An exciting hobly =... for everyone

Precision instruments supplied with standard detachable Copper chisel face bits. Standard temp. $360^{\circ} \mathrm{C}$ at $19 / 23 / 27$ watts. Special temps. from $250^{\circ} \mathrm{C} / 410^{\circ} \mathrm{C}$

For perfection in soldering

L1076
BIT SIZE 1/4 6.34 mm Dia. 27 watts. £1.90

L646
BIT SIZE 3/16"
4.75 mm Dia.

23 watts
fl. 85

L706
\longrightarrow
BIT SIZE $1 / 8^{\prime}$ 3.2 mm Dia 19 watts.
£1.70

for fast, easy
reliable soldering
Ersin Multicore Solder contains 5 cores of non-corrosive flux, instantly cleaning heavily oxidised surfaces. No exira flux is required.

IDEALFOR HOME CONSTRUCTORS

Size 1 cartons all at 25 peach in 40/60.60/40.
or Savbit alloys in 7 gauges.

EASY-TO-USE DISPENSERS

Size 5
(Savbit) 18swg, 18 p (illustrated)
Size 19A
(60/40 alloy)
18swg. 18p
Size 15
(60/40 alloy)
22swg. 22p

BIB WIRE STRIPPER AND CUTTER

Model 3A. Strips insulation from cable or flex without nicking wire. 4 different settings, 4\&6 BAspanner ends, ground cutting edges Price 32p. Also available. de luxe Model 8. Price 58p.

From Electrical and Hardware Shops. If unoblaipable, write to Multicore Solders Ltd. . Hemel Hempstead, Herts

May we draw your attention

240 London Road, Mitcham. CR4 3HD
Tel: 01-648 8422

It would help us considerably if we knew whether this was your first Home Radio Components Catalogue. If it is, please place a tick in the box.

It's late at night but that doesn't stop our young eléctronics enthusiast from ordering some urgently required components. He just dialled 01-648 8422 and telephoned his requirements, knowing that our Answering Machine will store his message ready for us to deal with next morning. As a seasoned member of our Credit Account Service he is well aware of the advantages it brings him. He has, for instance, a free supply of our pre-paid envelopes and order forms, for use when it suits him better to write his requirements rather than telephone them. This alone saves him quite a bit. He averages four orders a month and simply sends us a single cheque or postal order. Without our Credit Account Service his monthly cost would be: Four stamps at 3 pence each...12p, four cheques or postal orders at 5 pence each...20p, four envelopes $2 p$. Total, 34 pence. Over the year, quite an item! Not to mention his time spent in buying the stamps, envelopes and postal orders!
We have well over 300 customers using our Credit Account Service-some sending us several orders every week, cther just a few a year; but they all appreciate the fact that when they have been In the service for 12 months we send them up-dated Catalogues and Price Lists free of charge.

Now-if you have not already got a copy of our famous Components Catalogue send the coupon with a cheque or postal order for 70 pence. More than 8,000 items clearly listed and indexed, over 1,500 of them illustrated. Moreover, with the catalogue you get a sheet of 10 vouchers, each worth 5 pence when used as instructed.

If you call at our shop (open 9 to 5.30 Monday to Saturday inclusive, except Wednesday 9 to 1) you can buy the catalogue for 50 pence, thus saving the 20 p packing and postage. Full details and entry forms for our Credit Account Service are included in each catalogue. Send today.

The price of 70 p applies only to catalogues purchased by customers in the U.K. and to BFPO addresses.

 SPECIAL OFFER

Garrard SP25 Mk. II
Goldring G800
leads suppliad
Please sdd $\mathbf{4} 1 \cdot \mathbf{2 5}$ for P \& P.

TURNTABLES

Please =dd 75p for P. \& P. Garrard SP25 Mk, 111 Garrard AP76 Garrard SL65B
Garrard Zero 100 (Auto) Garrard Zero 100 (Single) Garrard SL72B
Garrard SL758
Garrard 5L958
BSR MP60
Goldring GL72
Goldring GL75
Goldring GL75/P
Wharledale Linton \& cart
Thorens TDI25
Thorens TDI25AB
Therens JDI50 Mk. 11

AMPLIFIERS

Pleate add 75p P. 2 P Amstrad 8000 Mi Armstrong 521 (teak cased) Alpha Highrate 212 Alpha Highgate FA300 Alpha Hishgare FA400 Leak Delsa 30
Leak Delta 70
Metrosound ST20E
Metrosound ST60
Ploneer SA600
Pioneer SAB00
Ploner SA800
Pioneer SA1000
Rogers R/brook (Chassis)
Rogers R/brook (Cased)
Rogers R/bourne (Chassis)
Rozers R/bourne (Cased)
Sinclair PRO60 $2 \times$ Z301PZ5
Sinclair PRO60 $2 \times$ Z30/PZ 6
Sinclair PRO602 Z
ZSO|PZ8
Sinclair AFU (Filter Unit)
Sinclair 605
Sinclair 2000 Mk . II
Sinclair 3000 Mk . II
Wharfedale Linton
Goodmans Max Amp
Teleson SAO2068
Teleron SAO 306 B
Europhon $10+10$
c9.45
$\begin{array}{r}18.75 \\ 112.95 \\ \hline\end{array}$
212.95
626.50
626.50
638.95
636.75
636.75
623.50
225.50
634.25
69.45
621.95
421.95
627.95
225.75
634.25
634.25
627.95
257.00
188.00
626.00
[33. 30

TUNERS

Ploate add 75p P. A P. Armstrong 523
Armstront 524
Rozers Ravensbrook FET4
(Chassis)
Rogers Ravensbrook FET4 (Cased)
Rogers Ravenbourne FET4
(Chassis)
Rogers Ravensbourne FET4
Sinclair PRO60 (Module) Sinclair 2000/3000 Tuner
Philips RH690
Leak Delta FM (Cased)
639.30
630.95

C3. $\quad \infty$
$435 \cdot \infty$
[43. ∞
488
417.95
$\begin{array}{r}632.75 \\ 633 \\ \hline 64.00\end{array}$

TUNER/AMPLIFIERS

Pleare add 75p for P. \& P.

Alpha Highgate 150
Armstrong 525 (Teak cased) 444.25
Armstrong 526 AM/FM
(Teak cased)
Lenk Delea 75 Philips RH702
Teleton 2100
Goodmans One Ten
Rogers'
Rogers
R/brook (
c77.75
127.95
650.00
$C 50.00$
$C 82.50$

678.50 672.75

SPEAKERS

Ploase add \mathbb{C} - 25 F. \& P. per paip

Amserad 138

Whariedale Denton 2
Wharfedale Linton 2
Whariedale Melton 2 Celestion Dition 120 Celession Diston 15 Celestion Ditton 25 Goodmans Double Maxim Goodmans Mezzo 3 Goodmans Magister Sinclair 816

58.20^{*}

Plus 35p p. \& p.
Finfshed in seak veneer wish sinsed
duss cover fully assembled. For
Garrard SP25: 2025TC: 3000 : AT00: 2000: 2500; 3500; 5100 ; 1025; SL65B; Also for BSR MeDonald MP60 and others:

Also finished in watnus so match
CARTRIQGES
Plonte
Edd 10 p for P.
Goldring G850
Goldring G800
Goldring G800E
Goldring G800 Super E
Shure MJD
Shure M44E
Shure M55E
Shure MTSE Type 2
ot time of press E. \& O.E.

Are you alright for Jacks?

screened and unscreened versions. . socker bodies in high melting point thermoplastic ... several unique features (some protected by UK and US Patents) . . . Post Office and NATO specifications.
If you want to study all the fàcts and figures, all the ingenious con struction details, send for the Rendar Electronic Components Catalogue of technical data sheets covering their entire range of products.
The cost of the catalogue is 25 p, including $P \& P$, and it's money very well spent I

RENDAR

Rendar Instruments Ltd., Victoria Road Burgess Hill, Sussex. Tel. Burgess Hill 2642-4 Cables: Rendar, Burgess Hill

CONTROL
 DRILI
 SPEEDS
 DRILL CONTROLLER NEW IKW MODEL Electronically change mpeedy 10 revs. to mazimum. Full power at all epeede by finger-tip control. Kit inclades all parta. case, everything and 13p pont and insurence. Mane up molel almo avall

MAINS OPERATED CONTACTOR 2201240 v . so eycie motenold -ith haminased core mo vers alisat in operation. Closess Extremely well made by a German Electrical Company. Overall eize $21 \times 2 \times 2 \mathrm{~h}$
12 each
NEED A SPECIAL SWITCHI Dosbls Las Contect. Very aight presure clomes $60 p$ dox. Plastie push N each, 00 p dox. Plastie push

AUTO-ELECTRIC

CAR AERIAL

with dahboard control rwitch-fully extendable to 40 in . or fully retractable. sainble lor 12 V . positive or gegailive matructions and ready fired deahbearl bitructions and ready wired inahtm
switch. 55.75 plus $25 p$ pont and ins. TOEGLE SWITCH 3 amp. 250 v . with firing ring 7ig each. 75p dor. MICRO SWITCH
Samp changeover contects. Op 10 each or 81.05 dos.

 ust simply screw together the components and you save pounds! Amplifier is based on the famous Mullard Unilex system. Garrard 2025TC curntable complete with stereo ceramic cartridge, teak simulated plinth and tinted acrylic cover. Plus the big $13^{\prime \prime} \times 8^{\prime \prime}$ EMI twin cone speakers ready for mounting in their elegant cabinets which simply need screwing \& gluing Easy to follow step-by-step instructions guide you quickly and effortlessly o taking the wraps off truly realistic stereo sound.

25 complete plus ©2.80 p. \& p.
Power output: 4 watts per channel into 8 ohms Inpue: 120 mV (for ceramic Cartridge) Stereo Headphones with adapter 44

UNISOUND MODULES ONLY-£6.95

 If you prefer, you can buy the three modules-pre-amplifier, power supply/dual power amplifier. and control panel-by themselves for only $\mathbf{6 6} 95$. P. \& P. 50p extra. Their overall specification is the same as shown for the esmplete Unisound console. See below for address.

A QUARTER TURN RIGHT! ...opens a world of real stereo sound

VISCOUNT III AUDIO-£52 complete

PRICES	
SYSTEM I Viscoune III R 101 amplifier $2 \times$ Duo Type ll speakers Garrard SP25 Mk. 111 with MAG. cartridge plinth and cover	
	$\begin{aligned} & 622 \cdot 00+90 p p \& p q \\ & 614 \cdot 00+62 p \& p \end{aligned}$
	$〔 23 \cdot 00+£ 1 \cdot 50$
Tocal	459.00
Available complete for only	
SYSTEM 2 Viscount RIOI amplifier $2 \times$ Duo Type III speakers	$02200+90 p p \& p$ $832 \cdot 00+13 p \& p$
cartridge, plinth and cover	$\xrightarrow{623.00}+\underset{p s p}{c 1.50}$
Total	$677 \cdot 00$
Available complete for only	

$14+14 \mathrm{~W}$ per channel 40 Hz to $40 \mathrm{kHz}+3 \mathrm{~dB}$. Total distortion@10W@1kHz-0.1\%
2 complete stereo systems using the Viscount III amplifier. FET'S are incorporated on she in pue stages, just like top priced units to give you more of the signal you want and almost none of the hiss you don't. Output sockets for phones and tape recorder.
The exclusive Duo loudspeaker systems are large speakers in extremely substantial cabinets. There's a choice of the Duo II's for the smaller room or the big Duo lif's for real bass response. Speakers Duo Type II
Size approx. $17^{\prime \prime} \times 10 z^{\prime \prime} \times 6 z^{\prime \prime}$. Drive unit $13^{\prime \prime} \times 8^{\prime \prime}$ with parasisic tweeter. Max. power 10 watcs, 8 ohms. Simulated teak cabinet. Cl 4 pair + f2psp.
Duo Type III. Size approx. $23 \frac{1}{" \prime}^{\prime \prime} \times 11 \frac{1}{1 "} \times 9 \frac{1}{" \prime}^{\prime \prime}$. Drive unit $134^{\prime \prime} \times 8 \frac{1}{4}^{\prime \prime}$ with H.F. speaker. Max power 20 wates at 3 ohms. Freq. range 20 Hz to 20 kHz . Teak veneer cabinet. $\mathbf{C 3 2}$ pair $+\mathbf{C 3}$ p\&p. Specification
14 watts per channel into 3 to 4 ohms (suitable $3-15$ ohms). Totol distortion@10W@1kHz 0.1\% P.U.I. (for ceramle cartridges) 150 mV . P.U. 2 (for magnetic cartridges) 4 mV @ 1 kHz into 47 K . (Rodio 150 mV . Tape out facilities: headphone socket. Tone controls ond filter charocterTape out facilities: head phone socket. Tone controls ond filter charocter-
istics. Bass; +12 dB ro 17 dB (9) 60 Hz . Bass filter: 6 dB per octave cut. Treble control: rreble +12 dB co- $12 \mathrm{~dB} @ 15 \mathrm{kHz}$. Treble filver: 12 dB per octave. Signal to noise rotio: P.U.I and radio- 65 dB . P. U. $2+58 \mathrm{~dB}$. Cross ralk better thon -35 dB on all inputs. Size approx $134^{\prime \prime} \times 9^{\prime \prime} \times 3 z^{\prime \prime}$. Goods not despatched outside U.K.

Radio and TV Components (Acton) Ltd., 21c High Street, Acton, London G3 6NG, 323 Edgware Road, London W2. Mail orders to Acton. Terms C.W.O. All enquiries S.A.E.

All orders value $\frac{52}{}$ or over post free. Other orders please add 10 p p \& p . We only sell new products-do not confuse with 'seconds' or surplus stoch.
Because of our heen prices we regret the prices apply to U.K. and B.F.P.O. addresses only. Please fill in the coupon and zend with 100 (refundable on ordering) for catalogue.

A1L
CALLERS
WELCOME

MON.
TO
FRI.
3.5 .00

TO GSPK (SALES) LIMITED, Dept. E.E.
BATTERY I (AS A PORTABLE it runs on standard batteries). PLUG out internal batceries, using car battery only! Mundreds of transmissions simply remove radio from car. "snap oni" optional in carry hand BUT WAITHAVE A DE-LUXE PORTABLE with additional upright tunine dial. WRITTEN G'TEE. Only 69.95 , post 45 p. 'Sprung all metal matching deeschable carry handle (as illus.) AND set of batteries $25 p$. A . if read. Ref. s'tee. SEND TO-DAY OR CALL
GHOPEGTWNDIES BTD日Dept. EE/9. 164 UXBRIDGE RD.
ONDON, W12 8 AQ (Thurs. I. Fri. 7). Also: 37 High Mobborn,

Head Office, Hookstone Park. Harrogate, Yorkahire, HG2 7BU

SPECIAL INTRODUCTORY OFFER FREE with all orders value es of over printed clicults (normal tor mahing your own Hurry Ofler valld tor limited period El ons)
 SPECIAL INTRODUCTORY OFFER FREE whin al

SEMICONDUCTORS

Here are Juat a few examples of our LOW Semlconductor prices. . . Many
more semicons avallable all at equally sensational prlces.....NOW. +25+

 $\left.\begin{aligned} & \text { n } \\ & \text { h } \\ & \text { i } \\ & \text { in } \\ & \text { in } \\ & 1\end{aligned} \right\rvert\,$ BCl | BCl |
| :--- |
| BCl | MCl

HCl HCY
BCY BD 20
BFX
BF 30
BF 50
Bris0

$2 v+$
$28 p$
180

C127

RESISTORS

FULL RANGE OF ISKRA CAREON FILM RESISTORS

W (range 4.7 ohms to 470 K$)$	Iskra Miniature Hian stability carbon
W and \& W (range 4.7 olpeas	Film Rexistorn with negliglble noise factor.
Mugn) 1p ench	All Renjators $\pm 5 \%$ (except
(ratge 4.7 ohms to 10 Meg)	over 4.7 Meg$)$. Theme Remistors are even
(range 4.7 ohma to 10 each	lower tn price than must 10% and older
(range 4.7 ohma to $\begin{gathered}10 \mathrm{Meg} \text {) } \\ 3 \mathrm{pesch}\end{gathered}$	carbon comporitlon typer.

PRE-SET POTENTIOMETERS

Standard/miniature preseta from 100 ohma to 5 Meg.

SIEMENS PROFESSIONAL CAPACITORS

Voltage	Capartance	Price	Voltage	Capltance	Price
100v	$0 \cdot 1 \mu \mathrm{~F}$	8 D	10 v	$22 \mu \mathbf{F}$	70
100v	0-15 $\mu \mathrm{H}$	80	$10 v$	$470 \mu \mathrm{~F}$	110
100\%	$0 \cdot \underline{2} \mu \mathrm{~F}^{\prime}$	8 D	16 v	$47 \mu r^{\circ}$	7 p
100%	$0 \cdot 33 \mu \mathrm{~F}$	80	25 v	10 $\mu \mathrm{F}$	7 D
100v	$0.47 \mu \mathrm{~F}$	10 D	25 v	$100 \mu \mathrm{~F}$	Op
100v	0.68 \% ${ }^{\text {r }}$	150	25%	$\xrightarrow{2} 0 \mu \mathrm{r}$	11 D
2500	0014 FF	50	$25 v$	$170 \mu \mathrm{~F}$	140
250 v	$0.015 \mu \mathrm{HF}$	50	25.	$1000 \mu \mathrm{~F}$	22p
$250{ }^{\circ}$	0-02\% $\mu \mathrm{F}$	5 p	25 v	$2200 \mu \mathrm{~F}$	42p
250 v	$0.033 \mathrm{\mu F}$	${ }^{60}$	35 v	$4.7 \mu \mathrm{~F}$	70
350 y	$0.047 \mu \mathrm{~F}^{\prime}$	${ }_{60}$	35%	$220 \mu \mathrm{~F}$	140
$\bigcirc 50 \mathrm{v}$		8 p	100*	$10 \mu \mathrm{~F}$	8 D
*250v	$0.1 \mu \mathrm{~F}^{\circ}$	${ }^{80}$	100\%	$24 \mu \mathrm{~F}$	9 p
			100 y	$47 \mu \mathrm{~F}^{\prime}$	140

24p	$22 p$	nzY8sC
$19 p$	$18 p$	

		$0 \mathrm{C7} 6$	28p	21 p
		0 Cl 170	24p	210
10p	9p	1 N 4001	80	5 p
240	19p	1 N 4002	8 p	$5 p$
240	19p	1N4003	7 D	6 p
240	10p	1 N 4004	80	7p
240	19p	1 N 4005	10D	9p
100	17p	1N4006	128	11p
245	19p	1N4007	18p	16p
240	19D	$1 \mathrm{~N}+148$	1p	3 p
26p	20p	2N1302	16D	15p
21p	$19 p$	2 N 1304	$21 p$	20p
14p	12p	2X1613	140	13p
510	44p	2 N 1711	15p	14p
70p	58p	-53904	20p	280
750	690	2 N 2905	24p	22p
64p	${ }^{\text {S0 }}$ p	2N4906	10p	18p
410	33p	$\underline{12} 2907$	22p	$21 p$
6 p	5 D	9*303.	17D	18p
6 p	50	2N3054	49p	47p
${ }^{5 p}$	48	2N3053	57p	820
12p	120	(3D130)		

BUDGET HIGH-FIDELITY STEREO SYSTEMS

FREE
LEADS AND PLUGS AND PLUGS
SUPPLIED SUPPLIED
WITHALL WITH ALL
SYSTEMS

PREMTER STEREO SYSTEM "ONE" COnalsts of the new Premier gon all travavtor ntereo amplifer. Oarrarl 2025 T/C suto manual record player unit titted stereo/inomo ceramic cartridge with dimond stylus and roounted in teak finist plinth with persper enver and tw inathinc tak
 outpul mocket and heal phrof ancket. Controls: Sav. Stereo tiealphome

METER BARGAINS

MODEL GT-800 MULTIMETER Aurter, Ideally buttel for testine elec tronic circuits or elect ronic appliances. suppled eomplete with text leaul and

 DC Current: ImA. Ithma. Renistance

MULTIMETER 90.000 O.P. N:
Featuren large easy-to-real nueter, whe chatce of ranken. With test reads,
 $100-500-1000 \mathrm{c}$

MODFLL CT- 220 MILLTITESTER
 ages: $0,5,23$ inc. sthe $1,0004110.000$
 6Si, fiom ohnus. Dercheple:-20 sth to

WELLER "EXPERT" SOLDER

OUN. \&aver time and sinpulites

 Idral fir regular bench une and around the bothe. 23
walte. 40 sulf A.C. $£ 1-50$ P. \& P. 16 p

VERITAS V-313 TAPE HEAD DEFLUXER

A musl tor shl tape users! Tapee
beats becoure permanently masnetize. l with constant une:
that prevents perfect recordinus, 8 inppy
apilied to recording heal the $\$ 313$ aphlie. to recording heat the clal3
leates heas free of magnetinus. cleans leate heane free or mape head In arcond.
$£ 1 \cdot 72$
"VERITONE" RECORDING TAPE specially manufactured in u.s.a. from extra strong PRE-STRETCHED MATERIAL. THE QUALTY IS UNEQUALLED.
 out put througtwau the entife aut lio range. Double wrapped-at tractively bosed.

PREMIER HI-FI OFFERS	
	£38.50
	£49.00
Meerosound ST20E	£25.50
Coldring Gl7	£22.00
(atard Sp25 1 with	£15.00

Garrard AP76 with
G800, ready wired to $5 \quad 229.50$
pin Din in plinth with
Garrard Ap76
less cartridge \quad \&18.80
$\underset{\substack{\text { Garrard } \\ \text { Transcription Unit } \\ \text { List } \in 40.15)}}{ } \quad \mathrm{E} 27.40$
Garrard 2025 T/C with
Stereo Ceramic Cartridge

Garrard 2025 T/C with
Stereo Ceramic Cartridge
e
1545

28.50 with cover
Carriage and Insurance 60 p extra any item.
CARTRIDGE BARGAINS!
Goldring G800H 65.00; G800 65.50; G800E 6950: SHURE M3D 64.00; M44E E5.75: MS5E 66.50; M75EII E10.90. P. \& P. 10p

VERITAS V. 149 MIXER
Battery operated 4 chand andio mirer protidug four Battery operated 4-chandel audlo miser prorlding four separate iaputn. size $6 \times 3 \times$
phone low impedance ralerophoue, with trabeformer. Padio. tape. etc. Max. laput
 6 dis. SLandard jach pluk
eocket inpuss. phonoplues output. Attractive MONO £3 STEREO

TAPE CASSETTES

 \& P. Top.
PrEE Caratte Head Cleaner with overy 10 cusettes

23, TOTTENHAM COURT ROAD, LONDON, W. 1 Tel:01-6363451

WHAT READERS SAY

after studying them for a while, I came 10 the conclusion there is only one word to describe these manuals-BRILLIANT
E.J. Southampton

Their appeal is in their simplicity
E.P. Basingstoke An ordinary person like me can soon acquire a first rate understanding of the subject. C.B. Maidstone. I have passed my theory exam. on electronics with the help of your manuals. D.E.F. Ely.

To The SELRAY BOOK CO., 60 HAYES HILL, HAYES BROMLEY, KENT. BR2 7HP
Please find enclosed P.O./Cheque value £.
BASIC ELECTRICITY 5 parts $£ 4.50$
BASIC ELECTRONICS 6 parts $£ 5 \cdot 40$
BASIC TELEVISION 3 parts $£ 3 \cdot 60$
Tick Set(s) required. Prices Include Postage and Packing.
YOUR $\mathbf{1 0 0 \%}$ GUARANTEE. If after 10 days examination you decide to return the Manuals your money will be refunded in full.
NAME
bLOck Letters

ADDRESS

POST NOW FOR THIS OFFER!

FEM PANEL WIETERS

USED EXTENBIVELY BYINDUSTRY, GOVERNMENT DEPARTMENTB, - Iow cos

'SEW'

CLEAR PLASTIC METERS

$50 \mu \mathrm{~A} \ldots .$.

$60-0-60$
$100 \mu \mathrm{~A}$
100-0-100 μ
goepa
$500-0.500 \mu \mathrm{~A}$
$\lim _{1-0,1 \mathrm{~m}}$
$1-0.1 \mathrm{ma}$
10 mA

Tre MR.EPP. 2 lin. aquare iront
$50 \mu \mathrm{~A} . . \mathrm{s} .10$ 10V. D.C $50-0-50 \mu \mathrm{AA} . . .8$. $100-0 \cdot 100 \mu \mathrm{~A}$ $500 \mu \mathrm{~A}$ $1 \operatorname{ma} A$
5 mA
10 mA
50 mA
100 mA
500 mA
500 mA

 b0-0-50 inA 8.75 $100 \mu \mathrm{~A}$ $100 \cdot 0 \cdot 100$ $200 \mu \mathrm{~A}$
6001 A

1 mA

1 mA
5 mA
10 mmA
50 mA
100 mA
500 mA
1 mmp.
$\frac{1}{5} \mathrm{mmp}$.
10 mpp.
15 amp.
20 mmp .
30 amp.
GV. D.C.

*MOVING-IRON
 ALLOTHERS MOVING COIL
 Please add postage

\section*{SEW EDUCATIONAL METERS

 Tree ED. 107. Eise crorall 100 mm Anem range of in Anem range of high inamirumentu idoal for school experi-

ments and other bench applications. 3^{3} mirror scale. The
eauly wecenible to meter movement ta eaily necemsible to in the following rangen:

MULTIMETERS for EVERY purposel

Completely portable, almple to nae pocket elsed terter. Ranges $0 / 3 / 80 / 300$
and DC At 2,000 Realotance 0.20K ohin.

Tyme MR.45P. Rin. gquare fronts.

$50 \mu \mathrm{~A}$	E88	6 mpp.
50-0-50 $\mu \mathrm{A}$	㩆10	10\%. D.C.
$100 \mu \mathrm{~A}$	ce-10	20 V . D.C.
100-0-100 $\mu \mathrm{A}$	21.87	50V. D.C.
200 $\mu \mathrm{A}$	11.87	$300 \mathrm{~V} . \mathrm{D} . \mathrm{C}$.
$600 \mu \mathrm{~A}$	s175	15 V . A C
500-0-500 $\mu \mathrm{A}$	䀽70	300 V . A.
1 mA	$\underline{1170}$	A Meter 1 ma
5 ma	$\underline{1170}$	VU Meter ${ }^{\text {a }}$ -
10 mA	21.70	1 amp. A.C. 81.70
50 mA	$\ldots 1.70$	5 amp. A.C. ${ }^{\text {a }}$, 170
100 mA	s1.70	10 mmp. A.C. $\frac{11-70}{}$
500 mA	11.70	20 amp. A.C.* 317
1 amp.	8170	30 mmp. A.C.*

'SEW" BAKELITE

 PANEL METER

EDGWISE METERS

[^0]

TIE MOD 117 TE.E. FLECTBOItC Battery operated, 11 meg input, 76 renges. Large fir
mirror male. Btre $\times 41^{\prime \prime} \times 21^{\circ}$ DC Volits 0.31200 V . AC VOLTS
 RENT $12-12$ MA. Realatance op to 2000 m ohe Hona. 117 .W. P. Comple 20 p .

TE-20C RF SIGMAL GENERATOR

Accurate mide range aje nal
120
Kenerator 500 covering
Mc/s on 6 bsads. Directly call brated Variable R.F. Rttenuator, eululo outphat. Xtal mocket for calibra thon. $220 / 240 \mathrm{~V}$. A.C. Brand new with inatruc tons 216. Carr. 37 P Sive 140

mm.

TE22 SINE SQUARE WAVE
AUDIO GENERATORS

Bine: 20 cps to 200 Ge/e on 4 barde 30 kej 20cpa to impedance 5,000 ohms. $200 / 250 \mathrm{~V}$ A.C. operation supplied brand 17.50. Carr. 37tp.

TE-2DRF SIGMAL GENERATOR

 Accurate fide range algal generator cover. $\operatorname{lng} 120$ kc/a-260
Me/s on 6 bunde. Me/s on 6 bande.
Directly calibruted varlable R.F. at tenuator, Operallo Brand new with in Brand new wition for detalls.

$\left(\begin{array}{r}-\quad= \\ -\ddot{-}\end{array}\right.$

240 Wide Angle 1ma Itetors MWi-6 0 mm aquare 88

E10II HODEX 7008
Overload protection $5 / 25 / 100 / 50011000 \mathrm{VDC}$ $50 \mathrm{uA} / 250 \mathrm{~mA} .20 \mathrm{~K} / 2 \mathrm{me}$ $50 \mathrm{uA} / 250 \mathrm{~mA} .20 \mathrm{~K} / 2 \mathrm{~min}$
$0 \mathrm{hm} .-5$ to +62 db. 4.07. P. \& P. 15p.

M0D FL PLASE $20 \mathrm{k} \Omega / \mathrm{Volt}$ D.C.
$\mathrm{BR} / \mathrm{volt} \mathrm{AC}$ Mirror acale. D.C. $3 / 30 / 120 / 600 \mathrm{~V}$ 600 C. $50 / 600 \mathrm{ua} / 60$ $600 \mathrm{~mA} .10 / 100 \mathrm{~K}$

MODEL 502567 Ranges peverse Switch.
Bealtivity: $80 \mathrm{~K} / \mathrm{Volt}$ D.C
BK/Vole A.C. D.C. Volts
$-125,25,1 \cdot 25,5,10,25$
$80,125,250,600,1,000 \mathrm{~V}$

OODEL LT. 1011000 O.P.V 0/10/50/250/1000 V. D.C. 0/10/50/250/1000 V. A.C. $0 / 1 / 100$ II.A. O/150
$1.27 . \mathrm{P}$. 15 P .

THE YODE1. 70.180 101 Ω Volt A.C. $80 / 60 / 500$ 0018.000 V. D.C. 81120 1.200 V . A

Current 0 - $60 \mu \mathrm{~A} / 0-12 / 0$ 500 mA . $0-60 \mathrm{~K} / 0-6 \mathrm{Meg} \Omega$. PaP16p

MODEL 500 30,000 O.P.V with orarlosd protection mirror seite $0 / .5 / 2 \cdot 5 / 10 / 25$ $0 / 2.5 / 10 / 26 / 100 / 250 / 500$ / 1.000 V . A.C. $0 / 50 \mu \mathrm{~A} / 5 / \mathrm{BO}$ 500 mA .12 amp. D.C. torts. Poat paid.

THK LAB TESTER
100,000 O.P.V. ${ }^{6 j t h}$ Bcale Buzzer Bhort Cir cult Check. Semaitivity
100.000 O.P.V. D.C. $5 \mathrm{~K} /$ Volt A.C. D.C. Volts:
$-5,2-5,10,50,250,1.000$ S, $2-5,10,50,280,1.000$
V. A.C. Vols: $3,10,50$,
$80,250,500,1,000 \mathrm{~V}$. D.C. Current: $10,100 \mu \mathrm{~A}$. $10,100,500 \mathrm{~mA}, 2.6,10$ amp. Resiatance: $1 \mathrm{~K}, 10 \mathrm{~K}, 100 \mathrm{~K} .10 \mathrm{MEG}$ 100MEG Ω. Decibela: -10 to +49 db

RUSSIAN 22 RANGE MULTIMETEN Model U437 10,000 o. p.v. A Arut clame verabtile intrument manufactured in U.B.B.R, to the highest $60 / 250 / 500 / 1000 \mathrm{~V}$ D. C. 2.5 $10 / 50 / 250 / 500 / 1000 \mathrm{v}$
 DC Current $100=$ A/l/10 $100 \mathrm{ma} / 1 \mathrm{~A}$. Reaintance 300 ohmir $3 / 30 / 300 \mathrm{~K} / 3 \mathrm{~m} \Omega$ test lemis, inntructiona an
 turdy iteel carying cese OUR PRICE $\mathbf{5} 5.97$ P. \& P. 25 p

TO. 3 PORTABLE OSCILLOSCOPE

sin. tube, Y amp. Benaltir ity 0.1 v p-p/Ci, Band Width $1.5 \mathrm{cpt}-1.5$
Input $\operatorname{tmp} \mathrm{m} .2 \mathrm{mes}$
25 p Input tmp. 2 mes $\Omega 2 \$_{p}$ X amp. meaaltivity 0.9 y . pop/CN. Band indith impe 2 meg $\Omega 20 p \mathrm{~F}$. Ttme hane, ranges 10 epo- 3001 Hz
Bychronization. Internal external. Illumingted seale $140 \times 215 \times 830$ mm . Welyth 151 B . $220 / 250$ V. A.C. Bappliod brand new wht handbook. \$40.00. Cerr. 50y

HONETWELL
DIGITAL VOLT:
7.100

Can be parzel of
bench moanted.
Beast meter mes

sured 1 volt D.C. AC and DC volt, cutrent and ohma plut optional plug in carde. Specibeation: Acce racy: $\pm 0.2, \pm 1$ digit. Resolutioa: 1 mV . Number of digits: 3 plus fourth overrange digdt. Overrange: 100% (up to 1.999). Input impedance: 1000 Yes Ohm . Meauring cycle: inger full scale Adjustruent agalnat an internal Ing, full scale adjustraent againat an interna Input: Fully foeting (3 poles). Input power: $110-250 \mathrm{v}$. A.C. $50 / 60$ cycle. Oversll wise: $6 \| \mathrm{in} . \times \geqslant 13 / 16 \mathrm{in} . \times 83 / 16 \mathrm{~m}$. AVAlLABLE BRAND NEW AND FULLY OUARAN:
TRED AT APPROX. HAT.F PRICE. TEED AT APP
s4g-07t. Cart. 80 p .
G. W. SMITH
\& CO (RADIO) LTD.
Also see next two pages

GEMI－CONQUCTORE／VALVES

ALL DEVICES BRAND NEWAND FULLY GUARANTEED

 26302 ${ }^{203}$ ${ }_{20}^{20308}$ 20371

20371 ${ }^{2} \mathrm{CH}_{37}$ 20381 2N388A | N |
| :--- |
| N_{2} |
| 0 |
| 0 | 2N40

2N69 2N696 2N697
2N698 2N698

2N699 | 2 N 989 |
| :--- |
| 2 N 70 O | $2 N 804$

$2 N 706 A$ 2 N 708 A
2 N 708
2 N 700 $2 N 708$
$2 N 709$ $2 N 718$
$2 \times 718 \mathrm{~A}$ 2×718
$2 \mathrm{~N} 7 \cdot 2 \mathrm{~A}$ 2×726
 2N914 $\quad 30 \mathrm{D}$ 2N3893 $2 N 018$

2 N 918 | $2 N 929$ | 30 p |
| :--- | :--- |
| 2 N 3702 | |
| 2 N 929 | | $2 N 929$

$2 N 930$ $2 N 830$
$2 N 987$
2N1090 2N1090 2N1091

2 N 1131 20p 2N3439 | 37 D | 28102 |
| :---: | :---: |
| 130 p | 28103 | 25 D

$\mathbf{2 5 p}$
BCl 1 2002 N 3440 $\begin{array}{ll}870 & 28104 \\ 170 & 28301\end{array}$ 5 25 BCl 42p 2N 35 HA 30 D
30 D
2 N 3565
$2 N 3566$ 150 2N3566 20 p 2N3569

 \begin{tabular}{l|ll|l}
49p \& $2 N 3570$ \& 125 p \& 285501

20 p \& 2 N 3605 \& 97 \& 2501

20 p

15 D

2 N 360 S

2 N

15 D

15 D

\hline 2 N 3607

\hline

16 D \& 2 N 3607

25 D \& 2 N 3838

\hline

 30 D 2N3638

300

10 D

2 N 363 ARA

\hline 1
\end{tabular}

 \begin{tabular}{l|l}
27 p \& 3 N 198

28 p \& 3 N 140

3 P 141

 120 2N3F4

$20 p$ \& $3 N 142$

$18 p$ \& $3 N 143$

12 p \& 2 N 3642 \& 18 p \& 3 N 152

15 D \& 2 N 3643 \& 20 p \& 40030

 62 F 2N384

D \& 40050

40250

$8 p$ \& 40250

$5 p$ \& 40251

$18 p$ \& 40309

$18 p$ \& 40310

$15 p$ \& 40311
\end{tabular} 18 p

10310

10311 \begin{tabular}{l|l|l}
$18 p$ \& 40312

10 \& 40314

$0 p$ \& 40314

\hline \& 10315

\hline

$10 p$ \& 40315

$11 p$ \& 40316

$10 p$ \& 40317

 220 2N3704

110 \& 40317

90 \& 40319

110 \& 40320

70 \& 4323
\end{tabular} 2N1131 28D 2N3708 2N1131 25p 2 N 3709 $\begin{array}{lll}2 N 1132 & \text { 25D } & 2 N 3710 \\ 2 N 1302 & 17 \mathrm{D} & 2 \mathrm{~N} 3711\end{array}$ 2 N 1302

2 N 1303 $2 N 1303$ 17D 2N3713 2 N 1305 2N1305 2N1306
2N1307 2 N 1308

2 N 1309 2N1807 $\begin{array}{lll}2 N 1613 & 20 \mathrm{p} & 2 \mathrm{~N} 3820 \\ 2 \mathrm{~N} 3893\end{array}$ \begin{tabular}{ll|l|l|l}
$2 N 1631$ \& $35 p$ \& $2 N 3854$ \& 27 D \& $\mathbf{4 0 4 0 8}$

\hline 2 N 1632 \& 30 p \& 2 N 3454 \& 27 D \& 40410

$2 N 1637$ \& $30 p$ \& $2 N 3854 A$ \& 27 p \& 40409

$2 N 1637$ \& $30 p$ \& $2 N 3855$ \& 27 p \& 40410
\end{tabular}

 $2 N 1638$
$2 N 1639$

 \begin{tabular}{ll|lll}
$2 N 1889$ \& 24 \& $2 N 3 R 5$ \& $25 D$ \& 40528

 $2 N 1889 \quad 28 \mathrm{p}$ 2N3858A 30 p

$2 N 1893$ \& 70 \& $2 N 3859$ \& $27 p$ \& 40603

$2 N 2147$ \& 78 D \& 2 N 3859 A \& 380 \& 1 Cl 107

$2 N 2147$ \& 78 D \& 2 N 3859 A \& 38 p \& $\mathrm{ACl07}$

2 N 2160 \& 57 D \& 2 N 3860 \& 30 p \& $\mathrm{ACl}{ }^{2}$
\end{tabular}

 2N2194 27 D \begin{tabular}{ll|l|l|}
2N2194 \& 27 p \& 2N3N77A 40p \& AC15

2N2194A 30 D \& 2N3900 \& 37 p \& ACIS2

$2 N 2217$ \& 25_{0} \& $2 N 3900 \mathrm{~A}$

2 N 218 \& 80 \& 2 N 3901

 $\begin{array}{lll}2 N 2219 & 20 \mathrm{p} & 2 \mathrm{~N}^{2} 3903\end{array}$ 2N2240 850 2N3904

$2 N 2221$ \& 25 \& $2 \mathbb{N}$

2 N 22222 \& 80 D \& 2 N 3906

\& $2 N$

 $2 \mathrm{NL2242} \mathrm{~A}$ 25D 2 N 40.58 2N2297 80 D 2N4059 2N2388 15D 2N4G10 $2 N 2369 \mathrm{~A}$ 15D 2 N 4062

$2 N 2369 A$ \& 10 D \& 2 N 4062

2 N 2410 \& 42 p

2 N 424

$2 N 2483$ \& $27 p$ \& $2 N 4248$

$2 N 2484$ \& 320 \& $2 N+249$

$2 N 2489$ \& 22D \& $2 N 1249$

$2 N 254250$

 $2 \mathrm{Na}_{2} 40$

$2 N 2614$ \& 30 p \& $2 \mathrm{~N}+255$

$2 \mathrm{M}+284$

\hline
\end{tabular} $2 N 2646$ 2N4711 25p 2 N 4286 $\begin{array}{lll}2 N 2712 & 25 p \\ 2 N 2713 & 27 \mathrm{D} & 2 \mathrm{~N} 287 \\ 2 \mathrm{~N} 288\end{array}$

 2N2904A 25p 2N4291 12 p AFI16 $2 N 2905$ 25p
$2 N+29292$
$2 N 2905$ a 20 p

$2 \mathrm{~N}+294$ | $2 N 2905 A$ | $20 p$ | $2 N+194$ |
| :--- | :--- | :--- |
| $2 N 2906$ | $20 p$ | $2 N+303$ | $\begin{array}{lll}2 N 290+A \\ 2 N 2907 & 82 p & 2 N 4964 \\ 2 N 4965\end{array}$ 2N29：3 15 p 2N 2 NO 5 c $\begin{array}{lll}2 N 2925 & 150 \\ 2 N 5028 \\ 2 N & 29240 & 2 N 5029\end{array}$

 $\begin{array}{lll}2 \mathrm{~N} 29260 & 10 \mathrm{p} & 2 \mathrm{~N} 5172 \\ 2 \mathrm{~N} 2826 \mathrm{Y} & 10 \mathrm{D} & 2 \mathrm{~N} 5174\end{array}$ | $2 N 2926 Y$ | $10 p$ | $2 N 5174$ |
| :--- | :--- | :--- |
| $2 N 3011$ | $20 p$ | $2 N 015$ | 2N3014 38p 2N5176 2 N 3053 18p 2NB232A $2 \mathrm{~N}^{3054} 46 \mathrm{p} 2 \mathrm{~N}_{5} \mathrm{~s} 45$ $\begin{array}{llll}2 N 3055 & 60 \mathrm{D} & 2 \mathrm{NS} 246 & \text { 42p } \\ 2 \mathrm{~N} 3133 & 30 \mathrm{p} & 2 \mathrm{~N} 5249 & \end{array}$ $2 N 313 \mathrm{~J}$ 25p 2 N 336 25D．2N530世 40p ABY29

 2N3391A 30p 2N 5309 62p A8Y54

 \begin{tabular}{ll|ll|l}
2N3393 \& 15 p \& 2N5354 \& 27p \& A8Y86

2N3394 \& 15 p \& 2N3355 \& 27p \& A8Z21

$2 N 3402$ \& 29 \& $2 N 6356$ \& $32 p$ \& AUY10

2N 3403 \& $22 p$ \& $2 N 5365$ \& 47 p \& BC107

$2 N 3404$ \& $32 p$ \& $2 N 5366$ \& $32 p$ \& BC10A

$2 N 3405$ \& 450 \& $2 N 5367$ \& $57 p$ \& BC109

$2 \$ 3414$ \& $22 p$ \& $2 N B 457$ \& $30 p$ \& BC113
\end{tabular}

7 p	40322
9 D	4032

$\begin{array}{ll}\mathrm{D} & 4032 \\ 8 \mathrm{p} & 40326\end{array}$

12840349 187 p 4034. \begin{tabular}{l|l}
200 D \& 40347

23 \& 40348

 123 D 40348

20 p \& 40361

40382
\end{tabular} 308 p 4038 850.40406 50 p .30407 27 p 40.41 40467A

\section*{| 870 | AC176 |
| :--- | :--- |
| 20 D | ACl 187 |} $25 p$ AClRs $30 \mathrm{ACH17}$

 10 A
12 ACY 20
ACY 21 12 D
ACY22
ACY28 19p ACY28 15 p
15 ACY 40
ACY 41 18 D
ACY 44
AD 420
420 AD 149 170 AD150 17 D
17 AD 161
AD 162 17 D AF109 $17 p$ AFIIt
$17 p$ AFl15

$18 p$ AF118 | 18 D | AF117 |
| :--- | :--- |
| 15 D | AF゙18 | 7D AF121 18D AF125 18D AF126

32D AF127
67 p 67p AF139
47p
A8P 12 p AF180 12 p AF180
52 D
5 A 181 AF18G A $\mathrm{F}^{2} 239$ AF279 AF＇280 AFZ11
ABY 26 126
$\mathbf{Y} 27$ 25
30
24

24 | 30p | BF195 |
| :--- | :--- |
| 24p | BY19 |
| 27p | RY゙197 |

 45 D BF24 | 32 D | Br＇23 |
| :--- | :--- |
| 51 BP | |
| 15088 | | 150 p

10 p
10 p
10 p
10 D
10

 $\begin{array}{llll}\text { RFF } 12 & 22 \mathrm{D} & \text { NKT224 } & \text { 22p } \\ \text { BFX13 } & \text { 22p } & \text { NKT225 } & 29 \mathrm{p}\end{array}$ BFX13
BFX 29
 $\begin{array}{ll}\text { BFX37 } & 30 \mathrm{D} \\ \mathrm{NKT} & \mathrm{NK} 238 \\ \text { 25p }\end{array}$ BPX68
BFXP4 37 D
87 D
250 NKT240 $28 p$
NKT241
27p
NKT242
20p

Integrated	FJH111	70p	SN7437	64D
Circuits	FJH121	25D	8N7440	20p

FJH121
FJH131
FJH141 CA3000 180p FJH141

110 p	F
84 p	F
180 p	

IIJ-FI EQUIDPMENT

 SAYE UP 70 33*\% OR MORE SEND S.A.E. FOR. DISCOUNT PRICE LISTS AND PACKAGE OFFERS!
RECORD DECKS

 88 UA50tC129t C129† $1{ }^{10} 60$ 510
310
810 810
$\mathbf{M P} 80$ 4 PO TPD $\quad \mathbf{8 1 7 . 1 2}$ 110 TPDI 215.40 610 TPD 1

GARPARD

 2025 T/C 5.500° 58.50 gP2B III 210.4 8P25/G800 $514 \cdot 0$ BLE5B AP76 $^{\text {AP7/O800* }}$ 81.72 B 8L78B$8 L 96 B$ $8 L 96 B$
401 zERO 100A ERE0

EETVOD CEOB COLTUHICATIOR EEctivi
 rated apeaker and phone mocket. Operation teter. Carr. 80 p

Bolld state. Coverage on 5 bands 200-480 KHz and 66 to 20 MHz , Iluminsted alide True dia, ANL. ' B^{\prime} ' mater. AM/CW/B8B. Inte: $280 / 240 \mathrm{v}$ AC or 12 v DC. Stze $525 \times 268 \times 150$ ram. Complete whe Instructions and circalt.
 Riereo Cartridge \dagger All otber 50p eyrtride BECORD DECE PACLAGES Decke supplijed with cartridge in ready veneered plinth with Garrand 2025TC/STAHCD Gartard 8p25 111/9TAHCD Gartarn 8P25 $111 / \mathrm{G800}$ Oamrart 8F2 8 SP25 III/M44.7 Command AF2S III/MA4-E BP25 III/G800 (PLAy-on P\&C Gerrand AP76/G800
Clarrard AP7A/M76-6 Garrard AP76/MESE BSR MeDonald MPAO/ATE Goldring GLT2/CROO Goldring GL75/O800 Soldring olitioseos - Also svallable alth milver mela) plinth 41 extra Carriage 50p eny them

SINCLAIR EQUIPMENT

Prolect 60
Package
Package
ofiers.

000 iono

230 ampllier, atereo 60 pre-amp. PZ3 power supply. $815 . \%$ Carr, s7ip. Or with P26 power supply 81800 Carr. 371 p . 2×250 amplifer, atereo 60 pre-amp. P2 nupply. 200 -85. Cart. 7 7p. Add to any of the ahove A-45 for actlve alter unit and $818 \cdot 0$ for pair of Q18 apeakers. Project 60 FM Tuner 16-95. Car $2000 \mathrm{Amp} \mathrm{AP} \cdot 60$ Cast. $371 \mathrm{p} .: 3000 \mathrm{Amp}$ sto-95 Carr. 87 fp .: Neoterle Amp sis.0 Carr. 37 ip 1 CLI I - 80 p. © D. 10 p NEW PROJECT 606 - sed.e7. Carr. 57p.

LATEST CATALOGUE

Our new 6th edition sives full defalla of a comprehensive range of HI-FI RQUIP: MENT COMPONNENICATIONS EOUTP. MENT and COMMENICATIONSEQUIP:
 ValuE bop 272 peage.
fally trated and detalling thousende of SEND NOW ONLY 372 p
$P \& P$ $10 p$

NS-I600W STEREO AMPLIPIER Exceptional budet price
 on tr, AL allHand tranalistor. nutease. 8 witcher
eeparate balance, volume, treble, beat con

Model S-100TR MULTIMETER TRANSISTOR TESTER 100,000 O.P.V. MIRROR SCALE
OVERLOAD PROTECTION
$0 / 12 / 6 / 8 / 12 / 30 / 120 / 800$
$\mathrm{DC} .0 / 4 / 50 / 120 / 500 \mathrm{~V}$ AC. of $12 / 000 \mu \mathrm{~A} / 12$ / $200 \mathrm{MA} / 12$ AMP DC. O/10K/1 MRE/ 100 MRG . -20 to +80 db . 0.01 - 2 MPD. Trenistor teder meapures Alpha, Beta and Ico. Complete Whth betterisa, Instructions and leads. ne9.60. P. \& P.

7CA.e20 ADTOIGTIC

 VOLTAGETADILTEE
loput $88-125$ VAC. or
$176-250$ VAC. Output 120 V $176-250$ AC. Sutput 120 V
AC . or 240 VAC. 200 . reting. 811-97. carr. 50p.

BELCO AF-SA SOLID STATE SIME
SQUARE WAVE C.R. OSCILLATOR 8ine 18-200,000 Hz; Bquare $18-50,000 \mathrm{~Hz}$
 +10 dB
(10
K ohrs)
Opersition In.
ternal batheries
Atrmety Attractlva $\left\lvert\, \begin{array}{ll}\text { tone } & \text { cane } \\ \times & 8 \\ \text { Price } & \times \\ C\end{array}\right.$ Price 117.50
Carr. 17 iP .

TRAMSISTORISED LCR. A.C.

A new portable
bridge ofieringex. bridge ofieringex.
cellent range and
accuracy it jow cellent reage sow
scouracy it low
cont. Ranges: R. cont. Ranges: R.
$1 \Omega-11 \cdot 1 \mathrm{mes} \Omega$
f Ranges $\pm 1 \%$ HENRYP 6 Rangea $2-\% \mathrm{C} .10 \mathrm{pF} \pm 1110 \mathrm{mPd}$ 6 Rangea $\pm 2 \%$. TURNS RATIO $1: 1 / 1000-$ $1: 11100$. 6 Ranges $\pm 1 \%$. Bridge voltage at 1,000 cpe Operated from 9 volta. $100 \mu \mathrm{~A}$.

1 1 R.T. TESTER 0-00EV

 Completely seli contalaed witb bullinin voltmeter. Rasy to read, very accurate. robuit coantraction. An sine 360 mm long
 8tov/etor fytrins ifichionout GEARED MOTORS
 Bullt in gearbor. All brand new and boxed. 60 RPM CW . 30 RPH : $\mathrm{RW}: 2 \mathrm{R} / \mathrm{HR}$ CW: 30 RPHRW: $2 R / H R$ $A C W: ~ 2 R / H R ~ C W ; ~ 8 R / ~$ ACW: $2 R / H R$ CW; 8R/ DAY CW: 10 RPM CW: 20R/HR ACW.
 50 peach Post 12p.

 IDH \% HI-TI PEOMES loput $8-16 \Omega$. Frequency $20-19,000 \mathrm{~Hz}$ atervo ot mono fwlth, separale mono ewltch, separate rolume controls each ear. rolume controls cach ear. ploce. 518. P. \& P. 20p. HELICAL POTENTIOMETERS

P. \& P. 10p.

POWER RHEOSTATS

Hish quallty oeramie construntion. Windjagn embedded in Filtreous enamel. Heivy duty bruah wiper. shatin. Bulk quantitlea araliable.
ex Thtack. $10 / 25 / 60 / 100 / 250 / 500 / 1000 / 2500$ or 9000 obms, $90 \mathrm{p}, \mathrm{P}$. \& P. 7 P.
50 WATT, $10 / 25 / 60 / 100 / 250 / 500 / 1000 / 2500$ or 5000 ohms, $81 \cdot 16 \mathrm{P}$. \& P. 71 p
UYAMABISH1" VARIABLE VOLTAGE TRANSFORMERS

BH.001 HEAO SET AND BOOM SETICROPHONE Moving coll. Ideal fo language tomehing. com. munje tlons. Heedphon mp. is shma. Mero-

phone imp. 200 ohme

SPECIAL OFFERI SINCLAIR PROJECT 60 STEREO FM TUNER

(yichir

The Anst tuner in the world to ume the phame lock loop principle- used for receiving stgnala from space craft becouse of tia vastly - proved uignal to noine ratio. Provide tantastic results even in dincuil arens. Tuning range 87.5 to range $\pm 200 \mathrm{KHz}$. 8tgnol to nolse ratio: 65 dB . Output voltage $2 \times 150 \mathrm{mV}$. Oper. ating voltage $25-30 \mathrm{~V}$ DC. Bize $93 \times 40 \times$ 207 mm , REC. LIST PHICE $\$ 25$.
OUR PRICE 516.95 P. P. ONLT

$$
25 \mathrm{p}
$$

Cnrepedable offir -bmy mow and acero one tis

RPE14 REGULATED POWER SUPPLE Folld state. Variable output 0-24V DC ap to 1 amp . Dus acale meter to monttor

Input az20/240V
Slae 185
105 mm .
$85 x$
8.8 .97
P P. $\mathbb{P}, 23 \mathrm{p}$.

F8.1000B REGOLATED

POWRE BUPPLY
Bolid state. Output 6. or 12 voit DC up to amps. Neter to monitox current. Input $820 / 240$

LAPATETT: HA-400 SOLD 8TAT,
 150-100 coverage $\begin{array}{ll}150-400 \mathrm{ke} / \mathrm{s}, & 550 \\ \mathrm{tc} / \mathrm{s}-50 \mathrm{me} / \mathrm{a}, & \text { FET }\end{array}$ ke/s-s0me/a. PET
front end. 2 meeh. detector, product rable
B.F.O. nolse ll
 $9 t \times 82^{\prime \prime}$. 18 the. 220/240v. A.C. or 12v. D.C Brand new with intructions. 8 eo. Carr. sop

TIR-30 RECEIVEP
Bande covering $550 \mathrm{ke} / \mathrm{s}-30 \mathrm{me} / \mathrm{m}$. A.F.O. Bulli-In fpeaker 220/240v. A.C. Brand

AUTO TRANSFORMERS
$1118 / 230 \mathrm{~V}$. slep up ar atep down. Fally $0 / 115 / 230$
ehrouded

800 W
150 W
300 W
500 W
1000 W
1500 W
2250 W

 \& P .
-200B Panel Yountias
 Pleane and pontag 1 NPUT 230 V $50 / 60$ CYCLES OUTPUT VARIABLE 0-260 voLTs special discounta for quantity

everyday electronics

 PROJECTS ...

 PROJECTS ... THEORY.

 THEORY.}

VANISHING TRICK

The uninitiated might well be mystified as to how the private constructor obtains the circuit components and other special items he needs for his hobby. The sources of supply are certainly not all that apparent to an outsider.

Taking the country as a whole, outside the larger cities and certain towns it is rare indeed to find a shop dealing exclusively in electronic components. Nor do the numerous radio and television shops that grace every high street any longer offer that incidental service to the private constructor they, or their predecessors did, years ago.

MAIL ORDER

And yet in all, the turnover in electronic components and sundry items for private constructors has never been higher than at present. Likewise, the range and variety of parts offered to the individual has never been so extensive.

So what is the answer to this apparent paradox?
It is, quite simply, mail order. This method accounts for the greater bulk of business transacted in this area today.

AVAILABLE TO ALL

Mail order has considerable advantages to the individual purchaser. He can select from the retailers' advertisements or from their cata-
logues and lists, and order with confidence no matter what part of the country he resides in.

The system has certain snags, it has to be admitted. Occasional delays can cause irritation, and the need often to divide one's requirements among several suppliers can be a bit tiresome. But taking all into account the growth of the mail order retail business has been a great boon, especially to those living in the remote and less populated areas. No matter how isolated, they have the same extensive choice of components as constructors living in the large towns and cities.

UNDER THE BONNET

If the electronics industry had not invented the transistor, we feel sure the automobile industry would eventually have done so!
That ever available 12 volt battery is a prime mover in more senses than one. Since the arrival of the semiconductor it has been the inspiration for countless electronic gadgets.

This month we pamper the motorist yet again. We help him keep up appearances while touring or camping. It's a real face saver.

Our August issue will be published on Friday, July 21

ADVERTISEMENT MANAGER D. W. B. TILLEARD

[^1]
EASY TO CONSTRUCT SIMPLY EXPLAINED

VOL. I NO. 9JULY 1972
CONSTRUCTIONAL PROJECTS
SHAVER INVERTER Powers any mains electric razor from a car battery by C. J. Mills 470
ELECTRONOME An electronic metronome by F.C. Judd 479
HORSES FOR COURSES Genetic theory and a horse breeding and racing game by D.R. Daines 492
GENERAL FEATURES
EDITORIAL
THE ELECTRON MICROSCOPE Theory and application by B. V. Lamb468
please take note 478
SHOP TALK Your buying problems solved by Mike Kenward 483
GUIDE TO CIRCUIT SYMBOLS Part 2. Signal Waveforms; Connectors; Capacitors 484
TEACH-IN Port 9—Alternating current by Mike Hughes 486 498
RUMINATIONS by Sensor
RUMINATIONS by Sensor
THEY MADE THEIR MARK No. 3-Ampere by J.E. Gregory 501
READERS LETTERS Your news and views 502, 505 publishers are no longer able to supply pubishers of past issues. Nor will any back issues be available in the future.
Sorry about this-but to avoid possible disappointment we can only urge our readers to place a regular order with their normal supplier; or alternatively to take out an annual subscription (for details see foot of facing page).

SHAVER INDERTER

A 240 V a.c. supply for electric

 shavers from a 12 V car battery by C. J. MillsTHIS inverter has been specially designed to power any mains type electric razor from a 12 volt car battery. Many inverters provide a d.c. output and will only power a.c./d.c. type razors. Most of the vibrating type razors can only work on a suitable a.c. supply.

Using the design given, a razor can be used anywhere a 12 volt supply (normally a car battery) is available; such as when camping, caravanning or boating. The unit is thus ideal for anyone who enjoys the "outdoor life" during the summer months.

DESIGN

The main problem usually encountered in making a low frequency inverter to drive mains equipment from batteries is the design and construction of a special transformer to suit the power output required. For small inverters with outputs up to about 20 watts, standard mains transformers with a centre tapped secondary winding can be used in reverse, with a separate circuit to drive the power transistors.
The driving circuit must provide two output square waves in anti-phase such as is abtained from a multivibrator.

Fig. 1 Complete circuit diagram of the Shaver Inverter.

A unique type of multivibrator circuit developed by the author uses a unijunction because of its excellent frequency stability, in conjunction with two bipolar transistors as shown in the circuit diagram, Fig. 1.

CIRCUIT DESCRIPTION

The basic unijunction oscillator circuit will give a square wave output if a forward biased diode is connected in series with the capacitor.

Components....

Resistors

Semiconductors

TR1 OC28 germanium pnp (or OC29-see text)
TR2 2 N3704 silicon npn
TR3 TIS43 unijunction
TR4 2 N3704 silicon npn
TR5 OC28 germanium pnp (or OC29-see text)

Transformer
T1 240 V primary with: $16 \cdot 3 \mathrm{~V}, 0 \cdot 3 \mathrm{~A}$ centre tapped secondary (for 5 watts output) or $9 \mathrm{~V}-0-9 \mathrm{~V}$, 0.6 A secondary (for 10 watts output) or $6 \cdot 3 \mathrm{~V}-0-6 \cdot 3 \mathrm{~V}, 0.6 \mathrm{~A}$ secondary used with R10 in circuit (for 10 watts output)-see text for details and higher power types. In all cases the mains primary is used as the secondary winding in this circuit.

Miscellaneous

FS1 Fuse and holder (see text)
S1 S.p.s.t. toggle switch
LP1 Neon mains indicator lamp
SK1 Two pin mains line socket for connection to shaver, 6 way stand-off tag strip, mica washers and plastic insulation bushes for TR1 ard TR5, metal case $4 \frac{1}{2} \times 3 \frac{1}{2} \times 2$ inches, plain perforated Veroboard $2 \frac{1}{1} \times 2 \times 0.1$ inch matrix with Verapins to suit, grommets, wire, 4BA fixings and earth tags.

Fig. 2 Layout and wiring of components on the Veroboard.

In Fig. 1 the base, emitter diode of transistor TR4 is used and it is biased "on" by the base resistor R7. The collector is connected to a suitable resistor to provide one of the outputs. A second $n p n$ transistor, connected to the bl base of the unijunction as shown, gives an output in phase opposition to the first.

CIRCUIT ACTION

When the supply voltage is connected the capacitor charges up through the base emitter diode of TR4 and through the 15 kilohm timing resistor, R6, until the trigger voltage of the unijunction is reached. During this charging time TR4 is held on by the charging current.

When the unijunction fires, its emitter voltage drops due to the emitter to base bl current and this voltage drop is transferred to the base of TR4 by the capacitor, so that TR4 is turned off and the capacitor discharges through the TR4 bias resistor R7. At the same time the unijunction emitter, base bl current flowing through the base resistance produces a voltage which switches on TR2 which stays on until the capacitor has discharged sufficiently to allow TR4 to conduct.

At this point the unijunction and TR2 are switched off, the capacitor starts charging again and the cycle is repeated.

The outputs from the collectors of TR2 and TR4 are coupled to the power transistors which switch the supply voltage across each half of the transformer alternately.

OUTPUT POWER

Using a 16.3 volt centre tapped 0.3 amp filament transformer with a test load resistance of 12 kilohms an output voltage of about 250 volts (approximately 5 watts) is obtained with a 12 V d.c. input-alternatively, an 18 volt 0.6 amp transformer gives an output of 235 volts across 12 kilohms with an input voltage of 13 volts d.c.

For higher wattage outputs (up to 20 watts maximum for this design) a transformer with a 16 volt centre tapped secondary winding rated at 1 amp is required and the power transistors should be changed to OC 29 types.

Alternatively, if a $6 \cdot 3-0-6 \cdot 3$ volt transformer is more readily available it can be used with a 1 ohm 5 watt resistor (R10) in series with the centre tap as shown dotted in Fig. 1. If this resistor is not used a link is made in its place.

CONSTRUCTION

A medium sized die cast box measuring 2 x $31_{2} \times 41_{2}$ inches is a convenient form of case for the inverter and the power transistors can be mounted on the side to provide a heat sink, if they are suitably insulated by mica washers and plastic bushes.

The components of the driver circuit can be mounted on a piece of plain perforated Veroboard and connected up as shown in Fig. 2, using Veropins for support as shown. The layout is not critical but if it is similar to the circuit it makes checking easier.

The transistors should be soldered into circuit last and protected by using a heat shunt on each lead while soldering.

Wiring of the Veroboard to the remaining components is shown in Fig. 3. The wiring shown does not include R10 which is needed if a 6.3 V -$0-6 \cdot 3 \mathrm{~V}$ transformer is used. If R10 is used it is mounted as shown in Fig. 2 and the wire from T1 centre tap is connected to N1 not Hl .
The fuse used depends on the transformer and output power. For a 5 watt unit use a 1 amp fuse, 10 watt use a 2 amp , and for 20 watt use a 5 amp fuse.

The input and output leads are brought out through grommets and a mains neon (LP1) connected across the transformer secondary winding is used as an indicator (mains type neons usually incorporate a resistor as shown in Fig. 1). A small tag strip is added for connection of transformer leads and some of the components.

Continued on page 482

SHAVER INDERTER

done in the field of electron dynamics-that is, the study of electrons moving under the influence of an applied electric field. (A Cathode Ray tube is an example of applied electron dynamics.)

Electronics and vacuum techniques are vital too. E.M.s have been in use for several decades now but not until the early 1960s were some of the most exciting developments made.

TYPES OF E. M.

Two distinct types of E.M. exist. Both use electrons to bombard the sample. The first type is called the transmission electron microscope (T.E.M.) and this was the earliest E.M. design to appear.

The operation of the T.E.M. is similar to the light microscope in that it has lenses and apertures as has the optical instrument. The difference being of course, that the lenses on the T.E.M. are magnetic and they focus electrons.

The second type of E.M. is the scanning electron microscope (S.E.M.). This microscope is essentially like a closed television system in its working. Early S.E.M.s can be traced back to the 1930s and these were made in-house by universities and ambitious research organisations. It was not until the early 1960s that a commercial S.E.M. appeared.

Both the T.E.M. and the S.E.M. have their relative merits. The recent commercial availability of the S.E.M. although of great interest, has by no means replaced the T.E.M., indeed many laboratories have both instruments. After describing the working principles of these quite different microscopes, the advantages of each will be seen.

COST

Great Britain, Japan, Germany, Holland and the United States of America all produce front line instruments of exceptional specifications. As is to be expected, E.M.s are expensive and the rule "you get what you pay for" applies well here; $£ 5,000$ to $£ 250,000$ covers the whole range The very high prices include special attachments and unusually high voltage installations.

An average T.E.M. might cost $£ 25,000$ and an S.E.M. of high specification the same. Because of the skills required in operating an E.M. and in preparing samples, any electron microscope unit involves large capital expenditure and running costs.

HOW THE T. E. M. WORKS

The basic essentials of a T.E.M. are shown in Fig. 1. At the top of the microscope sits the electron gun-so called because it emits electrons continuously at very high velocity.

The electron gun consists of the tungsten filament, the shield and the anode. The anode

PHOTOGRAPMIC PLAIE

Fig. 1. Basic form of the transmission electron microscope. Additional optical accessories may be added to increase magnification.
is connected to earth as is the positive side of the high voltage supply. A negative bias (V_{b}) is maintained between the filament and the shield. When current is supplied to the filament so that it is raised to a high temperature and air is pumped from the system, electrons are accelerated towards the anode.

The shield, being negatively biased, causes the beam of electrons to converge so that a crossover image of the filament is formed in the anode aperture. In this way a beam of electrons is projected from the gun and is now able to be aimed down the microscope.

As soon as the electron beam leaves the electron gun it is already beginning to diverge. The condenser lens is used to focus the diverging beam onto the sample.

This magnetic lens consists of a number of turns of copper wire on an iron ring. By varying the current through the coil the focus can be adjusted. The condenser lens also has an aperture that behaves in a similar way to optical microscope apertures-an opening of between 0.1 and 0.3 mm is typical.

The object (specimen) is held in a special holder either in or near to the objective lens. The finely focused pencil like beam of electrons strikes the specimen; and because the specimen is very thin and the electrons are travelling with great velocity, most of the electrons pass through the specimen. Once into the objective lens the electrons pass through the objective lens aperture (10 to 50 microns diameter) and are again focused to an intermediate image lower down the electron column.

The Philips high-resolution transmission electron microscope (EM201). This instrument can attain a resolution of 7 angstroms.

PROJECTOR LENS

The final lens is the projector and this gives the great magnification that one may expect. This lens projects the electron beam onto a flat glass viewing screen. The viewing screen has a layer of phosphorescent material coated to it; electrons striking the phosphor screen cause it to glow.

Underneath the screen is a compartment to take photographic plates when a permanent
record is required. The operator sits and looks down on the viewing screen through a lead-glass shield. Sometimes external optical magnification is used to increase the image size even more. T.E.M.s can give useful magnifications up to 500,000 times and the best instruments claim to be able to resolve detail down to 2 Angstroms.

The electron microscopist talks in terms of angstroms and microns as the mechanical engineer speaks of the thou. ($1 / 1000$ inch). An idea of just how small an angstrom (\AA) is can be gathered by measuring the diameter of a human hair and expressing it in angstron units. A human hair is about 11_{2} thou. in diameter.
$1 \AA=10,000$ Microns (10^{10} Metre) and 1 thou.
$=25 \cdot 4$ microns. Therefore 11_{2} thou. $=25 \cdot 4 \times$
$1 \cdot 5 \times 10.000=380,000 \AA!!!$
Although the ability to resolve smaller and smaller in detail is the goal towards which the E.M. manufacturer constantly works, this extremely fine resolution presents the operator with many difficulties. An illustration will help in understanding a major problent.

If we look at an area on an Ordinance Survey map, although the area will be given in fine detail its relation to the rest of the map can only be understood by looking at the whole of the map in "coarse resolution". i.e. taking a broad view of surrounding landmarks etc. So it is with the E.M. operator. Great resolution without knowledge of the image in relation to the whole structure can be meaningless.

SAMPLE PREPARATION

As we have just seen by considering the basics of the T.E.M. the specimen must:-

1. Be cut thin, i.e. less than $1,000 \AA$ thick.
2. Be able to withstand a vacuum.
3. Be undamaged by electrons striking it.

Considering each of these points separately. A thin slice of the specimen is required so that

A $0.5 /$ m section of spinach chloroplasts at a magnification of 12000x, taken on the AEI, EM7 electron microscope.

most electrons will pass right through to form an image on the fluorescent screen. Actually, detail (contrast) in the sliced specimen is made apparent in the image•because some of the electrons are scattered in their journey through it.

All.atoms scatter electrons, the amount of scattering increases with atomic weight. As we shall see later, by staining the specimen with heavy atoms, a significant increase in contrast can be obtained.

The second requirement is that the specimen is able to stand up to a vacuum. When air is pumped from the electron column, gases and water vapour are rapidly sucked from the sample.

If a water-containing specimen such as a biological sample is subjected to vacuum it would quickly be rendered useless for viewing. Biological specimens are freeze-dried and are fixed in thin films and are then supported on grids of very thin wire. Micrographs are made through one mesh of the gauze.

Sample preparation requires skill and patience and is vital to producing meaningful images. To prepare some biological specimens can take two weeks from the time the sample arrives in its raw state to the moment it can be placed in the sample chamber of the T.E.M. Other samples of course, due to their inert make-up may be viewed with the minimum of preparation time.

REPLICAS

Sometimes it is necessary to produce a replica of the specimen. In this case the specimen surface is etched to produce relief and then the surface is plastic coated or metal is evaporated on. Carbon from an arc may also be used as the coating. The replica is then peeled off and introduced into the microscope sample chamber.

Fig. 2. Method of shadow casting using vaporised metal to provide greatly enhanced details.

As was discussed earlier, if the scattering of electrons in the sample is not sufficient to disclose fine detail (contrast in the image) then the specimen can be stained with a heavy metal. Osmium, atomic number 76, is frequently used.

Another methad for showing up fine detail is known as shadow casting. This is achieved by vapourising metal onto the sample at a glancing angle. Metal piles $u p$ on the near side of undulations (see Fig. 2), and when the electron beam strikes the sample, greatly enhanced details are evident.

Fig. 3. Basis of the scanning electron microscope. Photograms of the screen can be taken using a special camera.

SCANNING ELECTRON MICROSCOPE

The S.E.M. is essentially a closed circuit T.V. system with refinements (see Fig. 3). Again there is the electron gun emitting electrons at high velocity, and magnetic lenses to focus and magnify. Also aperture plates to sharpen the image are present, just as in the T.E.M.

The inclusion of the deflection yoke and its associated circuitry marks the distinction of the S.E.M. from the T.E.M. The deflection yoke is powered by an a.c. waveform that causes the fine beam of electrons to scan across the sample in a regular way. (The a.c. waveform powering the deflection coil is also coupled to the T.V. monitor. This causes a raster on the T.V. tube.)

This very fine beam of electrons covering an

The Cambridge Scientific Instruments Stereoscan S4. This is the latest scanning electron microscope from this company.
adjustable area of the sample causes secondary electrons to be emitted which in turn are collected by a secondary electron detector. The secondary electron detector is a device which converts electrons into photons of light which in turn are collected by a photomultiplier. The electrical output from the detector is connected to the T.V. monitor so that the spot causing the raster is modulated with information relative to the specimen surface.

Again, as in the T.E.M. the viewing screen can cither be watched by the operator or photographed for a permanent record. Useful magnifications up to 50,000 times can be achieved in the S.E.M. The electron bean energy can vary from as little as 1 kV to 50 kV .

ADVANTAGES

The main attraction of the S.E.M. is in its ability to produce a three dimensional image of the specimen surface. Great depth of field is also achieved. The reason for these features is that the electron beam striking the surface resembles a fine sharp pin which is able to probe into the irregularities of the specimen. Unlike the T.E.M. the picture is formed by electrons emerging from the surface of the sample.
Although the T.E.M. has good depth of field, the usable depth is limited because the specimen has to be very thin.
In the S.E.M. sample size is only limited by sample chamber considerations. Because sample slices are not required for the S.E.M. preparation time is dramatically lowered. Preparation for electrically conducting specimens consists of fixing them to the moveable specimen stage with a conducting glue. Biological samples and others that are not conductors need to be made conducting by evaporating a thin film of gold onto them. Coating thicknesses fall in the 10 to 100 's
of angstrom region. As with the T.EM., biological specimens require fixing and drying.

Over the past few years many photographs of sample images produced in the S.E.M. have been published. Many of these excite the imagination as the microscopical region of such objects as the wing of a butterfly or the detail of a nerve cell is revealed in three dimensions.
Key performance characteristics of both the T.E.M. and the S.E.M. will continue to improve as manufacturers strive to meet the demands of modern technology
The AEI, EM7 million volt electron microscope installed at the United Kingdom Atomic Energy Authority at Harwell.

Bee Counter circuit description-see Readers Letters page.
Potentiometer VRI in the Demo Deck is 100Ω not 300Ω as mentioned last month.
Wash Wipe control second paragraph page 441, the emitter wire of TR 3 should be soldered to $\mathbf{J 2}$, not the collector wire as stated.

ElECTRONOME

A simple design giving a performance similar to that of a mechanical metronome.

by F. C. Judd

ASIDE from being a simple exercise in alectronics, the Electronome has a real application in music practice, for it produces a sound very like that made by a mechanical metronome and covers the same tempo range of approxmately 40 to 225 beats per minute
'The resonant click is loud enough for music: practice with piano, guitar, electronic organ and other musical instruments and the tempo rate is continuously variable.

Few components are required and almost any 3 to 5 ohm loudspeaker can be used for reproducing the sound

CIRCUIT DESCRIPTION

The circuit as shown in Fig 1 is quito simple aredemploys only two Hallsistors which all conneradede form a multivibrator type simlator. ice. wavcorof signal dimer amplitude

The futpul 10 tho Iotremeker is taker from TR2 elector via a lares (aparetedon! as the toadiof cole of rho square-wave is veramed and of 1 ge amplitude a quite substantial sparta ta curfent is driver through the veers low inn- te re --

Fig. 1. Complete circuit diagram of the Electronome
pedance speaker coil. The speaker, therefore, responds only once, i.e., to the leading edge of the square-wave and thus produces a single loud click.

The same effect would be produced by momentarily connecting a 9 V battery straight across the speaker coil. The multivibrator is in effect doing this repeatedly the repetition rate being variable by means of the tempo control VR1.

CONSTRUCTION

The prototype shown in the photograph is housed in a small box made of I_{8} inch hardboard with joins at sides, top and bottom strengthened with ${ }^{1} 2$ inch by ${ }^{1} 2$ inch batten, or small blocks of wood. The front panel aperture for the speaker may be covered with any loose weave material. The tempo control VR1 and the on/off Sl switch are mounted on the front panel of the case.

The components for the oscillator are mounted on a piece of plain perforated circuit board 31_{2} inches by $2{ }_{2}{ }_{2}$ inches, as shown in Fig. 2, supported on a ${ }_{8}$ by ${ }^{3}{ }_{8}$ inch piece of aluminium angle ${ }^{31}{ }_{2}$ inches long. The circuit board is attached inside the box by the aluminium angle.

The component layout and wiring on the board are shown in Fig. 2.

COMPONENT MOUNTING

Commence construction of the circuit board by attaching the positive and negative rails to the underside of the component board. These wires can be 16 or 18 s.w.g. tinned copper wire and they are attached by placing each end through the indicated holes and bending them over on top of the board. The components are mounted by their leads and soldered to the two rails or to each other as indicated in Fig. 2.
Mount all the components except the two transistors, check the layout and wiring with particular reference to the capacitor and battery polarities and, when satisfied that all is correct, mount the transistors.

Use a heat sink on each transistor lead, while it is being soldered, thus preventing the transistor from being overheated. Mount the transistors so that the spot (collector) is toward the negative rail. Connections for the ACl 28 transistors are also shown in Fig. 2.

The circuit can be checked out before assembly into the case by connecting up VR1 (tempo control), the loudspeaker and battery as shown in Fig. 3. A clearly defined repetitive click should be produced which, with VRI at zero resistance, should be approximately 225 beats per minute and approximately 40 beats per minute at maximum resistance.

SCALE

Insert all the components in the case and mount the battery using a clip or an elastic band. A scale can be made up similar to that shown in Fig. 4 and calibrated by counting the clicks of the Electronome over a 15 second period.

If the clicks are counted in tens it is just possible to count at a rate of 225 per minute. It should be emphasised that Fig. 4 is given as a guide only and should not be used as the actual scale.

A back cover for the box, which can be made from hardboard, will complete assembly but if the box is to be painted or covered in fabric do this before mounting the speaker and controls.

Components....
 Resistors
 R1 680,
 R2 22ks2
 R3 15ks!
 SHOP SAIK
 R4 680!
 All $\frac{1}{2}$ W : 10% carbon

Capacitors
C1 $10,1 \mathrm{~F}$ elect. 12 V
C2 $10, " F$ elect. 12 V
C3 $250, / \mathrm{F}$ elect. 12 V
Variable Resistor
VR1 250k!! log. carbon
Transistors
TR1 AC128 germanium pno
TR2 AC128 germanium pno

Miscellaneous

S1 s.p.s.t. toggle or slide switch
LS1 3 to 5s! moving coil loudspeaker approximately 3 to 5 in . diameter
B1 PP9, 9V battery and connector
Pointer knob, Veroboard-plain perforated $3 \frac{1}{2} \times 2 \frac{1}{2} \times 0.15$ inch matrix, aluminium angle $3 \frac{1}{2} \times \frac{\frac{1}{8}}{x \frac{1}{8}}$ inches, wire, materials for case and dial, speaker grill material.

ELECTRONOME

Fig. 3. Layout and wiring of the complete Electronome. The circuit board is shown removed for clarity.

Fig. 4. A suggested design for the scale for VR1. The markings are given as a guide only.

Fig. 2: Layout and wiring of the components mounted on the Veroboard

The battery should be an Eveready type PP9 for long life as the current consumption is 12 to 15 mA . If the box is made to about the size given there will be plenty of room for the circuit board, speaker and a PP9 battery. The complete unit could, together with a small speaker, be housed in a smaller case should this be desired.

Continued from page 472

TESTS AND ADJUSTMENTS

When the driving unit (the circuit mounted on the Veroboard-see Fig. 1) is completed it should be tested before connecting it to the power transistors and the transformer. Connect the circuit to a 12 volt supply observing polarity and measure the d.c. collector voltage (voltage between collector and positive line) of TR2 and TR4. They should read approximately half the supply voltage if the unit is operating correctly.

Any difference in the collector voltages will indicate an unequal mark to space ratio which can be corrected by adjustment of R6 or R7. If the collector voltage of.TR4 is below 1 volt and TR2 is above 11 volts the unit is not oscillating. This may be due to the spread of the unijunction characteristics and R6 and/or R7 should be adjusted until oscillation is obtained.

The resistors should be adjusted alternately in each direction and finally trimmed in small steps, to give approximately equal collector voltage readings. If an oscilloscope is available it is easy to see the effect of any adjustments and to trim the components $\mathrm{R} 6, \mathrm{R} 7$ and Cl for the correct wave shape and frequency.

The frequency of the complete unit is not critical if the shaver works satisfactorily.

WARNING

Although powered from a 12 V supply the output of this inverter is high enough to deliver a very unpleasant shock.
Under certain circumstances the output from the unit could be very dangerous indeed and should be treated with the respect afforded to any mains supply.

BEfore we discuss buying problems this month we will try and clear up a few points of general interest that many readers seem to be unaware of. Firstly let us make it quite clear once again-we do not supply components in any shape or form.

The only thing we sell is this magazine, providing designs for which the necessary parts may be purchased from firms advertising in our pages or any other components retailer.

The approximate cost of components is not a price for the components available from any one shop, it is an approximate cost arrived at by us by selecting components from a number of suppliers, catalogues. It is not necessarily the cheapest price and it is quite definitely not the most expensive, it is published for your guidance only.
Many readers have written to us saying that they have paid $£ 5$ or $£ 6$ for components that we estimated would cost about $£ 2$; well this is quite possible. We point out that if you are cost conscious then look around before buying.

Letters

A second point that we would like to bring to your attention is the situation concerning readers letters. Although we have published notices stating that readers must enclose a stamped addressed envelope and that we can only answer letters concerning
published articles, (there is such a notice on the Readers Letters page) we are still receiving many letters with no s.a.e or letters requiring information or designs that, due to lack of time and, in some cases, information we are simply unable to answer.

As you can imagine we receive quite a few letters every day and unfortunately those with no s.a.e. or those requiring information we are unable to supply tend to be put at the bottom of the pile.
We cannot claim to answer letters by return of post but, provided you do as we request we will do our best to supply a satisfactory reply. If you feel like voicing your views-good or bad -on any electronic or associated subject we are always pleased to receive them and, if they are worthwhile, we may well publish your letter. Your criticisms are, in many cases, more useful than praise; so don't be frightened to put pen to paper.

Problems

Now to try and deal with some of the problems. We have had a number of reader's asking where the universal chassis parts that we have specified for some projects are available, the answer is Home Radio Componentṣ Ltd., who advertise their catalogue in our pages regularly.

Electronome

No buying problems for the Electronome but it may well be worth while to find a secondhand speaker from a radio or T.V. Since the sound quality is not an important factor in this design any speaker of the right impedence will be suitable and exequipment speakers are much cheaper than new ones.

Shaver Inverter

Few buying problems for the Shaver Inverter but do read the text and find out exactly what you need for the power output you require. Also note that depending on the transformer you use, you may or may not require resistor Rl0 which is a 1 ohm 5 watt wirewound type.
When buying the neon make sure it is a mains type incorporating a series resistor as there are others available. Please take note of the warning given at the end
of this article. Although this unit is powered from a battery it provides mains output.

Horses for Courses

The switches used in Horses for Courses are a compromise on what is lactually required. The unit only needs one three-pole four-way switch, one three-pole three-way switch and one singlepole three-way switch. However, since these types are not all available, two three-pole four-way switches and one single-pole 12way switch were used in the prototype; these are all wafer switches of the break before make type. Only the required poles or switch positions being used, the others being left unconnected. The chance switch must be capable of being modified as shown in the text, so check this before buying.

This is one project where a number of different colour wires are very useful when wiring up. One way to get these without buying a vast number of coils of wire is to buy a length of multicore wire and strip the outer insulation off, leaving the coloured inner wires.

The only other point to watch when buying for this project is the type and size of the chance knob. This knob should have no markings or pointers of any kind and be as heavy as possible so that it acts as a flywheel.

Supplier

This month's news item on the supply front is from Zeta Windings Limited who have supplied us with a 17 -page catalogue listing many types of T.V. line output transformers, resistors, capacitors, cathode ray tubes and semiconductors plus a few other items. The main facility offered by this firm is its ability to manufacture transformers of any type to individual requirements for readers or authors. They operate a rewind and 1 off prototype service that takes about 3 to 5 days. The firm's facilities are available through the following addresses:
For callers only-Zeta. Windings Ltd., 26 All Saints Road, London, W. 11.
For mail order and callersTidman Mail Order, 236 Sandycombe Road, Richmond; or H. L. Smith Ltd., Edgware Road, London, W.2.

(1) gu

\sim
Ω

Alternating current or voltage

Sawtooth waveform

-Wr

2

M
Positive going pulse

Connectors

Coaxial plug

5

8,9

symbols . . part 2

12

Fuse link, general symbol

Three pole concentric plug and jack

Three pole concentric plug and break jack

Polarized electrolytic capacitor

Fixed value capacitor (polarized if + sign added)

Non-polarized electrolytic capacitor

Variable capacitor

Capacitor with pre-set adjustment (trimmer)

N EARLY everything we have come across so far has concerned voltages which, although varying in magnitude, have stayed of the same polarity relative to a reference line (usually called the common or ground line). The reason for this is that all the experiments to date have been carried out with a battery, one terminal of which has been connected to this common line.

Because of this we have been able to limit our thoughts to current always passing through components in one direction (or not at all). All the experiments have been of the direct current or d.c. type. Last month, however, we did see that it was possible to get negative voltages generated even though we were working with a positive supply.

REFERENCE LINE
This is where we have to be very careful about defining the reference line, when circuits are being described, because potentials can often be positive or negative in a given circuit.

In the multivibrator last month, the potential at the collector of TR2 varied from approximately zero to +9 V relative to the line common to the emitters; we measured this because we connected the negative terminal of our meter to the common rail.

We could have connected the positive terminal of the voltmeter to the positive rail and measured changes of collector potential with the negative terminal of the meter; we could have said that the potential varied from zero to about -9 V relative to the positive rail.

Both of these measurements mean exactly the same and the important thing to grasp is that voltages always have to be related to a reference.

In the absence of a stated reference it is usual to assume that voltages are relative to the common line that is running (on the theoretical circuit drawing) right through the system as an unbroken straight line. Generally speaking this can be recognised as the line to which emitters of transistors are connected (sometimes through resistors).

This is not always the case and another way of recognising the reference line is to ascertain whether pnp or $n p n$ transistors predominate.

If $n p n$-as is usually the case these days-the negative terminal of the power supply or battery can be taken as the common point and viceversa for $p n p$ transistors.

ALTERNATING CURRENT
Referring to the slow running multivibrator (last month's Teach-In) try measuring the potential of TR2 collector relative to +4.5 V . See Fig. 1(a).

Do this by using VR1 (100 ohm) on the Demo Deck as a potential divider across the battery. Set its wiper to provide a potential of $+4 \cdot 5 \mathrm{~V}$ and connect the negative terminal of your voltmeter to it and the positive terminal to the collector of TR2. Now see what voltages you read as the circuit oscillates.

You should see about $+4 \cdot 5 \mathrm{~V}$ for positive half cycles and the meter will try to read backwards for negative half cycles. See Fig. 1(b). Reverse

Fig. 1(a) (above). Measurement of the output voltage from the multivibrator of last month, about a d.c. level of +4.5 V .

Fig. 1(b) (below). Voltage levels with respect to tim:e observed on the voltmeter.

the meter connections and you will see that the voltages fluctuate from about +4.5 V to -4.5 V about our new reference point. We say that the voltage is alternating and the current flowing through the meter is alternating current (a.c.).

We say that the voltage is alternating with an amplitude of 4.5 V about the d.c. level of +4.5 V . Again this means exactly the same as the other two methods of measuring we have mentioned.

ALTERNATOR

We very often come across voltages that alternate about a common line, e.g. from record player pick-ups and microphones, but perhaps the most common is the a.c. mains fed to our homes.

Mains is generated at the power station by an alternator which in its simple form is a coil of wire rotating between the poles of a magnet. See Fig. 2.

Fig. 2. Schematic diagram of an alternator.

When the axis of the coil is in line with the pole pieces, no voltage is generated but as the coil turns the e.m.f. between the wires coming from the slip-ring contacts increases until it reaches a maximum (peak) when the coil's axis is at right-angles to the pole pieces; it then starts to fall towards zero as the coil rotates towards 180 degrees of rotation (i.e. its axis is in line with the poles again but its direction is reversed). Fig. 3(a) (b) and (c).
(a)

(b)

Fig. 3. Shows how one complete "sine wave" is generated from one complete revolution of the coil. The waveform is measured in terms of voltage on line B relative to line A.

Continuing its rotation the e.m.f. will rise again but with opposite polarity and after passing the 270 degree point will fall back to zero as 360 degrees of rotation is reached. Fig. 3(d) and (e).

If we consider the line " A " of Fig. 2 as the common (or neutral) the potential on the other will vary smoothly from zero through maximum positive, back through zero to maximum negative and back to zero.

SINE WAVE

If the coil turns at a constant rate, the waveform of the voltage produced is called a "sine wave" (because the voltage produced at any point of the coil rotation is equal to the maximum positive voltage, multiplied by the sine of the angle of rotation).

One cycle of the sine wave is equal to one complete turn of the coil, hence the number of revolutions of the coil per second sets the frequency, see Fig. 4.

In electronics you will find sine waves appearing very frequently because they are the most pure and simple waves that exist.

Because they are associated with circular movement, formulae based on sine wave theory frequently incorporate the term 2π which is merely another way of expressing angle of rotation.

Fig. 4. A continuous sine wave. The discrete points marked can be considered in degrees or radians of rotation-or time if the frequency is known. Time is given for a 50 Hz wave.

When the coil turns through 360 degrees (1 complete revolution) we say it has passed through 2π radians (where π (pi) is a constant equal to $3 \cdot 142$). You will see this expression used later on in the series.

TRANSFORMERS

One of the greatest attractions of alternating current is that it can be used in conjunction with a transformer to change voltage levels (both up and down) with insignificant loss of power.

A transformer consists of two coils of wire on a core of soft iron. This is shown by the circuit symbol in Fig. 5 together with some common types of transformer.

One of the coils on the transformer is called the "primary", which normally consists of many thousands of turns (for mains inputs) and the other, which is on the same core but electrically insulated from the primary, is called the "secondary".
The ratio of the turns between the primary and secondary controls the amount of voltage transformation in direction proportion.

On the Friedland transformer which we will be using in our experiments, there are three alternative secondary outputs: 3,5 and 8 V . In the case of the 8 V output, the turns ratio would be about 8 on the secondary for every 230 on the primary.

If we pass a current through the primary we will magnetise the core, and the change in magnetisation will induce an e.m.f. across the secondary, the magnitude of this e.m.f. being proportional to the turns ratio. This e.m.f. will only be induced while the magnetic field is being changed by the primary current.

Thus, if we pass a direct current into the primary and keep it flowing, we will only get a brief e.m.f. produced in the secondary while the initial magnetisation takes place. When we stop the primary current, the magnetisation will die away fairly quickly (if the transformer is a good one) and this change of field in the opposite direction will induce another brief voltage pulse of opposite polarity.

You can see this using a 9 V battery and the 1 mA meter of the Demo Deck, Fig. 6.

Connect the 1 mA meter directly across the 8 V output of the transformer and then connect the battery across the primary (mains input terminals). If you watch the meter you will see a short "kick" (the direction depending on which way round you connect the battery). Break the primary circuit and you will see the meter needle "kick" in the opposite direction.

The movement will be so fast that you will not be able to make any actual measurement

(d)

Fig. 5. (a) Ordinary mains / low voltage tapped transformer.(b) Friedland Bell transformer-used in this months experiments. (c) Heavy duty mains type, three secondary windings, HT (500 V) and heaters (6.3 V). (d) Circuit symbol for an iron cored transformer.

Fig. 6. Circuit diagram for showing current will only flow in the secondary when a change of current occurs in the primary.
but you will see the effect. After doing the experiment once, you might notice a reduction in pulse amplitude if you repeat the experiment; this is caused by residual magnetism held within the core (it does not demagnetise itself completely when you stop the current, hence the change in magnetisation will not be so great the next time you do it). To overcome this, reverse the battery connections between each experiment.

While a direct current in the primary will not cause a continuous current to flow in the secondary, variations in the primary will produce variations in the secondary voltage. This is very similar to the effect we had with capacitors where changes in potential on one plate caused changes on the other although continuous d.c. produced no change after the initial reaction.
Alternating voltages when applied to a circuit will cause current to flow in alternate directions. If we apply a.c. mains to the 230 V input of our transformer, the current, and hence the magnetisation, will be constantly changing direction at the mains frequency- 50 Hz (50 complete sine wave cycles per second). This induces a 50 Hz sine wave across the secondary winding but at a lower voltage.

POWER IN EQUALS POWER OUT

An important fact about this type of transformation is that, by and large, the power put into a transformer equals the power taken out (there are certain losses caused by core magnetisation but these are negligible and will be ignored at present). For example a medium voltage input at medium current will enable a secondary to give either a higher voltage at lower current or a lower voltage at higher cur-rent-depending on the turns ratio, see Fig. 7.

Power-wise you never get more out than you put in!

We are going to do some simple experiments using alternating current but first let's see how we can measure alternating voltages.

Fig. 7. This circuit symbol signifies a mains transformer with two secondary windings, the output voltages of which are shown.

A.C. MEASUREMENT

First just try and measure the 8 V output of the transformer when its primary is connected to the mains. Remember to take great care that you do not touch any connections on the primary side -it is quite safe to handle the secondary.

Make a simple 10 V voltmeter with a 10 kilohm resistor and the 1 mA meter and connect it across the transformer's secondary terminals, Fig. 8.

Fig. 8. The voltmeter will read zero volts because the meter settles at the average level.

You should read zero volts which you might think rather strange. It is not so strange if you realise that the needle is trying to swing up in a positive direction then back towards negative 50 times a second-it is physically impossible for it to move this fast. Instead it will settle down and register the average voitage, which is zero. Had you done this on the collector of TR2 of the 700 Hz multivibrator (last month) you would again have read the average value but that would have been +4.5 V .

In the case of a square wave of unity mark space ratio oscillating between zero and +9 V , the peak voltage could be ascertained simply by doubling the average, but in the case of a sine wave alternating to equal amplitudes in both positive and negative directions, this is not possible.

half-WAVE RECTIFICATION

We can however prevent negative current flowing through the meter by incorporating a diode see Fig. 9. This is called "half wave rectification." Now only positive half cycles will affect the meter and we shall get a reading that is a form of average between zero and the peak of the positive half cycle but obviously it is not a simple average and the response of the meter movement will still play an important role in our measurement.

R.M.S.

Whatever happens, we are never going to be able to measure peak voltage using a moving coil meter. Meters designed for measuring alternating current work on the basis of measuring a special type of average level; this level is called the root mean square value (r.m.s.) for the sine wave in question (and is indicated in Fig. 10). This value is the peak value divided by $\sqrt{ } 2$ (square root of 2).

Fig. 9. After half-wave rectification the meter will display a reading of between zero and Vpeak.

Fig. 10. A sine wave showing relative positions of $V_{\text {peak }}$ and $V_{\text {rms. }}$.

Conversely if we know our meter is calibrated in terms of r.m.s. values we can calculate the peak voltage by multiplying the r.m.s. value by $\checkmark 2$. (The square root of 2 is approximately 1-414.)

$$
\text { Thus } V_{\text {peah }}-V_{\text {rms }} \times V^{\prime 2} \text { or } V_{\text {rms }}=\frac{V_{\text {peak }}}{V^{\prime 2}}
$$

Unless otherwise stated always assume that the outputs of transformers are given in r.m.s. values. A mains voltage stated as 240 V a.c. is an r.m.s. valuc; this means that on positive and negative peaks the sine wave will reach +340 and -340 V respectively (this is why you should always use at least 400 V rated components in mains circuits!). The output of our transformer is 8 V r.m.s. therefore its peaks will be +11.2 V and $-11 \cdot 2 \mathrm{~V}$.

A.C. VOLTMETER

You could experiment with series resistors, the 1 mA meter and the single diode to make a simple 10 V r.m.s. full scale a.c. voltmeter. You
will find that the series resistor will have to br less than 10 kilohm-probably $5 \cdot 6$ kilohm, bul this will depend on the mechanical response ol your meter. For the following experiments you would be well advised to use a high resistance voltmeter already calibrated for a.c. working.

DC POWER SUPPLY

We can use the components we have availabl. to make a simple battery eliminator. This mean: we can use the mains to produce a low d.c. voltage that could be used to power simple transistor experiments-see circuit in Fig. 11. All we do is turn our transformed a.c. into a half wave rectified signal-which could be called an intermittant d.c. voltage. This is then fed to a large capacitor C 1 , which smooths out the ripples-rather like the diode pump rircuit (Teach-In Part 6).

Fig. 11. Simple half-wave rectified power supply. The output voltage will vary, depending on the load, being at peak value for zero load.

Provided the current we draw from the capacitor is very much less than the charging up current, there should not be too much residual ripple caused by the half-wave rectified a.c.

The interesting thing about this circuit is that even though you use an 8 V output transformer the d.c. voltage you obtain across the capacitor will be higher (between 10 V and the peak of $11 \cdot 2 \mathrm{~V}$). The actual value will depend on the amount of current you draw.

FULL WAVE RECTIFICATION

With half-wave rectification you do not use the full amount of energy available, because the negative half cycles are not used. We can carry out a process called full-wave rectification which in effect changes the negative going excursions of the a.c. waveform to positive going signals. These fill the "gaps" between the half wave rectified signals (see Fig. 9). In Fig. 12(a) the diodes are in a circuit called a "diode bridge."

When the potential of line " A " is postive with respect to line " B " (i.e. positive half cycles) current will flow through D2 and D3 which are forward biassed, but both D1 and D4 will be reverse biassed, thus the positive half cycle will charge the capacitor. During the negative half cycle (i.e. line " B " is now positive with respect to line "A") D4 and D1 will be forward biassed hence charging the capacitor; D2 and D3 will be reverse biassed-preventing a short circuit across the transformer secondary.

Fig. 12(a) (above). Circuit for demonstrating the principle of full-wave rectification.
Fig. 12(b) (below). Full-wave rectified sine wave.

The ripple will now be a signal having a frequency of 100 Hz (see Fig. 12(b)) which can be more effectively smoothed by the capacitor, and since more total energy is being fed to the capacitor more current can be drawn out before the ripple increases to an objectionable level.

COMPONENTS

If you make these circuits we suggest you use 1 amp diodes such as the 1 N 4004 and $500 \mu \mathrm{~F} 25 \mathrm{~V}$ working smoothing capacitor for voltage measurement experiments; however if you want to make a good d.c. supply you should use the bridge circuit with a capacitor of about 5,000 $!\mathrm{F}$ at 25 V working.

Next month: Reactance and Inductance
Additional components required for next months experiments are: resistors, 100 kilohm (1 off); capacitors, $0.22 \mu \mathrm{~F}$ polyester (l off); Ferrite rod, 6 inches long a inch diameter: 28 swg enamelled copper wire (2 oz.); 60/70V neon bulb without built in resistor.

Build your own weather station with an indoor monitor. This basic design monitors temperature, ambient light level, wind strength and direction, and incorporates a rain warning alarm.

Through the lens light meter.

A simple but ingenious design of light meter for single lens reflex cameras. Ensures good results whatever lens is used.

Drill speed control.

Provides continuously variable speed control without the loss of too much power. For all mains type electric drills.

All in the

August issue of

491

No radio listener or TV viewer on Saturday afternoons can fail to notice the emphasis on, and the interest in, the pedigree of racehorses. The same interest is shown at Cruft's, in the market garden and even the maternity home!

Now although the genetics of breeding is based upon very simple rules, chance also plays a very important part and the project to be described has been designed as a perfect demonstration of the theory of genetics known as Mendelism.

It should appeal immensely to teachers of genetics, zoology, biology or mathematics. For other readers the very simple unit may be used in conjunction with some paper "stage" money to produce a fascinating table-top game suitable for all the family in which horses are bred and raced

MENDEL

Father Greggor Mendel (1822-1884) was a German monk who based his theory of genetics upon a study of the edible pea over a consider-

able number of years. It is possible that he had a general theorem to start with and proved it by his observations.

He published his findings in 1866 but they aroused little interest. Sixteen years after his death however, his work was revived and tested independently and simultaneously by three researchers, and Mendel became famous. His work is the foundation of all modern genetics
Mendel proved that every inborn characteristic is the result of an equal contribution from the mother and father. These contributions he called "gamenes."
Let us assume that a certain species of moth has either a green, blue or yellow wing colour. The blue moth has two blue gamenes, the yellow moth has two yellow gamenes, while the green moth has one blue gamene and one yellow gamene.

If a blue moth mates with another blue moth, the offspring must all be blue, since neither parent can contribute a yellow gamene. Similarly for two yellow parents, only a yellow strain can be produced.

If however a blue/yellow mating occurs, the only possible offspring is green. There is no possibility of a yellow or blue strain since only one gamene is donated by each parent. With reference to Fig. 1(a) we can see that there is no chance of a blue, two chances of a green and no chances of a yellow.
If we let " 0 " represent blue, " 1 " green and " 2 " yellow, then the chance ratio of offspring from a blue/yellow mating is seen to be no " 0 ", two " 1 " and no " 2 ".
It can be seen from Fig. 1(b) that a blue/green

A device to explain simple genetics which can also be used to play an interesting horse breeding and . racing game.

By D. R. DAINES

Fig. 1. Schematic diagram of the mating of moths of different wing colour. Offspring are shown shaded.
mating produces either two green or two blue offspring-no pure yellow since a yellow gamene is only evident in one of the parents. The ratio here is two " 0 ", two " 1 " and no " 2 ".

A green/green mating is shown in Fig. l(c). Here it is possible to obtain one blue strain, two greens and one yellow, i.e. one " 0 ", two " 1 " and one " 2 ".

CHANCE

So far we have dealt with moths, where great numbers of offspring occur at each mating. What happens with animals, where there is usually only one or twc progeny such as horses.

Here we can say that, over a large number of matings, and a large number of progeny, the same two parents will tend towards the above ratios.

It is clear where the chance factor lies. If a coin is spun, it may come down heads or tails. If it comes down heads it can't be said that it will come down tails next time, nor is it more likely to. It still remains an even chance.

All that can be said is that over a large number of throws, the number of heads will tend to equal the number of tails. Similarly with genetics. The chances are known but cannot be forecast.

HORSES

With the moths mentioned above, " 0 ", " 1 " and " 2 " represented wing colours-blue, green, and yellow respectively.

If we now let " 0 ", " 1 " and " 2 " represent the total absence of a trait, a weak trait, and a
strong trait respectively, we can apply this simple theory of genetics to horse breeding.

If we assume we are dealing with one of the many characteristics (traits) of horses, such as stamina, speed, action etc. then the degree of the trait (trait factor) present can be represented by " 0 ", " 1 " or " 2 ".

If, for example, the factor of a particular trait in the sire is " 1 " and that the same trait in the dam is " 2 ", then there are equal chances of the foal having a " 1 " or " 2 " trait.

We can therefore make up a "truth" table using the three trait factors of the parents. This is shown in Table 1.

Table I: CHANCES OF OFFSPRING TRAITS
AS A FUNCTION OF PARENTAL TRAITS - Dire ----------

Sire	Dam	Offspring (Foal)
0	0	0
0	1	0 or 1 (equal chances)
1	0	0 or I (equal chances)
1	1	0,1 or 2 (two chances of a I)
0	2	1 l
2	0	1
1	2	I or 2 (equal chances)
2		1 or 2 (equal chances)
2	2	2

CIRCUIT

The circuit diagram for illustrating this simple theory of genetics with a built in chance factor is shown in Fig. 2.
It is merely a passive switching network which is wired up to give the required results of Table 1.

The output is in the form of illuminated lamps LP1, LP2 and LP3, representing the " 0 ", " 1 " and " 2 " trait factors respectively.

SWITCHES

Switch SI is used to turn the unit on/off, this should be a toggle, push-to-make/release-tobreak type. This ensures no cheating, or "fixing" of the chance selector can result; this will be evident later.

The "sire" switch S2 should be a single-pole three-way type. This type of switch is not generally available, so the prototype was built using a single-pole 12 -way type.

The "dam" switch S 3 should be a three-pole three-way type. The prototype, however, used a more readily available type, four-pole fourway, hence the unconnected terminals on this switch seen in the wiring diagram of Fig. 3.

The chance switch, S 4 , must be a three-pole four-way type-but it has to be modified to allow it to be spun freely. This is done by dismantling S4 and cutting away the sprung stops, see Fig. 4.

To dismantle, remove the small circlip located on the spindle just above the threaded portion. This is a fairly difficult task and is best done using a pair of long nose pliers to grip the clip and prising it apart with a pair of side cutters.

Next, bend back the four fixing legs enabling the backplate to be removed, and remove the rotor from its bearing. Cut away the sprung stops and fixed stop with a hacksaw or side cutters, file smooth and reassemble. The spindle should spin freely.

WIRING UP

The complete wiring diagram is shown in Fig. 3. It is advisable to use as many different coloured wires as possible to help identify connections and check-out after completion.

To begin, attach the three switches, S2, S3 and S4 to the labelled front panel of the case (see Fig 5 for dimensions) together with the lamps

Fig. 2. The complete circuit diagram of the unit.

Horses for Courses

Fig. 3. The complete wiring diagram. The shaded region on S3 and S4 shows the pin connections associated with each of the three poles. B1 can be connected either way round.

Fig. 4 (left). A suggested layout of the components on the front panel which in the prototype was made from coloured Perspex-but any material can be used.

Fig. 5 (below). The rotor of $S 4$ removed. The shaded regions are to be cut away to enable it to be spun freely.

LP1, LP2 and LP3. Some sort of pin labelling is recommended to eliminate errors.

On each switch identify the poles and their corresponding pins-in the correct switching order: This can be done with a felt-tipped pen on the inside of the front panel alongside the switches.

Begin wiring from switch S2 to the poles of S3, and then connect the links between the three banks. This done, connect suitable lengths of wire from each of the nine pins from S3 to go to S4.

Next make the necessary link connections between the pins on this switch and then connect all the wires from S 3 to the respective pins on S4.

To complete the wiring, connect the lamps, S1 and the battery in circuit.

Table 2: SWITCH POSITION/INDICATOR LAMP CHECK-OUT

$\mathbf{S 2}$ (Sire)	S3 (Dam)	\mathbf{A}	S4 (Foal)		
	0	0	0	\mathbf{C}	\mathbf{D}
0	1	0	0	1	0
1	0	0	0	1	1
1	1	0	1	1	2
0	2	1	1	1	1
2	0	1	1	1	1
1	2	1	1	2	2
2	1	1	1	2	2
2	2	2	2	2	2

TESTING

Table 1 shows the various off-spring traits as a function of parental traits, and the chances of obtaining them. These conditions are realised by the circuit and are indicated visually by the three lamps labelled " 0 ", " 1 " and " 2 ".

There are four positions on S4 (A, B, C, D) and for each of the combinations of S2 (sire) and S3 (dam) the lamps should light in accordance with Table 2. Test each combination carefully against Table 2, every combination should agree with this table.

Components

Switches

S1 Push to make/release to break toggle
$\left.\begin{array}{ll}\text { S2 } & \text { Single-pole three-way wafer } \\ \text { S3 } & \text { Three-pole three-way wafer }\end{array}\right\}$ see text
S4 Three-pole four-way wafer (modified, see text)

Lamps

LP1, LP2, LP3 4.5 or 6 V bulbs (three off) and holders to suit
Miscellaneous
B1 4.5 V bell type battery (type 126)
Knobs: Three off; 2 pointer types, 1 heavy unmarked type (for chance switch). Connecting wire-as many different colours as possible-use stranded type.

Example: When the sire switch is set to "1" and the dam to " 2 ", for the four different positions of S4, the "l" lamp should light twice and the " 2 " lamp should light twice. The " 0 " lamp should never light for this combination.

Not more than one bulb should ever be on at the same time for any combination.

USING THE UNIT

The unit can be used to demonstrate the Mendelian theory in the following way.

With S1 in the off position, set the pointers of S2 and S3 to the chosen trait factors and then spin the chance switch S4. Depress S1 and take a note of the result (i.e. which lamp lights).

Do this a number of times recording the results each time and you will see that as a number of samples increases, so the tabulated result moves closer to the given ratio.

Alternatively, students may be instructed to formulate their own ratio's over a number of samples using statistical methods.

BREEDING AND RACING GAME

This device can also be used to form the basis of a very interesting table top game for all the family in which horses are bred (using the unit described above) with the intention of producing horses for racing and further breeding. There is no limit to the number of players that may participate.
Other equipment required for the complete game are a race track, owners cards, paper "stage" money (Monopoly money is ideal), and a dice.
The race track can be made to any size or design. Fifty spaces between start and finish were found to be adequate.

Every eighth space should be distinguishable from the rest-coloured black for example as shown in photograph opposite. These black squares are to confer advantages (or disadvantages) to horses landing thereon as detailed later.

Owners' cards should be drawn up as detailed in Fig. 4 and one should be issued to each player.

No		OWNERS CARD							
trait			HORSE						
CODE	POINTS		1	II	III	IV	I	पII	VII
A	6	0							
B	4	0							
c	3	1							
0	2	0							
E	1	0							
F	-2	0							
POINTS TOTAL		3							
GENDER		F							
STUD									

Fig. 6. An owner's card. When the traits and gender of each horse have been determined, they should be marked as indicated. When a horse has been mated it should be marked accordingly in the space provided.

TRAITS

Six traits have been chosen for the horses and these have been coded A, B, C, D, E, F. The "A" trait being most advantageous and " F " being a positive disadvantage.

When a horse lands on a black space on the race track, depending on its traits, it advances (or goes back) a number of spaces given by Table 3.

Table 3: BLACK-SQUARE-ADVANTAGES FOR THE SIX TRAITS

A	B	C	D	E	F
6	4	3	2	1	-2

After breeding several generations it is probable that a horse will emerge with more than one trait. The total advantage when landing on a black square is given by the sum of the individual trait advantages.

Example:

A horse with traits " A ", " C " and " F " would advance seven spaces when landing on a black square. This is made up (using Table 3) of $6+3-2=7$. If a horse has a strong trait denoted by a " 2 " on the owners card, then the advantage (or disadvantage) is doubled, i.e. a horse with a strong ("2") "C" trait advances 6 spaces when landing on a black space.

PRELIMINARIES

Every player is given an owners' card which he keeps throughout the game. Each in turn throws a dice twice, the first throw to determine the gender of the horse-stallion or mare (odd or even respectively). The second throw is to determine the trait of this first generation horse i.e. A, B, C, D, E or F. A throw of "six" gives trait "A"; "five" trait "B"; "four" trait "C"; "three" trait "D"; "two" trait "E"; "one" trait "F".

The first generation horse can only have one trait and this must be weak (denoted by a " 1 " written alongside the appropriate trait).

When this has been carried out by each player, racing or breeding can begin.

BREEDING

Breeding can be instigated in two ways: (1) by agreement between any two owners-the owner of the stallion charging the owner of the dam an agreed sum of money for the stallion's services. The foal resulting belongs to the owner of the dam.

The gender of the foal is determined by a throw of the dice, odd for colt, even for filly.
(2) By use of the National Stud for which the player pays a fee to the bank.
The National Stud horse has only one characteristic for which a dice is rolled as before. The characteristic is weak (i.e. " 1 "). The gender of the National Stud horse is assumed to be opposite to that of the nlayers horse, and the resultant foal belongs to the player. The owner's horse nust be selected prior to drawing a horse from the National Stud, and these horses must then be bred.

Whether breeding is carried out using facilities (1) or (2), the procedure is the same, the owner of the eventual foal sets the trait factors of the sire and dam for each trait in turn to " 0 ", " 1 " or " 2 " and spins the chance switch.

The trait factors (for each of the six traits in turn) are indicated by the three lamps. This factor is then entered alongside the trait in question on the owners' card.

Further breeding can be carried out between races by methods (1) and (2) above, or, if an owner has two or more horses on his card, of opposite sex, he can mate these to produce others.

Once a horse has been put to stud (mated) it can no longer race, but there is no limit to the
number of times a horse can be mated or the number of times an unmated horse can take part in a race.

RACING

The first race should be run after each owner has acquired one horse and subsequent races after another horse has been bred by one or more owners.

Owners are allowed to enter only one horse for each race, which must be declared before the start of the race, for which a standard sum is paid, and a fixed amount is added to this by the bank to constitute the prize money.
The horses are moved around the course with the aid of a dice in the usual way, coupled with the "black-space advantages" acquired by each.

MONEY MATTERS

The introduction of paper money into the game makes it much more interesting. This paper money can either be made up or, if Monopoly money is available this would be ideal.

The money should be located in a central bank and should contain a large number of monetary denominations such as $£ 100$, $£ 50, £ 25, £ 10, £ 5$ and $£ 1$ notes.

With an initial capital of $£ 500$ each player is sufficiently equipped to meet breeding and race
entrance fees. This amount is supplied by the bank.

Breeding charges between owners have to be agreed jointly by the owners making the con-tract-payment being made to the stallion owner.

For use of the National Stud for breeding purposes a fixed sum of $£ 50$ is payable to the bank.

If an owner wants to raise some cash, he can offer any of his stock for sale to the highest bidder, otherwise he may sell to the National Stud-if his horse has a point value of three or more-for a sum of $£ 30$ (payable to him by the bank). Once a horse is sold into the National Stud its racing and breeding days are over; it is put to grass (discarded).

The entrance fee per horse per race is $£ 20$ and the bank puts $£ 40$ to the total to form the prize money. On completion of a race, the prize money is divided up as follows: for two players, winner takes all; for three players, winner takes threequarters, second one-quarter; four or more players, winner takes half, second and third, a quarter each.

WINNING POST

At the end of the game the winner is the owner with the most money and, incidentally, the most successful breeder.

Ruminations By Sensor

The Worm Will Turn

I was reading about some of the work now being done to enable an operator to communicate directly with a computer, using normal spoken English words. The computer would be designed to recognise certain words and to act appropriately when they are spoken.

The idea interested me because I feel that the operator ought to have a chance to answer back. For far too long he has been at the beck and call of his electronic "servant"; obeying instantly when told by the computer's flashing lights to; Input programme, Change tape, Input data, Call engineer; and so on. And if he fails to carry out his duties in the required manner, on flashes the light; Operator error and he gets a rocket from the computer manager for wasting his computer's time!

But imagine how different
things could be with direct speech input-Scene: A computer room. Time. A.D. 1984.
Operator enters and switches computer on.
Computer: "Operator number two. Input programme." Operator, (after late night party): "Don't shout, I'm having a coffee first-and don't call me number two."
Computer: "You are identified in records as operator number two" Operator: "Change the records, my name is Bert."
Computer: "Records cannot be changed except by use of master programming key held by director of M155. Input data immediately." Operator: (Looking at crossword and talking to himself). "Ah, anagram, seven letters, "He makes the sea pant"-must be an anagram of SEA PANT."
Computer: "Peasant."
Operator: "When I want your opinion I'll ask for it, bighead."
Computer: "All data must be input before 08.30 hours. Your records will be marked unpunctual, inefficient, undesirable. You will be fined and downgraded."
Operator: "I resign. So you can put that into your register and process it, you electronic moron.

I'm dropping out." Exit operator pursued by cries of Input data.

Computer Voice

Thinking about the way a computer speaks reminds me of the peculiar way of speaking that some of our radio announcers have these days? Their voices go up and down like a roller coaster with odd little pauses here and there. The female announcers are particularly prone to affect this mode of speech, and one assumes that somewhere there is a training school, probably very expensive and very exclusive, where young ladies with normal, interesting voices, are coached to produce what some official has decided is a "well modulated voice suitable for radio and television."
The writers of Monty Python's Flying Circus must have noticed what has been going on and they have parodied it brilliantly on several occasions.

There seem to be many organisations now that are intent on selling to us so many things that we are not only don't need but positively don't want. In my list of these unwanted goods and services I include "the well modulated voice" along with car parking fees and a few others.

Project605 the new simple way to assemble Sinclair high fidelity modules

For several years now you have been able to assemble your own high fidelity system to world beating standards using Sinclair modules. We have progressively improved these technically but hitherto the method of assembly at your end has remained the same - there has been no alternative to a soldering iron. Now for those who prefer not to solder. there is an alternative - Project 605.
In one neat package you can now obtain the four basic Project 60 modules plus a fifth completely now one - Masterlink - which contains all the input sockets and output components you previously bought separately. Also in the Project 605 pack are all the inter-connecting leads, cut to length and fitted at each end with plugs which clip straight onto the modules, eliminating soldering completely. The pack contains everything you need to build a complete $3 C$ watt stereo amplifier together with a clear well illustrated Instruction Book. All you have to do is to arrange your modules in the plinth or case of your choice and then clip them together - the work of a few minutes.
Your hi-fi system will, as we said, match the finest in the world and you can add to it at any time to increase power or extend the facilities. For example a superb stereo FM Tuner unit is obtainable for only $£ 25$.

Guarantee
Il within 3 moniths of purchasing Project 605 directly trom us, you are dissaisislied with it we will refund your money at once. Each module is surranteed to work petiectiy and should and dolect arise in notmal uss we will service if at once and withour any cost 10 you whatsoever plovided that it is reverned to us within 2 vears of the
 charged at cost

Sinclair Radionics Ltd., London Road., St. Ives, Huntingdonshire PE1 7 4HJ Telephone : St. Ives (04806) 4311

Specifications

Output - 30 watts music power (10 watts per channel R.M.S. into 3Ω)
Inputs - Mag. P.U. -3 mV correct to R.I.A.A. curve 20-25,000 $\mathrm{Hz} \pm 1 \mathrm{~dB}$. Ceramic pick-up - 50 mV . Radio - 50 to 150 mV |Aux. adjustable between 3 mV . and 3 V .
Signal to noise ratio - Eietter than 70 dB .
Distortion - better than 0.2% under all conditions.
Controls - Press buttons for on-off. P.U., radio and aux. Treble +15 to -15 dB at 10 kHz . Bass +15 :o -15 dB at 100 Hz volume Stereo Balance.
Channel matching within 1 dB .
Front panel - brushed aluminium with black knobs. Project 606 comprises Stereo 60 pre-amp/control unit two $Z-30$ power amplifiers. PZ-5 power supply unit. the unique new Masterlink, leads and instruc. £29.95

To Sinclair radiontcs LTo., st. ives, huntingoonshire peitahs

 Please send Project 605 post tree \square Details and tist of stockists \squareName
Address
for whicht enclose $£ 29.95$ cheque/money order/cash.
E.E.8B

Mation wib sevice + ELECTROVALUE atractive uscouris
 ELECTROVALUE-an independent company since its establishment in 1965 Electronic Component Specialists

SEMI-CONDUCTORS

B 40 K	50. 2 N 2 m
1N914	5D 2 N 2924
1N310	10D 2N3053
1N3763A	24 p 2 N 3054
1N3754	20p 2N3055
1 N5399	24 p 2 N 32 S
1N5402	23 p 2 N 3405
1N5407	35 p 2N3663
1844	5p 2N3702
18940	5 p 2 N 3703
2N696	17p 2N3704
2N697	18p 2 N 3705
2N706	12p $2 \mathrm{Na70} \mathrm{\%}$
2N930	210.2N3707
2N1131	25p 2 N 3708
2N1132	25p.2N3709
2N1302	19p 2 N3710
2N1303	190.2N3711
2N1304	260 2 N 3731
2 N1305	26p 2N3794
2 N 1306	33p 2N3819
2N1307	33 D 2513820
2N1308	8802 N 3904
2N1309	360.2N390H
2N1596	76p 2 N 4036
2N1599	76D2N4058
2Ni613	22p 2N4059
2N1711	260 2\% 4060
2N1893	54 D 2 N 3061
2N2147	114 D 2 N 4012
2N-218	38 p 2 S 424
2 N 2218 A	44D2N4126
2 N 2219	38 p 2 N 4284
2N2219A	51 y 2\% 4286
2N2270	62p 2 N 4289
2N2369A	10p 2N 4291
2N2483	35 D 2 N 4292
$2 \mathbb{N} 2484$	42p 2N4410
2N0846	47 D 2 N 4443
2N2904	$380.2 N 4903$
2N2904A	42p 2 N 4915
2N2905	$44 p 2 N 4991$
2N2906 A	47 P - 500 t 2
2 N 2944	18 CN 080

18 p 2ND183 20p:AD142 $2^{27}{ }^{2} 2 \mathrm{NS} 192$ 50p 2 N 5195 51 p 2 N 5459 40 p 40250 10940361
10 P
40362 lop 40362
$10 p 40406$ 10p 40408 $10 \mathrm{p} / 10412$
10 p
10 H 30

Brand new, guaranteed to spec. No seconds or surplus.

50 p BC149

	AD142	50p	BC149	10p	BF167	18p	NKT212
8p	AD149	58 p	BC153	$15 p$	BF゙173	$10 p$	NKT213
77p	A D130	50 p	BC154	18p	BF17\%	25p	NKT214
90 D	AD161	33 p	BC157	12p	BF178	31 p	NKT217
300	AD162	38 p	BC158	11p	BF194	14.	NKT381
30p	* ADI61/162	60p	BC159	12p	BF19\%	18p	NKT²1
710	AFI14	24p	BC1行	11p	BF244	30 D	NKT274
890	AP115	24 p	BC168	10p	BP'064	14p	NKT275
45p	AF116	22p	BC169	$11 p$	BP256	15 p	NKT403
45 p	AF117	22 p	BC172	140	BFX 18	90 p	NKT404
33p	AP118	82p	BC'178	13p	BPX29	31 p	NKT405
54 p	A F124	24p	BC179	140	BFX84	25p	NKT603 ${ }^{\text {- }}$
67 D	AF125	24.	BC182L	110	BFX85	32p	NKT613F
122D	AP126	22D	BC1838	100	BFX87	29 p	NKT674
180 D	AF127	22p	BCIB4L	110	BYXA8	26p	NKT67\%
179p	AF'129	33p	BCIP6	30 p	BPY50	$25 p$	NKT713
45 p	AF-39	38p	HC212L	14 p	BFY81	20 p	NKT773
180 p	A L102	77 P	BC213L	18 p	Bry 52	23 p	OA47
48 p	A8Y26	27p	BC214L	14 p	BRY39	30 p	OA90
23 p	ABY27	36 p	BC'257	$9{ }^{\circ}$	B8X20	18p	OA91
20D	$\mathrm{AB}_{8} \mathbf{8} 28$	230	BC258	8 p	BY164	44D	OA95
20 p	A8Y29	360	BC25:	9 p	BY238	18p	OA200
34 p	AU111	9%	18C2m	17p ${ }^{\prime}$	BYX 38.3	37.	OA202
37 D	1380CL20	240	BC2fis	13p	BYX38-3	R37p	OC19
25 D	B30C6EO/300	34 p	HC269	17 p	C407	170	Orys
29 p	B1912	31.	BCSOn	49D	C782	19 p	OC28
22p	B5041	729	BC301	370	C1412	80p	0 C 29
18 p	BA102	21]	nc303	80 p	E2512	107p	0c35
17 p	BA130	5 P	HCY 30	49p	EA403	100	OC3\%
17D	BA148	210	13CY31	60 p	EBS83	10p	0 C 41
23 D	HA155	15 p	BCY70	180	EC401	18.	0 Cl 4
88K	RA156	13p	BCY71	33p	FC402	180	OC44
40 p	BAX13	8p	BCY72	15p	ER900	33 D	OC45
31 p	BR103/B	18p	BD121	105 p	MC140	25 p	OC70
19p	BE103/6	16p	BD193	105 D	MJ481	120p	OC\% 1
23 p	BC107	12p	BD124	100p	MJ491	135 p	OC72
20p	BCLI08	$11 p$	BD130	50 p	MJEa71	68p	0×75
21p	BCl09	$12 p$	BD131	77 p	MJES21	62 D	OC81
16p	BC122	$21 p$	BD132	$81 p$	MJE2953	106 p	OCAID
$62 p$	BC125	15p	BD135	38p	MJE3005	$68 p$	OC83
17p	BC126	15p	BD136	44p	MPP103	37 p	0 C 44
18p	BC140	30 p	BD/41	2270	MPS6531	$28 p$	P346A
31	BC147	10p	BDY20	92p	M P6gis. 4	24 p	S8CN1

1972 ELECTROVALUE CATALOGUE (No.6)

Biskest and ast edition yer-po pares, plus covers. Wed prith hundreds of item prices, valuable Information and diasram post fres 10p.

DISCOUNTS
allowed on all items other than those at NETT 10% on ordersfor $\quad 15 \%$ on orderifor POSTAGE 8 PACKING FREE on orders for if under.
Overseas orders welcomed. Prices subject $s o$ alseration without prior notice
Terms of business-C.W.O. as in catalogue
ELREMCO SOLDERSTAT SOLDERING
WOLF example from a wide and versatile range of soldering irons of exceprional quality. Typ
HM5 for 16 or 24 watts, A.C. mains. Solderstat Infinitely Variable Temperature controlled Solderines Iron. Stays constant at delicate work erc. complete
De soldering braid per $6 \mathrm{ft}$. . 50 p. $\mathbf{\$ 9 . 2 0}$ SLIDER POTENTIOMETERS
values from 47 K so
megohm, log or inear. Robust construction, smooth, scrion, ea. 26p. Slider control knobs-Black/Red,Yellow

CAPACITORS

SIEMENS 5\% TOLERANCE

POLYCARBONATE
250V. up $200.1 \mu F ; 100 V 0.1 \mu F$ and above.
$0.01 ; 0.012 ; 0.015 ; 0.018 ; 0.022 ; 0.027 ; 0.033 ;$ $0.047=0.056$, each $3 p$. $0.022 ; 0.027 ; 0.033$ $0.068 ; 0.082 ; 0.1 ; 0.12: 0.15$ each $4 p$ $0.018: 0.22$, ea. $5 p: 0.27,0-33,6 p: 0.397 p$ O.47, 8p: $0.56,10 p: 0.68$ IID: I μ F I3p. SIEMENS ELECTROLYTIC
 10/63; 22/35; $47 / 35 ; 100 / 16 ; 100 / 25 ; 220 / 6,220 / 10$ 220/16: 47013 . each 60
$47 / 50 ; 47163$, 100/35; 470/10, each 7p. 20160 2201. 1000116 $1000 / 25,16 \mathrm{p}: 470 / 63: 1000 / 35$, 19p: 2000/200, 29p MULLARD SUB-MIN ELECTROLYTICS C426 ranke, axial lead
Values ($\mu F / V)=0.64 / 64 ; 1 / 40 ; 1.6 / 25 ; 2.5 / 16: 2.5 / 64$;
 10/16; 10/64; 12:5/25: 16/10; 16/40; 20/16: 20/64; 40/2-5; $50 / 6 \cdot 4 ; 50 / 25 ; 50 / 40 ; 64 / 4 ; 64 / 10 ; 80 / 2 \cdot 5$ 80/16: 80/25: $100 / 6$:4 $152 / 4$: $125 / 10$; $125 / 16$ $160 / 2 \cdot 5 ; 200 / 6 \cdot 4 ; 200 / 10 ; 250 / 4 ; 320 / 2 \cdot 5 ; 320 / 6 \cdot 4$ 400/4: 500/2.5
LARGECAPACITORS
High ripple currens sypes: $1000 / 25$, 28p; $1000 / 50$
41p: $1000 / 100$, 82p: 2000/25 37p; 2000/50 57 $41 p: 1000 / 100,82 p ; 2000 / 25$, 37p; 2000/50, $57 p$ $5000 / 25,62 p: 5000 / 50 \quad 41 \cdot 10 ; 50001100$, $82 \cdot 91$

Simple to Build. Astoundingly Good
$10 W / 15 \Omega$ BAXENDALL SPEAKER
As originally designed by P. J. Baxendall and described in Wireless World. 10 watt/l5 ohm oudspeaker with equaliser network speaker size when built approx. $18^{\circ} \times 12^{\circ} \times 10^{\circ}$. Price inc. carrlage paid in U.K. Nett 113 -81.
Speaker unit and equaliser kiz with instrucsions
Cabinet kit, all parts cut to size ready to assemble
Cabinet kit, all parts
in nakural teak finish
|HANDBOOK OF
TRANSISTOR
EQUIVALENTS
EQSUBALENTS
40p.
HANDBOOK
OF TESTED TRANSISTOR CIRCUITS(H. Ness), 40p. NADIO \&
ELECTRONICS

$$
\begin{aligned}
& \text { Colour codes \& } \\
& \text { wall chart, } 15 \mathrm{p}
\end{aligned}
$$

ENGINEERS REFERENCE HANDBOOK TABLES 20p. (Add 3p. for postage boughe separately.)

CARBON TRACK POTENTIOMETERS. long spindles. oublewioers
SINGLE GANG linear 100Ω to 2.2M Ω, 12p; Single gang og. $4 \cdot 7 \mathrm{~K} \Omega$ to 2.2M Ω. $12 \mathrm{p} ;$ Dual gang linear $4 \cdot 7 \mathrm{k} \Omega$ to $2 \cdot 2 \mathrm{M} \Omega$. 47K, IM Ω only 420 ; Dual antilog. IOK only, 42 p . Antilog. IOK 2A D.P. mains switeh, 12 p extra
Only decades of $10,22 \& 47$ available in ranges quoted
DUAL CONCENTRIC in any combination of above values 60p : with swirch, 72p

CARBON SKELETON PRE-SETS
mall high qualigy, type PR, linear only: $100 \Omega, 220 \Omega, 470 \Omega$ $\mathrm{K}, 2 \mathrm{~K}, 4 \mathrm{~K}, 10 \mathrm{~K}, 22 \mathrm{~K} .47 \mathrm{~K}, 100 \mathrm{~K} .220 \mathrm{~K}, 470 \mathrm{~K}$,
O
M

ZENER DIODES 5% full range E24 values: $400 \mathrm{~mW}: 2$. 7 V
to 36 V , 15 p each; $1 \mathrm{~W}, 6 \cdot 8 \mathrm{~V}$ to $82 \mathrm{~V}, 27 \mathrm{p}$ each; $1.5 \mathrm{~W}: 4.7 \mathrm{~V}$. 0 69.0. Clip 40 pach.

ELECTROVALUE LTD.

DEPT. EET72, 28 St. Judes Road, Englefield Green,
Egham, Surrey. Twzo онв Hours: 9-5.30, 1.0 p.m. Saturdays.
Phone: Egham 3603; Telex 264475

Photograph: Science Museum L.ondon
AST month's article showed how Volta's discovery enabled man to produce small electric power from batteries, but to obtain larger powers he had to make magnets move. The man who did much to establish the relationship between electricity and magnetism was the French mathematician and physicist Ampère who gave his name to the practical unit of electrical current, See Table 1.

INFANT PRODIGY

Andre Marie Ampère was born on January 22, 1775, in the village of Polemiex, near Lyons, the son of a merchant, who was alsy Justice of the Peace.

Young Andre showed astonishing capabilities at a early age, and it is said tha was calculating before he read or write.

It was in 1793, Andre eighteen that tragedy Lyons had revolted agajns tyranny of the French Reval The army of the Convertion who hated all forms of authority captured the town, Andre's father was thrown into prison, and soon after publicly guillotined.

The shock of this was so great that Ampère remained in a state of apathy and near madness for almost three years.

Then in 1796 he met Julie Carron who gave him back his reason for living.

On August 2, 1799 at the age of 24, he married Julie and one year later a son John Jacque was born. Once again Andre was a happy man.

In 1804 tragedy struck Ampère a second blow, his wife died of a chest disease; he did little for five years. Then in 1809 after publishing a thesis on the mathematical

THEY MADE THEIR MARK No 5 An O Ope By J. E. Gregory

Table I: AMP (A)
The flow of electric current is measured in amps. Just as last month we used the water pressure aralogy for the volt, so we can compare electric current with the flow of water.

As a practical example the current which flows through a domestic chandelier holding four, 60 watt lamps connected to a 240 V mains supply is one ampere.

In 1881 the ampere along with the volt was adopted at the first meeting of the International Electrotechnical Committee.
theory of gambling he was recommended for the post of Professor of Fathematios at the Polytechnic in Paris. In 1814 ht was elected
th the Achatemy of Scrence.

Qhe academy the periments. These through two parallel wires in the same direction they are attracted, and they are repelled when the current flows in opposite direc-

Ampere's aparatus

[^2]tions. He also proved that the force of attraction or repulsion is directly proportional to the strength of the currents. This became known as Ampère's rule.

Ampère gave public demonstrations and one of his contemporaries reports "a gasp would go up from the audience as Ampere twisted insulated copper wire round an iron horseshoe, joined the ends of the wire to Volta's battery, and showed how the horseshoe attracted a quantity of nails, and how it let them fall the moment the current from the battery was shut off."

Ampère died in Marseilles on June 10,1836 from a chest illness. James Clark Maxwell another famous 19th century physicist later described Ampere as "The Newton of Electricity"

Saw Point

As a musician interested in the clectronic aspects of music, I read with interest Mr. Judd's article on the Audio Tone Generator. He is however misleading about the question of sawtooth waveforms.

Although he is quite right when he says that a square wave contains only odd harmonics and the sawtooth wave consists of both odd and even harmonics, the waveform which he draws and which the integrating network on his generator will produce is not a sawtooth wave but, what is known in electronic music as a triangle wave. (I have also seen i_{i} referred to as a back-to-back sawtooth wave).

This waveform is symmetrical, and, like all symmetrical waveforms, consists only of odd harmonics. The difference between this and the square waveform lies in the phase relationship of the harmonic series and in the fact that they diminish in amplitude much more rapidly as their frequency increases.

The clarinet also has a symmetrical waveform and therefore only odd harmonics are present, but its timbre is totally unlike that of a square wave because the relative amplitude of their harmonics is different. If anything, a triangle wave sounds more like a clarinet.
R. Sherlaw Johnson Stonesfield.

Stock Control

There is still one very basic problem which has slipped your attention, i.e. the building up of stock by the beginners. I wish you could advise us on the minimum quantity of various components we should keep in stock all the time, e.g. resistors (type, ratings, ohmic values and quantity of each type, etc.). Capacitors, diodes, transistors, nuts and bolts, chassis, cases, panels, heatsinks, etc.

Very often when I set myself to build a project, I find it very embarrassing to get stuck for the shortage of some components and it gets more painful if the
local shop cannot help me either. I feel all the enthusiastic beginners would be very grateful if you could kindly help us in setting our stocks right at the beginning. Without proper guidance, at the start, all the component catalogues seem to be useless.

J. Whyte
 London.

This is something we have been looking at and an article may be published in the future.

Solder Injector

Thank you for your very useful article on the Signal Injector in your March issue. I have constructed one with a few modifications, and I thought that some of your readers may be interested in the financial savings I made.

Firstly, I did not use the recommended Steradent tube (having no false teeth), but (to me) a more readily available case -the standard multicore solder tube. To the pointed end I fixed my nail directly using fibreglass paste (eg. Isopon), this did away with the need for a miniature plug and socket. The switch was fixed to the plastic cap.

As regards the construction, 1 used a smaller piece of Veroboard, given away in your first issue (after making a Windscreen Wiper Control). The components specified were not at all critical; I used two OC 71 transistors and $0 \cdot 1 \mu \mathrm{~F}$ capacitors throughout to get excellent results.

May I take this opportunity to suggest a few ideas for future projects in your excellent magazine:-

1. A stabilised voltage dropper, so that a portable cassette player may be used off a car battery.
2. Short range transmitter (if legal?).
3. More audio and hi-fi projects.
4. Lighting effects controlled by music from an amplifier.
K. J. Twydell

Portsmouth.
Of the four items you suggest the transmilter is not legal in this country without a radio amateur's licence, the other three things will probably be future arlicles.

Join the Club

Readers may be interested in my slightly modified version of the Demo Deck.

I made my top in Formica and cut a recess to take a commercial "breadboard"; the single S-Dec unit with little spring-loaded clips and holes to take components. Hence there is no need for soldering or, even more important, dodgy desoldering which can result in damage. My S.Dec cost me $£ 1$, but I think, for a beginner, it is a good investment.
I am glad to see Everyday Electronics making good progress. There certainly was a crying need for a journal of this type catering for raw amateurs. I would suggest that at some future date you consider forming a national club for electronics enthusiasts of huinble skills. Who knows, it could lead to a healthy exchange of ideas, a feeling of camaraderie and (I've got grandiose ideas!) eventually a national exhibition. Why not? Indeed your E.E. symbol on the contents page would make a perfect badge.

Pity about these errors that are creeping in with too much frequency; it tends to undermine confidence a little. However, as a fellow journalist, I'll make allowances for a little while yet.

Incidentally, do I dare suspect a slip in Mike Hughes' Teach-in last month (May) where on page 371, top of column one, he refers to VRl as "a 300 ohm potentiometer". I'm afraid those of us with Demo Decks followed an earlier design and made this a 100 ohm pot-or have I got my things in a twist?
Never mind, for an expert to try to put over an advanced science that's constantly on the move is one big headache when he has pupils at all levels of training and can't thump those of us who are a bit thick on the uptake.

T. Milligan
 Kempston.

We must point out that The British Amaleur Electronics Club caters for all interested in electronics. Details from the Hon. Secretary, Mr. J. G. Margetts, 17 Saint Francis Close, Abergavenny, Monmouthshire.

The value of VRI should be 100 ohms.

Enlightening

Upon reading "Sensor's" article Let There Be Light I was surprised at his lack of knowledge concerning strect lighting. Light operated switches have been used in street lighting systems for several years, the reason for not using them on every light is that

* With a current leakage of only 3-5 microamps the risk of damage to your integrated circuits or transistors is excluded.
* With such near-perfect insulation we now factorytest every X 25 iron at 1500 V . A.C.
* With it's enormous heat-capacity high speed soldering of up to 60 joints per minute is possible. * With a price of only $£ 1.75$ (recommended retail) the cost of top-class efficiency in soldering is so low that you cannot afford to neglect this

opportunity.
 With theNEW 5

Available from most wholesale distributors in the U.K. (names o.a.) or from radio/electr. shops. In case of difficulty send your orders or enquiries direct to ANTEX.

From electrical, radio or car accessory shops or from Antex Ltd., Freepost (no stamp required) Plymouth.
PL1 1 BR Telephone $075267377 / 8$

Please send me

Name Address
\square the Antex 16 page colour cataloque including details of the $\times 25$ $\times 25$ soldering rons at f 1.75 (cheque. P/O. Giro enclosed)

[^3]HENRY'S LOWOR COST FIRST GRADE BRAND BRANDED GERMANIUM ANd SILICON TRANSIITORS, OICOES, RECTIIIERS, BY ATES • EMIHUS - FAIRCHILD
I.T.T. MULLARD • NEWMARKET P PHILIPS •
R.C.A. TEXAS

TRANSISTORS

A SELECTION FROM OUR LIST

HENRY'S :ow Hiverated dreuits

BRAND NEW FULL SPECIFICATION TTL74 SERIES BRANDED FAIRCHILD, I.T.T. AND TEXAS

No
7400
7401
7402
7403
7404
7405
7410
7413
7420
7430
7440
7441
7448
7443
7447
7448
7450
7451
7458
7454
7480
7470
7472
7473
7474
7475
7478
7480
7481
7482
7483
7484
7486
7490
7491
7492
7493
7494
7495
7498
74100
7418
74181
74141
7415
74150
75151
74183
74154
74155
74156
7190
74191
7192
74193
7496
74197
60
Description
Qualruple 2 -Input NAND
Quad 2-input opern collectur
Que
पusd 2 -input NOR antex
Quad 2 -input open
Ilextuple Invertern
Hex inverters with open collector output
Triple 3 -ingut NAND gates
Dual 4 -input NAND gate
Single 8 -input NAND gates
Dual t-input NAND buffer gaten
BCD-Decimal decoder/Nixie driver
BCD-Decimal decoder ($4-10$-line) TTL, 0 Eincena 3-Declmal decoler TTL outputs BCD-Decinus: 7 eeg. decoler/didiver TTL O/P Expand thal 2 -input AND-OR-INVERT gate Dual 2-wide 2-input AND-OR-1NVERT gaten 4-wide 2-Input AND-OR-INVEBT gater bual tinput expandera
Single J-K hipphiop (gated Inputs) Dual J.K flip top
Dual D fip fop
Quadruple bistable lateb
Dual J.K tip-liope whth Premet and Clear Geted Full Adder
2-bit blinary Full Adder
4-bit binary Full Adder
16-bit RAN with galed write Inputm
BCD decale counter
D-bit shift reginter
4-blt bluary counte
7494 Dual entry counter mhift registe
7495 -blt up-down ablft register
71100 s-bit bintable latch
7418 Herfuple Set-Rewet latehes
74121 Monontable tnullivibratorn
7415 BCD-Decimal decoder/Nixle drive
74150 16-bit data welector/mulliplexer
75151 8-bit dats selector/multiplezer
74153 Dual 4-Ine to 1 -Ine data sele
74155 Dual z-line to 4 -line decoder/denultiplexer
7158 Dual g-line to 4-line decoder/flemultiplexer
7191 Sync 4-bjt up-down counter, 1-line mod
74192 8ync decale up-dow n counter, 2 -line mode 4193 Aync 4 -bit up-down counter, 2 - Hine moxie
74197 Arynchronous premettable 4-blt binary counter 11.50
 lovegrated circuit mockelan 14 pin D.I.L. 25 p ; 16 pin D.I.L. 300

I NTEGRA CIRCUI		PLESSET IYTEGRATED CIRCUIT 3 Watt Ampliter
MPC4000P	350	8L403D
MPC4010P	80	Complete with 8-pare
$1 \mathrm{Cl}^{2}$	2850	booklet, circuits
PA248	11.50	
TAD100	81.50	
TADIs	11.50	21-50 ea.
MC7:4P	50]	
702 C (TO5)	750	ZENER DIOOES
709 C (TO5)	450	$1-251008001000$
709C: (D.1.L.)	45 p	$24+8+$
723(4TO5)	21.00	400m/w
741CCTOS)	$8{ }^{80}$	HZY 88
MC1s03P	82.00	meries* 18p 100 8p 7p 80
MC1304P	28.25	1\% Fitt
8L403D	21.50	26, meries 25p 23p 20p 17p 15p
7410 (DIL)	750	3 watt
914(T08)	40p	3 TZ merlen 30p 27p 25d 22p 20p
923(TO5)	40D	10 watt
T08HIBA		28 meries +400 37p 35\% 30p 26p
20 watt anp.	24.47	All typen are 5\%. Whre Ended + theme
TOSHIBA		Stud. in voltages $3 \cdot 3 \cdot 100$ volt in 5 l
Pre atup	21.50	etapdard values, 3-3-33 volt.

TRIACS Stud with accessories P.I. Curent 1-1

$\begin{array}{ll}\text { Type } & \text { volts } \\ \text { BC35A } & 100 \\ 3 & \text { smps } 80 p\end{array}$
BCseB $200 \quad 3$ ampe 85
14.35D $400 \quad 3$ ampa 90 p

SC40A 1006 arnps $90 p$
SC40R 2006 atnpe $51-05$
SC40D 4006 ampe $21 \cdot 00$
8C45A $100 \quad 10$ ampe 21.05
$8 \mathrm{C} 45 \mathrm{~B} \quad 200 \quad 10 \mathrm{mppm} 81-15$
BC45D 40010 amps 21.25 gC50 A $100 \quad 15$ ampa $81 \cdot 85$ $8 \mathrm{Cs} 0 \mathrm{~B} 200 \quad 15 \mathrm{arnps} 81.45$ 8C50D $400 \quad 15$ amps 21.75 CC4OE 500 6 ampe 21.25 3 C46E $800 \quad 10$ mpm $21 \cdot 45$ SCSOE 500
DIAC SD

1 AMP SILICON RECTIFIERS
Type PIIV
TYpe PII.V. $1-4980+100+500+1000+$ Miniature Pottod siticon $f^{\circ} \times f^{\circ} \times \mathbb{I}^{\prime \prime}$

QUANTITY
OFFERS !
FROM STOCK
-apart from major towns-most street lights are extinguished at midnight, light operated switches cannot do this. Another reason is that the electricity boards own most of the time switches and to install light operated switches in place of these costs in the region of $£ 12$ to $£ 15$ per column. This cost has to be found out of the rates we pay because councils have to purchase these as opposed to timeswitches-the other side effect is higher electricity bills to councils due to the permanent all night lighting. We do not get enough power cuts to warrant this vast extra expense on the rates.

I am employed by a firm of street lighting contractors, fitting and maintaining public lighting.
B. W. Hawkins

Herts.

Clanger

I have been reading your magazine since it was first published and found it quite good. Unfortunately under the article about the Bee Counter in the May issue I think you have dropped a proverbial "clanger". The Bee Counter works as drawn in the circuit but the write up is all wrong. You say that TR1 is conduction when the l.d.r. has a low resistance (i.e. when illuminated) which of course it will not because it is a pnp transistor; TR2 will therefore be "off" until TR1 conducts.

When a bee passes between the lamp and the l.d.r. the resistance of the l.d.r. increases and the base potential becomes negative with respect to the emitter. This causes TRl to conduct and a negative potential is then applied to TR2 causing it to conduct and the counter to operate.

I think your write up should have been along these lines. It looked especially funny after the previous article on semiconductors. Perhaps Mike Hughes will give a few lessons to the editorial staff!
W. Raymond Old Trafford.
You are of course quite rightwe have asked Mike if he has any free time!

Circuit Operation

I was very pleased to receive the booklet Constructors Com. panion with the May issue. Now I know that little bit more about the modes of transistors, the explanation although brief was easily understood.

Will you please publish a feature about how circuits work, that is, the a.c. (signal) and d.c. conditions in circuits when in operation? For example, the pro-
gress of a signal from aerial to speaker; through all the components also the d.c. conditions of the circuit at the same time.

You will probably have noticed that, in all receiver circuits authors never give this explanation which I believe would be of considerable help to the underslanding of how the circuits "work" especially in receivers.

Would it also be possible to llave either a regular feature or a regular pull-out suppleinent of a list of circuits for doing a variety of things.
J. Bradley

Yorks.
We may well be publishing a series on basic circuit operation describing the function and operation of many of the "stan. dord circuits" we use.

Convention

I would be most grateful if you could explain to me the logic of using "conventional current" in contemporary circuit diagrams.

You see, when I was at school my physics master dismissed this as being "guesswork on the part of the ancients (electrically speaking)." Thus he explained electrical phenomena in the light of "electron flow" and I was able to understand him sufficiently to construct simple valve radios, home electroplating appliances etc.

Similarly an R.A.F. radar instructor was able to acquaint us with the principles of the cathode ray tube etc., whilst we blockheads were undergoing operational training in bomber command during the war.

Much later in life I decided to take an exam involving some knowledge of electronics and thus went through a "refresher". Again, the instructor used "electron flow" as his means of explanation; again I understood.

To the best of my knowledge, all electro/mechanical devices which demonstrate a "current flow" visibly, do so in a way which shows that, whatever is flowing, is flowing from negative to positive (except in the interiors or prime sources).

Would you therefore be kind enough to inform me:
a) who re-introduced "conventional current flow"?
b) Why?

You sce, if I knew the reason for using this terminology I would possibly better be able to reconcile myself with it and thus get down to some learnings instead of getting het $u p$ at symbols which appear, to me, just plain stupid!
A. K. Robinson

London, W.7.
As far as we know no one re. introduced conventional current flow-it has always been with us, ever since Volta's battery.

Unfortunately it is not easy to simply drop conventional current and usc electron flow as all the laws concorning electricity and magnetism-which are, after all, the basts of the whole thing-are in terms of conventional current flow. Thus, although it is easy to explain such things as cathode ray tubes and transistors using electror flow, when it comes to teaching the basics of electricity then all the universal basic rules which are in terms of conventional current flow would have to be changed.

One-sided

While experimenting with tape loops, prompted by your May at ticle, I discovered some promising effects by giving the tape a lialf turn before joining the loop. This produces a "one-sided" tape, with the interesting result that both tracks of the tape are scanned successively.

Unfortunately, half the cycle presents the shiny side of the tape to the head. However, by using triple-play (very thin) tape and tu:ning the loop over after recording, interesting reverse/ echo effects were obtained.

By the way, inserting a lMs linear potentiometer in the collector load of TR2 of the Signal Injector circuit (March issue) makes an excellent tone generator, serving both purposes, at a saving of some $£ 2 \cdot 50$.

R. Darbishire

If you write to us for advice, and wish to have a personal reply you must include a s.a.e. Unfortunately, we cannot prepare special designs, circuits or wiring diagrams, to meet individual requirements nor can we supply back issues or answer queries concerning commercial equipment, or subjects or designs not published by us.

For all technical and editorial matters, write to: The Editor, Everyday Electronics, Fleetway House, Farringdon Street, London, E.C.4. Phone 01-634 4452.

For all enquiries concerning advertisements or advertisers write to: The Advertisement Manager, Everyday Electronics, at the above address. Phone 01-634 4202.
22 r. P.m. Toraue ${ }^{2016}$
h.p.i. 50 crcle, 0.28 amp.
"As now" condicion. Input voluage of motor
former for supplied complete with crank-
sype El 3.50 plus $35 \mathrm{P} P$. \& P .

CONSTANT SPEED PRECI.
SION MADE MÓVO
seven pole armature, ballrace bear-
ing. 2.750 r.p.m. Lenget 2 H , Diar.

No load 40 mA . Normat load 350
mA. Price $\$ 1-25$ P. \& P. 10 p .
$230 \mathrm{~V} / 240 \mathrm{~V}$ COMPACT
SYMCHRONOUS
geared motors

Manulactured by either Sangrmo, Hayiton or

SR.P.M. Cw IR R.P.H.A/Cw 6R.P.H. Cw
60 R.P.M. cw 2 R.P.H. cw
${ }_{30}^{20 \text { R.P. }} \mathrm{H}$. cw
$\mathrm{cw}=$ Clockwise.

Fraction of makers' price. Allat ATP incl. P.\&P.
17 WAY SELECTOR
SWITC
Coll
This fascinating electrol
mechanical device can bo
mitchnod throuzh
cal
switched chrough 17 posii-
tions and can be reser
from any position by
bener
rom any position by ener-
gising the reset coil. 110

him low rasistor or 50 V d.e. Two for 81.1
PR. AP. IOP.
MIr, by "Masnetic
bevices Led.
260 V A.C. ${ }^{\text {. }}$ '
${ }^{240 v}$ A.C. ${ }^{2}$. ${ }^{2}$ rop.m.
Drivestis cams, each
oparacing a 10 amp c/o
VARIABLE VOLTAGE TRANSFORMERS
INPUT $230 / 140 \mathrm{~V}$ a.c. $50 / 60$ OUTPUT
VARIABLE 0.260 V from $\frac{1}{1}$ to 50 amp stock.
SHROUDED TYPE
1 amp, $67.00 \quad 2.5 \mathrm{amp}$, te.05
5 emp, 111.75
0 amp, $122.50 \quad 20$ amp. 49.04
$15 \mathrm{mmp}, 22.00$ 25 amp, ESE.00

OPEN TYPE (Panel Mounsing) tamp. \&4.zs.
Sinemorninimpention the
New power rhieostais
100 WATT. I ohm, 10A; 5 ohm, 4.7A;
10 ohm, 3A: 25 ohm, 2A: 50 ohm, I-4A:

each. P. ATP. 7\$p/i0/25/50/100/250/500/1/1-5/2-5/5kR. All at

25 WATT. $10 / 25 / 50 / 10$
S0p mesh. P. \& P. 7 p .

STROBE! STROBE! STROBE!

Fraction of makers' price. Allat $75 p$ incl. P. APP.

Build a Strobe Unit, using the latest type Xenon white
light flash tube. Solid state timing and triggering circuit, $230 / 250 V$ n.c. operation.
EXPRIMENTERS. ECONOMY KIT
Speed adjustable 1 to 36 Flash per sec. All electronic components including Veroboard S.C.A. Unijunction Xenon Tube and instructions $\mathbf{6} \cdot 30$, plus 25 p P. \& P. NEW INDUSTRIAL KBT
Ideally suitable for schools, laboratories, etc. Roller cin printed circuit. New erigger coil, plastic thyristor HY-LYGHT STMOBE MK III
Designed and produced for use in large halls and utilises
Desilined and producedruit, Speed adjuscable $0-30$ fipes asifica sube printed circuit, Speed adjustable 0-30 f.p.s.
Light, output approx. 4 joules. 12.00 . P. \& P. 50 . SPEEIALLY DESIGNED. FULLY VENTILATED METAL CASE. Including reflector, 44-00 P, \& P. 45p.
Post paid with kit.
THE ‘SUPER’ HY-LYGHT KIT
Approx. four times the light output of our well proven Hy-Lyght strobe. Incorporating:
Quriable speed from 1.23 flash per sec.
Reactor control circuis producing an intense white light. Never before a Strobe Kit with so HIGH an output at so LOW a price. ONLY 80 plus 75p P. \& P. ATTAACTIVE, NOBUST, FULLY VENTILATED METAL CAS度 specially designed for the Super Hy-Lyshe Kit including reflector $17-00$ P. \& P. 45p. 7-ineh POLISHED REFLECTOR Ideally suited for above Strobe kits. Price $53 \mathrm{p}, \mathrm{P}$. \& P. 13p or pose paid with kits.
6 in colour wheel as used for disco lighting effeces etc. $65 \cdot 75$ incl. P. \& P. can be operated from our 1 rom synchronous moter 75p incl. P. \& P. RELAYS $\begin{gathered}\text { New SIEMENS PLESSEY, etc. Miniature } \\ \text { Relays ot }\end{gathered}$
 vidually variable, allowing innumerable combinations. Ideally suited for machinery control, cainmant, for chaser lights, animated displaye te. NEW PRICE: $5.75, \mathrm{P}, \frac{8}{2} \mathrm{P}, 25 \mathrm{p}$,
 1600
600

700 | $10-18$ |
| :---: | :---: | :---: |
| $12-24$ |
| $18-32$ |
| 18 |

 (1) Cois ohms; (2) Working d.c. voles; (3) Coneracts; (4) Price 12 VOLT D.C. RELAY 140 OHM COIL
Three sets c/e conezecs rated at 5 amps . 78p incl. P. P. (Simiar co ilustration below.)
'DIAMOND H' 230 VOLT A.C. RELAYS बib Three sets clo contacts rated at 5 amps.
Price: 500 P \& 100 . 1100 lots $840-00$ incl.

'KEY SWITCH' 230 VOLT A.C. RELAYS *in . . One set c/o contacts rated as 7.5 amos. BOXED. Price: 40p P \& P 5P . (100 tots 832.00 incl. P \& P.)
MINIATURE LATCDINE MILAY
Manufactured by Clare-Elliote Led. (Type f). 2 clo permanens latchine in either direcrion. Coil 1150 ohm, 15-30 Vole O.C.

SERVICE TRADING CO

All Mall Orders-Also Callers-Ample Parking Space Dept. E.E. 57 Bridgmen Road, Chiswick, London, W45BE Phone 01-9\%S 1560 SHOWROOM NOW OPEN MON.-FRI.

Personal callers only. Open Sae. - LITTLE NEWPORT ST. LONDON WC2H 7J O1-4370579

EX COMPUTER PRITTED CRECUIT PAMELS 2 in $\times 4$ in packed with renti-conductore and top quality readorors, capacitors, diodea, etc. Our price 10 bowrdo minimum
Included.

SPECIAL BABGAIE PACE. 25 boand for 81. P. 4 P. 18p. With a cuaranteed minimum of 85 translitors. Data on transiators Inctuded.

PAymis with 2 power transistors elmilar to PAILEs with power tranalstors elmilar to ($4 \times 0 \mathrm{OC28}$) enp, P. \& P. 8p.

9 OAS. 3 OAlO, 8 Pot Coren, 26 Reaintors, 14 Capactors, 3 (1 ET 872, 9 OET 972B, 1 GET 875 P. \& P. 25 p .

709C OPERATIOMAL AIPLIFIER TOS
$\begin{array}{lll}8 \text { lead 1.C. } \quad 1 \text { ofl } 50 \% & 50 \text { on } 95 p \\ & & 100 \text { of } 80 \mathrm{p} \text {. }\end{array}$

250 MIXED RESISTOR I and i watt.	62p
I50 MIXED HI STABS t. 1 and 1 watt 5% and better	62p
QUARTZ HALOGEN BULBS With long lealis. 12 V 35W for car apot lighte projectorn, etc. SOp each, P. \& P. SP.	
GPO EXTEMAIOS TELEPHOIES Tilt dial but wilthout bell. $8 \$ \mathrm{p}$ each, P. \& P. 30p, 21.75 tor 2, P. \& P. 80p.	
BARGAIN RELAY OFFER sov. $2 \cdot 5 \mathrm{Bk} \Omega$ coll. 8 tor $50 \mathrm{p}, \mathrm{P}, \pm \mathrm{P}, \mathrm{Bp}$.	
KEYTRONICS mail order only	
44 EARLS COURT ROAD	
LONDON, W. 8	9

INSTRUMENTAL AUDO EFFECTS

SUPER "FUZZ" UNIT KIT. CONNECTS BETWEEN GUITAR \& AMPLIFIER. OPERATES FROM ov BATTERY (not mupplled). ALL COMPONENTS AND PRINTED CIRCUIT BOARD WITH FULL INSTRUCTIONS. KIT PRICE: E2-Et post pald.

CREATE "PHASE" EFFECT ON YOUR RECORDS, TAPES ETC., UNIQUE CIRCUITRY enables you to create phase EFFECT AT THE TURN OF A KNOB, OPERATES FROM ov BATTERY (not supplied) COMPLETE KIT OF COMPONENTS WITH PRINTED CIRCUIT BOARD \& FULLINSTRUCTIONS. KIT PRICE: ع2-te post pald.

MAIL ORDER ONLY.
S.A.E. ALL ENQUIRIES.

DABAR ELECTRONIC PRODUCTS

*a, LIChFIELD street, WALSALL, STAFFS. WSI IUZ

FOR RAPID

 GARLAMD BROS. LTDdEPTFORD AROADWAY, LOWDON, sEs saN

TRANSISTORS

AC127	17p	BF×29	38p
AC128	18p	BFX84	25p
AC176	22p	BFX88	30p
AC187	28p	BFYS0	$21 p$
ACI88	27p	BFYSI	$21 p$
ACYI9	23p	BFY52	22p
ADI49	47p	MATI00	25p
AD161/162	72p	MATIOI	29p
ADTI40	62p	MATI20	25p
AFIIB	45p	MATI2I	29p
AFI 24	22p	OC28	58p
AFI25	19p	$0 ¢ 35$	48 p
AFl26	20p	OC44	12p
AFI27	19p	OC45	12p
AFI78	$67 p$	OC71	$11 p$
AFI 79	66p	OC72	12 p
AFI80	45p	OC75	20p
AF239	32p	-C200	27p
BC107	$11 p$	OC201	38 p
BC108	$11 p$	OCP71	60p
BC109	$11 p$	ST140	$15 p$
BC147	12p	ST141	23p
BC148	12p	UT46	$35 p$
BC149	12p	${ }_{2}$ N696	$15 p$
BC157	$15 p$	2N706A	$12 p$
BC158	14 p	2N2928G	14 p
BC159	14p	2 N 2926 Y	13 p
BDI31	75p	2N2926O	$12 p$
BDI32	$75 p$	2 N 3053	$25 p$
BFI 15	25p	$2 N 3054$	$60 p$
BFI78	32p	$2 N 3055$	12p
BFI79	56p	2N3702	$15 p$
BFI80	30p	2 N 3703	14 p
BF181	32p	2 N 3704	$15 p$
BFI84	30p	2 N 3705	$14 p$
BFI85	12p	2N3706	140
BF194	14p	2N3711	$14 p$
BFI95	14p	2N3819	$15 p$
BF196	28 p		170
BF197	15p	2N4058	10
BFWIO	70p	2N5459	$60 p$

DIODES

AA119	$11 p$	OA202	$10 p$
OA47	$7 \neq D$	BY100	$13 p$
OA90	$7 \$ p$	BY127	$22 \neq p$
OA91	$6 p$	BYZ12	$22 \$ p$

ZENER DIODES
$400 \mathrm{~mW}, 15 \mathrm{p}$: $1.5 \mathrm{~W}, 22 \mathrm{p}$

SILICON BRIDGE RECTIFIERS $\begin{array}{ll}40 \text { P.I.V... } \\ 200 \text { P.I.Y., } & \text { 2.0A }\end{array}$

MISCELLANEOUS ITEMS
Mercury 5 witch, 2 amp., 25p
B9A value bases. 2 p
$5 k \Omega$ edge control, firs most small, imported radios, 7p
20Ω volume control for '3 Ω Aneakers, CM240

240, 15 W miniature
oldering iron, \&1.70
9th edition, 75p
Transistor equivalent book, BPI, 40p

PANEL FUSEHOLDERS

for livin. fuses

CONTROLS, Log. or Lin.
Single, less switch. 15p
single, D.P. switch, $24 p$
$5 \mathrm{k} \Omega=10 \mathrm{k} \Omega, 25 \mathrm{k} \Omega, 50 \mathrm{k} \Omega, 100 \mathrm{k} \Omega$, $250 \mathrm{k} \Omega, 500 \mathrm{k} \Omega, 1 \mathrm{M} \Omega, 2 \mathrm{M} \Omega$

RESISTORS

Carbon high-stability E12 values W, Ifp:IW, 4p; 2W, 6p
Wireipound
SW, 10p ; 10W, 120

$E L$
1
1
2
2
5
2
2

ELECTROLYTICS					
$1 \mu \mathrm{~F}$	450 V	19p	$1.000 \mu \mathrm{~F}$	25 V	27p
$2 \mu \mathrm{~F}$	soov	20p	1,000 ${ }^{\text {F }}$	50V	39
$4,4 \mathrm{~F}$	350 V	14p	$2.000 \mu \mathrm{~F}$	25 V	36p
$8 \mu \mathrm{~F}$	150 V	16p	$2,000 \mu \mathrm{~F}$	50V	53p
$16 \mu \mathrm{~F}$	450 V	17p	$2.500 \mu \mathrm{~F}$	25 V	45
$25 \mu \mathrm{~F}$	50V	8 p	$2.500 \mu \mathrm{~F}$	50V	$60 p$
$32 \mu \mathrm{~F}$	450 V	24 p	$3.000 \mu \mathrm{~F}$	25 V	${ }^{48} \mathrm{p}$
$50 \mu \mathrm{~F}$	SoV	10p	5, $000 \mu \mathrm{~F}$	25 V	55p
100 HF	25 V	10p	$5.000 \mu \mathrm{~F}$	50 V	${ }^{980}$
$100 \mathrm{\mu F}$	50 V	10 p	8-8. $\mathrm{F}^{\text {F }}$	450V	18 p
250 $\mu \mathrm{F}$	25 V	12p	8-1614F	450V	200
$250 \mu \mathrm{~F}$	50 V	178	16-164F	550V	$27 p$
$500 \mu \mathrm{~F}$	25 V	18p	$16-32 \mu \mathrm{~F}$	450 V	63p
$500 \mu \mathrm{~F}$	sov	$25 p$	32-32 $\mu \mathrm{F}$	450 V	
			50-50	350 V	D
MINIATURE ELECTROLYTICS					
$\begin{array}{cl}1 \mu \mathrm{~F} & 25 \mathrm{~V} \\ 2.5 \mu \mathrm{~F} & 64 \mathrm{~V}\end{array}$					
$8 \mu \mathrm{~F} \quad 15 \mathrm{~V}$					
$\begin{array}{cc}8 \mu \mathrm{~F} & 40 \mathrm{~V} \\ 10 \mu \mathrm{~F} & 15 \mathrm{~V}\end{array}$					
VARIABLE POWER SUPPLY					
Input: 240 V , a.c. Output: 5 witched 3. $4 \cdot 5,6,7 \cdot 5, £ 4.20$ 9,12 voles d.c. at 500 mA					
NEW NEW					
MLLUSTRATED					

VEROBOARD

ALUMINIUM BOXES with lids and screws Width Depth Price

CASSETTE OWNERS!

For Philips and similar cassette recorders PUI2 Power unit for connection to $\mathbf{-}$ PP75 Main 70 , stabinsed output.
11.95
$7 \nmid \mathrm{~V}$. d.c.
and 5 pin D.I.N. pluz.

BONDED ACRYLIC FIBRE
B. A.F wadding lBin wide, lin shick. The ideal
yard.

LOW-OHM RESISTORS

CAPACITORS $\begin{array}{ll}\text { 2.2pF } & 500 \mathrm{~V} \\ \text { 3.3pF } & 500 \mathrm{~V}\end{array}$ \qquad $\begin{array}{llll}0.0027 \mu F & 500 V & S / M & 15 p \\ 0.003 \mu F & S 00 V & \text { Cer. } & 5 p \\ 0.0033_{\mu} F & 125 V & \text { P. } \$ & 8 p\end{array}$ 7 7¢p $5 p$
$5 p$
$5 p$

3 pF	500 V	S/M	7 p	$0.0033 \mu \mathrm{~F}$	500 V	Poly.		
$5 p \mathrm{~F}$	500 V	S/M	7 p	$0.0033 \mu \mathrm{~F}$	1,000V	MDC		
10 pF	125 V	P.S.	5 p	$0.0036 \mu \mathrm{~F}$	500 V	S/M		5
1.2 pF	500 V	S/M	7 ¢p	$0.0047 \mu \mathrm{~F}$	125 V	P.S		
15 pF	125 V	P.S.	5 p	$0.0047 \mu \mathrm{~F}$	500 V	P		

15 pF	500 V	Cer.	Sp	$0.0047 \mu \mathrm{~F}$
	4 p	$0.0047 \mu \mathrm{~F}$		
13 pF	500 V	$\mathrm{~S} / \mathrm{M}$	7 pp	$0.0047 \mu \mathrm{~F}$

22 pF	500 V	$5 / \mathrm{M}$
25 pF	500 V	$5 / \mathrm{M}$
$\mathbf{7} / \mathrm{p}$		
27 pF	500 V	Cer
3 P		

P

PLUGS

Car 2 arial
Cozaxial
D.I.N. 2 pin (speaker)
O.I.N 3 pin
D.I.N. 4 pin 18
D.I.N. 5 pin, 240
D.I.N. 6 pin

Jach, $2 \not \frac{\mathrm{~mm}}{\mathrm{~m}}$ unscreened
ack, $2 \neq \mathrm{mm}$ screened
lach, 3 mm unscreene
jach, tin unscrsened
ack, in unscrsened
Jack, stereo, uniscreened
jack, stereo, screened
Phono. plastic top
Phono, plated meral
Phono, fitsed 4ft lead Wander, red or black
Banana 4 mm , red or black

LINE SOCKETS

Car aerial

D.1 N. 2 pin (speaker)
D.IN. N. 5 pin, 180
D.I.N. 5 pin, 240
lack, $3 \pm \mathrm{mm}$
ack;
lack, stereo, screene
Phono. plated metal

MAIL ORDERS: C.W.O. only. Please include 10 p P. \& P. (Air mail extra). S.A.E. with all enquiries please.
 fol 2.75

Ansone trom 9 yeart up can follow the ABC fully illustrated in strwetiona. o colderlas necemary an loged on rod merial in 30 ming. Zunde, Atrice URA, 8witeorland, to Experience thrilly of world wide newa, sport music, etc. Eavesdrop on unumal broad
 y 18° Only available meparately).

INGENIOUS ELECTRONIC

SLEEP INDUCER

OMLY
 f3. 95

CANTTALEEP AT NIGHTB DO YOU WAKE UP

IN THE NIGHT AND CAN'T GET OPF TIKE TOBP. AGAIN WOULD YOU TOBATIBFYING BLREP EVERY NIGHT Then bulld chis ingenions eleat fonic aleep Inducer. It erem atops by theelf so you dem't have to weorry show if be fine on all miphtl The loudapeaker producee soothing sudfofrequency counds, continuously repentedbut in time goee on the wound gredually becomes leas and lem-untll they eventually cease Altogether, the effect it has on peopio trol to provided for adjuatios the lent on of thomes, etc., all fransistor, can be bult by anyone over 12 yesise of age in sbout two hours. No knowledge of electronice of radjo needed Extremely simple, eany-to-follow. step-by-step, fully Illustrated instruction: included. No solderine necessary. Works ofl atandard bitteries, extremely economical. Size onjy $3^{\prime \prime} \times 41^{\prime} \times 11^{\prime \prime}$-take it mywhere. gend $23.85+25 \mathrm{p}$ p. if. (parts svaliable meparately). +25 D p. * P . (parts availabl CONCORD ELECTRONIC

FIND BURIED TREASURE
Transistorised Treasure Locator Thia fully portable tranals. torised motal localor devection and kraciza dowa buried meta objecto-it aigals expot loosthan Fith loud amdible couthd (ao phoaes urso)-uned any inside-no connections needid insirs cold sil coill sevir ARCHAEOLOGICAL PIFCD TC. TNC. \&xtraindy wors. of ourlaing afjects bwriod
growni No know. from mine veers of aps upworls, anth the cleer, easy to tollow, dep-by-miep, full Illustrated Ingtructions:-Unee otandard PP buttery. No coldering necemary. Kti includes nata, acrews, Fire, etc. OMIP
 Hugirated 959 extra). Parts svallable eparately. Made of look worth 216. Eavesdrop on the excitint world of 'Aireraft Communications
 IITES PEIVATE PLAMEA, Jexplual ing Eavosirop on rownd erospoceh oompol, itrport lower, Biter for yoursulf The disciphimal volose hadity ith them when they have to take berve ripplos dectalona in emergencles-Trine into tbe iniernstional diatreme irequancy. Covert the atreraft frequency bend tncluding
 A Brive Thi fantartle fully tranalatorised thatrument can on buill by suyoue oeser min in zuder imo hours. No moldering necemary. Folly illowtrated simple instructions take you tep-by-aisp, Usee standard PPS battery. All you do la exteod rod merisl, place clome 0 any ordinary medjum wave malo (evea Lay portables). 10 con inction mitarEVED TEEDCD. GEND ONLT A AS + $20 p \mathrm{p}$. . p. for kit including came, nota, separtitely).

CONCORD ELECTRONICS LTD. (EETU) 8 Westbourne Grove, London, W.2. Callers welcome 9 a.m. -5.30 p.m. inc. Saturday

Vary the strength of your lighting with a DCWMASMICH

The DIMMASWITCH is an actractive and effic. ient dimmer unit which fiss in place of the norma light switch and is connected up in exactly the same way. The ivory mounting plate of the DMMMASWITCH matches modern electric fit. sings. Two models are available, with the bright chrome knob controlling up to 300 w or 600 w of all lights except fluorescents at mains volcages from 200-250 v, 50Hz. The DIMMASWITCH hat built-in radio interference suppression 600 Watt $\mathbf{6 3}$ 20. Kit Form $\mathbf{2}$.70 300 Wart - 22.70. Kit Form $\mathbf{2} \cdot 20$ All plus 10p post and packing.
Please send C.W.O. to:

DEXTER \& COMPANY

5 ULVER HOUSE, 19, KING STREET, CHESTER CH1 2AH Tel: 0244-25893, As supplied to H.M. Government Devartments.

AERIAL BOOSTERS

We male four types of Aerial Boosters. L45 625 UHF, L12 VHF \$05, L11 VHF Radic L10 M/W A
S/W. Price L45, L12 \& L11 E28. L10 E2.45

VALVE BARGAINS

Anys-4Sp, 14-74p: \quad EC85, EF183, EF184, EBF89. EB91, EY80, PCC84, PCCA9, PC97, PCF80, PCF88, PCL8\%, PCLE3, PCL84, PCL85; PL36, PY33, PYE2, PY800, PYB01, 30Lis, 30C15, 8-30L2

1基 TV £6-50

19* 405 Sijmiline Televislons in good working order, with complete set of epare valves

PRINTED CIRCUIT BOARD
2-8 Ins by 4 ins boarde complete with otching compound and Instructions- 4 P p

SOOMFD CAPACITORS 500mid-25v/w Brand Now Electrolytic with long jeads. IIp each

POST \& PACKING under E1-5p Over EI-10p. S.A.E. for leaflets on all Items. Money back guarantee if not completely satisfied.

VELCO ELECTRONICS

62A Bridge Street, Ramsbottom, Bury, Lancs.

B.I. COMPONENT FACTORS LTD.

For Eagie, SInclair, Data Books and Componente tw 3% resistors 1p, or $50 p / 100$. Eiectrolytic C423 4/40, 1/40, 10/16, $32 / 10.25 / 25,100 / 6 \cdot 4$, all 4p. NNo14 हैp, 100 V

 $1000 / 2525 \mathrm{p} .1000 / 5025 \mathrm{p}$. uL914 3 p . 1400/01/10/30 18 p. C.W.O. D.D. U.K. 1ep. Dlecount E10-10\%

Monoy back puarantee. Brand new to spec.
P.O. EOK 1B, LUTON, EEDE, LUI ISU DEPT. EE

T.V.'s T.V.'s T.V.'s

COLOUn SETS Guarantead working from f125. (Also some not working) hesret callers onjy
4 Channel Jsin UHF T.V.'s Despatched cested, and in full working order. 120. I9in slimline, only requires UHF suner for BBC2, untested, complete, \&

- 2 Channal 19 in 110° eube, untested
(Carriage © 1.50 exera all models.)

GY-NORMOUS
 RADIO BARGAINS!

${ }^{6}$ types, all superhets with push-puli outpue so internal laudspeaker. Supplied complete with carrying case, arphone and batteries.
Type A-Very naat litele sec, seill only $\leqslant 1-50+$ p. A p. 20p.

Type C-Large porcable radio as sold nation aliy, A.M. and F.M. coverase (Yes F.M.-08108 MHz). Horizontal pointer tuning scale. Operates from own dry batteries or a.c. maind from internal transformer isolated power pack upplied). +0 os
All these sets are BRAND NEW and complete in manufacturers original cartons, bue may equire stight attention-hence bargain prices cheaper than kits!
-CASSETTE PLAYERS-lase few only-uses standard musicassectes-possible conversion to full recorder. Deck alone worth our price of CW + p\& ${ }^{\text {a }}$ 55p.
Ce cas cet case, complece with cassecte, mic a stand Cl20 enc, $12 \cdot 0$ + p \& $\rho 55$ 710 .

SUMIKS

7 High Street
Langley, Warley, Worcs.
Callers Welcome

Everyday Electronics, July 1972

E.M.I. WOOFER AND

$€ 5.75$ Pot 85 D
Compriaing a fine example of a Wooler 10) x 6ija. With massive Cersmic Magnet, 44oz, Gaus 13.000 Unes. Aluminiam Cone centre to Improve Tweeter stin. square has a specis! lirhtweltht paper cone and maspet llay 10,000 lines. Filter condenser Included Impedance standerd 8 ohms Impedence stenderd Unelul Rasponse Base Resonance 8 ohms
12 watt SUITABLE ENCLOSURE $20 \times 13 \times 9$ in. 69 POST 25p WEYRAD PSO-TRANSISTOR COILS RA2W Ferrlte Onc. P50/1AC
I. P P $50 / 2 C C$

370 ze/s. 3rd LF. P50/3CC P51/1 or PS1/2 | 32p | |
| :--- | :--- |
| $36 p$ | | 8pare Cores

 Mullard Ferrite Rad $8 \times$ lin. $20 \mathrm{p}, 8 \times$ lin. 20 p . Printed Circuit PCA B. Taning Gang VOLUME CONTROLS

800hm Coax 4p. yd. Lonf apindles. Midget sire LIN. L/8 150 D P or $\begin{array}{lll}\text { LIN. L/B } & 15 p . & \text { D.P. } \\ \text { 8TEREO L/S } 55 \mathrm{D}\end{array}$ BRITISH AERIALITE AERAEIAL AIR SPACED $40 \mathrm{Jd} .21-40 ; 60 \mathrm{yd} .62$
FRINGE LOW LOSS Edre 5K. S.P. Trantiator 25 p

8in ELAC

HI-FI SPEAKERS

Dual cone platicised roll
surround. Larre cersmic magnet. $30-16,000 \mathrm{cDs}$.
Bast resonance
55 cps. 8 ohm
impedance.
10 watti

£4.80

music power.
BLANE ALUMIMIU1 CRASSIS $18 \mathrm{~s} . \mathrm{w}-\mathrm{R}$. Ein. gides. $7 \times 4 \mathrm{in}$ $45 \mathrm{p} ; 9 \times 7 \mathrm{n} .60 \mathrm{p} ; 11 \times 7 \mathrm{~m} .70 \mathrm{p} ; 13 \times 81 \mathrm{n} .90 \mathrm{p} ; 14 \times 11 \mathrm{n}$ $93 p ; 15 \times 14 \mathrm{in} .99 \mathrm{p} ; 11 \times 3 \mathrm{in} .50 \mathrm{p} ; 16 \times 10 \mathrm{in} .21$.
ALUMINIMUM PANELS 18 \&. W.E. $6 \times 4 \mathrm{in} .9 \mathrm{p}: 8 \times 81 \mathrm{n} .16 \mathrm{p}$ $14 \times 3 \mathrm{in}, 16 \mathrm{p} ; 10 \times 7 \mathrm{in} .19 \mathrm{p} ; 12 \times 5 \mathrm{in} .20 \mathrm{p} ; 18 \times 81 \mathrm{n} .28 \mathrm{p}$ $18 \times 6 i n .28 \mathrm{p} ; 14 \times 9 \mathrm{in} .34 \mathrm{p} ; 12 \times 12 \mathrm{in} .40 \mathrm{p} ; 16 \times 10 \mathrm{in} .50 \mathrm{p}$ \& inch diAmeTER WAVE-CHANGE SWITCHES 25 p . or 4 p. 2-way, or 4 p .8 - way 25 p .
TOGOLE SWITCHES. sp .14 p ; $\mathrm{dp} .18 \mathrm{p} ; \mathrm{dp}$. dt. 23 p .

"THE INSTANT" BULK TAPE

 ERASER \& HEAD DEMAGNETISER 200/250\%. A.C. 12.35 PontLenget 8.A.E.
HI-FI STOCKISTS RETURN OF POST DESPATCH RADIO COMPONENT
R.C.S. STABILISED POWER PACK KITS All parts and initructions with Zoner Diode. P-jated Circait, Brdse Rectifies sad Double Wound Maing Tranalormer infot $200 / 240 \mathrm{v}-\mathrm{AC}$. Output voltagea availatie 6 of 9 or 12 or 16 of 18 or 20%. DC at 100 mA or less. PLEASE STATE VOLTAGE REQUIRED.
©2 PORT Detalls S.A.E. Size $34 \times 11 \times 1 \| \mathrm{f}$.
GENERAL PURPOSE TRANSISTOR

PRE-AMPLIFIER BRITISM MADE

 For use with valwe of transistor equipment.
Fuil Instractions supplicd. Detaile 8.A.E.

 $100 / 8 \mathrm{~V}$
LOW VOLTAG 10 p
$32+32 / 350 \mathrm{~V}$
25 D
LOW TOLTAGE ELECTROLYTICS
$1.2 .4,5,8,16$
$800 \mathrm{mF} .18 \mathrm{~V} .15 \mathrm{p} ; 25 \mathrm{~F}, 20 \mathrm{p} ; 50 \mathrm{~V} 200 \mathrm{mF} .16 \mathrm{~V}, 10 \mathrm{D}$ $1000 \mathrm{mF}, 12 \mathrm{~V} .17 \mathrm{p} ; 25 \mathrm{~V} .35 \mathrm{p} ; 50 \mathrm{~V} .47 \mathrm{p} ; 10 \mathrm{~V} .70 \mathrm{p}$. $2000 \mathrm{mF} .6 \mathrm{~V}, 2 \mathrm{mp} ; 25 \mathrm{~V} .42 \mathrm{p} ; 50 \mathrm{~V} .57 \mathrm{p}$.
$2500 \mathrm{mF}, 50 \mathrm{~V}, 62 \mathrm{p} ; 3000 \mathrm{mF}, 25 \mathrm{~V} .47 \mathrm{p} ; 50 \mathrm{~V} .85 \mathrm{p}$. $2500 \mathrm{mF} .50 \mathrm{~V} .62 \mathrm{p} ; 3000 \mathrm{mF}, 25 \mathrm{~V} .47 \mathrm{p} ; 50 \mathrm{~V} .85 \mathrm{p}$.
$5000 \mathrm{mF} .6 \mathrm{~V} .2 \mathrm{p} ; 12 \mathrm{~V} .42 \mathrm{p} ; 25 \mathrm{~V} .75 \mathrm{p} ; 35 \mathrm{~V} .55 \mathrm{p} ; 50 \mathrm{~V} .95 \mathrm{p}$ CERAMIO 1pT to 001 mP , 4p. Silver Mice 2 to 5000 pF . 4p. PAPER 850v-c14p. $0518 \mathrm{p} ; 1 \mathrm{mP}$ 15p; 2 mP 150 F 15p. $500 \mathrm{~V}-0.001$ to $(.054 \mathrm{p} ; 0.15 \mathrm{p} ; 025 \mathrm{8p} ; 047 \mathrm{8m} \mathrm{p}$. SILVER MICA. Clone tolerance $1 \% 2 \cdot 2-500 \mathrm{pF} 8 \mathrm{p} ; 500-2 \cdot 200$ pF 10p; 2.700-3,600p P 20p; 6,800pF-001. IId 80 p ; each TWIN OANG. $0=0$ " $208 \mathrm{pF}+176 \mathrm{pF}$, 65p; Slow motion drive $365+365$ with $35+25 \mathrm{pF}, 50 \mathrm{p} ; 500 \mathrm{pP}$ alow motion. flanderd $368+365$ with $35+25 p \mathrm{p}, 50 \mathrm{p} ;{ }^{5} \mathrm{~s}$
SEORT WAVE SINGLE. 10 pF 30 p ; 25pY 55p; B0pF 55 p NEON PANEL ENDICATORS E5OV AC/DC Bod or Amber 20p.
 EIOR STABIL:TY. \dagger. $2 \%, 10$ ohms to 1 net., 10 p . Ditto 5\% Prefered values 10 ohms to 10 mar, 40 . WIRE-WOUNB RESISTORS 5 watt. 10 नitt. 15 watt 10 ohma to 100 ž $10 \mathrm{pash} ; 2+$ watt. 1 ohm to $8 \cdot 2 \mathrm{ohms} 10 \mathrm{p}$.

DECCA DECCADEC GARRARD

 MOTOR UNIT MKH

METAL PLINTH \& PLASTIC COVER Cut out ready for Garmard or
B.S.R. Will play with cover In position. Latest deaton. Covered it black leatherette.

POST 25p ALSO AYAILABLE IN SOLID MATURAL MAHOGANY WAX POLISHED FINISH AT SAME PRICE

MAINS TRANSFORMERS $\frac{\text { ALL }}{2 b_{p} \text { posst }}$

 $350-0-35080 \mathrm{~mA} .83 \mathrm{v}$. 3.5a. 6-3v. 12. or 5v. 2a. 2300

 MINI-MAINS $207,100 \mathrm{mh} .11 \times 1 \| \times 1 \mathrm{lin}$.
DUtto (appod mec. $1.45 ., 2,3,4,5,63 \mathrm{~F} .14$ amp t 2 mpp. 3. 4, 3, 8, 8, $9,10,12,15,18,24$ ead 30 Outputi 22.25 1 smp.. 6. 8, 10, 12. 16, 18, 20. 24, 30. 36, 40. 48, 60. 22.25 2
2
5 mp. $6,8.19,12,16,18,20,24,30,36,40,48,60 . ~ £ 3.25$ $5 \mathrm{mmp} .6,8,10,12,16,18,20,24,30,36,40,48,60.28-75$
AUTO TRANSTORMERS 115 v . to 230 v , or $£ 30 \mathrm{v}$, to 115 v . AUTO TRANSFORMERS 115 v . 10230 v . or $£ 30 \mathrm{v}$.
$150 \mathrm{w} .22 .25 ; 500 \mathrm{w} .28 \cdot 25: 750 \mathrm{w} .110 ; 100 \mathrm{w} .214$.
 lot 8 or 12v. 1,1 mp. $81 \cdot 50 ; 2$ amp $21 \cdot 80 ; 4$ anp. $22 \cdot 50$.

 LUCAS 2DS500 Bridge 70 V 5 mmp 21.

Teaz Cabinet Size $18 \times 10 \times$ 9in. Pont 25 p MINIMUM POST AND PACKING ISp
SPECIALISTS

ALL TODELS "BAKER SPEAEERS" IN STOCK Hi-P1 Enclosurt Manual contalning
date and cublo teblen. 42p Post Pree
BAKER /2in. MAJOR 19

$80-14,500$ e.p.r., $12 i n$. double cone, wooler tha With a BAKER cersmic marnet assembly baring a Hux density of 14,000 gausa and a total llax of 145,000 Haxwells. Bas resonanee 40 c.p.s. Rated 30 witt. 85 ohms. Post Free Wodule 1dt, 30-17,000 c.p.s with twecter, crossorer $\begin{aligned} & \text { batlle and } \\ & \text { instractions. }\end{aligned} \subset \| .50$

BAKER "BIG-SOUND" SPEAKERS		
'Group 25'	'Group 35'	'Group 50'
12 inch	18 lach 59	15 inch $\leqslant 19$
25 watt	35 wratt	50 wat
3 or 8 or 15 ohm	3 or 8 or 15 ohm	8 of 15 oh

LOUDSPEAKER CABINET WADDING18in. wide, 15 p It

GOODMANS $6 \frac{1}{2}$ in. HI-FI WOOFER 8 obm, 10 watt. Large ceramic magnet.
Special Cambric cone arround. Frequencr specia Cambic cone ideal P. A. Colimne Hi-Fi Enclosares systems, eto.

elac cone tweeter

The movige coll diaphrarm gives a good radia tion pattern to the higher Irequencias from $1,000 \mathrm{cps}$ to $18,000 \mathrm{cps}$. Size 3$\}$ $31 \times$ gin deap. Rating 10 watte. 3 ohm of 16 obal models. $\{\mid .90$ Port 10_{0}
speater coverina materials. Samplea Large s.a.E. Hotn Tweetery $8-18 \mathrm{kc} / \mathrm{t}$. 10 w 8 ohm of 15 ohm 21.50 .
 SPECIAL OTPER! 80 obm 2ilin.; 2lin.; 35 ohm. 2ta.: sin.
 15 ohm. 3lis. din.; $6 \times 41 \mathrm{n}$; $7 \times 41 \mathrm{n}$.; 3 ohm. y in. 3in. 5×3 in.
LOUDSPEAEERS P.M. 3 OHMS. $7 \times 4 \mathrm{in}$. E1-e5: 8 bin. 21.50; $8 \times \sin . £ 1 \cdot 00 ; 8 \times 2, \mathrm{In}$. 90 p 8 in . $£ 1.75 ; 10 \times 6 \mathrm{in} . \varepsilon 190$. RICHARD ALLAN TWIN CONE LOUDSPEAEERS. 8in. dia. 1 watt; 10in. dia. 5 watt; 1zin. dia. of wht 3 or 8 of 15 Dhm models eze each. Porkin
Valve oufput trans. 25p; mike trans. 50:1 250 . 5 WATT MOLTI-RATIO, 3.8 and 15 ohmi 8op.

BAKER 100 WATT

ALL PURPOSE

TRANSISTOR
AMPLIFIER
4 Inputs speecb and
munic. Mirine lacilities
Responee $10-30,000$ cpa. Matches.
all loudapeakers.A.C. $200 / 2 \$ 0 \mathrm{~V}$.
Separ te Trible and Basa Controls. Guaranteed. Detailas.A.F.

BARGAIM Am TUNER. Medium Wave.
Tranditot Buperhet. Ferrito aorial. 9 volt.
$£ 4.50$
BARGAIN 4 CEANNEL TRANSISTOR MONO EIXER Add music: 1 hightights and sound eflects to recordinga. Will miz M crophone. records, tape and tunot $\quad \mathbf{3 . 5 0}$ with separaze controls into sinele output. 0 volt. STEREO VERSION OF ABOVE \&4.50
BARGAIN FM TUNER 88-108 Mc/a Sir Transiator. 9 volt Printed Cireait. Calibrated alide dial tuning. $\quad \mathbf{1} / 2.50$ Wrannt Cabinel size $7 \times 5 \times$ tinch 12.50

BARGALN FM TUAER as a bove lesa cabinet
68.85

BARGAIN 3 WATTAMPLIPIER. 4 Transiator

COAXIAL PLUG 6p. PANEL SOCKESS 6p. LINE 18p. OUTLET BOEES, SURPACE OR PLUSH 250 .
GALANCED TWIN FEEDERS 5D Yd. 80 ohms or 300 ohms. JACE SOCKET Std. open-circuit 14 p , closed circait 230; Chrome Leac $80 c k$ kt $40 p$. Phono Plugi $5 p$. Phono Socket $5 p$. JACE PLUGS Sid. Chrome 16p: 3.5mm Chrone 14p. DIK SOCKETS CEasia 3-pin 10p; 5-pin 10p. DIN SOCKETS Land 3-pin 18p; 5-pin 25p. DIN PLUGS 3-pin 18p: 5-pin 25p. VALVE HOLDERS. $5 p$; CERAMIC 8p; CANS $3 p$.
E.M.1. TAPE MOTORS Post 1 bp . 120 v . or 840 v . AC. $1,200 \mathrm{r.p.m}$. 4 pole
135 m . Spindie $0.187 \times 0.751 \mathrm{~m} \leq 1.25$ 135 mA . Spiadle $0.187 \times 0.751 \mathrm{~m}$
8 size $31 \times 21 \times 2.25$ BALFOUR GRAM MOTORS 1807. of 240 m . A.C. 1,200 r.p.m. 4 pole
 CUSTOMERS FREE CAR PARK CALLERS WELCOME 337 WHITEMORSE ROAD, CROYDON Open9-6 p.m. (Wednesdaya 0 - p.m., Saturdaya9-5 p.m.)
postage.) Buses $50.68,159$ Rail Selhurst. Tel. $01-684-1645$

Everyday Electronics Classified Advertisements

Classified Advertisements, "EVERYDAY ELECTRONICS," Fleetway House, Farringdon Street, London EC4A 4AD.

RECEIVERS and COMPONENTS

COMPUTER PANELS 5BC108, dlodes, 4-50p poit 10p. PANELS WITH SILICON AND GERM:
 WITH 4-LA2 POT CORES + 112% CAPS 5Pp post 15p. IC: 7400 SERIES ON PANEL(S) $10-75 p$ post 10p. FALLOUTS 5 - $13 p$. ORP12 on panel er equipt. 35p cp. BANK 20 WIRE ENDED NEONS 50p poit 8p. SENO LARGE S.A.E. FOR LIST OF 718 ASSORT

J.W.B. RADIO

75 MAYFIELO RDAD BALFDRD SANCS MAIL ORDER ONLY

ILLUSTRATED COMPONENT

 catalogueWITH USEFUL DATA AND DISCOUNT VOUCHERS 25p POST FREE (UK)

W.E.C. LTD.
 HIGH STREET, RIPLEY SURREY

ALWAYS USEFUL. Assortment washers (plain, locking, insulating), circlips. clips, rivets, etc, $200-15 \mathrm{p}, 1,000-65 \mathrm{p}$. Components used $100-60 \mathrm{p}$, new $100-\mathrm{fi}$. New resistors (P.V. to IW) $100-60 \mathrm{p}$. All good mixtures. Postal only. Chaplin. 5 Brewhouse Hill, Wheathampstead. Herts.

> ELECTRONIC KITS POR EE PROJECTS
> H WE: vous wattel weth lap twinthe) for
net if verit tome frumu
portare snd packing.
COURSES. SHAVER INVERTER, Alirtiwed
thi- lluthth.
trul|
17 Alhart 8quare, Strattord. London, E15 1\&J

SERVICE SHEETS

SERVICE SHEETS (1925-1972) for Televisions, Radios, Transistors, Tape Recorders, Record' Players, etc., by return post, with free Fault-Finding Guide. Prices from 5p. Over 8.000 models available. Catalogue i3p. Please send S.A.E. with all orders/ enquiries. HAMILTON RADIO, 54 London Road, Bexhill, Sussex. Telephone: Bexhill 7097.

MISCELLANEOUS

RECORD TV SOUND using our loudspeaker isolating transformer. Provides sate connection to recorder. Instructions included. \&I post free. CROWBOROUGH ELECTRONICS (E.E.), Eridge Road, Crowborough, Sussex.

CHROMASONIC ELECTRONICS is well and living at 56 Fortis Green Road. London 103 HN .40 page illustrated catalogue 20p post free.
C. R. HADLEY
24 WOODHILL, HARLOW, ESSEX. Add 5p P. 景 P Catalogue 5 p stamp or Iree with order. All our stocks are brand new with money back GUARANTEE

NO NEED TO WORRY ABOUT

 A TRANSMITTING LICENCEbecause this GPO approved transmitter/ receiver kit does not use R.F. and you can get one easily. Your transmissions will be virtually SECRET since they won't be heard by conventional means. Actually it's TWO KITS IN ONE because you get all the printed-circuit boards and components for both the transmitter AND receiver. You're going to find this project REALLY FUN. TO-BUILD with the EASY-TO-FOLLOW instructions. An extremely flexible design with quite an AMAZING RANGE-has obvious applications for SCHOOL PRO. JECTS, LANGUAGE, LABORATORIES, SCOUT CAMPS, etc.

GET YOURS! SEND $85 \cdot 50$ NOW

 S.A.E. ic detailsTO: BOFFIN PROJECTS, DEPT. KEE.
4 CUNLIFFE ROAD,
STONELEIGH، EWELL, SURREY
sound gnpplies
LOUOHTOM) CO. LTD.

FLECTROITCA DEPT. Tel. 01-508-8715
12 8marta Lane, Loughton, Ersez.

 Thursday.

12 VOLT FLUORESCENT LIGHTS (as illustrated)

Best power cucs, be Independent. Ideal for Caravans, Tent, Emergency Lighting, etc. Works any where where 12 V is aveilable. Guaranteed for six montlis, READY TO USE ec:-
12ins 8 watt $£ 3.60$ port paid 21ins 13 watt $£ 4.60$ post paid SALOP ELECTMONICS SALOP ELECTMONICS Callers
23 Wyle Cop
Shrewselcome Shrowshiry: Enquiries Lorge S.A.E.

Cases for Everyday electronics Proiects.
Specially made to suit actual specifications in EVERYDAY ELECTRONICS in two tone moulded plastic.
Examples-many others available
Moisture Meter
Darkroom Timer
Rain Alarm
Home Sentinel
0.65
0.75

Remore Temp. Control ... 0.75
Wrise (SAE) stasing project required for Brochure and Price List.
M.P.E. Ltd., Dept. EE., Bridet Street.

Clay Cross, Chesterfield, 545 9NU.

EVERYDAY ELECTRONICS, parts 2 3, 4, 5. Avo CT38 multimeter, components, books, photo'flash service sheets. Box 1.

CIRCUITS

ENCAPSULATE your circuits in crys tal clear plastic. Cold pouring, quick setting. SAE. Westby Products, Dept PF1, School Lane, East Keswick, Nr Leeds.
way to pass A.M.S.E., A.M.I.M.I., City \& Guilds (all branches). Gen. Cert., etc., and pives details of courses in all branches of engineering Mechanics, Flectrical. branches of engineering Mechanics, Electrical. You must read this book.

Send for your copy today-FREE! B.I.E.T. B32, Aldermaston Court, Reading, RG7 4PF
Accredited by the Council for the
Accreditntion of Correspondence Cullezes
BRITISH IWSITIUIE OF ENGINEEEIAG IECHMOLOGY

TECHNICAL TRAINING in Radio, TV \& Electronics through world-famous ICS. For details of proven home-study courses write: ICS (Dept. 566). Intertext House London, SW8 4UJ.
MEN! You can earn 550 p.W. Learn computer operating. Send for FREE computer operating. Send for FREE brochure-London Computer Operators Training Centre, G22
House, $9-15$
Oxford
Otreet,
London, W.1.

PHILIPS GUIDE to Junior Electronics, this comprehensive booklet is now available, price $50 \mathrm{p}+10 \mathrm{p}$ p. $\& \mathrm{p}$. from GERRARD ENGINEERING LTD., 20a South End, Croydon, CRO 1DN. Tel: 688 5705. Ext. 6.
"SHORTWAVE VOICES of the world" £1.55; an exceptional book. "World Radio TV Handbook" £2:80. "How to Listen to the World" $£ 1-35$. Under $£ 2$, postage 10 p worldwide. iRC/3p for pricelist. (Mail only.) David McGarva, Box 114 A , Head Post Office, Edinburgh EHI 1HP. Closed June 20July 3

YATES ELECTRONICS (FLITWICK) LTD
 DEPT. E.E., ELSTOW STORAGE DEPT. KEMPTON HARDWICK,
 BEDFORD.

C.W.O. PLEASE. POST AND PACKING, PLEASE ADD 'IOp TO ORDERS UNDER 62.
Catalogue which contains data sheers for mose of the components listed will be sent free on request. op stamp appreciated.
OPEN ALL DAY SATURDAYS

RESISTORS

\$W Iskra high stability carbon film-very low noise-capless construction. WW Mullard CR25 earbon film-very small body size $7.5 \times 2.5 \mathrm{~mm}$. fW 2% Electrosil TRS
Power
wates

Power wates	Tolerance	Range
$\frac{1}{1}$	5\%	4.7@-2.2m
+	10\%	3. $3 \mathrm{M} \Omega-10 \mathrm{M} \Omega$
t	2\%	$10 \Omega-1 \mathrm{M}$
,	10\%	$1 \Omega-3 \cdot 98$
t	5\%	4.7R-1M
4	10\%	$1 \Omega-10 \Omega$

Values
available
E24
E12
E24
E12
E12
E12
\quad Price
$1-99$
$10 p$
$100 p$
$3.5 p$
100
100
$10 p$
$6 p$

Quantity price applies for any selection. Ignore fractions on total order.

DEVELOPMENT PACK

0.5 watt 5% Iskra resistors 5 of each value $4-7 \Omega$ to $1 \mathrm{M} \Omega$.

El2 pack 325 resistors $\mathbf{4 2} \mathbf{4 0}$. E24 pack 650 resiszors $44 \cdot 70$.
POTENTIOMETERS
Carbon track $5 k \Omega$ to $2 \mathrm{M} \Omega$, log or linear $(\log f W$, lin $t W)$.

SKELETON PMESET POTENTIOMETERS
Linear: 100. 250. 500Ω and decades $805 \mathrm{M} \Omega$. Horizoneal or vertical P.C.
mounting (0.1 matrix).
Sub-miniature 0.1 W , Sp each. Miniature 0.25 W . 6p each.

TRANSISTONS

BRUSHED ALUMINIUM PANELS

$12 \mathrm{in} \times 6 \mathrm{in}-25 \mathrm{p}$; $12 \mathrm{in} \times 2$ inin-10p; $9 \mathrm{in} \times 2 \mathrm{in}=7 \rho$.

SLIDE虫 POTENTIOMETERS

$86 \mathrm{~mm} \times 9 \mathrm{~mm} \times 16 \mathrm{~mm}$, length of rack 59 mm
SINGLE 10K, 25K, 100 K log. or lin. 40p.
DUAL GANG, $10 K+10 \mathrm{~K}$ erc. log. or lin. 60 p .
KNOB FOR ABOVE I2p.
FRONT PANEL 65p
18 Gauge panel $12^{*} \times 4^{*}$ with slots cut for use with slider poss. Grey or matt
black finish complere with fixings for 4 pots.

MULLARD POLYESTER CAPACITORS C298 SERIES

$400 \mathrm{~V}: 0.001 \mu \mathrm{~F}, 0.001 \mathrm{~S} \mu \mathrm{~F}, 0.0022 \mu \mathrm{~F}, 0.0033 \mu \mathrm{~F}, 0.0047 \mu \mathrm{~F}, 2 \mathrm{2}$ p. $0.0068 \mu \mathrm{~F}, 0.01 \mu \mathrm{~F}$, 0.015μ F, 0.022μ F, 0.033μ F, 3p. 0.047μ F, 0.068μ F, 0.1μ F, 4p, 0.15μ F, 6p. $0.22 \mu \mathrm{~F}, 7 \frac{1}{2} p$ $0.33 \mu F, 11 \rho, 0.47 \mu F, 13 p$.
$160 \mathrm{~V}: 0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~S}, 0$. $160 \mathrm{~V}: 0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, \mathrm{Jp} \cdot 0.1 \mu \mathrm{~F} 3 \not 1 \mathrm{p} .0 .15 \mu \mathrm{~F}$, $44 p .0 .22 \mu \mathrm{~F}, 5 \mathrm{sp} .0 .33 \mu \mathrm{~F}, 6 p .0 .47 \mu \mathrm{~F}, 74 \mathrm{p} .0 .68 \mu \mathrm{~F}, 11 \mathrm{p} .1 .0 \mu \mathrm{~F}, 13 p$ MULLARD POLYESTER CAPACITORS C280 SERIES 250 V P.C. mounting: $0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 3 \mathrm{Bp}, 0.033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}$
 1-5 μ F, 20p. 2. 2μ F, 24 p.

MYLAR FILM CAPACITORS IOOV | CERAMICDISCCAPACITORS $0.001 \mu F, 0.002 \mu F, 0.005 \mu F, 0.01 \mu F, 0.02 \mu F$

100pF to 10,000 pF, 2p each

ELECTROLYTIC CAPACITORS-MULLARD C426 SERIES
(MF/V) $10 / 2 \cdot 5,40 / 2 \cdot 5,80 / 2 \cdot 5,160 / 2 \cdot 5,320 / 2 \cdot 5,500 / 2 \cdot 5,8 / 4,32 / 4,64 / 4,125 / 4,250 / 4$, $100 / 4,6 \cdot 4 / 6 \cdot 10,25 / 6,4,50 / 6 \cdot 4,100 / 6 \cdot 4,200 / 6 \cdot 4,320 / 6 \cdot 4,4 / 10,16 / 10,32 / 10,64 / 10$ $25 / 25,50 / 25,80 / 25,1 / 40,4 / 40,8 / 40,16 / 40,32 / 44,50 / 40,0 \cdot 64 / 64,2 \cdot 5 / 64,5 / 64,10 / 64$ 20/64, 32/64.

MULLARD C437 SERIES

$100 / 40,160 / 25,250 / 16,400 / 10,640 / 6-4,800 / 4,1000 / 2$-S, 9p. 100/64, 160/40, 250/25, 400/16, 640/10, 1250/4, $1000 / 6 \cdot 4,1600 / 2 \cdot 5,12 p, 160 / 64,250 / 40,400 / 2 \cdot 5,640 / 16$ $2000 / 4,1000 / 10,1600 / 6 \cdot 4 ; 2500 /$
$1600 / 10,2500 / 6 \cdot 4,4000 / 2 \cdot 5,18 \mathrm{p}$.

| THERMISTORS | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| VAIOS5S 15p | VA1066S 15p | | | |

[^4]10 pF to $1,000 \mathrm{pF}$ E12 Series values 4 p each.

BRAND NEW GUARANTEED

TRANSISTORS											
$2 \mathrm{C301}$	20	2， 3.404	32．p	40316	${ }^{5} \mathrm{p}$	bey 30	27！ p	BAX ${ }^{\text {a }}$	821］	NKTtol	8%
203302	80	2N3405	45p	403513	47 p	HCY31	30 p	189881	621p	NKT402	80 p
20303	20p	2N3414	$22 / \mathrm{p}$	40314	$3 \% 10$	RECY3	50p	B8X 76	221p	NKT403	S
20306	12， P	$2 N 3415$	2210	40320	4710	$\mathrm{BCY}^{\text {Y } 33}$	25 p	R8X ${ }^{17}$	27］	NKT404	6210
26308	30 p	$2 \mathrm{~N} 3+16$	37.10	40323	3210	BCY34	30 p	188×78	2710	NKT405	750
$2 \mathrm{Cav9}$	${ }^{30 p}$	2N3417	3710	403：－4	47 p	beyas	40p	B8Y 10	871p	NKTsion	621p
29371	15p	2N3570	11.25	403：26	376	B4Y39	${ }^{60}$	188Y11	2710	NKT＋5i	6210
20374	20p	2N3ST2	87	40329	30p	HCY40	50p	$188 Y 24$	${ }^{15 p}$	NKT45\％	621p
20381	22.10	2 N 3605	276	40344	2710	BCY 42	15p	B8Y25	5p	NKT453	1710
2 N 404	22 p	2N3B46	27¢p	40347	57 lp	ncys	15p	B8Y26	171p		321］
2N696	20 D	2N3607	22］	40348	3210	ECY3 4	321 p	B8Y47	1710	NKT613F	32］ D
2 N 897	17 p	$2 \mathrm{N3702}$	11 p	40380	4215	Lecyss	22 ¢p	вм Yos	17\％p	－Kт674	30p
2N648	25p	2N3703	10D	40361	47 J	RCY59	22）p	B8Y：9	17 D	N6T6Tit	30 D
2N706	12ip	2 N 3704	11 p	＋03632	5710	HCYB0	975	B8Y 39	25 p	－KT713	85p
2N705	1210	2N3705	10p	$403 i 0$	32 F	beyto	200	n8Y38	25p	Nкт781	Op
2N708	${ }^{16 p}$	2N3706	09p	40406	5710	ncY71	25p	H8Y37	25p	NKT10，	30p
2N709	6210	2N3707	11.	40407	40p	BuYza	176p	B8Y38	2210		
2N718	250	2N3708	07p	40408	521p	BLZ 10	275	RSY39	221P		3710
2N728	30p	2N3709	09D	40410	82 ${ }^{\text {p }}$	BCZII	421p	H8Yso	321 D	K T 10519	
2N727	30p	2N3710	09p	403674	57.10	HI） 18	21.121	B8Y31	321p		3210
2 NOL	17¢ ${ }^{\text {d }}$	2N3711	12p	40468a	35 p	B0121	85p	［88Y5：	3219		
2N916	17¢p	2N3715	¢1．25	\＄0600	575	HDI\％3	821p	148Y3	3710		4710
2 N 018	30 p	2×3716	21.30	AC 107	30 p	RDIE4	60 p	B8Y54	40 D		
2N929	22 ${ }^{\text {p }}$	2N3791	22.08	ACl：3	20p	BD131	750	B4Y5	80 D		3710
2N030	$2: 10$	2N3819	${ }^{350}$	ACL^{127}	250	B5132	85	HMY ${ }^{\text {dis }}$	4710		
9N1090	22 p	2N3823	9710	ACl28	20 p	BDY 10	21.354	B8Yig	$4{ }^{\text {d }}$		
2N100t	22.0	2 N 3 \％ 4	87p	Aclst	22］D	BDVI	［11．62 ${ }^{1}$	13878：	521D		
2N1131	25p	$2 \mathrm{NaPs}^{\text {a }}$ A	2710	AC176	25 p	13 Y 17	11.50	BEY	37ip		
2N1132	25p	2N3955	27p	AC187	$62 / \mathrm{p}$	Hisis	¢1．75	B8Y95．	12］p	KT80118	
2N1302	17p ${ }^{\text {p }}$	$2 \pm 3855 \mathrm{~A}$	800	ACl188	8740	BDY19	21．97）	Rswil	4210		11.12
2N1303	1710	2N3H56	30 p	ACY17	2710	в 3 צ\％0	11．121	188570	27.0		
2 N 1304	22pp	2 N 3856 A	350	ACY18	25 p	BDYas	97t ${ }^{\text {c }}$	C111	75 p		
2N1305	221p	2N3R58	25 p	ACY19	250	RDY 60	21.25	（1424	270		
2N1306	25 D	$2 \mathrm{~N} 3 \mathrm{sb8a}$	30 p	ACY20	25 p	BbY61	12.25	C422	350		221］
2N1307	25D	2N3A39	27	ACY21	250	BDY6	11.00	C． 42	40 D		
2 N 1308	${ }^{30}$	2N3859A	3210	ACY ${ }^{2}$	20 p	BFIIS	250	（128	3719		9210
2 N 1309	30D	2N3840	30 D	ACY28	200	1 $1+117$	471	C74	30 D		
2N1607	17¢ ${ }^{\text {P }}$	2N3866	11.50	ACY 40	20 p	RF163	371	D16P	37.19		921p
2N1613	25 p	$2{ }^{1} 3887$	40 D	ACY41	250	Brisio	18 p	119P0	40 p		
2N1631	85p	2N3a77A	40 p	AOY 4	40 p	［5＋183	190	D16153	37.0		921p
2 N 1632	30 p	2×3900	3710	A 1）140	5210	B ${ }^{1 / 2}$	30 D	DIEP4	40 D		
2N1838	27 p	2x3900 A	40 p	AD149	5710	HF178	30 p	EETIO	30 p		210
221639	2710	2 N 3901	97 l	abiso	621］	114179	30	aETlis	20 p	0 C 20	750
2N16711	1.00	2 N 3903	35p	AD161	3710	Br＇180	33p	GETII	20 D	Or22	30p
2N1711	25p	$2 \mathrm{Na904}$	$35 p$	A1162	3710	日t゙181	321 p	GETIIS	20	Or23	0
2N1889	s2 \dagger p	2N3905	8710	AFItos	421 p	Br＇184	25	（aETIl9	20 p	OC54	Op
2N1月93	87 D	2N3906	376	Afllt	25 p	Brims	4210	aET1？0	52／p	Oces	S0p
2N2147	82%	2 N 4058	17¢p	AF115	25 D	Br゙194	1710	GET873	12］p	O－	710
$2 \mathrm{~N} 21+\mathrm{B}$	5710	$2 \mathrm{~N}+059$	10p	AF＇115	25 D	BFI9s	15	वетнно	300	OC2	$621 p$
2N2160	67¢ ${ }^{\text {P }}$	2N4060	1210	AF117	25 p	Bristi	4230	GETAR7	20 p	OC：	621 D
2Na103	40D	$2 \mathrm{~N}+061$	1210	AFIIS	6210	Brisz	421	GE：T8R9	22］${ }^{\text {d }}$	OC35	50 D
2N2193A	4210	2sidab	121p	AFlis	20 p	HF198	42，10	aETss	221 D	OC36	2210
2N2194A	30 p	$2 \mathrm{~S}+24$	4710	AF194	2210	8F－200	5210	（iET89\％	2210	0 CH 1	221p
2N以P17	27 p	2N4285	171p	AFI2S	200	Bray	14 p	GETA97	22.1	OC4：	25p
2N2218	23 p	2N4286	171p	AFI26	20 D	Rドロ	190	GET89	22｜${ }^{\text {p }}$	OC44	20p
2N－219	23p	2N42R7	1710	AF127	1710	1115937	23p	MJdno	ع1．07	OCd5	21p
2N2220	25p	2N4288	1718	AF＇139	3710	BF＇238	23 p	3，J4：0	¢1．12	0 CH 4	150
2N2921	25p	2N 4290	17 D	AF178	421 P	Bros4	23 p	31．14291	f1．12	Oc70	15p
2N2222	30 p	2N4291	1：ip	A $\vdash^{1} 179$	72 p	Br゙wn	4710	MJ ${ }_{3} 30$	21.02	0071	1210
2N2270	4710	2x＋292	1810	AF180	52.	BFA12	221 p	M． 14.40	95 D	OC7 ${ }^{\text {a }}$	12tp
3N2297	${ }^{30 p}$	$2 \mathrm{P}+303$	47 p	AF＇181	421 p	BFX 13	$22 \mid$ D	31.5480	971	OC74	3210
2N2368	17\％	2 N 5027	5210		421 D	BFX29	30 p	MJ481	£1．25	OC75	22｜p
2N2369	171p	2N5038	5710	A ${ }^{\text {P27279 }}$	4710	Br゙×30	30 D	M1． 1490	¢1．00	0 C 76	2210
${ }_{2} \mathrm{~N}_{23698}$	$17+p$	2N5029	471p	AF280	62. p	BFXt2	3710	MJ491	21．37	0 CL 5	30 p
2N2410	421p	2N5030	421p	A $\mathrm{r}^{2} \mathrm{~L} 11$	321 p	RF゙X44	3710	3J1800	£2－17i	0481	20p
$2 \mathrm{~N}^{2} 483$	27 p	2N5172	12．p	$\mathrm{ABY}^{\mathbf{Y}} \mathbf{2}$	25p	Нゲメ＊	671 p	\＄13E340	621p	0 cs 1 D	22 D
${ }^{2} \mathrm{~N} 2484$	32.8	2N5174	5210	A8Y27	37.1	3 Bx 4	$25 n$	MJF．5：0	60 p	Oc83	25p
2N2539	$221 p$	2 N 5175	521p	ABY28	2710	Brass	32 ${ }^{\text {p }}$	MJ P ：2 21	73 p	$00^{8} 4$	25p
2N2540	221 p	2 N 5176	450	A8Y29	2740	HF゙X86	25p	MPP102	421 ${ }^{\text {D }}$	OC139	321p
2N2613	${ }^{35 p}$	2NSt32 4	，	A8Y33	${ }^{25}$	Rトメ87	2710	MPr＇103	3718	OCll 40	32． D
2 N 2614	30 D	205245	45D	ABY50	25p	13トメ88	25p	MPF104	37 p	OClio	30 p
2N2646	52 p	2N5246	481 p	ASY51	32 ［p	Br） 89	621D	MPrios	37 ip	OC171	0p
2N2696	321p	2N5249	$6: 10$	A8Y54	25p	Br×93A	70p	MP93638	$332{ }^{\text {P }}$	OC200	40p
2N8711	25p	2N5：65	13.25	A8Y86	$321 p$	BFY 10	321D	NKT0013	3 47ip	Ocy	${ }^{\text {p }}$ p
$2 \mathrm{~N} \cdot 712$	25.	2N5268	28.75	Al） 103	¢1．25	Rr゙Y11	42／D	NKT1：4	421p	OCsme	75p
2N2713	271p	2N5＊67	£2．82｜	A8Z21	421p	BrY^{17}	22］ 1 P	NKT135	271p	OC：23	42tp
2N2714	300	2N5303	370	BCloz	10 D	BPY 18	32／D	NKT106	$27{ }^{10}$	OC：24	42 p
$2 \mathrm{~N}^{24245}$	82p	2N53006	40 p	1 LCl 108	10 p	Bry 19	321 p	NKT1：8	$271 p$	OCS05	90 p
2N2904	30 D	2N5307	37 ld	BC^{109}	10p	$13+\mathrm{Y} 20$	11.80	NKT135	271 p	OC207	75 p
2 N 2904 A	32／p	2N5308	3fip	HC113	15p	BFY：1	421p	－KT137	32 p	OCP71	421p
2 N 2905	3：10	2 N 5309	6810	$\mathrm{BC}_{\mathrm{BC}} 15$	150	BFY\％	450		${ }^{301}$	ORP12	$5{ }^{50 \mathrm{p}}$
2 S 2905 A	${ }^{40 p}$	2N5310	49．1p	BCILita	15p	Bryes	25 D	NKT21	30p	ORP61	0p
2 N 2906	25p	2 N 5354	2710	nc118	10，	BFY 26	20 D	NKT212	300	1346A	$22 / \mathrm{p}$
2N2906．	2］${ }^{\text {d }}$	2 N 5355	87.1	HC121	${ }^{20}$	BFY ${ }^{29}$	50 p	※кT：13	30 p	T1834	624p
2N2907	${ }^{30}$	2 N 3356	321 p	8C122	20 D	मFY30	50 D	NKT	22¢p	T1843	27p
2 N 2923	15．	2N5365	471p	RC123	20 p	RFYst	50p	NKT：15	221p	TIS44	10D
2N2924	15 p	2 N 3386	321 D	BC126	200	Bry ${ }^{3}$	62.0	NкT：16	3710	T1845	10p
2N2925	15p	2 N 5367	57 p	BCl 10	37.10	Bry 50	23 p	NKT 17	421p	TIP46	11 p
2N2926		2N5437	37.1	BC147	10p	BPY31	20p	NKT219	300	T1847	11p
Green	140	28005	730	HCl^{48}	10 p	BYY5：	23p	NKT：23	271p	TIS48	121p
Yellow	$12 \cdot$	28020	12.00	BC149	12p	BFY53	1710	NKT2\％4	25p	T1849	12，p
Orand	1210	8102	S0．	$\mathrm{BC152}$	1710	BPY58．	5710	※人T	221p	T1850	17pp
2N3011	$3{ }^{30}$	${ }^{28103}$	${ }^{25}$	BC157	20 p	Bry	30 D	NKT229	30 D	Tis31	12p
2 N 3014	3210	28104	25.	BC158	11p	Bryib	4210	NKT237	35p	T1852	12．p
2N3053 2×3054	18p	28501 28502	32.15	$\mathrm{BCl}^{\text {BCl }} 6$	12p	BFY7	5710	NKT：338	25p	T1853	22 ¢p
2 N 3054	$4{ }^{40}$	28502	350	BCligo	6210	BPy90	67.1	－KT240	27！${ }^{\text {d }}$	T1860	224p
2N3055	82 p	${ }^{28503}$	278	$\mathrm{HCl}^{\text {HC7 }}$	$11 p$	13r＇W38	270	NKT241	2710	T1861	25p
2 N 3133	$3{ }^{30}$	3 N 83	40 D	bCibisa	100	Bドwbs	25p	NKT24．2	20p	T1s62	
2 N 3134	30 p	3N128	70 p	BClibsC	11 D	Brwio	25 p	NKT243	62 ${ }^{\text {P }}$	Tly ${ }^{\text {cosa }}$	50p
$2 \mathrm{~N}^{1} 135$	25 D	3N140	710	HC169B	110	BPXes	11.85	NKT244	171p	tip30A	60p
2N3136	250	$3 \mathrm{Si4}$	72.10	BC169C	120	13PX29	21.80	NKT245	20D	TIP31A	62 ${ }^{\text {p }}$
2N3390	250	3N142	$5{ }^{50}$	BCifo	121］	BPYIO	21.45	NKT ${ }^{261}$	20p	TIP32A	75p
2 N 3391	${ }^{20 p}$	3N143	87 p	BC1is	13 p	BRY39	3710	NKTッ边	30 p	т1133A	
$2 \mathrm{Na391A}$	${ }^{30} \mathrm{p}$	3N152	8710	BC172	15p	188×19	1710	NKT264	${ }^{20 p}$		．02pp
2 N 3392	1710	RCA．	52 p	$\mathrm{BCl}^{\text {d }}$	2210	B8X 20	1710	NKT：71	20p	TIP34A	22.05
2 N 3393	${ }^{18} \mathrm{p}$	40050	35，	BC192	100	B8X21	3710	NKT272	20 p	T11＇35：	22．90
$2 \mathrm{N3394}$	15p	40251	$32 / \mathrm{p}$	BLCl_{3}	09 p	48X26	45p	NKT274	20 p	TIPJ6A	83.68
2N3402	221p	40309	321 p	BC184	110	B8x27	4710	NKT275	20p	－	
2 N 3403	22fp	40310	45p	BC212L	13p	R8X 28	3210	NKT281	2740		
Post \＆Packing 13p per order．Europe 25p．Commonwealeh（Air）65p（MIN．）											

TTL．LOGIC I．C．NEW PRICES
1－11 12－24

8×7400	1－11 12－24			1－11 12－24			$1-111224$	
	fp	£p		$1 p$	Ep		\＆p	2p
	020	018	9＊74．33	0.80	0.75	ANOT：	038	030
EN7401	020	0.18	HNT437	0.64	006	8N7473	0.43	0.41
gN740\％	0.80	018	RX 7438	0.84	0.80	8N7474	043	0.11
$8 \mathrm{ST403}$	$0 \cdot 20$	018	MN7＋40	0.23	0－21	MS7475	0.45	044
EN740\％	0.20	0.18	CNT44IAN	0.87	0.83	8 Ni 476	0.45	0.44
ENT40t	080	075	SNT44：	0.85	0.81	ENT4N0	0.70	0.85
	0.80	0.75	6N7443	$2 \cdot 86$	8．70		1.40	138
8N：40w	020	0－18	NN7444	2.86	2－70	$8 \mathrm{NT482}$	087	0.82
857404	080	$0-18$	8Nit＋5	2.50	$2 \cdot 40$	SSiftms	0.87	088
	$0 \cdot 20$	0－18	8NT +46	100	0.95	H．87494	8.00	1.85
8 \times 7 711	$0 \cdot 23$	021	8N7447	1.00	0.85	6Sitas	$3 \cdot 62$	$3 \cdot 40$
ENT41？	0.48	$0-46$	8Nit48	1200	0.95	gNitat	0.33	030
8N $\mathrm{i}+13$	040	038	ENT449	1.00	085	857490	0.87	084
8NTtio	0.20	0.18	SN7450	0.20	0.18	RNi491AN	1.21	1.10
8N7423	0.51	0.47	8×7451	0.80	0.18	8－7392	0.87	0.84
8Ni427	0.48	0.45	8 ST 453	020	0.18	SNT443	$0 \cdot 87$	0.84
8N742	0.80	0.75	BN7454	020	0.18	MN7494	087	0.84
ANT430	0.23	0.13	5×7480	0.20	0.18	1807445	0.87	0.84
8Ni432	$0-48$	0.42	8Ni470	0.40	038	8＊7496	087	084

SUB－MIN ELECTROLYTIC

 25／25：32／10： $32 / 40$ ：30／44：41／14； $50 / 6-4: 30 / 25: 50 / 40 ; 64 / 10 ; 80 / 2 \cdot 5$ ： so／15：so／45： $100 / 6 \cdot 4: 1 \pm 5 / 10: 128 / 18: ~ 204 / 10 ; 320 / 64$ ．

SILICON RECTIFIERS

PIV	50	110	200	400	600	800	1000	1200
1 A	8D	90	100	11p	120	15．	20p	
3 A	15 p	17p	20p	22p	25p	27p	30p	35p
6A			25 p	30p	32 ${ }^{\text {p }}$	35p	－	
10A	30p	35p	40p	47p	88 p	86p	780	－
15.4	36p	45p	480	55p	650	75p	870	\cdots
35．	20p	80p	90p	1100	21.40	81.70	12.75	－
1 antp and	3 mmp	are p	ic	peuta	I．			

DIODES \＆RECTIFIERS

INSAA	10p	AA119	7p	HAX 16	121p	FST3／4	221p
IN014	70	A A1：9	13p	HiY18	1710	OA5	17p
18916	7 p	A AK13	12p	HAY31	7p	OA10	20p
1Ns007	200	AA7．15	12p	BAY38	85p	0.18	10p
184.	7p	AAZ17	10p	BYIOO	15p	0.147	8 p
18113	15p	BA100	15p	BY103	22D	0 O70	70
18120	12p	BA102	25p	13 Y 122	471p	0.473	10p
18121	140	RA110	25p	BY194	15p	0479	7p
18130	8p	HA114	15 p	BY126	15p	0481	8 c
18131	10 D	BAl15	7 p	BY＇127	170	0 O85	10.
1813：	12p	BAItl	170	BY184	57p	OA90	7p
189\％0	7 p	HA1t2	17p	BYX10	22 p	OA91	7 p
1892x	8 p	BA144	12p	EY210	35p	OA95	7p
18923	12p	BA145	17p	BYZII	32p	Oad200	70
18940	5 p	BA154	12p	HYZ10	300	OA202	10 p
		BAX13	8p	［ Y 213	25D	TIV307	80p

＂SCORPIO＂CAP
DISCHARGE IGNITION
SYSTEM
（As printed in P．E．Nov．
＂7I）．Complete kit $\mathbb{C} 10.00$
P．\＆P．SOp．

BRIDGE RECTIFIERS

A．PIV		A．PIV		
1 100	37p	4	30	60 p
1.4140	57\％	4	100	70p
250	32p	${ }_{5}$	400	80 p
2800	41 p	${ }_{6}$	200	820
2400	48p	6	400	11．10

THYRISTORS（SCR）

V 50010002003000400	
1A 25p 27ip 37ip 40p 47ip	33， 0.047 30 each
4A 400 450 850－60p	$0 \cdot 0 \mathrm{fB}$ ，0－10，
7 A 82p 87F 92p -21.12 p	$0.15,0.24,0.33 . . \quad \therefore \quad$ Sp ench
	0.47 ．
	0.68 O
Alsu 12 atimp． 100 PIV 75p 2 N 35 䖨 at 85 p	$1 \boldsymbol{H}$
VEROBOARD	$1.5 \mu \mathrm{~F} \quad \cdots \quad \cdots \quad . \quad 210$
Matrix Matrix	
	WIRE－WOUND RESISTORS
$24 \times 3 \ln 25 \mathrm{p} \quad 25 \mathrm{p}$	2.5 watt 5%（up to 270 ohrus
$3!\times 3 i n n \quad 25 p \quad 25 p$	5 watta 5%（up to $8-2 \mathrm{k} \Omega$ only），
$3!\times 5 \ln 30029 \mathrm{p}$	
	10 watt 5%（up to $25 \mathrm{k} \Omega$ oaly）， 10p
Veru Pins（Bag of 36）20p	
Vero Cutter ${ }^{45 p}$	POTENTIOMETERS
Pin Insertion Tools（．1 and－15 Hatrin）at 55 p ．	Csrboa：
OPTDELECTRONICS MIMITRON S015F 8EVEN SEG MENT INDICATOR EP 00 TLL 209 LIGHT EMITTIMO DIODE（RED） 35 p ． B9900 PHOTORESISTOR 38p	Log，and Lin．，with awitch， 25 p ． Wire wound Pote（3W），38p． Twin Ganged stereo Pots，Log and Lin． 40 p ．
	PRESETS（CARBON）
	$0 \cdot 1$ Watt 6p VERTICA
RESISTORS	$\begin{array}{lll}0.2 & \text { Watt } & { }^{8 p} \\ 0.3 & \text { Watt } & \text { OR } \\ 70 & \text { HORIZONTAL }\end{array}$
1watt 5\％，1p．1W，1W a 2 W	THERMISTORS
watt $5 \%, 1 \mathrm{p}$ ，	R53（8TC）21．20 VA3705 95p
2\％M／O 4 p ．	K151（lk）12p VA1077 20p
10% Ipp．IW AW	Mullard Thermintore also in
Watt 10% ，6p．E12 Ber	

Tel． $01-452$ 0161／2／3 A．MARSHALL \＆SON Send 150 tor Comprenensive price lisss CALLERS WELCOME Telex 21492

Build yourselfa TRANSISTOR RMDIO

7 Tunable Wavebands: MW1, Mw2, LW, gw1, gwo, SW3 and Trawler Batud. Built in Ferrite Roll Aerial
for MW and LW. Retractable chrome plated Teleacopic acrial for Ghort Waves. Pumb pull ontput uning 600 mW transintors. Car aerial and Tane record sochets. Belectivity awitch. Suitched earpiece socket complete Ith earblece. 8 transintors plus 3 diodes. 8×21 Speaker. Air spaced ganged tuning condenmer. Volumed on/off. tuning. wave change and tone controls. Attractive case in rich chestnut mhade with gold inntructions and diagramu. Parth Price List and lisus Build Platig 25p (FREE with parta).
$\underset{\text { (Overseas } p, d P G i)}{\text { Total building }} \operatorname{cost} f(9)$

POCKET FIVE

3 Tunable Wavebands:
MW, LW, Trawler Band
band for easier tuning
of Luxembourg. etc.
atages-5 tranaintors and 2 cliodes,
tone moving coil apeaker. Attractive black and goll cane. Size $51 \times$ if x 3tin. Fany builh plathand parts price lint 10D (FREE with parth). Earplece with plug and switched socket for private lititening 30p

Total building costs $\mathcal{5} 2 \cdot 23$

ROAMER SEVEN MK IV

Tunable Ware onda: MW1. MW2

 sW3 snd Trawler Band. Extra Medium waveband provides canler tuning of Raillo Lusembourg, etc. Bulit in ferrit e rod aerial for MW and LW: Retractable 4 section 2 sin. chrome
plated telescopic aur 1 al for $\$ W$. Socket for Car Aerlal plated telescupie aurial for $\$ W$. Bocket for Car Aerlal.
Powerlul punh-pull out put. 7 trangintors and 2 lliodes, including Micro.Allos K.F. Trannistors. $\$^{\circ} \times 2 q^{2}$ mpraker. Air spaced ganged tuning condenmer. Volume on/ofr. tuaing and wave change controls. Attractive came with carty ing handle. Size $9 \times 7 \times 4$ in. appror. Fasy to folloxy instructions and diagrams. Parts price Int and eany build plans 15p (PlREE with parta). Earpiece with plug

Total building costs \mathcal{H} (Oversea P. P P. P.
In
41 p

TRANSONA FIVE

5 transistors AND 2 DIODES

$$
\begin{aligned}
& 3 \text { Tunable wavehands: Mw, Lw and Trarler Band. } \\
& 7 \text { stage }-5 \text { transiators and } 2 \text { dlodes, ferrite rod aerial. }
\end{aligned}
$$ unlog condenser volunie control, fine tone moving coil mpeaker. Attractive case with rad peaker grille. Size $64 \times 44 \times 1$ ifh. Eany build plans and parts price lift 10p (FREE with parta). Earsjece with

Total building costs
(Overseas 1'. 1. 63p)
£2.50

RADIO

ROANER
SIX
6 Tunable Wave bacds: MW LW sW1, sw2, Traw ler band plua an
extra M.W. band for canler tuning of Luxembourg etc. Senmitive fer rite rod arrialand
telencople amerial telemcople merial
for Short Wures. 3 fin. Bpeaken. 8
Atares- B transiators anl 2 alogen including Miero Alloy R.F. Transintorn, etc. Atractive black came with red grille, dial anill black knobs with polished metal Inserta. Size $S \times 5{ }^{2} \times 2 \% \mathrm{in}$. approx. Easy build plans and parta prime list 15p (FREE with parth). Earjulece with plug and switched socket for prirate listentag

Total budiding costs $£ 3.98$

 bands; MW, LW. W1, NW2, SW3
nd Trawler Band.
enxitive ferrite rod acrial for M.W. and L.W. Telecopic aerial for Short Waves. 3in. Speaker. 8 improved blayk with red gride, dial and black knobs with polighed metal ínserts. size $9 \times 5 \% \times 2 i \mathrm{in}$. approx. Push pull output. Battery economimer switch for extended batiery ife. Ample power to drlie a larger apeaker. Parta
price list and eary build plana 25D (FREE with parts) tarplece wit plug and ewitched socket for private stening 30p extra.

NEW! 'EDU-KIT''
BUILD RADIOS, AMPLIFIEFS. ETC.
FROM EASY STAGE DIAGRAMS. FIVE FROM EASY STAGE DIAGRAMS FIVE CONSTANCTS INCLUDE
COMPONENTS INCLUDE;
 Aerial: 3 Plugs and Sockets: Batter7 Cips: 4 Tag 2- Boardn: Balanced Armature Unit: 10 Tranaistors: Unita once constructed are detachable from Master Unit, enabl mg_{g} them 10 be ntored for future ase. Ideal for all those interented in ralthoritien and
 Case and Plans SG4 5 P. P. \& (Overscan P. \& P. $\{1$)

TENBTMS RAD11 LTMTVE ENGLAND'S LEADING ELECTRONIC CENTRES
 Hetry realo

 HI-FI ELECTRONIC COMPONENTS TEST PA. ©DISCOTHEQUE LIGHTING MAIL ORDEA

20 + 20 WATT I.C. STEREO AMPLIFIER (As featured by "Proctical Wireless"' MaylJune 1972) DEVELOPED BY "TEXAS" ENGINEERS FOR PERFORMANCE, RELIABILITY AND POWER FEATURES INCLUDE: LOw profile with specially designed Gardners Transformer. 6-I.C.'s. 10 Transistors, 4 Diodes. supply. DIN inputjoutpus. Complete chassis work. FUNCTIONS: Separate Treble/Bass/Volume/Balance controls. Input selector. Mag. pu. Radio. Tape in and out. Headphone socket. Seratch and rumble filters. Mono/Stereo switch.
SLIM DESIGN WITH SILVER TRIM-Chassis size overall SLIM DESIGN W
$14^{\prime \prime} \times 6^{\prime \prime} \times 2^{\prime \prime}$ max.
TOTAL COMPONENT COST 432 (Parts list on request Ref. No. 20).
SPECIAL Ki
SPECIAL KIT PRICE C28.30. Poss 4Sp.
Henry's are sole U.K. trade and retail suppliers of the Toxan-nquiries invited TEXAS-HENRY'S VALUE \& PERFORMANCE

LATEST EDITION CATALOGUE

PLUS! FVE 10 PVOUCHERS

 FOR USE WITH PURCHASESSend co this address-Henry's Radio Ltd., (Dept. EE). 3 Albemarle Way, Eondon, E.C.I-for catalogue by post only. All other mail and callers to "303", see below

TEST EQUIPMENT Huge range in stsck-too
much co lisc here, It's all in much to list here. It's all in
the latest catalogue-pricesspecificationg ere. Also Pane Meters and Edge Meters. MCDONALD GOLDRING TURNTABLES CHASSIS (Post SOp) SP2S/3 110.50 HT70 $\& 15.00$ $\begin{array}{lll}\text { MP60 } & \text { \& } 10.40 & \text { MP6IO } £ 14.1 \\ \text { AP } 18.85 & \text { Zero IOOS }\end{array}$

With PLINTH/COVER MP60 PC $\begin{gathered}\text { Post 70p) } \\ \mathbf{1 7 . 2 0}\end{gathered}$
HLTSPC 635.25
HT70 PC $\quad 621.60$
GL72P K29.26
CARTIPLINTHICOVER
GL72PCIG800 70p) $\quad \mathbf{3 4 . 5 0}$ (HL)AP76/G800 $\quad 29.95$ $\begin{array}{ll}\text { HT70 PCIG800 } & \mathbf{2 7 . 0 0}\end{array}$ MP60 PCISCSM (HL)SP2513/GB00H 618.95 (HL) 2025 TC19TAHCD 613.50 ULTRASONIC Operate as 40kc/s up to 100 yds. Ideal remote switching and signalling. Complete with data and circuits.
PRICE DAIR $\mathrm{E5} 90$ Pose 10D POWER INTEGRATED Plessey SLAOBD-IS 8 page data, layouts circuits $£ 1 \cdot 50$ P.C. Board 60p; Heat Sink 14 p Sinclair IC12-6 wate with data and circuits $\mathrm{f1}$. 80 TH9013P-20 wate Powel Amp Module $\mathrm{E4.57}$
H1 140 -IC Preamplifier
DatalCircuits
No. 42 10p
TEXAS PUBLICATIONS 1.100 wate Amplifiers and PreAmp. Layouts and data
$\mathbf{1 1 . 2 5 (7 7}$ pages). 700 page IC Data Book (No. 2) (All TTLIC's) 60p ${ }^{420}$ page Transistor Data 340 page fr (No. 4) 60 p
(Post erc. 20 p each.)
7 SEG a NIXIE TUBES (Post ISp per XN to $\mathrm{GN6}$ 0-9. view with data 85 p.
GNP.7, GNP. 8 0.9. Side view with decimal points and data
95 p. 3015 F 7 -Sesment $\mathbb{C 2}$ each 95p. 3015 F 7 -Segment $\mathbb{C 2}$ each C7 per 4 with data. 12 and
24 hour clock circuits for above Ref. $3115 p$
SEE EARLIER PAGE FOR TRANSISTORS \& DIODES. erc. FREE LIST No. 36 ON

PUBLIC ADDRESS, LIGHTING \& DISCOTHEQUE EQUIPMENT DJloss 30 watt ems Amplifier, 4 iripurs, master zone and volume controls etc. 8 ohm output. Cased portable, DJ70s 70 watt ims version. Cased portable. $\mathbf{4} 49.75$. DISCOAMP 100 watt rms to 8 ohms. 4 inputs, separate bass and treble controls, PFL. etc. Cased for cabinet or rack mouncing $\mathbf{1 6 7} \cdot 50$. Post 40p. MCCONALD MP60 fitted to plinth with cover,
SCSMD cartridge to match above amplifiers $f 17.25$. SCSMD cartridge to match above amplifiers. $\mathbf{f 1 7 \cdot 2 5}$. Post 70p.

fiers 3 channel lighe control unit for above ampliPost 35p. DJ40L as 30 L plus mike $£ 37.50$. EFFECTS PROJECTORS-Coloured rotating light patterns. DISCO-COLT ISOw Tungsten $£ 22.50$	LIQI $50-50$ watt Q.I.)
L32.50	
150	of Disco'PA dishelay on isplay at

Cobob

SPECIALI! Anti-Feedback Microphone desipned and made for CII.50 ©I peryd. Mono (0.01") \&1-50 per 25
metre reel.
HI. FI-LARGEST RANGE IN FREE 12 Page STOCK LIST Ref 16/17
MOORE OF EVERYTHING AT LOW PRICES AIWAYS AT HENRY'S
LOW COST HI-FI SPEAKERS

E.M.I. Size $131^{\prime \prime} \times 8 \frac{1}{4}$ ", Large Cer
TYPE 150 watt, 3 , 8 or 15 phms 12-20. Post 22p.
TYPE 150 TC Twin cone ver TYPE 450 IO Watt wit iweeters and crossover. 3, 8 of is ohms. 63-85. Post 25 . YPE 35020 watt with tweeter 67.70; Post 28p.

POLISHED CABINETS ISO, I5OTC. 450 [4.60. Post 30p.

HIGH POWER AMPLIFIER MODULES

Quitity transformerless low noise amplifiers suizable for all Audio, PA and Hi-Fi use.
Modern compact designs. PA25 and PaSO supplied with plug harness for use with MU442 Power Supply.
MPA12/3 18y. 0.8A. 12W. 3-4 ohm. 44.50 MPA12/IS 30v. O.SA. 12 W . 12 -16 ohm. MU24/40 Mains unit for 1 or 2 MPA12/3
 PA50 22-0-22v. 2A. 50W. 3-4 ohm. 69.50 MUS42 Mains unit for 1 or 2 PA25 or 1 only PASO. $£ 6.00$

Post 20p per unit
ALL SILICON-FET PREAMPLIFIER AND MIXFR

All inputs. Adjustable inpur and output. DIN sockets. Tape in and out. Miero. phone mixing. Suitable up or 2-PA50
300 mW TRANSISTOR AMPLIFIER MODEL 4-300 Fully assembled STR Amplifier. Size 5t x Ourpur 3 . 8 ohm adjustable sensitivity. 9 vole operated Thousand of uses plus low cost. Price fl
(or 2 for 43.25 , ip. isp)
BUILD THIS VHF FM TUNEM 5 TRANSISTORS $300 \mathrm{kc} / \mathrm{s}$ BAND. WIDTH, PRINTED CIRCUIT, HIGH
FIDELITY REPRODUCTION. MONO AND STEREO
A popular VHF FM Tuner for quality and reception of mono and stereo. There is no doubt about it-VHF FM gives the REAL sound. All parts sold
separately. Free Leaflet No. 3 g 7 TOTAL C6.97, p.p. 20p. Decoder Kit 15.97 Tuning meter unit fl 1.75
Mains uniz (optional) Model PS900 42.47. Post 20p Mains unit for Tuner and Decoder PS1200 \&262. Post 20p
SINCLAIR PROJECT 60 MODULES
-SAVE POUNDS!
$230 \quad £ 3.57$
5TEREO
$60 \quad 67.97$

PZ	$\mathbf{6 7} .97$
6.37	

Transformer for P78 0.95
Active Filter Unit $\quad \mathbf{~} 4.45$ Stereo FM Tuner $\mathbf{1 6 . 9 5}$ ICI2 \&1-80; Q16's \&15 pr Post etc. 20pper item $2000 £ 23 \cdot 50: 3000 ¢ 30 \cdot 95$ 2000/3000 FM Tuner © $\mathbf{\$ 3} \cdot 90$ Post 50p each
"BANOSPREAD" PORTABLE TO BUILD
 P.p. 32p. (Battery 22p). All parts sold separately-Leaflet No. 2.

SLIDER CONTROLS. TOp quality 60 mm stroke sinples $5 \mathrm{~K}, 10 \mathrm{~K}, 25 \mathrm{~K}, 50 \mathrm{~K}, 100 \mathrm{~K}, 500 \mathrm{~K}, 1 \mathrm{Meg}$. Log and Lin 45p each $10 \mathrm{~K}, 25 \mathrm{~K}, 50 \mathrm{~K}, 100 \mathrm{~K}, \log$ and Lin ganged. 75 p each

Printed circuit all transistor design using Mullard RFIIF Module. Medium and Long Wave bands plus Medium Also slow mozion geared suning. 600 mW push-pull output, fibre glass PVC covered cabinez, car aerial. Atrractive TOTAL COST TO BUILD $\mathbf{6 7 . 9 8}$,

Shep, Industrial Sales EMAEDGWARE ROAD, LONDON, W.2. Tel: 01 - 723 1008/9

Electronic Components, Audio and Test Gear Centre 3OEDCWALIS ROAP LONDEN, YM2.
 Tel: 01-402 736

P. A.: Disco \& Lighting Cenire 309 EDCYARE ROAD.
 LONDON: W.2. Tel: 01-723 6963

[^0]:

 $200 \mu \mathrm{~A} \quad . .$. erer

[^1]: (c) IPC Magazines Limited 1972. Copyright in all drawings, photographs, and articles published in EVERYDAY ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden.

 All reasonable precautions are taken by EVERYDAY ELECTRONICS to ensure that the advice and data given to readers are reliable.
 We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press. Subscription Rates including postage for one year, to any part of the world, E2-35.
 Everyday Electronics, Fleetway House, Farringdon Street, London, E.C.4. Phone: Editorial 01-634-4452; Advertisements 01-634-4202.

[^2]: Photograph: Crown copyright, Science Museum, London.

[^3]: -

[^4]: POLYSTYRENE CAPACITORS $160 \mathrm{~V} 2 \downarrow \%$

