Academia.eduAcademia.edu
Nuclear Data Sheets 107 (2006) 1–224 www.elsevier.com/locate/nds Nuclear Data Sheets for A = 193 * E. Achterberg, O.A. Capurro, G.V. Marti Laboratorio TANDAR Departamento de Fisica Comision Nacional de Energia Atomica Buenos Aires, Argentina V.R. Vanin Lab. do Acelerador Linear Universidade de San Paulo Sao Paulo, SP, Brazil R.M. Castro Lab. do Acelerador Linear Universidade de San Paulo Sao Paulo, SP, Brazil and Instituto de Estudos Avancados – IEAv Centro Tecnico Aerospacial – CTA Sao Jose dos Campos, SP, Brazil (Received April 15, 2004; Revised October 17, 2005) Abstract: The present revision of the properties for the nuclides belonging to the A=193 mass chain contains many improvements, corrections and additions to the material presented in previous evaluations (1998Ar07, Nucl. Data Sheets 83, 921 (1998); 1990Sh30, Nucl, Data Sheets 61, 519 (1990)). Among these are measurement results for quadrupole moments, angular distribution coefficients, half–lives and g–factors, for both previously known and new transitions and levels. In addition, major changes to the previously known status of this mass chain consist in the inclusion of data for new superdeformed bands in 193Bi, 193Po of 1 9 3 Po, and 193At. 193Pb, and the creation of level schemes for The latter were previously unavailable, except for a very limited attempt in the case which was not confirmed in later work. Furthermore, the 1 9 3 Os beta decay was re–evaluated in order to account for new absolute intensity measurements. General Policies and Organization of Material: See the introductory pages. General Comments: In view of the publication of a new atomic mass evaluation adjustment (2003Au03, Nucl. Phys. A729, 337 (2003)) we have used the newly available data for all Q values, and S(p) and S(n) energies, as well as the values of some other parameters obtained in that work. Cutoff Date: September 30, 2005. Acknowledgments: In the course of the present revision we have benefited from interim updates produced for several of these nuclides. Thanks is due specially to Dr. B. Singh and coworkers for their upgrades to several of the ENSDF data files. We are also grateful to Dr. E. Browne for his advice and suggestions, which allowed us to improve our work in significant aspects. One of the evaluators (E.A.) wishes to express his gratitude to the Head and staff of the Neutron Activation Analysis Lab at the Centro Atomico Bariloche (CNEA, Argentina) for hospitality and encouragement during this work. One of the evaluators (V.R.V.) is grateful to the Nuclear Physics Division of Lawrence Berkeley Lab, and Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP, Brazil) for partial financial support. The evaluators are grateful to the reviewer for a very thorough report and for many helpful comments and suggestions. * This work was performed with the support of IAEA Contract ARG/12480/RBF. 0090-3752/$ – see front matter © 2005 Published by Elsevier Inc. doi:10.1016/j.nds.2005.12.001 NUCLEAR DATA SHEETS Index for A = 193 Data Type Nuclide 193Re 193Os 193Ir Skeleton Scheme for A=193 4 Adopted Levels, Gammas 6 9Be(208Pb,X) 6 Adopted Levels, Gammas 7 192Os(n,γ) E=thermal 192Os(n,γ) E=res 14 Adopted Levels, Gammas 15 193Ir β– Decay IT Decay (10.53 d) Muonic Atom 193Pt 191Ir(nn,γ) E=th 191Ir(t,p) 193Ir(γ,γ): (α,t) Mossbauer 193Ir(γ,γ'): Res Fluorescence 44 t,α), (t,α) 193At 55 55 Adopted Levels, Gammas 57 193Pt IT Decay (4.33 d) 61 193Au ε Decay (17.65 h) 62 193Au ε Decay (3.9 s) 66 192Os(α,3nγ) 67 192Pt(n,γ) E=res 69 (d,t) 70 194Pt(3He,α) 72 195Pt(p,t) 72 Adopted Levels, Gammas 73 193Au IT Decay (3.9 s) 80 193Hg ε Decay (3.80 h) 82 193Hg ε Decay (11.8 h) 85 192Os(7Li,6nγ) 102 Ir(α,xnγ) 103 Adopted Levels, Gammas 107 193Hg IT Decay (11.8 h) 123 193Tl ε Decay (21.6 min) 124 193Tl ε Decay (2.11 min) 126 Pt(α,xnγ) 193Po 43 43 51 194Pt(p,d), 193Bi 42 Coulomb Excitation 194Pt(d,3He) 193Pb 32 193Ir(n,n'γ) 194Pt(pol 193Tl 32 38 192Os(3He,d), 193Hg 31 38 192Os(d,nγ) 193Au 25 30 31 ε Decay (50 y) Inelastic Scattering 193Pt 9 14 192Os(d,p) 193Os Nuclide Page 126 (HI,xnγ) 128 (HI,xnγ): SD 139 Adopted Levels, Gammas 144 193Tl 152 IT Decay (2.11 min) 193Pb ε Decay (5.8 min) 153 197Bi α Decay (5.04 min) 154 (HI,xnγ) 155 (HI,xnγ): SD 161 Adopted Levels, Gammas 164 193Bi ε Decay (67 s) 197Po α Decay (53.6 s) 179 197Po α Decay (25.8 s) 179 179 168Er(30Si,5nγ) 180 174Yb(24Mg,5nγ) 189 182W(16O,5nγ) 193 (HI,xnγ): SD 197 Adopted Levels, Gammas 202 197At α Decay (0.388 s) 206 197At α Decay (2.0 s) 206 165Ho(32S,4nγ) 206 Adopted Levels, Gammas 211 197Rn α Decay (66 ms) 212 197Rn α Decay (21 ms) 212 (HI,xnγ) 213 Adopted Levels 215 2 Data Type Page NUCLEAR DATA SHEETS Skeleton Scheme for A=193 690 (1/2+) 5.04 min 19 7 Bi 114 83 55% 40 Qα=5210110 S(p) 7940SY S(n) 6670SY S(p) 8970SY S(n) S(n) 5942.323 S(p) 6932.84 S(n) 6255.519 S(p) 556322 9520120 S(p) 2600110 (9/2–) 365.2+x 1/2(+) 0.0 21.6 min 19 3 Tl 112 81 439011 S(p) S(α) 711122 7771.9220 5583.4120 S(p) S(n) 868919 S(n) S(n) 100% 900SY Q+=3730110 0.0 19 3 Re 75 118 13/2(+) 140.76 3/2(–) 0.0 3.80 h 19 3 Hg 113 80 Q–=3090SY 100% Q+=234314 S(α) 340200 11/2– 290.19 3/2– 0.0 3/2+ 0.0 30.11 h 19 3 Os 76 117 17.65 h 19 3 Au 114 79 100% 100% Q–=1141.223 Q+=108311 13/2+ 11/2– 3/2+ 80.239 1/2– 149.78 0.0 50 y 19 3 Pt 78 115 0.0 100% 19 3 Ir 7 7 116 Q+=56.83 4 NUCLEAR DATA SHEETS Skeleton Scheme for A=193 (continued) (13/2+) 270 (1/2+) (3/2–) 25.8 s 0.0 (9/2–) 52 2.0 s 0.0 (13/2+) 66 ms 19 7 Rn 111 86 ≤100% 0.388 s 19 7 At 85 112 ≤100% 53.6 s 19 7 Po 113 84 44% 7 Qα=741050 Qα=710050 Qα=64124 0.0+y ( 3 / 2 – ) 2 1 m s0 . 0 + x 836040 S(n) (13/2+) 39 (7/2–) 5 (1/2+) 0.0 28 ms 19 3 At 85 108 ≈100% Q+=821060 1040030 S(n) S(p) 210050 (13/2+) 0.0+y (3/2–) 0.0+x Qα=74906 370 ms 19 3 Po 109 84 ≤100% Q+=751040 771050 S(n) 60616 S(p) (1/2+) 308 (9/2–) 0.0 Qα=70934 63.6 s 19 3 Bi 110 83 361060 96.5% 15 3.5% 15 S(p) Q+=632050 Qα=63045 (13/2+) 0+x (3/2–) 0.0 19 3 Pb 111 82 ?% Q+=5120120 Ground–State and Isomeric–Level Properties Nuclide 193Re Jπ T1/2 Decay Modes 0.0 %β–=100 193Os 0.0 3/2– 30.11 h 1 193Ir 0.0 3/2+ stable 80.239 11/2– 10.53 d 4 %IT=100 0.0 1/2– 50 y 6 %ε=100 149.78 13/2+ 4.33 d 3 %IT=100 0.0 3/2+ 17.65 h 15 %ε+%β+=100 290.19 11/2– 3.9 s 3 %IT=99.97; %ε+%β+≈0.03 %ε+%β+=100 193Pt 193Au 193Hg 193Tl 193Pb 193Bi 193Po 193At 0.0 3/2(–) 3.80 h 15 140.76 13/2(+) 11.8 h 2 %ε+%β+=92.8 5; %IT=7.2 5 0.0 1/2(+) 21.6 min 8 %ε+%β+=100 365.2+x (9/2–) 2.11 min 15 0.0 (3/2–) 0+x (13/2+) 5.8 min 2 %ε+%β+=100 0.0 (9/2–) 63.6 s 30 %α=3.5 15; %ε+%β+=96.5 15 %IT≤75; %ε+%β+≥25 %ε+%β+=? 308 (1/2+) 3.2 s 5 %α=84 16; %ε+%β+=16 16 0.0+x (3/2–) 370 ms +46–40 %α≤100 0.0+y (13/2+) 245 ms 22 %α≤100 0.0 (1/2+) 28 ms +5–4 %α≈100 5 (7/2–) 21 ms 5 %α≈100 39 (13/2+) 27 ms +4–3 %α=24 10; %IT=76 10 197Bi 690 (1/2+) 5.04 min 16 %α=55 40; ... 197Po 0.0 (3/2–) 53.6 s 10 %α=44 7; ... 270 (13/2+) 25.8 s 1 %α=84 9; ... 0.0 (9/2–) 0.388 s 6 %α≤100 52 (1/2+) 2.0 s 2 %α≤100 197At 197Rn 5 Level 0.0+x (3/2–) 66 ms 16 %α≤100 0.0+y (13/2+) 21 ms 5 %α≤100 19 3 R e 118 75 19 3 R e 75 118 NUCLEAR DATA SHEETS Adopted Levels, Gammas Q(β–)=3090 SY; S(n)=6670 SY; S(p)=7940 SY; Q(α)=–900 SY Nuclide was produced by fragmentation of a on beryllium targets. 193Re 197Au 2003Au03. beam (E=187GeV) (1999Be63), and a 208Pb beam (E=208GeV) (2005Ca02) was identified with the GSI Fragment Separator. Q(β–)value uncertainties estimated by 2003Au03: 200 for Q(β–); 280 for S(n); 630 for S(p), and 360 for Q(α). 193Re Levels Cross Reference (XREF) Flags A E(level) T1/2 XREF 0.0 A 146+x A 9Be(208Pb,X) 0 . 0 8 ms + 4 5 – 4 γ( 1 9 3 R e ) The 146.1 2 keV γ is delayed but may be or not the isomeric transition. E(level) γ ray not placed in level scheme. x 9Be(208Pb,X) Nuclide was produced by fragmentation of a 208Pb 2005Ca02 beam (E=208GeV) (2005Ca02) on beryllium targets. 193Re was identified with the GSI Fragment Separator; delayed γ events were recorded by 4 clover composite Ge detectors. 2005Ca02 also observed delayed Re Kα x ray and Kβ x ray, with intensities 1.05 8 and 0.29 6 relative to γ 146.1 keV assigned to the decay of the isomeric level. 193Re Levels Comments T1/2 E(level) 0.0 146+x 0 . 0 8 ms + 4 5 – 4 T1/2: Upper–limit corresponds to 100% isomeric formation ratio (2005Ca02). γ(193Re) Eγ x146 x .1 2 Comments Mult. [Q] Mult.: Deduced from hindrance factors if it is the isomeric transition: HF=70 for M2 and 1×103 for E2. γ ray not placed in level scheme. 6 19 3 O s 117 – 1 76 19 3 O s 117 – 1 76 NUCLEAR DATA SHEETS Adopted Levels, Gammas Q(β–)=1141.2 23; S(n)=5583.41 20; S(p)=8970 SY; Q(α)=–340 200 2003Au03. Estimated ∆S(p)=200 (2003Au03). 193Os 1969Bi01 observed a 17–min activity in products from 1972Lo06 later attributed that to 80Br. 192Os(n,γ), Levels which they assigned to an isomer of 193Os, but Another unsuccessful attempt was made to confirm the original assignment by 1971MaYD. Cross Reference (XREF) Flags Jπ‡ E(level)† 0 . 0@ 3 / 2– XREF ABC A 192Os(n,γ) E=thermal B 192Os(n,γ) E=res C 192Os(d,p) Comments T1/2 30 . 11 h 1 %β–=100. µ=+0.7297 16 (1989Ed01,1991Sc28); Q=+0.47 6 (1989Ra17). Jπ: primary γ from 1/2+ in average neutron resonance capture; log ft=7.99 and 8.18 for β decay to 139–keV (Jπ=5/2+) and 740–keV (Jπ=5/2–) levels in 193Ir, respectively. T1/2: from 1992An13. Others: 31.9 h 10 (1947Go01), 30.6 h 4 (1950Ch11), 31.5 h 5 (1958Na15), and 30.0 h 3 (1969Co08). µ: NMR–ON (1989Ed01), sign from γ–ray circular polarization from oriented nuclei decay (1991Sc28). Other: +0.75 3 1989Ra17 recalculated value, from low temperature I(θ) and Mossbauer effect (1985Be03); 0.78 7 1989Ra17 recalculated value, from static low–temperature nuclear orientation (1984Gh01). Q: 1989Ra17 evaluation of 1979Er09 low temperature dependence of γ–anisotropy data reanalyzed by 1985Be03. 4 1 . 4 8 4& 2 ( 1 / 2– ) Jπ: primary γ from 1/2+ in (n,γ); absence of (d,p) strength and position AB of level, relative to that for 3/2[512] orbital, consistent with 1/2[510] Nilsson assignment. 7 2 . 9 0 1@ 2 1 0 2 . 7 3 3& 1 (5/2)– A C Jπ: L=3 in 192Os(d,p); 5/2– consistent with band assignment. (3/2)– ABC Jπ: L=1 in 192Os(d,p); 3/2– consistent with band assignment. 233 . 856 2 ABC Jπ: L=1 in 192Os(d,p). 192Os(d,p). 295 . 681 2 1 / 2– , 3 / 2– ( 5 / 2– ) # 307 . 083 2 1 / 2– , 3 / 2– ABC Jπ: L=1 in 399 . 014 4 (5/2)– A C Jπ: L=3 in 192Os(d,p); 434 . 960 3 1 / 2– , 3 / 2– ABC Jπ: L=1 in 192Os(d,p). 455 . 767 5 A C Jπ: L=3 in 192Os(d,p); 709 . 200 10 (5/2)– ( 5 / 2– , 7 / 2– ) # ( 5 / 2– , 7 / 2– ) # 762 5 / 2– , 7 / 2– Jπ: L=3 in 192Os(d,p). 544 . 551 4 A γ to (1/2)–. γ to (1/2)–. A C A C 888 . 62 3 Ab Jπ: 1/2–,3/2– can be assigned to at least one member of the 888.6–889.5 889 . 490 7 Ab Jπ: see comment with 888.6 level. doublet on the basis of population in average resonance capture. C Jπ: L=3 in 192Os(d,p). 1053 . 856 7 1 / 2– , 3 / 2–§ AB 1085 . 106 22 ( 1 / 2– , 3 / 2– ) A C Jπ: L=1 in 192Os(d,p); 952 5 / 2– , 7 / 2– assignment uncertain (level should be, but is not, populated in average resonance capture). 1170 . 887 8 ( 1 / 2+ , 3 / 2+ ) A Jπ: probable primary M1 γ from 1/2+ (level seen in thermal, but not 1178 . 421 22 1 / 2– , 3 / 2– ABC Jπ: L=1 in 192Os(d,p). 1216 . 954 8 AB 1281 . 467 19 1/2(–) ,3/2(–)§ 1 / 2– , 3 / 2–§ AB 1288 . 178 22 1 / 2– , 3 / 2–§ AB resonance, capture). 1333 . 5 A 1358 . 5 A AB 1437 . 4 9 1/2(–) ,3/2(–)§ 1/2(–) ,3/2(–)§ 1459 . 540 11 5 / 2– , 7 / 2– A C Jπ: L=3 in 192Os(d,p). 1496 5 / 2– , 7 / 2– C Jπ: L=3 in 192Os(d,p). C Jπ: L=3 in 192Os(d,p). 1385 . 4 1501 . 5 A 1514 . 6 1 / 2– , 3 / 2–§ 1517 5 / 2– , 7 / 2– 1523 . 9 B AB A Continued on next page (footnotes at end of table) 7 19 3 O s 117 – 2 76 19 3 O s 117 – 2 76 NUCLEAR DATA SHEETS Adopted Levels, Gammas (continued) 193Os Jπ‡ E(level)† Levels (continued) Comments XREF 1530 . 2 A 1566 C 1 / 2– , 3 / 2–§ 1590 . 8 Jπ: L<5 in 192Os(d,p). Jπ: L<5 in 192Os(d,p). AB 1603 . 0 A 1644 C 1668 C 1682 . 8 A 1697 C 1765 . 0 A 1784 . 9 A 1830 . 3 A 1838 . 6 A 1848 . 3 A 1914 . 8 A 2048 . 3 A 2063 . 9 A 2077 . 0 A 2090 . 0 A 2098 . 1 A 2131 . 3 A 2190 . 0 A 2220 . 1 A 2242 . 7 A † From ‡ Jπ's for levels populated by primary gammas are limited to 1/2, 3/2, 5/2+ considering that transitions are dipole or E2 from § From intense population, suggesting E1 (or probable E1) multipolarity, by primary transition in average resonance capture (1/2+ 192Os(n,γ) E=thermal, except where XREF clearly indicate other source. 1/2+ capture state. states). # From γ–ray decay pattern, coupled with lack of population in average resonance capture and expectation of no positive–parity states below ≈1 MeV. @ (A): 3/2[512] band. & (B): 1/2[510] band. γ( 1 9 3 O s ) All γ–ray data are from E(level) 192Os(n,γ) Iγ† Eγ 41 . 484 41 . 49 6 72 . 901 ( 72 . 901 ) E=thermal. 100 Iγ† E(level) Eγ 455 . 767 148 . 689 7 40 9 160 . 102 20 14 4 889 . 490 1053 . 856 Iγ† Eγ 816 . 63 5 889 . 484 13 165 . 23‡ 3 15 14 100 16 2 . 8‡ 11 102 . 733 102 . 733 1 100 221 . 906 16 233 . 856 131 . 124 2 100 15 353 . 042 11 17 4 618 . 895 14 8 . 9 20 382 . 862 8 78 17 746 . 753 9 8 . 7 19 192 . 365 14 233 . 857 15 295 . 681 307 . 083 192 . 952 3 39 8 100 15 1085 . 106 1170 . 887 51 11 145 . 533 6 23 7 100 15 237 . 473 5 84 18 295 . 676 3 64 14 248 . 859 6 27 6 204 . 349 2 84 18 307 . 083 3 544 . 551 414 . 276 20 455 . 754 12 254 . 193 4 265 . 601 2 1.8 4 28 8 26 7 544 . 53 3 100 15 19 4 441 . 835 17 471 . 662 10 709 . 200 413 . 479 20 11 3 606 . 459 24 22 5 100 27 33‡ 15 636 . 290 22 33 8 326 . 117 5 89 28 709 . 231 16 100 16 785 . 96 4 100 16 27 9 440‡ 140 888 . 62 815 . 66 6 23 6 888 . 55 5 42 11 582 . 400 24 22 5 99 21 655 . 614 15 20 4 43 9 786 . 764 11 85 19 127 . 879 7 20 5 201 . 105 2 100 15 393 . 471 6 434 . 954 8 889 . 490 Footnotes continued on next page 8 951 . 172 15 100 16 982 . 26 4 100 281 . 397 4 100 15 1129 . 49 6 42 10 1178 . 421 722 . 65 4 100 25 743 . 52 4 100 25 1216 . 954 327 . 464 4 983 . 14 6 100 15 91 . 920 7 165 . 23‡ 3 357 . 518 19 399 . 022‡ 5 434 . 960 1.7 4 11 3 222 . 778 5 234 . 170 12 399 . 014 1.1 3 6 . 7 17 E(level) 1281 . 467 1288 . 178 1459 . 540 391 . 96 4 38 9 100 18 34 13 825 . 702 20 100 16 109 . 763 14 28 10 203 . 067 8 399 . 022‡ 5 390‡ 90 832 . 46 4 100 17 242 . 586 7 100 15 405 . 67 4 26 6 4 . 6 12 19 3 O s 117 – 3 76 19 3 O s 117 – 3 76 NUCLEAR DATA SHEETS Adopted Levels, Gammas (continued) γ( 1 9 3 O s ) ( c o n t i n u e d ) † Relative photon branching from each level. ‡ Multiply placed; undivided intensity given. (B) 1/2[510] band. (A) 3/2[512] band. (5/2)– 72.901 3/2– 0.0 (3/2)– 102.733 (1/2–) 41.484 (A)3/2– 19 3 Os 76 117 192Os(n,γ) 2002Bo66: 193Os 192Os E=thermal 1979Wa04,1978Be22 enriched target, sum–coincidence γ–ray spectra with 2 HPGE dectectors. Proposed about 240 levels in below 3 MeV based on the assignment of about 240 primary γ rays and 750 secondary γ–ray transitions in 193Os from coincidence data and RITZ combination principle; about 20 of the proposed levels agree with levels observed in the other (n,γ) experiments. Levels not included: i) likely many incorrect assignments due to agreement of sum–energies by chance (see 1996Gi09 for a similar experiment on 168Er); ii) derivable nuclear properties do not depend on individual values but on the statistical distribution of measured quantities – see 2004Su11 for analysis. 193Os 1978Be22: isotope separated 192Os Levels targets (≥99% pure); measured Eγ, Iγ (Ge(Li) pair spectrometer for high–energy γ's, FWHM=6–7 keV; Ge(Li) anti–Compton spectrometer for intermediate–energy γ's, FWHM=3 keV; Si(Li) for low–energy γ's, FWHM=0.5–0.9 keV). 1979Wa04: osmium metal targets enriched to 99.06% in measured Eγ, Iγ (curved–crystal spectrometer system). Jπ‡ E(level)† 0.0 192Os; Comments 3 / 2– 41 . 484 2 ( 1 / 2– ) 72 . 901 2 (5/2)– 102 . 733 1 (3/2)– 233 . 856 2 1 / 2– , 3 / 2– 295 . 681 2 ( 5 / 2– ) 307 . 083 2 1 / 2– , 3 / 2– 399 . 014 4 (5/2)– 434 . 960 3 1 / 2– , 3 / 2– 455 . 767 5 (5/2)– 544 . 551 4 ( 5 / 2– , 7 / 2– ) 709 . 200 10 ( 5 / 2– , 7 / 2– ) 888 . 62 3 Jπ: see 193Os adopted levels for comment. 889 . 490 7 Jπ: see 193Os adopted levels for comment. 1053 . 856 7 1 / 2– , 3 / 2– 1085 . 106 22 ( 1 / 2– , 3 / 2– ) 1170 . 887 8 ( 1 / 2+ , 3 / 2+ ) 1178 . 421 22 1 / 2– , 3 / 2– 1216 . 954 8 1/2(–) ,3/2(–) 1281 . 467 19 1 / 2– , 3 / 2– 1288 . 178 22 1333 . 5§ 1 / 2– , 3 / 2– 1358 . 5§ 1385 . 4§ 1/2(–) ,3/2(–) 1459 . 540 11 1501 . 5§ 5 / 2– , 7 / 2– 1514 . 6§ 1 / 2– , 3 / 2– 1523 . 9§ 1530 . 2§ Continued on next page (footnotes at end of table) 9 19 3 O s 117 – 4 76 19 3 O s 117 – 4 76 NUCLEAR DATA SHEETS 192Os(n,γ) E=thermal 1979Wa04,1978Be22 (continued) 193Os Levels (continued) Jπ‡ E(level)† 1590 . 8§ Comments 1 / 2– , 3 / 2– 1603 . 0§ 1682 . 8§ 1765 . 0§ 1784 . 9§ 1830 . 3§ 1838 . 6§ 1848 . 3§ 1914 . 8§ 2048 . 3§ 2063 . 9§ 2077 . 0§ 2090 . 0§ 2098 . 1§ 2131 . 3§ 2190 . 0§ 2220 . 1§ 2242 . 7§ ( 5583 . 6 3 ) E(level): from least squares fit to primary γ's. S(n)=5583.41 20. 1 / 2+ Jπ: s–wave capture by even–even nucleus. † From least squares fit to Eγ (multiply placed gammas not included in least squares fit). ‡ From adopted levels. § From energy of primary transition in 1978Be22. γ(193Os) I(K x ray), relative to Iγ=100 for 265.6γ (1978Be22). K x ray E( x–ray ) I ( x–ray ) ––––––––––––––––––––––––––––––––––––––––––––– O s Kα 2 x ray O s Kα 1 x ray + I r Kα 1 x ray O s Kβ 1 x O s Kβ 2 x P b Kα 1 x I r Kα 2 x ray ray r a y + P b Kα 2 x ray ray 61 . 5 1 279 3.0 2 310 64 . 9 2 10 71 . 3 1 92 73 . 2 4 64 75 . 0 3 27 Iγ(γ±)=134, relative to Iγ=100 for 265.6γ (1978Be22). Eγ† E(level) 41 . 49§ 6 41 . 484 ( 72 . 901 2 ) x84 . 9§ 3 72 . 901 91 . 920 7 399 . 014 102 . 733 109 . 763 14 49§ Eγ: from energy difference between 72.9 and 0.0 levels. 1288 . 178 . 824 13 4 . 5 10 32 . 1 6 1.4 4 1.7 4 127 . 879 7 434 . 960 4.2 4 131 . 124 2 233 . 856 46 . 0 7 145 . 533 6 544 . 551 2.0 4 148 . 689 7 455 . 767 4.8 3 160 . 102 20 455 . 767 1.7 3 165 . 23# 3 399 . 014 1 . 5# 5 1 . 5# 5 1053 . 856 192 . 365 14 233 . 856 0.5 1 192 . 952 3 295 . 681 2.2 3 x195 . 611 16 0.4 1 x199 . 54 6 1.2 4 201 . 105 2 434 . 960 203 . 067 8 1288 . 178 204 . 349 2 307 . 083 x207 . 81 3 Comments 7 . 6§ 102 . 733 1 x123 Iγ‡ 20 . 5 5 1.3 1 84 . 1 16 0.5 2 Continued on next page (footnotes at end of table) 10 19 3 O s 117 – 5 76 19 3 O s 117 – 5 76 NUCLEAR DATA SHEETS 192Os(n,γ) E=thermal 1979Wa04,1978Be22 (continued) γ( 1 9 3 O s ) ( c o n t i n u e d ) Eγ† x208 E(level) . 493 4 Eγ† Iγ‡ 4.0 2 x749 Iγ‡ E(level) . 17 4 1.0 1 785 . 96 4 888 . 62 786 . 764 11 889 . 490 9.5 5 221 . 906 16 455 . 767 0.8 1 222 . 778 5 295 . 681 10 . 7 3 233 . 857 15 233 . 856 0.8 1 234 . 170 12 307 . 083 1.8 1 815 . 66 6 888 . 62 2.2 3 237 . 473 5 544 . 551 7.2 2 816 . 63 5 889 . 490 2.4 2 242 . 586 7 1459 . 540 28 . 1 7 x830 . 47 7 248 . 859 6 544 . 551 2.3 1 x831 . 39 6 254 . 193 4 295 . 681 20 . 8 4 265 . 601 2 307 . 083 100 . 0 7 2.0 1 x850 . 87 9 2.0 3 1170 . 887 23 . 3 8 x883 . 98 9 1.9 3 295 . 681 13 . 2 2 x241 x276 . 132 17 . 575 6 281 . 397 4 x287 0.7 1 . 81 5 295 . 676 3 0.4 1 x788 . 542 25 825 . 702 20 832 . 46 4 x847 7.6 4 1281 . 467 7.0 4 3.4 4 5.3 4 1288 . 178 5.0 4 . 31 3 8.7 4 888 . 55 5 888 . 62 889 . 484 13 889 . 490 x924 13 . 4 5 4.0 5 15 . 7 7 x297 . 632 6 2.3 1 x298 . 057 9 1.1 1 951 . 172 15 1053 . 856 54 3 x303 . 589 9 16 . 8 14 . 68 6 3.0 3 1.3 1 982 . 26 4 1085 . 106 307 . 083 3 307 . 083 18 . 9 4 983 . 14 6 1216 . 954 326 . 117 5 399 . 014 4.0 2 327 . 464 4 1216 . 954 6.3 2 353 . 042 11 455 . 767 2.0 2 357 . 518 19 399 . 014 1.2 2 x375 . 359 13 1.6 2 x382 . 476 21 2.2 2 382 . 862 8 391 . 96 4 393 . 471 6 399 . 022# 5 455 . 767 9.3 3 1281 . 467 2.4 7 434 . 960 399 . 014 20 . 3 4 19 . 7# 4 1288 . 178 19 . 7# 4 x400 . 917 25 2.0 4 x401 . 404 25 2.7 3 405 . 67 4 1459 . 540 1.3 2 413 . 479 20 709 . 200 1.3 2 414 . 276 20 455 . 767 4.6 2 x432 . 49 4 434 . 954 8 x441 1.1 2 434 . 960 . 05 5 8.9 3 1.1 2 441 . 835 17 544 . 551 2.4 4 455 . 754 12 455 . 767 11 . 9 3 471 . 662 10 544 . 551 2.2 3 x517 . 18 5 544 . 53 3 x560 . 914 16 582 . 400 24 x584 7.8 3 544 . 551 8.6 3 1.9 2 889 . 490 . 70 3 3.4 2 2.2 2 606 . 459 24 709 . 200 2.7 2 618 . 895 14 1053 . 856 4.8 2 x635 . 789 21 636 . 290 22 x649 . 594 25 655 . 614 15 x667 889 . 490 3.1 2 3.0 2 709 . 200 . 17 4 722 . 65 4 4.1 3 1.8 2 . 824 21 709 . 231 16 x714 6.0 3 709 . 200 12 . 3 5 1.5 2 1178 . 421 2.1 3 x983 1129 . 49 6 . 7§ 8 3340 . 9§ 3452 . 3§ 3485 . 5§ ( 5583 . 6 ) 7 . 4§ 6 . 1§ ( 5583 . 6 ) 3493 . 6§ ( 5583 . 6 ) 5 . 7§ ( 5583 . 6 ) 12 . 1§ 11 . 1§ 3535 . 3§ 3668 . 8§ ( 5583 . 6 ) 7 . 4§ ( 5583 . 6 ) 3735 . 3§ 3745 . 0§ ( 5583 . 6 ) 14 . 5§ 5 . 4§ 3753 . 3§ 3798 . 7§ ( 5583 . 6 ) ( 5583 . 6 ) 13 . 5§ 3 . 7§ ( 5583 . 6 ) 8 . 1§ 8 . 4§ ( 5583 . 6 ) 3818 . 6§ 3900 . 8§ ( 5583 . 6 ) 3980 . 6§ 3992 . 8§ ( 5583 . 6 ) 4053 . 4§ 4059 . 7§ ( 5583 . 6 ) ( 5583 . 6 ) 7 . 7§ 4069 . 0§ 4082 . 1§ ( 5583 . 6 ) 7 . 7§ 5 . 7§ 4198 . 2§ 4225 . 1§ ( 5583 . 6 ) 4250 . 1§ 4295 . 5§ ( 5583 . 6 ) 8 . 1§ ( 5583 . 6 ) 4301 . 5§ 4366 . 7§ ( 5583 . 6 ) 13 . 5§ 7 . 1§ 4405 . 7§ 4413 . 5§ ( 5583 . 6 ) ( 5583 . 6 ) 23§ 4530 . 7§ 4694 . 9§ ( 5583 . 6 ) 16 . 8§ 24§ ( 5583 . 6 ) 3 . 4§ 8 . 8§ ( 5583 . 6 ) ( 5583 . 6 ) 11 . 4§ 13 . 8§ ( 5583 . 6 ) 18 . 2§ 20§ ( 5583 . 6 ) ( 5583 . 6 ) 78§ 25§ 5276 . 0§ 5348 . 3§ ( 5583 . 6 ) 116§ ( 5583 . 6 ) ( 5583 . 6 ) 2.1 2 5583 . 3§ 746 . 753 9 1053 . 856 4.7 2 † 10 . 1§ 11 . 4§ ( 5583 . 6 ) 3506 . 6§ 3519 . 7§ 1.9 3 . 11 5 9 . 8 11 34§ 24§ ( 5583 . 6 ) ( 5583 . 6 ) 1178 . 421 x735 0.8 1 1170 . 887 3363 . 5§ 3393 . 6§ 743 . 52 4 . 80 3 13 . 1 15 x1200 5481 . 0§ 5542 . 0§ x734 16 . 8 16 . 96 6 ( 5583 . 6 ) ( 5583 . 6 ) 3 . 7§ 5 . 1§ 6 . 1§ 79§ From 1979Wa04, unless otherwise noted; uncertainties do not include absolute calibration errors. Calibration (secondary γ's): E(Os Kα2 x ray)=61.488. Footnotes continued on next page 11 19 3 O s 117 – 6 76 NUCLEAR DATA SHEETS 192Os(n,γ) E=thermal 1979Wa04,1978Be22 (continued) γ( 1 9 3 O s ) ( c o n t i n u e d ) ‡ From 1979Wa04, unless otherwise noted. Units are arbitrary, relative to Iγ=100 for 265.6γ. 1978Be22 report 263 mb for the partial cross section of 265.6γ and total cross section ≥1.9 b (from summation of Iγ(high energy)). Uncertainties are statistical only, and do not include estimated systematic errors of <15%. § From 1978Be22. # Multiply placed; undivided intensity given. x γ ray not placed in level scheme. 12 19 3 O s 117 – 6 76 19 3 O s 117 – 7 76 1/2+ 1/2–,3/2– 5/2–,7/2– 1/2(–),3/2(–) 1/2–,3/2– 1/2–,3/2– 1/2(–),3/2(–) 1/2–,3/2– (1/2+,3/2+) (1/2–,3/2–) 192Os(n,γ) 1979Wa04,1978Be22 (continued) NUCLEAR DATA SHEETS E=thermal Level Scheme Intensities: relative Iγ & Multiply placed; undivided intensity given 8.6 2.2 2.4 2.3 7.2 2.0 1/2–,3/2– 45 415.75 4 384.276 11 352.862 4. .9 223.042 9.6 161.90 2.3 6 140.102 0.0 43 8.689 1.8 7 394.95 4. 4 203.471 8. 8 121.105 209 39 7.879 20.3 359.02 4.2.5 2 327.518 & 166.117 1. 19. 7 915.23 4.2 .92 & 0 30 0 7 1 . . 4 0 5 26 83 .5 235.601 18 204.17 10.9 0 4 29 .349 1. 0.0 255.676 848 224.193 13 .1 192.77 20.2 2.9 8 23 52 10.8 193.857 2.2.7 2 13 .36 0. 1.1 5 8 10 24 0.5 72 2.733 46 .0 41 .901 32 .49 .1 49 (5/2–,7/2–) (5/2–,7/2–) (5/2)– 1/2–,3/2– (5/2)– 1/2–,3/2– 1/2–,3/2– (5/2–) (3/2)– (5/2)– (1/2–) 3/2– 19 3 Os 117 76 13 54 474.53 441.662 241.835 238.85 9 147.473 5.5 33 70 639.231 606.290 12 416.459 4. .3 3.4 1 79 2.7 1.3 88 819.48 4 786.63 15 656.764 2.4 .7 5 58 .614 13 88 2.40 3. .4 0 818.55 3.1 785.66 4.0 4 5.9 2 6 .2 9.5 40 245.67 2.5 1 83 86 .3 392.46 28 9 .1 20 .022 5.0 103.067 & 9 82 .76 1. 19. 7 3 395.702 1.3 1.9 4 98 6 7.0 2.4 323.14 74 7.464 16. 8 723.52 6. 11 2.65 2.1 3 2829.4 2.1 1.3 9 98 97 9.8 95 2.26 23 1 .3 . 1 1 74 7 6.8 2 6 61 .753 54 8 . 8 16 95 4. 5.2 7 3 4.8 & 1.5 19 3 O s 117 – 7 76 (5583.6) 2242.7 2190.0 2090.0 2048.3 1914.8 1830.3 1765.0 1682.8 1590.8 1501.5 1459.540 1385.4 1288.178 1281.467 1216.954 1178.421 1170.887 1085.106 1053.856 889.490 888.62 709.200 544.551 455.767 434.960 399.014 307.083 295.681 233.856 102.733 72.901 41.484 0.0 19 3 O s 117 – 8 76 19 3 O s 117 – 8 76 NUCLEAR DATA SHEETS 192Os(n,γ) E=res 1979Wa04 E(res)=2 keV (mean energy of neutron beam (scandium filter used to spread beam over 20 to 30 resonances); FWHM=800 eV); osmium metal targets enriched to 99.03% in 192Os; measured averaged intensities of primary transitions (3–crystal pair spectrometer system); determined full set of 1/2– or 3/2– states below 1700 keV. 1974Be78 observed resonances at energies (in eV): 26.03 9; 36.17 15; 43.9 2; 95.7 7; 115.8 11; 126.0 12 transmission through enriched targets, time–of–flight method. See 1984MuZY for properties of neutron resonances. 193Os Levels Jπ‡ E(level)† 0.0 Comments 1 / 2– , 3 / 2– 41 . 2 2 1 / 2– , 3 / 2– 102 . 4 2 1 / 2– , 3 / 2– 233 . 7 3 1 / 2– , 3 / 2– 307 . 3 3 1 / 2– , 3 / 2– 434 . 8 2 1 / 2– , 3 / 2– 888 . 9 3 1 / 2– , 3 / 2– 1053 . 3 6 1 / 2– , 3 / 2– 1178 . 3 3 1 / 2– , 3 / 2– 1218 . 0 6 1/2(–) ,3/2(–) 1282 . 4 4 1 / 2– , 3 / 2– 1288 . 0 4 1 / 2– , 3 / 2– 1385 . 6 12 1/2(–) ,3/2(–) 1437 . 4 9 1/2(–) ,3/2(–) 1515 . 2 6 1 / 2– , 3 / 2– 1589 . 6 7 1 / 2– , 3 / 2– ( 5587 . 1 ) 1 / 2+ At least one member of the 888.6 – 889.5 doublet has Jπ=1/2–,3/2–. E(level): approximate energy of 2–keV resonance capture states (E(level)=S(n) + 2 keV). Jπ: s–wave capture dominant; target Jπ=0+. † From Eγ(g.s.) – Eγ (1979Wa04); uncertainties do not include calibration errors (estimated to be 1.0 keV for absolute energies, 0.3–0.8 keV for relative energies). ‡ From intense population, suggesting E1 (or probable E1) multipolarity, by primary transitions (1/2+ capture states). 192Os(d,p) 1978Be22 E(d)=12.0 MeV, θ=20°, 30°, 40°, 55°, 75°, 90°, 95°, 125°; isotope separated 192Os targets (≥99% pure); measured E(level) (mag spect, FWHM=12–17 keV), angular distributions. 193Os E(level)† L‡ σ(θ=55 °)§ E(level)† σ(θ=55 °)§ E(level)† L‡ σ(θ=55 °)§ 0 . 08 1496 3 0 . 03 0 . 03 1517 3 0 . 05 3 0 . 08 1566 <5 0 . 39 952 3 0 . 04 1644 0 . 21 1086 1 0 . 27 1668 <5 0 . 24 3 0 . 08 1178 1 0 . 10 1697 1 0 . 20 1461 3 0 . 04 0 . 02 455 3 0 . 17 544 102 . 8 1 0 . 45 762 234 1 0 . 46 307 1 399 434 0.0 72 L‡ Levels 3 0 . 03 0 . 19 † Weighted mean values from measurements at all angles uncertainties not given. Energies were measured relative to 102.8 level, ‡ Inferred from angular distributions. § in mb/sr. Assumed Q=3 MeV. Uncertainties not given; evaluated relative uncertainties in the range 5–20%. except those at 30°, which were measured relative to 307 level (calibration energies are from 14 192Os(n,γ) E=thermal (1978Be22)). 19 3 I r 7 7 116 – 1 19 3 I r 7 7 116 – 1 NUCLEAR DATA SHEETS Adopted Levels, Gammas Q(β–)=–56.8 3; S(n)=7771.92 20; S(p)=5942.3 23; Q(α)=1019 8 2003Au03. Calculations: Levels, B(E2): 1994He24, 1986Ar03, 1986Bl09. Levels, supersymmetry: 1985Hu07. Levels, magnetic properties: 2002St11. LASER–assisted electronic transitions: 1996Ty01. Nuclear excitation by electron transitions (NEET): 2005Ki01 (experiment); 1997Ol01,1994Tk02,1992Tk01 (theory). Compilation, review: NMR in oriented nuclei: 1996Ha09. Isotope shift and hyperfine structure measurements: 1989Sa31. 193Ir The rotational bands of 193Ir with axially asymmetric core are discussed in 1979Vi06, 1983Ci01, 1987Pr10 and 1997Dr04. The band assignments are based on assignments in 192Os(3He,d) describe (1971Pr13) and 193Ir Levels 191Ir(nn,γ) 193Ir(n,n'γ) (1987Pr10), 194Pt(t,α) (1983Ci01), (1997Dr04). Spin(6) symmetry and U(6/4), U(6/20) supersymmetry are used to (1983Ci01, 1984Mu19, 1987Mc01, 2000Be07). Cross Reference (XREF) Flags A 193Os β– F 192Os(d,nγ) B 193Ir IT Decay (10.53 d) G 192Os(3He,d), C 193Pt ε Decay (50 y) H 193Ir(γ,γ): D 191Ir(nn,γ) I 193Ir(γ,γ'): E 191Ir(t,p) J 193Ir(n,n'γ) Decay E=th E(level)† 0 . 0# Jπ 3 / 2+ K Inelastic Scattering (α,t) Res Fluorescence M 194Pt(d,3He) N 194Pt(pol t,α), (t,α) O Muonic Atom Comments T1/2 XREF ABCDEFGH I JKLMNO L Coulomb Excitation Mossbauer µ=+0.1637 6; Q=+0.751 9. s t ab l e Jπ: optical spectroscopy (1976Fu06), L(3He,d)=2, L(d,3He)=2. µ: Atomic beam (direct) (1989Ra17,1984Bu15). Other: +0.1591 6 (NMR 1989Ra17,1968Na01). Q: Hyperfine structure of muonic x rays (1989Ra17,1984Ta04); other: +0.73 19 Atomic beam (1989Ra17,1978Bu17). Isotope shift: ∆<r2>(191Ir,193Ir)=0.044 4 fm2 (1989Sa31); <r2>1/2=5.40 11 fm (2004An14). 7 3 . 0 4 5@ 5 1 / 2+ A D FGH JKLMN 6 . 09 ns 15 µ=+0.519 2. Jπ: J=1/2 from 193Ir(γ,γ): Mossbauer; π from M1+E2 γ to 3/2+ level. T1/2: from 193Os β– decay; other: 4.1 ns 3 (B(E2) in Coulomb excitation). µ: Mossbauer (1989Ra17,1969Pe05). 2005Ki01 observed nuclear excitation by electron transitions (NEET) of 2.8×10–9 4 times the K–shell photoelectric cross section at energy: Ir K–edge + 128 eV (76.229 keV); synchrotron radiation, internal conversion electron time spectroscopy using Si avalanche photodiode. 8 0 . 2 3 9& 6 11 / 2– AB D FG I J L N 10 . 53 d 4 %IT=100. Jπ: M4 γ to 3/2+. 138 . 940# 6 T1/2: from 5 / 2+ A D FGH JKLMNO 69 . 7 ps 10 193Ir IT decay (10.53 d) (1987Li16). µ=+0.89 4. Jπ: M1+E2 γ to 3/2+ level, M1+E2 γ from 7/2+ level. T1/2: from recoil–distance method in Coulomb excitation (2000Be07). Other: 80 ps 5 (193Os β– decay); 80 ps 2 (193Ir(γ,γ):Mossbauer). µ: From g–factor=+0.356 16 transient field IMPAC measurement ((58Ni,58Ni') and (65Cu,65Cu') 2000Be07, 1996St22). Other: +0.528 30 transient field IMPAC measurement ((32S,32S') (Coulomb excitation) 1989Ra17,1986Ko20); the reason for this discrepancy is not clear (1996St22). Continued on next page (footnotes at end of table) 15 19 3 I r 7 7 116 – 2 19 3 I r 7 7 116 – 2 NUCLEAR DATA SHEETS Adopted Levels, Gammas (continued) 193Ir E(level)† Jπ 1 8 0 . 0 6 7@ 5 3 / 2+ Levels (continued) A D FG JKLMN Comments T1/2 XREF 43 ps µ=1.1 4 (1989Ra17,1973Il02). 16 Jπ: M1+E2 γ to 1/2+ level. T1/2: unweighted average of 59 ps 7 (193Os β– decay) and 27 ps 3 (B(E2) in Coulomb excitation). µ: from integral perturbed angular correlation. 299 . 399a 7 7 / 2– A D FG J LMN 0 . 19 ns 3 Jπ: L=3 in 194Pt(d,3He); J=L+1/2 194Pt(pol t,α); E2 γ to 11/2– level. 357 . 768# 6 T1/2: from γγ(t) in 7 / 2+ A D FG JKL n 18 . 2 ps β– decay. 193Os µ=+1.54 6. 5 Jπ: γγ(θ) in Coulomb excitation (1958Mc02) is consistent only with J=7/2; M1+E2 γ to π=+ level; L=2 in inelastic scattering. T1/2: from recoil–distance method in Coulomb excitation (2000Be07,1986Ko20). µ: From g–factor=+0.441 16, transient field IMPAC measurement ((58Ni,58Ni') and (65Cu,65Cu') 2000Be07, 1996St22). Other: +1.65 25 (Coulomb excitation, relative to µ(138.9 level)=+0.528 30 1989Ra17,1986Ko20). 3 6 1 . 8 5 6@ 5 5 / 2+‡ A D FG J LMn 31 ps Jπ: L=2 in 5 194Pt(d,3He). T1/2: weighted average of 36 ps 7 (193Os β– decay) and 25 ps 7 (B(E2) in Coulomb excitation). 460 . 535b 5 3 / 2+ A D F I JKLMN 13 . 2 ps 10 Jπ: M1+E2 γ to 1/2+ level. T1/2: weighted average of 17 ps 4 (193Os β– decay); 13.7 ps 12 (B(E2) in Coulomb excitation); 11 ps 2 (193Ir(γ,γ'):res fluorescence). 4 6 9 . 3 8 7& 1 1 4 7 8 . 9 9 0& 1 4 5 1 6 . 4 1 2@ 6 ( 13 / 2– ) § ( 15 / 2– ) § D F J Jπ: (E2) γ to 11/2– level. (7/2)+ D F J L Jπ: (E2) γ to 3/2+ level, γ from (11/2+) level; 521 . 925# 7 (9/2)+ D F JKL D F Jπ: (M1) γ to 11/2– level. J band structure. 13 . 2 ps 19 µ=+2.4 7. Jπ: (M1) γ to 7/2+ level, (E2) γ to 5/2+ level; band structure. T1/2: from recoil–distance method in Coulomb excitation. µ: From g–factor=+0.54 15, transient field IMPAC measurement ((58Ni,58Ni') and (65Cu,65Cu') 2000Be07, 1996St22). Other: +3.8 11 (relative to µ(138.9 level)=+0.528 30, transient field IPAC in Coulomb excitation (1986Ko20)). 557 . 446b 7 (1/2)+ A D F IJ L 34 ps Jπ: M1+E2 γ to 3/2+ level; 1/2+ consistent with 8 band assignment. 5 / 2+‡ 559 . 299 6 T1/2: from A D FG I J LMN 1 . 08 ps 16 193Os β– decay. XREF: G(562). Jπ: L=2 in T1/2: from 194Pt(d,3He); 193Ir(γ,γ') M1 γ to 5/2+ level. res fluorescence. configuration: assigned as 5/2+ 5/2[402] state by 1971Pr13 (193Os(3He,d), (α,t)). 563 . 404a 8 ( 9 / 2– ) § 598 . 230c 3 / 2– D F J L D F I JKL Jπ: (M1) γ's to 7/2– and 11/2– levels; band structure. 8 A 2 . 8 p s +28–9 Jπ: M1 γ from 5/2– level; γ to 1/2+ level. T1/2: from Continued on next page (footnotes at end of table) 16 194Ir(γ,γ'): res fluorescence. 19 3 I r 7 7 116 – 3 19 3 I r 7 7 116 – 3 NUCLEAR DATA SHEETS Adopted Levels, Gammas (continued) 193Ir E(level)† Jπ 620 . 990d 7 Levels (continued) 7 / 2+ D FG Comments T1/2 XREF JKLMN 4 . 3 ps 3 µ=+1.16 14. Jπ: L=4 in 194Pt(d,3He) J=L–1/2 in 194Pt(pol and 192Os(3He,d), (α,t); t,α); γ to 3/2+. T1/2: from recoil distance method and B(E2) in Coulomb excitation. µ: From g–factor=+0.33 4 transient field IMPAC measurement ((58Ni,58Ni') and (65Cu,65Cu') 2000Be07, 1996St22). Other: +0.56 39 (relative to µ(138.9 level)=+0.528 30 Coulomb excitation 1989Ra17,1986Ko20). 695 . 133b 6 712 . 170 7 740 . 381c 5 / 2+‡ 3 / 2+‡ A D F JKLMN A D F J LMN Jπ: (M1) γ to 3/2+ level, γ to 7/2+ level. 15 ps Jπ: M1+E2 γ's to 3/2+ and 5/2+ levels. 14 T1/2: from 7 806 . 902 9 5 / 2– A D F JKL (5/2)+ ( 9 / 2– ) § A D F J L 828 . 92 9 832 . 895a 10 ( 11 / 2– ) § D F 8 3 8 . 9 1 8@ 9 ( 9 / 2+ ) D F 848 . 93 6 5 / 2+‡ 849 . 084 12 1 / 2+ , 3 / 2 ( + ) , 5 / 2 ( + ) 193Os β– decay. Jπ: M1+E2 γ to 7/2– level; M1 γ to 3/2+ level. Jπ: (M1) γ to 7/2+ level, γ to 1/2+ level. J n Jπ: γ to 11/2– level. J n Jπ: (M1) γ to (9/2–) level, (E2) γ to 7/2– level; band structure. Jπ: (M1) γ to (7/2)+ level, (E2) γ to 5/2+ level; L band structure. A g J Jπ: γ's to 5/2+ and 1/2+ levels. mN Jπ: (M1) γ to 3/2+ level, (E2) γ to 5/2+ level. D Possibly the same as the 848.93 level. Only Eγ<700 keV were studied in 191Ir(nn,γ) experiment, therefore, the three γ's observed by others were above the range of study. Possibly the two γ's seen in (nn,γ) are relatively weak in the spectra of other experiments. 857 . 026# 8 ( 11 / 2 ) + D Fg JKL 4 . 2 ps 4 µ=+2.7 7. Jπ: (E2) γ to 7/2+ level, (M1) γ to (9/2)+ level; band structure. T1/2: from B(E2) to 357.8 level in Coulomb excitation. µ: From g–factor=+0.49 13 transient field IMPAC measurement ((58Ni,58Ni') and (65Cu,65Cu') 2000Be07, 1996St22). 874 . 291 9 3 / 2+ , 5 / 2+ A D F J Jπ: γ's to 1/2+ and 7/2+. Assigned 7/2+ member of mN the second Kπ=1/2 band in (n,n'γ); however, this assignment is inconsistent with observed transitions to 1/2+ levels. 892 . 268d 12 918 . 365c 8 ( 9 / 2+ ) D F J L Jπ: γ's to 5/2+ and (9/2)+ levels; band structure. ( 7 / 2– ) § D F J Jπ: (M1) γ to 5/2– level, (E2) γ to 3/2– level; 9 3 0 . 4 3 2& 1 6 ( 17 / 2– ) § D F J Jπ: γ to (15/2–) level; band structure. 964 . 43 7 1 / 2+ 972 . 873 11 ( 5 / 2+ ) § D F 975 . 334 13 ( 11 / 2– ) ‡ D 1009 . 353 10 1 0 1 9 . 5 8 8@ 1 0 ( 11 / 2+ ) § ( 11 / 2+ ) § D J D J 1035 . 465# 8 ( 13 / 2+ ) D F 1035 . 854 25 3 / 2+ , 5 / 2 ( + ) , 7 / 2+ D F band structure. A G J M XREF: G(969). Jπ: L=0 in J 194Pt(d,3He). N Jπ: γ's to 1/2+, 5/2 and 7/2+ levels. N Jπ: (E2) γ to (15/2–) level, (M1) γ to (13/2–) level. Jπ: (E2) γ to (7/2)+ level, γ to (13/2–) level. Jπ: (E2) γ to (7/2)+ level; band structure. Jπ: (M1) γ to (11/2)+ level, (E2) γ to (9/2)+ L level; band structure. J n XREF: n(1032). Jπ: γ's to 3/2+ and 7/2+ levels; 5/2– not consistent with 1038 . 055 11 ( 5 / 2+ , 7 / 2+ ) § 1065 . 89 6 1 / 2+ , 3 / 2 ( + ) , 5 / 2+ D 193Ir(n,n'γ) data. J n XREF: n(1032). J N Jπ: γ's to 1/2+ and 5/2+ levels; 3/2– not Jπ: γ's to (9/2)+ and 3/2+ levels. g consistent with 193Ir(n,n'γ) data; multiply placed γ to 7/2+ level would rule out 1/2+. Continued on next page (footnotes at end of table) 17 19 3 I r 7 7 116 – 4 19 3 I r 7 7 116 – 4 NUCLEAR DATA SHEETS Adopted Levels, Gammas (continued) 193Ir E(level)† Jπ 1076 . 47 8 ( 3 / 2+ ) § 1077 . 93 9 ( 3 / 2– , 5 / 2– ) § Levels (continued) Comments XREF g J n XREF: n(1080). Fg J n XREF: n(1080). Jπ: γ's to 5/2+ and 7/2+ levels. A Jπ: γ's to 5/2– and 7/2– levels. 1126 K 1131 . 17 11 5 / 2– G J N XREF: N(1146). Jπ: L=3 in 192Os(3He,d), (α,t); γ to 3/2+ level. Assigned as 5/2– 1/2[541] state by 1971Pr13 (192Os(3He,d), (α,t)). 1145 . 617c 10 (9/2)– D G J N XREF: N(1146). Jπ: L=5 in 192Os(3He,d), (α,t); 9/2– consistent with band assignment. Alternatively assigned as 9/2– 1/2[541] state by 1971Pr13 (192Os(3He,d), (α,t)). 1163 3 ( 13 / 2 ) + G N XREF: N(1146). Jπ: L=6 in 192Os(3He,d), (α,t). Assigned as 13/2+ 1/2[660] state by 1971Pr13. 1168 . 06a 13 1169 . 170d 9 ( 13 / 2– ) § ( 11 / 2+ ) § D F J Jπ: γ's to (11/2–) and (13/2–) levels; band structure. J L Jπ: (E2) γ to 7/2+ level, (M1) γ to (11/2)+ level; band structure. 1193 K 1201 3 1 / 2– , 3 / 2–‡ G N E(level): from Jπ: L=1 in 1250 . 42 8 ( 3 / 2 , 5 / 2 ) +§ 1286 5 / 2– , 7 / 2– J G K N Jπ: γ's to 5/2+ and 7/2+ levels. E(level): from N 1398 10 (α,t). (α,t). N Jπ: L=3 in 1344 10 192Os(3He,d), 192Os(3He,d), 192Os(3He,d), 192Os(3He,d), (α,t). (α,t). XREF: K(1347). N 1407 G 1 4 3 8 . 4 2 9@ 1 1 1459 . 967# 11 1511 . 724 14 ( 13 / 2+ ) § D ( 15 / 2 ) + ( 3 / 2+ ) ‡ D F Jπ: γ to (9/2+) level; band structure. J Jπ: γ's to (11/2)+ and (13/2)+ levels; band structure. L D F JK N XREF: N(1504). Jπ: (M1+E2) γ to 5/2+ level, γ to (1/2)+ level. 1552 10 N 1583 10 N 1609 5 N 1639 5 1650 . 5# 10 N ( 17 / 2+ ) 1690 5 1698 3 Jπ: γ to (13/2)+ level; band structure. L N 3 / 2+ , 5 / 2 , 7 / 2– Jπ: L=2 or 3 in (3He,d), (α,t). G 1744 5 1759e 3 N (3/2)– G Jπ: L=1 in 192Os(3He,d), 1820e 3 (7/2)– G Jπ: L=3 in 192Os(3He,d), 1826 5 N 1866 5 N 1898 5 1935 5 Jπ: J=L+1/2 in 194Pt(pol (α,t); band structure. (α,t); band structure. t,α). N ( 5 / 2+ ) ‡ N 1970 3 G 1999 3 G 2029 G 2179 . 0# 10 ( 19 / 2+ ) L Jπ: decay to (15/2)+ level; band structure. 2404?# ( 21 / 2+ ) L Jπ: possible member of rotational band (Coulomb excitation). † For levels seen in 193Os β– decay, 191Ir(nn,γ), 192Os(d,nγ) and 193Ir(n,n'γ) reaction and Coulomb excitation E(level) is from a least–squares fit to Eγ. For levels seen only in particle reactions, the source is given only if an ambiguity exists. ‡ From angular distributions and analyzing powers in § From comparison of experimental and theoretical level–population rates in 194Pt(pol t,α), (t,α). # (A): Kπ=3/2+, 3/2[402] band. @ (B): Kπ=1/2+, 1/2[400] band. & (C): Kπ=11/2–, 11/2[505] band. a (D): Kπ=7/2–, b (E): Kπ=1/2+, c (F): Kπ=3/2–, d (G): Kπ=7/2+, e 7/2[523] band. 1/2[411] band. 3/2[532] band. 7/2[404] band. (H): Kπ=1/2–, 1/2[530] band. 18 193Ir(n,n'γ), and γ–ray decay systematics (1987Pr10). 19 3 I r 7 7 116 – 5 19 3 I r 7 7 116 – 5 NUCLEAR DATA SHEETS Adopted Levels, Gammas (continued) γ( 1 9 3 I r ) E(level) 73 . 045 Iγ‡ Eγ† 73 . 031 13 100 Mult.§ M1 +E 2 δ§ –0 . 558 5 α 6 . 24 Comments B(M1)(W.u.)=0.00098 4; B(E2)(W.u.)=22.1 8. δ: from 80 . 239 80 . 234c 7 100 M4 21400 193Ir(γ,γ): 193Ir Mult.: from Mossbauer. IT decay (10.53 d). B(M4)(W.u.)=2.12 7. 138 . 940 138 . 930 18 100 M1 +E 2 –0 . 362 6 2 . 34 B(M1)(W.u.)=0.0312 8; B(E2)(W.u.)=82 2. δ: from particle–γ(θ), 2000Be07. Other: –0.329 12 from β– decay. 180 . 067 41 . 18# 7 107 . 017 4 I(γ+ce): 12# 3. 100 4 M1 +E 2 +0 . 164 8 5 . 18 1 B(M1)(W.u.)=0.059 22; M1 +E 2 –0 . 48 2 1 . 06 1 B(M1)(W.u.)=0.0030 11; 0 . 257 B(E2)(W.u.)=71 11. 0 . 660 Iγ: multiply placed γ in B(E2)(W.u.)=54 20. 180 . 070 7 28 . 9 11 B(E2)(W.u.)=8 3. 299 . 399 357 . 768 219 . 158 7 2 1 8 . 8 2 6@ 7 100 87 4 E2 M1 +E 2 a –0 . 280a 9 decay and 193Os 193Ir(n,n'γ); β– not included in weighted average. δ: from particle–γ(θ), 2000Be07. Other: –0.34 4 from β– decay. B(M1)(W.u.)=0.0372 23; B(E2)(W.u.)=23.7 15. 357 . 77 3 100 3 E2 a 0 . 0575 Mult.: Q from Coulomb excitation, E2 from ce data (191Ir(nn,γ)). B(E2)(W.u.)=32.0 16. 361 . 856 181 . 794 6 75 3 288 . 810 9 52 . 1 18 M1 +E 2 +0 . 149 11 1 . 15 B(M1)(W.u.)=0.026 4; 0 . 107 B(E2)(W.u.)=21 4. 0 . 164 2 B(M1)(W.u.)=0.0040 7; 6 . 59 B(M1)(W.u.)=0.0032 4. B(E2)(W.u.)=6.7 11. 361 . 858 13 100 4 ( E2 ) M1 +E 2 –0 . 33 3 B(E2)(W.u.)=1.30 22. 460 . 535 98 . 75 5 0 . 42# 6 M1 280 . 465 3 31 . 74 20 M1 +E 2 –0 . 049 12 0 . 348 B(M1)(W.u.)=0.0104 8; 321 . 605 7 32 . 27 20 M1 +E 2 +0 . 234 10 0 . 232 B(M1)(W.u.)=0.0067 5; 387 . 512 15 31 . 78 20 M1 +E 2 –0 . 24 4 0 . 141 2 B(M1)(W.u.)=0.0037 3; M1 +E 2 –0 . 64 3 0 . 0741 13 B(M1)(W.u.)=0.0053 4; B(E2)(W.u.)=0.124 9. B(E2)(W.u.)=1.37 10. B(E2)(W.u.)=0.56 4. 460 . 544 7 100 . 0 5 389 . 141 10 100 478 . 990 398 . 773 21 100 516 . 412 1 5 4 . 5 5 4@ 7 24 . 3 24 336 . 344 9 64 5 B(E2)(W.u.)=4.0 3. 469 . 387 ( M1 ) @ ( E2 ) @ 0 . 145 0 . 0428 ( M1 ) @ ( E2 ) @ 1 . 83 0 . 0685 Iγ: (d,nγ) data omitted from weighted average because the 377γ peak is complex. 3 7 7 . 4 7 7@ 7 5 1 6 . 4 7 5@ f g 1 5 521 . 925 164 . 158 4 382 . 989 7 557 . 446 100 5 ≤ 1 3@ 9.5 8 96 . 84 3 100 . 0 8 7 . 1# 6 377 . 34 7 5 . 0# 4 ( M1 ) @ 0 . 157 ( M1 ) @ ( E2 ) @ 1 . 54 γ multiply placed in 191Ir(nn,γ). B(M1)(W.u.)=0.028 5. 0 . 0477 B(E2)(W.u.)=61 9. M1 +E 2 0 . 171 19 6 . 89 B(M1)(W.u.)=0.027 7; M1 ( +E 2 ) 1.0 5 0 . 10 4 B(E2)(W.u.)=32 8. 418 . 37 7 484 . 318 f g 12 4.1 3 [ E2 ] 0 . 0377 B(E2)(W.u.)=0.43 11. 12 . 7 8 ( M1 ) 0 . 0809 B(M1)(W.u.)=0.00039 10. The energy fit is poor in least–squares fit of Eγ. γ seen in 193Os β– decay and 191Ir(nn,γ), in both cases the energy is considerably lower than expected from calculated E(level). 557 . 420 20 100 5 ( M1 ) 0 . 0563 Continued on next page (footnotes at end of table) 19 B(M1)(W.u.)=0.0020 5. 19 3 I r 7 7 116 – 6 19 3 I r 7 7 116 – 6 NUCLEAR DATA SHEETS Adopted Levels, Gammas (continued) γ(193Ir) (continued) 559 . 299 0 . 9# 3 [ M1 , E 2 ] 0.5 4 0 . 73 22 [ M1 , E 2 ] 0.6 3 486 . 273 11 2.7 3 298 . 827 9 418# 100 4 598 . 28 24 6 3@ 4 3 . 8# 8 10 . 2 3 0 . 38# 13 5& 2 13 . 7 7 Comments 0 . 10 5 M1 2.9 4 100 5 1 0 0@ 5 2 5 9 . 8& 1 3 2 6 3 . 2 1 8@ 8 [ M1 , E 2 ] 33 . 5 12 559 . 29 3 2 6 4 . 0 0 5@ 5 4 8 3 . 1 6 0@ 8 525 . 16 4 620 . 990 α 201 . 535 7 379 . 229 11 598 . 230 δ§ 197 . 4# 2 420 . 350 8 563 . 404 Mult.§ Iγ‡ Eγ† E(level) 0 . 118 B(M1)(W.u.)=0.061 10. [ E2 ] 0 . 0257 B(E2)(W.u.)=5.6 11. ( M1 ) 0 . 0558 B(M1)(W.u.)=0.077 12. ( M1 ) @ ( M1 ) @ 0 . 412 0 . 0814 ( E2 ) 0 . 097 [ E1 ] 0 . 0118 [ E1 ] 0 . 0072 [ E1 ] [ M1 , E 2 ] M1 +E 2 a M1 +E 2 a 0 . 0055 0 . 29 14 Iγ: relative to Iγ(620.98)=74. –0 . 26a 11 0 . 395 15 B(M1)(W.u.)=0.0174 19; –0 . 93a 11 0 . 056 4 B(M1)(W.u.)=0.0118 18; 0 . 0144 B(E2)(W.u.)=7.8 8. B(E2)(W.u.)=7 5. 4 8 2 . 0 4 8@ 8 100 5 B(E2)(W.u.)=17.1 25. 695 . 133 620 . 99 3 1 3 5 . 8 8@ 3 75 5 234 . 608 7 333 . 27d 4 100 4 337 . 33 3 515 . 063e 9 5 5 6 . 1 7 5@ 9 695 . 19 8 712 . 170 154 . 721 4 5 . 3@ 9 [ E2 ] [ M1 , E 2 ] 2.0 6 ( M1 ) 0 . 570 ( M1 ) @ 0 . 219 [ M1 , E 2 ] 0 . 21 10 ( M1 +E 2 ) @ ( M1 +E 2 ) @ 0 . 046 24 9 . 9 21 6.3 8 [ M1 , E 2 ] 0 . 021 11 4 . 1 10 2 . 4# 16 4 0@ 1 5 12 . 3 11 0 . 044 23 M1 +E 2 +0 . 26 3 1 . 76 1 B(M1)(W.u.)=0.018 17; M1 +E 2 –0 . 079 20 0 . 468 1 B(M1)(W.u.)=0.04 3; B(E2)(W.u.)=20 19. 251 . 635 7 100 3 B(E2)(W.u.)=1.4 +14–15. 350 . 325 9 532 . 109 17 3 . 3# 11 [ M1 , E 2 ] 0 . 13 7 38 . 9 18 M1 +E 2 +0 . 48 +32–16 0 . 055 9 B(M1)(W.u.)=0.0012 12; 573 . 25 5 9.4 7 M1 +E 2 +0 . 03 2 0 . 0523 1 B(M1)(W.u.)=0.0003 3; 639 . 13 9 3 . 6# 4 B(E2)(W.u.)=0.4 +6–4. B(E2)(W.u.)=0.0003 +5–3. 712 . 14 9 740 . 381 8.0 7 142 . 146 6 3 7 8 . 5 3 3@ 8 71 5 440 . 978 12 5 6 0 . 3 3@ 3 100 4 1.9 3 3 . 1# 9 [ M1 , E 2 ] 0 . 026 13 [ M1 , E 2 ] 0 . 020 10 M1 2 . 32 [ E1 ] M1 +E 2 0 . 0148 –0 . 37 4 [ E1 ] 0 . 095 2 0 . 0072 Iγ: there is a disagreement about this Iγ. The branching ratios are given as 3.0 9 (193Os β– decay, deduced from γγ data), 31 4 (191Ir(nn,γ)), 44 7 (192Os(d,nγ)). See 191Ir(nn,γ) for comment. 6 0 1 . 4 5@ 5 806 . 902 4 4 5 . 0 2 3@ 1 4 1 6@ 3 5 . 6@ 7 449 . 154 17 53 4 6 2 6 . 8 8@ 8 667 . 964 9 7 3 3 . 9 3& 1 5 807a ( M1 ) @ 0 . 099 7.9 8 100 6 7 . 9& 1 6 828 . 92 7 4 8 . 6 8& 9 100 832 . 895 269 . 490 7 5 3 3 . 5 1@ 3 7 5 2 . 7 3& 1 5 100 4 ( M1 ) @ 0 . 389 71 6 < 4 0& ( E2 ) @ 0 . 0205 γ is multiply placed, with undivided intensity (Iγ=30 5) in 193Ir(n,n'γ). 838 . 918 848 . 93 2 7 9 . 6 1 1@ 1 8 3 2 2 . 5 0 5@ 2 1 4 7 7 . 0 6 2@ 8 290# 2 . 3@ 4 33 . 5 20 100 5 ≈10# ( M1 ) @ 0 . 239 ( E2 ) @ 0 . 0269 [ M1 , E 2 ] 0 . 21 10 Continued on next page (footnotes at end of table) 20 19 3 I r 7 7 116 – 7 19 3 I r 7 7 116 – 7 NUCLEAR DATA SHEETS Adopted Levels, Gammas (continued) γ( 1 9 3 I r ) ( c o n t i n u e d ) 848 . 93 709 . 99 8 775 . 9# 3 848 . 93 7 849 . 084 3 8 8 . 6 0@ 4 4 8 7 . 2 1 7@ 1 3 857 . 026 3 3 5 . 1 0 1@ 1 1 874 . 291 499 . 254 8 317# 413 . 757 8 512 . 3# 3 516 . 3# 4 735 . 51 14 800 . 9# 3 874 . 28 8 892 . 268 271 . 280 12 370ag 5 3 4 . 4 8 2@ 2 1 753ah 918 . 365 Iγ‡ Eγ† E(level) 177 . 986 7 3 2 0 . 1 4 2@ 1 7 Mult.§ α 41 4 [ M1 , E 2 ] 0 . 020 10 10 . 4# 20 [ E2 ] 0 . 0088 [ M1 , E 2 ] 0 . 013 6 ( M1 ) @ ( E2 ) @ 0 . 0255 100 8 1 0 0@ 2 2 6 5@ 6 0 . 145 31 3 ( M1 ) @ 0 . 216 B(M1)(W.u.)=0.031 4. 100 9 ( E2 ) @ 0 . 0240 B(E2)(W.u.)=47 7. [ M1 , E 2 ] 0 . 17 8 4 . 8# 13 23 3 7# 4 ( M1 , E 2 ) @ 0 . 08 4 [ M1 , E 2 ] 0 . 046 24 11# 6 [ M1 , E 2 ] 0 . 045 23 5.5 7 1 . 5# 7 100 7 [ M1 , E 2 ] 0 . 019 9 [ M1 , E 2 ] 0 . 015 7 [ M1 , E 2 ] 0 . 012 6 ( M1 ) @ ( E2 ) @ ( M1 ) @ 0 . 0790 47 4 65a 17 100 8 57ah 17 100 6 1 1 . 9@ 1 9 354 . 960 7 16 . 3 24 618 . 95 3 51 3 1 . 23 0 . 185 930 . 432 451 . 441 8 964 . 43 784 . 42 11 23 3 [ M1 , E 2 ] 0 . 016 8 100 8 [ M1 , E 2 ] 0 . 012 6 972 . 873 891 . 36 8 2 3 2 . 5 0 7@ 1 9 3 5 1 . 8 6 4@ 1 4 611 . 032 21 100 23 9 4@ 1 3 6 1 5 . 0 9@ 5 8 9 9 . 9 8& 1 3 9 7 2 . 0 8& f g 2 4 1 4 . 6@ 1 5 6 1@ 5 1 4 0& 2 0 6 9& 2 3 1 0 0@ 9 ( E2 ) @ 0 . 0244 0 . 0724 492 . 940 8 5 3 9 . 9 2@ 8 ( M1 ) @ ( E2 ) @ 0 . 0248 1019 . 588 503 . 174 8 100 1035 . 465 5 . 1@ 1 0 1 0 0@ 8 ( E2 ) @ ( M1 ) @ 1 . 22 ( E2 ) @ 0 . 0225 1035 . 854 1 7 8 . 4 4 1@ 4 5 1 3 . 5 2 9@ 8 3 4 0 . 1& 9 1038 . 055 8 5 6 . 5& 6 5 1 6 . 1 5 3@ 2 3 1009 . 353 4 9 6 . 3 4 5@ 8 5 0 5 . 9 4 3@ 8 100 5 0@ 4 1 0 0@ 9 1 7@ 3 975 . 334 678 . 085 24 676 . 193 13 6 8 0 . 2 8 0@ 1 5 8 5 8 . 2& 3 1065 . 89 Comments 0 . 0236 3 1& 2 3 1 0 0& 1 3 16 10 3 0 . 8@ 2 5 100 20 7 1@ 1 2 4 4 4 . 7 5& 1 2 6 7& 2 7 8& 5 7 0 4 . 0 1& 1 1 8 8 5 . 9 1& 8 9 9 2 . 2& i 5 3 5& 6 1 0 0& 1 4 1 8& i 1 1 7 1 8 . 7 2& 1 0 9 3 7 . 4 9& 1 3 3 3 7 . 8& 2 1 0 0& 1 0 3 0& 5 8 . 3& 2 5 γ multiply placed in (n,n'γ); only observed in (n,n'γ). 1076 . 47 1077 . 93 778 . 47b 10 1 0 0& 1 0 1131 . 17 9 5 1 . 1 0& 1 1 9 9 2 . 2& i 5 1 0 0& 1 7 3 7& i 2 2 1145 . 617 227 . 253 7 5 8 2 . 2 0 1@ 2 0 100 7 1168 . 06 3 3 5 . 2 1& 1 9 [ M1 , E 2 ] 0 . 016 8 17 3 ≈ 1 5 0& Iγ: γ is multiply placed in 193Ir(n,n'γ), intensity has been suitably divided by evaluator. 6 9 8 . 6 4& 1 7 1169 . 170 2 7 6 . 8 9 0@ 2 0 3 1 2 . 1 2 5@ 9 1 0 0& 3 9 1 4 . 6@ 2 1 ( M1 ) @ 0 . 361 9 . 8@ 2 4 Continued on next page (footnotes at end of table) 21 19 3 I r 7 7 116 – 8 19 3 I r 7 7 116 – 8 NUCLEAR DATA SHEETS Adopted Levels, Gammas (continued) γ(193Ir) (continued) 1169 . 170 Iγ‡ Eγ† E(level) 548 . 19 3 647 . 258 8 654a 76 4 1438 . 429 1459 . 967 425a 1511 . 724 6 0 2 . 9 4 0@ 8 5 3 8 . 8 4 5@ 2 0 6 3 7 . 4 6@ 3 2179 . 0 2404? ( E2 ) @ 0 . 0192 ( M1 +E 2 ) @ 0 . 041 21 20a 8 1 0 0& 9 9 2& 1 2 100 4 4 0 . 3 7@ 5 1650 . 5 α 100 8 18a 6 812a 8 8 8 . 4 2& 1 0 8 9 2 . 8 9& 1 3 5 9 9 . 5 1 0@ 7 1250 . 42 Mult.§ 1 5 . 7@ 2 4 1 0 0@ 1 2 3 4@ 4 100 5 662 . 636 15 99 33 9 5 4 . 3 7& 1 5 615a 1 2 0& 5 0 719a 753agh † Unless otherwise noted, the adopted value is the LWM average of 1972Pr04, 1970Be06, 1971Lu08, 1987Pr10, and 1997Dr04 when at ‡ Relative photon branching from the level. Weighted average of values from the following experiments: least two values were available. 191Ir(nn,γ), 193Os(d,nγ), 193Ir(n,n'γ) average, it is so noted in the relevant data set. Single measurements are noted. § 193Os β– decay, and Coulomb excitation, unless otherwise noted. If a measured value is omitted from the From 193Os β– decay, unless otherwise noted. # From @ From 193Os β– decay. 191Ir(nn,γ). & From 193Ir(n,n'γ). a From Coulomb excitation. b 1987Pr10 standard deviation increased to 0.15 keV. c Weighted average of 1987Li16 and 1997Dr04. d From 193Os β– decay and 193Ir(n,n'γ). Other: 193Ir(nn,γ), 11(3). e Unweighted average of 27 3 from β– decay and 57 4 from 191Ir(nn,γ). f Eγ not included in least squares fit. g Placement of transition in the level scheme is uncertain. h Multiply placed; intensity suitably divided. i Multiply placed; undivided intensity given. 22 19 3 I r 7 7 116 – 9 19 3 I r 7 7 116 – 9 NUCLEAR DATA SHEETS Adopted Levels, Gammas (continued) (D) Kπ=7/2–, 7/2[523] band (C) Kπ=11/2–, (B) Kπ=1/2+, 1/2[400] band (A) Kπ=3/2+, 3/2[402] band 11/2[505] band (21/2+) 2404 (19/2+) 2179.0 (17/2+) 1650.5 (15/2)+ 1459.967 (13/2+) (13/2+) 1438.429 1168.06 (11/2–) 832.895 (9/2–) 563.404 1035.465 (11/2+) (B)(11/2+) 1019.588 (17/2–) (11/2)+ 857.026 (9/2)+ 521.925 (9/2+) 930.432 838.918 5/2+ 7/2+ (13/2–) 357.768 (7/2)+ 5/2+ 516.412 (15/2–) 478.990 (13/2–) 469.387 (C)(13/2–) 361.856 7/2– 3/2+ 5/2+ 138.940 1/2+ 3/2+ 0.0 180.067 (A)5/2+ 73.045 11/2– (A)3/2+ (A)3/2+ 19 3 Ir 7 7 116 23 80.239 (C)11/2– 299.399 19 3 I r 7 7 116 – 1 0 19 3 I r 7 7 116 – 1 0 NUCLEAR DATA SHEETS Adopted Levels, Gammas (continued) (G) Kπ=7/2+, 7/2[404] band (F) Kπ=3/2–, 3/2[532] band (E) Kπ=1/2+, 1/2[411] band (9/2)– 1145.617 (11/2+) 1169.170 (7/2–) 918.365 (9/2+) 892.268 (A)(11/2)+ 695.133 5/2+ 5/2+ (1/2)+ 557.446 3/2+ 460.535 5/2– 740.381 3/2– 598.230 (D)(9/2–) 7/2+ (A)(9/2)+ (B)(7/2)+ (B)5/2+ (B)5/2+ (A)7/2+ (D)7/2– (B)3/2+ (B)3/2+ (A)5/2+ (A)5/2+ (B)1/2+ (B)1/2+ (A)3/2+ (A)3/2+ (B)5/2+ (A)7/2+ (A)5/2+ (A)3/2+ 19 3 Ir 7 7 116 (H) Kπ=1/2–, 1/2[530] band (7/2)– 1820 (3/2)– 1759 19 3 Ir 7 7 116 24 620.990 19 3 I r 7 7 116 – 1 1 19 3 I r 7 7 116 – 1 1 NUCLEAR DATA SHEETS 193Os Parent 193Os: β– Decay 2002Ma18,1972Pr04,1970Be06 E=0.0; Jπ=3/2–; T1/2=30.11 h 1; Q(g.s.)=1141.2 23; %β– decay=100. 1972Pr04, 1970Be06, 1969Pr02, 1958Na15: measured γ, ce, β, γγ, βγ, (ce)(ce)(t). 1984Gh01, 1973Kr05: measured γγ(θ), γ(θ,H,T). The decay scheme shown is from 1972Pr04. Other contributing references are: γ: 1971Lu08, 1970Ra37. ce: 1970Ba56, 1969Co08. γγ(t), βγ(t), β(ce)(t): 1973Il02, 1972Be85, 1969Ba28, 1969Li13, 1969Va36, 1968Av02. γγ(θ,H,T): 1985Be03. Others: 1972De67, 1971Bb09, 1968Av01, 1968Av02, 1968Pl03, 1968Ra24, 1967Ag06, 1967Pe03, 1960Fe03, 1958Du76, 1954De04, 1953Co13. 193Ir 0.0 3 / 2+ 73 . 045 5 T1/2‡ Jπ† E(level)† 1 / 2+ Levels Comments s t ab l e 6 . 09 ns T1/2: weighted average of 6.3 ns 2 β(ce)(t) (1969Li13), 6.34 ns 16 γγ(t) 15 (1969Ba28), 5.90 ns 11 γγ(t) (1972Be85,1973Il02), with increased uncertainty (discrepant data set). 80 . 239 6 138 . 940 6 11 / 2– 10 . 53 d† 4 5 / 2+ 80 ps T1/2: weighted average of 75 ps 10 (ce)(ce)(t) (1970Be06), 77 ps 17 γγ(t) 5 (1969Ba28), 74 ps 11 β(ce)(t) (1969Li13), 88 ps 9 β(ce)(t) (1968Av02). Other: 1960Fe03. Adopted value 69.7 ps 10 from recoil–distance method in Coulomb excitation (2000Be07). 180 . 067 5 3 / 2+ 59 ps T1/2: weighted average of 55 ps +8–15 (ce)(ce)(t) (1970Be06), 46 ps 15 γγ(t) 7 (1969Ba28), 66 ps 10 β(ce)(t) (1969Li13); other: <35 ps (1968Av02). Adopted value 43 ps 16. 299 . 399 7 7 / 2– 357 . 768 6 7 / 2+ 18 . 7 ps † 7 0 . 19 ns 3 T1/2: from (ce)(ce)(t) (1970Ba56). 361 . 856 5 5 / 2+ 36 ps 7 T1/2: from β(ce)(t) (1969Va36). Others: 1968Av02, 1973Il02. Adopted value 31 460 . 535 5 3 / 2+ 17 ps 4 T1/2: weighted average of 19 ps 5 (1968Av02), 15 ps 6 (1969Va36,1969Li13) 557 . 446 7 (1/2)+ 34 ps 8 T1/2: from β(ce)(t) (1969Va36); others: 1969Li13, 1968Av02, 1973Il02. ps 5. β(ce)(t); other: 1973Il02. Adopted value 14.0 ps 11. 559 . 299 6 5 / 2+ 1 . 08 ps † 16 598 . 230 8 3 / 2– 2 . 8 p s † +28–9 695 . 133 6 5 / 2+ 712 . 170 7 3 / 2+ 740 . 381 7 806 . 902§ 9 5 / 2– 848 . 93 6 5 / 2+ T1/2: from β(ce)(t) (1969Va36); other: 1968Av02. 14 (5/2)+ 874 . 291 9 3 / 2+ , 5 / 2+ 964 . 43 7 1 / 2+ 1077 . 93 9 15 ps T1/2: <76 ps β(ce)(t) (1969Va36); others: 1968Av02, 1969Li13, 1973Il02. ( 3 / 2– , 5 / 2– ) † From adopted levels. ‡ Best values from β–decay unless otherwise noted; adopted values are given under Comments when different. § Level proposed by the evaluators: γ 667.7 in 193Os decay agrees with γ 667.97 in (nn,γ) and (d,nγ), and γ 668.04 in (n,n'γ) from 860.9 level. β– radiations β– feedings are from intensity imbalance at each level. Others: Eβ: 1968Pl03, 1967Ag06, 1958Du76, 1954De04; βγ: 1969Pr02, 1968Pl03, 1967Ag06, 1960Fe03, 1958Du76. Eβ– E(level) Iβ–† ( 63 . 3 23 ) 1077 . 93 0 . 0018 4 7 . 89 11 ( 176 . 8 23 ) 964 . 43 0 . 0037 4 8 . 96 5 ( 266 . 9 23 ) 874 . 291 0 . 033 3 8 . 58 5 ( 292 . 3 23 ) 848 . 93 0 . 0074 8 9 . 36 5 ( 400 . 8 23 ) 740 . 381 0 . 31 4 8 . 18 6 ( 429 . 0 23 ) 712 . 170 0 . 527 21 8 . 045 19 ( 446 . 1 23 ) 695 . 133 0 . 099 7 8 . 83 4 ( 543 . 0 23 ) 598 . 230 <0 . 02 Comments Log ft >9 . 8 L=0 (1984Gh01,1973Kr05); L=1 (1985Be03). L=1 (1985Be03). Continued on next page (footnotes at end of table) 25 19 3 I r 7 7 116 – 1 2 19 3 I r 7 7 116 – 1 2 NUCLEAR DATA SHEETS 193Os β– Decay 2002Ma18,1972Pr04,1970Be06 (continued) β– radiations (continued) Eβ– E(level) ( 581 . 9 23 ) 559 . 299 Iβ–† 0 . 75 5 Comments Log ft 8 . 33 3 Eβ, Iβ: see data with 557 level. (L=2)/(L=1)=0.22 13 (1984Gh01,1973Kr05). ( 583 . 8 23 ) 557 . 446 2 . 45 15 7 . 82 3 Eβ=510 50, Iβ=6, includes group to 559 level (FK analysis, 1958Na15). ( 680 . 7 23 ) 460 . 535 7 . 74 13 7 . 552 9 Eβ=670 30, Iβ=11 (FK analysis, 1958Na15). ( 779 . 3 23 ) 361 . 856 0 . 72 5 (L=0)/(L=1)=0.45 5 (1984Gh01,1973Kr05); (L=0)/(L=1)=0.40 15 (1985Be03). ( 783 . 4 23 ) 357 . 768 0 . 017 6 8 . 79 3 10 . 761u 16 ( 841 . 8 23 ) 299 . 399 0 . 031 23 10 . 3 4 ( 961 . 1 23 ) 180 . 067 1.7 4 8 . 73 11 (L=2)/(L=1)=0.18 14 (1984Gh01); L=1 (1985Be03). No β–group seen in FK analysis (1958Na15). L=1 (1985Be03). Eβ=850 30, Iβ=10 (FK analysis, 1958Na15). L=0 (1984Gh01). ( 1002 . 3 23 ) 138 . 940 10 . 9 4 7 . 991 17 Iβ=10 (FK analysis with Eβ=993, 1958Na15). (L=2)/(L=1)=0.14 12 (1984Gh01), L=1 (1985Be03). ( 1068 . 2 23 ) ( 1141 . 2 23 ) 73 . 045 0.0 18 4 7 . 87 10 Iβ=21 (FK analysis with Eβ=1059, 1958Na15). 57 4 7 . 48 3 Eβ–: 1132 5 (1958Na15, input to 2003Au03). Others: 1130 15 (1968Pl03), 1040 30 (1967Ag06). Iβ–: 42 (FK analysis, 1958Na15). (L=2)/(L=1)=0.14 9 (1985Be03). † For β– intensity per 100 decays, multiply by 1.0. γ( 1 9 3 I r ) Experimental Ice from 1972Pr04, 1970Be06, 1970Ba56, and 1969Co08. Other: 1968Pl03 (not included in the evaluation; Ice uncertainties were not reported). E ( X– r a y ) I ( X– r a y ) –––––––––– –––––––––– I r Kα 2 x ray 63 . 28 5 98 9 I r Kα 1 x ray 64 . 90 5 160 16 I r Kβ 1 ' x ray 73 . 58 10 33 5 I r Kβ 2 ' x ray 75 . 63 5 13 2 * * I(K x ray), relative to Iγ=100 for 460.5γ (1972Pr04). Iγ normalization: %Iγ(460γ)=3.88 5. 2002Ma18 measured absolute intensity in a 4πβγ coincidence experiment. The adopted value is the unweighted average of the four runs presented in 2002Ma18 instead of that quoted by the author, which is the weighted average of discrepant data. Others: 4.0 2 (1969Pr02, from Iβ and Iγ measured in singles and βγ measurements) and 3.9 2 (1958Na15, from comparison of Iγ/Iβ in Eγ† 41 . 18 7 E(level) Iγ‡g 180 . 067 Mult.§ δ# [ M1 , E 2 ] 193Os and in 198Au). α@ 150 140 Comments I(γ+ce)g: 1.9 5. Eγ: from E(ce) measurements (1970Be06). Iγ: Iγ<0.01 estimated from ce(L1)<0.003 (1970Be06). I(γ+ce): deduced from γγ measurements; γ not seen by 1972Pr04. x65 . 87 6 Eγ,Iγ: from 1970Be06. Iγ estimated 0 . 06 from I(ce(L3))=0.8 2. 73 . 029b 15 73 . 045 82e 12 M1 +E 2 –0 . 558 5 6 . 24 5 δ: from adopted gammas. From ce δ=0.56 4. Calculated circular polarization of γ (1988Fe11). ( 80 . 240 6 ) 80 . 239 M4 22000 I(γ+ce)g: 8.8 7. Mult.: from adopted gammas. Other: (L1/L3)exp=0.24(2); Theory, 0.23. I(γ+ce): deduced from intensity balance at 80.2 level. 96 . 84 3 98 . 75 5 107 . 009b 13 557 . 446 2.5 2 M1 +E 2 460 . 535 0 . 42 6 ( M1 ) 180 . 067 14 . 5e 16 M1 +E 2 0 . 171 19 +0 . 164 8 6 . 92 1 6 . 58 Mult.: α data fit gives 98 9 %M1. 5 . 18 1 δ: absolute value is the weighted average of 1984Gh01 and that obtained from α data. Continued on next page (footnotes at end of table) 26 19 3 I r 7 7 116 – 1 3 19 3 I r 7 7 116 – 1 3 NUCLEAR DATA SHEETS 193Os β– Decay 2002Ma18,1972Pr04,1970Be06 (continued) γ( 1 9 3 I r ) ( c o n t i n u e d ) Eγ† E(level) 1 3 6& 695 . 133 Iγ‡g 0 . 0 1 1& 3 Mult.§ δ# [ M1 , E 2 ] α@ 2.0 7 Comments Iγ: Iγ deduced from coincidence experiment does not agree with the relative branching measured in 191Ir(nn,γ). 138 . 92b 3 138 . 940 97 . 8e 18 M1 +E 2 –0 . 329 12 2 . 36 1 δ: absolute value from α ratios and sign from γ(θ,H,T) (1973Kr05), Coul. ex. (1970Av02). Other: –0.362 6 (particle–γ(θ), 2000Be07); 1973Il02. 142 . 132b 17 740 . 381 1 . 65e 25 ( M1 ) 2 . 32 Mult.: α data fit gives 98 16 %M1. 154 . 74 3 712 . 170 0 . 67 6 M1 +E 2 +0 . 26 3 1 . 76 1 δ: other: δ=1.3 6 from α data. 180 . 05 3 x 1 8 1& 180 . 067 4.6 4 0 . 0 0 8 &d M1 +E 2 –0 . 48 2 1 . 06 1 δ=0.63 9 from α data. M1 +E 2 +0 . 149 11 1 . 15 δ: δ=0.49 7 from ce data. 181 . 83 3 361 . 856 4.8 4 197 . 4a 2 201 . 5a 3 2 1 9& 559 . 299 357 . 768 0 . 12a 4 0 . 07a 4 0 . 2 2& 5 M1 +E 2 219 . 14 4 299 . 399 6.8 4 E2 234 . 58 5 695 . 133 1 . 23 9 M1 ( +E 2 ) 251 . 63 4 712 . 170 5.5 3 280 . 446 22 460 . 535 31 . 71 20 288 . 81 5 2 9 0& 361 . 856 3 . 80 21 0 . 0 1 2& 559 . 299 [ M1 , E 2 ] 0.6 3 [ M1 , E 2 ] 0.6 3 0 . 645 10 Mult.,δ: from adopted gammas. 0 . 258 δ: α data fit gives 100 4 %E2. –0 . 20 13 0 . 56 2 δ: from nuclear orientation M1 +E 2 –0 . 079 20 0 . 468 1 δ: other: δ=0.45 14 from α data. M1 +E 2 –0 . 049 12 –0 . 34 4 (1973Kr05); δ=0.3 5 from α data. 848 . 93 298 . 82 5 3 1 7& 598 . 230 874 . 291 321 . 590 22 460 . 535 333 . 15 21 337 . 7a 5 695 . 133 350 . 20 17 4 . 76 24 0 . 0 2 6& 7 32 . 23 20 0 . 348 δ=0.18 11 from α data. ( E2 ) 0 . 107 δ: α data fit gives 100 6 %E2. [ M1 , E 2 ] 0 . 21 11 ( E2 ) 0 . 097 [ M1 , E 2 ] 0 . 17 9 M1 +E 2 +0 . 234 10 ( M1 ) 0 . 232 1 695 . 133 0 . 046 18 0 . 03a 2 [ M1 , E 2 ] 0 . 14 8 712 . 170 0 . 17 4 [ M1 , E 2 ] 0 . 13 7 357 . 73 17 357 . 768 0 . 26 7 E2 361 . 856 6.7 3 M1 +E 2 377 . 34 7 3 7 8& 557 . 446 ( M1 +E 2 ) 740 . 381 1 . 75 14 0 . 0 4 1& 1 0 [ E1 ] 0 . 0148 379 . 04 14 559 . 299 0 . 27 6 [ M1 , E 2 ] 0 . 10 6 31 . 77 20 387 . 48 3 460 . 535 874 . 291 418 . 32 7 M1 +E 2 Mult.,δ: α data fit gives 100 4 %M1. 0 . 219 361 . 83 5 413 . 86 17 4 1 8& Mult.: α data fit gives 100 5 %E2. 0 . 0576 –0 . 33 3 1.0 5 –0 . 24 4 ( M1 , E 2 ) 0 . 164 2 δ: other: δ=–0.26 7 (1985Be03). 0 . 10 4 0 . 141 2 598 . 230 0 . 114 24 0 . 1 8& 4 [ E1 ] 0 . 0118 557 . 446 1 . 45 11 [ E2 ] 0 . 0377 δ: δ=0.25 10 from α data fit. 0 . 08 5 420 . 29 5 559 . 299 4 . 02 24 M1 ( +E 2 ) 440 . 95 5 740 . 381 2 . 27 12 M1 +E 2 –0 . 37 4 0 . 03 4 0 . 095 2 0 . 118 δ: from 1973Kr05. Other: δ=0.5(3) from 460 . 50 3 460 . 535 M1 +E 2 –0 . 64 3 0 . 074 1 δ: others: δ=–0.49 2 (1985Be03), 484 . 25 5 486 . 11a 15 557 . 446 0 . 0809 Mult.: α data fit gives 100 22 %M1. 512 . 3a 3 874 . 291 α data. 100 . 0 5 δ=0.54 5 from ce data. 559 . 299 4.4 3 0 . 29a 14 0 . 04a 2 ( M1 ) [ E2 ] 0 . 0257 [ M1 , E 2 ] 0 . 046 24 515 . 00 9 695 . 133 0 . 33 4 ( M1 , E 2 ) 0 . 046 24 516 . 3a 4 874 . 291 0 . 06a 3 [ M1 , E 2 ] 0 . 045 24 525 . 02 7 598 . 230 0 . 40 3 532 . 04 5 5 5 6& 712 . 170 2 . 14 12 0 . 0 8& 2 695 . 133 [ E1 ] M1 +E 2 f 0 . 0072 3 +0 . 48 +32–16 ( E2 ) 0 . 055 9 0 . 0186 557 . 37c 7 557 . 446 35 3 ( M1 ) 0 . 0563 Mult.: α data fit gives 100 16 %M1. 559 . 25c 5 6 0& 7 559 . 299 ( M1 ) 0 . 0558 Mult.: α data fit gives 100 17 %M1. 740 . 381 13 . 2 10 0 . 0 7& 2 573 . 34 9 712 . 170 0 . 51 4 598 . 28 24 598 . 230 0 . 018 6 [ E1 ] 0 . 0055 1 [ M1 , E 2 ] 0 . 026 13 639 . 13 9 712 . 170 0 . 200 21 667 . 7h 3 806 . 902 0 . 024 7 [ E1 ] M1 +E 2 f +0 . 03 2 0 . 0523 1 695 . 16 9 695 . 133 0 . 078 11 [ M1 , E 2 ] 0 . 021 11 709 . 94 14 848 . 93 0 . 048 11 [ M1 , E 2 ] 0 . 020 10 712 . 10 9 712 . 170 0 . 45 4 [ M1 , E 2 ] 0 . 020 10 735 . 37 24 775 . 9a 3 874 . 291 0 . 029 5 0 . 010a 5 [ M1 , E 2 ] 0 . 019 9 [ E2 ] 0 . 0088 848 . 93 Continued on next page (footnotes at end of table) 27 19 3 I r 7 7 116 – 1 4 NUCLEAR DATA SHEETS 193Os β– Decay 19 3 I r 7 7 116 – 1 4 2002Ma18,1972Pr04,1970Be06 (continued) γ(193Ir) (continued) Eγ† α@ Mult.§ Iγ‡g E(level) 778 . 35 14 1077 . 93 0 . 045 8 [ M1 , E 2 ] 0 . 016 8 784 . 20 18 964 . 43 0 . 017 4 [ M1 , E 2 ] 0 . 016 8 800 . 9 3 874 . 291 0 . 008 4 [ M1 , E 2 ] 0 . 015 7 848 . 86 14 848 . 93 0 . 115 14 [ M1 , E 2 ] 0 . 013 6 874 . 33 13 874 . 291 0 . 54 5 [ M1 , E 2 ] 0 . 012 6 891 . 23 14 964 . 43 0 . 076 8 [ M1 , E 2 ] 0 . 012 6 † Weighted average (LWM) of values from 1972Pr04 (measured Eγ, E(ce)),1970Be06, and 1971Lu08, unless otherwise noted. The most ‡ Weighted average (LWM) of 1972Pr04, 1970Be06, and 2002Ma18 (using the data taken from the coincidence experiment), unless § Definite and probable assignments are from α measurements when δ was determined, otherwise from adopted gammas, unless noted. comprehensive list of γ rays is given in 1972Pr04. otherwise noted. # Signed values are from 1984Gh01 and unsigned ones from α data; exceptions are noted. 1984Gh01 performed a combined analysis of angular correlation and nuclear orientation data, using δ(138.9γ)=0.329 12 from α. The Ice data have been normalized by the evaluator at the theoretical α(K) for the 138.9γ; their average (lwm) was used to deduce α using the adopted Iγ, and were simultaneously fitted to δ following 1980Ry04 algorithm; experimental uncertainties in %M1 or %E2 for the transitions deduced pure in view of the experimental α are reported in the Comments. @ The uncertainties given with the theoretical α's are due to ∆δ and/or ∆E. There is an additional 3% uncertainty attributed to theoretical calculations. & From 1972Pr04; seen in coincidence spectra only. a From 1972Pr04. b Energies from 1972Pr04, 1971Lu08, and 1970Be06 are marginally consistent, therefore the weighted average (LWM) and its external uncertainty has been adopted. Energies for all transitions below 142 keV are either discrepant or marginally consistent; thus, their adopted uncertainties have been increased. c ∆E(559.26γ–557.36γ)=1.9 1 (1967Me12). From analysis of complex γ–line obtained with Ge(Li) detector using I(557γ)/I(559γ)=3.0 6. d At the limit of detection. e γ–ray intensities from 1972Pr04 and 1970Be06 are marginally consistent, therefore a weighted average (LWM) and its external uncertainty has been adopted. Intensities for all transitions at energies below 142 keV are either discrepant or marginally consistent; thus, their adopted uncertainties have been increased. f From γ(θ,H,T) (1973Kr05,1984Gh01). g For absolute intensity per 100 decays, multiply by 0.0388 5. h Placement of transition in the level scheme is uncertain. x γ ray not placed in level scheme. 28 0.527 0.31 0.0074 0.033 0.0037 0.0018 >9.8 8.83 8.045 8.18 9.36 8.58 8.96 7.89 (1/2)+ 5/2+ 3/2– 5/2+ 3/2+ 5/2– 5/2+ 3/2+,5/2+ 1/2+ (3/2–,5/2–) 19 3 I r 7 7 116 – 1 5 0.099 8.33 3/2+ 30.11 h <0.02 7.82 5/2+ 0.0 0.75 7.552 7/2+ 3/2– 2.45 8.79 7/2– %β–=100 7.74 10.761u 3/2+ 19 3 Os 76 117 0.72 10.3 5/2+ Q–=1141.223 0.017 8.73 Log ft 0.031 7.991 Iβ– 1.7 (5/2)+ 10.9 (3/2–,5/2–) 1/2+ 1/2+ 3/2+ 7.89 3/2+,5/2+ 7.87 8.96 5/2+ 7.48 0.0018 8.58 (1/2)+ 18 0.0037 8.83 3/2+ 57 0.033 7.82 5/2+ 30.11 h 0.099 7.552 7/2+ 0.0 2.45 8.79 7/2– 3/2– 7.74 10.761u 3/2+ %β–=100 0.72 10.3 5/2+ 19 3 Os 117 76 0.017 8.73 1/2+ Q–=1141.223 0.031 7.991 3/2+ Log ft 1.7 7.87 Iβ– 10.9 7.48 (5/2)+ 18 11/2– 57 193Os 2002Ma18,1972Pr04,1970Be06 (continued) NUCLEAR DATA SHEETS β– Decay Decay Scheme Intensities: I(γ+ce) per 100 parent decays 19 3 Ir 7 7 116 Decay Scheme (continued) Intensities: I(γ+ce) per 100 parent decays 19 3 Ir 7 7 116 29 55 487.37 414.25 (M1 378.32 (M1) 1. 967.34 [E2 ) 0.43 .84 (M ] 18 46 M1 1+E0.05 5 380.50 +E 2) 8 2 327.48 M1+ 0.70.07 281.590M1+E2 7 5 980.446 M1 E2 4.17 .75 M +E 1 36 . 4 2 1 ( 0 M1 +E 1 6 281.83 ) 2 . 0.1 1.541 188.81 M1+ 24 66 35 1.83 (E2 E2 ) 7 M 0 . 21 73 1+ 0. .30 1 9 21 M1E2 E2 63 3 9.1 +E 0.0 0.4 18 4 2 11 0 E2 100.05 0 7 M 0.3 .014 . 0 41 09 1+ 32 . 13 18 [ M1 E2 8.9 M1 +E 0. 80 3 2 M1 ,E2] 2 3 7 73 .240 +E .02 M 0.0.5 2 9 4 M1 0. 12 74 .7 +E 34 2 23 77 8.3 89 5 [M 781.23 1,E 4.2 [M 87 2] 0 1, 4 [ M1 E2 0.0 80 .33 ] ,E 01 730.9 [ [M1 2] 0.0 8 5 , M 0 E 0.0 30 51 .37 1,E 2] 00 516.3 [ [M1 2] 0.0 67 2 , M 2 0 E 41 .3 [ 1,E 2] .00 12 313.86 M1,E2] 0.0032 84 7 [M (M1 2] 0.000115 778.86 1,E2,E2) 0.0024 705.9 [ [M1 ] 0 0.016 299.94 E2] ,E2] .001 048 2 66 0 [M [M1 0.0 0.0 7.7 1,E ,E2 003 04 56 2] ] 9 5 0 0 . 0 44 [E 00 09 0.00.001 370.95 1] 0 05 9 6 148 [E M1+.002 1 2 7 71 .132 ] 0 E2 (M .001 0.09 632.10 579.13 [M1 1) 06 6 533.34 [M1,E2] .21 352.04 M1+,E2] 0.0 250.20 M1+E2 0.0178 151.63 [M1 E2 0.02080 69 4.74 M1+,E2] 0.0808 555.16 M1+E2 0.0 8 516 (E [M1 E2 0.31075 335.00 2) 0,E2] 0.073 337.7 [ (M1 .003 0.0 2 233.15 M1,E,E2) 2 031 134.58 (M1 2] 0.0 6 59 [M M1() 0. 0.00134 1,E +E 00 13 528.28 2] 2) 22 5 [ . E 41 02 1 0.0 0.0 ] 01 74 298 [E [E1] 0. 3 0 55 8.82 1] 0 0.0007 9 0 48 .25 (E2 .007 156 ) 1 426.11 (M1 0.2 370.29 [E2]) 0. 03 209.04 M1( 0.054 1 + [ 19 .5 [ M1 E2 12 7.4 M ,E ) [M1,E22] 0.17 1,E ] 0.0 4 2] 0.0 12 0.004 07 1077.93 964.43 874.291 848.93 806.902 740.381 712.170 695.133 598.230 559.299 557.446 460.535 361.856 357.768 299.399 180.067 138.940 73.045 0.0 1077.93 964.43 874.291 806.902 695.133 557.446 460.535 361.856 357.768 299.399 180.067 138.940 80.239 73.045 0.0 19 3 I r 7 7 116 – 1 5 15 ps 2.8 ps 1.08 ps 34 ps 17 ps 36 ps 18.7 ps 0.19 ns 59 ps 80 ps 6.09 ns stable 34 ps 17 ps 36 ps 18.7 ps 0.19 ns 59 ps 80 ps 10.53 d 6.09 ns stable 19 3 I r 7 7 116 – 1 6 19 3 I r 7 7 116 – 1 6 NUCLEAR DATA SHEETS 193Ir Parent 193Ir: IT Decay (10.53 d) E=80.22 2; Jπ=11/2–; T1/2=10.53 d 4; %IT decay=100. 193Ir Levels Data are from 1987Li16, except where noted, highly pure sources from in 192Os, 2004Ni14,1987Li16 192Os(n,γ) E=thermal, osmium enriched to 99.4% chemical separation; measured Eγ, Iγ(absolute) (calibrated planar germanium, well–type germanium detectors), E(ce), Ice(absolute) (4πβ proportional counter, evacuated windowless Si(Li) detector); determined Ir L–subshell fluorescence yield and Coster–Kronig coefficients. 2004Ni14 accurately measured the isomeric transition α(K); enriched (99.935%) 192Os target, chemical separation, HPGe detector. E(level) 0.0 80 . 22 2 Jπ† Comments T1/2 3 / 2+ s t ab l e 11 / 2– 10 . 53 d 4 %IT=100. T1/2: absolute electron counting in 4πβ proportional counter (1987Li16). Other values: 11.9 d 5 (1957Bo12), 10.8 d 5 (1969Bi01), 12 d 2 (1970Ba56), 10.60 d 11 (1975Ba35). † From adopted levels. γ( 1 9 3 I r ) It has been suggested that α(K) for this isomeric transition is decreased due to an 'electronic bridge' effect (1988Zh11); however, additional calculations (1989Ba76,1990Ba48) seem to indicate that this second–order effect does not contribute measurably to the α of this transition. This effect is further discussed in 1989Pi14, 1990Ko06, 1990Ko22, 1990Ko28, 1992Tk01, 1994Tk02. 2004Ni14 gives precise value of measured α(K) and compares the experimental value with several theoretical calculations. Eγ 80 . 22 2 E(level) 80 . 22 Mult. M4 α 21400 I(γ+ce)† Comments Eγ: other values: Eγ=80.19 5 (1957Bo12), Eγ=80.27 4 (1970Ba56). Other: 100 1966Sy01. Mult.: from L1:L2:L3 (exp)=54.5 3:10.9 2:225 1; theory: L1:L2:L3=53.1:9.53:225. Also: α(K)exp=103.0 8 (from I(K x ray)/Iγ assuming ω(K)=0.958 4 given by 1996Sc06) (2004Ni14). Other: α(K)exp=104 3 (I(K x ray)/Iγ) (1987Li16); α(K)exp=92.6 9 (I(K x ray)/Iγ) (1988Zh11). Theory: α(K)(M4)=103.3 3 (2004Ni14). K:L:M:N:(O+P)(exp)=2.08 4:290.4 6:101.4 6:26.6 3:3.8 1 (Ice(K) deduced from I(K x ray) (Ir fluorescence yield =0.95)); theory: K:L:M:N+=2.12:288:99.3:33.5, N:O:P=26.6:4.23:0.079 (N:O:P from 1978Ro21). (O+P)/N3(exp)=0.228 2 (1975Ma32); theory: 0.215 (1978Ro21). Other ce data: 1970Ba56, 1969Bi01, 1957Bo12. For absolute intensity per 100 decays, multiply by 1.0. Decay Scheme Intensity: I(γ+ce) per 100 parent decays .22 M4 10 0 %IT=100 11/2– 80 † 3/2+ 19 3 Ir 7 7 116 30 80.22 10.53 d 0.0 stable 19 3 I r 7 7 116 – 1 7 19 3 I r 7 7 116 – 1 7 NUCLEAR DATA SHEETS Muonic Atom 1984Ta04,1977Li20 Measured difference between Eγ in an ordinary atom and a muonic atom. Deduced muonic isomer shift. (1974Ba77). Observed hyperfine splitting of the 5/2+ to 3/2+ transition (139γ) in muonic atom (1977Li20). Discussion of precision measurements of nuclear quadrupole moments by muonic X–rays (1985St28). 193Ir Jπ† E(level)† 0.0 3 / 2+ 138 . 942 5 / 2+ † Levels Comments Q=0.751 9 from hyperfine splitting of muonic x–rays (1984Ta04). From adopted levels. γ(193Ir) Eγ Comments E(level) 138 . 9 Eγ: rounded–off value from adopted gammas. 138 . 942 Eγ(ordinary atom) – Eγ(muonic atom)=–0.27 5 (1974Ba77); γ observed by 1977Li20. 5/2+ 13 8.9 Level Scheme 138.942 0.0 3/2+ 19 3 Ir 7 7 116 193Pt Parent 193Pt: ε Decay (50 y) 1983Jo04 E=0.0; Jπ=1/2–; T1/2=50 y 6; Q(g.s.)=56.8 3; %ε decay=100. 1983Jo04 and 1985Ri05 report ≤500 eV for electron–neutrino mass (measured internal bremsstrahlung spectrum, bremmstrahlung–L x ray coin (193Pt sources extracted from lead in ISOLDE facility; silicon, intrinsic germanium detectors)). 1983Ke07 discuss recoilless resonant neutrino absorption by nuclei. 193Ir E(level) 0.0 † Jπ† T1/2 3 / 2+ s t ab l e Levels From adopted levels. β+,ε Data Adopted Q(ε)=56.8 3 from 2003Au03 adjustment to the endpoint of internal bremsstrahlung spectrum measured by 1983Jo04. Eε ( 56 . 8 3 ) † E(level) 0.0 Iε† Log ft 100 7 . 16 6 Comments εM/εL=0.386 14 (1971Ra18). For intensity per 100 decays, multiply by 1.0. 31 19 3 I r 7 7 116 – 1 8 19 3 I r 7 7 116 – 1 8 NUCLEAR DATA SHEETS Inelastic Scattering 1980Ha47,1971No01 (p,p'), (p,p): 1980Ha47: E(p)=50 MeV; measured E(p') (mag spect), σ, (p')(θ) (θ(lab) 15° to 51°), absolute σ; compared results with transition rates predicted by the supersymmetry scheme. (d,d'): 1971No01: E(d)=12.1 MeV; measured E(d), σ, d(θ) (θ=90°, 125°, 150°). Deduced band structure. 193Ir Levels Band structure from 1971No01. B(E2)↑: 1980Ha47 measured B(E2)↑ relative to the B(E2)↑ of 194Pt(358.5 level). Evaluator has recalculated the B(E2)↑'s using B(E2)↑(194Pt, 358.5 level)=1.649 15 (1996Br26). 0 . 0& L§ Jπ‡ E(level)† Comments 3 / 2+ 73a B(E2)↑≤0.13 ((p.p') 1980Ha47). 1 / 2+ Level composed of 73.0 level (Jπ=1/2+), plus possible minor component from 80.2 level (Jπ=11/2–) ((p,p') 1980Ha47). 1 3 8 . 9 #& 180a 5 / 2+ 3 5 8& 7 / 2+ β2=0.183; B(E2)↑=0.79 ((p,p') 1980Ha47). 2 B(E2)↑=0.12 ((p,p') 1980Ha47). 3 / 2+ β2=0.145; B(E2)↑=0.66 ((p,p') 1980Ha47). 2 Level composed of 357.7 (Jπ=7/2+) and possibly also 361.9 (Jπ=5/2+) levels ((p.p') 1980Ha47). B(E2)↑=0.031 ((p,p') 1980Ha47). 460 5 2 2 @& 9 / 2+ 5 9 6@ 620b 7 / 2+ B(E2)↑=0.16 ((p,p') 1980Ha47). 6 9 3@ 7 3 9@ 8 5 7 @& 11 / 2+ 1 1 2 6@ 1 1 9 3@ 1 3 4 7@ 1 5 1 0@ † From 1971No01. Uncertainties range from 4 keV for levels near g.s. up to 8 keV for highest–lying levels. E(level)=138.9 was ‡ From 1971No01. Based on magnitudes and angular dependence of cross sections; authors used combined analysis of their (d,d') and § From 1980Ha47. adopted by 1971No01 for calibration. Levels observed by both (p,p') and (d,d'), unless otherwise noted. Coulomb excitation data. # Calibration value. @ Observed only in (d,d') experiment. & (A): 3/2[402] band. a (B): 1/2[400] band (partly of γ–vibrational in character). b (C): γ–vibrational band. 191Ir(nn,γ) E=th 1997Dr04 Measured Eγ, Iγ, γγ (curved–crystal spectrometer, resolution 220 eV at 900 keV, calibrated with Ir K x ray and some 192Ir γ's); Ice (magnetic spectrometer, resolution 100 eV at 35 keV, 230 eV at 300 keV, calibrated with electromagnetic transitions with known multipolarities). γ–spectra were analyzed up to E=700 keV. The results are interpreted in the framework of the asymmetric rotor and the interacting boson models. 193Ir Jπ† E(level)† 0 . 0‡ 73 . 057§ 15 80 . 242# 10 138 . 939‡ 15 180 . 077§ 10 2 9 9 . 4 0 1@ 1 0 357 . 767‡ 8 Levels 3 / 2+ 1 / 2+ 11 / 2– 5 / 2+ 3 / 2+ 7 / 2– 7 / 2+ 361 . 863§ 8 5 / 2+ 4 6 0 . 5 4 0& 8 469 . 387# 15 3 / 2+ 13 / 2– Continued on next page (footnotes at end of table) 32 192Ir 19 3 I r 7 7 116 – 1 9 19 3 I r 7 7 116 – 1 9 NUCLEAR DATA SHEETS 191Ir(nn,γ) E=th 193Ir 1997Dr04 (continued) Levels (continued) Jπ† E(level)† Comments 478 . 992# 20 15 / 2– 516 . 421§ 10 521 . 924‡ 10 5 5 7 . 4 4 7& 2 0 7 / 2+ 1 / 2+ , 3 / 2+ Jπ: Adopted (1/2)+. 559 . 303 10 3 / 2+ , 5 / 2+ Possibly 5/2[402] + K+2 γ–vibration on 1/2[400]. 5 6 3 . 4 0 7@ 1 0 598 . 228a 10 620 . 988b 10 9 / 2– 3 / 2– 6 9 5 . 1 3 7& 1 0 5 / 2+ 9 / 2+ Jπ: Adopted 5/2+. 712 . 176 25 3 / 2+ , 5 / 2+ 740 . 387a 10 5 / 2– 806 . 901 13 5 / 2+ 8 3 2 . 8 9 7@ 1 5 838 . 923§ 15 11 / 2– 849 . 088 20 857 . 025‡ 10 874 . 28 3 892 . 268b 20 918 . 368a 15 Probably influenced by K+2 γ–vibration on 3/2[402]. 7 / 2+ Jπ: Adopted 3/2+. 9 / 2+ 11 / 2+ 3 / 2+ , 5 / 2+ Jπ: Adopted (9/2+). 9 / 2+ , 11 / 2+ 7 / 2– 930 . 43# 3 972 . 874 15 3 / 2+ , 5 / 2 , 7 / 2 975 . 333 25 11 / 2– 1009 . 361 15 11 / 2+ 1019 . 595§ 15 1035 . 463‡ 15 11 / 2+ Jπ: Adopted (5/2+). 13 / 2+ 1035 . 86 3 1038 . 055 20 5 / 2+ , 7 / 2 , 9 / 2+ Jπ: Adopted (5/2+,7/2+). 1145 . 619a 20 1169 . 17b 11 7 / 2– , 9 / 2– Jπ: Adopted (9/2)–. 11 / 2+ 1432 . 407§ 25 1459 . 965‡ 20 1511 . 725 25 † E(level), Jπ and band assignments are from 1997Dr04. ‡ (A): 3/2[402] band. § (B): 1/2[400] band. # (C): 11/2[505] band. @ (D): 7/2[523] band. & (E): 1/2[411] band. a (F): 3/2[532] band. b (G): 7/2[404] band. γ(193Ir) Eγ E(level) 41 . 219‡ 13 180 . 077 73 . 050‡ 22 80 . 236‡ 7 73 . 057 Iγ Mult.† δ Comments Eγ: energy fit very poor in least–squares fit of Eγ. From calculated E(level) Eγ=41.126 4. M1 +E 2 80 . 242 δ: deduced from L and M subshell ratios. 0 . 655 31 M4 107 . 022 5 180 . 077 3 . 57 14 135 . 88 3 695 . 137 0 . 12 2 138 . 938 5 138 . 939 19 . 1 15 M1 142 . 159 3 740 . 387 3.6 3 M1 M1 154 . 554 7 516 . 421 2.7 3 154 . 721 4 712 . 176 0 . 09 4 M1 164 . 158 4 521 . 924 2 . 53 23 177 . 986 7 918 . 368 3.8 3 M1 M1 178 . 441 4 1035 . 463 0 . 59 12 M1 180 . 071 7 180 . 077 1 . 02 5 M1 +E 2 181 . 792 7 361 . 863 5.6 3 M1 Continued on next page (footnotes at end of table) 33 19 3 I r 7 7 116 – 2 0 19 3 I r 7 7 116 – 2 0 NUCLEAR DATA SHEETS 191Ir(nn,γ) E=th 1997Dr04 (continued) γ(193Ir) (continued) Eγ E(level) Iγ Mult.† 201 . 535 7 559 . 303 0 . 06 2 218 . 826 2 357 . 767 20 . 0 10 M1 +E 2 219 . 158 7 299 . 401 74 4 E2 227 . 252 7 1145 . 619 232 . 507 19 972 . 874 695 . 137 2 . 26 11 M1 712 . 176 0 . 59 3 M1 263 . 218 8 620 . 988 1 . 40 7 M1 264 . 005 5 563 . 407 19 . 7 10 M1 M1 269 . 490 7 832 . 897 5.9 3 271 . 282 12 892 . 268 0 . 73 7 1169 . 17 838 . 923 0 . 55 8 280 . 465 3 460 . 540 2 . 35 19 361 . 863 3 . 46 17 298 . 828 10 598 . 228 1169 . 17 M1 0 . 25 4 288 . 807 9 312 . 125 9 12 . 8 12 M1 E2 E2 0 . 37 9 320 . 142 17 918 . 368 0 . 45 7 E2 321 . 604 7 460 . 540 2 . 22 20 M1 +E 2 M1 322 . 505 21 838 . 923 3 . 61 22 333 . 28 4 695 . 137 0 . 25 7 M1 335 . 101 11 857 . 025 3.1 3 M1 336 . 343 9 516 . 421 695 . 137 10 . 9 10 4 . 1# 4 E2 3 3 7 . 3 3& 3 3 5 0 . 3 2 5& 9 712 . 176 Expected intensity from adopted branching ratio ≈0.05. 0 . 41# 6 Expected intensity from adopted branching ratio ≈0.02. 351 . 864 14 972 . 874 0 . 83 7 354 . 960 7 918 . 368 0 . 67 10 357 . 77 5 357 . 767 23 . 0 18 E2 361 . 860 15 361 . 863 7.1 6 M1 377 . 477 7 516 . 421 11 . 0 10 378 . 533 8 740 . 387 0 . 10 2 M1 M1 ( +E 2 ) 379 . 230 11 559 . 303 0 . 22 3 382 . 989 7 521 . 924 26 . 0 21 E2 387 . 520 18 460 . 540 1.9 3 M1 388 . 60 4 849 . 088 1.9 4 M1 389 . 140 10 469 . 387 17 . 9 14 M1 398 . 775 23 478 . 992 7.8 6 E2 413 . 756 8 874 . 28 1 . 82 11 M1 +E 2 418 . 48 4 557 . 447 0 . 17 3 420 . 351 8 559 . 303 440 . 37 5 1459 . 965 0 . 37§ 12 1 . 31 12 234 . 608 7 276 . 890 20 Comments 0 . 20 2 251 . 635 7 279 . 611 18 δ 2 . 34 12 M1 0 . 52 8 440 . 980 13 740 . 387 5.0 5 445 . 023 14 806 . 901 0 . 23 3 449 . 149 18 806 . 901 2 . 17 20 451 . 441 8 930 . 43 1 . 64 10 M1 M1 460 . 547 7 460 . 540 6.7 5 477 . 062 8 838 . 923 10 . 8 5 M1 +E 2 E2 482 . 048 8 620 . 988 10 . 3 5 M1 +E 2 483 . 160 8 563 . 407 12 . 4 9 M1 484 . 323 12 557 . 447 0 . 27 5 486 . 274 11 559 . 303 0 . 19 3 0 . 61§ 23 0 . 92§ 22 Eγ: energy fit poor in least–squares fit of Eγ. From calculated M1 E(level) Eγ=484.397 8. 487 . 217 13 492 . 940 8 849 . 088 1009 . 361 1 . 21 11 E2 7.2 7 E2 496 . 345 8 975 . 333 6.0 6 E2 499 . 254 8 857 . 025 10 . 0 9 E2 503 . 174 8 1019 . 595 505 . 943 8 975 . 333 513 . 529 8 1035 . 463 11 . 7 10 515 . 064 9 695 . 137 1 . 28 8 516 . 153 23 5 1 6 . 4 7 5@ 1 5 1038 . 055 516 . 421 874 . 28 9.8 9 E2 3 . 02 24 M1 E2 M1 +E 2 0 . 88 7 1 . 0 1@ 1 2 1 . 0 1@ 1 2 Continued on next page (footnotes at end of table) 34 19 3 I r 7 7 116 – 2 1 19 3 I r 7 7 116 – 2 1 NUCLEAR DATA SHEETS 191Ir(nn,γ) E=th 1997Dr04 (continued) γ( 1 9 3 I r ) ( c o n t i n u e d ) Eγ E(level) Iγ 525 . 16 5 598 . 228 1 . 54 15 532 . 127 18 712 . 176 0 . 24 3 533 . 51 3 832 . 897 4.1 4 534 . 482 21 892 . 268 1 . 57 10 538 . 845 20 1511 . 725 1 . 72 19 539 . 92 8 1009 . 361 1 . 24 19 548 . 19 3 1169 . 17 556 . 175 9 695 . 137 Mult.† E2 M1 +E 2 2 . 86 14 E2 0 . 25 2 E 2 ( +M1 ) 557 . 429 21 557 . 447 1 . 96 20 M1 559 . 29 4 5 6 0 . 3 3& 3 559 . 303 M1 740 . 387 6.4 5 1 . 53# 21 573 . 21 6 712 . 176 0 . 10 3 582 . 201 20 1145 . 619 0 . 25 5 599 . 510 7 1432 . 407 7.4 9 601 . 45 5 602 . 940 8 740 . 387 1459 . 965 0 . 82 15 611 . 037 21 972 . 874 1 . 37 24 972 . 874 1 . 29 18 618 . 94 3 918 . 368 2 . 07 17 620 . 98 3 620 . 988 7.7 6 626 . 88 8 806 . 901 0 . 33 4 637 . 46 3 1511 . 725 647 . 257 8 1169 . 17 3.8 4 662 . 636 15 1511 . 725 5 . 1 17 667 . 963 9 Expected intensity from adopted branching ratio ≈0.15. 3.3 4 615 . 09 5 676 . 192 13 Comments 5.1 3 806 . 901 4.1 3 1038 . 055 2.9 5 678 . 090 25 1035 . 86 5.9 3 680 . 280 15 1038 . 055 2.0 4 † Deduced from conversion coefficients and ce–ratios (data not given by 1997Dr04). ‡ Observed in ce–spectra only. § Deduced from α(K)exp and α(L1)exp. # γ is either influenced by an impurity, or is placed incorrectly. A γ of this intensity was not seen in @ Multiply placed; undivided intensity given. & Placement of transition in the level scheme is uncertain. 35 193Os β– decay. 19 3 I r 7 7 116 – 2 2 11/2+ 7/2–,9/2– 5/2+,7/2,9/2+ 13/2+ 11/2+ 11/2+ 11/2– 3/2+,5/2,7/2 7/2– 9/2+,11/2+ 3/2+,5/2+ 11/2+ 9/2+ 11/2– 5/2+ 5/2– 3/2+,5/2+ 7/2+ 3/2– 9/2– 3/2+,5/2+ 1/2+,3/2+ 9/2+ 7/2+ 15/2– 13/2– 3/2+ 5/2+ 7/2+ 7/2– 5/2+ 3/2+ 1/2+ 3/2+ 64 547.257 318.19 3. 272.125E2 8 58 6.890 0. 2.86 M137 222.20 7.2 1 0.5 52 0.2 5 1.35 1 66 632.63 6 537.46 8.8 60 45 2 44 .94 0 59 0.37 3. 9.5 0.53 10 2 7.4 2 1.7 2 E=th 1997Dr04 (continued) NUCLEAR DATA SHEETS 191Ir(nn,γ) Level Scheme Intensities: relative Iγ & Multiply placed; undivided intensity given 19 3 Ir 7 7 116 36 68 670.280 516.192 2. 67 6.15 2.0 3 518.090 0.9 173.529 5. 88 8 9 . 4 50 41 E2 M1 11 53 3.17 4 . 499.92 E2 0.57 2.9 1 50 40 .24 9.8 9 E2 495.94 3 61 6.345 M1 7.2 615.09 E2 3. 1 35 .037 1.2 6.002 231.86 1.9 2.5 4 3 45 07 0.87 61 1.441 0.23 8 . 0 35 94 1. 324.960 2.0 64 170.142 M17 7 .98 E 0 53 6 2 .67 M1 0.4 274.48 2 51 1.282 1. 3.85 6 5 . 41 475 0.77 3 3 49 .756 & M1 1.0 339.25 1 4 48 5.101 E2 +E2 387.217 M1 10 1.8 8 . 2 47 .60 E2 3. 0 327.062 M1 1.2 1 2 1 27 .505 E2 1.9 53 9.611 M1 10 .8 263.51 0. 3. 66 9.490E2 25 61 7 4 M1 .1 62 .963 446.88 4. 5.9 449.14 0.31 9 5.0 M 3 60 23 1 561.45 0.2 2.1 3 7 440.33 0.8 0 2 . 37 980 1.5 8 14 .533 M13 57 2.159 0. 5. M110 0 533.21 352.127 0.1 3.6 0 0 25 .325 0. 151.63 0.24 4.7 5 M 41 21 1 0.0 0.5 9 9 5 5.1.1 M1 +E 19 3 I r 7 7 116 – 2 2 1511.725 1459.965 1432.407 1169.17 1145.619 1038.055 1035.86 1035.463 1019.595 1009.361 975.333 972.874 930.43 918.368 892.268 874.28 857.025 849.088 838.923 832.897 806.901 740.387 712.176 620.988 598.228 563.407 559.303 557.447 521.924 516.421 478.992 469.387 460.540 361.863 357.767 299.401 180.077 138.939 73.057 0.0 19 3 I r 7 7 116 – 2 3 NUCLEAR DATA SHEETS & Multiply placed; undivided intensity given 1997Dr04 (continued) 1511.725 1432.407 19 3 I r 7 7 116 – 2 3 1145.619 E=th 1009.361 191Ir(nn,γ) 7/2–,9/2– 972.874 Level Scheme (continued) 11/2+ Intensities: relative Iγ 3/2+,5/2,7/2 918.368 874.28 838.923 806.901 740.387 695.137 620.988 598.228 563.407 559.303 557.447 521.924 516.421 478.992 469.387 460.540 361.863 357.767 299.401 180.077 138.939 80.242 73.057 0.0 7/2– 3/2+,5/2+ 9/2+ 5/2+ 5/2– 5/2+ 7/2+ 3/2– 9/2– 3/2+,5/2+ 1/2+,3/2+ 9/2+ 7/2+ 15/2– 13/2– 3/2+ 5/2+ 7/2+ 7/2– 3/2+ 5/2+ 11/2– 1/2+ 3/2+ 19 3 Ir 7 7 116 37 18 100.071 417.02 .21 2 13 9 8.9 80 38 . 2 M1 73 36 .05 M 4 0 M1 +E 2 55 516.17 5 335.064 E2 337.33 M1(+M 1 3 23 .28 4.1 +E2 ) 0 134.60 M1 1 .25 8 5 .88 M 0.2 .28 62 0.11 2 5 480.98 2 .26 262.04 7.7 8 52 3.218 M1 5 + M1 E2 29 .16 8.8 1 48 1.4 10. 28 .54 0 3 E2 263.16 0 55 4.005 M1 12 9 . 8 . 48 29 M1 12 426.27 M1 19.4 4 370.351 0. 6.4 .7 209.230 M119 1 . 55 535 0. 2. 487.42 0.22 34 9 414.323 M106 8.4 M 38 8 1 1. 2 . 0.1 0.96 9 16 89 7 27 51 4.15 E2 8 376.475 M1 26 7 . 33 .477 & 2. 0 156.34 M1 1.0 53 4.5 3 E (+ 1 39 E 5 2 4 M1 102) 1 38 8.775 . 46 9.140 E2 2.79 1.0 380.54 M1 7.8 7 7 32 .520 M1 17 281.604 M1+E2 .9 0.4 M 36 65 1+ 1.9 6.7 M1 E2 281.86 0 8 . 18 807 M1 2.3 2.2 1 5 2 35 .792 E2 7. 217.77 M1 3.41 8 6 .82 E2 21 5 . 6 9.1 M1 23.06 58 +E E2 2 M1 74 20 .0 M1+E2 3.5 1.0 7 2 19 .1 19 3 I r 7 7 116 – 2 4 NUCLEAR DATA SHEETS 191Ir(t,p) 1981Ci02 E(t)=17 MeV; measured ground–state σ, deduced enhancement factors and supersymmetry predictions. 193Ir Jπ† E(level) 0.0 † Levels 3 / 2+ From adopted levels. 192Os(d,nγ) 1997Dr04 E=12.0, 12.4, 14.2, 16.4 MeV. Measured Eγ, Iγ, γγ, γ(θ), but angular distribution data not given; Compton–suppressed Ge detectors FWHM=1.8 keV at 1.4 MeV. 193Ir Jπ† E(level)† 0.0 Levels Comments 3 / 2+ 73 . 057 1 / 2+ 80 . 242 11 / 2– 138 . 939 5 / 2+ 180 . 077 3 / 2+ 299 . 401 7 / 2– 357 . 767 7 / 2+ 361 . 863 5 / 2+ 460 . 540 3 / 2+ 469 . 387 13 / 2– 478 . 992 15 / 2– 516 . 421 7 / 2+ 521 . 924 9 / 2+ 557 . 447 1 / 2+ , 3 / 2+ Jπ: Adopted (1/2)+. 559 . 303 3 / 2+ , 5 / 2+ Jπ: Adopted 5/2+. 563 . 407 9 / 2– 598 . 228 3 / 2– 620 . 988 7 / 2+ 695 . 137 5 / 2+ 712 . 176 3 / 2+ , 5 / 2+ 740 . 387 5 / 2– 806 . 901 5 / 2+ 832 . 897 11 / 2– 838 . 923 9 / 2+ Jπ: Adopted 3/2+. 849 . 088 857 . 025 11 / 2+ 874 . 28 3 / 2+ , 5 / 2+ 892 . 268 9 / 2+ , 11 / 2+ 918 . 368 7 / 2– Jπ: Adopted (9/2+). 930 . 43 3 972 . 874 3 / 2+ , 5 / 2 , 7 / 2 1019 . 595 11 / 2+ 1035 . 463 13 / 2+ Jπ: Adopted (5/2+). 1078 . 8 1169 . 40 11 / 2+ 1432 . 407 1459 . 965 1511 . 725 † From combined data of 191Ir(nn,γ) and 192Os(d,nγ) (1997Dr04). 38 19 3 I r 7 7 116 – 2 4 19 3 I r 7 7 116 – 2 5 NUCLEAR DATA SHEETS 192Os(d,nγ) 1997Dr04 (continued) γ( 1 9 3 I r ) Eγ† Iγ E(level) ( 73 . 05 ) 73 . 057 ( 80 . 24 ) 80 . 242 107 . 02 180 . 077 135 . 9 695 . 137 Comments ‡ 4.4 2 ‡ 8 . 5§ 4 ‡ 138 . 94 138 . 939 142 . 16 740 . 387 154 . 55 516 . 421 ‡ 154 . 72 712 . 176 ‡ 164 . 16 521 . 924 ‡ 177 . 99 918 . 368 178 . 44 1035 . 463 2.1 5 ‡ 180 . 07 180 . 077 1.3 2 181 . 79 361 . 863 201 . 54 559 . 303 1.3 3 ‡ 218 . 83 357 . 767 <20 Iγ: Iγ(218.83+219.16)=19.9 5. 219 . 16 299 . 401 <20 Iγ: Iγ(218.83+219.16)=19.9 5. 232 . 51 972 . 874 234 . 61 695 . 137 251 . 64 712 . 176 263 . 22 620 . 988 <6 . 4 Iγ: Iγ(263.22+264.01)=6.4 4. 264 . 01 563 . 407 <6 . 4 Iγ: Iγ(263.22+264.01)=6.4 4. 269 . 49 832 . 897 271 . 28 892 . 268 276 . 89 1169 . 40 ‡ 1 . 0§ 2 6.2 4 2.3 2 3 . 1§ 3 12 . 0§ 4 280 . 47 460 . 540 288 . 81 361 . 863 298 . 83 598 . 228 5.6 4 321 . 60 460 . 540 2.2 3 322 . 51 838 . 923 333 . 3 695 . 137 3.5 3 ‡ 335 . 10 857 . 025 2.5 3 336 . 34 3 3 7 . 3@ 516 . 421 0.8 2 0 . 8# 2 351 . 86 972 . 874 ‡ 357 . 8 357 . 767 4.8 3 361 . 86 361 . 863 377 . 48 516 . 421 1.5 3 3 . 9§ 4 378 . 53 740 . 387 379 . 23 559 . 303 382 . 99 521 . 924 387 . 52 460 . 540 388 . 6 849 . 088 <3 . 6 Iγ: Iγ(388.6+389.14)=3.6 3. 389 . 14 469 . 387 <3 . 6 Iγ: Iγ(388.6+389.14)=3.6 3. 398 . 78 478 . 992 20 . 8 6 413 . 76 874 . 28 17§ 3 ‡ 695 . 137 418 . 5 557 . 447 420 . 35 559 . 303 440 . 4 1459 . 965 2.3 4 ‡ ‡ 15 . 6 5 2.2 3 13 . 8§ 5 ‡ 440 . 98 740 . 387 449 . 15 806 . 901 4.5 5 7 . 1§ 5 451 . 44 930 . 43 3.1 3 460 . 55 460 . 540 8.4 5 477 . 06 838 . 923 11 . 2 5 482 . 05 620 . 988 483 . 16 563 . 407 484 . 32 557 . 447 ‡ 499 . 25 857 . 025 4.8 4 503 . 17 1019 . 595 4.5 5 9 . 5§ 5 525 . 2 598 . 228 2.7 4 2 . 6§ 3 532 . 13 712 . 176 1.2 4 533 . 5 832 . 897 548 . 2 557 . 43 1169 . 40 557 . 447 1.4 4 1.1 3 4.2 5 Continued on next page (footnotes at end of table) 39 19 3 I r 7 7 116 – 2 5 19 3 I r 7 7 116 – 2 6 19 3 I r 7 7 116 – 2 6 NUCLEAR DATA SHEETS 192Os(d,nγ) 1997Dr04 (continued) γ(193Ir) (continued) Eγ† E(level) 559 . 3 559 . 303 560 . 3 740 . 387 573 . 21 712 . 176 599 . 51 1432 . 407 621 . 0 Iγ 3.8 5 2 . 0# 3 § 4.0 5 620 . 988 3.1 4 637 . 46 1511 . 725 2.3 2 647 . 26 1169 . 40 2.5 3 662 . 64 1511 . 725 2.1 3 667 . 96 806 . 901 779 . 5 2 1078 . 8 Comments 4.0 5 ≤2 . 5 † Rounded–off value from ‡ Line obscured by impurities. 191Ir(nn,γ) Line observed in coincidence experiment only. experiment (1997Dr04). § Complex line, total intensity of line given. # γ is either influenced by an impurity, or is placed incorrectly. A γ of this intensity is not seen in (evaluator). @ Placement of transition in the level scheme is uncertain. 40 193Os β– decay 41 11/2+ 13/2+ 11/2+ 3/2+,5/2,7/2 7/2– 9/2+,11/2+ 3/2+,5/2+ 11/2+ 9/2+ 11/2– 5/2+ 5/2– 3/2+,5/2+ 5/2+ 7/2+ 3/2– 9/2– 3/2+,5/2+ 1/2+,3/2+ 9/2+ 7/2+ 15/2– 13/2– 3/2+ 5/2+ 7/2+ 7/2– 3/2+ 5/2+ 11/2– 1/2+ 3/2+ 66 632.64 7.4 2 6 .1 2.3 59 0.4 9.5 1 4.0 44 64 547.26 278.2 2.5 6.8 1. 77 9 1 9 . 12 5 17 .0 ≤2 50 8.44 .5 3.1 35 7 2.7 231.86 2.5 45 1 17 1.44 27 7.99 3.1 2.1 41 1.28 3.1 49 3.76 17 339.25 38 5.10 4.8 2.5 47 8.6 327.06 <3.6 53 2.51 11. 3.52 263.5 66 9.49 1.4 2.3 447.96 9.1 4 5 .0 7.1 2.0 4.5 Level Scheme Intensities: relative Iγ 1511.725 1459.965 1432.407 1169.40 1078.8 1035.463 1019.595 972.874 930.43 19 3 I r 7 7 116 – 2 7 918.368 892.268 874.28 857.025 849.088 838.923 832.897 806.901 740.387 712.176 695.137 620.988 598.228 563.407 559.303 557.447 521.924 516.421 478.992 469.387 460.540 361.863 357.767 299.401 180.077 138.939 80.242 73.057 0.0 192Os(d,nγ) 19 3 Ir 7 7 116 80 73 .24 .05 18 100.07 7.0 1 2 .3 8.9 4.4 4 8.5 13 56 440.3 370.98 148.53 57 2.16 533.21 252.13 151.64 1.2 33 4.72 6.2 337.3 233.3 0.8 134.61 5.9 1 62 .0 1 48 .0 262.05 3.1 3 .22 4. 52 5 < 295.2 8.8 2. 6.4 48 6 3 5.6 263.16 55 4.01 9.5 429.3 <6. 370.35 3.8 4 209.23 13. 8 55 1.54 487.43 4 . 41 32 4.2 8.5 38 162.99 4 37 .16 15. 6 337.48 156.34 3.9 4 . 0 5 39 5 .8 38 8.78 46 9.14 20. 0 38 .55 <3. 8 327.52 8.4 6 281.60 2.2 0.4 2 36 7 .2 1 2.3 28 .86 188.81 1.5 1 . 35 79 217.8 1.3 8.8 4. 21 3 8 9.1 <2 6 0 <2 0 1997Dr04 (continued) NUCLEAR DATA SHEETS 19 3 I r 7 7 116 – 2 7 19 3 I r 7 7 116 – 2 8 19 3 I r 7 7 116 – 2 8 NUCLEAR DATA SHEETS 192Os(3He,d), (α,t) 1971Pr13 E(3He)=28 MeV; θ=30°, 55°. E(α)=28 MeV; θ=45°, 60°. Osmium metal targets enriched to 98.7% in 192Os; measured E(level) (mag spect, FWHM=16–17 keV for (3He,d), =12 keV for (α,t)), differential cross sections. 193Ir Jπ‡ E(level)† 0 . 0a 3 / 2+ L# 2 Levels C2jlU2§ 0 . 67 Comments C2jlU2 in (α,t) for all transitions were normalized to give 0.67 for this transition. 77bc 3 1 / 2+ and 11 / 2– Unresolved doublet, with division of intensity assumed to be the same as that for the analogous states in 191Ir. L=0 and C2jlU2=0.25 (0.24 in (α,t)) for 73.0 level; L=5 and C2jlU2=0.77 (0.89 in (α,t)) for 80.2 level. 140a 5 / 2+ 2 0 . 04 181b 3 / 2+ 2 0 . 05 300 7 / 2– 3 0 . 04 364ab 3 7 / 2+ and 5 / 2+ 4+2 C2jlU2=0.04 in (α,t). C2jlU2=0.05 in (α,t). C2jlU2=0.03 in (α,t). Unresolved doublet. If the entire cross section is assumed to be of the assigned L, C2jlU2=1.28 (0.50 in (α,t)) for L=4 and C2jlU2=0.30 (0.26 in (α,t)) for L=2. 562d 3 622e 5 / 2+ 2 0 . 25 C2jlU2=0.26 in (α,t). 7 / 2+ 4 0 . 03 C2jlU2=0.02 in (α,t). 852 969 3 0,1 1071 1,2 1 1 3 3@ f 1150 f 3 1163g 3 C2jlU2=0.06 in (α,t). 5 / 2– 3 9 / 2– 5 1 . 33 C2jlU2=1.31 in (α,t). 13 / 2+ 6 0 . 44 C2jlU2=0.50 in (α,t). C2jlU2=0.15 in (α,t). 1201 3 1 1286 3 1407 1698 3 1759h 3 1820h 3 1 9 7 0& 3 1 9 9 9& 3 2,3 3 / 2– 1 0 . 05 7 / 2– 3 0 . 77 C2jlU2=0.61 in (α,t). 2 0 2 9& † Averages from (3He,d) and (α,t), except where noted; uncertainties are 3 keV for strongly populated states (estimated by ‡ From Nilsson–model interpretation of L values and spectroscopic factors; fingerprint evaluated taking into account Coriolis § From DWBA analysis, C2jlU2=(dσ/dΩ)(exp)/2N (dσ/dΩ)(DWBA) where N=4.42 for (3He,d); values for (α,t) are given under comments, evaluator to be those with dσ/dΩ≥10). interaction (1971Pr13). normalized to (3He,d) observed value for g.s., which required N=118, much greater than the expected value N=48. # From DWBA analysis of angular distributions. @ Seen in (α,t) only. & Seen in (3He,d) only. a (A): 3/2[402] band. b (B): 1/2[400] band. c (C): 11/2[505] band. d (D): 5/2[402] band. e (E): 7/2[404] band. f (F): 1/2[541] band. g (G): 1/2[660] band. h (H): 1/2[530] band. 42 19 3 I r 7 7 116 – 2 9 19 3 I r 7 7 116 – 2 9 NUCLEAR DATA SHEETS 193Ir(γ,γ): 193Ir Mossbauer Levels Time–reversal invariance: 1980Da12, 1970Ze04, 1968At01. Isomer shifts: 1985De51, 1985Be03, 1973Wa05 (also 1970Wa18,1967Wa12), 1967At03. Quadrupole interaction: 1974Sa08, 1967Wa12. Hyperfine fields: 1975Ka16, 1969Pe05, 1967He11. Conversion electron Mossbauer spectra: 1991Sa33. E(level)† 0.0 3 / 2+ 73 . 045 5 T1/2† Jπ† Comments s t ab l e 1 / 2+ 6 . 09 ns 15 g(73 level)/g(g.s.)=9.1 3 (1967At03), +8.875 18 (1967Wa20). Jπ: from shape of absorption spectrum (magnetic splitting of 73.0 level) (1967At03); π from adopted levels. 138 . 942 4 † 5 / 2+ 78 ps 4 T1/2: adopted value includes 79.7 ps 21 from measured Γ (1969St04). From adopted levels. γ( 1 9 3 I r ) Eγ† Mult.† E(level) 73 . 040 12 73 . 045 M1 +E 2 δ –0 . 558 5 Comments δ: from relative intensities of emission lines from completely magnetized 193Os source (1967Wa20) (sign convention not stated by authors, but sign apparently consistent with later data (1984Gh01)); δ=0.61 5 (1967At03). Other: 1968At01. 138 . 92 4 M1 +E 2 –0 . 329 12 δ: from adopted gammas. From adopted gammas. 2 8.9 2 M1 0 13 .04 5/2+ 1/2+ +E M1 +E 2 Level Scheme 73 † 138 . 942 3/2+ 138.942 78 ps 73.045 6.09 ns 0.0 stable 19 3 Ir 7 7 116 193Ir(γ,γ'): 1967Me12: source: 193Os; Res Fluorescence 1967Me12,1970Me16 high–speed–rotor technique used to tune γ–rays (Ge(Li) detector). 1970Me16: reevaluation of data. 1995La16: source: 137Cs, 60Co; measured excitation cross–section for the 10.53 d, 80.22 keV 193Ir isomer. Detected electrons (E≈70 keV), persumably ce(L)(80.22γ) from isomeric level (also 1994La33). 1996La27: source: bremsstrahlung 4 MeV endpoint. Measured excitation cross–section for the 10.53 d, 80.22 keV isomer. Detected Ir L x ray. 43 193Ir 19 3 I r 7 7 116 – 3 0 19 3 I r 7 7 116 – 3 0 NUCLEAR DATA SHEETS 193Ir(γ,γ'): Res Fluorescence 1967Me12,1970Me16 (continued) 193Ir T1/2‡ Jπ† E(level) 0.0 Levels Comments 3 / 2+ 2 T 1 / 2 : f r o m [ ( 2 J + 1 ) / ( 2 J ( g . s . ) + 1 ) ] x [ Γ 2γ 0 / Γ ] = 7 . 6 × 1 0 – 6 e V 1 2 ( 1 9 6 7 M e 1 2 ) ; a d o p t e d v a l u e 460 3 / 2+ 11 ps 557 (1/2)+ ≤4 ps § 559 5 / 2+ 1 . 08 ps § 16 T1/2: the value given in 1970Me16, mean life =1.65 24, had been corrected to reflect the 598 . 2 3 / 2– 2 . 8 p s +28–9 T1/2: from 1995La16. T1/2=14.9 ps 18. T1/2: adopted value T1/2=34 ps 8. adopted branching ratios and γ properties (see adopted gammas). † From adopted levels. ‡ From 1970Me16 (results of reanalysis of experimental measurements of 1967Me12); unless otherwise noted. § F r o m [ ( 2 J + 1 ) / ( 2 J ( g . s . ) + 1 ) ] x [ Γ 2γ 0 / Γ ] = 7 . 9 × 1 0 – 5 e V 6 f o r t h e c o m b i n e d 5 5 7 + 5 5 9 l e v e l s ( 1 9 6 7 M e 1 2 ) . γ( 1 9 3 I r ) Eγ E(level) 460 460 557 557 559 559 46 3/2– 5/2+ 55 559 7 0 Level Scheme 598.2 559 (1/2)+ 557 3/2+ 460 2.8 ps 1.08 ps ≤4 ps 11 ps 0.0 3/2+ 19 3 Ir 7 7 116 193Ir(n,n'γ) Reactor fast–neutron beam, θ=90°; enriched 193Ir 1987Pr10 targets (97.6%); measured Eγ, Iγ (Ge(Li), FWHM=2.0 keV at 1332 keV); determined level–population rates. Others: 1959An30, 1984Ya02. 193Ir Jπ‡ E(level)† 0 . 0§ 3 / 2+ 73 . 0# 80 . 2b 1 / 2+ 138 . 9§ 180 . 0# 5 / 2+ 2 9 9 . 3& 357 . 7§ Levels 11 / 2– 3 / 2+ 7 / 2– 7 / 2+ 361 . 8# 4 6 0 . 5@ 5 / 2+ 469 . 4b 479 . 0b 13 / 2– 3 / 2+ 15 / 2– 516 . 4# 521 . 8§ 9 / 2+ 5 5 7 . 3@ 1 / 2+ 7 / 2+ Continued on next page (footnotes at end of table) 44 19 3 I r 7 7 116 – 3 1 19 3 I r 7 7 116 – 3 1 NUCLEAR DATA SHEETS 193Ir(n,n'γ) 1987Pr10 (continued) 193Ir Levels (continued) Jπ‡ E(level)† 559 . 2 5 / 2+ 5 6 3 . 3& 598 . 1a 3 / 2– 621 . 0 7 / 2+ Comments 9 / 2– 6 9 5 . 1@ 5 / 2+ 712 . 1 3 / 2+ 740 . 3a 5 / 2– 806 . 9 5 / 2+ 828 . 9 ( 9 / 2– ) Jπ: alternate 7/2+ assignment by 1987Pr10 not consistent with observation of 733.9γ to 1/2+ (evaluator). 8 3 3 . 2& ( 834 . 7# ) 11 / 2– 9 / 2+ 848 . 9 5 / 2+ 857 . 2§ 11 / 2+ 1987Pr10 suggest that this is the 7/2+ member of the second Kπ=1/2+ band. However, a weak γ to 874 . 2 1/2+ level, seen in 892 . 2 193Os β– decay contradicts this assignment. 9 / 2+ 918 . 3a 7 / 2– 930 . 4b 17 / 2– 964 . 4 ( 1 / 2+ , 3 / 2+ ) 972 . 8 ( 5 / 2+ ) 1009 . 3 11 / 2+ 1019 . 6# 11 / 2+ 1035 . 6 (3/2,5/2,7/2)+ 1038 . 2 (+) 1065 . 9 (+) 1076 . 4 ( 3 / 2+ ) 1077 . 9 ( 3 / 2– , 5 / 2– ) Jπ: Adopted 1/2+. 1131 . 1 1145 . 7a 9 / 2– 1 1 6 8 . 2& 13 / 2– 1169 . 2 11 / 2+ 1250 . 5 ( 3 / 2+ , 5 / 2+ ) 1434 . 1# ( 13 / 2+ ) 1511 . 9 ( 3 / 2+ , 5 / 2+ ) Jπ: Adopted (3/2+). † From 1987Pr10. ‡ From comparison of experimental and theoretical level–population rates, band structure, and γ–ray decay systematics (1987Pr10). § Kπ=3/2+ band. # Kπ=1/2+ band. @ Second Kπ=1/2+ band. & Kπ=7/2– band. a Kπ=3/2– band. b Kπ=11/2– band. γ(193Ir) Eγ Iγ† E(level) ( 73 . 040‡ 12 ) 73 . 0 ( 80 . 22‡ 2 ) 80 . 2 Comments 107 . 07 5 180 . 0 122 16 139 . 23 4 138 . 9 480 50 142 . 2 9 154 . 67 f 9 740 . 3 516 . 4 24 7 11 f 5 Iγ: from adopted gammas Iγ(154γ)/Iγ(336γ)=0.40 13 which would indicate that all the 712 . 1 11 f Iγ: from adopted gammas Iγ(155γ)/Iγ(252γ)=0.14 2 which suggests Iγ(155γ)=4.7 7. observed intensity belongs to this location in level scheme. 164 . 19 17 521 . 8 177 . 97 4 918 . 3 28 3 180 . 09 4 180 . 0 34 3 181 . 79 2 361 . 8 81 6 x211 . 70 5 5 7 . 3 25 7 . 2 20 Continued on next page (footnotes at end of table) 45 19 3 I r 7 7 116 – 3 2 19 3 I r 7 7 116 – 3 2 NUCLEAR DATA SHEETS 193Ir(n,n'γ) 1987Pr10 (continued) γ(193Ir) (continued) Eγ 219 . 24e 3 299 . 3 850§e 70 357 . 7 150§e 12 227 . 35 9 1145 . 7 234 . 61 3 695 . 1 x242 . 37 6 x247 .5 1 Iγ† E(level) 8 . 8 10 63 12 11 . 5 18 5 . 1 12 251 . 64 3 712 . 1 259 . 8 13 264 . 00e 3 621 . 0 3 . 5 13 563 . 3 9 6@e 1 5 9 . 0@e 8 621 . 0 x267 . 91 14 33 . 9 13 269 . 50 4 833 . 2 892 . 2 280 . 46 3 460 . 5 31 3 7 . 1 21 45 4 288 . 84 3 361 . 8 60 5 298 . 82 3 598 . 1 196 16 x308 . 73 5 6 . 1 13 x314 . 30 7 3.1 6 321 . 69 4 460 . 5 . 93 18 333 . 1 5 335 . 21e 19 857 . 2 516 . 4 337 . 8 2 1077 . 9 340 . 1 9 1035 . 6 x349 55 4 3.1 9 695 . 1 1168 . 2 336 . 38 6 . 20 11 2.8 9 6 . 3& e 1 7 2 . 7e 12 37 5 3 . 3 10 2 . 2 16 4 . 6 12 355 . 1 4 918 . 3 357 . 77 4 357 . 7 169 9 361 . 87 4 361 . 8 113 9 369 . 81 10 892 . 2 5.8 9 516 . 4 3 . 2 11 79#e 5 3#e x375 . 12 18 377 . 50e 5 557 . 3 2 . 7 16 383 . 01 5 521 . 8 97 7 387 . 54 5 460 . 5 45 3 389 . 16 5 469 . 4 x397 . 03 7 398 . 76 6 51 3 479 . 0 26 . 1 23 .7 2 x406 .9 2 4.4 9 x409 . 10 11 5 . 8 11 4.4 9 413 . 81 10 874 . 2 418 . 21 7 557 . 3 420 . 40 6 559 . 2 33 3 740 . 3 37 3 .8 4 440 . 99 6 444 . 75e 12 8 . 6 12 1.8 4 1 . 7 10 806 . 9 2 . 1de 4 1065 . 9 1 . 2de 3 449 . 21 6 806 . 9 451 . 39 14 930 . 4 460 . 53 6 460 . 5 131 9 ( 482 . 2 3 ) 621 . 0 ≈64 ( 484 . 3‡ ) 557 . 3 x467 γ not placed by 1987Pr10; placement suggested by Coulomb excitation data. 15 . 1 4 x405 x432 This placement suggested by evaluator on basis of Coulomb excitation and (nn,γ) data. 4 . 3 14 271 . 17 8 x329 Comments .0 2 20 2 2.6 6 3.4 8 Peak superimposed on impurity (7Li, 477γ); Iγ calculated from relative branching in Coulomb excitation (1987Pr10). 6.3 Iγ: from branching ratio in adopted gammas; γ possibly masked by impurity (477γ of 7Li) x488 . 46 18 492 . 93 7 499 . 5 3 503 . 22 8 ( 512 . 3‡ ) (evaluator). 2 . 2 11 1009 . 3 857 . 2 1019 . 6 874 . 2 8.5 8 19 4 10 . 7 15 2 . 9a Continued on next page (footnotes at end of table) 46 19 3 I r 7 7 116 – 3 3 19 3 I r 7 7 116 – 3 3 NUCLEAR DATA SHEETS 193Ir(n,n'γ) 1987Pr10 (continued) γ( 1 9 3 I r ) ( c o n t i n u e d ) Eγ 515 . 06‡ Iγ† E(level) 695 . 1 Comments ≈15 γ not resolved from impurity (517γ in branching in ( 516 . 48‡ ) x521 874 . 2 .1 2 598 . 1 21 . 1 8 712 . 1 833 . 2 12 . 8 13 22 . 7b f 14 892 . 2 22 . 7b f . 85 15 1987Pr10 places the γ from this level alone. 14 3.1 8 1169 . 2 x552 . 8 19 ( 556 . 18‡ ) contaminant; Iγ deduced from relative 4 . 7a 531 . 90 9 533 . 89 f 8 548 . 17 11 34Cl) β– decay (1987Pr10). 3 1 525 . 31 8 x545 193Os 5 . 8 13 5 . 6 12 695 . 1 6 2 γ not observed but expected from 193Os β– decay and 191Ir(nn,γ) data. Iγ calculated from relative branching from adopted gammas. 557 . 35 8 557 . 3 48 4 559 . 31 8 ( 573 . 24‡ ) 559 . 2 98 8 712 . 1 3 . 1 10 γ not seen, but expected on the basis of 193Os β– and 191Ir(nn,γ) from relative branching in adopted levels (evaluator). 582 . 55 13 1145 . 7 x589 . 96 23 599 . 4c g 3 1.1 5 1.8 6 1434 . 1 1.8 5 610 . 80g 15 972 . 8 3.5 8 619 . 02 10 918 . 3 12 . 8 15 621 . 05 9 621 . 0 51 3 627 . 34 15 806 . 9 x636 . 76 12 647 . 49 11 x651 668 . 04 9 x672 1169 . 2 . 64 18 662 . 68 14 2.8 6 4.7 6 6 . 0 12 1.8 4 1511 . 9 806 . 9 . 99 11 4 . 3 10 38 4 6.1 9 676 . 36 18 1038 . 2 677 . 98 11 1035 . 6 695 . 27 14 695 . 1 3.0 6 7.0 9 4 . 0 10 698 . 64 17 1168 . 2 1.8 7 704 . 01 11 1065 . 9 5.5 9 710 . 01 10 848 . 9 712 . 47 26 712 . 1 718 . 72 10 1076 . 4 733 . 93 15 806 . 9 735 . 59 18 874 . 2 748 . 68 9 828 . 9 x750 . 97 19 752 . 73 f 15 833 . 2 892 . 2 14 . 4 15 2.1 7 41 4 3.0 6 2.0 4 66 5 6 . 9 12 9 . 2b f 14 9 . 2b f 14 x760 .4 7 1 . 4 14 x761 .5 4 2 . 8 14 x764 .1 5 0.9 6 x769 . 50 18 2.8 9 x774 . 02 24 2 . 3 14 x776 . 50 19 3.8 8 778 . 60 9 x781 784 . 58 15 x795 1077 . 9 . 88 10 40 4 14 . 5 14 964 . 4 . 00 13 5.1 8 4.7 8 x797 . 00 15 4.3 9 x802 . 93 9 8.8 9 x829 .8 4 848 . 95 8 2 . 2 13 848 . 9 856 . 5 6 1035 . 6 858 . 2 3 1038 . 2 x862 . 10 12 874 . 26 9 x875 .9 4 1987Pr10 places the γ from this level alone. 35 4 1.1 7 2.0 8 5 . 7 11 874 . 2 36 4 4 . 0 14 Continued on next page (footnotes at end of table) 47 data. Iγ deduced 19 3 I r 7 7 116 – 3 4 19 3 I r 7 7 116 – 3 4 NUCLEAR DATA SHEETS 193Ir(n,n'γ) 1987Pr10 (continued) γ(193Ir) (continued) Eγ Iγ† E(level) Eγ x947 E(level) . 44 20 Iγ† 2 . 7 11 885 . 91 8 1065 . 9 15 . 5 21 888 . 42 10 1250 . 5 9.1 8 951 . 10 11 1131 . 1 7 . 6 13 964 . 4 22 . 5 23 954 . 37 15 1511 . 9 5 . 1 10 892 . 89 13 1250 . 5 8 . 4 11 x956 . 49 17 4 . 4 10 899 . 98 13 972 . 8 4.9 7 x959 .5 3 3 . 0 10 891 . 41 9 x910 .8 3 2.5 6 x964 . 06 10 x914 .7 5 2 . 0 10 x966 . 17 21 x916 .0 3 3 . 1 12 x920 . 14 17 2.8 9 x976 x981 x927 . 17 12 4.3 7 x930 . 29 11 5.0 7 937 . 49 13 x943 1076 . 4 2.5 8 † Relative Iγ at θ=90°. From adopted gammas. § Deduced from # Deduced from @ Deduced from & Deduced from 3.1 6 972 . 08 24 972 . 8 .8 3 . 35 11 992 . 2 f 5 1065 . 9 1131 . 1 x993 2.4 8 3 . 9 11 12 . 3 20 . 33 22 ‡ 18 . 7 18 .4 5 15 . 9 15 2 . 8 f 17 2.8f 17 2 . 5 14 Iγ(complex peak)=1000 70 and relative branching from 357.7 level from other sources (1987Pr10). Iγ(complex peak)=82 5 and relative branching from 557.3 level from other sources (1987Pr10). Iγ(complex peak)=105 13 and relative branching from 621.0 level from adopted gammas (evaluator). Iγ(complex peak)=9 3 and relative branching from 857.2 level from adopted gammas (evaluator). a γ expected on the basis of 193Os β– decay data. γ probably masked by annihilation radiation and/or impurity (36Cl 517 line). Iγ from relative branching in adopted gammas (evaluator). b Multiple placement by evaluator on the basis of Coulomb excitation and/or 191Ir(nn,γ) data. c γ identified as the 13/2+ to 9/2+ transition in a rotational band. The 9/2+ level was not seen, the transition from it was assumed to be masked by impurities. The energy of the 9/2+ level was estimated to be 834.7 keV. From adopted levels E(9/2+)=839.1 keV. Therefore, the adopted E(13/2+)=1438.5 keV. d Deduced from from Iγ(complex peak)=3.3 6 and relative branching from 806.9 level from adopted gammas (evaluator). e Multiply placed; intensity suitably divided. f Multiply placed; undivided intensity given. g Placement of transition in the level scheme is uncertain. x γ ray not placed in level scheme. 48 19 3 I r 7 7 116 – 3 5 NUCLEAR DATA SHEETS 193Ir(n,n'γ) 19 3 I r 7 7 116 – 3 5 1987Pr10 (continued) Level Scheme Intensities: relative Iγ at θ=90 ° @ Multiply placed; intensity suitably divided (3/2+,5/2+) 11/2+ 13/2– 9/2– (3/2–,5/2–) (3/2+) (+) (+) (3/2,5/2,7/2)+ 11/2+ 11/2+ (5/2+) (1/2+,3/2+) 17/2– 7/2– 9/2+ 1434.1 89 882.89 8.4 8 64 2 .4 9.1 547.49 69 8.17 6.0 8 33 .64 5.8 58 5.21 1.8 @ 222.55 2.7 99 7.35 1.1 2 . 95 2 & 8.8 1.1 77 0 2.8 7.6 338.60 93 7.8 40 7 3 . 71 49 .3 8 99 .72 12. 882.2 & 41 3 705.91 2 444.01 15..8 4.7 5 5 85 5 .5 @ 678.2 1.2 6 85 .36 2.0 676.5 3.0 7 1 34 .98 .1 50 0.1 7.0 49 3.22 2.2 2.9 97 3 10.7 8.5 892.08 619.98 2.4 89 0.80 4.9 781.41 3.5 4.5 2 45 8 2.5 5.1 61 1.39 9 . 35 02 2.6 5 17 .1 12. 75 7.97 2.7 8 28 532.73 363.89 & 279.81 & 9.2 87 1.17 5.822.7 7.1 734.26 515.59 36 516.48 2.0 412.3 4.7 49 3.81 2.9 8.6 339.5 84 5.21 19 718.95 @ 6 75 0.01 35 .3 14 532.73 . 3 4 & . 26 89 74 9.50 & 9.2 73 8.68 31 22.7 3 66 66 .93 628.04 3.0 447.34 38 449.21 2.8 4.7 2 44 5 0 @ 140.99 2.1 2.2 3 7 24 (13/2+) 1511.9 59 (3/2+,5/2+) 95 664.37 2.6 5 8 .1 9.4 4.3 1.8 & Multiply placed; undivided intensity given 1250.5 1169.2 1168.2 1145.7 1131.1 1077.9 1076.4 1065.9 1038.2 1035.6 1019.6 1009.3 972.8 964.4 930.4 918.3 892.2 874.2 11/2+ 857.2 5/2+ 848.9 9/2+ (834.7) 11/2– 833.2 (9/2–) 828.9 5/2+ 806.9 5/2– 5/2+ 740.3 695.1 7/2+ 621.0 3/2– 598.1 9/2– 563.3 1/2+ 557.3 9/2+ 521.8 7/2+ 516.4 15/2– 479.0 13/2– 469.4 3/2+ 460.5 5/2+ 361.8 7/2+ 357.7 7/2– 299.3 3/2+ 180.0 5/2+ 138.9 11/2– 80.2 1/2+ 73.0 0.0 3/2+ 19 3 Ir 7 7 116 49 19 3 I r 7 7 116 – 3 6 19 3 I r 7 7 116 – 3 6 NUCLEAR DATA SHEETS 193Ir(n,n'γ) 1987Pr10 (continued) Level Scheme (continued) Intensities: relative Iγ at θ=90 ° @ Multiply placed; intensity suitably divided & Multiply placed; undivided intensity given (3/2+,5/2+) 1511.9 (13/2+) 1434.1 (3/2+,5/2+) 1250.5 1168.2 13/2– 1131.1 (3/2+) 1076.4 (+) 1038.2 11/2+ 1009.3 (1/2+,3/2+) 964.4 17/2– 930.4 9/2+ 892.2 848.9 7/2+ 563.3 559.2 557.3 521.8 516.4 0 1/2+ 9/2+ 621.0 598.1 15/2– 36 281.87 188.84 35 1.79 217.77 9.2 4 13/2– 3/2+ 469.4 460.5 361.8 4 5/2+ 479.0 85 0 9/2– 5/2+ 712.1 695.1 @ 7/2+ 3/2– 806.9 11 603 81 16 @ 9 15 3/2+ 5/2+ 71 572.47 533.24 2.1 251.90 3.1 151.64 12. 69 4.67 33.8 555.27 & 9 516.18 4.0 11 335.06 6 233.1 ≈15 4.6 2. 62 1 8 1 63 48 .05 262.2 51 4 ≈ 25 .00 64 52 9.8 @ 3. 9.0 295.31 8.8 2 5 26 2 1.1 4 . 19 55 00 6 429.31 @ 9 55 0.40 98 6 7 48 .35 33 414.3 48 378.21 6.3 7.5 1 38 0 .8 @ 163.01 3 4 . 1 37 9 97 7 33 .50 7.3 156.38 @ 4.6 3 79 39 7 7 & 38 8.76 11 9 46 .16 26. 380.53 51 1 7 32 .54 131 281.69 45 0.4 5 6 5 45 5/2+ 5/2+ 357.7 21 9.2 7/2+ 299.3 18 100.09 7.0 3 13 7 4 9.2 12 3 2 48 0 7/2– 3/2+ 80 73 .22 .04 0 5/2+ 11/2– 1/2+ 180.0 138.9 80.2 73.0 0.0 3/2+ 19 3 Ir 7 7 116 50 19 3 I r 7 7 116 – 3 7 19 3 I r 7 7 116 – 3 7 NUCLEAR DATA SHEETS Coulomb Excitation 2000Be07,1987Mc01,1984Mu19 The level scheme combines data from the following major sources: 2000Be07: E(58Ni)=155, 180 MeV; E(65Cu)=130 MeV; E(32S)=100 MeV; E(16O)=40 MeV. Natural Ir targets. Measured γ(θ,H,t), recoil distance, particle–γ(θ), and g–factor (transient field IMPAC technique. Used particle–triaxial–rotor–model, U(6/4), and U(6/20) supersymmetry models to interpret level structure. 1987Mc01: E(40Ar)=160 MeV; E(136Xe)=617 MeV. Enriched 193Ir targets (99.45%); measured γ–ray yields, particle–γ coin (annular solid–state surface–barrier detector, Ge(Li)); used triaxial rotor model to interpret level structure. 1986Ko20: E(32S)=89, 118 MeV; measured γ(θ,H), γ(θ,H,t), recoil–distance. 1984Mu19: E(p),E(α)=5.0–6.0 MeV. Natural Ir targets; measured γ–ray yields, γ(θ) (large–volume Compton–suppressed Ge(Li) detector). 1972Pr04: E(16O)=25 MeV, 40 MeV, 65 MeV. Enriched 193Ir targets (98.0%); measured Eγ, Iγ (Ge(Li)), γ–ray yields. Some data are from the following: 1971No01: E(d)=7.0 MeV; Eα=16.6 MeV. 1970Av02: E(16O)≈40 MeV. 1969Av03: E(16O)=9–30 MeV. 1958Mc02: E(p)=3.0–4.0 MeV. Others: 1971Ow01, 1957Be56, 1957Mc34, 1956Da40, 1956Hu49. 193Ir Levels B(E2)↑: The values of 1972Pr04 have been renormalized to B(E2)↑(138.9 level)=0.75 3. The values of 1984Mu19 were obtained using B(E2)↑(194Pt 0+ to 2+)=1.620 15 (1978Ba38) for calibration and were renormalized to the currently adopted value 1.649 15 (1996Br26). g–factors: In the transient field IMPAC measurements of 1986Ko20 the value for g–factor(138.9 level)=+0.211 12 was adopted for the calibration of the transient field; however, later measurements give g–factor(138.9 level)=+0.356 16 ((Ni,Ni') and (Cu,Cu') 2000Be07, 1996St22). E(level)† T1/2§ Jπ‡ 0 . 0a 3 / 2+ 73 . 0b 1 / 2+ 4 . 1 ns 3 Comments B(E2)=0.110 8. B(E2): Weighted average of 0.11 1 (1971No01), 0.111 12 (1969Av03). 80 . 2 138 . 9a 11 / 2– 5 / 2+ 10 . 53 d# 4 69 . 7 p s@ 10 T1/2: adopted T1/2=6.09 ns 15 (from 193Os β– decay). B(E2)=0.75 3. B(E2): Limited weight method average of 0.81 3 (2000Be07), 0.71 7 (1971No01), 0.64 6 (1969Av03), 0.74 7 (1958Mc02). g–factor=+0.356 16 transient field IMPAC measurements (2000Be07). Other: 0.211 12 (static field), +0.215 13 (transient field) IMPAC measurements (1986Ko20); 1970Av02. T1/2: 2000Be07 (recoil–distance method). Others: 92 4 ps (recoil–distance method, 1986Ko20); 76 4 ps (from B(E2)). 180 . 1b 3 / 2+ 27 ps 3 B(E2)=0.087 8. B(E2): Weighted average of 0.095 14 (1972Pr04), 0.085 10 (1971No01). Other: 0.25 15 (1969Av01). T1/2: Adopted value: 43 ps 16. 299 . 4 7 / 2– 357 . 8a 7 / 2+ 18 . 7 p s@ 7 B(E2)=0.518 9. B(E2): Weighted average of 0.50 2 (200Be07), 0.525 10 (1984Mu19), 0.54 8 (1972Pr04), 0.49 7 (1971No01), 0.47 5 (1969Av03), 0.61 7 (1958Mc02). g–factor=+0.441 16 transient field IMPAC measurements (2000Be07). Other: +0.41 8 (static field), +0.62 13 (transient field) IMPAC measurements, (1986Ko20). T1/2: weighted average of 18.6 ps 7 (2000Be07) and 20.4 ps 24 (1986Ko20) (recoil–distance). Other: 14.9 ps 7 from B(E2), not included in the average because depends on Iγ(219) from 357.8 level seen as an unresolved doublet. 361 . 9b 5 / 2+ 25 ps 460 . 5 3 / 2+ 13 . 7 ps 516 . 4b 521 . 9a (7/2)+ 7 B(E2)=0.0162 4. B(E2): Weighted average of 0.0159 5 (1984Mu19), 0.018 3 (1972Pr04). 12 B(E2)=0.0253 5. B(E2): Weighted average of 0.0252 5 (1984Mu19), 0.030 5 (1972Pr04). (9/2)+ 13 . 2 p s@ 19 B(E2)=0.827 30 (138.9 level to 521.9 level) (1987Mc01). g–factor=+0.54 15 (transient field IMPAC measurement, 2000Be07 – unweighted average of 58Ni runs at 155 and 180 MeV. Other: +0.84 25 (transient field IMPAC measurement, 1986Ko20). T1/2: weighted average of 13.9 ps 22 (2000Be07) and 11 ps 4 (1986Ko20) (recoil–distance); 10.4 ps 6 from B(E2) was not included because J is uncertain. 557 . 4 (1/2)+ 559 . 3 5 / 2+ 34 ps# 8 1 . 08 ps# 16 1984Mu19 report B(E2)=0.046 15; however, assuming 557γ pure E2 to determine an upper limit, this B(E2) gives T1/2=6 2 ps, much smaller than the measured T1/2. B(E2)=0.012 6 (1984Mu19). Continued on next page (footnotes at end of table) 51 19 3 I r 7 7 116 – 3 8 19 3 I r 7 7 116 – 3 8 NUCLEAR DATA SHEETS Coulomb Excitation 2000Be07,1987Mc01,1984Mu19 (continued) 193Ir T1/2§ Jπ‡ E(level)† Levels (continued) 563 . 4 ( 9 / 2– ) 598 . 2 3 / 2– 621 . 0c 7 / 2+ 2 . 8 p s # +28–9 4 . 3 p s& 3 Comments B(E2)=0.106 5. B(E2): Weighted average of 0.110 6 (1984Mu19), 0.121 18 (1972Pr04), 0.090 11 (1971No01). g–factor=+0.33 4 (transient field IMPAC measurement, 2000Be07). Other:+0.15 11 (transient field IMPAC measurement, 1986Ko20). T1/2: weighted average of 4.4 ps 5 (2000Be07) and 6.1 ps 17 (1986Ko20) (recoil–distance method), and 4.2 ps 4 (from adopted B(E2)). 695 . 1 5 / 2+ B(E2)=0.0066 22 (1987Mc01). 712 . 2 3 / 2+ 740 . 4 5 / 2– 806 . 9 (5/2)+ 15 ps# 14 B(E2)=0.013 4 (1987Mc01). Jπ: (7/2+) assignment from 1987Mc01 not consistent with observation of 733.9γ (to 1/2+) in 838 . 9b 857 . 0a 193Ir(n,n'γ). ( 9 / 2+ ) ( 11 / 2 ) + 4 . 2 ps 4 B(E2)=0.50 3 (357.7 level to 857 level) (1987Mc01). g–factor=+0.49 13 (transient field IMPAC measurement, 2000Be07). 892 . 3c 1035 . 5a 1169 . 2c ( 9 / 2+ ) ( 13 / 2 ) + ( 11 / 2+ ) 1460 . 0a 1651a ( 17 / 2+ ) 2179a ( 19 / 2+ ) 2404?a ( 21 / 2+ ) ( 15 / 2 ) + † Rounded–off values from adopted levels. ‡ From 1987Mc01. The Jπ assignments for J≥7/2 are based on band structure and similarities to § Calculated from adopted B(E2)↑ using the adopted δ, α, and branching ratios for the relevant γ's, unless otherwise noted. 191Ir. # From adopted levels. @ From recoil–distance method, see comment. & From recoil–distance method and B(E2), see comment. a (A): Kπ=3/2+ band. b (B): Kπ=1/2+ band. c (C): Kπ=7/2+ band. γ( 1 9 3 I r ) Eγ† 73 E(level) Iγ‡ 73 . 0 Mult.§ M1 +E 2 δ§ α –0 . 558 5 6 . 24 Comments Eγ: from 1969Av03. Masked by x–rays (1972Pr04); observation confirmed from analysis of x–ray spectrum (1969Av03). ( 80 . 236# 7 ) x 1 0 5 . 9@ 2 1 0 7 . 0@ 2 80 . 2 180 . 1 M4 6.5 9 M1 +E 2 22000 +0 . 16 1 5 . 18 Iγ: subject to absorber and detector–efficiency corrections (priv. comm. from authors of 1987Mc01). 1 3 8 . 9@ 2 138 . 9 111 3 M1 +E 2 –0 . 362 6 2 . 34 δ: 2000Be07 ( particle–γ(θ) ). Others: –0.44 +2–4 (1970Av02); –0.75 25 (1958Mc02); 0.329 12 (β– decay). 154 516 . 4 3.6 5 ( M1 ) 1 . 84 1 6 4 . 2@ 2 521 . 9 10 . 0 7 ( M1 ) 1 . 54 Iγ: Iγ(164.2γ)/Iγ(382.9γ)=0.109 20 (1972Pr04). . 4@ 2 1 8 0 . 0@ 2 180 . 1 4.6 5 M1 +E 2 –0 . 48 2 1 . 06 Iγ: Iγ(180.0γ)/Iγ(107.0γ)=0.288 19 1 8 1 . 7@ 2 361 . 9 10 . 0 7 M1 +E 2 +0 . 149 11 1 . 15 Iγ: Iγ(181.7γ)/Iγ(361.8γ)=0.80 25 x168 (1972Pr04). (1972Pr04). Continued on next page (footnotes at end of table) 52 19 3 I r 7 7 116 – 3 9 19 3 I r 7 7 116 – 3 9 NUCLEAR DATA SHEETS Coulomb Excitation 2000Be07,1987Mc01,1984Mu19 (continued) γ( 1 9 3 I r ) ( c o n t i n u e d ) Eγ† 2 1 8 . 8@ 2 Iγ‡ E(level) 357 . 8 65 . 6 22 Mult.§ M1 +E 2 δ§ α –0 . 280 9 0 . 660 Comments Iγ: Iγ(218.8γ)/Iγ(357.7γ)=0.63 4 (1972Pr04). Iγ: 219γ is also placed from the 7/2– 299.4 keV level by 1987Mc01; however, all Iγ is shown here. Mult.,δ: 2000Be07 ( particle–γ(θ) ). Others: –0.34 4 ( γ(θ), 1984Mu19); –0.22 3 (1958Mc02); –0.42 +8–14 (1970Av02). ( 219 ) 299 . 4 E2 234 695 . 1 263 563 . 4 1.2 4 2 6 3 . 2@ 2 621 . 0 3.9 5 271 892 . 3 1.4 5 2 8 0 . 4@ 2 460 . 5 1.3 4 M1 +E 2 2 8 8 . 7@ 2 361 . 9 5.5 5 299 598 . 2 2.0 4 0 . 258 ( M1 ) 0 . 574 ( M1 ) 0 . 416 M1 +E 2 – 0 . 2 6& 1 1 0 . 398 16 Iγ: Iγ(263.2γ)/Iγ(482.1γ)=0.122 12 (1972Pr04), 0.17 (1984Mu19). 0 . 348 Iγ: Iγ(280.4γ)/Iγ(460.5γ)=0.194 18 ( E2 ) 0 . 107 Iγ: Iγ(288.7γ)/Iγ(361.8γ)=0.52 17 ( E2 ) 0 . 097 –0 . 049 12 (1972Pr04). (1972Pr04). 312a Iγ: Iγ(312γ)/(Iγ(548γ)+Iγ(647γ))=0.19 7 1169 . 2 (from 617–MeV 3 2 1 . 6@ 2 460 . 5 1.1 3 M1 +E 2 323 838 . 9 1.7 4 ( M1 ) 0 . 238 +0 . 234 10 0 . 232 136Xe data, 1987Mc01). Iγ: Iγ(321.6γ)/Iγ(460.5γ)=0.24 4 (1972Pr04). x328 . 4@ 2 335 857 . 0 8 . 6 18 [ M1 , E 2 ] 0 . 14 8 336 516 . 4 6 . 9 14 ( E2 ) 0 . 0687 . 7@ 2 3 5 7 . 7@ 2 3 6 1 . 8@ 2 361 . 9 370 892 . 3 1.5 4 377 516 . 4 12 . 1 8 3 7 7 . 4& 3 8 2 . 9@ 2 3 8 7 . 5@ 2 557 . 4 460 . 5 1.2 4 M1 +E 2 420 559 . 3 2.1 4 M1 x346 357 . 8 521 . 9 100 12 . 0 8 E2 M1 +E 2 Mult.: Q from γ(θ) (1958Mc02). 0 . 164 2 ( M1 ) ( M1 +E 2 ) 89 3 0 . 0576 –0 . 33 3 0 . 157 1.0 5 0 . 10 4 ( E2 ) Iγ(377.4γ)/Iγ(557.4γ)=0.059 (1984Mu19). 0 . 0477 –0 . 24 4 0 . 141 2 Iγ: Iγ(387.5γ)/Iγ(460.5γ)=0.16 3 (1972Pr04). 425a 0 . 118 Iγ: Iγ(425γ)/Iγ(603γ)=0.11 4 (from 1460 . 0 617–MeV 441 1 740 . 4 449 806 . 9 M1 +E 2 1.0 3 ( M1 ) 460 . 5 3.3 4 M1 +E 2 838 . 9 4.3 5 ( E2 ) 33 . 5 13 M1 +E 2 . 8@ 2 4 6 0 . 5@ 2 477 4 8 2 . 1@ 2 621 . 0 –0 . 37 4 136Xe data, 1987Mc01). 0 . 095 2 0 . 099 x450 –0 . 64 3 0 . 0741 13 0 . 0269 –0 . 93 11 0 . 056 4 δ: average of –0.89 13 (particle–γ(θ), 2000Be07) and –1.02 19 (γ(θ), 1984Mu19). 499 513 . 6 857 . 0 1035 . 5 514 . 9 695 . 1 532 . 1 712 . 2 33 . 5 13 [ E2 ] 0 . 0240 15 . 3 8 ( E2 ) 0 . 0225 ( M1 , E 2 ) M1 +E 2 534 892 . 3 2.3 4 548 1169 . 2 2.1 4 5 5 7 . 4& 557 . 4 559 559 . 3 4.4 6 603 1460 . 0 3.3 4 615a 1651 6 2 1 . 0@ 2 621 . 0 25 . 0 11 +0 . 48 +32–16 0 . 046 24 Eγ: from 1984Mu19. 0 . 055 9 Eγ: from 1984Mu19. ( E2 ) 0 . 0192 ( M1 ) 0 . 0563 ( M1 ) 0 . 0558 [ E2 ] 0 . 0144 Iγ: Iγ(621.0γ)/Iγ(482.1γ)=0.76 6 (1972Pr04), 0.79 (1984Mu19). 647 1169 . 2 654a 1169 . 2 3.0 5 Iγ: Iγ(654γ)/(Iγ(548γ)+Iγ(647γ))=0.15 5 (from 617–MeV Continued on next page (footnotes at end of table) 53 136Xe data, 1987Mc01). 19 3 I r 7 7 116 – 4 0 19 3 I r 7 7 116 – 4 0 NUCLEAR DATA SHEETS Coulomb Excitation 2000Be07,1987Mc01,1984Mu19 (continued) γ(193Ir) (continued) Eγ† 668 806 . 9 695 695 . 1 719a 753 Iγ‡ E(level) 2.0 6 2179 892 . 3 1.3 4 Possible second placement of γ in 2404? 807 Comments 136Xe data of 1987Mc01. 806 . 9 812a Iγ: Iγ(812γ)/(Iγ(548γ)+Iγ(647γ))=0.20 8 (from 617–MeV 1169 . 2 † From 1987Mc01, unless otherwise noted. ‡ Arbitrary units for E(40Ar)=160 MeV (1987Mc01). 136Xe data, 1987Mc01). § From adopted gammas, unless otherwise noted. # From adopted gammas. @ From 1972Pr04. & From 1984Mu19. a γ seen only with x 136Xe E=617 MeV reaction (1987Mc01). γ ray not placed in level scheme. Level Scheme 2404 (5/2)+ 5/2– 3/2+ 5/2+ 7/2+ 3/2– (9/2–) 5/2+ (1/2)+ (9/2)+ (7/2)+ 3/2+ 5/2+ 7/2+ 7/2– 3/2+ 5/2+ 11/2– 1/2+ 1035.5 892.3 51 2.1 3.6 75 (E 2) 533 1 .3 4 1 37 2 5.3 270 1.3 49 1 1.5 .4 9 33 [E 47 5 [M2] 3 327 (E 1,E23.5 80 3 (M2) 4 ] 8 1) .3 .6 667 1.7 44 8 2 . 9 0 44 (M 53 1 M1 1) 1.0 69 2.1 M +E2 1+ 515 E 4 2 23 .9 ( 4 M 62 (M 1,E 1) 2) 481.0 [ 1.2 E2 262.1 M ] 29 3.2 M1+E25. 0 26 9 (E 1+E2 55 3 (M 2) 2 2 33.5 9 .0 3.9 42 (M 1) 55 0 M11) 4 7 37 .4 ( 2. .4 38 7.4 (M1) 1 162.9 ( M1+ 37 4.2 (E2) E2) 337 (MM1) 89 10 156 (E 1) . 46 4 (M2) 612.1 0 380.5 M 1) .9 3 7 32 .5 M1+E .6 281.6 M1+E2 0.4 1 2 3.3 36 M1+E2 1. 281.8 M +E 1 2 8 2 .1 . 18 7 ( 1+E 1.3 E2 2 35 1.7 M ) 1 7 2 . 5 21 7 E 1+E .5 .0 8 .8 2 2 21 M1 10 10 9 18 E2 +E 0 .0 2 100.0 M 65 7 . 1 0 13 .6 +E M 8 .9 1+ 2 80 M1 E2 4.6 . 2 3 73 6 +E 6 M1 M4 .5 2 +E 11 1 2 (9/2+) 1169.2 60 423 3 5 .3 (9/2+) (11/2)+ 1460.0 81 652 64 4 547 3 . 318 (E 0 2 2) (11/2+) (13/2)+ 1651 5 (17/2+) (15/2)+ 2179 61 (19/2+) 71 9 (21/2+) 75 3 Intensities: relative Iγ for E(40Ar)=160 MeV 857.0 806.9 740.4 712.2 19 3 Ir 7 7 116 54 15 ps 695.1 621.0 598.2 4.3 ps 2.8 ps 563.4 559.3 557.4 521.9 1.08 ps 34 ps 13.2 ps 516.4 460.5 361.9 357.8 13.7 ps 25 ps 18.7 ps 299.4 180.1 138.9 80.2 73.0 0.0 3/2+ 4.2 ps 838.9 27 ps 69.7 ps 10.53 d 4.1 ns 19 3 I r 7 7 116 – 4 1 19 3 I r 7 7 116 – 4 1 NUCLEAR DATA SHEETS 194Pt(d,3He) E(d)=50 MeV, θ=15°; enriched 194Pt 1981Iw01 targets; measured E(level) (mag spect, resolution≈30 keV), differential cross sections, angular distributions; compared results with predictions of supersymmetry model. 193Ir Jπ† E(level) 0.0 L‡ Levels C2S§ 3 / 2+ 2 73 1 / 2+ 0 0 . 43 139 5 / 2+ 2 0 . 09 180 3 / 2+ 2 0 . 09 299 7 / 2– 3 0 . 03 362 5 / 2+ 2 0 . 25 460 3 / 2+ 2 0 . 87 Comments 1 . 17 Includes minor component from 80 level (Jπ=11/2–). Includes minor component from 358 level (Jπ=7/2+). Includes minor component from 557 level (Jπ=(1/2)+). 559 5 / 2+ 2 1 . 15 621 7 / 2+ 4 0 . 24 695 5 / 2+ 2 0 . 31# 2 0 . 30# 695 and 712 levels not resolved. L: for 695 and 712 levels combined. C2S=0.52 if entire cross section is assumed to be for 695 level. 712 3 / 2+ 695 and 712 levels not resolved. L: for 695 and 712 levels combined. C2S=0.73 if entire cross section is assumed to be for 712 level. 849 5 / 2+ 2 0 . 56 849 and 874 levels not resolved. 874 3 / 2+ , 5 / 2+ 2 0 . 56 See comments with 849 level. 964 1 / 2+ 0 0 . 41 L,C2S: for 849 and 874 levels combined. † From adopted levels. ‡ From DWBA analysis of angular distributions. § From DWBA analysis, with C2S=(2J+1) × (dσ/dΩ)exp/(N (dσ/dΩ)(DWBA)) where N=2.95; uncertainties are large, except for the ±5% attributed to relative values for states corresponding to the same proton single–particle orbital. # If σ(695)/σ(712) is assumed to be same as in (t,α). 194Pt(pol t,α), (t,α) 1983Ci01,1978Ya03 1983Ci01: E(t)=17 MeV (typical polarization of ≈0.77), θ=10° to 45° (5° intervals); measured E(α) (Q3D mag spect, FWHM=18 keV), differential cross sections, angular distributions, analyzing powers. Compared results with predictions of the supersymmetry scheme in Ir–Pt nuclei. 1981Ci02: preliminary report by 1983Ci01. 1978Ya03: E(t)=15 MeV; measured E(α), σ; DWBA analysis. 193Ir E(level)† 0.0 7 3 . 0 #@ 8 0 . 2 #@ Jπ‡ Slj§ 3 / 2+ 1.6 1 / 2+b 0 . 5d 3 4 . 0d 137 . 5 30 11 / 2– 5 / 2+b 178 3 3 / 2+ Levels Comments Ay(30°)=–0.69 3. 0 . 12 Ay(30°)=–0.02 11 (1983Ci01). 0 . 11 Ay(30°)=–0.26 14 (1983Ci01). 298 3 7 / 2–b 3 5 7 . 8 #& 3 6 1 . 9 #& 7 / 2+b 459 3 3 / 2+ 1.1 Ay(30°)=–0.52 4 (1983Ci01). 558 3 5 / 2+ 1.8 Possibly includes unresolved 557.3 level. Ay(30°)=+0.31 3. 5 / 2+ ≈0 . 16 Jπ: J=L+1/2; Ay=+0.39 9 (1983Ci01). 0 . 22d 0 . 27d 621 3 7 / 2+b 0 . 45 Jπ: J=L–1/2; Ay(30°)=–0.61 9 (1983Ci01). 694 3 5 / 2+ 0 . 55 Ay(30°)=+0.30 6 (1983Ci01). 712 3 3 / 2+ 0 . 33 Ay(30°)=–0.88 5 (1983Ci01). 5 / 2+ 0 . 91 Ay(30°)=+0.35 4 (1983Ci01). Ay(30°)=+0.12 14 (1983Ci01). 830 3 849 3 Ay(30°)=–0.14 14 (1983Ci01). 873 3 970 3 975a 1032 10 ( 5 / 2+ ) c 11 / 2– 6.9 Ay(30°)=+0.31 3 (1983Ci01). Ay(30°)=+0.21 17 (1983Ci01). Continued on next page (footnotes at end of table) 55 19 3 I r 7 7 116 – 4 2 194Pt(pol t,α), (t,α) 193Ir E(level)† 19 3 I r 7 7 116 – 4 2 NUCLEAR DATA SHEETS Jπ‡ 1983Ci01,1978Ya03 (continued) Levels (continued) Slj§ Comments 1063 10 Ay(30°)≤–0.32 (1983Ci01). 1080 5 Ay(30°)=+0.18 7 (1983Ci01). 1146 10 Complex peak; probably includes 1131.2, 1145.7, and 1163 levels seen in 193Os decay (1978Ya03). 1202 10 1250 10 1285 10 1344 10 1398 10 1504 5 ( 3 / 2+ ) 0 . 22e Ay(30°)=–0.16 9 (1983Ci01). 1552 10 1583 10 1609 5 1639 5 1690 5 1744 5 1826 5 Jπ: J=L+1/2; Ay(30°)=+0.06 4 (1983Ci01). 1866 5 Ay(30°)=+0.18 7 (1983Ci01). Ay(30°)=+0.25 6 (1983Ci01). 1898 5 1935 5 ( 5 / 2+ ) 0 . 35e Ay(30°)=+0.13 7 (1983Ci01). † From 1978Ya03, unless otherwise noted. Uncertainties are 3 keV for E(level)<1 MeV (5 keV for E(level)>1 MeV) for strongly ‡ From 1983Ci01, based on angular distribution and analyzing power, unless otherwise noted. populated levels (estimated by evaluator to be those with dσ/dΩ>10). § From DWBA analysis, with Slj=(dσ/dΩ)exp/(N (dσ/dΩ)(DWBA)) where N=23 (1983Ci01); typical uncertainties are less than 20%. # Rounded–off value from adopted levels. @ E(level)=79 for unresolved 73.0 and 80.2 levels. Ay(30°)=+0.34 3 for the doublet. & E(level)=362 for unresolved 357.7 and 361.9 levels. Ay(30°)=+0.07 7 for the doublet. a From 1983Ci01. b From adopted levels. c From 1978Ya03. d Strength extracted by determining individual values consistent with the analyzing powers and cross sections for complex peak. e Strength obtained assuming the Jπ value indicated. 56 19 3 P t 115 – 1 78 19 3 P t 115 – 1 78 NUCLEAR DATA SHEETS Adopted Levels, Gammas Q(β–)=–1083 11; S(n)=6255.5 19; S(p)=6932.8 4; Q(α)=2083.5 12 2003Au03. Effect of chemical composition of source on half–life: 1977Do07, theory; 1968Ma51 observed 4 2 % variation from Au to AuCl3 matrix in 1.64 keV level half–life (effect surprisingly large according 1972Ra38). Other reactions: 196Pt(n,xnypγ) (2001Ta31): E(n)=1–250 MeV. White spectrum spallation neutron source; prompt γ–rays measured with Compton–suppressed HPGe detectors. 194Pt(12C,13C) (2001Sh20): E=55–73 MeV. Measured fusion and transfer cross–sections. Calculations: Level energies, nuclear moments and deformation parameters: 1992Ri11 (particle–triaxial rotor model), 2001Sa44 (axial–rotor + 1 quasiparticle). 193Pt Levels Cross Reference (XREF) Flags 193Pt IT Decay (4.33 d) E 192Pt(n,γ) 193Au ε Decay (17.65 h) F 194Pt(p,d), C 193Au ε Decay (3.9 s) G 194Pt(3He,α) D 192Os(α,3nγ) H 195Pt(p,t) Jπ‡ E(level)† 0.0 A B 1 / 2– E=res (d,t) Comments T1/2 XREF ABCDEF H 50 y# 6 µ=+0.603 8; %ε=100. Jπ: L=0 in 195Pt(p,t). T1/2: weighted average of 49 y 6 (1971Ra18) and 64 y 20 (1971Ho17) other: 1953Sw20. µ: Resonance ionization mass spectroscopy (1992Hi07). Isotope shift: ∆<r2>=–0.047 7 fm2 (relative to 194Pt) (1992Hi07). √ <r2>=5.420 3 fm (2004An14). 1 . 642 2 3 / 2– ABCD F H 9 . 7 ns Jπ: M1+E2 γ from 5/2– 14.3 level, M1 γ to 1/2–. 3 T1/2: from 14 . 276 8 5 / 2– ABCD FGH 2 . 52 ns 5 T1/2: from 114 . 158 8 3 / 2– B F h 121 . 29 3 1 4 9 . 7 8@ 4 1 / 2– , 3 / 2– , 5 / 2– B F h 13 / 2+ A CD FGH 193Au ε decay (17.65 h). Jπ: M1+E2 γ from 3/2–; L=3,4 in 193Au 194Pt(3He,α). ε decay (17.65 h) (1968Ma51). Jπ: M1+E2 γ to 1/2–. Jπ: M1 γ to 3/2– 1.64 level. 4 . 33 d 3 %IT=100; µ=(–)0.753 15 (1989Ra17,1986Sc04). µ: x–ray detection of nuclear magnetic resonance (1985Sc15,1986Sc04); negative sign suggested by systematics. Jπ: M4 γ to 5/2– 14.3 level. T1/2: from IT decay (1949Wi08). 187 . 81 2 1 9 9 . 0& 2 3 / 2– 232 . 16 2 (5/2)– B ( 11 / 2+ ) EF H B Jπ: primary E1 γ from 1/2+ in F H 269 . 83 2 3 / 2– B Jπ: M1+E2 γ to 5/2– 14.3 level; L=1 in (p,d). F Jπ: L=(4,5) in Jπ: L=5,6 in G 425 3 5 / 2– , 7 / 2– 439 . 05 3 (3/2)– 459 3 ( 5 / 2– , 7 / 2– ) 4 9 1 . 0@ 2 ( 17 / 2+ ) 491 . 24 2 (5/2)– 5 1 9 . 6& 1 ( 15 / 2+ ) 522 . 53 8 ( 3 / 2– , 5 / 2– ) 530 3 1 / 2– , 3 / 2– 194Pt(p,d), (d,t). F H Jπ: L=(4,5) in XREF: g(420). F Jπ: M1 γ to 1/2– g.s., (M1) γ to 5/2– 14.3 level. F H XREF: H(462). g XREF: g(484). F gH XREF: g(484). 194Pt(p,d), 194Pt(p,d), Jπ: L=(3) in D 194Pt(p,d), 194Pt(3He,α). F gH Jπ: L=3 in B 195Pt(p,t). 195Pt(p,t). F H 331 10 340 3 E=res; L=2 in Jπ: M1 γ's to 3/2– 114.2 and 187.8 levels; L=(3) in (d,t); L=2 from 308 3 192Pt(n,γ) Jπ: γ to 13/2+ level; band structure. D (d,t). (d,t). 194Pt(p,d), (d,t). Jπ: E2 γ to 13/2+ level; band structure. B Jπ: M1+E2 γ to 3/2– 114.2 levels; L=(3) in 194Pt(p,d), (d,t). Jπ: (E2) γ to (11/2+) level, (M1+E2) γ to 13/2+ level; band D structure. Jπ: (M1) γ to (5/2)– level; (E2) γ to g.s. B EF H XREF: E(544). Jπ: L=1 in 194Pt(p,d), (d,t). Possibly same as the 522.5 level seen in 544 3 ( 5 / 2– , 7 / 2– ) F L=(3) in 194Pt(p,d), 563 3 1 / 2– , 3 / 2– F Jπ: L=1 in 194Pt(p,d), (d,t). 599 3 5 / 2– , 7 / 2– FGH Jπ: L=3 in 194Pt(p,d), (d,t) and 603 . 3 1 ( 15 / 2+ ) D Jπ: (M1+E2) γ to 13/2+ level. Continued on next page (footnotes at end of table) 57 193Au (d,t). 194Pt(3He,α). ε decay (17.65 h). 19 3 P t 115 – 2 78 19 3 P t 115 – 2 78 NUCLEAR DATA SHEETS Adopted Levels, Gammas (continued) 193Pt Jπ‡ E(level)† Comments T1/2 XREF 622 4 Levels (continued) H 630 5 5 / 2– , 7 / 2– Jπ: L=3 in F 642 4 194Pt(p,d), (d,t). H 665 3 11 / 2+ , 13 / 2+ FG Jπ: L=6 in 194Pd(p,d), (d,t). 692 3 ( 11 / 2+ , 13 / 2+ ) F Jπ: L=(6) in 700 1 / 2– , 3 / 2– 701 5 ( 5 / 2– , 7 / 2– ) F h 718 4 ( 1 / 2+ ) 728 5 5 / 2– , 7 / 2– 755 5 828 4 E 194Pt(p,d), (d,t). Jπ: primary E1 γ from 1/2+ in h Jπ: L=(3) in 194Pt(p,d), (d,t). F Jπ: L=(0) in 194Pt(p,d), (d,t). FGH Jπ: L=3 in 194Pt(p,d), (d,t). 5 / 2– , 7 / 2– F H Jπ: L=3 in 194Pt(p,d), (d,t). ( 5 / 2– , 7 / 2– ) FGH XREF: F(830)G(819). 846 5 3 / 2– F H Jπ: L=1 in 907 . 4 2 ( 17 / 2+ ) § 923 5 3 / 2– Jπ: L=(3) in 969 10 9 8 0 . 5& 2 194Pt(p,d), 194Pt(p,d), 192Pt(n,γ) E=res. (d,t). (d,t); L=2 in 195Pt(p,t). Jπ: (M1+E2) γ's to (15/2+) levels, γ to (17/2+) level. D Jπ: L=1 in F H 194Pt(p,d), (d,t); L=2 in 195Pt(p,t). F ( 19 / 2+ ) Jπ: (E2) γ to (15/2+) level; band structure. D 984 4 H 1 0 0 3 . 4@ 4 ( 21 / 2+ ) Jπ: cascading γ to (17/2+) level; band structure. D 1014 5 Jπ: L=(4,5) in F 1021 10 Jπ: L=5,6 in G 1042 5 11 / 2+ , 13 / 2+ Jπ: L=6 in F 1053 8 194Pt(p,d), (d,t). 194Pt(3He,α). 194Pt(p,d), (d,t). H 1069 10 ( 5 / 2– , 7 / 2– ) F Jπ: L=(3) in 194Pt(p,d), (d,t). 1099 5 ( 5 / 2– , 7 / 2– ) FGH Jπ: L=(3) in 194Pt(p,d), (d,t). 1103 . 5 4 (+) D 1130 10 1159 . 9 2 ( 5 / 2– , 7 / 2– ) ( 19 / 2+ ) § D 1169 10 ( 1 / 2– , 3 / 2– ) F Jπ: L=(1) in 1182 8 (3/2)– F h E(level): from Jπ: (M1+E2) γ to (15/2+) level. Jπ: L=(3) in F 194Pt(p,d), (d,t). Jπ: (E2) γ's to (15/2+) levels, (M1+E2) γ to (17/2+) level. Jπ: L=2 in 194Pt(p,d), (d,t). 195Pt(p,t). 195Pt(p,t); the level at 1188 seen in 194Pt(p,d) is a doublet with L=1 for at least one member of doublet. 1188 5 F h 1219 10 Member of unresolved doublet. Jπ: L=3,4 in Gh 194Pt(3He,α). 1222 5 1 / 2– , 3 / 2– F h Jπ: unresolved doublet; L=1 for one member of doublet in 1245 5 ( 5 / 2– , 7 / 2– ) F H Jπ: L=(3) in F H XREF: H(1265). 1320 5 5 / 2– , 7 / 2– F Jπ: unresolved doublet; L=3 for one member of doublet in 194Pt(p,d). 1320 5 1 / 2– , 3 / 2– F Jπ: unresolved doublet; L=1 for one member of doublet in 194Pt(p,d). 1320 . 9a 2 ( 21 / 2– ) 1259 10 194Pt(p,d), Jπ: γ's to (19/2+) levels; band structure. D 1333 8 H 1359 4 11 / 2+ , 13 / 2+ FG XREF: G(1337). Jπ: L=6 in 1364 8 194Pt(p,d) and 194Pt(3He,α). H 1425 8 H 1442 10 1454 . 8a 3 G ( 25 / 2– ) D 3 . 2 ns 3 Jπ: (E2) γ to (21/2–) level; band structure. T1/2: from 1457 8 1 / 2– 1510 . 4 3 H Jπ: L=0 in 192Os(α,3nγ). 195Pt(p,t). Jπ: γ to (21/2–) level. D 1534 8 1 / 2– H Jπ: L=0 in 195Pt(p,t). 1557 8 1 / 2– H Jπ: L=0 in 195Pt(p,t). 1561 10 Jπ: L=3,4 in G 1585 8 1 / 2– , 3 / 2– E H 194Pt(3He,α). XREF: E(1591). Jπ: primary E1 γ from 1/2+ in 1610 8 1 6 3 1 . 8@ 4 ( 25 / 2+ ) ( 27 / 2– ) 1744 10 5 / 2– , 7 / 2– 1776 . 9 4 E=res. Jπ: (E2) γ to (21/2+) level; band structure. D G Jπ: L=4,5 in 194Pt(3He,α). Jπ: (M1) γ to (25/2–) level; band structure. D G Jπ: L=3 in 194Pt(p,d). D 1913 10 1986 . 7? 192Pt(n,γ) H 1668 10 1689 . 9a 3 G 4 D Continued on next page (footnotes at end of table) 58 194Pt(p,d). (d,t). 19 3 P t 115 – 3 78 19 3 P t 115 – 3 78 NUCLEAR DATA SHEETS Adopted Levels, Gammas (continued) 193Pt Jπ‡ E(level)† Levels (continued) Comments XREF 1992 . 2a 3 ( 29 / 2– ) D Jπ: (E2) γ to (25/2–), γ to (27/2–); band structure. 2 3 3 5 . 2@ 5 ( 29 / 2+ ) D Jπ: (E2) γ to (25/2+) level; band structure. 2337 10 2 6 9 6 . 2@ 6 3 1 2 9 . 2@ 6 ( 33 / 2+ ) D Jπ: (E2) γ to (29/2+) level: band structure. ( 37 / 2+ ) D Jπ: γ to (33/2+) level; band structure. † G From least–squares fit to Eγ for levels seen in 193Au ε decays, 193Pt 193Os(α,3nγ) IT decay or reaction. From 194Pt(p,d), (d,t) for levels seen in particle reaction, unless otherwise noted, or where XREF clearly indicates other source. ‡ Band assignments and descriptions are from 1977Sa01. § Monotonically–increasing Jπ sequence is suggested by cascades of coincident E2 and M1+E2 γ's in 192Os(α,3nγ), decaying to the 13/2+ 149.8 level. # Both measurements are specific activity measurements and are based on T (εL) deduced from I(L x ray). T (εL)=73 y 9 1/2 1/2 (1971Ra18) and 94 y 30 (1971Ho17), remeasurement by authors of 1969Ho14). The evaluator has calculated T1/2 using εL/ε=0.6761, the value for adopted Q(ε)=56.6 keV. –1 @ (A): I13/2 favored decoupled band, configuration=(ν i 13/2) . –1 & (B): (J–1) unfavored, decoupled band from configuration=(ν i 13/2) . a (C): 21/2– semidecoupled band; Position and spacing are similar to corresponding band structure in other odd–mass Pt and Hg nuclei. These bands are related to the 5– bands in neighboring even–mass nuclei. γ(193Pt) All γ data are from 193Au ε decay (17.65 h), unless otherwise noted. 1990Pi08: measured relative K x ray intensities. E(level) Iγ† Eγ α§ δ Mult. 1 . 642 1 . 642 2 100 M1 14 . 276 12 . 634 8 100 M1 +E 2 0 . 015 +3–4 M1 +E 2 0 . 87 3 114 . 158 99 . 88 4 6 . 3 11 2200 151 6 112 . 515 10 100 7 M1 +E 2 0 . 36 2 4 . 72 36 7 M1 +E 2 0 . 48 4 4 . 39 5 119 . 64 3 100 M1 149 . 78 135 . 50 3 100 M4 187 . 81 73 . 62 3 B(M1)(W.u.)=0.233 10. α from BRICC. B(M1)(W.u.)=0.0301 17; B(E2)(W.u.)=16 7. 6 . 11 114 . 155 13 121 . 29 Comments 4 . 14 890 B(M4)(W.u.)=1.09 4. Eγ,Mult.: from 173 . 52 5 199 . 0 232 . 16 269 . 83 1.1 2 29 186 . 17 3 100 6 187 . 83 4 49 . 2‡ 9 4 44 . 33 3 11 . 5 10 117 . 99 2 100 16 230 . 50 7 96 10 232 . 18 6 96 10 37 . 65 3 155 . 68 4 255 . 57 4 ( M1 ) M1 +E 2 0 . 355 21 1 . 34 M1 +E 2 0 . 32 4 1 . 11 2 ( M1 +E 2 ) M1 4 . 31 0 . 226 E2 5 . 2 13 M1 100 9 13 . 4 ( E2 ) M1 +E 2 M1 +E 2 IT decay. 0.8 4 M1 0 . 33 4 193Pt 2 . 99 0 . 221 0 . 042 +12–13 22 . 4 6 1 . 95 0 . 41 7 0 . 443 15 Measured prompt production in 196Pt reaction with 1–250 MeV spallation neutrons (2001Ta31). 439 . 05 268 . 22 5 58 5 M1 +E 2 269 . 84 5 13 3 E2 0 . 137 ( M1 ) 0 . 879 206 . 85 6 251 . 4 5 14 6 317 . 73 7 12 3 324 . 89 5 18 3 424 . 76 12 491 . 0 491 . 24 4 . 7 11 7 . 9 15 1.3 3 0 . 253 23 ( M1 ) 0 . 271 M1 0 . 255 ( M1 ) 0 . 124 437 . 41 8 26 5 M1 0 . 115 439 . 04 8 341 . 2‡ 2 100 8 M1 0 . 114 100 E2 ‡ 0 . 0685 M1 8 . 22 52 . 18 2 2.3 4 221 . 40 6 11 3 M1 +E 2 259 . 05 6 29 13 M1 303 . 41 7 39 11 377 . 10 3 73 10 1 . 7 +12–5 ( M1 +E 2 ) M1 +E 2 0.4 3 0 . 472 0 . 20 11 1.2 3 0 . 101 17 Continued on next page (footnotes at end of table) 59 19 3 P t 115 – 4 78 19 3 P t 115 – 4 78 NUCLEAR DATA SHEETS Adopted Levels, Gammas (continued) γ( 1 9 3 P t ) ( c o n t i n u e d ) E(level) 491 . 24 522 . 53 603 . 3 67 13 ( E2 ) 0 . 0280 33 7 ( M1 ) 0 . 0854 491 . 28 12 100 17 100‡ 7 27 . 7‡ 19 ( E2 ) ‡ ( M1 +E 2 ) ‡ 0 . 12 6 290 . 33 10 67 27 ( M1 ) 0 . 346 334 . 7 3 49 29 408 . 4 2 100 20 ( M1 , E 2 ) 0 . 09 5 42 11 ( M1 +E 2 ) 0 . 05 3 520 . 97 25 60 13 ( E2 ) 0 . 0226 56 11 ( E2 ) 0 . 0225 ( M1 +E 2 ) ‡ ( M1 +E 2 ) ‡ 0 . 20 11 ( M1 +E 2 ) ‡ 0 . 10 6 ( E2 ) ‡ ( E2 ) ‡ 0 . 0305 ( M1 +E 2 ) ‡ 0 . 06 3 ( M1 +E 2 ) ‡ ( E2 ) ‡ 0 . 0193 ( E2 ) ‡ ( M1 +E 2 ) ‡ 0 . 025 13 ( E2 ) ‡ 1 . 56 ( E2 ) ‡ ( M1 ) ‡ ( E2 ) ‡ 0 . 616 387 . 9‡ 2 489 . 5‡ 1 512 . 4‡ 3 500 . 2‡ 3 556 . 5‡ 3 1003 . 4 1103 . 5 1159 . 9 640 . 2‡ 4 669 . 1‡ 3 161 . 0‡ 2 340 . 3‡ 2 1320 . 9 100 74‡ 10 84‡ 12 100‡ 14 11 . 6‡ 14 100‡ 7 69‡ 6 100 66‡ 9 29‡ 6 100‡ 15 133 . 9‡ 2 100 100 100 100 1776 . 9 266 . 5‡ 3 100 1986 . 7? 296 . 8‡# 3 302 . 3‡ 2 100 100‡ 12 100 2696 . 2 537 . 4‡ 2 703 . 4‡ 3 361 . 0‡ 3 3129 . 2 433 . 0‡ 3 100 2335 . 2 0 . 05 3 0 . 0140 12 . 8‡ 12 189 . 5‡ 2 628 . 4‡ 2 235 . 2‡ 1 1992 . 2 0 . 0517 100‡ 10 1454 . 8 1631 . 8 0 . 07 4 100 1510 . 4 1689 . 9 0 . 0819 522 . 66 25 453 . 5‡ 1 304 . 0‡ 2 416 . 5‡ 2 377 . 3‡ 2 461 . 0‡ 1 980 . 5 Comments 489 . 61 12 508 . 26 20 907 . 4 α§ Mult. 476 . 98 9 320 . 6‡ 1 369 . 8‡ 1 519 . 6 Iγ† Eγ B(E2)(W.u.)=24.2 24. 0 . 0146 0 . 143 16‡ 3 ( E2 ) ‡ ( E2 ) ‡ ( E2 ) ‡ 100 0 . 0210 0 . 0114 0 . 0585 † Relative photon branching from level. ‡ From § Quoted uncertainty from δ, not including the 3% relative uncertainty assumed for theoretical α. 192Os(α,3nγ). # Placement of transition in the level scheme is uncertain. (A) i13/2 favored decoupled (B) (J–1) unfavored, decoupled band, (ν i13/2)–1. band from (ν i13/2)–1. (37/2+) 3129.2 (33/2+) 2696.2 (29/2+) 2335.2 (25/2+) 1631.8 980.5 (19/2+) (21/2+) 1003.4 (17/2+) 491.0 13/2+ 149.78 (15/2+) (29/2–) 1992.2 (27/2–) 1689.9 (25/2–) 1454.8 (21/2–) 1320.9 (19/2+) (B)(19/2+) 519.6 (15/2+) 5 / 2– (C) 21/2– semidecoupled band; (A)(17/2+) 199.0 (11/2+) (A)13/2+ 19 3 Pt 115 78 60 19 3 P t 115 – 5 78 193Pt Parent 19 3 P t 115 – 5 78 NUCLEAR DATA SHEETS 193Pt: IT Decay (4.33 d) 1968Sv01 E=149.78 3; Jπ=13/2+; T1/2=4.33 d 3; %IT decay=100. 1968Sv01: sources from Pt(p,xn), E(p)=35 MeV, chem; measured E(ce), Ice (mag spect). Others: 1953Sw20, 1954Co29, 1954Gi04, 1955Br41, 1957Ew34, 1960Ma28, 1961Kr02. 193Pt E(level) T1/2‡ Jπ† Comments 0.0 1 / 2– 1 . 642 2 3 / 2– 9 . 7 ns 14 . 276 8 5 / 2– 2 . 52 ns 13 / 2+ 4 . 33 d 3 149 . 78 3 Levels 50 y 6 3 5 %IT=100. T1/2: from 1949Wi08; however, they saw also a 170γ and an 1.5 MeV γ, obviously from some impurity. Other values: 4.5 d 2 (1953Sw20), 3.35 d 10 (1954Co29), 3.5 d 4 (1955Br41), 4.4 d 2 (1957Ew34). † From adopted levels. ‡ From adopted levels, unless otherwise noted. γ(193Pt) I(γ+ce) normalization: From I(γ+ce)(135.50γ)=100%. Eγ† E(level) 1 . 642§ 2 1 . 642 12 . 634§ 8 14 . 276 I(γ+ce)‡# α δ Mult. M1 § 12000 Comments α: from 1991Ba63; other calculations: see 1978Ro21, 100 1972Al47, 1972Ra38. 135 . 50 3 149 . 78 M1 +E 2 § 0 . 015 § +3–4 M4 151 6 100 890 100 Eγ: from 1968Sv01. Mult.: α(K)exp=135 11 (measured I(x ray)/Iγ (1976Sa22)); K/L=0.198 15, L1/L2=4.6 4, L1/L3=0.46 3 (1968Sv01); theory: α(K)(M4)=137, K/L=0.26, L1/L2=4.40, L1/L3=0.466. Others: K:L1:L2:L3=58:48:15:100 (1962Ha24); K:L1:L3:(M+N)=10:14:29:15 (1957Ew34). Competing crossover transition not seen (1957Ew34). † Deduced from E(ce) measurements. Calibration: KL1L1 and KL2L3 Auger lines in Pt, E(ce(K)) 316γ in ThC a line (E(ce)=24.509) and ThB f line (E(ce)=148.108). ‡ From intensity balance in level scheme. § From 193Au ε decay (17.65 h). # For absolute intensity per 100 decays, multiply by 1.0. Decay Scheme Intensities: I(γ+ce) per 100 parent decays 13/2+ 5/2– 3/2– 1/2– 13 5.5 12 0 M4 1.6 .634 42 M 10 1 0 M1 +E 2 10 0 100 %IT=100 19 3 Pt 78 115 61 149.78 4.33 d 14.276 2.52 ns 9.7 ns 50 y 1.642 0.0 192Pt (E(ce(K))=238.087 10), 19 3 P t 115 – 6 78 19 3 P t 115 – 6 78 NUCLEAR DATA SHEETS 193Au Parent 193Au: ε Decay (17.65 h) 1968Sv01,1970Pl02 E=0.0; Jπ=3/2+; T1/2=17.65 h 15; Q(g.s.)=1083 11; %ε+%β+ decay=100. 1970Pl02: sources from spallation of Pb by 680–MeV protons, chem; measured Eγ, Iγ (Ge(Li)). 1968Sv01: sources from Pt(p,xn), E(p)=35 MeV; measured E(ce), Ice (mag spect). (preliminary report 1967Jo14). 1957Ew34: measured γγ, ceγ. Others: 1954Gi04, 1962Ma18, 1976Di15, 1976ViZM. 193Pt Jπ† E(level) 0.0 1 / 2– 1 . 642 2 3 / 2– Levels Comments T1/2 50 y 6 9 . 7 ns 3 T1/2: (ce)(ce)(t) with metallic gold source; T1/2 is 4% longer when measured with a gold chloride source (1968Ma51). See 1977Do07 for a discussion of this and related phenomena. 14 . 276 8 5 / 2– 2 . 52 ns 114 . 158 8 3 / 2– 121 . 29 3 1 / 2– , 3 / 2– , 5 / 2– 187 . 81 2 3 / 2– 232 . 16 2 (5/2)– 269 . 83 2 (3/2)– 439 . 05 3 (3/2)– 491 . 24 2 (5/2)– 522 . 53 7 ( 3 / 2– , 5 / 2– ) † 5 T1/2: (ce)(ce)(t) (1968Ma51). Other value: 2.2 ns 8 (1957Ew34). From adopted levels. β + ,ε D a t a 1976Di15 report two β+ groups with E(max.)=320 30 and 150 20. The higher group gives Q(ε)=1340 30, inconsistent with the adjusted Q(ε)=1083 11 from 2003Au03. However, since the observed groups are inner groups in the FK plot in a combined β+ spectrum from 193Hg + 193Au decay, it is possible that the energy and/or the nuclear assignment of these groups could be in error. No γ± seen, Iβ+<0.08% (1957Ew34). Eε E(level) Iε§ I(ε+β+)†§ Log ft Eε E(level) ( 560 11 ) 522 . 53 0 . 51 10 7 . 88 9 0 . 51 10 ( 962 11 ) 121 . 29 ( 592 11 ) 491 . 24 2.7 4 7 . 21 7 2.7 4 ( 969 11 ) 114 . 158 ( 644 11 ) 439 . 05 3.7 5 7 . 16 6 3.7 5 ( 1069 11 ) 14 . 276 ( 813 11 ) 269 . 83 15 . 7 20 6 . 76 6 15 . 7 20 ( 1081 11 ) 1 . 642 3.8 7 ( 1083 11 ) 0.0 ( 851 11 ) 232 . 16 ( 895 11 ) 187 . 81 3.8 7 26 4 7 . 42 8 6 . 63 7 Iε§ 0.6 3 Log ft 8 . 34 22 I(ε+β+)†§ 0.6 3 12 . 4 18 7 . 03 7 12 . 4 18 20 4 6 . 91 9 20 4 ‡ 15 6 7 . 05 18 15‡ 6 26 4 † From intensity imbalance at each level. ‡ Iε given for 0.0 level is a combined value for the 0.0 and 1.6 levels. § For intensity per 100 decays, multiply by 1.0. γ(193Pt) All ce data are from 1968Sv01. Unassigned ce–line: E(ce)=137.54 10 Ice=0.8 2 % of the 268 K ce intensity (1968Sv01). Iγ normalization: From total Ice(K)=29 3 per 100 decays of 193Au (deduced from the ratio of the number of two K x ray detected in coincidence to the number of K x ray detected, assuming ε(K)/ε=0.80) (1957Ew34). The γ (from 1970Pl02) and ce (from 1968Sv01) intensities were normalized through α(K)(173.52γ)=1.08. Eγ† 1 . 642 2 E(level) 1 . 642 Mult.§ M1 α 2200 I(γ+ce)@ 2700 1500 Comments I(γ+ce): from I(ce(N1))=2.0×103 11 (estimated from comparison with I(ce(L3))(12.634γ)=121 40) and theoretical subshell ratios (1991Ba63). Mult.: N1/N2=5.5 15, N2/N3>3, N1/O1=1.5 5; theory: M1: N1/N2=9.2, N2/N3=8.3, N1/O1=5.4; E2: N1/N2=0.0058, N2/N3=0.69, N1/O1=5.1. α: from BRICC. α=12000 from 1991Ba63. Continued on next page (footnotes at end of table) 62 19 3 P t 115 – 7 78 19 3 P t 115 – 7 78 NUCLEAR DATA SHEETS 193Au ε Decay (17.65 h) 1968Sv01,1970Pl02 (continued) γ( 1 9 3 P t ) ( c o n t i n u e d ) Eγ† 12 . 634 8 E(level) 14 . 276 Mult.§ M1 +E 2 α I(γ+ce)@ 151 5 1370 120 Comments δ§: 0.015 +3–4. I(ce(L3))=121 40 deduced from I(ce(M1))=727 94 and L3/M1=0.166 51 (theory). Mult.,δ: M1/M2=7.0 10, M2/M3=3.8 10; theory: M1/M2=7.66, M2/M3=3.18. 37 . 65 3 269 . 83 M1 +E 2 22 . 4 6 17 . 8 12 I(γ+ce): Σ I(ce). δ§: 0.042 +12–13. Mult.,δ: L1/L2=8.4 8, L1/L3>27; theory: L1/L2=8.4 8, L1/L3=31 9. I(γ+ce): from Ice(L)=13.0 12, M+/L=0.308 1 and Iγ=0.76 9. Iγ deduced from Ice(L1)=11.4 13 and α(L1)=14.9. 44 . 33 3 232 . 16 M1 13 . 4 31 . 2 25 Mult.: L1/L2=10.5 10, L1/L3>25; theory: L1/L2=10.1, L1/L3=96. I(γ+ce): Σ Ice + Iγ. Iγ=2.2 2 deduced from Ice(L1)=20 2 and α(L1)=9.21. x49 . 14 3 M1 +E 2 Iγ‡@: 0.45 5; δ§: 0.42 2. 27 . 6 15 Iγ: deduced from Ice(L3)=3.3 3 and α(L3)=7.3. Mult.,δ: L1/L3=0.83 6, M1/M2=0.62 11; theory: L1/L3=0.81 7, M1/M2=0.71 6. 52 . 18 2 491 . 24 M1 8 . 22 5.7 7 Mult.: L1/L2=8 4, L1/L3>10; theory: L1/L2=10.1, L1/L3=97. I(γ+ce): from measured Ice(L12)+Ice(M1); Ice(L3), Ice(M23) and Ice(N) from theory; and Iγ=0.55 9 deduced from 73 . 62 3 187 . 81 ( M1 ) 2 . 99 Ice(L1)=3.1 5 and α(L1)=5.69. Iγ‡@: 3.9 4. 6 . 11 4 Mult.: L1/L2=8.7 15; theory: L1/L2=10.1. δ§: 0.87 3. Iγ: deduced from Ice(L1)=8.0 9 and α(L1)=2.07. 99 . 88 4 114 . 158 M1 +E 2 40 3 Mult.,δ: K/L=1.1 4, L1/L2=0.68 4, L1/L3=0.86 7; theory: K/L=1.92 16, L1/L2=0.69 3, L1/L3=0.87 4. I(γ+ce): Σ I(ce) + Iγ. Iγ=4.8 8 calculated from I(ce(K))=17 3 and α(K)=3.56. x110 . 28 5 ( E1 ) Iγ‡@: 26 12. 0 . 321 Iγ: deduced from Iγ(110.3γ+112.5γ)=102 10, and Iγ(112.5γ). Mult.: α(K)exp=0.23 11, K/L1=9.5 28; theory: E1: α(K)=0.259, K/L1=9.2; E2: α(K)=0.637, K/L1=7.80. 112 . 515 10 114 . 158 M1 +E 2 4 . 72 2 464 18 δ§: 0.36 2. Mult.,δ: K/L12=3.9 5, L1/L2=3.34 15, L1/M1=3.6 7; theory: K/L12=5.15 10, L1/L2=3.32 20, L1/M1=4.38 7. I(γ+ce): Σ I(ce) + Iγ. Iγ=76 5 calculated from I(ce(K))=279 17 and α(K)=3.66. 114 . 155 13 114 . 158 M1 +E 2 Iγ‡@: 27 5; δ§: 0.48 4. 4 . 39 5 Mult.,δ: α(K)exp=3.3 7, K/(L1+L3)=5.1 10, L1/L3=3.4 6, M1/M2=2.1 5; theory: α(K)=3.28 9, K/(L1+L3)=5.20 23, 117 . 99 2 232 . 16 M1 L1/L3=3.4 5, M1/M2=2.04 21. Iγ‡@: 19 3. 4 . 31 Mult.: α(K)exp=3.0 5, K/L12=5.2 11, L1/L2=9.7 15; theory: α(K)=3.54 K/L12=6.08, L1/L2=10.2. 119 . 64 3 121 . 29 M1 Iγ‡@: 6.3 15. 4 . 14 Mult.: α(K)exp=2.6 7, K/L1=5.6 25, L1/L2>3.1, L1/M1=4.9 21; theory: α(K)=3.40, K/L1=6.68, L1/L2=10.2, L1/M1=4.39. 155 . 68 4 269 . 83 M1 Iγ‡@: 12 3. 1 . 95 Mult.: α(K)exp=1.4 3, K/L12=5.3 9, L1/L2=10.9 20, L1/L3>5; theory: α(K)=1.60, K/L12=6.08, L1/L2=10.3, L1/L3=110. 173 . 52 5 187 . 81 M1 +E 2 Iγ‡@: 100; δ§: 0.355 21. 1 . 34 1 α(K)=1.08 used for normalizing Iγ and Ice. Mult.,δ: K/L=5.2 6, L1/L2=5.0 4, L1/L3=14.4 20; theory: K/L=5.29 L1/L2=5.2 3, L1/L3=13.2 12. x180 . 0# 2 186 . 17 3 187 . 81 M1 +E 2 Iγ‡@: 2.1 13. Iγ‡@: 347 20; δ§: 0.32 4. 1 . 11 2 Mult.,δ: α(K)exp=0.97 9, K/L12=5.2 6, L1/L2=5.9 5, L1/L3>11; theory: α(K)=0.899 17, K/L12=5.75 8, L1/L2=6.0 6, L1/L3=18 3. Continued on next page (footnotes at end of table) 63 19 3 P t 115 – 8 78 19 3 P t 115 – 8 78 NUCLEAR DATA SHEETS 193Au ε Decay (17.65 h) 1968Sv01,1970Pl02 (continued) γ( 1 9 3 P t ) ( c o n t i n u e d ) Eγ† 187 . 83 4 E(level) 187 . 81 Mult.§ α ( M1 +E 2 ) 0.8 4 Comments Iγ‡@: 31 12. Mult.: α(K)exp=0.30 13, K/L3>18; theory: M1: α(K)=0.95, K/L3=755; E2: α(K)=0.200, K/L3=3.07. 206 . 85 6 439 . 05 ( M1 ) 0 . 879 Iγ‡@: 3.1 7. ( E2 ) 0 . 283 Iγ‡@: 3.3 9. Mult.: α(K)exp=0.59 16, K/L1=5.8 17; theory; α(K)=0.724, K/L1=6.70. x215 . 41 10 Photon observed by 1970Pl02; 1968Sv01 unassigned line with E(ce)=137.02 10 (Ice=1.2 3 % of the 268 ce(K)) attributed to corresponding K line. Mult.: α(K)exp=0.10 4; theory: α(K)=0.142. 221 . 40 6 491 . 24 M1 +E 2 0.4 3 Iγ‡@: 2.7 6; δ§: 1.7 +12–5. Mult.,δ: α(K)exp=0.37 10, L1/L2>1, L1/L3=1.25 75; theory: α(K)=0.25 8 L1/L2=0.9 5, L1/L3=1.6 10. 230 . 50 7 232 . 16 ( E2 ) 0 . 226 Iγ‡@: 18.5 20. 232 . 18 6 232 . 16 E2 0 . 221 Iγ‡@: 18.5 20. Mult.: α(K)exp=0.11 2, K/M=7.1 20; theory: α(K)=0.119, K/M=5.88. Mult.: α(K)exp=0.15 3, K/L23=1.5 5, L2/L3=2.4 11, L1/L3<1.5; theory: α(K)=0.117, K/L23=1.86, L2/L3=1.67, L1/L3=0.629. 251 . 4# 5 439 . 05 [ M1 ] 255 . 57 4 269 . 83 M1 +E 2 0 . 513 0 . 443 15 Iγ‡@: 9 4. Iγ‡@: 231 20; δ§: 0.41 7. Mult.,δ: α(K)exp=0.35 4, K/L=4.8 2, L1/L2=6.6 16, L1/L3=20 6 theory: α(K)exp=0.359 14, K/L=5.59 17, L1/L2=6.1 8, L1/L3=20 4. 259 . 05 6 491 . 24 M1 0 . 472 Iγ‡@: 7 3. Mult.: α(K)exp=0.36 16, K/L1=11 6, L1/L2>1; theory: α(K)=0.389 K/L1=6.74, L1/L2=10.5. 268 . 22 5 269 . 83 M1 +E 2 0 . 25 5 Iγ‡@: 134 11; δ§: 1.3 3. Mult.,δ: α(K)exp=0.213 21, K/L=4.8 22, L1/L2=1.5 7, L1/L3=2.5 13; theory: α(K)=0.19 3, K/L=3.8 3, L1/L2=1.8 4, L1/L3=3.6 10. 269 . 84 5 269 . 83 E2 0 . 137 Iγ‡@: 29 6. M1 0 . 375 Iγ‡@: 5.4 9. Mult.: α(K)exp=0.091 21, K/L3=6.2 14; theory: α(K)=0.0802, K/L3=6.90. x281 . 76 10 Mult.: α(K)exp=0.35 8, K/L12>1.9; theory: α(K)=0.309, K/L12=6.17. 290 . 33 10 522 . 53 ( M1 ) 0 . 346 Iγ‡@: 3.0 12. 303 . 41 7 491 . 24 ( M1 +E 2 ) 0 . 20 11 Iγ‡@: 9.3 26. Mult.: α(K)exp=0.44 19; theory: α(K)(M1)=0.285, α(K)(E2)=0.0668. Mult.: α(K)exp=0.10 4; theory: α(K)(M1)=0.253, α(K)(E2)=0.0599. A pure E2 multipolarity is not ruled out. 317 . 73 439 . 05 ( M1 ) 324 . 89 5 439 . 05 334 . 7# 3 x344 . 1# 9 x369 . 9# 2 522 . 53 [ M1 ] 377 . 10 3 491 . 24 M1 +E 2 0 . 271 Iγ‡@: 8.1 17. 0 . 255 Iγ‡@: 12.0 21. 0 . 235 Iγ‡@: 2.2 13. Iγ‡@: 0.9 4. Iγ‡@: 2.1 5. Iγ‡@: 17.5 23; δ§: 1.2 3. Mult.: α(K)exp=0.23 6; theory: α(K)(M1)=0.223, α(K)(E2)=0.0534. M1 Mult.: α(K)exp=0.28 9, K/L12=7.5 38; theory: α(K)=0.210, K/L12=6.18. 0 . 101 17 Mult.,δ: α(K)exp=0.111 21, K/L=3.8 11, L1/L2=2.4 7, L1/L3=11 4; theory: α(K)=0.079 15, K/L=4.7 4, L1/L2=2.9 14, L1/L3=7 4. x383 . 4# 4 x387 . 60 9 x401 . 3# 3 E2 0 . 0481 Iγ‡@: 0.8 4. Iγ‡@: 13.1 16. 0 . 09 5 Iγ‡@: 3.9 9. Iγ‡@: 4.5 9. Mult.: α(K)exp=0.053 14, K/L3=14 7; theory: α(K)=0.0330, K/L3=15. 408 . 4 2 x421 ( M1 , E 2 ) Mult.: α(K)exp=0.08 4, K/L12=4.5 19; theory: α(K)=0.07 4, K/L12=5.0 12. Iγ‡@: 1.8 9. . 3# 4 424 . 76 12 x431 522 . 53 439 . 05 ( M1 ) 0 . 124 Iγ‡@: 5.2 10. Mult.: α(K)exp=0.099 23; theory: α(K)=0.103. Iγ‡@: 1.0 3. . 4# 3 437 . 41 8 439 . 05 M1 0 . 115 Iγ‡@: 17 3. 439 . 04 8 439 . 05 M1 0 . 114 Iγ‡@: 66 5. Mult.: α(K)exp=0.065 14, K/L12=6.6 14; theory: α(K)=0.095, K/L12=6.22. Mult.: α(K)exp=0.106 11, K/L12=5.7 6, K/L3>29; theory: α(K)=0.094, K/L12=6.22, K/L3=880. x445# 1 Iγ‡@: 0.4 4. Continued on next page (footnotes at end of table) 64 19 3 P t 115 – 9 78 19 3 P t 115 – 9 78 NUCLEAR DATA SHEETS 193Au ε Decay (17.65 h) 1968Sv01,1970Pl02 (continued) γ( 1 9 3 P t ) ( c o n t i n u e d ) Eγ† x459 E(level) .2 2 Mult.§ ( M1 ) α 0 . 101 Comments Iγ‡@: 0.5 3. Photon observed by 1970Pl02; 1968Sv01 unassigned line with E(ce)=380.77 15 (Ice=0.25 5 % of 268 ce(K)) attributed to corresponding K line. x464 Mult.: α(K)exp=0.14 9; theory: α(K)=0.084. Iγ‡@: 1.0 5. . 1# 5 476 . 98 9 491 . 24 ( E2 ) 0 . 0280 Iγ‡@: 16 3. Mult.: α(K)exp=0.084 21, K/L=4.4 15, L12/L3=7 4; theory: E2: α(K)=0.0204, K/L=3.54, L12/L3=5.59; M1: 0.0756, K/L=6.19, L12/L3=5.9×104. From L12/L3 ratio, the γ is mainly E2; too high α(K)exp seems to indicate that perhaps the Iγ(477.0) and Iγ(478.4) were not correctly resolved. x478 Iγ‡@: 4.1 10. . 40 15 Mult.: α(K)exp=0.038 13, K/L12=2.3 8; theory: E2: α(K)=0.0203, K/L12=4.18; M1: α(K)=0.0750, K/L12=6.23. x483# 1 489 . 61 12 491 . 24 ( M1 ) 0 . 0854 Iγ‡@: 0.5 3. Iγ‡@: 8.0 16. Mult.: α(K)exp=0.071 23, K/L12=5.6 25, L12/L3>0.7; theory: α(K)=0.0706, K/L12=6.24, L12/L3=144. 491 . 28 12 491 . 24 [ E2 ] 0 . 0260 Iγ‡@: 24 4. Mult.: α(K)exp=0.027 8, K/L12>4; theory: E2: α(K)=0.0191, K/L12=4.24; M1: α(K)=0.0700, K/L12=363. x505 Iγ‡@: 3.3 6. . 66 20 Mult.: K/L12<6, L12/L3>1.5. 508 . 26 20 522 . 53 ( M1 +E 2 ) 0 . 05 3 Iγ‡@: 1.9 5. 520 . 97 25 522 . 53 ( E2 ) 0 . 0226 Iγ‡@: 2.7 6. 522 . 66 25 522 . 53 ( E2 ) 0 . 0225 Iγ‡@: 2.5 5. Mult.: α(K)exp=0.040 14; theory: α(K)(M1)=0.0640, α(K)(E2)=0.0177. Mult.: α(K)exp=0.022 7; theory: α(K)=0.0168. Mult.: α(K)exp=0.025 8; theory: α(K)=0.0167. Iγ‡@: 1.3 3. x529 . 7# 4 x577 . 60 20 ( M1 ) 0 . 0557 Iγ‡@: 1.50 16. x628 . 55 25 ( M1 ) 0 . 0447 Iγ‡@: 2.3 3. Mult.: α(K)exp=0.042 11; theory: α(K)=0.0459. x685# Mult.: α(K)exp=0.038 8, K/L=5.2 27; theory: α(K)=0.0369, K/L=6.25. Iγ‡@: 0.74 21. 1 x698# 1 Iγ‡@: 2.2 5. x730# 1 Iγ‡@: 0.7 2. Iγ‡@: 1.2 4. Iγ‡@: 2.4 8. Iγ‡@: 1.6 8. x743# 1 x845# 2 x1124# 4 † Deduced from E(ce) measurements of 1968Sv01, unless otherwise noted. Calibration: KL1L1 and KL2L3 Auger lines in Pt, E(ce(K)) 316γ in ‡ § 192Pt (E(ce(K))=238.087 10), ThC A (E(ce)=24.509) and ThB F (E(ce)=148.108) lines. From 1970Pl02, unless otherwise noted. All experimental internal conversion coefficients and ratios are based on Ice of 1968Sv01 and Iγ of 1970Pl02. The two spectra are normalized to α(K)(173.52γ)=1.08, the theoretical value for M1+E2, δ=0.355. # From 1970Pl02. @ For absolute intensity per 100 decays, multiply by 0.027 3. x γ ray not placed in level scheme. 65 19 3 P t 115 – 1 0 78 19 3 P t 115 – 1 0 78 NUCLEAR DATA SHEETS 193Au ε Decay (17.65 h) 1968Sv01,1970Pl02 (continued) Decay Scheme Intensities: I(γ+ce) per 100 parent decays 3/2+ 0.0 17.65 h 52 522.66 500.97 (E2 ) 408.26 (E2 0. ) 0 338.4 ( (M1 0. 69 0 4 M 29 .7 [ 1,E+E2 75 ) 49 0.33 M1] 2) 0.0 481.28 (M1 0.0 0.13 54 479.61 [E2] ) 0.7 6 1 ( 1 37 .98 M1 0. 6 307.10 (E2 ) 0. 6 ) 253.41 M1+ 0. 23 4 229.05 (M1 E2 4 521.40 M1 +E2 0.52 .18 M 0 ) 43 . M11+E 28 0.30 439.04 2 0.1 0. 427.41 M1 5 10 324.76 M1 2.0 4 31 .89 (M1 0.5 7 1 ) M . 25 73 1 0. 201.4 [ (M1 0.4 16 6.8 M ) 1 26 5 1] 0.2 9 (M 0 8 26 .84 1) .37 8 E . 2 25 2 2 0.1 5 6 15 .57 M1+ 0.89 375.68 M1+E2 . 6 M E2 4.5 5 23 1 M1 1 9 232.18 +E .0 .0 2 110.50 E2 447.99 (E2) 0.61 0.48 18 .33 MM1 0.6 1 2.7 1 187.83 176.17 (M1 0.84 733.52 M1++E2 .62 M E ) 11 (M 1+E2 2 1.5 11 9.64 1) 2 0 4 . 0.4 6.3 11 155 M1 2 2 99 .515 M1 0.8 7 . 8 + 8 M1 E2 12 M1 + 1.6 .634 +E E2 3.9 42 M1 2 M1 +E 1.012.5 2 8 70 37 19 3 Au 114 79 (3/2–,5/2–) (5/2)– (3/2)– (3/2)– (5/2)– 3/2– 1/2–,3/2–,5/2– 3/2– 5/2– 3/2– 1/2– %ε+%β+=100 Q+=108311 Iε 522.53 0.51 491.24 2.7 7.21 439.05 3.7 7.16 269.83 15.7 6.76 232.16 3.8 7.42 187.81 26 6.63 121.29 0.6 8.34 114.158 14.276 1.642 0.0 2.52 ns 9.7 ns 50 y 19 3 Pt 115 78 ε Decay (3.9 s) 193Au Parent 193Au: 193Hg parent activity; measured γ, ce, γ(ce). 193Pt E(level)† 1 / 2– 1 . 642 2 3 / 2– 14 . 276 8 149 . 78 4 † Levels T1/2† Jπ† 0.0 1955Br41 E=290.18 5; Jπ=11/2–; T1/2=3.9 s 3; Q(g.s.)=1083 11; %ε+%β+ decay=100.00. Sources from decay of Comments 5 / 2– 13 / 2+ T1/2: other: 3.5 d 4 (1955Br41). 4 . 33 d 3 From adopted levels. β+,ε Data Branching: 0.03% from I(γ+ce)(135.4γ M4 193Pt)/I(γ+ce)(258.0γ M1 193Au) ≈0.0003; deduced from Ice and theoretical α (1955Br41). Eε E(level) ( 1223 11 ) 149 . 78 Iε I(ε+β+) Log ft 0 . 03 4.7 0 . 03 γ(193Pt) Branching: 0.03% from I(γ+ce)(135.4γ M4 193Pt)/I(γ+ce)(258.0γ M1 193Au) ≈0.0003; deduced from Ice and theoretical α (1955Br41). Eγ E(level) ( 1 . 642† 2 ) 1 . 642 ( 12 . 634† 8 ) 14 . 276 135 . 4 149 . 78 Mult.† M1 M1 +E 2 I(γ+ce)‡ α δ 12000 0 . 015 +3–4 M4 Comments ≈0 . 03 151 3 ≈0 . 03 890 ≈0 . 03 Eγ: from 1955Br41. Mult.: K:L1:L3:M=1:2:4:1 (1955Br41). † From adopted gammas. ‡ For absolute intensity per 100 decays, multiply by 1.00. 66 Log ft 7.88 12.4 7.03 20 6.91 15 7.05 19 3 P t 115 – 1 1 78 19 3 P t 115 – 1 1 78 NUCLEAR DATA SHEETS 193Au ε Decay (3.9 s) 1955Br41 (continued) Decay Scheme Intensities: I(γ+ce) per 5/2– 3/2– 1/2– 3.9 s 19 3 Au 79 114 %ε+%β+=100.00 Q+(g.s.)=108311 13 5.4 12 M4 1.6 .634 ≈0 42 M .03 M1 1+E 2 ≈0 .03 ≈0.0 3 13/2+ 290.18 11/2– 100 parent decays Iε 149.78 4.33 d 0.03 Log ft 4.7 14.276 1.642 0.0 19 3 Pt 115 78 192Os(α,3nγ) 1977Sa01 1977Sa01: E(α)=31–46 MeV, θ=90° to 140° (5 angles used); enriched (98%) 192Os targets; measured Eγ, Iγ, γγ, γγ(t), excit; interpreted level structure in terms of the triaxial rotor plus hole model. 1976Pi03, 1975Pi02: E(α)=30–50 MeV, measured γ, γγ, γ(θ), γ(t). All high–spin states which are strongly populated in the (α,3n) reaction deexcited by γ cascades leading to the 4.3–day 13/2+ isomer. No other isomeric states observed. 193Pt E(level) Jπ† Levels Comments T1/2 0.0 1 . 64‡ 14 . 28‡ 149 . 8‡§ 199 . 0# 491 . 0§ 13 / 2+ 11 / 2+ 17 / 2+ 519 . 6# 15 / 2+ 603 . 3 15 / 2+ 907 . 4 980 . 5# 1003 . 4§ ( 17 / 2+ ) 19 / 2+ 21 / 2+ 1103 . 5 1159 . 9 19 / 2+ 1 3 2 0 . 8@ 1 4 5 4 . 7@ 21 / 2 ( – ) 25 / 2 ( – ) 3 . 2 ns 3 T1/2: weighted average of 3.26 ns 34 (ce(t) (1978Ti02)) and 3.1 ns 5 (γ(t) (1977Sa01)). 1510 . 3 1631 . 8§ 1 6 8 9 . 9@ 25 / 2+ 27 / 2 ( – ) 1776 . 8 1986 . 7? 1 9 9 2 . 2@ 29 / 2 ( – ) 2335 . 2§ 2696 . 2§ 29 / 2+ 3129 . 2§ ( 37 / 2+ ) 33 / 2+ † From γ–ray multipolarities and fits of coincident γ rays into expected bands (1977Sa01). ‡ Rounded–off value from adopted levels. § (A): I13/2 favored decoupled band, configuration=(ν i13/2)–1. –1 # (B): (J–1) unfavored, decoupled band from configuration=(ν i 13/2) . @ (C): 21/2– semidecoupled band; Position and spacing are similar to corresponding band structure in other odd–mass Pt and Hg nuclei. These bands are related to the 5– bands in neighboring even–mass nuclei. 67 19 3 P t 115 – 1 2 78 19 3 P t 115 – 1 2 78 NUCLEAR DATA SHEETS 192Os(α,3nγ) 1977Sa01 (continued) γ(193Pt) All data are from 1977Sa01, unless otherwise noted. Eγ E(level) ( 1 . 642§ 2 ) 1 . 64 ( 12 . 634§ 8 ) 14 . 28 49 . 2 133 . 9 2 ( 135 . 50§ 3 ) x159 x216 x255 .4 3 x264 .1 2 96 9 A2=–0.18 6, A4=+0.02 7. A2=–0.10 8. A2=–0.62 16. A2=–0.04 6, A4=+0.06 7. 1689 . 9 159 13 17 3 D , D+Q A2=–0.05 6, A4=0.00 7. 19 4 85 9 (Q) A2=+0.35 7, A4=+0.01 8. 20 4 (Q) A2=+0.57 21. D , D+Q A2=–0.75 11, A4=+0.10 12. 1986 . 7? 32 5 302 . 3 2 1992 . 2 23 4 907 . 4 37 5 320 . 6 1 D , D+Q 55 7 1776 . 8 304 . 0 2 A2=+0.33 6, A4=–0.09 7. 14 3 266 . 5 3 296 . 8# 3 ( 317 ) Q 1510 . 3 .1 3 235 . 2 1 Comments 14 4 257 15 19 3 1320 . 8 .8 3 189 . 5 2 Mult.‡ 149 . 8 .7 3 161 . 0 2 x168 199 . 0 1454 . 7 Iγ† Transition, if present, obscured by 316.5γ in 1320 . 8 519 . 6 542 38 340 . 3 2 1320 . 8 747 75 341 . 2 2 491 . 0 361 . 0 3 2696 . 2 369 . 8 1 519 . 6 150 12 377 . 3 2 980 . 5 58 7 Q A2=+0.31 8, A4=–0.06 9. 387 . 9 2 907 . 4 42 6 D+Q A2=–0.36 13, A4=+0.06 15. x335 x413 .1 2 x425 907 . 4 .1 4 433 . 0 3 x447 A2=+0.29 6, A4=–0.07 7. D , D+Q A2=–0.16 8, A4=–0.01 9. Q A2=+0.23 8, A4=–0.04 9. 1000 41 6 Q A2=+0.31 7. D+Q A2=–0.73 6, A4=+0.08 7. 20 4 A2=+0.29 12. 50 7 A2=+0.28 9. 11 2 3129 . 2 .3 2 23 4 60 7 A2=+0.22 11. 453 . 5 1 603 . 3 238 19 D+Q A2=–0.72 6, A4=+0.09 7. 461 . 0 1 980 . 5 501 35 Q A2=+0.30 6, A4=–0.08 7. x474 .1 2 92 9 x478 .2 3 26 5 489 . 5 1 980 . 5 500 . 2 3 1103 . 5 x503 .6 3 512 . 4 3 x518 x547 28 5 1003 . 4 350 53 1992 . 2 142 17 A2=+0.46 23. D+Q A2=–0.74 8, A4=+0.11 10. D , D+Q A2=–0.44 17. 16 4 .2 3 556 . 5 3 x595 346 28 A2=–0.07 8, A4=–0.01 9. 33 6 .4 4 537 . 4 2 192Pt. 23 4 .1 3 416 . 5 2 Q 31 6 1159 . 9 .7 3 77 10 Q A2=+0.40 10, A4=–0.12 11. D , D+Q A2=–1.0 3. (Q) A2=+0.23 13, A4=–0.03 15. Q A2=+0.36 7, A4=–0.11 8. 49 8 228 23 A2=+0.52 22. 628 . 4 2 1631 . 8 640 . 2 4 1159 . 9 34 7 (Q) A2=+0.33 17. 669 . 1 3 1159 . 9 117 17 D , D+Q A2=–0.60 9, A4=+0.19 11. 703 . 4 3 2335 . 2 121 18 Q A2=+0.40 8, A4=–0.13 10. † Relative intensities at E(α)=35.0 MeV and θ=125°. ‡ From γ(θ) by 1977Sa01; mult=Q assignments are based on positive A2 and corresponds to ∆J=2, stretched quadrupole (most likely § From x γ ray not placed in level scheme. E2); Mult.=D or D+Q assignments are based on negative A2 and corresponds to ∆J=1 or 0. 193Pt IT decay (4.33 d). # Placement of transition in the level scheme is uncertain. 68 19 3 P t 115 – 1 3 78 19 3 P t 115 – 1 3 78 NUCLEAR DATA SHEETS 192Os(α,3nγ) 1977Sa01 (continued) Level Scheme 41 Q 2335.2 1992.2 Q 29/2(–) 12 1 29/2+ 3129.2 2696.2 36 1.0 (37/2+) 33/2+ 43 3.0 23 Intensities: relative Iγ for Eα=35.0 MeV and θ=125 ° 27/2(–) 25/2+ 25/2(–) 21/2(–) 19/2+ 21/2+ 19/2+ (17/2+) 15/2+ 15/2+ 17/2+ 11/2+ 13/2+ 53 307.4 Q 29 2.3 6.8 23 142 26 32 23 6.5 ( 5 Q 62 .2 D ) 8 2 . , 0 4 D 18 +Q Q 13 9.5 22 3.9 55 8 159 34 Q 0 31 .3 D 25 7 ,D 167 +Q 1.0 66 74 D, D+ 7 649.1 D 0 Q 55 .2 ( ,D+ 96 50 6.5 (Q) Q 1 51 0.2 D Q) 34 17 ,D 77 48 2.4 + 469.5 D350 Q 2 8 371.0 Q+Q 7 . 3 3 41 Q 501 46 386.5 5 307.9 D50 8 4.0 + 45 D, Q 4 3 . D 5 36 +Q 2 D 329.8 D +Q 37 23 34 0.6 Q+Q 8 1 .2 1 49 Q 542 50 13 .2 1 10 5.5 4 00 12 0 1.6.634 42 70 3.4 1986.7 1776.8 1689.9 1631.8 1510.3 1454.7 3.2 ns 1320.8 1159.9 1103.5 1003.4 980.5 907.4 603.3 519.6 491.0 199.0 149.8 14.28 1.64 0.0 19 3 Pt 115 78 192Pt(n,γ) E=res 1968Sa13 1968Sa13: E(n)=47 eV, 54 eV; natural Pt targets; measured Eγ, Iγ for primary γ's (Ge(Li), FWHM=5 keV at 1 MeV). 1969De09: from neutron time of flight measurements in transmission and absorption experiments, observed five resonances, whose energies and widths, in eV and meV respectively, are: 47, 47 2; 54, 17 1; 130, 225 12; 145, 170 10; 389, 308 27. 193Pt E(level) 0.0 186 Levels Jπ† Comments 1 / 2– , 3 / 2– Jπ: adopted 1/2–. 1 / 2– , 3 / 2– Jπ: adopted 3/2–. 440? 461? 544 1 / 2– , 3 / 2– 700 1 / 2– , 3 / 2– 1591 1 / 2– , 3 / 2– S ( n ) +x‡ 1 / 2+ E(level): x=E(res)=47 eV and 54 eV. Jπ: Jπ=1/2+ for both resonances (1969De09). † From population by E1 γ from Jπ=1/2+ resonances. ‡ Adopted S(n)=6255.5 19 (2003Au03). From Eγ(to g.s.)=6247 (1968Sa13) it appears that there is a calibration error of ≈–8 keV in the data of 1968Sa13. 69 19 3 P t 115 – 1 4 78 19 3 P t 115 – 1 4 78 NUCLEAR DATA SHEETS 192Pt(n,γ) E=res 1968Sa13 (continued) γ(193Pt) Eγ Mult.† E(level) 4656 S ( n ) +x E1 5547 S ( n ) +x E1 5703 S ( n ) +x E1 5786‡§ 5807‡§ S ( n ) +x S ( n ) +x 6061 S ( n ) +x E1 6247 S ( n ) +x E1 † Inferred from comparison of radiative widths with those for known E1 transitions in other Pt isotopes). ‡ Existence of γ uncertain. § Placement of transition in the level scheme is uncertain. E1 E1 E1 62 6047 5861 5707 5786 5503 4647 56 E1 E1 Level Scheme 1/2+ S(n)+x 1/2–,3/2– 1591 1/2–,3/2– 700 544 1/2–,3/2– 461 440 186 1/2–,3/2– 0.0 1/2–,3/2– 19 3 Pt 78 115 194Pt(p,d), 1978Be09: Pt and 194Pt (97.4%) targets. 194Pt(p,d): sections, σ(θ) (θ=5°, 9°, 15°, 30°, 45°, 55°). (d,t) 1978Be09 E=26 MeV; measured: E(d) (mag spect), differential cross 194Pt(t,d): E=26 MeV; measured E(t) (mag spect), differential cross sections at 15°. 1977Sm03: 194Pt(p,d): E=27 MeV; measured: E(d), σ, σ(θ). Level energy values are systematically lower than adopted values and were recalculated by the evaluator as E(level)=3 keV + 1.013 E(published). 1965Mu05: 194Pt(d,t): E=15 MeV; measured E(t), σ. 1990Bu26: calculated parameters for fits to single–neutron–transfer strengths in the U(6/12) scheme. 193Pt Levels Data are from 1978Be09 unless otherwise noted. L§ Jπ‡ E(level)† 0.0 (1/2)– 1 1 . 6@ 1 4 . 3@ (3/2)– 1 (5/2)– 1 1 4 . 2@ 1 2 1 . 3@ 3 / 2– 148 3 C2S(p,d)# Comments 1 . 0 8& 1 . 1 0& C2S calculated assuming Jπ=1/2–. C2S=1.15 in (d,t). & C2S calculated assuming Jπ=5/2–. C2S=1.70 in (d,t). C2S=1.20 in (d,t). 0 . 07b 0 . 07b C2S=0.03 in (d,t). 3 / 2– 1a 1a 13 / 2+ 6 4 . 24 C2S=5.83 in (d,t). C2S calculated assuming Jπ=5/2–. C2S=0.03 in (d,t). 189 6 233 6 5 / 2– (3) 0 . 03 271 3 3 / 2– 1 0 . 02 308 3 (9/2) (4,5) 0 . 14 340 3 415c 3 (9/2) 5 / 2–c (4,5) 3c 0 . 16 1 . 06c Continued on next page (footnotes at end of table) 70 19 3 P t 115 – 1 5 78 194Pt(p,d), (d,t) 193Pt L§ Jπ‡ E(level)† 423 3 19 3 P t 115 – 1 5 78 NUCLEAR DATA SHEETS 1978Be09 (continued) Levels (continued) C2S(p,d)# Comments ( 5 / 2– , 7 / 2– ) 3 1 . 71 C2S calculated assuming Jπ=5/2–. C2S=1.46 in (d,t). Possibly same as ( 5 / 2– , 7 / 2– ) c 3c 0 . 042c C2S calculated assuming Jπ=5/2–. 1 / 2– 1+ ( 3 ) 0 . 033+0 . 18 C2S calculated assuming Jπ=5/2– for L=(3) component. 415 3. 434c 3 459 3 t o 7 / 2– L: Only the L=(3) component was observed in (d,t) with C2S=0.16. C2S=0.16 in (d,t). 491 3 5 / 2– (3) 0 . 18 C2S=0.16 in (d,t). 530 3 ( 1 / 2– , 3 / 2– ) 1 0 . 03 C2S=0.07 in (d,t). 544 3 ( 5 / 2– , 7 / 2– ) (3) 0 . 17 C2S calculated assuming Jπ=5/2–. C2S=0.13 in (d,t). 563 3 ( 1 / 2– , 3 / 2– ) 1 0 . 02 599 3 ( 5 / 2– , 7 / 2– ) 3 1 . 035 C2S=0.85 in (d,t). 630 5 ( 5 / 2– , 7 / 2– ) 3 0 . 22 C2S=0.17 in (d,t). 675 3 701d 5 13 / 2+ 6 0 . 76 ( 5 / 2– , 7 / 2– ) (3)d 0 . 075d 728e 5 ( 5 / 2– , 7 / 2– ) 3e 0 . 16e C2S=0.12 in (d,t). 755 5 ( 5 / 2– , 7 / 2– ) 3 0 . 315 C2S=0.23 in (d,t). 0 . 10 830 10 ( 5 / 2– , 7 / 2– ) (3) 846 5 3 / 2– 1 0 . 44 923 5 ( 1 / 2– , 3 / 2– ) 1 0 . 11 (4,5) 0 . 05 1042 5 ( 11 / 2+ , 13 / 2+ ) 6 1 . 65 1069 10 ( 5 / 2– , 7 / 2– ) (3) 0 . 05 1099 5 ( 5 / 2– , 7 / 2– ) (3) 0 . 09 1130 10 ( 5 / 2– , 7 / 2– ) (3) 0 . 04 1168 10 ( 1 / 2– , 7 / 2– ) (1) 0 . 02 1188 5 ( 1 / 2– , 3 / 2– ) 1 0 . 13 ( 7 / 2– ) f (3) f 0 . 22 f 5 / 2– and 3 / 2– c ( 11 / 2+ , 13 / 2+ ) c 3+1 c 0 . 10+0 . 016 c 6c 0 . 30c 969 10 1014 5 1225? 1245 f Unresolved doublet. 5 5 1259? 1340c 5 5 1380c 4 † The uncertainty is estimated to be 2.5 keV below ≈600 keV and 5 keV above, except for the weak transitions (1978Be09) (the ‡ From 1978Be09, unless otherwise noted. evaluator has doubled the uncertainty for transitions with ±σ>10%). § From DWBA analysis of angular distributions. # From (dσ/dΩ)(exp)/N(dσ/dΩ)(DWBA), N=2.29. L=1,3,(4,5),6 are assumed to be p3/2, f7/2, g9/2, and i13/2, except where noted otherwise. C2S values for (d,t) (N=3.33) are given in comments; these were obtained from only one angle, corresponding to the maximum angular distribution for L=3, and values for other L transfers may be imprecise. @ Rounded–off value from adopted levels; level not well resolved in 194Pt(p,d), (d,t). & To extract C2S for the unresolved 0.0, 1.6, and 14.3 levels, σ was divided equally between the 0.0 and 1.6 states (good L=1 fit to the triplet suggests small σ for the 14.3–keV, 5/2– state). a L=1 for 114.2+121.3 doublet. b Total for unresolved 114 and 121 levels (3/2– assumed for each). c From 1977Sm03 after energy rescaling by evaluators. d 1977Sm03 report C2S=0.55 for single state with L=(6) at E(level)=704 4 (after energy rescaling by evaluator). e 1977Sm03 report a doublet at E(level)=730 4 (after energy rescaling by evaluator), with a weak L=(0) component with C2S=0.006. f 1977Sm03 report a doublet at E(level)=1241 5, (after energy rescaling by evaluator) with a L=1 component with C2S=0.044. 71 19 3 P t 115 – 1 6 78 19 3 P t 115 – 1 6 78 NUCLEAR DATA SHEETS 194Pt(3He,α) E(3He)=50 MeV, θ=5° to 45° (2.5° intervals); enriched (>98%) 1985Th02 targets; measured E(α) (mag spect with 194Pt two–dimensional detector system, FWHM≈35 keV), differential cross sections, angular distributions (high–L transfers favored); interpreted levels in terms of quasiparticle–core coupling models. 193Pt Slj§ L‡ Jπ† E(level) Levels Slj§ L‡ Jπ† E(level) E(level) Slj§ L‡ Jπ† 5 / 2– 3,4 1 . 31 732 10 7 / 2– 3,4 0 . 38 1561 10 150 10 13 / 2+ 6 6 . 37 819 10 7 / 2– 3,4 0 . 29 1668 10 9 / 2– 4,5 0 . 61 331 10 ( 13 / 2+ ) 5,6 1 . 21 1021 10 13 / 2+ 5,6 1 . 73 1744 10 7 / 2– 3 0 . 44 420 10 5 / 2– 3,4 0 . 92 1095 10 7 / 2– 3,4,5 0 . 25 1913 10 1219 10 7 / 2– 3,4 0 . 25 2337 10 13 / 2+ 6 0 . 67 15 10 484 10 592 10 7 / 2– 3 0 . 95 1337 10 667 10 13 / 2+ 6 0 . 84 1442 10 † Jπ assumed to extract slj. ‡ From DWBA analysis of angular distributions. § (dσ/dΩ)(exp)/N (dσ/dΩ)(DWBA), N=34. 195Pt(p,t) E(p)=25 MeV, θ=5° to 55°; Pt metal targets enriched to 97.28% in 3,4 1980Ro07 195Pt; measured E(level) (mag spect, FWHM=16–18 keV), differential cross sections, angular distributions. 193Pt Levels Target Jπ=1/2–. E(level) 0.0 Jπ† 1 / 2– L‡ 0 1 . 6# 14 . 3# Σ σ(θ)§ 100 1 2& 6& 117 4 1.9 1 4 9 . 8 ? #@ E(level) L‡ Jπ† Σ σ(θ)§ E(level) Jπ† 3 / 2– L‡ 2 Σ σ(θ)§ 531 4 1.8 1182 8 597 4 4.2 1217 8 1 1.9 622 4 0.9 1243 8 0.8 642 4 1.2 1265 8 2.9 701 4 0.5 1333 8 2.8 188 4 3 / 2– 2 2.7 728 4 1.5 1364 8 1.9 232 4 (5/2)– 2 4.9 753 4 3.3 1425 8 2 3 / 2– 2 1.9 828 4 2.1 1457 8 1 / 2– 0 0 . 15 841 4 3 / 2– 2 4.3 1534 8 1 / 2– 0 1.4 340 4 2 922 4 3 / 2– 2 3 1557 8 1 / 2– 0 3.5 425 4 4.6 984 4 1.1 1585 8 0.6 462 4 2 1053 8 2.5 1610 8 0.9 0.7 1091 8 1 271 4 307? 4 492 4 † (5/2)– 2 From 1980Ro07; deduced from angular distributions and cross sections, relative to those for corresponding levels in (d,t). ‡ Inferred from angular distributions. § Relative summed cross–sections for the seven angles between 5° and 55° observed in the experiment. # Rounded off value from adopted levels; level not well resolved in 195Pt(p,t). @ Population uncertain; peak overlaps that for 192Pt g.s. from contaminant. & Estimated from spectrum at θ=15° assuming the angular distribution observed for Jπ=5/2– states. 72 194Pt(p,d), 3 19 3 A u 114 – 1 79 19 3 A u 114 – 1 79 NUCLEAR DATA SHEETS Adopted Levels, Gammas Q(β–)=–2343 14; S(n)=8689 19; S(p)=4390 11; Q(α)=2634 17 2003Au03. Q(β–): 2003Au03 evaluated value from 1976Di15 β+ spectrum end–point energy in 193Hg (3.80 h) decay; 2003Au03 assigns the β+ group with E(β+)=1287 15 to g.s. and first excited levels in 193Au, while 1976Di15 assigned it to 225 keV level. Other: 2341 30 (1958Br88). Other reactions: 197Au(α,8He) (1990Ka04); Eα=65 MeV. Reaction products analyzed at 8° with a solid angle of 5 msr by the quadrupole–dipole–dipole magnetic spectrometer. 191Ir(α,2n), 193Ir(α,4n) (1998Is08); Eα=16–48 MeV. Reaction cross–section measured and compared to Hauser–Feshbach with pre–equilibrium calculation. Pb(p,4pxn) (2001Gl05); E(p)=0.065–2.6 GeV. Measured excitation function. Calculations: Levels, B(E2): 1994He24, 1988Ar12, 1987Se03. Magnetic and electric moments and deformation parameters: 1994Pa37, 1992Ri11. Nilsson model parameters: 1987Zh04. Compilation and review: NMR in oriented nuclei: 1996Ha09. 193Au Levels Cross Reference (XREF) Flags A 193Au B 193Hg ε Decay (3.80 h) C 193Hg ε Decay (11.8 h) D 192Os(7Li,6nγ) IT Decay (3.9 s) E Ir(α,xnγ) E(level)† 0 . 0‡ Jπ 3 / 2+ Comments XREF T1/2 ABCDE 17 . 65 h 15 %ε+%β+=100; µ=+0.1396 5; Q=+0.664 20. Limit for possible α decay: <1×10–5% (1963Ka17). Theory 1×10–21% (2001Mo07). Jπ: spin from atomic beam (1976Fu06); parity from Schmidt diagram, µ. T1/2: from 1968Sv01. Other values: 15.8 h 3 (1948Wi01,1949Wi08), 17.5 h 2 (1957Ew34), 15.3 h 5 (1952Fi06). µ: Collinear LASER spectroscopy (1994Pa37); others: +0.1396 6 NMR on oriented nuclei (1993Hi10), +0.140 1 atomic beam (1989Ra17,1980Ek04), 0.137 (1976Fu06). Q: Collinear LASER spectroscopy (1994Pa37). Isotope shift: ∆<r2>=–0.162 2 fm2 (1994Pa37), relative to 197Au. Other: –0.157 4 fm2 (1989Wa11,1985St10). √ <r2>=5.421 4 fm (2004An14). 38 . 23 2 224 . 80 3 257 . 98‡ 2 (1/2)+ (3/2)+ 5 / 2+ ABC E B E ABCDE 3 . 81 ns Jπ: M1+E2 γ to 3/2+; 1/2+ suggested by shell model, systematics. 18 193Hg T1/2: from 193Hg ε decay (3.80 h) (1970Fo08). Jπ: M1+E2 γ to (1/2)+. <0 . 03 ns 45 ps T1/2: from ε decay (3.80 h) (1970Fo08). Jπ: M1+E2 γ to 3/2+ level; see Jπ assignment for the 290.18 20 level. 290 . 19§ 3 T1/2: from 11 / 2– ABCDE 3.9 s 193Au IT decay (3.9 s) (1970Fo08). %IT=99.97; %ε+%β+≈0.03. 3 µ=6.18 9; Q=+1.98 6. Jπ: E3 – M1+E2 cascade to 3/2+ g.s., direct transition to g.s. very weak and no transition to (1/2)+ 38.23 level. This indicates Jπ=11/2– for the 290.18 level and Jπ=5/2+ for the 257.97 level. Systematics of h11/2 levels in Au nuclei. T1/2: from 193Au IT decay (1955Fi30). %ε+%β+: deduced from I(γ+ce)(258.0γ in I(γ+ce)(135.5γ in 193Pt) 193Au) relative to (1955Br41). µ: Radiative detection of NMR (1989Ra17,1983Ha10); other: 6.17 9 (1989Ra17,1983Li21). Q: γ(θ,H,t) from 381 . 63 4 5 / 2+ 193Hg decay (11.8 h), NMR (1996Se06). Jπ: M1+E2 γ to 3/2+ g.s.; see Jπ assignment at 508–keV level. BC Continued on next page (footnotes at end of table) 73 19 3 A u 114 – 2 79 19 3 A u 114 – 2 79 NUCLEAR DATA SHEETS Adopted Levels, Gammas (continued) 193Au E(level)† 508 . 25 4 Jπ 7 / 2– XREF BC E Levels (continued) Comments T1/2 0 . 29 ns Jπ: E2 γ to 11/2– level, (E1) – M1+E2 cascade to 3/2+ g.s.; 2 this gives Jπ=7/2– for this level and Jπ=5/2+ for 382–keV level. T1/2: from 193Hg ε decay (11.8 h) (1970Ba56). 539 . 00‡ 4 ( 7 / 2+ ) 687 . 45 5 697 . 80§ 4 ( 7 / 2+ , 9 / 2+ ) C Jπ: (M1) γ from (9/2+) 929 level; γ to 5/2+ level. ( 15 / 2 ) – CDE Jπ: E2 γ to 11/2– level; band structure. 789 . 93 5 9 / 2– C E Jπ: (E2) γ to 3/2+ g.s.; band structure. CDE 1 . 2 ns Jπ: M1+E2 γ's to 7/2– and 11/2– levels. 1 T1/2: from 193Hg ε decay (11.8 h) (1975Be29). 808 . 57‡ 6 (9/2)+ 827 . 67 14 ( 1 / 2+ , 3 / 2+ ) 863 . 35# 5 ( 13 / 2 ) – 890 . 78 4 9 / 2– CDE Jπ: M1 γ to 7/2–, M1+E2 γ to 11/2–. 929 . 12 5 ( 9 / 2+ ) C Jπ: (E2) γ to 5/2+ level. See Jπ assignment for 2125 level. Jπ: E2 γ to 5/2+ level; band structure. CDE Jπ: (M1) γ to (1/2)+ level. If the 289γ were to be placed here, B it would rule out 1/2+. Jπ: M1 γ to (15/2)– level, M1+E2 γ to 11/2– level. C E 1089 . 23 9 B Jπ: E2 γ to 5/2+ level, γ to (1/2)+ level. 1118 . 96 12 (1/2,3/2,5/2)+ 1131 . 82 6 1153 . 53‡ 6 7 / 2– , 9 / 2– , 11 / 2– B C E Jπ: M1+E2 γ to 9/2– level. ( 11 / 2+ ) C E Jπ: (E2) γ to (7/2+) level; log ft=8.2 from 13/2+ 193Hg; band structure. 1194 . 29 7 ( 9 / 2– , 11 / 2– , 13 / 2– ) C E Jπ: (E2) γ to 9/2–; log ft=8.2, log 1284 . 80 5 9 / 2– , 11 / 2– C E Jπ: M1+E2 γ to 9/2–; log ft=7.6 from 13/2+ 1355 . 31 8 ( 11 / 2 C Jπ: (E2) γ to (15/2)– level; (M1+E2) γ from 11/2–,13/2– 1630 1372 . 93# 10 ( 17 / 2 ) – C E Jπ: M1+E2 γ to (15/2)– level; band structure. 1379 . 96 11 ( 11 / 2+ , 13 / 2+ ) C Jπ: (E2) γ to (7/2+,9/2+) level; log ft=8.3 from 13/2+ 1398 . 49 5 ( 13 / 2 ) – C E Jπ: M1+E2 γ to (13/2)– level, (M1+E2) γ to (15/2)– level, (E2) 1400 . 38 5 11 / 2– C Jπ: M1+E2 γ to 9/2–; log f1ut=7.8 from 13/2+. 1413 . 05 16 ( 9 / 2– , 11 / 2 , 13 / 2+ ) C Jπ: log ft=9.1, log f1ut=9.7 from 13/2+ t o 15 / 2– ) f1ut=8.9 from 13/2+ 193Hg. 193Hg. level. 193Hg. γ to 9/2– level. 193Hg; γ to (7/2+,9/2+) level. 1418 . 9§ 3 ( 19 / 2 ) – 1433 . 48 12 ( 11 / 2+ , 13 / 2+ ) C Jπ: (E2) γ to (9/2)+ level; log ft=8.4 from 13/2+ 1455 . 18 8 ( 11 / 2 t o 15 / 2– ) C Jπ: (E2) γ's to (13/2)– and (15/2)– levels; γ from (11/2–) 2201 1477 . 17 12 1478 . 4‡ 3 ( 7 / 2 , 9 / 2 , 11 / 2 ) – C Jπ: E1 γ to (9/2)+ level. 1496 . 28 7 (9/2)– C E Jπ: M1+E2 γ to 7/2–,9/2–,11/2– level; (E1) γ to (7/2+) level. 1514 . 19 16 ( 7 / 2– ) C Jπ: γ to 5/2+ level; (E2,M1) γ from 11/2– 2157 level; see Jπ 1572 . 53 13 ( 9 / 2– , 11 / 2 , 13 / 2+ ) C Jπ: γ to (9/2+) level; log ft=9.0, log f1ut=9.5 from 13/2+ 1575 . 61 5 11 / 2– , 13 / 2– C Jπ: M1 γ to 9/2–,11/2– level; log f1ut=7.5 from 13/2+ 1603 . 19 19 ( 3 / 2– , 5 / 2+ ) 1630 . 23 6 11 / 2– , 13 / 2– C 1654 . 72 16 ( 9 / 2– , 11 / 2 , 13 / 2+ ) C 1658 . 0 3 1/2(+) Jπ: E2 γ to (15/2)– level; band structure. DE 193Hg. level. ( 13 / 2+ ) Jπ: γ to (9/2)+ level; band structure. DE assignment for 2157 level. 193Hg. to 5/2(+) 193Hg. Jπ: γ's to 7/2– and (1/2)+ levels. B Jπ: M1+E2 γ to 9/2–, 11/2– level; log f1ut=7.1 from 13/2+. Jπ: γ to (9/2+) level; log f1ut=8.4 from 13/2+ Jπ: (E2) γ to 5/2+; log f1ut=6.9 from 3/2– B 193Hg. 193Hg. 1680 . 34 17 ( 11 / 2– , 13 / 2– ) C Jπ: γ's to 9/2– and (15/2)– levels; (E2) γ to (13/2)– level. 1684 . 73 19 ( 9 / 2– C Jπ: (E2) γ to 11/2– level; γ to 9/2– level; log ft=7.6, 1733 . 43 10 ( 15 / 2– ) C Jπ: (M1+E2) γ to (17/2)–; log f1ut=7.4 from 13/2+ 1776 . 03 7 11 / 2– C Jπ: E2 γ to (13/2)– level; γ to 7/2– level; log ft=7.8, 1794 . 90 15 ( 13 / 2– ) C Jπ: γ's to 9/2– and (17/2)– levels. C Jπ: (E2) γ to 11/2– level; γ's to 9/2– and (13/2)– levels. C Jπ: (M1) γ to (13/2)– level; γ to 9/2– level. C Jπ: (E2) γ to (15/2)– level; γ to 11/2– level. Jπ: (E2) γ to (15/2)– level; γ to 9/2– level. t o 13 / 2– ) log f1ut=8.0 from 13/2+ log f1ut=7.0 from 13/2+ 1815 . 1 3 ( 1 / 2 , 3 / 2 , 5 / 2+ ) 1815 . 40 23 ( 9 / 2– , 11 / 2– , 13 / 2– ) 1829 . 90 5 ( 11 / 2– , 13 / 2– ) 1861 . 91 21 ( 1 / 2+ , 3 / 2 , 5 / 2+ ) 1869 . 27 16 ( 11 / 2– t o 15 / 2– ) 193Hg. 193Hg. 193Hg. Jπ: γ to (1/2)+ level. B Jπ: γ's to (1/2)+ and 5/2+ levels. B 1876 . 28 17 ( 11 / 2– , 13 / 2– ) C 1915 . 19 17 ( 11 / 2– C Jπ: (E2) γ to (13/2)– level; γ's to 11/2– and (15/2)– levels. 1930 . 02 6 11 / 2– , 13 / 2– C Jπ: M1 γ to 11/2–,13/2– level; γ to 9/2– level; log f1ut=6.6 t o 15 / 2– ) from 13/2+ 193Hg. Continued on next page (footnotes at end of table) 74 19 3 A u 114 – 3 79 19 3 A u 114 – 3 79 NUCLEAR DATA SHEETS Adopted Levels, Gammas (continued) 193Au E(level)† Jπ 1939 . 18 11 ( 11 / 2 , 13 / 2 ) – 1946 . 9 3 ( 21 / 2 ) + XREF Levels (continued) Comments T1/2 Jπ: E2 γ to (15/2)– level; γ to 9/2– level. C DE 10 . 4 ns µ=+6.48 11 (1989Ra17). 8 µ: From differential perturbed angular distribution of γ rays following nuclear reactions. Jπ: E1 γ to (19/2)– level, (E3) γ to (15/2)– level. T1/2: from Ir(α,xnγ) (1985Ko13). 2012 . 19 17 ( 13 / 2– , 15 / 2– ) C Jπ: γ's to 11/2– and (17/2)– levels. C Jπ: (E2) γ's to 11/2– and (15/2)– levels. C Jπ: M1+E2 γ to 11/2–,13/2–, (M1+E2) γ to 9/2–,11/2– level (E2) Jπ: γ's to (1/2)+ and 5/2+ levels. 2014 . 7 3 ( 1 / 2+ , 3 / 2 , 5 / 2+ ) 2023 . 45 9 ( 11 / 2 B 2037 . 46 7 ( 11 / 2 , 13 / 2 ) – 2043 . 3 3 1/2,3/2,5/2 2063 . 03 7 11 / 2– , 13 / 2– , 15 / 2– 2079 . 8 4 ( 25 / 2+ ) DE 2087 . 1# 4 ( 21 / 2– ) E t o 15 / 2– ) γ to (15/2)–. Jπ: log ft=6.1, log f1ut=5.5 from 3/2– B 193Hg. Jπ: M1+E2 γ to 11/2–,13/2– level; log f1ut=6.3 from 13/2+ C 2 . 51 ns 193Hg. T1/2: from Ir(α,xnγ) (1985Ko13). 13 Jπ: (E2) γ to (21/2)+ level; member of γ cascade in (α,xnγ). Jπ: γ to (19/2)– level; band structure. 2104 . 42 15 ( 11 / 2 , 13 / 2 ) – C Jπ: γ's to 9/2– and (15/2)– levels. 2125 . 37 19 ( 11 / 2– ) C Jπ: (E2) γ to (13/2)– level gives π=(–) and 9/2≤J≤17/2; log f1ut=6.9 from 13/2+ 193Hg rules out J=9/2 and 17/2; 1196γ – 547 (E2) γ cascade to 5/2+ level rules out J=13/2 and 15/2 since 1196γ, competing with the 1262 (E2) γ, in unlikely to be an M2 transition. Therefore J(this level)=11/2 and J(929 level)=9/2. 2130 . 38 12 ( 11 / 2– t o 15 / 2– ) 2139 . 77 19 ( 13 / 2– , 15 / 2– ) 2140 . 0 4 ( 23 / 2+ ) 2157 . 63 16 ( 11 / 2– ) Jπ: (E2) γ to (13/2)–; log f1ut=6.3 from 13/2+ level. C Jπ: (M1) γ to (15/2)–, γ to 7/2–,9/2–,11/2– level. C Jπ: (M1+E2) γ to (21/2)+; no decay to levels with J<21/2. DE Jπ: strongest γ's to (15/2)– and (9/2)– levels; the (E2,M1) C 643γ – 1132γ cascade to 5/2+ level rules out 13/2– for this level and J<7/2 for the 1514 level. 2159 . 02 9 ( 11 / 2– t o 15 / 2– ) 2172 . 7§ 4 ( 23 / 2– ) 2196 . 87 20 ( 11 / 2– , 13 / 2 , 15 / 2– ) Jπ: (E2) γ to 11/2–, 13/2– level; (M1,E2) γ to (15/2)–; C log f1ut=6.4 from 13/2+ 193Hg. Jπ: (E2) γ to (19/2)– level: band structure. DE Jπ: log f1ut=6.6 from 13/2+ C 193Hg, J=11/2, 13/2, 15/2; γ's to 11/2– and (15/2)– levels. 2201 . 72 9 ( 11 / 2– ) C Jπ: (E2) γ to (15/2)– level; γ to 7/2– level. 2205 . 93 22 ( 11 / 2– ) C Jπ: log f1ut=6.1 from 13/2+ 2215 . 19 17 ( 13 / 2– , 15 / 2– ) C Jπ: (M1) γ to (15/2)– level; γ to 11/2– level; log f1ut=5.9 2255 . 11 13 ( 11 / 2– C Jπ: (M1) γ to (13/2)– level. 2279 . 38 17 ( 11 / 2– ) C Jπ: strong γ's to 7/2– and (15/2)– levels; (E2) γ to 2285 . 28 16 ( 11 / 2+ ) C Jπ: log ft=6.8, log f1ut=5.2 from 13/2+ from 13/2+ t o 15 / 2– ) 193Hg; γ to 7/2– level. 193Hg. (7/2,9/2,11/2)– level. 193Hg; γ to (7/2+) 193Hg; γ to (7/2+) level. 2291 . 00 16 ( 11 / 2+ ) Jπ: log ft=6.5, log f1ut=5.6 from 13/2+ C level. 2324 . 7 5 ( 27 / 2+ ) E 2377 . 7§ 4 ( 27 / 2– ) DE T1/2: Ir(α,xnγ) (1985Ko13). <0 . 2 ns Jπ: M1 γ to (25/2+); no transition to J<25/2 levels. 0 . 79 ns µ ≤9 . 5 ( 1 9 8 9 R a 1 7 , 1 9 8 5 K o 1 3 ) . 8 µ: From integral perturbed angular distribution. Jπ: (E2) γ to (23/2–) level; band structure. 2476 . 4§ 5 T1/2: from Ir(α,xnγ) (1985Ko13). ( 31 / 2– ) E 3 . 52 ns µ=4.7 31 (1989Ra17,1985Ko13). 18 Jπ: (E2) γ to (27/2–) level; band structure. T1/2: from Ir(α,xnγ) (1985Ko13). µ: From integral perturbed angular distribution. 2 4 8 6 . 5@ 6 ( 31 / 2+ ) E 2700 . 9§ 6 ( 35 / 2– ) E 150 ns Jπ: (E2) γ to (27/2+) level; band structure. 50 T1/2: from Ir(α,xnγ) (1985Ko13). 1 . 80 ns µ=2.3 19 (1989Ra17,1985Ko13). 9 Jπ: (E2) γ to (31/2–) level; band structure. T1/2: from Ir(α,xnγ) (1985Ko13). µ: From integral perturbed angular distribution. 2 9 2 3 . 2@ 7 ( 35 / 2+ ) Jπ: (E2) γ to (31/2+) level; band structure. E Continued on next page (footnotes at end of table) 75 19 3 A u 114 – 4 79 19 3 A u 114 – 4 79 NUCLEAR DATA SHEETS Adopted Levels, Gammas (continued) 193Au E(level)† Jπ XREF Levels (continued) Comments T1/2 3154 . 9§ 7 ( 39 / 2– ) E 3 4 4 1 . 7@ 7 3895 . 9§ 7 4 0 6 3 . 2@ 8 ( 39 / 2+ ) E Jπ: (E2) γ to (35/2+) level; band structure. ( 43 / 2– ) E Jπ: (E2) γ to (39/2–) level; band structure. ( 43 / 2+ ) E Jπ: (E2) γ to (39/2+) level; band structure. Jπ: (E2) γ to (35/2–) level; band structure. <0 . 5 ns T1/2: from Ir(α,xnγ) (1985Ko13). † From least–squares fit to Eγ. ‡ (A): g.s. band. § (B): h11/2 decoupled band (favored sequence). # (C): h11/2 decoupled band (unfavored sequence). @ (D): Rotation–aligned band based on 31/2+ level. γ(193Au) E(level) Iγ‡ Eγ† 38 . 23 3 8 . 2 3& 2 224 . 80 Mult.† α δ 100 M1 +E 2 0 . 4 2& + 5 – 4 186 . 56# 3 224 . 81# 4 2 1 9 . 7 5& 3 100# 10 6 . 8# 14 M1 +E 2 # 0 . 26# 5 # 2 5 7 . 9 9& 3 3 2 . 2 1& 2 289 . 8§ 100 100§ 381 . 63 381 . 60 4 100 508 . 25 126 . 56 10 91 14 Comments B(M1)(W.u.)=0.00096 16; B(E2)(W.u.)=45 12. 257 . 98 5.7 3 ( E2 ) E2 1 . 23 2 B(M1)(W.u.)>0.044; B(E2)(W.u.)>22. 0 . 257 B(E2)(W.u.)>14. 0 . 276 B(E2)(W.u.)=14 7. 0 . 422 9 B(M1)(W.u.)=0.014 7; B(E2)(W.u.)=31 14. Iγ: Iγ=4 from Ir(α,xnγ) (1974Tj02). 290 . 19 218 . 07 4 539 . 00 157 . 40 10 280 . 94 5 ≈4 . 2§ 2.0 6 100 2.5 5 15 12 539 . 03 6 429 . 51a 5 100 27 100a 697 . 80 407 . 63 4 100 789 . 93 281 . 76 4 687 . 45 16 . 5 20 M1 +E 2 0 . 6 2& 4 E3 93000 [ M4 ] M1 +E 2 18 . 2 1 . 2 +5–3 B(E3)(W.u.)≈0.042. B(M4)(W.u.)≈26. 0 . 10 4 ( E1 ) 0 . 231 B(E1)(W.u.)=5.3×10–6 17. E2 0 . 283 B(E2)(W.u.)=46 4. ( E2 ) 0 . 89 ( M1 , E 2 ) 0 . 27 15 ( E2 ) 0 . 0218 E2 Iγ: Iγ=45 from Ir(α,xnγ) (1974Tj02). 0 . 0437 M1 +E 2 0 . 61 12 0 . 332 22 B(M1)(W.u.)=7.7×10–5 17; M1 +E 2 1.0 3 0 . 057 11 B(M1)(W.u.)=5.8×10–5 21; B(E2)(W.u.)=0.14 5. 499 . 65 5 100 13 B(E2)(W.u.)=0.09 4. 808 . 57 2 6 9 . 2@ 3 827 . 67 289#b 550 . 63 6 446 . 5# 5 789 . 21# 20 827 . 81# 20 863 . 35 165 . 53 4 25# 12 15# 5 100# 20 88# 15 0 . 28 7 E2 0 . 0207 ( M1 ) # ( E2 ) # 0 . 0270 M1 1 . 79 + 0 . 3 6@ 7 573 . 25 6 100 10 M1 +E 2 890 . 78 382 . 47 4 100 21 M1 600 . 65 6 100 11 M1 +E 2 929 . 12 241 . 70 4 40 9 ( M1 ) 0 . 623 100 26 ( E2 ) 0 . 0210 547 . 43 6 1089 . 23 1118 . 96 580 . 97# 8 861 . 11# 17 1080 . 7# 3 1118 . 84# 17 0 . 0567 18 0 . 179 1 . 4 +4–3 0 . 030 7 100 100# 17 29# 4 64# 9 E2 # 100 M1 +E 2 ( E2 ) # 1131 . 82 341 . 91 4 1153 . 53 345 . 00 4 614 . 32 10 100 16 ( E2 ) 0 . 0161 1194 . 29 404 . 36 5 100 ( E2 ) 0 . 0447 1284 . 80 394 . 00 4 100 12 776 . 57 20 994 . 61 15 0.9 3 0 . 17 4 91 39 M1 +E 2 0 . 59 23 0 . 135 17 26 10 61 7 E2 1355 . 31 657 . 62 15 100 ( E2 ) 1372 . 93 675 . 17 12 100 M1 +E 2 0 . 0138 1 . 5 +11–5 0 . 021 16 Continued on next page (footnotes at end of table) 76 Iγ: Iγ=18 from Ir(α,xnγ) (1974Tj02). 19 3 A u 114 – 5 79 NUCLEAR DATA SHEETS Adopted Levels, Gammas (continued) γ( 1 9 3 A u ) ( c o n t i n u e d ) E(level) 1379 . 96 1398 . 49 516 . 7 4 52 15 692 . 54 12 97 30 840 . 9 3 100 21 535 . 15 5 100 20 608 . 70 10 1400 . 38 Iγ‡ Eγ† 4 . 7 13 Mult.† α δ ( E2 ) M1 +E 2 0 . 0124 1 . 4 +12–5 ( E2 ) ( M1 +E 2 ) 0 . 04 3 0 . 0165 700 . 88 12 15 3 1 . 2 +9–5 0 . 022 13 509 . 43 6 37 18 M1 +E 2 1 . 4 +11–4 0 . 045 20 537 . 08 5 100 13 M1 +E 2 0 . 8 +5–4 0 . 050 16 1109 . 80b 17 725 . 60a 15 7 2 0 . 9@ 3 100 E2@ 0 . 0113 1433 . 48 624 . 91 10 100 ( E2 ) 0 . 0155 1455 . 18 591 . 72 8 1413 . 05 1418 . 9 757 . 63 20 32 5 100a 80 23 ( E2 ) 0 . 0176 100 20 ( E2 ) 0 . 0102 E1 1477 . 17 668 . 48 12 100 1478 . 4 6 6 9 . 8@ 3 100 1496 . 28 364 . 47 4 100 14 706 . 30 12 957 . 42b 25 1205 . 3 6 1514 . 19 1572 . 53 1575 . 61 1132 . 50 20 643 . 41a 12 290 . 75 5 444 . 0 4 1603 . 19 1630 . 23 1654 . 72 1680 . 34 1776 . 03 40 8 M1 0 . 375 3 . 5 10 ( E2 ) 0 . 0127 0 . 0116 877 . 76 17 100 13 1285 . 20 20 1094 . 5# 4 1221 . 1# 5 46# 14 1378 . 5# 4 1565 . 0# 6 1603 . 4#c 3 100# 29 19# 10 350#c 70 29 4 94# 28 E2 ( E2 ) 274 . 95 7 0 . 56 14 345 . 46 4 8.6 9 739 . 47 17 1.3 8 ( E 2 , M1 ) 0 . 021 11 3.1 6 ( E2 ) 0 . 0099 932 . 37 15 725 . 60a 15 100 10 100a 1276 . 38# 25 790 . 6 4 895 . 0 5 ( M1 +E 2 ) M1 +E 2 1 . 2 +9–4 0 . 37 +13–17 0 . 26 16 0 . 215 14 ( E2 ) ( E2 ) # 23 10 100 17 ( E2 ) 17 6 1.8 6 1394 . 50 20 100 15 360 . 51 5 14 4 ( E2 ) ( M1 +E 2 ) 870 . 05 17 100 14 ( E2 ) 1035 . 54 17 62 10 ( E2 ) 1 . 0 +6–4 0 . 14 6 200 . 30 7 913 . 06 15 985 . 9 4 1815 . 40 100 100a ( E2 ) 491 . 3 4 1815 . 1 ( E1 ) 1.3 5 29 8 885 . 3 4 1794 . 90 13 3 0 . 11 4 0 . 0119 17 3 816 . 81 20 1733 . 43 ( E2 ) 684 . 77 12 982 . 2 4 1684 . 73 39 18 1 . 3 +5–4 712 . 15 12 766 . 97 20 1658 . 0 0 . 0133 M1 +E 2 11 6 7 . 2 22 100 11 E2 3 . 6 11 1267 . 90 20 19 3 ( E2 ) 1486 . 10 25 94 11 ( E2 ) 421 . 8 4 100 25 1004 . 6 6 58 18 1097 . 15 15 1776 . 4# 4 1815 . 6# 4 58 15 32# 8 952 . 0 4 1026 . 0 6 1525 . 1 3 100# 24 9 3 2.3 9 100 14 ( E2 ) Continued on next page (footnotes at end of table) 77 19 3 A u 114 – 5 79 19 3 A u 114 – 6 79 19 3 A u 114 – 6 79 NUCLEAR DATA SHEETS Adopted Levels, Gammas (continued) γ( 1 9 3 A u ) ( c o n t i n u e d ) E(level) 1829 . 90 Iγ‡ Eγ† 37a 19 431 . 46 5 21 6 ( M1 ) 0 . 130 545 . 05 6 100 22 ( E2 ) 0 . 0212 939 . 1 4 18 5 966 . 1 4 14 5 1861 . 91 1862 . 2# 4 100# 19 1869 . 27 1171 . 50 17 100 22 1578 . 9 4 1013 . 3 4 1085 . 7 6 1178 . 60 20 1585 . 5 4 1915 . 19 1052 . 00 20 1217 . 7 5 1624 . 5 3 1930 . 02 299 . 82 4 354 . 5 5 529 . 51 7 645 . 23 12 1040 . 5 3 21 5 50 13 18 7 100 23 100 17 1075 . 90 25 1241 . 30 20 54 8 18 3 35 20 8 . 2 23 68 9 3 . 8 11 14 . 6 21 100 9 2012 . 19 1149 . 3 6 1314 . 51a 20 100a 38 623 . 10 10 738 . 60b 17 1160 . 18 20 2037 . 46 ( E2 ) 46 7 E1@ B(E1)(W.u.)=1.05×10–7 13. ( E3 ) @ B(E3)(W.u.)=2.3 4. 6 2 3 . 8 11 18# 6 100# 24 3 . 2# 8 12 3 ( E2 ) 17 . 6 25 ( E2 ) 40 6 M1 +E 2 560 . 0 4 639 . 0a 4 9 4 11a 4 752 . 70 15 11 . 7 23 ( M1 +E 2 ) 6 . 4 13 ( E2 ) 1339 . 60 20 567 . 2#b 5 100 13 5# 2 ( E2 ) 0 . 56 +10–17 0 . 020 10 1 . 1 +5–3 0 . 058 19 100# 29 62# 16 1.9 6 487 . 41 6 25 5 662 . 73 12 18 5 778 . 37 20 13 7 1365 . 10 22 1 3 2 . 9@ 3 0 . 070 28 ( E2 ) 53 8 1199 . 5 3 1 . 0 +6–4 3 . 4 11 1174 . 00 17 330 . 0 5 0 . 0156 10 6 461 . 83 6 953 . 7# 4 0 . 0140 E2 ( E2 ) 1662 . 1# 4 2079 . 8 ( E2 ) 100 12 1147 . 20 20 2063 . 03 E2 1325 . 50 20 883 . 6 4 2043 . 3 0 . 0218 0 . 0144 1.8 6 1 2 4 9 . 3@ 3 639 . 0a 4 2023 . 45 ( E2 ) ( E2 ) 100 15 1 0 0@ 7 2 6@ 3 35a 18 1721 . 3 5 0 . 345 <10 1648 . 5 3 5 2 7 . 9@ 3 1756 . 7# 5 1976 . 6# 4 2014 . 6# 4 M1 2 . 6 12 1946 . 9 2014 . 7 ( E2 ) 3.0 9 1.4 5 654 . 51 15 ( E2 ) 57 13 2.9 9 1048 . 5 4 ( E2 ) 5 . 3 15 1139 . 5 5 1232 . 20 20 Comments 143#c 28 36# 11 1066 . 0 6 1639 . 4 3 1939 . 18 α δ 429 . 51a 5 1539 . 0 5 1603 . 4#c 3 1824 . 3# 4 1876 . 28 Mult.† 2.7 8 100 13 100 M1 +E 2 ( M1 , E 2 ) 0 . 018 9 ( M1 ) ( E2 ) ( E2 ) @ 1 . 69 Continued on next page (footnotes at end of table) 78 B(E2)(W.u.)=30.5 18. 19 3 A u 114 – 7 79 19 3 A u 114 – 7 79 NUCLEAR DATA SHEETS Adopted Levels, Gammas (continued) γ( 1 9 3 A u ) ( c o n t i n u e d ) E(level) 2087 . 1 2104 . 42 2130 . 38 295 . 4 4 53 12 ( E2 ) 32 6 ( E2 ) 731 . 95 12 2140 . 0 1442 . 00 20 1 9 3 . 1@ 3 643 . 41a 12 661 . 7 4 963 . 1 6 2196 . 87 27 8 100 30 1869 . 2 3 7 5 3 . 8@ 3 100 2279 . 38 1351 . 52 25 50 15 1517 . 50 25 100 15 19 3 20 9 2324 . 7 2377 . 7 2476 . 4 100 18 58 15 100 21 42 12 5 . 2 21 100 15 1746 . 3 3 88 18 1137 . 80 25 29 9 1400 . 0 3 41 12 1481 . 6 4 100 26 1752 . 2 3 2 4 4 . 9@ 3 100 41 12 1 0 0@ 1 2 4 1@ 1 2 100 1 6 1 . 8@ 3 100 2 2 4 . 5@ 3 4 3 6 . 7@ 3 4 5 4 . 0@ 3 100 3441 . 7 3895 . 9 4063 . 2 5 1 8 . 5@ 3 7 4 1 . 0@ 3 6 2 1 . 5@ 3 ( E2 ) 1.2 6 2486 . 5 2923 . 2 ( M1 ) 5 . 3 15 2700 . 9 3154 . 9 ( E 2 , M1 ) ( M1 ) 7 3 1771 . 6 4 2 0 4 . 9@ 3 2 9 8 . 0@ 3 9 8 . 7@ 3 ( E2 ) 93 16 1581 . 9 3 905 . 1 5 0 . 0258 38 11 970 . 0 4 1476 . 70 20 ( M1 ) 49 16 1123 . 2 3 808 . 3 6 0 . 0490 2.3 9 25 6 1988 . 6 6 2291 . 00 100 17 100 21 900 . 4 6 2285 . 28 3 . 8 15 1916 . 4 3 801 . 73 25 ( M1 ) 1.4 7 1697 . 0 3 1392 . 00 20 0 . 0103 23 8 9 3 1556 . 9 3 ( E2 ) @ 100 26 746 . 11 20 854 . 80 25 0 . 0181 30 13 13 4 1925 . 5 4 ( E2 ) ( M1 , E 2 ) 41 11 626 . 22 10 1503 . 80 25 0.8 4 ( E 2 , M1 ) 5 . 8 24 1461 . 60 20 1693 . 4 6 ( M1 ) ( M1 +E 2 ) @ 42 13 100 30 803 . 22 25 2255 . 11 26a 10 583 . 32 8 1070 . 6 6 2215 . 19 100 1459 . 8 4 798 . 39 25 0 . 0110 ( E 2 , M1 ) 36 9 100 21 17 5 1499 . 2 4 2205 . 93 100 15 1294 . 3 4 1906 . 4 5 2201 . 72 ( M1 , E 2 ) 100 25 1007 . 8 4 2172 . 7 Comments 13 5 1196 . 4 3 2139 . 77 2159 . 02 α 36a 14 100 14 1261 . 9 3 1432 . 40 20 2157 . 63 Mult.† 6 6 8 . 2@ 3 1314 . 51a 20 1406 . 60 20 2125 . 37 Iγ‡ Eγ† 100 100 100 100 100 ( M1 ) @ ( E2 ) @ 0 . 600 B(M1)(W.u.)>0.0046. 0 . 349 B(E2)(W.u.)=17 4. [ E1 ] 0 . 0275 B(E1)(W.u.)=2.2×10–6 8. ( E2 ) @ ( E2 ) @ 5 . 59 B(E2)(W.u.)=39.3 24. 0 . 804 B(E2)(W.u.)=0.28 10. ( E2 ) @ ( E2 ) @ 0 . 257 B(E2)(W.u.)=6.6 4. ( E2 ) @ ( E2 ) @ 0 . 0331 0 . 0239 ( E2 ) @ ( E2 ) @ 0 . 0157 0 . 0366 B(E2)(W.u.)>0.85. 0 . 0107 Footnotes continued on next page 79 19 3 A u 114 – 8 79 19 3 A u 114 – 8 79 NUCLEAR DATA SHEETS Adopted Levels, Gammas (continued) γ( 1 9 3 A u ) ( c o n t i n u e d ) † From ‡ Relative photon branching from each level; from § From 193Hg 193Au ε decay (11.8 h), unless otherwise noted. 193Hg ε decay (11.8 h), unless otherwise noted. IT decay (3.9 s). # From ε decay (3.80 h). @ From Ir(α,xnγ). & Weighted average of measurements from 1970Fo08 (193Au IT decay) and 1974ViZS (193Hg decays). a Multiply placed; intensity suitably divided. b Placement of transition in the level scheme is uncertain. 193Hg c Multiply placed; undivided intensity given. (B) h11/2 decoupled (C) h11/2 decoupled band (D) rotation–aligned band (favored sequence). (unfavored sequence) band based on 31/2+ (A) g.s. band level (43/2–) 3895.9 (39/2–) 3154.9 (35/2–) 2700.9 (31/2–) 2476.4 (27/2–) 2377.7 (23/2–) 2172.7 1478.4 (11/2+) 1153.53 (9/2)+ 808.57 (7/2+) 539.00 5/2+ 257.98 5/2+ (1/2)+ 0.0 3/2+ 4063.2 (39/2+) 3441.7 (35/2+) 2923.2 (31/2+) 2486.5 (27/2+) 2087.1 (21/2–) (25/2+) (13/2+) (43/2+) (B)(19/2)– (19/2)– 1418.9 (15/2)– 697.80 11/2– 290.19 (17/2)– 1372.93 (13/2)– 863.35 (B)(15/2)– (B)11/2– (A)5/2+ (A)3/2+ 19 3 Au 79 114 193Au Parent 193Au: IT Decay (3.9 s) 1970Fo08 E=290.19 3; Jπ=11/2–; T1/2=3.9 s 3; %IT decay=99.97. 1970Fo08: activity from 193Hg ε (3.80 h) + 193Hg (11.8 h) decay (produced by spallation of Pb by 600–MeV protons, ms). Measured Eγ, Iγ (Ge(Li)), E(ce), Ice (mag spect), γ(ce), (ce)(ce)t. Others: 1974ViZS, 1958Br88, 1955Br12, 1955Br41, 1955Fi30, 1954Gi04, 1952Fi06. 193Au Levels The decay scheme is that proposed by 1970Fo08. E(level)† 0.0 38 . 23 2 T1/2† Jπ† 3 / 2+ (1/2)+ 257 . 98 2 5 / 2+ 290 . 19 3 11 / 2– Comments 17 . 65 h 15 3 . 81 ns 45 ps 3.9 20 s 3 18 T1/2: from (ce(L)(32.21γ))(ce(K)(257.95γ)t (1970Fo08). %IT=99.97. T1/2: from 1955Fi30. Other: 3.8 s 3 (1955Br41). † From adopted levels, unless otherwise noted. 80 19 3 A u 114 – 9 79 19 3 A u 114 – 9 79 NUCLEAR DATA SHEETS 193Au IT Decay (3.9 s) 1970Fo08 (continued) γ(193Au) All data are from 1970Fo08, unless otherwise noted. Iγ normalization: From I(γ+ce)(219.75γ)+I(γ+ce)(257.97γ)=99.5. Branching: 99.97% from I(γ+ce)(258.0γ (M1) in 193Au): I(γ+ce)(135.5γ (M4) in 193Pt)=1000:0.3 (1955Br41). Ratio deduced from ce–intensities and theoretical conversion coefficients (not given). Eγ† 32 . 21 3 E(level) I㇧ 290 . 19 α δ Mult. E3 93000 I(γ+ce)§ 99 . 5 Comments Eγ: from 1974ViZS. Mult.: from (M1+M2+M3)/(M4+M5)=11.3 (1958Br88); other subshell ratios allow E2 or E3, but (M1+M2+M3)/(M4+M5)=71.2 (E2 theory), =9.13 (E3 theory)) is consistent only with E3. L2/L3=0.65 (1954Gi04); theory: L2/L3(E3)=0.71, L2/L3(E2)=0.90. I(γ+ce): from 100 – I(γ+ce)(289.8γ). 38 . 22 2 38 . 23 M1 +E 2 0 . 42 +5–4 91 13 4 . 81 26 I(γ+ce): from I(γ+ce)(38.22)=I(γ+ce)(219.75) in level scheme. Mult.: from L1:L2:L3=42 4:98 9:100; theory: L1:L2:L3=41.9 5: 97 7: 100 7. δ: from L1/L3=0.50 10, weighted average from 1970Fo08 and 1974ViZS (193Hg (3.80 h) decay). 219 . 75 5 257 . 98 3 . 77 20 E2 0 . 276 Mult.: from K:L1:L2:L3=14.0 15:2.35 30:6.7 7: 5.1 6; theory: K:L1:L2:L3=0.136:0.0174: 0.0548: 0.0331. 257 . 97 3 257 . 98 65 . 9 M1 +E 2 0 . 62 4 0 . 422 9 Mult.: from L1:L2:L3=100:22 4:4.7 +47–30; theory: L1:L2:L3=100 3: 24.6 12: 9.4 8. δ: from weighted average of ce(L) ratios from 1970Fo08 and 1974ViZS (193Hg (11.8 h) decay). 289 . 8 290 . 19 [ M4 ] 18 . 2 0.5 Eγ,I(γ+ce): from 1955Br41. I(γ+ce): deduced from I(ce) relative to I(ce 257.97γ) and theoretical conversion coefficients (values not given by 1955Br41). I(γ+ce): upper limit ≈3% from comparison of the ce–lines of the 290 and 256 transitions (1954Gi04). † Deduced from E(ce); calibrated with E(ce(K)) of the 117.99 2 γ in ‡ Calculated from intensity balances in the level scheme, the conversion coefficients, and the ratio § For absolute intensity per 100 decays, multiply by 0.9997. 193Pt. I(219.75γ)/I(257.97γ)=0.0572 30 (1970Fo08). Decay Scheme Intensities: I(γ+ce) per 100 parent decays 11/2– 5/2+ (1/2)+ 28 329.8 [ 25 .21 EM4] 0 217.97 3 9.7 M 99 .5 38 5 1+ .5 .22 E2 E2 M1 4.8 94 +E 2 4.8 1 %IT=99.97 290.19 257.98 38.23 0.0 3/2+ 19 3 Au 114 79 81 3.9 s 45 ps 3.81 ns 17.65 h 19 3 A u 114 – 1 0 79 193Hg Parent 19 3 A u 114 – 1 0 79 NUCLEAR DATA SHEETS 193Hg: ε Decay (3.80 h) 1974ViZS E=0.0; Jπ=3/2–; T1/2=3.80 h 15; Q(g.s.)=2343 14; %ε+%β+ decay=100. Sources from (p,xn) reactions on gold, E(p)=70, 80 MeV, isotope separation; measured Eγ, Iγ, E(ce), Ice, (Ge(Li), Si(Li) (FWHM=1.2–2.5 keV), mag spect (resolution=0.1%)), Eβ+, Iβ+ (mag spect), γγ coin. Other studies of 193Hg decays: 1976Di15, 1976ViZM, 1975Zg01, 1970Fo08, 1970Pl01, 1962Di05, 1958Br88, 1955Br12, 1954Gi04. 1974ViZS studied 1) freshly prepared Hg sources to measure the decay curves of the transitions, and 2) Hg sources which had reached transient equilibrium (40 to 100 hours after preparation). In the first case distinction could be made between transitions following the decay of 193Hg (3.80 h) and 193Hg (11.8 h). In the second case the relative intensities of transitions in both decays could be measured since in the metastable state decays to the ground state 193Hg 193Hg (11.8 h) (3.80 h) with %IT=7.2, and all transitions now decay with a T1/2=11.8 h. 193Au Levels The decay scheme is from 1974ViZS and is constructed from transitions showing a 3.80 h component in the 193Hg. pre–equilibrium sources of For high energy levels fed directly by ε decay, the entire γ intensity is assigned to this decay. For the medium levels, which are not directly fed by ε+β+ but are fed by γ's from both 193Hg decays, the intensity of the deexciting transitions is divided according to the feeding. 0.0 T1/2† Jπ† E(level)† 3 / 2+ Comments 17 . 65 h 15 38 . 23 2 (1/2)+ 3 . 81 ns 224 . 80 3 (3/2)+ <0 . 03 ns 45 ps T1/2: from (ce(K)(186.56γ))(ce(L)(38.22γ))t (1970Fo08); other: 4.2 ns 6 18 (γ(ce)(t) 1962Ja04). 257 . 98 2 5 / 2+ 290 . 19 3 11 / 2– 381 . 63 4 5 / 2+ 508 . 25 4 539 . 00? ‡ 4 7 / 2– 827 . 67 14 ( 1 / 2+ , 3 / 2+ ) 3.9 T1/2: from γ(ce(K) 187)(t) (1970Fo08). 20 s 3 0 . 29 ns 2 1089 . 23 9 1118 . 96 12 (1/2,3/2,5/2)+ 1477 . 17 12 ( 7 / 2 , 9 / 2 , 11 / 2 ) – 1603 . 19 19 ( 3 / 2– , 5 / 2+ ) 1658 . 0 3 1/2(+) 1815 . 1 3 (1/2,3/2) , (5/2)+ 1861 . 91 21 ( 1 / 2 , 3 / 2 , 5 / 2+ ) From adopted levels. to 5/2(+) 2014 . 7 3 2043 . 3 3 1/2,3/2,5/2 † From adopted levels, unless otherwise noted. ‡ This level is only fed by the 289.0γ from the 827.7 level. However, since the 827.7 level is seen only in this decay, and the 539.0 level is seen only in the 193Hg (11.8 h) decay it is not clear to which decay the 289.0γ belongs, or whether the placement of the γ is correct. β + ,ε D a t a The study of β+ spectrum shows only one major β+ group with E(β+)=1287 15 (1974ViZS,1976Di15). From the intensity balance in the level scheme shown (Σ I(γ+ce)(to this β+ group does not go directly to 193Au 193Au g.s.) – I(γ+ce)(193Hg it decay)≈0) 1974ViZS has deduced that g.s. From intensity balance in the level scheme it appears that the group feeds the 224.8 level, resulting in Q(ε)=2534 15. However, 2003Au03 evaluation of atomic masses adopted Q(ε)=2343 14, corresponding to feeding both the ground and first excited states, and was adopted in this evaluation. The fact that there is no significant direct ε+β+ decay from the 3/2– 193Hg to the 3/2+ g.s. and 1/2+ level in 193Au seems surprising. However, no systematics for these transitions has been established. In A=189 and A=191 the log ft's for these transitions have not been measured. In A=195 and A=197 Jπ(Hg)=1/2– and the log ft's for the transitions to the 3/2+ Au g.s. are 7.3 and ≥8.0. Jπ(193Hg (3.80 h))=3/2–. Eε E(level) Iε‡ Log ft I(ε+β+)†‡ ( 300 14 ) 2043 . 3 1.6 4 6 . 12 13 1.6 4 ( 328 14 ) 2014 . 7 2.1 5 6 . 10 12 2.1 5 ( 481 14 ) 1861 . 91 4.0 6 6 . 22 8 4.0 6 ( 528 14 ) 1815 . 1 3.4 7 6 . 39 10 3.4 7 ( 685 14 ) 1658 . 0 2.6 6 6 . 76 11 2.6 6 ( 740 14 ) 1603 . 19 3.6 6 6 . 69 8 3.6 6 ( 1224 14 ) 1118 . 96 24 3 6 . 34 6 24 3 Continued on next page (footnotes at end of table) 82 19 3 A u 114 – 1 1 79 19 3 A u 114 – 1 1 79 NUCLEAR DATA SHEETS 193Hg ε Decay (3.80 h) 1974ViZS (continued) β+,ε Data (continued) Eε ( 1254 14 ) 1089 . 23 ( 1515 14 ) 827 . 67 Iε‡ Iβ+‡ E(level) 0 . 0072 14 I(ε+β+)†‡ Log ft 3 . 2 21 7.2 3 3 . 2 21 9 . 2 13 6 . 95 7 9 . 2 13 ( 1961 14 ) 381 . 63 0 . 12 6 13 6 7 . 03 21 13 6 ( 2118 14 ) 224 . 80 0 . 56 7 34 4 6 . 68 6 35 4 ( 2305 14 ) 38 . 23 <0 . 41 <15 † From intensity balance in the level scheme. ‡ For intensity per 100 decays, multiply by 1.0. >7 . 1 Comments Eε: E(β+)=1287 15 (1974ViZS,1976Di15,1976DiZM). <15 γ(193Au) All data are from 1974ViZS, unless otherwise noted. The transitions listed showed a 3.80 h component in the pre–equilibrium sources. Iγ normalization: From Σ I(γ+ce)(to 193Au g.s.)=100. The Iγ normalization=6.9 4 thus obtained is in good agreement with Iγ normalization=6.8 obtained by applying the half–life correction to the equilibrium counting rate of 100 disintegrations of Eγ 32 . 21 3 193Hg E(level) (11.8 h). Iγ†c 290 . 19 Mult.‡ δ‡ α E3 93000 I(γ+ce)c 0.5 2 Comments I(γ+ce): from I(γ+ce)(32.21γ)=I(γ+ce) (218.07γ). Mult.: see 38 . 24 3 38 . 23 M1 +E 2 0 . 42 +5–4 91 14 7 . 7 10 193Hg (11.8 h) decay. Mult.: L1:L2:L3=205 12: 320 20: 330 20; M1:M2:M3=43 5: 85 9: 95 9. Theory: L1:L2:L3=165 35: 322 3: 300, M1:M2:M3=43 9: 89 1: 95. δ: from L1/L3=0.50 10, weighted average from 1974ViZS and 1970Fo08 (193Au IT decay). I(γ+ce): I(γ+ce)(from equilibrium source) – I(γ+ce)(attributed to h) decay. I(γ+ce)=Σ 193Hg(11.8 Ice + Iγ=11.7 8. 126 . 56 10 508 . 25 186 . 56 3 224 . 80 0 . 008# 4 ( E1 ) M1 +E 2 0 . 231 0 . 26 5 1 . 23 2 193Hg Mult.: from 4.9 4 (11.8 h) decay. Mult.,δ: L1:L2:L3=31 3: 4.5 5: 1.1 2, K/L=6.0 7; theory: L1:L2:L3= 31: 4.5 6: 1.2 4, K/L=5.60 14. I(γ+ce): Σ Ice + Iγ; Iγ=2.22 21 deduced from Ice(K)=2.20 15 and α(K)=0.99 2. 218 . 07 4 508 . 25 0 . 283 Mult.: from 257 . 98 0 . 4# 1 0 . 07§ 2 E2 219 . 75 4 E2 0 . 276 Mult.: see 224 . 81 4 224 . 80 0 . 15 3 ( E2 ) 0 . 257 Iγ: other: Iγ(224.8γ)/Iγ(185.6γ)<0.052 258 . 00 4 289 . 0d 257 . 98 1 . 3§ 3 M1 +E 2 0 . 422 9 Mult.,δ: from 827 . 67 0 . 16 8 193Hg 193Hg (11.8 h) decay. (11.8 h) decay. (1970Fo08). 0 . 62 4 193Hg (11.8 h) decay. Iγ: estimated from coincidence data. It is not clear whether this γ belongs in this decay or the 193Hg (11.8 h) decay. See comment with the 539.0 level. 381 . 60 4 381 . 63 2.3 7 M1 +E 2 1 . 2 +5–3 0 . 10 4 Iγ: from Iγ=3.1 6 in equilibrium source less Iγ=0.8 2 attributed to 193Hg (11.8 h) decay. Mult.,δ: α(K)exp=0.081 14, K/L1=5.7 10; theory: α(K)=0.081 17, K/L1=6.83 9. x429 . 51b 5 ( M1 +E 2 ) 0 . 06 3 Mult.: α(K)exp=0.046 12; theory: α(K)(M1)=0.072, α(K)(E2)=0.024. 446 . 5 5 5 6 7 . 2@d 5 827 . 67 2043 . 3 0 . 10 3 0 . 007 3 Continued on next page (footnotes at end of table) 83 19 3 A u 114 – 1 2 79 19 3 A u 114 – 1 2 79 NUCLEAR DATA SHEETS 193Hg ε Decay (3.80 h) 1974ViZS (continued) γ( 1 9 3 A u ) ( c o n t i n u e d ) Eγ 580 . 97 8 Iγ†c E(level) 1089 . 23 Mult.‡ α Comments Mult.: α(K)exp=0.010 7; theory: α(K)(E1)=0.00524, 0.6 3 α(K)(E2)=0.0138. 0 . 0270 Mult.: α(K)exp=0.017 5. Theory: α(K)(M1)=0.0222, 789 . 21 20 827 . 67 0 . 65 13 ( M1 ) 827 . 81 20 827 . 67 0 . 57 10 ( E2 ) Mult.: α(K)exp=0.0068 20; theory: α(K)=0.00671. 861 . 11 17 1118 . 96 1.8 3 E2 Mult.: α(K)exp=0.0061 16, K/L12=6.1 13. Theory: α(K)(E2)=0.00737. α(K)=0.00622, K/L12=5.47. x920 .0 4 953 . 7 4 . 5& 6 0 . 11 3 2043 . 3 0 . 14 4 x1040 0 . 33 7 1080 . 7 3 1118 . 96 0 . 53 8 1094 . 5 4 1603 . 19 0 . 080 24 1118 . 84 17 1118 . 96 1 . 16 17 1221 . 1 5 1276 . 38a 25 1603 . 19 0 . 039 12 1658 . 0 0 . 38 8 1378 . 5 4 1603 . 19 0 . 085 25 Mult.: α(K)exp=0.0049 12; theory: α(K)(E2)=0.00378, ( E2 ) α(K)(M1)=0.0092. 1565 . 0 6 1603 . 19 0 . 016 8 1603 . 4e 3 1603 . 19 0 . 30e 6 1861 . 91 0 . 30e 6 Mult.: α(K)exp=0.0036 13. Theory: α(K)=0.00295. ( E2 ) Mult.: α(K)exp=0.0026 16. Theory: α(K)(E2)=0.020, α(K)(M1)=0.039. 1662 . 1 4 2043 . 3 0 . 087 22 1756 . 7 5 2014 . 7 0 . 045 14 1776 . 4 4 1815 . 1 0 . 12 3 1815 . 6 4 1815 . 1 0 . 37 9 1824 . 3 4 1861 . 91 0 . 075 22 1862 . 2 4 1861 . 91 0 . 21 4 1976 . 6 4 2014 . 7 0 . 25 6 2014 . 6 4 2014 . 7 0 . 008 2 † Intensity determined in the disintegrations of 193Hg 193Hg (11.8 h) source in equilibrium with the 193Hg (3.80 h) decay. Intensity per 100 (11.8 h). Applying the half–life correction for transient equilibrium, the intensity is per 148 193Au (3.80 h) decays. ‡ From α(K)exp and/or ce subshell ratios, except where noted. The photon and ce intensity scales were normalized through the § From the decay scheme of 1974ViZS 2.3% of the decay from the 258 level follows decay from levels seen in theoretical α(K) of 218.07, 219.75, 573.25 and 932.37 transitions (1974ViZS). 98% follows decay from 193Hg 193Hg (3.80 h) g.s., (11.8 h) isomer. From intensity balance there is no direct ε feeding to this level. # Iγ divided on the basis of feeding from high levels as shown on the level scheme. From intensity balance there is no direct ε feeding. For the 508.23 level 7% of decay is from 3.80 h decay, 93% from 11.8 h decay. @ γ belongs in this decay from composite T . Placed from the 2043 level by 1974ViZS feeding the 1477 level where the deexciting 1/2 γ shows no composite T1/2. However, this γ is weak and would contribute only ≈10% or less to the deexciting γ. & Multiply placed γ by 1974ViZS in composite level scheme. γ placed from the 2043 level to a 1004 level in 193Hg(3.80 h) decay. However, the multiply placed 746.11γ from the 1004 level is weaker than the 1040γ and is not shown as possessing a composite T1/2. a γ shows composite T . Placement here supported by γγ results. 1974ViZS also shows the γ from the 2139 level in the 1/2 193Hg(11.8 h) decay with no γγ support for that placement. The evaluator has included total Iγ in this decay. b γ is shown as exhibiting composite T 1/2 in pre–equilibrium source, but appears to be in coincidence only with γ's from 193Hg(11.8 c h) decay. For absolute intensity per 100 decays, multiply by 6.9 4. d Placement of transition in the level scheme is uncertain. e Multiply placed; undivided intensity given. x γ ray not placed in level scheme. 84 19 3 A u 114 – 1 3 79 19 3 A u 114 – 1 3 79 NUCLEAR DATA SHEETS ε Decay (3.80 h) 193Hg 1974ViZS (continued) Decay Scheme Intensities: I(γ+ce) per 100 parent decays (1/2,3/2,5/2+) %ε+%β+=100 Q+=234314 Iβ+ 2043.3 11 1018.8 4 8680.7 (E 2 58 1.11 3.7 ) 8 0.9 E .0 7 2 4.1 12. 4 (E (M2) 3 0.61) .9 1.19 4.6 (1/2,3/2),(5/2)+ 1/2(+) to 5/2(+) (3/2–,5/2+) 82 787.81 449.21 286.5 9.0 21 128.07 6.5 E 6 2 (E 3.5 32 1.60 1) . 25 21 E M1+ 0.0 8 E2 7 3 . 0 21 0 3 9 17 22 .75 M1+ .5 4 E E . 8 18 1 2 2 6.5 (E 0 1 38 6 2) .62 3 .24 M1 1 M1 +E .3 2 +E 34 2 53 (1/2,3/2,5/2)+ (1/2+,3/2+) 7/2– 5/2+ 38 11/2– 5/2+ (3/2)+ (1/2)+ Parent 2.1 6.10 4.0 6.22 1815.1 3.4 6.39 1658.0 2.6 6.76 1603.19 3.6 6.69 1118.96 24 6.34 1089.23 3.2 7.2 0.0072 9.2 6.95 0.12 13 7.03 827.67 539.00 508.25 0.29 ns 381.63 290.19 257.98 224.80 38.23 3.9 s 45 ps <0.03 ns 3.81 ns 17.65 h 0.56 34 6.68 <0.41 <15 >7.1 1974ViZS,1970Pl01 E=140.76 5; Jπ=13/2+; T1/2=11.8 h 2; Q(g.s.)=2343 14; %ε+%β+ decay=92.8 5. 193Hg: 1974ViZS: source: from (p,xn) reactions on gold, E(p)=70, 80 MeV, ms; measured Eγ, Iγ, E(ce), Ice, (Ge(Li), Si(Li), mag spect), Eβ+, Iβ+ (mag spect), γγ coin. 1970Pl01: source: from spallation of Pb by 660–MeV protons, chem; measured Eγ, Iγ (Ge(Li), NaI(Tl)), γγ coin. Others: 1970Fo08, 1962Di03, 1962Di05, 1958Br88, 1957Br53, 1955Br12, 1954Gi04. 193Au Levels The decay scheme is deduced from that proposed by 1974ViZS from the decay of the with 193Hg 193Hg (11.8H, 13/2+) in equilibrium (3.80 h, 3/2–). The levels which are fed directly by ε and which are then deexcited by γ's observed to have a composite half–life (in the pre–equilibrium source) are omitted from this level scheme. The γ's from such levels have also been omitted. The levels which are not fed directly by ε, but are fed by γ's arising from both the 11.8 h and 3.80 h decays are included and the intensities of the deexciting γ's have been divided according to the feeding pattern. Jπ† E(level)† 0.0 3 / 2+ 38 . 23 2 (1/2)+ 224 . 80 3 (3/2)+ 257 . 98 2 5 / 2+ 290 . 19 3 11 / 2– 381 . 63 4 5 / 2+ 508 . 25 4 7 / 2– 539 . 00 4 ( 7 / 2+ ) 687 . 45 5 ( 7 / 2+ , 9 / 2+ ) 697 . 80 4 ( 15 / 2 ) – 789 . 93 5 9 / 2– 808 . 57 6 (9/2)+ 863 . 35 5 ( 13 / 2 ) – 890 . 78 4 9 / 2– 929 . 12 5 T1/2† Comments 17 . 65 h 15 3 . 81 ns 45 ps 3.9 18 20 s 3 0 . 29 ns 1 . 2 ns 2 1 T1/2: from (ce(K) 382.47)(ce(K) 218.07)t (1970Ba56). T1/2: from γce(t) (1975Be29). ( 9 / 2+ ) 1131 . 82 6 7 / 2– , 9 / 2– , 11 / 2– 1153 . 53 6 ( 11 / 2+ ) Continued on next page (footnotes at end of table) 85 Log ft 6.12 2014.7 19 3 Au 79 114 ε Decay (11.8 h) Iε 1.6 1861.91 0.0 3/2+ 193Hg 3.80 h 19 3 Hg 113 80 20 1914.6 1776.6 0.0 56 18 .7 1.755 0 .3 1862.2 1 1624.3 1.4 18 03.4 0.5 1 2 17 5.6 & 2 76 12 .4 2.6 .1 0.8 16 76.38 0 3 3 ( 15 .4 E2 ) 1365.0 & 2 1278.5 0.12.1 .6 2 10 1.1 0.51 94 9 0 .5 .2 0.57 5 1/2,3/2,5/2 0.0 3/2– & Multiply placed; undivided intensity given 19 3 A u 114 – 1 4 79 19 3 A u 114 – 1 4 79 NUCLEAR DATA SHEETS 193Hg ε Decay (11.8 h) 193Au Levels (continued) Jπ† E(level)† Jπ† E(level)† Jπ† E(level)† 1974ViZS,1970Pl01 (continued) 1194 . 29 7 ( 9 / 2– , 11 / 2– , 13 / 2– ) 1654 . 72 16 ( 9 / 2– , 11 / 2 , 13 / 2+ ) 2063 . 03 7 1284 . 80 5 9 / 2– , 11 / 2– 1680 . 34 17 ( 11 / 2– , 13 / 2– ) 2104 . 42 15 ( 11 / 2 , 13 / 2 ) – 1355 . 31 8 ( 11 / 2 1684 . 73 19 ( 9 / 2– 2125 . 37 19 ( 11 / 2– ) t o 15 / 2– ) t o 13 / 2– ) 11 / 2– , 13 / 2– , 15 / 2– 1372 . 93 10 ( 17 / 2 ) – 1733 . 43 10 ( 15 / 2– ) 2130 . 38 12 ( 11 / 2– 1379 . 96 11 ( 11 / 2+ , 13 / 2+ ) 1776 . 03 7 11 / 2– 2139 . 77 19 ( 13 / 2– , 15 / 2– ) t o 15 / 2– ) 1398 . 49 5 ( 13 / 2 ) – 1794 . 90 15 ( 13 / 2– ) 2157 . 63 16 ( 11 / 2– ) 1400 . 38 5 11 / 2– 1815 . 40 23 ( 9 / 2– , 11 / 2– , 13 / 2– ) 2159 . 02 9 ( 11 / 2– 1413 . 05 16 ( 9 / 2– , 11 / 2 , 13 / 2+ ) 1829 . 90 5 ( 11 / 2– , 13 / 2– ) 2196 . 87 20 ( 11 / 2– , 13 / 2 , 15 / 2– ) 2201 . 72 9 ( 11 / 2– ) 2205 . 93 22 ( 11 / 2– ) 1433 . 48 12 ( 11 / 2+ , 13 / 2+ ) 1869 . 27 16 ( 11 / 2– 1455 . 18 8 ( 11 / 2 1876 . 28 17 ( 11 / 2– , 13 / 2– ) t o 15 / 2– ) t o 15 / 2– ) t o 15 / 2– ) 1477 . 17 12 ( 7 / 2 , 9 / 2 , 11 / 2 ) – 1915 . 19 17 ( 11 / 2– 2215 . 19 17 ( 13 / 2– , 15 / 2– ) 1496 . 28 7 (9/2)– 1930 . 02 6 11 / 2– , 13 / 2– 2255 . 11 13 ( 11 / 2– 1514 . 19 16 ( 7 / 2– ) 1939 . 18 11 ( 11 / 2 , 13 / 2 ) – 2279 . 38 17 ( 11 / 2– ) t o 15 / 2– ) 1572 . 53 13 ( 9 / 2– , 11 / 2 , 13 / 2+ ) 2012 . 19 17 ( 13 / 2– , 15 / 2– ) 2285 . 28 16 ( 11 / 2+ ) 1575 . 61 5 11 / 2– , 13 / 2– 2023 . 45 9 ( 11 / 2 2291 . 00 16 ( 11 / 2+ ) 1630 . 23 6 11 / 2– , 13 / 2– 2037 . 46 7 ( 11 / 2 , 13 / 2 ) – † t o 15 / 2– ) t o 15 / 2– ) From adopted levels. β+,ε Data Two β+ groups have been reported by 1958Br88: Eβ+=1.17 3 MeV, Iβ+/(I(ce(K) 913γ)+I(ce(K) 932γ))=3.1; and Eβ+=0.42 keV, no intensity given. The 1.17 MeV β+ group to the 290 keV level would give Q(g.s.)=2.34 and a 19% ε+β+ decay to the 290 keV level. This is in contradiction to the data as reported by 1974ViZS. It is possible that the 1.17 MeV seen by 1958Br88 (it is an inner group in a F–K plot which also includes 192Au β+ spectrum) is the same as the 1.287 MeV β+ group seen by 1974ViZS (also reported in 1976Di15, 1976ViZM) and assigned to 193Hg (3.80 h) decay. It is interesting to note that in the proposed decay scheme there is no direct ε+β+ branch to the 11/2+ level in 193Au. This is contrary to the situation in A=191, 195, and 197, where the log ft's for this transition are ≈7.0, 7.3, and 6.8, respectively. Jπ(193Hg (11.8 h))=13/2+. Branching: 92.8% 5; see Eε E(level) 193Hg IT decay. Iε§ Log ft† I(ε+β+)‡§ ( 193 14 ) 2291 . 00 0 . 61 11 6 . 51 13 0 . 61 11 ( 198 14 ) 2285 . 28 1.4 2 6 . 18 12 1.4 2 ( 204 14 ) 2279 . 38 0 . 59 10 6 . 60 12 0 . 59 10 ( 229 14 ) 2255 . 11 1.1 2 6 . 46 11 1.1 2 ( 269 14 ) 2215 . 19 1.3 2 6 . 58 10 1.3 2 ( 278 14 ) 2205 . 93 0.8 2 6 . 83 13 0.8 2 ( 282 14 ) 2201 . 72 1.3 2 6 . 64 9 1.3 2 ( 287 14 ) 2196 . 87 0 . 30 7 7 . 29 12 0 . 30 7 ( 325 14 ) 2159 . 02 1.0 3 6 . 91 14 1.0 3 ( 326 14 ) 2157 . 63 1.2 3 6 . 83 12 1.2 3 ( 344 14 ) 2139 . 77 0 . 38 8 7 . 39 11 0 . 38 8 ( 353 14 ) 2130 . 38 1.6 3 6 . 79 10 1.6 3 ( 358 14 ) 2125 . 37 0 . 45 9 7 . 36 10 0 . 45 9 ( 379 14 ) 2104 . 42 2.6 5 6 . 66 10 2.6 5 ( 421 14 ) 2063 . 03 4.3 6 6 . 55 7 4.3 6 ( 446 14 ) 2037 . 46 9 . 5 10 6 . 26 6 9 . 5 10 ( 460 14 ) 2023 . 45 5.4 7 6 . 54 7 5.4 7 ( 472 14 ) 2012 . 19 1.0 3 7 . 30 14 1.0 3 ( 545 14 ) 1939 . 18 8 . 0 10 6 . 54 6 8 . 0 10 ( 554 14 ) 1930 . 02 7 . 2 10 6 . 60 7 7 . 2 10 ( 569 14 ) 1915 . 19 1.6 3 7 . 28 9 1.6 3 ( 607 14 ) 1876 . 28 0 . 57 9 7 . 79 8 0 . 57 9 ( 614 14 ) 1869 . 27 1.2 3 7 . 48 12 1.2 3 ( 654 14 ) 1829 . 90 1.6 3 7 . 41 9 1.6 3 ( 668 14 ) 1815 . 40 1.3 2 7 . 53 7 1.3 2 ( 689 14 ) 1794 . 90 0 . 73 13 7 . 81 8 0 . 73 13 ( 708 14 ) 1776 . 03 7.2 8 6 . 84 6 7.2 8 ( 750 14 ) 1733 . 43 4.4 6 7 . 11 7 4.4 6 Comments log f1ut=8.16 9. Continued on next page (footnotes at end of table) 86 19 3 A u 114 – 1 5 79 19 3 A u 114 – 1 5 79 NUCLEAR DATA SHEETS 193Hg ε Decay (11.8 h) 1974ViZS,1970Pl01 (continued) β+,ε Data (continued) Eε E(level) I(ε+β+)‡§ Log ft† Iε§ Iβ+§ ( 799 14 ) 1684 . 73 1.5 3 7 . 63 9 1.5 3 ( 803 14 ) 1680 . 34 0 . 63 11 8 . 02 8 0 . 63 11 ( 829 14 ) 1654 . 72 0.6 4 8.1 3 ( 854 14 ) 1630 . 23 13 . 7 17 0.6 4 6 . 74 6 ( 908 14 ) 1575 . 61 6 . 8 10 7 . 10 7 6 . 8 10 1572 . 53 0 . 08 4 0 . 08 4 ( 987 14 ) 1496 . 28 3.7 6 9 . 03 22 7 . 961u 8 ( 1007 14 ) 1477 . 17 ( 1029 14 ) 1455 . 18 >8 . 5 0 . 37 10 log f1ut=8.36 11. log f1ut=8.8 3. 13 . 7 17 ( 911 14 ) <0 . 37 Comments log f1ut=9.8 3. 3.7 6 <0 . 37 8 . 48 12 log f1ut>9.3. 0 . 37 10 ( 1050 14 ) 1433 . 48 0 . 42 11 8 . 44 12 0 . 42 11 ( 1071 14 ) 1413 . 05 0 . 09 5 9 . 13 25 0 . 09 5 ( 1083 14 ) 1400 . 38 7 . 2 18 7 . 24 11 7 . 2 18 ( 1085 14 ) 1398 . 49 3.7 9 7 . 53 11 3.7 9 ( 1104 14 ) 1379 . 96 0 . 65 13 0 . 65 13 0.5 4 log f1ut=10.0 3. ( 1111 14 ) 1372 . 93 0.5 4 8 . 30 9 9 . 01u 4 ( 1128 14 ) 1355 . 31 0 . 11 7 9.1 3 0 . 11 7 ( 1199 14 ) 1284 . 80 3 . 9 12 7 . 60 14 3 . 9 12 log f1ut=8.6 2. ( 1289 14 ) 1194 . 29 1.2 3 8 . 18 11 1.2 3 log f1ut=9.2. ( 1330 14 ) 1153 . 53 1.1 3 8 . 24 12 1.1 3 ( 1352 14 ) 1131 . 82 ( 1620 14 ) 863 . 35 † <0 . 01 <0 . 7 >8 . 5 <0 . 7 <7 >7 . 6 <7 log f1ut>9.5. There could be an additional uncertainty in the calculated log ft values due to: 1) some uncertainty in the Q(ε) value: 2534 15 (1974ViZS), 2343 14 (2003Au03); 2) a large number of unplaced γ's (although weak) could alter the intensity balance; and 3) the 193Hg difficulty of separating the decays of the two isomers in an equilibrium source. ‡ ε+β+ feedings are from intensity imbalance at each level. § For intensity per 100 decays, multiply by 1.0. γ(193Au) Iγ normalization: From Σ I(γ+ce) (to 193Au 290.19 level)=100 in the proposed decay scheme. From β+ measurements and from intensity balance at the 290.19 level there appears to be no direct ε+β+ feeding to this level. By normalizing the intensities at this level, rather than at g.s., one avoids possibly errors introduced by mixing ratios of low energy γ's. Branching: 92.8% 5; see Eγ† 32 . 21 3 E(level) 193Hg IT decay. Iγ†b 290 . 19 Mult.‡ δ‡ α E3 90700 Comments I(γ+ce)b: 88 10. Mult.: α(L1)exp=280 110, L1:L2:L3=0.28 11: 29.7 30: 34.3 34, M2:M3:M4:M5=8.3 10: 8.1 10: 0.65 16: 0.95 24 (1974ViZS). Theory: α(L1)=581, L1:L2:L3=0.604: 32.0: 34.3, M2:M3:M4:M5=8.3: 8.60: 0.75: 1.14. 38 . 24 3 38 . 23 M1 +E 2 0 . 42 +5–4 91 14 I(γ+ce): from Σ Ice. I(γ+ce)b: 4.0 6. Mult.: from ce subshell ratios (see 193Hg 3.80 h decay). δ: from L1/L3=0.50 10, weighted average from 1974ViZS and 1970Fo08 (193Au IT decay). I(γ+ce): deduced from intensity balance at 38.2 level. I(γ+ce)=I(γ+ce)(219.75γ). 126 . 56 10 508 . 25 0 . 1 1@ 3 ( E1 ) 0 . 231 Iγ: measured Iγ=0.12 3 adjusted for contribution from 3.80 h 193Hg decay. Mult.: α(K)exp=0.008 4 (1974ViZS). Theory: α(K)(E1)=0.187. 157 . 40 10 539 . 00 0 . 037# 7 ( E2 ) 0 . 89 Mult.: α(K)exp=0.59 30 (1974ViZS). Theory: α(K)(E2)=0.304, α(K)(M1)=1.70. Continued on next page (footnotes at end of table) 87 19 3 A u 114 – 1 6 79 19 3 A u 114 – 1 6 79 NUCLEAR DATA SHEETS 193Hg ε Decay (11.8 h) 1974ViZS,1970Pl01 (continued) γ( 1 9 3 A u ) ( c o n t i n u e d ) Eγ† E(level) 165 . 53 4 863 . 35 Iγ†b 0 . 086 21 Mult.‡ δ‡ α M1 1 . 79 Comments Mult.: α(K)exp=1.7 7, K/L1=4.7 16 (1974ViZS). Theory: α(K)=1.47, K/L1=6.62. 200 . 30 7 1776 . 03 218 . 07 4 508 . 25 Iγ: γ not seen, Ice(K)=0.021 3 (1974ViZS). 5 . 6@ 8 E2 0 . 283 Iγ: measured Iγ=6.0 8 adjusted for contribution from 3.80 h 193Hg decay. Mult.: K:L1:L2=83 6: 10.2 12: 37 4, M2:M3=12.3 12: 7.6 12 (1974ViZS); K/L12=1.4, L12/L3>1.3 (1958Br88). Theory: K:L1:L2=83: 10.6: 34.0, L12/L3=2.17, M2/M3=1.60. 219 . 75 4 257 . 98 3 . 2# 5 E2 0 . 276 Iγ: measured Iγ=3.3 5 adjusted for contribution the 193Hg (3.80 h) decay. Mult.: α(K)exp=0.12 3, L1:L2:L3=4.6 4: 15.2 30: 10.0 10 (1974ViZS); theory: α(K)=0.136, L1:L2:L3=5.26:16.6:10.0. 241 . 70 4 929 . 12 0 . 17 4 ( M1 ) 0 . 623 Mult.: α(K)exp=0.53 16 (1974ViZS). Theory: α(K)(M1)=0.512, α(K)(E2)=0.0374. 258 . 00 4 257 . 98 57# 6 M1 +E 2 0 . 62 4 0 . 422 9 Iγ: measured Iγ=58 6 adjusted for contribution from the 193Hg (3.80 h) decay. Mult.: α(K)exp=0.40 8, K/L=6.6 10, L1:L2:L3=260 13:67 3:24 2 (1974ViZS). Theory: α(K)=0.334 9, K/L=5.03, L1:L2:L3=260 7: 64 3: 24.4 21. δ: from weighted average of ce(L) ratios from 1974ViZS and 1970Fo08 (193Au IT decay). 274 . 95 7 1630 . 23 0 . 082 21 ( M1 +E 2 ) 1 . 2 +9–4 0 . 26 16 α(K)=0.19 6; α(L)=0.050 9; α(M)=0.0120 15; α(N+..)=0.00376 21. Mult.: α(K)exp=0.19 6 (1974ViZS). Theory: α(K)=0.19 6. 280 . 94 5 539 . 00 0 . 22# 18 ( M1 , E 2 ) 0 . 27 15 Mult.: α(K)exp=0.41 36, K/L1=4.5 7 (1974ViZS). Theory: E2: α(K)=0.0736, K/L1=7.5; M1: α(K)=0.339, K/L1=6.7. 281 . 76 4 789 . 93 0 . 91 11 M1 +E 2 0 . 61 12 0 . 332 22 Iγ: Iγ calculated from Ice(K)=0.24 2 and α(K)=0.265 21. Mult.,δ: K/L12=4.4 6, L1/L2=4.6 9 (1974ViZS). Theory: K/L12=5.5 2, L1/L2=4.5 +11–8. 290 . 75 5 1575 . 61 1.9 4 M1 0 . 375 Mult.: α(K)exp=0.26 6, K/L12=4.3 6, L12/M12=3.3 5 (1974ViZS); other: α(K)exp=0.145 (1970Pl01), K/L1=9.8 (1958Br88). Theory: α(K)=0.309, K/L12=6.10, L12/M12=4.33. 295 . 4 4 2125 . 37 0 . 040 16 299 . 82 4 1930 . 02 0 . 62 10 M1 0 . 345 Mult.: α(K)exp=0.27 7, K/L12=6.1 12, L1/L2=8.1 18 (1974ViZS). α(K)exp=0.14 (1970Pl01). Theory: α(K)=0.284, K/L12=6.11, L1/L2=10.4. 330 . 0 5 2063 . 03 0 . 059 18 341 . 91 4 1131 . 82 3.0 5 M1 +E 2 0.9 3 0 . 17 4 Mult.: α(K)exp=0.13 3, K/L=3.6 6, L1:L2:L3=9.2 14: 1.2 3: 0.56 10 (1974ViZS); α(K)exp=0.0555 (1970Pl01). Theory: α(K)=0.13 3, K/L=4.90, L1:L2:L3=9.2 19: 2.6 5: 1.0 3. 345 . 00 4 1153 . 53 0.7 3 [ E2 ] 0 . 0690 Mult.: α(K)exp=0.052 33 (1974ViZS). Theory: α(K)(E1)=0.0162, α(K)(E2)=0.0445. Continued on next page (footnotes at end of table) 88 19 3 A u 114 – 1 7 79 19 3 A u 114 – 1 7 79 NUCLEAR DATA SHEETS 193Hg ε Decay (11.8 h) 1974ViZS,1970Pl01 (continued) γ( 1 9 3 A u ) ( c o n t i n u e d ) Eγ† 345 . 46 4 E(level) 1630 . 23 Mult.‡ Iγ†b 1 . 25 13 M1 +E 2 δ‡ α 0 . 37 +13–17 0 . 215 14 Comments Iγ: from Ice(K)=0.220 15 (1974ViZS) and α(K)=0.176 13. Mult.,δ: K/L12=5.7 7, L1/L2=9.0 2 (1974ViZS). Theory: K/L12=5.95 13, L1/L2=7.7 16. 354 . 5 5 1930 . 02 0 . 09 4 360 . 51 5 1733 . 43 0 . 40 10 364 . 47 4 1496 . 28 2.8 4 ( M1 +E 2 ) 1 . 0 +6–4 0 . 14 6 Mult.,δ: α(K)exp=0.11 3 (1974ViZS). 1 . 3 +5–4 0 . 11 4 Mult.,δ: α(K)exp=0.089 19, K/L1=7.1 13 Theory: α(K)=0.11 4. M1 +E 2 (1974ViZS); other: α(K)exp=0.041 (1970Pl01). Theory: α(K)=0.087 24, K/L1=6.85 9. 381 . 60 4 381 . 63 0.8 2 M1 +E 2 1 . 2 +5–3 0 . 10 4 Iγ: deduced from intensity balance at 381.6 level. Mult.,δ: from 382 . 47 4 890 . 78 4 . 7 10 M1 0 . 179 193Hg (3.80 h) decay. Mult.: α(K)exp=0.12 3, K/L1=5.9 3 (1974ViZS). Theory: α(K)=0.147, K/L1=6.70. 394 . 00 4 1284 . 80 5.7 7 M1 +E 2 0 . 59 23 0 . 135 17 Mult.: α(K)exp=0.089 15, K/L12=5.0 7, L1/L2=6.2 16 (1974ViZS); K/L1=2.5 (1958Br88). Theory: α(K)=0.109 15, K/L12=5.79, L1/L2=6.09. 404 . 36 5 1194 . 29 407 . 63 4 697 . 80 1.4 3 ( E2 ) 0 . 0447 Mult.: α(K)exp=0.030 10 (1974ViZS). E2 0 . 0437 Mult.: α(K)exp=0.024 6, K/L=2.6 3, Theory: α(K)=0.0306. 37 6 L1:L2:L3=15.2 18: 14.0 17: 5.6 7 (1974ViZS); K/L=3.13, L12/L3=2.6 (1958Br88). Theory: α(K)=0.0301, K/L=2.92, L1:L2:L3=15.2: 15.4: 6.74. 421 . 8 4 429 . 51c 5 1794 . 90 687 . 45 0 . 40 10 0 . 70c 12 Iγ: deduced from intensity balance at 687.4 level. γ shows composite T1/2 in pre–equilibrium source, therefore, some of measured Iγ=1.6 3 belongs in the 3.80 h decay. 1829 . 90 0 . 33c Iγ: intensity divided on the basis of 17 coincidence data (1974ViZS). Mult.: α(K)exp=0.046 12 for the multiplet (1974ViZS). 431 . 46 5 1829 . 90 0 . 19 5 444 . 0 4 1575 . 61 0 . 17 5 461 . 83 6 2037 . 46 1.9 3 ( M1 ) 0 . 130 Mult.: α(K)exp=0.10 7 (1974ViZS). Theory: α(K)=0.107. M1 +E 2 1 . 0 +6–4 0 . 070 28 Mult.: α(K)exp=0.055 14, K/L1=5.5 10 (1974ViZS); α(K)exp=0.075 (1970Pl01). Theory: α(K)=0.056 16, K/L1=6.81. 487 . 41 6 2063 . 03 0 . 77 16 M1 +E 2 1 . 1 +5–3 0 . 058 19 Mult.: α(K)exp=0.040 22, K/L12=5.3 24, L1/L2=4.3 12 (1974ViZS). Theory: α(K)=0.046 13, K/L12=5.5 3, L1/L2=4.1 12. 491 . 3 4 499 . 65 5 1776 . 03 789 . 93 Iγ: deduced from γγ spectrum (1974ViZS). 0 . 38 19 5.5 7 M1 +E 2 1.0 3 0 . 057 11 Mult.,δ: α(K)exp=0.055 10, K:L1:L2=30 2: 4.7 5: 1.0 2 (1974ViZS). Theory: α(K)=0.046 9, K:L1:L2=30: 4.4 9: 0.95 11. 509 . 43 6 1400 . 38 2 . 9 14 M1 +E 2 1 . 4 +11–4 0 . 045 20 Mult.,δ: K/L12=5.2 9, L1/L2=3.4 11 (1974ViZS). Theory: K/L12=5.3 5, L1/L2=3.4 13. 516 . 7 4 1379 . 96 0 . 17 5 529 . 51 7 1930 . 02 1.2 7 ( E2 ) 0 . 0218 Mult.: α(K)exp=0.010 7 (1974ViZS). Theory: α(K)=0.0161. Continued on next page (footnotes at end of table) 89 19 3 A u 114 – 1 8 79 19 3 A u 114 – 1 8 79 NUCLEAR DATA SHEETS 193Hg ε Decay (11.8 h) 1974ViZS,1970Pl01 (continued) γ( 1 9 3 A u ) ( c o n t i n u e d ) Eγ† 535 . 15 5 E(level) Iγ†b 1398 . 49 4.5 9 Mult.‡ M1 +E 2 δ‡ α 1 . 4 +12–5 0 . 04 3 Comments Mult.: α(K)exp=0.032 9, K/L1=6.9 11 (1974ViZS). Theory: α(K)=0.031 10, K/L1=6.88 6. 537 . 08 5 1400 . 38 7 . 9 10 M1 +E 2 0 . 8 +5–4 0 . 050 16 Mult.: α(K)exp=0.042 11, K/L12=7.1 (1974ViZS). Theory: α(K)=0.040 11, K/L12=5.7 3. 539 . 03 6 539 . 00 545 . 05 6 1829 . 90 1 . 5# 4 ( E2 ) 0 . 0218 Mult.: α(K)exp=0.011 5 (1974ViZS). 0 . 90 20 ( E2 ) 0 . 0212 Mult.: α(K)exp=0.024 7 (1974ViZS). Theory: α(K)=0.0161. Theory: α(K)(E2)=0.0158, α(K)(M1)=0.0578. 547 . 43 6 929 . 12 0 . 43 11 ( E2 ) 0.8 6 ( E1 ) 1.5 8 E2 0 . 0210 Mult.: α(K)exp=0.011 4 (1974ViZS). Theory: α(K)=0.0156. x548 . 59 7 Mult.: α(K)exp=0.0018 12 (1974ViZS). Theory: α(K)(E1)=0.00589. 550 . 63 6 808 . 57 0 . 0207 Iγ: calculated from Ice(K)=0.023 12 and α(K)=0.0154. Mult.: K/L=3.5 19, L1:L2:L3=0.35 3: 0.22 3: 0.08 2 (1974ViZS). Theory: α(K)=0.0154, K/L=3.85, L1:L2:L3=35: 21.5: 8.17. 560 . 0 4 2037 . 46 573 . 25 6 863 . 35 Iγ: intensity deduced from γγ data. 0 . 40 19 30 . 8 31 M1 +E 2 +0 . 36 7 0 . 0567 18 Mult.: α(K)exp=0.032 5, K/L12=5.7 32 (1974ViZS); K/L1=4.6 (1958Br88). Theory: α(K)=0.0465 17, K/L12=6.13 3. δ: from γ(θ) (α,xnγ); δ=1.0 3 from ce data. 583 . 32 8 2159 . 02 0 . 20 6 ( E2 ) 0 . 0181 Mult.: α(K)exp=0.027 12 (1974ViZS). Theory: α(K)(E2)=0.0136, α(K)(M1)=0.0485. δ: from α(K)exp δ=1.3 +37–7. 591 . 72 8 1455 . 18 0 . 24 7 ( E2 ) 0 . 0176 Mult.: α(K)exp=0.029 12, K/L12=5.8 12 (1974ViZS). Theory: α(K)=0.0132, K/L12=4.60. δ: ce data gives δ=1.3 +27–8; however, E2 cannot be ruled out. 600 . 65 6 890 . 78 4.7 5 M1 +E 2 1 . 4 +4–3 0 . 030 7 Mult.,δ: α(K)exp=0.021 4, K/L12=5.9 9, L1/L2=4.8 12 (1974ViZS). Theory: α(K)=0.024 4, K/L12=5.5 2, L1/L2=4.1 10. 608 . 70 10 1398 . 49 0 . 21 6 ( E2 ) 0 . 0165 Mult.: α(K)exp=0.023 10 (1974ViZS). Theory: α(K)(E2)=0.0125, α(K)(M1)=0.0434. 614 . 32 10 1153 . 53 0 . 77 12 ( E2 ) 0 . 0161 Mult.: α(K)exp=0.021 5 (1974ViZS). Theory: α(K)(E2)=0.0122, α(K)(M1)=0.0424. δ: α(K)exp gives δ=1.4 +14–3; however, pure E2 cannot be ruled out. 623 . 10 10 2023 . 45 0 . 57 14 ( E2 ) 0 . 0156 Mult.: α(K)exp=0.022 8, K/L12=7.7 13 (1974ViZS). Theory: E2: α(K)=0.0118, K/L12=4.73; M1: α(K)=0.0409, K/L12=6.22. δ: from ce data δ=1.4 +16–6. However, E2 cannot be ruled out. 624 . 91 10 1433 . 48 0 . 48 12 ( E2 ) 0 . 0155 Mult.: α(K)exp=0.013 5 (1974ViZS). 626 . 22 10 2201 . 72 0 . 16 5 ( M1 ) 0 . 0490 Mult.: α(K)exp=0.046 20 (1974ViZS). Theory: α(K)=0.0118. Theory: α(K)(M1)=0.0403, α(K)(E3)=0.0274. 639 . 0c 4 2012 . 19 0 . 28c 14 Iγ: intensity divided on the basis of 2037 . 46 0 . 51c 18 Iγ: division of intensity based on γγ coincidence data (1974ViZS). data. Continued on next page (footnotes at end of table) 90 19 3 A u 114 – 1 9 79 19 3 A u 114 – 1 9 79 NUCLEAR DATA SHEETS 193Hg ε Decay (11.8 h) 1974ViZS,1970Pl01 (continued) γ( 1 9 3 A u ) ( c o n t i n u e d ) Eγ† 643 . 41c 12 Mult.‡ δ‡ E(level) Iγ†b 1572 . 53 0 . 09c 4 Iγ: intensity divided on the basis of 2157 . 63 0 . 20c 8 Iγ: intensity division based on γγ α Comments γγ data (1974ViZS). data, Iγ(multiplet)=0.30 10 (1974ViZS). Mult.: α(K)exp=0.014 6 for the multiplet (1974ViZS). Theory: α(K)(E2)=0.0111, α(K)(M1)=0.0376. 645 . 23 12 1930 . 02 0 . 28 8 ( E2 ) 0 . 0144 Mult.: α(K)exp=0.015 7 (1974ViZS). 654 . 51 15 1939 . 18 0 . 21 6 ( E2 ) 0 . 0140 Mult.: α(K)exp=0.020 10 (1974ViZS). Theory: α(K)=0.0110. Theory: α(K)(E2)=0.0107, α(K)(M1)=0.0360. 657 . 62 15 1355 . 31 0 . 23 7 ( E2 ) 0 . 0138 Mult.: α(K)exp=0.0061 32, K/L12=1.8 6 (1974ViZS). Theory: α(K)=0.0106, K/L12=4.86. 661 . 7 4 2157 . 63 0 . 32 10 662 . 73 12 2063 . 03 0 . 57 14 ( E2 ) 0 . 0136 Mult.: α(K)exp=0.011 4, K/L12=5.9 22 (1974ViZS). Theory: α(K)=0.0105, K/L12=4.89. 668 . 48 12 1477 . 17 0 . 83 14 Mult.: α(K)exp=0.0043 12, K/L12=3.6 8 E1 (1974ViZS). Theory: E1: α(K)=0.00396, K/L12=7.00; E2: α(K)=0.0103, K/L12=4.90. 675 . 17 12 1372 . 93 1.7 3 M1 +E 2 1 . 5 +11–5 0 . 021 16 Mult.,δ: α(K)exp=0.017 4, K/L12=5.5 7 (1974ViZS). Theory: α(K)=0.017 4, K/L12=5.6 3. 684 . 77 12 1575 . 61 1.4 4 ( E2 ) 0 . 0127 Mult.: α(K)exp=0.0077 31 (1974ViZS). 692 . 54 12 1379 . 96 0 . 32 10 ( E2 ) 0 . 0124 Mult.: α(K)exp=0.012 5, K/L12=3.3 8 Theory: α(K)=0.0098. (1974ViZS). Theory: α(K)=0.0096, K/L12=4.99. 0 . 022 13 Mult.: α(K)exp=0.018 5 (1974ViZS). ( E2 ) 0 . 0119 Mult.: α(K)exp=0.009 3 (1974ViZS). ( E2 ) 0 . 0116 Mult.: α(K)exp=0.016 4 (1974ViZS). 700 . 88 12 1398 . 49 0 . 68 14 ( M1 +E 2 ) 706 . 30 12 1496 . 28 1 . 10 20 712 . 15 12 1575 . 61 0 . 83 14 1 . 2 +9–5 Theory: α(K)=0.018 6. Theory: α(K)=0.0092. Theory: α(K)(E2)=0.0090, α(K)(M1)=0.0289. δ: α(K)exp gives δ=1.4 +13–5; however, E2 cannot be ruled out. 725 . 60c 15 1413 . 05 0 . 10c 1654 . 72 0 . 7c 5 & Iγ: intensity division from coincidence & Iγ: Iγ=80 14 divided on the basis of data (1974ViZS). 4 coincidence data (1974ViZS). x727 . 2§ 10 731 . 95 12 0 . 26§ 11 2130 . 38 0 . 46 9 ( E2 ) 0 . 0110 Mult.: α(K)exp=0.014 4 (1974ViZS). Theory: α(K)(E2)=0.00855, α(K)(M1)=0.0270. 738 . 60d 17 2023 . 45 Mult.: α(K)exp=0.0028 21 (1974ViZS). 0.5 3 Theory: α(K)(E1)=0.00327, α(K)(E2)=0.00840. α(K)exp indicates E1, but level scheme requires M1,E2. 739 . 47 17 1630 . 23 0 . 19 11 ( E 2 , M1 ) 0 . 021 11 Iγ: from Ice(K)=0.0033 6 (1974ViZS) and α(K)=0.017 9. Mult.: K/L12=4.7 16 (1974ViZS). Theory: K/L12(E2)=5.14, K/L12(M1)=6.24. 746 . 11a 20 2201 . 72 Mult.: α(K)exp(doublet)=0.010 5 0 . 11 4 (1974ViZS). Theory: α(K)(E2)=0.00823, α(K)(M1)=0.0257. 752 . 70 15 2037 . 46 0 . 55 11 ( M1 +E 2 ) 0 . 56 +10–17 0 . 020 10 Mult.: α(K)exp=0.017 5 (1974ViZS); α(K)=0.017 6. Continued on next page (footnotes at end of table) 91 19 3 A u 114 – 2 0 79 19 3 A u 114 – 2 0 79 NUCLEAR DATA SHEETS 193Hg ε Decay (11.8 h) 1974ViZS,1970Pl01 (continued) γ( 1 9 3 A u ) ( c o n t i n u e d ) Eγ† E(level) Iγ†b Mult.‡ α Comments 757 . 63 20 1455 . 18 0 . 30 6 ( E2 ) 0 . 0102 Mult.: α(K)exp=0.007 3 (1974ViZS). Theory: α(K)=0.00798. 766 . 97 20 1630 . 23 0 . 45 9 ( E2 ) 0 . 0099 Mult.: α(K)exp=0.012 5 (1974ViZS). Theory: α(K)=0.00779, 776 . 57 20 1284 . 80 1.5 6 [ M1 , E 2 ] 0 . 019 9 Mult.: α(K)exp=0.0040 14 (1974ViZS). Theory: α(K)=0.015 8. 778 . 37 20 2063 . 03 0 . 40 20 ( M1 , E 2 ) 0 . 018 9 α(K)(M1)=0.0239. Iγ: intensity deduced from γγ data. Mult.: α(K)exp=0.018 14 (1974ViZS). Theory: α(K)(M1)=0.0230, α(K)(E2)=0.00757. 790 . 6 4 1680 . 34 0 . 12 5 798 . 39 25 2196 . 87 0 . 07 3 801 . 73 25 2279 . 38 0 . 19 5 ( E2 ) 803 . 22 25 2201 . 72 0 . 045 18 ( M1 ) 808 . 3 6 2285 . 28 0 . 045 13 816 . 81 20 1680 . 34 0 . 53 9 840 . 9 3 1379 . 96 0 . 33 7 854 . 80 25 2255 . 11 0 . 22 7 Mult.: 0.013 10 (1974ViZS). Theory: α(K)(E1)=0.00282, α(K)(E2)=0.00720, α(K)(M1)=0.0216. Mult.: α(K)exp=0.009 4 (1974ViZS). Theory: α(K)=0.00704. 0 . 0258 Mult.: α(K)exp=0.031 18 (1974ViZS). Theory: α(K)=0.0213. Mult.: α(K)exp=0.0093 34, K/L12=9.8 25 (1974ViZS). ( E2 ) Theory: α(K)=0.00689, K/L12=5.36. Mult.: α(K)exp=0.0036 14 (1974ViZS). Theory: α(K)(E1)=0.00248, α(K)(E2)=0.00630. x855 .8 4 870 . 05 17 0 . 31 9 1733 . 43 2.9 4 Mult.: α(K)exp=0.0060 16, K/L12=8.8 20 (1974ViZS); other: ( E2 ) α(K)exp=0.0111 (1970Pl01). Theory: α(K)=0.00609, K/L12=5.49. 877 . 76 17 1575 . 61 4.8 6 Mult.: α(K)exp=0.0067 18, K/L12=7.1 16 (1974ViZS); other: E2 α(K)exp=0.0108 (1970Pl01). Theory: α(K)=0.00599, K/L12=5.51. 883 . 6 4 2037 . 46 0 . 16 5 885 . 3 4 1776 . 03 0 . 26 8 x890 .5 4 0 . 057 17 895 . 0 5 1684 . 73 0 . 032 11 900 . 4 6 2279 . 38 0 . 024 10 x902 .4 6 0 . 032 13 905 . 1 5 2285 . 28 0 . 044 18 913 . 06 15 1776 . 03 3.6 4 932 . 37 15 1630 . 23 14 . 6 15 939 . 1 4 1829 . 90 0 . 16 4 952 . 0 4 1815 . 40 0 . 12 4 957 . 42 25 1496 . 28 0 . 35 7 963 . 1 6 2157 . 63 0 . 044 18 966 . 1 4 1829 . 90 0 . 13 4 970 . 0 4 2255 . 11 0 . 084 15 982 . 2 4 1680 . 34 0 . 09 3 E2 Mult.: α(K)exp=0.0060 11, K/L12=5.8 9 (1974ViZS). Theory: ( E2 ) Mult.: α(K)exp=0.0064 10, K/L12=7.4 7 (1974ViZS). Theory: α(K)=0.00696, K/L12=5.58. α(K)=0.00668, K/L12=5.62. Mult.: α(K)exp=0.0026 15 (1974ViZS). Theory: ( E1 ) α(K)(E1)=0.00201, α(K)(E2)=0.00507. 985 . 9 4 1776 . 03 0 . 13 4 994 . 61 15 1284 . 80 3.5 4 Mult.: α(K)exp=0.0047 9, K/L12=5.5 9 (1974ViZS); K/L1=4.4 E2 (1958Br88). Theory: α(K)=0.00472, K/L12=5.74. x1003 .5 5 0 . 20 6 1004 . 6 6 1794 . 90 0 . 23 7 1007 . 8 4 2139 . 77 0 . 12 3 1013 . 3 4 1876 . 28 0 . 15 4 1026 . 0 6 1815 . 40 0 . 032 13 1035 . 54 17 1733 . 43 1.8 3 x1037 . 22 25 Mult.: α(K)exp=0.0037 11 (1974ViZS). Theory: α(K)=0.00437. ( E2 ) Mult.: α(K)exp=0.005 4 (1974ViZS). Theory: 0 . 19 7 α(K)(E1)=0.00173, α(K)(E2)=0.00436. 1040 . 5 6 1930 . 02 1048 . 5 4 1939 . 18 γ placed also in 3.80 h decay. Placement here confirmed <0 . 33 by coincidence data (1974ViZS). 0 . 10 3 1052 . 00 20 1915 . 19 1 . 20 20 1066 . 0 6 1930 . 02 0 . 046 18 1070 . 6 6 2201 . 72 0 . 017 9 1075 . 90 25 1939 . 18 0 . 82 12 ( E2 ) Mult.: α(K)exp=0.0043 13 (1974ViZS). Theory: α(K)=0.00424. ( E2 ) Mult.: α(K)exp=0.0046 21 (1974ViZS). Theory: α(K)(E2)=0.00407, α(K)(M1)=0.0102. Continued on next page (footnotes at end of table) 92 19 3 A u 114 – 2 1 79 19 3 A u 114 – 2 1 79 NUCLEAR DATA SHEETS 193Hg ε Decay (11.8 h) 1974ViZS,1970Pl01 (continued) γ( 1 9 3 A u ) ( c o n t i n u e d ) Eγ† E(level) Iγ†b Mult.‡ Comments 1085 . 7 6 1876 . 28 0 . 053 21 1097 . 15 25 1794 . 90 0 . 23 6 Mult.: α(K)exp=0.0029 15 (1974ViZS). Theory: α(K)(E1)=0.00173, 1109 . 80d 17 1400 . 38 2.5 4 Mult.: α(K)exp=0.0015 4 (1974ViZS). Theory: α(K)(E2)=0.00474, α(K)(E2)=0.00436. α(K)(E1)=0.00154. Placement in level scheme by 1970Pl01. From α(K)exp 1974ViZS suggest that γ is E1 and does not place it in level scheme. 1123 . 2 3 2255 . 11 0 . 09 4 Mult.: α(K)exp=0.0041 28 (1974ViZS). Theory: α(K)(E1)=0.00150, 1132 . 50 20 1514 . 19 0 . 26 5 Mult.: α(K)exp=0.0025 10 (1974ViZS). Theory: α(K)(E1)=0.00148, 1137 . 80 25 2291 . 00 0 . 10 3 Mult.: α(K)exp=0.0042 23 (1974ViZS). Theory: α(K)(E1)=0.00147, 1139 . 5 5 1930 . 02 0 . 10 3 α(K)(E2)=0.00375. α(K)(E2)=0.00369. α(K)(E2)=0.00366, α(K)(M1)=0.00882. ( E2 ) Mult.: α(K)exp=0.0037 14 (1974ViZS). Theory: α(K)=0.00360. 0 . 86 12 ( E2 ) Mult.: α(K)exp=0.0039 10 (1974ViZS). Theory: α(K)(E2)=0.00353, 1869 . 27 1 . 35 30 ( E2 ) Mult.: α(K)exp=0.0035 11 (1974ViZS). Theory: α(K)=0.00346. 1174 . 00 17 2037 . 46 2.5 4 ( E2 ) Mult.: α(K)exp=0.0047 16 (1974ViZS). Theory: α(K)(E2)=0.00345, 1178 . 60 20 1876 . 28 0 . 30 7 ( E2 ) Mult.: α(K)exp=0.0053 22 (1974ViZS). Theory: α(K)(E2)=0.00343, 1147 . 20 20 2037 . 46 0 . 30 6 1149 . 3 6 2012 . 19 0 . 048 19 1160 . 18 20 2023 . 45 1171 . 50 17 α(K)(M1)=0.00840. α(K)(M1)=0.00815. α(K)(M1)=0.00807. x1184 .0 5 x1189 .5 7 0 . 08 3 0 . 017 9 1196 . 4 3 2125 . 37 0 . 17 4 1199 . 5 3 2063 . 03 0 . 085 25 1205 . 3 6 1496 . 28 Mult.: α(K)exp=0.0039 24 (1974ViZS). Theory: α(K)(E1)=0.00134, α(K)(E2)=0.00333, α(K)(M1)=0.00778. x1212 .2 6 ( M1 ) Mult.: α(K)exp=0.013 7 (1974ViZS). Theory: α(K)=0.00773. 0 . 035 14 0 . 019 6 1217 . 7 5 1915 . 19 0 . 036 11 1232 . 20 20 1930 . 02 2.3 3 E2 Mult.: α(K)exp=0.0028 7, K/L12=5.4 15 (1974ViZS). Theory: α(K)=0.00387, 1241 . 30 20 1939 . 18 5.6 7 E2 Mult.: α(K)exp=0.0034 7, K/L12=4.6 5 (1974ViZS). Theory: α(K)=0.00311, K/L12=6.07. K/L12=6.08. x1254 .1 3 Mult.: α(K)exp=0.0021 16 (1974ViZS). Theory: α(K)(E1)=0.00124, 0 . 22 5 α(K)(E2)=0.00305. 1261 . 9 3 2125 . 37 0 . 32 8 ( E2 ) Mult.: α(K)exp=0.0027 12 (1974ViZS). Theory: α(K)(E2)=0.00302, α(K)(E1)=0.00122. x1265 .4 5 0 . 22 4 1267 . 90 20 1776 . 03 0 . 68 10 ( E2 ) Mult.: α(K)exp=0.0035 11 (1974ViZS). Theory: α(K)=0.00299. 1285 . 20 20 1575 . 61 1 . 40 20 ( E2 ) Mult.: α(K)exp=0.0041 11 (1974ViZS). Theory: α(K)(E2)=0.00291, α(K)(M1)=0.00650. x1288 .7 6 0 . 08 4 1294 . 3 4 2157 . 63 0 . 13 4 x1296 . 80 25 0 . 30 9 x1301 .0 4 0 . 19 5 x1309 .5 7 Mult.: α(K)exp=0.0021 12 (1974ViZS). Theory: α(K)(E1)=0.00117, α(K)(E2)=0.00287. 1314 . 51c 20 2012 . 19 2104 . 42 0 . 016 8 0 . 8c 3 0 . 80c 32 Iγ: intensity divided on the basis of coincidence data (1974ViZS). Iγ: intensity division on the basis of γγ data (1974ViZS). Mult.: α(K)exp=0.0029 8 for the multiplet (1974ViZS). Theory: α(K)(E2)=0.00280. 1325 . 50 20 2023 . 45 4.9 6 ( E2 ) Mult.: α(K)exp=0.0029 6 (1974ViZS). Theory: α(K)(E2)=0.00275, 1339 . 60 20 2037 . 46 4.7 6 ( E2 ) Mult.: α(K)exp=0.0022 4 (1974ViZS). Theory: α(K)=0.00270. 1351 . 52 25 2215 . 19 0 . 40 12 ( E 2 , M1 ) Mult.: α(K)exp=0.0037 18 (1974ViZS). Theory: α(K)=0.0042 15. α(K)(M1)=0.00602. x1353 .5 3 0 . 28 8 x1359 .4 6 0 . 11 5 Mult.: α(K)exp=0.0019 11 (1974ViZS). Theory: α(K)(E1)=0.00108, α(K)(E2)=0.00265. 1365 . 10 22 . 6§ 10 x1387 2063 . 03 3.1 4 ( E2 ) Mult.: α(K)exp=0.0027 7 (1974ViZS). Theory: α(K)=0.00261. 0 . 12§ 3 Continued on next page (footnotes at end of table) 93 19 3 A u 114 – 2 2 79 19 3 A u 114 – 2 2 79 NUCLEAR DATA SHEETS 193Hg ε Decay (11.8 h) 1974ViZS,1970Pl01 (continued) γ( 1 9 3 A u ) ( c o n t i n u e d ) Eγ† E(level) Iγ†b Mult.‡ Comments 1392 . 00 20 2255 . 11 0 . 45 8 ( M1 ) Mult.: α(K)exp=0.0044 13 (1974ViZS). Theory: α(K)(M1)=0.00533, 1394 . 50 20 1684 . 73 1 . 75 26 ( E2 ) Mult.: α(K)exp=0.0031 8 (1974ViZS). Theory: α(K)=0.00306. ( M1 , E 2 ) Mult.: α(K)exp=0.0038 10, K/L12=13 5 (1974ViZS). Theory: α(K)=0.0038 14, α(K)(E2)=0.00251. 1400 . 0 3 2291 . 00 0 . 14 4 1406 . 60 20 2104 . 42 2.2 3 Mult.: α(K)exp=0.004 3 (1974ViZS). α(K)exp covers E1, E2, E3, M1. K/L12=6.33 5. x1414 .1 4 0 . 061 15 1432 . 40 20 2130 . 38 1 . 46 22 ( E 2 , M1 ) Mult.: α(K)exp=0.0035 12 (1974ViZS). Theory: α(K)=0.0037 13. 1442 . 00 20 2139 . 77 0 . 33 7 ( M1 ) Mult.: α(K)exp=0.0073 29 (1974ViZS). Theory: α(K)(M1)=0.00488, α(K)(E3)=0.00460. x1453 .9 5 0 . 08 3 1459 . 8 4 2157 . 63 0 . 76 23 1461 . 60 10 2159 . 02 0 . 73 22 1476 . 70 20 2285 . 28 0 . 85 13 Mult.: α(K)exp=0.0022 9 (1974ViZS). Theory: α(K)(E1)=0.000937, 1481 . 6 4 2291 . 00 0 . 34 9 Mult.: α(K)exp=0.0015 11 (1974ViZS). Theory: α(K)(E1)=0.000932, 1486 . 10 25 1776 . 03 3.4 4 ( M1 , E 2 ) Mult.: α(K)exp=0.0034 21 (1974ViZS). Theory: α(K)(M1)=0.00472, α(K)(E2)=0.00230. α(K)(E2)=0.00226. α(K)(E2)=0.00224. ( E2 ) Mult.: α(K)exp=0.0023 6 (1974ViZS). Theory: α(K)exp=0.00223. 1499 . 2 4 2196 . 87 0 . 23 6 1503 . 80 25 2201 . 72 1 . 20 20 ( E2 ) Mult.: α(K)exp=0.0027 8 (1974ViZS). Theory: α(K)(E2)=0.00218, 1517 . 50 25 2215 . 19 0 . 80 12 ( M1 ) Mult.: α(K)exp=0.0051 19 (1974ViZS). Theory: α(K)(M1)=0.00430, 1525 . 1 3 1815 . 40 1.4 2 ( E2 ) Mult.: α(K)exp=0.0021 9 (1974ViZS). Theory: α(K)(E2)=0.00213, α(K)(M1)=0.00440. α(K)(E3)=0.00415. α(K)(M1)=0.00425. x1533 .5 4 1539 . 0 5 x1551 0 . 20 5 1829 . 90 .5 6 1556 . 9 3 0 . 17 4 0 . 037 11 2255 . 11 0 . 42 7 Mult.: α(K)exp=0.0045 27 (1974ViZS). Theory: α(K)(E2)=0.00205, α(K)(E3)=0.00394, α(K)(M1)=0.00403. x1562 .2 4 0 . 056 14 1578 . 9 4 1869 . 27 0 . 072 21 1581 . 9 3 2279 . 38 0 . 33 7 1585 . 5 4 1876 . 28 0 . 17 4 x1591 .4 6 0 . 013 6 x1599 .9 3 0 . 27 5 x1608 .5 6 0 . 012 6 1624 . 5 3 1915 . 19 1639 . 4 3 1930 . 02 0 . 65 10 3.4 5 1648 . 5 3 1939 . 18 2.6 4 Mult.: α(K)exp=0.0018 5 evaluated from given Iγ and ce data from 1958Br88. Theory: α(K)(E2)=0.0019, α(K)(M1)=0.0036. x1674 .2 6 0 . 019 8 x1678 .1 5 0 . 35 1 x1683 .8 5 0 . 039 12 1693 . 4 6 2201 . 72 0 . 027 11 1697 . 9 3 2205 . 93 0 . 18 4 x1700 .0 6 1721 . 3 5 x1732 .3 4 x1737 .6 5 0 . 026 10 2012 . 19 0 . 054 16 1746 . 3 3 2285 . 28 1752 . 2 3 2291 . 00 x1760 .9 4 x1768 .4 6 1771 . 6 4 0 . 030 9 0 . 37 7 0 . 75 15 0 . 14 4 0 . 034 10 0 . 024 10 2279 . 38 0 . 14 4 x1783 .7 6 0 . 023 9 x1785 .2 5 0 . 09 3 x1788 .9 6 0 . 021 8 x1795 .3 5 0 . 040 12 x1803 .2 6 0 . 023 9 x1806 .9 3 0 . 075 22 x1813 .4 6 0 . 07 3 Continued on next page (footnotes at end of table) 94 19 3 A u 114 – 2 3 79 19 3 A u 114 – 2 3 79 NUCLEAR DATA SHEETS 193Hg ε Decay (11.8 h) 1974ViZS,1970Pl01 (continued) γ( 1 9 3 A u ) ( c o n t i n u e d ) Eγ† E(level) Eγ† Iγ†b E(level) Iγ†b x1827 .5 5 0 . 11 3 x1919 .8 4 0 . 20 6 x1836 .2 4 0 . 12 3 x1923 .5 4 0 . 25 7 x1848 .5 3 0 . 32 5 x1853 .3 5 0 . 026 10 x1856 .0 5 1869 . 2 3 2159 . 02 1925 . 5 4 x1933 2215 . 19 .3 6 0 . 30 9 0 . 014 5 0 . 025 10 x1954 .9 4 0 . 14 4 0 . 30 8 x1963 .6 4 0 . 31 8 x1878 .1 6 0 . 021 9 x1968 .2 6 0 . 013 5 x1881 .3 5 0 . 075 22 x1972 .9 6 0 . 039 12 x1885 .4 5 0 . 056 17 x1892 .5 4 0 . 18 5 1988 . 6 6 x1997 2279 . 38 .3 5 0 . 004 2 0 . 008 2 x1898 .4 5 0 . 040 14 x2028 .0 7 0 . 002 1 x1903 .7 5 0 . 040 14 x2032 .6 7 0 . 002 1 1906 . 4 5 x1909 2196 . 87 .8 4 1916 . 4 3 2205 . 93 0 . 054 19 x2045 .2 7 0 . 002 1 0 . 16 4 x2060 .1 5 0 . 010 4 0 . 73 15 † From 1974ViZS. ‡ From 1974ViZS and based on α(K)exp and/or ce subshell ratios, unless otherwise noted. The photon and ce intensity scales were normalized through α of 218.1γ, 129.8γ, 573.25γ, 932.37γ (1974ViZS) the α(K)exp from 1970Pl01 are based on I(ce) of 1958Br88 and Iγ of 1970Pl01 with the intensities normalized through α(K)(407.6γ E2)=0.0301. § From 1970Pl01. # From intensity balance, this level is not fed directly by ε. From feeding pattern 98% of the decay out of this level follows γ's seen in 193Hg (11.8 h) ε. @ From intensity balance, this level is not fed directly by ε. From feeding pattern 93% of the decay out of this level follows γ's seen in 193Hg (11.8 h) ε. & α(K)exp=0.0044 18, K/L12=2.3 9. Theory: E1: α(K)=0.00338, K/L12=7.02; E2: α(K)=0.00870, K/L12=5.10; M1: α(K)=0.0276, K/L12=6.24; M2: α(K)=0.070, K/L12=5.45. From this it can be seen that numerous combinations of multipolarities are possible from the members of this doublet. a 1974ViZS show this γ as a doublet with second placement from a 1004 level. The 1004 level is fed by a 1040γ which is shown as belonging to the 3.80 h decay, while the 746γ deexciting the level is not shown as being of composite T1/2. b For absolute intensity per 100 decays, multiply by 0.85 7. c Multiply placed; intensity suitably divided. d Placement of transition in the level scheme is uncertain. x γ ray not placed in level scheme. 95 19 3 A u 114 – 2 4 79 19 3 A u 114 – 2 4 79 NUCLEAR DATA SHEETS 193Hg ε Decay (11.8 h) 1974ViZS,1970Pl01 (continued) Decay Scheme Intensities: I(γ+ce) per 100 parent decays 140.76 13/2+ @ Multiply placed; intensity suitably divided 11.8 h 19 3 Hg 113 80 (11/2+) (11/2+) (11/2–) (11/2– to 15/2–) (13/2–,15/2–) 17 1452.2 1481.6 0.1 1100.0 0.22 17 37.80 0.19 1446.3 0.2 9076.70 0.6 09 4 805.1 0. 19 8.3 0.0373 1788.6 0.038 1571.6 0.0 8 9081.9 0.1034 800.4 0.22 15 1.73 0.028 1356.9 (E2 0 ) 1192.00 0.3 0.1 6 9723.2 (M6 0 1 85 .0 0.0 ) 0 .38 19 4.80 0.078 0.12 1525.5 1317.5 0.2 9 0 5 6 1 19 .52 (M 1616.4 (E21) 0 16 97.9 0.6 ,M1 .68 ) 1593.4 0.12 0.3 4 1003.80 0.0 5 8070.6 (E223 3 ) . 0 2 74 2 .0 1 626.11 (M115 .02 19 6.22 0.0) 0. 1406.4 (M19 039 7999.2 0.0 ) 0. 18 8.39 0.246 14 0.00 1469.2 5861.6 0.2 6 3.3 0 ( 6 2 M1 (E ,E 2) 2) 0.1 0. 7 62 %ε+%β+=92.8 5 Q+(g.s.)=234314 Iβ+ 2291.00 Iε 0.61 Log ft 6.51 2285.28 1.4 6.18 2279.38 0.59 6.60 2255.11 1.1 6.46 2215.19 1.3 6.58 (11/2–) 2205.93 0.8 6.83 (11/2–) 2201.72 1.3 6.64 (11/2–,13/2,15/2–) 2196.87 0.30 7.29 (11/2– to 15/2–) 2159.02 1.0 6.91 (11/2– to 15/2–) 1915.19 1.6 7.28 (11/2– to 15/2–) 1869.27 1.2 7.48 0.73 7.81 (13/2–) 1794.90 (15/2–) 1733.43 4.4 7.11 (11/2–,13/2–) 1680.34 0.63 8.02 11/2–,13/2– 1630.23 13.7 6.74 11/2–,13/2– 1575.61 6.8 7.10 (7/2,9/2,11/2)– 1477.17 <0.37 >8.5 (11/2 to 15/2–) 1455.18 0.37 8.48 11/2– 1400.38 7.2 7.24 (13/2)– 1398.49 3.7 7.53 (11/2+,13/2+) 1379.96 0.65 8.30 9/2–,11/2– 1284.80 3.9 7.60 (11/2+) 1153.53 1.1 8.24 7/2–,9/2–,11/2– 1131.82 <0.7 >8.5 <7 >7.6 9/2– 890.78 (13/2)– 863.35 (9/2)+ 808.57 (15/2)– 697.80 (7/2+) 539.00 7/2– 508.25 5/2+ 381.63 11/2– 290.19 (3/2)+ 224.80 0.0 3/2+ 19 3 Au 114 79 96 <0.01 0.29 ns 3.9 s 17.65 h 19 3 A u 114 – 2 5 79 19 3 A u 114 – 2 5 79 NUCLEAR DATA SHEETS 193Hg ε Decay (11.8 h) 1974ViZS,1970Pl01 (continued) Decay Scheme (continued) Intensities: I(γ+ce) per 100 parent decays 140.76 13/2+ @ Multiply placed; intensity suitably divided 11.8 h 19 3 Hg 113 80 (11/2+) (11/2–) (13/2–,15/2–) (11/2– to 15/2–) (11/2–) (11/2,13/2)– 14 1259.8 9694.3 0.6 663.1 0.15 641.7 0.031 14 3.41 0.278 1042.0 @ 0 0 14 07.8 (M .17 7332.40 0.11) 0 1 0 .28 12 .95 (E2 1161.9 (E2 ,M1 ) 2996.4 (E2 0. ) 1 ) 4 . 14 5.4 0.1 0. 0 25 27 1306.60 0.035 14 4 ( 13 .5 1 M @ 1,E2 1165.10 0 .7 ) 1 7799.5 (E2 .9 8 ( ) 66 .37 M1 2 482.73 (M1) 0. .6 7 , 0 ( E . 33 41 E2) 2) 73 13 0.0 M1+ 0.4 0.3 1139.6 0.05 E2 9 5 0 0.7 1174.00 (E 0 0 2 8847.20 (E2) 4 3 75 .6 (E2) 2.0 2 . 0 ) 1 . 63 70 .14 0 .26 569.0 @(M1 + 460.0 0. E2 13 1.83 0.34 44 ) 0. 48 1125.50 M1+ 7360.18 (E2 E2 628.60 (E2) 4 1.7 17 3.10 0.4 ) 0.2 .73 1321.3 (E2 ) 1114.51 0.0 0. 49 6349.3 @ 26 9.0 0 0 @ .041.7 0.2 4 %ε+%β+=92.8 5 Q+(g.s.)=234314 11/2–,13/2–,15/2– Iβ+ 2291.00 Iε 0.61 Log ft 6.51 2157.63 1.2 6.83 2139.77 0.38 7.39 2130.38 1.6 6.79 2125.37 0.45 7.36 2104.42 2.6 6.66 2063.03 4.3 6.55 (11/2,13/2)– 2037.46 9.5 6.26 (11/2 to 15/2–) 2023.45 5.4 6.54 (13/2–,15/2–) 2012.19 1.0 7.30 (11/2–,13/2–) 1829.90 1.6 7.41 (15/2–) 1733.43 4.4 7.11 (11/2–,13/2–) 1680.34 0.63 8.02 11/2–,13/2– 1630.23 13.7 6.74 11/2–,13/2– 1575.61 6.8 7.10 (7/2–) 1514.19 (9/2)– 1496.28 3.7 7.961u (7/2,9/2,11/2)– 1477.17 <0.37 >8.5 11/2– 1400.38 7.2 7.24 (13/2)– 1398.49 3.7 7.53 9.01u (17/2)– 1372.93 0.5 9/2–,11/2– 1284.80 3.9 7.60 (9/2–,11/2–,13/2–) 1194.29 1.2 8.18 (11/2+) 1153.53 1.1 8.24 7/2–,9/2–,11/2– 1131.82 <0.7 >8.5 <7 >7.6 (9/2+) 929.12 9/2– 890.78 (13/2)– 863.35 9/2– 789.93 (15/2)– 697.80 7/2– 508.25 5/2+ 381.63 11/2– 290.19 (3/2)+ 224.80 0.0 3/2+ 19 3 Au 79 114 97 <0.01 1.2 ns 0.29 ns 3.9 s 17.65 h 19 3 A u 114 – 2 6 79 19 3 A u 114 – 2 6 79 NUCLEAR DATA SHEETS 193Hg ε Decay (11.8 h) 1974ViZS,1970Pl01 (continued) Decay Scheme (continued) Intensities: I(γ+ce) per 100 parent decays 140.76 13/2+ @ Multiply placed; intensity suitably divided 11.8 h 19 3 Hg 113 80 %ε+%β+=92.8 5 Q+(g.s.)=234314 Iβ+ Iε Log ft 2291.00 (11/2–,13/2,15/2–) 2196.87 0.30 7.29 2125.37 0.45 7.36 (11/2–) 11/2–,13/2–,15/2– (11/2,13/2)– 11/2–,13/2– (11/2– to 15/2–) (11/2–,13/2–) (11/2– to 15/2–) 16 1248.5 1041.3 2.2 0 1075.90 E2 6548.5 (E2 4.8 4 16 .51 0.0 ) 0 1239.4 (E2 9 .70 ) 1132.20 2.9 0. 18 1039.5 E2 6 10 6.0 0.0 2.0 4 9 0 0 64 .5 .0 525.23 <0.39 359.51 (E2)28 294.5 (E2 0. ) 2 16 9.82 0.08 1. 4 0 1224.5 M1 1017.7 0.5 0.7 1 15 52.00 0.05 (E 31 1185.5 2 7 ) 8 10 .60 0.1 1.0 1085.7 (E 5 2 2 15 13.3 0.0 ) 0 1178.9 0.145 .26 15 71.50 0.0 3 (E 61 9639.0 2) 936.1 0.1 1.2 549.1 0.115 5 0 . . 0 43 5 14 1 42 .46 (E2 ) 15 9.51 (M1 0. 7 1025.1 @ ) 0. 8 0 9526.0 (E2 .28 18 ) 2 10 .0 0.0 1. 2 1097.15 0.1027 0 4204.6 0. 1.8 0 20 0.3.20 4 (11/2+) 0.61 6.51 2063.03 4.3 6.55 1939.18 8.0 6.54 1930.02 7.2 6.60 1915.19 1.6 7.28 1876.28 0.57 7.79 1869.27 1.2 7.48 (11/2–,13/2–) 1829.90 1.6 7.41 (9/2–,11/2–,13/2–) 1815.40 1.3 7.53 (13/2–) 1794.90 0.73 7.81 11/2–,13/2– 1630.23 13.7 6.74 11/2–,13/2– 1575.61 6.8 7.10 (7/2–) 1514.19 11/2– 1400.38 7.2 7.24 (13/2)– 1398.49 3.7 (17/2)– 1372.93 0.5 7.53 9.01u 9/2–,11/2– 1284.80 3.9 7.60 (9/2–,11/2–,13/2–) 1194.29 1.2 8.18 7/2–,9/2–,11/2– 1131.82 <0.7 >8.5 <7 >7.6 9/2– 890.78 (13/2)– 863.35 9/2– 789.93 (15/2)– 697.80 7/2– 508.25 5/2+ 381.63 11/2– 290.19 (3/2)+ 224.80 0.0 3/2+ 19 3 Au 79 114 98 <0.01 1.2 ns 0.29 ns 3.9 s 17.65 h 19 3 A u 114 – 2 7 79 19 3 A u 114 – 2 7 79 NUCLEAR DATA SHEETS 193Hg ε Decay (11.8 h) 1974ViZS,1970Pl01 (continued) Decay Scheme (continued) Intensities: I(γ+ce) per 100 parent decays 140.76 13/2+ @ Multiply placed; intensity suitably divided 11.8 h 19 3 Hg 113 80 %ε+%β+=92.8 5 Q+(g.s.)=234314 Iβ+ Iε Log ft (11/2+) 2291.00 (11/2–,13/2,15/2–) 2196.87 0.30 7.29 (11/2–) 2125.37 0.45 7.36 0.61 6.51 2063.03 4.3 6.55 2012.19 1.0 7.30 (11/2– to 15/2–) (11/2– to 15/2–) 11/2– (15/2–) (9/2– to 13/2–) (11/2–,13/2–) (9/2–,11/2,13/2+) 11/2–,13/2– 11/2–,13/2– (9/2–,11/2,13/2+) (7/2–) 14 1286.10 9867.90 (E2 915.9 (E ) 2 2 883.06 0.11 ) 0.9 .58 495.3 E2 1 0 . 20 3 .22 3.1 0.3 0. 10 3 0 2 8735.54 360.05 (E2 0 ( ) . E 5 13 1 2) 1. (M 2 5 8994.50 1 .5 98 5.0 (E2 +E2 ) 2 0 81 .2 .02 ) 1 0.3 9 796.81 0.08 7 .49 0 ( 72 .6 E2 ) 93 5.60 0.10 0. 45 762.37 @ 0 736.97 (E2 .6 ) 9 ( . 34 47 E2) 12 275.46 (E2, 0.3.5 4.9 M M 9 12 5 1+ 1) (M E2 0 8785.20 .1 1+ 7 . E2 1.3 7 71 76 (E2 ) 0 2 68 .15 E2 ) 1 0.0 4 . ( 2 4 9 . E 44 77 2 .1 0 ) 294.0 (E2 0. ) 72 0 0 . . 7 64 5 15 1. 2 3.4 M 11 1 1 @ 2.2 12 32.50 0 0 .08 95 5.3 0. 707.42 0.0 22 366.30 (E1 30 ) 66 4.47 (E2 0. ) 3 75 8.48 M1+ 0. 0 9 597.63 E1 E2 5 1.7 (E 0 2 2) .71 2.7 (E 2) 0.2 0.26 1 11/2–,13/2–,15/2– (13/2–,15/2–) 1915.19 1.6 7.28 1869.27 1.2 7.48 1776.03 7.2 6.84 1733.43 4.4 7.11 1684.73 1.5 7.63 1680.34 0.63 8.02 1654.72 0.6 8.1 1630.23 13.7 6.74 1575.61 6.8 7.10 1572.53 0.08 9.03 1514.19 (9/2)– 1496.28 3.7 7.961u (7/2,9/2,11/2)– 1477.17 <0.37 >8.5 (11/2 to 15/2–) 1455.18 0.37 8.48 (17/2)– 1372.93 0.5 9.01u (11/2 to 15/2–) 1355.31 0.11 9.1 9/2–,11/2– 1284.80 3.9 7.60 7/2–,9/2–,11/2– 1131.82 <0.7 >8.5 <7 >7.6 (9/2+) 929.12 9/2– 890.78 (13/2)– 863.35 (9/2)+ 808.57 9/2– 789.93 (15/2)– 697.80 (7/2+) 539.00 7/2– 508.25 5/2+ 381.63 11/2– 290.19 (3/2)+ 224.80 0.0 3/2+ 19 3 Au 79 114 99 <0.01 1.2 ns 0.29 ns 3.9 s 17.65 h 19 3 A u 114 – 2 8 79 19 3 A u 114 – 2 8 79 NUCLEAR DATA SHEETS 193Hg ε Decay (11.8 h) 1974ViZS,1970Pl01 (continued) Decay Scheme (continued) Intensities: I(γ+ce) per 100 parent decays 140.76 13/2+ @ Multiply placed; intensity suitably divided 11.8 h 19 3 Hg 113 80 %ε+%β+=92.8 5 Q+(g.s.)=234314 Iβ+ Iε Log ft (11/2+) 2291.00 (11/2–,13/2,15/2–) 2196.87 0.30 7.29 (11/2–) 2125.37 0.45 7.36 0.61 6.51 11/2–,13/2–,15/2– 2063.03 4.3 6.55 (13/2–,15/2–) 2012.19 1.0 7.30 (11/2– to 15/2–) 1915.19 1.6 7.28 (11/2– to 15/2–) 1869.27 1.2 7.48 0.73 7.81 1794.90 1733.43 4.4 7.11 (11/2–,13/2–) 1680.34 0.63 8.02 (11/2+,13/2+) (9/2–,11/2,13/2+) 11/2– (13/2)– (11/2+,13/2+) (17/2)– (11/2 to 15/2–) 9/2–,11/2– (9/2–,11/2–,13/2–) 54 247.43 60 1.70 (E2 (M ) 0 380.65 1 .3 57 2.47 M1+ ) 0. 7 3 24 16 .25 M1 E2 5 M . 4 53 1 55 . 4.1 M1+E2 7 49 0.63 0.2 28 289.65 E2 1.7 M 0 40 6 1+ 1.3 7 M E . 6 42 1+ 2 3 9 E2 5.0 .51 E2 53 @ 3 1.0 289.03 3 0.6 3 150.94 (E2 0 ) 21 7.40 (M1 1. 3 8 , ( E E 12 .07 6.5 E 2) 2) 0 0 6 2 (E 6.1 .060.24 1) 0.1 2 11/2–,13/2– (9/2–,11/2,13/2+) 62 72 4.91 11 5.60 (E2) 5309.8 @ 0 0 0.4 507.08 2. .09 2 70 9.43 M1+1 0 60 .88 M1+E2 538.70 (M1 E2 7.1 84 5.15 (E2)+E2 2.6 M1 0 ) 0 690.9 + .1 . 512.54 0.28 E2 8 59 6 ( 4.0 . E 7 67 2) 5 0 65 .17 .15 0. 28 7.6 M1 99 2 (E +E2 774.61 2) 396.57 E2 0.2 1.5 4 [ 0 .00 M 3.0 40 1 M1 ,E2 61 4.36 +E ] (E 1.3 344.32 2 2 ) 5.5 34 5.00 (E2) 1.2 1.9 [ 1 E2] 0.6 M1 7 0 +E .6 2 3.0 (13/2–) (15/2–) (11/2+) 7/2–,9/2–,11/2– (9/2+) 9/2– (13/2)– (9/2)+ 9/2– (15/2)– (7/2+,9/2+) (7/2+) 7/2– 1630.23 13.7 6.74 1572.53 0.08 9.03 1433.48 0.42 8.44 1413.05 0.09 9.13 1400.38 7.2 7.24 1398.49 3.7 7.53 1379.96 0.65 8.30 1372.93 0.5 9.01u 1355.31 0.11 9.1 1284.80 3.9 7.60 1194.29 1.2 8.18 1153.53 1.1 8.24 1131.82 <0.7 >8.5 <7 >7.6 929.12 890.78 863.35 <0.01 808.57 789.93 1.2 ns 697.80 687.45 539.00 508.25 0.29 ns 381.63 5/2+ 11/2– 290.19 5/2+ 257.98 3.9 s 45 ps 0.0 17.65 h 3/2+ 19 3 Au 79 114 100 19 3 A u 114 – 2 9 79 19 3 A u 114 – 2 9 79 NUCLEAR DATA SHEETS 193Hg ε Decay (11.8 h) 1974ViZS,1970Pl01 (continued) Decay Scheme (continued) Intensities: I(γ+ce) per 100 parent decays 140.76 13/2+ @ Multiply placed; intensity suitably divided 11.8 h 19 3 Hg 113 80 %ε+%β+=92.8 5 Q+(g.s.)=234314 Iβ+ Iε Log ft (11/2+) 2291.00 (11/2–,13/2,15/2–) 2196.87 0.30 7.29 (11/2–) 2125.37 0.45 7.36 0.61 6.51 11/2–,13/2–,15/2– 2063.03 4.3 6.55 (13/2–,15/2–) 2012.19 1.0 7.30 (11/2– to 15/2–) 1915.19 1.6 7.28 (11/2– to 15/2–) 1869.27 1.2 7.48 0.73 7.81 (13/2–) 1794.90 (15/2–) 1733.43 4.4 7.11 (11/2–,13/2–) 1680.34 0.63 8.02 11/2–,13/2– 1630.23 13.7 6.74 (9/2–,11/2,13/2+) 1572.53 0.08 9.03 (7/2–) 1514.19 (11/2 to 15/2–) 1455.18 0.37 8.48 (13/2)– 1398.49 3.7 7.53 (11/2 to 15/2–) 1355.31 0.11 9.1 9/2–,11/2– 1284.80 3.9 7.60 (9/2–,11/2–,13/2–) 1194.29 1.2 8.18 7/2–,9/2–,11/2– 1131.82 <0.7 >8.5 <7 >7.6 929.12 863.35 9/2– 789.93 (7/2+,9/2+) 687.45 38 1.6 32 0 M1 25 .21 E +E 8 3 21 .00 2 75 9.7 M 0.7 5 1+ 5 E2 E2 3.5 69 (9/2+) (13/2)– 7/2– 5/2+ 11/2– 1.2 ns 0.29 ns 381.63 290.19 257.98 3.9 s 45 ps 38 .24 M1 +E 2 3.4 5/2+ 508.25 <0.01 (1/2)+ 38.23 0.0 3/2+ 19 3 Au 114 79 101 3.81 ns 17.65 h 19 3 A u 114 – 3 0 79 19 3 A u 114 – 3 0 79 NUCLEAR DATA SHEETS 192Os(7Li,6nγ) 1974Tj02 E(7Li)=58 MeV; measured γ, γγ, γ(θ); Ge(Li) detectors. 193Au E(level)† E(level)† Jπ‡ Levels Jπ‡ E(level)† Jπ‡ 0.0 3 / 2+ 809 . 2 (9/2)+ 2080 . 8 ( 25 / 2+ ) 258 . 0 5 / 2+ 890 . 7 9 / 2– 2141 . 2 ( 23 / 2+ ) 290 . 1 11 / 2– 1419 . 0 ( 19 / 2 ) – 2173 . 5 ( 23 / 2– ) 539 . 3 ( 7 / 2+ ) 1479 . 0 ( 13 / 2+ ) 2378 . 7 ( 27 / 2– ) 697 . 8 ( 15 / 2 ) – 1947 . 7 ( 21 / 2 ) + † From 1974Tj02. ‡ From adopted levels. γ(193Au) Eγ E(level) Iγ† Comments 133 . 1 2080 . 8 14 . 1 Placement in level scheme from adopted levels. 193 . 5 2141 . 2 30 . 1 Placement in level scheme from adopted levels. 205 . 2 2378 . 7 72 . 8 Iγ(45°)/Iγ(90°)=1.11. 258 . 1 258 . 0 38 . 1 Iγ(45°)/Iγ(90°)=0.97. 6.4 Iγ(45°)/Iγ(90°)=1.06. Iγ(45°)/Iγ(90°)=1.37. Iγ(45°)/Iγ(90°)=1.08. Iγ: includes contribution from 281 . 5 539 . 3 407 . 7 697 . 8 528 . 7 1947 . 7 ( 539 . 0‡ ) ( 550 . 6‡ ) 100 33 . 9 192Os Coulomb excitation. Iγ(45°)/Iγ(90°)=1.16. Iγ(45°)/Iγ(90°)=0.80. 539 . 3 809 . 2 600 . 9 890 . 7 19 . 4 Iγ(45°)/Iγ(90°)=1.04. 669 . 8 1479 . 0 10 . 7 Iγ(45°)/Iγ(90°)=1.77. 721 . 2 1419 . 0 77 . 8 Iγ(45°)/Iγ(90°)=1.20. 754 . 5 2173 . 5 32 . 5 Iγ(45°)/Iγ(90°)=1.27. 1250 . 1 1947 . 7 ≈10 † Relative Iγ at 90°. ‡ γ expected from adopted levels, but not measured in this reaction. Level Scheme (21/2)+ (13/2+) (19/2)– 9/2– (9/2)+ (15/2)– (7/2+) 11/2– 60 55 0.9 0.6 19 .4 53 7.7 9 10 28 .0 0 1.5 25 8.1 6.4 38 .1 (23/2+) (25/2+) 40 (27/2–) (23/2–) 20 5.2 75 72 19 4.5 .8 3 . 13 5 32.5 12 3.1 30.1 5 1 0 4 52 .1 8.7 ≈ .1 66 3310 72 9.8 .9 1.2 10 77 .7 .8 Intensities: relative Iγ 2378.7 2173.5 2141.2 2080.8 1947.7 1479.0 1419.0 890.7 809.2 697.8 539.3 290.1 258.0 5/2+ 0.0 3/2+ 19 3 Au 114 79 102 19 3 A u 114 – 3 1 79 19 3 A u 114 – 3 1 79 NUCLEAR DATA SHEETS Ir(α,xnγ) 1985Ko13: 193Ir(α,4nγ), 1979Go15,1985Ko13 E(α)=50 MeV; measured Eγ, Iγ (Ge(Li)), E(ce), Ice (mag spect), prompt and delayed (ce)(ce) and (ce)γ, perturbed angular distributions; confirmed configuration=(ν i13/2)+2 core structure of the rotation–aligned h11/2 proton–hole band. 1979Go15: 193Ir(α,4nγ), E(α)=51 MeV; measured Eγ, Iγ (Ge(Li)), γγ, γ(θ) (6 angles), γ(t). Earlier reports: 1977Go12, 1976Go22. 1975LaYS: 193Ir(α,4nγ), E(α)=42–52 MeV; natural Ir targets; measured Eγ, Iγ (intrinsic germanium detectors), E(ce), Ice (Si(Li)), γγ, γ(θ). 1975StZE: 1974Tj02: 191Ir(α,2nγ), 191Ir(α,2nγ), E(α)=23–27 MeV; measured Eγ, Iγ (Ge(Li)), E(ce), Ice (Si(Li)), γγ, γ(θ). E(α)=26, 29, 42 MeV; measured Eγ, Iγ (Ge(Li)), γγ coin, γγ(t), γ(θ) (30° and 90°). 193Au Levels The level scheme is that proposed by 1979Go15 with g.s. band added from 1975StZE and 1974Tj02. For a discussion of the rotation–aligned h11/2 proton–hole bands see 1979Go15, 1985Ko13 and references cited therein. E(level)† 0 . 0§ 38 . 2 224 . 8 Jπ‡ Comments T1/2 3 / 2+a ( 1 / 2 ) +a ( 3 / 2 ) +a 258 . 0§ 290 . 2# 5 / 2+a 508 . 3 7 / 2– 539 . 0§ 697 . 8# 7 / 2+ 789 . 9 9 / 2– 808 . 6§ 8 6 3 . 4@ 9 / 2+ 890 . 8 9 / 2– 11 / 2–a 15 / 2– 13 / 2– 1131 . 8 ( 11 / 2– ) b 1153 . 5§ 11 / 2+b Jπ: adopted 7/2–,9/2–,11/2–. 1194 . 3 ( 13 / 2– ) b Jπ: adopted (9/2–,11/2–,13/2–). 1284 . 8 11 / 2– Jπ: adopted 9/2–,11/2–. 1 3 7 2 . 9@ 17 / 2– 1398 . 5 ( 15 / 2– ) 1418 . 9# 1478 . 4§ 19 / 2– Jπ: adopted (13/2–). ( 13 / 2+ ) 1496 . 3 1946 . 9 21 / 2+ 2079 . 8 25 / 2+ 10 . 4 ns T1/2: from (ce(L2) 133γ)(ce(K) 408γ)(t) (1985Ko13). Others: 15 ns 2 (1979Go15), 12 ns 2 8 (1974Tj02). 2 0 8 7 . 1@ 21 / 2– 2140 . 0 23 / 2 ( + ) 2172 . 7# 23 / 2– 2324 . 7 27 / 2+ 2377 . 7# 27 / 2– 2 . 51 ns 13 T1/2: (ce(L2) 162γ)(ce(K) 245γ)(t) (1985Ko13). <0 . 2 ns 0 . 79 ns T1/2: (ce(K) 245γ)(ce(L2) 133γ)(t) (1985Ko13). 8 T1/2: (ce(L2) 99γ)(ce(K) 205K)(t) (1985Ko13). Other: <3 ns (1979Go15). g–factor≤0.7 (1985Ko13); from integral perturbed angular distribution measurements with external magnetic fields. 2476 . 4# 31 / 2– 3 . 52 ns 18 g–factor=0.3 2 (1985Ko13) from integral perturbed angular distribution measurements with external magnetic fields. T1/2: (ce(K) 225γ)(ce(L2) 99γ)(t) (1985Ko13). Other: 6 ns 2 (1979Go15). 2 4 8 6 . 5& 31 / 2+ 2700 . 9# 35 / 2– 150 ns T1/2: (ce(K) 244γ)γ(t) (1985Ko13). Other: ≥100 ns (1979Go15). 50 1 . 80 ns 9 g–factor=0.13 11 (1985Ko13); from integral perturbed angular distribution measurements with external magnetic fields. T1/2: (ce(K) 225γ)(t) (1985Ko13). 2 9 2 3 . 2& 3154 . 9# 35 / 2+ 3 4 4 1 . 7& 3895 . 9# 39 / 2+ 4 0 6 3 . 2& 43 / 2+ 39 / 2– <0 . 5 ns T1/2: (ce(K) 454γ)(t) (1985Ko13). 43 / 2– † Rounded–off values from adopted levels. ‡ From 1979Go15 and/or 1974Tj02, unless otherwise noted. Assignments are based on coincidence data and γ–ray multipolarities. 1985Ko13 state that their experimental conversion coefficients (not given) confirm the Jπ assignments of 1979Go15. Many assignments are the same as adopted values but given under parentheses. § g.s. band. # Favored h11/2 decoupled band. @ Unfavored h11/2 decoupled band. Footnotes continued on next page 103 19 3 A u 114 – 3 2 79 19 3 A u 114 – 3 2 79 NUCLEAR DATA SHEETS Ir(α,xnγ) 1979Go15,1985Ko13 (continued) 193Au Levels (continued) & Rotation–aligned band based on 31/2+ level. a From adopted levels. b Jπ suggested by 1975StZE. γ( 1 9 3 A u ) Eγ† ( 32 . 21# 2 ) ( 38 . 23# 2 ) E(level) Iγ‡ Mult.§ δ Comments 290 . 2 38 . 2 98 . 7 3 2476 . 4 3 1 132 . 9 3 2079 . 8 11 1 ( E2 ) b Mult.: A2=+0.32 11, A4=–0.06 17 (1979Go15). E2 b Mult.: A2=+0.32 3, A4=–0.02 5 (1979Go15), A2=+0.30 5 (1975LaYS). Mult.: prompt decay of 2079.8 level (2.51 ns) consistent with E2 assignment. 161 . 8 3 1 8 6 . 6@ 2486 . 5 7 2 ( E2 ) a Mult.: α(exp)=0.97 20 (1979Go15); theory: α(E2)=0.805, α(E1)=0.124, α(M1)=1.91; A2=+0.12 4, A4=–0.01 6 (1979Go15). Mult.: Iγ(30°)/Iγ(90°)=0.74 (1974Tj02). 224 . 8 Iγ: Iγ/Iγ(407.6)=0.109 (1974Tj02). 193 . 1 3 2140 . 0 5 2 204 . 9 3 2 1 8 . 1@ 2377 . 7 17 2 ( M1 +E 2 ) b ( E2 ) b Mult.: A2=–0.11 5, A4=–0.04 8 (1979Go15). Mult.: A2=+0.32 4, A4=–0.04 6 (1979Go15), A2=+0.31 4 (1975LaYS). 508 . 3 Mult.: Iγ(30°)/Iγ(90°)=1.03 (1974Tj02). 258 . 0 Mult.: Iγ(30°)/Iγ(90°)=1.03 (1974Tj02). Iγ: Iγ/Iγ(407.6)=0.307 (1974Tj02). 2 1 9 . 9@ Iγ: Iγ/Iγ(407.6)=0.116 (1974Tj02). 224 . 5 3 2700 . 9 8 1 244 . 9 3 2324 . 7 11 3 ( E2 ) b ( M1 ) a Mult.: A2=+0.34 4, A4=–0.06 6 (1979Go15). Mult.: α(exp)=0.72 20 (1979Go15); theory: α(M1)=0.600, α(E2)=0.194; A2=0.00 3, A4=+0.02 5 (1979Go15). 2 5 8 . 1@ 258 . 0 Mult.: Iγ(30°)/Iγ(90°)=0.87 (1974Tj02). 2 6 9 . 2& c 2 8 1 . 5@ 808 . 6 γ not seen in 539 . 0 Mult.: Iγ(30°)/Iγ(90°)=0.77 (1974Tj02). 2 8 1 . 6& 789 . 9 Iγ: Iγ/Iγ(407.6)=2.89 (1974Tj02). 193Hg decay. Iγ: Iγ/Iγ(407.6)=0.104 (1974Tj02). 298 . 0 3 3 4 2 . 4& 2377 . 7 3 4 4 . 1& 3 6 4 . 9& 1153 . 5 3 8 2 . 2@ 890 . 8 3 9 4 . 5& 4 0 4 . 8& 1284 . 8 7 2 Mult.: A2=–0.13 4, A4=+0.02 6 (1979Go15). 1131 . 8 1496 . 3 Mult.: Iγ(30°)/Iγ(90°)=1.66 (1974Tj02). Iγ: Iγ/Iγ(407.6)=0.449 (1974Tj02). 1194 . 3 407 . 6 3 697 . 8 100 7 ( E2 ) b Mult.: A2=+0.28 2, A4=–0.03 3 (1979Go15), A2=+0.28 2 (1975LaYS); 436 . 7 3 2923 . 2 7 2 Mult.: A2=+0.39 11, A4=–0.05 17 (1979Go15). 454 . 0 3 5 0 0 . 0& 3154 . 9 6 2 ( E2 ) b ( E2 ) b Iγ(30°)/Iγ(90°)=1.41 (1974Tj02). Mult.: A2=+0.39 13, A4=–0.09 19 (1979Go15). 789 . 9 518 . 5 3 3441 . 7 3 1 527 . 9 3 1946 . 9 42 3 ( E2 ) b Mult.: A2=+0.21 8, A4=–0.01 12 (1979Go15). Mult.: from α(K)exp=0.0075 15 (1975LaYS); theory: α(K)=0.00640; E1 A2=–0.07 2, A4=+0.01 3 (1979Go15); A2=–0.26 2 (1975LaYS); Iγ(30°)/Iγ(90°)=0.94 (1974Tj02). Iγ: Iγ/Iγ(407.6)=0.229 (1974Tj02). 5 3 5 . 7@ 1398 . 5 Mult.: α(K)exp=0.065 13 (1975LaYS); theory: α(K)(M1)=0.0605, M1 +E 2 α(K)(E2)=0.0164; A2=+0.28 5 (1975LaYS); Iγ(30°)/Iγ(90°)=1.19 (1974Tj02). Iγ: Iγ/Iγ(407.6)=0.143 (1974Tj02). δ: adopted δ=1.4 +12–5 from 193Hg decay. 5 3 9 . 3@ 539 . 0 Mult.: Iγ(30°)/Iγ(90°)=1.24 (1974Tj02). 5 5 1 . 2@ 808 . 6 Mult.: A2=+0.22 8 (1975LaYS); Iγ(30°)/Iγ(90°)=1.19 (1974Tj02). 572 . 9 3 863 . 4 Iγ: Iγ/Iγ(407.6)=0.201 (1974Tj02). Iγ: Iγ/Iγ(407.6)=0.172 (1974Tj02). 6 2 M1 +E 2 +0 . 36 7 Mult.: α(K)exp=0.053 11 (1975LaYS); theory: α(K)=0.0466 15 A2=+0.18 6, A4=+0.08 9 (1977Go12,1979Go15); A2=+0.25 6 (1975LaYS); Iγ(30°)/Iγ(90°)=1.43 (1974Tj02). Iγ: Iγ/Iγ(407.6)=0.342 (1974Tj02). δ: from γ(θ) (1977Go12), δ not reported in 1979Go15. Continued on next page (footnotes at end of table) 104 19 3 A u 114 – 3 3 79 19 3 A u 114 – 3 3 79 NUCLEAR DATA SHEETS Ir(α,xnγ) 1979Go15,1985Ko13 (continued) γ( 1 9 3 A u ) ( c o n t i n u e d ) Eγ† E(level) Mult.§ Iγ‡ 6 0 0 . 9@ 890 . 8 6 1 4 . 9& 1153 . 5 621 . 5 3 4063 . 2 2 1 668 . 2 3 6 6 9 . 8@ 2087 . 1 5 1 δ Comments Mult.: Iγ(30°)/Iγ(90°)≈1.7 (1974Tj02). Iγ: Iγ/Iγ(407.6)=0.08 (1974Tj02). ( E2 ) b Mult.: A2=+0.22 12, A4=–0.01 18 (1979Go15). Mult.: A2=+0.18 3, A4=–0.01 5 (1979Go15); A2=+0.21 5 (1975LaYS). Mult.: α(K)exp=0.043 9 (1975LaYS); theory: α(K)(M1)=0.0339, 1478 . 4 α(K)(E2)=0.0102; Iγ(30°)/Iγ(90°)=1.23 (1974Tj02). Data suggests a M1, ∆J=1 transition, level scheme requires E2 multipolarity. Possibly a doublet with the major component the 668.2γ from the 2087–keV 21/2– level. Iγ: Iγ/Iγ(407.6)=0.135 (1974Tj02). 674 . 8 3 1372 . 9 6 1 M1 +E 2 +0 . 39 6 Mult.: α(K)exp=0.035 8 (1975LaYS); theory: α(K)=0.0302 8 A2=+0.25 5, A4=+0.05 8 (1977Go12,1979Go15); A2=+0.28 5 (1975LaYS); Iγ(30°)/Iγ(90°)=1.49 (1974Tj02). Iγ: Iγ/Iγ(407.6)=0.068 (1974Tj02). δ: from γ(θ) (1977Go12) (mistakenly shown as δ of 720.0γ in table 1 of 1977Go12), δ not reported in 1979Go15. Adopted δ=1.5 +11–5 from 720 . 9 3 1418 . 9 79 8 E2 193Hg decay. Mult.: α(K)exp=0.013 3 (1975LaYS); theory: α(K)(E2)=0.00882, α(K)(M1)=0.0280; A2=+0.27 3, A4=–0.02 5 (1979Go15); A2=+0.26 3 (1975LaYS); Iγ(30°)/Iγ(90°)=1.17 (1974Tj02). Iγ: Iγ/Iγ(407.6)=0.413 (1974Tj02). 741 . 0 3 3895 . 9 3 1 753 . 8 3 2172 . 7 25 2 ( E2 ) b Mult.: A2=+0.37 13, A4=–0.13 19 (1979Go15). ( E2 ) Mult.: α(K)exp=0.014 3 (1975LaYS); theory: α(K)(E2)=0.00807, α(K)(M1)=0.0250; A2=+0.32 3, A4=–0.04 5 (1979Go15); A2=+0.33 4 (1975LaYS). 7 7 7 . 5& 1284 . 8 ( 994 . 61# 15 ) 1284 . 8 1249 . 3 3 1946 . 9 11 1 ( E3 ) Mult.: A2=+0.31 3, A4=+0.02 5 (1979Go15). Stretched octupole character inferred from γ(θ). The partial T1/2 for the 1947.0 level via 1249.3γ (=50 ns) is low relative to the Weisskopf single–particle estimate for E3 (=116 ns). E3 is nevertheless preferable to other assignments (1979Go15). † From 1979Go15, unless otherwise noted. ‡ From 1979Go15; arbitrary units, relative to Iγ(407.6γ)=100 in § I(ce)/Iγ normalized to α(K)(E2)=0.030 for the 407.6γ. 193Ir(α,4nγ), E(α)=51 MeV. # From adopted gammas. @ From 1974Tj02; uncertainties estimated to be 0.3 keV, as in 1979Go15 (evaluator). & From 1975StZE. a α(exp) deduced from intensity balance in level scheme in delayed coin from the 2486.5 level (T =150 ns), with the assumption 1/2 that I(γ+ce)(244.9γ)=I(γ+ce)(161.8γ)=I(γ+ce)(132.9γ,E2)=I(γ+ce)(407.6γ,E2). b From γ–ray angular distributions in 1979Go15; stretched E2 assignments were based on large positive A , and intraband M1+E2 2 c assignments on rotational structure and negative A2. Placement of transition in the level scheme is uncertain. 105 19 3 A u 114 – 3 4 79 19 3 A u 114 – 3 4 79 NUCLEAR DATA SHEETS Ir(α,xnγ) 1979Go15,1985Ko13 (continued) Level Scheme 193Ir(α,4nγ), E(α)=51 MeV 3 (E 62 1.0 4063.2 74 43/2+ 3895.9 19/2– (15/2–) 17/2– 11/2– (13/2–) 11/2+ (11/2–) 9/2– 13/2– 6 2) (E 7 2) 4.0 (E 2324.7 1.80 ns 150 ns 3.52 ns 0.79 ns <0.2 ns 2172.7 2140.0 2087.1 2079.8 1946.9 1496.3 1478.4 1418.9 1398.5 1372.9 1284.8 1194.3 1153.5 1131.8 60 380.9 57 2.2 55 2.9 M 1+ 261.2 E2 50 9.2 6 280.0 40 1.6 7 .6 53 (E 2) 289.3 10 21 1.5 0 8.1 (13/2+) 2476.4 2377.7 36 66 4.9 72 9.8 53 0.9 E 67 5.7 M 2 7 99 4.8 M 1+E 9 1+ 2 774.61 E2 7 . 39 5 6 40 4.5 61 4.8 4 34 .9 34 4.1 2.4 25/2+ 21/2+ 2700.9 2486.5 4.5 16 (E 2) 98 1.8 ( 8 29 .7 (EE2) 8 2 . 7 ) 20 0 4 3 24 .9 ( 7 4.9 E2 75 (M ) 1 19 3.8 ( 1) 7 3 E . 11 2) 1 66 ( 8 M 25 13 .2 1 + 2.9 5 E2 12 ) E2 5 5249.3 11 7.9 (E E1 3) 1 1 42 23/2(+) 21/2– <0.5 ns 2923.2 22 27/2+ 23/2– 3441.7 3154.9 6.7 31/2– 27/2– 43 35/2– 31/2+ 45 35/2+ 51 8.5 39/2+ 39/2– (E 2) 3 43/2– 2) 1.5 (E 2 ) 2 Intensities: relative Iγ for 9/2+ 9/2– 15/2– 7/2+ 7/2– 863.4 808.6 789.9 697.8 539.0 508.3 32 25 .21 218.1 18 9.9 6.6 11/2– 890.8 5/2+ .23 (3/2)+ 38 (1/2)+ 290.2 258.0 224.8 38.2 0.0 3/2+ 19 3 Au 79 114 106 2.51 ns 10.4 ns 19 3 H g 113 – 1 80 19 3 H g 113 – 1 80 NUCLEAR DATA SHEETS Adopted Levels, Gammas Q(β–)=–3.73×103 11; S(n)=7111 22; S(p)=5563 22; Q(α)=3007 19 2003Au03. 193Hg Levels Cross Reference (XREF) Flags 193Hg IT Decay (11.8 h) D Pt(α,xnγ) 193Tl ε Decay (21.6 min) E (HI,xnγ) C 193Tl ε Decay (2.11 min) F (HI,xnγ): SD Jπ‡§ E(level)† 0.0 A B 3/2(–) XREF ABC Comments T1/2 %ε+%β+=100; µ=–0.62757 18. 3 . 80 h 15 µ: 1989Ra17 tabulation, value from optical pumping (1971Mo24), with diamagnetic correction applied. Q=–0.72 38 eb, collinear fast–beam laser spectroscopy (1989Ra17,1986Ul02). Limit for possible α decay: <10–5% (1963Ka17), 10–17% (2001Mo07); other estimated value: <1×10–14% (1997Mo25). Jπ: spin from optical spectroscopy, optical level crossing (1976Fu06); parity from Schmidt diagram, µ. T1/2: from 1974ViZS. Other values: 4 h (1958Ma50), 3.5 h 5 (1965KaZZ), 3 h (1966Ha47). RMS charge radius: 5.4239 35 fm (2004An14). Isotope shift: ∆<r2> =–0.234 8 fm2 (1986Ul02, relative to 39 . 51 3 5/2(–) AB 49 . 95 14 ( 1 / 2– ) B 0 . 63 ns 198Hg). Jπ: M1 γ to 3/2(–); M4 γ from 13/2+. 3 T1/2: from 193Hg IT decay (11.8 h) (1969Ba42). Jπ: (M1) γ to 3/2(–); expected p1/2 level from shell model. 1 4 0 . 7 6@ 5 13 / 2 ( + ) A DE %ε+%β+=92.8 5; %IT=7.2 5; µ=–1.0585 8. 11 . 8 h 2 µ: 1973Re04, optical pumping, with diamagnetic correction applied. Other: –1.0416 3 µN 1971Mo24, optical pumping, no diamagnetic correction. Q=+0.92 10 eb, collinear fast–beam laser spectroscopy (1989Ra17,1986Ul02). Jπ: spin from optical spectroscopy (1976Fu06); parity from Schmidt diagram, µ. T1/2: from %IT: From 193Hg 193Hg IT decay (11.8 h) (1974ViZS). IT decay (11.8 h). Isotope shift: ∆<r2> =–0.2160 24 (1986Ul02, relative to 198Hg). 207 . 74 20 ( 7 / 2– ) B Jπ: (E2) γ to 3/2(–) g.s.; systematics of low–lying 324 . 36 8 ( 3 / 2– , 5 / 2– ) B Jπ: (M1) γ to 5/2–, (E2) γ to (1/2–). states in odd Hg isotopes. 344 . 00 10 ( 1 / 2– , 3 / 2– ) B Jπ: (M1) γ to (1/2–). 374 . 61 10 5 2 2 . 7 3@ 1 9 ( 3 / 2– , 5 / 2– , 7 / 2– ) B Jπ: (M1) γ to 5/2–. ( 17 / 2+ ) DE 746 . 8g 4 ( 15 / 2+ ) DE 752 . 64 25 ( 1 / 2– , 3 / 2– , 5 / 2– ) Jπ: (M1) γ to 3/2(–). B 1026 . 4 6 1 1 4 5 . 4@ 3 ( 13 / 2+ , 15 / 2+ ) E ( 21 / 2+ ) DE 1380 . 3g 3 ( 19 / 2+ ) DE 1523 . 1 5 ( 17 / 2+ , 19 / 2+ ) 1523 . 3 3 ( 1 / 2– , 3 / 2– , 5 / 2– ) B DE Jπ: (M1+E2) γ to (1/2–,3/2–,5/2–); probably direct ε 1580 . 10 21 ( 1 / 2– , 3 / 2 , 5 / 2– ) B Jπ: probably direct ε decay from 1/2+ decay from 1/2+ level. 1735 . 8 7 1755 . 7 f 3 1 8 8 4 . 3@ 5 ( 19 / 2+ ) E ( 21 / 2– ) DE ( 25 / 2+ ) DE 1886 . 2 f 5 1 8 9 0 . 9& 4 2 0 9 6 . 0& 5 ( 25 / 2– ) DE ( 23 / 2– ) DE ( 27 / 2– ) DE 2189 . 2 f ( 29 / 2– ) DE ( 27 / 2– ) E 2289 . 5 7 5 1 . 58 ns T1/2: from (α,xnγ). 6 Continued on next page (footnotes at end of table) 107 193Tl. 193Tl; γ to 5/2– 19 3 H g 113 – 2 80 19 3 H g 113 – 2 80 NUCLEAR DATA SHEETS Adopted Levels, Gammas (continued) 193Hg Jπ‡§ E(level)† XREF 2351 . 8 7 ( 25 / 2+ ) E 2502 . 1c 6 2 5 8 3 . 7& 6 ( 29 / 2+ ) DE ( 31 / 2– ) DE 2617 . 3 6 2 6 4 1 . 7@ 7 ( 29 / 2– ) E ( 29 / 2+ ) E 2695 . 6c 2762 . 2 f 6 ( 33 / 2+ ) DE 6 ( 33 / 2– ) DE 3176 . 2c 7 ( 37 / 2+ ) DE 3196 . 0 8 ( 33 / 2+ ) E 3202 . 5 7 ( 33 / 2– ) E 3220 . 1 8 ( 33 / 2– ) E 3 2 2 3 . 6& 6 3260 . 3a 8 3497 . 5 f 6 ( 35 / 2– ) DE ( 33 / 2+ ) E ( 37 / 2– ) DE 3570 . 2a 8 ( 37 / 2+ ) E 3727 . 1 7 ( 37 / 2– ) E 3754 . 2 8 ( 37 / 2+ ) 3811? Comments T1/2 0 . 57 ns T1/2: from (α,xnγ). 3 E E 3850 . 7 8 ( 37 / 2– ) E 3880 . 5c 7 3883 . 8d 6 4119 . 7b 9 ( 41 / 2+ ) DE ( 39 / 2– ) DE 4120 . 5a 10 4150 . 8e 7 ( 39 / 2+ ) E ( 41 / 2+ ) E ( 41 / 2– ) E 4198 . 0 8 4396 . 8d 7 ( 39 / 2– ) E ( 43 / 2– ) E 4412 . 6 f ( 41 / 2– ) E 7 4416 . 7 11 E 4462 . 2 12 E 4539 . 0 7 4674 . 1e 7 ( 41 / 2+ ) ( 45 / 2– ) E 4683 . 8b 12 4688 . 4c 9 ( 43 / 2+ ) E ( 45 / 2+ ) E 4720 . 6 8 ( 39 / 2– ) E E 4792 . 0 7 ( 41 / 2– ) E 4864 . 9 8 4889 . 9a 13 ( 43 / 2– ) E ( 45 / 2+ ) E 4958 . 5 7 ( 45 / 2– ) E 4964 . 0 13 ( 43 / 2 ) E 5033 . 1 12 5048 . 0d 9 ( 47 / 2– ) E E 5117 . 4 8 ( 45 / 2– ) E 5319 . 9 8 5339 . 1 i 8 ( 43 / 2 ) E ( 47 / 2– ) E 5361 . 7b 15 ( 47 / 2+ ) E 5391 . 9 9 E 5400 . 3 15 5411 . 5e 10 E ( 49 / 2– ) E 5442 . 6 7 5547 . 6 j 7 ( 45 / 2+ ) E ( 47 / 2+ ) E 5559 . 5c 12 ( 49 / 2+ ) E 5560 . 5 9 ( 47 / 2– ) E 5678 . 4 8 5698 . 1a 15 ( 49 / 2– ) E ( 49 / 2+ ) E 5702 . 7 9 ( 49 / 2– ) E 5714 . 8? Levels (continued) 13 E 5747 . 5 10 ( 49 / 2– ) E 5800 . 6 9 5832 . 1 j 7 ( 49 / 2– ) E ( 49 / 2+ ) E 5899 . 1d 12 ( 51 / 2– ) E 6017 . 1 13 6067 . 7 j 8 ( 51 / 2– ) E ( 51 / 2+ ) E 6103 . 9 9 ( 51 / 2– ) E Continued on next page (footnotes at end of table) 108 19 3 H g 113 – 3 80 19 3 H g 113 – 3 80 NUCLEAR DATA SHEETS Adopted Levels, Gammas (continued) 193Hg Jπ‡§ E(level)† XREF 6145 . 2 9 ( 51 / 2– ) E 6163 . 6b 17 ( 51 / 2+ ) E 6305 . 3 9 ( 53 / 2– ) E 6394 . 9e 13 6401 . 0 i 18 6419 . 4h 9 ( 53 / 2– ) E ( 53 / 2– ) E ( 53 / 2– ) E 6428 . 5 16 6464 . 6 j 8 6496 . 9c 15 ( 53 / 2+ ) E ( 53 / 2+ ) E ( 53 / 2+ ) E 6726 . 4 i 17 ( 55 / 2– ) E 6832 . 3 9 6839 . 9 j 8 6913 . 4d 15 ( 55 / 2+ ) E ( 55 / 2+ ) E ( 55 / 2– ) E ( 55 / 2– ) E 6921 . 8h 16 Comments T1/2 The decay out of this level has not been observed. E 6921 . 9 10 6978 . 6 i 18 ( 57 / 2– ) E 7037 . 5 j ( 57 / 2+ ) E ( 57 / 2+ ) E 9 7038 . 1 16 E 7133 . 3 12 7186 . 7 11 7197 . 9 j 10 7245 . 7 i 19 7276 . 6h 10 ( 59 / 2– ) E ( 57 / 2– ) E 7281 . 6 12 ( 57 / 2+ ) E 7440 . 0 14 7476 . 4e 16 ( 57 / 2– ) E ( 57 / 2– ) E ( 59 / 2+ ) E E 7492 . 3 16 7555 . 2 j 10 7560 . 4 i 19 ( 61 / 2+ ) E ( 61 / 2– ) E 7681 . 2 12 7699 . 5h 10 ( 59 / 2– ) E E E 7838 . 3h 10 7920 . 0 i 20 7924 . 8 j 10 8137 . 0h 11 ( 61 / 2– ) E ( 63 / 2– ) E ( 63 / 2+ ) E ( 63 / 2– ) E 8331 . 0 i 20 8388 . 8 j 11 8394 . 8h 11 8751 . 0h 12 ( 65 / 2– ) E ( 67 / 2– ) E 8757 . 8 i 8886 . 8 j 21 ( 67 / 2– ) E 12 ( 67 / 2+ ) E ( 69 / 2– ) E ( 65 / 2– ) E ( 65 / 2+ ) E 8978 . 1 13 E 9221 . 5h 12 9409 . 1 j 14 9675 . 9h 13 9923 . 1 j Levels (continued) ( 69 / 2+ ) E ( 71 / 2– ) E 16 ( 71 / 2+ ) E 10290 . 4h 14 10853 . 6h 15 xk ( 73 / 2– ) E ( 75 / 2– ) E J Jπ: J≈(19/2–). F 1993Fa07 suggested that the lowest transition in this band is 192 keV, but 1993Jo09 do not seem to confirm this. 111 . 8+x l 4 233 . 20+xk 20 365 . 8+x l 4 507 . 4+xk 3 660 . 4+x l 4 821 . 3+xk 4 995 . 3+x l 4 1174 . 7+xk 4 1369 . 8+x l 4 1566 . 6+xk 4 1782 . 9+x l 5 J+1 F J+2 F J+3 F J+4 F J+5 F J+6 F J+7 F J+8 F J+9 F J+10 F J+11 F Continued on next page (footnotes at end of table) 109 19 3 H g 113 – 4 80 19 3 H g 113 – 4 80 NUCLEAR DATA SHEETS Adopted Levels, Gammas (continued) 193Hg Jπ‡§ E(level)† 1995 . 6+xk 5 2234 . 0+x l 5 2460 . 1+xk 5 2722 . 3+x l 5 2957 . 5+xk 5 3247 . 2+x l 6 3485 . 7+xk 6 3807 . 1+x l 6 4044 . 2+xk 6 4402 . 0+x l 6 4634 . 2+xk 6 5030 . 8+x l 7 5256 . 8+xk 7 5692 . 5+x l 7 5912 . 5+xk 7 6386 . 6+x l 7 XREF J+12 F J+13 F J+14 F J+15 F J+16 F J+17 F J+18 F J+19 F J+20 F J+21 F J+22 F J+23 F J+24 F J+25 F J+26 F J+27 F 6601 . 0+xk 7 7112 . 2+x l 8 7322 . 3+xk 8 7868 . 8+x l 8 J+28 F J+31 F 8075 . 5+xk 8 8656 . 1+x l 8 8860 . 4+xk 8 J+32 F 9473 . 8+x l 9 9677 . 0+xk 9 10321 . 3+x l 10 10524 . 8+xk 10 11197 . 4+x l J+29 F J+30 F J+33 F J+34 F J+35 F J+36 F J+37 F J+38 F 11 J+39 F 11405 . 7+xk 11 ym J+40 F 111 . 9+yn 4 2 3 3 . 4 9 + ym 2 0 366 . 1+yn 4 5 0 8 . 5 + ym 3 660 . 9+yn 4 8 2 3 . 5 + ym 4 996 . 0+yn 4 1 1 7 8 . 3 + ym 4 1370 . 6+yn 4 1 5 7 2 . 1 + ym 4 1783 . 9+yn 4 2 0 0 4 . 2 + ym 5 2235 . 0+yn 5 2 4 7 4 . 0 + ym 5 2723 . 3+yn 5 2 9 8 0 . 2 + ym 5 3248 . 2+yn 6 3 5 2 1 . 7 + ym 6 3808 . 1+yn 6 4 0 9 8 . 5 + ym 6 4403 . 0+yn 6 4 7 0 9 . 8 + ym 7 5031 . 8+yn 7 5 3 5 4 . 1 + ym 7 5693 . 5+yn 7 6 0 3 1 . 9 + ym 7 6387 . 5+yn 7 6 7 4 1 . 8 + ym 7 7113 . 1+yn 8 J1 F J1+1 F J1+2 F J1+3 F J1+4 F J1+5 F J1+6 F J1+7 F J1+8 F J1+9 F J1+10 F J1+11 F J1+12 F J1+13 F J1+14 F J1+15 F J1+16 F J1+17 F J1+18 F J1+19 F J1+20 F J1+21 F J1+22 F J1+23 F J1+24 F J1+25 F J1+26 F J1+27 F J1+28 F J1+29 F 7 4 8 4 . 0 + ym 8 7869 . 7+yn 8 8 2 5 5 . 2 + ym 8 J1+30 F J1+31 F J1+32 F 8657 . 0+yn 8 J1+33 F Levels (continued) Comments T1/2 0 . 132 ps# 14 0 . 104 ps# 7 0 . 083 p s # +7–14 0 . 062 ps# 7 Jπ: J1≈(19/2+). 0 . 146 p s # +14–21 0 . 076 p s # +7–14 0 . 083 ps# 7 Continued on next page (footnotes at end of table) 110 19 3 H g 113 – 5 80 19 3 H g 113 – 5 80 NUCLEAR DATA SHEETS Adopted Levels, Gammas (continued) 193Hg Jπ‡§ E(level)† Comments XREF 9 0 5 7 . 4 + ym 9 9474 . 7+yn 9 9 8 8 9 . 5 + ym 1 1 J1+34 F J1+35 F F 10322 . 3+yn 10 1 0 7 5 0 . 0 + ym 1 2 11198 . 4+yn 11 J1+36 J1+37 F J1+38 F zo Levels (continued) J1+39 F J2 F Jπ: J2≈(27/2–). 1998Li54 suggest J=25/2 for this level on the basis of the systematics for the bandhead moments of inertia. 291 . 00+z o 20 619 . 8+z o 3 986 . 4+z o 4 1391 . 4+z o 4 1835 . 6+z o 5 2319 . 9+z o 5 2845 . 8+z o 6 3412 . 5+z o 6 4017 . 5+z o 6 4658 . 0+z o 7 5332 . 5+z o 7 6040 . 0+z o 7 6779 . 3+z o 8 7549 . 0+z o 9 8350 . 3+z o 10 9181 . 6+z o 11 10042 . 6+z ? o up 2 4 0 . 5 2+up 2 0 5 2 2 . 4+up 3 8 4 5 . 9+up 4 1 2 1 1 . 3+up 4 1 6 1 7 . 8+up 5 2 0 6 5 . 3+up 5 2 5 5 3 . 4+up 6 3 0 8 1 . 4+up 6 3 6 4 8 . 6+up 6 4 2 5 4 . 9+up 7 4 8 9 9 . 4+up 7 5 5 8 1 . 3+up 7 6 2 9 9 . 9+up 8 7 0 5 4 . 4+up 8 7 8 4 4 . 2+up 8 8 6 6 8 . 5+up 9 9 5 2 6 . 4+up 1 0 J2+2 F J2+4 F J2+6 F J2+8 F J2+10 F J2+12 F J2+14 F J2+16 F J2+18 F J2+20 F J2+22 F J2+24 F J2+26 F J2+28 F J2+30 F J2+32 F J2+34 F J3 F J3+2 F J3+4 F J3+6 F J3+8 F J3+10 F J3+12 F J3+14 F J3+16 F J3+18 F J3+20 F J3+22 F J3+24 F J3+26 F J3+28 F J3+30 F J3+32 F J3+34 F Jπ: J3≈(21/2–). † From least–squares fit to Eγ. ‡ From (HI,xnγ) data set, unless otherwise noted. Jπ assignments are based on multipolarities of transitions and fits of § For SD bands, the bandhead Jπ is from the (HI,xnγ):SD dataset and from least–squares fit to expansions relating second moment coincident γ rays into an interconnected set of rotational bands. of inertia and angular frequency (1990Cu05). # From line–shape analysis (1998Bu03). @ (A): Band (1) Proposed configuration: ν(i 13/2) (1995Fo13). 2 p & (B): Band (2) Proposed configuration: ν(i ) (1995Fo13). a (C): Band (3) b (D): Band (4) c (E): Band (5) d (F): Band (6) e 13/2 3/2 Proposed configuration: ν(i13/23 p3/22) (1995Fo13). Proposed configuration: ν(i13/23 p3/2 h9/2) (1995Fo13). Proposed configuration: ν(i13/23) (1995Fo13). Proposed configuration: ν(i13/24 p3/2) (1995Fo13). (G): Band (7) Proposed configuration: ν(i13/24 p3/2) (1995Fo13). 2 f (H): Band (8) Proposed configuration: ν(i 13/2 p3/2) (1995Fo13). g (I): Band (9) Proposed configuration: ν(i ) 13/2 (1995Fo13). h (J): Dipole band (1). i (K): Dipole band (2). j (L): Dipole band (3). Footnotes continued on next page 111 19 3 H g 113 – 6 80 19 3 H g 113 – 6 80 NUCLEAR DATA SHEETS Adopted Levels, Gammas (continued) 193Hg Levels (continued) k (M): SD–1 Band (1998Bu03,1994Jo10,1993Jo09,1990Cu05). Q(intrinsic)=18.4 +8–9 (1998Bu03). Percent population=1.6 3 (1990Cu05). g factor (intrinsic)=–0.65 14 (1993Jo09). This is deduced from the ratio of interband (M1) and intraband (E2) transition intensities. Possible configuration: [512]5/2–, α=–1/2 below Eγ≈400. and j15/2 above Eγ≈600 keV. l (N): SD–2 Band (1998Bu03,1994Jo10,1993Jo09,1990Cu05). Q(intrinsic)=17.3 +11–9 (1998Bu03). Percent population=2.1 3 (1990Cu05). The relative intensity of this band is anomalously high (≈2 times that of its signature partner SD–3 band) which leads to suggestion that this band may be composed of two SD bands, one of them being the signature partner of SD–3 band. Possible configuration: [512]5/2–, α=+1/2. Signature partner of SD–1 band. m (O): SD–3 Band (1998Bu03,1994Jo10,1993Jo09,1990Cu05). Q(intrinsic)=16.1 +15–14 (1998Bu03). Percent population=0.9 3 (1990Cu05) Possible configuration: [624]9/2+, α=–1/2. n (P): SD–4 Band (1998Bu03,1994Jo10,1993Jo09,1990Cu05). Q(intrinsic)=17.3 +11–9 (1998Bu03). Possible configuration: [624]9/2+, α=+1/2. Signature partner of SD–3 band. SD–2 and SD–4 bands are unresolved but FWHM of lines is consistently greater than that for lines in SD–1 band (from (HI,xnγ):SD). o (Q): SD–5 Band (1998Bu03,1994Jo10,1993Jo09,1990Cu05). Q(intrinsic)=16.7 10 (1998Bu03). Percent population=1.1 3 (1990Cu05). j15/2, α=–1/2 intruder band below Eγ≈400 keV and [512]5/2 α=–1/2 above Eγ≈600 keV. Configuration: (N=7,α=–1/2)(1994Jo10). p (R): SD–6 Band (1998Bu03,1994Jo10). Q(intrinsic)=16.7 +14–13 (1998Bu03). Percent population ≈0.6 (1994Jo10). Configuration: (N=7,α=+1/2), unfavored signature partner (1994Jo10). γ(193Hg) Some mixing ratios from 193Tl ε decay and Pt(α,xnγ) data sets are listed in the Comments column. If no value is specified for this parameter a default δ=1.0 is assumed. E(level) 39 . 51 49 . 95 140 . 76 207 . 74 324 . 36 344 . 00 Iγ@ Eγ† 39 . 51‡ 3 49 . 5§ c 11 101 . 25‡ 4 207 . 74§ 20 274 . 39§ 14 284 . 89§ 13 Mult.a α 100 M1 ‡ 21 . 6 100c ( M1 ) § M4 ‡ 11 . 1 100 6060 B(M1)(W.u.)=0.0239 14. B(M4)(W.u.)=1.38 11. 13 . 5§ 13 ( E2 ) § ( E2 ) § 324 . 37§ 10 21 . 6§ 10 100§ ( M1 ) § ( M1 ) § 0 . 291 294 . 08§ 25 343 . 99§ 10 10 . 3§ 12 100§ 4 ( M1 ) § 0 . 380 ( M1 +E 2 ) § 0 . 12 4 100 Comments 0 . 340 0 . 138 0 . 415 δ: 1.7 +17–6. δ: from 374 . 61 49 . 5§ c 11 335 . 11§ 10 374 . 58§ 22 40§ c 19 100§ 4 29§ 3 ( M1 ) § ( M1 ) § ( E2 ) § 0 . 267 522 . 73 382 . 0 2 100 E2 0 . 0533 606 . 0 4 713 . 0§ 4 100 ( M1 +E 2 ) ( E2 ) § 0 . 036 20 752 . 5§ 4 100§ 15 ( M1 ) § 0 . 0316 52§ 6 ε decay (21.6 min). 0 . 0562 746 . 8 752 . 64 193Tl 11 . 1 0 . 01201 1026 . 4 885 . 7 8 100 1145 . 4 622 . 7 2 100 E2 0 . 0161 1380 . 3 633 . 5 4 92 E2 0 . 0155 857 . 5 4 100 ( M1 +E 2 ) 0 . 0212 7 δ: 0.33 6. δ: from Pt(α,xnγ). 1523 . 1 496 . 7 8 1523 . 3 1000 . 4 4 770 . 4§ 4 ( E2 ) 0 . 0273 100 33 ( M1 +E 2 ) 0 . 011 5 100§ 6 ( M1 +E 2 ) § 0 . 021 7 δ: 0.9 +10–5. δ: from 1580 . 10 1484 . 1§ 7 1523 . 4§ 4 1205 . 4§ 3 1256 . 0§ 3 1539 . 4§ 10 1579 . 3§ 10 1735 . 8 989 . 0 8 1755 . 7 ( 19 . 9 10 ) ε decay (21.6 min). 23§ 4 20§ 5 100§ 22 100 ( E2 ) 0 . 00617 <1 [ E1 ] 6.6 232 . 3 4 65 2 ( M1 ) 0 . 727 375 . 2 4 100 3 ( E1 ) 0 . 0166 610 . 5 6 31 3 0 . 01114 1884 . 3 738 . 9 4 100 E2 1886 . 2 130 . 5 4 100 E2 1 . 87 1890 . 9 135 . 0 10 21 ( M1 +E 2 ) 2 . 5 10 100 ( E 1 +M2 ) 0 . 044 40 745 . 5 4 193Tl 26§ 8 62§ 15 23§ 3 B(E2)(W.u.)=49.1 23. Continued on next page (footnotes at end of table) 112 19 3 H g 113 – 7 80 19 3 H g 113 – 7 80 NUCLEAR DATA SHEETS Adopted Levels, Gammas (continued) γ(193Hg) (continued) E(level) 2096 . 0 100 E2 0 . 355 209 . 6 8 8 [ M1 ] 0 . 967 6 ( E1 ) 0 . 0639 E2 0 . 1027 93 . 4 10 302 . 9 4 100 2 403 . 2 8 100 2351 . 8 1206 . 6 8 100 150 . 5 10 617 . 8 4 2583 . 7 2617 . 3 3 100 ( E2 ) 1 . 08 E2 0 . 0164 394 . 7 8 5 1 487 . 7 4 100 2 E2 0 . 0285 327 . 7 6 100 . 0 23 ( M1 ) 0 . 283 0 . 01057 428 . 1 8 89 11 521 . 3 10 23 5 731 . 1 8 40 . 9 23 2641 . 7 757 . 5 6 100 ( E2 ) 2695 . 6 193 . 5 4 100 E2 0 . 435 2762 . 2 573 . 0 4 100 E2 0 . 0195 E2 0 . 0295 ( E2 ) 0 . 0210 E2 0 . 0152 3176 . 2 480 . 6 4 100 3196 . 0 500 . 3 10 <25 554 . 4 7 100 25 3202 . 5 585 . 2 8 100 4 1013 . 4 8 602 . 9 8 3223 . 6 461 . 4 8 12 1 640 . 0 4 100 2 100 3260 . 3 564 . 7 10 758 . 2 8 100 6 ( E2 ) 0 . 01055 3497 . 5 735 . 2 4 100 E2 0 . 01126 3570 . 2 309 . 9 8 70 ( E2 ) 0 . 0960 393 . 9 8 100 ( E2 ) 0 . 0491 ( E2 ) 0 . 0207 0 . 00512 3754 . 2 20 3 507 . 0 8 83 4 524 . 5 8 100 13 965 . 0 8 50 21 558 . 2 8 100 30 3811? 1058 . 6 10 1115 . 0d 10 100 3850 . 7 1088 . 5 8 100 ( E2 ) 3880 . 5 704 . 3 4 100 E2 0 . 01233 3883 . 8 660 . 2 4 100 E2 0 . 0142 4119 . 7 549 . 5 10 54 8 22 3 943 . 5 8 100 3 4120 . 5 550 . 3 6 100 ( E2 ) 0 . 0214 4150 . 8 653 . 3 4 100 E2 0 . 0145 4198 . 0 314 . 2 10 D ( E2 ) 0 . 0252 ( E2 ) 0 . 0204 ( E2 ) 0 . 00719 83 25 974 . 4 8 100 25 4396 . 8 512 . 9 4 100 4412 . 6 561 . 9 8 24 4 685 . 7 8 20 4 915 . 1 6 B(E2)(W.u.)=38.3 21. 62 19 3220 . 1 3727 . 1 Comments 1.0 3 2289 . 5 2502 . 1 α 205 . 1 4 211 . 9 8 2189 . 2 Mult.a Iγ@ Eγ† 100 . 0 14 4416 . 7 1240 . 5 8 100 4462 . 2 1286 . 0 10 4539 . 0 784 . 8 8 100 8 ( E2 ) 0 . 00982 1362 . 8 8 56 4 ( E2 ) 0 . 00337 100 4674 . 1 523 . 2 4 100 E2 0 . 0241 4683 . 8 564 . 1 8 100 ( E2 ) 0 . 0202 4688 . 4 807 . 9 6 100 ( E2 ) 0 . 00925 4720 . 6 993 . 6 8 100 Continued on next page (footnotes at end of table) 113 19 3 H g 113 – 8 80 NUCLEAR DATA SHEETS Adopted Levels, Gammas (continued) γ(193Hg) (continued) E(level) 4792 . 0 Iγ@ Eγ† Mult.a α ( 71 . 3 ) 594 . 1 8 100 5 908 . 2 8 91 14 1064 . 8 10 41 14 1294 . 4 10 32 14 ( M1 ) 0 . 0195 4864 . 9 ( 72 . 9 ) 4889 . 9 769 . 4 8 100 ( E2 ) 0 . 01023 4958 . 5 546 . 0 6 100 2 ( E2 ) 0 . 0218 561 . 4 8 45 5 ( M1 ) 0 . 0236 144 . 5 10 4964 . 0 843 . 5 8 100 5033 . 1 1152 . 6 10 100 5048 . 0 651 . 2 6 100 ( D+Q ) 5117 . 4 252 . 5 4 325 . 5d 10 100 . 0 18 ( M1 ) 5319 . 9 1169 . 0 8 5339 . 1 221 . 7 4 474 . 2 8 0 . 577 3.6 5 100 100 3 29 . 2 9 [ M1 ] 0 . 827 [ E2 ] 0 . 0305 5361 . 7 677 . 9 8 100 5391 . 9 1511 . 5 8 100 5400 . 3 716 . 5 8 100 [ M1 ] 0 . 0359 5411 . 5 737 . 4 6 100 ( E2 ) 0 . 01119 5442 . 6 123 . 0 10 9 2 [ M1 ] 4 . 35 903 . 5 6 100 2 [ E2 ] 0 . 00737 1046 . 0 8 28 2 [ E1 ] 0 . 00213 1562 . 0 10 5547 . 6 ( D+Q ) 6 2 105 . 2 8 19 2 [ M1 ] 6 . 80 155 . 9 10 10 2 [ M1 ] 2 . 22 227 . 4 8 19 2 589 . 1 8 21 2 873 . 4 6 100 2 [ E1 ] 0 . 00296 5559 . 5 871 . 1 8 100 ( E2 ) 0 . 00794 5560 . 5 443 . 2 6 100 [ M1 ] 0 . 126 5678 . 4 339 . 4 8 18 4 719 . 8 6 100 9 5698 . 1 808 . 2 8 100 ( E2 ) 0 . 00924 5702 . 7 363 . 6 8 [ M1 ] 0 . 214 5714 . 8? 744 . 4 8 375 . 8d 10 100 5747 . 5 789 . 0 10 100 5800 . 6 240 . 1 6 95 9 461 . 5 6 100 9 284 . 5 4 100 . 0 22 5832 . 1 389 . 6 8 5899 . 1 86 3 100 17 5.8 4 M1 [ E2 ] 0 . 416 0 . 0506 851 . 1 8 302 . 2d 10 100 678 . 0 10 100 14 [ E2 ] 0 . 0134 6067 . 7 235 . 6 4 100 . 0 19 ( M1 ) 0 . 699 6103 . 9 401 . 1 8 100 3 425 . 5 8 47 9 6017 . 1 520 . 1 4 6145 . 2 86 29 50 . 6 12 543 . 5 10 16 3 765 . 0 8 53 3 442 . 6 8 100 11 806 . 0 8 41 4 6163 . 6 801 . 9 8 6305 . 3 557 . 7 8 ( E2 ) 0 . 0244 ( M1 ) 0 . 164 [ M1 ] 0 . 126 ( E2 ) 0 . 00623 100 28 9 626 . 8 6 100 . 0 18 6394 . 9 983 . 4 8 100 6419 . 4 113 . 9 10 <7 274 . 2 8 42 14 ( M1 ) 0 . 460 315 . 6 6 71 7 ( M1 ) 0 . 314 618 . 7 6 100 8 Continued on next page (footnotes at end of table) 114 19 3 H g 113 – 8 80 19 3 H g 113 – 9 80 NUCLEAR DATA SHEETS Adopted Levels, Gammas (continued) γ(193Hg) (continued) E(level) 6419 . 4 716 . 7 8 6428 . 5 869 . 0 10 100 6464 . 6 397 . 0 4 100 . 0 14 632 . 6 6 Mult.a Iγ@ Eγ† α 26 4 38 4 ( M1 ) 0 . 169 ( E2 ) 0 . 0156 6496 . 9 937 . 4 8 100 6726 . 4 325 . 4 10 100 22 709 . 3 10 100 22 ( E2 ) 0 . 01215 6832 . 3 367 . 8 8 69 6 ( M1 ) 0 . 207 6839 . 9 375 . 4 4 6913 . 4 1014 . 3 8 100 6921 . 8 1022 . 7 10 100 6921 . 9 502 . 4 8 100 . 0 24 ( M1 ) 0 . 0905 818 . 2 8 87 . 8 24 ( E2 ) 0 . 00901 764 . 6 6 772 . 2 4 6978 . 6 252 . 3 8 577 . 6 10 100 . 0 19 68 4 100 . 0 19 0 . 01037 0 . 196 ( E2 ) 0 . 01016 100 36 91 18 7037 . 5 197 . 6 4 7038 . 1 1139 . 0 10 100 205 . 1 9 ( E2 ) ( M1 ) 100 ( E2 ) 0 . 0191 ( M1 ) 1 . 140 ( M1 ) 0 . 383 21 7133 . 3 293 . 4 8 100 7186 . 7 881 . 5 8 100 7197 . 9 160 . 4 4 100 ( M1 ) 2 . 05 7245 . 7 267 . 0 8 100 ( M1 ) 0 . 495 7276 . 6 354 . 7 8 [ M1 ] 0 . 229 61 . 5 13 857 . 1 6 100 6 ( E2 ) 0 . 00820 7281 . 6 449 . 3 8 100 ( M1 ) 0 . 1215 7440 . 0 306 . 7 8 600 . 2d 10 100 6 D 24 6 7476 . 4 1081 . 5 10 100 7492 . 3 1097 . 4 10 100 7555 . 2 357 . 3 4 100 . 0 14 517 . 6 8 11 . 8 7 7560 . 4 314 . 7 8 581 . 9 10 100 3 848 . 9 8 100 7699 . 5 422 . 9 6 100 4 777 . 6 8 0 . 224 ( M1 ) 0 . 316 ( M1 ) 0 . 143 31 6 7681 . 2 512 . 8 10 ( M1 ) 11 . 1 14 68 . 1 14 ( E2 ) 0 . 01001 3 . 08 138 . 8 4 561 . 8 6 52 3 ( E2 ) 0 . 0204 7920 . 0 359 . 6 8 100 11 ( M1 ) 0 . 220 674 . 1 8 75 4 [ E2 ] 0 . 0136 7924 . 8 369 . 7 6 100 4 ( M1 ) 0 . 205 726 . 9 6 80 . 3 14 ( E2 ) 0 . 01153 8137 . 0 298 . 7 4 100 . 0 13 ( M1 ) 0 . 364 9 . 2 20 ( E2 ) 0 . 0374 8331 . 0 411 . 0 8 100 5 ( M1 ) 0 . 154 770 . 7 8 100 5 ( E2 ) 0 . 01020 8388 . 8 464 . 0 8 100 9 ( M1 ) 0 . 1116 8394 . 8 257 . 8 4 556 . 5 8 38 4 ( E2 ) 0 . 0208 8751 . 0 356 . 1 6 100 4 [ M1 ] 0 . 226 614 . 0 8 51 6 ( E2 ) 0 . 0166 8757 . 8 426 . 9 8 55 5 837 . 8 8 100 5 8886 . 8 497 . 9 8 58 3 ( M1 ) 0 . 0926 962 . 0 8 100 3 ( E2 ) 0 . 00651 437 . 5 8 833 . 6 8 100 3 ( M1 ) 7838 . 3 88 3 100 . 0 18 ( E2 ) 0 . 00868 ( M1 ) 0 . 545 ( D+Q ) 8978 . 1 1053 . 3 8 9221 . 5 470 . 6 8 100 100 . 0 20 ( M1 ) 0 . 1075 826 . 6 8 68 . 0 20 [ E2 ] 0 . 00883 Continued on next page (footnotes at end of table) 115 19 3 H g 113 – 9 80 19 3 H g 113 – 1 0 80 19 3 H g 113 – 1 0 80 NUCLEAR DATA SHEETS Adopted Levels, Gammas (continued) γ(193Hg) (continued) E(level) 9409 . 1 Iγ@ Eγ† Mult.a α Comments 522 . 2d 1020 . 3 8 100 9675 . 9 454 . 4 8 65 5 ( M1 ) 0 . 1180 100 5 ( E2 ) 0 . 00704 9923 . 1 924 . 9 8 514 . 1d 1036 . 3 10 100 10290 . 4 614 . 5 8 100 15 ( M1 ) 0 . 0534 59 11 [ E2 ] 0 . 00530 10853 . 6 1068 . 9 8 563d ( E2 ) 0 . 00440 1177 . 7 8 100 233 . 20+x 121 . 1 5 233 . 2 2 0 . 3 7& 3 365 . 8+x 132 . 2e 5 254 . 0e 2 0 . 1 2& 5 507 . 4+x 141 . 6 5 274 . 2 2 0 . 4 8& 3 660 . 4+x 152 . 9e 5 294 . 6e 2 0 . 3 8& 8 821 . 3+x 160 . 7 5 314 . 0 2 0 . 7 5& 5 995 . 3+x 173 . 7e 5 334 . 9e 2 0 . 6 1& 9 1174 . 7+x 179 . 3 5 1369 . 8+x 374 . 5e 2 1566 . 6+x 196 . 9 5 391 . 9 2 0 . 9 6& 5 1782 . 9+x 413 . 1e 2 1 . 0 0& 1 2 1995 . 6+x 212 . 3 5 353 . 4 2 0 . 9 0& 5 0 . 7 3& 1 8 This γ is a member of an unresolved doublet (the other member is 212.9 keV, from level 1783.9+y). 1 . 0 0& 5 2234 . 0+x 429 . 0 2 451 . 1e 2 2460 . 1+x 226 . 4 5 464 . 4 2 0 . 9 8& 3 2722 . 3+x 488 . 3e 2 0 . 9 6& 1 8 1 . 0 0& 3 0 . 9 8& 2 0 2957 . 5+x 497 . 4 2 3247 . 2+x 524 . 9e 2 3485 . 7+x 528 . 2 2 1 . 1 1& 1 0 [ E2 ] b 0 . 0235 B(E2)(W.u.)=1570 170. 3807 . 1+x 559 . 9e 2 4044 . 2+x 558 . 5 2 594 . 9e 2 1 . 0 8& 1 0 0 . 9 4& 1 4 [ E2 ] b 0 . 0207 B(E2)(W.u.)=1510 110. [ E2 ] b 0 . 0182 B(E2)(W.u.)=1440 +250–130. [ E2 ] b 0 . 0161 B(E2)(W.u.)=1470 170. 4402 . 0+x 4634 . 2+x 590 . 0 2 0 . 7 3& 2 0 5030 . 8+x 628 . 8e 2 0 . 8 5& 8 5256 . 8+x 622 . 6 2 5692 . 5+x 661 . 7e 2 5912 . 5+x 655 . 7 2 6386 . 6+x 694 . 1e 2 0 . 5 2& 1 2 0 . 4 0& 1 6 0 . 5 6& 1 5 6601 . 0+x 688 . 5 2 0 . 1 8& 1 0 7112 . 2+x 725 . 6e 2 7322 . 3+x 721 . 3 2 7868 . 8+x 756 . 6e 2 0 . 4 5& 1 9 0 . 3 9& 1 0 0 . 3 8& 1 0 0 . 5 5& 1 6 8075 . 5+x 753 . 2 2 8656 . 1+x 787 . 3e 2 8860 . 4+x 784 . 9 2 817 . 7e 3 9473 . 8+x 9677 . 0+x 10321 . 3+x 10524 . 8+x 11197 . 4+x 11405 . 7+x 816 . 6 3 847 . 5e 4 847 . 8 4 876 . 1e 5 880 . 9 5 233 . 49+y 122 . 6 5 366 . 1+y 132 . 2e 5 233 . 5 2 0 . 2 1& 3 Continued on next page (footnotes at end of table) 116 19 3 H g 113 – 1 1 80 19 3 H g 113 – 1 1 80 NUCLEAR DATA SHEETS Adopted Levels, Gammas (continued) γ(193Hg) (continued) E(level) Eγ† Iγ@ 366 . 1+y 254 . 0e 2 508 . 5+y 142 . 7 5 275 . 2 2 0 . 3 0& 5 660 . 9+y 152 . 9e 5 294 . 6e 2 0 . 3 8& 8 823 . 5+y 162 . 5 5 315 . 2 2 0 . 5 3& 5 996 . 0+y 173 . 7e 5 334 . 9e 2 0 . 6 1& 9 α Comments 0 . 1 2& 5 1178 . 3+y 182 . 6 5 354 . 9 2 0 . 7 8& 5 1370 . 6+y 192 . 3 5 374 . 5e 2 0 . 7 3& 1 6 1572 . 1+y 201 . 9 5 1783 . 9+y 212 . 9 5 393 . 8 2 Mult.a 0 . 9 5& 5 This γ is a member of an unresolved doublet (the other member is 212.3 keV, from level 1995.6+x). 413 . 1e 2 2004 . 2+y 220 . 5 5 2235 . 0+y 451 . 1e 2 2474 . 0+y 469 . 8 2 488 . 3e 2 432 . 1 2 2723 . 3+y 2980 . 2+y 506 . 2 2 3248 . 2+y 524 . 9e 2 3521 . 7+y 541 . 5 2 559 . 9e 2 3808 . 1+y 4098 . 5+y 4403 . 0+y 4709 . 8+y 5031 . 8+y 5354 . 1+y 5693 . 5+y 6031 . 9+y 6387 . 5+y 6741 . 8+y 7113 . 1+y 7484 . 0+y 7869 . 7+y 8255 . 2+y 8657 . 0+y 9057 . 4+y 9474 . 7+y 9889 . 5+y 10322 . 3+y 10750 . 0+y 11198 . 4+y 576 . 8 2 594 . 9e 2 1 . 0 0& 1 2 1 . 0 2& 8 1 . 0 0& 8 0 . 9 6& 1 8 1 . 0 0& 1 4 0 . 9 8& 2 0 0 . 8 2& 3 2 1 . 0 8& 1 0 0 . 6 3& 2 4 611 . 3 2 628 . 8e 2 0 . 4 3& 2 8 0 . 8 5& 8 644 . 3 2 661 . 7e 2 0 . 5 2& 1 2 677 . 8 2 694 . 1e 2 0 . 5 6& 1 5 709 . 9 2 725 . 6e 2 0 . 4 5& 1 9 742 . 2 2 756 . 6e 2 0 . 3 8& 1 0 [ E2 ] b 0 . 0239 B(E2)(W.u.)=1470 +220–140. [ E2 ] b 0 . 0205 B(E2)(W.u.)=2.04E3 +38–19. [ E2 ] b 0 . 0179 B(E2)(W.u.)=1380 120. 771 . 2 3 787 . 3e 2 802 . 2 4 817 . 7e 3 832 . 1 5 847 . 5e 4 860 . 5 5 876 . 1e 5 291 . 00+z 291 . 0 2 619 . 8+z 328 . 8 2 986 . 4+z 366 . 6 2 1391 . 4+z 405 . 0 2 1835 . 6+z 444 . 2 2 2319 . 9+z 484 . 3 2 0 . 1 7& 3 0 . 7 2& 4 0 . 8 7& 5 0 . 9 8& 7 1 . 0 0& 7 1 . 0 0& 5 2845 . 8+z 525 . 9 2 0 . 9 8& 6 3412 . 5+z 566 . 7 2 0 . 9 8& 8 4017 . 5+z 605 . 0 2 4658 . 0+z 640 . 5 2 5332 . 5+z 674 . 5 2 0 . 8 2& 7 0 . 8 0& 7 0 . 7 2& 7 6040 . 0+z 707 . 5 2 6779 . 3+z 739 . 3 2 0 . 6 1& 7 7549 . 0+z 769 . 7 4 0 . 4 6& 4 0 . 3 6& 3 0 . 2 1& 4 8350 . 3+z 801 . 3 5 9181 . 6+z 831 . 3 5 Continued on next page (footnotes at end of table) 117 19 3 H g 113 – 1 2 80 NUCLEAR DATA SHEETS Adopted Levels, Gammas (continued) γ(193Hg) (continued) Eγ† E(level) 10042 . 6+z ? 861#d 2 4 0 . 5 2+u 240 . 5 2 5 2 2 . 4+u 281 . 9 2 Iγ@ 0 . 1 5& 3 0 . 5 8& 5 0 . 8 0& 5 8 4 5 . 9+u 323 . 5 2 0 . 9 0& 5 1 2 1 1 . 3+u 365 . 4 2 1 6 1 7 . 8+u 406 . 5 2 2 0 6 5 . 3+u 447 . 5 2 1 . 0 0& 5 1 . 0 0& 5 0 . 9 8& 5 2 5 5 3 . 4+u 488 . 1 2 3 0 8 1 . 4+u 527 . 9 2 3 6 4 8 . 6+u 567 . 2 2 4 2 5 4 . 9+u 606 . 3 2 4 8 9 9 . 4+u 644 . 5 2 5 5 8 1 . 3+u 681 . 9 2 6 2 9 9 . 9+u 718 . 6 2 7 0 5 4 . 4+u 754 . 5 2 7 8 4 4 . 2+u 789 . 8 2 8 6 6 8 . 5+u 824 . 3 3 9 5 2 6 . 4+u 857 . 9 5 0 . 9 5& 5 1 . 0 5& 6 1 . 0 0& 6 0 . 9 0& 1 0 0 . 7 0& 6 0 . 6 0& 6 0 . 4 2& 5 0 . 2 6& 5 0 . 2 4& 5 † From (HI,xnγ) data set for levels, unless otherwise noted. From (HI,xnγ):SD data set for γ's in superdeformed bands. ‡ From 193Hg IT decay (11.8 h). § From 193Tl ε decay (21.6 min). # Estimated (1998Ar07) from intensity plot (fig.1 in 1994Jo10). @ Relative photon branching from each level from (HI,xnγ), unless otherwise noted. & Relative intensity within the SD band. a From (HI,xnγ) and Pt(α,xnγ) data sets, unless otherwise noted. b Multipolarity assumed by the evaluators on the basis of the band sequence, for the purpose of estimating transition probabilities for γ rays from levels with known half–life. c Multiply placed; undivided intensity given. d Placement of transition in the level scheme is uncertain. e Multiply placed. 118 19 3 H g 113 – 1 2 80 19 3 H g 113 – 1 3 80 19 3 H g 113 – 1 3 80 NUCLEAR DATA SHEETS Adopted Levels, Gammas (continued) 3223.6 (35/2–) (H)(33/2–) 2583.7 (31/2–) (49/2+) 5698.1 (45/2+) 4889.9 (41/2+) 4120.5 (37/2+) 3570.2 2641.7 3260.3 (33/2+) (27/2–) 2096.0 (E)(33/2+) (23/2–) 1890.9 (E)(29/2+) (51/2+) 6163.6 (47/2+) 5361.7 (43/2+) 4683.8 (39/2+) 4119.7 (C)(37/2+) (E)(37/2+) (E)(37/2+) (H)(29/2–) (29/2+) (D) Band (4) (C) Band (3) (B) Band (2) (A) Band (1) (H)(25/2–) 1884.3 (25/2+) (A)(25/2+) (H)(21/2–) (21/2+) 1145.4 (17/2+) 522.73 13/2(+) 140.76 (A)(21/2+) 5/2(–) 19 3 Hg 113 80 (53/2+) (49/2+) (45/2+) (55/2–) 6913.4 (51/2–) 5899.1 (47/2–) 5048.0 6496.9 5559.5 4688.4 (43/2–) (41/2+) 3880.5 (37/2+) 3176.2 (33/2+) 2695.6 (29/2+) 2502.1 (39/2–) (H) Band (8) (G) Band (7) (F) Band (6) (E) Band (5) (57/2–) 7476.4 (53/2–) 6394.9 (49/2–) 5411.5 (45/2–) 4674.1 (41/2–) 4150.8 (41/2–) 4412.6 (37/2–) (37/2–) 4396.8 3883.8 (H)(37/2–) (B)(35/2–) (37/2–) 3497.5 (33/2–) 2762.2 (29/2–) 2189.2 (B)(27/2–) (25/2+) (25/2–) 1886.2 (21/2–) 1755.7 (19/2+) (A)(25/2+) (17/2+,19/2+) (I)(19/2+) (A)(21/2+) 19 3 Hg 113 80 119 19 3 H g 113 – 1 4 80 19 3 H g 113 – 1 4 80 NUCLEAR DATA SHEETS Adopted Levels, Gammas (continued) (L) Dipole band (3) (K) Dipole band (2) (J) Dipole band (1) (I) Band (9) (75/2–) 10853.6 (73/2–) 10290.4 (71/2–) 9675.9 (69/2–) 9221.5 (67/2–) 8751.0 (65/2–) 8394.8 (63/2–) 8137.0 (71/2+) 9923.1 (69/2+) 9409.1 (67/2+) 8886.8 (67/2–) 8757.8 (65/2–) 8331.0 (65/2+) 8388.8 (63/2–) 7920.0 (63/2+) 7924.8 7560.4 (61/2+) 7555.2 (61/2–) 7838.3 (59/2–) 7699.5 (57/2–) 7276.6 (61/2–) (59/2–) 7245.7 (59/2+) 7197.9 6921.8 (57/2–) 6978.6 (57/2+) 7037.5 (55/2+) 6839.9 (55/2–) 6726.4 (53/2–) 6401.0 (57/2–) (55/2–) (53/2–) (53/2–) (51/2–) 6419.4 (55/2+) (53/2+) 6464.6 (51/2–) (F)(51/2–) (51/2–) (49/2–) (49/2–) (51/2+) 6067.7 (49/2+) 5832.1 (47/2+) 5547.6 (45/2+) (47/2–) (45/2–) (43/2–) 5339.1 (43/2) (45/2–) (G)(45/2–) (19/2+) 1380.3 (15/2+) 746.8 (A)(17/2+) (A)13/2(+) 19 3 Hg 80 113 120 19 3 H g 113 – 1 5 80 19 3 H g 113 – 1 5 80 NUCLEAR DATA SHEETS Adopted Levels, Gammas (continued) Note: For bands flagged by †, interband transitions are not shown. J+40 11405.7+x J+38 10524.8+x J+36 9677.0+x J+34 8860.4+x J+32 8075.5+x J+30 7322.3+x J+28 6601.0+x J+26 5912.5+x J+24 5256.8+x J+22 4634.2+x J+20 4044.2+x (O)† SD–3 Band (N)† SD–2 Band (M)† SD–1 Band J+39 11197.4+x J+37 10321.3+x J+35 9473.8+x J+33 8656.1+x J+31 7868.8+x J+29 7112.2+x J+27 6386.6+x J+25 5692.5+x J+23 5030.8+x J+21 4402.0+x J+19 3807.1+x J+18 3485.7+x J+16 2957.5+x J+17 3247.2+x J+14 2460.1+x J+15 2722.3+x J+12 1995.6+x J+13 2234.0+x J+10 1566.6+x J+11 1782.9+x J+8 1174.7+x J+9 1369.8+x J+6 821.3+x J+7 995.3+x J+4 507.4+x J+5 660.4+x J+2 233.20+x J+3 365.8+x J x J+1 111.8+x 19 3 Hg 80 113 121 J1+38 10750.0+y J1+36 9889.5+y J1+34 9057.4+y J1+32 8255.2+y J1+30 7484.0+y J1+28 6741.8+y J1+26 6031.9+y J1+24 5354.1+y J1+22 4709.8+y J1+20 4098.5+y J1+18 3521.7+y J1+16 2980.2+y J1+14 2474.0+y J1+12 2004.2+y J1+10 1572.1+y J1+8 1178.3+y J1+6 823.5+y J1+4 508.5+y J1+2 233.49+y J1 y 19 3 H g 113 – 1 6 80 19 3 H g 113 – 1 6 80 NUCLEAR DATA SHEETS Adopted Levels, Gammas (continued) Note: For bands flagged by †, interband transitions are not shown. J2+34 J1+39 (R)† SD–6 Band (Q)† SD–5 Band (P)† SD–4 Band 11198.4+y J1+37 10322.3+y J1+35 9474.7+y J1+33 8657.0+y J1+31 7869.7+y J1+29 7113.1+y J1+27 6387.5+y J1+25 5693.5+y J1+23 5031.8+y J1+21 4403.0+y J1+19 3808.1+y J1+17 3248.2+y J1+15 2723.3+y J1+13 2235.0+y J1+11 1783.9+y J1+9 1370.6+y J1+7 996.0+y J1+5 660.9+y J1+3 366.1+y J1+1 111.9+y 10042.6+z J2+32 9181.6+z J2+30 8350.3+z J2+28 7549.0+z J2+26 6779.3+z J2+24 6040.0+z J2+22 5332.5+z J2+20 4658.0+z J2+18 4017.5+z J2+16 3412.5+z J2+14 2845.8+z J2+12 2319.9+z J2+10 1835.6+z J2+8 1391.4+z J2+6 986.4+z J2+4 619.8+z J2+2 291.00+z J2 z 19 3 Hg 113 80 122 J3+34 9526.4+u J3+32 8668.5+u J3+30 7844.2+u J3+28 7054.4+u J3+26 6299.9+u J3+24 5581.3+u J3+22 4899.4+u J3+20 4254.9+u J3+18 3648.6+u J3+16 3081.4+u J3+14 2553.4+u J3+12 2065.3+u J3+10 1617.8+u J3+8 1211.3+u J3+6 845.9+u J3+4 522.4+u J3+2 240.52+u J3 u 19 3 H g 113 – 1 7 80 193Hg Parent 19 3 H g 113 – 1 7 80 NUCLEAR DATA SHEETS 193Hg: IT Decay (11.8 h) 1974ViZS E=140.76 5; Jπ=13/2(+); T1/2=11.8 h 2; %IT decay=7.2 5. Sources from (p,xn) reactions on gold, E(p)=70, 80 MeV, isotope separation; measured E(ce), Ice (Si(Li) (FWHM=1.2–2.5 keV), mag spect (resolution=0.1%)). Others: 1969Ba42, 1962Di05, 1958Br88, 1957Br53, 1956Br04, 1955Br12, 1954Gi04. 193Hg Jπ† E(level) 0.0 140 . 76 5 Comments T1/2 3/2(–) 39 . 51 3 Levels 3 . 80 h 15 5/2(–) 0 . 63 ns 13 / 2 ( + ) 3 T1/2: (ce)(ce)(t) (1969Ba42). Other value: 0.8 ns 1 ((ce)(ce)(t) (1961Re12)). 11 . 8 h 2 %IT=7.2 5. T1/2: from resolution of complex decay curves for ce(K) peaks in combined and 193Hg 193Hg (3.80 h) (11.8 h) sources. Other values: 10.0 h 5 (1952Fi06), 11 h 1 (1958Br88), 11.1 h 5 (1970Pl01). † From adopted levels. γ( 1 9 3 H g ) All data are from 1974ViZS, unless otherwise noted. The Ice intensities have been normalized to the Iγ of decay (11.8 h). For normalization, see footnote on multipolarity in 193Hg 193Hg ε ε decay (11.8 h) data set. Iγ normalization,Branching: From 1974ViZS: I(γ+ce)(isomeric decay)=8.5 3 from weighted average of I(γ+ce)(39.51γ)=8.7 5 and I(γ+ce)(101.25γ)=8.4 3; total ε+β+ intensity from I(γ+ce)(to (from Eγ 39 . 51 3 193Hg E(level) 39 . 51 193Au 290 level)=109 7 (11.8 h) decay). This leads to Branching=0.072 5 and Iγ normalization=11.8. Mult. M1 α 21 . 6 I(γ+ce)† Comments 8.7 5 B(M1)(W.u.)=0.0239 14. Mult.: L1/L2=8.2 10, M1/M2=7.6 12 (1974ViZS). Theory: M1: L1/L2=9.8, M1/M2=9.1; E1: L1/L2=1.24, M1/M2=1.40; E2: L1/L2=0.0194, M1/M2=0.0211. I(γ+ce): from (Ice(L12)+Ice(M12))exp. + Ice(other)theor. + Iγ with Iγ deduced from Ice(L1)=5.6 4, α(L1)=15.6. 101 . 25 4 140 . 76 M4 6060 8.4 3 B(M4)(W.u.)=1.38 11. Mult.: L1:L2:L3=1.25 7: 0.24 2: 4.10 16 (1974ViZS). Theory: L1:L2:L3=1.22: 0.242: 4.10. I(γ+ce): (Ice(L)+Ice(M))exp. + Ice(other)theor. + Iγ with Iγ deduced from Ice(L)=5.59 18 and α(L)=4150. For absolute intensity per 100 decays, multiply by 0.85 6. Decay Scheme Intensities: I(γ+ce) per 100 parent decays M1 140.76 11.8 h 39.51 0.63 ns 3.80 h .51 13/2(+) 10 1.2 7.4 5 M4 7.1 %IT=7.2 5 5/2(–) 39 † 0.0 3/2(–) 19 3 Hg 80 113 123 19 3 H g 113 – 1 8 80 193Tl 193Tl: Parent 193Tl: 19 3 H g 113 – 1 8 80 NUCLEAR DATA SHEETS ε Decay (21.6 min) 1974Va23,1976GoZP E=0.0; Jπ=1/2+; T1/2=21.6 min 8; Q(g.s.)=3730 110; %ε+%β+ decay=100. Q(β) from 2003Au03. 1976GoZP: measured γ, γγ, γ(ce). 1974Va23: produced by spallation of Pb+p, E(p)=600 MeV, chem, ms; measured γ (Ge(Li)), ce (Si(Li)), γγ. Other: 1961An03. 193Hg Levels The decay scheme is that proposed by 1974Va23 with additional levels at 207.7 and 344.0 from 1976GoZP. 0.0 T1/2† Jπ† E(level)† 3/2(–) 39 . 51 3 3 . 80 h 15 5/2(–) 49 . 95 14 ( 1 / 2– ) 207 . 74 20 ( 7 / 2– ) 324 . 36 8 ( 3 / 2– , 5 / 2– ) 344 . 00 10 ( 1 / 2– , 3 / 2– ) 374 . 61 10 ( 3 / 2– , 5 / 2– , 7 / 2– ) 752 . 63 25 ( 1 / 2– , 3 / 2– , 5 / 2– ) 1523 . 3 3 ( 1 / 2– , 3 / 2– , 5 / 2– ) 1580 . 10 21 ( 1 / 2– , 3 / 2 , 5 / 2– ) † From adopted levels. γ(193Hg) All data are from 1974Va23, unless otherwise noted. Eγ ( 39 . 51‡ 3 ) 49 . 5# 11 Iγ E(level) Mult.† δ† α Comments 21 . 6 Eγ,Mult.: from 49 . 95 10 . 5§# 50 ( M1 ) § 11 . 1 α(L)exp=21 11; theory: α(L)(M1)=8.91, 374 . 61 10 . 5§# 50 ( M1 ) § 11 . 1 Mult.: α(L)exp=21 11; theory: α(L)(M1)=8.91, 207 . 74 20 207 . 74 19 . 5 10 ( E2 ) 0 . 340 α(K)exp=0.16 3; K/L=1.5 10; theory: 274 . 39 14 324 . 36 13 . 5 13 ( E2 ) 0 . 138 Mult.: α(K)exp=0.15 10; theory: 39 . 51 M1 193Hg IT decay (11.8 h). α(L)(E2)=108. α(L)(E2)=108. α(K)=0.156, K/L=1.09. α(K)(E2)=0.0789, α(K)(M1)=0.393. δ: ≤62% M1 (1974Va23). 284 . 89 13 324 . 36 21 . 6 10 ( M1 ) 0 . 415 Mult.: α(K)exp=0.30 7, K/L=5.2 17; theory: α(K)=0.355, K/L=5.98. δ: ≤44% E2 (1974Va23). 294 . 08 25 344 . 00 324 . 37 10 324 . 36 4.3 5 ( M1 ) 0 . 380 Mult.: α(K)exp=0.31 12; theory: α(K)=0.325. ( M1 ) 0 . 291 Mult.: α(K)exp=0.22 3, K/L=5.8 14; theory: δ: ≤48% E2 (1974Va23). 100 α(K)=0.249, K/L=6.00. δ: ≤22% E2 (1974Va23). 335 . 11 10 374 . 61 26 . 1 11 ( M1 ) 0 . 267 Mult.: α(K)exp=0.21 4, K/L=4.8 15; theory: α(K)=0.249, K/L=6.00. δ: ≤34% E2 (1974Va23). 343 . 99 10 344 . 00 41 . 7 18 ( M1 +E 2 ) 1 . 7 +17–6 0 . 12 4 Mult.: α(K)exp=0.089 30, K/L=4.3 16; theory: α(K)=0.089 33, K/L=3.7. x369 .8 5 374 . 58 22 1.6 8 374 . 61 Mult.: α(K)exp=0.025 13; theory: α(K)=0.0375. 7.6 9 ( E2 ) 0 . 0562 6 . 9 10 ( M1 , E 2 ) 0 . 11 6 Mult.: α(K)exp=0.11 10; theory: ( E2 ) 0 . 0277 Mult.: α(K)exp=0.020 10; theory: δ: ≤1% M1 (1974Va23). x398 .6 4 x493 . 52 15 α(K)(E2)=0.0325, α(K)(M1)=0.143. 12 . 1 7 α(K)(E2)=0.0201, α(K)(M1)=0.0813. δ: ≤19% M1 (1974Va23). x543 .3 7 3.8 9 x574 .9 5 3.8 6 x636 .4 3 18 7 x652 .9 3 10 4 ( M1 , E 2 ) 0 . 048 26 Mult.: α(K)exp=0.053 24; theory: α(K)(E2)=0.0164, α(K)(M1)=0.0632. ( M1 ) 0 . 0487 Mult.: α(K)exp=0.040 17; K/L=3.3 13; theory: α(K)=0.0419, K/L=6.10. Continued on next page (footnotes at end of table) 124 19 3 H g 113 – 1 9 80 19 3 H g 113 – 1 9 80 NUCLEAR DATA SHEETS 193Tl ε Decay (21.6 min) 1974Va23,1976GoZP (continued) γ(193Hg) (continued) Eγ x655 .0 5 x676 . 10 19 Iγ E(level) Mult.† δ† α Comments 7 4 48 4 ( M1 ) 0 . 0417 Mult.: α(K)exp=0.031 6; K/L=4.9 15; theory: α(K)=0.0358, K/L=6.11. δ: ≤35% E2 (1974Va23). x692 .3 4 20 . 9 16 ( M1 ) 0 . 0392 Mult.: α(K)exp=0.027 6; theory: α(K)(M1)=0.0337, α(K)(E2)=0.00996. δ: ≤52% E2 (1974Va23). 713 . 0 4 752 . 63 6.0 7 ( E2 ) 0 . 01201 Mult.: α(K)exp=0.011 10; theory: α(K)(E2)=0.00939, α(K)(M1)=0.0513. δ: ≤54% M1. x720 .0 5 Mult.: α(K)exp=0.050 46; theory: 1.7 8 α(K)(M1)=0.0371, α(K)(E2)=0.0191. 752 . 5 4 752 . 63 11 . 6 17 ( M1 ) 0 . 0316 Mult.: α(K)exp=0.028 13; theory: α(K)=0.0272. ( M1 , E 2 ) 0 . 021 10 Mult.: α(K)exp=0.022 18; theory: 0 . 021 7 α(K)exp=0.018 6; theory: α(K)(M1)=0.0256 δ: ≤63% E2. x759 .1 7 6 . 5 15 α(K)(M1)=0.0266, α(K)(E2)=0.00177. 770 . 4 4 1523 . 3 12 . 9 8 ( M1 +E 2 ) 0 . 9 +10–5 α(K)(E2)=0.0081. x773 .9 6 1.6 7 x783 . 0 15 4 . 0 16 x821 .2 2 9.4 5 x942 .1 5 1.8 8 x994 . 75 25 .4 3 x1044 .7 3 x1064 .3 4 x1086 .2 6 1.6 8 x1130 .3 3 12 . 3 13 x1145 .8 4 4.2 8 x1152 .0 4 x1229 .2 6 x1236 .1 4 1256 . 0 3 0 . 016 5 Mult.: α(K)exp=0.013 4; theory: α(K)=0.013 4. 8 . 9 10 59 6 7.1 5 4.9 9 1580 . 10 10 . 2 12 2 . 5 10 4 . 6 12 1580 . 10 10 . 3 19 x1337 .6 4 5 . 6 10 x1360 .8 4 4.8 9 x1430 .7 4 4.5 9 x1474 .7 7 2 . 6 10 1484 . 1 7 1523 . 3 3 . 4 10 1523 . 4 4 1523 . 3 8 . 0 19 1539 . 4 10 1580 . 10 1579 . 3 10 1580 . 10 † 1 . 2 +13–5 11 . 0 11 x1014 1205 . 4 3 ( M1 +E 2 ) 8 . 8 20 45 10 From α(K)exp and/or α(L)exp. 1974Va23 have normalized the ce–intensities to the photon intensities so that α(K)exp and α(L)exp for the 284.9γ, 324.4γ, 335.1γ, 344.0γ and 676.1γ gave the same multipolarities as their respective K/L ratios. This normalization gives α(K)exp(207.7γ)=0.16 3 which is in agreement with proposed E2 multipolarity for this γ (expected α(K)(E2)=0.156). However, several γ's which are expected to be [M1,E2] have α(K)exp or α(L)exp outside the range of expected values (e.g. α(L)exp(636.4γ), α(K)exp(374.6γ) thus suggesting that although the multipolarities have been established, the mixing ratios should be considered tentative. ‡ Presence suggested by decay scheme and constant energy differences between pairs of γ rays. § Based on α(L)exp, only 12% 11 of the undivided intensity can come from an E2 transition. # Multiply placed; undivided intensity given. x γ ray not placed in level scheme. 125 19 3 H g 113 – 2 0 80 19 3 H g 113 – 2 0 80 NUCLEAR DATA SHEETS 193Tl ε Decay (21.6 min) 1974Va23,1976GoZP (continued) Decay Scheme Intensities: relative Iγ 19 3 Tl 112 81 12 .9 %ε+%β+=100 Q+=3730110 15 1579.3 1239.4 45 1256.0 8.8 15 05.4 10. 1423.4 10.3 7784.1 8.0 2 0.4 3 (M .4 1+ E2 ) (1/2–,3/2,5/2–) 1580.10 75 712.5 ( 3.0 M 37 (E 1) 4 2) 11 33 .58 5 ( . 6.0.6 E 49 11 2 ) . 34 5 & (M1 7. 6 3 ) ( . M 9 29 9 1 26 32 4.08 (M1 ) 1 .1 284.37 (M1+E2 0.5 ) 4 27 .89 (M1 ) 4. 41 20 4.39 (M1) 103 .7 7 ) ( .74 E2 2 0 49 ) 1.6 (E 39 .5 & 13 .51 (M 2) 19 .5 M1 1) .5 10 .5 (1/2–,3/2–,5/2–) (1/2–,3/2–,5/2–) (3/2–,5/2–,7/2–) (1/2–,3/2–) (3/2–,5/2–) (7/2–) (1/2–) 5/2(–) 0.0 1/2+ & Multiply placed; undivided intensity given 1523.3 752.63 374.61 344.00 324.36 207.74 49.95 39.51 0.0 3/2(–) 3.80 h 19 3 Hg 80 113 193Tl Parent 193Tl: 193Tl: ε Decay (2.11 min) 1976GoZP E=365.2+x; Jπ=9/2–; T1/2=2.11 min 15; Q(g.s.)=3730 110; %ε+%β+ decay≥25.0. Branching from 2003Au02, Q(ε) from 2003Au03. 1976GoZP: measured γ, γγ, γ(ce). No level scheme has been proposed. 193Hg Jπ T1/2 3/2(–) 3 . 80 h 15 E(level) 0.0 Pt( α , x n γ ) 195Pt(α,6nγ), 1975Li16: E(α)=80 MeV; 196Pt(α,7nγ), Levels 1975Li16,1978Me11 E(α)=90 MeV; 194Pt(α,5nγ), E(α)=65 MeV. Enriched Pt targets. Measured Eγ, Iγ (Ge(Li)), γγ coin, γγ(t), γ–ray angular distributions (θ from 90° to 165° in 15° steps); used rotation–alignment model to interpret level structure. Earlier report: 1974Be11. 1978Me11: 192Pt,194Pt,198Pt(α,xnγ), E(α)=31–57 MeV. Enriched Pt targets. Measured ce(t). 193Hg Levels The level scheme is that proposed by 1975Li16. E(level)† 140 . 76# 5 Jπ‡ E(level)† Jπ‡ 13 / 2 ( + ) 1883 . 6# 5 25 / 2+ 17 / 2+ 1 8 8 6 . 0& 5 25 / 2 ( – ) 15 / 2+ 1890 . 3 4 23 / 2 ( – ) 21 / 2+ 2095 . 2 5 2 1 8 8 . 5& 6 27 / 2 ( – ) 522 . 7# 3 7 4 7 . 1@ 3 1145 . 0# 4 1 3 8 0 . 3@ 3 19 / 2+ 1523 . 3 4 1 7 5 5 . 5& 4 19 / 2 ( + ) 21 / 2 ( – ) E(level)† T1/2§ 1 . 58 ns 6 Jπ‡ 2694 . 5# 7 33 / 2+ 2 7 6 1 . 4& 7 3175 . 2# 7 33 / 2 ( – ) T1/2§ 573 ps 30 37 / 2+ 29 / 2 ( – ) 3222 . 3 7 3 4 9 6 . 1& 7 35 / 2 ( – ) 2501 . 3# 6 29 / 2+ 3879 . 6# 8 41 / 2+ 2582 . 7 6 31 / 2 ( – ) 3882 . 1 7 39 / 2 ( – ) 37 / 2 ( – ) † From adopted levels. ‡ From 1975Li16, based on multipolarities of transitions and fits of coincident γ rays into an interconnected set of rotational § ce(t) (1978Me11). bands. # Member of i13/2 favored decoupled band. Footnotes continued on next page 126 21.6 min 19 3 H g 113 – 2 1 80 19 3 H g 113 – 2 1 80 NUCLEAR DATA SHEETS P t( α , x n γ ) 1975Li16,1978Me11 (continued) 193Hg Levels (continued) @ Member of i13/2 unfavored decoupled band. & Member of π=– side band 1. γ(193Hg) All γ data are from 1975Li16. Eγ E(level) 130 . 5 3 1886 . 0 134 . 6 3 1890 . 3 Mult.† Iγ§ 13 3 I(γ+ce)# α‡ δ† E2 1 . 87 ( M1 +E 2 ) 2.5 37 8 Comments B(E2)(W.u.)=49.1 22. Mult.: A2=+0.28 2, A4=–0.05 3. 8 4 Mult.: A2=–0.02 10, A4=+0.14 15; contains contribution of contaminating 133.0 keV line in 192Hg. 193 . 2 3 2694 . 5 21 4 E2 0 . 437 28 5 B(E2)(W.u.)=38.4 21. 204 . 9 3 2095 . 2 16 5 E2 0 . 357 20 6 Mult.: A2=+0.32 2, A4=–0.07 3. 232 . 2 3 1755 . 5 ( E1 ) 0 . 0511 11 6 Mult.: A2=–0.33 8, A4=+0.06 12. Mult.: A2=+0.26 2, A4=–0.07 3. I(γ+ce): includes contribution from 232.8γ in 194Hg. 302 . 5 3 2188 . 5 22 4 E2 0 . 1031 23 4 Mult.: A2=+0.31 2, A4=–0.04 3. 375 . 2 3 1755 . 5 21 5 ( E1 ) 0 . 0166 20 5 Mult.: A2=–0.22 2, A4=–0.01 3. 382 . 0 3 522 . 7 100 8 E2 0 . 0533 100 8 Mult.: A2=+0.29 2, A4=–0.05 3. 480 . 7 3 3175 . 2 24 5 E2 0 . 0295 23 5 Mult.: A2=+0.32 3, A4=–0.08 4. 487 . 5 3 2582 . 7 12 5 E2 0 . 0285 12 5 Mult.: A2=+0.37 4, A4=–0.10 5. 572 . 9 3 2761 . 4 E2 0 . 0195 19 5 Mult.: A2=+0.15 3, A4=–0.08 4; contains 606 . 3 3 747 . 1 9 4 M1 +E 2 0 . 036 19 617 . 7 3 2501 . 3 27 4 E2 0 . 0164 622 . 4 3 1145 . 0 63 5 633 . 1 3 1380 . 3 contribution from contaminating line. 9 4 Mult.,δ: A2=–0.74 5, A4=+0.15 7; A2 does not agree with A2 measured in (HI,xnγ) experiment. 26 4 Mult.: A2=+0.34 3, A4=–0.07 4. E2 0 . 0161 61 5 Mult.: A2=+0.29 2, A4=–0.05 3. E2 0 . 0155 10 4 Mult.: A1=+0.38 6, A4=–0.04 9. I(γ+ce): includes contributions from 633.1γ and 634.8γ in 639 . 6 3 3222 . 3 11 4 E2 0 . 0152 11 4 192Hg. Mult.: A2=+0.35 6, A4=+0.02 9. 659 . 8 3 3882 . 1 7 3 E2 0 . 0142 7 3 Mult.: A2=+0.39 7, A4=–0.09 10. 704 . 4 3 3879 . 6 6 3 E2 0 . 01233 6 3 Mult.: A2=+0.36 7, A4=–0.08 10. 734 . 7 3 3496 . 1 11 4 E2 0 . 01127 11 4 738 . 6 3 1883 . 6 41 4 E2 0 . 01115 39 4 Mult.: A2=+0.32 2, A4=–0.05 3. 745 . 4 3 1890 . 3 ( E1 ) 0 . 00399 16 8 Mult.: A2=–0.23 6, A4=+0.01 8; γ(θ) from Mult.: A2=+0.28 4, A4=–0.04 6. 194Pt(α,5nγ) at 65 MeV. I(γ+ce): includes contribution from 745.4γ in 192Hg. 857 . 5 3 1380 . 3 14 3 1000 . 5 3 1523 . 3 9 3 M1 +E 2 ( M1 +E 2 ) 0 . 33 6 0 . 0212 7 0 . 011 14 3 9 3 Mult.,δ: A2=–0.76 4, A4=+0.15 6. Mult.: A2=–0.16 12, A4=+0.16 18. † From γ–ray angular distributions; stretched E2 assignments were based on large positive A2. 1975Li16 assigned probable E1 to ‡ Theoretical conversion coefficient from adopted or assumed multipolarity. pure dipole transitions, and M1+E2 to D+Q transitions. Otherwise, from ∆Jπ between levels according to proposed level scheme. § γ intensities, relative to Iγ=100 for the 382.0γ, calculated by evaluators for γ rays without contaminating transitions, using the theoretical conversion coefficients for the adopted multipolarities. The stated errors do not include the uncertainty for the 382–keV γ intensity. # Relative to I(γ+ce)=100 for 382.0γ. 127 19 3 H g 113 – 2 2 80 19 3 H g 113 – 2 2 80 NUCLEAR DATA SHEETS P t( α , x n γ ) 1975Li16,1978Me11 (continued) Level Scheme 65 70 9.8 E 4.4 2 E2 7 63 E2 6 9 . 48 6 E 1 0 1 .7 2 57 E2 11 2 . 19 9 E 24 4 8 3.2 E 2 61 7.5 E 2 2 7 1 2 .7 30 E2 12 20 2.5 E 27 4.9 2 74 E2 22 135.4 ( 16 13 4.6 (E1) 73 0.5 EM1+ 37 8.6 E 2 E2) 1 235.2 ( 2 3 41 2.2 E1 10 (E ) 2 1) 1 85 00.5 637.5 M (M1 3.1 1 +E 62 E2 +E2 2) 2 . 4 60 E2 14 9 6.3 38 M1 63 2.0 +E E2 2 10 9 0 Intensities: relative Iγ 39/2(–) 3882.1 3879.6 73 4.7 41/2+ 37/2(–) 35/2(–) 37/2+ 33/2(–) 33/2+ 31/2(–) 29/2+ 29/2(–) 27/2(–) 23/2(–) 25/2(–) 25/2+ 21/2(–) 19/2(+) 19/2+ 21/2+ 15/2+ 3496.1 3222.3 3175.2 2761.4 2694.5 573 ps 2582.7 2501.3 2188.5 2095.2 1890.3 1886.0 1.58 ns 1883.6 1755.5 1523.3 1380.3 1145.0 747.1 17/2+ 522.7 13/2(+) 140.76 19 3 Hg 80 113 (HI,xnγ) 1999We04,1998We19,1998We23: 150Nd(48Ca,5nγ), 1995Fo13,1993De42,1993Ro03 E=203 MeV; GAMMASPHERE array. Measure perturbed angular correlation; obtain angular correlation coefficients A2/A4, and average g–factors from precession in transient magnetic fields using target with Gd ferromagnetic layer. 1995Fo13, 1997FoZX: 150Nd(48Ca,5nγ), E=213 MeV; measured Eγ, Iγ, γγ, DCO ratios; EUROGAM detector array. Cranked Shell Model interpretation. 1993De42: 150Nd(48Ca,5nγ), E=210 MeV; 97.4% 1993Ro03: 176Yb(22Ne,4nγ), E=110 MeV; HERA Ge–detector array; measured Eγ, Iγ, γγ coin (3–fold or higher), DCO 150Nd target; measured Eγ, Iγ, γγ coin (3–fold or higher), DCO ratios. ratios. 1986Hu02: 184W(13C,4nγ), 186W(13C,6nγ), E=84–87 MeV; measured Eγ, Iγ (Compton–suppressed germanium (high purity) detectors), γγ coin, γ–ray angular distributions; used cranked shell model to interpret level structure. Others: 1999We02 study the time–decay history for normal–deformed bands at high spin in the 150Nd(48Ca,5n) reaction, by measuring the relative fraction of recoil fragments stopped in–flight, using a layered target. 193Hg Levels The level scheme adopted is that proposed by 1995Fo13. With a few minor corrections, it confirms, and adds to, the level schemes proposed by 1986Hu02, 1993De42 and 1993Ro03. The level scheme consists of three sections: the lower part contains a number of rotational bands and is described as a collective oblate nucleus; the intermediate region is of single–particle character and may be described as non–collective prolate; and the upper region, which contains three dipole bands in a nucleus described as triaxial near–oblate (1995Fo13). For further discussion, and comparison with other Hg nuclei, see 1995Fo13. The average g–factor from the M1/E2 transitions at high excitation energies is 0.23 6 (1998We23). Jπ‡ E(level)† 140 . 76# 5 522 . 75# 19 746 . 8 f 4 1026 . 5 6 13 / 2 ( + ) Comments T1/2 11 . 8 h 2 E(level),Jπ,T1/2: from adopted levels. 17 / 2+ 15 / 2+ ( 13 / 2+ , 15 / 2+ ) Continued on next page (footnotes at end of table) 128 19 3 H g 113 – 2 3 80 NUCLEAR DATA SHEETS (HI,xnγ) 1995Fo13,1993De42,1993Ro03 (continued) 193Hg Jπ‡ E(level)† 1145 . 4# 3 1380 . 3 f 4 Comments 21 / 2+ 19 / 2+ 1523 . 2 4 ( 17 / 2+ , 19 / 2+ ) 1735 . 8 7 1755 . 6e 4 ( 19 / 2+ ) 1884 . 3# 5 1886 . 2e 5 1 8 9 0 . 9@ 4 Levels (continued) 21 / 2– 25 / 2+ 25 / 2– 23 / 2– 2 0 9 6 . 0@ 5 27 / 2– 2189 . 1e 5 29 / 2– 2289 . 5 8 27 / 2– 2351 . 9 7 2502 . 1b 6 25 / 2+ 2 5 8 3 . 7@ 6 31 / 2– 29 / 2+ 2617 . 3 6 ( 29 / 2– ) 2641 . 7# 7 2695 . 6b 6 2762 . 2e 6 29 / 2+ 33 / 2– 3176 . 2b 7 37 / 2+ 33 / 2+ 3196 . 0§ 8 ( 33 / 2+ ) 3202 . 5 7 ( 33 / 2– ) 3220 . 1 8 ( 33 / 2– ) 3 2 2 3 . 6@ 6 3 2 6 0 . 3& 8 3497 . 5e 6 35 / 2– 3 5 7 0 . 2& 8 37 / 2+ 3727 . 0 7 3754 . 2§ 8 ( 37 / 2+ ) 33 / 2+ 37 / 2– ( 37 / 2– ) 3811? Level proposed by 1993De42, 1993Ro03 but not confirmed by 1995Fo13. 3850 . 7 8 3880 . 5b 7 37 / 2– 3883 . 8c 7 4119 . 7a 9 4 1 2 0 . 5& 1 0 39 / 2– 41 / 2+ 41 / 2+ 39 / 2+ 4150 . 8d 7 41 / 2– 4198 . 0 8 4396 . 8c 7 43 / 2– 4412 . 6e 7 41 / 2– ( 39 / 2– ) 4416 . 7 11 4462 . 2 12 4539 . 1§ 7 4674 . 1d 7 4683 . 8a 12 4688 . 4b 10 ( 41 / 2+ ) 45 / 2– 43 / 2+ 45 / 2+ 4720 . 6 8 ( 39 / 2– ) 4792 . 0 7 41 / 2– 4864 . 9 8 4 8 8 9 . 9& 1 3 45 / 2+ ( 43 / 2– ) 4958 . 5 7 45 / 2– 4964 . 0 13 43 / 2 5033 . 1 13 5048 . 0c 9 47 / 2– 5117 . 4 9 ( 45 / 2– ) 5319 . 9 8 5339 . 1h 8 ( 47 / 2– ) 5361 . 7a 15 47 / 2+ ( 43 / 2 ) 5391 . 9 9 5400 . 3 15 5411 . 5d 10 49 / 2– 5442 . 6 7 5547 . 6 i 7 45 / 2 ( + ) 5559 . 5b 13 49 / 2+ 5560 . 5 9 ( 47 / 2– ) 47 / 2 ( + ) Continued on next page (footnotes at end of table) 129 19 3 H g 113 – 2 3 80 19 3 H g 113 – 2 4 80 NUCLEAR DATA SHEETS (HI,xnγ) 1995Fo13,1993De42,1993Ro03 (continued) 193Hg Jπ‡ E(level)† 5678 . 4 8 ( 49 / 2– ) 5 6 9 8 . 1& 1 5 49 / 2+ 5702 . 7 9 ( 49 / 2– ) 5714 . 8? Levels (continued) Comments 13 5747 . 5 10 ( 49 / 2– ) 5800 . 6 9 5832 . 1 i 7 ( 49 / 2– ) 49 / 2 ( + ) 5899 . 1c 51 / 2– 12 6017 . 1 13 6067 . 7 i 8 ( 51 / 2– ) 51 / 2 ( + ) 6103 . 9 9 ( 51 / 2– ) 6145 . 2 9 6163 . 6a 17 ( 51 / 2– ) 6305 . 2 9 6394 . 9d 13 6401 . 0h 18 6419 . 4g 9 ( 51 / 2+ ) ( 53 / 2– ) 53 / 2– ( 53 / 2– ) 6428 . 5 16 6464 . 6 i 8 6496 . 9b 15 53 / 2 ( + ) 6726 . 4h 17 ( 55 / 2– ) 6832 . 4 9 6839 . 9 i 8 6913 . 4c 15 55 / 2 ( + ) 6921 . 8 16 6921 . 9g 10 6978 . 7h 18 7037 . 5 i 9 The decay out of this level has not been observed. ( 53 / 2– ) ( 53 / 2+ ) ( 53 / 2+ ) 55 / 2 ( + ) ( 55 / 2– ) ( 55 / 2– ) ( 57 / 2– ) 57 / 2 ( + ) 7038 . 1 16 7133 . 3 12 ( 57 / 2+ ) 7186 . 7 11 7197 . 9 i 10 ( 57 / 2– ) 59 / 2 ( + ) 7245 . 7h 19 7276 . 6g 10 ( 57 / 2– ) ( 59 / 2– ) 7281 . 7 12 57 / 2 ( + ) 7440 . 0 14 7476 . 4d 16 ( 57 / 2– ) 7492 . 3 16 7555 . 2 i 10 61 / 2 ( + ) 7560 . 4h 19 ( 61 / 2– ) 7681 . 3 12 7699 . 5g 10 7838 . 3g 10 7920 . 0h 20 7924 . 8 i 10 ( 59 / 2– ) ( 61 / 2– ) ( 63 / 2– ) 63 / 2 ( + ) 8137 . 0g 11 ( 63 / 2– ) 8331 . 0h 20 8388 . 8 i 11 8394 . 8g 11 ( 65 / 2– ) 65 / 2 ( + ) 8750 . 9g 12 8757 . 9h 21 8886 . 8 i 12 ( 67 / 2– ) 8978 . 1 13 9221 . 5g 12 9409 . 1 i 14 9675 . 9g 13 9923 . 1 i 16 ( 65 / 2– ) ( 67 / 2– ) 67 / 2 ( + ) ( 69 / 2– ) ( 69 / 2+ ) ( 71 / 2– ) ( 71 / 2+ ) 10290 . 4g 14 ( 73 / 2– ) 10853 . 6g 15 ( 75 / 2– ) † From least squares fit to Eγ. Footnotes continued on next page 130 19 3 H g 113 – 2 4 80 19 3 H g 113 – 2 5 80 (HI,xnγ) 1995Fo13,1993De42,1993Ro03 (continued) 193Hg ‡ 19 3 H g 113 – 2 5 80 NUCLEAR DATA SHEETS Levels (continued) Jπ and band assignments are from 1995Fo13. The assignments in the lower part of the level scheme confirm those proposed by earlier researchers. The assignments are based on γ multipolarities, coincidence results, band structure and the assumption that J increases with increasing E(level). § Level assigned to band (1) by 1993De42, 1993Ro03. This band assignment has not been adopted by 1995Fo13 for levels above the 29/2+ level in this ∆J=2 level sequence. # (A): Band (1). @ (B): Band (2) Average g–factor for Bands (2+6) is 0.200 18 (1999We04). & (C): Band (3). a (D): Band b (E): Band c (F): Band d (G): Band e (4). (5) Average g–factor for this band is 0.188 14 (1999We04). (6) See comment for Band (2). (7) Average g–factor for Bands (7+8) is 0.176 14 (1999We04). (H): Band (8) See comment for Band (7). f (I): Band (9). g (J): Dipole band (1) This band is part of Structure 1 in the level scheme as defined in 1995Fo13. h (K): Dipole band (2) This band is part of Structure 2 in the level scheme as defined in 1995Fo13. i (L): Dipole band (3) This band is part of Structure 3 in the level scheme as defined in 1995Fo13. γ(193Hg) The main sources for energies and intensities for this table are 1995Fo13 and 1997FoZX. DCO ratios are from 1995Fo13, except when indicated otherwise. A2 and A4 values are from 1986Hu02 and 1998We23. Intensities: The γ and total intensities listed below are from 1995Fo13 and 1997FoZX. Note that the authors (same group in both references) provide a single intensity list about which they state that the values are derived from coincidence data, and that for the cases where the multipolarity of the transitions could be confirmed, the quoted numbers have been corrected for internal conversion. The evaluators, based on this comment, have recalculated the Iγ when that condition was applicable. Unfortunately this procedure could not be applied with certainty for many cases, as the definition of when a multipolarity was confirmed or not is not always clear cut. Therefore the resulting Iγ values should be used with caution whenever confirming evidence for the multipolarity is not available (see also footnote for the multipolarity column at the end of the γ–ray table). For transitions where the authors of the mentioned references could not establish a multipolarity, their intensity value is listed below in the Iγ column, with no I(γ+ce) data. Some intensities from 1986Hu02 and 1993Ro03 are quoted in the Comments column. Eγ† ( 19 . 9 10 ) E(level) 1755 . 6 Iγ§ <0 . 2 Mult.# [ E1 ] @ I(γ+ce)‡ α Comments Iγ from 1997FoZX. 6.6 Unobserved transition, existence required from observed coincidences of 989–keV γ with members of Band (8) (1995Fo13). ( 71 . 3 ) 4792 . 0 Transition uncertain due to low statistics and overlap with Hg x–rays. Existence required from observed coincidence data. 72 . 9 4864 . 9 Transition uncertain due to low statistics and overlap with Hg x–rays. Existence required from observed coincidences of transitions above the (43/2–) level with those below the 41/2– level (1995Fo13). 93 . 4 10 2189 . 1 105 . 2 8 5547 . 6 113 . 9 10 6419 . 4 123 . 0 10 5442 . 6 130 . 5 4 1886 . 2 0.3 1 [ M1 ] 9.5 0 . 16 2 ( M1 ) 6 . 80 Mult.: DCO=0.43 10 (1997FoZX). 1.2 1 Mult.: DCO=0.48 7. Mult.: DCO=0.62 20. <0 . 5 0 . 11 2 15 . 2 2 ( M1 ) 4 . 35 0.6 1 E2 1 . 87 41 . 4 5 Iγ=12 (1986Hu02). Mult.: A2=+0.30 3, A4=–0.11 4 (1986Hu02). DCO=0.96 2 (1997FoZX); band structure. 135 . 0 10 1890 . 9 0 . 45 16 ( M1 +E 2 ) 2 . 5 10 1.5 1 Iγ=2.9 (1986Hu02). Mult.: A2=+0.02 30 (1986Hu02). DCO=0.53 10 (1997FoZX). 138 . 8 4 1 4 4 . 5& 1 0 7838 . 3 3.0 1 4864 . 9 0.4 1 150 . 5 10 2502 . 1 0 . 46 5 ( M1 ) 3 . 08 11 . 7 3 ( E2 ) 1 . 08 0.9 1 Mult.: DCO=0.52 6. Iγ=0.8 (1986Hu02). Mult.: A2=+0.11 20 (1986Hu02); DCO=1.12 30; ∆Jπ from level scheme. 155 . 9 10 x159 . 8a 10 5547 . 6 0 . 20 4 ( M1 ) 2 . 22 0.6 1 Mult.: DCO=1.23 30 (gate ∆J=1) (1997FoZX). Iγ=0.4 (1986Hu02). A2=–0.09 50 (1986Hu02). Continued on next page (footnotes at end of table) 131 19 3 H g 113 – 2 6 80 19 3 H g 113 – 2 6 80 NUCLEAR DATA SHEETS (HI,xnγ) 1995Fo13,1993De42,1993Ro03 (continued) γ(193Hg) (continued) Eγ† 160 . 4 4 E(level) Iγ§ 7197 . 9 7.7 2 Mult.# M1 α I(γ+ce)‡ 2 . 05 22 . 4 5 Comments Iγ=3.25 (1993Ro03). Mult.: DCO=0.50 10; M1 from DCO and intensity balance (1993De42). 1998We23 report A2=–0.39 2, A4=0.14 2 for an M1/E2 transition of 160.1 keV at high excitation energies. 193 . 5 4 2695 . 6 23 . 9 5 E2 0 . 435 32 . 5 6 Iγ=14 (1986Hu02). Mult.: A2=+0.43 4, A4=–0.10 5 (1986Hu02), DCO=1.02 2 (1997FoZX); band structure. x197 . 1a 4 From 1986Hu02; complex line, no intensity determination possible. Mult.: A2=–0.23 4, A4=+0.01 5 (1986Hu02). Other: A2=–0.44 2, A4=+0.02 1 is quoted by 1998We23 for an 197.3 keV γ ray (see also the 197.6 keV γ ray deexciting the 7037.5 keV level: the quoted A2 and A4 values could possibly belong to that γ ray). 197 . 6 4 7037 . 5 10 . 5 3 M1 1 . 140 21 . 3 5 Iγ=4.94 (1993Ro03). Mult.: DCO=0.49 3; M1 from DCO and intensity balance (1993De42). 1998We23 report A2=–0.44 2, A4=0.02 1 for an M1/E2 transition of 197.3 keV at high excitation energies (see also the 197.1 keV γ ray: the quoted A2 and A4 values could possibly belong to that γ ray). 205 . 1a 4 2096 . 0 19 . 7 5 E2 0 . 355 25 . 3 6 Iγ=12 (1986Hu02). Mult.: A2=0.32 2, A4=–0.10 2 (1998We23). Other: A2=+0.40 3, A4=–0.12 4 (1986Hu02). DCO=1.01 2 (1997FoZX); band structure. 205 . 1 8 7037 . 5 1.5 2 [ M1 ] @ 1 . 027 2.8 4 Iγ=1.03 (1993Ro03). 209 . 6 8 2096 . 0 0 . 80 6 ( M1 ) 0 . 967 1.5 1 1986Hu02 report a complex line, Iγ=0.9 estimated from coincidence spectra. Mult.: DCO=0.68 7 (1997FoZX). 211 . 9 8 2096 . 0 1.4 1 ( E1 ) 0 . 0639 1.4 1 1986Hu02 report a complex line, Iγ=0.7 estimated from coincidence spectra. Mult.: A2=–0.30 15 (1986Hu02). DCO=0.47 6. ∆π=yes from level scheme. x221 . 5a 221 . 7 4 5339 . 1 6.5 2 ( M1 ) 0 . 827 11 . 3 3 227 . 4 8 5547 . 6 1.0 1 [ E2 ] @ 0 . 252 1.2 1 Mult.: DCO=0.50 3. 232 . 3 4 1755 . 6 8.2 2 ( M1 ) 0 . 727 13 . 5 3 Mult.: DCO=0.66 1 (1997FoZX); D, ∆J=1 from γ(θ) in 235 . 6 4 6067 . 7 16 . 1 3 0 . 699 25 . 9 5 Iγ=7.26 (1993Ro03). (α,xnγ). M1 Mult.: DCO=0.46 1; M1 from DCO and intensity balance (1993De42). x235 . 9a Complex line. 240 . 1 6 5800 . 6 3.4 3 [ M1 ] @ 0 . 663 5.4 5 252 . 3 8 6978 . 7 0 . 73 27 [ M1 ] @ 0 . 579 1.1 4 252 . 5 4 5117 . 4 ( M1 ) 0 . 577 22 . 1 4 14 . 8 3 Mult.: DCO=0.51 2. 1986Hu02 lists an unplaced γ with Eγ=252.4 3, Iγ=4 (deduced from coincidences), A2=–0.6 4 possibly corresponding to this γ. 257 . 8 4 8394 . 8 7.6 2 ( M1 ) 0 . 545 11 . 2 2 Mult.: DCO=0.62 2. 267 . 0 8 7245 . 7 3.3 2 ( M1 ) 0 . 495 4.7 2 Mult.: DCO=0.61 4. x274 .1 From 1993De42. Tentatively placed from 5832 level; however, placement not confirmed by 1993Ro03, 1995Fo13. Possibly the 274.2γ from 6419.4 level. 274 . 2 8 6419 . 4 2.2 1 284 . 5 4 5832 . 1 16 . 6 4 ( M1 ) M1 0 . 460 3.0 1 Mult.: DCO=0.43 6. 0 . 416 22 . 3 5 Iγ=7.81 (1993Ro03). Mult.: DCO=0.48 2; M1 from DCO and intensity balance (1993De42). 1998We23 report A2=–0.38 2, A4=–0.05 2 for an M1/E2 transition of 284.2 keV at high excitation energies. 293 . 4 8 7133 . 3 2.6 1 ( M1 ) 0 . 383 3.4 1 Mult.: DCO=0.65 6. Continued on next page (footnotes at end of table) 132 19 3 H g 113 – 2 7 80 19 3 H g 113 – 2 7 80 NUCLEAR DATA SHEETS (HI,xnγ) 1995Fo13,1993De42,1993Ro03 (continued) γ(193Hg) (continued) Eγ† x298 Mult.# Iγ§ E(level) I(γ+ce)‡ α Comments From 1993De42. γ placed from a level at 5256.9 .6 keV, however, the level was not confirmed by 1993Ro03, 1995Fo13. 298 . 7 4 3 0 2 . 2 &b 1 0 8137 . 0 11 . 8 2 6017 . 1 0.6 2 302 . 9 4 2189 . 1 32 . 6 6 ( M1 ) 0 . 364 15 . 3 2 E2 0 . 1027 34 . 1 6 Mult.: DCO=0.54 3. Iγ=25 (1986Hu02). Mult.: A2=0.33 1, A4=–0.10 1 (1998We23). Other: A2=+0.40 3, A4=–0.14 4 (1986Hu02). DCO=0.91 1 (1997FoZX); band structure. 306 . 7 8 7440 . 0 3.3 2 D 309 . 9 8 3570 . 2 3.5 1 ( E2 ) Mult.: DCO=0.57 10. DCO indicates stretched E1,M1. Parent level Jπ unspecified. 0 . 0960 3.6 1 Iγ=2.8 (1986Hu02). Mult.: A2=+0.20 17 (1986Hu02), DCO=1.00 8 (1997FoZX); band structure. 314 . 2 10 4198 . 0 1.0 3 314 . 7 8 7560 . 4 2.6 1 ( M1 ) 0 . 316 3.2 1 Mult.: DCO=1.06 7 (gate ∆J=1). 315 . 6 6 6419 . 4 4.1 4 ( M1 ) 0 . 314 5.1 5 Mult.: DCO=0.51 2. 325 . 4 10 3 2 5 . 5 &b 1 0 6726 . 4 0.7 2 [ M1 ] @ 0 . 289 0.9 2 5117 . 4 0.8 1 2617 . 3 3.6 1 ( M1 ) 0 . 283 4.4 1 327 . 7 8 . 2a 10 x328 Mult.: DCO=0.59 20. From 1986Hu02: complex line, Iγ=1.0 estimated from (Q) coincidence spectra. Mult.: A2=+0.27 10 (1986Hu02). 339 . 4 10 5678 . 4 0.8 2 [ M1 ] @ 0 . 258 1.0 2 354 . 7 8 7276 . 6 4.1 1 [ M1 ] 0 . 229 4.8 1 Mult.: DCO(354.7γ+356.1γ)=0.47 20. 356 . 1 6 8750 . 9 6.7 3 [ M1 ] 0 . 226 7.8 3 Mult.: DCO(354.7γ+356.1γ)=0.47 20. 357 . 3 4 7555 . 2 12 . 4 2 0 . 224 14 . 4 2 M1 Iγ=5.17 (1993Ro03). Mult.: DCO=0.48 2; M1, ∆J=1 from DCO and intensity balance (1993De42). 1998We23 report A2=–0.43 2, A4=0.12 1 for an M1/E2 transition of 357.1 keV at high excitation energies. 359 . 6 8 7920 . 0 2.4 3 [ M1 ] 0 . 220 2.8 3 Mult.: DCO=0.39 8. 363 . 6 8 5702 . 7 2.2 1 [ M1 ] 0 . 214 2.5 1 Mult.: DCO=0.35 7. 367 . 8 8 6832 . 4 3.2 3 ( M1 ) 0 . 207 3.7 3 Iγ=1.82 (1993Ro03). 369 . 7 6 7924 . 8 6.2 3 0 . 205 7.1 3 Iγ=2.25 (1993Ro03). Mult.: DCO=1.25 30 (gate ∆J=1). M1 Mult.: DCO=0.31 10; M1, ∆J=1 from DCO and intensity balance (1993De42). 375 . 2 4 1755 . 6 21 . 9 6 ( E1 ) 0 . 0166 21 . 1 6 Iγ=23 (1986Hu02). Mult.: A2=–0.30 1, A4=0.05 1 (1998We23). Other: A2=–0.16 3, A4=–0.09 4 (1986Hu02). DCO=0.51 1 (1997FoZX); band structure. 375 . 4 4 6839 . 9 3 7 5 . 8 &b 1 0 5714 . 8? 9.2 5 ( M1 ) 0 . 196 10 . 4 6 Iγ=5.31 (1993Ro03). Mult.: DCO=1.10 4 (gate ∆J=1). 382 . 0 2 522 . 75 <0 . 5 100 E2 0 . 0533 100 Mult.: A2=0.30 1, A4=–0.10 1 (1998We23). Other: A2=+0.37 3, A4=–0.12 4 (1986Hu02). DCO=0.98 1. 389 . 6 8 5832 . 1 1.3 1 ( E2 ) 0 . 0506 1.3 1 393 . 9 8 3570 . 2 4.2 1 E2 0 . 0491 4.2 1 Mult.: DCO=0.91 10. Iγ=4 (1986Hu02). Mult.: A2=+0.35 8, A4=–0.09 10 (1986Hu02), DCO=0.95 2 (1997FoZX). 394 . 7 8 x396 . 8a 8 2583 . 7 1.1 1 [ M1 ] 0 . 172 ( M1 , E 2 ) 0 . 11 6 1.2 1 Iγ=1.6 (1986Hu02). Mult.: A2=–0.66 2, A4=0.16 2 (1998We23). Other: A2=–0.57 25 (1986Hu02). 397 . 0 4 6464 . 6 13 . 0 2 M1 0 . 169 14 . 4 2 Iγ=5.8 (1993Ro03). Mult.: DCO=0.50 2; M1 from DCO and intensity balance (1993De42). 401 . 1 8 6103 . 9 2.9 1 ( M1 ) 0 . 164 3.2 1 Mult.: DCO=0.59 8. 403 . 2 8 2289 . 5 3.4 1 ( M1 ) 0 . 162 3.7 1 Mult.: DCO=1.22 10 (gate ∆J=1). 411 . 0 8 8331 . 0 1.8 1 ( M1 ) 0 . 154 2.0 1 Mult.: DCO=0.56 4. ( M1 ) [ M1 ] @ 0 . 143 7.2 3 Mult.: DCO=0.46 3 (1997FoZX). 0 . 140 1.5 3 422 . 9 6 7699 . 5 6.6 3 425 . 5 8 6103 . 9 1.4 3 Continued on next page (footnotes at end of table) 133 19 3 H g 113 – 2 8 80 19 3 H g 113 – 2 8 80 NUCLEAR DATA SHEETS (HI,xnγ) 1995Fo13,1993De42,1993Ro03 (continued) γ(193Hg) (continued) Eγ† E(level) Iγ§ 426 . 9 8 8757 . 9 1.1 1 428 . 1 8 2617 . 3 3.9 5 437 . 5 8 . 0a 8 8137 . 0 1.4 3 442 . 6 8 6145 . 2 Mult.# I(γ+ce)‡ α [ M1 ] @ 0 . 139 1.2 1 [ E2 ] 0 . 0374 1.4 3 Comments Mult.: DCO=2.57 70 (gate ∆J=1). From 1986Hu02; complex line, Iγ=1.7 estimated from x440 coincidence spectra. 2.5 3 [ M1 ] 0 . 126 2.7 3 Mult.: DCO(442.6γ+443.2γ)=0.49 4. 443 . 2 6 5560 . 5 5.1 5 [ M1 ] 0 . 126 5.5 5 Mult.: DCO(442.6γ+443.2γ)=0.49 4. 449 . 3 8 7281 . 7 2.8 1 ( M1 ) 0 . 1215 3.0 1 Mult.: DCO=0.47 6. 454 . 4 8 9675 . 9 1.2 1 ( M1 ) 0 . 1180 1.3 1 Mult.: DCO=1.02 10 (gate ∆J=1). 461 . 4 8 3223 . 6 2.2 1 0 . 1133 2.3 1 0 . 1132 5.7 5 0 . 1116 4.3 4 461 . 5 6 5800 . 6 5.4 5 [ M1 ] @ [ M1 ] @ 464 . 0 8 8388 . 8 4.1 4 ( M1 ) Iγ=1.34 (1993Ro03). Mult.: DCO=0.46 20. 470 . 6 8 x472 9221 . 5 . 3 10 4.8 1 ( M1 ) 0 . 1075 5.0 1 ( E2 ) 0 . 0305 3.3 1 474 . 2 8 5339 . 1 3.4 1 480 . 6 4 3176 . 2 29 . 6 6 E2 0 . 0295 28 . 9 6 Mult.: DCO=0.49 8. γ is related to Structure (2) (1995Fo13). 0.4 1 Mult.: DCO=1.15 20. Iγ=15 (1986Hu02). Mult.: A2=0.29 3, A4=–0.09 3 (1998We23). Other: A2=+0.46 6, A4=–0.16 9 (1986Hu02). DCO=1.07 2 (1997FoZX); band structure. 487 . 7 4 2583 . 7 23 . 3 5 E2 0 . 0285 22 . 8 5 Iγ=14 (1986Hu02). Mult.: A2=0.36 2, A4=–0.10 2 (1998We23). Other: A2=+0.33 4, A4=–0.08 6 (1986Hu02). DCO=1.15 3 (1997FoZX); band structure. 496 . 7 8 1523 . 2 4.1 1 ( E2 ) 0 . 0273 4.0 1 Iγ=3 (1986Hu02). Mult.: A2=+0.52 10, A4=–0.21 12 (1986Hu02), DCO=0.91 9 (1997FoZX). 497 . 9 8 8886 . 8 2.0 1 500 . 3 10 3196 . 0 502 . 4 8 6921 . 9 4.0 1 507 . 0 8 3727 . 0 2.0 1 ( M1 ) 0 . 0926 2.1 1 Mult.: DCO=0.62 8. ( M1 ) 0 . 0905 4.1 1 Mult.: DCO=0.54 7 (1997FoZX). <0 . 5 512 . 8 10 7699 . 5 0.9 1 512 . 9 4 4396 . 8 12 . 4 2 5 1 4 . 1 &b 9923 . 1 517 . 6 8 7555 . 2 [ M1 ] @ 0 . 0857 0.9 1 E2 0 . 0252 12 . 1 2 Mult.: A2=0.32 2, A4=–0.14 2 (1998We23). DCO=0.98 3 (1997FoZX); band structure. x519 1.7 1 . 4 10 [ E2 ] @ 0 . 0247 ( E2 ) 0 . 0245 1.7 1 Iγ=0.6 (1986Hu02). Mult.: A2=0.23 2, A4=0.01 2 (1998We23). Other: A2=–0.3 3 (1986Hu02). 520 . 1 4 6067 . 7 13 . 5 3 521 . 3 10 5 2 2 . 2 &b 2617 . 3 1.0 2 9409 . 1 523 . 2 4 4674 . 1 ( E2 ) 0 . 0244 13 . 1 3 [ M1 ] @ 0 . 0821 1.0 2 E2 0 . 0241 18 . 6 4 Iγ=6.9 (1993Ro03). Mult.: DCO=0.93 9; ∆J=2 from DCO (1993De42). 19 . 1 4 Iγ=4 (1986Hu02). Mult.: A2=0.34 1, A4=–0.11 1 (1998We23). Other: A2=+0.41 8 (1986Hu02); band structure. DCO=0.93 3 (1997FoZX). x524 From 1993De42. Tentative γ placed from 5832 level; .0 however, placement not confirmed by 1993Ro03, 1995Fo13. Possibly the 524.5γ from 3727.0 level. 524 . 5 8 3727 . 0 2.5 3 543 . 5 10 6103 . 9 0.5 1 [ E2 ] @ [ E2 ] @ 546 . 0 6 4958 . 5 7.8 1 ( E2 ) 0 . 0218 7.6 1 549 . 5 10 4119 . 7 0.8 1 [ M1 ] 0 . 0715 0.8 1 550 . 3 6 4120 . 5 5.9 3 E2 0 . 0214 5.7 3 0 . 0239 2.4 3 Mult.: DCO=1.08 10 (1997FoZX). Iγ=4 (1986Hu02). Mult.: A2=+0.42 7, A4=–0.16 9 (1986Hu02), DCO=1.02 7 (1997FoZX); band structure. 554 . 4 8 3196 . 0 2.1 5 ( E2 ) 0 . 0210 2.0 5 1986Hu02 report a complex line, Iγ=2.0 estimated from coincidence spectra. Mult.: A2=+0.28 10, A4=0.00 12 (1986Hu02), DCO=1.41 20 (1997FoZX). 556 . 5 8 8394 . 8 4.4 5 ( E2 ) 0 . 0208 4.3 5 Mult.: DCO=2.16 20 (gate ∆J=1). Continued on next page (footnotes at end of table) 134 19 3 H g 113 – 2 9 80 19 3 H g 113 – 2 9 80 NUCLEAR DATA SHEETS (HI,xnγ) 1995Fo13,1993De42,1993Ro03 (continued) γ(193Hg) (continued) Mult.# I(γ+ce)‡ E(level) Iγ§ 557 . 7 8 6305 . 2 1.7 5 [ E2 ] @ 0 . 0207 1.6 5 558 . 2 8 3754 . 2 1.3 4 ( E2 ) 0 . 0207 1.3 4 Eγ† α Comments Iγ=2.0 (1986Hu02). Mult.: DCO=0.97 10 (1997FoZX). 561 . 4 8 x561 4958 . 5 3.4 4 From 1993De42. γ placed from a level at 5818.6 .7 keV; however, the level was not confirmed by 1993Ro03, 1995Fo13. Possibly the 561.9γ from 4412.5 level, or 561.8γ from 7838.3 level. 561 . 8 6 7838 . 3 6.3 4 ( E2 ) 0 . 0204 6.1 4 Mult.: DCO=1.10 4. 561 . 9 8 5 6 3 . 0 &b 1 0 4412 . 6 1.8 3 ( E2 ) 0 . 0204 1.7 3 Mult.: DCO=1.10 4. ( E2 ) 0 . 0202 3.5 1 Mult.: DCO=0.82 20; band structure. E2 0 . 0195 33 . 9 7 10853 . 6 564 . 1 8 4683 . 8 3.6 1 564 . 7 10 3260 . 3 0.6 1 573 . 0 4 2762 . 2 35 . 0 7 Iγ=22 (1986Hu02). Mult.: A2=0.29 1, A4=–0.09 1 (1998We23). Other: A2=+0.26 3, A4=–0.09 4 (1986Hu02). DCO=0.99 1 (1997FoZX); band structure. 577 . 6 10 6978 . 7 1.0 2 ( E2 ) 0 . 0191 [ E2 ] @ [ E2 ] @ 0 . 0188 1.0 2 0 . 0186 2.6 1 [ E2 ] @ 0 . 0179 2.2 1 581 . 9 10 7560 . 4 1.0 2 585 . 2 8 3202 . 5 2.7 1 589 . 1 8 5547 . 6 1.3 1 594 . 1 8 600 . 2b 10 4792 . 0 2.3 1 7440 . 0 0.8 2 602 . 9 8 3220 . 1 2.2 1 606 . 0 4 746 . 8 11 . 3 4 1.0 2 [ E2 ] @ 0 . 0173 ( M1 +E 2 ) 0 . 036 19 Mult.: DCO=2.24 50 (gate ∆J=1). 2.1 1 11 . 1 2 1986Hu02 report a complex line, Iγ=9.0 estimated from coincidence spectra. Mult.: A2=–0.34 3, A4=–0.09 5 (1986Hu02), does not agree with γ(θ) in (α,xnγ); DCO=0.33 4 (1997FoZX). 0.6 1 γ is related to Structure (2) (1995Fo13). 1755 . 6 6.5 5 Mult.: DCO=0.95 7 (1997FoZX). 614 . 0 8 8750 . 9 4.1 5 ( E2 ) 0 . 0166 4.0 5 614 . 5 8 10290 . 4 2.7 4 ( M1 ) 0 . 0534 2.7 4 617 . 8 4 2502 . 1 E2 0 . 0164 37 . 0 20 x606 . 1 10 610 . 5 6 38 . 3 21 Mult.: DCO=0.96 30. Mult.: DCO=0.99 20 (gate ∆J=1). Iγ=28 (1986Hu02). Mult.: A2=0.30 2, A4=–0.06 4 (1998We23). Other: A2=+0.40 3, A4=–0.16 4 (1986Hu02). DCO=0.99 2 (1997FoZX). 618 . 7 6 6419 . 4 7.5 6 622 . 7 2 1145 . 4 83 . 8 11 [ E2 ] @ 0 . 0164 7.2 6 E2 0 . 0161 80 . 8 10 I(γ+ce) from 1995Ro13. !997FoZX quote I(γ+ce)=6.7 7. Iγ=61 (1986Hu02). Mult.: A2=0.33 1, A4=–0.10 1 (1998We23). Other: A2=+0.38 3, A4=–0.11 4 (1986Hu02). DCO=1.07 1 (1997FoZX); band structure. 626 . 8 6 6305 . 2 5.9 1 [ E2 ] @ 0 . 0159 5.7 1 632 . 6 6 6464 . 6 5.7 5 ( E2 ) 0 . 0156 5.5 5 Iγ=1.36 (1993Ro03). Mult.: DCO=1.15 20. 633 . 5 4 1380 . 3 10 . 5 2 E2 0 . 0155 10 . 1 2 Iγ=12 (1986Hu02). Mult.: A2=+0.29 10, A4=–0.01 14 (1986Hu02), DCO=1.10 2 (1997FoZX). x634 γ seen by 1993De42. Tentative placement from a .0 level at 5307 keV; however, the level was not confirmed by 1993Ro03, 1995Fo13. 640 . 0 4 3223 . 6 20 . 6 4 E2 0 . 0152 19 . 9 4 1986Hu02 report a complex line, Iγ=10.0 estimated from coincidence spectra. Eγ: 1998We23 report Eγ=639.6 keV. Mult.: A2=0.38 2, A4=0.00 2 (1998We23). Other: A2=+0.37 10, A4=–0.14 14 (1986Hu02). DCO=1.02 2 (1997FoZX); band structure. 651 . 2 6 5048 . 0 5.8 8 [ M1 +E 2 ] 0 . 030 16 5.7 7 Iγ=2.4 (1986Hu02). Mult.: A2=+0.67 15 (1986Hu02), DCO=0.97 6 1997FoZX); band structure. Continued on next page (footnotes at end of table) 135 19 3 H g 113 – 3 0 80 19 3 H g 113 – 3 0 80 NUCLEAR DATA SHEETS (HI,xnγ) 1995Fo13,1993De42,1993Ro03 (continued) γ(193Hg) (continued) Eγ† 653 . 3 4 E(level) Iγ§ 4150 . 8 25 . 5 11 Mult.# E2 I(γ+ce)‡ α 0 . 0145 24 . 6 10 Comments Iγ=10 (1986Hu02). Mult.: A2=0.27 1, A4=–0.06 1 (1998We23). Other: A2=+0.35 5, A4=–0.09 6 (1986Hu02). DCO=0.94 1 (1997FoZX). 660 . 2 4 3883 . 8 20 . 1 4 E2 0 . 0142 19 . 4 4 Iγ=7 (1986Hu02). Mult.: A2=0.34 2, A4=–0.10 2 (1998We23). Other: A2=+0.45 5, A4=–0.10 7 (1986Hu02). DCO=1.07 3 (1997FoZX). 674 . 1 8 7920 . 0 2.2 1 [ E2 ] 0 . 0136 2.1 1 Mult.: DCO=2.50 30 (gate ∆J=1). 677 . 9 8 5361 . 7 2.9 1 ( E2 ) 0 . 0134 2.8 1 Mult.: DCO=0.84 30. 678 . 0 10 6017 . 1 0.7 1 ( E2 ) 0 . 0134 0.7 1 DCO=2.3 6 (gate ∆J=1). 685 . 7 8 4412 . 6 1.4 3 704 . 3 4 3880 . 5 12 . 9 2 E2 0 . 01233 12 . 4 2 Iγ=5 (1986Hu02). Mult.: A2=0.31 5, A4=–0.20 6 (1998We23). Other: A2=+0.45 9, A4=–0.14 13 (1986Hu02). DCO=0.93 2 (1997FoZX); band structure. 709 . 3 10 6726 . 4 0.9 2 ( E2 ) 716 . 5 8 5400 . 3 1.5 1 D 0 . 0122 0.9 2 Mult.: DCO=2.1 7 (gate ∆J=1). Mult.: DCO=0.68 10. 716 . 7 8 6419 . 4 2.0 3 1.9 3 5678 . 4 5.7 5 [ E2 ] [ E2 ] @ 0 . 01188 719 . 8 6 0 . 01177 5.5 5 1993De42 places a 719.6γ from a 6538.2 level. 726 . 9 6 7924 . 8 5.9 1 ( E2 ) 0 . 01153 5.7 1 Iγ=2.57 (1993Ro03). 731 . 1 8 2617 . 3 1.9 1 [ E2 ] @ 0 . 01139 1.8 1 735 . 2 4 3497 . 5 35 . 4 7 E2 0 . 01126 34 . 0 7 Level not confirmed by 1993Ro03, 1995Fo13. DCO=0.92 1; ∆J=2 from DCO (1993De42). 1986Hu02 report a complex line, Iγ=15.0 estimated from coincidence spectra. Mult.: A2=0.37 1, A4=–0.10 1 (1998We23). Other: A2=+0.49 11, A4=–0.17 13 (1986Hu02). DCO=1.07 2 (1997FoZX); band structure. 737 . 4 6 5411 . 5 9.6 4 738 . 9 4 1884 . 3 47 . 8 11 ( E2 ) 0 . 01119 9.2 4 E2 0 . 01114 45 . 9 10 Mult.: DCO=0.99 1; band structure. Iγ=41 (1986Hu02). Mult.: A2=0.29 2, A4=–0.11 2 (1998We23). Other: A2=+0.39 6, A4=–0.10 10 (1986Hu02). DCO=0.95 1 (1997FoZX); band structure. 744 . 4 8 5702 . 7 3.0 5 745 . 5 4 1890 . 9 27 . 7 17 [ E2 ] @ 0 . 01097 ( E 1 +M2 ) 0 . 044 40 2.9 5 27 . 5 6 Iγ=14 (1986Hu02). Mult.: A2=–0.07 2, A4=–0.06 3 (1998We23). Other: A2=–0.19 6, A4=–0.09 10 (1986Hu02). DCO=0.75 2 (1997FoZX). 757 . 5 6 2641 . 7 8.0 1 ( E2 ) 0 . 01057 7.7 1 1986Hu02 report a complex line, Iγ=5.0 estimated from coincidence spectra. Mult.: A2(757.4γ+757.8γ)=+0.42 20 (1986Hu02), DCO=1.19 9 (1997FoZX); band structure. 758 . 2 8 3260 . 3 3.2 2 ( E2 ) 0 . 01055 3.0 2 1986Hu02 report a complex line, Iγ=3.0 estimated from coincidence spectra. Mult.: A2(757.4γ+757.7γ)=+0.42 10 (1986Hu02), DCO=1.01 5 (1997FoZX). 764 . 6 6 6832 . 4 5.6 1 ( E2 ) 0 . 01037 5.4 1 765 . 0 8 6103 . 9 1.8 2 [ E2 ] @ 0 . 01036 1.7 2 Iγ=2.69 (1993Ro03). Mult.: DCO=1.06 7. 769 . 4 8 4889 . 9 3.8 2 ( E2 ) 0 . 01023 3.6 2 Mult.: DCO=1.11 8 (1997FoZX); band structure. 770 . 7 8 8331 . 0 2.1 1 [ E2 ] 0 . 01020 2.0 1 Mult.: DCO=2.55 60 (gate ∆J=1). 772 . 2 4 6839 . 9 16 . 1 3 ( E2 ) 0 . 01016 15 . 4 3 Iγ=8.88 (1993Ro03). Mult.: DCO=1.02 6; ∆J=2 from DCO (1993De42). 1998We23 report A2=0.26 3, A4=–0.06 2 for an E2 transition of 772.0 keV at high excitation energies. x772 . 3a 8 (Q) Iγ=2.7 (1986Hu02). x774 . 6a 8 (Q) From 1986Hu02; complex line, Iγ=1.4 estimated from Mult.: A2=+0.50 12 (1986Hu02). coincidence spectra. Mult.: A2=+0.43 15 (1986Hu02). 777 . 6 8 7699 . 5 5.1 1 ( E2 ) 0 . 01001 4.9 1 Mult.: DCO=1.91 20 (gate ∆J=1). Continued on next page (footnotes at end of table) 136 19 3 H g 113 – 3 1 80 19 3 H g 113 – 3 1 80 NUCLEAR DATA SHEETS (HI,xnγ) 1995Fo13,1993De42,1993Ro03 (continued) γ(193Hg) (continued) E(level) Iγ§ 784 . 8 8 4539 . 1 2.6 2 789 . 0 10 5747 . 5 1.0 1 Eγ† 801 . 9 8 6163 . 6 1.1 1 806 . 0 8 6145 . 2 1.1 1 807 . 9 6 4688 . 4 6.8 1 α I(γ+ce)‡ ( E2 ) 0 . 00982 2.5 2 [ E2 ] 0 . 0094 1.1 1 ( E2 ) 0 . 00925 6.5 1 Mult.# Comments Mult.: DCO=1.02 10 (1997FoZX). Iγ=4 (1986Hu02). Mult.: A2=+0.31 9, A4=–0.10 11 (1986Hu02), DCO=0.91 6 (1997FoZX); band structure. 808 . 2 8 5698 . 1 2.4 1 ( E2 ) 0 . 00924 2.3 1 Mult.: DCO=1.11 10; band structure. 818 . 2 8 6921 . 9 3.8 1 ( E2 ) 0 . 00901 3.6 1 Mult.: DCO=1.11 9. 826 . 6 8 9221 . 5 3.5 1 [ E2 ] 0 . 00883 3.4 1 DCO=0.89 8. 833 . 6 8 8388 . 8 4.0 1 [ E2 ] 0 . 00868 3.8 1 Iγ=2.56 (1993Ro03). Mult.: DCO=2.14 20 (gate ∆J=1). 837 . 8 8 8757 . 9 2.2 1 ( D+Q ) 843 . 5 8 4964 . 0 2.2 1 ( M1 ) Mult.: DCO=1.55 20 (gate ∆J=1). 0 . 0236 2.1 1 Mult.: DCO=0.55 6. A 844γ was seen by 1986Hu02, but not placed in level scheme. 848 . 9 8 7681 . 3 3.3 9 851 . 1 8 5899 . 1 3.9 8 Iγ=1.0 (1986Hu02). Mult.: DCO=0.86 8 (1997FoZX). 857 . 1 6 7276 . 6 8.1 5 857 . 5 4 1380 . 3 11 . 3 9 ( E2 ) 0 . 00820 ( M1 +E 2 ) 0 . 0212 7 7.8 5 11 . 0 8 Mult.: DCO=0.96 5. Iγ=18 (1986Hu02). Mult.: A2=–0.66 2, A4=0.13 1 (1998We23). Other: A2=–0.67 5, A4=+0.02 7 (1986Hu02). δ=0.33 6 from Pt(α,xnγ). 869 . 0 10 6428 . 5 1.0 3 871 . 1 8 5559 . 5 3.8 8 E2 0 . 00794 3.6 8 1986Hu02 report a 868.8γ with Iγ=1.0, part of a complex line, from this level. Iγ=1.0 (1986Hu02). Mult.: A2=+0.21 13, A4=–0.14 18 (1986Hu02), DCO=1.04 8 (1997FoZX); band structure. 873 . 4 6 5547 . 6 6.6 1 ( E1 ) 0 . 00296 6.3 1 1986Hu02 report a 873.1γ with Iγ=1.4, but, based on very weak arguments. suggest an (E2) multipolarity. Mult.: DCO=0.53 1; ∆π=yes from level scheme (1995Fo13). 881 . 5 8 x881 7186 . 7 .7 8 885 . 7 8 3.9 1 [ E2 ] @ 0 . 00775 3.7 1 ( E2 ) 0 . 00767 3.6 1 γ is related to Structure (2) (1995Fo13). 1.9 5 1026 . 5 3.8 1 1986Hu02 report a complex line, Iγ=4.0 estimated from coincidence spectra. Mult.: DCO=0.93 20 (1997FoZX). x898 x902 . 7 10 . 4a 10 0.8 1 From 1986Hu02; complex line, Iγ=0.7 estimated from coincidence spectra. 903 . 5 6 5442 . 6 6.8 1 ( E2 ) 0 . 00737 6.5 1 Mult.: DCO=1.08 6 (1997FoZX). 908 . 2 8 4792 . 0 2.1 3 ( M1 ) 0 . 0195 2.0 3 Mult.: DCO=0.61 9. 915 . 1 6 4412 . 6 7.3 1 ( E2 ) 0 . 00719 7.0 1 1986Hu02 report a complex line, Iγ=1.7 estimated from coincidence spectra. Mult.: DCO=1.05 20 (1997FoZX). 924 . 9 8 9675 . 9 2.1 1 937 . 4 8 6496 . 9 1.2 1 x938 x942 .0 8 . 7a 8 ( E2 ) 0 . 00704 2.0 1 Mult.: DCO=2.03 20 (gate ∆J=1). γ is related to Structure (2) (1995Fo13). 1.3 2 Iγ=2.3 (1986Hu02). Transition feeds 37/2+ level, but exact placement not determined. 943 . 5 8 4119 . 7 3.8 1 [ M1 ] 0 . 0177 3.7 1 962 . 0 8 8886 . 8 3.8 1 ( E2 ) 0 . 00651 3.6 1 Mult.: DCO=0.40 4. Iγ=1.88 (1993Ro03). Mult.: DCO=1.04 20; ∆J=2 from DCO (1993De42). [ E2 ] @ 0 . 00647 1.2 5 2.5 1 ( E2 ) 0 . 00623 2.4 1 Mult.: DCO=0.91 8 (1995Fo13); band structure. 1735 . 8 2.4 1 ( E2 ) 0 . 00617 2.3 1 Mult.: DCO=1.01 10. 4720 . 6 2.5 3 965 . 0 8 3727 . 0 1.3 5 974 . 4 8 4198 . 0 1.2 3 983 . 4 8 6394 . 9 989 . 0 8 993 . 6 8 Iγ=1.5 (1986Hu02). 988.4γ seen in coin with 606.4γ by 1986Hu02. Continued on next page (footnotes at end of table) 137 19 3 H g 113 – 3 2 80 19 3 H g 113 – 3 2 80 NUCLEAR DATA SHEETS (HI,xnγ) 1995Fo13,1993De42,1993Ro03 (continued) γ(193Hg) (continued) Eγ† 1000 . 4 4 Iγ§ E(level) 1523 . 2 10 . 9 2 Mult.# α I(γ+ce)‡ ( M1 +E 2 ) 0 . 011 5 10 . 5 2 Comments Iγ=9 (1986Hu02). Mult.: A2=–0.09 4, A4=+0.16 6 (1986Hu02), DCO=1.03 4 (1997FoZX). 1013 . 4 8 3202 . 5 1.6 5 1014 . 3 8 6913 . 4 1.7 1 1020 . 3 8 9409 . 1 3.0 2 x1021 .6 8 1022 . 7 10 x1026 Mult.: DCO=0.73 9. γ is related to Structure (1) (1995Fo13). 1.7 5 6921 . 8 . 0 10 0.5 2 γ is related to Structure (2) (1995Fo13). <0 . 5 1036 . 3 10 9923 . 1 0.8 1 1046 . 0 8 5442 . 6 1.9 1 1053 . 3 8 8978 . 1 2.0 1 [ E1 ] 0 . 00213 1.8 1 Mult.: DCO=0.46 6 (1997FoZX); ∆π=yes from level scheme. 1058 . 6 10 3754 . 2 0.7 1 1064 . 8 10 4792 . 0 0.9 3 10290 . 4 1.7 3 1081 . 5 10 1068 . 9 8 7476 . 4 1.0 1 1088 . 5 8 3850 . 7 1.8 1 1097 . 4 10 1115 . 0b 10 7492 . 3 0.7 1 3811? 1.0 1 1139 . 0 10 7038 . 1 [ E2 ] 0 . 00530 1.6 3 Mult.: DCO=2.01 50 (gate ∆J=1). Mult.: DCO=0.82 20. [ E2 ] 0 . 00512 1.7 1 Mult.: DCO=1.17 20. Mult.: DCO=1.30 20 (1997FoZX). 1.0 1 γ is related to Structure (1) (1995Fo13). x1145 .0 8 1.5 5 x1149 .0 8 2.4 5 γ is related to Structure (1) (1995Fo13). 5033 . 1 1.0 1 Mult.: DCO=0.47 9 (1997FoZX). 1169 . 0 8 5319 . 9 1.5 1 1177 . 7 8 10853 . 6 2.0 1 1206 . 6 8 2351 . 9 1152 . 6 10 x1232 .2 8 Mult.: DCO=0.48 10 (1997FoZX). (Q) Mult.: DCO=2.06 30 (gate ∆J=1). 2.3 1 2.1 1 1240 . 5 8 4416 . 7 1286 . 0 10 4462 . 2 0.5 1 1294 . 4 10 4792 . 0 0.7 3 1362 . 8 8 4539 . 1 1.4 1 ( E2 ) Mult.: DCO=1.25 20 (1997FoZX). 1511 . 5 8 5391 . 9 1.2 1 ( D+Q ) Mult.: DCO=1.35 30 (1997FoZX). 1562 . 0 10 5442 . 6 0.4 1 † 2.3 1 From 1995Fo13, unless indicated otherwise. γ–ray energy uncertainties have been assigned by the evaluators, based on the estimates according to their intensities, as suggested in 1995Fo13. ‡ Total intensity from 1995Fo13, 1997FoZX, for transitions for which they could establish a definite multipolarity (see Note at beginning of γ–ray table). These authors state that they have corrected the measured Iγ for internal conversion, if the multipolarity of the γ is confirmed. The distinction, whether the intensity given in those references is Iγ or I(γ+ce) is based on this comment. All intensities are relative to I(382.0γ)=100. § The Iγ values are either from 1995Fo13, when they could not confirm the transition multipolarity, or has been calculated by the evaluators from the I(γ+ce) quoted in that reference, and the corresponding conversion coefficient, for those transitions with confirmed multipolarities (see also Note at beginning of the γ–ray table). All γ intensities are relative to Iγ=100 for the 382.0γ. # Deduced from γ–ray angular distributions (1986Hu02, 1998We23) and DCO ratios (1995Fo13,1997FoZX). The DCO ratios are measured as (Iγ(158°)I(gate,90°))/Iγ(90°)I(gate,158°). With a gate on a ∆J=2 Q transition a DCO≈1.0 indicates a ∆J=2, Q γ, while a DCO≈0.5 indicates a ∆J=1, D γ. With a gate on a ∆J=1 D transition, a value of DCO≈2.0 indicates a ∆J=2, Q γ, and, finally, a value of DCO≈1.0 indicates a ∆J=1, D γ. Unless otherwise noted, all DCO ratios were measured gating on a ∆J=2 γ. Note that some multipolarities were assumed on the only basis of the ∆Jπ between the two levels. These have been marked by a separate footnote symbol. @ Multipolarity assumed by evaluators on the only basis of the ∆Jπ of the connected levels in the proposed level scheme. & Uncertain transition due to low statistics (1995Fo13). a γ–ray seen by 1986Hu02; uncertainty assigned by the evaluators depending on intensity. b Placement of transition in the level scheme is uncertain. x γ ray not placed in level scheme. 138 19 3 H g 113 – 3 3 80 (HI,xnγ): SD 1998Bu03: 19 3 H g 113 – 3 3 80 NUCLEAR DATA SHEETS 176Yb(22Ne,5nγ) 1993Jo09,1994Jo10,1998Bu03 E=118 MeV. Measured γ, γγ, lifetimes. Deduced SD bands and intrinsic quadrupole moments. 1994Jo10, 1993Jo09, 1992ShZR, 1990Cu05, 1990Cu06: 150Nd(48Ca,5nγ) E=205, 213 MeV. Measured γ, γγ. Deduced SD bands and transitions. 1993Fa07: 176Yb(22Ne,5nγ) E=116 MeV. Measured γ, γγ. Deduced SD bands and interband transitions. Intraband transitions from 1993Jo09, 1992ShZR. See also 1997Fa15. Others: 1990He09 used reactions SD–3 bands in 193Hg 176Yb(22Ne,5nγ) E=116 MeV and 150Nd(48Ca,5nγ) E=195–210 MeV to identify SD–2 and (see 1990He23 for analysis of results); 2000Zw03 attempt to determine whether the relative yields for the population of superdeformed states in HI–induced reactions could be enhanced by selecting the (HI,αxn) channel, rather than the pure neutron evaporation channel. The results show that the yield for those states is actually about 4 times lower in the former case. Measured Kα x ray yield (1993Cu02). 193Hg Levels SD–1, SD–2 and SD–3 bands assigned on the basis of γγ evidence with known transitions (in normal bands) in 193Hg. SD–4 band assigned on the basis of excitation functions. Jπ E(level) x‡ T1/2† Comments Jπ: J≈(19/2–). J 1993Fa07 suggested that the lowest transition in this band is 192 keV, but 1993Jo09 do not seem to confirm this. 111 . 8+x § 4 233 . 20+x ‡ 20 365 . 8+x § 4 507 . 4+x ‡ 3 660 . 4+x § 4 J+1 J+2 J+3 J+4 J+5 821 . 4+x ‡ 4 J+6 995 . 3+x § 4 1174 . 7+x ‡ 4 1369 . 8+x § 4 J+7 J+8 J+9 1566 . 6+x ‡ 4 J+10 1782 . 9+x § 5 1995 . 6+x ‡ 5 2234 . 0+x § 5 J+11 J+12 J+13 2460 . 1+x ‡ 5 J+14 2722 . 3+x § 5 2957 . 5+x ‡ 5 3247 . 2+x § 6 J+15 J+17 3485 . 7+x ‡ 6 J+18 3807 . 1+x § 6 4044 . 2+x ‡ 6 4402 . 0+x § 6 J+19 J+16 J+20 4634 . 2+x ‡ 6 J+22 J+23 J+24 5912 . 5+x ‡ 7 J+26 J+27 0 . 083 p s +7–14 0 . 062 ps 7 J+28 7322 . 3+x ‡ 8 J+30 J+31 J+32 J+33 8860 . 4+x ‡ 8 J+34 9473 . 8+x § 9 9677 . 0+x ‡ 9 10321 . 3+x § 10 J+35 3 6 6 . 1 + y@ 4 508 . 5+y# 3 6 6 0 . 9 + y@ 4 7 J+29 7868 . 8+x § 8 8075 . 5+x ‡ 8 8656 . 1+x § 8 1 1 1 . 9 + y@ 4 233 . 50+y# 20 0 . 104 ps J+25 6386 . 6+x § 7 6601 . 0+x ‡ 7 7112 . 2+x § 8 y# 14 J+21 5030 . 8+x § 7 5256 . 8+x ‡ 7 5692 . 5+x § 7 10524 . 8+x ‡ 10 11197 . 4+x § 11 11405 . 7+x ‡ 11 0 . 132 ps J+36 J+37 J+38 J+39 J+40 J1 Jπ: J1≈(19/2+). J1+1 J1+2 J1+3 J1+4 J1+5 Continued on next page (footnotes at end of table) 139 19 3 H g 113 – 3 4 80 (HI,xnγ): SD 1993Jo09,1994Jo10,1998Bu03 (continued) 193Hg E(level) 823 . 5+y# 4 9 9 6 . 0 + y@ 4 1178 . 3+y# 4 1 3 7 0 . 6 + y@ 4 1572 . 1+y# 4 1 7 8 3 . 9 + y@ 4 2004 . 2+y# 5 2 2 3 5 . 0 + y@ 5 2474 . 0+y# 5 2 7 2 3 . 3 + y@ 5 Jπ J1+9 J1+10 J1+11 J1+12 J1+13 J1+14 J1+15 J1+19 7 8 6 9 . 8 + y@ 8 8255 . 2+y# 8 8 6 5 7 . 1 + y@ 8 9057 . 4+y# 9 9 4 7 4 . 8 + y@ 9 9889 . 5+y# 11 1 0 3 2 2 . 3 + y@ 1 0 10750 . 0+y# 12 1 1 1 9 8 . 4 + y@ 1 1 z& 2 9 1 . 0 0 + z& 2 0 6 1 9 . 8 + z& 3 9 8 6 . 4 + z& 4 1 3 9 1 . 4 + z& 4 1 8 3 5 . 6 + z& 5 2 3 1 9 . 9 + z& 5 2 8 4 5 . 8 + z& 6 3 4 1 2 . 5 + z& 6 4 0 1 7 . 5 + z& 6 4 6 5 8 . 0 + z& 7 5 3 3 2 . 5 + z& 7 6 0 4 0 . 0 + z& 7 6 7 7 9 . 3 + z& 8 7 5 4 9 . 0 + z& 9 8 3 5 0 . 3 + z& 1 0 9 1 8 1 . 6 + z& 1 1 1 0 0 4 2 . 6 + z ?& ua 2 4 0 . 5 1+ua 2 0 5 2 2 . 4+ua 3 8 4 5 . 9+ua 4 1 2 1 1 . 3+ua 4 1 6 1 7 . 8+ua 5 2 0 6 5 . 3+ua 5 2 5 5 3 . 4+ua 6 3 0 8 1 . 4+ua 6 3 6 4 8 . 6+ua 6 4 2 5 4 . 9+ua 7 Comments J1+7 3 8 0 8 . 1 + y@ 6 4098 . 5+y# 6 4 4 0 3 . 0 + y@ 6 6741 . 8+y# 7 7 1 1 3 . 2 + y@ 8 7484 . 0+y# 8 T1/2† J1+8 J1+16 5 6 9 3 . 5 + y@ 7 6031 . 9+y# 7 6 3 8 7 . 6 + y@ 7 Levels (continued) J1+6 2980 . 2+y# 5 3 2 4 8 . 2 + y@ 6 3521 . 7+y# 6 4709 . 8+y# 7 5 0 3 1 . 8 + y@ 7 5354 . 1+y# 7 19 3 H g 113 – 3 4 80 NUCLEAR DATA SHEETS J1+17 0 . 146 p s +14–21 J1+18 0 . 076 p s +7–14 J1+20 J1+21 0 . 083 ps 7 J1+22 J1+23 J1+24 J1+25 J1+26 J1+27 J1+28 J1+29 J1+30 J1+31 J1+32 J1+33 J1+34 J1+35 J1+36 J1+37 J1+38 J1+39 J2 Jπ: J2≈(27/2–). J2+2 J2+4 J2+6 J2+8 J2+10 J2+12 J2+14 J2+16 J2+18 J2+20 J2+22 J2+24 J2+26 J2+28 J2+30 J2+32 J2+34 J3 Jπ: J3≈(21/2–), from 1994Jo10. J3+2 J3+4 J3+6 J3+8 J3+10 J3+12 J3+14 J3+16 J3+18 J3+20 Continued on next page (footnotes at end of table) 140 19 3 H g 113 – 3 5 80 (HI,xnγ): SD 1993Jo09,1994Jo10,1998Bu03 (continued) 193Hg E(level) 4 8 9 9 . 4+ua 7 5 5 8 1 . 3+ua 7 6 2 9 9 . 9+ua 8 7 0 5 4 . 4+ua 8 7 8 4 4 . 2+ua 8 8 6 6 8 . 5+ua 9 9 5 2 6 . 4+ua 1 0 19 3 H g 113 – 3 5 80 NUCLEAR DATA SHEETS Levels (continued) Jπ J3+22 J3+24 J3+26 J3+28 J3+30 J3+32 J3+34 † From line–shape analysis (1998Bu03). ‡ (A): SD–1 Band (1998Bu03,1994Jo10,1993Jo09,1990Cu05). Q(intrinsic)=18.4 +8–9 (1998Bu03). Percent population=1.6 3 (1990Cu05). g factor (intrinsic)=–0.65 14 (1993Jo09). This is deduced from the ratio of interband (M1) and intraband (E2) transition § intensities. Possible configuration: [512]5/2–, α=–1/2 below Eγ≈400 and j15/2 above Eγ≈600 keV. (B): SD–2 Band (1998Bu03,1994Jo10,1993Jo09,1990Cu05). Q(intrinsic)=17.3 +11–9 (1998Bu03). Percent population=2.1 3(1990Cu05). The relative intensity of this band is anomalously high (≈2 times that of its signature partner SD–3 band) which leads to suggestion that this band may be composed of two SD bands, the other being the signature partner of SD–3 band. Possible configuration: [512]5/2–, α=+1/2. Signature partner of SD–1 band. # (C): SD–3 Band (1998Bu03,1994Jo10,1993Jo09,1990Cu05). Q(intrinsic)=16.1 +15–14 (1998Bu03). Percent population=0.9 3 (1990Cu05) Possible configuration: [624]9/2+, α=–1/2. @ (D): SD–4 Band (1998Bu03,1994Jo10,1993Jo09,1990Cu05). Q(intrinsic)=17.3 +11–9 (1998Bu03). Possible configuration: [624]9/2+, α=+1/2. Signature partner of SD–3 band. SD–2 and SD–4 bands are unresolved but FWHM of lines is consistently greater than that for lines in SD–1 band (from (HI,xnγ):SD). & (E): SD–5 Band (1998Bu03,1994Jo10,1993Jo09,1990Cu05). Q(intrinsic)=16.7 10 (1998Bu03). Percent population=1.1 3 (1990Cu05). j15/2, α=–1/2 intruder band below Eγ≈400 keV and [512]5/2 α=–1/2 above Eγ≈600 keV. Configuration: (N=7,α=–1/2)(1994Jo10). a (F): SD–6 Band (1998Bu03,1994Jo10). Q(intrinsic)=16.7 +14–13 (1998Bu03). Percent population ≈0.6 (1994Jo10). Configuration: (N=7,α=+1/2), unfavored signature partner (1994Jo10). γ(193Hg) E(level) Eγ† Iγ‡ 233 . 20+x 121 . 1§ 5 233 . 2 2 0 . 37 3 365 . 8+x 132 . 2§# 5 2 5 4 . 0@ 2 0 . 1 2@ 5 507 . 4+x 141 . 6§ 5 274 . 2 2 0 . 48 3 660 . 4+x 152 . 9§# 5 2 9 4 . 6@ 2 0 . 3 8@ 8 821 . 4+x 160 . 7§ 5 314 . 0 2 0 . 75 5 995 . 3+x 173 . 7§# 5 3 3 4 . 9@ 2 0 . 6 1@ 9 1174 . 7+x 179 . 3§ 5 353 . 4 2 0 . 90 5 1369 . 8+x 3 7 4 . 5@ 2 196 . 9§ 5 0 . 7 3@ 1 8 1566 . 6+x 391 . 9 2 0 . 96 5 1 . 0 0@ 1 2 1995 . 6+x 4 1 3 . 1@ 2 212 . 3§ 5 1 . 00 5 1782 . 9+x Comments This γ is a member of an unresolved doublet (the other member is 212.9 keV, from level 1783.9+y). 2234 . 0+x 429 . 0 2 451 . 1# 2 2460 . 1+x 226 . 4§ 5 464 . 4 2 0 . 98 3 2722 . 3+x 4 8 8 . 3@ 2 0 . 9 6@ 1 8 2957 . 5+x 497 . 4 2 1 . 00 3 3247 . 2+x 5 2 4 . 9@ 2 0 . 9 8@ 2 0 3485 . 7+x 528 . 2 2 1 . 11 10 3807 . 1+x 5 5 9 . 9@ 2 1 . 0 8@ 1 0 0 . 94 14 4044 . 2+x 558 . 5 2 4402 . 0+x 594 . 9# 2 4634 . 2+x 590 . 0 2 0 . 73 20 Continued on next page (footnotes at end of table) 141 19 3 H g 113 – 3 6 80 19 3 H g 113 – 3 6 80 NUCLEAR DATA SHEETS (HI,xnγ): SD 1993Jo09,1994Jo10,1998Bu03 (continued) γ(193Hg) (continued) E(level) Eγ† Iγ‡ 5030 . 8+x 6 2 8 . 8@ 2 5256 . 8+x 622 . 6 2 6 6 1 . 7@ 2 0 . 5 2@ 1 2 655 . 7 2 6 9 4 . 1@ 2 0 . 40 16 0 . 5 6@ 1 5 5692 . 5+x 5912 . 5+x 6386 . 6+x 0 . 8 5@ 8 6601 . 0+x 688 . 5 2 0 . 18 10 7112 . 2+x 7 2 5 . 6@ 2 0 . 4 5@ 1 9 7322 . 3+x 721 . 3 2 0 . 39 10 7868 . 8+x 7 5 6 . 6@ 2 0 . 3 8@ 1 0 0 . 55 16 8075 . 5+x 753 . 2 2 8656 . 1+x 787 . 3# 2 8860 . 4+x 784 . 9 2 817 . 7# 3 9473 . 8+x 9677 . 0+x 816 . 6 3 10321 . 3+x 847 . 5# 4 10524 . 8+x 847 . 8 4 876 . 1# 5 11197 . 4+x 11405 . 7+x Comments 880 . 9 5 233 . 50+y 122 . 6§ 5 233 . 5 2 0 . 21 3 366 . 1+y 132 . 2§# 5 2 5 4 . 0@ 2 0 . 1 2@ 5 508 . 5+y 142 . 7§ 5 275 . 2 2 0 . 30 5 660 . 9+y 152 . 9§# 5 2 9 4 . 6@ 2 0 . 3 8@ 8 823 . 5+y 162 . 5§ 5 315 . 2 2 0 . 53 5 996 . 0+y 173 . 7§# 5 3 3 4 . 9@ 2 0 . 6 1@ 9 1178 . 3+y 182 . 6§ 5 1370 . 6+y 192 . 3§ 5 0 . 7 3@ 1 6 1572 . 1+y 3 7 4 . 5@ 2 201 . 9§ 5 393 . 8 2 0 . 95 5 1783 . 9+y 212 . 9§ 5 1 . 0 0@ 1 2 2004 . 2+y 4 1 3 . 1@ 2 220 . 5§ 5 432 . 1 2 1 . 02 8 2235 . 0+y 451 . 1# 2 2474 . 0+y 469 . 8 2 4 8 8 . 3@ 2 354 . 9 2 0 . 78 5 1993Fa07 suggested that this transition is also the lowest member of SD–1 band, but results of 1993Jo09 do not seem to confirm this placement. This γ is a member of an unresolved doublet (the other member is 212.3 keV, from level 1995.6+x). 2723 . 3+y 1 . 00 8 0 . 9 6@ 1 8 2980 . 2+y 506 . 2 2 1 . 00 14 3248 . 2+y 5 2 4 . 9@ 2 0 . 9 8@ 2 0 3521 . 7+y 541 . 5 2 0 . 82 32 3808 . 1+y 5 5 9 . 9@ 2 1 . 0 8@ 1 0 4098 . 5+y 576 . 8 2 0 . 63 24 4403 . 0+y 594 . 9# 2 4709 . 8+y 611 . 3 2 0 . 43 28 5031 . 8+y 6 2 8 . 8@ 2 0 . 8 5@ 8 5354 . 1+y 644 . 3 2 6 6 1 . 7@ 2 0 . 5 2@ 1 2 677 . 8 2 6 9 4 . 1@ 2 0 . 5 6@ 1 5 709 . 9 2 7 2 5 . 6@ 2 0 . 4 5@ 1 9 742 . 2 2 7 5 6 . 6@ 2 0 . 3 8@ 1 0 5693 . 5+y 6031 . 9+y 6387 . 6+y 6741 . 8+y 7113 . 2+y 7484 . 0+y 7869 . 8+y 8255 . 2+y 8657 . 1+y 771 . 2 3 787 . 3# 2 Continued on next page (footnotes at end of table) 142 19 3 H g 113 – 3 7 80 19 3 H g 113 – 3 7 80 NUCLEAR DATA SHEETS (HI,xnγ): SD 1993Jo09,1994Jo10,1998Bu03 (continued) γ(193Hg) (continued) Eγ† E(level) 9057 . 4+y 9474 . 8+y 9889 . 5+y 832 . 1 5 847 . 5# 4 10750 . 0+y 860 . 5 5 876 . 1# 5 291 . 00+z 291 . 0 2 0 . 17 3 619 . 8+z 328 . 8 2 0 . 72 4 986 . 4+z 366 . 6 2 0 . 87 5 1391 . 4+z 405 . 0 2 0 . 98 7 1835 . 6+z 444 . 2 2 1 . 00 7 2319 . 9+z 484 . 3 2 1 . 00 5 2845 . 8+z 525 . 9 2 0 . 98 6 3412 . 5+z 566 . 7 2 0 . 98 8 4017 . 5+z 605 . 0 2 4658 . 0+z 640 . 5 2 0 . 82 7 5332 . 5+z 674 . 5 2 0 . 80 7 6040 . 0+z 707 . 5 2 0 . 72 7 6779 . 3+z 739 . 3 2 0 . 61 7 7549 . 0+z 769 . 7 4 0 . 46 4 8350 . 3+z 801 . 3 5 0 . 36 3 9181 . 6+z 10042 . 6+z ? 2 4 0 . 5 1+u Comments 802 . 2 4 817 . 7# 3 10322 . 3+y 11198 . 4+y Iγ‡ 831 . 3 5 0 . 21 4 8 6 1& 0 . 15 3 240 . 5 2 0 . 58 5 5 2 2 . 4+u 281 . 9 2 0 . 80 5 8 4 5 . 9+u 323 . 5 2 0 . 90 5 1 2 1 1 . 3+u 365 . 4 2 1 . 00 5 1 6 1 7 . 8+u 406 . 5 2 1 . 00 5 2 0 6 5 . 3+u 447 . 5 2 0 . 98 5 2 5 5 3 . 4+u 488 . 1 2 0 . 95 5 3 0 8 1 . 4+u 527 . 9 2 1 . 05 6 3 6 4 8 . 6+u 567 . 2 2 1 . 00 6 4 2 5 4 . 9+u 606 . 3 2 4 8 9 9 . 4+u 644 . 5 2 0 . 90 10 5 5 8 1 . 3+u 681 . 9 2 0 . 70 6 6 2 9 9 . 9+u 718 . 6 2 0 . 60 6 7 0 5 4 . 4+u 754 . 5 2 7 8 4 4 . 2+u 789 . 8 2 0 . 42 5 8 6 6 8 . 5+u 824 . 3 3 0 . 26 5 9 5 2 6 . 4+u 857 . 9 5 0 . 24 5 Eγ: estimated (1998Ar07) from intensity plot (fig.1 in 1994Jo10). † From 1994Jo10, unless otherwise noted. ‡ Relative intensity within each band, read off intensity plots given by 1992ShZR for SD–1 to SD–4 and by 1994Jo10 for SD–5 and § From 1993Jo09. SD–6. # Multiply placed. @ Multiply placed; undivided intensity given. & Placement of transition in the level scheme is uncertain. 143 19 3 T l 112 – 1 81 19 3 T l 112 – 1 81 NUCLEAR DATA SHEETS Adopted Levels, Gammas Q(β–)=–5.12×103 12; S(n)=9520 120; S(p)=2600 110; Q(α)=3840 110 193Tl 2003Au03. Levels The level scheme, the bands, and the band labeling are those proposed by 1992Re08. The level scheme has been constructed with the help of coincidence relationships, energy sums and intensity ratios, and γ directional correlation (DCO) ratios. For a discussion of the structure of levels and bands, see 1992Re08. Cross Reference (XREF) Flags A 193Tl B 193Pb ε Decay (5.8 min) C 197Bi α Decay (5.04 min) IT Decay (2.11 min) D (HI,xnγ) E (HI,xnγ): SD E(level)† 0.0 Jπ‡ 1/2(+) XREF ABCD Comments T1/2 21 . 6 mi n 8 %ε+%β+=100; µ=+1.5912 22 (1989Ra17,1987Bo44). Limit for possible α decay: <2×10–4% (1963Ka17). 1961Fo06 assign a 5800–keV α group to either 193Tl or 194Tl. µ: from collinear fast atom beam laser spectroscopy. Jπ: J from atomic beam (1976Ek03); parity from shell model, µ. (3s1/2 level is the only J=1/2 level available for Z=81). T1/2: weighted average of 22.6 min 10 (1961An03) and 21.0 min 8 (1974Va23). Other values: 30 min 3 (1960Ch05), 25 min 3 (1963Di10). Isotope shift: ∆<r2> =–0.465 55 fm2, relative to 205Tl (1989MeZZ). RMS charge radius: 5.4302 58 fm (2004An14). 365 . 2 3/2(+) AB D 365 . 2+x# ( 9 / 2– ) AB D Jπ: M1+E2 γ to 1/2+. 2 . 11 mi n 15 %IT≤75; %ε+%β+≥25; µ=+3.948 4; Q=–2.20 2 eb. µ,Q: from 1989Ra17,1987Bo44, collinear fast atom beam laser spectroscopy. E(level): x<13 from IT decay. Jπ: Long half–life indicates high–spin state. From shell model and measured µ the g9/2 level is the only available level for Z=81 (one proton–hole nucleus). µ also agrees with near–prolate nucleus described by 9/2[505] with β(2)=0.15, β(4)=–0.02 and γ=–0.55° (1992Re08). Systematics of 191Tl, 195Tl, 197Tl, 199Tl. T1/2: from 1963Di10. %IT: deduced from relative I(γ+ce) values for transitions in 193Tl Isotope shift: ∆<r2> =–0.395 46 fm2, relative to 757 . 51+x# 24 1081 . 10+x# 24 ( 11 / 2– ) ( 13 / 2– ) 1423 . 7+x 193Hg (1976GoZP). 205Tl (1989MeZZ). B D Jπ: M1+E2 γ to 9/2– level; band structure. B D Jπ: M1+E2 γ to 11/2– level, E2 γ to 9/2– level; band structure. B 1493 . 4+x 3 ( 13 / 2+ ) B D Jπ: E1 γ to 11/2–. 1512 . 1+x# 3 1833 . 2+x# 3 ( 15 / 2– ) B D Jπ: M1(+E2) γ to 13/2– level, E2 γ to 11/2– level; band structure. ( 17 / 2– ) 1871 . 0+x D Jπ: E2 γ to 13/2– level, D γ to 15/2– level; band structure. B 1899 . 6+x 4 ( 15 / 2+ ) B D 1928 . 4+x 4 ( 17 / 2– ) D 1960 . 0+x 5 ( 15 / 2+ ) B D 2006 . 4+xb 4 ( 15 / 2+ ) D Jπ: M1 γ to (13/2)+ level. Jπ: D γ to 15/2– level, (Q) γ to 13/2– level. Jπ: M1 γ to (13/2)+ level. 2056 . 4+x 6 ( 15 / 2+ ) D 2131 . 7+xb 5 2303 . 2+x# 4 ( 17 / 2+ ) D Jπ: D γ to (15/2+) level. ( 19 / 2– ) D Jπ: (E2) γ to 15/2– level, D γ to 17/2– level; band structure. ( 19 / 2+ ) D ( 19 / 2– ) D ( 19 / 2+ ) D Jπ: D γ to (17/2+) level. ( 19 / 2+ ) D Jπ: (M1+E2) γ to (17/2+) level. 2351 . 9+x 6 2392 . 0+xa 5 2400 . 8+x 6 2448 . 2+xb 5 Jπ: D+Q γ to (17/2–) level. 2505 . 2+x § 4 ( 21 / 2– ) D Jπ: (Q) γ to 17/2– level; band structure. 2574 . 9+x# 4 ( 21 / 2– ) D Jπ: (E2) γ to 17/2– level, γ to (19/2–) level; band structure. 2609 . 4+x 5 ( 19 / 2+ ) D Jπ: γ to (19/2+) level, (Q) γ to (17/2+) level. 2611 . 2+x 7 ( 21 / 2+ ) D Jπ: D γ to (19/2+) level. 2621 . 0+x 7 ( 21 / 2+ ) D 2764 . 8+xb 5 2 7 7 4 . 3 + x@ 5 ( 21 / 2+ ) D Jπ: (E2) γ to (17/2+) level, (M1+E2) γ to (19/2+) level. ( 23 / 2– ) D Jπ: D γ to (21/2–) level; band structure. 2858 . 8+x 7 ( 23 / 2+ ) D Jπ: D γ to (21/2+) level. Continued on next page (footnotes at end of table) 144 and 19 3 T l 112 – 2 81 19 3 T l 112 – 2 81 NUCLEAR DATA SHEETS Adopted Levels, Gammas (continued) 193Tl E(level)† Jπ‡ XREF Levels (continued) Comments T1/2 2888 . 2+xa 5 ( 21 / 2 ) D 2982 . 3+x § 5 3 0 0 5 . 5 + x& 6 3143 . 6+xa 5 ( 25 / 2– ) D Jπ: (E2) γ to (21/2–) level, D γ to (23/2–) level; band structure. ( 25 / 2– ) D Jπ: (M1+E2) γ to (23/2–) level; band structure. ( 23 / 2 ) D Jπ: D γ to (21/2) level, ∆J=0 D or ∆J=2 Q γ to (23/2–) level; band 3144 . 5+xb 6 ( 23 / 2+ ) D Jπ: (E2) γ to (19/2+) level, D γ to (21/2+) level. structure. 3184 . 5+x 8 ( 25 / 2+ ) D Jπ: D γ to (23/2+) level. 3342 . 6+xa 5 3 3 7 4 . 6 + x@ 5 3483 . 9+xb 6 ( 25 / 2 ) D Jπ: D γ to (23/2) level, γ to (23/2–) level. ( 27 / 2– ) D Jπ: (E2) γ to (23/2–) level, D γ to (25/2–) level; band structure. ( 25 / 2+ ) D Jπ: (E2) γ to (21/2+) level, D γ to (23/2+) level. 3521 . 8+x 8 3 5 4 8 . 2 + x& 6 ( 27 / 2+ ) D Jπ: (E2) γ to (23/2+) level, D γ to (25/2+) level. ( 29 / 2– ) D Jπ: (E2) γ to (25/2–) level; band structure. 3667 . 1+x § 5 3711 . 4+xa 6 3744 . 0+xb 6 ( 29 / 2– ) D Jπ: (E2) γ to (25/2–) level, D γ to (27/2–) level; band structure. ( 27 / 2 ) D Jπ: D γ to (25/2) level; band structure. ( 27 / 2+ ) D Jπ: (E2) γ to (23/2+) level, D γ to (25/2+) level. 3905 . 3+xb 7 3964 . 2+xa 6 ( 29 / 2+ ) D ( 29 / 2 ) D Jπ: (E2) γ to (25/2) level, D γ to (27/2) level; band structure. ( 31 / 2+ ) D Jπ: D γ to (29/2+) level. 4054 . 1+xb 8 4 1 2 3 . 5 + x@ 5 4 1 7 9 . 1 + x& 7 ( 31 / 2– ) D Jπ: (E2) γ to (27/2–) level, D γ to (29/2–) level; band structure. ( 33 / 2– ) D Jπ: (E2) γ to (29/2–) level; band structure. 4260 . 2+xb 8 ( 33 / 2+ ) D Jπ: D γ to (31/2+) level. 4320 . 0+x ? a 7 ( 31 / 2 ) D Jπ: D γ to (29/2) level. 4324 . 3+x 7 ( 33 / 2– ) D 4463 . 1+x § 6 4539 . 2+xb 8 4858 . 9+xb 8 ( 33 / 2– ) D Jπ: (E2) γ to (29/2–) level, D γ to (31/2–) level; band structure. ( 35 / 2+ ) D Jπ: (E2) γ to (31/2+) level, D γ to (33/2+) level. 4 9 4 1 . 4 + x@ 6 5 0 1 6 . 0 + x& 8 5086 . 4+x ? 9 5142+x c 3 ( 37 / 2+ ) D Jπ: (E2) γ to (33/2+) level, D γ to (35/2+) level. ( 35 / 2– ) D Jπ: D γ to (33/2–) level, γ to (31/2–) level; band structure. ( 37 / 2– ) D Jπ: (E2) γ to (33/2–) level; band structure. D ( 17 / 2+ ) >3 p s E T1/2: from (HI,xnγ). Jπ: from 1998Bo20. Also from least–squares fits to Eγ's using empirical expansions relating second moment of inertia and angular frequency. 5224 . 5+xb 9 5240+xd 3 5286 . 8+x § 6 5348+x c 3 5467+xd 3 5596+x c 3 5670 . 6+x ?@ 7 5735+xd 3 5883+x c ( 41 / 2+ ) D ( 19 / 2+ ) ( 37 / 2– ) E ( 21 / 2+ ) E ( 23 / 2+ ) E ( 25 / 2+ ) ( 39 / 2– ) ( 27 / 2+ ) Jπ: D γ to (37/2–) level, γ to (35/2–) level; possible band structure. E 3 ( 29 / 2+ ) E ( 31 / 2+ ) E 6088 . 3+x ? § 7 ( 41 / 2– ) 6211+x c 3 6391+xd 3 6577+x c 3 ( 33 / 2+ ) E ( 35 / 2+ ) E 7425+x c Jπ: D γ to (39/2–) level, γ to (37/2–) level; possible band structure. D ( 37 / 2+ ) E ( 39 / 2+ ) E ( 41 / 2+ ) E ( 43 / 2+ ) E 3 ( 45 / 2+ ) E 7667+xd 3 7905+x c 3 8169+xd 3 ( 47 / 2+ ) E 8421+x c ( 49 / 2+ ) E ( 51 / 2+ ) E 3 ( 53 / 2+ ) E 8706+xd 3 8972+x c 3 9279+xd 3 ( 55 / 2+ ) E 9559+x c ( 57 / 2+ ) E ( 59 / 2+ ) E 3 ( 61 / 2+ ) E 9888+xd 3 10179+x c 3 10532+xd 3 ( 63 / 2+ ) E 10833+x c Jπ: calculated J=21/2 (1992Wu01,1993Hu06,1994Zh40). E D 6043+xd 3 6778+xd 3 6982+x c 3 7204+xd 3 Jπ: calculated J=19/2 (1992Wu01,1993Hu06,1994Zh40). Jπ: D γ to (35/2–) level, γ to (33/2–) level; band structure. D ( 65 / 2+ ) E ( 67 / 2+ ) E 3 ( 69 / 2+ ) E 11211+xd 3 ( 71 / 2+ ) E Continued on next page (footnotes at end of table) 145 19 3 T l 112 – 3 81 19 3 T l 112 – 3 81 NUCLEAR DATA SHEETS Adopted Levels, Gammas (continued) 193Tl Jπ‡ E(level)† Levels (continued) Jπ‡ E(level)† XREF 3 ( 73 / 2+ ) E 4304 . 9+y e 10 J+22 E 11924+xd 3 12238+x c 3 12671+xd 3 ( 75 / 2+ ) E J+24 E ( 77 / 2+ ) E J+26 E ( 79 / 2+ ) E 4923 . 3+y e 11 5576 . 4+y e 11 6263 . 1+y e 12 J+28 E 11519+x c 3 ( 81 / 2+ ) E 6977 . 1+y e 14 J+30 E 13453+xd 3 13772+x c 4 ye ( 83 / 2+ ) E J+32 E ( 85 / 2+ ) E 7712 . 1+y e 17 zf J1≈ ( 23 / 2 ) E J≈ ( 15 / 2 ) E 3 J1+2 E J+2 E 5 J1+4 E J+4 E 6 J1+6 E J+6 E 6 J1+8 E J+8 E 7 J1+10 E J+10 E 8 J1+12 E J+12 E 8 J1+14 E J+14 E 9 J1+16 E 12989+x c 187 . 9+y e 3 418 . 6+y e 5 691 . 4+y e 6 1005 . 7+y e 6 1360 . 7+y e 7 1755 . 8+y e 8 875 . 5+z f 1248 . 2+z f 1660 . 1+z f 2110 . 6+z f 11 J1+24 E 13 E 7033 . 4+z f ug J1+26 16 J1+28 E E 2 7 1 . 5+ug 5 5 8 4 . 8+ug 7 9 3 8 . 9+ug 7 J2≈ ( 21 / 2 ) J2+2 E J2+4 E E 1 3 3 2 . 2+ug 9 1 7 6 4 . 5+ug 9 2 2 3 4 . 4+ug 1 0 J2+6 J2+8 E J2+10 E J2+12 E J2+14 E J2+16 E J2+18 E J2+20 E J2+22 E J2+24 E J2+26 E 2 7 4 1 . 7+ug 1 0 3 2 8 5 . 4+ug 1 0 3 8 6 4 . 8+ug 1 1 9 J1+18 E E 3685 . 6+z f 4282 . 5+z f 10 E 6 5 3 1 . 8+ug 1 5 E 4914 . 3+z f J1+20 10 J1+22 E J+16 E J+18 3721 . 5+y e 10 J+20 2598 . 7+z f 3123 . 9+z f XREF 5580 . 7+z f 6285 . 4+z f 4 4 7 9 . 3+ug 1 2 5 1 2 8 . 8+ug 1 3 5 8 1 3 . 0+ug 1 3 2190 . 3+y e 8 2663 . 4+y e 9 3174 . 0+y e 9 † 250 . 8+z f 542 . 8+z f Jπ‡ E(level)† XREF From least squares fit to Eγ. For the levels built on the 365.2+x level, the uncertainties given for E(level) are relative uncertainties within that part of the level scheme; they do not include the uncertainty in Eγ=365.2 (not known) nor the uncertainty in the unknown x. Similarly, the uncertainties on the E(level) in the SD–bands are the relative uncertainties within the band. ‡ From (HI,xnγ) based on combined analysis of γ–ray multipolarities, coincidence data, rotational structure, and systematics of § (A): Band 1. odd–mass Tl nuclei in (HI,xnγ), except where noted. # (B): Band @ (C): Band & (D): Band a (E): Band 2 9/2(505). 3. 4. 5. b (F): Single–particle–like structure formed by cascading γ's, non–collective in nature. c (G): SD–1 band α=+1/2 (1990Fe07,1996Bo02,1998Bo20,1999Kr19) Percent population is ≈0.5 of total yield for 193Tl (1990Fe07). Q(intrinsic)=18.3 10 (1999Kr19). From competing M1 (interband) and E2 (intraband) transitions, gK=1.46 17 (1996Bo02) and gseff/gsfree=0.7 2 (1996Bo02). d (H): SD–2 band α=–1/2 (1990Fe07,1996Bo02,1998Bo20,1999Kr19) percent population is ≈0.5 of total yield for 193Tl (1990Fe07). Q(intrinsic)=17.4 10 (1999Kr19). The two SD bands are interpreted as signature partners influenced by i13/2 proton intruder e orbital. From competing M1 (interband) and E2 (intraband) transitions, gK=1.46 17 (1996Bo02) and gseff/gsfree=0.7 2 (1996Bo02). (I): SD–3 band (1998Bo32) Population intensity=60% of SD–2 band. Interaction observed between SD–3 and SD–4 bands, and the identical energies (within 2 keV) of transitions in SD–3 and SD–5 bands, indicate involvement of 1/2[411], α=±1/2 and 1/2[651], α=–1/2 proton orbitals. At high frequencies SD–3 is interpreted to be due to 1/2[651], α=–1/2, while at low frequencies, it is expected to be due to 1/2[411] α=–1/2. f (J): SD–4 band (1998Bo32) Population intensity=33% of SD–2 band. Interaction is observed between SD–3 and SD–4 bands. At high frequencies SD–4 is interpreted to be due to 1/2[411], α=–1/2, while at low frequencies it is interpreted as 1/2[651], α=–1/2. g (K): SD–5 band (1998Bo32) Population intensity=16% of SD–2 band. Identical energies (within 2 keV) of transitions in SD–3 and SD–5 bands indicate that these bands may be signature partners. SD–5 band is interpreted as 1/2[411], α=+1/2. γ(193Tl) E(level) 365 . 2 Iγ‡ Eγ† 365 . 2 100 Mult.§ M1 +E 2 δ§ α 1 . 7 +5–4 0 . 109 20 Comments Eγ: unweighted average of measurements in 193Tl IT decay (365.0 keV, 1976Ha25) and (HI,xnγ) (365.3 keV, 1974Ne16). Mult.,δ: from 365 . 2+x (x) 193Tl Eγ: E<13 keV, see [ E3 ] IT decay (2.11 min). 193Tl IT decay (2.11 min). B(E3)(W.u.) varies from 0.005 for Eγ=13 to 0.14 for Eγ=2.2. 757 . 51+x 392 . 2a 3 100a M1 +E 2 –0 . 59 14 0 . 160 13 δ: Other values: –0.14<δ<–0.03 (1999Fu05), from e––γ and γγ angular correlations. 1081 . 10+x 323 . 8 3 1423 . 7+x 6 6 6 . 2@ 716 . 0 3 83 . 1 11 100 . 0 5 M1 +E 2 0.6 4 0 . 26 6 E2 0 . 0126 Continued on next page (footnotes at end of table) 146 19 3 T l 112 – 4 81 19 3 T l 112 – 4 81 NUCLEAR DATA SHEETS Adopted Levels, Gammas (continued) γ( 1 9 3 T l ) ( c o n t i n u e d ) E(level) 1493 . 4+x 1512 . 1+x 412 . 6 3 1833 . 2+x 100 . 0 5 430 . 9 3 50 11 320 . 9 3 752 . 4 3 1871 . 0+x 1 1 1 3 . 5@ 100 5 56 . 0 13 100 . 0 13 1899 . 6+x 406 . 2 3 416 . 4 3 93 90 847 . 1 3 100 79 1960 . 0+x 466 . 6 3 100 2006 . 4+x ( 46 . 4 ) 100 106 . 7 3 56 23 494 . 3 3 100 28 96 . 4 3 E1 M1 ( +E 2 ) 0 . 154 E2 0 . 0113 D E2 M1 0 . 180 D (Q) M1 0 . 125 100 2131 . 7+x ( 75 . 3 ) 2303 . 2+x 470 . 0 3 100 11 100b ( E2 ) 2351 . 9+x 790 . 9 3 220 . 2b 3 2392 . 0+x 463 . 6 3 100 D+Q 2400 . 8+x 269 . 1 3 316 . 4a 3 100 D 100 . 0a 17 ( M1 +E 2 ) 125 . 3 3 2448 . 2+x Comments 100 1928 . 4+x 2056 . 4+x α 15 5 735 . 5 3 754 . 7 3 Mult.§ Iγ‡ Eγ† D 62 23 D ( 391 . 5 ) 2505 . 2+x 201 . 9 3 24 12 672 . 1 3 100 . 0 8 2574 . 9+x 271 . 6 3 49 27 741 . 7 3 100 36 2609 . 4+x 161 . 3a 3 >35a 478 . 1 3 100 30 (Q) 2611 . 2+x 259 . 3 3 100 D 2621 . 0+x ( 172 . 8 ) 220 . 2b 3 2764 . 8+x 155 . 8 3 316 . 4a 3 632 . 8 3 2774 . 3+x ( E2 ) 100b 21 12 100a 5 88 5 D ( M1 +E 2 ) ( E2 ) 100 D 237 . 8 3 100 D 2888 . 2+x 383 . 3 3 100 2982 . 3+x 207 . 9 3 100 7 3005 . 5+x 231 . 2 3 100 ( M1 +E 2 ) 3143 . 6+x 255 . 6 3 368 . 9a 3 100 89 D <86a 3144 . 5+x 379 . 6 3 100 18 3184 . 5+x 325 . 7 3 3342 . 6+x 3374 . 6+x 2858 . 8+x 268 . 9 3 (Q) ( 94 . 2 ) 477 . 1 3 696 . 2 3 97 11 70 13 Mult.: γ is ∆J=2 Q or ∆J=0 D. D ( E2 ) Mult.: γ is ∆J=0 D or ∆J=2 Q. D ( E2 ) 100 D 198 . 9 3 100 57 D 568 . 3 3 392 . 2a 3 <30 >52a 600 . 4 3 100 27 3483 . 9+x 339 . 5 3 96 17 719 . 3 3 100 10 ( E2 ) 3521 . 8+x 337 . 2 3 100 54 D 3548 . 2+x 542 . 7 3 3667 . 1+x 292 . 5 3 3711 . 4+x 684 . 7 3 368 . 9a 3 100 . 0 20 100a D 3744 . 0+x 260 . 4 3 100 12 D 77 17 100a ( E2 ) 3905 . 3+x 599 . 3 3 161 . 3a 3 663 . 0 3 62 58 100 73 15 D ( E2 ) D ( E2 ) ( E2 ) D ( E2 ) Continued on next page (footnotes at end of table) 147 19 3 T l 112 – 5 81 19 3 T l 112 – 5 81 NUCLEAR DATA SHEETS Adopted Levels, Gammas (continued) γ(193Tl) (continued) E(level) 3964 . 2+x Mult.§ Iγ‡ Eγ† 252 . 9 3 93 86 621 . 6 3 100 62 ( E2 ) 4054 . 1+x 148 . 8 3 100 D 4123 . 5+x 456 . 5 3 100 19 D 749 . 0 3 >27 ( E2 ) 630 . 9 3 100 ( E2 ) 4179 . 1+x 4260 . 2+x 205 . 9 3 4320 . 0+x ? 355 . 8c 3 D 100 D 100 D Mult.: ∆J=2, Q or ∆J=0, D. 4324 . 3+x 776 . 1 3 4463 . 1+x 339 . 7 3 795 . 9 3 100 13 ( E2 ) 4539 . 2+x 279 . 0 3 100 13 D 485 . 2 3 27 22 4858 . 9+x 319 . 9 3 100 67 598 . 5 3 >28 ( E2 ) 4941 . 4+x 478 . 3 3 100 60 D 817 . 8 3 100 80 5016 . 0+x 836 . 9 3 547 . 2c 3 100 5086 . 4+x ? 5142+x 5224 . 5+x 5240+x 5286 . 8+x 5348+x 100 59 22 100 Comments D ( E2 ) D ( E2 ) 3134 4 365 . 6 3 100 3113 5 345 . 5 3 100 50 823 . 6 3 100 83 D 108 . 0 3 206 . 6 3 3046 6 5467+x 118 . 9 3 5596+x 128 . 3 3 5670 . 6+x ? 383 . 8c 728 . 9c 0 . 98# 10 227 . 3 3 0 . 39# 6 247 . 3 3 5735+x 3 100 27 3 39 16 139 . 2 3 ( M1 ) & Mult.: α(exp)(139γ+148γ)=2.6 8 (1996Bo02); theory: α(K)(M1)=2.84. ( M1 ) & Mult.: α(exp)(139γ+148γ)=2.6 8 and α(exp)(148γ+160γ)=3.0 8 (1996Bo02); 1 . 13# 23 267 . 9 3 5883+x D 148 . 2 3 theory: α(K)(M1)=2.38. 0 . 45# 5 287 . 7 3 ( M1 ) & 6043+x 160 . 1 3 6088 . 3+x ? 308 . 2 3 417 . 8c 3 801 . 5c 6211+x 80 60 D 100 80 167 . 4 3 327 . 4 3 6391+x 3 Mult.: α(exp)(148γ+160γ)=3.0 8 (1996Bo02); theory: α(K)(M1)=1.91. 0 . 86# 9 ( M1 ) & Mult.: α(exp)(167γ+181γ)=2.2 5 (1996Bo02): theory: α(K)(M1)=1.69. ( M1 ) & Mult.: α(exp)(167γ+181γ)=2.2 5 and α(exp)(181γ+186γ)=1.8 7 (1996Bo02); 0 . 53# 5 180 . 6 3 theory: α(K)(M1)=1.36. 348 . 0 3 6577+x 1 . 01# 11 ( M1 ) & 185 . 8 3 Mult.: α(exp)(181γ+186γ)=1.8 7 and α(exp)(186γ+201γ)=1.4 6 (1996Bo02); theory: α(K)(M1)=1.25. 366 . 4 3 6778+x 1 . 15# 23 ( M1 ) & 201 . 4 3 387 . 0 3 6982+x 203 . 5 3 7204+x 221 . 5 3 7425+x 442 . 9 3 7667+x 463 . 7 3 1 . 60# 16 7905+x 479 . 7 3 0 . 72# 17 8169+x 501 . 1 3 405 . 3 4 425 . 4 3 Mult.: α(exp)(186γ+201γ)=1.4 6 (1996Bo02); theory: α(K)(M1)=1.00. 1 . 4# 4 0 . 93# 19 1 . 22# 12 8421+x 516 . 1 3 1 . 11# 17 8706+x 537 . 5 3 8972+x 551 . 6 3 1 . 30# 14 1 . 00# 14 Continued on next page (footnotes at end of table) 148 19 3 T l 112 – 6 81 NUCLEAR DATA SHEETS Adopted Levels, Gammas (continued) γ( 1 9 3 T l ) ( c o n t i n u e d ) E(level) Eγ† 9279+x 573 . 4 3 9559+x 586 . 5 3 Iγ‡ E(level) 1 . 00# 10 0 . 84# 17 0 . 96# 10 7712 . 1+y 0 . 81# 13 1 . 09# 22 0 . 42# 11 Eγ† 735 . 0 10 250 . 8+z 250 . 8 3 542 . 8+z 292 . 0 3 875 . 5+z 332 . 7 3 1248 . 2+z 372 . 7 3 1660 . 1+z 411 . 9 3 2110 . 6+z 450 . 5 3 2598 . 7+z 488 . 1 3 9888+x 608 . 8 3 10179+x 620 . 3 3 10532+x 643 . 8 3 10833+x 653 . 6 4 11211+x 678 . 7 4 11519+x 686 . 1 4 11924+x 713 . 2 5 3123 . 9+z 525 . 2 3 12238+x 718 . 7 5 3685 . 6+z 561 . 7 3 12671+x 747 . 5 5 4282 . 5+z 596 . 9 3 12989+x 751 . 3 5 4914 . 3+z 631 . 8 3 13453+x 781 . 9 5 5580 . 7+z 666 . 4 3 13772+x 783 . 4 5 6285 . 4+z 704 . 7 7 187 . 9+y 187 . 9 3 7033 . 4+z 748 . 0 10 418 . 6+y 230 . 7 3 2 7 1 . 5+u 271 . 5 5 691 . 4+y 272 . 8 3 5 8 4 . 8+u 313 . 4 4 1005 . 7+y 314 . 3 3 9 3 8 . 9+u 354 . 1 3 1360 . 7+y 355 . 0 3 1 3 3 2 . 2+u 393 . 3 4 1755 . 8+y 395 . 1 3 1 7 6 4 . 5+u 432 . 3 3 2190 . 3+y 434 . 5 3 2 2 3 4 . 4+u 469 . 9 3 2663 . 4+y 473 . 1 3 2 7 4 1 . 7+u 507 . 3 3 3174 . 0+y 510 . 6 3 3 2 8 5 . 4+u 543 . 7 3 3721 . 5+y 547 . 5 3 3 8 6 4 . 8+u 579 . 4 4 4304 . 9+y 583 . 4 3 4 4 7 9 . 3+u 614 . 5 4 4923 . 3+y 618 . 4 3 5 1 2 8 . 8+u 649 . 5 4 5576 . 4+y 653 . 1 3 5 8 1 3 . 0+u 684 . 2 4 6263 . 1+y 686 . 7 4 6 5 3 1 . 8+u 718 . 8 7 6977 . 1+y 714 . 0 7 0 . 75# 14 0 . 46# 11 † From (HI,xnγ) for level scheme based on the 365.2+x level; from (HI,xnγ):SD in superdeformed bands. ‡ From (HI,xnγ). Relative photon branching from each level. § From (HI,xnγ), unless otherwise noted. # Relative intensity within the SD band. @ From 193Pb decay (5.8 min). & From (HI,xnγ):SD. a Multiply placed; intensity suitably divided. b Multiply placed; undivided intensity given. c Placement of transition in the level scheme is uncertain. 149 19 3 T l 112 – 6 81 19 3 T l 112 – 7 81 19 3 T l 112 – 7 81 NUCLEAR DATA SHEETS Adopted Levels, Gammas (continued) (D) Band 4 (C) Band 3 (B) Band 2 9/2(505) (A) Band 1 6088.3+x (41/2–) 5670.6+x (39/2–) (C)(39/2–) (A)(37/2–) 5286.8+x (37/2–) (35/2–) (C)(35/2–) (31/2–) (C)(31/2–) 2505.2+x (B)(17/2–) 4179.1+x (29/2–) 3548.2+x (25/2–) 3005.5+x 2774.3+x (23/2–) (B)(19/2–) (33/2–) (A)(25/2–) 2982.3+x (C)(23/2–) (21/2–) 4123.5+x 3374.6+x (27/2–) (C)(27/2–) (25/2–) 5016.0+x (A)(29/2–) 3667.1+x (29/2–) (37/2–) (A)(33/2–) 4463.1+x (33/2–) 4941.4+x (21/2–) 2574.9+x (19/2–) 2303.2+x (17/2–) 1833.2+x (15/2–) 1512.1+x (C)(23/2–) (A)(21/2–) (13/2–) 1081.10+x (11/2–) 757.51+x (9/2–) 365.2+x 3/2(+) 19 3 Tl 81 112 (41/2+) 5224.5+x (37/2+) 4858.9+x (35/2+) 4539.2+x (33/2+) 4260.2+x (31/2+) 4054.1+x (29/2+) 3905.3+x (27/2+) 3744.0+x (25/2+) 3483.9+x 4320.0+x (23/2+) 3144.5+x (29/2) 3964.2+x (21/2+) 2764.8+x (27/2) 3711.4+x (31/2) (19/2+) (25/2) 3342.6+x (19/2+) 2448.2+x (23/2) 3143.6+x (17/2+) 2131.7+x (21/2) 2888.2+x (C)(23/2–) (17/2–) (15/2+) 2006.4+x (15/2+) (A)(21/2–) (19/2–) (G) SD–1 band α=+1/2 (F) Single–particle–like structure (E) Band 5 13772+x 12989+x (77/2+) 12238+x (73/2+) 11519+x (69/2+) 10833+x (65/2+) 10179+x (61/2+) 9559+x (57/2+) 8972+x (53/2+) 8421+x (49/2+) 7905+x (45/2+) 7425+x (41/2+) 6982+x (H)(39/2+) (37/2+) (33/2+) (29/2+) 19 3 Tl 81 112 150 5883+x (H)(27/2+) (25/2+) 5596+x (H)(23/2+) (21/2+) 5348+x (H)(19/2+) (F)(15/2+) (B)(15/2–) 6211+x (H)(31/2+) (B)(19/2–) (15/2+) 6577+x (H)(35/2+) (17/2+) (15/2+) 2392.0+x (85/2+) (81/2+) 5142+x 19 3 T l 112 – 8 81 19 3 T l 112 – 8 81 NUCLEAR DATA SHEETS Adopted Levels, Gammas (continued) (H) SD–2 band α=–1/2 (83/2+) 13453+x (79/2+) 12671+x (75/2+) 11924+x (71/2+) 11211+x (67/2+) 10532+x (63/2+) 9888+x (59/2+) 9279+x (55/2+) 8706+x (51/2+) 8169+x (47/2+) 7667+x (43/2+) 7204+x (G)(41/2+) (39/2+) (K) SD–5 band (J) SD–4 band (I) SD–3 band J+32 7712.1+y J+30 6977.1+y J1+28 7033.4+z J+28 6263.1+y J1+26 6285.4+z J+26 5576.4+y J1+24 5580.7+z J+24 4923.3+y J1+22 4914.3+z J+22 4304.9+y J1+20 4282.5+z J+20 3721.5+y J1+18 3685.6+z J+18 3174.0+y J1+16 3123.9+z J+16 2663.4+y J1+14 2598.7+z J+14 2190.3+y J1+12 2110.6+z J+12 1755.8+y J1+10 1660.1+z J1+8 6778+x J2+26 6531.8+u J2+24 5813.0+u J2+22 5128.8+u J2+20 4479.3+u J2+18 3864.8+u J2+16 3285.4+u J2+14 2741.7+u J2+12 2234.4+u J2+10 1764.5+u 1248.2+z J2+8 1332.2+u J1+6 875.5+z J2+6 938.9+u J1+4 542.8+z J2+4 584.8+u (G)(37/2+) (35/2+) 6391+x (G)(33/2+) (31/2+) 6043+x (G)(29/2+) (27/2+) 5735+x (G)(25/2+) (23/2+) 5467+x (G)(21/2+) (19/2+) (F)(17/2+) 5240+x J+10 1360.7+y J+8 1005.7+y J+6 691.4+y J+4 418.6+y J+2 187.9+y J1+2 250.8+z J2+2 271.5+u J≈(15/2) y J1≈(23/2) z J2≈(21/2) u 19 3 Tl 112 81 151 19 3 T l 112 – 9 81 19 3 T l 112 – 9 81 NUCLEAR DATA SHEETS 193Tl Parent 193Tl: IT Decay (2.11 min) 1963Di10,1976Ha25 E=365.0+x; Jπ=(9/2–); T1/2=2.11 min 15; %IT decay≤75.0. 1963Di10: sources from 185Re(12C,4n), E(12C)=59, 67 MeV; 181Ta(16O,4n), E(16O)=74, 79, 94 MeV. Natural targets. Measured E(ce), Ice (mag spect). 1976Ha25: from 193Pb (5.8 min) ε decay (193Pb produced by bombardment of natural tungsten by 16O, mass separation); measured Eγ, Iγ (Ge(Li)). Other: 1976GoZP. 193Tl E(level) Jπ† 0.0 1/2(+) 365 . 0 3/2(+) 365 . 0+x ( 9 / 2– ) Levels Comments T1/2 21 . 6 mi n 8 2 . 11 mi n 15 %IT≤75 (1976GoZP). T1/2: from 1963Di10. † From adopted levels. γ(193Tl) Eγ E(level) ( <13 ) Iγ‡ 365 . 0+x Mult. I(γ+ce)†‡ α δ [ E3 ] Comments Eγ: limit suggested by negligible L X ray 100 intensity (conversion of isomeric transition only in M–shell or higher) (1976Ha25); E<25 (1963Di10) L3(binding energy, Tl)=12.657. For the assumed multipolarity the theoretical conversion coefficient is α≥1.0E7. 365 . 0 365 . 0 90 . 2 16 M1 +E 2 1 . 7 +5–4 0 . 109 20 Eγ: from 1976Ha25. 100 Iγ: deduced from I(γ+ce) and α. Mult.,δ: from K/L=3.8 4 (1963Di10); other: L/M=2.7 (1963Di10); theory: L/M=4.2 2. † From intensity balance in the level scheme. ‡ For absolute intensity per 100 decays, multiply by ≤0.75. Decay Scheme Intensities: I(γ+ce) per 100 parent decays (9/2–) 3/2(+) <1 36 3 [E 5.0 3] M1 ≤7 +E 5.0 2 ≤7 5.0 %IT≤75 365.0+x 0.0 1/2(+) 19 3 Tl 81 112 152 2.11 min 365.0 21.6 min 19 3 T l 112 – 1 0 81 19 3 T l 112 – 1 0 81 NUCLEAR DATA SHEETS 193Pb Parent 193Pb: ε Decay (5.8 min) 1976Ha25 E=130 80; Jπ=(13/2+); T1/2=5.8 min 2; Q(g.s.)=5120 120; %ε+%β+ decay=100. 193Pb: E(ex),Jπ,T1/2 from 2003Au02. Q(β) from 2003Au03. Systematic trends for 13/2+ states suggest E(lev)≈165 keV. 1976Ha25: sources from bombardment of natural tungsten by 16O, mass separation; measured Eγ, Iγ (Ge(Li)), γγ coin. Other: 1974Ne16, 1961An03. 193Tl Levels The decay scheme shown is from 1976Ha25 and is based on γγ coincidences. The authors state that the results should be considered preliminary. The proposed level scheme agrees with the scheme obtained from (HI,xnγ). 1976Ha25 state that the intensity of the 365.0γ (100 on the Iγ scale) is that of the 5.8 min activity (193Pb 23/2+ state) and from that deduce that 70% of the ε+β+ decay goes directly to the 2.11 min, 365+x level. (they do not state whether this intensity is the measured intensity, or intensity corrected for transient equilibrium conditions). However, a 70% ε+β+ branch to the 365+x level would give log f1ut=7.6 (expected log f1ut≥8.5). This could be explained by: 1) an anomalous log f1ut value or 2) the ε+β+ transition is not 1U (either Jπ(193Pb (5.8 min)≠(13/2+) or Jπ(193Tl (2.11 min)≠9/2–). None of these explanations is really acceptable. Another possible explanation for such high Iγ(365) is that the 193Pb 3/2– level has T1/2≈5.8 min (this activity has not been seen) and that the source contained both activities. With similar T1/2 it would be difficult to distinguish between the two decays. Jπ† E(level) 0.0 1/2(+) 365 . 0 3/2(+) 365 . 0+x ‡ ( 9 / 2– ) Comments T1/2 21 . 6 mi n 8 %IT≤75, from 193Tl IT decay (2.11 min) (1976GoZP). 2 . 11 mi n 15 T1/2: from 757 . 2+x ‡ 1081 . 5+x ‡ 193Tl IT decay (2.11 min) (1963Di10). ( 11 / 2– ) ( 13 / 2– ) Level not confirmed by (HI,xnγ) data. 1163 . 7+x 1423 . 4+x 1493 . 2+x ( 13 / 2+ ) 1513 . 0+x ‡ ( 15 / 2– ) 1870 . 7+x 1960 . 0+x ( 15 / 2+ ) † From adopted levels. ‡ (A): 9/2[505] Band. β + ,ε D a t a All log ft information was calculated with Q(ε)=5120 120, E(365+x, Eε E(level) Iβ+† Iε† Log ft 1960 . 0+x 0 . 26 1 . 74 6.8 ( 3380–x 150 ) 1870 . 7+x 0 . 29 1 . 71 6.8 2 ( 3740–x 150 ) 1513 . 0+x 2.2 8.8 6.2 11 ( 3760–x 150 ) 1493 . 2+x 3.1 11 . 9 6.1 15 ( 3830–x 150 ) 1423 . 4+x 1.5 5.5 6.5 7 ( 4090–x 150 ) 1163 . 7+x 2.4 6.6 6.5 9 ( 4170–x 150 ) 1081 . 5+x 8.5 21 . 5 6.0 30 757 . 2+x 8.3 15 . 7 ( 4890–x 150 ) 365 . 0+x <2 . 2 <7 . 8 † 6.2 >8 . 51u and E(5.8 min, 193Pb)=100. I(ε+β+)† ( 3290–x 150 ) ( 4490–x 150 ) 193Tl)=365 Comments 2 24 I(ε+β+): from log f1ut>8.5 for a 13/2+ to 9/2– transition. <10 For intensity per 100 decays, multiply by 1.0. γ(193Tl) Iγ normalization ΣI(γ+ce)(to 365+x level)=95 5. From log f1ut>8.5, I(ε+β+)(to 365+x level)<10%. Eγ E(level) (x) 365 . 0+x 324 . 3 1081 . 5+x 365 . 0 365 . 0 Iγ‡ Mult.† δ† α Comments Eγ: Eγ<13 keV from [ E3 ] 2.5 M1 +E 2 0.6 4 0 . 26 6 M1 +E 2 1 . 7 +5–4 0 . 109 20 193Tl IT decay (2.11 min). Iγ: γ follows an isomeric transition with T1/2=2.11 min and %IT≤75%. The equilibrium status of the source is not known. Therefore, Iγ of this γ cannot be compared with Iγ of the other γ's in the decay scheme. 1976Ha25 give Iγ=100. Mult.,δ: from 193Tl IT decay (2.11 min). Continued on next page (footnotes at end of table) 153 19 3 T l 112 – 1 1 81 19 3 T l 112 – 1 1 81 NUCLEAR DATA SHEETS 193Pb ε Decay (5.8 min) 1976Ha25 (continued) γ(193Tl) (continued) Eγ E(level) Iγ‡ δ† Mult.† M1 +E 2 α 392 . 2 757 . 2+x 20 . 7 406 . 5 1163 . 7+x 2.4 M1 0 . 180 431 . 5 1513 . 0+x 0.8 M1 ( +E 2 ) 0 . 154 466 . 7 1960 . 0+x <1 . 2 M1 0 . 125 666 . 2 1423 . 4+x 2.0 0 . 0126 716 . 5 1081 . 5+x 6.7 E2 736 . 1 1493 . 2+x 5.1 E1 E2 755 . 8 1513 . 0+x 2.6 1113 . 5 1870 . 7+x 0.6 –0 . 59 14 Comments 0 . 160 13 γ placed from 1899.6+x level in (HI,xnγ) data. 0 . 0113 † From adopted γ's, unless otherwise noted. ‡ For absolute intensity per 100 decays, multiply by 3.3. Decay Scheme Intensities: relative Iγ 130 (13/2+) 5.8 min (15/2+) (15/2–) (13/2+) (13/2–) (11/2–) (9/2–) 3/2(+) 46 11 6.7 M 13 75 .5 1 0.6 <1.2 435.8 E 1 2 . 73 5 M 2 66 6.1 E 1(+ .6 6.2 1 E2 40 2.0 5.1 ) 0. 71 6.5 M 8 6 . 32 5 E 1 4.3 2 2. 39 M1 6.7 4 2 . 2 x[ +E M1 2 36 E3] +E 2.5 5.0 2 M1 20 .7 +E 2 19 3 Pb 82 111 %ε+%β+=100 Q+(g.s.)=5120120 1960.0+x Iε 0.26 1.74 1870.7+x 0.29 1.71 6.8 2.2 8.8 6.2 1493.2+x 3.1 11.9 6.1 1423.4+x 1.5 5.5 6.5 1163.7+x 2.4 6.6 6.5 1081.5+x 8.5 21.5 6.0 757.2+x 365.0+x 2.11 min 8.3 15.7 6.2 <2.2 <7.8 >8.51u 365.0 21.6 min 19 3 Tl 112 81 197Bi Parent 197Bi: 197Bi: α Decay (5.04 min) 1985Co06 E=690 110; Jπ=(1/2+); T1/2=5.04 min 16; Q(g.s.)=5210 110; %α decay=55 40. E(ex),Jπ,T1/2 from 2003Au02. Q(α) from 2003Au03. Sources from 14n bombardments of Ir, 16O bombardments of Re, and 20Ne bombardments of 181Ta, measured Eα, Iα, time–sequential α and γ spectra. Others: 1974Le02, 1972Ga27, 1970Ta14, 1950Ne77. 193Tl E(level) 0.0 Jπ T1/2 1/2(+) 21 . 6 mi n 8 Levels Comments Jπ: from Adopted levels. 154 Log ft 6.8 1513.0+x 0.0 1/2(+) Iβ+ mass separation; 19 3 T l 112 – 1 2 81 19 3 T l 112 – 1 2 81 NUCLEAR DATA SHEETS 197Bi α Decay (5.04 min) 1985Co06 (continued) α radiations T1/2(197Bi)=5.04 min 16 (1995Ch27,2003Au02). %α(197Bi)=55 40 (1995Ch27,1985Co06,2003Au02); others: 0.1 (1974Le02), 0.11 (1972Ga27), ≈0.05% 1950Ne77. Eα Iα† E(level) 5776 4 0.0 100 Comments Eα: from 1991Ry01, based on 5780 5 (1985Co06), 5770 10 (1974Le02), 5770 10 (1972Ga27); other: 1970Ta14. HF: r0(193Tl)=1.50 1 Value for r0 suggested by neighboring Pb isotone, with r0(194Pb)=1.496 3 (1998Ak04) The quoted radius value gives HF=0.15 for this decay. Since HF<<1 is not expected in odd–A nuclei, one must question the input to HF calculation. The two uncertain quantities are the nuclear radius, r0, and %α from 197Bi. In order to obtain an HF≈1 one would have to use r0=1.59 which is unreasonably large for this region. Using r0=1.49, based on overall systematic trends for r0, an alpha branch of %α≈12 gives a HF≈1.0. It seems, therefore, that %α=55 40 quoted in 1985Co06 may be too large. † For α intensity per 100 decays, multiply by 0.55 40. (HI,xnγ) 1992Re08: 160Gd(37Cl,4nγ); 1992Re08,1974Ne16 E=167 MeV; 12 Compton suppressed Ge(Li) detectors, 4π BGO array (ATLAS array), >97% target; measured Eγ, Iγ, γγ coin, DCO ratio (I(γ1(146°),γ2(34°))/I(γ1(90°), γ2(34°))). 1974Ne16: 181Ta(16O,4nγ), 197Au(α,8nγ), E(16O)=79, 84, 89, 98 MeV; 184W(14N,5nγ), E(14N)=82, 86, 89 MeV; also includes E(α)=93, 104, 116 MeV; measured Eγ, Iγ (Ge(Li)), γγ coin, γ–ray angular distributions, E(ce), Ice (mag spect, Si(Li)). 1996SaZU: 181Ta(16O,4nγ), E(16O)=84 MeV; measured γγ(θ), γ(ce)(θ). 193Tl Levels The level scheme, the bands, and the band labeling are those proposed by 1992Re08. The level scheme has been constructed with the help of coincidence relationships, energy sums and intensity ratios, and γ directional correlation ratios (DCO ratios). For a discussion of the structure of levels and bands, see 1992Re08. E(level)† Jπ‡ Comments 0.0 365 . 2 E(level): from adopted levels. 365 . 2+x# 4 757 . 51+x# 24 ( 11 / 2– ) 1081 . 10+x# 24 ( 13 / 2– ) ( 9 / 2– ) 1493 . 4+x 3 ( 13 / 2+ ) 1512 . 1+x# 3 1833 . 2+x# 3 ( 15 / 2– ) ( 17 / 2– ) 1899 . 6+x 4 ( 15 / 2+ ) 1928 . 4+x 4 ( 17 / 2– ) 1960 . 0+x 5 ( 15 / 2+ ) 2006 . 4+xb 4 ( 15 / 2+ ) 2056 . 4+x 6 ( 15 / 2+ ) 2131 . 7+xb 5 2303 . 2+x# 4 ( 17 / 2+ ) 2351 . 9+x 6 2392 . 0+xa 5 2400 . 8+x 6 2448 . 2+xb 5 ( 19 / 2– ) ( 19 / 2+ ) ( 19 / 2– ) ( 19 / 2+ ) ( 19 / 2+ ) 2505 . 2+x § 4 2574 . 9+x# 4 ( 21 / 2– ) 2609 . 4+x 5 ( 19 / 2+ ) ( 21 / 2– ) 2611 . 2+x 7 ( 21 / 2+ ) 2621 . 0+x 7 2764 . 8+xb 5 ( 21 / 2+ ) ( 21 / 2+ ) 2 7 7 4 . 3 + x@ 5 ( 23 / 2– ) 2858 . 8+x 7 2888 . 2+xa 5 ( 23 / 2+ ) 2982 . 3+x § 5 3 0 0 5 . 5 + x& 6 E(level): misprinted as 1888.2 in table 1 of 1992Re08. ( 21 / 2 ) ( 25 / 2– ) ( 25 / 2– ) Continued on next page (footnotes at end of table) 155 160Gd 19 3 T l 112 – 1 3 81 19 3 T l 112 – 1 3 81 NUCLEAR DATA SHEETS (HI,xnγ) 1992Re08,1974Ne16 (continued) 193Tl Jπ‡ E(level)† 3143 . 6+xa 5 ( 23 / 2 ) 3144 . 5+xb 6 ( 23 / 2+ ) 3184 . 5+x 8 ( 25 / 2+ ) 3342 . 6+xa 5 3 3 7 4 . 6 + x@ 5 3483 . 9+xb 6 ( 25 / 2 ) Levels (continued) Comments T1/2 ( 27 / 2– ) ( 25 / 2+ ) 3521 . 8+x 8 ( 27 / 2+ ) 3 5 4 8 . 2 + x& 6 3667 . 1+x § 5 3711 . 4+xa 6 ( 29 / 2– ) ( 29 / 2– ) ( 27 / 2 ) 3744 . 0+xb 6 ( 27 / 2+ ) 3905 . 3+xb 7 3964 . 2+xa 6 4054 . 1+xb 8 ( 29 / 2+ ) 4 1 2 3 . 5 + x@ 5 4 1 7 9 . 1 + x& 7 4260 . 2+xb 8 ( 31 / 2– ) E(level): misprinted as 3304.8 in table I of 1992Re08. ( 29 / 2 ) ( 31 / 2+ ) ( 33 / 2– ) ( 33 / 2+ ) 4320 . 0+x ? a 7 ( 31 / 2 ) 4324 . 3+x 7 4463 . 1+x § 6 ( 33 / 2– ) ( 33 / 2– ) 4539 . 2+xb 8 4858 . 9+xb 8 4 9 4 1 . 4 + x@ 6 ( 35 / 2+ ) 5 0 1 6 . 0 + x& 8 ( 37 / 2– ) 5086 . 4+x ? 9 5224 . 5+xb 9 5286 . 8+x § 6 ( 41 / 2+ ) ( 37 / 2+ ) ( 35 / 2– ) >3 p s T1/2: based on stopping time of nucleus in Au backing (1992Re08). ( 37 / 2– ) 5670 . 6+x ?@ 7 6088 . 3+x ? § 7 ( 39 / 2– ) ( 41 / 2– ) † From least squares fit to Eγ. ‡ From 1992Re08, based on DCO ratios, coincidence relationships, intensity balances (from which α(exp) could be determined), and § (A): Band 1. increasing J with increasing E(level). # (B): Band @ (C): Band & (D): Band a (E): Band 2. 3. 4. 5. b (F): Single–particle–like structure Formed by cascading γ's, non–collective in nature. γ(193Tl) Eγ† ( 46 . 4§ ) ( 75 . 3§ ) ( 94 . 2§ ) E(level) Mult.‡ Iγ† Comments 2006 . 4+x 2131 . 7+x 2858 . 8+x 96 . 4 3 2056 . 4+x 4 . 3 17 Mult.: DCO=1.24 5 (1992Re08). γ is ∆J=0, M1 from level scheme. 106 . 7 3 2006 . 4+x 3 . 2 13 Mult.: DCO=1.42 3 (1992Re08). γ is ∆J=0, M1 from level scheme. 125 . 3 3 2131 . 7+x 9 . 8 22 D Mult.: DCO=0.660 19 (1992Re08). 148 . 8 3 4054 . 1+x 6 . 7 13 D Mult.: DCO=0.664 16 (1992Re08). 155 . 8 3 161 . 3#e 3 2764 . 8+x D 2609 . 4+x 3 . 2 19 >1 . 5 e 3905 . 3+x 16 . 4e 23 ( 172 . 8§ ) Mult.: DCO=0.69 3 (1992Re08). Mult.: DCO=0.97 3 for the doublet (1992Re08). Mult.: DCO=0.97 3 (1992Re08). 2621 . 0+x 198 . 9 3 3342 . 6+x 3 . 7 21 201 . 9 3 2505 . 2+x 6 3 D Mult.: DCO=0.69 3 (1992Re08). 205 . 9 3 4260 . 2+x 8 . 4 14 D Mult.: DCO=0.816 16 (1992Re08). 207 . 9 3 2982 . 3+x 16 . 2 12 D Mult.: DCO=0.72 4 (1992Re08). Mult.: DCO=0.90 5 (1992Re08). Continued on next page (footnotes at end of table) 156 19 3 T l 112 – 1 4 81 19 3 T l 112 – 1 4 81 NUCLEAR DATA SHEETS (HI,xnγ) 1992Re08,1974Ne16 (continued) γ( 1 9 3 T l ) ( c o n t i n u e d ) Eγ† 220 . 2 f 3 231 . 2 3 Mult.‡ E(level) Iγ† 2351 . 9+x 2621 . 0+x 5.9f 5.9f 3005 . 5+x 6 . 0 23 ( M1 +E 2 ) Mult.: DCO=0.95 3 (1992Re08). Mult.: DCO=0.69 3 (1992Re08). α δ 12 Comments DCO=0.696 20 for doublet (1992Re08). 12 DCO=0.696 20 for the doublet (1992Re08). 237 . 8 3 2858 . 8+x 2 . 7 16 D 252 . 9 3 3964 . 2+x 2 . 7 25 D Mult.: DCO=0.54 6 (1992Re08). 255 . 6 3 3143 . 6+x 2 . 8 25 D Mult.: DCO=0.70 3 (1992Re08). 259 . 3 3 2611 . 2+x 5 . 3 17 D Mult.: DCO=0.75 3 (1992Re08). 260 . 4 3 3744 . 0+x 9 . 2 11 D Mult.: DCO=0.862 20 (1992Re08). 268 . 9 3 2774 . 3+x D Mult.: DCO=0.884 24 (1992Re08); A2=–0.49 15, 269 . 1 3 2400 . 8+x D Mult.: DCO=0.715 25 (1992Re08). Mult.: DCO=0.789 16 (1992Re08). 20 . 3 6 A4=–0.02 15 (1974Ne16). 6 . 6 15 271 . 6 3 2574 . 9+x 3 . 4 19 279 . 0 3 4539 . 2+x 10 . 2 13 D Mult.: DCO=0.95 3 (1992Re08). 292 . 5 3 3667 . 1+x 10 . 9 22 D Mult.: DCO=0.67 5 (1992Re08). 316 . 4e 3 2448 . 2+x 23 . 8e 4 15 . 1e 8 ( M1 +E 2 ) b ( M1 +E 2 ) b Mult.: DCO=0.435 12 (1992Re08). Mult.: DCO=0.669 12 (1992Re08). 319 . 9 3 4858 . 9+x D Mult.: DCO=0.77 3 (1992Re08). 2764 . 8+x 6 4 320 . 9 3 1833 . 2+x 17 . 2 4 D@ 323 . 8 3 1081 . 10+x 31 . 0 4 M1 +E 2 @ Mult.: DCO=0.84 4 (1992Re08). 0.6 4 0 . 26 6 Mult.,δ: α(K)=0.21 5 (1974Ne16); theory: α(K)(E2)=0.0539, α(K)(M1)=0.271; DCO=0.74 3 (1992Re08). 325 . 7 3 3184 . 5+x 2 . 6 21 D 337 . 2 3 3521 . 8+x 2 . 6 14 D Mult.: DCO=0.71 3 (1992Re08). Mult.: DCO=0.60 3 (1992Re08). 339 . 5 3 3483 . 9+x 8 . 7 15 D Mult.: DCO=0.88 4 (1992Re08). 339 . 7 3 4463 . 1+x 8 3 D Mult.: DCO=0.70 6 (1992Re08). 345 . 5 3 355 . 8g 3 5286 . 8+x 6 3 D Mult.: DCO=0.60 4 (1992Re08). 4320 . 0+x ? 1 . 6 15 D Mult.: DCO=0.65 5 (1992Re08). 365 . 3 Eγ: from 1974Ne16. 365 . 2 Iγ: found to be duty cycle dependent. 365 . 6 3 5224 . 5+x 4 3 368 . 9e 3 3143 . 6+x <2 . 4 e Mult.: DCO=1.254 24 (1992Re08). Mult.: DCO=1.40 4 (1992Re08). γ is ∆J=0 from level scheme. 3711 . 4+x 4 . 0e 14 D Mult.: DCO=0.61 4 (1992Re08). 379 . 6 3 3144 . 5+x 8 . 7 16 D Mult.: DCO=0.721 24 (1992Re08). 383 . 3 3 2888 . 2+x 2 . 0 20 5670 . 6+x ? 7 . 5 20 Mult.: DCO=1.40 4 (1992Re08). γ is ∆J=0, from level scheme. 383 . 8g 3 ( 391 . 5§ ) 392 . 2e 3 D Mult.: DCO=0.70 8 (1992Re08). 2448 . 2+x 757 . 51+x 100 . 0e 3 M1 +E 2 –0 . 59 14 0 . 160 13 Mult.: α(K)=0.110 25 (1974Ne16); theory: α(K)=0.129 12; DCO=0.791 11 (1992Re08); A2=–0.74 2, A4=+0.02 2 (1974Ne16). δ: from γγ(θ) and γ(ce)(θ) (1996SaZU). 406 . 2 3 3374 . 6+x >4 . 9 e D 1899 . 6+x 33 . 5 2 M1 Mult.: DCO=0.82 7 (1992Re08). 0 . 180 Mult.: α(K)exp=0.12 3, K/L=4.6 8 (1974Ne16); theory: α(K)(M1)=0.147, α(K)(E2)=0.0320; DCO=0.710 16 (1992Re08); A2=–0.68 3, A4=+0.02 3 (1974Ne16). 412 . 6 3 1493 . 4+x 6 . 4 20 Mult.: DCO=1.37 3 (1992Re08). 416 . 4 3 1928 . 4+x 2 . 7 26 D Mult.: DCO=0.53 4 (1992Re08). 417 . 8g 3 6088 . 3+x ? 4 3 D DCO=0.61 4 (1992Re08). 430 . 9 3 1512 . 1+x 9 . 6 22 M1 ( +E 2 ) 0 . 154 Mult.: α(K)exp=0.12 3, K/L=4.3 8 (1974Ne16); theory: α(K)=0.126, K/L=5.96 DCO=0.81 3 (1992Re08); A2=–0.51 8, A4=–0.16 8 (1974Ne16). 456 . 5 3 4123 . 5+x 463 . 6 3 2392 . 0+x 466 . 6 3 1960 . 0+x 12 . 4 23 3 . 0 19 17 . 4 2 D Mult.: DCO=0.81 4 (1992Re08). D+Q a Mult.: DCO=0.90 4 (1992Re08). M1 a 0 . 125 Mult.: α(K)exp=0.090 25 (1974Ne16); theory: α(K)(M1)=0.102, α(K)(E1)=0.00886; DCO=0.729 14 (1992Re08). 470 . 0 3 2303 . 2+x 477 . 1 3 2982 . 3+x 15 . 7 18 8 3 478 . 1 3 2609 . 4+x 478 . 3 3 485 . 2 3 D Mult.: DCO=0.79 3 (1992Re08). ( E2 ) c Mult.: DCO=1.346 22 (1992Re08). 4 . 3 13 (Q) Mult.: DCO=1.41 3 (1992Re08). 4941 . 4+x 5 3 D Mult.: DCO=0.89 3 (1992Re08). 4539 . 2+x 2 . 8 23 ( E2 ) d Mult.: DCO=1.33 4 (1992Re08). Continued on next page (footnotes at end of table) 157 19 3 T l 112 – 1 5 81 19 3 T l 112 – 1 5 81 NUCLEAR DATA SHEETS (HI,xnγ) 1992Re08,1974Ne16 (continued) γ(193Tl) (continued) Eγ† E(level) Mult.‡ Iγ† 494 . 3 3 2006 . 4+x 5 . 7 16 542 . 7 3 547 . 2g 3 3548 . 2+x 6 . 1 22 568 . 3 3 3342 . 6+x <1 . 1 598 . 5 3 4858 . 9+x >1 . 7 599 . 3 3 3744 . 0+x α Comments Mult.: DCO=1.51 3 (1992Re08); γ is ∆J=0, E1 from level scheme. ( E2 ) c Mult.: DCO=1.462 20 (1992Re08). 5086 . 4+x ? Mult.: DCO=0.98 6 (1992Re08). 600 . 4 3 3374 . 6+x 9 . 4 25 621 . 6 3 3964 . 2+x 2 . 9 18 630 . 9 3 4179 . 1+x 632 . 8 3 2764 . 8+x 663 . 0 3 3521 . 8+x 672 . 1 3 2505 . 2+x 684 . 7 3 3667 . 1+x 696 . 2 3 3144 . 5+x 716 . 0 3 1081 . 10+x 719 . 3 3 728 . 9g 3 3483 . 9+x 735 . 5 3 1493 . 4+x 5670 . 6+x ? ( E2 ) d ( E2 ) d 7 . 1 16 Mult.: DCO=1.29 4 (1992Re08). Mult.: DCO=1.383 25 (1992Re08). ( E2 ) c ( E2 ) c ( E2 ) c 6 3 Mult.: DCO=1.40 3 (1992Re08). Mult.: DCO=1.40 3 (1992Re08). Mult.: DCO=1.478 22 (1992Re08). ( E2 ) d ( E2 ) d Mult.: DCO=1.599 22 (1992Re08). 24 . 9 2 (Q) Mult.: DCO=1.347 15 (1992Re08). 14 . 9 3 ( E2 ) c ( E2 ) d Mult.: DCO=1.353 21 (1992Re08). 13 . 3 7 1 . 6 15 6 . 1 11 37 . 3 2 E2 9.1 9 Mult.: DCO=1.36 5 (1992Re08). Mult.: DCO=1.278 24 (1992Re08). Mult.: α(K)exp=0.0075 2 (1974Ne16); theory: α(K)=0.00969; 0 . 0126 DCO=1.291 16 (1992Re08); A2=+0.32 5, A4=–0.02 5 (1974Ne16). ( E2 ) d Mult.: DCO=1.406 18 (1992Re08). E1 Mult.: α(K)exp=0.0060 15 (1974Ne16); theory: α(K)(E1)=0.00355, 2 . 9 12 Mult.: DCO=1.30 3 (1992Re08). 42 . 8 2 α(K)(M1)=0.0312; DCO=0.704 23 (1992Re08); A2=–0.19 4, 741 . 7 3 2574 . 9+x A4=0.04 4 (1974Ne16). ( E2 ) c 6 . 9 25 Mult.: α(K)exp=0.030 15 (1974Ne16); theory: α(K)(E2)=0.00904, α(K)(M1)=0.0305; DCO=1.191 19 (1992Re08); A2=+0.24 17, A4=–0.05 17 (1974Ne16). 749 . 0 3 4123 . 5+x >3 . 4 ( E2 ) c Mult.: DCO=1.30 11 (1992Re08). 752 . 4 3 1833 . 2+x 30 . 7 4 E 2& Mult.: α(K)exp=0.013 4 (1974Ne16); theory: α(K)=0.00870; 754 . 7 3 1512 . 1+x 19 . 1 9 E 2& Mult.: α(K)exp=0.011 4 (1974Ne16); theory: α(K)=0.00874; 776 . 1 3 4324 . 3+x 5 . 2 20 790 . 9 3 2303 . 2+x 12 . 9 14 795 . 9 3 801 . 5g 3 4463 . 1+x 13 . 5 17 DCO=1.640 15 (1992Re08). DCO=1.219 18 (1992Re08). 6088 . 3+x ? Mult.: DCO=1.39 3 (1992Re08). ( E2 ) c ( E2 ) c Mult.: DCO=1.488 18 (1992Re08). Mult.: DCO=1.382 21 (1992Re08). 5 4 Mult.: DCO=1.30 7 (1992Re08). 817 . 8 3 4941 . 4+x 5 4 Mult.: DCO=1.90 8 (1992Re08). 823 . 6 3 5286 . 8+x 6 5 Mult.: DCO=1.699 23 (1992Re08). 836 . 9 3 5016 . 0+x 5 . 9 21 ( E2 ) c Mult.: DCO=1.40 3 (1992Re08). 847 . 1 3 1928 . 4+x 2 . 9 23 (Q) Mult.: DCO=1.201 23 (1992Re08). † From 1992Re08. ‡ Based on α(K)exp, K/L, γ(θ) results (1974Ne16), and DCO and band structure (1992Re08) where available. The levels up to 13/2+ and 15/2– were considered established by 1974Ne16. To obtain the α(K)exp, the photon and ce–spectra of 1974Ne16 were calibrated through α(K) (E3 theory) for 382.8γ in 199Tl. The DCO ratio is defined as I(γ1(146°),γ2(34°))/I(γ1(90°),γ2(34°)) which results in DCO=1.4 for ∆J=2 Q and ∆J=0 D, and DCO=0.7 for ∆J=1, D. § Possible transition shown on level scheme of 1992Re08 (fig. 3), Eγ from level–energy difference. # Coincidence results indicate a possible third component to this γ (1992Re08). @ A =–0.55 2, A =+0.06 2 for unresolved 323.8γ+320.9γ (1974Ne16). 2 4 & A =+0.35 6, A =–0.14 6 for unresolved 752.4γ+754.7γ (1974Ne16). 2 4 a A =–0.56 5, A =+0.02 5 for unresolved 463.6γ+466.6γ (1974Ne16). 2 4 b For the 316.4 doublet: α(K)exp=0.20 5 (1974Ne16); theory: α(K)(M1)=0.289, K(E2)=0.0570; A =–0.60 4, A =–0.01 4 (1974Ne16). 2 4 c Member of the γ–cascade in a rotational band. d Crossover γ in a sequence of ∆J=1, D transitions. e Multiply placed; intensity suitably divided. f Multiply placed; undivided intensity given. g Placement of transition in the level scheme is uncertain. 158 19 3 T l 112 – 1 6 81 19 3 T l 112 – 1 6 81 NUCLEAR DATA SHEETS (HI,xnγ) 1992Re08,1974Ne16 (continued) Level Scheme Intensities: relative Iγ @ Multiply placed; intensity suitably divided (37/2–) (35/2–) (37/2+) (35/2+) (33/2–) (33/2–) (31/2) (33/2+) (33/2–) (31/2–) (31/2+) (29/2) (29/2+) (27/2+) (27/2) (29/2–) (29/2–) (27/2+) (25/2+) (27/2–) (25/2) 5286.8+x 5224.5+x 5086.4+x 48 275.2 ( 79 9.0 DE2) 2 335.9 ( 9.7 E2 10.2.8 77 D ) 1 35 6.1 3 8 .5 20 5.8 D5.2 63 5.9 D 1.6 0 . 9 74 8 ( 459.0 ( E2) .4 6 14 6.5 DE2) 8 .8 62 12 >3.4 D 251.6 ( 6.7 .4 16 2.9 DE2) 1.3 59 2.72.9 @ 269.3 ( 16 .4 36 0.4 DE2) 68 8.9 @ 9 7.1 294.7 ( D .2 2.5 E2 4 54 D ) 1 .0 66 2.7 ( 10 4.9 3 .9 33 .0 ( E2) 71 7.2 DE2) 6.1 1 339.3 ( 9.5 E2 2.6 .6 60 D ) 9 390.4 ( .1 8 . 2 7 56 .2 @E2) 198.3 D 9.4 8.9 <1 >4 32 . .9 D 1 69 5.7 D 3.7 376.2 ( 2.6 9 E . 2 6 36 D ) 258.9 @ 8 6.1 .7 5.6 23 <2 D 1 47 .2 ( 2.8.4 207.1 ( M1+ 38 7.9 DE2) E2) 23 3.3 16 15.7 6.0 .2 947.8 D 2.0 26 .2 2.7 63 8.9 D 312.8 ( 2 156.4 @E2) 0.3 5.8 ( 1 22 D M1+3.3 170.2 & 3.2 E2 ) 25 2.8 5.9 15 9.3 .1 D 5.3 (37/2–) (41/2+) 5670.6+x 82 343.6 36 5.5 D6 5.6 54 4 6 83 7.2 6 .9 81 (E 2) 477.8 5.9 59 8.3 D5 318.5 ( 9.9 E2 5 ) D 6 >1.7 (39/2–) 6088.3+x 72 388.9 3.8 2. D 9 7.5 (41/2–) 80 411.5 7 .8 5 D 4 & Multiply placed; undivided intensity given 5016.0+x 4941.4+x 4858.9+x 4539.2+x 4463.1+x 4324.3+x 4320.0+x 4260.2+x 4179.1+x 4123.5+x 4054.1+x 3964.2+x 3905.3+x 3744.0+x 3711.4+x 3667.1+x 3548.2+x 3521.8+x 3483.9+x 3374.6+x 3342.6+x (25/2+) 3184.5+x (23/2+) 3144.5+x (23/2) 3143.6+x (25/2–) 3005.5+x (25/2–) 2982.3+x (21/2) 2888.2+x (23/2+) 2858.8+x (23/2–) 2774.3+x (21/2+) 2764.8+x (21/2+) 2621.0+x (21/2+) 2611.2+x (19/2+) 2609.4+x (21/2–) (19/2+) 2505.2+x 2448.2+x (19/2+) 2400.8+x (19/2+) 2351.9+x (17/2+) 2131.7+x 365.2 0.0 19 3 Tl 112 81 159 >3 ps 19 3 T l 112 – 1 7 81 19 3 T l 112 – 1 7 81 NUCLEAR DATA SHEETS (HI,xnγ) 1992Re08,1974Ne16 (continued) Level Scheme (continued) Intensities: relative Iγ @ Multiply placed; intensity suitably divided & Multiply placed; undivided intensity given (41/2–) 6088.3+x (39/2–) 5670.6+x (41/2+) 5224.5+x (37/2–) 5016.0+x (37/2+) 4858.9+x (33/2–) 4463.1+x (31/2) 4320.0+x (33/2–) 4179.1+x (31/2+) 4054.1+x (29/2+) 3905.3+x (29/2–) 3667.1+x (25/2+) 3483.9+x (25/2) 3342.6+x (21/2–) (21/2–) (19/2+) (19/2+) (19/2–) (19/2+) (19/2–) (17/2+) (15/2+) (15/2+) (15/2+) 2982.3+x 2858.8+x 2609.4+x 2574.9+x 2505.2+x 2448.2+x 2400.8+x 2392.0+x 2351.9+x 2303.2+x 2131.7+x 2056.4+x 71 326.0 E 3.8 2 M1 37 +E .3 @ 2 M1 31 +E .0 2 10 0.0 (23/2+) (19/2+) 3143.6+x 47 168.1 ( 74 1.3 @Q) 4 271.7 ( >1 .3 67 1.6 E2) .5 2 3 .4 6.9 20 .1 ( 39 1.9 Q) 6 24. 311.5 9 26 6.4 @ 46 9.1 D (M 22 3.6 D 6 1+E . 2) 79 0.2 & +Q 6 23 .8 470.9 ( 5.9 3.0 0 E . 0 2) 12 D 5 1 75 .3 D 2 8 .9 96 .3 9.8 49 .4 4 4 . 3 . 3 10 466.7 5.7 46 .4 3.2 84 6.6 M 417.1 ( 1 40 6.4 DQ) 17.4 75 6.2 M 2 2.9 322.4 E 1 .7 0.9 2 33 75 D 30 .5 4 43 .7 E 17 .7 .2 73 0.9 M2 1 415.5 E 1(+ 9.1 2.6 1 E2 6.4 42. ) 9. 8 6 (23/2) (25/2–) (17/2–) (15/2+) (17/2–) (15/2–) 39 2.2 (13/2+) (13/2–) 5.3 (11/2–) 36 (9/2–) 2006.4+x 1960.0+x 1928.4+x 1899.6+x 1833.2+x 1512.1+x 1493.4+x 1081.10+x 757.51+x 365.2+x 365.2 0.0 19 3 Tl 81 112 160 19 3 T l 112 – 1 8 81 NUCLEAR DATA SHEETS (HI,xnγ): SD 1990Fe07: 1990KeZW; 160Gd(37Cl,4nγ) 1996Bo02,1998Bo32,1999Kr19 E=167 MeV; measured γ, γγ and deduced SD–1 and SD–2 bands. 176Yb(23Na,6nγ); E=116, 122 MeV; HERA Compton–suppressed Ge detector array (20 detectors); identified a 12–transition SD band which was tentatively assigned to 1996Bo02, 1996Bo15: 181Ta(18O,6nγ) 193Tl. Authors give no other details. E=110 MeV. Measured Eγ, γγγ with EUROGAM2 array (126 Compton–suppressed Ge detectors (24 quad–clover and 30 Ge detectors)). Deduced SD–1 and SD–2 bands and interband transitions linking the two signature partners. 1998Bo32, 1998Bo20 (also 1996WiZY): 181Ta(18O,6nγ) E=110 MeV. Measured Eγ, 2– and 3–fold gated γγ coincidences with EUROGAM2 array (54 Compton–suppressed Ge detectors (24 quad–clover and 30 Ge detectors)). Deduced SD–3, SD–4 and SD–5 bands. Deduced transitions connecting SD–1 and SD–2 bands to normal bands. 1999Kr19: 176Yb(23Na,6nγ) E=129 MeV. GAMMASPHERE array of 100 Compton–suppressed HPGe detectors. Measured lifetimes by DSAM and deduced intrinsic quadrupole moments for SD–1 and SD–2 bands. 193Tl Jπ E(level) 0 . 0† 365 . 2† 1/2(+)† 3/2(+)† 365 . 2+x † ( 9 / 2– ) † 757 . 51+x † 24 1081 . 08+x † 24 1493 . 4+x † 3 1512 . 2+x † 3 1833 . 2+x † 3 1899 . 6+x † 4 2006 . 4+x † 4 2131 . 7+x † 5 2303 . 2+x † 4 2574 . 9+x † 4 5142+x ‡ 3 Levels Comments E(level): x<13 from IT decay. ( 11 / 2– ) † ( 13 / 2– ) † ( 13 / 2+ ) † ( 15 / 2– ) † ( 17 / 2– ) † ( 15 / 2+ ) † ( 15 / 2+ ) † ( 17 / 2+ ) † ( 19 / 2– ) † ( 21 / 2– ) † ( 17 / 2+ ) Jπ: from 1998Bo20. Also from least–squares fits to Eγ's using empirical expansions relating ( 19 / 2+ ) Jπ: calculated J=19/2 (1992Wu01,1993Hu06,1994Zh40). ( 21 / 2+ ) Jπ: calculated J=21/2 (1992Wu01,1993Hu06,1994Zh40). second moment of inertia and angular frequency. 5240+x § 3 5348+x ‡ 3 5467+x § 3 ( 23 / 2+ ) 5596+x ‡ 3 ( 25 / 2+ ) 5735+x § 3 5883+x ‡ 3 6043+x § 3 ( 27 / 2+ ) ( 29 / 2+ ) ( 31 / 2+ ) 6211+x ‡ 3 ( 33 / 2+ ) 6391+x § 3 6577+x ‡ 3 6778+x § 3 ( 35 / 2+ ) ( 37 / 2+ ) ( 39 / 2+ ) 6982+x ‡ 3 ( 41 / 2+ ) 7204+x § 3 7425+x ‡ 3 7667+x § 3 ( 43 / 2+ ) ( 45 / 2+ ) ( 47 / 2+ ) 7905+x ‡ 3 ( 49 / 2+ ) 8169+x § 3 8421+x ‡ 3 8706+x § 3 ( 51 / 2+ ) ( 53 / 2+ ) ( 55 / 2+ ) 8972+x ‡ 3 ( 57 / 2+ ) 9279+x § 3 9559+x ‡ 3 9888+x § 3 ( 59 / 2+ ) ( 61 / 2+ ) ( 63 / 2+ ) 10179+x ‡ 3 ( 65 / 2+ ) 10532+x § 3 10833+x ‡ 3 11211+x § 3 ( 67 / 2+ ) ( 69 / 2+ ) ( 71 / 2+ ) 11519+x ‡ 3 ( 73 / 2+ ) 11924+x § 3 12238+x ‡ 3 12671+x § 3 ( 75 / 2+ ) ( 77 / 2+ ) ( 79 / 2+ ) 12989+x ‡ 3 ( 81 / 2+ ) 13453+x § 3 13772+x ‡ 4 y# ( 83 / 2+ ) 187 . 9+y# 3 ( 85 / 2+ ) J≈ ( 15 / 2 ) J+2 Continued on next page (footnotes at end of table) 161 19 3 T l 112 – 1 8 81 19 3 T l 112 – 1 9 81 (HI,xnγ): SD 1996Bo02,1998Bo32,1999Kr19 (continued) 193Tl Jπ E(level) 418 . 6+y# 5 J+4 691 . 4+y# 6 1005 . 7+y# 6 1360 . 7+y# 7 J+6 1755 . 8+y# 8 2190 . 3+y# 8 2663 . 4+y# 9 19 3 T l 112 – 1 9 81 NUCLEAR DATA SHEETS z@ J+10 J+14 J+16 3174 . 0+y# 9 J+18 J+20 J+22 5576 . 4+y# 11 J+26 J+28 J1+4 J1+6 J1+10 J1+12 J+30 J+32 2 7 4 1 . 7 + u& 1 0 J1+14 3 2 8 5 . 4 + u& 1 0 3 8 6 4 . 8 + u& 1 1 4 4 7 9 . 3 + u& 1 2 J1+16 J1+18 4 2 8 2 . 5+ z@ 1 0 4 9 1 4 . 3+ z@ 1 0 5 5 8 0 . 7+ z@ 1 1 J1+20 6 2 8 5 . 4+ z@ 1 3 7 0 3 3 . 4+ z@ 1 6 J1+26 u& 2 7 1 . 5 + u& 5 5 8 4 . 8 + u& 7 9 3 8 . 9 + u& 7 1 3 3 2 . 2 + u& 9 1 7 6 4 . 5 + u& 9 2 2 3 4 . 4 + u& 1 0 J1+8 2 5 9 8 . 7+ z@ 8 3 1 2 3 . 9+ z@ 9 3 6 8 5 . 6+ z@ 9 J+24 6263 . 1+y# 12 6977 . 1+y# 14 7712 . 1+y# 17 J1+2 1 2 4 8 . 2+ z@ 6 1 6 6 0 . 1+ z@ 7 2 1 1 0 . 6+ z@ 8 Jπ E(level) J1≈ ( 23 / 2 ) 2 5 0 . 8+ z@ 3 5 4 2 . 8+ z@ 5 8 7 5 . 5+ z@ 6 J+12 3721 . 5+y# 10 4304 . 9+y# 10 4923 . 3+y# 11 Jπ E(level) J+8 Levels (continued) 5 1 2 8 . 8 + u& 1 3 J1+22 5 8 1 3 . 0 + u& 1 3 6 5 3 1 . 8 + u& 1 5 J1+24 J2≈ ( 21 / 2 ) J2+2 J2+4 J2+6 J2+8 J2+10 J2+12 J2+14 J2+16 J2+18 J2+20 J2+22 J2+24 J2+26 J1+28 † From adopted levels. ‡ (A): SD–1 band α=+1/2 (1990Fe07,1996Bo02,1998Bo20,1999Kr19) Percent population is ≈0.5 of total yield for 193Tl (1990Fe07). Q(intrinsic)=18.3 10 (1999Kr19). From competing M1 (interband) and E2 (intraband) transitions, gK=1.46 17 (1996Bo02) and § gseff/gsfree=0.7 2 (1996Bo02). (B): SD–2 band α=–1/2 (1990Fe07,1996Bo02,1998Bo20,1999Kr19) percent population is ≈0.5 of total yield for 193Tl (1990Fe07). Q(intrinsic)=17.4 10 (1999Kr19). The two SD bands (SD Band 1 and SD Band 2) are interpreted as signature partners influenced by the i13/2 proton intruder orbital. From competing M1 (interband) and E2 (intraband) transitions, gK=1.46 17 (1996Bo02) and gseff/gsfree=0.7 2 (1996Bo02). # (C): SD–3 band (1998Bo32) Population intensity=60% of SD–2 band. Interaction observed between SD–3 and SD–4 bands, and the identical energies (within 2 keV) of transitions in SD–3 and SD–5 bands, indicate involvement of 1/2[411], α=±1/2 and 1/2[651], α=–1/2 proton orbitals. At high frequencies SD–3 is interpreted to be due to 1/2[651], α=–1/2, while at low frequencies, it is expected to be due to 1/2[411] α=–1/2. @ (D): SD–4 band (1998Bo32) Population intensity=33% of SD–2 band. Interaction is observed between SD–3 and SD–4 bands. At high frequencies SD–4 is interpreted to be due to 1/2[411], α=–1/2, while at low frequencies it is interpreted as 1/2[651], α=–1/2. & (E): SD–5 band (1998Bo32) Population intensity=16% of SD–2 band. Identical energies (within 2 keV) of transitions in SD–3 and SD–5 bands indicate that these bands may be signature partners. SD–5 band is interpreted as 1/2[411], α=+1/2. γ(193Tl) Eγ† E(level) 106 . 7 3 2006 . 4+x 108 . 0 3 5348+x 118 . 9 3 5467+x 125 . 3 3 2131 . 7+x Iγ‡ Comments Mult. 128 . 3 3 5596+x 139 . 2 3 5735+x ( M1 ) Mult.: α(exp)(139γ+148γ)=2.6 8 (1996Bo02); theory: α(K)(M1)=2.84. 148 . 2 3 5883+x ( M1 ) Mult.: α(exp)(139γ+148γ)=2.6 8 and α(exp)(148γ+160γ)=3.0 8 (1996Bo02); theory: 160 . 1 3 6043+x ( M1 ) Mult.: α(exp)(148γ+160γ)=3.0 8 (1996Bo02); theory: α(K)(M1)=1.91. α(K)(M1)=2.38. 167 . 4 3 6211+x ( M1 ) Mult.: α(exp)(167γ+181γ)=2.2 5 (1996Bo02): theory: α(K)(M1)=1.69. 180 . 6 3 6391+x ( M1 ) Mult.: α(exp)(167γ+181γ)=2.2 5 and α(exp)(181γ+186γ)=1.8 7 (1996Bo02); theory: 185 . 8 3 6577+x ( M1 ) Mult.: α(exp)(181γ+186γ)=1.8 7 and α(exp)(186γ+201γ)=1.4 6 (1996Bo02); theory: α(K)(M1)=1.36. α(K)(M1)=1.25. 187 . 9 3 187 . 9+y 201 . 4 3 6778+x 203 . 5 3 6982+x 206 . 6 3 5348+x 221 . 5 3 7204+x 227 . 3 3 5467+x 230 . 7 3 247 . 3 3 250 . 8 3 267 . 9 3 271 . 5 5 ( M1 ) Mult.: α(exp)(186γ+201γ)=1.4 6 (1996Bo02); theory: α(K)(M1)=1.00. 0 . 98 10 418 . 6+y 5596+x 0 . 39 6 250 . 8+z 5735+x 1 . 13§ 23 2 7 1 . 5+u Continued on next page (footnotes at end of table) 162 19 3 T l 112 – 2 0 81 19 3 T l 112 – 2 0 81 NUCLEAR DATA SHEETS (HI,xnγ): SD 1996Bo02,1998Bo32,1999Kr19 (continued) γ( 1 9 3 T l ) ( c o n t i n u e d ) Iγ‡ Eγ† Iγ‡ Eγ† Eγ† E(level) 271 . 6 3 2574 . 9+x 442 . 9 3 7425+x 643 . 8 3 272 . 8 3 691 . 4+y 450 . 5 3 2110 . 6+z 649 . 5 4 287 . 7 3 292 . 0 3 308 . 2 3 5883+x 0 . 45 5 542 . 8+z 6043+x 0 . 86 9 E(level) 1 . 60§ 16 653 . 1 3 463 . 7 3 7667+x 469 . 9 3 2 2 3 4 . 4+u 653 . 6 4 470 . 0 3 2303 . 2+x 666 . 4 3 313 . 4 4 5 8 4 . 8+u 473 . 1 3 2663 . 4+y 314 . 3 3 1005 . 7+y 479 . 7 3 7905+x 678 . 7 4 0 . 72 17 684 . 2 4 320 . 9 3 1833 . 2+x 488 . 1 3 2598 . 7+z 686 . 1 4 323 . 8 3 1081 . 08+x 494 . 3 3 2006 . 4+x 686 . 7 4 327 . 4 3 6211+x 501 . 1 3 8169+x 704 . 7 7 507 . 3 3 2 7 4 1 . 7+u 713 . 2 5 332 . 7 3 0 . 53 5 875 . 5+z 510 . 6 3 3174 . 0+y 354 . 1 3 9 3 8 . 9+u 516 . 1 3 8421+x 355 . 0 3 1360 . 7+y 525 . 2 3 3123 . 9+z 348 . 0 3 365 . 2 6391+x 365 . 2 366 . 4 3 6577+x 372 . 7 3 1248 . 2+z 387 . 0 3 6778+x 392 . 2 3 1 . 01 11 1 . 15 23 1.4 4 757 . 51+x 5576 . 4+y 10833+x 11211+x 11519+x 6285 . 4+z 11924+x 6977 . 1+y 1081 . 08+x 12238+x 6 5 3 1 . 8+u 735 . 0 10 7712 . 1+y 547 . 5 3 3721 . 5+y 735 . 5 3 1493 . 4+x 551 . 6 3 8972+x 561 . 7 3 3685 . 6+z 1 3 3 2 . 2+u 573 . 4 3 9279+x 579 . 4 4 3 8 6 4 . 8+u 405 . 3 4 6982+x 583 . 4 3 4304 . 9+y 406 . 2 3 1899 . 6+x 586 . 5 3 9559+x 411 . 9 3 1660 . 1+z 596 . 9 3 4282 . 5+z 608 . 8 3 9888+x 614 . 5 4 4 4 7 9 . 3+u 4923 . 3+y 412 . 6 3 1493 . 4+x 425 . 4 3 7204+x 430 . 9 3 1512 . 2+x 618 . 4 3 432 . 3 3 1 7 6 4 . 5+u 620 . 3 3 434 . 5 3 2190 . 3+y 631 . 8 3 10179+x 4914 . 3+z 741 . 7 3 747 . 5 5 1 . 00 10 748 . 0 10 751 . 3 5 752 . 4 3 0 . 84 17 0 . 96 10 754 . 7 3 0 . 81 13 2574 . 9+x 12671+x 7033 . 4+z 12989+x 1833 . 2+x 1512 . 2+x 781 . 9 5 13453+x 783 . 4 5 13772+x 790 . 9 3 0 . 46 11 6263 . 1+y 718 . 8 7 1 . 00 14 0 . 75 14 5 8 1 3 . 0+u 3 2 8 5 . 4+u 1 . 30 14 0 . 42 11 5580 . 7+z 8706+x 1755 . 8+y † 718 . 7 5 1 . 09 22 5 1 2 8 . 8+u 537 . 5 3 393 . 3 4 1 . 22 12 716 . 0 3 10532+x 543 . 7 3 395 . 1 3 0 . 93 19 714 . 0 7 1 . 11 17 Iγ‡ E(level) 2303 . 2+x 3046 6 5348+x 3113 5 5240+x 3134 4 5142+x From 1996Bo02 for γ's in SD–1 and SD–2 bands; from 1998Bo32 for γ's in SD–3, SD–4 and SD–5 bands. Interconnecting transitions from SD–1 and SD–2 bands to normal bands are from 1998Bo20. Eγ's for levels up to 2575 are from adopted gammas. ‡ From 1990Fe07 (160Gd(37Cl,4nγ) E=167 MeV). Values are relative transition intensities within the band deduced from γγ data with § Contains contribution from another unresolved transition in gate on 500.7γ for SD–1 and gate on 443.0γ for SD–2. Intensity plots are given by 1998Bo32 for SD–3, SD–4 and SD–5 bands. 193Tl. 163 19 3 P b 111 – 1 82 19 3 P b 111 – 1 82 NUCLEAR DATA SHEETS Adopted Levels, Gammas Q(β–)=–6320 50; S(n)=7710 50; S(p)=3610 60; Q(α)=5010 60 2003Au03. 193Pb Levels The main features for the adopted level scheme are from 1996Du18, for the lower part of the scheme, including the nomenclature of the magnetic dipole bands. Differences with other sources, specially 1996Ba54, are noted where appropriate. See the (HI,xnγ):SD dataset for sources for the superdeformed bands. For a discussion of the configurations, magnetic dipole bands, and band systematics in Pb nuclei, see 1996Ba54 and 1996Du18. Cross Reference (XREF) Flags E(level)† 0.0 A 193Bi ε Decay (67 s) E 174Yb(24Mg,5nγ) B 197Po α Decay (53.6 s) F 182W(16O,5nγ) C 197Po α Decay (25.8 s) G (HI,xnγ): SD D 168Er(30Si,5nγ) Jπ‡ ( 3 / 2– ) Comments XREF %ε+%β+=? B Decay not observed. Jπ: From shell model. Available low–spin configurations for N=111 are 2f5/2, 3p3/2 and 3p1/2; 3/2– is the g.s. in 0+x ( 13 / 2+ ) CDEF 197Pb and 199Pb. RMS charge radius: 5.4298 fm 22 (2004An14). T §: 5.8 min 2. 1/2 %ε+%β+=100. E(level): x≈165 keV from 13/2+ level systematics for odd–A Pb nuclei. Jπ: high J is indicated by: 1) lack of decay to g.s., and 2) all deexcitation from (HI,xnγ) reaction ends on this level, none on g.s. Only shell model high–J level available is the 1i13/2 level. This high–J isomer is confirmed in 201Pb, 203Pb; also in 197Pb, 199Pb, 199Po, 201Po, 203Po. T1/2: from 1976Ha25. Other values: 5.0 min 6, 5.8 min 3 (both from 1974Ne16). IT and α decay not observed. µ=–1.156 8; Q=+0.195 10. µ,Q: from collinear fast atom beam laser spectroscopy (1991Du07). Isotope shift: ∆<r2> =–0.747 fm2 8 relative to 208Pb (1997Du07). Other: –0.746 fm2 12 (1989MeZZ). 881 . 6+x 2 ( 17 / 2+ ) DEF Jπ: E2 γ to (13/2+) level. 1022 . 1+x 3 ( 15 / 2+ ) DEF Jπ: (M1+E2) γ to (13/2+) level. Jπ: E2 γ to (17/2+) level. 1401 . 8+x 3 ( 21 / 2+ ) DEF 1519 . 4+x 11 ( 19 / 2+ ) D Jπ: (E2) γ to (15/2+). 1550 . 2+x 3 ( 19 / 2+ ) DEF 1585 . 9+x 4 ( 21 / 2– ) DEF Jπ: E2 γ to (15/2+) level, E2+M1 γ to (17/2+) level. T §: 20.5 ns 4. 1/2 µ=–0.62 12. µ from g=–0.059 11 (2004Io01). Qs=0.22 eb 2 (2004Ba31). Jπ: E1 γ to (21/2+) level. T1/2: from (HI,xnγ) (2004Io01). Other: 22 ns 2 (1991La07). Jπ: E2 γ to (21/2+) level. 1994 . 8+x 4 ( 25 / 2+ ) DEF 2058 . 9+x 5 ( 23 / 2– ) DE Jπ: D γ to (21/2–) level. 2141 . 4+x 4 ( 23 / 2+ ) DEF Jπ: E2 γ to (19/2+) level, M1+E2 γ to(21/2+) level. Jπ: E2 γ to (21/2–) level. 2142 . 1+x 5 ( 25 / 2– ) DEF 2172 . 6+x 6 ( 23 / 2+ ) D 2213 . 8+x 4 ( 25 / 2+ ) DEF Jπ: E2 γ to (21/2+) level, M1+E2 γ to (23/2+) level. 2322 . 2+x 5 ( 27 / 2– ) DEF Jπ: M1,E2 γ to (25/2–) level. ( 27 / 2+ ) DEF 2404 . 9+x ? 9 2426 . 7+x 4 E This level proposed only by 1996Ba54. Jπ: M1 γ to (25/2+), (M1+E2) γ to (25/2+) level. 2524 . 9+x 4 ( 27 / 2+ ) DE Jπ: D γ to (25/2+) level. 2526 . 9+x 4 2 5 8 4 . 8 + x@ 5 ( 29 / 2+ ) DEF ( 29 / 2– ) DEF Jπ: E2 γ to (25/2+) level. T §: 9.4 ns 7. 1/2 µ=9.9 4. µ from g=0.68 3 (1997Ch33). Qs=2.84 eb 26 (2004Ba31). Jπ: E1 γ to (27/2+) level. T1/2: Weighted average from: 8 ns 2 from Recoil Shadow Anisotropy Method (2001Gu31), 11 ns 2 (1997Ch33), 9.4 ns 7 (1991La07). Continued on next page (footnotes at end of table) 164 19 3 P b 111 – 2 82 19 3 P b 111 – 2 82 NUCLEAR DATA SHEETS Adopted Levels, Gammas (continued) 193Pb E(level)† 2612 . 5+x 5 Jπ‡ ( 33 / 2+ ) Levels (continued) Comments XREF DEF T1/2§: 180 ns 15. µ=2.82 15. µ from g=–0.171 9 (2004Io01). Qs=0.45 eb 4 (2004Ba31). Jπ: (E2) γ to (29/2+) level. T1/2: from (HI,xnγ) (2004Io01). Other: 104 ns +370–34 (2003Gl05,2004Gl04); 135 ns +25–15 (1991La07). 2653 . 6+x 5 ( 27 / 2– ) DE 2672 . 2+x 6 ( 29 / 2+ ) DE 2 6 8 6 . 9 + x@ 6 ( 31 / 2– ) DE Jπ: (M1) γ to (29/1–) level. 2707 . 2+x 6 2769 . 4+xd 5 ( 29 / 2– ) DE Jπ: (E2) γ to (25/2–) level. ( 29 / 2+ ) DE 2 9 3 9 . 2 + x@ 7 ( 33 / 2– ) DE Jπ: (M1) γ to (27/2+) level. T §: 3.2 ps 8. 1/2 Jπ: (M1) γ to (31/2–) level. 2994 . 6+x e 6 T1/2: from 2005Gl09, using recoil–distance Doppler shift (RDDS). ( 31 / 2– ) DE Jπ: (E2) γ to (27/2–) level. 3080 . 2+x 6 ( 29 / 2+ ) DE 3128 . 6+x 6 3133 . 4+xd 5 ( 31 / 2– ) DE Jπ: (E2) γ to (27/2–) level. ( 31 / 2+ ) DE B(M1)/B(E2)(exp)=7.0 (µN/eb)2 13 (1996Ba54). 3249 . 9+x 8 ( 31 / 2– ) DE Jπ: (M1) γ to (29/2+) level. 3260 . 7+x 7 ( 31 / 2– ) D 3282 . 1+x 7 3 3 2 0 . 7 + x@ 7 ( 33 / 2+ ) D ( 35 / 2– ) DE T1/2§: <1 ps. B(M1)/B(E2)(exp)=16.4 (µN/eb)2 52 (1996Ba54). Jπ: (M1) γ to (33/2–) level. T1/2: from 2005Gl09, using recoil–distance Doppler shift (RDDS). 3376 . 4+x 6 ( 31 / 2+ ) DE Jπ: (E2) γ to (27/2+) level. 3414 . 8+x 6 ( 33 / 2+ ) DE Jπ: (E2) γ to (29/2+) level. 3418 . 8+x 7 ( 33 / 2– ) DE 3541 . 6+x e 8 3542 . 8+xd 6 ( 35 / 2– ) DE Jπ: (E2) γ to (31/2–) level. ( 33 / 2+ ) DE B(M1)/B(E2)(exp)=4.1 (µN/eb)2 8 (1996Ba54). Jπ: (M1) γ to (31/2+) level. 3607 . 0+x 12 E 3640 . 3+x 8 ( 37 / 2– ) DE 3673 . 0+x 7 ( 33 / 2+ ) D This level proposed only by 1996Ba54. 3702 . 2+x 6 ( 33 / 2+ ) D 3 7 2 2 . 3 + x@ 7 ( 37 / 2– ) DE B(M1)/B(E2)(exp)=12.8 (µN/eb)2 26 (1996Ba54). 3741 . 8+x 9 ( 35 / 2– ) DE Jπ: (E2) γ to (31/2–) level. Jπ: (E2) γ to (31/2+) level. Jπ: (E2) γ to (33/2–) level, (M1) γ to (35/2–) level. 3772 . 1+x 6 ( 35 / 2+ ) DE 3822 . 5+x 9 ( 35 / 2+ ) D 3839 . 5+x 6 ( 33 / 2+ ) DE 3860 . 0+x 10 3906 . 6+x 8 3924 . 8+xd 6 E ( 35 / 2– ) D ( 35 / 2+ ) DE Jπ: (E2) γ to (29/2+) level. This level proposed only by 1996Ba54. B(M1)/B(E2)(exp)=4.9 (µN/eb)2 10 (1996Ba54). Jπ: (M1) γ to (33/2+) level. 3987 . 5+x 10 E 3991 . 7+x 7 ( 35 / 2+ ) D 3997 . 1+x 6 ( 37 / 2+ ) DE 4003 . 5+x 6 ( 35 / 2+ ) DE 4055 . 9+x 9 ( 39 / 2– ) DE This level proposed only by 1996Ba54. 4063 . 1+x 8 ( 37 / 2– ) D 4116 . 5+x 10 4 1 3 6 . 1 + x@ 7 ( 37 / 2+ ) DE Jπ: (E2) γ to (33/2+) level. ( 39 / 2– ) DE B(M1)/B(E2)(exp)=7.9 (µN/eb)2 20 (1996Ba54). 4149 . 4+x 6 ( 37 / 2+ ) DE Jπ: (M1) γ to (37/2–) level. 4167 . 2+x 8 ( 39 / 2– ) DE 4180 . 3+x e 10 ( 39 / 2– ) DE Jπ: (E2) γ to (35/2–) level. 4191 . 4+x 7 ( 39 / 2+ ) D Jπ: (E2) γ to (35/2+) level. 4210 . 9+x 6 ( 37 / 2+ ) DE ( 39 / 2– ) D 4239 . 2+x 13 4271 . 1+x 8 E This level proposed only by 1996Ba54. Continued on next page (footnotes at end of table) 165 19 3 P b 111 – 3 82 19 3 P b 111 – 3 82 NUCLEAR DATA SHEETS Adopted Levels, Gammas (continued) 193Pb E(level)† Jπ‡ Levels (continued) Comments XREF 4298 . 0+xb 7 ( 39 / 2+ ) DE 4313 . 4+xd 7 ( 37 / 2+ ) D 4360 . 8+x 11 ( 37 / 2+ ) D 4388 . 1+xb 7 ( 41 / 2+ ) D 4399 . 2+x 11 ( 39 / 2– ) DE 4435 . 2+x 11 ( 39 / 2– ) DE 4445 . 5+x 6 4 4 7 0 . 6 + x@ 8 ( 39 / 2+ ) D ( 41 / 2– ) DE Jπ: (E2) γ to (35/2–) level. B(M1)/B(E2)(exp)=28 (µN/eb)2 12 (1996Ba54). Jπ: (M1) γ to (39/2–) level. 4493 . 6+x E This level shown only by 1996Ba54. Their level scheme proposes this as the final level for the 232–keV γ in dipole band 2. See footnote for this, and other dipole band 2 transitions. at the end of the γ–ray table. 4532 . 8+x 8 ( 41 / 2– ) D 4537 . 0+xb 7 ( 43 / 2+ ) D 4538 . 8+x 10 ( 41 / 2– ) DE 4564 . 6+x 9 ( 39 / 2+ ) D 4577 . 2+x 7 ( 41 / 2+ ) DE 4591 . 3+x 8 ( 41 / 2– ) DE 4634 . 9+x 12 E 4661 . 8+x 11 This level proposed only by 1996Ba54. D 4760 . 6+x 11 ( 41 / 2+ ) DE Jπ: (E2) γ to (37/2+) level. 4769 . 0+xb 8 ( 45 / 2+ ) D Jπ: (M1) γ to (43/2+) level. 4784 . 2+x 7 4 8 2 8 . 1 + x@ 8 ( 41 / 2+ ) D ( 43 / 2– ) DE ( 43 / 2– ) D B(M1)/B(E2)(exp)=22 (µN/eb)2 8 (1996Ba54). Jπ: (M1) γ to (41/2–) level. 4861 . 6+x 8 4893 . 1+x e 12 4917 . 0+x 8 4945 . 1+x c 8 5033 . 3+x 9 5060 . 6+xb 9 ( 43 / 2– ) DE ( 43 / 2– ) D ( 43 / 2+ ) DE ( 43 / 2– ) DE ( 47 / 2+ ) DE Jπ: (E2) γ to (39/2–). T1/2§: 0.33 ps# 4. B(M1)=5.27 64 from 1998Cl06. Jπ: (M1) γ to (45/2+) level. 5 0 9 2 . 8 + x& 8 ( 45 / 2– ) D 5165 . 8+x 12 5169 . 4+x c 9 ( 43 / 2– ) DE Jπ: (E2) γ to (39/2–) level. ( 45 / 2+ ) DE Jπ: (M1+E2) γ to (43/2+) level. 5182 . 0+x 8 5 2 1 8 . 4 + x@ 9 ( 45 / 2– ) DE B(M1)/B(E2)(exp)=10.0 (µN/eb)2 38 (1996Ba54). ( 45 / 2– ) D 5281 . 1+x 15 5 3 3 1 . 9 + x& 8 ( 43 / 2– ) D ( 47 / 2– ) D Jπ: (M1) γ to (45/2–) level. 5425 . 8+xb 9 ( 49 / 2+ ) D T1/2§: 0.23 ps# +4–3. 5436 . 9+x c ( 47 / 2+ ) D Jπ: (M1) γ to (45/2+) level. Jπ: (M1) γ to (43/2–) level. Jπ: (M1) γ to (47/2+). 9 5439 . 8+x 10 ( 45 / 2– ) D 5501 . 7+x 9 5 5 9 7 . 5 + x& 9 ( 47 / 2– ) D 5668 . 3+x 15 5763 . 1+x c 5802 . 2+x 11 5815 . 4+xb 9 ( 49 / 2– ) D ( 45 / 2– ) D ( 49 / 2+ ) D ( 47 / 2– ) D ( 51 / 2+ ) D Jπ: (M1) γ to (47/2–) level. Jπ: (M1) γ to (47/2+) level. T1/2§: 0.21 ps# +4–5. B(M1)/B(E2)(exp)=8.2 (µN/eb)2 22 (1995Ba54). Jπ: (M1) γ to (49/2+). 5825 . 3+xa 9 5 9 2 7 . 0 + x& 9 6001 . 5+xa 10 6145 . 5+x c ( 49 / 2– ) D ( 51 / 2– ) D Jπ: (M1) γ to (49/2–) level. ( 51 / 2– ) D Jπ: (M1) γ to (49/2–) level. 11 ( 51 / 2+ ) D Jπ: (M1) γ to (49/2+) level. 6231 . 4+xb 10 ( 53 / 2+ ) D T1/2§: 0.25 ps# 3. 6285 . 2+xa 10 6 3 0 2 . 6 + x& 1 0 6597 . 1+xa 11 ( 53 / 2– ) D Jπ: (M1) γ to (51/2–) level. Jπ: (M1) γ to (51/2+) level. ( 53 / 2– ) D Jπ: (M1) γ to (51/2–) level. ( 55 / 2– ) D Jπ: (M1) γ to (53/2–) level. Jπ: (M1) γ to (53/2+) level. 6657 . 6+xb 10 ( 55 / 2+ ) D 6 7 1 5 . 5 + x& 1 1 ( 55 / 2– ) D Continued on next page (footnotes at end of table) 166 19 3 P b 111 – 4 82 19 3 P b 111 – 4 82 NUCLEAR DATA SHEETS Adopted Levels, Gammas (continued) 193Pb Jπ‡ E(level)† 6927 . 5+xa 11 ( 57 / 2– ) D ( 57 / 2+ ) D ( 57 / 2– ) D ( 59 / 2– ) D 7516+x ? b ( 59 / 2+ ) D 7713 . 5+xa 13 7932+x ? b ( 61 / 2– ) D ( 61 / 2+ ) D J≈ ( 23 / 2 ) Comments XREF 7090 . 3+xb 11 7 1 5 4 . 7 + x& 1 2 7312 . 0+xa 12 yf Levels (continued) Jπ: (M1) γ to (55/2–) level. G E(level): 4217 relative to the 13/2+ isomer was suggested by 1996Pe20 on the basis of a tentative 2222γ (Iγ=0.042 20) to 1995+x level. But this transition has not been confirmed in the work of 1999Ro21 using a larger detector array. 277 . 0+y f 3 J+2 G 2282γ (Iγ=0.035 20) and 2352γ (Iγ=0.034 20) proposed by 1996Du05 as linking transitions to normal–deformed states have not been confirmed by 1999Ro21 using a larger detector array, thus these γ rays together with a 2222γ (1996Du05) have been omitted here. 594 . 3+y f 951 . 6+y f 1349 . 1+y f 1786 . 9+y f 2264 . 3+y f 2781 . 6+y f 5 J+4 G 6 J+6 G 6 J+8 G 7 J+10 G 8 J+12 G 9 J+14 G 3337 . 7+y f 3932 . 5+y f 9 J+16 G 10 J+18 G 4565 . 9+y f 5237 . 7+y f 11 J+20 G 13 J+22 G 5945 . 9+y ? f zg 15 190 . 2+z g 5 422 . 8+z g 6 698 . 0+z g 7 1015 . 9+z g 8 1376 . 8+z g 8 1780 . 3+z g 9 2226 . 2+z g 9 2714 . 4+z g 10 3242 . 4+z g 11 3812 . 2+z g 13 4422 . 7+z g 15 5072 . 7+z g 16 5762 . 5+z ? g 18 J+24 G J1≈ ( 17 / 2 ) G J1+2 G J1+4 G J1+6 G J1+8 G J1+10 G J1+12 G J1+14 G J1+16 G J1+18 G J1+20 G J1+22 G J1+24 G J1+26 G G 2 5 1 . 5+uh 6 5 4 3 . 0+uh 7 8 7 5 . 4+uh 8 J2≈ ( 21 / 2 ) J2+2 G J2+4 G G 1 2 4 7 . 5+uh 8 1 6 5 9 . 4+uh 9 2 1 1 0 . 0+uh 9 J2+6 J2+8 G J2+10 G G 2 5 9 8 . 9+uh 1 0 3 1 2 5 . 5+uh 1 1 3 6 8 8 . 9+uh 1 1 J2+12 J2+14 G J2+16 G G 4 2 8 8 . 8+uh 1 3 4 9 2 5 . 8+uh 1 4 5 5 9 8 . 0+uh 1 5 J2+18 J2+20 G J2+22 G J2+24 G uh 6 3 0 7 . 2+uh 1 6 vi 273 . 0+v ? i 7 586 . 4+v i 10 939 . 5+v i 10 J2+26 G J3≈ ( 23 / 2 ) G J3+2 G J3+4 G J3+6 G 1331 . 4+v i 1761 . 4+v i 11 J3+8 G 11 G 2228 . 5+v i 2732 . 4+v i J3+10 12 J3+12 G 13 G 3271 . 9+v i 3847 . 0+v i J3+14 13 J3+16 G 14 G 4457 . 0+v i J3+18 15 J3+20 G Continued on next page (footnotes at end of table) 167 19 3 P b 111 – 5 82 19 3 P b 111 – 5 82 NUCLEAR DATA SHEETS Adopted Levels, Gammas (continued) 193Pb Jπ‡ E(level)† XREF 5101 . 5+v i 5777 . 9+v i 16 J3+22 G 17 G 6485 . 1+v i wj J3+24 19 J3+26 G G 1 0 0 . 5 +w k 8 2 1 3 . 2 +w j 4 3 3 5 . 1 +w k 6 J4≈ ( 17 / 2 ) J4+1 G J4+2 G G 4 6 7 . 9 +w j 7 6 1 0 . 6 +w k 7 7 6 3 . 9 +w j 7 J4+3 J4+4 G J4+5 G J4+6 G J4+7 G J4+8 G J4+9 G J4+10 G J4+11 G J4+12 G J4+13 G J4+14 G J4+15 G J4+16 G J4+17 G J4+18 J4+19 9 2 6 . 8 +w k 8 1 0 9 9 . 9 +w j 8 1 2 8 2 . 6 +w k 8 1 4 7 5 . 2 +w j 9 1 6 7 7 . 0 +w k 9 1 8 8 8 . 7 +w j 9 2 1 0 9 . 8 +w k 9 2 3 4 0 . 0 +w j 1 0 2 5 8 0 . 4 +w k 1 0 2 8 2 8 . 5 +w j 1 2 3 0 8 7 . 8 +w k 1 1 3 3 5 5 . 0 +w j 1 3 3 6 3 1 . 3 +w k 1 2 † Levels (continued) Jπ‡ E(level)† 3 9 1 7 . 2 +w j 1 4 4 2 1 1 . 0 +w k 1 3 4 5 1 3 . 4 +w j 1 6 XREF tm J4+20 G J4+21 G J4+22 G J4+23 G J4+24 G J4+25 G J4+26 G J4+27 G J4+28 G J4+29 G J5 G 7 J5+2 G 10 G 900 . 5+s l 1279 . 4+s l 1696 . 6+s l J5+4 10 J5+6 G 12 J5+8 G 13 G 2150 . 6+s l 2641 . 7+s l J5+10 14 J5+12 G 15 G 3167 . 8+s l 3729 . 1+s l J5+14 15 J5+16 G 16 G 17 J5+20 G G 4325 . 5+s l 4956 . 6+s l J5+18 19 G G 5620 . 8+s l J5+22 2349 . 7+an 14 2845 . 3+an 15 3380 . 7+an 17 20 J5+24 G 3956 . 0+an 19 4 8 2 5 . 6 +w k 1 5 5 1 4 4 . 7 +w j 1 8 5 4 7 5 . 1 +w k 1 6 5 8 1 1 . 5 +w j 2 0 6 1 5 9 . 1 +w k 1 7 6 5 1 2 . 0 +w j 2 2 6 8 7 7 . 0 +w k 1 8 sl 260 . 6+s l 560 . 4+s l Jπ‡ E(level)† 2 8 1 . 8 + tm 6 6 0 3 . 2 + tm 9 9 6 4 . 1 + tm 1 0 1 3 6 2 . 6 + tm 1 1 1 7 9 8 . 5 + tm 1 2 2 2 7 0 . 8 + tm 1 4 2 7 7 8 . 9 + tm 1 5 3 3 2 2 . 1 + tm 1 6 3 9 0 0 . 1 + tm 1 7 4 5 1 2 . 1 + tm 1 8 5 1 5 8 . 9 + tm 1 9 an J6 G J6+2 G J6+4 G J6+6 G J6+8 G J6+10 G J6+12 G J6+14 G J6+16 G J6+18 G J6+20 G J6+22 G G 212 . 9+an 5 468 . 7+an 7 766 . 0+an 10 J7 J7+2 G J7+4 G G 1102 . 5+an 11 1478 . 3+an 13 1894 . 2+an 13 J7+6 J7+8 G J7+10 G J7+12 G J7+14 G J7+16 G J7+18 G J7+20 G From least squares fit to Eγ as calculated in (HI,xnγ) from 1996Du18 and (HI,xnγ):SD reactions. Note that there is a, somewhat erratic, trend towards lower γ–ray energies in 1996Ba54. These add up and tend to depress the level energies from 1994Ba54 by up to ≈5 keV (see appropriate dataset). ‡ From (HI,xnγ) or (HI,xnγ):SD, except for g.s. and the 0+x level. The assignments are based on multipolarities of deexciting transitions (from α(K)exp and γ(θ) measurements), assumption of increasing J with increasing E, and band structure. The multipolarity arguments are given in comments. For SD bands, the assignments are based on band structure and γ anisotropy, the lowest level spin in each band having been estimated using the spin–fit method. § From γγ(t) or γ(t) in (HI,xnγ), except as noted. # Lifetimes obtained from fitting of Doppler broadened γ–ray peaks (1998Cl06). @ (A): Magnetic dipole band 1 (1996Du18) This band is the same as Band 1a in 1996Ba54. & (B): Magnetic dipole band 1a (1996Du18) This band is the analogue of Band 1b in 1996Ba54. a (C): Magnetic dipole band 1b (1996Du18) None of the transitions in this band are observed in 1996Ba54. b (D): Magnetic dipole band 2 (1996Du18) This band is almost the same as Band 2 in 1996Ba54. There is a significant difference however in the energies for the levels of this band, because in 1996Ba54 a single 197–keV γ ray connects the final level of the 232–keV transition with the 4297–keV bandhead. Instead, 1996Du18 place a sequence of two γ rays (90 keV and 149 keV) in its place, thereby shifting the Band 2 levels upwards by ≈45 keV, as compared to those shown in 1996Ba54. This modified scheme also implies a change in the proposed spin sequences for the levels in this band. c (E): Magnetic dipole band 3 (1996Du18) With a single exception (224–keV γ) the transitions in this group are not observed in 1996Ba54. d (F): Magnetic dipole band 4 (1996Ba54) The transitions in this group are not assigned to a band in 1996Du18. e (G): Band 5. f (H): SD–1 band (1999Ro21,1995Hu01,1996Du05,1996Pe20). Configuration=ν3/2[761] α=–1/2. From (24Mg,5nγ); band intensity relative to total 193Pb channel is 0.5%. Q(intrinsic)=17.3 +7–6 (1998Va18). See footnote to SD–2 Band regarding relationship between these two SD bands. g (I): SD–2 band (1999Ro21,1995Hu01,1996Du05). Configuration=ν3/2[761] α=+1/2. From (24Mg,5nγ); band intensity relative to total 193Pb channel is 0.3% (1995Hu01). Band intensity relative to SD–1 band=50% (1996Du05), 38% 8 (1999Ro21). SD–1 and SD–2 represent favored and unfavored signature components (with a large observed splitting) of the low–K, 3/2[761], N=7 neutron orbital (from (24Mg,5nγ)). h (J): SD–3 band (1999Ro21,1995Hu01,1996Du05). Configuration=ν3/2[642] α=+1/2. From (24Mg,5nγ); band intensity relative to total 193Pb channel is 0.25% (1995Hu01). Band intensity relative to SD–1 band=50% (1996Du05), 46% 9 (1999Ro21) See footnote to SD–4 Band regarding relationship between these two SD bands. i (K): SD–4 band (1999Ro21,1995Hu01,1996Du05). Configuration=ν3/2[642] α=–1/2. From (24Mg,5nγ); band intensity relative to total 193Pb channel is 0.25% (1995Hu01). Band intensity relative to SD–1 band=50% (1996Du05), 23% 5 (1999Ro21). SD–3 and SD–4 are interpreted as signature partners (no signature splitting) based on a high K, 3/2[642] neutron orbital. The 5/2[512] neutron orbital suggested by 1995Hu01 is not supported by calculations and experimental comparisons of 1996Du05 and 1999Ro21. j (L): SD–5 band (1999Ro21,1995Hu01,1996Du05). Configuration=ν9/2[624] α=+1/2. From (24Mg,5nγ); band intensity relative to total 193Pb channel is 0.2% (1995Hu01). Band intensity relative to SD–1 band=30% (1996Du05), 15% 3 (1999Ro21) See footnote to SD–6 Band regarding relationship between these two SD bands. Footnotes continued on next page 168 XREF 19 3 P b 111 – 6 82 19 3 P b 111 – 6 82 NUCLEAR DATA SHEETS Adopted Levels, Gammas (continued) 193Pb Levels (continued) k (M): SD–6 band (1999Ro21,1995Hu01,1996Du05). Configuration=ν9/2[624] α=–1/2. From (24Mg,5nγ); band intensity relative to total 193Pb channel is 0.2% (1995Hu01). Band intensity relative to SD–1 band=30% (1996Du05), 20% 4 (1999Ro21). SD–5 and SD–6 are interpreted as signature partners (no signature splitting) based on a high K, 9/2[624] neutron orbital. From dipole interband transitions, 1996Du05 deduce B(M1)/B(E2)=0.15 4. gK=–0.39 12 (1996Du05), –0.27 9 (1999Ro21) from M1/E2 branching ratios, using l Θ0=18.4 and K=9/2. (N): SD–7 band (1999Ro21). Band intensity relative to SD–1 band=17% 3 (1999Ro21). SD–7 and SD–8 are proposed as signature partners with configuration=ν5/2[512]. m (O): SD–8 band (1999Ro21). Band intensity relative to SD–1 band=14% 3 (1999Ro21). SD–7 and SD–8 are proposed as signature partners with configuration=ν5/2[512]. n (P): SD–9 band (1999Ro21). Band intensity relative to SD–1 band=5% 1 (1999Ro21). Configuration=ν7 intruder orbital. 3 γ( 1 9 3 P b ) It should be noted that there are sharp discrepancies between the intensities reported among the (HI,xnγ) datasets. Of these, 1996Du18 and 1991La07 provide total intensity values, while 1996Ba54 lists γ intensities. It is not clear whether these differences are due to varying measurement conditions, or, possibly more likely, to the diversity in the high–lying levels populated by the various reaction channels used. For the adopted values the data from 1996Du18 have been used, where the Iγ values have been calculated by the evaluators using the experimental conversion coefficients from 1991La07, where available. Else, total conversion coefficients have been used, based on the multipolarities provided either by the authors, or estimated on the basis of DCO ratios, angular distribution coefficients, membership in various band structures, or assumed from ∆Jπ values, if no other information was available. We refer the user to the (HI,xnγ) datasets for more details. E(level) 881 . 6+x Eγ# 881 . 6 3 Iγ@ 100 Mult.§ α§ δ§ E2 I(γ+ce) Comments Mult.: αK(exp)=0.0074 5, 0 . 00855 αL12(exp)=0.00147 16 (1991La07); theory: αK(E2)=0.00672, αL12(E2)=0.00130. 1022 . 1+x 1022 . 3 3 100 ( M1 +E 2 ) Mult.: αK(exp)=0.0051 7 0 . 0117 53 (1991La07); theory: αK(M1)=0.0140, αK(E2)=0.0051. 1401 . 8+x 520 . 1 3 100 E2 Mult.: αK(exp)=0.0225 15, 0 . 0267 αL12(exp)=0.0043 3, αL3(exp)=0.0011 3 (1991La07); theory: αK(E2)=0.0190, αL12(E2)=0.00497, αL3(E2)=0.000793. 1519 . 4+x 497 . 3 5 100 E2 0 . 0297 1991La07 have seen, but not placed, this γ, with Eγ=497.7 4 keV, Iγ=8.5 5. Mult.: αK(exp)=0.022 5; αL12(exp)=0.0044 22 (1991La07); theory: αK(E2)=0.0209, αL12(E2)=0.00565. 1550 . 2+x 527 . 8 4 73 7 E2 0 . 0258 73 7 Mult.: αK(exp)=0.021 4 (1991La07); theory: αK(E2)=0.0185. 668 . 2 5 100 7 E 2 +M1 1 . 8 +9–4 0 . 0236 42 100 7 1996Ba54 quote a ratio I(γ)(668)/I(γ)(528)=0.88 25. Mult.: αK(exp)=0.0183 32 (1991La07), theory: αK(M1)=0.0418, αK(E2)=0.0115. 1585 . 9+x ( 66 . 5 10 ) 184 . 0 4 100 E 1 +M2 0 . 050 +14–19 0 . 116 14 Mult.: αK(exp)=0.0916 92 (1991La07); theory: αK(E1)=0.077, αK(M2)=6.0. 1994 . 8+x 593 . 1 4 100 E 2 ( +M3 ) 0 . 15 6 0 . 029 9 Mult.: αK(exp)=0.023 4, αL12(exp)=0.0048 10 (1991La07); theory: αK(E2)=0.0145, αL12(E2)=0.00346, αK(M3)=0.320, αL12(M3)=0.0793. 2058 . 9+x 472 . 7 4 100 ( M1 ) 0 . 126 Continued on next page (footnotes at end of table) 169 19 3 P b 111 – 7 82 19 3 P b 111 – 7 82 NUCLEAR DATA SHEETS Adopted Levels, Gammas (continued) γ(193Pb) (continued) E(level) 2141 . 4+x Eγ# 591 . 1 4 Iγ@ 100 6 α§ δ§ Mult.§ E2 0 . 020 I(γ+ce) 100 6 Comments Mult.: αK(exp)=0.019 3 (1991La07); theory: αK(E2)=0.0146. 739 . 7 3 83 6 M1 +E 2 0 . 64 16 0 . 0313 29 84 6 Mult.: αK(exp)=0.0255 23 (1991La07); theory: αK(M1)=0.0321, αK(E2)=0.0094. 2142 . 1+x 556 . 0 6 100 ( E2 ) Mult.: αK(exp)=0.015 3 0 . 0228 (1991La07); theory: αK(E2)=0.0166, αK(M1)=0.0674. 2172 . 6+x 622 . 3 6 2213 . 8+x ( 40 . 9 10 ) 100 [ E2 ] 0 . 0177 [ M1 ] 72 . 1 ( M1 +E 2 ) 23 . 9 0 . 21 +4–2 Mult.: α((L1+L2)/L3)(exp)=8.8 5.5 4 20 (1991La07); theory: α(L12/L3)(M1)=124.0, α(L12/L3)(E2)=1.16. 219 . 0 3 52 10 ( M1 ) 1 . 02 100 10 Mult.: αK(exp)=1.14 13, αL12(exp)=0.11 6 (1991La07); theory: αK(M1)=0.833, αK(E2)=0.134, αL12(M1)=0.143, αL12(E2)=0.091. 811 . 9 6 100 6 E2 0 . 0102 95 6 Mult.: αK(exp)=0.0038 28 (1991La07); theory: αK(E2)=0.00786. 2322 . 2+x 180 . 0 4 100 8 M1 +E 2 4 +3–1 0 . 68 5 100 7 Mult.: αK(exp)=0.283 51, αL(exp)=0.36 4 (1991La07); theory: αK(M1)=1.442, αK(E2)=0.210, αL(M1)=0.249, αL(E2)=0.304. 263 . 1 3 18 3 2404 . 9+x ? 819 . 0b 10 100 2426 . 7+x 212 . 9 3 100 9 [ E2 ] 0 . 171 12 3 γ ray seen only by 1996Ba54. M1 1 . 10 100 9 Mult.: αK(exp)=1.05 6, αL12(exp)=0.146 10 (1991La07); theory: αK(M1)=0.901, αL12(M1)=0.154. 431 . 9 4 2524 . 9+x 98 . 2 5 311 . 1 4 2526 . 9+x 204 . 6 4 25 5 5 . 1 10 100 6 2 . 9 18 ( M1 +E 2 ) 0 . 10 6 [ M1 , E 2 ] 8 . 3 16 ( M1 ) 0 . 389 E 1 +M2 0.7 4 13 3 34 9 100 6 2 . 0 14 8 . 6 29 Mult.: αK(exp)=1.9 16, αL12(exp)=0.21 12 (1991La07); theory: αK(E1)=0.0595, αK(M1)=1.01, αK(E2)=0.157, αK(M2)=4.19, αL12(E1)=0.0090, αL12(M1)=0.173, αL12(E2)=0.118, αL12(M2)=1.09. Mult.: While internal conversion coefficients and angular distributions (both with large experimental uncertainties), allow either E1+M2 or M1+E2, consistency of the level scheme indicates parity change for this transition. 532 . 4 3 100 14 E 2 ( +M3 ) 0 . 14 +5–7 0 . 037 10 100 14 Mult.: αK(exp)=0.0208 22, αL12(exp)=0.0091 15 (1991La07); theory: αK(E2)=0.0181, αL12(E2)=0.00465, αK(M3)=0.456, αL12=0.118. Continued on next page (footnotes at end of table) 170 19 3 P b 111 – 8 82 19 3 P b 111 – 8 82 NUCLEAR DATA SHEETS Adopted Levels, Gammas (continued) γ( 1 9 3 P b ) ( c o n t i n u e d ) E(level) 2584 . 8+x Eγ# 158 . 1 3 Iγ@ 100 α§ Mult.§ E1 I(γ+ce) Comments Mult.: αL12(exp)=0.0077 71 (1991La07); theory: 0 . 138 αL12=0.0170. B(E1)(W.u.)=4.8×10–6 4. 2612 . 5+x 85 . 6 4 100 ( E2 ) Mult.: α(L12/L3)(exp)=0.93 19, α(L/M)(exp)=5.1 12 . 1 17 (1991La07); theory: α(L12/L3)(M1)=126.0, α(L12/L3)(E2)=1.23, α(L/M)(M1)=4.26, α(L/M)(E2)=3.78. B(E2)(W.u.)=0.79 8. γ ray seen only by 1996Ba54. 2653 . 6+x 331 . 3 4 19 12 595 . 0 6 100 50 [ E2 ] 0 . 0196 2672 . 2+x 677 . 6 6 100 ( E2 ) 0 . 0147 2686 . 9+x 102 . 1 4 100 ( M1 ) 8 . 84 2707 . 2+x 301 . 6b 6 γ ray seen only by 1996Ba54. If its placement is confirmed, its relative intensity would be about 25 8. 385 . 0 5 39 19 [ M1 ] 0 . 2 1 8& 46 23 100 23 565 . 0 5 100 23 ( E2 ) 0 . 0220 2769 . 4+x 342 . 7 3 100 ( M1 ) 0 . 299 2939 . 2+x 252 . 3 3 100 ( M1 ) 0 . 691 From the level half–life 2005Gl09 estimate B(M1)=1.1 2 µN2. 1991La07 show a 253.6 keV γ deexciting their level at 3220 keV. This level is not established in the newer references. B(M1)(W.u.)=0.25 7. 2994 . 6+x 0 . 0792a 341 . 0 4 47 24 672 . 6 5 100 34 ( E2 ) 0 . 0149 3080 . 2+x 555 . 4 5 100 ( M1 ) 0 . 083 3128 . 6+x 421 . 4 4 22 9 [ M1 ] 0 . 1 7 1& 25 10 806 . 4 6 100 20 ( E2 ) 0 . 0102 100 20 364 . 0 5 100 6 ( M1 ) 0 . 254 100 7 461 . 5 5 10 4 706 . 7 7 25 . 4 32 3133 . 4+x 0 . 1 3 5& (Q) 3249 . 9+x 542 . 7 5 100 [ M1 ] 0 . 0877 675 . 8 6 100 [ M1 ] 0 . 0494 3282 . 1+x 609 . 9 6 100 25 755 . 1 7 84 17 381 . 5 3 100 4 9 4 0 . 0135a 3260 . 7+x 3320 . 7+x 50 17 100 33 [ E2 ] 0 . 0185 (Q) 0 . 0117 ( M1 ) 0 . 224 20 . 5 26 100 25 83 17 100 4 From the level half–life 2005Gl09 estimate B(M1)≥1.4 µN2. 1991La07 show a 381.7 keV γ deexciting their level at 2967 keV. This level is not confirmed in the newer references. B(M1)(W.u.)>0.31. 633 . 8 6 4 . 7 19 ( E2 ) 0 . 017 3 . 8 16 From the level half–life 2005Gl09 estimate B(E2)≥0.1 (eb)2. B(E2)(W.u.)>3.0. 3376 . 4+x 296 . 3 3 ( M1 ) 0 . 444 851 . 7 5 100 8 35 . 9 23 ( E2 ) 0 . 00916 3414 . 8+x 742 . 3 6 100 ( E2 ) 0 . 0121 3418 . 8+x 158 . 0 4 16 8 [ M1 ] 2 . 55 834 . 0 6 100 31 [ E2 ] 0 . 00955 3541 . 6+x 547 . 0 6 100 ( E2 ) 0 . 0237 3542 . 8+x 409 . 5 4 100 9 ( M1 ) 0 . 185 773 . 5 7 15 6 [ E2 ] 0 . 0111 0 . 362 51 . 3 33 100 8 46 23 100 31 100 9 15 6 γ ray seen only by 1996Ba54. 3607 . 0+x 996 . 5 8 100 3640 . 3+x 319 . 6 3 100 ( M1 ) 3673 . 0+x 1145 . 2 10 100 (Q) 3702 . 2+x 1030 . 1 10 50 25 [ E2 ] 0 . 0063 50 25 1174 . 9 10 100 50 [ E2 ] 0 . 0049 100 50 100 5 3722 . 3+x 401 . 6 4 783 . 1 8 3741 . 8+x 613 . 2 7 100 5 15 . 4 31 100 ( M1 ) 0 . 195 ( E2 ) 0 . 0109 ( E2 ) 0 . 0183 3772 . 1+x 395 . 8 4 100 ( E2 ) 0 . 0527 3822 . 5+x 540 . 4 6 100 [ M1 ] 0 . 0887 13 . 0 26 Continued on next page (footnotes at end of table) 171 19 3 P b 111 – 9 82 19 3 P b 111 – 9 82 NUCLEAR DATA SHEETS Adopted Levels, Gammas (continued) γ(193Pb) (continued) E(level) 3839 . 5+x Eγ# 462 . 9 4 759 . 4 7 Iγ@ 100 8 20 . 4 24 α§ Mult.§ ( M1 ) 0 . 134 ( E2 ) 0 . 0116 I(γ+ce) Comments 100 8 18 . 2 21 γ ray seen only by 1996Ba54. 3860 . 0+x 447 . 6 8 100 3906 . 6+x 487 . 8 6 100 3924 . 8+x 382 . 0 3 100 17 ( M1 ) 0 . 223 510 . 2 6 23 9 [ M1 ] 0 . 1 0 3& 21 8 791 . 5 7 40 10 ( E2 ) 0 . 0106 33 8 (D) 100 17 γ ray seen only by 1996Ba54. 3987 . 5+x 739 . 5 8 100 3991 . 7+x 448 . 9 4 100 3997 . 1+x 294 . 8 4 17 9 [ E2 ] 0 . 121 18 9 324 . 0 4 17 9 [ E2 ] 0 . 0916 18 9 581 . 8 5 100 37 [ E2 ] 0 . 0206 100 37 1996Ba54 place a 581.4–keV transition as deexciting their level at 4441 keV. This level has no analogue in the scheme of 1996Du18. 4003 . 5+x 164 . 0 3 4055 . 9+x 415 . 6 5 461 . 2 5 100 11 20 8 100 ( M1 ) 2.3 [ M1 ] 0 . 135 [ M1 ] 0 . 178 100 11 6 . 8 27 4063 . 1+x 156 . 5 3 100 4116 . 5+x 701 . 7 7 100 ( E2 ) 0 . 0137 4136 . 1+x 413 . 8 5 100 7 ( M1 ) 0 . 180 815 . 4 7 23 6 ( E2 ) 0 . 01 20 5 4149 . 4+x 146 . 0 3 100 8 ( M1 ) 3 . 19 100 8 377 . 3 5 34 17 [ M1 ] 0 . 231 10 5 4167 . 2+x 444 . 9 5 100 16 ( M1 ) 0 . 148 100 16 4180 . 3+x 638 . 7 6 846 . 5 8 4191 . 4+x 4210 . 9+x 9 . 1 45 100 [ E2 ] 0 . 00927 ( E2 ) 0 . 0167 100 ( E2 ) 0 . 0453 438 . 7 4 100 ( M1 ) 0 . 154 4239 . 2+x 632 . 2 6 100 208 . 0 3 100 [ M1 ] 1 . 18 4298 . 0+x 148 . 4 3 100 ( M1 ) 3 . 05 4313 . 4+x 388 . 7 4 100 30 [ M1 ] 0 . 213 770 . 2 8 40 50 [ E2 ] 0 . 0112 1 . 38 4388 . 1+x 946 . 0 10 100 30 33 40 100 90 . 0 5 196 . 9 3 100 ( M1 ) 4399 . 2+x 657 . 4 8 100 ( E2 ) 0 . 0157 4435 . 2+x 693 . 4 7 100 ( E2 ) 0 . 0140 4445 . 5+x 234 . 5 4 45 12 296 . 4 4 32 16 448 . 1 6 100 27 4470 . 6+x 8 4 ( 41 . 5 5 ) 419 . 6 5 4271 . 1+x 4360 . 8+x 100 7 303 . 4 4 334 . 5 4 27 10 100 7 ( M1 ) 0 . 416 ( M1 ) 0 . 319 748 . 3 8 19 10 ( E2 ) 0 . 0119 4532 . 8+x 261 . 7 3 100 36 ( M1 ) 0 . 624 4537 . 0+x 148 . 9 3 100 ( M1 ) 3 . 02 4538 . 8+x 482 . 9 5 100 ( M1 ) 0 . 119 396 . 6 4 14 7 68 50 4564 . 6+x 567 . 5 6 100 4577 . 2+x 279 . 2 3 100 ( M1 ) 0 . 523 4591 . 3+x 424 . 1 5 100 18 ( M1 ) 0 . 169 455 . 3 5 56 27 869 . 1 8 29 11 100 7 11 11 4634 . 9+x 647 . 5 8 100 4661 . 8+x 545 . 3 6 100 γ ray seen only by 1996Ba54. 4760 . 6+x 644 . 1 6 100 ( E2 ) 0 . 0164 4769 . 0+x 232 . 0† 3 100 ( M1 ) 0 . 870 4784 . 2+x 338 . 7 5 100 4828 . 1+x 295 . 2 4 15 10 ( M1 ) 0 . 449 17 11 357 . 7 4 100 22 ( M1 ) 0 . 266 100 22 ( E2 ) 0 . 0141 4861 . 6+x 692 . 3 8 7 7 328 . 8 4 91 46 6 6 Continued on next page (footnotes at end of table) 172 19 3 P b 111 – 1 0 82 19 3 P b 111 – 1 0 82 NUCLEAR DATA SHEETS Adopted Levels, Gammas (continued) γ( 1 9 3 P b ) ( c o n t i n u e d ) E(level) Eγ# Iγ@ Mult.§ α§ 4861 . 6+x 390 . 8 5 100 76 ( M1 ) 0 . 210 4893 . 1+x 712 . 8 8 100 ( E2 ) 0 . 0132 4917 . 0+x 325 . 7 5 100 4945 . 1+x 367 . 9 4 100 ( M1 ) 0 . 247 5033 . 3+x 100 ( M1 ) 0 . 151 5060 . 6+x 442 . 0 5 291 . 6† 4 100 ( M1 ) 0 . 464 5092 . 8+x 175 . 9 4 13 13 ( M1 ) 1 . 89 231 . 1 4 100 40 ( M1 ) 0 . 879 264 . 8 5 35 22 [ M1 ] 0 . 6 0 5& 5165 . 8+x 730 . 6 8 100 50 ( E2 ) 0 . 0125 5169 . 4+x 224 . 3 4 100 ( M1 +E 2 ) 0 . 62 34 5182 . 0+x 353 . 7 4 100 25 ( M1 ) 0 . 274 711 . 7 8 11 11 ( M1 ) 0 . 210 100 ( M1 ) 0 . 801 100 9 ( M1 ) 0 . 252 ( E2 ) 0 . 0157 766 . 6 8 I(γ+ce) Comments B(M1)(W.u.)=1.84 23. 20 20 100 40 30 20 50 25 5218 . 4+x 390 . 3 4 100 5281 . 1+x 100 5331 . 9+x 1225 . 2 10 239 . 1‡ 3 5425 . 8+x 365 . 2† 4 100 9 B(M1)=4.32 +56–75 (1998Cl06). B(M1)(W.u.)=1.4 1. 656 . 8 8 13 . 1 44 5436 . 9+x 267 . 5 4 100 ( M1 ) 0 . 588 5439 . 8+x 406 . 5 6 100 ( M1 ) 0 . 189 5501 . 7+x 319 . 7 4 100 ( M1 ) 0 . 361 5597 . 5+x 265 . 6‡ 4 100 ( M1 ) 0 . 600 ( M1 ) 0 . 342 100 10 ( M1 ) 0 . 212 24 6 ( E2 ) 0 . 0117 ( M1 ) 0 . 349 5668 . 3+x 1129 . 5 10 100 5763 . 1+x 326 . 2 4 100 5802 . 2+x 362 . 4 5 389 . 6† 4 100 5815 . 4+x 10 . 5 35 100 10 B(E2)(W.u.)=28 8. B(M1)=4.01 +95–76 from 1998Cl06. B(M1)(W.u.)=1.2 +4–3. 754 . 7 8 5825 . 3+x 5927 . 0+x 323 . 6 4 329 . 5‡ 4 100 100 ( M1 ) 0 . 333 6001 . 5+x 176 . 3 3 100 ( M1 ) 1 . 87 6145 . 5+x 382 . 4 4 100 ( M1 ) 0 . 222 6231 . 4+x 416 . 1† 5 100 13 ( M1 ) 0 . 177 805 . 6 9 6285 . 2+x 283 . 7 4 100 ( M1 ) 0 . 500 375 . 6‡ 4 100 ( M1 ) 0 . 233 6597 . 1+x 311 . 9 4 100 ( M1 ) 0 . 386 6657 . 6+x 426 . 1† 5 100 16 ( M1 ) 0 . 166 B(M1)=2.83 34 (1998Cl06). ( M1 ) 0 . 330 29 10 6715 . 5+x 412 . 9 5 100 6927 . 5+x 100 7090 . 3+x 330 . 4 5 432 . 7† 5 7154 . 7+x 439 . 2 5 858 . 8 9 100 33 ( E2 ) 0 . 0090 100 19 19 ( M1 ) 0 . 154 ( M1 ) 0 . 219 7312 . 0+x 384 . 5 5 100 7516+x ? 426 . 1b 5 100 7713 . 5+x 401 . 5 6 100 7932+x ? 416 . 1b 6 100 277 . 0+y 277 . 0 3 0 . 47 5 594 . 3+y 317 . 3 3 0 . 95 9 951 . 6+y 357 . 3 3 0 . 90 9 1349 . 1+y 397 . 5 3 1 . 05 11 1786 . 9+y 437 . 8 3 0 . 90 9 2264 . 3+y 477 . 4 3 0 . 86 9 2781 . 6+y 517 . 3 4 0 . 73 6 3337 . 7+y 556 . 1 3 0 . 74 6 3932 . 5+y 594 . 8 4 0 . 46 5 4565 . 9+y 633 . 4 5 0 . 22 5 5237 . 7+y 671 . 8 6 708 . 2b 8 0 . 14 5 5945 . 9+y ? B(E2)(W.u.)=27 +10–27. 7 . 3 37 6302 . 6+x 842 . 2 9 20 5 0 . 05 4 SD band transition from 1996Du05, not confirmed by 1999Ro21. Continued on next page (footnotes at end of table) 173 19 3 P b 111 – 1 1 82 19 3 P b 111 – 1 1 82 NUCLEAR DATA SHEETS Adopted Levels, Gammas (continued) γ(193Pb) (continued) E(level) Eγ# I(γ+ce) 190 . 2+z 190 . 2 5 0 . 19 5 422 . 8+z 232 . 6 3 0 . 55 5 698 . 0+z 275 . 2 3 0 . 68 5 1015 . 9+z 317 . 9 3 0 . 91 9 1376 . 8+z 360 . 9 3 1 . 07 10 1780 . 3+z 403 . 5 3 0 . 97 10 2226 . 2+z 445 . 9 3 0 . 78 7 2714 . 4+z 488 . 2 4 0 . 68 6 3242 . 4+z 528 . 0 5 0 . 30 5 3812 . 2+z 569 . 8 6 0 . 15 5 4422 . 7+z 610 . 5 7 0 . 08 5 5072 . 7+z 650 . 0 7 689 . 8b 8 0 . 05 4 0 . 04 4 251 . 5 6 0 . 07 7 5762 . 5+z ? 2 5 1 . 5+u 5 4 3 . 0+u 291 . 5 3 0 . 76 7 8 7 5 . 4+u 332 . 4 3 0 . 86 7 1 2 4 7 . 5+u 372 . 1 3 1 . 03 9 1 6 5 9 . 4+u 411 . 9 3 1 . 04 9 2 1 1 0 . 0+u 450 . 6 3 1 . 04 10 2 5 9 8 . 9+u 488 . 9 3 1 . 00 10 3 1 2 5 . 5+u 526 . 6 4 0 . 95 10 3 6 8 8 . 9+u 563 . 4 4 0 . 54 7 Comments SD band transition from 1996Du05, not confirmed by 1999Ro21. 4 2 8 8 . 8+u 599 . 9 5 0 . 36 7 4 9 2 5 . 8+u 637 . 0 5 0 . 30 7 5 5 9 8 . 0+u 672 . 2 6 0 . 15 6 6 3 0 7 . 2+u 709 . 2 7 273 . 0b 7 0 . 07 6 Eγ: 709.3 6 (1996Du05) was assigned to SD–4 band. 0 . 17 7 SD band transition from 1996Du05, not confirmed by 1999Ro21. 273 . 0+v ? 586 . 4+v 313 . 4 6 0 . 44 7 939 . 5+v 353 . 1 4 0 . 68 7 1331 . 4+v 391 . 9 3 0 . 85 7 1761 . 4+v 430 . 0 3 0 . 81 8 2228 . 5+v 467 . 1 4 0 . 97 10 2732 . 4+v 503 . 9 4 1 . 00 10 3271 . 9+v 539 . 5 4 1 . 02 10 3847 . 0+v 575 . 1 3 0 . 82 8 4457 . 0+v 610 . 0 5 0 . 66 7 5101 . 5+v 644 . 5 6 0 . 31 7 5777 . 9+v 676 . 4 6 0 . 20 7 6485 . 1+v 0 . 07 7 1 0 0 . 5 +w 707 . 2 8 101b 2 1 3 . 2 +w 112b 3 3 5 . 1 +w 122 . 0 5 4 6 7 . 9 +w 132 . 9 5 6 1 0 . 6 +w 142 . 5 5 7 6 3 . 9 +w 153 . 2 5 213 . 2 4 234 . 6 5 254 . 6 7 275 . 5 5 296 . 2 5 9 2 6 . 8 +w 163 . 0 5 1 0 9 9 . 9 +w 172 . 8 5 1 2 8 2 . 6 +w 182 . 7 5 1 4 7 5 . 2 +w 193 . 0 5 1 6 7 7 . 0 +w 201 . 9 5 1 8 8 8 . 7 +w 211 . 7 5 2 1 0 9 . 8 +w 221 . 0 5 316 . 2 5 336 . 1 4 355 . 9 5 375 . 1 5 394 . 4 5 413 . 5 5 Eγ: 707.3 6 (1996Du05) was assigned to SD–3 band. 0 . 53 10 0 . 13 7 0 . 72 11 0 . 35 7 0 . 71 14 0 . 45 7 0 . 91 10 0 . 87 8 0 . 92 10 0 . 95 9 1 . 04 14 Continued on next page (footnotes at end of table) 174 19 3 P b 111 – 1 2 82 19 3 P b 111 – 1 2 82 NUCLEAR DATA SHEETS Adopted Levels, Gammas (continued) γ( 1 9 3 P b ) ( c o n t i n u e d ) E(level) Eγ# 2 1 0 9 . 8 +w 432 . 8 4 2 3 4 0 . 0 +w 231b 451 . 2 5 2 5 8 0 . 4 +w 470 . 6 4 I(γ+ce) E(level) Eγ# I(γ+ce) E(level) Eγ# I(γ+ce) 6 8 7 7 . 0 +w 717 . 9 7 0 . 07 7 1798 . 5+ t 435 . 9 4 0 . 58 11 260 . 6+s 260 . 6 7 0 . 24 4 2270 . 8+ t 472 . 3 6 0 . 51 7 0 . 89 10 560 . 4+s 299 . 8 6 0 . 51 7 2778 . 9+ t 508 . 1 6 0 . 58 8 0 . 90 9 900 . 5+s 340 . 1 4 0 . 52 7 3322 . 1+ t 543 . 2 6 0 . 36 7 1 . 02 10 2 8 2 8 . 5 +w 488 . 6 5 0 . 73 10 1279 . 4+s 378 . 9 5 0 . 63 10 3900 . 1+ t 578 . 0 5 0 . 67 8 3 0 8 7 . 8 +w 507 . 4 4 0 . 83 9 1696 . 6+s 417 . 2 5 1 . 00 18 4512 . 1+ t 612 . 0 6 0 . 29 5 3 3 5 5 . 0 +w 526 . 5 5 0 . 95 16 2150 . 6+s 454 . 0 5 0 . 69 11 5158 . 9+ t 646 . 8 7 0 . 43 7 3 6 3 1 . 3 +w 543 . 5 5 0 . 75 7 2641 . 7+s 491 . 1 5 0 . 54 11 212 . 9+a 212 . 9 5 0 . 40 5 3 9 1 7 . 2 +w 562 . 2 6 0 . 71 13 3167 . 8+s 526 . 1 5 0 . 82 12 468 . 7+a 255 . 8 5 1 . 00 12 4 2 1 1 . 0 +w 579 . 7 5 0 . 44 7 3729 . 1+s 561 . 3 5 0 . 80 12 766 . 0+a 297 . 3 6 0 . 36 5 4 5 1 3 . 4 +w 596 . 2 7 0 . 35 10 4325 . 5+s 596 . 4 6 0 . 65 12 1102 . 5+a 336 . 6 6 0 . 54 7 4 8 2 5 . 6 +w 614 . 6 7 0 . 35 7 4956 . 6+s 631 . 1 7 0 . 44 10 1478 . 3+a 375 . 8 5 0 . 63 7 5 1 4 4 . 7 +w 631 . 3 8 0 . 43 10 5620 . 8+s 664 . 2 7 0 . 35 10 1894 . 2+a 415 . 9 4 0 . 62 7 5 4 7 5 . 1 +w 649 . 5 5 0 . 25 7 281 . 8+ t 281 . 8 6 0 . 15 2 2349 . 7+a 455 . 5 4 0 . 60 5 5 8 1 1 . 5 +w 666 . 8 9 0 . 18 9 603 . 2+ t 321 . 5 6 0 . 43 7 2845 . 3+a 495 . 6 6 0 . 40 7 6 1 5 9 . 1 +w 684 . 0 6 0 . 13 7 964 . 1+ t 360 . 9 5 0 . 62 11 3380 . 7+a 535 . 4 7 0 . 29 5 6 5 1 2 . 0 +w 700 . 5 8 0 . 18 9 1362 . 6+ t 398 . 5 5 1 . 00 17 3956 . 0+a 575 . 3 8 0 . 12 4 † Magnetic dipole band 2 transition, common to both 1996Du18 and 1996Ba54, but the latter reference shows the band levels shifted by ≈45 keV, relative to those given in 1996Du18, with respect to the 4297–keV bandhead (see notes in the respective (HI,xnγ) datasets). ‡ γ ray also seen in 1996Ba54, who place it in dipole band 1a (called Band 1b in that reference), but are unable to establish the § From (HI,xnγ) data. See Comments column for supporting information. For mixing ratios deduced from experimental conversion level energies because they do not observe the transitions linking the members of this dipole cascade to lower lying levels. coefficients, see 1991La07 and associated dataset. These mixing ratios have been used to obtain the total conversion coefficients quoted in the α column of the γ–ray table. In the absence of an experimentally based mixing ratio for the case of mixed multipolarities, a value of 1.0 has been used to provide an estimate for the conversion coefficient, and its uncertainty. # From 1996Du18 and (HI,xnγ):SD data, except where noted. @ Photon branching for each level from (HI,xnγ) data. For SD bands, the values are relative transition intensities within each band. & Internal conversion coefficient calculated assuming an [M1] multipolarity. a Internal conversion coefficient calculated assuming an [E2] multipolarity. b Placement of transition in the level scheme is uncertain. 175 19 3 P b 111 – 1 3 82 19 3 P b 111 – 1 3 82 NUCLEAR DATA SHEETS Adopted Levels, Gammas (continued) (A) Magnetic dipole band 1 (B) Magnetic dipole band 1a (C) Magnetic dipole (D) Magnetic dipole band 2 (1996Du18) (1996Du18) band 1b (1996Du18) (1996Du18) (61/2–) (45/2–) 5218.4+x (43/2–) 4828.1+x (57/2–) 7154.7+x (55/2–) 6715.5+x (53/2–) 6302.6+x (51/2–) 5927.0+x (49/2–) 5597.5+x (47/2–) 5331.9+x (45/2–) 5092.8+x 4470.6+x (61/2+) 7932+x (59/2+) 7516+x (59/2–) 7312.0+x (57/2+) 7090.3+x (57/2–) 6927.5+x (55/2+) 6657.6+x (55/2–) 6597.1+x (53/2+) 6231.4+x (53/2–) 6285.2+x (51/2+) 5815.4+x (51/2–) 6001.5+x (49/2+) 5425.8+x (49/2–) 5825.3+x (47/2+) 5060.6+x (47/2–) (43/2–) (45/2+) 4769.0+x (43/2+) 4537.0+x (43/2–) (41/2+) 4388.1+x (A)(43/2–) (39/2+) 4298.0+x (41/2–) (41/2–) 7713.5+x (39/2–) (39/2+) 4136.1+x (39/2–) (37/2–) 3722.3+x (35/2–) 3320.7+x (33/2–) 2939.2+x (31/2–) 2686.9+x (29/2–) 2584.8+x (37/2+) (27/2+) 19 3 Pb 82 111 (E) Magnetic dipole (F) Magnetic dipole band 4 band 3 (1996Du18) (1996Ba54) (51/2+) 6145.5+x (49/2+) 5763.1+x (47/2+) 5436.9+x (45/2+) 5169.4+x (43/2+) 4945.1+x (H) SD–1 band (G) Band 5 (43/2–) 4893.1+x (39/2–) 4180.3+x (41/2+) (37/2+) 4313.4+x (35/2+) 3924.8+x (33/2+) 3542.8+x (33/2+) (31/2+) 3133.4+x (29/2+) 2769.4+x (29/2+) (35/2–) 3541.6+x (31/2–) 2994.6+x (27/2–) (27/2+) (27/2–) 19 3 Pb 82 111 176 J+24 5945.9+y J+22 5237.7+y J+20 4565.9+y J+18 3932.5+y J+16 3337.7+y J+14 2781.6+y J+12 2264.3+y J+10 1786.9+y J+8 1349.1+y J+6 951.6+y J+4 594.3+y J+2 277.0+y J≈(23/2) y 19 3 P b 111 – 1 4 82 19 3 P b 111 – 1 4 82 NUCLEAR DATA SHEETS Adopted Levels, Gammas (continued) J2+26 J1+26 J1+24 J1+22 J1+20 J1+18 J1+16 J1+14 J4+26 5811.5+w J3+22 5101.5+v J4+24 5144.7+w J3+20 4457.0+v J4+22 4513.4+w J3+18 3847.0+v J4+20 3917.2+w J3+16 J4+18 3355.0+w 3271.9+v J4+16 2828.5+w J3+14 2732.4+v J4+14 2340.0+w J3+12 2228.5+v 2598.9+u 2226.2+z J2+12 5777.9+v 3125.5+u 2714.4+z J2+14 J3+24 3688.9+u 3242.4+z J2+16 6512.0+w 4288.8+u 3812.2+z J2+18 J4+28 4925.8+u 4422.7+z J2+20 6485.1+v 5598.0+u 5072.7+z J2+22 J3+26 6307.2+u 5762.5+z J2+24 (L) SD–5 band (K) SD–4 band (J) SD–3 band (I) SD–2 band (M)J4+13 2110.0+u J4+12 J1+12 1780.3+z J2+10 J3+10 1761.4+v J3+8 1331.4+v 1659.4+u J4+10 J1+10 1376.8+z J2+8 1015.9+z J1+6 698.0+z J2+6 J3+6 939.5+v 543.0+u J3+4 586.4+v 251.5+u J3+2 875.4+u J2+4 J1+2 190.2+z J1≈(17/2) z J2+2 763.9+w (M)J4+5 J4+4 273.0+v 1099.9+w (M)J4+7 J4+6 422.8+z 1475.2+w (M)J4+9 J4+8 J1+8 J1+4 1247.5+u 1888.7+w (M)J4+11 467.9+w (M)J4+3 J4+2 213.2+w (M)J4+1 J2≈(21/2) u J3≈(23/2) v 19 3 Pb 111 82 177 J4≈(17/2) w 19 3 P b 111 – 1 5 82 19 3 P b 111 – 1 5 82 NUCLEAR DATA SHEETS Adopted Levels, Gammas (continued) J4+29 6877.0+w J4+27 6159.1+w J4+25 5475.1+w J4+23 4825.6+w J4+21 4211.0+w J4+19 3631.3+w J4+17 3087.8+w J4+15 2580.4+w J4+13 2109.8+w (P) SD–9 band (O) SD–8 band (N) SD–7 band (M) SD–6 band (L)J4+12 J4+11 1677.0+w (L)J4+10 J4+9 1282.6+w (L)J4+8 J4+7 926.8+w (L)J4+6 J4+5 610.6+w (L)J4+4 J4+3 335.1+w (L)J4+2 J4+1 100.5+w (K)J3+26 J5+24 5620.8+s J5+22 4956.6+s J5+20 4325.5+s J5+18 3729.1+s J5+16 3167.8+s J5+14 J5+12 2641.7+s 2150.6+s J6+22 5158.9+t J6+20 4512.1+t J6+18 3900.1+t J7+20 3956.0+a J6+16 3322.1+t J7+18 3380.7+a 2778.9+t J7+16 2845.3+a 2270.8+t J7+14 2349.7+a J7+12 1894.2+a J6+14 J6+12 1696.6+s J6+10 1798.5+t J5+8 1279.4+s J6+8 1362.6+t J5+6 900.5+s J6+6 964.1+t J7+6 766.0+a 560.4+s J6+4 603.2+t J7+4 468.7+a J5+10 J5+4 J7+10 1478.3+a J7+8 1102.5+a J5+2 260.6+s J6+2 281.8+t J7+2 212.9+a J5 s J6 t J7 a 19 3 Pb 82 111 178 19 3 P b 111 – 1 6 82 19 3 P b 111 – 1 6 82 NUCLEAR DATA SHEETS ε Decay (67 s) 193Bi Parent 193Bi: 1984Co13 E=0.0; Jπ=(9/2–); T1/2=67 s 3; Q(g.s.)=6320 50; %ε+%β+ decay=96.5 15. %ε+%β+,J,T1/2 from 2003Au02. Q(β) from 2003Au03. 193Bi: Jπ,T1/2,Q(β) from 2003Au02. 197Po Parent 197Po: α Decay (53.6 s) E=0.0; Jπ=(3/2–); T1/2=53.6 s 10; Q(g.s.)=6412 4; %α decay=44 7. Q(α) from 2003Au03. 1981Sc01: sources from decay of 201Rn parent; measured evaporation–residue α spectra (E and gas ∆E detectors), yields and angular distributions of fusion products. Deduced %α. 1971Ho01: sources from decay of 201Rn parent, mass separation; measured Eα, Iα (silicon surface–barrier detectors, multispectrum analysis). 1967Si09: sources from 185,187Re(19F,xn), 194Pt(12C,xn), helium–jet transport; measured Eα, Iα (solid–state detectors). 1967Tr06: sources from decay of 197At parent, helium–jet transport; measured Eα, Iα (silicon surface–barrier detectors). Other: 1967Le21. 193Pb Jπ† E(level) 0.0 † Levels ( 3 / 2– ) From adopted levels. α radiations Eα E(level) 6281 4 0.0 Iα† HF 100 1.8 Comments HF: r0(193Pb)=1.501 Average of r0(192Pb)=1.506 6 and r0(194Pb)=1.496 3 (1998Ak04). Eα: from 1991Ry01 (based on recalibrated values of: 1971Ho01 (6279 9), 1967Si09 (6290 10), 1967Tr06 (6280 5)). † For α intensity per 100 decays, multiply by 0.44 7. 197Po Parent 197Po: α Decay (25.8 s) E=270 syst; Jπ=(13/2+); T1/2=25.8 s 1; Q(g.s.)=6412 4; %α decay=84 9. Q(α) from 2003Au03. E(ex)≈270 deduced by evaluators for 197Po(Jπ=(13/2+)) from 195Po(E≈230 keV) (1999He32) and (1985St02). Consistent with overall systematic trend for 13/2+ levels in the neighboring 199Po(E=310 keV) 191,195,199,201Po nuclides. 2002Va13: 162Dy(40Ar,5n) E(lab)=189 MeV. Magnetic mass separator for recoiling fragments. Implantation in position–sensitive Si strip detector. Reaction product identification by coincidences between recoil fragments and links in the α–ray decay chain. Determine α–γ and α–x–ray coincidences. 1982Bo04: sources from spallation of uranium, thorium, gold, and tantalum by 5–GeV protons, helium–jet transport; measured Eα (silicon surface–barrier detectors). 1981Sc01: sources from decay of 201Rn parent; measured evaporation–residue α spectra (E and gas ∆E detectors), yields and angular distributions of fusion products. Deduced %α. 1971Ho01: sources from decay of 201Rn parent, mass separation; measured Eα, Iα (silicon surface–barrier detectors, multispectrum analysis). 1967Si09: sources from 185,187Re(19F,xn), 194Pt(12C,xn), helium–jet transport; measured Eα, Iα (solid–state detectors). 1967Tr06: sources from decay of 197At parent, helium–jet transport; measured Eα, Iα (silicon surface–barrier detectors). Other: 1967Le21. 179 19 3 P b 111 – 1 7 82 197Po α Decay (25.8 s) (continued) 193Pb E(level) 1 6 5 SY 19 3 P b 111 – 1 7 82 NUCLEAR DATA SHEETS Jπ T1/2 ( 13 / 2+ ) 5 . 8 mi n 2 Levels Comments Jπ,T1/2: From adopted levels. E(level): Deduced by evaluators from Eα(197Po, 13/2+)=6383 keV 3, Eα(197Po, 3/2–)=6281 keV 4, and E(197Po, 13/2+)≈270 keV. This result is in good agreement with the systematics of low–lying 13/2+ levels in neighboring odd–A Pb nuclides. ≈922 E(level): Estimated from 757 keV 1 γ–ray to 13/2+ level at ≈165 keV, seen in α–γ ( 13 / 2+ ) coincidences in 197Po decay (2002Va13). Jπ: Suggested in 2002Va13, based on the low hindrance factor for the 5622 keV α ray feeding this level from the 13/2+ state in 193Po. α radiations Eα E(level) ≈922 5622 25 Iα† Comments HF 0 . 05 3 1.2 Eα,Iα: From 2002Va13. The α intensity is a lower limit, implying that the estimated hindrance factor is an upper limit. HF: The low value for the hindrance factor indicates a favored α transition to an analogous state in 6383 . 4 24 165 99 . 3 35 1 . 21 193Pb (2002Va13). HF: r0(193Pb)=1.501 5 From average of r0(192Pb)=1.506 6 and r0(194Pb)=1.496 3 (1998Ak04). Eα: from 1991Ry01 (based on recalibrated values of: 1982Bo04 (6385 3), 1971Ho01 (6380 9), 1967Si09 (6387 8), 1967Tr06 (6378 5)). Iα: from 2002Va13. † For α intensity per 100 decays, multiply by 0.84 9. 168Er(30Si,5nγ) 1996Du18: 168Er(30Si,5nγ) 1996Du18 E=159 MeV; EUROGAM II spectrometer, analysis performed by multi gated spectra and two–dimensional matrices; measured γ, γγγ, γ(θ). 193Pb Levels For a discussion of the configurations, bands, and band systematics in Pb nuclei, see 1996Ba54 and 1996Du18. All level energies are expressed relative to the 13/2+ isomeric state. E(level)† 0 . 0+x § Jπ ( 13 / 2+ ) T1/2‡ Comments 5 . 8 mi n 2 E(level): x≈165 keV from 13/2+ level systematics. Jπ: from adopted levels. 881 . 6+x § 2 ( 17 / 2+ ) 1022 . 2+x § 3 1401 . 7+x § 3 1519 . 5+x § 5 ( 15 / 2+ ) ( 21 / 2+ ) ( 19 / 2+ ) 1550 . 0+x § 3 ( 19 / 2+ ) 1585 . 9+x § 4 1994 . 5+x § 4 2 0 5 8 . 8 + x@ 5 ( 21 / 2– ) 2141 . 3+x § 4 2 1 4 2 . 0 + x@ 5 2172 . 4+x § 6 20 . 5 ns 4 9 . 4 ns 7 ( 25 / 2+ ) ( 23 / 2– ) ( 23 / 2+ ) ( 25 / 2– ) ( 23 / 2+ ) 2213 . 5+x § 4 ( 25 / 2+ ) 2 3 2 2 . 0 + x@ 5 2426 . 4+x § 4 2524 . 6+x# 5 ( 27 / 2– ) ( 27 / 2+ ) ( 27 / 2+ ) 2526 . 8+x# 4 2584 . 5+xa 5 2612 . 4+x# 5 ( 29 / 2+ ) 2 6 5 3 . 7 + x@ 7 2671 . 9+x# 6 2686 . 6+xa 6 ( 27 / 2– ) ( 29 / 2– ) ( 33 / 2+ ) Conf.: (A8) ν(i13/2) ⊗ π([505]9/2– ⊗ [514]7/2–)K=8+ suggested in 1996Du18. 180 ns 15 ( 29 / 2+ ) ( 31 / 2– ) Continued on next page (footnotes at end of table) 180 19 3 P b 111 – 1 8 82 168Er(30Si,5nγ) 193Pb E(level)† 19 3 P b 111 – 1 8 82 NUCLEAR DATA SHEETS E(level)† Jπ 1996Du18 (continued) Levels (continued) E(level)† Jπ Jπ 2 7 0 7 . 0 + x@ 6 ( 29 / 2– ) 4149 . 1+x# 6 ( 37 / 2+ ) 5169 . 1+x e 9 ( 45 / 2+ ) 2769 . 1+x# 5 2938 . 8+xa 7 2 9 9 4 . 7 + x@ 7 ( 29 / 2+ ) 4 1 6 6 . 8 + x& 8 4 1 8 1 . 2 + x@ 8 4191 . 1+x# 7 ( 39 / 2– ) 5 1 8 1 . 6 + x& 8 5218 . 1+xa 9 5 2 8 0 . 7 + x& 1 5 ( 45 / 2– ) ( 33 / 2– ) ( 31 / 2– ) ( 39 / 2– ) ( 39 / 2+ ) ( 45 / 2– ) ( 43 / 2– ) 3079 . 9+x# 6 ( 29 / 2+ ) 4210 . 7+x# 6 ( 37 / 2+ ) 5331 . 6+xb 8 ( 47 / 2– ) 3 1 2 8 . 4 + x@ 6 3133 . 1+x# 5 3 2 4 9 . 7 + x@ 8 ( 31 / 2– ) 4 2 7 0 . 8 + x& 8 4297 . 7+x# 7 4313 . 1+x# 7 ( 39 / 2– ) 5425 . 5+xd 9 5436 . 6+x e 9 5 4 3 9 . 4 + x& 1 0 ( 49 / 2+ ) ( 31 / 2+ ) ( 31 / 2– ) ( 39 / 2+ ) ( 37 / 2+ ) ( 47 / 2+ ) ( 45 / 2– ) 3 2 6 0 . 4 + x& 7 ( 31 / 2– ) 4360 . 5+x# 11 ( 37 / 2+ ) 5 5 0 1 . 3 + x& 9 ( 47 / 2– ) 3281 . 8+x# 7 3320 . 3+xa 7 3376 . 2+x# 6 ( 33 / 2+ ) 4387 . 8+xd 7 4 3 9 9 . 0 + x@ 1 1 4 4 3 5 . 0 + x@ 1 1 ( 41 / 2+ ) 5597 . 2+xb 9 5 6 6 7 . 9 + x& 1 5 5762 . 8+x e 10 ( 49 / 2– ) ( 35 / 2– ) ( 31 / 2+ ) ( 39 / 2– ) ( 39 / 2– ) ( 45 / 2– ) ( 49 / 2+ ) 3414 . 5+x# 6 ( 33 / 2+ ) 4445 . 2+x# 6 ( 39 / 2+ ) 5 8 0 1 . 8 + x& 1 1 ( 47 / 2– ) 3 4 1 8 . 4 + x& 7 3 5 4 1 . 7 + x@ 9 3542 . 5+x# 6 ( 33 / 2– ) 4470 . 2+xa 8 4 5 3 2 . 5 + x& 8 4536 . 7+xd 7 ( 41 / 2– ) 5815 . 1+xd 9 5824 . 9+x c 9 5926 . 7+xb 9 ( 51 / 2+ ) ( 35 / 2– ) ( 33 / 2+ ) ( 41 / 2– ) ( 43 / 2+ ) ( 49 / 2– ) ( 51 / 2– ) 3 6 3 9 . 9 + x& 8 ( 37 / 2– ) 4 5 3 8 . 4 + x& 1 0 ( 41 / 2– ) 6001 . 2+x c 10 ( 51 / 2– ) 3672 . 7+x# 7 3702 . 0+x# 6 3721 . 9+xa 7 ( 33 / 2+ ) 4564 . 3+x# 9 4576 . 9+x# 7 4 5 9 0 . 9 + x& 8 ( 39 / 2+ ) 6145 . 2+x e 11 6231 . 2+xd 10 6284 . 9+x c 10 ( 51 / 2+ ) 3 7 4 1 . 6 + x@ 9 3771 . 8+x# 6 3822 . 2+x# 9 3839 . 2+x# 6 3 9 0 6 . 2 + x& 8 3924 . 5+x# 6 ( 33 / 2+ ) ( 37 / 2– ) ( 35 / 2– ) ( 35 / 2+ ) ( 35 / 2+ ) ( 33 / 2+ ) ( 35 / 2– ) ( 35 / 2+ ) 4661 . 5+x# 11 4760 . 3+x# 11 4768 . 7+xd 8 4784 . 0+x# 7 4827 . 8+xa 8 4 8 6 1 . 3 + x& 8 ( 41 / 2+ ) ( 41 / 2– ) 6302 . 3+xb 10 6596 . 8+x c 11 6657 . 3+xd 10 ( 41 / 2+ ) ( 45 / 2+ ) 6715 . 2+xb 11 6927 . 2+x c 11 7090 . 0+xd 11 ( 41 / 2+ ) ( 43 / 2– ) ( 43 / 2– ) ( 53 / 2+ ) ( 53 / 2– ) ( 53 / 2– ) ( 55 / 2– ) ( 55 / 2+ ) ( 55 / 2– ) ( 57 / 2– ) ( 57 / 2+ ) 3991 . 4+x# 7 ( 35 / 2+ ) 4 8 9 4 . 0 + x@ 1 1 ( 43 / 2– ) 7154 . 4+xb 12 ( 57 / 2– ) 3996 . 8+x# 6 4003 . 2+x# 6 4 0 5 5 . 5 + x& 9 ( 37 / 2+ ) 4 9 1 6 . 6 + x& 8 4944 . 8+x e 8 5 0 3 2 . 9 + x& 9 ( 43 / 2– ) 7311 . 7+x c 12 ( 59 / 2– ) 13 ( 61 / 2– ) ( 35 / 2+ ) ( 39 / 2– ) ( 43 / 2+ ) 7516 . 0+x ? d ( 43 / 2– ) 7713 . 2+x c 7932 . 0+x ? d 4 0 6 2 . 7 + x& 8 ( 37 / 2– ) 5060 . 3+xd 9 ( 47 / 2+ ) 4116 . 2+x# 10 4135 . 7+xa 8 ( 37 / 2+ ) 5092 . 5+xb 8 5 1 6 5 . 6 + x@ 1 2 ( 45 / 2– ) ( 39 / 2– ) † From least–squares fit to Eγ. ‡ From Adopted values. ( 59 / 2+ ) ( 61 / 2+ ) ( 43 / 2– ) § (A): Group A Group of low–energy positive–parity states, which connect all higher–lying levels with the 13/2+ isomeric state. # (B): Group B Group of positive–parity states linking Bands 2 and 3, plus some other medium–energy positive–parity levels, with those of Group A. @ (C): Group C Negative–parity levels above the 1586–keV 21/2– isomeric state. & (D): Group D Negative–parity levels above the 2584–keV 29/2– isomeric state, excluding those grouped in Bands 1, 1a and 1b. a (E): Magnetic dipole band 1 (A11) Configuration ν(i13/2) ⊗ π([505]9/2– ⊗ [606]13/2+) K=11–. Extracted mean value B(M1)/B(E2)=22 7 (µn/eb)2. b (F): Magnetic dipole band 1a (ABC11) Configuration ν(i13/2)3 ⊗ π([505]9/2– ⊗ [606]13/2+) K=11–. c (G): Magnetic dipole band 1b Configuration unknown. d (H): Magnetic dipole band 2 (ABE11) Configuration ν((i13/2)2 ⊗ ((p3/2) or (f5/2))) ⊗ π([505]9/2– ⊗ [606]13/2+) K=11–. e (I): Magnetic dipole band 3 (ABF11) Configuration ν((i13/2)2 ⊗ ((p3/2) or (f5/2))) ⊗ π([505]9/2– ⊗ [606]13/2+) –. K=11 γ(193Pb) Eγ# E(level) Iγ‡ Mult.§ α§ δ§ ( 4 0 . 9& ) ( 41 . 5a ) 2213 . 5+x [ M1 ] 23 . 9 4191 . 1+x [ M1 ] 22 . 9 ( 6 6 . 5& ) 7 2 . 1& 1585 . 9+x 0 . 21 +4–2 I(γ+ce)† Comments 2213 . 5+x ( M1 +E 2 ) 85 . 6a 3 90 . 0g 3 98 . 2a 3 2612 . 4+x ( E2 ) 12 . 1 5.5 4 4387 . 8+x [ M1 ] 12 . 5 2524 . 6+x 0 . 60 12 [ M1 , E 2 ] 8 . 3 16 102 . 1d 3 146 . 0a 3 148 . 4a 3 2686 . 6+x 1 . 69 15 ( M1 ) 8 . 84 16 . 5 15 4149 . 1+x 1 . 49 19 [ M1 ] 3 . 19 6.2 8 A2=–0.35 11. 4297 . 7+x 2.4 4 [ M1 ] 3 . 05 9 . 7 16 A2=–0.42 14. Continued on next page (footnotes at end of table) 181 B(E2)(W.u.)=1.05 +13–20. 5.5 5 A2=–0.35 13. 19 3 P b 111 – 1 9 82 19 3 P b 111 – 1 9 82 NUCLEAR DATA SHEETS 168Er(30Si,5nγ) 1996Du18 (continued) γ(193Pb) (continued) Eγ# E(level) Iγ‡ α§ δ§ Mult.§ I(γ+ce)† 148 . 9g 3 4536 . 7+x 1 . 66 25 ( M1 ) 3 . 02 6 . 6 10 156 . 5c 158 . 0c 3 4062 . 7+x 0 . 20 8 [ M1 ] 2 . 62 0.7 3 3 1 5 8 . 1& 3 3418 . 4+x 0 . 17 8 [ M1 ] 2 . 55 2584 . 5+x 16 . 5 15 ( E1 ) 0 . 138 Comments A2=–0.62 19. A2 indicates ∆J=1, D+Q. 0.6 3 18 . 6 17 A2=–0.21 4. B(E1)(W.u.)=4.8×10–6 4. 164 . 0a 3 175 . 9c 3 176 . 3 f 3 4003 . 2+x 2 . 26 24 [ M1 ] 2.3 7.4 8 A2=–0.41 10. 5092 . 5+x 0 . 07 7 ( M1 ) 1 . 89 0.2 2 A2=–0.32 15. 6001 . 2+x 0 . 21 7 ( M1 ) 1 . 87 0.6 2 180 . 0b 3 1 8 4 . 0& 3 A2=–0.47 9. 2322 . 0+x 3.4 3 ( M1 +E 2 ) 4 +3–1 0 . 68 5 5.7 4 A2=–0.12 6. 1585 . 9+x 12 . 3 12 E 1 ( +M2 ) 0 . 050 +14–19 0 . 116 14 13 . 6 13 A2=+0.12 5. B(E1)(W.u.)=(1.32×10–6 22); B(M2)(W.u.)=(0.45 25). 196 . 9a 3 204 . 6b 3 208 . 0c 3 4387 . 8+x 1 . 48 34 ( M1 ) 2526 . 8+x 0.1 6 ( E 1 +M2 ) 4270 . 8+x 0 . 56 14 [ M1 ] 2 1 2 . 9& 3 2 1 9 . 0& 3 224 . 3h 3 2426 . 4+x 12 . 4 11 2213 . 5+x 4.2 4 5169 . 1+x 5092 . 5+x 231 . 1c 3 232 . 0g 3 234 . 5a 3 1 . 38 0.7 4 3.5 8 A2=–0.19 15. 2 . 0 14 0.3 1 1 . 18 1.2 3 1 . 10 25 . 9 22 ( M1 ) 1 . 02 8.4 8 A2=+0.19 11. 1.6 4 ( M1 +E 2 ) 0 . 62 34 2.5 4 A2=–0.57 10. 0 . 54 21 ( M1 ) 0 . 879 1.0 4 A2=–0.22 15. 4768 . 7+x 3.7 5 ( M1 ) 0 . 870 6 . 9 10 A2=–0.34 9. 4445 . 2+x 0 . 60 16 [ M1 ] 0 . 845 1.1 3 0 . 34 17 ( M1 ) 0 . 801 0.6 3 ( M1 ) 0 . 691 17 . 2 11 M1 A2=–0.06 12. A2=–0.18 7. 239 . 1e 3 252 . 3d 3 261 . 7c 3 5331 . 6+x 4532 . 5+x 0 . 50 18 ( M1 ) 0 . 624 0.8 3 263 . 1b 3 264 . 8c 3 265 . 6e 3 2322 . 0+x 0 . 60 17 [ E2 ] 0 . 171 0.7 2 5092 . 5+x 0 . 19 12 [ M1 ] 0 . 605 0.3 2 5597 . 2+x 0 . 32 13 ( M1 ) 0 . 600 0.5 2 267 . 5h 3 279 . 2a 3 283 . 7 f 3 A2=–0.30 16. 5436 . 6+x 1 . 78 19 ( M1 ) 0 . 588 2.8 3 A2=–0.24 12. 4576 . 9+x 3.6 4 ( M1 ) 0 . 523 5.4 6 A2=–0.19 19. 6284 . 9+x 0 . 34 13 ( M1 ) 0 . 500 0.5 2 291 . 6g 3 294 . 8a 3 295 . 2c 3 A2=–0.39 9. 5060 . 3+x 4.8 5 ( M1 ) 0 . 464 7.0 7 A2=–0.33 5. 3996 . 8+x 0 . 18 9 [ E2 ] 0 . 121 0.2 1 A2=+0.13 19. 4827 . 8+x 0 . 21 14 ( M1 ) 0 . 449 0.3 2 A2=–0.17 16. 3376 . 2+x 5 . 52 35 ( M1 ) 0 . 444 7.9 5 A2=–0.40 9. 4445 . 2+x 0 . 42 21 [ M1 ] 0 . 444 0.6 3 0 . 57 21 ( M1 ) 0 . 416 0.8 3 A2=–0.39 11. ( M1 ) 0 . 389 16 . 3 10 A2=–0.32 10. 296 . 3a 3 296 . 4a 3 303 . 4c 3 2938 . 8+x 4470 . 2+x 311 . 1a 3 311 . 9 f 3 319 . 6c 3 2524 . 6+x 319 . 7c 323 . 6c 10 . 3 7 11 . 8 7 A2=–0.20 14. A2=–0.32 5. A2=–0.32 11. 6596 . 8+x 0 . 29 22 ( M1 ) 0 . 386 0.4 3 A2=–0.38 14. 3639 . 9+x 1.2 3 ( M1 ) 0 . 361 1.6 4 A2=–0.39 19. 3 5501 . 3+x 0 . 52 22 ( M1 ) 0 . 361 0.7 3 A2=–0.27 19. 3 5824 . 9+x 0 . 67 22 ( M1 ) 0 . 349 0.9 3 324 . 0a 3 325 . 7c 3 326 . 2h 3 A2=–0.34 11. 3996 . 8+x 0 . 18 9 [ E2 ] 0 . 0916 0.2 1 4916 . 6+x 0 . 23 15 [ M1 ] 0 . 343 0.3 2 5762 . 8+x 1 . 65 15 ( M1 ) 0 . 342 2.2 2 328 . 8c 3 329 . 5e 3 330 . 4 f 3 4861 . 3+x 0 . 30 15 [ M1 ] 0 . 335 0.4 2 5926 . 7+x 0 . 38 23 ( M1 ) 0 . 333 0.5 3 A2=–0.53 13. 6927 . 2+x 0 . 30 15 ( M1 ) 0 . 330 0.4 2 334 . 5d 3 338 . 7a 3 341 . 0b 3 A2=–0.44 10. 4470 . 2+x 2 . 14 15 ( M1 ) 0 . 319 2.8 2 A2=–0.33 13. 4784 . 0+x 0 . 39 15 [ M1 ] 0 . 309 0.5 2 2994 . 7+x 0 . 56 19 ( E2 ) 0 . 0792 342 . 7a 3 353 . 7c 4 357 . 7e 4 2769 . 1+x 8.2 5 ( M1 ) 0 . 299 10 . 5 6 A2=–0.28 5. 5181 . 6+x 0 . 95 24 ( M1 ) 0 . 274 1.2 3 A2=–0.31 9. A2=–0.57 16. 0.6 2 A2=–0.34 10. A2=+0.13 19. 4827 . 8+x 1.4 3 ( M1 ) 0 . 266 1.8 4 362 . 4c 4 364 . 0a 4 365 . 2g 4 5801 . 8+x 0 . 16 16 [ M1 ] 0 . 257 0.2 2 3133 . 1+x 6.3 4 ( M1 ) 0 . 254 7.8 5 5425 . 5+x 4.6 4 ( M1 ) 0 . 252 5.7 5 367 . 9a 4 375 . 6e 4 377 . 3a 4 A2=–0.38 5. 4944 . 8+x 3.5 5 ( M1 ) 0 . 247 4.3 6 A2=–0.19 8. 6302 . 3+x 0 . 33 24 ( M1 ) 0 . 233 0.4 3 A2=–0.59 15. 4149 . 1+x 0 . 49 24 [ M1 ] 0 . 231 0.6 3 A2=–0.36 11. 381 . 5d 4 3320 . 3+x 10 . 7 4 ( M1 ) 0 . 224 13 . 0 5 382 . 0a 4 382 . 4h 4 3924 . 5+x 2.0 3 ( M1 ) 0 . 223 2.4 4 A2=–0.18 12. 6145 . 2+x 1 . 16 25 ( M1 ) 0 . 222 1.4 3 A2=–0.43 8. Continued on next page (footnotes at end of table) 182 A2=–0.36 5. 19 3 P b 111 – 2 0 82 19 3 P b 111 – 2 0 82 NUCLEAR DATA SHEETS 168Er(30Si,5nγ) 1996Du18 (continued) γ( 1 9 3 P b ) ( c o n t i n u e d ) Eγ# E(level) Iγ‡ Mult.§ δ§ α§ I(γ+ce)† Comments 384 . 5 f 4 385 . 0b 4 388 . 7a 4 7311 . 7+x 0 . 25 16 ( M1 ) 0 . 219 0.3 2 2707 . 0+x 0 . 50 25 [ M1 ] 0 . 218 0.6 3 4313 . 1+x 1.0 4 [ M1 ] 0 . 213 1.2 5 389 . 6g 4 390 . 3e 4 5815 . 1+x 3 . 41 33 ( M1 ) 0 . 212 4.1 4 A2=–0.29 7. 5218 . 1+x 1 . 08 25 ( M1 ) 0 . 210 1.3 3 A2=–0.29 13. 390 . 8 4 395 . 8a 4 4861 . 3+x 0 . 33 25 ( M1 ) 0 . 210 0.4 3 A2=–0.34 21. 3771 . 8+x 5.4 6 ( E2 ) 0 . 0527 5.6 6 396 . 6c 401 . 5 f A2=+0.21 6. 4532 . 5+x 0 . 34 25 [ M1 ] 0 . 202 0.4 3 4 A2=–0.21 19. 4 7713 . 2+x 0 . 17 8 [ M1 ] 0 . 195 0.2 1 401 . 6d 4 406 . 5c 4 409 . 5a 4 3721 . 9+x 6 . 5 33 ( M1 ) 0 . 195 7.7 4 A2=–0.37 7. 5439 . 4+x 0 . 42 25 ( M1 ) 0 . 189 0.5 3 A2=–0.18 26. A2=–0.46 8. 3542 . 5+x 4.0 4 ( M1 ) 0 . 185 4.7 4 412 . 9e 4 413 . 8d 4 415 . 6c 4 6715 . 2+x 0 . 26 8 [ M1 ] 0 . 181 0.3 1 4135 . 7+x 3.4 3 ( M1 ) 0 . 180 4.0 3 A2=–0.39 14. 4055 . 5+x 1 . 11 25 [ M1 ] 0 . 178 1.3 3 416 . 1g 4 416 . 1g i 10 419 . 6a 4 A2=–0.08 15. 6231 . 2+x 2 . 74 34 ( M1 ) 0 . 177 3.2 4 7932 . 0+x ? 0 . 17 17 [ M1 ] 0 . 177 0.2 2 4191 . 1+x 1.4 4 ( E2 ) 0 . 0453 1.5 4 421 . 4b 4 424 . 1c 4 426 . 1g 4 3128 . 4+x 0 . 43 17 [ M1 ] 0 . 171 0.5 2 4590 . 9+x 0 . 95 17 ( M1 ) 0 . 169 1.1 2 6657 . 3+x 1 . 04 17 ( M1 ) 0 . 166 1.2 2 426 . 1g i 10 4 3 1 . 9& 4 432 . 7g 4 7516 . 0+x ? 0 . 35 26 [ M1 ] 0 . 166 0.4 3 2426 . 4+x 3.1 7 ( M1 +E 2 ) 0 . 10 6 3.4 7 7090 . 0+x 0 . 52 17 [ M1 ] 0 . 160 0.6 2 438 . 7a 4 439 . 2e 4 442 . 0c 4 4210 . 7+x 1 . 49 35 [ M1 ] 0 . 154 1.7 4 A2=–0.27 10. 7154 . 4+x 0 . 17 9 ( M1 ) 0 . 154 0.2 1 A2=–0.20 26. 5032 . 9+x 0 . 35 26 ( M1 ) 0 . 151 0.4 3 444 . 9c 4 448 . 1a 4 448 . 9a 4 A2=–0.49 19. 4166 . 8+x 2 . 20 35 ( M1 ) 0 . 148 2.5 4 A2=–0.23 8. 4445 . 2+x 1 . 32 35 [ M1 ] 0 . 146 1.5 4 A2=+0.23 10. A2=–0.20 13. A2=+0.28 14. 3991 . 4+x 0 . 53 26 [ M1 ] 0 . 145 0.6 3 455 . 3c 5 461 . 2a 5 461 . 5a 5 4590 . 9+x 0 . 53 26 [ M1 ] 0 . 140 0.6 3 4003 . 2+x 0 . 44 18 [ M1 ] 0 . 135 0.5 2 3133 . 1+x 0 . 62 26 [ M1 ] 0 . 135 0.7 3 462 . 9a 5 472 . 7b 5 482 . 9c 5 3839 . 2+x 12 . 7 10 ( M1 ) 0 . 134 14 . 3 11 A2=–0.35 10. 2058 . 8+x 1.2 5 ( M1 ) 0 . 126 1.3 5 A2=–0.30 13. 4538 . 4+x 0 . 90 18 ( M1 ) 0 . 119 1.0 2 487 . 8c 5 4 9 7 . 3& 5 510 . 2a 5 A2=–0.21 11. 3906 . 2+x 0 . 54 27 [ M1 ] 0 . 116 0.6 3 A2=–0.18 11. 1519 . 5+x 0 . 98 39 E2 0 . 0297 1.0 4 A2=+1.1 4. 3924 . 5+x 0 . 46 18 [ M1 ] 0 . 103 0.5 2 5 2 0 . 1& 2 1401 . 7+x 80 . 4 34 E2 0 . 0267 81 . 9 35 5 2 7 . 8& 3 532 . 4a 3 540 . 4a 5 A2=+0.20 5. 1550 . 0+x 13 . 6 10 E2 0 . 0258 13 . 8 10 A2=+0.18 10. 2526 . 8+x 3.4 5 E 2 ( +M3 ) 0 . 037 10 3.5 5 3822 . 2+x 0 . 19 18 [ M1 ] 0 . 14 +5–7 0 . 0887 0.2 2 A2=+0.10 8. 542 . 7b 5 545 . 3a 5 547 . 0b 5 3249 . 7+x 0 . 37 18 [ M1 ] 0 . 0877 0.4 2 4661 . 5+x 0 . 19 9 [ M1 ] 0 . 0866 0.2 1 3541 . 7+x 1.3 4 ( E2 ) 0 . 0237 1.3 4 555 . 4a 6 556 . 0b 4 565 . 0b 6 A2=0.26 12. 3079 . 9+x 11 . 4 9 ( M1 ) 0 . 0825 12 . 2 1 A2=–0.43 8. A2=+0.01 19. 2142 . 0+x 6.0 5 E2 0 . 0228 6.1 5 A2=+0.30 5. 2707 . 0+x 1.3 3 ( E2 ) 0 . 0220 1.3 3 567 . 5a 6 581 . 8a 6 5 9 1 . 1& 4 A2=+0.26 12. 4564 . 3+x 1.1 4 [ M1 ] 0 . 078 1.2 4 3996 . 8+x 1.1 4 [ E2 ] 0 . 0206 1.1 4 2141 . 3+x 28 . 0 17 E2 0 . 0199 28 . 3 17 5 9 3 . 1& 4 595 . 0b 6 A2=+0.22 10. 1994 . 5+x 33 . 9 21 ( E 2 +M3 ) 0 . 029 9 34 . 6 21 A2=+0.19 7. 2653 . 7+x 0.7 4 [ E2 ] 0 . 0196 0.7 4 3281 . 8+x 1.2 3 [ E2 ] 0 . 0185 1.2 3 A2=+0.50 14. 3741 . 6+x 1.7 5 ( E2 ) 0 . 0183 1.7 5 A2=+0.30 11. 2172 . 4+x 4.4 8 [ E2 ] 0 . 0177 4.4 8 609 . 9a 6 613 . 2b 6 6 2 2 . 3& 6 0 . 15 6 A2=+0.15 14. 633 . 8d 6 3320 . 3+x 0 . 50 20 ( E2 ) @ 0 . 0170 0.5 2 638 . 7b 6 644 . 1a 6 656 . 8g 7 4181 . 2+x 0 . 79 30 ( E2 ) 0 . 0167 0.8 3 A2=+0.21 13. 4760 . 3+x 0.4 2 ( E2 ) 0 . 0164 0.4 2 0.6 2 ( E2 ) @ A2=+0.39 23. 5425 . 5+x 0 . 0157 0.6 2 657 . 4b 7 6 6 8 . 2& 3 4399 . 0+x 0.4 2 ( E2 ) 1550 . 0+x 18 . 6 13 ( M1 +E 2 ) 0 . 0157 1 . 8 +9–4 0 . 0236 42 Continued on next page (footnotes at end of table) 183 0.4 2 A2=+0.21 25. 18 . 9 13 A2=–0.46 11. 19 3 P b 111 – 2 1 82 19 3 P b 111 – 2 1 82 NUCLEAR DATA SHEETS 168Er(30Si,5nγ) 1996Du18 (continued) γ(193Pb) (continued) Eγ# Iγ‡ E(level) α§ δ§ Mult.§ I(γ+ce)† Comments 672 . 6b 7 675 . 8c 7 677 . 6a 7 2994 . 7+x 1.2 4 ( E2 ) 0 . 0149 1.2 4 3260 . 4+x 1.0 3 [ M1 ] 0 . 0494 1.0 3 2671 . 9+x 12 . 4 12 ( E2 ) 0 . 0147 12 . 5 12 692 . 3e 7 693 . 4b 7 701 . 7a 7 4827 . 8+x 0.1 1 ( E2 ) @ 0 . 0141 0.1 1 4435 . 0+x 0.5 2 ( E2 ) 0 . 0140 0.5 2 A2=+0.39 22. 4116 . 2+x 1.7 3 ( E2 ) 0 . 0137 1.7 3 706 . 7a 7 711 . 7c 7 712 . 8b 7 A2=+0.24 12. 3133 . 1+x 1.6 2 [ E2 ] 0 . 0135 1.6 2 A2=+0.40 23. 5181 . 6+x 0.1 1 [ E2 ] 0 . 0133 0.1 1 4894 . 0+x 0.4 2 ( E2 ) 0 . 0132 0.4 2 730 . 6b 7 7 3 9 . 7& 3 742 . 3a 7 5165 . 6+x 0.4 2 ( E2 ) 0 . 0125 0.4 2 A2=+0.83 33. 2141 . 3+x 23 . 3 14 M1 +E 2 23 . 8 14 A2=–0.45 7. 5.3 8 ( E2 ) 0 . 0121 5.3 8 748 . 3d 7 754 . 7g 8 755 . 1a 8 4470 . 2+x 0.4 2 0 . 0119 0.4 2 5815 . 1+x 0.8 2 ( E2 ) @ ( E2 ) @ A2=+0.22 8. 0 . 0117 0.8 2 3281 . 8+x 1.0 2 [ E2 ] 0 . 0117 1.0 2 759 . 4a 8 766 . 6b 8 770 . 2a 8 A2=+0.37 12. 3839 . 2+x 2.6 3 ( E2 ) 0 . 0116 2.6 3 A2=+0.25 11. 5165 . 6+x 0.2 1 [ E2 ] 0 . 0114 0.2 1 4313 . 1+x 0.4 5 [ E2 ] 0 . 0112 0.4 5 773 . 5a 8 783 . 1d 8 791 . 5a 8 3542 . 5+x 0.7 3 [ E2 ] 0 . 0111 0.7 3 3721 . 9+x 1.0 2 ( E2 ) @ 0 . 0109 1.0 2 A2=+0.20 19. 3924 . 5+x 0.8 2 ( E2 ) 0 . 0106 0.8 2 0.2 1 [ E2 ] @ A2=+0.8 3. 6231 . 2+x 0 . 0102 0.2 1 3128 . 4+x 2.0 4 ( E2 ) 0 . 0102 2.0 4 A2=+0.37 18. 2213 . 5+x 8.0 5 E2 0 . 0101 8.0 5 815 . 4d 8 834 . 0c 8 842 . 2g 8 0.8 2 ( E2 ) @ A2=+0.25 8. 4135 . 7+x 0 . 010 0.8 2 3418 . 4+x 1.3 4 [ E2 ] 0 . 00955 1.3 4 6657 . 3+x 0.3 1 ( E2 ) @ 0 . 0094 0.3 1 846 . 5c 8 851 . 7a 9 858 . 8g 9 4166 . 8+x 0.2 1 [ E2 ] 0 . 00927 0.2 1 3376 . 2+x 15 . 4 12 ( E2 ) 0 . 00916 15 . 4 12 7090 . 0+x 0.1 1 ( E2 ) @ 0 . 009 869 . 1c 9 8 8 1 . 6& 2 946 . 0a 9 4590 . 9+x 881 . 6+x 0.1 1 100 4360 . 5+x 0.1 1 1 0 2 2 . 3& 3 1022 . 2+x 14 . 3 5 1030 . 1a 10 1129 . 5c 11 1145 . 2a 11 3702 . 0+x 0.1 1 1174 . 9a 11 1225 . 2c 12 0 . 0313 29 A2=+0.19 8. 3414 . 5+x 805 . 6g 8 806 . 4b 8 8 1 1 . 9& 4 0 . 64 16 A2=+0.19 12. [ E2 ] 0 . 0088 E2 0 . 00855 [ E2 ] 0 . 0074 E 2 ( +M1 ) 0 . 0117 53 [ E2 ] 0 . 0063 A2=+0.56 14. A2=+0.17 9. 0.1 1 0.1 1 100 A2=+0.19 5. 0.1 1 14 . 3 5 A2=–0.11 9. 0.1 1 5667 . 9+x 0.2 1 [ E2 ] 0 . 0053 0.2 1 3672 . 7+x 0.3 1 [ E2 ] 0 . 00514 0.3 1 3702 . 0+x 0.2 1 [ E2 ] 0 . 0049 0.2 1 5280 . 7+x 0.2 1 [ E2 ] 0 . 0045 0.2 1 A2=+0.38 33. † Total transition intensity values from 1996Du18. ‡ The quoted γ–ray intensities have been calculated by the evaluators using the measured total intensities and the conversion coefficients obtained from the listed multipolarities (see Adopted dataset). The calculated relative γ intensities have been normalized to 100 for the 881.6–keV transition. § From adopted values dataset. # Energy uncertainty not specified by the authors. An uncertainty of ≈0.1% (with a minimum uncertainty ≈0.3 keV) was assigned in previous evaluations (1998Ar07) from comparison with other results from EUROGRAM II (see e.g. 1996Du05). For the present revision the evaluators have adopted slightly narrower error bounds, based on the excellent overall agreement with the energy differences obtained from the least–squares level energy adjustment. @ Crossover quadrupole transition between alternate levels in magnetic dipole band, connected by stretched magnetic dipole (M1) transitions. & Group A. γ rays between low–lying positive–parity states, which carry all the transition intensity from higher–lying groups and bands, feeding the 5.8 min, 13/2+ isomeric level. a Group B. γ rays between medium–energy positive–parity states, carrying the transitions intensity from Bands 2 and 3, and from some other medium–energy levels, and feeding those of Group A. b Group C. γ rays connecting negative parity–levels above the 1586–keV isomeric state. c Group D. γ rays connecting negative parity–levels above the 2584–keV isomeric state. Transitions in this group also connect to levels in Band 1, and to those deexciting Bands 1a and 1b. d Band 1 transition. e Band 1a transition. f Band 1b transition. g Band 2 transition. h Band 3 transition. i Placement of transition in the level scheme is uncertain. 184 19 3 P b 111 – 2 2 82 19 3 P b 111 – 2 2 82 NUCLEAR DATA SHEETS 168Er(30Si,5nγ) 1996Du18 (continued) Level Scheme 0.1 7 0.3 5 [M 1] 7932.0+x ] [M 1 4.5 43 (M 85 9.2 ( 1) 0.2 438.8 ( M1) 2 E 5 . 0 .1 7 2) 33 [ 0 M1 0 7 .4 41 . 1 ] (M 2 . 0 9 84 1) .52 [ 0.3 422.2 ( M1] 0 0.2 31 6.1 (E2) 1 M 6 .9 0 37 (M 1) .3 1.0 28 5.6 ( 1) 0.2 4 80 3.7 ( M1) 9 415.6 [ M1) 0.3 6.1 E2 0 3 38 (M ] 0 .34 2.4 17 1 ) .2 (M 2.7 32 6.3 ( 1) 9.5 M1 4 1.1 32 ) ( 3 6 M 0.2 75 .6 ( 1 ) 0.3 1 384.7 ( M1) 8 36 9.6 (E2) 0.6 32 2.4 [ M1) 0.8 7 6 M . 3.4 2 11 (M 1] 0.1 1 26 29.5 1) 5.6 [E 1.6 6 31 2 ( ] 9 5 M1 .7 40 0. ) ( 0.3 2 26 6.5 ( M1) 2 0.5 65 7.5 ( M1) 366.8 ( M1) 0.4 2 5.2 E2 1 2 23 (M ) 0 .78 12 9.1 ( 1) .6 2 5.2 M1 4.6 39 ) 0.3 71 0.3 ( [E2 ] 1 4 M 35 .7 [ 1 0 ) . 1.0 2 22 3.7 (E2] 76 4.3 ( M1) 0.1 8 736.6 [ M1+ 0.9 26 0.6 (E2] E2) 5 234.8 [ E2) 0.2 1.6 0.4 171.1 (M1] 29 5.9 (M1) 0.1 1 M 9 . 44 6 ( 1) 0.5 2.0 M 0.04 36 (M 1) 32 7.9 ( 1) 4.8 7 5 0.3 71 .7 [ M1) 5 39 2.8 ( M1] 3.5 320.8 ( E2) 0.2 8.8 M 3 0 .4 [M1) 1] 0.3 0.33 0 7713.2+x (59/2–) (57/2–) (57/2+) (57/2–) (55/2–) (55/2+) (55/2–) (53/2–) (53/2–) (53/2+) (51/2+) (51/2–) (51/2–) (49/2–) (51/2+) (47/2–) (49/2+) (45/2–) (49/2–) (47/2–) (45/2–) (47/2+) (49/2+) (47/2–) (43/2–) (45/2–) (45/2–) (45/2+) (43/2–) (45/2–) (47/2+) (43/2–) 38 (59/2+) 42 6.1 (61/2–) 40 1.5 (61/2+) 41 6.1 [M 1] 0.1 7 Intensities: relative Iγ 7516.0+x 7311.7+x 7154.4+x 7090.0+x 6927.2+x 6715.2+x 6657.3+x 6596.8+x 6302.3+x 6284.9+x 6231.2+x 6145.2+x 6001.2+x 5926.7+x 5824.9+x 5815.1+x 5801.8+x 5762.8+x 5667.9+x 5597.2+x 5501.3+x 5439.4+x 5436.6+x 5425.5+x 5331.6+x 5280.7+x 5218.1+x 5181.6+x 5169.1+x 5165.6+x 5092.5+x 5060.3+x 5032.9+x (43/2+) 4944.8+x (43/2–) 4916.6+x (43/2–) 4894.0+x (43/2–) 4861.3+x (43/2–) 4827.8+x (45/2+) 4768.7+x (41/2–) 4590.9+x (41/2+) 4576.9+x (41/2–) 4538.4+x (41/2–) 4532.5+x (41/2–) 4470.2+x (39/2–) 4435.0+x (39/2–) 4399.0+x (39/2–) 4181.2+x (39/2–) 4055.5+x (13/2+) 0.0+x 19 3 Pb 82 111 185 5.8 min 19 3 P b 111 – 2 3 82 19 3 P b 111 – 2 3 82 NUCLEAR DATA SHEETS 168Er(30Si,5nγ) 1996Du18 (continued) Level Scheme (continued) Intensities: relative Iγ 7932.0+x (61/2+) 7090.0+x (53/2+) (43/2–) (41/2+) (45/2+) (41/2+) (41/2–) (41/2+) (39/2+) (41/2–) (43/2+) (41/2–) (41/2–) (39/2+) (39/2–) (39/2–) (41/2+) (37/2+) (37/2+) (39/2+) (39/2–) (37/2+) (39/2+) (39/2–) (39/2–) (37/2+) (39/2–) (37/2+) 69 352.3 ( 297.7 (E2) 5.2 M 0 33 (M1) .1 23 8.7 [ 1) 1.4 2 M 0.2 64 .0 ( 1] 4.1 M 1 0 54 1 .3 (E ) 5.3 2) 3.7 9 86 [M 0.4 459.1 [ 1 ] 0.1 425.3 [E2] 9 27 4.1 (M1] 0.1 9 M . 56 2 ( 1) 0.5 48 7.5 [ M1) 0.93 14 2.9 ( M1] 3.6 5 1.1 39 8.9 ( M1) 266.6 [ M1) 0.9 1.7 M 0 1 74 1 . 6 (M ] 338.3 ( 1) 0.3 6 0.54 304.5 (E2) 0 44 3.4 (M1) 0.4 298.1 [ M1) 2.1 6 M 4 . 0 4 23 .5 [ 1] 69 4.5 [M1] 1.3 7 65 3.4 ( M1] 0.42 7 E 2 2) 0.6 19 .4 ( 0.5 0 906.9 ( E2) 94 .0 [MM1) 0.4 6.0 1] 1. 77 48 [E 2] 380.2 [ 0.1 14 8.7 [E2] 8 M .4 20 1 0 8.0 [M ] 1.4 43 .0 [M 1] 2.4 41 8.7 [ 1 ] 0.5 419.6 ( M1] . E 6 5 1.4 63 [M 2) 84 8.7 ( 1] 1.4 9 446.5 [ E2) 4 37 .9 (E2] 0.7 9 147.3 [ M1) 0.2 81 6.0 [M1] 2.2 5 0 M . 0 4 41 ( 1] .4 70 3.8 (E2) 1.49 1.7 M 0 9 15 1) .8 ( 6 E 3.4 2) 41 .5 [ 5.6 M 1.7 46 1] [ 1 M 16 .2 [ 1] 0.2 1.1 0 58 4.0 [M1] 1 321.8 [ M1] 0.4 294.0 [E2] 2.24 4 E 6 44 .8 [ 2] 1.1 8.9 E2 0 79 [M ] 0.18 511.5 ( 1] .18 0.5 380.2 [E2) 3 48 2.0 (M1] 0.8 7 .8 M1 0. 75 46 [M ) 9 . 46 4 ( 1] 2.0 0.5 54 2.9 (E2) 0.4 M 2 4 39 [M 1) .6 5.8 1 1 2 ] (E 0.1 .7 2) 9 5.4 (57/2+) (55/2+) 6657.3+x 6231.2+x 4827.8+x 4784.0+x 4768.7+x 4760.3+x 4661.5+x 4590.9+x 4576.9+x 4564.3+x 4538.4+x 4536.7+x 4532.5+x 4470.2+x 4445.2+x 4435.0+x 4399.0+x 4387.8+x 4360.5+x 4313.1+x 4297.7+x 4270.8+x 4210.7+x 4191.1+x 4181.2+x 4166.8+x 4149.1+x 4135.7+x 4116.2+x 4062.7+x (37/2–) (39/2–) 4055.5+x (35/2+) 4003.2+x (37/2+) 3996.8+x (35/2+) 3991.4+x (35/2+) 3924.5+x (35/2–) 3906.2+x (33/2+) 3839.2+x (35/2+) 3822.2+x (35/2+) 3771.8+x (35/2–) 3741.6+x (37/2–) 3721.9+x (33/2+) 3702.0+x (33/2+) 3672.7+x (37/2–) 3639.9+x (33/2+) 3542.5+x (33/2–) 3418.4+x (33/2+) 3414.5+x (31/2+) 3376.2+x (35/2–) 3320.3+x (33/2+) 3281.8+x (31/2+) 3133.1+x (29/2+) 3079.9+x 0.0+x (13/2+) 19 3 Pb 82 111 186 5.8 min Intensities: relative Iγ NUCLEAR DATA SHEETS 7932.0+x 19 3 P b 111 – 2 4 82 7154.4+x 1996Du18 (continued) (61/2+) 6596.8+x 168Er(30Si,5nγ) (57/2–) 187 Level Scheme (continued) (55/2–) (35/2–) (37/2–) (33/2+) (33/2+) (37/2–) (33/2+) (35/2–) (33/2–) (33/2+) (31/2+) (35/2–) (33/2+) (31/2–) (31/2–) (31/2+) (31/2–) (29/2+) (31/2–) (33/2–) (29/2+) (29/2–) (31/2–) (29/2+) (27/2–) (33/2+) (29/2–) (29/2+) (27/2+) (27/2+) (27/2–) (25/2+) (23/2+) (25/2–) (23/2+) (23/2–) (25/2+) (21/2–) (19/2+) (21/2+) (17/2+) (13/2+) 19 3 Pb 82 111 61 78 3.2 ( 403.1 ( E2) 11 1.6 (E2) 1.7 1074.9 M1) 1.0 11 30.1 [E2 6.5 ] 31 45.2 [E2 0. 9.6 [E ] 0 2 77 2] .1 ( 3 M 40 .5 [ 1) 0. 1.2 3 549.5 (E2] 7 M . 0 0 83 (E 1) .7 2) 4.0 154.0 [ 1.3 74 8.0 [E2] 2 .3 M1 1.3 85 (E ] 1 . 2 0 29 7 ( 6.3 E2 ) 5 .17 63 (M ) 1 .3 383.8 ( 1) 5.4 1 E .5 2) 5.5 75 ( 2 605.1 [ M1) 0.5 10 0 67 9.9 [E2] . 54 5.8 [ E2] 1.0 7 2.7 M 1.2 70 [M 1] 466.7 [ 1] 1.0 1 E 0.3 36 .5 [ 2] 7 80 4.0 (M1] 1.6 426.4 ( M1) 0.6 55 1.4 [E2) 6.32 5.4 M 2 67 (M 1] .0 0.4 342.6 ( 1) 1 E 3 . 11 0 2) 25 (E .4 2.3 2) 1.2 34 (M 2 . 0 7 56 1) .56 (M 10 385.0 ( 1) .3 8.2 10 5.0 [E2) 2 67 .1 ( M1] 1.3 59 7.6 ( M1) 0.5 85 5.0 [ E2) 1.6 0 15 .6 (E E2] 12. 9 8.1 2 0.7 4 53 ( ) 202.4 E E1) 4 16 31 .6 ( 2(+ .5 981.1 ( E1+M3) .2 M M2 3 43 1 . [ ) 4 M ) 1,E 11 0.1 211.9 ( 2] .8 2.9 M 26 0.6 M11+E 2) 183.1 [ 0 0 E 1 .0 2] 2.4 3.1 81 ( M1 0 211.9 E . +E 60 2) 729.0 ( 2 8 3.4 40.1 (MM1) .0 . 9 1 62 [M +E 4.2 2 1] 2) 55 .3 [ 736.0 E E2] 4 599.7 M2 1.1 1 6.0 .4 47 E2 +E2 2.7 59 (M 28 23 3.1 .0 .3 1) (E 1.2 2+ M3 ) 33 .9 3741.6+x 3721.9+x 3702.0+x 3672.7+x 3639.9+x 3542.5+x 3541.7+x 3418.4+x 3414.5+x 3376.2+x 3320.3+x 3281.8+x 3260.4+x 3249.7+x 3133.1+x 3128.4+x 3079.9+x 2994.7+x 2938.8+x 2769.1+x 2707.0+x 2686.6+x 2671.9+x 2653.7+x 2612.4+x 2584.5+x 2526.8+x 2524.6+x 2426.4+x 2322.0+x 2213.5+x 2172.4+x 2142.0+x 2141.3+x 2058.8+x 1994.5+x 1585.9+x 1550.0+x 1401.7+x 881.6+x 0.0+x 19 3 P b 111 – 2 4 82 180 ns 9.4 ns 20.5 ns 5.8 min 19 3 P b 111 – 2 5 82 19 3 P b 111 – 2 5 82 NUCLEAR DATA SHEETS 168Er(30Si,5nγ) 1996Du18 (continued) Level Scheme (continued) Intensities: relative Iγ (61/2+) 7932.0+x (61/2–) 7713.2+x (59/2+) 7516.0+x (59/2–) 7311.7+x (57/2+) 7090.0+x (57/2–) 6927.2+x (55/2–) 6596.8+x (53/2–) 6284.9+x (51/2+) 6145.2+x (51/2–) 5926.7+x (49/2+) 5762.8+x (49/2–) 5597.2+x (49/2+) 5425.5+x (45/2–) 5218.1+x (47/2+) 5060.3+x (43/2–) 4916.6+x (41/2+) 4760.3+x (43/2+) 4536.7+x (39/2–) 4270.8+x (39/2–) 4135.7+x (35/2+) 3991.4+x (35/2+) 3822.2+x (37/2–) 3639.9+x (33/2+) 3414.5+x (31/2–) 3249.7+x (29/2+) 3079.9+x (33/2–) 2938.8+x (29/2+) 2671.9+x (27/2+) 2524.6+x 18 664.0 E 66 .5 1(+ M2 528.2 ( ) 12 49 7.8 EM1+ .3 7 E 2 . 3 2) 52 E 1 0 3.6 18 2 .1 10 .6 E2 0.9 2 2 88 8 80 1.6 .3 E .4 2(+ E2 M1 10 ) 0 14 .3 (27/2–) (23/2+) (25/2+) (21/2–) (19/2+) (19/2+) (21/2+) (15/2+) (17/2+) 2322.0+x 2141.3+x 1994.5+x 1585.9+x 1519.5+x 1401.7+x 1022.2+x 881.6+x 0.0+x (13/2+) 19 3 Pb 111 82 188 20.5 ns 1550.0+x 5.8 min 19 3 P b 111 – 2 6 82 174Yb(24Mg,5nγ) 1996Ba54: 19 3 P b 111 – 2 6 82 NUCLEAR DATA SHEETS 174Yb(24Mg,5nγ), 1996Ba54 HERA with E=129, 134 MeV and GAMMASPHERE with E=131 MeV; measured γγ, γγγ, γ(θ). 193Pb Levels The level scheme proposed by 1996Ba54 expands on the one of 1991La07, but in several cases the transition intensities differ significantly among the two references. See the Adopted values dataset for further discussion. There is a more or less systematic shift in the tabulated Eγ values from this work, as compared to results from other references. This adds up, shifting the energies of some of the higher lying levels downwards by up to ≈5 keV as compared with the adopted values. E(level)† 0 . 0+x § 881 . 3+x § 2 1022 . 1+x § 4 1400 . 9+x § 3 Jπf ( 13 / 2+ ) Comments 5 . 8 mi n 2 E(level),Jπ: from Adopted values. ( 17 / 2+ ) ( 15 / 2+ ) ( 21 / 2+ ) 1549 . 3+x § 3 ( 19 / 2+ ) 1 5 8 5 . 2 + x& 4 1993 . 5+x § 4 2 0 5 7 . 5 + x& 6 ( 21 / 2– ) 20 . 5 ns 4 ( 25 / 2+ ) ( 23 / 2– ) 2139 . 9+x § 4 2 1 4 0 . 7 + x& 5 2212 . 5+x § 4 ( 25 / 2+ ) 2 3 2 0 . 9 + x& 6 ( 25 / 2 ) 2 4 0 4 . 1 + x& 5 2425 . 5+x § 5 2523 . 3+x# 6 ( 27 / 2+ ) 2 5 2 5 . 0 + x@ 7 2583 . 9+x § 6 2 6 1 0 . 5 + x@ 1 1 T1/2‡ ( 23 / 2+ ) ( 23 / 2– ) Level not established by other groups. ( 27 / 2 ) ( 29 / 2+ ) ( 29 / 2– ) ( 33 / 2+ ) 9 . 4 ns 180 ns 7 15 2 6 5 2 . 0 + x& 6 2 6 7 0 . 5 + x@ 6 2686 . 4+xb 8 2 7 0 5 . 5 + x& 6 ( 29 / 2+ ) ( 31 / 2– ) 2768 . 1+x e 6 ( 29 / 2+ ) 2938 . 6+xb 8 2 9 9 2 . 8 + x& 6 3078 . 3+x# 7 ( 33 / 2– ) ( 29 / 2 ) ( 29 / 2 ) 3 1 2 6 . 7 + x& 6 ( 29 / 2 ) 3131 . 5+x e 7 3 2 4 7 . 7 + x& 8 3319 . 8+xb 8 ( 31 / 2+ ) B(M1)/B(E2)(exp)=7.0 13 (µN/eb)2. ( 35 / 2– ) B(M1)/B(E2)(exp)=16.4 52 (µN/eb)2. 3 3 6 4 . 9 + x@ 1 2 3374 . 6+x# 7 3 4 1 2 . 4 + x@ 8 ( 33 / 2+ ) 3417 . 9+xa 8 3 5 3 9 . 1 + x& 8 3540 . 8+x e 7 ( 33 / 2+ ) 3 6 0 7 . 0 + x@ 1 2 3639 . 3+xa 10 3721 . 1+xb 9 3 7 3 9 . 3 + x& 7 3770 . 0+x# 8 3837 . 2+x# 7 3 8 6 0 . 0 + x@ 1 0 3 9 0 4 . 4 + x@ 1 3 3922 . 6+x e 8 3 9 8 7 . 2 + x& 9 4001 . 5+x# 9 4054 . 6+xa 11 Level not established by other groups. ( 31 / 2 ) ( 33 / 2 ) B(M1)/B(E2)(exp)=4.1 8 (µN/eb)2. Level not established by other groups. ( 37 / 2– ) B(M1)/B(E2)(exp)=12.8 26 (µN/eb)2. ( 33 / 2 ) ( 33 / 2 ) Level not established by other groups. Level not established by other groups. ( 35 / 2+ ) B(M1)/B(E2)(exp)=4.9 10 (µN/eb)2. Level not established by other groups. ( 35 / 2 ) 4 1 1 3 . 6 + x@ 9 4134 . 3+xb 9 4147 . 9+x# 10 4165 . 6+xa 9 ( 39 / 2– ) 4 1 7 7 . 4 + x& 1 0 4208 . 3+x# 10 4 2 3 9 . 2 + x@ 1 4 ( 37 / 2 ) 4296 . 6+x# 11 ( 39 / 2 ) B(M1)/B(E2)(exp)=7.9 20 (µN/eb)2. ( 37 / 2 ) ( 39 / 2– ) Level not established by other groups. Continued on next page (footnotes at end of table) 189 19 3 P b 111 – 2 7 82 NUCLEAR DATA SHEETS 174Yb(24Mg,5nγ) 193Pb 4 3 9 5 . 0 + x& 8 ( 37 / 2 ) 4 4 3 2 . 2 + x& 8 4 4 4 1 . 4 + x@ 1 2 4468 . 6+xb 9 ( 37 / 2 ) 4493 . 6+xdg 13 4537 . 1+xa 12 1996Ba54 (continued) Levels (continued) Jπf E(level)† ( 41 / 2– ) 19 3 P b 111 – 2 7 82 Comments B(M1)/B(E2)(exp)=28 12 (µN/eb)2. ( 41 / 2 ) 4575 . 7+x# 12 4588 . 9+xa 9 4 6 3 4 . 7 + x& 1 1 4725 . 6+xdg 14 ( 41 / 2– ) Level not established by other groups. ( 43 / 2 ) 4 7 5 7 . 6 + x@ 1 1 4826 . 0+xb 10 4 8 8 8 . 9 + x& 1 1 4943 . 5+x# 13 ( 43 / 2– ) 5017 . 0+xdg 15 ( 45 / 2 ) 5030 . 6+xa 11 5 1 6 1 . 5 + x& 8 ( 41 / 2 ) B(M1)/B(E2)(exp)=22 8 (µN/eb)2. Despite the 4.4 keV energy difference, this Group 4 level appears to be the equivalent of the 5165.9 keV (43/2–) Group C level in 1996Du18 (see note in caption for Level table, and footnote for Group 4 regarding the difference in J). 5167 . 8+x# 14 5179 . 3+xb 10 5381 . 9+xdg 15 ( 45 / 2– ) B(M1)/B(E2)(exp)=10.0 38 (µN/eb)2. ( 47 / 2 ) 5770 . 9+xdg 15 6186 . 6+xdg 16 6612 . 3+xdg 17 ( 49 / 2 ) 7044 . 6+xdg 18 0 . 0+y c ( 55 / 2 ) B(M1)/B(E2)(exp)=8.2 22 (µN/eb)2. ( 51 / 2 ) ( 53 / 2 ) J J≈(47/2) (1996Ba54). E(level): From adopted levels y≈5092.5 keV+X, Jπ=(45/2–). 239 . 1+y c 504 . 2+y c 833 . 6+y c 1208 . 5+y c 6 J+1 9 J+2 11 J+3 12 J+4 † From least–squares fit to Eγ. ‡ From Adopted values. § (A): Group 1 Set of positive parity levels on top of the 13/2+ 5.8 min isomeric state. All the higher lying levels decay through this group. # (B): Group 2 Group comprising levels below Band 2, as well as a few other states. @ (C): Group 3 Group of positive parity levels, feeding the 1993–keV level. & (D): Group 4 Group of levels above the 1586–keV isomeric level. Note that the spin sequence adopted for several of the levels in this group differ by one unit from those proposed in 1996Du18. This is a consequence of the ∆J=2 value adopted in this latter reference for the 556 keV transition feeding the isomeric state. a (E): Group 5 Set of negative–parity levels above the 3320–keV level. b (F): Magnetic dipole band 1a Group of negative parity levels connected by strong M1 γ rays, with E2 cross–over transitions. c (G): Magnetic dipole band 1b Possible extension of Band 1a towards higher energies. The connecting transitions could not be observed, as the levels are only weakly populated in the reaction. d (H): Magnetic dipole band 2 Set of levels connected by a cascade of (M1) transition, feeding the 4297–keV bandhead level. The level and transition sequence is the same as in 1996Du18. Note however that the level spins and energies differ from those of Band 2 in 1996Du18, because there the 232–keV γ connects to the 4297–keV bandhead state via a sequence of two γ rays (149 and 90 keV), while the present authors show only a single 197–keV γ ray as first transition in the band. This produces a downward shift of about 45 keV in the Band 2 levels from the present dataset, as compared to the energies from 1996Du18. The different assignment for the lowest transitions for Band 2 also implies differences in the proposed Jπ values for the band levels. e (I): Magnetic dipole band 3 Weakly populated band, connected by M1 γ rays. with E2 cross–over transitions, on top of the f The authors have adopted spins and parities for Group 1 transitions from 1991La07. 2426–keV state. g Band 2 level. Its energy is about 45 keV lower than the same level in Band 2 from 1996Du18. See footnote comment for Band 2 for a discussion of the source of this difference. 190 19 3 P b 111 – 2 8 82 19 3 P b 111 – 2 8 82 NUCLEAR DATA SHEETS 174Yb(24Mg,5nγ) 1996Ba54 (continued) γ( 1 9 3 P b ) Eγ# E(level) 7 2 . 7@ 1 0 Iγ† 2212 . 5+x ( M1 +E 2 ) 85 . 5a 8 9 7 . 7& 5 102 . 5d 5 2610 . 5+x ( E2 ) 1 4 6 . 4& 5 2523 . 3+x α‡ Mult.‡ Comments 5.6 3 12 . 1 2.2 8 [ M1 , E 2 ] 8 . 3 15 2686 . 4+x 3.4 8 ( M1 ) 8 . 74 4147 . 9+x 4 . 8 18 B(E2)(W.u.)=1.06 +13–21. DCO=0.48 21. The multipolarity of this transition is in doubt, since the authors, based on intensity balance arguments, suggest an E1 character, and therefore a parity change between the connected levels. This change does not agree with the proposed character of positive–parity levels suggested by 1996Du18. 1 4 8 . 7& 5 1 5 8 . 4@ 3 4296 . 6+x 1 6 4 . 3& 5 4001 . 5+x 2583 . 9+x 4 . 5 23 28 4 [ M1 ] 3 . 03 ( E1 ) DCO=0.53 18. DCO=0.67 20. B(E1)(W.u.)=5.4×10–6 4. 7 . 5 21 DCO=0.51 16. From a comparison of the total intensity for the 462.6 keV transition with that for the one of 164.3 keV, the authors argue that this γ ray cannot have an M1 multipolarity, leading to an E1 assignment. While the resultant I(γ+ce)=8.4 24 is then in very good agreement with that reported in 1996Du18, the required parity change also implies that one (or possibly more) of the transitions on top of the 4001.5–keV level have to be of parity–changing character. 180 . 2b 3 184 . 3b 3 2320 . 9+x 12 . 1 29 M1 ( +E 2 ) 1585 . 2+x 19 . 5 30 E 1 ( +M2 ) DCO=0.61 16. 0 . 116 14 DCO=1.07 28. B(E1)(W.u.)=(1.57×10–6 4); B(M2)(W.u.)=(0.5 3). 197 . 0 f 6 4493 . 6+x 2.0 8 ( M1 ) 1 . 37 DCO=0.52 16. In 1996Du18 the 196.9 keV γ is placed as deexciting their 4388–keV level, while the present authors propose it to be the lowest member of the cascade of magnetic dipole transitions in Band 2. 2 1 3 . 0@ 3 2 1 9 . 1@ 5 2 2 4 . 3& 5 2425 . 5+x 23 . 0 34 2212 . 5+x 4 . 2 10 5167 . 8+x 1.7 8 232 . 0 f 4725 . 6+x 5 . 5 17 5 M1 1 . 10 DCO=0.60 17. ( M1 ) 1 . 02 DCO=1.04 26. ( M1 +E 2 ) 0 . 62 34 ( M1 ) 0 . 87 DCO=0.44 12. This γ ray has been placed by 1996Du18 as deexciting their 4769–keV level, which is not established by the present authors. 239 . 1e 6 252 . 3d 3 265 . 1e 6 2 7 9 . 1& 5 291 . 4 f 5 239 . 1+y 2938 . 6+x 504 . 2+y 1.0 6 19 4 1.6 9 ( M1 ) 0 . 801 ( M1 ) 0 . 691 ( M1 ) 0 . 603 4575 . 7+x 3 . 4 13 ( M1 ) 0 . 523 5017 . 0+x 5 . 6 18 ( M1 ) 0 . 465 DCO=0.50 10. DCO=0.52 10. This γ ray has been placed by 1996Du18 as deexciting their 5061–keV level. 2 9 6 . 3& 5 301 . 6b 5 302 . 8c 5 3374 . 6+x 4 . 9 15 2705 . 5+x 1.8 6 4468 . 6+x 3 1 0 . 8& 5 319 . 5c 5 ( M1 ) 0 . 444 DCO=0.53 11. 1.0 4 ( M1 ) 0 . 419 DCO=0.45 12. 2523 . 3+x 9 . 9 19 ( M1 ) 0 . 39 DCO=0.63 13. 3639 . 3+x 2.4 8 ( M1 ) 0 . 362 DCO=0.53 10. ( M1 ) 0 . 333 329 . 4e 6 833 . 6+y 1.1 7 331 . 3b 6 2652 . 0+x 0.5 3 This γ ray has not been reported in other references. This γ ray not reported in other references. The closest match is the 330.4–keV transition from 1996Du18, placed there as deexciting their 6927–keV level. 334 . 4d 5 340 . 7b 5 342 . 6g 5 353 . 3d 6 357 . 4d 5 363 . 5g 5 365 . 0 f 4468 . 6+x 3.5 9 ( M1 ) 0 . 320 0 . 0794 DCO=0.51 7. 2992 . 8+x 1.9 6 ( E2 ) 2768 . 1+x 6 . 4 12 ( M1 ) 0 . 299 DCO=0.48 7. 5179 . 3+x 1.4 6 ( M1 ) 0 . 275 DCO=0.59 12. 4826 . 0+x 2.9 9 ( M1 ) 0 . 267 DCO=0.49 7. 3131 . 5+x 4 . 7 10 ( M1 ) 0 . 255 DCO=0.41 7. DCO=0.53 9. 5 5381 . 9+x 4 . 3 14 [ M1 ] 0 . 252 3 6 7 . 8& 5 374 . 9e 6 381 . 2d 3 4943 . 5+x 2 . 5 10 ( M1 ) 0 . 247 1208 . 5+y 0.4 3 ( M1 ) 0 . 235 3319 . 8+x 18 . 5 39 ( M1 ) 0 . 224 DCO=0.48 5. Continued on next page (footnotes at end of table) 191 19 3 P b 111 – 2 9 82 19 3 P b 111 – 2 9 82 NUCLEAR DATA SHEETS 174Yb(24Mg,5nγ) 1996Ba54 (continued) γ(193Pb) (continued) Eγ# E(level) Iγ† Mult.‡ α‡ 381 . 7g 6 3922 . 6+x 1.5 5 ( M1 ) 0 . 223 384 . 4b 5 389 . 1 f 5 2705 . 5+x 1.5 7 [ M1 ] 0 . 219 5770 . 9+x 2.5 8 ( M1 ) 0 . 212 Comments DCO=0.38 8. DCO=0.53 11. This γ ray has been placed by 1996Du18 as deexciting their 5815–keV level (Band 2). 3 9 5 . 4& 5 401 . 3d 4 409 . 3g 5 413 . 3d 5 415 . 3c 5 415 . 7 f 3770 . 0+x 5 . 5 17 ( E2 ) 0 . 0529 3721 . 1+x 11 . 1 24 ( M1 ) 0 . 195 DCO=0.48 5. 3540 . 8+x 2.2 5 ( M1 ) 0 . 185 DCO=0.40 8. 4134 . 3+x 6 . 8 16 ( M1 ) 0 . 181 DCO=0.50 6. 4054 . 6+x 1 . 9 10 [ M1 ] 0 . 178 5 6186 . 6+x 1.6 6 ( M1 ) 0 . 178 DCO=0.54 12. 421 . 2b 5 423 . 3c 5 425 . 7 f 6 3126 . 7+x 4 . 4 13 [ M1 ] 0 . 172 DCO=0.89 17. 4588 . 9+x 1.3 5 ( M1 ) 0 . 169 DCO=0.44 9. 6612 . 3+x 0.9 4 ( M1 ) 0 . 167 DCO=0.50 13. 4 3 1 . 9@ 5 432 . 3 f 6 4 3 8 . 3& 5 2425 . 5+x 1.7 7 ( M1 , E 2 ) 0 . 10 6 DCO=0.59 14. 7044 . 6+x 0.6 3 [ M1 ] 0 . 160 441 . 7c 444 . 4c 5 4208 . 3+x 2.1 8 [ M1 ] 0 . 154 5030 . 6+x 1.0 4 ( M1 ) 0 . 151 ( M1 ) 0 . 149 5 4165 . 6+x 3 . 4 11 447 . 6a 6 454 . 6c 5 4 6 2 . 6& 4 3860 . 0+x 0.9 3 4588 . 9+x 0.7 4 [ M1 ] 0 . 140 3837 . 2+x 13 . 0 33 ( M1 ) 0 . 134 DCO=0.49 7. 2057 . 5+x 4 . 8 14 ( M1 ) 0 . 127 DCO=0.46 13. 472 . 1b 5 482 . 5c 5 5 1 9 . 6@ 2 5 2 7 . 3@ 4 531 . 5a 5 539 . 5a 6 4537 . 1+x 1.9 9 1400 . 9+x 82 10 1549 . 3+x 10 . 2 19 2525 . 0+x 3 . 8 11 3904 . 4+x 1 . 8 12 3247 . 7+x 2 . 8 10 DCO=0.46 8. This γ ray has not been reported in other references. ( M1 ) 0 . 120 DCO=0.45 8. E2 0 . 027 DCO=0.96 11. E2 0 . 0258 DCO=1.05 15. E 2 ( +M3 ) 0 . 029 DCO=0.93 17. This γ ray may be the same as the 540.4 keV transition from 1996Du18, who place it as deexciting their 3822–keV level. 542 . 2b 5 546 . 3b 5 5 5 5 . 0& 4 [ M1 ] 0 . 088 3539 . 1+x 6 . 4 17 ( E2 ) 0 . 0238 DCO=1.11 17. 3078 . 3+x 6 . 6 23 ( M1 ) 0 . 0827 DCO=0.62 7. ( M1 , E 2 ) 0 . 05 3 DCO=0.77 9. ( E2 ) 0 . 022 DCO=0.89 15. 555 . 5b 3 2140 . 7+x 564 . 6b 4 581 . 4a 6 2705 . 5+x 7 . 2 19 4441 . 4+x 0.8 3 30 10 A 581.8 keV γ is placed by 1996Du18 as deexciting their 3997–keV level. 5 9 0 . 6@ 3 5 9 2 . 5@ 3 594 . 3b 5 2139 . 9+x 30 6 E2 1993 . 5+x 35 9 2652 . 0+x E 2 ( +M3 ) 0 . 029 9 2 . 6 13 [ E2 ] 0 . 0196 ( E2 ) 0 . 0183 612 . 6b 3 3739 . 3+x 8 . 3 22 632 . 2a 6 633 . 2d 6 638 . 3b 5 4239 . 2+x 1.3 9 644 . 0a 6 647 . 5b 5 655 . 7b 4 DCO=0.97 15. 3319 . 8+x 1.4 5 ( E2 ) § 0 . 0170 3 . 2 10 ( E2 ) 0 . 0167 4757 . 6+x 0.6 3 ( E2 ) 0 . 0164 ( E2 ) 0 . 0158 4634 . 7+x 1.3 5 1.9 8 DCO=0.96 13. This γ ray has not been reported in other references. 4177 . 4+x 4395 . 0+x DCO=1.08 14. DCO=1.13 19. This γ ray has not been reported in other references. 6 6 8 . 0@ 4 1549 . 3+x 9 . 0 17 ( M1 +E 2 ) 0 . 0236 42 DCO=0.58 7. 672 . 0b 4 677 . 0a 4 691 . 7d 6 2992 . 8+x 6 . 9 18 ( E2 ) 0 . 0150 DCO=1.09 15. 2670 . 5+x 9 . 9 19 ( E2 ) 0 . 0147 DCO=0.93 11. 4826 . 0+x 0.3 1 ( E2 ) § 0 . 0141 692 . 8b 4 4432 . 2+x 3 . 2 10 ( E2 ) 0 . 0140 701 . 2a 5 705 . 9g 6 710 . 7d 6 4113 . 6+x 1.6 5 ( E2 ) 0 . 0137 3131 . 5+x 1.7 4 5179 . 3+x 0.4 2 [ E2 ] § [ E2 ] § 0 . 0133 DCO=0.89 15. 0 . 0135 711 . 5b 6 4888 . 9+x 0.7 4 ( E2 ) 0 . 0133 729 . 3b 4 7 3 9 . 0@ 3 739 . 5b 5 5161 . 5+x 1.5 6 ( E2 ) 0 . 0126 DCO=0.97 30. 0 . 031 3 DCO=0.58 15. 2139 . 9+x 3987 . 2+x 19 4 M1 +E 2 This γ ray has not been reported in other references. 1996Du18 1.8 6 list a 739.7 keV γ with Iγ=23.3 14. The sum of the γ intensities of the 739.0 and 739.5 keV τransitions from the present authors is 20.8 40. Therefore the transition seen in 1996Du18 may be an unresolved doublet. 741 . 9a 5 3412 . 4+x 4 . 5 12 ( E2 ) 0 . 0122 DCO=0.97 17. Continued on next page (footnotes at end of table) 192 19 3 P b 111 – 3 0 82 19 3 P b 111 – 3 0 82 NUCLEAR DATA SHEETS 174Yb(24Mg,5nγ) 1996Ba54 (continued) γ( 1 9 3 P b ) ( c o n t i n u e d ) Mult.‡ Iγ† α‡ Eγ# E(level) 747 . 6d 6 753 . 8 f 6 754 . 4a 5 4468 . 6+x 0.5 2 5770 . 9+x 0.9 3 3364 . 9+x 5 . 6 30 3837 . 2+x 2.3 9 ( E2 ) 0 . 0116 0 . 0114 ( E2 ) § ( E2 ) § Comments 0 . 0120 0 . 0118 1996Du18 report a 755.1 keV transition deexciting their level at 3282 keV. 7 5 8 . 9& 5 766 . 5b 6 772 . 8g 6 782 . 5d 6 791 . 1g 6 5161 . 5+x 0.8 4 3540 . 8+x 1.5 4 3721 . 1+x 2.8 7 [ E2 ] [ E2 ] § ( E2 ) § 3922 . 6+x 1.2 3 ( E2 ) § 0 . 0106 DCO=1.16 31. 0 . 0112 0 . 0109 DCO=1.09 21. 805 . 9b 3 3126 . 7+x 8 . 8 22 ( E2 ) 0 . 0102 DCO=0.91 11. 8 1 1 . 7@ 4 814 . 5d 5 819 . 0b 3 2212 . 5+x 9 . 8 19 E2 0 . 010 DCO=0.91 12. 4134 . 3+x 3.0 9 ( E2 ) § 0 . 0100 2404 . 1+x 3 . 3 10 834 . 0c 845 . 8c 5 3417 . 9+x 2 . 8 13 [ E2 ] 0 . 0096 5 8 5 1 . 3& 4 867 . 8c 5 1.1 5 [ E2 ] 0 . 0093 3374 . 6+x 4165 . 6+x 16 6 4588 . 9+x 1.2 5 8 8 1 . 3@ 2 881 . 3+x 996 . 5a 6 1 0 2 2 . 1@ 4 3607 . 0+x 3 . 0 18 1022 . 1+x 12 . 2 21 100 11 This γ ray has not been reported in other references. ( E2 ) 0 . 0092 [ E2 ] 0 . 0088 DCO=0.96 14. E2 0 . 00855 DCO=0.96 11. This γ ray has not been reported in other references. E 2 ( +M1 ) 0 . 0117 53 DCO=0.77 14. † The quoted uncertainty for the γ intensity does not contain the uncertainty listed for the 881–keV transition. ‡ From adopted values dataset. § Crossover stretched quadrupole transition between alternate levels in magnetic dipole band, connected by stretched (M1) transitions. # An uncertainty of 0.1% (with a minimum value of ± 0.3 keV) has been assigned by the evaluators from comparison with previous HERA and GAMMASPHERE results. @ Group 1. & Group 2. a Group 3. b Group 4. c Group 5. d Band 1a. e Band 1b. f Band 2. g Band 3. 182W(16O,5nγ) 1991La07: 182W(16O,5nγ) 1991La07 E(16O)=109 MeV; intrinsic Ge and Si(Li) detectors and magnetic spectrometer, pulsed beam (200 ns period); measured Eγ, Iγ, Ice, γγ coin, γ–ce coin, γ(θ), γγ(t). 193Pb Jπ T1/2† 0 . 0+x ( 13 / 2+ ) 5 . 8 mi n 2 881 . 6+x 2 ( 17 / 2+ ) E(level) 1022 . 0+x 2 ( 15 / 2+ ) 1401 . 8+x 3 ( 21 / 2+ ) 1550 . 1+x 3 ( 19 / 2+ ) 1585 . 9+x 4 ( 21 / 2– ) 1994 . 4+x 4 ( 25 / 2+ ) 2141 . 3+x 4 ( 23 / 2+ ) 2142 . 0+x 4 ( 23 / 2– ) 2214 . 0+x 5 ( 25 / 2+ ) 2322 . 4+x 5 ( 27 / 2– ) 2426 . 9+x 5 ( 27 / 2+ ) 2527 . 1+x 5 ( 29 / 2+ ) 2585 . 1+x 5 ( 29 / 2– ) 22 ns 2 11 ns 2 Levels Comments Jπ,T1/2: from adopted values. Continued on next page (footnotes at end of table) 193 19 3 P b 111 – 3 1 82 182W(16O,5nγ) 193Pb E(level) 2612 . 6+x 6 Jπ T1/2† ( 33 / 2+ ) 135 ns +25–15 2966 . 8+x ? 7 ( 31 / 2+ ) 3220 . 4+x ? 7 ( 33 / 2+ ) † 19 3 P b 111 – 3 1 82 NUCLEAR DATA SHEETS 1991La07 (continued) Levels (continued) Half–lives obtained here from γ(t) or γγ(t), except as noted. γ(193Pb) Eγ 72 . 6 5 E(level) Iγ‡ 2214 . 0+x M1 +E 2 α§ δ† Mult.† 0 . 21 +4–2 I(γ+ce) Comments Mult.: α((L1+L2)/L3)(exp)=8.8 20; 5.6 3 theory: α(L12/L3)(M1)=123.0, α(L12/L3)(E2)=1.16. 85 . 5 5 2612 . 6+x E2 Mult.: α(L12/L3)(exp)=0.93 19, 12 . 1 α(L/M)(exp)=5.1 17; theory: α(L12/L3)(M1)=126.0, α(L12/L3)(E2)=1.22, α(L/M)(M1)=4.26, α(L/M)(E2)=3.78. B(E2)=68 10 e2 fm4. B(E2)(W.u.)=1.06 +13–20. 158 . 2 2 2585 . 1+x 45 . 0 53 E1 50 . 8 60 Mult.: A2=–0.15 5, A4=–0.002 74. αL12(exp)=0.0077 71; theory: αL12=0.0170. B(E1)=8.8×10–6 11 e2 fm2. B(E1)(W.u.)=4.7×10–6 9. 180 . 4 4 2322 . 4+x 2 . 9 20 M1 +E 2 4 +3–1 4 . 8 16 Mult.: A2=+0.20 7, A4=–0.21 10. αK(exp)=0.283 51, αL(exp)=0.36 4; theory: αK(M1)=1.433, αK(E2)=0.208, αL(M1)=0.248, αL(E2)=0.301. 184 . 1 3 1585 . 9+x 53 . 4 37 E 1 +M2 0 . 050 +14–19 0 . 116 14 59 . 1 40 Mult.: A2=+0.19 5, A4=–0.02 6. αK(exp)=0.0916 92; theory: αK(E1)=0.0769, αK(M2)=5.98. B(E1)=2.90×10–6 30 e2 fm2. B(E1)(W.u.)=1.47×10–6 14; B(M2)(W.u.)=0.5 3. 204 . 8 4 2527 . 1+x 0.7 6 E 1 +M2 0.7 4 2 . 5 16 Mult.: A2=–0.29 6, A4=+0.33 12. αK(exp)=1.9 16, αL12(exp)=0.21 12; theory: αK(E1)=0.0594, αK(M2)=4.18, αL12(E1)=0.0090, αL12(M2)=1.087. δ: Average of δ=0.9 +14–7 from αK, and δ=0.5 2 from αL12. 212 . 9 3 2426 . 9+x 26 . 2 33 M1 1 . 10 54 . 5 70 Mult.: A2=–0.19 4, A4=+0.03 7. αK(exp)=1.05 6, αL12(exp)=0.146 10; theory: αK(M1)=0.901, αL12(M1)=0.154. 219 . 1 3 2214 . 0+x 1.6 6 ( M1 ) 1 . 02 3 . 1 12 Mult.: αK(exp)=1.14 13, αL12(exp)=0.107 57; theory: αK(M1)=0.8316, αK(E2)=0.134, αL12(M1)=0.1424, αL12(E2)=0.0907. 253 . 6 10 3220 . 4+x ? 381 . 7 10 2966 . 8+x ? x497 .7 4 ( M1 ) ( M1 ) 8.3 5 E2 0 . 0296 8.5 5 Mult.: αK(exp)=0.0224 51; αL12(exp)=0.0044 22; theory: αK(E2)=0.0209, αL12(E2)=0.00563. Continued on next page (footnotes at end of table) 194 19 3 P b 111 – 3 2 82 19 3 P b 111 – 3 2 82 NUCLEAR DATA SHEETS 182W(16O,5nγ) 1991La07 (continued) γ( 1 9 3 P b ) ( c o n t i n u e d ) Eγ 520 . 2 2 E(level) 1401 . 8+x Iγ‡ 88 . 8 78 Mult.† α§ δ† E2 0 . 0266 I(γ+ce) 90 . 4 80 Comments Mult.: A2=+0.24 5, A4=–0.12 8. αK(exp)=0.0225 15, αL12(exp)=0.00433 32, αL3(exp)=0.0011 3; theory: αK(E2)=0.0190, αL12(E2)=0.00497, αL3(E2)=0.000792. 528 . 0 4 1550 . 1+x 6 . 1 10 E2 0 . 0257 6 . 2 10 Mult.: A2=+0.35 5, A4=–0.16 10. αK(exp)=0.0210 39; theory: αK(E2)=0.0184. 532 . 2 3 2527 . 1+x 8.6 5 E 2 ( +M3 ) 0 . 14 +5–7 8.8 5 Mult.: A2=+0.10 3, A4=–0.01 5. αK(exp)=0.0208 22, αL12(exp)=0.0091 15; theory: αK(E2)=0.01815, αL12(E2)=0.00466, αK(M3)=0.456, αL12(M3)=0.118. δ: Average of δ=0.08 +3–5 from αK, and δ=0.20 +3–4 from αL12. 556 . 1 4 2142 . 0+x 6.5 5 ( E2 ) 0 . 05 3 6.6 5 Mult.: A2=+0.13 5, A4=+0.06 9. αK(exp)=0.015 3; theory: αK(E2)=0.0166, αK(M1)=0.067. 591 . 2 4 2141 . 3+x 12 . 5 29 E2 593 . 1 4 1994 . 4+x 15 . 6 20 E 2 ( +M3 ) 12 . 7 30 Mult.: αK(exp)=0.0189 29; theory: 16 . 0 20 Mult.: αK(exp)=0.0232 35, αK(E2)=0.015. 0 . 15 6 0 . 029 9 αL12(exp)=0.0048 10; theory: αK(E2)=0.0145, αL12(E2)=0.00346, αK(M3)=0.320, αL12(M3)=0.0793. δ: Average of δ=0.17 +3–4 from αK, and δ=0.13 +7–7 from αL12. 668 . 7 3 1550 . 1+x 10 . 0 10 ( M1 +E 2 ) 1 . 8 +9–4 739 . 6 3 2141 . 3+x 14 . 0 24 E 2 +M1 0 . 64 16 0 . 0236 41 10 . 1 10 Mult.: αK(exp)=0.0183 32; theory: 14 . 3 25 Mult.: A2=–0.47 8, A4=+0.27 10. αK(M1)=0.0417, αK(E2)=0.0114. αK(exp)=0.0255 23; theory: αK(M1)=0.0321, αK(E2)=0.0094. 812 . 2 4 2214 . 0+x 881 . 6 2 881 . 6+x 5 . 0 15 ( E2 ) 0 . 10 E2 0 . 00855 5 . 0 15 Mult.: αK(exp)=0.0038 28; theory: αK(E2)=0.00785. 100 . 0 100 Mult.: A2=+0.25 6, A4=–0.02 9. αK(exp)=0.0074 5, αL12(exp)=0.00147 16; theory: αK(E2)=0.00672, αL12(E2)=0.00130. 1022 . 0 2 1022 . 0+x 14 . 6 18 ( M1 +E 2 ) 0 . 0117 53 14 . 7 18 Mult.: A2=–0.01 5, A4=+0.01 8. αK(exp)=0.0051 7; theory: αK(M1)=0.0140, αK(E2)=0.0051. † The multipolarities have been deduced from the measured conversion coefficients, and the angular distribution coefficients. The mixing ratio for a few transitions has been deduced from the experimental conversion coefficients. Additional information from the other (HI,xnγ) datasets has been also used in assigning the multipolarities listed here (see Adopted dataset). ‡ The γ–ray intensities have been calculated by the evaluators using the measured total intensities and the conversion coefficients obtained from the quoted multipolarities. The calculated relative γ intensities have been normalized to 100 for the 881.6–keV transition. § Theoretical total conversion coefficients for the stated multipolarities, and mixing ratio, if available. x γ ray not placed in level scheme. 195 19 3 P b 111 – 3 3 82 19 3 P b 111 – 3 3 82 NUCLEAR DATA SHEETS 182W(16O,5nγ) 1991La07 (continued) Level Scheme 25 3.6 (M 1) Intensities: relative I(γ+ce) 3220.4+x 38 1.7 (M 1 ) (33/2+) 2966.8+x 85 15 .5 E 8.2 2 53 E1 202.2 E 50 4 .8 2(+ 21 .8 E1 M 2.9 3) 18 + M M 0 .4 2 8.8 1 81 M 2.5 54 1+ 212.2 ( .5 E2 729.1 (E2) 4.8 .6 M 5 55 1 . M1 ) 0 +E 3.1 736.1 ( 2 599.6 EE2) 1 2 . 2 +M 6.6 59 E2 1 3.1 E2 12 14 .7 .3 (+M 3) 16 .0 (31/2+) (33/2+) (29/2–) (29/2+) (27/2+) (27/2–) (25/2+) (23/2–) (23/2+) (21/2–) (19/2+) 2426.9+x 2322.4+x 2214.0+x 2142.0+x 2141.3+x 1994.4+x 1585.9+x 22 ns 1550.1+x 1401.8+x 10 10 0 22 .0 (M 1+ E2 ) 14 .7 (21/2+) 135 ns 11 ns 2527.1+x 18 66 4.1 E 528.7 ( 1+M 8.0 M 2 52 E21+E 59 0.2 2 E2 6.2 ) 1 .1 0.1 90 .4 (25/2+) 2612.6+x 2585.1+x 1022.0+x 88 1.6 E2 (15/2+) (17/2+) 881.6+x 0.0+x (13/2+) 19 3 Pb 111 82 196 5.8 min 19 3 P b 111 – 3 4 82 NUCLEAR DATA SHEETS (HI,xnγ): SD 1999Ro21: 168Er(30Si,5nγ) 19 3 P b 111 – 3 4 82 1999Ro21,1995Hu01,1996Du05 E=160 MeV. Measured Eγ, Iγ, γγ using GAMMASPHERE array of 101 large Compton–suppressed Ge detectors. Deduced three new SD bands were deduced while confirming six previously known SD bands. No evidence was found for three high energy transitions of 2222, 2282 and 2352 (as reported by 1996Du05) linking SD–1 band to normal–deformed states. 1998Va18: 172Yb(26Mg,5nγ) E=139 MeV. GAMMASPHERE array of 98 large– volume Compton–suppressed Ge detectors. Measured lifetimes by DSAM (line–shape and centroid–shift analyses). 1996Du05, 1996Pe20: 168Er(30Si,5nγ) E=159 MeV. Measured Eγ, Iγ, γγ coin using EUROGAM 2 array with 15 escape suppressed Ge detectors at forward and backward angles and 24 "CLOVER" escape–suppressed Ge detectors near 90° to the beam direction. 1996Du05 confirm six SD bands; 1996Pe20 report transitions connecting sd1 band with the non–deformed levels. These transitions, however, have not been confirmed by 1999Ro21 using a larger detector array. 1995Hu01: 174Yb(24Mg,5nγ); E=131 MeV, GAMMASPHERE 36–detector array; measured Eγ, Iγ, γγ coin, γ asymmetry; deduced six SD bands; cranked–shell model calculations. Calculations, compilations: 1997Hu13, 1997Wu06, 1999Ha56, 1991Ch36. 193Pb Jπ† E(level) y‡ Levels J≈ ( 23 / 2 ) Comments E(level): 4217 relative to the 13/2+ isomer was suggested by 1996Pe20 on the basis of a tentative 2222γ to 1995+x level. But this transition has not been confirmed in the work of 1999Ro21 using a larger detector array. 277 . 0+y ‡ 3 J+2 2282γ (Iγ=0.035 20) and 2352γ (Iγ=0.034 20) proposed by 1996Du05 as linking transitions to normal–deformed states have not been confirmed by 1999Ro21 using a larger detector array, thus these γ rays together with a 2222γ (1996Du05) have been omitted here. 594 . 3+y ‡ 5 951 . 6+y ‡ 6 1349 . 1+y ‡ 6 J+4 J+6 J+8 1786 . 9+y ‡ 7 J+10 2264 . 3+y ‡ 8 2781 . 6+y ‡ 9 3337 . 7+y ‡ 9 J+12 J+14 J+16 3932 . 5+y ‡ 10 J+18 4565 . 9+y ‡ 11 5237 . 7+y ‡ 13 5945 . 9+y ? ‡ 15 J+20 z§ 190 . 2+z § 5 422 . 8+z § 6 698 . 0+z § 7 1015 . 9+z § 8 1376 . 8+z § 8 1780 . 3+z § 9 2226 . 2+z § 9 2714 . 4+z § 10 3242 . 4+z § 11 3812 . 2+z § 13 4422 . 7+z § 15 5072 . 7+z § 16 5762 . 5+z ? § 18 u# J+22 J+24 J1≈ ( 17 / 2 ) J1+2 J1+4 J1+6 J1+8 J1+10 J1+12 J1+14 J1+16 J1+18 J1+20 J1+22 J1+24 J1+26 J2≈ ( 21 / 2 ) 2 5 1 . 5+u# 6 5 4 3 . 0+u# 7 8 7 5 . 4+u# 8 J2+2 1 2 4 7 . 5+u# 8 1 6 5 9 . 4+u# 9 2 1 1 0 . 0+u# 9 J2+8 J2+4 J2+6 J2+10 J2+12 2 5 9 8 . 9+u# 1 0 3 1 2 5 . 5+u# 1 1 3 6 8 8 . 9+u# 1 1 J2+14 4 2 8 8 . 8+u# 1 3 4 9 2 5 . 8+u# 1 4 5 5 9 8 . 0+u# 1 5 J2+20 6 3 0 7 . 2+u# 1 6 v@ J2+16 J2+18 J2+22 J2+24 J2+26 J3≈ ( 23 / 2 ) 273 . 0+v ?@ 7 5 8 6 . 4 + v@ 1 0 J3+2 9 3 9 . 5 + v@ 1 0 J3+6 J3+4 Continued on next page (footnotes at end of table) 197 19 3 P b 111 – 3 5 82 19 3 P b 111 – 3 5 82 NUCLEAR DATA SHEETS (HI,xnγ): SD 1999Ro21,1995Hu01,1996Du05 (continued) 193Pb Jπ† E(level) 1 3 3 1 . 4 + v@ 1 1 1 7 6 1 . 4 + v@ 1 1 2 2 2 8 . 5 + v@ 1 2 2 7 3 2 . 4 + v@ 1 3 3 2 7 1 . 9 + v@ 1 3 3 8 4 7 . 0 + v@ 1 4 4 4 5 7 . 0 + v@ 1 5 5 1 0 1 . 5 + v@ 1 6 5 7 7 7 . 9 + v@ 1 7 6 4 8 5 . 1 + v@ 1 9 w& J3+8 J3+10 J3+12 J3+14 J3+16 J3+18 J3+20 J3+22 J3+24 J3+26 J4≈ ( 17 / 2 ) 1 0 0 . 5 +w a 8 2 1 3 . 2 +w& 4 3 3 5 . 1 +w a 6 J4+1 4 6 7 . 9 +w& 7 6 1 0 . 6 +w a 7 7 6 3 . 9 +w& 7 J4+4 9 2 6 . 8 +w a 8 1 0 9 9 . 9 +w& 8 1 2 8 2 . 6 +w a 8 1 4 7 5 . 2 +w& 9 1 6 7 7 . 0 +w a 9 1 8 8 8 . 7 +w& 9 2 1 0 9 . 8 +w a 9 2 3 4 0 . 0 +w& 1 0 2 5 8 0 . 4 +w a 1 0 J4+2 J4+3 J4+5 J4+6 J4+7 J4+8 J4+9 J4+10 J4+11 J4+12 J4+13 J4+14 J4+15 Jπ† E(level) 2 8 2 8 . 5 +w& 1 2 3 0 8 7 . 8 +w a 1 1 3 3 5 5 . 0 +w& 1 3 3 6 3 1 . 3 +w a 1 2 J4+19 4 8 2 5 . 6 +w a 1 5 J4+23 J4+27 1696 . 6+s b 13 3729 . 1+s b 16 4325 . 5+s b 17 4956 . 6+s b 19 1798 . 5+ t c 2270 . 8+ t c J4+22 6 1 5 9 . 1 +w a 1 7 2150 . 6+s b 14 2641 . 7+s b 15 3167 . 8+s b 15 964 . 1+ t c 1362 . 6+ t c J4+20 J4+25 260 . 6+s b 7 281 . 8+ t c 603 . 2+ t c J4+18 5 1 4 4 . 7 +w& 1 8 5 4 7 5 . 1 +w a 1 6 5 8 1 1 . 5 +w& 2 0 560 . 4+s b 10 900 . 5+s b 10 1279 . 4+s b 12 5620 . 8+s b 20 tc J4+16 J4+21 Jπ† E(level) J4+17 3 9 1 7 . 2 +w& 1 4 4 2 1 1 . 0 +w a 1 3 4 5 1 3 . 4 +w& 1 6 6 5 1 2 . 0 +w& 2 2 6 8 7 7 . 0 +w a 1 8 sb Levels (continued) 2778 . 9+ t c 3322 . 1+ t c J4+24 3900 . 1+ t c 4512 . 1+ t c J4+26 5158 . 9+ t c ad J4+28 J4+29 6 J5+2 J5+4 9 J6+4 J6+6 11 J6+8 12 J6+10 14 J6+12 15 J6+14 16 J6+16 17 J6+18 18 J6+20 19 J6+22 1102 . 5+ad 11 J5+6 1478 . 3+ad 13 1894 . 2+ad 13 2349 . 7+ad 14 J5+8 J5+10 J5+12 2845 . 3+ad 15 J5+14 3380 . 7+ad 17 3956 . 0+ad 19 J5+16 J5+18 J6 J6+2 10 212 . 9+ad 5 468 . 7+ad 7 766 . 0+ad 10 J5 J5+24 J7 J7+2 J7+4 J7+6 J7+8 J7+10 J7+12 J7+14 J7+16 J7+18 J7+20 J5+20 J5+22 † Band SD–1 from 1996Pe20, others from 1996Du05; based on band structure and γ anisotropy. The lowest–level spin in each band has ‡ (A): SD–1 band (1999Ro21,1995Hu01,1996Du05,1996Pe20). Configuration=ν3/2[761] α=–1/2. From (24Mg,5nγ); band intensity relative § (B): SD–2 band (1999Ro21,1995Hu01,1996Du05). Configuration=ν3/2[761] α=+1/2. From (24Mg,5nγ); band intensity relative to total been estimated using the spin fit method. to total 193Pb 193Pb channel is 0.5%. Q(intrinsic)=17.3 +7–8 (1998Va18). channel is 0.3% (1995Hu01). Band intensity relative to SD–1 band=50% (1996Du05), 38% 8 (1999Ro21). SD–1 and SD–2 represent favored and unfavored signature components (with a large observed splitting) of the low–K, 3/2[761], N=7 neutron orbital (from (24Mg,5nγ)). # (C): SD–3 band (1999Ro21,1995Hu01,1996Du05). Configuration=ν3/2[642] α=+1/2. From (24Mg,5nγ); band intensity relative to total 193Pb channel is 0.25% (1995Hu01). Band intensity relative to SD–1 band=50% (1996Du05), 46% 9 (1999Ro21). @ (D): SD–4 band (1999Ro21,1995Hu01,1996Du05). Configuration=ν3/2[642] α=–1/2. From (24Mg,5nγ); band intensity relative to total 193Pb channel is 0.25% (1995Hu01). Band intensity relative to SD–1 band=50% (1996Du05), 23% 5 (1999Ro21). SD–3 and SD–4 are interpreted as signature partners (no signature splitting) based on a high K, 3/2[642] neutron orbital. The 5/2[512] neutron orbital suggested by 1995Hu01 is not supported by calculations and experimental comparisons of 1996Du05 and 1999Ro21. & (E): SD–5 band (1999Ro21,1995Hu01,1996Du05). Configuration=ν9/2[624] α=+1/2. From (24Mg,5nγ); band intensity relative to total 193Pb channel is 0.2% (1995Hu01). Band intensity relative to SD–1 band=30% (1996Du05), 15% 3 (1999Ro21). a (F): SD–6 band (1999Ro21,1995Hu01,1996Du05). Configuration=ν9/2[624] α=–1/2. From (24Mg,5nγ); band intensity relative to total 193Pb channel is 0.2% (1995Hu01). Band intensity relative to SD–1 band=30% (1996Du05), 20% 4 (1999Ro21). SD–5 and SD–6 are interpreted as signature partners (no signature splitting) based on a high K, 9/2[624] neutron orbital. From dipole interband transitions, 1996Du05 deduce B(M1)/B(E2)=0.15 4. gK=–0.39 12 (1996Du05), –0.27 9 (1999Ro21) from M1/E2 branching ratios, using Θ0=18.4 and K=9/2. b (G): SD–7 band (1999Ro21). Band intensity relative to SD–1 band=17% 3 (1999Ro21). SD–7 and SD–8 are proposed as signature partners with configuration=ν5/2[512]. c (H): SD–8 band (1999Ro21). Band intensity relative to SD–1 band=14% 3 (1999Ro21). SD–7 and SD–8 are proposed as signature partners with configuration=ν5/2[512]. d (I): SD–9 band (1999Ro21). Band intensity relative to SD–1 band=5% 1 (1999Ro21). Configuration=ν7 intruder orbital. 3 198 19 3 P b 111 – 3 6 82 19 3 P b 111 – 3 6 82 NUCLEAR DATA SHEETS (HI,xnγ): SD 1999Ro21,1995Hu01,1996Du05 (continued) γ( 1 9 3 P b ) Eγ† E(level) 1 0 1 ‡@ 1 0 0 . 5 +w 1 1 2 ‡@ 2 1 3 . 2 +w 122 . 0‡ 5 3 3 5 . 1 +w 132 . 9‡ 5 142 . 5‡ 5 153 . 2‡ 5 4 6 7 . 9 +w I(γ+ce)# Comments 6 1 0 . 6 +w 7 6 3 . 9 +w 163 . 0‡ 5 9 2 6 . 8 +w 172 . 8‡ 5 182 . 7‡ 5 1 0 9 9 . 9 +w 1 2 8 2 . 6 +w 190 . 2 5 193 . 0‡ 5 1 4 7 5 . 2 +w 201 . 9‡ 5 1 6 7 7 . 0 +w 211 . 7‡ 5 1 8 8 8 . 7 +w 190 . 2+z 0 . 19 5 212 . 9 5 212 . 9+a 0 . 40 5 213 . 2 4 221 . 0‡ 5 2 1 3 . 2 +w 0 . 53 10 2 1 0 9 . 8 +w 2 3 1 ‡@ 2 3 4 0 . 0 +w I(γ+ce): 0.40 7 (1995Hu01). I(γ+ce): 0.96 19 (1995Hu01). 232 . 6 3 422 . 8+z 0 . 55 5 I(γ+ce): 0.61 9 (1995Hu01). 234 . 6 5 3 3 5 . 1 +w 0 . 13 7 I(γ+ce): 0.26 6 (1995Hu01). 251 . 5 6 2 5 1 . 5+u 0 . 07 7 254 . 6 7 4 6 7 . 9 +w 0 . 72 11 255 . 8 5 468 . 7+a 1 . 00 12 I(γ+ce): 1.00 19 (1995Hu01). 260 . 6 7 260 . 6+s 0 . 24 4 2 7 3 . 0 §@ 7 273 . 0+v ? 0 . 17 7 275 . 2 3 698 . 0+z 0 . 68 5 275 . 5 5 6 1 0 . 6 +w 0 . 35 7 I(γ+ce): 0.39 6 (1995Hu01). 277 . 0 3 277 . 0+y 0 . 47 5 I(γ+ce): 0.51 7 (1995Hu01). 0 . 15 2 I(γ+ce): 1.00 10 (1995Hu01). 281 . 8 6 281 . 8+ t 291 . 5 3 5 4 3 . 0+u 0 . 76 7 I(γ+ce): 0.58 8 (1995Hu01). 296 . 2 5 7 6 3 . 9 +w 0 . 71 14 I(γ+ce): 0.60 10 (1995Hu01). 297 . 3 6 766 . 0+a 0 . 36 5 299 . 8 6 560 . 4+s 0 . 51 7 313 . 4 6 586 . 4+v 0 . 44 7 I(γ+ce): 0.42 8 (1995Hu01). 316 . 2 5 9 2 6 . 8 +w 0 . 45 7 I(γ+ce): 0.40 8 (1995Hu01). 317 . 3 3 594 . 3+y 0 . 95 9 I(γ+ce): 0.82 7 (1995Hu01). 317 . 9 3 1015 . 9+z 0 . 91 9 I(γ+ce): 0.84 10 (1995Hu01). 321 . 5 6 603 . 2+ t 0 . 43 7 332 . 4 3 8 7 5 . 4+u 0 . 86 7 I(γ+ce): 0.77 9 (1995Hu01). 336 . 1 4 1 0 9 9 . 9 +w 0 . 91 10 I(γ+ce): 0.45 10 (1995Hu01). 336 . 6 6 1102 . 5+a 0 . 54 7 340 . 1 4 900 . 5+s 0 . 52 7 353 . 1 4 939 . 5+v 0 . 68 7 355 . 9 5 1 2 8 2 . 6 +w 0 . 87 8 I(γ+ce): 0.70 9 (1995Hu01). 357 . 3 3 951 . 6+y 0 . 90 9 I(γ+ce): 0.82 7 (1995Hu01). I(γ+ce): 0.76 10 (1995Hu01). I(γ+ce): 0.71 10 (1995Hu01). 360 . 9 3 1376 . 8+z 1 . 07 10 360 . 9 5 964 . 1+ t 0 . 62 11 372 . 1 3 1 2 4 7 . 5+u 1 . 03 9 I(γ+ce): 1.00 11 (1995Hu01). 375 . 1 5 1 4 7 5 . 2 +w 0 . 92 10 I(γ+ce): 0.90 18 (1995Hu01). 375 . 8 5 1478 . 3+a 0 . 63 7 378 . 9 5 1279 . 4+s 0 . 63 10 391 . 9 3 1331 . 4+v 0 . 85 7 394 . 4 5 1 6 7 7 . 0 +w 0 . 95 9 I(γ+ce): 0.60 7 (1995Hu01). 397 . 5 3 1349 . 1+y 1 . 05 11 I(γ+ce): 0.84 7 (1995Hu01). I(γ+ce): 0.80 11 (1995Hu01). 398 . 5 5 1362 . 6+ t 1 . 00 17 403 . 5 3 1780 . 3+z 0 . 97 10 I(γ+ce): 0.98 10 (1995Hu01). 411 . 9 3 1 6 5 9 . 4+u 1 . 04 9 I(γ+ce): 0.95 11 (1995Hu01). 413 . 5 5 1 8 8 8 . 7 +w 1 . 04 14 I(γ+ce): 0.90 18 (1995Hu01). 415 . 9 4 1894 . 2+a 0 . 62 7 417 . 2 5 1696 . 6+s 1 . 00 18 430 . 0 3 1761 . 4+v 0 . 81 8 I(γ+ce): 0.65 10 (1995Hu01). 432 . 8 4 2 1 0 9 . 8 +w 1 . 02 10 I(γ+ce): 0.73 9 (1995Hu01). 435 . 9 4 1798 . 5+ t 0 . 58 11 437 . 8 3 1786 . 9+y 0 . 90 9 I(γ+ce): 0.82 7 (1995Hu01). Continued on next page (footnotes at end of table) 199 19 3 P b 111 – 3 7 82 19 3 P b 111 – 3 7 82 NUCLEAR DATA SHEETS (HI,xnγ): SD 1999Ro21,1995Hu01,1996Du05 (continued) γ(193Pb) (continued) Eγ† E(level) I(γ+ce)# Comments 445 . 9 3 2226 . 2+z 0 . 78 7 I(γ+ce): 0.82 10 (1995Hu01). 450 . 6 3 2 1 1 0 . 0+u 1 . 04 10 I(γ+ce): 0.79 10 (1995Hu01). 451 . 2 5 2 3 4 0 . 0 +w 0 . 89 10 I(γ+ce): 0.87 18 (1995Hu01). 454 . 0 5 2150 . 6+s 0 . 69 11 0 . 60 5 455 . 5 4 2349 . 7+a 467 . 1 4 2228 . 5+v 0 . 97 10 I(γ+ce): 0.76 10 (1995Hu01). 470 . 6 4 2 5 8 0 . 4 +w 0 . 90 9 I(γ+ce): 0.90 10 (1995Hu01). 472 . 3 6 2270 . 8+ t 0 . 51 7 477 . 4 3 2264 . 3+y 0 . 86 9 I(γ+ce): 0.75 7 (1995Hu01). 488 . 2 4 2714 . 4+z 0 . 68 6 I(γ+ce): 0.59 9 (1995Hu01). 488 . 6 5 2 8 2 8 . 5 +w 0 . 73 10 I(γ+ce): 0.69 16 (1995Hu01). 488 . 9 3 2 5 9 8 . 9+u 1 . 00 10 I(γ+ce): 0.94 11 (1995Hu01). 491 . 1 5 2641 . 7+s 0 . 54 11 495 . 6 6 2845 . 3+a 0 . 40 7 503 . 9 4 2732 . 4+v 1 . 00 10 I(γ+ce): 1.00 16 (1995Hu01). 507 . 4 4 3 0 8 7 . 8 +w 0 . 83 9 I(γ+ce): 1.00 10 (1995Hu01). 508 . 1 6 2778 . 9+ t 0 . 58 8 517 . 3 4 2781 . 6+y 0 . 73 6 526 . 1 5 3167 . 8+s 0 . 82 12 526 . 5 5 3 3 5 5 . 0 +w 0 . 95 16 526 . 6 4 3 1 2 5 . 5+u 0 . 95 10 I(γ+ce): 0.88 11 (1995Hu01). 528 . 0 5 3242 . 4+z 0 . 30 5 I(γ+ce): 0.46 8 (1995Hu01). 535 . 4 7 3380 . 7+a 0 . 29 5 539 . 5 4 3271 . 9+v 1 . 02 10 543 . 2 6 3322 . 1+ t 0 . 36 7 I(γ+ce): 1.00 10 (1995Hu01). I(γ+ce): 0.30 19 (1995Hu01). I(γ+ce): 0.51 9 (1995Hu01). 543 . 5 5 3 6 3 1 . 3 +w 0 . 75 7 I(γ+ce): 0.72 8 (1995Hu01). 556 . 1 3 3337 . 7+y 0 . 74 6 I(γ+ce): 0.93 7 (1995Hu01). 561 . 3 5 3729 . 1+s 0 . 80 12 562 . 2 6 3 9 1 7 . 2 +w 0 . 71 13 563 . 4 4 3 6 8 8 . 9+u 0 . 54 7 569 . 8 6 3812 . 2+z 0 . 15 5 575 . 1 3 3847 . 0+v 0 . 82 8 575 . 3 8 3956 . 0+a 0 . 12 4 I(γ+ce): 0.74 10 (1995Hu01). I(γ+ce): 0.53 9 (1995Hu01). 578 . 0 5 3900 . 1+ t 0 . 67 8 579 . 7 5 4 2 1 1 . 0 +w 0 . 44 7 I(γ+ce): 0.48 6 (1995Hu01). 594 . 8 4 3932 . 5+y 0 . 46 5 I(γ+ce): 0.60 7 (1995Hu01). 596 . 2 7 4 5 1 3 . 4 +w 0 . 35 10 596 . 4 6 4325 . 5+s 0 . 65 12 599 . 9 5 4 2 8 8 . 8+u 0 . 36 7 I(γ+ce): 0.40 8 (1995Hu01). 610 . 0 5 4457 . 0+v 0 . 66 7 I(γ+ce): 0.57 8 (1995Hu01). 610 . 5 7 4422 . 7+z 0 . 08 5 612 . 0 6 4512 . 1+ t 0 . 29 5 614 . 6 7 4 8 2 5 . 6 +w 0 . 35 7 631 . 1 7 4956 . 6+s 0 . 44 10 631 . 3 8 5 1 4 4 . 7 +w 0 . 43 10 633 . 4 5 4565 . 9+y 0 . 22 5 637 . 0 5 4 9 2 5 . 8+u 0 . 30 7 644 . 5 6 5101 . 5+v 0 . 31 7 646 . 8 7 5158 . 9+ t 0 . 43 7 649 . 5 5 5 4 7 5 . 1 +w 0 . 25 7 650 . 0 7 5072 . 7+z 0 . 05 4 664 . 2 7 5620 . 8+s 0 . 35 10 666 . 8 9 5 8 1 1 . 5 +w 0 . 18 9 671 . 8 6 5237 . 7+y 0 . 14 5 672 . 2 6 5 5 9 8 . 0+u 0 . 15 6 676 . 4 6 5777 . 9+v 0 . 20 7 684 . 0 6 6 8 9 . 8 §@ 8 6 1 5 9 . 1 +w 0 . 13 7 5762 . 5+z ? 0 . 04 4 I(γ+ce): 0.22 7 (1995Hu01). 700 . 5 8 6 5 1 2 . 0 +w 0 . 18 9 Eγ: from 1999Ro21 only. 707 . 2 8 7 0 8 . 2 §@ 8 6485 . 1+v 0 . 07 7 Eγ: 707.3 6 (1996Du05) was assigned to SD–3 band. 5945 . 9+y ? 0 . 05 4 709 . 2 7 6 3 0 7 . 2+u 0 . 07 6 717 . 9 7 6 8 7 7 . 0 +w 0 . 07 7 Eγ: 709.3 6 (1996Du05) was assigned to SD–4 band. Footnotes continued on next page 200 19 3 P b 111 – 3 8 82 NUCLEAR DATA SHEETS (HI,xnγ): SD 19 3 P b 111 – 3 8 82 1999Ro21,1995Hu01,1996Du05 (continued) γ( 1 9 3 P b ) ( c o n t i n u e d ) † From 1999r021. Values are also available from 1995Hu01 and 1996Du05 for SD–1 to SD–6. SD–7, SD–8 and SD–9 bands are reported by 1999Ro21 only. ‡ From 1996Du05. § From 1996Du05, but not confirmed by 1999Ro21. # Relative transition intensities within each band, read by evaluator from fig. 1 of 1996Du05. Values from 1995Hu01 are given in comments. Intensity plots are given by 1999Ro21 for SD–7, SD–8 and SD–9 bands. @ Placement of transition in the level scheme is uncertain. 201 19 3 B i 110 – 1 83 19 3 B i 110 – 1 83 NUCLEAR DATA SHEETS Adopted Levels, Gammas Q(β–)=–7510 40; S(n)=10400 30; S(p)=606 16; Q(α)=6304 5 Identification: 181Ta(20Ne,8n), 2003Au03. mass separation (1970Ta14); excitation functions and cross bombardments for several (HI,xnγ) reactions (1974Le02). 193Bi Levels Band structure adopted from 2004Ni06. For details regarding suggested level structures, band spin–parity assignments, and calculations for justifying proposed configurations for the various levels, see 2004Ni06. Cross Reference (XREF) Flags E(level)† 0 . 0# Jπ‡ ( 9 / 2– ) XREF A C A 197At α Decay (0.388 s) B 197At α Decay (2.0 s) C 165Ho(32S,4nγ) Comments T1/2 63 . 6 s 30 %α=3.5 15; %ε+%β+=96.5 15. %α: from 2003Au02. T1/2(β+)=55 s (1997Mo25, theory) suggests predominately ε+β+ decay. The 193Bi g.s. decays by two main α branches: 1) E(α)=6174 5 keV, I(α)=4.2 5%, HF≈760 (1985Co06), to the (1/2+) 189Tl g.s.; 2) E(α)=5896 3 keV (2003Au02, from original data in 1985Co06, recalibrated by 1991Ry01), I(α)=95.8 5%, HF=2.0 15, to the (9/2–) 283–keV level in 189Tl. Jπ: From systematics for ground states for odd–A Bi, and for At parent and Tl daughter nuclei; from the hindrance factors for the 6958–keV α transition from the (9/2–) 197At g.s. (HF=1.5) (see 197At α–decay dataset below), and for the 5896–keV α decay to the 283–keV 9/2– level in 189Tl (HF≈2.0) (1985Co06); and from shell–model and TRS calculations (2004Ni06). T1/2: Weighted average of 63 s 5 (1985Co06), 64 s 4 (1974Le02) Other: 62.2 s 36 (1972Ga27). 3 0 8& 7 ( 1 / 2+ ) B 3.2 s 5 %α=84 16; %ε+%β+=16 16. %α: Average from: a) comparison of intensity of of 197At 193Bi (3.3 s) α peak with that (2.0 s) parent peak, 90 +10,–20 (1986Co12), and b) 75 25 (1985Co06). This level decays by an E(α)=6476 keV 5 transition (2003Au02) to the (1/2+) 189Tl g.s. Values for the hindrance factor for this decay are HF=0.75 45 (1985Co06), and 0.9 2 (1986Co12), indicating that the initial and final states have the same configuration. E(level): from 2003Au02 (AME2003 adjustment, involving original data for α–ray energy differences from 1985Co06, recalibrated in 1991Ry01). T1/2: Weighted average of 1.4 s +38–6 (2005Uu02), 3.5 s 2 (1974Le02, 1972Ga27) and 1.9 s 4 (1985Co06). Other: 3.15 s, 1970Ta14. 5 0 7 . 9& 5 605 . 5§ 5 ( 3 / 2+ ) C ( 13 / 2+ ) C 620 . 0# 4 7 3 7 . 4& 7 818 . 0# 3 ( 11 / 2– ) C ( 5 / 2+ ) C ( 13 / 2– ) C 928 . 9§ 5 ( 15 / 2+ ) C 1 0 1 6 . 8& 7 1169 . 9# 4 1228 . 2§ 6 ( 7 / 2+ ) C ( 15 / 2– ) C ( 17 / 2+ ) C 1415 . 0# 4 ( 17 / 2– ) C C 1514 . 8 7 ( 17 / 2+ ) 1 5 2 1 . 3& 9 ( 11 / 2+ ) C 1536 . 0 5 1555 . 5§ 6 ( 15 / 2+ ) C ( 19 / 2+ ) C 1672 . 9 6 1794 . 6# 5 ( 17 / 2+ ) C ( 19 / 2– ) C 1875 . 3§ 7 ( 21 / 2+ ) C 1950 . 8 8 2049 . 0# 5 ( 19 / 2+ ) C ( 21 / 2– ) C 2108 . 9 12 C 153 ns 10 T1/2: from 2004Ni06. There is a suggestion in 2004Ni06 that this level, as well as the one at 2127.9 keV, may be fed, possibly via a sequence of unknown intermediate states, by the decay of an higher–energy isomeric state with T1/2>10 µs. 2127 . 9 8 C See comment for the 2108.9–keV level about a possible feeding by the decay of an higher–energy isomeric state. 2221 . 0§ 7 ( 23 / 2+ ) C Continued on next page (footnotes at end of table) 202 19 3 B i 110 – 2 83 19 3 B i 110 – 2 83 NUCLEAR DATA SHEETS Adopted Levels, Gammas (continued) 193Bi Jπ‡ E(level)† XREF 2356 . 0 8 ( 25 / 2– ) C 2464 . 6# 7 2536 . 4§ 7 2587 . 0# 12 ( 23 / 2– ) C ( 25 / 2+ ) C ( 25 / 2– ) C 2756 . 7§ 10 ( 27 / 2+ ) C 2960 . 7§ 14 2 3 5 7 + x@ ( 29 / 2+ ) C 2 7 5 5 . 8 + x@ 5 3 1 1 1 . 8 + x@ 1 2 3 4 0 1 . 0 + x@ 1 3 ya 278 . 8+ya 3 464 . 5+ya 6 662 . 8+y 11 716 . 8+ya 7 ( 29 / 2– ) C ( 31 / 2– ) C ( 33 / 2– ) C ( 35 / 2– ) C J C ( J+2 ) C ( J+3 ) C ( J+4 ) C ( J+5 ) C ( J+6 ) C 3 . 0 µs 1 See discussion for this state in the reaction dataset. C 1098 . 5+y 12 1311 . 4+ya 9 Comments T1/2 C 916 . 8+y 11 1015 . 6+ya 7 Levels (continued) C 1364 . 8+y 13 C † From least–squares adjustment to γ–ray energies. ‡ From (HI,xn), based on rotational structure and γ–ray decay patterns, plus additional information from α decay schemes and § (A): Band 1, based on the (13/2+) isomeric state. systematics of shell–model intruder states in odd–mass Bi and Tl nuclei. # (B): Band 2 (9/2–) negative–parity band. Regarding the structure adopted for this band from 2004Ni06, see comment preceding the level table in the (HI,xn) reaction dataset. @ (C): Band 3, based on the (29/2–) isomeric state. & (D): Band 4, based on the (1/2+) isomeric state. a (E): Group B (2004Ni06). γ(193Bi) Eγ and Iγ from 2004Ni06. E(level) Iγ‡ Eγ 507 . 9 199 . 9a 5 100 605 . 5 605 . 0 5 100 Mult.§ [ M2 ] α† 0 . 199 Comments Iγ: See note in reaction dataset regarding the intensity of this γ ray. B(M2)(W.u.)=0.062 10, from 2004Ni06. α,B(M2)(W.u.): Estimated on the basis of a tentative M2 assignment (2004Ni06). B(M2)(W.u.)=0.062 5. 620 . 0 6 2 0 . 0@ 5 100 737 . 4 229 . 5a 5 1 9 8 . 0@ 5 8 1 8 . 2@ 3 100 818 . 0 928 . 9 1016 . 8 1169 . 9 1228 . 2 1415 . 0 ( M1 ) 1 . 53 ( E2 ) 0 . 0105 323 . 4# 3 279 . 2ad 5 100 ( M1 ) 0 . 394 508 . 9a 5 100 32 3 5 1 . 9@ 3 5 5 0 . 0@ 3 299 . 3# 5 97 8 ( M1 ) 0 . 313 100 8 ( E2 ) 0 . 0248 100 7 ( M1 ) 0 . 487 52 5 ( E2 ) 0 . 0187 11 . 4 14 ( M1 ) 0 . 84 ( E2 ) 0 . 0206 34 12 100 7 1514 . 8 585 . 9 5 95 15 909 . 2 9 100 45 1521 . 3 504 . 5a 5 718 . 5b 5 930 . 0b 5 100 100 10 327 . 3# 3 100 6 1536 . 0 1555 . 5 0 . 0189 100 11 622 . 7# 5 2 4 5 . 2@ 5 5 9 7 . 0@ 3 8.6 7 ( E2 ) (D) 59 10 ( M1 ) 0 . 382 Continued on next page (footnotes at end of table) 203 19 3 B i 110 – 3 83 19 3 B i 110 – 3 83 NUCLEAR DATA SHEETS Adopted Levels, Gammas (continued) γ( 1 9 3 B i ) ( c o n t i n u e d ) E(level) 1555 . 5 1672 . 9 Iγ‡ Eγ 626 . 6# 5 137 . 0b 5 62 6 Mult.§ ( E2 ) α† Comments 0 . 0185 This γ ray seen as a doublet by 2004Ni06. The placement of the second 6 . 1 20 component is unknown. Iγ: Undivided intensity quoted for this γ–ray doublet. 1794 . 6 1875 . 3 1950 . 8 1067b 1 3 7 9 . 3@ 5 6 2 4 . 5@ 5 319 . 9# 5 647 . 1# 5 100 5 ( E2 ) 40 4 ( M1 ) 0 . 256 100 9 ( E2 ) 0 . 0186 91 5 ( M1 ) 0 . 406 100 8 ( E2 ) 0 . 0172 100 2049 . 0 436 . 0 5 2 5 4 . 0@ 5 100 9 2108 . 9 6 3 4 . 4@ 5 436b 1 455 . 0b 5 345 . 8# 5 665 . 2# 5 100 2127 . 9 2221 . 0 2356 . 0 2464 . 6 2536 . 4 2587 . 0 2756 . 7 2960 . 7 307 . 0 5 4 1 5 . 2@d 5 6 7 0 . 0@ 5 315 . 2# 5 661 . 2# 5 5 3 8@ 1 220# 1 536# 1 204# 1 16 . 2 18 ( M1 ) 0 . 766 ( E2 ) 0 . 0180 100 6 ( M1 ) 0 . 329 85 7 ( E2 ) 0 . 0162 ( E2 ) 0 . 114 100 10 ( E2 ) 0 . 0160 61 4 ( M1 ) 0 . 423 100 6 ( E2 ) 0 . 0164 100 100 19 5 100 100 4 21 6 100 2755 . 8+x 3 9 8 . 8& 5 100 3111 . 8+x 100 278 . 8+y 3 5 6& 1 2 8 9 . 2& 5 278 . 8c 3 100 464 . 5+y 185 . 7c 5 100 5 100 3401 . 0+x 662 . 8+y 384 1 716 . 8+y 252 . 3c 916 . 8+y 638 1 1015 . 6+y 298 . 8c 551 . 1c (D) ( E2 ) 0 . 0263 (D) 100 (Q) 100 100 5 90 13 5 100 15 1098 . 5+y 634 1 100 1311 . 4+y 295 . 7c 5 595c 1 100 13 1364 . 8+y 648 1 100 27 15 † Theoretical total conversion coefficients for the suggested multipolarity. ‡ Relative γ–ray intensities normalized to I(323 keV)=100. Their errors do not contain the 6% error (2004Ni06) in the 323–keV γ § Multipolarities from 2004Ni06. intensity. # Band 1 intra–band @ Band 2 intra–band & Band 3 intra–band a Band 4 intra–band transition. transition. transition. transition. b Group A transition (2004Ni06). c Group B transition (2004Ni06). d Placement of transition in the level scheme is uncertain. 204 19 3 B i 110 – 4 83 19 3 B i 110 – 4 83 NUCLEAR DATA SHEETS Adopted Levels, Gammas (continued) (A) Band 1, based on (B) Band 2 (9/2–) (C) Band 3, based on (D) Band 4, based on the (13/2+) isomeric negative–parity band. the (29/2–) isomeric the (1/2+) isomeric state. state. state. (29/2+) 2960.7 (27/2+) 2756.7 (25/2+) 2536.4 (23/2+) 2221.0 (21/2+) 1875.3 (25/2–) 2587.0 (23/2–) 2464.6 (21/2–) 2049.0 (19/2–) 1794.6 (19/2+) 1555.5 (17/2–) 1415.0 (17/2+) 1228.2 (15/2–) 1169.9 (15/2+) 928.9 (13/2–) 818.0 (13/2+) 605.5 (11/2–) 620.0 (9/2–) (B)(9/2–) (35/2–) 3401.0+x (33/2–) 3111.8+x (31/2–) 2755.8+x (29/2–) 2357+x (11/2+) 0.0 19 3 Bi 110 83 (E) Group B (2004Ni06) (J+6) 1311.4+y (J+5) 1015.6+y (J+4) 716.8+y (J+3) 464.5+y (J+2) 278.8+y J y 19 3 Bi 83 110 205 1521.3 (7/2+) 1016.8 (5/2+) 737.4 (3/2+) 507.9 (1/2+) 308 19 3 B i 110 – 5 83 NUCLEAR DATA SHEETS 197At Parent α Decay (0.388 s) 1999Sm07,1986Co12 E=0.0; Jπ=(9/2–); T1/2=0.388 s 6; Q(g.s.)=7100 50; %α decay≤100. 197At: 197At: Q(α) from 2003Au03. 197At: T1/2 from 1999Sm07. Other values: 400 ms 100 (1967Tr06), 350 ms 40 (1986Co12), 390 ms 16 (2005De01), 340 ms 20 (2005Uu02). Sources from 185,187Re(20Ne,xn) (E(20Ne)=100–200 MeV (1967Tr06), E(20Ne)≤240 MeV (1986Co12)); helium–jet transport; measured Eα, Iα (silicon surface–barrier detectors). 193Bi Jπ E(level) 0.0 Levels Comments T1/2 ( 9 / 2– ) 63 . 6 s 30 Jπ,T1/2: From adopted levels. α radiations Eα E(level) 6959 3 0.0 Iα† HF 100 1 . 50 Comments HF: Using r0(193Bi)=1.529, average of r0(192Pb)=1.506 6 and r0(194Po)=1.551 10 (1998Ak04). 1999Sm07 calculated a HF=0.95 11, assuming I(α)=100%. Eα: Weighted average of 6957 5 (1967Tr06), 6960 5 (1999Sm07), 6959 6 keV (2005Uu02). † For α intensity per 100 decays, multiply by ≤1.00. 197At Parent 197At: α Decay (2.0 s) 1999Sm07,1986Co12 E=52 10; Jπ=(1/2+); T1/2=2.0 s 2; Q(g.s.)=7100 50; %α decay≤100. 197At: Q(α) from 2003Au03. Eex(197At) from α–ray energy differences (1986Co12). T1/2 from 1999Sm07. Other values: 3.7 s 25 (1986Co12), 1.1 s +11–4 (2005Uu02). Sources from 185,187Re(20Ne,xn), E(20Ne)≤240 MeV; helium–jet transport; measured Eα, Iα (silicon surface–barrier detectors). 193Bi Jπ E(level) 308 7 ( 1 / 2+ ) Levels Comments T1/2 3.2 s E(level),Jπ,T1/2: From adopted levels. 6 α radiations Eα E(level) 6705 4 308 Iα† HF 100 0 . 94 Comments HF: Using r0(193Bi)=1.529, average of r0(192Pb)=1.506 6 and r0(194Po)=1.551 10 (1998Ak04). 1999Sm07 obtained a HF=1.2 8, assuming I(α)=100%. Eα: Weighted average of 6705 5 (1999Sm07) and 6706 9 (2005Uu02). Other: 6707 (1986Co12). † For α intensity per 100 decays, multiply by ≤1.00. 165Ho(32S,4nγ) 2004Ni06,2003NiZZ,2001Ni04 E(lab)=142–157 MeV (at center of target). Prompt γ rays at the target position observed with the Jurosphere II array. Evaporation residues are separated from other beam components using the RITU gas–filled recoil separator and, after passing through a multiwire proportional avalanche counter, implanted into a position–sensitive Si detector at the focal position of the fragment separator. This detector is itself surrounded by an array of Ge detectors for the observation of delayed γ rays from isomeric states. 206 19 3 B i 110 – 5 83 19 3 B i 110 – 6 83 19 3 B i 110 – 6 83 NUCLEAR DATA SHEETS 165Ho(32S,4nγ) 2004Ni06,2003NiZZ,2001Ni04 (continued) 193Bi Levels Level scheme from 2004Ni06. Based on (recoil)–γ and recoil–gated γγ coincidences, and γ–ray intensity relations and energy sums. E(level)† 0 . 0# Jπ ( 9 / 2– ) Comments T1/2 63 . 6 s 30 T1/2: from adopted levels. Jπ: from adopted levels. From shell–model calculations, the 9/2– g.s. has been described as a πh9/2 orbital coupled the spherical even–even Pb core. To account for the observed rotational–like level pattern in the strongly–coupled negative–parity band (Band 2) 2004Ni06 suggest instead the coupling of the odd proton to the oblate 0+ 2p–2h proton excitation of the core. 3 0 8& 7 5 0 7 . 9& 5 605 . 5§ 5 ( 1 / 2+ ) 620 . 0# 4 7 3 7 . 4& 7 818 . 0# 3 ( 11 / 2– ) 3.2 s 6 E(level),T1/2,Jπ: from adopted levels. ( 3 / 2+ ) ( 13 / 2+ ) 153 ns ‡ 10 ( 5 / 2+ ) ( 13 / 2– ) 928 . 9§ 5 1 0 1 6 . 8& 7 1169 . 9# 4 ( 15 / 2– ) 1228 . 2§ 6 1415 . 0# 4 ( 17 / 2– ) ( 15 / 2+ ) ( 7 / 2+ ) ( 17 / 2+ ) 1514 . 8 7 ( 17 / 2+ ) 1 5 2 1 . 3& 9 ( 11 / 2+ ) 1536 . 0 5 ( 15 / 2+ ) 1555 . 5§ 6 ( 19 / 2+ ) 1672 . 9 6 ( 17 / 2+ ) 1794 . 6# 5 1875 . 3§ 7 ( 19 / 2– ) 1950 . 8 8 2049 . 0# 5 ( 19 / 2+ ) ( 21 / 2+ ) ( 21 / 2– ) 2108 . 9 12 Level populated by some higher level with T1/2>10 µs (2004Ni06). 2127 . 9 8 2221 . 0§ 7 ( 23 / 2+ ) 2356 . 0 8 ( 25 / 2– ) 2464 . 6# 7 2536 . 4§ 7 2587 . 0# 12 ( 23 / 2– ) ( 25 / 2+ ) ( 25 / 2– ) 2756 . 7§ 10 ( 27 / 2+ ) 2960 . 7§ 14 2 3 5 7 + x@ ( 29 / 2+ ) ( 29 / 2– ) 3 . 0 µs‡ 1 The existence of this isomeric level is inferred from the observation of prompt coincidences between the 307–keV γ and other strong transitions in the Band 2 cascade. The connecting transition is not observed, probably due to its very low energy (2004Ni06). Jπ: Suggested by 2004Ni06 as originated in the coupling of the h9/2 proton to the 12+ isomeric state in the 192Pb core. Similar (29/2–) states are also seen in heavier odd–A Bi nuclei. 2 7 5 5 . 8 + x@ 5 ( 31 / 2– ) 3 1 1 1 . 8 + x@ 1 2 ( 33 / 2– ) 3234 . 8+x ? 3 4 0 1 . 0 + x@ 1 3 ya J ( 35 / 2– ) The connection of this level with the rest of the level scheme could not be established by 2004Ni06, who assume this to be due to a probable isomeric character for this state. From the experimental conditions of their measurements they infer that the half–life of this state would be restricted to the range of 20 ns≤T1/2≤150 ns. 278 . 8+ya 3 464 . 5+ya 6 ( J+3 ) 662 . 8+y 11 716 . 8+ya 7 ( J+4 ) 916 . 8+y 11 1015 . 6+ya 7 ( J+5 ) 1098 . 5+y 12 1311 . 4+ya 9 ( J+6 ) ( J+2 ) 1364 . 8+y 13 Footnotes continued on next page 207 19 3 B i 110 – 7 83 19 3 B i 110 – 7 83 NUCLEAR DATA SHEETS 165Ho(32S,4nγ) 2004Ni06,2003NiZZ,2001Ni04 (continued) 193Bi Levels (continued) † From Adopted values. ‡ From time–difference between recoil implantation and γ–ray detection. § (A): Band 1, based on the (13/2+) isomeric state. The most probable configurations for this band is suggested in 2004Ni06 as the coupling of an i13/2 proton to the oblate 2p–2h 0+ state of the Pb core. # (B): Band 2 (9/2–) negative–parity g.s. band. See discussion for g.s. level. @ (C): Band 3, based on the (29/2–) isomeric state. Identified on the basis of prompt γ–spectra gated by the delayed 307–keV transition. + 2p–1h, oblate, configuration for this state. & (D): Band 4, based on the (1/2+) isomeric state. 2004Ni06 suggest a πs 1/2 1/2 a (E): Group B (2004Ni06). γ(193Bi) γ–ray energies and intensities from 2004Ni06. Assignment of transitions to 193Bi confirmed by excitation function studies. The angular distribution coefficient (corrected for efficiency) is defined by R(exp)=I(158°)/I(79°), where the angles are those of the detectors at the target position (2004Ni06). Eγ E(level) 137 . 0e 5 1672 . 9 Iγ† Comments Mult. This γ is deduced to be a doublet on the basis of the observed self–coincidence 1.8 6 in recoil–gated delayed γγ coincidences (2004Ni06). Undivided intensity quoted here. The placement of the second member of the doublet is unknown. The observed time differences between implantation and delayed γ ray detection for this transition show that above the 1672–keV level there must be another level with T1/2≥10 µs which decays through one or both of the 436– and 455–keV γ rays. No more precise value can be obtained due to the experimental limitations. Iγ: Undivided intensity quoted for this γ–ray doublet. 185 . 7 f 5 198 . 0b 5 199 . 9d 5 204a 1 220a 1 229 . 5d 5 245 . 2b 5 252 . 3 f 5 254 . 0b 5 278 . 8 f 3 464 . 5+y 7 . 7 10 818 . 0 7.3 6 507 . 9 9.0 5 2960 . 7 3.0 5 (D)@ 12 . 7 5 (D)@ 737 . 4 1415 . 0 716 . 8+y 2049 . 0 278 . 8+y 2 . 3 10 6.4 8 5.5 6 45 1 1016 . 8 1.7 6 5 3401 . 0+x 4.1 6 5 1311 . 4+y 5.5 7 298 . 8 f 5 1228 . 2 61 4 307 . 0 5 315 . 2a 5 2356 . 0 10 . 5 9 x355 1 379 . 3b 5 384 1 398 . 8c 5 415 . 2bg 5 x432 2536 . 4 11 . 4 8 1875 . 3 23 . 6 14 928 . 9 100 6 1555 . 5 47 3 2221 . 0 1169 . 9 .3 7 356c ( M1 ) ‡ ( M1 ) ‡ R(exp)=0.82 7. R(exp)=1.2 2. R(exp)=0.71 15. R(exp)=0.74 8. R(exp)=0.90 6. 36 3 ( M1 ) ‡ R(exp)=0.86 9. 1794 . 6 ( M1 ) ‡ R(exp)=0.71 14. 662 . 8+y 5 . 2 11 13 . 6 14 R(exp)=0.67 11. R(exp)=0.6 3. Tentatively assigned (M1) character by 2004Ni06. 10 . 9 13 2755 . 8+x 9.0 5 2464 . 6 2.3 6 R(exp)=0.8 2. Tentatively assigned (M1) character by 2004Ni06. 2.9 9 9 2 3 . 1 12 455 . 0e 5 2127 . 9 .8 7 ( M1 ) ‡ ( E2 ) ‡ ( M1 ) ‡ 18 . 6 11 2108 . 9 479g 1 504 . 5d 5 508 . 9d 5 R(exp)=0.6 3. Tentatively assigned (M1) character by 2004Ni06. R(exp)=0.84 7. 1950 . 8 x468 R(exp)=0.7 4. R(exp)=1.15 7. 1.8 7 3111 . 8+x 1 .5 7 ( M1 ) ‡ (Q) ‡ ( M1 ) ‡ ( M1 ) ‡ 436 . 0 5 436e 1 x458 R(exp)=0.8 2. R(exp)=0.7 2. 5.5 8 299 . 3a 5 345 . 8a 5 351 . 9b 3 ( M1 ) ‡ 10 . 4 10 279 . 2dg 5 1015 . 6+y R(exp)=0.9 2. R(exp)=1.0 3. Tentatively assigned (M1) character by 2004Ni06. 2756 . 7 289 . 2c 295 . 7 f 319 . 9a 5 323 . 4a 3 327 . 3a 3 ( M1 ) ‡ R(exp)=0.92 11. 3 . 6 14 1.8 7 2.4 8 3234 . 8+x ? 6 . 0 13 1521 . 3 4.3 7 1016 . 8 5 . 0 16 Continued on next page (footnotes at end of table) 208 19 3 B i 110 – 8 83 19 3 B i 110 – 8 83 NUCLEAR DATA SHEETS 165Ho(32S,4nγ) 2004Ni06,2003NiZZ,2001Ni04 (continued) γ( 1 9 3 B i ) ( c o n t i n u e d ) Eγ Iγ† E(level) 536a 1 2756 . 7 2.7 8 538b 1 550 . 0b 3 551 . 1 f 5 2587 . 0 9.1 8 585 . 9 5 595 f 1 597 . 0b 3 605 . 0 5 1169 . 9 1015 . 6+y 1514 . 8 1311 . 4+y 1415 . 0 37 3 Comments Mult. ( E2 ) # ( E2 ) ‡ R(exp)=1.30 10. (D) R(exp)=1.0 2. 6.1 9 19 3 1.5 8 56 4 605 . 5 ( E2 ) & [ M2 ] B(M2)(W.u.)=0.062 10 (2004Ni06), calculated assuming that the 605–kev γ ray is the only transition from this level. This is consistent with the BM2W≈0.05 that can be deduced in 1986Lo05 for the analogous 888–keV, 13/2+ to 9/2–, M2 spin–flip transition in the neighboring 195Bi nucleus (assuming that such transition has a pure M2 multipolarity). 620 . 0b 5 620 . 0 68 1 622 . 7a 5 624 . 5b 5 626 . 6a 5 1228 . 2 32 3 1794 . 6 34 3 ( E2 ) & ( E2 ) # ( E2 ) & 1555 . 5 29 3 ( E2 ) # 634 1 1098 . 5+y 634 . 4b 5 2049 . 0 638 1 916 . 8+y 647 . 1a 5 1875 . 3 648 1 1364 . 8+y 8 . 2 11 34 3 ( E2 ) ‡ R(exp)=1.17 8. ( E2 ) § R(exp)=1.54 11. R(exp)=1.46 14. 5 . 5 13 26 2 4.5 9 661 . 2a 5 2536 . 4 18 . 6 11 665 . 2a 5 670 . 0b 5 2221 . 0 15 . 9 12 ( E2 ) § ( E2 ) § 2464 . 6 12 . 3 12 ( E2 ) R(exp)=1.36 11. R(exp)=1.5 2. Mult.: Suggested by the evaluators on the basis of the R(exp) value and the proposed placement in Band 2 (2004Ni06). 718 . 5e 5 754g 1 1536 . 0 8 . 6 14 3111 . 8+x 4.5 5 Uncertain placement, suggested in 2004Ni06 as a possible cross–over transition within Band 3 levels. In that case it would most likely have an (E2) character. 818 . 2b 3 818 . 0 85 9 ( E2 ) ‡ R(exp)=1.34 7. 909 . 2 9 1514 . 8 20 9 R(exp)=1.2 2. 930 . 0e 5 1067e 1 1536 . 0 14 . 5 15 R(exp)=1.0 2. 1672 . 9 29 . 5 13 † ( E2 ) ‡ R(exp)=1.50 11. The relative γ–ray intensities are normalized to I(323 keV)=100. Their errors do not contain the 6% error (2004Ni06) in the 323–keV γ intensity. ‡ Multipolarity suggested (2004Ni06) on the basis of the measured angular distribution coefficient. § Multipolarity suggested (2004Ni06) on the basis of the angular distribution coefficient, and the placement as cross–over transition in the cascade of (M1) transitions of Band 1. # Multipolarity suggested (2004Ni06) on the basis of the placement as cross–over transition in the cascade of (M1) transitions of Band 1. @ Tentative multipolarity suggested (2004Ni06) on the basis of the proposed placement as member of the cascade of (M1) transitions of Band 1. & Tentative multipolarity suggested (2004Ni06) on the basis of the proposed placement as member of the cascade of transitions between negative–parity Band 2 levels. a Band 1 transition. b Band 2 transition. c Band 3 transition. d Band 4 transition. e Group A transition (2004Ni06). f Group B transition (2004Ni06). g Placement of transition in the level scheme is uncertain. x γ ray not placed in level scheme. 209 19 3 B i 110 – 9 83 (J+6) (J+5) (J+4) (J+3) (J+2) J 165Ho(32S,4nγ) 9.0 8.8 (35/2–) (33/2–) 39 NUCLEAR DATA SHEETS 2004Ni06,2003NiZZ,2001Ni04 (continued) Level Scheme Intensities: relative Iγ 210 19 3 Bi 110 83 20 4 53 (D ) 226 (E 3.0 2 0 ) 53 (D 2 8 ) .7 66 1 9. 2.7 311.2 ( 1 67 5.2 (E2) 0 M . 1 0 41 5.2 (E2 1) 18.6 30 7.0 2.3) 12 1.4 66 .3 ( 5 E2 34 .2 ( ) 5.8 E2 10 45 ) . ( 5 5 M 43 .0 1) 15.9 18 63 6 3 3.6 .6 254.4 ( .1 4.0 E2 43 ) ( 6 M .0 64 1) 34 5.5 317.1 ( 9 62 9.9 (E2) 374.5 ( M1) 26 9.3 E2 23 10 (M ) 3 .6 1367 (E 1) 4 7 . 13 0 2) 62 . 6 6 1.8 29 32 .6 ( .5 93 7.3 (E2) 710.0 M1) 29 50 8.5 14.5 47 90 4.5 8.6 589.2 4.3 5.9 20 59 (D ) 247.0 ( 5 19 .2 E2) 62 (M 5 292.7 ( 1 6 ) 9 E 6.4 55 .3 ( 2) 350.0 ( M1) 32 1.9 E2 61 50 ) ( M1 3 278.9 ) 7 9.2 5. 36 32 0 3.4 1.7 81 (M 198.2 ( 1 ) 10 22 8.0 (E2) 0 9.5 M1 8 62 5 2.3 ) 7 60 0.0 ( . 3 5 E . 2 0 19 [M ) 6 9.9 2] 8 9.0 (31/2–) (29/2–) (29/2+) (27/2+) (25/2–) (25/2+) (23/2–) (25/2–) (23/2+) (21/2–) (19/2+) (21/2+) (19/2–) (17/2+) (19/2+) (15/2+) (11/2+) (17/2+) (17/2–) (17/2+) (15/2–) (7/2+) (15/2+) (13/2–) (5/2+) (11/2–) (13/2+) (3/2+) (1/2+) (9/2–) 64 59 8 4 295 1 .5 5.7 .5 63 5.5 55 4 8 . 1 2 29 .1 8 6 . . 8 63 1 8 5.5 25 5.5 38 2.3 4 1 18 10 0.4 5.7 .9 27 8.8 7.7 28 (Q 9.2 ) 47 9 45 4.1 75 6.0 354 4 6 .5 5.2 63.6 s 3.2 s 153 ns 3.0 µs 19 3 B i 110 – 9 83 1364.8+y 1311.4+y 1098.5+y 1015.6+y 916.8+y 716.8+y 662.8+y 464.5+y 278.8+y y 3401.0+x 3234.8+x 3111.8+x 2755.8+x 2357+x 2960.7 2756.7 2587.0 2536.4 2464.6 2356.0 2221.0 2127.9 2108.9 2049.0 1950.8 1875.3 1794.6 1672.9 1555.5 1536.0 1521.3 1514.8 1415.0 1228.2 1169.9 1016.8 928.9 818.0 737.4 620.0 605.5 507.9 308 0.0 19 3 P o 109 – 1 84 19 3 P o 109 – 1 84 NUCLEAR DATA SHEETS Adopted Levels, Gammas Q(β–)=–8210 60; S(n)=8360 40; S(p)=2100 50; Q(α)=7093 4 2003Au03. 193Po Identification: 185Re(19F,xn) natCe(56Fe,xn) and excitation functions (1967Si09); 141Pr(56Fe,p3n) Levels 182W(20Ne,xn) excitation functions (1977De32); excitation function (1981Le23). The level scheme is from 1999He32. Cross Reference (XREF) Flags A 197Rn α Decay (66 ms) B 197Rn α Decay (21 ms) C (HI,xnγ) Jπ‡ E(level)† XREF ( 3 / 2– ) § 0 . 0+x A Comments T1/2 3 7 0 ms + 4 6 – 4 0 From systematics this is probably the actual ground state for this nucleus (2003Au02). %α≤100. %α: Only α decay observed. T1/2: Weighted average of 450 ms 150 (1977De32), 360 ms 50 (1981Le23). 450 ms 40 (1993Wa04), 180 ms +150–60 (1995Mo14), 290 ms +110–60 (1996En02). 0 . 0+y# ( 13 / 2+ ) § BC 2 4 5 ms 22 E(level): From systematic trends 2003Au02 estimate the energy for this isomeric state at 100 30 keV. %α≤100. %α: Only α decay observed. T1/2: Weighted average of 420 ms 100 (1977De32), 260 ms 20 (1981Le23), 240 ms 10 (1993Wa04), 150 ms +110–40 (1995Mo14), 370 ms +160–90 (1996En02). Other: 70 +330–30 s (2005Uu02). 251 . 3+y# 5 ( 17 / 2+ ) C 2 7 5 . 0 + y@ 5 612 . 1+y# 7 6 4 4 . 3 + y@ 8 ( 15 / 2+ ) C ( 21 / 2+ ) C ( 19 / 2+ ) C 1075 . 8+y# 9 ( 25 / 2+ ) C 1 1 2 9 . 7 + y@ 1 0 ( 23 / 2+ ) C † Level energies from a least–squares fit to adopted γ–ray energies. ‡ From (HI,xnγ) unless otherwise noted. § From systematics and from shell model two isomers are expected in a N=109 nucleus: high spin 1i13/2, and low spin 3p3/2 (189Hg). # (A): Band based on (13/2+) level. @ (B): Band based on (15/2+) level. γ(193Po) Iγ† E(level) Eγ† 251 . 3+y 251 . 4 5 274 . 9‡ 5 100 360 . 9 5 369‡ 1 100 28 275 . 0+y 612 . 1+y 644 . 3+y 393‡ 1 1075 . 8+y 1129 . 7+y 463 . 7 5 485‡ 1 100 100 83 22 100 518‡ 1 † From 1999He32. ‡ Placement of transition in the level scheme is uncertain. 211 19 3 P o 109 – 2 84 19 3 P o 109 – 2 84 NUCLEAR DATA SHEETS Adopted Levels, Gammas (continued) (A) Band based on (B) Band based on (15/2+) (13/2+) level level (25/2+) 1075.8+y (21/2+) 612.1+y (17/2+) 251.3+y (13/2+) 0.0+y (23/2+) 1129.7+y (19/2+) 644.3+y (A)(21/2+) 275.0+y (15/2+) (A)(17/2+) (A)(13/2+) 19 3 Po 84 109 197Rn Parent 197Rn: α Decay (66 ms) 1995Mo14,1996En02 E=0.0+x; Jπ=(3/2–); T1/2=66 ms 16; Q(g.s.)=7410 50; %α decay≤100. Jπ,T1/2 from 2003Au02. Q(α) from 2003Au03. 197Rn: Q(α)=7410 keV 7 (1996En02). Other: 2002No01. 193Po E(level) 0 . 0+x Jπ T1/2 ( 3 / 2– ) 3 7 0 ms + 4 6 – 4 0 Levels Comments Jπ,T1/2: From adopted levels. α radiations Eα E(level) 7260 7 0 . 0+x Iα‡ HF† 100 1.5 Comments Eα: From 1996En02. Other value: 7261 keV 30 (1995Mo14). † Using r0(193Po)=1.55, from r0(194Po)=1.551 10 (1998Ak04). HF=1.6 suggests a favored transition. However, if either %α ‡ For α intensity per 100 decays, multiply by ≤1.00. or Iα were <100, then this value of HF would be a lower limit. 197Rn Parent 197Rn: 197Rn: α Decay (21 ms) E=0.0+y; Jπ=(13/2+); T1/2=21 ms 5; Q(g.s.)=7410 50; %α decay≤100. Jπ,T1/2 from 2003Au02. Q(α) from 2003Au03. 193Po E(level) 0 . 0+y 1995Mo14,1996En02 Jπ ( 13 / 2+ ) Levels Comments T1/2 2 4 5 ms 22 Jπ,T1/2: from adopted levels. α radiations Eα E(level) 7357 6 0 . 0+y Iα‡ HF† 100 1.0 Comments Eα: From weighted average of 7370 keV 30 (1995Mo14), 7356 keV 7 (1996En02), 7358 14 keV (2005Uu02). † Using r0(193Po)=1.55, from r0(194Po)=1.551 10 (1998Ak04). HF=1.0 suggests a favored transition. However, if either %α or Iα ‡ For α intensity per 100 decays, multiply by ≤1.00. were <100, then this value would be a lower limit. 212 19 3 P o 109 – 3 84 19 3 P o 109 – 3 84 NUCLEAR DATA SHEETS (HI,xnγ) 1999He32: 160Dy(36Ar,2nγ) 1999He32,1997Fo06 E=178 MeV; gas–filled recoil fragment separator (RITU); DORIS multi–detector array for γ–ray detection; position sensitive Si detector for recoil identification, α–ray detection, and α–γ correlation studies. Recoil–decay tagging and recoil gating methods. Measured Eγ, Iγ, α–tagged γ coincidence matrix, and γγ coincidences. Deduced levels and suggest Jπ values. 1997Fo06: Er(32S,xnγ) E=164 MeV; recoil fragment mass separator; (recoil)γ and (recoil)γγ. Measured Eγ. The 234 keV γ–ray reported here is not confirmed by 1999He32. 193Po Levels Level scheme built on the basis of γ–ray energies and intensities, and γγ coincidences from 1999He32. Band structure and tentative Jπ assignments proposed by 1999He32. E(level)† Jπ 0 . 0+y ‡ ( 13 / 2+ ) 251 . 3+y ‡ 5 275 . 0+y § 5 612 . 1+y ‡ 7 ( 17 / 2+ ) Comments Jπ: from adopted levels. ( 15 / 2+ ) ( 21 / 2+ ) 644 . 3+y § 8 ( 19 / 2+ ) 1075 . 8+y ‡ 9 1129 . 7+y § 10 ( 25 / 2+ ) ( 23 / 2+ ) † Deduced by evaluators from a least–squares fit to γ–ray energies. ‡ (A): Band based on (13/2+) level. Intra–band transitions identified from (13/2+) α–decay tagged coincidences. § (B): Band based on (15/2+) level. Tentative arrangement based on energy sums. γ(193Po) Two distinct γ–ray groups identified on the basis of prompt singles γ–ray spectra obtained by gating with α decays of the (3/2–) and (13/2+) Eγ† x206 E(level) . 7‡ 5 251 . 4§ 5 2 7 4 . 9 §& 5 . 1‡ 5 360 . 9§ 5 x367‡ 1 3 6 9 §& 1 193Po states, respectively. Iγ†# Comments 1 0 0@ 2 0 251 . 3+y 100 7 275 . 0+y 21 4 1 0 0@ 4 0 x349 612 . 1+y Eγ=251 keV 1 (1997Fo06). 59 7 5 0@ 2 0 644 . 3+y 18 5 644 . 3+y 15 4 3 9 3 §& 1 463 . 7§ 5 1075 . 8+y 22 6 4 8 5 §& 1 1129 . 7+y 15 5 5 1 8 §& 1 x549§ 1 1129 . 7+y Eγ=368 keV 1 (1997Fo06). 1997Fo06 report a 486 keV γ ray which they place between their tentative levels at 1105 and 619 keV, which are not confirmed by 1999He32. x574§ 1 12 4 7 3 † From 1999He32. ‡ Placement above the (3/2–) level on the basis of 3/2– α–decay tagged coincidences. § Placement above the (13/2+) level on the basis of 13/2+ α–decay tagged coincidences. # Intensities normalized to 100 for the 251.4 keV γ ray, except where noted. @ Intensities normalized to 100 for the 206.7 keV γ ray. & Placement of transition in the level scheme is uncertain. x γ ray not placed in level scheme. 213 NUCLEAR DATA SHEETS (HI,xnγ) 1999He32,1997Fo06 (continued) Level Scheme Intensities: relative Iγ (19/2+) (21/2+) (15/2+) (17/2+) 39 363 1 36 9 1 5 0.9 8 27 59 25 4.9 1.4 21 10 0 (23/2+) (25/2+) 51 488 46 5 1 3.7 5 22 19 3 P o 109 – 4 84 1129.7+y 1075.8+y 644.3+y 612.1+y 275.0+y 251.3+y 0.0+y (13/2+) 19 3 Po 84 109 214 19 3 P o 109 – 4 84 19 3 A t 108 85 19 3 A t 85 108 NUCLEAR DATA SHEETS Adopted Levels S(p)=–640 60; Q(α)=7490 6 2003Au03. 1997Mo25 provide a calculated value of S(1n)=10820 keV. Identification: parent of 189Bi; produced by heavy ion induced fusion (56Fe+141Pr, E=265 MeV) (1995Le15). 193At Level properties from 193At Levels α decay (2003Ke08). Levels populated by the 141Pr(56Fe,4nγ) reaction, at E(target)=264–272 MeV; recoil fragment mass separation; measurement using recoil–tagged α–α and α–γ coincidences, and considering α–decay links to levels in the daughter nuclides E(level)† 0.0 and 185Tl. T1/2‡ Jπ ( 1 / 2+ ) 189Bi 2 8 ms + 5 – 4 Comments This level decays by an 7235–keV α ray to the 187–keV 1/2+ level in properties of this transition, 2003Ke08 propose this level as the 189Bi. 193At Based on the g.s. %α≈100. From recoil–tagged α(mother)–α(daughter) correlations, 2003Ke08 determined that this level decays by an E=7235 5 keV α ray, with a half–life of 28 +5–4 ms, and a hindrance factor of 0.69 13, to the 1/2+ state in 189Bi. This hindrance factor implies that the initial and final states in the α decay have the same Jπ and configuration. Jπ: Spin–parity assigned from 2003Ke08 on the basis of observed favored α decay to the (1/2+) level in 189Bi, and subsequent favored α transition to the 1/2+ g.s. of 185Tl. For the underlying configuration 2003Ke08 suggest a π(4p–1h) 1/2+ intruder state, originated by the promotion of an s1/2 proton across the Z=82 shell gap. This is similar to the case of the 5 10 ( 7 / 2– ) 2 1 ms 5 191At ground state, which is also assigned Jπ=(1/2+). This level is proposed as the first excited state in 193At α–decay properties to both the 7/2– 100–keV level in by 2003Ke08, based on the 189Bi and the 9/2– 189Bi g.s., as well as on the α–γ coincidences. %α≈100 (2003Ke08). Two α branches deexcite this state to levels in HF=1.1 3, to the (7/2–) 100–keV level in to the 189Bi 189Bi: 189Bi; a) E(α)=7325 5 keV, I(α)=98 2 %, b) E(α)=7423 5 keV, I(α)=2 2 %, HF=64 64, g.s. The hindrance factors imply an ∆L=0 unhindered α transition in the first case, and a probably ∆L=2 hindered decay, in the second. Note that the quoted HF values are as given in 2003Ke08, based on their reinterpretation of the observed values, by assuming the existence of an unobserved ≈34–keV γ ray connecting the 193At 13/2+ isomeric state at 39 7 keV, with the 5–keV isomeric level. E(level): The uncertainty in the excitation energy, obtained from α–ray energy differences, is too great to establish the actual sequence of the 1/2+ and 7/2– levels. The adopted ordering is that suggested in 2003Ke08, with support from the α–decay properties to levels in 189Bi, and the observed α ray coincidences with the 100–keV γ ray in 189Bi (2003Ke08). 39 7 ( 13 / 2+ ) 2 7 ms + 4 – 3 This level depopulates via a 7106 5 keV α decay to the 13/2+ 358–keV state in 189Bi. The hindrance factor calculated in 2003Ke08 for this transition, assuming an 100% α branch, is 0.24 4. To explain this anomalously low value of HF, 2003Ke08 propose that there exists an IT decay branch deexciting this state to the 7/2– level, taking about 76 10 % of the decay strength, and thus leaving 24 10 % for the α intensity. The unobserved ≈34–keV IT branch would probably have an E3 character, consistent with the observed half–life for the level. %α=24 10; %IT=76 10 (2003Ke08). Jπ: From HF=1.0 4 for the 7106 5 keV α–ray to the 13/2+ level in suggesting a favored transition. † Level energies from α–ray energy differences determined in 2003Ke08. ‡ Values from 2003Ke08. 215 189Bi (2003Ke08), NUCLEAR DATA SHEETS REFERENCES FOR A= 1 9 3 1 9 4 7G o 0 1 L.J.Goodman, M.L.Pool – Phys.Rev. 71, 288 (1947) 1 9 4 8W i 0 1 G.Wilkinson – Phys.Rev. 73, 252 (1948) 1 9 4 9W i 0 8 G.Wilkinson – Phys.Rev. 75, 1019 (1949) 1 9 5 0 Ch 1 1 T.C.Chu – Phys.Rev. 79, 582 (1950) 1 9 5 0N e 7 7 H.M.Neumann, I.Perlman – Phys.Rev. 78, 191 (1950) 1 9 5 2F i 0 6 R.W.Fink, E.O.Wiig – J.Am.Chem.Soc. 74, 2457 (1952) 1 9 5 3Co 1 3 J.M.Cork, J.M.LeBlanc, W.H.Nester, D.W.Martin, M.K.Brice – Phys.Rev. 90, 444 (1953) 1 9 5 3 Sw2 0 J.B.Swan, W.M.Portnoy, R.D.Hill – Phys.Rev. 90, 257 (1953) 1 9 5 4Co 2 9 J.M.Cork, M.K.Brice, L.C.Schmid, G.D.Hickman, H.Nine – Phys.Rev. 94, 1218 (1954) 1 9 5 4D e 0 4 H.deWaard – Physica 20, 41 (1954) 1 9 5 4G i 0 4 L.P.Gillon, K.Gopalakrishnan, A.deShalit, J.W.Mihelich – Phys.Rev. 93, 124 (1954) 1 9 5 5B r 1 2 J.Brunner, H.Guhl, J.Halter, H.J.Leisi – Helv.Phys.Acta 28, 475 (1955) 1 9 5 5B r 4 1 J.Brunner, H.Guhl, J.Halter, O.Huber – Helv.Phys.Acta 28, 85 (1955) 1 9 5 5F i 3 0 V.K.Fischer – Phys.Rev. 99, 764 (1955) 1 9 5 6B r 0 4 J.Brunner, J.Halter, H.J.Leisi – Helv.Phys.Acta 29, 238 (1956) 1 9 5 6Da 4 0 R.H.Davis, A.S.Divatia, D.A.Lind, R.D.Moffat – Phys.Rev. 103, 1801 (1956) 1 9 5 6Hu 4 9 T.Huus, J.H.Bjerregaard, B.Elbek – Kgl.Danske Videnskab.Selskab, Mat.–Fys.Medd. 30, No.17 (1956) 1 9 5 7Be 5 6 E.M.Bernstein, H.W.Lewis – Phys.Rev. 105, 1524 (1957) 1 9 5 7Bo 1 2 F.Boehm, P.Marmier – Phys.Rev. 105, 974 (1957) 1 9 5 7B r 5 3 J.Brunner, J.Halter, C.Perdrisat – Helv.Phys.Acta 30, 269 (1957) 1 9 5 7 Ew3 4 G.T.Ewan – Can.J.Phys. 35, 672 (1957) 1 9 5 7Mc 3 4 F.K.McGowan, P.H.Stelson – Phys.Rev. 107, 1674 (1957) 1 9 5 8B r 8 8 J.Brunner, J.Halter, P.Scherrer – Helv.Phys.Acta 31, 335 (1958) 1 9 5 8Du 7 6 V.S.Dubey, S.S.Malik, C.E.Mandeville, A.Mukerji – Phys.Rev. 111, 920 (1958); Erratum Phys.Rev. 112, 2139 (1958) 1 9 5 8Ma 5 0 T.V.Malysheva, I.P.Alimarin – Zhur.Eksptl.i Teoret.Fiz. 35, 1103 (1958); Soviet Phys.JETP 8, 772 (1959) 1 9 5 8Mc 0 2 F.K.McGowan, P.H.Stelson – Phys.Rev. 109, 901 (1958) 1 9 5 8Na 1 5 S.V.Nablo, M.W.Johns, A.Artna, R.H.Goodman – Can.J.Phys. 36, 1409 (1958) 1 9 5 9 An 3 0 A.L.Androsenko, D.L.Broder, A.I.Lashuk – Atomnaya Energ. 7, 268 (1959); J.Nuclear Energy 12A, 136 (1960) 1 9 6 0 Ch 0 5 K.F.Chackett, G.A.Chackett – J.Inorg.Nuclear Chem. 13, 1 (1960) 1 9 6 0Fe 0 3 L.Feuvrais – Ann.Phys.(Paris) 5, 181 (1960) 1 9 6 0Ma 2 8 T.B.Malysheva, B.A.Khotin, A.K.Lavrukhina, L.N.Kryukova, V.V.Muraveva – Izvest.Akad.Nauk SSSR, Ser.Fiz. 24, 1109 1 9 6 1 An 0 3 G.Andersson, I.B.Haller, R.Ringh – J.Inorg.Nuclear Chem. 17, 15 (1961) 1 9 6 1Fo 0 6 W.Forsling – Arkiv Fysik 19, 369 (1961) 1 9 6 1K r 0 2 L.N.Kryukova, V.V.Muraveva, L.Duda, T.V.Malysheva, B.A.Khotin – Izvest.Akad.Nauk SSSR, Ser.Fiz. 25, 1257 (1961); 1 9 6 1Re 1 2 P.Reyes–Suter, T.Suter – Arkiv Fysik 20, 415 (1961) 1 9 6 2D i 0 3 J.St.A.Dionisio – Compt.Rend.Acad.Sci. 254, 1972 (1962) (1960); Columbia Tech.Transl. 24, 1113 (1961) Columbia Tech.Transl. 25, 1269 (1962) 1 9 6 2D i 0 5 J.St.A.Dionisio – Compt.Rend.Acad.Sci. 254, 3851 (1962) 1 9 6 2Ha 2 4 B.Harmatz, T.H.Handley, J.W.Mihelich – Phys.Rev. 128, 1186 (1962) 1962Ja04 J.Jastrzebski, P.Kilcher – Compt.Rend.Acad.Sci. 254, 1411 (1962) 1 9 6 2Ma 1 8 I.Marklund, E.Karlsson, K.Korkman – Arkiv Fysik 22, 289 (1962) 1 9 6 3D i 1 0 R.M.Diamond, F.S.Stephens – Nucl.Phys. 45, 632 (1963) 1 9 6 3Ka 1 7 M.Karras, G.Andersson, M.Nurmia – Arkiv Fysik 23, 57 (1963) 1 9 6 5Ka Z Z S.B.Kaufman – PPAD–2137–566, p.27 (1965) 1 9 6 5Mu 0 5 P.Mukherjee – Nucl.Phys. 64, 65 (1965) 1 9 6 6Ha 4 7 A.J.Haverfield – Thesis, Univ.California (1966); UCRL–16969 (1966) 1966Sy01 G.I.Sychikov, O.D.Kovrigin, G.D.Latyshev, G.A.Londarenko, V.N.Novikov – Izv.Akad.Nauk SSSR, Ser.Fiz. 30, 162 (1966) 1 9 6 7Ag 0 6 G.P.Agin, G.E.Clark, C.E.Mandeville, V.R.Potnis – Phys.Rev. 164, 1495 (1967) 1 9 6 7A t 0 3 U.Atzmony, E.R.Bauminger, D.Lebenbaum, A.Mustachi, S.Ofer, J.H.Wernick – Phys.Rev. 163, 314 (1967) 1 9 6 7He 1 1 A.Heuberger, F.Pobell, P.Kienle – Z.Physik 205, 503 (1967) 1967Jo14 A.Johansson, G.Malmsten, A.Marelius, B.Nyman, H.Pettersson, B.Svahn – Phys.Letters 26B, 83 (1967) 1 9 6 7Le 2 1 Y.Le Beyec, M.Lefort – Arkiv Fysik 36, 183 (1967) 1 9 6 7Me 1 2 F.R.Metzger – Phys.Rev. 161, 1249 (1967) 1 9 6 7Pe 0 3 F.C.Perry, E.S.Murphy, Jr. – Nucl.Phys. A99, 497 (1967) 1967S i 09 A.Siivola – Nucl.Phys. A101, 129 (1967) ; Bull.Acad.Sci.USSR, Phys.Ser. 30, 169 (1967) 1 9 6 7T r 0 6 W.Treytl, K.Valli – Nucl.Phys. A97, 405 (1967) 1 9 6 7Wa 1 2 F.Wagner, J.Klockner, H.J.Korner, H.Schaller, P.Kienle – Phys.Letters 25B, 253 (1967) 1 9 6 7Wa 2 0 F.Wagner, G.Kaindl, P.Kienle, H.J.Korner – Z.Physik 207, 500 (1967) 1 9 6 8A t 0 1 M.Atac, B.Chrisman, P.Debrunner, H.Frauenfelder – Phys.Rev.Letters 20, 691 (1968) 1 9 6 8Av 0 1 R.Avida, J.Burde, A.Molchadzki, Z.Berant – Nucl.Phys. A114, 365 (1968) 1 9 6 8Av 0 2 R.Avida, J.Burde, A.Molchadzki – Nucl.Phys. A115, 405 (1968) 1 9 6 8Ma 5 1 A.Marelius – Arkiv Fysik 37, 427 (1968) 1 9 6 8Na 0 1 A.Narath – Phys.Rev. 165, 506 (1968); Erratum Phys.Rev. 175, 696 (1968) 1 9 6 8P l 0 3 Z.Plajner, V.Brabec, L.Maly, M.Vejs – Nucl.Phys. A121, 367 (1968) 1 9 6 8Ra 2 4 P.B.Rao, V.Lakshminarayana – Indian J.Phys. 42, 621 (1968) 1968Sa13 C.Samour, H.E.Jackson, J.Julien, A.Bloch, C.Lopata, J.Morgenstern – Nucl.Phys. A121, 65 (1968) 216 NUCLEAR DATA SHEETS REFERENCES FOR A= 1 9 3 ( CONT I NUED ) 1968Sv01 B.Svahn, A.Johansson, B.Nyman, G.Malmsten, H.Pettersson – Z.Physik 210, 466 (1968) 1 9 6 9Av 0 1 R.Avida, Y.Dar, P.Gilad, M.B.Goldberg, K.H.Speidel, Y.Wolfson – Nucl.Phys. A127, 412 (1969) 1 9 6 9Av 0 3 R.Avida, M.B.Goldberg, G.Goldring, A.Sprinzak – Nucl.Phys. A135, 678 (1969) 1 9 6 9Ba 2 8 T.Badica, A.Gelberg, C.Protop, S.Salageanu – Rev.Roumaine Phys. 14, 471 (1969) 1 9 6 9Ba 4 2 A.Backlin, F.Fogelberg, V.Berg, S.G.Malmskog – Nucl.Phys. A138, 429 (1969) 1 9 6 9B i 0 1 K.M.Bisgard, R.J.Hanson – Nucl.Phys. A125, 305 (1969) 1 9 6 9Co 0 8 C.R.Cothern, H.J.Hennecke, J.C.Manthuruthil, R.C.Lange – Phys.Rev. 182, 1286 (1969) 1 9 6 9D e 0 9 S.de Barros, V.D.Huynh, J.Julien, J.Morgenstern, C.Samour – Nucl.Phys. A131, 305 (1969) 1 9 6 9Ho 1 4 P.K.Hopke, R.A.Naumann – Phys.Rev. 185, 1565 (1969) 1 9 6 9L i 1 3 J.Lindskog, K.–G.Valivaara, Z.Awwad, S.–E.Hagglund, A.Marelius, J.Phil – Nucl.Phys. A137, 511 (1969) 1 9 6 9Pe 0 5 G.J.Perlow, W.Henning, D.Olson, G.L.Goodman – Phys.Rev.Letters 23, 680 (1969) 1 9 6 9P r 0 2 R.H.Price, M.W.Johns, N.M.Ahmed, E.E.Habib – Can.J.Phys. 47, 727 (1969) 1969S t 04 P.Steiner, E.Gerdau, W.Hautsch, D.Steenken – Z.Physik 221, 281 (1969) 1 9 6 9Va 3 6 K.G.Valivaara, J.Kozyczkowski, A.Marelius – UUIP–662 (1969) 1 9 7 0Av 0 2 R.Avida, I.Ben Zvi, P.Gilad, M.B.Goldberg, G.Goldring, K.H.Speidel, A.Sprinzak – Nucl.Phys. A147, 200 (1970) 1 9 7 0Ba 5 6 A.Backlin, V.Berg, S.G.Malmskog – Nucl.Phys. A156, 647 (1970) 1 9 7 0Be 0 6 V.Berg, S.G.Malmskog, A.Backlin – Nucl.Phys. A143, 177 (1970) 1 9 7 0Fo 0 8 B.Fogelberg, A.Backlin, V.Berg, S.G.Malmskog – Nucl.Phys. A153, 301 (1970) 1 9 7 0Me 1 6 F.R.Metzger – Phys.Rev. C2, 2024 (1970) 1 9 7 0P l 0 1 Z.Plajner, J.Frana, I.Rezanka, A.Spalek, M.Fiser – Z.Phys. 233, 122 (1970) 1 9 7 0P l 0 2 Z.Plajner, J.Frana, I.Rezanka, A.Spalek, M.Fiser, M.Vobecky – Czech.J.Phys. 20B, 132 (1970) 1 9 7 0Ra 3 7 D.E.Raeside – Nucl.Instrum.Methods 87, 7 (1970) 1 9 7 0Ta 1 4 N.I.Tarantin, A.P.Kabachenko, A.V.Demyanov – Yad.Fiz. 12, 455 (1970); Sov.J.Nucl.Phys. 12, 248 (1971) 1 9 7 0Wa 1 8 F.Wagner, U.Zahn – Z.Phys. 233, 1 (1970) 1970Ze 04 E.Zech – Z.Phys. 239, 197 (1970) 1 9 7 1Bb 0 9 T.Badica – Stud.Cercet.Fiz. 23, 877 (1971) 1 9 7 1Ho 0 1 P.Hornshoj, K.Wilsky, P.G.Hansen, A.Lindahl, O.B.Nielsen – Nucl.Phys. A163, 277 (1971) 1 9 7 1Ho 1 7 P.K.Hopke, R.A.Naumann – Phys.Rev. C4, 606 (1971) 1 9 7 1Lu 0 8 M.A.Ludington, D.E.Raeside – Nucl.Instrum.Methods 94, 193 (1971) 1 9 7 1Ma YD B.Martin, D.Merkert, R.Schule – Ann.Rept. Max–Planck Institut fur Kernphysik(Heidelberg), p.54 (1971) 1 9 7 1Mo 2 4 P.A.Moskowitz, C.H.Liu, G.Fulop, H.H.Stroke – Phys.Rev. C4, 620 (1971) 1 9 7 1N o 0 1 P.Norgaard, K.M.Bisgard, K.Gregersen, P.Morgen – Nucl.Phys. A162, 449 (1971) 1 9 7 1Ow0 1 W.R.Owens, R.M.Wilenzick, J.A.Hicks – Phys.Rev. C3, 411 (1971) 1 9 7 1P r 1 3 R.H.Price, D.G.Burke, M.W.Johns – Nucl.Phys. A176, 338 (1971) 1 9 7 1Ra 1 8 H.L.Ravn, P.Bogeholt – Phys.Rev. C4, 601 (1971) 1 9 7 2A l 4 7 K.Alder, U.Raff, G.Baur – Helv.Phys.Acta 45, 771 (1972) 1 9 7 2Be 8 5 R.B.Begzhanov, O.S.Kobilov, P.S.Radzhapov, K.S.Sabirov – Izv.Akad.Nauk Uzb.SSR, Ser.Fiz.–Mat.Nauk No.4, 48 (1972) 1 9 7 2D e 6 7 M.de Bruin, P.J.M.Korthoven – J.Radioanal.Chem. 10, 125 (1972) 1 9 7 2Ga 2 7 H.Gauvin, Y.Le Beyec, M.Lefort, N.T.Porile – Phys.Rev.Lett. 29, 958 (1972) 1 9 7 2Lo 0 6 K.E.G.Lobner, M.E.Bunker, J.W.Starner – Nucl.Phys. A181, 11 (1972) 1 9 7 2P r 0 4 R.H.Price, M.W.Johns – Nucl.Phys. A187, 641 (1972) 1 9 7 2Ra 3 8 U.Raff, K.Alder, G.Baur – Helv.Phys.Acta 45, 427 (1972) 1973 I l 02 N.A.Ilkhamdzhanov, P.S.Radzhapov, K.T.Salikhbaev – Izv.Akad.Nauk Uzb.SSR, Ser.Fiz.–Mat.Nauk No.4, 79 (1973) 1 9 7 3K r 0 5 K.S.Krane, W.A.Steyert – Phys.Rev. C7, 1555 (1973) 1 9 7 3Re 0 4 R.J.Reimann, M.N.McDermott – Phys.Rev. C7, 2065 (1973) 1 9 7 3Wa 0 5 F.E.Wagner, G.Wortmann, G.M.Kalvius – Phys.Lett. 42A, 483 (1973) 1 9 7 4Ba 7 7 H.Backe, R.Engfer, E.Kankeleit, R.Link, R.Michaelsen, C.Petitjean, L.Schellenberg, H.Schneuwly, W.U.Schroder, 1 9 7 4Be 1 1 H.Beuscher, W.F.Davidson, R.M.Lieder, A.Neskakis, C.Mayer–Boricke – Phys.Rev.Lett. 32, 843 (1974) 1 9 7 4Be 7 8 T.S.Belanova, A.G.Kolesov, V.A.Safonov, S.M.Kalebin – At.Energ. 37, 437 (1974); Sov.At.Energy 37, 1204 (1975) J.L.Vuilleumier, H.K.Walter, A.Zehnder – Nucl.Phys. A234, 469 (1974) 1 9 7 4Le 0 2 Y.Le Beyec, M.Lefort, J.Livet, N.T.Porile, A.Siivola – Phys.Rev. C9, 1091 (1974) 1 9 7 4Ma 1 4 I.Mahunka, Z.Mate, F.Tarkanyi – ATOMKI Kozlem. 16, 133 (1974) 1 9 7 4N e 1 6 J.O.Newton, F.S.Stephens, R.M.Diamond – Nucl.Phys. A236, 225 (1974) 1974Sa08 D.Salomon, D.A.Shirley – Phys.Rev. B9, 29 (1974) 1 9 7 4T j 0 2 P.O.Tjom, M.R.Maier, D.Benson, Jr., F.S.Stephens, R.M.Diamond – Nucl.Phys. A231, 397 (1974) 1 9 7 4Va 2 3 T.B.Vandlik, J.Vandlik, N.G.Zaitseva, Z.Mate, I.Mahunka, M.Mahunka, H.Tyrroff, T.Fenyes, V.I.Fominykh – 1 9 7 4V i ZS C.L.M.Vieu – CSNSM–T–74–01 (1974) 1 9 7 5Ba 3 5 B.P.Bayhurst, J.S.Gilmore, R.J.Prestwood, J.B.Wilhelmy, N.Jarmie, B.H.Erkkila, R.A.Hardekopf – Phys.Rev. C12, 451 1 9 7 5Be 2 9 V.Berg, C.Bourgeois, R.Foucher – J.Phys.(Paris) 36, 613 (1975) 1 9 7 5Ka 1 6 M.Kanashiro, M.Nishi, N.Kunitomi, H.Sakai – J.Phys.Soc.Jap. 38, 897 (1975) 1 9 7 5 L a YS V.Lakshminarayana, R.Brock, H.Hubel, A.Lammertsma, S.Feenstra, J.Van Klinken – Proc.Nucl.Phys.Solid State 1 9 7 5L i 1 6 R.M.Lieder, H.Beuscher, W.F.Davidson, A.Neskakis, C.Mayer–Boricke – Nucl.Phys. A248, 317 (1975) 1 9 7 5Ma 3 2 B.Martin, D.Merkert, J.L.Campbell – Z.Phys. A274, 15 (1975) 1 9 7 5P i 0 2 M.Piiparinen, J.C.Cunnane, P.J.Daly, C.L.Dors, F.M.Bernthal, T.L.Khoo – Phys.Rev.Lett. 34, 1110 (1975) 1 9 7 5 S t ZE H.Strusny, F.Dubbers, L.Funke, P.Kemnitz, E.Will, G.Winter – ZFK–295, p.38 (1975) Izv.Akad.Nauk SSSR, Ser.Fiz. 38, 689 (1974); Bull.Acad.Sci.USSR, Phys.Ser. 38, No.4, 21 (1974) (1975) Phys.Symp. 18B, 239 (1975) 217 NUCLEAR DATA SHEETS REFERENCES FOR A= 1 9 3 ( CONT I NUED ) 1975Zg01 E.F.Zganjar, J.L.Wood, R.W.Fink, L.L.Riedinger, C.R.Bingham, B.D.Kern, J.L.Weil, J.H.Hamilton, A.V.Ramayya, 1 9 7 6D i 1 5 J.S.Dionisio, C.Vieu, C.M.Truong, G.Levy – Nucl.Instrum.Methods 139, 181 (1976) 1 9 7 6D i ZM J.S.Dionisio, E.H.Spejewski, R.L.Mlekodaj, H.K.Carter, W.D.Schmidt–Ott – Phys.Lett. 58B, 159 (1975) Ch.Vieu, W.De Wieclawik, R.Foucher, M.Beiner, S.E.Larsson, G.Leander, I.Ragnarsson – Proc.Int.Conf.Nuclei Far from Stability, Cargese, Corsica, p.447 (1976); CERN–76–13 (1976) 1 9 7 6Ek 0 3 C.Ekstrom, G.Wannberg, Y.S.Shishodia – Hyperfine Interactions 1, 437 (1976) 1 9 7 6Fu 0 6 G.H.Fuller – J.Phys.Chem.Ref.Data 5, 835 (1976) 1 9 7 6G o 2 2 Y.Gono, R.M.Lieder, M.Muller–Veggian, A.Neskakis, C.Mayer–Boricke – Phys.Rev.Lett. 37, 1123 (1976) 1 9 7 6G o Z P G.M.Gowdy, A.G.Schmidt, E.F.Zganjar, J.L.Wood, R.W.Fink, R.L.Mlekodaj – ORNL–5137, p.14 (1976) 1 9 7 6Ha 2 5 J.H.Hamilton, K.R.Baker, C.R.Bingham, E.L.Bosworth, H.K.Carter, J.D.Cole, R.W.Fink, G.Garcia Bermudez, G.W.Gowdy, K.J.Hofstetter, M.A.Ijaz, A.C.Kahler, B.D.Kern, W.Lourens, B.Martin, R.L.Mlekodaj, A.V.Ramayya, L.L.Riedinger, W.D.Schmidt–Ott, E.H.Spejewski, B.N.Subba Rao, E.L.Robinson, K.S.Toth, F.Turner, J.L.Weil, J.L.Wood, A.Xenoulis, E.F.Zganjar – Izv.Akad.Nauk SSSR, Ser.Fiz. 40, 2 (1976); Bull.Acad.Sci.USSR, Phys.Ser. 40, No.1, 1 (1976) 1 9 7 6P i 0 3 M.Piiparinen, S.K.Saha, P.J.Daly, C.L.Dors, F.M.Bernthal, T.L.Khoo – Phys.Rev. C13, 2208 (1976) 1976Sa22 A.I.Saleh, R.A.Braga, R.W.Fink – Z.Phys. A279, 27 (1976) 1 9 7 6 V i ZM Ch.Vieu, J.S.Dionisio, V.Berg, C.Bourgeois – Proc.Int.Conf.Nuclei Far from Stability, Cargese, Corsica, p.462 (1976) 1 9 7 7D e 3 2 S.Della Negra, B.Lagarde, Y.Le Beyec – J.Phys.(Paris), Lett. 38, L–393 (1977) 1 9 7 7D o 0 7 K.–P.Dostal, M.Nagel, D.Pabst – Z.Naturforsch. 32a, 345 (1977) 1 9 7 7G o 1 2 Y.Gono, R.M.Lieder, M.Muller–Veggian, A.Neskakis, C.Mayer–Boricke – Phys.Lett. 70B, 159 (1977) ; CERN–76–13, p.462 (1976) 1 9 7 7L i 2 0 R.Link, H.Backe, R.Engfer, E.Kankeleit, H.K.Walter – Hyperfine Interactions 3,381 (1977) 1977Sa01 S.K.Saha, M.Piiparinen, J.C.Cunnane, P.J.Daly, C.L.Dors, T.L.Khoo, F.M.Bernthal – Phys.Rev. C15, 94 (1977) 1 9 7 7 Sm0 3 G.R.Smith, N.J.Di Giacomo, M.L.Munger, R.J.Peterson – Nucl.Phys. A290, 72 (1977) 1 9 7 8Ba 3 8 C.Baktash, J.X.Saladin, J.J.O'Brien, J.G.Alessi – Phys.Rev. C18, 131 (1978) 1 9 7 8Be 0 9 G.Berrier–Ronsin, M.Vergnes, G.Rotbard, J.Vernotte, J.Kalifa, R.Seltz, H.L.Sharma – Phys.Rev. C17, 529 (1978) 1 9 7 8Be 2 2 D.Benson, Jr., P.Kleinheinz, R.K.Sheline, E.B.Shera – Z.Phys. A285, 405 (1978) 1 9 7 8 Bu 1 7 S.Buttgenbach, R.Dicke, H.Gebauer, R.Kuhnen, F.Traber – Z.Phys. A286, 333 (1978) 1 9 7 8Me 1 1 D.Mertin, R.Tischler, A.Kleinrahm, R.Kroth, H.Hubel, C.Gunther – Nucl.Phys. A301, 365 (1978) 1 9 7 8Ro 2 1 F.Rosel, H.M.Friess, K.Alder, H.C.Pauli – At.Data Nucl.Data Tables 21, 291 (1978) 1 9 7 8T i 0 2 R.Tischler, D.Mertin, A.H.El Farrash, B.V.T.Rao, R.Kroth, A.Kleinrahm, C.Gunther, H.Hubel – Z.Phys. A288, 67 (1978) 1 9 7 8Ya 0 3 Y.Yamazaki, R.K.Sheline, D.G.Burke – Z.Phys. A285, 191 (1978) 1 9 7 9E r 0 9 H.Ernst, E.Hagn, E.Zech – Nucl.Phys. A332, 41 (1979) 1 9 7 9G o 1 5 Y.Gono, R.M.Lieder, M.Muller–Veggian, A.Neskakis, C.Mayer–Boricke – Nucl.Phys. A327, 269 (1979) 1 9 7 9V i 0 6 C.Vieu, S.E.Larsson, G.Leander, I.Ragnarsson, W.De Wieclawik, J.S.Dionisio – Z.Phys. A290, 301 (1979) 1 9 7 9Wa 0 4 D.D.Warner, W.F.Davidson, H.G.Borner, R.F.Casten, A.I.Namenson – Nucl.Phys. A316, 13 (1979) 1 9 8 0Da 1 2 B.R.Davis, S.E.Koonin, P.Vogel – Phys.Rev. C22, 1233 (1980) 1 9 8 0Ek 0 4 C.Ekstrom, L.Robertsson, S.Ingelman, G.Wannberg, I.Ragnarsson, and the ISOLDE Collaboration – Nucl.Phys. A348, 25 1 9 8 0Ha 4 7 M.N.Harakeh, P.Goldhoorn, Y.Iwasaki, J.Lukasiak, L.W.Put, S.Y.van der Werf, F.Zwarts – Phys.Lett. B97, 21 (1980) 1 9 8 0Ro 0 7 G.Rotbard, G.Berrier–Ronsin, M.Vergnes, J.Kalifa, J.Vernotte, R.K.Sheline – Phys.Rev. C21, 1232 (1980) 1 9 8 0Ry 0 4 M.Rysavy, O.Dragoun – Comput.Phys.Commun. 19, 93 (1980) 1 9 8 1C i 0 2 J.A.Cizewski, D.G.Burke, E.R.Flynn, R.E.Brown, J.W.Sunier – Phys.Rev.Lett. 46, 1264 (1981) 1 9 8 1 I w0 1 Y.Iwasaki, E.H.L.Aarts, M.N.Harakeh, R.H.Siemssen, S.Y.van der Werf – Phys.Rev. C23, 1477 (1981) 1 9 8 1Le 2 3 M.E.Leino, S.Yashita, A.Ghiorso – Phys.Rev. C24, 2370 (1981) 1981S c 01 W.Schier, J.Chervenak, A.C.DiRienzo, H.Enge, D.Grogan, J.Molitoris, M.Salomaa, A.Sperduto – Phys.Rev. C23, 261 1 9 8 2Bo 0 4 J.D.Bowman, R.E.Eppley, E.K.Hyde – Phys.Rev. C25, 941 (1982) (1980) (1981) 1 9 8 3C i 0 1 J.A.Cizewski, D.G.Burke, E.R.Flynn, R.E.Brown, J.W.Sunier – Phys.Rev. C27, 1040 (1983) 1 9 8 3Ha 1 0 E.Hagn, E.Zech – Nucl.Phys. A399, 83 (1983) 1983Jo04 B.Jonson, J.U.Andersen, G.J.Beyer, G.Charpak, A.De Rujula, B.Elbek, H.A.Gustafsson, P.G.Hansen, P.Knudsen, 1 9 8 3K e 0 7 W.P.Kells, J.P.Schiffer – Phys.Rev. C28, 2162 (1983) 1 9 8 3L i 2 1 H.J.Ligthart, H.Postma – Hyperfine Interactions 14, 125 (1983) 1 9 8 4 Bu 1 5 K.H.Burger, S.Buttgenbach, R.Dicke, G.Golz, F.Traber – Phys.Lett. 140B, 17 (1984) 1 9 8 4Co 1 3 E.Coenen, K.Deneffe, M.Huyse, P.Van Duppen – ATOMKI Kozlem. 26, 56 (1984) 1 9 8 4Gh 0 1 H.H.Ghaleb, K.S.Krane – Nucl.Phys. A426, 20 (1984) 1 9 8 4Mu 1 9 S.J.Mundy, J.Lukasiak, W.R.Phillips – Nucl.Phys. A426, 144 (1984) 1 9 8 4Mu Z Y S.F.Mughabghab – Neutron Cross Sections, Vol. 1, Neutron Resonance Parameters and Thermal Cross Sections, Part B, 1 9 8 4Ta 0 4 Y.Tanaka, R.M.Steffen, E.B.Shera, W.Reuter, M.V.Hoehn, J.D.Zumbro – Phys.Rev. C29, 1830 (1984) 1 9 8 4Ya 0 2 S.W.Yates, E.W.Kleppinger – ATOMKI Kozlem. 26, 49 (1984) 1 9 8 5Be 0 3 I.Berkes, B.Hlimi, G.Marest, J.Sau, E.H.Sayouty, K.Heyde – J.Phys.(London) G11, 287 (1985) 1 9 8 5Co 0 6 E.Coenen, K.Deneffe, M.Huyse, P.Van Duppen, J.L.Wood – Phys.Rev.Lett. 54, 1783 (1985) 1 9 8 5D e 5 1 J.W.C.de Vries, R.C.Thiel, K.H.J.Buschow – J.Phys.(London) F15, 2403 (1985) E.Laegsgaard, J.Pedersen, H.L.Ravn – Nucl.Phys. A396, 479c (1983) Z=61–100, Academic Press, New York (1984) 1 9 8 5Hu 0 7 Hua Wu – Phys.Rev. C32, 2087 (1985) 1 9 8 5K o 1 3 V.Kolschbach, P.Schuler, K.Hardt, D.Rosendaal, C.Gunther, K.Euler, R.Tolle, M.Marten–Tolle, P.Zeyen – Nucl.Phys. 1 9 8 5R i 0 5 K.Riisager, A.DeRujula, P.G.Hansen, B.Jonson, H.L.Ravn – Phys.Scr. 31, 321 (1985) A439, 189 (1985) 218 NUCLEAR DATA SHEETS REFERENCES FOR A= 1 9 3 ( CONT I NUED ) 1985S c 15 G.Schutz, E.Hagn, P.Kienle, E.Zech – Hyperfine Interactions 22, 163 (1985) 1985S t 02 R.E.Stone, C.R.Bingham, L.L.Riedinger, R.W.Lide, H.K.Carter, R.L.Mlekodaj, E.H.Spejewski – Phys.Rev. C31, 582 (1985) 1985S t 10 J.Streib, H.–J.Kluge, H.Kremmling, R.B.Moore, H.W.Schaaf, K.Wallmeroth, and the ISOLDE Collaboration – Z.Phys. A321, 1985S t 28 R.M.Steffen – Hyperfine Interactions 24, 223 (1985) 1 9 8 5Th 0 2 T.F.Thorsteinsen, J.S.Vaagen, G.Lovhoiden, N.Blasi, M.N.Harakeh, S.Y.Van Der Werf – Nucl.Phys. A435, 125 (1985) 1 9 8 6A r 0 3 J.M.Arias, C.E.Alonso, M.Lozano – Phys.Rev. C33, 1482 (1986) 1 9 8 6B l 0 9 N.Blasi, S.Y.van der Werf – Nucl.Phys. A456, 397 (1986) 1 9 8 6Co 1 2 E.Coenen, K.Deneffe, M.Huyse, P.van Duppen, J.L.Wood – Z.Phys. A324, 485 (1986) 1 9 8 6Hu 0 2 H.Hubel, A.P.Byrne, S.Ogaza, A.E.Stuchbery, G.D.Dracoulis, M.Guttormsen – Nucl.Phys. A453, 316 (1986) 1 9 8 6K o 2 0 W.R.Kolbl, J.Billowes, J.Burde, J.A.G.De Raedt, M.A.Grace, A.Pakou – Nucl.Phys. A456, 349 (1986) 1 9 8 6Lo 0 5 T.Lonnroth, C.W.Beausang, D.B.Fossan, L.Hildingsson, W.F.Piel,Jr., M.A.Quader, S.Vajda, T.Chapuran, E.K.Warburton – 1986S c 04 G.Schutz, E.Hagn, P.Kienle, E.Zech – Phys.Rev.Lett. 56, 1051 (1986) 1 9 8 6U l 0 2 G.Ulm, S.K.Bhattacherjee, P.Dabkiewicz, G.Huber, H.–J.Kluge, T.Kuhl, H.Lochmann, E.–W.Otten, K.Wendt, S.A.Ahmad, 1 9 8 7Bo 4 4 J.A.Bounds, C.R.Bingham, H.K.Carter, G.A.Leander, R.L.Mlekodaj, E.H.Spejewski, W.M.Fairbank, Jr. – Phys.Rev. C36, 1 9 8 7L i 1 6 M.Lindner, R.Gunnink, R.J.Nagle – Phys.Rev. C36, 1132 (1987) 1 9 8 7Mc 0 1 F.K.McGowan, N.R.Johnson, I.Y.Lee, W.T.Milner, C.Roulet, R.M.Diamond, F.S.Stephens, M.W.Guidry – Phys.Rev. C35, 968 1 9 8 7P r 1 0 P.T.Prokofev, G.L.Rezvaya, L.I.Simonova – Izv.Akad.Nauk SSSR, Ser.Fiz. 51, 1889 (1987); Bull.Acad.Sci.USSR, 1987Se 03 P.B.Semmes, A.F.Barfield, B.R.Barrett, J.L.Wood – Phys.Rev. C35, 844 (1987) 1 9 8 7Zh0 4 J.–Y.Zhang, A.J.Larabee, L.L.Riedinger – J.Phys.(London) G13, L75 (1987) 1 9 8 8A r 1 2 G.E.Arenas Peris, P.Federman – Phys.Rev. C38, 493 (1988) 1 9 8 8Fe 1 1 A.P.Feresin – Izv.Akad.Nauk SSSR, Ser.Fiz. 52, 2127 (1988); Bull.Acad.Sci.USSR, Phys.Ser. 52, No.11, 46 (1988) 1 9 8 8Zh1 1 V.A.Zheltonozhsky, P.N.Muzalev, A.F.Novgorodov, M.A.Ukhin – Zh.Eksp.Teor.Fiz. 94, 32 (1988); Sov.Phys.JETP 67, 16 1 9 8 9Ba 7 6 I.M.Band, M.A.Listengarten, M.B.Trzhaskovskaya – Zh.Eksp.Teor.Fiz. 96, 525 (1989); Sov.Phys.JETP 69, 297 (1989) 1 9 8 9Ed 0 1 R.Eder, E.Hagn, E.Zech – Phys.Rev. C40, 2246 (1989) 1 9 8 9Me Z Z R.Menges – GSI–89–06 (1989) 537 (1985) Phys.Rev. C33, 1641 (1986) W.Klempt, R.Neugart, and the ISOLDE Collaboration – Z.Phys. A325, 247 (1986) 2560 (1987) (1987) Phys.Ser. 51, No.11, 14 (1987) (1988) 1 9 8 9P i 1 4 K.Pisk, Z.Kaliman, B.A.Logan – Nucl.Phys. A504, 103 (1989) 1 9 8 9Ra 1 7 P.Raghavan – At.Data Nucl.Data Tables 42, 189 (1989) 1989Sa31 G.Sawatzky, R.Winkler – Z.Phys. D14, 9 (1989) 1 9 8 9Wa 1 1 K.Wallmeroth, G.Bollen, A.Dohn, P.Egelhof, U.Kronert, M.J.G.Borge, J.Campos, A.Rodriguez Yunta, K.Heyde, C.de 1 9 9 0Ba 4 8 I.M.Band, M.A.Listengarten, M.B.Trzhaskovskaya – Izv.Akad.Nauk SSSR, Ser.Fiz. 54, 15 (1990); Bull.Acad.Sci.USSR, 1 9 9 0 Bu 2 6 D.G.Burke, G.Kajrys – Nucl.Phys. A517, 1 (1990) 1 9 9 0 Cu 0 5 D.M.Cullen, M.A.Riley, A.Alderson, I.Ali, C.W.Beausang, T.Bengtsson, M.A.Bentley, P.Fallon, P.D.Forsyth, F.Hanna, Coster, J.L.Wood, H.–J.Kluge – Nucl.Phys. A493, 224 (1989) Phys.Ser. 54, 14 (1990) S.M.Mullins, W.Nazarewicz, R.J.Poynter, P.H.Regan, J.W.Roberts, W.Satula, J.F.Sharpey–Schafer, J.Simpson, G.Sletten, P.J.Twin, R.Wadsworth, R.Wyss – Phys.Rev.Lett. 65, 1547 (1990) 1 9 9 0 Cu 0 6 D.M.Cullen, M.A.Riley, A.Alderson, I.Ali, T.Bengtsson, M.A.Bentley, A.M.Bruce, P.Fallon, P.D.Forsyth, F.Hanna, S.M.Mullins, W.Nazarewicz, R.Poynter, P.Regan, J.W.Roberts, W.Satula, J.F.Sharpey–Schafer, J.Simpson, G.Sletten, P.J.Twin, R.Wadsworth, R.Wyss – Nucl.Phys. A520, 105c (1990) 1 9 9 0Fe 0 7 P.B.Fernandez, M.P.Carpenter, R.V.F.Janssens, I.Ahmad, E.F.Moore, T.L.Khoo, F.Scarlassara, I.G.Bearden, Ph.Benet, 1 9 9 0He 0 9 E.A.Henry, M.J.Brinkman, C.W.Beausang, J.A.Becker, N.Roy, S.W.Yates, J.A.Cizewski, R.M.Diamond, M.A.Deleplanque, P.J.Daly, M.W.Drigert, U.Garg, W.Reviol, D.Ye, S.Pilotte – Nucl.Phys. A517, 386 (1990) F.S.Stephens, J.E.Draper, W.H.Kelly, R.J.McDonald, J.Burde, A.Kuhnert, W.Korten, E.Rubel, Y.A.Akovali – Z.Phys. A335, 361 (1990) 1 9 9 0He 2 3 E.A.Henry, J.A.Becker, M.J.Brinkman, A.Kuhnert, S.W.Yates, M.A.Deleplanque, R.M.Diamond, F.S.Stephens, C.W.Beausang, 1 9 9 0Ka 0 4 S.Kato, S.Kubono, T.Miyachi, S.Ohkawa, Y.Fuchi, M.H.Tanaka, M.Yasue – Nucl.Instrum.Methods Phys.Res. A287, 499 1 9 9 0K e ZW W.H.Kelly, F.Azaiez, W.Korten, M.A.Deleplanque, R.M.Diamond, F.S.Stephens, C.W.Beausang, J.E.Draper, E.Rubel, W.H.Kelly, W.Korten, F.Azaiez, J.E.Draper, E.Rubel, J.A.Cizewski, Y.A.Akovali – Nucl.Phys. A520, 115c (1990) (1990) R.J.McDonald, J.A.Becker, E.A.Henry, M.J.Brinkman, A.Kuhnert, S.W.Yates – Proc.Inter.Conf.Nuclear Structure of the Nineties, Oak Ridge, Tennessee, Vol.1, p.24 (1990) 1 9 9 0K o 0 6 V.M.Kolomietz, V.N.Kondratjev – Z.Phys. A335, 379 (1990) 1 9 9 0K o 2 2 V.M.Kolomiets, V.N.Kondratev – Yad.Fiz. 51, 631 (1990); Sov.J.Nucl.Phys. 51, 400 (1990) 1 9 9 0K o 2 8 V.M.Kolomietz, V.N.Kondratev – Hyperfine Interactions 59, 173 (1990) 1 9 9 0P i 0 8 A.E.Pillay, N.Mashilo – J.Radioanal.Nucl.Chem. 144, 417 (1990) 1 9 9 0Sh3 0 V.S.Shirley – Nucl.Data Sheets 61, 519 (1990) 1 9 9 1Ba 6 3 I.M.Band, M.B.Trzhaskovskaya – Izv.Akad.Nauk SSSR, Ser.Fiz. 55, 2121 (1991); Bull.Acad.Sci.USSR, Phys.Ser. 55, 1 9 9 1 Ch 3 6 R.R.Chasman – Phys.Lett. 266B, 243 (1991) 1 9 9 1Du 0 7 S.B.Dutta, R.Kirchner, O.Klepper, T.U.Kuhl, D.Marx, G.D.Sprouse, R.Menges, U.Dinger, G.Huber, S.Schroder – Z.Phys. No.11, 39 (1991) A341, 39 (1991) 219 NUCLEAR DATA SHEETS REFERENCES FOR A= 1 9 3 1 9 9 1La 0 7 ( CONT I NUED ) J.M.Lagrange, M.Pautrat, J.S.Dionisio, Ch.Vieu, J.Vanhorenbeeck – Nucl.Phys. A530, 437 (1991) 1 9 9 1Ry 0 1 A.Rytz – At.Data Nucl.Data Tables 47, 205 (1991) 1991Sa33 J.A.Sawicki, B.D.Sawicka, F.E.Wagner – Nucl.Instrum.Methods Phys.Res. B62, 253 (1991) 1991S c 28 E.Scheidemann, R.Eder, E.Hagn, E.Zech – Z.Phys. A340, 235 (1991) 1 9 9 2 An 1 3 M.S.Antony, D.Oster, A.Hachem – J.Radioanal.Nucl.Chem. 164, 303 (1992) 1 9 9 2H i 0 7 Th.Hilberath, St.Becker, G.Bollen, H.–J.Kluge, U.Kronert, G.Passler, J.Rikovska, R.Wyss, and the ISOLDE 1 9 9 2Re 0 8 W.Reviol, M.P.Carpenter, U.Garg, R.V.F.Janssens, I.Ahmad, I.G.Bearden, Ph.Benet, P.J.Daly, M.W.Drigert, 1 9 9 2R i 1 1 J.Rikovska, R.Wyss, P.B.Semmes – Hyperfine Interactions 75, 59 (1992) 1 9 9 2 S h ZR J.F.Sharpey–Schafer, D.M.Cullen, M.A.Riley, A.Alderson, I.Ali, T.Bengtsson, M.A.Bentley, A.M.Bruce, P.Fallon, Collaboration – Z.Phys. A342, 1 (1992) P.B.Fernandez, T.L.Khoo, E.F.Moore, S.Pilotte, D.Ye – Nucl.Phys. A548, 331 (1992) P.D.Forsyth, F.Hanna, S.M.Mullins, W.Nazarewicz, R.Poynter, P.Regan, J.W.Roberts, W.Satula, J.Simpson, G.Sletten, P.J.Twin, R.Wadsworth, R.Wyss – Proc.Int.Conf.Future Directions in Nuclear Physics with 4π Gamma Detection Systems of the New Generation, Strasbourg, France (1991), J.Dudek, B.Haas, Eds., American Institute of Physics, New York, p.64 (1992) 1 9 9 2Tk 0 1 E.V.Tkalya – Nucl.Phys. A539, 209 (1992) 1 9 9 2Wu 0 1 C.S.Wu, J.Y.Zeng, Z.Xing, X.Q.Chen, J.Meng – Phys.Rev. C45, 261 (1992) 1 9 9 3 Cu 0 2 D.M.Cullen, I.Y.Lee, C.Baktash, J.D.Garrett, N.R.Johnson, F.K.McGowan, D.F.Winchell – Phys.Rev. C47, 1298 (1993) 1 9 9 3D e 4 2 J.K.Deng, W.C.Ma, J.H.Hamilton, J.D.Garrett, C.Baktash, D.M.Cullen, N.R.Johnson, I.Y.Lee, F.K.McGowan, S.Pilotte, 1 9 9 3Fa 0 7 P.Fallon, J.Burde, B.Cederwall, M.A.Deleplanque, R.M.Diamond, I.Y.Lee, J.R.B.Oliveira, F.S.Stephens, J.A.Becker, 1 9 9 3H i 1 0 B.Hinfurtner, C.Konig, E.Hagn, E.Zech, R.Eder, D.Forkel, and the ISOLDE Collaboration – Nucl.Phys. A562, 205 (1993) 1 9 9 3Hu 0 6 J.Hu, C.Zheng – Chin.J.Nucl.Phys. 15, No 1, 45 (1993) 1993Jo09 M.J.Joyce, J.F.Sharpey–Schafer, P.J.Twin, C.W.Beausang, D.M.Cullen, M.A.Riley, R.M.Clark, P.J.Dagnall, I.Deloncle, C.H.Yu, W.Nazarewicz – Phys.Lett. 319B, 63 (1993) M.J.Brinkman, E.A.Henry, A.Kuhnert, M.A.Stoyer, J.E.Draper, C.Duyar, E.Rubel – Phys.Rev.Lett. 70, 2690 (1993) J.Duprat, P.Fallon, P.D.Forsyth, N.Fotiades, S.J.Gale, B.Gall, F.Hannachi, S.Harissopulos, K.Hauschild, P.M.Jones, C.A.Kalfas, A.Korichi, Y.Le Coz, M.Meyer, E.S.Paul, M.G.Porquet, N.Redon, C.Schuck, J.Simpson, R.Vlastou, R.Wadsworth – Phys.Rev.Lett. 71, 2176 (1993) 1 9 9 3Ro 0 3 N.Roy, J.A.Becker, E.A.Henry, M.J.Brinkman, M.A.Stoyer, J.A.Cizewski, R.M.Diamond, M.A.Deleplanque, F.S.Stephens, 1 9 9 3Wa 0 4 J.Wauters, P.Dendooven, M.Huyse, G.Reusen, P.Van Duppen, P.Lievens, and the ISOLDE Collaboration – Phys.Rev. C47, 1 9 9 4Ba 5 4 J.C.Batchelder, R.J.Tighe, D.M.Moltz, T.J.Ognibene, M.W.Rowe, J.Cerny – Phys.Rev. C50, 1807 (1994) 1 9 9 4He 2 4 D.Heumann, M.Greiner, W.Scheid, G.Braunss – Phys.Rev. C50, 812 (1994) 1994Jo10 M.J.Joyce, J.F.Sharpey–Schafer, M.A.Riley, D.M.Cullen, F.Azaiez, C.W.Beausang, R.M.Clark, P.J.Dagnall, I.Deloncle, C.W.Beausang, J.E.Draper – Phys.Rev. C47, R930 (1993) 1447 (1993) J.Duprat, P.Fallon, P.D.Forsyth, N.Fotiades, S.J.Gale, B.Gall, F.Hannachi, S.Harissopulos, K.Hauschild, P.M.Jones, C.A.Kalfas, A.Korichi, Y.Le Coz, M.Meyer, E.S.Paul, M.G.Porquet, N.Redon, C.Schuck, J.Simpson, R.Vlastou, R.Wadsworth, W.Nazarewicz – Phys.Lett. 340B, 150 (1994) 1 9 9 4La 3 3 L.Lakosi, I.Pavlicsek, N.C.Tam – Nucl.Instrum.Methods Phys.Res. A339, 226 (1994) 1 9 9 4Pa 3 7 G.Passler, J.Rikovska, E.Arnold, H.–J.Kluge, L.Monz, R.Neugart, H.Ravn, K.Wendt, and the ISOLDE Collaboration – 1 9 9 4Tk 0 2 E.V.Tkalya – Zh.Eksp.Teor.Fiz. 105, 449 (1994); Sov.Phys.JETP 78, 239 (1994) 1 9 9 4Zh4 0 C.Zhou, T.Liu – Chin.J.Nucl.Phys. 16, No 1, 85 (1994) 1 9 9 5Ba 5 4 J.Barrette, R.Bellwied, P.Braun–Munzinger, W.E.Cleland, G.David, J.Dee, O.Dietzsch, E.Duek, M.Fatyga, D.Fox, Nucl.Phys. A580, 173 (1994) S.V.Greene, J.R.Hall, T.K.Hemmick, N.Herrmann, B.Hong, K.Jayananda, D.Kraus, B.S.Kumar, R.Lacasse, D.Lissauer, W.J.Llope, T.Ludlam, S.K.Mark, S.McCorkle, J.T.Mitchell, M.Muthuswamy, E.O'Brien, C.Pruneau, F.S.Rotondo, N.C.daSilva, J.Simon–Gillo, U.Sonnadara, J.Stachel, E.M.Takagui, H.Takai, T.G.Throwe, L.Waters, C.Winter, K.Wolf, D.Wolfe, C.L.Woody, N.Xu, Y.Zhang, Z.Zhang, C.Zou, and the E814 Collaboration – Phys.Rev. C52, 956 (1995) 1 9 9 5 Ch 2 7 D.R.Chakrabarty, V.M.Datar, S.Kumar, E.T.Mirgule, H.H.Oza, U.K.Pal – Phys.Rev. C51, 2942 (1995); Erratum Phys.Rev. 1 9 9 5Fo 1 3 N.Fotiades, S.Harissopulos, C.A.Kalfas, S.Kossionides, C.T.Papadopoulos, R.Vlastou, M.Serris, M.Meyer, N.Redon, C54, 2022 (1996) R.Duffait, Y.Le Coz, L.Ducroux, F.Hannachi, I.Deloncle, B.Gall, M.G.Porquet, C.Schuck, F.Azaiez, J.Duprat, A.Korichi, J.F.Sharpey–Schafer, M.J.Joyce, C.W.Beausang, P.J.Dagnall, P.D.Forsyth, S.J.Gale, P.M.Jones, E.S.Paul, J.Simpson, R.M.Clark, K.Hauschild, R.Wadsworth – J.Phys.(London) G21, 911 (1995) 1 9 9 5Hu 0 1 J.R.Hughes, J.A.Becker, L.A.Bernstein, M.J.Brinkman, L.P.Farris, E.A.Henry, R.W.Hoff, M.A.Stoyer, D.T.Vo, S.Asztalos, B.Cederwall, R.M.Clark, M.A.Deleplanque, R.M.Diamond, P.Fallon, I.Y.Lee, A.O.Macchiavelli, F.S.Stephens – Phys.Rev. C51, R447 (1995) 1 9 9 5La 1 6 L.Lakosi, N.C.Tam, I.Pavlicsek, A.Peto – Phys.Rev. C52, 1516 (1995) 1 9 9 5Le 1 5 M.Leino, J.Aysto, T.Enqvist, A.Jokinen, M.Nurmia, A.Ostrowski, W.H.Trzaska, J.Uusitalo, K.Eskola – Acta Phys.Pol. 1 9 9 5Mo 1 4 K.Morita, Y.H.Pu, J.Feng, M.G.Hies, K.O.Lee, A.Yoshida, S.C.Jeong, S.Kubono, T.Nomura, Y.Tagaya, M.Wada, M.Kurokawa, B26, 309 (1995) T.Motobayashi, H.Ogawa, T.Uchibori, K.Sueki, T.Ishizuka, K.Uchiyama, Y.Fujita, H.Miyatake, T.Shinozuka, H.Kudo, Y.Nagai, S.A.Shin – Z.Phys. A352, 7 (1995) 1 9 9 5Ro 1 3 A.Romanelli, L.F.Canto, R.Donangelo, P.Lotti – Nucl.Phys. A588, 71c (1995) 1 9 9 6Ba 5 4 G.Baldsiefen, M.A.Stoyer, J.A.Cizewski, D.P.McNabb, W.Younes, J.A.Becker, L.A.Bernstein, M.J.Brinkman, L.P.Farris, E.A.Henry, J.R.Hughes, A.Kuhnert, T.F.Wang, B.Cederwall, R.M.Clark, M.A.Deleplanque, R.M.Diamond, P.Fallon, I.Y.Lee, A.O.Macchiavelli, J.Oliveira, F.S.Stephens, J.Burde, D.T.Vo, S.Frauendorf – Phys.Rev. C54, 1106 (1996) 220 NUCLEAR DATA SHEETS REFERENCES FOR A= 1 9 3 1 9 9 6Bo 0 2 ( CONT I NUED ) S.Bouneau, A.N.Wilson, F.Azaiez, J.F.Sharpey–Schafer, A.Korichi, I.Deloncle, M.G.Porquet, J.Timar, A.Astier, M.Bergstrom, C.Bourgeois, L.Ducroux, J.Duprat, B.J.P.Gall, F.Hannachi, M.Kaci, Y.Le Coz, A.Lopez–Martens, M.Meyer, E.S.Paul, N.Perrin, S.Pilotte, N.Redon, M.A.Riley, C.Schuck, H.Sergolle, R.Wyss – Phys.Rev. C53, R9 (1996) 1 9 9 6Bo 1 5 S.Bouneau, A.N.Wilson, F.Azaiez, J.F.Sharpey–Schafer, A.Korichi, I.Deloncle, M.G.Porquet, J.Timar, A.Astier, M.Bergstrom, C.Bourgeois, L.Ducroux, J.Duprat, B.J.P.Gall, F.Hannachi, M.Kaci, Y.Le Coz, A.Lopez–Martens, M.Meyer, E.S.Paul, N.Perrin, S.Pilotte, N.Redon, M.A.Riley, C.Schuck, H.Sergolle, R.Wyss – Acta Phys.Pol. B27, 197 (1996) 1 9 9 6B r 2 6 E.Browne, B.Singh – Nucl.Data Sheets 79, 277 (1996) 1 9 9 6Du 0 5 L.Ducroux, A.Astier, R.Duffait, Y.Le Coz, M.Meyer, S.Perries, N.Redon, J.F.Sharpey–Schafer, A.N.Wilson, B.J.P.Gall, R.Collatz, I.Deloncle, F.Hannachi, A.Lopez–Martens, M.G.Porquet, C.Schuck, F.Azaiez, S.Bouneau, C.Bourgeois, A.Korichi, N.Poffe, H.Sergolle, R.Lucas, V.Meot, I.Hibbert, R.Wadsworth – Phys.Rev. C53, 2701 (1996) 1 9 9 6Du 1 8 L.Ducroux, A.Astier, R.Duffait, Y.Le Coz, M.Meyer, S.Perries, N.Redon, J.F.Sharpey–Schafer, A.N.Wilson, R.Lucas, V.Meot, R.Collatz, I.Deloncle, F.Hannachi, A.Lopez–Martens, M.G.Porquet, C.Schuck, F.Azaiez, S.Bouneau, C.Bourgeois, A.Korichi, N.Poffe, H.Sergolle, B.J.P.Gall, I.Hibbert, R.Wadsworth – Z.Phys. A356, 241 (1996) 1 9 9 6 En 0 2 T.Enqvist, P.Armbruster, K.Eskola, M.Leino, V.Ninov, W.H.Trzaska, J.Uusitalo – Z.Phys. A354, 9 (1996) 1 9 9 6G i 0 9 R.L.Gill, R.F.Casten, W.R.Phillips, B.J.Varley, C.J.Lister, J.L.Durell, J.A.Shannon, D.D.Warner – Phys.Rev. C54, 1 9 9 6Ha 0 9 E.Hagn – Hyperfine Interactions 97/98, 409 (1996) 1 9 9 6La 2 7 L.Lakosi – Z.Phys. A356, 155 (1996) 1 9 9 6Pe 2 0 S.Perries, A.Astier, L.Ducroux, R.Duffait, Y.Le Coz, M.Meyer, N.Redon, F.Azaiez, S.Bouneau, C.Bourgeois, R.Collatz, 2276 (1996) I.Deloncle, B.J.P.Gall, F.Hannachi, I.Hibbert, A.Korichi, A.Lopez–Martens, R.Lucas, V.Meot, N.Poffe, M.G.Porquet, C.Schuck, H.Sergolle, J.F.Sharpey–Schafer, R.Wadsworth, A.N.Wilson – Z.Phys. A356, 1 (1996) 1 9 9 6 S a ZU T.Saitoh, N.Hashimoto, J.Lu, T.Komatsubara, K.Furuno, M.Oshima, Y.Hatsukawa, T.Hayakawa, K.Furutaka, M.Matsuda, 1996S c 06 E.Schonfeld, H.Janssen – Nucl.Instrum.Methods Phys.Res. A369, 527 (1996) 1996Se 06 G.Seewald, E.Hagn, E.Zech, D.Forkel–Wirth – Nucl.Phys. A602, 41 (1996) 1996S t 22 A.E.Stuchbery, S.S.Anderssen, E.Bezakova – Hyperfine Interactions 97/98, 479 (1996) 1 9 9 6Ty 0 1 S.Typel, C.Leclercq–Willain – Phys.Rev. A53, 2547 (1996) 1 9 9 6W i Z Y A.Wilson – Priv.Comm. (1996) 1 9 9 7 Ch 3 3 S.Chmel, F.Brandolini, R.V.Ribas, G.Baldsiefen, A.Gorgen, M.De Poli, P.Pavan, H.Hubel – Phys.Rev.Lett. 79, 2002 1 9 9 7D r 0 4 S.–E.Drissi – Nucl.Phys. A621, 655 (1997) T.Ishii, M.Kidera – Univ.Tsukuba, Tandem Accel.Center, Ann.Rept., 1995, p.54 (1996); UTTAC–63 (1996) (1997) 1 9 9 7Du 0 7 D.K.Duncan – Nucl.Phys. A621, 10c (1997) 1 9 9 7Fa 1 5 P.Fallon – Z.Phys. A358, 231 (1997) 1 9 9 7Fo 0 6 N.Fotiades, J.A.Cizewski, D.P.McNabb, K.Y.Ding, C.N.Davids, R.V.F.Janssens, D.Seweryniak, M.P.Carpenter, H.Amro, P.Decrock, P.Reiter, D.Nisius, L.T.Brown, S.Fischer, T.Lauritsen, J.Wauters, C.R.Bingham, M.Huyse, A.Andreev, L.F.Conticchio – Phys.Rev. C56, 723 (1997) 1 9 9 7 F o ZX N.Fotiades – Priv.Comm. (1997) 1 9 9 7Hu 1 3 Z.X.Hu, J.Y.Zeng – Phys.Rev. C56, 2523 (1997) 1 9 9 7Mo 2 5 P.Moller, J.R.Nix, K.–L.Kratz – At.Data Nucl.Data Tables 66, 131 (1997) 1 9 9 7O l 0 1 S.Olariu, A.Olariu, V.Zoran – Phys.Rev. C56, 381 (1997) 1 9 9 7Wu 0 6 C.S.Wu, Z.N.Zhou – Phys.Rev. C56, 1814 (1997) 1 9 9 8Ak 0 4 Y.A.Akovali – Nucl.Data Sheets 84, 1 (1998) 1 9 9 8A r 0 7 A.Artna–Cohen – Nucl.Data Sheets 83, 921 (1998) 1 9 9 8Bo 2 0 S.Bouneau, F.Azaiez, J.Duprat, I.Deloncle, M.G.Porquet, A.Astier, M.Bergstrom, C.Bourgeois, L.Ducroux, B.J.P.Gall, M.Kaci, Y.Le Coz, M.Meyer, E.S.Paul, N.Redon, M.A.Riley, H.Sergolle, J.F.Sharpey–Schafer, J.Timar, A.N.Wilson, R.Wyss – Eur.Phys.J. A 2, 245 (1998) 1 9 9 8Bo 3 2 S.Bouneau, F.Azaiez, J.Duprat, I.Deloncle, M.G.Porquet, A.Astier, M.Bergstrom, C.Bourgeois, L.Ducroux, B.J.P.Gall, M.Kaci, Y.Le Coz, M.Meyer, E.S.Paul, N.Redon, M.A.Riley, H.Sergolle, J.F.Sharpey–Schafer, J.Timar, A.N.Wilson, R.Wyss, P.–H.Heenen – Phys.Rev. C58, 3260 (1998) 1 9 9 8 Bu 0 3 B.C.Busse, P.Fallon, R.Krucken, D.Ackermann, I.Ahmad, S.J.Asztalos, D.J.Blumenthal, M.P.Carpenter, R.M.Clark, M.A.Deleplanque, R.M.Diamond, S.M.Fischer, F.Hannachi, R.V.F.Janssens, T.L.Khoo, A.Korichi, T.Lauritsen, I.Y.Lee, A.Lopez–Martens, A.O.Macchiavelli, R.W.MacLeod, E.F.Moore, D.Nisius, G.Schmid, D.Seweryniak, F.S.Stephens, K.Vetter – Phys.Rev. C57, R1017 (1998) 1 9 9 8C l 0 6 R.M.Clark, R.Krucken, S.J.Asztalos, J.A.Becker, B.Busse, S.Chmel, M.A.Deleplanque, R.M.Diamond, P.Fallon, D.Jenkins, K.Hauschild, I.M.Hibbert, H.Hubel, I.Y.Lee, A.O.Macchiavelli, R.W.MacLeod, G.Schmid, F.S.Stephens, U.J.van Severen, K.Vetter, R.Wadsworth, S.Wan – Phys.Lett. 440B, 251 (1998) 1998 I s08 M.Ismail – Pramana 50, 173 (1998) 1 9 9 8L i 5 4 S.X.Liu, J.Y.Zeng – Phys.Rev. C58, 3266 (1998) 1 9 9 8Va 1 8 U.J.van Severen, R.M.Clark, R.Krucken, H.Hubel, S.J.Asztalos, J.A.Becker, B.C.Busse, M.A.Deleplanque, R.M.Diamond, P.Fallon, K.Hauschild, I.M.Hibbert, I.Y.Lee, A.O.Macchiavelli, R.W.MacLeod, G.Schmid, F.S.Stephens, K.Vetter, R.Wadsworth, S.Wan – Phys.Lett. 434B, 14 (1998) 1 9 9 8We 1 9 L.Weissman, M.Hass, N.Benczer–Koller, C.Broude, G.Kumbartzki – Nucl.Instrum.Methods Phys.Res. A416, 351 (1998) 1 9 9 8We 2 3 L.Weissman, R.H.Mayer, N.Benczer–Koller, C.Broude, M.Hass, G.Kumbartzki – Nuovo Cim. 111A, 675 (1998) 1 9 9 9Be 6 3 J.Benlliure, K.–H.Schmidt, D.Cortina–Gil, T.Enqvist, F.Farget, A.Heinz, A.R.Junghans, J.Pereira, J.Taieb – 1 9 9 9Fu 0 5 K.Furuno, M.Oshima, T.Komatsubara, K.Furutaka, T.Hayakawa, M.Kidera, Y.Hatsukawa, M.Matsuda, S.Mitarai, T.Shizuma, 1 9 9 9Ha 5 6 X.–L.Han, C.L.Wu – At.Data Nucl.Data Tables 73, 43 (1999) Nucl.Phys. A660, 87 (1999); Erratum Nucl.Phys. A674, 578 (2000) T.Saitoh, N.Hashimoto, H.Kusakari, M.Sugawara, T.Morikawa – Nucl.Instrum.Methods Phys.Res. A421, 211 (1999) 221 NUCLEAR DATA SHEETS REFERENCES FOR A= 1 9 3 1 9 9 9He 3 2 ( CONT I NUED ) K.Helariutta, J.F.C.Cocks, T.Enqvist, P.T.Greenlees, P.Jones, R.Julin, S.Juutinen, P.Jamsen, H.Kankaanpaa, H.Kettunen, P.Kuusiniemi, M.Leino, M.Muikku, M.Piiparinen, P.Rahkila, A.Savelius, W.H.Trzaska, S.Tormanen, J.Uusitalo, R.G.Allatt, P.A.Butler, R.D.Page, M.Kapusta – Eur.Phys.J. A 6, 289 (1999) 1 9 9 9K r 1 9 R.Krucken, Z.Wang, S.J.Asztalos, J.A.Becker, L.A.Bernstein, R.M.Clark, M.A.Deleplanque, R.M.Diamond, P.Fallon, 1 9 9 9Ro 2 1 D.Rossbach, A.N.Wilson, C.Barton, M.P.Carpenter, D.M.Cullen, H.Hubel, R.V.F.Janssens, S.L.King, A.Korichi, A.T.Reed 1 9 9 9 Sm0 7 M.B.Smith, R.Chapman, J.F.C.Cocks, O.Dorvaux, K.Helariutta, P.M.Jones, R.Julin, S.Juutinen, H.Kankaanpaa, N.Fotiades, K.Hauschild, I.Y.Lee, A.O.Macchiavelli, G.J.Schmid, F.S.Stephens, K.Vetter – Eur.Phys.J. A 5, 367 (1999) – Nucl.Phys. A660, 393 (1999) H.Kettunen, P.Kuusiniemi, Y.Le Coz, M.Leino, D.J.Middleton, M.Muikku, P.Nieminen, P.Rahkila, A.Savelius, K.–M.Spohr – Eur.Phys.J. A 5, 43 (1999) 1 9 9 9We 0 2 L.Weissman, R.H.Mayer, N.Benczer–Koller, C.Broude, J.A.Cizewski, M.Hass, J.Holden, R.V.F.Janssens, G.Kumbartzki, 1 9 9 9We 0 4 L.Weissman, R.H.Mayer, G.Kumbartzki, N.Benczer–Koller, C.Broude, J.A.Cizewski, M.Hass, J.Holden, R.V.F.Janssens, 2 0 0 0Be 0 7 E.Bezakova, A.E.Stuchbery, H.H.Bolotin, W.A.Seale, S.Kuyucak, P.Van Isacker – Nucl.Phys. A669, 241 (2000) 2 0 0 0 Zw0 3 G.Zwartz, T.E.Drake, M.Cromaz, D.Ward, V.Janzen, A.Galindo–Uribarri, D.Prevost, J.Waddington, S.M.Mullins – 2 0 0 1G l 0 5 M.Gloris, R.Michel, F.Sudbrock, U.Herpers, P.Malmborg, B.Holmqvist – Nucl.Instrum.Methods Phys.Res. A463, 593 (2001) 2 0 0 1Gu 3 1 E.Gueorguieva, M.Kaci, C.Schuck, A.Minkova, Ch.Vieu, J.J.Correia, J.S.Dionisio – Nucl.Instrum.Methods Phys.Res. 2 0 0 1Mo 0 7 R.Moustabchir, G.Royer – Nucl.Phys. A683, 266 (2001) 2001Sa44 J.Sauvage, J.Libert, B.Roussiere, D.Verney, L.Cabaret, J.E.Crawford, J.Genevey, G.Huber, F.Ibrahim, F.Le Blanc, T.Lauritsen, I.Y.Lee, A.O.Macchiavelli, N.Matt, D.P.McNabb, M.Satteson – Nucl.Phys. A645, 191 (1999) T.Lauritsen, I.Y.Lee, A.O.Macchiavelli, D.P.McNabb, M.Satteson – Phys.Lett. 446B, 22 (1999) J.Phys.(London) G26, 1723 (2000) A474, 132 (2001) J.K.P.Lee, J.Oms, J.Pinard, and the ISOLDE Collaboration – Yad.Fiz. 64, No 6, 1210 (2001); Phys.Atomic Nuclei 64, 1134 (2001) 2 0 0 1Sh2 0 A.Shrivastava, S.Kailas, A.Chatterjee, A.Navin, A.M.Samant, P.Singh, S.Santra, K.Mahata, B.S.Tomar, G.Pollarolo – 2 0 0 1Ta 3 1 E.Tavukcu, L.A.Bernstein, K.Hauschild, J.A.Becker, P.E.Garrett, C.A.McGrath, D.P.McNabb, W.Younes, M.B.Chadwick, 2 0 0 2Bo 6 6 V.A.Bondarenko, J.Honzatko, V.A.Khitrov, A.M.Sukhovoj, I.Tomandl – Fizika(Zagreb) B 11, 83 (2002) 2 0 0 2Ma 1 8 N.Marnada, H.Miyahara, N.Ueda, K.Ikeda, N.Hayashi – Nucl.Instrum.Methods Phys.Res. A480, 591 (2002) 2 0 0 2N o 0 1 Yu.N.Novikov, F.Attallah, F.Bosch, M.Falch, H.Geissel, M.Hausmann, Th.Kerscher, O.Klepper, H.–J.Kluge, C.Kozhuharov, Phys.Rev. C63, 054602 (2001) R.O.Nelson, G.D.Johns, G.E.Mitchell – Phys.Rev. C64, 054614 (2001) Yu.A.Litvinov, K.E.G.Lobner, G.Munzenberg, Z.Patyk, T.Radon, C.Scheidenberger, A.H.Wapstra, H.Wollnik – Nucl.Phys. A697, 92 (2002) 2002S t 11 A.E.Stuchbery – Nucl.Phys. A700, 83 (2002) 2 0 0 2Va 1 3 K.Van de Vel, A.N.Andreyev, M.Huyse, P.Van Duppen, J.F.C.Cocks, O.Dorvaux, P.T.Greenlees, K.Helariutta, P.Jones, R.Julin, S.Juutinen, H.Kettunen, P.Kuusiniemi, M.Leino, M.Muikku, P.Nieminen, K.Eskola, R.Wyss – Phys.Rev. C65, 064301 (2002) 2 0 0 3 Au 0 2 G.Audi, O.Bersillon, J.Blachot, A.H.Wapstra – Nucl.Phys. A729, 3 (2003) 2 0 0 3 Au 0 3 G.Audi, A.H.Wapstra, C.Thibault – Nucl.Phys. A729, 337 (2003) 2 0 0 3G l 0 5 K.A.Gladnishki, Zs.Podolyak, J.Gerl, M.Hellstrom, Y.Kopatch, S.Mandal, M.Gorska, P.H.Regan, H.J.Wollersheim, A.Banu, G.Benzoni, H.Boardman, M.La Commara, J.Ekman, C.Fahlander, H.Geissel, H.Grawe, E.Kaza, A.Korgul, M.Matos, M.N.Mineva, R.D.Page, C.J.Pearson, C.Plettner, D.Rudolph, Ch.Scheidenberger, V.Shishkin, D.Sohler, K.Summerer, J.J.Valiente–Dobon, H.Weick, M.Winkler – Acta Phys.Pol. B34, 2395 (2003) 2 0 0 3K e 0 8 H.Kettunen, T.Enqvist, T.Grahn, P.T.Greenlees, P.Jones, R.Julin, S.Juutinen, A.Keenan, P.Kuusiniemi, M.Leino, 2 0 0 3N i Z Z P.Nieminen, S.Juutinen, J.F.C.Cocks, O.Dorvaux, T.Enqvist, T.Grahn, P.T.Greenlees, K.Helariutta, P.M.Jones, R.Julin, A.–P.Leppanen, P.Nieminen, J.Pakarinen, P.Rahkila, J.Uusitalo – Eur.Phys.J. A 17, 537 (2003) H.Kankaanpaa, A.Keenan, H.Kettunen, P.Kuusiniemi, M.Leino, A.–P.Leppanen, M.Muikku, J.Pakarinen, P.Rahkila, A.Savelius, J.Uusitalo, E.Bouchez, A.Hurstel, K.Hauschild, W.Korten, Y.Le Coz, M.Rejmund, Ch.Theisen, N.Amzal, A.N.Andreyev, K.Eskola, N.Hammond, M.Huyse, T.Lonnroth, C.Scholey, P.Van Duppen, R.Wyss – Proc.Frontiers of Nuclear Structure, Berkeley, California, P.Fallon and R.Clark, Eds., p.63 (2003); AIP Conf.Proc. 656 (2003) 2 0 0 4 An 1 4 I.Angeli – At.Data Nucl.Data Tables 87, 185 (2004) 2 0 0 4Ba 3 1 D.L.Balabanski, M.Ionescu–Bujor, A.Iordachescu, D.Bazzacco, F.Brandolini, D.Bucurescu, S.Chmel, M.Danchev, M.De Poli, G.Georgiev, H.Haas, H.Hubel, N.Marginean, R.Menegazzo, G.Neyens, P.Pavan, G.Rainovski, C.Rossi Alvarez, C.A.Ur, K.Vyvey, S.Frauendorf – Eur.Phys.J. A 20, 191 (2004) 2 0 0 4G l 0 4 K.A.Gladnishki, Zs.Podolyak, P.H.Regan, J.Gerl, M.Hellstrom, Y.Kopatch, S.Mandal, M.Gorska, R.D.Page, H.J.Wollersheim, A.Banu, G.Benzoni, H.Boardman, M.La Commara, J.Ekman, C.Fahlander, H.Geissel, H.Grawe, E.Kaza, A.Korgul, M.Matos, M.N.Mineva, C.J.Pearson, C.Plettner, D.Rudolph, Ch.Scheidenberger, K.–H.Schmidt, V.Shishkin, D.Sohler, K.Summerer, J.J.Valiente–Dobon, P.M.Walker, H.Weick, M.Winkler, O.Yordanov – Phys.Rev. C 69, 024617 (2004) 2004 I o01 M.Ionescu–Bujor, A.Iordachescu, D.L.Balabanski, S.Chmel, G.Neyens, G.Baldsiefen, D.Bazzacco, F.Brandolini, D.Bucurescu, M.Danchev, M.De Poli, G.Georgiev, A.Gorgen, H.Haas, H.Hubel, G.Ilie, N.Marginean, R.Menegazzo, P.Pavan, G.Rainovski, R.V.Ribas, C.Rossi Alvarez, C.A.Ur, K.Vyvey, S.Frauendorf – Phys.Rev. C 70, 034305 (2004) 2 0 0 4N i 0 6 P.Nieminen, S.Juutinen, A.N.Andreyev, J.F.C.Cocks, O.Dorvaux, K.Eskola, P.T.Greenlees, K.Hauschild, K.Helariutta, M.Huyse, P.M.Jones, R.Julin, H.Kankaanpaa, H.Kettunen, P.Kuusiniemi, Y.Le Coz, M.Leino, T.Lonnroth, M.Muikku, P.Rahkila, A.Savelius, J.Uusitalo, N.Amzal, N.J.Hammond, C.Scholey, R.Wyss – Phys.Rev. C 69, 064326 (2004) 2 0 0 4N i 1 4 N.Nica, J.C.Hardy, V.E.Iacob, S.Raman, C.W.Nestor, Jr., M.B.Trzhaskovskaya – Phys.Rev. C 70, 054305 (2004) 2 0 0 4Su1 1 A.M.Sukhovoj, V.A.Khitrov – Yad.Fiz. 67, 684 (2004); Phys.Atomic Nuclei 67, 662 (2004) 222 NUCLEAR DATA SHEETS REFERENCES FOR A= 1 9 3 2 0 0 5Ca 0 2 ( CONT I NUED ) M.Caamano, P.M.Walker, P.H.Regan, M.Pfutzner, Zs.Podolyak, J.Gerl, M.Hellstrom, P.Mayet, M.N.Mineva, A.Aprahamian, J.Benlliure, A.M.Bruce, P.A.Butler, D.Cortina Gil, D.M.Cullen, J.Doring, T.Enqvist, C.Fox, J.Garces Narro, H.Geissel, W.Gelletly, J.Giovinazzo, M.Gorska, H.Grawe, R.Grzywacz, A.Kleinbohl, W.Korten, M.Lewitowicz, R.Lucas, H.Mach, C.D.O'Leary, F.De Oliveira, C.J.Pearson, F.Rejmund, M.Rejmund, M.Sawicka, H.Schaffner, C.Schlegel, K.Schmidt, K.–H.Schmidt, P.D.Stevenson, Ch.Theisen, F.Vives, D.D.Warner, C.Wheldon, H.J.Wollersheim, S.Wooding, F.Xu, O.Yordanov – Eur.Phys.J. A 23, 201 (2005) 2 0 0 5D e 0 1 H.De Witte, A.N.Andreyev, S.Dean, S.Franchoo, M.Huyse, O.Ivanov, U.Koster, W.Kurcewicz, J.Kurpeta, A.Plochocki, 2 0 0 5G l 0 9 K.A.Gladnishki, D.L.Balabanski, P.Petkov, A.Dewald, D.Tonev, M.Axiotis, A.Fitzler, M.Danchev, S.Harissopulos, K.Van de Vel, J.Van de Walle, P.Van Duppen – Eur.Phys.J. A 23, 243 (2005) S.Lalkovski, N.Marginean, T.Martinez, O.Moeller, G.Neyens, A.Spyrou, E.A.Stefanova, C.Ur – J.Phys.(London) G31, S1559 (2005) 2 0 0 5K i 0 1 S.Kishimoto, Y.Yoda, Y.Kobayashi, S.Kitao, R.Haruki, M.Seto – Nucl.Phys. A748, 3 (2005) 2 0 0 5Uu 0 2 J.Uusitalo, M.Leino, T.Enqvist, K.Eskola, T.Grahn, P.T.Greenlees, P.Jones, R.Julin, S.Juutinen, A.Keenan, H.Kettunen, H.Koivisto, P.Kuusiniemi, A.–P.Leppanen, P.Nieminen, J.Pakarinen, P.Rahkila, C.Scholey – Phys.Rev. C 71, 024306 (2005) 223 224