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Editorial on the Research Topic

Evidential Statistics, Model Identification, and Science

WHY THIS RESEARCH TOPIC

We have undertaken this Research Topic for several reasons: First to promote and disseminate the
ideas and techniques of evidential statistics to ecologists and evolutionary biologists so that their
research might benefit from the increased clarity that evidential thinking engenders. And, second
to encourage statisticians to think how their own work relates to this emerging approach to the
fundamental problems of statistics.

HOW TO READ THIS VOLUME

Selecting an optimal order to read the papers of this Research Topic requires decisions on the part
of the reader. The papers are not ordered in any developmental fashion, but simply by the order that
they were first published. Another difficulty is that there are two target audiences for this Research
Topic: First, quantitative scientists, primarily ecologists, and evolutionary biologists, who might
wish to apply evidential thinking to their own research; and second, statisticians who might be
interested in furthering the technical development of evidential statistics.

Table 1 lays out the primary themes considered in each paper and identifies authorship
abbreviations. Those readers who would like to begin with statistical principles, then move to
applications, and conclude with more philosophical considerations might read the topic in the
order of Dennis et al., Ponciano and Taper, Lele b, Taper et al., Shimodaira and Terada, Markatou
and Sofikitou, Ferguson et al., Claeskens et al., Toquenaga and Gagné, Stewart and Blume, Jerde
et al., Lele a, Brittan and Bandyopadhyay, Scheiner and Holt. For readers whomight prefer to begin
with philosophy, then move to application, and finish with technical details, a reasonable order
might be: (Brittan and Bandyopadhyay, Scheiner and Holt, Jerde et al., Toquenaga and Gagné, Lele
a, Stewart and Blume, Ferguson et al., Claeskens et al., Dennis et al., Ponciano and Taper, Lele b,
Taper et al., Markatou and Sofikitou, Shimodaira and Terada).

WHAT IS EVIDENTIAL STATISTICS

Statistics is arguably the most powerful of all scientific instruments. For the last century, statistics
has been dominated by two alternative approaches: Error statistics1 and Bayesian statistics.

1By error statistics we mean that subcategory of frequentist statistics that uses error probabilities as the primary inferential

quantity including Fisherian significance, null hypothesis significance testing, Neyman-Pearson hypothesis testing, and severe

testing. The term classical statistics is sometimes applied to this grouping, but this can be considered a misnomer as Bayesian

statistics predates these methods considerably.
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Unfortunately, both approaches suffer from technical and
philosophical problems (see Taper and Ponciano, 2016 for
discussion). These problemsmake the instrument of statistics like
the Hubble telescope before its optics were corrected in 1993: A
fantastic tool not living up to its full potential.

We believe that the evidential approach can provide a similar
technical correction to statistics. Evidential statistics is a cluster of
statistical methods and approaches being developed to meet a set
of desiderata or meta-criteria that were selected so as to impose
desirable inferential properties on those methods (see Jerde et al.,
for a list of desiderata).

The central question for evidence is simple: Which of
two models of reality is better supported by the data? More
technically, evidence is a data-based estimate of the difference
of the divergences of each of the distributions implicit in two
models to the data distribution resulting from an unknown true
generating process (see Lele, 2004; Taper et al.). Several salient
features of the evidentialist perspective are immediately obvious:
First, evidence is comparative, second, neither model is given a
favored status, and third, that a “true” model is not assumed to be
in the model set.

These guiding principles allows evidential statistics to draw on
and refine elements from error statistics, likelihoodism, Bayesian
statistics, information criteria, and robust methods to create
an approach that smoothly incorporates model identification,
model uncertainty, model comparison, parameter estimation,
parameter uncertainty, pre-data control of error, post-data
assessment of uncertainty, and post-data strength of evidence
into a single coherent framework.

SOME IMPLICATIONS OF EVIDENTIAL

STATISTICS FOR SCIENCE

The implications of evidential statistics for science are manifold.
For brevity, we focus here on the impact an evidential approach
could have on the replication crisis (Pashler and Wagenmakers,
2012). The replication crisis presents a profound challenge to
both statistics and science. As more replication of scientific
studies is attempted, it is being found that studies tend not
to replicate at their nominal rates. This is undermining both
trust in statistics by scientists and trust in science by the
general population.

Virtually all models are to some degree misspecified (see
Taper et al., for a technical definition of “misspecified”).
Misspecification in itself is not a bad thing. A true model would
be enormously complex and would be neither comprehensible
nor estimable. What is dangerous is inference that doesn’t
acknowledge misspecification. With Neyman-Person Hypothesis
testing (NPHT), error rates become distorted when both models
are misspecified. Error rates can be less than, equal to, or
greater than their nominal rates (Dennis et al.) making nominal
rate replication extremely unlikely. Furthermore, under some
reasonable model space geometries, a NPHTwill select the wrong
model with probabilities that go to 1 as sample size increases
(Dennis et al.). In contrast, evidential model selection reliability
seems in simulation to be estimated unbiasedly (Taper et al., T
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2019) and all evidential error rates go to 0 as sample size increases
(Dennis et al.).

None of Fisherian significance (FS), null hypothesis
significance tests (NHST), or NPHT can produce evidence
for the null model (Dennis et al.). This is problematic because
often it is the null which of scientific interest. Statisticians teach
that “absence of evidence is not evidence of absence,” but the
need of scientists to say something about the null model forces
this warning to be often ignored. In evidential statistics reference
and alternative models are always correctly treated symmetrically
(Dennis et al., Taper et al., Jerde et al.) for inference, although this
does not imply that decision thresholds need to be symmetric.

When scientists, reviewers, and journals recognize that FS,
NHST, and NPHT do not produce evidence for the null, a
common response is publication bias, the tendency not to publish
studies with attained P < 0.05 (Franco et al., 2014). This “file
drawer problem” creates several biases in the literature. First,
of course, is the lack of studies showing evidence for the null.
More insidiously, because all tests are stochastic, a number of
studies are published falsely showing significant evidence for
the alternative (Type I errors). These are not balanced in the
literature by the many studies in the file drawer.

The immense pressure on scientists to publish leads many,
intentionally or unintentionally, into questionable research
practices to avoid the file drawer problem. One of these is “cherry
picking,” the retroactive selection of data and/or statistics so as
to achieve significance (Ioannidis, 2019). Another is HARKing,
Hypothesizing After Results are Known (Kerr, 1998). Both have
drastic effects on the replication crisis.

Evidential analysis gives scientists statistically correct
language (Taper et al.) to speak about strong evidence for the
null vs. the alternative, strong evidence for the alternative vs. the
null, and evidence that doesn’t clearly distinguish between the
two models. All of which are of scientific interest. Even results
that can’t distinguish between models tell us where more data
is needed. The results of any well-designed scientific study now
have meaning and could potentially be publishable—regardless
of significance.

Undertaken in an evidential statistics context, HARKing is
a legitimate and even beneficial practice (Taper and Gogan,
2002). The evidence in HARKing has always been clear, although
estimation of the uncertainty remained a problem (Taper
and Lele, 2004). Bootstrapping of evidential comparisons now
improves the understanding of the uncertainty of even HARKed
results (Taper and Lele, 2011; Taper et al., 2019, Taper et al.).

COMMENTS ON THE ARTICLES

Shimodaira and Terada
At the heart of ecology is a search to better understand and
characterize the relationship between species as well as that of
a group of species and their environmental variables. On the
other hand, a central topic in evolutionary studies is inferring
the ancestral relationships of a set of extant species. In both
cases, graph theory has become the theoretical foundation upon
which the biological edifices in these two fields are constructed.
In ecology, species are thought as nodes in a diagram and the

relationships between species are represented as edges uniting
any two nodes. In evolution, a phylogenetic binary tree is a
diagram representing the evolutionary relationships among a set
of extant species, which are shown as the tips (leaves) of the tree.
Each interior node in the tree connects with three other nodes:
two descendants and one ancestor.

The binary phylogenetic trees are called bifurcating trees
because there are two branches leading out from each interior
node. Proceeding from the present-day species of interest
backwards in time under this binary framework eventually leads
to a common ancestor, the root of the tree. In that context,
one particular “tree topology” is one specific construction of the
possible set of relationships among the species of interest and
represents a single hypothesis about the ancestral relationships
between these species, all the way back to their most recent
common ancestor. How many such hypotheses can one posit
with n species? With two species the answer is one, with
three species the answer is three, with four it’s fifteen, with
five it’s one hundred and five and in general, with n species
it’s (2n− 3)!/

(

2n−2 (n− 2)!
)

. For example, for six species, the
number considered by Shimodaira and Terada one could posit
945 such trees.

In such setting, it quickly becomes obvious that good
treatments of the statistical problems of multi-model selection
and multiple hypotheses testing are key to making any progress
in this area. Previously, the leading approach to deal with the
problem of selecting among these models (hypotheses) the best
representation of reality used NHST. This body of work was
started by Kishino and Hasegawa (1989), and continued by
Shimodaira (1998, 2002) and Shimodaira and Hasegawa (1999).
Shimodaira and Terada now goes one step further and provides a
novel methodology of shifting the phylogenetics question away
from: “is a newly estimated tree topology significantly similar
to the unknown, true species topology?” and instead ask: “from
this set of models, which tree topology and group of models
are significantly closer, in a KL distance spatial configuration
sense, to the unknown, true topology?” To do so, Shimodaira
and Terada estimate a spatial configuration of models in a three-
dimensional model space, a geometrical construction very much
like that of Ponciano and Taper. However, these two approaches
differ in that while Shimodaira and Terada rely on a shifting
combination of NHSTs and NPHTs for inference, Ponciano and
Taper use a non-parametric self-entropy estimation to construct
a model projection in a model space that can be used as
the point to do a science-based examination of critical model
attributes that allow a model to get closer to the generating
process. The methodology of Ponciano and Taper is geared
toward being coupled with uncertainty estimation and examining
the strength of the evidence for a given model using the
approach suggested by Taper et al. One should note that although
(Shimodaira and Terada) are testing alternative hypotheses
(H0:µ ∈ R versus H1:µ ∈ Rc), the tests are not standard NP
tests. Truth does not lie in either hypothesis, but instead is being
projected onto themanifoldR∪Rc. Further, the pseudo data being
used to generate the distribution of the test statistic does not come
from H0, but is generated by a non-parametric bootstrap. Thus,
the difference between the inference in Shimodaira and Terada
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and Taper et al. may be little more than the statistics they choose
to present.

Scheiner and Holt
This paper takes the readers out of the weeds and forces them to
look simultaneously at the trees and the forest. Deeply informed
by both the history and the philosophy of science, the manuscript
points out that evidential statistics formally only deals with the
relationships among models and data; Scheiner and Holt then
ask how evidential statistics can inform either the generation
or the support for general and constitutive theories. Clearly it
can because Peirce’s abduction (Peirce, 1974) can be thought
of as a conceptual adequacy measure for models, hypotheses,
or theories, while modern abduction, i.e., inference to the
best explanation (Haig, 2009) can be thought of as conceptual
evidence for the same.

In an analogy to biological evolutionary theory, Scheiner and
Holt discuss how model selection, an evidential process, can act
as a selective force to winnow the models included in constitutive
theories. Scheiner and Holt further suggest that pattern matching
as well as Whewell’s consilience and coherence (Forster and
Wolfe, 1999) might possibly be utilized in formal procedures for
quantifying the evidence supporting one theory over another.

Despite the excellence of this article, Scheiner and Holt do
sin against science in suggesting that sometimes statistics is
not necessary2. They claim for instance that if something never
occurs then no statistics is necessary. To which a statistician
would query, “never occurs in how many trials?” The evidential
impact of something never occurring is very different in
experiments of 1 trial, 4 trials, or 8 trials (see Jerde et al.). Because
they are writing as theoreticians, Scheiner and Holt’s sin is only
venal. For theoreticians, statistics and even data, are always
optional. The job of theoretical science is to construct alternative
internally consistent possible worlds. The job of empirical science
is to determine which of those possible worlds best describes the
real world—and for that, statistics is always needed.

Jerde, Kraskura, Eliason, Csik, Stier, and

Taper
Jerde et al. describe the motivation for, and the logic of, scientific
inference using evidential statistics and demonstrate the utility of
the evidential approach by tackling a long-standing controversial
question in ecological physiology: How does standard metabolic
rate (SMR) scale (intra-specifically) with individual body mass,
and is this scaling similar among species? For fish, theoretical
scaling rates of 0.67, 0.75, and 1.00 have been proposed. Empirical
estimates of scaling coefficients vary tremendously among studies
and generally all have large uncertainties leaving the theoretical
question unprobed. Jerde et al. curate a large data set composed of
a total of 1,456 observations in 55 separate trials on 12 species, all
using current state of the art techniques for measuring SMR. The
use of linear mixed effect models allowed (Jerde et al.) to combine
all of these trials for inference.

2In prepublication conversations on this point, we told the authors that they could

say whatever they wanted in their paper, but that the final word would belong to

the editors.

Four suites of four models using random and fixed effects
carefully explore the impacts of species, trial (within species),
and temperature on the scaling of SMR with body mass. Model
families were evaluated using the Schwarz information criterion
(SIC, also known as the BIC). The SIC is a consistent criterion and
the comparison of SIC values is an evidential procedure. Within
and between model suites, evidence for specific values of the
scaling coefficient were compared using profile 1SIC curves. A
1SIC value comparing two models >7 indicates strong evidence
for the model with lower SIC.

Two model suites with a free parameter estimate of the
metabolic scaling, separated themselves only by a 1SIC of 1.5,
were strongly differentiated from all others. Both had fixed effects
for temperature and random effects (intercepts) for species. The
best model had the log(weight) slope vary randomly across
species (with modest variation), while the second-best model
had a common slope over all species. In the best model the ML
estimate for the mean scaling coefficient is 0.89 with a strong
evidence profile 1SIC interval spanning 0.82–0.99.

The evidence strongly indicates that none of the a priori
theoretical scaling coefficients describe the scaling behavior in
real fish.

Dennis, Ponciano, Taper, and Lele
Mathematics, and in particular probability, have long been
intertwined with biology. The theoretician J. E. Cohen adroitly
summarized the transcendence of the synergy between these
fields with his essay “Mathematics is biology’s next microscope,
only better; biology is mathematics’ next physics, only better”
(Cohen, 2004). Key to the success of this interaction between
these fields is the recognition that fundamental hypotheses in
biology can be translated using the languages of mathematics,
probability, and statistics into propositions than can be clearly
probed. The increase in possibilities with such synergism is
so dramatic that in some cases, it’s as if a new portal to
a field of scientific inquiry becomes available. Yet, becoming
enamored with model construction and the phrasing of novel
explanations of biological phenomena can sometimes obscure
the analyst’s vision and the realization that by its very human
nature, mathematical models are limited constructs of biological
processes. Mathematical models are indeed misspecifications
of natural processes. Understanding the effects of model
misspecification in our scientific inquiry should be paramount.
This is the focus of Dennis et al. These authors assess analytically
and numerically the performance of Neyman-Person Hypothesis
testing (NPHT), Fisher significance testing (NHST), information
criteria, and evidential statistics under model misspecification.

As mentioned above, evidential statistics seeks to quantify
the strength of the evidence in the data for a reference model
relative to another model. This goal is achieved through an
evidence function, which is simply a statistic for comparing two
models. Dennis et al.’s evidence function of choice was Schwarz
Information Criterion, or SIC (Schwarz, 1978). The salient
property of this and all evidence functions is that their associated
probabilities of making a wrong model choice approach 0 as
sample size increases. These probabilities, analogous to Type
I and II errors in the Neyman-Pearson Hypothesis Testing
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(NPHT) framework are in fact pre-data error rates. Royall (2000)
showed that these probabilities measure the chances of obtaining
weak misleading-evidence as well as strong misleading-evidence.
Dennis et al. shows that in a context where both models are in
fact mathematical misspecifications of reality, making the wrong
model choice refers to deeming as best a model that is not
the closest to the true generating process model. By the same
token, misleading-evidence simply corresponds to obtaining
observations that either weakly or strongly support a model other
than the one that is the closest to the data-generating process.

Unlike the classic NPHT and Bayesian approaches, the
Evidential Statistics paradigm provides sound guidelines to
evaluate inferential errors when none of the proposed statistical
models are a perfect representation of the natural, data-
generating process. The NPHT framework depends critically on
either the Null or the Alternative hypotheses being a perfect
representation of the data generating mechanism and then
fixes the Type I error probability irrespectively of sample size
and thus problematically assesses the evidence against the null
hypothesis and remains silent with respect to the evidence
for the null hypothesis. The asymmetry of the NPHT error
structure leads to difficulties in interpretation of hypotheses
tests. The decision to pick an alternative model over a null
hypothesis in and of itself is not controversial as it has
some intuitively desirable statistical properties: for example, the
probability to reject the null hypothesis given that the alternative
is true converges to 0 as sample size increases. However, the
probability of erroneously choosing the alternative when the
null is true remains stuck at the chosen level alpha regardless
of how large a sample size is collected. Matters get more
complicated when it is considered that the original Neyman-
Pearson theorem assumes that the data was generated under
one of the two models but provides no guidance whatsoever
in the event of model misspecification, a scenario commonly
encountered in science. The fact that in scientific practice
model comparison rarely stops at two models further muddying
the interpretation of experimental results using the NPHT.
To be fair, overconfidence in model selection procedures also
results when the model misspecification is ignored in Bayesian
Statistics (Yang and Zhu, 2018).

The evidential approach proposes fixing cutoff values for the
evidence statistic, not the error probabilities. Under this concept
of evidence, the value of a statistic like the likelihood ratio is
evidence, not an error rate that is pre-set. Then, the evidential
error probabilities both converge to 0 as sample size grows large.
Finally, under this evidential statistics approach, the conclusion
structure of say, a comparison between two models H1 and H2

has a trichotomy of outcomes: (i) strong evidence for H1, (ii)
weak or inconclusive evidence, and (iii) strong evidence for H2.

Some, not all, information criteria commonly used for model
selection are evidence functions. While the AIC only penalizes
the likelihood function using the number of parameters, the SIC
is also scaled by the sample size. As a result, as sample size
increases, the error in deeming a model as “best” using the SIC
statistics becomes vanishingly small. Dennis et al. show that this
desirable property, called “Information consistency” is lacking in
the AIC. Inconsistent criteria, such as the AIC, tend to overfit

at all sample sizes. Hence, the AIC is not an evidence function
because it is not information consistent.

Although all paradigms of statistical science (NPHT, Bayesian
statistics, Evidential Statistics) have flaws (reviewed in Lele
a, b), the Evidential Statistics paradigm possesses more
desirable characteristics for the quantification of uncertainty and
ultimately, for the design of inferential statements about the
models’ proximity to the true, generating process.

Brittan and Bandyopadhyay
Written by a pair of philosophers of science, Brittan and
Bandyopadhyay provides a good entry into the Research Topic.
Despite maintaining a high level of intellectual rigor, Brittan
and Bandyopadhyay avoids getting bogged down in technical
statistical detail. The authors review the logical structures for
scientific evidence: Hypothetico-deductive testing, Popperian
falsification and corroboration, Fisherian significance, Neyman-
Pearson hypothesis testing, the severe testing of Mayo, Bayesian
confirmation, and statistical evidence.

The authors are equal opportunity balloon poppers pointing
out the limitation of all methodological approaches. Brittan
and Bandyopadhyay focus on the strengths, weaknesses,
and complementarity of statistical evidence and Bayesian
confirmation. Contra the prevailing scientific mythos, Brittan
and Bandyopadhyay demonstrate that Bayesian inference is
“irreducibly personal.” Bayesian methods do a good job of
quantifying personal beliefs, and thus of informing personal
decisions. Echoing Lele a; Brittan and Bandyopadhyay contend
that non-informative priors are not objective and suffer from a
variety of other problems. In contrast, statistical evidence does
objectively quantify the relative support in data for specified pairs
of models even though the models put forth for comparison may
be generated subjectively.

Science is plagued by a suite of cognitive biases. Being
aware of them can mitigate their impact. The authors note
that each methodology works best to answer fairly narrow but
different questions. Greater methodological self-consciousness
on the part of scientists to match their choice of statistical
approaches to match their scientific questions would promote
scientific progress.

Brittan and Bandyopadhyay close on the same hopeful
note and metaphor as do Scheiner and Holt. Despite the
undeniable subjectivity of individual scientists, Science itself may
achieve a “Darwinian Objectivity” when the mutational force of
subjective scientific creativity is filtered by objective evidential
model selection.

Ponciano and Taper
Information criteria have had a profound impact on modern
science because they allow researchers to overcome the
inadequacies of NPHT and tackle the multi-model selection
process. Although model selection via information criteria gives
the analyst an estimate of which probabilistic approximating
models are closest to the generating process, information
criterion comparison does not solve the problem of knowing
how good the best model is. Indeed, the absolute distance to the
generating process is not estimated through this process.
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This caveat is all the more important when it is considered
that in science, models are commonly misspecified. In this
work, the authors resolve this shortcoming by designing a
methodology to estimate a geometric representation of all the
models under consideration along with the generating process.
Such representation is a projection of all the models at hand into
a two or three-dimensional space. As well, the location of the
generating process in this representation is fully estimated. To
estimate this model projection, the authors examined five key
insights from Hirotsugu Akaike’s original work. These insights
reveal the deep, yet easy to grasp, geometrical nature of Akaike’s
formulation of the AIC. Ponciano and Taper extend Akaike’s
geometrical interpretation and propose visualizing all models at
hand into a reduced space. This reduced space representation
applies ordination techniques to the models themselves so
that the analyst may see and estimate the divergence between
each model and every other model including the generating
process itself.

Ponciano and Taper’s solution starts from the observation
that while standard information criterion analysis considers only
the divergences of each model from the generating process,
the divergences amongst all approximating models, typically
ignored, are indeed estimable. As a test bed for their ideas, the
authors consider two ecological scenarios, one of them involving
an individual-based model simulation framework that generates
data to which different abundance models can be fitted and the
second one involving structural equation models.

The authors also compare their approach to model averaging
and show that model projection is not as sensitive as model
averaging to the composition of the set of candidate models being
investigated. Model averaging artificially favors redundance of
model specification because the more models are developed in
any given region of model space, the more heavily this particular
region gets weighted. Furthermore, examining the resulting
model space configuration can lead to an in-depth analysis of
what are the model attributes that change from one model to the
next that make it so that a model will get closer and closer to the
generating process. This examination is the first step to explore
models outside the bounds of the available model set, whereas by
using model averaging, by definition, the analyst cannot do so.

Uncertainties around the estimation of model space
estimation are yet not fully worked, but Taper et al. offers a
first, non-parametric bootstrap approach to begin examining
such question. Model projection methodology should be the
starting point to do a science-based examination of critical
model attributes that allow a model to get closer to the
generating process (see also Toquenaga and Gagné). Finally,
although Ponciano and Taper use the Kullback-Leibler, KL,
divergence as the fundamental distance measure, the model
projections methodology could be extended or adapted to any
other metric.

Ferguson, Taper, Zenil-Ferguson,

Jasieniuk, and Maxwell
There are a vast number of information criteria. Academic
arguments about which is best are intense and often vitriolic.
Ferguson et al. indicates that these arguments may be a tempest
in teapot.

Seeking to improve model identification techniques for
complex models with inter-dependent parameters, the authors
modify Bozdogan’s Information Complexity Criteria, ICC,
to make them consistent and invariant to more kinds of
transformations. To validate their suggested new criteria,
Ferguson et al. perform a vast array of performance comparisons.
Twenty-five information criteria are investigated: Two classical
efficient criteria (AIC and AICc), two classical consistent criteria
(BIC and BIC∗), three forms of Bozdogan’s ICC, and 18 new
modifications of the ICC. All of these criteria were compared
for their ability in attaining three different model selection goals:
Selecting models with minimum prediction error, identifying the
form of the generating model, and estimating the KL divergence
to the generating process. All of this is done under 3 different
classes of generating and approximating models, 3 different
sample sizes, 3 different levels of process error, and 3 different
levels of collinearity.

Ferguson et al. recommend one of their combined forms
[BIC+2CvE(9)] as achieving all measures of quality well under a
broad range of modeling frameworks and having the theoretical
advantage of being both scale invariant and consistent. However,
it is important to note that No IC was best for any goal over all
conditions and that All IC performed generally well for all goals.

Two important lessons should be taken from Ferguson et al.:
First, much more attention needs to be paid to the uncertainty of
model identification. And second, for these goals to be achieved
sample sizes need to be larger in all model classes than is generally
the case in ecology.

Claeskens, Cunen, and Hjort
Perhaps the most used statistical tools by ecologists are
abundance count models. Simply counting the number of
individuals of every species observed in a particular community
is the point of entry to deeper studies aiming at understanding the
generation and maintenance of organisms’ diversity. Profound
questions examining the processes driving ecological stability,
resilience, resistance, invasion, and persistence all begin with
being able to accurately ascertain organisms’ abundances. In our
joint decades of teaching and mentoring, time and again count
models keep coming back as some of the main instruments
of statistical inference sustaining masters’ theses and PhD
dissertations in biology, wildlife ecology and conservation.
Ecologists are typically not only interested in estimating one or
the other model parameters leading to particular predictions, but
often see parameter estimation as the by-product of what they are
typically after, which is understanding which hypothesizedmodel
components better represent the underlying natural processes
generating the count data at hand.

Claeskens et al. propose and further elaborate on a
methodology that may revolutionize the reaches of an ecology-
driven statistical analyses and in particular, multi-model selection
for models of count data. The main idea of the Focused
Information Criterion (FIC) approach is to provide a model
selection framework where the comparison and the ranking
is formally defined according to the scientific quest at hand.
Recognizing that different scientific teams might ask different
focused questions of the same data and list of candidate models,
Claeskens et al. design a methodology to focus the model
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selection process using different functions of the parameters
of interest. When mainstream model selection tools are used
in ecology and in a given scenario a model is chosen as the
best model, practitioners are often left wondering why, in a
specific scientific sense, such model is indeed the best model.
FIC offers a theoretically sound methodology to obtain better,
more precise estimates of a quantity of interest. For countmodels,
such quantity is often the probability of a rare event occurring.
As arbitrary or stale as it may sound at first, understanding and
estimating accurately rare events in ecology has always been
at the center of key explanations of diversity. Rarity, or “rare
counts,” have been for a long time (e.g., Patil and Taillie, 1982)
hypothesized to be a critical component of explanations of how
hyper-diverse communities can be maintained. Such was also
the conclusion of one of the most recent and cited explanations
of the maintenance of diversity in tropical forests published by
Levi et al. (2019). As it turns out, the Focused Information
Criterion of Claeskens et al., which seeks to minimize the bias
and the variance of a quantity of interest, works particularly
well for estimating the probability of rare events. In line with
the rarity comments above, Claeskens et al. show as examples a
situation where the focus of the inference is estimation of the
probability of observing counts of a species above an arbitrary
number. Importantly, the authors show how other information
criteria like the BIC, although they may address the problem
of determining which model is the closest to the true data
generating mechanism, may not point toward the models that do
the best job at estimating for instance, the tail of a distribution
of counts. By allowing for a flexible specification of different foci
of interest, Claeskens et al. provide a welcome addition to the
toolbox of the evidentialist. This tool is not only conceptual but
is crystallized in a practical, easy to use library for R users, the
“fic” library.

Markatou and Sofiktou
Most of the papers summarized so far share a key point:
a reliance on the Kullback-Leibler divergence as the main
instrument to develop and exemplify the theory and practice
of Evidential Statistics. A natural reaction of any statistician to
such heavy reliance on a single metric should be to ponder
what would happen if different metrics or distances are used.
Can the desiderata of evidential statistics be kept under different
measures of divergence between the generating process and
any approximating model, or amongst models themselves?
Would the theoretical and asymptotic warrants of evidential
statistics hold under different distance measures? How can
statisticians visualize the strength of evidence under different
measures? How does a measure of strong evidence using the KL
divergence translates to other scales of divergence? These and
other questions are approached using philosophical and rigorous
statistical techniques in the contribution by Markatou and
Sofikitou. Importantly, Markatou and Sofikitou’s contribution
builds upon the pioneering concepts of model adequacy by
Lindsay (2004) and evidence functions by Lele (2004). Notably,
the authors propose an explanatory analysis tool called a
standardized distance ratio plot that can be used to visualize
the strength of evidence provided for or against hypotheses of

interest using different divergence measures. Hence, this paper
represents itself growth in the field and marks a clear path for
future research. Indeed, of all the contributions in this special
issue, this one is perhaps the one topic that is most ripe for further
research and study. An open direction that seems promising is
shining light on the behavior of different statistical divergence
measures under model misspecification. Whenever we give
seminars in statistics departments about evidential statistics, the
question of usage of other divergence measures invariably comes
up. We therefore encourage both, a close reading of this paper
and thinking about building extensions to these results using
Markatou and Sofikitou’s work as the foundation.

Stuart and Blume
New statistical approaches often face resistance from empirical
scientists. It can help acceptance if a new technique seems
familiar. Stuart and Blume cleverly disguise an evidential
procedure with the face of a p-value, something that virtually
every working scientist is familiar with. It does look like a p-value
in that the statistic can take on values of 0, 1, and everything
in between. Stuart and Blume even strengthen the familiarity by
calling it a SGPV or second-generation p-value.

Of course, a SGPV is not a p-value, it is not even a probability.
The SGPV is better than a p-value. The question of interest
is whether an unknown, but estimated, parameter is in an
interval null or is outside of the interval null. A p-value or a
null hypothesis significance test (NHST) can indicate that the
parameter is likely outside the null, but neither can give you
support that it is inside the null. Conversely, an equivalence test
can give you support for the parameter being inside the interval
but not for being outside the interval.

Evidence like, the procedure divides the range of possible
value for the SGPV into 3 regions: The point SGPV = 0,
which indicates strong evidence the parameter is in the interval
null. The point SGPV = 1, which indicates strong evidence the
parameter is not in the null. And, the region of all values in
between, which indicate that the data are consistent with both
hypotheses and which way the evidence is tipping.

Stuart and Blume also demonstrate another important
evidential property. The SGPV is consistent; the probability of
misleading evidence goes to 0 as sample size increases.

The SGPV is very flexible and can be applied retroactively to
any scientific literature in which a statistical interval is published.
Stuart and Blume claim that SGPV is applicable to any type of
interval confidence, support, or credible. The authors spend the
bulk of the paper demonstrating good statistical properties for
the SGPV under a wide range of circumstances.

Lele a
It is undeniably true that State-Space Models (SMMs) or more
generally, hierarchical statistical models, nowadays occupy a
central role in ecology and evolution. SMMs are used to
study the population dynamics of animals with complex life
histories, to estimate abundances under detection limitations
and heterogeneity (among individuals, across space, and in
time). Entire statistical ecology books for graduate students
and researchers alike with titles around “hierarchical models
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in ecology” now fill the electronic and physical bookshelves of
modern ecologists and academicians. As well, social media with
short instructionals, blogposts and even tweets by the authors
of these books are consumed voraciously by graduate students
needing to solve complex problems in the face of non-standard
datasets. Software authors in turn, face the challenge of putting
out for consumption accessible programs that can weather usage
by anybody interested in applying a given hierarchical model.
Over recent years, this high demand for accessible solutions to
complex problems has facilitated the establishment of uncritical
use of modern statistical machinery.

Lele a approaches the consequences of such uncritical use
head-on by clearly illustrating with real-life examples the
predicaments brought about by using non-informative Bayesian
analysis. Indeed, non-informative Bayesian analysis tends to be
nowadays the default setting under which complex statistical
models in ecology are fitted. In the name of pragmatism, it is
often argued that in modern, extensive big data sets the sample
size is so large that the likelihood information “swamps” any prior
effect and that effectively, the data will “speak for itself.”

Lele a carefully delineates the flaws in such reasoning and
vividly details how and why wildlife management decisions can
vastly suffer from such uncritical use of Bayesian techniques. In
particular, he shows that because of the lack of parameterization
invariance of non-informative Bayesian Analysis, all subjective
Bayesian inferences can be disguised as “objective,” non-
informative Bayesian inferences. Furthermore, cryptic biases can
be introduced in the resulting analyses because the induced priors
on functions of parameters are not non-informative.

Three other serious flaws are then discussed besides these
two. However, even if the author had presented only these two
problems, practitioners, ecologists and wildlife managers should
take note, because if the results of an uncritical non-informative
Bayesian analysis is subject to unstated and unqualified biases, it
may be easily challenged in the legislature and in the court of law.
For completeness, professor Lele emphasizes that hierarchical
models can be and are analyzed using the likelihood and
frequentist methods. That is, any Bayesian analysis can be
transformed to a likelihood analysis by data cloning.

Lele b
Uncertainty is a fundamental part of any inference, but the
depth of its complexity is often not adequately appreciated. This
paper, Lele b, gives a surprisingly readable review of many of
the issues involved with statistical uncertainty. Lele b begins
with a short list, culled from the literature, of desirable features
for uncertainty quantification procedures: (1) transformation
invariance, (2) uncertainty measure reflect data informativeness,
(3) ascertainability, and (4) diagnostic potential.

The first, transformation invariance, implies that the
probability of an event occurring or not occurring is a reasonable
measure of uncertainty. This of course requires understanding
what probability is and the paper next discusses the two major
definitions of probability used by statisticians and scientists
alike: aleatory or frequency-based probability and epistemic or
belief-based probability.

For adherents of frequentist statistics, data (i.e., data sets)
are random realizations from a stochastic generating process.
Consequently, estimates of parameters inherit stochasticity
from the generating process through the stochasticity of data
sets. The distribution of parameter estimates over an infinite
number of random data sets is called the true sampling
distribution of the parameter. One can estimate a parameters
sampling distribution by bootstrap or analytic approximation.
The estimated sampling distribution contains a great deal of
information about the uncertainty of the procedure. Much of this
uncertainty is captured by confidence intervals. While arguing
for the utility of confidence intervals, Lele b points out they are
often misinterpreted.

Lele b points out that the target of a confidence interval is to
cover the true parameter, not to cover the parameter estimated
in another experiment. Another common way that confidence
intervals are misinterpreted is by failing to distinguish between
unconditional/pre-data and conditional/post-data intervals.
Both kinds of intervals are commonly used in the scientific
literature. In separate sections Lele b returns to the questions
of interval construction and interpretation from Bayesian and
evidentialist perspectives.

As pointed out by Brittan and Bandyopadhyay “any adequate
(‘reliable’) hypothesis must be both explanatory and predictive.”
It is only through the verification of predictions that the
ascertainment of models or hypotheses is possible. Lele b takes
this very seriously reviewing the representation of prediction
uncertainty in all three inferential paradigms. Further, a new
flexible approach to the calculation of an evidential predictive
density is suggested and its advantages, both demonstrated and
potential, are discussed.

The paper concludes by rehearsing the key features, strengths,
and weaknesses of the characterization of uncertainty in the
three paradigms in the light of the four desiderata. None is
perfect, but overall, the evidentialist most closely conforms.
All three paradigms require scientists to specify their models
and whether inference should conditional or unconditional.
Bayesian inference further requires the specification of priors,
while evidence requires the specification of an evidence function.
The last thing any reader wants to hear is that the quality of their
scientific inference depends critically on the active choices they
make—regardless of their statistical paradigm. Nevertheless, this
is precisely the last thing that Lele b says.

Toquenaga and Gagné
Genetic sequencing is becoming an increasingly important
tool in ecological and evolutionary studies. This trend has
been accelerated by the new techniques of “next-generation
sequencing,” NGS. These sequencing procedures work by
digesting a genetic sequence into many small fragments (called
reads), sequencing the fragments, and then inferring the original
sequence computationally. This is like the spy novel trope of
pasting a shredded letter back together.

With the scientific opportunities, come many statistical
challenges. There are many programs that make these
calculations. Unfortunately, they don’t agree—with each
other and because many of the programs involve stochastic
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searches, even between multiple runs of the same program.
Toquenaga and Gagné, use evidential principles to develop
methods to choose among the many putative sequences
offered by an array of sequencing software, to assess
how good the proposed sequences are, and even to
improve them.

The thinking in Toquenaga and Gagné is as follows: If
multiple algorithms produce multiple sequences, each must
be a model of the true sequence. If an appropriate function
for measuring the divergence between these sequence models
can be found, then the model projections in model space
methods of Ponciano and Taper can be used to understand the
relationships among the proposed models and even to a true
sequence. The Levenshtein edit distance (Levenshtein, 1966),
as a measure of the minimum number of changes needed to
equate two sequences from finite alphabets, offers itself as an
appropriate divergence.

Toquenaga and Gagné test this proposition by taking
a known genetic sequence and randomly breaking it
into a number of fragments (with potential overlap).
The number and distribution of fragment sizes are set
to mimic typical digestion results. In their test case,
Toquenaga and Gagné are able to construct, using non-metric
dimensional scaling, a two-dimensional map of the sequence
estimates produced by the various sequencing programs
compared by the authors. Their map correctly identifies the
best-proposed sequence.

In this test case, one of the programs is able to correctly
reconstruct the true sequence. However, such a felicitous
occurrence may not be general. Usefully, Toquenaga and Gagné
propose an approach that can suggest sequences likely to
improve on the set of mistaken sequences. They do this
by proposing new sequence models which are consensus
sequences of existing models and seeing where they fit into
the map.

Toquenaga and Gagné confirm their method with a
parametric bootstrap based on a specified true sequence. Implicit
in this is the potential to use similar bootstrapping to assess the
uncertainty in sequence construction.

Taper, Lele, Ponciano, Dennis, and Jerde
Taper et al. develops themes from two other papers in this
Research Topic. Dennis et al. show that in the presence of
model misspecification Royall’s universal bound on the strength
of misleading evidence does not hold. Lele b reminds us that
statical uncertainty comes in two forms: global/unconditional
and local/conditional.

To Royall’s regions of weak and strong evidence (Royall,
2000) the authors intersperse a third category, that of prognostic
evidence. This is evidence not so weak as to be dismissed nor so
strong as to be considered overwhelming. Thus, while evidence
is itself continuous, useful descriptive categories for considering
evidence are constructed.

Taper et al. show that even in the presence of model
misspecification the uncertainty in model identification
can be quantified in the form of non-parametric bootstrap
confidence intervals on evidence. This decouples evidence
and its uncertainty and allows scientists to consider both.
The authors consider evidence (either prognostic or strong)
for one model over another to be “secure” if the lower 5%
confidence limit on the evidence is above the preset prognostic
boundary, kp.

To demonstrate the utility of this approach, Taper et al.
make a detailed reanalysis of model selection in Grace and
Keeley’s (2006) classic structural equation modeling of post-
fire diversity recovery in California shrublands. The use of
evidence confidence intervals develops a much more nuanced
understanding of whichmodel components are likely to be robust
and which are equivocal.

Technically, Taper et al. use an improved version of the EIC
(see Kitagawa and Konishi, 2010). The improvements include:
(1) bootstrapping of the 1SIC rather than individual likelihoods
to incorporate the effects of misspecification geometry. And (2)
identification of components of EIC that correspond to global
and local inference.

The paper finishes with an extended discussion of the
interpretation of global and local inference in science.
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Selective inference is considered for testing trees and edges in phylogenetic tree selection

from molecular sequences. This improves the previously proposed approximately

unbiased test by adjusting the selection bias when testing many trees and edges at the

same time. The newly proposed selective inference p-value is useful for testing selected

edges to claim that they are significantly supported if p > 1−α, whereas the non-selective

p-value is still useful for testing candidate trees to claim that they are rejected if p < α. The

selective p-value controls the type-I error conditioned on the selection event, whereas

the non-selective p-value controls it unconditionally. The selective and non-selective

approximately unbiased p-values are computed from two geometric quantities called

signed distance and mean curvature of the region representing tree or edge of interest in

the space of probability distributions. These two geometric quantities are estimated by

fitting amodel of scaling-law to the non-parametric multiscale bootstrap probabilities. Our

general method is applicable to a wider class of problems; phylogenetic tree selection is

an example of model selection, and it is interpreted as the variable selection of multiple

regression, where each edge corresponds to each predictor. Our method is illustrated in

a previously controversial phylogenetic analysis of human, rabbit and mouse.

Keywords: statistical hypothesis testing, multiple testing, selection bias, model selection, Akaike information

criterion, bootstrap resampling, hierarchical clustering, variable selection

1. INTRODUCTION

A phylogenetic tree is a diagram showing evolutionary relationships among species, and a tree
topology is a graph obtained from the phylogentic tree by ignoring the branch lengths. The primary
objective of any phylogenetic analysis is to approximate a topology that reflects the evolution
history of the group of organisms under study. Branches of the tree are also referred to as edges in
the tree topology. Given a rooted tree topology, or a unrooted tree topology with an outgroup, each
edge splits the tree so that it defines the clade consisting of all the descendant species. Therefore,
edges in a tree topology represent clades of species. Because the phylogenetic tree is commonly
inferred from molecular sequences, it is crucial to assess the statistical confidence of the inference.
In phylogenetics, it is a common practice to compute confidence levels for tree topologies and
edges. For example, the bootstrap probability (Felsenstein, 1985) is the most commonly used
confidence measure, and other methods such as the Shimodaira-Hasegawa test (Shimodaira and
Hasegawa, 1999) and the multiscale bootstrap method (Shimodaira, 2002) are also often used.
However, these conventional methods are limited in how well they address the issue of multiplicity
when there are many alternative topologies and edges. Herein, we discuss a new approach, selective
inference (SI), that is designed to address the issue of multiplicity.
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For illustrating the idea of selective inference, we first look at a
simple example of 1-dimensional normal random variable Z with
unknown mean θ ∈ R and variance 1:

Z ∼ N(θ , 1). (1)

Observing Z = z, we would like to test the null hypothesis
H0 : θ ≤ 0 against the alternative hypothesis H1 : θ > 0. We
denote the cumulative distribution function of N(0, 1) as 8(x)
and define the upper tail probability as 8̄(x) = 1 − 8(x) =

8(−x). Then, the ordinary (i.e., non-selective) inference leads to
the p-value of the one-tailed z-test as

p(z) : = P(Z > z | θ = 0) = 8̄(z). (2)

What happens when we test many hypotheses at the same time?
Consider random variables Zi ∼ N(θi, 1), i = 1, . . . ,Kall,
not necessarily independent, with null hypotheses θi ≤ 0,
where Ktrue hypotheses are actually true. To control the number
of falsely rejecting the Ktrue hypotheses, there are several
multiplicity adjusted approaches such as the family-wise error
rate (FWER) and the false discovery rate (FDR). Instead of
testing all the Kall hypotheses, selective inference (SI) allows
for Kselect hypotheses with zi > ci for constants ci specified
in advance. This kind of selection is very common in practice
(e.g., publication bias), and it is called as the file drawer problem
by Rosenthal (1979). Instead of controlling the multiplicity of
testing, SI alleviates it by reducing the number of tests. The
mathematical formulation of SI is easier than FWER and FDR in
the sense that hypotheses can be considered separately instead of
simultaneously. Therefore, we simply write z > c by dropping
the index i for one of the hypotheses. In selective inference,
the selection bias is adjusted by considering the conditional
probability given the selection event, which leads to the following
p-value (Fithian et al., 2014; Tian and Taylor, 2018)

p(z, c) : = P(Z > z | Z > c, θ = 0) = 8̄(z)/8̄(c), (3)

where p(z) of Equation (2) is divided by the selection probability
P(Z > c | θ = 0) = 8̄(c). In the case of c = 0, this corresponds to
the two-tailed z-test, because the selection probability is 8̄(0) =
0.5 and p(z, c) = 2p(z). For significance level α (we use α = 0.05
unless otherwise stated), it properly controls the type-I error
conditioned on the selection event as P(p(Z, c) < α | Z > c, θ =

0) = α, while the non-selective p-value violates the type-I error
as P(p(Z) < α | Z > c, θ = 0) = α/8̄(c) > α. The selection bias
can be very large when 8̄(c)≪ 1 (i.e., c≫ 0), or Kselect ≪ Kall.

Selective inference has been mostly developed for inferences
after model selection (Taylor and Tibshirani, 2015; Tibshirani
et al., 2016), particularly variable selection in regression
settings such as lasso (Tibshirani, 1996). Recently, Terada and
Shimodaira (2017) developed a general method for selective
inference by adjusting the selection bias in the approximately
unbiased (AU) p-value computed by the multiscale bootstrap
method (Shimodaira, 2002, 2004, 2008). This new method
can be used to compute, for example, confidence intervals of
regression coefficients in lasso (Figure 1). In this paper, we

FIGURE 1 | Confidence intervals of regression coefficients for selected

variables by lasso; see section 6.8 for details. All intervals are computed for

confidence level 1− α at α = 0.01. (Black) the ordinary confidence interval

[L
ordinary
j

,U
ordinary
j

]. (Green) the selective confidence interval [Lmodel
j

,Umodel
j

]

under the selected model. (Blue) the selective confidence interval

[Lvariable
j

,Uvariable
j

] under the selection event that variable j is selected.

(Red) the multiscale bootstrap version of selective confidence interval

[L̂variable
j

, Ûvariable
j

] under the selection event that variable j is selected.

apply this method to phylogenetic inference for computing
proper confidence levels of tree topologies (dendrograms) and
edges (clades or clusters) of species. As far as we know,
this is the first attempt to consider selective inference in
phylogenetics. Our selective inference method is implemented
in software scaleboot (Shimodaira, 2019) working jointly with
CONSEL (Shimodaira and Hasegawa, 2001) for phylogenetics,
and it is also implemented in a new version of pvclust (Suzuki
and Shimodaira, 2006) for hierarchical clustering, where
only edges appeared in the observed tree are “selected” for
computing p-values. Although our argument is based on
the rigorous theory of mathematical statistics in Terada and
Shimodaira (2017), a self-contained illustration is presented
in this paper for the theory as well as the algorithm of
selective inference.

Phylogenetic tree selection is an example of model selection.
Since each tree can be specified as a combination of edges,
tree selection can be interpreted as the variable selection of
multiple regression, where edges correspond to the predictors
of regression (Shimodaira, 2001; Shimodaira and Hasegawa,
2005). Because all candidate trees have the same number
of model parameters, the maximum likelihood (ML) tree is
obtained by comparing log-likelihood values of trees (Felsenstein,
1981). In order to adjust the model complexity by the
number of parameters in general model selection, we compare
Akaike Information Criterion (AIC) values of candidate
models (Akaike, 1974). AIC is used in phylogenetics for selecting
the substitution model (Posada and Buckley, 2004). There are
several modifications of AIC that allow formodel selection. These
include the precise estimation of the complexity term known as
Takeuchi Information Criterion (Burnham and Anderson, 2002;
Konishi and Kitagawa, 2008), and adaptations for incomplete
data (Shimodaira and Maeda, 2018) and covariate-shift data
(Shimodaira, 2000). AIC and all these modifications are derived

Frontiers in Ecology and Evolution | www.frontiersin.org 2 May 2019 | Volume 7 | Article 17415

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Shimodaira and Terada Selective Inference for Phylogenetics

FIGURE 2 | Examples of two unrooted trees T1 and T7. Branch lengths represent ML estimates of parameters (expected number of substitutions per site). T1

includes edges E1, E2, and E3 and T7 includes E1, E6, and E8.

for estimating the expected Kullback-Leibler divergence between
the unknown true distribution and the estimated probability
distribution on the premise that the model is misspecified.
When using regression model for prediction purpose, it may
be sufficient to find only the best model which minimizes
the AIC value. Considering random variations of dataset,
however, it is obvious in phylogenetics that the ML tree
does not necessarily represent the true history of evolution.
Therefore, Kishino and Hasegawa (1989) proposed a statistical
test whether two log-likelihood values differ significantly (also
known as Kishino-Hasegawa test). The log-likelihood difference
is often not significant, because its variance can be very
large for non-nested models when the divergence between
two probability distributions is large; see Equation (26) in
section 6.1. The same idea of model selection test whether two
AIC values differ significantly has been proposed independently
in statistics (Linhart, 1988) and econometrics (Vuong, 1989).
Another method of model selection test (Efron, 1984) allows
for the comparison of two regression models with an adjusted
bootstrap confidence interval corresponding to the AU p-value.
For testing which model is better than the other, the null
hypothesis in the model selection test is that the two models
are equally good in terms of the expected value of AIC on
the premise that both models are misspecified. Note that the
null hypothesis is whether the model is correctly specified or
not in the traditional hypothesis testing methods including
the likelihood ratio test for nested models and the modified
likelihood ratio test for non-nested models (Cox, 1962). The
model selection test is very different from these traditional
settings. For comparing AIC values of more than two models,
a multiple comparisons method is introduced to the model
selection test (Shimodaira, 1998; Shimodaira and Hasegawa,
1999), which computes the confidence set of models. But the
multiple comparisons method is conservative by nature, leading
to more false negatives than expected, because it considers
the worst scenario, called the least favorable configuration.
On the other hand, the model selection test (designed for
two models) and bootstrap probability (Felsenstein, 1985) lead
to more false positives than expected when comparing more
than two models (Shimodaira and Hasegawa, 1999; Shimodaira,
2002). The AU p-value mentioned earlier has been developed

for solving this problem, and we are going to upgrade it for
selective inference.

2. PHYLOGENETIC INFERENCE

For illustrating phylogenetic inference methods, we analyze
a dataset consisting of mitochondrial protein sequences
of six mammalian species with n = 3, 414 amino acids
(n is treated as sample size). The taxa are labeled as
1=Homo sapiens (human), 2=Phoca vitulina (seal), 3=Bos
taurus (cow), 4=Oryctolagus cuniculus (rabbit), 5=Mus
musculus (mouse), and 6=Didelphis virginiana (opossum).
The dataset will be denoted as Xn = (x1, . . . , xn). The
software package PAML (Yang, 1997) was used to calculate
the site-wise log-likelihoods for trees. The mtREV model
(Adachi and Hasegawa, 1996) was used for amino acid
substitutions, and the site-heterogeneity was modeled by
the discrete-gamma distribution (Yang, 1996). The dataset
and evolutionary model are similar to previous publications
(Shimodaira and Hasegawa, 1999; Shimodaira, 2001, 2002),
thus allowing our proposed method to be easily compared with
conventional methods.

The number of unrooted trees for six taxa is 105. These
trees are reordered by their likelihood values and labeled as
T1, T2, . . ., T105. T1 is the ML tree as shown in Figure 2

and its tree topology is represented as (((1(23))4)56). There are
three internal branches (we call them as edges) in T1, which
are labeled as E1, E2, and E3. For example, E1 splits the six
taxa as {23|1456} and the partition of six taxa is represented
as -++---, where +/- indicates taxa 1, . . . , 6 from left to
right and ++ indicates the clade {23} (we set - for taxon
6, since it is treated as the outgroup). There are 25 edges
in total, and each tree is specified by selecting three edges
from them, although not all the combinations of three edges
are allowed.

The result of phylogenetic analysis is summarized in Table 1

for trees and Table 2 for edges. Three types of p-values are
computed for each tree as well as for each edge. BP is
the bootstrap probability (Felsenstein, 1985) and AU is the
approximately unbiased p-value (Shimodaira, 2002). Bootstrap
probabilities are computed by the non-parametric bootstrap
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TABLE 1 | Three types of p-values (BP, AU, SI) and geometric quantities (β0,β1) for the best 20 trees.

Tree BP AU SI β0 β1 Topology Edges

T1† 0.559 (0.001) 0.752 (0.001) 0.372 (0.001) -0.41 (0.00) 0.27 (0.00) (((1(23))4)56) E1, E2, E3

T2 0.304 (0.000) 0.467 (0.001) 0.798 (0.001) 0.30 (0.00) 0.22 (0.00) ((1((23)4))56) E1 ,E2, E4

T3 0.038 (0.000) 0.126 (0.002) 0.202 (0.003) 1.46 (0.01) 0.32 (0.00) (((14)(23))56) E1, E2, E5

T4 0.014 (0.000) 0.081 (0.002) 0.124 (0.003) 1.79 (0.01) 0.40 (0.01) ((1(23))(45)6) E1, E3, E6

T5 0.032 (0.000) 0.127 (0.002) 0.199 (0.003) 1.50 (0.01) 0.36 (0.00) (1((23)(45))6) E1, E6, E7

T6 0.005 (0.000) 0.032 (0.002) 0.050 (0.002) 2.21 (0.02) 0.35 (0.01) (1(((23)4)5)6) E1, E4, E7

T7‡ 0.015 (0.000) 0.100 (0.003) 0.150 (0.003) 1.72 (0.01) 0.44 (0.01) ((1(45))(23)6) E1, E6, E8

T8 0.001 (0.000) 0.011 (0.001) 0.016 (0.002) 2.74 (0.03) 0.43 (0.02) ((15)((23)4)6) E1, E4, E9

T9 0.000 (0.000) 0.001 (0.000) 0.001 (0.000) 3.67 (0.09) 0.46 (0.04) (((1(23))5)46) E1, E3, E10

T10 0.002 (0.000) 0.022 (0.002) 0.033 (0.002) 2.43 (0.02) 0.42 (0.01) (((15)4)(23)6) E1, E8, E9

T11 0.000 (0.000) 0.004 (0.001) 0.006 (0.002) 3.14 (0.07) 0.51 (0.03) (((14)5)(23)6) E1, E5, E8

T12 0.000 (0.000) 0.000 (0.000) 0.001 (0.000) 3.78 (0.09) 0.41 (0.04) (((15)(23))46) E1, E9, E10

T13 0.000 (0.000) 0.000 (0.000) 0.001 (0.001) 3.96 (0.19) 0.54 (0.09) (1(((23)5)4)6) E1, E7, E11

T14 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 4.66 (0.31) 0.65 (0.12) ((14)((23)5)6) E1, E5, E11

T15 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 5.28 (0.34) 0.43 (0.11) ((1((23)5))46) E1, E10, E11

T16 0.000 (0.000) 0.000 (0.000) 0.001 (0.000) 3.63 (0.04) 0.23 (0.01) ((((13)2)4)56) E2, E3, E12

T17 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 3.81 (0.04) 0.22 (0.01) ((((12)3)4)56) E2, E3, E13

T18 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 4.33 (0.10) 0.34 (0.03) (((13)2)(45)6) E3, E6, E12

T19 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 4.36 (0.11) 0.32 (0.04) (((12)3)(45)6) E3, E6, E13

T20 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 3.90 (0.12) 0.44 (0.05) (((1(45))2)36) E6, E8, E14

Standard errors are shown in parentheses. Boldface indicates significance (p < 0.05) for the null hypothesis that the tree is true (outside mode). For the rest of trees (T21, . . . , T105),

p-values are very small (p < 0.001). † T1 is the ML tree, i.e., the tree selected by the ML method based on the dataset of Shimodaira and Hasegawa (1999). ‡ T7 is presumably the

true tree as suggested by later researches; see section 4.3.

resampling (Efron, 1979) described in section 6.1. The theory
and the algorithm of BP and AU will be reviewed in section 3.
Since we are testing many trees and edges at the same time,
there is potentially a danger of selection bias. The issue of
selection bias has been discussed in Shimodaira and Hasegawa
(1999) for introducing the method of multiple comparisons of
log-likelihoods (also known as Shimodaira-Hasegawa test) and
in Shimodaira (2002) for introducing AU test. However, these
conventional methods are only taking care of the multiplicity of
comparing many log-likelihood values for computing just one
p-value instead of many p-values at the same time. Therefore,
we intend to further adjust the AU p-value by introducing
the selective inference p-value, denoted as SI. The theory and
the algorithm of SI will be explained in section 4 based on
the geometric theory given in section 3. After presenting the
methods, we will revisit the phyloegnetic inference in section 4.3.

For developing the geometric theory in sections 3 and 4,
we formulate tree selection as a mathematical formulation
known as the problem of regions (Efron et al., 1996; Efron
and Tibshirani, 1998). For better understanding the geometric
nature of the theory, the problem of regions is explained below
for phylogenetic inference, although the algorithm is simple
enough to be implemented without understanding the theory.
Considering the space of probability distributions (Amari and
Nagaoka, 2007), the parametric models for trees are represented
as manifolds in the space. The dataset (or the empirical
distribution) can also be represented as a “data point” X in
the space, and the ML estimates for trees are represented
as projections to the manifolds. This is illustrated in the

visualization of probability distributions of Figure 3A using log-
likelihood vectors of models (Shimodaira, 2001), where models
are simply indicated as red lines from the origin; see section 6.2
for details. This visualization may be called as model map. The
point X is actually reconstructed as the minimum full model
containing all the trees as submodels, and the Kullback-Leibler
divergence between probability distributions is represented
as the squared distance between points; see Equation (27).
Computation of X is analogous to the Bayesian model averaging,
but based on the ML method. For each tree, we can think of a
region in the space so that this tree becomes the ML tree when
X is included in the region. The regions for T1, T2, and T3 are
illustrated in Figure 3B, and the region for E2 is the union of
these three regions.

In Figure 3A, X is very far from any of the tree models,
suggesting that all the models are wrong; the likelihood ratio
statistic for testing T1 against the full model is 113.4, which is
highly significant as χ2

8 (Shimodaira, 2001, section 5). Instead
of testing whether tree models are correct or not, we test
whether models are significantly better than the others. As
seen in Figure 3B, X is in the region for T1, meaning that
the model for T1 is better than those for the other trees. For
convenience, observing X in the region for T1, we state that T1
is supported by the data. Similarly, X is in the region for E2
that consists of the three regions for T1, T2, T3, thus indicating
that E2 is supported by the data. Although T1 and E2 are
supported by the data, there is still uncertainty as to whether
the true evolutionary history of lineages is depicted because
the location of X fluctuates randomly. Therefore, statistical
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TABLE 2 | Three types of p-values (BP, AU, SI) and geometric quantities (β0,β1) for all the 25 edges of six taxa.

Edge BP AU SI β0 β1 Clade

E1†‡ 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) -3.87 (0.03) 0.16 (0.01) -++---

E2† 0.930 (0.000) 0.956 (0.001) 0.903 (0.001) -1.59 (0.00) 0.12 (0.00) ++++--

E3† 0.580 (0.001) 0.719 (0.001) 0.338 (0.001) -0.39 (0.00) 0.19 (0.00) +++---

E4 0.318 (0.000) 0.435 (0.001) 0.775 (0.001) 0.32 (0.00) 0.16 (0.00) -+++--

E5 0.037 (0.000) 0.124 (0.002) 0.198 (0.002) 1.47 (0.01) 0.32 (0.00) +--+--

E6‡ 0.060 (0.000) 0.074 (0.001) 0.141 (0.002) 1.50 (0.00) 0.05 (0.00) ---++-

E7 0.038 (0.000) 0.091 (0.002) 0.154 (0.002) 1.56 (0.01) 0.22 (0.00) -++++-

E8‡ 0.018 (0.000) 0.068 (0.002) 0.110 (0.003) 1.80 (0.01) 0.31 (0.01) +--++-

E9 0.003 (0.000) 0.014 (0.001) 0.023 (0.002) 2.48 (0.02) 0.27 (0.02) +---+-

E10 0.000 (0.000) 0.000 (0.000) 0.001 (0.000) 3.72 (0.07) 0.29 (0.03) +++-+-

E11 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 4.31 (0.10) 0.35 (0.03) -++-+-

E12 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 3.68 (0.05) 0.17 (0.02) +-+---

E13 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 3.90 (0.04) 0.15 (0.02) ++----

E14 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 4.03 (0.09) 0.30 (0.04) ++-++-

E15 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 4.03 (0.13) 0.38 (0.06) +-+++-

E16 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 4.44 (0.05) 0.12 (0.01) -+-+--

E17 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 4.70 (0.07) 0.19 (0.02) ++-+--

E18 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 3.94 (0.09) 0.26 (0.04) -+-++-

E19 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 5.23 (0.43) 0.57 (0.13) --++--

E20 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 5.66 (0.29) 0.28 (0.09) +-++--

E21 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 6.38 (0.33) 0.24 (0.08) --+++-

E22 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 5.62 (0.21) 0.17 (0.07) --+-+-

E23 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 4.86 (0.43) 0.70 (0.13) -+--+-

E24 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 5.61 (0.17) 0.23 (0.04) +-+-+-

E25 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 6.32 (0.71) 0.52 (0.20) ++--+-

Standard errors are shown in parentheses. Boldface without underline indicates significance (p < 0.05) for the null hypothesis that the edge is true (outside mode). Boldface with

underline indicates significance (p > 0.95) for the null hypothesis that the edge is not true (inside mode). † Edges included in T1. ‡ Edges included in T7.

confidence of the outcome needs to be assessed. A mathematical
procedure for statistically evaluating the outcome is provided in
the following sections.

3. NON-SELECTIVE INFERENCE FOR THE
PROBLEM OF REGIONS

3.1. The Problem of Regions
For developing the theory, we consider (m + 1)-dimensional
multivariate normal random vector Y , m ≥ 0, with unknown
mean vector µ ∈ R

m+1 and the identity variance matrix Im+1:

Y ∼ Nm+1(µ, Im+1). (4)

A region of interest such as tree and edge is denoted as R ⊂

R
m+1, and its complement set is denoted as RC = R

m+1 \ R.
There are Kall regions Ri, i = 1, . . . ,Kall, and we simply write
R for one of them by dropping the index i. Observing Y = y,
the null hypothesis H0 : µ ∈ R is tested against the alternative
hypothesis H1 : µ ∈ R

C. This setting is called problem of regions,
and the geometric theory for non-selective inference for slightly
generalized settings (e.g., exponential family of distributions) has
been discussed in Efron and Tibshirani (1998) and Shimodaira
(2004). This theory allows arbitrary shape ofRwithout assuming

a particular shape such as half-space or sphere, and only requires
the expression (29) of section 6.3.

The problem of regions is well described by geometric
quantities (Figure 4). Let µ̂ be the projection of y to the boundary
surface ∂R defined as

µ̂ = argmin
µ∈∂R

‖y − µ‖,

and β0 be the signed distance defined as β0 = ‖y − µ̂‖ > 0
for y ∈ R

C and β0 = −‖y − µ̂‖ ≤ 0 for y ∈ R; see
Figures 4A,B, respectively. A large β0 indicates the evidence for
rejectingH0 : µ ∈ R, but computation of p-value will also depend
on the shape ofR. There should be many parameters for defining
the shape, but we only need the mean curvature of ∂R at µ̂,
which represents the amount of surface bending. It is denoted
as β1 ∈ R, and defined in (30).

Geometric quantities β0 and β1 of regions for trees (T1, . . . ,
T105) and edges (E1, . . . , E25) are plotted in Figure 5, and these
values are also found in Tables 1, 2. Although the phylogenetic
model of evolution for the molecular dataset Xn = (x1, . . . , xn)
is different from the multivariate normal model (4) for y, the
multiscale bootstrap method of section 3.4 estimates β0 and β1
using the non-parametric bootstrap probabilities (section 6.1)
with bootstrap replicates X ∗

n′ for several values of sample size n′.
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FIGURE 3 | Model map: Visualization of ML estimates of probability distributions for the best 15 trees. The origin represents the star-shaped tree topology (obtained

by reducing the internal branches to zero length). Sites of amino acid sequences t = 1, . . . , n (black numbers) and probability distributions for trees T1, . . . ,T15 (red

segments) are drawn by biplot of PCA. Auxiliary lines are drawn by hand. (A) 3-dimensional visualization using PC1, PC2, and PC3. The reconstructed data point X is

also shown (green point). The ML estimates are represented as the end points of the red segments (shown by red points only for the best five trees), and they are

placed on the sphere with the origin and X being placed at the poles. (B) The top-view of model map. Regions for the best three trees Ti, i = 1, 2, 3 (blue shaded

regions) are illustrated; Ti will be the ML tree if X is included in the region for Ti.

3.2. Bootstrap Probability
For simulating (4) from y, we may generate replicates Y∗ from
the bootstrap distribution (Figure 4C)

Y∗ ∼ Nm+1(y, Im+1), (5)

and define bootstrap probability (BP) of R as the probability of
Y∗ being included in the regionR:

BP(R|y) : = P(Y∗ ∈ R|y). (6)

BP(R|y) can be interpreted as the Bayesian posterior
probability P(µ ∈ R|y), because, by assuming the flat prior
distribution π(µ) = constant, the posterior distribution
µ|y ∼ Nm+1(y, Im+1) is identical to the distribution of Y∗ in (5).
An interesting consequence of the geometric theory of Efron and
Tibshirani (1998) is that BP can be expressed as

BP(R|y) ≃ 8̄(β0 + β1), (7)

where≃ indicates the second order asymptotic accuracy, meaning
that the equality is correct up to Op(n

−1/2) with error of order
Op(n

−1); see section 6.3.
For understanding the formula (7), assume that R is a half

space so that ∂R is flat and β1 = 0. Since we only have to look
at the axis orthogonal to ∂R, the distribution of signed distance

is identified as (1) with β0 = z. The bootstrap distribution for
(1) is Z∗ ∼ N(z, 1), and bootstrap probability is expressed as
P(Z∗ ≤ 0|z) = 8̄(z). Therefore, we have BP(R|y) = 8̄(β0). For
generalRwith curved ∂R, the formula (7) adjusts the bias caused
by β1. As seen in Figure 4C,R becomes smaller for β1 > 0 than
β1 = 0, and BP becomes smaller.

BP ofRC is closely related to BP ofR. From the definition,

BP(RC|y) = 1−BP(R|y) ≃ 1−8̄(β0+β1) = 8̄(−β0−β1). (8)

The last expression also implies that the signed distance and the
mean curvature ofRC is−β0 and−β1, respectively; this relation
is also obtained by reversing the sign of v in (29).

3.3. Approximately Unbiased Test
Although BP(R|y) may work as a Bayesian confidence measure,
we would like to have a frequentist confidencemeasure for testing
H0 : µ ∈ R against H1 : µ ∈ R

C. The signed distance of Y is
denoted as β0(Y), and consider the region {Y | β0(Y) > β0}

in which the signed distance is larger than the observed value
β0 = β0(y). Similar to (2), we then define an approximately
unbiased (AU) p-value as

AU(R|y) : = P(β0(Y) > β0 | µ = µ̂) = BP({Y | β0(Y) > β0}|µ̂),
(9)
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FIGURE 4 | Problem of regions. (A) β0 > 0 when y ∈ RC, then select the null hypothesis µ ∈ R. (B) β0 ≤ 0 when y ∈ R, then select the null hypothesis µ ∈ RC.

(C) The bootstrap distribution of Y∗ ∼ Nm+1(y, Im+1) (red shaded distribution). (D) The null distribution of Y ∼ Nm+1(µ̂, Im+1) (green shaded distribution).

where the probability is calculated for Y ∼ Nm+1(µ̂, Im+1) as
illustrated in Figure 4D. The shape of the region {Y | β0(Y) >
β0} is very similar to the shape of RC; the difference is in fact
only Op(n

−1). Let us think of a point y′ with signed distance−β0
(shown as y in Figure 4B). Then we have

AU(R|y) ≃ BP(RC|y′) ≃ 8̄(β0 − β1), (10)

where the last expression is obtained by substituting (−β0,β1)
for (β0,β1) in (8). This formula computes AU from (β0,β1). An
intuitive interpretation of (10) is explained in section 6.4.

In non-selective inference, p-values are computed using
formula (10). If AU(R|y) < α, the null hypothesis H0 : µ ∈

R is rejected and the alternative hypothesis H1 : µ ∈ R
C is

accepted. This test procedure is approximately unbiased, because
it controls the non-selective type-I error as

P
(

AU(R|Y) < α | µ ∈ ∂R
)

≃ α, (11)

and the rejection probability increases as µ moves away fromR,
while it decreases as µ moves intoR.

Exchanging the roles of R and R
C also allows for another

hypothesis testing. AU of RC is obtained from (9) by reversing
the inequality as AU(RC|y) = BP({Y | β0(Y) < β0}|µ̂) =

1− AU(R|y). This is also confirmed by substituting (−β0,−β1),
i.e., the geometric quantities ofRC, for (β0,β1) in (10) as

AU(RC|y) ≃ 8̄(−β0 + β1) ≃ 1− AU(R|y). (12)

If AU(RC|y) < α or equivalently AU(R|y) > 1 − α, then we
reject H0 : µ ∈ R

C and accept H1 : µ ∈ R.

3.4. Multiscale Bootstrap
In order to estimate β0 and β1 from bootstrap probabilities, we
consider a generalization of (5) as

Y∗ ∼ Nm+1(y, σ
2Im+1), (13)

for a variance σ 2 > 0, and definemultiscale bootstrap probability
ofR as

BPσ 2 (R|y) : = Pσ 2 (Y
∗ ∈ R|y), (14)

where Pσ 2 indicates the probability with respect to (13).
Although our theory is based on the multivariate normal

model, the actual implementation of the algorithm uses the
non-parametric bootstrap probabilities in section 6.1. To fill
the gap between the two models, we consider a non-linear
transformation f n so that the multivariate normal model holds
at least approximately for y = f n(Xn) and Y∗ = f n(X

∗
n′ ).

An example of f n is given in (25) for phylogenetic inference.
Surprisingly, a specification of f n is not required for computing
p-values, but we simply assume the existence of such a
transformation; this property may be called as “bootstrap trick.”
For phylogenetic inference, we compute the non-parametric
bootstrap probabilities by (24) and substitute these values for (14)
with σ 2 = n/n′.

For estimating β0 and β1, we need to have a scaling law which
explains how BPσ 2 depends on the scale σ . We rescale (13) by
multiplying σ−1 so that σ−1Y∗ ∼ Nm+1(σ

−1y, Im+1) has the
variance σ 2 = 1. y and R are now resaled by the factor σ−1,
which amounts to signed distance β0σ

−1 and mean curvature
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FIGURE 5 | Geometric quantities of regions (β0 and β1) for trees and edges

are estimated by the multiscale bootstrap method (section 3.4). The three

types of p-value (BP, AU, SI) are computed from β0 and β1, and their contour

lines are drawn at p = 0.05 and 0.95.

β1σ (Shimodaira, 2004). Therefore, by substituting (β0σ
−1,β1σ )

for (β0,β1) in (7), we obtain

BPσ 2 (R|y) ≃ 8̄(β0σ
−1 + β1σ ). (15)

For better illustrating how BPσ 2 depends on σ
2, we define

ψσ 2 (R|y) : = σ8̄−1(BPσ 2 (R|y)) ≃ β0 + β1σ
2. (16)

We can estimate β0 and β1 as regression coefficients by fitting the
linear model (16) in terms of σ 2 to the observed values of non-
parametric bootstrap probabilities (Figure 6). Interestingly, (10)
is rewritten as AU(R|y) ≃ 8̄(ψ−1(R|y)) by formally letting σ 2 =

−1 in the last expression of (16), meaning that AU corresponds
to n′ = −n. Although σ 2 should be positive in (15), we can think
of negative σ 2 in β0 + β1σ

2. See section 6.5 for details of model
fitting and extrapolation to negative σ 2.

4. SELECTIVE INFERENCE FOR THE
PROBLEM OF REGIONS

4.1. Approximately Unbiased Test for
Selective Inference
In order to argue selective inference for the problem of regions,
we have to specify the selection event. Let us consider a selective
region S ⊂ R

m+1 so that we perform the hypothesis testing only
when y ∈ S . Terada and Shimodaira (2017) considered a general
shape of S , but here we treat only two special cases of S = R

C

and S = R; see section 6.6. Our problem is formulated as follows.
Observing Y = y from the multivariate normal model (4), we

first check whether y ∈ R
C or y ∈ R. If y ∈ R

C and we are
interested in the null hypothesis H0 : µ ∈ R, then we may test it
against the alternative hypothesis H1 : µ ∈ R

C. If y ∈ R and we
are interested in the null hypothesis H0 : µ ∈ R

C, then we may
test it against the alternative hypothesisH1 : µ ∈ R. In this paper,
the former case (y ∈ R

C, and so β0 > 0) is called as outside mode,
and the latter case (y ∈ R, and so β0 ≤ 0) is called as inside mode.
We do not know which of the two modes of testing is performed
until we observe y.

Let us consider the outside mode by assuming that y ∈ R
C,

where β0 > 0. Recalling that p(z, c) = p(z)/8̄(c) in section 1, we
divide AU(R|y) by the selection probability to define a selective
inference p-value as

SI(R|y) : =
P(β0(Y) > β0 | µ = µ̂)

P(Y ∈ RC | µ = µ̂)
=

AU(R|y)

BP(RC|µ̂)
. (17)

From the definition, SI(R|y) ∈ (0, 1), because {Y | β0(Y) >
β0} ⊂ R

C for β0 > 0. This p-value is computed from (β0,β1) by

SI(R|y) ≃
8̄(β0 − β1)

8̄(−β1)
, (18)

where BP(RC|µ̂) = 8̄(−β1) is obtained by substituting (0,β1)
for (β0,β1) in (8). An intuitive justification of (18) is explained in
section 6.4.

For the outside mode of selective inference, p-values are
computed using formula (18). If SI(R|y) < α, then reject
H0 : µ ∈ R and accept H1 : µ ∈ R

C. This test procedure is
approximately unbiased, because it controls the selective type-I
error as

P
(

SI(R|Y) < α | Y ∈ R
C,µ ∈ ∂R

)

≃ α, (19)

and the rejection probability increases as µ moves away fromR,
while it decreases as µ moves intoR.

Now we consider the inside mode by assuming that y ∈ R,
where β0 ≤ 0. SI of RC is obtained from (17) by exchanging the
roles ofR andR

C.

SI(RC|y) =
AU(RC |y)

BP(R|µ̂)
≃
8̄(−β0 + β1)

8̄(β1)
. (20)

For the inside mode of selective inference, p-values are computed
using formula (20). If SI(RC|y) < α, then rejectH0 : µ ∈ R

C and
accept H1 : µ ∈ R. Unlike the non-selective p-value AU(RC|y),
SI(RC|y) < α is not equivalent to SI(R|y) > 1 − α, because
SI(R|y)+ SI(RC|y) 6= 1. For convenience, we define

SI′(R|y) : =

{

SI(R|y) y ∈ R
C

1− SI(RC|y) y ∈ R
(21)

so that SI′ > 1 − α implies SI(RC|y) < α. In our numerical
examples of Figure 5, Tables 1, 2, SI′ is simply denoted as SI. We
do not need to consider (21) for BP and AU, because BP′(R|y) =
BP(R|y) and AU′(R|y) = AU(R|y) from (8) and (12).
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FIGURE 6 | Multiscale bootstrap for (A) tree T1 and (B) edge E2. ψ
σ2

(R|y) is computed by the non-parametric bootstrap probabilities for several σ2 = n/n′ values,

then β0 and β1 are estimated as the intercept and the slope, respectively. See section 6.5 for details.

4.2. Shortcut Computation of SI
We can compute SI from BP and AU. This will be useful for
reanalyzing the results of previously published researches. Let us
write BP = BP(R|y) and AU = AU(R|y). From (7) and (10),
we have

β0 =
1
2

(

8̄−1(BP)+ 8̄−1(AU)
)

β1 =
1
2

(

8̄−1(BP)− 8̄−1(AU)
)

.

We can compute SI from β0 and β1 by (18) or (20). More directly,
we may compute

SI(R|y) =
AU

8̄
{

1
2

(

8̄−1(AU)− 8̄−1(BP)
)}

SI(RC|y) =
1− AU

8̄
{

1
2

(

8̄−1(BP)− 8̄−1(AU)
)} .

4.3. Revisiting the Phylogenetic Inference
In this section, the analytical procedure outlined in section 2
is used to determine relationships among human, mouse, and
rabbit. The question is: Which of mouse or human is closer
to rabbit? The traditional view (Novacek, 1992) is actually
supporting E6, the clade of rabbit and mouse, which is consistent
with T4, T5, and T7. Based on molecular analysis, Graur et al.
(1996) strongly suggested that rabbit is closer to human than
mouse, thus supporting E2, which is consistent with T1, T2,
and T3. However, Halanych (1998) criticized it by pointing
out that E2 is an artifact caused by the long branch attraction
(LBA) betweenmouse and opossum. In addition, Shimodaira and
Hasegawa (1999) and Shimodaira (2002) suggested that T7 is not
rejected by multiplicity adjusted tests. Shimodaira and Hasegawa
(2005) showed that T7 becomes theML tree by resolving the LBA
using a larger dataset with more taxa. Although T1 is the ML tree
based on the dataset with fewer taxa, T7 is presumably the true

tree as indicated by later researches. With these observations in
mind, we retrospectively interpret p-values in Tables 1, 2.

The results are shown below for the two test modes
(inside and outside) as defined in section 4.1. The extent of
multiplicity and selection bias depends on the number of regions
under consideration, thus these numbers are considered for
interpreting the results. The numbers of regions related to trees
and edges are summarized in Table 3; see section 6.7 for details.

In inside mode, the null hypothesis H0 : µ ∈ R
C
i is tested

against the alternative hypothesis H1 : µ ∈ Ri for y ∈ Ri (i.e.,
β0 ≤ 0). This applies to the regions for T1, E1, E2, and E3, and
they are supported by the data in the sense mentioned in the last
paragraph of section 2.WhenH0 is rejected by a test procedure, it
is claimed thatRi is significantly supported by the data, indicating
H1 holds true. For convenience, the null hypothesisH0 is said like
E1 is not true, and the alternative hypothesis H1 is said like E1 is
true; then rejection of H0 implies that E1 is true. This procedure
looks unusual, but makes sense when bothRi andR

C
i are regions

with nonzero volume. Note that selection bias can be very large
in the sense that Kselect/Kall ≈ 0 for many taxa, and non-selective
tests may lead to many false positives because Ktrue/Kall ≈ 1.
Therefore selective inference should be used in inside mode.

In outside mode, the null hypothesis H0 : µ ∈ Ri is tested
against the alternative hypothesis H1 : µ ∈ R

C
i for y ∈ R

C
i

(i.e., β0 > 0). This applies to the regions for T2, ..., T105, and
E4, ..., E25, and they are not supported by the data. When H0

is rejected by a test procedure, it is claimed that Ri is rejected.

TABLE 3 | The number of regions for trees and edges. The number of taxa

is N = 6.

Inside mode Outside mode

Tree Edge Tree Edge

Kselect 1 3 104 22

Ktrue 104 22 1 3

Kall 105 25 105 25
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For convenience, the null hypothesis is said like T9 is true, and
the alternative hypothesis is said like T9 is not true; rejection
of H0 implies that T9 is not true. This is more or less a typical
test procedure. Note that selection bias is minor in the sense that
Kselect/Kall ≈ 1 for many taxa, and non-selective tests may result
in few false positives because Ktrue/Kall ≈ 0. Therefore selective
inference is not much beneficial in outside mode.

In addition to p-values for some trees and edges, estimated
geometric quantities are also shown in the tables. We confirm
that the sign of β0 is estimated correctly for all the trees and edges.
The estimated β1 values are all positive, indicating the regions are
convex. This is not surprising, because the regions are expressed
as intersections of half spaces at least locally (Figure 3B).

Now p-values are examined in insidemode. (T1, E3) BP, AU, SI
are all p ≤ 0.95. This indicates that T1 and E3 are not significantly
supported. There are nothing claimed to be definite. (E1) BP,
AU, SI are all p > 0.95, indicating E1 is significantly supported.
Since E1 is associated with the best 15 trees T1, ..., T15, some of
them are significantly better than the rest of trees T16, ..., T105.
Significance for edges is common in phylogenetics as well as in
hierarchical clustering (Suzuki and Shimodaira, 2006). (E2) The
results split for this presumably wrong edge. AU > 0.95 suggests
E2 is significantly supported, whereas BP, SI ≤ 0.95 are not
significant. AU tends to violate the selective type-I error, leading
to false positives or overconfidence in wrong trees/edges, whereas
SI is approximately unbiased for the selected hypothesis. This
overconfidence is explained by the inequality AU > SI (meant
SI′ here) for y ∈ R, which is obtained by comparing (12) and
(20). Therefore SI is preferable to AU in inside mode. BP is safer
than AU in the sense that BP < AU for β1 > 0, but BP is not
guaranteed for controlling type-I error in a frequentist sense. The
two inequalities (SI, BP < AU) are verified as relative positions of
the contour lines at p = 0.95 in Figure 5. The three p-values can
be very different from each other for large β1.

Next p-values are examined in outside mode. (T2, E4, E6) BP,
AU, SI are all p ≥ 0.05. They are not rejected, and there
are nothing claimed to be definite. (T8, T9, ..., T105, E9,...,
E25) BP, AU, SI are all p < 0.05. These trees and edges are
rejected. (T7, E8) The results split for these presumably true
tree and edge. BP < 0.05 suggests T7 and E8 are rejected,
whereas AU, SI ≥ 0.05 are not significant. AU is approximately
unbiased for controlling the type-I error when H0 is specified
in advance (Shimodaira, 2002). Since BP < AU for β1 > 0,
BP violates the type-I error, which results in overconfidence in
non-rejected wrong trees. Therefore BP should be avoided in
outside mode. Inequality AU < SI can be shown for y ∈ R

C by
comparing (10) and (18). Since the null hypothesis H0 : µ ∈ R

is chosen after looking at y ∈ R
C, AU is not approximately

unbiased for controlling the selective type-I error, whereas SI
adjusts this selection bias. The two inequalities (BP < AU < SI)
are verified as relative positions of the contour lines at p = 0.05
in Figure 5. AU and SI behave similarly (Note: Kselect/Kall ≈ 1),
while BP is very different from AU and SI for large β1. It is
arguable which of AU and SI is appropriate: AU is preferable
to SI in tree selection (Ktrue = 1), because the multiplicity
of testing is controlled as FWER = P(reject any true null) =

P(AU(Rtrue tree|Y) < α | µ ∈ Rtrue tree) ≤ α. The FWER is

multiplied by Ktrue ≥ 1 for edge selection, and SI does not fix
it either. For testing edges in outside mode, AU may be used for
screening purpose with a small α value such as α/Ktrue.

5. CONCLUSION

We have developed a new method for computing selective
inference p-values from multiscale bootstrap probabilities, and
applied this new method to phylogenetics. It is demonstrated
through theory and a real-data analysis that selective inference
p-values are in particular useful for testing selected edges (i.e.,
clades or clusters of species) to claim that they are supported
significantly if p > 1 − α. On the other hand, the previously
proposed non-selective version of approximately unbiased p-
values are still useful for testing candidate trees to claim that they
are rejected if p < α. Although we focused on phylogenetics,
our general theory of selective inference may be applied to other
model selection problems, or more general selection problems.

6. REMARKS

6.1. Bootstrap Resampling of
Log-Likelihoods
Non-parametric bootstrap is often time consuming for
recomputing the maximum likelihood (ML) estimates for
bootstrap replicates. Kishino et al. (1990) considered the
resampling of estimated log-likelihoods (RELL) method for
reducing the computation. Let Xn = (x1, . . . , xn) be the dataset
of sample size n, where xt is the site-pattern of amino acids
at site t for t = 1, . . . , n. By resampling xt from Xn with
replacement, we obtain a bootstrap replicate X ∗

n′ = (x∗1 , . . . , x
∗
n′ )

of sample size n′. Although n′ = n for the ordinary bootstrap,
we will use several n′ > 0 values for the multiscale bootstrap.
The parametric model of probability distribution for tree Ti
is pi(x; θ i) for i = 1, . . . , 105, and the log-likelihood function
is ℓi(θ i;Xn) =

∑n
t=1 log pi(xt; θ i). Computation of the ML

estimate θ̂ i = argmaxθ i
ℓi(θ i;Xn) is time consuming, so we

do not recalculate θ̂
∗

i = argmaxθ i
ℓi(θ i;X

∗
n′ ) for bootstrap

replicates. Define the site-wise log-likelihood at site t for tree
Ti as

ξti = log pi(xt; θ̂ i), t = 1, . . . , n, i = 1, . . . , 105, (22)

so that the log-likelihood value for tree Ti is written as

ℓi(θ̂ i;Xn) =
∑n

t=1 ξti. The bootstrap replicate of the log-
likelihood value is approximated as

ℓi(θ̂
∗

i ;X
∗
n′ ) ≈ ℓi(θ̂ i;X

∗
n′ ) =

n
∑

t=1

w∗
t ξti, (23)

where w∗
t is the number of times xt appears in X

∗
n′ . The accuracy

of this approximation as well as the higher-order term is given

in Equations (4) and (5) of Shimodaira (2001). Once ℓi(θ̂
∗

i ;X
∗
n′ ),

i = 1, . . . , 105, are computed by (23), its ML tree is Tî∗ with

î∗ = argmaxi=1,...,105 ℓi(θ̂
∗

i ;X
∗
n′ ).
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The non-parametric bootstrap probability of tree Ti is
obtained as follows. We generate B bootstrap replicates X∗b

n′ ,

b = 1, . . . ,B. In this paper, we used B = 105. For each X∗b
n′ ,

the ML tree Tî∗b is computed by the method described above.
Then we count the frequency that Ti becomes the ML tree in the
B replicates. The non-parametric bootstrap probability of tree Ti
is computed by

BP(Ti, n′) = #{î∗b = i, b = 1, . . . ,B}/B. (24)

The non-parametric bootstrap probability of a edge is computed
by summing BP(Ti, n′) over the associated trees.

An example of the transformation Y∗ = f n(X
∗
n′ ) mentioned

in section 3.4 is

Y∗ = V−1/2
n L∗n′ , (25)

where L∗n′ = (1/n′)(ℓ∗1 , . . . , ℓ
∗
105)

T with ℓ∗i = ℓi(θ̂
∗

i ;X
∗
n′ ) and Vn

is the variance matrix of L∗n. According to the approximation (23)
and the central limit theorem, (13) holds well for sufficiently large
n and n′ with m = 104 and σ 2 = n/n′. It also follows from the
above argument that var(ℓ∗i − ℓ∗j ) ≈ (n′/n)‖ξ i − ξ j‖

2, and thus

the variance of log-likelihood difference is

var
(

ℓi(θ̂ i;Xn)− ℓj(θ̂ j;Xn)
)

≈ ‖ξ i − ξ j‖
2, (26)

which gives another insight into the visualization of section 6.2,
where the variance can be interpreted as the divergence between
the two models; see Equation (27). This approximation holds

well when the two predictive distributions pi(x; θ̂ i), pj(x; θ̂ j)
are not very close to each other. When they are close to
each other, however, the higher-order term ignored in (26)
becomes dominant, and there is a difficulty for deriving the
limiting distribution of the log-likelihood difference in the model
selection test (Shimodaira, 1997; Schennach andWilhelm, 2017).

6.2. Visualization of Probability Models
For representing the probability distribution of tree Ti, we define
ξ i : = (ξ1i, . . . , ξni)

T ∈ R
n from (22) for i = 1, . . . , 15. The

idea behind the visualization of Figure 3 is that locations of ξ i in

R
n will represent locations of pi(x; θ̂ i) in the space of probability

distributions. Let DKL(pi‖pj) be the Kullback-Leibler divergence
between the two distributions. For sufficiently small (1/n)‖ξ i −
ξ j‖

2, the squared distance in R
n approximates n times Jeffreys

divergence

‖ξ i−ξ j‖
2 ≈ n×

(

DKL(pi(x; θ̂ i)‖pj(x; θ̂ j))+DKL(pj(x; θ̂ j)‖pi(x; θ̂ i)
)

(27)
for non-nested models (Shimodaira, 2001, section 6). When a
model p0 is nested in pi, it becomes ‖ξ i − ξ 0‖

2 ≈ 2n ×

DKL(pi(x; θ̂ i)‖p0(x; θ̂0)) ≈ 2 × (ℓi(θ̂ i;Xn) − ℓ0(θ̂0;Xn)). We
explain three different visualizations of Figure 7. There are only
minor differences between the plots, and the visualization is not
sensitive to the details.

For dimensionality reduction, we have to specify the origin
c ∈ R

n and consider vectors ai : = ξ i−c. A naive choice would be

the average c =
∑15

i=1 ξ i/15. By applying PCA without centering
and scaling (e.g., prcomp with option center=FALSE,

scale=FALSE in R) to the matrix (a1, . . . , a15), we obtain the
visualization of ξ i as the axes (red arrows) of biplot in Figure 7A.

For computing the “data point” X in Figure 3, we need more
models. Let tree T106 be the star topology with no internal
branch (completely unresolved tree), and T107, . . . , T131 be
partially resolved tree topologies with only one internal branch
corresponding to E1, . . . , E25, whereas T1, . . . , T105 are fully
resolved trees (bifurcating trees). Then define ηi : = ξ 106+i,
i = 0, . . . , 25. Now we take c = η0 for computing ai =

ξ i − η0 and bi = ηi − η0. There is hierarchy of models: η0
is the submodel nested in all the other models, and η1, η2, η3,
for example, are submodels of ξ 1 (T1 includes E1, E2, E3).
By combining these non-nested models, we can reconstruct a
comprehensive model in which all the other models are nested
as submodels (Shimodaira, 2001, Equation 10 in section 5). The
idea is analogous to reconstructing the full model y = β1x1 +
· · · + β25x25 + ǫ of multiple regression from submodels y =

β1x1 + ǫ, . . . , y = β25x25 + ǫ. Thus we call it as “full model”
in this paper, and the ML estimate of the full model is indicated
as the data point X; it is also said “super model” in Shimodaira
and Hasegawa (2005). Let B = (b1, . . . , b25) ∈ R

n×25 and
d = (‖b1‖

2, . . . , ‖b25‖
2)T ∈ R

25, then the vector for the full
model is computed approximately by

aX = B(BTB)−1d. (28)

For the visualization of the best 15 trees, we may use only
b1, . . . , b11, because they include E1 and two more edges from
E2, . . . ,E11. In Figures 3, 7B, we actually modified the above
computation slightly so that the star topology T106 is replaced
by T107, the partially resolved tree corresponding to E1 (T107 is
also said star topology by treating clade (23) as a leaf of the tree),
and the 10 partially resolved trees for E2, . . . , E11 are replaced by
those for (E1,E2), . . . , (E1,E11), respectively; the origin becomes
the maximal model nested in all the 15 trees, and X becomes
the minimal full model containing all the 15 trees. Just before
applying PCA in Figure 7B, a1, . . . , a15 are projected to the space
orthogonal to aX , so that the plot becomes the “top-view” of
Figure 3A with aX being at the origin.

In Figure 7C, we attempted a even simpler computation
without using ML estimates for partially resolved trees. We used
B = (a1, . . . , a15) and d = (‖a1‖

2, . . . , ‖a15‖
2)T , and taking the

largest 10 singular values for computing the inverse in (28). The
orthogonal projection to aX is applied before PCA.

6.3. Asymptotic Theory of Smooth Surfaces
For expressing the shape of the regionR ⊂ R

m+1, we use a local
coordinate system (u, v) ∈ R

m+1 with u ∈ R
m, v ∈ R. In a

neighborhood of y, the region is expressed as

R = {(u, v) | v ≤ −h(u), u ∈ R
m}, (29)

where h is a smooth function; see Shimodaira (2008) for the
theory of non-smooth surfaces. The boundary surface ∂R is
expressed as v = −h(u), u ∈ R

m. We can choose the coordinates
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FIGURE 7 | Three versions the visualization of probability distributions for the best 15 trees drawn using different sets of models. (A) Only the 15 bifurcating trees. (B)

15 bifurcating trees + 10 partially resolved trees + 1 star topology. This is the same plot as Figure 3B. (C) 15 bifurcating trees + 1 star topology. Note that (B,C) are

superimposed, since their plots are almost indistinguishable.

so that y = (0,β0) (i.e., u = (0, . . . , 0) and v = β0), and
h(0) = 0, ∂h/∂ui|0 = 0, i = 1, . . . ,m. The projection now
becomes the origin µ̂ = (0, 0), and the signed distance is β0. The
mean curvature of surface ∂R at µ̂ is now defined as

β1 =
1

2

m
∑

i=1

∂2h(u)

∂ui∂ui

∣

∣

∣

∣

0

, (30)

which is interpreted as the trace of the hessian matrix of h.
When R is convex at least locally in the neighborhood, all the
eigenvalues of the hessian are non-negative, leading to β1 ≥ 0,
whereas concave R leads to β1 ≤ 0. In particular, β1 = 0 when
∂R is flat (i.e., h(u) ≡ 0).

Since the transformation y = f n(Xn) depends on
n, the shape of the region R actually depends on n,
although the dependency is implicit in the notation.
As n goes larger, the standard deviation of estimates,
in general, reduces at the rate n−1/2. For keeping the
variance constant in (4), we actually magnifying the space
by the factor n1/2, meaning that the boundary surface
∂R approaches flat as n → ∞. More specifically, the
magnitude of mean curvature is of order β1 = Op(n

−1/2).
The magnitude of ∂3h/∂ui∂uj∂uk and higher order
derivatives is Op(n

−1), and we ignore these terms in our
asymptotic theory. For keeping µ = O(1) in (4), we also
consider the setting of “local alternatives,” meaning that the
parameter values approach a origin on the boundary at the
rate n−1/2.

6.4. Bridging the Problem of Regions to the
Z-Test
Here we explain the problem of regions in terms of the z-
test by bridging the multivariate problem of section 3 to the
1-dimensional case of section 1.

Ideal p-values are uniformly distributed over p ∈ (0, 1) when
the null hypothesis holds. In fact, AU(R|Y) ∼ U(0, 1) for
µ ∈ ∂R as indicated in (11). The statistic AU(R|Y) may be
called pivotal in the sense that the distribution does not change
when µ ∈ ∂R moves on the surface. Here we ignore the
error of Op(n

−1), and consider only the second order asymptotic
accuracy. From (10), we can write AU(R|Y) ≃ 8̄(β0(Y) −
β1(Y)), where the notation such as β0(Y) and β1(Y) indicates the
dependency on Y . Since β1(Y) ≃ β1(y) = β1, we treat β1(Y) as
a constant. Now we get the normal pivotal quantity (Efron, 1985)
as 8̄−1(AU(R|Y)) = β0(Y) − β1 ∼ N(0, 1) for µ ∈ ∂R. More
generally, it becomes

β0(Y)− β1 ∼ N(β0(µ), 1), µ ∈ R
m+1. (31)

Let us look at the z-test in section 1, and consider substitutions:

Z = β0(Y)− β1, θ = β0(µ), c = −β1. (32)

The 1-dimensional model (1) is now equivalent to (31). The null
hypothesis is also equivalent: θ ≤ 0 ⇔ β0(µ) ≤ 0 ⇔ µ ∈ R.
We can easily verify that AU corresponds to p(z), because p(z) =
8̄(z) = 8̄(β0(y) − β1) ≃ AU(R|y), which is expected from the
way we obtained (31) above. Furthermore, we can derive SI from
p(z, c). First verify that the selection event is equivalent: Z > c ⇔
β0(Y)− β1 > −β1 ⇔ β0(Y) > 0 ⇔ Y ∈ R

C. Finally, we obtain
SI as p(z, c) = p(z)/8̄(c) ≃ 8̄(β0(y)− β1)/8̄(−β1) ≃ SI(R|y).

6.5. Model Fitting in Multiscale Bootstrap
We have used thirteen σ 2 values from 1/9 to 9 (equally spaced in
log-scale). This range is relatively large, and we observe a slight
deviation from the linear model β0+β1σ

2 in Figure 6. Therefore
we fit other models to the observed values ofψσ 2 as implemented
in scaleboot package (Shimodaira, 2008). For example, poly.k

model is
∑k−1

i=0 βiσ
2i, and sing.3 model is β0 + β1σ

2(1+ β2(σ −

1))−1. In Figure 6A, poly.3 is the best model according to AIC
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(Akaike, 1974). In Figure 6B, poly.2, poly.3, and sing.3 are
combined by model averaging with Akaike weights. Then β0 and
β1 are estimated from the tangent line to the fitted curve of ψσ 2
at σ 2 = 1. In Figure 6, the tangent line is drawn as red line for
extrapolating ψσ 2 to σ 2 = −1. Shimodaira (2008) and Terada
and Shimodaira (2017) considered the Taylor expansion of ψσ 2
at σ 2 = 1 as a generalization of the tangent line for improving
the accuracy of AU and SI.

In the implementation of CONSEL (Shimodaira and
Hasegawa, 2001) and pvclust (Suzuki and Shimodaira, 2006),
we use a narrower range of σ 2 values (ten σ−2 values: 0.5, 0.6,
. . . , 1.4). Only the linear model β0 + β1σ

2 is fitted there. The
estimated β0 and β1 should be very close to those estimated from
the tangent line described above. An advantage of using wider
range of σ 2 in scaleboot is that the standard error of β0 and β1
will become smaller.

6.6. General Formula of Selective Inference
Let H,S ⊂ R

m+1 be regions for the null hypothesis and the
selection event, respectively. We would like to test the null
hypothesis H0 : µ ∈ H against the alternative H1 : µ ∈ H

C

conditioned on the selection event y ∈ S . We have considered
the outside mode H = R,S = R

C in (18) and the inside mode
H = R

C,S = R in (20). For a general case of H,S , Terada
and Shimodaira (2017) gave a formula of approximately unbiased
p-value of selective inference as

SI(H|S , y) =
8̄(βH0 − βH1 )

8̄(βS0 + βH0 − βH1 )
, (33)

where geometric quantities β0,β1 are defined for the regions
H,S . We assumed that H and S

C are expressed as (29), and two
surfaces ∂H, ∂S are nearly parallel to each other with tangent
planes differing onlyOp(n

−1/2). The last assumption always holds
for (18), because ∂H = ∂R and ∂S = ∂RC are identical and of
course parallel to each other.

Here we explain why we have considered the special case of
S = H

C for phylogenetic inference. First, we suppose that the
selection event satisfies S ⊂ H

C, because a reasonable test would
not reject H0 unless y ∈ H

C. Note that y ∈ S ⊂ H
C implies

0 ≤ −βS0 ≤ βH0 . Therefore, βH0 + βS0 ≥ 0 leads to

SI(H|S , y) ≥ SI(H|y), (34)

where SI(H|y) : = SI(H|HC, y) is obtained from (33) by letting
βH0 + βS0 = 0 for S = H

C. The p-value SI(H|S , y) becomes
smaller as S grows, and S = H

C gives the smallest p-value,
leading to the most powerful selective test. Therefore the choice
S = H

C is preferable to any other choice of selection event
satisfying S ⊂ H

C. This kind of property is mentioned in Fithian
et al. (2014) as the monotonicity of selective error in the context
of “data curving.”

Let us see how these two p-values differ for the case of E2 by
specifying H = R

C
E2 and S = RT1. In this case, the two surfaces

∂H, ∂S may not be very parallel to each other, thus violating the
assumption of SI(H|S , y), so we only intend to show the potential
difference between the two p-values. The geometric quantities are

βH0 = −βE20 = 1.59, βH1 = −βE21 = −0.12, βS0 = βT10 =

−0.41; the p-values are calculated usingmore decimal places than
shown. SI of E2 conditioned on selecting T1 is

SI(H|S , y) =
8̄(1.59+ 0.12)

8̄(−0.41+ 1.59+ 0.21)
= 0.448,

and it is very different from SI of E2 conditioned on selecting E2

SI(H|y) =
8̄(1.59+ 0.12)

8̄(0.12)
= 0.097,

where SI′(RC
E2|y) = 1 − SI(RC

E2|y) = 0.903 is shown in Table 2.
As you see, SI(H|y) is easier to reject H0 than SI(H|S , y).

6.7. Number of Regions for Phylogenetic
Inference
The regions Ri, i = 1, . . . ,Kall correspond to trees or edges. In
inside and outside modes, the number of total regions is Kall =

105 for trees and Kall = 25 for edges when the number of taxa
is N = 6. For general N ≥ 3, they grow rapidly as Kall =

(2N − 5)!/(2N−3(N − 3)!) for trees and Kall = 2N−1 − (N + 1)
for edges. Next consider the number of selected regions Kselect. In
inside mode, regions with y ∈ Ri are selected, and the number is
counted as Kselect = 1 for trees and Kselect = N−3 = 3 for edges.
In outside mode, regions with y 6∈ Ri are selected, and thus the
number is Kall minus that for inside mode; Kselect = Kall − 1 =

104 for trees and Kselect = Kall − (N − 3) = 22 for edges. Finally,
consider the number of true null hypotheses, denoted as Ktrue.
The null hypothesis holds true when µ 6∈ Ri in inside mode
and µ ∈ Ri in outside mode, and thus Ktrue is the same as the
number of regions with y 6∈ Ri in inside mode and y ∈ Ri in
outside mode (These numbers do not depend on the value of y
by ignoring the case of y ∈ ∂Ri). Therefore, Ktrue = Kall −Kselect

for both cases.

6.8. Selective Inference of Lasso
Regression
Selective inference is considered for the variable selection of
regression analysis. Here, we deal with prostate cancer data
(Stamey et al., 1989) in which we predict the level of prostate-
specific antigen (PSA) from clinical measures. The dataset is
available in the R package ElemStatLearn (Halvorsen, 2015).
We consider a linear model to the log of PSA (lpsa), with 8
predictors such as the log prostate weight (lweight), age, and
so on. All the variables are standardized to have zero mean and
unit variance.

The goal is to provide the valid selective inference for
the partial regression coefficients of the selected variables by
lasso (Tibshirani, 1996). Let n and p be the number of
observations and the number of predictors. M̂ is the set of
selected variables, and ŝ represents the signs of the selected
regression coefficients. We suppose that regression responses
are distributed as Y ∼ N(µ, τ 2In) where µ ∈ R

n and τ >

0. Let ei be the ith residual. Resampling the scaled residuals
σ ei (i = 1, . . . , n) with several values of scale σ 2, we can
apply the multiscale bootstrap method described in section 4
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for the selective inference in the regression problem. Here,
we note that the target of the inference is the true partial
regression coefficients:

β = (XTX)−1XTµ,

where X ∈ R
n×p is the design matrix. We compute four

types of intervals with confidence level 1 − α = 0.95

for selected variable j. [L
ordinary
j ,U

ordinary
j ] is the non-selective

confidence interval obtained via t-distribution. [Lmodel
j ,Umodel

j ]

is the selective confidence interval under the selected model
proposed by Lee et al. (2016) and Tibshirani et al. (2016),
which is computed by fixedLassoInf with type="full"
in R package selectiveInference (Tibshirani et al., 2017). By
extending the method of [Lmodel

j ,Umodel
j ], we also computed

[Lvariablej ,Uvariable
j ], which is the selective confidence interval

under the selection event that variable j is selected. These three
confidence intervals are exact, in the sense that

P
(

βj ∈ [L
ordinary
j ,U

ordinary
j ]

)

= 1− α,

P
(

βj ∈ [Lmodel
j ,Umodel

j ] | M̂, ŝ
)

= 1− α,

P
(

βj ∈ [Lvariablej ,Uvariable
j ] | j ∈ M̂, ŝj

)

= 1− α.

Note that the selection event of variable j, i.e., {j ∈ M̂, ŝj}
can be represented as a union of polyhedra on R

n, and thus,
according to the polyhedral lemma (Lee et al., 2016; Tibshirani
et al., 2016), we can compute a valid confidence interval
[Lvariablej ,Uvariable

j ]. However, this computation is prohibitive for

p > 10, because all the possible combinations of models
with variable j are considered. Therefore, we compute its
approximation [L̂variablej , Ûvariable

j ] by the multiscale bootstrap

method of section 4 with much faster computation even for
larger p.

We set λ = 10 as the penalty parameter of lasso, and the
following model and signs were selected:

M̂ = {lcavol,lweight,lbph,svi,pgg45},

ŝ = (+,+,+,+,+).

The confidence intervals are shown in Figure 1. For adjusting the
selection bias, the three confidence intervals of selective inference
are longer than the ordinary confidence interval. Comparing
[Lmodel

j ,Umodel
j ] and [Lvariablej ,Uvariable

j ], the latter is shorter, and

would be preferable. This is because the selection event of the
latter is less restrictive as {M̂, ŝ} ⊆ {j ∈ M̂, ŝj}; see section 6.6
for the reason why larger selection event is better. Finally, we
verify that [L̂variablej , Ûvariable

j ] approximates [Lvariablej ,Uvariable
j ]

very well.
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Evidential statistics is an important advance in model and theory testing, and scientific

reasoning in general, combining and extending key insights from other philosophies of

statistics. A key desiderata in evidential statistics is the rigorous and objective comparison

of alternative models against data. Scientific theories help to define the range of models

which are brought to bear in any such assessment, including both tried and trusted

models and risky novel models; such theories emerge from a kind of evolutionary process

of repeated model assessment, where model selection is akin to natural selection acting

both on the standing crop of genetic variation, and on novel mutations. The careful use

of evidential statistics could play an important and as yet to be fulfilled role in the future

development of scientific theories. We illustrate these ideas using examples from ecology

and evolutionary biology.

Keywords: abduction, deduction, evidential statistics, induction, model, theory

INTRODUCTION

Statistical inference aims at relating models to data and the empirical world, whether that model
deals with an issue as simple as estimating the mean of a population or as complex as predicting
millennial-scale changes in the global climate. There have been decades-long debates about the
best way to make inferences (e.g., Neyman-Pearson error statistics vs. Bayesian approaches). This
special feature highlights the approach called “evidential statistics,” (Taper and Ponciano, 2016)
which synthesizes prior approaches—error statistics, Bayesian statistics, information-based model
selection, and likelihood approaches—to squarely focus on the comparative ability of alternative
models or hypotheses for explaining an observed dataset. This approach to inference was sparked
by Royall (1997) and Lele (2004), and the articles in this Special Issue highlight the rapid emergence
andmaturation of evidential statistics.We heartily concur with the value of such a synthesis of prior
approaches, and the explicit emphasis on comparisons among alternative hypotheses or models
as an essential component of scientific progress. Neither of us are card-carrying statisticians or
philosophers of science; instead we are scientists interested in the conceptual basis of our discipline.
Here we reflect on the need for intellectual flexibility by considering the role of statistical inference
as a formal, mathematical procedure for refereeing the relationship between data, models, and
theories, and place that in the context of the wider set of processes that scientists might use for
theory development.

Scientists quest to obtain knowledge about the empirical world so as to understand its causal
structure, and to use that causal structure for prediction as well as control and management. The
inferential procedures employed to gain such knowledge should be “truth-tropic” (Lipton, 2004,
p. 7). There are philosophers (e.g., Laudan, 1981) who reject the notion that science involves a
kind of convergence toward an understanding of how nature works (conceived broadly), but we
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feel that most working scientists assume (or at least hope) that
they are engaged in a “truth-tracking” enterprise (Roush, 2007).
While models are the direct connection between data and specific
conclusions drawn from those data, those models are embedded
within larger conceptual frameworks, typically called theories.
One role of theory is to help guide the creative formulation
of novel models for comparison against any set of data. For
example, we might construct a family of ecological niche models
(ENMs, Holt, 2009; Peterson et al., 2011) to explain why saguaro
cacti (Carnegiea gigantea) are common in parts of the Sonoran
Desert, yet absent elsewhere with seemingly comparable climates.
Those models would be embedded within, and get their warrant
from, broader theories of ecology and evolution (Scheiner and
Willig, 2011b, Scheiner and Mindell, 2019). The models might
draw upon diverse data and models such as the physiology
of plants with Crassulacean Acid Metabolism as their mode
of photosynthesis, the geographic history of North America,
and the phylogeny of the Cactaceae. A criterion for selecting
among alternative ENMs might be the minimization of errors in
predicting known occurrences from available distributional and
environmental data.

Statistics is essential for testing models in the broad sense,
examining their relationship with the empirical world, efforts
that in turn contribute to the goal of crafting and testing
more general theories. Building and testing theories relies on
a variety of approaches, only some of which make explicit use
of statistical inference. Evidential statistics aims at providing a
systematic approach for assessing the relative informativeness
of models, which depends upon available data and protocols—
distinct from the personal beliefs embedded within Bayesian
statistics—via objective metrics of evidence that ideally lead
toward closer approximations of the “truth” as models continue
to be refined and compared (Dennis et al., 2019). Theories are
distillations of conclusions (Tukey, 1960) achieved collectively by
scientists, carrying out such protocols repeatedly and objectively.
Kuhn (1977, pp. 321–322) notes that the development of
scientific theories must juggle qualities which at times may
be contradictory, such as accuracy, consistency, simplicity,
fruitfulness, and scope, to which Houlahan et al. (2017) add as
an essential desideratum the successful prediction of novel states
of the world.

Like any evolutionary process, theory development depends
upon the availability of an array of alternative models
for comparison, using both a standing crop of existing
models that have proven useful in other contexts, and novel
conceptual mutations. Evidential procedures are akin to natural
selection culling genetic variants, favoring the fittest in the
population at hand in a given environment. For example,
in our saguaro cactus model, general climatic variables such
as average rainfall or seasonal patterns in precipitation are
doubtless important and would discriminate among many
models, but a key idiosyncratic factor operating at the
northern range limits appears to be the number of consecutive
hours below freezing (MacArthur, 1972, p. 127), which can
be strongly influenced by local topography. The fittest of
the competing models would surely need to include this
key observation.

This evolutionary perspective on theory development stems
back to Popper (1972, p. 261) who states, “[T]he growth of our
knowledge is the result of a process closely resembling what
Darwin called ‘natural selection,’ that is, the natural selection
of hypotheses.” In a sense, likelihood and related quantitative
approaches provide fitness metrics for selecting some hypotheses
over others based on evidence. Just as natural selection does
not comprise all of evolution, knowledge development leading
up to a general theory is more than just the accumulation
of episodes of such evidence-based selection. Other processes,
such as intellectual coherence, the generation of novel ideas,
and the infusion of ideas across disciplinary boundaries, play
roles comparable to mutation, gene flow, and recombination. A
particular challenge is to articulate how the scientific community
builds larger arenas of knowledge—theories—frommore specific
models grounded in evidence. Popper (1972, p. 262-3) suggests
a kind of inverse evolutionary tree of knowledge emerging over
time: “[T]he tree of knowledge [springs up] from countless
roots which grow up into the air rather than down, and which
ultimately, high up, tend to unite into one common stem.” We
now turn our attention to the relationship between models and
theories, broadly conceived.

FROM MODELS TO THEORIES AND BACK

AGAIN

Our approach to models and theories can be considered part
of the Pragmatic View of the structure of scientific theory
(Winther, 2012, 2015). The Pragmatic View combines formal
components of mathematic axioms and associated models with
less formal, non-mathematical components including concepts,
metaphor, narrative, and analogy. The result is a pluralistic
and pragmatic structure for scientific theory in which theory
content is organized according to the research questions being
asked (Love, 2010). Vandermeer (2018), in an encomium to
Richard Levins, cogently remarks on why in biology, theory is
not just a compilation of models: “Populations of organisms only
approximately follow precise equations and theories about them
thus cannot rely exclusively on models. . . [and] [m]athematical
forms of models are tools, as Levins repeatedly expressed, ‘to
educate the intuition.”’

Scheiner andWillig (2008) proposed a hierarchical framework
for organizing theories consisting of general theories, more
narrow constitutive theories, and even more specific models.
The three types of theories have different functions. General
theories provide the conceptual framework within which theories
and models are built and tested. They consist of a set
of general principles—confirmed generalizations—that provide
background assumptions. These principles may appear trivial,
but that is only because they have been so thoroughly tested that
they have become embedded in our background knowledge. Yet,
they are often ignored when building models. For example, one
of the general principles of the theory of ecology is that “Variation
in the characteristics of organisms results in heterogeneity of
ecological patterns and processes” (Scheiner and Willig, 2011a).
It is a reminder that even though very many ecological models
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assume that all individuals within a species are identical, we
know that this is an approximation. While violations of this
assumption may not substantially change model predictions in
some situations, in other cases relaxing this assumption even by
a small amount can lead to marked changes (e.g., Kendall and
Fox, 2003). The constitutive theories and models are not derived
formally from general theories. Rather, general theories provide
the background knowledge and general conceptual framework
within which more specific theories and models are built. For
more on this conceptualization of a theory hierarchy (the inverse
knowledge tree of Popper, 1972), see Scheiner (2010) andMindell
and Scheiner (2019).

Constitutive theories are the workhorses in this framework
and what most individuals would think of when asked to name
or describe a theory. Their role is to organize models into larger
entities. They consist of a set of propositions, which might arise
inductively from a set of models (e.g., a constitutive theory of
diversity gradients, Scheiner and Willig, 2005). Alternatively, the
propositions might be conceived first and then used to guide
model development (e.g., the theory of natural selection, Frank
and Fox, 2019). For example, enemy-victim theory (Holt, 2011)
includes, among others, three propositions: (1) The increased
consumption generated by increased victim abundance in turn
fuels an increase in the per capita growth rate (fitness) of
the natural enemy population. (2) An increase in the victim
population increases the rate of consumption by each individual
natural enemy. (3) Consumption by the natural enemy implies
mortality in the victim. Making simplifying assumptions about
the functional forms for each of these (which in turn reflect
models and theories about the component processes), along with
ancillary assumptions (e.g., no direct density dependence), these
propositions can be formalized as the classical Lotka-Volterra
predator-prey model:

dP

dt
= P[baN −m]

dN

dt
= N[r − aP]

where P and N are the densities of predators and prey,
respectively, the predator birth rate is given by baN, where a is
the attack rate and b is the rate that prey biomass is converted
into offspring, m is the predator death rate, and r is the prey
birth rate. This model is just one particular instantiation of those
propositions; many other versions are possible. These models
then serve to link theories to data, which is where evidential
statistics comes into play.

The framework is multilayered, and both general and
constitutive theories can be nested and overlapping. For
example, a model of the evolution of plasticity of Drosophila
melanogaster body size in response to temperature is embedded
within a constitutive theory of the evolution of phenotypic
plasticity that draws upon the constitutive theory of evolution
by natural selection, both in turn embedded within the
theory of evolution (Scheiner, 2019), while also drawing
upon constitutive theories within the theory of organisms

(Zamer and Scheiner, 2014). Some of these constitutive theories
include formalized mathematical models, but others do not.

Models can be both qualitative and quantitative in describing
or predicting nature. In ecology and evolution we tend to think
of dynamical mathematical models, systems of equations or
computer rules linked by logical operators corresponding to
assumptions about mechanisms at and across different levels
of biological organization. A computer simulation, such as an
individual-based model of population dynamics, might be an
example. Models can also be qualitative; Charles Darwin’s theory
of evolution was almost entirely verbal and qualitative. There is
a single, iconic tree-like figure in On the Origin of Species which
displays the grand, overarching vision of a shared origin for all
life in an instantly transparent manner—an elegant example of a
graphical, non-mathematical model.

From models we deductively derive hypotheses that in turn
make predictions. These predictions are often derived from
a mathematical model, which are based on some expected
distribution of parameter values (see other articles in this special
feature). Those distributions are then compared to data (broadly
defined). Whereas the model is general in the sense that it applies
across a domain of interest, a hypothesis becomes a prediction
when applied to a specific, empirical instance. That application,
the collision of models and data, is where evidential statistics
steps in.

THE RELATIONSHIP OF EVIDENTIAL

STATISTICS TO MODELS AND

CONSTITUTIVE THEORIES

Statistical methods shed light on the possible relative
verisimilitude or falsity of a hypothesis, compared to coherently-
specified alternative hypotheses. That hypothesis might be
that a model parameter has a very specific value (e.g., in plant
populations the relationship between the average mass per
individual and the density of survivors should have a exponent
of −3/2, Yoda et al., 1963), or it could be more general (e.g.,
the relationship between productivity and diversity is hump-
shaped, VanderMeulen et al., 2001), or it could be qualitative
(e.g., the mating system in this particular plant population will
be gynodioecy). By inference, if the hypothesis is false then
the model is inadequate in the sense that compared to some
alternative model, the model in question does not correspond to
the empirical world. The history of science is littered with failed
models and hypotheses (e.g., phlogiston, the ether, epicycles,
barnacles as larval stages of barnacle geese), and many scientific
advances prove to be way stations toward a deeper understanding
of the world (e.g., Newton’s gravitational theory). But statistics
does not have the same role (at least not so obviously) when it
comes to constitutive or general theories.

Those theories are systems that organize models, data,
concepts, and so forth [Box 3.2 in Pickett et al. (2007) describes
the components of theories]. Considered as an organizational
system, constitutive and general theories are never true or
false. Rather, they are useful, not useful, or poorly structured,
that is, conceptually fruitful or not. That is not to say that
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general theories (e.g., the theory of evolution) are not true;
rather that the strength of the theory lies in the overall validity
of its components, rather than a single assessment of the
entire theory.

Within constitutive theories are families of models, and
decisions need to be made as to which models to include or
exclude. Sometimes that decision-making process is howwell one
model mirrors the empirical world relative to another model.
Evidence based on the relationship of a hypothesis with data
and the empirical world leads to inferences about the relative
truth or falsity of the hypotheses generated by each model,
a decision-making process mediated by statistics. But these
decisions are only part of what goes into conclusions about
the utility of a constitutive or general theory. A principle in a
general theory (e.g., “The ecological properties of species are the
result of evolution” from the theory of ecology, Scheiner and
Willig, 2011a) comes from the accumulation of a multitude of
individual observations and models. An individual model can
be discarded without negating the more general theory. We
might decide that a natural selection model of the frequency
of third position codons in DNA is inapplicable, because third
position codons evolve by drift (Kimura, 1968). That conclusion
would not affect the status of the theory of evolution by
natural selection.

Evaluating models, such as the predator-prey model given
above, involves more than just comparing predictions with
data. That model famously predicts predator-prey cycles,
looking in some respects like real-world cycles (such as
the lynx-snowshoe cycle of Canada). May (1973) pointed
out, however, that these models are neutrally stable, and
so are highly unlikely to describe real cycles that are
persistent. Indeed, the model is structurally unstable, in
that small deviations in model assumptions lead either to
oscillations that blow up, or to a stable equilibrium. Structural
stability should be a desideratum in all our model and
theory construction. Yet, real organisms and communities are
unlikely to exactly match any set of equations we are likely
to concoct.

Models may be false, while still playing a vital role in
the conceptual framework of ecological theory. We contrast
structural stability (the robustness of model conclusions to
small deviations in model assumptions) with the stability of
model structure. For the predator-prey model, the essential
structure of the model itself (a +/– interaction between two
antagonists, a natural enemy and its victim) is applicable across
many empirical systems (e.g., predator-prey, host-pathogen,
and plant-herbivore). The Lotka-Volterra predator-prey model
demonstrates that there is a tendency to oscillate inherent
in such antagonistic interactions. This qualitative conclusion
is robust across many variants of this basic model, although
the details may differ (e.g., the oscillations may manifest as
transients following a perturbation, rather than as permanent
cycles). Because the Lotka-Volterra model makes such robust,
qualitative predictions, it continues to play an important role in
the conceptual framework of theoretical ecology, even though
it is known to be literally false for all empirical predator-prey
systems. The same can be said of the model of exponential

growth, dN/dt = rN, where N is population size and r is the
intrinsic rate of increase. It has been argued that the principle
of exponential growth is one of the conceptual foundations
of ecology (Pásztor et al., 2016), and Ginzburg and Colyvan
(2004) state that “the whole body of the spectacularly successful
evolutionary theory has Malthusian growth in its foundation.”
Yet essentially no populations, when examined closely, match
this model—there are always age and stage structure effects,
demographic and environmental stochasticity, genetic variation,
spatial dynamics, and density-dependent feedbacks, at play.
This sweeping generalization, however, does not vitiate the
conceptual role of exponential growth as foundational in
our discipline. In like manner Queller (2017), commenting
on Ronald Fisher’s fundamental theorem of evolution, notes
that it leaves out many important drivers of evolutionary
change, but nonetheless “demonstrate[s] the general value
of simplifying and sacrificing a bit of accuracy in order to
capture and highlight fundamental issues in a simple and
elegant way.” This highlighting is an essential role of theory—
enhancing understanding.

If a theory is relatively narrow, encompassing just one or
a few specific models, and all of those models fail, we would
then discard the theory as not useful. For example, Arditi and
Ginzburg (2012) argued that we should discard any theory of
predation in which the rate that predators attack prey depends
only on prey density but not predator density, as in the above
Lotka-Volterra model, which illustrates what is called “prey-
dependence.” They compiled case studies that included formal
estimates of a key parameter (m) measuring the strength of
predator interference on foraging rates. While they did not do
a formal meta-analysis of those estimates, if they had, statistical
inference would likely have supported the conclusion that this
effect of predator density needs to be incorporated into any
predatory-prey model (but see Abrams, 2015). There is a large
body of food web and network theory that simply assumes prey-
dependence in trophic linkages (i.e., ignores predator density).
It is not yet known if altering this assumption would merely
tweak the rich body of conclusions drawn from this theory,
or instead if the change would have revolutionary effects on
ecological understanding.

The use of statistics to assess hypotheses and models
involves both deductive and inductive reasoning. We deduce
hypotheses/predictions from a model. If a prediction proves
false, one or more aspects of the model may be concluded
to be false, which is the basis of Popper’s (1959) falsifiability
criterion for scientific theories. We also use statistics as a form
of inductive reasoning. With induction, we infer a general
conclusion from particular instances. When we estimate a
population parameter from an observed set of data (e.g., the
mean weight of a population of Drosophila melanogaster), we
are performing induction. A constitutive or general theory
includes a set of confirmed generalizations—condensations and
abstractions, ultimately, from a body of facts—that may include
parameter estimates (e.g., the base-pair mutation rate), used
in particular model comparisons. Evidential statistics (Taper
and Ponciano, 2016) is based upon rigorous comparisons of
the likelihood (broadly conceived) of two or more alternative
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models. But it does not specify where the set of alternative
models come from in the first place. This is where constitutive
and general theories come into play—representing a kind of
closet collective Bayesianism, where the cumulative wisdom
of scientists over time help define the range of models that
are likely to be assessed against any given dataset (Longino,
2002), as well as providing a structure for the creation of
novel models.

A third, less familiar, type of reasoning is abduction. The term
was coined by Charles Peirce (Douven, 2017), who used it initially
to encompass hypothesis generation, but later in amanner related
to the idea of “inference to the best explanation.” The basic notion
is that one compares alternative models and accepts the one that
best explains the evidence. What counts as “best” could be its
likelihood (in the sense used in evidential statistics as articulated
by the other papers in this special feature), but also can involve
desiderata such as simplicity, unification across studies, structural
stability, and so forth (Lipton, 2004). Many of these ideas about
how one can build up from models to more general theories
can be traced to Whewell’s (1858) three criteria for theory
confirmation: prediction, consilience (explaining phenomena
of a different kind than those used to formulate the theory),
and coherence (the simplification or unification of different
phenomena without the need for ad hoc modification of the
theory) (Forster and Wolfe, 1999; Snyder, 2019). Norton (in
prep, https://www.pitt.edu/~jdnorton/papers/material_theory/9.
%20Best%20Explanation%20Examples.pdf) argues that Darwin’s
entire theory (as expressed in On the Origin of Species) involves
an extended inference to the best explanation, all without explicit
statistical inference. To our knowledge, no philosopher of science
has yet brought together the notion of inference to the best
explanation, and the complementary but distinct concepts of
confirmation and evidence articulated by Bandyopadhya et al.
(2016). Mark Taper (pers. comm.) notes that one virtue of
evidential statistics is that one keeps track not just of the
“best” model, but other models that might prove useful in
future investigations. Evidential statistics provides a clear path
for comparing models against particular datasets; what is now
needed is an articulation of higher-order protocols for assessing
constitutive and general theories. Such protocols are presumably
at play when a community of scientists converge on particular
ways of understanding the world. The bridge from models
to more general theories may be more loosely constructed in
biology than in, say, quantum physics. As Vandermeer (2018,
p. 4) cogently notes, “[In population biology] any model is
only approximate with respect to the theory it intends to
represent, and any theory is bolstered by its conformation, even
if approximate, to multiple models.”

The development of constitutive and general theories
cannot be entirely shoe-horned into formal statistical inference,
including evidential statistics, vital though that is for sifting
hypotheses and models. Statistical inference alone is insufficient
when dealing with the sculpting over time of scientific
understanding, involving the concerted efforts of many scientific
minds who collectively craft complex models or theories
(Longino, 2002). The total weight of the evidence that bears
on theory development includes not just the quantification of

specific estimated parameters, or alternative functional forms of
models, but also reflects our confidence in the logical structure
and explanatory scope of the models that are derived from
a constitutive theory, and whether the domain of that theory
encompasses the specific instances under consideration. In some
sense, constitutive and general theories rely upon a higher order
of evidential support and logical considerations that may lie
outside the specific scope of any given dataset. For example, when
examining a particular trait, such as emergence of blindness in
a cave fish in Kentucky, should our models invoke only natural
selection, or also the accumulation of deleterious mutations and
genetic drift? The answer to this question would likely depend
on what has been learned about other cave fish worldwide.
Taper and Ponciano (2016) use Gause’s (1934) famed protozoan
experiments to compare the relative evidentiary power of a suite
of population dynamic models, such as the Ricker, Beverton-
Holt, and Gompertz equations. Choosing this suite of models
for comparison, and excluding others, implicitly involves a
priori beliefs about the relevant drivers of population dynamics,
presumably drawing on correspondences between this concrete
empirical system and a wide array of somehow comparable
systems, as well as more specific assumptions, such as: there
is no spontaneous generation, the populations are closed to
immigration and emigration so that local births and deaths
entirely drive dynamics (this is ensured by the experimental
setup), there are no time-lags in density dependence (which
might occur with the buildup of toxins or waste products, or
subtle stage-structure effects), and there are no hidden players
such as viruses. These background assumptions help define the
range of models to be compared explicitly, using the metrics of
evidentiary statistics.

What is the role of evidential statistics in determining
the relationship between models and theories where the
latter are qualitative, rather than quantitative? For example,
our explanation about the range of saguaro cacti includes
information about the geographic history of the North and South
American continents. We have models of the movements of
the continents over geological history, but those models are not
mathematical equations. Rather, we have inferred that history
from a range of observations, only some of which include
quantitative models. In modern systematics, a phylogeny is a
quantitative model of a set of relationships among species (or
higher taxa) in a clade. When multiple phylogenies are overlain
on a map, the subsequent qualitative biogeographic patterns can
be used to make inferences about the geological history of that
region. It is possible to devise a formal inference process for
making decisions about that history, but a formal process is not
always necessary. Wegener’s (1966) theory of continental drift
was based, in part, on observing close phylogenetic relationships
between South American and African species, as well as the fit of
the shapes of the continents themselves. This process of bringing
together models frommultiple domains that all point to the same
explanation is an illustration of the concept of “consilience” first
championed by Whewell (1840). Ferguson et al. (2012) provide
an example of how to devise statistical inference procedures when
both predictions and data are qualitative. It strikes us that this
may be one arena ripe for further analysis and formalization.
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WHERE WILL EVIDENTIAL STATISTICS

GO, AND HOW BEST CAN IT BE USED TO

INFORM AND REFINE CONSTITUTIVE AND

GENERAL THEORIES?

Evidential statistics is still a relatively new approach to linking
data, models, and constitutive theories, but it promises to
provide a clearer and more coherent way to assess the relative
match of models to data, compared to competitors such as
Neyman-Pearson testing or Bayesian analysis. Does the use of
evidential statistics change if the purpose of a model is for
understanding (e.g., why saguaro are confined to the Sonoran
Desert) vs. prediction (e.g., what is the most likely global
mean temperature in the year 2100)? Does this use change if
the model is mechanistic vs. phenomenological? Are different
evidence functions better suited for prediction vs. explanation?
If one carries out multiple studies, each of which uses evidence
functions, how can these best be brought together to examine
broad-scale patterns across many systems? Maybe there is a
straightforward, evidentiary-statistics version of meta-analysis
(for a start, see Goodman, 1989). We use statistical inference to
find the model that best fits the data. But the better fitting model
may be “less true,” in the sense of providing less understanding. A
more “accurate” model can be the result of overfitting, especially
if the model is phenomenological. Some types of statistical
inference (e.g., the use of information criteria like AIC and BIC)
try to correct for the inclusion of unnecessary parameters, but
we also rely on logical reasoning and prior information to decide
which parameters and functional forms are even appropriate
to include, a process that is outside of statistical inference
itself. For instance, a mathematical model must have units on
each side of the equal sign that match; if not the model is,
at best, nonsense. A number of evidence functions have been
proposed in the literature, and presumably the class of such
functions will grow with time. Are the criteria used to assess
those functions part of evidentiary statistics, or in some sense
outside of it?

If the goal is understanding, a very simple model may

be appropriate. For example, we might ask whether saguaro
abundance within its occupied range is controlled by intraspecific

competition only, or also by interspecific competition with

ferrocactus. We could build a very simple model of logistic
growth without and with competition and use inferential

statistics to ask which model is more consistent with observed
densities across space and/or time. The model is not likely

to be useful for making an accurate prediction of densities,

but may nonetheless help uncover the presence of a particular
ecological mechanism (e.g., competition). Simple models can

illuminate essential elements of a system, even if statistical
inference indicates that the model is very far from an accurate

depiction of the empirical system. Depending on our goal, the

most useful model could either be very simple (to highlight a
single, essential feature) or very complex (to be as accurate as

possible). In this case, our goal is not theory testing. Rather, the
goal is to use an established theory to build a model for a specific

instance so as to enhance understanding.

Prediction is important and indeed vital in the progress
of science (Houlahan et al., 2017), but it does not outweigh
other considerations in theory evaluation. After all, geocentric
Ptolemaic astronomy did a fine job of predicting the movement
of the planets for over 1,500 years, at the expense of more and
more model complexity. Its supplanting by a gravity-driven,
heliocentric theory, was driven, in part, by the latter model being
both mechanistic and much simpler. The excellence of Ptolemaic
astronomy as a predictive tool is not a very strong argument for
hanging on to it as science moves forward. Newton’s remarkable
accomplishment in his Principia Mathematica was to explain an
array of already known facts—Kepler’s laws, tidal rhythms, the
precession of the equinoxes—using just his three laws of motion
plus the inverse-square law of gravitation. Novel predictions
eventually emerged (e.g., the existence of Neptune), but such
predictions were not required for the scientific community
by-and-large to become enthusiastic champions of Newtonian
mechanics. The super-computers of the future are likely to use
vast neural networks, evolving arrays of code-based algorithms,
and constant training with the flood of informatics they are
constantly fed from arrays of sensors and surveys, and the like, to
provide wonderful predictions of climate change and the weather,
but this will not substitute for causal, theoretical understanding,
often relying at its core on models that are not literally true.

WHEN STATISTICS ARE NOT NECESSARY

Sometimes statistical inference is not necessary for testing a
theory, for example when a model is being used to explore if
something is possible or not. The data are simply that some
object or phenomenon exists or does not exist. The model
either matches the data or it does not; no statistical inference
is needed. For example, contra the “central dogma” we might
have a theory that acquired characteristics can be inherited. For
over a century, all of the data said that this theory was false.
Then retroviruses were discovered showing that information can
flow from RNA acquired from the environment back to DNA.
For at least this narrow domain, the theory of the inheritance of
acquired characteristics has been shown to be true. One might be
able to shoehorn such examples into evidential statistics, but it
is not clear that is necessary to understand the logic of scientific
discovery in cases of this sort.

Even with a question that is less clear cut than simply “Does
it exist?” statistical inference may be unnecessary. Statistical
inference is about finding the informative signal within noisy
data. For highly controlled experiments, the noise might be
so small that the signal is immediately obvious. We know
physiologists who say that if you need to use statistics, you
really should refine your experimental methodology. Statisticians
sometimes refer to this as the interocular trauma test, as in “it
hits you between the eyes.” Mark Taper (pers. comm.) ripostes
“[Y]ou are still comparing the fit of data to models – it is just that
the integration can be done by eye.” Our evolutionary history has
presumably fit us to be pretty good seat-of-the-pants statisticians,
in that our past inferences have helped our ancestors survive
and reproduce. But this decision process is not the same as
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the formal mathematics of statistical inference represented by
evidential statistics.

CONCLUSION

Evidential statistics is an important advance in model and
theory testing, and scientific reasoning in general, combining
and extending key insights from other philosophies of statistics.
We applaud the editors and authors of this special issue for
crystallizingmany important exciting themes swirling around the
topic of evidential statistics. A scientist should use whichever tool
is apt for the particular question at hand. Statistical inference
itself is just one class of tools used in scientific inquiry that
depends on quantitative data and mathematical reasoning. Other
types of data and reasoning are sometimes more appropriate for
a given question, such as qualitative data, and narrative or logical
reasoning. We urge scientists to use as wide a range of tools as
possible in the service of our quest to understand, predict, and
manage our ever-fascinating, complex world.
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As an example of applying the evidential approach to statistical inference, we address
one of the longest standing controversies in ecology, the evidence for, or against,
a universal metabolic scaling relationship between metabolic rate and body mass. Using
fish as our study taxa, we curated 25 studies with measurements of standard metabolic
rate, temperature, and mass, with 55 independent trials and across 16 fish species and
confronted this data with flexible random effects models. To quantify the body mass –
metabolic rate relationship, we perform model selection using the Schwarz Information
Criteria (1SIC), an established evidence function. Further, we formulate and justify the
use of 1SIC intervals to delineate the values of the metabolic scaling relationship that
should be retained for further consideration. We found strong evidence for a metabolic
scaling coefficient of 0.89 with a 1SIC interval spanning 0.82 to 0.99, implying that
mechanistically derived coefficients of 0.67, 0.75, and 1, are not supported by the
data. Model selection supports the use of a random intercepts and random slopes by
species, consistent with the idea that other factors, such as taxonomy or ecological or
lifestyle characteristics, may be critical for discerning the underlying process giving rise
to the data. The evidentialist framework applied here, allows for further refinement given
additional data and more complex models.

Keywords: likelihood, evidence functions, SIC, standard metabolic rate, mixed effects models, metabolic scaling,
evidentialist statistics

INTRODUCTION

One of most contentious controversies in ecology is the scaling relationship between an organism’s
body mass and metabolic rate (Agutter and Wheatley, 2004; Isaac and Carbone, 2010; Glazier,
2018). Kleiber (1932) popularized the idea that contrary to a century of theory, a mammal’s
metabolic rate (MR) scales with body mass (BM) not as a power law with an exponent of β = 0.67,
but as a power law with an exponent of β = 0.75. This relationship takes the form

ln(MR) = β × ln(BM)+ c (1)

where β is the scaling relationship and c is an intercept from a liner regression. As a cornerstone
of the metabolic theory of ecology (Brown et al., 2004), this 0.75 scaling relationship is used to link
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individual physiology to the observed patterns of communities
and energy flows across landscapes. The 0.75 value has been
mechanistically justified through hypotheses that maximize
energy delivery to tissue in animals (West et al., 1997) and
from xylem and phloem networks that transport water and
nutrients in plants (Enquist and Niklas, 2001). However,
the universality of the 0.75 value is eagerly disputed, with
alternative hypotheses and empirical studies putting the scaling
relationship commonly between 0.5 and 1 (Bokma, 2004;
Glazier, 2018).

Intraspecific (within species) scaling has been proposed to
differ from interspecific (between species) scaling and also
different mechanisms may be responsible for different scaling
relationships. Metabolic rates vary 2–3 fold across individuals of
the same population and this variation is repeatable (Burton et al.,
2011; Norin and Malte, 2011; Boldsen et al., 2013). Intraspecific
scaling has received less attention than interspecific scaling,
while even fewer studies have investigated scaling relationships
within each tested individual as it grows (but see Norin and
Gamperl, 2018). Both intraspecific and interspecific scaling are
critical for linking species physiology to projections of population
abundance (Kooijman, 1993) and predicting the impacts of
climate change on species distributions (Sunday et al., 2010;
Lindmark et al., 2018).

While the implications of deviations from the 0.75 scaling
exponent are large, there is limited data available to accurately
estimate the exponent. This is because measuring the metabolic
rate of an individual is not a trivial experiment, let alone across
a 10-fold range of body sizes from a population, at different
temperatures, and/or across species (Lighton, 2018). To date,
most studies have relied on either a limited study design (one
species, many individuals, with fixed treatments of temperature;
Table 1) or meta-analysis of mean metabolic rate data across
studies using variable methods of measurement (Glazier, 2005).
While the former can suffer from insufficient sample sizes,
measurement error, and unaccounted for factors influencing the
general relationship, the latter treats all studies equally and both
approaches have ultimately been inconclusive as to the evidence
supporting or refuting competing hypotheses (Glazier, 2018)
with some concluding there is not a universal scaling constant
(Bokma, 2004).

In this Frontiers Research Topic devoted to evidential
statistics, model identification, and science, multiple contri-
butions (Dennis et al., 2019) show how standard statistical
approaches (such as Fisherian significant tests, Neyman-Pearson
hypothesis testing, Akaike Information Criterion for multi-
model inference) are misleading when models used for inference
are misspecified. Model misspecification is arguably the case for
most analyses, including ours, that seek to evaluate the evidence
of a universal scaling relationship across a broad range of fish
species, at different temperatures, and using studies, that have
reliable data, but that were not necessarily designed to have a large
range of body masses across which to regress metabolic rate. Here
we demonstrate how an evidentialist approach can be applied
to gain novel insight to the question, “What is the evidence for
an intraspecific universal scaling relationship between fish body
mass and metabolic rate?”

Scaling Relationships as Hypotheses
for Fish
Multiple mechanisms have been put forth to justify β = 0.67, 0.75,
and 1 scaling relationships. If the primary limitation for resources
or waste removal is transport of chemicals across surfaces, then
metabolic rate is predicted to scale with surface area with a
relationship of 0.67. For example, Killen et al. (2010) found that
highly active, pelagic fishes had a scaling relationship of 0.7 (SE
0.04), close to 0.67, which they attributed to a constraint in
oxygen or fuel acquisition or waste removal across surface areas
in these metabolically active fishes. However, the 0.67 scaling
exponent is more commonly found in endotherms, mammals
and birds, but rarely in ectotherms (White and Seymour, 2003;
White et al., 2005).

If metabolic rate is primarily limited by the fractal nature
of distribution networks (e.g., the internal transport networks
of resources and wastes), then a scaling relationship of 0.75
is predicted (West et al., 1997). Previous synthesis of teleost
fish found a scaling relationship of 0.79 (SE 0.11) (Clarke and
Johnston, 1999), and with sufficient variability as to not exclude
the 0.75 value used by Metabolic Theory of Ecology to explain
broad ecological patterns (Brown et al., 2004). Similarly, Moses
et al. (2008) showed metabolic scaling during ontogeny for seven
fish species was 0.78 (SE 0.02), with some variability in slope
estimates between species.

Metabolic rate is predicted to be directly proportional to body
size (i.e., β = 1) when maintenance and routine activity costs are
low and these demands can easily be met by both surface area and
internal transport mechanisms. In the case of less active fish or
those occupying deeper waters, individual metabolism has been
demonstrated to scale nearly proportionally to body mass [i.e.,
scaling exponents approach 1 (Killen et al., 2010)].

Two more recent hypotheses work with the common
observation that scaling exponents vary (e.g., Glazier, 2018).
The metabolic-level boundaries (MLB) hypothesis of scaling
(Glazier, 2008) states that any observed scaling exponent varies
within the limits of 0.67 and 1, representing whether the
mechanisms or processes that underlay the scaling relationship
are predominantly limited by surface area constraints on fluxes
of resources, waste and heat (0.67; e.g., gill surface area,
internal transport limitation) or by volume (mass) constraints
on energy demand or production of tissue (1; assuming
energy demand is proportional to tissue size). Therefore, MLB
also provides an explanation to variable scaling exponents of
animals at different physiological states, or routine requirements.
Alternatively, Dynamic Energy Budget (DEB) theory (Kooijman,
1993) provides a more recent approach predicting metabolic
scaling relationships in all species irrespective to taxonomical
classification; this approach is based solely on physical principles,
and uses storage of nutrients (reserves increase with increasing
structure) as a central mechanism explaining both intra- and
inter species-specific scaling relationships (Maino et al., 2014).
While both MLB and DEB would seemingly make the case
that a universal scaling exponent does not exist and should
consequently not be expected, they do not preclude a mean
universal scaling exponent.
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TABLE 1 | Overview of metabolic studies.

Citation Species n Temp. (Min, Max) Regression Trial

(◦C) weight (g) coefficient β̂, (SE)

(1) Norin and Gamperl, 2018 Cunner (Tautogoabrus adsperus) 68 15 0.45, 4.61 0.92 (0.035) 1

Norin and Gamperl, 2018 Cunner (Tautogoabrus adsperus) 68 15 0.97, 7.94 0.98 (0.028) 2

Norin and Gamperl, 2018 Cunner (Tautogoabrus adsperus) 68 15 1.24, 13.2 0.89 (0.024) 3

Norin and Gamperl, 2018 Cunner (Tautogoabrus adsperus) 68 15 1.56, 15.56 0.83 (0.024) 4

Norin and Gamperl, 2018 Cunner (Tautogoabrus adsperus) 68 15 1.71, 19.46 0.79 (0.026) 5

(2) Auer et al., 2015 Brown Trout (Salmo trutta) 120 11.5 5.48, 16.12 0.61 (0.068) 6

(3) Behrens et al., 2017 Round Goby (Neogobius melanostomus) 8 15–17 43, 73 1.031 (0.24) 7

Behrens et al., 2017 Round Goby (Neogobius melanostomus) 8 15–17 35, 78 1.38 (0.16) 8

Behrens et al., 2017 Round Goby (Neogobius melanostomus) 8 15–17 36, 72 0.9 (0.17) 9

(4) Killen, 2014 Common Minnow (Phoxinus phoxinus) 13 10 0.72, 2.03 0.78 (0.27) 10

(5) Norin and Clark, 2017 Barramundi (Lates calcarifer) 24 29 23.1, 37.6 0.91 (0.17) 11

(6) McLean et al., 2018 Common Minnow (Phoxinus phoxinus) 123 13 0.68, 7.44 0.72 (0.07) 12

(7) Boldsen et al., 2013 European Eel (Anguilla anguilla) 24 20 184, 507 1.44 (0.25) 13

Boldsen et al., 2013 European Eel (Anguilla anguilla) 24 20 171, 504 1.05 (0.21) 14

(8) Kunz et al., 2016 Polar Cod (Boreogadus saida) 5 0 18.5, 27.4 0.81 (0.35) 15

Kunz et al., 2016 Polar Cod (Boreogadus saida) 5 3 16.1, 48.6 0.96 (0.1) 16

Kunz et al., 2016 Polar Cod (Boreogadus saida) 5 6 22.7, 32.8 1.06 (0.41) 17

Kunz et al., 2016 Polar Cod (Boreogadus saida) 6 8 11.4, 29.1 1.03 (0.3) 18

Kunz et al., 2016 Atlantic cod (Gadus morhua) 12 3 21.2, 105 0.97 (0.15) 19

Kunz et al., 2016 Atlantic cod (Gadus morhua) 10 8 45.7, 173.6 0.9 (0.15) 20

Kunz et al., 2016 Atlantic cod (Gadus morhua) 7 12 54.5, 149.1 1.1 (0.13) 21

Kunz et al., 2016 Atlantic cod (Gadus morhua) 5 16 83.2, 156.2 1.05 (0.18) 22

(9) Norin et al., 2016 Barramundi (Lates calcarifer) 60 29 23.08, 48.96 1.03 (0.13) 23

(10) Collins et al., 2016 Barramundi (Lates calcarifer) 20 30 153.9, 453.7 1.07 (0.14) 24

Collins et al., 2016 Barramundi (Lates calcarifer) 20 30 196.3, 390 1.19 (0.28) 25

(11) Khan et al., 2014 Hapuku Wreckfish (Polyprion oxygeneios) 8 12 88.2, 131.2 0.93 (0.45) 26

Khan et al., 2014 Hapuku Wreckfish (Polyprion oxygeneios) 8 15 105.3, 164.5 0.64 (0.44) 27

Khan et al., 2014 Hapuku Wreckfish (Polyprion oxygeneios) 8 18 146.1, 203.2 −0.21 (0.48) 28

Khan et al., 2014 Hapuku Wreckfish (Polyprion oxygeneios) 8 21 130.3, 188.6 0.61 (0.26) 29

Khan et al., 2014 Hapuku Wreckfish (Polyprion oxygeneios) 8 24 97.7, 131.6 1.2 (0.36) 30

(12) Khan et al., 2018a Rainbow Trout (Oncorhynchus mykiss) 16 16 69.9, 120.2 0.87 (0.32) 31

(13) Khan et al., 2018b Atlantic Salmon (Salmo salar) 25 14 39.1, 70.7 0.57 (0.22) 32

(14) Khan et al., 2015 Hapuku Wreckfish (Polyprion oxygeneios) 12 15 196.1, 324 0.84 (0.15) 33

(15) Khan et al., 2015 Hapuku Wreckfish (Polyprion oxygeneios) 12 21 114.5, 191 0.6 (0.2) 34

(16) Cooper et al., 2018 Three Spine Stickleback (Gasterosteus aculeatus) 31 12 0.46, 1.19 1.43 (0.39) 35

(17) McArley et al., 2017 Common Triplefin (Forsterygion lapillum) 20 15 1.59, 3.38 0.67 (0.19) 36

McArley et al., 2017 Common Triplefin (Forsterygion lapillum) 20 18 1.52, 3.81 0.82 (0.19) 37

McArley et al., 2017 Common Triplefin (Forsterygion lapillum) 23 21 1.54, 3.42 0.78 (0.15) 38

(18) McArley et al., 2018 Twister (Bellapiscis medius) 10 21 1.53, 3.98 0.94 (0.1) 39

McArley et al., 2018 Common Triplefin (Forsterygion lapillum) 10 21 1.27, 2.97 0.45 (0.16) 40

(19) Eliason et al., 2007 Rainbow Trout (Oncorhynchus mykiss) 24 8–14 381, 652.7 0.64 (0.74) 41

Eliason et al., 2007 Rainbow Trout (Oncorhynchus mykiss) 5 11–16 564.8, 3233.6 1.33 (0.3) 42

(20) Norin and Malte, 2011 Brown Trout (Salmo trutta) 33 15 20.7, 45.7 1.5 (0.18) 43

Norin and Malte, 2011 Brown Trout (Salmo trutta) 33 15 27.4, 55.1 1.19 (0.14) 44

Norin and Malte, 2011 Brown Trout (Salmo trutta) 33 15 37.7, 64.9 0.98 (0.18) 45

Norin and Malte, 2011 Brown Trout (Salmo trutta) 33 15 38.4, 68.2 1.11 (0.17) 46

(21) Norin and Malte, 2012 Brown Trout (Salmo trutta) 66 15 20.5, 57.7 1.09 (0.094) 47

(22) Nadler et al., 2016 Blue Green Puller (Chromis viridis) 16 29 1.3, 2.1 0.63 (0.3) 48

(23) Collins et al., 2013 Barramundi (Lates calcarifer) 9 26 172, 205 0.18 (1.03) 49

Collins et al., 2013 Barramundi (Lates calcarifer) 10 26 186, 221 2.06 (1.28) 50

Collins et al., 2013 Barramundi (Lates calcarifer) 10 26 169, 215 1.49 (0.78) 51

Collins et al., 2013 Barramundi (Lates calcarifer) 11 26 139, 244 0.65 (0.43) 52

Collins et al., 2013 Barramundi (Lates calcarifer) 9 26 184, 233 0.71 (0.54) 53

(24) Zhang et al., 2017 European Sea Bass (Dicentrarchus labrax) 11 16.5 48.1, 100.7 1.01 (0.18) 54

(25) Zhang et al., 2016 Atlantic Salmon (Salmo salar) 87 12 23.4, 57 1.15 (0.11) 55
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Temperature and Other Factors
Temperature plays a critical role regulating individual metabolic
rate in ectotherms such as fishes (Brett and Glass, 1973;
Johnston and Dunn, 1987). The effects of temperature on the
metabolic scaling relationship has been studied mechanistically
(Gillooly et al., 2001) with syntheses showing low temperature
sensitivity from resting measures of metabolism and a consistent
metabolic scaling relationship (Clarke and Johnston, 1999, but
see Lindmark et al., 2018).

Numerous ecological, physiological and lifestyle characteri-
stics can influence metabolic rate and potentially affect scaling
relationships. Metabolic rate in ectotherms is strongly dependent
on physical and chemical characteristics of the water they live
in, and consequently shows context-dependent variation (Killen
et al., 2016). Therefore, habitat (abiotic factors), predation risk,
activity level, food availability, and social status and behavioral
traits, all can affect metabolic rates (for a review on variation of
fish standard metabolic rate (SMR), see Metcalfe et al., 2016), thus
also likely scaling parameters, especially intercept. For example,
food availability affects growth rates and is linked to SMR
variation in fish (Killen, 2014; Auer et al., 2015). Auer et al. (2018)
demonstrated a strong dependence of SMR on individual ecology
underlined by predation level, reproductive age and investment,
longevity, and maximum body size (life-history traits). Many of
these factors vary in unique combinations across populations of
the same species (Eliason et al., 2011; Auer et al., 2018), therefore
even within species we may expect variation in metabolic rate and
its dependence on size.

Sources of Uncertainty and
Measurement Error
Misspecification is a model that does not account for variables
(i.e., temperature) or structural forms (i.e., random effects)
that can lead to biased coefficients, misleading error terms,
and unlimitedly wrong inferences about the generating process
giving rise to the data (White, 1982). While temperature has
been identified as a critical covariate for fish (Brett and Glass,
1973), other necessary covariates are less clear, but one should
assume there is likely something missing. Additionally, as any
model expands its inferential breadth beyond a single species,
the model will become more complex either by adding fixed
effects to measure species-level coefficients or by treating species
as a random effect of the model from which to make inference
across all fish. The advantage of using random effects to make
broader inferences has been well recognized across ecology
(Bolker et al., 2009). Such is the case when making population
level inferences in resource selection functions from location data
from multiple individuals (Gillies et al., 2006). However, more
information on the species level traits may lead to better models
and improved inferences.

The quality of the data will also impact inferences. One known
source of uncertainty is measurement error – that is the errant
measurement of observations, such as body mass. Farrell-Gray
and Gotelli (2005) clearly showed that errant measurement of the
predictor variable of mass biased the estimated slope parameter
of the metabolic relationship and speculated that allometric
exponents lower than 0.75 may be due simply to measurement

error. The magnitude of the effect of measurement error in a
predictor variable on the estimated slope of a linear regression
is well known: E(β̂) = λβ , where λ, the reliability coefficient, is
the proportion of variation in the predictor variable not due to
measurement error (Taper and Marquet, 1996; Cheng and Van
Ness, 1999). The lower reliability the more biased the estimate.
In Box 1, we evaluated the influence of measurement error for
California spiny lobster (Panulirus interruptus), albeit not a fish,
but find very little evidence for any bias due to measurement error
from retained residual water. We assume going forward, that for
fish, measurement error is not biasing our parameter estimates.

Measurement error in the response variable, metabolic rate in
our study, leads to greater residual variability but no bias in the
slope parameter. However, the added variability in the residual
error can inflate our uncertainty surrounding the slope parameter
leaving us unable to distinguish between potential hypotheses
(competing models). Metabolic rate (MR) represents a sum of
all chemical reactions that take place in an organism, and this
may change drastically upon any intrinsic and extrinsic change,
e.g., spontaneous activity, physiological disturbance, feeding,
and even just circadian rhythms. To refine how MR varies as
function of mass, it is a necessity that the data originate from
animals at the same physiological states. Standard metabolic
rate, SMR is defined as the subsistence metabolism to support
body maintenance in a post-absorptive, resting state under
thermally acclimated conditions (Chabot et al., 2016). True SMR
is often impractical and challenging to measure in fishes, and
so data often reflects routine metabolic rates, which alternatively
may be perceived as a measurement error (in the response, Y
axis) around individual SMR, which increases variability but
does not bias the slope parameter. With a goal to minimize
such variation, we developed specific experimental criteria for
data to be included (see section “Data”). For a good overview
of methods and approaches to metabolic scaling in animals
see White and Kearney (2014).

MATERIALS AND METHODS

The general approach we implemented for this study is to:
(1) include reliably collected SMR data based on recently
published studies (200-present), (2) apply flexible, mixed effect
linear models, and (3) employ an evidence function, the
Schwarz Information Criterion (SIC), to evaluate the evidence
for specified mechanistic hypotheses of the scaling relationship
of β = 0.67, 0.75, 1, and β as an estimated, free parameter (β̂).

Data
The approaches and technology used to measure fish metabolism
have become more accurate, precise, and robust within the
last 20 years (Nelson, 2016). We curated published data
sets of individual fish metabolism comprised of fish that
were: 1) post larval life stages, 2) in a post-absorptive state,
meaning they were unfed for a minimum of 20 h prior
to taking metabolic rate measurements, 3) with overnight
metabolic rates (>12 h of automatic measurement), 4) with
an acclimated water temperature for at least 7 days prior
to the experiment, and 5) were at calm resting states.
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BOX 1 | Measurement error in body mass of lobsters.

Photo: Co-authors Krista Kraskura
(left) and Samantha Csik (right)
collect measurement error data on
California spiny lobster.

California spiny lobster (Panulirus interruptus) is commercially highly valued, and is ecologically important having a large
effect on trophic dynamics and ecosystem resilience in kelp forests and rocky reef beds (Dunn et al., 2017; Caselle
et al., 2018). Metabolic rate in ectotherms directly depends on animal’s body size and temperature and represents the
pace of nearly all biological processes. Meanwhile, MR varies within and among individuals (Glazier, 2005; White and
Kearney, 2013; Norin and Gamperl, 2018). Lobsters are cumbersome to weigh, thus making them a good candidate
to explore how measurement error in body mass may affect metabolic scaling.

Lobsters were collected by divers via SCUBA (CDFW Scientific Collection Permit #13746) and maintained in 110-
gallon flow-through seawater tanks divided in half with perforated PVC. One individual was held in each half tank
(24”L × 30”W × 18”H), and provided with 10” PVC cut in half to create structure and habitat. Lobsters were
fed mussels (Mytilus spp.) ad libitum when not being used in respirometry trials. Animals were held at ambient
temperatures and exposed to natural light.

To estimate measurement error, 45 lobsters were weighed three consecutive times. Before weighing, individual’s
dorsal side and tail were dried with a microfiber towel. The mass was measured to the nearest gram. Lobsters were
fully submerged between repeat trials.

From the log transformed mass measurements (n = 45), the pooled error variance is 1.2 × 10−5 (SD 0.0035). We
regressed the within individual standard deviation against the mean log(weight), but the slope was not different from
zero and Levene’s test did not indicate there is any heterogeneity. From inspection of the pooled error variance, there
is very little variability in the individual measurements of body mass. Furthermore, regression revealed no trend in error
variance as function of mean body mass.

For six lobsters, ranging in body mass from 175 to 2426 g, we conducted a more thorough drying by carefully removing water from the leg joints, carapace, and
underside of the lobster abdomen, spending approximately double the time drying than the standard protocol called for. We regressed the mean log(weight) against
the thoroughly dried log (weight) for the six lobsters. Expectedly, the intercept (0.05, SE 0.008) and slope (0.994, SE 0.0001) were statistically significant (p < 0.001),
but the residual standard was very small (0.0033), indicating that measurement error in mass is negligible. Thus, for all regressions with log(weight) as a predictor
variable, the reliability ratio will be effectively 1 and there will be no bias in estimated slopes due to measurement error.

Studies where species were manipulated, such as treatments
to measure the effects of starvation on SMR, or where the
study’s authors noted substantial spontaneous activity were not
included. Further, we ensured robust data analysis methods
were used to calculate SMR following Chabot et al. (2016) and
where SMR was measured at ecologically relevant temperature
ranges for each species. Studies were not considered if they
included surgical manipulations with the exception of non-
invasive tagging (e.g., using passive integrated transponder
(PIT) and visible implant elastomer tags). Data were not
included if the study’s methods lacked sufficient detail in any
of the above criteria, the Supplementary Data online were
not clear, or appeared to contain errors. All fish included
were lab residents for at least 2 weeks before the SMR
measurement took place.

Our database includes 25 studies, with 55 independent trials,
across 16 fishes (Figure 1). Table 1 details the sources of the data,
species, trials identification, temperature under which the SMR
measurements were collected, and sample sizes per trial. A total of
n = 1456 observations are used in the study. Some studies where
not designed or conducted to estimate the scaling relationship
between individual fish SMR and body mass – a notable point
we will return to in later sections.

Models
Linear Regression
Each trial (Table 1; n = 55) is an experiment of the metabolic
scaling relationship of SMR to body mass. We applied linear
regression to the log transformed SMR and body mass data for
each trial. Because some of these studies were not designed to
test this relationship, we expect the regression slope estimates
to be variable and have large standard errors for those data sets
with low sample size. Additionally, it is recommended to have

a 4 to 10-fold range of fish body mass, but many trials and
studies do not meet this recommendation. However, the data
in totality has a range from 0.45 to 3233.6 g. We expect the
distribution of slopes from trials to largely mirror the results
found by Clarke and Johnston (1999).

Linear Mixed Effects Models
Using the lme4 package in the R statistical programing language
(Bates et al., 2015), we tested four unique suites of model forms
with combinations of fixed and random effects. For all models
we included temperature (but see Box 5) and body mass as
a fixed effect, and we treated trials within species as a nested
effect. The first model suite allows intercepts to randomly vary
among species. The second model suite, has fixed intercepts for
each species with common slope, but does not assume a normal
distribution of species’ intercepts. With 16 unique species, this
second approach adds significantly more parameters to estimate,
but allows for inferential insights into the differences between
species. The third model suite uses a random slope and random
intercept by species. The correlation between the slope and
intercept is estimated and not assumed to be independent. The
fourth model suite uses a random slope with estimated intercepts
for each species. The random slopes are interpreted as by-species
deviations from the fixed effect slope.

For each of the four approaches, we evaluate the fixed effect
slope of body mass as a free parameter and then constrained the
slope to equal each of our underlying mechanistic hypotheses of
0.67, 0.75, and 1.

Analysis
All models were fit using Maximum Likelihood Estimation
(MLE) and all analyses were conducted in the R statistical
programing language (R Core Team, 2015).
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FIGURE 1 | Diversity of species used in this study. (A) Cunner
(https://commons.wikimedia.org/wiki/File:Cunner.jpg; to Flickr, by Vhorvat),
(B) Brown Trout (https://commons.wikimedia.org/wiki/File:Brown_trout.JPG;
Zouavman Le Zouave), (C) Round Goby (https://www.michigan.gov/invasives/
0,5664,7-324-68002_73845-368437--,00.html; David Copplestone),
(D) Common Minnow (Subaqueous Vltava, Prague 2011, Czechia; Provided
by Karelj), (E) Barramundi (https://commons.wikimedia.org/wiki/File:
Barramundi.jpg provided by Nick Thorne), (F) European Eel
(https://commons.wikimedia.org/wiki/File:Anguilla_anguilla.jpg; GerardM),
(G) Hapuku Wreckfish (https://commons.wikimedia.org/wiki/File:Hapuka.jpg;
Nholtzha), (H) Rainbow Trout (https://digitalmedia.fws.gov/digital/collection/
natdiglib/id/2151 Eric Engbretson), (I) Common Triplefin (https://commons.
wikimedia.org/wiki/File:Forsterygion_lapillum_(Common_triplefin).jpg; Ian
Skipworth), (J) Twister (https://commons.wikimedia.org/wiki/File:Bellapiscis_
medius_2.jpg; A.C. Tatarinov), (K) Atlantic Salmon (https://commons.
wikimedia.org/wiki/File:CSIRO_ScienceImage_8062_Atlantic_salmon.jpg;
Peter Whyte, CSIRO), (L) Three-spined Stickleback (https://commons.
wikimedia.org/wiki/File:Three-spined_Stickleback_(Gasterosteus_aculeatus)_
at_the_Palo_Alto_Junior_Museum_and_Zoo.jpg; Evan Baldonado/
AquariumKids.com).

Strategy of Scientific Inference and Statistical Tactics
Classical hypothesis testing has been the backbone of scientific
inference for nearly a century. Both the Fisherian and the
Neyman-Pearson variants of hypothesis testing turn on the
axle of a counterfactual argument. The argument stripped of
probabilistic uncertainty runs like this: If we assume a particular
model (generally called the null) is true then we can predict
that a specific pattern should occur in our data. If the predicted
pattern does not occur, then the null hypothesis cannot be true
and something else must be.

This argument has worked well for science in tightly
controlled situations where the predicted patterns are clear

and the nature of the “something else” is unequivocal. But in
more open situations, with more experiments, more models,
more questions and variable amounts of data, the chain
of hypotheses (multiple models) becomes harder to follow
and the statistical adjustments required to maintain even the
illusion of control of error rates become more cumbersome.
Paradoxically, considering more models and asking more
questions makes it harder to find support for any model or to
answer any question.

One common approach to multimodal inference is the
application of information criterion (Burnham and Anderson,
2004). Akaike’s Information Criterion (AIC) is one such
inductive inferential approach that is both widely recognized and
applied (Akaike, 1981). The appeal of such an approach is to
simultaneously assess competing hypotheses based on how well
the models perform relative to each other through the likelihood
function, but then discount the potential overfitting of models
that have a large number of parameters.

User-defined thresholds demark 1AIC values that constitute
weak, strong, or very strong evidence for one model over the
other. If parameters are estimated, the likelihood becomes a
biased estimate of how close a model is to the generating process.
The more parameters estimated, the greater this over optimism.
Akaike (1973) initiated the use and study of information criteria,
which correct for this bias. Information criteria have been
enormously useful in analyzing biological data (see Burnham
and Anderson, 2002). Many information criteria (the consistent
criteria) fully meet all the criteria listed in Box 2 and are
evidence functions.

Evidence for one model over another is a function of the
estimated relative discrepancy of any two models from the
generating process and is measured by evidence functions.
Evidence functions (Box 2) can take many forms (see Lele
(2004), and Taper and Lele (2011) for technical and philosophical
discussions, and Taper and Ponciano (2016) for a more general
discussion). The Schwarz Information Criterion (SIC) often
referred to as the Bayesian Information Criterion (BIC), when
used to compare differences between competing models (1SIC)
is an evidence function (Dennis et al., 2019). Similar to AIC, the
SIC (Eq. 2) uses the maximum likelihood function (L) to evaluate
the fit of the model to the data and uses a function of the amount
of data (n) and the number of parameters (k) to penalize for
overfitting (Burnham and Anderson, 2004).

(2)

The SIC penalizes for model complexity more heavily than
AIC and the error properties are aligned with the concept of
evidence functions, whereas the AIC error properties are not
(Dennis et al. this research topic). SIC is also commonly available
in R packages (named the BIC). The criterion (Eq. 2) can be
derived either in a Bayesian context (Schwarz, 1978) or in a
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BOX 2 | What is an evidence function?
Evidence functions are based on nine desiderata (i.e., something that is
desired or wanted) for statistical and philosophical properties with desirable
and meaningful characteristics for scientific applications (Lele, 2004; Taper
and Lele, 2011; Taper and Ponciano, 2016). Here, we attempt to translate
those desired properties (D0 to D8) for scientists with emphasis on
implications to applications.

D0: Evidence is measurable, does not require information about
beliefs, and is made from confronting at least two models that
represent scientific hypotheses with the data.

D1: Evidence functions measure how possible data under each
model (at least two) match or are comparable to the observed
data. Neither model may completely describe the process that
generated the observed data, but the function can discriminate
if one of the models is more likely to have generated
the observed data.

D2: Evidence is continuous from virtually none to very strong, and
measuring evidence should likewise be a continuous and not
have a threshold like using α levels for hypothesis testing.

D3: Evidence must be arrived at in a reproducible way. If I do not
describe processes by which I arrive at a conclusion, then it
becomes difficult for someone else to follow the logic to get to
that conclusion or challenge the underlying approach.

D4: Personal opinions, beliefs, or intentions cannot influence the
evidence function in a hidden way and the process should be
accessible to everybody. If a broader scientific audience does
not understand what constitutes evidence, then the function
cannot be used as evidence.

D5: Evidence functions do not change person to person (in contrast
to Bayesian approaches with different personal priors).

D6: Evidence does not need to come from a single critical test
(experiment). Evidence functions should have an explicit way of
combining data sets to confront hypotheses and the process
should be inherently dynamic with reevaluation as more data or
better data are collected.

D7: The evidence should not change depending on the scale the
data was collected and analyzed. Nor should evidence be
sensitive on transformation of parameters. To give an example
related to the metabolic scaling relationship research, if we
allowed the appearance of plots to be evidence for the slope,
then we could change our evidence by making one plot with
one x-axis scale and another plot with different scale. One of the
interests of this paper is how much difference there is among
species in β. It should not make a difference to the evidence if
this dispersion is parameterized as a variance or as a
standard deviation.

D8: More data results in better inferences, but will only be as good
as the completeness of the models/hypotheses tested. The
model selected in any given analysis will, with more and more
data collected, be the model closest to describing the process
from which the data are observed. You can do no better in
understanding the underlying process than the models
contained within your suite of models evaluated.

frequentist context (Nishii, 1988) We adopt the SIC terminology
throughout for model selection and evaluation of parameter
uncertainty using 1SIC intervals to avoid confusion of the
evidentialist approach with Bayesian analysis and inference. The
model with the lowest value of SIC is considered the best model
and the evidence function, 1SICij, is the pairwise difference
formed by subtracting the SIC of a reference model i from
the SIC of a competing model j. As an evidence function,
1SICij is continuous from negative infinity to infinity with the
strength of evidence for the reference model over the competing

model growing larger as the 1SIC becomes positive and large.
Commonly, when information criteria are used for model
selection, the model in the model set with the lowest IC value is
used as the reference model, and all1IC are therefore positive.

Given the hierarchical nature of mixed models several
alternative effective sample sizes can be calculated (Jones, 2011);
these methods adjust the sample size (n), used in the SIC
calculation (Eq. 2) to the effective samples size to account
for assumptions of non-independence in data. Which is most
appropriate depends on the level in the hierarchy of inferential
interest. Because the parameter of primary interest in this study
is the fixed effect of body mass, the total sample size is the correct
effective sample size to use (Lorah and Womack, 2019).

Instead of attempting to reject false models, the evidential
approach seeks to assess which models are closer to the unknown
natural generating process than other competing models. The
support for one model does not in itself diminish support for
other models. However, scientists may find themselves in the
situation where several distinct models appear nearly as good.
Given the data in hand, the scientist cannot strongly differentiate
between the models in this set. In this case, all of these models
should be retained in the scientist’s thinking.

1SIC Intervals
SIC values can also be used to define uncertainty surrounding a
parameter estimate – thus linking model selection to measures
of uncertainty directly through the use of 1SIC. Discussion
of evidential intervals based on the likelihood ratio can be
found in Royall (1997), while Bandyopadhyay et al. (2016)
discuss 1SIC evidential intervals. As with 1AIC, there are some
guidelines (suggestions) on what constitutes weak evidence or
strong evidence for one model over another based on the value of
1SIC. Raftery (1995) suggested that a 1SIC (i.e., 1BIC) values
less than 2, 2 to 6, 6 to 10, and greater than 10 constitute weak,
positive, strong, and very strong evidence, respectively. Such
verbal partitioning of any information criterion is often desirable
for interpretation, but rarely justified.

Box 3 provides a more intuitive probabilistic approach to
selecting a value. From our more detailed example in Box 3
using binomial probability model, it can be shown that at five
consecutive heads, the probability of this occurring by chance is
∼0.03 with a 1IC∼7. Building an uncertainty bound around a
parameter value requires choosing a1SIC value, we use seven as
our threshold for intervals,1SIC(7).

A 1SIC interval for the metabolic scaling relationship (slope
parameter) can be built for each trial or for the best selected
model by calculating 1SIC across the parameter space of the
slope parameter. The 1SIC is the difference of the SIC of the
best model and the SIC of the same model with a fixed value of
the slope parameter. The upper and lower bound of the 1SIC
interval occurs when 1SIC = 7. Figure 2 visually captures the
process, where the parameter space of the slope parameter is on
the x-axis and the 1SIC is a function of this slope parameter.
Expectedly, 1SIC values greater than 7 would result in broader
intervals. If we consider 1SIC(7) as strong evidence, then the
bound can be interpreted as there is strong evidence that values
of the scaling relationship outside of this range do not give rise to
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BOX 3 | Intuitions about evidence.
Fisherian significance tests (think p-values) and Neyman-Pearson hypothesis test (think α levels) rely on critical values. The confusion and convolution of these two
statistical approaches have led applied scientists to misinterpretations of the strength of evidence against the null hypothesis. As Hubbard and Bayarri (2003) so
state it, “This mass confusion, in turn, has rendered applications of classical statistical testing all but meaningless among applied researchers.”

Multi-model inference using Information Criteria (IC) (e.g., AIC, SIC) have a continuous measure of evidence found in the difference (i.e., 1AIC, 1SIC) in values
between the best model (hypothesis) and the reference model. However, communicating this strength of evidence has resulted in vagueness emerging from linguistic
uncertainty (Elith et al., 2002). This is to say, applied scientists have created guidelines to discuss the strength of evidence. Maybe the most popular
recommendation was provided by Burnham and Anderson (2002) for 1AIC (AICi – AICj), where 0 > 1AIC > 2, 4 > 1AIC > 7, 1AIC > 10, represent “substantial,”
“considerably less,” and “essentially none” levels of evidence to support for retaining model i in the model set along with the best model j. Never minding the
absence of what a value of 3 might indicate, some scientists have suggested different discretization of intervals (i.e., Burnham et al., 2011) adding to the apparent
vagueness of what constitutes evidence on a continuous scale rather than a discrete critical test provided by p-values (Murtaugh, 2014).

To a certain extent that different scientists recognize different 1IC levels as strong evidence represents differences in attitude about science as a whole and their
specific research problem. This variation is no different from one scientist choosing a critical value of 0.05 for a hypothesis test and another scientist choosing 0.01.
The clearest exposition for developing an intuition for evidence on a continuous scale (Box 2, D2) for an evidence function is in Royall (1997), which we recast here in
terms of coin tosses.

Imagine that you are gambling with someone on their flipping of a coin and wonder if you are being cheated with a double-headed coin, or if the coin is fair. After the
first coin toss results in a head you are not worried, yes there is a small amount of evidence for a double-headed coin, but it is just a single coin toss. Two heads in a
row still happens frequently. With three heads in a row your suspicions are peaked. By four heads in a row you are having serious doubts. Five heads in a row pretty
well convinces you that you are being cheated. And, after seeing eight heads in a row you are reaching for the derringer in your boot.

We can augment this example with calculations of the p-value of so many heads under the null model of a fair coin. Fisherian significance testing is generally the first
inferential tool that we are taught so many of us will have developed intuitions on p-values. In the calculation of the p-values, the null model is the fair coin model.
Evidence is often measured as a likelihood ratio. The table shows the ratio of the likelihood of the double headed coin model given the data to the likelihood of the
fair coin model given the same data. We can scaffold these intuitions into greater understanding of the evidence contained in differences in information criteria,
1IC = (2∗Log(Likelihood ratio)). Selecting a specific IC, such as AIC or SIC, would introduce a penalty term for the number of parameters and amount of data (Eq. 2).

Consecutive heads p-value Likelihood ratio 1IC Evidence intuition

1 0.5 2 1.39 Very weak

2 0.25 4 2.77 Weak

3 0.125 8 4.16 Marginal

4 0.063 16 5.55 Moderate

5 0.031 32 6.93 Strong

6 0.016 64 8.32 Very strong

7 0.008 128 9.70 Extremely strong

8 0.004 256 11.09 Overwhelming

Expectedly, there is a common trend between the p-value and 1IC. As the evidence grows for a two-headed coin, the p-value gets smaller, while the 1IC value
increases. In Fisherian p-value testing, we would have selected a threshold for the observed data (say 0.05) that beyond which we would reject the null model
(hypothesis) in favor of the alternative. Interpretation of p-values is generally not condoned as a strength of evidence. With the 1IC, we have a gradient from which to
draw our inferences.

We see at a p-value of 0.031, the 1IC is 6.93. For our study, we selected 1SIC(7) for our intervals – meaning models and values of the slope parameter within this
bound should be retained for further consideration with more data. Models and values of the slope parameters outside this bound have strong evidence against
those models giving rise to the observed data (relative to the best model) and can therefore be subsequently dismissed.

the observed data. For purpose of our study, we provide 1SIC(7)
intervals for each trial and for the best model. In practice, models
with parameter values falling within the 1SIC interval are cases
where, given the data in hand, the scientist cannot strongly
differentiate between the models within the bound, and all of
these models should be retained and further scrutinized with
additional data (Box 2, D6).

RESULTS

Using the slopes estimated for each trial (Table 1), the
distribution of values with fitted normal curve is shown in
Figure 3. The mean slope parameter value is 0.94 (SE 0.04),
which is unexpectedly different than the 0.79 slope estimated
from the synthesis provided by Clarke and Johnston (1999). One
explanation for this difference is because many of the studies used

in our analysis were initially conducted to test the SMR of similar
body sized fish at different temperatures. As indicated by trial
28 (Table 1), small sample size (n = 8) can result in biologically
unrealistic estimates (β̂ = −0.21).

The best model selected using 1SIC came from model suite
3 with a random intercept and random slope, but with a
common slope parameter of β̂ = 0.89 (SE 0.021). However, a
common slope and random intercept model had a 1SIC = 1.5,
and is thus not strongly distinguishable from the best model.
The correlation of random slope with random intercept was
−0.86, indicating that as the intercept increases in value,
the slope decreases in value. This correlation is likely due
to noise.

The value of universal slope is consistent (0.87–0.89) across
all model suites and there is strong evidence (1SIC > 7) against
fixed mechanistic based values of the metabolic scaling rate of
0.67, 0.75, and 1 across all modeling suites. Figure 2, along with
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FIGURE 2 | SIC interval formulation. The black line is the 1SIC as a function of the slope parameter space. The reference model is always the model with the
estimated slope parameter. When 1SIC = 7 (solid gray horizontal line intersects the 1SIC), this defines the lower 1SIC(7)LB and upper 1SIC(7)UB of the information
criterion interval. Values of the 1SIC near the MLE can be negative values due to the penalization term (Eq. 2). This example is drawn from the best fit model of our
study with an MLE for the slope parameter of β̂ = 0.89 with 1SIC(7) = (0.82, 0.99). When the 1SIC is negative, that is below the dashed line, the fixed slope models
are favored, but weakly. When the 1SIC is positive but less than 7, fitted slope model is favored, but weakly.

FIGURE 3 | Distribution of slopes estimated in Table 1 for all 55 trials. Mean
of the distribution is 0.94 (SE 0.04).

being a conceptualization of an 1SIC(7) interval, is generated
under the best model and the interval spans 0.81 to 0.99.

Figure 4 shows the 1SIC(7) interval for each trial ordered
by n∗VAR(ln(weight)), from smallest values at the bottom to
larger values at the top. This ordering is a regression experimental
design component where few data points and/or small ranges in
body mass result in small values indicating the lower precision
of the slope parameter estimate. With exception of Cunner (Trial
3) where the 1SIC(7) interval spans 0.81 to 0. 98, all other trials
span at least one of the mechanistic hypotheses of 0.67, 0.75, or 1.

As outlined in the data section, all observations included in
this study were collected under conditions to ensure data quality.
However, not all studies were designed to estimate metabolic
scaling relationship (a slope parameter) and some had few data
points and/or did not cover a large breadth of fish body masses.
The trials of Cunner, however, were designed for testing the
metabolic scaling relationship and could potentially drive the
overall value observed by the best model. As such, we conducted
an additional analysis after removing the Cunner data and found
the same estimate of the metabolic scaling relationship. See
Box 4 for more details. The metabolic scaling relationship of
β̂ = 0.87− 0.89 for fish has very little uncertainty, is robust
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FIGURE 4 | 1SIC(7) intervals for all trials ordered by n∗VAR (Log(weight)). Trials with small n∗VAR(Log(weight)) are expected to have wide intervals because the lack
coverage of fish mass or have small samples sizes. As studies have larger n∗VAR(Log(weight)), the 1SIC(7) intervals become smaller and have the ability to exclude
hypotheses of the slope, β = 0.67, 0.75, and 1. With the exception of the Cunner(3) trial, all other trials capture at least one of the hypotheses, the most common
being β = 0.75, the dashed line in the figure. The zoom inset shows trials with relatively narrow 1SIC(7) and dashed lines at β = 0.67, 0.75, and 1.0.

across models, and emerges when any trial or species is dropped
from the analysis.

DISCUSSION

The evidence function (1SIC) approach we implemented here
has led to selecting a best model; a mixed effect model with
random slope and random intercept by species and an estimated
correlation between random effects (Table 2, Model 9). However,
we cannot dismiss the possibility that the model structure
may only have a random species intercepts and common slope
as witnessed by this alternative model having a 1SIC = 1.5
(Table 2, Model 1). Models across all suites that represent
mechanistic hypotheses of a scaling relationship of 0.67, 0.75,
and 1 are dismissed with very strong evidence, 1SIC > 8.4
(Table 2, Box 2). As such, our inference is that surface
area limitations (β = 0.67), distribution network limitations
(β = 0.75), and low cost demands on maintenance and routine
activity (β = 1) are not exclusively driving the metabolic scaling
relationship in fish.

However, the evidence for a β̂ = 0.87 to 0.89 universal scaling
relationship is strong and presumably robust as indicated by
similarity of the MLE for this parameter across all modeling
suites and narrow bound of the 1SIC(7) interval (Figure 2).
Both fixed values are more than five standard deviations
from the estimated common slope, and thus the chances
are less than 1 in 1,000,000 that the common slope would
have a β as small as 0.75 or as great as 1. If the data do
come from the random slopes model, then it would be an
extraordinary event for any species to have a β as low as 0.75,
but perhaps as much as 6% of species might have a β as
great 1. Accordingly, both DEB and MLB hypotheses warrant
further consideration to determine the mechanism of metabolic
scaling in fishes.

In many ways, the evidentialist approach is not that different
from what is being applied in the multi-model literature,
albeit with the meaningful caveat that an evidence function
(Box 2) is being applied. The SIC is well studied, familiar
to many, and also extractable from all the analyses we
conducted in the R programing language. As such, the 1SIC
is readily accessible to scientists wishing to implement an
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BOX 4 | Is it just cunner?
The Cunner study (Norin and Gamperl, 2018; n = 66 per trial for five trials) and the Common Minnow (McLean et al., 2018; n = 122 for one trial) both have large
sample sizes compared to the other studies and were intentionally designed to estimate the metabolic scaling. Consequently, when we look at the span of 1SIC(7)
interval estimated for each trial as a function of the regression experimental design measure n ∗ the variance of Log(weight) (Figure 4), we see the Cunner and the
Common minnow studies have distinctly smaller 1SIC(7) intervals. This raises the question, would our conclusion about the value of intraspecific scaling coefficient if
the cunner study or the Common Minnow study were not included in our analysis.

We estimated the slope parameter under the best fit model and then calculated the resulting 1SIC(7) interval by systematically withholding data by trial and then by
species. For trials (Figure Box 4.1), they are ordered by value of n ∗ the variance of Log(weight) from largest to smallest. For species (Figure Box 4.2), the ordering
is alphabetical.

As expected, Cunner trials and the Common Minnow trial indeed do influence the MLE and the 1SIC(7) intervals (Figure Box 4.1), but not so much as to capture
the mechanistic hypotheses of 0.75 and 0.67 (dashed lines). However, the full model inference that the mechanistic hypothesis of metabolic scaling = 1 can be
excluded from further consideration is sensitive to inclusion of some trials and species (Figure Box 4.1 and Figure Box 4.2). In all trials, the value of β̂ = 0.89 is
captured. Other trials with smaller values of n ∗ the variance of Log(weight) have virtually no influence on the either the point estimate or the uncertainty measure.

The story is similar if we aggregate trials by species (Figure Box 4.2) and then systematically withhold all data from a species. Notably, withholding species data
generally broadens the 1SIC(7) interval with slight variation in the MLE that ranges from 0.89 to 0.9. Yet withholding a species from the analysis does not change the
conclusion of the statistical inference that the slope of the metabolic scaling relationship is not 0.75 or 0.67. However, absence of Barramundi, Common Triplefin,
Cunner, Hapuku Wreckfish, or Rainbow Trout results in a wider 1SIC(7) interval that just captures the metabolic scaling of 1, and would, in the absence of any of
these species, motivate further consideration of this mechanistic hypothesis.

While some of the trials were designed to test the metabolic scaling relationship, they do not unduly drive the conclusion. But maybe more importantly, the effect of
many studies that are less suited to individually test the relationship (Table 1), together can provide meaningful insights into the metabolic scaling relationship.

FIGURE BOX 4.1 | MLE of the slope parameter and 1SIC(7) interval estimated by systematically withholding each trial. FULL is the MLE and interval with all data
considered. Absence of any one data set does not drive our conclusion. However, absence of trial 4, 5, 11, 40, or 41 would suggest keeping the mechanistic
hypothesis of metabolic scaling at 1 in the suite of models to be considered further.

evidentialist approach. While additional coding is required
to produce 1SIC intervals, this effort takes only elementary
coding to automate. It must be noted, that the SIC for
large sample sizes makes it difficult for new parameters to
enter the model. In this analysis, our primary conclusion is
that a model with β estimated as an extra free parameter
is better than any of the models with β specified at any

of the values of 0.67, 0.75, or 1.0. Thus the use of the
SIC as a criterion as opposed to the AIC makes our
conclusions conservative.

The other major contribution of the evidentialist approach
underscored in this is the imperative to combine data sets
such that evidence does not come from a single critical
test, but rather from the accumulation of trials and critical
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FIGURE BOX 4.2 | MLE of the slope parameter and 1SIC(7) interval estimated by systematically withholding each species. FULL is the MLE and interval with all
data considered. Absence of any one data set does not drive our conclusion. However, absence of Barramundi, Common Triplefin, Cunner, Hapuku Wreckfish, or
Rainbow Trout would suggest keeping the mechanistic hypothesis of metabolic scaling at 1 in the suite of models to be considered further.

tests (See D6 of Box 2). Here we combined 55 trials across
16 species comprising 1456 observations. While this would
normally form the basis of meta-analysis, this breadth of
diverse data is desirable by allowing for a random effect
of species to make our inferences across the population
of fish species. If we look at each trial individually, we
see that all but one trial (Cunner 4), captures one of the
mechanistic hypotheses of 0.67, 0.75, or 1. In contrast when
we look at the aggregate, none of these hypotheses are
supported (Box 4).

Both the quantity and quality of metabolic rate data
included in the metadata are important and can shape
the conclusions of the study. Several extensive metadata
analyses include mean metabolic rate values from close to
a 100 or more species (e.g., Clarke and Johnston, 1999;
White and Seymour, 2003; Glazier, 2005; Killen et al.,
2010); however, the methods and quality of the data is
not always rigorously considered. Metabolic rate is one of
the most commonly investigated whole animal physiological
performance metrics (Nelson, 2016), but different methods
are more or less time and resource-intensive and can over-
estimate SMR (Chabot et al., 2016). Furthermore, it is
logistically challenging to obtain robust SMR measurements
on many fish species, for example, large-bodied open ocean
pelagic species or deep-sea fishes. Our study is unique
because we only included standard metabolic rate data
following specific and stringent criteria with each data point
representing individual standard metabolic rate instead of
reported species mean values. Future work could address how

our (and others) conclusions change if the quality control
criteria are relaxed.

There are many covariates that may be important
predictors for species-specific scaling slopes and intercepts.
While we tried to capture fishes across a broad latitudinal
range with varying life histories, we did not examine life
history factors such as species ecological activity (athletic
vs. sedentary; Killen et al., 2010), growth rate, reproductive
investment or strategy (e.g., fecundity), maximum body
size, maximum age, or even environmental factors such
as habitat (e.g., benthic vs. pelagic; freshwater vs. marine;
Killen et al., 2010), or latitude (e.g., tropic vs. temperate
vs. polar). Furthermore, temperature governs metabolism
in ectotherms such as fish. Given this, all our models
included temperature as an independent significant predictor
of metabolic rates in fish (1SIC = 8.1 for best model
compared to best model without temperature; Box 5).
Recently, Lindmark et al. (2018) presented temperature-
dependent intraspecific metabolic allometry, where MR
increased with temperature to a lesser extent in larger fish.
Furthermore, these effects scale to higher levels of organization,
including from populations (population response-models),
to ecosystems (MTE; Brown et al., 2004). We evaluated
temperature effects and an interaction with log(weight) (See
Box 5) with a 1SIC = 7.2 compared to the best model.
We can dismiss further consideration of an interaction of
temperature with weight under the model suites evaluated.
However, these temperature-size dependent effects on MR
are mixed across and within species, and require more
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TABLE 2 | Application of evidence functions using the Schwarz Information
Criterion (SIC).

Model Description k Log(L) SIC 1 SIC

Model Suite 1: Random Intercept models.

Fixed effect: Weight, Temp; Random effect: Species; Nested effect: Trial

1 β = Free∗ 6 73.9 −104.1 1.5

2 β = 0.67 5 −15.5 67.4 173

3 β = 0.75 5 42.1 −47.7 57.9

4 β = 1 5 35.7 −35 70.6

Model Suite 2: Estimated species intercept models

Fixed effect: Weight, Temp and Species, Nested effect: Trial

5 β = Free∗ 20 −69.8 −69.8 35.8

6 β = 0.67 19 96.8 96.8 202.4

7 β = 0.75 19 −16.3 −16.3 89.3

8 β = 1 19 −0.4 −0.4 105.2

Model Suite 3: Random intercepts with random slopes

Fixed effect: Weight and Temp; Random effect: Species and Slope;
Nested effect: Trial

9 β = Random, Free∗ 8 81.9 −105.6 0

10 β = Random, 0.67 7 50.1 −49.2 56.4

11 β = Random, 0.75 7 64.6 −78.1 27.5

12 β = Random, 1 7 74.1 −97.2 8.4

Model Suite 4: Estimated species intercept models with random slopes

Fixed effect: Weight, Temp and Species; Random effect: Slope; Nested
effect: Trial

13 β = Random, Free∗ 21 107.8 −62.6 43

14 β = Random, 0.67 20 45.2 55.3 160.9

15 β = Random, 0.75 20 78.6 −11.5 94.1

16 β = Random, 1 20 85.7 −25.6 80

∗R output with parameter values found in the Supplementary Material.

research and metabolic scaling data from species in polar
and tropical environments.

Norin and Gamperl (2018) provided a compelling study
to measure allometric scaling for Cunner. It adhered to all
the characteristics of a robust and well-designed study (White
and Kearney, 2014) to estimate the scaling relationship,
with ample breadth of fish mass, 68 observations per trial,
and five trials (Table 1). What makes this study notable
is their conclusion that no universal scaling relationship
exists. We offer a few explanations for this apparent
contradiction. Our inference is broadly applicable to fish,
while theirs is limited to Cunner. Put simply, we are
measuring evidence at a different inferential level for a
universal scaling constant. If we look at the values of the
SIC(7) intervals for all Cunner trials (Figure 4) they appear
to be very similar. The intervals are {0.79, 1.04}, {0.88,
1.09}, {0.81, 0.98}, {0.74, 0.91}, and {0.7, 0.89}, and all
SIC(7) intervals capture the values 0.88 and 0.89. Clearly
our estimate of β̂ = 0.89 from the best model with a
random slope should be considered as a possible universal
scaling for Cunner as well as other fish. As such, our results

are consistent with Norin and Gamperl (2018), and their
insightful suggestions about the need to consider species-
specific scaling relationships when building fish population
dynamic models that apply metabolic scaling exponents,
should be heeded.

Scaling relationships are at times considered key tools
for predicting the effects of global change on fisheries (e.g.,
Cheung et al., 2008), or as tools to estimate how abundant
fish might be in the absence of fishing (e.g., Jennings and
Blanchard, 2004). Therefore, variation in the scaling relationship
between body size and metabolism have clear implications for
how we predict fish populations will respond to changes in
the environment or changes in body size distributions. As
we move forward and seek to predict the consequences of
changes in fish populations, the assumption of a universal
scaling exponent, while attractive and generalizable may
either under or overestimate a species sensitivity to changes
in the environment. Given the evidence for species-specific
variation in scaling relationships provided in our study, stock
assessments seeking to integrate scaling relationships into
forecasts may therefore benefit from species-specific values.
While theoretical underpinnings have motivated application
of a scaling relationship of β = 0.75, our data show that
fisheries models that blindly adopt this parameter may be
ultimately misleading.

We had some concern that the species distribution would
be non-normally distributed, but there was no evidence from
our analysis of this concern. However, those models may be
useful for assessing the importance of species phylogenetics to
metabolic scaling. The variance for the random species intercept
model was 0.19 with a residual of 0.047. Similarly, from the
random slopes model, the variance for the random intercept
was 0.24, the random slope was 0.005, and the residual variance
was 0.044 (see Supplementary Material for model outputs).
Both measurement error in SMR and real inter-species variability
contribute to the variability in β̂ . Variance components are
notoriously difficult to tease apart, that is they are only weakly
estimable (Ponciano et al., 2012). An estimate of the magnitude
of measurement error in SMR would contribute greatly to the
ability of further studies to accurately estimate the inter-specific
variability in β̂ .

This study does not address the question of inter-
specific metabolic scaling. This would entail a study of
scaling of intra-specific intercepts with mean species body
size. As we do not have accurate estimates of mean body
size for these species, we cannot yet address this issue.
Future work could use the random affects models or
the estimated species intercepts models (model suites 2
and 4, Table 2) to evaluate if species relatedness and/or
taxonomy are significant factors explaining species random
effects variability.

Many of the studies used in this analysis were not
designed to test the metabolic relationship, which is evident
from the standard errors of the regression coefficients for
individual trials (Table 1). However, under our data criteria,
these studies had precise measurement of SMR, body mass,
and temperature. The inclusion of these trials added unique
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BOX 5 | Changes in SMR due to temperature and body mass.
Temperature has been thought to play a critical role regulating individual metabolic rate in fishes (Fry, 1947), where metabolic rates typically increase as temperature
increases. As a consequence, all of the models we have considered so far have included a temperature effect. We can evaluate the effect of temperature more fully
by considering six modification of models in suites 1 and 3 (Table 2). The first model (M17) is a random intercept model without inclusion of the temperature variable.
The second model (M1) includes temperature (Table 2, Suite 1, Model 1), and the third model (M18) adds an interaction term of temperature with log(weight). These
are all fixed slope models.

Including a log(weight) by temperature interaction is equivalent to saying that scaling of log(SMR) with log(weight) is itself a linear function of temperature. This is how
we express it in the table below. The derivation of the standard error is discussed in the Supplementary Material.

The second group of models are built upon the random slopes model (Table 2, Suite 3, Model 9). The first model (M19) is absent temperature, the second model
(M9) is the same as Table 2, Model 9 with an intercept defined by the temperature, and the third model (M20) has an interaction of temperature with log(weight).
Using maximum likelihood fitting and extracting the SIC values, we can apply the same evidence function approach to evaluate the influence of temperature on
intraspecific metabolic scaling. Model output is provided in the Supplementary Material.

Consistent with our previous model selection effort, M9 (Table 2), which includes temperature with a metabolic scaling coefficient (0.89), has the lowest SIC score.
Models M17 and M19 without temperature include have 1SIC > 7, which indicates temperature is a significant factor as the literature suggests. As observed
previously, there is moderate evidence for M9 over M1, but not so much as to discourage future studies from considering a constant slopes model. Both M18 and
M20 with interactions between temperature and log(weight) have 1SIC > 7. Under the best model (M9), the expected metabolic scalings at 0◦C, 15◦C, and 30◦C
are 0.89, 0.9, and 0.91, respectively.

The conclusion from our focused study of temperature is that temperature is a critical factor to consider in modeling fish metabolic rate as there is strong evidence
(Box 3) for including temperature in the intercept of the scaling relationship. Future work on evaluating the effect of temperature should expand the coverage of the
temperature range with more polar and tropical fish species. Additional data at the endpoints of the temperature range will improve inferences about the scaling
relationship and the evidence for, or against, a log(weight) by temperature interaction.

TABLE BOX 5.1 | Model selection using 1SIC along with parameter estimates of for the metabolic scaling relationship.
For models M18 and M20, the parameter estimate and standard error are a function of temperature.

Model SIC 1SIC β̂ SE(β̂)

M17 −80.6 25 0.87 0.015

M1 −104.1 1.5 0.87 0.015

M18 −97.5 7.6 0.83 + 0.00257 (temp)
√

0.0023+ (8.59× 10−6)× temp2
+ 2×−0.00013× temp

M19 −86.1 8.1 0.91 0.025

M9 −105.6 0 0.89 0.021

M20 −98.4 7.2 0.87 + 0.00106 (temp)
√

0.0033+ (1.07× 10−5)× temp2
+ 2×−0.00017× temp

species to support the evaluation of a species random effect,
which ultimately allows us to make inferences from this
model across fish species. Given that some of these trials
are ill-suited in themselves to critically test the metabolic
relationship, due to low sample size or narrow range of
body masses, this may be contributing to selection of the
random slope model. Future studies that implement an
evidentialist approach with additional data sets collected using
appropriate experimental designs to uncover the allometric
scaling relationship will likely reconcile if species requires a
random slope.

Simulations to understand data requirements for robust
analysis of interspecific metabolic scaling relationships suggest
that the data should include 100–150 species spanning 3–4
orders of magnitude range in body size (White and Kearney,
2014). One approach to finding or estimating a universal
intraspecific scaling constant is to take the average from
the distribution of estimated slopes from each trial (e.g.,
Figure 3 in the current study, 0.916, SE 0.04). This approach,
while easy to implement by combing the literature, assumes
that all data are created equal, but we know that each
estimated slope, β̂ comes with error, and some of the studies
we included had relatively large standard errors (Table 1).
Our data with fewer total species than most meta-analysis,
but using individual data instead of species or trial means,

proved to be sufficient to address the question concerning
the universality of scaling relationship between fish body mass
and metabolic rate.

The evidentialist approach is useful in addressing long-
standing scientific debates (such as universal scaling
relationships of metabolism), consistent with the practice
of applied scientists, and relatively easy to implement using
existing evidence functions and programing packages. It
provides path forward for dismissing models (hypotheses)
with little to no support, identifying and retaining hypotheses
needing further evaluation, and provides a philosophy that
emphasizes accumulation of evidence, through additional data
and confronting that data with more complex models of how
the nature works. We look forward to further refinement of
the approach not only through philosophical insights and
mathematical rigor, but through application of the approach
to long-standing, pressing ecological and environmental
science problems.
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The methods for making statistical inferences in scientific analysis have diversified

even within the frequentist branch of statistics, but comparison has been elusive.

We approximate analytically and numerically the performance of Neyman-Pearson

hypothesis testing, Fisher significance testing, information criteria, and evidential

statistics (Royall, 1997). This last approach is implemented in the form of evidence

functions: statistics for comparing twomodels by estimating, based on data, their relative

distance to the generating process (i.e., truth) (Lele, 2004). A consequence of this

definition is the salient property that the probabilities of misleading or weak evidence, error

probabilities analogous to Type 1 and Type 2 errors in hypothesis testing, all approach

0 as sample size increases. Our comparison of these approaches focuses primarily on

the frequency with which errors are made, both when models are correctly specified,

and when they are misspecified, but also considers ease of interpretation. The error

rates in evidential analysis all decrease to 0 as sample size increases even under model

misspecification. Neyman-Pearson testing on the other hand, exhibits great difficulties

under misspecification. The real Type 1 and Type 2 error rates can be less, equal to, or

greater than the nominal rates depending on the nature of model misspecification. Under

some reasonable circumstances, the probability of Type 1 error is an increasing function

of sample size that can even approach 1! In contrast, under model misspecification an

evidential analysis retains the desirable properties of always having a greater probability of

selecting the best model over an inferior one and of having the probability of selecting the

best model increase monotonically with sample size. We show that the evidence function

concept fulfills the seeming objectives of model selection in ecology, both in a statistical as

well as scientific sense, and that evidence functions are intuitive and easily grasped. We

find that consistent information criteria are evidence functions but the MSE minimizing

(or efficient) information criteria (e.g., AIC, AICc, TIC) are not. The error properties of

the MSE minimizing criteria switch between those of evidence functions and those of

Neyman-Pearson tests depending on models being compared.

Keywords: model misspecification, evidential statistics, evidence, error rates in model selection, Kullback-Leibler

divergence, hypothesis testing, Akaike’s information criterion, model selection
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1. INTRODUCTION

1.1. Background
In the twentieth century, the bulk of scientific statistical inference
was conducted with Neyman-Pearson hypothesis tests, a term
which we broadly take to encompass significance testing, P-
values, generalized likelihood ratio, and other special cases,
adaptations, or generalizations. The central difficulty with
interpreting NP tests is that the Type 1 error probability (usually
denoted α) remains fixed regardless of sample size, rendering
problematic the question of what constitutes evidence for the
model serving as the null hypothesis (Aho et al., 2014; Murtaugh,
2014; Spanos, 2014). The fixed null error rate of hypothesis
testing lies at the core of why model selection procedures based
on hypothesis testing (such as stepwise regression and multiple
comparisons) have always had the reputation of being jury-rigged
contraptions that have never been fully satisfactory (Gelman
et al., 2012). An additional problem with hypothesis tests arises
from the “Type 3” error of model misspecification, in which
neither the null nor the alternative hypothesis model adequately
describes the data (Mosteller, 1948). The influence of model
misspecification on all types of inference is under appreciated.

A substantial advance in late 20th century statistical practice

was the development of information-theoretic indexes for model

selection, namely the Akaike information criterion (AIC) and its
variants (Akaike, 1973, 1974; Sakamoto et al., 1986; Bozdogan,
1987). The model selection criteria were slow in coming to
ecology (Kemp andDennis, 1991; Lebreton et al., 1992; Anderson
et al., 1994; Strong et al., 1999) but have rapidly proliferated
in the past 20 years, aided by a popular book (Burnham and
Anderson, 2002) and journal reviews (Anderson et al., 2000;
Johnson and Omland, 2004; Ward, 2008; Grueber et al., 2011;
Symonds and Moussalli, 2011). Ecological practice has been
indelibly shaped by the use of AIC and similar indexes (Guthery
et al., 2005; Barker and Link, 2015). Notwithstanding, ecologists,
traditionally introspective about and scrutinizing of statistical
practices (Strong, 1980; Quinn and Dunham, 1983; Loehle, 1987;
Yoccoz, 1991; Johnson, 1999; Hurlbert and Lombardi, 2009;
Gerrodette, 2011), have generated much critique and discussion
of the appropriate uses of the information criteria (Guthery
et al., 2005; Richards, 2005; Arnold, 2010; Barker and Link, 2015;
Cade, 2015). Topics of discussions have focused on the contrast
of information-theoretic methods with frequentist hypothesis
testing methods (Anderson et al., 2000; Stephens et al., 2005;
Murtaugh, 2009) and with Bayesian statistical approaches (Link
and Barker, 2006; Barker and Link, 2015).

In an apparently separate statistical development, the concept

of statistical evidence was refined in light of the shortcomings of

using as evidence quantities such as P-values that emerge from
frequentist hypothesis testing (Royall, 1997, 2000; Taper and Lele,
2004, 2011; Taper and Ponciano, 2016). Crucial to the evidence
concept was the idea of an evidence function (Lele, 2004). An

evidence function is a statistic for comparing two models that

has a suite of statistical properties, among them two critical
properties: (a) both error probabilities (analogous to Type 1 and

Type 2 error probabilities in hypothesis testing) approach zero

asymptotically as the sample size increases, and (b) when the

models are misspecified and the concept of “error” is generalized

to be the selection of the model “farthest” from the true data-
generating process, the two error probabilities still approach zero
as sample size increases.

Despite widespread current usage of AIC-type indexes in
ecology, the inferential basis and implications of the use of
information criteria are not fully developed, and what is
developed is commonly misunderstood (see the forum edited
by Ellison et al., 2014). AIC-type indexes are used for different
purposes: in some contexts in place of hypothesis testing, in
some as evidence for model identification, in some as estimates
of pseudo-Bayesian model probabilities, and in some purely as
criteria for prediction (Anderson et al., 2001). Of concern is that
few ecologists can explain the inferences they are conducting with
AIC, as Akaike’s (Akaike, 1973, 1974) mathematical argument
is not an easy one, and more recent accounts (Bozdogan, 1987;
Burnham and Anderson, 2002; Claeskens and Hjort, 2008) are
heavily mathematical as well. A clear and accessible inferential
concept is needed to promote confidence in and appropriate uses
of the information-theoretic criteria. We believe that the concept
of statistical evidence can serve well as the inferential basis for the
uses of and distinctions among the AIC-type indexes.

This paper contrasts the concept of evidence with classical
statistical hypothesis testing and demonstrates that many
information-based indexes for model selection can be recast and
interpreted as evidence functions. We show that the evidence
function concept fulfills many seeming objectives of model
selection in ecology, both in a statistical as well as scientific sense,
and that evidence functions are intuitive and easily grasped.
Specifically, the difference of two values of an information-
theoretic index for a pair of models possesses in whole or in part
the properties of an evidence function and thereby grants to the
resulting inference a scientific warrant of considerable novelty in
ecological practice.

Of particular importance is the desirable behavior of evidence
functions under model misspecification, behavior which, as we
shall show, departs sharply from that of statistical hypothesis
testing. As ecologists grapple increasingly with issues related to
multiple quantitative hypotheses for how data arose, the evidence
function concept can serve as a scientifically satisfying basis for
model comparison in observational and experimental studies.

1.2. Method of Analysis and Notation
For convenience we label as Neyman-Pearson (NP) hypothesis
tests a broad collection of interrelated statistical inference
techniques, including P-values for likelihood ratios, confidence
intervals, and generalized likelihood ratio tests, that are
connected to Neyman and Pearson’s original work (Neyman
and Pearson, 1933) and that form the core of modern applied
statistics. We distinguish Fisher’s use of P-values as a measure of
the adequacy of the null hypothesis from the use of P-values in
likelihood ratio hypothesis tests.

NP hypothesis tests and evidential comparisons are conducted
in very different fashions and operate under different warrants.
Thus, comparison is difficult. However, they both make
inferences. One fundamental metric by which they can be
compared is the frequency that inferences are made in error.
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In this paper we seek to illuminate how the frequency of
errors made by these methods is influenced by sample size,
the differences among models being compared, and also
the differences between candidate models and the true data
generating process. Both of these inferential approaches can be,
and generally are, constructed around a base of the likelihood
ratio (LR). By studying the statistical behavior of the LR, we
can answer our questions regarding frequency of error in all
approaches considered.

Throughout this discussion, one observation (datum) is
represented using the random variable X with g(x) being
the probability density function representing the true, data-
generating process and f (x) being the probability density
function of an approximating model. If the observed process is
discrete, g(x) and f (x) will represent probability mass functions.
For simplicity we refer to these functions in both the discrete
and continuous cases as pdf ’s, thinking of the abbreviation
as “probability distribution function.” The likelihood function
under the true model, for n independent and identically
distributed (iid) observations x1, x2, . . . xn is written as

Lg = g(x1)g(x2) . . . g(xn), (1)

whereas under the approximating model it is

Lf = f (x1)f (x2) . . . f (xn). (2)

In cases where there are two candidate models f1(x) and f2(x),
we write the respective likelihoods as L1 and L2 to avoid double
subscript levels.

We make much use of the Kullback-Leibler (KL) divergence,
one of the most commonly used measures of the difference
between two distributions. The KL divergence of f (x) from g(x),
denoted K(g, f ), is defined as the expected value of the log-
likelihood ratio of g and f (for one observation) given that the
observation came from the process represented by g(x):

K
(

g, f
)

≡ Eg

[

log

(

g (X)

f (X)

)]

=
∑

∫

g (x) log

(

g (x)

f (x)

)

. (3)

Here Eg denotes expectation with respect to the distribution
represented by g(x). The expectation is a sum or integral (or
both) over the entire range of the random variable X, depending
on whether the probability distributions represented by g(x)
and f (x) are discrete or continuous (or both, such as for
a zero-inflated continuous distribution). The functions must
give positive probability to the same sets (along with other
technical mathematical requirements which are usually met by
the common models of ecological statistics).

The KL divergence is interpreted as the amount of
information lost when using model f (x) to approximate the
data generating process g(x) (Burnham and Anderson, 2001).
Its publication (Kullback and Leibler, 1951) was a highpoint
in the golden age of the study of “information theory.” The
KL divergence is always positive if g(x) and f (x) represent
different distributions and is zero if the distributions are identical
(“identical” in the mathematical sense that the distributions give

the same probabilities for all events in the sample space). The KL
divergence is not a mathematical distance measure in that K(g, f )
is not in general equal to K(f , g).

The relevant KL divergences under correct model
specification are for f1(x) and f2(x) with respect to each other:

K12 ≡ K
(

f1, f2
)

=E1

[

log

(

f1 (X)

f2 (X)

)]

=
∑

∫

f1 (x) log

(

f1 (x)

f2 (x)

)

,

(4)

K21 ≡ K
(

f2, f1
)

=E2

[

log

(

f2 (X)

f1 (X)

)]

=
∑

∫

f2 (x) log

(

f2 (x)

f1 (x)

)

.

(5)
By reversing numerator and denominator in the log function in
Equation (5), one finds that

E2

[

log

(

f1 (X)

f2 (X)

)]

=
∑

∫

f2 (x) log

(

f1 (x)

f2 (x)

)

= −K21. (6)

The convention for which subscript is placed first varies among
references; we put the subscript of the reference distribution first
as it is easy to remember.

The likelihood ratio (LR) and its logarithm figure prominently
in statistical hypothesis testing as well as in evidential statistics.
The LR is

L1

L2
=

f1 (x1) f1 (x2) · · · f1 (xn)

f2 (x1) f2 (x2) · · · f2 (xn)
, (7)

and the log-LR is

log

(

L1

L2

)

=

n
∑

i=1

log

(

f1 (xi)

f2 (xi)

)

. (8)

In particular, the log-LR considered as a random variable is a sum
of iid random variables, and its essential statistical properties can
be approximated using the central limit theorem (CLT). The CLT
(Box 1) provides an approximate normal distribution for a sum
of iid random variables and requires the expected value (mean)
and the variance of one of the variables. Under correct model
specification, the observations came from either f1(x) or f2(x),
and Equations (4)–(6) above give the expected value of one of
the random variables in the sum as K12 or −K21, depending on
which model generated the data. Let σ 2

1 and σ 2
2 be the variances

of log
[

f1 (X)/f2 (X)
]

with respect to each model:

σ1
2 = V1

[

log

(

f1 (X)

f2 (X)

)]

=
∑

∫

f1 (x)

(

log

(

f1 (x)

f2 (x)

))2

− K12
2.

(9)

σ2
2 = V2

[

log

(

f1 (X)

f2 (X)

)]

=
∑

∫

f2 (x)

(

log

(

f1 (x)

f2 (x)

))2

− K21
2.

(10)
One can envision cases in which these variances might not
exist, but we do not consider such cases here. The CLT, which
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requires that the variances be finite, provides the following
approximations. If the data arise from f1:

log

(

L1

L2

)

∼̇ normal(nK12, nσ1
2), (11)

1

n
log

(

L1

L2

)

∼̇ normal(K12, σ1
2/n), (12)

√
n

σ1

[

1

n
log

(

L1

L2

)

− K12

]

∼̇ normal(0, 1). (13)

Here, ∼̇ means “is approximately distributed as.” If the data arise
from f2:

log

(

L1

L2

)

∼̇ normal(− nK21, nσ2
2), (14)

1

n
log

(

L1

L2

)

∼̇ normal(− K21, σ2
2/n), (15)

√
n

σ2

[

1

n
log

(

L1

L2

)

+ K21

]

∼̇ normal(0, 1) . (16)

The device of using the CLT to study properties of the likelihood
ratio is old and venerable and figures prominently in the theory
of sequential statistical analysis (Wald, 1945).

A model, f , can be said to be misspecified if the distribution of
data implied by the model (under best possible parameterization)
differs in any way from the distribution of data under the true
generating process. In the Kullback-Leibler divergence setting
within which we are working, f is misspecified if K(g, f ) >

0. A model set can be said to be misspecified if all of its
member models are misspecified. Misspecification can have a
host of causes, including omission of real covariates, inclusion
of spurious covariates, incorrect specification of functional form,
incorrect specification of process error structure, and incorrect
specification of measurement error structure.

The approximate behavior of the LR under misspecification
can also be represented with the CLT. To our two model
candidates f1 (x) and f2 (x), we add the pdf g (x) defined as the
best possible mathematical representation of the distribution of
data stemming from the actual stochastic mechanism generating
the data, the unknown “truth” sought by scientists. We denote
by 1K the difference of the KL divergences of f1(x) or f2 (x),
from g (x):

1K = K
(

g, f2
)

− K
(

g, f1
)

. (17)

We note that 1K could be positive, negative, or zero: if 1K is
positive, then f1 is “closer” to truth, if 1K is negative, then f2 is
closer to truth, and if 1K is zero, then both models are equally
distant from truth. To deploy the CLT, we need the mean and
variance of the single-observation LR under misspecification. For
the mean we have

Eg

[

log

(

f1 (X)

f2 (X)

)]

=
∑

∫

g (x) log

(

f1 (x)

f2 (x)

)

= 1K (18)

The rightmost equality is established by adding and subtracting
Eg
[

log
(

g (X)
)]

. We denote the variance by σg
2 which becomes

Vg

[

log

(

f1 (X)

f2 (X)

)]

≡ σg
2 =

∑

∫

g (x)

(

log

(

f1 (x)

f2 (x)

))2

−(1K)2.

(19)
And now by the CLT, if the data did not arise from f1 (x) or f2 (x),
but rather from some other pdf g (x), we have:

log

(

L1

L2

)

∼̇ normal(n1K, nσg
2), (20)

1

n
log

(

L1

L2

)

∼̇ normal(1K, σg
2/n), (21)

√
n

σg

[

1

n
log

(

L1

L2

)

− 1K

]

∼̇ normal(0, 1). (22)

Critical to the understanding, both mathematical and intuitive,
of inference on models is an understanding of the topology of
models. Once one has a concept of distances between models,
a topology is implied. A model with one or more unknown
parameters represents a whole family or set of models, with
each parameter value giving a completely specified model. At
times we might refer to a model set as a model if there is no
risk of confusion. Two model sets can be only be arranged as
nested, overlapping, or non-overlapping. A set of models can be
correctly specified or misspecified depending on whether or not
the generating process can be exactly represented by a model in
the model set. Thus, there are only six topologies relating two
model sets to the generating process (Figures 1, 2).

2. EVIDENCE, NEYMAN-PEARSON
TESTING, AND FISHER SIGNIFICANCE

2.1. Correctly Specified Models
In the canon of traditional statistical practices for comparing
two candidate models, f1 (x) and f2 (x) say, with or without
unknown parameters involved, the assumption that the data
arose from either f1 (x) or f2 (x) is paramount. In this section we
adopt this assumption of correctly specified models and compare
the properties of statistical hypothesis testing with those of the
evidence approach. The correct model assumption is the home
turf, so to speak, of hypothesis testing, and so the comparison
should by rights highlight the strengths of traditional statistical
practice. To focus the issues with clarity we concentrate on the
case in which f1 (x) and f2 (x) are statistically simple hypotheses
(a.k.a. completely specified models, not to be confused with
correctly specified models). In other words, we assume for now
there are no unknown parameters in either model, deferring until
later in this paper a discussion of unknown parameters.

2.1.1. Neyman-Pearson Statistical Hypothesis Tests
Neyman and Pearson (1933) proved in a famous theorem (the
“Neyman-Pearson Lemma”) that basing a decision between two
completely specified hypotheses (H1: the data arise from model
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BOX 1 | The Central Limit Theorem (CLT)

Suppose that X1,X2, . . . ,Xn are independent and identically distributed random variables with common finite mean denoted µ = E(Xi ), and finite variance denoted

σ 2 = E
[

(Xi − µ)2
]

. Let

Sn = X1 + X2 + . . . + Xn

be the sum of the Xis. Let P
(

Sn−nµ√
nσ2

≤ s
)

= Fn (s) be the cumulative distribution function (CDF) for Sn standardized with its mean nµ and its variance nσ 2, equivalently

written as
√
n
(

X̄n − µ
)

/σ , where X̄n = 1
n
Sn. Then as n → ∞, Fn (s) converges to the cdf of a normal distribution with mean of 0 and variance of 1. We say that

Sn−nµ√
nσ2

converges in distribution to a random variable with a normal (0, 1) distribution, and we write

Sn − nµ
√
nσ 2

=

√
n

σ

(

X̄n − µ
) d
−→ normal (0, 1) .

From the CLT one can obtain normally distributed approximations for various quantities of interest:

Sn ∼̇ normal
(

nµ, nσ 2
)

,

X̄n =
1

n
Sn ∼̇ normal

(

µ,
σ 2

n

)

.

Here, ∼̇ means “approximately distributed as.” A general proof of the CLT as presented in advanced mathematical statistics texts typically uses the theory of

characteristic functions (Rao, 1973).

FIGURE 1 | Model topologies when models are correctly specified. Regions represent parameter spaces. Star represents the true parameter value corresponding to

the model that generated the data. Top: a nested configuration would occur, for example, in the case of two regression models if the first model had predictor

variables R1 and R2 while the second had predictor variables R1,R2, and R3. Middle: an overlapping configuration would occur if the first model had predictor

variables R1 and R2 while the second had predictor variables R2 and R3. Three locations of truth are possible: truth in model 1, truth in model 2, and truth in both

models 1 and 2. Bottom: an example of a non-overlapping configuration is when the first model has predictor variables R1 and R2 while the second model has

predictor variables R3 and R4.
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FIGURE 2 | Model topologies when models are misspecified. Regions represent parameter spaces. Star represents the true model that generated the data. Exes

represent the point in the parameter space covered by the model set closest to the true generating process.

f1 (x), and H2: the data arise from model f2 (x)) on the likelihood
ratio had certain optimal properties. Neyman and Pearson’s LR
decision rule has the following structure:

decide on H1 if L1/L2 > c,
decide on H2 if L1/L2 ≤ c.

(23)

Here the cutoff quantity (or critical value) c is determined by
setting an error probability equal to a known constant (usually
small), denoted α. Specifically, the conditional probability of
wrongly deciding on H2 given that H1 is true is the “Type 1 error
probability” and is denoted as α.

P (L1/L2 ≤ c |H1) = α. (24)

Often for notational convenience in lieu of the statement “Hi is
true” we will simply write “Hi.” Now, such a data-driven decision
with fixed Type 1 error probability is the traditional form of a
statistical hypothesis test. A test with a Type 1 error probability
of α is said to be a size α test. The other error probability (“Type
2”), the conditional probability of wrongly deciding on H1 given
H2, is usually denoted β :

P (L1/L2 > c |H2) = β (25)

The power of the test is defined as the quantity 1 − β . Neyman
and Pearson’s theorem, stating that no other test of size α or
less has power that can exceed the power of the likelihood ratio

test, is a cornerstone of most contemporary introductions to
mathematical statistics (Rice, 2007; Samaniego, 2014).

With the central limit theorem results (Equations 11–16), the
error properties of the NP test can be approximated. To find the
critical value c, we have under H1:

L1

L2
≤ c ⇒

√
n

σ1

[

1

n
log

(

L1

L2

)

− K12

]

≤

√
n

σ1

[

1

n
log (c) − K12

]

,

(26)
and so the CLT tells us that

α=P

(

L1

L2
≤ c |H1

)

≈ 8

(√
n

σ1

[

1

n
log (c) − K12

])

, (27)

where 8(z) is the cumulative distribution function (cdf) of the
standard normal distribution. The approximate critical value c
required for a size α test is then found by solving Equation (27)
for c:

8
(√

n
σ1

[

1
n log (c) − K12

]

)

= α

⇒
√
n

σ1

[

1
n log (c) − K12

]

= 8−1 (α) = −zα
⇒ c = exp

[√
n
(√

nK12 − σ1zα
)]

.

(28)

Here zα = 8−1 (1− α) = −8−1 (α) is the value of the 1 − α

quantile of the standard normal distribution. Thus, for error rate
α to be fixed, the critical value as a function of n is seen to be a
rapidly moving target.
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The error probability β is approximated in similar fashion.We
have, under H2,

L1
L2

> c ⇒
√
n

σ2

[

1
n log

(

L1
L2

)

+ K21

]

>
√
n

σ2

[

1
n log (c) + K21

]

⇒
√
n

σ2

[

1
n log

(

L1
L2

)

+ K21

]

>
√
n

σ2

[

1
n log (c) + K21

]

,

(29)
so that, after substituting for c,

β = P

(

L1

L2
> c |H2

)

≈ 1− 8

(√
n

σ2
(K12 + K21) −

σ1

σ2
zα

)

= 8

(

σ1

σ2
zα −

√
n

σ2
(K12 + K21)

)

. (30)

It is seen that β → 0 as sample size n becomes large. Here
K12 + K21 is an actual distance measure between f1 (x) and
f2 (x) (Kullback and Leibler (1951); sometimes referred to as the
“symmetric” KL distance) and can be regarded as the “effect size”
as used in statistical power calculations.

Five important points about the Neyman-Pearson Lemma are
pertinent here. First, the theorem itself is just a mathematical
result and leaves unclear how it is to be used in scientific
applications. The prevailing interpretation that emerged in the
course of 20th century science was that one of the hypotheses, H1,
would be accorded a special status (“the null hypothesis”), having
its error probability α fixed at a known (usually small) value by
the investigator. The other hypothesis, H2, would be set up by
experiment or survey design to be the only reasonable alternative
to H1. The other error probability, β , would be managed by study
design characteristics (especially sample size), but would remain
unknown and could at best only be estimated when the model
contained parameters with unknown values. The hypothesis H1

would typically play the role of the skeptic’s hypothesis, as in the
absence of an effect (absence of a difference in means, absence of
influence of a predictor variable, absence of dependence of two
categorical variables, etc.) under study. The other hypothesis, H2,
contains the effect under study and serves as the hypothesis of the
researcher, who has the scientific charge of convincing a reasoned
skeptic to abandon H1 in favor of H2.

Second, the theorem in its original form does not apply to
models with unknown parameters. Various extensions weremade
during the ensuing decades, among them Wilks’ (Wilks, 1938)
and Wald’s (Wald, 1943) theorems. The Wilks-Wald extension
allows the test of two composite models (models with one or
more unknown parameters) in which onemodel, taken as the null
hypothesis, is formed from the other model (the alternative) by
placing one or more constraints on the parameters. An example
is a normal (µ, σ 2) distribution with both mean µ and variance
σ 2 unknown as the model for the alternative hypothesis H2,
within which the null hypothesis model f1 constrains the mean
to be a fixed known constant: µ = µ1. In such scenarios,
the null model is “nested” within the alternative model, that
is, the null is a special version of the alternative in which the
parameters are restricted to a subset of the parameter space
(set of all possible parameter values). Wilks’ (Wilks, 1938) and
Wald’s (Wald, 1943) theorems together provide the asymptotic
distribution of a function of the likelihood ratio under both the

null and alternative hypotheses, with estimated parameters taken
into account. The function is the familiar “generalized likelihood
ratio statistic,” usually denoted G2, given by

G2 = − 2 log
(

L̂1/L̂2

)

, (31)

where L̂1 and L̂2 are the likelihood functions, respectively for
models f1 and f2, with each likelihood maximized over all the
unrestricted parameters in that model. The resulting parameter
estimates, known as the maximum likelihood (ML) estimates,
form a prominent part of frequentist statistics theory (Pawitan,
2001). Let θ be the vector of unknown parameters in model f2
formed by stacking subvectors θ21 and θ22. Likewise, let θ under
the restricted model f1 be formed by stacking the subvectors θ11
and θ12, where θ11 is a vector of fixed, known constants (i.e., all
values in θ21 are fixed) and θ12 is a vector of unknown parameters.
Wald’s (1943) theorem (after some mathematical housekeeping:
Stroud, 1972) gives the asymptotic distribution of G2 as a non-
central chisquare(ν, λ) distribution, with degrees of freedom
ν equal to the difference between the number of estimated
parameters in f2 and the number of estimated parameters in f1,
and non-centrality parameter λ being a statistical (Mahalanobis)
distance between the true parameter values under H2 and their
restricted versions under H1:

λ = n(θ21 − θ11)
′6−1 (θ21 − θ11) . (32)

Here 6 is a matrix of expected log-likelihood derivatives (details
in Severini, 2000). Technically the true values θ21 must be
local to the restricted values θ11; the important aspects for the
present are that λ increases with n as well as with the effect
size represented by the distance (θ21 − θ11)

′6−1 (θ21 − θ11).
With the true parameters equal to their restricted values, that
is with H1 governing the data production, the non-centrality
parameter becomes zero, and Wald’s theorem collapses to Wilks’
theorem, which gives the asymptotic distribution of G2 under
H1 to be an ordinary chisquare(ν) distribution. For linear
statistical models in the normal distribution family (regression,
analysis of variance, etc.), G2 boils down algebraically into
monotone functions of statistics with exact (non-central and
central) t- or F-distributions, and so the various statistical
hypothesis tests can take advantage of exact distributions instead
of asymptotic approximations.

The concept of a confidence interval or region for one or more
unknown parameters follows from Neyman-Pearson hypothesis
testing in the form of a region of parameter values for which
hypothesis H1 would not be rejected at fixed error rate α. We
remark further that although a vast amount of every day science
relies on the Wilks-Wald extension of Neyman-Pearson testing
(and confidence intervals), frequentist statistics theory prior to
the 1970s had not provided much advice on what to do when the
two models are not nested.

Certainly nowadays one could setup a model f1(x) as H1 in
a hypothesis test against a non-overlapping model f2(x) taken as
H2 and obtain the distributions of the generalized likelihood ratio
under both models with simulation/bootstrapping.

Frontiers in Ecology and Evolution | www.frontiersin.org 7 October 2019 | Volume 7 | Article 37260

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Dennis et al. Model Misspecification and Statistical Inference

Third, the Neyman-Pearson Lemma provides no guidance
in the event of model misspecification. The theorem assumes
that the data was generated under either H1 or H2. However,
the “Type 3” error of basing inferences on an inadequate
model family is widely acknowledged to be a serious (if not
fatal) scientific drawback of the Neyman-Pearson framework
(and parametric modeling in general, see Chatfield, 1995).
Modern applied statistics rightly stresses rigorous checking of
model adequacy with various diagnostic procedures, such as
the standard battery of residual analyses in regression models.
Deciding between two models based on diagnostic qualities has
been a standard workaround in the situation mentioned above
for which the two models are not nested. For instance, one might
choose the model with the most homoscedastic residuals.

Fourth, the asymmetry of the error structure has led
to difficulties in scientific interpretation of Neyman-Pearson
hypothesis testing results. The difficulties stem from α being
a fixed constant. A decision to prefer hypothesis H2 over H1

because the LR (Equation 23) is smaller than c is not so
controversial. The H2 over H1 decision has some intuitively
desirable statistical properties. For example, the error rate β

asymptotically approaches 0 as the sample size n grows larger.
Further, β asymptotically approaches 0 as model f2 becomes
“farther” from f1 (in the sense of the symmetric KL distance
K12 + K21 as seen in Equation 30). Mired in controversy
and confusion, however, is the decision to prefer H1 over
H2 when the LR is larger than c. The value of c is set by
the chosen value of the error rate α, using the probabilistic
properties of model f1. If a larger sample size is used, the
LR has more terms, and the value of c necessary to attain
the desired value of α changes. In other words, c depends on
sample size n and moves in such a way as to keep α fixed
(at 0.05 or whatever other value is used; Equation 28). The
net effect is to leave the Neyman-Pearson framework without
a mechanism to assess evidence for H1, for no matter how far
apart the models are or how large a sample size is collected, the
probability of wrongly choosing H2 when H1 is true remains
stuck at α.

Fifth, scientific practice rarely stops with just two models.
In an analysis of variance, after an overall test of whether
the means are different, one usually needs to sort out just
who is bigger than whom. In a multiple regression, one is
typically interested in which subset of predictor variables provide
the best model for predicting the response variable. In a
categorical data analysis of a multiway contingency table, one
is often seeking to identify which combination of categorical
variables and lower and higher order interactions best account
for the survey counts. For many years (through the 1980s at
least), standard statistical practice called for multiple models
to be sieved through some (often long) sequence of Neyman-
Pearson tests, through processes such as multiple pairwise
comparisons, stepwise regression, and so on. It has long been
recognized, however, that selecting among multiple models
with Neyman-Pearson tests plays havoc with error rates, and
that a pairwise decision tree of “yes-no’s” might not lead to
the best model among multiple models (Whittingham et al.,
2006 and references therein). Using Neyman-Pearson tests

for selection among multiple models was (admittedly among
statisticians) a kludge to be used only until something better
was developed.

2.1.2. Fisher Significance Analysis
R. A. Fisher never fully bought into the Neyman-Pearson
framework, although generations of readers have debated about
what exactly Fisher was arguing for, due to the difficulty of his
writing style and opacity of his mathematics. Fisher rejected
the scientific usefulness of the alternative hypothesis (likely in
part because of the lurking problem of misspecification) and
chose to focus on single-model decisions (resulting in lifelong
battles with Neyman; see the biography by Box, 1978). Yea
or nay, is model f1 an adequate representation of the data?
As in the Neyman-Pearson framework, Fisher typically cast
the null hypothesis H1 in the role of a skeptic’s hypothesis
(the lady cannot tell whether the milk or the tea was poured
first). It was scientifically sufficient in this approach for the
researcher to develop evidence to dissuade the skeptic of the
adequacy of the null model. The inferential ambitions here
are necessarily more limited, in that no alternative model is
enlisted to contribute more insights for understanding the
phenomenon under study, such as an estimate of effect size. As
well, Fisher’s null hypothesis approach preserves the Neyman-
Pearson incapacitation when the null model is not contradicted
by data, in that at best, one will only be able to say that the data
are a plausible realization of observations that could be generated
under H1.

Fisher’s principal tool for the inference was the P-value. For
Fisher’s preferred statistical distribution models, the data enter
into the maximum likelihood estimate of a parameter in the
form of a statistic, such as the sample mean. The implication
is that such a statistic carries all the inferential information
about the parameter; knowing the statistic’s value is the same
(for purposes of inference about the parameter) as knowing the
values of all the individual observations. Fisher coined the term
“sufficient statistic” for such a quantity. The null model in Fisher
significance analysis is formed by constraining a parameter to a
pre-specified value. In the tea testing example, the probability of
correct identification is constrained to one half. Fisher’s P-value
is the probability that data drawn from the model H1 yield a
sufficient statistic as extreme or more extreme than the sufficient
statistic calculated from the real data.

In absence of an alternative model, Fisher’s strict P-value
accomplishes an inference similar to what is called a goodness
of fit test (or model adequacy test) in contemporary practice,
as the inference seeks to establish whether or not the data
plausibly could have arisen from model f1. Accordingly, just
about any statistic (besides a sufficient statistic) can be used
to obtain a P-value, provided the distribution of the statistic
can be derived or approximated under the model f1. Goodness
of fit tests therefore tend to multiply, as witnessed by the
plethora of tests available for the normal distribution. To sort
out the qualities of different goodness of fit tests, one usually
has to revert to a Neyman-Pearson two-model framework to
establish for what types of alternative models a particular test
is powerful.
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2.1.3. Neyman-Pearson Testing With P-values
P-values are, of course, routinely used in Neyman-Pearson
hypothesis testing, but the inference is different from that
made with Fisher significance. A P-value in the context of
the generalized LR test above (Equation 31) is defined as the
probability that, if the data generation process were to be
repeated, the new value of the LR would exceed the one already
observed, provided that the data were generated under H1.
Hinkley (1987) interprets the P-value as the Type 1 error rate
that an ensemble of hypothetical experiments would have if their
critical level c was set to the observation of this experiment.
In the generalized LR test, the approximate P-value would
simply be the area to the right of the observed value of G2

under the chisquare pdf applicable for H1-generated data. For
Fisher’s preferred statistical distributions (those with sufficient
statistics, nowadays called exponential family distributions), the
generalized LR statistic G2 algebraically reduces to a monotone
function of one or more sufficient statistics for the parameter or
parameters under constraint in the model f1. In the generalized
likelihood ratio framework, the hypothesis test decision between
H1 and H2 can be made by comparing the P-value to the fixed
value of α, rejecting H1 as a plausible origin of the data if the
P-value is ≤ α.

In both Neyman-Pearson hypothesis testing and Fisher
significance analysis, the P-value provides no evidence for model
H1. The P-value in the two-model framework has been thought of
as an inverse measure of the “evidence” for H2, as the distribution
of the P-value under data generated by H2 becomes more and
more concentrated near zero as sample size becomes large or
as model f2 becomes “farther” from f1. In the Fisher one-model
framework an alternative model is unspecified. Consequently,
a low P-value has been interpreted as “evidence” against H1.
However, the P-value under data generated by H1 has a uniform
distribution (because a continuous random variable transformed
by its own cumulative distribution function has a uniform
distribution) no matter what the sample size is or how far away
the true data generating process is. Hence, as with NP tests,
Fisher’s P-value has no evidential value toward f1, as any P-value
is equally likely under H1.

Ecologists use and discuss hypothesis testing in both the
Fisher sense and the Neyman-Pearson sense, sometimes referring
to both enterprises as “null hypothesis testing.” The use of P-
values, strongly argued for by some (Hurlburt and Lombardi
2009), does not in and of itself distinguish the two approaches.
Rather, a specific alternative hypothesis, an estimable effect size,
and (most controversially) a decision rule fixing a Type 1 error
rate (i.e., comparing a P-value to α) identifies the analysis as
more Neyman-Pearsonian than Fisherian. While Fisher himself
originated the P ≤ 0.05 tradition for judging whether a deviation
is significant [... “it is convenient to draw the line at about the level
at which we can say: ‘Either there is something in the treatment,
or a coincidence has occurred, such as does not occur more
than once in twenty trials.’” Fisher (1926)], he was mostly casual
about the cutoff and viewed P-values more as evidence against
the null hypothesis in question. In ecology, null hypotheses
in the Fisherian sense are seen, for instance, in analyses of
species assembly patterns in ecological communities, such as in

testing whether bird species groups on offshore islands could
be modeled as randomly drawn from the mainland (Connor
and Simberloff, 1979). By contrast, a field experiment aimed
at demonstrating the existence of competition and estimating
an effect size (Underwood, 1986) would take on a Neyman-
Pearsonian flavor.

2.1.4. Equivalence Testing and Severity
Attempts have been made to modify the Neyman-Pearson
framework to accommodate the concept of evidence for H1. In
some applied scientific fields, for example in pharmacokinetics
and environmental science, the regulatory practice has created
a burden of proof around models normally regarded as null
hypothesis models: the new drug has an effect equal to the
standard drug, the density of a native plant has been restored to
equal its previous level (Anderson and Hauck, 1983; McDonald
and Erickson, 1994; Dixon, 1998). Equivalence testing and non-
inferiority testing (e.g., Wellek, 2010) are statistical methods
designed to address the problem that “absence of a significant
effect” is not the same as “an effect is significantly absent.”
In practice, the equivalence testing methods reverse the role
of null and alternative hypotheses by specifying a parameter
region that constitutes an acceptably small departure from the
parameter’s constrained value and then casting the region as the
alternative hypothesis. Typically, two statistical hypothesis tests
are required to conclude that the parameter is within the small
region containing the constraint, such as two one-sided t-tests (to
show that the parameter is bounded by each end of the region).

Another proposed solution for the evidence-for-the-null-
hypothesis problem is the concept of severity (Mayo, 1996, 2018;
Mayo and Spanos, 2006) and the closely related method of
reverse testing (Parkhurst, 2001). Severity is a sort of P-value
under a specified (or possibly estimated) version of the alternative
hypothesis. It is the probability that a test statistic more extreme
than the one observed would be obtained if the experiment were
to be repeated, if the data were arising from model f2 (with the
particular effect size specified). In the generalized likelihood ratio
framework, the severity would be calculated as the area to the
right of the observed value ofG2 under the non-central chisquare
pdf applicable for data generated under model f2, with the non-
centrality parameter set at a specified value. Thus, severity is a
kind of attained power for a particular effect size. Also, severity
is mostly discussed in connection with one-sided hypotheses, so
that its calculation under the two-sided generalized likelihood
ratio statistic is at best an approximation. However, if the effect
size is substantial, the probability contribution from the “other
side” is low, and the approximation is likely to be fine. In general,
the severity of the test is related to the size of the effect, so care
needs to be taken in the interpretation of the test.

For a given value of the LR, if the effect size is high, the
probability of obtaining stronger evidence against H1 is high,
and the severity of the test against H1 is high. “A claim is
severely tested to the extent that it has been subjected to and
passes a test that probably would have found flaws, were they
present” (Mayo, 2018).

For both equivalence testing and severity, we are given
procedures in which consideration of evidence requires two
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statistics and analyses. In the case of equivalence testing, we have
a statistical test for each side of the statistical model specified
by H1, and for severity we have a statistic for H2 and a statistic
for H1. Indeed, Thompson (2007), section 11.2, considers that
for P-values to be used as evidence for one model over another,
these must be used in pairs. There is evidence for H1 relative
to H2 if the first P-value, say P1, is large and the second P-
value, say P2, is small. The requirement for two analyses and two
interpretations seems a disadvantageous burden for applications.
More importantly, the equivalence testing and severity concepts
do not yet accommodate the problems of multiple models or
non-nested models.

2.1.5. Royall’s Concept of Evidence
The LR statistic (Equation 7), as discussed by Hacking (1965)
and Edwards (1972), can be regarded as a measure of evidence
for H1 and against H2 (Edwards 1972 termed it support, but the
word has a different technical meaning in probability and is better
avoided here), or equivalently, an inverse measure of evidence
for H2 and against H1. The evidence concept here is post-data
in that the realized value of the LR itself, and not a probability
calculated over hypothetical experiment repetitions, conveys the
magnitude of the empirical scientific case for H1 or H2. However,
restricting attention to just the LR itself leaves the prospect of
committing an error unanalyzed; while scientists want to search
for truth, they strongly want (for reasons partly sociological) to
avoid being wrong.

Royall (1997, 2000) argued forcefully for greater use
of evidence-based inferences in statistics, and to Hacking’s
and Edwards’ frameworks he added formal procedures and
consideration of errors. Royall’s basic setup uses completely
specifiedmodels as inNeyman-Pearson, but the conclusion about
which model is favored by the data is based on fixed thresholds
for the LR value, not thresholds determined by any error rate. The
idea is to conclude there is strong evidence in favor of model H1

when L1 is k times L2 and strong evidence in favor of H2 when
L2 is k times L1. Royall’s conclusion structure in terms of the LR
then has a trichotomy of outcomes:

L1/L2 ≥ k : Strong evidence for H1.
1/k < L1/L2 < k : Weak or inconclusive evidence.
L1/L2 ≤ 1/k : Strong evidence for H2.

(33)

For k, values of 8, 20, or 32 are mentioned. The k value
is chosen by the investigator, but unlike α in the Neyman-
Pearson framework, k is not dependent on sample size. Viewed
as evidence, LR is a post-data measure. The inference does not
make appeals to hypothetical repeated sampling.

Royall (1997, 2000) moreover defines pre-data error rates
which are potentially useful in experimental design and serve
as reassurance that the evidential approach will not lead
investigators astray too often. Suppose the data were generated
by model f1. It is possible that the LR could take a wayward value,
leading to one of two possible errors in conclusion that could
occur: (1) the LR could take a value corresponding to weak or
inconclusive evidence (the error of weak evidence), or (2) the LR
could take a value corresponding to strong evidence for H2 (the

error of misleading evidence). Given the data are generated by
model f1, the probabilities of the two possible errors are defined
as follows:

P
(

weak evidence |H1

)

= P
(

1/k < L1/L2 < k |H1

)

= W1

(34)

P
(

misleading evidence |H1

)

= P
(

L1/L2 ≤ 1/k |H1

)

= M1.
(35)

Similarly, given the data are generated under H2,

P
(

weak evidence |H2

)

= P
(

1/k < L1/L2 < k |H2

)

= W2,
(36)

P
(

misleading evidence |H2

)

= P
(

L1/L2 ≥ k |H2

)

= M2.
(37)

The error probabilitiesM1,M2,W1, andW2 can be approximated
with the CLT results for L1/L2 (Equations 11–16). Proceeding as
before with the Neyman-Pearson error rates, we find that
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W1 ≈ 8

(√
n

σ1

[

1

n
log

(

k
)

− K12

])

− 8

(

−

√
n

σ1

[

1

n
log

(

k
)

+ K12

])

, (40)

W2 ≈ 8
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[

1
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log
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− K21

])

− 8

(

−
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σ2

[

1

n
log

(

k
)

+ K21

])

. (41)

The error probabilities M1, M2, W1, and W2 depend on the
models being compared, but it is easy to show that all four
probabilities, as approximated by Equations (38–41), converge
to zero as sample size n becomes large. For either hypothesis
Hi (i = 1, 2), the total error probability given by Mi + Wi is
additionally a monotone decreasing function of n, as for instance

M1 +W1 = 8

(√
n

σ1

[

1

n
log

(

k
)

− K12

])

, (42)

in which the argument of the cdf 8(�) is seen (by ordinary
differentiation, assuming k > 1) to be monotone decreasing in
n (the expression forM2 +W2 would have σ2 and K21 in place of
σ1 and K12).

The probability V1 of strong evidence for model f1 (x), given
the data are indeed generated by model f1 (x), becomes

V1 = 1−M1 −W1, (43)

with V2 = 1 − M2 − W2 defined in kind. Here V stands
for veracity or veridicality (because of context, there should
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be no confusion with the variance operator). It follows from
the monotone property of Mi + Wi that Vi is a monotone
increasing function of n. Furthermore, it is straightforward to
show that Vi > Mi, i = 1, 2.

Note that V1, M1, and W1 are not in general equal to their
counterparts V2, M2, and W2, nor should we expect them to
be; frequencies of errors will depend on the details of the model
generating the data. One model distribution with, say, a heavy
tail could produce errors at a greater rate than a light-tailed
model. The asymmetry of errors suggests possibilities of pre-data
design to control errors. For instance, instead of LR cutoff points
1/k and k, one could find and use cutoff values k1 and k2 that
render M1 and M2 nearly equal for a particular sample size and
particular values of σ1, K12, σ2, and K21. Such design, however,
will induce an asymmetry in the error rates (defined below) for
misspecified models.

Interestingly, as a function of n, Mi (i = 1, 2) increases at
first, rising to a maximum value before decreasing asymptotically
to zero. The value ñ1 at which M1 is maximized is found by
maximizing the argument of the normal cdf in Equation (38):

ñ1 =
log (k)

K12
, (44)

with the corresponding maximum value ofM1 being

M̃1 = 8



−
2
√

K12log
(

k
)

σ1



 . (45)

Expressions for ñ2 and M̃2 are similar and substitute K21 and
σ2 in place of the H1 quantities. That the Mi functions would
increase with n initially is counterintuitive at first glance. With
just a few observations, the variability of the likelihood ratio is
not big enough to provide much chance of misleading evidence,
although the chance of weak evidence is high. As the sample
size increases, the chance of misleading evidence grows at first,
replacing some of the chance of weak evidence, before decreasing.
It is the overall probability of either weak or misleading evidence,
Wi +Mi, that decreases monotonically with sample size.

2.1.6. Illustration of the Concept of Evidence
We illustrate the error properties of evidence under correct
model specification with an example. Suppose the values
x1, x2, . . . , xn are zeros and ones that arose as iid observations
from a Bernoulli distribution with P(X = 1) = p. The pdf
is f (x) = px(1 − p)1−x, where x is 0 or 1. The sum of the
observations of course has a binomial distribution. We wish to
compare hypothesis H1: p = p1 with H2: p = p2, where p1 and p2
are specified values. The log-likelihood ratio is

log

(

L1

L2

)

=
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n
∑
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)

log

(

p1

p2

)

+
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n
∑
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log
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)

.

(46)
From Equations (4) and (9) we find that

K12 = p1log

(

p1

p2

)

+
(

1− p1
)

log

(

1− p1

1− p2

)

, (47)

σ1
2 = p1

[

log

(

p1

p2

)]2

+
(

1− p1
)

[

log

(

1− p1

1− p2

)]2

− K12
2. (48)

In the top panel of Figure 3, simulated values of the probability
of strong evidence for model H1, given by V1 = 1 − M1 −

W1, are compared with the values as approximated with the
CLT (Equations 38, 40). The simulated values create a jagged
curve due to the discrete nature of the Bernoulli distribution
but are well-characterized by the CLT approximation. The lower
panel of Figure 3 portrays the probability of misleading evidence
given by M1 as a function of n. The discrete serrations are
even more pronounced in the simulated values of M1, and the
CLT approximation (Equation 38) follows only the lower edges;
the approximation could likely be improved (i.e., set toward
the middle of the serrated highs and lows) with a continuity
correction. The CLT nonetheless picks up the qualitative behavior
of the functional form ofM1.

2.1.7. P-values, Severity, and Evidence
The concept of evidence allows re-interpretation of P-values in a
clarifying manner. Suppose we denote by l1/l2 the realized (i.e.,
post-data) value of the LR, the lower case signaling the actual
outcome rather than the random variable (pre-data) version of
the LR denoted by L1/L2. The classical P-value is the probability,
given the data arise from model H1, that a repeat of the
experiment would yield a LR value more extreme than the value
l1/l2 that was observed. In our CLT setup, we can write

P = P

(

L1

L2
≤

l1

l2
|H1

)

≈ 8

(

−

√
n

σ1

[

1

n
log
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l2

l1

)

+ K12

])

.

(49)
Comparing P with the expression for M1 (Equation 38), we find
that P is the probability of misleading evidence under model f1
if the experiment were repeated and the value of k were taken
as l2/l1.

If the value of l1/l2 is considered to be the evidence provided
by the experiment, the value of P is a monotone function of l1/l2
and thereby might be considered to be an evidence measure on
another scale. P however is seen to depend on other quantities
as well: for a given value of l1/l2, P could be greater or less
depending on the quantities n,K12, and σ1. Furthermore,K21 and
σ2 are left out of the value of P, giving undue influence to model
f1 in the determination of amount of evidence, a finger on the
scale so to speak. The evidential framework therefore argues for
the following distinction in the interpretation of P: the evidence
is l1/l2, while P, like M1, is a probability of misleading evidence,
except that P is defined post-data.

In fairness to both models, we can define two P-values based
on the extremeness of evidence under model f1 and under
model f2:

P1 = P

(

L1

L2
≤

l1

l2
| H1

)

≈ 8

(

−

√
n

σ1

[

1

n
log

(

l2

l1

)

+ K12

])

,

(50)
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FIGURE 3 | Evidence error probabilities for comparing two Bernoulli(p)

distributions, with p1 = 0.75 and p2 = 0.50. (A) Simulated values (jagged

curve) and values approximated under the Central Limit Theorem of the

probability of strong evidence for model H1, V1 = 1−M1 −W1. (B) Simulated

values (jagged curve) and approximated values for the probability of misleading

evidence M1. Note that the scale of the bottom graph is one fifth of that of the

top graph.

P2 = P

(

L1

L2
≤

l2

l1
| H2

)

≈ 8
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log
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l2
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)
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])

.

(51)
These are interpreted as the probabilities of misleading evidence
under models 1 and 2, respectively if the value of k were
taken to be l2/l1. The quantity 1 − P2 in this context is
the severity as defined by Mayo (1996, 2018) and Mayo
and Spanos (2006). Taper and Lele (2011) termed P1 or P2
as a local probability of misleading evidence (ML in their
notation), as opposed to a global, pre-data probability of
misleading evidence (MG in their notation; M1 and M2 here)
characterizing the long-range reliability of the design of the
data-generating process.

2.2. Misspecified Models
George Box’s (Box, 1979) oft-quoted aphorism that “all models
are wrong, but some are useful” becomes pressing in ecology,
a science in which daily work and journal articles are filled

with statistical and mathematical representations. Ecologists
must assume in abundance that Type 3 errors are prevalent,
even routine, in their work. Here we compare Neyman-
Pearson hypothesis testing with evidential statistics to try to
understand how analyses can go wrong, and how analyses
can be made better, in ecological statistics. For a statistical
method of choosing between f1 (x) or f2 (x), we now ask
how well the method performs toward choosing the model
closest to the true model g (x) when both candidate models
are misspecified.

2.2.1. Neyman-Pearson Hypothesis Testing Under

Misspecification
Statisticians have long cautioned about the prospect that both
models f1 and f2 in the Neyman-Pearson framework, broadly
interpreted to include testing composite models with generalized
likelihood ratio and other approaches, could be misspecified,
and as a result that the advertised error rates (or by extension
the coverage rates for confidence intervals) would become
distorted in unknown ways (for instance, Chatfield, 1995).
The approximate behavior of the LR under the CLT under
misspecification (Equations 20–22) allows us to view directly
how the error probabilities α and β can be affected in Neyman-
Pearson testing when the models are misspecified.

The critical value c (Equation 28) is chosen as before, under
the assumption that the observations are generated from model
f1. We ask the following question: “Suppose the real Type 1 error
is defined as picking model f2 when the model f1 is actually
closest to the true pdf g (x) (that is, when 1K > 0). What is the
probability, let us say α′, of this Type 1 error, given that f1 is the
better model?” We now have

L1

L2
≤ c ⇒

√
n

σg

[

1

n
log

(

L1

L2

)

− 1K

]

≤

√
n

σg

[

1

n
log (c) − 1K

]

=

√
n

σg
(K12 − 1K) −

σ1

σg
zα (52)

after substituting for c (Equation 28), and so the CLT (Equation
22) tells us that

α′ = P

(

L1

L2
≤ c | 1K > 0

)

≈ 8

(√
n

σg
(K12 − 1K) −

σ1

σg
zα

)

6= 8(−zα) = α. (53)

In words, the Type 1 error realized under model misspecification
is generally not equal to the specified test size. Note that Equation
(53) collapses to Equation (28), as desired, if f1 = g.

Whether the actual Type 1 error probability α′ is greater than,
equal to, or less than the advertised level α depends on the various
quantities arising from the configuration of f1 (x), f2 (x), and
g (x) in model space. Because the standard normal cdf 8(�) is
a monotone increasing function, we have

α′ > α ⇒

√
n

σg
(K12 − 1K) −

σ1

σg
zα > −zα . (54)
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The inequality reduces to three cases, depending on whether
σ1 − σg is positive, zero, or negative:

α′ > α ⇒
√
n
(K12 − 1K)
(

σ1 − σg
) > zα , if σ1 − σg > 0, (55)

K12 − 1K > 0, if σ1 − σg = 0, (56)

√
n
(K12 − 1K)
(

σ1 − σg
) < zα , if σ1 − σg < 0. (57)

The ratio (K12 − 1K) /
(

σ1 − σg
)

compares the difference
between what we assumed about the LR mean (K12) and what
is the actual mean (1K) with the difference between what we
assumed about the LR variability (σ1) with what is the actual
variability (σg). The left-hand inequalities for each case are
reversed if α′ < α.

The persuasive strength of Neyman-Pearson testing always
revolved around the error rate α being known and small, and the
P-value, if used, being an accurate reflection of the probability
of more extreme data under H1. When L1/L2 ≤ c in the
Neyman-Pearson framework with correctly specified models,
the reasoned observer is forced to abandon H1 as untenable.
However, in the presence ofmisspecification, the real error rate α′

is unknown, as is a real P-value for a generalized likelihood ratio
test. Furthermore, α′ is seen in Equation (53) to be an increasing
function of n if K12 > 1K (remember that for a generalized LR
test the Type 1 error is predicated on1K > 0),with 1 as an upper
asymptote. If model f2 is very different from model f1 (K12 large)
but is almost as close to truth as f1 (1K small), then Type 1 errors
will be rampant, more so with increasing sample size.

That greater sample size would make error more likely seems
counterintuitive, but it can be understood from the CLT results
for the average log-LR given by (1/n) log (L1/L2) (Equations 12,
21). If the observations arise from f1 (x) (correct specification),
the average log-LR has amean ofK12 and its distribution becomes
more and more concentrated around K12 as n becomes large. If
however the observations arise from g (x) (misspecification), the
average log-LR has a mean of 1K and its distribution becomes
more and more concentrated around 1K as n becomes large.
A Neyman-Pearson test based on a statistic that has a null
hypothesis mean of K12 will become more and more certain to
reject the null hypothesis when the true mean is 1K. Thus, the
Neyman-Pearson framework can be a highly unreliable approach
for picking the best model in the presence of misspecification.

The error probability β ′ is defined and approximated in
similar fashion. If model f2 is closer to truth, we have 1K < 0,
and from Equations (28–30) we now have

L1

L2
> c ⇒

√
n

σg

[

1

n
log

(

L1

L2

)

− 1K

]

>

√
n

σg
(K12 − 1K) −

σ1

σg
zα .

(58)
The CLT then gives

β ′ = P
(

L1
L2

> c | 1K < 0
)

≈ 1− 8
(√

n
σg

(K12 − 1K) − σ1
σg
zα

)

6= 1− 8
(√

n
σ2

(K12 + K21) −
σ1
σ2
zα

)

= β .

(59)

As a function of n, β ′ goes to zero as n becomes large, preserving
that desirable property of β from Neyman-Pearson testing under
correct specification. However, if the experiment or survey is
being planned around the value of β , under misspecification the
actual value as defined by β ′ could be quite different. In particular,
if β ′ > β , we must have

√
n

σg
(K12 − 1K) −

σ1

σg
zα <

√
n

σ2
(K12 + K21) −

σ1

σ2
zα . (60)

The inequality reduces to three cases depending on whether
σ2 − σg is positive, zero, or negative:

β ′ > β ⇒

√
n

σ1

[

σ2 (K12 − 1K) − σg (K12 + K21)

σ2 − σg

]

< zα , if σ2 − σg > 0,

(61)

(−1K) − K21 < 0, if σ2 − σg = 0, (62)

√
n

σ1

[

σ2 (K12 − 1K) − σg (K12 + K21)

σ2 − σg

]

> zα , if σ2 − σg < 0.

(63)
The left inequalities for the three cases are reversed for β ′ < β .
The degree to which β ′ departs from β is seen to depend on a
tangled bank of quantities arising from the configuration of f1 (x),
f2 (x), and g (x) in model space.

2.2.2. P-values, Equivalence Testing, and Severity

Under Misspecification
The problems with α and β , and with P-values as defined
for the generalized LR setting in Equations (50) and (51),
under misspecification highlight problems that might arise in
significance testing, equivalence testing or severity analysis. With
misspecification, the true P-value (P′ say) can differ greatly from
the P-value (Equation 49) calculated under H1 and thereby could
promote misleading conclusions (P′ is formed from Equation
(49) by substituting σg for σ1 and −1K for K12). Equivalence
testing, being retargeted hypothesis testing, will take on all the
problems of hypothesis testing under misspecification. Severity
is 1 − P2 as defined by Equation (51), but with misspecification
the true value of P2 is Equation (51) with σg substituted for σ2 and
−1K substituted for K21. With misspecification, the true severity
could differ greatly from the severity calculated under H2. One
might reject H1 falsely, or one might fail to reject H1 falsely,
or one might fail to reject H1 and falsely deem it to be severely
tested. Certainly, in equivalence testing and severity analysis, the
problem of model misspecification is acknowledged as important
(for instance, Mayo and Spanos, 2006; Spanos, 2010) and is
addressed with model evaluation techniques, such as residual
analysis and goodness of fit testing.

2.2.3. Evidence Under Misspecification
To study the properties of evidence statistics under model
misspecification, we redefine the probabilities of weak evidence
and misleading evidence in a manner similar to how the
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error probabilities were handled above in the Neyman-Pearson
formulation. We takeW1

′ andM1
′ to be the probabilities of weak

and misleading evidence, given that model f1 is closer to truth,
that is, given that 1 K > 0:

P
(

weak evidence | 1K > 0
)

= P
(

1/k < L1/L2 < k | 1K > 0
)

= W1
′, (64)

P
(

misleading evidence | 1K > 0
)

= P
(

L1/L2 ≤ 1/k | 1K > 0
)

= M1
′. (65)

Similarly, given model f2 is closer to truth,

P
(

weak evidence | 1K < 0
)

= P
(

1/k < L1/L2 < k | 1K < 0
)

= W2
′,

(66)

P
(

misleading evidence | 1K < 0
)

= P
(

L1/L2 ≥ k | 1K < 0
)

= M2
′.

(67)
The error probabilities M1

′, M2
′, W1

′, and W2
′ can be

approximated with the CLT results for L1/L2 (Equations 20–
22) under misspecification. For example, to approximateM1

′ we
note that

L1

L2
≤

1
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⇒

√
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[
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n
log
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)
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√
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log
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1
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)
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]

= −

√
n

σg

[

1
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log

(

k
)
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]

. (68)

We thus obtain

M1
′ ≈ 8

(

−

√
n

σg

[

1

n
log

(

k
)

+ 1K

])

. (69)

The other error probability undermisspecification, with1K < 0,
likewise becomes

M2
′ ≈ 8

(

−

√
n

σg

[

1

n
log

(

k
)

+ |1K|

])

. (70)

The expression is identical to Equation (69) where 1K > 0 and
so we may write

Mi
′ ≈ 8

(

−

√
n

σg

[

1

n
log

(

k
)

+ |1K|

])

, i = 1, 2. (71)

In words, for models with no unknown parameters under
misspecification, the error probabilities M1

′ and M2
′ are

identical. Using different LR cutoff points k1 and k2 to control
error probabilitiesM1 andM2 under correct specification would
break the symmetry of errors under misspecification. The
consideration of evidential error probabilities in study design
forces the investigator to focus on what types of errors and
possible model misspecifications are most important to the study.

The symmetry of error rates is preserved for weak evidence,
for which we obtain

Wi
′ ≈ 8

(√
n

σg

[

1

n
log

(

k
)

− |1K|

])

−8

(

−

√
n

σg

[

1

n
log

(

k
)

+ |1K|

])

, i = 1, 2. (72)

The formulae for α′ (Equation 53), β ′ (Equation 59), and
M′

i ,W
′
i , i = 1, 2 (Equations 71, 72) allow the investigation

of how these error rates change as a function of the sample
size n. However, given that these formulae also involve 1K,
K12, and K21, multiple configurations should be explored in
model space. Figure 4 illustrates how changing parameters can
change KL divergences. For instance, the generating process
and the approximating models could be aligned in space
(see Figure 4A) or not (Figure 4B). Other configurations are
explored in Figures 4C,D. The error rates for each one of these
configurations are shown in Figure 5.

Four properties of the error probabilities under
misspecification are noteworthy. First, M1

′, M2
′, W1

′, and
W2

′ all asymptotically approach zero as n becomes large
provided 1K 6= 0 (that is, provided one of the models is
measurably better than the other), consistent with their behavior
under correct specification. Second, for a given value of |1K|,
that is, for a given difference in the qualities of models H1 and
H2 in representing truth,M1

′ is equal toM2
′, andW1

′ is equal to
W2

′. Thus, neither model has special standing. Third, M1
′ and

W1
′ asymptotically approach M1 and W1 as model f1 becomes

better at representing truth (i.e., as K
(

g, f1
)

→ 0), and likewise
M2

′ and W2
′ approach M2 and W2 as f2 becomes better. Fourth,

if 1K = 0, that is, if both models are equal in quality, then M1
′

and M2
′ each approach 1/2, and W1

′ and W2
′ each approach

zero, as n becomes large. The above four properties are intuitive
and sensible.

The total error probability under misspecification given by
Mi

′ + Wi
′ (i = 1, 2) is identical for both models and remains

a monotone decreasing function of n:

Mi
′ +Wi

′ ≈ 8

(√
n

σg

[

1

n
log

(

k
)

− |1K|

])

. (73)

The probability of strong evidence for model fi if fi is closer to g is
given byVi

′ = 1−Mi
′−Wi

′ thus remains a monotone increasing
function of nwith an asymptote of 1. As was the case for correctly
specified models, Vi

′ > Mi
′. Also, Mi

′ increases at first as a
function of n, rising to a maximum value before decreasing
asymptotically to zero. The value ñ′i at whichMi

′ is maximized is
given by

ñ′i =
log

(

k
)

|1K|
, (74)

with the corresponding maximum value of M̃′
i being

M̃′
i = 8



−
2
√

|1K| · log
(

k
)

σg



 . (75)

The expressions for ñ′i and M̃′
i revert to their counterparts

ñi and M̃i when one of the models is correctly specified. If
both models are of equal quality, that is, 1K = 0, then the
probabilities Mi

′ can be considered as probabilities of evidence
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FIGURE 4 | Four model configurations involving a bivariate generating process g(x1, x2) (in black), and two approximating models f1(x1, x2) (in blue) and f2(x1, x2) (in

red). In all cases the approximating models are bivariate normal distributions whereas the generating process is a bivariate Laplace distribution. These model

configurations are useful to explore changes in α′ (Equation 53), β ′ (Equation 59) and M′
i ,Wi′ , i = 1, 2 (Equations 71, 72) as a function of sample size, as plotted in

Figure 6. (A) g(x1, x2) is a bivariate Laplace distribution centered at 0 with high variance. All three models have means aligned along the 1 : 1 line and marked with a

black, blue, and red filled circle, respectively. Model f1(x1, x2) is closest to the generating process. (B) Model f1(x1, x2) is still the model closest to the generating

process, at exactly the same distance as in (A) but misaligned from the 1 : 1 line. (C) Here all three models are again aligned, but the generating process g(x1, x2) is an

asymmetric bivariate Laplace that has a large mode at 0, 0 and smaller mode around the mean, marked with a black dot. In this case, the generating model is closer

to model f2(x1, x2) (in red). (D) Same as in (C), except model f2(x1, x2) (in blue) is now misaligned, but still the closest model to the generating process.

favoring (wrongly, as the models are a tossup in quality) one or
the other models. When 1K = 0, Mi

′ as a function of n has no
local maximum and asymptotically approaches 1/2 as sample size
increases. The possibility thatMi

′ might be as great as 1/2 seems
distressing, but this only occurs when the two models become
equally good (not necessarily identical) approximations of the
generating process.

2.2.4. Illustration of Neyman-Pearson Testing and

Evidence Under Misspecification
An extension of the Bernoulli example from Figure 3

serves to sharply contrast the error properties of NP
testing and evidence analysis. We construct as before
two candidate Bernoulli models with respective success
probabilities p1 and p2. Suppose however that the
data actually arise from a Bernoulli distribution with

success probability pg . From Equation (17), the value of
1K becomes

1K = pg log

(

pg

p2

)

+
(

1− pg
)

log

(

1− pg

1− p2

)

− pg log

(

pg

p1

)

−
(

1− pg
)

log

(

1− pg

1− p1

)

= log

(

1− p1

1− p2

)

+ pg log

[

p1
(

1− p2
)

(

1− p1
)

p2

]

(76)

Note that 1K is here a simple linear function of pg . In
the Figure 3 example, p1 = 0.75 and p2 = 0.50. If we
take pg = 0.65, we have a situation in which model 1
is slightly closer to the true model than model 2. As well,
we readily calculate that K12 = 0.130812 and 1K =
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FIGURE 5 | Changes in α′ (Equation 53), β ′ (Equation 59) and M′
i ,Wi′ , i = 1, 2 (Equations 71, 72) as a function of sample size. The plot in (A–D) were computed under

each of the geometries plotted in Figures 4A–D. (A) α′,M′
1, and W ′

1 for the models geometry in Figure 4A, where all models are aligned and model f1 is closest to

the generating process. (B) Same as in (A) but model f1 is misaligned. C β ′,M′
2, and W ′

2 for model geometry in Figure 4C, where model f2 is closer to the generating

process and all models are aligned. D: β ′,M′
2, andW

′
2 for model geometry in Figure 4D, where model f2 is closer to the generating process but model f2 is misaligned.

0.02095081, so that K12 > 1K, a situation in which we
expect α′ to be an increasing function of n (as dictated by
Equation 53).

The top panel of Figure 6 should give pause to all science.
Shown is the probability (α′) of wrongly rejecting the null
hypothesis of model 1 in favor of the alternative hypothesis
of model 2 with Neyman-Pearson testing, under the example
scenario of model misspecification in which model 1 is closer
to truth. Both simulated values and the CLT approximation
(Equation 53) are plotted as a function of sample size. The
nominal value of α for setting the critical value (c) was
taken to be 0.05. The curves rapidly approach an asymptote
of 1 as sample size increases. With NP testing under model
misspecification, picking the wrong model can become a
near certainty.

In the bottom panel of Figure 6, the probability of misleading
evidence for model 2 (M′

2), that is, of picking the model farther
from truth, increases at first but eventually decreases to zero
(Figure 6, bottom panel shows simulated values as well as CLT
approximation given by Equation 70). Under evidence analysis,

the probability of wrongly picking the model farthest from truth
converges to 0 as sample size increases.

The example illustrates directly the potential effect of
misspecification on the results of the Neyman-Pearson Lemma.
The lemma is of course limited in scope, and we should in all
fairness note that a classical extension of the lemma to one-sided
hypotheses seemingly ameliorates the problem in this particular
example. Suppose the two models are expanded: model 1 is the
Bernoulli distribution with p ≥ 0.75, with model 2 becoming
the Bernoulli with p < .75. Then, the “Karlin-Rubin Theorem”
(Karlin and Rubin, 1956) finds the LR test to be uniformly most
powerful size α (or less) test of model 1 vs. model 2. Three key
ideas enter the proof of the theorem. First, for any particular
value p2 such that p2 < p1, the Neyman-Pearson Lemma gives
the LR test as most powerful. Second, the cutoff point c for the
Neyman-Pearson LR test does not depend on the value of p2.
Third, the LR is a monotone function of a sufficient test statistic
given by (x1+x2+. . .+xn)/n. The upshot is that α would remain
constant in the expanded scenario, and β would decrease toward
zero as advertised.
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FIGURE 6 | Evidence error probabilities for comparing two Bernoulli(p)

distributions, with p1 = 0.75 and p2 = 0.50, when the true data-generating

model is Bernoulli with p = 0.65. (A) Simulated values (jagged curve) and

values approximated under the Central Limit Theorem of the probability (α′) of

rejecting model H1 when it is closer than H2 to the true model. (B) Simulated

values (jagged curve) and approximated values for the probability (M′
1) of

misleading evidence for model H2 when model H1 is closer to the true

data-generating process.

However, the one-sided extension of our Bernoulli example
expands the model space to eliminate the model misspecification
problem. We regard the hypotheses H1 : p ≥ 0.75 and
H2 : p < 0.75 to be a case of two non-overlapping models
(Figures 1, 2, bottom) which may or may not be correctly
specified. The Karlin-Rubin Theoremwould govern if the models
are correctly specified. Misspecification in this one-sided context
would be exemplified, for instance, by data arising from some
other distribution family besides the Bernoulli(p), such as an
overdispersed family like a beta-Bernoulli (Johnson et al., 2005).
Under misspecification, Karlin-Rubin lacks jurisdiction.

2.2.5. Evidence Functions
Lele (2004) took Royall’s (Royall, 1997) approach to using
the LR for model comparison and generalized it into the
concept of evidence functions. Evidence functions are developed
mathematically from a set of desiderata that effective measures

of evidence intuitively should satisfy (see Taper and Ponciano,
2016).

The basic insight is that the log-LR emerges as the function
to use for model comparison when the discrepancy between
models is measured by the KL divergence (Equation 3). The
reason is that (1/n) log (L1/L2) is a natural estimate of 1K,
the difference of divergences of f1 (x) and f2 (x) from truth g (x).
However, numerous other measures of divergence or distance
between statistical distributions have been proposed (see Lindsay,
2004; Pardo, 2005; Basu et al., 2011), the KL divergence merely
being the most well-known. Each measure of divergence or
distance would give rise to its own evidence function. Lele (2004)
defines an evidence function for a given divergence measure
as a data-based estimate of the difference of divergences of
two approximating models from the underlying process that
generated the data. The motivating idea is to use the data
to estimate which of two models is “closer” in some sense
to the data generating process. The evidence function concept
requires a measure of divergence of a model f (x) from the
true data generating process g (x) and a statistic, the evidence
function, for estimating the difference of divergences from truth
of two models f1 (x) and f2 (x). Important among the desiderata
for evidence functions (Taper and Ponciano, 2016) is that the
probabilities of strong evidence as defined under misspecification
should asymptotically approach 1 as sample size increases (and
so the error probabilities as embodied in M1

′, M2
′, W1

′, and
W2

′ would approach zero). It is noteworthy that the prospect
of model misspecification is baked into the very definition of an
evidence function.

Lele (2004) further proved an optimality property of the LR
as evidence function similar to the optimality of the LR in the
Neyman-Pearson Lemma. Lele’s Lemma states that, out of all
evidence functions, asymptotically, that is for large sample sizes,
the probability of strong evidence is maximized by the LR. The
result combines the Neyman-Pearson Lemma of hypothesis tests
with Fisher’s lower bound for the variance of estimators (see Rice,
2007), extending both. Thus, the information in the data toward
quantifying evidence is captured the most by the LR statistic
or, equivalently, KL divergence. Other divergence measures,
however, have desirable properties, such as robustness against
outliers. Modified profile likelihood and conditional likelihood
also lead to desirable evidence functions that can account for
nuisance parameters, although thesemodifications to the original
LR statistics still are unexplored in terms of their optimality.

3. EVIDENCE FUNCTIONS FOR MODELS
WITH UNKNOWN PARAMETERS

3.1. Information-Theoretic Model Selection
Criteria
The latter part of the 20th Century saw some statistical
developments that made inroads into the problems of models
with unknown parameters (composite models), multiple models,
model misspecification and non-nested models, among the more
widely adapted of which were the model selection indexes based
on information criteria. The work of Akaike (Akaike, 1973, 1974,
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FIGURE 7 | Moment of discovery: page from Professor H. Akaike’s research

notebook, written while he was commuting on the train in March 1971.

Photocopy kindly provided by the Institute for Statistical Mathematics,

Tachikawa, Japan.

Figure 7) revealed a novel way of formulating themodel selection
problem and ignited a new statistics research area. Akaike’s ideas
found immediate use in the time series models of econometrics
(Judge et al., 1985), were studied and disseminated for statistics
in general by Sakamoto et al. (1986) and Bozdogan (1987) and
popularized, especially in biology, by Burnham and Anderson
(2002).

The information criteria are model selection indexes, the most
widely used of which is the AIC (originally, “an information
criterion,” Akaike, 1981; now universally “Akaike information
criterion”). The AIC is minus two times the maximized log-
likelihood for a model, the maximization taken across unknown
parameters, with a penalty for the number of unknown

parameters added in: AICi = −2log
(

L̂i

)

+ 2ri, where L̂i is

the maximized likelihood for model Hi, and ri is the number of
unknown parameters in model Hi that were estimated through
the maximization of Li. We are now explicitly considering the
prospect of more than two candidate models, although each
evidential comparison will be for a pair of models.

Akaike’s fundamental intuition was that it would be desirable
to select models with the smallest “distance” to the generating
process. The distance measure he adopted is the KL divergence.
The log-likelihood is an estimate of this distance (up to a constant
that is identical for all candidate models). Unfortunately, when
parameters are estimated, the maximized log-likelihood as an

estimate of the KL divergence is biased low. The AIC is an
approximate bias-corrected estimate of an expected value related
to the distance to the generating process. The AIC is an
index where goodness of fit as represented by maximized log-
likelihood is penalized by the number of parameters estimated.
Penalizing likelihood for parameters is a natural idea for
attempting to balance goodness of fit with usefulness of a
model for statistical prediction (which starts to break down
when estimating superfluous parameters). To practitioners,
AIC is attractive in that one calculates the index for every
model under consideration and selects the model with the
lowest AIC value, putting all models on a level playing field
so to speak.

Akaike’s inferential concept underlying the AIC represented

a breakthrough in statistical thinking. The idea is that in

comparing model Hi with model Hj using an information
criterion, both models are assumed to be misspecified to

some degree. The actual data generating mechanism cannot
be represented exactly by any statistical model or even family

of statistical models. Rather, the modeling process seeks to

build approximations useful for the purpose at hand, with the
left-out details deemed negligible by scientific argument and
empirical testing.

Although AIC is used widely, the exact statistical inference
presently embodied by AIC is not widely understood by
practitioners. What Akaike showed is that under certain
conditions −AICi/ (2n) is (up to an unknown constant) an

approximately unbiased estimator of Eg

{

K
[

g (x) , fi

(

x, θ̂i

)]}

,

where θi is a vector of unknown parameters and θ̂i is its ML
estimate, the parameter penalty in AIC being the approximate
bias correction. The expectation has two variability components,

(1) the distribution of fi

(

X, θ̂i

)

given the ML estimate value, and

(2) the distribution of the ML estimate, both expectations with
respect to truth g (x) (In Akaike’s formulation, truth was a model
f (�) with some high-dimensional unknown parameter, while all
the candidate models are also in the same form f (�) except
with the parameter vector constrained to a lower-dimensional
subset of parameter space. Truth in Akaike’s approach is as
unattainable as g (x)). The double expectation is termed the
“mean expected log-likelihood.” The difference AICi − AICj

then is a point estimate of which model is closer on average
to truth, in the sense estimating (−2n) times the difference of
mean expected log-likelihoods. The approximate bias correction

incorporated in AIC is technically correct only if fi

(

x, θ̂i

)

is

rather “close” to g (x); Takeuchi (1976) subsequently provided
a mathematically improved (but statistically more difficult to
estimate) approximation. “Information theoretic” indexes for
model selection have proliferated since, with different indexes
refined to performwell for different sub-purposes (Claeskens and
Hjort, 2008).

In practice, the AIC-type inference represents a relative

comparison of two models, not necessarily nested or even in

the same model family, requiring only the same data and the

same response variable to implement. The inference is post-data,

in that there are (as yet) no appeals to hypothetical repeated
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sampling and error rates. All candidate models, or rather, all
pairs of models, can be inspected simultaneously simply by
obtaining the AIC value for each model. But, as is the case
with all point estimates, without some knowledge of sampling
variability and error rates we lack assurance that the comparisons
are informative.

3.2. Differences of Model Selection Indexes
as Evidence Functions
We propose that information-based model selection indexes
can be considered as generalizations of LR evidence to models
with unknown parameters, for model families obeying the
usual regularity conditions for ML estimation. The evidence
function concept clarifies and makes accessible the nature of
the statistical inference involved in model selection. Like LR
evidence, one would use information indexes to select from a
pair of models, say f1 (x, θ1) and f2 (x, θ2), where θ1 and θ2 are
vectors of unknown parameters. Like LR evidence, the selection
is a post-data inference. Like LR evidence, the prospect of model
misspecification is an important component of the inference.
And critically, like LR evidence, the error probabilities Wi and
Mi (i = 1, 2) can be defined for the information indexes
and can in principal be calculated (or simulated) as discussed
below. Additionally, as discussed below, many of the existing
information indexes retain the desirable error properties of
evidence functions. Oddly, the AIC itself does not.

3.3. Nested Models, Correctly Specified
As noted earlier, the generalized LR framework of two nested
models under correct model specification is a workhorse of
scientific practice and a prominent part of applied statistics texts.
It is worthwhile then in studying evidence functions to start
with the generalized LR framework, in that the model selection
indexes are intended in part to replace the hierarchical sequences
of generalized LR hypothesis testing (stepwise regression,
multiple comparisons, etc.) for finding the best submodel within
a large model family.

The model relationships diagrammed in the top portion of
Figure 1 depict the two cases. In case 1 (top left), a parameter
vector in model f1 identifies the true model giving rise to the
data. Technically the parameter vector is contained in model
f2 as well, but the scientific interest focuses on whether the
additional parameters in the unconstrained parameter space of f2
can be usefully ignored. Case 2 (top right) portrays the situation
in which the true parameter vector is in the unconstrained
parameter space of model f2; model f1 is too simple to be useful.

Suppose we decide to use 1AIC12 = AIC1 − AIC2 as
an evidence function. For convenience, we have defined this
AIC-based evidence function to vary in the same direction
as G2 (Equation 31) in NP hypothesis testing, so that large
values of 1AIC correspond to large evidence for f2 (opposite
to the direction for the ordinary LR-evidence function given by
Equation 33). For instance, the early rule of thumb in the AIC
literature was to favor model f1 when 1AIC12 ≤ −2 and to favor
model f2 when 1AIC12 ≥ 2. Note that

1AIC12 = G2 − 2ν, (77)

FIGURE 8 | (A) Location-shifted chisquare distribution of the difference of AIC

values, when data arise from model 1 nested within model 2. In this plot, the

degrees of freedom for this distribution are equal to ν = 3, and the shift to the

left of 0 is equal 2ν = 6 (see Equation 77 and text below it). This chisquare

distribution is invariant to sample size. As a result, the areas under this

distribution in the intervals (−2,+2) and (+2,∞) corresponding to W1 and M1,

respectively, are invariant to sample size. (B) Non-central chisquare distribution

of the difference of AIC values, when data arise from model 2 (but not model

1), plotted for different sample sizes. This distribution is also location-shifted

but its non-centrality parameter λ, which determines both its mean and

variance, is proportional to sample size. In this illustration, λ = n(1/4). As a

result, the areas under the intervals (−2ν,−2) and (−2,+2) corresponding to

the error probabilities M2 and W2 decrease as the sample size increases.

where ν = r2 − r1, the difference of the numbers of unknown
parameters in the two models. The behavior of our candidate
evidence function 1AIC12 can be studied using the Wilks/Wald
results for the asymptotic distribution of G2. Under case 1,
1AIC12 has (approximately) a chisquare(ν) distribution that has
been location-shifted to begin at −2ν instead of at 0 (top of
Figure 8). Under case 2, 1AIC12 has (approximately) a non-
central chisquare(ν, λ) distribution with the same −2ν location
shift (bottom of Figure 8). The areas under the shifted chisquare
pdf in the intervals (−2, + 2) and (+2,∞) are respectively
the generalized error probabilities W1 and M1 (Figure 8, top).
Likewise, the areas under the shifted non-central pdf in the
intervals (−2ν,−2) and (−2,+2) are respectively the generalized
error probabilitiesM2 andW2 (Figure 8, bottom).

As sample size increases, the error probabilities W1 and M1

for the AIC-based evidence function do not go to zero but rather
remain positive (Figure 8, top). The value of n appears nowhere
in the location-shifted chisquare pdf for1AIC12, and so the error
probabilities W1 and M1 remain static. Thus, for the AIC, the
probabilities of weak and misleading evidence given model f1
generates the data both behave like the Type 1 error probability α

in Neyman-Pearson testing. The simulation results of Aho et al.
(2014) showing a Type-1-like behavior of the AICwith increasing
sample size for particular statistical models are thereby explained
(see also Taper and Ponciano, 2016).

As sample size increases, the error probabilities W2 and M2

for the AIC-based evidence function do go to zero (Figure 8,
bottom). The non-centrality parameter λ in the location-shifted
non-central chisquare pdf for 1AIC12 is proportional to the
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value of n, and the mean (ν + λ) of the non-central distribution
increases faster than the standard deviation ([2 (ν + 2λ)]1/2),
driving the error probabilities W2 and M2 to zero. Thus, for the
AIC, the probabilities of weak and misleading evidence given
model f2 generates the data both behave like the Type 2 error
probability β in Neyman-Pearson testing.

Thus, within the generalized likelihood ratio framework, the
AIC appears to bring no particular improvement in the sense of
evidence to ordinary Neyman-Pearson testing using G2. Indeed,
at least in the Neyman-Pearson approach, the value of α is fixed
by the investigator and is therefore known if the models are
correctly specified. The error probabilities attending the use of
AIC however are unknown, as they generally are in evidence
functions, although they in principle can be estimated with
simulation. AIC-based model selection does not have the error
properties of an evidence function within the classical milieu of
nested statistical models.

Other information-theoretic indexes used for model selection,
however, do have performance characteristics of evidence
functions. Consider the Schwarz information criterion (SIC; also
known as Bayesian information criterion or BIC) given by

SICi = −2log
(

L̂i

)

+ rilog (n) .

The index originally had a Bayesian-based derivation (Schwarz,
1978), but its frequentist error properties when employed as an
evidence function become apparent with the methods used above
for the AIC. As with the AIC, the evidence function version of the
SIC would use the difference of SIC values:

1SIC12 = SIC1 − SIC2 = G2 − νlog (n) .

As with the AIC also, the asymptotic distributions of the
SIC evidence function under model f1 and model f2 are
respectively, location-shifted chisquare and non-central
chisquare distributions. For the SIC though, the location of the
lower bound of the two distributions at −νlog (n) decreases
as sample size increases (Figure 9, top). If the data arise from
model f1, the chisquare distribution is pulled to the left, and the
areas under the pdf corresponding to and eventually decrease
asymptotically to zero. If the data arise from model f2, although
the non-central chisquare distribution is also pulled to the left at
a rate proportional to log (n), the mean is pulled to the right at
a rate proportional to n, and the coefficient of variation around
the mean goes to zero at a rate 1/

√
n. The areas under the pdf

corresponding toW2 andM2 eventually decrease asymptotically
to zero (Figure 9, bottom). Thus, unlike the AIC, for nested,
correctly specified models the SIC possesses a key quality of an
evidence function: all the probabilities of weak and misleading
evidence eventually decrease asymptotically to zero.

3.4. Misspecified Models
To be fair, AIC as well as evidence functions were forged in the
fiery world of misspecified models. Does the AIC difference gain
the properties of an evidence function when neither f1 nor f2 give
rise to the data?

FIGURE 9 | (A) Chisquare distribution of the difference of SIC values, when

data arise from model 1 nested within model 2. The chisquare distribution is

shifted left as sample size increases. (B) Non-central chisquare distribution of

the difference of SIC values, when data arise from model 2 (but not model 1),

plotted for increasing sample sizes.

If the models are nested or overlapping, the answer is no. To
understand this, we must appeal to modern statistical advances
in the theory of maximum likelihood estimation and generalized
likelihood ratio testing when models are misspecified. The
relevant and general theory can be found in White (1982), Nishii
(1988), Vuong (1989), and references therein.

Suppose a model with pdf f (x, θ) is fitted using ML
estimation to observations that came from a distribution with
pdf g (x). Under a variety of regularity conditions on the
pdfs, the ML estimate has an asymptotic multivariate normal
distribution centered on a value θ∗, where θ∗ is the value of θ that
minimizes K

(

g (x) , f (x, θ)
)

(White, 1982). The multivariate
normal distribution furthermore concentrates around θ∗ as n
becomes large, reflecting the fact that the ML estimate under
misspecification is a statistically consistent estimate of (converges
in probability to) θ∗.

Now, any two models f1 (x, θ1) and f2 (x, θ2) being compared
will be in one of nested, overlapping, or non-overlapping
configurations (see Figure 2). Under misspecification in each
case, the truth g (x) is out there, somewhere. We now ask of
an evidence function: “Which model contains a parameter set
that brings it closer to truth? Is K

(

g (x) , f1 (x, θ1
∗)
)

smaller than
K
(

g (x) , f2 (x, θ2
∗)
)

or vice versa?”
The question needs modification in the nested and

overlapping cases. If f1 is nested within f2, K
(

g (x) , f1 (x, θ1
∗)
)

cannot be smaller than K
(

g (x) , f2 (x, θ2
∗)
)

. The modified
question becomes “Is f1 (x, θ1

∗) as close to truth as f2 (x, θ2
∗)?”

The question in the nested case is a natural extension of the
question asked under correct specification. In the nested case,
K
(

g (x) , f1 (x, θ1
∗)
)

being the same as K
(

g (x) , f2 (x, θ2
∗)
)

signifies that f1 (x, θ1
∗) and f2 (x, θ2

∗) are the same model.
If f1 overlaps f2, the model closest to truth could be in
the overlapping region, K

(

g (x) , f1 (x, θ1
∗)
)

would be the
same as K

(

g (x) , f2 (x, θ2
∗)
)

, and f1 (x, θ1
∗) and f2 (x, θ2

∗)

would be the same model. However, in the overlapping case,
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K
(

g (x) , f1 (x, θ1
∗)
)

being the same as K
(

g (x) , f2 (x, θ2
∗)
)

does not necessarily signify that f1 (x, θ1
∗) and f2 (x, θ2

∗) are the
same model. The question in the overlapping case becomes “Is
the best model in the overlapping region?”

Vuong (1989) derived the asymptotic distributions of G2

under the nested, overlapping, and non-overlapping cases in the
presence of misspecification. His main results relevant here are
the following, presented in our notation:

A. When f1 (x, θ1
∗) and f2 (x, θ2

∗) are the same model (either
f1 is nested within f2, or f1 overlaps f2, and the best model
is in the nested or overlapping region), then the asymptotic
distribution of G2 is a “weighted sum of chisquares” in the
form

∑

ajZ
2
j , in which the Zj are independent, standard

normal random variables (each Z2
j being chisquare with 1 df)

and the aj values are eigenvalues of a square matrix (r1 × r2
rows) of expected values of various derivatives of the two
log-pdfs with respect to the parameters (generalization of
the Fisher information matrix). The point is, the asymptotic
distribution ofG2 does not depend on n.1AIC12 and1SIC12,
along with evidence functions formed from other information
indexes, then have location-shifted versions of the weighted
sum of chisquares distribution. The error probabilities M1

′

and W1
′ defined for AIC become static and do not decrease

to zero as n becomes large. The error probabilities M1
′ and

W1
′ defined for SIC do decrease to zero, because the location

quantity decreases as becomes large, pulling the weighted
sum of chisquares pdf to the left (similar to the chisquare
distribution in Figure 9). This scenario is simulated and then
plotted in Figure 10A.

B. Suppose the models are nested, overlapping, or non-
overlapping, but a non-overlapping part of f1 or f2 is closer
to truth, that is, when f1 (x, θ1

∗) and f2 (x, θ2
∗) are not the

samemodel as in Figure 2. ThenG2 has an asymptotic normal
distribution with mean 2n1K∗ and variance 4nσg

2∗, where

1K∗ = K
(

g (x) , f2
(

x, θ2
∗
))

− K
(

g (x) , f1
(

x, θ1
∗
))

, (78)

and

σg
2∗ = Vg

{

log

[

f1 (X, θ1
∗)

f2 (X, θ2
∗)

]}

. (79)

The result parallels the CLT results (Equations 20–22) for
completely specified models, with the added condition that
each candidate model is evaluated at its “best” set of
parameters. In this situation, the mean of G2 increases or
decreases in proportion to n, while the standard deviation
increases only in proportion to

√
n. All of the error

probabilities, M1
′, M2

′, W1
′ and W2

′ defined for 1AIC12 as
well as for1SIC12 do decrease to zero as n becomes large. This
scenario is simulated and plotted in Figure 10B.

We must point out that a generalized Neyman-Pearson
test (via simulation/bootstrap) of two non-overlappingmodels
with misspecification can suffer the same fate as the
completely specified models in the Neyman-Pearson Lemma.
The large sample distribution of G2, assuming model 1
generates the data, would have a mean involving K12

FIGURE 10 | Simulation of Vuong (1989) results for misspecified models.

(A) When f1 (x, θ1
∗) and f2 (x, θ2

∗) are the same model (either f1 is nested

within f2, or f1 overlaps f2, and the best model is in the nested or overlapping

region), then the asymptotic distribution of G2 is a “weighted sum of

chisquares” that does not depend on n. The error probabilities M1 and W1 do

not decrease to 0 for 1AIC12 but do decrease for 1SIC12. (B) When the

models are nested, overlapping, or non-overlapping, but a non-overlapping

part of f1 or f2 is closer to truth, then G2 has an asymptotic normal distribution

with mean and variance that depend on the sample size, and the error

probabilities M1 and W1 decrease to 0 for both 1AIC12 and 1SIC12. Details of

these two settings in (A,B) are found in a fully commented R code.

(evaluated at true parameter value in model 1 and best
parameter value in model 2); the cutoff point c and other
test characteristics would be obtained from this distribution.
Under misspecification, the true asymptotic distribution ofG2

has a mean involving 1K∗ (Equation 78). As was the case for
the two models in the Neyman-Pearson Lemma (Figure 6),
discrepancy between K12 and 1K∗ can cause the generalized
Neyman-Pearson test to pick the wrong model with Type 1
error probability approaching 1. The Karlin-Rubin Theorem
and the forceful language of uniformly most powerful tests
does not rescue Neyman-Pearson testing from derailment
when inadequate models are deployed.

Error probabilities going to zero can alternatively be
derived as a consequence of the (weak or strong) “consistency”
of the model selection index. Consistency here means that
the index asymptotically picks the model closest to truth as
sample size becomes large. Nishii (1988) studied information

indexes in the form −2log
(

L̂i

)

− cnri, where the parameter

penalty coefficient cn is a possible function of n. The parameter
penalty determines whether an information-theoretic index
behaves like an evidence function. If cn grows at a rate < n
but > log

(

log (n)
)

then an information-theoretic index will
asymptotically pick the model closest to truth Nishii (1988).
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The difference of such indexes will therefore behave as an
evidence function, as the probabilities of picking any of the
contending models go to zero. If, however, the penalty term is
constant or asymptotically constant, and the model closest to
truth is in a parameter region common to two ormoremodels,
then the probabilities of weak and misleading evidence are
or become constant. The problematic error properties of
Neyman-Pearson testing from the standpoint of evidence
are thereby preserved in such model selection indexes. For
instance, the AIC-corrected index is (Hurvich and Tsai, 1989).

AICci = AICi + 2ri (ri + 1) / (n− ri − 1, )

in which the correction term is designed to improve the
behavior of the index under small sample sizes. However, the
correction term asymptotically approaches zero as n becomes
large, and so AICc reverts to AIC, with all its asymptotic error
properties, for large samples.

Thus, for either correctly specified or misspecified models
in which the best model is in a region of model space that does
not overlap any other model under consideration, 1AIC12

indeed behaves like an evidence function. However, many
model selection problems, such as in multiple regression,
involve collections of models in which model pairs can be
nested or overlapping as well as non-overlapping. 1AIC12

will behave more like Neyman-Pearson hypothesis testing
for models within overlapping regions and therefore will
not possess evidence function properties. Differences of
information indexes that adjust G2 with a constant or
asymptotically constant location shift, such as the TIC and
AICc will share the Neyman-Pearson properties of 1AIC12

and cannot be regarded as evidence functions. Differences of
those information indexes, such as SIC that produce a location
shift that decreases to−∞ as n increases (provided that rate is
within the Nishii (1988) bounds) will have the error properties
of evidence functions.

4. DISCUSSION

4.1. Comparing Approaches to Statistical
Inference
We have shown that key inferential characteristics for Fisher
significance analysis, Neyman-Pearson hypothesis testing,
and evidential comparison differ substantially. Evidence has
inferential qualities that match or surpass Fisher significance and
Neyman-Pearson tests (see Table 1):

• Equal status for both models. In Fisher significance analysis,
there is only onemodel under consideration. Neyman-Pearson
testing compares two models but one of them is accorded
special status as the null model and endowed with a fixed
error rate (α). Evidence analysis compares twomodels without
giving either model special status.

• Evidence for the null. Neither Fisher significance analysis nor
the conventional form of Neyman-Pearson testing provides
evidence for the null hypothesis. Extra analyses (equivalence
testing, severity) have been proposed to quantify evidence

TABLE 1 | A comparison of inferential characteristics between Fisherian

significance testing (P-values sensu stricto), Neyman-Pearson hypothesis tests

(including P-values for likelihood ratios) and evidential statistics.

Inferential characteristic P-value NP-test Evidence

Equal status for null and alternatives NA No Yes

Allows evidence for Null No No Yes

Accommodates multiple models No Awkward Yes

All error rates go to zero as sample

size increases

No No Yes

Total error rate always decreases

with increasing sample size

No No Yes

Can be used with non-nested

models

NA Not Standard Yes

Evidence and error rates

distinguished

No No Yes

Robust to model misspecification Yes No Yes

Promotes exploration of new

models

Yes No Yes

for the null hypothesis, but such approaches reverse model
roles and give special status to the alternative hypothesis. In
evidence analysis, one statistic called an evidence function
quantifies the evidence for one model and against each of the
models in the model set.

• Accommodates multiple models. Under Fisher significance
analysis, the P-values for different models are based on
different sufficient statistics and are not strictly comparable.
One could compare multiple P-values using a shared goodness
of fit statistic (not necessarily sufficient), such as the
Kolmogorov-Smirnoff. However, pure goodness of fit favors
overparameterization (overfitting). Neyman-Pearson testing
has been jury-rigged in various forms (stepwise regression,
multiple comparisons) to sort through multiple models, but
the results at best have only had fair statistical properties.
With evidence analysis, all pairs of candidate models can be
compared, and thereby all candidate models can be ranked.

• All error rates go to zero. Neyman-Pearson testing fixes the
Type 1 error probability to be constant, thereby structuring
the error rate to be constant regardless of sample size. Fisher
significance analysis acquires such a constant error rate when
the decision to reject a model is based on a threshold for the
P-value. Under evidence analysis all error rates approach zero
asymptotically with increasing sample size.

• Total error monotonically decreasing. In evidence analysis, the
total error under eachmodel (1minus the probability of strong
evidence under the model) decreases monotonically and
asymptotically to zero with increasing sample size. Because of
the special status of the null hypothesis in Neyman-Pearson
testing, the total error rate is the Type 1 error rate which
remains constant. Fisher significance analysis dons the Type
1 error properties of Neyman-Pearson testing if the decision
to reject the model is based on a P-value threshold.

• Non-nested models. Fisher significance analysis deals with one
model at a time, so the idea of comparing two non-nested
models is not applicable. The standard extensions (such as
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generalized likelihood ratio) of the original Neyman-Pearson
framework to models with unknown parameters assume that
one of the models is nested within the other. Evidence
analysis compares two models regardless of their nested or
non-nested configuration.

• Evidence and errors rates distinguished. The interpretation of a
P-value has long been a source of confusion among scientists.
Because the P-value is calculated under the properties of just
one model, it is not satisfactory as a measure of evidence
for one model over another (Royall, 1986, 1997). Evidence
analysis regards error rates and evidence as separate concepts.
The evidence approach clarifies P-values as error rates defined
post-data (see section 2.1.7).

• Robustness to model misspecification. Evidence functions are
defined in terms of the misspecification of two candidate
models. Evidence functions are statistical estimates of which
of two models is closer to the true data-generating process.
The error rates of evidence analysis, defined robustly as the
probabilities of wrong conclusions about which model is
closer, go to zero as sample size increases, even under model
misspecification. Under model misspecification, Neyman-
Pearson testing can fail spectacularly: the Type 1 error rate,
defined as the probability of wrongly picking the alternative
hypothesis model when the null hypothesis model is just as
close to truth, can approach 1 asymptotically as sample size
increases. Fisher significance analysis, being in essence a test
of whether a given model is misspecified, can be considered to
be defined under a presumption of misspecification.

• Promotes exploration of new models. Perhaps the most
important property of evidence analysis in scientific endeavors
is that it explicitly encourages discovery of new models
that are closer to truth than models already analyzed.
An evidence analysis leaves “room at the top,” or the
possibility that a new approach could yield a much better
model for the data. In the scientific world, the daily t-
tests and regressions under Neyman-Pearson testing produces
an inertia, a perfunctory routine in statistical analysis often
characterized by working scientists as “cookbook” in nature.
Barnard’s (1949) observation had Bayesian statistics as its
target, but his excruciating words apply to any kind of
modeling: “To speak of the probability of a hypothesis implies
the possibility of an exhaustive enumeration of all possible
hypotheses, which implies a degree of rigidity foreign to the
true scientific spirit. We should always admit the possibility
that our experimental results may be best accounted for by a
hypothesis which never entered our own heads.”

4.2. Prediction-Efficient vs. Consistent
Criteria
4.2.1. Prediction-Efficiency
AIC and its asymptotic relatives like AICc are built around
statistical prediction. The difference of mean expected log-
likelihoods is different from what we have defined above as 1K∗.
The mean expected log-likelihood has a second, predictive layer
of expectation in its definition, the idea being to identify the
model that could best predict a new observation from g (x),

taking into account the uncertainty in the estimation of unknown
parameters. For this reason these criteria have been termed the
efficient, asymptotically efficient, or prediction-efficient criteria
(Shibata, 1980; Hurvich and Tsai, 1990).

The tendency for AIC related criteria to over fit is a natural
consequence of their design goal of prediction mean square
error (MSE) minimization. When parameters are estimated, the
increase in prediction MSE due to adding a spurious covariate
is generally less than the reduction in prediction MSE caused by
including a relevant covariate.

The tendency of stepwise regression to overfit using Neyman-
Pearson testing has long been noted (Wilkinson and Dallal, 1981;
Hurvich and Tsai, 1990; Harrell, 2001; Rao et al., 2001; Blanchet
et al., 2008; Mundry and Nunn, 2008). The fixed Type 1 error
rate as a criterion for entry (or exit) of a variable is at the heart
of the overfitting problem, and methods for altering the Type 1
error rate based on the number of model parameters have been
proposed (e.g., Foster and George, 1994). Such interventions
without sample size in the recipe do not produce error rates that
universally converge to zero as sample size becomes large.

Model selection with AIC or AICc improves somewhat
on the Neyman-Pearson overfitting problem in that the
misleading error probabilities both go to zero as sample
size increases when two non-overlapping models are being
compared. However, overlapping models, in which AIC and
AICc are prone to overfit, are typically a substantial subset
of the models in contention in multiple regression. The AIC
and AICc indexes will tend to include spurious variables too
often and thus represent only a partial improvement over
stepwise regression.

4.2.2. Identifying Causal Structure
Scientific prediction, however, can be broader than pure
statistical prediction. The scientist often desires to predict the
outcome of a system manipulation: what will happen if harvest
rate is increased, or if habitat extent is halved? Modeling such
manipulationmight translate as a structural change in a statistical
model of the system. The predictive quality of the model
then lies more in getting mechanisms in the model as right
as possible.

The consistent criteria will asymptotically select the
generating process if it is in the model set. If the generating
process is not in the model set, the consistent criteria will
asymptotically select the model in the set that under best
possible parameterization is closest (in the KL sense) to the
generating process. The estimation of 1K∗ by the difference of
SIC values represents a quest for a different kind of prediction
that might come from a structural understanding of the major
forces influencing the system under study. The tendency of
the prediction efficient criteria to include spurious covariates
promotes a mis-understanding of the generating mechanism
(Taper, 2004).

Certainly, the finite-sample properties of SIC and other
consistent indexes require substantial further study, but the
property that more data should be able to distinguish among
candidate models with fewer errors seems an important property
to preserve.
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The scientific allure of information-theoretic indexes
resided in the idea that all models were evaluated on
a level playing field. One would calculate the index for
each model and select the model with the best index, a
procedure which promised considerably more clarity over
hierarchical sequences of Neyman-Pearson tests, such as
stepwise regression.

4.3. Uncertainty in Evidence
AIC and its descendants were originally built around concepts of
statistical point estimation. The statistical inference represented
by AIC is that of an approximately unbiased point estimate
of the mean expected log-likelihood. The statistical concepts of
errors and variability in information indexes have by contrast
not often been emphasized. Partly as a result, model selection
with information indexes has been somewhat of a black box for
investigators, as achieving a good understanding of the inferences
represented by model selection analyses is a mathematical
challenge (see Taper and Ponciano, 2016).

4.3.1. Evaluating Model Adequacy
We have illustrated that, unlike the error rates in Neyman-
Pearson hypothesis testing, all of the error rates of evidence
analysis converge to zero as sample size increases. However, the
errors we have discussed deal only with the determination which
of two models is closer to truth; the error rates do not shed
light on whether either model is close enough to truth to be
scientifically or managerially valuable. This question is the realm
of model adequacy analysis.

Whether the statistical inference is a hypothesis test,
equivalence analysis, severity analysis, or evidence analysis,
whether for a pair of models or multiple pairs of models, a follow-
up evaluation of model adequacy looms ever more important as
a crucial step (Mayo and Spanos, 2004; Spanos, 2010). Lindsay
(2004) and Markatou and Sofikitou (in review) discuss ideas
about the statistical evaluation of model adequacy. Mac Nally
et al. (2018) give an impassioned editorial plea for routine model
adequacy evaluation in scientific model selection. Ponciano and
Taper (2019) show how to directly incorporate model adequacy
evaluation into information criterion based model selection.

Considering the likely prevalence of model misspecification
in ecological statistics, analysts will need to consider how
a candidate model could be misspecified as well as the
effects of such misspecification on the intended uses of the
model. Practically, the analyst can introduce models formulated
in diverse fashions and let the model identification process
itself reduce model misspecification. Further experimental or
observational tests of model predictions (e.g., Costantino et al.,
2005) and their associated error rates are necessary to map the
conditions under which a given model is reliable.

The error properties of evidence analysis are more difficult to
calculate than classical NP tests because model misspecification
is involved. But once calculated, the rates are likely to be more
accurate than classical tests that pretend misspecification does
not exist.

4.3.2. Approaches to Estimating Post-data Error

Rates
Error rates are different pre and post-data. W,M and α are
pre-data error rates calculated under a model that is assumed
to be true. The P-value is a post-data error rate. The pre-data
error rates are useful for experimental design, but should be
viewed with suspicion as a post-data inference tool because as we
have shown these error rates are only accurate if the generating
process is the assumed model. Little work has been performed
on evidential error rates under the realistic assumption of model
misspecification (but see Royall and Tsou, 2003). This area is an
important field for future work.

Non-parametric bootstrapping shows great promise for
calculating evidential error rates, for data structures that allow
bootstrapping. In work in preparation, we (Taper, Lele, Ponciano,
and Dennis) show that bootstrapping greatly aids in the
interpretation of evidential results. Figures 4, 5 indicate that
evidential error rates depend on the structure of the model space.
Taper and Ponciano (2016) and Ponciano and Taper (2019) show
that given data and a set of models, estimation of the model
space structure including the location of the unknown generating
process is feasible. This gives a direct measure of model adequacy.
Future extensions of this workmay allow for the direct estimation
of realistic error rates as well.

4.4. How Should One Use Evidential
Statistics in Practice?
A basic recommendation is to stop using NP tests for inference
and be cautious about using the AIC family of information
criteria for model selection. These are known as the “efficient”
or “MSE minimizing” criteria and include the AIC, the AICc,
the TIC, many forms of ICOMP and the EIC. These criteria
are recognized by a complexity penalty whose expectation is
asymptotically constant. Asymptotically equivalent to the AIC
is the use of leave-one-out cross-validation (Stone, 1977); cross-
validation will have model selection properties similar to AIC but
has the advantage that it can be calculated in the absence of a
likelihood function.

There is no reason that the multiple comparisons inference
from traditional ANOVAs cannot be made using information
criteria (e.g., Kemp et al., 2004; Jerde et al., 2019).

Classical methods will work well for state description and
less well for process identification. Unbiased scientific inferences
of process are better made using consistent information criteria
(see Jerde et al., 2019; Lorah and Womack, 2019 for examples).
Analysts have a convenient spectrum of choices for many
standard modeling situations in a suite of consistent information
criteria: The HQIC (also known as the HQC, Hannan and Quinn,
1979), the HIC (aka BIC∗ and HBIC, Haughton, 1988), the SIC
(aka BIC and SBC, Schwarz, 1978), and the CAIC (Bozdogan,
1987). The analyst can opt for a criterion that matches her goals.
The sample size multiplier in the HQIC grows at the minimal
rate to generate a consistent form. As a consequence the HQIC
will behave very much like the AIC, selecting models with low
MSE of prediction by capturing real but small effects at the
cost of including spurious covariates. The HIC tends to balance
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underfitting and overfitting errors. The SIC and CAIC both
favor compact models, with all the included components well-
supported, and both tend to underfit. The CAIC has the strongest
complexity penalty and thus makes the most underfitting errors
and the fewest overfitting errors.

Besides being influenced by inferential goals, the choice of
evidence function should depend on the modeling framework.
Information criteria had their beginnings as a tool for variable
selection in linear regression with independent observations.
In such situations, as derived by Akaike, the number of
parameters is a good first order bias correction to the observed
likelihood. But, statistics is a world of special cases. The dizzying
diversity of information criteria in the literature produces the
desire to optimize the bias correction under different modeling
frameworks. For instance, in mixed models, even the meaning
of the number of parameters or the number of observations
becomes ambiguous due to the dependence structure of mixed
models. Information criteria have been developed using estimates
of the effective number of parameters (e.g., Vaida and Blanchard,
2005; You et al., 2016). Similarly, information criteria have
been constructed using estimates of the effective number of
observations (e.g., Jones, 2011; Berger et al., 2014).

If the generating process is in the model set, or in flat
model spaces, such as those in linear regression, the 1AIC is an
unbiased estimate of 2n1K regardless of how near or far each of
the approximating models is to the generating process (Burnham
and Anderson, 2002; Choi and Kiefer, 2011). In curved model
spaces (as in Efron, 1975), 1AIC is not unbiased, and the
estimation is only good if both approximating models are close
to the generating process. The Takeuchi’s information criterion,
the TIC (Takeuchi, 1976; Shibata, 1989), is nearly unbiased even
for curved models at great distances from the generating process
(Burnham and Anderson, 2002; Choi and Kiefer, 2011). Optimal
multiplicative coefficients of bias adjustment for the AIC and
TIC have been given (Ogasawara, 2016). Also, Ogasawara showed
that when the penalty term in TIC (a random variable, not a
constant) is negatively correlated with the main term, the higher-
order asymptotic variance of the TIC becomes smaller than that
common to the AIC and BIC. Unfortunately, the complexity
penalty for the TIC must be estimated from data and cannot
be specified a priori, as with the other criteria mentioned. The
uncertainty in penalty estimation makes the use of the TIC
impractical unless sample size is large. A second problem with
the TIC is that like the AIC, it is not consistent, but any
efficient information criterion can be made consistent either by
multiplying the complexity penalty by a consistent multiplier
(Nishii, 1988) or by averaging the penalty with a consistent
penalty (Lorah and Womack, 2019). Lorah and Womack (2019)
also report on testing a list of various model selection criteria. In
a nutshell, model selection criteria made into evidence functions
as a whole give reasonable and responsible results, with none
of the criteria being universally best. Which evidence function
is better depends on the nature of the problem at hand, that
is, the characteristics of the model space being investigated.
The technical difficulties of criterion selection aside, the most
important aspect of applying evidential statistics is approaching
problems evidentially.

5. CONCLUSION

Evidence is not so much a new statistical method for model
selection as it is a new way of thinking about the inference
involved with existing model selection methods. The evidential
way of thinking has two main components: (1) A post-
data trichotomy of outcomes (strong evidence for model fi,
weak or inconclusive evidence, strong evidence for model fj).
(2) A framework of pre-data error probabilities, which are
assured to go to zero as sample size increases. The evidential
approach invites exploration of the error probabilities, usually
via simulation, to aid in study design, the selection of evidence
thresholds, the effects of different types of misspecification, and
the interpretation of study results.

We have proposed here a different way of thinking about
statistical analyses and model selection, based on the concept
of evidence functions. Evidence is an intuitive way to decide
between two models that avoids the famously upside-down logic
that accompanies Neyman-Pearson testing. Evidential thinking
has helped us reveal the shortcomings of Fisher significance
analysis and Neyman-Pearson testing. The errors that can arise
in evidence analysis are straightforward to explain, and the
frequentist properties of such errors as functions of sample size
and effect size are easy to understand and highly compelling
in a scientific chain of argument. The information indexes,
when differenced, represent a collection of potential evidence
functions that extend the evidence ideas tomodels with unknown
parameters. The desirable error properties are preserved in the
presence of model misspecification, when the model choice is
generalized to be an inference about which model is closer to the
stochastic process that generated the data. The error properties
of AIC and AICc are similar to those of Neyman-Pearson testing
when the candidate models are nested or overlapping and so
the AIC-type indexes are not satisfactory evidence functions in
those common circumstances. The indexes like SIC in which
the parameter penalty is an increasing function of sample size
retain the frequentist error properties of evidence functions for
all model pairs.

Evidence works well for science in part because its explicit
conditioning on the model set invites thinking about new
models. Evidence has inferential qualities that match or surpass
Fisher significance analysis and Neyman-Pearson tests. Evidence
represents a compelling scientific warrant for formulating
statistical analyses as model selection problems.
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Ecology, Evidence, and Objectivity: In
Search of a Bias-Free Methodology

Gordon Brittan Jr. and Prasanta Sankar Bandyopadhyay*

Department of History and Philosophy, Montana State University, Bozeman, MT, United States

For at least the past 25 years or so, there has been a twofold sense of “crisis”

in ecology. One indication of this is the spate of articles and books calling for a

reformation of the discipline and bearing such titles as “The New Ecology.” On the

part of practitioners, the unease concerns its theories, concepts, and methods. On

the part of the general public, the unease concerns the perceived “bias” of its

results. This paper is an attempt by two philosophers of science to clarify one critical

methodological issue—hypothesis/model testing—and in the process to identify ways

to gird the objectivity of ecological claims. What is significant about our approach

is a distinction between the tasks appropriate to Bayesian Inference and Evidential

Statistics—confirming hypotheses on the one hand and measuring evidence for

models on the other. These two inferential paradigms are contrasted with the testing

methods long-dominant in the discipline—Fisher-Neyman-Pearson Significance Testing

and Popper Falsificationism—and a case made for a much greater use of Bayesian and

Evidentialist Methods. In particular, it is argued that Evidential Statistics, here in the form of

the likelihood ratios of competing predictive and explanatory multiple models avoids the

main forms of otherwise unsettling cognitive bias. It also provides a Darwinian alternative

to the “convergence” accounts of objectivity associated with the development of physics

which is more appropriate to ecology.

Keywords: bayesian inference, evidential statistics, significance testing, falsificationism, hypothetico-deductivism

INTRODUCTION

Twenty-five years ago, Shrader-Frechette and McCoy (1993) wrote that

On the whole, general ecological theory has, so far, been able to provide neither the largely descriptive,

scientific conclusions often necessary for conservation decisions, nor the normative basis for policy.

Judging by the titles of more recent textbooks, and despite an immense amount of very interesting
ecological research and theorizing carried out in the meantime, the situation appears basically
unchanged. These books bear such titles as Scientific Method for Ecological Research (Ford, 2000),
Ecological Understanding: The Nature of Theory and the Theory of Nature (Pickett et al., 2007) and
The New Ecology: Re-Thinking A Science for the Anthropocene (Schmitz, 2017). All are premised on
the complex claim that there is as yet little consensus on either the correct theoretical structures or
the proper experimental/inferential methods of the subject; the result is that ecological science has
not yet had the desired and necessary influence on policy formation and implementation.

Ford, for example, begins the final chapter of his book with a list of criticisms that he takes
seriously. After all, they provide the motives for developing what he takes to be a new and
improved approach.
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i) There has been a lack of progress in ecology.
ii) No general theory has emerged.
iii) Ecological concepts are inadequate.
iv) Ecologists fail to test their theories.

Picket, Kolesa, and Jones echo the discontent. In their view,
at least part of the problem stems from the fact that the
great growth of ecological information has occurred in ever-
more Balkanized sub-disciplines, each with its own assumptions,
concepts, methods, and hypotheses. Hence, the progress made
has been (in their word) “narrow,” focusing on specific scales
and levels of organization, and making communication between
sub-disciplinarians, not to mention with the general educated
public, increasingly difficult. There is no larger and consistent
picture on which to get a grip, no uniform set of methods to
employ, and (although they do not put it this way) no firm
basis on which to formulate, much less implement, coherent
public policies–in particular regarding the multi-scale impacts of
human actions on specific plant and animal populations. As with
these other authors, Schmitz tries to provide a new and more
implementable picture.

One source of the discontent both with and within ecology
is the relative absence of understanding the role and scope of
the methods used to test ecological hypotheses and models.
The authors of this paper have been invited to expand this
understanding by placing it in a larger philosophical perspective.

THE DEFORESTATION CONTROVERSY:

HYPOTHESIS, POLICY, AND LACK OF

TRUST

On October 3, 2018, the environment, development, and
agricultural heads of the United Nations issued a joint statement
declaring that

Forests are a major, requisite front of action in the global fight

against climate change – thanks to their unparalleled capacity to

absorb and store carbon. Stopping deforestation and restoring

damaged forests could provide up to 30% of the climate solution

(Da Silva et al., 2018).

All well and good. On the assumption (on which more later)
that climate change is (to a significant degree) human-induced,
and given that we have every reason to resist it, we need to stop
deforestation and restore damaged forests. The rational place to
begin is with a factual assessment of the situation. The immediate
problem is that “there are twomain data sources for tree loss, and
they are increasingly contradictory” (Pearce, 2008). One source
is the Global Forest Watch (GFW). Its data are compiled from
satellite images by the World Resources Institute. These data
indicate a decline in tree cover in 2017 of 72.6 million acres,
almost 50% more than in 2015. The other source of deforestation
data is the Global Forces Resource Assessment (FRA), which is
based on government inventories compiled by the UN Food and
Agricultural Organization. It estimates the annual loss at just 8.2
million acres, and adds that deforestation rates have declined

by more than 50% since 2008. In individual countries the data-
inconsistency is even more dramatic, the FRA showing forest
gains in the US, for instance, while the GFW indicates big losses.

In this case, the data-inconsistency can be explained in terms
of the types of data gathered—Landsat tree-cover images as
against government-designated land uses—employed by the two
organizations. More inclusive and sophisticated models are being
developed1. But it is not at all clear whether they will reinforce the
on-going attempt to protect intact forests or put the emphasis
on re-growing temporarily degraded areas. The correct policy
perspective depends, at least to an important extent, on the time-
scale chosen. Once-deforested areas in New England are now
overgrown with trees.

Even when there is a clear consensus among scientists about
both fact and policy, the general public is often slow to follow.
Yale Environment 3602 ran the headline, “AmericansWhoAccept
Climate Change Outnumber Those Who Don’t 5-1” on April 4,
2018, but a closer look at the survey numbers indicates that no
more than 58% believe that global warming is mostly caused by
human factors, and no more than 49% (2% less than in 2008)
are “extremely” or “very” sure that it is really happening. Again
according to the Yale survey, only 6% of the population believes
that anything much can be done to slow or reverse it.

ENTER PHILOSOPHY OF SCIENCE

There are, of course, many reasons for the discrepancy between
expert and popular opinion. Some of them are familiar—politics,
economics, spatial and temporal scales. But what runs through all
of them is distrust, sometimes of “science” generally, on religious
or other cultural grounds, more often of ecology or similarly
policy-connected disciplines. The main brief against them is that
their research is often “biased,” aligned in one way or another with
“liberal” or “environmentalist” agendas. In one word, ecology and
its brethren are not “objective,” and for that reason not to be taken
seriously. This is disturbing not only from a policy perspective,
but also because a good percentage of ecological research is
government-funded and depends on broad political support.

It is to be expected, then, that ecology textbooks would
concentrate as they tend to do on questions concerning
objectivity—how it is to be understood and obtained. Since the
hallmark of and the means by which it is ensured, at least in our
culture for the past several hundred years, has been the “scientific
method,” much of the discussion in these books quickly focuses
on it. The discussion of method, in turn, is deeply informed by
the philosophy of science3.

But can philosophical reflection aid ecologists in either their
methodology or their communication with the public? Our aim is
to answer the question affirmatively by focusing on the objectivity

1It is worth noting that neither the GFW nor FRA models is to this point sensitive

to changes in biodiversity or carbon uptake in the forests modeled, although both

factors enter into cause-of-warming considerations.
2Yale Environment 360 (2018, April 14). Americans Who Accept Climate Change

Outnumber Those Who Don’t 5 to 1.”
3If we can take the textbooks by Pickett et al., and Ford as representative. Of course,

a great many books on general ecology do not focus on methodological issues,

although they do underline the necessity of re-conceptualizing the subject.
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of the claims that ecologists make. Objectivity in turn has to do
with the methods by which these claims are tested. This is the
nub of the controversies surrounding ecology as regards both
its scientific status and reliable source of informed public policy.
It is also the way in which the indispensability of philosophical
reflection can best be demonstrated. A brief review of the testing
methods already in widespread practice should provide context,
and a distinction between the concepts of confirmation and
evidence add clarity.

HYPOTHESIS-TESTING METHODS IN

ECOLOGY

Hypothetico-Deductive Testing
At present, inferential methods are routinely characterized
within one or another statistical framework. It was not always
thus. Discussions of theory-testing, at least among philosophers
interested in the subject, were dominated in the middle years of
the twentieth century by the so-called Hypothetico-Deductive or
H-D model. On this model, to test a hypothesis is, schematically,
to derive a statement, via initial and boundary conditions4,
describing an observation. If the derivation is carried out before
the observation is made, it is predicted; if detected or measured,
the hypothesis is confirmed. If the derivation is carried out after
the observation has been made, the hypothesis retrodicts and
explains it. The underlying point remains the same: to test a
theory is to derive statements describing observations or, ideally,
experimental results. If verified, belief that the theory is true
has to some indeterminate degree been justified. There were
several variations on the H-D model, for example Hempel’s
view (1965) that not the observational consequences but the
instantiations of empirical hypotheses justified or confirmed
belief in them, but the leading theme remained untouched,
that the credibility of scientific claims rested on successful
prediction/explanation and that prediction/explanation in turn
could be characterized by a simple deductive relationship
between hypotheses and observations or (to use a more bracing
and embracing term) data5.

A relatively early and interesting case for the H-D model as
a reliable way of testing wildlife, and by extension ecological,
hypotheses generally, was made by Romesburg (1981), although

4And if necessary, rules by which to translate theoretical terms in the hypotheses

so that they had observational content and application, usually in the form

of measurable quantities. These rules were often referred to as “operational

definitions.” That said, there is no commonly-accepted way in which to

characterize such “definitions.” Perhaps most often it is to provide quantitative

indices for the application of theoretical terms, means by which they may be

measured and thereby applied to observational or experimental data. It has proven

to be particularly difficult to operationalize theoretical terms in ecology—think

“ecosystem,” “niche,” and “diversity” (all of which have come to have normative

dimensions). One virtue of testing mathematical models is that they postpone the

problem; to test the model is simply to measure the quantities that it contains

and verify the data-distributions in which it issues. It can later be decided

how the model should, if desired, be integrated into a more explanatory and

policy-guiding theory.
5Elaboration of the H-D model included attempts to characterize “data” more

precisely as well, including the methods of their measurement and the errors

to which it would inevitably be subject, but nothing in what follows turns on

these attempts.

in doing so he departed from the Positivist original in a
significant way. On his account, wildlife science was dominated
into the 1980’s, although in his view wrongly, by the methods
of “induction” and “retroduction.” On Romesburg’s somewhat
non-standard use of the terms, the former involves correlating
variables, the amount of edge vegetation in fields, say, with
an index of game abundance; the greater the degree of
observed correlation, the more reliable the hypothesis linking
the variables. The latter (retroductive)method involves providing
an explanation of the observed linkages simply by providing a
generalization from which all of them can be derived.

According to Romesburg, the major difficulty with both
methods is that they are used to generate rather than to test
hypotheses. In his view, a subsidiary difficulty with the inductive
method is that it wrongly assimilates correlation to causation;
that two variables are usually, if not also invariably, conjoined
does not by itself demonstrate a direct (or directional) causal
connection between them6. A reliable hypothesis must in one
way or another explain the connection, it must provide a
reason for and not simply “fit” it. A subsidiary difficulty with
the retroductive method is that it is tied closely to the facts
that it is invoked to explain; it doesn’t provide a way of
ruling out incompatible hypotheses that explain all the same
facts. Although Romesburg doesn’t put it this way, one might
say that the inductive method leads to predictive but not
explanatory hypotheses, the retroductive method to explanatory
but not predictive hypotheses and that any adequate (“reliable”)
hypothesis must be both explanatory and predictive. It is only
if they satisfy both criteria that hypotheses are testable. In a
Positivist vocabulary, induction and retroduction are methods of
“discovery,” not “justification,” and discovery is methodologically
moot; for the most part, adequate hypotheses are invented,
products of insight and imagination. Justification alone has its
own logic7.

The distinction between discovery and justification is
classically Positivist, Romesburg’s distinction between prediction
and explanation8 is not. On the original H-D model, prediction
and explanation are asymmetrical only with respect to the time,
before or after the fact, when the derivation of an observational

6They may be linked by a common cause or confounded with another variable,

for example.
7Saint-Mont (2018) has recently made an up-dated and well-informed case for the

“inductive” (data-first) approach to testing. On the assumption that samples test

generalizations about populations, the law of large numbers guarantees that the

distance between them shrinks quickly as the sample increases in size, and “the true

distribution comes into focus almost inevitably” (p. 686). Saint-Mont’s perspective

contrasts sharply with the hypothesis/model-first approach of the other accounts

of testing we will consider (although he includes elements of these accounts in his

own; the implication is correct, both models and data are involved inferentially,

in this respect like the analysis of ecosystems, trophic cascade from the top

down, nutrient supply from the bottom up). Although it is in certain respects

problematic, he implicitly blurs Romesburg’s line between causation/explanation

and correlation, ignores problems associated with (random) sampling, and shares

the questionable “true-model” aim of testing with other statistical paradigms. For

all of its sophistication, Saint-Mont’s view of testing represents a return to a form

of Positivism on which the role of theoretical concepts in science/ecology is at best

unclear and predictive success is the sole criterion of evaluation.
8Or his corollary distinction between correlation and causation.

Frontiers in Ecology and Evolution | www.frontiersin.org 3 October 2019 | Volume 7 | Article 39984

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Brittan and Bandyopadhyay Ecology, Evidence, and Objectivity

consequence is carried out9. Romesburg’s case for restricting
the model to explanatory, which is to say causal, hypotheses
(although he does not frame it as a restriction) rests on the close
connection he posited between wildlife science and public policy;
it is only when “cause-effect relationships among variables are
found [that] control [of outcomes] is possible” (p. 304).

The difficulties with the structural identity of prediction and
explanation aside, a number of criticisms were later made of
the H-D model (or better: account) of theory-testing. Three
of these criticisms proved to be of special significance, not
only because they undermined the H-D account, but more
importantly because they led to alternative and very fruitful
testing accounts. The first criticism was that the H-D account
is no more than qualitative. It provides necessary and sufficient
conditions for the truth of “D confirms H,” but without a rule
for determining the degree to which it is able to do so. This is
troubling. An adequate account of confirmation should capture
the universally-held belief that some hypotheses are (perhaps
much) better supported by the available data than others, and
be able to measure the difference. The second criticism of the
H-D account was that while it indicates a logical relationship,
usually entailment, between hypothesis and data, it does not
specify an inverse relationship, neither entailment nor any other,
between data and hypothesis, no way, so to speak, to retrace
the bottoms-up route. The third main criticism was that the
H-D account is, without further modification and amendment,
restricted to non-statistical hypotheses, typically illustrated by
universal generalizations of the form “All A are B.” That is, from
a simple statistical hypothesis of the form “Pr(B|A) = r” it does
not follow logically that a description of A entails a description of
B. In fact, it doesn’t follow that the probability of an instance of B
given an instance of A is equal to r. In such cases, the relationship
between hypothesis and data must be inductive and characterized
in probabilistic terms.

One way to lump all three of these criticisms together is to say
that the hypothetico-deductive account had some serious gaps in
it. The option was to fill the gaps and in the process reconfigure
the structure of scientific testing. Several alternative and gap-
filling accounts have been proposed. The first is deductive in
character, the three others are statistical.

Falsification and Corroboration
The first alternative was set out by Popper in his classic The
Logic of Scientific Discovery (Popper, 1934/1959). His approach

9Romesburg’s article, though written almost 40 years ago, still makes good reading,

not only because of an extended (and mathematically-sophisticated) description

of how Errington’s constant threshold-of-security hypothesis (“For a given area

and species, the number of animals surviving fall to spring can be no greater

than a threshold value. This threshold accounts for all forms of natural mortality,

barring catastrophic weather events, and is constant from year to year”) is

to be reconstructed/tested on the H-D model, but also because of his careful

attention to the details of evaluating the observational consequences (for the

most part statistical) of the hypothesis, the vagaries of “general-purpose data” not

collected under controlled conditions, and the necessity of cost/benefit analyses of

experiments before they are actually initiated. For Errington’s classic study (later

modified to include a variable threshold), see Errington (1945).

was striking both in its ease of application and intuitive appeal10:
Re-construe the H-D account in such a way that there are no
gaps to fill. In Popper’s view, this is fortunate since there is
no way in which they can be filled coherently in any case. His
point of departure was the fact that while a hypothesis can
never be “confirmed,” it can be falsified. The point is purely
logical. No number of confirming instances, no matter how
great, can ever guarantee that a universal generalization is true.
Yet a single disconfirming consequence will show, other things
being equal, that the generalization is false in a deductively
straightforward way. It doesn’t follow from the fact that any
number of swans are white that all swans are, but it does
follow from the fact that there is a black swan11 that the
generalization concerning them is false. Moreover, in the case
of falsification there are no gaps to fill, no new relationship
between data and hypothesis to be discovered or invented, no
need to add probabilistic operators and rules governing them to
our traditional methods. The rule of modus ponens—if p then q
and∼q, therefore∼p–by itself suffices as the “logic,” not so much
of justification (for there is no such thing according to Popper) as
of scientific discovery.

Popper reinforces his proposal by way of a reflection on actual
scientific practice. Scientists do not keep repeating the same
experiments in the attempt to pile up confirming consequences of
a hypothesis (although they do attempt to diversify the conditions
with respect to which these consequences are derived). Once
an experiment has been performed, and replicated by others,
they move on to other ways in which to test the hypothesis.
But, Popper contends, to (really) test a hypothesis is to find
new ways to falsify it, other kinds of data. Since no hypothesis
can ever be established as true, the best one can say of a
particular hypothesis is that it has survived a number of tests,
the more varied and severe the better. A hypothesis which
has so survived is said to be corroborated, i.e., has not been
shown to be false. In science as in the biotic community,
the fittest survive. The idea that biotic communities are self-
regulating, that there is “a balance in nature,” is an old,
indeed ancient, ecological truism. Yet it has been shown over
the last 30 years or so that the assumptions on which such
equilibrium rests do not hold generally12. This is, at least
according to the conventional wisdom, what characterizes the
scientific mind: never to accept some truth as given, but to
question it constantly.

10Indeed, it is difficult to overstate the impact of Popper’s account on the

methodology of practicing scientists, among which ecologists. Thus, the bio-

scientists Cassey and Blackburn (2006): “It is widely agreed that modern scientific

inference relies on the vulnerability to refutation of its general theories, which

have the characteristic quality of being both general and falsifiable.” Indeed, there

are more references in the index to Ford’s book to Popper than to anyone else,

philosopher or scientist. Neither Ford nor Picket et al., discuss either Bayesianism

or Evidentialism, although Pickett et al.’s, discussion of “pairwise alternative

hypothesis testing” and the reference in it to Platt (1964) include elements

of the latter.
11The stunning Cygnus atratus discovered in 1790 by Latham.
12See Botkin (1990). For Schmitz (2017), the “New Ecology” rests principally on

a rejection of the twin classic theses that ecosystems are (relatively) self-regulating

and isolated (from each other and, as objects of study, from human intervention).
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Popper is right to stress the “testing” intuition13. But whatever
logical advantage a program of principled falsification enjoys
is no more than apparent. The French physicist, philosopher,
and historian of science, Duhem (1962) was perhaps the first to
emphasize that hypotheses are never tested in isolation, but only
in conjunction with other hypotheses and appropriate initial and
boundary conditions14. A negative result does not by itself show
which of these hypotheses or conditions is false. To put it another
way, the logical asymmetry to which Popper draws attention is
matched by another: a confirming prediction confirms all of the
hypotheses and conditions from which it follows; a falsifying
observation does not similarly falsify all of the hypotheses and
conditions from which it follows15.

Finally, the Popperian methodology shares an important
difficulty with H-D accounts generally. Both are premised on
the assumption that hypotheses take the form of universal
conditionals. But it is often the case, perhaps almost always
in ecology, that hypotheses have a probabilistic or statistical
form. We have already referred to the difficulty in deducing
observational consequences from such hypotheses. The
falsifiability criterion is similarly tailored to “All A are B”
examples. It cannot deal effectively with the multi-factor multi-
causal hypotheses typical of ecology. All of this said, it must be
added at once that Popper’s methodology has not itself been
“falsified.” A great deal of valuable research has been carried out
by ecologists in attempts to follow Popper’s guidelines (albeit
substituting “rejection” for falsification properly so-called, as is
necessarily the case when hypotheses do not take the form of
universal conditionals)16.

In brief, problems with Popper do not show that all of the
research done in his name is either misguided or without value.
They do prompt us to look for other accounts of hypothesis
testing that avoid failures in Popper’s own. It is in any case a
mistake to fix on one method as uniquely satisfactory. Different
testing methods are appropriate as different types of research
questions are asked.

Error-Statistical and Significance Testing
Significance or error-statistical testing in fact pre-dated the H-D
model, both as regards its initial formalization and its widespread
acceptance among ecologists. The latter undoubtedly had to do
with the fact that ecological generalizations, even those taken as
lawlike, are for the most part statistical in character. It involves
a procedure not unlike Popper’s. That is, it provides a way

13Up to a point. There are notable examples of non-falsifiable zero-force principles

that play an indispensable role, the First Law of Motion in Newtonian mechanics,

the Hardy-Weinberg Law in ecology.
14See Houston (2014) for a case study in ecology of the ways in which “the logic of

every hypothesis is based on the underlying assumptions.”
15Popper (1974, p. 1035) recognized the difficulty. Yet he does not resolve it beyond

leaving it to “the scientific instinct of the investigator,” as did Duhem himself. See

also The Logic of Scientific Discovery, p. 76n. It is also always possible in principle

to re-interpret the allegedly falsifying data. See Kidwell and Holland (2002) for

a taphonomic/stratigraphic re-interpretation of the fossil record on which it is

consistent with classical evolutionary theory (and not, as Darwin himself was

worried, a straightforward falsification of it).
16An especially interesting ecological example is the study of individualist and

community-unit concepts carried out by Shipley and Keddy (1987).

of rejecting (not falsifying) hypotheses and at least indirectly
provides support for their alternatives. Variants on this testing
theme are associated with Fisher, Neyman, and Pearson. Since it
is so well-known among ecologists, to the extent that significance
testing is virtually synonymous with “statistical testing,” and even
“testing” tout court, there is no need for much detail. It suffices to
point out in a very broad way why it is inadequate, and then to
discuss briefly its recent redeployment by the philosopher Mayo
(1996; 2018) and Mayo and Spanos (2010).

On its Fisher variant, the viability of a hypothesis is probed
by comparing an observed result with the distribution of results
predicted by the hypothesis. That is, any hypothesis (typically
described as “null”) is rejected if an observed result (and results
more deviant) would be predicted by the hypothesis with a low
probability (P-value). Commonly, a result is judged “significant,
if it is of such a magnitude that it would have been produced
by chance not more frequently than once in twenty trials. This is
an arbitrary, but convenient, level of significance for the practical
investigator” (Fisher, 1929, p. 191), viz., no more than 5% of
the time. On the other hand, if results as or more deviant than
the observed results would be predicted more than 5% of the
time, the proper “Fisherian” conclusion is not to accept the
hypothesis, but to recognize a failure to reject the hypothesis. The
obvious problem is that any number of otherwise incompatible
hypotheses in the same area of research could predict the results
and in this very general sense be confirmed17. The Fisher singular
hypothesis account is too weak to discriminate them.

On the Neyman-Pearson variant18, “the only valid reason
for rejecting a statistical hypothesis is that some alternative
hypothesis explains the observed result with a greater degree of
probability” (Pearson, 1938). One of the hypotheses compared
is invariably in practice if not also in theory “null,” and
the commonly accepted significance level continues to be
conventionally set at 0.05, however arbitrary the number. In
essence, an NP test is a Fisherian test of the null hypothesis using
a test statistic designed to maximally differentiate between the
two hypotheses. Usually, this statistic is the likelihood ratio for
the two models or its logarithm.

The NP approach differs from Fisher’s view in a second respect
as well. The Fisherian test has an inductive and rather open-
ended character. The Fisherian P-value is just something for the
scientist to think about when trying to come to grips with nature.
The NP test on the other hand is set up to be a clear-cut decision
procedure. A critical level (designated α) for the P-value of the
null hypothesis is set a priori, with the result that you either
accept the null hypothesis or accept the alternative. An artifact
of the black or white nature of NP testing is that small differences
in the data can make large differences in inference. While in a
properly interpreted Fisherian test, the difference between a P-
value of 0.051 and 0.049 makes very little difference, in a properly
interpreted NP test, if the critical level has been set to 0.05, this
small difference makes a great deal of inferential difference.

17See Anderson et al. (2000). See also Läärä (2009).
18Which might more accurately be called Neyman-Pearson or NP

hypothesis testing.
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NP analysts realize that their procedure makes mistakes.
Neymann and Pearson distinguished two types of errors: Type I
(rejecting a true null hypothesis) and Type II (accepting a false
null hypothesis). They console themselves with the belief that
they can both measure and control the rate of errors. In fact the
magnitude of those error rates is the sole measure of the validity
of NP test inferences.

A cryptic consequence of NP test construction now emerges.
The calculation of error rates is tightly bound to the assumption
that one or the other alternative is true. If the data are generated
by some process other than one of the two alternative hypotheses,
the calculation of error rates may be deeply disrupted (see Dennis
et al., 2019, for a detailed analysis of this problem).

Thus, while the inference from Fisherian tests may be too
weak, the inference from NP tests may be too strong. As pointed
out by Chatfield (1995), analyzing the wrong models is likely to
be the greatest source of error in statistical analysis. Further errors
are often made, in part because many ecological hypotheses lack
measurable power and precision, in part because of the number
and complexity of the variables to be taken into account in
the case of field observations. The result, or so outsiders often
agree, is a widespread lack of confidence in significance testing
generally19. On both variants, it is too easy to attribute biological
to mere statistical significance.

Mayo attempts to bolster confidence in error-statistical testing
by imposing Popper-like severity constraints on it. However,
there are at least two ways her account differs from Popper’s.
First, hers is probabilistic, his deductive. Second, she wants to “go
smaller” and focus on testing individual statistical hypotheses; his
focus is on testing “global theories” like Newton’s and Einstein’s.
On Mayo’s account, an adequately stringent test combines weak
and strong severity principles. The weak principle has two key
features. One is that a severe test is such that the probability is low
that the test procedure would pass a hypothesis subjected to it if
the hypothesis were false. The other feature is that the probability
that the data agree with the alternative hypothesis is very low.
On the strong severity principle, data provide good evidence for
a hypothesis if it passes the severe test procedure, that is, is in
agreement with the data. Like Popper, Mayo emphasizes that the
more severe the test, the greater its probative value. She also
shares with him the assumption that hypotheses may be tested
individually, in a non-comparative context (or rather, that the test
is always with respect to a hypothesis and its negation). But this
assumption introduces the potential for bias, not simply by way
of adding auxiliaries to it so as to square the hypothesis with the
data once errors have been detected in it, but also by leaving out
of account that other hypothesesmight be better supported (more
severely tested) by the same data. To alleviate this problem, Mayo

19A lack exacerbated by widespread inability to replicate results published in

peer-reviewed articles. It is troubling without further explanation that (a) there

is a growing number of P values per ecology article published (since “the more

P values, the higher the odds that any given result will be significant even if

it’s just the result of chance”) and (b) “the reported value of the coefficient of

determination, R2, has been falling steadily (suggesting a decrease in the marginal

explanatory power of ecology).” See Low-Décarie et al. (2014), and for the first

embedded quotation (Stokstad, 2014). Murtaugh (2014), among others, defends

the traditional use of P values by ecologists, but on mathematical grounds.

and Spanos (2004) advocate “misspecification testing,” but this
only helps for misspecifications that can be conceived of.

Bayesian Inference
A third and increasingly influential option to the H-D model has
been to fill the gaps in it by providing an inverse characterization
of the way in which data directly confirm or otherwise support
hypotheses. It does so by supplementing deductive logic with
the full resources of probability theory and is known as
Bayesian Inference.

The first gap in the H-D model is the absence of any way of
determining both the means by which and the extent to which
data confirm a hypothesis. The gap is filled by Bayes Theorem,
so-named after its eighteenth century originator. The Theorem
is easily derived from the axioms of probability theory together
with a definition of conditional probability. The probabilities
within it are interpreted as measures of belief. It states that if
the probability of the data is not equal to zero, the posterior
probability of the hypothesis is equal to its prior probability,
i.e., the willingness of particular agents to bet that it is true,
before new or additional data bearing on it have been gathered,
multiplied by the probability of the data given the hypothesis
divided by the “expectedness” of the data, i.e., the marginal
probability of the data averaged over the hypothesis and its
alternatives. More compactly,

• Pr(H|D)= [Pr(H)× Pr(D|H)]/Pr(D).

On the Bayesian account, to confirm (disconfirm) a hypothesis is
just to raise (lower) its prior probability, viz.,

• D confirm H just in case Pr(H|D) > Pr(H)20.

This measure of confirmation is qualitative. There are alternative
ways to measure the degree to which a hypothesis is confirmed,
but a common metric is in terms of the difference between the
prior and posterior probabilities, Pr(H|D) – Pr(H). Whether the
degree is “high” or “low” depends on the particular confirmation
measure chosen, the implicit standards of disciplinary scientific
communities, and the research purposes of the investigator.

It follows as an immediate corollary of the Bayesian
account of confirmation that it applies to probabilistic
or statistical hypotheses as much as it does to universal
conditionals, thus filling a second gap left open by the H-D and
falsification accounts.

The third “gap,” if such it can be called, left open by the H-
D and its falsification variant is that they provide no way on
the basis of which to choose hypotheses to put to experimental
test. For traditional H-D theorists, they have no particular
advance rationale, for Popper they are merely “conjectures” on
an individual scientist’s part, the bolder the better. But as Aaron
Ellison, one of a rather small number of ecologists in the 1980’s
to urge adoption of Bayesian methods, puts it (Ellison, 1986),

We rarely, if ever, test all possible hypotheses, and most

of us use substantial prior knowledge about the behavior

20Which might also be put in terms of the relevance of the data to the belief thatH

is true. I.e., If Pr(H|D)= Pr(H) then the data D are irrelevant re belief adjustment.
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of a system in designing our experiments. Unlike classical

frequentist statistical practice, Bayesian inference requires the

investigator to state assumptions explicitly and use pre-existing

information quantitatively to define the prior distribution or

hypothesis (p. 1041).

In what are sometimes referred to as “empirical” or “standard”
applications of Bayes Theorem, the prior probability
distributions are estimated on the basis of observed
relative frequencies in the data. In non-standard cases, the
distributions are a function of the ecologist’s previously acquired
beliefs (including hunches and intuitions) about the object
of investigation.

The fourth and final gap, very much underscored by Ellison,
is that Bayesian inference lends itself in a uniquely transparent
way to adaptive management and environmental decision-
making. On the one hand, just as Bayesian agents begin, as
most of us in fact (and rather unconsciously) do, with an
initial probability distribution over plausible hypotheses and
expected outcomes, up-dating and re-adjusting the distribution
as data accumulate, continually learning from experience21, so
too (ideally) adaptive land and wildlife managers treat decisions
as hypotheses to be tested, choosing them where possible on
the basis of past experience, and modifying them as necessary
in the light of the observed outcomes to which they lead. To
manage adaptively is to learn from experience, to acknowledge
the inevitability of uncertainty is to be open to policy changes
as additional data are brought to bear on policies already
in place. That the degree of uncertainty with which initial
decisions are made can be measured and then re-evaluated
as time goes by, moreover, reassures the public that policy
shifts are never arbitrary or capricious, and nearly always open
to revision.

On the other hand, the usual decision-protocols routinely use
Bayes Theorem to calculate optimal courses of action on the
basis of the probability of outcomes and their respective utilities.
A rational agent—manager, politician, or citizen—chooses the
course of action that maximizes the product of the (posterior)
probability of its outcome and its expected utility. This is as
should be expected. We act rationally in such a way as to
maximize our desires (utilities) given that we have particular
beliefs (probabilities) concerning the future, at least insofar as our
actions are intentional22.

21If learning from experience is to be possible, then it is reasonable to insist that

learners should not have an a priori, and hence prior, beliefs that an empirical

hypothesis is true to degree 1, i.e., could not possibly be false, or false to degree

0, i.e., could not possibly be true. Empirical hypotheses are never more than

merely probable, which is to say that our beliefs concerning their truth are always

uncertain to one degree or another. Nevertheless, some hypotheses aremuch better

confirmed than others, and provide a more secure basis for action. It is the task of

an adequate theory of confirmation, or so the Bayesian argues, to make clear the

grounds of the difference. Although uncertainty can never be eliminated, it can be

brought to heel.
22Of course, this is no more than an idealization. In practice, policy decisions

involve reconciling a number of different, often-conflicting, objectives, and there

is no algorithm by means of which all can be optimized. The relatively recent

discipline of multiple-criteria decision-making seeks to optimize, if not the criteria,

then the trade-offs between them (see Deb, 2013).

CONFIRMATION AND EVIDENCE

Ellison admits that

Not all ecologists . . . appreciate the philosophical underpinnings

of Bayesian inference. In particular, Bayesians and frequentists

differ in their definition of probability and in their treatment of

model parameters as random variables or estimates of true values.

These assumptions must be addressed explicitly before deciding

whether or not to analyze ecological data (Ellison, 2004, p. 509).

Agreed: the assumptions must be addressed. In brief, (a) the
decision whether or not to use Bayesian methods depends on
the type of research question being asked, (b) there are several
clear differences between these types, and (c) an unaided used of
Bayesian methods does not ensure the objectivity rightly held to
follow from an appropriate use of “scientific method(s).”

There are various types of research question23. One is: given
a datum, what should I believe, and to what degree? This
question has to do with the confirmation of my beliefs. A second
question is: what kind of evidence does the datum provide
for one hypothesis as against another, and how strong is the
evidence? Admittedly, “confirmation” and “evidence” are used
interchangeably; D is often taken as evidence for H just in
case D confirms H. But they should be distinguished rather
sharply. Their conflation is the source of a great deal of error in
philosophy, statistics, and perhaps also in the practice of science.
Intuitively, confirmation is agent-dependent in the sense that a
hypothesis is confirmed if and only if the agent’s degree of belief
in it is raised. Incorporating as it does an agent’s belief, it in this
same sense subjective. Evidence in the narrow technical sense
used here, a relation between the likelihoods of data/models,
however, is agent-independent; it has to do not with raising
agents’ prior degrees of belief in a hypothesis on the basis of
the data subsequently collected, but in assessing the relative
probability of the data under one hypothesis as opposed to under
another. It is in this sense, objective, incorporating a logical
and belief-free relation between data and hypothesis. It is also
intuitively comparative. Evidence consists of data more probable

23Royall (1997) was perhaps the first statistician to distinguish sharply between

confirmation and evidence questions in just the way that we do here. One of the

anonymous referees of this paper has reminded us that the confirmation question

is normative – what should an agent believe? – while the second, evidential,

question asks the merely descriptive question – in what conditions do data provide

evidence for a hypothesis. This distinction is important; what “should” be believed

brings with it the presupposition that the agent is rational, and this presupposition,

in turn, constrains the limits of belief, imposing a measure of “objectivity” on

them. It is certainly more plausible to contend that D provide evidence for H

just in case they bolster rational belief that it is true. The immediate difficulty

with this sort of attempt to square confirmation with evidence is that it eventually

requires imposing such strong constraints that all fully rational agents will assign

the same prior probabilities at the outset of their inferences given that they share

the same background information (see Williamson, 2005, pp. 11–12). There are

several problems with the “unique probability constraint” (see Bandyopadhyay

and Brittan, 2010), perhaps the most important of which is that “sharing the

same background information” is vague if not also question-begging, an unhelpful

proxy for objectivity. In part for this reason, traditional Bayesians make their case

for objectivity not on the constraining of priors but the convergence of posterior

probabilities. That convergence is not a sufficient condition of unbiased objectivity

will be demonstrated later.
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on one hypothesis than on another. The greater the likelihood
ratio, the stronger the evidence. In contrast, hypotheses are
confirmed one at a time as the probability of (belief in) their truth
is raised (strengthened).

The same idea, that “confirmation” and “evidence” vary
conceptually, is perhaps best illustrated by “crucial experiments.”
Such experiments discriminate one equally-well confirmed
hypothesis from another and at the same time provide evidence
for one as against the other. Although Darwin’s explanation of
evolution by way of natural selection had been generally accepted
by that time, it remained an open question in the early 1940’s
whether mutations among bacteria occur as either an adaptive
response to an environmental stimulus (an instance of the
Lamarckian theory of the heritability of acquired characteristics)
or randomly (in which case they are transmitted to the next
generation as a function of reproductive fitness). Both theories
had their defenders. In what is arguably the most famous single
experiment in the history of ecology/evolutionary biology, Luria
and Delbruck devised a way to test the two hypotheses (Luria
and Delbruck, 1943). They exposed a number of parallel cultures
to viruses known as phages, “subcellular parasites that infest,
multiply within, and kill bacteria.” On the Lamarckian theory,
bacteria adapt to their phage environment; hence, the number
of mutations that occur should be both relatively small and
constant across bacterial cultures. The Darwinian theory, that
phage-resistant mutations occur randomly and prior to exposure
entails that the number of phage-resistant mutations should vary
dramatically from one culture to the next, and since available
earlier in the process, the mutations accumulate much more
rapidly where they occur in lines before phage exposure.

Slightly more precisely, Delbruck and Luria hypothesized
that if phage-resistant mutations occurred after exposure, the
number of survivors would approximate a Poisson distribution,
on which the mean would equal the variance. What they
found was that the variance was much greater than the mean.
They then drew the Darwinian conclusion (as did the rest of
the biological community) that bacterial mutations are indeed
random, as are macro-organism mutations, rather than post-
adaptive or “directed.”

EVIDENTIAL STATISTICS24

This is what evidence does, allows us to discriminate in a
straightforwardly objective way between hypotheses that may be
otherwise equally well-confirmed. As we have just seen, there are
cases in which there is strong evidence for one of a pair of equally
well-confirmed hypotheses. There are also cases in which there is
no such evidence25, cases in which the evidence is strong and the
degree of confirmation low, and so on.

24We use “the likelihood-ratio account of evidence, “evidential statistics,” and

“Likelihoodism” somewhat interchangeably. It is important to note that the

likelihood ratio is only an important special case of a more general class of

measures that constitute the core of evidential statistics. See Lele (2004) on the

“efficiency” of this particular evidential function.
25See Rosenzweig’s (1936).

We can make this account of evidence more precise. It
involves the comparison of the merits of two models, M1 and
M2 (possibly, but not generally ∼M1) relative to the data D and
background information B.

• D is evidence for M1as against M2just in case Pr(D| M1) >

Pr(D|M2)
26.

This is often called the Likelihoodist (LR) account of evidence.
It follows at once that “data” are to be distinguished from
“evidence.” Data constitute evidence only with respect to models
in a well-defined comparative context27. To put this more
precisely, evidence is a data-based estimate of the relative
discrepancy of two models to the generating process. In the
case of simple models, the log-likelihood happens to be an
estimate (up to a constant) of the Kullback-Leibler discrepancy
between the generating process and a model. As with the
original confirmation account, this formulation is qualitative. A
commonly-used measure of the degree of evidence vis-à-vis a
model comparison is the numerical ratio of the likelihoods28.
Note in this connection that if 1 < LR ≤ 8, then D is often held
to provide “weak” evidence for M1as against M2, while when LR
> 8, D provides “strong” evidence for M1as against M2. Note
also the shift from talking about “hypotheses” and “theories” to
talking about “models.”Hypotheses are often formulated in verbal
rather than mathematical terms and they rarely provide potential
and predictive data-distributions. They can be either true or
false. Models are mathematically-formulated and idealized data-
generating mechanisms. They can generate data-distributions
near or far from what might be termed the “naturally”
generated distributions. Observed data or experimental results
support model1 over model2 if the potential/predictive data
generated by the first are by some agreed-upon measure closer
to the observed data than the potential data generated by
the second. Differences of information criteria are estimates
of KL discrepancy differences that adjust for biases caused
by estimation.

Although the terms have been used rather carelessly to this
point, “hypothesis” is more helpfully associated with Bayesian
inference, “model” with Evidential testing, leaving to the side
any questions concerning how either relates to “theory” (which
intuitively includes both hypotheses and models as components,
links them by way of explanatory principles and basic concepts,
and affords successful prediction of data in a wide variety of sub-
disciplines; force is such a basic concept and the laws of motion
the explanatory principles in classical physics, natural selection,

26Equivalently, the ratio of the two likelihoods is >1.
27The quantity Pr(D|M) is usually referred to in the philosophical literature as

a “likelihood.” But while numerically the likelihood of the model given the data

is proportional to the probability of the data given the model, likelihood and

probability differ conceptually; the likelihood is considered a function of the

model, whereas the probability is considered a function of the data. The common

philosophical notation of Pr(D|M) rather than the common statistical notation of

L(M;D) is adopted here, but is not meant to imply that the model M needs to be

considered a random variable.
28Or the logarithm of the likelihood ratio. Nothing in the present discussion turns

on the difference; the respective ordinal structures remain the same.
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and adaptation the basic concepts and explanatory principles in
Darwinian biology)29.

Evidence and confirmation thus characterized differ in a
number of important respects, some of which have already
been mentioned. Data can provide a high or low degree of
confirmation to a hypothesis while at the same time providing
weak or strong evidence for it in a comparative context. This is to
say that while D confirms H if and only if D constitutes evidence
for M with respect to ∼M30, there is no linear relationship
between their respective degrees31. Moreover, given the way in
which they are quantified, degrees of confirmation can vary
between 0 and 1 exclusive, while numerical values of evidence on
a likelihood ratio can range from 0 to ∞ inclusive (or -∞ to ∞

in the case of the log-likelihood ratio).

CONFIRMATION, EVIDENCE, AND THE

ANTHROPOGENIC CLIMATE-CHANGE

HYPOTHESIS

The distinction between confirmation and evidence is
indispensable for both theory and practice, and not often
made. But it also bears directly on the public understanding
of the way in which science informs policy formation. Simply
put, controversy with sweeping social, political, and economic
consequences sometimes arises, to one extent or another, from
failure to draw it.

A sample controversy has to do with the anthropogenic
“global warming” hypothesis, that is, the hypothesis that present
warming trends are human-induced. If it does not raise questions
concerning foundational physical theories, it does with respect to
their application32.

A wide spectrum of data raises the posterior probability of
the hypothesis, in which case they confirm it. Indeed, in the
view of most climatologists, this probability is very high. The
Intergovernmental Panel on Climate Change contends that most
of the observed temperature increase since the middle of the

29Some readers of this paper may be disappointed by the lack of precision in this

definition of “theory.” They should look at Marquet et al. (2014): “In ecology,

there is generally no consensus regarding the definition, role, and generality of

theories. . . .A summary of the ecological literature finds reference to 78 theories.”
30I.e., it is provable that Pr(M|D) > Pr(M) just in case [Pr(D|M)/Pr(D| ∼M)]> 1,

i.e., when the two models are mutually exclusive and jointly exhaustive. Models,

unlike hypotheses, don’t often have negations, only alternatives. In this respect it

differs from Bayesian-testing, which presupposes an implicit comparison between

a hypothesis and its negation only. It is in this sense that evidence-testing allows

for genuinely multiple models, Bayesian-testing does not.
31One of the reviewers has corrected the original formulation of this claim, and has

also urged us to make clear that the claim presupposes the difference measure of

confirmation we have taken as our model. It should be added that while numerical

similarities/dissimilarities between the proposed measures of confirmation and

evidence vary with the way in which each is characterized, the ways in which the

probability operators in each are interpreted—in terms of beliefs or bets in the

case of confirmation, in terms of formal relations in the case of evidence—force a

conceptual distinction between them, as does the ability to unravel such heretofore

intractable problems in the foundations of statistics as the notorious “paradoxes of

confirmation” (see Bandyopadhyay et al., 2016, Chapter 9) or to clarify one source

of public policy controversies.
32The following two paragraphs are drawn from Bandyopadhyay et al. (2016, pp.

40–44). References documenting the empirical claims made can be found there.

twentieth century has been caused by increasing concentrations
of greenhouse gases resulting from human activity such as
fossil fuel burning and deforestation. In part this is because
the reasonable prior probability that global warming is human-
induced is very high. It is assigned not on the basis of relative
frequencies so much as on the explanatory power of the models
linking human activity to the “greenhouse effect,” and thence
to rising temperatures. In part, the posterior probability of the
hypothesis is even higher because there are so many strong
correlations in the data. Not only is there a strong hypothesized
mechanism for relating greenhouse gases to global warming, this
mechanism has been validated in detail by physical chemistry
experiments on a micro scale, and as already indicated there is
a manifold correlation history between estimated CO2 levels and
estimated global temperatures. Of course, some climate skeptics
emphasize how difficult it is to get standardized and reliable data
for such a long period of time and from so many different places,
others point out that it has not always been true that changes
in CO2 levels precede changes in temperature. But the main
skeptical lines of argument are that (a) the likelihood of the data
on the alternative default (certainly simpler) hypothesis, that past
and present warming is part of an otherwise “natural” and long-
term trend, and therefore not “anthropogenic” is just as great,
(b) that the data are at least as likely on other, very different
hypotheses, among which solar radiation and volcanic eruption,
(c) that not enough alternative hypotheses have been considered
to account for the data. That is, among credible climate skeptics
there is somewillingness to concede that burning fossil fuels leads
to CO2 accumulation in the atmosphere and that carbon dioxide
is a greenhouse gas that traps heat before it can escape into the
atmosphere, and that there are some data correlating a rise in
surface temperatures with CO2 accumulation. But, the skeptics
continue, these correlations do not “support,” let alone “prove,”
the anthropogenic hypothesis because they can be equally well
accounted for on the default, “natural variation” hypothesis or by
some specific alternative. Since there is very little evidence for the
hypothesis, it is not, the skeptics conclude, very well confirmed
(and for this and other reasons massive efforts to reduce carbon
emissions are a costly mistake). But this conclusion rests on a
conflation of evidence with confirmation, and provides a striking
reason why it is necessary to distinguish the two.

Data are evidentially relevant only if they discriminate
hypotheses, and such data in the case of human-induced
warming have been difficult to come by. That fact has premised
at least part of the skeptics’ argument that the rise in atmospheric
CO2 comes from, e.g., the ocean, and is therefore “natural,” at the
very least as likely a cause of the greenhouse gases responsible for
temperature rise as the human-induced explanation. Such data
have, however, been identified increasingly33. For example, most
carbon atoms have an atomic mass of 12, but about 1% has an
atomic mass of 13. Both kinds can form CO2 molecules, 12CO2

and 13CO2, distinguishable in the laboratory. To put a complex
story very simply, it can be shown that if the CO2 atmosphere
comes from the surface (and not the depths) of the ocean, then
13CO2 will increase over time. If the CO2 comes from fossil

33What follows draws on the very accessible overview by Farley (2008).
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fuel burning, then the relative abundance of 13CO2 to 12CO2

will decrease. Experimental results show that the 13CO2/
12CO2

ratio is decreasing, evidence for the hypothesis that fossil fuels
rather than surface water is mainly responsible for rising levels
of CO2 in the atmosphere, and hence (on the assumption that
rising levels of CO2 are a cause of rising temperatures) for the
anthropogenic hypothesis.

BAYESIAN OBJECTIVITY

Two crucial differences between confirmation and evidence have
been alluded to but must be underlined. First, confirmation
is psychological in character, involving as it does changes
in an agent’s personal degree of belief that a hypothesis is
true. Evidence is logical in character, an agent-independent
relationship between models and data34. It follows not only
that confirmation is “kinematic,” beliefs re-adjusted over time
as data are accumulated, evidence “static,” an atemporal as well
as impersonal relationship between models and data, but also
that the probability operators in their respective accounts are
not to be interpreted in the same way. Confirmation tracks
changes in belief and thus degrees of uncertainty in an agent’s
mind. Evidence has to do, rather, and as already noted, with
a logical relation. The former probabilities are psychological
and in this sense “subjective,” the latter formal and for this
reason “objective.”

It would seem to follow that since the credibility of their
claims depends on the extent to which they are objective, the
method of model statistics should be preferred by practicing
ecologists. But this is not the end of the matter. On the one
hand, traditional, i.e., self-described “subjective Bayesians” make
a case for the objectivity of their method of testing hypotheses.
On the other, so-called “objective Bayesians” both curb the source
of subjectivity in applications of Bayes Theorem and play down if
not also discount completely the subjective/objective distinction
as an unwanted philosophical distraction. Since both approaches
are increasingly popular, each must be examined.

Confirmation and Convergence
Bayesian inferential techniques inform decision-making
processes. They do so by way of the fact that decisions are to
be explained in part in terms of their beliefs and desires. This
is to imply that whether the decisions themselves are good
or bad is agent-dependent. It is but a short natural if not also
logical step to conclude that they are all, even research decisions,
“biased.” One much-discussed example is “confirmation bias,”
focusing one’s efforts on finding data that confirm one’s beliefs

34To avoid misunderstanding, the choice of models to test is not agent-

independent, only the formal relationship between the models tested and the

data-distributions in which they issue. Both Bayesianism and Evidential Statistics

are “rationalist” or “top-down” in that they begin with hypotheses and models

and then proceed to gather data, not the other way around. In this respect, both

are to be sharply distinguished from frequentist approaches which begin with

correlations in the data gathered. In that Mayo begins with simple statistical

hypotheses, her approach (Mayo, 2018, p. 85) is in a related sense “bottoms-up.”

and thus potentially misrepresenting what is in fact the case35.
Meta-studies of reported ecological claims provide some support
for this conclusion36, and of course it is a source of at least some
of the public’s resistance to take them seriously. In the case of
Bayesian inference, the charge stems directly from the role that
prior probabilities play. Such probabilities are “subjective” in the
straightforward sense already indicated.

Traditional Bayesians contend that it is demonstrable
(Walker, 1969) that the influence of priors “wash out” over
time, in which case the inference is ultimately “objective.”
So long as certain conditions (event-exchangeability and the
like) hold and assumptions (concerning parameter identifiability
and the omission of idiosyncratic priors) are made, the beliefs
of different agents, no matter how unlike at the outset, will
eventually converge to the maximum likelihood solution as data
accumulate. What is not often appreciated is that the rate of
convergence (or whether it occurs at all) depends both on the
nature of the data and of the models. Unfortunately, the real
world of science is not always asymptotic. Data cost money and
take time to acquire. So while Bayesian inference and maximum
likelihoodmay often agree, sometimes in real world analyses they
do not – with practical consequences (Lele, under review; see also
the further discussion of this point below).

Further, the idea that Bayesian convergence is tantamount
to objectivity in an adequately strong sense of the word is
misleading. On the one hand, “objectivity” is here equated with
“inter- subjective agreement,” which is to say that for all of the
consensus involved, the probability is not agent-independent37.
Invariance is not to be confused with independence. However,
much the prior probabilities might “wash out” numerically in
the calculation of posterior probabilities via Bayes Theorem, they
must still include reference to them in principle. The reference
in principle is crucial not because it influences the calculation,
but because it embeds stochasticity in the head as “uncertainty,”
and not in the world. A fully objective scientific inference draws
conclusions about the way the world is, and not about the way in
which consensus, however general, has been reached.

On the other hand, the asymptotic intuition embedded in
the notion of Bayesian convergence again leads naturally if not
also logically to the conclusion that common agreement about
the way things stand in the world is tantamount to truth. But
this optimistic suggestion is hostage to the history of science.
Commitment to the belief that in their inter-dependency, self-
regulation, and complexity, undisturbed biotic communities
evolve in the direction of greater complexity was “settled science”
among ecologists for well-over a 100 years. Only relatively
recently has it been more and more challenged. Convergence
of belief doesn’t entail its truth. Confidence may be raised,
even to the point of near-certainty, when it is in hindsight

35See Kahneman (2011, p. 81): “Contrary to the rules of philosophers [or at least of

Karl Popper], who advise testing hypotheses by trying to refute them, people (and

scientists quite often) seek data that are likely to be compatible with the beliefs they

currently hold.”
36For documentation of such bias see Fanelli (2010) and Holman et al. (2015).
37Nor, for that matter, independent of the many pressures brought to bear on the

up-dating of beliefs by disciplinary communities (in the person of editorial staffs

and funding agencies).

Frontiers in Ecology and Evolution | www.frontiersin.org 10 October 2019 | Volume 7 | Article 39991

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Brittan and Bandyopadhyay Ecology, Evidence, and Objectivity

unwarranted. This is why the rote response to those who question
anthropogenic global warming–“it is the consensus of experts”—
is far from conclusive and to much of the public unconvincing.

Non-informative Priors and Invariance
There is a 2-fold option for the increasing number of ecologists
who find it more computationally convenient to use Bayesian
up-dating techniques to analyze multi-layered/factor hierarchical
or space-state model of complex data, but who are uneasy
about the apparent subjectivity of prior probabilities in the
inferences they make. This option is set out in a very lucid and
thought-provoking way by Clark in his widely-cited paper, “Why
environmental scientists are becoming Bayesians” (Clark, 2005).
It consists of placing a constraint on allowable priors and easing
the tension sometimes induced when metaphysics and method
are mixed.

A variety of constraints on priors have been proposed. Most of
them are epistemic in character. They range from total knowledge
on the part of the up-dating agent to total ignorance, some
version of applying the Principle of Indifference to the choice of
priors. Although both have a long history, it is not entirely clear
how each is to be made precise (see Bandyopadhyay and Brittan,
2010). Clark opts for the latter—a flat or non-informational
constraint. It is mathematically-convenient to do so. Moreover,
it ensures agent-independency in this sense, that the agent is
assumed to know nothing about the hypothesis at hand at the
outset of his or her inferential activities; no prior beliefs are
presupposed (in which case, at least in principle, “the data are
allowed to speak for themselves”). But it also harbors problems,
several of which are set out by Lele (Frontiers of Ecology and
Evolution, this issue), and illustrated by case studies of the
survival of the kit fox and declines in amphibian populations.

Since it is immediately available to the reader, there is little
point in rehashing the rather technical paper here. Suffice it to say
that Lele draws several unintended but important consequences
from the long-known fact (see Fisher, 1930) that flat parameters
are not invariant under transformation. For our purposes, two
are particularly important. The first is that in a sample viability
analysis, the population prediction interval (PPI) obtained by
maximum likelihood ratios (MLR) under two parameterizations
of the data are similar, while those obtained by non-informative
priors differ from each other and from the MLR PPI. Despite
what Clark says (Clark, 2005, pp. 3 and 5), Bayesian inferences
based on flat priors do not lead to the same (numerical)
conclusions as likelihood-based inferences on the same data.

The second consequence (Clark, 2005, lines 258–259) is that
“different versions of the non-informative priors on the natural
parameters induce different priors (and hence biases) on the
induced parameters of scientific interest.” Simply put, the fact
that flat priors are not invariant under transformation can be
used to demonstrate that while on occasion Bayesian inferences
resemble likelihood-based inferences and appear bias-free, on
closer examination and other occasions this is not the case.

Although Clark admits (Clark, 2005, p. 4) that “the
importance of philosophy should not be understated,” the
“focus” of his paper is that “the emergence of modern [viz.,
objective hierarchical] Bayes has little to do with philosophy,
but rather comes from pragmatism.” But as Lele makes clear

in some detail, Clark’s failure to take philosophical questions
concerning the concept of objectivity more seriously led him
to ignore the problematic character of his answers to them,
and opens up legal and legislative challenges to flat-prior
ecological inferences which lack the requisite invariance under
transformation and parameterization.

Computation and Cloning38

Modern Bayesianism is ostensibly (but problematically) superior
to its unacceptably “subjective” original by way of restricting
allowable priors. It is often held to be similarly superior to
Likelihoodism in its apparently unique ability to compute
the likelihood function in complex statistical inferences from
and to hierarchical models. These models are very useful,
indeed indispensable, in understanding the processes underlying
complex ecological data. As Ponciano et al. (2009, p. 356)
put it, “computing the likelihood function needed for such
inferences requires an intractable, high-dimensional integral.
[But] inferences using computer intensive Bayesian methods
sidestep this difficulty by simulating observations from a prior
distribution using one of the various Markov chain Monte Carlo
algorithms.” This surmounting of very genuine computational
problems is undoubtedly an important factor in the growing
popularity of these Bayesian methods.

Lele et al. (2007, 2010) recognized that the Bayesian
computational methods could be coopted to calculate fully
frequentist maximum likelihood estimates and their standard
errors using an approach called data cloning. Ponciano et al.
(2009), developed an extension to data cloning (the data cloned
likelihood ratio or DCLR) that in a similar way affords the
calculation of likelihood ratios or the differences of information
criterion values. These are the fundamental tools of evidence, and
hence of evidence comparing hierarchical models.

Thus, the computational advantage enjoyed by Bayesian
methods is no more than apparent. If one assumes that statistical
paradigms should be (mainly) compared computationally and
conceptually, and if (at least in the wake of Ponciano et al.,
2009 and also Lele et al., 2007) there is nothing (basically)
to choose between the Bayesian and Likelihood paradigms
computationally, then the difference is conceptual, and in
this sense “philosophical.” The announcement of philosophy’s
irrelevancy by Clark and others was premature.

COGNITIVE BIASES AND THE METHOD OF

MULTIPLE MODELS

It needs to be made clear that convergence per se is
a demonstrable consequence of the Likelihood account of
evidence. Indeed on any adequate statistical paradigm, inferences
should improve as more model-relevant data are analyzed39.

38Another referee helpfully asked for a brief comment on cloning.
39Because model misspecification is allowed in an evidential framework, data-

model consistency is not identical with classical consistency. Of course, if the

generating process is actually a model in the model set, it should be asymptotically

identified. Under model misspecification, however, misleading and weak evidence

still both need to go to zero as sample size increases to infinity. Asymptotically

the model selected should be the model in the model set closest to the

generating process.
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But there is an underlying problem confronting Bayesian
convergence. It has been called “availability bias.” Bayesianmodel
identification converges to truth only if the “true” model is in
the set of hypotheses under consideration40. As the statistician
Barnard (1949) once wrote:

To speak of the probability of a hypothesis implies the possibility

of an exhaustive enumeration of all possible hypotheses, which

implies a degree of rigidity foreign to the true scientific spirit. We

should always admit the possibility that the experimental results

may best be accounted for by a hypothesis which never entered

our heads.

In fact, there are two problems here. The more general is that
Bayesian convergence assumes that all investigators start out with
the same model set, however at variance their initial degrees
of uncertainty with respect to its members’ truth. The more
specifically Bayesian problem is that it makes little sense to assign
prior probabilities to members of the model set unless that set is
assumed closed. Both problems result from the “availability bias.”

But this bias, as also the “confirmation bias” mentioned
earlier, is eliminated with the introduction of multiple models
required by the Likelihood account of evidence. First, models
on this account are pairwise compared, without assigning prior
probabilities to any of them, i.e., without incorporating a
subjective bias in the testing procedure. Second, data constitute
evidence only in a contextual way, conditional on the two models
compared. The most one can say is that one or the other is
better supported, not that it is closer to the truth. The challenge
is to find other models and new data against which models
to compare it. Bayesian convergence does not allow for the
heretofore unimagined, either with respect to the initial model
set or heretofore unrealized conditions. As ecologists know
perhaps too well, new models at different levels of organization
are introduced all the time as explanatory insights emerge and
ecosystems change41.

A striking example is provided by research on stress-induced
mutation. As Foster (2007) puts it,

. . . after 20 years of research, evidence now suggests that

various types of stresses induce responses that have mutagenic

consequences, and that sometimes this essentially randomprocess

can appear to be directed. . .

Change, not stasis, is the rule. In this case what has emerged
is a model on which mutations are generated even prior to

40That the “true model” is assumed to be in the model set follows from the fact that

the prior probabilities of the hypotheses considered must sum to 1. See Lindley

(2001) for an attempt to avoid the problem by pointing out that Bayesian inference

is always conditional on a set of models and “convergence” understood as relative

to it. To relativize convergence in this way, however, is to relativize “true model,”

and with it the “objectivity” that Bayesian convergence is intended to ensure.
41Chamberlain (1897), Platt (1964), and Burnham and Anderson (2002) among

others have understood the virtues of multiple models. On the LR account

of testing, evidence has real bite only when it serves to distinguish between

them. Human-caused and ocean-temperature caused global warming are not

simplymutually-exclusive and (we assume for present purposes) jointly-exhaustive

alternatives; stronger or weaker evidence for and against them can be gathered

in a genuinely comparative context. Apparently such a context has not yet been

developed for the deforestation hypotheses mentioned above.

the operation of Darwinian and Lamarckian selection pressures
and appears consistent with both. This is to say that what we
early took as an exemplary “crucial experiment,” viz., Delbruck
and Luria’s analysis of phage-resistant bacteria cultures, was
not42. As Turkey said in a memorable paper (Tukey, 1960, p.
425), “Conclusions are established with careful regard to the
evidence. . . [but] accepted subject to future rejection. . . .[They
are] taken to be of lasting value, but not everlasting value.”

Darwinian Objectivity
Given that in its present conceptual-methodological state ecology
generally considered appears so unsettled43, it might be asked
whether it really is a science, and not an area studies program,
grouping together a number of rather different investigative
activities under the general heading of “organisms and the
environment.” The emphasis on “integration” or “synthesis”
in some of the textbooks mentioned suggests an urgent need
to find, or impose, a common core. The traditional way of
understanding the question, “is it really a science and, if so,
in what respects?” viz., “how closely does it resemble classical
physics in its general aims and methods?” has rightly been
rejected. No one any longer thinks that philosophers can
determine in a more or less a priori fashion what the “right”
concept of science is, or pretend that there is one (and only
one) method of implementing it, or that all scientific laws must
take the form of universal conditionals. But there is more to
be said.

In a broad perspective, theoretical and conceptual clarification
in ecology continue; their integration remains a somewhat distant
goal. The possibility of methodological progress is nearer at hand.
We have illustrated such progress in the case of hypothesis and
model testing. There are at present two particularly plausible
accounts, Bayesian confirmation and the Likelihoodist account
of evidence. Their integration depends less on their unification
than on assigning them their proper roles. Choosing ecological
models to test and formulating/implementing environmental
policies are (like betting) actions; they are to be explained
or justified (as a normative Bayesian does) in terms of a
(rational) agent’s beliefs and desires. Beliefs and desires in
turn are traditionally and, we think, most plausibly to be
understood in personal probabilistic terms; some beliefs are
more certain than others, some desires stronger. It follows
that one should use Bayesian methods when the question is:
what should I do? The resulting answer concerns the extent
to which particular beliefs have been fortified in the process
of up-dating (up-data-ing) them. Likelihood ratios, on the
other hand, are agent independent. The probabilities embedded
in them have nothing to do with either beliefs or desires,
but with logical relations between sentences describing data
and articulating models. Such ratios answer the question:
which model (among those compared) is better supported by
the data?

42See Cairns et al. (1988) for the initial clue re stress-induced mutation, and

Houston (2014) for a multi-model approach to re-thinking the rejection of at least

two classic population equilibrium hypotheses.
43Some would say it is in a state of crisis, despite all of the enormously illuminating

work done over the last several generations in its many sub-disciplines, island-

biogeography among them.
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Insofar as they measure uncertainty, Bayesian inferences
lead to irreducibly personal conclusions, however great the
agreement respecting these conclusions proves to be over time
among different people. The LR account of evidence compares
models with their alternatives, and each accumulates support
or not as the predictions to which they lead are verified.
Since ecological models are for the most part stochastic, so
too are the events and processes that, in a clear sense, they
objectively represent. Greater methodological self-consciousness
about the methods they use to test hypotheses/models should
provide helpful guidance to ecological scientists and, in
identifying (at least in general terms) the sources of their
objectivity, make the policy recommendations of individual
wildlife and wildland managers more credible with the
general public44.

Our emphasis on the L-R account of evidence is not new, but
it has yet to gain much ground in ecology. As a recent paper
by Betini et al. (2017) discovered, “only 21 of 100 randomly
selected studies from the ecological and evolutionary literature
tested more than one hypothesis, only eight tested more than
two hypotheses.” Yet as we have argued, it is only insofar as
multiple models are pairwise compared vis-à-vis the data and
in this way tested that the main forms of cognitive bias can be
ruled out.

Two final notes. One is that both Bayesian confirmation and
Likelihood evidence rely importantly, although not completely45,
on the predictions to which hypotheses and models lead.
Prediction in ecology is very difficult46. Humans are an integral
part of many if not all of the ecological systems they study and
their research and policy interventions alter them in the process
of such study. As a result, a majority of ecologists still fall back on
falsification and simplified versions of significance testing. It very
much needs more methodological attention.

44See Maunder and Piner (2015): “Bayesian analysis accommodates the use of

prior information in integrated assessments, allowing sharing of information from

other species. It also allows for the representation of uncertainty in a probabilistic

context, which is ideal for decision analysis.” In this wayMaunder and Piner take it

as supplementing Likelihood testing which is widely used in fisheries management.
45The extent to which they explain and aid understanding of ecological events and

processes also factors into their evaluation.
46See Dietze (2017) and Maris (2018).

The other note is this. The Likelihood account leads to
convergence, as do all good parameter estimators, in the sense
that as favorable data continue to be accumulated, the evidence
for particular models becomes stronger and stronger. However,
there is not convergence toward a “final theory,” or even
assumed that the “true model” is among those already under
consideration. New explanations of events and instruments of
their prediction may from 1min to the next be discovered or
invented. As in the case of Darwin’s theory of natural selection,
progress is measured in terms of the survival of mutations in the
face of environmental pressures. From this point of view, testing
methods do not result in approximations to some stipulated goal
but are measures of survival value. What we term “Darwinian
objectivity” presupposes competition between accounts, whether
of ecological phenomena or appropriate methodologies.

In this deep way, the Likelihood account is well-suited to
ecology. On it, models are never more or less true but epistemic
stages in the course of evolution, contingent on conditions
which are themselves subject to continuing change, and on the
intervention in the biotic and abiotic environments of human
beings whose behavior is itself conditioned on the success or
failure of the models they test. Stochasticity and survival are
fundamental dimensions of natural processes. So too are they
features of any adaptive, objective and self-conscious account of
model testing, and therefore of scientific method generally.

AUTHOR CONTRIBUTIONS

GB and PB originally conceived the main the theme of the
paper. GB completed the first draft. Both authors contributed to
the revisions of the manuscript and approved the final version
for submission.

ACKNOWLEDGMENTS

Two of the editors of this issue of Frontiers in Ecology and
Evolution, Mark L. Taper and José M. Ponciano, have made some
very useful suggestions regarding the paper. The three referees for
this issue of Frontiers in Ecology and Evolutionmade a number of
helpful comments on our original submission, all of which we
have tried to address in our revisions.

REFERENCES

Anderson, D., Burnham, K., and Thompson, W. (2000). Null hypothesis testing:

problems, prevalence, and an alternative. J. Wildl. Manag. 64, 912–923.

doi: 10.2307/3803199

Bandyopadhyay, P., and Brittan, G. (2010). Two dogmas of strong objective

Bayesianism. Int. Stud. Philos. Sci. 24, 45–65. doi: 10.1080/02698590

903467119

Bandyopadhyay, P., Brittan, G., and Taper, M. (2016). Belief, Evidence, and

Uncertainty. New York, NY: Springer.

Barnard, G. (1949). Statistical inference. J. R. Stat. Soc. Ser. B 11, 115–149.

doi: 10.1111/j.2517-6161.1949.tb00028.x

Betini, G., Avgar, T., and Fryxell, J. (2017). Why are we not evaluating multiple

competing hypotheses in ecology and evolution? R. Soc. Open Sci. 4:160756.

doi: 10.1098/rsos.160756

Botkin, D. (1990). Discordant Harmonies: A New Ecology for the Twenty-First

Century. New York, NY: Oxford University Press.

Burnham, K., and Anderson, D. (2002). Model Selection and Multi-Model

Information: A Practical Information-Theoretic Approach, 2nd Edn. New York,

NY: Springer.

Cairns, J., Overbaugh, J., and Miller, S. (1988). The origin of mutants. Nature

(London) 335, 142–145. doi: 10.1038/335142a0

Cassey, P., and Blackburn, T. (2006). Reproducibility and repeatability in ecology.

Bioscience 56, 958–959. doi: 10.1641/0006-3568(2006)56[958:RARIE]2.0.CO;2

Chamberlain, T. (1897). The method of multiple working hypotheses. J. Geol. 5,

837–848. doi: 10.1086/607980

Chatfield, C. (1995). Model uncertainty, data mining and statistical inference. J. R.

Stat. Soc. Ser A 158, 419–466. doi: 10.2307/2983440

Clark, J. (2005). Why environmental scientists are becoming Bayesians. Ecol. Lett.

8, 2–14. doi: 10.1111/j.1461-0248.2004.00702.x

Frontiers in Ecology and Evolution | www.frontiersin.org 13 October 2019 | Volume 7 | Article 39994

https://doi.org/10.2307/3803199
https://doi.org/10.1080/02698590903467119
https://doi.org/10.1111/j.2517-6161.1949.tb00028.x
https://doi.org/10.1098/rsos.160756
https://doi.org/10.1038/335142a0
https://doi.org/10.1641/0006-3568(2006)56[958:RARIE]2.0.CO;2
https://doi.org/10.1086/607980
https://doi.org/10.2307/2983440
https://doi.org/10.1111/j.1461-0248.2004.00702.x
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Brittan and Bandyopadhyay Ecology, Evidence, and Objectivity

Da Silva, J., Steiner, A., and Schreiner, E. (2018, October 3). Forests: a natural

solution to climate change, crucial for a sustainable future. United Nations

Development Programme.

Deb, K. (2013). An evolutionary based Bayesian design optimization

approach under incomplete information. Eng. Optim. 45, 151–165.

doi: 10.1080/0305215X.2012.661730

Dennis, B., Poinciano, J., Taper,M., and Lele, S (2019). Errors in statistical inference

under model misspecification: evidence, hypothesis testing, and AIC. Front.

Ecol. Evol. doi: 10.3389/fevo.2019.00372

Dietze, M. (2017). Prediction in ecology: a first principles framework. Ecol. Appl.

27, 2048–2070. doi: 10.1002/eap.1589

Duhem, P. (1962). The Aim and Structure of Physical Theory, ed P. Weiner. New

York, NY: Atheneum.

Ellison, A. (1986). An introduction to Bayesian inference for ecological research

and decision-making. Ecol. Appl. 64, 1036–1046.

Ellison, A. (2004). Bayesian inference in ecology. Ecol. Lett. 7, 509–520.

doi: 10.1111/j.1461-0248.2004.00603.x

Errington, P. (1945). Some contributions of a fifteen-year local study of the

northern bob-white to a knowledge of population phenomena. Ecol. Monogr.

15, 1–34. doi: 10.2307/1943293

Fanelli, D. (2010). Do pressures to publish increase scientists’ bias?

An empirical support from US states data. PLoS ONE 5:e10271.

doi: 10.1371/journal.pone.0010271

Farley, J. (2008). The scientific case for modern anthropogenic global warming.

Monthly Rev. 60. doi: 10.14452/MR-060-03-2008-07_5

Fisher, R. (1929). The statistical method in psychical research. Proc. Soc. Psych. Res.

39, 189–192.

Fisher, R. (1930). Inverse probability. Proc. Camb. Philos. Soc. 26, 528–535.

Ford, D. (2000). Scientific Method for Ecological Research. Cambridge: Cambridge

University Press.

Foster, P. (2007). Stress-induced mutagenesis in bacteria. Crit. Rev. Mol. Biol. 42,

373–397. doi: 10.1080/10409230701648494

Hempel, C. (1965). Studies in the Logic of Confirmation. Aspects of Scientific

Explanation. New York, NY: Free Press.

Holman, L., Head, M., Lanfear, R., and Jennions, M. (2015). Evidence of

experimental bias in the life sciences: why we need blind data recording. PLoS

Biol. 13:e1002190. doi: 10.1371/journal.pbio.1002190

Houston, M. (2014). Disturbance, productivity, and species diversity: empiricism

vs. logic in ecology theory. Ecology 9, 2382–2396. doi: 10.1890/13-1397.1

Kahneman, D. (2011). Thinking Fast and Slow. New York, NY: Farrar, Strauss,

and Giroux.

Kidwell, S., and Holland, S. (2002). The quality of the fossil

record: implications for evolutionary analyses. Annu. Rev.

Ecol. Syst. 33, 561–588. doi: 10.1146/annurev.ecolsys.33.030602.

152151

Läärä, E. (2009). Statistics: reasoning on uncertainty, and the insignificance

of testing null. Ann. Zool. Fennici 46, 138–157. doi: 10.5735/086.

046.0206

Lele, S. (2004). “Evidence function and the optimality of the law of likelihood,”

in The Nature of Scientific Evidence, eds M. Taper and S. Lele. Chicago, IL:

University of Chicago Press.

Lele, S., Dennis, B., and Lutscher, F. (2007). Data cloning: easy maximum

likelihood estimation for complex ecological models using Bayesian

Markov Chain Mlonte Carlo methods. Ecol. Lett. 10, 551–563.

doi: 10.1111/j.1461-0248.2007.01047.x

Lele, S. R., Nadeem, K., and Schmuland, B. (2010). Estimability and

likelihood inference for generalized linear mixed models using data

cloning. J. Am. Stat. Assoc. 105, 1617–1625. doi: 10.1198/jasa.2010.

tm09757

Lindley, D. (2001). The philosophy of statistics. J. R. Stat. Soc. 49, 293–337.

doi: 10.1111/1467-9884.00238

Low-Décarie, E., Chivers, C., and Grenados, M. (2014). Rising complexity and

falling explanatory power in ecology. Front. Ecol. Environ. 12, 412–418.

doi: 10.1890/130230

Luria, S., and Delbruck, M. (1943). Mutations of bacteria from virus sensitivity to

virus resistance. Genetics 28:491.

Maris, V. (2018). Prediction in ecology: promises, obstacles, and clarifications.

Oikos 127, 171–183. doi: 10.1111/oik.04655

Marquet, P., Allen, A. P., Brown, J. M., Dunne, J. A., Enquist, B. J.,

Gillooly, J. M., et al. (2014). On theory in ecology. Bioscience 64, 701–710.

doi: 10.1093/biosci/biu098

Maunder,M., and Piner, K. (2015). Contemporary fisheries stock assessment: many

issues still remain. ICES J. Mar. Sci. 72, 7–18. doi: 10.1093/icesjms/fsu015

Mayo, D. (1996). Error and the Growth of Knowledge. Chicago, IL: University of

Chicago Press.

Mayo, D. (2018). Statistical Inference as Severe Testing. Cambridge: Cambridge

University Press.

Mayo, D., and Spanos, A. (2004). Methodology in practice: statistical

misspecification testing. Philos. Sci. 71, 1007–1025.

Mayo, D., and Spanos, A. (2010). Error and Inference. Cambridge: University of

Cambridge Press.

Murtaugh, P. (2014). In defense of P values. Ecology 95, 611–617.

doi: 10.1890/13-0590.1

Pearce, F. (2008, October 9). Conflicting data: how fast is the world losing its

forests? Yale Environment 360.

Pearson, E. (1938). Student vs. statistician. Biometrica 30, 210–250.

Pickett, S., Kolesa, J., and Jones, C. (2007). Ecological Understanding: The Nature of

Theory and the Theory of Nature, 2nd Edn. Amsterdam: Elsevier.

Platt, J. (1964). Strong inference. Science 146, 347–353.

doi: 10.1126/science.146.3642.347

Ponciano, J., Taper, M., Dennis, B., and Lele, S. (2009). Hierarchical models in

ecology: confidence intervals, hypothesis testing, and model selection using

data cloning. Ecology 90, 356–362. doi: 10.1890/08-0967.1

Popper, K. (1934/1959). Logik der Forschung. The Logic of Scientific Discovery.

London: Hutchinson.

Popper, K. (1974). Intellectual Autobiography. The Philosophy of Karl Popper, ed P.

Schilpp. LaSalle, IL: Open Court.

Romesburg, C. (1981). Wildlife science: gaining reliable knowledge. J. Wildl.

Manag. 45, 293–313. doi: 10.2307/3807913

Rosenzweig, S. (1936). Some implicit factors in diverse methods of psychotherapy.

Am. J. Orthopsychiatry 6, 412–415. doi: 10.1111/j.1939-0025.1936.tb05248.x

Royall, R. (1997). Statistical Evidence: A Likelihood Paradigm. London: Chapman

and Hall.

Saint-Mont, U. (2018). Where Fisher, Neyman and Pearson went astray: on the

logic (plus some history and philosophy) of statistical tests. Adv. Soc. Sci. Res. 5,

672–691. doi: 10.14738/assrj.58.4867

Schmitz, O. (2017). The New Ecology: Rethinking a Science for the Anthropocene.

Princeton, NJ: Princeton University Press.

Shipley, B., and Keddy, P. (1987). The individualistic and community-

unit concepts as falsifiable hypotheses. Vegetatio 69, 47–55.

doi: 10.1007/BF00038686

Shrader-Frechette, K., and McCoy, E. (1993). Method in Ecology: Strategies for

Conservation. Cambridge: Cambridge University Press.

Stokstad, E. (2014, August 25). Is ecology explaining less and less? Science.

Tukey, J. (1960). Conclusions vs. decisions. Technometrics 2, 423–433.

doi: 10.1080/00401706.1960.10489909

Walker, A. M. (1969). On the asumptotic behavior of posterior distributions. J. R.

Stat. Soc. Ser. B 31, 423–433.

Williamson, J. (2005). Bayesian nets and causality. Oxford: Oxford University

Press.

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2019 Brittan and Bandyopadhyay. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Ecology and Evolution | www.frontiersin.org 14 October 2019 | Volume 7 | Article 39995

https://doi.org/10.1080/0305215X.2012.661730
https://doi.org/10.3389/fevo.2019.00372
https://doi.org/10.1002/eap.1589
https://doi.org/10.1111/j.1461-0248.2004.00603.x
https://doi.org/10.2307/1943293
https://doi.org/10.1371/journal.pone.0010271
https://doi.org/10.14452/MR-060-03-2008-07_5
https://doi.org/10.1080/10409230701648494
https://doi.org/10.1371/journal.pbio.1002190
https://doi.org/10.1890/13-1397.1
https://doi.org/10.1146/annurev.ecolsys.33.030602.152151
https://doi.org/10.5735/086.046.0206
https://doi.org/10.1111/j.1461-0248.2007.01047.x
https://doi.org/10.1198/jasa.2010.tm09757
https://doi.org/10.1111/1467-9884.00238
https://doi.org/10.1890/130230
https://doi.org/10.1111/oik.04655
https://doi.org/10.1093/biosci/biu098
https://doi.org/10.1093/icesjms/fsu015
https://doi.org/10.1890/13-0590.1
https://doi.org/10.1126/science.146.3642.347
https://doi.org/10.1890/08-0967.1
https://doi.org/10.2307/3807913
https://doi.org/10.1111/j.1939-0025.1936.tb05248.x
https://doi.org/10.14738/assrj.58.4867
https://doi.org/10.1007/BF00038686
https://doi.org/10.1080/00401706.1960.10489909
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


ORIGINAL RESEARCH
published: 08 November 2019
doi: 10.3389/fevo.2019.00413

Frontiers in Ecology and Evolution | www.frontiersin.org 1 November 2019 | Volume 7 | Article 413

Edited by:

Hidetoshi Shimodaira,

Kyoto University, Japan

Reviewed by:

Ichiro Ken Shimatani,

Institute of Statistical Mathematics

(ISM), Japan

Hirohisa Kishino,

The University of Tokyo, Japan

*Correspondence:

José Miguel Ponciano

josemi@ufl.edu

Specialty section:

This article was submitted to

Environmental Informatics,

a section of the journal

Frontiers in Ecology and Evolution

Received: 18 March 2019

Accepted: 17 October 2019

Published: 08 November 2019

Citation:

Ponciano JM and Taper ML (2019)

Model Projections in Model Space: A

Geometric Interpretation of the AIC

Allows Estimating the Distance

Between Truth and Approximating

Models. Front. Ecol. Evol. 7:413.

doi: 10.3389/fevo.2019.00413

Model Projections in Model Space: A
Geometric Interpretation of the AIC
Allows Estimating the Distance
Between Truth and Approximating
Models
José Miguel Ponciano 1* and Mark L. Taper 1,2

1 Biology Department, University of Florida, Gainesville, FL, United States, 2Department of Ecology, Montana State University,

Bozeman, MT, United States

Information criteria have had a profound impact on modern ecological science. They

allow researchers to estimate which probabilistic approximating models are closest to

the generating process. Unfortunately, information criterion comparison does not tell

how good the best model is. In this work, we show that this shortcoming can be

resolved by extending the geometric interpretation of Hirotugu Akaike’s original work.

Standard information criterion analysis considers only the divergences of each model

from the generating process. It is ignored that there are also estimable divergence

relationships amongst all of the approximating models. We then show that using both

sets of divergences and an estimator of the negative self entropy, a model space can

be constructed that includes an estimated location for the generating process. Thus,

not only can an analyst determine which model is closest to the generating process,

she/he can also determine how close to the generating process the best approximating

model is. Properties of the generating process estimated from these projections are more

accurate than those estimated by model averaging. We illustrate in detail our findings

and our methods with two ecological examples for which we use and test two different

neg-selfentropy estimators. The applications of our proposed model projection in model

space extend to all areas of science where model selection through information criteria

is done.

Keywords: error rates in model selection, Kullback-Leibler divergence, model projections, model averaging,

Akaike’s Information Criterion

1. INTRODUCTION

Recent decades have witnessed a remarkable growth of statistical ecology as a discipline,
and today, stochastic models of complex ecological processes are the hallmark of the most
salient publications in ecology (e.g., Leibold et al., 2004; Gravel et al., 2016; Zeng and
Rodrigo, 2018). Entropy and the Kullback-Liebler divergence as instruments of scientific
inquiry are now at the forefront of the toolbox of quantitative ecologists, and many exciting
new opportunities for their use are constantly being proposed (e.g., Casquilho and Rego,
2017; Fan et al., 2017; Kuricheva et al., 2017; Milne and Gupta, 2017; Roach et al., 2017;
Cushman, 2018). One of the most important, but under explored, applications of the
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Kullback-Liebler divergence remains the study or
characterization of the error rates incurred while making
model selection according to information criteria (Taper and
Ponciano, 2016b). This research is particularly relevant when,
as it almost always happens in science, none of the candidate
models exactly corresponds to the chance mechanism generating
the data.

Understanding the impact of misspecification of statistical
models constitutes a key knowledge gap in statistical ecology, and
many other areas of biological research for that matter (e.g., Yang
and Zhu, 2018). Research by us and many others (see citations in
Taper and Ponciano, 2016b and in Dennis et al., 2019) has led to
detailed characterizations of how the probability of making the
wrong model choice using any given information criterion, not
only may depend on the amount of information (i.e., sample size)
available, but also on the degree of model misspecification.

Consequently, in order to estimate the error rates of model
selection according to any information criterion, practitioners
are left with the apparent paradox (“catch-22”) of being able to
estimate how likely it is to erroneously deem as best that model
which is furthest apart from the generating model, only after
having accomplished the unsolved task of estimating the location
of the candidate models relative to the generating process and to
each other.

In this paper, we propose a solution to this problem. Our
solution was motivated by the conceptualization of models as
objects in amulti-dimensional space as well as an extension of the
geometrical thinking that Akaike used so brilliantly in his 1973
paper introducing the AIC. Starting from Akaike’s geometry, we
show how to construct a model space that includes not only
the set of candidate models but also an estimated location for
the generating process. Now, not only can an analyst determine
which model is closest to the generating process, she/he can also
determine the (hyper)spatial relationships of all models and how
close to the generating process the best model is.

In 1973, Hirotugu Akaike wrote a truly seminal paper
presenting what came to be known as the AIC. Akaike initially
called the statistic “An Information Criterion,” but soon after
its publication it came to be known as “Akaike’s Information
Criterion.” Various technical accounts deriving the AIC exist
(e.g., Burnham and Anderson, 2004, Chapter 7), but few explain
in detail every single step of the mathematics of Akaike’s
derivation (but see De Leeuw, 1992). Although focusing on the
measure-theoretic details, deLeeuw’s account makes it clear that
Akaike’s paper was a paper about ideas, more than a paper
about a particular technique. Years of research on this project
has led us to understand that only after articulating Akaike’s
ideas, the direction of a natural extension of his work is easily
revealed and understood. Although thinking of models and the
generating mechanism as objects with a specific location in space
is mathematically challenging, this exercise may also prove to
be of use to study the adequacy of another common statistical
practice in multi-model inference: model averaging.

Intuitively, if one thinks of the candidate models as a cloud
of points in a Euclidean space, then it would only make sense to
“average” the model predictions if the best approximation of the
generating chance mechanism in that space is located somewhere

inside the cloud of models. If however the generating model
is located outside such cloud, then performing model average
will only at best, worsen the predictions of the closest models
to the generating mechanism. The question then is, can this
idea of thinking about models as points in a given space be
mathematically formalized? Can the structure and location of the
candidate models and the generating mechanism be somehow
estimated and placed in a space? If so, then the answer to both
questions above (i.e., the error rates of multi-model selection
under misspecification and when should an analyst perform
model averaging) could be readily explored. These questions are
the main motivation behind the work presented here.

2. THE AIC AND A NATURAL GEOMETRIC
EXTENSION: MODEL PROJECTIONS IN
MODEL SPACE

In his introduction to Akaike (1973)’s original paper, De Leeuw
(1992) insisted on making sure it was understood that Akaike’s
contribution was much more valuable for its ideas than for
its technical mathematical developments: “. . .This is an ‘ideas’
paper,’ promoting a new approach to statistics, not a mathematics
paper concerned with the detailed properties of a particular
technique. . .” After this explanation, De Leeuw undertakes the
difficult labor of teasing Akaike’s thought process from the
measure-theoretic techniques. In so doing, the author manages
to present a clear and concise account clarifying both, Akaike’s
mathematical approach and his ideas. De Leeuw was keenly
aware of the difficulty of trying to separate the ideas from the
mathematical aspects of the paper: in introducing the key section
in Akaike’s paper, he describes it as “a section not particularly
easy to read, that does not have the usual proof/theorem format,
expansions are given without precise regularity conditions,
exact and asymptotic identities are freely mixed, stochastic
and deterministic expressions are not clearly distinguished and
there are some unfortunate notational. . . typesetting choices”
(De Leeuw, 1992). To us, however, the importance of De Leeuw’s
account stems from the fact that it truly brings home the crucial
point that at the very heart of Akaike’s derivation there was a
geometrical use of Pythagoras’ theorem (see Equation 1, page
604 in De Leeuw, 1992). The modern literature has been able to
reduce Akaike’s derivation to just a few lines (see Davison, 2003).
However, such condensed proofs conceal the original geometric
underpinnings of Akaike’s thinking, which De Leeuw exposed.
Our contribution for this special issue consists of taking Akaike’s
derivation one step further by using Pythagoras’ theorem again
to attain not a relative, but an absolute measure of how close each
model in a model set is from the generating process.

Akaike’s (1973) paper is difficult and technical but at the
same time, it is a delightful reading because he managed to
present his information criterion as the natural consequence
of a logical narrative. That logical narrative consisted of six
key insights that we strung together to arrive at what we
believe is a second natural consequence of Akaike’s foundational
thoughts: our model projections proposal. After introducing
our notation following Akaike’s, we summarize those six key
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insights. We stress that these insights and the accompanying key
figure we present below are none other than a simple geometric
representation of De Leeuw’s measure-theoretic re-writing of
Akaike’s proof. We encourage readers with a strong probability
background to read De Leeuw’s account. We then present our
main model projections proposal and contribution and support
it with a fully illustrated example.

2.1. Theoretical Insights From Akaike
(1973)
Akaike’s quest was motivated by a central goal of modern
scientific practice: obtaining a comparison measure between
many approximating models and the data-generating process.
Akaike began thinking about how to characterize the discrepancy
between any given approximating model and the generating
process. He denoted the probability densities of the generating
process and of the approximating model as f (x, θ0) and f (x, θ),
respectively, where θ0 denoted the column vector of dimension L
of true parameter values. Although he started by characterizing
the discrepancy between the true model and the approximating
model, his objective was to come up with an estimate of such
discrepancy that somehow was free of the need of knowing either
the dimension or the model form of f (x, θ0). The fact that he
was able to come up with an answer to such problem is not
only outstanding, but the reason why the usage of the AIC
has become ubiquitous in science. Akaike’s series of arguments
arriving to the AIC can be summarized by stringing together
these six key insights:

2.1.1. Insight 1: Discrepancy From the Generating

Process (Truth) Can Be Measured by the Average of

Some Function of the Likelihood Ratio
Akaike’s first important insight follows from two observations.
First, under the parametric setting defined above, a direct
comparison between an approximating model and the true,
generating stochastic process can be achieved via the likelihood
ratio, or some function of the likelihood ratio. Second, because
the data X are random, the expected discrepancy (average over
all possible realizations of the data) would be written as

D(θ , θ0;8) =

∫

f (x; θ0)8(τ (x, θ , θ0))dx

= EX

[

8(τ (X, θ , θ0))
]

,

where the expectation is, of course, taken with respect to
the generating stochastic process X. We denote the likelihood

ratio as τ (x, θ , θ0) =
f (x;θ)
f (x;θ0)

and a twice differentiable

function of it as8(τ (x, θ , θ0)).
Akaike then proposed to study under a general framework

how sensitive this average discrepancy would be to the deviation
of θ from the truth, θ0.

2.1.2. Insight 2: D(θ , θ0;8) Is Scaled by Fisher’s

Information Matrix
Akaike thought of expanding the average discrepancyD(θ , θ0;8)
using a second order series approximation around θ0. Akaike’s
second insight then consisted of noting the strong link

between such approximation and the theory of Maximum
Likelihood (ML).

For a univariate θ , the Taylor series approximation of the
average function8 of the likelihood ratio is written as

D(θ , θ0;8) ≈ D(θ0, θ0;8)+ (θ − θ0)
∂D(θ , θ0;8)

∂θ

∣

∣

∣

∣

θ =θ0

+
(θ − θ0)

2

2!

∂2D(θ , θ0;8)

∂θ2

∣

∣

∣

∣

θ=θ0

+ . . . (1)

To find an interpretable form of this approximation, just like
Akaike did following Kullback and Leibler (Kullback and Leibler,
1951; Akaike, 1973), we use two facts: first, by definition
τ (x, θ , θ0)|θ=θ0 = 1 and second, that

∫

f (x; θ)dx = 1 because
f is a probability density function. Together with the well-known
regularity conditions used in mathematical statistics that allow
differentiation under the integral sign (Pawitan, 2001), these two

facts give us the following: first,
∫ ∂f (x;θ)

∂θ
dx =

∫ ∂2f (x;θ)

∂θ2
dx = 0.

Hence, ∂D(θ ,θ0;8)
∂θ

∣

∣

∣

θ=θ0
= 0. This result then allows writing the

second derivative of the approximation as

∂2D(θ , θ0;8)

∂θ2

∣

∣

∣

∣

θ=θ0

=

∫

∂

∂θ

(

∂8(τ )

∂τ

∂τ

∂θ

)

f (x; θ0)dx

∣

∣

∣

∣

θ=θ0

=

∫

∂28(τ )

∂τ 2

(

∂τ

∂θ

)2

f (x; θ0)dx

∣

∣

∣

∣

∣

θ=θ0

+

∫

∂2τ

∂θ2

∂8(τ )

∂τ
f (x; θ0)dx

∣

∣

∣

∣

θ=θ0

= 8′′(1)

∫ (

1

f (x; θ0)

∂f (x; θ)

∂θ

)2

f (x; θ0)dx
∣

∣Sθ=θ0

= 8′′(1)

∫ (

∂ log f (x; θ)

∂θ

)2

f (x; θ)dx
∣

∣

θ=θ0

= 8′′(1)I(θ0),

where I(θ0) is Fisher’s information. To move from the first line
of the above calculation to the second line we used a combination
of the product rule and of the chain rule. To go from the second
to the third line, note that because the first derivative is equal to 0
as shown immediately above of this equation, the integral in the
right hand is null.

Hence, in this univariate case, the second order approximation
is given byD(θ , θ0) ≈ 8(1)+ 1

28
′′(1)(θ − θ0)

2
I(θ0), where I(θ0)

is Fisher’s information. Thus, the average discrepancy between an
approximating and a generating model is scaled by the inverse of
the theoretical variance of the Maximum Likelihood estimator,
regardless of the form of the function8().

2.1.3. Insight 3: Setting 8(t) = −2 log t Connects
D(θ , θ0;8) With Entropy and Information Theory
Akaike proceeded to arbitrarily set the function 8(t) to 8(t) =

−2 log t. Using this function not only furthered the connection
with ML theory, but also introduced the connection of his
thinking with Information Theory. By using this arbitrary
function, the average discrepancy becomes a divergence because
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D(θ0, θ0) = 8(1) = 0 and the approximation of the average
discrepancy, heretofore denoted as W(θ , θ0), is modulated by
Fisher’s information, the variance of the Maximum Likelihood
estimator: D(θ , θ0) ≈ W(θ , θ0) = (θ − θ0)

2
I(θ0). For a

multivariate θ0 we get then that W(θ , θ0) = (θ − θ0)
′
I(θ0)(θ −

θ0) where I(θ0) is Fisher’s Information matrix (Pawitan, 2001).
Conveniently then, the arbitrary factor of 2 gave his general
average discrepancy function the familiar “neg-entropy” or
Kullback-Leibler (KL) divergence form

D(θ , θ0) = −2

∫

f (x; θ0) log

(

f (x; θ)

f (x; θ0)

)

dx

= −2EX

[

log
f (X; θ)

f (X; θ0)

]

= −2
[

EX

(

log f (X; θ)
)

− EX

(

log f (X; θ0)
)]

= 2EX

(

log f (X; θ0)
)

− 2EX

(

log f (X; θ)
)

= 2KL(θ , θ0) (2)

thus bringing together concepts in ML estimation with a
wealth of results in Information Theory. The two expectations
(integrals) in the last line of the above equation were often
succinctly denoted by Akaike as Sgg and Sgf , respectively: these
are the neg-selfentropy and the neg-crossentropy terms. Thus, he
would write that last line as 2KL(θ , θ0) = 2[Sgg − Sgf ]. Note that
for consistency with Akaike (1973) we have retained his notation
and in particular, the order of arguments in the KL function, as
opposed to the notation we use in Dennis et al. (2019).

2.1.4. Insight 4: D(θ , θ0) Is Minimized at the ML

Estimate of θ

Aikaike’s fourth critical insight was to note that a Law of
Large Numbers (LLN) approximation of the Kullback-Leibler
divergence between the true, generating stochastic process and
a statistical model is minimized by evaluating the candidate
model at its maximum likelihood estimates. Such conclusion
can be arrived at even if the generating stochastic model is not
known. Indeed, given a sample of size n, X1,X2, . . . ,Xn from the
generating model, from the LLN we have that

D̂n(θ̂ , θ0) = −2×
1

n

n
∑

i=1

log
f (xi; θ̂)

f (xi; θ0)
,

which is minimized at theML estimate θ̂ . Akaike actually thought
that this observation could be used as a justification for the
maximum likelihood principle: “Though it has been said that
the maximum likelihood principle is not based on any clearly
defined optimum consideration, our present observation has
made it clear that it is essentially designed to keep minimum
the estimated loss function which is very naturally defined as the
mean information for discrimination between the estimated and
the true distributions” Akaike (1973).

2.1.5. Insight 5: Minimizing D(θ , θ0) Is an Average

Approximation Problem
Akaike’s fifth insight was to recognize the need to account for the
randomness in the ML estimator. Because multiple realizations

of a sample X1,X2, . . . ,Xn each results in different estimates of θ ,
the average discrepancy should be considered a random variable.
The randomness hence, is with respect to distribution of the

maximum likelihood estimator θ̂ . Let R(θ0) = E
θ̂

[

D(θ̂ , θ0)
]

denote our target average over the distribution of θ̂ . Then, the
problem of minimizing the Kullback Leibler divergence can be
conceived as an approximation problem where the target is
the average:

R(θ0) = E
θ̂
D(θ̂ , θ0) = 2E

θ̂

[

EX

(

log f (X; θ0)
)

−EX

(

log f (X; θ̂)|θ̂
)]

= 2EX

(

log f (X; θ0)
)

−2E
θ̂

[

EX

(

log f (X; θ̂)|θ̂
)]

.

In the final expression of the equation above, the first term is an
unknown constant. The second term on the other hand, is the
expected value of a conditional expectation.

2.1.6. Insight 6: D(θ , θ0) Can Be Approximated

Geometrically Using Pythagoras’ Theorem
Instead of estimating the expectations above, Akaike thought
of substituting the probabilistic entropy D(θ̂ , θ0) with its Taylor
Series approximation W(θ̂ , θ0) = (θ̂ − θ0)

′
I(θ0)(θ̂ − θ0), which

can then be interpreted as a squared statistical distance. This
approximation is indeed the square of a statistical distance
wherein the divergence between any two points θ̂ and θ0 is
weighted by their dispersion in multivariate space, measured
by the eigenvalues of the positive definite matrix I(θ0). This
sixth insight led him straight into the path to learning about
the KL divergence between a generating process and a set
of proposed probabilistic mechanisms/models. By viewing this
quadratic form as a statistical distance, Akaike was able to use a
battery of clear measure-theoretic arguments relying on various
convergence proofs to derive the AIC.

Interestingly, and although he doesn’t explicitly mentions it
in his paper, his entire argument can be phrased geometrically: if
the average discrepancy that he was after could be approximated
with the square of a statistical distance, its decomposition using
Pythagoras theorem was the natural thing to do. By doing such
decomposition, one can immediately visualize the ideas in his
proof with a simple sketch. We present such sketch in Figure 1.
In that figure, the key triangle with a right angle has as vertices
the truth θ0 of unknown dimension L, the ML estimator θ̂ of
dimension k ≤ L, denoted θ̂k and finally, θ0k. This quantity
represents the orthogonal projection of the truth in the plane
where all estimators of dimension k lie, which is in turn denoted
as 2k (Figure 1A). Figure 1B shows a fourth crucial point in
this geometrical interpretation: it is the estimator of θ0 from
the data using a model with the same model form as the
generating model, but with parameters estimated from the data.
To distinguish it from θ̂k we denote this estimator θ̂0. Because
it has the same dimensions than the generating model, θ̂0 can
be thought of as being located in the same model surface as
the generating model θ0. Akaike’s LLN approximation of the KL
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FIGURE 1 | The geometry of Akaike’s Information Criterion. (A) Shows θ0, which is the generating model and θ0k which is the orthogonal projection of the generating

model into the space 2k of dimension k. θ̂k is the ML estimate (MLE) of an approximating model of dimension k given a data set of size n. Akaike’s objective was to

solve for b2, which represents in this geometry W (θ̂ , θ0 ), the quadratic form approximation of the divergence between the generating and the approximating models.

Akaike showed that θ̂k can be thought of as the orthogonal projection of the MLE of θ̂0 (B). This last quantity θ̂0 represents the MLE of θ0 with a finite sample of size n

and assuming that the correct model form is known. The angle φ is not necessarily a right angle, but Akaike used φ ≈ π/2 so that the generalized Pythagoras

theorem [equation on the lower left side of (B)] could be approximated with the simple version of Pythagoras [equation on the lower left side of (C)] when the edge h is

not too long. When implemented, this Pythagoras equation can be used in conjunction with the other Pythagorean triangles in the geometry to solve for the squared

edge b. The equations leading to such solution are shown in (D).

divergence as an average of log-likelihood ratios D̂n(θ̂ , θ0) =

−2× 1
n

∑n
i=1 log

f (xi;θ̂)
f (xi;θ0)

comes to play in this geometric derivation

as the edge labeled e2 in Figure 1B that traces the link between θ̂0
and the ML estimator θ̂k. Following Akaike’s derivation then, the
ML estimator θ̂k can be thought as the orthogonal projection of
θ̂0 onto the plane2k.

Before continuing with our geometric interpretation, we alert
the reader that in Figure 1 all the edges are labeled with a
lowercase letter with the purpose of facilitating this geometric
visualization. The necessary calculations to understand Akaike’s
results are presented as simplified algebraic calculations but the
reader however, is warned that these edges or lower case letters
denote for the most part random variables. We leave these simple
letters here because in Akaike’s original derivations, the technical
measure-theoretic operations may end up distracting the reader
from a natural geometric understanding of the AIC.

In simple terms then, the objective of this geometric
representation is to see that obtaining an estimate of the
discrepancy between the approximating model and the
generating process amounts to solving for the square of the
edge length b, which is in fact the KL divergence quadratic form
approximation. That is, b2 = W(θ̂ , θ0). Proceeding with our
geometric interpretation, note that the angle φ between edges

h and c in Figure 1B is not by necessity a right angle, and that
the generalized Pythagoras Theorem to find the edge length d
applies. Akaike then noted that provided that the approximating
model is in the vicinity of the generating mechanism, the third
term of the generalized Pythagoras form of the squared distance
d2 = c2 + h2 − 2ch cosφ was negligible when compared with c2

and h2 [see Akaike, 1973, his Equation (4.15) and his comment
about that term in the paragraph above his Equation (4.19). See
also De Leeuw 1992, text under his Equation (4)], and so he
proceeded to simply use only the first two terms, c2 and h2 (see
Figure 1C). The immense success of the AIC in a wide array
of scientific settings to date shows that this approximation, as
rough as it may seem, is in fact quite reliable. This approximation
allowed him to write the squared distance d2 in two different
ways: as d2 ≈ c2 + h2 and as d2 = a2 + e2. Because by
construction, we have that b2 = h2 + a2, one can immediately
write the difference b2 − e2 as

b2 − e2 = h2 + a2 − d2 + a2

= h2 + a2 − c2 − h2 + a2,

and then solve for b2 (see Figure 1D):

b2 = e2 + 2a2 − c2. (3)
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Using asymptotic expansions of these squared terms, the
observed Fisher’s information and using known convergence
in probability results, Akaike showed when multiplied by the
sample size n, the difference of squares c2−a2 was approximately
chi-squared distributed with degrees of freedom L − k and that
na2 ∼ χ2

k
. Then, multiplying equation (3) by n gives

nb2 = nW(θ̂k, θ0) ≈ nDn(θ̂k, θ̂0)
︸ ︷︷ ︸

=2×log-likelihood ratio

+ na2
︸︷︷︸

∼χ2
k

− n(c2 − a2)
︸ ︷︷ ︸

∼χ2
L−k

.

Finally, one may arrive at the original expected value of the
conditional expectation shown above by replacing the chi-
squares with their expected values, which are given by their
degrees of freedom. Hence,

nE
θ̂k

[

W(θ̂k, θ0)
]

≈ nDn(θ̂k, θ̂0)+ 2k− L, or

E
θ̂k

[

W(θ̂k, θ0)
]

≈
−2

n

n
∑

i=1

log f (xi; θ̂k)+
2k

n
−

L

n

+
2

n

n
∑

i=1

log f (xi; θ̂0). (4)

The first two terms in the above expression,−2
n
∑

i=1
log f (xi; θ̂k)+

2k, constitute what came to be known as the AIC. These terms
correspond respectively to twice the negative log-likelihood
evaluated at the MLE and twice the number of parameters
estimated in the approximating model. To achieve multi-model
comparison (see Figure 2), Akaike swiftly pointed out that in
fact, only these first two terms are needed because the true model

dimension L and the term
n
∑

i=1
log f (xi; θ̂0) both terms (1) remain

the same across models, as long as the same data set is used
and (2) cannot be known because they refer to the true model
dimension. Akaike rightly noted that if one were to compute
Equation (4) for a suite of approximatingmodels, these two terms
would remain the same across all models and hence, could in
practice be ignored for comparison purposes: these unknowns
then act as constants of proportionality that are invariant to
model choice. Therefore, in order to compare the value of this
estimated average discrepancy across a suite of models, the user

only needs to calculate the AIC score −2
n
∑

i=1
log f (xi; θ̂k) + 2k

for each model and deem as best that model for which the
outcome of this calculation is the smallest. The logic embedded
in Akaike’s reasoning is represented graphically in Figure 2

(redrawn from Burnham et al., 2011). This reasoning kickstarted
the practice, still followed in science 46 years later, to disavow the
absolute truth in favor of a careful examination of multiple, if not
many, models.

Finally, the reader should recall that what Equation (4) is in
fact approximating is

R(θ0) = E
θ̂
D(θ̂k, θ0) = −2E

θ̂

[

EX

(

log f (X; θ̂k)|θ̂k

)]

+2EX

(

log f (X; θ0)
)

. (5)

and that this last expression is in fact the expectation with respect
to θ̂k of

− 2

∫

f (x; θ0) log
f (x; θ̂k)

f (x; θ0)
dx = −2

∫

f (x; θ0) log f (x; θ̂k)dx

+2

∫

f (x; θ0) log f (x; θ0)dx.

(6)

Later, Akaike (1974) referred to the integral
∫

f (x; θ0) log f (x; θ̂k)dx as Sgf and to
∫

f (x; θ0) log f (x; θ0)dx as
Sgg, which are names easy to remember because it’s almost as if
the S in Sgf and Sgg represent the integral sign and g and f are
a short hand representation of the probability density function
of the generating stochastic process and of the approximating
model, respectively.

One of our central motivations to write this paper is
the following: by essentially ignoring the remainder terms
in Equation (4), since 1973 practitioners have been almost
invariably selecting the “least worst” model among a set of
models (but see Spanos, 2010). In other words, we as a scientific
community, have largely disregarded the question of how far, in
absolute terms not relative, is the generating process from the
best approximating model. Suppose the generating model is in
fact very far from all the models in a set of models currently
being examined. Then, the last term in Equation (4) will be very
large with respect to the first two terms for all the models in a
model set that is being examined, and essentially any differences

between the terms −2
n
∑

i=1
log f (xi; θ̂k) + 2k for every model will

be meaningless.

2.2. The Problem of Multiple Models
Akaike’s realization that “truth” did not need to be known in
order to select from a suite of models which one was closest to
truth shaped the following four and a half decades of scientific
undertaking of model-centered science. Scientists were then
naturally pushed toward the confrontation of not one or two, but
multiple models with their experimental and observational data.
Such approach soon led to the realization that basing the totality
of the inferences on the single best model was not adequate
because it was often the case that a small set of models would
appear indistinguishable from each other when compared (Taper
and Ponciano, 2016b).

Model averaging is by far, the most common approach
used today to make inferences and predictions following an
evaluation of multiple models via the AIC. Multiple options to
do model averaging exist but in all cases, this procedure is an
implicit Bayesian methodology that results in a set of posterior
probabilities for each model. These posterior probabilities are
called the “Akaike weights.” For the ith model in a set of candidate
models, this weight is computed as

wi =
e(−1i/2 )

R
∑

r=1
e(−1r/2 )

.
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FIGURE 2 | Schematic representation of the logic of multi-model selection using the AIC. g represents the generating model and fi the i
th approximating model. The

Kullback-Leibler information discrepancies (di ) are shown on the left (A) as the distance between approximating models and the generating model. The 1AICs shown

on the right (B) measures the distance from approximating models to the best approximating model. All distances are on the information scale.

In this expression, 1i is the i
th difference between the AIC value

and the best (i.e., the lowest) AIC score in the set of R candidate
models. Although this definition is very well-known, cited and
used (Taper and Ponciano, 2016b), it is seldom acknowledged
that because these weights are in fact posterior probabilities,
they must result from adopting a specific set of subjective model
priors. Burnham et al. (2011) actually show that the weights
shown above result from adopting the following subjective
priors qi:

qi = C · exp

(

1

2
ki log (n)− ki

)

, (7)

where C is a normalization constant, ki is the model dimension
(the estimated number of parameters) of model i and n denotes
the total sample size. Note that with sample sizes above 7, those
weights increase with the number of parameters, thus favoring
parameter rich models. The use of these priors makes model
averaging a confirmation approach (Bandyopadhyay et al., 2016).

For someone using evidential statistics, adopting the model
averaging practice outline above presents two important
problems: first, the weights are based on prior beliefs that favor
more parameter richmodels and are not based on actual evidence
(data). Second, and much more practically, model averaging
appears to artificially favor redundancy of model specification:
the more models that are developed in any given region of model
space, the stronger this particular region gets weighted during the
model averaging process. To counter these two problems, here
we propose alternatively to estimate (1) the properties of a hyper-
plane containing the model set, (2) the location in such plane of
the best projection of the generating process and (3) an overall
general discrepancy between each of the models in the model
set and the generating process or truth. We achieve these goals

by using the estimated KL divergences amongst all estimated
models, that is, the estimated Sfifj for all models i and j in the
candidate set. This is information that is typically ignored. Here
again, we use Akaike’s mnemonic notation where g denotes the
generating model and f the approximating model. Then the so
called neg-crossentropy and neg-selfentropy are written as

Sgf =

∫

f (x; θ0) log f (x; θ̂k)dx and

Sgg =

∫

f (x; θ0) log f (x; θ0)dx, respectively.

In his 1974 paper, Akaike observed that the neg-crossentropy
could be estimated with

̂Sgf =
1

n

n
∑

i=1

log f (xi; θ̂k)−
k

n
= −

AIC

2n
. (8)

We wish to point out that in the “popular” statistical literature
within the Wildlife Ecology sciences (e.g., Burnham and
Anderson, 2004; Burnham et al., 2011), it is often repeated that

an estimator of E
θ̂

[

EX

(

log f (X; θ̂k)|θ̂k

)]

is given by−AIC/2. In

fact, Akaike (1974) shows that the correct estimator is given by
Equation (8). This distinction, albeit subtle, marks a difference
when the analyst wishes to compare not only which model best
approximates the generating process, but also the strength of the
evidence for one or the other model choice.

In what follows, we extend Akaike’s geometric derivation
to make inferences regarding the spatial configuration of the
ensemble of models being considered as approximations to the
generating process. As we show with an ecological example,
unlike model averaging this natural geometric extension of the
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FIGURE 3 | The geometry of model space. In this figure, f2 and f3 are approximating models residing in a (hyper)plane. g is the generating model. m is the projection

of g onto the (hyper)plane. d(,̇̇) are distances between models in the plane. d(f2, f3) ≈ KL(f2, f3) with deviations due to the dimension reduction in NMDS and

non-Euclidian behavior of KL divergences. As KL divergences decrease, they become increasingly Euclidian. (A) Shows a projection when m is within the convex hull

of the approximating models, and (B) shows a projection when m is outside of the convex hull. Prasanta S. Bandyopadhyay, Gordon Brittan Jr., Mark L. Taper, Belief,

Evidence, and Uncertainty. Problems of Epistemic Inference, published 2016 Springer International Publisher, reproduced with permission of Springer Nature

Customer Service Center.

AIC is fairly robust to the specification of models around the
same region of model space and is actually aided, not hampered,
by proposing a large set of candidate models.

2.3. A Geometrical Extension of Akaike’s
Extension to the Principle of Maximum
Likelihood
As modelers, scientists are naturally drawn to visualize a suite of
candidate models as entities in a (hyper)plane. By so doing, the
geometric proximities between these entities are then intuitively
understood as similarities amongst models. The key questions we
answer in this paper are whether it is possible to estimate the
architecture of such model space, locate a suite of approximating
models within such space as well as estimating the location
of the projection of truth onto that plane. All of this while
not having to formulate an explicit model for the generating
model. The estimation of the location of the truth projection
in that plane would open the door to a formulation of an
overall goodness of fit measure qualifying every single one
of the AIC scores computed for a set of candidate models.
Additionally, answering these questions automatically provides
valuable insights to intuitively understand why or why not model
averaging may be an appropriate course of action. As we show
below, these questions are answerable precisely because any
given set of models has a set of relationships which are typically
ignored but that can be translated directly to a set of geometrical
relationships that carry all the needed information and evidence.

One of the key observations of this contribution is the fact
that while at the time of Akaike’s publication his approach could
not be extended due to mathematical intractabilities, nowadays
computer intensivemethods allow the design of a straightforward

algorithm to solve the model projection problem outlined above.
These computational tools basically involve two methodologies:
first, a numerical estimation of Kullback-Leibler (KL) divergences

between arbitrary distributions and second, parallel processing
to carry a Non-Metric Multidimensional (NMDS) space scaling

algorithm. With the help of a NMDS, a matrix of amongst-
candidate models estimated KL divergences can be transformed
into an approximated Euclidean representation of models in
a (hyper)plane. The coordinates of each model in that plane,
that we heretofore denote

(

y1, y2, ...
)

are used to solve the
model projection problem. The algorithm presented here is not
necessarily restricted to a two-dimensional representation of
model space, but for the sake of visualization we present our

development inR
2.

Consider the sketch in Figure 3. There, to begin with we have

drawn only two approximating models f2 and f3 on a Euclidean

space, along with a depiction of the location of the generating
process g outside that plane. Such representation immediately

leads to the definition of a point m in that plane that correspond

to the orthogonal projection of the generating process onto the
plane. The location of such point is denoted as (y⋆1, y

⋆
2). The

length h in that sketch represents the deviation of the generating

process from the plane of approximating models as a line from g

to the plane that crosses such plane perpendicularly. Note also

that every one of the approximating models fi in that plane is

situated at a distance d(fi,m) from the orthogonal projection

m. In reality, both the edges as well as the points in this plane

are random variables associated with a sampling error. But we

ask the reader’s indulgence for the sake of the argument, just as

we did above when we explained Akaike’s results, and think of
these simply as points and fixed lengths. Doing so, one may also
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indulge, as Akaike did, in using the right-angle, simple version of
the Pythagoras theorem, and assume that all the amongst-models
KL divergences have a corresponding squared Euclidean distance
in that representation. Then, the following equations hold











KL(g, f1) = d(f1,m)2 + h1
2

KL(g, f2) = d(f2,m)2 + h2
2

...

where necessarily h1 = h2 = hi = . . . = h. Recalling
Equation (8) we note that every one of the divergences between
the approximating models and g can be expressed as a sum
of an estimable term and a fixed, unknown term. These terms
are Sgfi and Sgg, respectively. Writing such decomposition of
the KL divergences for all the equations above, and explicitly
incorporating the coordinates of m then results in this system
of equations















Sgg − ̂Sgf1 − d(f1,m(y⋆1, y
⋆
2))

2 = h21,

Sgg − ̂Sgf2 − d(f2,m(y⋆1, y
⋆
2))

2 = h22,
...

...
...

(9)

which can be solved and optimized computationally by
constructing an objective function that, for any given set of values
of Sgg, y⋆1, y

⋆
2 in the left hand of these equations returns the sum of

squared differences between all the hi. Because by necessity (see
Figure 3) h2 = h2i for all i, a routine minimization of this sum of
squared differences can be used as the target to obtain optimal
values of the unknown quantities of interest and obtain the
model-projection representation shown in Figure 5. Although
previously unrecognized by Taper and Ponciano (2016a), in these
equations the terms Sgg and h2 appear always as a difference,
and hence are not separable. Fortunately, a non-parametric,
multivariate estimate of Sgg can be readily computed. We use
the estimator proposed by Berrett et al. (2019), a multivariate
extension of the well-known univariate estimator by Kozachenko
and Leonenko (1987). Other non-parametric entropy estimators
could be used if they prove to be more appropriate. For instance,
the Berrett et al. (2019) estimator assumes that the data are iid.
This restricts the class of problems for which we are able to
separate Sgg and h2. An estimator for Sgg for dependent data
would expand the class.

3. EXAMPLES

In what follows we illustrate our ideas and methodology with
two ecological examples. The first example is an animal behavior
study aiming to understand the mechanism shaping patterns of
animal aggregations. The second one is an ecosystems ecology
example, where the aim was to try to understand the biotic and
abiotic factors that shape the species diversity and composition of
a shrubland ecosystem in California.

3.1. An Application in Animal Behavior
The phenomenon of animal aggregations has long been the
focus of interest for evolutionary biologists studying behavior

(Brockmann, 1990). In some animal species, males form groups
surrounding females, seeking breeding opportunities. Often,
these mating groups vary substantially in size, even during the
same breeding season and breeding occasion. This is particularly
true in some species with external fertilization where females
spawn the eggs and one or more males may fertilize them. The
females of the American horseshoe crab, Limulus polyphemus
leave sea “en masse” to spawn at the beach during high tide,
1–4 times a year. As females enter the beach and find a place
to spawn, males land in groups and begin to surround the
females. Nesting typically occur in pairs, but some females attract
additional males, called satellites, and spawn in groups. As a
result, when surveys of the mating group size are done, one
may encounter horseshoe crab pairs with 0, 1, 2, 3, . . . satellite
males. That variation in the number of satellite males is at the
root of the difficulty in characterizing the exact make-up of
the crab population. Hence, for years during spawning events,
Brockmann (1990) focused on recording not only the total
number of spawning females in a beach in Seahorse Key (an
island along Florida’s northern west coast) but also the number
of satellite males surrounding each encountered pair. Those data
have long been the focus of attempts at a probabilistic description
of the distribution of the number of satellite males surrounding a
pair of horseshoe crabs using standard distribution models (e.g.,
Poisson, zero inflated Poisson, negative binomial, zero inflated
negative binomial, hurdle-negative binomial distributions).

When one of us (JMP) met H. J. Brockmann in 2010,
she asked the following: “how will fitting different discrete
probability distributions to my data help me understand the
biological mechanisms underlying group formation in this
species?” After years of occasional one-on one meetings and
back and forth discussions, we put together a detailed study
(Brockmann et al., 2018) in which we compared the observed
distribution of the number of satellites surrounding a female to
the same distribution resulting from a complex, individual-based
model simulation program. Importantly, this individual-based
model allowed us to translate different hypotheses regarding the
influence of different factors, like female density or male density
around a female, into the decision by a new satellite male of
joining a mating group or continuing the search.

The comparison between the real data and the simulated
data via discrete probability distributions then allowed these
authors to identify the biological settings that resulted in in
silico distributions of satellites that most resembled the real,
observed distributions of satellite males. To do that comparison,
Brockmann et al. (2018) first fitted a handful of discrete
probability models to the counts of the number of satellites
surrounding each pair from each one of N = 339 tides,
and proceeded to find the standard probability model that best
described the data. These authors then fitted the same models to
the simulated data sets under different biological scenarios and
found the simulation setting that yielded the highest resemblance
between the real data and the digital data. Finally Brockmann
et al. (2018) discuss the implications of the results.

One of the most relevant conclusions of these authors was
that their comparative approach was useful as a hypothesis
generator. Indeed, by finding via trial and error which
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biological processes gave rise in the individual-based simulations
to distributions of satellites that most resembled the real
distributions, the researchers basically came up with a system to
elicit viable biological explanations for the mechanisms shaping
the distribution of the number of satellite males surrounding a
pair. This approach was an attempt to answer Brockmann’s initial
question to JMP.

Here, we used the simulation setting of Brockmann et al.
(2018) to exemplify how our Model Projections in Model Space
(MPMS) approach can further our understanding of what are
the model attributes that make a model a good model to better
understand the underlying mechanisms generating the data. By
having a complex simulation program, we can describe exactly
the probability distribution of the data-generating process and we
can validate our MPMS approach.

In what follows we first explain how we fitted our proposed
models to the tides’ count data, and then how we compute the
quantities needed to generate an approximate representation of
models in model space that includes the estimated projection of
the true, data-generating process.

3.1.1. Likelihood Function for the Satellites Count

Data
A handful of discrete probability models can be fit conveniently
to the male satellites counts data using the same general
likelihood functions by means of a reduced-parameter
multinomial distribution model parameterization. As we
will see below, this reduced-parameter multinomial likelihood
formulation is instrumental to compute analytically the KL
divergences between each one of the models as well as the neg-
selfentropy. Many modern biological models, like phylogenetic
Markov models, use this reduced-parameter formulation (Yang,
2000), and the example presented here can be readily used in
many other settings in ecology and evolution (e.g., Rice, 1995).

In this example we adopt the following notation: the
probability mass function of each discrete probability model
i (i = 1, 2, . . . r where r is the number of models in
the model set) is denoted as fi(x). Following Brockmann
et al. (2018), we use f1(x) to denote the Poisson distribution
(Poisson), f2(x) the negative binomial distribution (NegBin),
f3(x) the zero inflated Poisson distribution (ZIP), f4(x) the
zero inflated negative binomial distribution (ZINegBi), f5(x)
a hurdle negative binomial distribution (HurdNBi), f6(x) a
Poisson-negative binomial mixture (PoiNB), f7(x) a negative-
binomial-Poisson mixture (NBPois), f8(x) a one-inflated Poisson
distribution (OIPoiss), and f9(x) a one inflated negative-binomial
distribution (OINegBi). In this example, r = 9.

We begin with the likelihood function for the counts for one
tide, and extend it to the ensemble of counts for N tides Because
for each tide j, j = 1, 2, . . . ,N the data consisted of the number
of 0’s, 1’s, etc. . ., the data can be represented as a multinomial
sample with k categories and probabilities π1,π2, . . . ,πk: Let Y1

be the number of pairs with no satellites found at the beach in
one tide, Y2 the number of pairs with 1 satellite male in one tide,
Y3 the number of pairs with 2 satellite males in one tide, . . ., Yk−1

the number of pairs with k − 2 satellites in one tide and Yk the
number of pairs with k− 1 or more satellites in one tide. Suppose

for instance that we are to fit the Poisson distribution model
with parameter λ to the counts of one tide. Then, the reduced
parameter multinomial distribution arranged to fit the Poisson
model would be parameterized using the following probabilities
for each category:

π1 = P(X = 0) = f1(0) = e−λ,

π2 = P(X = 1) = f1(1) = λe−λ,

π3 = P(X = 2) = f1(2) = λ2e−λ

2! ,
...

πk−1 = P(X = k− 2) = f1(k− 2) = λk−2e−λ

(k−2)!

πk = P(X ≥ k− 1) = 1−
∑k−2

s=0 f1(s) = 1−
∑k−2

s=0
λse−λ

(s)!
.

(10)
It follows that if in a given tide j a total of nj pairs are counted and
yj,1 is the number of females with no satellites, yj,2 is the number

with one satellites, etc., such that
∑k

i=1 yj,k = nj, the likelihood
function needed to fit the Poisson probability model to the data
of one tide is simply written as:

Lj(λ) = P(Yj,1 = yj,1,Yj,2 = yj,2, . . . ,Yj,k−1 = yj,k−1,Yj,k = yj,k)

= n!
yj,1!yj,2!yj,3!...yj,k!

π
yj,1
1 π

yj,2
1 . . . π

yj,k
k

,

and the overall likelihood function for the N tides is simply

L(λ) =

N
∏

i=1

Lj(λ).

Finally, note that for this reduced parameter multinomial model,
the ML expected frequencies would simply be computed as njπ̂i.
For example, under the Poisson model, the expected number of

0’s in a sample would be computed as njπ̂1 = ̂P(X = 0) = e−λ̂,

where λ̂ denotes the ML estimate of λ.
The likelihood function and each of the predicted

probabilities for every model were computed using the
programs in the files CrabsExampleTools.R and
AbundanceToolkit2.0.R downloadable from our github
webpage, which works as follows. Suppose that for a single
tide, the counts of the number of pairs with 0, 1, 2, 3, 4, and
5 or more satellites are 112, 96, 101, 48, 22, 16, respectively.
Then, the program abund.fit (found in the set of functions
AbundanceToolkit2.0.R) takes those counts and returns,
for every model in a pre-specified model set, the expected
frequencies (from which the probabilities of every category
in the reduced-parameter multinomial are retrievable), the
ML estimates of each set of model parameters, the maximized
log-likelihood and other statistics.

The processes of simulating any given number of tide counts
according to Brockmann et al. (2018) and computing the ML
estimates and other statistics for every model and every tide
in a pre-specified model set are packaged within our function
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short.sim() whose output is (1) a matrix of simulated
counts, with one row per tide. In each row the data for a single
tide is displayed from left to right, showing the number of
pairs with 0, 1, 2, 3, 4, and 5 or more satellites. (2) a list with
the statistics (ML estimates, maximized log-likelihood, predicted
counts, etc. . .) for every model and every tide. (3) A matrix of
information criteria values for every tide (row) and every model
(column) in the set of tested models.

3.1.2. Calculation of Quantities Needed to Generate a

MPMS
The generation of the MPMS necessitates solving the system of
Equation (9). To solve that system of equations for any given dat
set we need

1. A non-parametric estimate of the neg-selfentropy Sgg, ̂Sgg.
Berrett et al. (2019) recently proposed such an estimator.
Their estimator is in essence a weighted (Kozachenko and
Leonenko, 1987) estimator, and uses k nearest neighbors of
each observation as follows:

Hw
n =

1

n

n
∑

i=1

k
∑

j=1

wjlog ξ(j),i,

where ξ(j),i = (n−1)e−ψ(j)Vq||X(j),i−Xi||
q withX(j),i indicating

the j-th nearest neighbor from the i-th observation Xi. Also, in
these equation n indicates the number of observations, ψ(j)
is the digamma function and Vq = πq/2/Ŵ(1 + q/2) is the
volume of the unit q-dimensional ball and q is the dimension
of the multivariate observations.

The focus of Berrett et al. (2019) was writing a complete
theoretical proof of the statistical properties of their estimator.
Practical guidance as to how to find these weights is however
lacking in their paper, but through personal communication
with T. Berrett we learned that their weights wj must only
satisfy the constraints (see their Equation 2):

k
∑

j=1

wj = 1 and

k
∑

j=1

wjŴ(j+ 2l/q)/Ŵ(j) = 0 for

l = 1, . . . , ⌊q/4⌋,

where k is the number of observations that define a local
neighborhood of observations around any given observation.
Berrett (personal communication) recommends arbitrarily
choosing k as the sample size to the power of a third. The other
restrictions on Berrett et al. (2019)’ theorem about the support
of these weights were needed only for technical convenience
for the proof. Berrett et al. (2019) alsomentioned that for small
sample sizes, the unweighted estimator may be preferable.
For larger problems he recommended solving the above
restrictions with a non-linear optimizator. We wrote such
non-linear optimization routine to compute the weights wj’s
and tested it extensively via simulations and embedded it into
a function whose only argument is the data itself. Through
extensive simulations we have verified that this routine works
well for dimensions at least up to q = 15. We coded our
optimization in R and is now part of a package of functions

accompanying this paper. The function is found in the file
MPcalctools.R and was named Hse.wKL. Finally, note
that a typical data set for our crabs example is of dimension 6,
so our routine is more than enough for a typical set of counts
similar to the ones in this example. For instance, one set of
counts of pairs with 0 satellites, 1 satellite, 2 satellites, . . ., 5 or
more satellite males for one tide is y1 = 112, y2 = 96, y3 =

101, y4 = 48, y5 = 22, y6 = 16.
2. A matrix of KL divergences between all models estimated

in the model set being considered. If a total of r models
are being considered, then the elements of this matrix
are

{

KL(fi, fj)
}

i,j
, i, j = 1, 2, . . . , r. Computing these

divergences may seem like a daunting task, especially
because these quantities are, in fact, different expectations
(i.e., infinite sums) evaluated at the ML estimates for each
model in the model set. However, those calculations
are enormously simplified by adopting the general
reduced-parameter likelihood approach because the
neg-crossentropy H(fr , fs) between two multinomial
models fr and fs with a total sample size n can be
computed exactly:

H(fr , fs) =
∑

(y1 ,y2 ,...,yk)≥0,(
∑

k yk)=n

n!

y1! . . . yk!
π
y1
1,r . . .

π
yk
k,r
log

[

n!

y1! . . . yk!
π
y1
1,s . . . π

yk
k,s

]

= log n!+ n
∑

i = 1kπi,rlogπi,s

−

k
∑

i=1

n
∑

yi=0

(

n

yi

)

π
yi
i,r(1− πi,r)

(n−yi)log yi!. (11)

Note that when s = r, then H(fr , fs) becomes the neg-
selfentropy. Because the KL divergence is the sum of a
neg-selfentropy and a crossentropy, in practice, to compute
the KL divergence between two count models for a single
vector of counts for one tide we only needed to compute the
probabilities in Equation (10) for every model using the ML
estimates for each data set and use Equation (11) above. The
function in R used to compute either the neg-crossentropies or
the neg-selfentropies is named H.multinom.loop() and
found in the file MPcalctools.R. Following simple rules
of expected values, the overall KL divergence between two
count models for a set of N vectors of tide counts, each drawn
from the same true generating process (the individual-based
model simulator program), was just computed as the sum
of the divergences between the two models for each vector
of counts. Note that the same simplification in Equation
(11) applies to the computation of the neg-selfentropy for
a multinomial distribution, a fact that we used to compute
the true Sgg for our simulator algorithm, given that the
individual-based model simulator of Brockmann et al. (2018)
could be used to the estimate numerically true probabilities
for 0,1,2,. . . satellites.

3. The estimates of the neg-crossentropies ̂Sgfi and of ̂Sfig for i =
1, 2, . . . , r. Although the first set of divergences, the ̂Sgfi, can be

estimated either using the AIC and Equation (8), by definition
of the KL divergence, the estimates ̂Sfig are in general not

Frontiers in Ecology and Evolution | www.frontiersin.org 11 November 2019 | Volume 7 | Article 413106

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Ponciano and Taper Model Projections in Model Space

equal to the estimates ̂Sgfi and cannot be computed using the
AIC and Equation (8). If however, h2 is very small, then using
the approximation ̂Sgfi ≈ ̂Sfig works quite well as we show in
example 3.2 and in Taper and Ponciano (2016a). Fortunately,
using this approximation is not always necessary and does not
have to be used for a large class of statistical problems. Indeed,
for the example at hand where we are fitting multiple count
models and for any other case where the likelihood function
may be written by means of a reduced-parameter multinomial
model (like the likelihood function for most phylogenetics
models, for instance), both the ̂Sgfi and the ̂Sfig can be
computed using Equation (11) by using the ML estimates of
the multinomial π ’s for each model and the ML estimates of
the π ’s for the fully parameterized (i.e., the empirical model)
in lieu of the π parameter values for g. We will denote these

$Sfifjs.hat
Poisson NegBin ZIPoiss ZINegBi HurdNBi PoisNB NBPois OIPoiss OINegBi

Poisson -4693.860 -6788.198 -7144.127 -7261.358 -7276.347 -7240.670 -7268.412 -4694.360 -5474.936
NegBin -7140.595 -4801.609 -5748.393 -5402.616 -5393.795 -5141.644 -5417.371 -7142.133 -6271.978
ZIPoiss -7269.760 -5688.618 -4778.731 -4958.789 -4991.042 -5157.351 -4973.420 -7271.568 -6703.770
ZINegBi -7483.025 -5374.228 -4980.700 -4792.072 -4868.308 -5004.579 -4952.840 -7484.694 -6719.950
HurdNBi -7504.330 -5366.989 -5015.873 -4870.053 -4792.890 -4980.233 -4974.241 -7503.976 -6688.178
PoisNB -7476.723 -5131.165 -5178.562 -5008.269 -4982.275 -4794.920 -4975.992 -7477.044 -6595.687
NBPois -7453.540 -5389.715 -4984.999 -4949.951 -4969.751 -4970.038 -4790.289 -7455.437 -6702.133
OIPoiss -4694.328 -6789.643 -7145.910 -7262.925 -7275.909 -7240.883 -7270.251 -4693.826 -5474.358
OINegBi -5606.894 -6051.992 -6648.368 -6590.061 -6559.321 -6453.790 -6596.554 -5606.393 -4735.259

empirical estimates (i.e., the sample proportions) as π̄i. These
estimates and Equation (11) can be used to compute ̂Sgg.
For a set of models and a data set including one or more

tides, the estimates ̂Sgfi, ̂Sfig, ̂Sfifj and ̂Sgg are computed using
the function entropies.matcalc() found in the file
MPcalctools.R.

For a simulated example where the data consisted of
counts for 300 tides for which the first 5 tides were

> simdat[1:5,]
0 1 2 3 4 5

[1,] 112 96 101 48 22 16
[2,] 135 125 108 44 19 12
[3,] 141 108 91 55 23 16
[4,] 119 117 99 60 18 10
[5,] 139 120 117 37 26 11

The estimated matrix of neg-crossentropies for theseN = 300
tides was

The true generating process neg-selfentropy, Sgg was
−16.01199 and the estimated neg-selfentropy ̂Sgg was
−15.96137. The real neg-crossentropies between the

FIGURE 4 | Count models for the horseshoe crab example (section 3.1) in NMDS space, along with pseudo-confidence ellipses (95%). These ellipses are based on

Stress derivatives (Mair et al., 2019) and indicate in this case that the NMDS is quite stable (overall stress is 0.029).
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generating process and each of the models Sgfi’s and
Sfig’s were:

$Sgfis
Poisson NegBin ZIPoiss ZINegBi HurdNBi PoisNB NBPois OIPoiss OINegBi

-7601.606 -5603.842 -5485.607 -5432.819 -5457.657 -5450.109 -5463.949 -7606.407 -6832.673

$Sfisg
Poisson NegBin ZIPoiss ZINegBi HurdNBi PoisNB NBPois OIPoiss OINegBi

-7276.506 -5615.999 -5431.557 -5414.428 -5439.071 -5436.292 -5435.686 -7281.250 -6653.690

whereas the estimated neg-crossentropies were

$Sgfis.hat
Poisson NegBin ZIPoiss ZINegBi HurdNBi PoisNB NBPois OIPoiss OINegBi

-7891.890 -5652.049 -5403.773 -5200.907 -5179.331 -5323.294 -5253.094 -7891.705 -7051.753

$Sfisg.hat
Poisson NegBin ZIPoiss ZINegBi HurdNBi PoisNB NBPois OIPoiss OINegBi

-7638.034 -5682.275 -5396.418 -5213.190 -5193.804 -5339.449 -5264.447 -7637.716 -6906.558

4. The coordinates of every model in an NMDS space.
Multidimensional scaling, MDS, is an established method
(Borg et al., 2018) for representing the information in the
s × s matrix D of distances/divergences among s objects
as a set of coordinates for the objects in a k−dimensional
euclidian space (k ≤ s). If k < s, there may be some
loss of information. MDS has two major varieties, metric
multidimensional scaling, MMDS, in which D is assumed
to be comprised of Euclidean distances, and non-metric
multidimensional scaling, NMDS, in which D can be made
up of divergences only monotonically related to distances.
The MMDS projection can be made analytically, while the
NMDS projection can only be found algorithmically by
iteratively adjusting the configuration to minimize a statistic
known as “Stress,” which is a weighted average squared
deviation of the distances between points (models in our case)
calculated from the proposed configuration and the distances
given in D.

The matrix D required by NMDS should be symmetric.
KL divergences are not, however, symmetric. The KL
divergence can be reasonably symmetrized in a number of
ways (Seghouane and Amari, 2007). We symmetrize using the
arithmetic average of KL(θi, θj) and KL(θj, θi). As mentioned
above in this problem we can directly calculate the symmetric
KL. For other applications the symmetric KL can be estimated
(up to the constant Sgg) using the KIC and its small sample
version the KiCc (Cavanaugh, 1999, 2004). We follow Akaike
in considering the KL divergence as a squared distance, and
thus construct the matrix D from the square roots of the

Poisson NegBin ZIPoiss ZINegBi HurdNBi PoisNB NBPois OIPoiss OINegBi M
NegBin 4.46711
ZIPoiss 5.09358 1.51616
ZINegBi 5.21422 1.26069 0.42784
HurdNBi 5.22444 1.19699 0.52347 0.09773
PoisNB 5.10858 0.89561 0.81309 0.42542 0.33690
NBPois 5.19883 1.24348 0.43208 0.01798 0.09139 0.41228
OIPoiss 0.00181 4.46859 5.09530 5.21588 5.22609 5.11018 5.20050
OINegBi 1.69500 2.85332 3.73875 3.76818 3.75926 3.58746 3.75125 1.69618
M 4.51235 2.33280 1.26566 1.67451 1.76140 1.97444 1.67387 4.51416 3.50306
g 4.51235 2.33280 1.26566 1.67451 1.76140 1.97444 1.67387 4.51416 3.50306 0.00032

symmetrized KL divergence. We use the function smacofSym
(De Leeuw and Mair, 2009) from the R package smacof

(version 2.0, Mair et al., 2019) to calculate the NMDS.
For the purposes of this paper we chose k = 2 so that we
could have a graphical representation after augmenting the
dimension to 3 to show the orthogonal distance from the
generating process to its orthogonal projection M in the
estimated plane of models. Nevertheless, the Stress of 0.029
indicates an excellent fit. Except for the very important aspect
of visualization, dimension reduction is not an essential
aspect of our method. Finally, the tight pseudo-confidence
ellipses (95%) illustrated in Figure 4, based on Stress
derivatives (Mair et al., 2019) indicate that this NMDS is
quite stable.

Once all these components are computed, the system of Equation
(9) can be solved with non-linear optimization. We coded
such solution in the R function MP.coords found in the file
MPcalctools.R. This function takes as input the estimated neg-
crossentropies between all models, an estimate of Sgg or the
neg-selfentropy of the generating process, and the vectors of
estimated neg-crossentropies ̂Sgfi and ̂Sfig to output the matrix of
dimension (r+ 1)× (r+ 1) of symmetrized KL divergences, and
the results of the NMDS with the coordinates of every model in a
two-dimensional space, the estimated location of the orthogonal
projection of g in such plane, M, and the estimate of h. Notably,
this function works for any example for which these estimated
quantities are available. Its output is taken by our function
plot.MP to produce the three-dimensional representation of
the Model Projection in Model Space shown in Figure 5. For this
example, the estimated distances in the model projection space
between all models, g and its projectionM were
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whereas the real distances (because we knew what the simulation
setting was) were

> dist(true.MP$XYs.mat)
Poisson NegBin ZIPoiss ZINegBi HurdNBi PoisNB NBPois OIPoiss OINegBi M

NegBin 4.46711
ZIPoiss 5.09358 1.51616
ZINegBi 5.21422 1.26069 0.42784
HurdNBi 5.22444 1.19699 0.52347 0.09773
PoisNB 5.10858 0.89561 0.81309 0.42542 0.33690
NBPois 5.19883 1.24348 0.43208 0.01798 0.09139 0.41228
OIPoiss 0.00181 4.46859 5.09530 5.21588 5.22609 5.11018 5.20050
OINegBi 1.69500 2.85332 3.73875 3.76818 3.75926 3.58746 3.75125 1.69618
M 4.14688 2.14942 1.34587 1.70959 1.78455 1.93970 1.70493 4.14868 3.12059
g 4.14688 2.14942 1.34587 1.70959 1.78455 1.93970 1.70493 4.14868 3.12059 0.00037

From these matrices, it is readily seen that the real value of
h in the model projection space was 0.000372 whereas its
corresponding estimated h value is 0.000323. A quick calculation
yields the distances between the true location of the orthogonal
projectionM, its estimate, the true location of g and its estimate:

hat.m hat.g true.m
hat.g 0.000323
true.m 0.383074 0.383074
true.g 0.383074 0.383074 0.000372

As expected, variation in the quality of these estimates and the
difference with the true locations changes from simulated dat set

> AICs
Poisson NegBin ZIPoiss ZINegBi HurdNBi PoisNB NBPois OIPoiss OINegBi

14301.321 9823.639 9327.086 8923.355 8880.203 9168.129 9027.727 14302.951 12625.047
> delta.is

Poisson NegBin ZIPoiss ZINegBi HurdNBi PoisNB NBPois OIPoiss OINegBi
5421.11814 943.43554 446.88328 43.15146 0.00000 287.92594 147.52444 5422.74769 3744.84389

to simulated data set. Two questions are a direct consequence
of this observation: first, the MPMS data representation in
Figure 5 could be more accurately depicted via bootstrap and
confidence clouds or spheres for the location of each model
in model space could be drawn. Such task would however
involve entertaining the problem of the representation of
multiple bootstrap NMDS runs in a single space, using the
same rotation.

Classically, variation among NMDS object has been estimated
only after Procrustes rotation has oriented the various coordinate
systems for maximal similarity among the NMDS objects
(see Mardia et al., 1979). A long series of articles involving
authors, such as T. M. Cole, S. R. Lele, C. McCulloch, and J.
Richtsmeir demonstrates that this approach is deeply flawed.
This work is summarized in the monograph by Lele and
Richtsmeier (2001). The problem is that the apparent variability
among equivalent points in the multiple objects depends on
distance from the center of rotation. Lele and Richtsmeir
argue that inference is better made regarding variation in
estimated distances between points than on the coordinates
of points. A mean distance matrix can be estimated from
a set of bootstrapped replicates, and it is almost certain
that the mean distance matrix will be the most informative
matrix both for inference and for graphical purposes as this
mean corresponds to the expectation with respect to θ̂ in
Akaike’s 5th insight (see section 2.1.5). Further, variation and
covariation in all estimated distances and contrasts of distances

can be invariantly calculated and used for inference. Finally,
extending our MPMS methodology to include confidence

bounds for our estimates is a topic of current research in our
collaboration and will be treated in a future manuscript because it
necessitates the same degree of care used to generate confidence
intervals for Model-Average inferences (see for instance Turek,
2013).

The second question has to do with how would
our estimate of the location in model space of the
orthogonal projection of the generating process
compare to the location of the model-average. For
our example at hand, the AIC values as well as the 1

AICs were:

To compare the estimated location of the model average with
our estimated our model projection, we plotted both panels
in Figure 6 into a single, two-dimensional figure with: the
location of every estimated model, the location of the model
averaged coordinates using the AIC weights, the location of
the estimated orthogonal projection of g, and the location of
the true location of the orthogonal projection g. Such figure is
presented in Figure 6. In this figure, the distance between the
real projection M of g and our estimated projection is 0.383074
whereas the distance between the model-average and the real
projection of g is 1.784555. A quick inspection of Figure 6

shows that this case in fact, is a real-life illustration of the point
brought up by Figure 3B. When the geometry of the model
space is as in Figures 3B, 5, 6, model averaging may not be a
suitable enterprise.

3.2. An Ecosystems Ecology Application
Here we discuss a worked example highlighting the strengths of
the model projections approach to multi-model inference. This
example was originally presented in Taper and Ponciano (2016a)
which is freely downloadable from:

https://link.springer.com/book/10.1007/978-3-319-
27772-1

This example is an analysis of data simulated from a structural
equation model (SEM) based on a study by Grace and Keeley
(2006). Simulation from a known model in necessary to
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FIGURE 5 | The models of Figure 2 visualized by our new methodology, and applied to our Horseshoe crab example (section 3.1). As before, g is the generating

model and models f1, . . . , f9, are the approximating models and named in the legend of each panel. (A) Shows the estimated model projection “M” and the estimated

location of the true generating process whereas (B) shows the location of the true model projection “M” and of the true generating process. The dashed lines are KL

distances between approximating models, which were calculated according to Equation 2. The solid gray lines are the KL distances from approximating models to the

generating model. The vertical dotted line shows h, the discrepancy between the generating model and its best approximation in the NMDS plane, whereas all the

other dotted lines mark the discrepancy between the approximating models and the model projection “M.” A 2-dimensional representation of only the plane of

models, the estimated g model projection and the true model projection of g onto that plane is shown in Figure 6.

understand how well our methods capture information about
the generating process, while basing that model on published
research guarantees that our test-bed is not a toy, but is a
problem of scientific interest. SEM is a flexible statistical method
that allows scientists to analyze the causal relationship among
variables and even general theoretical constructs (Grace and
Bollen, 2006, 2008; Grace, 2008; Grace et al., 2010). Grace and
Keeley (2006) analyzed the development of plant diversity in
California shrublands after natural fires. Structural equations
models were used tomake inferences as to the causal mechanisms
influencing changes in diversity. Plant composition at 90 sites was
followed for 5 years. The Grace and Keely final model is displayed
in Figure 7. To summarize the causal influences, species richness
is directly affected by heterogeneity, local abiotic conditions,
and plant cover. Heterogeneity and local abiotic conditions are
in turn affected by landscape position, but total cover is only
directly affected by burn intensity. Burn intensity is in turn only
affected by stand age, which itself depend on landscape position.
Affects and their direction are shown as arrows in the figure. The
strength of affects (i.e., the path coefficients) are shown both as
numbers on the figure and as the thickness of the arrows).

Forty-one models were fit to our generated data. The
models ranged from underfitted to overfitted approximations
of the generating process. The actual generating model was not
included in this model set. Using this set of fitted models, we
estimated a 2-d Non-Metric Dimensional Scaling model space
as discussed above. The calculated stress was tiny (0.006%)
indicating almost all higher dimensional structure is captured by
anR

2 plane. A mapping of the estimated space analogous to our

Figure 6 is shown in their Figure 6 Taper and Ponciano (2016a).
1AIC values are indicated by color. As in Figure 6 of this paper,
on this map of model space we also indicated: (1) The estimated
projection (location) of the generating process to the 2-d NMDS
space, (2) The Akaike weighted model averaged location and 3)
The actual projection of the true generating process l onto the 2-
d manifold (in this worked example this can be done because we
have simulated from a known model).

Two important observations can be made based on the graph
in Figure 6 (both in this manuscript and in Taper and Ponciano,
2016a) : First while there is a rough agreement between proximity
to the generating process and 1AIC values, this relationship
is not as tight as one might naively expect. The inter-model
KL distances do have substantial impact on the map. Second,
using our methods and just like in example 3.1 above, the
estimated projection of the generating process is somewhat
nearer to the actual projection of the generating process
than the location produced by model-averaging (Figure 6 in
this manuscript).

Figure 8 demonstrates the sensitivities of both the estimated
projection and model average of eliminating fitted models from
the estimation of the NMDS space. We repeatedly eliminate
the left-most model in the model set and reestimate the space
after each cycle. With each model elimination, the model-
averaged location moves toward the right. On the other hand, the
estimated projection stays near its original location, even after
all fitted models in that side of the map have been eliminated.
Conversely, eliminating from the right, the model average shifts
to the left as anticipated. Under right-side model elimination,
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FIGURE 6 | NMDS space of nine models for the Horseshoe crab example (section 3.1). The true projection, M, of the generating model onto the NMDS plane is

shown, along with the location of the estimated location of such projection, m, and of the model average, wAIC.

the model projection is somewhat more variable than under
elimination from the other direction.

This model elimination example illuminates differences in the
two kinds of estimates the generating process location. These
differences follow directly from the geometric development of the
AIC by Akaike, and from the mathematics of model averaging.
(1) The model average must fall inside of the bounds of the
fitted models. changing the model set will, except in contrived
cases, change the model average. (2) Because it is a projection,
our method’s estimate of the generating process’ location can
fall outside the bounds of the model set. And (3), because of
the nature of projection geometry, farther models can inform
the estimated situation of the generating process in the NMDS
map. Point (3) is demonstrated in the discrepancy in the stability
of the model projection location under model elimination from
the left and model elimination from the right. There are several
models with high influence that are deleted quickly under model
elimination from the right that stay in the model set much longer
under elimination from the left.

Our approach calculates two important diagnostic statistics
not even thought of in model averaging. The first is measure
of the dispersion of the generating process. This is the neg-
selfentropy or Sgg. In this example it is calculated to be −9.881,
very close to the known magnitude of −9.877. The second
statistic is an estimate of the perpendicular distance of the
generating process to the NMDS manifold (h in Equation 9).

This diagnostic is critical for proper interpretation of your model
set. If the generating process is far from NMDS manifold, then
any statistic based on models in the model set is likely to be
inaccurate. Using our approach we calculate h to be 0.0002. The
known h is 6e− 08.

3.3. Testing the Non-parametric Estimation
of Sgg
To exemplify the independent estimation of Sgg with a data
set we simulated samples from a seven-dimensional multivariate
normal distribution and compared the true value of Sgg with its
non-parametric estimate according to Berrett et al. (2019). We
chose to simulate data from a multivariate normal distribution
because its Sgg value is known analytically. When the dimension
of a multivariate normal distribution is p and is variance-
covariance matrix is6, then

Sgg = −
1

2
ln

{

(2πe)pdet(6)
}

. (12)

To carry our test, we chose five testing sample sizes
10, 25, 50, 75, 150, and for each sample size we simulated
2,000 data sets according to a multivariate normal distribution
with p = 7 and 6 = I, and computed each time Berrett et al.’s
non-parametric estimate. The resulting estimates, divided by the
true value of 9.93257 are plotted as boxplots in Figure 9.
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FIGURE 7 | The final, simplified model explaining plant diversity from Grace

and Keeley (2006). Arrows indicate causal influences. The standardized

coefficients are indicated by path labels and widths. See section 3.2 for

details. Prasanta S. Bandyopadhyay, Gordon Brittan Jr., Mark L. Taper, Belief,

Evidence, and Uncertainty. Problems of Epistemic Inference, published 2016

Springer International Publisher, reproduced with permission of Springer

Nature Customer Service Center.

4. DISCUSSION

We have constructed a novel approach to multi-model inference.
Standard multi-model selection analyses only estimate the
relative, not overall divergences of each model from the
generating process. Typically, divergence relationships amongst
all of the approximating models are also estimable (dashed
lines in Figure 5). We have shown that using both sets
of divergences, a model space can be constructed that
includes an estimated location for the generating process (the
point g in Figure 5). The construction of such model space
stems directly from a geometrical interpretation of Akaike’s
original work.

The approach laid out here has clear and substantial
advantages over standard model identification and Bayesian
based model averaging. A heuristic approach aiding the
development of novel models is now possible by simply being
able to visualize a set of candidate models in an Euclidean
space. Now the overall architecture of model space vis-a-vis the
generating process is statistically estimable. Such architecture
is composed of a critical set of quantities and relationships.
Among these objects, we now include the estimated coordinates
of the closest orthogonal generating model projection onto the
manifold of candidate models (the pointM in Figure 5). Second,
the estimated magnitude of the total divergence between the
truth and its orthogonal projection onto the manifold of models
can give the analyst an indication of whether important model
attributes have been overlooked.

FIGURE 8 | Stability test of the displacement (trajectories) of the model

prediction (in blue) and the model average (in red) under deletion of 1− 30

models. M denotes the true location of the orthogonal projection of the

generating model in the hyperplane. m and a mark the location of the model

projection and the model average, respectively, when the 30 models are used.

In both cases, as models are removed one by one from the candidate model

set, the location of both m and a changes (little vertical lines). Note how the

model projection estimate is more stable to changes in the model set than the

model average. Prasanta S. Bandyopadhyay, Gordon Brittan Jr., Mark L.

Taper, Belief, Evidence, and Uncertainty. Problems of Epistemic Inference,

published 2016 Springer International Publisher, reproduced with permission

of Springer Nature Customer Service Center.

In the information criterion literature and all scientific
application, the neg-selfentropy Sgg of the generating process
is simply treated as an unknown quantity. In fact, it can be
estimated quite precisely as our example shows. Sgg is itself
of great interest because with it the overall discrepancy to the
generating process becomes estimable. Because this quantity is
estimable, now the analyst can discern the overall quality and
proximity of the model set under scrutiny. Thus, our approach
solves a difficulty that has long been recognized (Spanos, 2010)
but yet treated as an open problem.

Studying the model space architecture gives the information
to correct for misleading evidence (the probability of observing
data that fails to support the best model), accommodation
(over-fitting), and cooking your models (Dennis et al., 2019).
The scaffolding from which to project the location of the
generating process is estimated can be rendered more robust
simply by considering more models. This is an interesting
result that we expect will later contribute to the discussion of
data dredging. On the other hand, non-identifiability and weak
estimability (Ponciano et al., 2012) are, of course, still a problem,
but at least the model space approach will clearly indicate
the difficulties.

As conceived here, model projection is an evidential
alternative (Taper and Ponciano, 2016b) to model averaging
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FIGURE 9 | Boxplots of sets of 2,000 non-parametric estimates of Sgg (from

Berrett et al., 2019) relative to the true Sgg value of 9.93257, for different

sample sizes. The simulated data comes from a seven-dimensional

Multivariate Normal distribution with means equal to 10 and the identity matrix

as a variance-covariance matrix. The dashed, horizontal line at 1 shows the

zero-bias mark.

using Akaike weights (or other Bayesian alternatives) because
it incorporates the available information estimated by many
models without the redundancy inherent in model averaging.
Through model projection the analyst can use more of
the information available but usually ignored. Furthermore,
our methodology provides new important diagnostic statistics
previously not considered by model averaging: Sgg and h.
As we showed in our results, model projection is not as
sensitive as model average to the composition of the set of
candidate models being investigated. Model averaging appears
to artificially favor redundancy of model specification: the more
models are developed in any given region of model space,
the stronger this particular region gets weighted during the
model averaging process. Finally, an emergent pattern in the
analysis is that the optimization problem of our model projection
methodology can be used to project outside the bounds of the
availablemodel set whereas themodel averagingmethodology, by
definition, cannot.

As well as proposing solutions to existing problems, any new
method also raises a variety of technical problems that need to
be solved. This is certainly the case with the model projection
approach presented here.

Our methodology bears a near-model limitation that,
although important, is shared with the usage of Akaike’s
Information Criterion. Our exposition makes it clear that
near model requirement is due to the imperfect yet useful
approximation employed by Akaike while setting φ ≈ π/2
(see Figure 1). It was only thanks to this approximation
that Akaike was able to solve for the estimable divergence
contrasts between all approximating models and the generating
process. This approximation breaks down in curved model
spaces as the divergence from the generating process increases.
Indeed, as the KL distance between approximating models
and the generating model increases, −AIC/2n becomes an
increasingly biased and variable estimate of the Sgf component
of the KL distance between the approximating model and the
generating model. This effect is strong enough that sometimes
very bad models can have very low 1AIC scores, sometimes
even as low as the minimum score. The TIC (Takeuchi,
1976) and the EIC2 (Konishi and Kitagawa, 2008; Kitagawa
and Konishi, 2010) are model identification criteria designed
to be robust to model misspecification. Substituting one of
these information criteria for the AIC in constructing the
matrix of inter-model divergences should allow the use of
models more distant from truth than is acceptable using
the AIC.

Our methodology focuses on estimation of the model
space geometry but uncertainties around such estimation
are not fully worked out as of yet. Work in progress
by Taper, Lele, Ponciano and Dennis, the estimation of
the uncertainties associated with doing inference with
evidence functions, such as 1SIC scores, can be assessed
via non-parametric bootstrap techniques. We expect
bootstrap to be also useful to reduce the variance of
information criterion’s bias correction (Kitagawa and Konishi,
2010).

We think that this model projection methodology should
be the starting point to do a careful, science-based inquiry of
what are the model attributes that make a model a good model.
Knowing the location of the projected best model is an essential
component of our multi-model development strategy because a
response surface analysis can reveal what model attributes tend
to be included near the location of the projected best model thus
aiding in the construction of amodel closer to the best projection.
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We investigate a class of information criteria based on the informational complexity

criterion (ICC), which penalizes model fit based on the degree of dependency among

parameters. In addition to existing forms of ICC, we develop a new complexity measure

that uses the coefficient of variation matrix, a measure of parameter estimability,

and a novel compound criterion that accounts for both the number of parameters

and their informational complexity. We compared the performance of ICC and these

variants to more traditionally used information criteria (i.e., AIC, AICc, BIC) in three

different simulation experiments: simple linear models, nonlinear population abundance

growth models, and nonlinear plant biomass growth models. Criterion performance

was evaluated using the frequency of selecting the generating model, the frequency

of selecting the model with the best predictive ability, and the frequency of selecting

the model with the minimum Kullback-Leibler divergence. We found that the relative

performance of each criterion depended on the model set, process variance, and sample

size used. However, one of the compound criteria performed best on average across all

conditions at identifying both the model used to generate the data and at identifying the

best predictive model. This result is an important step forward in developing information

criterion that select parsimonious models with interpretable and tranferrable parameters.

Keywords: informational complexity, ICOMP, AIC, BIC, variable selection, covariance, coefficient of variation,

prediction

1. INTRODUCTION

It is through models that scientists continually refine their descriptions of nature (Giere, 2004;
Taper, 2004; Pickett et al., 2010; Taper and Lele, 2011). Scientists interpret models as descriptions of
observations, as representations of causal processes, or as predictions of future observations. Often
scientists test a set of probabilistic models representing alternative hypotheses. A critical scientific
goal is identifying reliable methods to determine the best predictive model, or set of models, among
the candidates. Prediction has emerged as a primary goal for many ecological applications (Dietze
et al., 2018) but commonly used information criterion have been shown to be inadequate in many
ecological applications (Link and Sauer, 2016; Link et al., 2017).

To most profitably select among set of models we should be able to measure the evidence of
each model relative to others (Lele, 2004; Taper and Lele, 2011). Model selection criteria do this by
ranking a set of models based on their relative ability to achieve a specific goal. Two common goals
of model selection are the minimization of the approximation error and the minimization of the
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prediction error (Taper, 2004), corresponding to two principal
functions of modeling, explanation, and prediction (Cox, 1990;
Lele and Taper, 2012).

Most commonly used model selection criteria apply
asymptotic theory developed under the assumption of large
sample sizes (Bozdogan, 1987; Cavanaugh, 1997; Burnham and
Anderson, 2002). This has led to criteria that are easily calculated
from standard regression output; however, the criterion’s
effectiveness may be limited when applied to sets of complex
models with low sample sizes, such as those often encountered
in ecological inference. Relatively few studies have tested how
well selection criterion can deal with such scenarios, but work
by Hooten (1995) and Ward (2008) have tested the ability of
criteria to answer questions about nonlinear animal population
dynamics, while Murtaugh (2009) looked at how different model
selection techniques affected predictability across nine different
ecological datasets.

The discrepancy between an estimated probability
distribution and the true underlying distribution can be
partitioned into two terms. The first, termed the model
discrepancy, is due to limitations in model formulation while
the second, termed the estimation discrepancy, arises due
to difficulties in estimation (Bozdogan, 1987). The model
discrepancy arises from how close the approximating model is to
the data generatingmechanism, given the best possible parameter
values. The second quantity, called the estimation discrepancy,
arises from the poor estimation of model parameters. An extreme
example of poor estimability is parameter non-identifiability
(e.g., when parameters only occur in fixed combinations, such as
sums or products) leading to complete correlation or collinearity.
Although this is an extreme example and not likely to appear in
a well-considered model, there are various degrees of collinearity
in models and not all strong collinearities are obvious (e.g.,
Polansky et al., 2009; Ponciano et al., 2012).

Collinear parameters will be unstable to small changes in
the data (Schielzeth, 2010; Freckleton, 2011), thus affecting the
interpretability of estimates. Collinearity also impacts to the
generality of a model by affecting the ability to make reliable
out-of-sample predictions (Brun et al., 2001; Dormann et al.,
2013), the interpretability of model-averaged coefficents (Cade,
2015), and the ability to transferrable parameters estimated from
one context to another (Yates et al., 2018). This final property is
especially desirable for generating estimates that will be useful for
fields that rely on parameterizing complex model using estimates
pulled from the literature [e.g., food web ecology (Ferguson et al.,
2012) and epidimiology (Ruktanonchai et al., 2016)]. Bozdogan
and Haughton (1998) showed that the performance standard
information criterion can significantly decline in the presence
of collinearity.

We argue that when dealing with complex models, estimation
accuracy should be considered in measures of model quality
because accuracy is necessary to correctly interpret parameter
estimates, make reliable predictions, and to use estimated
parameters in new scientific settings—three common goals
of scientific practice. Below, we discuss previous work that
incorporates measures of parameter interdependency into
model selection criterion. We use this to motivate a new

class of information criteria that incorporates measures of
interdependency into traditional forms of information criterion.
We test the ability of new and existing information criteria over
three model sets of increasing complexity, looking at selection
behavior in each model set over different levels of process
variability and sample size.

1.1. Introduction to Information Criterion
In ecology, primarily due to the influential work of Burnham
and Anderson (2002), attention has focused on estimating the
Kullback-Leibler divergence as a measure of model discrepancy.
Akaike (1974) measured this discrepancy by minimizing the
cross-entropy between the model distribution, m(x), and the
true distribution, t(x). The difference between the entropy of a
distribution and the cross-entropy is called the Kullback-Leibler
(KL) divergence. This measures the amount of information lost
about t(x) when using m(x) to approximate. The KL divergence
is given by DKL(t, m) = Et(x)

[

ln(t(x))
]

− Et(x)
[

ln(m(x))
]

.
Increasing values of DKL are interpreted as poorer

approximations of the model m(x) to t(x) (Burnham and
Anderson, 2002). In a typical application we don’t know the true
underlying distribution, t(x). However, when making relative
comparisons between two or more approximating models we
do not need to consider the first term of the KL divergence, the
entropy of the true distribution, as this is the same for all models
in the comparison and is eliminated in the contrast between
models. Differences between models therefore only depend only
on the second term, the cross-entropy. Akaike (1974) showed
that if the model is sufficiently close to the generating process,
twice this cross-entropy term could be estimated in what has
become called Akaike’s Information Criterion:

AIC = −2 ln(L(θ̂))+ 2k. (1)

Here, L(θ) is the likelihood function of the pdf m(x), evaluated
at the maximum likelihood parameter values, θ̂ , and k is the
number of parameters in the model (including estimates of
variance parameters).

Given a set of AIC values, we declare the parameterized
model with the lowest value to have the minimum estimated
KL divergence from the generating process and therefore to be
most similar to it. Because AIC values all lack the unknown self-
entropy term in the KL divergence, they are often presented as a
contrast between a givenmodel and the bestmodel in the set. This
measure is often denoted as the1AIC value. Values of1AIC > 2
indicate there is some evidence for themodel with the lower value
relative to the other model, while models with of 1AIC < 2 are
considered to be indistinguishable (Taper, 2004) (see Jerde et al.
in this issue for a more fine-grained discussion on the strength
of evidence).

While the use of the AIC has flourished in ecological
modeling, there are several important properties of the AIC that
are not well known to ecologists. For example, Nishii (1984)
and Dennis, Ponciano, Taper and Lele (submitted this issue)
showed that in linear models the AIC has a finite probability
of overfitting even when the sample size is large. Thus the AIC
is not statistically consistent. However, the AIC does minimize

Frontiers in Ecology and Evolution | www.frontiersin.org 2 November 2019 | Volume 7 | Article 427117

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Ferguson et al. Parameter Estimability and Model Selection

the mean squared prediction error in linear models as sample
size increases, making it asymptotically efficient for prediction
(Shibata, 1981), a property that does not require the generating
model to be in the set.

Many other criteria have been developed which are similar in
form to the AIC. These criteria are composed of a goodness of fit
term, based on the log-likelihood, and a penalty term, based on
some measure of the model complexity. For the AIC in Equation
(1) this penalty is the number of parameters. The AICc is a small
sample bias correction to the AIC derived under the assumption
of a standard regression model with the sampling distribution of
the estimated parameters normally distributed around the true
parameter values (Hurvich and Tsai, 1989). The AICc is given by

AICc = −2 ln(L(θ̂)) + 2k + 2k(k+1)
n−k−1

. Here, n, is the sample size
and k is the number of estimated parameters. Like the AIC, this
criterion is not consistent but it is asymptotically efficient with
linear models (Shibata, 1981; Hurvich and Tsai, 1989).

The Schwarz information criterion or BIC (Schwarz, 1978)
(also sometimes called the SIC), is used to estimate the marginal
likelihood of the generating model, a quantity often used in
Bayesianmodel selection. Originally derived under a general class
of priors the BIC is given by BIC = −2 ln(L(θ̂)) + k ln(n). The
BIC is consistent, in that it will asymptotically choose the model
closest to truth (in the Kullback-Leibler sense). However, the BIC
is not asymptotically efficient, an important difference between
it and the AIC and AICc (Aho et al., 2014). Finally, the BIC*
(also sometimes called HBIC or the HIC) (Haughton, 1988) is
an alternative derivation of the BIC and a slightly weaker penalty
that may serve as a useful compromise between the AIC and
BIC, BIC∗ = −2 ln(L(θ̂))+ k ln(n/2π). This criterion is thought
to have greater efficiency than the BIC at higher sample sizes
while still being consistent. This allows the criterion to balance
underfitting and overfitting errors.

The informational complexity criterion, or ICC, developed by
Bozdogan (2000) examines a different kind of complexity than
the previously described methods. In the ICC the number of
parameters, k, is not considered to be a full characterization of
a models complexity. Instead, ICC seeks to capture dependencies
among model parameters. The approach applies an information-
based covariance complexity term (van Emden, 1969), in
addition to the cross-entropy term used in the AIC. The ICC
constructs its penalty term from the trace and the determinant
of the parameter covariance matrix 6, characterizing complexity
through measures of parameter redundancy and estimation
instability. ICC is given by

ICC(6) = −2 ln(L(θ̂))+ 2C(6), (2)

where C(6) has replaced k, the number of parameters, in the
AIC. The complexity penalty, C(6), takes into account not just
the number of parameters but also the degree of interdependence
among parameters, measured using the covariance matrix of the
estimated parameters, 6.

1.2. Deeper Into C(6)
According to Bozdogan (2000), the “complexity of a system
(of any type) is a measure of the degree of interdependency

between the whole system and a simple enumerative composition
of its subsystems or parts.” Intuitively, this means that the
more complex a system is, the more information is needed
to reconstruct the whole from the constituent components.
A mathematical realization of this definition can be realized
by measuring the mutual information between the joint
sampling distribution (s(θ1 θ2, . . . , θk)) and the product of
marginal sampling distributions (s(θ1)s(θ2) · · · s(θk)). The mutual
information is

I(θ1 θ2, · · · , θk) = E

[

ln

(

s(θ1 θ2, . . . , θk)

s(θ1)s(θ2) · · · s(θk)

)]

, (3)

where the expectation is taken over the joint distribution.
Equation (3) is a measure of the information shared

between the estimated parameters. It is zero, corresponding
to no complexity penalty, when parameter estimates are
all independently distributed and increases with increased
covariation between parameters. Assuming the estimated
parameters follow a multivariate normal distribution leads to a
form of this mutual information that can be readily calculated.
Because normality is an asymptotic property of maximum
likelihood estimation, the assumption is valid in many settings.
Equation (3) then simplifies to the van Emden complexity, given

by CvE(6) = 1
2

∑k
i ln(σ

2
i ) −

1
2 ln(|6|). Here, σi denotes the

standard error of the ith parameter estimate. diagonal elements
of the estimated parameters covariance matrix, 6, for each of
the k parameters. The determinant of this matrix is noted as |6|.
This quantity measures the amount of information lost when
parameter estimates are assumed to be independent.

The van Emden complexity is not invariant to rotations
of the parameter space; therefore Bozdogan maximized
this quantity over all possible orthonormal parameter
transformations (Bozdogan, 2000). The maximal complexity is

Cmax(6) = k
2 ln

(

tr(6)
k

)

− 1
2 ln(|6|). In this study we examined

penalties based on both CvE(6) and Cmax(6) complexity terms
as they behave differently and previous work has suggested that
both may be useful (Clark and Troskie, 2008). We differentiate
the ICC (Equation 2) that use these different complexity
measures using the notation ICCvE(6) and ICCmax(6).

An illustration of the complexity measures in Figure 1

for a two-dimensional covariance matrix gives the qualitative
behavior of both complexity terms. Both terms increase as the
magnitude of the correlation increases, however, the increase
in the van Emden complexity is independent of the variance
while the maximal complexity is a non-monotonic function
of the variance. The maximal complexity is minimized when
the relative variance terms are equal, and increases when one
variance term diverges from the other. Thus, the maximal
complexity can actually increase with increases in precision of
parameter estimates, a property that may not be desirable.

In order to apply the penalties CvE(6) and Cmax(6) to real

data we use the estimated covariance matrix, 6̂. The parameter
covariance matrix is extractable from the output of virtually
all estimation packages. If parameters are estimated through
direct optimization, optimization routines typically report an
approximate Hessian. The inverse of the Hessian matrix is an
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FIGURE 1 | The van Emden complexity, CvE(6), and maximal complexity, Cmax(6), where 6 =

(

σ2
1 σ1σ2ρ

σ1σ2ρ σ2
2

)

and σ2 = 1.

TABLE 1 | Invariance of complexity forms to different linear transformations of the

covariates.

Additive

transforms

Multiplicative

transforms

Rotational

transforms

CvE(6) X X

Cmax(6) X X

CvE(9) X

Cmax(9) X X

approximation of the covariance matrix. Thus, CvE(6̂) and
Cmax(6̂) can be easily calculated from output given by standard
statistical packages such as R (R Core Team, 2015), which
typically will report an approximate Hessian matrix that can be
used to estimate the approximate covariance matrix by solving
for the inverse of the matrix. For the small variance covariance
matrices explored here solving for the inverse matrix is fast (less
than 1 s) and the matrix would have to get quite large for the
calculation time to be noticible, on the order of thousands of
parameters. Other methods to estimate the covariance matrix
such as using the least squares estimators or by bootstrapping
estimates of the covariance matrix could also be applied.

ICC is not a scale-invariant penalty and transformations of the
data may yield different model selections. Another form of ICC
calculates the complexity penalty as a function of the correlation
matrix, denoted as R, rather than of the covariance matrix
(Bozdogan and Haughton, 1998). However, this quantity does
not incorporate information about the precision of parameters
estimates, as the variance terms are not present.

To overcome the limitations of the current form of scale-
invariant ICC, we introduce a new variant based on a complexity
measure that uses the coefficient of variation matrix (Boik and
Shirvani, 2009). This matrix is independent of scale, but it retains
information on the relative precision of the parameter estimates.
The coefficient of variation matrix is defined as the covariance
matrix scaled by the vector of parameter estimates in such a way

that the diagonals are the squared coefficients of variation. This

is a matrix with entries defined as 9i,j = Cov(θ1 , θ2)
θ1θ2

. Applying
penalties of the form CvE(9) may be desirable because the
matrix 9 is invariant to multiplicatively rescaling the covariates
but is still sensitive to the relative magnitude of coefficient
uncertainty. Scale invariance means that going from one unit
to another for a specific covariate, e.g., meters to kilometers,
does not affect the inference. CvE(9) and Cmax(9) are sensitive
to additive transformations, thus, shifting all measurement
units by a constant factor will lead to different inferences.
A table summarizing the properties of the different forms of
informational complexity is given in Table 1.

2. METHODS

2.1. Incorporating Parameter Estimability
Into Information Criterion
The standard ICC does not penalize increasing complexity in a
manner that leads to asymptotically consistent model selections
(Nishii, 1988). Bozdogan and Haughton (1998) proposed a
consistent form of the ICC that scaled the complexity parameter,
Cmax(6) by the log of the sample size, however this criterion did
not perform well in their simulation experiments. Therefore, we
propose a new compound selection criterion that is the sum of
two divergences in order to develop a consistent form of criteria.
The first divergence is a model parsimony measure. The second
divergence, C−(·), gives a measure of parameter estimability, a
useful property for model interpretability and prediction. This
criterion is defined as IC + C−(·) ≡ −2 ln(L(θ̂)) + kf (n) +
2C−(·). The first piece of this criterion measures the goodness
of fit through the maximum log-likelihood, the second piece
measures model complexity, where f (n, k) is a function of the
sample size and possibly of the number of parameters. The final
piece, C−(·), measures the parameter estimability. The exact form
of this compound criterion depends on both the choice of the
model parsimony criterion as well as the choice of the parameter
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complexity measure which regulates the strength of the penalty
based on the complexity of the parameter.

Our motivation for using two divergences in this compound
criterion is that we believe accounting for both goodness of fit
and parameter estimability when using finite datasets will better
reflect the underlying complexity and usefulness of the model.
These compound criteria also deal with a critical issue in the
ICC that yield a penalty of zero when parameters are orthogonal.
Given that there are a number of measures of both goodness of
fit and parameter complexity, we tested several different forms of
the compound criterion. The forms we tested were AIC+2C−(·),
AICc + 2C−(·), BIC + 2C−(·), and BIC∗ + 2C−(·) where C−(·)
can be CvE(6̂), CvE(9̂), Cmax(6̂), or Cmax(9̂).

2.2. Performance Comparisons With
Simulation Studies
We conducted simulation studies that tested the capabilities of
all 25 of the simple and compound information criteria discussed
above under different conditions. We compared the behavior of
model selection criteria using three attributes:

1. Selection: how frequently the criterion identifies the
generating model.

2. Prediction: how well models selected by a criterion can predict
new observations.

3. KL approximation: how well criterion values estimated KL
divergence between model and truth.

The first two attributes reiterate the primary goals of model
selection described in the introduction. The third attribute
addresses the ability of a model to determine the relative KL
divergence, a question of only collateral interest to practitioners
interested in the application of model selection techniques to
scientific problems. However, the estimated KL divergence may
be a useful proxy for similarity to the generating model. In
addition, much of the development and discussion of model
identification criteria in ecology is framed around the estimation
of the KL divergence as a metric between model and truth (for a
review on other possible metrics see discussion in Lele, 2004).

We quantified attribute 1, the ability of a criterion to
determine the generating model by counting the percentage of
time that each criterion selected the generating model in our
simulations. We measured attribute 2, a criterion’s predictive
ability, by its prediction sum of squares (PRESS) given by

PRESS =

n
∑

i=1

(

yi − ŷ−i

)2
. Here ŷ−i is the predicted value at the

ith data point, which is omitted when fitting themodel to the data,
and yi is the true, unobserved i

th value (Allen, 1974). A low PRESS
value indicates that the criterion chooses a model that gives low
prediction errors for in-sample prediction.

To calculate attribute 3, the frequency that criteria selected
the minimum KL divergence between the jth model and the
generating distribution, we used the formula for the divergence
between normal distributions (Bozdogan, 1987). We determined
the agreement of each criterion with the true minimum KL
divergence by calculating the frequency that the criterion selected
the model with the minimum KL divergence.

To better understand the properties of these model selection
criterion under a broad range of conditions we performed
our simulation experiments with a set of linear models and
two sets of nonlinear models of ecological interest. The linear
model simulations varied the strength of correlation present in
the design matrix as well as sample size and process variance.
The first nonlinear model set examined time series models
of population dynamics, while the second examined highly
nonlinear models of barley yield. In both nonlinear model sets
sample size and process variance were varied as well as the
generating model. Using these different model sets, we sought to
define criterion performance over the range of model complexity
found in the ecological literature.

2.3. Linear Models
Our linear regression simulation experiment follows a design
based on previous simulation studies by Bozdogan andHaughton
(1998), Clark and Troskie (2006), and Yang and Bozdogan (2011).
These studies explored the application of the ICC criterion
under differing levels of correlation among explanatory variables.
Correlation in explanatory variables is likely to be common in
ecological covariates, causing the performance of the AIC to
suffer (Bozdogan and Haughton, 1998).

We generated a 7 parameter design matrix by transforming
8 randomly drawn standard normal random variables, Z ∼

N(0, 1), using the relationships:

Xi,j =







√

1− α2
1Zi,j + α1Zi,8 for j = 1, 2, 3 i = 1, 2, . . . , n

√

1− α2
2Zi,j + α2Zi,8 for j = 4, 5, 6, 7 i = 1, 2, . . . , n.

Where Xi,j is the ith entry of the jth covariate. The α1 and
α2 values control the degree of correlation present among the
elements of the design matrix. The covariates generated by using
this procedure have a covariance between row j and row k
given by,

Cov(Xj, Xk) =











α2
1 for j = 1, 2, 3, k = 1, 2, 3

α2
2 for j = 4, 5, 6, 7, k = 4, 5, 6, 7

α1α2 for j = 1, 2, 3, k = 4, 5, 6, 7.

The covariate parameters, β , were generated from the
maximum eigenvector of the matrix X′X following
Bozdogan and Haughton (1998).

We generated data at three different levels of collinearity, low
(α1 = 0.3, α2 = 0.7), medium (α1 = 0.9, α2 = 0.9), and
high (α1 = 0.99, α2 = 0.99); three levels of sample size, low
(n = 20), medium (n = 50), and high (n = 100); and three
levels of variability, low (σ 2 = 0.25), medium (σ 2 = 1), and high
(σ 2 = 2.5). We simulated 100 datasets from the rank 5 model
at each level of collinearity, sample size, and variance. We then
repeated each set of 100 simulations 10 times to estimate a mean
and standard error of each selection attribute.

We then fit all models of ranks (1–7) to the generated data
using the BFGS algorithm in the optim routine in the R statistical
language. Hessian matrices were calculated using the Hessian
function in the numDeriv package (Gilbert and Varadhan, 2016).
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We checked convergence of the optimization by checking that
all eigenvalues of the Hessian matrix were positive. For each
simulated dataset we calculate the information criteria of each
fitted model and determined how well the criteria performed in
our three selection attributes.

We determined performance at each level of collinearity,
sample size, and variance by averaging the statistic of interest
(e.g., the number of correct generating model selections) over all
of the simulation study parameters except the level of interest. For
example, to determine performance at the low collinearity level
we averaged the performance statistic of interest over all sample
sizes and variances that had designmatrices with low collinearity.

2.4. Population Dynamics Models
Dynamical time series models are a common applied modeling
technique for forecasting future ecological conditions, a major
goal of ecological modeling (Clark et al., 2001). Applications of
time series models include forecasting fisheries stocks (Lindegren
et al., 2010) and assessing extinction risk (Ferguson and
Ponciano, 2014). Measuring the strength of evidence among
a set of forecast models is critical for generating reliable
predictions, but it’s known that many nonlinear dynamical
models yield correlated parameter estimates (Polansky et al.,
2009). These correlations may impact the performance of
traditional information criterion (Bozdogan, 1990). Here, we
study the properties of information criterion in a set of nonlinear
dynamical models.

The population dynamics simulation experiment used time
series models to describe the projected population abundance in
the next year given the abundance in the current year. In order to
ensure that population dynamics were realistic, we generated data
based on parameter estimates made from the Global Population
Dynamics Database (GPDD) to simulate data (NERC, 2010).
The GPDD contains approximately 5000 time series related to
plant and animal index measurements. We used a subset of these
studies, chosen for their length and the indicated data quality
following the methods described in more detail in Ferguson and
Ponciano (2015) and Ferguson et al. (2016). We only used time
series with a length of at least 15 samples and a GPDD reliability
rating of 3–5. The reliability rating is a qualitative measure of data
quality made by the database authors. These quality standards left
us with 391 time series to generate data from.

We examined six density-dependent models encompassing a
wide range of functional forms. All models were of the form,
Nt+1 = rNtf (Nt) where f (Nt) can take one of the commonly
used functional forms of density dependence given in Table 2.
These functional forms represent different hypotheses about the
strength of density dependence. As in the linear model design, we
examined a range of sample sizes (n = 25, n = 50, n = 100) and
low, medium, and high process variances (see below for how we
calculated these variances).

In order to determine realistic levels of variance to use
in our simulations, we fit an additive, normally distributed
environmental variance model to the population growth rate

(pgr), where pgr = ln
(

Nt+1
Nt

)

. To determine realistic levels

of environmental variation, we fit the pgr to a linear model

TABLE 2 | Forms of density dependence used in the population dynamics study.

Model Functional form (f(Nt ))

Exponential rNt

Ricker rNte
bNt

Theta-Ricker rNte
bNθ

t

Gompertz rNte
b ln(Nt )

Beverton-Holt rNt
1+bNt

Hassell rNt
(1+bNt )θ

The intrinsic population growth rate is given by the parameter r, while b is the strength of

density dependence. The degree of compensation in the Theta-Ricker and Hassell models

is controlled by θ .

(corresponding to Gompertz density dependence in Table 2) for
all 391 time series. Optimization and convergence checks were
performed on the pgr using the same methods described in the
linear model section. We then used the 10, 50, and 90% quartiles
of the estimated environmental variance over all time series to
determine the low, medium, and high variance levels used in
the simulations.

To simulate data, we first fit each of the density dependence
model to each of the 391 GPDD datasets. We then simulated
a new dataset from each fitted model at each level of sample
size and variance, repeating this process for all of the density
dependence models in Table 2. We repeated this process for
every possible generating model, sample size, and variance
combination, repeating the whole procedure 10 times to obtain
a standard error for the model selection attributes. We averaged
criteria performance over sample size, variance level, and
generating model to examine the average selection rate for a
given factor of interest. We did not need to vary the correlations
between parameters in this experiment as in the linear models
because the nonlinear model structure induces correlations
between parameters.

2.5. Barley Yield Models
Bioeconomic modeling is an increasingly important application
of ecological modeling (Grafton et al., 2017). Here, we examined
the selection properties information criterion applied to a set
of crop-weed competition models. These models explain crop
yield (Y) as a function of crop (Dc) and weed (Dw) density, as
well as the relative difference in time to emergence (T) between
crop and weed. Here we examined our ability to accurately select
the correct barley yield model from a set of candidate models.
The nine models considered for this simulation experiment
are a subset from a previous study (Jasieniuk et al., 2008)
that used the ICC. These models have more complex forms
than the population dynamics models used above, as well as
more parameters and more covariates. Thus, this model set is
a step up in complexity from the population dynamics models
explored in the previous section. The nine models used in this
simulation study are defined in Table 3. We refer readers to the
original study by Jasieniuk et al. (2008) for further motivation for
these models.
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TABLE 3 | Functional forms of the models used for the barley yield simulations.

Functional form Fitted parameters Observed variables

Y = RcDc

(

1− RwDw
e−cT+awDw

)

Rc, Rw, aw, c, σ 2 Dc, Dw, T

Y = RcDc
1+acDc

(

1− RwDw
1+awDw

)

Rc, Rw, ac, aw, σ 2 Dc, Dw

Y = RcDc

(

1− RwDw
1+awDw

)

Rc, Rw, aw, σ 2 Dc, Dw

Y = RcDc Rc, σ 2 Dc

Y = RcDc
1+acDc+awDw

Rc, ac, aw, σ 2 Dc, Dw

Y = RcDc
1+awDw

Rc, aw, σ 2 Dc, Dw

Y = RcDc
1+awDwe−cT

Rc, aw, c, σ 2 Dc, Dw, T

Y = RcDc

1+ awDwe−cT

1+bDw

Rc, aw, c, b, σ 2 Dc, Dw, T

Y = RcDce
−iDwe

−cT
Rc, i, c, σ 2 Dc, Dw, T

Y is the crop yield response. The covariates are, Rc, the observed crop density, Rw ,

the observed weed density, and T, the observed relative emergence time between the

crop and weeds. Estimated parameters are, Dc, the slope of the increase in crop yield

with increasing crop density below the asymptote, Dw, the slope of the proportional

yield loss as weed density approaches 0, ac, the maximum expected crop yield, aw, the

asymptotic maximum proportional yield loss at high weed densities, and c, the relative

time of emergence between crop and weed is scaled.

We generated datasets by first fitting each of the models to the
dataset from the Bozeman 1994 dataset reported in Jasieniuk et al.
(2008). We simulated new datasets by adding a normal random
noise term to the log of the empirically predicted response using
data from Jasieniuk et al. (2008). We examined three sample
size levels (n = 25, n = 50, n = 125) and three variance
levels (σ 2 = 0.5σ̂ 2, σ 2 = σ̂ 2, σ 2 = 4σ̂ 2), where σ̂ 2 was the
empirically estimated variance of the observed data under the
given generating model. We generated 100 simulated datasets for
each model in Table 3 at each sample size and variance level.
As before, we averaged over sample size, variance level, and
generatingmodel to examine the average selection rate for a given
factor of interest. We repeated each set of simulations 10 times to
order to estimate the mean and standard error of the selection
statistics. We only performed the PRESS calculation on one set of
simulations due to the length of time it took to do this calculation.
Therefore, there is no standard error associated with prediction
for these models.

Due to these models presenting a more difficult optimization
problem than the other model sets, we modified our fitting
procedure. From an initial set of parameters, we applied
the Nelder-Mead optimization algorithm (also known as the
downhill simplex method) followed by the BFGS method to
maximize the log-likelihood function. The simplex method was
run first because it is robust, although it converges slowly. This
two-step process provided the initial parameter estimates for
the quasi-Newton method, which converges relatively quickly
near a maximum. We repeated this procedure for 100 random
initial points and chose the parameters associated with the
maximum likelihood value, and convergence was determined as
previously described.

3. RESULTS

Here, we will focus on presenting the criteria that performed best
under one or more of our experimental conditions. Figures of

performance for all criterion under all experimental conditions
are presented in the Supplementary Material.

3.1. Linear Models
We present the overall criterion performance averaged over
all conditions, along with standard errors for the linear model
simulations in Figure 2. The best criterion at selecting the
generating model on average was the AICc (Table 4), the best at
prediction was also the AICc (Table 5), and the best at selecting
the minimumKL divergence was AICc+2Cmax(6) (Table 6). The
ICC tended to be the worst performers at all selection goals
(Figure 2), however the ICCmax(9) tended to behave similarly
to the AIC and the BIC*. We also see in Figure 2 that the
average performance of the criterion for all selection goals was
strongly correlated but the PRESS and KL minimum selection
was nearly completely correlated. Several of the compound
criteria performed well with AICc+2Cmax(6), AICc+2CvE(6),
and AICc+2CvE(9) performing nearly as well as AICc for all
performance attributes.

In general, criteria performed better as sample
size increased and variance decreased as expected
(Supplementary Figures S1–S6). In most trials some form
of the compound criterion performed better than traditional
criterion (Figure 2). However, performance differences among
most of the criteria differed only by a few percentage points and
the difference in top performers was within the range of the
performance uncertainty (Figure 2).

3.2. Population Dynamics Models
We present the overall criterion performance for the population
dynamics simulation experiments averaged over all conditions,
along with standard errors, in Figure 3. While the class of
ICC criteria performed poorly in the linear model selections,
here they tended to perform as well as or better than the
traditional criteria. While the performance of all selection
goals in the linear models simulations were strongly correlated,
here they differed. The variation in the performance of the
ability to select the generating model was much greater than
for the other selection goals, though the compound criteria
did tend to perform better than both traditional criteria and
the ICC.

Out of the ICC the ICCmax(9) tended to perform as good
as, or better than the other forms. The best criterion at selecting
the generating model overall was the BIC+2Cmax(6) (Table 4),
the best at prediction was the BIC+2Cmax(6) (Table 5), and
the best at selecting the minimum KL divergence was the
AICc (Table 6).

In general, criteria performed better at selecting the generating
model and the KL minimum as sample size increased and
variance decreased, as expected, however, the ability to select
the minimum PRESS model actually declined in the traditional
criteria with sample size (Supplementary Figures S7–S12).
Additionally, we found that some form of the compound
criterion tended to perform better than the traditional criterion
for all selection goals with BIC+2Cmax(6) performing best
at selecting the generating model the best predictive model.
However, the AIC and AICc tended to dominate the performance
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FIGURE 2 | Performance of the criterion for all selection goals for the linear model simulation experiment. Points are the average performance-level, bars give

standard errors. The dashed horizontal line gives the performance of AICc for reference. The top panel gives the frequency that each criterion selects the model used

to generate the data, the middle pannel gives the frequency of selecting the model that minimizes the predicted residual error sum of squares (PRESS), while the

bottom panel gives the frequency of selection by the criterion of the model corresponding to the minimum Kullback-Leibler divergence (KL).
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TABLE 4 | Best performing information criteria at selecting the generating model from the candidate set.

Linear models Population models Barley yield models Overall

Sample size

Low AICc BIC+2Cmax(9) AIC+2Cmax(9) AICc

Medium AICc+2CvE(6) BIC+2Cmax(6) BIC AICc+2CvE(6)

High AICc+2CvE(6) BIC+2Cmax(6) AIC+2Cmax(6) BIC*

Variance

Low AICc+2Cmax(6) BIC*+2Cmax(6) BIC* BIC

Medium AIC+2CvE(6) BIC+2Cmax(6) AICc+2CvE(6) AICc

High AIC BIC+2Cmax(6) AICc+2CvE(6) AICc+2CvE(6)

Collinearity

Low AICc+2CvE(6) NA NA AICc+2CvE(6)

Medium AIC+2Cmax(6) NA NA AICc+2Cmax(6)

High AIC+2CvE(6) NA NA AICc+2CvE(6)

Overall AICc BIC+2Cmax(6) AICc+2CvE(6) AICc+2CvE(6)

TABLE 5 | Best performing information criteria at selecting the optimal predictive model from the candidate set.

Linear models Population models Barley yield models Overall

Sample size

Low AICc+2CvE(6) BIC AICc+2Cmax(9) AICc+2CvE(6)

Medium AICc+2Cmax(6) BIC+2Cmax(6) BIC* BIC

High BIC* BIC+2Cmax(6) AIC + 2CvE(6) BIC*

Variance

Low BIC+2Cmax(6) BIC BIC* BIC

Medium AICc BIC*+2Cmax(6) AICc+2CvE(6) AICc

High AICc+2Cmax(6) BIC*+2Cmax(6) BIC+2CvE(6) AICc+2CvE(6)

Collinearity

Low BIC+2Cmax(6) NA NA BIC+2Cmax(6)

Medium AICc+2CvE(6) NA NA AICc+2CvE(6)

High AICc NA NA AICc

Overall AICc BIC+2Cmax(6) BIC AICc+2CvE(6)

TABLE 6 | Best performing information criteria at selecting the minimum KL divergence from the candidate set.

Linear models Population models Barley yield models Overall

Sample size

Low AICc+2Cmax(6) AICc AICc+2Cmax(9) AICc+2Cmax(6)

Medium BIC+2Cmax(6) AIC BIC AICc+2Cmax(9)

High BIC* AIC AIC BIC

Variance

Low BIC+2Cmax(6) AIC BIC BIC

Medium AICc AIC AICc+2CvE(6) AICc

High AICc+2Cmax(6) ICCmax(6) BIC+2CvE(6) AICc+2CvE(6)

Collinearity

Low BIC+2Cmax(6) NA NA BIC+2Cmax(6)

Medium AICc+2Cmax(6) NA NA AICc+2Cmax(6)

High AICc+2Cmax(6) NA NA AICc+2Cmax(6)

Overall AICc +2Cmax(6) AICc BIC BIC

of the KL divergence selection. Performance differences among
most of the criteria differed only by a few percentage points and
the difference between top performers was within the range of the
performance uncertainty (Figure 3).

3.3. Barley Yield Models
We present the overall criterion performance for the barley
yield model simulation experiments, along with standard errors,
in Figure 4. While the performance of criteria was strongly
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FIGURE 3 | Performance of the criterion for all selection goals for the nonlinear population dynamics model simulation experiment. Points are the average

performance-level, bars give standard errors. The top panel gives the frequency that each criterion selects the model used to generate the data, the middle pannel

gives the frequency of selecting the model that minimizes the predicted residual error sum of squares (PRESS), while the bottom panel gives the frequency of selection

by the criterion of the model corresponding to the minimum Kullback-Leibler divergence (KL).
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FIGURE 4 | Performance of the criterion for all selection goals for the nonlinear barley yield simulation experiment. Points are the average performance-level, bars give

standard errors. The top panel gives the frequency that each criterion selects the model used to generate the data, the middle pannel gives the frequency of selecting

the model that minimizes the predicted residual error sum of squares (PRESS), while the bottom panel gives the frequency of selection by the criterion of the model

corresponding to the minimum Kullback-Leibler divergence (KL). No error bars are present in the PRESS results becauase we did not repeat these experiments.
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correlated across all selection goals in the linear models, here
performance was not correlated. While the selection of the
minimum KL divergence was highly variable, similar to the
population dynamics models, the PRESS performance was very
consistent between criterion. Here, the class of ICC criteria
tended to perform poorly though ICCmax(9) again tended to
be consistent with the standard criterion and to perform better
than the other forms of ICC (Figure 3). The compound criterion
tended to perform better than the standard criterion but tended
to perform worse at selecting the generating model.

Overall, the best criterion at selecting the generating model on
average was the AICc+2CvE(6), while the best at prediction and
at selecting the minimum KL divergence was the BIC (Table 6).
In general, criteria performed better as sample size increased and
variance decreased for selecting the generating model and the
KL minimum, as expected (Supplementary Figures S13–S18).
Performance differences among most of the criteria differed only
by a few percentage points and the difference in top performers
was within the range of performance uncertainty (Figure 4).

Finally, we found that overall performance across all
simulations varied by the selection goals. The best at selecting
both the generating model and the best predictive model overall
was AICc+2CvE(6) (Tables 4, 5). The criterion that performed
best at selecting the KL minimum was BIC (Table 6).

4. DISCUSSION

The compound criterion AICc+2CvE(6) performed best on
average at selecting both the generating model and the best
predictive model, two important goals of ecological modeling.
Surprisingly, the BIC performed best at selecting the model
corresponding to the minimum KL divergence even though it is
not meant to be an estimate of this quantity. Although the KL
divergence is not a quantity that is itself of interest to scientists,
it may be useful as a measure of the distance to truth. Despite the
strong overall performance of the compound criteria, differences
in performance between the top criteria were small. For example,
while AICc+2CvE(6) performed best and selected the generating
model 33.1% of the time across all experimental conditions, AICc
selected the generating model 32.1% of the time and BIC selected
the generating model 31.0% of the time.

Previous studies have looked at the performance of the ICC
on linear regression models (Bozdogan, 1990; Bozdogan and
Haughton, 1998; Clark and Troskie, 2006; Yang and Bozdogan,
2011), mixture models (Windham and Cutler, 1992; Bozdogan,
1993; Miloslavsky and Laan, 2003) and time series models
(Bozdogan, 2000; Clark and Troskie, 2008). This past work has
generally found much better performance of the ICC’s than
our study. For example, linear regression simulations suggest
that the criteria may often outperform AIC and BIC, though
limitations in study design are likely responsible for the different
results. Two of these studies on linear regression (Bozdogan
and Haughton, 1998; Clark and Troskie, 2006) did not allow
for overfitting the generating model. While a third study (Yang
and Bozdogan, 2011) did include the potential for overfitting,
the variation in the extra model covariates were two orders of

magnitude larger than the covariates of the generating model.
This may not provide a realistic assessment of performance,
as practitioners are often interested in distinguishing between
effects that vary on the same scale. The results of the time
series model application of ICC appeared more promising as
ICC tended to do better than AIC or BIC most of the time
when selecting among autoregressive moving average models
(Clark and Troskie, 2008). Our population dynamics simulations
also suggest that the ICC criteria perform better at selecting
the generating model in nonlinear time series analysis than in
linear regression, however we found that performance of the ICC
criterion was rarely a significant improvement over AICc.

While many of the ICC performed poorly in our simulation
experiments, the newly developed ICCmax(9) was comparable to
the traditional criterion for all selection goals. ICCmax(9) uses
the coefficient of variation matrix, accounting for uncertainty
in parameter estimation. The compound criteria tended to
provide superior performance over the other ICC measures.
Even though the ICCmax(9) performed well as a criterion on
its own, when incorporated as a compound criterion it tended
to slightly underperform the best compound criteria. This is
likely because the penalty term of the compound criteria ended
up being too severe. Further work designed to optimize the
weighting of the components might improve the performance of
the compound criteria.

In the linear model simulation experiment, the AICc tended
to do better than the BIC at selecting the generating model
(Figure S1). In contrast, our population dynamics and barley
yield simulation experiments found that BIC outperformed the
AICc at selecting the generating model (Figures S7, S13). These
results are broadly consistent with guidelines developed by
Burnham and Anderson (2004) who outline how the BIC can be
expected to outperform AIC when there are a few large effects.
In systems with many small effects, such as the one used in our
linear model experiments, the AIC will be expected to perform
best. Further work by Brewer et al. (2016) has highlighted that the
presence ofmulticollinearity can reverse these recommendations,
with BIC generally selecting select better predictive models than
the AIC. A previous study on population models by Corani
and Gatto (2007) found that AICc outperformed BIC; however,
this study was on nested models so the scenario more closely
resembled our linear model simulation experiment. In a study
design similar to our own, Hooten (1995) found that the BIC did
better than either the AIC or the AICc at selecting the form of
the generating model when selecting among density dependence
forms, consistent with our results.

Averaging over all experimental factors provides a useful
metric for assessing the general performance in complex
ecological models. However, performance was highly variable on
specific simulation experiments and even among experimental
factors. We ascribe the differences between our results, which
found only modest differences among criteria, and previous work
to the broad array of simulation conditions. Averaging across
these conditions provides a better guide to how criterion perform
under a range of scenarios, though at the cost of providing
less guidance for specific modeling scenarios. As Forster (2000)
points out the performance of any criterion is context dependent
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and criteria will have a domain where they may be superior and
where they may be inferior.

Designers and consumers of simulation validation studies
need to carefully consider if performance is being assessed in
a domain relevant to their modeling objectives. One potential
approach to deal with the variability in performance is to
conduct simulation experiments for every particular study to
determine the optimal criterion. We would caution against this,
besides performance being conditional on the particular model
set, we expect this would lead to an anthology of idiosyncratic
selection methodologies. Instead, we advise practitioners to rely
on a criterion that has been shown to be consistent with their
modeling goals and effective in a wide range of scenarios.
Finally, there is no automated model selection approach that will
substitute the clear-headed thinking that necessary to develop
distinct, testable hypotheses that will answer the scientific
question at hand. When this clarity is not possible, it may be
preferable to develop a single, comprehensive model rather than
performing model selection.

Our compound criteria are the sum of two estimated
divergences. The first divergence attempts to measure the
discrepancy between the model and truth. This model
discrepancy can be estimated by AIC, AICc, BIC, BIC*, or
one of the many other existing criteria. The second divergence
estimates the distance between the joint sampling distribution
of the parameters and the product of the marginal sampling
distributions of the parameters. Themotivation behind including
this second divergence is to assess the estimability of parameters,
a model quality that is often overlooked but has important
implications when interpreting estimates, making out-of-sample
predictions, and transferring parameters and models for use in
other contexts. Thus, this divergence is a measure of a models
usefulness. Our results suggest compound criterion that balance
traditional measures of fit and complexity with an additional
measure of usefulness can improve ecological inference. We
found the AICc+2CvE(6) to be the best combination of these
terms out of those considered here for both selecting the
generating model and for prediction. AICc likely performed
well because even the largest sample sizes explored here were
relatively low, a common issue in many ecological datasets.

For the informational complexity we used a measure
developed in past work based on the KL divergence between
the joint and marginal sampling distributions of parameter
estimates (van Emden, 1969; Bozdogan, 2000) (Equation 3).
While the KL divergence has taken a primary role in ecological
model selection, it is a divergence not a true distance. This
means that the KL divergence between the distributions f and
g is not necessarily equal to the KL divergence between g and
f . In contrast, the Hellinger and Bhattacharyya distances are
both true distance measures and have this symmetry property.
Using an alternative measure may improve interpretability of
the informational complexity, however it is not clear that these
quantities have the same informational interpretation as the KL
divergence, therefore it is not clear how to best combine these
distance measures with information criterion.

Bozdogan and Haughton (1998) developed a consistent form
of ICC by scaling the complexity measure, Cmax(6) by ln(n).
While this does yield a consistent criterion, the performance of
this ad-hoc approach was poor in their simulation studies. Our
own preference is to use a compound criterion with a consistent
form such as BIC. This study shows that BIC+2CvE(9) achieves
all measures of quality well under a broad range of modeling
frameworks and it has the theoretical advantage of being scale
invariant and consistent. Furthermore, the BIC is consistent at
large sample size. At small sample size the BIC tends to choose
compact model where all of the model components are well
supported. Leading, we think, to a greater ease of interpretation
(e.g., Arnold, 2010; Leroux, 2019).

While our analysis only considers a single best model, there
are often likely to be several models that perform nearly as
well due to the flexibility of the models in our simulation
designs. Bayesian model averaging, and the complementary
model averaging approach developed using AIC (Burnham
and Anderson, 2002), is one common approach to account
for uncertainty in model selection (but see Ponciano and
Taper, submitted this issue). Model averaging can provide more
precise parameter estimates (e.g., Vardanyan et al., 2011) and
ensemble predictions can be more accurate than a single model
(e.g., Martre et al., 2015). Given that our compound criterion
performed slightly better than the standard information criterion
for in-sample prediction and provides a measure of parameter
dependence we expect that the compound criteria are suitable for
model averaging and may directly address one major criticism
of model averaging, the necessity of covariate independence
(Cade, 2015).

We have assumed an equal weighting of the divergence
between model and truth and the divergence measuring
parameter complexity, though we could also choose to weight
these contributions differently. One approach would be to
calculate the optimal weights using simulation methods,
while another approach is to allow the researcher to apply
a priori weights based on the value a researcher places
on model parsimony and estimability. It is these epistemic
considerations that served as inspiration for developing these
compound criteria so such a weighting would be consistent our
original motivation.

This study provides evidence that developing information
criterion based on measures other than the divergence
between model and truth can yield improved model selection
performance. However, we found that differences in performance
between the best compound criterion and standard criteria were
often small. This result aligns with previous work (Murtaugh,
2009) suggesting that standard methods tend to consistently
produce models that are statistically and scientifically useful,
though not necessarily optimal. Given that standard criteria
are typically easy to calculate from regression output they
provide useful and reliable tools for practicing ecologists. The
compound criteria here can also be calculated from standard
output suggesting that they could also be widely applied.
Computational procedures such as regression trees (Murtaugh,
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2009) or statistical learning methods (Corani and Gatto, 2006a,b,
2007) may also be useful tools under a wide variety of conditions,
however these methods can be time demanding. The compound
criteria examined here yield improved performance of model
selection without dramatically increasing the amount of work
needed to do inference.
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Datasets encountered when examining deeper issues in ecology and evolution are

often complex. This calls for careful strategies for both model building, model selection,

and model averaging. Our paper aims at motivating, exhibiting, and further developing

focused model selection criteria. In contexts involving precisely formulated interest

parameters, these versions of FIC, the focused information criterion, typically lead

to better final precision for the most salient estimates, confidence intervals, etc. as

compared to estimators obtained from other selection methods. Our methods are

illustrated with real case studies in ecology; one related to bird species abundance and

another to the decline in body condition for the Antarctic minke whale.

Keywords: bird species abundance, ecology, evolution, FIC and AFIC, focused model selection, linear mixed

effects, minke whales

1. INTRODUCTION

Only rarely will initial modeling efforts lead to “one and only one model” for the data at hand. This
simple empirical statement applies in particular to situations with complex data for complicated
and not-yet-understood mechanisms underlying the phenomena being studied, in ecology and
evolution, as well as other sciences. Thus, methods for model comparison, model selection,
and model averaging are called for. Not surprisingly there must be several such methods, since
the question “what is a good model for my data?” cannot be expected to have a simple and
clear-cut answer.

There are indeed several model selection schemes in the statistics literature, with the more
famous ones being the AIC (the Akaike Information Criterion) and the BIC (the Bayesian
Information Criterion; see Claeskens and Hjort, 2008b) for a general overview. The AIC and
BIC are able to compare and rank competing models for a given dataset, as long as they are
all parametric. These and yet other methods work in an “overall modus,” in appropriate senses
comparing overall fit with overall complexity, but they do not take on board the intended use of the
fitted models. This is where FIC (the Focused Information Criterion) comes in, along with certain
relatives. The FIC aims at giving the most relevant model comparison and ranking, and hence
also pointing to the best model, for the given purpose. What this given purpose is depends on the
scientific context. Indeed, two research teams might ask different focused questions, with the same
data and the same list of candidate models, and we judge it not to be a contradiction in terms that
three focused questions might have three different best models.

The present article gives an account of FIC and its relatives, including also certain extensions
of previously published methods. We do have models for ecology and evolution in mind, though
it is clear that the view is broader: we wish to find good statistical models for complex data, and
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can do so, once crucial and context driven questions are
translated to focus parameters. Our paper’s contribution is 2-fold.
(i) We aim at introducing the FIC methodology to researchers
in ecology and evolution. We have therefore strived to include
relevant examples, along with some R code. We also discuss
various topics of interest to applied researchers, particularly in
section 5. In this partly tutorial spirit, various technical details
have been placed in the Appendix. (ii) Our article also serves as
an outlet for a somewhat new FIC framework, termed the “fixed
wide model framework,” different from the “local asymptotics
framework” used in the majority of previous publications. Details
are in section 3, with material not been presented in this general
form before. In particular, the extension of this framework to
generalized linear models is novel.

To help fix ideas and some basic notation, we start with a
concrete application. We use the dataset from Hand et al. (1994)
regarding counts of the number of bird species on fourteen
areas, vegetation islands, in the Andes mountains with páramo
vegetation. In addition to the number of bird species y, there are
four covariates recorded for each such vegetation island: x1, the
area of the vegetation island in thousands of square kilometers;
x2, the elevation in thousands of meters; x3, the distance between
the area and Ecuador in kilometers; and x4, the distance from the
nearest island in kilometers.

y x1 x2 x3 x4
36 0.33 1.26 36 14
30 0.50 1.17 234 13
37 2.03 1.06 543 83
35 0.99 1.90 551 23
11 0.03 0.46 773 45
21 2.17 2.00 801 14
11 0.22 0.70 950 14
13 0.14 0.74 958 5
17 0.05 0.61 995 29
13 0.07 0.66 1065 55
29 1.80 1.50 1167 35
4 0.17 0.75 1182 75

18 0.61 2.28 1238 75
15 0.07 0.55 1380 35

Wemodel the number of bird species Y by a Poisson distribution
with mean exp(xtβ), where x in the widest model consists of the
constant 1 (modeling the intercept), all four covariates x1, . . . , x4
as main effects, and all six pairwise interactions between these
main effects. This amounts to a total of 11 parameters β0, . . . ,β10.
We wish to include the intercept parameter β0 in all candidate
models, and hence take it as a “protected parameter,” whereas
the other parameters are “open,” and can be pushed in and
out of candidate models. For this application, all submodels
of the largest 11-parameter model are considered, with the
further restriction that interactions between two covariates can
be included only if the two main effects are present. This results
in a total of 113 models.

The main distinction between FIC and various other
information criteria is the presence of a focus. This is a quantity
of interest that depends on themodel parameters and is estimable
from the data. The generic notation for the focus used in our
paper is µ. Its dependence on the model parameters might be
indicated by writing µ(β).

In the bird species study, our first focus concerns one of
the vegetation islands, Chiles. This area is the one among the
fourteen that is closest to Ecuador, and has covariate values x1 =
0.33, x2 = 1.26, x3 = 36, x4 = 14. We wish to select a model that
best estimates the expected number of bird species for this island,

that is, µ(β) = exp(xtβ) for the given covariate values for Chiles.
In our model search problem there are 113 models and hence
113 estimators forµ. Each such estimator, say µ̂M for a candidate
model M, comes with its own bias and variance, say bM and τ 2M .
Thus, for each candidate model there is a corresponding mean
squared error (mse)

mseM = τ 2M + b2M . (1)

The basic idea of the FIC is to estimate these mse values from
the data, for the wide as well as for each candidate model,
i.e., to construct

FICM = m̂seM = τ̂ 2M + ̂bsqM , (2)

with the second term indicating estimation of the squared bias
bsqM = b2M . In the end one selects the model with the smallest
estimated mse.

For the bird species application, we use FIC for finding the
best model to estimate the expected number of bird species for
Chiles. We use the R package fic with the following lines of R
code, where we fit the wide model, specify the focus function, the
covariate value in which to evaluate this focus, and the specific
models that we wish to search through. In this example we restrict
the built-in all subsets specification to only using models that
obey the hierarchy principle (so out of the 210 = 1024 potential
submodels, only the 113 pointed to above are included).

library(fic)
wide.birds = glm(y~.^2, data=birds,
family=poisson)

focus1 = function(par, X) exp(X %*% par)
inds0 = c(1,rep(0,10)) # only the intercept
is in the narrow model

A = all_inds(wide.birds, inds0) # use all
subsets of the wide model

#exclude models with interactions that do
not have both main effects:

inds <- with(A,A[!(A[,2]==0 & (A[,6]==
1|A[,7]==1|A[,8]==1) |

A[,3]==0 & (A[,6]==1|A[,9]==1
|A[,10]==1) |
A[,4]==0 & (A[,7]==1|A[,9]==1
|A[,11]==1) |
A[,5]==0 & (A[,8]==1|A[,10]==1|
A[,11]==1)), ])

# specify the X used to evaluate the focus
function:

XChiles=model.matrix(wide.birds)[1, ]
fic(wide=wide.birds, inds=inds, inds0=inds0,
focus=focus1, X=XChiles)

For each of the 113 models we get via the output values of the
focus estimate, the estimated bias, standard error, and actually
two versions of the FIC of (2), corresponding to two related but
different ways of estimating the b2M part (for details, see section 2).
For FIC tables and FIC plots we prefer working with the square-
root of the FIC, i.e., estimates of the root-mse (rmse) rather than
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of themse, as these are on the original scale of the focus and easier
to interpret.

Table 1 is constructed from the output for a selection of
models, including the narrow model (1) which has a relatively
large (in absolute value) bias estimate of −19.035, a relatively
small standard error of 2.247 and a focus estimate of 20.71; the
wide model (113) with zero as the bias estimate though with a
large standard error of 6.051. This is a typical output: the wide
model contains 11 parameters to estimate which causes the
standard error to be large, the narrow model only contains the
intercept resulting in a small standard error. For the bias estimate
the scenario is reversed: the wide model has the smallest bias,
while the narrow model has a larger bias. The balancing act of
the FIC via the mean squared error finds a compromise. The
selected model (5) results in the smallest value of the square
root of the estimated mean squared error (rmse). Its indicator
sequence 10010,000000, with a one for β0 and β3, and zeroes
for the interactions, points toward the selected focus µ(β) =

exp(β0 + β3x3) with corresponding estimated focus value 38.88.
Using the widemodel would have resulted in a close 38.27 though
with a larger estimated root mean squared error. The wide model
only ranks at the 73rd place according to estimated rmse. Model
(20) is selected by the Bayesian information criterion BIC, it
consists of the intercept, all four main effects and the interaction
between x1 and x2. In the rmse ranking it comes at the 42nd
place. Model (67) is the one selected by the Akaike information
criterion, next to the intercept and all main effects it consists of
the interactions x1x3, x2x3, x2x4. This models ranks 32nd.

The second focus concerns the probability of having more
than 30 bird species, P(Y > 30 | x). Now we do not specify
a particular island but use the average FIC (see section 2.2),
with equal weights for the fourteen vegetation islands (non-equal
weights can easily be worked with too).

focus2 = function(par, X) 1-ppois(30,
lambda=exp(X %*% par))
Xall = model.matrix(wide.birds)
fic2 = fic(wide=wide.birds,inds=inds,
inds0=inds0,focus=focus2,X=Xall)
AVE = fic2[fic2$vals=="ave",]
which.min(AVE$rmse.adj)

The AFIC selects the following form for the mean: exp(β0 +

β1x1+β2x2+β4x4+β7x1x4). The averaged focus estimate of the

probability of observing over 30 bird species in the selectedmodel
equals 15.73%, while the wide model’s estimate is 21.83%, though
with a substantial larger estimated mean squared error due to
the estimation of 11 parameters instead of only 5 for the selected
model. Of course, AIC and BIC ignore any information regarding
the focus, and thus still recommend the very same models, model
(67) for AIC, with estimate 21.15%, and model (20) for BIC, with
estimate 21.59%. The AIC model ranks 16th, the BIC model is
now at the third place.

Figure 1 displays for these two foci the root-FIC and root-
AFIC values, as well as the estimated focus values, for all of the
113 models. The FIC or AFIC selected values, minimizing the
respective criteria, are indicated in red, while the wide model’s
values are in blue.

Several traditional model selection criteria, such as the AIC
and the BIC (see Claeskens and Hjort, 2008b, Chs. 2, 3) work
in an overall modus, finding models that in a statistical sense
are good on average, not taking on board the specific aims
of a study. The FIC works explicitly with such specific aims,
formalized via the focus parameters. Thus, FIC might find that
one model works very well for covariates “in the middle,” whereas
another model could work rather better for covariates outside
mainstream. Similarly, one model might work well for explaining
means, and another for explaining variances. We stress that the
FIC apparatus works for any specified focus parameter, and is not
limited to e.g., regression coefficients and the customary selection
of covariates from that perspective.

The generic FIC formula (2) cannot be immediately applied,
as efforts are required to establish formulae for approximations
to biases and variances, along with construction of estimators
for these quantities. Thus, the FIC formula pans out differently
in different situations, depending on the general framework, the
complexity of models, and estimators of the focus parameters.
A brief overview of general principles, leading to such
approximations and estimators, is given in section 2. This
also encompasses AFIC, ways of creating average-FIC scores
in situations where more than one focus parameter is at stake.

In section 3 we provide the general FIC formulae in the so-
called fixed wide model framework. The development of FIC
formulae ingredients in a somewhat different framework, with
local neighborhood models, is placed in Appendix. Generalized
linear models are used as examples, encompassing linear
regression, logistic and Poisson regression, etc. The more general

TABLE 1 | Bird species example.

Model Coef. indicators Focus Bias Se
√

FIC AIC BIC

1 10000,000000 20.714 −19.035 2.247 19.167 143.26 143.90

5 10010,000000 38.882 0.000 4.383 4.383 112.65 113.93

20 11111,100000 33.718 −2.156 4.670 5.143 91.91 95.74

28 11101,001000 26.356 −11.0468 3.674 11.642 98.54 101.74

67 11111,010110 39.784 0.000 5.296 5.296 91.44 96.55

113 11111,111111 38.269 0.000 6.051 6.051 95.72 102.75

This table is constructed from output of the R function fic for six of the 113 models, together with the AIC and BIC values. FIC selection takes place via the square root of the estimated

mean squared error of the focus estimator.
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FIGURE 1 | The two plots give values for a total of 113 Poisson regression models, related to two different focused questions. (A) FIC plot for estimating the expected

number of bird species for the Chiles region. (B) AFIC plot for estimating the probability of observing over 30 species, averaging over all 14 islands. The red dot and

line indicate the selected value, the blue triangle and line are for the wide model.

class of linear mixed models has proven important for various
applications to ecology, and in section 3.3 FIC formulae are
reached for such. In section 4 we use linear mixed effects models
with FIC for analyzing the body conditions of minke whales
in the Antarctic, where one focus parameter is the yearly decline
in energy storage. A general but brief discussion is then offered in
section 5. Here we touch on aspects of performance, along with a
few concluding remarks, some of which point to future research.

2. FOCUSED INFORMATION CRITERIA

The application concerning birds on vegetation islands in the
previous section was meant to provide intuition for the use of
FIC for model selection. Here we give a more formal, but brief,
overview of the FIC and AFIC schemes.

2.1. General FIC Scheme
Suppose we have defined a wide model which is assumed to
be the true data-generating mechanism. Estimating the focus
parameter using the wide model leads to µ̂wide, which under
broad regularity conditions will aim at µtrue, the unknown true
value of the focus parameter. Estimation via fitting a candidate
modelM leads to µ̂M , say, aiming for some least false parameter
µ0,M , typically different from µtrue, due to modeling bias. The
least false parameter in question relates to the best approximation
candidate modelM can manage to be, to the true model. There is
therefore an inherent bias, say

bM = µ0,M − µtrue,

associated with usingM.We saw estimates of this bias in the birds
application above, where small models could have larger biases.

The estimators will have certain variances. In most
frameworks, involving independent or weakly dependent
data, these tend to zero with speed 1/n, in terms of growing
sample size n. It is therefore convenient and informative to
write these variances as τ 2

wide
= σ 2

wide
/n and τ 2M = σ 2

M/n,
where the mathematics and approximation theorems associated
with different frameworks typically yield expressions for or

approximations to the σwide and σM . The mse of the focus
parameter estimators is the sum of the variance and the
bias squared,

msewide = σ 2
wide/n+ 02 and mseM = σ 2

M/n+ b2M . (3)

These quantities are measures of the risk, in the statistical sense,
associated with using each of the models for estimating µ. As
explained in the introduction, the FIC scores of (2) are estimates
of the mse of the focus parameter estimators, i.e., the µ̂M , for
a specific dataset, for each of the models under consideration.
Equation (3) is also an informative reminder that with more data,
variances get small, but biases remain. So using a model which is
not fully correct can still yield sharper estimators, as long as the
bias is moderate or small: |bM| < (σ 2

wide
− σ 2

M)1/2/
√
n. It is also

clear that with steadily more data, steadily more sophisticated
models can and indeed should be used. The FIC makes these
ideas operative.

In various cases the variance terms σ 2
M/n are easier to estimate

than the squared biases b2M . A starting point for the latter is
̂bM = µ̂M − µ̂wide, but the correspondinĝb2M will overshoot b2M
with about κ2

M/n, which is the variance of̂bM . With appropriately
constructed estimators of the quantities σwide, σM , κM (with
different recipes for different situations), this yields two natural
ways of estimating the actual mse values:

FICu
wide = σ̂ 2

wide/n+ 02 and FICu
M = σ̂ 2

M/n+̂b2M − κ̂2
M/n,

FICwide = σ̂ 2
wide/n+ 02 and

FICM = σ̂ 2
M/n+max(̂b2M − κ̂2

M/n, 0).

(4)

The FICu scores are (approximately) unbiased estimates of the
mse, since ̂b2M − κ̂2

M/n is (approximately) unbiased for b2M ,
whereas the FIC scores are adjusted versions, by truncating any
negative estimates of squared bias to zero, as we did in the first
example. If the true bias in question is some distance away from
zero, FICu

M will be equal to FICM . When faced with a specific
application one should decide on one of these two FIC versions,
and use the same choice for all models under consideration.
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In order to turn the general scheme (4) into clear formulae,
with consequent algorithms, we need expressions for or
approximations to the population quantities σM , bM , κM ,
followed by clear estimation strategies for these again. In most
cases we need to rely on large-sample approximations. Arriving
at clear formulae for σM etc. depends on the particularities of
the wide model, the candidate models, and the focus parameter.
We provide such FIC formulae, for two different frameworks
or setups. The first involves local asymptotics, with candidate
models being a local distance O(1/

√
n) away from the wide

model. This derivation is placed in Appendices A1 and A2. The
second avoids such local asymptotics and works from a fixed wide
model and a collection of candidate models (see section 3). It is
not a contradiction in terms that these two frameworks lead to
related but not identical FIC formulae, as different mathematical
approximations are at work.

2.2. AFIC, the Averaged-Weighted
Selection Scheme
The FIC apparatus above is tailored to one specific focus
parameter at a time. In a regression context this applies e.g., to
estimating the mean response function for one covariate vector
at a time, say µ(θ; x0). Often there would be active interest in
several parameters, however, as with such a µ(θ; x0) for all x0 in
a segment of covariates, or a probability P(Y ≥ y0 | x0) for a set
of thresholds, as in the birds study.

Suppose in general that an ensemble of estimands is of
interest, say µ(θ; v) with v ∈ V , and that a measure of relative
importance dW(v) is assigned to these. There could be only a few
such estimands under scrutiny, say µj for j = 1, . . . , k, along
with weights of importance w1, . . . ,wk. Estimation involving
all higher quantiles, or all covariates within a certain region,
however, would constitute examples where we need the more
general v ∈ V notation. Here we sketch the AFIC approach, for
estimating the relevant integrated weighted risk.

For each focus parameter in the ensemble of estimands there
is an associatedmse or risk, mse(v). The combined risk associated
with using modelM then becomes

rn(M) =

∫

mse(v) dW(v) =

∫

{σM(v)2/n+ bM(v)2} dW(v),

with the appropriate σM(v) and bM(v) = µ0,M,n(v)−µtrue(v). An
approximately unbiased estimate of this combined risk is

aficu(M) =

∫

{̂σM(v)2/n} dW(v)+

∫

{̂bM(v)2−κ̂M(v)2/n} dW(v).

This is the same as a direct weighted sum or integral of the
individual FICu(M, v) scores. The adjusted version, however,
where a potentially negative value of the estimated integrated
squared bias is being truncated to zero, is not identical to the
integral of the FIC(M, v) scores. It is rather equal to

afic(M) =

∫

{̂σM(v)2/n} dW(v)

+ max
[

∫

{̂bM(v)2 − κ̂M(v)2/n} dW(v), 0
]

.

As with FIC, there are two related, but not identical,
approximation schemes, the fixed wide model setup and the
local asymptotics, of respectively section 3.1 and Appendix A1,
leading now to somewhat different AFIC formulae. For details
and applications (see Claeskens and Hjort, 2008a,b, Ch. 6).

There is a connection between Akaike’s information criterion
AIC and AFIC with certain model dependent weights (see
Claeskens and Hjort, 2008a, Sec. 6.2). Broadly speaking, the AIC
turns out to be large-sample equivalent to cases with AFIC where
“all things are equally important.”

3. FIC WITHIN A FIXED WIDE MODEL
FRAMEWORK

The FIC as used in the bird species example is the version as
derived in Claeskens and Hjort (2003), see also Claeskens and
Hjort (2008b, Ch. 6). For the estimation of bias and variance
a local asymptotic framework is used in which the parameters
of the true density of the data are assumed to be of the form
γ = γ0 + δ/

√
n, with n the sample size, see Appendix A1 for

more explanation. This assumptions means in practice that we
believe that all models are relative close to each other and to the
truth. Moreover, all models are submodels of a wide model. Since
the derivation of the FIC formulae is contained in the references
above, we only place a summary in the Appendix.

In this section we present the “fixed wide model” framework,
which is particularly useful if the set of candidate models are seen
as not being in a reasonable vicinity of each other. This second
framework allows candidate models of a different sort from the
wide model; in particular, a candidate model does not have to be
a clear submodel of the wide model. Keep in mind that the two
different FIC frameworks have the same aims and motivation;
the difference between them lies in the different mathematical
tools for estimating the relevant mse quantities, which lead to
different formulae. In the discussion section 5 we come back to
some differences between the two frameworks. Here we start in
section 3.1 by presenting the fixed wide model FIC in a general
regression setup. Then in the two following subsections we deal
with two specific model classes of general interest, generalized
linear models and linear mixed models, in more detail.

3.1. General Regression Models
In this subsection we use the familiar (xi, yi) notation for the
regression data, with xi the covariate vector in question. The FIC
machinery we develop here starts from the existence of a fixed
wide model. The development represents an extension of earlier
work of Jullum and Hjort (2017, 2019) for i.i.d. data and survival
analysis, Ko et al. (2019) for copulae models, Cunen et al. (2019)
for power-law distributions (with applications to war and conflict
data) and Cunen et al. (in review)1,2 for linear mixed effects
models (with application to whale ecology).

1Cunen, C., Walløe, L., and Hjort, N. L. (2019). Focused model selection for linear

mixed models, with an application to whale ecology. Ann. Appl. Stat.
2Cunen, C., Walløe, L., Konishi, K., and Hjort, N. L. (2019). Decline in energy

storage for the Antarctic minke whale (Balaenoptera bonaerensis) in the Southern

Ocean during the 1990s.
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Since we wish to estimate the mse of the focus estimator in
different models, we first consider the asymptotic distribution
of the parameter estimator in the wide model and next in the
other models of interest. The distributions are used to form the
mse’s of the focus estimators and finally we construct the fic as an
estimated mse and select the model with the smallest fic value.

Suppose a wide model density is agreed upon, of the
form f (yi | xi, θ), for a certain parameter vector θ , of length
p. We consider this to be the true model. This θ would
typically encompass both regression coefficients and parameters
related to the spread and shape of error distributions. Define
u(yi | xi, θ) = ∂ log f (yi | xi, θ)/∂θ the score function, and
Jn = n−1

∑n
i=1 Varwide u(Yi | xi, θtrue) the normalized Fisher

information matrix at the true parameter. Under mild regularity
conditions we have the following well-known result for the
maximum likelihood estimator̂θwide,

√
n(̂θwide − θtrue) ≈d Np(0, J

−1
n ). (5)

The notation indicates approximate multinormality to the first
order as the sample size grows, and can also be supplemented
with a clear limit distribution statement, in that case involving
a limit covariance matrix J for Jn. Consider now a candidate
model M, different from the wide one, perhaps also in structure
and form. With notation fM(yi | xi, θM) for its density, and
uM(y | xi, θM) for its score function, we have a maximum
likelihood estimator ̂θM , of length pM , maximizing the log-
likelihood function ℓn,M(θM) =

∑n
i=1 log fM(yi | xi, θM). If the

wide model is considered to be the truth, the estimator in
model M does not necessarily aim at the true parameter, but at
the least false parameter θ0,M,n, which is the minimizer of the
Kullback–Leibler distance from the data-generating mechanism
to the model; see details in Appendix A3. The estimator in the
candidate model has a limiting multinormal distribution, with a
sandwich type variance matrix,

√
n(̂θM − θ0,M,n) ≈d NpM (0, J

−1
M,nKM,nJ

−1
M,n), (6)

where

JM,n = −n−1
n

∑

i=1

Ewide
∂2 log f (Yi | xi, θ0,M,n)

∂θM ∂θ tM
and

KM,n = n−1
n

∑

i=1

Varwide uM(Yi | xi, θ0,M,n).

The variance matrices here are defined with respect to the wide
model, at position θtrue.

From approximations (5–6) the delta method may be called
upon to read off relevant expressions for the approximate
distributions of the focus parameter estimators µ̂wide = µ(θ)
and µ̂M = µM(θM), where the latter is aiming for the least false
parameter value µ0,M,n = µM(θ0,M,n) associated with model M.
Crucially, we also need a multinormal approximation to the joint
distribution of (µ̂wide, µ̂M), in order to assess the distribution of
the bias estimator̂bM = µ̂M − µ̂wide; without that part we can’t

build an appropriate estimator for b2M . In Appendix A3, we go
through such arguments, and reach

(√
n(µ̂wide − µtrue)√
n(µ̂M − µ0,M,n)

)

≈d N2(0,6M,n). (7)

Here the 2 × 2 matrix 6M,n has diagonal terms ctJ−1
n c and

ctM,nJ
−1
M,nKM,nJ

−1
M,ncM,n, with gradient vectors

c = ∂µ(θtrue)/∂θ and cM,n = ∂µ(θ0,M,n)/∂θM

of lengths p and pM . The off-diagonal term of6M,n takes the form
ctJ−1

n CM,nJ
−1
M,ncM,n, with a formula for the required covariance

related term CM,n in the Appendix.
From (7) we can read off mse approximations,

msewide
.
= ctJ−1

n c/n+ 02 and

mseM
.
= ctM,nJ

−1
M,nKM,nJ

−1
M,ncM,n + b2M ,

with bias bM = µ0,M,n−µtrue. For the latter we use the estimator
̂bM = µ̂M − µ̂wide, where the result above also leads to a clear
approximation for the distribution of

√
n(̂bM − bM). This leads

to FIC formulae, unbiased and adjusted, as

FICu
wide = ĉt̂J−1

n ĉ/n+ 02 and

FICu
M = ĉtM

̂J−1
M

̂KM̂J−1
M ĉM/n+̂b2M − κ̂2

M/n,

FICwide = ĉt̂J−1
n ĉ/n+ 02 and

FICM = ĉtM
̂J−1
M

̂KM̂J−1
M ĉM/n+max(̂b2M − κ̂2

M/n, 0).

(8)

Here ĉ and ĉM emerge by computing gradients of µ(θ) and
µM(θM) at their respective maximum likelihood positions, and
̂Jn,̂JM are computed as normalized observed Fisher information
matrices, for the wide and for the candidate model in question;
specifically, ̂JM is 1/n times minus the Hessian matrix from
the log-likelihood, −∂2ℓn,M(̂θM)/(∂θM∂θ tM). Also, the pM × pM
matrix ̂KM is n−1

∑n
i=1 ûM,iû

t
M,i, with ûM,i = uM(yi | xi,̂θM).

Finally, the κ̂2
M/n estimates involves also the p × pM matrix

̂CM , which is n−1
∑n

i=1 ûwide,iû
t
M,i. Model selection proceeds by

computing FICM , the estimated mse of the focus estimator µ̂M ,
for all models M of interest, and then selecting that model for
which this score is the lowest.

3.2. FIC for Generalized Linear Models,
With a Fixed Wide Model
We illustrate this FIC machinery for one popular class of
generalized linear models, namely the Poisson regressionmodels.
Generalizations to other generalized linear models are relatively
immediate. Suppose therefore that we have count data yi along
with a covariate vector xi of length p. For the fixed wide model
we take the Poisson regression model with yi ∼ Pois(ξi), with
ξi = exp(xtiβ) containing all covariate information; in particular,
there is also a true parameter βtrue there. Consider then an
alternative candidate model M which instead takes the means
to be ξM,i = exp(xtM,iβM), with xM,i of length pM , perhaps a
subset of the full xi, or perhaps with some entirely other pieces
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of covariate information. Here the log-densities take the form
−ξi + yi log ξi − log(yi!), which means

log f = − exp(xtiβ)+ yix
t
iβ − log(yi!) and

log fM = − exp(xtM,iβM)+ yix
t
M,iβM − log(yi!),

for the wide model and the candidate model, along with
score functions

u(yi | xi,β) = {yi − exp(xtiβ)}xi and

uM(yi | xM,i,βM) = {yi − exp(xtM,iβM)}xM,i.

From this we deduce

Jn = n−1
n

∑

i=1

exp(xtiβtrue)xix
t
i ,

JM,n = n−1
n

∑

i=1

exp(xtM,iβ0,M,n)xM,ix
t
M,i,

KM,n = n−1
n

∑

i=1

exp(xtiβtrue)xM,ix
t
M,i,

along with the p× pM covariance matrix CM,n, defined as

n−1
n

∑

i=1

Ewide {Yi − exp(xtiβtrue)}xi{Yi − exp(xtM,iβ0,M,n)}x
t
M,i

= n−1
n

∑

i=1

exp(xtiβtrue)xix
t
M,i.

Consistent estimates of these populationmatrices are obtained by
inserting ̂βwide for βtrue and ̂βM for β0,M,n.

Notably, as long as there is a well-defined wide Poisson
regression model, as assumed here, the framework is sufficiently
flexible and broad to encompass also non-Poisson candidate
models. Using the FIC apparatus involves working with log-
likelihood functions and score functions for these alternative
models, leading to different but workable expressions for the
matrices JM,n, KM,n, CM,n above. The stretched Poisson models
used in Schweder and Hjort (2016, Exercise 8.18) are a case in
point; these allow both over- and underdispersion.

3.3. FIC for Linear Mixed Effects Models
Models with random effects, often called mixed effect models,
are widely used in ecological applications. In Cunen et al.
(in review)1 FIC formulae have been developed for the class
of linear mixed effect models (often abbreviated LME models).
Here we will give a brief description of that approach, which
also serves as a special case of the general FIC approach for a
fixed wide model framework, see (8). Generalizations to classes
of non-linear mixed effect models, and also to heteroscedastic
situations where variance parameters depend on covariates, can
be foreseen, following similar chains of arguments but involving
more elaborations.

Suppose we have n observations of yi, a vector of length
mi. The mi datapoints within each yi vector are assumed to be

dependent, and will often correspond to data collected in the
same space or time. Here we will refer to these data as belonging
to the same group. Each yi vector is associated with a regressor
matrix Xi of dimension mi × p for the fixed effects, and a design
matrix Zi of dimensionmi × k for the random effects. The linear
mixed effects model takes the form

yi = Xiβ + Zibi + εi for i = 1, . . . , n,

with the bi ∼ Nk(0,D) independent of the errors εi ∼

Nmi (0, σ
2Imi ). The model may also be represented as

Yi ∼ Nmi (Xiβ , σ
2(Imi + ZiDZ

t
i )), (9)

and its parameters are θ = (β , σ ,D). Note that the ordinary
linear regression model is a special case, corresponding toD = 0.
The log-likelihood contribution for this group of the data may
be written

ℓi(θ) = −mi log σ − 1
2 log |Imi + ZiDZ

t
i | −

1
2 (1/σ

2)(yi − Xiβ)
t

×(Imi + ZiDZ
t
i )
−1(yi − Xiβ).

The combined log-likelihood
∑n

i=1 ℓi(θ) leads to
maximum likelihood estimators and hence also to
µ̂wide = µ(̂βwide, σ̂wide,̂Dwide) for any focus parameter
µ = µ(β , σ ,D) of interest.

In applied situations we will spend efforts and call on
biological knowledge to construct a well-motivated wide model,
of the form (9). This wide model will typically be based on our
knowledge of the system under study and, crucially, on how
the data were collected. Quite often the resulting model could
become big, in the sense that it includes a large number p of fixed
effects and also a large number k of random effects. Assume, as
we do throughout this paper, that our primary interest lies in the
precise estimation of some focus parameter µ, which could be
a function of the fixed effect coefficients β , and/or the variance
components (σ ,D). For such a µ = µ(β , σ ,D), can we find
another model which offers more precise estimates of µ than
µ̂wide = µ(̂βwide, σ̂wide,̂Dwide) implied by the wide model?

FIC answers the question above; we can search among a set of
candidate models for one giving more precise estimates of µ. In
the simplest setting, the candidate model is defined with respect
to the same n groups as in the wide model in (9), and we write

yi ∼ Nmi

(

XM,iβM , σ 2
M(I + ZM,iDMZt

M,i)
)

.

This model has design matrices, XM,i and ZM,i, potentially
different from those of the wide model, and hence also a different
set of parameters, say θM = (βM , σM ,DM). Often, but not
necessarily, the candidate model will involve subsets of the
covariates (i.e., columns) included in Xi and Zi, respectively. Let
the covariate matrixXM,i have dimensionmi×pM , and ZM,i being
mi×kM . The focus parameter must then be represented properly
inside the candidate model, as µM = µM(βM , σM ,DM), leading
to the estimate µ̂M = µM(̂βM , σ̂M ,̂DM).

In order to work out FIC formulae, we first need to study the
joint large-sample behavior of the estimator from the wide model
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µ̂wide and the estimator from the candidate model µ̂M . This is
as with Equation (7) in section 3.1, but the current framework is
more complicated and needs further efforts. Such work is carried
out in Cunen et al. (in review)1, and lead to

(√
n(µ̂wide − µtrue)√
n(µ̂M − µ0,M,n)

)

≈d N2(0,6M,n),

with all quantities defined analogously to what is presented in
section 3.1. These include matrices Jn, JM,n, KM,n, CM,n and
gradient vectors c and cM,n, defined similarly to those in section
3.1, but here involving more complicated details than for the
plainer regression models worked with there.

This work then yields the same type of FIC formulae as
for Equation (8), but with other recipes and formulae for the
required estimators for the quantities mentioned. Regarding
estimators for the matrices involved, we have three general
possibilities: (i) working out explicit formulae and plug in
the necessary parameter estimates; (ii) computing the matrices
numerically, involving certain numerical integration details; (iii)
via bootstrapping from the estimated wide model. In Cunen
et al. (in review)1 the first option is pursued, involving lengthy
derivations of log-density derivatives and their means, variances,
covariances, computed under the wide model. The resulting
formulae are too long for this review, but are fast to compute.
Options (ii) and (iii) have yet to be fully investigated, but will
likely be fruitful when extending this FIC approach to the wider
class of generalized linear mixed models (the so-called GLMMs).

The approach described here will be illustrated in section 4,
but we first offer some comments of a more general nature.
Readers familiar with linear mixed effects models will be aware
that there are two different estimation schemes for models of this
class, full maximum likelihood and so-called REML estimators,
for restricted or residual maximum likelihood. The REML
method takes the estimation of the fixed effects of the model into
account when producing estimators of the variance parameters.
For the computation of FIC scores the user might employ
either maximum likelihood or residual maximum likelihood
estimates, since these are large-sample equivalent; see for instance
Demidenko (2013, Ch. 3). As with the general FIC formulae (8)
there are two versions, the approximately unbiased estimates of
risks and the adjusted ones. In Cunen et al. (in review)1 it is
argued that the unbiased version

FICu
M = ĉtM̂J−1

M
̂KM̂J−1

M ĉM/n+̂b2M − κ̂2
M/n (10)

tends to work best for linear mixed effects models. The benefit
of this version is that good candidate models with small biases
earn more, compared to the wide model. Investigations show
that the FIC formulae of (10) work well, in the sense that they
accurately estimate the risk associated with the use of the different
candidate models. The FIC formulae are based on large-sample
arguments, which for the case of the linear mixed effects models
involves approximations to normality when the number n of
groups increases to infinity. These normal approximations work
well as long as the full sample size

∑n
i=1mi grows, particularly

for functions of the linear mean parameters. More care is

sometimes required when it comes to applications involving non-
linear functions of both mean and variance parameters, as with
estimates of probabilities µ = P(Y ≥ y0 | x0, z0).

4. APPLICATION: THE SLIMMING OF
MINKE WHALES

Our second application story concerns the potential change in
body condition of Antarctic minke whales over a period of 18
years. For a more thorough investigation consult Cunen et al.
(in review)2. Questions treated there have been discussed in the
Scientific committee of the International Whaling Commission
(IWC) for a number of years, and a full consensus has not been
reached. In the context of this review, therefore, the analysis
below should be taken as an illustration, and not necessarily the
last word on the topic of the decline in energy storage or body
condition for the minke whales.

Using data from the Japanese Whale Research Program under
Special Permit in the Antarctic (the so-called JARPA-1) we have
studied the evolution of fat weight in Antarctic minke whales
caught in 18 consecutive years, from 1988 and 2005. The main
biological interest lies in whether or not the whales experienced
a decline in body condition during the study period, and the
dissected fat weight (in tons or kg) is taken to be a proxy for
this body condition. Thus, there is a clear focus parameter in
this application: the yearly decline in fat weight (which we will
parametrize in a suitable fashion in the following).

The whales caught in each year are unevenly sampled with
respect to a number of covariates, for instance sex, body length,
age, and longitudinal region in the Antarctic ocean. Since all these
covariates may influence body condition we need to include them
in a model aiming at estimating the potential yearly decline in
the response. Based on lengthy and detailed discussions in the
Scientific Committee of the IWC, we have chosen a wide model
within the class of linear mixed effect models, see section 3.3.
In Cunen et al. (in review)2 we have used considerable efforts
to motivate the choice of covariates, interactions, and random
effect terms in the wide model, but these arguments are outside
the scope of the present article. In R-package-type notation, the
wide model can be given as

fatweight ∼ year+ year2 + bodylength+ sex

+diatom+ date+ date2 + age

+sex ∗ diatom+ diatom ∗ date

+diatom ∗ date2 + bodylength ∗ sex

+bodylength ∗ date

+bodylength ∗ date2 + sex ∗ date

+sex ∗ date2

+bodylength ∗ sex ∗ date

+bodylength ∗ sex ∗ date2

+age ∗ sex

+age ∗ date+ age ∗ date2

+age ∗ sex ∗ date+ age ∗ sex ∗ date2

+year ∗ sex+ year2 ∗ sex+ region
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+year ∗ region+ year2 ∗ region

+sex ∗ region+ diatom ∗ region

+region ∗ date

+region ∗ date2 + (1+ date

+date2 |year).

The region covariate reflects three different geographical
regions, associated with three regression coefficients summing
to zero.

The model defined above has p = 40 fixed effect coefficients.
The notation (1+ date+ date2 |year) specifies the random
effect structure; the groups are defined by a categorical version
of the year variable (so n = 18), and the Zi matrix has k = 3
columns (a column of ones for the intercept, date, and date
squared). According to prior biological knowledge, date is
assumed to be one of the most important effects governing the
fat weight. The variable refers to the day of the season when each
whale was caught, and since the whales are in the Antarctic to
gain weight the coefficient related to date is expected to be large
and positive. Also, the effect of date is expected to be different
from year to year, possibly due to fluctuations in krill production.
Hence, a random effect on date is included.We thus have a total
of 40 + 1 + 6 = 47 parameters to estimate. The total number of
observations, i.e.,

∑n
i=1 ni, was 683.

As mentioned above the main interest, for discussions at
several IWC meetings, has been the yearly decline in the
fatweight outcome variable. Since we have a quadratic year
term in our wide model, with that part taking the form βyearx +
βyear2x

2 for year x, a natural definition of the yearly decline is
µ = βyear + 2βyear2x0, with x0 the mean year in the dataset.
The focus parameter corresponds to the derivative of the mean
response, with respect to year, and evaluated in this mean year
time point. For candidate models with only a linear effect of year
the parameter simplifies to βyear only. Furthermore, for those
submodels where there is no year effect included, we have βyear =

0, a parameter value which then is estimated with zero variance
but with potentially big bias. For this example, we have limited
ourselves to investigating five candidate models only, in addition
to using the wide model itself; see Table 2.

We do not actually expect the mean level of decline in energy
storage to be either exactly linear or exactly quadratic over 18
years, but take this level of approximation to be adequate for
the purpose, since the decline over time curve is not far from
zero; also, our focus parameter is identical to the overall slope,
the mean curve evaluated at the end point minus its value at the
start point, divided by the length of time.

All the candidatemodels have a smaller number of fixed effects
than the widemodel. Note that the first candidate modelM1 has a
more complex random effect structure than the wide model itself
(with k = 6 giving a total of 21 random effect parameters). This
choice also demonstrates that there is nothing in the formulae
hindering us from having candidate models with more random
effects (or also more fixed effects) than the wide model. When
it comes to interpreting the results, it is usually more natural to
choose the wide model to be the largest possible plausible model,
however. The modelsM2 andM3 are very simple (with few fixed

TABLE 2 | Brief descriptions of the wide model and the five additional candidate

models, with the number of fixed effects, the number of random effects, and the

total number of parameters to be estimated, for each model.

Description p k d

M0 Wide model 40 3 47

M1 Less interactions, quadratic year effect 9 6 31

M2 Very simple, linear year effect 5 2 9

M3 Very simple, linear year effect 5 1 7

M4 Only linear year effect 2 1 4

M5 Like the wide, but without year effect 32 3 39

effects), and differ only in the their random effects. Model M4

includes only the linear year effect in addition to a single random
effect in the intercept. The last model, M5, is the model without
any year effect, so µM5 = 0. With the present focus parameter,
the FIC score of such a model will have zero variance and a bias
which only depends on the estimated focus parameter in the wide
model, and its estimated variance, so FICu

M5
= (0 − µ̂wide)

2 −

κ̂2
wide

/n, for the relevant κ2
wide

/n approximation to the variance
of µ̂wide. Thus, further specification of M5 is unnecessary; it
includes all possible LME models without any year effect. As the
candidate models worked with are not close enough to each other
to warrant the use of the local neighborhoods framework, we use
the “fixed wide model” approach.

After carefully constructing our wide model, and checked
that it passes various diagnostic tests, we can proceed to model
selection with the FIC. The results are given in the form of a FIC-
plot in Figure 2. We see that M2 gets the lowest FIC score, with
µ̂ = −7.76. The modelsM1 andM3 are close to the winning one,
both in terms of their FIC scores and their estimates of the focus
parameter. ModelM5, without the year effect had a considerably
larger FIC score than any of the other models (which can be seen
as an implicit test for the the null hypothesis of there being no
year effect). From the plot we can conclude that our best estimate
of the focus parameter is around−8 kg, or 80 kg loss of fat over a
decade. Furthermore, since the root-FIC values are about 1.50,
confidence intervals associated with these best point estimates
will clearly fall to the left of zero. A natural interpretation of
the FIC plot is therefore that the body condition decline, for the
Antarctic minke whales, has been negative and significant over
the study period.

To demonstrate the versatility of our approach, we have
investigated the same six models with respect to another focus
parameter, the probability of observing a whale with more than
a certain amount of fat, say 1.5 tons (1,500 kg), given some
covariate values: µ2 = P(Y ≥ 1.5 | x0, z0). Here we chose to
look at a 20 year old male whale, caught in 1991 in the eastern
region, of approximately mean length (8 m), and which is caught
toward the end of the season. Over the full dataset, the average
fat weight of a whale is close to 1.5 tons. The FIC scores and
estimates are given in Figure 2. We observe that the models give
widely different estimates, ranging from around 0.50 to 0.90, and
that the ranking of the models is very different from the ranking
when the focus was the yearly decline in fat weight. The smallest
modelM4 is considered the best for estimating the probability of
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FIGURE 2 | (A) Estimates of the yearly decline in fat weight, for the Antarctic minke whale population (vertical axis), along with root-FIC scores (horizontal axis), for the

wide model M0, marked in blue, and five additional candidate models M1, . . . ,M5. The scale is in kilograms of fat. (B) Root-FIC scores and estimates of the probability

of observing a whale with more than 1.5 tons of fat for the wide model (marked in blue) and the five candidate models.

observing a “medium fat” whale. Here, we see the typical bias-
variance trade-off at work: using M4 clearly gives an estimate
with some bias compared to the wide model (estimate of 0.60
instead of around 0.70), but the bias is compensated for by a
strong decrease in variance.

5. DISCUSSION

Our article hasmotivated, exhibited, developed, and extended the
machinery of Focused Information Criteria for model selection
and model ranking, with a few illustrations for ecological data.
Here we offer some general remarks.

1. The role of the wide model. The FIC idea is to
examine how different candidate models work regarding what
they actually deliver, in terms of point estimates for the
most crucial parameters of interest. This examination involves
approximations to and estimates of the risks, which for the
usual squared error loss function means mean squared error.
Quantifying the implied variances and biases relies on the
notion of a clearly defined (though unknown) data generating
mechanism. This is one of the roles of ourwide model. In the local
asymptotics framework of Appendix A1 this is the full model
f (yi | xi, θ , γ ) of (12), with p + q parameters; in the alternative
framework of section 3.1 it is what we term the fixed wide
model. Such a wide model needs to be well argued, as being
sufficiently rich to encompass the anticipated salient features
of the phenomena studied. Since quantification and consequent
estimation of variances and biases rest on the wide model being
adequate it ought also to be given a goodness-of-fit verification,
involving diagnostic checks etc.

One might inquire how sensitive the FIC scores are to the
choice of the wide model. In connection with the application
described in section 4 we have conducted some sensitivity checks
and found that moderate changes to the wide model had little
effect on the ranking of the different candidate models. Also,
for the wide models we have investigated, the estimate of the
focus parameter in the selected models was reasonably stable.

More radical changes to the wide model should be expected to
have greater effect, but we have not fully investigated this issue.
Fully guarding against all misspecification of the wide model is
unattainable, but extending our approach to even wider andmore
flexible wide models may lead to some improvements.

2. When should you use FIC? Practitioners may be interested
in model selection for different, overlapping reasons. On one
hand the goal might be to select the candidate model which
in a relevant sense is the closest to the true data generating
mechanism. Criteria based on model fit and some penalization
for complexity aim at this goal, for instance the well-known
AIC and BIC (see Claeskens and Hjort, 2008b) for a general
discussion. On the other hand, practitioners often seek a small
model offering precise estimates of the quantities they are
interested in. It is important to keep in mind that FIC specifically
aims at the second goal, and is not necessarily suitable for the
first goal. FIC offers a principled way to simplify a large, realistic
model which the user assumes to hold (i.e., to be realistically
and adequately close to the complicated truth). The goal of the
simplification is to obtain more precise estimates of quantities
of interest, say µ̂ for an underlying focus parameter µ. This
also includes producing predictions for not yet seen outcomes
of random variables, like the abundance of a certain species over
the coming twenty years. Here simplificationmust be understood
in a wide sense, as the candidate models do not necessarily need
to be nested within the wide model, as we have seen. The two
different motivations for model selection alluded to above partly
relate to the two goals for statistical modeling: to explain or to
predict, i.e., the “two cultures of statistics” (see Breiman, 2001;
Shmueli, 2010). For yet further perspectives on model selection
with focused views, coupled with model structure adequacy
analysis (see Taper et al., 2008).

Once a practitioner has decided to use FIC, she then has
to make a choice between the two FIC frameworks we have
discussed, using local asymptotics or a fixed wide model. As a
tentative guiding rule we advocate turning to the “fixed wide
model” setup if the set of candidate models are seen as not being
in a reasonable vicinity of each other. Also, we have seen that this
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framework allows candidate models of a different sort from the
wide model; in particular, a candidate model does not have to be
a clear submodel of the wide model. As stated before, the two
frameworks aim at the same quantities, and the choice may thus
also be guided by convenience. Note also that in many situations
the two frameworks may give similar results. For the special case
of linear regression models with focus parameters being linear
functions of the coefficients, the formulae turn out to be identical.
Also, for the classical generalized linear models, including logistic
and Poisson regressions, the formulae yield highly correlated
scores, as long as the focus parameters under study are functions
of such linear combinations xt0β + zt0γ . For more complicated
focus parameters, like probabilities for crossing thresholds, the
answers are not necessarily close, and will depend on both the
sample size and the degree to which the candidate models are
not close.

3. Model averaging. Model averaging is sometimes used as
an alternative to model selection to avoid the perhaps brutal
throwing away of all but one model. With model averaging
one computes the estimate of the focus quantity in all of the
models separately and then forms a weighted average which is
used as the final “model averaged” estimate of the focus. See for
example the overview paper about model averaging in ecology by
Dormann et al. (2018). Averaging estimates has as the advantage
that all models are used. The flexibility of choosing the weights
allows to give a larger weight to the estimate of a model that
one prefers most. Weights could be set in a deterministic way,
such as giving equal weights to all estimates, or could be data-
driven. It makes sense to use values of information criteria to
set the weights. Especially AIC has been popular (see Burnham
and Anderson, 2002) for examples of the use of “Akaike weights.”
Also FIC could be used to form weights that are proportional to
exp(−λ FICM/FICwide) for a user-chosen value of λ. One could
also try to set the weights such that the mean squared error of the
weighted estimator is as small as possible (Liang et al., 2011). Such
theoretically optimal weights need to be estimated for practical
use, which induces again estimation variability, and might lead to
a more variable weighted estimator as when simple equal weights
would have been used (Claeskens et al., 2016).

Model averaging with data-driven weights has consequences
for inference similar to the post-selection inference (see
below). Indeed, model selection may be seen as a form
of model averaging, with all but one of the weights equal
to zero and the remaining weight equal to one. Correct
frequentist inference for model averaged estimators needs to
take the correlations between the separate estimators into
account, as well as the randomness of the weights in case of
data-driven weights.

4. Post-selection issues. Model selection by the use of an
information criterion (such as FIC, or AIC) comes with several
advantages as compared to contrasting models two by two via
hypothesis testing.Withmodel selection there is no need to single
out one model that would be placed in a null hypothesis. All
models are treated equally. Multiple testing issues do not occur
because no testing takes place. The set of models that is searched
over can be large. The ease of calculating such information
criteria makes it fast and allows to include many models in

the search. However, there is a price to pay when one puts the
next step to perform inference using the selected model. Simply
ignoring that a model is arrived at via a selection procedure
results in p-values that are too small and confidence intervals that
are too narrow.

With a replicated study resulting in a dataset similar to but
independent of the current one, it might happen that a different
model gets selected, all the rest left unchanged. This illustrates
that variability is involved in the process of model selection.
One way to address such variability is via model averaging (see
e.g., Hjort and Claeskens, 2003, Claeskens and Hjort, 2008b,
Ch. 7, Efron, 2014). Berk et al. (2013) develop an approach for
the construction of confidence intervals for parameters in a linear
regression model that uses a selected model. Their approach is
conservative, in the sense that the intervals tend to be wide and
sometimes have a coverage that is quite a bit larger than the
nominal value. Other approaches to take the uncertainty induced
by the selection procedure into account is via selective inference
leading to so-called “valid” inference. See, for example, Tibshirani
et al. (2016, 2018). By using information about the specifics of
the selection method such inference methods result in narrower
confidence intervals as compared to the Berk et al. (2013)
method. The effect of increasing the number of models results in
getting larger confidence intervals (see Charkhi and Claeskens,
2018). Valid inference after selection is currently investigated for
several model selection methods. It is to be expected that more
results will become available in the future that guarantee that
working with a selected model happens in a honest way that takes
all variability into account.

It is well-known that estimators computed under a given
model become approximately normal, under mild regularity
conditions. It is however clear from the brief discussion above
that post-selection and more general model-average estimators
have more complicated distributions, as they often are non-
linear mixtures of approximately normal distributions, with
different biases, variances, and correlations. Clear descriptions
of large-sample behavior, for even complex model-selection
and model-average schemes, can be given inside the local
asymptotics O(1/

√
n) framework of Appendix A1, as shown in

Hjort and Claeskens (2003), Claeskens and Hjort (2008b, Ch. 7),
with further generalizations in Hjort (2014). Inside the general
framework of (12), with estimators µ̂M as in (13), consider the
combined or post-selection estimator

µ̂∗ =
∑

M

ŵ(M)µ̂M ,

with data-driven weights ŵ(M) summing to one. If these are
weights take the form w(M |Dn), withDn =

√
n(γ̂wide−γ0) as in

(15), there is a very clear limit distribution,

√
n(µ̂∗ − µtrue) →d 30 + ωt{δ −̂δ(D)}, where

̂δ(D) =
∑

M

w(M |D)GMD. (11)

This extends the master theorem result (17), to allow even for
very complicated post-selection and model averaging schemes.
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The q×qmatricesGM in this orthogonal decomposition are as in
(16). The result remains true also for schemes based on weights
involving AIC or FIC weights, as the appropriate weights can
be shown to be close enough to the relevant w(M |Dn). These
limiting distributions can be simulated, at any position in the δ

domain. Yet further efforts are required to turn such into valid
post-selection or post-averaging confidence intervals, however
see Claeskens and Hjort (2008b, Ch. 7) for one particular general
(conservative) recipe, and for further discussion of these issues.

5. Performance. It is beyond the scope of this article to
go into the relevant aspects of statistical performance of the
FIC methods. One may indeed study both the accuracy of
the final post-selection or post-averaged estimator, say for the
µ̂∗ above, and the probabilities for selecting the best models.
Such questions are to some extent discussed in Hjort and
Claeskens (2003) and Claeskens and Hjort (2008b, Ch. 7);
broadly speaking, the FIC outperforms the AIC in large parts
of the parameter space, but not uniformly. There are also
several advantages with FIC, when compared with the BIC,
regarding precision of the finally evaluated estimators. Notably,
all of these questions can be studied accurately in the limit
experiment alluded to above, where all limit distributions
can be given in terms of the orthogonal decomposition
30 + ωt{δ −̂δ(D)} of (11).

6. FIC for high-dimensional data.Whenmodels contain a large
number of parameters, perhaps even larger than the sample size,
maximum likelihood estimation might no longer be appropriate.
The use of regularized estimators, such as ridge regression, lasso,
scad, etc. requires adjustment to the FIC formulae. Even when
the regularization takes automatic care of selection, Claeskens
(2012) showed that selection via FIC is advantageous to get
better estimators of the focus. Pircalabelu et al. (2016) used
FIC for high-dimensional graphical models. For models with
a diverging number of parameters FIC formulae using a so-
called desparsified estimator have been obtained by Gueuning
and Claeskens (2018). FIC may also be used to select tuning
parameters for ridge regression. The focused ridge procedure of
Hellton and Hjort (2018) is applicable to both the low and high-
dimensional case and has been illustrated in linear and logistic
regression models.

7. Extensions to yet other models. The methods exposited in
section 3.1, yielding FIC machinery under a fixed wide model,
can be extended to other important classes of models. The
essential assumptions are those related to smooth log-likelihood
functions and approximate normality for maximum likelihood
estimators for the candidate models. Sometimes developing such
FIC methods would take considerable extra efforts, though, as
exemplified by our treatment in section 3.3 of linear mixed
effects models. In particular, the methodology extends to models
with dependence, as for time series and Markov chains with
covariates (see Haug, 2019). This involves certain lengthier efforts
regarding deriving expressions and estimation methods for the
KM,n and CM,n matrices of (6, 7). Analogous FIC methods for
time series are shown at work in Hermansen et al. (2016) for
certain applications in fisheries sciences. Similar remarks also

apply to the advanced Ornstein–Uhlenbeck process models used
in Reitan et al. (2012) for modeling complex layered long-term
evolutionary data. Specifically, these authors studied cell size
evolution over 57 million years, and entertained 710 candidate
models of this sort. An extension of our paper’s FIC methods
to their process models is possible and would lead to additional
insights in their data.

A challenge of a different sort is to develop FIC methods also
when the models used are too complicated for log-likelihood
analyses, but where different estimation methods may be used.
A case in point are models used in Dennis and Taper (1994), for
dynamically evolving times series models of the form yt+1 =

yt + a + b exp(yt) + σ zt , met in density dependence analyses
for ecology. These models do not have stationary distributions
and special estimation methods are needed to analyse the
candidate models.
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Over the past years, distances and divergences have been extensively used not only

in the statistical literature or in probability and information theory, but also in other

scientific areas such as engineering, machine learning, biomedical sciences, as well as

ecology. Statistical distances, viewed either as building blocks of evidence generation

or as evidence generation vehicles in themselves, provide a natural way to create a

global framework for inference in parametric and semiparametric models. More precisely,

quadratic distance measures play an important role in goodness-of-fit tests, estimation,

prediction or model selection. Provided that specific properties are fulfilled, alternative

statistical distances (or divergences) can effectively be used to construct evidence

functions. In the present article, we discuss an intrinsic approach to the notion of

evidence and present a brief literature review related to its interpretation. We examine

several statistical distances, both quadratic and non-quadratic, and their properties in

relation to important aspects of evidence generation.We provide an extensive description

of their role in model identification and model assessment. Further, we introduce an

explanatory plot that is based on quadratic distances to visualize the strength of evidence

provided by the ratio of standardized quadratic distances and exemplify its use. In

this setting, emphasis is placed on determining the sense in which we can provide

meaningful interpretations of the distances as measures of statistical loss. We conclude

by summarizing the main contributions of this work.

Keywords: evidence functions, inference, kernels, model selection, quadratic and non-quadratic distances,

statistical distances, statistical loss measures

1. INTRODUCTION

What is evidence? The Oxford dictionary defines evidence as “the available body of facts or
information indicating whether a belief or proposition is true or valid.” The fundamental
knowledge of a science or an art, which at the same time embeds basic philosophical principles,
can also be characterized as evidence.

In the scientific world the concept of evidence is crucial as it accumulates all the pieces/sources
of information one has at hand and can assess in a variety of ways to judge whether something is
true or not. The term statistical evidence (Royall, 2004) refers to observations interpreted under a
probability model. To reject or support a hypothesis we use data obtained from the phenomena that
occur in the natural world or we perform experiments and combine/match with some background
information, resources and scientific tools such as theories, tests and models.
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How do we measure the strength of evidence? In statistics,
different strategies have been suggested to measure the strength
of evidence. Fisher’s method (Fisher, 1935) uses extreme value
probabilities known as p-values from several independent tests
which consider the same null hypothesis. Fisher’s p-value tests
may provide a measure of evidence (Cox, 1977); however, only
a single hypothesis is taken into consideration and no reference
to any alternative hypothesis is provided. On the contrary,
in Neyman-Pearson tests the decision rule is based on two
competing hypotheses, the null hypothesisH0 and the alternative
hypothesisH1. This approach divides all the possible outcomes of
the sample space into two distinct regions, the acceptance and the
rejection region. The specific data values that lead to the rejection
of H0 form the rejection region. The aim is to define the best
significant level a, that is the probability of rejecting the null
hypothesis when in fact it is true. According to Lewin-Koh et al.
(2004), Neyman-Pearson tests may not provide an appropriate
measure of evidence, in the sense that a decision should be made
between two hypotheses of which one is accepted and the other
is rejected. As a result, minor data changes could alter the final
decision making (Taper and Lele, 2004).

Under the Bayesian framework, the decision is made based on
some prior probabilities which try to quantify the scientist’s belief
about the competing hypotheses. The stronger the scientist’s
belief is that a hypothesis is true, the higher probability this
hypothesis is given. The use of Bayesian tests to measure the
strength of evidence has raised questions as the priors’ choicemay
not be objective (Lewin-Koh et al., 2004). Bayesianism as well as
likelihoodism are both based on the same principle, the law of
likelihood (Sober, 2008). Likelihood and, by extension, likelihood
ratio are basic statistical tools used for the quantification of the
strength of evidence. For instance, consider the case where there
are two hypotheses H0 : τ = mθ0 vs. H1 : τ = mθ1 ; then, the
likelihood ratio is defined by L(θ0; x)/L(θ1; x). The likelihood
ratio of H0 vs. H1 measures the strength of evidence for the first
hypothesis H0 vs. the second hypothesis H1. A likelihood ratio
takes values that are greater than or equal to zero; a value of
one indicates that the evidence does not support one hypothesis
over the other. On the other hand, a value of the likelihood
ratio substantially greater than 1, indicates support of H1 vs.
H0.

The evidential paradigm uses likelihood ratios as measures of
statistical evidence for or against hypotheses of interest. Royall
(1997, 2000, 2004) suggests that the use of likelihood ratio
to quantify strength of evidence of one model over another.
Although likelihood ratio is a useful measure of strength of
evidence, it has some practical limitations. More precisely, it is
sensitive to outliers and it requires the specification of a complete
statistical model (Lele, 2004).

However, all the basic theories of inference and evidence
described above have disadvantages. To overcome their
drawbacks, these techniques have been extended to address the
problem of multiple comparisons and composite hypotheses
testing, as well as to deal with situations where nuisance
parameters are present. In particular, Royall (2000) suggests
the use of profile monitoring for evidential inference purposes
when one has to cope with nuisance parameters and composite

hypotheses. A further, though quite challenging, generalization
would be the case of unequal nuisance parameter number
between the compared models (Taper and Lele, 2004). Moreover,
the idea of evidence and its measurement has been extended to
model adequacy and selection problems.

Fundamental to scientific work is the use of models. In
analyzing and interpreting data, the use of models, explicit or
implicit, is unavoidable. Models are used to summarize statistical
properties of data, to identify parameters, and to evaluate
different policies. Where do models come from? The literature
provides very little help on answering the question of model
formulation, yet this is arguably themost difficult aspect of model
building. Cox (1990) and Lehmann (1990) discuss this question
and offer various classifications of statistical models. Following
Cox (1990), we define a statistical model as:

(1) A specification of a joint probability distribution of a
single random variable or a vector of random variables,

(2) A definition of a vector of parameters of interest,
ideally such that each component of the vector has
a subject-matter interpretation as representing some
understandable stable property of the system under study,
and

(3) At least an indication of or a link with the process that
could have generated the data.

In this paper, we are not concerned with the origins of models.
We take as given that a class of models M is under consideration
and we are concerned with methods of obtaining evidence
characterizing the quality of an aspect of model assessment, that
is the adequacy of a model in answering questions of interest
and/or our ability to perform model selection. Measuring model
adequacy centers on measuring the model misspecification
cost. Lindsay (2004) discusses a distance-based framework for
assessing model adequacy, a fundamental tenet of which is that
one is able to carry out a model-based scientific inquiry without
assuming that the model is true and without assuming that
“truth” belongs in the model class under investigation. However,
we make the assumption that the “truth” exists and it is knowable
given the presence of data. The evidence for the adequacy of the
model is measured via the concept of a statistical distance.

We discuss therefore statistical distances as evidence functions
in the context of model assessment. We show that statistical
distances that can be interpreted as loss functions can be used
as evidence functions. We discuss in some detail a specific class
of statistical distances, called quadratic distances, and illustrate
their use in applications. For ease of presentation, we only use
simple hypotheses, however these measures can handle both
simple and composite hypotheses. Methods based on distances
compare models by estimating from data the relative distance
of hypothesized models to “truth,” and transform composite
hypotheses into a model selection problem. Furthermore, if
multiple models are available, all models are compared on
the basis of the value of the distance to the truth (selecting
the model with the lowest distance as the best supported
by the evidence model). Section 2 presents the idea of an
evidence function as introduced by Lele (2004) and Lindsay
(2004). Section 3 illustrates the statistical properties of various
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statistical distances and discusses their potential in the context
of model adequacy. Section 4 compares, theoretically, some of
the presented distances, while section 5 provides illustrations and
examples of use of a specific class of distances, the quadratic
distances. Finally, section 6 offers discussion and conclusions.

2. EVIDENCE FUNCTIONS AND
STATISTICAL DISTANCES

A generalization of the idea of the likelihood ratio as a measure
of strength of evidence to the idea of comparing two different
competing models by comparing the difference in disparities
between the data and each competing model is discussed in Lele
(2004). The author formulates a class of functions, called evidence
functions, which can be exploited not only to characterize but
also to measure the strength of evidence. It should be mentioned
that the term evidence functions may have been introduced by
Lele, but as we shall see later on the concept of such functions
is not new. Incidentally, Royall (2000, pp. 8) defines implicitly
the concept of evidence function. Lele (2004) made an attempt to
provide a formal definition of evidence functions by describing
in detail several intuitive conditions that such a function should
satisfy. We briefly present these conditions below.

Let us denote by 2 the parameter space and by X the sample
space. Provided that an evidence function measures the strength
of evidence by comparing two parameter values (hypotheses)
that are based on the observed data, the domain of the evidence
function is X ×2×2. A real-valued function of the form
hn :X ×2×2→ R will be called evidence function. As an
example of an evidence function, we offer the likelihood function
which is a special case of the class of general statistical distances.
Given an evidence function, one could have strong evidence
of θ1 over θ2 if hn(X, θ1, θ2) < −K, for some fixed K > 0.
Alternatively, one could have strong evidence of θ2 compared
to θ1 if hn(X, θ1, θ2) > K, for some fixed K > 0 and weak
evidence if −K < hn(X, θ1, θ2) < K. Lele (2004) characterizes
this as indifference zone. An evidence function should at the same
time satisfy the following conditions:

C1. Translation Invariance
C2. Scale Invariance
C3. Reparameterization Invariance
C4. Invariance Under Data Transformation

The first condition is very important as it does not allow the
practitioner to change the strength of evidence by adding a
constant to the evidence function. The translation invariance of
the evidence function as well as hn(X, θ1, θ1) = 0 are implied due
to the antisymmetric condition hn(X, θ1, θ2) = −hn(X, θ2, θ1).
Without the second condition, one can change the strength
of evidence by simply multiplying an evidence function
by a constant. The scale invariance property is ensured
by the use of “standardized evidence functions” defined

as h̃n(X, θ1, θ2) = hn(X, θ1, θ2)/[I
1/2(θ1)I

1/2(θ2)], where the
function I(θ1) is assumed to be continuously differentiable up to
second order and 0 < I(θ1) <∞, I(θ1) is defined in R5 below.
The reparameterization invariance condition reassures that,

given a function ψ (where ψ :2→ 9 is a one-to-one mapping
of the parameter space), the comparison between (θ1, θ2) and
between the corresponding points in the transformed space
(ψ1,ψ2) is identical. In simple words, the quantification of the
strength of evidence cannot change by stretching the coordinate
system. Finally, the fourth condition implies that if g :X → Y
is a one-one onto transformation of the data and ḡ(·) is the
corresponding transformation in the parameter, the evidence
function satisfies the property hn(X, θ1, θ2) = hn(Y , ḡ(θ1), ḡ(θ2)).
As a result, the comparison of evidence is not affected by changes
in the measuring units.

Lele (2004) states that in order to obtain a reasonable evidence
function, the probability of strong evidence in favor of the true
hypothesis has to converge to 1 as the sample size increases.
Consequently, he presents the following additional regularity
conditions:

R1. Eθ1 (hn(X, θ1, θ2)) < 0 for all θ1 6= θ2.

R2. n−1(hn(X, θ1, θ2) − Eθ1 (hn(X, θ1, θ2))
P
−→ 0, given that θ1

is the true value or the best approximating model.
R3. The evidence functions hn(X, θ1, θ2) are twice

continuously differentiable and the Taylor series
approximation is valid in the vicinity of the true value θ1.

R4. The central limit theorem is applicable; this implies that
there exists a function J(θ1) such that 0 < J(θ1) <∞ and

n−1/2

(

d

dθ
hn(X, θ1, θ)

∣

∣

θ1

)

D
−→ N(0, J(θ1)).

R5. The weak law of large numbers is applicable and as a result

n−1

(

d2

dθ2
hn(X, θ1, θ)

∣

∣

θ1

)

p
−→ −I(θ1), where 0 < I(θ1) <

∞ and the function I(θ1) is assumed to be continuously
differentiable up to second order.

The first regularity condition implies that evidence for the true
parameter is maximized on average at the true parameter only
and not at any other parameter. The first and the second
conditions impose that the probability of strong evidence in
favor of the true parameter compared to any other parameter
converges to 1 as the sample size increases

(

Pθ1 [hn(X, θ1, θ2) <
−K] → 1, for any fixed K > 0

)

; while the last three
regularity conditions are just provided for facilitating analytical
and asymptotic calculations.

Different evidence functions have been proposed in the
literature that satisfy conditions R1 and R2. For instance, the log-
likelihood-ratio evidence functions which are sensitive to outliers.
Additionally, disparity-based evidence functions such as functions
based on the Kullback-Leibler disparity measure, functions based
on Jeffreys’s disparity measure (Royall, 1983) or functions based
on Hellinger’s distance satisfy the first two regularity conditions.
The later functions are robust to outliers and they do not fail
to maintain their optimality property (Lindsay, 1994). Evidence
functions that overcome the problem of complete model
specification are the log-quasi-likelihood-ratio functions. Indeed,
as underlined by Lele (2004), additional evidence functions
can be constructed based on composite likelihood (Lindsay,
1988), profile likelihood (Royall, 1997), potential function (Li and
McCullogh, 1994) and quadratic inference functions (Lindsay and
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Qu, 2000). Therefore, Lele (2004) uses statistical distances or
divergencies as building blocks in the construction of evidence
functions to carry out model selection. Lele (2004) compares
evidence for two models by comparing the disparities between
the data and the two models under investigation. We note here
that, for simplicity reasons, we stated conditions R1–R5 for the
uni-dimensional parameter θ . However, the restriction to a uni-
dimensional parameter is unnecessary −the d-dimenional case
can be treated analogously.

Disparities or statistical distances (defined formally in section
3) can be used as evidence functions to study model assessment,
that is, model adequacy and model selection problems if they can
be interpreted as measures of risk. In this context, understanding
the properties of the distance provides for understanding the
magnitude of the incurred statistical risk when a model is
used. Two components of error are important in this setting.
One is due to model misspecification −this is the intrinsic
error made because the model we use can never be true.
The second is the parameter estimation error (Lindsay, 2004).
Within this framework, we discuss in the next section the
statistical properties of several statistical distances as measures of
model adequacy.

In evidential statistics three quantities are of primary interest;
the strength of evidence, expressed in terms of likelihood ratios
of two hypotheses H1 and H2, the probability of observing
misleading evidence, and the probability of weak evidence. The
probability of observing misleading evidence is denoted by M
and it is defined as the probability of the likelihood of H2

over H1 being greater than a threshold k, where the probability
is calculated under H1. The constant k is the lower limit of
strong evidence. In other words, misleading evidence is strong
evidence for a hypothesis that is not true. We would then like to
have the probability of misleading evidence as small as possible.
An additional measure introduced by Royall (1997, 2004) is
the probability of weak evidence, defined as the probability
that an experiment will not produce strong evidence for either
hypothesis relative to the other.

In suggesting the use of statistical distances as evidence
functions, we propose, in connection with the use of quadratic
distances, a quantity analogous to the likelihood ratio. This
quantity is the standardized ratio of the quadratic distance of the
hypothesis H2 over the quadratic distance of hypothesis H1. The
squared root of this quantity can be interpreted as measuring
the strength of evidence against the hypothesis H2 and can be
used as a general strength of evidence function. Although we
propose an exploratory device to visually depict the strength of
evidence based on the aforementioned quantity, it may be of
interest to study the behavior of error probabilities analogous
to the probability of misleading evidence and weak evidence,
associated with statistical distances. We conjecture that, under
appropriate conditions, it is possible to calculate the probability
of misleading evidence for at least evidence functions of the
form suggested by Lele (2004, p. 198). These functions, using
our notation, have the form n[ρ(Pτ ,Mθ1 ) − ρ(Pτ ,Mθ2 )], where
n is the sample size, Pτ is the true probability model and Mθ1 ,
Mθ2 are the models under the two hypotheses H1 and H2. Our
current work consists of establishing conditions to carefully study

these probabilities. Alternatively, one may be able to construct a
confidence interval for the model misspecification cost along the
lines suggested by Lindsay (2004).

3. STATISTICAL DISTANCES AS EVIDENCE
FUNCTIONS IN MEASURING MODEL
ADEQUACY

In this section, we examine several classes of statistical distances
in terms of their suitability as evidence functions. After
presenting preliminaries on models and model adequacy, we
discuss statistical distances as evidence functions. Specifically, we
present the class of chi-squared distances and their extension
the class of quadratic distances, the class of probability integral
transform based distances and the class of non-convex distances.

3.1. Preliminaries
We construct a probability-based framework that mimics the
data generation process and it is reasonable in light of the
collected data. Our goal for this framework is to allow one
to incorporate all aspects of uncertainty into the assessment
of scientific data. We call this framework the approximation
framework (Lindsay, 2004) and offer a brief description of it
below. The interesting reader can find details in Lindsay (2004)
and Lindsay and Markatou (2002).

Our basic modeling assumption is that the experimental
data constitute a realization from a random process that has
probability distribution Pτ , where τ stands for “true.” That is,
the data generated from such a probability mechanism mimics
closely the properties of data generated from an actual scientific
experiment. We treat this modeling assumption as correct,
hence there exists a Pτ ∈ P, where P is the class of all
distributions consistent with the basic assumptions. Through a
set of additional secondary assumptions, we arrive at a class
of models M =

{

Mθ : θ ∈ 2
}

⊂ P. The individual
distributions, denoted as Mθ , are the model elements. Following
Lindsay (2004), we resist the temptation of assuming that the
true probability model Pτ belongs in M. Instead, we take
the point of view that Pτ does not necessarily belong in the
model class under consideration. Therefore, there is a permanent
model misspecification error present. Statistical distances can
be used to measure the model misspecification error; they can
reconcile the use of M while not believing it to be true, by
allowing one to carry out statistical analysis using models only
as approximations to Pτ . An important conceptual issue that is
raised by the approximation framework relates to the question
of the existence of a “true” distribution. Lindsay (2004) has
addressed this issue and we are in agreement, thus we do not
address this point here. However, it is important to address, albeit
briefly, the use of parametric models since it is possible to carry
out statistical analyses completely nonparametrically, without the
use of any model.

Models and modeling constitute a fundamental part of
scientific work. Models (deterministic or stochastic) are used
in almost every field of scientific investigation. A very general
statement is that we need models in order to structure our
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ideas and conclusions. Lindsay (2004) discusses the question
of why we need to use models when we know that they
can only provide approximate validity by offering examples
where the use of models provides insights into the scientific
problem under study. In general, we would like our models
to offer parsimonious descriptions of the systematic variation,
concise summary of the statistical (random) variation and point
toward meaningful interpretation of the data. We continue
to use models because we think, in some sense, that models
are still informative if they approximate the data generating
mechanism in a reasonable fashion. We take this as being a
general justification for continuing to use concise models. But the
word “approximation” needs a more formal examination. To do
so, we use statistical distances as evidence measures that allow
formal examination of the adequacy of a model.

3.1.1. Model Assessment
There are two aspects to the problem of model assessment. The
first aspect corresponds to treating the scientific problem from
the point of view of one fixedmodelM. For example,Mmight be
the family of binomial distributions, or the family of multivariate
normal distributions that is used to model the experimental data
of interest. In this case, model misspecification error occurs when
we assume that Pτ , the true distribution, belongs to M when it
does not. Our goal then is to measure the cost in uncertainty
due to specification of a restricted statistical model M relative to
the unrestricted global model. We call this the model adequacy
problem.

A different type of problem occurs when there are multiple
models of interest, indexed by a, say Ma, and one is interested
in selecting one or more models that are most descriptive
for the process at hand. In this case, we are interested in
minimizing the model misspecification error, and less interested
in assessing the model misspecification error for the sake of
determining overall statistical error. This problem is called
the model selection problem.

Both model selection and model adequacy problems are
closely linked because we are interested, in both cases, in
assessing the magnitude of the model misspecification error. In
this paper, we will focus on the model adequacy problem.

3.1.2. The Approximation Framework
The approximation framework (Lindsay and Markatou, 2002;
Lindsay, 2004) is a statistical distance-based framework that
allows one to carry out model-based inference in the presence
of model misspecification error. This involves the construction
of a loss function that measures both within model and outside
model errors. The construction of this loss function (or statistical
distance) is discussed in Lindsay (2004). In the model adequacy
problem, we will need to define a loss function ρ(Pτ ,Mθ ) that
describes the loss incurred when the true distribution is Pτ but
instead Mθ is used. Such a loss function will, in principle, tell us
how far apart, in an inferential sense, the two distributions are.

If we adopt the usual convention that loss functions are
nonnegative in their arguments, are zero if the correct model
is used, and are taking larger values when the distributions
are dissimilar, then ρ(Pτ ,Mθ ) can be viewed as a distance

between the two distributions. Generally, if F, G are two
distributions such that ρ(F,G) ≥ 0 and ρ(F, F) = 0,
we will call ρ a statistical distance. As an example of a
statistical distance, we mention the familiar likelihood concept.
An extensively used distance in statistics is the Kullback-
Leibler distance. The celebrated AIC model selection procedure
is based on the Kullback-Leibler distance. Other examples
include Neyman’s chi-squared, Pearson’s chi-squared, L1 and
L2 distances, and Hellinger distance. Furthermore, additional
examples of statistical distances can be found in Lindsay (1994),
Cressie and Read (1984), and Pardo (2006). Note that we only
require that the distance is non-negative. We do not require
symmetry in the arguments because the roles of Pτ and Mθ (or
generally M) are different. Neither do we require the distance
to satisfy the triangle inequality. Thus, our measures are not
distances in the formal mathematical sense.

As a historical note, we mention that statistical distances or
divergences have a large history and are defined in a variety of
ways, by comparing distribution functions, density functions or
characteristic and moment generating functions.

3.1.3. Model Misspecification and Decomposition of

Model Fitting Error
Given a statistical distance between probability distributions
represented by Pτ and M, we can define the distance from the
model class M to the true distribution Pτ by

ρ(Pτ ,M) = inf
M∈M

ρ(Pτ ,M).

Therefore, the distance from a class of models M to the
true distribution Pτ equals the smallest distance generated by
an element of the model class M. This is called the model
misspecification cost. It corresponds to finding theminimal model
misspecification cost associated with the elements in the model
class M. If the true model Pτ belongs in the model class M, say it
is equal to Mθ0 , and M has density Mθ , then ρ(Pτ ,M) induces a

loss function on the parameter space via the relation L(θ0, θ)
def
=

ρ(Mθ0 ,Mθ ). Therefore, if the true model belongs to the model
class M, the losses are strictly parametric (Lindsay, 2004).

However, if Pτ does not belong in the model class M, the
overall cost can be broken into two parts, as follows

ρ(Pτ ,Mθ̂
) = ρ(Pτ ,Mθτ )+ [ρ(Pτ ,Mθ̂

)− ρ(Pτ ,Mθτ )],

where ρ(Pτ ,Mθτ ) = inf
θ
ρ(Pτ ,Mθ ), that is Mθτ defines the best

model element in M that is closest to Pτ in the given distance.
Furthermore, θ̂ is the estimator of θ representing the particular
method of estimation used to obtain it.

The first term in the decomposition of the overall
misspecification cost is an unavoidable error that arises
from using M. This is the model misspecification cost. The
second term is nonnegative and represents the error made due to
point estimation. This is the parameter estimation cost (Lindsay,
2004). The way to balance these two costs depends on the basic
modeling goals.

In the problem of model adequacy discussed here, one has
a fixed model and interest centers in measuring the quality of
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the approximation offered by the model. In this case, it makes
sense to perform post-data inference on the magnitude of the
statistical distance to see if the approximation of the model to
the “true” distribution is “adequate” relative to some standard. In
what follows, we present specific classes of statistical distances (or
loss functions) that can be used to measure model adequacy, and
hence they can be used (potentially) as evidence functions.

3.2. Statistical Distances as Evidence
Functions for Model Adequacy
In this section, we study the characteristics, that is, the
mathematical properties of statistical distances to assess their
suitability as evidence functions for model adequacy. Our point
of view is that the choice of an appropriate statistical distance
to use as an evidence function for evaluating model adequacy
will depend on the aspects of model fit that a researcher is most
interested in and the ability of the statistical distance to have
a clear interpretation as a measure of risk. We note that Lele
(2004) constructed evidence functions of the form hn(x; θ1, θ2) =
n{ρ(pn, pθ1 )− ρ(pn, pθ2 )}, where ρ(·; ·) is a disparity or statistical
distance, pθ1 , pθ2 are two discrete probability models indexed by
the parameters θ1, θ2 and pn is the empirical probability mass
function. In this way, Lele generalizes the likelihood paradigm
and argues that the disparity-based evidence functions, under
appropriate conditions, satisfy the property of strong evidence.
We now examine three broad classes of statistical distances
with respect to their suitability as evidence functions for model
adequacy. To indicate the versatility of the methods, we work
with both, continuous and discrete distributions and denote by
X the associated sample space.

3.2.1. The Class of Chi-Squared Distances
Define τ (t) to be the “true” distribution and M =

{

mθ (t) : θ ∈

2
}

be a model class such as τ /∈ M, 2 is the parameter space

such that2 ⊆ R
d, d ≥ 1. If τ (t),m(t) are two discrete probability

distributions the generalized chi-squared distances are defined as

∑

t

(

τ (t)−m(t)
)2

a(t)
,

where a(t) is a suitable probability mass function (see Lindsay,
1994; Markatou et al., 2017). For example, when a(t) = m(t) and
τ (t) = d(t) the proportion of observations in the sample with
value t, we obtain Pearson’s chi-squared distance. Other choices
of a(t) result in different members of the chi-squared family.

The family of chi-squared distances has a very clear
interpretation as a risk measure (Lindsay, 2004; Markatou et al.,
2017). First, the chi-squared distance is obtained as the solution
of an optimization problem with interpretable constraints.
This result helps the interpretation of the chi-squared distance
measures as well as our understanding of their robustness
properties. To exemplify, note that Pearson’s chi-squared can be
obtained as

∑

t

(

d(t)−m(t)
)2

m(t)
= sup

h

[Edh(X)− Emh(X)]
2

Varm(h(X))
, (1)

where h(·) is a function that has finite second moments.
Furthermore, relationship (1) gives

∑

t

(

d(t)−m(t)
)2

m(t)
= sup

h

(

1
n

∑

h(Xi)− Emh(X)
)2

Varm(h(X))
=

1

n
sup
h

Z2
h,

that is, Pearson’s chi-squared is the supremum of squared Z
statistics. As such, Pearson’s chi-squared cannot possibly be
robust. On the other hand, Neyman’s chi-squared distance given

as
∑

t

(d(t)−m(t))2/d(t) equals (1/n) sup
h

t2h, the supremum of

squared t statistics and hence is more robust. In general, the chi-
squared distances are affected by outliers. However, a member of
this class, the symmetric chi-squared distance is obtained if we
use in place of a(t) the mixture 0.5m(t)+ 0.5d(t), and provides
estimators that are unaffected by outliers (see Markatou et al.,
1998; Markatou et al., 2017; Markatou and Chen, 2018). An
attractive characteristic of the symmetric chi-squared distance is
that it admits a testing interpretation. For details, see Markatou
et al. (2017).

The fact that it is possible to obtain the chi-squared
distances as solutions of a certain optimization problem with
interpretable as a variance constraint, allows us by analogy to
the construction of Scheffé’s confidence intervals for parameter
contrasts, to interpret chi-squared distances as tools that permit
the construction of “Scheffé-type” confidence intervals for
models. Therefore, the assessment of the adequacy of a model is
done via the construction of a confidence interval for the model.

In contrast with the class of chi-squared distances, distance
measures that are used frequently in practice do not arise
as solutions to optimization problems with interpretable as
variance constraints. For example, the Kullback-Leibler distance
or the Hellinger distance can be obtained as solutions of
similar optimization problems but with constraints that are
not interpretable as suitable variance functions (see Markatou
et al., 2017). As such, their interpretation as measures of risk,
as well as their suitability in constructing confidence intervals
for models is unclear. However, we note here that there is a
near equivalence between the Hellinger distance and chi-squared
distance, therefore justifying the use of Hellinger distance as a
measure for model adequacy.

A classical distance for continuous probability models that
is very popular is the L2 distance (Ahmad and Cerrito, 1993;
Tenreiro, 2009) defined as

L22(τ ,m) =

∫

[τ (x)−m(x)]2dx. (2)

While the L2 distance is location invariant, it is not invariant
under monotone transformations. Moreover, scale changes
appear as a constant factor multiplying the L2 distance. However,
other features of L22 may not be invariant.

3.2.2. General Quadratic Distances
Lindsay et al. (2008) introduce the concept of quadratic distance
defined as

ρK(F,M) =

∫ ∫

KM(x, y)d(F −M)(x)d(F −M)(y), (3)
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where KM(x, y) is a nonnegative definite kernel function that
possibly depends on the model M and F corresponds to the
distribution function of the unknown “true” model. An example
of a kernel function that is quite popular as a smoothing kernel
in density estimation is the normal kernel with smoothing
parameter h. We note that quadratic distances are defined for
both, discrete and continuous probability models. To calculate
ρK(F,M) we write it as

ρK(F,M) = K(F, F)− K(F,M)− K(M, F)+ K(M,M), (4)

where K(A,B) =
∫ ∫

KM(x, y)dA(x)dA(y). Since the true

distribution F is unknown, a nonparametric estimator of F, F̂,
can be used. We call ρK(F̂,M) the empirical distance between F̂
andM.

An example of a quadratic distance is Pearson’s chi-squared
distance. The kernel of this distance is given as

K(x, y) =

m
∑

i=1

I(x ∈ Ai)I(y ∈ Ai)

M(Ai)
. (5)

Here, I(·) is the indicator function and A1,A2, . . . ,Am represent
the partitioning of the sample space into m bins. The empirical
distance is then given by

m
∑

i=1

(F̂(Ai)−M(Ai))
2

M(Ai)
, (6)

where M(Ai) indicates the probability of the i−th partition
under the model M and F̂(Ai) is the corresponding
empirical probability.

Lindsay et al. (2008) showed that in order to obtain the correct
asymptotic distribution of the quadratic distance, the kernel K
needs to be modified. This means that the kernel needs to be
centered with respect to model M. Centering is also necessitated
by the need to obtain, for a given kernel, uniquely defined
distances. We define the centered kernel with respect to model
elementM by

Kcen(x, y) = K(x, y)− K(x,M)− K(M, y)+ K(M,M), (7)

where K(x,M) =
∫

K(x, y)dM(x) and the remaining terms are
defined analogously.

The centering of the kernel has the additional benefit to allow
one to write the quadratic distance as

ρK(F,M) =

∫ ∫

Kcen(M)(x, y)dF(x)dF(y). (8)

The two relations above [that is (7) and (8)] guarantee that
the expectation of the centered kernel with respect to the true
model is the same with ρK(Pτ ,M), the distance between the
true distribution Pτ and the modelM. Furthermore, relationship
(8) shows that, for a fixed model M, the empirical distance
ρK(F̂,M) = Kcen(M)(F̂, F̂) equals to

Vn =
1

n2

n
∑

i=1

n
∑

j=1

Kcen(M)(xi, xj), (9)

and hence it is easily computable. It can be calculated in a matrix
form as (1TKcen(M)1)/n

2, where 1T = (1, 1, . . . , 1) and Kcen(M)

is a matrix with ij−th elements being equal to Kcen(M)(xi, xj),
i, j = 1, 2, . . . , n.

We can also estimate unbiasedly the quadratic distance using
the formula

Un =
1

n(n− 1)

n
∑

i=1

n
∑

j 6=i=1

Kcen(M)(xi, xj), (10)

where the notation Kcen(M) indicates the centered, with respect
to the model M, kernel. The fundamental distinction between
Vn and Un is the inclusion (in Vn) of the diagonal terms
Kcen(M)(xi, xi).

Fundamental aspects of the construction of quadratic
distances are the kernel selection and the selection of the
kernel’s tuning parameter. This parameter in fact determines the
sensitivity of the quadratic distance in identifying departures
between the adopted model and the true model. Lindsay et al.
(2014) offer a partial solution to the issue of kernel selection and
an algorithm of selecting the tuning parameter h in the context of
testing goodness-of-fit of the modelM.

In section 5, we illustrate the use of quadratic distances in
the model adequacy problem, through the use of an explanatory
analysis device, which we call the ratio of the standardized
distances plot. This plot is based on the idea that when the
true model is not in the model class under consideration, the
standardized quadratic distance distribution can be proved to
be normal with mean zero and standard deviation σh(F). One
can then construct the quantities ρK(F,M)/σh(F), where h is
a tuning parameter of the kernel. If a variety models Mi are
under consideration, one can compute an estimate of the quantity
ρK(F,Mi)/σh(F) for eachMi.

To estimate ρK(F,M)/σh(F), we use the ratio
Un(M)/σ̂h(Un(M)), where σ̂h(Un(M)) is the exact variance
of Un under the true distribution F (estimated by F̂, the
empirical cumulative distribution function). The quantity
Un(Mℓ)/σ̂h(Un(Mℓ)), ℓ = 1, 2, . . . , L is computed for each of
the L model elements under consideration. This quantity is the
standardized distance corresponding to each model elementMℓ.

The ratio of the standardized distances plot is a plot where
the x−axis depicts different models Mℓ, ℓ = 1, 2, . . . , L and the
y−axis depicts the squared root of the ratios

Un(Mℓ)/σ̂h(Un(Mℓ))

Un(Mk)/σ̂h(Un(Mk))
, ℓ, k = 1, 2, . . . , L, ℓ 6= k.

This plot is analogous to the likelihood ratio plot that we define as
the plot of the standardized, by their maximum value, likelihood
functions L(Hi) vs. Hi. For more information about the use of
standardized likelihood functions, we refer the interested reader
to Blume (2002). We further discuss and interpret the introduced
distance plot in section 5. It graphically presents the strength of
evidence for the modelMk or the strength of evidence against the
modelMℓ, ℓ 6= k.

When the ratio of the standardized distances is approximately
1, then both models Mk, Mℓ fit the data equally well. A ratio

Frontiers in Ecology and Evolution | www.frontiersin.org 7 November 2019 | Volume 7 | Article 447150

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Markatou and Sofikitou Statistical Distances as Evidence Functions

greater than 1 indicates that the standardized distance in the
denominator is smaller than the standardized distance of the
numerator. Depending on themagnitude of this ratio, it indicates
that model Mk provides a better fit than the model Mℓ. The
greater this ratio is, the stronger the evidence against modelMℓ.

We close this section by noting that quadratic distances, as
defined above, can be thought of as extensions of the class of chi-
squared distances. They can be interpreted as risk measures, and
certain distances exhibit robustness properties. Additionally, they
are locally equivalent to Fisher’s information. As such, they can be
used as evidence functions.

3.2.3. Non-convex Statistical Distances and

Probability Integral Transformation Distances
Prominent among the non-convex distance functions is the total

variation distance defined as V(τ ,m) = (1/2)
∑

t

|τ (t)−m(t)|

when the probability distributions are discrete or

V(τ ,m) = (1/2)

∫

|τ (t)−m(t)|dt when the probability

distributions are continuous. An alternative representation of
the total variation distance allows us to interpret it as a measure
of risk and hence as a measure for model adequacy. A statistically
useful interpretation of the total variation is that it can be
thought of as the worst error we can commit in probability when
we use the model m instead of τ . This error has maximum value
of 1 that occurs when τ , m are mutually singular. Although the
total variation distance can be interpreted as a risk measure
assessing the overall risk of using a model m instead of the true
but unknown model τ , it has several disadvantages including
the fact that if V(d,mθ ) is used as an inference function it
yields estimators of the parameter θ that are not normal when
the model M is true. This is related to the pathologies of the
variation distance described by Donoho and Liu (1988). On
the other hand, of note here is that the total variation distance
is locally equivalent to the Fisher information number, and
it is invariant under monotone data transformations. Both of
these are desirable properties for evidence functions. Further
discussion of the properties of total variation can be found in
Markatou and Chen (2018).

The mixture index of fit distance is a nonconvex distance
defined as π∗(τ ,M) = inf

m∈M
π∗(τ ,m), where M is a model class

or model, and π∗(τ ,m) is the mixture index of fit that is
defined as the smallest proportion π for which we can express
the model τ (t) as follows: τ (t) = (1− π)mθ (t)+ πe(t), where
mθ (t) ∈ M and e(t) is an arbitrary distribution. The mixing
proportion π is interpreted as the proportion of the data that
is outside the model M. The mixture index of fit distance is
closely related to total variation, and for small values of the total
variation distance the mixture index of fit and the total variation
distance are nearly equal. See Markatou and Chen (2018) for
a mathematical derivation of the aforementioned result. The
mixture index of fit has an attractive interpretation as the fraction
of the population intrinsically outside the model M, that is,
the proportion of outliers in the sample. However, despite this
attractive interpretation, the mixture index of fit does not provide

asymptotically normal estimators in the case of M being the true
model, hence exhibits the same behavior with the total variation
when used as an inference function. This behavior makes it less
attractive for use as an evidence function.

Many invariant distances are based on the probability integral
transformation, which says that if X is a random variable that
follows a continuous distribution function F, then F(X) =

U is a uniform random variable on (0,1). Thus, it allows a
simple analysis by reducing our probabilistic investigations to the
uniform random variables. One distance that is used extensively
in statistics and can be treated using the probability integral
transformation is the Kolmogorov-Smirnov distance, that is
defined as

ρKS (Pτ ,M) = sup
x

|Pτ (x)−M(x)|, (11)

where Pτ , M are two probability models, with Pτ indicating the
true model distribution and M indicating a model element. This
distance can be thought of as the total variation analog on the real
line and hence it can be interpreted as a risk measure.

Markatou and Chen (2018) show that the Kolmogorov-
Smirnov distance is invariant under monotone transformations,
and that it can be interpreted as the test function that maximizes
the difference between the power and size when testing the null
hypothesis of the true distribution Pτ = F vs. the alternative
Pτ = M. A fundamental drawback however of the Kolmogorov-
Smirnov distance is that there is no obvious extension of the
distance and methods based on it to the multivariate case.
Attempts to extend the Kolmogorov-Smirnov test to two and
higher dimensions exist in the literature (Peacock, 1983; Fasano
and Franceschini, 1987; Justel et al., 1997), but the test based
on the Kolmogorov-Smirnov distance is not very sensitive in,
generally, establishing differences between two distributions
unless these differ in a global fashion near their centers. Since,
there is not a direct interpretation of these distances as risks
measures when the model is incorrect, they are not attractive for
use as evidence functions.

4. THEORETICAL COMPARISONS

We begin with some comparisons between different statistical
distances. We choose to compare the quadratic distance with
L2−distance and the total variation (or L1−distance). This choice
is based on the popularity of L1 and L2−distances, as well as on
the fact that L2 is a special case of the quadratic distance.

To better understand how these distances behave, and
before we apply those to data for judging the evidence for or
against hypotheses of interest, we present explicit theoretical
computations that aim to elucidate their performance as
functions of various aspects of interest, such as mean and/or
variability of distributions. To make the comparisons as clear as
possible, we concentrate in the uni-dimensional case.

Assume that we are interested in choosing between two
normal models for describing our data, and suppose those are
N(µ1, σ

2
1 ) and N(µ2, σ

2
2 ) with respective cumulative distribution

functions F1 and F2. We use two different scenarios, the case
of equal variances: σ 2

1 = σ 2
2 = 1 and in the case of unequal
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variances: σ 2
1 = 1, σ 2

2 = 4, for different values of the tuning
parameter h (h ∈ [0.5, 2]) and the mean difference µ1 − µ2

(µ1 − µ2 ∈ [0, 5]). To compute the quadratic distance between
the two normal models, we use a normal kernel with tuning
parameter h2. Therefore, the kernel is expressed as K(x, y) =

(1/2πh) · exp
[

− (x − y)2/(2h2)
]

. This produces the quadratic
distance between the two aforementioned normal distributions
given by

ρK(F1, F2) =
1

√
2π

·

{

1
√

2σ 2
1 + h2

+
1

√

2σ 2
2 + h2

− 2 ·
exp

[

− 1
2 ·

(µ1−µ2)
2

(σ 21+σ
2
2+h2)

]

√

σ 2
1 + σ 2

2 + h2

}

.

Lele (2004) lists as one of the desirable properties of an evidence
function the property of scale invariance. Quadratic distances
can be made scale invariant, and the scale-invariant quadratic
distance of the aforementioned two normal distributions
is given by

ρ
(inv)
K (F1, F2) = 1− 2 ·

exp

[

− 1
2 ·

(µ1−µ2)
2

(σ21+σ
2
2+h2)

]

√
σ 21+σ

2
2+h2

1√
2σ 21+h2

+ 1√
2σ 22+h2

. (12)

Notice that, when the two distributions are equal, the two means
and variances are equal to the distance is 0. Furthermore, for fixed
variances σ 2

1 , σ
2
2 , the quadratic distance between the two normal

populations is an increasing function of the distance between
their respective means. For completeness of the discussion, we
also note that the L2 distance is a special case of the quadratic
distance when h = 0.

The aforementioned distances are presented in 3D−plots as
functions of h and µ1 − µ2 in Figures 1, 2. The blue color
indicates small values of the distances and the mean difference,
while graduate changes in the color indicate larger values. The
various values of h provide different levels of smoothness. In
practice, the selection of this parameter is connected to the
specific data analytic goals under consideration. For example,
Lindsay et al. (2014) select h such that the power of the goodness-
of-fit test is maximized (for details see Lindsay et al., 2014).

In the sequel, we take into account only the case of equal
variances: σ = σ 2

1 = σ 2
2 = 1, and we plot three distances as a

function of the mean difference µ1 − µ2 (µ1 − µ2 ∈ [0, 5]). The
solid lines in Figure 3 illustrate the scale-quadratic distance for
two different values of the tuning parameter (h = 0.5 and h = 1).
When the variances are equal, Equation (12) reduces to

ρ
(inv)
K (F1, F2) = 1− exp

[

−
1

2
·
(µ1 − µ2)

2

(2σ 2 + h2)

]

.

The non-solid lines illustrated in Figure 3 represent the L1
distance (also known as total variation), which is given by

the formula

TV(F1, F2) = 1− 28

(

−
|µ1 − µ2|

2σ

)

,

and the scaled L2 distance, which, as mentioned before, can be
derived from Equation (12) by setting h = 0.

The graphs illustrated in Figures 1–3 were created using
the Wolfram Mathematica 11.1 program. For this purpose and
in order to calculate the values of the depicted points, code
was written in Wolfram Language by exploiting the formulae
presented above.

In summary, the quadratic distance between two normal
populations is an increasing function of the difference between
the two parameter means when the two normal populations
have equal variability. The shape of the distance does depend
on the smoothing parameter that is selected by the user and
provides different levels of smoothing, with higher values of h
to correspond to greater smoothing. On the other hand, smaller
values of h produce quadratic distances that are closer (in shape)
to the L2 distance, for which h = 0.

The results presented in this section provide guidance on
the performance of these distances in practical applications.
The following section presents data examples with the purpose
of illustrating these distances as evidence functions for
model adequacy.

5. ILLUSTRATIONS AND EXAMPLES

In this section, we present different examples using both
simulated and real-world data with two or six dimensions. Our
aim is to provide illustrations related to distances computed
under different models so that the interested reader will get
a better understanding on how the evidence functions and
distances work in practice. Figures 4–6 and the numbers
described in Table 1 were generated using the Wolfram
Mathematica 11.1 program exploiting multivariate formulae
analogous to the (univariate) ones presented in section 4.

5.1. Example # 1
The purpose of this illustration is to understand the behavior
of quadratic distances as measures of evidence for model
adequacy in various data structures arising when experimental
data are generated.

We generate a single sample of size n = 400 from a
mixture of two bivariate normal distributions as follows; 200
data points follow a bivariate normal distribution with mean
0 and covariance matrix I (abbrev. MVN2(0, I)). Another 200
data points are generated form a bivariate normal with the
same covariance matrix I and mean µT = (6, 8). The different
hypotheses postulate that the data are from models Mi, i =

1, 2, 3, 4, 5, where M1 corresponds to a bivariate normal with
mean µT

1 = (0, 0) and covariance matrix I and the remaining
models are bivariate normal with covariance matrix I and
corresponding means µT

2 = (−1,−2), µT
3 = (3, 4), µT

4 = (6, 8)
and µT

5 = (10, 20). For each case, we compute an estimate of

the distance ρK(F̂,Mi), i = 1, 2, 3, 4, 5 denoted by Un(Mi) and its
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FIGURE 1 | Quadratic Distances of two univariate normal distributions, as a function of the tuning parameter h and the mean difference µ1 − µ2. Graph (1) shows the

distance between N(µ1, 1) & N(µ2, 1), while Graph (2) shows the distance between N(µ1, 1) & N(µ2, 4). Blue color corresponds to small distances (as measured by the

magnitude of µ1 − µ2), with the change of color indicating a larger difference in means.

FIGURE 2 | Scale-Invariant Quadratic Distances of two univariate normal distributions, as a function of the tuning parameter h and the mean difference µ1 − µ2.

Graph (1) shows the distance between N(µ1, 1) & N(µ2, 1), while Graph (2) shows the distance between N(µ1, 1) & N(µ2, 4). Blue color corresponds to small distances

(as measured by the magnitude of µ1 − µ2), with the change of color indicating a larger difference in means.

associated variance. The kernel used to carry out the computation
is the density of a multivariate normal with mean the observation
xj, j = 1, 2, . . . , n and covariance matrix h · I. We use h2 = 0.5.

Figure 4 plots the squared root of the standardized estimates
of the quadratic distances between data expressed as F̂ and the
various fitted models. The plot indicates that models M1 and
M4 provide an equally good fit to the data (the corresponding
standardized distances are equal to 0.032), with the other models
providing a worse fit to the data. This is actually expected
because 50% of the sample comes from a bivariate normal with
mean vector 0 (model M1) and 50% of the sample comes from

a bivariate normal with mean µ4 (model M4). The quadratic
distance, interpreted as an evidence function, provides evidence
that supports equally well the use of modelsM1 andM4.

Figure 5 presents a plot of the squared root of the
standardized distance (

√

SDHi/SDH1 ) vs. the models fitted.
This second plot is analogous to the log-likelihood plot of
a hypothesis of interest vs. other competing hypothesis. The
likelihood function is graphed to provide visual impression of the
evidence over the parameter space. In analogy, we plot the ratio
of the square root of the standardized distance for the different
hypothesis over the standardized distance of the hypotheses of
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FIGURE 3 | L1, L2 and Scale-Invariant Quadratic Distances between two univariate normal distributions N(µ1, 1) & N(µ2, 1), as a function of the mean difference

µ1 − µ2.

FIGURE 4 | Squared root of the standardized estimates of the distances

between model F̂ and the various fitted models.

interest. Given that a small distance provides evidence of the
model fit, the greater the value of the aforementioned ratio the
stronger the evidence against the hypotheses Hi, i = 2, . . . , 5.
A ratio of approximately 1 indicates that both models are
almost equally supported by the data, hence both hypotheses are
approximately equally supported by the data, so the evidence
does not indicate any preference for one hypothesis over the
other. For example, the squared root of the standardized distance
of model M4 vs. model M1 equals 0.995107, indicating that both
models M4 and M1 are equally supported by the data. This is
indeed the case since, by design, 50% of the data points come
from MVN2(0, I) with the remaining 50% of the data coming
from aMVN2(µ, I), where µT = (6, 8).

FIGURE 5 | Squared root of the ratio of the standardized distance vs. the

various fitted models.

5.2. Example # 2
A second illustration of quadratic distances as evidence functions
for model adequacy is provided below. We generate a single
sample of size 250 from a MVN2(0, I). We use this single sample
as our baseline data and fit ten different models to obtain
estimates of the standardized distances. The fitted models have
a covariance matrix I and corresponding means as follows: µT

0 =

(0, 0), µT
1 = (0.3, 0), µT

2 = (0.5, 0), µT
3 = (−3, 1), µT

4 = (1, 3),
µT
5 = (3, 1), µT

6 = (−3,−2), µT
7 = (5, 4), µT

8 = (−5,−5) and
µT
9 = (6, 9). We use h2 = 0.5 and a normal kernel as before.

Table 1 presents the estimates of the distances for the different
models and their associated standard deviations.
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FIGURE 6 | Squared root of the standardized estimates of the distances

between model F̂ and the various fitted models.

TABLE 1 | Estimates of the distances for ten different models and their associated

standard deviations.

Models Distances Standard Deviations

Un(Mi ) σn(Un(Mi ))

M0 :µ
T
0 = (0, 0) 0.03772 0.06354

M1 :µ
T
1 = (0.3, 0) 0.15479 0.11774

M2 :µ
T
2 = (0.5, 0) 0.52944 0.18271

M3 :µ
T
3 = (−3, 1) 10.95950 0.43770

M4 :µ
T
4 = (1, 3) 11.10480 0.42908

M5 :µ
T
5 = (3, 1) 11.16740 0.40285

M6 :µ
T
6 = (−3,−2) 11.94250 0.37171

M7 :µ
T
7 = (5, 4) 12.78660 0.33466

M8 :µ
T
8 = (−5,−5) 12.79010 0.33421

M9 :µ
T
9 = (6, 9) 12.79020 0.33422

A single sample of size 250 was used as the baseline sample coming from a MVN2 (0, I).

Distances and their standard deviations are multiplied by 100.

Notice that when the mean of the fitted model is µT
0 = (0, 0)

the estimate of the distance is close to 0 with a very small standard
deviation. Further, the more different the means are, the bigger
the value of the distance estimate. Figures 6, 7 plot the squared
root of the standardized distance estimates and the standardized
ratio distance estimates. Interpretation of these plots is similar to
the ones presented before.

5.3. Example # 3
This example uses a real experimental data set and illustrates
that the quadratic distance evidence functions can be easily
computed in higher than two dimensions and offer meaningful
results. We use a multivariate data set introduced by Lubischew
(1962). This data set contains three classes of Chaetocnema,
a genus of flea beetles. Each class refers to a different
type of species: Chaetocnema Concinna Marsh, Chaetocnema

FIGURE 7 | Squared root of the ratio of the standardized distance vs. the

various fitted models.

Heikertingeri Lubisch, and Chaetocnema Heptapotamica Lubisch
of n1 = 21, n2 = 31 and n3 = 23 instances each. Six
features/characteristics were measured from each species: the
width of the first and the second joint of the first tarsus inmicrons
(the sum of measurements for both tarsi), the maximal width of
the aedeagus in the fore-part (in microns), the front angle of the
aedeagus (1 unit= 7.5◦), the maximal width of the head between
the external edges of the eyes (in 0.01 mm), the aedeagus width
from the side (in microns).

In this example, we take two of the chaetocnema species,
Chaetocnema Heikertingeri Lubisch and Chaetocnema
Heptapotamica Lubisch. Measurements are taken on six
dimensions. There are 31 observations in the first group
of species and 22 observations in the second group
(Heptapotamica), in total 53 observations. To estimate the
mean vector µi and the covariance matrix 6i for each group we
use the maximum likelihood. Each group, therefore, is described
by a six-dimensional normal distribution with corresponding
means given as µT

Hr = (201, 119, 49, 125, 14, 81) for the
Heikertingeri species and µT

Hp = (138, 125, 52, 138, 10, 107) for

the Heptapotamica species with their associated covariance
matrices. In this case, we use the models MVN6(0, I),
MVN6(µHr ,6Hr) and MVN6(µHp,6Hp) and computed
their distance from the data set of 53 observations. Again,
we used the multivariate normal kernel with h = 0.1. Notice
that the standard multivariate normal model is also used in
order to clearly indicate the difference in the values of the
distance calculations. The fitting of the MVN6(µHr ,6Hr) and
MVN6(µHp,6Hp) offers estimators of the distance of 3.52× 10−8

and 8.63 × 10−8, while the fitting of MVN6(0, I) gives a distance
of 0.0005, indicating an estimate several orders of magnitude
greater than the one obtained from the previous two cases.
That is, the largest quadratic distance observed corresponds
to the six-dimensional multivariate standard normal model.
Furthermore, the squared root of the ratio of the standardized
distances between the fitted Heptapotamica normal model
(numerator) and the Heikertingeri normal model equals 1.57,
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implying that the evidence is inconclusive as to what model is
supported. On the other hand, the corresponding quantities
when the multivariate normal MVN6(0, I) model is used in
the numerator and the Heptapotamica model is used in the
denominator is 76.11, and when the Heikertingeri is used the
corresponding ratio is 119.18, clearly indicating that the data
does not support theMVN6(0, I) model.

6. DISCUSSION AND CONCLUSIONS

In this paper, we discuss the role of statistical distances as
evidence functions. We review two definitions of evidence
functions, one proposed by Lele (2004) and a second proposed
by Lindsay (2004).We then examine the mathematical properties
of some commonly used statistical distances and their suitability
as evidence functions for model adequacy. Our investigation
indicates that the class of the chi-squared distances and their
extension, the class of quadratic distances introduced by Lindsay
et al. (2008) and Lindsay et al. (2014) can be used as evidence
functions for measuring model adequacy. This is because they
can be interpreted as measures of risk, certain members of
each class exhibit robustness properties, and if used as inference
functions produce estimators that are asymptotically normal.

We propose also an explanatory analysis tool, namely the
standardized distance ratio plot, that can be used to visualize
the strength of evidence provided for, or against, hypotheses of
interest and illustrate its use on experimental and simulated data.
Our results indicate that quadratic distances perform well as
evidence functions for measuring model adequacy. Furthermore,
quadratic distances are of interest for a variety of reasons
including the fact that several important distances are quadratic
or they can be shown to be distributionally equivalent to a
quadratic distance.

One of the reviewers raised the question of error probabilities
associated with the use of statistical distances. Specifically,
the reviewer asked whether the probabilities of misleading
evidence and weak evidence are relevant in our context. We
believe that measurement of model misspecification is an
important step toward clarifying the suitability of a model
class to explain the experimental data. However, we also think
that a careful study of the behavior of these probabilities
may shine additional light on distinguishing between different
distances. The careful study of these questions is the topic of a
future paper.

A second reviewer raised the question of potential connections
of our work with work on the Focused Information Criterion
(FIC) (Jullum and Hjort, 2017). The focus of our paper is on

articulating the properties and illustrating, via data examples,
the potential of statistical distances in assessing model adequacy.

Connections with other model selection methods such as FIC
will constitute the topic of future work. Finally, we would like
to mention here that statistical distance concepts and ideas can
be adapted to address model adequacy and model selection
problems in many settings including linear, nonlinear and mixed
effects models. Dimova et al. (2018) discuss in detail the case of
linear regression and show that AIC and BIC are special cases
of a general information criterion, the Quadratic Information
Criterion (QIC).

Model assessment, that is, model adequacy and model
selection is a fundamental and very important stage of any
statistical analysis. Different techniques of model selection have
been proposed in the literature describing how one could choose
the best model among a spectrum of other competing models
which best captures reality. However, provided that data were
generated according to that specific model, the next logical step
of a statistical analysis is to make statements about the study
population. This implies making statistical inferences about the
parameters of the chosen (data-dependent)model. Indeed, model
selection strategies may have a significant effect or impact on
inference of estimated parameters. Consequently, it is also crucial
attention to be given to inference after model selection. For more
information on estimation and inference after model selection,
the interested reader is referred to Shen et al. (2004), Efron
(2014), Fithian et al. (2017) and Claeskens and Hjort (2008,
Chapters 6,7).
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Thomas G. Stewart † and Jeffrey D. Blume*†
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Second-generation p-values (SGPVs) are a novel and intuitive extension of classical

p-values that better summarize the degree to which data support scientific hypotheses.

SGPVs measure the overlap between an uncertainty interval for the parameter of

interest and an interval null hypothesis that represents the set of null and practically

null hypotheses. Although SGPVs are always in the unit interval, they are not formal

probabilities. Rather, SGPVs are summary measures of when the data are compatible

with null hypotheses (SGPV = 1), compatible with alternative hypotheses (SGPV = 0), or

inconclusive (0< SGPV< 1). Because second-generation p-values differentiate between

inconclusive and null results, their Type I Error rate converges to zero along with the Type

II Error rate. The SGPV approach is also inferentially agnostic: it can be applied to any

uncertainty interval about a parameter of interest such as confidence intervals, likelihood

support intervals, and Bayesian highest posterior density intervals. This paper revisits

the motivation for using SGPVs and explores their long-run behavior under regularized

models that provide shrinkage on point estimates. While shrinkage often results in a more

desirable bias-variance trade-off, the impact of shrinkage on the error rates of SGPVs

is not well-understood. Through extensive simulations, we find that SPGVs based on

shrunken estimates retain the desirable error rate behavior of SGPVs that we observe in

classical models—albeit with a minor loss of power—while also retaining the benefits of

bias-variance tradeoff.

Keywords: p-value, inference, bayes, shrinkage, regularization, second-generation p-value

INTRODUCTION

Despite decades of controversy, p-values remain a popular tool for assessing when observed data
are incompatible with the null hypothesis. While p-values are widely recognized as imperfect,
they continue to flourish in the scientific literature even when their shortcomings have real
consequences. This reluctance to change occurs, in large part, because p-values are being used
as quick-and-dirty summary assessments of the underlying data (instead of as a perfectly precise
measure of evidence for a statistical hypothesis). In some cases, p-values are undeniably misused,
abused and selectively misinterpreted. However, most researchers look to the p-value for an
objective assessment of when the data are worthy of further detailed inspection. Given the large
amount of information published on a daily basis, there is a critical role for a summary statistic
to do just that. Blume et al. (2018, 2019) proposed the second-generation p-value (SGPV) as an
improved p-value as used in practice. The SGPV is intended to serve as a summary measure of the
data at hand, regardless of the statistical approach.
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The SGPV is a formalization of today’s best practices
for interpreting data. According to the American Statistical
Association (Wasserstein and Lazar, 2016), “best practice”
amounts to de-emphasizing the magnitude of the p-value
and inspecting the associated uncertainty interval (typically
a confidence interval) to see if contains only scientifically
meaningful effects. That is, researchers are supposed to check to
see if the uncertainty interval rules out the null hypothesis and all
other trivial, scientifically uninteresting effects. The problemwith
this approach is that it is post-hoc; the assessment of scientific
meaningfulness is conducted after examining the data. As a
result, the researcher’s post-hoc assessments are influenced by
results at hand, and this leads to the embellishment of effectively
inconclusive data that supports practically null effects simply
because the classical p-value is small. Given this, it should be no
surprise that many “findings” fail to replicate; those “findings”
were often mischaracterized in the first place.

A straightforward remedy for this is to require researchers
to specify interesting and uninteresting effect sizes before the
data are collected. This is routinely done in clinical trials, for
example. The observed results can then be contrasted against
initial benchmarks, uncorrupted by the observed data. Findings
that fail to meet those benchmarks should still be reported, of
course. But now they will be correctly reported as exploratory
results and not as confirmatory ones. This is a critical step
toward reproducibility: requiring the experimenter to define
what constitutes a “successful experiment” before data are
collected and interpreted.

The second-generation p-value (SGPV) is an improved p-
value that has been adapted to this new level of exactness. It
depends on the researcher’s a priori definition of what constitutes
an interesting or uninteresting effect and it indicates when the
experiment has met that pre-specified benchmark. Blume et al.
(2018, 2019) showed that this formalization leads to improved
statistical properties in terms of a reduced Type I Error rate (it
converges to zero as the sample size grows, much like the Type II
error rate) and reduced false discovery rates.

The SGPV also depends on an uncertainty interval that
characterizes the effect sizes that are supported by the data. Blume
et al. (2018) shows how the SGPV’s frequency properties are
derived from the uncertainty interval. Blume et al. (2018, 2019)
show than if a (1 − α)100% confidence interval or properly
calibrated likelihood support interval is used, then the SGPV
has desirable error rate behavior, with a Type I Error rate that
remains bounded by α. The SGPV can just as easily be based
on a Bayesian credible interval. The ability to incorporate an
uncertainty interval from any of the three inferential schools
of thought is why the SGPV is “method-agnostic.” This also
highlights the SGPVs role as a global indicator of when the study
has collected sufficient data to draw conclusions, regardless of the
underlying inferential approach used in the analysis.

In this paper, we examine what happens when the uncertainty
interval upon which the SGPV is based comes from a model
that is regularized. This is most easily thought of as using a
Bayes or credible interval with a pre-specified prior. The Bayes
approach provides shrinkage, which often results in reduced
mean square error because the added bias is offset by a larger

reduction of variance (confidence intervals, on the other hand,
are routinely based on unbiased estimates). The question of
interest is what happens to the frequency properties of the
SGPV when uncertainty intervals are derived from a procedure
that adds bias to reduce the variance. We investigate this by
examining the behavior of SGPVs based on Bayes uncertainty
intervals in a variety of simulations. We find that the SGPV easily
incorporates these intervals while maintaining the improved
Type I/Type II Error rate tradeoff. That is, the Type I error rate
still converges to zero and the associated reduction of power
tends to be minor. As a result, SGPVs based on Bayes intervals
are similarly reliable inferential tools.

BACKGROUND: THE

SECOND-GENERATION P-VALUE

Blume et al. (2018) present Figure 1 (below) to illustrate the
SGPV. The top diagram depicts the typical scenario: an estimated
effect (denoted by Ĥ), the traditional null hypothesis (denoted by
H0) and a confidence interval (CI) for the uncertainty interval.
Here we take the uncertainty interval to be a collection of
hypotheses, or effect sizes, that are supported by the data by some
criteria (in this case at the 95% level). Classical hypothesis testing
follows by simply checking if H0 is in the CI or not.

There will always be a set of distinct hypotheses that are
close to the null hypothesis but are scientifically inconsequential.
This group represents null effects and practically null results,
which we sometimes call trivial hypotheses, so it makes sense
to group them together. This collection of hypotheses represents
an indifference zone or interval null hypothesis. The bottom
diagram depicts what happens when the null hypothesis is an
interval instead of a single point. The null zone contains effect
sizes that are indistinguishable from the null hypothesis, due to
limited precision or practicality.

An interval null always exists, even if it is narrow, which is
why the inspection of a CI for scientific relevance is essential
and considered best practice. It is not sufficient to simply
rule out the mathematically exact null; one must also rule
similarly inconsequential scientific hypotheses/models. At its
core, the problem of statistical significance not implying clinical
significance boils down to this very issue. It is a matter of scale;
the SGPV forces the experimenter to anchor that scale. As we
will see, the reward for doing this is a substantially reduced false
discovery rate.

Note that the experimental precision, which is finite, can
serve as a minimum set for the interval null hypothesis. Finite
experimental precision means there is some resolution along the
x-axis (Figure 1) within which it is impossible to distinguish
between hypotheses. This is a constraint of the experimental
design, not the statistical methods. For example, whenmeasuring
income, hypotheses differing by <1 cent cannot be compared
because the data on income are only measured to within 1 cent.
Hypotheses differing by <1 cent are within the fundamental
measurement error of the experiment. Typically, however, we
are interested in hypotheses that are less precise than the
experimental precision, e.g., income differences at the level of 1
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FIGURE 1 | Illustration of a point null hypothesis, H0; the estimated effect that

is the best supported hypothesis, Ĥ; the a confidence interval (CI) for the

estimated effect [CI−,CI+]; and the interval null hypothesis
[

H−
0 H

+
0

]

.

dollar. It is this scientific determination that sets the indifference
zone around the null interval.

The SGPV is a scaled measurement of the overlap between
the two intervals. If there is no overlap, the SGPV is zero. The
data only support meaningful non-null hypotheses. If the overlap
is partial, so that some of hypotheses supported by the data
are in the interval null and some are out, we say the data are
inconclusive. The degree of inconclusivity is directly related to
the degree of overlap. But the general message is clear: more data
are required for a definitive result. If the uncertainly interval is
completely contained within the null zone—so the SGPV is 1—
then the data support only null or scientifically trivial effects. This
is how the SGPV indicates support for alternative hypotheses or
null hypotheses, or indicates the data are inconclusive.

An important side note is that a SGPV of 0 or 1 is an endpoint
in the sense that the study has completed its primary objective.
It has collected sufficient information to screen out/in the null
hypothesis. This does not imply that the data have achieved
sufficient precision for policy implementation; the resulting
uncertainty intervals can still be wide.

Formally, let interval I represent an uncertainty interval, e.g., a
95% CI or 95% credible interval, and letH0 represent the interval
null hypothesis. If I =

[

a, b
]

where a < b are real numbers, then
its length is |I| = b− a. The second-generation p-value, denoted
by pδ , is defined as

pδ =
|I ∩H0|

|I|
×max

{

|I|

2 |H0|
, 1

}

(1)

where I ∩ H0 is the overlap between intervals I and H0. The
subscript δ signals the reliance of the second-generation p-
value on an interval null. Often δ represents the half-width
of the interval null hypothesis. The value of δ is driven by
scientific context and should be specified prior to conducting the
experiment. The SGPV is often referred to as “p-delta.”

The first term in Equation (1) is the fraction of best
supported hypotheses that are also null hypotheses. The second
term is a small-sample correction factor, which forces the
second-generation p-value to indicate inconclusiveness when
the observed precision is insufficient to permit valid scientific

inferences about the null hypotheses. The second term applies
whenever the uncertainty interval is more than twice as long
as the null interval. It is this device that allows the SGPV to
distinguish inconclusive results from those that support the null
premise. See Blume et al. (2018) for a discussion of the correction
factor. When the uncertainty interval is a traditional confidence
interval, it is straightforward to determine the error rates and
subsequent false discovery rates. Blume et al. (2018, 2019)
provide these computations. Here we consider what happens
when one uses an uncertainty interval from a regularized model,
or a Bayes interval, for the basis of the SGPV and how that affects
the statistical properties of the SGPV.

The use of an interval null hypothesis is not new in statistics.
It is featured in equivalence testing (Schuirmann, 1987), non-
inferiority testing (Wang and Blume, 2011), and the Bayesian
Region of Practical Equivalence procedure [ROPE; Kruschke,
2014, chapter 12; Kruschke and Liddell, 2017]. Despite 30+ years
of existence, equivalence tests have not garnered a large following
in the statistical community. Factors contributing to this are the
equivalence test’s general behavior and non-optimality (Perlman
and Wu, 1999) and a well-respected paper calling for the
abandonment of a popular variant of equivalence tests—the two
one-sided tests (Berger and Hsu, 1996). Of course, equivalence
and non-inferiority tests are classical hypothesis tests. As a result,
they inherit the shortcomings of the general approach. Flipping
the null and alternative hypotheses does not alleviate the ills of
hypothesis testing. For example, a p-value cannot measure the
evidence for a null hypothesis; flipping the null and alternative
hypotheses does not solve this problem, as support for the new
null (the old alternative) can no longer be assessed. On the
other hand, the SGPV is something different; it is not rooted in
classical testing. The similarity between equivalence testing and
SGPVs begins and ends in the mathematical formalization of the
hypotheses. To the point, the SGPV easily indicates when the data
support the null or alternative hypotheses, or when the data are
inconclusive; there is no need to flip the hypotheses.

BACKGROUND: REGULARIZED MODELS

Regularized models are commonly used in quantitative research.
These models can be generated using a wide variety of methods.
Some common examples are LASSO (Tibshirani, 1996), elastic-
net (Zou and Hastie, 2005), support vector machines (SVM)
(Cortes and Vapnik, 1995), Bayesian regression models (Gelman
et al., 2013), and even simple continuity corrections of 2 ×

2 tables. Because regularized models are now ubiquitous, it is
important to know how the SGPV performs when calculated with
an uncertainty interval generated from a regularized model.

Broadly speaking, regularization is the practice of
incorporating additional structure to a model beyond the
typical likelihood or loss function. The additional structure is
often incorporated into the model via (a) constraints on the
model parameters (LASSO, elastic-net), (b) direct addition of
model complexity terms to the loss function (SVM), (c) prior
distributions of the model parameters or Bayesian models, or
(d) augmented data. Operationally, the contribution of the
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additional structure—the regularization—relative to the typical
likelihood or loss function is controlled by tuning parameters
e.g., the severity of the constraint, the scale of the complexity
penalty, the variation in the prior distributions, or the amount
of augmented data. These tuning parameters are commonly
set by cross-validation, although this is not the only approach.
Such regularization helps to combat over-optimistic parameter
estimation in models that have sparse information relative to the
(number of) parameters of interest.

Consider, for example, the classical Bayesian model. The
impact of the prior distribution can be minimal if the variation of
the prior distribution is large enough that the prior distribution
looks essentially flat relative to the likelihood function. When
this happens the (flat) prior adds no additional structure to the
model. In these cases, the posterior distribution looks very similar
to the likelihood function. Conversely, the prior’s impact can be
substantial if the variation in the prior distribution is small and
discordant with the likelihood. Such a prior adds considerable
structure to the model; the resulting posterior is a weighted
average of the likelihood and that prior.

To illustrate, consider the comparison of two group means
using a Bayesian regression model. A detailed description of each
regularized model is beyond the scope of this paper, but a simple
summary is that the prior and likelihood are combined to yield
uncertainty intervals from the posterior (regularized credible
intervals). In this example, let β = µ1−µ0 denote the difference
in means between the two groups. In Figure 2, data collected
from two groups is displayed as overlapping histograms, and the

observed sample means are shown as X1and X0. In the bottom of
Figure 2, the impact of the prior on the posterior is evident. Note
that the 95% credible interval and posterior point estimate of β

(displayed as a blue line and point overlaid on the posterior) are
pulled toward zero. The data are not changing in this example;
the different credible intervals are the result of changing the
prior distribution.

The phenomenon evident in Figure 2, where posterior point
estimates are pulled toward to the mean of the prior (usually
0), is called shrinkage. Shrinkage is natural a consequence of
adding structure or information to the model. Notice also
that the interval widths become narrower as the degree of
regularization becomes larger. The shrunken point estimates are
statistically biased but the standard errors of the estimates are
smaller. The bias typically vanishes as the sample size grows
if the added structure does not change as data accumulate
(e.g., the prior is prespecified and remains fixed). Shrinkage
often reduces the mean squared error (MSE, i.e., bias2 +

variance), which is why regularized methods are typically used
on prediction models. The trade-off of bias and variance
is an important one; smaller MSE is often a desirable
operating characteristic.

However, there is no guarantee that regularization will
generate smaller MSE. Figure 3 shows the impact on MSE
as outcome variation increases under various degrees of
regularization. (The operational definition of the degree of
regularization is described in section Methods: Simulation
Setup.) For a given level of regularization, MSE is improved

if the standard deviation of the outcome somewhat exceeds β

(in standard deviation units) as depicted in Figure 3. However,
regularization tends to increase MSE when the standard
deviation of the outcome was comparable to, or less than, the
effect size. This phenomenon becomes exaggerated as the degree
of regularization increases.

The take home message from Figure 3 is that regularization
works well when the magnitude of the noise is substantially
larger than the signal strength. But when the signal is larger
than the noise, regularization can be counterproductive and
increase the mean squared error (reduce predictive ability). It
should also be said that some models cannot be estimated
uniquely without regularization. That is, often the data do not
provide enough information to identify a model by themselves.
In such cases, adding structure to the model allows the enhanced
model to be fit with the data. For example, when the number
of predictor variables exceeds the number of observations,
regularization can add sufficient structure to permit unique
model estimation. LASSO regression and ridge regression are
often used in these settings.

Because the SGPV is predicated upon the concept of interval
estimates and interval nulls, the SGPV can be immediately
applied to parameter estimates and uncertainty intervals
constructed from regularized models. In the sections that follow,
we examine how the SGPV performs when applied to a
Bayesian regression model that estimates the difference in means
between two groups. The Bayesian setting is quite flexible and
generalizable, as virtually all popular regularization techniques
can be re-written as a Bayesian model (albeit sometimes with
empirical or specialized prior). Lasso, Ridge Regression, and
the James-Stein estimator are some prominent examples. Other
penalized likelihood formulations can be framed in a Bayesian
context, although the corresponding prior may not be proper,
smooth, or as well-behaved as the Lasso, Ridge, and JS estimation.

AN INTRODUCTORY EXAMPLE:

LOGGERHEAD SHRIKE AND HORNED

LIZARD

Data presented in Young (2004) and made public as part of the
textbook Analysis of Biological Data (Whitlock and Schluter,
2015) compared the horn length of 30 dead and 154 alive lizards,
Phrynosoma mcalli. Researchers hypothesized that larger horn
length might be protective against the attack of the loggerhead
shrike, Lanius ludovicianus. Here we present a reanalysis of the
data in the context of regularization and SGPVs.

The model for the difference in mean horn length can be
parameterized with β in the following linear model. In this
model, I(Alive) is an indicator variable which is equal to 1 if the
lizard was alive at the time of measurement and 0 otherwise.

E
[

Horn Length
∣

∣Alive
]

= α + β I
(

Alive
)

V [Y|G] = σ 2
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FIGURE 2 | An illustration of shrinkage when additional structure is incorporated into a model by regularization. In this illustration, regularization is achieved with a

Bayesian prior, which ranges from flat to peaked. The top figure is the hypothetical data collected from two groups. N (per group) is 30. The observed sample means

are shown as X1 and X0. The bottom panel shows the posterior distributions (right column) resulting from the choice of prior for the difference in means (left column).

As variation in the prior decreases, the resulting interval estimate and point estimate (shown as a blue line and point overlaid on the posterior) are shrunk toward 0.

We set the Bayesian priors as follows:

β ∼ N (0, 4.25)

α ∼ Improper Flat Prior

Prior to the analysis, we set the null region from−0.5 to 0.5mm,
indicating that a mean difference <0.5mm is scientifically
equivalent to no difference. The null region should be based on
researcher expertise. It is not a quantity driven by data; rather
it is driven by scientific understanding of the subject matter.
In this example, it is quite possible that different researchers
will arrive at different null regions. The variance of the prior

for beta was selected to be wide enough to be non-informative,
but not so wide to allow implausible values of the treatment
effect. There are different approaches to selecting a prior in a
Bayesian analysis (Gelman et al., 2013). The approach used will
impact the degree of regularization, and it is not a primary

concern in this investigation because our focus is on the SGPV’s

behavior after regularization. However, in our experience, using

an empirically derived prior, as we done here, often provides
sensible shrinkage behavior.

In Figure 4, we show the prior, the likelihood for the observed
data, and the resulting posterior and 95% credible interval for

three different version of this analysis. Credible intervals were
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FIGURE 3 | An illustration of the relationship between the conditional variance, the degree of regularization/shrinkage, and the change in MSE when estimating the

difference in means. The gray vertical line represents the effect size of the difference in means (1 SD). Shrinkage improves MSE when the conditional variance is large

relative to the effect size, but it may increase MSE when the conditional variance is relatively comparable or smaller to the effect size.

FIGURE 4 | A demonstration of three possible study results in the context of the horned lizard data. The left column shows an interval estimate that does not overlap

with the null region, resulting in a second-generation p-value of 0. The middle column shows an interval estimate that straddles the null region, resulting in a

second-generation p-value of 0.4. The right column shows an interval estimate that falls entirely within the null region, so the second-generation p-value is 1. The left

column results from the unaltered data; whereas data for the middle and right column have been altered for demonstration purposes.

generated from 50,000 draws from the posterior distribution and
an empirical calculation of the 95% highest posterior density. The
null region is also shown. In the first panel (column), the null
region and the credible interval do not overlap, so the SGPV is

0. A larger null region from −1 to 1mm is needed to have any
chance of overlapping.

To demonstrate how the analysis might proceed for different
effect sizes, we artificially shifted the outcome values for the
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living lizards by 1.5mm so that differences in mean horn length
are much smaller than the original data. After shifting the data,
we see a different result, which is shown in the middle panel
(column). The regularized interval straddles the boundary of the
null region, so the analysis of this data generates an inconclusive
result. The data support both null and meaningful effect sizes,
and the second-generation p-value is 0.4.

We also artificially altered the dataset to demonstrate an
analysis that results in a conclusive similarity between groups
(last panel/column, Figure 5). First, we shifted the horn length
for living lizards to match the mean horn length of dead lizards.
Second, we increased the sample size of the dataset by a factor
of 8 by resampling rows. As one would expect, the likelihood
and posterior terms are tighter because of the increased sample
size. The resulting interval calculated from the posterior is
shorter and falls completely within the null region. The second-
generation p-value is 1 in this case, which is an indication of a
conclusive similarity.

We now understand how to compute and use SGPVs. The
question that remains is whether the SGPV is reliable in a
repeated sampling sense. In the following sections, we simulate
similar types of data and perform similar analyses under a
wide variety of settings in order to understand the operating
characteristics of the SGPV with (smooth) regularization.

METHODS: SIMULATION SETUP

In order to better understand the properties of SGPV, we
generated Gaussian outcome data for two groups of size N.
The difference in means between the groups was β , and
the conditional standard deviation was σ . Depending on the

simulation, we varied N, β , and σ . In mathematical notation, the
data generation procedure was:

For i = 1, . . . , N, . . . , 2N

Let Gi =

{

0, i ≤ N
1, i > N

Draw ǫi ∼ N (0, σ)

Calculate Yi = βGi + ǫ.

Gi is the group indicator and the linear regression model for
estimating β was

E [Y|G] = α + βG

V [Y|G] = σ 2.

When fitting a Bayesian regression model, the prior for the two
mean parameters (α,β) was

β ∼ N

(

0,
3σ̂

1.96
×

1

shrinkage

)

α ∼ Improper Flat Prior.

where shrinkage is a variable set for each simulation. Setting
shrinkage to 0 is equivalent to ordinary least squares. The prior
for β is calibrated so that 95% of its probability mass is within

± 3σ̂
shrinkage

(Gelman et al., 2008). The value σ̂ is the unconditional

standard deviation of the outcome. In a typical analysis setting,
the prior for the treatment effect coefficient would be driven
by expert opinion. In the simulation setting, we resort to an
empirically driven prior. The resulting prior without shrinkage is

FIGURE 5 | Simulation results showing the Type I and Type II Errors rates for the SGPV as the sample size (N) increases. Within the null region (i.e., all values of beta

less than delta), the probability that the SGPV = 0 gets increasingly small as N gets larger. In contrast, for beta values beyond the null region, the probability that the

SGPV = 0 goes to 1 as N gets larger. At delta, the boundary of the null region, the probability that SGPV = 0 is controlled at α = 0.05 or less. Hence, the Type I Error

rate goes to 0 as N increases. For non-zero values of beta within the null region, the Type II Error rate goes to 1.
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non-informative without admitting implausible values (Gelman
et al., 2008). As shrinkage increases, the probability mass becomes
more concentrated around 0. We varied the shrinkage parameter
from 0 to 9 in our simulations. For computing the SGPV, we used
a null interval of [−0.25, 0.25] or equivalently δ = 0.25 (we used
a relatively narrower null interval than in the example to account
for possibly strong shrinkage in the simulations).

For each combination of simulation parameters, 5,000
replicate datasets were generated and analyzed. Credible intervals
in each analysis were generated from 1,000 draws from the
posterior distribution and an empirical calculation of the 95%
highest posterior density. Power was calculated as the proportion
of replicates where the SGPV equaled zero. If the interval null had
been specified as a point, then this procedure would be equivalent
to a standard two-sided t-test. MSE was calculated as the mean
squared error of the difference between the known β (set by
simulation) and estimated β̂ (from simulated replicates).

RESULTS

Simulation 1: Power of SGPV as N

Increases
As a starting point, we consider the traditional case of least
squares to demonstrate the default trade-off of Type I and Type
II/power rates for the SGPV. Data were generated under a
range of effect sizes, β values, with an increasing number of
observations in each group. The conditional standard deviation
and null interval were held constant as indicated above.

The results are reported in Figure 5. The most noticeable
feature of the figure is that errors within the null region tend
toward 0, especially as N increases. Rather than an error rate
of 5% at β = 0, there is an approximate error rate of 5% at
β = δ, the boundary of the null region. Consequently, power
for values of β outside the null region is less than what would be
observed with the traditional t-test. This agrees with the results
in Blume et al. (2018). The SGPV’s reduction in power is traded
for a similar reduction in the Type I Error rate for clinically
meaningless effect sizes. The reduction in power here is not
substantial, but it might be larger in other cases. This is should
be checked when planning studies.

Simulation 2: Power, Interval Null,

Shrinkage
At the heart of this simulation study is the question of
how SGPVs generated with intervals from regularized models
compare to SGPVs generated without regularization. To that end,
we simulated power curves for all four possible combinations
of interval types and degree of shrinkage. In the top panel of
Figure 6 we see that mild shrinkage has negligible impact on
the Type I and Type II error rates. The primary feature in the
top panel is that SGPVs with an interval null spend power to
reduce the Type I error rate. In the bottom panel of the same
figure, the degree of shrinkage is exceedingly large, much larger
than one would typically use in an actual analysis. Interestingly,
even in this case, there is a real separation of the power curves
when comparing regularized and non-regularized approaches.

Given the extreme nature of the shrinkage, it is surprising that
the differences are not larger.

Simulation 3: MSE, Interval Null, and

Shrinkage
This final simulation reinforces that the MSE benefits of
regularization are retained when SGPV is used as a summary
measure. Because MSE is a function of the estimated and true
β–values which are not altered when calculating or interpreting
the SGPV—MSE will not change when a null interval is used for
inference. In the simulation results below (Figure 7), the red line
represents the difference between theMSE of a regularized model
with an interval null compared to the same regularized model
with a point null. As is clear from the plot, this difference in MSE
is 0. As a point of reference, the black line shows that in this
simulation setting, regularization does in fact lower MSE. This
shows that using an interval null also yields the typical benefits
seen with standard shrinkage estimators of improved prediction
via lower MSE.

DISCUSSION

The SGPV promotes good scientific practice by encouraging
researchers to a priori establish what are, and what are not,
scientifically meaningful effects. By establishing the null interval
at the start of the analysis, the SGPV can provide a summary
of how consistent the data are with the null hypothesis or how
consistent the data are with meaningful effects. Better Type I
Error rates are achieved at the expense of power in the region
outside the null interval. Because regularized models are now
widely used, it is important to understand how the SGPV
operates when applied to intervals impacted by shrinkage. Based
on our simulations, SPGVs based on credible intervals retain
their desirable Type I/Type II error rate tradeoff at a modest
cost in power. Likewise, the same gains in MSE observed with
Bayesian estimation are observed when a null interval and the
SGPV are used. Consequently, SPGVsmay be applied to Bayesian
analyses (where classical p-values are currently not available) and
to regularized models that exhibit some degree of natural and
smooth shrinkage.

The simulation study in this manuscript focuses on shrinkage
intervals constructed using a prior and a Bayesian posterior
distribution. Because regularized likelihood and regularized
machine learning methods can often be couched as special
cases of Bayesian modeling, the focus on shrinkage-by-prior is
a natural place to start. We note, however, that in focusing on
the Bayesian approach in the simulations, we are really focusing
on the subset of priors that induce shrinkage in the natural way;
overly informative priors or priors which lead to pathological
shrinkage are outside the scope of our investigation.

Statements regarding Type I or Type II error rates and
Bayesian credible intervals may seem odd to some readers
because some authors do not consider p-values or null hypothesis
testing to fit within the Bayesian paradigm. Likewise, it can
seem odd to estimate a posterior distribution in order to
calculate a second-generation p-value. However, this highlights
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FIGURE 6 | Results of the simulation study with the following factors: degree of shrinkage [mild vs. none (row 1) and extreme vs. none (row 2)] and type of null [point

(column 1) and interval (column 2)]. In each of the four graphs, the probability that the SGPV = 0 is plotted as a function of beta for both the shrinkage and no

shrinkage intervals. Comparing column 1 to column 2, the estimated probability curves cross 0.05 at the boundary of the respective nulls (0 for the point null and 0.25

for the interval null). For mild shrinkage (row 1), there is little noticeable difference between probability curve estimates with or without shrinkage (solid blue vs. dashed

green). More noticeable differences between shrinkage and no shrinkage occur with more extreme shrinkage (row 2).

an important point: the SGPV is not a probability. It is a
summary measure—applicable to any inferential framework—
for indicating the degree of conclusiveness of the analysis. An
SGPV of 0 indicates a conclusive difference, a value near 1
indicates a conclusive similarity, and values between 0 and 1
indicate differing degrees of inconclusive results with a value at
0.5 indicating a maximum degree of inconclusiveness.

One might wonder why this summary measure is called a
second-generation p-value if it is not a probability. It is our
contention that the practical, every-day use of traditional p-values
is as a marker for results deserving of increased scrutiny. That is,
the traditional p-value and 0.05 threshold is used to answer the

question: “Should I dive deeper into this hypothesis?” As many
have noted, the traditional p-value is not a good filter for this in
practice. The SGPV, in contrast, is designed to filter results that
deserve greater attention vs. results that need more data and are
currently inconclusive. So, the SGPV is a second generation of
the p-value as it is used in practice; it is not an extension of the
probability calculation for a null hypothesis test.

Evaluating the operating characteristics of the SGPV is
routine step that is intended to be paradigm-agnostic. It is
common these days to see a statistical approach, regardless
of paradigm of origin, evaluated in this long-run sense. The
Food and Drug Administration (FDA) which approves drugs

Frontiers in Ecology and Evolution | www.frontiersin.org 9 December 2019 | Volume 7 | Article 486166

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Stewart and Blume SGPVs and Shrinkage

FIGURE 7 | Simulation results showing that MSE is not altered when using a point null or a region null (red line). The black line is a reference to show the change in

MSE when incorporating shrinkage.

and medical devices for commercial use in the United States
requires evaluation of operating characteristics as part of drug
and device applications even when the submitted data analysis
is a set of posterior probabilities from a Bayesian analysis
(or set of likelihood ratios or p-values). In “Guidance for the
Use of Bayesian Statistics in Medical Device Clinical Trials1”
(Young, 2004), the FDA recommends and provides guidance
for computing Type I and Type II Error rates regardless of the
analysis paradigm. Note that even when prominent Bayesian
statisticians propose a new Bayesian clinical trial design, as
with the “Bayesian decision-theoretic group sequential clinical
trial design” (Lewis et al., 2007) or with “Phase II oncology
clinical trials” (Berry et al., 2013), the analysis is calibrated so
that the Type I Error rate is controlled. The SGPV is a tool
for deciding when an analysis shows a conclusive difference,
a conclusive similarity, or is not conclusive. As such, it is
appropriate to explore the operating characteristics of this tool
even if the interval is calculated from a Bayesian posterior or from
a statistical learning method with regularization.

The calculation of the SGPV is simple and intuitive. Specifying
the null region, however, is challenging. Ideally, the null region
should reflect subject matter expertise of effect sizes that are not
meaningful. Agreement among subject-matter experts on what
the null region should be is potentially hard to achieve. Further,
some research areas may be so new, there is no prior information
to guide the decision. Some users may want to punt on deciding
what the null region should be and may seek a “data-driven null
region.” Unfortunately, there is no such thing, at least not with
data from the same dataset that one intends to analyze. The

1Guidance for the Use of Bayesian Statistics in Medical Device Clinical Trials.

Available online at: https://www.fda.gov/regulatory-information/search-fda-

guidance-documents/guidance-use-bayesian-statistics-medical-device-clinical-

trials#7

challenge of specifying a null region is, in our opinion, the biggest
obstacle and limitation of the SGPV. However, it is the step that
anchors the statistical analysis to the scientific context; it is the
step that pushes that research team to decide what it means to
be similar and what it means to be different for their particular
research question, all prior to the analysis. These questions are
exactly where discussion should focus; and they are precisely the
questions that subject matter experts are best equipped to debate.
Specifying the null region is a challenging task, but it is a scientific
one worth the effort it requires.

There is still a lot to learn about the SGPV and a number

of potentially fruitful areas of investigation or expansion.

One outstanding question, for example, is what impact cross-
validation of shrinkage parameters may have on the operating

characteristics of the SGPV when used with intervals constructed

with machine learning methods. Dezeure et al. (2015) show

that this impact can be real. Another possible extension of

particular interest to those analysts that use Bayesian methods

is to expand the meaning of the null region. The null region
as currently used with the SGPV treats all values in the region
as equally unimportant. One may want to incorporate the idea
that some values in the null region are more null than others.
One approach would be to represent the relative “nullness” of the
values by borrowing structure from mathematical distributions,
similar in spirit to the likelihood. For example, the simple null
region of the current SGPV can be described as a uniform
null region in reference to the uniform distribution. A null
region in which the relative “nullness” is maximized at zero
but then fades to the interval endpoints might be represented
with a beta distribution. This is an intriguing next step
of research.

The SGPV is intended to be a method-agnostic indicator of
when a prespecified evidential benchmark is achieved. Assessing
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the overlap of the null and uncertainty interval is easily
mapped back to classical measures of statistical evidence like the
likelihood ratio. For example, a SGPV that is based on a 1/k
likelihood support interval is set to zero whenever the likelihood
ratio for the MLE vs. the nearest hypothesis in the null interval
is >k [most 95% CIs can be mapped to a 1/6.83 SI, see (Blume,
2002)]. A similar condition can be formulated for Bayes factors
when SGPVs are based on credible intervals. In this sense, the
SGPV just indicates when the observed evidence is sufficiently
strong against the hypotheses in the interval null hypothesis.

CONCLUSIONS

The second-generation p-value is an intuitive summary of
analysis results that is based on an uncertainty interval about the
parameter of interest and a pre-specified null region. Previous
publications on SGPVs focused on 95% confidence intervals
and 1/8 likelihood support intervals. In the current manuscript,
we explored the performance of SGPVs based on uncertainty
intervals from a regularized model, specifically Bayesian credible
intervals. While we considered intervals generated with Bayes

regression, this framework is readily generalizable to many

different types of regularization schemes. We saw nearly the
same trade-off of Type I and Type II Error rates in SGPVs
based on Bayesian credible intervals as SGPVs based on classical
confidence intervals. Our results indicate that SPGVs based
on regularized intervals retain this desirable error rate trade-
off, at a slight loss in power, while benefiting from the bias-
variance tradeoff imparted by regularization. Consequently,
the SPGV is a meaningful summary of study results, even
when applied in a Bayesian framework or other contexts that
incorporate regularization.
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Computational convenience has led to widespread use of Bayesian inference with vague

or flat priors to analyze statistical models in ecology. Vague priors are claimed to be

objective and to “let the data speak.” However, statisticians have long disputed these

claims and have criticized the use of vague priors from philosophical to computational

to pragmatic reasons. One of the major criticisms is that the inferences based

on non-informative priors are generally dependent on the parameterization of the

models. Ecologists, unfortunately, often dismiss such criticisms as having no practical

implications. One argument is that for large sample sizes, the priors do not matter. The

problem with this argument is that, in practice, one does not know whether or not the

observed sample size is sufficiently large for the effect of the prior to vanish. It intricately

depends on the complexity of the model and the strength of the prior. We study the

consequences of parameterization dependence of the non-informative Bayesian analysis

in the context of population viability analysis and occupancymodels and at the commonly

obtained sample sizes. We show that they can have significant impact on the analysis,

in particular on prediction, and can lead to strikingly different managerial decisions. In

general terms, the consequences are: (1) All subjective Bayesian inferences can be

masqueraded as objective (flat prior) Bayesian inferences, (2) Induced priors on functions

of parameters are not flat, thus leading to cryptic biases in scientific inferences, (3)

Unrealistic independent priors for multiparameter models lead to unrealistic priors on

induced parameters, (4) Bayesian prediction intervals may not have correct coverage,

thus leading to errors in decision making, (5) Reparameterization to facilitate MCMC

convergence may influence scientific inference. Given the wide spread applicability

of the hierarchical models and uncritical use of non-informative Bayesian analysis in

ecology, researchers should be cautious about using vague priors as a default choice

in practical situations.

Keywords: Bayesian analysis, flat priors, non-informative priors, occupancy models, parameterization invariance,

population viability analysis, population prediction intervals, prior sensitivity
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Lele Issues With Non-informative Bayesian Analysis

1. INTRODUCTION

Hierarchical models, also known as state-space models, mixed
effects models or mixture models, have proved to be extremely
useful for modeling and analyzing ecological data (e.g., Bolker,
2008; Kery and Schaub, 2011). Although these models can be
analyzed using the likelihood methods (Lele et al., 2007, 2010),
the Bayesian approach is the most advocated approach for such
models. Many researchers even name hierarchical models as
“Bayesian models” (Parent and Rivot, 2013). Of course, there
are no Bayesian models or frequentist models. There are only

statistical models that we fit to the data using either the Bayesian
approach or the frequentist approach. The subjectivity of the

Bayesian approach is bothersome tomany scientists (Efron, 1986;
Dennis, 1996) and hence the trend is to use the non-informative,
also called vague or objective, priors instead of the subjective
priors provided by an expert. These non-informative priors
purportedly “let the data speak” and do not bias the conclusions
with the subjectivity inherent in the subjective priors. It has
been claimed that Bayesian inferences based on non-informative
priors are similar to likelihood inference (e.g., Clark, 2005, p. 3,
5) although such a result has never been rigorously established.

The fact is that it is not even clear what a non-informative
prior really means. There are many different ways to construct
non-informative priors (Press, 2003, Chapter 5). The most
commonly used non-informative priors are either the uniform
priors or the priors with very large variances spreading the
probability mass almost uniformly over the entire parameter
space. These priors have been criticized on computational
grounds (e.g., Natarajan and McCulloch, 1998) because they
can inadvertently lead to improper posterior distributions. Link
(2013) shows similar problems with using uniform prior on the
population size when fitting capture-recapture models. However,
how does one explain that a uniform prior on probability of
success in a Binomial experiment represents non-information
but a uniform prior on the population size does not? Gelman
(2006) discusses similar computational problems associated
with the non-informative priors for variance components and
concludes uniform prior is, in fact, a good choice and not
the commonly used inverse Gamma prior (e.g., King et al.,
2009). The issue of choice of default priors and its impact
on statistical inference has also been observed in genomics
(Rannala et al., 2012).

More fundamentally, one of the founders of modern statistics,
R.A. Fisher, objected to the use of flat priors because of their
lack of invariance under transformation (De Valpine, 2009; Lele
and Dennis, 2009). In Fisher’s words (Fisher, 1930, p. 528), use
of flat priors to represent ignorance is “fundamentally false and
devoid of foundation.” An excellent review of the problems with
various kinds of non-informative or objective priors is available
in Ronneberg (2017). For example, a uniform prior on (0,1) for
the probability of success in a Binomial model turns into a non-
uniform prior on the logit scale (see Figure 1). If a uniform
prior is supposed to express complete ignorance about different
parameter values, then this says that if one is ignorant about p,
one is quite informative about log(p/(1− p)). Similarly a normal
prior with large variance on the logit scale, that presumably

represents complete ignorance, transforms into a non-uniform,
informative prior on the probability scale (see Figure 1).

This makes no sense because they are one-one
transformations of each other; if we are ignorant about
one, we should be equally ignorant about the other.

Fisher’s criticism was potent enough that it needed
addressing. Harold Jeffreys tried to construct priors that yield
parameterization invariant conclusions. They are now known
as Jeffreys priors. A full description of these priors and how to
construct them is beyond the scope of this paper (See Press, 2003
or Ronneberg, 2017 for easily accessible details). However, it
suffices to say that they are proportional to the determinant of
the inverse of the expected Fisher information matrix.

Despite its theoretical properties, there are practical issues
that hinder the use of Jeffrey’s priors. For example, in order
to construct them, one needs to know the likelihood function
and the exact analytic expression for the expected Fisher
information matrix. Because it is nearly impossible to write the
likelihood function explicitly for hierarchical models, computing
the expected Fisher information matrix is seldom possible for
hierarchical models. This makes the specification of Jeffrey’s prior
for a given hierarchical model difficult.

Let us look at Jeffreys prior for a simple, non-hierarchical
model where Y ∼ Bernoulli(p). The Jeffreys prior for the
probability of success p is the Beta(0.5, 05) distribution. The
density function of this random variable is U-shaped that is
highly concentrated near 0 and 1 with very small weight in
the middle (see Figure 2). It looks similar to the distribution
in the lower right hand panel. Even when Jeffreys prior can be
computed, it will be difficult to sell it as an objective prior to the
jurors or the senators on the committee.

Construction of Jeffreys and other objective priors for
multi-parameter models poses substantial mathematical
difficulties (Ronneberg, 2017). A commonly proposed solution
is to put independent Jeffreys or other non-informative
prior on each of the parameter separately. Why such prior
knowledge of independence of the parameters be considered
“non-informative” is unclear. Assuming two quantities are
independent of each other is considered to be a very strong
assumption in practice. The assumption of a priori independence
between parameters is more a matter of convenience than a
matter of principle and is not justifiable.

Press (2003, Chapter 5) provides an excellent review of
various problems associated with the definitions and use of
non-informative priors along with interesting historical notes.
It is clear that non-informative priors are chosen more for
their mathematical or computational convenience than for their
representation of no information or because they “let the
data speak.” Unfortunately, ecologists and practitioners tend to
dismiss these criticisms; considering them to be of no practical
relevance (e.g., Clark, 2005).

There are two prevalent notions, both false, about the non-
informative Bayesian analysis. The first false notion is that there
is no difference between non-informative Bayesian inference and
likelihood-based inference and the second false notion is that the
philosophical underpinnings of statistical inference are irrelevant
to practice. Some researchers (e.g., Kery and Royle, 2016) even
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FIGURE 1 | Non-informative prior on one scale is informative on a different scale. What is considered non-informative on the logit scale will be considered quite

informative on the probability scale and what is considered non-informative on the probability scale will be considered informative on the logit scale. For computational

convenience, the figures are density plots of the random numbers generated from the corresponding distributions, instead of using the analytic expressions.

claim that Bayesian inference is “valid” for all sample sizes,
but, unfortunately, without specifying the “validity” criterion. Of
course, as the information in the sample increases, effects of the
prior and consequences of lack of parameterization invariance
become negligible. Although, caveat of large sample size is
mathematically correct, whether or not the observed sample size
is large depends on the complexity of the model and the strength
of the prior (e.g., Dennis, 2004) and cannot be judged in practice.
To illustrate the falsity of these notions for sample sizes observed
in practice, we consider two important ecological problems:
Population monitoring and population viability analysis. We
show that, due to lack of invariance, analysis of the same data
under the same statisticalmodel can lead to substantially different
conclusions under a non-informative Bayesian framework. This
is disturbing because common sense dictates that same data
analyzed using the same model should lead to the same scientific
conclusions. The problem with the non-informative priors is that
they do not “let the data speak”; contrary to what is commonly
claimed, (absent large sample size) they bring in their own biases
in the analysis. We do not suggest that likelihood analysis, which
is parameterization invariant, is the only right way to do the data
analysis in applied ecology. That debate is subtle and potentially
unresolvable. Only goal of this paper is to show that implications
of the lack of invariance of non-informative priors are of practical
significance to wildlife managers.

2. POPULATION VIABILITY ANALYSIS (PVA)
FOR SAN JOAQUIN KIT FOX

Let us consider the San Joaquin kit fox data set originally analyzed

by Dennis and Otten (2000). This kit fox population inhabits
a study area of size 135 km2 on the Naval Petroleum Reserves

in California (NPRC). The abundance time-series for the years

1983–1995 was obtained to conduct an extensive population
dynamics study as part of the NPRC Endangered Species and

Cultural Resources Program. The annual abundance estimates

were obtained from capture-recapture histories generated by
trapping adult and yearling foxes each winter between 1983 and

1995. We refer the reader to Dennis and Otten (2000) for further
details on these data and abundance estimation technique.

Dennis and Otten (2000) analyzed these data using the Ricker

model. The deterministic version of the Ricker model can be

written in two different but mathematically equivalent forms. It

may be written in terms of the growth parameter a and density

dependence parameter b as logNt+1 − logNt = a − bNt where
a > 0, b > 0 or in terms of growth parameter a and carrying

capacity parameter K as logNt+1 − logNt = a
(

1− Nt
K

)

where

a > 0,K > 0. We also know that K = a/b and b =

a/K. It is reasonable to expect that the conclusions about the
survival of the San Joaquin kit fox population would remain
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FIGURE 2 | Jeffreys prior for probability of success in a Binomial experiment;

This prior concentrates the probability mass near 0 and 1. It is difficult to justify

this as a prior that would be considered non-informative. Multivariate

extensions of Jeffreys priors can lead to inconsistent estimators and hence

seldom used in practice. For computational convenience, the figures are

density plots of the random numbers generated from the Uniform(0.5,0.5)

distribution, instead of using the analytic expression.

the same whether one uses the (a, b) formulation or the (a,K)
formulation. In statistical jargon, we call this change in the form
of the model “reparameterization” and we will use this term,
instead of the term “different formulation,” in the rest of the
paper. Following Dennis and Otten (2000), we use a stochastic
version of the Ricker model where the parameter a, instead of
being fixed, varies randomly from year to year. Furthermore,
the abundance values are themselves an estimate of the true
abundances and hence we consider the sampling variability in
the model as well. The variances for the abundance estimates
were nearly proportional to the abundance estimates and hence
the Poisson sampling distribution makes reasonable sense. The
full model can be written as a state-space model as follows. In
the following, Nt denotes the true abundance, Yt denotes the
estimated abundance and Xt = logNt .

We call the following form of the model the
(a, b) parameterization.

• Process model: Xt+1|Xt ∼ Normal(Xt + a− b ∗ exp(Xt), σ
2)

• Observation model: Yt|Xt ∼ Poisson(exp(Xt))

One can write this model in an alternative form that we call the
(a,K) parameterization.

• Process model: Xt+1|Xt ∼ Normal(Xt + a
(

1−
exp(Xt)

K

)

, σ 2)

where K is the carrying capacity.
• Observation model: Yt|Xt ∼ Poisson(exp(Xt))

These two models are mathematically identical to each other.
Our goal is to fit these models to the observed data and conduct

population viability analysis using the population prediction
intervals (PPIs) (Saether et al., 2000). To compute the one sided
PPIs, that is usually of interest to managers, we predict the future
values of the time series and connect the lower 10% values for
each year to get a curve, as a function of time, indicating the lower
envelope to the future population sizes. This lower envelope helps
guide the management decisions. Common sense dictates that
because the data are the same and the models are mathematically
equivalent to each other, the PPIs computed under the two
parameterizations should also be identical to each other.

We use Bayesian inference using non-informative priors to
compute PPIs under these two forms. For Bayesian inference, we
use the following non-informative priors for the parameters in
the respective parameterization.

• Priors for the (a, b) parameterization: a ∼ LN(0, 10), b ∼

U(0, 1), σ 2 ∼ LogNormal(0, 10)
• Priors for the (a,K) parameterization: a ∼ LN(0, 10),K ∼

Gamma(100, 100), σ 2 ∼ LogNormal(0, 10)

These are some of the commonly used distributions for
representing non-information on the appropriate ranges of the
parameters (e.g., Kery and Schaub, 2011). Although note that
there is no general agreement on what is a non-informative
prior distribution. A reader who wants to use different non-
informative priors can easily repeat the experiment by modifying
the R code (see link in the data availability statement)
appropriately. The qualitative conclusions will remain the same.
For comparison, we use the data cloning algorithm (Lele et al.,
2007, 2010) to compute the maximum likelihood estimators
(MLE) based frequentist predictions to obtain PPIs under these
two parameterizations. The analysis was conducted using the
package “dclone” (Solymos, 2010; R Development Core Team,
2011), that is based on commonly used JAGS software (Plummer,
2003), within the R software. The data and the R program
to conduct this analysis are available in the link provided in
the data availability statement. Both Bayesian analysis and data
cloning based maximum likelihood analysis are based on the

Markov Chain Monte Carlo (MCMC) algorithms. Convergence
diagnostics were based on the Gelman-Rubin Rhat statistics and

the trace plots. For all cases, the Rhat statistics was very close
to 1 and the trace plots showed good mixing of the chains (see

link in the data availability statement). The resultant parameter
estimates are given in the table below. To make the comparison

easy to interpret, we report the estimates for (a,K, σ ) under the
two parameterizations.

Notice that (Table 1) the Bayesian parameter estimates for the

two parameterizations, especially the estimates of the carrying

capacity K, are quite a bit different. On the other hand, the

data cloned maximum likelihood estimates (MLE) are nearly
identical to each other under both parameterizations, as they

should be. The small differences are due to theMonte Carlo error.
In Figure 3, we show the PPIs obtained under the likelihood and
the non-informative Bayesian approaches.

One can make two important observations:

1. The PPIs obtained under the (a, b) parameterization and
the PPIs obtained under the (a,K) parameterization, under
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TABLE 1 | Parameter estimates for the kit fox data using different

parameterizations and non-informative priors and maximum likelihood.

Parameter Bayes (a,b) Bayes (a,K) MLE (a,b) MLE (a,K)

a 0.7542 0.4812 0.7404 0.7322

K 159.6425 141.39 160.1643 159.7164

σ 0.4916 0.5053 0.4360 0.4358

purportedly non-informative priors, are quite different.
Depending on which parameterization the researcher happens
to use, the scientific conclusions could be quite different.
For the non-informative Bayesian analysis, instead of the
Gamma distribution, we also used a uniform distribution
prior for the carrying capacity parameter. The results were
not only different from these but also very sensitive to
the choice of the upper bound of the uniform distribution.
This is at least disturbing, if not totally unacceptable. As
we said earlier, analyzing the same data with the same
model should lead to the same conclusions. However, non-
informative Bayesian analysis does not satisfy this common
sense requirement.

2. The MLE based PPIs are quite different than the non-
informative prior based PPI. Contrary to what is commonly
claimed, the non-informative priors do not lead to inferences
that are similar to the likelihood inferences.

3. OCCUPANCY MODELS AND DECLINE
OF AMPHIBIANS

One of the central tasks that applied ecologists are entrusted with
is monitoring existing populations. These populationmonitoring
data are the inputs to many further ecological analyses. We
consider the following simple model that is commonly used in
analyzing occupancy data with replicate visits (MacKenzie et al.,
2002). We denote probability of occupancy by ψ and probability
of detection, given that the site is occupied, by p. For simplicity
(and, to emphasize that these results happen even for simple
models), we assume that these do not depend on covariates. We
assume that there are n sites and each site is visited k times.
Other assumptions about close population and independence
of the surveys are similar to the ones described in MacKenzie
et al. (2002). In the following, Yi indicates the true state of the
ith location, occupied (1) or unoccupied (0). This is a latent, or
unobservable, variable. Observations are denoted by Oij. These
are either 0 or 1, depending on the observed status of the location
at the time of jth visit to the ith location. These can be different
from the true state Yi because of detection error. The replicate
visit model can be written as follows.

• Hierarchy 1: Yi ∼ Bernoulli(ψ) for i = 1, 2, ..., n
• Hierarchy 2: Oij|Yi = 1 ∼ Bernoulli(p) where j = 1, 2, ..., k

We assume that if Yi = 0, then Oij = 0 with probability 1 for
j = 1, 2, ..., k. That is, there are no false detections. This model
can also be written in terms of logit parameters as follows:

FIGURE 3 | Lower 10% Population Prediction Intervals (PPI) for the kit fox

data using non-informative Bayesian analysis under two different

parameterizations and the maximum likelihood analysis. Notice that

non-informative Bayesian analysis does not approximate the maximum

likelihood analysis and depends on the specific parameterization.

• Hierarchy 1: Yi ∼ Bernoulli(
exp(β)

1+exp(β)
) for i = 1, 2, ..., n where

β = log(ψ/(1− ψ))

• Hierarchy 2: Oij|Yi = 1 ∼ Bernoulli(
exp(δ)

1+exp(δ)
) for i = 1, 2, ..., n

where δ = log(p/(1− p))

The second parameterization is commonly used when there are
covariates and the logit link is used to model the dependence
of the occupancy and detection probabilities on the covariates.

Notice that p =
exp(δ)

1+exp(δ)
and ψ =

exp(β)
1+exp(β)

. If there are

covariates that affect the occupancy probability, the familiar

Logistic regression corresponds to ψ(Xi) =
exp(β0+β1Xi)

1+exp(β0+β1Xi)
.

We use the following non-informative priors for the
two parameterizations.

• The (ψ , p) parameterization: ψ ∼ Uniform(0, 1) and p ∼

Uniform(0, 1)
• The (β , δ) parameterization: β ∼ N(0, 1000) and δ ∼

N(0, 1000)

These are commonly used non-informative priors on the
respective scales (e.g., Kery and Schaub, 2011). One of the
important goals of occupancy studies is to compute the
probability that a site is, in fact, occupied when it is observed
to be unoccupied on all visits. This is different than ψ . To
compute this, we need to compute the probability that a site
that is observed to be unoccupied is, in fact, occupied. We can
compute it by using standard conditional probability arguments

as: P(Yi = 1|Oij = 0, j = 1, 2, .., k) =
(1−p)kψ

(1−p)kψ+(1−ψ)
.
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TABLE 2 | Simulation results for n = 30 and k = 2.

p = 0.3,ψ = 0.3 p = 0.8,ψ = 0.3 p = 0.3,ψ = 0.8

Prob Logit Prob Logit Prob Logit

p 0.3079 0.1864 0.7394 0.7855 0.3648 0.2950

(0.3295) (0.2391) (0.733) (0.7725) (0.3865) (0.3051)

ψ 0.4168 0.7786 0.3438 0.3240 0.6904 0.9174

(0.4085) (0.6865) (0.3356) (0.3297) (0.6696) (0.8666)

Occupancy 0.2535 0.7054 0.0324 0.0196 0.4581 0.8567

(0.2574) (0.5919) (0.04142) (0.0399) (0.4537) (0.7739)

Parameter estimates as well as predicted probability under probability scale and Logit

scale are quite different. Numbers in the parentheses are the standard errors.

We first present a simulation study where we show the
differences in the non-informative Bayesian inferences between
the two parameterizations. The R program used to conduct these
simulations is available in the link provided in the data availability
statement. We present the simulation results for the case of 30
sites and two visits to each site. We consider three different
combinations of probability of detection and probability of
occupancy; both detection and occupancy small, occupancy large
but detection small and occupancy small and detection large.

Table 2 shows that the Bayesian inferences about point
estimates of the probability of occupancy and detection and
more importantly about the probability that a site is, in fact,
occupied when it is observed to be unoccupied on both
visits (denoted by “occupancy” in the table for brevity) are
dependent on the parameterization. This has significant practical
implications: The total occupancy rate (defined explicitly in
the next paragraph), that is often needed by the managers,
depends on P(Yi = 1|Oij = 0, j = 1, 2, .., k), will be quite
different depending on which parameterization is used. The
biases observed here, although somewhat reduced, persisted as
the sample size was increased to 50 and 100 but with only
two visits per site. Notice also that variation under probability
scale and logit scale are quite different. For more detailed
simulations on the effect of prior distributions on the parameter
estimation (but not the prediction) when covariates are involved,
see Northrup and Gerber (2018) and comments that follow
the paper.

How does this work out in real life situation? Let us
reanalyze the data presented in MacKenzie et al. (2002). We
consider a subset of the occupancy data for American Toad
(Bufo americanus) where we only consider the first three visits.
The data and the R program for this analysis are provided
in the link provided in the data availability statement. As
in the previous example, we conducted standard diagnostic
tests such as the value of Gelman-Rubin statistics and trace
plots to judge the convergence of the MCMC algorithm. In
all case, we had excellent convergence. There are 27 sites
that have at least three visits. Number of sites that were
observed to be occupied at least once during the three visits
was 10. Hence, the raw occupancy rate, the proportion of
sites occupied at least once in three visits, was 0.37. We

TABLE 3 | Parameter estimates for the American Toad occupancy data using

non-informative Bayesian under different parameterization.

Parameter Bayes probability Bayes Logit

p 0.3245 0.2314

ψ 0.5770 0.8183

P(Yi = 1|Oij = 0, j = 1, 2, 3) 0.2960 0.6715

Total occupancy 0.5568 0.7932

fit the constant occupancy and constant detection probability
model using the two different parameterizations described
above. We report, in Table 3, the Bayesian point estimates
of: Probability of detection (p), probability of occupancy (ψ),
probability of occupancy when the site was never observed to
be occupied during the three visits, namely, P(Yi = 1|Oij =

0, j = 1, 2, .., k) under two different parameterizations. The
total occupancy rate is computed by adding the number of
sites that were observed to be occupied at least once during
the surveys (these are the sites that are definitely occupied) to
the probability of occupancy for those sites that were never
observed to be occupied during the surveys (these sites might
have been occupied but were not observed to have been
occupied due to detection error), namely P(Yi = 1|Oij =

0, j = 1, 2, .., k) and dividing the number by the total
number of sites. Total occupancy rate is often used to make
management decisions.

The differences in the two analyses are striking. According to
one analysis, we will declare an (observed to be) unoccupied site
to have probability of being occupied as 0.296 where as the other
analysis it is 0.672, more than double the first analysis. Given
the data, after adjusting for detection error, we will declare the
study area to have occupancy rate to be 0.56 under one analysis
but under the other analysis, we will declare it to be 0.79. Both
of these Bayesian estimates also differ from the ML estimate
of 0.55 (This is slightly different than the one reported, 0.49, in
MacKenzie et al., 2002 because, unlike the original analysis, we
have considered a subset of sites that were visited exactly three
times for ease of computation). The ML estimate is close to the
Bayesian estimate with a flat prior on the probability scale but not
to the one obtained by non-informative prior on the Logit scale.

In Figure 4, we show the posterior distributions for the total
occupancy rate under the two parameterizations.

The difference between the two posterior distributions is
shocking. Such posterior distributions form the basis for deciding
the status of the species. It is obvious that the decisions based on
these two posterior distributions are likely to be very different.
Now imagine facing a lawyer in the court of law or a politician
who is challenging the results of the wildlife manager who is
testifying that the occupancy rates are too low (or, too high for
invasive species). All they have to do, while still claiming to do
a legitimate non-informative analysis, is use a parameterization
that gives different results to raise the doubt in the minds of
the jurors or the senators on the committee. This is not a
desirable situation.
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FIGURE 4 | Posterior predictive distributions for the occupancy rates of

American Toad under different parameterizations: The logit scale leads to a

distribution that is highly skewed toward probability of occupancy close to 1.

Probability of occupancy often depends on habitat covariates and is modeled

with Logistic regression. This figure indicates that we might be biasing the

inferences about probability of occupancy under the non-informative Bayesian

analysis.

4. UNINTENDED CONSEQUENCES OF
OBJECTIVE PRIORS

Scientific and statistical inference is not limited to inference
about the parameters of the generating mechanism as it is
formulated. Inference also extends to inference on functions of
the parameters, including predictions. So far, we have studied in
concrete terms the consequences of the lack of parameterization
invariance in important ecological problems at commonly
observed sample sizes, especially in wildlife management. These
consequences, of course, vanish as the information in the data
increases. Unfortunately, whether or not the observed sample
size is large depends on the complexity of the model. In this
section, we provide general arguments against subjective and
objective priors in scientific inference in general.

Consequence 1: All subjective Bayesian inferences can be
masqueraded as objective (flat prior) Bayesian inferences.

This result is simply a converse of Fisher’s result that all flat
priors on one scale are not flat on any other scale. Let Y be a
random variable such that Y ∼ f (.; θ). Let θ ⊂ 2 be continuous
and 2 be a compact subset of the real line. Let π(θ) denote the
prior distribution. A basic probability result on transformation
(e.g., Casella and Berger, 2002) is the following: If θ ∼ π(θ), then
the probability density function of g(θ), a one-one, differentiable

transformation of θ is given by π(g−1(θ))|
dg−1(θ)

dθ
|.

Thus, if θ has uniform distribution on 2, any one-one,
differentiable transformation of it has a density function that is

proportional to |
dg−1(θ)

dθ
| which is not a uniform distribution.

This is the basis of Fisher’s criticism of the flat priors: What

is “non-informative” on one scale is “informative” on any
transformed scale.

The converse of the result, not noted in the literature to
the best of our knowledge, is equally devastating. Suppose
a researcher has a subjective prior in mind, say π(θ) that
is not a uniform distribution on 2. Let G(θ) denote the
cumulative distribution function corresponding to this density.
The researcher may have this particular prior in mind because
he truly believes it but he realizes that he may face the criticism
of being biased with an agenda to prove. To avoid the criticism,
he can easily rewrite his model in terms of ϕ = G−1(θ). This
transformation is also known as the probability transform and is
used to generate random numbers from univariate, continuous
random variables (Gentle, 2004). It is well known that ϕ has a
Uniform distribution on (0, 1). When presenting the results of
his analysis, the researcher simply presents his model in terms of
ϕ and a Uniform prior on (0, 1). Many Bayesian analysts would
consider this as an “objective” Bayesian analysis that is not tainted
by subjective priors and that it has “let the data speak.” This is
patently a false statement: The researcher started with a subjective
prior but was able to masquerade it as an “objective” analysis.

Consequence 2: Induced priors on functions of parameters are
not flat, thus leading to cryptic biases in scientific inference.

Scientific inference is usually not limited to the natural
parameters of the generating mechanism but may be based on
functions of parameters. Often these functions of the natural
parameters are really the parameters of scientific interest. For
example, in the PVA example that we studied, the natural
parameters of the Ricker model were (a, b) or (a,K). But
the analysis was not limited to conducting inference about
these parameters alone. We are interested in computing the
probability of extinction or the time to extinction or the PPI (e.g.,
Dennis et al., 1991). These are usually functions of the natural
parameters. Similarly for the occupancy model, the natural
parameters are (ψ , p) but quantities of interest are predicted
probability of occupancy when the site was never observed
to be occupied. As we saw earlier, this is also a function of
the natural parameters. When one specifies a prior distribution
on the natural parameters, it induces a prior distribution on
all transformations of the natural parameters including such
functions of the parameters.

In PVA, one of the quantities of interest is the probability
of (quasi)extinction, that is, the probability that the population
will dip below a threshold. For the stochastic versions of the
continuous time exponential growth models, Dennis et al. (1991)
compute this explicitly. The basic model (for discrete time case)
may be written as: Xt+1|Xt ∼ Normal(Xt + µ, σ 2). Let xe be
the log-threshold population size and x0 be the current log-
population. Let xd = x0−xe. The probability of (quasi)extinction
is given by π(xd,µ, σ

2) = exp(−2µxd/σ
2) for µ > 0. If

µ < 0, the population goes to extinction with certainty and
hence that case is not of interest. In Figure 6, we show the
priors induced on this quantity under different non-informative
priors on µ and σ 2 (without changing the parameterization).
The solid curve corresponds to using µ ∼ logNormal(0, 10) and
σ ∼ logNormal(0, 10) and the dotted curve corresponds to using
µ ∼ Uniform(0, 10) and σ ∼ Uniform(0, 10).
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FIGURE 5 | Induced priors on the quasi extinction probability: Different

non-informative priors on the parameters of a stochastic Exponential growth

model lead to different induced priors on the probability of quasi-extinction.

We are biasing the result even before any data are conducted. The induced

prior on the probability of quasi-extinction, the parameter of interest, is not

uniform. One induced prior (red) is implicitly assuming that probability of

extinction is highly likely to be zero whereas another induced prior (blue)

implicitly assumes the probability of extinction is mostly between 0 to 0.2 or

0.8 to 1 but not much in between.

Let us look at the induced prior distribution for P(Yi =

1|Oij = 0, j = 1, 2, .., k) =
(1−p)kψ

(1−p)kψ+(1−ψ)
, the predicted

occupancy, under different non-informative priors of p andψ for
k = 2. The solid curve in Figure 5 corresponds to the induced
prior on the predictive occupancy using ψ ∼ Uniform(0, 1)
and p ∼ Uniform(0, 1) and the dotted curve corresponds to
using non-informative prior commonly used on the (β, δ) scale as
described previously in the discussion of the occupancy problem,
namely, β ∼ Normal(0, 10) and δ ∼ Normal(0, 10).

It is clear that different versions of the non-informative priors
on the natural parameters induce different priors (and, hence
biases) on the induced parameters that are of scientific interest.
In Lele (2004) and Lele and Allen (2006), it was argued that even
if one can elicit priors from the experts on the natural parameters,
expert may not be aware of, and in fact, may not even agree with
the prior distributions induced by his own priors on the natural
parameters. In a recent paper, Seaman et al. (2012) point out the
same issues but in the context of flat priors, extending Fisher’s
criticism of the flat priors.

There is a hidden danger of using flat priors uncritically.
Unwittingly the researcher might be biasing the conclusion about
the interesting functions of the parameters while falsely claiming
the mantle of “objectivity.” Even when we have flat priors on
the natural parameters, the induced priors on the quantities

FIGURE 6 | Induced priors on the occupancy probability: Different

non-informative priors induce different priors on the parameter of interest,

namely, probability that a site is occupied given that we have not observed it to

be occupied while surveying due to detection error. We are biasing the results

of the survey even before conducting the survey. One induced prior (black) is

implicitly assuming that probability of occupancy is more likely to be zero

whereas another induced prior (red) implicitly assumes the probability of

occupancy is near 0 or 1 but not much in between.

of inferential interest are extremely likely to be biased to one
conclusion or the other.

Consequence 3: The assumption of independent parameters,
although convenient for MCMC calculations, creates
unrealistic priors.

Most ecological models involve multiple parameters with
complex parameter spaces. Because of the interdependencies
between these parameters, the valid parameter values are
dependent on each other. It is usually quite difficult to specify
flat priors or almost flat priors as in priors with large variability
on such non-trivial parameter spaces. Even Jeffreys priors
(e.g., Ronneberg, 2017) that address Fisher’s objection and are
invariant to parameterization, or Bernardo’s reference priors
(e.g., Ronneberg, 2017) are extremely difficult to construct for
multiparameter situations. In practice, most of the Bayesian
analysis for multiparameter models is conducted with priors that
assume that parameters are a priori independent. For example,
in simple Capture-Recapture models, it is often assumed (e.g.,
Parent and Rivot, 2013) that probability of recapture and
population size are independent of each other. Similarly in
regression analysis, it is assumed that the regression parameters
are independent of the each other a priori. In fact, as is clear
from any analysis of Capture-Recapture experiments that the
parameters are intricately related to each other. The assumption
of prior independence of parameters is seldom justified but is
taken as a convenient assumption. Questions one must ask are:
What are the consequences on the distribution of the functions
of parameters that are of real interest? What effect would this
have if we reparameterize the model where new parameters
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are functions of the original parameters? For example, if we
assume (a, b) are independent of each other, it is clear that
(a,K) are bound to be correlated parameters because K, the
carrying capacity, is a function of both a, growth parameter and
b, the density dependence parameter. Is this correlation sensible
a priori?

Ecologists are justifiably skeptical of the assumption that
the data are independent of each other and are well aware
of the consequences of such assumption; the famous pseudo
replication problem in ecology (Hurlbert, 1984). However, they
seem to accept, somewhat uncritically, the assumption of a
priori independence between the parameters. Computational
convenience should not be the driving force behind choosing
prior distributions. Prior distributions have consequences;
sometimes they are intended but most of the times they are
unintended and not understood explicitly.

Consequence 4: Bayesian prediction intervals may not have
correct coverage

Management decisions are based not only on the parameter
estimates but also, and perhaps more importantly, on prediction
of future events. In an important recent paper, Shen et al. (2018)
consider the problem of prediction and predictive densities from
the Classical and Bayesian perspective. They define a predictive
density in a general form as: f P(y) =

∫

f (y; θ)dQ(θ). They
show that such predictive density will lead to correct predictive
coverage provided Q(θ) is a valid confidence distribution that
has correct frequentist coverage properties. As a consequence,
the Bayesian predictive density that uses posterior distribution as
Q(θ), will lead to valid predictive coverage only if the posterior
distribution has correct frequentist properties. Unfortunately,
posterior distributions do not always have, in fact seldom have,
correct frequentist coverage properties unless the information in
the data is substantial. Of course, in that case, there remains no
difference between a Bayesian and a frequentist inference.

Whether information in the data is substantial or not is
not a simple function of the sample size; it also depends on
the complexity of the model. The more complex the model
is, the larger is the sample size required (e.g., Dennis, 2004).
As a consequence, the objective, flat prior based analyses may
not even lead to predictions that are valid. Why should we
expect them to lead to management decisions that are sensible
in practice?

Consequence 5: Reparameterization to facilitate MCMC
convergence may influence scientific inference.

Markov Chain Monte Carlo algorithms have made it feasible
to analyze highly complex, hierarchical models. One of the major
difficulties in the application of the MCMC algorithms is the
convergence of the underlying Markov chain to stationarity.
When the parameters in the model are highly correlated
(also, termed weakly estimable) or if the parameters are non-
identifiable or non-estimable (See Ponciano et al., 2012; Campbell
and Lele, 2014), it is difficult to obtain convergence and good
mixing of the MCMC chains.

To alleviate this problem, one needs to reparameterize the
model so that the parameters are orthogonal or weakly correlated
with each other. Such reparameterization of the model will have
no consequences if the inferences are based on the likelihood
function which is invariant to such reparameterization but,

as shown above, can have serious consequences for a non-
informative Bayesian inference.

As an aside, such orthogonalization of the parameters is
feasible only if the parameters are identifiable. Diagnostics for
non-estimability and non-identifiability of the parameters is
automatic under the data cloning based likelihood estimation
(Lele et al., 2010; Ponciano et al., 2012; Campbell and Lele, 2014),
however such diagnostics is not possible under the Bayesian
approach (Lele, 2010).

5. DISCUSSION

Using different parameterizations of a statistical model
depending on the purpose of the analysis is not uncommon.
For example, in survival analysis the exponential distribution is
written using the hazard function or the mean survival function
depending on the goal of the study. They are simply reciprocals
of each other. Similarly Gamma distribution is often written
in terms of rate and shape parameter or in terms of mean and
variance that is suitable for regression models. Beta regression is
presented in two different forms: regression models for the two
shape parameters or a regression model for the mean keeping
variance parameter constant (Ferrari and Cribari-Neto, 2004).
All these situations present a problem for flat and other non-
informative priors because same data and same model can lead
to different conclusions depending on which parameterization is
used. One can possibly construct similar examples in the Mark-
Capture-Recapture methods where different parameterizations
are commonly used.

Indeed, as the sample size increases, effect of the prior
diminishes and Bayesian and likelihood inferences become
similar. However, in practice, hierarchical models are fairly
complex and involve substantially more parameters than in the
models considered in this paper. Dennis (2004) illustrates that as
number of parameters increases, effects of the choice of a prior
linger even for large samples.

Hierarchical models in ecology tend to be complex and can
easily lead to non-identifiable parameters (Lele et al., 2010;
Ponciano et al., 2012; Campbell and Lele, 2014). If there are non-
identifiable parameters, effect of the prior never vanishes. Owhadi
et al. (2015) explore effect of the priors on Bayesian inferences in a
mathematically rigorous fashion and conclude that the Bayesian
inference is very brittle. Hence, the results presented here are
likely to be far more common in practice than may be imagined.

To summarize, we have shown that non-informative priors
neither “let the data speak” nor does the analysis based on them
correspond, even roughly, to likelihood analysis for the sample
sizes feasible in ecological studies. Non-informative priors add
their own cryptic biases to the scientific conclusions. Just because
the terms objective priors, non-informative priors or objective
Bayesian analysis are used, it does not mean that the analyses are
not subjective. A truly subjective prior based on expert opinion is,
perhaps, preferable to the non-informative priors because in the
former case the subjectivity is clear and well quantified, and, may
even be justified, whereas in the latter the subjectivity is hidden
and not quantified.

Hierarchical models in themselves are extremely useful to
model complex ecological phenomena. The many successes of
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the so called “Bayesian” approach are actually attributable to
sensible uses of hierarchical models for pooling information, e.g
across different studies or resolutions. These success stories have
nothing to do with the use of the Bayesian philosophy or use
of priors.

Many applied ecologists are using the non-informative
Bayesian approach as a panacea to deal with hierarchical models,
erroneously believing that they are presenting objective, unbiased
results and that there are no alternative approaches. Hierarchical
models can be and are analyzed using the likelihood and
frequentist methods. Given the complexity of these models,
the number of parameters involved and the different ways the
same model potentially can be formulated; the resultant analysis,
because of the lack of invariance to parameterization, may
have unstated and unqualified biases. Hence it may be easily
challenged in the legislature and in the court of law.
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An inferential statement is any statement about the parameters, form of the underlying

process or future outcomes. An inferential statement, that provides an approximation to

the truth, becomes “statistical” only when there is a measure of uncertainty associated

with it. The uncertainty of an inferential statement is generally quantified in terms

of probability of the strength of approximation to the truth. This is what we term

“inferential uncertainty.” Answer to this question has significant implications in statistical

decision making where inferential uncertainty is combined with loss functions for

predicted outcomes to compute the risk associated with the decision. The Classical

and the Evidential paradigms use aleatory (frequency based) probability for quantifying

uncertainty whereas the Bayesian approach utilizes epistemic (belief based) probability.

To compute aleatory uncertainty, one needs to answer the question: which experiment is

being repeated, hypothetically or otherwise? whereas computing epistemic uncertainty

requires: What is the prior belief? Deciding which type of uncertainty is appropriate for

scientific inference has been a contentious issue and without proper resolution because

it has been commonly formulated in terms of statements about parameters, that are

statistical constructs, not observables. Common to these approaches is the desire

to understand the data generating mechanism. Whether one follows the Frequentist

or the Bayesian approach inferential statements concerning prediction are aleatory in

nature and are practically ascertainable. We consider the desirable characteristics for

quantification of uncertainty as: (1) Parameterization and data transformation invariance,

(2) correct predictive coverage, (3) uncertainty that depends only on the data at hand

and the hypothesized data generating mechanism, and (4) diagnostics for model

misspecification and guidance for correction. We examine the Classical, Bayesian

and Evidential approaches in the light of these characteristics. Unfortunately, none of

these inferential approaches possesses all of our desiderata although the Evidential

approach seems to come closest. Choosing an inferential approach, thus, involves

choosing between either specifying the hypothetical experiment that will be repeated or

equivalently a sampling distribution of the estimator or a prior distribution on the model

space or an evidence function.

Keywords: aleatory probability, conditional inference, empirical validation, epistemic probability, parameterization

invariance, prediction, predictive densities, statistical paradigms
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1. INTRODUCTION

It is indisputable that statistical reasoning has become an essential
component of modern scientific thinking (Taper and Ponciano,
2016). However, discussions on the philosophical foundations
of statistical methods are often regarded as esoteric and of
little practical importance to the scientific practitioners (e.g.,
Clark, 2005). It is commonly claimed that pragmatic scientists
somehow know which method is appropriate for their own
problem and they do not need to worry about the differences in
the philosophies of statistics that underlie such methods. That
such differences are too subtle to be of any practical relevance
(e.g., Kery and Royle, 2016). One possible reason scientists
feel this way is because they often make decisions solely on
the basis of the estimated effect size while paying only a lip
service to themagnitude and nature of the associated uncertainty,
in spite of the repeated protestations by the statisticians that
“effect size estimate without the associated uncertainty” is
useless for decision making. Understanding the meaning and the
quantification of uncertainty is a major hurdle, both in practical
applications of statistics and in understanding the arguments for
and against different paradigms in statistics.

Why is uncertainty quantification a critical endeavor for
science and scientific decisions? Decisions are ultimately based

on the predictions of the future outcomes of a statistical
experiment. These predictions are uncertain and hence we
need to quantify their uncertainty. Prediction uncertainty has

several components. First component is the process variation. It
exists even if all the parameters of the model are known. This
variation can be reduced to some extent by appropriate use of

covariates and auxiliary information in the process modeling.
Second component is the estimation error. This occurs because
parameters in the process model are generally unknown and
not directly observable. These parameters need to be estimated
using the observed data. Different methods of estimation lead to
different estimation errors. Both these components assume that
the form of the model used for prediction correctly represents
the true underlying process. The third component to prediction
uncertainty is the uncertainty about the form of the process
model. This uncertainty can be controlled to some extent by
appropriate model selection and model diagnostics. Prediction
uncertainty is a combination of these three components. Given
the prediction uncertainty, we can combine it with the loss
function that quantifies the consequences of different decisions
that are based on the uncertain predictions. The combination
of the loss function and the three types of uncertainties leads to
the quantification of risk. A rational decision maker is presumed
to choose a course that minimizes the risk. Thus, if one wants
to make rational decisions, one needs a verifiable quantification
of the uncertainty in prediction. In this paper, we discuss the
quantification of the prediction uncertainty when there is no
model form uncertainty. Dennis et al. (2019) discuss the effect
of model mis-specification on the quantification of uncertainty.

The goal of this paper is to discuss various ways statisticians
quantify uncertainty in statistical inferential statements about
the parameters of the model and the observables. Here
observables refer to both observed data and future data that

are potentially observable. Parameters of the model, although
statistical constructs and not always useful for prediction in
specific circumstances, are important for developing scientific
understanding (e.g., Jerde et al., 2019). However, uncertainty
statements about the parameter estimates are difficult to directly
verify in practice. On the other hand, statements about the
observables are aleatory or frequentist in nature and hence are
directly ascertainable in practice. Predictive accuracy has been at
the center of much of the development in the statistical learning
literature (e.g., Hastie et al., 2009) and has also been suggested
as the appropriate approach to statistical thinking (Billheimer,
2019).We emphasize, however, that it is not sufficient to compare
predictive abilities of different procedures. Ability to diagnose
and pinpoint errors in modeling and being able to learn from
errors is an essential component when comparing the desirability
of various inferential procedures (e.g., Dennis, 1996; Lele and
Dennis, 2009).

Although many of the discussions in the literature often
concentrate on estimation and testing of the parameters of the
model, the scope of statistical inference is wider than that. For
example, scientists want to be able to forecast future outcomes
under different “what if ” scenarios or they may be interested
in studying derived quantities, such as probability of extinction
or time to extinction of a species. Model choice, estimation
and prediction are three important components of any scientific
enquiry. In the next section, we discuss desiderata for uncertainty
quantification in the context of this general scope. In section 3,
we will discuss the basics of the Classical paradigm to quantify
uncertainty. We emphasize the difference between pre-data
and post-data measures of uncertainty and difficulties faced by
the Classical approach. This will lead us to the discussion of
conditional inference, relevant subsets and ancillary statistics.
We discuss the quantification of uncertainty in the context
of prediction. This discussion will clarify the importance of
conditioning, not just on intuitive grounds, but in practical terms.
In section 4, we will review the basics of (subjective) Bayesian
inference, from estimation to prediction. We will briefly discuss
the effect of the choice of the prior distribution. But the main
emphasis will be on discussing the meaning of the uncertainty
in the Bayesian context, namely the epistemic probability and
its interpretation. Determination of the prior distribution along
with the lack of ability to pinpoint errors in modeling are the
main stumbling blocks in the Bayesian approach. In section 5,
we will discuss the solution offered by the Evidential paradigm
to the problem of prediction. In particular, we use normalized
predictive likelihood to obtain evidential predictive density and
study its performance. Section 6 summarizes the results and
offers general conclusions. Throughout this paper, we assume
that the reader is familiar with the basic concepts in statistical
inference, such as different probability distributions, maximum
likelihood estimation, confidence intervals etc. See, for example,
any introductory level textbook on statistical inference, such
as Ramsey and Schafer (2002) or a mathematical text, such as
Casella and Berger (2002). Some of the topics, however, may
need a somewhat more advanced mathematical understanding,
although we have tried to make it accessible by providing simple
examples and intuition where possible.
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2. DESIDERATA FOR UNCERTAINTY
QUANTIFICATION

Before we can compare different approaches to quantify
uncertainty in statistical inference, we need to have a list of

desirable characteristics that such quantification will possess in
an ideal world. The following characteristics are generally agreed
upon as desirable in the statistical literature, although not all in

one place.

1. Uncertainty quantification should be invariant to both data
transformation and parameterization of the model.

2. Uncertainty quantification should reflect the informativeness
of the observed data for the underlying process.

3. Uncertainty quantification should be amenable to be probed
empirically for possible violations. This is also sometimes
described as “being ascertainable in practice.”

4. If an uncertainty quantification is not sufficiently accurate,
it should be possible to diagnose potential problems in the
model and ways to correct them.

We will examine uncertainty quantifications in three inferential
paradigms in the light of these desiderata.

Before we proceed further, we discuss the first desideratum
that can be potentially confusing for a non-statistician. Let us

consider the problem of prediction of amount of biomass of
a grass species in a typical plot or a quadrat. Suppose we
measure the biomass in the units of kilograms. We may report

a 90% prediction interval as, say (2.3, 3.5). This says, that if we
randomly select say 1,000 quadrats and measure their biomass
in kilograms, then ∼90% of the quadrats will have biomass
between 2.3 and 3.5 kg. Someone else, who happens to measure

the biomass in the units of pounds, the corresponding 90%
prediction interval would have been (5.06, 7.7). The equivalent
prediction interval has different end points depending on the

unit but the uncertainty, namely the probability content of the
interval, 90%, does not depend on the unit of measurement
or data transformation. Similarly, suppose we report a 90%

confidence intervals for probability of occupancy of a plot by
a species as, say (0.2, 0.8). The corresponding 90% confidence
interval for the log-odds of occupancy will be, approximately

(−1.38, 1.38). These intervals clearly look different with different
widths but their coverage probabilities are identical, namely,
90%. The desideratum says that these coverage probabilities,
that are a measure of uncertainty, should not change as a
consequence of data transformation or a particular choice
of parameterization.

In the following, we will be using two different notions
of probability. Fox and Ulkumen (2011) give the following
characteristics of the two kinds of probabilities or uncertainties:

Pure epistemic uncertainty:

• is represented in terms of a single case,
• is focused on the extent to which an event is or will be true

or false,
• is naturally measured by confidence in one’s knowledge or

model of the causal system determining the outcome, and
• is attributed to missing information or expertise.

Pure aleatory uncertainty, in contrast:

• is represented in relation to a class of possible outcomes,
• is focused on assessing an event’s propensity,
• is naturally measured by relative frequency, and
• is attributed to stochastic behavior.

They define the two concepts as follows.

• Aleatory probability: An aleatory conception of uncertainty
involves unknown outcomes that can differ each time one runs
an experiment under similar conditions.

• Epistemic probability: An epistemic conception of
uncertainty involves missing knowledge concerning a
fact that either is or is not true.

Fox and Ulkumen (2011) claim that disagreement concerning
the nature of uncertainty persists to this day in the two
dominant schools of probability theorizing, with frequentists
treating probability as long-run stable frequencies of events, and
Bayesians treating probability as a measure of subjective degree
of belief.

3. HOW FREQUENTLY WOULD WE BE
CONTRADICTED? ALEATORY
PROBABILITY FOR UNCERTAINTY
QUANTIFICATION

Let us consider one of the most common problems in ecology:
prediction of the total biomass of a species in a study area. Let
us assume that the study area can be divided in N management
quadrats of equal area. For the time being, we will consider
estimating the mean biomass in a typical management quadrat.
Suppose we take a sample of n quadrats and measure the biomass
in each of them. How can we use this information to infer about
the mean biomass in a typical quadrat? Furthermore, how can
we use this information to predict biomass in the unsampled
quadrats? To be able to go from what we observe (biomass in
the sampled quadrats) to what we have not observed (biomass in
the unsampled quadrats), we need to make some assumptions.
For the sake of simplicity, let us assume that the quadrats are
similar to each other in terms of habitat covariates that may
affect the amount of biomass and that amount of biomass in
one quadrat does not affect the amount of biomass in other
quadrats. Furthermore, we assume that the quadrats chosen
for measurement were chosen randomly. If N is substantially
larger than n, we can ignore the subtle differences between “with
replacement” and “without replacement” sampling. Also, for the
simplicity of notation, we will say that the sampled quadrats were
the first n of the N quadrats.

In mathematical notation, the amount of biomass in the
N quadrats, Y1,Y2, ...,YN , are assumed to be independent,
identically distributed random variables. The sampled
observations are the biomasses at the sampled quadrats,
namely, y1, y2, ..., yn. Let us further assume that Yi ∼ N(µ, σ )
where µ indicates the mean biomass in a quadrat and σ indicates
the natural variation. We use the standard deviation (sd) σ ,
instead of the commonly used parameterization σ 2, because it
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has the same unit as the mean. Let us look at a simple implication
of this assumption. Suppose the mean biomass in a quadrat is 10
kg and sd is 1. Then, the distributional assumption implies that
probability that Y , the biomass at any quadrat, is in the interval
(10 − 1, 10 + 1) is ∼0.68. What do we mean by this statement?
To most scientists, this means that about 68% of the quadrats
will have biomass between 9 and 11 kg. This is an aleatory
probability. In statistical literature we call this the “frequentist”
definition of probability. It is the proportion of times an event
is observed in infinite replications of the experiment. The N
quadrats are independent replications of the experiment and
we expect about 68% of them to have biomass between 9 and
11 kg. If, in practice, the observed proportion turns out to be
substantially different than 0.68, we know that our statistical
model is inappropriate. An important characteristic of aleatory
probability statements is that they are ascertainable in practice.
Thus, they are probeable statements and we can also diagnose
problems with the data generating mechanism if the statements
are refuted in practice.

There are a few unknowns in our situation: (1) value of the
parameters (µ, σ ), and (2) appropriateness of the probability
density function, namely the Normal density function to model
the underlying process. Statistics, often, is considered the
epistemology of science. We want to learn from the data about
these unknowns. For the time being, let us assume that the
Normality assumption is appropriate and also that σ = 1
is known. The maximum likelihood estimator (MLE) of the
parameter µ is µ̂ = 1

n

∑n
i=1 Yi = Y . Notice that µ̂ is a random

variable and the corresponding estimate (the value obtained for
a particular sample), with some abuse of notation, is given by
µ̂ = 1

n

∑n
i=1 yi = y. This is simply a number. This number is an

inferential statement about the mean biomass in a management
quadrat, namelyµ. Thus, after sampling, one may say that “mean
biomass of a species in a management quadrat is 8.3 kg.” We can
also make statements such that if we sample a new management
quadrat, assuming we know the true parameters, the probability
that it will have biomass between 3 and 5 kg is about 0.68.
Both these statements are “inferential statements” but are quite
different in their nature. First statement is about a parameter, a
statistical construct, whereas the second statement is about an
observable. Given such statements, a natural question to ask is:
How certain (or, uncertain) are we about these statements? This
corresponds to determining the probability of the strength of
approximation to the truth. Answering such questions is the crux
of statistical inference.

3.1. Sampling Distribution and Confidence
Intervals
We will start with discussing uncertainty in the parameter
estimation. Later we will discuss inferential statements about
observables. Neyman (1937) proposed to quantify uncertainty in
the parameter estimation by answering the question: If there were
another scientist who had sampled n quadrats, albeit different
than the one we sampled, how different would be their estimate
of µ? The distribution of the estimates obtained by infinitely
many scientists repeating the experiment is called the sampling

distribution. Sampling distribution quantifies uncertainty in the
Classical statistical inference.

Let us continue with the biomass survey example. Suppose
the true mean biomass in any quadrat is 10 kg and known
true sd is 1. Suppose the sample size is 20. Then to obtain
the true sampling distribution of the estimator of µ, namely
µ̂ = Y , we generate 20 random numbers from N(10, 1)
and compute the sample mean. If we repeat this process, say
1,000 times, we will obtain 1,000 sample means (equivalent
to estimates from 1,000 independent surveys). Histogram of
these 1,000 means represents the true sampling distribution
(strictly speaking, simulation based estimate of the true sampling
distribution). It shows, if we repeat the study, how different
the estimates will be, namely, probability of the strength of
approximation. Figure 1 (black curve) illustrates an example of
the true sampling distribution. In reality, we cannot compute the
true sampling distribution because we do not have data from
replications of the experiment. Fortunately, given the data at
hand, one can estimate the sampling distribution. In Figure 1

(dotted curve), we illustrate a parametric bootstrap estimate of
the sampling distribution given data in hand. For this, given
the results of our one survey, we compute the sample mean.
Then generate 20 randomnumbers fromN(y, 1) and compute the
sample mean. If we repeat this process, say 1,000 times. We will
obtain 1,000 sample means (equivalent to estimates from 1,000
independent surveys). Histogram of these 1,000means represents
the parametric bootstrap estimate of the sampling distribution.
Notice that we have replaced the true mean 10 by its estimate
y. Naturally the true and estimated sampling distributions are
slightly different from each other but this is what one can do
in practice because true mean is not known. For each data set
in hand, because the sample means are different for different
data sets, the bootstrap estimate of the sampling distribution
is different.

Sampling distributions can be estimated using various other
techniques, such as using pivotal statistics, asymptotic normal
approximation, inversion of the likelihood ratio or by non-
parametric bootstrapping (Casella and Berger, 2002). As an
aside, the last two techniques are considered preferable because
they lead to confidence intervals that are parameterization
equivariant. That is, one can transform the confidence interval
for µ to log(µ) by simply log-transforming the endpoints of the
first interval. Although their lengths and end points will change,
their coverage properties remain invariant. Thus, likelihood ratio
based or bootstrap based confidence intervals satisfy desiderata
1 but confidence intervals based on other methods may not. We
will discuss implications to other desiderata in the next section.

Let us look at how one can use the (true and estimated)
sampling distribution for quantifying uncertainty about the
inferential statements.

3.1.1. Confidence Intervals and Coverage
It is easy to see that we can use the true sampling distribution
to compute an interval that indicates the range of estimates
that one would obtain in replicated experiments with specific
probability. For example, using the true sampling distribution
which, in this case, can be analytically shown to be N(µ, σ/

√
n),
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FIGURE 1 | The estimated sampling distribution depends on the observed

data and is different from the true sampling distribution. Hence the parameter

estimate of a new study may lie outside the confidence interval reported in an

earlier study more often than the nominal error rate. The new estimate is

occurring from the true sampling distribution and the previous confidence

interval is based on the estimated sampling distribution. It is approximately the

area outside the reported confidence interval under the true sampling

distribution.

we can give 90% confidence interval as (10 − 1.68σ/
√
n, 10 +

1.68σ/
√
n) where n denotes the sample size and σ = 1. The

confidence interval shrinks as we increase the sample size. As
we noted before, it is impossible to compute this interval in
practice because the true parameter values are unknown. The
true 90% confidence interval for a sample size 20 is given by
(9.624341,10.37566). A corresponding estimated 90% confidence
interval based on the estimated sampling distribution, for a
specific sample, turns out to be (9.716948,10.460803). This is
different from the true confidence interval because we replace
true mean by the estimated mean. For different samples, one
would get different confidence intervals because each sample
leads to a different estimate of the mean. The reader can
use the R program in the Supplementary Material to see
how parametric bootstrap sampling distribution and associated
confidence interval varies depending on the sample in hand. Note
that each run of the program will lead to different confidence
intervals than reported above.

It is clear what information the true 90% confidence interval
provides. It says that if you repeat the experiment, your estimate
will lie inside the true confidence interval 90% of times. Hence
your result will contradict the original result only 10% times. But
what information does the estimated confidence interval provide
about the true value of µ? We can make the following statement
about the value of µ: If we replicate the experiment 100 times
and calculate the estimated 90% confidence interval for each
replication, then ∼90% of the intervals will cover the true value
(that is, the true value will belong to the interval). Of course,
any particular interval obtained from a single experiment may

or may not contain the true value. This is the property of the
procedure and not of the outcome of a single experiment. The
interpretations of the true confidence interval (that can never be
computed) and the estimated confidence interval are different.

Thus, we have answered the question, how often (in replicated
experiments) would our interval cover the true parameter value
of µ? This is called the coverage probability. Is this useful? We
contend that this is the kind of probability we use in practice.
For example, probability of an airplane crash on a take-off
is say 1 in 10,000. This tells us nothing with certainty about
what will happen on a particular flight; it may crash or it may
not crash. However, we intuitively understand this uncertainty
statement and are able to make decisions. It helps us behave
in a rational manner. This is what Neyman called “inductive
behavior” (Lehmann, 1995), behavior informed by the data.

Replicability of the conclusions: Another question explicitly
addressed by the sampling distribution is: How replicable is our
study? How likely is it that we would be contradicted by someone
conducting similar experiment? This is sometimes crudely put
as “Cover Your Ass” (CYA) statements. For example, suppose
the first sampler publishes a confidence interval for the mean
biomass in a given size quadrat. Then we can use the true
sampling distribution to compute the probability that subsequent
sampling of the biomass will yield a mean biomass estimate
that will not belong to the first sampler’s confidence interval
and hence the first sampler’s conclusions will be contradicted
by the subsequent study. This probability is not the same as
the coverage probability which is the property of the estimated
confidence interval. For example, for the estimated sampling
distribution in Figure 1 (dotted curve), the probability that a new
sampler will get an estimate outside the estimated confidence
interval (µL,µU), namely, P(µ̂new /∈ (µL,µU)), turns out to
be, on an average, 0.24. This is larger than the nominal 10%
excesses under the true sampling distribution. Of course, as the
sample size increases, this problem goes away. We conjecture
that this is one of the reasons of the replicability crisis in science
(e.g., Ioannidis, 2012), namely incorrect interpretation of the
confidence interval; the other, perhaps far more important, being
model misspecification or the model from one study not being
applicable to other studies.

Replicability of the conclusions is an essential component of
the scientific validity of the conclusions. Aleatory probability
based quantification of uncertainty clearly tries to address
this concern. Not everyone, however, agrees that classical
quantification of uncertainty is useful. It is claimed that not all
experiments can (will) be replicated. For example, the critics
ask: How do we quantify uncertainty of the event of a nuclear
war? How do we replicate a time series of populations? We
find this objection fundamentally vacuous because, by its very
nature, modeling of a natural phenomenon using a statistical
model assumes the possibility of replication of the experiment.
If replication of an experiment is impossible, statistical modeling
of such an experiment is also impossible, nay meaningless.
Unfortunately, even if we accept the Classical approach to
quantification of uncertainty in principle, there are problems
when applied to inferential statements.
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3.2. Conditional Inference and Post-data
Uncertainty
Let us continue with the question of estimating themean biomass
in each management quadrat. Previously, we assumed that all
quadrats were identical to each other. It is reasonable to think
that each quadrat has different mean biomass that depends
on the habitat covariates of that quadrat. Let us assume that
Yi ∼ N(Xiβ , σ ). This is a simple linear regression through
the origin model with a single habitat covariate and constant
standard deviation.

Given the data, that now consist of (yi, xi) where i = 1, 2, ..., n,
theMLE of β is given by β̂ =

∑

xiyi/
∑

x2i where the summation
runs over i = 1, 2, ..., n. Suppose, again unrealistically, that the
standard deviation is known. The question now is: What is the
uncertainty associated with the estimator of the slope β? Because
of the Normality assumption, we can represent the uncertainty
using the variance of the estimator. Surprisingly, there are two
possible answers to this question.

1. Conditional variance: The standard answer in regression
analysis, e.g., Ramsey and Schafer (2002), is
Var(β̂|(xi, i = 1, 2, ..., n)) = σ 2/

∑

x2i . Notice that the variance

of β̂ depends on σ but more importantly also on the observed
values of the covariates x1, x2, ..., xn. If the observed set of
covariates are widely dispersed, the variance of β̂ is small
whereas if the observed set of covariates are not dispersed, the
variance is large. This is why, in planning ecological studies or
constructing sampling designs, we aim to have high dispersion
in the covariate values. To most researchers, this makes
intuitive sense. With this, the true sampling distribution of β̂
is given by:

β̂ ∼ N(β ,
σ 2

∑

x2i
)

This measure of uncertainty assumes that the replicated
experiments are such that the covariate values are identical to
the ones in the original experiment, namely, xi, i = 1, 2, ..., n.
The only difference between the replicate experiments is in
the values of the responses Yi, conditional on the original
covariate values. This is why it is called “conditional variance.”

2. Unconditional variance: On the other hand, one can argue that
because our study is an observational study, if we replicate
the experiment the specific covariate values that different
experimenters would observe are likely to be different.
Thus, an argument can be made that when characterizing
uncertainty we should account for the possible variation in the
covariates as well. Let us assume that the covariate values arise
from N(0, 1). That is, if we plot a histogram of the covariate
values from all the management quadrats, it will have a bell
shape. Under this assumption, it can be shown that, Var(β̂) =
σ 2/(n − 2). This is the variation in β̂ that we will observe if
we replicate the experiment where the covariate values are not
fixed. This variation does not depend on the covariate values
because their values across the replications are different and
hence are averaged over. Because we do not condition on the
covariate values, this is called “unconditional variance.” In this

case, the true sampling distribution is (now, approximately)
given by:

β̂ ∼ N(β ,
σ 2

(n− 2)
)

It is obvious that the length of the true confidence interval is
constant in the unconditional case whereas it depends on the
particular covariate composition in the conditional case. Using
the distribution of

∑

x2i , we can find that, for smallish sample
sizes, about 60% of the conditional confidence intervals will be
shorter than the unconditional intervals and as the sample size
increases 50% of the conditional confidence intervals are shorter
and 50% are longer than the unconditional confidence intervals.

These conditional and unconditional confidence intervals can
be obtained in practice by using bootstrapping (Wu, 1986; Efron
and Tibshirani, 1993). There are two different ways to conduct
bootstrapping for regression. One is called pairwise bootstrap
where we resample with replacement from the pairs (xi, yi). This
leads to unconditional confidence interval. On the other hand,
one can resample with replacement from the residuals ri =

yi − β̂xi denoted by r∗i and then generate the bootstrap samples

using y∗i = β̂ ∗ xi + r∗i . Notice that in this bootstrap, covariate
values are identical throughout the boostrapping procedure. This
conditional (also called, residual) bootstrap leads to conditional
confidence intervals. Notice that residual bootstrap procedure
assumes that the linear regression model is the true model
whereas the pairwise bootstrap procedure does not assume the
correctness of the linear regression. Thus, pairwise bootstrap is
model robust.

Both conditional and unconditional answers are
mathematically correct (that is, they have correct coverage
under the appropriate replication, conditional or unconditional)
but which one is scientifically appropriate? It makes sense to
use the conditional variance if we want to report uncertainty
about the estimate that we obtained based on our own particular
data. For example, if we happen to get a really good sample,
that is, observed sample covariate values are highly dispersed,
we should be fairly confident that our particular estimated
slope is pretty close to the true slope. On the other hand, if
we were unlucky and got a sample such that the covariate
values were not very dispersed, we should not be too confident
about the slope estimate being close to the true slope. The
unconditional variance, on the other hand, seems to penalize
a lucky experimenter and award an unlucky experimenter by
averaging over their performances. But if we want to protect
against possible contradiction by other experimenters, who will
get different covariate values than what we observed, reporting
the unconditional variance makes sense. The answer seems to be
“it depends on the scope of the inference.”

This has puzzled, stumped and bothered the frequentist
statisticians for a very long time (e.g., Fisher, 1955; Cox,
1958; Buehler, 1959; Royall and Cumberland, 1985; Casella
and Goustis, 1995; among many other papers). We will let
the reader read through these papers to see the full technical
and scientific discussion. The ambiguity of when and how to
condition has led to the study of relevant subsets, subsets of
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the sample space over which replication should be considered,
along with conditioning on appropriate ancillary statistics and
more. Much of this discussion revolves around uncertainty
in the parameter estimates. These are statistical constructs.
Although, intuition suggests that conditional inference is both
mathematically correct and scientifically appropriate, there is no
direct, operational way to justify the quantification of uncertainty
about a statistical construct. Suppose we can relate the discussion
to uncertainty about the observables then may be we can
make such statements ascertainable in practice. Would the
prediction accuracy help us decide if the conditional inference is
“scientifically appropriate” without resorting to intuition alone?

3.3. Prediction and Prediction Intervals
Let us first look at how we can solve the problem of prediction
and its uncertainty using the Classical approach (e.g., Lejeune
and Faulkenberry, 1982). Let θT denote the true value of
the parameter and let us assume that the model is correctly
specified. The goal is, given the sampled data, to predict the new
observation and associated prediction uncertainty. This could be
equivalently translated into estimating either the density function
f (y; θT), the corresponding cumulative distribution function
(CDF) F(y; θT) or, more directly the inverse of the cumulative
distribution function, the quantile function, F−1(α; θT). Let us
look at the estimation of the density function.

3.3.1. Estimated Predictive Density
Given the data, we can simply replace the true, but unknown,
parameter θT by its estimated value θ̂ and use f

p
est(y) = f (y; θ̂)

to obtain prediction intervals for a new observation.
Here superscript p indicates predictive and subscript est

indicates estimated predictive density approach. This is certainly
parameterization invariant (at least when MLE is used to
estimate the parameter), as it should be, but depends on the
transformation of the observable. These properties can be proved
quite easily.

1. Let us reparameterize the density using ψ = g(θ) where g(.)
is a one-to-one function. Then, we can write θ = g−1(ψ)
where g−1(.) is the inverse function of g(.). The density is only
a function of y and hence it follows that f

p
est(y) = f (y; ψ̂) =

f (y; g(θ̂)).
2. Let us do a data transformation where z = h(y). In this case,

we have to use the Jacobian of the transformation (Casella
and Berger, 2002) to get the density in terms of z. The
density in terms of z is given by f

p
est(z) = f (z; θ̂)|dh−1(z)/dz|.

The density in terms of z looks quite different. However,
if z1 = h(y1) and z2 = h(y2), then P(Z ∈ (z1, z2)) =

P(Y ∈ (y1, y2)). The prediction intervals are different but the
probability content is the same.

Thismakes perfect sense: If wemeasure the variable on a different
scale, the prediction interval should depend on that scale. For
example, suppose population abundances are modeled as Log-
normal distributions. Then, log-abundances are distributed as
a Normal distribution. One can obtain prediction intervals for
the log-abundances using Normal distribution properties and
simply transform the end points using the exponential transform
to get the prediction intervals for the abundances. Both these

intervals, although numerically quite different, have exactly the
same probability content under the respective distributions. The
coverage probability of the prediction interval, the uncertainty
quantification, remains invariant to the choice of the data
transformation as well as the choice of the parameterization.

The major problem with the estimated predictive density
is that it tends to be too optimistic in the sense that it gives
prediction intervals that are too short and that do not have
appropriate coverage properties. Notice here that the predictive
error statement is aleatory and probeable (Taper et al., 2019),
either by using cross validation or by independent experiments.
One reason for bad coverage property of the estimated predictive
density is that it does not take into account the estimation error
in θ̂ (e.g., Aitchison, 1975; Cox, 1975). There are many different
approaches to account for the estimation error (e.g., Smith, 1998)
each with its own pros and cons. One of the straightforward
approaches (e.g., Hamilton, 1986) is based on accounting for
estimation error by using the following.

3.3.2. Classical Predictive Density

f
p
C(y) =

∫

f (y; θ)φ(θ; θ̂ , I−1(θ̂))dθ

Where φ(θ; θ̂ , I−1(θ̂)) is the asymptotically Normal sampling
distribution of the estimator and I(θ̂) is the usual estimated Fisher
Information matrix (e.g., Casella and Berger, 2002; Ramsey and
Schafer, 2002).

Notice that the integration is with respect to θ and not θ̂ ,
which makes a clean, philosophically sound justification for this
approach awkward. The estimated Fisher Information matrix
can be replaced by the observed Fisher Information matrix (e.g.,
Efron and Hinkley, 1978). The above definition of predictive
density, of course, assumes that the sampling distribution of θ̂
can be well-approximated by the specified Normal distribution.
One can, naturally, replace the asymptotic approximation of the
sampling distribution by the bootstrap estimate of the sampling
distribution (Harris, 1989). In the context of the linear regression
problem discussed above, this immediately raises the question:
“which sampling distribution” should we use for integration,
conditional or unconditional? For example, a pairwise bootstrap
for regression (Efron and Tibshirani, 1993) will lead to different
predictive density than using the residual bootstrap (e.g., Wu,
1986). The first one leads to unconditional whereas the second
one leads to conditional sampling distribution but assumes that
the regression model is appropriate. A conditionally appropriate
solution to this problem was provided by Vidoni (1995) where
he uses the p*-approximation to the distribution of the MLE
as suggested by Barndorff-Nielsen (1983). He also uses the
Laplace approximation (Tierney and Kadane, 1986) to avoid
the integration altogether. What properties are satisfied by the
Classical predictive density?

Shen et al. (2018) (see also Lawless and Fredette, 2005;
Schweder and Hjort, 2016) consider the prediction problem from
the frequentist perspective in detail. They consider a general form
of the predictive density, namely f

p
Q(y) =

∫

f (y; θ)dQ(θ) =
∫

f (y; θ)q(θ)dθ . where Q(θ) is any distribution on the parameter
values of θ . The different predictive densities described above
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are particular cases of this general form with different Q(θ).
For example, when we use the Classical predictive density
following Hamilton (1986), we use Q(θ) = Normal(θ , I−1(θ̂)).
An important result they prove is that the Classical predictive
density has correct coverage probabilities only if the estimated
sampling distribution of θ̂ has correct frequentist coverage
(Shen et al., 2018, p. 130). They show that the predictive
densities in the form similar to the ones defined above are
superior to the estimated predictive density (which is nothing
but using a degenerate Q(θ), degenerate at θ̂) in terms of
average Kullback-Leibler divergence and in terms of prediction
error. They study parameterization invariance of the coverage in
some cases. The conclusion is that it does not hold in general.
The error probabilities (coverage properties) of these inferential
statements are generally not parameterization invariant for
small samples but they are parameterization invariant for
large samples. This is because most estimators have sampling
distributions that are asymptotically normal. If an estimator does
not have asymptotically normal distribution, it is not clear if the
parameterization invariance will hold true in such cases.

The predictive density for the linear regression through origin
(also considered by Shen et al., 2018), using the conditional
variance, is easy to derive and to justify by noting that:

Ynew − Xnewβ̂ ∼ N(0, σ 2 + σ 2 X2
new

∑

X2
i

)

where the second component in the variance is due to the
estimation error of β̂ . This is how, generally, one obtains
the prediction interval for linear regression (e.g., Ramsey and
Schafer, 2002).

One can obtain an approximate predictive density based on
the unconditional variance as:

Ynew − Xnewβ̂ ∼ N(0, σ 2 + σ 2 X
2
new

n− 2
)

An obvious comparison would be to see which density comes
closest to the true density

Ynew − Xnewβ ∼ N(0, σ 2)

See Figure 2 for a visual comparison between estimated,
conditional and unconditional predictive densities (for a
particular observed sample) along with the true predictive
density. In the figure, we illustrate four different samples to
show that sometimes estimated predictive density comes closer
to the true density and sometimes it can be quite different,
depending on how close the estimated parameters are to the true
parameters. The general predictive density f

p
Q(y) averages these

different estimated predictive densities to get, on an average,
better performance.

Shen et al. (2018) compare the prediction coverage
performance of the estimated, exact conditional and
using the conditional bootstrap sampling distribution. In
the Supplementary Material, we provide an R code that
confirms that both conditional and unconditional predictive

FIGURE 2 | The true density for the new observation under the linear

regression through origin is different than the estimated predictive density

based on the observed data. Classical conditional, Classical unconditional

have slightly fatter tails than the estimated predictive densities. This leads to

somewhat better coverage properties by accounting for the sampling

variability. Evidential predictive density also has fatter tails than estimated

predictive density. Its calculation, however, does not need sampling

distribution and hence specification of the experiment to be repeated. It

reflects the information in the observed data appropriately.

densities lead to correct predictive coverage of a future
observation but conditional prediction intervals are shorter
than the unconditional intervals when

∑

X2
i > (n − 2) and

longer otherwise. An immediate implication is that because
conditional prediction intervals have correct coverage, when the
unconditional prediction interval is shorter than the conditional
prediction interval, it will have less than nominal coverage for
those covariate configurations and when unconditional interval
is longer than the conditional interval, it will have larger than
nominal coverage for other covariate configurations. This implies
that unconditional intervals are either unnecessarily conservative
or incorrectly optimistic, but never correct conditionally
(although correct on an average). This justifies the use of
conditional variance in practical terms instead of “intuition.”
See Royall and Cumberland (1985) for a similar argument
in the context of finite population sampling. The differences
between conditional and unconditional prediction intervals can
be substantial when there are large number of covariates that
leads to more variation in the covariate configurations.

3.4. What Should We Do?
It is clear that reporting the uncertainty in inferential statements
about the parameters is tightly related to the question of
“which experiment do we replicate?” Reporting the uncertainty
about the parameters leads to the difficulties of “unconditional”
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vs. “conditional” (sometimes also termed pre-data and post-
data) uncertainty. Because models and parameters are purely a
statistical construct, the uncertainty statements related to their
values are not justifiable directly and in practical terms. On the
other hand, the observations have real world meaning. Reporting
the uncertainty in statistical inference procedure in terms of
its predictive accuracy is unambiguous. Thus, we can compare
and contrast different uncertainty quantifications in terms of
their predictive accuracy. For example, looking at the predictive
accuracy, we can conclude that conditional predictive uncertainty
is not only scientifically appropriate but also practically correct
and better than the unconditional predictive uncertainty. Let us
summarize what we can say about the Classical predictive density
in the light of the desiderata from section 2.

1. The Classical predictive density is not parameterization
invariant unless the sampling distribution is completely
known, that is, it is a pivotal statistics (Shen et al., 2018).
Sampling distribution based on the asymptotic normal
approximation or the inversion of the Likelihood ratio
test based on the asymptotic Chi-square approximation
or bootstrapping leads to parameterization invariance of
the predictive density. Thus, parameterization invariance
is achieved only when valid bootstrapping of the data
is possible or when the sample size is sufficiently
large. However, bootstrapping time series or spatial
data is not possible without some, possibly strong,
additional assumptions.

2. Most of the results regarding the predictive density are proved
under the assumption that the estimators are consistent and
have asymptotically normal (CAN) distribution. However, in
many complex ecological models, the conditions for CAN
estimation may not be satisfied. For example, estimation of
the boundary parameter commonly leads to estimators that
are not CAN estimators. Such models may require non-
standard asymptotics where the estimators approach the true
value of the parameter at a rate different than

√
n or the

asymptotic distribution may be different than Normal. It
is unclear which of the above results hold true in such
a situation.

3. The Classical predictive density does not automatically reflect
how informative the observed data are. Unfortunately there
is no general recipe to construct correct conditional or post-
data sampling distribution for small samples. If one uses
observed Fisher information (Efron and Hinkley, 1978) for
the computation of predictive density, it appears to use the
correct conditioning. See also Vidoni (1995) for appropriate
conditioning in predictive density for small samples.

4. The Classical predictive density leads to correct predictive
coverage only if the sampling distribution of θ̂ has correct
frequentist coverage properties. In general, the validity of the
confidence intervals or prediction intervals can be rigorously
proved only for large samples. Unfortunately, what is a large
sample and if one has it in practice is never known. Whether
or not a sample size is large, depends on the complexity of the
model (e.g., Dennis, 2004).

5. Of course, even with proper conditioning under the
presumed model, if the true regression model in the above

example were non-linear or if the variance depended on
the habitat covariates, the prediction intervals would have
incorrect coverage.

6. Ideas, such as cross validation can be used to test the validity
of the predictive density. Thus, these inferential statements are
fully probeable.

7. Model estimation and model selection using cross validation,
one of themost commonly used approach inmuch of machine
learning literature, is based on computing themean prediction
squared error or some modification of it (e.g., Hastie et al.,
2009). It is important to note that the method of cross
validation, as is commonly used, is based on minimizing
the unconditional prediction error as described earlier. This
is troublesome. Furthermore, cross validation based model
selection and Akaike Information Criterion (AIC) are closely
connected to each other (Stone, 1977). However, Dennis et al.
(2019) show that, according to the Evidential paradigm, use of
AIC for model selection is problematic because the probability
ofmisleading evidence does not converge to zero as the sample
size increases.

8. Instead minimizing the MPSE, we suggest that one should
check if the predictive density leads to appropriate prediction
coverage. One could compare the predictive density with a
non-parametric estimate (if such an estimation is possible) of
the data generating mechanism, e.g., a non-parametric density
estimate in the case of independent, identically distributed
random variables. Any differences not only indicate that the
model is incorrect but also can lead to model diagnostics and
model correction.

In summary, the Classical approach satisfies some of the
desiderata for the quantification of uncertainty. However, in
order to get the sampling distribution, we have to address the
crucial question of “which experiment do we repeat” and the
answer is not straight forward.

4. UNCERTAINTY IS ALL IN YOUR MIND:
EPISTEMIC PROBABILITY FOR
QUANTIFICATION OF UNCERTAINTY

Classical uncertainty quantification is based on the properties
of the procedures over replications of a specified experiment.
Implicitly what is being claimed is that if the procedure is
good on an average, the specific inferences are good as well.
Of course, a good cook does not guarantee that a specific meal
would be good; by chance, although rarely, you might get a bad
meal. Is a specific inferential statement based on more accurate
procedure better than one based on a less accurate procedure?
For example, suppose we get exactly the same blood pressure
(BP) measurement based on a drug store machine vs. in a
doctor’s office, should we take both of them equally at face value?
Intuitively most would say no. However, not all statisticians
agree with the quantification of uncertainty in terms of the
accuracy of the procedure. They claim, because accuracy of the
procedure is no guarantee that a particular inferential statement
is good or bad, we cannot use it as a measure of uncertainty.
They do not think it is epistemically correct to average over
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samples that we could have, but did not, observe. So how should
we approach the question of quantification of uncertainty of a
statistical inferential statement that reflect the lucky (or unlucky)
observed data appropriately?

Bayesian approach assumes that, even before collecting the
data, the experimenter is able to quantify their uncertainty
about the value of the parameter. This may be based on prior
experience about a similar situation, e.g., measurement error of
the BP machine, distribution of the BP measurements in the
population, prevalence of a disease, previous surveys in that
study area, related surveys elsewhere or basic natural history
of the species. Suppose one can quantify such prior belief in
terms of a proper statistical distribution (that means it should
be positive, countably additive, integrate or sum to 1 etc.). Such
a distribution is called a “prior distribution.” This distribution
describes the prior (to data) uncertainty about the parameter
as quantified by the particular researcher. This is an epistemic
uncertainty. This cannot be challenged nor can it necessarily be
probed empirically. In this context, now we ask the question:
In the light of the data, how do we change our prior beliefs
(distribution)? Standard conditional probability calculation can
be used to answer this question.

There are three components to every Bayesian analysis.

1. Prior distribution: Let θ denote the parameter of the model.
This could be a vector indicating multiple parameters (as
in multiple regression). Let 2 denote the parameter space,
the set of values that the parameter can potentially take. We
will generically denote the prior distribution by π(θ). This is
assumed to be a proper statistical distribution. Thus, π(θ) > 0
for all θ ∈ 2 and

∫

π(θ)dθ = 1.
2. Data generation model: This is the process model that

postulates how the data are generated in nature. This is a
statistical distribution on the observables. It varies for different
values of the parameter. We will generically denote this by
f (y(n)|θ) where y(n) =

{

y1,y2,..., yn
}

is the data vector.
3. Posterior distribution: The conditional probability

distribution of the parameters given the data is called
the posterior distribution. It is given by

π(θ |y(n)) =
f (y(n)|θ)π(θ)

∫

f (y(n)|θ)π(θ)dθ

We want to emphasize that, under the Bayesian framework, the
model, as indexed by the parameter value, itself is a random
variable. The prior distribution represents the researcher’s belief
about how probable a particular model is to represent the
underlying process. This is an epistemic probability.

The posterior distribution completely quantifies the
researcher’s belief about the appropriateness of the model
in representing the underlying process, after or in the
light of the observed data y(n). Although the process model
component is an aleatory probability, the posterior distribution,
that combines epistemic and aleatory probabilities, is an
epistemic probability.

In the Bayesian paradigm, the posterior distribution plays
the same role that sampling distribution played in the
Classical paradigm. Using the sampling distribution, we obtained

FIGURE 3 | Illustration of a prior distribution, likelihood function, and posterior

distribution for the linear regression through origin: notice how much the data

can change the prior beliefs. Highly informative data change the prior

substantially and vice versa.

confidence intervals that represented the range of estimated
values that one may obtain if we replicate the experiment.
Using the posterior distribution, one computes an interval that
represents the experimenter’s belief about the range of values that
the true parameter could take. This is called a “credible interval.”
There are no replicate experiments. Only one experiment was
conducted and it resulted in the observed data. What changed,
in the light of the data, are the prior probabilities about different
parameter values. Just as the prior uncertainty was all in the mind
of the experimenter, posterior uncertainty also is in the mind of
the experimenter. See Brittan and Bandyopadhyay (2019) for a
philosophical discussion on this point.

In Figure 3, we illustrate these three components for the linear
regression through the origin example of section 3.2. We note
that one can use credible interval to address the replicability of
the inferential statement: How often do we believe we would be
contradicted if someone replicates the experiment? The answer
varies depending on the prior distribution. A credible interval
does not have the interpretation of “how often would we cover
the true parameter value if we repeat the experiment?” The
uncertainty here is epistemic and is not testable.

Effect of the choice of the prior on the posterior distribution:
It is obvious that if one has different prior beliefs, the posterior
beliefs will be different even if the observed data are identical.
In Figure 4, we illustrate how the posterior distribution changes
with two different priors for the same observed data for the linear
regression model considered earlier.
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FIGURE 4 | Different prior distributions lead to different posterior distributions.

They both cannot possibly have correct frequentist coverage. Their validity is

epistemic and is not testable in any practical fashion.

We invite the reader to play with the R code provided in the
Supplementary Material to see how choice of the prior affects
the posterior distribution.

We emphasize again that the posterior uncertainty does not
reflect simply what the data says but reflects a combined effect of
the prior beliefs and the information in the data. The probability
statement reflected in the credible interval has no aleatory
meaning. The uncertainty here is epistemic; it is neither testable
nor verifiable in any fashion.

Note: A referee raised the possibility of checking the
frequentist validity of the Bayesian credible intervals using
the replicate experiments. Various researchers (e.g., Datta and
Ghosh, 1995) have tried to study the frequentist validity of
the Bayesian credible intervals. There are two problems with
this comment.

• First problem is that the Bayesian credible intervals depend
on the choice of the prior. This implies that not all priors
can lead to credible intervals with good frequentist properties.
We do not know if our particular choice of the prior will
lead to good frequentist coverage. The research related to
constructing priors that lead to correct frequentist coverage,
called Probability Matching Priors (e.g., Datta and Ghosh,
1995), shows that it is extremely difficult to construct such
priors, even for simple models and single parameter situation.

• Second problem is that if we are using the frequentist validity
as a criterion for justifying Bayesian inference, we again face
the difficulty of answering the question: which experiment
do we repeat, conditional or unconditional? Would we be
reporting proper post-data uncertainty? This justification
violates the strong likelihood principle (e.g., Berger and
Wolpert, 1988), that says that uncertainty should depend only
on the data at hand and not on what other data one could have
observed had the experiment been repeated, that Bayesian
approach considers sacrosanct.

4.1. Bayesian Prediction and Prediction
Uncertainty
As we did previously, it seems reasonable to relate the uncertainty
statements to observables rather than the parameters facilitating
testing and falsification in practice. We will describe the ideas
under the assumption that the data are independent and
identically distributed but they are easily extended to non-
identically distributed or dependent data, such as space-time
series of population abundances.

1. Prior predictive density: We can obtain Bayesian predictions
even before obtaining any data. This is called a “prior
predictive distribution.”

f (y) =

∫

f (y|θ)π(θ)dθ

2. Bayesian predictive density: In the light of the data, the
prior predictive distribution changes to posterior predictive
distribution and is given by

f
p
B (y|y(n)) =

∫

f (y|θ)π(θ |y(n))dθ

where y(n) denotes the data vector of length n.

4.1.1. Parameterization and Bayesian Predictive

Density
According to desiderata 1, uncertainty about prediction of the
future observation should not depend on the parameterization
used in the modeling. To our surprise, unless we are
misunderstanding, Bjornstad (1990) seems to claim that the
Bayesian predictive density is not generally parameterization
invariant. Suppose the prior distribution is uniform distribution
on the parameter space. Then, using Laplace approximation
(Tierney and Kadane, 1986), one can write the Bayesian
predictive density approximately as (Leonard, 1982):

f
p
B (yn+1|y(n))

.
=

∣

∣

∣
I(θ̃)

∣

∣

∣

0.5 ∣

∣

∣
I(θ̂)

∣

∣

∣

−0.5 L(θ̃; y(n+1))

L(θ̂; y(n))

where y(n) = y1, y2, ..., yn, y(n+1) = y1, y2, ..., yn, yn+1, θ̂ is the

MLE based on the data y(n) and θ̃ is theMLE based on y(n+1). The
matrix I(.) is the Fisher Information matrix. The non-invariance
of the Information matrix to parameterization seems to make the
Bayesian predictive density non-invariant to parameterization.

4.1.2. Sensitivity to the Choice of the Prior

Distribution
It is obvious that as different priors lead to different posterior
distributions, they also lead to different post-predictive densities.
In Figure 5, we first depict the prior predictive densities induced
by different priors along with the true density of the new
observation for the linear regression model. It is clear that
prior predictive densities or equivalently, induced priors on the
observations (Lele, 2020) can be quite different from each other
and the true density,

Frontiers in Ecology and Evolution | www.frontiersin.org 11 March 2020 | Volume 8 | Article 35190

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Lele Uncertainty Quantification

FIGURE 5 | Prior predictive densities for the linear regression through origin

example under two different priors. These represent the prior beliefs about the

observation to be predicted. The true density (black) is presented for

comparison. Prior predictive densities could be close to the true density if the

prior distribution on the parameters is “good” and they can be very far if the

prior distribution on the parameters is “inappropriate.” These are induced

priors on the quantities of interest, namely values of the future data.

In Figure 6, we depict the Bayesian predictive densities
corresponding to different prior distributions. The R code to
produce these figures (with some Monte Carlo variation because
the random numbers for each run are bound to be different) is
provided in the Supplementary Material.

The predictive coverage for these two Bayesian predictive
densities corresponds to their overlap with the true density of the
new observation. Given that Bayesian predictive distributions are
sensitive to the choice of the prior distribution, they all cannot
possibly have correct predictive coverage.

Shen et al. (2018) show that this predictive density will lead
to good coverage only if the posterior distribution is also a
valid frequentist sampling distribution. Given this result, it is
obvious that Bayesian predictive density is unlikely to have
correct coverage properties except in special circumstances or if
the sample size is large enough to use the asymptotic Normal
distribution approximation. Lawless and Fredette (2005) pointed
out that objective Bayesian methods do not have clear probability
interpretations in finite samples, and subjective Bayesian
predictions have a clear personal probability interpretation but
it is not generally clear how this should be applied to non-
personal predictions or decisions. Similar objections were raised
by many authors, e.g., Lele and Dennis (2009), Bandyopadhyay
et al. (2016), Taper and Ponciano (2016), and Brittan and
Bandyopadhyay (2019).

In statistical ecological literature (e.g., Royle and Dorazio,
2008; Kery and Royle, 2016) claims are made that Bayesian

FIGURE 6 | Bayesian predictive densities representing the post-data belief

about the observation to be predicted. Notice how the effect of different priors

has been reduced by the data. They are much closer to the true density

(black curve).

procedures are valid for all sample sizes without clear
specification of the criterion for validity. It is clear that Bayesian
prediction intervals do not have proper coverage as they should,
at least in the aleatory sense. Perhaps the validity of the Bayesian
procedures is also in the minds of the researchers.

4.1.3. Using Prior Data to Construct Prior

Distributions
It may be tempting to think that using past data to construct
prior distributions would be a way out of the subjectivity inherent
in specifying a prior distribution. There are several problems
with this approach. First, using past data implies that the past
experiments are identical to the present experiment. If they
are not, the estimates from the prior data cannot simply be
put together in a histogram and use it to construct a prior
distribution. This assumption may be satisfied in a few instances
but not always. Suppose it is satisfied. In that case, a question
one should ask: Is this the optimal way to utilize the past data?
There is an alternative approach to utilizing the past data using
the so called (ironically, indeed) “Empirical Bayes approach” or
“Hierarchical models” or “Meta analysis” that does not involve
constructing prior distributions from the results of the past
experiments. We simply combine the likelihood functions of the
past data with the likelihood function of the present data, under
the assumption that the parameters of these different experiments
are identical to each other or somewhat related to each other. This
is likely to be statistically more efficient than reducing the past
data to a prior distribution.

4.1.4. Model Checking
Model diagnostics is an essential component of any statistical
analysis. Bayesian model diagnostics is usually based on the
Bayesian predictive density. If the data are consistent with the
Bayesian predictive (commonly called, post-predictive) density,
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it is taken as an indication that themodel structure is appropriate.
However, if the data are inconsistent with the Bayesian predictive
density, a natural question to ask is: What part of the model
is possibly incorrect? How should we modify it? Notice that
the Bayesian predictive distributions (post- or pre-data) are
mixture distributions (Lindsay, 1995). It is well-known (e.g.,
Teicher, 1961; Lindsay, 1995) that given observations from the
predictive (mixture) density, one cannot uniquely determine the
data generating (mixture components) distribution and the prior
(mixture weights) distribution. Hence bad post-predictive fit
does not tell us whether our prior distribution that is incorrect
or the data generating mechanism that is incorrect and in
what fashion. Even when the Bayesian predictive density fits
the observed data well, it could very well be the case that both
the prior distribution and the data generating mechanism are
wrong but they compensate each other’s mistakes to produce
the correct Bayesian predictive distribution. Hence these post-
predictive checks andmodel diagnostics aremore ambiguous and
less useful for scientific analyses than one would like them to be.

4.2. What Should We Do?
As long as one is willing to provide the prior distribution, the
Bayesian approach to uncertainty quantification simply follows
the laws of probability to obtain posterior beliefs about the
parameters and predictive distributions. This appears to be a
simple, elegant and logically coherent solution to the problem of
uncertainty quantification.

An oft quoted, important result related to the Bayesian
paradigm, is called the Complete Class theorem (e.g., Robert,
1994). In statistical decision theory, an admissible decision rule is
a rule for making a decision such that there is no other rule that
is always “better” than it, where the definition of “better” depends
on the loss function. According to the complete class theorems,
under mild conditions every admissible rule is a (generalized)
Bayes rule (with respect to some prior distribution). Conversely,
while Bayes rules with respect to proper priors are virtually
always admissible, generalized Bayes rules corresponding to
improper priors need not yield admissible procedures. Stein’s
example is one such famous situation (e.g., Robert, 1994). The
main caveat that is, conveniently, not stated in the quantitative
ecological literature, is that Complete Class Theorem is only
an existence theorem and it does not instruct us which prior
leads to the admissible estimator or how to construct such a
prior. If your prior happens to be different than this optimal
prior distribution, your results are likely to be suboptimal, if not
downright misleading.

Let us look at the Bayesian prediction in the light of the
desiderata presented in section 2.

1. Bayesian predictive density is not parameterization invariant
unless the sample size is sufficiently large to wipe out the
effect of the prior distribution. This lack of invariance can
be problematic in practice (Lele, 2020). For example, one
can (deviously) choose a parameterization such that Bayesian
predictive distribution comes close to what one wants. This is
the same as someone choosing a prior distribution to support
pre-determined conclusions.

2. Bayesian predictive density automatically reflects how
informative the observed data are. This is one of the attractive
features of the Bayesian approach. It does not average over
good and bad samples as the unconditional variance does
in the Classical approach. Bayesian approach awards the
researcher if the sample is informative and punishes when it
is bad.

3. Bayesian predictive density does not lead to correct predictive
coverage in general. This is obvious because different prior
distributions lead to different post-predictive distributions. All
of them cannot have correct predictive coverage. In general,
the validity of the confidence intervals or prediction intervals
can be rigorously proved only for large samples. What is a
large sample and if one has it in practice is never known.

4. Ideas, such as cross validation can be used to test the validity
of the predictive density. Thus, these inferential statements are
fully testable.

5. If the post-predictive density does not appear to have good
coverage properties, we cannot say whether it is due to
the incorrect data generating mechanism or due to the
prior distribution. Thus, it does not guide us to modify the
data generating model. This is another important practical
limitation of the Bayesian approach.

To summarize, in order to quantify uncertainty in the Bayesian
paradigm one has to answer the question: What is the
prior distribution? The Bayesian uncertainty statements reflect
personal beliefs and hence are not transferable to anyone else,
unless you happen to have the same prior beliefs. Uncertainty
reflected in the posterior distribution has no aleatory meaning
and hence is not probeable. Furthermore, predictive statements
based on the Bayesian predictive densities are not guaranteed
to have correct coverage. Another important limitation of
the Bayesian approach is the lack of model diagnostics and
suggestions for possible model modification. It can diagnose
whether the model fits the observed data or not but, when the
model does not fit the observed data, it cannot localize the errors
in the model specification.

5. EVIDENTIAL PARADIGM AND
QUANTIFICATION OF UNCERTAINTY

We will now study the Evidential paradigm and uncertainty
quantification. For detailed introduction to the Evidential
paradigm (see Royall, 1997). For an easily accessible and
ecologically oriented version (see Taper and Ponciano, 2016 or
Dennis et al., 2019). The Evidential paradigm is still in its infancy
in terms of real life applications. However, we can observe certain
general properties and study it in the light of the desiderata
in section 2.

Royall (1997) claims that statistical inference addresses three
different questions:

1. Given these data, what is the strength of evidence for one
hypothesis vis-a-vis an alternative?

2. Given these data, how do we change our beliefs?
3. Given these data, what decision should we make?
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Royall (1997) uses the likelihood function to quantify the strength
of evidence in the data.

5.1. Likelihood Function
Suppose Y1,Y2, ...,Yn are independent, identically distributed
random variables with Y ∼ f (.; θ) where θ ⊂ 2. The
likelihood function is given by: L(θ; y(n)) =

∏

f (yi; θ). Recall that
likelihood is a function of θ and the data y(n) = (y1, y2, ..., yn) are
considered fixed.

5.2. The Law of the Likelihood
Let θ1, θ2 denote two specific values of the parameters. Then the
strength of evidence for θ2 vs. θ1 is given by the likelihood ratio

LR(θ2, θ1) =
L(θ2; y(n))

L(θ1; y(n))

with values larger than 1 implying θ2 is better supported than θ1
and vice versa.

Strength of evidence can be seen to be a comparison of
the divergence between the true model and the two competing
hypotheses (Lele, 2004; Taper and Lele, 2004; Dennis et al., 2019;
Ponciano and Taper, 2019). The law of the likelihood corresponds
to using the Kullback-Leibler divergence but other measures,
such as the Hellinger divergence, Jeffrey’s divergence, etc. also
lead to appropriate quantification of the strength of evidence with
some important robustness properties (Lele, 2004; Markatou and
Sofikitou, 2019).

The Evidential paradigm is fundamentally different from the
Classical paradigm in that it concentrates not on the control
of error probabilities but on the measure of distance of the
proposed models (hypotheses) from the true model. See Taper
et al. (2019) for further discussion. For example, one fixes a cut-
off point K that indicates the strength of evidence (difference
in the divergences) that will be considered “strong evidence” a
priori. The choice of the value of K is of the experimenter. Given
such a cut-off point, if the LR is larger than this cut-off point,
we say that we have strong evidence for θ2. If it is < 1/K,
then we say that θ1 has strong evidence. Anything in between,
we say that we have weak evidence and neither hypothesis is
strongly supported. For any fixed cut-off value, one computes
probabilities of misleading evidence, weak evidence and study
their behavior as sample size changes. In contrast to the Classical
approach where probability of type I error remains fixed at the a
priori level α, probabilities of both weak andmisleading evidence
converge to zero as the sample size increases. See the papers
by Royall (2000) and Dennis et al. (2019) for more detailed
discussion on this point. Evidential approach can be extended
to the case of evidence for parameter of interest in the presence
of nuisance parameters using the concept of profile likelihood
(Royall, 1997; Royall and Tsou, 2003).

Much of the discussion above is in the context of comparing
two specified parameter values. But it is easy to construct
evidential intervals (e.g., Royall, 1997; Bandyopadhyay et al.,
2016; Jerde et al., 2019) that provide a range of values that
are “well-supported” by the data. This is, in spirit, similar to
confidence intervals and credible intervals. Notice that these

intervals reflect the information in the data appropriately: Highly
informative data lead to shorter evidential intervals and vice versa
in the regression example of section 3.

5.3. Evidential Intervals
Let us consider a single parameter case. An evidence interval for
θ at level 1/K is given by:

{

θ :

L(θ; y(n))

L(θ̂; y(n))
> (1/K)

}

for a fixed value of K > 0. This can be generalized to evidential
sets for multi-parameter situation in a straight forward fashion.

How do we quantify uncertainty in the Evidential paradigm
when the inferential statements are made about the parameters
of the underlying process? The probabilities of misleading
evidence, weak evidence and strong evidence as defined by
Royall (1997) are pre-data quantities. He does not provide any
explicit suggestions as to how to report the uncertainty of the
strength of evidence once the data are obtained. Should one
discuss coverage probabilities of evidential intervals? As we have
argued throughout this paper, without such quantification of
uncertainty, the inferential statements are incomplete. Taper and
Lele (2011) attempt to answer this question using bootstrapping
to compute the post-data error probabilities. Taper et al.
(2019) use bootstrapping to compute the distribution over the
range of values strength of evidence could have taken had
the experiment been replicated. Such calculations seem to be
enormously informative and useful in practice. However, any
such calculation requires answering the same question that
Classical paradigm faced: which experiment do we replicate?
Hence, although Royall’s formulation quantifies the strength of
evidence that satisfies the likelihood principle (but see Lele,
2004), any computation of the uncertainty in the strength of
evidence seems to face the same philosophical problems Classical
paradigm faces. Do we gain anything by using the Evidential
approach? An affirmative answer is provided in Dennis et al.
(2019) in the context of model selection. Can we use prediction
to resolve this problem in general?

The evidential paradigm can also be used for prediction using
various versions of predictive likelihood (e.g., Bjornstad, 1990).
Let us look closely at one such predictive likelihood (Mathiasen,
1979) and our suggestion for its modification. Following Shen
et al. (2018), an intuitively appealing version of evidential
predictive density may be defined as follows:

5.3.1. Evidential Predictive Density

f
p
E (yn+1|y(n)) =

∫

f (yn+1; θ)L(θ; y(n))dθ
∫

L(θ; y(n))dθ

Where yn+1 is the potential value of the new observation. It is
necessary to assume that the integral in the denominator is finite.
This may not be the case if the parameter space is infinite.

Evidential predictive density, in this formulation, is a
weighted average of the data generating mechanism with weights
proportional to the evidence for various parameter values in the
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observed data. This predictive density, in form, is identical to the
predictive density one obtains with a uniform distribution as a
prior distribution. However, if the parameter space is not finite,
such a prior distribution is not mathematically valid as it does
not integrate to 1. Let us look at the evidential predictive density
a little more closely. First notice that the numerator is nothing but
the likelihood function where data are now augmented by yn+1.
Thus, the evidential predictive density can be written as:

f
p
E (yn+1|y(n)) =

∫

L(θ; y(n+1))dθ
∫

L(θ; y(n))dθ

Let θ̃ denote the value of θ that maximizes L(θ; y(n+1)) and I(θ̃)

denote its Hessian, matrix of second derivatives, evaluated at θ̃ .
Similarly, let θ̂ denote the value of θ that maximizes L(θ; y(n))

and I(θ̂) denote its Hessian evaluated at θ̂ . The difference in θ̃
and θ̂ is the effect of having a future observation equal to yn+1.
Now we will use the Laplace approximation described in Tierney
and Kadane (1986) to evaluate the evidential predictive density
approximately as:

f
p
E (yn+1|y(n))

.
=

∣

∣

∣
I(θ̃)

∣

∣

∣

0.5 ∣

∣

∣
I(θ̂)

∣

∣

∣

−0.5 L(θ̃; y(n+1))

L(θ̂; y(n))

The evidential predictive density as defined above is not
parameterization invariant (Bjornstad, 1990). Because Evidential
predictive density and Bayesian predictive density are the same
when one can impose a uniform prior distribution, this result also
implies that Bayesian predictive density is not parameterization
invariant in general. From a scientific perspective, it is clear that
parameterization invariance is of fundamental importance (e.g.,
Bjornstad, 1990). See also Lele (2020) for practical consequences
of lack of invariance in wildlife management.

Suppose we consider the part of the above approximation
that is parameterization invariant as an estimate of the predictive
density, namely,

f
p
E (yn+1|y(n)) =

L(θ̃; y(n+1))

L(θ̂; y(n))

In the following, we will call this as the evidential predictive
density. Notice that the evidential predictive density is
proportional to the predictive likelihood defined by Mathiasen
(1979), namely L(θ̃; y(n+1)). Bjornstad (1990) suggests using
normalized version of the predictive likelihood, namely

f
p
E (yn+1|y(n)) =

L(θ̃;y(n+1))
∫

L(θ̃∗;y∗
(n+1)

)dy∗n+1

for predictive density and

shows that it has good coverage properties. In our case, instead
of the integral in the denominator, we use L(θ̂; y(n)) as an
approximate normalizing constant.

Let us now look at our linear regression problem to see how
the evidential predictive density compares with the true density
of the new observation. Figure 2 illustrates the comparison
between evidential predictive density and the true density for a
new observation and for different sample sizes.

In the Supplementary Material, we have provided an R
code that can be used to reproduce such a figure for different

values of Xnew and other variations. It is clear from this
figure that evidential predictive density is a reasonable, but
not very accurate, approximation of the true density of the
new observation. The area under the approximate Evidential
predictive density is generally not equal to 1 and that may be
the reason for the discrepancy. But such standardization breaks
down the invariance property. The approximation, as expected,
improves with sample size. An extensive simulation study of
the performance of the Evidential predictive density involving
various distributions, dependent data etc. will be needed to
see if this approach is better than other approaches in terms
of prediction coverage or density approximation. One can,
however, study the properties theoretically. The likelihood for
the parameter is only interpretable in a comparative fashion
as a likelihood ratio. It will be interesting to see if the
Evidential predictive density ratios, that correspond to profile
predictive likelihood ratios, will approximate the true predictive
density ratios.

5.4. Important Properties of the Evidential
Predictive Density
1. In the following, we show that this estimator is a consistent

estimator of the true density f (yn+1|y(n); θT). This is an
essential property that has to be satisfied by all predictive
densities. The result follows as long as the MLEs θ̃ and θ̂ are
consistent estimators of θT , the true parameter value.

f
p
E (yn+1|y(n)) =

L(θ̃; y(n+1))

L(θ̂; y(n))

=
f (yn+1|y(n); θ̃)L(θ̃; y(n))

L(θ̂; y(n))
−→f(yn+1|y(n); θT)

as n −→ ∞. This is a “pointwise convergence in
probability” result. It would be useful to obtain a uniform
convergence result.

2. The evidential predictive density is parameterization
invariant. This follows by the parameterization invariance of
the likelihood function.

3. The evidential predictive density, as defined above, does not
require integration, numerical or otherwise.

4. The evidential predictive density is easy to use for dependent
data, such as the time series or spatial data commonly
occurring in ecology and other applied sciences.

5. The evidential predictive density uses neither the sampling
distribution nor the posterior distribution of the estimator,
thus avoids both the specification of the experiment that
is to be repeated under the Classical paradigm or choice
of the prior distribution that should be chosen under the
Bayesian paradigm. Evidential predictive density depends
only on specification of the data generating mechanism.

6. Dealing with random effects, missing data etc. is simply
a prediction problem and hence evidential predictive
density can be used for analyzing hierarchical models.
Thus, this approach is applicable to many ecologically
interesting problems.
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7. The asymptotic validity of the evidential predictive density
does not depend on the asymptotic sampling distribution
or asymptotic posterior distribution. It only depends on
the consistency of the MLE which is a much more relaxed
assumption than existence of the asymptotic distribution.

8. The evidential predictive density is conditionally
appropriate. It conditions on the appropriate ancillary
statistics automatically by using the likelihood function in its
entirety. Highly informative data lead to tighter prediction
intervals and vice versa automatically.

9. The main disadvantage of the evidential predictive density,
as defined above, is that it is not guaranteed to be a
probability density function. That is, it may not integrate
to 1 exactly when integrated over the range of Y . Given the
consistency result, this is only a small sample problem. Initial
simulations suggest that even for small samples, this may
not be a major problem. Similar problem arises for some
non-parametric density estimators based on orthogonal
polynomials (e.g., Prakasa Rao, 1983) without causing many
problems in practice. A simple solution is to normalize

the predictive likelihood using
∫

L(y|y(n); ˜θ)dy. This integral
exists if the range of Y is finite. Simulation results in
Bjornstad (1990) suggest that predictive likelihood has good
coverage properties for reasonable sample size.

10. It is not completely clear how to use general evidence
functions in lieu of the likelihood function in the above
formulation. If such an extension is possible, one may be able
to make such inferences robust against outliers.

6. CONCLUSIONS

We studied three different ways to quantify uncertainty in
inferential statements.We can summarize our findings as follows.

• Classical paradigm uncertainty quantification depends on
deciding which experiment to replicate. Unfortunately this
leads to problems related to the pre- vs. post-data uncertainty.
The Classical uncertainty quantification does not always reflect
what the data at hand says about the parameter or future
observations. It averages the uncertainty over all possible
realizations of the process and hence punishes those who
happen to have good data and awards those with bad data. This
is scientifically inappropriate.

• Bayesian paradigm eschews aleatory probability and uses
epistemic probability to quantify uncertainty. Bayesian
approach does not need to answer the question of which
experiment to replicate and reflects the information in the
data at hand without averaging over what other data might
have been, but were not, observed. But it requires specifying
a prior distribution. Specifying a prior distribution leads to
the problems of subjectivity, aside from the specification of
the data generating mechanism, and possibility of untestable
mis-specification. The optimality claims about the Bayesian
inference are somewhat vacuous because there is no general
recipe to find the prior distribution that leads to such
optimal decisions.

• The Evidential paradigm addresses the issue of conditioning
on the observed data appropriately. It does not require

hypothetical replications of the experiment to obtain
uncertainty quantification about the observables. Evidential
quantification of uncertainty is aleatory, and hence falsifiable
in practice, that depends only on the data generating
mechanism and the choice of the evidence function. One of
the reasonable objections to the classical paradigm is that
the idea of replication makes no sense when analyzing time
series or spatial-time series data. However, evidential support
intervals, error probabilities and evidential predictive density
are applicable in a straight forward fashion to dependent data,
hierarchical models and other more complex situations.

The Evidential paradigm, unlike the Classical and Bayesian
paradigm, has not been extensively field tested in wide range
of practical situations. Its operational feasibility is largely
unknown and needs to be explored. For some examples of its
applications, see Jerde et al. (2019) for an important ecological
application in the study of allometry and Taper et al. (2019) in
model selection for linear regression analysis. Ironically, these
applications point out that reporting the strength of evidence
for different models needs to be bolstered by quantification of
the reliability of the estimate of the strength of evidence. If this
were to be the case in other situations, it will inevitably lead
to the problem of addressing the question: which experiment
do we replicate? and the associated conditionality conundrum.
May be we have not escaped the shackles of the hypothetical
replication of experiments when it comes tomaking inferential
statements about parameters, a statistical construct. On the
other hand, evidential predictive approach seems to satisfy
most of the desiderata. Although promising, jury is still out
for the evidential paradigm.

In conclusion, we show that to quantify uncertainty in statistical
inference, one has to choose either a specification of the
sampling distribution (conditional or unconditional) or a prior
distribution on the parameters or an evidence function. As
scientists and statisticians, we must understand and reflect upon
the implications of each of these choices.
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The reference sequences play an essential role in genome assembly, like type specimens

in taxonomy. Those references are also samples obtained at some time and location

with a specific method. How can we evaluate or discriminate uncertainties of the

reference itself and assembly methods? Here we bootstrapped 50 random read data

sets from a small circular genome of a Escherichia coli bacteriophage, phiX174, and

tried to reconstruct the reference with 14 free assembly programs. Nine out of 14

assembly programs were capable of circular genome reconstruction. Unicycler correctly

reconstructed the reference for 44 out of 50 data sets, but each reconstructed contig of

the failed six data sets had minor defects. The other assembly software could reconstruct

the reference with minor defects. The defect regions differed among the assembly

programs, and the defect locations were far from randomly distributed in the reference

genome. All contigs of Trinity included one, but Minia had two perfect copies other than

an imperfect reference copy. The centroid of contigs for assembly programs except

Unicycler differed from the reference with 75bases at most. Nonmetric multidimensional

scaling (NMDS) plots of the centroids indicated that even the reference sequence was

located slightly off from the estimated location of the true reference. We propose that

the combination of bootstrapping a reference, making consensus contigs as centroids

in an edit distance, and NMDS plotting will provide an evidential statistic way of genetic

assembly for non-fragmented base sequences.

Keywords: NGS, PhiX174, consensus sequences, bootstrapping, nonmetric multidimensional scaling

1. INTRODUCTION

Assume that you got multiple non-fragmented base sequences assembled from data generated
with next-generation sequencing (NGS) or more advanced methods. We further assume that
we do not have available reference sequences for the material. QUAST (http://bioinf.spbau.ru/
quast) and similar tools would recommend choosing longer sequences as plausible ones. But the
length of the sequence itself does not guarantee how the sequences resemble or correspond to
the correct sequence. Here we propose an evidential statistical method for inferring true sequence
by bootstrapping and Nonmetric Multidimensional Scaling (NMDS) plotting with the assembled
non-fragmented sequences.
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1.1. Background
In evidential statistics, we never seek the true model for a specific
data set. Instead, we choose models supported by the given
data set (Edwards, 1992; Royall, 1997). The information-theoretic
approach also neglects to chase the true model for increasing the
prediction ability of selected models (Burnham and Anderson,
1998; Konishi and Kitagawa, 2004; Akaike et al., 2007). Even in
Bayesian statistics, the true model is believed to be included in
their models with parameter distributions. But the true model for
a specific data set still plays an essential role in biology using base
sequence data.

DNA or RNA sequencing is rather conservative. It relies on
reference sequences often obtained with decades-old sequence
techniques (e.g., Sung, 2017). Assume that you get short segments
of sequences (called “reads”) with NGS methods. Then you have
to align them correctly for constructing the whole sequence.
Reads are inherently erroneous, and you will have to use several
approaches to reconstruct the entire sequence. The reconstructed
sequences could be divergent. But those that resemble the
reference are promising candidates. Here the reference sequences
play the role of type specimens in taxonomical identification
(Ballouz et al., 2019).

But it is well known that different assembly programs return
different assembly results for a given read data (e.g., Salzberg
et al., 2012). Researchers use reference sequences or check
annotation of known genes for correcting resultant sequences
(Sung, 2017; Sohn and Nam, 2018). High variation in sequence
results among assembly programs is mainly caused by applying
only heuristic approaches, such as the base-by-base approach,
de Bruijn graph, and String graph (Sung, 2017; Sohn and Nam,
2018). Random searching is the core for those approaches, but
somehow some assembly programs return the same contig data
(both contents and order of sequences) for a given read data set.
Others return different contigs for a given data in multiple trials.

For example, the insect mitochondrial genome is a compact
circular molecule typically 15–18 kb in size (Cameron,
2014). Recently two genome sequences of mitochondria of
Acanthoselides obtectus were proposed: one with 16,130 bp
(Yao et al., 2017) but the other with 26,613 bp (Sayadi et al.,
2017). The latter sequence includes repetitive spacer sequences
(Figure 1). Usually, repetitive or duplicated sequences are targets
to collapse by assemblers. But the researchers published the
longer mitochondria claim that they used a new and reliable
long-read technique, and hence, the repetitive sequences are real
(Sayadi et al., 2017). From now on, we will have to deal with the
two references for mtDNA of A. obtectus.

What will happen if the reference sequence is not reliable
or not exist at all? How can we choose promising ones among
divergent reconstructed sequences? Conventionally, researchers
believe that the reference sequences are correct. But the
references are also samples obtained at some time and location
with a specific method. How can we measure the reliability of
a reference sequence? Conversely, can we measure the reliance
of an assembly method by assembling random reads generated
with the reference sequence itself? The random read generation
is what we call the bootstrapping of the reference sequence.
We propose that bootstrapping can evaluate and characterize

FIGURE 1 | Two schematic mtDNA of Acanthoscelides obtectus with different

lengths. There are short (1) and long (2) long intergenic spacers (LIGS1 and

LIGS2) in the longer one. Other than the spacers, two mtDNAs are identical.

FIGURE 2 | A schematic genome structure and gene sizes of phiX174. There

are 11 genes, and black regions are intergenic spacers. The arrow indicates

the origin. Note that there is a 4-base overlap between genes A and C.

assembly programs by using distance measurements that play
essential roles in the evidential statistics (Lindsay, 2004).

1.2. Preliminary Analysis With the phiX174
Reference
We tried to reconstruct the genome sequence of a very simple life,
phiX174, an Escherichia coli bacteriophage. (Figure 2). Several
read data sets for phiX174 are available on the internet (e.g.,
https://github.com/gigascience/galaxy-bgisoap/tree/master/
test-data/phiX174). In our preliminary examination with one
of the sample read data, 13 free and frequently used assembly
programs (all programs in Table 1 except Unicycler) fairly well
reconstructed the reference sequence; defect proportion was
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TABLE 1 | List of assembly programs and their characteristics.

Name Version v-status rseed Method Circular No. of copy

A5miseq 20160825 v Doc S,HB Yes 1

ABySS 2.1.0 v Time HB No –

Fermi 1.1 v None S Yes 1

IDBA 1.1.3 v Self HB Yes 1

Megahit 1.1.3 v Fixed HB Yes 1

Minia 2.0.7 c Time HB Yes 3

Mira 4.9.6 v* Time BB Yes 1

Platanus 2.2.2 c None HB Yes 1

Ray 2.3.1 v Time HB No –

SOAPdenovo 2.04.r240 c cmout HB No –

SPAdes 3.14.0 c Fixed HB Yes 1

Trinity 2.11.0 v* Fixed BB,HB Yes 2

Velvet 1.1 c* Time EB Yes 1

Unicycler 0.4.9b – – HB Yes 1

Columns are respectively names of programs, variable statuses of resultant contigs

whether they return constant(c)/variable(v) contigs for the same read data set, random

seed settings, methods of contig assembly, circular capability, no. of copies of reference,

and the proportion of defects region of contigs assembled from 50 randomly generated

read data. Random seed statuses are: doc, documented in the manual; time, time as

seed; none, nothing specified; self, self-made random generator; cmout, random seed

setting commented out; fixed, fixed random seed used. Methods are EB, Eulerian de Bruijn

graph; HB, Hamiltonian de Bruijn graph; BB, base by base; S, string graph. *Indicates that

SRR7700817 was used for checking contig output variability.

<5%. But none of them returned the perfect sequence of the
reference. Most defects were concentrated at the origin (locus =
0) of the circular phiX174 genome.

We obtained similar results when we reconstructed random
reads generated from the reference with a random read simulator,
ART (art-illumina Q version) ver. 2.5.8 (Huang et al., 2011).
None of the assembly software perfectly reconstructed the
reference. Increasing the coverage did not change the results.
Again defects were concentrated at the locus zero of the reference.
But those results might be caused by an artifact; the random
reads were generated, assuming that the reference genome was
linear. Both edges inevitably had minimal coverage that caused
concentrated defects at the head or tail of the sequence. We
should prepare reads generated from the reference assumed to
be circular. We also want to exclude all errors specific to NGS
methods while generating random read data.

1.3. Flow of This Article
We first show how to obtain hypothetical read data sets for
bootstrapping the phiX174 reference sequence in the following
sections. Next, we introduce and characterize 14 free assembly
programs. Then we explain how to analyze resultant contig
sequences. We also introduce the way of constructing consensus
sequences from the resulting contigs. The consensus sequences
were then plotted in an edit distance space with an NMDS
method. For the best-performing assembly program, we tried
to reconstruct mtDNAs of A. obtectus in Yao et al. (2017)
and Sayadi et al. (2017). Results are reported according to the
same order. We discuss the possibility of estimating the true

reference sequence from the NMDS plots of the consensus and
the reference sequences based on the evidential statistics.

2. MATERIALS AND METHODS

2.1. Read Simulators
We surveyed 24 sequence simulators (Alosaimi et al., 2020)
and found that only two of them capable of generating reads
for circular references. One of them adopts GUI, so we have
to use the other one, GemSIM ver. 1.6 (McElroy et al., 2012).
But GemSIM cannot specify random seeds. Moreover, GemSIM
cannot stop errors specific to sequencers. We had to generate
hypothetical random reads without any INDEL and sequence-
specific errors. So we made an Illumina read simulator free
from any kinds of errors by ourselves with Ruby’s programming
language (ringreads.rb, ref.rb, and doRingreads.rb).

The simulator accepts a FASTA file of a circular reference
DNA sequence. A random read generation started from a
location randomly selected within the reference. Then the read
was extended to the prespecified read length. Next, a new starting
point was located apart from the endpoint of the read with the
extent of an insertion length. Then the “paired” read with the
same length was generated, but this new read was transformed to
its reverse complement. In this way, paired-end reads separated
with the given insertion length were generated. This procedure
was repeated for the circular genome until the minimal coverage
for each locus exceeded the pre-specified coverage value. The
Ruby scripts are available at: https://tivoli.ska.life.tsukuba.ac.jp/~
toque/to9ue/ringreads.

2.2. Assembly Programs
We collected 14 free assembly programs (see Table 1).
All programs were installed from source codes or binary
distributions. We used Mac OS X 10. 14.6 on a Mac mini (2018)
and iMac (Retina 5K, 27-inch, 2020) as our computational
environment. We obtained source codes of all software
irrespective of the ways of installation. We focused on program
performance only at the contig construction level because
our target genome of phiX174 was short enough, and each
reconstructed sequence was almost always a single contig. We
did not have to apply any polishing processes, either. Other
than specifying lengths of reads and insertion, we used default
parameter settings for each assembly program. For Unicycler, we
applied normal model, https://github.com/rrwick/Unicycler.

For all programs except Unicycler, we checked whether each
program returned the same contig for the same read data set
for multiple trials. For this purpose, we used reads of Homo
sapience chromosome 3 (30CJCAAXX_4_[12].fq.gz) available
at: http://sjackman.ca/abyss-activity. Please consult the link for
parameter settings for k-mers and insertion lengths. Mira, Velvet,
and Trinity could not handle the chromosome 3 reads, so we
used a smaller data set of Human Mitochondrial DNA from
Postmortem Brain and Blood (SRR7700817 in SRX4559088) for
those three programs.

An assembly program was judged as constant only if both
the order and the content of contigs were the same in multiple
assembly trials. The program was judged as variable otherwise,
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FIGURE 3 | Frequency distributions of the number of random reads for 200

and 500 insertion lengths.

or it was judged as variable even if only the order of the
same contig sets was different. We also checked random seed
settings specified in the source codes of the assembly programs.
Methods for contig reconstruction were examined for each
assembly program based on the description in Sohn and Nam
(2018), Sung (2017), software manuals, and publications on the
software (Chevreux et al., 1999; Boisvert et al., 2010; Grabherr
et al., 2011; Kajitani et al., 2014; Coli et al., 2015; Li et al.,
2015). Only 11 out of 14 assembly programs could handle
reads generated from the circular reference (Table 1). So we
applied randomly generated read data only for those 11 assembly
programs. Please consult doASSEMBLER_NAME.rb at: https://
tivoli.ska.life.tsukuba.ac.jp/~toque/to9ue/ringreads that provide
parameters for assembly programs. For Unicycler, we performed
assembly with and without polishing with the pilon algorithm
using “–no_pilon” option.

2.3. Bootstrapping Reads From the
Reference
We generate 50 random sets of reads from the phiX174 reference
(accession no. NC_001422), in each of which the data structure
was the same as paired-end data of an available read data
set (https://github.com/gigascience/galaxy-bgisoap/tree/master/
test-data/phiX174); read length = 90, insert length = [200, 500],
and the minimum coverage = 20. For each random read data,
we tried to assemble contigs with the 11 assembly programs.
We aligned the resultant contigs to the reference sequence and
examined unique sequences among the 50 contigs for each
assembly program. The number of reads for insertion length of
200 ranged from 3,216 to 3,812. Those for insertion length of 500
ranged from 3,132 to 3,964 (Figure 3).

LEDx,y(i,j) =















max(i, j) if min(i, j) = 0,

min







LEDx,y(i− 1, j)+ 1 (deletion)
LEDx,y(i, j− 1)+ 1 (insertion)
LEDx,y(i− 1, j− 1)+ 1(xi 6=yj) (substitution)

otherwise.
(1)

2.4. Analyzing Contig Sequences
If a resultant contig is different from the reference and a little
longer, we would have two possibilities (Figure 4). One is that

FIGURE 4 | Two hypothetical patterns of defect locations. One is

concentrated at a location, but defect locations are scattered in the other.

defective parts are scattered within the contig. The other is that
defects are concentrated at a specific region, as in the preliminary
experimental results in which we treated the reference as a linear
genome. If we apply BLAST search (https://blast.ncbi.nlm.nih.
gov/Blast.cgi) for the known 11 genes of the phiX174, we would
not be able to reconstruct several genes in the former case. On
the contrary, we could not reconstruct only a couple of genes in
the latter case. We performed BLAST searches for the 11 genes
for the resultant contigs generated with the 11 assembly software
to distinguish the two scenarios. We used the rBLAST library
(https://github.com/mhahsler/rBLAST) for it.

The BLAST search of genes, which adopts the Smith-
Waterman algorithm, can not correctly determine whether a
given contig succeeded in reconstructing the reference because
it arbitrarily inserts gaps or deletion for sequence comparison.
What we want to do is precisely compare a contig and the
reference without any insertion and deletions. To do so, we used
the diffobj library of R (https://cran.r-project.org/web/packages/
diffobj/index.html). Functions of the diffobj work just like the
diff command of UNIX. We can pinpoint the defective parts
among the contig with this functionality. But we should apply the
diff operation to two sequences that start at the same origin.

Resultant contigs started from 5” to 3” arbitrarily. So we
first have to align all contigs to the direction of the phiX174
reference. Then we have to find the true origin corresponding
to the locus zero of the reference because assembly programs
returned linear contigs starting from arbitrary origins. To do so,
we have to use some distance measurements for comparing two
sequences. We applied the Levenshtein edit distance [LEDx,y(i,j)]
defined by three operations: deletion, insertion, and substitution
(Equation 1).

where 1(xi 6=yj) is the indicator function equals to zero when xi =
yj and unity otherwise. LEDx,y(i, j) is the distance between the
first i characters of x and the first j characters of y. Normalized
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Levenshtein edit distance can be obtained by dividing the raw edit
distance with max[length(x), length(y)]. We used the stringsim

function provided by the stringdist library (https://cran.r-
project.org/web/packages/stringdist/index.html) for R ver. 3.6.3.
(R Core Team, 2018).

To find the true locus zero in a contig, we chose a tentative
origin randomly within a linear contig. We decided on another
random starting point if the similarity between the contig and
the phiX174 reference was higher than a pre-specified threshold.
Otherwise, we chose the next origin by bit-wise walking to
the right or left direction. We chose the direction so that the
similarity between the contig and the reference increased. We
stopped the process and defined the location as the locus zero if
we attained the maximum similarity to the reference. We applied
diffobj functions against the reference and the contig starting
from the locus zero.

2.4.1. Consensus Sequence
Consensus sequences that we want to reconstruct differ from
those obtained with conventional bioinformatics software, such
as DECIPHER for R (Wright, 2016). Conventional applications
insert gaps for reconstructing consensus sequences after the
alignment of sequences of the same length. But our consensus
sequences should have no gaps. As a result, the size of our
consensus sequences was indefinite before the reconstruction.

To construct such a consensus sequence of assembly software
from 50 contigs of randomly generated read data, we made
a program equipped with GPU genetic algorithm (GPU-GA)
to search the nearest neighborhood to all 50 contigs within
a Levenshtein edit distance space. For GPU-GA calculation,
we made an R library named gpuga in which We applied
OpenCL (https://www.khronos.org/opencl/) for applying to
GPU hardware including non-NVIDIA products. Note that you
should use R ver. 3.x for running gpuga. The gpuga package
is available at https://tivoli.ska.life.tsukuba.ac.jp/~toque/to9ue/
ringreads.

We first listed up the longest common substrings among
the 50 contigs. We used those common substrings for masking
from INDEL operations during GA calculations. Next, we copied
each of the 50 contigs 20 times for constructing the initial
population of 1,000 bit-strings, each of which represents its
specific contig sequence. We let evolve the bit string population
for 100 generations with setting 0.0001 and 0.002 respectively
for mutation and crossing over rates per bit. The fitness value
is the sum of edit distance from the initial 50 contigs. After
100 generations, we applied bit-shift to the evolved bit-string
population and then tried another ten generations of evolution
to avoid being trapped in local optima.

After obtaining the consensus sequences of assembly
programs, we reconstructed NMDS plots of sequences for
examining relative locations against the reference. According to
Ponciano and Taper (2019), we can obtain reliable estimates of
the generating (true) model by plotting candidate models in a
distance space with NMDS methods. A critical difference from
Ponciano and Taper (2019) is that we do not have parametric
generating functions for reconstructing contigs from the
reference, and we cannot apply estimating methods for neg-cross

and neg-selfentropies. But if we can assume that h2 = 0 in
Equation 9 (Ponciano and Taper, 2019), we can estimate the
true reference location as the origin (0,0) in the reconstructed
NMDS spaces.

Multiple NMDS plots may be derived from the same data.
In our preliminary examination, a general NMDS method
applicable for sequence data (nmds, Taguchi and Oono, 2005)
could not converge to a common spatial configuration. Dr.
Mark L. Taper kindly recommended using mds function
in smacof library (https://cran.r-project.org/web/packages/
smacof/vignettes/smacof.pdf) for NMDS plottings, based on his
experience in Ponciano and Taper (2019), compared to other
NMDS functions available in R. Different NMDS functions adopt
different stress functions being minimized. We checked that 2D
NMDS plots created with metaMDS function in vegan library
(https://www.rdocumentation.org/packages/vegan/versions/2.
4-2/topics/metaMDS), isoMDS (https://www.rdocumentation.
org/packages/MASS/versions/7.3-51.6/topics/isoMDS), and
sammon (https://www.rdocumentation.org/packages/MASS/
versions/7.3-51.6/topics/sammon) in MASS library were
rotationally symmetric with that created with the mds function
of smacof library.

2.5. Reconstructing mtDNA of A. obtectus
We created random reads from the sequence data of mtDNA
of A. obtectus for both references respectively proposed in Yao
et al. (2017) (accession no. KX825864) and Sayadi et al. (2017)
(accession no. MF925724). We adopted the same lengths of reads
(90) and insertion (200 or 500) and the coverage (20) as for the
phiX174. Then we applied for the best assembly program in the
phiX174 trial for reconstructing the mtDNA of A. obtectus. We
analyzed the resultant contigs in a similar way as those for the
phiX174 data sets. But themtDNA sequences are more than three
times longer than that of phiX174, which hindered analyzing
methods, such as using R diffobj libraries.

3. RESULTS

3.1. Assembly Performance
Most contigs generated with assembly software were longer
than the reference sequence. After the BLAST searches, most
contigs had a pattern with defects concentrated on a small
region. In other words, each contig contained an almost perfect
copy of the reference. Analyses with diffobj searches confirmed
this result, and the proportion of discrepancy equals to the
following equation.

1−
Lr

Lc

where Lr and Lc are lengths of the reference and a
contig, respectively.

Contigs generated by assembly methods consist of two groups
based on the size: monomer and polymer ones (Figure 5).
Monomer contigs are those with <6,200 bases. Polymer contigs
include those with two- or threefold lengths of the reference.
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FIGURE 5 | Schematic linear representation of resultant contigs assuming that

defect concentrated at the end of gene A. A monomer contig consisted of

nearly a whole part of the reference (black) and a region mixing the rest of the

reference and defects (gray). Trinity contigs included another complete

reference. Minia contigs contained two perfect copies of the reference.

In the following, we explain the state of contigs for each
assembly method.

3.1.1. Polymer Contigs
Trinity returned all different contigs against 50 random read
data sets, but the size of all of them was 10,795 bases. Each
contig contained a perfect and an imperfect reference sequence
concatenated in a line. Each imperfect reference had an extra
paste margin, and its location was scattered all over among the
11 genes. The distribution was weakly biased to gene H (Chisq=
11.724, df= 6, P = 0.06841, Figure 6).

Minia returned 24 unique contigs with all of which had 16,189
bases. Each contig consisted of two complete and one incomplete
copy of the reference sequence concatenated linearly. The defect
parts were scattered among the incomplete reference but heavily
biased to gene G compared to the reference (Chisq = 33.595, df
= 6, P = 8.055E-06, Table 2, Figure 6).

3.1.2. Monomer Contigs
A5miseq returned 11 unique contigs ranging from 5,461 to 5,465
bases. Fourteen and 36 contigs, respectively, had defects at genes
A and H (Chisq = 56.996, df = 6, P = 1.831e-10, Figure 6). On
the contrary, fermi returned four contigs for each random read
data set. There were 191 unique contigs among them, ranging
from 5,454 to 5,473 bases. Only 33 contigs among them passed
BLAST searches for the reconstruction of 11 genes. But those 33
contigs had defects at small portions within geneD. Other contigs
failed to reconstruct one of the genes of a (A), K, C, and D (not
E) in the BLAST searches. One contig failed gene a (A). Fifty-two
contigs failed gene K. Ninety-one contigs failed gene C. 15 contigs
failed gene D (not E). Because of the high failure rate, we did not
conduct diffobj analyses for Fermi contigs.

IDBA returned only three unique contigs ranging from 5,417
to 5,427 bases. Defects of each contig concentrated at genes
H, A (not a), and E (and D), respectively (Chisq = 166.49, df
= 6, P = 2.2e-16, Figure 6). Megahit also returned only three
unique contigs with the common base length of 5,417. Defects
were heavily concentrated at genes G and H (Chisq = 388.67,
df = 6, P = 2.2e-16, Figure 6). Platanus returned seven unique
contigs ranging from 5,430 to 5,436 bases. Defects were heavily

concentrated at gene G (Chisq = 405.87, df = 6, P = 2.2e-16,
Figure 6). SPAdes returned a single unique contig of 5,441 bases
with a defect at gene H (Chisq = 203.88, df = 6, P = 2.2e-16,
Figure 6).

Unicycler returned eight unique contigs ranging from 5,380 to
5,386. Those with 5,386 bases, which is the size of the reference
genome, completely reconstructed the reference. Others failed to
reconstruct genes F and G (Chisq = 14.691, df = 6, P = 0.0228).
In summary, 44 out of 50 (88%) contigs were the perfect copy
of the reference sequence. Velvet returned 39 unique contigs. All
of them were with 5,416 bases and failed to reconstruct narrow
regions of gene K overlapped with the end regions of genes A, a,
and the beginning of gene C (Chisq = 160.23, df = 6, P = 2.2e-
16). The performance of Unicycler did not change a lot when we
even stopped the polishing process with the pilon algorithm; 39
out of 50 (78%) contigs were still the perfect copy of the reference.

Mira returned 49 unique contigs with 5,803–6,164 bases.
Thirty-four of them completely reconstructed all 11 genes.
Discrepancy regions for the 34 contigs were scattered all around
the reference genome. Among the rest of 15 contigs, two failed
to reconstruct gene A other than the region of gene a. Five could
not reconstruct gene a. Six and two could not reconstruct genes
F and H, respectively. Because of the high rate of failure, we did
not conduct diffobj analyses for Mira contigs.

3.2. Consensus Sequence
We reconstructed consensus sequences for those assembly
methods that returned almost perfect copy or copies of the
reference; we excluded those of Mira and Fermi because those
software returned variable contigs with variable defects. Table 3
shows defect starting locations and similarities against the
reference for those consensus contigs. As expected, the consensus
sequences resemble eachmethods’ majorities, and their similarity
to the reference is more than 0.986. That means the number of
defects or extra bases was about 75 at most. There was no specific
region for defects; incomplete reconstructions occurred at genes
A, C, D, G, and H.

Figure 9 shows the NMDS plot of monomer consensus
contigs with the reference. The mds function of smacof library
returned the same plot for multiple trials. As expected, the
reference (and Unicycler) location was close to the origin (0,0)
in the NMDS plot. Megahit, velvet, and IDBA were moderately
apart from the origin. On the contrary, A5miseq, SPAdes, and
platanus were fairly apart from the origin. Especially, A5miseq
was isolated from the cluster of the other six programs.

3.3. mtDNA of A. obtectus
Unicycler, the best performer in the assembly programs, returned
a unique contig for each random data set. It reconstructed the
same sequence with accession no. KX825864 in 38 out of 50
(76%) data sets. Unicycler returned the sequence with the same
length (16,130) with the reference. For the six data sets of the
rest, the sequence length was 16,129. For the two of the rest,
the sequence length was 16,127. For the last data set, the length
was 16,126.

But Unicycler returned a longer and multiple much shorter
(a 10th of the longer one at most) contigs for random data
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FIGURE 6 | Circular histograms of defect locations on the reference for the nine assembly software.

sets created from the reference of MF925724. The length of
the long contig ranged from 16,576 to 17,284 (Figure 7), which
was enough longer than that of the reference of KX825864. The
number of short contigs ranged from one to eight (mode = 5,
Figure 8). Results were similar even we applied mode = bold to
obtain the minimum number of contigs.

4. DISCUSSION

Reconstructed contigs contained only a slightly incomplete
reference genome of phiX174. Assembly programs were good at
assembling the length of 5.4 ks bases but merely failed to glue
the final contigs’ edges. For making a ring from the resultant
linear contig, software inserted extra bases (the left panel of
Figure 4). Interestingly, there is not much freedom for the gluing
positions for the software that reconstructed monomer contigs.
Contrarily, defect locations were scattered among the genome for
those generating polymer contigs (Figure 4). But the occurrences

of the defective regions were not proportional to the size of genes
(Table 2).

Unicycler almost correctly reconstructed the reference. It is
not so surprising because this assembly software is specially
developed for a circular genome. Interestingly, its backend
software, SPAdes, could not achieve similar performance. It is
also interesting that SPAdes returned a unique answer for all data
set, but Unicycler returned variable solutions. I am not sure the
monomorphic behavior of SPAdes is caused by the fact that its
random seed is fixed to 42, an enigmatic number (e.g., Adams,
1980), for random seeds at several places in its source codes.
SPAdes, IDBA, megahit A5miseq, velvet, and Platanus returned
quite a similar sequence to the reference. Defective locations were
highly concentrated: genes H, A, and G for the programs. Velvet
specifically had defects at gene C. These defect specificity does
not seem to be related to assembly methods nor random seed
specification (Table 1).

Minia and Trinity returned polymer contigs. Interestingly,
the two programs’ contigs included two and one complete copy
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TABLE 2 | Distribution of defects among the seven gene regions. For reference,

gene sizes are indicated.

Method A C D J F G H χ2 P

phiX174 1,539 261 459 117 1,284 528 987 – –

Minia 6 1 0 3 2 9 3 33.595 8.055E-06

Trinity 12 1 8 0 8 4 16 11.724 0.06841

A5miseq 36 0 0 0 0 0 14 56.996 1.831e-10

IDBA 3 0 1 0 0 0 46 166.49 2.2e-16

Megahit 0 0 0 0 0 49 1 388.67 2.2e-16

Platanus 0 0 0 0 0 50 0 405.87 2.2e-16

Spades 0 0 0 0 0 0 50 203.88 2.2e-16

Unicycler 0 0 0 0 3 3 0 14.691 0.0228

Velvet 30 20 0 0 0 0 0 160.23 2.2e-16

A Chisquare and a P-value are results of Chisquare analysis of the distribution of genes

that include defects compared with gene sizes of the reference.

TABLE 3 | The starting location of defects and similarity to the reference for each

consensus sequence.

Method Loci Similarity Gene

A5miseq 4,142 0.986447 A

Fermi – – –

IDBA 3,715 0.994277 H

Megahit 2,461 0.994277 G

Minia 13,217 0.998085 G

(2,445)

Mira – – –

Platanus 2,437 0.991349 G

Spades 3,851 0.989892 H

Trinity 527 0.997869 D

Unicycler – 1.0 –

Velvet 137 0.994461 C

Note that the length of each consensus sequence equals 5,386/similarity.

of the reference with an incomplete one. Those copies were
concatenated linearly. The enlargement of the contigs occurred
by a quite different mechanism from what happened in the
mitochondrial genome of A. obtectus (Sayadi et al., 2017; Yao
et al., 2017); no regions like the repetitive spacer sequences
were detected in contigs for Minia and Trinity (Figure 5). The
mtDNA structure rather resembles that of monomer contigs,
but the defects of the latter were much shorter than LIGSs in
the mtDNAs.

Unicycler fairly succeeded in reconstructing the mtDNA of
A. obtectus for Yao et al. (2017). The success rates dropped only
12% for the reference with the threefold reference. But the longer
mtDNA of A. obtectus proposed by Sayadi et al. (2017) could
not be reconstructed correctly with Unicycler. Resultant contigs
could not converge to a single contig. Moreover, the longest
contigs were much longer than the reference of Yao et al. (2017).
Including LIGS added different features to the reference genome
even though the LIGS are entirely separated from the known gene
regions. The skewness of Figure 7 to the shorter contigs (the left

FIGURE 7 | The length of longer contigs generated by Unicycler for random

read data generated from MF925724 reference.

FIGURE 8 | The number of short contigs generated by Unicycler for random

read data generated from MF925724 reference.

direction) may indicate a bias for estimating shorter contigs, also
criticized in Sayadi et al. (2017).

Evidential statistics uses the evidence functions (e.g.,
likelihood ratios and consistent information criteria) to quantify
the strength of evidence in the data (Royall, 1997; Lele, 2004). If
each reconstructed contigs plays the role of a model in a statistical
sense, distances among contigs or those from the reference can
be a statistical loss function (Lindsay, 2004). If we take the linear
or circular DNA/RNA sequences as models, the Levenshtein edit
distance can be an appropriate distance measurement among
the models and references. The consensus sequence or the
centroid in the edit distance for contigs generated by assembly
programs is a statistical representation of the specific assembly
methods. The consensus sequence of Unicycler coincided with
the reference for the short mtDNA of A. obtectus (KX825864) as
well as phiX174.

Other than Unicycler, reconstructed contigs created by
the assembly programs showed a variation in distance from
the reference. How can this variation be evaluated? The
behavior of consensus sequences may propose two contrasting
understandings. One is simply the bias of the assembly programs
or incorrectness of the reference itself. This possibility is
convincing from the biased defective locations (Figure 6). The
other interpretation might arise if we take the consensus
sequence as a tentative true model. Figure 9 represents plots for
the reference and consensus contigs in the reconstructed NMDS
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FIGURE 9 | Non-metric multidimensional scaling (NMDS) plot in the edit

distance space of the reference and monomer consensus contigs

reconstructed with the seven assembly programs using the mds function of

smacof library. Note that Unicycler was located at the same place with the

reference (Ref).

space. As we expected, the reference and the consensus contig of
Unicycler have their position close to the origin (0,0).

These results may suggest a way of finding the true reference
sequence when you assembly a novel but none-fragmented
genome. Analyzing withmultiple assembly programs, you should
reconstruct consensus contigs of each assembly program. Then
you plot the consensus contigs in a reliable NMDS plot. If there is
no consensus contig near the origin, create candidate sequences
by taking centroids of those consensus contigs until you obtain
a sequence sufficiently close to the origin. But the reference (and
that of Unicycler) was not located precisely at the origin in the
NMDS plot. Because the reference is another sample from the
true model, the origin indicated by the NMDS methods might
show the true reference locations. Once we accept the consensus
contigs’ variation in the bootstrapping of a reference, we will need
an alternative representation of the references.

Conventionally, a reference sequence has been represented as
a single base string. We should express the uncertainty of the
reference for incorporating the variable parts in the reference, as
we see in our bootstrapping results. Although some researchers
claim a necessity for being aware of the stochastic aspects at
each base locus (e.g., O’Rawe et al., 2015), assembly algorithms
incorporating stochastic locus have never been proposed. A
regular expression using the IUPAC nucleotide code (e.g., Paris
and Després, 2012) might be an alternative way to express the
stochasticity of sequence loci. The flexibility of each locus is
expressed with one of the 15 patterns in the IUPAC code. On
the contrary, the flexibility of length is characterized by rules of
regular expression. The major drawback of using such regular

expressions is the lack of standard measurements of distances
against given sequences or regular expressions. It might be a
little bit rude to apply Levenshtein edit distance against those
regular expressions. Approximate regular expression matching is
proposed at most (Belazzougui and Raffinot, 2013).

We proposed an evidential statistics approach consists of
three steps; bootstrapping a non-fragmented base sequence,
reconstructing consensus sequence from the assembled ones,
and plotting the consensus sequences with NMDS. In this new
approach, we still obey the one-base-for-one-locus rule. Those
consensus sequences are centroids of bootstrapped references
and can be taken as approximations of the regular expression
with the IUPAC nucleotide code. They might be more evidential
for a given read data set than a legacy reference obtained with
hopefully reliable but an old sequence method. The proposed
method relies on a strong assumption in which we have already
got non-fragmented sequences for inferring the true reference.
But once you could obtain non-fragmented sequences, and if
we can improve the analyzing method using R diffobj libraries
more efficiently, our method can be applicable for much longer
genomes than that of phiX174.
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Scientists need to compare the support for models based on observed phenomena.
The main goal of the evidential paradigm is to quantify the strength of evidence in
the data for a reference model relative to an alternative model. This is done via an
evidence function, such as 1SIC, an estimator of the sample size scaled difference
of divergences between the generating mechanism and the competing models. To use
evidence, either for decision making or as a guide to the accumulation of knowledge,
an understanding of the uncertainty in the evidence is needed. This uncertainty is
well characterized by the standard statistical theory of estimation. Unfortunately, the
standard theory breaks down if the models are misspecified, as is commonly the case
in scientific studies. We develop non-parametric bootstrap methodologies for estimating
the sampling distribution of the evidence estimator under model misspecification. This
sampling distribution allows us to determine how secure we are in our evidential
statement. We characterize this uncertainty in the strength of evidence with two different
types of confidence intervals, which we term “global” and “local.” We discuss how
evidence uncertainty can be used to improve scientific inference and illustrate this with
a reanalysis of the model identification problem in a prominent landscape ecology study
using structural equations.

Keywords: evidential confidence intervals, unconditional and conditional inference, information criteria, model
selection, non-parametric bootstrap, pre- and post-data inference, profile likelihood, reliability

1. INTRODUCTION

When a person supposes that he knows, and does not know; this appears to be the great source of all the
errors of the intellect.

Plato. The Sophist. 360 B.C.E Translated by Benjamin Jowett

One of the main goals of scientific inference is to delineate and understand the underlying
mechanism of a phenomenon of interest. In practice, scientists have several different hypotheses or
proposed mechanisms, and want to use the observed data to quantify the strength of evidence for
one mechanism over the alternatives. The evidential approach to statistical and scientific inference
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uses estimates of the difference of the divergences from the
true mechanism to the competing mechanisms to quantify the
strength of evidence in the observed data for one mechanism over
the other. The evidence function is an estimator of the sample
size scaled divergence difference between two candidate statistical
mechanisms (Lele, 2004a). Importantly, evidence functions can
be applied pairwise to multiple models to determine the support
for multiple alternative mechanisms.

Dennis et al. (2019) demonstrates that evidential inference
makes fewer errors than does the Neyman-Pearson hypothesis
testing (NPHT) approach at all but the very smallest sample
sizes. This is true if the models being compared are “correctly
specified.” Evidential inference is even more strongly favored if
the model set is “misspecified” (definitions of correctly specified
and misspecified model sets follow below). Unfortunately,
Dennis et al. also shows that the probability of error depends on
the nature of model misspecification and can be large. Ponciano
and Taper (2019) demonstrates that the entire geometry of the
model set and unknown generating process influences inference.
Lele (2020a) discusses that uncertainty in science can be usefully
expressed in multiple fashions. The current paper is written
as a unifying response to these three papers and will be most
clear if read in conjunction with them. The goal of the current
paper is to introduce empirical measures of evidential uncertainty
that are both valid and estimable in the presence of model
misspecification.

Various papers (Lele, 2004a; Taper and Lele, 2011; Taper and
Ponciano, 2016; Jerde et al., 2019) discuss the desiderata that
an evidence function should satisfy. In comparing a reference
model to an alternative, the log-likelihood ratio (LLR) is the
most commonly used evidence function. An evidence function is
usually constructed so that if the realized value of the evidence
function, the observed evidence, is larger than a pre-specified
positive threshold value

(
kR
)
, we say that data strongly support

the reference model. If it is below a negative threshold value(
kA
)

(i.e., closer to negative infinity), data strongly support
the alternative model. If the evidence function is in between
these two thresholds, data are said to be unable to distinguish
between the two models.

A commonly used alternative to the evidential framework,
Neyman-Pearson tests, accords a special statistical status to
the null model in that the type I error probability is fixed
(does not depend on sample size) and the p-value is calculated
with only the null model. Consequently, a variety of inferential
distortions can famously occur when Neyman-Pearson testing
is used for purposes beyond its working specifications (Dennis
et al., 2019). By contrast, in the evidential framework no special
status is accorded either the reference or alternative model. The
designations of reference or alternative serve only to help an
analyst understand which model is supported (relative to the
other) by positive or negative evidence and do not confer any
differences in statistical properties. Royall (1997, 2000) considers
the situation where the reference and alternative models are fully
specified, that is, there are no parameters with unknown values
that need to be estimated from the data. Under the assumption
that the reference model is the true generating mechanism,
he uses the asymptotic distribution of the LLR to compute

the probability of misleading evidence, that is the probability
that observed evidence would strongly support the alternative
(i.e., wrong) mechanism. He also considers the probability
of weak evidence, that is the probability of being unable to
distinguish between the two mechanisms. Following the results
of Godambe (1960), Lele (2004a) shows that, under regularity
conditions, among all evidence functions the LLR is optimal
in the sense that the rate at which the probability of strong
evidence converges to 1 is the fastest. These error probabilities,
especially the probability of weak evidence, are useful for pre-
experiment decisions on sample size (Strug et al., 2007) or
optimal designing of experiments.

Dennis et al. (2019) recognizes the reality that most models are
only approximations and hence the true generating mechanism
is likely to be neither the reference nor the alternative model.
Following Dennis et al. (2019), we consider a model misspecified
if the data distribution it predicts cannot be made to match
the distribution of the true generating process by appropriate
parameterization. A model set is misspecified if all of its
members are misspecified. In practice, the model sets used in
science are almost always misspecified to some degree and may
be badly misspecified particularly during early exploration of
scientific phenomena.

The asymptotic distribution of the LLR under model
misspecification (Vuong, 1989; Sayyareh et al., 2011; Dennis et al.,
2019) depends on the geometry of the misspecification, that is,
how the true generating mechanism and the two competing
model spaces relate to each other. In scientific studies, instead of
fully specified reference and alternative models, one generally has
reference and alternative model spaces, a set of parametric models
whose parameters need to be estimated using the observed data.
Such a set forms a space because its elements have geometrical
relationships such as divergences between them. Dennis et al.
(2019) uses the asymptotic distribution of the LLR to compute
the error probabilities in comparing model spaces when the
true generating model might be outside the specified model
spaces. The current paper lists all possible topologies, i.e.,
configurations, for the generating mechanism and competing
model spaces and corresponding asymptotic distributions of the
LLR. One important feature of these asymptotic distributions
is that the means of these distributions increase toward infinity
at rates proportional to sample size, n, whereas the standard
deviations increase toward infinity at rates proportional to n1/2,
producing tail probabilities (probabilities of misleading evidence)
that converge to zero (because the coefficient of variation goes
to zero). Thus, in all evidential comparisons using the LLR, as
the sample size increases, probability of strong evidence for the
best approximating mechanism converges to 1 and all other error
probabilities converge to 0 (Dennis et al., 2019).

As discussed by Royall (1997, 2000, 2004), this behavior of the
error probabilities is in stark contrast to the classical Neyman-
Pearson approach where the probability of type I error remains
constant for all sample sizes. The consequence to the applied
scientist is that the true generating mechanism is rejected in
favor of a misspecified null some fraction of the time regardless
of the amount of data collected. Of course, classical statistical
inference does not stop at hypothesis testing. It also computes
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the sampling distribution of the estimator of the effect size.
Unlike the probability of type I error in hypothesis testing,
as the sample size increases, the sampling distribution does
concentrate around the true effect size, thus leading to the correct
inference. Royall (2000) and Dennis et al. (2019) obtain this
sampling distribution asymptotically. Several excellent papers
(Linhart, 1988; Shimodaira, 1998; Ng and Joe, 2016) construct
confidence intervals for evidence under model misspecification
using the asymptotic theory of White (1982) and Vuong (1989).
Our experience in simulations is that the distribution of evidence
does not approach its asymptotic form until sample size is quite
large (Jerde et al., 2019; Taper et al., 2019).

Again, the goal of this paper is to obtain a fuller understanding
of uncertainty in observed evidence under realistic sample sizes
by estimating the finite sample sampling distribution of the
strength of evidence under model misspecification via non-
parametric bootstrap. In an earlier paper, Taper and Lele (2011)
had suggested the use of non-parametric bootstrap to understand
finite sample uncertainty in observed evidence when the true
generating mechanism may be different than the reference and
alternative models. This current paper is a detailed exploration of
this suggestion.

The non-parametric bootstrap is a computational approach
(Hall, 1986, 1987; Efron and Tibshirani, 1993) used to get a
finite sample approximation to the sampling distribution of a
statistic that is valid under model misspecification. Generally,
the sampling distribution of the estimator is far more useful for
supporting scientific arguments than is a hypothesis test by itself
(Xie and Singh, 2013; Schweder, 2018).

An inferential statement is any statement about the model
parameters, form of the underlying mechanism, or a future
outcome. An inferential statement becomes a statistical
inferential statement only when a measure of uncertainty is
attached to it (Cox, 1958). An accessible review of various
approaches to quantifying uncertainty in an inferential statement
is available in Lele (2020a). The classical frequentist inference uses
aleatory probability (frequency of an event under hypothetical
infinite replication of experiment) to quantify uncertainty of
an inferential statement. To obtain the aleatory uncertainty
of an inferential statement, a critical question that needs to
be answered is: which experiment/sampling design do we
(hypothetically) repeat? Lele (2020a) uses the simple linear
regression model to illustrate the distinction between the global
(also known as unconditional, pre-data or, pre-experiment) and
local (also known as conditional, post-data or, post-experiment)
uncertainty. In this paper, we augment that illustration by
comparing the differences between global and local uncertainty
in mark-recapture analysis and in structural equations.

Although the unconditional/conditional distinction has been
in the theoretical statistics literature since Fisher (1936), the
difference has not been well understood by ecologists and
scientists in general. To the extent that the difference has been
recognized at all it has been common to ascribe unconditional
inference to frequentists and conditional inference to Bayesians.
However, we agree with Goutis and Casella (1995) that:
“In any experiment both pre-data inferences and post-data
inferences are important, and each can be made within either

frequentist or Bayesian paradigms, which perhaps shows that
the frequentist/Bayesian distinction is not as fundamental as the
pre-data/post-data distinction.”

In the ecological literature, both kinds of intervals have
been used, often without an awareness of the distinction.
This is a mistake, because the two kinds of intervals answer
different scientific questions. In the discussion, we expand on the
interpretation of the two intervals.

Here we consider the evidential approach to model selection
under model misspecification. As was described in Dennis et al.
(2019), the reference and the alternative models are not fully
specified. There are parameters with values that need to be
estimated and hence the set-up discussed in Royall (1997) must
be altered. Because these two competing models may involve
different number of parameters, an unmodified LLR is not an
appropriate evidence function, and the LLR needs to be penalized
for the number of parameters to be estimated (Akaike, 1973).
Furthermore, to make the error probabilities of misleading and
weak evidence to converge to 0 as sample size increases, we
also need to moderate the penalty by a function of the sample
size that grows to infinity at a rate between log(log(n)) and
n (Nishii, 1988). The appropriate evidence functions for the
model selection problem are based on the consistent information
criteria (IC) such as the Schwarz’s Information Criterion (SIC)1

(Schwarz, 1978) that incorporates both the sample size and
the number of parameters in its penalty term. Inconsistent
criteria, such as the Akaike Information Criterion (AIC), tend
to overfit at all sample sizes and do not lead to valid evidence
functions due to the absence of an augmentation of the penalty
by the sample size. Note that despite having a sample size
correction, the AICc (Hurvich and Tsai, 1989) is not consistent.
Its sample size correction is aimed at correcting small sample
bias, not large sample inconsistency. We will return to this point
in the discussion.

All of the above measures are based on the Kullback-Leibler
divergence. However, one can potentially use any divergence
measure and with appropriate (i.e., consistent) sample size and
parameter number penalty function, one can create a valid
evidence function. The evidence function is, as will be made clear
later, a scaled and penalized difference between the estimates of
divergences of two models each to the generating process.

In this paper, we show that model selection based on
a bootstrap bias corrected information criterion known as
the extended information criterion (EIC) (e.g., Kitagawa and
Konishi, 2010) is strongly connected to various bias corrections of
the profile likelihood (e.g., Pace and Salvan, 2006). We combine
these two ideas with the use of a consistent penalty and show that
a non-parametric bootstrap approach can be used to obtain finite
sample and consistent estimates of global and local uncertainty in
the observed strength of evidence for the reference model vis-à-
vis the alternative model. The mathematical details are given in
Section 4. As a consequence of this development, we will use as

1The SIC is frequently referred to as the BIC or Bayesian Information Criterion.
Since we use the criterion as one of a series of criteria, all with frequentist
derivations (Nishii, 1988) we use the notation SIC to avoid Bayesian implications.
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our evidence function the mean of a bootstrapped distribution of
1SICs.

Pace and Salvan (2006) and Kitagawa and Konishi (2010) use
the bootstrap only for computing the bias correction factor. In
contrast, we also use the entire sampling distribution to obtain
valid, finite sample, global and local confidence intervals for the
strength of evidence. That is, our confidence intervals will also be
based on the quantiles of a bootstrapped distribution of1SICs.

These confidence intervals are extremely helpful in drawing
scientific conclusions (Tukey, 1960). For example, if most of the
sampling distribution is above the threshold, we have not only
strong evidence, but it is also very unlikely to be strong by chance.
We define such evidence as secure. If the sampling distribution
is such that a substantial portion is below the threshold, the
observed evidence may be strong, but it cannot be considered
secure, and more data may be needed to clarify the situation.

Hoping to stimulate practicing scientists with the utility of our
approach before they encounter the mathematics of our methods,
this paper proceeds as follows: In Section 2, we discuss the
implications of uncertainty in evidence and the use of sampling
distributions of the strength of evidence in drawing scientific
conclusions in detail. In Section 3 we apply these ideas in a
reanalysis of a prominent ecological experiment analyzed using
structural equations models (SEM) and discuss the scientific
implications of the uncertainty in the strength of evidence.
Section 4 describes the underlying mathematical concepts and
the methodology for computing finite sample, global and local
sampling distributions of the strength of evidence for model
selection. In Section 5, we validate the methodology using
simulations for model selection in linear regression. In Section
6, we discuss implications of the uncertainty quantification of
the strength of evidence for the pursuance of science and suggest
avenues for further research. Section 7 concludes.

2. SCIENTIFIC INFERENCE UNDER
EVIDENTIAL UNCERTAINTY

First, we note that simulations as well as the analytical results
in Dennis et al. (2019) show that the sampling variability in
evidence can be substantial. Hence using empirical evidence
without a measure of uncertainty can be dangerous in
practice leading to overconfidence, wrong decisions, misleading
inferences, and misguided scientific enquiry. Furthermore,
under model misspecification, evidence functions, such as
the LLR and others become detached from model-based
estimates of error probabilities and are just measures of
relative plausibility (Barnard, 1949; Fisher, 1922, 1960; Sprott,
2000). Non-parametric confidence intervals on the strength of
inference then allow us to reattach our inferences to probability
measures, although there is a considerable difference in what
those probabilities mean between global and local inference.
Before discussing the methodology to quantify global and local
uncertainties in evidence and their real-world applications, let
us first discuss how the sampling distribution of the strength of
evidence could be used to draw scientific conclusions.

Royall (1997) considers three categories of strength of
evidence: Strong evidence for a reference model, strong evidence

for the alternative model, and weak evidence when the strength
of evidence cannot distinguish between the two models. Often
in ecological analysis, one finds the strength of evidence that is
neither so weak that one feels comfortable saying one cannot
distinguish between the models nor so strong that one is willing
to stake a reputation on it. Hence, we suggest using five categories
for strength of evidence, inserting categories of prognostic
evidence for the reference model and prognostic evidence for the
alternative. See Box 1 for a more complete discussion.

One final difference between Royall’s characterization of the
strength of evidence and our characterization is that Royall
considered the strength of evidence a ratio of likelihoods. We, on
the other hand always consider strength of evidence as differences
on a logarithmic scale (see discussion in Barnard, 1949). This ties
our conceptualization more closely with information theory and
the comparison of divergences.

This seemingly small difference marks large differences
between our current understanding and that expressed in Royall
(1997). We differ from Royall primarily in two intertwined but
distinct issues. The first is the utility and scope of the “likelihood
principle” (LP). And the second is the usefulness of measures of
“pre-data” and “post-data” uncertainty.

Royall’s (1997) evidence is developed axiomatically from the
“likelihood principle” (Birnbaum, 1962). We do not deny the
likelihood principle within the context it was originally stated:
“We deliberately delimit and idealize the present discussion by
considering only models whose adequacy is postulated and is
not in question” (Birnbaum, 1962). Unfortunately, this means
that the likelihood principle and everything that follows from it
is silent on what happens if models are at all misspecified. We
agree with Sprott (2000, p. 105) that “Since few scientists would
claim that the model and surrounding assumptions are exactly
correct, particularly in the latter situation, the domain of scientific
application of LP seems extremely narrow.”

We develop evidence as the difference of estimates of
the distance of a modeled distribution to the generating
process’s distribution. This definition is compatible with model
misspecification. Further, as we have previously demonstrated
(Lele, 2004a; Taper, 2004; Dennis et al., 2019 in this research
topic), under correct model specification, along with both models
being simple hypotheses (i.e., no parameters with unknown
values), this definition is compatible with the Royall’s likelihood
ratio definition of evidence, if one uses the Kullback-Leibler
divergence as a distance measure. We also suggest and use
distances that are different from KL distance. That negates the
likelihood principle in its purest form. For example, design seems
to play a role (Lele, 2004a; and our discussion in Section 6).

Royall’s commitment to the likelihood principle entails a
stance supporting the irrelevance of uncertainty estimates of
evidence based on sample space probabilities, such as pre-
and post-data error probabilities. Nevertheless, Royall sets great
stock by his argument that you don’t need to worry about the
probability of misleading evidence post data, because it will
always be small if the LR evidence is large. Royall’s argument
falls short when there are parameters with values to be estimated
and/or when there is model misspecification. We have previously
argued (Taper and Lele, 2011; Dennis et al., 2019) that pre-
and post-data measures of uncertainty are useful for scientists
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BOX 1 | Categories of strength of evidence.
Often in ecological analysis, one finds evidence that is neither so weak that one feels comfortable saying one cannot distinguish between the models at all nor so
strong that one is willing to stake a reputation on it. Thus, to the thresholds kA and kR we add the thresholds ka and kr. Evidence between the thresholds kA and ka

and between kr and kR could reasonably be called moderate, but to avoid a clash in abbreviations with the error category of misleading evidence, we will call such
evidence prognostic. Now evidence is divided into five categories: strong evidence for the alternative model, prognostic evidence for the alternative model, evidence
so weak that it is best to say that neither model is favored, prognostic evidence for the reference model, and strong evidence for the reference model.

(1) Strong evidence for the reference model if the strength of evidence is larger than kR.

(2) Prognostic evidence for the reference model if the strength of evidence is between kr and kR.

(3) Weak evidence favoring neither model if the strength of evidence is between ka and kr.

(4) Prognostic evidence for the alternative model if the strength of evidence is between kA and ka.

(5) Strong evidence for the alternative model if the strength of evidence is less than kA.

Royall (1997) pointed out that on occasion, one can have strong evidence that one model, say the reference, in your comparison is closer to the generating process
than the other, say the alternative, when in fact it is the alternative that is truly closer to the generating process. Royall called such counterfactual evidence
“misleading.” With the weaker category of prognostic evidence, it is even more likely that evidence that is counterfactual will be estimated. We designate
counterfactual prognostic evidence as “confusing evidence.” With real data, one does not know if strong evidence is in fact misleading, or if prognostic evidence is
confusing. However, in design and validation studies, whether analytic or computational, the researcher does know when evidence is misleading or confusing, and
these categories are very helpful (see Section 5).

It is important to realize that the sign of evidence only indicates which model is estimated to be closer to the generating process, positive for the reference model and
negative for the alternative. Previously in the literature, kA has been set symmetrically to −kR. In specific cases, there could be reason for asymmetry in thresholds,
either because of asymmetry in probability models or because of decision cost. For simplicity, we adopt symmetric thresholds with −kp and kp indicating the
thresholds between weak evidence and prognostic evidence for the alternative and reference models respectively. Similarly, −kS and kS are the thresholds between
prognostic evidence and strong evidence for the alternative and reference models. The boundaries for our categories then become: strong evidence for the
alternative = −kS, prognostic evidence for the alternative = −kp, prognostic evidence for the reference = kp, and strong evidence for the reference = kS. Jerde et al.
(2019) discuss interpretations for levels of evidence. Following their recommendations, we define kp ≡ 4 and kS ≡ 7.

While we have introduced thresholds, it is important to realize that these are not the absolute accept/reject thresholds of NPHT. They create descriptive categories to
help us think, like the names of colors. Light with a wavelength of 521 nm is called a green while that with a wavelength of 519 is called a cyan, but the difference is
slight. These thresholds should be thought of “as more what you call guidelines, than actual rules”2 (Bruckheimer and Verbinski, 2003).

We note finally that Dennis et al. (2019) used a reversed direction for the evidence scale, in order to compare more clearly evidence analysis with Neyman-Pearson
hypothesis testing. Dennis et al. posed a correspondence between the reference model in evidence analysis and a NPHT null hypothesis, along with a
correspondence between the alternative models, to study error properties of the two analysis approaches. It was convenient to define evidence strength for the
alternative to increase as the evidence function moved in the positive direction (by simply reversing the difference of SICs) instead of the negative direction. This
defined evidence for the alternative model to be in concordance with the direction favoring the alternative hypothesis in NPHT according to the generalized likelihood
ratio statistic (G2), allowing easy study of errors with the well-known asymptotic distributions of G2. Either direction for evidence favoring the alternative model can be
used provided one stays consistent within an application. In the present paper, it is convenient to adopt the convention described earlier in this box, because errors
will be estimated by bootstrapping rather than by asymptotic distributions of G2.

to think about. Even in the correct specification case where the
(post-data) probability of misleading evidence is bounded by
1/LR, other uncertainty measures are useful for study planning
and probing the extent of the results. In the more usual
case of model misspecification, estimation of the probability
of misleading evidence is not simply a matter of transforming
the evidence. We have shown (Dennis et al., 2019) that it also
depends on the geometry of the model set and the generating
process. Importantly, the probability of misleading evidence is
not guaranteed to be small—it can be as large as 0.5. Thus,
measures of the uncertainty of evidence are a critical complement
to an estimate of evidence. Further, to be useful, such measures
must be estimable in the presence of model misspecification.
In this work, we show that non-parametric bootstrap greatly
expands the options, capabilities and the nature of the inferential
problem under which estimating these measures is possible.

We are not alone in our insistence on a measure of
uncertainty in evidence. Alan Birnbaum, after being an early
advocate of Hacking’s (Hacking, 1965) LR formulation of
statistical evidence, strongly repudiated it in Birnbaum (1970,
1972) on the grounds of its lack of confidence measures.

2As voiced by the character Hector Barbossa https://www.youtube.com/watch?v=
6GMkuPiIZ2k&ab_channel=JesseDB

If there has been ‘one rock in a shifting scene’ or general statistical
thinking and practice in recent decades, it has not been the
likelihood concept, as Edwards suggests, but rather the concept by
which confidence limits and hypothesis tests are usually interpreted,
which we may call the confidence concept of statistical evidence.
This concept is not part of the Neyman-Pearson theory of tests and
confidence region estimation, which denies any role to concepts of
statistical evidence, as Neyman consistently insists. The confidence
concept takes from the Neyman-Pearson approach techniques for
systematically appraising and bounding the probabilities (under
respective hypotheses) of seriously misleading interpretations of
data. (The absence of a comparable property in the likelihood and
Bayesian approaches is widely regarded as a decisive inadequacy.)

Birnbaum (1970)

We believe that the current paper rehabilitates statistical
evidence by coupling it with an estimate of confidence.

2.1. Understanding Global and Local
Uncertainty in Evidence
Confidence intervals are a mainstay in ecological inference,
increasingly and justifiably so (Johnson, 1999; Ponciano et al.,
2009; Halsey, 2019; Holland, 2019; Fieberg et al., 2020). They
transmit a more complete and interpretable representation of
the information in data than do hypothesis tests. A confidence
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interval is a range of values for a statistic, a function of the data,
that is expected to cover (capture, include) an estimation target
a given per cent of the time (e.g., 95%) under repetition of a
specified hypothetical experiment (Neyman, 1937). The target
of an interval is something in nature about which we would
like to make an inference such as a population parameter or a
function of a parameter.

For evidence, there are both local and global intervals that can
be calculated (see Section 4 for details). In order to understand
confidence intervals for evidence, it is important to realize that
not only are the interval widths different, but that the targets
are also different.

The global target is the difference between the divergences
of the best possible representations of the two models to the
natural generating process. The uncertainty in the global interval
includes the sampling uncertainty for the data, model estimation
uncertainty given the data, and uncertainty due to model set
misspecification.

The local target is the evidence in the observed data for
the best possible representation of one model over the best
possible representation of the other model. The uncertainty in the
local interval represents just the model estimation uncertainties
given the observed data, and uncertainty due to model set
misspecification.

Global intervals reflect the variation in the estimates
if independent experiments are conducted in a manner
like the original experiment. The local intervals reflect the
informativeness of the specific experimental outcome in hand.

The local interval can capitalize on lucky samples to make
precise inferences about the strength of evidence for the reference
model relative to the alternative model. On the other hand,
with unlucky samples where the parameter estimate may be
far from the truth, the local intervals also end up making
precise but misleading inferential statements. Global intervals,
because they average over all possible datasets, tend to be
wider than the local intervals. They are conservative in their
uncertainty quantification, making strong inferential statements
only cautiously. That does not mean that the global intervals are
without use. Scientific results need to be validated by independent
replication. A global interval indicates how discrepant the results
of a repetition of the experiments could be from the original
before contradicting your results and hence protects against the
possibility of being contradicted. A worked example of global and
local intervals in a mark recapture analysis can be found in Box 2.

2.2. Interpreting Evidential Uncertainty
Generally, desirable properties in confidence intervals are proper
coverage and given proper coverage, shortness of length (Casella
and Berger, 2002). A confidence interval can either cover the
target or it can miss it. If the interval fails to cover the target, it can
either be entirely above the target (miss high) or entirely below it
(miss low) (see Figure 1). It is often, but not always, considered
desirable if intervals that miss the target value are distributed
equally above and below it. Evidence is one of the cases where an
equal distribution of non-coverage is undesirable. In this context
missing high is superior to missing low. Both types of intervals
misrepresent the confidence one should have in the evidence, but

the high miss is at least always indicating a correct assessment
while a low miss could be supporting an incorrect assessment. Of
course, this is assuming the expected evidence is positive, as in
Figure 1, if the expected evidence were negative, the desirability
of missing high and low would be reversed. Really, we mean that
it is better for the interval to miss its target distally from 0 than
to miss proximally to 0. However, in this simulation study the
evidential comparisons are arranged so the reference model is
always the better model as to keep the language of missing high
and low less confusing.

The categories of evidence introduced in Box 1 suggest useful
ways to apply confidence intervals for strength of evidence to
scientific inference. Scientifically, the paramount question is:
is the evidence veridical (i.e., in agreement with fact) or is it
misleading? The intervals we propose estimating can give us
confidence in our answer. We propose that if the proximal bound
of this confidence interval is distal to kS that it be considered “very
secure.” If the proximal bound falls between kS and kp then the
evidence should be considered “secure.” Finally, if the proximal
bound is proximal to kp or the interval overlaps 0 the evidence is
“insecure.”

These three levels of strength of evidence and two levels of
security of evidence create six heuristic categories:

1. Strong and very secure (SV): The point estimate of
evidence (e.g., 1SIC) is strong and the lower bound of
uncertainty indicates that we have confidence that the
target (true evidence) is also strong.

2. Strong and secure (SS): The point estimate of evidence
is strong, and we are confident that the true target is
at least prognostic. There is very little chance that this
evidence is misleading.

3. Strong but insecure (SI): The point estimate of
evidence is strong, but we cannot be confident that
the target is not weak.

4. Prognostic and secure (PS): The point estimate of evidence
is prognostic, and we can be confident that the target is at
least prognostic.

5. Prognostic but insecure (PI): The point estimate of
evidence is prognostic, but we are not confident that the
target is not weak.

6. Weak and insecure (WI): The point estimate of evidence is
weak and thus by definition, we are not confident that the
target is not weak.

As sample size increases, a majority of the sampling
distribution lies above the strong evidence threshold and the
probability of obtaining evidence that is not SS diminishes to
0 (Dennis et al., 2019). There is, of course, the pathological
case where two models are equally divergent from the true
generating process. Were this curiosity ever to occur, then each
model would be strongly and securely selected with probability
0.5. It is arguable that, even in such a situation, no error has
occurred, as in each case a model closest to the generating
process has been selected. Substantial discussion on interpreting
statistical evidence when augmented with confidence intervals
is given in Box 3.
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BOX 2 | Global and local intervals in mark/recapture analysis.
In ecology, where uncertainty in the study systems is ubiquitous, it is common practice to formulate a scientific hypothesis in the form of a simplified probabilistic
model of how the data arose. This simplification allows the analysts to focus the inferential process on a typically small set of quantities bearing strong ecological or
management importance. Such simplifications are in fact conceptual restrictions on how the data arose and are used to formulate the likelihood function. Multiple
uncertainty simplifications/restrictions are incorporated in the form of multiple conditioning layers. Take for instance a simple closed population mark-recapture
experiment where in a first visit to a study area, a number of animals of the species of interest are marked and released. In a second visit, a sample of animals from
the same population are captured and the number of previously marked animals in that sample recorded. Under that setting, different levels of conditioning restrict
more and more the sampling uncertainty while keeping the focus on the same inferential quantity of interest—the total population size. We prefer the terms “global’
and “local” because they evoke the scope of inference that can be addressed by each type of uncertainty. The sampling distribution for global uncertainty is
computed using the entire sample space whereas “local” uncertainty is computed using a relevant subset of the sample space (Buehler, 1959).

The key question in global and local inference is what components of your data do you want to be considered fixed (or given) and what components do you want to
be considered random (or representative). A completely unconstrained interval is considered global. Intervals with constraints are considered local. An alternative
way of approaching this question, which may be clearer for some, is to recognize that a confidence interval represents the variability in hypothetically repeated
experiments. When you treat a component as fixed or random, you are specifying different hypothetical experiments. One of the goals of confidence intervals is to
define what estimates a skeptic who tries to replicate the experiment might obtain. Different types of experimental conditions that the skeptic might use dictate the
choice of the interval.

We illustrate the concepts of global and local inference using the familiar problem of population size estimation using the Lincoln-Peterson estimator. We use the
data from a published experiment on iguana population density to create a realistic framework along with some R commands to demark the global and local
differences clearly in the calculations. The data and a more complete treatment can be found in Powell and Gale (2015).

Below is a mark-recapture data set, describing one re-sampling occasion. On day 3 of their experiment 131 individuals, n, are captured and 116, x, of these have
previously been marked. Initially (days 0, 1 and 2) m = 221 individuals have been captured, marked and released:
m <- 221
n <- 131
x <- 116

From these data we estimate a total population size using the Lincoln-Petersen estimator. Thus, the target for point and interval estimation is the true population size.
As it happens, the same estimator is obtained whether you assume that: (1) Both m and n are fixed. (2) m is considered fixed, but n is not. And (3) Both m and n are
considered random.

While the estimate of the total population for these three cases is identical, the uncertainty around it is not. Each set of assumptions fully determines the confidence
intervals. We demonstrate this via parametric bootstrap (PB) because of how the levels of randomness enter at each stage is much more perspicuous in the PB
code than in the corresponding analytic formulae.

Parametric Bootstrap
Compute the Lincoln-Petersen estimator for the sample at hand as well as the nuisance parameter phi.hat (the capture probability)

t.hat <- floor((n*m)/x) 
print(t.hat) 

## [1] 249 

phi.hat <- n/t.hat # estimated capture probability 
print(phi.hat) 

## [1] 0.5261044 

Now let’s set our PB simulation parameters to these two estimates:

t.true <- t.hat 
phi.true <- phi.hat 

Next, set the total number of simulations
B <- 10000 

and then create empty arrays to store the three types of estimates

# Lincoln Petersen constrained on m and n (ultimate local: fixed m and n)  
LP.mn.bt <-  rep(NA,B) 

#Lincoln Petersen constrained on m (local-fixed- m, but global-random- n)  
LP.m.bt <-  rep(NA,B)  

#Lincoln Petersen unconstrained (Global m and global n i.e. both are random)
LP.bt <-  rep(NA,B)  

Finally, just turn the crank on the PB iterations and store them:

for (i in 1:B){

#### Simulating data and computing t.hat under the first assumption:
X.mn <- rhyper(nn=1, m=m,n=(t.true-m),k=n) #constrained on m and n
LP.mn.bt[i] <- m*n/X.mn

#### Simulating data and computing t.hat under the second assumption
N <- rbinom(n=1,size=t.true,prob=phi.true) # unconstrained
X.m <- rbinom(n=1, size=min(m,N), prob=m/t.true)  #constrained on m but not n
LP.m.bt[i] <- m*N/X.m

#### Simulating data and computing t.hat under the third assumption

(Continued)
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BOX 2 | (Continued)

  M <- rbinom(n=1,size=t.true,prob=phi.true) # unconstrained 
  X <- rbinom(n=1, size=min(M,N), prob=M/t.true)    # not constrained on either 
  LP.bt[i]   <-  M*N/X 
} 
 

# Throw out the outcomes for which x=0. A result of x=0 is possible, but gives  
# an infinite estimate of population size.  
LP.mn.bt <- LP.mn.bt[is.finite(LP.mn.bt)] 
LP.m.bt <- LP.m.bt[is.finite(LP.m.bt)] 
LP.bt <- LP.bt[is.finite(LP.bt)] 

m or n 

It is instructive to look at the sample spaces for these three estimators:

Sample Spaces :

LP.bt : �G = {M ∈ {0, · · · ,T} ,N ∈ {0, · · · ,T} ,X ∈ {max (0,N − (T −M)) , · · · ,min (M,N)}}

LP.m.bt : �L1 = {m,N ∈ {0, · · · ,T} ,X ∈ {max (0,N − (T −m)) , · · · ,min (m,N)}}

LP.mn.bt : �L2 = {m, n,X ∈ {max (0, n− (T −m)) , · · · ,min (m, n)}} ,

where T is the true population size.

The sample spaces are all possible data sets that the simulations could generate under each of the model assumptions. The sample space for LP.m.bt is nested
within that of LP.mn.bt, which is itself nested within the sample space of LP.bt. Clearly, global and local are relative terms. LP.m.bt is local with respect to LP.bt, but
global with respect to LP.mn.bt.

The sampling distributions for the three estimators are plotted in the figure below. We now have three different confidence intervals. Which is right? Statistics by itself
cannot answer that question. These three intervals represent the uncertainty in the hypothetical repetition of three different experiments. In the type 1 experiment,
with m and n constrained, the only thing that can vary experiment to experiment is the number of marked animals in the final day sample.

In type 2, the number of previously marked individuals is constrained but not the final day sample size. The hypothetical experiment is repeated only for the final day;
varying numbers of individuals as well as varying numbers of marked animals may be captured on the final day. In type 3, the entire hypothetical experiment is
repeated. The number of marked individuals, the number of captured individuals, and the number of marked individuals in the second sample may all vary.

The appropriate interval depends on the kind of uncertainty you are trying to represent. The first interval answers the question: How different the estimators of the
total population could be if someone else replicated the experiment such that the total number of marked individuals and total number of captures are identical to
your experiment? This can happen in a field survey where the total number of marked animals and total number of captures is fixed by design, a priori. These
numbers may depend on the budget the researcher might have for capturing animals for marking and for recapturing.

In some situations, such as camera trap surveys, the total number of marked animals may be fixed by design but the total number of captures, by the nature of the
survey technique, is random. The second interval considers this possibility and allows for the randomness in the number of captures to compute the uncertainty in
the total population size estimator. In the case of fish surveys, the number of fish caught in the traps or by electrofishing for marking is necessarily random and so is
the number of fish in the sample afterwards. In this case, the third interval will be appropriate.

Figure Box 2.1 | Sampling distributions and 95% confidence intervals of total population size estimates for three levels of conditioning in Lincoln Peterson estimates.
The ML estimate for all three models is 249. The confidence 2.5 and 97.5% limits are indicated by the vertical lines dropped from each curve to the x-axis. The
intervals become increasingly shorter as the models (hypothetical experiments) become more constrained. Here, as is generally but not universally the case, the
intervals are completely nested.
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FIGURE 1 | Hypothetical coverage of confidence intervals for evidence. The
strength of evidence is the value of an evidence function relating two models
and a data set. Typical evidence functions are LLR or the difference of
information criterion values, 1ICs. In our worked example (Section 3) we use
the Schwarz information criterion. 1SICRA values greater than 0 indicate
support in the data for the reference model relative to the alternative. These
values are indicated by dots in the figure. The vertical bars indicate confidence
intervals for the strength of evidence. The target for a confidence interval on
the strength of evidence is a penalized scaled divergence difference (see
Section 4.1), loosely this is the expected evidence. By design, a perfect
confidence interval, at say the 95% confidence level, will fail to cover its target
5% of the time. If a confidence interval that misses its target is entirely more
distant from 0 than is its target, we say that it misses distally, otherwise we say
that it misses proximally. We will also speak of the bound of a confidence
interval for evidence that is closest to 0 as the proximal bound.

3. EXAMPLE: UNCERTAINTY IN A
STRUCTURAL EQUATIONS MODELS
ANALYSIS OF POST-FIRE RECOVERY OF
PLANT DIVERSITY

To probe the effectiveness of bootstrapping evidence in
realistically complex problems, we revisit the classic analysis of
Grace and Keeley (2006). These authors used structural equation
modeling to study the impact of landscape, environment, and
community factors on the recovery after fire of shrubland
plant diversity.

A recent article on developing causal models (Grace and
Irvine, 2020) revisits the 2006 study and takes a more moderate
stance than the original paper: “Subsequent SEM studies (Keeley
et al., 2008) have enhanced our confidence in the general
inferences drawn from the original study. That said, we would
not claim that all our parameter values are unbiased causal
estimates without further evidence to support such inferences.”
We believe that had Grace and Keeley had the tools for estimating
the two kinds of evidential uncertainties we have developed
here a much more nuanced understanding could have been
gained—even from the original data—as to which paths were
likely to be supported by future work and which were potentially
non-replicable.

3.1 Example Choice
There are reasons why SEM is growing in influence in
environmental informatics, ecology and evolution. First, SEM
allows for legitimate causal inference in situations both in
observational studies (Grace, 2008; Bollen and Pearl, 2013;
Grace and Irvine, 2020) and where experimental manipulation
has been performed (Grace et al., 2009; Breitsohl, 2019).
In fact, path analysis, the precursor to SEM, was first
developed by Sewall Wright (1934) to expose causal effects
to statistical inference. Second, because it is designed for
estimation of a network of causal effects, SEM is well
suited for analyses of the complex patterns of influence
often found in environmental science, ecology and evolution
(e.g., Grace and Pugesek, 1997). Third, SEM recognizes that
many observables may be recorded with measurement error
(Bollen, 1989). The ability to incorporate measurement error
in an analysis eliminates an important source of bias that
has plagued environmental science, ecology and evolution
(Taper and Marquet, 1996; Cheng and Van Ness, 1999).
Implicit in the incorporation of measurement error is the
ability to consider latent variables (i.e., unobserved, and
potentially unobservable variables) (Grace and Bollen, 2008;
Grace et al., 2010). Fourth, causal paths and latent variables
allow linking scientific theory and statistical analysis in a
particularly perspicuous fashion (Grace and Bollen, 2008;
Grace et al., 2010; Laughlin and Grace, 2019). Because of
these beneficial features, SEM is being utilized in growing
number of applications in environmental informatics, ecology
and evolution. The explosive growth of SEM in ecology is
documented in Laughlin and Grace (2019).

Despite its many advantages for scientific thinking, SEM
does present some inferential difficulties (Tomarken and
Waller, 2003). Information can flow between variables
by multiple pathways. As a consequence, the fit of
alternative models and therefore the evidence between
them can vary considerably with small changes in the
configurations of the data. This uncertainty in evidence
needs to be quantified.

A final reason for the choice of the Grace and Keeley
example is the excellence of the original study. The observations
were collected under the direction of Jon Keeley, while the
analysis was conducted by James Grace. Jon Keeley is a
very experienced empirical ecologist, while Grace has been
a leading proponent the application of SEM to ecological
systems. Both are scientists of great distinction. We do
not seek to cavil at pedestrian research but look to see
what bootstrapping of evidence can add to a well done
scientific analysis.

3.2. Example Description
Keeley et al. (2005) and Grace and Keeley (2006) describe
the data collection in detail. In brief, 90 sites in southern
California were surveyed for 5 years following wildfire. Seven
variables were observed indicating 7 latent variables (see Table 1).
Variables were transformed to generate approximate linear
homoscedastic relationships.
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BOX 3 | Interpreting evidence using confidence intervals.

Figure Box 3.1 | depicts some hypothetical confidence intervals for the strength of evidence. The boundaries for the evidential categories are set as: strong
evidence for the alternative = −kS = –7, prognostic evidence for the alternative = −kp = –4, prognostic evidence for the reference = kp = 4, and strong evidence for
the reference = k p = 7.

In interval 1, the observed evidence (e.g., 1SIC), indicated by the filled oval, is strong and the lower bound for the confidence interval is above the strong evidence
threshold. This evidence is designated strong and very secure (SV)—the reference model is strongly supported as being closer to the generating process than the
alternative and there is almost no chance that sampling variation would upset this identification. In this case, the researcher may reasonably conclude that no further
work is needed regarding model identification in this particular model contrast. Possibly, further work may be indicated to improve parameter estimate precision in
the identified better model.

In interval 2, the observed evidence is above the strong evidence threshold, and the proximal bound is greater than the prognostic evidence threshold. We call this
situation “strong but secure” (SS). This implies that the reference model is strongly supported, and it is unlikely (but plausible) that this is due to sampling variation.
Cautious but optimistic interpretation is indicated, and if possible, more data should be collected to confirm the conclusions.

In interval 3, the observed evidence is above the strong evidence threshold, but the proximal bound is less than the prognostic evidence threshold. We call this
situation “strong but insecure” (SI). This implies that while the reference model is strongly supported, it is uncertain due to sampling variation. Very cautious
interpretation is indicated, and if possible, more data should be collected to confirm the conclusions.

In interval 4, the observed evidence is less than the strong evidence threshold, and the proximal bound is greater than the prognostic evidence threshold. We call this
situation “prognostic but secure” (PS). This implies that while the reference model has only moderate support, it is unlikely that this is due to sampling variation. In
this case, the distal bound is less than the strong evidence threshold. It is likely that both models explain the data nearly equally well, but with a slight edge to
the favored model.

In interval 5, the observed evidence is less than the strong evidence threshold, and the proximal bound is less than the prognostic evidence threshold. We call this
situation “prognostic but insecure” (PI). This implies that the reference model has only moderate support and even this may be due to sampling variation. The primary
implication is that more data is needed either within the context of the current experiment or by combining these results with the results of other experiments.

In interval 6 the evidence is weak and insecure (WI). The models are not differentiated by the data. The researcher should collect more data in order to identify the
models. The researcher should of course recognize that not all data is equally informative and seek data that will distinguish the two models (e.g., Cooper et al.,
2008). Another choice that could be made, particularly if large amounts of data have already been collected, is to decide that both models are adequate for the
intended purposes (Lindsay, 2004; Markatou and Sofikitou, 2019).

Intervals 7, 8, 9, and 10 are reflections of intervals 5, 4, 3, and 2, only in this case they are misleading. The designation C stands for confusing evidence, which is
prognostic evidence for the wrong model. The designation M stands for misleading evidence, which is strong evidence for the wrong model.

Interval 10 is a researcher’s worst case. The evidence is strong, secure and misleading. The researcher should try to avoid this situation both by experimental design
(large sample size, treatments or observations that strongly differentiate between the models) and by analytic design (higher strong and marginal
evidence thresholds).

(Continued)
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BOX 3 | (Continued)
In practice, we do not know if the evidence is misleading or not. For this discussion, we consider “negative” evidence as misleading but in fact, it only indicates that it
supports the alternative model—unless one knows the location of the generating process (see Ponciano and Taper, 2019). Simulations (Section 5.2 and Taper et al.,
2019) show that for global evidence strong but secure misleading evidence occurs very rarely—regardless of whether the model set is correctly specified or
misspecified. For local evidence if the model set is correctly specified, secure misleading evidence is exceedingly rare. However, under model misspecification secure
misleading evidence occurs more frequently, although it is still not common. We present an explicit comparison of global and local inference under correctly specified
and misspecified models in Section 5.2.

TABLE 1 | Descriptions of variables from Grace and Keeley (2006).

Observed variable G&K name G&K Data file name Latent variable G&K name Single character abbrev. TLPD&J Measurement error assumed

Distance from coast Distance Landscape Position L No

Age Age Stand Age A No

Community heterogeneity Hetero Heterogeneity H Yes

Abiotic optimum Abiotic Local abiotic conditions C No

Fire index 1 Firesev Fire severity F Yes

Species/plot Rich Richness R No

Total cover Cover Plant cover P No

3.3. Model Naming Conventions
We will use a model naming convention that indicates latent
variable regression structure. The single character abbreviation
for a variable will be followed by “.” and then by the abbreviations
for the variables it is regressed on. Regressions with different
response variables will be separated by “_.”

If a latent is isolated, that is it is neither a response nor a
predictor in any regression in the model, its character would be
entered in the model name but not followed by a “.” We don’t
consider any such models, because we are picking up the Grace
and Keeley reanalysis mid-stream, after they eliminated a variable
called “Community Type” from their analysis. Alphabetical order
will be imposed so that a path model uniquely determines a
name. Thus the Grace and Keeley best model can be named:
“A.L_C.L_F.A_H.L_P.F_R.CHLP” (see Figure 2 and Table 1).

3.4. Example Reanalysis
Dr. Grace kindly provided the original data set and his original
code (written using R package lavaan). In our reanalysis we
use the R package lava (version 1.6.7). The estimates of the
standardized coefficients from the two packages agree to at
least the 5 decimal places reported by lava. Grace and Keeley
determine their best model based on several factors including
theoretical background, chi-square model adequacy tests,
generalized likelihood ratio tests between nested models,
and inspection of deviations between observed and model
implied covariances. Grace and Keeley note the consistency
of their model identification with identification based on
information criterion.

The strong theoretical relationship between 1ICs, the
difference of information criterion values, and the likelihood
ratio test statistic has been noted before (e.g., Burnham and
Anderson, 2002; Lele and Taper, 2012; Taper and Ponciano,
2016). What differs between the approaches are the assumptions
and warrants that tie the statistics to scientific inference. These
differences can lead to substantive differences in inference from
the same data and essentially the same statistic. With a NP test

FIGURE 2 | The estimated final, simplified model explaining plant diversity.
Arrows indicate causal influences. The standardized coefficients are indicated
by path labels and widths. Weak paths with coefficients of magnitude less
than 0.30 are shown in gray.

you inference is a categorical accept or reject if your p-value
is 0.051, just the wrong side of alpha of 0.05 your reject. If
you have a 1IC of 6.9, you don’t reject it instead you give a
more elaborate discussion: “Well the evidence doesn’t quite reach
our arbitrary strong evidence threshold, but it is very strong
prognostic evidence.” We will return to this in the discussion
(see also Box 1). Here we focus on the impact of uncertainty in
evidence for one model over another given the data on reasonable
scientific inference.
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TABLE 2 | Models compared in our reanalysis of the Grace and Keeley (2006)
structural equation analysis of diversity recovery after fire.

Full name Description

A.L_C.L_F.A_H.L_P.F_R.CHLP GKBM (G&K best model)

A.L_C.L_H.L_P.F_R.CHLP GKBM - F∼A

A.L_F.A_H.L_P.F_R.CHLP GKBM - C∼L

A.L_C.L_F.A_H.L_R.CHLP GKBM - P∼F

A.L_C.L_F.A_P.F_R.CHLP GKBM - H∼L

A.L_C.L_F.A_H.L_P.F_R.CLP GKBM - R∼H

A.L_C.L_F.A_H.L_P.F_R.CHL GKBM - R∼P

C.L_F.A_H.L_P.F_R.CHLP GKBM - A∼L

A.L_C.L_F.A_H.L_P.F_R.HLP GKBM - R∼C

A.L_C.L_F.A_H.L_P.F_R.CHP GKBM - R∼L

A.L_C.L_F.A_H.L_P.F_R.CFHLP GKBM + R∼F. Clarifies G&K
question 4

A.L_C.L_F.A_H.L_P.AF_R.CHLP GKBM + P∼A. Clarifies G&K
question 7

A.L_C.L_F.A_H.L_P.F_R.ACHLP GKBM + R∼A. G&K Model D

A.L_C.L_F.A_H.L_P.FL_R.CHLP GKBM + P∼L. Added because
of covariance residuals

A.L_C.L_F.A_H.L_P.AFL_R.CHLP GKBM + P∼AL. Added
because of covariance
residuals

The left-hand column gives the model’s full name, which indicates the complete
path structure. The right-hand column describes how the model relates to the
Grace and Keeley best model.

3.4.1. Models Considered
Statistical evidence, at least defining the term as in the Royall
(1997), Lele (2004a), Taper and Ponciano (2016), and Brittan
and Bandyopadhyay (2019) tradition, is not unary, but binary:
It measures the support (Edwards, 1992) for one model over
another model that is given by data. The models we compare are
listed in Table 2.

The first model is the Grace and Keeley best model (GKBM).
The next 9 models are deletion models that each differ from
the best model by the absence of a single path. These models
are listed in order (strongest to weakest) of the strength of the
effect in the best model (as measured by the coefficient z-statistic).
Comparison of each of these models with the GKBM will probe
the question of whether the deleted path belongs in “best model.”
The last 5 models are addition models that each differ from the
GKBM by the presence of 1 or 2 paths. Comparison of each of the
addition models with the GKBM probes the question of whether
that/those paths should be included in a “best model.”

3.4.2. Example Reanalysis Results
The results of our reanalysis are presented in Figure 3, which
plots the evidence (1SIC) and its uncertainty for the GKBM
relative to each of the deletion models, and Figure 4, which shows
GKBM evidence and uncertainty relative to the addition models.

The first three model comparisons are rock solid. They all
have strong and secure global evidence and strong and very
secure local evidence. Not only does this data set strongly
favor including these three paths, but replication of the
experiment—in the same environment—will almost always reach
the same conclusion.

The next two comparisons (GKBM - H∼L and GKBM - R∼H)
both have strong and secure local evidence for including their
paths, but globally, they are insecure. We have good reason to
believe that these paths represent real causal effects, but need to
advise researchers seeking to replicate this experiment to increase
sample size to avoid equivocal results.

Then a comparison (GKBM - R∼P) with evidence, both global
and local, that is strong but insecure. Here the global interval
crosses the 0 line. Researchers should consider the possibility that
the path may be weaker than estimated or may be non-existent.

The next two comparisons have barely prognostic evidence
for their paths, but are insecure both globally and locally, with
intervals that substantially overlap the line separating evidence
for one model versus evidence for the other. The final comparison
has positive but weak evidence for inclusion of the path.
It is by definition insecure. The local evidence interval falls
entirely between the two prognostic evidence thresholds. There
is evidence for the path, but it is just a bit more than a toss-up.

Whether or not the last 3 paths should be included in a model
is a judgment call for the reporting researchers based on the costs
both practical and intellectual of including false paths or omitting
true paths. For these deletion paths, a nudge might be given
toward including them because the evidence favors the more
complex model despite the SIC evidence function being used
having a slight bias at small sample size toward compact models.

All five addition models have global evidence that is weak
and insecure but that leans toward the more compact GKBM.
However, all the global intervals overlap the separatrix at 0,
and three of the intervals even overlap the marginal evidence
thresholds for including the paths. The local evidence shifts
slightly further toward the GKBM.

At this sample size, there is no compelling statistical reason
to include any of the addition paths in the “best model,” but
there is also no compelling statistical reason not to. The slight
tilt toward the GKBM may represent nothing more that the
SIC bias toward compact models. It is very hard statistically
to distinguish between the true absence of a path and the
presence of a weak path. It would take a sample size of more
than 1,000 for there to be an expectation of global strong
and secure SIC evidence for the absence of a path even if it
was truly absent. On the other hand, because the coefficient
of variation of local evidence declines at a much faster rate
than that of global evidence (n−1 versus n−1/2) even a modest
increase in sample size may allow local identification of weak
effects. In the case of the Grace and Keeley example the
breadth of the conditional intervals indicates that the sample
size is marginal in a statistical sense—despite the Herculean
effort represented.

Models are single entities, but they are entities built
from components. In our experience, a great deal of insight
into how components function in models can be found by
estimating the evidence for a model including the component
relative to the same model without that component. In
all 14 model comparisons, the weight of evidence tilts
toward the GKBM. We agree with Grace and Keeley that
A.L_C.L_F.A_H.L_P.F_R.CHLP is the “best model” (at least
out of those considered) to describe the structural relationships
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FIGURE 3 | Evidential uncertainty intervals comparing the Grace and Keeley best model with 9 models, each that deletes one of the paths in the GKBM. For each
model comparison, the open circle indicates the observed evidence, the solid error bar indicates the global uncertainty, the dashed error bars show the local
uncertainty. These are approximate 90% confidence intervals based on 4000 non-parametric bootstraps. The strong evidence thresholds are indicated by dot-dash
horizontal limit lines at 7 and -7, while the prognostic evidence thresholds are indicated at dashed limit lines at 4 and -4. Positive values of the 1SICRA indicate
evidence for the GKBM, as the reference model, relative to the alternative model, while negative values indicate evidence for the alternative model relative to the
GKBM. The separatrix between these two regions is the dotted horizontal limit at 0.

FIGURE 4 | Evidential uncertainty intervals comparing the Grace and Keeley best model with 5 models, each that adds one or two paths to the GKBM.

in this data set. Grace and Keeley chose in 2006 to interpret
the empirical results of their study narrowly. “Ultimately,
results and interpretations presented in this paper are based

on the model judged to be the best representation of the data”
(Grace and Keeley, 2006). Here we do disagree with Grace
and Keeley. Our analysis has shown that even within a small
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list of a priori models, drawn from their own back-ground
theory, there are multiple plausible models whose interpretation
should be considered. To interpret only a single best model is
like choosing to use only a parameter point estimate without
considering its uncertainty. It is simple, but over-confidence
can be generated.

4. MATHEMATICAL DEVELOPMENT

In this section, we develop the statistical justification and
estimation algorithms for the confidence intervals for evidence
that we use in this paper. A reader satisfied with a simulation-
based justification could skip to Section 5, at least on first reading.

Different statistical divergences could be used to construct
model adequacy measures and thus evidence functions (see
Lele, 2004a; Markatou and Sofikitou, 2019). Each will have
its own properties, and each could be useful in different
circumstances. In this paper we focus on the Kullback-
Leibler divergence (KLD) as it leads to the information
criteria, evidence functions already in common use. The
treatment of uncertainty for other divergences and evidence
functions should parallel that for the KLD. The mathematical
notation, definitions, and assumptions used in our treatment
are given in Box 4.

Commonly, either confidence or credible intervals are
used to quantify uncertainty in parameter estimates. A very
general method of constructing confidence intervals is
hypothesis test inversion (Casella and Berger, 2002). If
your test is a generalized likelihood ratio test then the set{
θ, 2

(
lm

θ̂

(
x
)
− lmθ

(
x
))
< χ2

p,(1−α)

}
is an approximate

100 (1− α)% confidence interval if θ is of dimension 1 or
confidence region if θ is of dimension> 1 (Pawitan, 2001).

If one is interested in inference on a subset of the parameters
in a multidimensional parameter vector θ, one can partition
the parameter vector as θ = [γ,λ], where γ is a vector of
the parameters of interest, often of dimension 1, and λ is
a vector of all the other parameters. A profile log-likelihood
(for a given γ) can be calculated as lp(γ ; x) = max

λ
lm
(
x; γ, λ

)
,

that is by maximizing over λ. It is argued (Cox and Reid,
1987) that maximization of the profile likelihood leads to
inconsistent estimators of the parameters of interest because it
does not appropriately penalize for the cost of the estimation
of the incidental parameters. Various bias corrections or
penalty terms for the profile likelihood have been suggested
(Pace and Salvan, 2006).

The connection between profile likelihood and model
selection becomes obvious if one considers that the parameter
of interest could be nothing more than an index for the models
considered. In Box 5 we use this connection to develop and
justify global and local uncertainty in the evidence for one
model over another. We point out that these penalties for
parameter estimation are similar to the penalties employed in
information criteria. A general parametric bootstrap approach to
calculating an approximate penalty for the profile likelihood is
described in Pace and Salvan (2006).

4.1. Divergence Difference, Penalized
Divergence Difference, and Evidence
Functions
We start with describing precisely the quantities that we want to
estimate (targets) and their estimators. An estimator is a function
of a random variable and thus describes a probability distribution.
An estimator applied to a particular data set produces an estimate,
which is a realization from the distribution of estimator.

To understand the bias and uncertainty in an estimator, one
needs to compare estimates to estimation targets. For much
inference, the targets are obvious. For evidence (which is an
estimate), the target was not obvious to us and so to understand
the quality of our evidence estimate we begin by first carefully
defining what its target is. Then we describe how one can
obtain the sampling distribution of these estimators, either
asymptotically as was done by Royall (1997, 2000) and Dennis
et al. (2019) or by non-parametric bootstrap as was suggested
by Taper and Lele (2011).

4.1.1. Fully Specified Competing Models
Consider the case where the competing models are fully specified.
In the following, we explicitly define the target quantity, its
estimator (the evidence function) and the estimate (observed
value of the evidence function). As has been discussed in various
papers (Lele, 2004a; Taper and Lele, 2004, 2011; Dennis et al.,
2019), the sample size scaled difference between the divergences
from the true generating mechanism and the two competing
hypothesized mechanisms, namely, 1DPn(g,MR,MA, n) =
2n{K(g,MA)− K(g,MR)} + cn(pA − pR) is of great interest. We
call this the penalized scaled divergence difference (see Box 4,
definition 19). This is an unknown quantity because in practice,
we do not know the true generating mechanism g(.).

In this formulation, because of the sample size multiplier 2n,
1DPn(g,mR,mA, n) converges to ±∞ or 0 as the sample size
increases. We use the above formulation to be consistent with the
discussion in Dennis et al. (2019) and information-based model
selection criteria.

One could, alternatively, standardize the evidence so that it
converges to a constant: 0 if the two models are equidistant from
the true generating model, a positive number if mR is closer to
g(.) or a negative number if mA is closer to g(.) as was done in
Lele (2004a). One can also use other forms of divergences such
as the Hellinger divergence to quantify evidence (Lele, 2004a) to
make it model robust or outlier robust.

Given the data X, a natural estimator of 1DPn(g,mR,mA, n),
termed the evidence function (Lele, 2004a), is a sample sized
scaled difference of the KLD estimators (Box 4, definition
21) 2n{K(g,mA;X)− K(g,mR;X)}. Notice that, with the KL
divergence, the unknown density g(.) gets canceled while taking
the difference and does not need to be estimated explicitly. Hence
the estimate of the sample size scaled divergence difference, under
the KLD, is: Evraw(mR,mA; ĝn,x, x) = −2

(
lmA

(
x
)
− lmR

(
x
))

.
In the following, we will describe the use of non-parametric

bootstrap to calculate a more accurate estimate of the evidence
for the reference model relative to the alternative than the
raw evidence and also to quantify uncertainty in the estimated
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BOX 4 | Mathematical notations, definitions, and assumptions.
The notation in this box is more verbose than commonly used to allow the reader to track fine distinctions among generating process, distribution estimators,
estimated distributions for a particular sample, true parameters, parameter estimators and parameter estimates given a particular sample.

(1) Data are assumed to be suitable for non-parametric bootstrapping. For this paper we further assume that the data are independently
and identically distributed (i.i.d.).

(2) Probability density function (pdf) or probability mass function (pmf) representing the true generating mechanism is denoted g(.). Its cumulative distribution
function (cdf) is denoted as Fg (· ).

(3) Observed data: x = (x1, x2,..., xn), where n denotes the sample size.

(4) Random variables: X = (X1,X2, ...,Xn).

(5) The pdfs/pmfs for reference (R) and alternative (A) models are denoted by mR(.) and mA(.), respectively. For example, mR is N (µ = 5, σ = 1). Note, these are
fully specified models.

(6) If the reference and alternative model are not fully specified, then they represent model spaces denoted MR and MA respectively. In that case each of MR and
MA is a collection of models. For example, MR = N (µ, σ)) with µ in (−∞,∞) and σ in (0,∞).

(7) F(n)g
(
t;X

)
=

1
n
∑n

i=1 I (Xi ≤ t) is the empirical estimator of the cdf of g(.) for a random vector of length n. Here I (A) is the indicator function for event A.
Denote a corresponding numerically smoothed density as gn,X (.).

(8) F̂(n)g
(
t; x
)
=

1
n
∑n

i=1 I (xi ≤ t), the empirical estimate of the cdf of g(.) for an observed vector of length n. Denote a corresponding numerically smoothed
density as ĝn,x (.).

(9) The KLD between two specified continuous models, where the reference model is mR is K(mR,mA) =
∫
(log (mR(x))− log (mA(x)))mR(x)dx. In general, for

any two models (discrete, continuous or piecewise continuous) we write K(m1,m2) =
∫
(log (m1(x))− log (m2(x)))dFm1 (x) .

(10) The KLD orthogonal projection of a probability distribution, such as a fully specified model, s (.) onto a model space M is m∗s = arg min
m∈M

K(s (.) ,m) (see

Figure 3 in Ponciano and Taper, 2019). This model is the closest approximation to s(.) in the model space M.

(11) If s (.) ∈ M⇒ m∗s (.) ≡ s (.). If the generating process is in either MR or MA that is if either g (.) ∈ MR or g (.) ∈ MA then the model set {MR,MA} is considered
correctly specified, as in the foundations of much classical statistics (e.g., Neyman and Pearson, 1933; Wilks, 1938; Wald, 1943).

(12) The log-likelihood function for the observed data, x, under g(.) is lg
(
x
)
=
∑n

i=1 log (g (xi))

The log-likelihood function for the observed data under a model m(.) is lm
(
x
)
=
∑n

i=1 log (m (xi)). m̂x(.) is the model with parameter values that maximizes
lm
(
x
)
.

(13) Conceptually, m̂x(.) is the same model as m∗ĝn,x
. The first notation is more familiar, the second emphasizes that the maximum likelihood model is a projection

of the model to the empirical density. Asymptotically these estimates will be identical, but there will be slight numerical differences at finite sample size due to
the smoothing in ĝn,x .

(14) The KLD estimator of the divergence of a model, m, from the generating process, g is given as

K(ĝn,X ,m;X) =
∫

log
(
ĝn,X (t)

)
dF(n)g

(
t;X

)
−
∫

log (m(t))dF(n)g
(
t;X

)
= Sĝn,X

,ĝn,X
−Sĝn,X

,m

where Sĝn,X ,ĝn,X
is the neg-self-entropy of the generating process and Sgn,X ,m is the neg-cross-entropy from the generating process to the model m. Note,

an estimator is the function of a random variable (i.e., X ) that returns an estimate for a particular realization of the random variable.

(15) The KLD estimate of the divergence of a model, m, from the generating process, g:

K(ĝn,x,m; x) =
∫

log
(
ĝn,x(t)

)
dF̂(n)g

(
t; x
)
−
∫

log (m(t))dF̂(n)g
(
t; x
)
= Sĝn,x

,ĝn,x
−Sĝn,x

,m .

where Sĝn,x ĝn,x
is the neg-self-entropy of the empirical distribution.

(16) The KLD projection estimator of the divergence of a model space, M, from the generating process, g: K(ĝn,X ,M;X) = Sĝn,X ,ĝn,X
− Sĝn,X ,m∗ĝn,X

(17) The KLD projection estimate of the divergence of a model space, M, from the generating process, g: K(ĝn,x,M; x) = Sĝn,x ,ĝn,x
− Sĝn,x ,m∗ĝn,x

(18) One estimate for K(ĝn,x,M; x) is Sĝn,x ĝn,x
− lm̂(x), see discussion in definition (13). Bias correction for this estimate is the goal of information criteria. We

employ the consistent family of bias correction terms cnp, where cn is a function of n growing strictly between loglog(n) and n. And, p is the parametric
dimension of M (Nishii, 1988).

(19) The global penalized scaled divergence difference target: 1DPn(g,MR,MA, n) = 2n{K(g,MA)− K(g,MR)} + cn(pA − pR) (see definition 16). The target
is the quantity for which we attempt to find both a central estimate and an uncertainty measure (see discussion in Section 4.1). Note that for fully specified
model comparisons, the penalty term is 0, and 1DPn(g,mR,mA, n) = 2n{K(g,mA)− K(g,mR)}

(20) The local penalized scaled divergence difference target, 1dPn(g,MR,MA, x) = 2n{K(g,MA, x)− K(g,MR, x)} + cn(pA − pR) (see definition 17).

(21) The global penalized divergence difference estimator, 1DPn(ĝn,X ,MR,MA,X) = Eĝn,X

(
2n{K(ĝn,Y ,MA,Y)− K(ĝn,Y ,MR,Y)} + cn(pA − pR)

)
. Note that inside

the expectation Y is a random vector drawn from ĝn,X .

(22) The local penalized divergence difference estimator, 1dPn(ĝn,X ,MR,MA, x) = Eĝn,X

(
2n{K(ĝn,Y ,MA, x)− K(ĝn,Y ,MR, x)} + cn(pA − pR)

)
. Note that inside the

expectation Y is a random vector drawn from ĝn,X .

(23) The global evidence estimate,
EvG

(
MR,MA; ĝn,x, x

)
= Eĝn,x

(
2n{K(ĝn,Y ,MA,Y)− K(ĝn,Y ,MR,Y)} + cn(pA − pR)

)
= Eĝn,x

(
−2{lm̂AY

(
Y
)
− lm̂RY

(
Y
)
} + cn(pA − pR)

)
. Note that inside the expectation Y is a

random vector drawn from ĝn,x and that the maximum likelihood estimate, m̂x , has been substituted for m∗ĝn,x
(see definitions 13 and 18). Both the estimated

models and the data from which the likelihoods are calculated are random. Thus, variation in EvG is due to both variation in Y and to variation in the estimates
of m̂AY

and m̂RY
. Non-parametric bootstrap will be used to estimate the expectation and its uncertainty estimation and for further bias reduction. Positive

values for evidence indicate that the reference model is supported over the alternative model (see discussion Box 1).

(Continued)
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BOX 4 | (Continued)

(24) The local evidence estimate,
EvL

(
MR,MA; ĝn,x, x

)
= Eĝn,x

(
2n{K(ĝn,Y ,MA, x)− K(ĝn,Y ,MR, x)} + cn(pA − pR)

)
= Eĝn,x

(
−2{lm̂AY

(
x
)
− lm̂RY

(
x
)
} + cn(pA − pR)

)
.

Note that inside the expectation Y is a

random vector drawn from ĝn,x and that the maximum likelihood estimate, m̂x , has been substituted for m∗ĝn,x
(see definition 18). Here the estimated models

are random, but the data from which the likelihoods are calculated are fixed. Thus, variation in EvL is due only to variation in the estimates of m̂AY
and m̂RY

.

Non-parametric bootstrap will be used to estimate the expectation and its uncertainty estimation and for further bias reduction. Positive values for evidence
indicate that the reference model is supported over the alternative model (see discussion Box 1).

(25) The raw evidence,
Evraw(MR,MA; ĝn,x, x) = 2n{K(ĝn,x,MA, x)− K(ĝn,x,MR, x)} + cn(pA − pR)

≈ −2{lm̂Ax

(
x
)
− lm̂Rx ,

(
x
)
} + cn(pA − pR)

. Note that no bootstrapping is done nor expectation taken.

This is an information criterion as generally used.

evidence as was suggested in Taper and Lele (2011). Box 6 lists an
explicit algorithm for this bootstrap.

Instead of the LLR as the estimated evidence, we use the
expectation (mean) of the density function of the bootstrap
evidence as the estimated evidence. This could be estimated as
the bootstrap average evidence. For a slight increase in accuracy,
we calculate the expectation by numerically integrating over an
estimated density function for the bootstrapped evidence. We use
the R package kde1d (version 1.0.2, Nagler and Vatter, 2019),
which uses univariate local polynomial(log-quadratic) kernel
density estimators. Our validation tests support the literature
(Geenens and Wang, 2018) on the strength of this method.
We find that confidence bounds are located more accurately
with kde1d quantiles than with raw bootstrap quantiles, BCa
quantiles, or with calibrated (double bootstrap) quantiles (see
Efron and Tibshirani, 1993 for description of these methods) and
that estimated distributions are more accurate (in integrated
squared error) than standard kernel density estimation.

We note a few important features of the bootstrapping
procedure described in Box 5. When the models are fully
specified the log-likelihood ratio is a U-statistic (Serfling, 1984)
and hence it is an unbiased estimator of the target quantity.
However, divergences other than KLD may lead to biased
estimators of the target quantity. In which case, the mean of
the bootstrap distribution is a bias corrected estimate of the
target quantity. Also, if the models are not fully specified,
it is well known that the log-likelihood ratio is a biased
estimator of the target quantity (Akaike, 1973). The mean of the
bootstrap distribution of the log-likelihood ratio corrects for bias
(Ishiguro et al., 1997).

We do not discuss the case of fully specified models any
further but move on to the interesting case where parameters
need to be estimated.

4.1.2. Competing Models With Unknown Parameter
Values
Next, we consider the problem of model selection where there
are unknown parameter values that need to be estimated.
When we are dealing with model selection, the quantity
of interest is scaled divergence difference penalized for the
complexity of the models. We consider global penalized scaled
divergence differences of the form: 1DPn(ĝn,X,MR,MA, n) =
Egn,X

(
2n{K(ĝn,Y ,MA,Y)− K(ĝn,Y ,MR,Y)} + cn(pA − pR)

)
,

where cn is a function of the sample size that converges to infinity

at the rate strictly between log(log(n)) and n (Nishii, 1988), pR
and pA are the number of unknown quantities (parameters)
in the models that are estimated using the data. For example,
for the Schwarz Information Criterion (SIC), cn = log(n).
This constraint guarantees that the information criterion will
be a consistent criterion; that is, asymptotically it will lead
to identifying the model in the model space that is closest to
the true generating mechanism. We include the multiplier
2 to keep it consistent with common information criteria.
We emphasize again that, the target, 1DPn(g,MR,MA, n), is
unknown in practice.

Assuming that the observations in the data are independent,
identically distributed random variables, using the SIC
(a.k.a. Bayesian Information Criterion or BIC) sample size
correction, and using the maximum log-likelihood as an
estimator of the KLD of a model to the generating process,
leads to the evidence function EvG

(
MR,MA; ĝn,x, x

)
≈

Eĝn,x

(
−2{lm̂AY

(
Y
)
− lm̂RY

(
Y
)
} + cn(pA − pR)

)
, where Yi ∼

ĝn,x (see definition 23 Box 4), and m̂RY
and m̂AY

are those models

in MR and MA that are closest to F̂(n)g (.), the empirical CDF based
on the data Y = (Y1,X2, ...,Yn), a random vector of length n
from ĝn,x. Note that inside the expectation Y is a random vector
drawn from ĝn,x and that the maximum likelihood estimate,
m̂, has been substituted for m∗ (see definition 18). Variation in
EvG is due to variation in m̂AY

, m̂RY
, and Y. We calculate the

expectation by numerically integrating over an estimated density
function for the bootstrapped 1SICRAs. We use the R package
kde1d for the density estimation. Figure 5 presents a schematic
of this development.

We point out that, except for the nuance of kernel density
smoothing, the algorithm we describe above for EvG is the
EIC algorithm of Ishiguro et al. (1997) applied to 1ICs rather
than directly to log-likelihoods. Kitagawa and Konishi (2010)
point out that the bootstrap bias correction can be applied
to any functional, not just the log-likelihood. The use of the
expectation of the sampling distributions of1ICs, which already
contain an analytic bias correction, adds another layer of bias
correction. Accordingly, the evidence should be 3rd order
accurate (Kitagawa and Konishi, 2010).

Similarly, the local evidence function EvL
(
MR,MA; ĝn,x, x

)
is an estimate of the local penalized scaled
divergence difference, 1dPn(gn,X,MR,MA, x) =
Egn,X

(
2n{K(gn,Y ,MA, x)− K(gn,Y ,MR, x)} + cn(pA − pR)

)
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BOX 5 | Adjusted profile likelihood for model selection inference.
Readers can see Meeker and Escobar (1995) for a brief introduction to profile likelihood in the context of confidence interval construction and Pierce and Bellio
(2017) for a substantial review of practical likelihood adjustments. A gentle introduction to model selection through information criteria can be found in Anderson
(2008), with more technically robust discussions in Burnham and Anderson (2002) or Konishi and Kitagawa (2008).

A general parametric bootstrap approach to calculating an approximate penalty for the profile likelihood is described in Pace and Salvan (2006) and outlined below.

Let Mϕ,ϕ = 1,2, ...,S denote S distinct model spaces. The goal of model selection is to use the data to select the best model space. The form of the best model
space is used to draw various statistical and scientific inferences about the generating mechanism.

First, we show that model selection procedure can be looked upon as a profile likelihood estimation procedure. Let {θ1, θ2, ..., θS} denote the parameters for the
respective model spaces (M1,M2, ...,MS). Denote the dimension of θϕ by pϕ.

A universal model space, that is simply a union of the model spaces, may be written as M = {f(x;ϕ, θϕ),ϕ = 1,2, ...,S}. In this notation, f(x;1, θ 1) indicates the
parametric form of the probability model in the first model space, say LogNormal(µ, σ2), f(x;2, θ2) denotes the parametric form of the probability model in the
second model space, say Gamma(µ,φ), and so on. The parameter ϕ, which is a discrete parameter, is simply an index for the model space. Thus, model selection
can be viewed as selecting a particular value of ϕ. In model selection problem, the index parameter ϕ is of interest and model parameters θϕ are the incidental

parameters. The profile likelihood of the index parameter ϕ can be written as: lp(ϕ, θ̂ ϕ; x) = max
θ ϕ

∑n
i=1 log f(xi;ϕ, θ ϕ ).

In the familiar example of the maximum likelihood estimator of the variance σ2 in the multiple linear regression model Yi = β0 + β1X1i + β2X2i + ...+ βpXpi + εi where

εi ∼ N(0, σ2) independent, σ̂2
=

1
n
∑n

i=1

(
yi − β̂0 + β̂1x1i + β̂2x2i + ...+ β̂pxpi

)2
. This is a biased estimator and bias is pronounced when the number of covariates is

large. A bias corrected profile likelihood yields the usual unbiased estimator with the divisor (n− p− 1), instead of n. We lose (p+ 1) degrees of freedom because
we spend some of the information in the data to estimate the nuisance parameters (β0, β1, ..., β p).

We describe the Pace-Salvan approach for the general profile likelihood case where the parameter of interest may or may not be discrete. To reflect this generality,
for the description of the Pace-Salvan approach, we make a slight change in the notation. We use γ for the parameter of interest, λ for the incidental parameters and
h(.) denotes the parametric probability function presumed to be the data generating mechanism.

Let X ∼ h(., γ,λ). Let the parameter of interest, γ, be of dimension 1 and the nuisance parameter λ be a vector of any dimension that does not depend on the
sample size. Let x = (x1, x2, ..., xn) be a random sample of size n from h(., γ,λ). The log-profile likelihood for γ is defined as lp(γ; x

−
) = max

λ

∑n
i=1 log(h(γ,λ; xi)) .

Model selection based on the maximum of this profile likelihood would correspond to selecting the model space that maximizes the log-likelihood but without any
penalty for the number of parameters in the model. This procedure is known to lead to what is termed an inconsistent model selection procedure. The reason for the
inconsistency is that this profile likelihood is a biased estimator of the expected Kullback-Leibler divergence (Akaike, 1973; see discussion in Ponciano and Taper,
2019). The inconsistency of and the bias correction used in information-based model selection bears strong similarity to the inconsistency and bias correction in the
profile likelihood estimators (e.g., Severini, 2000; Pace and Salvan, 2006) suggested in a very different context.

Following Pace and Salvan (2006), the adjusted profile likelihood, adjusted for the effects of estimation of the nuisance parameter λ, can be computed, assuming the
presumed model is the true generating mechanism, using parametric bootstrap as follows:

(1) Estimate the full parameter vector (γ̂, λ̂ ).

(2) For each bootstrap iteration b ∈ {1, · · · ,B}

(a) Generate a random sample of size n from h(.; γ̂,λ̂) denoted by xb = (xb,1, ..., xb,n).

(b) For these new data and for a fixed value of γ, obtain λ̂b(γ) by max
λ

∑n
i=1 log(h(γ,λ; xb,i)).

(3) Compute the simulation adjusted profile likelihood as: lSA(γ; x) = 1
B

∑B
b=1

∑n
i=1 log(h(γ, λ̂b(γ); xi)). We point out specifically that the likelihood is evaluated

for the original data x but with the parameters (γ, λ̂b(γ)) that are estimated using the bootstrap data.

Pace and Salvan (2006) suggest using lSA(γ; x), instead of lp(γ; x) to conduct statistical inference for γ, the parameter of interest. Most importantly, they use
sophisticated mathematics to show that the adjustment achieved by lSA(γ; x) is locally (conditionally, post-data, post-experiment) appropriate. Note that following
Efron and Tibshirani (1993) description of bootstrap bias correction, one may use lA(γ; x) = 2lp(γ; x)− lSA(γ; x). It follows from the results in Section 3.4 of Pace and
Salvan (2006) that these two versions are equivalent up to O(n−1) and that the difference between these central estimates is small compared to the uncertainty. We
use the mean of the bootstrap distribution as our central estimate to be consistent with both Pace and Salvan (2006) and Kitagawa and Konishi (2010). There is
reason to believe that the median of the bootstrap distribution might have superior theoretical properties (De Blasi and Schweder, 2018), but we will pursue this
in another paper.

We point out that these penalties to the profile likelihood for parameter estimation are similar to the penalties employed in information criteria. In the information
theoretic literature, non-parametric bootstrap bias corrections have been developed as the extended information criterion (EIC) (Ishiguro et al., 1997; Konishi and
Kitagawa, 2008; Kitagawa and Konishi, 2010). There are two important, differences between the basic (EIC) and the Pace-Salvan adjusted profile likelihood. First,
EIC uses non-parametric bootstrap whereas Pace and Salvan use parametric bootstrap. The use of non-parametric bootstrap relaxes the assumption that the
parametric model is the true generating mechanism. Model misspecification is built into the EIC correction. And second, bias correction in EIC is a global
(unconditional, pre-data, pre-experiment) adjustment, averaging over the variation from one experiment to other, whereas the Pace-Salvan adjustment is a local
(conditional, post-data, post-experiment) adjustment that evaluates the likelihood at the observed data x but is averaged over variation of the incidental parameter
estimates from one bootstrap sample to the other.

The bias correction for the EIC can be decomposed into three components: D1, D2, D3 (Kitagawa and Konishi, 2010). One component, D2, has expectation 0 and is
discarded in the EIC2, the variance reduced form of the EIC. The EIC bootstrap bias correction can be applied not just to the likelihood of the data, but to any
functional of the data. Some algebra on equations 44 and 51 of Kitagawa and Konishi (2010) shows that
EvL

(
MR,MA; ĝn,x, x

)
= EIC2

(
1SICRA

(
x
))
+ D1

(
1SICRA

(
x
))

. We have found numerically that D1
(
1SICRA

(
x
))

is a small term that appears to have mean at or near
0, at least under the conditions that we have investigated. The SIC includes an analytic bias correction to the likelihood accounting for the number of parameters
estimated. Thus, that D1

(
1SICRA

(
x
))

is small in these cases does not mean that D1 is always unimportant, just that we are in a region of model space where the
analytic bias correction works well. Central estimates for evidence and uncertainty intervals could be based on the entire EIC2. We will explore these
connections elsewhere.

(Continued)
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BOX 5 | (Continued)
The Pace-Salvan adjusted profile likelihood, the EIC and the EIC2 use the bootstrap distribution only to compute the bias correction factor. We stress the use of the
entire bootstrap distribution to quantify uncertainty in the evidence. A non-parametric bootstrap procedure similar to the Pace-Salvan approach yields local
uncertainty while a bootstrap similar to the EIC can give us global uncertainty.

(see Box 4 definition 22), and EvL
(
MR,MA; ĝn,x, x

)
≈

Eĝn,x

(
−2{lm̂AY

(
x
)
− lm̂RY

(
x
)
} + cn(pA − pR)

)
(see Box 4

definition 24). The difference between the global and local is that
in the calculation of the global evidence the observed data, x,
are considered as a realization of a random vector, X, both in
the estimation of the models to be compared and in the data on
which they are compared. While in the local evidence, the data
vector is considered random in the estimation of the models but
fixed in the data on which they are compared.

It is well established in statistics that providing an estimate
of an unknown quantity is not sufficient; one must provide
uncertainty associated with such an estimate. We use aleatory
probability to quantify this uncertainty (Lele, 2020a). In
quantifying the pre-experiment uncertainty in evidence, we ask
the question: How variable would the evidence be if we were to
repeat the experiment? This is represented by the global (pre-
experiment) sampling distribution of the evidence function. This
distribution does not depend on the particular data set in hand.

When the competing models are fully specified and the
reference model is the true model, Royall (1997, 2000) used
the asymptotic Normal distribution of the LLR to approximate
the sampling distribution of the evidence function and calculate
the error probabilities. In Dennis et al. (2019), we derived
the asymptotic distributions of the evidence function when the
competing models are not fully specified and the true model is not
part of the competing model spaces to approximate the sampling
distribution and compute the error probabilities.

4.2. Uncertainty in Evidence
An important element common to all of our bootstrap
procedures is that the complete evidence functions are the
objects bootstrapped, not the component divergences. Thus, if
the difference of information criterion values is the evidence
function used, such a bootstrap will produce a single distribution
of 1ICs rather than two distributions of IC values. This
is necessary because the geometry of model misspecification
(Dennis et al., 2019; Ponciano and Taper, 2019, see also Table 3)
can create covariances (positive and negative) between the
component divergences. These need to be captured by a bootstrap
for it to accurately reflect the uncertainty in evidence. The
non-parametric bootstrap method for the two cases described
above is as follows.

4.2.1. Global Uncertainty in Evidence for the Fully
Specified Models
Notice that in the bootstrap procedure in Section 4.1.1, we
are bootstrapping the difference in the log-likelihood jointly
and not each component separately. Evidence, innately, is
a comparison between two quantities. Clearly uncertainty in
evidence involves not just the variances of each component

but also covariance between them. The uncertainty reflected
in the bootstrap distribution accounts for the covariance
also. Thus, if the two models are positively correlated with
each other, the uncertainty is reduced whereas if they are
negatively correlated, the uncertainty is higher than the sum of
variances. This, thus, takes into account the geometry of the
model spaces appropriately, even when the models are fully
specified. The quantiles of the smoothed bootstrap density of
Evraw (mR,mA; ĝn,x, xb

)
give us confidence intervals for evidence

(see Box 6 for an explicit algorithm).

4.2.2. Global Uncertainty in Evidence for Model
Spaces With Unknown Parameter Values
Bootstrapping can also be used to obtain global confidence
intervals for evidence with estimated parameters. The
only difference is that the quantity bootstrapped is
Evraw

G (MR,MA; ĝn,x, xb), which is, in this paper, a difference of
information criterion values (see Box 6 for an explicit algorithm).

4.2.3. Local Uncertainty in Evidence
Lele (2020a) reviewed the philosophical problems associated
with global (pre-experiment) uncertainty and discussed the use
of local (post-experiment) uncertainty in the context of linear
regression. To recap, suppose we have only one covariate and we
are fitting a linear regression through origin model. That is, the
data are (xi, yi), i = 1, 2, ..., n and we fit the model Yi = βXi +

εi where εi ∼ N(0, σ2) are independent, identically distributed
random variables. The maximum likelihood estimator of β is,
β̂ =

∑
YiXi

/∑
X2

i .
The question is: what is the variance of β̂? If we consider the

covariates to be random (this is the case when the experiment
is not a designed experiment but an observational study),
then var(β̂) = σ2E

(
1
/∑

X2
i
)
. If Xi ∼ N(0, 1), then var(β̂) =

σ2/(n− 2). This variance, which we term the global variance, is
sometimes called an unconditional or pre-data variance. On the
other hand, if we consider the covariates to be fixed, as is the case
in designed experiments, var(β̂|x1,x2, ..., xn) = σ2/

{∑
x2

i
}

. This
variance, which we call the local variance, is sometimes called the
conditional or post-data variance.

The conditional variance is the variance most ecologists use
when conducting regression analysis. Notice that conditional
variance depends on the configuration of covariates the
researcher observes in their particular data set. If the covariate
values are highly dispersed, the slope is extremely well estimated;
on the other hand, if the observed covariates values are not
very different from each other, the slope is estimated with
large uncertainty.

The local (conditional) variance makes intuitive sense: good
data, strong inference; bad data, weak inference. It is argued
(e.g., Goutis and Casella, 1995) that the global (unconditional)
inference does not reflect this differentiated inferential value of
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BOX 6 | Bootstrap algorithms for global and local evidence uncertainty.
All of the bootstraps described in this box can be performed using the R function KKICv, which we supply in Supplemental Material.

Evidence uncertainty for specified models:

(1) Obtain a random sample of size n with replacement from the original sample. This bootstrap sample is denoted by xb = (xb1, xb2, ..., xbn).

(2) Evaluate the evidence at the bootstrap sample, namely, Evraw (mR,mA; ĝn,x, xb
)
= −2

(
lmA

(
xb
)
− lmR

(
xb
))

.

(3) Repeat steps 1 and 2 B times and accumulate to get the set of results {Evraw(mR,mA; ĝn,x, xb),b = 1,2, ...,B} .

(4) Estimate the density function of the {Evraw(mR,mA; ĝn,x, xb)} in 3). Quantiles of this density yield confidence intervals for the evidence.

(5) Calculate Ev(mR,mA; ĝn,x, x) as the expectation (mean) of the estimated density from step 4.

Global evidence uncertainty estimation:

(1) Obtain a simple random sample of size n with replacement from the observed data x. Let us denote this by xb = (xb,1, xb,2, ..., xb,n).

(2) Based on this bootstrap data, estimate the model parameters for each model space. Let us denote these models by m̂R,b and m̂A,b. These are projections
of the empirical CDF of the bootstrap data onto the corresponding model spaces.

(3) Compute and store Evraw(MR,MA; ĝn,xb
, xb) = −2{lm̂A,xb

(
xb
)
− lm̂Rxb,

(
xb
)
} + cn(pA − pR). The smoothed density of

Evraw(MR,MA; ĝn,x, xb), b = 1,2, ...,B is the bootstrap estimate of the sampling distribution of Evraw(MR,MA; ĝn,xb
, xb).

(4) Quantiles of the smoothed density of Evraw(MR,MA; ĝn,xb
, xb) give us confidence intervals for evidence.

(5) Calculate EvG(MR,MA; ĝn,x, x) as the expectation (mean) of the estimated density from step 4.

Local evidence uncertainty estimation:

(1) Generate a random sample with replacement and of size n from the observed data. Let us denote this by xb = (xb,1, xb,2, ..., xb,n).

(2) Re-estimate the parameters using the bootstrap sample. Let us denote them by m̂R,b and m̂A,b.

(3) Compute Evraw(MR,MA; ĝxb
, x) = −2{lm̂Axb

(
x
)
− lm̂Rxb

(
x
)
} + cn(pA − pR).

(4) Use the quantiles of the smoothed bootstrap distribution of Evraw(MR,MA; ĝxb
, x) to quantify uncertainty of the strength of local evidence.

(5) Calculate EL(MR,MA; ĝn,x, x) as the expectation (mean) of the estimated density from step 4

We find it remarkable that a non-parametric bootstrap can be used to quantify local/conditional/post-data uncertainty. We explained how this occurs in definitions 23
and 24 in Box 4, but the point is important enough that we reiterate here in the comparison of bootstrap algorithms. The key is to realize that for estimated models
the data are used in two fashions: first to estimate the parameters for each of the models, and second to calculate the strength of evidence for one model over
another. Compare step 3 of the global and local bootstraps. The global bootstrap generates a large number of alternative data sets and for each iteration uses the
same bootstrapped data to both estimate the models and calculate the evidence. On the other hand, the local bootstrap while also bootstrapping the data and
reestimating models based on the bootstrapped data, only uses the original data for calculating the evidence. There is a relevant subset involved. It is the original
data. Thus, as we say in the paper, the local bootstrap represents uncertainty in evidence due to uncertainty in model estimation and does not include
sampling variation.

the observed data appropriately. Even if the researcher happens
to have good, dispersed covariates, the global variance does not
recognize that happy event and increases the variance because
the researcher, in another replication of the experiment could
have observed less dispersed covariates and vice versa. We
note that the pairwise resampling used in bootstrap inference
for regression gives the unconditional variance and is robust
against mean as well as error structure misspecification. On the
other hand regression bootstrap based on residuals provides
conditional inference but is only robust against error model
misspecification (Efron and Tibshirani, 1993).

For local uncertainty, the sample space over which the
variation is considered is a subset of the total sample space. This is
called a “relevant subset” (Buehler, 1959). Such a relevant subset
is often determined using an ancillary statistic. An ancillary
statistic is a function of the data whose distribution does not
depend on the parameters. There are, often, multiple ancillary
statistics (Basu, 1964; Pena et al., 1992) and hence relevant subsets
are not necessarily unique. In our opinion, the appropriateness
of the relevant subset is determined based on the type of
future experimental replication one envisions. Different future
experiments determine different relevant subsets as was the case
in the Mark-Capture-Recapture example in Box 2.

It has been argued that local (post-experiment, post-data,
conditional) confidence intervals are preferable as the measure
of uncertainty because they reflect the informativeness of the
data at hand appropriately. If the data are highly informative, the
local confidence intervals are shorter than the global confidence
intervals and if the data are not informative, the local confidence
intervals appropriately are wider than the global confidence
intervals. Again, this argument hinges on the model being
correctly specified.

Some august statisticians (e.g., Royall, 2004) argue the local
interval is the only one that should be used irrespective of the
design because design is an ancillary statistic and has no impact
on the inference once the data are obtained. If the data are
highly informative either by design or by chance, we should be
quite confident about our estimate of the total population size,
irrespective of what other experimenters might observe. It can
be shown (see review in Lele, 2020b) that prediction of a new
observation based on local uncertainty is more accurate than
prediction based on global uncertainty. However, this result also
depends on correct model specification.

On the other hand, other equally august statisticians (e.g.,
Cox, 2004 in his discussion of Royall, 2004) claim design should
play a role in uncertainty quantification. We agree with this
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FIGURE 5 | A schematic indicating how an evidence function relates to its global target. See supplement for a similar figure for local evidence. The principal
differences between the figures are that for global evidence the target does not (and must not) depend on the data while for local evidence the target does (and
must). Reflecting this difference, the global evidence function resamples the observed data to calculate likelihoods while the local does not.

latter opinion on the importance of design. Both because the
interpretation of uncertainty intervals should depend on the
potential type of the future experimental replication, and thus so
should the choice of the ancillary statistics or relevant subsets.
And because, as we show in Section 5.2, the accuracy of the
local interval depends on correct model specification to a greater
degree than does the global.

4.2.4. Local Uncertainty When Comparing Two Model
Spaces
Local evidence uncertainty in the comparison of model spaces
is calculated similarly to global evidence uncertainty. Data
sets are repeatedly reconstructed by bootstrapping the original
data. With each bootstrapped, data set model parameters for
both reference and alternative models are reestimated, and an
evidence value comparing the models is calculated. The critical
distinction between global and local uncertainty is that in the
local calculations the likelihood for each bootstrapped model is
evaluated using the original data not the bootstrapped data (see
Box 6 for an explicit algorithm).

In Section 5, we use simulations to study the coverage
properties of the global and local sampling distributions. Both
the cases of linear regression and structural equation models
are investigated.

5. SIMULATION VALIDATION

If new statistical approaches are proposed, the scientific
community has a legitimate expectation that they will be

validated both mathematically, and computationally (Devezer
et al., 2021). For a procedure that generates confidence intervals,
whether global or local, to be a legitimate frequentist procedure,
they need to cover/capture their targets at least at the specified
level (Casella, 1992). The fundamental difference between global
and local inference is that a global target cannot depend on the
data at hand, while a local target must depend on the data at hand.

Globally we want our intervals to cover the global penalized
scaled divergence difference: 1DPn(gn,X,MR,MA,X) =
Egn,X

(
2n{K(gn,Y ,MA,Y)− K(gn,Y ,MR,Y)} + cn(pA − pR)

)
.

Locally we want our intervals to cover the local penalized
scaled divergence difference: 1dPn(gn,X,MR,MA, x) =
Egn,X

(
2n{K(gn,Y ,MA, x)− K(gn,Y ,MR, x)} + cn(pA − pR)

)
.

For the Kullback-Leibler divergence, this is approximately
−2{lm̂Axb

(
x
)
− lm̂Rxb

(
x
)
} + cn(pA − pR), the penalized scaled

LLR for the observed data under the best approximating models
in the two competing spaces to the true generating mechanism.
We note this is identical to what is considered the target
likelihood in the general profile likelihood literature, e.g., Section
3.1 of Pace and Salvan (2006).

5.1. Global and Local Coverages in
Alternate Model Space Topologies
There are 14 possible topologies for a reference model space,
an alternative model space and a generating process. The model
spaces compared can be nested, overlapping, or disjoint. If the
model comparison is correctly specified, the generating process
will be in at least one of the model spaces. If the comparison
is misspecified then the generating process will be in neither
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TABLE 3 | The behavior of our global and local uncertainty procedures in all 14 possible model specification topologies.

Case g location Asymptotic
distribution

Exemplar G par Global
coverage

Global
length

mean (SD)

Local
coverage

Local length
mean (SD)

95%/90% 95%/90% 95%/90% 95%/90%

1 Chi-square Ev(g = m001 ,MR = M001 , MA = M011 ;x) 0.00
0.00
0.15

0.00
0.00

8.18 (3.67)
6.48 (3.16)

0.99
0.97

6.66 (1.17)
4.90 (0.86)

2 Non-central chi-square Ev(g = m011 , MR = M001 ,
MA = M011 ;x)

0.00
0.30
0.15

0.95
0.88

22.79 (7.42)
19.06 (6.29)

0.98
0.95

8.12 (1.39)
6.03 (1.00)

 

3 Weighted sum of
chi-square

Ev(g = m010 , MR = M110 ,
MA = M011 ;x)

0.00
0.30
0.00

1.00
1.00

13.75 (4.03)
10.58 (3.41)

0.99
0.97

10.94 (1.37)
7.84 (0.95)

4 Normal Ev(g = m110 , MR = M110 ,
MA = M011 ;x)

0.60
0.30
0.00

0.95
0.90

44.89 (5.91)
37.62 (4.97)

0.98
0.94

13.29 (1.4)
9.90 (0.97)

5 Normal Ev(g = m011 , MR = M110 ,
MA = M011 ;x)

0.00
0.30
0.15

0.98
0.93

18.23 (5.71)
14.51 (4.96)

0.98
0.96

11.12 (1.35)
8.02 (0.95)

 

6 Normal Ev(g = m110 , MR = M110 ,
MA = M001 ;x)

0.60
0.30
0.00

0.96
0.92

48.00 (5.53)
40.25 (4.66)

0.97
0.93

14.23 (1.42)
10.69 (1.01)

 

7 Normal Ev(g = m001 , MR = M110 ,
MA = M001 ;x)

0.00
0.00
0.15

0.95
0.85

20.67 (5.55)
16.56 (4.78)

0.99
0.96

12.9 (1.36)
9.53 (0.98)

 

8 Weighted sum of
chi-square

Ev(g = m111 ,MR = M001 , MA = M011 ;x) 0.05
0.05
0.15

0.00
0.00

8.11 (3.58)
6.42 (3.09)

0.97
0.93

6.73 (1.18)
4.95 (0.85)

 

9 Normal Ev(g = m111 , MR = M001 ,
MA = M011 ;x)

0.05
0.30
0.15

0.94
0.88

22.73 (7.12)
19.01 (6.02)

0.99
0.97

8.08 (1.36)
6.01 (0.99)

 

10 Weighted sum of
chi-square

Ev(g = m111 , MR = M110 ,
MA = M011 ;x)

0.05
0.30
0.05

0.99
0.98

15.1 (4.69)
11.75 (4.02)

0.97
0.93

10.92 (1.41)
7.84 (0.94)

11 Normal Ev(g = m111 , MR = M110 ,
MA = M011 ;x)

0.60
0.30
0.05

0.96
0.90

45.47 (6.09)
38.09 (5.12)

0.99
0.97

13.38 (1.42)
9.98 (1.01)

12 Normal Ev(g = m111 , MR = M110 ,
MA = M011 ;x)

0.05
0.30
0.15

0.99
0.96

18.98 (5.88)
15.14 (5.09)

0.98
0.94

11.08 (1.37)
8.01 (0.98)

13 Normal Ev(g = m111 , MR = M110 ,
MA = M001 ;x)

0.60
0.30
0.05

0.95
0.92

49.05 (5.9)
41.1 (4.97)

0.98
0.96

14.33 (1.44)
10.77 (1.01)

14 Normal Ev(g = m111 , MR = M110 ,
MA = M001 ;x)

0.05
0.05
0.15

0.95
0.88

22.55 (5.6)
18.18 (4.8)

0.97
0.94

12.93 (1.36)
9.56 (0.95)

In the g location figures the solid ellipse indicates the reference model space while dashed ellipse indicate the alternative model space. For the correctly specified
comparisons, cases 1–7, the star indicates the location of the generating process. For the misspecified comparisons, the arrow indicates the location of the projection
from the generating process to the model spaces. The asymptotic distribution refers to the unpenalized likelihood ratio statistic (often denoted G2); the penalty term for
converting G2 to an evidence function produces location-shifted versions of the asymptotic distributions (Dennis et al., 2019). The covariates are three N(0,1) random
vectors and are held constant over all simulations. For each line, the coefficients (β1, β2, β3)in the generating model of the three covariates (there are no interactions) are
given in the column g par. In all simulations the intercept is 2.0 and the error standard deviation is 1. The sample size for all simulations in this table is 100, a realistic size
for ecological studies, and one that meets most common rules of thumb for multiple regression. Coverage proportions were estimated using 1,000 trials for each case.
Coverage is reported for nominal 95 and 90% kde1d intervals. Mean interval length and its standard deviation is also reported.

model space. Table 3 describes coverage and interval length
for the global and local confidence intervals of the strength of
evidence for model comparisons in each of these topologies in
a simple multiple regression example (see the table legend for
simulation details).

A number of interesting patterns can be observed in
Table 3. In 12 of the 14 possible model space topologies,
the global intervals cover reasonably, with actual coverages
close to nominal coverages. Cases 1 and 8, however, have
no coverage! Case 1 is the topology of nested models with
the generating process in the reduced model. The asymptotic
distribution for this case is chi-square. Case 8 represents the

misspecified analog of Case 1, the approximating models are
nested with the generating process closest to the reduced
model. The asymptotic distribution for case 8 is a weighted
sum of chi-square. This is a very flexible distribution, and in
this case generates a distribution indistinguishable from a chi-
square distribution. Alarm at this complete lack of coverage
in these two cases is somewhat reduced by recognizing that
the target (1DPn(g,MR,MA,X)) is the boundary of these chi-
square distributions and hence impossible to capture with
finite sampling.

On the other hand, the local confidence intervals for evidence
behave well in all 14 possible model space topologies. In all cases
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FIGURE 6 | Box plots of the ratios of the local and global interval lengths as a
function sample size. Each box summarizes the results for 1,000 simulations.
In (A), all parameters (except for sample size) are set to those case 1 in
Table 3. In (B), all parameters (except for sample size) are set to those of case
4 in Table 3.

local interval coverage exceeds the nominal levels. Overcovering
is acceptable in approximate confidence intervals, particularly if
interval length is narrow. In all cases of Table 1, the average
lengths of the local intervals are less than that of global intervals.
This is not always the case. For very small sample size, the average
local interval length may exceed the average global interval length
(see Figure 6).

5.2. Sample Size and Interval Lengths
In the linear models example of Table 3, global and local
intervals respond quite differently to changes in sample size.
These differences are explored in Figures 6, 7. Figure 6A shows
box plots of the ratio of local interval length to global interval
length over a range of increasing sample size for the case of
case 1 from Table 1. The models compared are nested and
the generating process is in the reduced model. The asymptotic
distribution of evidence is chi-squared. At lower sample sizes the
local interval length generally exceeds the global length. At higher
sample sizes the local interval is generally shorter than the global
interval, with the ratio appearing to approach a limit of at about
0.6. Model topologies shown in case 1 and 8 of Table 3 behave
in this fashion.

Figure 6B represents case 4 from Table 1. The models
compared are overlapping with the generating process located in
the non-overlapping portion of the reference model. The interval
length behavior here is very different from that in panel A. Local
intervals exceed global intervals only at the smallest sample sizes.
Further, the local/global interval length ratio rapidly decreases
toward 0 (rate 1

/√
n). All model topologies except those of cases

1 and 8 behave in this fashion.
For both global and local evidence, the expectation grows

linearly with sample size. The standard deviation in global
evidence grows as the square root of sample size. On the other
hand, the standard deviation in local evidence approaches a
constant as sample size increases (Kitagawa and Konishi, 2010).
These differences have considerable impact on inference and
experimental design.

The ability of the global interval to distinguish the observed
evidence from 0 grows very slowly with sample size. On the other
hand, the local interval will be able to detect real difference from
0 or either of our two thresholds with relatively small sample
sizes. Nevertheless, in both global and local cases, the coefficient
of variation in evidence goes to 0 as sample size grows to infinity.

5.3. Model Set Misspecification and
Evidential Uncertainty
Here we demonstrate the effect of model set misspecification on
the uncertainty of evidence with simulations based on the Grace
and Keeley example. We look at four different conditions of
model set adequacy: (A) correctly specified comparison with very
strong evidence, (B) correctly specified comparison with strong
evidence, (C) a mildly misspecified model comparison, and (D) a
badly misspecified model comparison.

In case A), we compare the model that is the GKBM without
the weakest path (GKBM – R∼L) with a model that is the GKBM
without the second weakest path (GKBM – R∼C). The data in
these simulations are generated from the estimated (GKBM –
R∼L). The generating process is in the compared model set;
therefore, the comparison is correctly specified.

In case B) we estimate and compare the same models as in
case A. The generating model has same form as in case A (all
the same paths are present) but one of the coefficients (R∼P) has
been weakened from 0.299 to 0.205. The model set is still correctly
specified, but the penalize divergence differences (whether global
or local, see definitions 19 and 20) between the compared models
is less than in case A. Consequently, the distribution of realized
evidences (definitions 23 and 24) will be shifted to lower values.

Case C) compares the same models as in case A) {GKBM –
R∼L, GKBM – R∼C}. The data are generated by the GKBM.
Since the generating process (GKBM) is quite close to one of the
models in the model set (GKBM – R∼L), the comparison is only
mildly misspecified.

Finally, in case D) we compare a model that is the GKBM
without the second strongest path (GKBM – C∼ L) with a model
that is the GKBM without the strongest path (GKBM – F ∼ A).
As in case B), the data are generated by the GKBM. Since the
generating process (GKBM) is quite different from both of the
models in the model set, the comparison is badly misspecified.
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FIGURE 7 | Global (blue) and local (red) 90% confidence intervals for the 1,000 simulations for cases (A–D) Described in the text. In (A–D) simulations are ordered
by mean smoothed local evidence. Panel (E) presents the same data as (D) but ordered by the raw evidence. (A–C) Not shown reordered because with a Spearman
correlation of ≥0.997 between raw and mean smoothed evidence in these cases, there is no perceptible change in the figures.

Table 4 indicates that, at least in this example, under correct
model specification, a researcher is very unlikely to obtain secure
misleading evidence using either interval. On the other hand,
the researcher is more likely to correctly obtain strong and

secure evidence using the conditional interval than with the
unconditional interval. If the model set is misspecified, secure
misleading evidence becomes a possibility, and much more so
using the conditional interval than the unconditional interval.
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Interestingly, the average reliability (proportion of
the time correct model is identified) is always slightly
greater using the local evidence distribution rather
than when using the global evidence distribution.
This agrees with the previous results (Aitchison,
1975; Royall and Cumberland, 1985; Vidoni, 1995)
that indicate predictive accuracy is greater using
conditional inference.

The table gives the impression that there is little difference
between mildly and badly misspecified model sets regarding
evidence. But this is only because the choice of the mean
of the smoothed bootstrapped 1SIC as the measure of the
strength of evidence rather than the raw 1SIC has profound
impact. Figure 7 presents the same data used to calculate
Table 4 in another fashion. Here both the global and local
intervals are explicitly plotted for each 1000 trials in the
simulations of cases A, B, C, and D. The trials are sorted
along the x axis by the mean smoothed bootstrapped strength
of evidence. Panel E plots the same simulations and intervals
as panel D, however, in this case the trials are sorted by the
raw 1SIC—not by the mean smoothed bootstrapped 1SIC.
We do not show plots with similar reordering for panels A,
B, and C because in these cases the differences between the
raw 1SIC and the mean of the smoothed bootstrap are not
visually perceptible.

In cases A, B, and C the difference between raw 1SIC
and smoothed mean bootstrapped 1SIC are quite small
and the correlation of raw 1SIC and mean smoothed
bootstrapped 1SIC are greater than 0.99. Thus, there is
almost no impact of choice of evidence measure in these
cases with correct and mild misspecification. In the badly
misspecified case D, there is a large average difference
between raw 1SIC and the mean smoothed bootstrapped
1SIC and almost no correlation between them. Further,
when using the raw 1SIC, the location of the security
intervals becomes almost unrelated to the strength of evidence.
Consequently, the raw 1SIC has almost no ability to securely
identify the best model.

6. DISCUSSION

Historically, the appeal of classical Neyman-Pearson testing has
been the appearance of a strong control of error probabilities.
Dennis et al. (2019) show this apparent control to be an illusion
for the great majority of cases of interest in ecological science
where models are misspecified. Under model misspecification,
the realized error rate for a NP test can be less than or greater than
its nominal rate. In some realistic cases the probability of error in
a NP test can even increase with increasing sample size. Evidential
analysis is superior to NP testing in that the total error rate always
decreases with increasing sample size, both under correct model
specification and under model misspecification.

However, Dennis et al. (2019) further points out that
evidence is not entirely immune to problems due to model
misspecification. Under misspecification, the probability of
strong misleading evidence is not directly calculable because the
generating process is not one of the models compared and is
not even known. This current paper demonstrates that evidential
error rates can be estimated even under model misspecification
using non-parametric bootstrapping techniques (at least for
independent data). Our approach to the bootstrapping of
evidence differs from that used in the EIC (Konishi and
Kitagawa, 1996; Ishiguro et al., 1997) in that we bootstrap the
evidential comparison as a unit (see definitions 23 and 24 Box
4) whereas the EIC compares bootstrapped components. The
joint bootstrapping allows us to estimate the impact of model
set misspecification on evidential uncertainty more effectively.
In this paper, we have only addressed the case of independently
distributed data. We expect, however, that this approach can
be extended to other data structures with the use of subtler
bootstrapping methods (Lele, 1991, 2003; Lahiri, 2003).

It is important for scientists seeking to use and interpret these
measures of uncertainty to understand the two intervals, global
and local, are quantifying two different kinds of uncertainty.
Statistical evidence is an estimate of the relationship between two
models and the generating process. It is a penalized sample size
scaled estimate of the difference of the divergences of two models

TABLE 4 | Models compared and generating process for each model set are described in the text.

Case Model set adequacy Interval type Evidential security categories Average reliability

MS CS MI CI W PI SI PS SS

A Correctly specified Global 0 0 0.001 0 0.069 0.108 0.447 0 0.375 0.944

Local 0 0 0 0.001 0.069 0.105 0.101 0 0.724 0.975

B Correctly specified Global 0 0 0.001 0.003 0.345 0.195 0.371 0 0.085 0.834

Local 0.001 0 0 0.003 0.336 0.202 0.152 0 0.306 0.877

C Mildly mis-specified Global 0.003 0 0.042 0.066 0.260 0.140 0.390 0 0.099 0.720

Local 0.034 0 0.012 0.063 0.256 0.148 0.126 0 0.361 0.775

D Badly mis-specified Global 0.003 0 0.068 0.050 0.261 0.114 0.400 0 0.104 0.711

Local 0.046 0 0.025 0.050 0.260 0.115 0.137 0 0.367 0.761

The bootstrap mean evidence is used as the strength of evidence. Each row lists the proportions each security category occurs in 1,000 simulations and the overall
reliability. Security in each row is determined either by the unconditional evidential confidence intervals or the conditional evidential confidence intervals. The categories
of security are: MS, misleading and secure; CS, confusing and secure; MI, misleading and insecure; W, weak; PI, prognostic and insecure); SI, strong and insecure; PS,
prognostic and secure; SS, strong and secure. Reliability is the proportion of times the best model is correctly identified—by any strength of evidence—averaged over all
trials.
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from the generating process (truth). Valid confidence intervals
of an estimate tell us how confident we are that the estimation
target lies within the interval. In the global case, our estimate
of evidence is the mean of the global bootstrap distribution of
evidence, but the estimation target is the true penalized scaled
divergence difference (Box 4, definition 19). In the local case
our estimate of evidence is the mean of the local bootstrap
distribution of evidence, but the target is the true evidence in the
data without model estimation error (Box 4, definition 20).

For badly misspecified model comparisons local inference
has strong and secure but misleading evidence more often than
global inference. Nevertheless, we are in a position to make
scientific inferences about the true relationships of our compared
models to the generating process, backed by an uncertainty
measure warrant.

Both the global and local evidence confidence intervals are
important to science because they answer different questions.
The global interval is a confidence interval on the true penalized
scaled divergence difference. This speaks directly to the relative
ability of our models to represent nature. The resampling
is non-parametric to accommodate model misspecification.
Further, the intervals incorporate both sample and model
estimation uncertainty.

The global uncertainty we offer answers the question of how
dissimilar to the current evidence we would expect new evidence
to be if our experiment were to be repeated. This is the interval
that other researchers should consider when trying to decide if
their new results call the current results into question.

On the other hand, the local uncertainty tells you how
confident you are in your evidence given the data you have
collected. This might be the interval to use if you intend to take
an action based on the results.

Replication is often seen as a pillar of science as a social activity
(e.g., Johnson, 2002). But, what to replicate and how to measure is
not always clearly understood. Which interval should a scientist
use? Unfortunately, a univocal recommendation is not possible.
The local interval is tremendously appealing because it is so
short and because its overall reliability is greater (see Table 4).
However, to justify inference based on it alone, the scientist
needs to be able to defend the assumption of approximately
correct model set specification. In the rough and tumble world of
ecology this will rarely be possible, except for tightly controlled
experiments with well understood error structures. The global
interval presents an appraisal of the replicability of the scientist’s
results. If the global interval has been presented, the local interval
can be a useful indication of how good the results could possibly
be. For the accumulation of understanding through science, the
global interval may be preferable. This preference is grounded in
our opening quote from Plato. Using the global interval, you will
accept wrong statements less frequently than when using the local
interval. However, in a decision context, where costs and benefits
are explicit, the local inference’s property of making correct
predictions more often than global inference might be important.

Hopefully, our recommendation to focus on the global
interval will be only temporary. We expect that often model sets
could be misspecified, but close enough to correctly specified
that the local interval would be a justifiable improvement

over the global interval. Research into diagnostics to identify
these cases is called for (Cook and Weisberg, 1982). Useful
diagnostics will involve more than measures of the adequacy
of single models (e.g., Markatou and Sofikitou, 2019) they
must somehow include measures of the geometry of the
generating process and the competing models (Dennis et al.,
2019; Ponciano and Taper, 2019).

In the meantime, little is practically lost. We agree with
Goutis and Casella (1995) that “In any experiment both pre-
data inferences and post-data inferences are important.” Our
inferential strategy is a hybrid of local and global (conditional
and unconditional). Our primary tool is the strength of evidence,
which is local (i.e., conditional). The evidence expresses clearly
what the data we have says about the relationships among
nature and our models. Our secondary tools are our pair
of measures of the security of the evidence. If we choose a
global (that is unconditional measure) we gain an honest, if
perhaps overly conservative, insight into the degree that chance,
experimental/sample design, and model misspecification may
have influenced our evidence. If we choose a local (that is a
conditional measure) we gain a more precise understanding
of the information in the data, at the risk of overconfidence
due to model misspecification. Much of statistics both classical
and Bayesian relies on conditional inference and thus might be
over-confident in its conclusions in the face of potential model
misspecification (see also Yang and Zhu, 2018).

While the global uncertainty, either calculated from
asymptotic theory or from the non-parametric bootstrap is
a useful statistic, it should not be interpreted too literally. As
Fisher (1945a,b, 1955, 1956, 1960) long argued (see Rubin,
2020; Devezer et al., 2021 for detailed discussions) an exact
repetition of an experiment is not possible in many branches
of science. Certainly, this is true in ecology and environmental
science, where heterogeneity and temporal data abound. To
paraphrase Heraclitus, you can’t electrofish the same river twice.
A more realistic understanding of global uncertainty would come
from a metanalysis of the actual repetition of modestly sized
experiments distributed in space and time than from a single
large experiment. As an example, Jerde et al. (2019) conducts an
evidential comparison of models for the intra-specific allometry
of metabolic rate in fish using a database of 25 high quality
studies, with 55 independent trials, across 16 fish species.

Jerde et al. (2019) use evidential support intervals in their
analysis of the allometry of metabolic rate in fish. These intervals
are post-data/conditional/local intervals. We wish to point out
that, while both are useful, evidential support intervals and
confidence intervals for evidence are different. Evidential support
intervals indicate the range of parameter values in a model space
that are not differentiated from the best estimate at a specified
strength of evidence. Confidence intervals make a statement
that at the specified probability a random interval, whose
randomness stems from sample space probabilities, contains
the true parameter value (Dennis, 2004). Under correct model
specification, the support interval indicates over what range of
parameter values the relative plausibility of the best estimate
relative to the parameter value is less than the designated
strength of evidence.
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Under a correct model assumption, a1AIC interval is directly
transformable into a confidence interval on the strength of
evidence using Wilks-Wald hypothesis test inversion (see Dennis
et al., 2019). The confidence level of this transformed interval
will depend only on the chosen strong evidence threshold,
kR. On the other hand, the level of an evidence confidence
interval corresponding to a 1SIC interval will be a function
of both kR and log(n). As n increases the confidence level will
increase. This parametric confidence interval is preferred if a true
model assumption is justified. Using a nonparametric confidence
interval rather than a evidence interval acknowledges that your
model set may be misspecified.

Global and local confidence intervals for the strength of
evidence, at least as we have developed them in this paper, are
used in the comparisons of model spaces. The intervals discussed
are on the space of strength of evidence values; they are not
on the space of parameter values nor are they on the space
of predictions. We have seen that the interpretation of local
and global intervals on evidence requires deep consideration of
the scientific questions being asked. Complexities also arise for
conditional and unconditional intervals for parameters and for
predictions. We defer to another paper a unified discussion of the
effects of post-data and pre-data intervals on science.

As laid out in Royall (1997) and Dennis et al. (2019), one of
the great strengths of the evidential approach relative to NPHT,
is that M, the probability of misleading evidence goes to 0 as
sample size increases whereas α, the corresponding uncertainty
measure in NPHT, remains constant. It is a commonplace
in introductory mathematical statistics courses that hypothesis
tests and confidence intervals are inter-convertible. Given this,
a reasonable question to ask is: By incorporating confidence
intervals have we somehow given up the superior error structure
of evidence? The answer to this question is no. The NPHT
freights both its measure of the strength of evidence and its
measure of uncertainty onto α. We use 2 measures; the primary is
evidence and as sample size increases this will go to either+∞ or
−∞. Our second measure is the standard deviation of evidence
and, as discussed in Section 5.2, this does not grow as rapidly as
the evidence itself. As a consequence, the probability of making
an error of assignment—at any specified level of confidence—also
goes to 0 as sample size increases.

A literature has developed that constructs confidence sets
(i.e., confidence intervals on discrete parameters) in model
identification (Hansen et al., 2011; Ferrari and Yang, 2015;
Sayyareh, 2017; Li et al., 2019; Zheng et al., 2019; Liu et al., 2021).
These papers differ from the current work in several important
fashions. First, the confidence intervals being considered are
not even related. Our work constructs a confidence interval
on a continuous parameter, the strength of evidence between
models. The parameter in the model confidence sets literature
is a discrete parameter of model inclusion. Second, one feature
of the confidence set approach is that specification of the
entire model set is essential to interpretation of a confidence
set. This is a drawback that is shared by Bayesian model
selection and model averaging. Our worked example in Section
3 makes 14 evidential comparisons. Should some sort of
adjustment be made? If the analyst is willing to specify the

model set, multiple comparison adjustments are appropriate
in evidential comparisons, particularly when massive numbers
of comparisons or badly misspecified model sets are involved.
Fortunately, there are several features of the evidential paradigm
that allow it to respond to multiple comparisons with more
grace and less cost than classical hypothesis testing approaches.
Evidential multiple comparisons have been extensively discussed
in Strug and Hodge (2006a,b) and Taper and Lele (2011).
These reviews were written from the standpoint of correctly
specified model sets with the probability of misleading evidence
being estimated by Royall’s universal bound (Royall, 1997).
We hope to soon write a paper on evidential multiple
comparisons that utilizes the ability of our non-parametric
bootstrap to estimate the probability of misleading evidence
in the face of model misspecification (Taper et al., 2019;
Liu et al., 2021).

Another attribute of the model confidence set papers is that
they all make their selections based on some form of NPHT.
We suspect that these confidence sets inherit the stringent
properties of multiple comparisons in NPHTs rather than the
more permissive properties of evidential multiple comparison.
We look forward to investigating this in more detail in the future.

Due to limitations of space, the topic of this paper is
treated strictly as a development of evidentialist statistics
using a frequentist notion of probability. When epistemic
comparisons are made, they are to NPHT. Readers interested
in better understanding the relative epistemic character
of evidential statistics, error statistics (classical hypothesis
testing), and Bayesian statistics might explore some of
Dennis (2004), Lele (2004a,b, 2010, 2020a), Taper and Lele
(2004), Efron (2005), Lele and Allen (2006), Lele et al. (2007,
2010), Lele and Dennis (2009), Ponciano et al. (2009, 2012),
Bandyopadhyay and Forster (2011), Bandyopadhyay et al.
(2016), Taper and Ponciano (2016), Mayo (2018), and Brittan
and Bandyopadhyay (2019) as examples of a vast battleground of
literature on the topic.

7. CONCLUSION

Neither the Bayesian nor classical frequentist statistical toolkits
appear adequate for the increasingly complex challenges of
the future. In the long run, neither our models nor our
data, nor our conclusions are static. We need to look at
multiple models realizing that we do not know truth and
evolve these models toward better approximations of truth
with the accumulation of data and use of evidence as a
selection function.

We have produced both global and local uncertainty
measures that are easily calculated for many analyses
using the R-code that we supply in Supplementary
Material. Further, by creating three categories for the
strength of evidence coupled with three categories for the
security of evidence we have constructed a conceptual
language that allows scientists a statistically valid way
to talk, and publish, about interesting results that are
not yet conclusive.
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