -C C h o u , S -F H u a n g , R . K o n e r. G -H M o n fo rt. R 6 9 5 -6 9 9 . i) A N Inorg Client sto p o u lo s, A J J d s io p o u lo s, E E M o u sh t, W W e rn sdo rfe r, G T C S ta m a tato s, D F o g u c t-A lb io l, S -C 1993, G B a r- 2000, J Chem Sue., Dalton Trans S o le r. M u ry n , J R a fte ry , S J T e a t, Inorg Chem B a t b e n s, T R o jo . B a ran d ik a , R 1023- 2 0 0 6 , 2 6 4 3 -2 6 4 6 , e) T C S ta m ata to s, V N a- C h risto u , S P P e rle p e s. G 1 A rn o rtu a , M 190-192, J Am Chem Soc. 2 0 0 5 , 2 3 3 -2 3 5 , Chem hit Ed Saudo, M 1 5 4 4 5 -1 5 4 5 7, d ) D V e ne g as-Y az tg i, E . R u iz, J C a n o S A lv a­ re z . Ju a n , X -M . C h e n , X .- M a ju m d e r, M F le c k S M o h a n ta , Polyhedron 27, 1 4 0 8 -1 4 1 4 E B ill, JULX I 4 A Program for Simulation of Molecular Magnetic Data M u lh e im /R u h r2 6 , G e rm a n y a ) J C a n o , G D e M u n n o , F L lo re t, M Ju lv e . Inorg Chem 2 0 0 0 , 39. 1 6 1 1 -1 6 1 4 , b ) S D e m e sh k o , G L e ib eh n g , W M a r- [1 3 ] S R o se n m a n , P V eillct, C Dalton 2 0 0 7 , 1 8 3 8 -1 8 4 5 . c ) Z E /b tg a t’ S e rn a , M Inorg. Chem 1998 B le u ze n . V M a rv a u d , J V a tsserm - G a rd e, G d) Z E [1 2 ] E . R u iz , J C a n o , S C o rte s, L 1027- 2008. B re c h m , R a p to p o u lo u , V P R a fa el B a lle stero s. B A b a rc a, A a lls, M ille r M 193-195. C o rie s, T U rtiag a , C i E Magnetism V ic en te , R Coord Cliem Rev. L e z a m a. T 3 4 4 -3 4 7 D rtllo n ), W ile y- D rtllo n ), W illcy -V C II, W e m h cim , 2 0 0 1 , p p 6 1 -1 0 8 a ) J R ib a s, A E K Chem Commun 32. In o u e m B u c h h o lz , M Chem Eur J A b b o u d , S P P e rle p e s, G C h risto u R ib a s, M J S R o th , A 2 0 0 5 , 5 0 3 8 -5 0 4 0 , b ) T C Inorg Chem (E d s. 6 2 8 1 -6 2 8 7 W e rn sd o rfe r, 2 0 0 0 , 2 9 -3 4 . e ) J Iw a m u ra , K E s­ b ) D -Y W u , W H u an g , W -J H u u . Y S o n g , C -Y D u an . S - M iller. F P a la c to (E d s ). 1 -6 0 , e) H V ic e n te , A 2 0 0 7 . 3 8 6 1 -3 S 6 3 [1 1 ] a) M -L L e z­ 37, K o th e, W P la ss, Chem Comimm. M c ln n e s, Trans H 1998, 2009, 3458, b) A S c h O tz e , E S ta m ata to s, K A K lu w e r A ca d em ic P u b lish ers. Magnetism Molecules to Materials ll K K o n e r, P L e m o tn e , E C S a n u d o , S M o h a n ta, H I, c) D V C H , W e in he tm , 2 0 0 1 , p p G 2 0 0 1 ,4 5 -4 6 F a lla h , R R o jo J S M iller, M f) M R o jo , M F o n t-B ard a . T M a tsu s h ita , V G ru m lid t, a n d ik a , R K ah n , J S C 1 5 7 1 -1 5 7 3 E J W m p e tm y (E d ), G a ttesc lu , O 1 4 7 8 -1 4 9 1 Chem Comimm Single-Molecule Magnets and Related Phenomena, S p rin g e r, B e rlin , 2 0 0 6 , b ) J S M iller (E d ), Ex­ tended Linear Cham Compounds, P le n u m N ew Y o rk , 1 9 8 3 . v o l a) R 41, 2002, U rtiag a , M A rn o rtu a , In­ B o u ssek so u , Y S a n ak is, C o rte s, L . L e z a m a , T I 2004, d e G ra a f. C lem e n te-Ju a n B a ran d ik a , Z . S e rn a , R K . U rtiag a . M Molecules to Materials 11 (E d s [7 ] J-P . T u e h ag u e s. S e rn a , L L e z am a , M D o rd re ch t, 1 9 9 1 , d ) D B A m a b ih n o , J V e c tan a m [6 ] 6 3 0 2 -6 .3 1 1 , e ) J M V e relst, F D a h an , A [1 0 ] a ) G 2 0 0 5 , 3 9 0 6 -3 9 1 1 Magnetic Molecular Materials. [5 ] 34, M a c k ie w ic z , M 14, Dalton S a n tan a , B o u d a h s, J -M Inorg Chem P o m s o t, P R a b u . J R e e d ijk . A . L S p c k . 1995, R u d o lp h , E 2001, 1204- G a rd a, L K o o tjm a n , R Eur J Inorg. Client D ia z . J R ib a s. Chem. Cominun. S a e z , J P e rez , L G 3 7 1 -3 7 4 K V F u si, L . P o n te lh m , P B o u v v m an , P E v a n s, R A G M u ra ta , D J K itk o , [9 ] L ezam a. T 13, F o rm ic a P a o li, R M o h a n ta S M itra , Inorg Chem 2 0 0 4 , 43, 2 4 2 7 -2 4 3 4 . b ) S U o z u m i, H F u ru tae h t, M O h b a, H . O k jw a , D . E F e n to n , K S ln n d o . S J Chem Soc., Dalton Trans 2 0 0 2 , 2 0 4 0 -2 0 4 6 , c ) A M a estro , J [8 ] L o o se , J K o rtu s, 2 0 0 8 , 5 2 -5 4 , b ) J T e rc e ro , C M a estro , X 1205. d) A [4 | W ille t, D M ic h elo m , P 2 0 0 4 , 3 4 6 8 -3 4 7 4 , c ) A 1 5 7 4 -1 5 8 6 . d ) R org Chem Magneto-Structural Correlations m Exchange Coupled Systems, R e id c l, D o rd re ch t. 1 9 8 5 , c ) C J O 'C o n n o r (E d ). Research Frontiers m Magnetochenustry, W o rld S c ie n tific , S in g a p o re , 1 9 9 3 , d ) C 1 C h e n , K S S u sh ck . Coord Chan Rev 1 9 9 3 , 128, 2 9 3 -3 2 2 . a ) R K o n e r, H -H L in , II -H W et, S M o h a n ta , Inorg Chan 2 0 0 5 , 44 3 5 2 4 -3 5 3 6 , b ) K K N a n d a , I. K T h o m p so n J N B n d so n , K N a g , J Chan Soc., Chan Connnun 1 9 9 4 , 1 3 3 7 — 1338. c) M [3 ] D Dalton Trans R o ssi . tin S h u v a ev , M e m o ria l U n iv e rsity o f N e w fo u n d la n d , is a c k n o w l­ K ah n , G u e rn , M L u c as. S C le m en te -Ju a n . F D a h an , .1 -P T u c h ag u e s, o g y , U n iv ersity o t C alc u tta , fo r p ro v id in g fe llo w sh ip s D r K o n s ta n ­ a) O F le c k , A J a n a, C R A m b ro st. P D a p p o rto , M G io ig t. A ts th a n k ­ fu l to th e C e n tre fo r R ese arc h in N a n o scie n c e a n d N a n o te ch n o l­ [1 ] K o n e r, S H a zra . M 2271- 0 2 0 0 9 W ilev -V C H V crlag G m b H & C o K G eA , W etn h eim R e c eiv e d Ju ly 21 2009 P u b lish e d O n lin e O c to b e r 1 9 ,2 0 0 9 Eur J Inorg. Chem 2 0 0 9 , 4 9 S 2 -1 9 S R Author's personal copyQPONMLKJIHGFEDCBA P o ly h e d r o n 2 8 ( 2 0 0 9 ) 2 8 7 1 - 2 8 7 8 C o n t e n t s l i s t s a v a i l a b l e a t S o ie n c e D r re c t K j jy n h m u V K P o ly h e d ro n r* j o u r n a l h o m e p a g e , w w w .e l s e v i e r c o m / l o c a t e / p o l y f S y n th e s e s , s tr u c tu r e s , a b s o r p tio n a n d e m is s io n p r o p e r t i e s o f a te tr a im in o d ip h e n o l m a c r o c y c lic lig a n d a n d its d i n u c l e a r Z n (I I ) a n d P b ( I l) c o m p le x e s Susanta Hazra3, Samit Majumder3, Michel Fleckb, Rajesh Koner3, Sasankasekhar Mohanta3’' J Department of Chemistry, University of Calcutta, 92 A P C Road, Kolkata 700 009, India h Institute for Mineralogy and Crystallography, University of Vienna, Althanstr. 14, A-1090 Vienna, Austria A R T IC L E A r tic le IN F O A BSTRA CT history S y n t h e s i s o f a R o b s o n t y p e m a c r o c y c l i c l i g a n d [ H ^ l_ ] f C 1 0 4 ) 2 ( 1 ) o b t a i n e d o n c o n d e n s a t i o n o f 2 ,6 - d i f o r m y l - R e c e iv e d 1 8 M a y 2 0 0 9 A c c e p te d 1 7 J u n e 2 0 0 9 4 - m e t h y l p h e n o l a n d 2 ,2 '~ d i m e t h y l - l ,3 - d i a m i n o p r o p a n e , t e m p l a t e s y n t h e s i s o f a d i n u c l e a r l e a d ( l l ) c o m ­ p l e x { P b i’H N O a )^ j ( 2 ) , s y n t h e s i s o f a d i n u c l e a r z m c ( l l ) c o m p l e x IZ u L 'l.t A v a ila b le o n lin e 2 3 J u n e 2 0 0 9 IT s O J J ( C I O .,) ( 3 ) t h r o u g h m e t a l s u b s t i t u t io n r e a c t i o n a n d s y n t h e s i s o f a n o t h e r d i n u c l e a r z i n c (l l ) c o m p l e x [ Z n " L (H 2 0 ) 2 ) (C I 0 ,i )i ( H 2 0 ) e ( 4 ) o b t a i n e d d i r e c t l y f r o m 1 a r e d e s c r ib e d i n t h e p r e s e n t s t u d y C r y s ta l s t r u c t u r e d e t e r m i n a ti o n s o f 1 a n d 3 h a v e Keywords b e e n e a r n e d o u t B o th th e c o m p o u n d s 1 a n d 3 c ry sta lliz e in th e o rth o rh o m b ic s y s te m w ith th e s p a c e g ro u p s M a c r o c y c lic lig a n d Fdd2 D m u c le a r le a d ( H ) D in u c le a r a n d 0 2 , 2 ,2 , r e s p e c t i v e l y S p e c t r o p h o t o m e t r i c a n d s p e c t r o f l u o r o m e t n c t i t r a t i o n s o f 1 w i t h t n e t h y l - a m i n e a s w e l l a s w i t h z i n c ( I I) a c e t a t e a r e a l s o r e p o r t e d 2 H 1 C 0 I) a 2 0 0 9 E l s e v i e r L td A ll r i g h t s r e s e r v e d A b s o r p tio n E m is s io n 1 . I n tro d u c tio n 3 d 1 0 e le c tr o n ic c o n f ig u r a ti o n , t h e c o m m o n a n a l y t ic a l t e c h n iq u e s s u c h a s U V - V is , M o s s b a u e r, N M R a n d E P R s p e c tr o s c o p y c a n n o t R o b s o n t y p e t e t r a i m in o d i p h e n o l m a c ro c y c l ic l ig a n d s [ 1 - 7 ] o b ­ b e a p p l ie d t o d e t e c t z in c ( Il) i o n s in b io lo g ic a l s y s t e m s a n d t h e r e ­ t a in e d o n c o n d e n s a ti o n o f 2 ,6 - d i f o r m y l- 4 - m e t h y ] p h e n o l a n d d i a ­ f o re f lu o r e s c e n c e s p e c tr o s c o p y h a s b e e n t h e m o s t p o w e r fu l to o l m in e s f o r t h i s p u r p o s e [ 3 6 ,3 7 ] have o c c u p ie d an im p o rta n t p o s i t io n in c o o r d i n a t io n c h e m is t r y ; i n t i m a t e r e la t io n s h i p o f s p i n c o u p l in g [ 8 - 1 4 ] , r e d o x I n c o n t r a s t t o t h e R o b s o n t y p e l i g a n d s c o n ta i n in g 1 ,3 - d i a m i n o - p r o p e r t i e s [ 1 5 - 2 2 ] a n d b i o m im i c k i n g a c t iv i t i e s o f d i - a n d p o l y n u ­ p r o p a n e , t h e m a c ro c y c l e c o n t a i n i n g 2 ,2 '- d i m e t h y l- 1 ,3 - d ia m in o - c l e a r c o m p l e x e s h a v e b e e n e n r i c h e d f r o m t h e s t u d i e s o f t h e m e ta l p r o p a n e h a s o n l y r a re l y b e e n u t i l i z e d p r e v i o u s l y t o d e r iv e m e ta l s y s te m s d e riv e d fro m th is c la s s o f lig a n d s c o m p l e x e s [ 3 8 ,3 9 ], T h e s e f e w c o m p l e x e s h a v e b e e n d e r i v e d f r o m I s o l a t i o n o f f r e e R o b s o n t y p e l i g a n d s is n o t a n e a s y t a s k d u e t o t e m p l a te c o n d e n s a t i o n A s t h e n a t u r e o f t h e l a t e r a l d n m i n o m o i e t y t h e p r o b l e m o f u n c o n t r o l le d o l i g o m e r iz a t i o n p r o c e s s d u r i n g c o n ­ m a y a l s o i n f lu e n c e t h e m e t ri c a l p a r a m e te r s o f t h e m e ta l e n v i r o n ­ d e n s a t io n a s w e ll a s d u e t o t h e h y d r o l y t i c c l e a v a g e o f t h e u n i n e m e n t , i n c l u d i n g t h e b r i d g in g c o r e s , a n d t h e p r o p e r t i e s o f t h e c o m ­ m o i e t y [ 2 ] a n d , t h e re f o re , t h e c o m p l e x e s o f t e t r a i m in o d i p h e n o l p l e x e s , w e h a v e b e e n i n t e r e s te d o n t h e s y n t h e s i s a n d s t u d ie s o f t h e l ig a n d s a r e u s u a l ly s y n t h e s i z e d b y t e m p l a te c o n d e n s a t io n o f t h e R o b s o n t y p e m a c r o c y c l i c s y s te m s c o n t a i n in g 2 .2 '- d im e th y l - l ,3 - a l d e h y d e w i t h d i a m i n e s in t h e p r e s e n c e o f m e t a l s a l ts . A l t h o u g h d i a m m o p r o p a n e a s t h e d i a m in e c o u n t e r p a r t t h e r e a r e s o m e e a r li e r r e p o r t s o f t h e p r o t o n t e m p l a te d s y n t h e s i s t h e s y n t h e s e s , s t r u c tu r e s , a b s o r p t io n a n d e m is s i o n p r o p e r t i e s o f o f t h i s c l a s s o f l i g a n d s a s d i p r o t o n a t e d s a l ts [ 2 3 - 2 6 ] , a m e th o d o l ­ t h e d i p r o t o n a te d p e r c h lo r a te s a l t, [ H 4 L ] { C i0 4 )2 o f H 2 L ( C h a r t 1 ) o g y o f e f f i c i e n t p r o t o n - t e m p l a te d a n d i t s d i n u c l e a r le a d (I I ) a n d d i n u c l e a r z i n c (l l ) c o m p l e x e s r e p o rt e d b y N a g e t a l s y n th e s e s h a s b e e n re c e n tly H e r e in , w e r e p o r t [ 2 ], E v id e n tly , t h i s r o u t e m a y b e f o l lo w e d f o r t h e d e s i g n e d s y n t h e s i s o f p r e o r g a n i z e d n e w s t r u c t u r a l m o t if s Z in c (I l) , t h e s e c o n d m o s t a b u n d a n t d -b lo c k e le m e n t m 2 . E x p e r im e n ta l th e h u m a n b o d y [ 2 7 ,2 8 ], p l a y s i m p o r ta n t r o l e s in s e v e ra l b io lo g ic a l 2 J Materials and methods p r o c e s s e s . T h e a c t i v e s i t e s o f z i n c - p r o t e i n s c o n ta in o n e - , t w o - o r t h r e e m e ta l i o n s [ 2 9 - 3 1 ] I n a d d i t i o n t o t h e b i o m i m ic k i n g r o le s , A ll t h e r e a g e n t s a n d s o l v e n t s w e r e p u r c h a s e d f r o m c o m m e r c i a l s o m e s y n t h e t i c d i n u c l e a r z in c ( Il) c o m p l e x e s a r e a l s o k n o w n t o p a r ­ s o u r c e s a n d u s e d a s r e c e i v e d . E l e m e n t a l (C , H a n d N ) a n a ly s e s w e r e t i c i p a t e in s o m e b i o - r e la t e d p r o c e s s e s [ 3 2 - 3 5 ] , H o w e v e r, d u e t o i t s p e r f o r m e d o n a P e r k in - E lm e r 2 4 0 0 II a n a l y z e r . 1 R s p e c t r a w e r e r e ­ c o r d e d in t h e r e g io n 4 0 0 - 4 0 0 0 c m * C o r r e s p o n d in g a u t h o r T e l E-mod address + 9 1 3 3 2 3 5 1 2 9 4 1 , fa x . + 9 1 3 3 2 3 5 1 9 7 5 5 s m _ c u _ c h e n i@ ’y a h o o c o m ( S M o h a n ta }. 0 2 7 7 - 5 3 8 7 /S - s e e f r o n t m a t t e r d o i.1 0 1 0 1 6 /j p o ly 2 0 0 9 0 6 0 3 9 i- 2 0 0 9 E ls e v ie r L td . A ll r ig h ts r e s e r v e d o n a B r u k e r - O p t ic s A l p h a -T s p e c t r o p h o t o m e t e r w i th s a m p le s a s K B r d i s k s . A b s o r b a n c e s p e c tr a w e r e o b t a in e d w i th a H i t a c h i U - 3 5 0 1 s p e c tr o p h o t o m e t e r w h e r e a s Author's personal copy PONMLKJIHGFEDCBA Susanta Hazra et aL /Polyhedron 28 (2009) 2871-2878 2872 dropwise. W ith the addition of ZnCl2 solution, the suspension slowly converted into solution After two hours stirnng, a white precipitate of PbCl2 was separated and removed by filtration. To the filtrate, NaCI04 (0,5 g. 4 mmol) in methanol was added slowly and solution was kept for slow evaporation After two days later a yellowish crystalline compound containing diffractable single crystals was collected. Yield 0.585 g (76%) Anal. Calc, for C 2 8 H 3 6 N 5 OI 0 ClZn2: C. 43.74; H, 4.72, N. 9.10 Found, C, 43 95; H, 4.63; N, 9.25%. Selected IR data on KBr (crrT1). v(water), 3382br; v(C=N), 1637s; v(mtrate), 1438s, 1300s, 1006 m; v(perchlorate), 1095s, 623 m. 'H NMR (300 MHz, CD3CN) <5 values (ppm); 8.26 (s, 4H, CH=N); 7.39 (s, 4H. 4-ArH); 3.80 (s, 8H. ot-CH2): 2 29 (s. 6H, H3C-Ar). 1.02 (s, 12H, H3C-amine). 22 4 lZrilL(H20hl(a04)2lH20h(4) Chart 1 . C h e m ic a l s tru c tu r e o f H2L a Perkm-Elmer LS-50B spectrofiuoronneter was utilized to study emission spectra. 22. Syntheses An acetonitrile solution (10 m!) of zmc(ll) acetate dihydrate (0.440 g, 2 mmol) was added to a CH3CN solution (10 ml) of 1 (0 661 g, 1 mmol) with stirnng After two hours stirnng, the vol­ ume of the yellow solution obtained was reduced to 10 ml. From the concentrated solution a yellow compound was separated out which was collected m suction and washed with ether. RecrystalIization from acetonitnle-ethanol (1:1) yielded yellow crystalline compound. Yield 0 731 g (85%). Anal. Calc, for C2sH42N4014Cl2Zn2: C, 39 09, H, 4.92, N, 651. Found; C, 39.35, H, 481; N, 6.42%. Se­ lected IR data on KBr (cm-1) v(water), 3417br, v(C=N), 1639s; v(perchlorate), 1092s, 625 m. 'H NMR (300 MHz. CD3CN) <5 values (ppm). 8 29 (s. 4H, CH=N), 744 (s, 4H, 4-ArH); 3 82 (s. 8H, a-CH2), 2.31 (s, 6H, HjC-Ar); 1.03 (s. 12H, HjC-atmne). 22.1 IHM'ClOth (J) The diprotonated perchlorate salt, [H4L]{C104)2. of the macrocyclic Schiff base ligand H2L has been synthesized by the condensation of 4-methyl-2,6-diformylphenol with 2,2’-dimethyl-l,3-diaminopropane following the procedure of Nag et al. to prepare the related other macrocychc ligand [2], To a boiling methanol solution (30 mL) containing 2,6-diformyl-4-methylphenol (0.33 g, 2 mmol), NaC104 (1 g, 8 mmol) and acetic acid (0.25 ml, 4 mmol) was added a methanol solution of 2,2'-dimethy!-l,3-propanediamine (0 208g, 2 mmol) The solution was removed from the source of heating and kept at room temperature overnight. The product separated as orange crystals that were collected by filtration and washed with methanol and diethyl ether. Yield 0 60g (90%) Anal. Calc, for C 2 8 H 3 8 N4C>,oCl2: C, 50 83; H, 5.74; N, 8.47. Found: C, 50 75; H, 5 63; N, 8.51% Selected 1R data on KBr (cm-1): v(C=N), 1655s; v(perchlorate), 1145s, 1117s, 626 m. ’H NMR (300 MHz. CD3CN) S values (ppm): 13.92 (s, 4H, N-H 0); 8 47, 8.43 (dd, 4H, CH=N), 736 (s, 4H, 4-ArH), 3.89, 3 87 (dd, 8H, a-CH2), 2.17-1 93 (m, 6H, HjC-Ar); 1.37 (s, 12H, H3C-amine). 233 lPb‘]UN03)2l (2) This dinudear complex of Pb(ll) was synthesized according to the procedure reported by Nag et al for the synthesis of related other Pb“ complexes [16). To a boiling methanol solution (100 ml) of 2,6-diformyl-4-methylphenol (1.64g, 10 mmol) was added a DMF solution (15 ml) of Pb(N03)2 (1.61 g, 5 mmol) and Pb(OAc)2 (1 9 g, 5 mmol) After one hour reflux, a methanol solution (20 ml) of 2,2'-diniethyl-1,3-propanediamine (1 040 g, 10 mmol) was added to the boiling solution Reflux was continued for another 4 h to get yellow crystalline compound which was collected by filtration and washed with methanol. Yield 3 89 g (78%) Anal Calc, for C28H3,iN6OsPb2: c 33 73; H, 3.44. N. 8 43, Found- C, 33 85; H, 3 55; N, 8,51%. Selected IR data on KBr (cm ’): v(C=N), 1633s, v(nitrate), 1384s, 1305s, 995w. 23 Crystal structure determination of 1 and 3 The crystallographic data of these two compounds (1 and 3) are summarized in Table 1. Diffraction data for both 1 and 3 were collected on a Nonius APEX-11 diffractometer at 293 K with data col­ lection and reduction using the Nonius program suite DENZO-SMN Table t C r y s ta l lo g r a p h i c d a t a f o r 1 a n d 3 1 3 C 2 8 B 3 e C h N -i 0 1 0 661 52 C a sH ssN sC h o C IZ n z 768 81 C ry s ta l s y s te m o r t h o r h o m b ic o rth o rh o m b ic S p ace g ro u p F 2 ,2 ,2 a (A ) Fdd2 2 1 850(4) 6 (A ) 3 3 .2 9 0 (5 ) 1 6 5 5 3 3 (1 2 ) c (A ) 8 8 1 9 9 (1 5 ) 1 2 . 6 5 8 9 (8 ) V (A ’) 6 4 1 5 4 (1 7 ) 3 1 8 1 7 (4 ) z 8 4 E m p i r i c a l f o r m u la F o rm u la w e ig h t u „ k ,g o r r3) 1 .3 7 0 1 605 /. ( M o K o t), A 071073 071073 H 0 .2 6 3 1 655 T (K ) 2 9 3 (2) 2 9 3 (2 ) F fO O O ) 2784 1584 20 4 4 6 -5 7 8 2 42 2 - 6 3 -17 $ ft <27 - 2 1 ^ ft < 1 9 (m m "1) R a n g e f o r d a t a c o l le c t io n { “ } In d e x ra n g e s -4 4 £ -n ^ N u m b e r o f m e a s u re d r e fle c tio n s 9293 k < 32 11 04 -2 4 <k<20 -1 1 <l<\8 39030 N u m b e r o f i n d e p e n d e n t r e f le c t io n s 3178 10432 R .ru 0 0261 0 0292 N u m b e r o f r e f in e d p a r a m e t e r s 251 486 N u m b e r o f o b s e r v e d r e fl e c t io n s . 2552 8159 / s? 2 f f( /) G o o d n e ss -o f-fit (G O F ) o n F2, S R ,a . w R j” [ / > 2 ( 7 ( l ) | R ,d . wRj3 fa ll d a ta ] M a x i m u m , m i n i m u m e l e c t r o n d e n s i ty (e A -3 ) 22.3 [Zn’]i(N03)(H20)KC104) (3) To a stirred methanohc suspension (20 ml) of 2 (1 g, 1 mmol) a methanol solution (10 ml) of ZnCI2 (0 273 g, 2 mmol) was added 1 4 5 1 3 3 (1 0 ) k w R 2 ™ |X w ( f „ 2 - F ,;2 ) 2 / £ H < F „ 2 );T '2 1 103 1 030 0 0 5 1 9 .0 1 2 8 6 00481 0 0 6 9 9 .0 1 4 3 7 00G 84. 0 1305 0 .3 0 3 . - 0 2 4 3 1 375. -1 035 01181 Author's personal copy Susanta Hazra et ai / Polyhedron 28 (2009) 2871-2878 SRQPONMLKJIHGFEDCBA 2873 "f CHS) F ig . 1 . O R T E P r e p re s e n t a t io n ( 3 0 % t h e r m a l e llip s o id s ) o f t h e m a c r o c y c lic lig a n d ( 1 ) w it h a t o m - la b e lin g s c h e m e s in t r a m o le c u la r h y d r o g e n A ll t h e h y d r o g e n a t o m s e x c e p t t h o s e in v o lv e d in b o n d in g a re o m it te d f o r c la r it y S y m m e try code A -x - 0 5, 0 5 - y. 7. F ig , 2 . T w o - d im e n s io n a l c h a in c r e a t e d b y p e r c h lo r a t e o x y g e n ( 0 ( 2 ) a n d 0 ( 5 ) ) in o c - p la n e in c o m p o u n d 1 V ie w d o w n t h e b - a x is . S y m m e tr y c o d e s A - 0 5 - x . 0 5 - Z, B. 0 5 +x, y, y, 0 .5 + z . C ~ x , 0 5 - y . 0 5 + 2 , D . 0 5 + x . y . - 0 5 + 7 , E . - x , 0 5 - y . -0 .5 + 2 , F. - 0 5 + x , y , - 0 5 + 2 . G , 1 - x , 0 5 ~ y . - 0 5 + - 1 - x . 0 5 - y . 0 5 + z , j. 0 2 5 + x . 0 .2 5 - y . 1 2 5 + 2; 2. I I . - 0 5 + x . y , 0 5 + z , I. K , - 0 2 5 - x , - 0 . 2 5 + y . 1 .2 5 + 2 T a b le 2 S e le c te d b o n d le n g th s ( A ) a n d a n g le s ( ° ) f o r [ H q ljC C iO q k ( 1 5 - S y m m e t ry a s m t h e h y d r o g e n a t o m s o f th e s e t w o c o m p o u n d s , t h e f in a l r e fin e m e n t s f ig u r e N ( l) - C ( 8 ) 1 -2 8 0 (5 ) N ( 2 > - q i3 ) ; 1 2 6 8 (6 ) N ( t )- C ( 9 ) c o n v e r g e d a t t h e R , v a lu e s ( /> 2 c r ( /) ) 0 .0 5 1 9 a n d 0 0 4 8 1 f o r 1 a n d 3 , r e s p e c t iv e ly . 1 4 7 6 (4 ) N ( 2 ) -C ( 1 4 ) 1 -4 6 9 (5 ) OUKXU 1 .2 8 1 (4 ) N ( 1 )- 2573 O ft) N U H X l) 0 9 7 (3 ) 0 (1 ) 1 1 (1 ) 1 .7 7 3 N (2 > 0 (1 ) 2 .6 3 6 3 .1 Syntheses and characterization The N ( 2 )- I I ( 2 ) 0 6 6 (4 ) 0 (2 ) 2163 H (2 ) 3. Results and discussion t e m p la t e c o n d e n s a tio n o f 2 , 6 - d ifo r m y l- 4 - m e t h y lp h e n o l a n d 2 , 2 '- d im e t h y I - l, 3 - d ia m in o p r o p a n e in t h e p r e s e n c e o f le a d ( ll) n it r a t e a n d le a d ( ll) a c e ta te r e s u lts m t h e f o r m a t io n o f t h e d in u c le a r N ( 1 ) -C ( 8 ) -C { 2 } 1 2 2 0 (3 ) N ( 2 )- C ( 1 3 } - C ( 6 ) 1 2 5 0 (4 ) C (8 )-N (1 )-C (9 ) 1 2 5 1 (3 ) P b (lI ) c o m p le x [P b " L ( N 0 3 ) 2 ] (2) W h e n c o m p le x 2 is t r e a t e d w it h Z n C h , m e ta l s u b s tit u tio n r e a c tio n ta k e s p la c e a n d t h e d in u c le a r z in - C ( 1 3 }- N ( 2 ) - C (1 4 ) 1 2 5 4 (4 ) c ( H ) c o m p le x [ Z n 2 L (N 0 3 ) ( H 2 0 ) ](C ] 0 ,i) ( 3 ) is fo r m e d m g o o d y ie ld a n d N ( 1 ) -C ( 9 ) -C ( 1 0 ) 1 1 3 8 (3 ) in s in g le c r y s t a llin e f o r m , s u ita b le f o r s in g le c r y s t a l a n a ly s is O n th e N (2 )-C (1 4 )-C (1 0 A ) 1 1 4 6 (3 ) N ( t) - H ( l) 0 (1 ) 1380 N (2 )-H (2 ) 0 (1 ) 129 7 o t h e r h a n d , t h e c o n d e n s a tio n o f 2 , 6 - d ifo r m y l- 4 - m e th y lp h e n o l a n d 2 , 2 '- d im e t h y !- 1 ,3 - d ia m in o p r o p a n e in p r e s e n c e o f a c e tic a c id a n d s o ­ d iu m p e rc h lo r a t e p ro d u c e s t h e d ip ro t o n a t e d fr e e m a c r o c y c h c s a lt [H/i L](CI0 4 }2 ( 1 ) T h e t r e a t m e n t o f 1 w it h z in c (I I ) a c e ta te in a c e t o n i­ t r ile , d e p r o t o n a t io n o f [H 4 L |2 + a n d in c o r p o r a tio n o f t h e m e ta l io n in p a c k a g e [4 0 ,4 1 ] A ll d a t a f o r t h e c o m p o u n d 1 a n d 3 w e r e c o r r e c t e d t h e lig a n d c o m p a r tm e n t ta k e s p la c e r e s u lt in g in t h e f o r m a t io n o f th e f o r L o re n tz , p o la r is a t io n , b a c k g r o u n d a n d a b s o r p tio n e ffe c ts d in u c le a r z in c ( ll) c o m p le x For (4). A lth o u g h m ic r o c r y s t a ls o f 4 can be b o t h t h e c o m p o u n d s , c r y s t a l s t r u c t u re s w e r e d e te r m in e d b y D ir e c t is o la t e d f r o m a c e t o m t n le - e t h a n o l, it h a s n o t b e e n p o s s ib le t o p re ­ m e t h o d s a n d s u b s e q u e n t F o u r ie r a n d d iff e r e n c e F o u r ie r s y n th e s e s , p a r e d if fr a c tio n q u a lit y c r y s ta ls o f t h is c o m p o u n d f o llo w e d b y f u ll- m a t r ix le a s t - s q u a r e s r e fin e m e n t s o n F2 u s in g SHa- x l -97 [ 4 2 ] , O n ly w a te r a n d m e th y l h y d ro g e n a to m s o f 3 w e r e r e ­ P b ( li) c o m p le x f in e d s e v e ra l w a y s w e r e n o t s u c c e s s fu l. u s in g r e s tr a in t s A ll o th e r h y d ro g e n a to m s of 3 and a ll S im ila r ly , i t h a s n o t b e e n p o s s ib le t o g e t d iff r a c t io n q u a lit y c r y s ta ls o f t h e d in u c le a r 2. A t te m p ts t o p r e p a r e s in g le c r y s ta ls o f 2 and 4 m h y d ro g e n a to m s o f 1 w e r e r e fin e d f r e e ly . U s in g a n is o t r o p ic t r e a t­ T h e IR s p e c t ru m ( in t h e r a n g e o f 5 0 0 - 1 8 0 0 c m " 1 ) o f 2 ^ 4 is c o m ­ m e n t o f t h e n o n - h y d r o g e n a t o m s a n d is o t r o p ic t r e a t m e n t o f t h e p a re d T h e IR s p e c t ru m o f 1 e x h ib its o n e s t r o n g s ig n a l a t 1 6 5 5 c m " 1 Author's personal copyJIHGFEDCBA 2874 S iii- a n ra Hazra ct at./Polyhedron 28 (2009) 2871-2878 f Tabic 3 ■j Fjg. 3 . G e o m e t r ie s ( d is t a n c e s in ( A ) a n d a n g le s m ( e ) ) o f t h e h y d r o g e n b o n d s m f iG L jf C iO . , 3 ( 1 ) a n d [ Z n " t ( N 0 3 X H 2 0 ) n C i 0 4 ) ( 3 ) . S y m m e t r y c o d e s a s in t h e lig n r e s Com pound D -H 1 C ( 7 )- H ( 7 A ) 0 {5 ) 3 426 C { 8 )- H ( 8 B ) - 0 (2 } 3 .2 2 8 2 446 1 4 1 .2 6 3 445 2 524 16084 148 04 A D q i2 j) - n (i2 q ) d u e to A H A D -H v c = N v ib r a t io n . I n c o m p a r is o n , t h e c h a r a c t e r is t ic s C = N o (3 ) 0(7) 2516 1 5 8 .2 6 2 732 1 869 s t r e t c h in g f o r m e ta l c o m p le x e s 2 , 3 a n d 4 is o b s e r v e d a s a s in g le 0 ( 6 )- H ( G B ) - 0 ( 3 E ) 3 054 2 184 148 58 s tro n g 0 (6 )-H (G B ) - 0 (5 E ) 2 770 1 922 144 52 s ig n a l 1 6 3 9 c m -1 , A P e r s p e c t iv e v ie w o f t h e a b o v e 2 - D a lo n g t h e c - a x is . at s lig h t ly r e s p e c t iv e ly ) . lo w e r The e n e rg y s tro n g (1 6 3 3 , a b s o r p tio n 1637 due to 3 0 (6 }-H (6 A ) • and io n ic p e r c h lo r a t e o f 1 is o b s e r v e d a t 1 1 1 7 c m " 1 [ 4 3 ]. T h e lo w e r e n e rg y C { 2 7 }- H ( 2 7 A ) 0 (8 ) 3 498 2 552 164 92 C ( 2 8 } -H ( 2 8 } - 0 (1 0 8 } 3138 2 451 1 3 2 .5 8 s ig n a l o f io n ic p e r c h lo r a t e o f 1 a p p e a rs a s a m e d iu m in te n s it y b a n d a t 6 2 6 c m "1 (1 0 9 5 c m [ 4 4 ]. T h e a p p e a ra n c e of a s tro n g in te n s ity band 1 f o r 3 a n d 1 0 9 2 c m -1 f o r 4 ) a n d o n e m e d iu m in t e n s ity r e m in is c e n t o f c a h x a re n e s [ 4 5 ] a n d o f r e la t e d S c b iff -b a s e m a c r o c y - b a n d ( 6 2 3 c m " 1 f o r 3 a n d 6 2 5 c m " 1 f o r 4 ) a r e in d ic a tiv e o f t h e c le s [ 2 ], w it h t h e p h e n y l r in g f o ld e d d o w n w a r d s t o le a v e t h e N a n d p re s e n c e o f io n ic p e r c h lo r a t e ( s ) in 3 a n d 4 [ 4 3 , 4 4 J . A lth o u g h t h e r e ­ O d o n o r a t o m s o n a n e x p o s e d fa c e . T h e a z o m e t h in e lin k a g e s a r e g io n o f n it r a t e v ib r a tio n is c r o w d e d b y s e v e r a l a b s o r p t io n s d u e t o e v id e n t th e (1 2 8 0 (5 ) m a c r o c y c lic lig a n d , t w o s t r o n g in te n s it y bands (1 3 8 4 and fro m th e and N ( l) - C ( 8 ) 1 2 6 8 (6 ) A, and N (2 )-C (1 3 ) r e s p e c t iv e ly ) , bond le n g th s N ( l) - C ( 8 ) - C ( 2 ) and 1 3 0 5 c m " 1 f o r 2 ; 1 3 8 4 a n d 1 3 0 0 c m " 1 f o r 3 ) a n d o n e m e d iu m N ( 2 ) - C ( 1 3 ) -C ( 6 ) in te n s ity b a n d ( 9 9 4 c m " 1 f o r 2 a n d 1 0 0 6 c m " 1 f o r 3 ) m a y b e a s ­ a n d t h e C ( 9 ) - N ( l) - C ( 8 ) - C ( 2 ) a n d C ( 1 4 ) - N ( 2 ) - C ( 1 3 ) - C ( 6 ) t o r s io n s ig n e d t o t h e a b s o r p tio n d u e t o n itr a te s T h e o b s e r v a tio n o f th e s e a n g le s t h r e e b a n d s in d ic a te s u m d e n t a t e n it r a t e s in b o t h t h e c o m p le x e s in v o lv in g t h e p h e n y l c a r b o n a n d t h e p h e n o x o o x y g e n , C ( 1 ) - 0 ( l) , 2 a n d 3 [ 4 3 ], I t m a y b e n o te d t h a t s in g le X - r a y s t r u c t u r e o f 3 c o n ­ is 1 2 8 1 ( 4 ) f ir m s t h e u m d e n t a t e c o o r d in a t in g m o d e o f n it r a t e in t h is c o m p le x r a n g e a s o b s e r v e d m t h e p r e v io u s ly r e p o r t e d r e la t e d m a c r o c y c lic (1 7 7 6 4 A. a n g le s and (1 2 2 0 (3 ) 1 7 4 .3 5 ° , and 1 2 5 0 (4 )“, r e s p e c t iv e ly ) . T h e s e r e s p e c t iv e ly ) , bond le n g t h T h e v a lu e s o f th e s e s t r u c t u r a l p a ra m e t e rs a r e in t h e c a t io n s [ 2 , 5 ] , 32 Description of the structure of [H4LJ(CI04)j (1) T h e m a c r o c y c lic c a t io n in 1 is s t a b iliz e d b y f o u r in t r a m o le c u la r h y d r o g e n b o n d s in v o lv in g t h e p h e n o lic o x y g e n s a n d t h e im in o T h e c r y s t a l s t r u c t u r e o f [ H 4 L ](C 1 0 4 )2 ( 1 ) is s h o w n in F ig 1 , w h ile n it r o g e n ( F ig 1 ) B e tw e e n t w o p o s s ib ilit ie s r e g a r d in g t h e t y p e o f t h e s e le c t e d b o n d le n g t h s a n d a n g le s in c lu d in g t h e g e o m e t r ie s o f th e h y d ro g e n b o n d s . N -H O a n d O -H N , t h e f o r m e r is t h e r e a ­ t h e h y d r o g e n b o n d s a r e lis t e d m T a b le 2 T h e c o m p o u n d h a s a c e n - s o n a b le c h o ic e b e c a u s e t h e r a n g e o f N H d is ta n c e s ( 0 6 6 ( 4 ) a n d t r o s y m m e tn c s t r u c t u r e w it h t h e c e n te r o f in v e r s io n a t t h e g e o m e t­ 0 9 7 (3 ) m u c h s m a lle r t h a n t h e O r ic c e n t e r o f t h e c a t io n [ H 4 L ]2 * . T h e c o n f o r m a tio n o f [ H 4 L ]2 * is 2 .1 6 3 donor A ) is A) The H d is ta n c e s ( 1 .7 7 3 a n d a c c e p t o r c o n ta c t s o f t h e f o u r N - H O in t e r - Author's personal copyPONMLKJIHGFEDCBA S u s a rn a Hazra et at /Polyhedron 28 (2009) 2871-2878 2875 th e tw o s y m m e tr y re la te d p h e n y l n n g s in [H 4 L ]2 * is la rg e r th a n th e ra n g e o f th e d ih e d r a l a n g le s ( 0 - 1 4 ° ) o b s e rv e d in p r e v io u s ly re ­ p o rte d a n a lo g o u s s y s te m s , in d ic a tin g th a t th e m a c ro c y c h c m o ie ty in 1 is m o s t tw is te d [2 -5 ] W e a k C -H gen a to m s 0 h y d ro g e n b o n d s in v o lv in g th re e p e r c h lo r a te o x y ­ (0 (2 ). ( C (7 ) -H ( 7 A ) 0 (3 ) and 0 (4 )) 0 ( 5 ) , C ( 8 ) -H ( 8 B ) and th re e C -H m o ie tie s 0 ( 2 ) a n d C (1 2 J )-H (1 2 C J ) 0 (3 )) (F ig S I) r e s u lt in th e fo rm a tio n o f th r e e - d im e n s io n a l s e lf-a s s e m b ly in [H 4 L ](C 1 0 4 )2 (1 ). A s s h o w n in F ig . 2 , a tw o - d im e n s io n a l n e tw o r k ( in a c -p la n e ) C ( 7 )- H { 7 A ) a lo n g th e These is g e n e ra te d 0 (5 ) and c -a x is of th e tw o - d im e n s io n a l C (1 2 J )-H (1 2 C J ) 0 (3 ) due to C ( 8 ) - H (8 B ) 2 -D tw o 0 (2 ) sheet s h e e ts is a re in te r a c tio n s h y d ro g e n A show n fu rth e r to bonds. p e r s p e c tiv e v ie w F ig 3. in te r lin k e d by g e n e ra te in o v e r a ll th r e e - d im e n s io n a l to p o lo g y in 1 (F ig . 4 ) T h e g e o m e tn e s o f th e s e w e a k in te r a c tio n s a re lis te d in T a b le 3 3.3 Description of the structure of IZn'fLfNOjXHzOJKQOJ (3) T h e c ry s ta l s tr u c tu re o f th is c o m p o u n d is s h o w n in F ig . 5 , w h ile th e s e le c te d b o n d le n g th s a n d a n g le s a re lis te d in T a b le 4 The s tru c tu r e s h o w s th a t c o m p o u n d [Z n 2 L (N 0 3 )(H 2 0 )J (C 1 0 4 ) ( 3 ) is a d ip h e n o x o -b n d g e d d in u c le a r z m c (ll) c o m p le x c o n s is tin g o f [Z n 2 L ( N 0 3 )(H 2 0 ) ]* c a tio n a n d o n e p e rc h lo ra te a n io n E a c h z in c ( ll) io n is F ig . 5 . O R T E P r e p r e s e n ta tio n (3 0 % th e r m a l e llip s o id s ) o f 3 w ith a to m - la b e lin g s c h e m e s H y d r o g e n a to m s a r e o m itte d fo r c la r ity fiv e c o o rd in a te d , b o n d e d to tw o in lin e n itr o g e n a to m s a n d tw o e n d o g e n o u s b r id g in g p h e n o la te o x y g e n a to m s m th e b a s a l p la n e , w ith n itra te o x y g e n ( 0 ( 3 ) ) a n d w a te r o x y g e n ( 0 ( 6 ) ) s a tis fy in g th e T a b le 4 a p ic a l p o s itio n o f Z n ( 1 ) a n d Z n (2 ) c e n te rs , re s p e c tiv e ly , a n d th e a p i­ S e le c te d b o n d le n g th s ( A ) a n d a n g le s ( ° ) fo r |Z n l» U N O 3 X H 2 0 )I(C l0 4 ) ( 3 ) . c a l o x y g e n s fo r th e tw o z in c (li) io n s c o o rd in a te m a Irons a rra n g e ­ m e n t. T h e A d d is o n d is to r tio n in d e x [4 6 ] ( i = 0 0 1 5 a n d 0 0 5 fo r Z » (1 > -0 C 1 ) 2 0 4 7 {2 ) Z n { 1 )~ 0 ( 2 ) 2 0 5 5 (2 ) Z n { !} - N (l) 2 0 6 1 (3 ) Z n { l) - N ( 2 ) 2 0 6 7 (3 ) io n s is s lig h tly d is to r te d s q u a re p y ra m id a l D e v ia tio n o f th e N O b a s a l Z n {1 )~ 0 (3 ) 2 0 4 9 (4 ) d o n o r s e ts fr o m th e N 2 0 2 m e a n p la n e s lie in th e ra n g e s - 0 0 0 9 to Z n ( 2 K > {1 ) 2 0 3 9 (2 ) Z n ( l) a n d Z n (2 ), re s p e c tiv e ly ) fo r th e tw o z in c ( ll) c e n te rs is d o s e to 0 in d ic a tin g th a t th e c o o r d in a tio n g e o m e try o f th e b o th th e m e ta l +0010 A fo r Z n (1 ) a n d - 0 .0 3 1 to + 0 .0 3 1 A fo r Z n (2 ) T h e m e ta l c e n ­ Z n { 2 } -0 ( 2 ) 2 .0 4 9 ( 2 ) Z n ( 2 ) -N ( 3 ) 2 0 3 6 (3 ) te rs , Z n (1 ) a n d Z n (2 ), a re d is p la c e d to w a rd s th e a x ia l c o o rd in a te d Z n (2 > ~ N (4 ) 2 0 5 9 (3 ) oxygen by 0 459 and 0 371 A, Z n (2 )~ 0 {6 ) 2 0 4 9 (3 ) le a s t-s q u a re s N 2 0 2 p la n e s T h e d ih e d ra l a n g le (5 4 ° ) b e tw e e n th e Z n ( l) 3 IS 6 Z n (2 ) 0 ( l) ~ Z n ( l) ~ N ( 2 ) 1 5 3 .2 4 (1 3 ) re s p e c tiv e ly , fr o m th e c o rre s p o n d in g tw o b a s a l N 2 0 2 p la n e s a n d th e a v e ra g e d e v ia tio n (0 0 5 8 th e n itr o g e n and oxygen a to m s fro m th e A) fro m le a s t-s q u a re s 0 (2 )--Z n (1 )-N (1 ) 1 5 2 .3 4 (1 3 ) 0 ( 3 ) - Z n ( l) - 0 ( l) 1 0 5 .2 6 (1 3 ) 0 ( 3 ) - Z n ( l) - N ( l) 9 9 8 7 (1 5 ) O (3 )-Z n {0 -N (2 ) 1 0 0 .4 7 (1 4 ) p la c e d fr o m th e le a s t-s q u a re s N ( 1 )N ( 2 )N ( 3 )N ( 4 )0 ( 1 )0 ( 2 ) p la n e to ­ 0 ( 3 ) -Z n ( l}- 0 ( 2 ) 1 0 6 .7 4 (1 5 ) w a r d s th e o p p o s ite d ire c tio n s b y 0 .4 4 1 a n d 0 3 8 7 0 { 1 } -Z n ( 0 - N ( 0 8 8 6 8 (1 1 ) w h ic h in d ic a te th e d e v ia tio n o f th e b r id g in g c o re fr o m p la n a r ity O 0 ) - Z n (l) - 0 (2 ) 7 7 .3 1 ( 9 ) N ( l) -Z n ( l)~ N (2 ) 9 4 1 2 (1 2 ) N ( 2 ) - Z n (0 - 0 ( 2 ) 8 8 4 4 (1 1 ) 2 0 5 9 (3 ) 0 ( 1 )- Z n t2 ) - N {3 ) 1 5 5 .3 7 (1 2 ) m e ta l io n s a re v e r y c lo s e . H o w e v e r, th e d is to r tio n o f th e c o o rd in a ­ 0 ( 2 } - Z n (2 ) - N { 4 ) I 5 a 6 3 (1 i) tio n e n v iro n m e n t c a n b e e v id e n c e d fr o m th e s ig n ific a n t d e v ia tio n , 0 ( 6 ) - Z n ( 2 )~ 0 ( 0 1 0 2 .0 2 (1 3 ) 0 { 6 )- Z n (2 ) - N ( 4 ) 9 8 .5 4 ( 1 2 ) 0 ( 6 } - Z n (2 ) - N ( 3 ) 1 0 1 0 7 (1 4 ) (1 5 2 3 4 (1 3 )° 0 (6 )-Z n (2 )-0 (2 ) 1 0 0 .4 2 (1 2 ) 1 5 8 6 3 (1 1 )° fo r Z n (2 )) in th e b a s a l p la n e a n d th e a s o td a n g le s N ( 1 )N ( 2 )N ( 3 )N ( 4 )0 ( 1 ) 0 (2 ) p la n e s m a y a p p a r e n tly in d ic a te th a t th e b r id g in g m o ie ty is a lm o s t p la n a r. H o w e v e r, Z n (l) a n d Z n (2 ) a re d is ­ A ll th e fiv e b o n d le n g th s ( 2 .0 4 7 (2 ) - 2 0 6 7 (3 ) m A A A, re s p e c tiv e ly , fo r Z n (l) , 2 0 3 6 (3 )- fo r Z n (2 )) fo r th e c o o rd in a tio n e n v ir o n m e n t o f b o th th e c o m p a ris o n to and th e id e a l v a lu e s , of fo r Z n (l) . 1 5 3 2 4 (1 3 )° th e transmd a n g le s 1 5 5 .3 7 (1 2 )° and 0 ( 1 ) - Z n (2 ) - N ( 4 ) 8 8 .3 9 ( 1 1 ) ( 7 7 .3 1 ( 9 ) - 1 0 6 .7 4 ( 1 5 ) ° fo r Z n (l) ; 7 7 .6 0 ( 1 0 ) -1 0 2 .4 7 ( 1 1 ) ° fo r Z n (2 )) 0 ( 1 }- Z n ( 2 ) ~ 0 (2 ) 7 7 6 0 (1 0 ) It m a y b e m e n tio n e d th a t th e d is p la c e m e n t o f th e m e ta l io n s fr o m N ( 4 ) - Z n ( 2 ) -N ( 3 ) 9 6 0 9 (1 2 } N ( 3 ) - Z n ( 2 )~ 0 ( 2 ) 8 9 8 9 (1 1 ) Z n ( lH X O - Z n (2 } 1 0 2 .4 7 (1 1 ) g le s a n d th e w id e ra n g e o f th e Z n ( 1 }- 0 ( 2 ) ~ Z n ( 2 ) 1 0 1 .8 5 (1 0 ) o f th e c o o r d in a tio n e n v ir o n m e n t. In th is c o m p o u n d th e p la n a r ity o f th e b a s a l p la n e is th e re a s o n o f th e s m a lle r v a lu e s o f th e asotd a n g le s transoid a n ­ r e s u ltin g in th e d is to r tio n th e m a c ro c y c h c lig a n d is e v id e n t fr o m th e 0 .9 ° d ih e d r a l a n g le b e ­ tw e e n th e tw o p h e n y l rin g s . T h e tw o m e ta l c e n te rs a re s e p a ra te d a c tio n s lie in th e ra n g e 2 .5 7 3 - 2 6 3 6 A , w h ile th e N - H 0 a n g le s v a r y b e tw e e n 1 2 9 .7 ° a n d 1 3 8 ° , w h ic h in d ic a te th a t th e in tr a m o le c ­ u la r h y d r o g e n b o n d s a re q u ite s tr o n g . S im ila r ly s tr o n g h y d ro g e n to e a c h o th e r b y 3 1 8 6 A. T h e tw o b rid g e a n g le s , Z n ( l)- 0 ( 1 ) - Z n ( 2 ) a n d Z n ( l)- 0 (2 ) -Z n ( 2 ) a re 1 0 2 .4 7 ( 1 1 ) a n d 1 0 1 .8 5 (1 0 )° , re s p e c tiv e ly F iv e h y d r o g e n b o n d s , th re e O - H 0 ty p e a n d tw o C - H 0 ty p e , b o n d s a re a ls o o b s e rv e d in th e p r e v io u s ly r e p o r te d c o m p o u n d s It lin k th e in d iv id u a l c o m p o n e n t in |Z n 2 l( N 0 3 )(H 2 0 )](C 1 0 4 ) ( 3 ) in to a m a y b e m e n tio n e d th a t fo u r s ix - m e m b e r e d r in g s a re fo r m e d d u e tw o - d im e n s io n a l n e tw o rk (F ig . 6 ) to th e fo u r N - H c o o rd in a te d w a te r H 2 0 ( 6 ) fo rm s b ifu rc a te d h y d ro g e n b o n d s w ith O h y d r o g e n b o n d s m 1 a n d m a n a lo g o u s s a lts r e s u ltin g m e x tr a s ta b iliz a tio n T h e d ih e d ra l a n g le ( 2 0 ° ) b e tw e e n tw o n itra te o x y g e n ( 0 ( 3 E ) a n d O n e h y d ro g e n (H (6 B )) o f th e 0 (5 E )) o f th e n itr a te io n of a Author’s personal copyGFEDCBA Sitsanta Hazra et at/Polyhedron 28 (2009) 2871-2878 2876 F ig . 6 . V ie w d o w n t h e b - a x is o f t h e t w o - d im e n s io n a l s h e e t o f t h e c o m p o u n d 3 0 .5 - y , -z, E, 0 5 + -z, 0 5 - y, S y m m e tr y c o d e . A . x- 0 5, 0 5 - y, 0 5 - z. B. x - 0 5. 0 S - y, ~z, C. x, y. z - 1. D . 0 5 + x. F . .v , y , 1 + z F ig . 8 . C h a n g e s in e m is s io n in t e n s it y o f t h e m a c r o c y c le 1 H ,.L ]1 C 1 0 4 { 0 . 5 x 1 0 F ig . 7 . S p e c t r D p h o t o m e t r ic t it r a t io n o f t h e m a c r o c y c le I H ^ K C I O ^ ( 0 5 > : 1 0 " 5 ) w i t h t r ie th y la n im e ( 0 5 x 1 0 " 5 ) in a c e t o n it r ile a c e t o n it r ile u p o n a d d it io n o f t r ie th y la n im e ( 0 . 5 x 1 0 ~ 5 ) ) in ■ 431 nm . E q u iv a le n t r a t io o f t h e m a c r o c y c le a n d t n e t h y la n m e h a s b e e n in d ic a t e d in t h e f ig u r e B o th s p e c tr o p h o to m e tr ic and s p e c t r o f lu o n m e t r ic t it r a t io n s h a v e b e e n e a r n e d o u t t o u n d e r s t a n d t h e e f fe c t o f a b a s e s u c h a s t n A n o th e r h y d r o g e n a t o m ( H ( 6 A ) ) o f H 2 0 ( 6 ) e t h y la m in e o n [ H 4 L ]{ C 1 0 4 ) 2 . T h e a b s o r p t io n a n d e m is s io n p r o file s a c ts a s a s in g le d o n o r t o a p e r c h lo r a te o x y g e n 0 ( 7 ) o f a n o th e r n e ig h ­ n e ig h b o u r in g m o le c u le a r e r e p r e s e n t e d m F ig s 7 a n d 8 , r e s p e c t iv e ly . T h e in te n s ity o f t h e b o u r in g m c le c u le . A s s h o w n in F ig . 6 . t h e t w o - d im e n s io n a l t o p o lo g y band m a y b e c o n s id e re d t o g e n e r a te a s a r e s u lt o f t h e s e t h r e e O - H d im in is h e d , w h ile t h e b r o a d e n v e lo p a t 3 5 0 n m b e c o m e s m o r e in ­ b o n d s . H o w e v e r, tw o m o re h y d ro g e n b o n d s (C (2 7 )~ H (2 7 A ) and C (2 8 )-H (2 8 ) 0 (1 0 B ); F ig . 6 ) a ls o p a r tic ip a te m 0 0 (8 ) d e v e lo p in g t h e 2 - D s e lf -a s s e m b ly . at 430 nm te n s e as and th e t h e s a t u r a tio n [ H 4 L ) (C 1 0 4 ) 2 - E t3 N r a tio s h o u ld e r a t 4 6 5 n m o f th e s p e c t r a l p r o f ile s o f 1 . 6 . A ll th e is c o n tin u o u s ly ta k e s a b s o r p t io n p la c e c u rv e s at pass t h r o u g h a n is o s b e s t ic p o in t a t 3 7 2 n m w h ic h in d ic a t e s t h a t t h e 3.4 Absorption and emission spectroscopy d e p r o t o n a t io n p r o c e s s t a k e s p la c e s m o o th ly A g a in , a s s h o w n in F ig d e c r e a s e s w it h 8 , th e f lu o r e s c e n c e in te n s it y g r a d u a lly th e in c r e a s in g a m o u n t o f b a s e a d d e d a n d t h e s a t u r a tio n in t h is c a s e T h e U V - V is s p e c t r u m ( F ig 7 ) o f I H 4 L ] ( C l0 4 ) 2 in a c e to n itr ile in a ls o t a k e s p la c e a t 1 - 6 r a t io , in d ic a tin g t h a t t h e s p e c t r o p h o t o m e tr ic t h e w a v e le n g th r a n g e 3 0 0 - 9 0 0 n m s h o w s o n e b a n d a t 4 3 0 n rn , a n d s p e c t r o f lu o n m e tr ic t itr a tio n s a r e c o n s is t e n t t o e a c h o t h e r one at m a y b e m e n t io n e d t h a t s im ila r s p e c t r a l c h a n g e s a r e o b s e r v e d f o r t r a n s it io n s . a n u m b e r o f s im ila r c o m p o u n d s r e p o r te d b y N a g e t a l. H o w e v e r , s h o u ld e r a t 4 6 5 n m and a weak 3 5 0 n m , a ll o f w h ic h a r is e d u e [H 4 L ](C I0 4 i2 f lu o r e s c e n c e 430 nm and 495 nm (Ffe. e x h ib it s th e 8) peak o f th e to and in te r n a l b e h a v io r lu m in e s c e n c e b ro a d rt % on e n v e lo p ir r a d ia t io n s p e c tru m lie s It at in c o n tr a s t t o 1 6 r a tio in t h e c a s e o f ( H 4 L ]( C 1 0 4 )2 , t h e s a tu r a t io n at r e a c h e s in t h e r e p o r t e d r e la t e d c o m p o u n d s w h e n 2 5 t im e s b a s e is a d d e d [ 2 ] Author's personal copyXWVUTSRQPONMLKJIHGFEDCBA Smanta Hazra et a!./Polyhedron 28 (2009) 2871-2878 indicates that the com plex form ation takes place m stepw ise m anner (Eqs. (1) and (2)). H ow ever, w hile during the interval o f addition of 1 -22 equivalent of the m etal ion, the absorption curves pass through an isosbestic point at 385 nm , the spectral profiles in the initial stages Absorbance are not defined by an isosbestic point (H4L]2+ +Z n(O A c)2 S [Zn(H2L)]2+ + 2H O Ac (1) (Zn(H2L)]2+ + Zn(O Ac)2 ^ [ZnL]2+ + 2H O Ac (2) lnspite of the stepw ise form ation of the com plex species, as al­ ready m entioned, it has not been possible to isolate the m ononu­ clear zm c(ll) com plex. E vidently, tw o equilibrium constants are overlapped. It m ay be m entioned at this point that although both 0 00 the m ononuclear and dm uclear zinc(II) com plexes can be isolated in som e cases of the related ligands, attem pts to synthesize the 300 360 480 420 540 m ononuclear com plexes have been failed in som e other cases due to m ore overlapping of the tw o equilibrium constants [37] XI nm The spectrofluorom etric titration is show n in Fig. 9. O n exciting Fig. 9. Spectrophotom etric titration of the rnacroe, de [I I4L](C IO ..}j {! x to 5)w ith at 367 nm (2max. of the dinuclear zinc(II) com plexes), the em ission vanous num bers of equivalents of Zn(O Ac >2 2H20 mi acetonitrile intensity gradually increases w ith the addition of zinc(ll) to [H 4L]2\ The shapes of the lum inescence profiles are indicative of the overlapping of the tw o steps of the com plex form ation. 800 4. Conclusions o r 03 oo oo .u oo A little investigated tetraim inodiphenolate ligand obtained on condensation o f 2,6-diform yl-4-m ethylphenol and 2,2'-dim ethylinvestigation, this ligand is synthesized in its free diprotonated 1,3-diam inopropane is addressed in the present study. In this co oo form Tem plate synthesis of a dinuclear lead(ll) com plex [Pb2L (N 03)2] (2), synthesis of a dinuclear zinc(ll) com plex (Zn2L(N 03) (H 20)](C104) (3) through m etal substitution reaction and synthesis ro oo E m is s io n (a .u ) 700 — oo (4), structures of 1 and 3, spectrophotom etric and spectrofluorom et­ o of another dinuclear zm c(ll) com plex [Zn2L(H20)2](C i04)2 (H ^^ are described in the present study The free ligand 1. com plexes 2-4 "■J o o o o 03 3 3 oo oo to -U ric titrations of 1 w ith triethylam ine as w ell as w ith zinc(II) acetate and their structural and spectroscopic studies are additions in the im portant fam ily of Robson type m acrocycles The significant aspect Fig. 10 . S pcctrofluom netnctitrationofthem acrocvcIe(H4 Ll(C IO.j>^(l x 10'5)w ith vanous num bers of equivalents of Zn(O Ac >2 2H ..0 in acetom tnle The arrow of the present study is the zinc-induced fluorescence enhancem ent indicates the increasing concentration of Zn(OAc}2 2H 20 added The inset show s the variation of em ission intensity w ith num ber of equivalents of ZntO A ck 2H ..0 added. /<.,■= 367 5 nm are im portant to develop zinc fluorophore and m etal ion sensor of an organic fluorophore [H4L](C104)2 (1) These types of studies Acknowledgment A bsorption spectra of both of 3 and 4 show only one band at 367 nm w ith alm ost identical extinction coefficient (Fig 9). Again, w ith 367 nm as the excitation w avelength, both of the com plexes exhibit fluorescence w ith alm ost equal intensity and the em ission peak is observed at 435 nm (Fig 10) Financial support from the D epartm ent of Science and Technol­ ogy. the G overnm ent of India (SR/S1/IC -1 2/2008). C ouncil for S cientific and Industnal R esearch (Fellowship to S H azra and S M ajum der) is gratefully acknow ledged To understand the reaction equilibria for the reaction of the m acrocycle and zinc(H ) ion, both the spectrophotom etric and spec- Appendix A. Supplementary data trofluorim etnc titrations of [H 4L)(C 104)2 w ith Zn(O Ac)2 2H 20 have been carried out in acetonitrile. In these titrations (Figs 9 and 10), C C DC 731565 and 731566 contain the supplem entary crystallo­ ligand-m etal ratio has been increased gradually until no further graphic data for this paper These data can be obtained free of spectral change is taking place. charge via D uring the interval o f addition of O -l equivalent o f m etal http.//w w w ccdc.cam .ac.uk/conts/retrievinghtm l, or from the C am bridge C rystallographic D ata C entre, 12 U nion Road, acetate, a new b a n d a t4 1 0 n m is generated w ith the gradual loss C am bridge CB2 1EZ. U K; fax: (+44) 1223-336-033. or e-m ail intensity o f the ligand band at 430 nm and the shoulder at deposit@ ccdc.cam .ac uk. 465 nm . O n further addition of zinc acetate, the intensity of the band at 410 nm is dim inished, w hile another new band at 367 nm S upplem entary data associated w ith this article can be found, in the online version, at d o rlO 1016/j poly.2009 06 039 is gradually generated. S aturation of this spectrophotom etric titra­ tion takes place at 1 ’2.2 ligand-m etal ratio As com pared in Fig, 9, References the saturated spectrum is alm ost identical w ith the spectra of both the dinuclear com plexes [Zn2L(N03)(H 20)](C 104) (3) and [Zn2L(H 20)2](C104)2.(H20)2 (4) The generation of the tw o bands at 410 and 367 nm at the tw o stages of the spectrophotom etric titration [ 1 ] N H. P ilkington, R. Robson, Aust J Chem . 23 (1970) 2225 [2] B D utta. P Bag. B Adhikary. IJ Florke. K. Nag. J O rg. Chem . 69 (2004) 5419 [3] N A Bailey, D F_ Fenton, P B Roberts. A M W alford.J Chem Soc, D alton Trans (1987)1865 Author's personal copy 2878 Susonftf Hazra et ai/Polyhedron 28 (2009) 2871-2878 [4] AJ Atkins.D Black, AJ Blake, A. Marm-Becerra.S Parsons, L Ruiz-Ramirez, M Schroder, j Chem. Soc, Chem. Common (1996)457 (5) A. Aguiarl E Bullita. U Casellato. P Cuernero.S. Tamburim. PA Vigoto. Inorg Cum. Acta 202 (1992) 157 (61 J Hodacova, M Budsnsky, Org Lett 9 (2007) 5641 |7] R.R. Na2nutdinov, NV Roznyatovskaya. DV Glukhov, I Manyurov VM. Mazm, GA Tsirhna, M. Probst, Inorg. Chem. 47 (2008) 6659 j8) C.L Spiro. SL Lambert.Tj Smith. EN Duesfer. R.R. Gagne. D N Hendrickson. Inorg. Chem 20(1981)1229 [9] R.C. Long. DN Hendnckson.J Am. Chem. Soc 105(1983) 1513 [10) SK. Mandal, K. Nag.j Chem Soc.. Dalton Trans (1983)2429 111) SK. Mandal. K. Nag.] Chem Soc, Dalton Trans. (1984) 214! 112j S. Mandal, B. Adhikary, K. Nag. J Chem Soc DaltonTrans (1986) 1175 [13j P Lacroix O Kahn. F Theobald,] Leory. C Wakselman. Inorg. Chrm. Acta 142 (1988)129 [14] B Bosnic.1. Inoig Chem 38 (1999) 2557 [15] AW AdcSsion, Inorg. Nucl Chem. Lett 12 (1976) 899 [16] SK. Mandal. LK. Thompson, K. Nag. j -P Ch3rland, EJ Gabe. Inorg Chem 26 (1987)1391 [17] S K. Mandal, LK. Thompson, K. Nag j -P Charland, Ej Gabe. Can j Chem. 65 (1987)2815 [18] SK. Mandal, LK.Thompson, MJ Newlands, EJ Gabe. K. Nag. Inorg Chem. 29 (1990)1324 [19] P Zanello, S Tambunm, PA Vigato, GA Mazzocchm, Coord Chem Rev 77 (1987)165 ]20] K. Brychcy, K. Dragger. K.-J Jens. M Tilset. U Behrens. Chem Ber 127 (1994) 465 [21] K. Brychcy. K.-J Jens. M Tilset, U Behrens, Chem. Ber 127 (1994) 991 [22] K. Brychcy, K. Dragger, K.-J Jens. M. Tilset, U Behrens, Chem Ber 127 (1994) 1817 [23] A.J Atkins, A.] Blake, M. Schroder, j Chem Soc., Chem. Commun. (1993) 353 [24] D Black, A.J Blake. R.L Finn, LF Lindoy, A. Nezhdali.G Rougnaghi, PA Tasker, M. Schroder, Chem Commun (2002) 340 [25) B F Hoskins, R. Robson, GA Williams. Inorg Chim. Acta 16 (1976) 121 [26) Y Han, J Tang, G. Frenzen, J -Y Sun.J Org Chem. 64 (1999) 1442. [27) J J Frausto da Silva RJ P Williams, The Biological Chemistry of the Elements, Clarendon Press, Oxford, 1991 [28) J M Berg, Y Shi Science 271 (1996) 1031 [29) WN Lipscomb N Stratcr Chem. Rev 96(1996)2375 [30) D E Wilcox. Chem Rev 95 (1996) 2435 [31) H Steinhagen. G Helmchem. Angew Chem, Int Ed Engl 35(1996)2339 [32) CG Dealwis. L Clien.C. Brennan, W Mandecki, C. AbadZaptero, Protein Eng 8 (1995)865 |33| Y Zhang j Y Liang. H. Huang. H. Ke. W N. Lipscomb Biochemistry 32 (1393) 7844 [34) S K. Burley, P R. David. A Taylor, W N Lipscomb. Proc. Nat! Acad Sci USA 87 (1990) 6878 [35) SL Roderick. BW M3thews, Biochemistry 32 (1993) 3907 [36) P. ji3ng Z. Guo. Coord Chem. Rev 248 (2004) 205 [37) B Dutta. P Bag U Florke. K. Nag Inorg Chem 44 (2005) 147 [38) J C. Byen. W H Lee, CH Han. Inorg Chem Commun. 9 (2006) 563 |39)jC Byen, CH itan. K.J Kim. Inorg Chem. Commun, 9 (2006) 171 [40) Z. Otwinowski. W Minor. Methods Enzymoi 276 (1997) 307 [41) VN Sonar, M. Venkatraj. S Parkin. PA Crooks Acta Crystallogr.. Sect. C 63 (2007) 0493 [42) G M. Sheldnck, s h e i x i -97. Crystal Structure Refinement Program, University of Gottingen, 1997 [43) K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds (Part B Applications in Coordination, Organometalhc. and Biomorgamc Chemistry). 5th ed.. John Wiley & Sons, Inc, New York, 1997 pp 82-83 J44j M. Nayak. R. Koner. H-H tin. U Florke. H-H Wei.S Mohanta. Inorg Chem 45 (2006)10764 [45) C.D Gutsche, Cahxarcnes. Royal Society of Chemistry. Cambridge. UK. 1989 146) W Addison,TN Rao.J Reedijk.JV Rijn, GC Verschoor.J Chem. Soc, Dalton Trans (1984)1549 Polyhedron 28 (2009) 3707 -3714 C ontents lists available at ScienceD irect Polyhedron i*oivm:t?nV >N ' jo u rn al h o m epag e, w w w .elsev ier.co m /lo cate/p o ly Synthesis, molecular and supramolecular structures, electrochemistry and magnetic properties of two macrocyclic dicopper(Il) complexes: Microporous supramolecular assembly Susanta H azra3, S am it M ajum der3, M ichel Fleck b, N uria A liaga-A lcaldec ‘, S asankasekhar M ohanta3'* J Department of Chemistry, University of Calcutta. 92 Acharya Prafulla Giandra Road, Kolkata 700 009. India b Institute for Mineralogy and Crystallography, University of Vienna, Althanstr, 14. A-1090 Vienna, Austria c ICREA-Department de Quinuca Inorgamca, Umversuat de Barcelona, Diagonal 647, 08028 Barcelona, Spain A R T IC L E IN F O Article history R eceived 2 June 2009 A ccepted 7 A ugust 2009 A vailable online IS A ugust 2009 Keywords D icopperfH ) com pounds M icroporous A ntiferrom agnetic C yclic voltam m etry H ydrogen bond ABSTRACT Synthesis, m olecular and supram olecular structures, electrochem istry and m agnetic properties of tw o diphenoxo-brtdged dicoppeitll) com pounds [C u'^U ^O X C IC Li)] CIO 4 2H 20 (1) and [C u'aU N s^] 2H 20 (2) derived from a tetraim ino diphenoiate m acrocyclic iigand H 2 L, obtained on [2+2] condensation of 4-m ethy!-2,6-diform ylpheno! and 2,2'-dim etIiyi-l,3-diarm nopropane, are presented Supram olecular structure of both 1 and 2 are three-dim ensional resulting from hydrogen bonding interactions Interest­ ingly, the 3-D self-assem bly of 2 contains m icropores having the dim ension of 0 35 nm E lectrochem ical analyses reveal that both of these com pounds exhibit tw o-step couples in the reduction w indow V ari­ able-tem perature (2-300 K) m agnetic susceptibilities m easurem ents of the tw o com pounds reveal that the m etal centers m both of the com plexes are coupled by strong antiferrom agnetic interactions w ith J values (H = -JS, S2) -776 and -836 cm 1 for 1 and 2, respectively © 2009 Elsevier Ltd A ll rights reserved 1. Introduction Proteins containing dinuclear copper centers play param ount roles in biology, including dioxygen transport or activation, elec­ tron transfer, reduction of nitrogen oxides and hydrolytic chem is­ try [1-4]. C atalytic properties of som e dicopper com plexes have also been observed in som e recent studies [5] M agnetic exchange interactions in bim etallic com plexes have kept chem ist fascinated for a long tim e. It has been w ell under­ stood that the sign and m agnitude of exchange coupling constant (J) are governed by the structural param eters of the bridging m oi­ ety as w ell as by the energy and sym m etry of the participating orbitals of param agnetic centers and bridging ligands [6-9]. Espe­ cially w ith respect to bm uclear system s, the copper chem istry from a m agneto-structural point of view is a very extensively studied area, both experim entally and theoretically [10] The crystal engineering of self-assem bled supram olecular archi­ tectures is currently of great interest, due to their intriguing topol­ ogies and their applications in m aterials chem istry, m particular m optoelectronics, conductivity and superconductivity, charge-trans­ fer and m agnetism , nanoporous m aterials and biom im etic m aten- * C orresponding authors. Tel +91 33 23508386, fax +91 33 23519755 (S M ohanta) E-mail addresses nunaaliagaii?icreacat (N A liaga-A lcalde), sm ^cu_chem @ yahoo co in (S M ohanta). 0277-5387/$ - see front m atter © 2009 E lsevier Ltd A H nghts reserved doi 101016/j poly.2009 08 007 als [11-13] In supram olecules, the m olecular building blocks are self-assem bled by covalent or coordination bonds as w ell as by several types of noncovalent interactions such as n-n stacking, hydrogen bonds {both strong and w eak), halogen-halogen, sul­ fur-sulfu r, gold-gold, etc [14-20]. A n interesting aspect of the studies on the supram olecular structures is to find nanoporous [21-25 ], m esoporous [26] or m icroporous m aterials [27-31] that can be used for varieties of applications, e.g. including selective adsorption of gases [26-31], The fam ily of tetraim ino diphenoiate m acrocycles obtained from [2+2] condensation of 4-m ethyl-2,6-diform ylphenol and diam ines is an im portant class of ligands in coordination chem istry [32-4 3 ] O ver the years, varieties of related ligands have been used to derive dinuclear and polynuclear com pounds having varieties of m etal com binations. The electrochem ical, m agnetic, biom im icking and catalytic aspects of these di-and polynuclear com pounds have been w ell investigated to understand structure-property correla­ tions. Synthesis and studies of coordination com pounds derived from new or little explored related m acrocyclic ligands m ay there­ fore be im portant for m ore enlightenm ent. W e note that studies on supram olecular structures as a result from different types of w eak interactions m the coordination com ­ pounds of tetraim ino diphenoiate m acrocyclic ligands have been practically unexplored so far and it m ay therefore be relevant to understand the supram olecular interactions and topologies in the related com plexes w ith an expectation to obtain interesting 3708 S Hazra et ai/Polyhedran 28 (2009) 3707-3714 2 .2 Syntheses of the complexes 22 I [Cu "2L(H20)(CI04)] CI04 2H20 (1) To a (0 6 6 1 g , s tir r e d m e th a n o l 1 m m o l) a (1 5 m L ) s o lu tio n s u s p e n s io n ( lO m L ) of of H 4 L (C 1 0 4 )2 c o p p e r ( ll) c h lo rid e ( 0 2 6 9 g , 2 m m o l) in m e th a n o l w a s a d d e d d r o p w is e T h e s u s p e n ­ s io n w a s s lo w ly c o n v e rte d in to a g r e e n s o lu tio n w it h th e d r o p w is e a d d itio n o f tn e th y la m in e ( 0 .4 0 4 g , 4 m m o l) in m e th a n o l ( 5 m L ). A fte r 2 h s tir r in g , th e g r e e n s o lu tio n w a s filte r e d to e lim in a te o u t a n y s u s p e n d e d p a r tic le s T h e filtr a te w a s k e p t a t r o o m te m p e r a tu re fo r s lo w e v a p o r a tio n . A fte r a fe w d a y s , d iffr a c tio n q u a lity g r e e n c r y s ta ls th a t d e p o s ite d w e r e c o lle c te d b y f ilt r a t io n a n d a ir d r ie d Anal ( 6 7 1 m g , 8 0 % ). C a lc , fo r C 2 8 H 4 c ,N 4 0 ,3 a 2 C u 2 4 0 1 0 , H , 4 8 1 , N , 6 .6 8 (c m -1, K B r) (8 3 8 6 5 ). C, F o u n d : C , 3 9 .9 0 ; H , 4 .9 4 ; N , 6 5 6 % . IR v (H 20 ), 3 5 7 6 w ; v (C = N ), 1 6 3 7 s ; v ( C I0 4 ), 1092vs, 622w 222 [Cu "2L(N3)21 2H20 (2) A n a c e to n itrile s o lu tio n ( 1 0 m L ) o f C u (C 1 0 4 )2 6 H 2 0 Chart 1. ( 0 .3 7 1 g , 1 0 m m o l) w a s a d d e d to a s tirr e d a c e to n itr ile s o lu tio n ( 1 5 m L ) o f C h e m ic a l s t r u c t u r e o f H iL H 4 L (C 1 0 4 )2 ( 0 .3 3 1 g . 0 .5 m m o l) T o th e r e s u ltin g r e d d is h s o lu tio n o b s e r v a tio n s T h e m a c r o c y c lic lig a n d H 2 L ( C h a rt 1 ), w h ic h c o n ta in s w a s d r o p w is e a d d e d a n a c e to n itrile s o lu tio n ( 5 m L ) o f t n e th y l- 2 ,2 '- d im e th y l-l,3 -d ia m in o p r o p a n e has a m in e ( 0 .2 0 2 g , 2 m m o l) to g e t a g r e e n s o lu tio n A fte r 3 0 m in , th e o n ly b e e n lit t le u tiliz e d p r e v io u s ly to d e r iv e c o o rd in a tio n c o m ­ s o lu tio n w a s filte r e d to r e m o v e a n y s u s p e n d e d p a rtic le a n d a n p o u n d s [3 9 4 0 ], W e h a v e s y n th e s iz e d tw o d ic o p p e r ( ll) c o m p le x e s a q u e o u s s o lu tio n ( 5 m L ) o f N a N 3 ( 0 1 3 0 g , 2 m m o l) w a s a d d e d [C u " 2 L (H 2 0 |(C 1 0 4 ) ] C 1 0 4 2 H 2 0 ( 1 ) a n d [C u "2 L ( N 3 ) 2 ] 2 H 2 0 ( 2 ) d e ­ d r o p w is e r iv e d fr o m th is lig a n d p r e c ip ita te s ta r te d to a p p e a r a n d th e s t im n g w a s c o n tin u e d fo r and as th e d ia m in o m o ie ty , H e r e , w e r e p o r t th e s y n th e s is , m o le c u la r s u p ra m o le c u la r s tr u c tu re s , e le c tr o c h e m is tr y and m a g n e tic p r o p e r tie s o f th e s e tw o c o m p le x e s . to th e w it h s tir r in g . Im m e d ia te ly , a g re e n a n o th e r 2 h fo r c o m p le te p r e c ip ita tio n . T h e c o lle c te d g r e e n c o m ­ p o u n d w a s w a s h e d w it h 1 1 w a te r - a c e to m tn le s o lu tio n a n d d n e d u n d e r s u c tio n R e c r y s ta lh z a tio n fro m e th a n o l y ie ld e d g r e e n c r y s ­ ta llin e c o m p o u n d c o n ta in in g d iffr a c tio n q u a lity c iy s ta ls ( 2 6 5 m g . 2. Experimental Cautionl s o lu tio n P e rc h lo r a te a n d a z id e c o m p le x e s o f m e ta l io n s a r e p o te n tia lly e x p lo s iv e . O n ly a s m a ll a m o u n t o f m a te r ia l s h o u ld b e T a b le 1 C r y s t a llo g r a p h ic d a ta f o r 1 and 2. p r e p a re d a n d it s h o u ld b e h a n d le d w it h c a u tio n 2 1. Materials and physical methods A ll th e r e a g e n ts a n d s o lv e n ts w e re p u rc h a s e d fr o m c o m m e r c ia l 1 2 E m p ir ic a l f o r m u la ^ s H - io O b N ^ O jjC u j C 2 H l l jK N l0 O 4 C u 2 F o r m u la w e ig h t 838 62 705 76 C r y s ta l s y s te m m o n o c lin ic t r ig o n a l R-3 S p ac e g ro u p P 2 ,/ m T h e d ip r o to n a te d p e rc h lo ra te s a lt, O (A ) 9 6 1 9 8 (2 ) 2 8 .2 5 9 4 ( 1 8 ) [H 4 L ](C 1 0 4 ) 2 , o f th e m a c r o c y c lic S c h iff b a s e lig a n d H 2 L h a s b e e n b (A ) c (A ) 1 6 .2 0 3 3 (4 ) 2 8 2 5 9 4 (1 8 ) s o u rc e s a n d u s e d a s r e c e iv e d s y n th e s iz e d b y th e c o n d e n s a tio n o f 4 -m e th y l- 2 ,6 -d ifo r m y lp h e n o l 11 4 7 5 9 (3 ) 9 8 7 1 4 (1 5 ) 90 00 90 00 9 3 .9 8 1 (1 ) 90 00 w it h 2 ,2 '- tS m e th y l- 1 ,3 - d ia m in o p r o p a n e fo llo w in g th e p r o c e d u r e 7. ( ° ) it n o f N a g e t a l to p r e p a re th e r e la te d o th e r m a c r o c y c lic lig a n d [3 2 ], 7 (”) 90 00 V (A 3) Z D ( c a lc u la te d , 1 7 8 4 4 6 (7 ) 6 8 2 7 1 (1 2 ) 2 9 E le m e n ta l (C , H a n d N ) a n a ly s e s w e r e p e r fo r m e d o n a P e r k in - E lm e r 2 4 0 0 II a n a ly z e r IR s p e c tr a w e r e r e c o rd e d in th e r e g io n 4 0 0 - g c m -3 ) 12000 1 561 1 545 4 0 0 0 e n rr ' o n a P e r k in - E lm e r R X IF T s p e c tro p h o to m e te r w it h s a m ­ T (K ) 2 9 3 (2 ) 2 9 3 (2 ) p le s a s K B r d is k s 20 8 5 0 -6 5 0 8 4 4 4 -6 7 .2 2 C y c lic v o lta m m e tn c ( C V ) m e a s u r e m e n ts w e r e d o n e u s in g a B io a n a ly tic a l S y s te m E P S IL O N e le c tr o c h e m ic a l a n a ly z e r . T h e c o n c e n ­ tr a tio n of th e s u p p o r tin g e le c tr o ly te , te tra b u ty la m m o n iu m O H ( M o K c t) ( m m ~ ’ ) 1 408 1 454 H O 0 0) 864 3294 S can m ode c o -s c a n s ip- N u m b e r o f fr a m e s 491 2173 20 a n d c o -s c a n s p e r c h lo ra te (T B A P ) w a s 0 1 M , w h ile th a t o f th e c o m p le x e s w a s S c a n t im e p e r f r a m e ( s ) 100 1 m M . C y c lic v o lta m m e tn c m e a s u r e m e n ts fo r 1 a n d 2 w e re c a rr ie d R o t a t io n w id t h ( ° ) 2 1 o u t in a c e to n itrile a n d d im e th y lfo r m a m id e s o lu tio n , r e s p e c tiv e ly , C r y s t a l- d e te c t o r - d is t a n c e ( m m ) 32 35 A b s o r p t io n - c o r r e c tio n m u lti- s c a n m u lu - s c a n w it h a th r e e - e le c tro d e a s s e m b ly c o m p n s in g a g la s s y c a r b o n d is k -1 4 e rh sc 1 4 -4 4 < h ^ 44 w o r k in g e le c tr o d e , a p la tin u m a u x ilia r y e le c tr o d e a n d a n a q u e o u s -2 1 s :k < 2 4 -4 4 ^ A g /A g C I r e fe r e n c e e le c tr o d e T h e r e fe r e n c e e le c tr o d e w a s s e p a ra te d - 1 7 s:l < 1 7 -1 5 < /< 15 fr o m th e b u lk s o lu tio n u s in g a T B A P s a lt b r id g e m a c e to n itr ile . M a g n e tic m e a s u r e m e n ts w e r e c a r rie d o u t in th e “ U n ita t d e M e s u r e s M a g n e tiq u e s ( U n iv e r s ita t d e B a rc e lo n a )” o n p o ly c r y s ta llin e In d e x ra n g e s R e fle c tio n s c o lle c te d 19482 118527 I n d e p e n d e n t r e fle c t io n s 6639 6007 « „,) 0 020 0 0241 R,‘ [ I > 2 ,7 ( 1 ) ] 00517 s a m p le s ( 3 0 m g a p p r o x ) w it h a Q u a n tu m D e s ig n S Q U ID M P M S - w R 2 b [/ > 2 < j(/) l 01596 0 0S28 X L m a g n e to m e te r w o r k in g m th e 2 - 3 0 0 K r a n g e . T h e m a g n e tic R ,4 ( f o r a ll d a ta ) 0 0568 0 0444 w R 2 b ( f o r a ll d a t a ) 01634 0 0968 fie ld u s e d w a s 1 T T h e d ia m a g n e tic c o rr e c tio n s w e r e e v a lu a te d fr o m P a s c a l's c o n s ta n ts R is th e a g r e e m e n t fa c to r d e fin e d £ l ( Z M T ) e X f t l - ( X M ^ c a l c d l 2 / X ] [ ( X M ’0 e x p t l ] 2 as k^ a R i- ir iity - ifc ii/a F o ii b wRtM'L-x'lFl - 0 0311 44 TSRQPONMLKJIHGFEDCBA S. Hazra et al/Polyhedron 2S (2009) 3707- 3 7 1 4 75%). Anal. 3709 C a lc , f o r C 2 a H 3 s N to 0 4 C u 2 ( 7 0 5 7 7 ) ' C . 4 7 .6 5 , H . 5 .4 3 : N , 1 9 8 5 F o u n d : C , 4 7 .5 5 , H , 5 .3 2 , N , 1 9 .7 2 % IR ( K B r/c m " 1 ) . i< H 2 0 ) , 3 5 0 7 w ; v (N3), 2029v s ; v (C=N), 1633v s 2.3 Crystal structure determination of [Cu "2L(H20)(C102}I Cl0f2H20 (1) and ICu "2L(N3)21 2H20(2) T h e c r y s ta llo g r a p h ic d a ta o f th e s e tw o c o m p o u n d s a re s u m m a ­ r iz e d in T a b le l D iff r a c tio n d a ta f o r 1 w e r e c o lle c te d o n a N o n iu s K a p p a d if fr a c to m e te r a t 1 2 0 K w ith d a ta c o lle c tio n a n d r e d u c tio n u s in g n o n iu s p r o g r a m s u ite D E N Z O -S M N p a c k a g e [ 4 4 ,4 5 ] w h e re a s t h e d a ta f o r 2 w e re c o lle c te d a t 2 9 3 K o n a B r u k e r X 8 A P E X -1 1 d if­ f r a c to m e te r u s in g th e p r o g r a m s u ite s a in t -pu is p a c k a g e [ 4 6 ,4 7 ] A ll d a ta f o r th e c o m p o u n d s 1 and 2 w e re c o r re c te d f o r L o r e n tz , p o la r­ is a tio n , b a c k g r o u n d a n d a b s o rp tio n e f fe c ts . B o th s tr u c tu r e s w e r e s o lv e d b y d ir e c t m e th o d s a n d s u b s e q u e n t F o u r ie r a n d d if fe r e n c e F o u r ie r s y n th e s e s , f o llo w e d b y f u ll- m a tr ix le a s t-s q u a r e s r e fin e ­ m e n ts o n F2 u s in g s h e l x l -97 [ 4 8 ] E v e n th o u g h th e m e a s u r e m e n t o f c o m p o u n d 1 w a s c o n d u c te d a t 1 2 0 K . th e h y d r o g e n a to m s o f F ig . 1 . C r y s ta l s tr u c tu r e o f [ O A K H iO X C lO .,) ) C IO ., 2 H jO ( 1 ) A ll th e h y d r o g e n a to m s a r e d e le te d f o r c la r ity S y m m e try c o d e is a s in T a b le 2 c o o r d in a te d a n d n o n c o o r d in a te d w a te r m o le c u le s c o u ld n o t b e lo ­ c a te d in com pound 1 A ll o th e r h y d ro g e n a to m s in b o th c o m p o u n d s c o u ld b e lo c a te d a n d w e re r e fin e d f r e e ly U s in g a n is o ­ tr o p ic t r e a t m e n t o f th e n o n - h y d r o g e n a to m s a n d u n r e s tra in e d is o ­ tr o p ic t re a t m e n t o f th e h y d ro g e n a to m s o f th e s e tw o c o m p o u n d s , th e f in a l r e fin e m e n ts c o n v e r g e d a t th e a n d 0 0 3 1 1 fo r 1 a n d 2, Rt v a lu e s ( / > 2 c r(/)) 0 0 5 1 7 r e s p e c tiv e ly . 3. Results and discussion 3 l Syntheses and characterization The m a c ro c y c lic d ic o p p e r( il) c o m p le x [ C u n 2 L { H 2 0 ) ( C i0 4 )] C 1 0 4 2 H 2 0 ( 1 ) is r e a d ily o b ta in e d in h ig h y ie ld f ro m th e r e a c tio n o f p e r c h lo r a te s a lt o f d ip r o to n a te d m a c ro c y c lic lig a n d [H 4 L ]2 + , c o p p e if ll) c h lo r id e a n d trie th y la m m e m 1 2 :4 r a tio A g a in , th e r e a c tio n o f [ H 4 L ](C 1 0 4 )2 , c o p p e if ll) p e rc h lo r a te h e x a h y d r a te , t n e th y la m m e a n d N a N 3 m 1 .2 4 .4 r a tio p r o d u c e s t h e a z id o c o m p o u n d |C u " 2 L (N 3 )2 ] 2 H 2 0 (2 ) in h ig h y ie ld . A ll th e f o u r p r o to n s o f F ig . 2 . C r y s ta l s tr u c tu r e o f ( C u '^ U N jf e ) 2 H 2 0 ( 2 ) A ll th e h y d r o g e n a to m s e x c e p t th o s e o f w a t e r m o le c u le s a r e r e m o v e d f o r c la rity S y m m e try c o d e is a s in T a b le 3 [ H 4 L ](C 1 0 4 )2 a r e r e m o v e d in th e r e a c tio n m ix tu r e to p r o d u c e 1 a n d 2 I t m a y b e m e n tio n e d t h a t c o m p o u n d 2 c a n a ls o b e o b ta in e d in h ig h y ie ld f r o m th e r e a c tio n o f 1 a n d N a N 3 T h e 1 R s p e c tru m o f th e [ H 4 L ](C 1 0 4 )2 e x h ib its o n e s tr o n g a b s o rp ­ T a b le 2 S e le c te d b o n d le n g th s (A ] a n d a n g le s ( ° ) o f 1 tio n a t 1 6 5 3 c m " 1 d u e to v c =n v ib r a tio n a n d o n e s tr o n g a n d o n e 1 7 1 3 7 (8 ) C u ( l )- 0 ( 3 ) 2519 C u ( l ) -N ( l ) 1 9 4 3 (2 ) 0 ( 1 )- C u (l) -N ( 1 A ) N ( l) - C u ( l ) -0 ( 3 ) 92 9 C u (l)-0 (1 ) 1 9 5 0 6 (1 6 ) 0 ( l)- C u ( 1 ) -0 ( 3 ) 87 7 s lig h tly lo w e r r e g io n ( 1 6 3 7 c m -1 f o r 1 a n d 1 6 3 3 c m -1 f o r 2 ) P r e s ­ 0 (1 )-C u (0 -N { l) 9 1 7 7 (8 ) e n c e o f p e r c h lo r a te in 1 is e v id e n c e d b y th e a p p e a ra n c e o f a v e r y 0 ( 1 } - C u ( l) - 0 (1 A ) 7 9 6 5 (1 0) s tr o n g s ig n a l a t 1 0 9 2 c m " 1 a n d a w e a k s ig n a l a t 6 2 2 c m " 1 , w h e r e a s N (l) -C u ( l)- N ( 1 A ) 9 6 7 9 (12 ) w e a k b a n d a t 1 0 8 3 a n d 6 2 3 c m ’ ', r e s p e c tiv e ly , f o r p e r c h lo r a te a n ­ io n s . I n b o th t h e c o m p le x e s 1 a n d 2 , v c =n a b s o rp tio n a p p e a r s a t a v e ry s tr o n g s ig n a l a t 2 0 2 9 c m " 1 in d ic a te s th e p r e s e n c e o f a z id e in C u ( 2 )- 0 ( 2 ) 2 .2 6 7 (3 ) 0 ( 1 )- C u ( 2 )- N (2 A ) 1 6 6 6 2 (8 ) 2 T h e w a t e r s tr e tc h in g s f o r b o th th e c o m p le x e s a r e o b s e rv e d a s a C u ( 2 )- 0 ( 1 ) 1 .9 7 1 7 ( 1 6 ) 9 1 1 8 (8 ) C u ( 2 )- N (2 ) 1 9 5 1 5 (1 9 ) 0 ( 2 ) -C u ( 2 )* 0 ( l ) 0 ( 2 ) -C u ( 2 ) -N ( 2 ) b r o a d b a n d a t 3 5 7 6 a n d 3 5 0 7 c m " 1, r e s p e c tiv e ly , f o r 1 a n d 2 32. D e s c rip tio n o f the structure of [Cu"2L(H20)(CI02)j CI02 2HJ3 (1) and [Cu"2L(N3)2l 2H20 (2) 1 7 8 6 3 (1 0 ) 0 ( 1 )- C u (2 ) -N ( 2 ) 9 1 8 7 (7 ) N ( 2 ) -C u ( 2 )- N ( 2 A ) 9 5 8 0 (11 ) 1 0 0 8 (8 ) C u ( l )- 0 ( 1 )- C u ( 2 ) S y m m e try A , T h e c r y s ta l s tru c tu re s o f th e tw o c o m p o u n d s x 0 9 3 4 8 (8 ) 0 (1 }-C u (2)-0 {!A ) 5-y. z a n d 2 a re sh o w n in F ig s 1 a n d 2 , r e s p e c tiv e ly , w h ile th e s e le c te d b o n d le n g th s a n d a n g le s a r e lis te d in T a b le s 2 a n d 3 f o r 1 a n d 2 , r e s p e c tiv e ly . T h e m a c ro c y c le a f fo r d th e b a s a l p la n e f o r th e tw o c o p p e r( ll) io n s in s tru c tu r e s s h o w b o th th e c o m p o u n d s T h e a p ic a l c o o r d in a tio n s ite o f th e tw o c o p ­ t h a t b o th a r e d ip h e n o x o - b n d g e d d ic o p p e rf ll) c o m p o u n d s d e r iv e d f ro m th e te tra im in o d ip h e n o la te m a c r o c y c lic p e r ] ll) c e n te r s ( C u (l) a n d C u ( 2 )) in 1 is o c c u p ie d b y a p e r c h lo r a te lig a n d [L ]2 " . I n b o th s tr u c tu r e s , th e m a c ro c y c lic c o m p le x e s t h e m ­ o x y g e n 0 ( 3 ) a n d a w a t e r o x y g e n 0 ( 2 ) , r e s p e c tiv e ly , w h ile o n e t e r­ s e lv e s a r e s y m m e tr ic , e x h ib itin g th e p o in t s y m m e tr ie s o f m ( ) m in a l a z id e a n io n o c c u p ie s t h e f if th c o o r d in a tio n s ite f o r e a c h o f a n d - 1 ( ) m c o m p o u n d s 1 a n d 2 . r e s p e c tiv e ly . T h e m e ta l c e n te r s in 1 a n d 2 a re p e n ta c o o r d in a te d a n d a d o p t d is to r te d s q u a r e p y r a ­ m id a l c o o rd in a tio n e n v ir o n m e n t. T h e tw o N 2 0 2 c a v itie s o f th e th e tw o s y m m e tr y r e la te d c o p p e if ll) c e n te r s ( C u (1 ) a n d C u ( lA ) ) m 2. T h e r e a r e tw o w a te r m o le c u le s a s s o lv e n t o f c ry s ta lliz a tio n in th e c o m p o s itio n o f b o th th e c o m p o u n d s , in b o th c a s e s , th e s e S Hazra et at./Polyhedron 28 (2009) 3707-3714 3710 T able 3 Selected bond engths (A) and angles j ) of 2. C u(l)-N (3) C u(lf-0(1) C u(l)-0(1A ) C u(l}-N (l} C u(!}-N(2A) 2.3451(17) 1.9767(9) 1 9320(9) 1 9785(12) 19531(12} 0(1)-C u(l)-N (2A ) N (l)-C u(l)-0(1A ) N (3>-C u(l)-0(1) N (3}-C ti( 1 )-0( 1 A ) N (3)-C u(1)-N (l) N (3}-C u(l)-N (2A ) 0{t)-C u(l)~O O A ) 0<1)-C u(1)-N (l) N (l)-C u(l)-N (2A ) 0(1A)-Cu(l)-N(2A) C u(l}-0(l)-C u(lA ) Symmetry A. 1 -x, -y, 166.29(5) 165 76(5) 89 59(5) 92.99(5) 96.60(6) 9939(6) 7657(4) 92.96(5) 9625(5) 92.53(4) 103 43(4} z m oieties are sym m etry related to each other (0( 10) and 0(1 OA) for 1; 0(2) and 0(2A ) for 2) The C u-N (im ino) and C u-O (phenoxo) bond distances for three crystallographically different copper(H ) centers (C u(l) and C u(2) for 1; C u(l) for 2) are quite sim ilar and he in the ranges 1 943{2)~1i>79(1) and 1 951 (2)-1.9820(9) A, respectively. A lthough the difference is very sm all, a C u-N bond length is slightly sm aller than its trails C u-0 bond distance for all the three cases In contrast to the bond distances involving the four ligand centers m the basal plane, the C u-O (apical) bond distance is signif­ icantly longer (C u{1)-0(3) = 2.519 A and C u{2)-0(2) = 2.267(3) A fo rt; Cu(1 )-N (3) = 2.3451(17) A for 2) w hich is due to the usual Jahn-T eller effect. From the least-squares N (im ino)20(phenoxo)2 basal planes, the average deviation (0 00 A for C u(1) and C u(2) in 1 ; 0 01 A for C u(1) in 2 ) of the corresponding donor centers are negligible indicating that the tw o nitrogens and tw o oxygens de­ fine a perfect plane for all the three cases H ow ever, w hile the dis­ placem ent of C u(l) in 1 from the corresponding N 20 2 plane is only 0 02 A, C u(2) in 1 and Cu( 1 ) in 2 are displaced by 0 1 7 A from the related plane, w hich indicates that the coordination environm ent of C u(2) m 1 and C u(1 ) m 2 are m ore distorted than that of Cu( 1) m 1. The ranges of the asoid angles (79 65(10)-96 79(12)° for Cu( 1) and 78 63(10)-!00 8(8)° for C u(2) tn 1; 76 57(4)-9939(6)° for C u(l) in 2) and the ranges of the transoid angles (171 37(8)° for C u(1) and 166.62(8)° for C u(2) in 1 , 165 76(5)° and 166 29(5)° for C u(1) in 2) also indicate that the coordination envi­ ronm ent of Cu{2) in 1 and C u(l) m 2 are sim ilarly distorted and this extent of distortion is greater than that m the environm ent of Cu( 1) m 1. As m entioned, the coordination environm ent of the three crystallograplurally different coppeffll) centers in 1 and 2 is square pyram idal H ow ever, a second oxygen (0(4)) of the coordinated perchlorate in 1 can be considered as sem icoordinated to C u(2), the C u( 2 ) 7 0 { 4 ) bond distance, the tmnsotd angle (0(2)-C u(2)0(4)) and the range of the asoid angles involving 0(4) are 2 758 A, 167.1° and 78 9-91 9°. respectively. The m etal m etal separation (3.022 A in 1 ; 3.107 A in 2) and the C u-O (phenoxo)-C u budge angles (100.8(8)° in 1 ; 103.43(4)° in 2) are slightly sm aller in 1 than those in 2. The dihedral angles be­ tw een the tw o basal planes of the tw o m etal ions are 2 4° and 0.0° for 1 and 2, respectively, indicating that the bridging m oiety is perfectly planar in 2 and alm ost planar in 1 It m ay be noted that sim ilar values of the bridge angles and dihedral angles are ob­ served in the reported related dicopperfH ) com pounds [37,38], The dihedral angle betw een the tw o benzene rings in 2 is 0 0° indi­ cating that the w hole m olecule is very dose to planar. In contrast, the w hole m olecule 1 is significantly distorted from a planar con­ figuration as evidenced by the dihedral angle (64 1°) betw een the tw o benzene rings. D ue to this distortion, the m acrocychc com plex in com pound 1 can be described as butterfly-like (Fig. 3) To the best of our know ledge, the m axim um value of dihedral angle (1 ) observed in the reported related dicopper(Il) com pounds is 30 7° [36,38], Evidently; the butterfly structure m 1 is interesting from the view point of aesthetic beauty of the coordination com pounds Six hydrogen bonds involving coordinated and noncoordinated w ater m olecules, coordinated and noncoordinated perchlorate an­ ions and tw o C -H m oieties result in the generation of three-dim en­ sional self-assem bly m com pound 1. The self-assem bly can be better understood by dem onstrating the stipram olecular structure as a few fragm ents, the com bination of all fragm ents is the overall stm eture. A 2-D sheet along the crystallographic c-axis resulting from four of the six hydrogen bonds and another 2-D sheet along the crystallograph ic a-axis as a result from five of the six hydrogen bonds are dem onstrated in Figs SI and S2 (Supplem entary data), respectively. The noncoordinated w ater m olecule form s four hydrogen bonds, 0(101 0(5) (Fig S I, Supplem entary data), 0(10) 0(7C ) (Fig. SI). 0(10) 0(7E ) (Fig. SI) and C (13)H (13) 0(10G ) (Fig. S2, Supplem entary data), w ith an oxygen (0(5)) of the coordinated perchlorate, tw o oxygens (0(7C ) and 0(7E )) of tw o sym m etry related noncoordinated perchlorates and an im ine C -H m oiety C (13)-H (13). T he rem aining tw o hydrogen bonds involve the interactions betw een the coordinated w ater m olecule and an oxygen of noncoordinated perchlorate (0(2) 0(6), Fig SI) and betw een a C -H m oiety and an oxygen of noncoordinated perchlorate (C (9)-H(9A ) 0(9F); Fig. S2). The geom etries of the six hydrogen bonds are listed m Table 4 The range of the O O contacts is 2 838-2 941 A indicating that these Table 4 G eom etnes (distances in (A ) and angles m (■)} of the hydrogen bonds in 1 and 2. C om pound D -Sf A /D A D A H A D -H A 1 0(2} 0(6) 0(10) 0(5) 0(10) 0(7C ) 0(10) 0(7E ) C (9)~H (9A) 0(9F) C (13H !(13) 0(10G ) 2 838 2.855 2 907 2 941 3 425 3 459 2 528 2.507 163.23 173 63 0(23-H {2A ) N (5A ) 0(2)~H (2B } N (3B ) C (8C )~H (8C ) 0(2) 3 084 2 874 3.381 2 265 1 854 2 472 172 09 171 80 166.63 2 Symmetry A, x, 0 5 -y ,z; B, 1 -x, 0.5-y. 1 + z; C. 1 + x.y, 1 +z, D. 2-x, -y. 2-z: E, 1 -x. - y. 1 -z, F, x, y, 1 + z, G , 2-x, -y, 1 -z (for 1) A. 1 -x, -y. -z: B. x, y, 1 + z; C, 1/3+ x-y, 1/3 +x, 2/3-z (for 2) S Hazra et aljPolyhedron 28 (2009) 3707-3714 h y d ro g e n b o n d s a re m o d e ra te ly s tro n g , w h ile th e C -H b o n d s (D O h y d ro ­ ab p la n e is g e n e ra te d d u e to fo u r h y d ro g e n b o n d s 3711 A = 2 8 7 4 a n d 3 .0 8 4 A ) a re m o d e ra te ly s tro n g , C -H h y d ro g e n b o n d (D g e n b o n d s (3 4 2 5 a n d 3 4 5 9 A ) a re w e a k . A s s h o w n in F ig . S I, a 2 -D s h e e t in ONMLKJIHGFEDCBA O A = 3 3 8 1 A ) is w e a k . A s d e m o n s tra te d in F ig . 5 , th e tw o O -H N h y d ro g e n b o n d s re ­ 0 (6 )) in v o lv ­ s u lt in th e fo rm a tio n o f o n e -d im e n s io n a l p o ly m e ric c h a in s in 2 in g c o o rd in a te d a n d n o n c o o rd in a te d w a te r m o le c u le s a n d c o o rd i­ H o w e v e r, th e o n e n ta tio n s o f th e 1 -D c h a in s a re n o t s a m e . D u e to n a te d in te ra c tio n s th e d iffe re n c e in o rie n ta tio n s , th e 1 -D c h a in s c a n b e c o n s id e re d in v o lv in g n o n c o o rd in a te d p e rc h lo ra te , c o o rd in a te d a n d n o n c o o rd i­ a s th re e ty p e s . A , B a n d C (F ig . 5 ) T h e s e 1 -D c h a in s o f th re e ty p e s n a te d w a te r m o le c u le s a n d tw o C -H m o ie tie s re s u lt in th e g e n e ra ­ a re in te rlin k e d w ith e a c h o th e r d u e to th e C (8 )-H (8 ) (0 (1 0 ) 0 (5 ), 0 (1 0 ) and 0 (7 C ), 0 (1 0 ) n o n c o o rd in a te d 0 (7 E ) a n d 0 (2 ) p e rc h lo ra te s A g a in , 0 (2 ) in te ra c ­ be p la n e E v id e n tly , o n e o f th e s e tio n s re s u ltin g in a n o v e ra ll 3 -D p o ro u s to p o lo g y . It m a y b e n o te d tw o 2 -D s h e e ts m a y b e c o n s id e re d a s in te rlin k e d b y th e s e c o n d th a t s e lf-a s s e m b ly d u e to th e c o m b in a tio n o f a n y tw o o f th e th re e to re s u lt in o v e ra ll 3 -D s e lf-a s s e m b ly (F ig . S 3 , S u p p le m e n ta ry d a ta ) ty p e s o f 1 -D c h a in s is a 2 -D s h e e t. A s a n e x a m p le , th e 2 -D s h e e t in th e s tru c tu re o f 1 c o n s titu te d b y th e in te rlin k in g o f A a n d B c h a in -ty p e s is s h o w n tio n o f a n o th e r 2 -D a s s e m b ly in T h re e h y d ro g e n b o n d s in v o lv in g th e s o lv a te d w a te r m o le c u le in F ig . 6 . E v id e n tly , in te rlin k in g o f th re e ty p e s o f 1 -D c h a in s is (H 2 0 (2 )), tw o n itro g e n s (N (3 ) a n d N (5 )) o f th e c o o rd in a te d a z id e e q u iv a le n t to th e in te rlin k in g o f th e d iffe re n t ty p e s o f 2 -D s h e e ts a n d th e im in e C -H m o ie ty (C (8 )~ H (8 )) re s u lts in th e g e n e ra tio n to g e n e ra te 3 -D n e tw o rk in th is c o m p o u n d . A s im p lifie d illu s tra ­ o f a n in te re s tin g ty p e o f p o ro u s 3 -D a s s e m b ly in 2 . T h e th re e tio n o f th e 3 -D n e tw o rk is s h o w n in F ig . 7 T h e g e n e ra tio n o f th is h y d ro g e n b o n d s a re s h o w n m F ig . 4 . w h ile th e g e o m e trie s o f th e 3 -D to p o lo g y d u e to th e in te rlin k in g o f th re e ty p e s o f 1 -D c h a in s h y d ro g e n b o n d s a re lis te d in T a b le 4 . T h e w a te r m o le c u le a c ts a s is e v id e n t fro m th is fig u re . A s lic e o f th e e x te n d e d v ie w o f th e 3 - a b ifu rc a te d d o n o r a n d in te ra c ts w ith a z id e n itro g e n s N (3 B ) a n d D to p o lo g y is s h o w n in F ig 8 . It a p p a re n tly s e e m s fro m th is fig u re N (5 A ) o f tw o s y m m e try re la te d d in u c le a r u n its In a d d itio n , th e th a t th e re m a y b e p o re s in th e re g io n X a n d Y m th is s ta ic tu re It w a te r m o le c u le b e h a v e s a s a s in g le a c c e p to r a n d in te ra c ts w ith m a y b e n o te d th a t m a n y o f th e a to m s in 2 a re o m itte d in F ig s 4 - th e in lin e h y d ro g e n (C (8 C )-H (8 C )). W h ile th e 0 - H 8 fo r c o n v e n ie n c e . K e e p in g a ll th e a to m s , a n e x te n d e d v ie w o f N h y d ro g e n th e th re e -d im e n s io n a l to p o lo g y is s h o w n in F ig 9 a n d it is in te re s t­ in g to n o te th a t th e p o re in th e re g io n X is a re a l A m o n g s ix h y d ro ­ g e n s a ro u n d th e p o re , a lte rn a te th re e b e lo n g to d iffe re n t ab p la n e s . H o w e v e r, th e p o re s iz e is c a lc u la te d a s 0 .3 5 n m 3 3. Electrochemistry T h e C y c lic v o lta m m e tric (C V ) a n d s q u a re w a v e v o lta m m e tn c (S W V ) m e a s u re m e n ts o f c o m p le x e s 1 a n d 2 w e re c a rrie d o u t in a c e ­ to n itrile a n d d im e th y lfo rm a m id e , re s p e c tiv e ly , a t 2 5 °C u n d e r a n itro g e n a tm o s p h e re u s in g g la s s y c a rb o n a s th e w o rk in g e le c tro d e . P o te n tia l w in d o w ra n g in g fro m 0 to -1 5 0 0 m V a n d s c a n ra te o f 2 0 0 m V /s w e re c h o s e n a t firs t. C y c lic v o lta m m o g ra m s w ith th e s e m e a s u re m e n t p a ra m e te rs o f c o m p o u n d s 1 a n d 2 a re s h o w n m F ig S 4 (S u p p le m e n ta ry d a ta ) a n d F ig 1 0 , re s p e c tiv e ly . In th e c a s e o f 2 , tw o c a th o d ic re s p o n s e s a t - 5 9 4 a n d -9 6 5 m V a n d , in th e re ­ tu rn s w e e p , tw o a n o d ic p e a k s a t -8 7 3 a n d - 5 0 5 m V w e re o b s e rv e d . E v id e n tly , th e s te p w is e re d u c tio n s C u "C u " -+ C u "C u ' a n d C u "C u ' -> C u 'C u 1 ta k e s p la c e a t -5 9 4 a n d - 9 6 5 m V , re s p e c tiv e ly , w h ile th e Fig. 4. Illu s tra tio n o f th re e H -b o n d s fo rm e d b y w a te r 11 -a to m s a n d a z id e N -a to m s in [C u '^ U N ^ J 2 H 2 0 (2). S y m m e try c o d e s a re a s in T a b le 4 W i ‘' ‘h \ *-v -c v . ' s te p w is e o x id a tio n s C u 'C u 1 -+ C u 'C u " a n d C u 'C u " -► C u "C u " ta k e s i t t ■oA-i x>,V i % i i A B 4 A. * A. P A. -rf 4 •"& 4 -a ru r\j ru 4 f A. ry d f ry -v 4 fi, -o' f ry d C Fig. 5 . P re s e n ta tio n d o w n th e c ry s ta llo g ra p h ic b -a x is o f th re e ty p e s (A , B a n d C ) 1 -D c h a in s in [C u "2 L (N 3 ) 2 j 2 H 2 0 (2) 3712 5 Hazra et al/Polyhedron 28 (2009) 3707-3714 V|-v vi-% - vIa , <> \.3v\ ill*IHGFEDCBA T v '■ v jp ^ v . jr\ v jr-\— it v ( I - v v- l'~v9’. Irv*-. !,i V1I I I v. J -i 'i vi 'i -'i- vj:y 'i^V?'lVF' / v|y !,i» "■ •0 \V Y ) ■\Kr^ , r** i Fig. 6L View down the 5-axis of 2-D sheet formed due to the interlinking of two types (A and 3) of 1-D chains in ICuu2L(N3>21 2H20 (2) ) V pmmf V'--■ , > ( ) Fig. 8. View down the c-axis showing a slice of the 3-D topology m ICu '^Nj I,) 2H20 (2) the peak positions (-542 and -912 m V ) observed in the SW V are veiy close to the £lp values observed in the CV In the case of com ­ pound 1, w hile the Cu^Cu" C u'tu1 couple takes place quasireversibly at E%f2 = -385 m V (AEP = 110 m V ), the CunCu' Cu'Cu1 couple takes place irreversibly at ca. -982 m V (Fig. S4). H ow ever, the irre­ versibility of the second couple decreases w ith the enhancem ent of the scan rate and best cyclic voltam m ogram is obtained at a scan rate of 2000 m V /s (Fig. S6, Supplem entary data) At this scan rate, the Cu"Cu" -t Cu"Cu' and Cu"Cu' -» Cu'Cu' couples takes place quasireversibly at £ 1/2 = -403 m V (A £p = 85m V ) and £ 1/2 = -927 m V (A £p = 127 m V ), respectively. In this case also, the peak posi­ tions (-410 and -935 m V ) observed in SW V (Fig. S7, Supplem en­ place at -373 and -505 m V, respectively. The E ,p values of these tw o peaks are -550 and -919 m V, w hile the A £p values of these tw o peaks are 89 and 92 m V, respectively, indicating that both the peaks are quasireversible A s show n in Fig. S5 (Supplem entary data), tary data) are very close to the Eip values. It m ay be m entioned that the potentials required for the Cu"CuM -> Cu"Cu' (-403 m V for 1 and -550 m V for 2) and CullCul -* Cu'Cu1 (-927 m V for t and -919 m V for 2) couples m the tw o title com pounds lie m the usual ranges (from +90 to -1240 m V and from -350 to Fig. 9. View down the c-axis showing the microporous three-dimensional seif-assembly m JCu'^l/Nj^} 2H20 (2). S. F ig . 1 0 . C yclic v o ltam m o g ram (0 to 3713 Hazra cf a t /Polyhedron 28 (2009) 3707-37M 1 5 0 0 m V ) o t [ tu 'M i It,).. j 3 H -.0 (2 ) in d m f at a scan ra te o f 2 0 0 m V s ' -1 7 2 0 m V , resp ectiv ely ) o f th ese tw o electro ch em ical co n v ersio n s o b serv ed in th e d ico p p eifll) co m p o u n d s d eriv ed fro m th e related tetraim m o d ip h en o late m acro cy clic lig an d s [4 1 -4 3 ], H o w ev er, it w ill b e relev an t to assig n th e m etal cen ters m th e step w ise red u c­ tio n -o x id atio n p ro cesses. A s d iscu ssed , o n e p erch lo rate is co o rd i­ n ated to C u (l) an d sem ico o rd in ated to C u (2) in th e stru c tu re o f 1 resu ltin g in th e accu m u latio n o f less n eg ativ e ch arg e d en sity o n C u (2) an d th erefo re th e C u (2) cen ter is red uced first a t -4 4 5 m V fo l­ lo w ed b y th e red u ctio n o f th e C u (1) c e n te r a t -9 9 0 m V . W h ile th e n eg ativ e ch arg e o f th e co o rd in atin g an io n (p erch lo rate) is d istrib ­ u ted to tw o co p p er(ll) cen ters, o n e azid e an io n is co o rd in ated to each o f th e tw o sy m m etry related co p p er! II) cen ters in 2. E v id en tly , th e n eg ativ e ch arg e d en sity o n th e co p p er(ll) center o f 2 is g reater th an th a t o n C u (2) o f 1 an d th erefo re th e first red u ctio n p o ten tial (-5 9 4 m V ) in 2 is m o re n eg ativ e th a n th a t (-4 4 5 m V ) in 1 3.4. Magnetic properties S o lid -state, v ariab le-tem p eratu re (2 -3 0 0 K ) m ag n etic su scep ti­ b ility d ata u sin g 1 T field w ere co llected o n p o ly cry stalh n e sam p les o f co m p o un d s 1 an d 2, resp ectiv ely T h e resu ltin g d ata are p lo tted in F igs 11 an d 12. B oth g raph s sh o w a b eh av io r ch aracteristic o f v ery stro n g , an tiferro m ag n etic co u p led C u" io n s T h e m agn etic resu lts o f co m p o u nd 1 ex h ibits a x m T v alu e o f 0 .1 6 cm 3 m o p 1 K a t 3 0 0 K th a t d ecreases u p o n co o lin g to 0 .0 3 cm 3 m o b ' K a t 2 0 K (Fig 1 1 ).T h e ap p earan ce o f th e p lateau b elo w 1 0 0 K m ay b e d u e to p aram ag n etic u n co u p led 3 0 0 K . T h e ex p en m ental d a ta is sh o w n a s b lack sq u ares an d th e b lack lin e co rresp o n d s to th e th eo retical v alu es. F ig . 1 2 . F ittin g o f th e x m 7 v s T o f { C u T i/tlt),.] 2HzO (2 ) b etw een 2 an d 3 0 0 K . T h e e x p e n m e n ta l d a ta is sh o w n as b lack sq u ares an d th e b lack lin e co rresp o n d s to th e th eo retical v alu es. co p p er sp ecies (p). T h e ex p erim en tal m ag n etic d ata w ere fitted u sin g th e B lean ey -B o w er eq u atio n (E q (1 )) fo r d in u clear co p p er(II) co m p lex es w ith th e H am ilto n ian m th e fo rm 11 = -JS j S 2 , w h e re g, jS. k an d T h av e th eir u su al m ean in g s [6 ] T h e b est fit p aram eters fo u n d a re J = -7 7 6 + 2 5 c m ~ \g = 2 2 + 0 .1 , p = 0 0 4 , R (a g re e m en t facto r) = 2 4 x 10~ 4. T em p eratu re-in d ep en d en t p aram ag n etism (TIP ) w as fo u n d eq u al to 1 6 0 x 1 0 _ scm 3 m o r1. ___ 2/yg^----- kT (3 + exp(-_//fcT)] 1 +??^p+Tip kT , + (1 ) T h e yMT fo r co m p o u nd 2 is d ep icted in F ig. 1 2 T h e m agn etic su scep tib ility v alu e a t 3 0 0 1< is 0 .1 0 cm 3 m o r1 K sh o w in g a sim ilar p lateau as 1 an d d ro p p in g to n early zero a t th e lo w est te m p e ra tu re (0 0 0 3 cm 3 m o r1 K a t 2 K ). T h is d in u clear sy stem ex h ib its an tiferro m ag n etic b eh av io r stro n g e r th a n co m p ou n d 1 d escrib ed ab o v e, in deed , th e v alu e o f x m To f2 is sm aller th a n th a t o f 1 a t th e h ig h est te m p e ra tu re . U sin g E q (1 ). th e su scep tib ility d a ta is sim u lated w ith J = -8 3 6 ± 1 5 c m -', g = 2 2 5 ± 0 0 7 , p = 0 0 0 4 , T IP = 1 1 0 x 1 0 ~ 6 cm 3 m o r1 an d R = 3 6 x 10~ 4. T h e relativ ely larg e u n certain ty fo u n d fo r th e J v alues in b o th cases is p rim arily d u e to th e ir stro n g an tiferro m ag n etic co u p lin g , m ak in g th e o rd ers o f th e u n co rrected m o lar su scep tib ility an d th e d iam ag n etic co n trib u tio n s v ery sim ilar. A t th is p o in t, it sh o u ld b e n o ticed th a t th e n a tu re a n d co o rdin a­ tio n n u m b er a t th e co p p er(ll) cen ters fo r each co m p o u n d are d iffer­ e n t affectin g th e co u p lin g in a d ifferen t w ay as w ell. N ev erth eless, th ese tw o b is(p h en o x id e)-b n d g ed m acro cy clic d in u clear co p p er(Il) co m p lex es ex h ib it sim ilar m ag n etic b eh av io r m co n co rd an ce w ith related co m p o u n d s d escribed m th e lite ra tu re [1 1 ], P rev io u s m ag­ n e to -stru c tu ra l stu d ies o n th is fam ily o f co m p o u n d s h av e rev ealed th e co rrelation b etw een th e stre n g th o f th e ex ch an g e co u p lin g an d th e C u -0 (P h )-C u an g le v alu es (0) In g en eral, J co n stan ts v ary in th e ran g e o f 6 0 0 -9 0 0 cm -1 w h en 0 an g les a re b e tw e e n 9 8 ,8 ° an d 1 0 4 .7 ° [6 ,4 9 ,5 0 ], In th e p re se n t w o rk, th e 0 v alues o f 1 an d 2 are 1 0 0 8 (8 )° an d 1 0 3 4 3 (4 )°, resp ectiv ely , m atch in g w ith th e ex p eri­ m en tal resu lts w h ere th e ex ch an ge co u p lin g o f th e co m p ou n d 2 is stro n g e r th a n co m p o u n d 1 d u e to th e larg er v alu e o f b rid g e an g le in 2 . A ssu m in g a lin ear relatio n sh ip b etw een J an d 0 an d fo llo w in g th e co rrelatio n p ro p o sed b y T h o m p so n e t al. [3 8 ], w e fo u n d th a t th e th eo retical v alu es (-7 5 9 an d 8 4 3 c m '1, resp ectiv ely ) fo r 1 an d 2 are v ery clo se to th e ex p erim en tal resu lts It is w o rth m en tio n in g th a t th e o u t-o f-plane d isp lacem en t (t ) o f th e C a to m fro m th e p h en o x o g ro u p s is an ad d itio n al featu re th a t m ay affect to certain d eg ree th e ex ch an ge b e tw e e n th e m etal cen ters o f th ese b is(p h en o late) clu sters [5 0 ]. T h is facto r is related 3714 S Hazra el aL/Polylwdm-i 28 (2000) 3707-3714 to th e in crease o f th e ferro m ag n etic n atu re o f th e ex ch an g e alth o u g h n o rm ally is d o se to zero fo r larg e v alu es o f 0 an d th ere­ fo re n eg lected [5 0 -5 2 ] C o m p lex 1, on th e o th er h an d d o es sh o w an m term ecfiate v alu e o f 0 an d a rath er larg e t T his m ay also affect th e to tal ex ch an g e co u p lin g to so m e ex ten t, an d ag rees w ith th e re­ su lts o f h av in g a larg er J v alu e in th e case o f 2. 4. Conclusiuns A little ex p lo red tetraim ino d ip h en o late m acro cy ch c ligan d has b een u tilized m th e p resen t in v estig atio n to d en v e tw o d ip h en o x o -b n d g ed d ico p p erfll) co m p o u n d s 1 an d 2. T h ese tw o are n ew ad d itio n s in th e fam ily o f m acro cy ch c co m p lex es T h e stru c­ tu ral. m agn etic an d electro ch em ical p ro p erties o f th e tw o co m ­ p o u n d s h av e b een in v estig ated in d etails. B oth co m p o u n d s ex h ib it stro n g an tiferro m ag n etic in teractio n an d q u asirev ersib le tw o -step redu ctio n -o x id atio n p ro cesses T h e an aly ses o f th e su p ram o lecular stru ctu res rev eal th a t b o th 1 an d 2 h av e th reed im en sio n al self-assem b ly d u e to m o d erately stro n g o r w eak h y d ro g en b o n d s. T he b u tterfly -lik e o rien tatio n o f co m p o u n d 1 is aesthetically b eau tifu l C o m p o u n d 2 is a m icro p o ro u s sy stem as w ell. A s th e su p ram o lecu lar stru ctu res o f p revio u sly rep o rted m acrocyclic co m p o u n d s h av e b een p ractically u n ex p lored , th e ex is­ ten ce o f m icro p o res m 2 is in terestin g . W e th erefo re an ticip ate th at so m e o f th e p rev io u sly rep o rted co m p o u n d s an d n ew ly sy n ­ th esized co m po u n d s d en v ed fro m related m acro cy cles m ay h av e in terestin g su p ram o lecu iar self-assem b ly in clu d in g n an o -, m eso o r m icro p cres an d th ese p o ro u s m aterials can b e u sed fo r ap p licatio n s Acknowledgements F inancial su p p o rt fro m th e D ep artm en t o f S cien ce an d T ech n o l­ ogy, th e G o v ern m en t o f India (S R /S1/1C -12 /2 0 0 8 ), C ouncil fo r S ci­ en tific an d In d u strial R esearch (F ello w sh ip to S H azra. an d S. M aju m d er) an d S p an ish g o v ern m en t (M E C ) C T Q 2006-01759/B Q U is g ratefu lly ack n o w led g ed . T he w o rk p erfo rm ed a t th e U n iv ersitat d e B arcelona by N A A . w as su p p o rted b y lC R E A (In stitu cio C atalan a d e R ecerca l E stu d is A vanijats) an d th e C en eralitat d e C atalun y a, 2005SG R 0 0 5 9 3 . Appendix A Supplementary data C C D C 7 2 7 3 6 0 an d 727361 co n tain th e su p p lem en tary cry stallo ­ g rap h ic d ata fo r 1 an d 2, resp ectiv ely . T h ese d ata can b e o b tain ed free o f ch arg e v ia h ttp '//w w w ccd c.cam ac.u k /co n ts/retn ev in g .h tm l, o r fro m th e C am b n d g e C ry stallo g rap h ic D ata C en tre, 12 U nion R oad, C am b n d g e C B 2 1E Z , U K , fax- (+ 4 4 ) 1 2 2 3 -3 3 6 -0 3 3 ; o r e-m ail- d ep o sit@ ccd c.cam ac.uk. S u p p lem en tary d ata asso ciated w ith th is article can b e fo u n d, m th e o n lin e v ersio n , a t d o i:1 0 1 0 1 6 / j p o ly .2 0 0 9 0 8 .0 0 7 . References [1] K .D K arlin, Z . T yeklar, B io m o rg an ic C h em istry o f C o p p er, C h ap m an an d H ill, N ew Y or< , 1993 [2] S T o relh C . B elle. I G au iier-L u n eau . j L P ierre, E S ain t-A m an J M . L atour. L L P ape. D L uneau, Inorg. C hem . 3 9 (2 0 0 0) 3 5 2 6 {3j A . P o atet. X . R ibas A . L lobct, L C avallo, M S ola, j A m . C hem . S oc. 1 3 0 (2 0 08 ) 17710 |4 | D U tz.F W H em em am i. F H am p eJ.D T R ich en s.S S ch in d ler, Inorg. C h em 42 (2 0 0 3 )1 4 3 0 [5} M jag o d a, S W arzesk a, H P n tzk ow , H W ad ep o h l, P Im hof, J C S m ith . R . K ram er, J A m . C hem . S o c 1 2 7 (2 00 5 )1 5 06 1 . [6 | O K ahn. M o lecu lar M ag n etism , V C H P u b licatio n s, N ew Y ork, 1 9 9 3 [7] R .D W ilier, D C attesch i, O K ahn (E ds.), M ag n eto -S tructu ral C o rrelatio n in E xchange C o u p led S y stem s. D R eidel D o rd rech t, T h e N eth erlan d s 1 9 8 5 [8] P A G in sb erg . Inorg. C him . A cta 5 (1 9 7 1 ) 4 5 . [9] S M o h an ta, K .K . N an d a. R . W ern er, W H aase, A K M u k h eQ ee. S.K . D u tta, K . N ag. Inorg. C hem . 3 6 (1 9 9 7 )4 6 5 6 [10] J M an zu r.H M o ra,A .V eg a,E Sp o d m e,D V en eg as-Y azig i,M T G arlan d .M S El F allah, A . E scuer. Inorg. C h em 4 6 (2 0 07 ) 6 9 2 4 [11} R . R obson, in J L A tw o o d , JE D D avies, D .D M acN icoI, F V ogtle, R .B T oda (E d s). C o m p reh en sive S u p ram o lecu lar C h em istry , vol 6, P ergam o n , O xford, U K . 1996. p. 733 112] A J B lake. N R . C h am p n ess, P H u b b erstey , M A W ith ersb y , M . S ch rod er, C oord C h em R ev 183 (1 9 9 9) 117 [13] J-P S au v ag e (E d ). T ran sitio n M etals in S u p ram o lecu lar C h em istry , P ersp ectiv es in S u p ram o lecu lar C h em istry , vol 5, W iley , L ondon. 1 9 9 9 [14] G .R . D esiraju (E d.), T h e C rystal as a S u p ram o lecu lar E n tity P ersp ectives in S u p ram o lecu lar C h em istry , vol 2, W iley , L ondon, 1 9 9 6 [15] D B raga. F G rep io m , A G . G rp en , C ry stal E n g in eerin g F ro m M o lecu les an d C rystals to M aterials. K lu w er A cadem ic, D o rd rech t, T h e N eth erlan d s, 1999. [16] D B raga, L M aim . M . P olito. L S caccian o ce, G C ojazzi. F G rep io m , C oord C hem . R ev 2 1 6 (2 0 0 1 )2 2 5 [1 7 ] B . M o u lto n , M .J Z aw oro tk o, C hem . R ev 101 (2 0 0 1 ) 1629 [1 8 ] K .I. N attm cn . K R issan en , C rysL E ng. C o m m u n . 5 (2 0 0 3 ) 3 2 6 [1 9 ] D B raga, L M aim , j C hem . S o c, C h em C o m m u n . (2 0 04 ) 9 7 6 an d referen ces th erein . ]20] M . N ayak, R . K oner, H S to eck h -E v an s.S M o h an ta, C ry st G ro w th D es. 5 (2 0 0 5 ) 1907 {21 j T W u. B -H Y i, D U , Inorg. C h em 4 4 (2 0 0 5 ) 4 1 3 0 [22] Y Z h an g . B C hen, F.R . F ronczek, A .W M av erick , In o rg , C h em 4 7 (2 0 0 8 ) 4 4 3 3 [23] M . W illiam s, D K o u v etak ts, j O ’K eeffe, Inorg. C h em 3 7 (1 9 9 8 )4 6 1 7 [24] D M . W ellm an, S.V M atn g o d . K .E P ark er. S .M . H eald , C W an g , G E F ryxell. Inorg. C h em 4 5 (2 0 06 ) 3 8 2 6 [25] O R . E vans. 2L W an g . R .-G X iong. B M . F o x m an .W . U n , Inorg. C h em 3 8 (1 9 9 9) 2969 [2 6 ] F O dobel. B B ujolt. D M assio t, C hem . M ater 13 (2 0 01 ) 163 [27] S. M a, D Y uan. X .-S W an g . H .-C Z h o u . In o rg . C h em 4 8 (2 0 0 9 ) 2072. [2 8 ] M K ondo, M S h im am u ra, S -i N oro, S M m ak o sh i, A . A sam i, K . S eki, S K itagaw a, C hem . M ater 12 (2 0 0 0) 1288 [2 9 ] T K M aji, M O hba, S K itag aw a, Inorg. C h em 4 4 (2 0 05 ) 9 2 2 5 [30] C E W eb ster. A . C o tto n e, R S D rago, j A m C hem . S o c 121 (1 9 99 ) 1 2 1 2 7 [3 1 ] A K o n d o .H N oguchi. L C arlucci. D M P ro serp io .G C ian i.H K ajiro .T .O h b a, H . K anoh, K . K aneko. j A m . C h em S oc 1 2 9 (2 0 0 7 ) 1 2 3 6 2 [3 2 ] B D u tta. P B ag. B A dhikary, U F lorke, K N ag. J O ig . C h em 6 9 (2 0 0 4 ) 5 4 1 9 [33] P Z anello, S T am b u n m , P A V igato, G A M azzo cch m . C oord. C h em R ev 77 (1 9 8 7 )1 6 5 [34] P A V igato. S T am b u n m . D E F en ton . C oord C hem . R ev 106 (1 9 9 0) 25 [35] P G u ern ero , S T am b un m , P A V igato, C oord. C h em R ev 139 (1 9 95 ) 17. [36] A J A tkins. D B lack, A J B lake, A M arm -B ecerra. S. P arso n s, L k u iz-R am irezc, M S ch ro d er, J C h em S o c, C h em C o m m u n . (1 9 9 6) 4 5 7 [37] S K M an dal, L K T h o m p so n . M J N ew lan d s, E J G ate, K N ag, In o rg C h em 2 9 (1 9 9 0 )1 3 2 4 [38] L K T h o m p so n , S K M an d al, S.S T an d o n .JN B ridson, M .K P ark, Inorg. C h em 3 5 (1 9 9 6) 3 1 1 7 [3 9 ] J C B yen, W H . L ee, C .H . H an. Inorg. C h em C o m m u n . 9 (2 0 0 6) 563 [40] j C B yen, C .H . H an, K J K im Inorg. C h em C o m m u n . 9 (2 0 0 6 ) 171 [41] 5 O h tsu k a, M . K odera, K M o to d a, M O h b a. H . O k aw a, J C h em S o c, D alto n T ran s (1 9 95 ) 2 5 9 9 [42] S .K M andal, K N ag. J C h em S oc.. D alto n T ran s. (1 9 8 3 ) 2 4 2 9 [43] M . Y o n em u ra.Y M atsu m u ra.H F u rutach i, M O h b a, H O k aw a. Inorg. C h em 3 6 (1 9 9 7 )2 7 1 1 [44] Z. O tw m o w sk i. W M in o r. M eth o d s E nzym ol 2 7 6 (1 9 9 7 )3 0 7 [45] V N S o n ar, M . V en k atraj. S P ark in , P A C rooks, A cta C ry stallo g r., S ect. C 63 (2 0 0 7 ) 0 4 9 3 [46] B ru k er-N o n iu s 2 0 0 4 , a h *-!!. s a in t -piu s an d T W IN A B S, B ru k er-N o n iu s A X S In c, M ad iso n . W iscon sin. U S A [47} B roker, s a ik t -mu s V ersio n 6 45, B ru k er A X S In c . M ad iso n , W isco n sin , U S A 2003 ]48{ G M . S h eld n ck , s h e l x i-9 7 . C ry stal S tru ctu re R efin em en t P ro g ram . U n iv ersity o f G o ttin g en . 1 9 9 7 {49] F T u n a L P atron . Y Jo u rn au x .M A n d ru h , W . P lass.j -C T ro m b e .j C h em S o c. D alto n T ran s. (1 9 99 ) 539 [50] F T u n a. G I P ascu .J-P S u tter. M A n d ru h . S. G o lh en .j G u illev ic H P n tzk o w . in o rg . C h tm A cta 3 4 2 (2 0 03 ) 131 [51] E R uiz. P A lem an y . S. A lv arez.J C an o ,] A m . C h em S oc 1 1 9 (1 9 9 7)1 2 9 7 [52] E R uiz. P A lem an y . S A lvarez. J C ano, In o rg . C h em 3 6 (1 9 9 7 ) 3 6 8 3 tfsiaiUTSRQPONMLKJIHGFEDCBA A vailable online at w w w scien ced irect com "v7 ScienceDirect POLYHEDRON P o ly h ed ro n 27 (2 0 0 8 ) 1 4 0 8 -1 4 1 4 E L S E V IE R w w w elsev ier co m /lo cate/po ly S ynthesis, m olecular and supram olecular structure, spectroscopy and electrochem istry o f a dialkoxo-bridged diuranyl(V I) co m p o u n d S u san ta H a zra11, S am it M aju m d er1', M ichel F leck b, S asan k asek h ar M o h a n ta3’* 1 Department of Chemistry, University of Calcutta, 92 A PC Ray Road, Kolkata 700 009, India b Institute for Mineralogy and Crystallography, University of Vienna, Althanstr 14, A-1090 Vienna, Austria R eceiv ed 20 N o v em b er 2 0 0 7 , accep ted 10 Jan u ary 2008 A v ailable o n lin e 7 M arch 2008 A bstract T he synthesis, m olecular and supram olecular structure, spectroscopy and electrochem istry' o f a dialkoxo-bridged dturanyl(V l) com ­ pou nd [(U 02)2(L )2(dim ethylform am ide)2] (1) derived from the S chiffbase ligand H 2L , obtained on condensation o f 3-m ethoxysalicylaldehyde w ith 2-am inoethanol, have been described T ire com pound has been characterized by IR , U V -V ts, N M R an d m ass spectra, as w ell as by single crystal X -ray stru ctu re determ ination. T he title co m p ou n d crystallizes in the m onocltnic P2\!n space group w ith the follow ing unit cell param eters a - 10 5713(2) A, b= 11 9895(2) A , c = 12.9372(2) A, p = 102 773(3)° an d Z = 2 T lu fstru ctu re o f 1 reveals that it is a dialkoxo-bridged dm uclear com pound o f urE niuin(V l) containing tw o d ep ro to n ated ligands, [L ]2", tw o dtm ethylform am ide (dm f) m olecules an d tw o U O y2'*' centers T he coordination geom etry aro u n d the uranium ) V I) center is distorted pentagonal bipyram idal, tw o urany! oxygens occupy the axial positions, w hile the basal pentagonal plane is defined by a phenoxo oxygen, tw o bridging alkoxo oxygens, one im m e nitrogen, and one d m f oxygen T hree C -H O type hydrogen b o n d s involving one urany] oxygen, tw o d m f hydrogens and the im ine hydrogen link the dm uclear units into a tw o-dim ensional netw ork. T he E S I-M S spectrum o f 1 in dim ethylsulfoxide exhibits tw o peaks at m/z = 464 17 and 927 26, w hich are assignable to ((U C A ^l^H J4' (60% ) and [(UOj ELHF (100% ) cations, respectively C yclic voltam m etric m easurem ents o f 1 reveal th at the urantum (V I) center is reduced quastreverstbly at £"i /2 = -1 1 1 2 m V w ith A £,> = 97 m V © 2008 E lsevier L td A ll rights reserved Kevnords U ran y ], D iu ran y l, C y clic v o ltam m etry, H y d ro g en b o n d , T w o -d im en sio n al, M ass sp ectrum 1. Introduction A ctinide ch em istry is im p o rtan t d u e to som e p ractical concerns like th e ex tractio n o f actin id es fro m sea w ater, rem oval o f actin id es fro m soil, g ro u n d w ater, h u m an betngs, an d rad io activ e w aste [1-7] H ow ever, alth ou g h the chem istry o f the 5 f elem ents h as been highly considered in recent years an d is u n d er d ev elo p m en t [1-30], th e n u m b er o f co o rd in atio n co m p o u n d s o f actin id es is m u ch less th an th at o f tran sitio n m etals an d lan th an id es A g ain , am o n g st th e actinides the ch em istry o f u ran iu m h as been m o re explored [1-30] It sh o u ld be m en tio n ed th at a n u m b er o f ‘ C o rresp o n d in g au th o r T el + 9 1 33 2 3 5 0 8 38 6 , fax + 9 1 33 23519755 E-mail address sm _ cu _ ch em @ y ah o o co in (S M o h an ta) 0277-53 87/S - see fro n t m atter © 2008 E lsev ier L td A ll rig h ts reserv ed d o i 10 1016/j p o ly 2008 01 029 com plexes o f u ran iu m m different o x id atio n states (III, IV , V an d V I) h av e been rep o rted in recen t y ears [1-30] D u e to the v ariab le o x id atio n states o f th e u ran iu m cen­ ter (III, IV , V an d V I), electrochem ical stu d ies [8-12] o f u ran iu m com plexes are v alu ab le to u n d erstan d th e influ­ ence o f th e ligand en v iro n m en t o n th e relativ e stab ility o f th e U m , U lv , U v an d U vl species in so lutio n. T h e species o f u ran ium in the V I o x id atio n state is th e lin ear u ran y l d icatio n , U 0 22+. It is k n o w n th at th e oxygen ato m s o f U 0 22+ are ab le to engage in h y d ro g en b o n d in g in teractio n s [13] E vidently, in ad d itio n to th e ab o v e m en­ tio n ed p ractical co n cern s, co m p o u n d s o f th e u ran y l d icatio n m ay also be an ap p ealin g m em b er to d ev elo p su p ram o lecu lar arch itectu res [31-38]. H o w ev er, this p o ssi­ bility h as n o t been w ell explored in p rev iou sly rep o rted u ran y l com plexes. S Hazra ct al I Polyhedron 27 (2008) J408-1414 1409 T ab le I C ry stallo g raph ic d a ta fo r 1 F o rm u la C :6Ib 6 N 4O l2U : M o lecular w eig h t 1072 65 red m o n o clin ic C ry stal co lo r C ry stal sy stem S p ace g ro u p a (A ) ^O H b( A ) %A) C h a rt I C h em ical stru ctu re o f fF L l> (°) P2\/n 10 5713(2) 11 9 8 9 5 (2 ) 12 9 3 7 2 (2 ) 102 773(3) E (A 2 3) 1599 14(5) z 2 A few S ch iff b ase lig an d s h av e b een p rev io u sly u tilized to d eriv e u ran iu m co m p o u n d s S alm o n et al h av e rep o rted a n u m b er o f m o n o -, tn -, te tra - an d h ex an u clear u ran iu m (IV ) co m p lex es d eriv ed fro m c o m p a rtm e n ta l S ch iff T em p eratu re (K ) b ase lig an d s o b tain ed b y th e co n d en satio n o f sah cy lald eh y d e o r su b stitu ted sah cy lald ehy d es w ith d iam in es [1 4 16] A m o n o n u c le a r u ran y l(V I) co m p ou n d in a sim ilar S can m o d e N u m b er o f fram es 2 9 3 (2 ) 8 1 5 2 -6 9 944 10 179 2 228 1000 <p- an d o sc a n s 510 lig an d en v iro n m en t h as b een re p o rte d b y Ik e d a et al. [8], U sin g a tn d e n ta te lig an d o b ta ine d b y th e co n d en satio n o f 3 -m elh o x y salicy lald eh y d e a n d o -am in o p h en o l, a d ip h en o x o -b n d g ed d iu rany l(V I) c o m p o u n d h as b een rep o rted b y R eed ijk an d co w o rk ers [17] A sen es o f d ialk o xo b n d g ed d iu ran y l(V I) co m p o u n d s d eriv ed fro m trid e n ta te lig an d s o b tain ed b y th e co n d en satio n o f sah cylaldeh y d e o r su b stitu ted sah cy lald eh y d es an d su b stitu ted 2 -am in o eth an o l hax'e b een rep o rted b y R a o an d co w o rk ers [18] H erein , w e re p o rt th e sy n th esis, m o lecu lar a n d su p ram o lecu lar stru ctu re, sp ectro sco p y an d electro ch em istry o f a d ialk o x o -b rid g ed d iu rany l(V I) co m p ou n d [(U 0 2)2(L )2(d im eth y lfo n n am id e)2] (1) d eriv ed fro m th e S ch iff b ase lig an d (H 2L , C h a rt 1) o b ta in e d b y th e co n d en satio n o f 3 m eth o x y salicy lald eh y d e w ith 2 -am m o eth an o l. 2. E x p erim en tal 2 1 Materials and physical methods A ll th e reag en ts an d so lv en ts w ere p u rch ased fro m co m ­ m ercial so u rces an d w ere u sed as receiv ed . T h e S ch iff b ase 20 p (m m ’ 1) A a k (g e m '3) F[ 0 0 0 ) S can tim e p er fram e (s) R o ta tio n w id th (° ) C ry stal-d etecto r-d ist (m m ) A b so rp tio n -co rrectio n Tmm T 1 m ax In d ex ran ges R eflection s co llected In d ep en d en t reflectio n s (% > 4 4 % » ( % > 4 a (iv )) (fo r all Ff) Ri /h '-R? -n^ha 17, -1 9 < is, a R i = E II% l-l% !!/E I% l] w R2 = E % % : - 12911 7002 0 0 2 8 7 /0 0706 0 0 4 1 2 /0 0 7 5 4 4 jl/2 b th e co m p lex w as 1 m M . C y clic v o ltam m etric m easu rem en t in d im eth y lsu lfo x id e so lu tio n w as carried o u t w ith a th reeelectro d e assem b ly co m p risin g a g lassy c a rb o n d isk w o rk in g electro d e, a p la tin u m au x iliary electro d e an d an aq u eo u s A g /A g C l referen ce electro d e. T h e referen ce elec­ tro d e w as se p a ra te d fro m th e b u lk so lu tio n u sin g a T B A P salt b rid g e in aceto n itrile. U n d er th e ex p erim en tal co n d i­ tio n s, th e E\/2 v alu e o f th e ferro cene/ferro cem u m co u p le w as 4 0 0 m V . o f th e lig an d an d title c o m p o u n d w ere p erfo rm ed in o p en atm o sp h ere E lem en tal (C , H an d N ) an aly ses w ere p er­ fo rm ed o n a P e rkin -E lm e r 2 4 0 0 II an aly zer. IR sp ectra w ere reco rd ed in th e reg io n 4 0 0 -40 0 0 cm -1 o n a P e rkin E lm er R X IF T sp e c trop h o to m e te r w ith th e sam p les as K B r d isk s E lectro n ic sp ectra w ere o b tain ed w ith a H itach i U -3 5 0 1 sp e c tro p h o to m e ter T h e electro sp ray io n izatio n m ass sp ectra w ere reco rd ed o n a M icro m ass Q to f Y A 2 6 3 m ass sp ectro m eter. T h e *H N M R (3 0 0 M H z) sp ectra w ere reco rd ed o n a B ru k er A v ance D P X -3 0 0 sp ectro m eter. 2 2 T h e c o n ce n tra tio n o f th e su p p o rtin g electro ly te, tetrab u ty lam m o n iu m p erch lo rate (T B A P ), w as 0.1 M , w h ile th a t o f 28 m u lti-scan 0 7499 0 9051 - 2 0 5$ / < 2 0 lig an d H 2L w as p rep ared b y co n d en sing 3 -m eth o x y salicy lald eh y d s w ith 2 -am in o eth an ol in m eth an o l T h e sy n th eses C y clic v o ltam m etric (C V ) m easu rem en t w as d o n e u sin g a B io an aly tical S y stem B A S 100B electro ch em ical an aly zer 30 2 Synthesis of [(U02)2(L)2(dmf)2] (1) T o a stirred d im eth y lfo rm am id e (d m f) so lu tio n (4 0 m l) c o n tain in g H 2L (0 .0 9 8 g, 0 .5 m m o l) a n d u ra n y l n itra te h e x ah y d ra te (0 .2 51 g , 0 5 m m o l) w as a d d e d a d m f so lu tio n (1 0 m L ) o f tn e th y la m in e (0 .1 01 g , 1 m m o l) T h e resu ltin g red so lu tio n w as filtered to rem o v e an y su sp en d ed p articles an d th e filtrate w as k e p t a t ro o m te m p e ra tu re . A fte r a few h o u rs a red cry stallin e c o m p o u n d c o n ta in in g d iffractab le sin g le cry stals w ere d ep o sited , th en co llected b y filtratio n a n d w ash ed w ith m e th an o l. Y ield . 0 2 4 g (9 0 % ). Anal C alc, fo r C 2 6 H 3 6N4Oi 2U2 : C , 2 9 .1 1 ; H , 3 38; N , 5 .2 2 . F o u n d : C , 2 9 .2 0 ; H , 3 .4 6 , N , 5 .3 1 % . IR (K B r/c m -1 ): u (C = N ), 1636 v s, u (0 = U = 0 ), 891 m . S 1410 Hazni et al I Polyhedron 27 (200S) 1408-1414 2.3. Structure determination and refinement of [(U02)2(L)2(dmf)2J (1) c i e s a r e f u r th e r c o o r d i n a t e d t o o n e d m f m o l e c u l e , r e s u l t i n g m th e fo rm a tio n o f th e title c o m p o u n d . S i n g l e - c ry s t a l X - r a y i n t e n s i t y d a t a o f t h e t i t l e c o m p o u n d 3 2. IR, UV~Vis, mass and NMR spectra w e re c o lle c te d a t 2 9 3 K o n a N o n iu s K a p p a d iffra c to m e te r w ith a C C D a re a d e te c to r, u s in g M o K , ra d ia tio n h a v in g T h e I R s p e c tr u m o f H 2 L e x h i b i t s o n e s t r o n g a b s o r p t io n 2 = 0 7 1 0 7 3 A . T h e in te n s ity d a ta w e re p ro c e s s e d w ith th e a t 1 6 4 4 c m -1 d u e to th e s tre tc h in g v ib ra tio n o f th e im in e N o n iu s p ro g ra m s u ite s D E N Z O -S M N [3 9 ] a n d c o rre c te d m o ie ty . In th e d iu ra n y l(V I) c o m p o u n d 1 , th e im in e s tre tc h ­ a b s o r p ti o n i n g is o b s e r v e d a t a s l i g h t l y l o w e r f r e q u e n c y ( 1 6 3 6 c m - 1 ) . A e f fe c ts [ 4 0 ] T h e c r y s t a l s t r u c tu r e w a s d e t e r m i n e d b y d i r e c t m e d i u m i n t e n s i ty b a n d a t 8 9 1 c m - 1 i n t h e I R s p e c tr u m o f 1 m e t h o d s a n d s u b s e q u e n t F o u r i e r a n d d if f e r e n c e F o u n e r c a n b e a s s i g n e d t o t h e s t r e tc h i n g v i b r a ti o n o f t h e 0 = 0 = 0 s y n t h e s e s , f o l l o w e d b y f u l l - m a t r i x l e a s t- s q u a r e s r e f i n e m e n t s m o i e t y . T h i s a s s i g n m e n t is s u p p o r te d b y t h e r e s u l t s o f C a t - fo r on L o re n tz , F2 p o l a r i s a t io n , b a c k g ro u n d and [ 4 1 ,4 2 ] A ll H a t o m s c o u ld b e l o c a te d in t h e d if f e re n c e F o u r i e r m a p a n d r e f i n e d w i th o u t c o n s t r a in t s , e x c e p t f o r t h e t a l i n i e t a l . a n d I k e d a a n d c o w o r k e r s [ 1 9 ,2 0 ] . T h e U V - V i s s p e c tr u m o f H 2 L e x h i b i ts t w o b a n d s a t 261 nm U s in g a n is o tro p ic tre a tm e n t o f th e n o n -H a to m s a n d u n re ­ m o !-1 c m -1 ) a n d a s h o u ld e r a t 2 9 4 n m (£ = 5 4 0 L m o l-1 s t r a i n e d i s o tr o p ic t r e a tm e n t o f t h e H a t o m s , t h e r e f i n e m e n t c m -1 ). In th e s p e c tru m c o n v e rg ed a t a n R v a lu e o f 2 9 % C r y s ta l d a t a , d e t a i l s o f t h e (e = 2 4 9 7 L m o l-1 c m -1 ) a n d 4 1 8 n m (e = 2 0 9 L m e th y l h y d ro g e n a to m s , w h ic h w e re tre a te d a s “ rid in g ” of 1, one band at 256 nm 7 6 8 6 L m o l-1 c m -1 ) a n d tw o s h o u ld e rs 1 9 3 5 L m o l-1 c m -1 ) a n d 4 0 2 n m m e a s u re m e n t a n d re fin e m e n t a re g iv e n m T a b le 1 (e = at 346 nm (e = (e = 1 0 5 9 L m o l-1 c m -1 ) a p p e a r d u e to a n in te rn a l lig a n d tra n s itio n . A n a d d itio n a l band at 475 nm 3 . R e s u l t s a n d d is c u s s io n ( e = 3 4 9 L m o l - 1 c m - 1 ) in t h e s p e c t r u m o f 1 a p p e a rs d u e to a c h a rg e tra n s fe r fro m th e u ra n y l o x y ­ 3 l Synthesis g e n s to th e u ra n iu m (V I) c e n te r. T h e c o m p o s i t i o n o f 1 w a s f u r th e r v e r if i e d b y e l e c t r o ­ T h e title c o m p o u n d [ ( U 0 2 )2 (L )2(d m f)2 ] (1 ) 1S re a d ily f o r m e d o n r e a c t i n g u r a n y l n i t r a te h e x a h y d r a t e , H 2 L , a n d trie th y la rm n e in d im e th y lfo rm a m id e . D e p r o to n a t i o n of sp ray io n iz a tio n m ass s p e c tro s c o p y (E S I-M S p o s i t iv e ) T h e E S I - M S s p e c tr u m o f 1 in d i m e t h y l s u l f o x i d e e x h i b i t s tw o p e a k s a t to m/z = 464 [(U 0 2 )2 L 2 H f 1 7 a n d 9 2 7 .2 6 , w h i c h a r e a s s i g n ­ b o th th e p h e n o lic a n d a lc o h o lic h y d ro g e n s ta k e s p la c e m a b le (6 0 % ) t h e r e a c t i o n m i x t u r e . A s w ill b e d i s c u s s e d b e l o w , t w o u r a - c a t i o n s , r e s p e c t i v e l y . A s s h o w n in F i g . 1 , t h e i s o t o p ic d i s t r i­ and [(U 0 2)2L H f (1 0 0 % ) n y l( V 7 ) s p e c ie s a r e b r i d g e d b y t w o a l k o x o o x y g e n a t o m s o f b u tio n p a tte rn s o f th e o b s e rv e d p e a k s a n d th e s im u la te d t w o d e p r o t o n a t e d l i g a n d s , w h ile t h e p h e n o x o o x y g e n a c t s s p e c tra l a s a t e r m in a l d o n o r c e n t e r E a c h o f t h e t w o u r a n y l ( V I ) s p e ­ o th e r p a tte rn s a re in e x c e lle n t a g re e m e n t w ith 92726 404 17 S im u la te d S im u la te d 4S3 4S4 465 466 F ig . I r~467 923 E S I- M S s p e c tr u m o f [ ( U O , h ( L h ( d m f ): ] ( t ) in D M S O 928 930 each S Hazru et al I Polyhedron 27 (2008) 1408-1414KJIHGFEDCBA T a b le 2 S e le c te d b o n d le n g th s (A ) a n d a n g le s (°) o f 1 U (J )-0 (1 ) 2 2 5 4 (4 ) U ( l)— 0 (2 ) 2 3 5 8 (3 ) U (I)-0 (2 A ) 2 3 5 1 (3 ) U (l)-0 (3 ) I 7 9 0 (4 ) U (l)-0 (4 ) 1 7 8 6 (3 ) U ( 1 )— 0 (5 ) 2 4 2 9 (4 ) U (I)-N (!) 2 5 6 4 (4 ) 3 8 6 1 (4 ) U (l) U (!A ) 0 (3 )-U ( i )-0 (4 ) 1 7 8 6 8 (1 1 ) 0 ( 3 ) -U ( l)- 0 ( l) 9 0 2 3 (1 3 ) 0 (3 )-U (1 )-0 (2 ) 9 2 2 8 (1 0 ) 0 (3 )-U (l)-O (2 A ) 8 9 5 6 (1 1 ) 0 (3 )— tJ( 1 )— 0 (5 ) 9 3 1 4 (11 ) T h e p ro to n N M R s p e c tru m (F ig . S I m s u p p le m e n ta ry 0 (3 )— U ( 1)— N ( 1) 9 3 5 8 (1 1) in fo rm a tio n s ) o f th e lig a n d H 2L in C D C 1 3 e x h ib its six 0 (4 )— U ( 1 )— 0 ( 1) 9 0 7 3 (1 4 ) p e a k s a t 13 6 7 (b r, 2 H , p h e n o lic O H a n d a lc o h o lic O H ), 0 (4 )— U ( I)— 0 (2 ) 8 6 4 0 (1 0 ) 8 .3 8 (s, 1 H , iirn n e ), 6 7 7 -6 .9 6 (m , 3 H , a ro m a tic ), 3 .8 9 - 0 (4 )-U (l)-0 (2 A ) 9 0 0 2 (1 1 ) 0 (4 )-U (l)-0 (5 ) 0 (4 )-U (!)-N (l) 8 7 9 7 (1 0 ) F ig 3 C ry s ta l s tru ctu re o f [(U C K b C L F C d sn f^ ] (1 ) w ith th e a to m la b e llin g sc h e m e H y d ro g e n a to m s a re o m itte d fo r c la rity S y m m e try c o d e A , I - 1 - r, - r 3 9 3 (t, 2 H , C H 2 o f C H 2 N = C H ), 3 7 4 -3 7 7 (t, 2 H , C H 2 o f C H 2O H ) a n d 3 .8 9 p p m (s, 3 H , O C H 3). O n th e o th e r 8 5 8 9 (1 3 ) 0 (I)-U { !)-0 (2 ) 1 3 8 0 7 (9 ) 1 5 2 0 4 (8 ) h a n d , th e s p e c tru m o f c o m p le x 1 m D M S O -r/f) (F ig . 2 ) is 0 (!} -U (i)-0 (2 A ) c o m p ris e d o f n in e p e a k s . In c o m p a ris o n to th o s e in H 2L , 0 ( l)- U ( l) - 0 (5 ) 7 5 8 3 (8 ) th e m e th o x y h y d ro g e n s (2 .7 3 p p m (s, 3 H , O M e )) a n d u n in e 0 (1 )-U (1 )-N (1 ) 0 (2 )-U (l)-0 (2 A ) 7 0 5 2 (9) h y d ro g e n (7 9 5 p p m (s, 1 H , im in e )) a re a little s h ie ld e d . 6 9 8 6 (1 1 ) 1 4 5 6 2 (7) 0 (2 )— T J( 1 )— 0 ( 5) A g a in , s p littin g o f th re e a ro m a tic h y d ro g e n a to m s (6 6 2 - 0 (2 )-U (l)-N (l) 6 .6 7 (t, iH , a ro m a tic ) a n d 7 2 1 -7 .2 7 p p m (t, 2 H , a ro m a tic )) ta k e s p la c e T h e p re s e n c e o f th e d m f lig a n d in th is c o m p le x 0 (2 A )-U (l)-0 (5 ) 7 6 .2 7 (9 ) 0 (2 A )-U (1 )-N (1 ) 1 3 7 3 8 (7 ) is e v id e n ce d b y tw o s in g le ts (2 8 8 (s, 3 H , C H j (D M F )) a n d 0 (5 )— U (l)— N ( t) 1 4 5 6 7 (9 ) 3 9 9 p p m (s, 3 H , C H 3 (D M F ))) d u e to th e m e th y l g ro u p s a n d o n e sin g le t a t 9 .4 5 p p m (s, IH , C H O (D M F )) d u e to th e a m id e m o ie ty . I t m a y b e m e n tio n e d th a t b o th !H a n d 6 7 5 5 (1 0 ) 1 1 0 1 4 (1 !) U (l)-0 { 2 )-U (IA ) S y m m e try c o d e A , 1 - \, 1 — y, -z n C N M R s p e c tra h a v e b e e n u se d to c h a ra c teriz e u ra n iu m (IV ) a n d u ra n iu m (V I) c o m p o u n d s [1 ,8 ,1 3 ,1 5 -1 9 ] T h e s tru c tu re o f 1 re v e a ls th a t it is a d ia lk o x o -b rid g e d d in u c le ar c o m p o u n d o f u ra n y l(V I) c o n ta in in g tw o d e p ro - 3 3 Description of the structure to n a te d lig a n d s , [L j~ _ , tw o d im e th y lfo rm a m id e (d m f) m o l­ e c u le s a n d tw o U 0 22 + c e n ters . O n e h a lf o f th e m o le c u le is T h e c ry s ta l s tru c tu re o f 1 is s h o w n m F ig . 3 , w h ile se le c te d b o n d le n g th s a n d a n g le s a re liste d in T a b le 2 . s y m m e try re la te d to th e o th e r h a lf d u e to th e p re s e n ce o f a c e n te r o f in v e rs io n . T h e u ra n iu m (V T ) c e n te r m th is 1412 S Hazru el al I Polyhedron 27 (2008) 1408-1414 compound is heptacoordinated by the phenoxo oxygen and inline nitrogen of a [L]2-, two uranyl oxygens, two bridging alkoxo oxygens of two [L]“~, and one oxygen atom of a dmf molecule. The coordination geometry around the uranium(VI) center is distorted pentagonal bipyramidal; two uranyl oxygens (0(3) and 0(4)) occupy the axial positions, while the basal pentagonal plane is defined by the phenoxo oxygen (0(1)), bridging alkoxo oxygens (0(2) and 0(2A)), lmtne nitrogen (N( 1)) and dmf oxygen (0(5)). As expected, due to re-back bonding, the U-O bond lengths (TJ( 1 )— 0(3) = 1 790(4); U(l)-0(4) = 1.786(3) A) involving uranyl oxygens are much shorter than the U-O(phenoxo), U O(alkoxo), U-O(dmf) and U-N(imine) bond distances in the basal plane, which he m the range 2.254(4)2.564(4) A. The U-0(phenoxo, terminal), U-0(alkoxo, bridging), U-N(imine) and U-O(dmf) distances in 1 lie m the ranges observed in the previously reported related com­ pounds [17,18,28-30] The trammel angle (178 68(1!)°) involving the axial ura­ nyl oxygens as well as the asoid angles (89.56(11)93 58(11)° for 0(3) and 85.89(11)-90 73(14)° for 0(4)) involving the axial oxygens and the five donor atoms in the basal plane are close to the ideal values Again, from the least-squares N 04 basal plane, the nitrogen or oxygen atoms defining the plane are deviated by only ca 0 06 A and the metal center is displaced by only 0.07 A However, the ranges of apex apex (O- O or O N) distances and internal angles (O O 0 ,0 N O or N- O O) inside the basal pentagonal plane are 2 696-2.952 A and 100.0-114.7°, respectively, indicating distortion of the coordination geometry from the ideal case In the dinuclear unit, the metal centers are separated by 3.861(4) A with a U(l)-0(2)-U(lA) bridge angle ofl 10.14(11)°. Three C-H- • O type hydrogen bonds involving one ura­ nyl oxygen (0(4)), two dm f hydrogens (H(12B), H(13C)) and the imine hydrogen (H(7)) link the dinuclear units into a two-dimensional network. A simplified illustration of the hydrogen bonded two-dimensional sheet is demonstrated m Fig. 4. As shown in this figure, one uranyl oxygen (0(4)) of a dinuclear unit U(l)-- U(1A) acts as a triple acceptor and interacts with the dmf hydrogens H(12BD) and H(13CD) of the dinuclear unit U(1D)- -U(IE) as well as with the umne hydrogen H(7F) of the dinuclear unit U(1F) • U(1G) Similarly, another uranyl oxygen 0(4A), which is symmetry related to 0(4), of the dinuclear unit U(l) -U(1A) interacts with the hydrogens of two other dinuclear units U(1H) • U(II) and U(1J) U(IK) Clearly, one dinuclear unit is interlinked with four other units to result in the creation of a two-dimensional sheet (Fig 4) The geometries of the hydrogen bonds are given in Table 3. 3 4 Electrochemisti y The cyclic voltammetric measurement of complex 1 was carried out in dimethylsulfoxide at 25 °C under a nitrogen Fig 4 Perspective view to dem onstrate the hydrogen bonding interactions and the resultant two-dimensional topology m [(UOsJclLJcldmOJ (1). The atoms C(2), C(3), C(4), C(5), C(I0) and 0(6) are omitted for clarity Among the hydrogen atom s, only three participating in hydrogen bonds are shown Symmetry codes D, 1 5 ~ ,\, y - 0 5, 0 5 - e, E, 0 5 + .\, 0 5 — y, 0 5 + z, F, I 5 - a , 0 5 + y, 0 5 G, 0 5 + a , 1 5 - v, 0 5 + z, H, a - 0 5, 0 5 - r, : - 0 5, I, 0 5 - \. y - 0 5, -0 5 J, v - 0 5, I 5 - v, r - 0 5, K, 0.5 - \, 0 5 + y, -0 5 - c S’ Hazra et a! I Polvhetlron 27 (2008) 1408-1414 1413 T able 3 G eom etries (distances m (A ) and angles in (°)) of the hydrogen bonds in I D -tl A D A H A D -H C (I2 D )-H U 2 B D ) 0 (4 ) 3 272(5) 2 42 147 2 C (I3 D )~ H (!3 C D j 0 (4 ) 3 463(7) 2 69 2 27 137 8 C (7 F )-H (?F ) 0 (4 ) 3 270(5) A 171(3 ) Sym m etry codes’ as m Fig 4 Fig 5 P art (— 400 to — 1650 m V ) o f the cyclic voltam m ogram of com plex 1 m dim cthylsulfoxide in the scan range 0 to -1800 m V at a scan rate of 50 m V s'1. atm osphere using glassy carbon as the w orking electrode and at a scan rate of 50 m V /s. In the potential range o f 0 to -1 8 0 0 m V , one cathodic response at -1 1 6 0 m V and, in the return sw eep, one anodic peak at -1 0 6 3 m V are observed T he part (ca — 400 to -1 6 5 0 m V ) containing the peaks o f the cyclic voltam m ogram for the 0 to - 1800 m V scan range is show n in Fig. 5, w hile the square w ave voltam m ogram (SW V ) related to this couple is show n in F ig. 6 T he E\n value o f this couple is — 1112 m V . It m ay be noted that the peak position {-1120 m V ) in SW V (F ig 6) is very close to the Ey2 value obtained from cyclic voltam m ogram . A gain, the value o f the difference (A £P) o f the cathodic and anodic peak potentials is 97 m V , indicat­ ing the quasireversible nature o f the reduction-oxidation process. T he observation o f only one couple clearly indicates th at the 2 equiv. uram um (V I) centers m 1 are reduced (U (V I)U (V I) -♦ U (V )U (V )) at -1 1 6 0 m V and the reduced uranium (V ) centers are oxidized (U (V )U (V ) -*■ U (V I)U (V I)) at -1 0 6 3 m V . It m ay be relevant to discuss the electrochem ical proper­ ties o f only a few previously reported results. Ikeda et al. have reported that the quasireversible U (V I) -*■ U (V ) reduc­ tion o f uranium com pounds derived from Af,A '-dtsalicylidene-o-phenylenediam inate, dibenzoylm ethanate and carbonato ligands takes place at -1 5 5 0 m V , -1 3 6 2 m V and ca. -751 m V , respectively [12] K iplinger and his group have show n that uraniu m (IV ) com pounds m ay exhibit a sin­ gle reversible reduction (U (IV ) -♦ U (III)), a reversible reduction (U (IV ) -* U (III)) and oxidation (U (IV ) - U (V )), as w ell as tw o reversible reductions and one reversible oxida­ tion (U (IV ) -> U (V )). T he E\/2 values for these reduction F ig 6 S quare w ave voltam m ogram (-8 0 0 to -1300 m V ) of com plex 1 in dim cthylsulfoxide at a scan rate o f 50 m V s '5 and oxidation processes lie in the ranges -1 8 3 0 m V to -2 7 9 0 m V and + 180 m V to -4 8 0 m V , respectively [9-11] 4. Conclusions T he dialkoxo-bridged diuranyl(V l) com pound described here is an addition to the fam ily o f uranium chem istry and actinide chem istry. T he com pound has been characterized by elem ental analysis and its X -ray single crystal structure, as w ell as by IR , N M R and m ass spectra. T he participation o f uranyl oxygens in the hydrogen bonding interactions and in developing a tw o-dim ensional supram olecular struc­ ture have been enlightened in the present investigation. A cyclic voltam m etric study o f the title com pound has been perform ed and com pared w ith the electrochem ical proper­ ties o f previously reported uranium com pound s. Acknowledgements F inancial support from the D epartm ent o f Science and T echnology, G overnm ent o f India (to S M , S R /S 1/IC -27/ 2002), and C S IR , G overnm ent of India (fellow ship to 5. H azra and S M ajum der) is gratefully acknow ledged 1414 5 Huzra et ai i Polyhedron 27 (2008) J408-1414 S Mohanta thanks Mr Supnya Dutta, Department of Chemistry, Indian Association for Cultivation of Science, for electrochemical measurements The valuable sugges­ tions of one reviewer are gratefully acknowledged Appendix A. Supplementary material CCDC 666667 contains the supplementary crystallo­ graphic data for this paper. These data can be obtained free of charge via http.//www cede cam.ac.uk/conts/retrievmg html, or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax. (T44) 1223-336-033; or e-mail: deposit@ccdccam.acuk Supplementary data associated with this article can be found, in the online version, at doi.10 1016/ j poly 2008 01.029. References [1] J Xu, K.N Raymond, lnorg Chem 38(1999) 308 [2] A E V Gorden, J Xu, K N Raymond, P Durbin, Chem Rev 103 (2003) 4207 [3] M Sawickt, J -M Siaugue, C Jacopm, C Moulin, T Bailiy, R Burgada, S Meunicr, P Baret, J -L Pierre. F Taran, Chem Eur J II (2005) 3689 [4} S Shmkai, H Koreishi, K Ueda, T Arimura, O Manabe, J Am Chem Soc 109 (1987) 6371 [5] P D Beer, G D Brindley, D O Fox, A Grieve, M i Ogden, F Szemes, MGB Drew, J Chem Soc, Dalton Trans (2002) 3101 [6] S D Conradson, D Manara, F Wastin, D L Clark, G H Lander, L A Morales, J Rebizant, V V Rondmella, lnorg Chem 43 (2004) 6922 [7] 1 K S Gambarotta, L Thompson, PJ Hay, G P A Yap, Organometallics 20 (2001) 5440 [8] K Mizuoka, S -Y Kim, M Hasegawa, T Hoslu, G Uchiyama. Y Ikeda, lnorg Chem 42 (2003) 1031 [9] J L. Kiplmger, K D John, D E Morns, B L Scott, CJ Bums, Organometalhcs 21 (2002) 4306. [10] E J Schelter, J M Veauthier, J D Thompson, B L Scott, K D John, D E. Morns, J L Kiplmger, J Am Chem Soc 128 (2006) 2198. [11] J L Kiplmger, D E Morris, B L Scott, C J Burns, Organometalhcs 21 (2002) 3073 [12] K Mizuoka, S Tsushima, M Hasegawa, T Hoshi, Y Ikeda, lnorg Chem 44 (2005) 6211 [13] H Sopo, J Sviih, A Valkonen, R Sillanpaa. Polyhedron 25 (2006) 1223 [14] L Salmon, P Thuery, M Ephntikhine, Polyhedron 25 (2006) 1537 [15] L Salmon, P Thuery, M. Ephntikhine, J Chem Soc , Dalton Trans (2004) 4139 [16] L Salmon, P Thuery, M Ephntikhine, J Chem Soc , Dalton Trans (2004) 1635 [17] R Kannappan, D M Tooke, A L Spek, J Reedijk, lnorg Chim Acta 359 (2006) 334 [18] PV Rao, CP. Rao, A Srcedhara, EK Wegehus, K Rissanen, E Kolehmamen, J Chem Soc, Dalton Trans (2000) 1213 [19] L Cattalmi, S Degetto, M Vidali, PA Vigato, lnorg Own Acta 6 (1972) [20] K. Mizuoka, Y Ikeda, lnorg Chem 42 (2003) 3396 [21] P Gary Eller, PJ Vergamim, lnorg Chem 22 (1983) 3184 [22] C J, Bums (INC-4), A P Sattelberger, lnorg Chem 21 (1982) 3692 [23] Z Szabd, I Furo, I Csoregh, J Am Chem Soc 127 (2005) 15236 [24] A Gunther, G Geipel, G Bernhard, Polyhedron 26 (2007) 59 [25] W J Evans, S A Kozimor, J W Zilier, Science 309 (2005) 1835 [26] E Salmon, P Thuery, M. Ephntikhine, Chem. Commun (2006) 856 [27] J Berthet, P. Thuery, M Ephntikhine, lnorg. Chem 44 (2005) 1142. [28] Z -T Yu, G-H Li, Y-S Jiang, J-J Xu, J -S Chen, J Chem Soc, Dalton Trans (2003) 4219 [29] L Salmon, P Thuery, M Ephntikhine, Polyhedron 22 (2003) 2683 [30] M P Wilkerson, CJ Burns, DE Morris, RT Paine, BL Scott, lnorg Chem 4! (2002) 3110 [31] R. Robson, m JL Atwood, J.E D Davies, DD MacNicol F Vogtle, R B Toda (Eds), Comprehensive SupramolecularChemistry, vol 6, Pergamon, Oxford, 1996, pp 733-755 [32] A J Blake, N R Champness, P Hubberstey, M A Withersby, M Schroder, Coord Chem Rev 183 (1999)117 [33] J -P Sauvage (Ed ), Transition Metals in Supramolecular Chemistry (Perspectives m Supramolecular Chemistry), vol 5, Willey, England, 1999 [34] G R Desiraju (Ed), The Crystal as a Supramolecular Entity (Perspectives m Supramolecular Chemistry), vol 2, Willey, England, 3996 [35] B Moulton, MJ Zaworotko, Chem Rev 101 (2001) 1629 [36] M Nayak. R Koner, S Evans, S Mohanta, Cryst Growth Des 5 (2005) 1907 [37] G -Y Hsu, P Misra, S -C Cheng, H-H Wei, S Mohanta. Polyhedron 25 (2006) 3393 [38] M Nayak, R Koner, H-H Lin, IJ Florke, H-H Wei, S Mohanta, lnorg Chem 45 (2006) 10764 [39] Nonius COLLECT, Nonius, Delft, The Netherlands, 2003 [40] Z Otwmovvski, W Minor, Processing of X-ray diffraction data collected in the oscillation mode. Methods Enzymol 276 (1997) 307 [41] G M Sheldrtck, smsLxs-97 A Program for Crystal Structure Solu­ tion, University of Gdttingen, Gottingen, Germany, 1997 [42] G M Sheldrick, s h e l x l -97 A Program for Crystal Structure Refine­ ment, University of Gottingen, Gottingen, Germany, 1993 Cryst. Res. Technol. 43, No 11,1220- 1229 (2008)/ DPI I0.1002/crat.200800355 Syntheses, structures, and electrochemistry of a dinuclear compound and a mononuclear-mononuclear cocrystalline compound of uranyl(VI) M. Fleck*1, S. Hazra2, S. Majumder2, and S. Mohanta2 1 Institute for Mineralogy and Crystallography, University of Vienna, Althanstr. 14, 1090 Vienna, Austria 2 Department of Chemistry, University of Calcutta, 92 A. P. C. Ray Road, Kolkata 700 009, India Received 7 August 2008, accepted 19 August 2008 Published online 15 October 2008 Key words uranyl, inclusion product, cocrystal, hydrogen bond, cyclic voltammetry. PACS 61 66.hq Syntheses, structures, and electrochemistry of a dialkoxo-bridged diuranyl(VI) compound [(U02)2(L1)2(dimethylformamide)2j (1) and a mononuclear-mononuclear cocrystalline compound [(U02)(L2)(H20)c (H20)] [(U02)(L2)(H20)] (2) derived from Schiff base ligands are reported (H2L' = Schiff base ligand obtained on condensation of 3-ethoxysalicylaldehyde with 2-ammoethanol; H2L2 = N,Nn-opheny!enebis(3-ethoxysalicylaldimine)). The compounds 1 and 2 crystallize m the space groups P2\lc and Pi, respectively Compound 1 is a dialkoxo-bridged dinuclear compound of uranium(VI) containing two deprotonated ligands, [L]2~, two dimethylformamide (dmf) molecules and two U022' centers. Three C IT- O type hydrogen bonds involving one uranyl oxygen, two dmf hydrogens, and the mune hydrogen link the dinuclear units into a two-dimensional network. Compound 2 is a cocrystal of two mononuclear units, [(U02)(L2)(H20)c(H20)] (unit 1) and [(U02)(L2)(H20)] (unit 2). In unit 1, the non-coordinated water molecule forms hydrogen bonds with oxygens of phenoxo, ethoxy, and coordinated water molecules resulting m the formation of an inclusion product. The overall supramolecular structure of compound 2 is onedimensional and consists of interlinked self-assembled dimeric unit of unit 1 and unit 2. Cyclic voltammetric measurements reveal that the uramum(VI) center in [(U02)2(L')2(dimethylformamide)2] (1) is reduced quasireversibly at EVl = -773 mV with AEP = 121 mV, while the metal center in [(U02)(L2)(H20)c (H20)H(U02)(L2)(H20)] (2) is reduced reversibly with EVl =-765 mV with AEv = 68 mV. Dedicated to Prof Ladislav Bohaty on the occasion ofhis 60,h birthday © 2008 WILEY-VCH Verlag GmbH & Co KGaA, Weinheim 1 Introduction In comparison to the studies of 3d and 4f elements, the chemistry of 5f metal ions has been investigated less thoroughly, although actinide chemistry is important due to some practical concerns like extraction of actinides from sea water, removal of actinides from soil, ground water, human beings, and radioactive waste [1-7]. However, it may be mentioned that the chemistry of 5f elements, particularly of uranium in different oxidation states (III, IV, V, and VI), is being investigated more actively in recent years and is under development [1-31]. In addition to the practical concerns, uranium compounds are of interest due to electrochemical properties [813] as well as due to supramolecular aspects [32-39] involving uranyl oxygens of the linear uranyl dication, U022+, as a supramolecular building unit [13,14], Salmon et al. have reported a number of mono-, tri-, tetra-, and hexanuclear uranium(IV) complexes derived from compartmental Schiff base ligands obtained on condensation of salicylaldehyde or substituted salicylaldehydes with diamines [15-17]. We have previously reported a dialkoxo-bridged diuranyl(VI) compound, [(U02)2(L)2(dmf)2] derived from a Schiff base tridentate ligand (H2L = obtained on condensation of 3-methoxysalicylaldehyde and 2-aminoethanol) [13]. An analogous diphenoxo-bridged diuranyl(VI) * Corresponding author e-mail- michel fleck@umvie.ac at -MU* . . interScience' © 2008 WILEY-VCH Verlag GmbH & Co KGaA, Weinheim Cryst. Res. Technol. 43, No 11 (2008) 1221 compound derived from another Schiff base ligand (obtained on condensation of 3-methoxysalicylaldehyde and o-aminophenol) has been reported by Reedijk and coworkers [18]. Rao and coworkers have reported a series of dialkoxo-bridged diuranyl(VI) compounds derived from similar tridentate Schiff base ligands obtained on condensation of salicylaldehyde or substituted salicylaldehydes and substituted 2-aminoethanol [19]. A mononuclear uranyl(VI) compound in a similar ligand environment has been reported by Ikeda et al [8]. In the present contribution, we report the syntheses, structures, and electrochemistry of a dialkoxo-bridged diuranyl(Vl) compound [(UO^ML’Hdimethylformamide);.] (1) and a mononuclear-mononuclear cocrystalline compound [(UO2)(L2)(H2O)c(H2O)]-[(UO2)(L2)(H20)] (2) derived from Schiff base ligands (H2L‘ = Schiff base ligand obtained on condensation of 3-ethoxysaiicylaldehyde with 2-aminoethanol; H2L2 = Nfl'-ophenylenebis(3-ethoxysalicylaldimine) (Fig. 1). 2 Experimental Materials and physical methods All the reagents and solvents were purchased from commercial sources and used as received. The Schiff base ligands H2L' and H2L2 were prepared on condensing 3-ethoxysalicylaldehyde with 2-aminoethanol and o-phenylenediamine, respectively in methanol. The syntheses of the ligands and metal compounds were performed in open atmosphere. Elemental (C, H, and N) analyses were performed on a Perkin-Elmer 2400 II analyzer. IR spectra (Fig. 2) were recorded in the region 400 - 4000 cm-1 on a Perkin-Elmer RXIFT spectrophotometer with samples as KBr disks. Cyclic voltammetric (CV) measurements were done using a Bioanalytical System BAS 100B electrochemical analyzer. The concentration of the supporting electrolyte, tetrabutylammonium perchlorate (TBAP), was 0.1 M, while that of the complex was 1 mM. Cyclic voltammetric measurements in dimethylsulphoxide solution were carried out with a three-electrode assembly comprising a glassy carbon disk working electrode, a platinum auxiliary electrode and an aqueous Ag/AgCl reference electrode. The reference electrode was separated from the bulk solution using a TBAP salt bridge in acetonitrile Under the experimental condition, the Em value of the ferrocene/ferrocenium couple was 400 mV. Synthesis of 1 and 2 [(U02)2(LI)2(dmf)2] (1). To a stirred dimethylformamide (dmf) solution (40 mL) containing H2L' (0.105 g, 0.5 mmol) and uranyl nitrate hexahydrate (0.251 g, 0.5 mmol) was added a dmf solution (10 mL) of triethylamine (0.101 g, 1 mmol). The resulting red solution was filtered to remove any suspended particles and the filtrate was kept at room temperature. After a few hours, a yellow crystalline compound containing diffractable single crystals was collected by filtration and washed with methanol. Yield: 0.25 g (90%). Anal. Calc, for C28H4oN40,2U2: C, 30.54; H, 3.63; N, 5.08. Found: C, 30 90; H, 3.76; N, 5.21 %. IR (KBi/cnrf1): u(C=N), 1643 vs; u(0=U=0), 901 m (Fig. 2c). [(U02)(L2)(H20)e(H20)]-[(U02)(L2)(H20)] (2). To a stirred acetonitrile solution (20 ml) containing FLL2 (0.152 g, 0.5 mmol) and uranyl nitrate hexahydrate (0.251 g, 0.5 mmol) was added an acetonitrile solution (10 mL) of triethylamine (0.101 g, 1 mmol). The resulting solution w'as filtered to remove any suspended particles and the filtrate was kept at room temperature. After few' days, a red crystalline compound containing diffractable single crystals was collected by filtration. Yield: 0.26 g (75%). Anal. Calc, for C 4SH5oN4Oi5U2: C, 41.17; H, 3.57; N, 4.00. Found: C, 41.50; H, 3.65; N, 4.15 %. IR (KBr/cnY1)- u(H20). 3448 w, 3340 w; o(C=N), 1600 vs; u(0=U=0), 900 vs (Fig. 2d). Stricture determination and refinement of 1 and 2 Single-crystal X-ray intensity data of the title com­ pounds were collected at 293 K on a Nonius APEX II diffractometer with a CCD area detector, using Mo www .crt-journal.org 9 2008 WILEY-VCH Verlag GmbH & Co KGaA, Weinheim 1222 M Fleck et al.: A dinuclear and a m ononuclear-m ononuclear cocrystalline com pound A 'a-radiation (A = 0.71073 A) For com pound 1, 723 fram es w ere m easured w ith phi- and om ega-increm ents of 1 degree and a counting tim e of 50 seconds per fram e. For com pound 2, 1383 fram es w ere m easured w ith phi- and om ega-increm ents of 1 degree and a counting tim e of 60 seconds per fram e. In both cases, the crystalto-detector-distance w as fixed at 30m m , and the w hole ew ald spheres w ere m easured. The intensity data w ere processed w ith the program m e suite Bruker SM A RT [40] and corrected for Lorentz, polarization, background and absorption effects [41]. The crystal structures w ere determ ined by direct m ethods and subsequent Fourier and difference Fourier syntheses, follow ed by full-m atrix least-squares refinem ents on F~ [42]. For com pound 1, all hydrogen atom s could be located and w ere refined as “riding”. In com pound 2, the hydrogen atom s of the w ater m olecules could not be located; those bonded to carbon atom s w ere also treated as riding. A ll non-H atom s w ere refined anisotropically, all hydrogen atom s isotropically. In com pound 1, the displacem ent param eters of the hydrogen atom s w ere refined freely, in com pound 2 they w ere fixed at values of 1.2 tim es of those of the parent atom s. Specifically, the ethyl carbon atom s in C (l) and C(2) in 2 show rather high displacem ent, w hich is due to the fact this group is located in a void w ithout m uch contact to neighboring atom s. The refinements converged at 7?-values of 0.053 and 0.058. Crystal data, details of the m easurem ent and refinem ent are given in table 1. The crystallographic data (excluding structure factors) for both structures in this paper have been deposited w ith the Cam bridge Crystallographic D ata Center (CCDC reference num ber 696817 for 1 and 696816 for 2) and are available, free of charge, on application to CCD C, 12 U nion Road, Cam bridge CB2 1EZ, U K , Fax: (+44) 1223-336-033; e-m ail: deposit@ ccdc.cam .ac.uk. Fig. 2 IR spectra of the Schiff base ligands H2L‘ (a) and H2L2 (b), and the title com pounds 1 (c) and 2 (d). 3 Results and discussion Description of the crystal structure of 1 The crystal structure of 1 is show n in figure 3, w hile selected bond lengths and angles of 1 are listed in table 2. The analysis show ed that the com pound is a dialkoxo-bridged diuranyl(VI) com pound containing tw o deprotonated Schiff base ligands, [L]2', tw o coordinated 0 2008 WILEY-VCH Verlag GmbH & Co KGaA, Weinheim www.crt-journal.org Cryst Res. Technol. 43, No. 11 (2008) 1223 dim ethylform am ide (dm f) m olecules and tw o U 022+ centers. The point sym metry of the m olecule is I, i.e. it is located about a centre of inversion, creating tw o sym metry-related equivalent halves. The coordination polyhedron of the heptacoordinated uranium (V l) is a distorted pentagonal bipyram idal (Fig 4a), w ith tw o uranyl oxygens (0(4) and 0(5)) in the axial positions, w hile the basal pentagonal plane is contained by phenoxo oxygen (0(1)), bridging alkoxo oxygens (0(3) and 0(3A )), im ine nitrogen (N (l)), and dm f oxygen (0(6)). The LM D (phenoxo), U -O (alkoxo), U -O (dm f), and U -N (im ine) bond distances (2.286(7) - 2.552(8)A) in the basal plane of the distorted pentagonal bipyram idal coordination environment are m uch longer than the uranyl U -O bond lengths (U (l)-0(4) = 1.788(7) A , U (l)-0(5) = 1.778(7) A ) as expected due to n- back bonding. A ll the bond distances are in the usual ranges observed in the related com pounds [13,18,19,29-31]. Fig. 3 Crystal structure of [(UC bM L'^dm fh] (1) w ith atom label schem e. H ydrogen atom s are om itted for clarity. Sym m etry code A , -x, 1-y, -z. Table 1 Crystallographic data for the title com pounds. (*/!, = [X ||F0| - |FC||/£|F0|] *w R2 = [Zw(F02- Fc2)2/H wF04]l/2) C om pound 1 2 Form ula C ,4H20N ,O (,U C ^H sciR A sU , Form ula w eight 550.35 1398 98 C rystal color yellow red C rystal system m onoclim c trichnic Space group P 2|/c p\ a( A) 16 678(1) 11.865(2) b(A) 11.629(1) 13 043(3) c(A) 9012(1) 16.781(3) a (°) 90 109.72(2) P(°) 95 00(1) 92.08(2) Y (°) 90 94 08(2) 1741.2(2) f (A3) z 4 243 3 4(8) 2 T em perature (K ) 293(2) 293(2) 20 4 2 8 -6 5 84 2 60 - 60 70 fi (m m -1) 9 352 6719 A alcd. (g C in"3) 2 099 1 909 F(000) 1032 1340 N um ber of fram es 723 1383 Scan tim e per fram e (s) 50 60 R otation w idth (°) 1 1 C rystal-detector-dist. (m m ) 30 30 A bsorplion-correction m ulti-scan m ulti-scan T„„„ 0 4548 0 7299 Tm„ 0 5216 0.7299 Index ranges -2 4 < /i< 2 5 , -\l<k< 16, -13 < / < 13 -16< R eflections collected 24438 86295 Independent reflections Ri3l v j Rj {F„ > 4a(F„)) R ,7w/I'2b(for all F„2) ■www.crr-journal.org (F„ > 4o(/v)) h < 16.-18 <k< 18, -23 6432 14078 0 0620/0 1342 0 0584/0 1012 0 1088/0 1657 0.109S/0 1332 < / < 23 © 2008 W 1LEY-V CH V erlag G m bH & C o K GaA, W einheim M Fleck et al.- A dtnuclear and a mononuclear-mononuclear cocrystalline compound 1224 Fig. 4 Distorted pentagonal bipyramidal coordination geometry of the uranium centers,(a) in [(UO^L'^dmf)’] (1), (b) around the U(l) center in unit 1 and (c) around the U(2) center in unit 2 of [(U02)(L2)(H20) c(H20)]-[(U02)(L2)(H20)] (2) Symmetry code as in figure 3. (Online color at www.crt-journal.org) Table 2 Selected bond lengths (A) and angles (°) of [(U02)2(L‘)2(dimethylformamide)2] (1) Symmetry code . (A) -x, 1-y, -z.. u(i)-0(i) U(1M>(3) U(1)-0(3A) U(1KX4) U(I)-0(5) U(1K>(6) U( 1)—N( 1) U(l) U(1 A) 2 286(7) 2 374(7) 2 342(7) 1.788(7) 1 778(7) 2 430(7) 2 552(8) 3 8851(6) 0(4HJ(1K>(5) 0(4)-U(l)-0(l) 0(4)-U(l)-0(3) 0(4>-U( 1 )-0(3 A) 0(4)-U(l)-0(6) 0(4)—U( 1)—N( 1) 0(5)—U( 1)—0( 1) 0(5)-U(l)-0(3) 0(5)-U(l)-0(3A) 0(5)-U(l)-0(6) 0(5)—TJ( I)—N( 1) 0(1)—U( I)—0(3) 179 2(4) 86 6(4) 90 3(3) 87 2(3) 90 0(3) 96.2(3) 92.9(4) 90 5(3) 93 0(3) 89 3(3) 84 2(3) 137 0(2) 0(1)-U(I}-0(3A) 0(1)-U(1M)(6) 0(1)-U(1)-N(I) 0(3)-U(!)-0(3A) 0(3)-U(!)-0(6) 0(3)—U( 1 >—N( 1) 0(3A)-U(l)-0(6) 0(3Af-U(l)-N(l) 0(6)-U(l)-N(l) U(1K>(3HJ(1A) U(1>-0(3A)-U(1A) 153 2(2) 75 7(3) 70 5(2) 69 1(3) 147.2(2) 67 2(2) 78.2(2) 136.2(2) 145.2(3) 34 26(15) 34 80(16) The tramoid angle (179.2(4)°) involving the axial uranyl oxygens (0(4) and 0(5)) and the asotd angles (86. 6(4) - 96.2(4)° for 0(4) and 84.2(3) — 93.0(3)° for 0(5)) involving the axial oxygens and five donor atoms in the basal plane show slight deviation from ideal values. The deviation of the donor centers from the leastsquares N04 basal plane is 0.102 A, while the metal center is exactly pocketed in this plane. However, the distortion of the coordination geometry from the ideal geometry is evidenced from the ranges of apex- -apex (0- -O or O—N) distances and internal angles (0—0—0, O—N • O or N - O O) inside the basal pentagonal plane which are 2.674 - 3.010 A and 99.1 - 114.3°, respectively. Three C-H-0 type hydrogen bonds involving one uranyl oxygen (0(4)), two dmf hydrogens (H(13C) and H(14A)) and the lmine hydrogen (H(7)) link the dinuclear units into a two-dimensional network. A simplified illustration of the hydrogen bonded two-dimensional sheet is demonstrated in figure 5. The two-dimensional structure can be considered to be generated due to the 0(4)- -H(7E)-C(7E) hydrogen bond or due to the 0(4)—H(13CH)-C(13H) and 0(4) -H(14AH)-C(14H)) hydrogen bonds or due to all these three hydrogen bonds. As shown in figure 5, one uranyl oxygen (0(4)) of a dinuclear unit U(l)—U(1D) acts as a triple acceptor and interacts with the dmf hydrogens H(13CH) and H(14AH) of the dinuclear unit U(1G)- -U(1H) as well as with the imine hydrogen H(7E) of the dinuclear unit U(1E) ••U(IF). Due to 0(4)—H(7E)-C(7E) or 0(4) •■H(13CH)-C(13H) and 0(4)—H(14AH)-C(14H)) hydrogen bonds, one diuranyl(VI) molecule is interlinked with four neighboring dinuclear units to generate two-dimensional topology. The geometries of the hydrogen bonds are. C(7E)-0(4) = 3.259 A, H(7E)-0(4) = 2.342 A, C(7E)-H(7E)- 0(4) = 169°; C(13H)-0(4) = 3.192 A, H(13CH> -0(4) = 2.455 A, C(13H}-H(13CH) -0(4) = 133.4°; C(14H)-0(4) = 3.257 A, H(14AH>- 0(4) = 2.511 A, H(14AH)-0(4) = 134.5° Description of the crystal structure of 2 The crystal structure of 2 is shown in figure 6, while the selected bond lengths and angles are listed in table 3. The structure consists of two mononuclear units, [(U02)(L2)(H20)c(H20)] (unit 1) and ((U02)(L2)(H20)] (unit 2). In both the units, the metal center is heptacoordinated with two phenoxo oxygen, two imine nitrogen, two uranyl oxygen, and one water oxygen (0(5) for unit 1 and 0(13) for unit 2). In the asymmetric unit, the noncoordinated water molecule (H20(8)) is hydrogen bonded with one phenoxo oxygen (0(3)), one ethoxy oxygen (0(4)), and one coordinated water molecule (H20(5)) of the monononuclear moiety [(U(1)02)(L2)(H20)]. There is a host-guest relationship between [(U(1)02)(L2)(H20)] and the © 2008 WILEY-VCH Verlag GmbH & Co KGaA, Weinheim www.crt-journaI.org Cryst. Res. Technol 43, No 11 (2008) 1225 noncoordinated water molecule resulting in the formation of an inclusion product [(U02XL2)(H20)cr(H20)]. Evidently, the compound 2 is a 1:1 mononuclear-mononuclear cocrystal of the [(U02)(L')(H20)] and the inclusion product [(U02)(L2)(H20)c(H20)]. 0(1), 0(2), and 0(5) are omitted for clarity Among hydrogen atoms, only those participating in hydrogen bonds are shown Symmetry codes' D, -x, 1-y, -z; E, x, 0 5-y, z-0.5; F, -x, y-0.5, -0 5-z, G, -x, 0.5+y, 0 5-z, H, x, 1 5-y, z-0 5; I, -x, y+0 5, 0 5-z, I, x, 1.5-y, z+0 5, K, -x, y-0 5, 0.5-z , L, x, 0 5-y, 0 5+z. Fig. 6 Crystal structure of [(U02)(L2)(H20) c(H20)]-[(U02)(L2)(H20)] (2) with atom label scheme Hydrogen atoms are omitted for clarity. The coordination geometry of the metal centers in both units is distorted pentagonal bipyramidal (Fig. 4 b and c) with the uranyl oxygens (0(6) and 0(7) for unit 1 and 0(14) and 0(15) for unit 2) in the axial positions. The bond distances and angles are similar for the two units. The metal-ligand bond distances lie in three distinct ranges with the decreasing order U-0(water/imine) (2.491 (7)—2.563(7) A) > U-O(phenoxo) (2.240(6)2.280(6) A) > U-O(uranyl) (1.777(6)—1.792(6) A). All the bond distances are in the usual ranges [13, 18, 19, wvrv.crt-journal.org 1) 2008 W1LEY-VC11 Verlag GmbH & Co KGaA, Wcmheim M. Fleck ct al • A dinuclearand a mononuclear-mononuclear cocrystalhne compound 1226 29-31], The transoid angle (178.9(3)° for unit 1 and 177.6(3)° for unit 2) involving the axial uranyl oxygens and the cisoid angles (85.5(3)°-93 5(3)° for unit 1 and 84.5(3)°- 93.4(3)° for unit 2) involving the axial oxygens and five donor atoms in the basal plane show slight deviation from ideal values. The deviation (0.07 A for unit 1 and 0.05 A for unit 2) of the donor centers and the displacement (0.05 A for unit 1 and 0.07 A for unit 2) of the metal centers from the least-squares N203 basal plane are very small. However, the distortion of the coordination geometry from the ideal condition is evidenced from the ranges of apex-apex O-O, 0- N or N—N distances (2.682-3.116 A for unit 1 and 2.731-3.150 A for unit 2) and internal 0-- O- -O, O—N—O, N—O—O or N—N- O angles (95.0-115.6° for unit 1 and 94.7-119.2° for unit 2) inside the basal pentagonal plane. Table 3 Selected bond lengths (A) and angles (°) of [(U02)(L2)(H20) c(H20)]'[(U02)(L2)(H,0)] (2). U(1H)(2) U(l)-0(3) U(l)-0(5) U(1KX6) U(l)-0(7) u(iy-N(i) U(l)-N(2) 0(6)-U(l>-O(7) 0(6)-U(l>-O(2) 0(6>—U( I)—0(3) 0(6)-U( 1)—0(5) 0(6)-U(l)-N(l) 0(6>-U(!)-N(2) 0(7)-U( 1 >-0(2) 0(7)-U( 1 >-0(3) 0(7>-U(l)-0(5) 0(7)—U( 1)—N( 1) 0(7)-U(l>-N(2) 0(2)-U( 1 >-0(3) 0(2)—U( I)—0(5) 0(2>-U( 1)—N( I) 0(2>-U(l>-N(2) 0(3)-U(l)-0(5) 0(3)—U( 1)—N( 1) 0(3)-U(l)-N(2) 0(5)-U(I>-N(l) 0(5)-U(l)-N(2) N( 1)—U( 1)—N(2) 2 280(6) 2 257(6) 2 491(7) 1 777(6) 1 792(6) 2 550(8) 2 552(7) 178 9(3) 91.7(3) 90 7(3) 88.3(3) 85.5(3) 88.1(3) 88.5(3) 89.6(3) 92.7(3) 93.5(3) 91.1(3) 156 6(2) 74.9(2) 69.1(2) 132 4(2) 81 9(2) 134.3(2) 70.9(2) 143 3(3) 152 5(2) 63 4(2) Fig. 7 An illustration of the hydrogen bonding interactions involving the noncoordinated water molecule (H20(8)) to create dinuclear self-assembly [{(U02)(L2)(H20 )c (H20)},]. Hydrogen atoms are omitted for clarity. Symmetry code: (D) -x, 1-y, -z © 2008 WILEY-VCH Verlag GmbH & Co KGaA, Weinheim U(2)-O(10) U(2K>(!1) U(2)-0(13) U(2)-0(14) U(2)-0(15) U(2)-N(3) U(2)-N(4) 0( 14)-U(2>~0( 15) O(l4)-U(2)-O(l0) 0(I4)-U(2)-0(11) O(14)-U(2)-O(13) 0(14)-U(2>-N(3) 0(14)-U(2)-N(4) 0( 15)-U(2}-0( i 0) 0(15)-U(2H)(1I) O(15)-U(2)-O(13) 0(15)-U(2)-N(3) 0(15)-U(2)-N(4) O(l0)-U(2)-O(ll) 0(10)-U(2>-0(I3) O(!0)-U(2)-N(3) O(10)-U(2)-N(4) 0(11)-U(2)-0(13) 0(11)-U(2)-N(3) 0(11)-U(2)-N(4) 0(13)-U(2)-N(3) 0(13)-U(2)-N(4) N(3)-U(2)-N(4) ' 2 240(6) 2 241(6) 2.527(7) 1 778(7) 1 780(6) 2 558(7) 2 563(7) 177 6(3) 89 9(3) 90 2(3) 92 6(3) 93.4(3) 91 6(3) 90 4(3) 90 6(3) 89 7(3) 84 5(3) 86 6(3) 153 0(2) 82 5(2) 71 5(2) 135 9(2) 70 6(2) 135 4(2) 71 0(2) 153 2(2) 141 4(2) 64 5(2) Fig. 8 An illustration of the hydrogen bonding interactions between the coordinated water molecule (H20( 13)) and ethoxy oxygen (0(9E)) to create dinuclear self-assembly [{(U02)(L2)(H20)}2]. Hydrogen atoms are omitted for clarity Symmetry code E 1-x, -y, 1-z. wwH.crt-journal.org Cryst. Res Technol 43, No. 11 (2008) 1227 As m entioned, the noncoordinated water m olecule forms an inclusion product [(U 02)(L2)(H20)c:(H 20)] due to hydrogen bonding interaction with three oxygen centers (Fig. 6). As shown in figure 7, this water m olecule also interacts with one phenoxo (0(2D )) and one ethoxy (0(1D )) oxygen of a sym metry related m ononuclear unit [(U(1D)02)(L2)(H20)] resulting in a dinuclear self-assem bly [{(U 02)(L2)(H20)}c(H20)}2]. The hydrogen atom s of coordinated and noncoordinated water m olecules are not located. However, the O—O contacts (0(8) -0(3) = 3.232 A, 0(8)- 0(4) = 2.804 A, 0(8)- -0(5) = 2.573 A, 0(8)-0(lD ) = 3.290 A, and 0(8)-0(2D ) = 2.769 A) indicate the existence of five hydrogen bonds involving the noncoordinated water m olecule. As illustrated in figure 8, due to the hydrogen bond involving the coordinated water m olecule (H20(13)) and ethoxy oxygen (0(9E)), the second m ononuclear unit (unit 2) interacts with another sym metry related unit to generate a dinuclear self-assem bly [{(U 02)(L2)(H20)}2]. The 0 —0 contact in this case is 2.752 A. There are a total of four uranyl oxygens (0(6), 0(7), 0(14), and 0(15)) in the structure of 2. Am ong these, only 0(7) participates in hydrogen bonding interaction and forms a hydrogen bond with H(38F) linked with C(38F). The geom etry of this hydrogen bond is C(38F)-0(7) = 3.357 A, H (38F)-0(7) = 2.544 A, C(38F)H(38F)—0(7) = 146.4°. As shown figure 9, one [{(U 02)(L2)(H20)}c:(H 20)}2] m oiety is interlinked with two [{(U 02)(L‘')(H20)}2] m oieties to generate an overall one-dim ensional topology in com pound 2. Fig. 9 Perspective view to dem onstrate hydrogen bonding interactions and resulted one-dim ensional topology in [(U 02)(L2)(H20) c (H20)]-[(U 02)(L2)(H20)] (2). The C atom s except C(3), C(7), C(8), C(9), C( 10), C(14), C( 15), C(16), C( 17), C(21), and C(22) of unit 1 and C(27), C(31), C(32), C(33), C(34), C(38), C(39), C(40), C(41), C(45), and C(46) of unit 2 are om itted for clarity. Am ong hydrogen atom s, only those participating m hydrogen bond are shown. Sym m etry codes: F, x-1, y, z, G, -x, -y, 1—z; H, 1-x, 1-y, -z, I, x, 1+y, z-1. Fig. 10 Part (0 to -1100 mV) of the cyclic voltam mogram (0 to -1800 m V) of com pound 1 in dimethylsulphoxide at a scan rate of 50 m V s_1 (a), the cyclic voltamm ogram (0 to -1100 m V) of com pound 2 in dim ethylsulphoxide at a scan rate of 100 m V s^1 (b) Electrochemistry The cyclic voltam metric m easurem ents of com plexes 1 and 2 were carried out in dimethylsulphoxide at 25°C under a nitrogen atmosphere using glassy carbon as the working electrode and at a scan rate of 50 m V/s (for 1) and 100 m V/s (for 2). Com pound 1 shows one cathodic response at -833 m V and, in the return sweep, one anodic peak at -712 mV in the potential range of 0 to —1800 m V. The Ey, value of this couple is -773 mV. The cyclic voltam m ogram from 0 to -1100 m V scan range is shown in figure 10a, while the square wave voltam m ogram (SW V) related to this couple from -300 to -1100 m V scan range is shown in figure t la. It m ay be noted that the Ey2 value obtained from cyclic voltam mogram is very close to the peak position (-780 mV) in SW V (Fig. 1 la). The quasireversible nature of this reduction-oxidation process can be evidenced from the cathodic and anodic peak potential differential value (AE? =121 mV). The presence of only one couple clearly indicates that two equivalent uranium (Vl) centers in 1 are reduced (U(Vl)U(VI) —» U(V)U(V)) at -833 mV and are reduced uranium (V) centers are oxidized (U(V)U(V) -> U(V1)U(VI)) at \v\vw.crt-jonrnnl.org © 2008 W ILEY -V CH V erlag G m bH & Co K G aA , W einheim 1228 M Fleck et al. A dmuclear and a mononuclear-mononuclear cocrystalhne compound 712 mV. The electrochemical measurements of 2 were performed in the potential range 0 to -1100 mV. As shown in figure 10b, cathodic and anodic response take place at -802 mV and -734 mV, respectively, indicating that the metal center is reduced (U(VI) —> U(V)) reversibly ((A£P = 68 mV) at = -765 mV. The SWV diagram of this couple is shown in figure 11 b. It may be mentioned that reduction of uranyl(VI) center in compound 1 takes place at lower potential (AT = -773 mV) in comparison to the reduction of the previously published analogous compound [(U02)2(L)2(dimethylfonTiamide)2] (H2L = Schiff base obtained on condensation of 3-methoxysalicylaldehyde and 2-aminoethanol) for which U(VI) —» U(V) conversion occurs at Ey: = -1112 mV [13]. However, the potentials required for the reduction of uranyl centers in 1 and 2 are in the range observed in only a few previously reported uranyl compounds [9-13], (b> Fig. 11 Square wave voltammogram (-300 to -1100 mV) of compound 1 in dimethylsulphoxide at a scan rate of 50 mV (a), square wave voltammogram (-300 to -1100 mV) of compound 2 in dimethylsulphoxide at a scan rate of 100 mV s"1 (b) E(V) 4 E(V) Conclusion Both the dialkoxo-bridged diuranyl(Vl) compound and the mononuclear-mononuclear cocrystalline inclusion compound of uranyl(VI) described here provide additional insights in the areas of uranium chemistry in particular and actinide chemistry in general. These compounds have been characterized by elemental analyses, IR spectra, and X-ray single crystal structure determination. The participations of uranyl oxygens in hydrogen bonding interactions to build up supramolecular structures, two-dimensional in compound 1 and one­ dimensional in compound 2, have been enlightened in this investigation. The compound 2 is found to be a cocrystalline compound of two mononuclear units. The noncoordinated water molecule in 2 forms hydrogen bonds with oxygens of phenoxo, ethoxy, and coordinated water molecules resulting into an inclusion product. Cyclic voltammetric studies of both the compounds have been performed and compared with the electrochemical properties of the previously reported uranium compounds. Acknowledgements Financial support from Department of Science and Technology, Government of India (to SM, SR/S1 /IC-27/2002), and CSIR, Government of India (fellowship to S. Hazra and S. Majumder) is gratefully acknowledged S. Mohanta thanks Dr Papu Biswas, Department of Chemistry, Indian Association for Cultivation of Science, for electrochemical measurements References [1] [2] [3] [4] [5] [6] [7] J. Xu and K. N. Raymond, Inorg Chem 38,308(1999) A E. V Gorden, J. Xu, K. N. Raymond, and P Durbin, Chem Rev. 103, 4207 (2003). M Sawicki, J.-M. Siaugue, C. Jacopin, C. Moulin, T Badly, R. Burgada, S. Meumer, P. Baret, .1 -L. Pierre, and F Taran, Chem. Eur. J 11, 3689 (2005). S Shinkai, H Koreishi, K. Ueda, T. Arimura, and O. Manabe, J Am Chem. Soc. 109, 6371 (1987). P D. Beer, G. D. Brindley, D. O Fox, A Grieve, M. I Ogden, F. Szemes, and M. G. B. Drew, J Chem. Soc. Dalton Trans. 3101 (2002). S. D. Conradson, D. Manara, F Wastin, D L. Clark, G H. Lander, L. A Morales, J. Rebizant, and V. V. Rondinella, Inorg Chem. 43, 6922 (2004) I. K. S. Gambarotta, L Thompson, P J Hay, and G. P. A. Yap, Organometallics 20, 5440 (2001) © 2008 WILEY-VCH Verlag GmbH & Co KGaA, Wemheim wmv.crt-journal.org Cryst. Res. Technol. 43, No. 11 (2008) [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] 1229 K Mizuoka, S -Y. Kim, M Hasegawa, T Hoshi, G. Uchiyama, and Y. Ikeda, Inorg Chem 42, 1031 (2003). J L. Kiplinger, K D John, D. E Morris, B. L. Scott, and C. J. Bums, Organometallics 21, 4306 (2002) E. J. Schelter, J. M. Veauthier, J. D. Thompson, B. L. Scott, K. D. John, D E. Morris, and J. L. Kiplinger, J. Am Chem Soc 128,2198 (2006). J. L Kiplinger, D. E Morris, B L. Scott, and C. J. Bums, Organometallics 21, 3073 (2002). K. Mizuoka, S Tsushima, M. Hasegawa, T Hoshi, and Y. Ikeda, Inorg. Chem. 44, 6211 (2005) S. Hazra, S. Majumder, M Fleck, and S. Mohanta, Polyhedron 27, 1408 (2008). H. Sopo, J. Svnli, A Valkonen, and R. Sillanpaa, Polyhedron 25, 1223 (2006) L. Salmon, P. Thuery, and M Ephritikhine, Polyhedron 25, 1537 (2006). L. Salmon, P Thuery, and M. Ephritikhine, J. Chem. Soc. Dalton Trans. 4139 (2004). L. Salmon, P. Thuery, and M. Ephritikhine, J. Chem. Soc. Dalton Trans. 1635 (2004). R. Kannappan, D M. Tooke, A. L Spek, and J. Reedijk, Inorg Chim. Acta 359, 334 (2006). P V Rao, C P. Rao, A. Sreedhara, E. K. Wegelius, K. Rissanen, and E. Kolehmamen, J. Chem Soc Dalton Trans. 1213 (2000). L. Cattahni, S. Degetto, M. Vidali, and P. A. Vigato, Inorg. Chim. Acta 6, 173 (1972). K. Mizuoka and Y. Ikeda, Inorg Chem. 42,3396 (2003) P Gary Eller and P J. Vergamini, Inorg Chem. 22, 3184 (1983). C. J. Bums (INC-4) and A. P. Sattelberger, Inorg Chem. 21, 3692 (1982) Z_ Szabo, I Furo, and I. Csoregh, J Am. Chem. Soc. 127, 15236 (2005). A. Gunther, G. Geipel, and G Bernhard, Polyhedron 26, 59 (2007) W J. Evans, S A Kozimor, and J W. Ziller, Science 309, 1835 (2005). L. Salmon, P Thuery, and M Ephritikhine, Chem. Commun. 856 (2006). J. Berthet, P Thuery, and M. Ephritikhine, Inorg. Chem 44, 1142 (2005). Z.-T. Yu, G.-H Li, Y.-S. Jiang, J.-J. Xu, and J.-S. Chen, J. Chem. Soc. Dalton Trans 4219 (2003). L Salmon, P. Thuery, and M. Ephritikhine, Polyhedron 22, 2683 (2003). M. P. Wilkerson, C. J Bums, D. E Morris, R. T. Paine, and B. L. Scott, Inorg. Chem. 41, 3110 (2002). R. Robson, m Comprehensive Supramolecular Chemistry, (Eds: J. L. Atwood, JED Davies, D D MacNicol, F. Vogtle, R. B Toda), Pergamon, Oxford, Vol. 6, 733-755 (1996) A. J. Blake, N R Champness, P Hubberstey, M. A Withersby, and M Schroder, Coord. Chem. Rev. 183, 117 (1999). J -P. Sauvage, Ed. Transition Metals m Supramolecular Chemistry (Perspectives m Supramolecular Chemistry), Willey, England, Vol. 5, 1999 G. R. Desiraju, Ed. The Crystal as a Supramolecular Entity (Perspectives in Supramolecular Chemistry), Willey, England, Vol. 2, 1996. B Moulton and M J. Zaworotko, Chem. Rev. 101, 1629 (2001) M. Nayak, R. Koner, S. Evans, and S, Mohanta, Cryst. Growth Des 5, 1907 (2005). G -Y Hsu, P. Misra, S -C. Cheng, H.-H. Wei, and S. Mohanta, Polyhedron 25, 3393 (2006) M. Nayak, R. Koner, H.-H. Lin, U. Florke, H -H. Wei, and S. Mohanta, Inorg. Chem. 45, 10764 (2006). Bruker-Nomus, APEX-11 and SAINT-Plus, Bruker AXS Inc., Madison, Wisconsin (USA), 2004. Z. Otwmowski and W. Minor, Methods Enzymol. 276, 307 (1997) G M Sheldnck, Acta Cryst. A 64, 112 (2008) mvtv.crt-journal.org © 2008 WILEY-VCH Verlag GmbH & Co KGaA, Weinheim