

#### **Pushback Rate Control**

The Design and Field-Testing of an Airport Congestion Control Algorithm

Hamsa Balakrishnan
Aeronautics & Astronautics, MIT

Aerospace Engineering Colloquium, University of Washington October 2014

### Practical algorithms for air transportation

#### Goal

- Develop algorithms that increase efficiency and robustness, and ensure safety...
- ... while coping with uncertainty, human factors, and environmental concerns

### Practical algorithms for air transportation

#### Goal

- Develop algorithms that increase efficiency and robustness, and ensure safety...
- ... while coping with uncertainty, human factors, and environmental concerns
- Our approach
  - Leverage large amounts of operational data to
    - Build simple models for desired objectives and operational constraints
    - Develop and implement scalable control and optimization algorithms
- Practical algorithms and decision-support automation are vital to meet future system demands

### Practical algorithms for air transportation

#### Goal

- Develop algorithms that increase efficiency and robustness, and ensure safety...
- ... while coping with uncertainty, human factors, and environmental concerns
- Our approach
  - Leverage large amounts of operational data to
    - Build simple models for desired objectives and operational constraints
    - Develop and implement scalable control and optimization algorithms
- Practical algorithms and decision-support automation are vital to meet future system demands
- Air transportation: Cyber + physical + human components

### Airport surface traffic operations

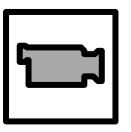
 Modeling and analysis of surface operations using data



 Design and field testing of congestion control strategies

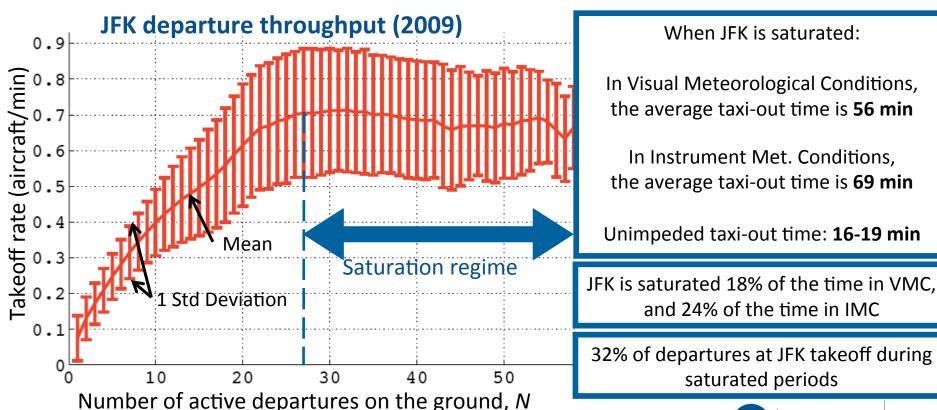


# Boston Logan (BOS) airport (6/30/2012)



### **Problem: Airport surface congestion**

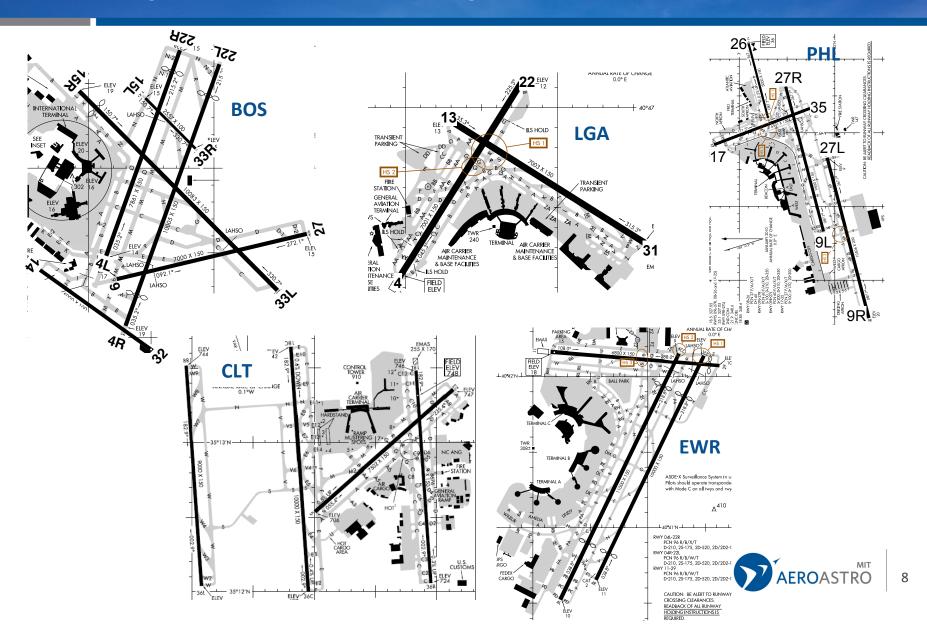
 Frequent congestion at major airports results in inefficient operations, and increased fuel burn and emissions



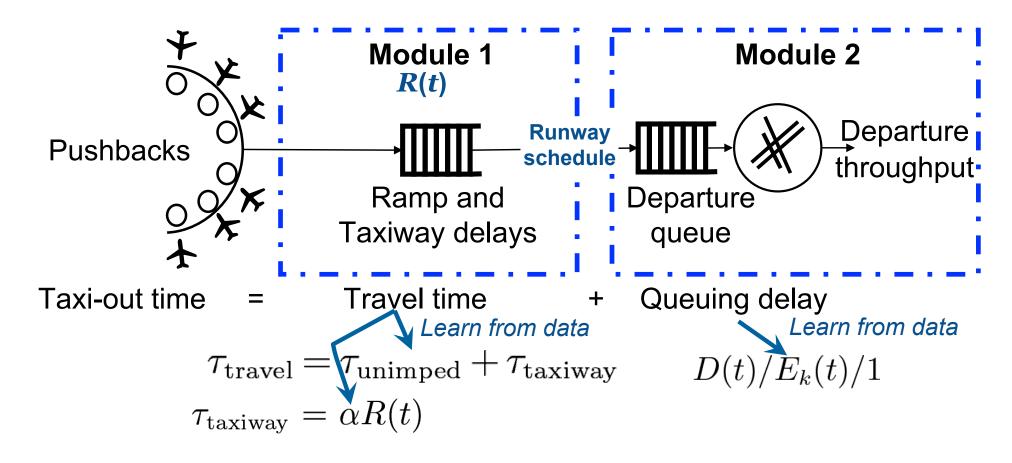
Simaiakis and Balakrishnan, *Transportation Research Record*, 2010 (Confirms Pujet, Delcaire and Feron, BOS 1999).

7

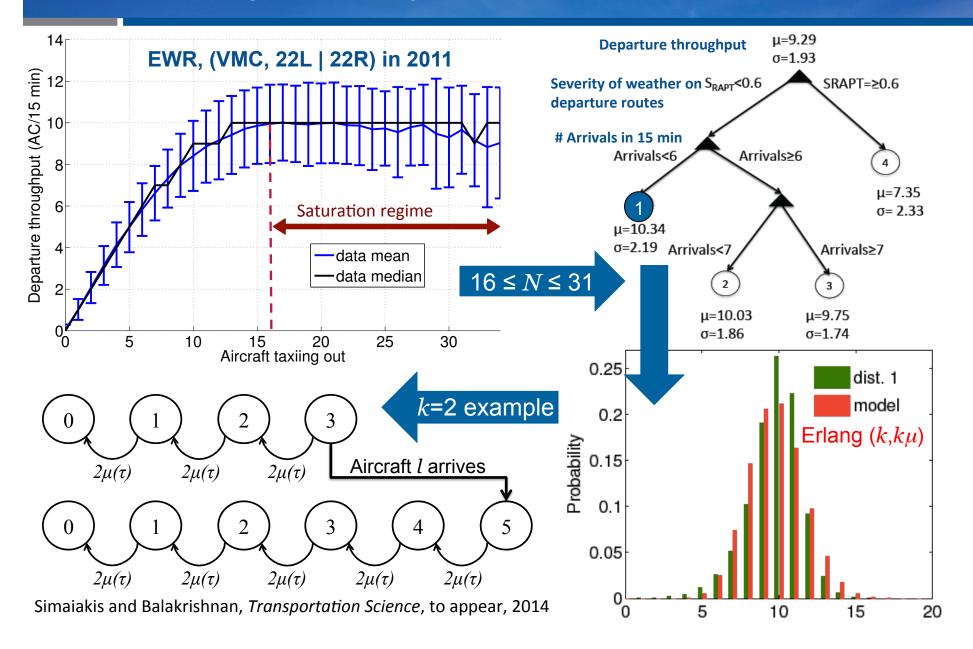
### Airports can look very different



### Queuing model of the departure process

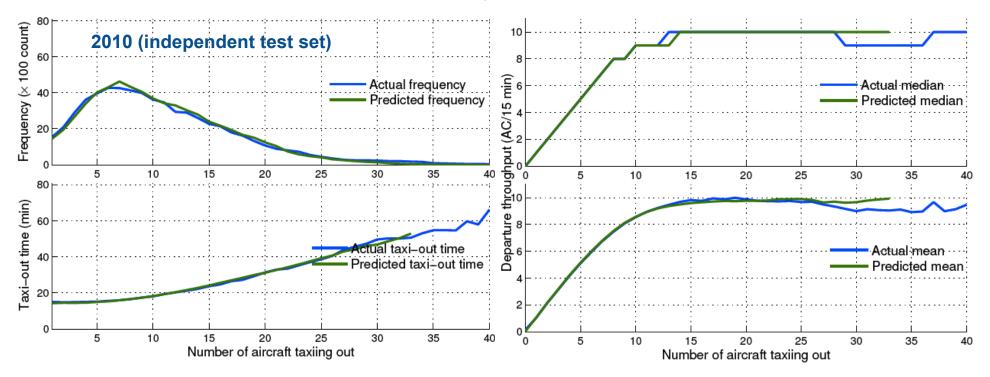


### Runway service process model

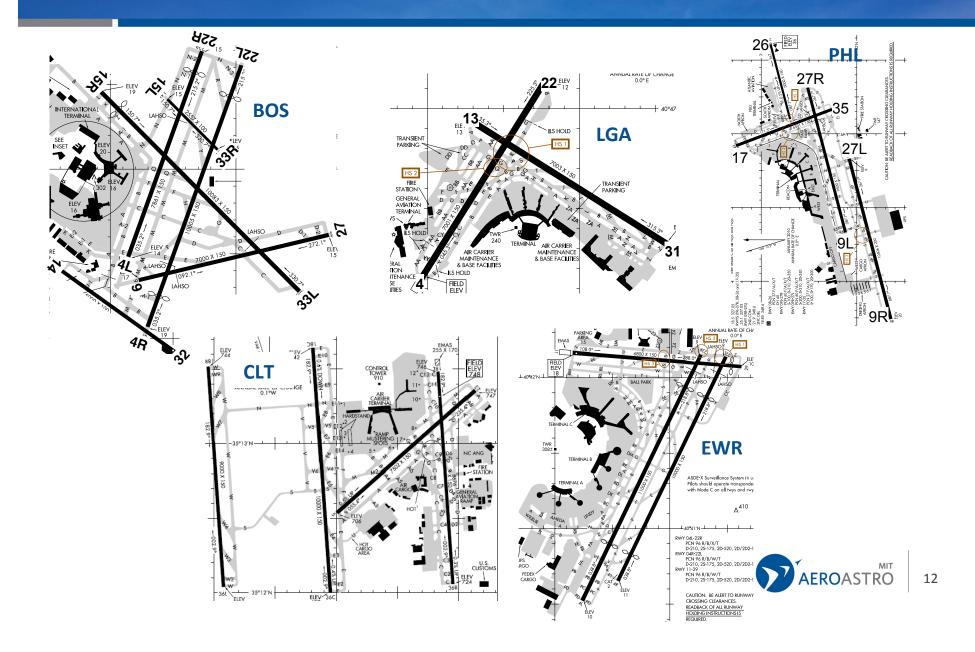


### **EWR** model predictions

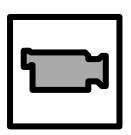
 Model parameters identified from 2011 data, predictions carried out on 2010 data (pushback schedules)



Similar prediction performance shown for BOS, CLT, DTW, LGA,
 PHL, ...

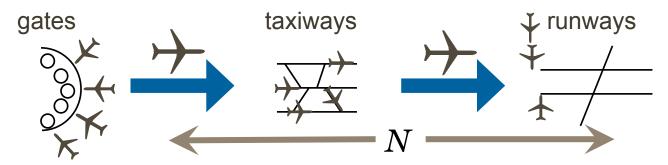


# PHL operations (08/09/2011)



### **Airport congestion control**

 Aircraft pushback from gates, start their engines, and then taxi until they takeoff

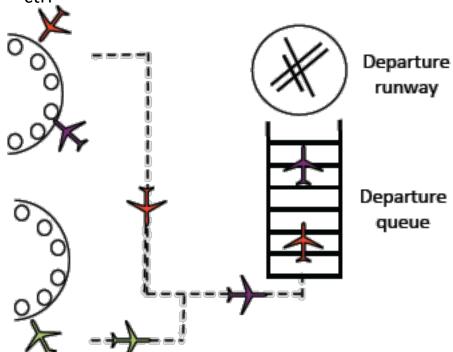


- Control pushbacks in order to maintain runway utilization while avoiding excessive levels of congestion
- Key challenges:
  - How do we design a congestion control strategy?
  - How do we implement control strategy?
  - How do we interface with human controllers?

### 1. Designing control strategy

- Threshold policy (N-control) possible option [Feron et al. 1997]
  - Departure throughput saturates when number of aircraft taxiing out, N, exceeds a certain threshold,  $N^{st}$
  - Stop pushbacks when N exceeds  $N_{
    m ctrl}$  , where  $N_{
    m ctrl}$  >>  $N^*$

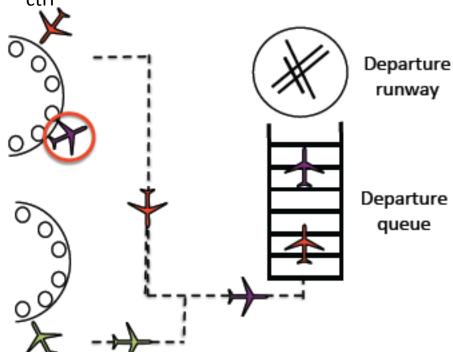
• Example:  $N_{\text{ctrl}} = 5$ 



# 1. Designing control strategy: How about a threshold policy?

- Threshold policy (N-control) possible option [Feron et al. 1997]
  - Departure throughput saturates when number of aircraft taxiing out, N, exceeds a certain threshold,  $N^{st}$
  - Stop pushbacks when N exceeds  $N_{\rm ctrl}$  , where  $N_{\rm ctrl} >> N^*$

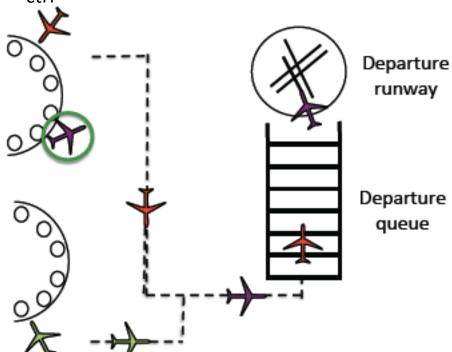
• Example:  $N_{\text{ctrl}}$  = 5



# 1. Designing control strategy: How about a threshold policy?

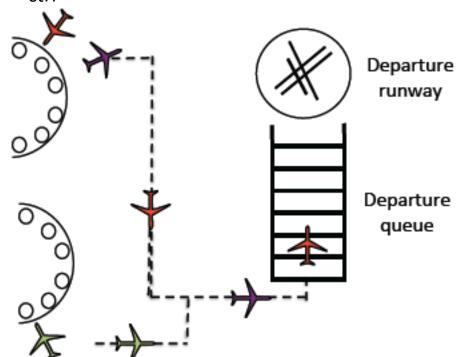
- Threshold policy (N-control) possible option [Feron et al. 1997]
  - Departure throughput saturates when number of aircraft taxiing out, N, exceeds a certain threshold,  $N^{st}$
  - Stop pushbacks when N exceeds  $N_{
    m ctrl}$  , where  $N_{
    m ctrl}$  >>  $N^*$

• Example:  $N_{ctrl}$  = 5



# 1. Designing control strategy: How about a threshold policy?

- Threshold policy (N-control) possible option [Feron et al. 1997]
  - Departure throughput saturates when number of aircraft taxiing out, N, exceeds a certain threshold,  $N^{st}$
  - Stop pushbacks when N exceeds  $N_{
    m ctrl}$  , where  $N_{
    m ctrl}$  >>  $N^*$
- Example:  $N_{\text{ctrl}}$  = 5



### 2. Implementing control strategy

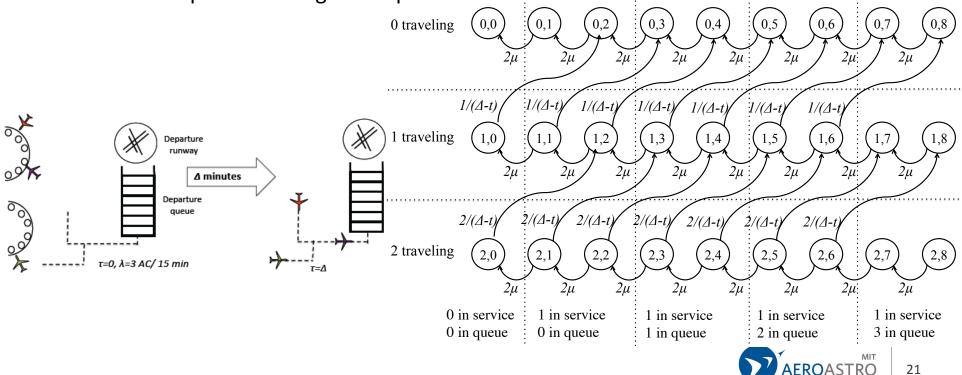
- Threshold control (N-control) does not work in practice
  - Rather than release an aircraft every time that a flight takes off, controllers prefer a rate at which to let aircraft pushback from their gates
  - Rate is updated periodically
  - Pushback Rate Control (PRC)
- Option 1: Adapt N-control policy (PRC v1.0)
- Option 2: (PRC v2.0) Formulate control problem to
  - Minimize expected queue length
  - Maximize expected number of aircraft served (throughput)

# Revisit Step 1. Designing control strategy: Pushback Rate Control

- Dynamic programming formulation to recommend pushback rate, given loading of taxiway and runway queues
- Challenges
  - Random travel time between actuation (at the gate) and queue being controlled (runway)
  - Runway process is a dynamic and stochastic process with a great variability (fleet mix, weather, arrival demand, route availability, human factors)
- State space,  $N_t = (D_t, R_t)$ : Number of aircraft in departure queue,  $D_t$ , and number of aircraft traveling toward departure queue,  $R_t$ .
- Time window,  $\Delta$ : Average travel time from gates to the runway

### Departure process model

- At the start of each time window, a pushback rate is chosen
- Pushbacks occur randomly within this time window
- Departure runway service times are Erlang  $(k, k\mu)$ 
  - Departure runway queuing system modeled as  $(M(t)|R_\tau)/E_k/1$
  - Chapman-Kolmogorov equations to describe evolution of Markov chain model



### **System dynamics**

- Queue at next epoch depends on state at current epoch
- State probabilities computed numerically using C-K equations
- Model assumes that  $(D_{\tau+\Delta}, R_{\tau+\Delta}) = (f(D_{\tau}, R_{\tau}), \lambda_{\tau})$
- However, in reality, nonzero probabilities of flights being early or late to reach the runway:

$$(D_{\tau+\Delta}, R_{\tau+\Delta}) = \begin{cases} (f(D_{\tau}, R_{\tau}), \lambda_{\tau}), & \text{w.p. } 1 - \sum \beta_i - \sum \gamma_i \\ (f(D_{\tau}, R_{\tau} + i), \lambda_{\tau} - i), & \text{w.p. } \beta_i, i = 1, \dots, \lambda_{\tau} \\ (f(D_{\tau}, R_{\tau} - i), \lambda_{\tau} + i), & \text{w.p. } \gamma_i, i = 1, \dots, R_{\tau} \end{cases}$$

Cost function:

$$c(D) = \begin{cases} M, & D = 0 \\ D^2 & D = 1, \dots, C \end{cases}$$

• *M* is the (very high) cost of not utilizing runway (set to equivalent of 25 aircraft in queue)

Simaiakis, Sandberg and Balakrishnan, IEEE Trans. on Intelligent Transportation Systems, 2014.

### Dynamic programming formulation

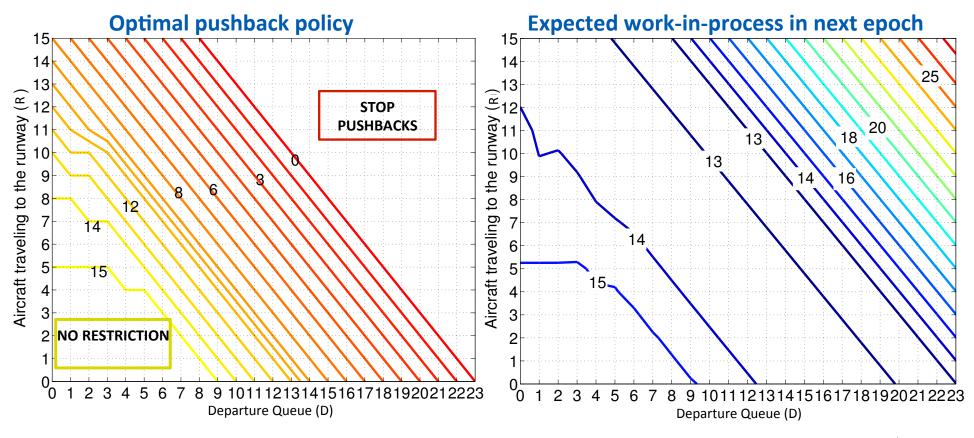
Bellman equation for infinite horizon average cost problem with discount factor  $\alpha$ 

$$J^*(q,r) = \min_{\lambda \in \Lambda} \left\{ \begin{aligned} &(1 - \sum \beta_i - \sum \gamma_i)[\bar{c}(q,r) + \alpha \mathbf{p}_q(q,r) \cdot \mathbf{J}^*(\lambda)] \\ &+ \sum \beta_i[\bar{c}(q,r+i) + \alpha \mathbf{p}_q(q,r+i) \cdot \mathbf{J}^*(\lambda-i)] \\ &+ \sum \gamma_i[\bar{c}(q,r-i) + \alpha \mathbf{p}_q(q,r-i) \cdot \mathbf{J}^*(\lambda+i)] \end{aligned} \right\}$$

- Policy iteration converges in fewer than 10 iterations
- Can also be formulated as minimum average cost per stage problem
- Multiple ramp towers can be incorporated

### **Optimal pushback rate**

■ BOS (22L, 27 | 22L, 22R) configuration

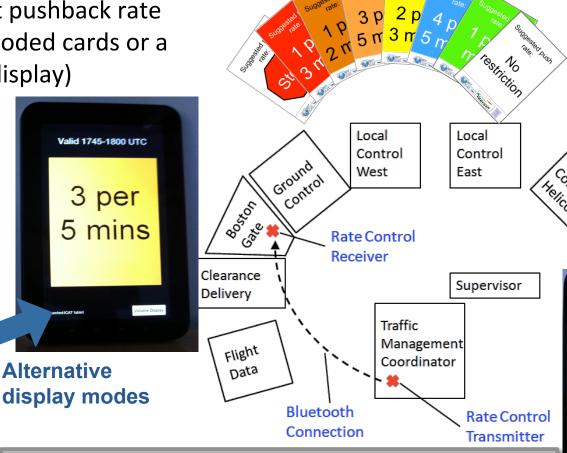


### 3. Interfacing with human controllers

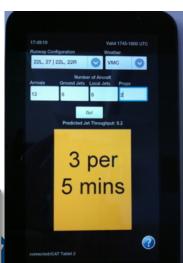
Suggest pushback rate (color-coded cards or a tablet display)



Sandberg et al. IEEE Trans. on Human-Machine Systems 2014



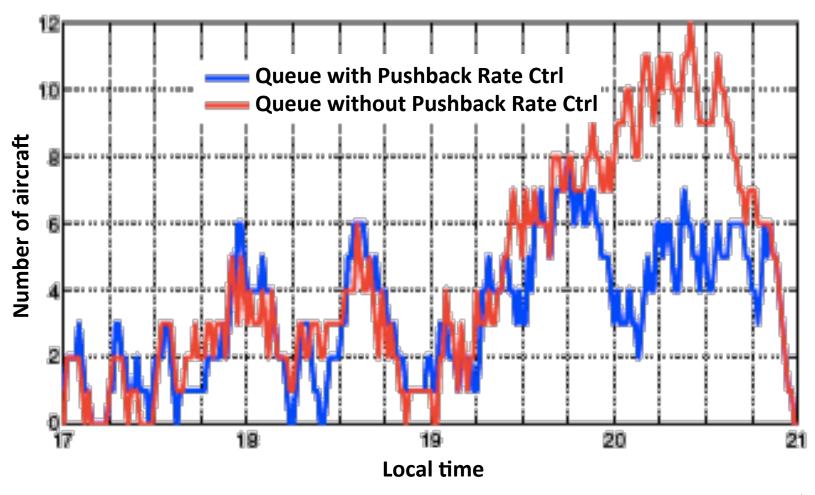
- Pushbacks in current time interval can be released (grayed out)
- Unused rate is carried over to the next time interval, up to 2/min
- Pushbacks in future time intervals can be reserved (angled)
- Pushbacks can be reserved for the following 15-min time period



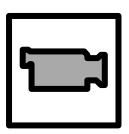
### Sample test results: 7/21/2011



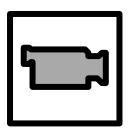
### Reduced queue sizes



## Visualization of operations (7/21/2011)



# Visualization of operations (9/2/2010)



#### **BOS field test results**

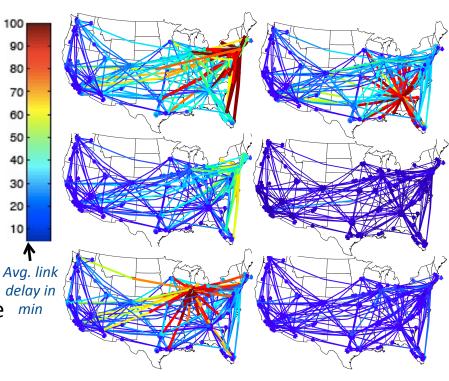
- Aug-Sep`10 & Jul-Aug`11
- 4PM-8PM departure push
- Average gate-hold: 4.7 min
- 23-25 US tons (6,600-7,300 gal)
   reduction in fuel burn
- 52-58 kg decrease in fuel burn / gate-held flight
- 71-79 tons CO<sub>2</sub> reduction
- Fair distribution of benefits
- 1 min gate-hold => 1 min of taxiout time savings
- Positive stakeholder feedback, from both airlines and Tower personnel

| Configuration     | # of gate<br>holds | Taxi-out time savings (min) |
|-------------------|--------------------|-----------------------------|
| 27, 22L I 22R     | 63                 | 256                         |
| 27, 32 I 33L      | 34                 | 114                         |
| 27, 32 I 33L      | 8                  | 38                          |
| 27, 22L I 22R     | 45                 | 295                         |
| 27, 22L I 22R     | 19                 | 42                          |
| 27, 22L I 22R     | 11                 | 23                          |
| 27, 32 I 33L      | 11                 | 24                          |
| 27, 32 I 33L      | 56                 | 210                         |
| 2010              | 247                | 1003 min = 16.7 hours       |
| 27, 22L I 22R     | 14                 | 28                          |
| 27, 22L I 22R     | 42                 | 384                         |
| 27, 22L I 22R     | 50                 | 290                         |
| 4L, 4R I 4L, 4R,9 | 11                 | 13                          |
| 4L, 4R I 4L, 4R,9 | 7                  | 13                          |
| 27, 22L   22R     | 6                  | 9                           |
| 27, 22L   22R     | 12                 | 23                          |
| 2011              | 142                | 760 min = 12.7 hours        |

Simaiakis et al., IEEE Trans. on Intelligent Transportation Systems 2014 and Transportation Research A 2014.

# Some other projects: Prediction of air traffic network delays

- Predict departure delay on a link considering:
  - Current delay state of the network
  - Interdependencies between network elements
  - Time-of-day and day-of-the-week
  - Delays at origin, destination, and on link
  - Delay state of National Airspace System
  - Type of delay day in the NAS
- Delay states obtained by k-means clustering of delays
- 100 most-delayed OD pairs and major carriers
  - Avg. classification test errors to decide whether delays exceed 15 min or not:
    - 18%, 2 hours ahead
    - 21%, 6 hours ahead
  - Avg. (regression) median test error:
    - 13.5 min, 2 hours ahead
    - 17.1 min, 6 hours ahead

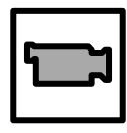


Centroids of NAS delay states.
Color represents avg. link departure delay over 2-hr
time-window



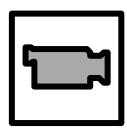
# Some other projects: Large-scale Air Traffic Flow Management

- Optimize aircraft trajectories (in space and time) with recourse on a system-wide scale, to accommodate capacity-demand imbalances
  - Use stochastic capacity forecasts (for airspace and ground resources)
  - Consider ground delays, speed changes, reroutes and cancellations
  - Account for operational constraints (flight connectivity, speeds, etc.)
- We solve largest instances of the ATFM to-date, with faster run times
- Case studies drawn from real data:
  - ~17,500 flights
  - 24-h/5-min discretization
  - 370 airports, 375 airspace sectors
  - Deterministic: Optimal in ~5-10 min
  - Stochastic: Optimal in ~30 min
  - Distributed decision-making



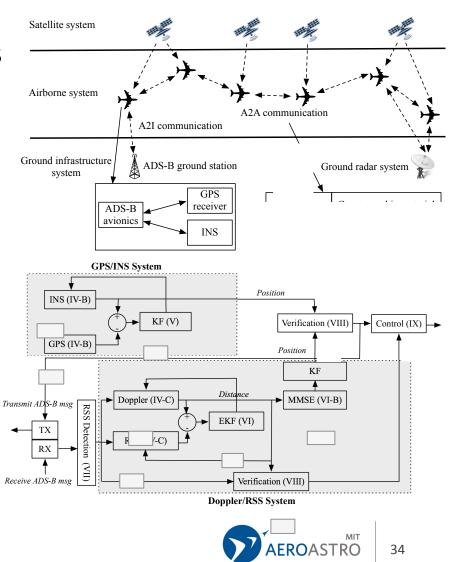
# Some other projects: Integrated control & communication protocols

- Objectives: Safety and efficiency
  - Conflict detection and resolution
  - Optimize State Update Interval
  - Minimize flight times
- Decentralized at longer range
  - Low traffic density
  - ADS-B surveillance
  - Max transmit power
- Handover zone
  - Decentralized control
  - Adaptively adjust transmit power
- Centralized close to the airport
  - High traffic density
  - Min transmit power
- Ground radar surveillance
  - Augmented by ADS-B



# Some other projects: High-confidence network control for NextGen

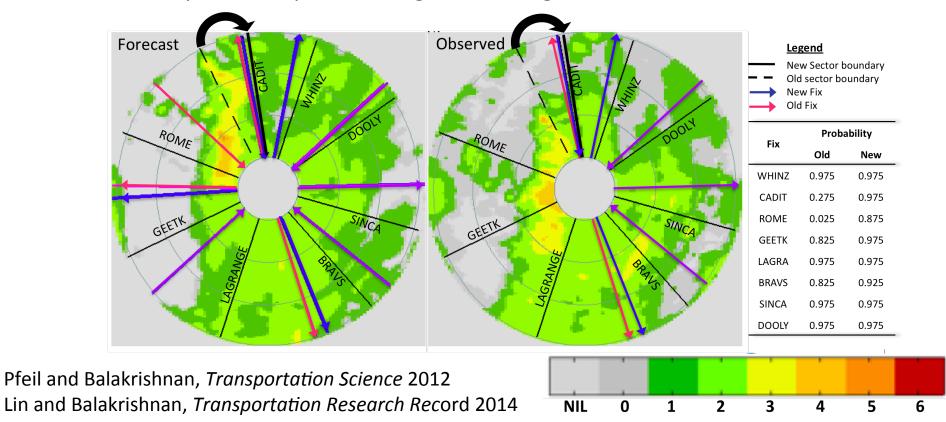
- Secure, fault-tolerant control in the presence of adversaries
  - Distributed control using onboard threat detection
    - GPS and inertial sensor data fusion
    - Verification using Doppler effect and RSS of ADS-B messages from neighboring aircraft
  - Control objectives
    - Conflict avoidance,
       maintaining separation in
       the presence of uncertainty
    - Minimizing flight times
    - Fault detection



Park et al., IEEE Trans. on Automatic Control 2014

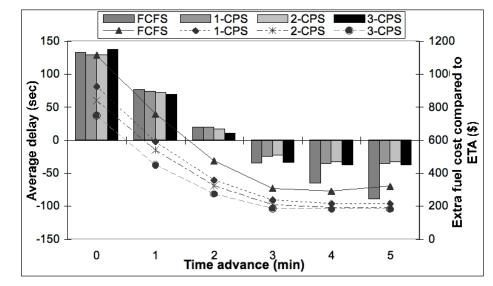
# Some other projects: Robust routing through thunderstorms

- Integrating weather forecasts into air traffic management algorithms
  - Given a forecast, can we identify which routes are most likely to remain open, and the associated probabilities?
  - Development and validation of classification algorithms for predicting route blockage using weather and operations data
  - Dynamic airspace reconfiguration using convective weather forecasts



# Some other projects: Arrival/Departure scheduling

- Given a set of flights with estimated arrival times at the airport, the aircraft need to be sequenced into the landing (takeoff) order, and the landing (takeoff) times need to be determined
  - Need minimum (wt. class dependent) wake vortex separation (Safety)
  - Currently FCFS; resequencing could increase throughput (Efficiency)
  - "Fair" resequencing: Constrained Position Shifting (CPS) [Dear 1976]
- Show that scheduling under constrained position shifting can be solved in (pseudo-)polynomial time as shortest-path problems



Balakrishnan and Chandran, *Operations Research* 2010 Lee and Balakrishnan, *Proceedings of the IEEE* 2008



### **Summary**

- Practical ATM algorithms can enhance system efficiency, robustness and safety, and address uncertainty, competition and environmental impact
  - Leveraging cyber-physical aspects of the system is key!
- These challenges arise in all stages of flight as well as on a system-wide scale, including:
  - Data-driven modeling of human decision processes
     [Ramanujam and Balakrishnan, American Control Conference 2010]
  - Characterizing and providing feedback on operational performance [Khadilkar and Balakrishnan, *Air Traffic Control Quarterly* 2013]
  - Network modeling and congestion control of airport surface operations
     [Khadilkar and Balakrishnan, AIAA Journal of Guidance, Control and Dynamics 2014]
  - Mechanisms for resource allocation and reallocation
     [Balakrishnan, Conference on Decision and Control 2007; Ramanujam and Balakrishnan, Conference on Decision and Control 2014]
  - Distributed feedback control of the National Airspace System [Le Ny and Balakrishnan, AIAA Journal of Guidance, Control and Dynamics 2011]
  - Models of engine performance from flight recorder data [Khadilkar and Balakrishnan, Transp. Research Part D 2012; Chati and Balakrishnan, ATIO 2013 and ICRAT 2014]