Easy to bulld projects for everyone

 G 9 gioncs\section*{| cxice |
| :---: |
| Pappement |}

TWD-TONE TRAIN HORN CHESS BUZZER CAR L.E.D. VOLTMETER


```
PROJECTS . . . THEORY
. . . NEWS
COMMENT ... POPULAR FEATURES
```


SAHOOLS
 Electronic Design Award

The team of judges had a difficult task in determining which of the large number of entries should be included in the 12 selected to go forward to the "realisation stage". The standard of the papers submitted was impressive.
Novelty in concept and ingenuity in execu tion were key factors in the judging.

All participants have been notified of the results for Stage 1.
(3) IPC Magazines Limited 192. Copyright in all drawings. photographs and articles published in EVERYDAY ELECTRONICB is fully protected, and reproduction or imitations in whole or in part are expresely forbidden.

PROJECTS

TWO-TONE TRAIN HORN by R. A. Penfold 300
Authentic sound effect for model trains
CAR L.E.D. VOLTMETER by I. Hickman 306
In-car battery condition monitor
PUBLIC ADDRESS SYSTEM by E. A. Rule 316
Part 1: Introduction, specification, control unit details
LIGHTNING CHESS BUZZER by S. R. Dando 330
Variable interval between 2 and 15 seconds 336
For remote control of side hung doors
BIG NINE INDICATOR by F. G. Rayer 338
Random number selector
SERIES
TEACH-IN 82 by O. N. Bishop 310
Part 8: Optoelectronics
FEATURES
EDITORIAL 299
Towards the Wired Society
JACK PLUG AND FAMILY by Doug Baker 304
Cartoon
SHOPTALK by Dave Barrington 305
Product news and component buying 309, 325
A selection of recent releases
COUNTER INTELLIGENCE by Paul Young 315
A retailer comments 324
Learning Morse, Romaji, See Facts
EVERYDAY NEWS 326
What's happening in the world of electronics
328
328
RADIO WORLD by Pat Hawker G3VA
RADIO WORLD by Pat Hawker G3VA
332
SOUND EIGHTY-TWO
Public Address Exhibition Report 33
Soar Digital Frequency Counter
WALES 4CYMRU 335
New Welsh language television service
BRIGHT IDEAS 337, 341
Readers' hints and tips
DOWN TO EARTH by George Hylton 340
Positive feeback
SQUARE ONE 342
Beginners' Page: Equipment wire345
Facts and photos of instruments, equipments and tools
CIRCUIT EXCHANGE 346
A forum for readers' ideas
SPECIAL SUPPLEMENT
SEMICONDUCTOR DATA (between pages 324-325)1 to 8

Into the 80's and beyond

Learn about the op-amp as an oscillator
as an inverting and a non-inverting amplifier make astable, monostable and bistable circuits

Learn about the behaviour of a transistor
as an amplifier or as a switch or as an emitter follower

Learn how to use a milliameter and make voltmeters, electronic voltmeters and electronic ohmmeters
Carry out experiments measuring the gain of the op-amp and transistor and study their characteristics

The Radionic 140 provides the perfect introduction to electronics.

A fully illustrated handbook together with 140 circuit diagrams will guide you from basic circuits onto more advanced circuitry.

Just 50 p will bring you the latest Wilmslow Audio 80 page catalogue packed with pictures and specifications of HiFi and PA Speaker Drive Units, Speaker Kits, Cabinet Kits .

1000 items for the constructor.

CROSSOVER NETWORKS AND COMPONENTS. GRILLES, GRILL FABRICS AND FOAM. PA, GROUP DISCO CABINETS - PLUS MICROPHONES AMPLIFIERS - MIXERS - COMBOS - EFFECTS SPEAKER STANDS AND BRACKETS - IN-CAR SPEAKERS AND BOOSTERS ETC. ETC.
\star Lowest prices - Largest stocks
\star Expert staff - Sound advice

* Choose your DIY Hifi Speakers in the comfort * of our listening lounge.
(Customer operated demonstration facilities)
* Ample parking *
* Access Visa American Express accepted *

8
 0625529599

35/39 Church Street, Wilmisow, Cheshire SK9 1AS
Lightning service on telephoned credit card orders!

The 140 experiments

 include :Light operated switch
Audible burglar alarm
Radio receiver with tuning indicator
Time delay circuit
Police car siren
Electronic voltmeter
How the transistor can be used in logic circuits
The charging of a capacitor
Investigating a square wave generator

Radionic 140......£47.75 pracoso anow vo ic
Price includes VAT and p. and p. order direct from
Radionic Products Ltd.,
Waverley Road, Yate, Bristol, BS175RB.

ANNDUNTMNIE A NIE WN SIETIT DIF IIBA SNIC MEM. METCTIRDDNMC
 This 5 volumal set contains over 500 pages. Bound instiff tinen. Cover size $81 / 2$ in $x 5 i n$. Price $£ 10.00$ per set (we pay the postage).

Book 1. Introducing Electronics Book 4. Merers/Voltage-dividers Book 2. Resistors/Capacitors Book 5. Transistor Project Circuitry Book 3. Inductors/Diodes
The manuals are unquestionaby the finest and most up-to-date avaitable and represent exceptional value.
This series has been written in a fascinating, absorbing and exciting way, providing an approach to acquiring knowledge that is a very enjoyable experience. Suitable for Industrial trainees, City and Guilds students, DIY enthusiasts and readers of electronic journats.
Each part explains electronics in an easy-to-follow way, and contains numerous diagrams and half tone blocks with construction details and circuit diagrams far making the following transistor projects: Lamp Flasher, Metronome, Wailer, Photographic/Monostable Timer, Metal Locator, Geiger Counter, Radio Receiver, Intercom., Intruder Alarm, Electronic Organ, Battery Eliminator, Anemometer, Sound Switch, Light and Water-operated Switches, Pressure-operated Switches, Light meter, Radio Thermometer, Ice Alarm,

ENFIELD ELECTRONICS

Specificarions: 1) sensisivity 1100 B at $1,000 \mathrm{~Hz}$ wish 1 mw 2) Frequency response: $20-19,000 \mathrm{~Hz}$ 3) UNIT impedance 8 ohms 4) marching impedance $4-16$ ohms 5) Maximum inpus 0.5 wates per channel 6) Individual slide volume conerol (stereo/ monoswisch) 7) 10 foot coiled cord with stereo phone plug 8) Leathery-soft car pads and head cushion price $\mathbf{6 5} 95$. Order No. LE-76VS

C voles $0-1 v-5 v-2 \cdot 5 v-10 v-50 v-250 v-1000 v \pm 3 \%$ AC volts $0-10 v-50 v-250 v-1000 v \pm 3 \%$ DC current $0-50 \mathrm{u}$ A $-2.5 \mathrm{~mA}-25 \mathrm{~mA}-0.25 \mathrm{~A} \pm 3 \%$ Resistance:
Minimum 0-2-2-200-200k ohms Midscale 20-200-20k-200k ohms Maximum 2k-20k-2m-20m ohms
As a transistor tester
Leakage current 0.150 uA as Xik range 0.15 mA as $\times 10$ range
$0-150 \mathrm{~mA}$ at $X 1$ range
Price 414.95
Order No YN 360TR

Regulaced power supply
with short circuit prowith short circuit pro-
cection. On/off Power tection. On/off Power
LED. Prosection by priLED. Prozection by pri-
mary fuse. mary fuse,
Input: 240 V AC. 50 Hz Outpuc:- 12 V nominal DC (13.8V DC)
Rasing:- 3 amps (5 amp
surge) $155 \times 115 \times$ 60 mm

Price $\mathbb{C 1 1 . 9 5}$
Order No. PP 1203 GS

Universal NI-CAD, battery charger. All Universal NI-CAD, battery charger. All plastic Case with lift up lid. Chargeflest
swirch. LED indicasors as each of she five switch. LED indi

Charges:- PP3 (9V), U12 (1.5V penlice). Ull (I-5V "C'C'), U2 (1.5V'D"). Power:-$220-240 \mathrm{~V}$ AC. Dims:- $210 \times 100 \times 50 \mathrm{~mm}$. Super 5 pecial Offer at only 67.50.

Order No. MW 398

This 3t inch super horn (Flush Flange) piezo ceramic eweeter converts electrical energy into acoustic energy at an efficiency possibess of 50\%. 2 evel no pousspeaker. Economy is added to high efficiency by the elimination of crossover networks. betause the unit rejects low frequency power. It has a high impedance of over 1,000 ohms as
1 kHz and 20 ohms as 40 kHz and 1 kHz and 20 ohms as 40 kHz and
if presents no added load so she it presents
amplifier.
A Super 5 pecial Offer of 44.65 Order No LO52

NOISE FILTER SYSTEM

 A sophisticated combinasion of filters designed to eliminate interfering noises ignition spark. alternator/generator. other accessories. metal to metal contact etc.Contents:- Generator noise filser, alternator noise filcer. Dual line noise filser and ignition noise filter.

Price $\mathbf{6 8} 50$
Order No. NF5-1000

Please allow 21 days for delivery.

Adaptors	Cable Cont.	Desolder brald	Frequency counter	LED displays	Pre-amps Photo electric relays	Sochets Sleeving	Tinned copper whe Transducers
Adheslves	wrapping	Desolder pump	Gas aensor Grommets	Mains adaptor		Solder	Torolds
Aerlals	stripper	Dlacs	Grommets Group panels	Matrix board Memory I.C.s	Rectlifers Resistor:	Soldering irons	Terminala
Alarms ${ }^{\text {Aluminium bozes }}$	Capacitors air apaced	Dliges mitiong	Gronso	Memory I.C.s	$\begin{aligned} & \text { Resistors } \\ & \text { carbon fim } \end{aligned}$	Sirens	Tuning cells
A.B.S. boxes	trimmer	photo	Headphones	Mlcrophones	metal film	Switches	
Amoliflere	suppression	he	Heat sinks	inserts	metal oxide wirewound	Switches mercury tII	Ulitrasonic transmitter
Audioleads	lead through	sional	Inspection glassea	Microprocessors	Aing cores	micro	Ultrasonic receiver
devices	electrolytic	germanium	I.C. sockets	Morse key	Regulators	cd	Vero products
Batteries chargers connectors holders Bezels Book: Boxes Bridge rectlfiers Bulbs holders Busbars Buzzers	polyester	infra-re	Infra-red source	Multister	Restays	rotary	
	silver mica	Drills	Indicators	Ni-Cad batterles	Signal Injector	toggle	
	tantalum	Earpleces	Insulating tape	Ni-Cad chargers	Service alds	wade	Ne are
	Cermot pre-sets Chokes	Enamelled copper wire	Jack connectors Jewellers screwdrivers	Opto electronic Oscilloscopes	sllver paint	push-button	open from
	Collformers				older mod	Testleads	
	Connectors	Ellters	Keyboards	Panels	sllicone grease	Thermistor	n-op
	Coils	Ferric ehlorlde	Keynector	Pich-up colls	anti-stafle spray	Triacs	Monday
	Continulty testers	Ferrite cores	Knobs	Pliers	Treeztt plastle seal	Transformers	
	Convertors	Ferrite rods	Lamps	Pre-sets	plastic seal	mains	to
Cable	Crimp tools	Fuses	Leads	P.C.B.s	at-sink	audio	Saturd
clips	Crocodile clips	Fuse holders	Liquld crystal	P.C.B. transfers	compound	Transistors	
ties	Denco products			Plugs	Spacers	Translstor tester	
markers	Demagnetisers	motors	LED arrays	Pressure mats	SWR meters	Tag strips	

208 Baker Street, Enfield, Middlesex. 01-366 1873.

GREENWELD

430 MILLEROOK ROAD，SOUTHAMPTON SO1 OHX All prices Include VAT－Just add 50p post．Tel（0703） 77201

Coods normaly

AMAZING！COMPUTER GAMES PCB＇S FOR PEA．

 NUTSI！A bulk purchase of PCB＇s from several wall known eomputer games Including enable us to offer these at incredibly low arlces：

＇STARBIRD＂

Gives reallatic onglne counde and flathng when blatit－accelerating engine noise nolte when pointed down．Preses centact o tot hash and hear blast of lasers hooting．PCB tested and working com－ pleto．with spewier and batt clip．（need
PP 3 ．PCS
size $130 \times 60 \mathrm{~mm}$ ．Only ES ．

SIMON

The object of this game is to repeat cor－ rectly a longer and longer eaquence of algnale in 3 difierent games．（Instructions immpholders and lampa，and is iested worting，complete with apoaker．Needs PP3 and $2 \times$ HPII．PCB size $130 \times 130 \mathrm{~mm}$ Only is ess．

＇COMPUTER

8ATTLESHIPS

Probably one of the most popular elec－ tronic games on the market．Unfortunatel PCS as a working model，although it may well function perfoctly．Instead we have tested the sound chlp，and esll the board for ite compenent value enly（PCB may be TMS1000 u－proceseor；batt clipe．R＇s．C＇s otc．Size $100 \times 140 \mathrm{~mm}$ ．Only हil． intituction book and circuit sisp extra．

LOGIC 5 PANEL
Teated Lagic s now sold out－but we have tut no leyboard．Not teD＇s and chip on，
＂MICROVISION＂

Cartridges

These are a small PCE with miero－ procesasor chlp，desioned to plug in to we don＇t have any coneoleall Howerer they can be uaed as an ascillator with i difiorent frea．outputs simply by connect－ Ing battery and spather．Teated and Working（ae an osc）with pin out data．

1882／3 CATALOGUE
Just out only Thp inc．poat．©Price inc．
Reply pald onvolope（First Class）．Bulk buyers list．Latest bargain lime．

GET YOURS NOW

200 ELECTROLYTICS \＆4．00

 Ks24 Large varioty of valuesivoltages． $\mathrm{mon}_{1-1000 \mathrm{u} F}$ cropped leads for PCB mntg． ponents，not chuch－outell 800 ह⿵人一 1000COMPONENT PACKE Kg03 150 wirowound resistore from 1W 10 12W，with a good range of vilues．EI－ 78 ． Including single，ganged，rotary and slider．Ei． 72.
K511 800 amall value poly，micm．coramic cape from a fow of to＇oeuF．Excellon K 514 foo nliver fow thousand pF．Tolerances from 1% to 10\％．Ez． m ．
KSN Swltch pack－20 difieront，rocker， olide，rotary，toggle，push，micto，otc．
 200 mm ． 50 p ．

100 RESISTORS 52.50

 We＇ve Just purchased another 5 million almilar offer to that made two yeare al the same pricelll Kies－1000 mixed t and $\$ W$ 5\％carbon film resiators proformed for PCB mnta．Enormoue rang of proforredE10； 20 R E

PANELS

Znel Panel with 10.25 （2N342）on amal heat sink，eNzess dual transintor， 2 BC10s diode，caps，rasiltors．etc．\＃p．
resde，$x 83050$ or 23230 ，of $2 \times 400 \mathrm{~V}$ rects＋Res．
Ing 74 Pack of ex－computer panele contain－ Ing 74 series ICe．Lote of difierent gatee with type no．or code for which an identincation sheet is supplied． 20 IC．

AgSM Black ciate $80 \times 80 \times 7 \mathrm{~mm}$ whith relay， 200 V 7 A SCR， $4 \times 8 \mathrm{~A} 200 \mathrm{~V}$ rects． retay，
etc．
evp．

SWITCH BARGAIN Push－on，push－off trable lamp＂type，
rated $2 A 250 \mathrm{~V}$ ac． 10 p ench， 15 for $\mathrm{E} 1,100$

Full set of perter apecified by＂EE＂．Al new geode，despatehed by return of post． E All parte for the＂MINILAB＂only
＊Alr componente for frat os parts

＊All componente for second parte o BUY ALL TH佣EE SETS FOR ext inc pont FREE componentidentification Chart I I FREE plece of Verobourd I
Reprinte of articles：30p per pert＋3ep for Tutor Deck info．（oniy supplied with CAPACITOR BARGAINS 2000 mF 100 V cans $77 \times 38 \mathrm{~mm}$ dia． 750

 $30 \mu \mathrm{~F} 500 \mathrm{~V}$ can $75 \times 400 \mathrm{~mm}, 100+100$ di $100 /$／ed 100 F F 25 V Anisl $\leqslant 3 / 100$ ． $0.33 u F$
0.47 soV rad． $50 \mathrm{E} .50 / 100$ ，E12／1000．

1W AMP PANELE A011 Compact audio emp intended for ing vol，control pand $05 \times$ amm includ with knobe．Apert from amp circultry bull around LMzson or TBAMEMM，there is opeed control circult using s＇transistore． ONLY operation，connexton date eupplied TOROIDAL

TRANSFORMER

 for acopes，monitore YÓU＇s，otc．Reduced to ets．

OP－AMP PEU KIT $\begin{gathered}\text { A108 All parts } \\ 50 \mathrm{~mA}\end{gathered}+18,0$ instructions to make a $50 \mathrm{~mA}+18,0 .-18 V$ supely from mains mput．
COPPER CLAD BOARO kes All pleces too mmall for our atching kilte．Montly double eldod fbreglase

MIXED LED PACK

 All now full apec by Micro，Falrchild，elc， FILAMENT DISPLAYS 20637 seed dieplay 12.5 mm hlgh．Ideal for

LIE DETECTOR
Not a toy，this orocision instrument was originally part of an＂Open Univeralty＂ course，uped to maesure change in Full detalls of how to use it are deiven，and a circult dimgram．Supplied complote with probes．lads．and conductive jelly． Needs 2 sfV batte．Overall size $155 \times 100 \times$ cemm．Ouly c7．On－worth that for the

CHEAP CHPPS 7477 Sound IC EI．25．
MK40e7 shlft res． 8 for $c 6$
WAramg + volireg EI \cdot ．
ungwe－volf reg हi．t．

ELECTRO－DIAL
Electrical combination lock－for maximum tecurity－aict prool． 1 mililion combin． tronall Dial is furned to the right to one number，left to a second number，then right again to a third number．Only when is has been completed in the correct these can be ueed to operte a relay or olenold．Overall dia． $6 \mathbf{m m} \times \mathbf{0 m m}$ deep． Only is avelime withoul combination－ Also covelimbe whout comblnation－

METER8： $110 \times 2 \times 35 \mathrm{~mm}$ $30 \mu \mathrm{~A}, \quad 50 \mu \mathrm{~A}, \quad 100 \mu \mathrm{~A}$ ，25．00． Post 50p．

METERS： $45 \times 50 \times 34 \mathrm{~mm}$ $50 \mu \mathrm{~A}, 100 \mu \mathrm{~A}, 1 \mathrm{~mA}, 5 \mathrm{~mA}, 10 \mathrm{~mA}$ 25V，1A，2A，5A 25V．

E2．9．Post 30p．

METERE： $0 \times 47 \times 33 \mathrm{~mm}$ $50 \mu \mathrm{~A}, 100 \mu \mathrm{~A}, 1 \mathrm{~mA}, 5 \mathrm{~mA}, 10 \mathrm{~mA}$ $100 \mathrm{~mA}, \quad 1 \mathrm{~A}, 2 \mathrm{~A}, 25 \mathrm{v}, 50 \mathrm{v}$ $50-0-50 \mu \mathrm{~A}, 100-0-100 \mu \mathrm{~A}, \mathrm{EA} 7 \mathrm{C}$ ． VU meters．\＆s． 32
Post on above meters 30 p ．

Sticone grease 500 位－32 Post 14p．

MULTI－METER		
7 N	OTR	
20，000 ohm／volit		
DC Volts： $0 \cdot 1$ ，		
0．5，2．5，10－150－		
250－1，000v．		
AC Volts：10－50，		
250－1，00		
RESISTANCE RANGES		
X1，$\times 10 \mathrm{X10}, ~$		
X10K$\$ 14 \cdot 10$		
P．8P．87p		
TRANSFORMERS		
240v Primary		
3－0．3v	100 mA	A 0p
6－0－6v	100 mA	87p
6－0－6v	250 mA	E1．22
12－0－12v	50 mA	O2p
12－0－12v	100 mA	E1．15
Post on above transformers 48p．		
9－0－9v	1 A	81.50
12－0－12v	1A	22．40
15－0－15c	1 A	22．00
$6 \cdot 3 \mathrm{v}$	11 A	E1．80
6－0－6v	$1 \frac{1}{4} \mathrm{~A}$	E2．10

Post on above transformers 87p．

All above prices include V．A．T．Send 80p for new 1982 fully lllustrated catalogue，S．A．E．with all enquirles．Special prices for quantity quoted on request．

All goods despatched within 3 days from receipt of the order．

M．DZIUBAS

158 Bradshawgate，Bolton Lancs．BL2 1BA

FRapid JEectronics

Tel: 020636412
Hill Farm Industrial Estate Boxted
Colchester Essex CO4 5RD

COMP ONENT KITS

tor to obtain a wide range of components at reduced prices. IW 5% Resistor KI
(650 reslstors) 4800
Ceramic Cabacifor Kit Contains 5 of each velus trom 22 p (135 caps.) 3700.
1 $\mu \mathrm{F}$ (65 caps .) 575 peach.
Presel Kit. Contains 5 of each hor. Value from 100Ω to 1 M (total 65
pretets). 425peach.
Nut and Bolikit. Total 300 tiems. 140 D.

$2568 A 1^{\prime \prime}$ bolis
5088 nuta
5068 a washers

CAPACITORS

Polyes1er. Radlal leads. 250 V 280 yype
P. 10, $0.015,0.022,0.033,6 \mathrm{p} ; 0.047,0.068,0.1,7 \mathrm{p} ; 0.15,0.22$,
$0.013,0.47,13 \mathrm{p} ; 0.68,20 \mathrm{p} ; 1 \mu, 23 \mathrm{p}$. Electrolytic. Radial or Mxial leads. $0.47 / 63 \mathrm{~V}, 1 / 63 \mathrm{~V}, 2 \cdot 2 / 63 \mathrm{~V}, 4 ; 7 / 63 \mathrm{~V}, 10 / 25 \mathrm{~V}, 7 \mathrm{p} ; 22 / 25 \mathrm{~V}, 47 / 25 \mathrm{~V}, \mathrm{Ip}$
$100 / 25 \mathrm{~V}, \mathrm{Dp} ; 220 / 25 \mathrm{~V}, 14 \mathrm{p} ; 470 / 25 \mathrm{~V}, 22 \mathrm{p} ; 1000 / 25 \mathrm{~V}, 30 \mathrm{p}$. Polyester. Stamens PCB
 $1 \mu, 33 \mathrm{p} ; 2 \mu 2,50 \mathrm{p}$.
Tantalum bead.
$0.1,0.22,0.33,0.47,1 \cdot 0$ @ $35 \mathrm{~V}, 12 \mathrm{p} ; 2 \cdot 2,4.7,10$ @ $25 \mathrm{~V}, 20 \mathrm{p} ;$
$15 / 18 \mathrm{~V}, 30 \mathrm{p} ; 22 / 16 \mathrm{~V}, 27 \mathrm{p} ; 33 / 16 \mathrm{~V}, 45 \mathrm{p} ; 47 / 6 \mathrm{~V}, 27 \mathrm{p} ; 47 / 16 \mathrm{~V}, 70 \mathrm{p} ;$

Ceramic
Polystyrene 5\% 3p each.
$10 \mathrm{p}-1000 \mathrm{p}$ ip. $1500 \mathrm{p}-4700 \mathrm{p}$ ip. $6800 \mathrm{p}-0.01210 \mathrm{p}$.
Trimmers. Mullard 808 series,
2-10pF 22p. $2-22 \mathrm{pF}$ 30p. $5 \cdot 5-65 \mathrm{pF}$ 35p.
TRANSFORMERS
Please add carriage charges to our normal posi charges.
Minlature malns.
$606 \mathrm{~V}, 909 \mathrm{~V}, 12012 \mathrm{~V}$ all 100 m A 100 p each
High quality, Splif bobhin consiruction
$6 \mathrm{VA} \quad 0-6,0-6$ is $0.5 \mathrm{~A} ; 0-9,0-9 \mathrm{~V}$ (a) $0.4 \mathrm{~A} 0-12,0-12 \mathrm{~V}$ (a) 0.3 A

NICADS:UK'S LOWEST PRIGES

Price on the page

Ambit's new
 style catalogue continues to lead the market with low prices, new items, info. $3 \times$ fl discount vouchers. Here's a few examples of some super low prices:

$78 \times \times 1 \mathrm{~A}$

 BC237/8/9 3SK51 10 MHz XTALS 8 Pole 10.7 MHz XTAL filters $£ 14.50$ 2 GHz coax relay 150W £10.95

+ all the usual stuff at rock bottom prices + Toko coils, erystal and ceramic filters, micrometals toroids, Fairite ferrites, Alps switches, OKI LSI, Piezo sounders, RF, IF Modules + Kits etc

Availatile at your newsagent or direct, for or 70 inc

WATFORD ELECTRONICS
 35 CARDIFF ROAD, WATFORD, HERTS., ENGLAND
 MAIL ORDER, CALLERS WELCOME. Tel. Watford 40588/9

ALL DIVICES GRAND NEW, FULL SPEC. AND FULLY OUARANTELD ORDERE OIBPATCMEO BY RETURN OF POBT. TERMB OF UUEINEBE: CABH/CNIGUZ NETITUTIONS OFFICIAL ORDEAS ACCEPTED, TRADE AND E
WELCOME. PAP ADO SOD TO ALL OROERS. OVRRAEAB ORDEA
VAT
We etock many more ltems. It pays to vialt ue. We are altuated behind Wattord Footbal round. Naspast Underground/BR Statlon: Wattord Mloh Bitreol

OLYESTER CAPACITORS: AXIAL Lead type Valuee are in nh
$400 \mathrm{~V}: 1 \mathrm{nF}, 1 \mathrm{n5}, 2 \mathrm{n2}, 3 \mathrm{n3}, 4 \mathrm{n7}$, ons $11 \mathrm{p}: 10 \mathrm{n}$, 15n, $18 \mathrm{n}, 22 \mathrm{n} 12 \mathrm{p} ; 33 \mathrm{n}, 47 \mathrm{n}$
 seov: 10 nF ,

OLYESTER RAOIAL LEAD CAPACITORS (250V)

 $220034 \mathrm{p}: 330074 \mathrm{p} ; 470071 \mathrm{p}$.

TANTALUM	Eead	Capacitors	
3SV:	0.1μ,	0.22,	0.33
$15 p ;$	0.47,		

MYLAR FILM CAPACITORS 10VV: $1 \mathrm{nF}, 2 \mathrm{n}, 4 \mathrm{An}, 4 \mathrm{n7}, 10 \mathrm{n} 4 \mathrm{n}$; 100n, 200n ip. $470 \mathrm{n} / \mathrm{seV} 12 \mathrm{p}$.
MINIATURE TYPE TRIMMERS 43 p ; $10-88 \mathrm{pF} 3 \mathrm{3sp}$.
COMPREESION TRIMMERS $3-40 \mathrm{pF}, 10-80 \mathrm{oF} 20 \mathrm{D}: 20.250 \mathrm{oF} 24 \mathrm{p}$
$100-580 \mathrm{pF} 39 \mathrm{p}: 400-1250 \mathrm{pF} 41 \mathrm{p}$.
POLYSTYRENE CAPACITORE
OpF 10 InF D : 1 SnF 10 12nF 10p.

$6 \cdot 8,8 \cdot 2,10,12,15,18,22,27,33,1$

870,	300,	330,	360,	390,	470,
800,	820	210			

CERAMIC CAPACITORS:

EURO BREADBOARD E5. 20.

LEDes plue cllpe TIL809 Red 3 mm

 TIL809 Aed 3 mm 13TILE11 Grn 3 mm 18
TILg12 Yellow

TILR12 Yoll $-2^{\prime \prime}$ Red

2^{2} Yellow G $\begin{array}{lr}\text { Square LED } & 20 \\ \text { Trangle LED } & 18 \\ \text { OCP71 } & 18 \\ \text { ORP12 } & 78 \\ \text { ORI } & 712\end{array}$ ORP81
2N8777 $780 g$ Displaye
TIS21 C An $8^{\prime \prime} 118$ Vertical \& Horizonial
O-1W 60 D SMA MIniature $\begin{array}{lr}0-1 w 60 \Omega-5 P M \Omega \text { Mlnlature } & 7 p \\ 0.26 w 100 \Omega=3 M \Omega \text { Horlz } & 10 p \\ 0.28 w 200 \Omega-7.7 M \Omega \text { Vert } & 10 p\end{array}$

1% Metal Film $51 n-1 \mathrm{M}$ 8p ip
$100+$ price appllee 1o Reslators of
each value not mixed.

detector 575 sp . Sockel for above 40p.

p. Sockel for above dep.	Q WITCME
ClIDE 280V	TOGGLE 2A 250
1A DPDT 14p	SPST 33p
14 DP clof. 180	DPDT 44p
1ADPDT 18p	SUE-MIN
	TOOOLE
USH BUTTON	8 8Pchanasover 3tp
te	8 8PT on/oll 340
mont	DPDT tage 780
SPST C/Over 99p	DPDTc/of asp
DPDT C/Over 145p	DPDT Bla

 PURh to Mals ROCKER: Itluminated DPS ROTARY: (ADJUSTABLE STOP) 1 polel

\qquad 78H05 +5V/5A 550

CKETE (Low Pronle - Texas)
; 14 pIn 10 p : 16 pln 10p; 18 pIn 1sp

p; 24 pin $250 ; 28$ pin $280 ; 40$ din 30 p | CA3085 | 95 | LM317T | LM323K |
| ---: | ---: | ---: | ---: |
| LM 300 H | $\mathbf{9 7 0}$ | | |
| 170 | TAA 50 | 50 | |

JACKBONB YARIABLE

Dillcon $100 / 300 \mathrm{pF}$
300 pF
200 p slow motlon with
 4511/DAF 145p mötlön drive 495p
Dial Dilve 4103

Drum 55 mm	54 p	2850 pF	978 p
$0.1-365 \mathrm{pF}$	350 p	$900,950 \mathrm{pF}$	352 p

OINCO COILS ROT2 145p Renge it to 5 BI, RFC R $7(10 \mathrm{mH}) 160 \mathrm{p}$ Rd., YI. Wht.1220 IFT 13: 14: 15:
 Rd., Wh. 1500

VEROBOARDS $\mathrm{T}^{\prime \prime}$ clad plain	COPPER clad boatds
21 \times 3t 73 p 52p	Fibreglas
4×34 33p	$\mathrm{C}_{5} \times 12^{\prime \prime} \mathrm{S}^{150 \mathrm{D}}$
	$\begin{aligned} & \text { S.R.B.P } \\ & 9.5 \times 8 \end{aligned}$
Af $\times 17^{\prime \prime}{ }^{426} \mathrm{p}$ -	
Pht, of 100 pine 500	Ferric Chio pide 1 lb.
Cutter 11	Anhydr. 195p

DIODES	zENERE	SCR.
A A129 BA 100 13		
${ }_{\text {BY12 }}$	30080 oseh	1A/100V ${ }^{\text {SA }} 4$
$8 \mathrm{BY197} 12$	Rande 3 Va to	$\mathrm{BA}_{1} 1000 \mathrm{~V}$ is
$\mathrm{CrO33}^{24}$		$3 \mathrm{~A} / 300 \mathrm{~V}$-0
OAI 40	isp omeh	$8 \mathrm{~A} / 400 \mathrm{~V} 78$
	Noise	$12 \mathrm{~A} / 100 \mathrm{~V}$ $12 \mathrm{~A} / 400 \mathrm{~V}$ 8
0 All 18	Dlace 105	$12 \mathrm{~A} / 800 \mathrm{~V} 16$
OAbe 11		$11 \mathrm{~A} / 700 \mathrm{~V}{ }^{150}$
OApO		
OA01	RECTIFIERS	${ }_{\text {2NB002 }}^{2 N}$
OA200	$1 \mathrm{~A} / 60 \mathrm{~V} \quad 18$	ET106 16
OA202	1a/100V H3	C1060 33
1N014	1A/800V 31	T1C44 24
(N016	1a/400V 28	TIC46 TIC47
instoc3	$1 \mathrm{~A} / 400 \mathrm{~V}$	TIC47 35
ins006/5	2A/30V 31	Thiacs
IN4000/7 7	2A/200V 40	3A/100V
NS4148	2A/400V 6	$3 \mathrm{~A} / 400 \mathrm{~V} 3$
3A/1900 18	2A/coov is	Also V
$3 \mathrm{~A} / 400 \mathrm{~V} 16$	PAhoov ${ }^{33}$	HAPD00 115
$3 A 1600 V$ $3 A$ $3 A$ 17000 V 20	(A/400V $10 \mathrm{~A} / 200 \mathrm{~V} 215$	12A/100V 7
SA/400V50	$10 \mathrm{~A} / 600 \mathrm{~V} 315$	12A/400V 12
	25A/200V 215	12A/800V 131
	25A/600V 305	18A/100V 108
	BY164 ${ }^{\text {S }}$	25A/400V 183
wide selection	VM18 DIL ${ }^{53}$	25A 1800 V 200
Eloetronic		25A/1000V 400 30
Magarines	ST2 25	T260000 120

 -荡 FはU4<44

 max mini 20The Mini 20 is an ideal instrument for the constructor.
This special offer is a wonderful opportunity to acquire an essential piece of test gear with a saving of nearly $£ 10$ on the normal retail price.
The 28 ranges cover all likely requirements. Operation is straight-forward, just turn the selection switch to the required range position.

RANGES

d.c. $V: 100 \mathrm{mV}, 3 \mathrm{~V}, 10 \mathrm{~V}, 30 \mathrm{~V}, 100 \mathrm{~V}, 300 \mathrm{~V}, 600 \mathrm{~V}$.
a.c. $V: 15 \mathrm{~V}, 50 \mathrm{~V}, 150 \mathrm{~V}, 500 \mathrm{~V}, 1500 \mathrm{~V}$.
d.c. $1: 50 \mu A, 600 \mu A, 6 m A, 60 m A, 600 m A$.
a.c. $1: 30 \mathrm{~mA}, 300 \mathrm{~mA}, 3$.

Ohms: 2k $\Omega, 2 \mathrm{M} \Omega$.
Accuracy: 2% d.c. a resistance, 3% a.c.
Dimensions: $105 \times 130 \times 40 \mathrm{~mm}$
Movement protected by internal diode and fuse.
For details of this and the many other exciting instru. ments in the Alcon range, including multimeters, component measuring and electronic instruments please write or telephone:

Supplied complete with case, leads and instructions.

Instruments Ltd.
19 MULBERRY WALK . LONOON SW3 6OZ. TEL: 01.352 1897. TELEX. 918867

E.E. KITS

Model Train Chuffer Siren Module Minl Ego Times Mace Track Speedo Guitar Adaptor Re Action Meter Sustain Unil Audio Compression Mizer Model Railway Controller Lad Sand Glase Cmos Metronome Morse Practise Oscillator Xenon Strobe Lamp Electronic Multimeter Darkroom Timer Phone Bell Repenter/Baby Alarm Digital Rule
LED Dice
Bench Power Supply
Sound 10 Light
Audio Efrocts Unit Cable \& Pipe Locmtor Slide Tape Synchroniser Beby Alerm
Varlcap Radio
Electronic Canary
Fuzz Box
Weirs Sound Effect Generator

Worrsound \quad| ZB |
| :--- |
| ZB |

Teech-in ael Bulk purchase of components so prices reduced List 1 and 2. Now cese ge

Reprints of above hits 40 p + S.A.E. Teach-in Reprinte 40 peach from October 1981.

Mains loniser Kit includes parts \& Drilled Case £19.00

Prices include Post \& 15% VAT Wide range of Japanese I.C.s \& Transistors stocked.
Please allow 14 days delivery.
T. POWELL AOVAMCE WORKS. H.WALLACE ROAD, LONOON NI

Minimum Telephon Orders 55.00 Minimum Mall Ordor $\mathrm{E1} \cdot 00$ Callors wilcome.

WE WILL BEAT BY 5\% ANY LOWER PRICE ADVERTISED BY COMPETITORSネ

WATER RESISTANT WATCHES
With Alarm. Hourly Time Signal, Stopwatch and Calendar
100 METRE WATER RESISTANT

ime and auto calendar. Alarm and hourly chime Countdown alarm timer with repeat memory function Professional $1 / 100$ second stopwatch. Time is always on display, regardess of display mode. Amazing 5 year lithium battery life. Superior to the W-250.

50 METRE WATER RESISTANT

2/24 hour time and auto calendar. Alarm and hourly chimes. Professional $1 / 100$ second stopwatch to 12 hrs. Compact and slim cases, approx. 8 mm thick Lithium.
 Alarm and hourly chimes. Stopwatch. Dual time DIGITAL SPACE INVADER game.
-100. Similar to the CA-85 but without dual time and with a JOGGING COMPUTER instead of the game function.
TOR gime chrono with SPACE INTERCEP TOR game
the sensational new sharp PORTABLE COLOUR COMPUTER

A complete system that can fit in a briefcase. For Business, Management. Engineering and Hobby applications. BASIC computer with OWERTY applications. BASIC computer with QWERTY expansion module ($£ 49.95$). 8 K module available soon. 4 -colour high resolution printer with two soon. 4-colour high resolution printer with two RS-232C interface soon. Mains/rechargeable/battery powered. Fult colour information pack on request serious enquiries only, please-15\$p stamp appreciated.

£100 SCIENTIFIC COMPUTER

CASIO FX.702P Up to 1680 program steps, up to 226 memories, 55 scientific functions. BASIC. £99.95

CASIO FX-602P Programmable Scientific. Up to 512 program steps, up to 88 memories. $\mathbf{8 7 4} 95$

CASIO FX -601P

Programmable Scientific with 50 functions, 128 program steps, II memories (all protected when switched off). Alpha/ numeric dot matrix display. 18 parentheses, nestable up to 6 levels. Subroutines: Up to 9 , nestable routines:

ONLY 539.95
Peripherals for FX-601/602/702P (also 501/502P). FA-2 Remote control Cassette Interface \quad £19.95 FP- 10 Permanent hard copy printer

OTHER SCIENTIFICS

FX-3600P 38 step programmable £19.95 FX-550 £ 19.95 , FX-100 £16.95. FX-82 £ 12.95 . FX-7 $£ 10.95$, FX-5 $£ 8.95$.

LOOK, NO BATTERIES!

FX-950 SOLAR CELL SCIENTIFIC
Powered by almost any light. 50 scientific functions, with nesting of up o 15 parentheses at 5 levels. Hyperbolics, Standard Deviations, etc. 10 digit display. $5.4 \times 73 \times$ 129 mm . Supplied with wallet. £22. 50

FX-900 8-digit version with less functions $£ 19.95$
CALCULATING ALARM CLOCKS FT-7 Fortune Teller $£ 16 \cdot 95$. BG-15 Boxing $£ 16.95$. ML-75 12 melody alarms. Card size $£ 14.95$. ML- 120 Wallet version $£ 14.95$. ML- $2000 £ 22.95$. UC- 3000 £27-95. UC-360 £19.95. UC-365 £19.95.

basic calculations

MG-777 Compendium of 3 games plus colck $£ 14.95$ MG-880 Invader game $110 \cdot 95$. MG-885 Game £10-95. SL-801 Solar £8.95. HO-25 Time calculations $\mathbf{8} 9.95$

DISPLAY AND PRINT

HR-12 Mini £29.95. JR-150 Office size $£ 39.95$

SENSATION
of the Japanese Music Fa CASIOTONE 701 COMPUTERISED ORGAN
Fully Programmable. 5 Octave. Polyphonic Keyboard "THE instrument of 1982 ...probably the best instructive keyboard I have come across. But it is also a top line musical instrument capable of satisfying even the most proficient musician" Keyboards \& Music Player

CT-701 (RRP $£ 555) \quad$ ONLY $£ 495$
Program the 345 melody steps and the 201 chord steps, (max.) with music specially scored in bar code and read by a light pen, or enter your own chords and melody via the keyboard, with full editing and repeat facilities
3-way replay:-Automatic; One Key Play; Melody Guide, (Jights above the keyboard indicate the next note to play). Split keyboard; 20 superb instrument voices; 16 rhythm accompaniments; fingered or auto chords with walking bass and arpeggio; fill-in and effect buttons. $37^{3} \times 13$ 名 $\times 5^{\prime \prime}$. Weight: 12.5 kg (27.61bs).

CT-601. As 701 but without programming functions
£395

COMMON SPECIFICATIONS

All Casiotones (except VL-Tones) are 8 -note polyphonic. They all have buit-in amplifiers and speakers with output jacks for headphones and external amplification and a pitch control. CT models are mains only and have volume and sustain pedal jacks.

25 instrumens over 4 octaves. Four voice memory functionents over 4 octaves. Four voice memory function with push button selection. Vibrato and sustain switches. 16 rhythm accompaniments with fill-in variation Casio Auto Chord for one finger or auto playing of major, minor and 7th chords with bass. Ten functional controls $4: \times 301$ y $11 \frac{1}{1}$ Weight 17.6 lbs

"Son of success . . . The two harpsichords demon strate the Casiotone's talent for sparkling crysta strate the Casiotone's lalent for sparkling, crysta

49 instruments over 4 octaves, 4 voice memory func tion with push button selection, 3 vibrato settings and sustain $3 \frac{1}{8} \times 34 \frac{1}{2} \times 11 \frac{1}{2}{ }^{\prime \prime} .16 \cdot 81 b s$.

CT-101. Similar to 202 but has 25 voices.
ONLY $£ 195$
MT-40

RRP £125
ONLY $£ 99$
37 key, 3 octave keyboard plus 15 key bass keyboard with automatic, synchronised bass function. 22 instrument voices: 6 auto rhythms with dual fill-in. Sustain and Vibrato. Battery powered, or optional mains adaptor AD-IE (£5). $23 \times 7 \times 2 \frac{1}{12}$. Weight 4.9 lb . VL-TONE. Become an Instant Musician with this amazing programmable Musical Instrument. 10 auto rhythms, five voices + ADSR. 2 extra books worth £5-90 FREE.
£35.95
※ Providing the advertiser has stocks and we do not sell at a loss. DELIVERY NORMALLY BY RETURN

Price includes VAT and P\&P. Send cheques, PO, or phone your ACCESS, VISA or B'CARD number to:
LEADING CASIO SPECIALISTS
CATALOGUE
ON REQUEST
Dept. EE,
38 Burleigh Street, Cambridge CBI IDG
Telephone: 02233 I2866
appreciated
and fitting instruction
ars in - Highest quality $\begin{aligned} & \text { Homponents are } \\ & \text { comp throughout. }\end{aligned}$ INOW AVAILABLE IN KIT FORM

SX1000

Electronic Ignition

- Inductive Discharge
- Extended coil energy
storage circuit
- Contact breaker driven

Three position changeover switch - Over 65 components to assemble - Patented clip-to-coil fitting - Fits all 12 v neg. earth vehicles

SX2000 Electronic Ignition

- The brandleading system on the market today - Unique Reactive Discharge - Combined Inductive and Capacitive Discharge - Contact breaker driven - Three position changeover switch - Over T30 components to assemble - Patented clip-to-coil fitting - Fits all 12 v neg. earth vehicles AT-80 A Car Security System
- Arms doors, boot, bonnet and has security loop to protect fog/spot lamps, radio/tape, CB equipment - Programmable personal code entry system
- Armed and disarmed from outside vehicle using a special magnetic key fob against a windscreen sensor pad adhered to the inside of the screen - Fits all 12 V neg earth vehicles
Over 250 components to - Over 250 components to assemble

MAGIDICE
 Electronic Dice

- Not an auto item but great fun for the family
- Total random selection
Triggered by waving of hand over dice
- Bleeps and flashes during a 4 second tumble sequence
- Throw displayed for 10 seconds - Auto display of last throw 1 second in 5 - Muting and Off switch on base - Hours of continuous use from PP7 battery - Over 100 components to assemble

TX2002

Electronic Ignition

- The ultimate system - Switchable contactless. Three position switch with Auxiliary back-up inductive circuit. - Reactive Discharge. Combined capacitive and inductive. Extended coil energy storage circuit. Magnetic contactless distributor triggerhead. Distributor triggerhead adaptors included. Die cast waterprool case with clip-to-coil fitting \bullet Fits majority of 4 and 6 cylinder $12 v$ neg, earth vehicles. - Over 150 components to assemble

VOYAGER Car Drive Computer

- A most sophisticated accessory. Utilises a single chip mask programmed microprocessor incorporating a unique programme designed by EDA Sparkrite Ltd. Affords 12 functions centred on Fuel, Speed, Distance and Time. Visual and Audible alarms warning of Excess Speed, Frost/Ice, Lights-left-on. Facility to operate LOG and TRIP functions independently or synchronously. - Large 10 mm high 400 ft -L fluorescent display with auto programmed accuracy and fuel transducers giving a memories 2000 miles 180 gallons 100 hours and Metric calibrations - Over 300 components to assemble A real challenge for the electronics enthusiast!
AIIEDA SPARKRITE Droducts and desions are fullv covered bv one or more World Patents
EDA SPARKRITE LIMITED 82 Bath Street. Walsall, West Midlands, WS 1 3DE England. Tel: (0922) 614791

	$\begin{gathered} \text { SELF } \\ \text { ASSEM. } \\ \text { KIT } \end{gathered}$	READY BUILT UNITS
SX 1000	£12.95	£25.90
SX 2000	£19.95	£ $39 \cdot 90$
TX 2002	£29.95	£59.90
AT. 80	£29.95	£59.90
VOYAGER	£59.95	£119.90
MAGIDICE	£9.95	£19.90

PRICES INC. VAT.POSTAGE \& PACKING

Please allow 28 days for delivery
NAME ADORESS

TEES/82

Editor

F. E. BENNETT

Assistant Editor
B. W. TERRELL B.Sc.

Production Editor
D. G. BARRINGTON

Technical Sub-Editor
G. P. HODGSON

Art Editor
R. F. PALMER

Assistant Art Editor
P. A. LOATES

Technical Illustrator
D. J. GOODING Tech. (CEI)

Secretary

JACQUELINE DOIDGE
Editorial Offices
KINGS REACH TOWER
STAMFORD STREET
LONDON SE1 9LS
Phone: 01-261 6873

Advortisement Manager

R. SMITH

Phone: 01-261 6571
Representative
R. WILLETT

Phone: 01-2816885
Classified Supervisor
B. BLAKE

Phone: 01-281 5897
Make-Up and Copy Department
Phone: 01-281 6815
Advertieement Offices
KINGS REACH TOWER
STAMFORD STREET
LONDON SE1 9LS

TOWARDS THE WIRED SOCIETY

Little more than three months into Information Year, and the Government's Information Technology Advisory Panel makes its first major impact on the news pages. In its report "Cable Systems" (published in March) the Panel argues strongly in favour of an extensive commercially operated wide bandwidth cable system to cover most of the United Kingdom. The report has been received enthusiastically by the Government and private enterprise is being urged to make a start on the realisation of such a network as soon as possible.

It is easy to understand the Government's wish to exploit new technology in any way it considers will create jobs and wealth. Moreover, this could be a very significant move leading to the introduction of the so called Wired Society. Some new form of "cottage industry" could emerge in time, to replace the existing order of things. Many business activities could be conducted from home rather than from large central offices. Commuting to city centres could become a thing of the past for many thousands of workers.

Yet this exciting futuristic picture, with the many social implications that "cable" conjures up, is overshadowed in the report by a constant reference to the additional t.v. programmes that will be made possible. (We can hear the ironic cheers.) There are far more important and imaginative uses for a wide bandwidth cable system.

The emphasis on cable t.v. throughout the report gives grounds for suspecting that the ordinary consumer is going to be made to foot the bill for the establishment of a cable system, and the very profitable spin off will go to those commercial interests who will operate and use to their own business advantage the additional telecommunications facilities the wide bandwidth cable network will then make available. True, there are other attractive possibilities for the home-subscriber: viewdata and teletext information, remote metering and security monitoring, and so on. But these specialised services are likely to remain of minority interest.

If the resuscitation of Britain's industry and commerce depends much upon the use of computer and data services coupled into a national network permitting rapid access in all parts of the country, then it could be argued that industry and commerce should finance the cable system themselves, and not ride on the backs of the general public who will of course have to pay directly or indirectly for these additional entertain. ment programmes-for which there is questionable demand.

There are many questions to be asked about the proposed cable system -and remember few, if any, of us will escape its ramifications in the future. The Government's determination to press on at speed suggests that many of these questions will not be adequately aired and taken into account.
\rightarrow.

Readers' Enquiries

We cannot undertake to answer readers'letters requesting modifications, designs or information on commercial equipment or subjecte not published by us. All letters requiring a personal reply should be accompanied by a stamped self-addressed envelope.

We cannot undertake to engage in discussions on the telephone.

Component Supplies

Readers should note that we do not supply electronic components for building the projects featured in EVERYDAY ELECTRONICS, but the e requirements can be met by our advertisers.

All reasonable precautions are taken to ensure that the advice and data given to readers are rellable. We cannot however guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current at we go to prese.

Back Iseves
Certain back issues of EVERYDAY ELECTRONICS are available worldwide price 80 p inclusive of postage and packing per copy. Enquiries with remittance should be sent to Post Sales Department, IPC Magazines Lid., Lavington House, 25 Lavington Street, London SE1 OPF. In the event of non-availability remittances will be raturned,

Binders

Binders to hold one volume (12 issues) are available from the above address for $£ 4 \cdot 60$ inclusive of postage and packing worldwide.
Please state which Volume.

Subscriptions

Annual subscription for delivery direct to any address in the UK: $£ 11.00$. Overseas: $£ 12 \cdot 00$. Cheques should be made payable to IPC Magazines Ltd., and sent to Room 2813, Kings Reach Tower, Stamford Street, London SE1 9LS.

TWO-TONE TRAIN HORN for model rallwars

THIs simple model railway sound effect unit gives a reasonably accurate simulation of the sound made by the horn of a modern diesel or electric train. Two-tone horns of this type normally have the second tone about a third higher or lower in pitch than the original tone. Neither is actually a simple tone and both are quite complex signals containing strong harmonics. In this design the second tone is set a third higher in pitch than the first, and a second tone generator operating at a slightly lower frequency than the main one is used to enrich the output signal to give a more realistic result.

REMOTE TRIGGERING

The basic unit is operated using a push-button switch which is depressed for about 1_{2}^{1} seconds, with the change in pitch being produced automatically about half-way through this period of time. A simple add-on unit enables the horn to be remotely triggered by the train as it passes any desired point on the track. This unit will be treated separately after the description of the basic Two-Tone Horn.

The unit has a built-in battery supply and miniature loudspeaker.

THE HORN CIRCUIT

Fig. I shows the circuit diagram of the Two-Tone Horn in its basic form without the automatic triggering circuitry.

The two tone generators both use the familiar 555 timer devices in the conventional astable mode. IC3 is the main tone generator and this has its output frequency set at a little under 200 Hz by timing components R6, R7 and C6. IC2 forms the other tone generator, and VR2 is adjusted to produce an operating frequency that gives a realistic effect.
C5 and C8 couple the outputs of the tone generators to a mixer which is a simple passive type comprised of R5 and R8. R8 has been made much lower in value than R5 so that the signal from the main tone generator is made much stronger than the sig. nal from the other oscillator.

The output from the mixer is strong enough to drive a high impedance loudspeaker (LSI) at reasonable volume, but the output could be taken to a separate amplifier and loudspeaker if greater volume is required. In this case the loudspeaker would be

Completed Two-Tone Horn unit.
replaced by a 68 ohm resistor and the output signal would be taken from across this resistor.

MONOSTABLE

The monostable section of the unit uses the third 555 i.c. (ICl) connected in the appropriate manner. In order to trigger the device and produce a positive output pulse at pin 3 it is necessary for the trigger input at pin 2 of the device to be briefly taken below one third of the supply voltage. R1 and C2 produce a suitable trigger pulse each time Sl is operated and power is applied to the circuit. The length of the output pulse is controlled by the values of R 2 and C 3 , and is approximately $1 \cdot 1 \times \mathrm{C} 3 \times \mathrm{R} 2$ seconds. This gives a pulse length of roughly 0.75 seconds with the specified values.

There are several ways of altering the frequencies of the tone generators, and one of these is by altering the control voltage at pin 5 of each 555 astable. This voltage is nominally two thirds of the supply potential, and applying a higher voltage produces a reduction in the operating frequency of the astables. Applying a lower voltage gives an increase in operating frequency.
The output of ICl is coupled to pin 5 of both IC2 and IC3 by way of Dl and VR1, D1 blocking any current

COMPONENTS

Resistors
R1 $100 \mathrm{k} \Omega$
R2 $6.8 \mathrm{M} \Omega \pm 10 \%$
R3, 4, $6 \quad 10 \mathrm{k} \Omega$ (3 off)
R5 270
R7 $27 \mathrm{k} \Omega$
R8 27Ω
All 1 W carbon $\pm 5 \%$ except where stated

Capacitors

C1 $100 \mu \mathrm{~F} 10 \mathrm{~V}$ elect
$\mathrm{C} 2,3,4,6$ 100nF polyester,
C280 (4 off)
C5, $810 \mu \mathrm{~F} 16 \mathrm{~V}$ elect (2 off)
C7 470nF polyester, C280
Semiconductors
D1 1N4001 silicon
IC1, 2, 3555 timer (3 off)

Miscellaneous

VR1, $247 \mathrm{k} \Omega$ miniature horizontal preset (2 off)
B1 $9 \vee$ PP6 battery
LS1 $64 \Omega, 57 \mathrm{~mm}$ diameter miniature speaker
Push-to-make,
momentary action switch $0 \cdot 1$ in. matrix stripboard, 15 strips by 50 holes; case, $160 \times 100 \times$ 60 mm (Maplin type M 4005); battery clip; 7/0.2 equipment wire; M3 or 6BA mounting hardware.

Heading photographs: electric multiple unit train, 3 -rail d.c. system; and (inset) diesel multiple unit train-courtesy British Rail.

Fig. 1. Circuit diagram of the Two-Tone Horn. Note that S1 and B1 are only required if the remote triggering circuit is not used

Fig. 2. Stripboard layout of the Two-Tone Horn. Wires marked thus-* to be omitted if the remote triggering circuit is used. See Fig. 4 for the wiring of this additional feature.
flow through this path when IC1 output is high. At the end of the 0.75 second output pulse when ICl's output goes low, Dl does permit a current flow and the pin 5 terminals of IC2 and IC3 are pulled lower in potential. This gives the required increase in pitch, and VR1 is adjusted to give the appropriate increase in pitch.
The circuit would still give the twotone effect if Dl was to be replaced with a shorting link, but the setting of R3 would then effect the pitch of both the high and low tones. This would not be a good idea as it would make it difficult to set the correct interval between the two tones.

Although the circuit has a rather high current consumption figure of around 35 mA or so, battery operation is still feasible, even using a small nine volt battery such as a PP6 size as the unit will only be operated briefly and intermittently in normal use.

CASE CONSTRUCTION

A plastic case having approximate outside dimensions of $160 \times 100 \times$ 60 mm is large enough to comfortably accommodate all the components, including those of the automatic trig. gering circuit if necessary.

A grille for the loudspeaker is made in the front panel, and this can simply consist of 11 holes about 6.5 mm in diameter, as can be seen from the accompanying photographs. The loudspeaker is carefully glued in place behind the grille with the adhesive only being applied to the front rim of the speaker and none being smeared over its diaphragm. The loudspeaker must be a high impedance type incidentally, and should not have an impedance of less than 40 ohms. S1 is also mounted on the front panel, and assuming it is a standard push button switch it will require a 7 mm diameter mounting hole.

CIRCUIT BOARD

The component panel uses a $0 \cdot 1$ in matrix stripboard, 50 holes by 15 strips, and this can conveniently be a full length piece of board cut from a standard 5 in $\times 2 \cdot 5$ in or $5 \operatorname{in} \times 3_{4}$ in board. Fig. 2 gives the component layout and other details of the board. Make the two M3 or 6BA clearance mounting holes first, and then make 24 breaks in the copper strips.

View inside case showing both circuit boards mounted onto the base.

The board is then ready for the components and link wires to be soldered into place. Start with the link wires, then add the resistors and capacitors, and finally insert D1 and the three integrated circuits.

Fit the completed board on the rear panel of the case, well towards the top of the panel, using 6BA or M3 fixings. Then temporarily remove the board so that Sl, the loudspeaker, and the battery clip can be wired into the circuit. This wiring is also shown in Fig. 2.

ADJUSTMENT

With VR1 and VR2 both adjusted to their midway settings, operating Sl should give roughly the correct two-tone effect. If no tone is obtained or the output is obviously far from correct, check the component panel and wiring for the usual mistakes, like accidental short circuits between copper strips on the component board caused by pieces of excess solder.

When the unit is working correctly, repeatedly operate the unit and adjust VRI to give the correct second tone. Clockwise adjustment of VR1 increases the pitch of the second tone, anticlockwise adjustment decreases the tone. It should have no effect on the first tone.

VR2 is then adjusted to give the best effect. This will probably be obtained with the second tone generator a little lower in frequency than the main one, but this is really just a matter of experimenting a little to find the effect you like best. Do not have the two frequencies too close together as this will produce an unrealistic low frequency phasing effect, and it is likely that the two oscillators would have a tendency to lock onto the same frequency so that the second oscillator would become ineffective.

AUTOMATIC REMOTE TRIGGERING

Automatic operation is provided using a reed switch fitted under the track and operated by a bar magnet mounted under the train. The reed switch will only close briefly as the train passes, so it cannot be used to control the horn circuit directly as this circuit must be switched on for a period of about one and a half seconds. The reed switch is therefore used to trigger a monostable multivibrator which gives an output pulse of about 1.5 seconds and thus activates the horn circuit for the appropriate length of time.

THE CIRCUIT

Fig. 3 shows the additional circuit needed for automatic operation, and the original circuitry remains unaltered except for the removal of S1 and the battery, both of which are used in the new circuit.
The monostable uses another 555 i.c. in the standard configuration. R11 and ClO set the required pulse length of about 1.5 seconds, and whilst the output of IC4 is high, power is supplied to the horn circuit via emitter follower buffer stage, TR1. This is a power transistor as there is a high surge current to the horn circuitry at the beginning of each pulse due to Cl charging up. There is a small voltage drop across TRI, but this is not large enough to have any significant effect on the horn circuitry.
R9 normally holds the trigger input (pin 2) of IC4 at virtually the positive supply voltage, but briefly operating Sl produces a brief negative input pulse to IC4 as C9 charges via R9 and the horn is operated. The reed switch connects to SK1, and if this is briefly activated it obviously has the

TWO-TONE TRAIN HORN for modet rallways

Fig. 3. Circuit diagram of the remote triggering device. The reed switch is connected via SK1.

Fig. 4. Stripboard layout of the Automatic Remote Triggering circuit. Refer also to Fig. 2 for the wiring-in of this board to the Horn generating board.

Top view of the unit clearly showing the speaker grille.

COMPONENTS

Resistors
R9 $100 \mathrm{ks} \Omega$
R10 $1 \mathrm{M} \Omega \pm 10 \%$
R11 6.8M $\pm 10 \%$
All $+W$ carbon $\pm 5 \%$
except where stated

page 305
Capacitors
C9 10 nF polyester, C280
C10 $0.22 \mu \mathrm{~F}$ tantalum bead
Semiconductors
TR1 BD131 silicon npn IC1 555 timer

Miscellaneous
SK1 3.5 mm jack socket
PL1 3.5 mm jack plug
S2 s.p.s.t. miniature toggle
0.1 in . matrix stripboard, 11 strips by 17 holes; miniature reed switch; magnet (see text); two way lead.
£14.50
Both units

Remote triggering board. The leads of TR1 must be carefully preformed as shown.
same effect as operating Sl. If the train happens to stop with the magnet over the reed switch, or Sl is operated for several seconds, there will still only be a brief trigger pulse to IC4 so that the output pulse will not be prolonged and proper operation of the circuit will be maintained. R10 discharges C9 almost immediately when Sl or the reed switch open, and the circuit is then ready for the next operation.

S2 is the on/off switch, and is necessary because IC4 will consume current from the battery (about 8 mA) even when the horn circuitry is not operating.

CONSTRUCTION

The additional circuitry is accommodated on another piece of 0.1 inch matrix stripboard measuring 11 strips by 17 holes. Fig. 4 gives details of this board and the additional wiring of the unit. Note that in the autornatic version of the unit, S1 and the battery clip are wired as shown in Fig. 4, and not as shown in Fig. 2. The front panel must be drilled with two more mounting holes for S2 and SK1, and on the prototype these are mounted above and below Sl respectively. (See photo of finished unit.)

When the components panel has been completed and wired to the rest

Finished assembly with case lid folded down.
of the unit it is mounted on the rear panel of the case, on the left hand side and below the main board. This leaves sufficient space for the battery on the lower right hand side of the case.
A suitable reed switch for this application is the "miniature" type sold by Maplin Electronic Supplies, and the "small" magnet sold by Maplin will operate this at a distance of about 10 or 11 mm , which should be sufficient. The "large" Maplin magnet will operate the miniature reed switch at a distance of up to about 26 mm , and with dimensions of $25.2 \times 6.3 \times 6 \cdot 3 \mathrm{~mm}$ it can easily be fitted into trains that are 00 or a larger gauge.
The reed switch connects to SKl on the Two-Tone Horn via a twin lead terminated in a 3.5 mm jack plug. It is not essential to use a screened lead, but using this will reduce the
risk of spurious operation due to stray pick-up in the lead.

An important point to bear in mind is that the reed switch must be parallel to the bar magnet in order to obtain a good maximum operating distance. It is unlikely that the reed switch will operate at all with the magnet at right angles or positioned end-on to the switch.

In practice this means that it will either be necessary to fit the reed switch across the track and the magnet across one of the items of rolling stock, or the reed switch along the centre of the track with the magnet similarly mounted in one of the pieces of rolling stock. With a large layout it is quite acceptable to have reed switches fitted to the track at several points and wired in parallel so that the horn is operated whenever the train passes one of the reed switches.

JACK PIUG \& FAMILY.. By doug baker

By Dave Barrington

Display Accessories

With so many piojects using digital readout displays. we thought readers may be interested in news of two small items that have reached us.

After marking out a rectangular area, drilling a guide hole at the four corners and then drilling a series of holes joining up the four, it always seems to be a problem to file a neat "square" looking opening for the displays

To overcome this, front panel display bezels are being manufactured and used more and more to hide "ragged" edges. Most of these bezels necessitate drilling extra mounting holes, but now some companies are producing snap-in bezels. One of these is Broadoak Co., who are producing a range of sizes from 35 mm to 203 mm .

A feature of these bezels is the facility for sliding colour filters into slots in the rear of the bezels. The assembly is then pushed in to the panel cutout from the front and snaps into position. Serrated plastics clips hold the bezel firmly in position.

Black bezels are standard with a choice of red, green, amber and clear filters. Other colour bezels can be moulded to special order

Further information, pirces and details of stockists can be obtained from Broadoak Company. Dept EE, Broadoak House, Cricket Green. Hartley Witney, Hants RG27 8PH.

Snap-in display from Broadoak.

On the subject of filters, S. E. Noon are able to supply cut-to-size blanks, discs. filters and covers in acrylic, p.v.c.. or poly. carbonate. They are available in 1 off to 1,000 off quantities with a choice of colours and thicknesses.

The edges of the filters can also be orofile machined to enable flush mounting with the front panel

For more details contact S. E. Noon, Dept EE, 59 Twickenham Road, Isle. worth, Middlesex TW7 6 AR

In Tune

Readers who've had an hankering to play a musical instrument but never had the patience, time or talent will welcome a new musical instrument available in the UK that is claimed to allow the performer to "turn-in" a professional rendition in hours as against months or years of practice.
Using microtechnology, the Suzuki Omnichord is a portable instrument that is designed to be played in various ways. It can be strummed like a guitar, even though it has no strings to tune or break Finger touch sensitive "SonicStrings" are activated by the touch of your fingers

Suzuki Omnichord from Craftmaster

It will sound like a piano or organ and by pressing any of its 27 major, minor or seventh chord buttons produce vibrant tones through built-in speakers. It can combine either of these features with a "walking bass". It automatically plays the correct bass notes in rhythm with your selected chord.
The sound of drums can be included and it's possible to key in a full electronic rhythm section with many different rhyth mic patterns. All these features can be played individually or in combinations.

The Omnichord is available through local music shops, department stores or direct from the distributors at £99, includ. ing VAT. Further information can be obtained from Craftmaster UK Ltd., Dept EE, Tower House, Lea Valley Trading Estate, Edmonton, London N18 3HR.

Catalogues

Readers just starting in computers may care to send off for the latest book catalogue from Kuma Computers

More like a "broadsheet" than a catalogue, the list includes new books on the BBC microcomputer, 2×81 and the Sharp MZ.80K

Copies can be obtained free of charge by writing to Kuma Computers, Dept EE, 11 York Road, Maıdenhead. Berks SL6 15 Q .

A comprehensive toolkit service ranging from an off-the-shelf toolkit of their own design to individual specialised toolkits to customer's particular requirements and specification are one of the services outlined briefly in the latest Toolrange Ltd catalogue.

A large section on toolkits may be found In the 1982/3 catalogue, together with sections covering over 2,500 tools and production aids.
The catalogue is available free from Toolrange Ltd., Dept EE, Upton Road, Reading RG3 4JA.

Constructional Projects

Two-Tone Train Horn

All items called-up for the Two-Tone Train Horn are standard "off-the-shelt" components and should not cause any purchasing problems.

The transistor type BD131 used in the automatic operation circuit is listed by Benning Cross Electronics. Electrovalue. Magenta, Rapid and Watford Electronics.

Car L.E.D. Voltmeter

The transparent case for the Car L.E.D. Voltmeter was an old jewellery presenta tion type case. However, the case can be any suitable type, such as a transparent cassette case, even a small metal box.

The rest of the components for this project are readily available from most of our advertisers.

Big Nine Indicator

No buying problems should be encountered when shopping around for components for the Big Nine Indicator

We have found that the TIS43 unijunction transistor is the most commonly stocked device and is available from most advertisers.

Public Address System

We do not expect any component purchasing problems for the first instal. ment of the Public Address System, although some "specials" will be called up in later parts and be dealt with as required.

The only semiconductor that could prove troublesome is the ZN459 low noise i.c. We are not aware of any alternative for this device, but it is stocked by Watford Electronics.

Lightning Chess Buzzer

All components for the Lightning Chess Buzzer are readily available items and should not present any buying problems.

Readers may not wish to use a wooden case for this project and any case may be used here.

OLDER readers will remember the golden days of motoring when a car would have an ammeter as well as an ignition light, and sometimes a voltmeter as well! The ammeter, a centre zero type, indicated the current flowing into the battery from the generator when the engine was turning over rapidly, or flowing out of the battery when the engine was idling.
If the engine was turning over very slowly, or actually stopped, a "cutout" disconnected the generator to prevent it drawing current from the battery. The load on the electrical system, ignition, lights, semaphore style trafficators, horn, windscreen wipers or whatever, was then supplied by the battery and indicated on the ammeter as negative or discharge current. The needle in this case moved to the left of its normal upright position, whilst positive or charging current was indicated by its moving to the right.
The starter current was of course not indicated on the ammeter as it is far too large and was therefore not included in the ammeter circuit.

BATTERY CHECK

One thus had an unambiguous check on the battery, in that a low or
zero ammeter charge rate, or worse still a discharge, when driving normally was a clear warning of problems ahead. Either the generator or regulator was faulty or the battery was in such a poor condition that it would not accept charge.
Nowadays a car usually has only an ignition light, which is far less informative. An ammeter can te fitted, but this is little complicated as it means finding a suitable place to break into the battery circuit. Whilst not quite as informative, a voltmeter will still give a lot of useful information about the condition of the battery and charging equipment, and it is much easier to install. It is simply connected across the supply to any equipment, such as the windscreen wiper, which is controlled by the ignition switch. The voltmeter described here uses l.e.d.s (light emitting diodes) rather than a conventional meter with a pointer. It thus needs no dial-light for use after dark, and there is no danger of the meter needle sticking as sometimes happens with conventional meters.

L.E.D. VOLTMETER

Fig. 1 shows the circuit diagram, which is very simple. Resistor R1 and

Zener diode Dl form a shunt stabi. liser; the voltage at their junction remains at $5 \cdot 6 \mathrm{~V}$ (or nearly so) regardless of the battery voltage. The emitters of the four transistors are all returned to this point, whilst the bases of these transistors are connected via 100 kilohm resistors to tappings on a string of resistors (R10 to R14) across the battery supply.

Assuming variable resistor VR1 is set approximately half-way, it will be seen that point X is at a potential equal to half the battery voltage, roughly 6 V if the engine is not running. Thus TR1 is just starting to conduct and l.e.d. D2 just glows.

As the voltage across the battery rises, due to the generator or alternator charging it, TR2 turns on and lights D3, then TR3 lights D4 also and finally, at about $14 \cdot 75 \mathrm{~V}$, D5 lights.

TEMPERATURE
 COMPENSATION

Resistors R2 to R5 limit the current through the l.e.d.s, whilst resistors R6 to R9 and diodes D6 to D9 serve three purposes. First, for example, if D6 were shorted, then the voltage at the junction of VR1 and R11 could never exceed $6 \cdot 3 \mathrm{~V}$ approximately, that is the 5.6 V of the Zener diode plus 0.7 V base-emitter voltage of TR1. Hence the other transistors would not turn on as the battery voltage increased. Secondly, by including D6 to D9 and making R6 to R9 as high as 100 kilohms, we achieve a less sharp battery turn-on voltage

COMPONENTS

Resistors

Semiconductors
D1 BZY88 C5V6 400 mW .
$5 \cdot 6 \mathrm{~V}$ Zener diode
D2.5 TIL220 0.2 inch red l.e.d. (4 off)
D6-9 1N4148 silicon signal diode (4 off)
TR1-4 BC109C silicon non (4 off)

Miscellaneous
VR1 100Ω miniature horizontal preset
0.1 inch matrix stripboard, 18 strips by 28 holes; transparent plastic case, $75 \times 55 \times 30 \mathrm{~mm}$; 7/0.2 equipment wire; white cardboard (for escutcheon); rub-down lettering. excluding case

Fig. 1. The complete circuit diagram of the Car L.E.D. Voltmeter. Note that the 12 V supply for this circuit is picked up from the car battery supply and that the positive connection must be made to a point after the ignition switch, thus ensuring that there is no drain on the battery with the ignition switched off.
for each l.e.d.; in fact from just glow. ing dimly to full brightness corresponds to about half a volt change in battery voltage, giving a more progressive indication as one l.e.d. takes over from the previous one. Thirdly, the change of transistor base-emitter voltage with temperature is almost exactly matched by the change of forward voltage of the corresponding diode, preserving accuracy over a wide temperature range.

CIRCUIT BOARD

The prototype voltmeter was constructed on a piece of 0.1 inch matrix stripboard, 18 strips by 28 holes as shown in Fig. 2. Great care should be taken to ensure that all the necessary breaks in the copper strips are properly carried out. It is easy to forget the odd break, and also, particularly if using a twist drill, to leave an odd whisker of copper still bridging the gap at one side. Using
a proper Vero stripboard cutter avoids this problem, but a drill is quite adequate if used carefully and the breaks examined with an eyeglass.

Proceed to assemble the components into the board, starting with the resistors, diodes and transistors and finally insert the four l.e.d.s, D2 to D5, so that they stand approximately 20 mm above the board. Ensure that the polarities of the l.e.d.s are correctly observed.

The piece of stripboard was chosen to be a snug fit in a trans. parent plastic box with a hinged lid, approximately $75 \times 55 \times 30 \mathrm{~mm}$. A piece of glossy white cardboard was cut out to form an escutcheon (see photo) and holes for the l.e.ds to show through were cut with a two-hole punch as used for file-paper. A scale was marked below the four holes, in half volt intervals
from 11.5 V to 15 V , using rubdown transfers. The scale was positioned so that the four l.e.d.s appear at $11.75 \mathrm{~V}, 12.75 \mathrm{~V}, 13.75 \mathrm{~V}$ and $14 \cdot 75 \mathrm{~V}$. Finally, a length of light flex was attached to the board and passed through a hole in the side of the case.

View inside the clear plastic case of the voltmeter showing the push-fit of the stripboard assembly.

Fig. 2. The stripboard layout for the Voltmeter. L.E.D.s D2 to D5 must be in the positions shown.

SETTING UP

If you have access to a laboratory. style variable output voltage power supply, this is the easiest way to set the circuit up. Simply set the output voltage of the supply to $12 \cdot 75 \mathrm{~V}$ and adjust VR1 so that D3 is at half brilliance. D4 and D5 will be extinguished, whilst D2 will be at full brightness for comparison.

Alternatively, the unit can be set up in a vehicle but you will need the usual multimeter, which every electronic hobbyist ought to possess. Connect the L.E.D. Voltmeter between earth (chassis) and a live point "downstream" of the ignition switch. Take great care to observe the correct polarity, to avoid any possibility of damage to the voltmeter. The author has checked that the prototype sur-
vives being connected to 12 V supply the wrong way round but can't guarantee that this will always be the case.

Close-up of the stripboard assembly. Note the slightly angled corners of the board to fit into the radiused corner of the case.

With the L.E.D. Voltmeter connected and VR1 set to minimum resistance, D2 should light, and possibly D3 and D4 also, with a newish battery in hot weather. Measure the battery voltage with a multimeter and set VR1 so that the indication on the L.E.D. Voltmeter agrees with it. (In cold weather it may be necessary to start the engine to bring the voltage up over $11 \cdot 5 \mathrm{~V}$.) It now only remains to fit the escutcheon, close the plastic box and fit it to the dashboard or any other convenient flat surface, with double sided sticky tape.

USING THE VOLTMETER

The Voltmeter enables one to keep an eye on the voltage of the electrical system under all the various conditions of everyday use. The "normal" voltage will vary depending upon engine speed, the load on the electrical system (headlights, windscreen wipers, etc.) and the temperature. There will also be minor differences between makes of car and even between different cars of the same make and model, but the following is a general guide as to what to expect.

Driving at normal speed, lights, wipers, rear windscreen heater all off: 14.5 to 15 V , that is three l.e.d.s on, the fourth just glowing.
Driving at normal speed, lights, heater fan, all on: $13 \cdot 5$ to 14V, that is, two l.e.d.s on, possibly three.
Engine idling: depends very much on idling speed and whether any electrics on; anything from one l.e.d. just glowing to two l.e.d.s on.
Once having installed the L.E.D. Voltmeter, the important thing is to learn to recognise what is normal for your car. Then, if there is a departure from the normal pattern, you will have advance warning that either the generator/alternator or the battery needs attention.

Finished unit with the scale markings on the cardboard escutcheon clearly visible.

BOOK REVIEWS

ZX81 BASIC BOOK

Author	Robin Norman
Price	$£ 4.95$
Size	$216 \times 134 \mathrm{~mm} 167$ pages
Publisher	Newnes Technical Books
ISBN	0408011785

Anyone familiar with the $\mathrm{ZX81}$ manual will feel at home with this book. It is written in the same easy to read light-hearted style as the manual and is even printed using very similar type faces. It is another in the long line of books on the ZX81 which have appeared recently but one which is above average in design and presentation and which would make a useful companion to the manual.
There are thirty chapters in all. The author starts by defining some of the many terms used in computing which beginners often find confusing and which some other books take for granted. Programming is introduced step by step and the author assumes the role of a big brother who is looking over the shoulder of his younger brother. I particu larly like the way in which the reader is guided into making mistakes initially so that the consequences of those mistakes can be discussed
It is encouraging to see flowcharts being used. The impor tance of flowcharts for writing structured programs cannot be over-emphasised. The book concludes with five appendices. A glossary of terms and sample answers to exercises are both useful inclusions and a 15 program appendix, 12 of which are written for 1 K systems, should delight the beginner. All in all, the book is a good buy and fairly priced
J.W.T

BASIC ELECTRONICS

	on earlier work by Do
Price	£6.45 soft covers
Size	$210 \times 135 \mathrm{~mm}, 522$ pages, many graphs and line drawings
Publisher	Hodder and Stoughton Schools Cou "Proiect Technology"
BN	034023425

This is a text book, and as such it is primarily intended for use in a classroom or organised club situation, but nevertheless it would still make a useful addition to the home enthusiast's library.
Basic Electronics is actually published in five parts con taining a total of eleven sections and this edition contains the complete set. The course has been designed to meet the needs of wide age and ability ranges and its comprehensive subject matter provides the student with the theory and background information necessary to give a good understanding of electronics. It combines principles with practical applications and includes step by step instructions on how to build 21 useful projects.

True to text book form, this work is set out in logical order, each section accompanied by examples, experiments and questions, the answers of which are given at the end of each section. It's well written and easy to follow and under guidance could form the backbone of an excellent electronics course.
G.P.H.

ELECTRONICS-QUESTIONS AND ANSWERS (Second edition)
 Author lan Hickman
 Price £1.95 soft covers
 Size $\quad 165 \times 110 \mathrm{~mm}, 150$ pages, many with line illustrations
 Publisher $\begin{aligned} & \text { Butterworth \& Co Ltd, "Newnes Technical } \\ & \text { Books" }\end{aligned}$ ISBN 0408005785

Ne of a series of "Questions and Answers" books from Newnes, this one, by respected technical author Ian Hickman, covers most aspects of electronics from first prin
ciples to some quite advanced techniques employed in this field, and takes the reader to a useful level of practical knowledge.
The general format for these books is to have a question followed by the answer in clear and concise terms, avoiding the use of complicated mathematical formulae so the begin ner and student alike can follow it through.
The questions follow a logical order to guide the reader through the subject, ranging from the most fundamental "what is electronics? to "how does a laser work?" However the question/answer format does somewhat limit this book as a ready reference work, making it difficult to refer to a particular theory or principle. But having said that, its primary function is as an introduction to electronics, and judging by the first edition sales of over 25,000 copies, it adequately fulfils this rôle
Incidentally, Hickman's additions to the second edition include sections on digital techniques, test gear and elec tronic music.
G.P.H.

LABORATORY MANUAL FOR THE ART OF ELECTRONICS
Authors Paul Horowitz and lan Robinson
Price $£ 12.00$ Hardcover; $£ 4.95$ Paperback
Size
Publisher Cambridge University Press
ISBN $255 \times 175 \mathrm{~mm}, 144$ pages

0521242657 (Hardcover)
0521285100 (Paperback)

This laboratory manual is intended to accompany The Art of Elecronics by Horowitz and Hill (Cambridge University Press) which was reviewed in the March 1981 issue of Everyday Electronics. The manual consists of 23 lab exer cises that are used at Harvard University in their Labora tory Electronics course. The instruments and other electronic parts required are listed. The prototyping breadboard referred to for use in setting up the experiments is an in-house variety, but no problem should arise in the employ ment of other types of breadboards.

The appropriate text in the Art of Electronics is indicated at the start of each exercise, as required reading. The exercises start with d.c. circuits and Ohm's law, and proceed through capacitors, diodes, transistors, op-amps, oscillators and power supplies, to logic and so to microprocessors.

The spiral binding permits the book to lie flat on the table or bench; wide margins "leave room for valuable scribblings." A worthy practical back-up for The Art of Electronics Possessors of that fine opus will need no urging to acquire this Lab Manual and thereby further extend its value and teaching power.

FEB
INTRODUCING MICROPROCESSORS

Author	Ian R. Sinclair
Price	$£ 4 \cdot 50$
Size	$215 \times 138 \mathrm{~mm}$, Paperback, 121 pages
Publisher	Keith Dickinson Publishing Ltd
ISBN	0097266010

AlTHOUGH an excellent introduction to microprocessors, this book does need a fair understanding of the electrical functions involved, or at least plenty of concentration when reading it. As the author says, "The greatest problem which faces anyone who is going to use a microprocessor is knowing where to start; the greatest problem which faces me is how to tell you." Later in the book he adds, "However complex these devices may appear, they consist only of three basic gate types along with large numbers of flip-fiops. It's the arrangement of the goods that counts, as Raquel Welch once observed."
Starting with digital circuits that control, compute and make the "mighty chip" so valuable, the theme continues through the microprocessor, the other chips and the regis ters. Loading and storing the instructions comes next fol lowed by more program operations and finally how to go about programming.
Not an easy-reading book-but a good and careful study will be rewarded with a sound understanding of the basics. If you are prepared to sit down and learn, this is the work for you.
D.J.

THis month's topic is concerned mainly with devices which convert electrical energy into light energy, or light energy into electrical energy.

ELECTRICITY INTO LIGHT

Devices which convert electrical energy into light energy include filament lamps, fluorescent lamps, neon lamps and the xenon lamps which are used in photographic flash-guns.

In filament lamps the energy of the moving electrons is transferred to the tungsten atoms of the filament. They become excited and eventually release the energy in the form of heat and light.

In neon and xenon tubes, electrons move at high velocity through the rarified gas. As they strike the atoms of the gas they give energy to them. Later this energy is released as light.

The sodium lamps and mercury lamps so commonly used for street lighting work on the same principle. Sodium and mercury are not gases at ordinary temperatures but they are vaporised as the lamp warms up.

Fluorescent lamps work on a slightly different principle. The tube contains mercury vapour and argon. When a current passes, these gases are excited as explained above and give out visible light. They also emit a large quantity of ultraviolet light. The tube is coated on the inside with a fluorescent substance which absorbs the ultraviolet light and re-radiates the energy as visible light.

Developments in solid-state electronics have provided us with yet another device for converting electricity to light, the light-emitting diode, or l.e.d. for short. The way this works was described in Part 3.

Nowadays we have l.e.d.s in many shapes and sizes. They can be made to emit light of several different colours. The commonest ones emit red light, but l.e.d.s which emit yellow, orange or green light are available. A blue light emitting diode has just been developed.

There are also infra-red emitting types such as the TlL38 used in Experiment 8.3.

Light emitting diodes can also be constructed to operate in the manner of a laser. They produce a high-intensity beam of coherent light (usually infra-red) which can travel for great distances without significant loss. This technique is becoming important in telecommunications.

Modulated laser light passing along optical fibre replaces the conventional copper cables of the telephone system. Mention of lasers reminds us that many different types of lasers are used for light production, though we do not have space to go into details here.

DISPLAY MODULE

The first task this month is to build the single digit 7 -segment display module. The finished assembly is to be mounted just behind the Minilab sloping control panel so that the display fits into the rectangular window beneath ME1.

The complete circuit diagram for the module is shown in Fig.8.1. The components have been annotated such that they follow on from all other permanently installed Minilab components. The annotations of the experimental components to be plugged into the Verobloc will in turn follow on from these.
The display, X1 has seven segments, (hence its name), each consisting of an l.e.d. Two or more l.e.ds can be lit to form an illuminated numeral. Displays of this kind are commonly used in digital watches, cash registers, calculators, videorecorders and in many other ways. The circuit shows how the display may be controlled by a cmos i.c. This is designed to perform the following functions:
(1) Accept four inputs which are equivalent to the numerals 0 to 9 in binary coded decimal (b.c.d. see below).
(2) Decode the b.c.d. and provide seven outputs to turn the seven segments of the display on or off.
(3) Transfer the input states to a set of latches, when the 'store' (or latch) input (pin 5) is taken from low to high.

Binary coded decimal is a way of expressing decimal numbers in binary form. A single decimal digit of b.c.d. has one block of four binary digits. The numeral 0 is represented by 0000,1 is represented by 001,5 by 0101, 9 by 1001, and so on. Two-digit decimal numbers are represented by two blocks of four digits. For example 19 is represented by 0001,1001 , even though the true binary equivalent of 19 is 10011 . B.c.d. is a code, not a strict mathematical way of writing out binary numbers, and it is very convenient in electronic circuits. Usually we represent 1 by a high voltage (+5 V or +6 V), and 0 by a low voltage (0 V). To input 5 into ICI we make pins 2 and 7 high $(4+1=5)$, and pins 1 and 8 low.
When the lamp test ($\overline{\mathrm{LT}}$) input is made low, all segments light. When the blanking input $\overline{\mathrm{BL}}$ is made low, all segments are switched off. Normally we hold LT and BL inputs high. The display also goes blank if the b.c.d. input is greater than nine.

DISPLAY MODULE CONSTRUCTION

The components for the display module are to be mounted on a piece of Veroboard size 10 strips by 24 holes, identical to the piece given free with our March ' 82 issue.

The layout of the components on the topside of this board and the breaks to be made on the underside with complete wiring up details are shown in Fig. 8.2. A hole needs to be drilled in the Minilab Control panel to accommodate a 6BA screw which will hold the module in place. Fixing details for this are also shown in Fig.8.2. The hole needs to be made 10 mm left of the TB4 left-fixing screw. A countersunk cross-head type will be neater in appearance.

Make all the necessary breaks along the tracks on the underside of the board using either a small drill bit or a spot face cutter. A wire wrap type socket for XI was specified so that the height of XI above the board could be varied to suit. The slot in the board provides lateral adjustment.

Fig. 8.1. The circuit diagram for the DISPLAY MODULE.

The Minilab Control Panel with the final module fitted.

DISPLAY MODULE

Fig. 8.2. The Module is to be built on a piece of 0.1 inch matrix stripboard and fitted beneath the window in the Control Panel. The layout of the components on the topside of the board, breaks necessary on the underside and complete interwiring details are shown above. The method of fixing the board to the Control Panel is seen below.

Before carrying out any soldering on this board, find the correct position above the board for XI so that it fits comfortably in the Control panel window. With this done, the remainder of the components may be assembled followed by the flying leads. Do not insert IC2 until all soldering has been completed. Follow the wiring plans and solder in S8, and the connection to B8 -ve . The +6 V line to S 8 can conveniently be picked up from SS, the oscillator supply line from B5 + ve. Finally insert IC2, fix the module in place and connect the leads to TB4.

EXPERIMENT 8.1

Using the 7 -segment display module
The circuit diagram for this experiment is shown in Fig.8.3. The circuit is driven by a series of pulses from the Astable Module (see Part 6). These are counted by a pair of flip-flops, as described in Part 4 (Fig.4.19). There are only three outputs, one (inverted) from the Astable Module and one from each flip-flop. These are fed to the " 1 ", " 2 ", and " 4 " inputs on IC3. The fourth input (" 8 ") is held permanently low. Hence we get a series of eight input states running from 0000 (decimal 0) to 0111 (decimal 7), which is repeated indefinitely.
The layout of the components on the Verobloc is shown in Fig. 8.4.
When power is applied to all circuit elements, the display should now run through the counting sequence 0 to 7. If the display shows odd-looking characters, you probably have a bad contact between IC2 and the display or the wires to a, b, c and d on TB4 are wrongly connected. Check the soldering of the resistors. It is also possible that one or more of the resistors is incorrectly sited. If you obtain proper numerals, but in the wrong order, possibly including blanks, the input connections to IC2 are wrong.
Remove the wire from M4 and push it into socket A4 instead. This makes the store (L) input high; the display no longer follows the changes in the flip-flops but shows the numeral it was displaying when you made this input high. Make the input low again (back to M4) and the 0 to 7 sequence is resumed.
The Display Module will be of great use in Part 12 of the series.
To further illustrate the function of the store input, connect the lead from L (TB4/5) to Verobloc position $H 1$, a $10 \mathrm{k} \Omega$ resistor from Jl to strip M, and wire S1 between strip A and $G 1$. Press Sl at any time during the counting sequence to latch the display. Releasing SI causes the display to follow the input data again.

LIGHT AND CONDUCTION

The light-dependent resistor (l.d.r.) or photo-conductive cell does not convert light energy to electrical energy but, since it is used in much the same way as many of the light-to-electricity converters, we will deal with it here. It consists of a disc of
semiconducting material (usually cadmium sulphide) with two terminals.

Under low light, or in darkness, it has very high resistance, in the region of $10 \mathrm{M} \Omega$. When light shines on it, the energy of light causes electron-hole pairs to be produced. This provides plenty of charge carriers, so the resistance of the material falls. In bright light it may fall as low as 100Ω.

EXPERIMENT 8.2

A light-triggered switch
The circuit for Experiment 8.2 is shown in Fig. 8.5.

The l.d.r. (PCCI) and VRI form a potential divider. As light level increases, the resistance of PCCl decreases and V_{A} rises. Set up the circuit on the Verobloc according to Fig.8.6. Note that R25 is made up of two 1008 resistors in parallel. Cover the l.d.r. with a piece of black cloth or thick cardboard. Turn VR1 until D1 l.e.d. comes on. Then carefully turn VRI back until the l.e.d. just does not go off again. A few trials will find the correct position.

When VRI is finally adjusted the l.e.d. is on. Remove the cover from the l.d.r. What happens to the l.e.d. If you have set VRI correctly, it should go off. If it does, cover the I.d.r. again. Does the I.e.d. come on?

EXPERIMENT 8.1

Fig. 8.3. A simple counting circuit to demonstrate the operation of the DISPLAY MODULE, Expt. 8.1.

Fig. 8. 4. The layout of the components on the Verobloc for Expt. 8.1.

In darkness V_{A} is low, TR4 is off, making V_{c} high, which causes TR5 to be turned on. Current is flowing through R25. so V_{D} is about IV (assuming the current is $20 \mathrm{~mA}) . V_{B}$ must be higher than V_{D} by the emitter-base forward voltage drop, which is 0.6 V , so V_{B} must be 1.6 V . By adjusting VRI we make V_{A} match V_{B}. No base current flows to TR4.

When the light falling on PCC1 is slightly increased, V_{A} rises slightly above $1 \cdot 6 \mathrm{~V}$. Base current flows and TR4 begins to turn on, V_{c} begins to fall and TR 5 begins to turn off. As TR5 turns off, the current through D1, R24, TR5 and R25 is reduced. This reduces the p.d. across R25 and V_{D} falls. V_{B} must stay 0.6 V higher than V_{D} but, since V_{D} has fallen, $V_{\text {B }}$ must fall by an equal amount.

The increasing difference between V_{A} $(=1.6 \mathrm{~V})$ and V_{B} (falling below 1.6 V) leads to an increasing base current to TR4, turning it further on. Thus a slight increase in light brings about a sharp trigering action, turning DI on abruptly.

Once the l.e.d. is off, no current flows through $R 25 ; V_{D}=0 \mathrm{~V}$ and so $V_{B}=0.6 \mathrm{~V}$. To turn the l.e.d. on again, V_{A} must be made lower than 0.6 V . There is a gap between 0.6 V and 1.6 V where changes in V_{A} have no effect. Thus, very small changes in light level do not affect the circuit.

If the circuit is set to turn on the l.e.d. at sunrise, a small reduction in the light caused by a cloud passing over the sun does not turn the l.e.d. off again.

This circuit is useful for giving a sharp "snap" action. It is a good example of the

EXPERIMENT 8.2

Fig. 8.5. Circuit for a lighttriggered switch using a Schmitt trigger arrangement.
The layout.

Fig. 8.6. The component layout on the Verobloc for the circuit in Fig. 8.5.
use of positive feedback. A circuit which has this kind of action is generally known as a Schmitt trigger.

It is interesting to investigate the effect of altering the value of R25 to 1008 or 560Ω. This affects the difference between the switch-on level and the switch-off level.

LIGHT TO ELECTRICITY

A photodiode, examples of some types and circuit symbol are shown in Fig. 8.7 generates an e.m.f. when light falls on it. It is an example of a photo-voltaic cell. The energy from the light causes the production of electron-hole pairs at the pn junction. Since these are in the field of the imaginary cell at the depletion region, the holes and electrons move in opposite directions and cannot re-combine. This gives rise to an additional e.m.f. across the junction. This is proportional to the amount of light falling on it.

The silicon photoelectric cell (solar cell) operates in a manner similar to the photodiode, but is designed to have a large area

Fig. 8.7. (a) Circuit Symbol for a photodiode (b) and (c) two package styles for light sensitive types (d) package for an infra-red photodiode (e) and (g) two array geometries from the many solar cell types available (f) circuit symbol for a photovoltaic cell-solar cell.

Fig. 8.8. Two common packages for phototransistors and circuit symbols for types with and without a base connection.
for receiving light and a very low resistance, so allowing the additional e.m.f. to produce the maximum amount of current.
A phototransistor (Fig. 8:8) need not have a base connection. The action of light at the collector-base junction generates an increased e.m.f. which causes the equivalent of a base current to flow from the collector to the base. Transistor action amplifies this small current, resulting in a relatively large collector current.

EXPERIMENT 8.3
 Infra-red communication

We can use the radiation from an infrared l.e.d. to carry a signal to a photodiode, (see Fig. 8.9). The transmitter uses a Darlington pair (see last month's article) to vary the brightness of the infra-red l.e.d. D4 in accordance with the waveform of the signal. Here we apply a square-wave signal at $100 \mathrm{~Hz}, 1 \mathrm{kHz}$ and 10 kHz (available from the Astable Module). This is controlled by SI, allowing Morse Code signals to be sent.

The beam is picked up by a photodiode D5. This is reverse-biased. Variations in the amount of radiation reaching DS cause variations in the potential at A. These are amplified by the Amplifier Module and heard in the Minilab speaker, LSI.

For a demonstration, you can set up both transmitter and receiver on the same Verobloc. The loudspeaker should emit a note whenever $\mathbf{S 1}$ is pressed. To check that this is really an infra-red transmission, place a piece of card between D4 and DS
to interrupt the beam. The tone in LSI should cease when this is done.

It is better to have the transmitter on a separate board and to increase the distance between D4 and D5. The circuit works up to a distance of 1 metre.
A greater distance can be covered if you use reflectors and have lenses to focus the beam. If there is a lot of stray infra-red radiation in the room, it may swamp the transmission. Switch off any filament lamps near the workbench.
To transmit across a brightly lit room (or outdoors) put a shield of black paper around D5 so that it can receive radiation only from the direction of D4.
Try to pick up the signals from the controller of an infra-red remote-control TV set. Try to improve transmission by using various lens systems. A lens of large diameter would catch a large amount of radiation from D4 and direct it all to D5. Try using mirrors to send the beam round corners.

Unfortunately, a microphone does not provide a large enough signal to work the transmitter directly. If you make another

EXPERIMENT 8.3

Fig. 8.9. Circuit diagram for a simple infrared communication system. The experiment uses two Minilab modules.

Fig. 8.10. The layout of the components on the Verobloc for the circuit in Fig. 8.9.

Answers to Part 7

7.1. Collector.
7.2. Common base connection.
7.3. Multiply the two individual gains together.
7.4. C6, C7.
7.5. They are specially manufactured to have low noise.
7.6. Negative.
7.7 To adjust output to $O V$ when both inputs are equal.
7.8. -3.5 V .
7.9. $-1 \cdot 1 \mathrm{~V}$.
7.10. (In question 7.10, R16 should read R17, R17 should read R18.) $0.01 \times 1006800 / 6800=1.48 \mathrm{~V}$.

Amplifier Module, you can use this to amplify the signal from the microphone. Connect the output of the amplifier to location H30, Fig. 8.10.

A radio set or tape-recorder can be used as a source of signals if it has an earphone socket. Run two wires from the plug; one goes to location H30, Fig. 8.10, the other goes to the OV line.

LIQUID CRYSTAL DISPLAYS

Liquid crystal displays (l.c.d.) are taking the place of l.e.ds in most kinds of digital display. They need so little current that they can be driven for months from one or
two tiny button-cells. They can be seen clearly in bright light, in fact the brighter the light the more easily you can see them. The reverse applies to l.e.d. displays!

Liquid crystal displays do not convert electricity to light. The display is viewed by daylight, room lighting or a built-in lamp, and areas of the display are made to appear light or dark to form the characters displayed.

There is a thin layer of liquid sandwiched between two transparent sheets. The inside surface of the rear sheet is coated with a transparent conductive layer (the back plate) and there is a reflector behind it. The inside surface of the front sheet has a design printed on it in transparent conductive material.

If there is no p.d. between a segment and the back plane, the molecules in that region of the liquid are arranged in a random way. Light enters the l.c.d. and is polarised. It passes through the sandwich, is reflected, passes back again and out to the viewer. The display appears clear in that region.

If there is a p.d. between a segment and the back plane, the field arranges the molecules of that region in a regular array which rotates the plane of polarisation of light as it passes through. The light is reflected and there is more rotation on the way back.

QUESTION TIME

8.1. What is the b.c.d. for the decimal number 139?
8.2. If in Fig 8.1 the inputs to pins 7 and 6 were +6 V , and to pins 1 and 2 were OV (other inputs as shown), what would be the outputs from pins 9 to 15?
8.3. In what way does the action of an l.d.r. differ from that of a photodiode?
8.4. What would be the effect of connecting the emitters of TR4 and TR5 (Fig. 8.5) directly to the OV line? 8.5. What would be the effect of exchanging PCC1 and VR1 in the circuit of (Fig 8.5)?
8.6. What is another name for an l.d.r?
8.7. Which part of the circuit in Fig. 8.5 provides the positive feedback?

By the time it reaches the polarising film again, the light is polarised right angles to its original direction and it cannot pass through the polarising film. The display appears black in that region.

To be continued COUNTER INTELLIGENCE

Spoilt set

We have always stocked in addition to components, a range of technical books. Over the years we have cut out the less popular ones, but there is one kind that always sells steadily, and that is the Teaching Books. Unfortunately, we are now having problems with these,

Most of these consist of a set, usually five books, which could, originally, be purchased separately. This was obviously helpful to the impecunious constructor. But now, on the basis of the dictum that the cost involved in selling one book is the same as five, the publishers will only supply complete sets, so the poor old retailer, if he supplies one book from the set, is eventually left with several incomplete sets.
Mind you, I don't think the perfect teaching book has yet been written. Does the raw beginner really want to know about electrons revolving around nuclei, complete with little diagrams? After all, none of us really know what electricity is, so why not tell the reader "it is a force" with one end positive and one negative, then proceed to show him experiments that he can duplicate, to demonstrate what this force can do, given the right circumstances.

Computer Shopping

Has it ever occurred to you that with the rapid progress made in computers, it could change our whole way of life? The French are already replacing all their telephone directories with minicomputers. If it is successful, it is the thin end of the
wedge. You could replace your encyclopedia with a computer and also your component catalogue.
The time cannot be far distant, when, one of our readers who wants a transistor simply taps out the parameters on his home computer, and immediately on his screen would appear a list of all stockists and prices. If our hypothetical reader is a designer, he might be able to type out the specification of a component he needs, without even knowing if it exists, and there on the screen would be the answel.

Anti-Radar Invention

We in this country, are fortunate in having scientists with brilliant original minds. I was reminded of this quite recently when I read of the death of Professor Derek Jackson. He was responsible for testing out our reply to German radar in 1942.
I expect to all but the most senior of our readers the word "Radar" means the electronic gadgetry they have at major airports to prevent aircraft from bumping into each other while airborne, In 1940 you might say it was used in the reverse way.

Imagine you are being attacked by formations of enemy bombers; you have a limited number of fighters and their duration of flight is only a little over an hour, therefore your problem is to guide your fighters right onto the bombers as quickly as possible. If you think for a moment of the size of the sky, you have to admit to having an enormous problem to deal with. It was Sir Robert Watson Watt's invention that solved it.

Where ever the German bombers appeared, there were several squadrons of Spitfires and Hurricanes waiting for them, vectored into position by radar. The Germans couldn't make it out, and when the going became really rough. the Luftwaffe Commanders told their pilots "dont worry, they are down to their last 50 Spitfires". But when they kept on appearing day after day, these remarks were received rather sceptically by the German aircrew, and they would say sarcastically "there are those last 50 Spitfires again".

However, by 1942, the tide had turned in our favour, and our bombers were penetrating deep into Germany. But The German radar was now being used successfully against them. Eventually, Professor R. V. Jones came up with an answer, which was, if you want to hide a pebble you place it on a pebbly beach.

He decided that if thousands of small strips of metal coated paper were released into the sky by the bombers, they would cause a similar number of reflections on the German radar screens, most of them being spuious. Professor Jackson, as head of Airborne Radar in the RAF, was responsible for testing the theory out. It was, of course, very successful, and given the code name "Window". It enabled many of our aircraft to return home safely.
P.S. If any readers would like to learn more about the Radar of World War II, and the two remarkable men 1 have mentioned, I strongly recommend that they read the book by Professor R. V. Jones entitled, Most Secret War published by Hamish Mamilton.

THIS amplifier was born as a result of attending a number of local village fêtes and hearing the awful sound quality that was coming from the average sound system used on these occasions.
The amplifier to be described has a performance equal to and better than many professional PA amplifiers and also has a number of optional design features. It is constructed as two units, one contains the control and preamplifier circuits and the other the power amplifier and dual purpose power supplies.

FEATURES

Inputs are provided for four microphones, disc, tape, and auxillary. Microphone priority over other inputs is provided. There are also Bass and Treble controls, a music/speech filter and a peak reading VU meter. Full mixing of all inputs is provided.
The power amplifier will deliver a minimum of 50 watts into either 8 ohm loads or 100 volt lines and can be operated from either the 240 volt mains or a 12 volt car battery.

Power mosfets are used in the output stage and enable a reliable wider bandwidth and lower distortion to be obtained than is possible with bipolar devices. Bi-FET op-amps are used in the early stages and enable an improved performance to be obtained due to
their much improved slew rate over the more common types. Special low noise op-amps are used for the microphone inputs enabling a basic sensitivity of 70 microvolts with a signal to noise ratio of -58 dB to be obtained.
Construction is straight forward and no special tools are required. All the components are generally available and no special test equipment is required for setting up.

POWER MOSFETS

The use of power mosfets may be new to some constructors so a few words about these devices may be helpful.
Bi-polar transistors have until recently been used in almost all the semiconductor amplifiers available until the introduction around 1978 of the Hitachi power mosfets.
Bi-polar transistors require a wide area of safe operation to obtain reliability and also a wide gain/bandwidth so that large amounts of negative feedback can be used at high audio frequencies to keep the harmonic and other distortion to an acceptable level. They also have a positive temperature coefficient which means that they are very prone to thermal runaway and careful design is required to avoid this. They also suffer from "storage effects" due to being minority carrier devices and at high audio frequencies
this can cause a most objectional distortion that could well account for the so-called "transistor sound".

Because of all these problems a considerable amount of money and research went into looking for a better device and the power mosfet developed by Hitachi Ltd of Tokyo, Japan, is one answer.

Their advantages over conventional transistors are:
*good high frequency response because of their fast carrier speed.
*no storage effect.
*negative temperature coefficient so no risk of thermal runaway.
*no secondary breakdown.
*high input impedance and high gain.
*no special protection circuits required.
The power amplifier section uses a complementary pair of these Hitachi power fets and each device has a maximum dissipation rating of 100 watts. When used in an output stage delivering 50 watts, each device is only called upon to dissipate 25 watts, just ticking over in fact!

This makes for a very reliable out put stage, more so, when you consider that they are also rated at 120 volts drain-to-source breakdown voltage and a drain current of 7 amps . You could run this amplifier at full power all day into a short circuit and you would not damage these devices (try
that with bi-polars if you dare), mind you the power supply circuits may complain a bit!
No protection circuits are required (as are needed with bi-polar circuits) so another source of distortion is eliminated, as well as the risk of the amplifier "shutting down" during peaks of power output.

GENERAL CONSTRUCTION

As already mentioned, the PA amplifier is constructed in two units. This has the advantage of being easier to construct, keeps transformer mag. netic fields away from sensitive microphone inputs, and gives the option of constructing more than one power amplifier section for extra "slave" amplifiers if more output power is required (see section on options later in series).

The front panel of the control unit has 11 controls fitted: four microphone gain controls and also one each for disc, tape, and auxiliary; a master gain control, bass and treble controls, a speech/music filter switch, and a l.e.d. "on" indicator completes the picture. On the rear panel of the control unit are all the input sockets (5-pin
dIN 180 degree) and power supply socket (5 -pin din 240 degree).

The power amplifier front panel has a mains/off/battery switch and a peak reading VU meter.

The rear of the power amplifier is fitted with a mains input socket, battery supply terminals, 8 ohm and 100
volt line output terminals, earth terminal and the heat sinks for the mosfet output stage. The control unit power take off and audio input socket is also on this panel (another 5-pin din 240 degree).

The size of each unit is $245 \times 100 \times$ 290 mm overall.

CONTROL UNIT

The complete circuit of the control unit section is shown in Fig. 1.1.

MICROPHONE INPUTS

Four microphone inputs are provided and as each of these are indentical only one will be described in detail.

SPECIFICATION

POWER AMPLIFIER ONLY

Power output, continuous sine wave
Power bandwidth, -1 dB
Frequency response, 0.5 dB
Rise time
Slewrate
Damping factor, 8 ohm output 20 Hz to 1 kHz 20 kHz
Stadility
Sensitivity for 50 watts
Input impedance
Power output from 100 volt line, 166 ohm load
Frequency response, -3 dB
Regulation
\checkmark U Meter accuracy, $0 \mathrm{~dB}=50$ watts
The following figures relate to POWER AMPL
Harmonic distortion, at rated power output
Intermodulation distortion, two tone, $15 / 16 \mathrm{kHz}$. 28 volts peak output

Sensitivities

Input impedance
Microphone
Disc
Tape \& Aux.
Microphone Disc
Tape \& Aux.
Frequency response, $\pm 0.5 \mathrm{~dB}$
Microphone
Disc
Tape \& Aux
Signal-to-noise ratios. A weighted
Microphone
Disc
Tape \& Aux
Bass, 100 Hz
Treble, 10 kHz
Music/speech filter, -3 dB
Sub-sonic, disc input only

Outputs
Tape

55 watts into 8 ohms
20 Hz to 100 kHz
20 Hz to 50 kHz
$2 \mu \mathrm{sec}$
$26 \mathrm{~V} / \mu \mathrm{sec}$
better than 200
better than 50
unconditional
80 mV
100 kilohms
60 watts
30 Hz to 12 kHz
2.4 dB
within 2dB
IFIER plus CONTROL UNIT
less than $0.1 \% 30 \mathrm{~Hz}$ to 20 kHz less than 0.05\%
$70 \mu \vee$ PD (see Table 1.1)
$3.5 \mathrm{~m} V$ PD.
120 mV PD.
200 ohms
47 kilohms
50/100 kilohms
30 Hz to 22 kHz
R.I. A. A.

20 Hz to 30 kHz
$-58 \mathrm{~dB}$
$-65 \mathrm{~dB}$
$-73 \mathrm{~dB}$
$\pm 10 \mathrm{~dB}$
$\pm 10 \mathrm{~dB}$
280 Hz and 6.5 kHz (12dB/octave)
-3 dB at 20 Hz
-8 dB at 10 Hz
-17 dB at 5 Hz
80 mV
100 mV
These figures were measured on the prototype

Input connection is via a standard 5 -pin DIN socket SK1 and the connections are arranged to accept either balanced or unbalanced microphone lines. This input is connected to one end of VR1 (mic.l gain) and its wiper goes to the input of ICl (ZN459) via tantalum capacitor $\mathrm{Cl}(10 \mu \mathrm{~F})$. A tantalum must be used in this posi. tion otherwise leakage currents could cause noisy operation of VRI due to the very high gain and sensitivity of this circuit.

The output from 1 Cl (pin 7) goes to the other end of VR1 via R3 and C5 (also a tantalum) R4 maintains the circuit at earth potential.

MIC GAIN CONTROL

The microphone gain is controlled by varying the amount of negative feedback and this method has a number of advantages over other methods. At the maximum gain position of VR1 the basic sensitivity is less than 100 microvolts and at the minimum gain position inputs as high as 10 volts will not overload the input.

The actual sensitivity of the input will depend on the impedance of the signal source connected to the input and details of this are given in Table 1.1. The use of negative fedback also ensures optimum frequency response

and signal to noise ratio at all gain settings.

Another advantage of this system is that should the gain be set high and the microphone become disconnected, instead of a high hiss and/or hum coming from the loudspeakers, the input gain will automatically drop to a

TABLE 1.1: INPUT SENSITIVITY

Source impedance, ohms.	200Ω	600Ω	$1 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	$100 \mathrm{k} \Omega$	$1 \mathrm{M} \Omega$
Source E.M.F. millivolts	0.14	0.28	0.42	3.5	35.0	350.0
E.m.F. input $=0.07 \times$ source impedance $+200 \Omega$						

low sensitivity level and ensure a minimum noise condition.

At maximum gain and with an open circuit input the noise level is -60 dB . Bearing in mind the basic sensitivity of less than 100 microvolts, this is an astounding signal to noise ratio for an open circuit input. One can just
imagine the amount of hum and noise which would result under similar conditions with a conventional gain control system.

The very wide range of input voltages which can be handled also means that these microphone inputs can be used for any other type of input
signal that requires a flat frequency response, radio or tape for example.

POTENTIOMETER LAW

The potentiometer used for VRI (VR2, VR3 and VR4) should ideally have an inverse-log law, but as these

devices are not easy to come by without special ordering, a linear law can be used. The only difference found in operation will be that the inverse log law potentiometer gives a more even distribution of gain with rotation of the potentiometer whereas the linear law tends to let the gain come up at a quicker rate towards the maximum gain end of the potentiometer. This has not proved to have any practical disadvantage and no difficulties have been found in actual use

PHASE REVERSAL

The resistor R1 needs some explanation. If it is left out of the circuit there will be a tendency for the gain to go through rero and then to increase slightly at the minimum gain setting of VR1. This is due to phase reversal effects in the negative feedback loop and is completely avoided by the use of a low value resistor at the low gain end of VR1. Its actual value will depend on the "hop on" value of resistance at the end of the actual track used in the potentiometer but the value shown (68 ohms) should be satisfactory in most cases.

Unless the input is being used for very high signal inputs the effect is not likely to be noticed in practice as the reduction in gain at this point is in excess of 100 dB . The capacitor C2 (4700 pF) is used to bypass r.f. and has no effect on the audio signals present.

All the foregoing applies to the other three mic. circuits, based around IC2, IC3 and IC4 respectively.

MIXER STAGE

The outputs from each microphone stage are combined via resistors R17, R18, R19 and R20 and then fed into TR1 via C22 ($0 \cdot 1 \mu \mathrm{~F}$). C21 (100 pF) is another r.f. bypass filter. (These r.f. bypass capacitors are important and failure to fit them could result in interference from $C B$ and other radio transmissions coming out over the loudspeakers at the most inconvenient moment!

Transistors TR1, TR2 (BC414) and TR3 (BC556) form a voltage amplification stage to provide extra gain so that the signal input into IC5a is at a similar level to that from the aux and tape inputs. Negative feedback is used to optimise frequency response, signal to noise ratio and distorition. C24 is used in the feedback path to further reduce the response to r.f.

DISC INPUT

The disc input is fed into a separate amplifier stage comprising TR5, TR6 and TR7. This stage is equalised for the RIAA recording curve by negative feedback. C37, C38, C39 and R56, R57, R60 form the feedback path.

R51 provides the correct input impedance for magnetic cartridges and R52, C35 form an r.f. filter.

The disc gain control, VR7, is fitted in the output of the disc amplifier. This potentiometer and C40 form a low frequency filter to comply with the IEC 65 recommendation for a filter on RIAA inputs to provide a -3 dB response at 20 Hz . The purpose of this filter is to prevent warped records producing a large low frequency output which could introduce intermodulation distortion in the later stages of an amplifier system.

AUX AND TAPE

The gain of the aux and tape inputs is controlled by VR5; VR6.
The sliders of the aux gain, tape gain and disc gain feed into IC5b via combining resistors R36, R38 and R50. As the outputs from each half of IC5 are combined via R33 and R42, we are able to fully mix any input combination required without restrictions. Tape output is taken from the output of IC5b and is not affected by the tone control or filter circuits.

BANDPASS FILTER

The output signals from IC5a and IC5b (LF353) pass on to the filter stage which uses IC6a (LF353). This is a bandpass filter which is designed to limit the overall frequency response when the amplifier is used with horn loudspeakers, or other systems where a full frequency range is not required.

The high pass section of this filter consists of C29, C30 and R44, R45 and the low pass section, R46, R47 and C31, C32. The values used provide a 12 dB per octave fall in response with the -3 dB points at 250 Hz and 6 kHz respectively.
This frequency range will provide high quality speech and reasonable quality music when the system is used outdoors or with horn loudspeakers and enables all the available audio power to be condensed into this limited frequency range. The filter can be switched in or out of circuit by S1.

TONE CONTROL

The other half of IC6 is used for tone control. The output from the filter stage goes to the input of the tone control circuits consisting of R61, R63, R65, VR8, C41, C43 and R62 for BASS; and VR9, C42 and R64 for treble.
A negative feedback circuit of the Baxandall type is used to obtain the required response curves and to keep harmonic distortion to a minimum. Resistors R63 and R64 limit the maximum amount of boost obtained at very high and very low frequencies. Without these components fitted the
response (at maximum settings) would continue to rise at frequencies outside the audio range resulting in possible overload in later stages. The range of control obtained within the audio band is not affected.

The output from the tone control stage passes to VR10, the master gain control and then out to a din 5-pin 240 degree socket SK8.
(The use of 240 degree sockets to interconnect the control unit to the main amplifier is to avoid microphones or other units being plugged into the power sockets by mistake, an error which could prove expensive.)

POWER SUPPLIES

The power supplies for the Control Unit come from the Power Amplifier Unit via SK8; 15V positive at pin 2 and 15 V negative at pin 4. Extra electronic decoupling is provided in the Control Unit. The positive and negative supplies are decoupled by TR9 and TR10 respectively. TR8 further decouples the positive supply for the microphone circuits

This extensive use of electronic decoupling ensures that the supplies are completely hum free which in turn enables the very maximum signal to noise ratios to be obtained on all inputs.

This aim is also aided by the separate construction of the Power Amplifier and Power Supply Unit which avoids either high power audio or power supply induction currents
being induced into the very sensitive high gain inputs.

A point worth bearing in mind is that to achieve a signal to noise ratio of 58 dB with an input of 70 micro-volts means that any induced signal or noise must be less than 0.08 microvolts!!

MICROPHONE PRIORITY

One final part of the control unit which has not been mentioned so far is the microphone priority circuit. At the input of the second half of IC5 we have connected to the junction of R36, R38, R50 and C27 the collector of TR4 (BC182). This transistor is biased via R21, R35, R37 so that it is normally "off". The junction of R35, R37 goes to pin 5 on the microphone input socket and if this pin is earthed it changes the biasing conditions so that TRI conducts (becomes switched on). This then effectively puts a short across the input of IC5 and mutes any signal present.

This muting only applies to the auxilliary, tape and disc inputs leaving the microphone circuits operating normally, a feature which enables any special announcements to override the other inputs. Capacitor C26 provides a few milliseconds delay and avoids clicks being heard when the mute circuit is activated. (Microphones can be obtained with a suitable switch already fitted, although a separate switch could be wired to the input socket if required.)

The photographs show the general form of the construction. The Ushaped chassis is easily fashioned from a sheet of aluminium. Full de-
tails will be given in Part 2. In the meanwhile, work can proceed with preparation of the circuit board.

All components other than potentiometers, sockets, l.e.d. and switch Sl are mounted on a printed circuit board. A full size pattern of the un derside of this p.c.b. is given in Fig. 1.2. The placement of components on the top side is shown in Fig. 1.3.

Assembly of the printed circuit board should start with the terminal pins which are inserted from the track side of the p.c.b. and lightly hammered into place so that they are
a firm fit but not over-tight. The p.c.b. should be supported from behind to avoid damage to the board. After fitting, the pins are soldered into place.

The suggested order of assembly is resistors, small capacitors, transistors, and electrolytics. In other words, the smaller components first, as this will enable the components to be inserted and the p.c.b. turned over onto a foam pad which will hold the components in place while they are soldered in. Be very careful to mount all electrolytics and semiconductors the correct way round as indicated on the p.c.b.

Fig. 1.2. Public Address System: Control Unit printed circuit board, actual size.

layout; in particular watch the polarity of diodes and the position of pin 1 on the i.c.s. Sockets may be used for the i.c.s as this will be an aid to rapid servicing in the field in the event of failure.
The leads of some semiconductors may need to be pre-formed and details of these devices are given in Fig. 1.4.

Finally, check the whole board carefully to ensure that all soldered joints are sound and that there are no solder "bridges" between tracks and components.

To be continued
Fig. 1.3. Public Address System: Control Unit printed circuit board, topside with components in position.

Learning Morse

Recently I had to find out the answer to a curiously awkward question. How do Japanese communicate in Morse code?
The more you think about the question. the more difficult it is to answer. And then you start thinking about other questions. Like how do the Japanese communicate by telex or telegram?
In the West we use a limited number of letters in an alphabet to build up words which have a phonetic meaning. Western text is simply a written record of the sounds of speech. Because there are a limited number of letters it's easy to transmit these letters in a simple digital code, either dot-and-dash Morse or the pulse codes used for telex.

In the Far East, language is based on Chinese ideographic or pictographic characters. These are intricate geometrical shapes like miniature drawings. And these characters directly convey visual meaning. The character for a tree, for instance, looks like a tree and the character for a wood looks like two trees.

All the Far Eastern countrles, including Japan, have adopted the basic set of Chinese characters. This is why a Japanese citizen can read a Chinese newspaper. But different countries have adopted different ways of representing these pictorial characters in speech.

They use different sounds and intonations, just as Westerners from different countries use different words to describe the same object, like "tree", "arbre" and "Baum" for a tree in a field. This is why Japanese and Chinese citizens can't talk to each other, even though they can communicate on paper.

Obviously, if a language uses a different pictorial character for every object or concept in the world, the number of individual characters becomes enormous. To confuse the is sue further, the Japanese modify some of their pictorial characters with additional characters which have a phonetic rather than pictorial meaning.

The basic pictorial characters are called kanji and the modified symbols are called kana. There are tens of thousands of kanjis and 150 kana.

An official Japanese government edict says that only 1850 kanji can be used in official documents. But 2500 appear in newspapers and a well educated Japanese will need to know at least 5,000.

It's also why the Japanese confuse the letters "l" and "r". There's a Japanese hieroglyphic for "r" but not "l"

This Romanisation is the key to coded communication. When a Japanese company sends a cable or telex to its British subsidiary, the telex is either in pldgin English or phonetic Japanese.

According to colleague columnist Pat Hawker, who is, of course, an enthusiastic amateur radio operator, this is exactly how the Japanese manage the even more daunting task of communicating in Morse. They simply write the message in phonetic Japanese using the English alphabet, and then tap out the Western letters in Morse.

Not surprisingly, this caused awtul headaches in the last war. It's bad enough learning to operate a Morse code station at around 25 or 30 words a minute when you are simultaneously translating dots and dashes into your own native language. But when the coded language is the phonetic equivalent of something as obscure as Japanese picture text, then the task becomes daunting.

In fact communication between Japan and the West is one of the biggest problems faced by everyone involved in EastWest trade. It's so easy to mis-understand what is really meant behind spoken words translated by an interpreter. As a result more and more Japanese businessmen and engineers are learning English.

Also most of the major Japanese electronic companies are now investing heavily in research into automated trans. lation. The initial aim is for a keyboard operator to type one language into a keyboard. A computer will then search its memory for corresponding phrases and print out a translation text.

The next generation of translation machines will offer a direct speech link. The operator will speak into a microphone and circuitry will translate the spoken word into computer data. This will then be used for the memory search and the translated data output sent either to a printer or speech synthesis circuit which will produce a virtually spoken translation

See Facts!

Last Christmas Ceefax, the BBC's teletext service, came up with a novel idea. On a few pages well outside the normal magazine (circa page 700 on BBCi) they pumped out computer programmes. The idea, apparently, was that owners $\mathrm{o}^{\text {! }}$ home computers would interface them with a TV set and use the teletext data to programme their computer.
On Christmas day a new and topically festive progranme of data was transmitted. It promised to make a home computer produce sounds, and so let it play carols. But the caption text which the computer was programmed to throw up on the screen was delightfully honest. "The programme has a bug in it somewhere but I can't deiect it right now."
If the BBC Ceefax peopie are working on interesting projects like this, couldn't the BBC publicity people make more effort to tell the press and public.

Sadly, this typifies the BBC's rather ambivalent attitude towards teletext.

There's been an infuriating tendency on the part of the BBC to talk about Ceefax, rather than teletext, on the surely misguided assumption that the public fully understands that Ceefax is the BBC's teletext service, and Oracle is the IBA's teletext service.

For several years now there has been a display of teletext in the main lobby of the BBC TV Centre at Wood Lane. The display is labelled Ceefax, rather than teletext, and on almost every occasion that I've been through the lobby over recent years, the television set at the centre of the display has been switched to normal programme viewing, rather than teletext.

The display placards are now getting very scruffy. The headline sign has lost some of its letters and describes Ceefax as a "levision dial-a-page service" (sic).

Even the receiver itself was faulty last time I saw it. When switched to teletext it threw up lines of gobbledegook in the middle of displayed page of text. Perhaps no-one at the BBC had noticed.

BOOK REVIEWS

BEGINNER'S GUIDE TO ELECTRONICS
(Fourth edition)

Author Owen Bishop, BSc
Price $£ 3.60$ Paperback
Size $\quad 185 \times 120 \mathrm{~mm}, 240$ pages
Publisher Newnes Technical Books ISBN 0408004134

THE 1964 lst edition of this popular introduction to electronics was written by Terence L. Squires and it is surprising that his name has been omitted from this latest 4th edition. Obviously the time has come for a major revision and Mr Owen Bishop has performed a good job in updating the text and writing additional chapters so that this latest edition fairly reflects the present state of technology.

This book takes a brief but informed look at the many branches of electronics and helps the beginner to approach the subject easily. From molecules and electrons, conductors and insulators, resistors and current flows (the "stuff" of which electronics consists), then moving on through various circuit components including optoelectronic devices such as light emitting diodes (l.e.d.s), phototransistors and solar cells.

Integrated circuits take quite some understanding and a full eighteen pages are spent doing just that; from then on its all downhill with a detailed look at each of the basic electronic circuits illustrated, then it takes a quick look at test equipment before stepping gently into computer electronics, microwaves, medical electronics and radio and television.

The final two chapters cover recording and industrial electronics, two massive subjects that can only be given a cursory introductory coverage. A well illustrated and informative book that allows knowledge to be absorbed without recourse to other resources. The amazingly complex can always be broken down into more manageable units to study and learn. This book has achieved just that-but simply.

BOATS

By R. A. Penfold, ISBN 0859340694
MODEL RAILWAY PROJECTS
By R. A. Penfold, ISBN 0859340708
C B PROJECTS
By R. A. Penfold, ISBN 0859340716

Price Size Publisher	£1.95 each except ihose marked thus
	$£ 1 \cdot 35$ each all with soft covers $180 \times 110 \mathrm{~mm}$, between 57 and 110 pages
	Bernard Babani (Publishing) Ltd

W
V have here a selection of the more recent titles in the Babani "Radio and Electronics" books and for those of you not already familiar with this series, now numbering over 90 titles, I think you will probably be conversant with the work of the authors as most of those represented here are regular contributors to the pages of Everyday Elec. tronics.
All these books follow a similar pattern in that their main objective is to provide constructional information on a number of related projects, ranging from simple novelties to quite complex and useful circuits.

An exception here, perhaps, is "An Introduction to Radio DXing" which covers in some detail the exciting hobby of receiving distant and difficult radio stations, but again, this book also includes some projects to build a number of
interesting accessories to extend the range of equipment used in radio DXing.

Amongst the more topical and interesting titles in this batch are Owen Bishop's "Electronic Projects Using Solar Cells" which contains over 30 circuits all operating a low voltages to enable them to be powered from two or three solar cells, and R. A. Penfold's "CB Projects" describing such addon goodies as a speech processor and interference filters for $27 \mathrm{MHz} \mathrm{f} . \mathrm{m}$. citizens band radio reception for the enthusiast to build himself.

However, all eight books represent a varied source of circuits for the home constructor and are worth a look.
G.P.H.

PRINCIPLES OF TRANSISTOR CIRCUITS

(Sixth edition)

Author	S. W. Amos, BSC, CEng, MIEE
Price	$£ 12 \cdot 50$ cased, $£ 6 \cdot 95$ soft covers
Size	$220 \times 145 \mathrm{~mm}, 331$ pages, many with line
	illustrations
Publisher	Butterworths
ISBN	$0408011068(0408005998$ soft covers $)$

This book, now in its sixth edition, was first published in 1959 and is still as valuable today to the student and enthusiast alike as its predecessors have been. In this, the first revision since 1975, Mr Amos keeps pace with advancing technology by including a much revised section on digital techniques to reflect the most significant development in electronics today, that is the increasing use of integrated circuits. Other sections to benefit from the update are those on a.m. detectors and the account of regulated power supplies, expanded to give up-to-date circuits.

The information contained within this edition gives the student a wealth of details, both theoretical and practical to introduce him to the design of amplifiers, receivers and digital circuits.

It is interesting to note that this book has been selected as a standard course book in many colleges teaching electronics to beyond A-level, but that is not to say that the home constructor won't also find it a welcome addition to his shelves.
G.P.H.

TELEVISION AND RADIO 1982 Editor Eric Croston Price £2.90 Paperback Size $\quad 194 \mathrm{~mm} \times 230 \mathrm{~mm}, 224$ pages Publisher Independent Broadcasting Authority ISBN 0900485418

Having had the pleasure of reviewing the annual Television \& Radio yearbook three times out of the last four its become almost impossible to find any superlatives for this excellently produced book that have not already been used.

With a great sigh of relief, I am at last able to offer a rebuke. When you think that the IBA swamped us with a mass of publicity about how "the event of the year" was the biggest outside broadcast ever mounted in their history, particularly in terms of cost and numbers of personnel, it only warrants a brief mention!,

In fact, the "royal occasion" only justified one colour and one black and white photograph, one caption and one small paragraph. Surely, the reader would be fascinated to read about all the problems that were overcome to present such an excellent coverage on the day?
With sections on drama, sport, children's television, learn ing and science, religion, and the latest on Local Radio, the book is still masterly produced and excellent value for money. Although, on a personal note, I find this year's edition is tending to verge on the "picture book" approach.
D.G.B.

BOOKS

 BRIEF

Digital Logic Design by B. Holdsworth (Butterworths). Cased £17.95, Limp $\mathbf{~} 9 \cdot 95$. An excellent well-presented book for any serious student of digital electronics. Deals with all aspects of digital circuitry including Boolean Algebra, Combinational Logic, Flip-flops, Counters, Clock and Event driven circuits. Final chapter devoted to explaining the internal workings of a microprocessor.

Everyday News

Tomorrow's communication "highways" in Britain, carrying thousands of phone calls, plus computer data and TV pictures, between the nation's towns will be hair-thin strands of glass.
These tiny threads are optical fibres, made from the world's purest glass-a block 20 km (13 mile) thick would be as transparent as a window pane.

Phone calls are sent along the fibre as rapid on-off pulses of light. At Telecom's research laboratories scientists have sent pulses of light over more than 100 km of fibre-twice as far as they achieved in 1981.

Clive Sinclair's 2×81 personal computers are reported to be coming of the Timex production Hne in Dundee th the rate of one every ten seconds. Two thirds of production is exported.

Mercury Go-Ahead

Project Mercury is all set to go ahead as a competitor to British Telecom, having been granted a 25-year licence.
The consortium of Cable \& Wireless, BP and Barclays Merchant Bank will lay $1,000 \mathrm{~km}$ of optical fibre along railway tracks linking British cities. Capacity will be 8,000 simultaneous telephone calls.

The service should start operating next year.

NO IDEA

SEAMA, a newly formed Small Electrical Appliance Marketing Association, is threatening to pull out of IDEA and go it alone.
At a recent press conference given in London, SEAMA chairman Bill Bastin of Moulinex said: "As a result of general disenchantment with IDEA in its current form, SEAMA is now actively looking at alternative exhibition solutions for its members in 1983."

The LaserVision Disc System from Philips in finally about to reach UX customers at the end of May.
Players and discs will initially be on sale in Greater London and surrounding Home Counties through a restricted number of outlets including High Street multiples, independent retailers and specialist rentals.

Million-to-One

The first VLSI package containing the equivalent of one million transistors will be here lby the year 2000 according to Professor James D. Meindl of Stanford University.

Interconnecting these will provide up to 1,000 million devices in a single piece of equipment. Golly!

Digital Caution

At an IERE colloquium on digital recording, Peter Fellgett, head of cybernetics department, Reading Univer sity, warned that digital audio quality as often overexaggerated, often inferior to the best analogue record ings. He cautioned the industry against setting standards too early before all the possibilities have been fully examined.

Computer School

The London Computer Summer School offers everyone over the age of 13 a chance to combine learning about microcomputers with a summer holiday on a country estate just outside London. A series of weekly courses are being held between July 10 and September 11 at Middlesex Poly. technic. Both residential and day courses are available.
Giving hands-on experience, the courses are offered at elementary, intermediate and advanced levels. All tuition and practice is in BASIC, with the elementary course enabling beginners to write simple prognams in BASIC.
A brochure describing the programme and application forms are available from The London Computer Summer School, Mortimer House, 37/41 Mortimer Street, London WIN 7RJ.

New Complex for Sony

The new Sony Broadcast 47,000 sq ft building complex in Basingstoke, comprises a central location for the systems engineering, customer service, quality assurance, spare parts, warehousing and distribution departments for their operations in the professional broadcast market.

Special areas enable all video and audio produots to be quality tested prior to despatch to customers. The service department deals with all local maintenance as well as providing a base for field service operations.

The systems engineering area contains its own work shops, wiring shop, drawing office and stores, and there is a large area for the construction of Outside Broadcast vehicles. At present they are completing orders for $O B$ vehicles to Jordan, the Oyo State in Nigeria, the Seychelles and Oman.

—ANALYSIS

RIGHT CONNECTION

Veteran hobbyists can still remember the days when every electronic component was fitted with screw terminals Transformers, coils, valve-holders and even capacitors and resistors. When the pentode valve appeared it, too, had a screw terminal on the top of the glass envelope or on the side of the base.

Using "hook-up" wire with slide-back insulation you could wire up a complete radio without touching a soldering iron. Very simple, but not very reliable what with oxidisation and the terminals loosening through temperature cycling and vibration.
Like everything else the humble connection has since made enormous technical progress. It remains the most critical element in terms of equipment reliability, economy in assembly and ease of servicing. And it is big business with a UK market for electronic plugs and sockets of all types estimated at $\mathbb{E} 20$ million a year.

The big breakthrough was the printed circuit board which allowed a complete radio (and today a complete minicomputer) to have all its component interconnections soldered in a single pass over the bath of a soldering machine. This was followed by the IC and, later, the LSI with at first hundreds and now thousands of interconnections within the encapsulation of the device itself.
There have been two important developments in external connections. One is the insulation displacement connector (IDC). It uses flat multiple-way cable of, for example, 20 conductors which can be connected to a 20-way socket in a single clamping operation without stripping the insulation, realiable contact being made through piercing the insulation. Clearly very labour saving.
The other is the flexible printed circuit, ideal where multiple connection needs making to moving parts. In a high-speed computer printer, for example, such a connectorwill need to flex as many as 400 million times without break age over the life of the machine.

In data processing systems the trend is to use i.c. sockets on the p.c.b.s to help trouble-shooting and easy replacement. On present projections the world's electronics industry is expected to gobble up 2,500 billion i.c. sockets in 1986 , each having up to 40 contacts. Preparing for the rush the latest automated machines can manufacture these sockets at the rate of 6,000 contacts per minute!

But professional electronic engineers in the initial stages of their designs still use simple aids like Veroboard and handsoldering. Just like you and me.

Brian G. Peck

UNITED SATELLITES

British Aerospace, Marconi and British Telecom plan to form a joint company, United Satellites, to provide Britain's first national broadcasting and telecommunications satellite system.

Welcoming the Home Secretary's announcement of the Government's policy on direct broadcasting by satellite in Britain, the new consortium confirmed that they are planning a British satellite system for the mid-1980s.

Nun Better

The Notre Dame Convent School in Cobham, Surrey, is to start teaching Computer Studies, and has bought Sharp MZ80-B microcomputers from Newbury Micro Systems for this purpose.
"If computers are to be the tools of tomorrow's world, then we'll not have one, we'll have three" was the enthusiastic attitude of the school's headmistress, Sister Mary Agnes.

Wrist TV

The Japanese Agency for Industrial Science and Technology is forecasting 1995 as the year for TV worn on the wrist. But it is rumoured in the trade that an unspecified Japanese company will have one ready for marketing within the next two years, handled in the UK by Trafalgar Watches currently importing speaking watches.

RADIO WORLD

By Pat Hawker, gзva

Regulating Radio

Radio broadcasting stations that op erate in breach of the International Radio Regulations and sometimes also in breach of national legislation have become so common in Europe that it is often inappropriate to call them "pirates". Indeed in Italy where the legislation has become blurred, it is more common to call them "private" stations.

We have already drawn attention to the 1000 kW erp V.H.F./F.M./stereo station, located almost 4000 metres above sea level. on the Italian side of Mont Blanc, putting out programmes that are receivable over large parts of France and Switzerland. It took three years to build, is remotely controlled, with the electrical power supplied by diesel-electric generators Under the present Italian legislation such a "private" station is not a "pirate" but it does breach the International regulations

ITU Radio Regulations insist that broadcasting stations should not in principle employ more power than is necessary to maintain economically an effective service within the frontiers of the country concerned, however with so much international broadcasting on medium and long waves such regulations are widely broken. But until now the V.H.F. band has been reasonably free of this problem.

In France there have been recent legal battles over the deliberate jamming of unauth orised broadcasting stations. Some
of these stations are "political" while others are seeking to attract audiences with programme material that are most unlikely to be transmitted by authorised broadcasters even in this permissive age.

Dutch Pirates

Pirate stations have long been a feature of the Dutch radio scene and have now reached the stage where something over 40 per cent of all listening is to these stations. One reason for the popularity is said to be that these stations transmit more musical programmes with Dutch lyrics than the Hilversum stations where English pop lyiics predominate, with French and German lagging behind and apparently few Dutch songs.

The pirates are also cornering the audience for "golden oldies" and their programming is said to be "easy on the ear". But there are other Dutch "pirates" including the "action" stations, for example those that play a role in coordinating political demonstrations.
When, in December, Poland was virtually cut off from the international scene, the national television news, complete with newsreaders in military uniforms, was seen on scieens throughout the world. How was this done?

The answer was the large defence aerials on the Danish island Bornholm in the Baltic. Danish television was allowed to use these aerials and to bring

Radio Regs

British amateurs received a shock during February when the Home Office published in The London Gazette a new "schedule" of frequencies, power limits etc. Publication in this way constitutes full notice to licence holders of a change to their licences.

Unfortunately, as the authorities later admitted, the long 4-page schedule, contained a number of important errors. For example, it reduced maximum power on 3.5 MHz to the much lower limitation enforced on 1.8 MHz , and also swept away all differences between Class A and Class B licences.

The Home Office agreed to look at the question again, this time in consultation with the Radio Society of Great Britain, A new "new schedule" will probably have been published by the time my notes appear. Let us hope they get it right this time-and that any changes are fair and necessary.

A number of people have been suggesting changes to the amateur licence recently. For this reason it is worth quoting some extracts from the International Radio Regulations, since
all national licences are supposed to conform with these.
"Any person seeking a licence to operate the apparatus of an amateur station shall prove that he is able to send correctly by hand and to receive correctly by ear, texts in Morse code signals. The administrations concerned may, however, waive this requirement in the case of stations making use exclusively of frequencies above 30 MHz . . Administrations shall take such measures as they judge necessary to verify the operational and technical qualifications of any person wishing to operate the apparatus of an amateur station."

Basically, the International Radio Regulations defines the "Amateur Service" as "a service of self-training, intercommunication and technical investigations carried on by amateurs, that is, by duly authorised persons interested in radio technique solely with a personal aim and without pecuniary interest." Which must make amateur radio one of the very few hobbies ever to have been defined in an international treaty signed by well over a hundred nations.
the pictures via a microwave link across Sweden to Copenhagen. They then had to be converted from SECAM to PAL before the pictures were offered to television services in many countries.

Several European countries, to counter the growing number of unauthorised pirate or private stations, are now in process of setting up local radio stations along the lines of those in the UK. For listeners it gives more choice, even if for engineers there is the ever increasing problem of finding suitable frequencies.

In the UK it will be some years before the VHF/FM Band 2 expands to the extent foreseen in the latest Radio Regulations but a start has been made in releasing frequencies between about 102 to 104 MHz .

Vandal Challenge

Car radio aerials have long been a target for vandalism, and it takes some pluck to introduce on to the malket an aerial claimed to be "virtually indestructable". This is one of several claims made for a new range introduced by Blaupunktthough I am not sure whether this is meant to cover normal wear and tear or includes deliberate sabotage.

At least it cannot easily, if at all, be snapped off. Made of a 45 cm length of fibre glass rod it has two spirals of copper wire wound in opposite directions. It is not telescopic but highly resilient at the base and is coated with polyamide.

Perhaps with such designs there will be fewer wire coat hangers pressed into service as car aerials!

Broadcast Links

In the UK it is not often possible to obtain permission to use h.f. communications equipment for other than the amateur radio service. In some countries where distances are longer and the telecommunications service less well developed this is not the case.

An unusual application for the Drake TR7 transceiver has been reported to me by Dave Harris who is the Engineering Deputy Director of Radio Botswana. This s.s.b. equipment has been used as part of a low-cost broadcast news "feed" to enable the Gaborone station to carry reports from the more remote parts of Botswana.

Although basically an amateur communications rather than broadcast equip. ment this has proved capable of providing better speech quality than the telephone system-and has since been further improved by fitting a wider (4 kHz) filter. The equipment works from 12 V vehicle batteries in conjunction with an Australian - developed form of broadband dipole. For this type of application it opens the way to local news reports at costs within the budget of Third World broadcasters.

The BBC use high-power s.s.b. point-to-point relays to feed programmes to some distant overseas bases but these are now being superseded by satellite circuits. The Foreign and Commonwealth Office has recently ordered a 10 -metre dish receive-only terminal to be installed on Masirah Island off the coast of Oman specifically to bing BBC overseas programmes via an Intelsat V satellite to the FCO relay base on the island, including a number of extremely high power transmitters.

Exeryday
 y.

UnE FEATURES

 Motoristsdan't forget! SEPT BELTREIIIIIDER

Flashing lights illuminate a small "Belts" sign. Operates when ignition is switched on and runs for about 15 seconds.

Mobile to base

C.B. POWER 5UPPLY

Allows a mobile transceiver to be used as a mains powered base station.

Eyes Docun! ZH81 users IIILROCOIIPUTER KEYBORRD SOUIIDER

No need to look up at screen whenever a key on the 2×81 is pressed.
A tone is generated from this add-on unit every time one of the ZX81's touch keys is actuated. A different tone is generated when the shift key is actuated.

EF PUBLIC ADDRES5 5YSTEII Part 2

Part 2 of this series deals with the Control Unit construction and introduces the Power Amplifier.

All this and more

JUNE 1982 ISSUE ON SALE FRIDAY, MAY 14

Most towns and villages have a chess club and many schools have chess teams in leagues or play chess as an extra-curricular activity. Chess tournaments are arranged which can last for several days when each player has to complete two or three games.

Lightning chess has become popular because tournaments can be arranged and completed in an afternoon or evening. In this variation of chess each player has a fixed time to think of a move before a bell or buzzer operates for approximately two seconds. The player must then make his or her move.
The cycle is then repeated with the players opponent having the same time interval before he or she has to move a piece. At this speed of play "check" does not have to be said,

Fig. 1. Selecting the timing values for the Lightning Chess Buzzer.
and the player loses if he or she fails to make a move before the buzz ends.

The time interval is usually ten seconds at the commencement of play and after several minutes it is reduced to five seconds. The interval between moves has been fixed to give two, five, eight, ten or fifteen seconds and the duty cycle is fixed at two seconds. These values can be changed if the constructor wishes to use the buzzer in any game where a fixed interval of time is required between moves.

If we wish to have a duty cycle of two seconds and use a value of $C_{t}=$ $100 \mu \mathrm{~F}=100 / 1,000,000 \mathrm{~F}$

$$
t_{2}=0.7 \times R_{\mathrm{b}} \times C_{\mathrm{t}}
$$

Therefore $2 \mathrm{sec}=\frac{0.7 \times R_{\mathrm{b}} \times 100}{1,000,000}$

$$
R_{\mathrm{b}}=\frac{20,000}{0.7}=28,571 \Omega
$$

The nearest preferred value for R_{b} is, $27 \mathrm{k} \Omega+1.5 \mathrm{k} \Omega=28 \cdot 5 \mathrm{k} \Omega$. This value for R_{b} gives a value for t_{2} of 1.995 seconds. Hence the values for R7 and

Table 1: Timing Values

$\mathrm{Ra}_{\text {a }}$ (ohms)	R_{b} (ohms)	$C_{t}(\mu \mathrm{~F})$	Charge time (secs)	Discharge (secs) (secs)
$1 \mathrm{k} \Omega$	$27 \mathrm{k} \Omega+1.5 \mathrm{k} \Omega$	100	2	2
$43 \mathrm{k} \Omega+1 \mathrm{k} \Omega$	$27 \mathrm{k} \Omega+1.5 \mathrm{k} \Omega$	100	5	2
	$27 \mathrm{k} \Omega+1.5 \mathrm{k} \Omega$	100	8	2
$43 \mathrm{k} \Omega+43 \mathrm{k} \Omega+27 \mathrm{k} \Omega+1 \mathrm{k} \Omega$	$27 \mathrm{k} \Omega+1.5 \mathrm{k} \Omega$	100	10	2
$180 \mathrm{k} \Omega+5 \cdot 6 \mathrm{k} \Omega+1 \mathrm{k} \Omega$	$27 \mathrm{k} \Omega+1.5 \mathrm{k} \Omega$	100	15	2

TIMING

The timing of the unit can be selected by referring to Fig. 1 and table 1. Capacitor C_{t} charges up to two thirds of the supply voltage and then discharges via R_{b}. When the voltage drops to one third of the supply voltage C_{t} starts to charge up again. This operation is repeated.

The time intervals for the charge t_{1} and discharge t_{2} can be calculated using the formulae:

$$
\begin{aligned}
& t_{2}=0.7 \times R_{\mathrm{b}} \times C_{\mathrm{t}} \\
& t_{1}=0.7\left(R_{\mathrm{s}}+R_{\mathrm{b}}\right) C_{\mathrm{t}}
\end{aligned}
$$

R8 are $27 \mathrm{k} \Omega$ and $1.5 \mathrm{k} \Omega$ respectively (see Fig. 2). We can then use this value for R_{b} to calculate R_{s} values for given time intervals for the fixed duty cycle of two seconds.
Table 1 lists the values of C_{t}, R_{s} and R_{b} used in the timing circuit.

CIRCUIT

The complete circuit for the Lightning Chess Buzzer is shown in Fig. 2. Two 555 timer i.c.s are used connected as oscillators. ICl is used to produce the time interval and IC2
is set to produce the frequency of the tone required.
Resistors R1 to R6 form the switched timing range. The output from ICl is inverted by transistor TR1 enabling the oscillations of IC2 only when ICl output is low, this corresponds to the discharge time of 2 seconds.

SUPPLIES

The circuit can be operated from 5 V to 18 V but in practice a 9 V battery was found to be convenient. Volume was adequate with this supply voltage. Care should be taken to use capacitors with working voltages as close to the supply voltage as possible but their working voltage must be greater or equal to the supply voltage.

ASSEMBLY

Most of the components are mounted on a piece of 0.1 inch pitch stripboard, 16 strips by 30 holes. Drill the mounting holes and make the breaks in the copper strips as indicated in Fig. 3 before soldering the components and wires into position.

Fig. 3. Circult board component layout and interwiring details.

Fig. 2. The complete circuit diagram for the Lightning Chess Buzzer.

COMPONENTS

Resistors

R1	$43 \mathrm{k} \Omega$	$R 7$	$27 \mathrm{k} \Omega$
R2	$43 \mathrm{k} \Omega$	R8	$1.5 \mathrm{k} \Omega$
R3	$27 \mathrm{k} \Omega$	R9	$10 \mathrm{k} \Omega$
R4	$180 \mathrm{k} \Omega$	R10	$1 \mathrm{k} \Omega$
R5	$5.6 \mathrm{k} \Omega$	R11	$8.2 \mathrm{k} \Omega 2$
R6	$1 \mathrm{k} \Omega$	R12	$8.2 \mathrm{k} \Omega$
All $t W$ carbon $\pm 5 \%$			

Capacitors

C1, C5 $100 \mu \mathrm{~F} 25 \mathrm{~V}$ elect. (2 off)
$\mathrm{C} 2,3,40 \cdot 1 \mu \mathrm{~F} 35 \mathrm{~V}$ tant alum (3 off)

Semiconductors

TR1 BC107 non silicon
IC1, IC2 NE555 timer i.c. (2 off)

Switches

S1 2-pole 6-way rotary switch

Miscellaneous

B1 9V type PP3
LS1 40 to 80 ohm miniature loudspeaker
Wood or plastics case, approx. $115 \times 100 \times 65 \mathrm{~mm} ; 0.1$ inch matrix stripboard, 16 strips by 30 holes; Speaker covering; interconnecting wire; battery connector.

Fig. 4. End view of the wooden case showing component position. The timing switch S 1 has been recessed in one side panel.

Finished unit with suggested lettering around timing switch $\mathbf{S} 1$.

A transfer type system was used for the lettering on the box and the completed unit was varnished.

${ }^{\mathrm{M}}$
MAGINE an hatel of 1,150 bedrooms. 35 public rooms, 2 ballrooms, 14 meeting rooms, an exhibition hall, not to mention the many bars and a restaurant or two. Now imagine that it is your job to choose and install the various sound systems, background music, entertainment amplification, fire warning circuits, announcement facilities and so on.-Where would you begin?

SOUND EIGHTY TWO

Sound Eighty Two was the annual exhibition and seminars of the Association of Sound and Communications Engineers, held at the Cunard International Hotel, Hammersmith, London. It is the professionals show; but this is not to say there aren't a lot of ideas for us to gleen.

Of the thirty-nine companies exhibiting the most popular stands seemed at first to be the loudspeaker manufac turers, but later this changed and it was the micropifone exhibitors who were crowded out. Finally, it was realised that the friendly atmosphere
was being created by the stand and show organisers milling around looking at each other's wares.

The Queen Mary Suite on the first floor of the Cunard Hotel, Hammer. smith, was divided in two for this exhibition. The "Port Side" and "Midships" section housed the main exhibition, whilst the "Starboard Side" accommodated the lecture theatre setting.

LISTENING POST

The lobby and Bar area was in use both as reception and exbibition layout, and it was here that the Listening Post system of Rediffusion Reditronics, who developed the system in association with the Countryside Commission, was demonstrated.
Listening Post is a free standing or wall mounted cassette player that provides information or commentary, either through a loudspeaker, a plastics tube and earpiece, or a stethoscope device for noisy situations. It is proving popular in museums, art galleries and wildlife sanctuaries. Larger installations use
a central multitrack tape player to feed the visitors Listening Post.

AMPLIFIERS

Ambient noise sensing amplifiers was a theme of Modular Communications, where the level of background noise controls the output level of the amplifier enabling the announcements to be clearly heard. Another theme was an aerial splitter feeding f.m. radios, with switched tuning, known as Bedroom Radios and installed in many small hospitals and student hostels.

Plug-in crossover modules that provide an inexpensively simple bi-amping and tri-amping facility were Jemonstrated by Peavey Electronics (UK), the world's largest manufacturer of portable sound equipment. Also on show were the high quality Black. Widow range of loudspeakers, graphic equalisers, mixers and the new Automatch transformer.

From practice amplifiers to 100 watt 5 channel mixer amplifiers and $2 \times 12+$ horn pairs capable of handling 260 watts gives a good idea of the Raven amplifiers available from the Cheshire Communications stand; their display included the latest Coles Electroacoustics microphone for the professional entertainer and this mic could be the answer to many a tape recording fanatic.

MICROPHONES

Various stands had radio microphones to give freedom of movement to actor, priest or president. One novel
idea was a loudspeaker with a telescopic aerial appearing out of the top. The internal receiver and amplifier drive the loudspeaker that can be set up anywhere without the need (or cost) of long connecting leads. Radiomicrophones require a special licence and must be of approved design.
Grampian designed microphones are now produced and serviced by Pegra Engineering and they had on show both omni-directional and cardioid microphones as well as semi-cardioid and "figure-of-eight" ribbon microphones.
Well known performers such as Charles Aznavour/Crystal Gayle/Rod Stewart/Dionne Warwick/Eddie Rabitt/ and Marie Osmond all use Shure microphones and their extensive range covers every sound situation-their catalogue is fact-packed too. From scientific sound level microphones to surface mounted Lo-profile microphones that look more like mice with long tails (used at conferences and in churches to pick up reflected sound coming from the table surface), and, of course, the whole range of entertainment microphones.

NFRAPORT

A long time was spent on the Hayden stand as they had so many new items on show. The infra-red distribution of sound within rooms has proved useful to many people and even used in schools for the deaf where the system works both ways, the teachers communicate with the children, who can speak back, and they can hear their own voices which help their development.

A device known as a Infraport system would have looked more at home in a hospital and was a trolley with a tray top containing a matrix of infrared l.e.d.s. In the centre section was a stethoscope attachment that could be used by a doctor to listen to a patient whilst students in his charge hear (on their own Infraport receivers) the same sound as the doctor, who then explains what they have heard and moves on. In the past it would have meant every student having to listen to the sound through the doctor's stethoscope.

The Sennheiser Infraport systems are also available on multi-channel distri bution to come with multi-translation at conferences, and it was interesting to note that the "hard-of-hearing" could use the system safely at home to enjoy television sound.

RECORDERS

Also demonstrated on the Hayden stand was the first EPROM program controlled professional tape recorder we had seen in operation; it only arrived from Germany the night before and so we experienced a hesitant demonstration of its function.

It was a joy to see this machine work ing with its "hands off" facility to ease editing. Auto forward reverse slowing over each pause between notes or syllables and when the edit button is pressed after stopping "on the spot" the machine runs the tape on to the cutter aligns the exact spot-all that is left is for the cutter to be pressed, and edit.

Broadcast quality tape recorders were here too. The Nagra range of portables using 6.25 mm tape are the workhorses for quality interviews, sound film sync. recording, and their miniature professional tape recorder has to be seen to be believed.

The London Science Museum are installing rack mounted cartridge message repeaters to feed their many "information" points and the Sarner Audio Visual stand were demonstrating these machines.

SEMINARS

The first seminar that we attended, entitled "The Automatic Solution to Sound Pickup by many Microphones" was given by Dave Ashdown of the Knowles Company. A curious title that attracted us because we always thought that microphones were designed to pick up sound

It soon became obvious that the systems under discussion involved council chambers and the like where there is a general background of noise. Each speaker is heard clearly because the other microphones are switched off until they input sound louder than the preset background noise level, this en
sures that even a softly spoken person will be heard.

The unfortunate part of this show for me was the jarring way the intermal PA announcements were made. But following its advice we attended a most interesting seminar on "Microphone Placement" by Ken Dibble. His interesting and informative talk on the problems of choosing the right mic and putting them in the best position for various musical instruments could well be an idea for a series of sound publications.

A Question Time was the final ses. sion of the day, spoilt by a verbose member of the public trying to prove he knew more than the panel members.

One interesting point that did manage to get across was the Tone Control vs Equalisation argument. The renters seem happy with tone controls but the designers were unhappy that hirers could wind up the bass and cause a lot of heavy wear on the loudspeaker cones, and anyway if the tone controls are set for music, then announcements sound poor or vice-versa.

LAST CALL

Back in the main exhibition area one of the last ports of call was a visit to the Eagle stand where their horn reentrant speakers and the cordless headphone were featured. The headphone system involves a winding of four wires around the room, hall or factory, each listener wears headphones that contain a pick up coil, amplifier and small batteries; it enhances the sound quality and is easily installed. (A Home Office licence is required for this type of system).

The last to assist with information before the show closed was M. E. Millbank, and their range of equipment seems to cover every kind of PA situation. From Automatic "Spot" Announcement machines for use in railway stations, factories and airports, to an auto room call for hotels to set off a "pleasant interrupted tone" which has to be cancelled by the guest. If it doesn't wake the guest the system alerts staff and a printout describes the room number for investigation.

SOAR FREQUENCY COUNTER

Accurate digital frequency measurement has, until recently, remained almost exclusively within the realms of the professional laboratory and workshop. Until recently that is, because Holdings Photo Audio Centre in Blackburn have taken the initiative to import a neat little d.f.m. from Japan and made it available for under f 50.

The meter in question is the SOAR FC-841 Frequency Counter and its specification is, to say the least, quite impressive for a unit small enough to rest on one hand. Small in size it may

SPECIFICATION

Frequency range:
$10 \mathrm{~Hz} \cdot 65 \mathrm{MHz}$ (45 MHz on battery)* Accuracy:
$\pm 10 \mathrm{~Hz} . \pm 0.0002 \%$
Resolution:
$10 \mathrm{~Hz} / 10 \mathrm{kHz}$
Sensitivity:
Better than 30 mV (60 mV on battery)*
Display:
4 digits, 7 digit accuracy on MHz range
Maximum input:
20 V peak-to-peak
Input:
$1 \mathrm{M} \Omega+$ stray capacitance via b.n.c. socket

Power supply:

$4 \times 1.5 \mathrm{~V}$ AA size batteries or via external 8 to 11 V d.c. mains adaptor through a 2.1 mm powerin socket in back panel
Controls:
On/off switch, range switch
*Where performance is slightly derated on battery power, figures shown in parentheses.
be but short on applications it's not, and the enthusiast can now own a d.f.m. with a frequency range covering audio to r.f. and hence can be used for such diverse purposes as checking the speed of a tape recorder or setting up a radio transmitter. And you won't need a pilot's licence or an electronics degree to operate it!
The controls are uncomplicated, with an on/off switch, a range switch to change between the two ranges (kHz and MHz , reading directly from the display in both cases) and a b.n.c. input socket.

DISPLAY

The display consists of four 0.3 inch seven segment l.e.d.s with the decimal point between the middle two digits.
The kHz range can therefore measure up to 99.99 kHz , the resolution being $\pm 10 \mathrm{~Hz}$ as the last digit represents multiples of 10 Hz . For frequencies above 100 kHz , the meter must be switched to the MHz range and will now measure up to 65 MHz , with a resolution of $\pm 10 \mathrm{kHz}$.

However, in order to achieve a higher resolution measurement with high frequencies, the meter can be switched back to the kHz range to display the next three digits (four are actually displayed, but the first digit now corresponds to the last digit displayed on the MHz reading) giving seven digit accuracy with the same resolution as the kHz range, $\pm 10 \mathrm{~Hz}$.
If all that sounds a little confusing, it becomes much clearer with an
example, so say the first reading was $10 \cdot 25 \mathrm{MHz}$ and the meter was switched to kHz and reads $46 \cdot 25$. The precise " 4 " on this reading is a replacement for the approximate " 5 " in the first reading so the actual frequency is $10 \cdot 24625 \mathrm{MHz} \pm 10 \mathrm{~Hz}$.

It should be noted that all counters have a tendency to read high rather than low on the last digit, so the frequency in the previous example is probably between $10 \cdot 24624$ and $10 \cdot 24625 \mathrm{MHz}$.

ON TEST

When it came to checking the accuracy of this meter, the test gear at our disposal proved to be of insufficient specification to do the SOAR any justice, so a series of tests were carried out to determine the consistancy of measurement from 10 Hz up to 10 MHz .

To do this, an accurate 10 MHz crystal oscillator was built along with a 20 -stage binary divider to repeatedly divide the input by two, thus creating a total of 21 test frequencies, each one exactly half the preceding one, from 10 MHz down to $9 \cdot 53 \mathrm{~Hz}$. (This is equal to 10 MHz divided by 2^{20}.)

It is pleasing to note that the meter passed with remarkable accuracy, producing a linear relationship throughout this range.

A slight inconsistency was noted in the readings for 10 Hz and 20 Hz , but it was still within the specified accuracy of ± 1 digit, so no black marks for that one.

This level of accuracy (and the distributors guarantee the figure of $\pm 10 \mathrm{~Hz}, \pm 0.0002$ per cent) make the SOAR d.f.m. an attractive buy, comparable with meters costing many times more.

View inside the Soar frequency counter showing the single p.c.b. construction.

Meter with its input lead and power unit.

The meter is supplied in a robust steel case, only $120 \times 100 \times 32 \mathrm{~mm}$, with tilt-up front feet. The b.n.c. input lead, terminated with a pair of crocodile clips, is also included in the purchase price of $£ 48$ for the battery powered version or $£ 52$ if the mains adaptor is required.

An optional prescaler to expand the frequency range to 600 MHz is also available for $£ 23$. All prices include VAT, but please add $£ 1$ for postage.

The operator's manual supplied with the SOAR contains the usual strange but rather quaint Japanese/ English translation, but is quite clear and concise, and as the meter is simple to use, there should be no problems in this department.
The SOAR FC-841 is available, with a 6 month guarantee, from Holdings Photo Audio Centre, Dept. EE, Mincing Lane, Darwin Street, Blackburn, BB2 2AF.

WALIES4CYMRU Sianel Pedwar Cymru

At an estimated cost of $£ 20$ million over 500,000 Welsh speaking people will be able to receive over 22 hours per week of Welsh language broadcasting when the new television service S4C goes on the air next November.

BBC, IBA and HTV have helped in establishing the new Independent Welsh Fourth Channel Authority. All programmes will be interspersed with most locally produced Welsh language advertisements.
The launch of the Welsh Fourth Channel AuthoritySianel Pedwar Cymru-appropriately on Saint David's Day, marked an historic change in the pattern of future broadcasting in Wales.

At last, after many years of campaigning, Welsh speakers will have a channel which will give priority to the use and development of the Welsh language. In addition to that, S4C will also provide a service for English speakers in Wales including coverage of local events.

S4C will come on the air in the first week of November. All Welsh programmes will move from existing channels to the new station.

Programmes

There will be 22 hours weekly in Welsh. S4C will commission programmes from the BBC, HTV and the Independent Producers. There will be some 40 hours weekly in English selected from Channel Four output.
They have no facilities to make programmes them. selves. It will have only a small continuity suite. Programmes on HTV and BBC will now be in English only.
There will be advertising on S4C and the responsibility and the revenue for this will belong to HTV.
The Independent Broadcasting Authority has three main duties towards the new service. It will be responsible for the control of advertisements, for funding, and for transmitting the service.
The IBA and the Welsh Authority agreed the sum of £20 million to fund the service up to the end of March 1983. This finance forms part of the subscriptions payable by the ITV companies and is supported by the Government's adjustment of the levy payable to the Exchequer.

Productions

Already, over 30 independent producers have been commissioned to prepare programmes, contributing over 4 hours of Welsh language shows each week.
Most of the independent producers are Welsh-speaking, and many have based themselves in rural Wales where they hope to reflect the local culture.
English versions are also to be produced, and already the children's character "Super Ted" (the Welsh answer to Superman) is set to become an international hit with sales to America.

Technical Centre

The presentation centre for S4C is located within the Authority's premises at Sophia Close, Cardiff. It connects via cable with the BBC and HTV in Cardiff and with Channel Four, allowing for live or direct injection from these remote souroes.

The majority of programmes, however, will originate from the centre. For this purpose, S4C has

S4C's first international "Superstars", Wil Cwac Cwac and Super Ted meet the girls.
adopted the lin helical scan C-format video tape recorder as its standard.

The centre will be equipped with six VTR machines to provide trans mission souroes and acquisition of programmes from remote sources.

At the heart of the system will be a 30 input $Z 80$ microprocessor controlled presentation mixer bringing to-
gether local programme souroes with remote inputs rendered locally synchronous by digital frame stones. Continuity will be in vision provided by two broadcast colour cameras. The presentation will be cupported and enhanced by a digital still stores facility in addition to a graphics and character generator.
 AND CLOSE THE SIDE HUNG TYPE DOORS, UTILISING THE SAME ELECTRONIC CONTROL UNITS AS BEFORE.
| N The January and February 1982 issues, a description was given of a remote control system for up-and-over garage doors. However many readers will have the traditional side hung pattern and there is no reason for them not to benefit from the convenience and luxury of electronic control. An electric motor provides the power as before but a different operating principle must be adopted, relying on a chain driven traveller running on rails, with operating rods to move the doors.

Before starting on the construction, some simple geometry is necessary to determine the length of rails required and the position of a microswitch operated by the traveller to signal "door open".
With standard four-foot doors, a length of some 1.8 metres is needed to enable the operating rods to fully open them. Consideration should also be given to mounting the unit; in the author's installation, a bracket, made from a short length of angle iron, was fitted inside the garage above the centre of the door opening to which the motor plate with rails was bolted and steel straps attached to the garage ceiling support the other end of the rails.

RAILS AND TRAVELLER

Suitable $40 \times 40 \mathrm{~mm}$ angle iron for the rails was obtained from an old iron bedstead. Dexion type angle is not satisfactory as it tends to flex and twist. The rails, which must be straight and parallel, are bolted 25 mm apart with a short iron strap at one end and the motor mounting plate $190 \times 160 \mathrm{~mm}$ at the other.
The microswitch (S 8) is fixed at the motor end of the rails with a single bolt so that it can rotated to provide some degree of adjustment. This switch is the door fully open switch. The traveller is a critical
component in the system and is made up from two flat steel or aluminium sheets $50 \times 90 \mathrm{~mm}$ with a piece of steel strip sandwiched between them. This must be of sufficient thickness to ensure a clearance to the rails so that it can slide freely (see section through traveller in Fig. 1). Holes are drilled on the centre line for the attachment of the chain and for an M8 bolt, 60 mm long which acts as a pivot for the two operating rods. The running edges of the rails should be thoroughly cleaned and lightly smeared with grease before the traveller is mounted.

MOTOR DRIVE

A 240 V a.c. reversible motor with gearbox is required and a model designed for opening and closing stage curtains, having a torque of 14.5 kgs and a shaft speed of 19 r.p.m. was purchased. A local cycle shop sup-
plied the chain which is of 0.5 in pitch and is normally available in 114 link lengths, so that three will be needed, together with two 21 tooth sprockets. With this size of sprocket, a closing or opening cycle will take about 18 seconds.

One sprocket was mounted on the gearbox shaft using a collar and grubscrew and the other turns freely on a shaft, centralised with spacers and supported on brackets bolted to the rail flanges. The motor is positioned so that the sprocket is centralised between the rails and is then bolted to the mounting plate. The chain is threaded over the sprockets and attached to the traveller with a small shackle and rigging screw of the type used on sailing dinghies; the rigging screw being used to tension the chain.
A simple folded aluminium cover was made to protect the motor and this was fixed to the motor mounting plate with small self-tapping screws.

COMPONENTS

Mechanical Components
Rails $40 \times 40 \times 2 \mathrm{~mm}$ thick angle iron, 1.3 m long. 2 off. see text for details. (item 1)
Operating rods $25 \times 25 \mathrm{~mm}$ softwood, 1.8 m long, 2 off. (item 2)
Traveller $50 \times 90 \mathrm{~mm}$ steel or aluminium plate, 2 off; $90 \times 25 \times 2.5 \mathrm{~mm}$
Chain $\quad 0.5$ inch pitch, approximately 4 m long. (item 4) thick steel plate, 1 off. (item 3)

Sprockets Bicycle type, 21 teeth, 2 off. (item 5)
Motor plate $\quad 190 \times 160 \times 2 \mathrm{~mm}$ steel or aluminium plate. (item 6)
Motor cover $\quad 160 \times 450 \times 1 \mathrm{~mm}$ aluminium sheet. (item 7)
Spring strip $200 \times 13 \mathrm{~mm}$ spring steel (item 8)
Electro-mechanical Components
Motor
Citenco 240 Va.c. reversible motor and gearbox, output speed
19 r.p.m., torque 14.5 kgs . (item 9)
Solenoid
$240 \mathrm{Va} . \mathrm{c}$. type, optional if lock is required. (item 10)
Switches
Microswitch, S7 and 8. 2 off (item 11)

Miscellaneous

Assorted nuts, bolts, screws, washers, small shackle and rigging screw (for securing chain to traveller), various small brackets and plates (for fixing operating rods), spindle and spacers (for rear sprocket).
All item numbers given in parentheses refer to the encircled numbers shown on Fig. 1.

OPERATING RODS

For convenience, the rods were made of $25 \times 25 \mathrm{~mm}$ softwood and were stained or painted to match the doors, the metal fittings were then bolted on. At one end, a simple pin fitting is used to engage with a drilled bracket screwed to each door and at the other end, shaped plates drilled for the traveller bolt allow the rods to pivot as the doors move.

There can be a complication here as the doors are sometimes rebated where they meet, and to avoid jamming on closing, one door must shut a fraction of a second before the other. To achieve this action the bracket for the rebated door is bolted to that door at the end of a spring steel strip (on the prototype, a flexible hacksaw blade was used) which will allow about 50 mm deflec. tion. The length of this operating rod is shortened by the same amount (50 mm) so that the rebated door will close first with the spring then deflecting as the other door follows through to the final closed position. Above this door another microswitch (S7) is fitted to signal door fully closed.

A separate door to the garage allows access to be gained and the pins of the operating rods to be disconnected from the door brackets in the event of a failure of the system. If there is no separate access then a hole should be drilled in one door to permit the operating rod to be disconnected by lifting with a small screwdriver.

CONTROL

The control unit described in the previous article is suitable to control the motor; an important and necessary feature of which is the built-in delay between motor reversals. The motor leads should be connected to TB2/3, 4, 5 and 6 and the microswitches S8, dOOR FULLY open, and S7, door fully closed, to TBl/7 and 8 and TB1/8 and 9 respectively, taking care with those wires carrying mains potentials. A 240 V a.c. sol-
 mechanical assembly of the opening device. See the components list for a breakdown of the numbered items. Inset shows a section through the traveller.
enoid is fitted adjacent to the door fully Closed microswitch to engage with a large eyebolt with connections made to TB2/3, 4 and 5 on the control unit.

All component designation numbers and terminal block references given here refer to the original system, the wiring diagram being Fig. 13, page 120 , in the February issue.

No overload obstruction switches are used as it was considered that having waterproof microswitches on each door with flexing leads and long
operating levers would not be entirely reliable, particularly when the obstruction would in most cases be an awkwardly shaped car. For this reason, TBl/3 and 4 must be linked.
One possibility would be a photoelectric circuit mounted near the ultrasonic receiver, projecting a beam diagonally across the door opening with reflection from a small mirror fitted on the edge of the far door, but the feasibility of this approach will have to await further experi mentation.

Readers' Bright Ideas; any idea that is published will be awarded payment according to its merit. The ideas have not been proved by us.

SCREW TERMINAL

I have devised a simple home-made screw terminal that I think may be of interest to other constructors.
A nut is glued inside the cap of a toothpaste tube which forms an insulated cap to screw on a bolt, nut and solder tag arrangement as seen in the drawing. This is only suitable for mounting on plastic cases in its presented form.
P. Brooksbank,

Garforth, Leeds

By adding the numbers 7, 8 and 9, as well as Zero, this random indicator opens out further possibilities for games normally played with a conventional 1 to 6 die, and introduces new interest. Random selection of a number occurs each time the operating button is pressed, and players do this in turn, instead of shaking and tossing the die.

CIRCUIT DESCRIPTION

The circuit is shown in Fig. 1. Pulses are generated by unijunction
transistor TR1 so long as the "Run" switch Sl is closed. Capacitor Cl charges through R1, until at a particular emitter potential TR1 discharges, producing the pulse at base 1. Pulses arise too rapidly of course for the player to have any chance of deliberate selection.

Potentiometer VR1 is not absolutely essential, but does have the advantage that conditions can be easily set to suit a range of unijunction transistors at TR1, and also to allow working from a 5 V power supply, or 4.5 V battery. If the total resistance from B1 to negative is either much too high, or much too low, pulses will not operate the counter IC1. So adjustment of VR1 takes care of this.

DECADE COUNTER

ICl is a decade counter with binary output along 11, 8, 9 and 12. These points provide input to the decoderdriver IC2. This i.c. switches into circuit the correct segments of $\mathrm{X1}$, the DL747 l.e.d. numeral, to produce the figure. Resistors R4 to R10 limit current to about 8 mA per segment.

Fig. 1. Circuit diagram of the Big 9 Indicator

COMPONENTS

Resistors
R1 $100 \mathrm{kR} \Omega$
R2 470Ω
R3 180Ω
R4-10 220Ω (7 off)
All $+W \pm 5 \%$

Potentiometer
VR1 470Ω miniature preset

Capacitors

C1 $0.1 \mu \mathrm{~F}$ disc ceramic
Semiconductors
TR1 UT46, TIS43 or E5567 unijunction transistor
ICI 7490/FLJ161 decade counter 14 -pin di.i.l.
IC2 7447 decoder driver 16 . pin d.i.l.

Miscellaneous
X1 DL747 common anode 7.segment l.e.d. display

B1 4.5V battery
S1 miniature push switch Case, Verobox $70 \times 50 \times 25 \mathrm{~mm}$ Veroboard 15 strips $\times 26$ holes. Wire (see text). 14-pin d.i.l. holder, 16-pin d.i.l, holder.

Approx. cost Guidance only
 £5•50

CONSTRUCTION

Components are constructed on a piece of $0 \cdot 1$ in stripboard, 15 strips by 26 holes. Some interconnections are made by link wires on the top and underside of the board. These link wires, the breaks in the copper strips and the placement of components are all clearly shown in Fig. 2(a) and (b).
To fit the plastics case, which measures $70 \times 50 \times 25 \mathrm{~mm}$, it will be necessary to file the corners off the board to clear the mouldings which take the case screws.

Before inserting the DL747 display X1, clear away the copper strip where the pins emerge, except for A, Fig. 2. Support this device by soldering at A, and for the four positive line connections, which are to the adjacent strips as shown. Have the numeral as far from the board as the length of pin allows, and make sure the identifying spot or mark (not decimal point) is at the top.

Holders are used for IC1 and IC2. Resistors need to be of the small, fractional wattage type, to save space. Cl is a low voltage disc ceramic capacitor, which can rest flat on top of IC1.

CIRCUIT POINTS

Cut breaks in the copper strips under the rows of pins for ICl and IC2, and in all other positions. This is most easily done systematically as work progresses. As example, between 14 of ICl and R4, between 13 of IC1 and R6, and so on, across the board, finally between R8 and the positive line.
Where several leads are close together, as near ICl , thin insulated wire is required. Also use this for the positive line from 5 of ICl , and solder on two flexible wires for S1.

Positive and negative leads run through a small hole in the case so that the indicator can be run from a 5 V power supply. It will also operate from a 3 -cell (4.5 V) battery. Current taken is about 95 mA . Take care to use the correct polarity of connection.

CHECKING AND
 ADJUSTMENTS

Carefully examine the board for omitted breaks, or fragments of copper or solder between conductors.

The completed Big 9 Indicator.

These can cause an incorrect display or other troubles.

With VR1 set at about middle position, and Sl closed, the numeral should change rapidly, and stop at some figure when Sl is released.

Fig. 2. The unit is assembled on a piece of stripboard. (a) shows the top side with all components in position, (b) shows the underside of the stripboard. Note carefully all the breaks that have to be made in the copper strips. The wiring from the display pins is taken directly to the copper strips. Plastic sleeving should be used for display wiring and all underside links.

Check that all numbers display correctly. If not, look for shorts or omitted connections around the display and IC2. If the number does not change with Sl closed, adjust VR1 to clear this.

If no setting of VR1 produces the wanted result, TR1 may not be oscillating. This is easily checked by taking headphones, or similar means of testing, to bl, where a rapid buzz should be heard. If this is absent, check around TR1, S1, R1, C1 and R2.

The push switch Sl fits in a hole in the side of the case, and is easily manipulated in this position. The case cover fits with four self-tapping screws. A hole is cut in the cover, over the numeral, by drilling small holes closely together, removing the unwanted piece, and cleaning up with a small file.

Positive Feedback

POSITIVE FEEDBACK must have looked to early radio engineers like a great and glorious free gift which would answer all their problems. So it did, up to a point. But today those problems hardly exist. All the same, positive feedback still has its uses.
Radio valves used to be very expensive. A simple triode cost a sizable portion of a week's wages.
This gave radio engineers a problem. How could the sensitivity and selectivity of a receiver be increased without increasing the number of valves?

Positive feedback did both the se things, at one stroke. Only, it wasn't called positive feedback in those days, but reaction, regeneration, or retro-action.

All these names suggest a process involving some sort of repetition, and this indeed was how positive feedback was regarded. The basic idea was to make the same valve amplify twice. To do this, you took some of its output and fed it back to its input, so that the signals were amplified a second time.

Op-Amp Model

The operational amplifier hadn't been invented. If you had suggested, in the twenties, that a device containing a dozen
active amplifying units and giving an audio gain of 1000 or more could one day be obtainable for the price of a few cigarettes, people would probably have thought you insane.

Down To Earth

We do have operational amplifiers so let's make use of one to illustrate the principle of positive feedback.

Our particular op-amp (Fig. 1) is a very modest affair, giving a voltage amplification (A) of only 10 . Even this is quite good compared with the earliest valves.

If we take some of the output and feed it back (via resistances Y and X) to the non-inverting input, this feed-back output is amplified a second time and reappears in enlarged form at the output.

Suppose we feed back one twentieth part of the output. If the original signal input was 1 V , the original output (with $A=10$) was 10 V . One twentieth of this $(0.5 \mathrm{~V})$ is now fed back, and because of the way op. amps work this 0.5 V is added to the original 1 V input, giving a new input of 1.5 V .

The gain has effectively been increased from 10 to 15, it seems. In fact, it has been increased more than this, because some of the new 15 V output is now fed back. giving a "new new" input of 1.75 V and a "new new" output of 17.5 V .

The process doesn't stop there, but continues. I can tell you that the gain you end up with is 20, because 1 know the formula:

NEW GAIN $=A /(1-A F)$

Here A is the "real" gain (in our case, 10) and F is the fraction of output fed back (in our case $1 / 20$).

Putting in our figures gives: NEW $G A \left\lvert\, N=10 /\left(\frac{1}{2}\right)\right.$, and since there are 20 halves in 10 this comes to 20 . If more of the output is fed back the effect is to reduce the fraction by which A has to be divided and this means an increase in effective gain.

If the fraction fed back is such that the sum comes to $10 /(1 / 10)$, the new gain is 100. For $10 /(1 / 100)$ it is 1000 ; for $10 /(1 / 1000)$. 10,000 and so on. The limit comes when the original gain of 10 has to be divided by 0 , because the answer is infinity.

Infinite gain is of no practical use, because it means that any input signal, however small, is amplified until it gives the maximum possible output. Since there is always an input, in the form of unwanted noise, the amplifier always gives maximum output.

In the case of Fig. 1 this means that the op-amp "latches up", sticking on, say, maximum possible positive output, whether there is an input or not. In the case of the positive feedback circuits used in early radios, infinite gain meant that the circuit burst into oscillation. Since, in those days, sets were fitted with long wire aerials, oscillation turned a receiver into a transmitter which sent annoying "howls" to the neighbours, so it was frowned upon.

The art of using "'reaction" in radio receivers was to design a circuit which could be set just short of oscillation, giving a very greatly increased gain. Since the feedback path included a tuned circuit selectivity was also increased because more signals were fed back at the tuned frequency than at any other.

Limitations

With the circuit set just short of oscillation any tiny increase either in the amount fed back or in the real gain pushed the circuit over the brink. Changes in mains voltage, temperature, and in physical conditions near the receiver such as bringing one's hand to the controls could all affect the circuit in this way.

In a word, the advantages of positive feedback have to be paid for in terms of operating difficulties. As valves became cheaper and the required selectivity could be obtained by building "superhet" receivers with several tuned circuits in their intermediate frequency stages "reaction" quietly faded from the scene, except in radios built by electronics enthusiasts.

Positive Feedback

Positive feedback, however, continued to be used for other purposes, not by itself but in conjunction with negative feedback. This may seem odd, since negative feedback cancels positive.

However, it does not do so if the positive feedback path differs from the negative in frequency response. This leaves open the possibility of circuits where some positive feedback is obtained at some frequencies.

This gives the designer control over frequency response and many "active filters' use positive feedback in this way, as response-shaping not gain-raising. Gain is cheap, today.

A familiar example of mixed feedback is the Wien Bridge audio oscillator (Fig, 2), Here the positive feedback gives a slight preference to the one frequency at which
 capacitances C have the same reactance as their associated resistances R.

By setting the potentiometer VR1 so that the circuit just oscillates this frequency is generated as a pure sine wave. In other words, the positive feedback is used to transform a circuit which is only slightly selective into one so sharply selec. tive that it picks out the noise in the amplifier on that one frequency and amplifies it to give a large output.

Readers' Bright Ideas; any idea that is published will be awarded payment according to its merit. The ideas have not been proved by us.

COIL WINDER COUNTER

Many radio enthusiasts will have experienced the frustration in winding the penultimate turn on a coil when some disaster occurs, such as dropping the wire perhaps.
A simple coil winding jig which automatically keeps count of the turns can be constructed from an old tape or cassettee deck fitted with a tap counter. Remove the spool carrier from the take-up spindle and replace with a piece of dowl suitably drilled and shaped to form a carrier for coil formers.

Place the spool of wire on the opposite spindle. The first turns should be made at a slow speed, increasing to "fast

COMPONENT SOCKET

I have found that when constructing experiments and projects where components may need to be changed regularly, such as in timers, if you cut a section of an i.c. socket
 with a sharp knife, or a hacksaw and insert it into your circuit, it becomes a simple matter to remove components and make any necessary substitutions, see diagram.
R. J. Bennett,

Walkergate, Newcastle-upon-Tyne
forward" for the bulk of the turns. The counter will indicate number of turns wound.
D. Greenhalgh,

Poyton, Cheshire

If the name BICC-Vero sounds only half familiar, that's not the only difference you're going to notice.
Because not only have we added to our name we've also added to our technology. Building upon our well established industrial product range and incorporating the very latest ideas and techniques to ensure that you too are working at a state-of-the-art standard.
But you will of course still recognise the old favourites. Products like Veroboard, which pioneered in so many ways, today's thriving pastime of electronics.

Bigger means better in other respects. Being part of the giant BICC-Vero Electronics Group ensures that we're a major force in electronics technology. Our R and D scope is enlarged, and our supply and distribution facilities improved.

And because we're professionals we appreciate the very real professionalism of the hobbyist market - and service it accordingly.

Yes, we're sure you'll notice the difference. As well as that pleasantly familiar personal touch.

BICC-VERO ELECTRONICS LTD.

[^0]

EVEN the most sophisticated and modern manufacturing techniques employed today in the construction of electronic equipment have not eliminated the need for basic point-to-point wiring, so an understanding of the many different types, sizes and uses of wire is essential, particularly to those of us who pursue electronics as a hobby and the wiring forms an important part of many a project.

EQUIPMENT WIRE

Equipment wire is the type that is used for the wiring of electronic chassis, front panels and circuit boards, and is usually sheathed with p.v.c. or a similar insulator. it can be divided into a further two categories: single stranded, that is a single copper conductor sheathed with p.v.c.; and multi-stranded with more than one copper conductor grouped together and again sleeved with p.v.c.

When describing equipment wire, two figures are quoted, the first being the number of conductors in the wire and the second being the diameter in millimetres of each conductor in that wire. So for example, a $1 / 0.6$ wire has one conductor 0.6 mm in diameter whereas a $7 / 0.2$ wire has seven smaller conductors, each of 0.2 mm diameter. Table l, below, gives the data on the popular sizes of equipment wire available.

Single stranded equipment wire must never be used in applications where the wire is likely to be continually "flexed" back and forth as this will eventually fracture the copper and the wire will break.
The ideal application for the single stranded wire is chassis and p.c.b. wiring, as once in place, it will not be required to bend or flex.

MULTI-STRANDED WIRE

In the cases where the wires in a piece of equipment do get subjected to a fair amount of flexing, as in a cableform or in front panel to circuit board wiring, a multi-stranded wire of the correct voltage and current rating must be used. Due to the nature of multi-stranded wire, it is able to bend more often without breaking and so lends itself to this type of wiring.

In instances where the wire will be frequently moved about, as for example, with a test probe, a wire with a large number of very small diameter strands and an extremely pliable p.v.c. sheath is used, the example in Table 1 being the $55 / 0.1$ wire

Fig. 1. Examples of equipment wire: (1) $1 / 0 \cdot 6$; (2) $7 / 0 \cdot 2$; and (3) $55 / 0 \cdot 1$

WIRE PREPARATION

In order to make a successful solder joint with a piece of wire, it must first be stripped of its insulation for about 6 to 10 mm , and in the case of multistranded wires, the individual strands must be twisted together and tinned, thus making a rigid enough end to form a good mechanical joint prior to soldering.

TABLE 1 EQUIPMENT WIRE DATA

SIZE
$1 / 0.25 \mathrm{~mm}\left(0.05 \mathrm{~mm}^{2}\right)$
$1 / 0.6 \mathrm{~mm}\left(0.28 \mathrm{~mm}^{2}\right)$
$10 / 0.1 \mathrm{~mm}\left(0.08 \mathrm{~mm}^{2}\right)$
$7 / 0.2 \mathrm{~mm}\left(0.22 \mathrm{~mm}^{2}\right)$
$16 / 0.2 \mathrm{~mm}\left(0.5 \mathrm{~mm}^{2}\right)$
$24 / 0.2 \mathrm{~mm}\left(0.75 \mathrm{~mm}^{2}\right)$
$32 / 0.2 \mathrm{~mm}\left(1.0 \mathrm{~mm}^{2}\right)$
$55 / 0.1 \mathrm{~mm}\left(0.43 \mathrm{~mm}^{2}\right)$

MAX. RATING
150 V r.m.s. 0.4 A @ $25^{\circ} \mathrm{C}$
1 kVr r.m.s,1.8A@ $70^{\circ} \mathrm{C}$
750 Vr.m.s, 0.5A @ $70^{\circ} \mathrm{C}$
1 kVr .m.s.1•4A@70 ${ }^{\circ} \mathrm{C}$
1 kVr r.m.s, 3.0A @ $70^{\circ} \mathrm{C}$
1kVr.m.s, 4.5A@70 ${ }^{\circ} \mathrm{C}$
1 kVr .m.s, 6.0A@70 ${ }^{\circ} \mathrm{C}$
$650 \mathrm{Vd} . \mathrm{c}$. (500 V a.c.), $2 \cdot 5 \mathrm{~A}$ (a) $70^{\circ} \mathrm{C}$

DESCRIPTION

silver plated copper, Kynar insulated, 0.5 mm dia. tinned copper, p.v.c. insulated, 1.2 mm dia.
tinned copper, stranded, p.v.c. insulated, 1.05 mm dia. tinned copper, stranded, p.v.c. insulated, $1 \cdot 2 \mathrm{~mm}$ dia. tinned copper, stranded, p.v.c. insulated, 1.6 mm dia. tinned copper, stranded, p.v.c. insulated, 2.0 mm dia. tinned copper, stranded, p.v.c. insulated, 2.5 mm dia.
plain copper, stranded, pliable p.v.c. insulated, 2.8 mm dia.

TABLE 2

SOLID COPPER WIRE DATA

SIZE s.w.g.	NOMINAL. DIA. (mm) t.c.w.	e.c.w.
16	1.62	1.73
18	1.22	1.31
20	0.91	1.01
22	0.71	0.73
24	0.56	0.63
26	0.46	0.53

t.c.w. = tinned copper wire
e.c.w. $=$ enamelled copper wire

The stripping of the insulation is best performed with a special wire stripping plier, these being set carefully to the correct depth of cut to ensure that only the outer sheath is removed. Should the strippers damage one or more of the strands or nick the conductor, the end must be cropped off and the wire prepared once again as any weakness in the wire close to the joint will almost certainly fail.

A wire must never be pulled too tight and a good "rule of thumb" is to allow enough slack at both ends to completely remake the joint should the equipment be modified or serviced.

SOLID WIRE

Another type of wire the home constructor will encounter is solid copper wire of both the tinned and enamelled varieties.
Tinned copper wire (t.c.w.) has a single copper conductor, precoated with solder, supplied in sizes corresponding to the Standard Wire Gauge (s.w.g.), shown in Table 2. A typical application of t.c.w. being links on stripboard where a 20 or 22 s.w.g. wire would be used.
The enamelled copper wire (e.c.w.), also measured in s.w.g., is a little more specialised, its prime application being in wound components (transformers, chokes, etc.). The enamel coating provides insulation to prevent adjacent windings from shorting out on one another and must be scraped off to make a successful solder joint.

TYPICAL APPLICATIONS

suitable for wire wrapping only
rigid wiring of electronic equipment (chassis, p.c.b.s)
wiring of electronic equipment
where a degree of flexing of the
wires is expected
(front panels, external components)
very flexible for test leads and probes
Effective cross sectional areas of the conductors are given in parentheses in the first column.

fast \& reliable

Ersin Multicore

Ersin Multicore, solder contains 5 cores of noncorrosive flux, instantly cleaning heavily oxidised surfaces. No extra flux is required.
Comes in handy dispensers and tool box reels in two different alloys $40 / 60 \mathrm{tin} /$ lead for general purpose electrical soldering and $60 / 40 \mathrm{tin}$ /lead ideal for small components and fine wire soldering.

Size PC115 60/40 tin/lead £1.38 Handy pack o 028 mm da

Multicore Savbit

Multicore Savbit, solder increases the life of your soldering bit by 10 times, for better soldering efficiency and economy.
Comes in two handy dispensers and tool box reels.

£1.15 Per pack 12 mm do
Size SV130 Savbit £1.73 Per pack ${ }_{0}$ otsmmdia

Multicore Alu-Sol

Size 3 40/60 tin/lead £4.37 Per reel 1 bmm do
Size 10 60/40 tin/lead $\mathbf{E 4 . 3 7}$ Per reel 071 mm da

Size 19A 60/40 tin/lead £1.15 Handy pack 122 mm dia

Multicore Tip Kleen

Multicore Tip Kleen, soldering iron tip wiping pad. Replaces wet sponges.

Bib Wire strippers and cutters
Wire strippers and cutters, with precision ground and hardened steel jaws. Adjustable to most wire sizes. With handle locking-catch and easygrip plastic covered handles.

Multicore Solder Wick

Multicore Solder Wick, absorbs solder instantly from tags and printed circuits with the use of a 40 to 50 watt soldering iron.
Quick and easy to use, desolders in seconds.
Size AB10 Solder Wick
£1.43 Per pack

dia p

Multicore Alu-Sol, solder contains 4 cores of flux, suitable for most metals especially aluminium. Comes in handy dispensers on tool box reels.

Size AL150 Alu-Sol E2.07 Per pack 048mm do

Size 4 Alu-Sol
£7.82 Per reel 1 bmm da

All prices inclusive of VAT.
Available from most electrical and DIYs stores. If you have difficulty in obtaining any of these products send direct with 50 p for postage and packing. For
free colour hrochuro sond $\& A F$

This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.
You learn the practical way in easy steps mastering all the essentials of your hobby or to start or further a career in electronics or as a self employed servicing engineer.
All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write personally at any time, for advice or help during your work. A Certificate is given at the end of every course.

You will do the following

- Build a modern oscilloscope

- Recognise and handle current electronic components
- Read,draw and understand circuit diagrams
- Carry out 40 experiments on basic electronic circuits used in modern
cquipment
- Build and use digital electronic circuits and current solid state 'chips' - Learn how to test and service every type of electronic device used in industry and commerce today. Servicing of radio, T.V. $\mathrm{Hi}-\mathrm{Fi}$ and microprocessor/computer equipment.

Newdob?NewCareer?NewHobby?GetintoElectronicsNow!

VIDEO MONITORS

The introduction of a com. plete range of professional video monitors is announced by Thandar Electronics.

Each monitor is supplied fully operational in chassis format with a choice of black and white or green phosphor tubes with the option of standard or non. glare screens.
The range of monitors are primarily aimed at the OEM test and measurement, computer and video markets although they are claimed to be ideally suited to many other areas.
Designated the TV2, TV5, TV9 and TV12 each type is claimed to be competitively priced with discounts for bulk purchases.

Thandar Electronics, Dept EE, London Road, St Ives, Huntingdon, Cambs PE17 4HJ.

FUNCTION GENERATOR

The new Levell Type TG301 Function Generator provides sine, square, triangle, pulse, sawtooth ramp and asymmetrical sine waveforms over the frequency range of $0 \cdot 02 \mathrm{~Hz}$ to $2 \cdot 1 \mathrm{MHz}$. The frequency can be swept over three decades by an external voltage.

The main output is 20 volts peak to peak from a 50 ohm source. A TTL output gives a fixed amplitude square wave or pulse waveform with a fast rise time suitable for driving up to 20 TTL Ioads or to trigger an oscilloscope. In addition, there is a variable d.c. offset facility enabling up to ± 10 volts to be superimposed on the main output signal.

Levell Electronics Ltd,
Dept EE, Moxon Street,
Barnet, Herts EN5 5DS.

IC SOCKETS

Claiming a saving of up to 20 per cent board space, Texas Instruments is thought to be the first supplier to offer special i.c. sockets with 0.07 inch pin spacing.

These sockets have been produced to meet the increasing demands by new consumer semiconductor products beginning to appear on the market requiring 0.07 inch spacing. This is besides some of TI's own TMS 1000 range of 4 -bit microcomputers.

At present only 28 -pin and 40-pin versions are available. The contacts are of tin on copper alloy.

Texas Instruments Ltd, Dept EE, Manton Lane, Bedford MK41 7PA.

MUSIC CENTRE

To complement their current range of conventional sized music centres, Hitachi are launching a compact, vertical format unit that is ideal for use where space is at a premium.
It is a full specification music centre but measures only 39 cm wide $\times 20 \mathrm{~cm}$ high and 40 cm deep and features a tuner that covers m.w. l.w. and stereo f.m. (sensi tivity $l_{\mu} V$). Digital tuning is a feature of this new model and in addition to manual station selection, it is equipped with $5 \mathrm{f} . \mathrm{m}$. presets. L.e.d.s. are used to indicate stereo broadcasts and for tuning.

Power output is 20 watts per channel (r.m.s.) into a two-way 4 ohm speaker system with bass and treble units. The sound quality is further enhanced by the acceptability of metal tapes to extend the dynamic frequency range to 16 kHz .

aCOUSTIC COUPLER

A new portable acoustic coupler modem that provides an acoustic link between a standard telephone handset and a microcomputer via an interface is announced by O.E. Ltd.

In addition to the standard application in linking com puters together for data communication, it allows the microcomputer owner to convert his system into a Prestel/private Viewdata receiver. Also it is capable of receiving Telesoftware data transfers.

Designated PAC-M1, it is claimed to be the smallest and cheapest acoustically coupled modem currently available, and can be sup. plied ex-stock. The asyn. chronous full duplex F.S.K. modem transmits at 75 baud and receives at 1200 baud, meeting international re quirements of C.C.I.T.T. V23 The standard interface is for RS232C/V24 recommenda. tions.
O.E. Ltd, Dept EE, In dustrial Estate, Appleby in Westmorland, Cum bria CA16 6HX.

18-NEEDLE PRINTER

The latest Philips GP300 matrix printer is now being marketed by Datac Ltd, the printer people.

This machine incorporates an l8-needle printhead giving a print matrix of up to $18 \times$ 25 dots per character on a single pass. With such high resolution it is not only pos. sible to print characters practically as good as "fully formed" ones, as with a daisy wheel printer, but by using a semi-graphics font it is claimed to be possible to print forms, bar-codes, logos and so on.

Specialised printout of this type can be performed at a rate of 80 characters/sec, but in addition, using a sim. pler 9×9 dot matrix the GP300 can print data-quality text at up to 300 characters/ sec.

Datac Ltd, Dept EE, Tudor Road, Broadheath, Altrincham, Cheshire WA14 5TN.

The cassette deck also features a Dolby noise re duction circuit and accepts CrO2 and normal tapes too. All the function controls are soft touch sensors for ease of operation and a bank of 6 l.e.d.s. are provided for monitoring sound levels on each channel.

The record deck has a two. speed belt drive turntable
with wow and flutter of only 0.09 per cent DIN and uses a straight tone arm fitted with a moving magnet stereo cartridge. The deck can be set for manual play, repeat plav and has a start and cut control with "one touch" operational facility.

Hitachi Sales (UK) Lid,
Dept EE, Hitachi House,
Station Road, Hayes,
Middx UB3 4DR.

This is the spot where readers pass on to fellow enthusiasts useful and interesting circuits they have themselves devised.

Payment is made for all circuits published in this feature.

I.C. TEST BED

I have designed the test-unit shown here for checking and identifying unmarked logic i.c.s of up to 16 pin d.i.l. size.
Because of the pin arrangement of the 9 digit, 7 -segment display unit, the bulk of the circuit is used to drive the display itself. The oscillator comprising of IC5a, b is used to change the half of the i.c. being tested that is used to drive the display

Each output of the test i.c. is gated to its corresponding l.e.d. on the display, and thus each half of the display is turned on and off in turn, but at such speed as to make it seem a continuous light, showing the relative states of each pin of the i.c.

Changing the i.c.'s environment is done by grounding different combinations of pins by using S1 to S16,
or by the output probe. This can be used to provide a fixed frequency output, from the oscillator IC5c, d , or by manual pulses, of positive or ground values. The output probe can also be used with the input probe, to give a logic probe for external use, via the last display digit.

Power is supplied to the test i.c. by means of two flying leads, to a series of Soldercon pins, which also provide the "tap" points for use with the probes.

The whole unit can be made in an old calculator casing, using the keyboard, after rewiring, and the display unit; with the i.c. socket, Soldercon pins, and the on/off; aUto/man; and pulse switches being mounted on the front panel.

David Cullen, Harrogate.

Contributions should be accompanied by a letter stating that the circuit idea offered is wholly or in significant part the original work of the sender and that it has not been offered for publication elsewhere.

SIREN

The circuit shown above is for a British Police siren. When S1 is pressed a buzzing noise will be heard in LS1 which is continually gaining frequency as long as the button is held down. When you want the frequency to decrease, simply release Sl.

Archie Waddell, Dunbar.

STEREO AWPLIFIER KIT

- Featuring latest SGS/ATES TDA 200610 wart outpu IC's with in-built thermal and short circult protection. Mullard Stereo Preamplifier Module
Attractive black vinyl finish cabinet, 9 " $\times 8 \%$ " $\times 3 \%$ " (approx)
$10+10$ Stereo convarts to a 20 watt Disco amplifier.
Fecomplete you just supply connecting wire and solder. Features include din input sockers for ceramic cartridge microphone, tape or tuner. Outputs - tape, speakers and headphones. By the press of a button it transtarms into The kit incorporates a Mullard LP1183 pre-amp module. he kit incorporates a Mullard LP1183 pre-amp module. Also features 4 as sembly $k i t$ and mains power supply Also reatures 4 slider level controls, rotary bass and ascia with matching
knobs and contrasting
cabinet. Instructions
available, price 50 p.
Supplied FREE with kit
SPECIFICATIONS: Frequency response Input sensitivity

Tone controls
Distortion
ins supply
$220-250$ volts 50 Hz .
Two $8^{\prime \prime}$ I win cone domestic
AK Kit purchased with amplifier. Avalable separately $£ 6.758$

PRAGTICAL ELECTRONICS CAB
RADIO
KIT series il
2 WAVE BAND, MW - LW

- Easy to build. - 5 push button tuning. • Modern design. * 6 watt output. *Ready etched and punched PCB. - li,corporates suppression circuits.
All the electronic components to build the radio, you supplv only the wire and the solder. featured in Practical Electronics. Features: pre-set tuning with 5 push button options, black illuminated runing scale. The P.E. Traveller has a 6 watt output neg, ground and in corporates an integrated circuit output stage, a Mullard IF Module LP1181 ceramic filter type nre-aligned and assembled, and a Bird pre-aligned push button tuning unit Suitable stainless steel fully retract.
able aerial (locking) and speaker
$\left(6^{\circ} \times 4^{\prime \prime}\right.$ "app. $)$ available as a com.
$+£ 2.00$ p 8 p

BIRDAUDIO
 STEREOCAR
 RADIO:OOSTER

ع9.95.

£16-50

+ $£ 2.90 \mathrm{p} \& \mathrm{p}$.
$40 \mathrm{~Hz}-20 \mathrm{KHz}$
P.U. 150 mV . Aux. 200 mv

8 ass $\pm 12 \mathrm{db}$ @ 60 Mz
Trebie $\pm 12 \mathrm{db} @ 10 \mathrm{KH}$
0.1% ivpically @ 8 watts

SPECIAL OFFER! TUNER KIT PLUS Matching I.C. 10 watt per channel Power amp kit. up and aux. inputs. Matching power supply kit with transformer. - Marching set of 4 slider $£ 2195$ transformer. . Matchung set of 4 slider $\quad £ 21.95$
controls for bass, treble and volumes.

TVSOUND

TUNERKIT

£11-45

Self assembly sumulated wood cabinet sleeve to suit tuner only Finish size: $11 / 4 \times 8 \% \times \times 3$
E 3.50 Plus $£ 1.50$ p p . - MONO WIXIR AMP

E1.50 080

As featured in E.T.I. December ' 81 issue. Kit of parts including PC8, UHF tuner and selector switch with a components excluding case

- Transformer $£ 1.50+£ 1.50 p \& p$ (p\&p iree on trans (e) for simulared built LP1183 Mo
A.LL MAIL TO

21A HIGH STREET, ACTON, W3 6NG Note: Goods despatched to UK postal addresses only. For further information send for instruct ions 20p plus stamped addressed envelope. All iterns subject to availablity. Prices correct at $31 / 1 / 82$ and subject to change without notice Please allow 7 working days from receipt of order for despatch.
ALL PRICES INCLUDE VAT AT 15\%.

GODDMANS TWEETERS

£17.95

 Total Impessover. of system 4 ohms.£7.95

P.E.STEREO TUNER KIT

This easy 10 butd 3 band stereo AM/FM iuner kit is deussua) For ease of construction and alignment il orates three Mullard modules and an IC. IF Srstem FEATURES: VHF MW LW 8 ands interstanion mutin
 PCEAF C OHF. Tuning meler. Wo back primed
£39.95
$12+1=0, x+10$

Cor six individually mixed inputs for two pick ups Cer. or mag.I, iwo moving coil microphones and two - six for tevel and two for master bass and treble, four extre treble controls for mic. and aux inputs. Size: $13 \frac{1}{4}$ $6 \frac{1}{2} \times 3 \%{ }^{\prime \prime}$ app. Power output 50 wat is R.M.S. (continuous) for use with 4 to 80 hm speakers. Attractive black viny case with matching fascia and knobs. Ready to use.

ALL CALLERS TO: 323 Edgware Rd, London W2. Telephone: 01.7238432 Open $9.30-5.30 \mathrm{pm}$. Closed all day Thursday RTVC Limited reserve the right to update their products without notice.

125W HIGH POWER AWP WODULE

Кіт $£ 10-50$ виІІт: $£ 14-25$
 The power amp kit is a module for high power applica Tons - disco units, guitar amplifiers, public address systams and even high power domestic systems. The unit is prorected against short circuiting of the load and is sate in an open circuit condition. A large safety margin high powered rugged unir. The PC board is back printed etched and ready to drill for ease of construction and the sluminium chasses is preformed and ready to use. Supplied with all parts, circuit diagrams and instruction ACCESSORIES: Suitable mains power supply kit with transformer: $£ 7.50$ plus $£ 3.15$ p\&p
 SPECIFICATIONS
 Max. output power (RMS): 125 W . Operaung voltage (DC): $50-80$ max Loads: 4 . 16 ohms.
 Frequency response measured @ 100 watts. $25 \mathrm{~Hz} \cdot 20 \mathrm{KHz}$ Typical T.H.D. @ 50 watts. 4 ohms: 0.1%.
 Typical T.H.D. @ 50 watts, 4 ohms: 0.1% Dimensions. 205×90 and $190 \times 36 \mathrm{~mm}$.

HL-F SPEAKERS.
 ATBARCAN PRICES

35 WATT MICRO 2-WAY SPEAKER SYSTEM solt dome iweeter HO100. And one $5^{\text {" }}$ Audax bass/midrange 35w
driver hifiljSM.
Complete with 2

Sinclair XX81 Personal Comp the heart of a system that grows with you.

1980 saw a genuine breakthrough the Sinclair ZX80, world's first complete personal computer for under £100. Not surprisingly, over 50,000 were sold.

In March 1981, the Sinclair lead increased dramatically. For just $£ 69.95$ the Sinclair ZX81 offers even more advanced facilities at an even lower price. Initially, even we were surprised by the demand - over 50,000 in the first 3 months!

Today, the Sinclair ZX81 is the heart of a computer system. You can add 16 -times more memory with the ZX RAM pack. The ZX Printer offers an unbeatable combination of performance and price. And the ZX Software library is growing every day.

Lower price: higher capability

With the ZX81, it's still very simple to teach yourself computing, but the ZX81 packs even greater working capability than the ZX80.

It uses the same micro-processor, but incorporates a new, more powerful 8K BASIC ROM - the 'trained intelligence' of the computer. This chip works in decimals, handles logs and trig, allows you to plot graphs, and builds up animated displays.

And the ZX81 incorporates other operation refinements - the facility to load and save named programs on cassette, for example, and to drive the new ZX Printer.

Every 2×81 comes with a comprefiensive, specially- written manual - a complete course in BASIC programming, from first principles to complex programs

Kif: £49.95

Higher specification, lower price -

 how's it done?Quite simply, by design. The ZX80 reduced the chips in a working computer from 40 or so, to 21. The ZX81 reduces the 21 to 4 !

The secret lies in a totally new master chip. Designed by Sinclair and custom-built in Britain, this unique chip replaces 18 chips from the ZX80!

New, improved specification

 - Z80A micro-processor - new faster version of the famous $\mathbf{Z 8 0}$ chip, widely recognised as the best ever made.- Unique 'one-touch' key word entry: the ZX81 eliminates a great deal of tiresome typing. Key words (RUN, LIST, PRINT, etc.) have their own single-key entry.
- Unique syntax-check and report codes identify programming errors immediately.
- Full range of mathematical and scientific functions accurate to eight decimal places.
- Graph-drawing and animateddisplay facilities.
- Multi-dimensional string and numerical arrays.
- Up to 26 FOR/NEXT loops.
- Randomise function - useful for games as well as serious applications. - Cassette LOAD and SAVE with named programs.
- 1K-byte RAM expandable to 16K bytes with Sinclair RAM pack.
- Able to drive the new Sinclair printer.
- Advanced 4-chip design: microprocessor, ROM, RAM, plus master chip - unique, custom-built chip replacing 18 ZX80 chips.

Built: 56

Kit or built -it's up to you!

You'll be surprised how easy the ZX81 kit is to build: just four chips to assemble (plus, of course the other discrete components) - a few hours' work with a fine-tipped soldering iron And you may already have a suitable mains adaptor -600 mA at 9 VDC nominal unregulated (supplied with built version).

Kit and built versions come complete with all leads to connect to your TV (colour or black and white) and cassette recorder.

Available nowthe IX Printer for only £49., ${ }^{5}$

Designed exclusively for use with the ZX81 (and ZX80 with 8K BASIC ROM), the printer offers full alphanumerics and highly sophisticated graphics.

A special feature is COPY, which prints out exactly what is on the whole TV screen without the need for further intructions.

At last you can have a hard copy of your program listings - particularly

How to order your 2×81

BY PHONE - Access, Barclaycard or Trustcard holders can call 01-200 0200 for personal attention 24 hours a day, every day.
BY FREEPOST - use the no-stampneeded coupon below. You can pay
useful when writing or editing programs.

And of course you can print out your results for permanent records or sending to a friend.

Printing speed is 50 characters per second, with 32 characters per line and 9 lines per vertical inch.

The ZX Printer connects to the rear of your computer - using a stackable connector so you can plug in a RAM pack as well. A roll of paper (65 ft long $\times 4$ in wide) is supplied, along with full instructions.
by cheque, postal order, Access, Barclaycard or Trustcard.
EITHER WAY - please allow up to 28 days for delivery. And there's a 14-day money-back option. We want you to be satisfied beyond doubt and we have no doubt that you will be.

SUPER HI.FI SPEAKER

 CABINETSMadilfor on expensive Hi-Fi outtit - will sult any decor. Resonence froe. Cut-outs for $6 \%^{\prime \prime}$ woofer and
$2 \%^{\prime \prime}$ ineeter. The front materlal is $2 \%^{\prime \prime}$ iweeter. The front materisl is
Dacion. The completed unit is mos pleasing. Supplied in pairs, price $\mathbf{£ 6 . 9 0}$ per pair this is probebly less than the original cost of one

GOODMANS SPEAKERS $6 \mathrm{~K}^{\prime \prime} 8$ ohm 25 watt $\mathrm{E4.50} .2 \mathrm{~S}^{\prime \prime} 8$ ohm
ineeter. $£ 2.50$. No extra for postage it
 imeeter. E2.50. No extra
ordered por with cabinets. Xover $£ 1.50$.

UNIVAC KEYBOARD BARGAIN

50 kevs, toget ther with 5 minititure toggle switches all mounted on
-p.e.b. together with 12 I.c. 's, many
tranaistors and other pars
113 $50 \rightarrow 5200$
$\mathrm{E} 1350+E 2.00$ post
This is far less than the value of the
shiches alone. Diagram of this ker.
board is availeble separately for $£ 1$.

SOLENOID WITH PLUNGER
Mains coersted 1.99 $10-12$ volus DC
operated $£ 1.50$.

POPULAR KITS
3. 3or Variable voltage power supply unit With 1 amp DC output, for use on the bench, students, inventors, sevice engineers, etc. Automatic short clrcuir and overload protection. In case with a volt meter on the front panel. Complete kit $\mathbf{1 1 3 . 8 0}$
IONTSER KIT
Reftresh your home, oftice, shop, work room, atc. with e
negative ION generator. Makes you feel better and
work harder - complete mains opersted kit, case
£11,95 post $£ 2.00$
morse trainer
Complefe kit $£ 2.99$
DRILL SPEED CONTROLLER
Complete kit $\mathbf{E 3 . 9 5}$.
MAINS POWER SUPPLY
Gives any voltage from $3 v$ to 16 v at up to 300 m A .
Compiete kit less case £1.95. Case 90p.
OUR CAR STARTER AND CHARGER KIT has no doubt saved many motorists from embarrassment in an emergency you can start hours. The kit comprises: 250 w mains transformer, two 10 amp bridge rectifiers, start/charge switch and full Instructions. You can assemble whichever sulis you best. Price $51250+5300$ post

BUMPER BARGAIN PARCEL

10 kilo of unused parts. Minimum 1000 items. Includes - relays switches, motors, dills, taps and dies, thermostats, neons, i.f. coils, oscillator coils, variable condensers, variable resistors and at least one each of the following: panel meter, timer, thermal E100 Yours for only $£ 1150+$ invo pout would cost well over

MILLIONS OF HOMES WILL BE BURGLED THIS SUMMER - SAY THE EXPERTS
our burglar atarm. Complete kit includes $6^{\prime \prime}$ external slarm tell our burglar atarm. Complete kit includes $6^{\prime \prime}$ external alarm bell. switches 100 yards of wire. With instructions $£ 29.50$.

TINIEST MICROPHONE

Not much bigger than spea, 600 ohm conclenser type. Idead for
bugging and similar applications. 50 p each or 10 for $£ 4.50$

LEVEL METER

Size approximately 18 " square, scaled signal and power but cover easily removable

THERMOSTAT ASSORTMENT

10 different thermostats. 7 bi metal types and 3 liquid iypes. There are the current stats which will open the switch to protec in front of the element short circuits, etc., or when fitted say the stat if the blower fuses: apoliance atibts, one for high temp eratures, others adjustable over a range of temperatures which could include $0-100^{\circ} \mathrm{C}$. There is also a thermostatic pod which can bo immersed, an oven stat, a calibrated boiler stat, finally an
ice stat which, fitted to our watierproof heater stement, up in the loft could protect your pipes from freezing. Separately, these thermostats could cost around $£ 15.00$ - however, you can hav the parcel for $\mathbf{E 2 . 5 0}$.

3 CHANNEL SOUND TO LIGHT KIT
Complete kit of
parts for
three channe
sound to light
unit controlling over 2000 watts of light-
ing Use this ing Use thi
at home if
you wish but

is plenty rugged enough for disco work. The unit is housed in an attractive two-tone metal case and has controls for each channel. and a master on/off. The audio input and output are by " $\mathrm{y}^{\prime \prime}$ sockets and three panel mounting fuse holders provide thyristor protection. A four pin plug and socker facilitate ease of connec ing lemps. Specisl snip price is $£ 14.95$ in kit form or $\mathbf{E 2 5 , 0 0}$

ULTRA SMALL 12v RELAYS

singie pols gold plated contacts. Tubular construction, 17 mm

MINAITURE PLUG IN RELAYS 12v operated. 3 changeover. $\mathbf{E 2} .45$, base 450 .
12v operated. 2 changeover. $£ 187$, base 350 .

THIS MONTH'S SNIP

ROTARY WAFER SWITCHES 5 amp silver plated contacts. " " shatt. 1" dia. waler.
Single wafer types, 29 p such, as follows: Single water types, $29 p$ such, as follows:
$\begin{array}{ll}1 \text { pole } 12 \text { way } \quad 2 \text { pole } 6 \text { way } \quad 3 \text { pole } 4 \text { way } \\ 4 & \text { poie } 3 \text { way }\end{array}$ 4 pote 3 woy 6 pole 2 way 4 pole 3 way
Two water type, $59 p$ each, as follows Two wafer type, 59 p each, as follows
2 pole 12 way 4 pole 5 way $\begin{array}{ll}2 \text { pole } 12 \text { way } & 4 \text { pole } 5 \text { way } \\ 6 \text { pole } 2 \text { way } & 4 \text { pole } 6 \text { way } \\ 8 \text { pole } 3 \text { way } & 12 \text { pole } 2 \text { way }\end{array}$ 3 water types $99 p$ each. 3 water types 99
3 pole 12 way
9 pole 4 way
6 pole 5 way
1203 way
6 pole 6 way

TIME SWITCH BARGAIN Large clear msins frequency controlled the correct time + start and stop switen. | es mit |
| :---: |
| C .50 |

CRE OUR CURRENT BARGAIN LIST WILL BE ENCLOSED WITH ALL ORDERS.

TRANSMITTER SURVEILLANCE

Tiny, essily hidcen but which will enable conversation to be electronic parts and circuit. $\mathbf{E 2} .30$. Inot licenceabie in the U.K.) RADIO MIKE
Ideal for discot and garden parties, allows complete freedom of movement. Play through FM radio or tuner amp. $\mathbf{6 6 . 9 0}$ comp. kit. (not licencerbre in the U.K.).

FM RECEIVER

Made up and working, complete with scale and pointer neech or radio mike. E5.85.

VENNER TIGE SWITCH Msins oper ated with 20 amp switch, one automatically perreting repeats delly automatically corracting for the lengthen Ing or shortening day. An expensive time These are without case but we can supply a plastic base $\mathbf{£ 1 . 7 5}$ or metal case with window E2.95. Also svilable is adeptor kit to convert this into a normal 24 hr . time switch but with the added advantage of up to 12 onfolfs per 24 hrs . This makes Price of adaptor kit is $\mathbf{2} .30$.

STEREO HEADPHONES Very good quality, 8 ohm inating with padded, term jack-plug $\mathbf{E 2} 99$ port 60

DELAY SWITCH

Manns operated - delay can be accu:ately
set with pointers knob for periocs of up to 2 Yhrs. 2 contacts suitable to switeh 10 utes after Ist contact E 1.95
8 POWERFUL BATTERY MOTORS For models, maccanos, drills, remore control planes, boats, etc. $\mathbf{E 2} .95$.

TAPE PUNCH \&
READER For controlling machine (ools, etc, motorised 8 bit punch with matching tape reader. Ex-computers, be lieved in good working order, any not 30 would be exchanged. $£ 17.50$ pair. Post £4.00.

MINI-MULTI TESTER Deluxe pocket size precision mov ing coil ins trument, dewelled bearings - 2000 o.p.v. mirrored scale. ing coil ins trument, Jewelle bearings -2000 o.p.v. mirrore
11 instant range measures: DC voits $10,50,250,1000$. $A C$ volts $10,50,250,1000$ DC amps $0=100 \mathrm{~mA}$.

Continuity and resistance 0.1 meg onms in
two ranges. Complete with test prods and in. two ranges. Complete with test prods and inacity and inductance as well. Unbelievable value at only $\mathbf{£ 6} .75$ \& $\mathbf{8 0}$ p post and insurance. FREE Amps range kit to enble you to read Current from 0.10 amps, directly on the 0 . 10 scale. bi's iree if you
purchase quickly, but of you siread own a Mini-Tester and would like one send $\mathbf{E 2} 50$.

12V FLUORESCENT LIGHTING For camping - ear repairing - emergeny lighting from s. 12v battery you can's beat fic
lighting. It will offer plenty of well ighting. If whit offer p economical. We offer an inverter for 21" 13 watt miniature fluores.
(tube not supplied)

MOTORS FOR ROBOTICS
Ill its a toy robot you are making then one of our eight battery then see below If still not big enough then enquire - we have larget motors but these are usually mains driven.

12v MOTOR BY SMITHS Made for use in cars, these are series ful as load by $3^{\prime \prime \prime}$ did. These have a good length of \%" spindle - price $£ 3.45$.

EXTRA POWERFUL 12v MOTOR

Macie to work batrery lawnmower, this probably develops up to Xh.p., so it could be used to power a go-kert or to drive e. compressor, etc. efc. $66.90+£ 1.50$ post.

REVERSIBLE MOTOR WITH CONTROL GEAR Mode by the famous Framco Company this is a very robust motor
size approximately $7 \mathrm{~K}^{\prime \prime}$ " long, $3 \mathrm{~K}^{\prime \prime} \mathrm{dia} .3 / \mathrm{s}^{\prime \prime}$ shaft. Tremendously
 powerful motor, almost impossible to stop. Idesl for operating stage curtains, sliding doors, ventilators elc., even garage doors it sdequately counter-balanced. We offer the motor complete with

1 Frameo motor with gear bax $1 \times 100 \mathrm{w}$ tuto transformer 1 manual reversing and on/off switeh 2 limit stop switches 1 push to start switen
$\mathbf{E 1 9 . 5 0}$ plus postaga E2.50.
J.BULL (Electrical) Ltd.
(Dept. EE), 34. 36 AMERICA LANE, Established HAYWARDS HEATH, SUSSEX RH16 3QU. 30 YEARS

MAIL ORDER TERMS: Cash, P.O. or cheque with order. Orders under £10, add 60p service charge. Monthly account orders accepted from schools and public companies. Access \& Barclaycard orders phone Haywards Heath (0444) 454563. Bulk Orders: Write for quote. Delivery by return.

ELEGTROALIE

INVITE YOU TO

Read all about it!

A selection of much-demanded books from the very large stocks we carry. (More in our Catalogye 82-70p posc free, with 70p voucher for use on orders E 10 and over).

TI SEMICONDUCTOR BOOKS
(All prices in II section ore Nett) MOS Memory Bipolar Memories
Optotiectronics
Opto Theory and Practice Linear Concrol Voicage Rezulator
Biopolar Microcomputers Components ITT Data Book
"Understonding Series" Solid State Electronics Digital Electronics Mieroprocessors
Calculator Mathematics Communication Systems Computer Science
Pocket Guides
Volume One-TTL Volume Two-Lis E3.50 E. 50

INTERNATIONAL
SERIES
FET Selector Selector E9.50
7.00 Proarammin Manual co. 50

VAT is not charged on books. Discounts (on book orders) -5% on orders over E20: 10\% on orders over ESO-not applicable on items marked \mathbf{N} (nett) or where stated for sections above
ELECTROVALUE LTD 2ed St. Jude's Rd., Englefield Green, Esham, Surrey TW20 0HB. Phone: Esham (STD 07E4; London 87) 3303. Telex 264475.
NORTHERN BRANCH, 60 Burnage Lane, Burnage, Manchester Mis INA. Phone 0s|-432 494S.

LIGHTNING

DO YOU NEED :- Electronic components, Tools, Test Equipment. Cases, Cabinets and Mardware etc. IN A HURRY? THEN YOU NEED:WHY?

LIGHTNING Electronic Components.
Because LIGHTNING Strikes out where others fail:-
Express Despatch
All Low Prices
In Depth Stock
All New Guaranteed Goods from Leading Manufacturers
With all that going for us, going to you can you really afford to be without a copy of our brand new exciting CATALOGUE?

Many Prices Reduced - Many More Stoch Lines

Send for YOUR Copy Now, ONLY 70p Post Paid
LIGHTNING ELECTRONIC COMPONENTS E Birchmoor Road, Birchmoor, Tamworth,
Stans. B78 1BA. (NOTE New Addrese)

If you find an ad unacceptable, don't turn the page: turn to us. Tho Advertising Standards Authority.

 If an advertisement is wrong, we're here to put it right. ASA Ltd. Brook House, Tomngton Place, London WCIE THN.IT'S AS EASY AS A,B,C...

A EXP 650 For microprocessor chips. $\mathbb{£ 3 . 7 5}$
B EXP 300 The most widely sold breadboard in the UK; for the serious hobbyist. £6.60
C EXP 600.6" centre channel makes this the Microprocessor Breadboard. £6.60
D EXP 4B An extra 4 bus-bars in one unit. E2.40
E EXP 325 Built in bus-bars accepts 8,14, 16 and up to 22 pin ICS. £1.65
F EXP 350270 contact points, ideal for working with up to 3×14 pin DIPS. $£ 3.30$
G PB6 Professional breadboard in easily assembled kit form. $£ 9.75$ (Not illustrated.)
H PB 100 Kit form breadboard recommended for students and educational uses. $\mathbf{\Sigma 1 2 . 5 0}$ (Not illustrated.)

\& ITS AS EASY AS $1,2,3$ wiht THE EXPERIMENTOR SYSTEM

1. EXP 300PC which includes one item. A matchboard
2. EXP 302 whice - E1. 20
. Exp 302 which includes three items. Three 50 -heen
-BREADBOARD scretchbowd workpode - $£ 1.50$
E. EXP 300 soldierless bratoboerd - $E 7.60$ 4. EXP 304 which includes four items. Two matenbaserds and EXP 300 brestboerd and a scratchbosed workped - EB.70
The above prices do not include P\&P and 15\% VAT
TOMORROW'S TOOLS TODAY
global speclalties corporation G.S.C. (U.K.) Limited, Dept. 4H

E.E. PROJECT KITS

Make us your No. 1 SUPPLIER OF KITS and COMPONENTS for E.E. Prolecis. We supply Carefuliy silected sets of parts to anable you to construct E.E. prolects. Kits Include ALL
THE ELECTRONICS AND HARDWARE NEEDED. Printed circuit boards fully etched, drilled and roller tinned) or Veroboard are, of course, included as apacified in the otiginal otherwise sated. BATTERIES SCRE NOT INCLLUDED. COMPES INCLUDE CASES UniesE If you do not have the lasue of E.E. which includes the project-you will need to order the instruction reprint at an extra 45 p each.

CAMERA OR FLASH GUN TRIGGER Mar 82. E11 60 less tripod bushes.
POCKET TIMER Mar 28 E3-47. GUITAR TUNER MAR 82. 3147. CAR OVERHEATING ALARM. FEb. B? CI.99.

CINE INTERVAL TIMBER + FRAME COUNTER. Feb. 82. less remole optlon SIMPLE STABILISEO POWER SUPPLY. Jan. B2. £22.98
WINIEGG TIMER. Jan. 82. e. 69 MINIEGGTIMER. Jan, 82. © 3.69
SIREN MODULE. Jan. 82 . Iess speaker ES.21. TRAIN CHUFFER. Jan. B2. E7.73.
SQUARE SIX. Dec. 81. E4.40. GUITARADAPTOR. Dec. 81. E3. 32. REACTION METER. Dec. 81. E16.41. ELECT
E24 33.
SIMPLE INFRA RED REMOTE CONTROL. NPV, 81. EIS S9. PRESSURE MAT TRIGGER ALARM.
Nov. 81. ES B6 less mats. Nov. 81. ES 86 lese mats.
EXPERIMENTER CRYSTAL SET. Nov. 81. Less aerlal. $£ 5$.s0.
Hesdphones. $\mathrm{E} 2 \cdot 98$ extra. CAPACITANCE METER. Oct. 81, \&21'POPULAR DESIGNS'. Oct. 81. TAPE NOISE LIMITOR. \&A-22. HEAOS ANO TAILS GAME, $£ 2 \cdot 3$ CONTINUITY TESTER. £J. 70. PHOTO FLASH SLAV
FUZZ BOX. ES-EL.
OPTO ALARM. EG 34.
SOIL MOISTURE UNIT. E5.43
ICE ALARM, E7. 38.
MODEL RAILWAY SPEED CON. TROLLER. Sept. $81 . E 13-46$.
$0.12 V P O W E R S U P L Y$ Sept. 81. E14. 84 CMOS CAR SECURITY ALARM. Sept. 81. Ei-49.
CMOS DIE. Sept. 81. ©7.47.
LED SANDGLASS. Aug. $81 . ~ \& 7.98$.
CMOS METRONOME. AUg COMBINATION LOCK. July 81 I Case. E1E.30. BURGLAR ALARM SYSTEM
less bell, loop \& MIC's. $£ 35.30$.
gess bell, loop \& Mle's. £ $38 \cdot 30$.
TAPE AUTO START. June 81. £11.96 LIGHTS REMINOER ANO IGNITION OCATOR E.E. May 81. ES.29. May 81 . £j.es.
GUITAR HEADPHONE AMPLIFIER E.E. May 81. E3.96,

PHONE BELL REPEATER/BABY ALARM E.E. May 81, fs-23.
INTERCOM. APFII 81 E20.76.
SIMPLE TRANSISTOR
EIODE SIMPLE TRANSISTOR G DIODE
TESTERS. Mar. 81. Ohmeter verslon MINI SIREN. Mar. 81 . 77.52
LEO OICE, Mar. 81. \&7. 89
LED FLASHER. Mar. B1. E4.01
MODULATED TONE DOORBELL. Mar. 81. ES.21. E4B.98.
THREE CHANNEL STEREO MIXER SIGNAL TRACER. reb. 81. ET.G less probe.

NI-Cd BATTERY CHARGER. FEb. 81. E12.72. SONIC INTRUDER DETEC. TOR. Jan. 81 less case. E4t sta^{2}. 2 NOTE OOOR CHIME. Dec. 80 . Is US
LIVE WIRE GAME. Dec. 80 . $£ 10 \cdot 9$. GUITAR PRACTICE AMPLIFIER. Nov. 80 . 511 of loss case. Standard case

SOUND TO LIGHT, Nov. 80 . 3 channel TRANSISTOR TESTER. Nov. 80 E10. 77 inc. test leads. AUDIO EFFECTS UNIT FOR WEIRD
SOUNDS. OCI. 80. E12.26. SOUNDS. Oct. 80. E12.2\%.
BICYCLE ALARM. Oct. BO. Cs Iese
 IRON HEAT CONTROL. Oct. 80. ES. 46
TTL LOGIC PROBE. Sept. 80. E4-85. SIGNAL TRACER. June Bo. ES 98. ZENER OIODETESTER. JUne 80 , EA. 23.
4 STA . case.
LIGHTS WARMING SYSTEM. May 80
BATTERY VOLTAGE MONITOR. MAY CABLE PIPE LOCATOR. Mar 80 C.3-ES less Coll tormer.
KITCHEN TIMER. Mar. 80. E13-70. STEREO HEADPHONE AMPLIFIER Mar. 80. E1s-97.
MICRO MUSIC BOX. Feb. 80. E15-20. Grey Case 23.99 extra.
SIMPLE SHORT WAVE RECEIVER. Feb. Bo. $24 \cdot 17$. Headphones $22 \cdot 9$. SLIOE/TAPE SYNCHRONISER. FEB MORSE PRACTICE OSCILLATOR. Feb. $80.64 \cdot 32$. SPRING LINE REVERB. UNIT. JAN. Bo UR1B Niss
BABYALARM, Nov. 79. Es.M
CHASER LIGHTS. Sept. 79. E21-17. SIMPLE TRANSISTOR TESTER Sept. 79. E6-38.
DARKROOM TIMER. July 79. E2.71 ELECTRONIC CANARY. June 79. ©5.48. ONE TRANSISTOR RADIO. MAR 70 less case E7-62. MICROCHIME DOORBELL. FEb. 79. E14.82.
THYRISTOR TESTER. Feb. 79. \&3-S4. HEAOPHONE ENHANCER. Jan. 79. E2. 86.
FUSE CHECKER. Oct. 78. £2-18. SOUNO TO LIGHT. Sept. 78. \&7-67. CAR BATTERY STATEINDICATOR. Sept. BA. Less case. \&1-\%6.
R.F. SIGNAL GENERATOR. Sept. TB. IN SITU TRANSISTOR TESTER. WEIRO SOUNO EFFECTS GENERA. TOR. Mar. 78, E5-23.
AUDIO VISUAL METRONOME. JAN. 78 E5. 63.
ELECTRONIC TOUCH SWITCH. Jan. 7. E2.56 less case.

RAPID OIODE CHECK. Jan. 78, e2.57. PHONE/DOORBELL REPEATER. July 77. EC98.

> TEACH IN 82
> All top qually components as apecified by Everyday Electronice. Our kit comes
complete with FREE COMPONENT IDENTIFICATION SHEET FOIl tional series and learn about electronics-Start Today LIST 1 and LIST 2 together E24.58. LIST 3 f.5.98.
> \rightarrow t \rightarrow SPECIAL OFFER \rightarrow t \rightarrow t
> WOODEN CASE KIT also avallable Ell gi-wood, formica, glue, screws elc Cut to size.
12 part

> LISTS 1, 2, AND 3 ALL AVAILABLE NOW ALSO WOODEN CASE KIT.

MAGENTA gives you FAST DELIVERY OF QUALITY COMPONENTS \& KITE. Alt products are stock linet and are new \& full specifcation. W
quality producte to all our customers-HAVE YOU TRIED US

MAGENTA ELECTRONICS LTD.

EX39, 135 HUNTER ST. BURTON.ON-TRENT, STAFFS., DE14 2ST. 02:3 65435. MON.-FRI. 9.5. MALL ORDER ONLY. ADD 45p P. \& P. TO ALL ORDERS. Normal despatch by roturn ol post. ALL PRICES INCLUDE 15% V.A.T. IRISH OFFICIAL ORDERE WELCOME
 RISH REPUBLIC \& B,F.P.O. EUROPE: muet be in Sterllng. ACCESE and EARCLAYCARO (VISA)
ORDERS ACCEPTED BY PHONE OR OROERS ACCEPTED EY PHONE OR
OOST. SAETALL ENQUIRES.

SOLDERING/TOOLS/+
 ANTEX XS SOLOERING IRON $25 W$

ES. 48
SOL SOLDERINGIRON STANO £2.40. SPARE BITS. Small slandard, large SPD aach. For X5 $+\times 25$.
SOLOER. Hand, size 99p
HOWOTO SOLOER LEAFLET 12p
HEAT SINK TWEEZERS DESOLOER PUMP \&f. 40 SOLOER CARTONEI 34 LOW COST CUTTERS E1-18 LOW COST LONG NOSE PLIERS WIRE STRIPPERS \& CUTTERS E2.6) VERO SPOT FACE CUTTER E1.49 PININSERTION TOOL. E1.92.
VEROPINS. (DK of 100) 0.1 N 520 . VEROPINS. (DK of 100) $0.1 \mathrm{1N} 52 \mathrm{p}$. MULTIMETER TYPE $1(1,000$ ODV) MUL MULTIMETER TYPE 2. 20,000 opv with CROBLItor toter, Very good. E14 75 .
CROCOILE CLIP TEST LEAO SET. 10 leads with 20 clipe. 99 .
RESISTOR COLOUR CODE CALCU RESISTOR COLOUR CODE CALCU.
LATOR. 21 D .

CONNECTING WIRE PACK. (S Syd coils). 6Sp. SCREWORIVER SET. E1.98. POCKET TOOL SET. ©3.98. Small $2^{\text {N }}$ da ($5 \times$ mag) $f 1.14$ RS Larpe ${ }^{3}$ "dla ($4 \times$ mag). $£ 2 \cdot 40$. DENTISTS IMSPECTION MIRROR E2.ES. $J E W E L E R S$ EYEGLASS. E1. 30 . HELPING HANDS JIG. E6. 30. EUROBREADBOARD. Ef 20. VEROBLOC. EA- 20. SIMEC. E3. 4 . BIMBOARO 1, \&L-9! 1p. SPEAKERS. 8 ohm E7p, 64 ohm. PCBETCHIMG KIT. E4.98. PLASTIC TWEEZERS. ISD EETTERS/NUMBERS TRANSFERS. S2.48.
SCRE M2 pack EiNUTSIWASHERS-s0peach. SOLOERTAGS. M3 $33 \mathrm{p} / 50$. MA $54 \mathrm{p} / 50$. STICK ON FEET 23D/4.

BOOKS (INCLUDES NEW TITLES)

SEMICONOUCTOR DATA BOOK. Newnes. MICROPROCESSORS FOR HOBEYISTS. R. Cole
 PRACTICAL ELECTRONIC PROJECT BUILOING. AInilie \& Colwell

 COMSTRUCTOR'S PROJECT BOOKSELECTRONICGAME PROJECTS. Raye
ELECTRONIC PROJECTS FOR HOME SECURITY. BIEhop
ELECTRONIC PROJECTS IN AUDIO. PEnfoId
ELECTRONIC PROJECTS IN PHOTOGRAPHY. Pentold
ELECTRONIC PROJECTS IN THE CAR. George
PROJECTS IN AMATEUR RADIO \& SHORT WAVELISTENING. Ray
PROJECTS IN RADIO ANO ELECTRONICS. SInclal
ELECTRONIC PROJECTS IN HOBBIES. Rayer.
ELECTRONIC PROJECTS IN THE HOME. BIGho
ELECTRONIC PROJECTS IN THE WORKSHOP. Penfold
ELECTRONIC TEST EOUIPMENT PROJECTS. AInall
MORE ELECTRONIC PROJECTS IN THE HOME, FIId
MORE ELECTRONIC PROJECTS IN THE HOME. FIINd
11OELECTRONICALARM PROJECTS FOR THE HOME CONSTRUCTOR
MODEL RAIL WAY PROJECTS. Penfold
SOLIO STATE SHORT WAVE RECEIVERSFOR EECINNERS. Pentold
BEGINNERS GUIDE TO BUILDING ELECTRONICPROJECTS, PEnfoId ELECTRONIC MUSIC ANO CREATIVE TAPE RECOROING. BEPYY
ICSSS PROJECTS. Parr
BASIC ELECTRONICS. A super book coverling theory and practicc.
RADIO CONTROL FOR BEGINNERS. Rayer
INTERNATIONAL TRANSISTOR EQUIVALENTS GUIDE. 320 pages.
Michaels
SECOND BOOK OF CMOS IC PROJECTS. Penfold
SO SIMPLE L.E.O. CIRCUITS: BOOK ${ }^{2}$.
ELECTRONIC MUSIC PROJECTS. PENI
ELECTRONIC HOUSEHOLO PROJECTS. Pentold
ELECTRONIC GAMES. PENfold
PROJECTS IN OPTO ELECTROAICS. Penfold.
S2 PROJECTS USING IC 741 . Redmer.
ELECTRONIC TIMER PROJECTS. RaY
POWER SUPPLY PROJECTS. Peniold
REMOTE CONTROL PROJECTS. BIISHOp
POPULAR ELECTRONIC CIRCUITS.

APRIL 82 E.E. PROJECTS

2k RAM RACK Apr 82 less case $\mathbf{~} 12$-89
V.C.O. SOUND EFFECTS UNIT Apr 82 £10.81 MAGNETIC LOCK Apr $82 £ 16.74$ LIGHT ACTUATED SWITCH Apr 82 £17.52

ADVENTURES WITH MICROELECTRONICS

 Similar to 'Electronics' below. Uses I.C.s. Inciudes dice, electronlc organ, doorbell, reaction timer, radio etc. Based on Bimboard 1 bread board.Adventures with Microelectronics
$£ 2.55$
Component pack £29.64 less battery.

ADVENTURES WITH ELECTRONIGS burtem

An easy to follow book suitable for all ages. Ideal for beginners. No soldering, uses an S-Dec breadboard. Glves clear instructions with lots of pictures. 16 projects-including three radios, siren, metronome, organ, intercom, tlmer, etc. Helps you learn about electronic components and how circults work. Component pack includes an S-Dec breadboard and all the components for the projects.
Adventures with Electronics $\mathbf{£ 2 \cdot 4 0}$. Component pack $£ 17 \cdot 98$ less battery.

MORE KITS AND COMPONENTS

IN OUR LISTS
FREE PRICE LIST
orders or send sat (9 x \&)
CONTAINS LOTS MORE
KITS, PCBE
COMPONENTS

1982 ELECTRONICS

 CATALOGUEIllustrations, product descriptions, circults all inare stock lines for fast dellvery.
Send 70 in in stamps or add 70 p to order.

MORE EEE. KITSS PLUS M.E. And E.T.I. PRO-
JECT KITS IN THE PRICE LIST.

ELECTRONIG IGNITION KIT

TOTAL ENERGY DISCHARGE electronic ignition gives all the well known advantages of the best capacitive discharge systems.
PEAK PERFORMANCE _ higher output voltage under all conditions.
IMPROVED ECONOMY _ no loss of ignition performance between services
FIRES FOULED SPARK PLUGS no other system can better the capacitive discharge system's ability to fire fouled plugs.
ACCURATE TIMING ___ prevents contact wear and arcing by reducing load to a few volts and a fraction of an amp.
SMOOTH PERFORMANCE —— Immune to contact bounce and similar effects which can cause loss of power and roughness.
PLUS
SUPER POWER SPARK —— 3\% times the energy of ordinary capacitive systems $-31 / 2$ times the power of inductive systems.

OPTIMUM SPARK DURATION 3 times the duration of ordinary capacitive systems - essential for use on modern cars with weak fuel mixtures.

BETTER STARTING _ full spark power even with low battery.

CORRECT SPARK POLARITY unlike most ordinary C.D. systems the correct output polarity is maintained to avoid increased stress on the H.T. system and operate all voltage triggered tachometers.
L.E.D. STATIC TIMING LIGHT for accurate setting of the engine's most important adjustment.
LOW RADIO INTERFERENCE fully suppressed supply and absence of inverter 'spikes' on the output reduces interference to a minimal level.
DESIGNED IN RELIABILITY an inherently more reliable circuit combined with top quality components - plus the 'ultimate insurance of a changeover switch to revert instantly back to standard ignition.

IN KIT FORM it provides a top performance electronic ignition system at less than half the price of competing ready. built systems. The kit includes everything needed, even a length of solder and a tiny tube of heatsink compound. Detailed easy-to-follow instructions, complete with circuit diagram, are provided - all you need is a small soldering iron and a few basic tools.
AS REVIEWEDIN
ELECTRONICS TODAY INTERNATIONAL JUNE '81 ISSUE and EVERYDAY ELECTRONICS DECEMBER'81 ISSUE

FITS ALL NEGATIVE EARTH VEHICLES.
6 or 12 volt, with or without ballast
OPERATES ALL VOLTAGE IMPULSE TACHOMETERS Some older current impulse types (Smiths pre '74) require an adaptor PRICE 22.95

STANDARD CAR KIT $£ 14.85$ ASSEMBLED AND TESTED £24.95

TWIN OUTPUT KIT £22.94
For MOTOR CYCLES and CARS with twin ignition systems ASSEMBLED AND TESTED £34.70

ELECTRONIZE DESIGN Dept. C
Goods normally despatched within 7 days
Magnus Road, Wilnecote, Tamworth. B77 5By
Phone 0827-281000

Prices include V.A.T.
PLUS $£ 1$
U.K. P.\&P.
banclatcard
V/SA

DIMENSIONS:

Length	12.5 cm
Width	8.9 cm
Height	4.3 cm
Lead length	100.0 cm

TECHNICAL DETAILS

The basic function of a spark ignition system is often lost among claims for longer "burn times' and other marketing fantasies. It is only necessary to consider that, even in a small engine, the burning fuel releases ove 5000 times the energy of the spark, to realise that the spark is only a trigger for the combustion. Once the fuel is ignited the spark is insignificant and has no effect on the rate of combustion. The essential function of the spark is to start that combustion as quickly as possible and that requires a high power spark.

The traditional capacitive discharge system has this high power spark but, due to it's very short spark duration and consequential low spark energy, is incompatible with the weak air/fuel mixtures used in modern cars. Because of this most manufacturers have abandoned capacitive discharge in favour of the cheaper inductive system with it's low power but very long duration spark which guarantees that sooner or later the fuel will ignite. However, a spark lasting $2000 \mu \mathrm{~S}$ at 2000 rev/min. spans 24 degrees and 'later' could mean the actual fuel ignition point is retarded by this amount.

The solution is a very high power, medium duration, spark generated by the TOTAL ENERGY DISCHARGE system. This gives ignition of the weakest mixtures with the minimum of timing delay and variation for a smooth efficient engine.

SUPER POWER DISCHARGE CIRCUIT A brand new technique prevents energy being reflected back to the storage capacitor, giving $31 / 2$ times the spark energy and 3 times the spark duration of ordinary C.D. systems, generating a spark powerful enough to cause rapid ignition of even the weakest fuel mixtures without the ignition delay associated with lower power 'long burn' inductive systems.

HIGH EFFICIENCY INVERTER A high power, regulated inverter provides a 370 volt energy source - powerful enough to store twice the energy of other designs and regulated to provide sufficient output even with a battery down to 4 volts.

PRECISION SPARK TIMING CIRCUIT This circuit removes all unwanted signals caused by contact volt drop, contact shuffle, contact bounce, and external transients which, in many designs, can cause timing errors or damaging un-timed sparks. Only at the correct and precise contact opening is a spark produced. Contact wear is almost eliminated by reducing the contact breaker current to a low level - just sufficient to keep the contacts clean.

TYPICAL SPECIFICATION

SPARK POWER (PEAK)
SPARK ENERGY
(STORED ENERGY)
SPARK DURATION
OUTPUT VOLTAGE (LOAD 50pF EQUIVALENT TO CLEAN PLUGS)
OUTPUT VOLTAGE (LOAD 50pF + $500 \mathrm{~K} \Omega$ EQUIVALENT TO DIRTY PLUGS)
VOLTAGE RISE TIME TO 20 KV (Load 50pF) $26 K V$
TOTAL OROINARY ENERGY CAPACITIVE OISCHARGE OISCHARGE

TOTAL ENERGY DISCHARGE should not be confused with low power inductive systems or hybrid so called reactive systems.

Colour T.V. Servicing
CCTV Engineering
Electronic Engineering \& Maintenance
Computer Engineering \& Programming
Radio, T.V. and Audio, Engineering \& Servicing
Electrical Engineering, Installations \& Contracting

Other Career Courses

A wide range of other technical and professional courses are aveilable including GCE.

Age

To ICS, Dept 268Li intertext House, London SWB 4UJ or telephone 01-622 9911 (all hours)

BHPAK BARCAMS

"IARESIBTABLE RESISTOR EAROAINE"		
${ }_{\text {Palm }}$	${ }^{\text {pro }}$	
Sill	40	
512	200	Restima
S113	$\underset{\substack{\infty \\ 1 \infty}}{\infty}$	\% what
U15	∞	
	100	
Poun		

"CAPABLE CAPALITOR PAKS"

TECASBOTY

The Electronc Components and Semiconductor Bargain of the Year A host ol Electronic components incluting potentiomelers - rotary and sliter, presels - hortzontal and vertical Resislors of misec values $220 \mathrm{mms} 102 \mathrm{M} /-1 / 810$ \% Wath A comprenens ive range of capacitors incluting electrolyic and poivester types pius disce ceramics etcetera Audio plugs and sochets of various types pius swiches, tuses heatsinis, wire, nuts bolls. gromets. cable clips and tyes inobs and PC Board Then add to that 100 Semiconductors to incluoe transistors, diodes. SCR's opto's. all ol which are current everyday usabie devices In all a Fantastic Parcel No nubbish all wentitable and valued in curent calatopues al well over \{2500 Our Fight Agansti Intiation

COMPLIMEMTARY PAP POWE TRAMSISTORS: TO 2m3055. SPICIA PRICE 58.70 - 703 SPICIL PICE 10.70 nexh
10 H C 5.50
TRIACS - PLASTIC

200055 the best known Powe Pransigtors in the World - 2M3055 MPN 115 w Out BI-Pak seecul OHer Price 10 in $\quad 50$ in $\quad 100$ in

00312 COMPLMEMTAPY PAP POWE

Beal the Budge:
 - Dowm mill teoeessson JUST $\underset{\text { O/no }}{£ 6.50 .}$

The W-200 has a lightweight black resin case and strap and is ideal for outdoor activities and your summer holidays. The watch is 100 metre water resistant and is suitable for most water sports. It is comfortable and safe for resistant and is suitable for most water sports. It is comfortable and safe for
beach wear. The 12 hour stop watch has many sporting applications and the daily alarm and hourly chime functions are most useful
The MA- 1 has a 12 month battery life and is ideal for the bome, or as a travel alarm clock. It is particularly useful in caravans and boats. A buzzer can be selected instead of the melody and there are also snooze and hourly chime functions. Dimensions: $13 \times 40 \times 3$ inches.
Instead of the MA-1 you may have either the MG-880 Digital Invader Game Calculator (worth $£ 10.95$), or the MG-885 Game/Calculator (worth $£ 10.95$). We will notify you immediately if you are unlucky. The price of $£ 17.95$ includes a free gift and VAT, post and packing. Delivery by return, Send cheques, Postal Orders, or phone your credit card number to:

TEMPUS

Depf. EE.

38 Burleigh Sireet, Cumbrideg CBI IDG. Telephone 0223 3i2866.

JOIN UP WITH: THTFSOTD

Lttesold's new 'L' Series soldering iron - now at a bargain price Outstanding performance. Lightweight. Easy to maintain Elements are enclosed in Stainless Steel shafts, insulated with mica and ceramic. Non-selze interchangeable bits. choose from 'copper' or 'long life'. A very special tool at a very special 'direct' price. Just 55.58 for fron fitted with 3.2 mill copper bit. Just 82.40 for 3 spare copper bits (1.6; 2.4:4.7) A mere $\& 4.38$ for professional spring standl Or buy the lot for $\$ 11.12!$ and save 10% All prices inc. VAT P.\&P.

Please allow 14 days delivery
Write today. Send Cheque/P.O. to Litesold. 97.99 Gloucester Road. Croydon CRO 2DN or phone 01-689 0574 for Barclaycard/Access sales.

CAMBRIDGE LEARNING SELF-INSTRUCTION COURSES	
A PRACTICAL DIGITAL ELECTRONIC KIT FOR设 LESS THAN $£ 20$	
崖	
-	
bret -	

When replying to Classified Advertise ments please ensure:
(A) That you have clearly stated your requirements.
(B) That you have enclosed the right remittance.
(C) That your name and address is written in block capitals, and
(D) That your letter is correctly addressed to the advertiser.
This will assist advertisers in processing and dispatching orders with the minimum of delay.

Software

ZX81 PROGRAMS. 70 program listings including many games, utility, machine code loader, home finance, maths, cheque book etc, plus Hints 'N' Tips, £4'95, Household programs, put your 16K ZX81 to use. Listings for Diary, Year Planner, Bank Account, Financial/Housekeeping Budget, Telephone/Address/Birthday File, $£ 5 \cdot 95$. Barclaycard accepted. Sussex Software, Wallsend House, Pevensey Bay, Sussex.

The prepaid rate for classified advertisements is 28 pence per word (minimum 12 words), box number 60 p extra. Semi-display setting £7-24 per single column centimetre (minimum 2.5 cm). All cheques, postal orders, etc., to be made payable to Everyday Electronics and crossed "Lloyds Bank Ltd." Treasury
notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Department, Everyday Electronics Room 2612, IPC Magazines Limited. King's Reach Tower, Stamford St., London SE1 9LS. (Telephone 01-261 5942).

Courses

SOUNDENGINEERS

If you're following a career in Sound Engineering or intereated in learning all aspects of recording studios you should attend one of our weekend studio courses. Topics covered include:
A. The basics of studio construction, wiring and materials used.
B. Types of microphone uses, techniques, and limitations.
C. Use of $2^{\prime \prime} 16$ track machine, lining up, remotes, etc.
D. Use of 24 Channel Desk and all controls.
E. Effect equipment, ADT, reverb, Echo, etc.
F. Ancilliary equipment.
G. Mixing and Editing.

There are a maximum number of 8 students on each course and every one is tutored to their own level of knowledge with regard to their needs and interest. The cost is $£ 98$ for the weekend including hotel accommodation overnight. Detalls: please phone 01-580 4720 or 01-636 5308 during office hours.

Receivers and Components

TURN YOUR SURPLUS capacitors, transistors etc., into cash. Contact Coles Harding \& Co., 103 South Brink, Wisbech, Cambs. 0945 4188. Immediate settlement.
300 SMALL COMPONENTS, transistors, diodes. $£ 1.707 \mathrm{lbs}$ assorted components $£ 4.25$ l01bs $£ 5 \cdot 75$. Forty assorted 74 series ICs on panel £1•70. 500 capacitors $£ 3 \cdot 20$. List 20p refundable. Post 60 p . Optionable insurance 20p. J. W. B. RAD1O, 2 Barnfield Crescent, Sale, Cheshire M33 INL.

Veteran \& Vintage

ORDER FORM please write in block capitals

Please insert the advertisement below in the next available issue of Everyday Electronics for.
Insertions. I enclose Cheque/P.O. for £.................................... . . .
(Cheques and Postal Orders should be croseed Lloyds Bank Ltd. and made payable to Everyday Electronics)

NAME

Send to: Clasolined Adverticement Managor

EVERYDAY ELECTRONICS

[^1]
Service Sheets
 bell's television service for service sheets on Radio, TV etc. $£ 1 \cdot 25$ plus SAE Colour TV Service Manuals on requeat. SAE with enquiries to BTS, 190 King's Rd. Harrogate, N. Yorkshire. Tel: 042355885.

Any single service sheet $£ 1 /$ L.S.A.E. Thousands different Repair/Service Manuals/Sheets in stock. Repair data your named T.V. $£ 6 \cdot 50$ (with circuits £8-50). S.A.E. Newsletter, Price Lists. Quotations.

AUSEE, 76 CHURCHES,
LARKHALL, LANARKSHIRE (0608 883334)

Wanted

WANTED. Test equipment, receivers, transmitters, valves, components, cable and electronic scrap, relays, PCBs, contacts, diodes, transistors etc. Buyer will call anywhere mainland UK. On the spot valuation and no obligation cash offer. Phone (07737) 67281, Eric Henderson. Postal service for smaller quantities and analysis, send to Auroplat Refineries, Melcol Works, Wood Street, Ilkeston, Derbyshire. Cash by return of post.

\author{

For Sale

 NEW BACK ISSUES OF "EVERYDAY ELECTRONICS". Available 85p each Post Free, cheque or uncrossed PO returned if not in stock. BELL'S TELEVISION SERVICES, 190 Kings Road, Harrogate, Yorkshire. Tel: (0423) 55885.
 \section*{Personal}
 CHRISTIAN SINGLES. Holidays, tours, weekend houseparties. Friendship contacts -CFF Dept/N42, Edenthorpe, Doncaster.}

Miscellaneous

ELECTRONIC GAMES. Build your own from our detailed circuits. SAE for details. GHT Ltd, PO Box DR95, Dover, Kent CT16 IUL.

PARAPHYSICS JOURNAL (Russian translations): psychotronic generators, Kirlianography, gravity lasers, telekinesis. Details: SAE 4×9 in, Paralab, Downton, Wilts.

ENAMELLED COPPER WIRE. 10 swg to 45 swg. S.A.E. for quotation by return, cheapest prices. 102 Parrswood Road, Manchester 20.

FIBRE OPTIC GLASS LIGHT GUIDE. $0.064^{\prime \prime}$ distal diameter, $£ 1.50$ metre $0.031^{\prime \prime}$, £1.00 metre. Minimum order $£ 3.00$. Nyewood Equipment, 91 Tilmore Gardens, Petersfield, Hampshire.

THE SCIENTIFIC WIRE COMPANY
 po Eox M, London E.4. M 5s1 1set

ENAMELLEO COPPER WIRE				
SWG	1 lb	802	402	202
8 to 34	$3 \cdot 30$	1.90	1.00	0.80
35 to 39	3.52	$2 \cdot 10$	115	085
40 to 43	4.87	$2 \cdot 5$	2.05	140
44 to 47	$8 \cdot 37$	$5 \cdot 32$	310	250
48 to 40	15.88	- 58	8.38	369
SILVER PLATEO COPPER WIRE141030				
TINNEO COPPE日 WIRE				
14 to 30	3.97	$2 \cdot 41$	138	004
10 mtr reals 3 amp PVC cable mixed colours 50 Include P \& P vat. Orders under C 2 ada 20p.				

LEARN
ELECTRONICS WITHOUT SOLDER
Build elactronic circuits without solder on a Roden S- Dec. This has buitt- in contacts and holes into which you plug your components. Suitable for all ages. Can be used time atter time. ldeal gift for
students or experimenters. Full instructions and 2 circuit diagrams with each S-Dec
Send cheque or P.O. to:-
Naten Molucts. Dop EE
Wigh march, Doventry

CENTURION BURGLAR ALARM equip ment, send SAE for free list or a cheque/ PO for 111.50 for our special offer of a full sized signwritten bell cover to: Cen. turion, Dept EE, 265 Wakefield Road, Huddersfield, W, Yorkshire. Access \& Barclaycard. Telephone orders on 0484 35527.

SPARE PARTS FOR ALL DIGITAL WATCHES. Batteries; pins; display; back lights etc. Plus reports, publications charts. send SAE for full list. PROFORDS, Cop ners Drive, Holmer Green, Bucks HP15 6SGA.

PLEASE MENTION
 EVERYDAY ELECTRONICS WHEN REPLYING TO ADVERTISEMENTS

Make the connection with Access

and receive a regular postal delivery of Everyday Electronics. It's easy, it's straightforward and it's quick. Just use the subscription order form to get your Access card account charged with the price of a subscription or order your subscription through Access on the phone: (01) 886 6433. If you pay by cheque or postal order, use the subscription order form in the usual way.

SUBSCRIPTION ORDER FORM

I wish to become a subscriber to Everyday Electronics for one year and enclose cheque/ postal order value
no. . made payable to IPC Magazines Ltd
Complete this portion if you are using your Access card account. I authorise you to debit my Access card account with the above amount.

My Access no. is \square (Block letters phease)

Subscription Rates:

UK, Isle of Man, Channel Islands and Irish
Republic £11
Overseas £12
Unless you are phoning your order, complete and post this order form to:

Everyday Electronics,

2613 King's Reach Tower,
Stamford Street,
London SE1 9LS.

MIGHTY NINETY PACKS

SUPER VALUE PACKS ALL AT 90p each BUY SIX PACKS AND GET A SEVENTH FREE
Please add 15 p per pack postage
Please allow 7 days delivery.

CHORDGATE LIMITED

75 FARINGDON ROAD
SWINDON, WILTS. Tel. (0793) 33877 Retail shop at above address

INDEX TO ADVERTISERS

Alcon 296
Ambit 294
Benningcross 352
Bib Audio 356
BK Electronics Cover iii
B.N.R.E.S 296, 344
Bull J 350
Cambridge Learning 357
Cricklewood Electronics 294
Dziubas M. 292
E.D.A 298
Electrovalue 351
291
Global Specialist 294, 351
Greenweld 292
Home Radio 357
Intertext (ICS) 355
Lightning Components 351
Litesold 357
Magenta Electronics 353
Maplin Electronics Supplies Ltd Cover iv292
Powell T 296
Radio Component Specialists 360
Radionic 290
Radio TV Components 347
293
Rapid Electronics
Science of Cambridge 348. 349
Selary Books
Cover vii
Tempus 297, 357
T.K. Electronics 352
Vero Electronics 341
Watford Electronics 295
Wilmslow Audio 290 -

EXPRESS from กnุapul|

DIGITAL MULTI-TRAIN CONTROLLER
Control up to 14 trains individually on the same track with any four simultaneously! Low cost kits available.
Full details in our projects book. Price 60p.
Order As XA02C.

STOP-WATCH

Multi-mode 8-digit stopwatch accurate

to hundredths of a second. Easy to buiid-complete kits availabte. Full details in our projects book. Price 60p.
Order As XA02C

MATINĖE ORGAN
Easy-to build, superb specification. Comparable with organs selling for up to $£ 1,000$. Full construction details in our book. Price $£ 2.50$. Order As XH55K. Complete kits available: Electronics- $\mathbf{2 9 9} 95$, Cabinet- $£ 99.50$ (carriage extra)
Denno cassette price $£ 1.99$. Order As $\mathrm{XX43W}$.

* Donit miss oul - get a copy of our catalogue now! Over 140,000 copies sold already!

* 320 big pages packed with data and pictures of over 5,500 nems.

[^0]: Industrial Estate, Chandlers Ford, Eastleigh, Hampshire SO5 3ZR.
 Tel: Chandlers Ford (04215) 62829.

[^1]: Cempany reoletered In Enelend. Reglatored No. sumb. Replatered Omee; Kine'e Remeh Towor, atamford street, Londen sEi ots.

