

BUILD A QMEIER

AMATEURS HANDBOOK

Part 2 of a comprehensive compilation of data for everyone using the airwaves

GIVE YOUR REMB:
RECEIVE FAX WIIH HELP

READ ABOUI A SOUID FOR IHE RECEPTLON REPOR
AND A Scoop THE LAITFI FROM SONY DELGHI EROMS

AMTRON|CS (tonsridge) a4 syz THE AMATEUR RADIO SPECIALISTS IN KENT

JAYBEAM - Full range in stock
5XY/2m 7.8DB 8XY/2m 9.5DB 10XY/2m 10.8DB

MBM $2870 \mathrm{~cm} 11-5 \mathrm{DB}$ MBM 4870 cm 14.00 DB MBM 8870 cm 16.30 DB

ALSO:

Poles, Masts, Rotors, Brackets, Clamps, Plugs, Sockets, Cable, Tape etc always in stock.

SPECIAL OFFERS

NEW FDK 750 xx 2 m Multi 20 watts. 2 VFO. CW Semi Break in. Side tone monitor. Auto scanning. Optional 430 MHz expander£309.00
FDK 725×2 metre FM 25 watts. Transceiver. 2 VFO's. Optional for 430 MHz expander £209.00
VHF Dual Band 4318 Channel Scanner. 24 hour Digital Clock. 70,0000/87.9875 MHz . $140,0000 / 175.9875 \mathrm{MHz} .8$ programable memories. 12 volt S $\times 8020 \mathrm{M}$ ع90.00

GLOBAL MINI CLOCK

Rotate the Globe: London and Country zone time.
Special price \qquad 849.95

WE ALSO SELL:

Met: Welz: KDK: Azden: Drae: Datong: Diomond: Sagant: Amtron kits: DK Tronics ZX software.

SEND LARGE SAE for details on any of the above equipment.

FORTOP
A \mathbf{V}
Converter..........£26.95
70 cm TX.......... 149.00
70 cm TX/RX..... $£ 169.00$
24 cm TX........... $£ 199.00$

B.N.O.S.
1-100 Linear.. $£ 172.50$
3-100 Linear.. $£ 172.50$
10-100 Linear... $£ 149.50$
25 amp PSU $£ 125.45$

ADONIS

Safety Mic $£ 35.00$ Safety Mic £24.95 503 Mic £39.50 303 Mic £29:00

TB3 HF $14-21-28 \mathrm{MHz}$
VR3 HF $14-21-28 \mathrm{MHz}$ Vertical.
£47.00
LW 52 m 7.8DB
LW 82 m 9.5 DB
LW10 2 m 10.5 DB
LW16 2m 13.4DB
Phasing Harness
PMH $2 / 2 \mathrm{~m} 2$ way 2 v
PMH 4/2m 4 way
PMH $2 / 70 \mathrm{~cm} 2$ way
PMH $4 / 70 \mathrm{~cm} 4$ way
C5 Colinear 2m 4.8 DB
LR1 Colinear 2m 4.3 DB UGP/2m Ground Plane 0-0DB C8 70cm Colinear 6-1 DB

FAST MAIL ORDER:
Access, Visa, Postal Order or Cheque.

CONTENTS

DESIGNS
27 Communications Building Blocks - Active antennae
34 FAX Receiver - Using a $Z 80$
46 RGB Interiace for the Ferguson TX-90
51 A Couple of Voltage Detectors - One Night's Work
53 LCD Capacitance Meter - A follow-up to the DCM in our July '83 issue
66 Cymar Q-meter - An aid to winding coils
70 Zener Diode Checker - Also One Night's Work
73 A Drinker's Delight
79 LCD Display Option for the Rewbichron II - Another way of displaying the MSF clock

FEATURES

23 A Novel Receiver - Sony does it again
41 Capacitors for Coupling, De-coupling and Filtering
57 Data File on Op-Amps - Part 2 looks at practical amplifier and active filter circuits
63 Farewell to Test Card ' F ' - An end of an era
74 A Soundboard for the Jupiter Ace - Next stop on the Expansion Bus
85 MC1377 Colour Signal Encoder - Data Brief
97 Notes from the Past - About stereo and component prices

REGULAR FEATURES

7 News

13 Product News
87 ATV on the Air
89 Events
93 DX-TV Reception Reports
95 Subscription Order Form
98 Short Wave News
101 Next Month in R\&EW
110 Newsagent Order Form

Editor

\qquad JEAN GILMOUR

Accounts \qquad .CLAREBRINKMAN

Publisher \qquad PETER WILLIAMS
General Manager \qquad ALAN GOLBOURN

ON SALE: Second Friday of the month preceding cover date
NEXT ISSUE: Cover date February 1984 on sale 13 January 1984
PUBLISHED BY: Radio \& Electronics World Magazines, Sovereign House, Brentwood, Essex CM14 4SE, England (0277) 219876 PRINTED: In Engiand
ISSN: 0282-2572
NEWS TRADE SALES BY: Seymour Press Ltd, 334 Brixton Road, London SW9 7AG Tel: 01-733 4444

Whilst every care is taken when accepting advertisements we cannot accept responsibility for unsatisfactory transactions. We will, how ever, thoroughly investigate any complaints.
The views expressed by contributors are not necessarily those of the publishers.

Every care is also taken to ensure that the contents of Radio \& Electronics World are accurate, we assume no responsibility for any effect from errors or omissions.

Audh Bureau of Circulations
membership applied for
© Copyright 1983
Radio \& Electronics World Magazines

FROM THE COMP THAT SUPPLIES THEM ALI

Once again we are pleased to bring to your notice details of new equipment available now, or available soon - also continuing our policy of bulk purchases for best prices we are able to offer many popular lines at superb prices.

Remember of course all our equipment can be purchased by mail order on credit card. We can 7 also offer interest free h.p. on many items.

YAESU FT 102

the Latest and greatest hf mobile or base st ation

The H.F. Transceiver that needs no hidden extras.
C.W. Filter - Full Break In - Iambic Meyer - I.F. Shift -

Noise Blanker Pre-Amp A.M. F.M. S.S.B. Gen Coverage.
SPECIAL LOW PRICE FOR THIS SUPERB TRANSCEIVER. (Phone for Details.)
A.O.R. - AR2001 SYNTHESISED SCANNING RECEIVER

Continuous 7 coverage 25 to
FITTED WII 2 MEIER
Now available for the following equipment
FI102-E125 TSA30S- $\mathbb{1} 35$
TS 9305- 1445 1C751 - E125
Just plug in and got

ICØ2 same size as the IC2E
New case design with
semi alloy construction.
LCD Display/Bar Graph
S and PO meter.
HI/LO PlO
half and 2 watts
Keyboard entry/scanning
10 Memories Priority channel.

Ĵll-SX 400N PROFESSIONAL

$26-520 \mathrm{MHz}$, AM/FM, 20 Memories, Tuning Meter, Priority, GHz Function Switch $(520 \mathrm{kc} / \mathrm{s}$ to 3.7 GHz$)+$ Lots more. Phone for details. Continuous coverage FAIRMATE - ÅS32320
$£ 149$
THE MOST POPULAR VHF/UHF RECEIVER AVAILABLE TODAY:

20 Memories, $A M / F M$,
118 to $162 \mathrm{MHz}, 296$ to 360 MHz .
Extremely small - $4^{1 / 2} \times 6^{1 / 2} \times 1^{1 / 2}$

SONY IC 7600D
THE LATEST COMPACT GEN-COVERAGE RECEIVER FROM SONY

153 KHz to 30 MHz
Digital readout, scanning, Memories etc. About the size of a paperback FM/AM/SSB P.O.A.

YAESU - TRIO/KENWOOD - ICOM - FDK - TONO - TACO - WELZ - MUTEK - ADONIS - DIAMOND - BENCHER TET - ALINCO - DRAE - ENOS - DATONG - STUMECH -」 BEAM - MICROWAVE MODULES
\& last but not least, Brenda's coffee!!

AMATEUR RAD ERCHAMCE

373 Uxbridge Road, Acton, London; W3 9RH Tels $01-992$ 57651617.
(Just 500 yards east of Ealing Common Station on the District Lines and 207 bus stops outside.)
38 Bridge Street, Earlestown, Newton-Le-Willows, Merseyside. Tel, 0925229831
Our North west Branch run by Peter (G4KKN).
CLOSED WEDNESDAY AT ACTON AND MONDAY AT EARL ASTON. BUT USE OUR 24 HOUR ANSAFONE SEIVICE AT EDMHER SHOP.

ambit INTERNATIONAL

PRACTICALLY ALL THE WIRELESS PARTS YOU'LL EVER NEED, GATHERED TOGETHER IN ONE CATALOGUE...

Coils, crystals, filters

TOKO coils, filters chokes. UNI crystals, filters, NTK and Murata ceramic filters. Probably the broadest stock ranges of these types of component in the world, and a full service from AMBIT INDUSTRIAL MARKETING to support the OEM with custom requirements.

Semiconductors for radio communications
ICs, Varicaps, FETS, MOSFETS, RF Power for HF, VHF, UHF. A broad selection that will meet the majority of requirements in receiver and transmitter designs

Test Gear and Tools
New Black Star Frequency counters, Weller and Antex soldering tools, plus a wide selection of all types of equipment and tools for home and work.

High Performance Coax Relays, switches etc. PC and connector relays engineered to the highest standards, plus a broad range of electro-mechanical support including push, toggle, and keyboard switches, rotary switches, plugs sockets etc.

for the enthusiast
 (and professional)

200 North Service Road, Brentwood, Essex CM14 4SG
Tel: Consumer (0277) 230909. Industrial (0217) 231616 Telex: 995194 AMIBIT G.
Data: (0277) 232628 REWTEL" (300 baud duplex)
\rightarrow REGIONAL SALES COUNTERS
Solent Component Supplies, 53 Burrfields Road, Portsmouth
Broxlea, Park Lane, Broxbourne, Herts

OIGITAL ULTRASONIC DETECTDR

He heariof anyalamisystemis the controlunat TheCA 1250 otlers every possible leature that system whe ther a highly sophisticated installation, or simply controlling a sirgie magnetic switch on the fromt door - Buil melectionic sirendrives 2 loud speakers with lixed alam ionarice delays together - Batteryback up with tri - Operates with magnetic swithes. puessure pads, ultrasonic or $1 . \mathrm{R}$ units

- Amtl lanper and patie
- 2 operating modes
and pancu facility
Sipas in instation :oads

Prict 19.95
SIREN \& POWER SUPPLY MODULE PSL 1865

f10.95 + V.A.J
NFRA-REO SYSTEM
IR 1470

HARDWARE KIT HW 1250
only
¢9.50 V.A.T

This attractive case is designed to house the control unit CA 1250 , together with the approprtate LED indicators and key switch. Supplied with the necessary mounting pillars and punched front panel, the unit is given a professional appearance by an adhesive silk screened label Size $200 \times 180 \times 70 \mathrm{~mm}$ HAROWARE KIT HW 5063
only
f9.95

+ V.A.T

This hardware kit provides the necessary enclosure for a complete self-contained alarm system which comprises the US5063. PSL 1865, toud speaker type 3515 and key switch 3901. Attractively styled, the unit when completed, provides an effac tive warning system without installation protlems size $200 \times 180 \times 70 \mathrm{~mm}$

ULTRASONIC MODULE ENCLDSURE

RISCOMP LIMITED
Dept. Risot
21 Duke Strcet,
Princes Risborough
Bucks. HP17 0AT

NEWS

Going up

It has recently been announced that Dr Martin Sweeting's satellite team at the University of Surrey is to build another satellite. This will be very similar to the original UOSATindeed it's going to be called UOSAT-B prior to launch and UOSAT-2 after launch.
The first UOSAT was launched by NASA two years ago on 6th October 1981 but it continues to provide much scientific and space engineering information, and its signals are received by thousands of amateur and professional ground stations throughout the world (some of whom use the R\&EW UOSAT receiver, published in May '82!) It attracted particular attention because it was the first spacecraft to transmit information by means of a speech synthesiser as well as by morse and high-speed telemetry; it was thus of special value to school groups and amateurs lacking sufficient practice in morse.
The plan is to launch UOSAT-B in February as a secondary payload to a new LANDSAT spacecraft, whose launch has been brought forward as a result of the premature demise of LANDSAT 4. However, building such a sophisticated craft as UOSAT in only five months represents a considerable challenge, particularly as the design of nearly all the onboard electronics will either be new or greatly reworked. Let's hope it all goes without any major hitch.
More details of this project can be expected in next month's 'Amateur Radio World' feature.

The antennae used for controlling satellites located on the roof of the Electronics Department at the University of Surrey

Alive and well

We have been asked to bring to your attention that, contrary to the impression inadvertently given in these columns, valves are by no means a thing only of the past. For instance, the M-O Valve Company continues to make and market three beam tetrodes; the KT66, the KT77 and the KT88. The company also provides valve enthusiasts with information
on these valves and on circuits using them.

Another service offered by M -O Valve is help with tracking down high voltage capacitors, valve sockets, HTtransformers etc for use in valve circuits. MrN Covington suggests that anyone seeking such assistance should write to him enclosing an SAE, at The M-O Valve Company, Brook Green Works, London W6 TPE.

A'Mean' Model

This multi-levelled model, which has been nicknamed 'The Mekon', is being used at British Telecom's Research laboratories at Martlesham Heath in tests designed to improve telephone performance. These tests are being carried out in an anechoic chamber and The Mekon is supposed to represent'a "mean" person
of average dimensions'technically known as a 'head and torso simulator' or HATS.
The model has been made to very precise specifications as the idea is to evaluate how sound waves projected at the model bend round it. The outcome of this work should help in setting up some new international standards for the design of telephone equipment.

More provision for TV reception

When Channel 4 and S4C were launched just over a year ago, these programmes were radiated from 31 'main' transmitting sites and 127 local relay stations: they were thus within reach of 87% of the UK population. Over the past year, a further nine 'main' and 75 local sites have been added to the network, bringing the total number of people able to receive these stations up by about four million to almost 95% of the population.
And in among the celebrations of the first birthdays, the IBA confirmed that 'the £50-million engineering of the Channel 4 and S4C transmission networks . . . will be continued with equal energy'. The provision of these transmission facilities - 'the fastest build-up of a major network ever attempted in the UK'-is described as being 'a continuing good
news story for British engineering'. Apparently it is still fully on target.

Another recent news story from the IBA concerned 'a technical breakthrough by IBA engineers' whereby Central Independent Television's new East Midiands service has achieved even wider coverage in West Derbyshire. However details of this development were not given: it is only known that the new technique is more immune to interference. (The main transmitter for this station is, by the way, at Waltham near Melton Mowbray.)

A warning

Late in October, Mr Alex Fletcher (Minister for Corporate and Consumer Affairs in the Department of Trade and Industry) issued a warning following reports in the press about the use of high-power amplifierscommonly known as 'burners' - to disrupt the operation of

AUTHORISED DEALERS FOR ALL EQUIPMENT WE SELL

petrol pumps at filling stations. Mr Fletcher pointed out that, not only the use of such a high-power amplifier coupled to a CB set potentially hazardous through increasing the risk of an electric spark close to the filling nozzle, but that The Code of Practice for Citizens Band Radio(available FOC at

Post Offices) specifically draws attention to this.

Moreover, the use of a CB setwith a burner is illegal because of the interference it would cause to domestic radio and TV reception and to the emergencyservices: offenders may be imprisoned for up to three months and fined up to $£ 1000$

Competition winners

As promised last month, here are the results of the two competitions we held earlier in the year.

In August, we asked you to putacaption to the picture shown here. We received a number of suggestions such as 'Bussing Incorporated' and 'Working on baud', but the one we liked most was

PEEK (thro' the window),
POKE (the keyboard),
Yes! It definitely computes
I'm on the wrong coach! and so MrB G Cooper of Sheffield is the recipient of the Akigawa AD901 multimeter.

In September, we offered you the chance to show how well you had learnt the basics of $Z 8000$ programming - and to win a complete $Z 8000$ developmentsystem. Again, this competition attracted a number of entries but we had an outright winner in MrD Wells of Newport Pagnell, whose suggested projectwhich was to develop a highspeed sample and store
procedure for video signals prior to signal processingwe also rated quite highly. Presentation of the $\mathbf{Z 8 0 0 0}$ development system kindly donated by Arcom Control Systems has still to be arranged at the time of going to press, butwe hope to bring you more details later.

AmstradAhoy!

Ourspies advise us that there is a new personal computer due from Amstrad in 1984. Details are not presently availableas Amstrad apparently isn't indulging in the usual practice of pre-announcing a product bysix months (and still notmanaging to deliver!). However, our information is that it is a machine worth waiting for.
Value formoney is likely to be the prime marketing weapon when it does appear, although we understand that the design has been undertaken by some of the most acute minds in the business. So watchout, all those at the waterworks!

Company News

ICI is acquiring the business of Arbco Electronics of Van Nuys, California-aspecialist producer of high technology printed circuit boards for the computer, aerospace and defence industries. The idea is said to be to give added impetus to ICl's Electronics Group, established at Runcorn in May 1983 to identify, develop and pursue worldwide business opportunities in the electronics industry. Other acquisitions along the same lines have included that of Photomasking Services of Warwick. The latter is now known as IC Masks and recently ICI was joined in this new company by TRE Corporation of California, with the result that this company will supply advanced mask-making and mask-processing equipment which should help establish IC Masks as a highquality supplier of masks.

SGS-ATES and National Semiconductor have signed an agreement whereby the former will be able to produce National's LM2935 dual-output voltage regulator and the LM1837/97 Iow noise stereo pre-amps from National's tapes, while the latter gets similar facilities in respect of the L272 and L272M dual power op-amps and the LS404 highperformance quad op-amp. Both companies see this second sourcing and exchange of technology as promoting the development of innovative linear IC's.

Mostek Ireland has been awarded the Quality Mark of the Irish Quality Control Association in recognition of 'the overall quality excellence of semiconductor operations' at the firms Blanchardstown facilities. The specific areas audited include quality planning, manufacturing control, environmental control, customer service and product quality management.

The British Technology Group (the body that now incorporates the NRDC and the NEB) is providing $£ 50,000$ to Linear Graphics of Rayleigh, Essex, as backing for the development and manufacture of low-cost graphics plotters based on a new type of linear motor. The use of such a motor obviates the need for a cable and pulley system to move the pen over the paper with its attendant problems of cable stretching and backlash.

Hewlett-Packard is to set up its first R\&D laboratory outside California's Silicon Valley in Britain-or, more precisely, near Bristol. The decision to site this new facility in Britain-and thus to invest several million pounds and employ an estimated 200 'home-grown' research professionals, plus support staff - was taken in view of 'the UK reputation for applied research and the quality of our university and technical college graduates.' The projects to be worked on are not yet defined but will be of a computer science nature This laboratory represents yet another element in the UK's own Silicon Valley- the area surrounding the M4.

A H Lewis \& Betts, a firm of Chartered Surveyors based in Iver, has announced that it is operating a new service specifically for Radio Amateurs on the move at no extra charge. This service will comprise keeping tracks of which vendors and which buyers have or will want aerials, a radio shacketc-all of which can take a long time to set up (including getting planning permission). The principal of the firm is himself a radio amateur, as is his wife and the husband of his sales manageress.

Plessey Office Systems has been granted exclusive rights to distribute the video conferencing systems of Compression Labs Inc. in the UK and other countries. Their supply will be undertaken in association with Oceonics Communications.

ALaBms

Antex Irons, Expo Drills, Vero Board and Boxes CMOS, TTL and Linear and Communication IC Fixed and Variable Caps Connectors, Diodes Varicaps, Switches, Relays Meters.

Stockist for R + E W Kits, Ceramik Filters, Crystal Filters, Helical Filters, Mechanical Filters, Inductors, Coil, Ferrites, Dust Iron Toroids Pots.

Bonex Lid
 102 Churchfield Road, Acton W360H Open: 10-6 Mon-Sat; Closed Wed Tel: 01-992 7748

DRAE 3-WAY

 VHF ANTENNA SWITCH
£15.40
inc VAT

A 3-way antenna switch for VHF \& UHF frequencies

Insulation loss at $2 \mathrm{M}<0.3 \mathrm{~dB}$
VSWR at $\left\{\begin{array}{l}2 \mathrm{M}<1: 1 \cdot 2 \\ 70 \mathrm{~cm}<1: 1 \cdot 6\end{array}\right.$
Power rating: 250 watts

PRICES OF THE COMPLETE RANGE

VHF Wavemeter
4 Amp 13.8V PSU
6 Amp 13.8 V PSU
12 Amp 13.8V PSU
24 Amp 13.8V PSU
Morse Tutor
24 Amp 16.5V Transformer
12 Amp 17.0V Transformer
24 V to 12 V 6 Amp Converter POA
24V to 12V 10 Amp Converter POA
3 way Antenna Switch $\quad £ 15.40+£ 0.50$ carr.
ALL PRICES INCLUDE VAT
Delivery normally from stock but please allow up
to 28 days for delivery
$£ 27.50$
$£ 30.75+£ 1.50$ carr. $£ 49.00+\varepsilon 2.50$ carr.
$£ 74.00+£ 2.50$ carr. $\mathrm{£} 105.00+£ 3.50$ carr. $\mathrm{E} 49.00+\mathrm{f} 1.00$ carr. $£ 25.00+£ 2.50$ carr. $£ 15.00+£ 2.00$ carp.

(1)OB ELECTRONICS MAKE-A-CAP

Yes, as promised our Kit form variable capacitor kits, are nearly ready. You send SAE tell me the spacing required and value, we will tell you the cost, and all you do is put it altogether. The kit comes complete with Rotor's, stators, end plates, spindle and spacing bushes. The idea being that those hard to get values and high prices will make this product yet another sliced bread beater. For example a 200PF split stator capable of 500 watts. Will cost approx only $£ 18$. This gives you a saving of about $£ 25$ to $£ 30$. We will be ready in five weeks. Also don't forget the G40GP feeder spreaders for the only way to feed the Aerial, open wire fed. Aerial matching units to order. Thermo couple meters, our Aerial rigging service etc etc. Please send SAE for more info.

G40GP ELECTRONICS UNIT 4, GLADDEN PLACE WEST GILLIBRANDS SKELMERS-DALE, LANCS

GET READY FOR THE SPRING EDITION

We must apologise to our readers for missing out with our Winter edition - but we've been preparing something a little special to tempt you out of your Winter hibernation and back to the soldering iron........

Booknow by sending 80p
or watch your newsagent's shelf around the end of January 1984

Order as Stock No
02-00009

EXTISSUE•NEXT ISSUE• NEXTISSUE•NEXT

E CCLCOMICS

Build a switch mode power supply

- a viable alternative to the older linear units

Update your knowledge of helical filters

- especially of those available from TOKO

Use your Tiny BASIC Development System to tell the time

Learn about Aircraft Avionics . . . about Historical TV experiments ... and about the AY-3-8910 Sound Generation Chip

PLUS all the usual features!
News - Products - Reception Reports...
DONT MISS the February issue - on sale 13th January With part 3 of THE AMATEURS HANDBOOK

To be sure of your copy of Radio \& Electronics World, complete the newsagent order form on page 110 or take out a subscription by using the form on page 95

FREE READER SMALL ADS

Forssim
Interesting vintage GPO telephones: wall and table (candlestick) models, beautifully made in teak. Also pretty 1910 intercom instruments. All reasonably priced; verycollectable Also Victorian plate cameras (mahogany and brass); ideal gifts.Sae for details to: The Advertiser (R.E.W.) 8 Grafton Road, Cheltenham, Glos. GL50 2ES. (Would also like to hear from readers interested in above items and pre-war radio receivers)
Electronic kits built and tested to order to a high technical standard. Competitive charges, estimates free. Bargain offer. Maplin Talkback (VIC20) Kit No LKOOA. New, built and tested £26 post free. A. Harvey, 38 St. Michaels Grove Fareham, Hants

- Free! To collector. Brand new and boxed AW47/91 19" mono cathode ray tubes Mr A. Bray, 12 Westward Way, Kenton, Harrow, Middx. Tel: 907 2920
- Ex VDU's: Monitors £20: ASCII Keyboards £15; PSU's (big!) £10; ITT VDU's: as is $£ 35$; working $£ 50$; ZX81 NO PSU 2K RAM Monitor output £15: Practica LLC (meter needs attention) £30: 28 mm f2.8 £15 $200 \mathrm{~mm} f 3.5$ (electric coupling needs adjustment) £10; all prices negotiable! John Stumbles. Tel: 01 5895111 ext 1190/1174 or 01-693 7718
- Speakers, pair, walnut, reflex, each with three Goodmans drivers and two attenuators. $36^{\prime \prime} \times 20^{\prime \prime} \times$ $16^{\prime \prime} £ 70$. Speakers, pair, teak, horns. Lowther Acoustas. Drivers PM6 MKII $33^{\prime \prime} \times 18^{\prime \prime} \times 14^{\prime \prime} £ 60$ Turntable Thorens TD 124 MKII £35. SME pick-up arm 3009 MKII £25. Tel Burgess Hill 3796
- Low voltage high power mains transformers suitable for transistor amplifiers etc $£ 5$ ono Woodward. Tel: Worcester 641759
- Unused DG7-5 CRT (Mullard) Offers. Woodward. Tel: Worcester 641759.
- New BC221 Frequency meter. Checked but never used. C/W Handbook. Calibration book H/phones and spare tubes. Best offer. J.B. Sewell, 16 Stirling Drive, Burnside, Glasgow G73 4JH. Tel 0416344464.
- Eddystone 5 band midget communications receiver type $S 870 \mathrm{~A} .150 \mathrm{kHz}$ to 24 MHz mains operation. Perfect $£ 36$. Heathkit 'Mohican' communications receiver 600 kHz to 30 MHz . 12 V DC or 240 V AC operation. Fitted with commercial FM demodulator strip and switching to provide allmode operation $£ 35$. Hansen SWR meter and Eagle phones both as new. £14 the pair. K.W. Clark (G3WIF), 16 Goldney Rd, Clifton, Bristol BS8 4RB Tel: 0272293738.
- Transformer Ex-B40 type AP67763A offering 276 V out at 80 mA also 64 V at 4 A and at 1.2 A input 115/230V 40-60HF well used, but working. Any offers? Also 12-322pF 4 stage variable capacitor from B40, appears PWO. Offers? Matthew Probert 3 Pine View Close, Haslemere, Surrey GU27 IRU. Tel: 0428 3200. (Ask for Matthew).
- Muirhead 'Mufax' facsimile printer plus electronics unit, manuals £45. Marconi mobile data equipment: miniature printer $£ 30$. LED display soft copy unit' $£ 30$. Redifon UHF ($200-400 \mathrm{MHz}$) FM transceiver tunable. aerial, nicad etc. £35. Also various aerials, TV cameras, monitors. PA's etc Write for lists; Bob Sayers, 40 Royal Oak Drive, Leegomery. Telford Shropshire TF1 4SS. Tel: Newport 811280 ext. 253 (work).
- Army radio sets 19, 18. 38. 38AFV. 31, 31AFV Canadian CFS adaptor, all complete stations including remote control headgear etc. No non military mods, real collectors items In good order. Must dispose due to impending space problem. Sensible offers please. Mike Buckley. 12 Ranmore Ave, Croydon, Surrey CR0 5QA. Tel: 01-654 2582.
- Scope CD1400 Solartron dual beam with manual and leads, excellent condition, calibrated. Absolute bargain at $£ 89$ for quick sale. Alex Stobbe, 8 Illston Place, Peterborough PE1 4UY Tel: 073340301
- HRO spares, one brand new unused four gang tuner, three new IF's, one main tuning dial, 19 valves, six coils gen. coverage, two coils band spread twenty and eighty. Bits and pieces £20 the lot. Buyer to collect please. Newly licenced amateur, old age pensioner. Call sign G6ZSP. Age 64, made redundant Oct 1980. Widower, live by myself. Have Racal HF RX and 290R 2 metre rig. R.

Pattinson, 135 Meriden Court, Birmingham New Rd, Wolverhampton, Staffs WV4 6BP

- Cable grip grommets for $1 / 8^{\prime \prime}$ dia. cable $2 p$ each plus SAE. PVC grommets $3 / 8^{\prime \prime}$ bore $3 p$ each, plus SAE. Steel boxes $6^{\prime \prime} \times 6^{\prime \prime} \times 2^{\prime \prime}$ with lid and 4 screws with metric knockouts all round $£ 1.10$ each. Also clearing out LEDS and IC sockets. D. Martin, 6 Downiand Gardens, Tattenham Corner, Epsom, Surrey
- Marconi sig. gen. TF2006 10-500 megs £350. Spare one £90. Marconi sig. gen. TF1064 £50. Marconi watt meter CT44 £6. Marconi sig. gen TF1066 fixed output £75. Advance sig. gen. SG62B £20. Scope ex-min. CT436 £60. Spare £20. KT88s GEC £5. T/former 1 KO , 1 KV 235 mA £ 10 . Scope advance OS15A £30. Scope servicescope S51A £40. AR88D Tuning gang and switch $£ 6$. Sanyo receiver RP8880G 9 bands, crystal marker, double conversion £85. OSC tubes, Hewlett Packard 6" 5083-0353 £15. GEC 1074 H two gun $£ 5$. ACR 10 with screen and base £4. Mullard DG7/6 screen and base £6. Marconi valve V/meter TF2604 £75. Mr P. Baylis, 42 King Edward Ave, Dartford. Kent DA1 2HY, Tel: Dartford 72913.
- Philips/Pye TX portable mono TV chassis complete £10. Philips G6 hybrid CTV LOPTX etc £10, or exchange ultra sonic transducers ordata on ultra sonic propagation etc or what have you? Mr A. Bouskill. 129 Lyminster Rd, Sheffield, South Yorks S6 1HY. Tei: 0742311191.
- Tektronix scope 535A delay timebase 15 MHz B/W. 1A2 dual trace plugin with manuals $£ 130$ Voltage standard and differential V/meter COHU 302 £45. 22 Birch Dale, Hythe, Southampton.
- TEAC X3R stereo tape recorder, auto reverse, cost $£ 400$ will accept $£ 300$. Used one hour only. Will accept good SX28 receiver in part exchange. Mr RM. Dotchin, 2 The Crescent Shortstown, Bedford MK42 OUJ. Tel: Hitchin 815016 ext 2453 working hours 8-4.30.
- Larsholt 7254 FM stereo tunerset, as new from Ambit International £18. 3 Elm Ave, Newark, Notts NG24 1SE.
- Marconi 'Atlanta' comm. receiver complete with handbook and headphones, covers 15 KC to 28 MHz , full working condition, ex weather ship receiver. Also Cobra 148 GTL-DX AM FM SSB-CW. $26.515-27.855 \mathrm{MHz}$. digital frequency counter with built-in SWR, power field strength meter. R.F preamp and 25W linear amp £300 ono. May sell separately. Brian Devlin. 30 Dixon Rd, Crosshill, Glasgow G42. Tel: 041-424 1687.
- Nato 2000 AM FM SSB etc $£ 1.50$. Starker 9 AM FM SSB LSC Hi Lo £70. Tel: Burton-on-Trent 221870.
- FT101E ex. condition with spare PA valves $£ 390$. FRG7000 ex. condition, general cov. RX £200. R.D. Marshall, G4GIQ, 87 Carlton Rd, Witton Park, Northwich, Cheshıre CW9 5PW. Tel: Northwich 45584.
- Hitachi TRK 8080E stereo radio cassette recorder, four wave band radio, 16 W power, twoway four speaker system. Immaculate condition £100. Only one year old. Also 20 TDK SA audio tapes for £34. Mr A.S. Lota, 53 Campion Rd, Leamington Spa CV32 5XF. Tel: 092620488
- AVO Multiminder in carrying case with instructions and test leads $£ 30$ Immaculate condition. R J Nokes, 28 Orchard Way, Bognor Regis, Sussex PO22 9HL
Atari games cartridges. Several surplus, will sell or swap. Tunbridge, 76 Church St, Larkhall, Lanarkshire ML9 1HE Tel: 0698883334
- Most common electronic components, such as IC's (digital and analogue), TTL CMOS etc. and transistors for sale. Please write a list of what you need and how much you can pay, and I will see if I can help you. All letters answered. Write to: The Advertiser, 25 Napier Rd, Wembley, Middlesex.
- Clearing out den. JVC portable tele-radio.good order $£ 60$. Global patrol SW valve set $£ 5$. Canadian No 19 Set $£ 25$. Grundig valve set, working, 4 speakers $£ 20$. Cossor pre-war 3 valve set. needs power leads rewire $£ 10$. Philips valve radio, needs det valve $£ 10$. Buyer collects on these please. A.H. Billington, 50 Chipsey Ave, Bugbrooke, Northants NW7 3QW. Tel: Northampton 830492.
- Saba 26inch colour TV with sonic remote control, suitable spares or repair $£ 30$. Colour fault.

Tel: Plymouth 880674
TwoH+H 100W audio amps, in as new condition complete with mains leads and PVC covers Phone: Kings Lynn 71389 code 0553 , call for price etc. Also two projectors, suit disco use. W N Rodger, G4RQN, Flat 1, 23 Valingers Rd, King's Lynn, Norfolk PE30 5HD. Tel: 055371389

- Worth $£ 100$ each. Eddystone $770 \cup$ RX 146 to 500 MHz , also Tandy scanner RX PRO2001 60 MHz 144 MHz .500 MHz bands, offers. Robin Andrew, 54 Castle Drive, Coleshill, Birmingham B46 3LY. Tel: 067563403
- Storno hand portable, recently realigned Crystalled S20, S21, S22, complete with leather case, helical aerial, three nicad battery packs and mains charger. All in good condition £50. Phone: Botley 5628 after 8 p.m.
- Marconi TF 1066B, $10-470 \mathrm{MHz}$, AM FM sig. gen fully working £275. Data precision eight digit freq counter, 250 MHz battery pack, charger $£ 55$. Icom 720A, AM, CW filters, unused, boxed $£ 790$. Pye low band bantams, pair, working. battery pack £15 Tellabs touchtone decoder and encoder chips info £10. G8NTH QTHR. Guildford 34954.
- Microtan 65 CPU card with Tanbug V2.3 monitor and chunky graphics option. Also Tanger ine Hex keypad and power supply MPS1. All as new with original documentation. Cost $£ 136$ accept $£ 60$. Contact Dave Wells, daytime 0234750993 , after 6p.m. 0908613628.
- Trio R-1000 General coverage receiver plus matching external speaker - hardly used. £195 ovno. R. Hillum, G6 PAE. 143 Spurriers, Laindon, Basitdon, Essex, SS15 5NE. Tel: Basildon 414574.
- 29.5 MHz pre-amplifier $£ 5.00$. G3WPO 2 metre pre-amplifier £5.00. Palomar Engineers VLF converter $£ 45.00$ ono. Icom ICB 105010 metre TX/RX converted for amateur band FM $£ 25.00$. Packer $90-$ 200 MHz absorption wavemeter $£ 20.00$ ono. Dr Arthur C Gee. G2UK, 'East Keal', 21 Romany Rd, Oulton Broad, Lowestoft, Suffolk, NR32 3PJ. Tel: (0502) 65726.
- Have for saie or part ex Cobra 148 GTL DX transceiver, 2 mics, p/pack mag mount antenna L/amp slide mount and matcher £160 ono. Tel: Runcorn 711393
- Surplus resistors. components etc. Bags of 100 items $£ 1.00$. No callers. Mr C. Cooper, 256 Highbury Grove, Cosham, Portsmouth, Hants, PO6 2RX. - SX200-N plus Ambit SSB conversion kit - new £150. V. May, Upper Durford. Durford Wood, Nr Petersfield, Hants GU31 5AN. Tel: Liss 2143
- Futaba radio control 6 channel with 6 servos boats planes cars loads of engines (glow plug) many spare parts cost approx $£ 560$ will accept $£ 150$ Telephone answering machine with some spare parts GPO approved. Req slight attention a real snip at $£ 25$ cost $£ 200$. Peter Young, 3 Fawcett Vale, Lower Wortley, Leeds LS12 4TW. Tel: 790272.
- I am clearing my workshop of some excess components (by order of my wife). Quantity of boards with ICs etc from TVs etc 10 for a pound + post. Mixed resistors 1000 mixed for $£ 8$ (1 lot only)
post Peter Young. 3 Fawcett Vale, Lower Wortley, Leeds LS12 4TW. Tel: 790272.
- Neal 4 Channel resolvers £10. 2 multivolt transformers $5 \mathrm{~V} 2 \times 12 \mathrm{~V}$ ASCII keyboard needs a 7.5 2376 IC. £10. Taylor 132 meter $£ 20$. Capacitors 6500 35 V £1. Want old computer bits, add ons etc Mel Saunders, 7 Drumcliff Rd, Thurnby Lodge, Leicester LE5 2LH
- Free diodes. 100 's to clear just send SAE. Also 22 k lin pots 10p each. Capacitors/resistors/transistors packs of 500 items mixed $£ 7.50$ ($11 / 2 \mathrm{p}$ each). Transformer $240 \mathrm{~V}, 12 \mathrm{~V} 5 \mathrm{~A}$ output $£ 6$ each. Also clearing out lots more. Send SAE D. Martin, 29 St. Johns Close, Leatherhead, Surrey.
- Radio TV Servicing, Molloy, Vols. one to five. circuits for 1945 to 1955 radio and TV- all lot for $£ 10$. Mr. A.C. Holdway, No20 Studland Close, Millbrook, Southampton, Hants
- Quad Esl. speaker little used in good order Also rare valves KT66, GF33. GZ33. GZ36. All in mint condition. H.T. Aston, 103 Westfield Rd, Ealing London W13 9.JD
- AVO multi-range test meter £40 plus £3 carriage/packing. Mr. R. Hayward, 'Sunnyfields' Lighthouse Road, St Margarets Bay, Nr Dover, Kent CT15 6EJ

FREE READER SMALL ADS

Sentinel 2 metre converter from M.W. £10. Lowe 2 metre receiver with PA3 preamp, fitted 6 xtalled channels £20. Tel: Plymouth 880674.
DX 300 Gen coverage receiver $A C / D C$ digital 10 $\mathrm{kHz}-30 \mathrm{MHz}$ about $£ 180$ ring 0734581481.

- Heathkit SB620 Scanalyzer in good condition with manual. J.P. Barnes, 2 Mappins Road, Catcliffe, Rotherham, South Yorkshire, S60 5TH. Tel:0709 61159.
- Calting all Dxer's, be it short wave, medium wave, or TV, have you ever thought of joining a club? For more information write to the DXAGB, Five Acres, Whiteditch Lane, Newport, Saffron Walden, Essex, CB11 3UD, 'Can you afford to miss it' for the price of a large SAE?' 'The DX Association of Great Britain.' Mr. M.B. Evans (Logging Editor DXAGB) 41, Great Arthur House, Goldern Lane Estate, London EC1. Tel: (01) 251 4950.
- Amplifier for bass guitar 'H.H.' 100 watt Combo, nearly new, used little, immac. cond. cost £250, accept $£ 150$. Would deliver 100 miles radius of Sheffield. Bass guitar 'Hondo II' fender copy De Marzio pickups, good cond. £45. Tel: 070970021. Taylor.
- Acorn Atom fully expanded including floating point ROM and tool box ROM. Some software $£ 100$. Datong FL2 filter $£ 65$. PRO 2002 scanning receiver $68-512 \mathrm{MHz}$ all post paid. Tel: (0436) 2539.
- For sale Avo model 7 mark 11 multimeter in very good condition £45, 28 Orchard Way, Bognor Regis, Sussex PO22 9HL
Marconi CR100. Good condition. Also Rhode and Schwarz signal generator 29.2 MHz to 305 $\mathrm{MHz} ; 19$ set converted to mains. 2 MHz to 8 MHz transceiver £55. Tel. 0872862575.
Trio model JR500S double conversion communications receiver 3.5 to 29.7 MHz WWV SSB AM ANL RF gain control stand-by switch ext VFO output 8.445 to 9.045 MHz ext remote control socket, needs re-aligning. Service manual included. New valves bargain $£ 30.00$ or near offer. Mr. E. Vaughan, 108 Micklefield Rd, High Wycombe, Bucks HP13 7EY.
- Trio R1000 with FM module fitted excellent condition cost $£ 297$ accept $£ 250.35$ Greenlaw, West Denton, Newcastle-on-Tyne. Phone Lemington (0632) 673507.
- Sale or exchn two Avtec dot matrix printers centronic interface $£ 20$ each. Would exchange for 2M converter for YAESU 10120 or W.H.Y. D.G. Clifford, 160 Goldsworthy Way, Burnham, Berks, SL1 6AY. Tel: Burnham 64567.
- Heathkit HW101 SSB transceiver $10-80 \mathrm{~m}$ bands complete with power pack PS23. Factory tuned and in unused mint condition. Cost £600 best offer secures. Robt. McGloin, 72 Maree Drive, Cumbernauld, Glasgow G67 4LP. Tel: 0236733770
- RA1 amateur bands receiver, recently overhauled, in first class condition with QPM16 'Q' multiplier and matching speaker. Buyer collect £40. William J Bryan G3RKC, 20 Thirlmere Court, Felixstowe, Suffolk IP11 9SN. Tel: Fel. 277208.
- Union Jack QSL cards $100 £ 2.50 \mathrm{H}$. Hope, 89 Derwent St, Blackhill, Consett Co. Durham DH8 8LT.
- Morse code trainer program for ZX Spectrum $16 / 48 \mathrm{~K}$. $£ 4.50$ inc. post. W.H. Cartwright 51 Oak Road, Oldbury, Warley, West Midlands B68 0BH. Datong 070 morse tutor $£ 35.00$ ono. Daiwa auto ATU CNA1001 £100.00 ono. Trio R600 communications receiver $£ 200$ ono. Microdot RTTY unit $£ 350.00$ ono. Wanted Yaesu FL2100Z linear, heavy duty rotator and Daiwa CN620A SWR meter or Daiwa CNA 2002. 94 VCU. Tel: 020888738 anytime. Rockwe!I AIM65 cased with BASIC FORTH, PL and PROM programmer with TV interface complete with all documents and books. Ideal for complete learning about micros both hardware and software. Cost over $£ 500$. Offers to J. Barton Tel. Witney 75220.
Trio JR 500 S £66, also many valves, old radios. 11 Hamberland HQ $170 £ 230$ ono. Hardy, 12 Fyfield Rd, Walthamstow, London E17 3RG.
- Oscilloscope EM102 dual beam 15 MHz battery or mains. Needs attention £100 ono. Tel: 01550 4527.
- Lowe Electronics SRX30D general coverage receiver. $500 \mathrm{kHz}-30 \mathrm{MHz}$. Only six months use.

LED digital frequency readout. USB, LSB, AM, preselector, RF gain. $£ 160$ ono. S. Cowell Tel: (098 064) 675 evenings.

- Casio wristwatch/stopwatch excellent condition now surplus to needs. $£ 6.00$. Tel: Smallwood, Treffgarne 644 after six.
- Alpha key. A single paddle key for the connoisseur. P. Sergent, 6 Gurney Close, Costessey, Norwich 0603747782.
- Cavity wavemeter to cover $2 \mathrm{~m}, 70 \mathrm{~cm}, 23 \mathrm{~cm}$. P Sergent, 6 Gurney Close, Costessey, Norwich 0603 747782.
- Swan Transceiver $100 \mathrm{MX} \mathrm{80m}-10 \mathrm{~m} 180$ p.e.p. Good condition transistorised £200. MBA/RO Morse Rtty reader fluorescent display $£ 130$ ono. As new Q.R.P. Components Japanese V.F.O. $7 \mathrm{MHz} £ 5$. P.A. Ferries FB-43-240 30 for $£ 3.00$. Telephone Mildenhall 717106 or 41 Donegal Park, Rookery Drove, Beck Row, Bury St Edmunds, Suffolk.
- Vernier slow motion drive type D ref. 10A/8510 brand new neon power indicator. Complete set radio communication mags 1982. Variable condenser, 1. toggle switch, DX foreign listings callbook, lengths of guy wires, brand new Japanese B-M-3 desk mic. £30 lot absolute bargain pack. Will sell mic. separate at $£ 15$. Phone G3XWV evenings 0564 822280.
- For sale TS 520. VGC £350 ovno. Mr. G. Hayes, 3 Manor Ave, Higher Marston, Nr Northwich, Cheshire CW9 6DS.
- New Zealand wireless set. ZC1 MKz not working £40 plus carriage. Yaesu FR50B RX perfect £60 plus carriage. David Christie, 8 Ballytober Rd, Bushmills, Co. Antrim BT5 78UX. Tel: Bushmills 31086.
- Europa C Transvertor 100W O/P spare valves £12. Several years back copies of Radcom S.W.M etc FREE to any scout group B.B. or cadet corps with two members who can read 12 wpm morse or have passed part of R.A.E. Collect only. Phone G3AKG, Reading (0734) 476718.
- Tektronix 545B oscilloscope two plug in amps 30 MHz dual beam delay manuals probes $£ 125$. Phone Blackburn 48131 evening.
- FTT Yaesu 80-10m Tx/Rx v.g.c. + matching power S.W.R. meter £240 o.n.o. P.J. Bradley (G4 BZE), Woodlands, Longdown, Nr Exeter, Devon EX6 7SR. Tel: 039281425.
-150W 12A power Darlingtons, equivalent 2501/3001 matched pairs $£ 2.00$. 60W transformer $120 / 240 \mathrm{~V}-16 \mathrm{~V}$ 2A plus $15-0-15,1 \mathrm{~A} £ 5.50$. 12 V indicators, panel mounting, 4 for $£ 1.00 .250 \mathrm{k}$ log. pot. with DPST switch: 40 p. Reed switches, 5 for $£ 1.00$. Bargain pack: 100 P.C. electrolytic capacitors plus 100 resistors, $£ 2.00$. Tom Merrill, 97 Goodwood Road, Leicester.
- Magazines asst. 1981-1983 ETI WW elektor R\&EW approx 50 issues £20. Spectrum $48 \mathrm{k}+$ printer, no colour $£ 70$ Tel: 0829270481.
- Nascom 1 with smart case and built in PSU £80. Warrington area Tel. Padgate 812290 . HF-5 five band trap vertical antenna and radial kit purchased July £65 ono. Warrington area. Tel: Padgate 812290.
- Storno 'Viscount' 2mtrs. FM mobile transceiver, six channels, all cables: £35. Pye 'Cambridge' 4 mtrs. AM mobile transceiver, three channels: $£ 25$. Five element, 2 mtrs. Yagi: $£ 8.2 \mathrm{mtrs}$. ground plane: £4. $5 / 8$ wavelength 2 mtrs . ring plane mobile antenna, plus boss and coax cable: $£ 18.7 \mathrm{MHz}$ Traps, pair: $£ 7$. Class ' D ' wavemeters, two: $£ 7, £ 5$ 'Type 10' crystal marker: £7. Heathkit S.W.R. meter: £9. Canadian ' 58 set' 6 to 9 MHz AM transceiver £26. Ex-W.D. ' 88 set' VHF transceiver: £12. Buyers collect. S.A.E. details: McNeill, 40 Turnpike Road, Newbury, Berks, RG13 3AS.
- Tektronix dual beam storage 'scope type 564 with four plug-in units and instruction manuals. Good condition. Offers. Mr D.H. Edwards, 178 Main Street, Invergowrie, Dundee, DD2 5BD. Tel: 08267 423.
- Klystrons complete for 3 cm . and 10 cm 's suitable cheap A.T.V. Offers to G8BXO, John Stacey, 3 Westpark, South Molton, Devon EX 36 4HJ. Tel: 076953382

Volumes one and two Radio and Electronic World for sale. Buyer collects. Tel: (0952) 44843.

- FT-290 with Nicads Helical $£ 200$. MM 30 watt linear £55. BBC programs morse tutor/keyboard
transmit and receive £4. RTTY adjustable speed auto CR/LF, memories $£ 4$. Oric, Electron morse tutor £4. QTH locator, bearing, distance £4 Brookes MBR6 RTTY TU £40. T. Tugwell, 11 The Dell, Stevenage, Herts SG1 1PH. Tel: 0438354689. - Amateur bands transceiver. 'Kenwood TS520SE. 160-10m fan. New MC35S mic. Instruction manual. Box. New March 1981. Little used. Mint condition. £295. 'Advance' constant voltage transformers. CV100A. 244 V with 150 W lamp. Plus extra tap out 320 V no load. $£ 5$ each. Trio KA2000A instruction service manual. G3MBL: Tel 01-445 4321. 244 Ballards Lane, Finchley, London, N120EP. Two secondhand but working 4CX250B valves £8. One new 4 CX 250 B £. One new 4 CX 350 B £12 25W car stereo booster £5. Microwave modules MML432/100 linear amp with fault, offers? ITT Powerdol' switched mode PSU-SV 20A +12V 2A 12V 2 A as new £35. Best Products solid state EHT unit, requires $\pm 12 \mathrm{~V}$ approx $1 \mathrm{~A}, 15 \mathrm{~V}$ output, as new £15. Home built PSU for 4CX350B linear amp or similar -1.4 kV 400 mA , variable, stabilised screen volts and grid volts, also 6.3V SA fully metered etc. £45. Datong D70 morse tutor £35. Sodeco printing impulse counter with manual, spare paper $£ 10$ Brand new Heathkit external LMO (linear master oscillator), boxed with manual $£ 20$. Box of parts for making 4CX350B amp, coils, striplines (for $2 \mathrm{~m} \&$ 70 cms) valve bases etc $£ 10$. All above items ono Please phone Martin, G4VKR on Flitwick 712743 after 5 pm .
T.I. 55-II calculator £20. Lobgear Teletext addon unit $£ 100$. Tel: 0325466783 (mornings). Geo. W. Cummings, 31 Stockton Road, Haughton, Darlington.
Trio TR9000 2 M multimode TCVR comp with B09 base station plinth, £250. Datong RFC/M RF speech processor module, unused $£ 12$. SMC 13.8 V 8 amp cont. PSU £20. All items offered in as new condx. Roy Storey G3LBT, 145 The Knares, Basildon, Essex, SS16 5SJ. Tel: (0268) 412177
- IC701 H.F. transceiver, A1 condition for sale Offers to Jim Watt, 61 Sutton Park, Blunsdon, Swindon, Wilts. Tel: 0793721046.
- Tektronix Type 551 double beam oscilloscope with power supply, including differential preamplifier (calibrated) Type G, for sale $£ 120$. Would exchange above for either Eddystone 770R, or 770 U communication receiver. A. Thomson, MSERT, GM3VOX, 108 Tannahill Drive, Calderwood 12, East Kilbride, Glasgow, Lanarkshire, G74 3HT. Tel: East Kilbride 41329.
New ham selling SWL equipment. R600 rcur £190. Bearcat scanner plus discone £100. Also V2000 video tapes $£ 1$ per hour. Tel: 0842861495 . - Tono 9000E RTTY ASCII morse sender/decoder £490. GEC VHF mobile TX/RX £20. Brookes MBR6 RTTY terminal unit £40. 13 V 2 amp PSU £8. Contact G8KMV QTHR 0438354689 evenings.
DX TV Bush 125 TV's and other goodies some modified. Lots more electronic bits and pieces. Also VHF and UHF aerials and rotor. All items must be sold due to moving. First come first served. Telephone 0202738232 for more information. - Solatron Solarscope CD1212 CT484 single beam scope with $40 \mathrm{Mc} / \mathrm{s}$ wide band unit. CX1251 and trolley: manual also. £30. Buyer collects. Large and heavy! Mr. D. Dane, 3 Bowmonts Rd, Tadley, Nr Basingstoke, Hants. RG26 6SD. Tel: Tadley 4959. - FM aerial Smiths Arrow Seven. Complete with rotator, control, 10 ft mast and chimney lashings. Never used. $£ 50$ complete. Tel: 0217050223.
FT290R with Nicads charger, SWR meter and wavemeter. Also Channel-Master 9502 B rotator and Jaybeam 4 element quad with feeder. All mint. $£ 300$ ono. Phone Les, St. Albans 73620.
- OEL Viewdata adaptor - with addition of only six cheap ICs. You will have a comprehensive system for Viewdata work. The unit has TV/monitor, printer, recorder connections. Full documentation supplied. Unit totally British Telecom approved - only £108. Also various interesting components - much too numerous to include - just SAE for info. Peter D. Lee, 10 Millfield, High Halden, Nr. Ashford, Kent, TN26 3LX.
TS700 2metre multimode base station rig mint condition unused since 2nd hand purchase with warranty $£ 195$ ono. Jaybeam 2 metre 10XY antenna

FREE READER SMALL ADS

unused still boxed offers. Yaesu FT101 Mk1 with new valves $£ 175$ ono. John William Horsley, 17 Caerleon Avenue, Bitterne, Southampton, Hants, SO2 5JX. Tel:0703 449837

President McKinley 120 channel mobile CB radio with power mic, leads etc. Full working order, excellent condition £120 ono. Phone 021-705-5724 after 6pm

- Car radio medium long wave £5. Audioline push button medium long wave car radio unused £15 40 CH AM CB rig £15. 40CH AM SSB CB rig £25. Car stereo cassette player $£ 7$ slide mount $£ 2$. Wanted Tandy TRS80 model 100 portable computer. Ring Milton Keynes 316052 ask for Mick.
- Ferrograph professional audio recorder test set RTS2. Measures frequency response, distortion, wow and flutter, signal-to-noise, gain etc. £350. Sabtronics 8110A frequency counter, 20 Hz 100 MHz , (originally built from kit) $£ 55$. Also, quantity (270) motors, 2-pole, $2,500 \mathrm{rpm}$., AC mains ($1+15 \mathrm{~V}-230 \mathrm{~V}$), brushless type, $1 / 2 \mathrm{ins}$ stack, unused. £175 the lot ono. May split, offers? Prefer buyer to collect but would consider delivery - dependent on distance. Tel: Alan (0773) 874197.
- Process Iens by Wray Optical (Lustrar 16ins f. 10 with stops to f .90). Will sell/exchange for amateur radio gear, comm. RX, TX or what have you. Anything radio or photographic considered. Frank Glynn, 41 Crossways Avenue, East Grinstead, Sussex RH19 1JD.
- Receiver Garex SX200-N scanner. Four months old. In guarantee. Absolutely mint and complete £240 no haggling. Phone Bournemouth 25554 evenings.
Q VDU and keyboard - ICL 7181 working order. £20. Buyer collects or carriage extra. Braintree 42391.
- CASIO VL-1 with wallet, excellent condition hardly ever used £25.00. Steven Chambers, 153 Laleham Rd, Catford, London SE6 2AE. Tel:016976356.

ATV program for the 48 K Spectrum as reviewed in Nov 83 R\&EW now with 36 features including testcards, maps, large printing, QRA calculator and much much more. The price which includes a 16 K version and fult instructions is only $£ 5.50 \mathrm{inc}$ P\&P from R. Stephens, Toftwood, Mill Lane, High Salvington, Worthing, Sussex. For list of other programs send sae.

- 21LO2 1 K low power static RAMs new and unused. 24 for sale 0.75 p each ono. Phone Leamington (0926) 641347 after 6.
- PC1211 Sharp PC computer and tape interface (in need of repair) applications book and new set of batteries. Yamaha CS01 keyboard and five music books. TMS 9900 family micro data book. Will sell or swap for a good micro or RX or a second hand score. Will reply to all offers. Sean F. Rima, Kylemore, Connemara, Co. Galway, Ireland. Tel: Kylemore 10.
- Marconi Sig. Gen. TF885 DC to 5 MHz at 30 V (max) o/p \&7. Elect. mags £10. Mains transformers 6.3-0-6.3 at 2 A £2. Also 400-0-400 plus $4 \times 6.3 \mathrm{~V} £ 5$. Also Ferranti RD6059 10H inducter £5. Buyer collects. P. Vacquier, 56 Leamington Road, Southend-on-Sea, Tel: 616579 (evenings)
2 amp variac input 240 volts mains output 0 to 240 volts AC cost £35 new only £15 as new. Also 12 volt DC relays for 50 pence each. Phone Slough 46684 and ask for Steve.
- Solartron CD1014/2 D.B. scope inst. circ. £50. Anita 1000 comptometer 10 gas discharge readout tubes mains operated $£ 30$. Cybernet 2000 C.B. new very compact with centre loaded aerial $£ 30$. Harvard two channel xtal C.B. hand heid new E12. Hythe (Kent) 68854.
XTL filters - 10.695 £ 3.00 each 8 kHz b/width or 10.7 at $£ 1.50$ each. Only few available as are surplus from ex local CB shop-6 Lynton Court, Horn Lane, Acton W3 6PN.
16K ZX81 DK Tronics keyboard Qsave inverse video cass: control £70. S.ware books and spares. SAE with enquiries to M. Bolt, 112 Leeds Road, Mirfield, West Yorks.
- Have Samwell Hutton Wobulator with spares plus 1.3 to 4.2 GigaHz microwave signal generator Will exchange with any good comm. receiver. Details from J. Bulubi 10 Adair Tower, Appleford Road, London W10.

Kenwood (Trio) speakers. Woofer 11 ins cone type. Tweeter horn type. Super tweeter horn type. Base reflex enclosure $\mathrm{F} / \mathrm{r} 40 \mathrm{~Hz}$ to $30,000 \mathrm{~Hz}$. 75 watt. As new. E85. Unusual item purchased abroad. (Japan). Mr. Paul Sherlock, 74 Dungannon Chase, Thorpe Bay, Southend-on-Sea, Essex SS1 3NJ. Tel: Southend 582460 .
BELCOM L.S-102L $26-30 \mathrm{MHz}$ radio $£ 225$ ovno. PROTEL Base Mike AM-6000 with equaliser plus power supply $£ 55$ ovno. CP-163X Base/Mobile Linear variable input output no plating or loading built in pre-amp 26-30 megs £75 ovno or £325 ovno the lot. Dave P.O. Box 3, Egham, Surrey, TW20 0SW. TR2500 handheld with spare Nicad and leather case immac cond. E185. Microwave Modules preamp 2M MMA144V E25. Two seven element German Yagis, low wind loading, little used, plus stacking combiner and coax £45. Tel: Hastings 437513 evenings. G8TQO.
CASIO 602P programmes including resistor calculator; $\mathrm{Hex} \longleftrightarrow$ decimak \longrightarrow Binary converter with true alpha input/output; several games Reverse, Micromind etc. Plus 'Quirks' - displays full character set and uses normally unavailable commands. Send SAE to D. Ingram, 6 Greyfriars Walk, Inverkeithing, Fife, KY11 1DE.

- Icom communications receiver $1 C R 70$ as new with Icom FM board fitted. Excellent rig £420. A.E. Chivers G3YFQ. 1, Sycamore Close, Bushey, Herts, WD2 2DT. Tel: 0923-41461
1000 MHz scope. Hewlett Packard HP185B with HP187B plug-in complete with all adaptors, HP1400A delay line and manuals £150. Computex Automation dual digital cassette drive system with interface for naked mini. Ideal for most home computers. £45. Wanted Tektronix plug-in Type M , also manuals for purchase or hire for Type 82 and 'M', G4DWC 0532828994
Collectors item, 1948 Bush Console radio G.W.O. offers. Or exchange organ, or synth parts. Lots of electronic mags R\&EW, E.T.I., H.E., P.E., E.E., W.W., R\&EC Jan 1979 to date. S.A.E. with enquiries to 47 Linden Close. Eastbourne BN22 OTT. Tel: 0323 51624/51264.
24 GHz S.W.R. meter cost new $£ 700$, accept $£ 190$ G4FFO Tel: 0223860150.
Contents of well stocked junk box for sale ie TX, valves, variable capacitors, HV power supplies etc. s.a.e. or phone for further details. Also have Cavendish model 2000 electronic organ first class condition. Will accept first reasonable offer. J. Peerless, 157 Fairmead Crescent, Edgware, Middlesex.Tel: 01-958-6887.

WANIID

All sizes of tuning capacitors, roller coasters, feed-through insulators, switches and items suitable for HF ATU. Complete TU5B tuning units considered. Mr. M.R. Davies. GW311D. Hafan, Lady Road, Blaenporth, Cardigan, W. Wales SA43 2BE. Tel:0239-811 022.

- To copy Heath Model ID-1590E June 1979 wind speed/direction indicator instruction and assembly manual. R.F.G. Thurlow. G3WW. 2 Church Street, Wimblington, March, Cambs. PE15 OQS. Tel: 0354-740255

Swop Atari TV game + games for 2 PYE 70 pocket phones with rubber aerial etc or swop for IC2E AR22 TR 2500 or AR 240FT 208R. Swop PYE Bantam for 2 M 144 MHz car aerial. O.M.A. Graham, 27 Crichton Rd., Pathhead, Midiothian, Scotland EH37 5RA. Tel:0875-320 642.
$7808,748,4011,741$ ICS wanted. Got all sorts of items to exchange i.e. AVO 7 (value £25) cash either way to adjust. Also require light screened microphone cable. Mr. A. Bouskill, 129 Lyminster Road, Sheffield, South Yorks. S6 1NY. Tel: 0742311191.

- Microwave modules MMT/28/144 MHz Linear transverter new never used boxed from SMC Value $£ 109$ and FT224 2MTR Mobile Tramsg. used only base station crystals S.19, 20, 21, 22. RO, R1, R6 requires tone burst. Exchange 2 MTR hand held prefer check. Collect my QTH No car. Could meet Salisbury, Southampton, Bournemouth by public transport. Charles Hooper (G8YKC) 63 Sandy Lane, St. Ives, Ringwood, Hants. BH24 2LE. Tel:Ringwood 5717.

Transmitter variable capacitor 120 to 160 pF . Preferably surplus component from TU9B or similar. HM Humphreys Gibevu, 10 Mount Eden Park, Malone Road, Belfast. BT9 6RA. Tel:0-232 668979.

- Good Colour T.V. working to use with computer. Craig Tunbridge, 76 Church St. Larkhall, Lanarkshire. ML9 1HE. Tel:0698 883334.
All non working used home computers wanted for educational purposes. Must be very very cheap. Also electronics magazines required for non profit making training workshop for students. They must also be very cheap. Please write to Bimal, 25 Napier Road, Wembley. Middx. Each letter will be answered.
- Communicator receiver WHH BFO cheap Wavemeter for 934 MHz ATU for 27 MHz . A.H Billington, 50 Chipsey Avenue, Bugbrooke, Northants. NN7 3QW. Tel:Northampton 830492.
- Early (ie 1920s, 1930s) valves and other components wanted particularly 2 V . Filament screen grids and triodes, L.F. transformers plug-in coils, formers and bases, etc. Also morse keys and amateur QSL cards. Cash waiting (private collector, not dealer!) Norman Field, G4LQF. 14 Regent Rd., Harborne, Birmingham 17. Tel: 021-426 3663.
- 23CM varactor tripler wanted for ATV work Please write. Dave Crump, G8GKQ. Officers Mess, RAF Bruggen, BFPO 25.
- Has anyone connected a non RS232 (9 way block connector type) ASR33 printer to a BBC computer? Hardware and software help appreciated. Contact Dave Kelly, 4 Elmdale Road, Claines Worcester WR3 7PA. Tel: Worc 53842.
Swop Atari TV game for PYE Bantam and swop for 3040 PO tower or swop for any 2 M HF receiver transceiver. Swop PYE Bantam for yellow flashing light or swop for two Pye two way radios with aerial. H. Graham, 27 Crichton Rd., Pathhead Midlothian, Scotland. EH37 5RA. Tel: 0875320642
- Need Audio distortion analyser and scope, AVO \& accurate signal generator for design of audio systems. Would appreciate PSU and other audio lab gear. Will collect. Peter Kunzler, 166 Ewell Rd., Surbiton, Surrey. KT6 6HG. Tel: 01-399 3990.
- Grundig satellite 3400 or SX 200 N scanner wanted must be in good condition. Fair price paid Tel Runcorn 711393
- Radio amateur's examination tutor requests help for his students - can anyone please loan past R.A.E. multiple choice question exam papers? 7 day return promised with expenses refunded (G8PWO QTHR). John Thwaites, 15 Springhead Rd., Kemsing., Sevenoaks, Kent. TN15 6QL Tel: (evenings) Sevenoaks 62481
- Mitsubishi CRT 470CNB22. May accept used tube. W. Milne, 20 Graham Road., Wimbledon London SW19 3SR. Tel: 01-684 9621.
- Handbook for Yaesu FRG 7000. Also FM module. Mr. N.J. Smythe, 25 Cefny-y-Lon Pienyrheol, Caerphilly. CF8 2JS. Tel: 0222868112. - Collins, KOKJSAI, Toko, or similar 455 KHz mechanical SSB filter. T. Simpson, 58 Cemetery Road, Houghton Regis, Dunstable, Bedfordshire. LU5 5DA. Tel: 058262621.
- Sphinx transmitter in good condition if possible. SSB 160 m 80 m 20 m or similar. Tel:0872 862575. - Manual or circuit diagram for Rochar counter timer A1149, scope tube SE3A1 or similar and TV tube $230 \mathrm{DB4}$. J. Glover, 22 Bennett Road, Bournemouth, Dorset. BH8 8QG.
Old radio books, catalogues, magazines, ser-vice-sheets, QSL cards, Gamages catalogue, A/Ps, valves, components, morse-keys, etc. for the National Wireless Museum. Details pse to hon. curator-Douglas Byrne G3KPO, 34 Pellhurst Rd., Ryde, IOW. Tel: 098362513.
- Any 77-68 computer system PCBs (not) working (partly)(fully) built also any details of a BASIC language for this computer, also a 6830 PROM for Swatbuc with manual plus any info on faults that have been found while testing. Please state prices. Norman Henry Pierce. 92, Railway Road, Rock Ferry, Birkenhead, Merseyside. L42 2BQ
- Cosmac ELF two. Wanted add on units i.e. keyboard RAMs tapes circuits user manuals etc. M.G. Bancroft. 71 Leysholme Cres. Leeds LS12 4HH. Tel:Leeds 630953.
- Clock radio wanted not necessarily in working

FREE READER SMALL ADS

condition. Phone Carlisle (0228) 21981 after 6pm OId QST back numbers 1950 to 1979. Phone Wokingham 782236.

- Mostek digital clock chip MK 50253 N used in digital alarm clock kit from Sintel-GM4JNB QTHR or PO Box 6, Fort William, Inverness-shire PH33 6DB.
Close tolerance resistors. Source of minute quantities of odd valves wanted. C.J. Collins, Two Ways Cottage, Eghams Wood Rd., Beaconsfield, Bucks. Tel: Beaconsfield 4127.
Need GJH8 valves for project. All replies answered. Horton GM3XFC, 26 Jamieson Street, Arbroath, Angus. Tel: Arbroath 78383.
- Swap for MF or HF equipment - Single screen oscilloscope, multi-metre, or VHF radio telephone. Petty Officer M. Brownlee, 1c. Croft Terrace, Botcherby, Carlisle, Cumbria. Tel:Carlisle 45552.
- Yeasu FC902 ATU complete with instruction book. Also FT7 must be cheap. Also AR88 receiver must be in good nick. David Christie, 8 Ballytober Road, Bushmills, Co. Antrim. N. Ireland. BT57 8UX. Tel: Bushmills 31086
Tunnel Diodes about three same size shape as OA81/0A73. Write 34 York Crescent, Blackburn, Lancs. Mr. Heath. Also Motor type B8k 5U/4661 24V DC blower small square. Tel: Blackburn 48131 (evenings).
- Loan of Heath Assembly Manual for Wind Direction/Speed model ID.1590E-07846. Speed indicator housing jammed on. R F G Thurlow, G3WW, 2 Church Street, Wimblington, March, Cambs, PE15 00S.
Wanted medium duty rotator with control box. Also any $10 \mathrm{~m}-2 \mathrm{~m}$ converters, and any 8 digit frequency counters. Mr Philip Sparrow, 132 Ash Lodge Drive, Ash, Aldershot, Hants GU12 6NR
IC wanted for Bontempi Organ Type SNB746F.F E Godward, 40 Beaufort Street, Southend-on-Sea, Essex SS2 4NH Tel: 68254 (G3ASL)
Philips N1512 VCR or just CVBS panel (working
or not). Phone:0993 882238 evening or weekend - 'The Cathode Ray Revolution' by Philip Kogan £5 offered. Dr Cowan, 51 Wellington Street Oxford, OX2 6BB
- QRP SSB TX/RX Hustler or similar mobile whip antenna 20 m 80m. D Dhugias, 3 Kirkfield Place, Arrochar, Strathclyde, G83 7AE
- Wanted to purchase or photo copy manual and circuit diagram for Solartron CD523S oscilloscope. Andrew Dexter, 1 Hope Villas, Hope Road Leighton, Welshpool, Powys. SY21 8HF. Tel: Welshpool 4026
- Old books on microwaves and radar especially McGraw-Hill Radiation Laboratory series. Also looking for monoscope tubes. Andrew Emmerson
71 Falcutt Way, Northampton, NN2 8PH
Sony ICF 2001 portable radio RX new or nearly new condition. C/W documentation - M J Townsend 19 Greenhill Lane, Riddings, Derbyshire Tel: Leabrooks 605219.
- Two disco deck turntables. Nir Victor Linton, 44 St Mary's Court, Gomer Street, Willenhalt, West Midlands, WV13 2NW
- Collector seeks very old germanium transistors and diodes. Good prices paid for early point contact and junction types. Data sheets also required for old semics. Information wanted about early transistor computers especially point contact ones. Write for more details or offer. Mr Andrew Wylie, 18 Rue de Lausanne, 1201 Geneva Switzerland.
- Ex-RAF type 'D’ Morse Key wanted by former RAF wireless operator. Also Class D Wavemeter (pref. AC mains) Frank Glynn, 41 Crossways Avenue, East Grinstead, Sussex RH19 1JD. Tel: East Grinstead 22967.
Wanted B.B. Babani radio books No 107 and 108 four and five valve circuits. No 134 FM tuner construction. No 135 battery portable construction. Nos 100, 121,143, 157 and 178 radio valve guides 1-5. Mullard circuits books. Hartley on HiFi. Also Jacksons tuning scales with S/M drive,
types S.L. 8 and S.L.5. Coil packs, AC/PEN (5-pin) DR96, PP5/400, AC/HL, UL41, UY41, EL41, B5 sockets. RD junior variable superhet tuners (AM). FM tuners and amplifiers. To N Covington 25, Ridge Road, Letchworth, Herts, SG6 1PW. Tel: 79681.
- YAESU FRG7 operating handbook or copy. Mr D Sibley. 50 Faraday Road, West Molesey, Surrey, KTB OTQ. Tel: 019792245
- FM board for Yaesu FT1012D. Also narrow CW filter. Cash waiting. Ring Nick G4UKO Tel: Maidstone 859129
CB hand held TX/RX pref Tandy. Also scanning RX for 120 MHz 170MHz Phone: Ashford, Middlesex 44361

FREE SMALL ADS

We are pleased to be able to offer readers this free Small Ad Service to enable you to sell unwanted equipment or advertise for your 'wants'

Simply complete the order form below, although we will accept ads not on our order form. Feel free to use an extra sheet of paper if there is not enough space on the order form. Send to: Radio \& Electronics World Small Ads, Sovereign House, Brentwood, Essex CM14 4SE.

DEADLINE

We will endeavour to include all ads received by 15 December 1983 in the February issue. Ads received after this date will be included in the next available issue

CONDITIONS

We will not accept trade advertisements. We reserve the right to exclude any ad.

FREE READER SMALL AD ORDER FORM
 Send to: Radio \& Electronics World Small Ads • Sovereign House • Brentwood Essex CM14 4SE Classification:

For Sale

Wanted \qquad
USE BLOCK CAPITALS (One word per box)
To avoid mistakes please write clearly and punctuate your ad

USE SEPARATE SHEET FOR MORE WORDS
Name
.Address

Postcode
 Telephone

CONDITIONS: Your ad will be published in the first available issue. We will not accept trade advertisements We reserve the right to exclude any advertisement.

RE0184

APPOINTWENTS

We are pleased to be able to offer employers and their agencies the advantage of FREE $1 / 8$ page appointment ads

Readers, don't forget to mention
Radio \& Electronics World when applying

VTR ENGINEER

Complete Video, one of London's leading post production facilities, requires an engineer (aged 20-30) to cover all aspects of video post production. A working background of at least one year in broadcast or video facilities is essential. Salary in excess of A.C.T.T. rates.
Please apply in writing to Richard Whitaker enclosing full CV .

COMPLETE VIDEO FACILITES LIMITED COVENT GARDEN POST PRODUCTION CENTRE 3 SLINGSBY PLACE, LONG ACRE, LONDON WC2E 9AB. TEL 01-379 7739
Registered in England No. 1568204
REGISTERED OFFICE: 25/27 Catherine place, Buckingham Gate, London SW1E $6 E Q$

ELECTRONICS APPOINTMENTS £6,000-£16,000 ANALOGUE, RADIO, MICROWAVE DIGITAL, MICROPROCESSOR, COMPUTER DATA COMMS, MEDICAL

Design, Test, Sales and Field Service Engineers to use our free, confidential service and improve your salary and career prospects. UK and overseas contact:

(1)Technomark
 Engineering \& Technical Recruitment

11 Westbourne Grove, London W2. Tel: 01-229 9239

MANAGEMENT \& EXECUTIVE SELECTION
 Telephone DEVELOPMENT TEST ENGINEERS TO £9K

Supporting a design team producing true state of the art electronic systems and sub-assemblies, your strengths could be utilised in defect investigation, enviromental testing 'breadboard' assembly and test or quality assurance. In any of these areas you will enjoy the satisfaction of seeing equipment go from research to development and finally into production. You will liaise both with project teams and the production area to ensure that the equipment meets the agreed technical specifications and is practical to operate. The test gear used to check the equipment is of the most recent and sophisticated design which means that you keep at the forefront of the science. Every unit passes through your department which guarantees a wide variation of interesting work.
The equipment uses digital, electo-optical and analogue technologies, with frequencies up to microwave level, most incorporate microprocessors or minicomputers.
Based west of London, your benefits will include competitive salaries, paid overtime, 25 days' holiday, real opportunity for career enhancement, Group Membership of BUPA, contributory pension scheme and generous relocation assistance where applicable
For an informal discussion phone Kirk Blackmore or Philip Joisce on 01-637 9611.

Suite 201/6 Albany House
324 Regent Street, London W1 EXECUTIVE SELECTION

As part of General Electric U.S.A., Medical Systems here in South Herts has worldwide design authority for a range of electronic imaging equipment including CT scanners, nuclear diagnostics and conventional X-Ray equipment.

With a self contained engineering, quality and manufacturing organisation of 450 employees; we believe we are the optimum size for: good communications, recognising individual contributions, yet we have the financial resources and security of a highly successful company.

W'e currently have vacancies for: -

ELECTRONIC \& SYSTEMS TEST ENGINEERS

You are likely to have H -Tec, HND or Degree in Engineering (or an equivalent Service qualification) with up to 7 years digital/microprocessor experience. Also, you should be highly motivated and willing to put a lot of hard thought and work into maintaining stringent standards

Dependent on age and experience we'll pay you between $£ 6 \mathrm{~K}$ and $£ 10 \mathrm{~K}$, with generous shift allowance. In addition, we offer free BUPA, staff restaurant and active sports and social club.

Please telephone or write to: - Janice Fishwick, Personnel Department.
I.G.E.N.Y. LIMITED COLNEY STREET,
ST ALBANS, HERTS
TEL: RADLETT 4722

INTERNATIONAL GENERAL ELECTRIC COMPAN OF NEW YORK LIMITED

Dummy Anti-Theft
survellance cameras $\mathbf{2 3 9 . 0 0}$.
Flashing red 'function' light for total realism and theft deterrence. Easy fixing.
Phone your order on
(0274) 871090 or write to: 'Churchill Cavendith Lid' Benhelm Ridings, W Yorks

Advertising used Equipment is fast and easy with List-a-rig. Send $£ 1$ for every 40 words or less for immediate entry. For a copy of the latest list send 2 First Class Stamps.

G3RCQ, 65 Cecil Avenue Hornchurch, Essex

HANIS

CALBRESCO LTD
258 Fratton Road
Portsmouth
Tel: 0705735003
Open 10.30am-6pm 6 days
COMMUNICATIONS EQUIPMENT
COMPONENTS, BOOKS, ACCESSORIES

IINCS

J R W COMMUNICATIONS
15 New Street, Lough, Lincolnshire
Tel: 0507606973
Open Mon-Sat 9am-6pm
Authorised Tandy Dealers.
ICOM, Marine, PM Dealer. Also YAESU supplied Telephone \& communications equipment.

NOIIS

R.A.S.(NOTTINGHAM)

3 FARNDON GREEN; WOLLATON PARK
NOTTINGHAM: TEL: 0602280267
Open: Tues-Fri 10-5.30 Sat 9-5 YAESU: FDK: ICOM: SOMMERKAMP: TONNA HALBAR: WELZ: ANTENMAS \& OWN GWS H.F

PERTH

A X DON
32 Atholl Street, Perth
Tel: 0738-23753
Open: 6 days
COM, YEASU, J-BEAM, SUN, BANTEX, TONO, RSGB Books, Maps \& Log Books. Full range of components. Mail order available - send for price list, quoting Radio \& Electronics World.

AVCOMM LTD
25 Northload Street
Glastonbury
Tel: 0458-33145
Open: 9.30-5.30. Closed Wed

NEXT ISSUE ON SALE 13 JANUARY

G2DYM AERIALS KiLL THAT INTERFERENCE ANTI-TVI ANTI-QRN Data sheets, Large 23p SAE Aerial Guide 75 p Callers for Appointment Tel: 03986-215 G2DYM, Uplowman, Tiverton, Devon

ALTAI MULTTCHARGER £7.95. GOULD NHCAD's 'C TYPE' 1.2 Ah £2.25 ea. 'Fast Charge Vented AA TYPF' 500 mAh 85 p ea. 21/2" 8R SPKR 80 p ea. SWITCHES MOR-NAKE PUSH 30p ea. 10 x VARIOUS NEW SW E2.60. 10 : VARIOUS NEW KNOBS £1.60. 10 y VARIOUS NEW POTS £2.40. CASSEIIES VIDEO VHS BASH E120 £5.50 ea. c1.10 cooc 10 C120 225 MM4007 DIODEs $\xi 1.10$ ea. Co0 \&.j0.C120 2.25 ea .1 H 4007 DIODE $7 p$ ea. TS 4332 p ea. 780 REGS 39p a. RED LED All
All above prices include VAT, please add 60p p\& if order less than $\varepsilon 3.00$
We hope to open a component shop in the next few weeks in the South Birmingham area, please watch press for details.

AUTRONICS LIMTTED

23 Regency Gardens, Yardley Wood Birmingham B14 4JS. Tel: 0214744638

Électioninics
 This method of advertising is available in multiples of a single column centimetre (minimum 2 cms). Copy can be changed every month.
 RATES
 per single column centimetre
 1 insertion £9.65, 3 - £9.15, 6 - £8.65, 12 - £7.75.


```
RADIO AND RTTY BOOKS
CONFIDENTIAL FREQUENCY LIST
, etc worldwide station
GUIDE TO RTTY FREQUENCIES
WORLD PRESS SERVICESFRE,UN, etc..
vorldwide by frequencies. GMT & County
WOrdwide by frequencies.GMT & County
Tel:073882-575
```


RESISTOR PACKS FOR AL PROJECTS

$1 / 4$ watt carbon film resistors $5 \% 1$ ohm to 10 M E24 series. Packs of 10 each value (1690 resistors)玉12.50. Your choice of quantities/values 100 for玉1.00. VAT and Post Free.

GORDON HALLETT

20 Bull Lane, Malden Newton Dorchester, Dorset DT2 0BQ

ROM PROGRAMMING SERVICE FOR BBC MICROS

Send us your favourite/frequently used BASIC program and we will put it into ROM. just plug the ic into the BBC and your program can be loaded instantly using a * command of your choice. Only £9.95 for programs up to 7.5 K
(A number of short programs (total length 7.5 K) can be put onto one EPROM). Send cassette only with program name and command required to

Morley Electronics
1 Morley Place, Shiremoor, Tyne \& Wear NE27 OQS

QSL CARDS. Printed on white or coloured gloss cards. SAE to:

Nutley Press

11 Barons Way, Woodhatch, Reigate Surrey
Tel: Redhill (0737) 71023

SCARBOROUGH

Derwent Radio for communications receivers, New, Secondhand. Good trade-in. Thousands of components, books, magazines.

S Columbus Ravine, Scarborough
Tel: 072365996

TIGER LY9 70 Cms Antenna

New from Ant Products, a superb additon to the range of renowned antenna, the Tiger LY9 for 70 cms . A light weight antenna with a heavy weight signal. Offering a high 11 db gain on a 58 inch boom length. Great for vertical or horizontal mounting. Supplied in matched pairs for the ultimate Oscar station complete with all hardware for mounting with elevation control. Precisely adjustable for angle in order to get the best performance. Also including matching unit for circular polarisation Right or left hand can be chosen polarisation. Right or left hand can be chosen with equal efficiency. Last but not least our famous two year guarantee and full back up
service.

Write now for full details enclosing SAE plus 25p in stamps
Ant Products, All Saints Industrial Estate
Baghill Lane, Pontefract, West Yorkshire Telt 0977700949

LOGIC TUTOR KIT

The easiest \& most practical way to learn abut modern chip technology! Our definitive kit, for beginners \& " O " to " A " level students is top value.

* ONLY E22.50 INC VAT \& P\&P *

Highest quality components, everything

 necessary, inc fibre-glass, drilled PCB; Chips; on-board timer; LED status indicators; keyswitches; quality connectors; solder; Ribbon cables \& full assembly instructions. Cash with order. (Official orders from Schools, Colleges \& Universities Welcome).MICROSTATE LTD, DEPT. REW
5 Northfield Close, Worcester WR3 $7 \times B$

OSCILLOPSCOPE WANTED

Modern solid state dual trace, and Wobbulator, for television I.F. Adjustment

Send details to: S FISHER
29 Queen Square, Glaegow Scotiand G41 2BD

Heathkit 'Hobby Electronics' course and ET 3100 trainer. Mint.

Costs $£ 120$, Sell $£ 70$.

Tel: 01-794 5879 evenings

COMPUTER ICs TMS9928/9929 only
£14.95, 8755 £ $15.95,8086 \mathrm{~d} £ 22.95$, Z80B £5.95
Morley Electronics, 1 Morley Place, Shiremoor, Tyne \& Wear NE27 OQS

VHF Converters $140-150 \mathrm{MHz}, 118-136 \mathrm{MHz}$, $146-174 \mathrm{MHz}$. All mechanically tuned, 10.7 MHz if output. Morfet RF stage. High sensitivity, £9.75 each. SAE data, lists: H Cocks, Cripps Corner, Robertsbridge, Sussex. Tel: 058083-317

Complete, full-size sets, any published service sheets $£ 2$ + large SAE - except CTV's/Music Centres from $£ 3+$ large SAE
Manuals from 1930 to latest. Quotations, free 50p magazine, price lists, unique technical publications, for large SAE
Repair data/circs almost any named TV/CVR, $£ 8.50$ by return.

TISREN

76 Church Street, Larkhall, Lanarkshire ML9 1 HE Phone: 0698883334

THE VINTAGE WIRELESS COMPANY

1914-1960
Radios, amplifiers, service sheets, valves, vintage components, books new \& used, repairs \& restorations, mail order only.

Cossham Street, Mangotsfield, Bristol BS173EN 0272-565472

Vintage Radio's - over 200 always in stock. Open every day. SAE list.
RADIO VINTAGE
250 Seabrook Road, Seabrook, Hythe, Kent CT21 5Ra
Phone anytime (0303) 30693

F M Aerial Smiths Arrow seven complete with Rotator, control, 10' mart and chimney mountings never used $£ 50.00$ complete.

Tel: 0217050223

> THE NEXT ISSUE OF Electionics World
> IS ON SALE 13 JANUARY 1984

There's no doubt that more and more operators enjoy the benefits of transmitting on location.

The Mitsubishi Portable Generators are compact, easy to move, have an auto voltage regulator, $110 / 240$ volt AC or 12 volt DC (8.3 amps) output, speed control, frequency meter, circuit breaker and recoil starter
Mr. Reeves of Waterlooville, Hampshire (Call Sign G8VOI) is one of our many satisfied users. His order to us included the following comment:
66 Thank you very much for the information supplied today on Mitsubishi Generators by your representative at the Sussex Mobile Radio Rally at Brighton.

Having considered the specifications of these compared to both Honda and Yamaha types, this is by far the best for my needs in operating portable radio equipment.

Please supply: $1 \times$ off Mitsubishi Portable Generator 1.5kVA. 99

... So if you want reliable mobile transmitting take a close look at the 1.5 and 2.0kVA Mitsubishi Portable Generators and fill in the coupon now.

	k despatch $10 p$ each.								
CONTECH ELECTRONICS				DEPT. RIEW1 205 STURDEE ROAD LEICESTER LE2 9FY Telephone: (0533) 779578			*SAME DAY DESPATCH* *COMPETITIVE \& RELIABLE *		

Rodlo \＆Electronics World－ The monthly communications， electronics \＆
computers magazine
Don＇t take a chance on being able to get your copy

AVOID DISAPPOINTMENT Place a regular order with your newsagent

Should you have any difficulties obtaining a copy，phone（0277） 219876 or write to Circulation
Department，Rodio \＆
Electronlcs World，
Sovereign House，
Brentwood，Essex CM14 4SE

I NEWSAGENT ORDER FORM

FOR A PROFESSIONAL FINISH

Use Strip－fix Plastic PANEL SIGNS

Set 4 －Black wording
Set 3 －White wording
Over 1，000 words and symbols，covering more than 300 terms，in each set of 6 sheets．

Set 5 －Dials

6 sheets containing one large and two medium scales，large horizontal tuning scale， frequencies， 12 control panels．

Easy to fix．Stapled in booklet form to hang above workbench
Only £1．50 per set，all 3 sets for only $£ 3.00$ inc VAT \＆postage

Available only from：
DATA PUBLICATIONS

45 Feading Avenue，Rayners Lane，Harrow，Middx HAZ 9RL

ADVERTIING RATES \＆INFORMATION

DBPE A AD			series rates for consecutive insertions		
depth $\mathrm{mm} \times$ width mm	ad space	1 issue	3 issues	6 issues	12 issues
61×90	1／8 page	£91．00	£86．00	£82．00	£73．00
128×90 or 61×186	1／4 page	£160．00	£150．00	£145．00	£125．00
128×186 or 263×90	1／2 page	£305．00	£290．00	£275．00	£245．00
263×186	1 page	£590．00	§560．00	£530．00	$¢ 475.00$
263×394	double page	£ 1140.00	§1070．00	£ 1020.00	¢910．00

$0 ⿴ 囗 ⿰ 丿 ㇄$		ur rates ude cost arations	series rates for consecutive insertions		
depth mm x width mm	ad space	1 issue	3 issues	6 issues	12 issues
$\begin{aligned} & 128 \times 186 \text { or } 263 \times 90 \\ & 297 \times 210 \end{aligned}$	1／2 page 1 page	$\begin{aligned} & \text { £420.00 } \\ & £ 810.00 \end{aligned}$	$\begin{aligned} & £ 395.00 \\ & £ 760.00 \end{aligned}$	$\begin{aligned} & £ 375.00 \\ & £ 730.00 \\ & \hline \end{aligned}$	$\begin{aligned} & £ 335.00 \\ & £ 650.00 \\ & \hline \end{aligned}$

SPECIAL POSLHONS

```
Covers
Bleed: Matter: 10% extra [Bleed area = 307\times220]
Facing Matter: 15% extra
```


CONDITIONS \＆INFORMATION

```
SERIES RatES
Serles rates also apply when larger or
Sarles rates also apply when larger or 
An ad of at least the minimum space must
appear in consecutive issues to qualify for
M
Previouses.
no further copy is received.
A 'hold ad' is acceptabte for maintaining your
series rate contract.This will automatically be
inserted if no further copy is received.
Display Ad and Smali Ad series rat
contracts are not interchangeable.
```

If series rate contract is cancelled．the
advertiser will be liable to pay the adveriser will be liable to pay

COPY

Except for County Guides copy may be changed monthly． No additional charges for typesetting or illustrations（except for colour separations）． For illustrations iust send photograph or For illustrations just send photograph or
artwork．
Colour Ad rates do not include the cost of Colour Ad rates do not include the cost of
separations．

PAYMENT

All single insertion ads are accepred on a pre－ payment basis only，unfess an account is held．
Accounts will be opened for series rate Accounts will be opened for series rate
advertisers subject to satisfactory credit references． by the 15 th of the month following invoice date．
FOR FURTHER INFORMATION CONTACT
Radio \＆Electronics World Sovereign Radio \＆Electr
（0277） 2198,6

Overseas payments by international Money Commission to approved advert ising agencies is 10% ．
CONDITIONS
A voucher copy will be sent to Display and Colour advertisers onty ions．available on request

* Single-key selection of all major multi-key functions.
* Plugs directly into Spectrum expansion port and extends port for other peripherals.
* Can accept Atari-type joysticks (optional extra).
* Absolutely no soldering or dismantling of Spectrum.
\star Available in kit-form or ready-built.
The kit is sold in three parts - the Keyboard Main Kit which allows you to make your own arrangements for connection to the Spectrum - the Adaptor Kit which contains the extension board and socket for the expansion port and the cable between the

extension board and the keyboard and the Case Kit which includes all the necessafy mounting hardware.
Order As LK29G (Keyboard Main Kit) Price £28.50 LK30H (Adaptor Kit) XG35Q (Case)
Full construction details in Projects Book 9.
Also available ready-built for direct connection and including case. Order As XG36P (Spectrum Keyboard) Price $£ 44.95$

HEATHKIT SUPERB QUALITY KITS BRING THE EXCITEMENT BACK INTO AMATEUR RADIO

Experience the ultimate satisfaction of talking to someone on the other side of the world with a transceiver you actually built yourself. Just look at the wealth of state-of-the-art features on this quality HF SSB/CW Transceiver Kit. (HW-5400)

* PLL synthesised stability gives high accuracy
* Covers all amateur bands 80 m to 10 m
* Output 100W PEP (80 W on 10 m).
* Frequency display with resolution to 50 Hz .
\star Split memory permits instant channel selection.
\star Excellent VSWR foldback protection.
* Excellent image \& I.F. rejection and I.F. shift tuning $\pm 600 \mathrm{~Hz}$.
* VOX facility eases sideband operation.
* Optional frequency entry keyboard.
* Optional 4-pole sideband filter.

Plus a whole host of other excellent features.
Other Heathkit Amateur Radio Kits include:

- 2 kW PEP Load Resistor (HN-31A) - SSB/CW/RTTY Active Audio Filter (HD-1418) - QPR Transceiver (HW-8) • Antenna Co-ax Switch (HD-1234) • HFIVHF Wattmeter \& SWR Bridge (HM-9) • 50W Antenna Tuner with 4:1 Balun (HFT-9) • Morse Code Practice Oscillator (HD-1416) • Dual HF Wattmeter (HM-2140A) - Solid-State DIP Meter (HD1250) - Ultra-Pro CW Keyboard (HD-8999) • Micromatic Memory Keyer (SA-5010).
Full details of all these quality kits in the Maplin catalogue. For details of the complete Heathkit range send 50 p for the Heathkit full-line international catalogue.
Order As HKOOA.

Maplin's Fantastic Projects

Full details in our project books. Price 70p each.

In Book 3 (XA03D) ZX81 Keyboard with electronics - Stereo 25W WOSFET Amplifier - Doppler Radar MOSFET Amplifier - Doppler Radar
intruder Detector - Remote Control Intruder Detector
for Train Controller
for Train Controler
in Book 4 (XA04E) Telephone Exchange for 16 extensions. Frequency Counter 10 Hz to 600 MHz Ultrasonic Intruder Detector - I/O Port for ZX81 - Car Burglar Alarm. Remote Contol for 25 W Stereo Amp. In Book 5 (XA05F) Modem to European standard - 100 W 240 V AC Inverter - Sounds Generator for ZX81 - Central Heating Controller - Panic Button for Home Security System. Model Train Projects - Timer for External Sounder

In Book 6 (XA06G) Speech Synthesiser for ZX81 \& VIC20 • Module to Bridge two of our MOSFE amps to make a 350W Amp - ZX81 Sound on your TV - Scratch Filter
Damp Meter - Four Simple Projects Damp Meter - Four Simple Projects

In Book 7 (XA07H) Modem (RS232) Interface for $2 \times 81 /$ VIC20 - Digital Enlarger Timer/Controller - DXers Audio Processor - Sweep Oscillator Audio Processor Sweep
CMOS Crystal Calibrator.
In Book 8 (XAOBJ) Modem (RS232) Interface for Dragon and Spectrum Synchime - I/O Ports for Dragon Electronic Lock - Minilab Power Supply - Logic Probe - Doorbell for
the Deaf the Deaf

In Book 9 (XA09K) Keyboard with electronics for ZX Spectrum - InfraRed Intruder Detector \bullet Multimeter to Frequency Meter Converter - FM Radio with no alignment - Hi-Res Graphics for $Z \times 81$ - Speech Synthesiser for Oric VIC Extendiboard •ZX81 ExtendiRAM Dynamic Noise Limiter for Personal Dynamic Noise Limiter for Personal
Cassette Players - TTL Levels to Cassette Players © TTL Levels to
Modem/RS232 Converter © Logic Modem/RS232 Converter © Logic
Pulser - Psuedo-Stereo AM Radio Pulser - Psuedo-Stereo AM Radio
Ni-Cad Charger Timer Subtractor 'Syndrums' Interface Microphone Pre-Amp Limiter.

Post this colupon now for your copy of the 1984 catalogue. Price $£ 1.35+30$ p post and packaging. If you live outside the U.K. send $£ 2.20$ or 11 International Reply Coupons. I enclose $£ 1.65$

Name
Address

Mail Order. P.O. Box 3, Rayleigh, Essex SS6 8LR. Tel: Southend (0702) 552911. Shops at: 159-161 King Street, Hammersmith, London W6. Tel: 01-748-0926. • 8 Oxford Poad, Manchester. Tel: $061-$ 236-0281. - Lynton Square, Perry Barr, Birmingham. Tel: 021-3567292. - 282-284 London Road, Westclitt-on-Sea, Essex. Tel: 0702 554000. - 46-48 Bevois Valley Road, Southampton. Tel: 070325831. All shops closed all day Monday.
All prices include VAT and carriage. Please add 50 p handling charge to orders under $£ 5$ total value (except catalogue).

Featured on these pages are details of the latest products in communications, electronics and computers. Manufacturers, distributors and dealers are invited to supply information on new products for inclusion in Product News
Readers, don't forget to mention Radio \& Electronics World when making enquiries

NOVEL SUB-MINIATURE MICRO SWITCH

The new SS-01 series of sub-miniature microswitches are based on a novel contact material - an alloy of platinum, gold and silver known as PGS. It is claimed that the use of this material, together with the 'advanced' cross bar design of the contacts, ensures 'ultra reliable switching of voice and data to a degree never before thought possible in microswitches'.

The SS-01 is available from IMO Omron in a variety of

styles and with a range of actuators covering (among others) the standard operating force of ~ 90 150 gm ; the low operating force of $\sim 30-50 \mathrm{gm}$; and super low operating force of $\sim 10-25 \mathrm{gm}$. Connection is via PCB solder terminals or 110 push-on tabs and the operational life is quoted as being in excess of 10^{7} operations.

IMO Precision Controls Ltd, 1000 North Circular Road, London. NW2 7JP

SOUND BROADCAST EQUIPMENT

Series 8000, the new range of sound broadcast equipment from Whiteley Electronics, comprises high technology amplifiers and a range of ancillary equipment

for broadcasting speech, music, time signals and alarms. The series incorporates a range of amplifiers offering audio power at up to 20,60,120 or 250 W , along with slave amplifiers of $60,120,250$ and 500W which could boost the output to 1 kW or more. All these amplifiers can fit into standard 19-inch racks. In addition, there is a 'comprehensive' range of pre-amplifier modules available.
The range is expected to be of particular value in such commercial, industrial or institutional premises as offices, factories, shops, supermarkets and hospitals.

Whiteley Electronics Ltd, Victoria Street, Mansfield, Notts NG185RW (Tel: Mansfield 24762).

NWW MICROPHONES

Comtech has announced the introduction of a new series of desk microphones designed for use as part of communications systems and pagers. It thus comes with a wide range of inserts, themselves having a variety of impedances. The values have been chosen to 'tailor' their audio response to the requirements of $A M, F M$ and SSB radio telephones, line communications, public address systems and paging equipment.
The microphones of this DB-1 range should thus be ideally suited to the requirements of large-scale users of radio of line communication systems. 'Push-to-talk' or'on-off' switching is standard, as is provision to key external circuits. Options include

integral pre-amplifiers or line amplifiers, 'busy' signal lights and 'time-out' timers, among others.

Communication Technology Ltd, 279 Addiscombe Road, Croydon CR0 7HY (Tel:01-656 3631).

WHISPRER GLIDE FADERS

Variohm Components is the UK agent for the new 'Whisper Glide' audio fader from Waters Manufacturing Inc. pictured here. This uses a stable, glass hard resistance element together with a precious metal wiper to promote long service life without any contact noise. At the same time, Waters 'exclusive curve-shaping correction technique' has

TRANSISTORS				
BC107/8/9 -	BC184L		BFY50,51,52	- 20p
BC147/8/9 - 10p	BC212,21,212L	- 8p	BFX88	- 15p
BC157/8/9 - 10p	BC327,337	- 10p	BSX19	- 14p
BC547/8/9 - 7 p	BD135,136	- 25p	BSX20	- 15p
BC557/8/9 - 7p	BD137	-25p	2N2926	- 7p
BC182L - 8p	BF195,7	- 10p	2N3055	-50p
BC183 - 8p	BCY70	- 15p	TIP31A,32	- 25p
Carbon Film resistors 1/4W 5\% E24 series 0.51R to 10MO 1 1p				
100 off per value - 75p, even hundreds per value totalling $1000 \ldots ~ ¢ 7.00 ~$				
Mixed metal/carbon film resistors $1 / 2 \mathrm{~W}$ E12 series 1 RO to 10 MO \qquad $.11 / 2 \mathrm{p}$ Miniature polyester capacitors 250 V working for vertical mounting 01, 015, 022, 033, 047, 068 4p. 015 p. 015, 022 6p. $0.33 \& 0.47$				
Mylar (polyester) capacitors 100 V working E12 series vertical mounting 1000p to 8200 p - 3 p. 01 to $068 \mathrm{mfd}-4$ p. 0.15 p. $0.12 \& 0.15$.				
Subminiature ceramic plate capacitors 100V wkg vertical mounting. E12 series				
2\% 1.8 pf to 47 pf -3p. $2 \% 56 \mathrm{pf}$ to $330 \mathrm{pf}-4 \mathrm{p} .10 \% 390$ p-4700p 4 p				
Polystyrene capacitors 63V working E12 series long axial wires 10 pf to 820 pf - 3p. 1000 pf to $10,000 \mathrm{pf}$-4p. 12,000 pf \qquad				
DIODES (p.i.vJamps)				
75/25mA 1N4148 2p. 800/1A 1N4006 6p. 400/3A 1N5404 14p. 115/15mA OA916p 100/1A 1N4002 4p. 1000/1A 1N40077p. 60/1.5A S1M1 5p. 100/1A bridge \qquad 25p				
400/1A 1N4004 5p. 1250/1A BY127 10p. 30/45mA OA90 6p. 30/15A OA47 8 8p				
Zener diodes E24 series 3 V 3 to 33 V 400 mW - 8 p . 1 watt12p				
20 mm fuses 100 mA to 5A Q/blow 5p. A/surge 8p. Holders p.c. or chassis 5 p				
High speed p.c. drills $0.8,1.0,1.3,1.5,2.0 \mathrm{~m}$ - 22p. Machines 12 V d.c. $£ 6.00$ HELPING HANDS 6 ball joints and 2 croc clips to hold awkward jobs £4.50				
AA/HP7 Nicad rechargeable celis $£ 1.50$ pair. Universal charger unit $£ 6.00$				
Glass reed switches with single pole make contacts - 8p. Magnets 12 p				

TRANSISTORS

-

C212,21,212L
BC547/8/9 - 7p BD135,136
BC557/8/9 - 7p BD137

- 8 p BFX88
-20 p
-15 p
-25p BSX20
$\mathrm{BC} 183-8 \mathrm{~B}$ BCY70 -10 p 2 N 3055
Carbon Film resistors $1 / 4 \mathrm{~W}$ 5\% E24 series 0.51R to 10MO ... ip
100 off per value -75 p, even hundreds pervalue totalling 1000 $£ 7.00$

Metal Film resistors $1 / 4 \mathrm{~W}$ 1OR to 1 MO 5\% E12 series - 2 p, 1% E24 series3p
Mixed metal/carbon film resistors $1 / 2 \mathrm{~W}$ E12 series 1 RO to 10 MO
...11/2p
01,015 ...8p

Vertical mounting

Subminiature ceramic plate capacitors $\mathbf{1 0 0 V}$ whg vertical mounting. E12 series

Polystyrene capacitors 63V working E12 series long axial wires

DIODES (p.i.vJamps)

75/25mA 1N4148 2p. 800/1A 1N4006 6p. 400/3A 1N5404 14p. 115/15mA OA91
.. $.6 p$
$25 p$
400/1A 1N4004 5p. 1250/1A BY127 10p. 30/45m A A A90 6p. $30 / 15$ A OA 47
$.8 p$
Zener diodes E24 series 3 V 3 to 33 V 400 mW -8p. 1 watt
dis
2p 20 mm fuses 100 mA to 5 A Q/blow 5 p. A/surge 8 p . Hoiders p.c. or chassis HELPING HANDS 6 ball joints and 2 croc clips to hold awkward jobs £4.50 AA/HP7 Nicad rechargeable cells $£ 1.50$ pair. Universal charger unit $£ 6.00$ Ranges of aluminium \& tantalum electrolytic caps at competitive prices. All prices are inclusive of VAT. Postage 20p (free over £5). Lists Free

THE C. R. SUPPLY CO 127 Chesterfield Rd, Sheffield S8 ORN Return posting

New for 48 K Spectrum split screen version type ahead buffer POA
BBC-B E9.20 VIC-20

PET $\quad \mathbf{8 7 . 5 0} \quad 3 \mathrm{~K}$ Version $\mathbf{8 9 . 0 0}$
MPTU-1 RTTY/AMTOR terminal unit for use with all
computer based systems.
Morse Tutor programs all at $\mathbf{\Sigma 5 . 0 0}$ each for:-
BBC-B * DRAGON 32 *TRS-80 * SPECTRUM \star
MORE BBC PROGRAMS
CW.QSO. Complete Rx/Tx program $\mathbf{\Sigma 7 . 5 0}$
MULTIFILE. A versatile filing system................... $\mathbf{\Sigma 1 0 . 2 5}$
TELLTEX. 21-page VIDEO MAGAZINE $\mathbf{\Sigma 1 5 . 0 0}$
All prices include VAT \& postage. Please allow 14 days delivery. Write for further details of these and other programs.
WANTED Amateur Radio. Technical \& Business software for all popular home micro's.

73 FROM AMERICA!

IN YOUR HOME, EVERY MONTH, FOR LESS THAN £17!

Now, 73: Amateur Radio's Technical Journal is available to the readers of Radio \& Electronics World at a special introductory rate of under $£ 17$

That's right. 73 magazine, a leader in the ham radio and electronics field for over 23 years, is coming to the United Kingdom.
73 is packed with construction projects. From antennas to transmitters to test equipment, 73 gives you 146 pages of easy-tobuild designs for your building pleasure.

73 is state-of-the-art. Get the latest US news on new products, ham satellites, microcomputer applications, and digital communications.

73 is international. From Poland to Papua New Guinea, our 31 foreign correspondents report
to 73 readers in more than 85 countries!
Order your subscription to 73 now and take advantage of our special introductory offer.

OK! I want a subscription to 73: Amateur Radio's Technical Journal.

\square Please send me 12 issues of 73 for US $\$ 25$ (that's less than $£ 17$ a year!), surface delivery.
\square I have enclosed a check or money order. US funds drawn on US bank.
\square Please bill me.
Name
Address
\square Please send me 12 issues of 73 for US\$55, airmail delivery
\square Please charge my credit card
\square American Express \square Master Card \square VISA

Signature \qquad

Address \qquad
Country
Post Code

73: Amateur Radio's Technical Journal PO Box 931, Farmingdale, NY 11737, USA.

PRODUCT NEWS

been built-in, this being a way both of reducing variations between units and of ensuring proper tracking in all stereo and multi-channel mono applications. In addition, the 'Whisper Glide' uses conductive plastic elements that permit a smoother action, a feature that should be welcome among today's recording and broadcasting industries.
Another advantage is that
the glide can readily be cleaned (i.e. special tools and procedures are not required) while the plastic (MystR) is anyway impervious to all common contaminants. Moreover, the fader is equipped with industry standard gold-plated multipin connectors for quick installation or replacement.

Variohm Components, The Cattle Market, Watling Street,

Towcester, Northants NN12 7HN (Tel: Towcester 51004).

SCOTCHFLEX SOCKETS

3M now has Scotchflex sockets with centre bump polarisation available across the full range of 10 -way to $60-$ way. These versions are said to offer'all the benefits of 'Click' style polarisation with the extra facility of the centre bump for applications requiring centre slot polarising'. They will mate with Scotchflex 'Click'
headers, low profile headers and plug connectors. The proven 3 M beryllium copper ' U ' element ensures gas tight corrosion-free contact.
The new sockets are supplied with either openend or closed-end covers which are secured to the body with durable locking metal J-clips.

Electronic Products Group, 3M United Kingdom PIc, 3M House, PO Box 1, Bracknell, Berks RG121JU(Tel: Bracknell 58743).

BUILD A BETTER AMPLIFIER!

How can you own a top class HiFi amplifier, of comparable standard to Naims, Meridians, Quads etc., for an outlay of less than £250? - Simple! Build it yourself - with a Crimson kit.

It is not necessary to spend a small fortune to obtain true Hifi performance. Crimson Kits offer all the features and sound quality of the most esoteric amplifiers available and their ease of assembly ensures that they work first time and continue to do so. Not only do Crimson Kits offer outstanding value, but they also have the flexibility to adapt to any users needs. All the P.C.B.'s are ready assembled and tested (they are not "potted" as we believe disposable modules are rather extravagant!) therefore constructing a kir is pleasurable in itself and, once built, wiil give years of untroubled service. So, whether you use a simple record player or a compact disc, you can be sure to get the most fromyour sysle . . in their review of the CK1010/1100: "I can say no more than that for $£ 250$ it is a bargain and one that will become the reference point for kit amplifiers from now on." Need we say more?

PRICES

CK1010 - STEREO PRE-AMPLIFIER (moving magnet, tape, tuner input) takes power from any CK power amp or separate p.s.u. type
£121.00
CK1080 - STEREO POWER-AMPLIFIER 40 watts R.M.S./Chane
ع134.00
CK1 100 - STEREO POWER-AMPLIFIER 100 watts RMS /Chanel
ع151.00
MC2K - Moving coil add on kit for CK1010
£25.00
MC2K - Moving coil add on Kit for CK
£20.00
CRIMSON also supply power amp, pre amp and electronic crossover modules, power supplies and hardware - too much to list here - but on receipt of an S.A.E. we will be happy to supply full details.

TO ORDER Send C.W.O. or quote your access card no (phone orders accepted) Crimson Products are also available from Bradley Marshall Ltd, 325 Edgeware Road, London

-
 MANUFACTURERS OF PROFESSIONAL, DOMESTIC \& INDUSTRIAL AMPLIFICATION

PHOENIX WORKS, 500 KING STREET, LONGTON, STOKE-ON-TRENT, STAFFORDSHIRE. ST2 1EZ 0782330520

MODELA AVAILABLE Y299 inc．VAT
This is the best microcomputer curfently on the market 32 K RAM． 32 K ROM． modes of operation fulf colour full－size keyboard internal expansions such as
disc intertace speech symhesizer．Fconet intertace－In short．is a personat compuler cap abice ol expanding info a small business system BBC Microcomputer Model θ §348．VAT $£ 399.00$ BBC Mod B．diskintertace BBC Mod B－Econet niterlace BBC Mod B－disk and Econet interlaces 8BC 100 K disk dive
B8C dual 800k disk
 B8C dual 800 K dish dive

system
BBC Teletext recenver（Aug）
BBC cassette eceordel and lead

Fitting charge tor A to B upgrade k ．
16 K me mory upgrade kit
Games paddies
12 Monoch ome monitor incl cable
16 Colout mentor
$16^{\text {Colout m }}$
Econet intertace iffee liting）
BBC disk manual－tormating os
Parallef printer cable
BBC word processor（view）
BBC Fourth language cassette
BBC Lisp language cassente
100\％BBC COMPATIBLE MITSUBISHI ANO TEAC SLIMLINE OISK DRIVES

These dives are supplied reaoy caseo with all the necessary cables．Lormating
program and user disk system guide
There are some useful uththes included eq Epson Screen Oump Program， these drives is very low 102 A typ at -1 ？ 2 V 04 V yp at 5 V per drivel Power is taken trom the BBC computer
Single drive 100 K 40 tracks
Oual arive 200 k 40 tracks
Single drive 400 K 80 tracks
$\begin{array}{ll}\text { 1779．VAT } & \text { 2205．85 } \\ \text { 329．VAT } \\ \text {［378 } 35\end{array}$
〔249．VAT $\quad 2286.35$
Dual drive 800 k 80 tracks
〔259－VAT 5297.85
Oual drive 900 K 4080 riacks 5 witchable
＊
COMPLETE WORO PROCESSOR FOR ONLY £1，099＋VAT

This package consists of BBC Microcomputer View wordprocessor 400 k Wheei printer and tigh resolution 12 Green montor Juk 6100 ：8CPS Daisy package can be supplied with components of yout own cnoice e g 800k disc drive or a different panler Please phone us for a price to：your particular requirement
Special package deal
PROFESSIONAL MONITORS

computers
＊ 18 MHiz band wath．high resolution 889 －VAT－£102．35
＊ 15 MHz band width normal resolution
〔69．VAT－ 179.35
COLOUR MOMTTORS
＊M：CROVITEC RGB Inpul 14 －monitor Suppileo with RG8 lead tor BBC
 lead ＊SANYO SCM 14M Medium res 14.600 dols．RGB input supplied with RGB
＊SANYO SCM 144 Highres 14800 dots RGB inout supaled with RGB

Akhter Instruments Limited

DEPT RE，EXECUTIVE HOUSE，SOUTH RD， TEMPLEFIELDS，HARLOW，ESSEX CM20 2BZ，UK

PRODUCT NEWS

HIGH-SYMMETRY TELEPHONE FILTERS
 Belling Lee Intec, the

 RFI/EMC specialist within the Cambridge Electronic Industries group, has announced a new range of high-symmetry telephone line filters which have already been accepted for use in approved modem circuits by British Telecom and its Dutch counterpart, Nederlands PTT. These filters were developed in the light of the data error rates that have been experienced when conventional audiofrequency filters are included with modems in circuits for passing data over telephone lines. Studies by Belling Lee Intec and the Dutch Post Office suggested that the problem lay in imperfect symmetry between the lines: hence the development of high-symmetry devices.At present the range comprises two 2 -line filters and two 32 -line filters, one fitted with transient suppressors. They are believed to be the only such

filters available for this kind of data transmission. Moreover they can be used in EMC and Tempest applications, while those fitted with transient suppressors on each line are suitable for use in EMP protection systems.

Belling Lee Intec Ltd, Intec House, 540 Great Cambridge Road, Enfield. EN13QW

COMMUNICATION
 SERVICE MONITOR

The FM/AM 500 'Micro
Monitor' pictured here is a member of the latest generation of IFR communication service monitors. It offers the following features as standard: FM signal generator; AM signal generator; sensitive $2 \mu \mathrm{~V}$ receiver for AM, FM and SSB; dual audio generator; frequency error meter; autoprotected generator output of up to $150 \mathrm{~W} ; 0.5 \mathrm{ppm}$ TCXO; microphone input; and audio
output. But perhaps its strongest selling point is that the Micro-Monitor is lightweight—weighing just 191bs with the internal battery fitted- and that this has been achieved without any loss of performance, dependability or features. Moreover, the unit is readily portable and rugged.

Fieldtech Heathrow Ltd, Huntavia House, 420 Bath Road, Longford, Middx. UB7 OLL.

PRODUGT NEWS

MICROWAVE SWICHES
Walmore Electronics' Microwave Components Division is marketing a range of Dow-Key microwave switches designed for operation between DC and 18 GHz . These are available as eithersingle-pole doublethrow (SPDT) or transfer switches. In the former category are the 401designed to carry out broadband and high frequency, high isolation switching (break before make) - and the 402, which is designed to give high performance in microwave

systems up to 12.4 GHz . The latter is particularly well suited to earth station polarisation switching or any application where high isolation and low VSWR are required.
The transfer switches are four-port, providing a pair of independent coaxial paths in each position. Again, there are two versions - the 411, a failsafe switch for use over the complete range of $D C$ to 18 GHz , and the 412 failsafe or latching transfer switch, designed for high power applications from DC to 12.4 GHz .

Walmore Electronics Ltd, 11-15 Betterton Street, London WC2H 9BS (Tel: 01836 1228).

TO RROGRAM PROMS

The BP5 is a new module designed specifically to program Signetics bipolar PROMs which has been launched by GP Industria Electronics. This low cost unit is for use with GP's range of EPROM programmer/ emulator units but, even with the most expensive of these, the overall cost is still less

than half that of any comparable unit on the market.

In addition to programming, the BP5 is able to perform a variety of other functions such as checking that the device's fuses are intact, comparing the stored RAM data with the PROM data, copying a selected device into RAM and making copies from a master bipolar PROM. The unit has five panelmounted sockets to accommodate the different sizes of PROM in existence.

GPIndustrial Electronics, Unit E, Huxley Close, Newnham Industrial Estate, Plymouth, Devon PL74JN (Tel: Plymouth 332961).

ANTISSTAIC 'TAP MAT'
The major generator of the static charges that can play havoc with the operation of one's personal computer is the human body, walking on carpets or wearing synthetic

clothing. There are several anti-static floor rugs and sprays available but these are ineffective when rubbersoled or synthetic shoes are worn. However, Inmac's new 'Zap Mat' is designed to cope with this problem by removing the static from the operator before he orshe touches the sensitive piece of electronic equipment resting on the mat.
The removal of static is achieved with the aid of 3 m of grounding cord attached to a convenient metal object such as a radiator, and it should take less than one second. However Inmac recommends that any operator touches the mat for five seconds to make absolutely certain.

Inmac (UK) Ltd, Dary Road, Astmoor, Runcorn, Cheshire WA71PZ (Tel:Runcorn 67551).

ADORANCING DMW
 The new Anders SK 6330 compact multimeter is said to

'combine a high performance specification with ease of use and a high degree of protection'. Notonly does it have 'a fully captioned digital readout' but AC/DC voltage/current/resistance measurements are essentially available at the press of a button. The built-in

custom LSI circuit automatically selects the optimum range for any voltage or resistance reading, (a feature that can be manually overriden if so desired) whereupon that reading is displayed together with the captions relating to selected function and range. Additional captions can be used to indicate auto/manual mode, DC input polarity or low battery power.
The ranges of measurement available are $200 \mathrm{mVDC}-1000 \mathrm{VDC}, 2-600 \mathrm{VAC}$, and $200 \Omega-2 \mathrm{M} \Omega$, together with $20 \mathrm{~mA}, 200 \mathrm{~mA}$ and 10 A manually selected AC/DC current ranges. The input impedance is $10 \mathrm{M} \Omega$ and the basic instrument accuracy is quoted as being 0.5% of the reading. Otherfeatures include a 'zero adjust' function (that can be used to give difference readings or to null out test lead resistance, for example), an in-built buzzer (used to warn of input overrange and to perform audible continuity checks) and shrouded test lead connectors. The instrument itself is protected up to 750 Vrms/1000Vdc, while dual fuse protection is provided on the resistance and mA ranges.

Anders Electronics Ltd, 48-56 Bayham Place, London NW1 OEV (Tel:01-3879092)

FF ENFIELD ELECTRONICS 208 Baker Street, Enfield, - Middlesex. EN1 3JY. Tel: 01-366 1873

Every 90 seconds a home in Britain is burgled Guarding your home is common sense - Act NOW - safeguard your home with "On Guard" - it could be your turn next!!
\square All doors and windows protected
[] Built in fire alarm system
\square Panic alarm on fire and burglar system
\square Simple two wire system
\square Tamper proof
$\square 14$ day protection against mains failure
\square Entry and exit delay
\square External siren or bell alarm (with timed cutout to avoid neighbour disturbance)
\square Constant display of system status
[] Continuous internal siren until reset
\square Available to suit any household

Tel: Erith (03224) 3374024 hour service
Chariton Elecfronic \& Electrical Developments Ltd.
Unit S17 Europa House, Fraser Road, Erith, Kent DA8 IQL Telephone: Erith 33740
Phone or write now for further details

nemer
-2

PM COMPONENTS LTD
VALVE \& COMPONENTS SPECIALISTS

INTEGRATED CIRCUITS				
SEMIICONDUCTORS				
DIODES			CRT TUBES	
			A selection available. Prices on request. 3BPI £13.50 D10.210GH $£ 45$ $\begin{array}{llll}\text { DP7. } 6 & £ 35 & \text { DP7.11 } & \text { £59 } \\ \text { E35 }\end{array}$ M17-151GVR $£ 220$	
			DATA \& EQUIV. BOOKS	

PHONE
 0474813225
 P. M. COMPONENTS LTD
 TELEX
 966371 3 LINES MEOPHAMGREEN, MEOPHAM, KENT DA13OQY PM COMP

P. F. RALFE ELECTRONICS
 10 CHAPEL STREET, LONDON NW 1.
 TEL: 01-7238753

We are a well-established firm specialising in the sale of electronic test and measuring equipment on a new, surplus and secondhand basis. Should you have any requirement for test kits now, or in the future, we would be very pleased to respond to your enquiry. Our equipment is sold in fully operational condition and carries a 90 -day warranty. To further safeguard our mail-order customers, we run a 7 -day tuill refund policy, in addition of course to your statutory rights. We always need for stock, good quality equipment - 'scopes, signal generators, Avo's etc., please let us now if you have any redundant kit.
*****DECEMBER SPECIAL OFFERS******
ALL INDICATED PRICES, FOR THIS MONTH ONLY NOW INCLUDE VAT AND CARRIAGE

* COMPUTER PERIPHERALS *

8" FLOPPY DISK DRIVES
DRE (Data Recording Equipment) Model 7100 . Single-sided floppy disk drives in stock now at vastly reduced prices. Supplied BRAND NEW in manufacturers sealed cartons. CAPACITY 0.8 MBBytes . Hard/Soft sectoring ANSI/ECMA Standards compatible.
 E10 VAT.

* 8" WINCHESTER DRIVES *

United Peripherals type 3100 Minidisc Drives CAPACITY over 19MBBytes. Power supply requirements $5 \mathrm{~V} . \mathrm{DC}$ at $4 \mathrm{~A}+24 \mathrm{~V}$. DC at 3 A . Measures $17 \times 8 \times 7^{\prime}$. Limited quantity only available in BRAND NEW condition. $£ 250$ each + VAT. Carriage details as above.

* 'DOLBY' NOISE WEIGHTING FILTERS *

Cat No 98A. Noise weighting filters for CCIR/ARM signal-to-noise ratio measurements. As new units. $£ 40$ each ($+£ 1$ p\&p)

* * CONSTANT VOLTAGE TRANSFORMERS * *
-ADVANCE VOLSTAT: Type. Model MT140A. Mains input 190-260V AC. Output 230 V AC a 150 W . Price each E20 + VAT + E 2 carriage.

4000-SERIES HARD DISK DRIVES
Data Recording Equipment 4000-Series exchangeable IBM-type 5440 disks. Units available
ex-stock and BRAND NEW. Please call us for our lowest ever quotation.
BRUELL \& KJAER
Model 2006 Heterodyne Voltmeter, AM/FM/
Voltage measurements to 240 MHz

* ROTRON INSTRUMENT COOLING FANS *

Supplied in fully tested excellent condition, as foliows:
 Also small quantity $115 \mathrm{~V} 41 / 2 "$ size, brand new $\mathbf{£ 5}$. Postage each +50 p please.

RECHARCEABLE BATIERIIS

PRIVATE AND TRADE ENQUIRIES WELCOME
Full range available to replace 1.5 volt dry cells and 9 volt PP type batteries, SAE for lists and prices. £1.45 for booklet, 'Nickel Cadmium Power'.

* TRADE PRICES FOR SCHOOLS \& COLLEGES * SANDWELL PLANT LTD 656 CHESTER ROAD, ERDINGTON, BIRMINGHAM B23 5TE
Tel: 021-373 9487, Hitchin 733254

FREE COMPREHENSIVE CATALOGUE!

- LOWEST DISCOUNT PRICES - HIGEST QUALITY EQUIPMENT
- FREE DIY DESIGN GUIDE
- FULLY ILLUSTRATED
- MICROCHIP CIRCUITRY
- QUICK DESPATCH SERVICE
- FULL INSTRUCTIONS SEND SAE OR PHONE
C-TBC SECURMY, Dept REW
60 Market St, Wigan WN1 1HX
Telephone (0942) 42444

B.N.O.S.

ELECTRONICS

The once and for all batteries!

How much do you spend each year on batteries for torches, cassette recorders, radios, shavers, children's toys. flash guns, and lOI other things?
HOW MUCH DO THEY COST YOU OVER FIVE YEARS?
The alternative - buy a complete NiCAD system from us and save $£$'s. We can supply, from stock, quality batteries from one or more of the following companies: Ever Ready, Saft and Hitachi, at unbelievable prices and a complete range of chargers.

ALL THESE PRODUCTS CARRY A FULL YEAR'S GUARANTEE
RECOUP THE COST OF YOUR INVESTMENT IN JUST WEEKS

NiCAD Chargers charges I of 2 PP 3 cells $£ 5.90$ MC. 4 JECKSON MULTICHARGER, charges 2 of 4 AA. C \& D celis $£ 7.00$ MC. 5 JECKSON MULTICHARGER. charges 2 of 4 AA. C \& D ceths. or I of 2 PP 3 cells $\& 8.50$

BNOS Electronics (Dept RE) Greenarbour, Duton Hill, Great Dunmow, Essex, CM6 3PT
Telephone (0371 84) 767 SAE for further details
All prices include VAT. Postage free on all Mainland UK orders. goods normally despatched by relurn.

sony DO IT Again

Just when you thought it was safe to go back to designing portable radios...

Sony have delivered a crushing blow to the morale of all of us who felt we might just be getting to grips with the latest technologies on the portable radio scene. But first, before letting you know just what they've done, a bit of scene setting.
The Sony ICF2001 was launched around three years ago and, despite taking about a year to find its way onto the UK market, it has established itself as the portable radio that most communica-
tions enthusiasts would like to own. However, to tell the truth, the technology wasn't quite the last word in communications engineering - being a first-generation transition from bandswitched to continuous tuning philosophy - and the battery consumption brought a tear to the eye of even the most hardened radio enthusiast without shares in Berec.
The recently introduced ICF2002 (also known as the ICD7600D in the UK, for some reason best known to Sony) has

shrunk the features and facilities of the ICF2001 into a package that fits in a jacket pocket - and added a few new ones for good measure.
Technologically speaking, the ICF2002 is still a bit of a mystery. To unravel its secrets, we need to get our hands on the Sony service manual - and if that's as good as the one they produced for the ICF2001, then it will provide a great deal of interest on which the circuit designer may care to ponder. The implication, given the similarity of the frequency coverage, is that it is a scaled down version of the big brother - a dual conversion system, with one of the IFs at 450 kHz , as the instruction booklet supplied advises users not to worry too much about strange happenings on 450 kHz , $25385 \mathrm{kHz}, 27025 \mathrm{kHz}$ and 27475 kHz .

Stepping through the airwaves

The ICF2002 covers 153 kHz to $29,995 \mathrm{kHz}$ continuously in a LW/MW/SW band, and $76-108 \mathrm{MHz}$ also continuously on FM. The coverage is, nonetheless, decompartmentalised into 'channels' so that LW is covered in 3 kHz steps while MW is covered in switch selectable 9 kHz or 10 kHz increments. Thus the forthcoming relocation of the 200 kHz transmission from Droitwich to 198 kHz has been pre-empted, but otherwise hasn't generated any problems.
A fine-tune/interpolation control is supplied in the form of a thumbwheel pot

on the top right-hand side of the set, and operation of this fills in any blanks in the synthesised stepwise coverage. Its operation is optional: indeed, a threeway switch permits selection of strictly stepped coverage if required.

Internal ferrite rod antennae provide excellent basic sensitivity on LW and MW without the sensitivity to atmospherics that characterises active rod antennae at these frequencies.

Short wave coverage (above 1.610 MHz) shifts to 5 kHz increments. However, the IF bandwidth seems somewhat more than 5 kHz and it is possible to tune strong signals simultaneously on the upper and lower adjacent channels. An excellent BFO and product detector is also supplied, which tunes in conjunction with the fine tuning control mentioned above. Although a trained communications ear can provide adequate filtering to resolve stations in bands such as 40 m , it would be nice if the 'speech/ music' selector switch actually switched IF filters rather than (apparently) a capacitor across the audio.
As you can see from the internal pictures (Photos 1, 2), it's going to take a brave owner to try to perform any such modifications on the insides of the receiver: for a start; it makes extensive use of LSI and the smallest coils known to man. Notwithstanding the small size, the ICF2001 doesn't use very many more parts than many far more conventional receivers - prompting speculation that if they really wanted to, Sony might be able to sell the thing for about half the $£ 169$ presently being asked.

The FM coverage, by the way, is stepped in 100 kHz increments and is not subject to interpolation.

Tuning in

To tune a station, simply enter 'AM' or ' $F M$ ', then the frequency, and finally press 'EXECUTE'. If the combination is allowable, the receiver tunes in without further ado in less than a second.

Up to ten stations so tuned can be entered as presets by first tuning in as above - or by using the rocking up/down tuning switch until you have found the station you want. Install a preset by pressing 'ENTER', followed by the key number to store it under.

The scanning switch is a little disappointing since it only tunes up from the starting frequency, and pauses for about $1-2$ seconds to sample the stations it finds. The ICF2001 allowed for presettable upper and lower limits so that the set would 'revolve' around the band thus selected, looking for signals of interest.

On the other hand, scanning is all but meaningless in view of the crowded state of HF (and it's getting that way in VHF FM, too). It took the set over 15 minutes to nose its way from 153 kHz to 30 MHz !

Sensitivity

The Owner's Handbook doesn't mention sensitivity. However, it would not be too presumptious of Sony to describe this as 'adequate' (in the manner of a well-known motor car manufacturer who declines to rate the power output of their cars).

This is easily the most sensitive FM portable of its size ever seen by R\&EW people, and the AM and shortwave performance is equivalent to that of an R1000 - although you shouldn't expect to plug in an enormous antenna and not get some overloading and strong signal intermodulation effects. An antenna attenuator switch is provided for such circumstances, and theory says that it may perform a useful purpose in restraining strong signals without relegating the weaker ones below the noise threshold. Non-exhaustive trials around 40 m after dark suggested this to be the case.

Like the ICF2001, sensitivity tails off failing dramatically when the batteries start to conk out. However, the quiescent consumption of power is a fraction more restrained than in the ICF2001 - only

40 mA in $A M$ mode and 55 mA in $F \mathrm{M}_{\text {, as }}$ opposed to 200 mA or so for the ICF2001but... Four AA-size alkaline batteries should last around 20 hours (assuming about 1200 mAh of useful life to an unacceptable end-point voltage). On the other hand, the ICF2001 uses D cells which ought to last about eight times as long as AA's. Do the sums and you'll find you will be changing the ICF2002's batteries more frequently!
NiCads (typically holding 500 mAh) will provide around $8-10$ hours of operation on a single charge - and in view of this relatively fierce thirst, Sony are at pains to supply not only a mains PSU (6 VDC), but also a 12 V converter and a useful battery pack that stacks four C cells and has a DC power plug on the end.
The ICF2002 should be an ideal traveller's radio (probably, now, the definitive traveller's radio), and a charged up set of C's should provide a good week's bedside listening between charges.

Timer options

A function-indeed, the single function - that obviously caught the microprocessor software designers short of their last few bytes of ROM was the 'Sleep timer'. It's 65 minutes, take it or leave it - not usefully decremented in 10minute segments as in the 2001. Sixtyfive minutes to get to sleep is pretty insomniacal stuff, and likely to waste a lot of battery power unnecessarily.
The on-timer (a function not present on the 2001) is very useful, and works in conjunction with the very useful LCD time display (switchable between 12 and 24 -hour modes). The last station tuned is switched on at a pre-allotted time after the 'STANDBY' button has been pressed (whereupon 'STANDBY' appears on the LCD).

Conciusions

The ICF2002 (ICF7600D) appears to have no competitor. The frequency stability, sensitivity and versatility of this diminutive portable would have been considered utterly impossible a mere five years ago - and it would have given many 'communications' receivers a good run for their money just three years ago. It's interesting that it should be released about the same time that Tandy and Uniden appear to be marketing a competitor to the ICF2001.

It's a shame, however, that there isn't an option for some more IF selectivity, since that appears to be all that stands between the ICF2002 and its application as a significant 'standby' receiver in a variety of marine and similar roles. Not surprisingly, there are said to be severe supply problems breaking out across the country where this receiver is concerned.
It would be terribly sporting of the awfully nice people at Sony to send us a complete workshop manual on the receiver so that we can give you a thorough inside low-down. Watch this space.

How can they follow this? A solar powered/recharged version with adjustable IF bandwidth, perhaps...

You win every time!

When you get this NEW \& FREE project from GSC

NEW: an exciting range of projects to build on the EXP300 breadboards. NOW anybody can build electronics projects; it's as easy as A.B.C. with G.S.C.!

EXPERIMENTOR BREADBOARDS

The largest range of breadboards from GSC. Each hole is identified by a letter/number system. EACH NICKEL SILVER CONTACT CARRIES A LIFE TIME GUARANTEE. Any Experimentor breadboard can be 'snap-locked' with others to build a breadboard of any size

1. EXP 325 E2.25 The ideal breadboard for 1 chip circuits. Accepts 8, 14. 16 and up to 22 pin ICs. Has 130 contact points including two 10 point bus-bars.
2. EXP $350 £ 3.80$ Specially designed for working with up to 40 pin ICs perfect for $3 \& 14$ pin ICs. Has 270 contact points including two 20point bus-bars
3. EXP 300 £ $\mathbf{8} .50$ The most widely used breadboard in the UK. With 550 contact points, two 40 point bus-bars. the EXP 300 will accept any size ic and up to 6×14 pin DIPS. Use this breadboard with Adventures in Microelectronics.
4. EXP 800 £7.95 MOSt MICROPROCESSOR projects in magazines and educational books are built on the EXP 600 .
5. EXP 850 E4.75 Has $6^{\prime \prime}$ centre spacing so is perfect for MICROPROCESSOR applications
6. EXP 48 £2.75 Four more bus-bars in snap-on unit.

PROTO-BOARDS

The ultimate in breadboards for the minimum of cost two easily assembled kits
7. PROTO-BOARD 6 KIT E12.00 630 contacts, four 5 -way binding posts accepts up to six 14 -pin Dips.
8. PROTO-BOARD 100 Kir Complete with 760 14-way DIPs, with two binding posts and sturdy base Large capacity with base. Large capacity with E15.93

FREE project:

AUTO-DICE

Liven up your board games with this sophisticated electronic dice circuit! When the 'throw' switch is pressed, a numerical display flashes up rapidly changing numbers. After a few seconds, the rolling' stops, and the final result is displayed; any number, randomly selected, from 1 to 6. A few seconds later the display turns off to conserve your battery, letting the games go on uninterrupted for weeks!

HOW DO YOU MAKE IT?

Our FREE project sheet gives you a large, clear diagram of the components layed out on an EXP 300 breadboard. Each component is labelled, and the values are given in a component listing. Even the 'row and column' lettering of our EXP 300 is shown to make the location of the correct holes, in which to push the components, easy to find. There's no soldering involved; it couldn't be easier! As an extra bonus, there's a full circuit description, and the details of a regulated power supply on the other side of the sheet.
"Clip the coupon" and get your FREE project sheet with each EXP 300 bought. AND a free catalogue! Just ask about our other free projects too.

For further details of our FULL PROTO-BOARD RANGE, please send for our free catalogue.

GLOBAL SPECIALTIES CORPORATION

G.S.C. (UK) Ltd. Dept $35 B$

Unit 1. Shire Hill Industrial Estate
Saffron Walden, Essex CB11 3AQ
Telephone: Saffron Walden (0799) 21682

[^0]

Please send SAE for full details of complete range of drills and accessories.

DAEHISIOU PATHE ITD
119a HIGH STREET TEDDINGTON • MIODLESEX •W11 8HG TEL: 01.9770878

There are Drill Stands to hold the drill steady for fine work, a Lathe for miniature turning and a Circular Saw with self contained power, PLUS all the accessories you'll ever need. Find out about this remarkable range of miniature tools NOW.
With the Precision Petite range of miniature tools, modelling is made that much more interesting and satisfying. Every operation is catered for in a range of attachments and accessories;

> DRILLING SANDING POLISHING GLASS ENGRAVING TURNING SAWING - JIG-SAW WORK etc.

There are Drill Stands to hold the drill

28 BASIC in Control

Arcom's 40-series board level products have been designed to make life easy for the engineer. We don't just sell CPU cards either; Arcom's complementary range of interface products can help you solve any system development or control problem.
The 40 -series CPU cards are based on Zilog's advanced $Z 8$ family - whose on-chip BASIC makes applications quick and easy to implement. In many cases, you can go from problem formulation to a firmware (EPROM) solution in just thity minutes! Prices? from $£ 85$ to $£ 152$. The I/O boards cost from just $£ 81$ - and can even be used with our high-performance Z8000 development system.
Professionally designed and robustly constructed, Arcom have the range to do the job - reliably. Write or 'phone for details now.

Avoiloble from:

$4 \sqrt{\square}$

BLOCKS

Many radio users express a healthy degree of scepticism over statements that one foot of antenna rod and an active stage can equate in performance to a long piece of wire and a continuously variable matching unit. The designs for active antennae presented a couple of issues ago are discussed further here, outlining their performance and giving PCB and constructional details

The electrical model of the simplest type of active antenna is presented in Figure 1. The basis of the system is its electrostatic operation, whereby an electrically short antenna element exhibits an effective capacitance of C_{a} which is about 25 pF per metre. The FET element of the active antenna exhibits an input capacitance of C_{t}, and so together they form a capacitive divider.
The voltage generated on the antenna $\left(V_{\mathrm{a}}\right)$ is the product of the electric field strength E (in volts per metre) and the effective height of the antenna H_{*} (in metres). Thus the voltage delivered to the input of the transistor matching/ amplifying stage is given by:

$$
V_{\mathrm{t}}=\frac{E . H_{\mathrm{e}}}{1+\left(C_{\mathrm{t}} / C_{\mathrm{a}}\right)}
$$

For electrically short antennae, the bandwidth is broad. This means that the performance of an HF antenna over the range $100 \mathrm{kHz}-30 \mathrm{MHz}$ will be essentially constant. Indeed, the frequency response of its FET will not deteriorate performance until well into VHF or possibly UHF.
Signal-to-noise is determined at the active antenna stage, and provided the noise gathered by the antenna from the atmosphere exceeds the noise generated within the transistor, the active antenna will produce the same signal-tonoise ratio as a properly matched passive antenna for the same specific frequency.
A full wave dipole for 30 m produces 30 times the EMF of a 1 m rod, but the atmospheric noise contained in the output will be correspondingly higher as well. For all practical purposes, the signal-to-noise ratios are the same in both cases. Figure 2 shows how typical ionospheric noise levels vary as a function of frequency.
Average atmospheric noise levels are no better than 10 dB worse than those of decent RF FETs: so given the fact that the active antenna does not impair S / N, the difference in signal amplitude between the long wire and the short rod can be

Fig 1 Electrical model of an 'active' antenna

Fig 2 Atmospheric noise related to frequency
made up by amplification, where there is a substantial margin of noise figure left to the squander before any degradation is apparent.

In-car applications

Of particular note here are the noise levels around 1 MHz (i.e. on MW). It seems surprising that so few car radio manufacturers have taken advantage of nature's own limitations to produce active car antennae: as far as we are aware, only SEI have been bright enough to use the elements of the heated rear window as the basis of an active car antenna, but there are doubtless some readers who are going to have a go now we mentioned it!
The incorporation of such a modification may require some revision of the car radio's own input stage, most of all because the capacitance of the antenna cable and the rod is an integral part of the tuning circuitry. And don't forget that the alternator whine delivered via the power to the heating element will require very substantial filtering. R\&EW would be pleased to hear of any practical experiences.

Going deeper

The purely voltage-following type of active antenna has the advantage of keeping the signal levels low at the first mixer input. A simple voltage-follower circuit, such as that illustrated in Figure 1 is prone to second-order intermodulation distortion as a result of the antenna's square law characteristics.
The broadband active antenna of Figure 3 was first discussed in the November issue: this time we present a suitable layout for this circuit and its performance details in the shape of a series of traces from the spectrum analyser. If a 455 kHz IFT is used in the trap position, the LF roll-off is substantial - which will help correct the characteristically much higher signal levels present at low frequencies (particularly) at night.
The 'off-air' results shown in Photos 1-6 were taken at approx. 9.30am during daylight. The peaks are the result of imperfect matching into the filter section: however, by selecting components carefully, it is possible to place the peaks and troughs where they can do most good by compensating the areas of signal crowding in the HF bands.

One further rather useful (if unplanned) result of the active antenna is the fact that it performs the task of remote attenuator rather well - simply by winding down the supply voltage from the nominal 12 V .

The active antenna of Figure 4 is a further development of the second antenna described in the November issue. The complete bandpass shaping network ahead of the active impedance transformation stage has been 'borrowed' from the technology incorporated into most modern HF receivers. By selecting values of chokes and capacitors from Table 1, the results can be very accurately tailored. If you have specific bands of interest - or if you have a particular local overload problem - this approach can produce the best results.

Fig 3: Active antenna head amplifier with low-pass filtering first considered in the November '83 issue

Photo 1: Attenuator effect

Photo 3: Antenna gain characteristics Centre line $=0 d B$

Photo 5: Typical HF specirum on a wire antenna

Photo 2: increased attenuator effect

Photo 4: LF roll-off and 455 kHz trap effect

Photo 6: Same HF spectrum but using the active antenna

Construction

PCB designs for the two antennae described above are shown in Figures 5-8. There is little to watch out for when constructing these simple units - just remember that the power supply is conducted along the inner core of the feeder cable, and that it should be properly decoupled at the receiver end.

Either antenna when finished can be housed in its entirety in a piece of plastic waterpipe and be completely weatherproofed. As with any antenna, mount it as far away from any source of interference as possible.

Rigorous analysis

One of the leading receiver design 'thinkers', Dr Ulrich Rhode, has proposed (in Reference 1) the active antenna circuit shown in Figure 9. The push-pull arrangement is designed to assist in avoiding intermodulation products, particularly in applications where a local transmission may be present that would otherwise block a simpler design. The system noise figure $\left(F_{s}\right)$ is given by

$$
F_{\mathrm{s}}=F_{\mathrm{a}}+\frac{\left(F_{\mathrm{r}}-1\right) \cdot \mathrm{a}}{G_{\mathrm{v}}}
$$

where $F_{\mathrm{a}}, F_{\mathrm{r}}$ are the noise figures of the antenna and the receiver, respectively; a
Table 1 Values of coils and capacitors for the filter section of Figure 4

MHz	C2	C3	C4	C5	C6	L1	L2	L3	L4	L5
$0.2-1$	$1.2 n$	$1.2 n$	$270 p$	$560 p$	$270 p$	470μ	220μ	470μ	120μ	120μ
$1-2$	$220 p$	$220 p$	$150 p$	$270 p$	$150 p$	100μ	47μ	100μ	68μ	68μ
$2-4$	$100 p$	$100 p$	$68 p$	$120 p$	$68 p$	47μ	22μ	47μ	33μ	33μ
$4-8$	$47 p$	$47 p$	$27 p$	$56 p$	$27 p$	22μ	12μ	22μ	15μ	15μ
$8-16$	$27 p$	$27 p$	$15 p$	$27 p$	$15 p$	12μ	5.6μ	12μ	8.2μ	8.2μ
$16-30$	$15 p$	$12 p$	$8.2 p$	$10 p$	$5.6 p$	5.6μ	2.7μ	5.6μ	3.9μ	3.9μ

is the signal amplification; and G_{v}, the electrical gain of the antenna, is given by:

$$
G_{\mathrm{v}}=4\left(\frac{V_{\mathrm{a}}}{V_{\mathrm{o}}}\right)^{2} \cdot \frac{R_{\mathrm{a}}}{Z_{\mathrm{l}}}
$$

where Z_{1} is the impedance of the load.
Assuming that the output voltage (V_{o}) is twice the antenna voltage $\left(V_{\mathrm{a}}\right)$, and solving for F_{a}, gives:
$F_{\mathrm{a}}=F_{\text {min }}\left(1+C \frac{\left(Z_{\mathrm{a}}-Z_{\mathrm{opt}}\right)^{2}}{R_{\mathrm{a}} \cdot R_{\mathrm{opt}}}\right)=F_{\text {min }}(1+A)$ where Z_{a} is the antenna impedance; and $Z_{\text {opt }}$ is the optimum noise matching impedance $(Z=R+j X)$. The largest possible bandwidth corresponds to the condition when $X_{\text {opt }}$ is 0 : in this case, the antenna noise figure is given by:

$$
F_{\mathrm{a}}=C\left(\frac{R_{\mathrm{a}}}{R_{\mathrm{opt}}}+\frac{R_{\mathrm{opt}}}{R_{\mathrm{a}}}+\frac{X_{\mathrm{a}}^{2}}{R_{\mathrm{a}} \cdot R_{\mathrm{opt}}}-2\right)
$$

The high input impedance requires that

$$
\begin{gathered}
\frac{R_{\mathrm{a}}}{R_{\mathrm{opt}}}<\frac{R_{\mathrm{opt}}}{R_{\mathrm{s}}} \\
\frac{R_{\mathrm{a}}}{R_{\mathrm{opt}}}+\frac{R_{\mathrm{opt}}}{R_{\mathrm{a}}}+\frac{X_{\mathrm{a}}^{2}}{R_{\mathrm{a}} \cdot R_{\mathrm{opt}}}>2
\end{gathered}
$$

yielding F_{a} as:

$$
F_{\mathrm{a}}=F_{\text {min }}\left[1+\frac{C}{R_{\mathrm{a}}}\left(R_{\mathrm{opt}}+\frac{X_{\mathrm{a}}^{2}}{R_{\mathrm{opt}}}\right)\right]
$$

The rod antenna impedance Z_{a} has the approximate form:

$$
Z_{\mathrm{a}}=K R \omega^{2}+\mathrm{j} \frac{K X}{\omega}
$$

where K, k are constants. Thus as the frequency increases, the impedance decreases faster than the noise figure and so the optimum matching resistance should be specified at the lowest operating frequency.

Active antennae at VHF and UHF

A final thought on the behaviour of these antennae at short wavelengths. As the rod length becomes a significant part of the wavelength, the broadband characteristics tail off as the impedance drops - really quite dramatically - as the

Fig 9 The strong signal active antenna suggested by Ulrich Rhode. The FETs quoted are CP640's, but J310's should substitute adequately for amateur purposes
element length approaches a quarterwave. Active antennae can still be used up to 150 MHz , but the reduced atmospheric noise makes the implementation less satisfactory than a properly matched passive antenna.

References

1. Ulrich Rhode 'Active Antennas' RF Design (Cardiff Publishing) May/June 1981.

AVCOMM LIMITED

25 Northload Street, Glastonbury, Somerset BA6 9HB Tel: 045833145

Shop Open: 9.30am-5.30pm - MON-SAT
BF981 Low noise MOSFET, 85p. 3SK97 UHF GASFET, £3. HP 5082.2800 Schottky diodes, 60p. HP 5082.2396 Schottky diode mixers, $£ 2.50 .1$ N4148 Diodes, 3p each, 20p/10. £1/100. BA182 Pin diodes, 35p. 7805 \& 7812 Regulators, 45p. 7905 \& 7912 Regulators, 75 p . 741, 748, LM358 \& MC1458CP' op amps, 20p. SN74LS374N, SN74123PC, 30p, SN75492AN, 40p. TC5504AP-2 4096 x 1 Bit CMOS RAM, 85p. AY-3-9400 Tone Generator IC, $£ 1.125 \mathrm{uF} 350 \mathrm{~V}$ pcb mntg electrolytics, 50 p or $£ 4 / 10$. 60 uF 450 V Electrolytics, 50 p or $£ 4 / 10$. New pcb with Siemens DL1416 intelligent Alphaneumeric displays, $£ 1$. VARTA 4.8 V 170 mA pcb MNt9 nicads, $£ 1.50$. Miniature ELECTRET mic inserts, 1.5 V type, 8 mm dia, 35 p . 1000pf \& 2000 pf 500 V bolt in feedthroughs, 35 p . Miniature toggle switches: DPDT, 50p. SPDT, 45p. All 2A 250V AC type.
Postage 40p on orders up to $£ 10$, over post free. Prices exclude VAT © 15%. Our latest lists contain many bargains too numerous to advertise, to obtain a copy please send a large SAE. All goods sent by return.

NEED TO KNOW MORE ? ? ? ? ? ?

The SX100 Professional MICRO-EAR TRANSMITTER, supplied ready for use, measures $4 \times 3 \times 2 \mathrm{cms}$! Picks up most minute sounds up to 25 ft . away. Simply listen in on any ordinary VHF radio tuned to SXt00 signal up to 500 mts . Totally self-contained and not to be confused with Non protessional models with untealistic perrarmance colat frequency adjuster and self adhesive pads for fixing.
Send CWO. Cheques/PO's or $+£ 2.00 \mathrm{COD}$. Despatched by return. 12x9 SAE for complete catalogue of this and other equipment, We deal in strictest confidence.
ABRAXUS DESIGNS Eiectronic Equipnent 92 Bristol Street, Birmingham B5 7AH
Telephone 021-622 6338

GOTDTHFR TVARH:OUSH ,

THE'ALADDINS' CAVE OR COMPUTER AND FLتCTRONIC FQUPMDNT

HARD DISK DRIVES

Fully refurbished DIABLO/DRE series
Front load. Free stand or rack mount $\quad \mathbf{5 5 5 0 . 0 0}$ $\begin{array}{ll}\text { Exchangeable type (via lid removal) } & \mathbf{\Sigma 2 9 5} .00 \\ \text { me3029 PSU unit for } 2 \text { drives } & \\ \text { E/25.00 }\end{array}$
DIABLO/DRE $44-4000 \mathrm{~A}$ B $5+5$ ex stock from $£ 995.00$
1000's of spares for $\$ 30,4000,3200$, HAWK ex stock.

HOT LINE DATA BASE DISIME ©
THE ORIGINAL FREE OF CHARGE dial up data base 1000 s of stock items and one of bargains. wor. .о радан: 01-679 1888

COMPUTER 'CAB'

abinet with integral switched

cabinet with integral switched twin fan cooling Originally made for the famous DEC PDP8 computer system costing thousands of pounds. Made to run 24 nassive $+5 v D C$ at 17 amps $+15 v D C$ at 1 amp and -1 $D C$ at 5 amps. The complete unit is fully enclosed with emovable top lid, filtering, trip switch, 'Power' and 'Run EDs mounted on Ali front panel, rear cable entries. etc etc. Units are in good but used condition-supplied for Glve your system that professional finish tor only 49.95 + Carr. Dim. $19^{\prime \prime}$ wide $16^{\prime \prime}$ deep $10.5^{\prime \prime}$ high 49.95

CALCOMP PLOTTERS

9363 colour digital inc
interface and accessories
$\mathbf{~} 148,500.00$ 7184 colour digital 8×5
(cost 25,000) 1 only at

COOLTIG RANS

with our range of BRAND NEW professiona

 CTMI S9xUOI Dim. $92 \times 92 \times 25 \mathrm{~mm}$, GOULD J8-3AR Dim. $3^{\prime \prime} \times 3^{\prime \prime} \times 2.5^{\prime \prime}$ compact BUHLER 69.11.22. 8-16 ソ DC micro miniature reversible fan. Uses a brushles servo motor for extremety high air flow, almost silent running and guaranteed 10,000 hr life. Measures only $62 \times 62 \times 22 \mathrm{~mm}$.
Current cost 32.00 . OUR PRICE ONLY $f 12.95$ complete with data. MUFFIN-CENTAUR standard $4^{\prime \prime} \times 4^{\prime \prime} \times 1.25^{\prime \prime}$
fan supplied tested EX EQUIPMENT 240 V at Man supplied tested EX EQUIPMENT 240 va
£6.25 or $110 \mathrm{vat} £ 4.95$ or BRAND NEW 240 $£ 6.25$ or 110 v at $£ 4.95$ or BRAND NEW
at $£ 10.50$. 1000 's of other fans Ex Stock

SAVE

 E250
SUPER PRINTER SCOOP
 CENTRONICS 739-2

The" Do Evenenting P Pineer at orcree that wiln Never be

MAINS FILTERS

 at a ridiculous price of only $£ 199.00$repeated. Standard Centronics interface, full graphics. 4 type fonts with high definition \& proportional
spacing for word processor applications, 80-132 spacing for word processor applications, $80-132$
columns, single sheet, roll or sprocket paper handling plus columns, single sheet, roll or sprocket paper handing plus
much more. Availatle only from DISPLAY ELECTRONICS

Options: carriage \& insurance £10.00

BRAND NEW CASED WORD PROCESSOR KEYBOARDS

DRE 7100

8" Disk Drives New $£ 225$ + VAT

VIDJO MONLTORS

12 " CASED. Made by the British KGM Designed for continuous use as a data attractive brushed aluminium case with ONOFF, BRIGHTNESS and CONTRAST controls mounted to one side. Much attention was given to construction and reliability of this unit with features such as,
internal transformer isolated regulated DC internal transformer isolated regulated D
supply, all components mounted on two supply, all components mounted on two
fibre glass PCB boards - which hinge out for fibre glass PCB boards - which hinge out for
ease of service, many internal controls for linearity etc. The monitor accepts standard 75 ohm composite video signal via $\mathrm{SO}_{2} 39$ socket on rear panel. Bandwidth of the unit most high def graphics and 132×24 lines. Units are secondhand and may have scree burns. However where burns exist they are
only apparent when monitor is switched of Only apparent when monitor is switched of Although unguaranteed all monitors are tested prior to despatch. Dimensions
approx. $14^{\prime \prime}$ high $\times 14^{\prime \prime}$ wide by $11^{\prime \prime}$ deep. approx. 14 high $x 14$ wide by 11 eep. Supplied complete with circuit.
operation. ONIV $£ 5.00$ PIUS E9.50 CAR 24" CASED. Again made by the KGM Co with a similar spec as the $12^{\prime \prime}$ monitor Originally used for large screen data display. very compact unit in lightweight
alloy case dim. $19^{\prime \prime} H \times 17^{\prime \prime} D \times 22^{\prime} W$ All silicon electronics and composite video input make an ideal unit for schools, clubs, shops etc. Supplied in a used but working condily E55.00 PLUSE9.50 CARR G/NS. SEMICONDUCTOR 'GRAB BAGS'

Mixed Semis amazing value contents

include transistors, digital, linear, I.C.'s triac

 diهdes, bridge recs, etc. elc. All devices facturer's markings, fully guaranteed. $50+\varepsilon 2.95100+E 5.15$.TTL 74 Series A gigantic purchase of an across the board range of 74 TL seri "mostly TL" grab bags at a price which two or three chips in the bag would nnormally cost to buy. Fully guaranteed ali I.C.'s full
spec. $100+£ 6.90200+£ 12.30300+£ 19.50$

DEC CORNER

MOSTEK CRT 80E Brand new dual eurocard Z80 based VT100 PLUS

 emulator with graphics etc BALL-MB 3.5" Box, LTC, PSURK05-J 2.5 Mb disk drives PDP1 105 Cpu , Ram, i/o. controller 00 RKOS LSI $4 \times$ RKO LAXX-NW LA180 RS232 serial inte LAX34.AL LA34 tractor feed LA34 Keyboard assembly
BC05W-15 interface cables

QUALITY INTERFACE CABLES \& CONNEGTORS

$$
\begin{aligned}
& 22 / 2 \mathrm{~A} \text { D25S to } 3 \text { ti } 22 \text { way } £ 2.90
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{ll}
\mathbf{2 5 / 0 8} 25 \text { way cable } 5 \text { t long } 95 \text { p } & 12 / 1510 \text { way cable } \\
\text { D25S ex equip } 60 \text { p D25S socket new } £ 1.25 & \text { D25 split shells } £ 1.00
\end{array}
\end{aligned}
$$

SUPER DEAL? NO - SUPER STEAL!!

The FABULOUS 25CPS TEC Starwriter
Daisy wheel printer at a fraction of its original cost. RAND NEW AT ONLYE499: VAT=
 heavy duty die cast
chassis and DIABLO type print mechanism giving
superb registration and print quality. Micro offer full DIABLO/QUME

Save over catoo

 command compatabilit and full control via CPM Wordstar etc. Mrinting, switchable 10 or 12 pitch, full width 381 mm paper handling with upto 163 characters per line, friction feed rollers for single sheet or continuous papeinternal buffer, standard RS232 serial interface with handshake. Supplied absolutly BRAND NEW with 90 day guarantee and FREE daisy and dust cover. Order NOW or contact sales office for more information $\mathbf{£ 1 4 0 . 0 0}$. Spare daisy wheel £3.00. Carriage \& Ins. (UK Mainland) £10.00.

Due to our massive bulk purchasing programme which enables us to bring you the best possible bargains, we have thousands of I.C.'s, Transistors. Relays, Cap's, P.C.B.'s, Sub-assemblies, one item to include in our ads, we are packing all these items into the "BARGAIN PARCEL OF A LIFETIME". Thousands of components at giveaway price
$2.5 \mathrm{kls} £ 4.25+$ pp $£ 1.25$
$10 \mathrm{kls} £ 10.25+$ pp $£ 2.25$

ALL PRICBS PLUS VAT

electronize AUTO-ELECTRONIC PRODUCTS KITS OR READY BUILT

TOTAL ENERGY DISCHARGE ELECTRONIC IGNITION

 AS GOOD AS IT COULD BE?

\star Is it EASY TO START in the cold and the damp? Total Energy Discharge will give the most powerful spark and maintain full output even with a near flat

\star is it ECONOMICAL or does it "gnoff" between services as the ignition performance deteriorates? Energy Discharge gives much more output and maintains it fror to service.

* Has it PEAK PERPCe NO y stlyt at high and low revs. where the ignition outpu arg "ringy Discharge gives a more powerful Is the PERFORMA \because S. ne maximura on with 8 cylinders).
\star Is the PERFORMA © Simoth ing powerful spark of Total Energy Discharge eliminaws the ow in misfin whilst an electronic filter smoothes out the effeq couk ne chánging to b he engine back to its best? Tot ap ischerliminatec the ing and erosion by removing the ay affect thead To mos on and the

 the market - 3 y in in in inctive syster the the energy and y owertinary cana skate M e are the facts
SPARK POWEA HOW, SPA P EN FC SPARK POWER 140W, SPA EN EN
$500 \mu \mathrm{~S}$, STORED ENERG We challenge dymant it opblish better performance figures. Before you be ne ask for the facts, its probably only an inductive system By an inductive system is what you really want, we'll stil give you a

EASY FITTING, STANDARD/ELECTRONIC CHANGEOVER SWITCH, STATIC TIMING LIGHT and DESIGNED IN RELLABILITY (14 years experienced and a 3 year guarantee).

* IN KIT FORM it provides a top performance system at less than half the price of comparable ready built units. The kit includes: pre-drilied fibreglass PCB, pre-wound and varnished ferrite transformer, high quality 2 uF discharge capacitor, case, easy to follow instructions, solder and everything needed to build and fit to your car. All you need is a soldering iron and a few basic tools.

Most NEW CARS already have electronic ignition. Update YOUR CAR

ELECTRONIZE
ELECTRONIC CAR ALARM

HOW SAFE IS YOUR CAR?

More and more cars are stolen each week and even a steerimg lock seems little help. But a car thief will avoid a car that will causer arouble and attract attention. If your car has a good alarm system are are plenty of other cars to choose from

* minyray 13 a A hiaine jack pluD. 4 athes to your key ring and - 26 Jr A UA BonenNation. res ers, bl must be tha vall to intains two 1% tolerance
 intermittently sou he to also flasho, headlights and prevents 60 SECOND ALARNMEMOD Once alarm will sound for 60 seconds, unless triggered again
30 SECOND EXTT DELAY sys armed by pressing sm a dashboard mounted con sy armed by pressing a small button on during which the owner can open and close doors without triggering the afarm.
* 10 SECOND ENTRY DELAY When a door is opened a 10 second delay operates to allow the owner to disarm the system with the coded key plug. Latching circuits are used and once triggered the alarm can only be cancelled by the key plug.
\star LED FUNCTION INDICATOR An LED is included in the dashboard unit and indicates the systems operating state. The LED lights continously show the system is armed and in the exit delay condition. A flashing LED indicates hat the alarm has been triggered and is in the entry delay condition
ACCESSONY LOOP = BONNET/BOOT SWITCH - IGNITION TRIGGER These operate three separate circuits and will trigger the alarm immediately, regardless of entry and exit delays.
* SAFETY INTERLOCK The system cannot be armed by accident when the engine is running and the car is in motion
- LOW SUPPLY CURRENT CMOS IC's and Iow power operational amplifiers achieve a normal operating current of only 2.5 mA
* IN KIT FORM It provides a high level of protection at a really low cost. The kit includes everything needed, the case, fibreglass PCB, random selection resistors to set the code and full set of components etc. In fact everything down to the last washer plus easy to follow instructions
fill in the coupon and send to:
\square Please send more information
ELECTRONIZE DESIGN Dept H Magnus Rd Wilnecote • Tamworth •tel 0827281000

TOTAL ENERGY DISCHARGE (6 or 12 volt negative earth)

TWIN OUTPUT fon ars a dorn dis with dual ignition
 \square Twin DIY parts K

ع24005 $£ 22.95$

CAR ALARM (12 volt negative earth) \square Assembled ready to fit
(All wires and connectors inc) £37.95 £29.95
\square DIY parts kit
£24.95 £19.95
I enclose cheque/postal order OR debit my Access/ Visa card

INDUCTIVE DISCHARGE (12 volt only) \square Assembled ready to fit
$£ 15.95 £ 12.75$

Prices Include VAT
£1.00 PP (UK) per Unit. H

A

fax RECEVER

As FAX receiving equipment is generally quite expensive, Lionel Sear decided to develop a means of receiving these pictures with the aid of computer graphics.

A large proportion of the HF radio spectrum is taken up with the dissemination of weather information. National agencies such as our own Meteorological Office collect and exchange basic weather information using teleprinter links, and from these and other sources put together weather charts for the various users such as maritime and aviation authorities. Such information is usually transmitted as facsimile or 'FAX' signals.
Much of the information is rather esoteric - for example, the weather at various heights in the atmosphere. However, information of direct relevance to amateur aviators, sailors, VHF radio enthusiasts and many others is output - updated on a regular basis, typically four times every 24 hours.
If you are unfamiliar with FAX signals, try tuning a communication receiver (with the BFO switched on) to 4783 kHz . A picture transmission may be in progress at the time, in which case the characteristic cyclic grating sound of the 800 Hz FSK format will be apparent. Eventually this picture ends with a tone several

Fig 1 Circuit for FAX demodulator (Board 1)

seconds in length. A fresh picture starts with a similarly lengthy tone, followed by a series of single pulses at about 0.5 sec intervals: these last for 30 seconds, before giving way to the picture information which itself may last for up to 15 minutes or so.

What is going on?

At the transmitting end, the picture to be sent is wrapped around a drum which rotates at an accurately maintained 2 cycles/second. An optical sensor mounted on a screw feed picks up the black-and-white information from the

Table 1. 2716 EPROM HEX program.

0000	3E	CF	D3	07	3E	9F	D3	07
0008	3E	CF	D3	06	3E	00	D3	06
0010	3E	60	D3	05	31	FF	87	3E
0018	40	D3	05	06	50	10	FE	3E
0020	60	D3	05	CD	00	03	1B	41
0028	08	OA	1B	4 C	Co	03	00	CD
0030	1F	03	OA	1B	4 C	C0	03	00
0038	DB	05	CB	5 F	20	FA	CB	57
0040	20	04	3E	08	18	02	3E	10
0048	32	D0	83	CD	44	03	D9	21
0050	00	84	01	00	00	D9	21	00
0058	80	01	00	00	DB	05	CB	4F
0060	28	FA	CD	33	03	DB	05	CB
0068	4F	28	F1	DB	05	CB	4F	20
0070	FA	CD	33	03	DB	05	CB	4F
0078	20	F1	3A	D0	83	47	CB	81
0080	DB	05	CB	47	28	FA	3 A	D0
0088	83	FE	10	28	4D	DB	05	1F
0090	1F	CB	16	23	CB	49	28	18
0098	DB	05	17	38	13	1 A	D3	04
00A0	CD	14	03	13	7B	FE	C5	20
00A8	07	7 A	FE	87	20	02	CB	89
00B0	7D	FE	Co	20	CB	7 C	FE	83
00B8	20	C6	21	00	80	3 A	D0	83
00 Co	FE	10	20	05	CB	19	3 F	CB
00C8	11	10	B5	D9	CB	C9	11	00
00D0	80	DB	05	CB	67	CA	00	00
00D8	18	0D	CB	41	20	AF	DB	05
OOEO	1F	E6	01	B6	77	18	AC	3 A
00E8	D0	83	47	CB	81	DB	05	CB
00F0	47	28	FA	3 A	D0	83	FE	10
00F8	28	4E	DB	05	1F	1F	CB	16
0100	23	CB	49	28	18	DB	05	17
0108	38	13	1A	D3	04	CD	14	07
0110	13	7B	FE	C5	20	07	7 A	FE
0118	83	20	02	CB	89	7D	FE	C0
0120	20	CB	7 C	FE	87	20	C6	21
0128	00	84	3 A	D0	83	FE	10	20
0130	05	CB	19	3 F	CB	11	10	B5
0138	D9	CB	C9	11	00	84	DB	05
0140	CB	67	28	11	00	C3	7A	00
0148	CB	41	20	AE	DB	05	1F	E6
0150	01	B6	77	18	AB	C3	00	00
0300	E3	DB	05	17	38	FB	7E	23
0308	A7	28	07	D3	04	CD	14	03
0310	18	EF	E3	C9	DB	05	CB	B7
0318	D3	05	CB	F7	D3	05	C9	E3
0320	01	C0	83	11	C0	87	7E	23
0328	A7	28	06	02	12	03	13	18
0330	F5	E3	C9	C5	06	97	10	FE
0338	C1	C9	C5	06	64	CD	33	03
0340	10	FB	C1	C9	C5	06	C8	CD
0348	3 A	03	10	FB	C1	C9		

picture as it rotates. It moves along the drum at a speed determined by the pitch of the screw, thus covering the whole of the picture. The black-and-white information is translated into a frequency shift on the transmitted signal.

At the receiving end, another drum apparatus carries out the reverse process, with a scribe on a screw feed impinging on electrically sensitive paper wrapped around the drum. The demodulated signal is applied to the scribe and the electrically sensitive paper blackened in sympathy with the picture on the sending apparatus.
We can now relate all this back to the various facets of the signal as heard on our receiver. The tone at the beginning of the transmission sets off the chain of events at the receiving end: in addition, the tone itself will be either 300 Hz or 675 Hz for an index of cooperation (IOC) of 576 or 288 , respectively. This IOC is a measure of the speed at which the screw-fed sensor or 'scribe' moves along the drum. With an IOC of 576 , pictures are of higher definition and take longer to send.
The single pulses that follow allow the receiving apparatus to inch its way around so that the start of the subsequent picture is at the top left hand side of the paper. After the actual picture information has all been sent, a stop tone of 450 Hz brings the process to an end.

Equipment considerations

Needless to say, the speed tolerances for the receiving apparatus are extremely high and demand high standards of mechanical construction and hence do not come cheaply. Indeed new FAX receiving equipment is probably beyond the pocket of most amateurs. Surplus machines do appear from time to

Connections to Epson MX80 printer
Amphenol 36 -way plug Centronics parallel

Pin No.	Signal
1	STROBE
2	DATA 1
3	DATA 2
4	DATA 3
5	DATA 4
6	DATA 5
7	DATA 6
8	DATA 7
9	DATA 8
11	BUSY
31	PRINTER RESET

Pins 19-30 may be used with the above as twisted pair ground returns.
time but non-standard speeds may be a problem: the author has even heard of mechanically adept enthusiasts making their own apparatus, but this is unfortunately outside the scope of the majority of people.
The author was thus prompted to try to develop a means of receiving these pictures with the aid of computer graphics, and since an Apple II was available, initial experiments were carried out on this. It soon became apparent that the 280×180 dot resolution of the Apple graphics was hopelessly inadequate for meaningful results, even when only part of a picture was being displayed. But it did show that the idea worked and that a printer with suitable graphics capability could safely be purchased to allow the project to develop further.
The printer purchased was the Epson MX80 which, in so-called 'double density' mode, has a horizontal dot capacity of 960, adequate for the production of pictures suitable for all but the most demanding of applications.
A decoder was built to convert the FSK signal to TTL levels (at the time, this was done on the AF output of the receiver), along with a crystal oscillator/divider chain to give TTL pulses at 1920 Hz , i.e. 960 per half second. A machine code program was written by which the Apple polled the 1920 Hz pulse generator and, on receiving a pulse, looked at the demodulator and set or reset a bit in memory according to whether it were black or white. Two inputs on the games socket were used for this. When the data from eight lines had been collected, this was output to the printer through a parallel interface.
This was all very well, but not everyone has Apples, and it was felt that the project would have wider appeal if it were developed as a dedicated minimum chip system for one of the commonly available micros and, since the author felt happiest with Z80 code, this was chosen. The program was converted to Z80 code with the aid of a Nascom I with 3K of extra RAM, and then transferred to 2716 EPROM for use in the system.

Connections to Amphenol Plug to Epson HX80
Ribbon cable from purple/brown pair in

Signal Pin	Return Pin	Colour	Signal
1	19	purple	STROBE
2	20	blue	DATA 1
3	21	green	DATA 2
4	22	yellow	DATA 3
5	23	orange	DATA 4
6	24	red	DATA 5
7	25	brown	DATA 6
8	26	black	DATA 7
9	27	white	DATA 8
11	29	grey	BUSY
31	30	purple	INIT

Fig 5: Inputloutput port details

Fig 6: Receiver bottom plane

CIRCUIT DESCRIPTION Demodulator/Tone decoders/Timing chain

This section of the receiver is constructed on Board 1, and the appropriate circuit diagrams are shown in Figures 1,2 and 3 .

Demodulation at IF using an MC3357 in the role of IC1 was chosen after various experiments at AF. Indeed, at 465 kHz and using a standard transistor IF coil as the quadrature inductance, an 800 Hz FSK signal was found to give a healthy 0.75 V DC shift on the output which is fed to the slicer (IC2): the latter converts the signal to a black-and-white output at TTL levels. The output from IC1 is also fed to IC3 which acts as a unity gain buffer in the line to the tuning meter and the tone decoders.
Three of the ubiquitous NE567 tone decoders are used to sort out the start and stop tones. The start tones of 675 Hz or 300 Hz are detected by IC10 or IC4 respectively, and the output from these sets or resets the flip-flop formed by IC6a,b, thus giving an output which is high for an IOC of 576 or low for one of 288. Moreover, if either of the IC10 or IC4 outputs goes low, the output of IC6d also goes low, giving the indication for 'start tone received'. IC5 detects the 450 Hz stop tone and its output is used direct.
The timing chain (see Figure 3) is straightforward and derived from a crystal oscillator (IC11) working at 3932 kHz . This is divided by two in IC7, with R22 as an external load - thus providing a convenient clock for the microprocessor board. Division by a further $2^{\text {th }}$ in IC8 yields 1920 Hz which is fed to IC9 to yield $20 \mu \mathrm{sec}$ pulses at this frequency.

Microprocessor board

The circuit diagram for this part of the receiver is shown in Figure 4. IC3 is a Z80, serviced by 2 K of RAM in IC1 and 2 K of ROM in IC2. IC6 and IC7 decode the memory addressing in such a way that READ/WRITE requests with A_{15} high cause the RAM of IC1 to be selected, while READ requests with A_{15} low cause the ROM of IC2 to be selected.
IC5 delivers one shot for power on and manual reset, the pulse deliberately being several seconds long to allow the
tone decoders on the demodulator board to sort themselves out before the program starts. IC4 is a Z80 PIO with both ports used in the control mode. Interrupts are not used.

THE PROCRAM

A HEX listing of the program is shown in Table 1. It is, in fact, quite simple and Nascom buffs will have no trouble in disassembling and relocating it to run on their machines. In operation, the program resets and initialises the printer, and then waits for a start tone to be detected. When one is received, a delay of 20 sec ensues to allow most of the starting pulses to be got out of the way.(We only need one!) On completion of the delay, the FAX input is checked until a starting pulse is received, and this is used to ensure that the picture starts at the top left of the paper.

The timer is now polled and, with each detected timing pulse, the FAX input is sampled, with the result that a bit in the appropriate byte in one of two 960-byte buffers is either set or reset according to whether it represents black or white. This continues until one bit in all 960 bytes have been set in this way and a single line of the picture is received.
The process is then repeated until eight such lines have been received and then all eight bits in each byte of the 960byte buffer have been set in response to the received signal.

The other 960-byte buffer is selected for storage and at the same time as this is being filled, the first buffer is being output to the printer as and when time allows. The program carries on filling one buffer whilst outputting the other until the picture is complete.

At the end of each line, the part of the decoder dedicated to the stop tone is checked and if TRUE (i.e. stop tone received) the program resets and waits for the next picture.

To be precise, the above is the way an IOC 288 picture is received; under this scheme, an IOC 576 picture would be twice as long as it should. In fact, in this case, each successive two lines received are averaged and the aspect ratio restored.

CONSTRUCION

The author has neither the expertise nor the facilities needed to produce the double sided PC boards that would be needed for this project and thus used Eurocard veroboards. However, designs for such boards are shown in Figures 6-11, for those interested in building the receiver on PCBs.

One board was used for the microprocessor and the other for the remaining circuitry. Power supply requirements are modest, consisting of +12 V 10 mA , +5 V 500 mA and -12 V 10 mA .

Alignment

An IF signal is applied to the limiting amplifier via C1 and L1 is adjusted so that the DC level on pin 9 of IC1 is at the midpoint of the characteristic ' S ' curve when the IF signal is in the middle of the IF passband.
If you are unsure how to get at the IF of
your receiver, and an output socket is not provided, consult your dealer. The author has a Yaesu FRG7000 and took an IF signal from the feed to the $A M$ detector circuitry with the receiver switched to the SSB position but with the BFO off.

RV1 is then adjusted so that the slicer (IC2) switches at the mid-point of the IF passband. A tuning meter is essential and R9 is chosen to give a suitable deflection when tuning across the signal; the author found $10 \mathrm{k} \Omega$ with a $100 \mu \mathrm{~A}$ meter just right.

RV2 is adjusted for a 50% reading on the meter at the centre of the IF passband. IC's 10, 4 and 5 are set to run at 675,300 and 450 Hz respectively, with the aid of a frequency counter or an accurate oscilloscope.
Both boards and the Epson printer may now be fully interconnected and power applied. Both 'power-on' and 'manual reset' should cause an obvious printer reset after the deliberately long delay of several seconds. If this does not occur, then the program is not running and errors should be sought.

Fig 9: Micro board bottom plane

Assuming all is well, the unit should receive pictures and may be started in the middle of one that is already being sent. Output should be apparent after a 20-second delay; if this is white on black instead of black on white, then the inputs to IC2 should be swopped over. When properly adjusted and connected to a receiver of adequate stability, the unit will start and stop automatically, coping automatically with IOC's of 288 and 576. Examples received from Paris-National on 8185 kHz are displayed on these pages.

Postscript

Old hands at HF reception will be aware of the problems of fading, interference and multi-pathing especially at night. In this respect, VLF stations are better and Keith Mitchell's approach (see R\&EW September '83 p49) is recommended here. The unused sections of the MC3357 are available for this.
The author is grateful for the help and support of other radio amateurs, especially Bob Currell G4EIK, Clive Bowden G3OCB and Arnie Lambe G4BRU.

Fig 10: Micro board top plane

Fig 11: Component overlay

PARTS LIST
Demodulator, tune decoder and timing chain board

Resistors

R1, R3	$10 \mathrm{k} \Omega$	0.25 W
R2	$68 \mathrm{k} \Omega$	0.25 W
R5, R6, R7, R8	$100 \mathrm{k} \Omega$	0.25 W

choose to give suitable deflection on tuning meter used R10, R11, R12, R14 $4.7 \mathrm{k} \Omega \quad 0.25 \mathrm{~W}$ R4, R13, R15, R16, R17, R18, R19, R20, R21 $\quad 1.0 \mathrm{k} \Omega \quad 0.25 \mathrm{~W}$ R22
$330 \Omega 0.5 \mathrm{~W}$

Capacitors

$\mathrm{C} 1, \mathrm{C} 12$	10 nF mono
C 2	1 nF

C 3	1 nF mono
$\mathrm{C} 4.2 \mu \mathrm{~F} 35 \mathrm{~V}$ tant.	

C4, C7, C10
C5, C8, C11
C6, C9, C18
C13
C14
C15, C16, C17
CV1 2-22pF
Presets
RV1, RV2
RV3, RV4, RV5

Semiconductors

IC1
IC
IC
IC
IC
IC
IC
ZD

M
X
L

IC2, IC3	CA3140
IC4, IC5, IC10	NE567
IC6	74 LS04
IC7	74 LS74
IC8	4020
IC9	74121
ZD1	5V1 Zener

Miscellaneous

X1
L1
TOKO YRCS 11098 AC
Microprocessor board Resistors
R1
R2
R3
R3
$47 \mathrm{k} \Omega 0.25 \mathrm{~W}$
$10 \mathrm{k} \Omega 0.25 \mathrm{~W}$
$33 \mathrm{k} \Omega 0.25 \mathrm{~W}$

Capacitors

C 1
C 2
Semiconductors
IC1
IC2
IC3
IC4
IC5
IC6
47μ F $6.3 V$ tant. 100μ F 6.3V tant.

EPROM
2716 EPROM
Z80 CPU
$Z 80$ PIO
74121
74LS04
74LS20

Double-sided PCBs for this project are available from Edwardschild Ltd, 453a Becontree Ave, Dagenham, Essex RM6 6RR.

The prices are
Receiver board: $£ 4.65$ ea inclusive Micro board: $£ 4.35$ ea inclusive

DEWSBURY

UHF

ALL-MODE
TRANSCEIVER
\square TRANSCEIVER

The TR 9500 is a lightweight compact 70 cm FM/USB/LSB/CW transceiver with advanced and convenient functons and many accessories at an affordable price.
The transceiver is designed for FM, SSB, and CW modes, utilizing a microcomputer which permits frequency selection in $100 \mathrm{~Hz}, 1 \mathrm{kHz}$, and 5 kHz , 25 kHz steps by means of two digital VFOs. The microcomputer also permits memory, scanning, searching, and other features.

The TR9130 is the new all mode VHF mobile or base station rig from Trio giving 25 watts output on 2 metres FM USB, LSB and CW and now having a green LED display to make for easier mobile operation.

- 25 watts output on FM, SSB and CW. - $F M / U S B / L S B / C W$ all mode operation. - For added convenience in all modes of operation, the mode switch, in combination with the digital step (DS) switch. determines the size of the tuning step. and the number of digits displayed.

TR өtrio 9130

- Six memories. On FM, memories through 5 for simplex or +600 kHz offset, with the OFFSET switch. Memory 6 for non-standard offset. All six memories may be operated simplex. any mode.
- Memory scan. Scans memories in which data is stored. Stops on busy channels.
- Internal battery memory back-up. With Ni-Cad installed (not Trio supplied). memories will be retained approximately 24 hours, adequate for the typical move from base to mobile. A terminal is provided on the rear panel for connecting an external back-up supply. Automatic band scan. Scans within whole 1 MHz segments (ie 144.0-144.999MHz), for improved scanning efficiency.
- Dual digital VFOs. Incorporates two built-in digital VFOs, selected through use of the A / B switch and individually tuned.
- Squelch circuit on all modes (FM/SSB/CW).
- Repeater reverse switch. For checking signals on the repeater input, on FM. - CW semi break-in circuir with sidetone Built-in, for convenience in CW operations.
- Digital display with green LEDs.
- Transmit offset switch for repeater shift - High performance noise blanker. - RIT (Receiver Incremental Tuning) circuit. Useful during SSB/CW operations.
- HI/LOW power switch. Select 25 or 5 watts RF output on FM or CW.
- A four-pin accessory terminal is provided for use with a linear amplifier or other accessory
- Includes quick release mobile mounting bracket and up/down microphone.

TR9130 ALL MODE TRANSCEIVER $£ 433$ + car: $£ 5.00$

Access/Barclaycard accepted. Licenced credit broker

A.E.A ISOPOLE TM 2 M AND 70 cm VERTICAL ANTENNAS
These antennas simply put your signal where you want it - on the horizon. Most ather VHF verticals radiate other VHF verticals radiate at 10-15 above the hor. zontal but the isopole's unique (aesthetically pleasing) decoupling cones stop any feeder radiation and ensure a proper 0 radiation pattern. All users report dramatic amprovement over previous, similar sized, antennas they have used. One of the hottest selling antennas in the U.S.A Isopole 144 (E250 P\&P \& Insurance) (sopole 440 .nsurance) ($£ 2.50 \mathrm{P} \mathrm{\& P}$ \& insurance)

Sole U.K. Stockist

Dewsbury Electronics offer a full range of Trio Equipment always in stock. We are also stockists of DAIWA - WELTZ - DAVTREND - TASCO TELEREADERS - MICROWAVE MODULES-

> ICS AMTOR - AEA PRODUCTS - DRAE

Dewsbury Electronics, 176 Lower High Street, Stourbridge, West Midlands.
Telephone: Stourbridge (0384) 390063. After Hours:

CAPACITORS FOR COUPLING, DE-COUPLING AND FILTERING

A brief résumé of their application by Dr CJD Catto starting with AC coupling

A glance at an audio circuit will reveal how much space is taken up by capacitors, the majority of which are for interstage coupling, i.e. for transferring the $A C$ signal whilst blocking the DC component. In particular, those capacitors for operation at low frequencies can be really quite large, and in the awkward case where the polarising voltage may reverse, it is necessary to use a 'reversible' electrolytic. This is, in effect, two capacitors back-to-back, as illustrated in Figure 1-a somewhat clumsy component. The alternative in general is to keep the impedances higher (e.g. by using FETs), thereby permitting smaller values of C . However, in the case of a power amplifier, having a large coupling capacitor to the loudspeaker can be avoided if a double (bridge-connected) output stage is employed.
Another answer is to apply some 'lateral thinking' and find ways of reducing the number of stages. One of the many advantages of transistors over valves is that complementary devices are available, thus avoiding the need for so much level shifting. In addition, it is often possible to apply DC feedback over several stages and so reduce the number of capacitors.

Rail de-coupling

Most power supplies are situated some distance from the load and, assuming the latter to be an array of ICs or other active devices taking varying currents, it is necessary to 'de-couple the rails'. The object of this is to reduce the local voltage variation $\triangle V$ to a minimum (e.g. 100 mV peak-to-peak on a 5 V rail), but paradoxically this is rarely achieved by employing the largest available capacitor. A satisfactory arrangement is shown in Figure 2a, where a 33 nF ceramic capacitor is employed in a configuration that has minimal track length. In contrast, the layout shown in Figure $2 b$ is ineffective at high frequencies.
An even better component to use than the conventional ceramic capacitor is the flat device recently introduced by Rogers Corporation (see Reference 1), which can sit directly under the IC (see Figure 3). The series inductance is considerably reduced this way. There is, of course, much claim and counter-claim by manufacturers of ceramic and plastic film capacitors. The metallised-film variety is inherently self-healing, as the film at a pin-hole short should melt back and clear the fault. However, it has been claimed that this manifests itself as bursts of current, a type of noise of which its ceramic rival is believed to be innocent (see Reference 2).

Fig 1 Back-to-back arrangement of capacitors that could be required for interstage coupling where the polarising voltage may reverse.

Rectifier filtering

When valves, with their relatively high voltages and low currents, were in general use, the two-section capacitor was frequently employed in rectifierfilter circuits such as that shown in Figure 4. Then came transistors and lowvoltage, high-current power supplies with high-capacitance electrolytics, sometimes together with big iron-cored inductors. The latter were soon abandoned when series-pass transistor regulators became popular.
There are many advantages to the more recent switched-mode regulators, and their popularity has brought highvoltage electrolytics back into favour, particularly as these allow the mains to be rectified direct. There is, in any case, some advantage to be gained in storing energy at a higher voltage: for a given physical size of capacitor, $C V$ is fixed but the energy stored is proportional to $C V^{2}$.

However, the high frequency performance is now an important consideration. In particular, the equivalent series impedance should be kept low, e.g. by multiple-tab construction which can take the point of $Z_{\min }$ (see Figure 5) beyond 10 kHz . Reducing the equivalent series impedance is anyway an important goal, and it can be achieved by using such devices as the Mullard type 106, for which $Z_{\text {min }}$ is below 10 milliohms (at $10,000 \mu \mathrm{~F}$, 25 V).
Among the smaller capacitors, aluminium electrolytics with 'solid electrolyte' are effective: they may be somewhat larger than 'solid tantalum', but the ripple rating is much higher. For example, at $150 \mu \mathrm{~F}$ and 6 V , the volume ratio is 3:1 but the ripple ratio is about 10:1.

Case histories

To conclude - some practical examples that demonstrate the advantage to be gained through taking care over which capacitor to use.

- A valve oscillator began to produce a smell like a dead rat. This was traced to an oil-impregnated paper and foil capacitor, which had become lossy and was overheating. It was replaced by a 'mixed dielectric' (impregnated paper and

WOOD \& DOUGLAS

BUILDING SOMETHING THIS AUTUMN? WE CAN PROBABLY HELP!

Check below for some of our current kits and modutes to fill those winter evenings. Our new package offers make generous savings for the keen constructor while the new 70PAS GaAs ET pre-amp makes a simple evening job to whet your appelte. Check forg lat last list

Now Packnge Offers

2. 500 mW TV Transceiv
3. 10W TV Transmit
4. 10W TV Trnaceive
5. 70 cms 500 mW FM Transceive
6. 70 cms 10W FM Transceive

Linear/Pre-amp 10W
9. 70 cms Synthesised 10 W Transceive 10. 2 M Synthesised 10 W Transceive

cma Equipment	Code
Transceiver Kits and Accessories	
FM Transmitter (0.5W)	70FMO5T4
FM Receiver	70FMO5R5
Transmitter 6 Channel adaptor	$70 \mathrm{MCO6T}$
Receiver 8 Channel Adaptor	70MCO6R
Synthesisor (2PCB's)	70 SY 258
Synthesiser Transmit Amp	A-X3U-06F
Synthesiser Modulator	MOD1
Bandpass Filter	8PF433
PIN RF Switch	PSI433
Converter (2 M or 10M if)	70RX2/2
TV Products	
Receiver Converter (Ch 36)	TVUP2
Pattern Generator	TVPG1
TV Modulator	TVM1
Ch 36 Modulator	TVMOD1
3W Transmitter (Boxed)	ATV-1
3W Transceiver (Boxed)	ATV-2
Power Amplifiers (FMVCW) Use	
50 mW to 500 mW	70FM1
500 mW to 3W	70FM3
500 mW to 10 W	70 M 10
3 W to 10W	70FM3/10
10W to 40W	$70 F M 40$
Combined Power Amp/Pre-Amp	70PA/FM10
Unears	
500 mW to 3 W	70LIN3/LT
3W to 10W (Compatible ATV1/2)	70LIN3/10E
Pre-Amplitiers	
Bipolar Miniature (13 d 8)	70 PA2
MOSFET Miniature (14 dB)	70 PA 3
RF Switched (30W)	70PA2/S
GaAs FET (16dB)	$70 \mathrm{PA5}$
2m Equlpment	
Tranecehrer Kile and Acceesorleat	
FM Transmitter (1.5W)	144FM2T
FM Receiver	144FM2R
Synthesiser (2 PC8's)	${ }^{1445 Y} 258$
Synthesiser Multi/Amp (1.5W O/P)	ST2T
Band pass Filter	BFP144
PIN RF Switch	PSI144
Power AmplifiertLinears	
1.5 W to 10W (FM) (No changeover)	144FM10A
1.5W to 10W (FM) (Auto-changeover)	144FM108
1.5W to 10W (SSB/FM) (Auto-changeover)	144LIN108
2.5W to 25W (SSB/FM) (Auto-changeover)	144 LIN 258
1.0W to 25W (SSB/FM) (Auto-changeover)	144LIN25C
Pro-Amplifiort	
Low Noise, Miniature	144 PA 3
Low Noise, Improved Performance	144 PA 4
Low Noise. RF Switched	144PA4/S
General Acceesoriee	
Toneburst	TB2
Piptone	PT3
Kaytone	PTK3
Relayed Kaytone	PTK4R
Regulator	REG1
Solid State Supply Switch	SSR1
Microphone Pre-Amplifier	MPA2
Reflectometer	SWR1
CW Filter	CWF1
TVI Filter (Boxed)	HPF1
6 Equipment	
Converter (2M i.f.)	6XR2

Converter (2M i.f.)
(70FMO5T4 + TVM1 + BPF433) As 1 above plus TVUP2) + PSI 433 (As 1 above plus 70FM10 $+80 \times 35$ As 2 above plus 70 FM $10+80 \times 35$ (70^{\prime} T4 + 70'R5 + SSR1 As 5 above plus 70FM10) $(144 \mathrm{PA} 4 / \mathrm{S}+144 \mathrm{~L}$ IN 108)
$(144 \mathrm{PA} 4 / \mathrm{S}+144 \mathrm{LIN} 25 \mathrm{~B})$ $(\mathrm{R} 5+\mathrm{SY}+\mathrm{AX}+\mathrm{MOO}+\mathrm{SSR}+70 \mathrm{FM} 10$ $(\mathrm{R} 5+\mathrm{SY}+\mathrm{SY} 2 \mathrm{~T}+\mathrm{SSR}+70 \mathrm{FM} 10)$

70FMOSR5
 $70 \mathrm{MCO6T}$
 $70 \mathrm{MCO6R}$ A-X3U-06F BPF43 $70 \mathrm{RX} 2 / 2$
 TVUP2 TVPG1 TVMOD1 ATV-1 ATV-2 70FM1 70FM3 70FM3/10 70PA/FM10

7OLIN3/LT $70 P A 2$
$70 P A 3$ 70PA2/S

144FM2T	36.40	22.25
144FM2R	64.35	45.76
144SY25B	78.25	59.95
STTT	26.85	19.40
BFP144	6.10	3.25
PSI144	9.10	7.75

144FM10B 144LIN108 144LIN25C
18.95
33.35
350
35.60
40.25 44.25
8.10
10.95
18.95

5, $\mathrm{S5}$
27.60

Prices include VAT at the current rate. Please add $75 p$ for postage and handling to the total order. Kits are usually in stock but please allow 28 days maximum for delivery should there by any unforeseen delay. Kits when assembled will be gladly serviced at our Aldermaston works.

Unit 13, Youngs Industrial Estate Aldermaston, Reading RG7 4PQ Telex 848702 Tel: 073565324
 £86.91 - Wai IUK posi te £ $1.05 \mid$ |List approx £ 187 150 कौ 180 LPM - Full 96 CH ASC $11 * 40 \mathrm{CPL}: 280$ Dots P/

 SUITABLE FOR TAMOY - BBC - OAIC - MASCOM - GEMINI ACORN - ME W BRAIN - ORAGON - ELC AC |Your enquiries inviled Ininertact unit with loads f । 5 - stale modell PRESTEL \quad CHERRY AOO AOAPTOR 3 card sel DN KEYPAD With data ele [P/S $/ /-12 \mathrm{~V}$ MODEM CARD 8T approved ready
unit with data and
accessories e39 \qquad $£ 5.95$
SANYO DM2112 HIGH RESOLUTION MONITOR

Alohanumeric and

 siver qrey in coloup Robusi consifruction Slopinq Iront
will side vel

£27.50

HIGH

polyester) type - at a fraction of the size and cost - and the circuit then continued to work happily.
A word of caution in respect of this example, though: in applications where the pulse rating is more severe (e.g around $1 \mathrm{kV} / \mu \mathrm{sec}$) it is preferable to use the more modern polypropylene type, and even these must be de-rated above 10 kHz .

- In another case, a pair of $47 \mu \mathrm{~F}$ tantalum capacitors acting as the filter of a high frequency rectifier continually failed catastrophically after less than 100 hours. It became evident that they could not handle the ripple current: although $\triangle V$ was only a few hundred millivolts, the product $C \triangle V / \triangle t$ worked out at one amp per capacitor. A more practical expedient was to replace them with a $100 \mu \mathrm{H}$ choke followed by a group of five $4 \mu 7$ film/foil capacitors. Although physically larger, this arrangement has proved its worth by surviving thousands of hours of operation
All this, to my mind, goes to show that, despite the invasion of digital circuits and complex ICs, capacitors are still an important sector of electronics, especially when it comes to reducing ΔV.

References

1. MICRO/Q (Mektron Circuit Systems Ltd, Leatherhead)
2. A G Martin and B S Rawal (AVX Ceramics) MLCS Outperform Metal-lised-Film Capacitors under Actual Operating Conditions

WOG2206 SWEEP GENERATOR

- makes asy work of stablishing and displaying on the otcilloscope irequency responses of equalisers, active filters, crossover notworks, audio amplifiers, etc.
- excellent function generator: frequency range 0.2 Hz to 200 KHz
- provessionsi appearance at low coat

Tunction generstor: 0.2 Hz to 200 KHz wit inear setting over 6 ranges o wavelorms: Sine. suaze

 (1000:1 1yp.) erreger outpul sV Th E115 Kit £70
Prices are subject to $\mathbf{1 5 \%}$ VAT $\quad+$ VAT (p \& p £ 2.50)

modingitive

 melteventiliat TOOURODMP:
COM FIDMHLANE DBUNESMDMHIEBES.

Some hinis mew 10ccentic CO45 HT THusceIven EZ69.

The IC-745... a new all band HF transceiver with SSB, AM receive only, CW, RTTY. FM option, and $100 \mathrm{KHz}-30 \mathrm{MHz}$ general coverage receiver. And...the IC-745 has a combination of features found on no other transceiver at such an incredibly low price. See the IC-745 at our shop and showroom at Herne Bay or contact your local authorised ICOM dealer for more information.

GCRTO, ITF Recelversie99.

The R-70 covers all modes (when the FM option is included), and uses 2 CPU-driven VFO's for split frequency working, and has 3 IF frequencies: $70 \mathrm{MHz}, 9 \mathrm{MHz}$ and 455 KHz , and a dynamic range of 100 dB . It has a built-in mains supply.

NEMI CO271,5569, VIF MIMHLDde inse sintor

improvements to the IC-251 and brought it up to date.
Power can be adjusted up to 25 W on all modes SSB. CW and
FM. Squelch works on all modes and a listën-input facility has been added for Repeater work. RIT shift is shown on the display. 10 Hz tuning facility.
Options include a swichable front end pre-amp.
Speech synthesizer announcing displayed frequency 22 Channel memory extension - with scan facilities. Internal chopper PSU, SM5 desk mic Why not call us for further details?

NSMAC-120, T296MHITM 2.

Thinking of 12:0? Then leam K-120 could be the answer.
Now you can have the sophistication of today's technology on this up and coming band-all built into a unit the same size as the IC-25E, very compact

COTE1, 2969 . HF Transceiver

Think about the IC-740,
One of the most popular amateur bands transceivers, make a few improvements such as adding 36 memory channels, doing away with mechanical bandswitching and then add full HF receive capabillity (0.1-30 MHz) which is even an improvement on the famous R70 and you get a pretty good idea of what the IC-751 is like. It is fully compatible with Icom Auto units such as the AT-500 and IC-2KL and a further option for computer control can be added. There is also a digital speech synthesizer option which will be ideal for blind operators For power supplies you have the option of the IC-PS740 (which fits inside) or the PS-15/PS20 range for external use.

MIV,Morsea Ascm

Shortwave listeners and amateurs are able to take more interest in other modes of transmission than speech with the latest range of decoders and senders available. As well as amateur transmissions, there is an abundance of news and other interesting broadcasts which can be read using these space-age devices

Some models in our range are the Tono 550,9000E and the Telereader CWR-670, CWP-685E and CWR-610E. There is now available a professional version of the Tono 9000E, the PRO-1, which has a built-in scrambler. The Telereader CWR-670 is also available with a built-in VDU which can include a 40 column printer.

TOND 9000: senderlictoder 5669

CWH-610E, Deroder 3139

As U.K importers of the renowned TONO and TELEREADER products, we can offer you a wide range, from a simple morse and RTTY reader which can be plugged into your TV., to a complete send and receive system with memories and built-in displays, or outputs for high-definition VDU.

As well as stocking the complete ICOM range of equipment suitable for European use, we also sell Yaesu, Jaybeam, Datong. Welz. G-Whip. Western, TAL, Bearcat, Versatower and RSGB publications from our shop and showroom at the address below.

LCO90D, V [1, 2433. Matimodemotile

The recently introduced IC-290H has proved so popular that we have decided to concentrate on this (25W) model 2 m multimode. With its bright green display. 5 memories. scan facilities on either memories or the whole band. tone-call button on the microphone and instant listen input for repeaters. this little box really is a beauty The 70 cm version. the IC-490E has similar features (although the output is only 10 W in this case)

CO2EVIT/FM, 5179. CuTEDH5B99.

Nearly everybody has an IC2E the most popular amateur transceiver in the world - there is also the 70 cm version which is every bit as good and takes the same accessories.

A I D Please telephone first, anytime between 0900-2200 hrs. Gordon Adams G3LEQ Tel: Knutsford (0565) 4040

A) pices chemp inclonte Vau.

Anterest-freecredt onathobe
Sermitier or pers derpoth fire, yame chit mexinc.

Although standard resolution RGB monitors are becoming less expensive these days they still cost considerably more than the average domestic television receiver although they contain far fewer components. Thus to combine both TV and RGB monitors could be an advantage, particularly in view of the large number of home computers now being used in this country, the majority of which have the capability for displaying colour graphics. This normally means that they generate either video information superimposed on a radio frequency carrier which is transmitted to the television via its aerial socket or an RGB higher definition signal which is designed for display on a special high definition RGB monitor. In fact, the direct RGB method of interface gives far better quality pictures over the RF method which can suffer from spurious patterning, poor definition and drifting off tune.
A receiver worth considering for conversion is the new Ferguson 37140 colour television which uses the TX-90 chassis. The set has a $14^{\prime \prime}$ tube with a fully isolated chassis and has already proved popular with computer users. Its design is different from other current models manufactured by Thorn-in particular, by
using far fewer components which in turn leads to a large reduction in manufacturing costs which is reflected in its budget price.
The author considered it worthwhile producing an RGB interface for this chassis which will give higher quality pictures from a computer than normal RF injected signals and still represent a cost effective dual purpose display device.

Specification

-When switched to RGB monitor mode, the interface should accept red, green and blue video signals of 1 V peak-topeak positive going, with a separate mixed synchronising signal of 2 V peak-to-peak negative going, all input signals being terminated in 75Ω.

- The monitor/television should be fully isolated with respect to the mains supply.
- Switching between off-air programmes and external RGB inputs should be simple to operate.
- Linear circuitry within the interface should satisfy linear or TTL inputs.

Design

The TX-90 was initially selected for its low price and its ideal screen size for computing, but it of course has other
advantages such as availability in the high street shop, together with spares and service information being readily available.
This chassis uses two main signal processing IC's. IC102 is a TDA 4500 which accepts an IF input from the television tuner: after vision detection and amplification, the integrated circuit generates line and field drive signals which are already synchronised and can be fed directly to the line and field output stages. IC103 is a luma/chroma processor type UPC 1365 which decodes the composite PAL encoded signals into RGB video drives.

The interface board must therefore disconnect signals from off-air programmes and substitute external red, green and blue video, together with mixed sync signals. Existing RGB signals leaving IC103 and connected to three different class A amplifiers also have mixed blanking signals applied, and care must be taken to reconstitute blanking when connecting the external video signals. Externally mixed synchronising signals are connected to IC102: internal syncs and the AGC line are then disabled to prevent interaction from off-air information. Figure 1 shows a block diagram of the principle adopted.

Circuit description

Three separate channels - which are identical in operation - amplify, blank and switch each video channel, so we will contine our attention to just the red channel here.
Incoming signals are first terminated by R1 into 75Ω. RV1 then sets the signal amplitude level (or contrast). After AC coupling via C1, the signal passes through TR1 and TR2 which form a noninverting amplifier.
E1a is a CMOS switch, its enable pin driven from TR8 which is operating as a switch. The base of TR8 is fed with blanking pulses from the TX-90 which causes TR8 to switch, turning E1a off at flyback. By feeding the video signal through E1a, simple blanking will take place. E2a is enabled in RGB monitor mode with the result that it completes the path of the video signal to the class A red amplifier, which drives the CRT.
Signals from the base of TR1 through to the tube are DC coupled (by varying the DC conditions at a convenient point) to give brightness control. R34 and R5 are connected to the slider of the existing brightness control and cause a change in the base voltage at TR1 as the control is adjusted. R6 and R2 provide conventional biasing to maintain a standing level when the brightness control is set to either of its extremes. When in normal TV mode, E2a is disabled and E3a enabled, the latter passing the TV signal through to the CRT.
Mixed synchronising pulses are
inverted by TR7 and are switched through E2d into IC102. On switching into normal television mode, E2d is disabled while E3d grounds C6. The combination of D1 and R27 sets up the top sync detector and, together with D2 (AGC disable), it is grounded by switching transistor TR9.

Construction

All components are mounted on a single sided PCB (the design for which is given in Figures 2 and 3), taking care to fit
polarised components correctly. CMOS IC's should be mounted in IC holders and great care should be exercised in handling them.

A right-angled aluminium bracket is mounted on the front edge of the PCB for mounting the DIN socket and changeover switch. An alternative mounting for the switch may be constructed on the front of the set but this would necessitate drilling the front escutcheon.

Fig 1: Block diagram showing operation of interface

Ensure that wire links are fitted to the interface PCB where indicated: there are nine in all. Links LK1-LK8 are fixed, while the other link is marked LKA or LKB. To meet the specification, LKA should be fitted because this enables use of a negative going sync pulse. However, some computers use positive going syncs and, by using LKB instead, the interface will accept positive going sync inputs.

Interconnecting cables leave the rear of the interface PCB and are connected to the main TX-90 board and to the CRT base board using multistranded PVC covered cable ($16 / 0.2 \mathrm{~mm}$ or similar): I would suggest using different colours for easy identification.

Method of fitting

Disconnect the three leads from CRT base board coloured red, green and blue - and remember in which order they were removed. Re-route these three leads to the rear of the interface board and connect as shown in Figure 4. Fit three new red, green and blue leads to the interface board and connect them to the previously used connections on the tube base board, keeping the lead length as short as possible to avoid pick-up. Fit different coloured wires to the remaining seven spare connections at the rear of the interface board. These should be about 24 inches long and tied neatly in a loom. The new board may now be inserted into the runners in the centre of the cabinet base, these runners normally being used for remote control models.
Next slide out the main board of the receiver and bring the new seven-cable wiring loom round the front of this board, hanging it over the top of the volume control spindle. Then bring each wire to the appropriate solder point on the solder side of the board, cutting to length as necessary. Remove capacitor C129, which is a 68 nF device located below pin 26 of IC102, and connect the appropriate lead of the loom to the empty hole nearest the IC. The six remaining leads are connected as shown in Figure 4. Refit the board into the cabinet making sure that the wiring loom sits neatly above the volume control.

Testing

Switch on the receiver and connect a computer input to the 6-pin DIN socket. Display a page of text ur a test card which is in black and white. Adjust RV1, RV2, RV3 for good contrast, ensuring that the white areas of the screen are white and not overcast with a predominant R, G or B. Switch over to normal TV mode and compare contrast levels: re-adjust RV1, RV2, RV3 if necessary to obtain equal levels on either system.

Line up the DIN socket switch panel (see Figure 5) with the rear edge of the receiver base and drill through two locating holes at the rear of the interface PCB into the cabinet base. Fit two 3 m nuts and bolts to prevent the PCB from sliding forward when the DIN plug is inserted. Cut out a small hole in the rear of the cabinet for the DIN socket and switch access and fit back in (see Figure 6).

Conclusion

The interface uses readily available components which are inexpensive. A mains isolating transformer is not required, cutting costs even further. The prototype has run for over two months every day and has been reliable and given good results using a BBC computer.

PARTS LIST	
Resistors	
R1, R10, R18, R28	$75 \Omega 11 / 8 \mathrm{~W}$ carbon
R7, R16, R24	$120 \Omega 1 / 8 W$ carbon
R3, R12, R20	$330 \Omega 118 W$ carbon
R4, R13, R21	$470 \Omega 118 W$ carbon
R31, R32	$1 \mathrm{k} \Omega 1 / 8 \mathrm{~W}$ carbon
R2, R11, R19, R26	$2.2 \mathrm{k} \Omega 1 / 8 \mathrm{~W}$ carbon
R34	$2.7 \mathrm{k} \Omega 1 / 8 \mathrm{~W}$ carbon
R8, R17, R25, R33	$3.3 \mathrm{k} \Omega 1 / 8 \mathrm{~W}$ carbon
R27, R30	$5.6 \mathrm{k} \Omega 1 / 8 \mathrm{WW}$ carbon
R29	$6.8 \mathrm{k} \Omega 1 / 8 \mathrm{~W}$ carbon
R5, R6, R9, R14, R15,	
R22, R23	$10 \mathrm{k} \Omega 1 / 8 \mathrm{~W}$ carbon
R35	$47 \mathrm{k} \Omega 1 / 8 \mathrm{~W}$ carbon

Capacitors

C1, C2, C3, C4, C5 $10 \mu \mathrm{~F} 16 \mathrm{~V}$ w tantalum C6 68 nF 63 Vw polyester $\mathrm{C} 7 \quad 0.1 \mu \mathrm{~F} 50 \mathrm{~V}$ polyester C8 $\quad 47 \mu \mathrm{~F} 16 \mathrm{Vw}$ tantalum

Semiconductors

TR1, TR3, TR5, TR7, TR8, TR9
BC108
TR2, TR4, TR6 BC478
D1, D2
IN4148
E1, E2, E3 MC14066 or 4066 CMOS switch

Miscellaneous

1 printed circuit board; 1 changeover switch, toggle SPDT; 1 DIN socket 6 pin, $240^{\circ} ; 314$-pin DIL IC holders; 1 aluminium bracket for DIN socket and switch.

Both a printed circuit board with silkscreen ($£ 5$ including postage and packing) and a complete kit of parts ($£ 25$ including postage and packing) are available from the author at 113 Queens Road, Vicars Cross, Chester, CH3 5HF. Cheques should be made payable to $\mathrm{A} V$ Warne.

Fig 5: Design for the metal bracket. All dimensions are in millimetres

miirruintıI
 CW/RTTY/AMTOR/ASCII Communications Terminal 'ADD-ON' OPTIONS:
 $\mathbf{\Sigma 5 4 0}$ (inc. VAT)
 - Built-in 2 colour 40 column printer ($\mathbf{(1 9 0)}$
 - Battery back-up of memory (£30)
 - Test Pracessor (£39)
 - AMTOR/ASCII modules (ع28):-
 * FEC. ARQ and 'listen' modules
 * ASCII transmit and receive
 * Automatic PTT line

STANDARD FEATURES:

* Green phosphor screen
* Conventional keyboard legended for all functions
* 10 user memories for transmit text preparation - Transmit/receive CW (morse) and RTTY (teleprinter)
- Fixed text stores
- Char by Char, and 'page transmission modes - Full duplex working
- Users callsign programmed
- Self check facility
- Printer port (parallel, centronics compatible) - External video port
- PTT control
* Phase coherent AFSK generator

Real-time clock

CONTACT US TODAY at POLEMARK Limited, Lower Gower Road, Royston, Herts
SG8 5EA. Tel: Royston (0763) 47874.
\star ©TOP PRESS:
SSTV board will be available shortly

Hitachi Oscilloscopes performance, reliability, value
 (0)

New from Hitachi are three low cost bench wope with hieder sercens and extra features in a new slimline ultra-lightweight format The range now extends to 13 models:-

4 dual trace single timebase models 20 MHz to 41 MHz 2 dual trace sweep delay models 20 MHz and 35 MHz 2 dual timebase multi-trace models 600 MHz and 100 MHz 2 miniature field portable models, 20 MHz and 50 MHz 3 storage models, one tube storage, two digital storage
Prices start at $£ 295$ plus vat (model illustrated) including 2 prober and a 2-year warranty. We hold the range in stock for immediate delivery For colour brochure giving specifications and prices ring (0480) 63570. Reltech Instruments. 46 High Street, Solihull. W. Midlands, B91,3TB

PROGRESSIVE RADIO

93 Dale Street, Liverpool L2 2JD. 051-236 0982
All Prices include VAT. Orders sent by return. SAE for current catalogue. Please add 50 p Post \& Packing

VEGA RUSSIAN RADIOS

MODEL 206:
6 Short \&
Long \&
Medium
wavebands
battery
operated

MODEL 210
5 Short.
Medium,
Long \&
VHF Bands,
Battery or
mains operated

SCANNING RECEIVER

Handheld 10 channel with crystals \& nicards, available in either marine or 2 mtr $\mathbf{\Sigma 5 9 . 9 5}$

CB ECUIPMENT

Midland 2001 Mobile $\quad 3505$
Midland 3001 Mobile $\mathbf{\Sigma 4 2 . 9 5}$ 'Ready Rescue' 40 Chann. 4 Watt $\mathbf{\Sigma 3 4 . 9 5}$ Binatone 'Breaker Phone' 40 Chann.. £44.95 Handheld 2 Watt, 3 Chann. £26.95

'SPECIAL OFFER'

BSR P208 belt drive deck on attractive plinth
fitted with ADC magnetic cartridge£38.95

NICAD BATTERIES

C'20AH $=2.95$

RECH. SEALED LEAD ACID CELLS

2 volt, 2.5AH.... $2.35 p$ 5.0AH 3.45p

BUTTON STACKS

4.8 volt, . $25 \mathrm{AH} . £ 3.75$.6AH......... $£ 7.50$

RECH SEALED LEAD ACID CELLS

6 volt, 2.6AH $\mathbf{\Sigma 5 . 3 5}$
12 volt, 2.6 AH £9.00 $4.5 A H$.. £12.95

COMPUTER ACCESSORIES

Joystick, Sleit Atari/Vic	$\varepsilon 4.95$
Spectrum Joystick interface £9.50	
BBC power supply - 5 v 100 ma $+5 \mathrm{~V} 2.25 \mathrm{~A} .$	E6.95
Computer Grade Cassettes	
C15....................	. 10 for E4.00
BBC Dual disc drive cable	£10.50
Spectrum Edge Connectors	$\varepsilon 2.20$
ZX81 Edge Connector	ع2.20

ALARM EQUIPMENT

A+G DIY KIT

Bell \& Outdoor box pressure mat.
4 door contacts
panic switch.
2 zone control box.
cable, battery/mains£79.95
CONTROL PANELS
Battery-mains, single zone
Entry exit timer......................................531.50
2 zone version ..E33.50
DETECTORS
Elkron passive
infra-red
15 metre............. £30.00
M +W 5004

ultrasonic.......... £32.50
Elkron 20 metre infra-red unit
TX and RX.
E29.00

TV AERIAL BOOSTERS

240v Operated, 7DBGain
Single Set £6.95 Two Set $\mathbf{\Sigma 8 . 9 5}$

One Night's Work
 A couple of quick designs for a voltage level detector put together by Stephen Ibbs

Fig 1 Circuit diagram for a voltage level detector based on a 8211

Fig 2 PCB foil pattern corresponding to Figure 1

Fig 3 Component overlay

This little project concerns the detection of voltage levels, and how a warning can be given whenever the level rises or falls significantly. Intersil produces two ICs which can be used in this role - the ICL8211 and the ICL7665. We will consider them separately.

Using an ICL8211

The 8211 is an 8 -pin device that typically operates between 1.8 V and 30 V , and it provides a constant 7 mA sink output when triggered. This means that if the threshold input voltage drops, the output pin can be used to light an LED and thus tell an operator that the supply voltage has fallen below the preset level. Such a facility can be invaluable in battery-powered equipment, through giving a warning of impending battery failure. Readers who saw the PF70 conversion article (R\&EW September '83) may be interested to know that I incorporated an 8211, set to trigger at 12.5 V (the nominal battery voltage being 15 V), so that I would know when the rig was about to pack up and die.

Pin 2 of the IC is the hysteresis pin, and its performance can be adjusted via a resistor in the position indicated by dotted lines in the circuit diagram (Figure 1). The effect is to make the LED switch on and off at slightly different voltages, and so prevent flickering in an electrically noisy environment, but this has not been included on the circuit board present here.
The role of R1 is to reduce the voltage swing across the preset: it can be replaced by a wire link, or altered in value in order to change the operating range of the circuit, if so desired.
As usual, either veroboard or a PCB can be used for this circuit's construction: a PCB design is given in Figures 2 and 3. Note that no current-limiting resistor is needed because the output current is already limited to 7 mA . Mount the components, switch on the supply and set to the required trip voltage. Adjust RV1 until the LED just lights...end of project!
However, what if you want a device that will register both high and low voltage levels?
(contd.)

Using an ICL7665

The 7665 does just this: in many ways, it is like two 8211s in one 8-pin package, with the hysteresis pins being pins 2 and 5. The main differences are (a) the operating voltage range is 0.3 V to 18 V , and (b) the outputs are not current limited to 7 mA . Instead, either output can sink up to 25 mA , and what this means for us is that a current-limiting resistor for the LED must be included to prevent it blowing up.

Another inclusion is a disc ceramic capacitor of $0.04 \mu \mathrm{~F}$ (see the circuit diagram of Figure 4). Its role is to lengthen the rise time of the supply voltage in battery applications.

Once again, veroboard or a PCB can be used for the construction and a suitable design is given in Figures 5 and 6. Mount the components and adjust the presets to light the LEDs, (LED2 for low, LED1 for high). Make sure that only about 10 mA is flowing through the LEDs - if necessary, by adjusting R1 and R2 accordingly.

PCBs for both these detectors are available from Edwardschild Ltd, 453a Becontree Ave, Dagenham, Essex RM8 3UL at£0.99 ea inclusive.

Fig 5: PCB foil pattern corresponding to Fig 4

Fig 6: Component overlay

Fig 4: Circuit diagram for detector based on a 7665

MOBILE ANTENNAE AND ACCESSORIES

Boot lip Mount £3.95 inc.

Gutter Mount $\mathbf{\varepsilon 4 . 5 0}$ inc.

Centre roof E. 1.70 inc.

Mount

VHF 5/8th Wave antenna $140+180 \mathrm{Mhz} 3 \mathrm{db}$ gain E12.50 inc.

UHF 5/8th Wave over $5 / 8$ th Wave mobile collinear frequency $420+480$ Mhz 6db gain £13.50 inc.

Standard Mount
(SO239/PL259) £1.70 inc.

At your emporlum or:-
2es SNablen
PEMBROKE WORKS, RAMSGATE ROAD, SANDWICH, KENT CT13 9NW Telephone: 0304614598

C M HOWES COMMUNICATIONS

139 Highview, Vigo Village Meopham, Kent DA13 OUT
 Fairseat (0732) 823129

EASY TO BUILD KITS BY MAIL ORDER IS YOUR WINTER PROJECT HERE?

AP3 AUTOMATIC SPEECH PROCESSOR This kit is a real winner, we have sold hundreds of these since the constructional article in Septembers' Ham Radio Today. lan. G600Z used his AP3 to help him come top of the fixed stations in the Practical Wireless QRP Contest - a real winner indeed! The AP3 Automatic Speech Processor uses a combination of compression and clipping to give a really punchy signal that cuts through the QRM to give you contacts that may not be possible without it.

- Automatically compensates for changes in speech level
- Automatic on/off switching from your PTT switch
- Four switch selectable clipping levels in approx 6 dB steps.

Will run from a 9 volt battery, or your rigs 12 volt supply

Prices: AP3 kit £14.80, Assembled PCB £19.80.

XM1 CRYSTAL CALBBRATOR - a really useful piece of test equipment, as well as helping to meet those licence requirements. O/Ps: $1 \mathrm{MHz}, 100 \mathrm{KHz}$. $25 \mathrm{KHz} \& 10 \mathrm{KHz}$ Features include an on-board voltage regulator (i/p 8 to 24 V DC) and a pulsed ident facility to identify markers on crowded bands. Usable from Top Band to 70 cm . Kit $\mathbf{£ 1 5 . 6 0}$, assembled PCB $£ 19.60$.

Defor drect cowversion communnca nows receaver, single band versions for 20,30 \& 80 meters, modes SSB and CW. We have sold many of these to both beginners and owners of expensive Japannese rigs. They really are amazing! All coils are ready wound. Kit \&13.05, assembled PCB £18.90.

ST2 CW SDE-TONEPRACTICE OSCIUATOR. This unit gives a nice sounding sinewave note and will work from your key, or the output of your TX by fF sensing. Output power approx 1 watt at 800 Hz . Kit £6.20 Assembled PCB £8.90.

NEM! LNEAR AMPLIFISRS for 2 meters. 15 W version for use with up to 1.5 W rigs, 30 W version for use with up to 4 W rigs. Just the job for your FT290, IC202 etc. Kits $£ 18.90$ and $\mathbf{2 2 . 9 0}$
 use whith thete theares is available: CO1 kin $£ 8.00$, assembled PCB, $£ 11.90$ - Yes, there is provision for adding a pre-amp

All the above are PCB modules and include all board mounted components, a drilled, and tinned fibre-glass PCB with the component locations screen printed on it, and full, detailed instructions. Our instructions are more comprehensive than those used by most of our fellow kit manufacturers.
Please add 60 p P\&P to your total order value. SAE for more details on any item. Goods are normally in stock and delivery within 7 days, but we sometimes run out of one item or another no matter how hard we try!

73 de Dave G4KOH Technical Manager

Following the publication of a design for a capacitance meter in the July ' 83 issue of R\&EW, we received enquiries from readers about a portable LCD version and so we asked Stephen Ibbs to expand more upon his final paragraph which hinted at other thoroughbreds in the Intersil stable of counters

Intersil produces a series of $41 / 2$-digit counters, the most interesting one in terms of this particular application being the ICM 7224 LCD counter. However, unlike the frequency meter ICs from the same stable, this device does not generate its own gate, store and reset pulses, which consequently have to be produced externally. The earlier version of the capacitance meter did this with a 7556, a 40106 and a 4011, which was all very well. However, for handheld use, three ICs occupy too much room, particularly when a 40-pin IC (the 7224) is being used instead of the 28-pin 7217A.
The present LCD meter thus obtains its gate, store and reset pulses by taking advantage of a single IC designed specifically for the purpose, the ICM7207A, with its attendant 5.24288 MHz crystal. The other major change in the overall design is in respect of the oscillator frequency, explained in more detail below.

How it works

The principles involved in the circuit's operation are best understood from the block diagram of Figure 2. Imagine that monostables ' A ' and ' B ' operate gates or barriers which, when closed, prevent anything travelling past them along the line from the oscillator to the counter. The 7207A will open gate ' B ' for either 0.1 or 1 sec (depending on whether pin 11 is high or low). So if gate ' A ' were also open, the counter would receive 20,000 pulses (its maximum reading) every $100 \mathrm{msec}-$ assuming that a 200 kHz oscillator is used. At the end of each group, it has to store the result, by transferring it to data latches, and then reset. The timing

Fig 1: Circuit diagram for LCD capacitance meter
Fig 2: Block diagram

monostable controls gate ' A ' in such a way that it turns out that the smaller the capacitor, the fewer pulses get through gate ' A ' in the time that gate ' B ' is also open. Logic needs to be included to ensure that the two gates are synchronised.

The meter itself is best considered in sections starting with the 7556 dual-timer IC (IC3 on the circuit diagram of Figure 1). The first half takes the negative-going gate pulse from the 7207A and uses this to provide a brief trigger pulse to the second half which is the main monostable. The output from the first half is also used as an extra control on gate ' A ', in effect keeping it shut for a small fraction of a second to null out any stray capacitance in the circuit. In this it acts as a zero-adjust via RV4.
The period of the main monostable is determined by the unknown capacitor C_{x} and one of the resistor combinations accessed via switch SW1d. The 7556 data sheet suggests that it is relatively easy to obtain a period of around 100 msec by using suitable resistors where this corresponds to either $20,000 \mathrm{pF}$ (20 nF) or $2 \mu \mathrm{~F}$ FSD. This in turn means that the 0.1 sec gate on the 7207A can be used to give a fast response time. For 20,000 pF FSD and a 100 msec period we thus need at least a 200 kHz oscillator. This is most easily provided by a 3.2768 MHz crystal divided by 2^{4} by the 4060 ripple-binary counter to give 204.8 kHz at pin 7 , which allows us a small overhead margin for calibration purposes.

A problem arises on range 3 of the meter $(200 \mu \mathrm{~F}$ - each range is a factor of 100 up on the previous range) because it is very difficult to obtain a 100 msec period in this case. However, a period of approximately 1 sec is feasible; SW1b is used to disconnect pin 11 of the 7207A from the +ve supply, thus altering the gate ' B ' period to 1 sec . The resistorcapacitor combination will open gate ' A ' for approximately 1 sec (adjustable via RV3), but this is obviously too long with a 200 kHz oscillator as the 7224 would simply overflow after 100 msec . Consequently pin 6 of the 4060 is simultaneously selected by SW1a, as this gives a divided-by- $\mathbf{2}^{7}$ output, i.e. 25.6 kHz . By calibration, the counter will display 20000 in response to a $200 \mu \mathrm{~F}$ capacitor.
The 4070 (IC7) can be considered a bit of a luxury extra. It would be nice to have full scale deflection displayed as 19999 on range 1, 1.9999 on range 2, and 199.99 on range 3 . The best way to activate the desired decimal point is to drive it with an inverted backplane signal (achieved by connecting the EX-OR gates as inverters) with SW1c deciding which point will be activated by connecting the second pin of the relevant gate to +ve. Readers who do not want this refinement can simply omit the 4070.

Construction

NB:Switch off after each check, prior to inserting any ICs!
The main PCB has been designed to fit a specific case (RS 507-983): the foil pattern and component overlay are given in Figures 3 and 4. Insert the two wire links first, followed by all the other

Fig 7: 7207A output pulses

Fig 9: Back of SW1 which is a
4 -pole 3 -way slide switch

PARTS LIST	
Resistors	
R1	$10 \mathrm{M} \Omega$
R2	$4.7 \mathrm{M} \Omega$
R3	$47 \mathrm{k} \Omega$
R4	$3.9 \mathrm{k} \Omega$
R5, R6	$27 \mathrm{k} \Omega$
R7	$680 \mathrm{k} \Omega$
R8	$10 \mathrm{k} \Omega$
R9, R10	$100 \mathrm{k} \Omega$
Presets (all min 6 mm cermet type HO651A)	
RV1	470Ω
RV2	$10 \mathrm{k} \Omega$
RV3	$1 \mathrm{k} \Omega$
RV4	$100 \mathrm{k} \Omega$
Capacitors	
C1	$0.22 \mu \mathrm{~F}$ tantalum
C2	$2.2 \mu \mathrm{~F}$ tantalum
C3, C4	27pF
C5, C6	$0.1 \mu \mathrm{~F}$
C7, C8	330 pF
C9	220pF
C10, C11	33 pF
Semiconductors	
IC1	78L05
IC2	4060
IC3	7556
IC4	ICM 7207A
IC5	4023
IC6	ICM 7224
IC7	4070
Others	
RS handheld case (507-983)	
RS 4112-digit LCD bezel	
41⁄2-digit LCD display (LUCID 103F111)	
4 -pole 3-way slide switch (Maplin)	
1-pole 2-way slide switch	
3.2768 MHz crystal	
5.24288 MHz crystal	
Presets available from Ambit; Crystals available from Watford Electronics; ICM 7207A, ICM 7224 available from Watford Electronics or Quorn don Electronics (Derby)	
PCBs for this LCD capacitance meter are available form Edwardschild Ltd, 453a Becontree Ave, Dagenham, EssexRM83UL at $£ 3.85$ ea for the control board and $\$ 1.40$ ea for the display board, both inclusive	

components except the ICs. Noto: Sockets should be used for all the ICs, with the possible exception of the 7224 because space is at a premium at that end of the board.
The cut out on the front panel needs to be slightly widened for the specified bezel, which comes complete with a display PCB (the design for this is anyway given in Figures 5 and 6). In addition, two holes have to be drilled and filed for SW1 and SW2, which need to be sited carefully to avoid fouling the PCB. These are held in place either by small nuts and bolts or (as in the prototype) by epoxy resin. Two holes also need to be
drilled for the capacitor terminals which can be either spring-loaded terminals or 1 mm sockets.

Do not wire the display up yet. After visual inspection, insert IC1 (the 78L05) and check that +5 V appears at its output. Insert the 4060 (1C2) and measure the output to confirm that the oscillator is working. Next insert the 7207A and verify that the output pulses are appearing as in Figure 7 (which is not to scale). The store and reset fines are very thin negative-going pulses.' Insert the 7556 and 4023 (IC's 3 and 5) and measure the output at pin 9 of the former, which should show a brief positive-going pulse.

With a capacitor in the C_{x} position, pin 5 should reveal a positive-going pulse, with a period adjustable via the appropriate resistor RV1, 2, 3. Monitor pin 9 of the 4023 to see that a repeating 'block of pulses' appears lasting either 0.1 or 1 sec depending on the range.
Finally insert the 7224, the correct way round, and wire up the display according to Figure 8. Switch on and adjust RV4 so that it just gives a blank display (altering R7 if necessary). Adjust RV1, 2, 3, with close tolerance capacitors in the C_{x} position.
If all is well, the case can finally be screwed together.

WATERS \& STANTON ELECTRONICS TRIO - YAESU - ICOM - FDK : AZDEN • WELZ • JAYBEAM - MICROWAVE MODULES • DATONG - ETC

WE GUARANTEE LOWEST PRICE IN UK! MULTI.750X WM ALL MODE TRANSCEIVER
 £309!!

The new MULTI-750XX All-Mode transceiver from FDK incorporates all the latest circuit technology and features demanded by radio amateurs throughout the world.
A unique feature is the option of extending its coverage to 430 MHz expander unit, EXP-430X, thus providing a 2 band VHF/UHF system. Features include:

- More than $\mathbf{2 0}$ watts of output power
- Bright Blue Flourescent Display
- Full scanning function through micophone

Double CFo System
Low power switch (1W) for local contacts

- CW semi breaking circuit with sidetone

LARGEST AMATEUR RADIO RETAILER IN THE SOUTH EAST

HORMCHURCH BRANCH:-
HOCKEY BRANCH: OPENING HOURS 9.30-5.30 EC WED 4 pm
位
18-20 MAIN ROAD, HOCKLEY, ESSEX TEL: 0702206835
HEAD OFFICE

Ray Marston continues his survey of op-amp principles and applications by looking at practical ampliffer and active filter circuits.

In last month's edition of 'Data File' we took an in-depth look at the basic operating principles of conventional voltage-differencing operational amplifiers, and showed some of the basic circuit configurations in which an opamp can be used. In this month's article, we shall concentrate on practical methods of using op-amps as linear amplifiers and active filters.
When reading the present article, it should be remembered that all circuits are shown designed around a standard 741 op-amp and operated from dual 9 V supplies. But, in practice, these circuits will work - without modification - with virtually any voltage-differencing opamp, and from any supply voltages within the operating range of the op-amp. If alternative op-amps are used, however, attention should (where applicable) be paid to possible differences in offset biasing networks. With these points in mind, let's move on and look at practical linear amplifier circuits.

Inverting amplifier circuits

Figure 1 shows the practical circuit of an inverting DC amplifier, which has an overall voltage gain (A) of $\times 10$ and an offset nulling facility that enables the output to be set to precisely zero with zero applied input. The voltage gain and input impedance of the circuit are determined by the values of R1 and R2, and can be altered to suit the needs of the individual user. The gain can be made variable (if so desired) by using a series combination of a fixed and a variable resistor in place of R2. For optimum biasing stability, R3 should have a value equal to a parallel combination of R1 and R2.
One point to note about the Figure 1 circuit is that it will continue to function if the RV1 offset-nulling network is removed, but in this case the output may be offset by an amount equal to the opamp's input offset voltage (typically 1 mV in a 741) multiplied by the closed-loop voltage gain (A) of the circuit. For example, if the circuit has a gain of $\times 100$, the output may be offset by 100 mV with zero input applied. Also note that the bandwidth of the circuit is equal to the f_{T} value (1 MHz in a 741) divided by the A value: thus the Figure 1 circuit gives a bandwidth of 100 kHz with a gain of $\times 10$, or 10 kHz with a gain of $\times 100$.
The circuit can, incidentally, be adapted for use as an AC amplifier, simply by wiring a blocking capacitor in

Fig 1 Inverting DC amplifier with ax 10 voltage gain and incorporating an offset-nulling facility. $A=R_{2} / R_{1}: V_{\text {OUT }}=-A \times V_{I_{N}}: Z_{\mathbb{N}}=R 1$, Bandwidth $=f_{I} / A: R 3=R 1 / / R 2$

Fig 3 Non-inverting DC amplifier with offset nulling facility and $\times 10$ gain. $A=\left(R_{1}+R_{2}\right) / R_{2}$. $R_{\text {source }}=R 1 / / R 2$
series with its input terminal, as shown in Figure 2. In this case, however, no offset nulling facility is needed and the value of R3 corresponding to optimum biasing is equal to the value of R2.

Non-inverting amplifier circuits

An op-amp can be used as a noninverting DC amplifier with offset compensation by using the connections shown in Figure 3. The voltage gain in such a circuit is determined by the ratios of R1 and R2, so that shown here is for a x10 amplifier. If R1 has a value of zero the gain falls to unity, but if R2 has this value the gain rises to a value equal to the open-loop gain of the op-amp. The gain can thus be made variable by replacing R2 with a pot and connecting its slider to the inverting terminal of the op-amp. This is illustrated in the circuit shown in Figure 4, in which the gain can be varied over the range $\times 1$ to x 101 via RV1.

Fig 2 Inverting $A C$ amplifier with $\times 10$ gain

Fig 4 Non-inverting variable-gain (x1 to x101) DC amplifier

It is important to note that, for correct operation, the input (non-inverting) terminal of each of these circuits must be provided with a DC path to the common or zero-volt rail; this path is provided in the circuits shown via the DC input signal. Another point to note about Figure 3 is that the parallel value of R1 and R2 should ideally be equal to the source resistance of the input signal, as this gives optimum biasing.
A major feature of this non-inverting op-amp circuit is that it gives a very high input impedance. In theory, this impedance is equal to the open-loop input resistance ($1 \mathrm{M} \Omega$ in a 741) multiplied by A_{0} / A. In practice, $D C$ circuits such as those of Figures 3 and 4, can easily have input impedance values of hundreds of megohms.

Figure 5 shows how the Figure 3 circuit could be modified for use as a $\times 10$ noninverting $A C$ amplifier by removing the

Fig 5 Non-inverting $\times 10$ AC amplifier with 100 k input impedance

Fig 8 AC voltage follower with 100 k input impedance
offset biasing network, connecting the non-inverting terminal of the op-amp to ground via the biasing resistor R3, and connecting the input signal via a blocking capacitor. The point to note here is that the gain-control resistors R1 and R2 are isolated from ground via the blocking capacitor C2. At practical operating frequencies, C2 has negligible impedance and so the voltage gain is still determined by the ratios of R1 and R2. But the inverting terminal of the op-amp is subject to virtually 100% DC negative feedback, and the circuit consequently has excellent DC stability. For optimum biasing, R3 should have a value equal to that of R1.

Clearly, the input impedance of the circuit shown in Figure 5 equals the value of $R 3$ and it is limited to a maximum value of only a few megohms by practical considerations. Figure 6 shows how the above circuit can be further modified so that it has a very high input impedance (typically $50 \mathrm{M} \Omega$). Here, the position of C2 is moved relative to Figure 5, but this modification does not influence either the gain or the DC negative feedback characteristics of the circuit.

In the Figure 6 circuit, however, the low end of R3 is taken to ground via R2, and the AC feedback signal appearing at the R2-R3 junction is virtually identical to that appearing on the non-inverting input terminal of the op-amp. Consequently, near-identical signal voltages appear at both ends of R3, which thus

Fig 6 Non-inverting $x 10$ AC amplifier with 50 M input impedance

NOTE: NP = non polarised

Fig 9 AC voltage follower with 50 M input impedance without the guard ring, or 500M with the guard ring
passes negligible signal current, and the apparent impedance of this resistor is thus increased to near-infinity by this 'bootstrap' action. In practice the input impedance of this circuit is typically limited to about $50 M \Omega$ by leakage impedances within the actual op-amp socket and the PCB to which it is wired.
For optimum biasing, the sum of the R2 and R3 values should equal R1: in practice, the R3 value can differ from this ideal by up to 30%. Thus a resistor with a value of 100 k can be used in the Figure 6 circuit.

Voltage follower circuits

A voltage follower circuit produces an output voltage that is identical to that of the input signal, but has a very high input impedance and a very low output impedance. The circuit actually functions as a unity-gain non-inverting amplifier, with 100% negative feedback, and Figure 7 shows the 'idealised' design for a precision voltage follower with offset biasing. In this case, the feedback resistor R1 should have a value equal to the source resistance of the input signal, in order to bias the circuit optimally.

In practice, this circuit can often be greatly simplified. Eliminating the offset biasing network, for example, adds an error of only a few millivolts to the output of the op-amp. Again, the value of the feedback resistor R1 can be varied over a wide range (from zero to 100k) without greatly influencing the output accuracy

Fig 7 Precision DC voltage follower with offset nulling facility

Fig 10 Guard ring etched on a PCB and viewed through the top of the board
of the circuit. If an op-amp with a low f_{T} value (such as the 741) is used, the R1 value can usually be reduced to zero. However, many 'high- f_{T} ' op-amps tend towards instability when used in the unity-gain mode, and in such cases R1 should be given a value of $1 \mathrm{k} \Omega$ or greater in order to reduce the circuit bandwidth substantially and thus enhance circuit stability.

Figure 8 shows an AC version of the voltage follower. In this case, the input signal is DC blocked via C1, and the noninverting terminal of the op-amp is tied to ground via R1, which determines the input impedance of the circuit. Ideally, the feed back resistor R2 should have the same value as R1. If R2 has a high value, it may significantly reduce the bandwidth of the circuit; however, this problem may readily be overcome by shunting R2 with C2 (shown dotted in the diagram). If the latter technique is used with a 'high- f_{T} ' op-amp, resistor R3 should be connected as shown to ensure circuit stability.

If a very high input impedance is required from an $A C$ voltage follower, it can be obtained by using the basic configuration shown in Figure 9, in which R1 is 'bootstrapped' from the op-amp output via C2, so that the R1 impedance is increased to near-infinity. In practice, this circuit will easily give an input impedance of $50 \mathrm{M} \Omega$ from a $741 \mathrm{op}-\mathrm{amp}$, this limit being set by the leakage impedances of the op-amp's IC socket and the PCB.

Fig 11 Input biasing of an op-amp. $\mathrm{l}_{b_{1}}=$ $l_{b 2}=I_{b}$; Biasing output error $=I_{b}\left(R_{2}-R_{1}\right) \times A=$ A $\left(V_{2}-V_{1}\right)$

Fig 12 Unilateral DC voltage follower with boosted output-current drive

Fig 14 Unity-gain inverting $D C$ adder

If even greater inout impedances are required the area of PCB surrounding the op-amp input pin should be provided with a printed 'guard ring' that is driven from the op-amp output, so that the leakage impedances of the PCB, etc are themselves bootstrapped and raised to near-infinite values. In this case the Figure 9 circuit gives an inputimpedance of about $500 \mathrm{M} \Omega$ when a $741 \mathrm{op}-\mathrm{amp}$ is used - or even greater if a FET-input opamp is used. Figure 10 illustrates an example where the guard ring has been etched on the PCB.

Biasing accuracy

In the above descriptions of the circuits shown in Figures 1-9, great emphasis has been placed on the selection of particular component values in order to achieve 'optimum biasing'. In practice, however, op-amps are very versatile devices and can accept considerable errors in the values of these components. Figure 11 should help put the subject of 'biasing' into perspective.

This figure shows the equivalent circuit of an 'idealised' amplifier, in which the actual op-amp has zero intrinsic input offset voltage error, and the voltage gain A of the complete circuit is controlled by a negative feedback network. The op-amp is biased by wiring its input terminals to the ground or to a 'common' line via resistors R1 and R2. The op-amp draws input bias currents $I_{b 1,2}$ via these resistors, and thus generates a voltage drop across each bias resistor.
For all practical purposes, the two bias
currents of any op-amp have the same value. Consequently, if R1 and R2 have equal values, the voltage drop across each resistor will be identical. The result of this is zero differential input voltage and thus a zero biasing error at the output of the circuit; this is the 'ideal' biasing arrangement. If, on the other hand, R1 and R2 do not have equal values, their voltage drops will differ - resulting in an input differential error of $I_{b}\left(R_{2}-R_{1}\right)$ and an output error that is ' A ' times greater than this value. But how significant is this error?
In practice, a bipolar op-amp such as the 741 has a typical I_{b} value of about $200 \mathrm{nA}(=0.2 \mu \mathrm{~A})$, corresponding to a drop of 0.2 mV across a $1 \mathrm{k} \Omega$ resistor. FET-input op-amps, on the other hand, have typical I_{b} values of about 0.02 nA , corresponding to a drop of a mere $0.02 \mu \mathrm{~V}$ across a $1 \mathrm{k} \Omega$ resistor. Thus, in Figure 11, if the R1 and R 2 values differ by as much as $10 \mathrm{k} \Omega$, the biasing output error from a 741 op-amp will still only be 2 mV in a unity-gain voltage follower circuit, or 20 mV in a $\times 10$ amplifier circuit. If a FET-input op-amp were used in place of the 741, the biasing output error of the voltage follower would be a mere $0.2 \mu \mathrm{~V}$, and that of the $\times 10$ amplifier just $2 \mu \mathrm{~V}$.
From this, it can be seen that all of the circuits of Figures 1-9 can accept considerable latitude in their biasing component values. With this point in mind, let's look at some more amplifier circuits.

Current-boosted follower circuits

Most op-amps provide a maximum output current of only a few milliamps;

Fig 13 Bidirectional DC voltage follower with boosted output-current drive
this is therefore the current-driving limit of the voltage follower circuits of Figures 7-9. However, the current-driving capacity of a voltage follower can easily be increased by wiring a simple or a complementary emitter-follower current booster stage between the op-amp output and the final output terminal of the circuit, as shown in the basic designs of Figures 12 and 13. Note that the base-emitter junctions of the transistors are wired into the negative feedback loop of the op-amp, because this will virtually eliminate the effects of junction non-linearity.
The circuit shown in Figure 12 is able to source large currents (via TR1), but can sink only relatively small ones (via R1). This circuit can thus be regarded as a unidirectional, positive-only, DC voltage follower. We'll illustrate several practical applications of this type of circuit in Part 4 of this 'Op-Amp' series.
The Figure 13 circuit can both source (via TR1) and sink (via TR2) large output currents, and so can be regarded as a bidirectional (positive and negative) voltage follower. In the simple form shown in the diagram, the circuit produces significant cross-over distortion as the output moves around the zero volts value. This distortion can be eliminated by suitably biasing TR1 and TR2, in which case the circuit could be the basis of a good hi-fi amplifier.
In practice, the two circuits have maximum current-drive capacities of about 50 mA , this figure being dictated by the low power ratings of the specified transistors. Greater drive capacity can be obtained by using other transistors.

Adders and subtractors

Figure 14 shows the circuit of a unitygain analogue DC voltage adder, which gives an inverted output voltage equal to the sum of the three input voltages. The input resistors R1-R3 and the feedback resistor R 4 have identical values, and so the circuit acts as a unity-gain inverting DC amplifier between each input terminal and the output. The current flowing in R4 is equal to the sum of those flowing through R1-R3, and the inverted output voltage is thus equal to the sum of the input voltages. For high-precision applications, the circuit can be modified to have an offset nulling facility.

Figure 14 shows only three input connections, but the circuit can in fact

TELESCOPIC MASTS

Pneumatically operated telescopic masts. 25 Standard models, ranging from 5 metres to 30 metres.

-

THE STREET HEYBRIDGE - MALDON
ESSEX CM9 7NB ENGLAND
Tel. MALDON (0621) 56480
Telex No. 995855

TRIMMING CAPACITORS

 broadest range of single turn foil dielectric trimming capacitors in the world! Dielectrics Available: Polyamid, Polycarbonate, polypropylane and PTFE

Capacitance Range:
Min C max from 3.5 pf up to 500 pf depending on series.
Size:
5 mm up to 16 mm diameter.
Mounting Configurations:
Vertical and
Horizontal with
single or double adjustment.

Distributor
Ambit International
200 North Service Road, Brentwood, Essex CM14 4SG
Tel: (0277) 230909 Telex: 995194 AMBIT G

Dau Components Ltd, 70-74 Barnham Rd, West Sussex Tel: (0243) 553031 Telex: 86843

Fig 16 Unity-gain DC differential amplifier, otherwise known as a subtractor. $R_{1} / R_{2}=R_{3} / R_{4} ; A=R_{2} / R_{1}$

Fig 15 Four-input audio mixer

Fig 17 Unity-gain balanced DC phase-splitter

Fig 18 Circuits and response curves of simple first-order R-C filters. Parts $\boldsymbol{a}, \mathbf{b}$ refer to low-pass filters; parts c,d to high-pass filters
incorporate any number of inputs (each via a resistance equal in value to R1), but in this case optimum biasing requires the R5 value to be altered to the parallel value of all the other resistors. Furthermore, the circuit can - if so desired - be made to give a voltage gain greater than unity, simply by increasing the value of the feedback resistor R4.
Another point to note is that the circuit can be used as a multi-input 'audio mixer' by $A C$-coupling the input signals and giving R5 the same value as the feedback resistor, as shown in the four-input circuit of Figure 15.

Figure 16 shows the circuit of a unitygain DC differential amplifier - otherwise known as an analogue subtractor in which the output equals the difference between the two input signal voltages(i.e. $e_{2}-e_{1}$). In this type of circuit the component values are chosen such that $R_{1} / R_{2}=R_{3} / R_{4}$, in which case the voltage gain A equals R_{2} / R_{1}. When, as in Figure 16, R1 and R2 have equal values, the circuit gives unity overall gain and thus acts as an analogue subtractor.

Balanced phase-splitter

The next configuration to be considered - a phase-splitter - incorporates a pair of output terminals, which deliver outputs that are identical in amplitude and form, but one output is phase-shifted by 180° (i.e. inverted) relative to the other.

Figure 17 illustrates an easy way of making a unity-gain balanced DC phasesplitter, essentially by using just a pair of 741 op-amps. Here, IC1 acts as a unitygain non-inverting amplifier (or voltage follower) and provides a buffered output signal that is identical to that of the input. This output also provides the input drive to IC2, which acts as a unity-gain inverting amplifier and provides the second output, which is inverted but is otherwise identical to the original input signal.

ACTIVE FILTERS

Filter circuits are used to reject unwanted frequencies and pass only those wanted by the designer. A simple R-C low-pass filter (Figure 18a) passes low-frequency signals, but rejects highfrequency ones. The output is down by 3 dB at its 'break' or 'cross-over' frequency f_{c} of $1 /(2 \pi R C)$, and then falls at a rate of $6 \mathrm{~dB} /$ octave ($=20 \mathrm{~dB} /$ decade) as the frequency is increased (see Figure 18b). Thus, a 1 kHz version of this filter will give roughly 12 dB of rejection to a 4 kHz signal, and 20 dB to a 10 kHz one.

A simple R-C high-pass filter Figure 18c passes high frequency signals but rejects low-frequency ones. The output will be 3 dB down at the break frequency of $1 /(2 \pi R C)$, and fall at a rate of $6 \mathrm{~dB} /$ octave for frequencies below this value (see Figure 18d). Thus, a 1 kHz filter
of this type will give 12 dB of rejection to a 250 Hz signal, and 20 dB to a 100 Hz signal.

Each of the above filter circuits uses a single $\mathrm{R}-\mathrm{C}$ stage, and is known as a 'first order' filter. If we could simply cascade a number (n) of these filter stages, the filter would be known as an 'nth order' filter and would have an output slope beyond f_{c} of 6 ndB/octave. Thus, a 4 th order 1 kHz low-pass filter would have a slope of 24 dB /octave, and thus would give 48 dB of rejection to a 4 kHz signal, and 80 dB to a 10 kHz signal.
Unfortunately, simple R-C filters cannot be simply cascaded; if they were, they would interact and give very poor results. Filters can, however, be effectively cascaded by incorporating them into the feedback networks of suitable op-amp circuits. Such filters are known as 'active'filters. Let's look at some practical designs.

Active filter circuits

Figure 19 shows the circuit for a maximally-flat (Butterworth) 2nd-order low-pass filter with a break frequency of 10 kHz . This design gives unity overall gain within its passband. To change the break frequency, simply change the value of either R or C according to the formulae $R_{\text {new }}(\mathrm{k} \Omega)=24 \times\left(10 \mathrm{kHz} / f_{\text {new }}\right)$ and $C_{\text {new }}(p F)=470 \times\left(10 \mathrm{kHz} / f_{\text {new }}\right)$, respectively. In other words the component values should be reduced in the ratio

Fig 19 Unity-gain 2nd-order 10 kHz low-pass active filter $f_{C}=1 / 2.83 \pi R C$

Fig 20 'Equal components' version of a 2ndorder 10 kHz low-pass active filter. $f_{c}=1 / 2 \pi R C$

Fig 21 4th-order 10 kHZ low-pass filter: $f_{c}=1 / 2 \pi R C$

Fig 23 'Equal components' version of a 2ndorder 100 Hz high-pass filter. $f_{c}=1 / 2 \pi R C$
filter circuit which overcomes this snag and uses equal component values. Here, the op-amp has a voltage gain determined $R 1$ and $R 2-4.1 d B$ in this case: it is therefore vital that R1 and R2 have the values shown.

Figure 21 shows how two of these 'equal component' filters can be cascaded to make a 4th-order low-pass filter, with a slope of $24 \mathrm{~dB} /$ octave. Note in this case that gain-determining resistors R1 and R2 are in the ratio 6.644:1 while R3 and R4 are in the ratio 0.805:1, giving an overall voltage gain of 8.3 dB . The odd values of R2 and R4 can be made up by connecting 5% resistors in series.
Figures 22 and 23 show unity-gain and 'equal component' versions respectively of 2 nd-order 100 Hz high-pass filters, while Figure 24 shows a 4 th-order 100 Hz high-pass filter. The operating frequencies of these circuits, and those of Figures 20 and 21, can be altered in exactly the same way as for the circuit shown in Figure 19, i.e. increase either the R or C value to reduce the break frequency, or vice versa.
The final circuit to consider in this edition of 'Data File' is that shown in Figure 25 which illustrates how the Figure 23 high-pass and the Figure 20 low-pass filters can be wired in series to make (with suitable component value changes) a $300 \mathrm{~Hz}-3.4 \mathrm{kHz}$ speech filter that gives 12dB/octave rejection to all signals outside of this range. The ' C ' values of Figure 23 (the high-pass filter) are reduced by a factor of three to raise the break frequency from 100 Hz to 300 Hz , while the 'R' values of Figure 20 (the lowpass filter) are increased by a factor of 2.94 to reduce the break frequency from 10 kHz to 3.4 kHz .
shown in Figure 19 is that one of its ' C ' values has to be precisely twice the value of the other for correct operation, and in practice this can result in some rather odd component values. Figure 20 shows an alternative 2 nd-order 10 kHz low-pass
$10 \mathrm{kHz}: f_{\text {new }}$ to increase the frequency, or increased in the same ratio to reduce the frequency. Thus, for 4 kHz operation, the R values (say) should be increased by a factor of $10 \mathrm{kHz} / 4 \mathrm{kHz}$, or 2.5 times.
A major disadvantage of the circuit

If you were asked what the link is between Australia, Norway, New Zealand, Sweden, the United Kingdom and Bahrain, you may have a little difficulty in coaxing the old grey matter to come up with an intelligent answer. The reply which we have in mind is Test Card ' F '. All these countries, plus others no doubt, have at one time or another used this test card for television test transmissions. The girl on the test card must surely be the most observed person on television though few actually know her name. Just for the record, she is Carol Hersee, daughter of one of the BBC designers involved with the production of Test Card ' F '.

Recent developments

Unfortunately Carol has been banished from British screens in favour of sample pages from the BBC's teletext information service Ceefax as Trade Test Transmissions were discontinued last May. Incidentally, the test card disappeared from IBA channels many years ago in an effort to fill almost every available minute with programmes and revenue-earning commercials.
An electronic test pattern is radiated by the IBA (called the ETP-1 and featured in the August 1982 edition of R\&EW) but there are serious omissions in its design if it is to be used satisfactorily for the setting up of television receivers. For instance, there isn't a centre circle for checking linearity and, as it is an electronic type, no flesh tones are incorporated.

A brief history

Following the introduction of the world's first public high-definition television service from Alexandra Palace on 2nd November 1936, it soon became apparent to BBC engineers that a simple method of checking studio equipment was required. An optical test card was devised for placing directly in front of studio cameras to check alignment. It was called Test Card 'A' (Photo 1) and was soon followed by an improved version designated by the letter ' B '. Both test cards were never transmitted but were used only internally.
When the television service resumed following World War II, it was decided that a new test card should be designed and radiated for the benefit of service engineers. Test Card ' C ' first appeared in the late 40s and continued, with minor modifications, until the early 1970s.
The designers of this test card (Photo 2) could be justly proud of their endeavours as it could check a whole host of parameters - too many to list here. The basic features of Test Card ' C ' were incorporated in all those which followed in the UK.
As more and more television services started throughout the world, a variety of test cards emerged but most were based on the BBC design. As the test card was to be used not only by the BBC and service engineers but also by television retailers and the public, a decision was made to broadcast a musical accompaniment. Initially 78 rpm records were used but in later years the music was carefully

Farewell to Test Card 'F'

Keith Hamer and Garry Smith

Photo 1 Test Card 'A' - the first to be designed by the BBC

Photo 3 First colour test card used by the BBC way back in 1955 during experimental colour TV transmissions outside normal programme hours

Photo 4 April 1964 saw the introduction of Test Card 'D' on VHF 405 lines

ATTENTION 10 METRE OPERATORS!

NEW - especially for the 10 Metre users who have converted CB rigs The AKD 10 Metre Linear Amplifier

$\star 25$ Watts FM out for 4 Watts in
$\star 50$ Watts PEP on SSB
\star About 10 Watts out for $1 / 2$ Watt in (13.8V)
\star Automatic RF sensing
\star Fully protected output

* Relay switching employed
\star Requires nominal 12 volts @ 5 amps (15 volts maximum)
\star In-line fused
$\star 2$ year guarantee (including output device) \star British made
£25.50
IncI VAT, p\&p

10 Metre RF Switched, In-Line Pre-Amp.

\star 3SK45 Dual Gate Fet, 15 dB gain
\star Fail safe, will handle 10 watts through power
$\star 2$ year guarantee

£14.50
$\star \star \star \star \star$
IncIVAT, p\&p
Also available, the AKD range of RF INTERFERENCE FILTERS - high performance, sleek appearence.
Used by British Telecom, Granada, ITT, Thorn-EMI and other prominent companies.

Model/Type	Specification	Manufacturers retail price Incl VAT, p\&p	Model/Type	Specification	Manufacturers retail price Incl VAT, p\&p
TNF2* TUNEDNOTCH FILTER (Notch on Inner \& on Braid) *Suffix with centre frequency of interference. e.g. TNF2/27.5MHz	Rejection -- Inner>35dB Outer $>30 \mathrm{~dB}$ Band width 2 MHz Insertion loss $<0.5 \mathrm{~dB}$ Standard bands to which centred: Amateur 2,4,10, 15 \& 20 metres $\mathrm{CB}(27.5 \mathrm{MHz})$ Other frequencies to order, up to 300 MHz	£7.50	HPFS HIGH PASS FILTER (SPECIAL) Including Braid Break Transformer Mainly for commercial use	Rejection Inner $>60 \mathrm{~dB}$ (a) 30 MHz \& below Outer>25dB (a) 30 MHz \& below Insertion loss (a $\mathrm{UHF}<2.5 \mathrm{~dB}$	$£ 6.73$
case of Amateur Radio interference, just the Amateur Band may be specified e.g. TNF2/2 Metres			$\begin{gathered} \text { BB1 } \\ \text { BRAID BREAKER } \end{gathered}$	Braid rejection - $>25 \mathrm{~dB}$ (030 MHz \& below Insertion loss $<2 \mathrm{~dB}$	£6.32
HPF1 HIGHPASS FILTER BRAID BREAKER General Purpose	Rejection Inner>60dB (if 30 MHz \& below Outer $>15 \mathrm{~dB}$ (ii) 30 MHz \& below Insertion loss < 2 dB Useable to 200 MHz Limited use to 400 MHz	£6.32	RBF1 RADAR FILTER (VCR interference filter) also suitable as: UHF NOTCH FILTER Use channel number orfrequency, or	Rejection Inner (only) approx 20 dB ($591.25 \mathrm{MHz}(\mathrm{CH} .36)$ Notch range $430-800 \mathrm{MHz}$ Notch set to channel 36	¢6.32
HPF2 HIGH PASS FLLTER Without Braid Break	```Rejection - Inner>50dB below 30MHz Insertion loss (") 88MHz & above<2dB```	£6.44	as a suffix e.g. RBF $1 / 70 \mathrm{cms}$ (for Amateur 70 cms band) RBF1/CH38	others to order	

Direct from the Manufacture - or from your local Amateur Radio dealer.
Trade enquiries welcome

[^1]selected and compiled by the BBC Foreign Recordings Unit in Broadcasting House.

When BBC-2 officially opened on 20th April 1964 (actually the opening was delayed until the following day due to a major power failure at Battersea, but
that's another story...) a new test card was introduced on BBC-1 405 lines (Photo 4). This was designated by the letter ' D '. A modified Test Card ' C ' was radiated on BBC-2 for a time (Photo 5) but was soon replaced by Test Card 'E' which was virtually identical to Test Card 'D'.

Photo 5 A modified version of Test Card ' C radiated by BBC-2 on UHF

Photo 6 The world-famous BBC Test Card ' F ' radiated from December 1967 until May 1983

When the first colour television service in Europe commenced on BBC-2, a new test card (Colour Test Card 'F', shown in Photo 6, was introduced. This happened on 2nd December 1967; meanwhile, Test Card ' D ' was continued on BBC-1. From 15th November 1969, BBC-1 was duplicated on 625 lines UHF in colour and so Test Card 'D' was replaced by Test Card 'F',

Electronic Test Card ' F '

BBC engineers have recently been active in preparing a new version of the test card in which all the area outside the centre circle would be generated electronically. The area within the circle (showing Carol and friend) was to be generated from an electronic store. These plans have now been abandoned.
Colour Test Card ' G ' which is a modified version of the PM5544 electronic test card, will still be used occasionally by certain BBC regions for short periods, mainly on BBC-2. This is necessary as it enables expensive landline circuits to be released for sending programme material between studio centres. Test Card ' F ' will still be generated internally at Television Centre in London and may be transmitted on very rare occasions, notably if and when the Ceefax equipment develops a fault.
So, regrettably, after 36 years of BBCTV radiating a test card on an almost daily basis, the end of a broadcasting era has arrived. It's time to bid BBC test cards a final farewell.

An in-depth series in understanding todays world of electronics.

FromTexas Instruments.

 developat and witter tergere you ath in-depth hatowedge of this workl.

Eata hook in amprolkiniwe ser eats founderstand. As infermatese for the dec tronio buth as for anmeone whers simpls me ereted in whars ghime on todas:

Together the lihrary will give wo the mest complere range
 the heok, wr heoks wo want mon the ntele below: You'll find

1. Understanding Electronic Control of Energy Systems

 sstemes
2. Understanding Electronic Security Systems.

 use in difterent applicatons. Softhonend 128 pagese 12.95
3. Understanding Solid State Electronics.

4. Understanding Digital Electronics. Is catrom. Ref. LCB 33 l thencribes digital dertromics in cany-tu-follow stapes. It covers the main tanilies of digitat infegrated circuits and data presessing swremb. Sifthonend 200 pugex. $4+50$
5. Understanding Microprocessors. 1x clitum. Ref. LCB +1223. An in-denth lenk at the magic of the welids satechup. What they wes what
 tremi idel tohardware. Sufthound 288 pages. 14.50 .
6. Understanding Computer Science. 1ntechitan. Ref. LCB 548 L This bome tells you in everyduy Engelish how texdes computer hat heen developed, whor pores on inside it, and how you tell ir what to do. Softhumd 2i8puges 54.50
7. Understanding Communications System

8. Understanding Calculator Maths. Wirn Ref. LCB 3 ;21.

9. Understanding Optronics
 Sopthond 270 muges $8+50$
10. Understanding Automotive Electronics.

11. Understanding Telephone Electronic:

12. Understanding Electronic Control of Automation

How to order

 1. Lust referemen numbers and yliantifeo require

 P() Bux 50, Market thartarmagh, Leseererthre. Allow 30 daybur deliners.

Texas Instruments

The Cymar Q Meter
 Designed by David Francis

Anyone involved with the development of RF circuits will have occasion to wind coils of a given inductance. The professional will have access to an inductance bridge, an expensive piece of equipment not usually found in the amateur workshop. Construction of such an instrument will involve costly closetolerance inductors, when they can be found!

An alternative solution is the construction of a Q-meter which does not involve any expensive components. Although this type of instrument is primarily intended for the sole function of measuring the Q of an inductor, spin-off data (e.g. frequency and calibration capacitance) enable the rest of the coil's constants to be calculated. Moreover the readings can be taken at or near the frequency of operation of the coil (very important as you approach VHF), a facility not found in most bridges which operate with fixed oscillators at low frequencies.

The theory

At the risk of teaching one's grandmother how to suck eggs, the basic theory of the Q-meter is as follows:

A tuned circuit resonates at a frequency determined by the formula:

$$
f=\frac{1}{2 \pi \sqrt{L C}}
$$

where f represents frequency of the resonance in Hz ; L, inductance in henrys; and C, capacitance in farads. The other important relationship is that between the current passed by the tuned circuit and the impressed voltage signal. Now in a series tuned circuit, the impedance is equal to the distributed resistance contained in the circuit (see Figure 1); but since most of this resistance is contained in the inductor, the impedance can be said to equal the DC resistance of the coil. So if we apply a

Fig 1: a) Equivalent circuit of an inductor; b)Equivalent circuit of a capacitor: and c) Simplified series tuned circuit
signal at the resonant frequency, the current that will flow will obey the following:

$$
\begin{equation*}
I=V / R_{\mathrm{L}} \tag{1}
\end{equation*}
$$

where I is the current passed by the tuned circuit; V is the amplitude of the voltage; and R_{L} is the DC resistance of the inductor.
The capacitor and inductor in the circuit will develop voltages that are equal in amplitude but of opposite phase, thus cancelling out. The amplitude of this voltage will, however, be:

$$
V_{\mathrm{L}}=I . X_{\mathrm{L}}
$$

where V_{L} is the voltage across inductor and X_{L} is the reactance of the inductor. $B y$ rearranging we get

$$
I=V_{L} / X_{L}
$$

and by substituting in equation 1, we get

$$
\begin{align*}
& V / R_{\mathrm{L}}=V_{\mathrm{L}} / X_{\mathrm{L}} \\
& \therefore V_{\mathrm{L}}=V \cdot X_{\mathrm{L}} / R_{\mathrm{L}} \tag{2}
\end{align*}
$$

However the textbooks tell us that X_{L} / R_{L} is equal to the Q of the coil, so

$$
\begin{equation*}
V_{L}=Q . V \tag{3}
\end{equation*}
$$

and since the voltage across the capacitor V_{C} is equal to that developed across the inductor it follows that:

$$
\begin{equation*}
V_{\mathrm{C}}=Q . V \tag{4}
\end{equation*}
$$

The point of the present exercise is to produce a Q-meter and from the above we see that it is possible to measure the Q of our inductor by placing it in a series tuned circuit and measuring both the applied voltage and the voltage across either the inductor or the capacitor. The ratio of the applied voltage to either V_{C}

Fig 2: Circuit diagram for the Q-meter
or V_{L} will represent the Q of the inductance.

Applying the theory

The first requirement for the Q-meter is a variable frequency oscillator (VFO) that will cover the desired frequency range. Since most workshops will have a signal generator available, it was decided to use this as the VFO.
In addition, the tuned circuit requires a low impedance feed and since the signal generator output impedance is not always defined, it is imperative to arrange for high to low impedance conversion between the two parts of the circuit. Similarly, in order not to influence the tuned circuit, the output voltmeter requires a high-impedance low-capacitance input with a low impedance output for feeding the diode detector. In the interest of simplicity, it was decided to use the same circuit for both the applications. The circuit is shown in Figure 2.
The input circuit comprises an FET used in common source mode and biased to have a drain current of 1 mA . This is accomplished by an appropriate selection of the source resistor R2. A good value to start with is $2 k 7$ and then either increasing its value (decreasing drain current) or decreasing its value (increasing drain current). Alternatively the resistor could be replaced by a preset potentiometer. The output of the circuit - an emitter-follower - provides the necessary low output impedance.
The detector incorporates a voltagedoubler circuit to improve the sensitivity of the instrument and it can in fact feed meters ranging from $50 \mu \mathrm{~A}$ to 1 mA .
It will be noticed that $10 \mu \mathrm{~F}$ and $0.01 \mu \mathrm{~F}$ capacitors are placed in parallel at various points in the circuit. It is important that these are bead tantalum and ceramic respectively. Should the wrong types be used, 'holes' will result in the Q-meter's frequency response.

Fig 3: Foil pattern for Q-meter

Construction

The two amplifiers are constructed on a printed circuit board (the foil pattern for which is shown in Figure 3) bar the two FET source resistors. When the board has been completed, these 2 k 7 resistors can be tacked into position on the copper side of the board. The 12 V supply is then connected and the voltage on the emitter of the output transistor checked. The value of the source resistor should be adjusted until this is approximately 6 V .
Once this has been completed, a resistor of the required value may be placed permanently in position on the component side of the board and the

PCB in its position in the cabinet. The layout used is shown in the component overlay (Figure 4), and this should be adhered to if repeatable results are to be obtained.
Most of the components are mounted on the printed circuit board; however there are a few additional points to bear in mind.
Since the wiring associated with the tuned circuit must be of low capacitance in order not to affect the calibration, all wiring must be as short as possible and kept well clear of the chassis. Screened wire must not be used except on the input from the signal generator.
The capacitors on switch S 2 must be

There are usually two reasons for the less than adequate sensitivity of current 144 MHz transceivers. Firstly, the receiver designer's brief includes a dynamic range specification which leads him to balance large signal handling with sensitivity. With devices currently available at prices the transceiver manufacturer is prepared to pay, the balance comes-out to around 4 dB noise figure and 70 dB intermodulation-free dynamic range in ssb bandwidths.
The second point is that, also to save money, designers shy away from the use of electromechanical relays for antenna change-over switching and tend to use various forms of diode switch. These inevitably introduce greater insertion losses than suitable relays, approaching 4dB in some circumstances. Thus it's not unusual for the overall noise figure of a transceiver to reach 8 dB .
At 144 MHz sky-noise limits the maximum usable sensitivity of a receiver used for terrestrial communications to about 2 dB noise-figure. (This about the same as $0.05 \mu \mathrm{~V}$ for $10 \mathrm{~dB} s+n / n$ in ssb bandwidths). Lower noise figures are easily obtainable with modern devices, but they won't let you hear any more! However there is a distinct advantage in using a very low-noise preamp to improve the sensitivity of a transceiver - if it has been designed properly.
Overall (or system) noise-figure depends not only upon the noise figure of the preamplifier, but also on its gain and the noise figure of the subsequent stage (the transceiver, in this case). By adjusting the gain of the preamplifier it is possible to set the system noise-figure to any wanted value greater than that of the intrinsic noise figure of the preamplifier.
Why bother to adjust the gain? Because any preamplifier will degrade the strong-signal performance of the receiving system. The name of the game is to use as little gain as possible ahead of the receiver; just enough low-noise gain to set the overall sensitivity to a level where external noise is the limiting factor is all that is required. Use any more and the dynamic performance of the receiver will suffer unduly. A very low noise preamplifier will minimise the gain needed ahead of the transceiver and hence the degradation of the dynamics.
The SLNA 145sb is a preamplifier which has been designed using the principles summarised above specifically for incorporation in the FT290. It will also complement other 144 MHz transceivers for which no complete front-end modification is available. Ask us about FDK 700's and 750's for example. A low-loss nitrogen-filled relay provides a same alternative to diode switching. This is followed by a BF981 in an input noise-matched, output conjugately matched configuration for a very low noise-figure and optimum dynamic performance. Following the output matching a variable attenuator provides gain control without compromising the dynamic performance, which would be the case if the normal amateur practice of providing gain control by varying the bias on G_{2} of the BF 981 was followed.
After the attenuator, a properly designed Butterworth band pass filter provides substantial rejection of out-ofband signals.
The preamplifier is constructed and tested to very high standards. A plated-through-hole epoxy fibreglass pcb is employed and bushed mountings are provided for mounting in the FT 290R. A cable kit utilising high quality ptfe dielectric cables is also provided.

muTek limited

PARTS LIST	
Resistors	
R1, R9	$1 \mathrm{M} \Omega$
R2, R10	see text
R3, R11	5.6Ω
R4, R12	$1 \mathrm{k} \Omega$
R5	240Ω
R6	7.5Ω
R7	1.5Ω
R8	1Ω
VR1	22k』 preset
Capacitors	
C1, C3, C4, C6, C8, C9 10nF mono cap	
C2, C5, C7, C10 10	$10 \mu \mathrm{~F} 16 \mathrm{~V}$ tantalum
C11	100 nF disc cap
C12-14	seetext
VC1	100pF variable
Others	
TR1, TR3	2N3819
TR2, TR4	BF254
D1, D2	
OA79 or similar germanium diode	
S1	1P3W switch
S2	1P4W switch
S3, S4	SPSTtoggle
SK1	BNC socket
SK2, SK3	Banana socket
SK4, SK5	Screw terminals
M1	200μ A meter
Case, knobs, 1mH RFC	

close-tolerance temperature-stable types and it is recommended that mica or COG-type ceramics be used.

It should be noted that the circuit board is mounted on the inside of the top of the cabinet. This was found to keep stray capacitance down to an acceptable level and so assure the accuracy of the instrument.

Calibration

To calibrate the finished instrument (minus its calibration capacitors), an inductor of known value is required: its actual value is irrelevant (within reason). This is connected in the position of the unknown inductor and the power supply and signal generator are also connected. Switch S2 is set to its open circuit position. Using the value of the chosen inductor and a capacitance of 28 pF , calculate the resonant frequency. With the range switch set to 25 and also to READ, sweep your signal generator across the frequency you've calculated. Whilst doing so observe the meter and tune the generator to the peak. Note the frequency of the generator.

Substitute this frequency and the value of the known inductor into the following formula:

$$
C=\frac{1}{(2 \pi f)^{2} \cdot L}
$$

The resultant value is the stray capacitance of the instrument and should be deducted from the values of the calibration capacitors. In the prototype this was found to be 23.54 pF and, provided the original layout is copied, this value could be used if a known inductor is not available.
The variable capacitor is calibrated by
using an inductor of known value (even if you don't have one in the first place, you can use any inductor and measure its value using the procedure described later) and calculating the resonant frequency for capacitance values from 30 pF to 130 pF . With the switches set as previously described, except for the capacitance calibration switch S2 which is now to be set to the $0-100 \mathrm{pF}$ position, set the signal generator to each of the calculated frequencies and peak the meter by adjusting the variable capacitor, marking each point on the scale. The one in the prototype was found to cover 30 pF to 125 pF .

Using the Q-meter

The procedure for using the instrument is as follows:

1) Connect the power supply and signal generator to the Q-meter.
2) Put the SET/READ switch to the SET position and the Q-range switch to the 25 position.
3) Adjust the output level of the signal generator so that the meter indicates FSD (the preset in series with the meter can be used to make up any deficiencies in generator output).
4) Reset the SET/READ switch to the READ position and sweep the signal generator from the high frequency end to the low frequency end until the meter peaks. (This is essential since you do not want to operate on a harmonic.)
5) Revert back to the SET position and re-adjust the generator for FSD (few signal generators give constant output at all frequencies).
6) Return to the READ position and read the Q from the meter, if necessary changing the Q-range switch.

If at this stage the inductance is not known, the calibrating capacitor value should be noted along with the signal generator frequency. From these it is easy to calculate the inductance from the formula:

$$
L=\frac{1}{(2 \pi f)^{2} \cdot C}
$$

where L is the unknown value of inductor; f, the frequency of the signal generator; and C, the calibration capacitance.

Final thoughts

The capacitors used for calibration should be of the close tolerance low drift type. Silver mica is ideal for this application but others could be used, such as ceramic NPO types.

Do not use screened leads on the input to the meter amplifier since it will considerably increase the stray capacitance and limit the minimum calibration capacitance. Their use on the signal generator amplifier input and output is, however, recommended since it will decrease the effects of stray RF coupling due to stray capacitances, which can lead to errors.
Although the Q-meter was designed for use with an external power supply there is adequate room inside the case to build an integral power supply. In either case, the 12 V line should be regulated since any variation in the line voltage will drastically affect the biasing of the DC coupled amplifiers.

A PCB for this project is available from Edwardschild Ltd, 453 Becontree Ave, Dagenham, Essex RM8 $3 \cup L$ price £2.65 ea. inclusive.

One Night's Work

Fig 1: Circuit for the Zener diode checker

If, like me, you often buy old component boards from rallies with the intention of rescuing the ICs, resistors etc, you will-no doubt-at some time acquire a number of dubious looking Zener diodes with weird notations - and you will have no way of telling whether they are still functional. A simple go/no-go tester is therefore required.

A Zener diode checker

The circuit that l've used for some time is shown in Figure 1. This can be constructed either on veroboard or on a PCB, a design for which is given in Figures 2 and 3. In the 'prototype', veropins were used for the various connections.
The principle of the circuit is as follows. The input of the voltage regulator IC1 is held at approximately 18 V by the batteries. (I use two PP3's connected in series.) The output from this device, which can be varied by altering RV1, is fed via a current-limiting resistor R2 to the Zener diode on test. If the diode is good, then the $0-15 \mathrm{~V}$ meter mounted in parallel with it should give a relatively stable reading once the avalanche point has been reached. (| used an old meter movement with a series resistor to give me the right range, but a multimeter can be connected into the circuit just as easily.)

In use, RV1 is set for minimum voltage, the diode is connected and the unit turned on. Gradually turn RV1 and watch

Fig 2: $P C B$ foil pattern

Fig 3: Component overlay

Fig 4: Circuit for the RF sniffer
the meter rise and then stabilise: this voltage is the Zener voltage.

A word of warning at this point. Don't turn the applied voltage up much beyond that at which the meter stabilises or the diode may have to dissipate too much power.

If the meter fails to move, or doesn't stop moving, the diode is extremely suspect - or its characteristic voltage is above 15 V and out of the range of this circuit.

An RF sniffer

The use of an old meter movement in the above circuit reminded me of what is probably the most useful piece of elaborate(!) test equipment in the shack - an RF sniffer. This device displays when there is any RF in the vicinity and is invaluable for poking into transmitters when tuning up.

The design shown here (Figure 4) costs virtually nothing and consists of the most sensitive meter movement you can find (mine is an old $50 \mu \mathrm{~A}$ movement), some 18-20 SWG wire (enamelled to prevent possible shorting) and a diode - preferably a sensitive germanium type. Wind two or three turns of wire, leaving tails about $3^{\prime \prime}$ long: then trim a bit off one end and connect the diode. Next, attach the other end of your coil and the spare end of the diode to the meter terminals.

In principle, the deflection should rise as the meter is moved away from any source and, as a result, peaking is extremely easy. Once you have constructed this unit, switch on a nearby transmitter: if the meter needle deflects the wrong way - just turn the diode round.
That's it - and you'll wonder how you ever managed without one!

BI POLAR \& FET POWER AMPLIFIERS

HEAVY DUTY POWER AMPLIFIERS
STANDARD MODULES
STANDAB MODULES

B		Max.OPP	SUPPLY	voltage		Price inc.
P	CE 608	60W/89			THD T	POST
-	CE 1004	$100 \mathrm{~W} / 4 \Omega$	+	\pm	< 018%	E25.50
1	CE 1008	$120 \mathrm{~W} / 8 \mathrm{~s}$ I	+	+	< ${ }^{\text {< }}$. 018%	E28.00
A	CE 1704	200W/4,	± 45	± 63	< . 015%	£35.50
R	CE 1708	180W/8s	+ 60	± 63	< . 01%	E35.50
	CE 3004	320W/4,	± 60	± 63	< . 02%	$E 49.50$
\bigcirc	FE 908	W/8s	± 45	± 60	< . 01%	
S	FE 1704	170W/4s	± 45	± 60	$<.025 \%$	£39.00

All prices include V.A.T., Post and Packing (quantity discounts available).
To order send c.w.o. or quote Access/Mastercharge card no. All modules are available from Bradley Marshall Ltd., 325 Edgware Road, London. Export: Please write for a proforma.

CRIMSON AMPLIFICATION: First Choice of the Professionals!

Whatever your application, Crimson Modular Amplification provides a simple, efficient, and reliable solution. As many engineers in production, development and research will testify, when you need a particular amplifier you need to deal with a company who can answer your queries and supply a working unit quickly. - CRIMSON will do exactly that!
We supply a standard range of power amplifier modules (both Bipolar and Mosfet) which can be incorporated in most systems from recording studios to home hi-fi or for more difficult loads such as induction loop transmitters, vibrators, servos and line transformers. For really complex applications, our technical department can usually supply a dedicated module on request.
All modules are guaranteed for two years and offer outstanding performance and value. If you would like more details please return the coupon with an s.a.e.

CRIMSON ELEKTRIK STOKE PHOENIX WORKS, 500 KING STREET, LONGTON STOKE-ON-TRENT, STAFFS. Tel: 0782330520

MODEL SRB2

is the definitive and long awaited answer to the Russian Woodpecker. Others claim to solve the problem of the distinctive RAT A - TAT TAT of the Russian radar system. DATONG are the first to succeed with a fully automatic blanker.
With the introduction of model SRB2 the Woodpecker is dead. Completely automatic in operation, SRB2 locks onto the Woodpecker within a second or so of its appearance and blanks it out completely. SRB2 adjusts automatically and continuously to changing pulse widths and phase changes that defeat the manual blankers. SRB2 can even deal with more than one Woodpecker at a time. User selectable between 10 and 16 hz repetition rates, SRB2 connects in series with loudspeaker and antenna leads, and is equally effective on SSB, AM and CW. A power supply of 10 to 16 volts @ 150 ma is required.
Price: $£ \mathbf{7 5 . 0 0}+\mathbf{V A T}(£ 86.25$ Total)

DATONG ELECTRONICS LIMITED

AUTO WOODPECKER BLANKER

Please send me the following Model Qty. UnitPrice Unit Total

```
Call Sign .
``` \(\qquad\) Tel
Your Name
Address.
\(\qquad\)
\(\qquad\) Prices include Post, City \(\qquad\) SE Packing and VAT(U.K.) SENDTO-Dept R.E.W. Spence Mills, Mill Lane, Bramley, LLeeds LS133HE, England. Tel: (0532) 552461

\section*{ORDER FORM}

I enclose CHEQUE/POSTAL ORDER No.
\(\qquad\)
Please debit my VISA/ACCESS account.
CardNo
All orders sent by return, I st class parcel post Any delay will be notified to you immediately.

\section*{MODEL ANF}

The value for money, stand alone automatic notch filter that doubles as a CW filter. Model ANF is small in size but neat in looks and big in performance. Simply connect model ANF in series with the loudspeaker lead of your receiver and from then on heterodynes, whistes and other steady tones that often make listening on the crowded amateur and short wave bands hard work will vanish automatically, as model ANF notches them out.
A bargraph LED display shows you the frequency of the offending interference. At the push of a button model ANF becomes a good CW filter eliminating all but the signal you want to hear. Manual or automtaic operation in notch and peak modes, plus automatic frequency control, makes model ANF extremely versatile and easy to use.
A power supply of 10 to 16 volts DC @ 100 ma is required. Model ANF is supplied with connecting leads, and is identical in size to model SRB 2
Price: \(£ 59.00\) + VAT (\(£ 67.85\) Total)

\title{
A Drinker's Delight
}

\section*{David Francis}

One of the many accusations levelled at R\&EW is that it only considers the electronically inclined minority and so does very little for the drinking majority, Since most of the people working for R\&EW are, nonetheless, contained within the aforesaid majority, we took the comment to heart.
After much fruitless discussion over many pints of the local landlord's beverage, the meeting was adjourned to the demesne of one of our number where the talking continued over the homebrewed beer (lipsmakinthirstquenchindrunkmakin). But matters came to an abrupt halt when it was discovered that horror of horror - the elixir of life had run out. No warning of imminent drought had been given since the beer was contained in an opaque plastic barrel

After emergency supplies had been obtained from the local off-licence, it was decided that a means of giving warning of the impending cessation of our supply should be sought. The following day found several of our number perusing all the manufacturers data books in the hope of finding something suitable for our needs. Eventually, a bleary eye spotted a fluid detector type ULN2429A which will indicate via a lamp when a liquid reaches or falls below a given level. The manufacturer was contacted and a sample liberated.
The circuit shown in Figure 1 was constructed and two probes spaced half an inch apart were fixed to the barrel screw cap. One of our number (a genius) decided that the best test was to fill the barrel with beer and then to continue drinking its contents until the alarm was set off. Promptly the petty cash was raided (it was in the interest of research, wasn't it?) and all present set to with gusto.

\section*{How it works}

The ULN2429A, although primarily designed for use as a detector of when an automobile's coolant is low, is equally applicable to work on almost any conductive liquid (and non-conductive types with only a little modification).
A 2.4 kHz (approx.) oscillator drives the probes via an \(18 \mathrm{k} \Omega\) resistor. Since the liquid between the probes is conductive, only a fraction of the oscillator voltage will be available at the probe. This fractional signal is connected to an amplitude detector which will not operate unless the voltage equals or exceeds

Fig 2: Internal circuit of a ULN2429A
the raw oscillator output. When the fluid is removed from between the probes, the resistance approaches infinity and the threshold sensitivity of the detector is exceeded. This, in turn, turns the output transistors on - thus illuminating the lamp.

Typical conductive fluids are tap water, sea water, tea, wet soil, beer and coffee. Non-conductive fluids include most petroleum products, distilled water, dry soil and (surprisingly) vodka.

In practice the probes could be replaced with any variable resistance element such as photodiodes, photoconductive cells, rotary or linear resistive position sensors, thermistors etc.

In theory, the circuit can be converted for use with non-conductive fluids by taking the oscillator output from pin 6 to the probes via a low value capacitor. Although the probes will not have a usable resistance, they will have a finite capacitance so that a capacitive voltage divider will be formed. If the fluid level drops, the capacitance will change and thus the output voltage also will change.
It took several barrels-full before we were satisfied that its operation was satisfactory. Strangely, the indicator lamp exhibited a tendency to multiply itself intermittently - a facet of its behaviour noted towards the end of our function tests.

\title{
'Ding Ding': next stop on the Expansion Bus is the Jupiter Ace SOUNDBOARD from Essex Micro Electronics. 'Sounds' like a good idea. Roland Perry finds out what we have 'hear'.
}

Most personal computers have some sort of sound output built in, and many have a small loudspeaker as well. To have more than a puny 'beep' or more than a single voice, however, usually requires some help from a dedicated sound generation chip. Custom designed devices are used in some personal computers, but the easiest route is to use one of the readily available general purpose programmable sound generator chips. In the case in point, Essex Micro Electronics have chosen the same chip to expand the range of sounds available from the Jupiter Ace as is used in, amongst others, the ORIC and COLOUR GENIE. This is no less than the AY-3-8910 from General Instrument.
The AY-3-8910 was originally designed for use with the CP1600 microprocessor which has a multiplexed data and address bus. In practice this origin is not a problem, and interfaces to such wellknown 8 -bit micros as the \(\mathbf{Z 8 0}\) merely
require two distinct 1/O operations to send each byte of information to the sound generator. A much more comprehensive study of the chip, and how to create 'interesting' noises will be published in R\&EW next month; for now we need to know just the general principles.

The sound generator is intended to be used on a system, such as a video game, where the processor has many other tasks to perform and the overhead of making music would thus be too great a burden. Once the commands have been latched into the various registers within the AY-3-8910, it will continue to produce the sound without any further intervention from the host microprocessor. Ten registers are required to specify the sound which comes out (see Figure 1): some of these are 8 -bit registers while others are 16 -bit, giving a total of fourteen 8-bit locations to program. In practice, many are only active on the lower order bits and the higher order bits are ignored.

\section*{Principles}

First, let's look at the generation of tones and white noise. Three different notes can be specified, obtained by dividing the clock by a 'magic' number to get the frequency of the output. These magic numbers, which are set into the first six registers, are effectively values for the period of each tone: they are 12bit numbers divided between coarse and fine tune registers. More about the mathematics next month: for now, we offer a program, published below, which shows how to calculate the values (in HEX) for a specific clock frequency. Seven or eight octaves of notes in the standard musical scale can reasonably be expected from typical clock frequencies. The noise period is derived in the same way, but an internal divide by 16 means you effectively start with a lower clock frequency.
Now that the tone and noise are under way, the user has complete control over how the three tones and noise are switched through to the 'volume control' of each channel. This is achieved via the enable register. Note that although there are three different tones, the 'same' noise is sent to all channels which have noise enabled. The three-channel volume control allows either a fixed amplitude specified by a number in the range 0-15 from each of the three mixed tone and noise sources, or automatic envelope control of each mixture. The envelope control is envoked by setting an amplitude in the range 16-31 (i.e. the ' \(M\) ' bit is on) although volume control bits 'Lo' to ' \(L 3\) ' are ignored in this configuration.
All channels with envelope control selected obey the same envelope period and shape. The period is, yet again, derived from the clock frequency by division - this time after a \(\times 256\) prescaler. The longest period normally available will be a few seconds; the shortest, fractions of a millisecond. The envelope shape is defined by a combination of four bits which control such matters as the slope direction and repeat enabling. For now it is sufficient to demonstrate the envelope generator outputs given by particular set-up values (see Figure 2). The most useful of these in practice is the single decaying note at the top of the chart.

\section*{Results}

Any single register or combination of registers can be changed to alter the quality of the final output and it is common practice to publish 'recipes' of well-known effects. The Essex Micro Electronics SOUNDBOARD manual has suggested recipies for a wolf-whistle, a trimphone and a train, along with register values for other effects such as a piano. Their wolf-whistle sweeps a little slowly, but the trimphone and train are excellent. The recipies published by General Instrument are couched in terms of clock frequencies, register values and milliseconds: the SOUNDBOARD recipies use various routines in FORTH to do the hard work of calculating

NOTE : \(\bar{x}\) Moans that \(x\) is artive 10 w .
Keans bit not used.

Fig 2: Envelope profiles

100 REM COMPUTE A TABI,E FOR AY-3-8912 NOTES
110 REM \(23 / 10 / 83\)
120 REM
\(130 \mathrm{FCLOCKE}=1 \mathrm{E}+06\)
140 PRINT "Equal tempered chromatic scale (Fclock=";USING "£ E E££ £ ";FCLOCKE; 150 PRINT "Hz)":PRINT
160 WIDTH 80
170 PRINT "NOTE OCTAVE IDEAL ACTUAL DIVIDE"
180 PRINT "-.... --... --...
190 PRINT
200 NOTE \(\$=" C C E D D E E F E G G E A A E B\) "
210 FOR OCTAVE \(=1\) TO 8
220 FOR NOTE \(=1\) TO 12
230 TWOPOWERE=((OCTAVE*12+NOTE-22)/12)
240 FTE \(=55 \mathrm{E}^{*} 2^{\wedge}\) TWOPOWERE
\(250 \mathrm{TP} 10=\mathrm{INT}((\mathrm{FCLOCKE} /(16 * \mathrm{FTE}))+.5)\)
260 CT 10 \(=\) INT(TP 10/256)
270 FT10 \(=\) TP \(10-(\mathrm{CT} 10 * 256)\)
\(280 \mathrm{AFE}=\mathrm{FCLOCKE} /(16 *(256 * \mathrm{CT} 10+\mathrm{FT} 10))\)
290 HEXFT 1O\$ = HEX \(\$(F T 10)\))IF LEN (HEXFT 10 \(\$\)) \(=1\) THEN HEXFT \(10 \$=" 0^{\prime \prime}+\) HEXFT \(10 \$\)
300 PRINT MID\$(NOTE\$,NOTE*2-1,2),OCTAVE,USING "££££.£££";FT£,
310 PRINT" ";USING "£££E.£EE";AFE,
320 PRINT " ",HEX\$(CT10);HEXFT10\$;
330 NEXT NOTE
340 NEXT OCTAVE
and setting up the period registers, as well as that of switching the various combinations of tone and white noise.
The SOUNDBOARD plugs directly into the expansion port of the Jupiter Ace using a flexible cable to avoid connector wobble problems. An extension to the expansion bus at the rear of the unit allows the recommended RAM add-on to be fitted as well. It also has a fitted volume control and a loudspeaker giving ample output, plus a jack socket for an alternative external speaker if required. A reset button feeds to the sound generator chip (rather than the processor) permitting instant relief if required.

On the side of the case is an input/output port which uses a facility of the AY-3-8910 not discussed so far. (Indeed, you will have to wait for next month's instalment!) It also has a parallel port. The latter is accessed via the last two of the sixteen sound generator chip registers and the upper two bits in the enable register. Essex Micro Electronics provide some helpful suggestions as to how to make use of this added facility by giving some circuit diagrams and, yet again, routines in FORTH.
Sections in the manual describe how the sound chip is organised, the register descriptions and functions. A library of commands is built up step by step in FORTH to let the operator have a high-level-language interface to the hardware.

\section*{Conclusions}

Altogether this add-on is highly recommended. The manual is comprehensive and clear and the SOUNDBOARD really does make superb noises. The only flies in the ointment are (a) that it is dedicated to the Jupiter Ace and, at the time of writing, Jupiter's future is uncertain and (b) that writing programs in FORTH gives yours truly a headache!

\section*{DAWNE}

\section*{INSTRUMENTS BY POST * SPECIAL OFFER SEE BELOW}

TRIO CS1022 20MHz OSC £428.95

\section*{METEX 300 DMM £36.93}
* Single rotary switch for function and range selection
\(\star\) Direct readout, easy to use, small and light
* High accuracy and good reliability
\(\star\) All ranges protected
\(\star\) High surge voltage protection. (3KV max)
\(\star\) Complete with 9V battery, test leads, operating manual, spare fuse and carrying case

INPUT IMPEDANCE 10 M ohms
DISPLAY 3.5 digit LCD \(0.5^{\prime \prime}\) high
MEASURING RANGE DC Volt: \(0.1 \mathrm{mV}-1000 \mathrm{~V} \pm 0.5 \%\) AC Volt: \(0.1 \mathrm{mV}-\)
\(700 \mathrm{~V} \pm 0.8 \%\)
AND BASIC ACCURACY DC Current: \(0.1 \mu \mathrm{~A}-10 \mathrm{~A} \pm 0.8 \% \mathrm{AC}\) Current: \(0.1 \mu \mathrm{~A}\)
\(-10 \mathrm{~A} \pm 1.0 \%\)
Resistance: \(0.1 \mathrm{ohm}-20 \mathrm{M}\) ohms \(\pm 0.8 \%\)
OPERATING TEMPERATURE \(0^{\circ}\) to \(50^{\circ} \mathrm{C}\)
LOW BATTERY INDICATION 'LOBAT' or 'BAT' at left of display
OVERRANGEINDICATION Highest digit of ' 1 ' is displayed
POWER SOURCE 9 Volt battery
SIZE \(88 \times 162 \times 36 \mathrm{~mm}\)

II

\(\star\) Battery operated
Now, all of the important features and performance capabilities of a benchtop counter-timer combined with the convenience of a fully portable, battery-operated hand-held instrument. Global's new 5000 Counter-Timer is the first instrument of its type. Designed to deliver extreme accuracy and exceptional reliablity, the 5000 measures a mere \(7.6 \times 3.75 \times 1.7^{\prime \prime}\) and weighs in at \(140 z\).
F- Please send me:-
Please send me:-
Metex \(3000 \mathrm{DM} \square\) £36.93

Trio CS \(1022 \square\) £428.98
Thurlby PL310 \(\square\)
£142.60
Globel 5000
£284.50 \(\square\)

\section*{Name}

I Address
\(\qquad\)
\(\qquad\)

Telephone
REW1

\(\star\) llluminted inner-face graticule 150 mm rectangular CRT (6kV)
\(\star\) Maximum sensitivity \(1 \mathrm{mV} / \operatorname{div}(\mathrm{DC} \sim 10 \mathrm{MHz}\))
\(\star\) Maximum sweep speed \(20 \mathrm{~ns} / \mathrm{div}\) (\(\times 10 \mathrm{MAG}\))
\(\star\) Maximum accuracy \(\pm 3 \%\) (voltage and time axis, \(0 \sim 40^{\circ} \mathrm{C}\)) guaranteed
\(\star\) New video sync circuit requires no troublesome trigger setup
\(\star 8\)-division dynamic range
\(\star\) Vertical signal output (CH1 output)

\section*{THURLBY PL 310 BENCH POWER SUPPLY UNIT £142.60}

\section*{Thurlby PL Series}
\(\star\) Simultaneous digital metering of voltage and current
\(\star\) True constant voltage or constant current operation
\(\star\) Twin \(33 / 4\) digit meters with \(12.5 \mathrm{~mm}\left(1 / 2^{\prime \prime}\right)\) LED displays
\(\star 0.1 \%\) accuracy; 0.01 volts and 0.001 amps resolution
* Very high stability,
resolution and setting accuracy
\(\star\) DC output switch, automatic mode indication
* Precise current limit control and monitor system
* Wide range of models, single, dual or triple outputs \(\star\) Designed to rigorous quality and safety standards * Highly competitive pricing
\(\star\) Remote sense facility for high current precision \(\star\) Current meter damping switch for fluctuating currents t True parallel and series-tracking modes on Duals \(\star\) Adjustable overvoltage crowbar on 5 volt outputs

\section*{* ONE METEX 3000 DMM GIVEN FREE WITH CS1022}

\section*{ALL ABOVE PRICES INCLUDE DELIVERY \& VAT} BARCLAYCARD \& ACCESS ACCEPTED DAWNE INSTRUMENTS \& ELECTRONICS

\author{
Shields Road, Bill Quay, Gateshead NE10 ORS
}
\(0632380557 / 695117\) (24 hr answering service)

\title{
TTHE AMCOMM HOTL
}

Amazing new prices on ICOM, YAESU, KENWOOD and many others.

\section*{YAESU \\ FT 757 GX}

Here is a little General Coverage gem that does it all and has it all - Usual high consideration for the SSB man and - LO and behold total consideration for the CW man - if you are into both you're on to a real winner - Look both you're on to a real winthing you'll closely - no extras! Everyll Break Inneed already installed. Full Break Khz CW Filter - lambic keyer - 25 Khz marker-IF/Shift width - Noise blankel - Switchable AGC and RF preamp plus a lot more including A. F.O's, RX cover. as standard. Tw 29.999 Mhz -transmit age 150 Khz to 29.999 Mhz -tranercial version also available. Dimensions \(238 \times 98 \times 238 \mathrm{~mm}\) and weighing only \(238 \times 98 \times 238\) mmash at a price you're going to like-send or call for full details and price. Tel: 01-422 9585.

\section*{ALL PRICES DOWN}
\begin{tabular}{|l|l|}
\hline ALL PRICEM 290H \\
ICO \\
2M Multimode \\
with same super performance \\
as the 290 E but with 25 Watts.
\end{tabular}

\section*{YAESU FT102} 9 Bander.

See the reviews on this rig and call us... we'll tell you some more FANTASTIC NEW LOW PRICE

\section*{YAESU FT290RB}

The biggest selling 2M rig ever...hands up if you have'nt got one. Call 01-422 9585, we'll tell you how to own one
Complete with Nicads, Charger and Case
,

\section*{YAESU \\ FT101ZD Mk 111}

Available while they last, complete Available
with FC902 ATU at \(£ 649\)

ICOM 745/751/271
Three new ones just around the corner, two HF general coverage transceiver and one VHF base for 2 M , stock should be with us by the time you read this, call 01-422 9585 for more information.

ICOM 740 9 Band Transceiver

You'll hear nothing but ood words on this one, ask an owner then call us on 01-422 9585

\section*{YAESU 726R}

All mode base station \(2 \mathrm{M}, 70 \mathrm{cms}\) and 6 M .
 think what three rigs would cost you and work out the value for money on this one. Call \(01-4229585\), we'll give you the info and the price.
 and the price.

\section*{YAESU FT77}

Probably the best HF mobile ever made, low frills and low bills, call 01-422 9585 and we'll tell you how low.

ACOMM SERVICES
194 Northolt Road, South Harrow, 194 Northo HAO 2EN
Telephone: 01-422 9585 (3 lines)

Telex: 24263 .
OPPOSITE SOUTH HARROW TUBE STATION ON THE PICCADILLY LINE
SHOWROOM OPENING HOURS
TUE-FRI 10.00am-6.OODM CONTINUOU
SAT \(900 a \mathrm{~m}-5.00 \mathrm{pm}\) CONTINUOUS
OF OUR INTEREST FREE AND LOW DEPOSIT HP

\section*{FAIR DEAL POLICY}

\section*{YAESU FT 208R/FT 708R Handhelds \\ A large selection of hand-held} equipment both amateur and professional to buy or to rent from lcom, Yaesu and others. Call for more information.

appearance smooth performance, thousand pounds value for well under〔500, call 01-422 9585

At Amcomm, we believe we are here to do much more than sell boxes of

At Amcomm, We are specialists in amateur radio equipment and our management and staff are all amateur radio enthusiasts. We sell nothing else.
else. Many irms cal of companies in the U.K. are fully equipped to give you a and total after-sales service. Amcomm iso offer a complete service. Whether speedy access to factory stocks, we offer a comple we pride ourselves on spee buy now or bought 10 years ago. What s more,
you buy now to service everything we sell ourselves. Don't take our word for it, find out for yourself, ask competitive prices and keep coming up with the same answers, gound. keep coming up wies service. Go on, ask around.

\section*{Intelligent EPROM Programmer}

The new PROM 1 from P.M.S. offers the user an intelligent, easy to use EPROM Programmer, capable of programming á wide range of common EPROM types. The unit has its own CPU with a 4 K memory buffer and communicates to the user's Computer/Terminal over a standard R.S. 232 link. Full on.screen editing facilitateg easy modification of machine code programs.

The PROM 1 offers the following functions:-
1. Disk to Buffer. Allows a file to be copied from disk into the PROM 1 's internal 4 K buffer.
2. Buffer to Disk. Allows contents of buffer to be stored on disk.
3. EPROM to Buffer. Allows contents of EPROM to be stored in Buffer.
4. Buffer to EPROM. Programmes EPROM with current contents of the Buffer.
5. Display Buffer. Displays contents of the Buffer on screen and allows full screen editing of the buffer contents.
6. Check EPROM Status. Checks the status of the EPROM plugged into programmer socket i.e. EPROM type and whether it is blank, equal to or not equal to the buffer.
The PROM 1 can be used with just a terminal but functions 1 and 2 will not apply.
The unit is supplied with full operating instructions, including CP/M routines for system configuration.
R.R.P. \(£ 349.00\)

\section*{The 16~bit Micro}

\section*{with 8-bit compatibility and colour graphics}

Features 8088 and 8085 processors, 128 K user RAM expandable to \(768 \mathrm{~kb}, 2 \times 320 \mathrm{~kb}\) drives, 2 serial ports, 1 parallel port, light pen socket and 4. S100 bus slots for add on options. Disk controller supports \(4-8^{\prime \prime}\) drives and \(4-5.25^{\prime \prime}\) drives. High resolution graphics (\(640 \times 225\) pixels, 8 colours). Supplied with MSDOS, CP/M 85, 16-Bit Microsoft Colour Basic with FULL GRAPHICS implementation and complete documentation. The Z-100 comes in two basic forms:-
Z-120-22 With integral monitor (as illustated) and 1 colour plane ram set fitted
Z-100-22 Low profile version with, full colour RAM set £ \(\mathbf{2}, 576\)

Twin 8" Drives (as illustrated), suitable for the Zenith Z-100 series computer with no extra interfacing. Capacity 1.2 Mb per drive .. \(£ 1,050\) Colour Monitor. Zenith ZVM-134 high resolution \(13^{\prime \prime \prime}\) RGB monitor - Special introductory offer price f 400
Zenith ZVM-121 12"'green screen monitors
£ 85

Send for our current list of Ex-demo and second user equipment at low low prices.

22 Tarsmill Court Rotherwas Hereford HR2 GuZ Tel: Hfd 265768, 50848 (STD 0432)

\section*{LCD DISPLAY OPTION FOR THE REWBICHRON II}

Readers interested in building the Rewbichron II (R\&EW April, May '83) will almost certainly realise that the outputs from the main board are capable of driving other displays than the 7 -segment LED's considered in the original article. The option presented here is for an LCD version and it was designed by Stephen Ibbs in conjunction with

John Robinson: a vacuum fluorescent display is also being considered for a future article

The main consideration when designing any alternative display option is that it should be fully compatible with the main board software... i.e. there should be no need for the EPROM to be modified or for any other changes to be made to the main board. This in fact proved to be a bit of a headache in the initial design stages to this project because of the way the display blanks certain digits, as will be explained later. But first, on with the description.

\section*{The new display}

The main IC used in this design is the Intersil 7231B triplexed LCD driver. The technique of triplexing LCD displays is fairly recent and it enables eight digits to be driven by one 40-pin IC quite easily, overcoming the need for masses of segment connections. It is outside the scope of this article to explain triplexing in detail; suffice it to say that three common lines are used instead of the one backplane, and the display is constructed like a matrix between these and the segment lines. Readers seeking more detailed information are referred to the Intersil data sheets.
As only six digits are required, the outputs are split up to drive digits number \(0,1,3,4,6\) and 7 - the idea being to give three groups of two, corresponding to hours, minutes and seconds or date, month and year as appropriate.
This IC requires data input in 4-bit binary code, while a 3 -bit control code is used to address the various digits. This can be provided by the main board direct, and will work fine - except when the processor blanks certain digits as it does:

a) Before and after the date display (all digits)
b) In response to leading zero of day, month and (12-hour mode) hour
c) At 00 seconds when invalid Rugby data has been received

The 7231B has to have data all the time otherwise the display shows meaningless rubbish. Thus some sort of interface was needed and eventually the following solution developed, the circuit for which is shown schematically in Figure 1.

Fig 2 PCB bottom plane

Fig \(3 P C B\) top plane

\section*{About the circult}

Under normal circumstances, i.e. when a scan strobe is present, each high level pulse from IC2a makes IC1 'transparent' so that the digit address data is fed unchanged to the LCD driver (IC4). During this pulse, IC2 pin 11 is forced low, feeding 'chip select' (\(\overline{\mathrm{CS}}\)) on the 7231B. (Note, however, that the address and data are not latched until IC2 pin 11 goes high at the end of the strobe pulse.) The oscillator, comprised of IC2b,c, is inhibited during the scan strobe pulse, and moreover will not start during the normal inter-pulse gaps. Also at this time
the four gates of IC3 act as buffers only, and the binary data is fed unchanged to pins 32-35 of the 7231B.

If, however, a long gap occurs, for example when a digit is blanked and its scan strobe is omitted, the oscillator will start to generate a square wave at approximately the scan-strobe frequency (set by R3 and C2). Each positivegoing edge at IC2 pin 3 clocks IC1 (which up to now has been preset-enabled) with the result that it counts down to the next digit address in the scan sequence. Now if one input of a 4071 OR gate is high, the output will also be high: thus in these
circumstances IC3, via R4, forces the digit data to 1111 which is the blanking code for the 7231B, and IC2 pin 11 takes 'chip select' low. But when the oscillator goes low again, 'chip select' goes high, latching the address and data codes into the LCD driver. R4, together with the stray capacitance at the IC3 inputs, delays the removal of the forced 1111 digit data long enough to meet the specified hold time for the 7231B.

R1 and D1 are connected to ensure that digit 5 in terms of the circuit (digit number 7 in terms of the display) can be blanked. (The digits are numbered, you

KB Connector fitting method

Fig 4 Component overlay
remember, 0-7 counting from the right when looking at the front of the display.) If the counter counts down from 0000, it would normally go to 1111 on the next clock, which will not result in the correct digits being blanked. The arrangement is such that an address of 0000 actually comes from a counter state of 1000 ; the next count below this is 0111 and the 0 from \(Q_{D}\) forces the \(A_{1}\) output to 0 , making the address 0101, which equals 5.
During periods of total blanking, such as the time/date gaps, the counter cycles round all the digit addresses loading the blanking code. A point to note is that, on the first cycle, it addresses the digits in a curious order as a side-effect of R1 and D1, but thereafter it is correct. This however has no effect on the appearance of the display.
There are a few other points to note about this interface. Firstly, the preset feeding pin 2 of the 7231B allows the display contrast to be set to suit the surrounding light and the viewing angle. Secondly, R5 holds the two annunciator pins 30 and 31 low: but if one of these is pulled high, the appropriate decimal point (31) or chevron (30) will light. Finally, because the display board uses CMOS logic while the main board is TTL, pull-up resistors have been provided on all data inputs by the inclusion of an SIL resistor network (not shown in Figure 1).
If you have followed this explanation, congratulations! If not, then we ask you merely to accept that the interface circuit shown in Figure 1 provides the correct signals to blank the display digits for which no scan strobe is provided...in practice, it realiy does work!

\section*{Construction}

A double-sided PCB has been designed and the foil patterns and
component overlay are given in Figures 2-4. Please note the dotted line running between the two rows of pads. If readers so wish the board may be cut here so that the display can be mounted remotely, joined by ribbon cable between the two rows.
Some pins of the ICs need to be soldered on both sides of the board: if readers are unsure about how to mount the device direct, it is recommended that soldercon pins are used, as these can easily be inserted and soldered on both sides prior to mounting the ICs. Be careful not to let solder run up the inside of the pin sockets.
A normal socket is used for the 40-pin IC, and either soldercon pins, or a normal socket (cut up), for the display. Note that several pins on one side remain unconnected.

Be very careful when inserting the display into its strip holders. Figure 5 shows the correct way. Failure to observe this may bend the pins, and damage the glass seals.
Mount all the components, making sure that the SIL resistor network is inserted the correct way round...the dot goes to +ve as indicated on the component overlay. Veropins should be inserted for the connections to the main Rewbichron board, and eight of these should be soldered on both sides.

After careful checking - particularly to see that all through-board connections have been made - connect to the main board and turn the preset fully anticlockwise. Switch on and once Rugby has been fully received, the display should leap into action. Adjust the preset to give a well contrasted display with no ghosting of segments.

If nothing happens, it is likely that the scan strobe preset on the main board has
not been adjusted correctly to ensure that the pulses are as long as possible, consistent with six distinct pulses per 10 msec . Adjust the preset and at some point the LCD display should become stable.

NB: The main IC must be the 7231B. The ' A ' version, as supplied by RS Components (for example), is not suitable because the code 1111 will cause the letter F to be displayed. Similarly, a normal 8 -digit display will not work as it must be triplexed. The LUCID display type 109F711 (available from Ambit) is suitable and was used in the prototype.
\begin{tabular}{|lr|}
\hline & PARTS LIST \\
Resistors & \\
R1, R4, R5 & \\
R3 & \(10 \mathrm{k} \Omega\) \\
R2 & \(39 \mathrm{k} \Omega\) \\
RV1 & see text \\
Capacitors & \\
C1 & 47 pF \\
C2 & 15 F \\
C3 & \(10 \mu \mathrm{~F}\) \\
C4 & \(0.1 \mu \mathrm{~F}\) \\
Semiconductors & \\
IC1 & 4029 \\
IC2 & 4001 \\
IC3 & 4071 \\
IC4 & ICM7231B \\
D1 & IN4148 \\
MIscellaneous & \\
Triplexed display - 109F711. 8 com- \\
\hline
\end{tabular}

Triplexed display - 109F711; 8 commoned resistor SIL package (\(4.7 \mathrm{k} \Omega\)); 8 biasing resistors (see text, Figure 1)
A PCB for this project is available from Edwardschild Ltd, 453a Becontree Ave, Dagenham, Essex RM8 3UL at \(£ 4.55\) ea. inclusive.

\title{
South Midiands \\ * FREE FINANCE - 2 YEAR GUARAN BRANCHES AT: SOUTHAMPTON, LEEDS, CHESTER
}

\section*{ARE YOU READY FOR OSCAR 10 YET?}

IF NOT, then we have the Transceivers, Linears, Pre-amps, Transverters, Converters, Antennas, Rotators, Coaxial Feeders, etc. to get you on the air and work D.X. that would envy even HF operators.

TRANSCEIVERS

COAXIAL FEEDERS
\(\begin{array}{llr}\text { UR67 } & \text { P/Metre } & \mathbf{£ 0 . 6 7} \\ \text { H100 } & 25 \text { Metres } & £ 19.50\end{array}\)
\(\begin{array}{lll}H 100 & 50 \text { Metres } & \mathbf{~} 39.00 \\ & \text { H2.00 }\end{array}\)
LDF2/50 Andrews heliax p/m \(\quad \mathrm{m} .85\) LDF4/50 Andrews heliax \(\mathrm{p} / \mathrm{m}\) £3.58
Carriage on coaxial cables \(£ 2.50\) for up to 25 M , over Carriage on
\(25 \mathrm{M} £ 3.20\)

TRANSVERTORS, CONVERTORS AND PREAMPS FVV707R Transvetor C w 2M FTVOOTR 432TV
MMT432/28S MMT T322/144S
MMC144/28 MMC144/28 MMC432/144S MMX1268/144
MMA144V SLNA144S SLNA144U SLNA144UB
GBFA144E SBLA144E SLNA145SB TLNA432S TLNA432U GLNA432U

FTV107R Transyeitor \(/ \mathbf{W} 2 \mathrm{M}\) - 899

SOLD OUT
70CM Modute for above
Transvertor \(432-436 \mathrm{MHz}\)
\(£ 214.65\) Transvertor \(432-436 \mathrm{MHz} \quad £ 159.95\) Transvertor \(432-436 \mathrm{MHz} £ 184.00\) Convertor 2 M down to \(10 \mathrm{M} £ 29.90\) Convertor 70CM down to 10 M £ 37.90 Convertor 70CM down to \(2 \mathrm{M} £ 37.90\)

MML-432/100

KR-400
ROTATORS
KR400 Meter controllor \(\quad\) £97.75* KR400RC Round controller \(£ 114.94\) \(\begin{array}{lll}\text { KR400RC } & \text { Round controller } & \text { R } \\ \text { KR600RC } & \text { Round controller } & £ 163.30\end{array}\)
\(\begin{array}{r}163.30 \\ \mathbf{~} 90 \\ \hline\end{array}\) AR40 CDE

Meter controlior
\(£ 90.85\)
\(£ 136.85\)
\(\begin{array}{lll}\text { CD45 } & \text { Meter controlior } & £ 136.85 \\ \text { HAMIV } & \text { Meter controllor } & £ 258.75\end{array}\)
KC038 KR400/600 Lower bracket £12.07
\begin{tabular}{ll}
KC038 & KR400/600 Lower bracket £12.07 \\
KR500 & Elevation rotator \\
\hline 112.12 *
\end{tabular} * Rotators could be used with a home computer for automatic tracking of satellite.

\section*{ANTENNAS}
\begin{tabular}{|c|c|c|}
\hline \(5 \mathrm{XY} / 2 \mathrm{M}\) & 2M 5 Ele crossed & £28.17 \\
\hline \(8 \mathrm{XY} / 2 \mathrm{M}\) & 2M 8 Ele crossed & £35.65 \\
\hline \(10 \mathrm{XY} / 2 \mathrm{M}\) & 2M 10 Ele crossed & £46.00 \\
\hline PMH2/C & 2 M Circular harness & £9.77 \\
\hline \(8 \mathrm{XY} / 70\) & 70 CM 8 Ele crossed & £48.87 \\
\hline 12XY/70 & 70CM 12 Ele crossed & £52.90 \\
\hline MBM48/70 & 70 CM 48 Ele multibeam & £35.65 \\
\hline PBM18/70 & 70CM 18 Ele parabeam & £32.20 \\
\hline CR2/23CM & 23CM corner reflector & £31.05 \\
\hline Carriage on & nnas & ¢2.50 \\
\hline
\end{tabular}

\section*{NEW FROM YAESU}

Frequency range \(160-10 \mathrm{~m} \mathrm{TX}\), general coverage RX. 10 Hz VFO steps and 500 KHz band steps. Modes, USB, LSB, CW, AM, FM ali as standard
Power output 100 W SSB, CW, FM 25 W carrier AM, 3rd order products -40 dB at 1 pg p in CiHz . Dynamic range better than \(100 \mathrm{~dB} C W(\mathrm{~N})\) at 14 MHz .
Frequency stability better than \(\pm 10 \mathrm{ppm}\) atter warm up.
ure ayowing more flexible split frequency Dual VFO's
operation.
peration.
Programmable memory scanning with scan in accessories installed including antable with the RF Gain control All accessories installed including \(A^{A}\), Marker, Speach processor, shift filters, 600 Hz CW filter a keyer.
New heatsink design inducted cooling system allow \(100 \mathrm{~W} o / \mathrm{p}\) at \(100 \%\) transmitter duty cycle. Selectable 81 -in or full break-in and builh in iambic keyer with dot-dash memory.
Thrintronocessors control most of the switching and adjusting functions normaly done by hand
ational CAT interface unit allow further operating flexibility with an external computer.

Only authorised Yaesu dealers have direct contact with the factory in Japan, and only if you buy your radio from an authorised dealer can you be assured of spares and service back up. So BEWARE of grey importers who offer sets a few pounds cheaper, they may not be around if your set goes wrong!!
REMEMBER

FREE FINANCE
priced items SMC ofters.
On many regular priced iemalance over \(£ 1201\) Free Finance (on invoice balance over \(£ 1201\).
\(20 \%\) down and the balance over 6 months or \(20 \%\) down and the balance over \(50 \%\) yown and the balance over a year. \(50 \%\) down and the balance over a year
You pay no more than the cash price!! Further details and ellolble items available on request.
\(\qquad\)

Importer warranty on Yaesu Musen products. Ably staffed and equipped Service Department
Daily contact with the Yaesu Musen factory.
Tens of thousands of spares and test equipment
wenty-five years of protessional experience.

Free Securicor delivery on major equipment Access and Barclaycard over the phone. Biggest branch agent and dealer network Securicor "B' Service contract at \(£ 4.49\). Biggest stockists of amateur equipmen Same day despatch whenever possible.

HEAD OFFICE S.M. HOUSE, RUMBRIDGE STREET, TOTTON, SOUTHAMPTON, SO4 4DP, ENGLAND, MAIL ORDER Tel: Totton (0703) 867333, Telex: 477351 SMCÓMM G, Telegram: "Aerial" Southampton

\section*{Communications Lid. TEE MAIN DISTRIBUTOR FACTORY BACKED FIELD, BUCKLEY, STOKE, GRIMSBY, JERSEY, EDINBURGH.}

\section*{SMC NEW LOW YAESU PRICES}

FT-980
FT ONE
KEYT901
DCT1
RAMT1
FMUT1
XF8.9KCN
XF8.9KC
XF8.9KA
XF10.7KC F980

SP980
SP980P
\({ }_{\text {FT102 }}\)
SP102
SP102P
FV1020M
FC102
AMFMUT102
FAS14R
\(\times F 82 G A\)
XFB2HSN
XF82HC
\(X\) X 82 HCN
XF455C
XF455CN FT77

FT77S
MRKI77
FMUT7
FMUTT7
FP700
\(\stackrel{\text { FP700 }}{ }\)
XF8.9KC
FT757GX
FP757GX
FC757AT
FT9020M
FT902DM
FT902DE
FT902D
FMu901
KEYT901
MEMT901
DCT901
Xf89GF
FTV901R
50TV
\(70 T \mathrm{~V}\)
144 TV
430 TV

Transceiver General Coverage \(£ 1395.00\) Curtis Keyer

\section*{Non volatile memory board FM unit}

300 Hz CW filter
600 Hz CW filter
6 KHz AM filter
800 Hz CW filter
Transceiver General Coverage R
Amateur Tx
\(\begin{array}{lr}\text { Amateur Tx } & £ 1150.00 \\ \text { External speaker } & £ 54.80 \\ \text { External speaker phone patch } & £ 69.75 \\ \text { Transceiver } 9 \text { band multimode } & £ 685.00\end{array}\) Transceiver g oudio filter Speaker with audio filter Synthesized scanning VFO
Antenna coupler 1.2 KW PEP AM/FM unit option
4 Way antenna selector 4 Way antenna selector 1.8 KHz Narrow
600 Hz CW filter 600 Hz CW filter
300 Hz filter narrow 500 Hz CW filter 270 Hz CW filter narrow
Transceiver 8 band mobile multimode Transceiver 8 band mobile 10 watts
Calibration marker unit option FM Board option External power supply/speaker External power 600 Hz CW filter
Amateur bands TX General RX Switch mode PSU Automatic Antenna Tuner Transceiver 9 band, multimode
9020 M less invertor, memory \({ }_{8}\) FM

\section*{902 MM less invertor, memory} \& keyer
FM Module
Memory Unit
Invertor (from 12VDC)
SOLDD OUT
6 m transvertor module 4 m transvertor module 2 m transvertor module
70 cms transvertor module
\(£ 79.75\)
£ 84.70
£109. 65
£109.65

\section*{\(£ 8.60\)
\(£ 13.05\)
\(£ 3.85\)
\(£ 17.25\)
\(£ 17.25\)
\(£(11.25\)
\(£ 11.90\)}
£54.80
\(\begin{array}{r}\text { §69.75 } \\ \hline\end{array}\) 685.00

XF8.9HC XF8.9HCN XF8.9GA Fi \(2100 Z\) \(\stackrel{+}{\mathrm{F} T 707}\) FT707FM FP707
FV707DM FC707
FTV707R FRB707

CW Filter 500 Hz CW Filter 300 Hz Linear Amplifier \(1200 \mathrm{~W}+\) Transceiver 100W \(10-80 \mathrm{M}\) SOLD OUT
Mans power supply/speaker Digital VFO Antenna Tuner ransvertor c/w 2 M
Relay switching box

FT-726R
FT726R(2)
FT726R
50/726
\(21 / 24 / 28\)
144/726
\(430 / 726\)
SAT726
XF455MC
FT230R
FT730R
FT690R
FT290R
FT790R
SMC2.2C
SMC8C
MMB11
CSC1A
YHA15
FL2010
FL7010
FT680R
FT480R
FT780R
FT780R1.
FP80A
SC1
FL2050
FT720RV
FT720RVH
FT720RU
FT720R
720RV
720RVH
\(720 R U\)
S72
E72S
E72L

> \begin{tabular}{l} FTV107R TRANSVERTER \(\mathrm{c} / \mathrm{w} 2 \mathrm{~m}\) \\ FTV901R TRANSVERTER \(\mathrm{c} / \mathrm{w} 2 \mathrm{~m}\) \\ FTV707R TRANSVERTER \(\mathrm{c} / \mathrm{w} 2 \mathrm{~m}\) \\ DMS 107 DMS UNIT for FT107 \\ \hline \end{tabular}
\(£ 89.00\)
\(£ 139.00\)
\(£ 99.00\)
\(£ 69.00\)

FV101DM VFO SOLD OUT
YM35
YM36

Transceiver Handheld \(2.52 \mathrm{~m} \quad £ 199.00\) Transceiver Handheld 1W 70 cms £209.00 Nicad Battery Pack \(\quad £ 19.95\) Battery pack sleeve (fits FNB2) \(\quad £ 3.05\) Charging sleeve (for FT207 acc) \(\quad £ 5.35\) Slow charger
Base Master
\begin{tabular}{ll}
Base Master & \(\mathbf{£ 3 0 . 6 5}\) \\
Quick charge and PSU & \(\mathbf{5} 0.60\)
\end{tabular}
Quick charge and PSU
Mobile bracket \(\quad £ 50.60\)
Mobile bracket
Receiver \(0.15-30 \mathrm{MHz}\)
AM/CW
FSBReceiver \(0.15-3.0 \mathrm{MHz} \mathrm{AM} / C W / S S B /\)Receiver c/w 12 channel memory£389.00DC modification kit \(£ 1.15\)Memory option
£98.90
\begin{tabular}{ll}
Antenna tuner/switch & \(£ 42.55\) \\
Active antenna & \(£ 38.70\)
\end{tabular}\begin{tabular}{ll}
Active antenna & \(£ 38.7\) \\
\hline 9.9
\end{tabular}Convertor 118-130. 130-140.\(140-150 \mathrm{MHz}\)
\(£ 78.95\)

\section*{Convertor 118-130, 140-150} \(50-59 \mathrm{MHz}, 150-160\)
£84.70
Convertor \(140-150,150-160, \quad £ 74.75\)
\(160-170 \mathrm{MHz}\)

Convertor 118-130, 140-150,
\(70-80 \mathrm{MHz}\)
Convertor 140-150 150-160
118-130 MHZ
Convertor 150-160, 160-170, 118-130 MHz
Hand 600.4 pin noise cancel Hand \(2 \mathrm{~K}, 6\) pin min. speaker/mic Hand 600. 8 pin scan Hand 600, 8 pin. noise cancel Hand 600, 8 pin Stand 600/50K, 8 pin scan Hand 600. 7 pin. scan control Hand 600. 7 pin, speaker/mic Hand 600. 4 pin Stand \(600 / 50 \mathrm{~K} .4\) pin Stand 600/50K. 4 pin Hand 600. 8 pin scan Desk 600, 8 pin scan Mobile speaker 80 hms Mobile speaker 40 nms Headphones padded low \(\begin{array}{ll}\text { Headphones lightweight low } z & £ 9.9 \\ \text { Heal }\end{array}\) Lightweight mobile headset/boom mic
\(£ 13.80\) PTI switch box for \(\mathrm{FT} 208 /\) FT708 \(£ 14.95\) PTI switch box for FT290/FT790 £12.65 PTI switch box for FT202 12 V power supply 4 amps World time clock quart Low pass filter
Terminated Wattmeter 5-30-150W FSD
\(£ 13.80\)
\(£ 44.45\)
£31.45
£35
\(£ 25.70\)
592.00

\section*{YAESU
SPECIAL
OFFERS \\ SPECIAL OFFERS}

\section*{LEEDS} SMC ILeeds)
257 Orley Road \(\begin{array}{lll} & \text { SMC (Jack Twendy) Lid } & \text { SMC iTMP) } \\ 257 \text { Orley Road } & 102 \text { High Street } & \text { SMC IStoke) } \\ \text { Led }\end{array}\) Leeds 10532 Yorkshire New Whitington, Chesterfield 9-5.30 Mon-Sat

9-5 Tues Sat

\section*{MODEL D70 MORSE TUTOR}

Once you've decided to tackle the dreaded Morse Test you won't want to mess about. You'll want a learning method that is effective. painiess, and that gets you on the HF bands FAST without any expensive retakes.
Thats exactly what the Datong Morse Tutor can do for you, as thousands of satisfied users will confirm.
The Morse Tutor generates a random stream of Morse characters to give receiving practice, but two very important features set the D70 apart from other systems.
First: each character comes at you at its normal speed but with an extra delay between each one. As you improve you reduce the delay until full speed is reached. This way you always earn the correct rythmic sound for each character and avoid the worst of the notorious "plateau" effect
Second: you can take it anywhere and use it whenever you like without the bother of a mains lead. Battery drain is so low that you should be able to pass the exam on the batter which we install before shipping!
Supplied complete with internal speaker pius personal earpiece, and with a key jack for sending practice. Model D 70 is your passport to a more rewarding hobby.
Price: \(£ 49.00\) + VAT (\(£ 56.35\) total)

\section*{FL2/FL3 MULTI-MODE AUDIO FILTERS}

These high performance audio filters will improve the performance of any existing communications receiver . . in most cases, dramatically
By selecting "SSB" mode you can: remove high pitched monkey-chatter from off-tune SSB stations: remove low pitched noises from other stations on the low stde of your signal; emove tune-up whisties with a manually controlled notch filter; at the same time remove une-up whistles with a second notch fiter which tunes itseff automatically (this function applies to FL3 only)
What marks out the Datong filters from the rest is the high performance of each of the above functions plus the fact that all four functions are available simultaneously.
By selecting "CW" mode all available filters (except the automatic notch! are automatically harnessed together to give an almost unbelievable ability to pull out a single CW signal from a crowded band.
Whether you are an amateur or a professional and no matter which rig you use, the
overcrowding on today's HF bands can spoil your reception. Simply adding a Datong audio filter in series with the speaker may be the biggest single improvement you will ever make Note that by retrofitting the FL2/A auto-notch conversion kit you can ccenvert an FL2 to an
FL3 at any tume. The only difference is the auto-notch filter.
Prices: FL2, \(£ 78.00\) +VAT (\(£ 89.70\) total); FL3. \(£ 112.49\) + VAT (12937 total) FL2/A conversion kit. \(£ 34.49+\) VAT (\(£ 39.67\) total)

Your Name \(\qquad\) Call Sign
Address Tel

Town
City .
. Post Cod

\section*{R\&\#W Data Brief mear}

\section*{MC1377}

\section*{Colour signal encoder}

One of the last remaining discrete areas in 'consumer' electronics has succumbed to integration with Motorola's new MC1377 colour signal encoder device that claims to operate to standards that permit quality TV camera applications, as well as the current fad products of colour computers and TV games consoles. There have been such devices available from National for some years past based on 3-bit switched levels LM1886/LM1889. These devices were essentially somewhat crude, dating back to the introduction of some of the first integrated 'Tele-tennis' devices. The advent of the latter devices now seems like an aeon ago.
The MC1377 (Figure 1) is everything any computer, video games or TV manufacturer needs in a low cost colour encoder. It accepts red, green and blue (RGB) signals, and encodes them into a composite video signal in either PAL or NTSC formats. The IC contains an on-board reference Colpitts oscillator (which may optionally be slaved from another 'master' oscillator in the system), a voltagecontrolled 90 -degree phase shifter, two double sideband modulators and blanking level clamps.
The chroma signals saturate at 1.0 V \(p-p\). (\(R-Y\)), (\(B-Y\)) and (\(-Y\)) signals are generated in the input matrices and are DC clamped to the 'black' level by a sync driven clamp. Burst generation is provided by a sync triggered ramp on pin 1, combined with two internal level sensors. Only a small portion of the ramp is used (at the beginning) with the result that sufficient accuracy is achieved with using fixed components on pin 1. Burst amplitude is internally fixed to correspond to sync level, allowing for a 3dB loss in the chroma bandpass filter. Figure 2 shows some typical waveforms.
Working in conjunction with the MC1374 (Figure 3) enables a complete encoder/modulator to be built to operate to standards hitherto only achieved with nearly five times as many parts. US pricing is quoted at \(\$ 2.35\) for 100-999: however, deliveries are already 10-14 weeks and they will probably get worse as this part is likely to be adopted very quickly by computer and games manufacturers.
The spec is listed in the table alongside.

The chroma bandpass filter (out of

\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Supply Voltage & \(\mathrm{V}_{\mathrm{CC}}\) & 15 & Vdc \\
\hline 8.2 Voc Regulator Output Current & l REG & 10 & mAdc \\
\hline Operating Temperature & \(T_{\text {AMB }}\) & \(010+70\) & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Junction Temperafure & \(T_{\text {J(max }}\) & 150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Power Dissipation, package Derate above \(25^{\circ} \mathrm{C}\) & \(P_{\text {D }}\) & \[
\begin{gathered}
1.25 \\
10
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{W} \\
\mathrm{~mW} / \mathrm{C}
\end{gathered}
\] \\
\hline
\end{tabular}

\section*{RECOMMENDED OPERATING CONDITONS}
\begin{tabular}{|l|c|c|}
\hline Supply Voltage & \(12 \pm 2\) & Vdc \\
\hline Syne Tip Level & \begin{tabular}{l}
-0.5 to +1.0 \\
+1.7 to +8.2
\end{tabular} & Vdc \\
Sync, Blanking Level & 1.0 & \(\mathrm{~V}_{\mathrm{p}-\mathrm{p}}\) \\
\hline Red, Green, Blue Inputs (Saturated) & \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS (VCC \(=12 \mathrm{Vdc}, T_{A}=25^{\circ} \mathrm{C}\), Circuit Of Figure 1 Unless Otherwise Noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Pin No. & Min & Typ & Max & Unit \\
\hline Supply Current & 14 & - & 32 & - & madc \\
\hline Oscillator Amplitude & 17 & - & 0.5 & - & \(V_{(p-p)}\) \\
\hline External Subcarrier Input (Oscillator Components Removed) & 18 & - & 0.25 & - & VRMS \\
\hline Subcarrier Input: \begin{tabular}{l}
Resistance \\
Capacitance
\end{tabular} & 18 & \[
-
\] & \[
\begin{aligned}
& 5.0 \\
& 2.0 \\
& \hline
\end{aligned}
\] & \[
-
\] & \[
\begin{gathered}
\mathrm{k} \Omega \\
\mathrm{pF}
\end{gathered}
\] \\
\hline Modulation Angle (R-Y) to (\(\mathrm{B}-\mathrm{Y}\)) & - & 87 & 90 & 93 & Degrees \\
\hline (R-Y) Angle Adjustment & 19 & - & 0.25 & - & Deg/ \(/\) A \\
\hline R, G, B Input For 100\% Color Saturation & 3, 4, 5 & 0.95 & 1.0 & 1.05 & \(V_{(p-p)}\) \\
\hline R, G, B Input: Resistance Capacitance & 3, 4, 5 & \[
-
\] & \[
\begin{aligned}
& 10 \\
& 2.0
\end{aligned}
\] & - & \[
\begin{aligned}
& \mathrm{k} \Omega \\
& \mathrm{pF}
\end{aligned}
\] \\
\hline Sync Threshold (See Figure 2e) & 2 & - & 1.7 & - & \(\checkmark\) \\
\hline Sync Input Resistance (Input > 1.7 V) & 2 & - & 10 & - & \(\mathrm{k} \Omega\) \\
\hline Chroma Output Level At 100\% Saturation & 13 & - & 1.0 & - & \(V_{(p-p)}\) \\
\hline Chroma Output Resistance & 13 & - & - & 80 & \(\Omega\) \\
\hline Chroma Input Level For 100\% Saturation & 10 & - & 0.7 & - & \(v_{(p-p)}\) \\
\hline Chroma Input: Resistance Capacitance & 10 & - & \[
\begin{aligned}
& 10 \\
& 2.0
\end{aligned}
\] & - & \[
\begin{aligned}
& \mathrm{k} \Omega \\
& \mathrm{pF}
\end{aligned}
\] \\
\hline \begin{tabular}{l}
\(\left.\begin{array}{l}\text { Composine Output. } \\
100 \% \text { Saturation } \\
\text { (See Figure 2d) }\end{array}\right\} \quad\left\{\begin{array}{l}\text { Sync } \\
\text { Luminance } \\
\text { Chroma } \\
\text { Burst }\end{array}\right.\) \\
\hline
\end{tabular} & 9 & - & \[
\begin{aligned}
& 0.6 \\
& 1.4 \\
& 1.7 \\
& 0.6
\end{aligned}
\] & -
-
- & \(V_{(p-p)}\) \\
\hline Output Impedance (Sea Note 1) & 9 & - & - & 100 & \(\Omega\) \\
\hline Luminance Bandwidth (3 d8), Less Deloy Line & 9 & - & 8.0 & - & MHz \\
\hline Subcarrier Leakage in Outpur & 9 & - & - & 40 & \(\mathrm{mV}_{(p-p)}\) \\
\hline
\end{tabular}

Figure 3 - COUPLING the mci377 to the mci374 rf modulator

Fig 4: VUS1054 bandpass and test circuit results
pin 13, into pin 10) can be accomplished with a standard bandpass coil arrangement. Alternatively, it is quicker and easier to adopt a standard TOKO video block filter, such as the VUS1054, whose bandpass and test circuit results are shown in Figure 4. The 400 nsec delay line is of the same standard as that found in a colour TV: however it performs the opposite function in the encoder.
For those of you who are not familiar with the operation of NTSC and PAL, the June ' 82 issue of R\&EW contained a useful piece on the workings of colour TV systems within a feature entitled 'Video Recorders Explained'. Back issues still available!

\title{
ATV on the Air
}

\section*{Presented by Andy Emmerson, G8PTH}

Did you know that ATV has never been more popular than now? The BATC (British Amateur Television Club) has nearly 2000 members, which is a far cry from the handful who started things going back in 1949. However, due to lack of publicity, there are still a lot of people who don't know about the club, many of whom are not radio amateurs but are still keen on TV.

Some of the BATC's most recent members have come from home movie circles, who are now going over to video; others enjoy playing around with closed circuit TV equipment or collect old TV equipment. One guy who joined the club has over 30 old 405-line TV receivers and was looking for a 405-line picture source to keep his collection going once the BBC and ITV transmissions cease. Fortunately he is acquiring an old monoscope camera with Test Card ' \(C\) ', which should be ideal.
Monoscope cameras, by the way, were the way we got test cards in the days before colour slide scanners or electronic test pattern generators. The monoscope camera had a special type of nonoptical camera tube. There was therefore no lens, but instead a printed metal plate which was scanned to produce an image of the test card or picture printed on the metal plate. The whole affair was full of valves and typically stood about 5 feet tall in a 19 -inch rack. Monoscope cameras took a fair bit of setting up but ah!, what a picture...takes you back to the 'good old days' of black-and-white television.

\section*{BATC activities}

You might be surprised at the number of lunatics in the BATC who collect old broadcast or industrial TV equipment: of particular note is a group who are collecting cameras for an eventual museum. Of course, restoring this ancient gear can be a bit of a problem since spares are generally unobtainable - even common types of valves can be mighty expensive if you have to buy them from the few dealers who have stockpiled them. Moreover, old capacitors have a tendency to dry out and go open circuit (or leaky!), while wound components have to be kept dry to guard against damp.

If you know of any old TV equipment which you would like to make sure goes to a good home, please drop me a line and I will make sure your letters are passed on to the appropriate collectors. If you have any monoscope tubes, do please let me know!

However, getting back to the aim of the first half of this article, which was to mention some of the benefits of belonging to the BATC, I should mention first of
all the quarterly magazine \(C Q-T V\), which is sent free to members. This features circuits, constructional articles, news and details of members' activities. The sales and wants pages are always packed with bargains, and there is an order form for the specialised items the club sells to members. These include those hard-tofind bits and pieces like camera tubes, scan coils, test cards, crystals and printed circuit boards for club projects.

The BATC also organises conventions and demonstrations twice a year, where we 'videots' can get together and natter or spend money on more old rubbish or...well, you know the sort of thing. The BATC also organises operating contests for transmitting members and issues award certificates for operating achievement. Membership costs just \(£ 4\) a year and you can get a form to sign up by sending a SAE (important!) to Brian Summers, 13 Church Street, Gainsborough, Lincs.

Because there is not a lot of information in print on the subject of amateur television, the club publishes four booklets. The shortest explains about the club and the very basics of amateur television; this is sent free when you join. A more complete introductory book is TV for Amateurs (\(£ 1.50\)) with 52 pages covering:
- TV principles
- Building a TV station
- Getting the equipment to start
- Sources of vision
- Transmitting
- Operating matters on the air
- Colour TV technique
- Microwave TV (the future!)
- All about the BATC.

Once you have learned all there is to know at the beginner's level you will wish to read some more 'hard-core' material. You can get this from the BATC as well, in the form of Handbook One (\(£ 1.50\)) and Handbook Two (\(£ 2.00\)). Both of these contain more advanced construction of projects and are replete with all circuit and component details. Non-members can buy these books as well; add 40 pence per volume for postage and write to BATC Publications, 14 Lilac Avenue, Leicester, LE5 1FN. These are, of course, non-commercial productions but they are very professional in content, despite the low price. Further titles are planned, the next to appear being Getting started on 24 centimetres.

For a totally different approach you might also like to read a book from across the pond. This is called Everything you always wanted to know about amateur television - but were afraid to ask. Now in its third edition, it is published by QCD Publications, who also issue A5, the American ATV magazine. For \(\$ 9.95\) you get 112 pages covering ATV, slow-scan TV, computers and a lot more, all from an American viewpoint. Of course, a lot of the material is relevant to operation elsewhere - and it's great fun to read, too. The price is \(\$ 9.95\) plus \(\$ 2.50\) postage from QCD Publications, PO Box \(H\), Lowden, lowa 52255 0408, USA. Yes, their new postal codes are more complex than ours!

\section*{Sending slides}

Changing the subject entirely, how do you go about putting slides or 8 mm movies onto video or on the air? The answer is a telecine unit, and our pictures show a couple of ways of doing this, amateur style.

If you're only concerned with 35 mm slides, you can buy an adaptor which screws onto a video camera lens. Cameras made by Sony, Panasonic, Canon and Olympus have these adaptors (technically known as diascopes) made for them. As well as slides you can also view colour negatives if you have one of those clever colour cameras which have the colour reversal facility. For years I

\section*{Send for my CATALOCUE ONLY 75p}
(plus 25p post/packing)
My all-inclusive prices quoted in the catalgoue are the lowest. All below Normal trade price - some at only one tenth of manufcturers quantity trade.

Millions of components: thousands of different lines
Watch/Calculator/Lighter etc, Mercury batteries
Rechargeable Nicol cadmium batteries Ex-unused Equipment (Central)
AA (HP7) 1.25 V 500 MA
5 mm Red Flashing LED
RW52 (PX 675) RW54
RW56 (DH 323, WH8) RW57, RW58.
......................Set of \(4 £ 2.00\) container of \(10 \varepsilon 5.00\)

N 4004 or IN 4006 Diodes
 31p Eachmade by Ray-O-Vac

O5 or TO 4006 Diodes \(\qquad\)
\(\qquad\) \(71 / 2 p 100\) for \(\varepsilon 6.50, \ldots . . .300\) for \(£ 6.48\) 100 for \(26.50,1000\) for \(£ 55.00\) 1000 for \(£ 155\)
Heatsink for TO3 or plastic power 19p 100/£17.50 1000/\&165
Modern Telephone Handset and lead in white, red, blue, grey, yellow, green or black .. £2.00 BU508A TV line output transistor, \(1,500 \mathrm{v}, 15 \mathrm{~A}, 125\) watts \(£ 1.53\) or 40 for \(£ 40.00\) or 400 for...

\author{
SEND PAYMENT PLUS 16p SAE OR LABEL ONLY
}

Prices you would not believe before inflation!

TRADE COMPONENTS ESTABLISHED 26 YEARS 161 St Johns Hill, Battersea, London SW11 1TQ Open tram till Tpm Tues. to Sat. Telephone: 01-2235016

SUPERB 70CMS BAND AERLAL
\(\ddagger\) High Gain - 16db \(\ddagger\) Low VSWR - better than 1.2 at 432 MHz
\(\ddagger\) Wide Bandwidth
greater than 10 MHz
\(\ddagger\) Low Weight - 1.1 kg
(wind loading 0.080 sq.metre)
\(\ddagger\) British Made throughout \(\ddagger 2\) years guarantee

\section*{Theor LYB E12.95}

The economical and portable beam. 6 elements boom length \(63.5^{\prime \prime}\) weight 0.7 kilo wind load area 0.5 sq.ft. gain 9dbd beamwidth \(50^{\circ}\) connector with clamps and plug shroud

Tiger LY8 \& 19.50
For the operator who wants both high performance and compact size.
8 elements boom length \(105^{\prime \prime}\) weight 0.9 kilo wind load area \(0.65 \mathrm{sq} . \mathrm{ft}\). gain 11 dbd beam width \(38^{\circ}\) connector So239 rigid bracing. Complete with clamps and plug shroud.
Tiger LY10 \(\mathbf{E 3 2 . 9 5}\)
For the discerning DX man who wants only For the discerning OX man who wants
maximum performance at the lowest price!

10 elements boom length 185 " weight 1.5 kilo wind load area \(1.3 \mathrm{sq} . \mathrm{ft}\). gain 14 dbd beamwidth \(30^{\circ}\) connector S 0239 rigid bracing. Complete with

ALsO
Superb range of two metre antenna. An essentlal aseet for the sarious DX man

High quality 'performance' antenna backed by a full two year's guarantee. Made in England so your valuable pounds don't go abroad into foreign pockets! Full spares availability.
clamps and plug shroud.
Delivery by securicor 84.50 extre
Ant Products

All Saints Industrial Estate Baghill Lane, Pontefract, West Yorks. Telephone Pontefract (0977) 700949

Amateur, Marine, C.B., Aircraft and Commercial Aerials supplied

\section*{WRONG TIME?}

MSF CLOCK is ALWAYS CORRECT - never gains or loses, SELF SETTING at switch-on, 8 digits show date, hours, minutes and seconds, auto GMT/BST and leap year, parallel BCD (including Weekday) output for computer, receives Rugby 60 KHz atomic time signals, built-in antenna, 1000 Km range, RIGHT TIME, \(£ 72.70\)
VLF? EXPLORE \(10-150 \mathrm{KHz}\), Receiver \(£ 21.20\)
ANTENNA FAULT? Check FAST with an Antenna Noise Bridge, MEASURE resonance \(1-160 \mathrm{MHz}\) and radiation resistance \(2-1000\) ohms, Get answers - more DX, \(£ 19.60\)
DISCOUNT \(£ 2\) when you order 2 kits - ask for full list.
Each fun-to-build kit includes all parts, printed circuit, case, instructions, by-return postage etc, money back assurance.

SEND AWAY NOW
CAMBRIDGE KITS
45 (AA) Old School Lane, Milton, Cambridge

\section*{Electionics \\ PART 1 OF THE AMATEURS HANDBOOK}

If you missed the December issue of Radio \& Electronics World with part 1 of the Amateurs Handbook and would like a copy, simply send \(£ 1.00\) to: Radio \& Electronics World • Sovereign House • Brentwood • Essex CM14 4SE
Together with your name and address

Norrie McDonald's solution to the problem of how to convert your cine film for transmission over the amateur TV network
made do with an ancient Philips diascope together with a black-and-white camera, but I think I may upgrade soon.
To show films as well you need a more complex arrangement that incorporates a \(45^{\circ}\) mirror, a neutral density filter to reduce light level and a ground glass screen. One of the pictures shows Panasonic's WV-J20E multi-function gadget which I rather like. Unlike some other telecine adaptors on the market, this one is fully adjustable so that you can vary the height and distance until it suits your video camera. It is then a matter of
propping up the film projector on books or whatever until it shines right into the adaptor. Focusing of camera and projector brings you even closer to perfection. With the Panasonic unit, you can also 'shoot' still pictures or caption cards as well (see illustration).
The other picture shows a good old amateur solution, made by Norrie McDonald GM4BVU. In essence it's a Boots home preview screen, though Norrie changed the mirror to solve a problem of double images. He got a local glass firm to cut him a special front-surfaced
silvered mirror for a few pounds \(s_{i}\) which has made all the difference. Apart from this, he has taped a Hoya +1 dioptre close-up lens onto the Hanimex 1200A slide projector's normal lens. His Agfa Sonnector LS2 film projector (shown here) has a \(16.5-30 \mathrm{~mm}\) zoom lens, and this makes positioning less critical. A +1 close-up lens was also necessary on the video camera.

Norrie says he tends to transfer slides to video tape (and add a voice-over commentary) before transmission. One minor drawback is that the camera AGC circuits are fooled each time the slide changes but they quickly adjust to the new brightness level. When using movie film, a slight flicker is visible since the film is scanned at 24 frames per second (compared to video's 25); Norrie adds that this is not sufficient to cause concern, considering the primitive nature of the set-up. I, too, have noticed this in my experiments, but it is only visible on really bright scenes. If you use a black-and-white vidicon camera, no flicker is visible at all because of the lag effect. (Three cheers for monochrome!)

Showing film sequences adds variety to amateur TV transmissions, but you should avoid sending any copyright material. Slides will also give high quality test cards or captions, of course.

If you have made any experiments with telecine, why not drop me a line care of the Editor? I am always keen to receive news and photos to print. See you next time....

13th December
Sale of surplus equipment
28th December
11th January
Aurora - what causes it?
14th January
RSGB Presidential Installation
19th January
Moulded Case Circuit Breakers
25th January Liquid Crystals - Beautiful and Useful

26th January
Operationa! Use of European Communications Satellite by the European Broadcasting Union

5th February
Bury Radio Society Ham Feast
8th February
Lecture and slides on Astrophotography
21st February
14th March
16th March
18th March

1st April
White Rose ARS Rally
28-29th April

RSGE National Amateur Radio Exhibition

Biggin Hill
Hornsea, N Humberside
Lincoln Short Wave Club
Cardiff Castle, Cardiff
Leeds
Hull College of Further Education
IEE, Savoy Place, London

The Mosses Centre, Cecil St, Bury
Lincoln Short Wave Club
Biggin Hill
Lincoln Short Wave Club
Lanchester Polytechnic
Carleton Community Centre, Pontefract

University of Leeds
National Exhibition Centre, Birmingham

Ian Mitchell G4NSD
Norman Bedford G4NJP
Pam Rose G4STO
RSGB, Potters Bar 59015
IEEIE, 01-836 3357
IEEIE, 01-836 3357
IEEIE 01-836 3357

MHS Bridge G3VC
Pam Rose G4STO Ian Mitcherl G4NSD

Pam Rose G4STO
BCS, Coventry Branch
A Mason G4TGU
N Whittingham G4ISC
A N Bramley G4NDU
RSGB, Potters Bar 59015

\section*{BACK ISSUE SERVICE}

All issues, with the exception of January 1982, are still available. All orders must be pre-paid, the cost of each issue being \(£ 1.00\) inclusive of postage and packing. To ensure that you don't miss any future issues, we suggest that you place a regular order with your newsagent or complete the subscription order form found in this magazine.

MaY 1983
Projects - Audio Limiter (Overload Operated Switch; Data Brief 2-State Variable Filter, IR Volume Control 100W Power Amplifier; Train Controller; Rewbichron II: Transistor the 7910; 28 Exec; CD Revealed Amateur Satellites. Reviews - Son and Hitachi CD Players; IMF Studio Monitors; Auto Scan 5000

JUNE 1983
Projects - RF/RGB TV Interface switchable converter); Synthesiser
Control System (70 cm and 2 m bands): Data Brief 1-Universal Counter; Data Brief 2-Preamplifier; Wideband LCDDFM; 2m Update; FRG7700 Memory Expansion; 100W Power Amlifier II. 28000; Weather Satellite Reception. Reviews - AMS1 (Audio Measuring System); GSC 50000 (latest counter/ timer): ICR70/R2000 Receivers; Circuit Modeller (CAD for CPM)

\section*{CTOBER 1983}

Designs - Modular Communication Systems Part 1 it 4 Channel Audio
Mixer Part 2 . Tone Bursts: PF70 Mixer Part 2; Tone Bursts; PF70
Conversion. Features - Noise Blanking Techniques; The Lambda Diode; A Guide to HF Coils Part 1 The Chromicro (Colour Processing): imeplex. Data Brief - The NEC Modulator: Amateur Radio World Reviews - Tandy VSC-1000 (Variable Speech Control); Yaesu FT-77 (Solid State HF Transcelver)

JULY 1983
Projects - Radio Amateur's Tes Data Brief 1 D Heating Controller Brief 2-Up/Down Counter; TX10-RGB (another conversion); Z8 Backplane Universal Interface; Synthesiser Coupler: SSB Adaptor for the SX200N; Digital Capacitance Meter; DTMF Signalling System; PF1 Conversion Features-RF TMOS; Zilog Z8000; HF Receiver Performance, Signal
Analysis RF Filters Analysis, echniques: ATV on the Air new series for amateurs. Reviews Sony TC-D5M (Live Performance Recorder); Datong ANF (Removes
Heterodynes); PMS PROM1 (Plug-in Heterodynes)
Programming)

\section*{NOVEMBER 1983}

Designs - Communications Building Blocks (Front Ends); Poor Man's
Spectrum Analyser: Wideband FM Stereo Tuner Module Part 2, 4 Channel Audio Mixer Part 3; Three Digit Timer. Features - Squelch Systems; Expansion Bus (First add-on - A light pen); A Guide to HF Coils Decoder. Reviews - Meteor 100, 600 1000 (All-British Frequency Counters); Personal Pear! (For text and information manipulation)

\section*{AUGUST 1983}

Projects - Analogic Probe; Data Brie -Tape Controller; Data Brief 2-RMS to-DC Converter, Synthesiser Control System III, Crystal Reference: Test Card EPROM Expansion, Continuity Tester; WB RF Amplifiers (Two basic Euro-broadcast TV Services (Station information); Zilog z8000; Polar Orbiting Satellites; Digital FAX Conversion (More on Meteosat): ATV On the Air; HF Rx II. Reviews
PDF-11M: TV Aerials; Tandy Model 100 Communications computer?); 2 m Synthesiser

\section*{DECEMBER 1983}

Designs - Poor Man's Spectrum Analyser Part 2, Communications ester Continuity Tester. Features inside the Sinclair Flat TV, An in-depth probe; A Circuit Designers Guide to Batteries; Data File on Op-Amps Part 1. Metal Detectors in Warfare, Data Synchronous Detector; Data Brief 2SL6270 Gain Controlled Audio Amplifier; An RS232C Interface for Your Dragon 32. Reviews - ALDEN Weather Chart Recorder Kit;

RADIO \& ELECTRONICS WORLD BACK ISSUE ORDER FORM

TO: Back Issues Department - Radio \& Electronics World - Sovereign House Brentwood • Essex • CM14 4SE

NAME:

ADDRESS: \(\qquad\)

PLEASE SUPPLY: (state month and year of issue/s required)
[NOTE: JANUARY 1982 ISSUE NOT AVAILABLE]
..

\section*{PAYMENT ENCLOSED:}

Cheques should be made payable to Redi CREDIT CARD PAYMENT: \(\mathbb{\square} \square\)
SIGNATURE RE0184

\section*{Self-Binder FOR Electroninics}

The "CORDEX'' Patent Self-Binding Case will keep your issues in mint condition. Copies can be inserted or removed with the greatest of ease. Royal Blue finish, gold lettering on spine

The specially constructed Binding Cords are made from Super Linen of great strength, very hard twisted and twice doubled. They are attached to strong RUSTLESS springs under tension, and the method adopted ensures PERMANENT RESILIENCE of the Cords. Any slack that may develop is immediately compensated for and the Cords will always remain taut and strong. It is impossible to overstretch the springs, as a safety check device is fitted to each.

\section*{Price in UK \(£ 3.90\)} including p\&p and VAT Overseas readers please add 30p

\section*{Available only from:}

Radio \& Electronics World Binders Sovereign House Brentwood Essex CM14 4SE

\section*{MASYMTR \\ IHTMCHRONICS NON! \\ The Pragh HoAT way!}

YOURCAREER..YOUR FUTURE.YOUR OWN BUSINESS..YOUR HOBBY THS IS THE AGE - OF ELECTRONISS! the word's fastest growth industry.
You will do the following:
- Build a modern oscilloscope
- Recognise and handle current electronic components
- Read, draw and understand
- circuit diagrams
- Carry out 40 experiments on
 basic electronic circuits used in
modern equipment using the oscilloscope
- Build and use digital electronic circuits and current solid state 'chips
- Learn how to test and service every type of electronic device used in industry and commerce today. Servicing of radio, T.V., Hi-Fi, VCR and microprocessor/computer equipment.
CACC Fiutish Netimal Badinorㅋlectomics School Readigg, Berk PGI 1BR

FBAEI COLOUR BROCHURE
Please send your brochure without any obligation to
OR TELEPHONE US 073451515
Please send your brochure without any obligation to OR TELEX 22758 (24 HR SERVICE) NAME夢ADDRESS
REW/01/84
\(\square\) COURSE IN ELECTRONICS
- as described ibove radio amateur licence
nost now ro
British NationalRadioccFlechromics School Reading,Berks,RG1 1BR

\section*{EDITORIAL ASSISTANT}

We are looking for an Editorial Assistant for Radio \& Electronics World, the communications, electronics and computers magazine.

Ideally we want an amateur radio enthusiast, educated to 'A' level standard or equivalent, and preferably with publishing experience. The successful applicant will also have a knowledge of electronics.

You will enjoy the benefits of a young go-ahead company including a good salary, flexitime, profit sharing, pension scheme and free life insurance.

Please write to Kevin Bond, Radio \& Electronics World, Sovereign House, Brentwood, Essex CM14 4SE.

\title{
T.V. SOUND TUNER \(=\)
}

In the cut-throat world of consumer electronics, one of the questions designers apparently ponder over is "Will anyone notice if we save money by chopping this out?" In the domestic TV set, one of the first casualties seems to be the sound quality. Small speakers and no tone controls are common and all this is really quite sad, as the TV compan ies do their best to transmit the highest quality sound. Given this background a compact and independent TV tuner that connects direct to your \(\mathrm{Hi}-\mathrm{Fi}\) is a must for quality reproduction. The unit is mains operated.
This TV SOUND TUNER offers full UHF coverage with 5 pre-selected tuning controls. It can also be used in conjunct-

- NOISE REDUCTION SYSTEM - AUTO STOP * TAPE COUNTER • SWITCHABLEE.Q. - INDEPENDENT LEVEL CONTROLS * TWIN V.U. METER * WOW \& FLUTTER \(0.1 \%\) RECORD/PLAYBACK I C. WITH ELEC TRONIC SWITCHING • FULLY VARIABLE RECORDING BIAS FOR ACCURATE MATCHING OF ALL TAPES. - METAL, CHOME DIOXIDE, ETC.

Kit includes tape transport mechanism, ready punched and back printed quality circuit board and all electronic parts. i.e. semiconductors, resistors capacitors, hardware top cover, printed scale and mains transformer. You only supply solder and hook-up wire. Featured in Aprit issue P.E. \(£ 31.00+£ 2.75 p+p\) Reprint 50p. Free with kit

Complete with case.

\section*{SLEEP SAFELY AT NIGHT}

SMOKE DETECTOR ALARM!

Gamma ionization type smoke detector with built -in audible alarm, Model No. F227 HOTELS \& GUEST HOUSES CARAVANS, BOATS, ETC. - MICROCHIP technology, no mechanical parts. - Maintenance free. No wiring needed. - Runs off transistor battery, lasts for a year. Money back guarante

\section*{STEREO CASSETTE DECK}

Steo cassette tape deck transpor with electronics. Manufacturer's surpius; brand new and operational oid without warranty
\(\mathbf{f 1 1 . 9 5}\) plus \(\mathbf{£ 2 . 5 0}\) p\&p. Just requires mains transformer and input/output sockets and a volume control to complete. Supplied with full connection details. £4.95 plus 75pp\&p. or 2 for \(£ 8.50\) plus £1.50 p\&\%.

£26.50
E2.00 p\&p ion with your video recorder. Dimensions: \(10 \frac{1}{2^{\prime \prime}} \times 71_{2}^{\prime \prime} \times 2 \frac{1}{2}\) E.T.I. kit version of above without chassis, case and hardware. \(£ 16.20\) plus \(£ 1.50 p \& p\)

MONO MIXER AMP
\(\begin{aligned} & \text { Ideal for Church } \\ & \text { halls \& Club houses. }\end{aligned} \quad £ 45.00+£ 2.00 \mathrm{p} \mathrm{\& p}\)
50 WATT Six individually mixed inputs for two pick ups (Cer. or mag.), two moving coil microphones and two
auxiliary for tape tuner organs, etc Eight slider control auxiliary for tape tuner, organs, etc. Etght slider controls
six for level and two for master bass and treble four six for level and two for master bass and treble, four
extra treble controls for mic. and aux. inputs. Size\(131 / 4^{\prime \prime} \times 6^{1 / 2} 2^{\prime \prime} \times 34^{\prime \prime} \mathrm{app}\). Power output 50 watts A.M.S (cont.) for use with 4 to 8 ohm speakers. Attractive black vinyl case with matching fascia and knobs. Ready to use

VHF STEREO TUNER KIT

This easy to build 3 band stereo AM/FM tuner kit is designed in conjunction with Practical Electronics (July ' 81 issue). For ease of construction and alignment it incorporates three Mullard modules and an I.C. IF. System.
FEATURES: VHF, MW, LW Bands, interstation muting and AFC on VHF. Tuning meter. Two back printed PCB's, Read made chassis and scale. Aerial: AM - ferrite rod, FM - 75 or 300 ohms. Stabalised power supply with 'C' core mains tran former. All compone diagram and instructions. \(2 / 2\) approx. Complete wit

HI-FI SPEAKER BARGAINS
AUDAX 8" SPEAKER High quality 40 watts RMS Bass/Mid

All mail to: 21 HIGH ST, ACTON W3 6NG. allers welcome from 9.30-5.30. Half day Wednesday Note: Goods despatched to U.K. postal addresses only. All items subject to availability. Prices correct at 30/11/83 and subject to change without notice. Please allow 14 working days from receipt of order for despatch. RTVC Limited reserve the right to up-

DX-TV occurred on all bands during September, much to the chagrin of the domestic viewer but much to the delight of the long-distance television enthusiast. Sporadic-E activity continued at a low level throughout the month, although several interesting openings were evident on a number of days, albeit minor ones. The period of the 23rd to the 29th produced spectacular tropospheric DX on all bands: in the South of England, Band III signals were arriving from as far away as the Austrian/Hungarian border.
Here in the Midlands, Sporadic-E occurred on the 5th, 12th, 13th, 14th and 15th. The star performer was the elusive Finnish station on E4 (Vuokatti). This appeared using an FuBK test card and it was the first sighting this year. A lunchtime opening from the south on the 15th gave reception of Spanish transmissions on channels E2, E3 and E4, while on E3, both the 'TVE ARAGON' colour bar pattern and 'TVE VALENCIA' caption were present before regional programmes commenced. At 2010 BST on the same day, an unusual signal appeared on E4 via Meteor Shower (MS): this was the Philips PM5544 pattern. We can only conclude that this was RUV-Iceland since they open late. Band III MS was present on the 18th, as evidenced by several 'pings' on channel E5/R6 during the early evening-all on programmes, of course!
Tropospheric DX towards the end of the month was excellent with signals overriding the local Sutton Coldfield channel at times. The Belgian Liège transmitter on E3 was seen here in colour for three nights; usually it is only just above the noise.

\section*{Reception reports}

The 1983 Sporadic-E season was a fairly good one: at least, that was the verdict of Roger Bunney (Romsey,

Photo 1 Belgian PM5544 test card from the Wavre transmitter on channel E28

Hampshire). Televiziunea Romana (TVRRumania) was seen many times on channel R2, but there were no Arabic signals other than a suspected Lebanese E2 programme which had a Frenchspeaking news announcer. His best trop signal towards the end of September was Österreichischer Rundfunk (ORFAustria) on E9 from the Mugel transmitter near Graz, a distance of approximately 830 miles.
Cyril Willis (Little Downham, Cambridgeshire) has forwarded details of suspected African reception which occurred on 27th August at 2015 BST. The channel was E3 and programme content consisted of an African wearing a fez and robes. Other dark-skinned people were present and the reception continued for some 15 minutes before a white circular caption appeared. Prior to this there was a smeary signal on E2 which Cyril thought came from either Zimbabwe or Ghana. In view of the difficulties posed in identifying such reception, does anyone have any information regarding test cards, captions or programme schedules from African TV services? Please forward any info via the Editor at R\&EW.
William Pitte (Northern France) receives the UK most of the time on his Otake Export colour portable. During a tropospheric opening earlier this year he received Radio Telefis Eireann (RTEEire) - see Photo 4.
From his Welsh DX location at New Radnor, Simon Hamer saw programmes from a number of UK transmitters during the latter half of September. He identified Dover, Hannington, Midhurst, Crystal Palace, Guildford (relay station), Sandy Heath, Sudbury, Tacolneston, Bilsdale and Waltham. Reception on channel 32 is now marred due to Ridge Hill beaming Channel 4. Continental transmitters identified included RTBF-1 (Belgium, a French-speaking service) on

Photo 2 Unique monoscopic test card radiated in New Zealand. Photograph courtesy of the New Zeland Broadcasting Corporation (NZBC)

E8 (Wavre) with the 'jt' news and sports programme during the evening of the 27th and also BRT-1 (the Belgian Flemish service) on E10 from Wavre with Nieuws and Lotto at 1930 BST. Later in the evening, France Regions-3 was seen on E53 from the outlet at Vannes, together with NOS-1 (Netherlands) from Lopik.

\section*{Featured fortunes}

We thought that we would feature Clive Athowe's reception log for September this time to show just what can be received during a normally 'quiet' month. All signals were via Sporadic-E (SpE) propagation apart from those via trops between the 23rd and the 29th.

2/9/83: RAI-1 (Italy) on channels IA and IB with programmes; TVR (Rumania) on R2 with the EBU test pattern showing the 'TVR BUCURESTI' identification; RTS (Albania) on IC with children's programmes; JRT (Yugoslavia) on E3, E4 with programmes.
6/9/83: TSS (Russia) on R1 and R2 with BPEMR news/current affairs programme.
7/9/83: TVE (Spain) on E3 showing colour test pattern with the 'AITANA 3' identification.
8/9/83: ZTV (Zimbabwe) on E2 at 1803 BST from the Gwelo transmitter with programmes via \(\mathrm{F} 2 / \mathrm{SpE}\) propagation; RAI-1 on IA with programmes.
9/9/83: TSS on R1, R2 with 'UT 0167' colour test card; MTV-1 (Hungary) on R1 and R2 with 'MTV-1 BUDAPEST' PM5544 test card; CST-1 (Czechoslovakia) on R1, R2 radiating their distinctive EZO test card with the 'RS-KH' identification.
10/9/83: TSS on R1 with programmes.
11/9/83: TSS on R1, R2 with programmes; TSS EESTI-TV (Estonia) on R1 with programmes; TVP (Poland) on R1 with programmes.
12/9/83: TVE-1 on E2, E3 and E4 with cartoons; JRT on E3 with programmes. 13/9/83: SR-1 (Sweden) on E2 showing schools programmes; YLE-1 (Finland) on E3 using the FuBK test card with the identification 'YLE-TV 1'
23/9/83: RTL (Luxembourg) on E7 radiating the PM5534 test card (with a digital clock insert); RTL on E21 with programmes; SRG-1 (Switzerland) on E12 from the Niederhorn transmitter with programmes in the German language; TSI-1 (Switzerland) on E30 with programmes in Italian from the Niederhorn; TSI-1 and SRG-1 also on channels E34 and E31 from

Photo 3 Test card used by one of the italian private stations - Telenova. The service operates on channels E21 and E59

La Dôle; DDR:F1 (East Germany) on E5 E6 and E12 (Inselsberg, Brocken and Sonneberg, respectively); DDR:F2 on E31 (Inselsberg), E33 (Sonneberg) and E34 (Brocken); BR-1 (Bayerischer Rundfunk. West Germany) on E2 and E3 showing Tagesschau news programme. 25/9/83: RTL on E21 radiating the 'ECOUTEZ RTL' FuBK test card (System L, SECAM colour), as well as the RTL FuBK on channel E27. However, the latter used System B/G PAL (see R\&EW, August 1983 p20 for details of these transmission systems). Many West German trops were also seen on Band III and UHF. Similar Swiss and East German trops were noted to the 23rd, with the additions of SRG-1 on E6 from the Rigi transmitter, SRG-1 on E7 (from Saentis), SSR-1 on E32 (a French-language network from Rigi) and TSI-1 on E29 (the Italian-language network from Rigi). SSR-1 on E31 and TSI-1 on E34 were also received, both from Saentis. DDR:F2 on E33 was noted from the Sonneberg outlet.
26/9/83 to 28/9/83: Mostly West German trops (ARD and ZDF) at good strength.
29/9/83: SRG-1 on E31, TSI-1 on E34 and SSR-1 on E4 with the FUBK test card and ‘+PTT' identification, all from the La Dôle transmitter near the French border. The E4 signal is rare via trops. RTE-1 (Eire) channel D (from the Mullaghanish outlet) with the 'RTE 1' PM5544 test card; also on channel F from Mt Leinster and on E40 from Cairn Hill. The second network was seen on channel I from Mt Leinster and on E45 from Cairn Hill.
30/9/83: TSS on R1 with programmes via Sporadic-E

\section*{DX miscellany}

Roger Phillips of London points out that the multitude of Italian private/free radio and television services we drew attention to in the October issue are not in fact illegal. Many of the smaller stations have joined forces to form networks throughout the country. These include Euro-TV and Rete Quatro, Roger hasn't the equipment to receive DX-TV but he received Italy and a Scandinavian country via Sporadic-E on the FM radio band last summer.
D Elliott of Sheffield has taken a fancy to the DX-TV converter featured in the August 1983 edition of R\&EW, but lack of constructional experience has meant that it's a 'no go' situation. It transpires that he owns a Sanyo 9300 VCR which has tuners for Bands I and III fitted. The machine can be used as a wideband DX converter when functioning in the E-to-E mode (using the VCR tuner and viewing at UHF on the receiver). The bandswitch selectors consist of a rotatable plastic collar surrounding each tuning preset. Now all that's required to DX successfully are a few aerials and favourable conditions!
Andrew Webster (Billinge, nearWigan) tells us that the teletext decoder which he has recently fitted to his Grundig colour receiver is a boon to DX-TV. During the lift in tropospheric conditions he found that signals could easily be identified by simply dialling the text. Even though weak signals displayed

Photo 4 Reception of Radio Telefis Eireann (RTE-Eire) noted in France by R\&EW reader, William Pitte

Photo 5 Closedown caption with digital clock used by Westdeutsches Fernsehen (WDR) in West Germany

garbled information, the service identification at the top of the page was always clearly received.

Clive Athowe (Blofield, Norfolk) intends to erect a Western Electronics tilt-over tower. This will be 58ft high, plus an extra 10ft for aerials. He plans to use stacked Fuba XC391c arrays for UHF DX. Dutch TV is present all the time in East Anglia and this can be a nuisance when trying to receive a more distant station on the same channel.

\section*{Service information}

Australia: Multi-cultural television started last October on channel 0 (46.25 MHz) and on channel 28 (UHF) from outlets in Sydney and Melbourne. The service will be extended to Canberra, Cooma and Goulburn on UHF-only in the near future. It is proposed to close down several channel 0 (VHF) transmitters by January 1985.
Lebanon: A new organisation has taken over responsibility for television broadcasting in this war-torn country. Télé Liban (TL) operates three services: TL1, TL2 and TL3 with programmes in Arabic for the first two networks while the third
is in French. Transmission system B is used for VHF channels E2-E12, while system G is used for UHF. SECAM colour is used for both systems.

There is a 1 kW transmitter at Beit Mery on channel E2 (transmitting Frenchlanguage programmes) and a 60 kW outlet on E4 located at Maasser El Chouf radiating programmes in Arabic.
Luxembourg: Radio-Télé-Luxembourg (RTL) are radiating the PM5534 test card (which includes a digital clock insert) from the channel E7 transmitter at Dudelange with the identification 'RTL + '. System B is used with PAL colour here, along with a German-language sound channel. This usually reverts to System C (positive video, AM sound) with PAL colour during normal programme hours.
Rumania: A new electronically generated test card is reported to be in use carrying the identification 'TELEVIZIUNEA ROMANA'at the top. We hope to have further details shortly.
Syria: According to the European Broadcasting Union's 'List of Television Stations,' there is a new 400 kW transmitter in service on channel E3 at Aboukamal radiating programmes in SECAM colour from Syrian Broadcasting and Television (SRT). Given favourable Sporadic-E conditions, reception of Syria should be feasible. The same source also mentions that the E3 outlet at Nabi-Saleh has increased its ERP from 180 kW to 400 kW . Trinidad: The Trinidad \& Tobago Television Company (TTT) radiates standard colour bars with a digital clock insert in the lower right-hand corner rather than a test card during test transmissions.
The above information was kindly supplied by Robert Copeman (Victoria, Australia), Earl Drayton (Trinidad), Kevin Jackson (Leeds), Goesta van der Linden (The Netherlands), Alexander Wiese (West Germany) and the EBU (Belgium).

\title{
A GREAT MAGAZINE FOR COMMUNICATIONS, ELECTRONICS \& COMPUTERS
}

\section*{ALSO}

Product reviews . . . Communications \& electronics news ... Reception reports - shortwave, DX, ATV . . . Construction projects - what to build for your rig, your computer \& your enjoyment . . . New technology Educational articles ...Coming events . . . Readers letters . . . Technical \& practical questions answered. With special supplements in the December, January \& February issues - The Radio \& Electronics World Amateurs Handbook - A comprehensive collection of data for everyone using the airwaves.

\section*{SUBSCRIBER BENEFITS}

Take out a POST FREE (UK) Sub while offer lasts
- Delivery to your door by publication date each month
- Inflation proof - price guaranteed for 12 months

\section*{On sale NOW at your newsagent and at equipment dealers} RADIO \& ELECTRONICS WORLD SUBSCRIPTION ORDER FORM

To: Subscription Department - Radio \& Electronics World - 513 London Road - Thornton Heath • Surrey • CR4 6AR. Tel: 01-684 3157
\(\qquad\)
ADDRESS
\(\qquad\)
\(\qquad\)
\(\qquad\)

PLEASE SUPPLY: (tick box) for 12 issues, all rates include \(P\) \& \(P\)

Cheques should be made payable to Radio \& Electronics World. Overseas predit card.

\section*{CREDIT CARD PAYMENT}

PREVIOUSLY ADVERTISED STILL AVAILABLE

Bench isolating transformer 250 watt
BOAC in-flight stereo unit
Drill assortment 4 each 25 sizes between \(.25 \mathrm{~mm} \& 2.5 \mathrm{~mm}\) Battery condition test
Nicad chargers, mains
Fourescent inventor 13 watt from \(12 w\)
Cassette mechanism with heads
en digit stitch pad-pb phone e
Water valve mains operated
Counter 6 digit mans operated
ditto 12 v resettable
Doubie glazing clear PVC sheet,
Magnetic Clutch
Mouth operated suck or blow swit
Solenoid with slug \(8 \cdot 12 v\) battery op
ditto 2300 mains
Timer Omron STP NH iliov AC Coil
Air valve mains operated
Latching relay mains operated
Dry film lubricant aerosol can

8 POWERFUL :AODEL MOTORS (all different) for robots, meccanos, drills remate con
etc. \(£ 2.95\)

Complete kin of parts for a three channel sound to light unit controlling over 2000 watts of lighting. Use this at home if you wish but it is plenty rugged enough for disco work. The unit is
housed in an attractive two tone metal case and has controls for each channel. and a master on/off. The audio input and output are by \(1 / 4\) sockets and three panel mounting fuse holders provide thyristor protection, A four pin plug and socker facilitate ease o
connecting lamps. Special price is \(£ 14.95\) in kit form or \(£ 25.00\) assembled and tested.

12 volt MOTOR BY SMITHS Made for use in cars, etc. these
wound and the become more
powerful as load increases. Size powerful as load increases. Size
\(3 \%\) long by \(3^{\prime \prime}\) dia. They have a good length of \(\%\) " spindle Price \(£ 3.45\).

Ditto, but double ended \(£ 4.25\).
Ditro, but permanent magnet \(£ 3.75\).
EXTRA POWERFUL \(12 v\) MOTOR Probably develops up to \(1 / \mathrm{h} . \mathrm{p}\). so it could be used to power

THERMOSTAT ASSORTMENT
10 different thermostats. 7 bi-metai types and 3 liquid types. There are the current stats which will open the switch to protec
devices against overload, short circuits, etc., or when fitted say in front of the element of a blow heater, the heat would trip the stat if the blower fuses; appliance stats, one for high temp-
eratures, others adjustable over a range of temperarures which eratures, others adjustable over a range of temperatures which
could include \(0-100^{\circ} \mathrm{C}\). There is also a thermostatic pod which can be immersed, an oven stat, a calibrated boiler stat, finally on ice stat which, fitted to our waterproof heater element, up in the loft could protect your pipes from freezing. Separately, these
thermostats could cost around \(£ 15.00\) - however you can haver thermostats could cos
the parcel for \(£ 2.50\).

- BARGAIN OF THE YEAR -

The AMSTRAD Stereo Tuner.
This ready assembled unit is the ideal tuner for a music centre or an amplifier, it can also be quickly made inio a
personal stereo radio - easy to carry about and which will give you superb reception.
Other uses are as a "get you to sleep radio", you could even take it with you to use in the lounge when the rest of the family want to view programmes in which vou are not
interested. You can listen to some music instead. Some of the features are: long wave band \(115-270 \mathrm{KHz}\),
medium wave tand \(525-1650 \mathrm{KHz} \mathrm{FM}\) band \(87-\) medium wave band \(525-1650 \mathrm{KHz}\), FM band 87--
108 MHz , mono, stereo \& AFC switchable, tuning me to give you spot on stereo tuning, optional LED wave band to give you spot on steree tuning, optional LeD wave band
indicator, fully assembed and fully aligned. Full wiring up date showing you how to connect to amplifier or head phones and details of suitable FM aerial note ferrite rod
aerial is included for medium and tong wave bends. All serial is included
made up on very compact board.
\(\qquad\) only \(£ 6.00\)

\section*{THIS MONTH'S SNIP}

MAINS FILTEA - Don ter mains interference
up your progaram or game - up to 3 amp load
Mains fiter ryee FEC. SNP PRICE ONLY \(£ 3.99\).
REVERSIBLE MOTOR WITH CONTROL GEAR Mare by the famous framco Company this is a very robust motor
size approximately \(7 / 2^{\prime \prime}\) Iong, \(3 / 2\) dia. \(3 / 8\) " shate Tremendcusly powerful motor, almost impossible to stop. Ideal for operating stage curtains, sliding doors, venttlators etc, even garage doors i
adequately counter-balanced. We offer the motor complete with control gear as follows.
\(\begin{array}{ll}1 \text { Framco motor with gear box } & 1 \text { push to start switch } \\ 1 \text { manual reversing } \& \text { on offf switch } & 1 \text { Imit stop switches }\end{array}\) £19.50 plus postage \(£ 2.50 \quad 1\) circuit diag. of connections

FOR SOMEONE SPECIAL
Why not make your greeting card play a tune? It could play Happy Birthday' 'Merry Christmas'. 'Wedding March'. etc, making cards musical. Mini microchip speaker and battery switch that operates as the card is opened. Piease state tune when
ordering. Complete, ready to work \(£ 1.25\). REEL TO REEL TAPE DECKS
Ex-Language Texching Schoot. Second, but we understand these are in good order; any not so would be exchanged. The deck is a
standard BSR with normal record, replay facilities and an additional feature is tape rev counter. Nicely finished in teak type bo TELEPHONE ITEMS

\section*{Plug and Wall socket - 4 pin or 5 pin \\ Plugs only 4 pin or 5 pin}

Modern desk teephone
Reavy black old type
External bell unit
Belt ringing
Pick up coil
\(£ 7.50\)
\(£ 5.50\)
\(£ 6.50\)
\(£ 4.50\)
\(£ 1.15\)
STABILISED POWER SUPPLY (Mains Input) By LAMDA USA - Ideal for computer add-ons, d.c output. negulated input variations up to \(20 \%\)-load regulation \(1 \%\) from no
with in case-Models available 5 v - \(6 \mathrm{~A} £ 17.25\). 5 v . \(9 \mathrm{~A} £ 23\). 12 v - 15 A . case
£13.25. 15 v v 12 A f 13.25 . \(24 \mathrm{v} \cdot 2 \mathrm{~A} \mathrm{£} 23\) PRESTEL UNIT \begin{tabular}{l}
PRUg in C 's \\
\(+£ 2.00\) p\& \\
\hline
\end{tabular} Note: British
Nom may not com may not connect this equip
ment as there is no manufacturer to
quarantee is, how
 it is well worth buying
for its immense brying

WATERPROOF HEATING WIRE 100 ohms per yard, this is a heating
eternent wound on a fibre glass coll and then covered with avc. Dozens of uses -
ther around water pipes, under grow boxes, in
gloves and socks. Price: 23p per metre. TIME SWITCH BARGAIN Large clear mains trequency controlled clock,
which will aivays show you the correct time + start and stop switches with dials. Com
plete with knobs FOR ONLY \(£ 2.50\). 10 for \(£ 11.50\) !
ROPE LIGHT
6 metres of translucent plastic fube full of coloured bulbs make
a wonderful display - suitable indoors or out. \(£ 25+£ 2\) post.

\section*{50 THINGS YOU CAN MAKE}

\section*{Things you can make inelude Multi range meter, Low
ohms tester, A.C. amps meter, Alarm clock, Soldering ohms tester, A.C. amps meter, Alarm clock, Soldering
iron minder. Two way telephone, Memory jogger, Live} iron minder. Two way telephone, Memory jogger, Live
line tester. Continuity checker, etc. etc.. and you will still have hundreds of parts for future projects. Our 10 Kg parcel contains not less than 1,000 items. - panel meters, timers, thermal trips, relays, switches, motors, drills, taps,
and dies, toois, thermostats, coils, condensers, resistors. and dies, tools, thermostats, coils, condensers, resistors,
neons, earphone/microphones, nicad charger, power unit, multi-iurn pots and notes on the 50 projects. YOURS FOR ONLY \(£ 11.50\) plus \(£ 3.00\) post.
MINI-MULTI TESTER Deluxe pocket size precision mov ing coil instrument, Jewelled bearings - 2000 o.p.v. mir rored sc
11 instant range measures:
DC volts \(10,50,250,1000\).
AC voits 10, 50, 250, 1000.

Continuity and resistance 0.1 meg onms
in two ranges. Complete in two ranges. Complete with rest prods
and instruction book showing how to measure capacity and inductance as well
Unbelievabie value at only \(£ 6.75+60\) p Unbelievable value at only \(£ 6.75+60\) p
post and insurance. FREE Amps range kit to enable
you to read DC current from 0 you to read
10 diectly on the 0.10 scale. It's free if you purchase
quickly, but if you already own
Mini-Tester and would like one. Mini- Tester
send \(£ 2.50\)

\section*{J. BULL (Electrical) Ltd. (Dept RE), 34 - 36 AMERICA LANE,
HAYWARDS HEATH, SUSSEX RH 16 3QU. 30 YEARS}

MAIL ORDER TERMS: Cash, P.O. or cheque with order. Orders under \(£ 12\) add \(60 p\) service charge. Monthly account orders accepted from
schools and public companies. Access \(\& B /\) eard orders accepted day or night. Hapwards Heath 10444) 454563 . Bulk orders: phone for quote

EXTRACTOR FANS - MAINS OPERATED

 air outlet dual speed

TANGENTIAL BLOW HEATER
used in best blow heaters.
2 Kw approx \(9^{\prime \prime}\) wide \(£ 5.9\)
2 Kw approx \(9^{\prime \prime}\) wide \(£ 5.95\)
3 Kw elther \(9^{\prime \prime}\) or \(12^{\prime \prime}\) wide your choice) \(£ 6.95\) com.
plete with cold" half' and full' heat switch, safery

cut out and connection di
2.5 Kw KIT Still available: \(£ 4.95+£ 1.50\) post. DISCO PANEL
Make your party or disco more thrilling - add to your recor player or amp. a multi-coloured, sound-enhanced lighting display
Made for Amstrad, their ret. No. RP10. Mains operated stereo or mono controlled - has 48 coloured lamps (olus 4 spares) and light level controls. Brand new and unused - offered at a never
to be repeated price of \(£ 5.75\) plus \(£ 2.00\) post.
BLEEP TONE These
CONNECTING WIRE PACK 48 length of connecting wire, each 1 metre long and differetly colour coded, a must for those difficult interconnecting lobs. 85 p the lot.
RED LEDS 10 for 69 p. 100 for \(£ 5.75 .1000\) for \(£ 52\)
IN LINE SIMMERSTAT ideal heat controller for soldermg

\section*{IONISER KIT}

Renth your home, ofrice, shoo, work room, eic. With negative ION generator. Makes you feet better and work £ 11.95 plus \(£ 2.00\) post

\section*{OTHER POPULAR PROJECTS}

\section*{Short Wave Set - covers all
plug-in coiis. Kıt complete \\ }
 Clannel Sound 0 Light Ditto - made up
Robot controller - receiver/transmitter
Ignition kit - helps starting, saves petrol, improves
Ignition kit - helps starting, saves petrol, improves
Car Light 'left on' alarm
Secret switch - fools friends and enemies atike
- 30r Variable Power Supply

2 Short \& Medium wave Crystal Radio
\(3 v\) to 16 v Mains Power Supply Kit
-ight Chaser - three modes
Radio stethoscope - fault finding aid
Mug stop - emits piereing squark
Morse Trainer - complete with key
Drill control kit
Drill control kit - made up
interrupted beam kiI
Transmitter surveillance kit
Radio Mike
Seat Belt reminder
Car Starter Charger Kit
Soil heater for plants and seeds
insulation Tester - electronic megger
Battery shaver or fluorescent from \(12 v\)
Matchbox Radio - receives Medium Wav
Mixer Pre-amp - disco special with
Aerial Rotator - mains operated
Aerial direction indicator
40 watt amp - hifi \(20 \mathrm{hz}-20 \mathrm{kHz}\)
Microvalt multipher - measure very
Pure Sine Wave Gener
inear Power ourout met
15 Watt Amplifier 5 Hz 25 kHz
Power supoly for one or two 115 watt amo
Stereo Bass Booster, most items
. 50
E14.95
E25.00
\(£ 25.00\)

\(\boxed{9} .50\) \(£ 9.50\)
£ 13.95 \(£ 9.50\)
\(£ 3.50\) £1.95 £ 13.80 £3.99 £ 17.50
\(£ 17.50\) f 16.75 \(£ 4.80\)
\(£ 2.50\) \(£ 2.50\)
\(£ 2.99\) € \(£ .95\) £6.95 \(£ 2.50\)
\(£ 2.30\) \(£ 2.30\)
\(£ 6.90\) \(£ 6.90\)
\(£ 3.50\) £3.00 E15.50
E16.50 \(\begin{array}{r}\text { £ } 16.95 \\ \hline\end{array}\) E2.95 \(£ 16.00\)
\(£ 29.50\) \(£ 29.50\)
\(£ 5.50\) E9.50 £3.95 E5.75
£11.50 E11.50
£13.50 £13.50
E17.50

\title{
‘NOTES FROM THE PAST \({ }^{\text {² }}\)
}

\section*{Stereo and the cost of components were two of the topics of concern for Centre Tap twenty-five years ago.}

This column's interest in stereophonic sound brings to light an anecdote told by W E Thompson (G3MQT).
At the time of the slump in the early 'thirties he was 'axed' under an economy drive from the technical development section of Standard Telephones and Cables, so he went to help out his mother who had recently acquired a business near Southend. The shop carried a fair stock of gramophone records and a few quite-good-for-their-period cabinet gramophones.
Surrounded by such a galaxy of material, it wasn't long before Bill hit on the idea of playing two discs of the same recording simultaneously in an endeavour to obtain a stereophonic effect. His experiments along these lines were as a matter of personal interest rather than with any idea of exploiting it commercially. Naturally he had fun and games keeping the clockwork motors in step and getting the discs to start off exactly together. Even when he acquired the knack, it required so much attention to operate that little or no time was left for listening to the resultant distribution of sound. Improving on the idea, he swapped the mica-diaphragmed soundboxes for electric pick-ups. Incidentally, the early pick-ups were often heavier than the sound-boxes they were intended to replace. Generally they were used in conjunction with the old-fashioned tone arm. Combined, they acted on the record surface rather like a miniature drill, penetrating deep in the grooves. The facetious types used to swear they threw their records away because after a few playings they alleged the loud passages from the other side would start breaking through! Nevertheless, record wear had to be sacrificed to the slightly wider frequency range and the possibility of having effective forms of tone and volume control.
Bill, of course, being progressive, soon added pick-ups and separate amplifiers using LS6A triodes plus mains-energised speakers mounted on 3 ft square baffles. In the early 'thirties anything less than nine square feet of baffle was distinctly non-U. To simplify synchronisation he mounted two turntables and pick-ups, one mounted above the other; the turntables were coupled by means of a keyway on the spindle to keep them in step, and one of the pickups was adjustable through a small arc. It was then only necessary to locate the
records so that the run-in grooves came in roughly the same place. Adjustment of the upper pick-up arm forwards or backwards enabled perfect synchronisation or stereophonic reproduction to be obtained at a touch.
Bill used this scheme for a long time and it created a great deal of customer interest. When the discs were timed to be slightly out of step, the variation in the stereophonic effect was most marked: the source of sound could appear to shift from one speaker to the other, or it could be made to sound as if coming from the space between the two. This scheme was, of course, a complete basis for the latest innovation in stereo-gramophone reproduction except that Bill was using two discs instead of a dual recording on one - nearly thirty years before its commercialisation.
Perhaps the ironic part of this little story is that he wrote up a description of it and sent it to one of the radio magazines of the period. They did not even reply, Iet alone publish it! This was by no means a unique experience with certain periodicals of that era, due possibly to a form of prejudice by 'professionals' disdaining the work of mere amateurs. Or, maybe, the idea of anybody wanting to wear out their records two at a time, even for the sake of stereo, was too much for some unimaginative editorial assistant.

\section*{More of yore}

This month (September 1958) several letters have touched on an aspect previously overlooked - the early craze for miniature receivers. This, of course, is one of the delights denied the modern enthusiast. What with transistors and miniaturised components, tiny sets are comparatively easy to design nowadays and unless one manages to compress it to the size of a wrist-watch no-one is very greatly impressed. In the old days, to design a working set of really diminutive dimensions demanded considerable ingenuity on the part of the constructor. The first real midget I saw was fitted into a teacup, over which many hours of patient and loving care had been spent. Then came the matchbox receivers. This size somehow grew to be the accepted standard. All real enthusiasts used actual matchboxes. They were not content to simply keep it to matchbox size.

The other predominant subjects this month were (a) the more favourable
position of Old Timers in regard to component prices, and (b) their less favourable position in the same respect. At first this seems flatly contradictory, but I suppose a lot depends on just what period is under review.

Is the newcomer really proportionally better off in this respect or not?
Personally, I should say that in the early days one could do quite a lot for a small expenditure. Then came the 1922-1930 period. One simply had to buy valves, etc and they were mighty dear. This period in my opinion made by far the heaviest demands on the constructor's pocket, yet strangely enough homeconstruction proceeded on an enormous scale. Practically every household had a set built by one of its members, a friend or a neighbour. Sets were straightforward to make and were supplied in kit form so simplified that anyone who could read and use a pair of pliers became a 'constructor'. They were expensive (judged by comparative modern costs) but the real enthusiast could make most of his own parts cheaply.
In the thirties, mass production of domestic receivers began to get into its stride and vast quantities of manufacturers' 'surplus' found its way on to the market. This was often sold at knockdown prices. It was too much for the handyman type to design his own set and hence, with a diminishing number of buyers for a swelling quantity of manu-facturers-type over-produced components, prices fell sharply and enthusiasts bought shrewdly. These were happy days for the amateur with a lean purse
In more recent years prices have hardened again, but there are still plenty of bargains to be had - if you study the advertisement pages carefully. Modern conditions demand a much more complicated type of set and many new components and the later types of valves and transistors are expensive. I should say the latest newcomers aren't having quite such a good time of it as some groups of the older hands did when they built up the basis of their stock.
In radio, as with most other hobbies, if you want the latest and best of everything you can soon run through a threefigure bank balance. But you can still get lots of fun for the outlay of only a few shillings, and generally speaking this was true whatever period you entered the brotherhood of radio hobbyists.

\title{
SHORT WAVE NEWS FOR DX LISTENERS
}

\section*{by Frank A Baldwin}

All times in GMT, bold figures indicate the frequency in kHz

Indonesia is the target for many DXers at this time of year, the season giving the best chance of reception here in the UK being from around late September until late March because then the signal path via the short route is mostly in darkness. 1 therefore propose to discuss some of the relatively easy-to-receive stations in Indonesia which operate on the 60 -metre band.
Toset the scene, Indonesia is a republic in South East Asia that comprises many small islands straddling the Equator-some 3,000 in fact and all in the Malay Archipelago. The capital is Djakarta in North West Java. The population of the whole country is mainly Malayan and Papuan, with the Chinese forming the largest minority group: the main religion is Islam.
Many of the Indonesian transmitters on the 60-metre band open at 2200 and have a final closing time of 1600 . It is just prior to these times that one should tune to the channels mentioned in this article. Listen for the openings from around 2155 onward until fade-out (which is often around the 0030 mark) and from 1530 - or earlier if conditions prove satisfactory -until sign-off time. The latter is usually preceded by some quotations from the Holy Koran, announcements in Indonesian and then a most charming melody, entitled 'Love Ambon', rendered on a Hawaiian guitar.
Among the most often reported stations are the following:
- RRI (Radio Republik Indonesia) Ujung Pandang on 4753 which opens at 2130 and closes at 1520 (the full schedule is 2130 to 0030 and from 1150 to 1520), the power being 20kW. Ujung Pandang is situated in Celebes (Sulawesi to the locals)-or, more precisely, in Propinsi Sulawesi Selatan, literally Province Celebes South.
- RRI Medan on 4764, which has a 50 kW transmitter and opens at 2300 , finally closing at 1700 . This one is located in Sumatra (Sumatera) in
Propinsi Sumatera Utara, the translation for that being Province Sumatra North. Local time is GMT + 7 hours. - RRI Ambon, which may be heard on 4845 where it opens at 2000 and finally closes at 1400. Ambon is in the Moluccas (Maluku) and the local time is GMT + 9 hours. The difficulty with logging this 10 kW transmitter is that the channel is also occupied by another South East Asian station in the form of Radio Malaysia, Kuala Lumpur. The latter station has a 50 kW signal and presents programmes for the local Indian community from 2130 to 0130 and from 0545 to 1530 (Saturday from 2200 to 0330). To hear Ambon, therefore, one has to tune to \(\mathbf{4 8 4 5}\) prior to Kuala Lumpur opening at 2130 - and trust that the 100 kW African at Nouakchott in Mauritania is well down in signal strength. Local time is GMT + 9 hours.
- RRI Palembang on 4856, at which point on the dial it opens at 2200 and finally closes at 1600 . Most Indonesian stations have two separate periods of operation, hence the use of the word 'finally'. Palembang, for instance, opens at 2200 and closes at 0115 (Sunday at 0700), only to open again at 0900 and finally close at 1600. With a 10 kW transmitter,
Palembang is sited in South Sumatra. Local time is GMT + 7 hours.
- RRI Sorong in Irian Jaya (Irian West). This has a 10 kW signal and is often heard by UK DXers. This one opens at 2100 and finally closes at 1400. Listen on 4875 and you may well be rewarded. Local time is GMT + 9 hours.
- RRI Surakarta in Java (Jawa) in Propinsi Jawa Tengah (ProvinceJava Central). This uses a 10 kW transmitter and operates on 4899 where it can be heard
opening at 2230 and finally closing at 1600 . The local time is GMT + 7 hours.
- The (often reported) RRI station on 4955 located in Banda Aceh, the capital of Daerah Istimewa Aceh (District Special Aceh) in Java. RRI Banda Aceh opens at 2300 and finally closes at 1600 . The power is 10 kW and the local time is GMT + 7 hours.
- RRI Yogyakarta on 5046, opening at 2300 and closing at 1700. The power is 20 kW and the location is Java. A tune to this channel at 1630 will bring the desired result provided conditions are reasonable for signals from this general area.
A rarely reported Indonesian on the 60-metre band is RRI Fakfak in West Irian from where it operates on 4789 with a 1 kW
transmitter. It opens at 2030 and finally closes at 1400 . This one is classed in my book as super-DX.
Another one that can be logged is RRI Bukittinggi in Propinsi Sumatera Barat (Province Sumatra West) on 4910. It opens at 2300 and finally closes at 1600, the power being 1 kW . Can be logged? Yes, several UK DXers have logged this one, including myself-however, 1 have yet to succeed with RRI Fakfak on 4789. Perhaps you may!

\section*{AROUND THE DIAL}

In which are presented the frequencies, the times and some of the programme content of stations that may interestyou.

\section*{AFRICA}

\section*{Malagasey}
'Radio Madagasikara' Tananarive on a measured 3286.4 at 1813: OM with some announcements in Malagasey, then YL with a folk song complete with localstyle percussion backing. This is the Home Service in

Malagasey, scheduled from 0300 to 0500 and from 1500 to 1900. From 1900 to 2100 , the language used is French. The power is 100 kW .

\section*{Mozambique}

Maputo on 3265 at 1750: interval signal rendered on a local xylophone-type of instrument-a Mbira-and repeated many times until 1755 when the station identification was given in Portuguese, English, French and some vernacular language. News of African affairs followed in the English Foreign Service transmission to South Africa, scheduled on this channel from 1800 to 1830. The power is 25 kW .

\section*{Rwanda}

Kigali relay of "Deutsche Welle-the Voice of Germany' in Cologne on 21600 at 2025: OM with news comment in the German programme for Africa and Europe, timed from 2000 to 2200.

\section*{Senegal}

Dakar on 4895 at 0100: OM with announcements in French, the National Anthem and off at 0103. The schedule is from 0600 to 0900,1155 to 1600 and from 1715 to 0100.

\section*{Togo}

Togblekope on 5047 at 1827: OM's with a discussion in the vernacular. This one operates in French and vernaculars, and is scheduled on the air from 0530 to 0800 and from 1700 to 2400. The power is 100 kW .

\section*{THE AMERICAS}

\section*{Brazil}

Radio Nacional, Cruzeiro do Sul on 4765 at 0353: OM with announcements in Portuguese, YL with a local popsong. Station identification at 0400 , the
signal riding over the Havana relay of R Moscow-surprise, surprise! The schedule of R Nacional is from 1000 to 0500 and the power is 10 kW .

Radio Brasil Central,
Goiania on 4985 at 0146, OM with a futebol (football) commentary in Portuguese, this programme also being
heard on 5015 from Radio
Cultura in Cuiaba, Brazil.

\section*{Colombia}

Radio Bucaramanga on 4845 at 0052: OM with a love song in Spanish called 'Hacer elamor'(to make love). Poor fellow, he was suffering! Timed from 1000 to 0400, the power is 1 kW .

La Voz del Cinaruco, Arauca on 4865 at 0055: OM with a talk in Spanish all about Colombian affairs and commerce with an item about marca registrada (trade names). The schedule is from 0900 to 0400 but sometimes around-the-clock. The power is 1 kW .

\section*{Ecuador}

Emisora Gran Colombia, Quito on 4911 at 0107: OM announcing local pops on records. This one is on the air from 1100 to 0600 but sometimes around-the-clock with a power of 10 kW .

\section*{Netherlands Antilles}

Bonaire on 9715 at 0916: OM with a talk about Dutch
football clubs and fixtures during the English transmission directed at Australia and New Zealand from 0830 to 0925.

USA
WYFR Family Radio, Okeechobee, Florida on 21615 at 1332: OM with a news commentary on both world and local affairs, all in English. This one has been logged at various times on this band on other frequencies-21510,21525 and 21625.
'Voice of America' Greenville on 21840 at 1948: OM with a talk in English all about Libyan affairs.

\section*{Venezuela}

Radio Barquisimeto on 4990 at 0332: OM with a folk ballad in Spanish. 'Radio Barquisimeto Internacional' is scheduled from 1000 to 0400 with a power of 15 kW .

Radio Mundial on 4770 at 0047: OM with promos in Spanish and local pops on records. R Mundial in Bolivar is on the air from 1000 to 0400 and the power is 1 kW .

\section*{ASIA}

\section*{China}

Xinjiang PBS on 5060 at 0006: OM with announcements in the Mongolian programme, OM's with songs and accordion music in the Home Service transmission, scheduled from 2330 to 0555 and from 1200 to 1700 (January to April from 1100 to 1625).

Yunnan PBS on 4760 at 2236: OM with a talk in Chinese. This is Yunnan 1 which can be heard in the time slot from 2150 to 0100.

Xinjiang PBS on 4735 at 0044: OM and YL alternately with announcements during the Uigher programme, timed from 2230 to 0320 and from 1030 to 1730.
Radio Beijing (Peking) on 6665 at 2104: OM with a talk in Chinese in the Domestic 1st Programme, scheduled on this frequency from 2000 to 2300 , from 0100 to 0300 and from 1100 to 1730. Also on 6890 at 2108: OM speaking in Chinese in the Domestic 2nd Programme, which is on this channel from 2100 to 0100 and from 1100 to 1558.

\section*{Iraq}

Baghdad on 21585 at 0730:
OM with the station
identification in Arabic, the sound effect of two bursts of machine gun fire, then OM with news of the war - all in the Domestic Service which is scheduled on this channel from 0000 to 2305.

\section*{Kuwalt}

Radio Kuwait on 21675 at 1440: OM with quotations from the Holy Koran in a programme of the Domestic/External Service on this channel 1300 to 1630.

\section*{Pakistan}

PBC Rawalpindiona measured 5006 at 0111: OM with a Home Service programme in Urdu-all talk. This one varies in frequency between 5005 and 5010 . The schedule is from 0045 (December to March from 0130) to 0400 (Friday until 0500) and from 1500 to 1800.

\section*{United Arab Emirafes}

Dubai on 21700 at 0723: YL with announcements followed by a programme of songs and music in the Arabic transmission intended for Europe and North Africa, scheduled from 0630 to 1015.

\section*{EUROPE}

\section*{Austria}

Vienna on 15560 at 1845: YL with the English transmission timed from 1830 to 1900 and intended for Europe, North Africa, the Middle East and South and East Africa. It was all about computers.

\section*{Belgium}

Brussels on 21460 at 1448, radiating a programme of music and songs in the French language transmission which is on this frequency from 0930 to 1700.
Brussels on 21815 at 1420:
YL with announcements, OM with songs in the English presentation to North America and the Far East, scheduled from 1400 to 1445 Monday to Friday inclusive.

\section*{West Germany}

Cologne on 21600 at 0728: OM with a talk in the German programme for Europe and Australasia, timed from 0600 to 0800. Also logged in parallel on 21560.

\section*{Hungary}

Budapest on 17710 at 0935: YL with a newscast during the English transmission for Australia, New Zealand and Japan, being scheduled from 0930 to 1000.

\section*{The Netherlands}

Radio Netherlands, Hilversum on 21480 at 0738: YL and OM alternately with news of both local and world events in the Dutch programme beamed to Europe, North West Africa, South East Asia and the Middle East and timed from 0730 to 0820.

\section*{Switzeriand}

Berne on 9560 at 0901: YL with news of world affairs in the English session for Australia, the Far East, South and South East Asia, timed from 0900 to 0930. Also on 21570 at 1338: music in the unmistakable Swiss style
and OM with announcements in the English programme to Europe, the Far East, South and South East Asia and North and Central America, scheduled from 1315 to 1345.

\section*{CLANDESTINE}
'Voice of the Sudanese Popular Revolution' (in Arabic, 'Sawt ath-Thawrah ash-Sha'biyah as-Sudaniyah') on 17940 at 1417: Arabic-style music with announcements in that language. This station is hostile to the present Sudanese Government and operates from 1330 to 1630. Thought to be located in Libya, the programmes are entirely in Arabic.

The clandestine mentioned in the December issue as operating on 5106 when broadcasting a CID programme is, in fact, 'Radio Ignacio Agramonte'. It was logged again recently at 0150.

\section*{Fent NOW LOG THIS}

For your special attention this month, the signals from 'La Voz de Nicaragua' in Managua. If you tune to 5950 just prior to 0400, you may hear the station identification given by YL and a timecheck (local time) in English at 0400 after the Spanish transmission ends. When logged recently by the writer, what was heard was a newscast followed by a programme announced as 'Nicaragua Today'.
'The Voice of Nicaragua' operates in Spanish from 1100 to 1300 and from 2300 to 0100, there being a repeat of this latter transmission from 0200 to 0400. The English programme is radiated from 0100 to 0200 with a repeat timed from 0400 to 0500. The address is Apartado 4665, Managua.

\section*{- NOW HEAR THESE}
- Radio Inca, Lima, Peru ona measured 4762 at 0327: OM with a talk in Spanish about local affairs. This one is on the air from 1000 to 0500 at 1 kW .
- Radio Abaroa, Riberalta, Bolivia on 4720 at 0246: YL with a pop song in Spanish complete with local orchestral backing. Power is 0.5 kW , and the schedule from 1000 to 0400.
- Radio Riberalta, Bolivia (same place as above) on a measured 4697 at 0251: OM with a folk song in Spanish with a guitar accompaniment. This is scheduled from 1000 to 0300 at 3 kW .

With that lot to cope with, I'll leave you all until next month!```

[^0]: G.S.C. (UK) Limited Dept 35B, Unit 1. Shire Hill Industrial Estate, Saffron Walden, Essex CB11 3 AQ Prices include P\&P and 15% VAT

 Name
 Address
 I enclose Cheque/P.O. for $£$ \qquad or debit my Barclaycard/Access/ American Express card no. \qquad expiry date
 FOR IMMEDIATE ACTION - The G.S.C. 24 hour, 5 day a week service
 Telephone (0799) 21682 and give us your Barclaycard, Access, American For FREE Express number and your order will be in the post immediately

[^1]: * AKD * ARMSTRONG KIRKWOOD DEVELOPMENTS

 62 Marcourt Road, Stokenchurch, High Wycombe, Bucks, HP143OU
 Tel. 024-026-2360

