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Abstract

Data assimilation techniques are investigated for integrating high-speed high-resolution
experimental data into large-eddy simulations. To this end, an ensemble Kalman filter is
employed to assimilate velocity measurements of a turbulent jet at a Reynolds number of
13,500 into simulations. The goal of the current work is to examine the behavior of the
assimilation algorithm for state estimation of turbulent flows that are of relevance to engi-
neering applications. This is accomplished by investigating the impact that localization,
measurement uncertainties, assimilation frequency, data sparsity and ensemble size have on
the estimated state vector. For the flow configuration and computational setup considered in
this study an optimal value of the localization radius is identified, which minimizes the error
between experimental data and state vector. The impact of experimental uncertainties on the
state estimation is demonstrated to provide solution bounds on the assimilation algorithm.
It is found that increasing the number of ensembles has a positive impact on the state esti-
mation. In comparison, decreasing the assimilation frequency or reducing the experimental
data available for assimilation is found to have a negative impact on the state estimation.
These findings demonstrate the viability of assimilating measurements into numerical sim-
ulations to improve state estimates, to support parameter evaluations and to guide model
assessments.

Keywords Data assimilation - High-speed experimental data - Large-eddy simulation

1 Introduction

There has been increasing interest in numerically studying time-dependent phenomena,
such as transition and separation in turbulent flows [1]. However, the ability of large-
eddy simulation (LES) to reproduce experimentally observed time-dependent phenomena
is limited for several reasons. First, LES is inherently a stochastic representation of a
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time-dependent process and thus cannot be directly compared to a specific experimentally
observed phenomena. Second, specifications of boundary conditions and required closure
models introduce sources of uncertainty, which along with the chaotic nature of turbulence,
limits the capability of LES to capture an experimentally observed event [2]. Thus, a new
approach is required to numerically investigate rare or stochastic events.

One such approach is to assimilate experimental data into simulations so that the result-
ing predictions are improved over those produced by either method on their own [3]. This
is accomplished by considering errors associated with the numerical models and experi-
mental data and determining the state vector which best satisfies the information obtained
from the numerical model and experimental data. These methods can be employed to ana-
lyze model deficiencies in representing physical processes and for estimating uncertainties
or unknown parameters. Furthermore, these approaches can be applied to enrich and com-
plement incomplete experimental data with the goal of improving the state vector to better
understand physical processes and precursor events responsible for transient phenomena
that evolve in time.

Data assimilation (DA) has been used extensively in the numerical weather prediction
(NWP) community to integrate measurements from weather stations, ships, aircraft, satel-
lites and other observations with their numerical models [4, 5]. Data assimilation is utilized
to obtain the best initial conditions for weather forecasting [6] and for reanalysis [7, 8].
NWP utilizes a range of DA-techniques such as Nudging [9], 3D-Var and 4D-Var [6] and
the ensemble Kalman filter (EnKF) method [10].

Whereas the goal of NWP is to produce accurate forecasts of future weather events, the
goal of the current work is to investigate DA for use in a posteriori analysis of models and
physical processes. This distinctly different goal is a consequence of the different time and
length scales that govern flows of engineering relevance. While DA is a developed tech-
nique in the atmospheric sciences, it has found limited application to engineering problems.
Within the fire and combustion community, DA has been applied for parameter and state
estimation. Jahn et al. [11] utilized a cost function to assimilate temperature data to esti-
mate parameters within simple zonal models with the goal of improving predictions of fire
growth. Kalman filter algorithms have been employed for parameter estimation for ideal-
ized flames [12], to combine particle tracking velocimetry and DNS [13], and for coupling
high-speed experimental data and LES to investigate ignition and extinction in a turbu-
lent jet flame [14]. In addition, Edwards et al. [15] has investigated continuous ensemble
Kalman filtering for a reacting 2D hydrogen-air shear layer, showing that this approach can
be applied to constrain LES so that its statistics evolve more in accordance with a given data
set.

Within the wider fluid research community, Kalman filtering has been used to assimilate
data into 2D simulations of flow around cylinders, turbulent three-dimensional simulations
of a spatially evolving mixing layer and the flow around plates [16], and to estimate the
probability distribution of inflow boundary conditions for urban environments [17]. Other
assimilation techniques such as Newtonian relaxation have also been applied to improve 2D
Reynolds-averaged Navier-Stokes simulations of flows over an airfoil [18] and to couple
numerical and experimental data in a data optimization feedback loop where initial and
boundary conditions could be obtained using only interior flow field information [19].

In this paper, we employ DA to integrate high-speed, high-resolution experimental data
obtained from a turbulent jet [20] into LES. Assimilation of the experimental data are per-
formed using an EnKF-algorithm and the performance of the method is investigated to
understand its impact on the state estimation. The overarching goal of the current study, is
to better understand the behavior of the EnKF for problems that are relevant to the fluids

@ Springer



Flow, Turbulence and Combustion

community. Our first objective is to evaluate the use of DA as a method for integrating
experimental data into simulations for state estimation. This is accomplished by comparing
the transient predictions and the instantaneous flow structures obtained from a baseline LES
without DA to those obtained via the EnKF algorithm. The second objective is to identify
the impact that data localization and other EnKF-model considerations have on the resulting
predictions. Following this, we investigate how the DA-method is affected by changes in
experimental uncertainty, assimilation frequency and sparsity of experimental data. Finally,
improvements that can be obtained by increasing the number of ensembles utilized within
the EnKF are examined. With this knowledge, the EnKF can be utilized to its fullest extent
to improve the predictability of LES by revealing and correcting for errors from a wide
range of sources (from initial and boundary conditions, closure models, model parameters
and from those that arise from an incomplete understanding of the physical phenomena).
The remainder of this paper is organized as follows. In Section 2, we present the govern-
ing equations. An overview of different DA-techniques is provided in Section 3 followed
by details on the EnKF method utilized in the current work. Details of the experimental and
computational setup are given in Section 5. Results are discussed in Section 6. The paper
ends with conclusions and recommendations about the use of DA for turbulent simulations.

2 Governing Equations
In the present study, the finite-volume LES solver CharLES*[21] is employed for simulating

the turbulent jet and we solve the governing equations for the Favre-averaged compressible
conservation equations of mass, momentum and energy taking the following form:

Dip = —pV -4, (la)
DG = —Vp+ V- (@ + 04, (1b)
D = —V (@ +4q,) +V-[@—pD -, (Ic)

where 5, = 0; + u - V denotes the substantial derivative, p is the density, u = (u, v, w)T
is the velocity vector with corresponding velocity components along the axial and spanwise
directions x = (x, y,z)", p is the pressure, e is the specific total energy, o is the viscous
stress tensor, ¢ is the heat-flux vector and the subscript “sgs” denotes turbulent subgrid
quantities that are modeled. Closure for turbulent subgrid stresses are obtained using the
Vreman SGS models [22]. Pressure is obtained by solving the ideal-gas law,

p=pRT, @)

where T is the temperature, which is evaluated from the internal energy [21] and R is the gas
constant. For the system considered in Eq. 1, the state vector, consisting of density, velocity
and energy, is given by

~ T

o=[pu2]". 3)
and Eq. 1 can be finally written as
Pt +6) = M), “

where M is the model represented by Eq. 1, which evolves the solution from time, ¢, to
t + &;, where §; is the timestep of the numerical model.
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3 Data Assimilation

Data assimilation has the potential to be utilized as a tool for state estimation, model evalu-
ation, parameter estimation, or to combine experimental data and numerical simulations to
interrogate physical processes that cover transient phenomena. The purpose of data assim-
ilation is to modify the state vector obtained from the numerical model based on specific
observations as illustrated in Fig. 1. For the reader not familiar with data assimilation, in the
following section we provide a brief review of variational (Newtonian relaxation, 3D-Var
and 4D-Var) and statistical (Kalman Filter methods) DA-techniques that have been applied
to assimilate experimental observations into simulations.

3.1 Newtonian relaxation

Newtonian relaxation, also known as Nudging, has been applied to assimilate observations
within the NWP community. The core idea of Nudging is to relax the prediction towards
a given observation. This is accomplished by introducing a source-term into the model
equations, Eq. 4, which takes the following form for linear observation operators [3]

1
F=-- (Hp) —¥), ®)

where the term in brackets is the innovation, which represents the difference between the
observation and state vector; ¥ is the observation vector obtained from experiments or other
numerical data, 7 is the observation operator which maps the state vector into the vector of
measurements and 7 is the relaxation time or nudging coefficient. This relaxation time con-
trols how strongly the solution must adhere to the observation. For large values (t — 00),
the solution is dominated by the physics represented within the numerical model. Con-
versely, for t — 0, the solution is strongly forced towards the observation and the physics
represented by the numerical model has a weak influence on the solution. This method
is also known as indiscriminate Nudging [9]. In this method the state vector is directly
modified within the numerical model, which has the advantage of minimizing the over-
head required to assimilate observations and is similar to the forcing method in DNS [23].
However, this comes with several disadvantages. First, a method for choosing the value of

Assimilation Assimilation
step step

time

Fig.1 Illustration of the EnKF data assimilation technique. Two data points are assimilated (circles). Colored
lines represent state vectors and orange zones highlight their variation prior to the assimilation of data. Blue
zones show the updated state vectors, which are pulled towards the experimental data points, improving the
state estimation
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7 dynamically without a priori knowledge of the timescales governing the physical pro-
cesses under consideration is required. Second, the state vector is only modified at locations
where observations are available. Thus, for sparse data the overall impact on the predicted
state vector may be minor. Finally, this method does not directly account for uncertainties
present in both the experimental observation and the numerical model. For these reasons
this method is not considered in the current study.

3.2 Three- and four-dimensional variational data assimilation

More advanced assimilation techniques, such as three-dimensional variational (3D-Var) and
four-dimensional variational (4D-Var) methods, overcome many of the limitations present
in Newtonian relaxation, but come at the price of increased cost and complexity. In these
methods both uncertainties present in the numerical model and experimental observations
are directly considered when determining how to update the state vector obtained from
the numerical model. This is accomplished by the prior-error covariance matrix Ce. and
observation-error covariance matrix Cy¢, Which account for model errors and experimen-
tal uncertainties, respectively. Further, by considering the prior-error and observation-error
covariance matrices, these methods can also update the state vector at locations where no
observations are present through the prior error-covariance matrix, which relates model
errors at locations where observations are available to model errors at locations where no
observations are present. 4D-Var extends on the principles of 3D-Var by extending the
assimilation method to consider the temporal evolution of the model. Within 4D-Var with
Gaussian priors, the updated state vector is obtained by minimizing the following cost
function [24]

T@ = 5@~ #NTC, L@ — 87)

T

1
3 2 [~ H @] € [~ H @)
t=0
1 T
+5 2 [9F = M@{D] Q! [97 — M@)]. ©
=1
where @7 = {¢p , ¢§ REEEE ¢f } is the prior or first guess state vector at all times during the

temporal assimilation window, t is the number of discrete observation times present in the
assimilation window, @ is the updated state vector at all times (®* = {¢{, @5 - - - $7}) and
¥, denotes the observations available at time ¢. In addition, the three error-covariance matri-
ces for the prior error (Cec), the observation error (Cyg) and the model error (Q) require
closure through modeling or a-priori knowledge. Often in NWP a strongly constrained
4D-Var formulation is employed in which the model is assumed to be perfect (Q = 0).

For 3D-Var with Gaussian priors, the cost function is given by [25],

1
T@) = 5@ =N Cpp @ — ") + [ — H)] C! [¥ —H@$D]. D

Various approaches have been developed to deal with observations, which occur during the
assimilation period. In traditional 3D-Var, all observations within the assimilation period
are applied at the assimilation time and ¥ — H(¢“) is calculated based on predictions at the
analysis time. In comparison, in 3D-FGAT (first-guess at appropriate time) interpolation is
performed to have model predictions at the appropriate observation time when calculating

¥ — H(¢) [26, 27].
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3.3 Kalman filter

The Kalman Filter is the starting point for a class of statistical and sequential DA-
techniques. These sequential techniques estimate the solution state by evolving the prior
state through time by considering modeling errors in Eq. 4,

Pt +58) =M (¢"®) +1, ®)

where 7 is the error associated with the model. The state vector is updated based on a set of
observations in the form of

Y=W+e, 9

where W is the true value of the observations in the absence of any errors and € is the error
associated with the measurements. The values of the errors in Eqs. 8 and 9 are unknown and
statistical hypotheses are required before a solution can be obtained. Specifically, within
the Kalman filter it is assumed that the error associated with both the prior prediction,
obtained via the model M and the observation is unbiased. Model and observation errors
are uncorrelated and the error covariance matrix of the prior and observation are given by
Cy¢ and Ce, respectively [28].

The goal now is to find the solution ¢“ that best satisfies Egs. 8 and 9. Under the
assumption of Gaussian errors, this solution can be written in a Bayesian framework as

P(¥|¢“) P(¢*)
P(¥) ’

where P(¢“|¥) is the posterior density of ¢ given the measurements ¥, P (¢?) is the prior
density of ¢“, P(¥|¢?) is the likelihood function for measurements ¥ and P(¥) is the
evidence. The prior density is assumed to be given as

P@1¥) = 10)

a 1 a —1,4a
P (%) o exp (—5<¢ — $")C,l (¢ — «/ﬂ’)) : (11)
and the likelihood function is defined as
1
P(¥1$*) o< exp (—5 [v —H(s")]C [¥ —H(rb”)])- (12)

With this, Eq. 10 can be rewritten as

1
P(¢"1¥) o exp (—EJ(W’)) : (13)
where J is
T (@) = (9" — ¢")Cy, (¢ — 67) + [H(@) — ¥ ] C! [H@D —¥] . (14)

The solution to Eq. 10 is obtained by minimizing Eq. 14 with respect to ¢“ resulting in the
following solution form [28]

" =¢” + K[y —H(¢7)] . (15)
where K is the Kalman gain matrix. The Kalman gain matrix can be expressed as [28]
K = CypH" (HCyoH + Cc) ™" (16)

where H = 97 /d¢ is the Jacobian of the observation operator with respect to the state
vector. The presented formulation of the Kalman filter is the starting point for a group of
assimilation algorithms such as the extended Kalman filter [29] and the ensemble Kalman
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filter. In the present work, we only consider the ensemble Kalman filter and its formulation
is presented next.

4 Ensemble Kalman Filter

In the current study, the ensemble Kalman filter is chosen due to its capabilities for appli-
cation to large-scale problems and its robust evaluation of the error covariance which
outweigh the limitations of a linear observation operator and assumed Gaussian distribu-
tion for the priors. Within the EnKF, the prior error-covariance matrix, Cgyg, is replaced
with a sample prior error-covariance matrix, P, to eliminate the need for storing and evolv-
ing the prior error-covariance matrix, which can be computationally expensive. Within the
EnKF approach a set of N independent samples are utilized to build the sample prior
error-covariance matrix, which is calculated as

1
P= ﬁzlivzl (@x — (@) (&1 — <¢))T , (17)

where (¢) is the mean of all ensembles. In this work, we employ EnKF with a perturbed
observation vector [28] to estimate the state vector of the k™ ensemble member.

The state vector is updated by combining the prior and the perturbed observation for each
ensemble resulting in the following expression

i = ¢ + K[y, —H (o7)] . (18)

fork = 1,..., N where ¢, is the perturbed observation vector. Following Evensen [30],
the perturbed observation vector combines the experimental measurements and observation
errors, which are sampled from a normal distribution with expectation 0 and covariance
matrix Cc.. Equation 18 is then solved for each ensemble independently. The benefit of this
approach is that the updated ensembles contain the correct error statistics for the analysis
and can be directly integrated forward in time.

The perturbed observation vector combines measurement and observation errors to pro-
duce a unique set of measurements for each ensemble. In the current work, the observation
operator consists of the weight factors obtained from interpolating the solution on the com-
putational mesh to the experimental data points obtained from Delaunay triangulation and
barycentric interpolation.

4.1 Localization of the EnKF

Within the EnKF algorithm, localization of the C.. matrix is performed to reduce long-
range spurious correlations due to sampling errors [31], which can lead to unphysical
simulation results. Localization has the added benefit of decreasing the size of both the Ce,
and P matrices. This limits the observations utilized within the EnKF to those within a given
radius of the cell center. In the current work, a unique gain matrix, K;, is constructed for the
state vector at each grid point x; and localization is obtained using a Schur product of the
observation and observation covariance matrices. With this, the gain matrix is calculated as

K, =PH (HPH' +ToC.) ', (19)
where I o C, is the Schur product of I' and C,, which can be computed using

(T oCe)ij =T;jCecij- (20)
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Fig.2 Schematic of the .
localization process for a single n

cell center (black dots) with *
localization radius, r (red circle). *
Stars represent available * *
experimental data. Only *
observations within the circle are
utilized when constructing the 7k *
EnKEF for the cell center (red
stars). The remaining * * %
observations (black stars) are not
included in the EnKF

In the present work, I is defined as
Fx,y)=H@r —1|y—x]), 21

where H is a Heaviside function, y is the measurement location, x is the cell center location
and r is defined as the localization radius. This localization operator assumes homogeneity
and more complex operators can be employed to account for the underlying flow topol-
ogy [32]. Once C,. is localized, P is constructed such that it contains information only from
cells that have a non-zero entry in 7—[(¢£ ) for observations within C.

4.2 EnKF algorithm

In the current algorithm, the connectivity between the state vector and experimental
measurement locations is pre-computed along with weights required for the observa-
tion operator. The connectivity and interpolation weights are calculated using the built-in
delaunayTriangulation, ConnectivityList and pointLocation func-
tions from MATLAB. A schematic of the localization process is presented in Fig. 2 and the
EnKF-procedure is summarized in Algorithm 1.

Algorithm 1 Ensemble Kalman filter with localization.

1: Define ensemble size N and localization radius r

2: Pre-compute connectivity and interpolation weights required for observation operator
3: Define assimilation frequency and calculate corresponding time interval §;

4: Initialize ensembles based on random uncorrelated simulation times

5: while ¢ < f¢pg do

6: Advance each ensemble k independently in time for t — ¢ + §;

7 Calculate ensemble mean (¢).

8 Calculate residual for each ensemble (¢, — (@)).

9 for each Control volume V; do

10: Calculate I' o C,, retaining only non-zero entries

11 Calculate perturbed observation vector (¢ ) for each ensemble

12: Calculate innovation (¢, — H ((b]’(7 )) for each ensemble

13: Calculate P Eq. 17 for observations within localization radius r

14: Calculate gain matrix K; Eq. 19 and compute ¢* = K; [¢, — H (¢})]
15: Compute new state vector Eq. 18 for each ensemble

16: end for

17: end while
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In the current work, each ensemble is advanced sequentially with the simulations them-
selves utilizing the parallel LES solver, CharLES*. Within the DA-algorithm, the code has
been parallelized and the calculation of the EnKF for each control volume is performed in
parallel. In terms of CPU time requirements, the main bottleneck of the algorithm is the
sequential advancement of the ensemble calculation. Thus, the total CPU time scales lin-
early with respect to the number of ensembles. In comparison, for the parametric studies
presented below, almost no change in the total CPU time is observed when changing the
localization or assimilation frequency.

5 Experimental Configuration and Computational Setup
5.1 Experimental setup and measurement methods

A turbulent inert jet that was experimentally investigated by Coriton and Frank [20] is
selected for the current study. This experimental data set was chosen as it provides both
high spatial and temporal resolution for the three-component velocity field in the shear
layer of the jet. The inert jet is based on the Sandia flame series [33] with the nozzle diam-
eter enlarged from D = 7.2 mm to D = 7.45 mm. The bulk velocity of the air jet is
Up = 27.5 m/s, resulting in a jet Reynolds number of 13,500. The annular pilot had no flow
and the entire burner was surrounded by an air coflow with an exit velocity of 0.9 m/s.
Measurements of the three velocity components in the downstream region of the jet were
obtained using Tomographic Particle Image Velocimetry (TPIV). The system consists of
a high speed diode-pumped dual-head Nd:YAG laser and a set of four high speed CMOS
cameras. A schematic of the experimental configuration is given in Fig. 3. Measurements
were performed at a repetition rate of 10 kHz using a laser energy of 5 mJ/pulse and a
pulse delay between laser heads of 10 us. A vertical slit was positioned in the beam path to
select the most uniform portion of the beam, which was determined using a beam profiling
camera. A pair of cameras was positioned on each side of the laser beam with two camera
lenses positioned at 20° with respect to the y-axis and the other two camera lenses at 30°.
The cameras were operated at 20 kHz in a frame straddling mode using a 896x800 px>
region of the detector. The jet and coflow were both seeded with 0.3 um aluminum oxide
particles. Light scattering from the alumina particles was imaged onto each camera using
identical camera lenses and Scheimpflug mounts to compensate for the displacement of the
imaging plane. Computation of the velocity vectors consisted of the following steps:

1. Applying smoothing (3 x 3 px*> Gaussian filter) and correcting the raw particle images
for non-uniformity of particle scattering signals.

2. Reconstructing the particle volume distribution using a Multiplicative Algebraic Recon-
struction Tomography (MART) algorithm [34].

3. Calculating the velocity vectors by iterative volume cross-correlation for a final volume
interrogation size of 24 x 24 x 24 voxels® (393 x 393 x 393um?>) with 75% overlap.

4. Removing/replacing spurious vectors identified via an outlier detection method and
reducing the measurement noise with a spatial filter based on a penalized least-square
method [20, 35].

The probe volume size was 12.3x2.5x16.5 mm> (in axial, spanwise and transversal
direction) and contained 126 x 26 x 169 vectors with 98.4 um spacing representing an over-
sampled representation of the measurement volume. A detailed description of the TPIV
system including velocity uncertainty estimates is available in Refs. [20, 35].

@ Springer



Flow, Turbulence and Combustion

High-Speed CMOS Cameras

Dual-Head 10 kHz Nd:YAG Laser

Fig.3 Experimental configuration for high-repetition rate TPIV measurements

In the present work, a 50 ms time sequence of the TPIV measurements was selected at a
location centered in the jet shear layer at z/D = 1.15 and an axial height of x/D = 15. This
measurement location was selected by requirements for resolving all turbulent scales [20,
35]. In the current study, approximately 280 million measurements are available to assess
the value of DA of high-speed experimental measurements for LES.

5.2 Estimation of experimental errors

The observation covariance-error matrix, C, is assumed to be known and can be calculated
as

Cee=f (cg,cg‘g,cg,cg) , 22)

where Cgé is the gross error due to the incorrect collection of data (missing data, incor-
rect units, data which has been mislabeled (i.e. velocity vectors are attributed to the wrong
directions, data entry errors, etc.), CM is the error due to measurement noise, CX is the rep-
resentative error which is caused by converting in situ observations to values of interest and
CZ is the observation operator error which is introduced by transforming the experimen-
tal observations to values of interest. In the present work, gross errors (CEE) are expected
to be negligible as the measurements was obtained from carefully calibrated and controlled
laboratory experiments. This have further verified by checking to ensure the data are phys-
ically feasible, consistent and has no missing vectors. Errors associated with measurement
noise (Cg’é ) and volume reconstruction errors (Cfe) have been estimated based on compara-
ble experimental measurements at approximately 5% [20]. Additional representative errors
(Cfe) occur due to the inherent spatial and temporal averaging of TPIV and the apparent
transport of ghost particles. These errors are lumped together to obtain a representative error
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of approximately 5%, which has been estimated in collaboration with experimentalists and
the work of Wieneke [36].

An estimation of CZ can be obtained from an analysis of the observation operator. In the
present study, the observation operator is a function that estimates the predicted velocity at
each measurement location via linear interpolation. This error will be a function of the grid
spacing and the local velocity field, which will vary with time. However, the error contri-
bution associated with this linear interpolation is assumed to be negligible compared to CZ
and CR . Before calculating the observation covariance-error matrix several additional sta-
tistical assumptions are required. First, the off-diagonal terms in C and CX are assumed
to be zero. Second, Cg’é and Cf6 are assumed to be uncorrelated and the total uncertainty
associated with the observations is obtained via

Cee = V[ €[5+ |CE . (23)

Based on this information, the overall uncertainty for the velocity components is estimated
at 7% and Ce. is a diagonal matrix, Cee = € X ¥ X §(y; — y;), containing the uncertainty
associated with each measurement. Here, §(y; — y ;) denotes the Dirac delta function.

5.3 Preprocessing of experimental data

The velocity fields obtained from the experimental data are preprocessed to ensure they
are divergence-free. Utilizing a divergence-free velocity field eliminates the potential for
additional pressure and density fluctuations to be introduced into the flow-field simulation
during the assimilation step. The use of a divergence-free velocity field is justified by con-
sidering the expected density fluctuations within the measurement window. The density
fluctuations are estimated based on the axial velocity [37] as

% =(y — HM> (%) , (24)

where p’ is the density root-mean square (rms), y is the specific heat ratio, M is the Mach
number and u’ is the axial velocity rms. Along the centerline at x/D = 15, p = 1.21 kg/m?,
y = 1.4, = 145 m/s and u’ = 2.5 m/s. With these properties, p’ is estimated at 10~*p.
Thus, for the purpose of the current study, the air jet is considered to be incompressible and
the density is considered to remain constant.

The divergence-corrective scheme of de Silva et al. [38] is applied to obtain the
divergence-free velocity field from the experimental data. For each experimental time the
divergence-free velocity field is obtained by solving the following minimization problem:

i -, 25
S't_rg};lzollu LAl (25)

where u is the resulting divergence-free velocity field and ¥ is the raw experimental data.
The solution to Eq. 25 is obtained using the FMINCON function within the MATLAB opti-
mization toolbox. A comparison of the apparent divergence of the velocity field obtained
before and after the minimization process is presented in Fig. 4.

As can be seen in Fig. 4, the raw experimental data contains large divergences, also
observed in [35], which would introduce perturbations into the simulations. In compari-
son, the divergence-free velocity field obtained via Eq. 25, reduces the divergence of the
flow field by several orders of magnitude. Figure 5 shows the three-component velocity
fields before and after the application of the divergence corrective scheme. The result-
ing divergence-free velocity field contains the same large-scale velocity structures, which
appear along the top and centerline for the v and w velocity components along with the
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Fig.4 Histogram of apparent 15000
divergence for the raw TPIV
experimental data () and Div. free
computed divergence-free
velocity field ()
10000 - .
TPIV data
B
B
z
5000 -
0
-1
V-u x10%
Raw Experimental Data Divergence Free Difference

1
z/D z/D z/D

Fig.5 Raw experimental velocity field from TPIV (left), divergence-free velocity field obtained from Eq. 25
(middle) and the difference between the two velocity fields (right)
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positive velocity observed at the bottom and center of the experimental window. However,
the small-scale flow structures observed for the divergence-free velocity field differ signif-
icantly compared to the raw experimental data, producing a smoother velocity field (red
box). Although the overall flow structures observed are similar, the divergence-free veloc-
ity field is utilized for the data assimilation simulations as it eliminates a potential source of
errors from modeling and measurements.

5.4 Computational details

A cylindrical computational domain is utilized with dimensions 77D x 12.8D x 2w, in
axial, radial and azimuthal directions, respectively. The governing equations are solved
in a Cartesian coordinate system with x denoting the streamwise direction and y and z
the corresponding orthogonal spanwise directions, respectively (see Fig. 3 for coordinate
system).

An unstructured mesh with approximately 19 million control volumes is used with
refinement in three areas: the near-nozzle region, the shear layer and the location of the
experimental data with a minimum grid spacing of approximately 0.1 mm. An illustration
of the instantaneous flow field and location of the measurement area is presented in Fig. 6.

Within the experimental measurement area the grid has an average resolution, defined
based on the cube-root volume (AxAyAz)!'/3, of approximately 200 gm. Within the assim-
ilation window the minimum grid spacing is approximately 140 um near the centerline
and increases to 350 um near the outer edge of the assimilation window. Thus, each

Fig.6 Illustration of the
instantaneous flow field and
experimental measurement area
(red box)

x/D
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computational cell contains several experimental data points that can be used for data
assimilation.

The jet inflow velocity profile is obtained from a DNS pipe flow calculation. Following
the experimental setup, a laminar coflow of 0.9 m/s is prescribed. A characteristic pressure
boundary condition is applied at the outlet and adiabatic non-slip boundary conditions are
applied at the walls.

As a first step, the simulation is advanced in time, without any data assimilation, until a
statistically stationary flow is observed. Initial conditions for each ensemble, ¢;, are then
selected from uncorrelated time instances from this simulation. This ensemble of solutions
is then used as the starting point for all future simulations discussed in Section 6. In addi-
tion to the simulations containing data assimilation, additional reference cases (starting at
¢, n and without DA) are performed to assess the impact of the DA-method.

5.5 Baseline simulations

First, statistical results obtained from a baseline LES are analyzed to ensure that the LES is
able to provide an adequate statistical representation of the flow. This is accomplished by
comparing predictions for the mean and rms for the three velocity components against avail-
able experimental data. In the present study, the LES is evaluated based on the mean and
rms centerline profiles and the radial profile at x /D = 15, corresponding to the center of the
measurement window. Contour plots of the mean and rms for the axial velocity within the
experimental measurement window are provided in Fig. 7. In the location where the exper-
imental observations are available, strong velocity fluctuations of approximately 2 m/s are
observed and occur over the majority of the measurement window. Further, the experiment
and LES clearly show the presence of the shear layer where mixing between the jet and air
is occurring. Comparing measurements and computed contour plots for mean axial velocity
and axial velocity rms shows that the LES is able to capture the main features of the mean
axial velocity.

15.5 Exp LES

15 '
14.5

14

x/D

15.5
0.1
Q 15 u' /U,
X
14.5 l
14 0
0 1 2 0 1 2

z/D z/D

Fig.7 Comparison of mean and rms axial velocity contours from baseline LES with experimental data
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Statistics collected along the jet centerline are compared to experimental data in Fig. 8.
The mean axial velocity obtained from the LES shows good agreement with experimental
data and reported experimental measurements for a jet of Reynolds number 16,000 [39].
Within the measurement window, both the mean and rms axial velocity are in good agree-
ment with the experimental data. Radial comparisons at x/D = 15 are presented in Fig. 8
(right) showing good agreement between statistics and measurements. Due to the lim-
ited experimental data available to assess the accuracy of the downstream velocity and
inlet conditions, the present velocity field is deemed adequate to test the impact of data
assimilation.

5.6 Predictability of LES

As stated in Section 1, due to the chaotic nature of turbulence, the simulation will diverge
from the true solution due to exponential growth of small perturbations that can be intro-
duced by the numerical methods or physical models [2]. In the present study, the Lyapunov
exponent is calculated to give an indication of the predictability of the LES within the DA-
window following the method outlined in [2]. This metric provides a measure of the time
horizon over which small perturbations will grow and impact the solution. This value can be
compared with the temporal resolution of the experimental data to determine the frequency
at which to perform data assimilation. To this end, two simulations, a reference and a per-
turbed case (with a relative initial perturbation of ¢ = 1078), are advanced in time and the
difference between the two simulations is calculated. The initial conditions of the perturbed
simulation are obtained from

¢*(10) = $(t0) + ¢l - ¢, (26)

where ¢ is a vector which defines the variables to be perturbed, || - ||

(% Iy |-|dv) is the
Li-norm and V is the volume of the domain. In the current study, only the axial velocity
is perturbed when calculating the Lyapunov exponent, A. When calculating the Lyapunov
exponent the full LES domain is utilized, as the area of highest turbulence occurs near
the nozzle. This domain is selected as it provides conservative estimates of the Lyapunov

14- 1 061 1
0.5
-~ - 0.4
=) =)
>~ >~
B = 03
§ § 0.2
2 N
0.1 oo e o
.°oo..
s
o-
0 1.5 1 1.5 2 2.5 3
z/D

Fig. 8 Mean and rms centerline velocity profiles obtained from baseline LES compared to experimental
data (circles) and measurements for a jet at Reynolds number 16,000 (squares) [39] (left) and radial velocity
profiles from the baseline LES compared to experimental data at x/D = 15 (right)
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exponent and predictability time. The resulting separation, ||§¢| = H¢*(t) — ¢(1)|, is then
used to determine the Lyapunov exponent following
8¢()]| = lI8¢p(t0) €™, (27)

where £ is the initial time. The predictability time, ¢, is related to the Lyapunov exponent
via [2]

=" (28)

Based on the analysis of the global separation the Lyapunov exponent for this flow is
approximately A = 3500 s~! resulting in a predictability time of tp = 0.29 ms or 1.077¢onv,
where 7.,y is the convective timescale, defined as ..,y = D/Up. In this context, it is
noted that the predictability time can be related to a corresponding predictability horizon,
lp >~ t,Up, over which the flow-field remains correlated. This predictability horizon pro-
vides an estimate of the domain-of-influence that is affected by the upstream assimilation
window for convection-dominated flows.

In the present study, DA in the form of EnKF is performed to assimilate experimental
data into LES. As the predictability of the LES is greater than the measurement frequency
(measurements obtained every 0.1 ms), we expect that this bounds the LES to a small real-
izable region around the experimental trajectory, allowing for a direct comparison with
the transient experimental results in the observation window and allows for a numerical
investigation of the transient phenomena present in the current flow.

6 Results

In this section, several aspects of the DA-algorithm are investigated to determine their
impact on the resulting state-vector estimation. For the analysis, the experimental data were
down-sampled by a factor of two to reduce the computational resources required during the
EnKeF, resulting in the assimilation of approximately 280,000 velocity vectors at each anal-
ysis step. First, the number of ensembles utilized is varied to determine the impact on the
numerical predictions and its effect on potential error reduction when calculating the prior
covariance matrix. Second, the degree of localization, in which experimental measurements
are included in the calculation of the EnKF, is varied to determine if an optimal localiza-
tion exists. In this section, the localization is parameterized as r/¢, where £ is the integral
length-scale. Third, the experimental uncertainty is varied to understand its impact on the
state-vector estimation. Fourth, the frequency of assimilation is reduced to evaluate the link
between assimilation frequency, the predictability time and the solution accuracy. Finally,
the number of observations available for assimilation is deliberately reduced and its impact
on the accuracy of the predictions is assessed. A summary of cases considered for each
section is provided in Table 1.

6.1 Number of ensembles

Within the EnKF algorithm, the accuracy of calculating the P matrix plays a crucial role
in determining the quality of the analysis. To increase the accuracy of the reconstructed P
matrix, additional stochastic samples (in the form of additional ensembles) are required.
Ideally, we would increase the number of ensembles such that the reconstruction of P is
independent of the number of ensembles. This would also remove the need for localization
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Table 1 Summary of cases considered for each study

Study r/t N Available Assimilation €
data interval

Ensembles size 0.2 {6,12,18} 280,000 0.1 ms 7%
(Section 6.1)

Localization {0.05,0.075,0.1,0.2} 6 280,000 0.1 ms 7%
(Section 6.2)

Data uncertainty ~ 0.075 6 280,000 0.1 ms {0, 7%, oo}
(Section 6.3)

Frequency 0.075 6 280,000 {0.1ms,03ms} 7%
(Section 6.4)

Available data {0.05, 0.075, 0.1, 6 {10,000; 70,000; 0.1 ms 7%
(Section 6.5)

0.2,0.4,0.8} 280,000}

as it is required to eliminate long range spurious correlations introduced by under-sampling
caused by using a small number of ensembles. However, in practical problems, the number
of ensembles is often constrained by available computational resources and run-time con-
siderations. Thus, it is important to understand how increasing the number of ensembles
impacts the reconstructed P matrix and its impact on reducing the error. This is accom-
plished by considering the assimilation of 10,000 velocity vectors with a localization of
r/€ = 0.2, with the localization chosen as a fraction of the integral length scale defined
as [40]

€~ 02261, 29)

where r{,, is the jet half width at x/D = 15, resulting in an integral length scale of
£ = 1.6 mm. Starting with a small number of ensembles (N = 6), chosen heuristically to
produce a baseline, the number of ensembles is increased from 6 to 12 and 18, while keeping
the remaining properties constant to isolate the impact of increasing the number of ensem-
ble members. In the current work, each ensemble is initialized from solutions of a separate
simulation at sufficiently decorrelated time instances. Each ensemble member is advanced
independently for a duration of 0.1 ms, after which time the experimental data are assimi-
lated using the EnKF algorithm. The deviation of the quantity of interest (u, v or w) from
the experimental data is calculated to assess the impact of EnKF. The normalized reduction
in the mean error for a quantity ¢ is defined as

v 0 —H(#°O) lI2
19 (10) — H (¢ (10)) ll2~

where || - ||2 is the Ly-norm, and # is the time at the beginning of the assimilation sequence,
prior to the assimilation of the experimental data. Thus, any reduction in the mean nor-
malized errors is solely caused by increasing the number of ensemble members utilized
to estimate the P matrix. Table 2 presents the reduction in mean normalized errors for the
three cases. When the number of ensembles is doubled from six to twelve, the reduction
in the total mean normalized error increases from 64 to 85%, representing approximately
a 58% decrease in the average error when compared to the six ensemble case. A further

Ep(r) = 1 (30)
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Table 2 Reduction in the mean

normalized errors for different N Ey E, Ey Ey

numbers of ensemble members

after the assimilation of ten sets 6 0.38 0.76 0.82 0.64

of experimental observations 12 0.78 0.89 0.89 0.85
18 0.80 0.90 0.90 0.86

increase to eighteen ensembles only marginally improves the state estimate but increases
the computational cost by 50%. Thus, for this set of observations, experimental uncertainty
and localization, it can be concluded that a maximum of twelve ensembles is required to
adequately reconstruct the prior-error covariance. As both six and twelve ensembles pro-
vide a significant reduction in the mean normalized errors, computational time requirements
should be considered when determining how many ensemble members to use. This can
be accomplished by determining if the improvements in prediction quality are worth the
increase in computational resources. For the current case, increasing the number of ensem-
ble members from six to twelve requires twice the computational resources. The optimal
number of ensembles (between six and twelve) can be determined based on available com-
putational resources. During this work it was also observed that the impact of assimilating
the experimental data was not limited to the probe volume, with a noticeable impact on the
flow field downstream. However, due to the lack of experimental data downstream and the
limited time elapsed for the simulation, it was not possible to quantify the extent of the influ-
ence. It is believe that the full spatial impact could be determined by comparing statistics
collected over the same time period as those presented in Section 5.5, which was compu-
tationally not feasible in the current study. Based on the observations presented above, six
ensembles are utilized for the remainder of the paper to allow for a range of parametric
studies.

6.2 Localization
6.2.1 Need for localization

An important question to consider when assimilating experimental data into simulations is,
which observations to include for each computational cell when calculating the gain matrix.
Ideally, we would like to be able to utilize the EnKF without any localization. However,
in practical terms, localization is often required for several reasons. First, as the EnKF is a
Monte Carlo method, the P matrix is approximated by statistically sampling the ensembles
with the convergence proportional to N~!/2. When utilizing a finite ensemble size, sam-
pling errors are introduced which appear as spurious correlations over long spatial distances
or between variables that are known to be uncorrelated [41]. The presence of spurious cor-
relations can also lead to filter divergence where the EnKF analysis produces results that
diverge from the true state [42]. One method for reducing spurious correlations is increasing
the ensemble size [41, 42]. Thus, the number of ensembles required to accurately reproduce
the correct covariance matrix increases with larger P matrices (which spans long spatial
distances or contains variables that are uncorrelated or weakly correlated) thereby, increas-
ing the computational resources required. As the number of ensembles is often determined
based on available resources or run-time requirements, a finite number of ensembles, often
on the order of tens to hundreds, can be used to reconstruct the P matrix and a different
method to reduce spurious correlations is required. In the present work, the chosen method
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is the localization of the experimental data, which reduces the impact of long-range spuri-
ous correlations, improving the rank of P and increasing the local degrees of freedom for
the analysis [41, 42].

Although localization is primarily utilized to enable EnKF to run with a small finite
ensemble size, it has a secondary benefit of further reducing the computational cost associ-
ated with the assimilation process. Without any degree of localization, the size of P, HPH'
and C¢, can be prohibitively large. Specifically, the size of each of these matrices scale as

Pe RNL‘NSXN(‘NS , He RNOXN(‘NS , HPHT c RNDXNO , Cge c RNDXNO , (31)

where N, is the number of grid points, Ny is the number of variables in the state vector and
N, the number of observations. For example, in the current study based on the assimilation
of the three velocity components and computational mesh, N, is of O (107), Ny is of O(10)
and N, is of O(10°). Thus, P would consist of a square matrix of size O(10%) and require
approximately 20 petabytes of storage if stored as a dense matrix. With the inclusion of
localization, the storage requirements are drastically reduced.

6.2.2 Degree of localization

The degree of localization is a model parameter [41-43] and its impact on the overall quality
of the state estimation is an important consideration in understanding how EnKF can be
used for LES with high-resolution experimental data. Four sets of ensemble simulations
with different localization values are considered to test the impact of localization on the
accuracy of the EnKF predictions. The reduction in the mean normalized errors is presented
in Table 3 for four values of the localization radius, /¢ = {0.05, 0.075, 0.1, 0.2}.

For all four simulations a reduction of the error between 45% and 87% is observed
through the use of the EnKF algorithm. Compared to the axial velocity, a larger reduction
in error is observed for the other two velocity components. This characteristic is the result
of two main factors. First, although the relative uncertainty in the experimental measure-
ments for each velocity component is held constant, the absolute uncertainty is higher for
the axial velocity due to its larger magnitude. Second, the relative error, as measured by
the innovation, associated with the other two velocity components is larger than that of the
axial velocity. Both of these characteristics result in a larger change in the update step for
these two velocity components and a subsequent larger reduction in the normalized mean
error. Also observable from Table 3 is the existence of a local minimum, which occurs for a
localization of r /¢ = 0.075. This represents the optimal localization for the given flow con-
figuration, number of ensembles and available experimental data. The temporal evolution
of the mean normalized errors for r/¢ = 0.075 is presented in Fig. 9 to demonstrate how
EnKF reduces the normalized errors as the simulation progresses.

Table 3 Ensemble mean
reduction in the mean normalized /¢ Ey E, Ey Ey
errors for four localization radii

0.05 0.65 0.78 0.81 0.74
0.075 0.68 0.83 0.83 0.78
0.1 0.62 0.87 0.87 0.77
0.2 0.45 0.74 0.83 0.65
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Fig.9 Temporal evolution of the 1 - R
ensemble mean reduction in the
mean normalized errors with a

localization of /¢ = 0.075 for
each velocity component. Data
are assimilated at 0.1 ms

0.2 — By
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As can be seen from Fig. 9, the largest error reduction occurs during the first assimilation
step where a mean error reduction of approximately 40% and 80% is observed for the axial
and transverse velocity components, respectively. After the initial DA-step, a further reduc-
tion for the axial velocity is observed over the next seven assimilation steps. The reduction
in the mean axial error plateaus. In comparison, the transverse velocity components reach
a steady state behavior after the first assimilation step, further demonstrating how EnKF
impacts each velocity component differently. Similar characteristics are observed for other
localization values.

Next, we investigate how the localization radius impacts the gain matrix, the update to the
velocity components and the resulting velocity field. By considering the local K matrix for a
single grid point we are able to study the factors that impact the determination of the optimal
localization. Within the Kalman gain matrix, the condition number of HPH + Cee, can give
an indication of whether the local EnKF algorithm is ill-conditioned [43]. As the condition
number increases, the solution to Eq. 19 becomes more susceptible to large numerical errors.
An analysis indicates that the condition number increases by several orders of magnitude as
the localization is increased from 5% to 10% of the integral length scale. Thus, based on the
current conditions, we expect larger numerical errors to be present when less localization
is applied. This is in agreement with the observations of Nerger [43] who attributed certain
filter divergence to the large condition number of the HPH' + C,, matrix. For very large
localization (small values of r), the number of computational cells that only have a few
measurements within the localization radius increases, limiting the information that can
be assimilated from the experimental data. This limited transfer of information from the
measurements results in an incomplete picture of the local flow field and has a detrimental
impact on the analysis. This can be observed by investigating contours of the update step
and resulting velocity fields, presented in Figs. 10 and 11, respectively.

The impact of increased numerical errors occurring with larger values of r can be
observed by comparing the update, ¢* = K[y, — H (¢;)], that occurs during the assim-
ilation step for each velocity component as the value of r is increased as shown in Fig. 10.
Comparing the update step for »/¢ = 0.075, which corresponds to optimal localization and
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Fig. 10 Contours of the velocity update obtained from the EnKF algorithm for different localization
parameters

r/€ = 0.2, which corresponds to a sub-optimal localization, several important observations
can be made. First, major features of the update for the ¥ and w velocity components at
the bottom of the domain are very similar, indicating that the algorithm is behaving very
similarly at this location for these two values of r. It is noted that farther downstream and
for the entire domain for the axial velocity, the update step becomes increasingly noisy. For
r/€ = 0.2, the small pockets of positive or negative updates that occur very close to each
other negatively impact the solution. In comparison, for /¢ = 0.075 a smoother update
field is observed downstream with minimal noise introduced into the update.

With the largest localization applied, corresponding to the smallest localization radius
(r/t = 0.05), regions exists within the DA-window that only contain one or two
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Fig. 11 Velocity contours obtained from the EnKF algorithm for different localization parameters compared
to the experimental data

measurements due to the sparsity of the experimental data within the localization radius
of the cell center. This can clearly be seen in Fig. 11 where streaks form in the updated
velocity field, due to incomplete information of the local flow field provided to the EnKF
algorithm resulting in a poor update (red boxes). As the simulation progresses, errors from
these cells convect with the flow field preventing the relative error from decreasing further.
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In comparison, the remaining three localization radii are larger than the experimental reso-
lution and the update step calculated for each grid cell has a better representation of the local
flow field. With a localization of r /£ = 0.075, which is slightly larger than the experimental
resolution, a noticeable improvement in the resulting velocity fields is observed, whereas
with a small localization a smearing of the flow features is observed and a loss of the finer
flow-field structures can be seen. Thus, the optimal choice of localization is a compromise
between maximizing the number of observations available at each control volume to pro-
vide the best representation of the local flow field and reducing the condition number of
HPH + C,. to reduce the numerical errors introduced. As it has been demonstrated that the
EnKEF is able to better reproduce the transient behavior of the jet, next we investigate how
the experimental uncertainty impacts the ability of EnKF to recover the correct transient
behavior.

Transient predictions of the three velocity components are presented in Fig. 12 for
the baseline LES and the EnKF with a localization of /¢ = 0.075 to demonstrate how
the EnKF algorithm modifies the transient velocity profiles. The transient velocity profile
obtained from the baseline LES contains significant deviations from the experimental data
over 1.8 ms of simulation time. For the axial velocity, the baseline LES consistently pre-
dicts higher velocities at this location compared to the measurements and DA-predictions.
Although the baseline LES is not expected to capture the exact transient velocity profiles
observed experimentally as it is a stochastic representation of the flow field, the large devia-
tions highlight the limitations of using LES to investigate experimentally observed transient
phenomena. At the beginning of the assimilation sequence, fo = 0, a noticeable improve-
ment in the transient velocity profile is observed. However, between 0.6 and 0.8 ms, the
algorithm is unable to completely recover the measurement data due to the large devia-
tion from the experimental mean and low spread in the ensembles, represented by the gray
band. In comparison, the axial velocity fields obtained from the assimilation sequences bet-
ter reflect the measurements after 0.9 ms. Also observable from Fig. 12 is that the relative
uncertainty of DA, shown by the gray band, is not constant over the assimilation window,
with higher uncertainty in the simulations predicted between 0.8 and 1.4 ms. Similar trends
are also seen for the ¥ and w velocity components as shown in Fig. 12.

The baseline LES predicts higher magnitudes for the ¥ velocity components, with two
periods of higher and lower velocities that are not observed experimentally. It is shown that
with the assimilation of TPIV, DA is able to improve the predictions of the spatio-temporal
evolution of velocity field compared to the baseline LES. For the w velocity component,
a similar disparity is observed between the baseline LES and experiments. However, at all
times DA is in better agreement with the measurements, demonstrating the ability of EnKF
to locally correct the velocity field to better match the conditions observed experimentally.
This demonstrates that DA can be used to evaluate existing models, by comparing the mag-
nitude of the update step in the EnKF algorithm. This information can be used to determine
areas that require model improvements. It should also be noted that DA is not always within
the experimental uncertainty of the measurements, as EnKF considers both the experimen-
tal uncertainty and sample prior error-covariance, estimated through the P matrix, when
calculating the updated velocity.

Finally, the Reynolds stresses are calculated within the assimilation window and com-
pared with the baseline LES and experimental data. The probability density function (PDF)
of the Reynolds stresses is chosen for comparison to understand how the distribution of
the Reynolds stresses changes with the assimilation of the experimental data and is shown
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Fig. 12 Temporal evolution of
the three velocity components for
the baseline simulation (thick
black line) and the mean
obtained from the ensemble
members (red line) compared to
the experimental measurements
at (x/D = 14.6, y/D = 0.037,
z/D = 0.70). The shaded region
in gray represents the rms of the
ensemble members and three
ensemble trajectories are shown
by thin lines. Top %, middle v,
bottom w
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in Fig. 13. For the (u'u’) stress component, the LES-DA results better reproduce the peak
observed at zero and the tail of the PDF. Compared to the baseline simulation, the LES-
DA produces a narrower PDF, however both the baseline and LES-DA simulations fail to
capture the location of the second peak in the PDF. For both the (v'v’) and (u'v’) stress
components, the assimilation of the TPIV data significantly improves the shape of the cal-
culated PDF. In both cases, the LES-DA simulation better matches the peaks observed in
the experimental data and the tails of the PDF. These results further demonstrate that assim-
ilation of the experimental data has a beneficial impact on the LES-DA simulation’s ability
to reproduce the experimentally observed conditions.

Fig. 13 PDF of the Reynolds 0.6 1
stresses for (u'u’) (top), (v'v’) — Exp
(middle) and (#’v’) (bottom), 0.5 — LES-Baseline
obtained from a baseline LES — LES-DA
(black line) and LES-DA — 0.4
simulation (red line) compared to :
the experimental data (blue line) E 0.3
0.2
0.1
0 |
0 5 10 15
(u'u’) [m?/s?]
257
2
15
L
@]
a9
0.5
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6.3 Experimental uncertainty

When obtaining experimental data from difference sources, different levels of uncertain-
ties in the observations may be present. In this section, we demonstrate how EnKF is able
to reject highly uncertain measurements. This is accomplished by considering three simu-
lations (using six ensembles and a localization of »/¢ = 0.075) with different observation
uncertainties. The first simulation utilizes “perfect” experimental data where the uncertainty
approaches zero. The second simulation consists of results from Section 6.2, containing
uncertainties of approximately 7%, whereas for the final simulation, poor experimental data
are demonstrated with ¢ — oo. Following the analysis performed in Section 6.2, both the
mean error reduction, E, for each velocity component as well as the impact on the transient
predictions of the axial velocity are presented to assess the impact of the uncertainty on the
recovered solution (Table 4).

When “perfect” experimental data are assimilated a reduction in error of approximately
90% is observed for each of the velocity components. A further reduction of the error is
not possible as each state vector is updated based on several experimental measurements,
defined based on the localization radius. Thus, even with “perfect” experimental data, some
error will propagate into the simulation through the update step and prevent the simulation
from reaching zero error. By increasing the uncertainty in the experimental data, EnKF puts
less weight on the experimental observation. When the uncertainty approaches infinity the
resulting error reduces by 27% compared to the baseline, defined as the time step before the
assimilation begins. However, as shown shortly this reduction is a by-product of utilizing
the ensemble mean and the time varying nature of the experimental data and simulations.
In comparison, the error reduction experienced with an uncertainty of 7% falls within these
two extremes. Thus, the results presented in this section can be thought of as a comparison
of the limiting behavior one can expect when applying the EnKF, demonstrating that this
algorithm is able to reject bad experimental data as demonstrated in Fig. 14.

Next, the transient axial velocity predictions obtained for the three experimental uncer-
tainties are compared in Fig. 14 to provide a quantitative representation of the predictions.
For this comparison the baseline simulation is removed to improve clarity. When € — oo
is specified the transient velocity predictions do not closely follow the experimental data
and the variation within the ensemble members remains constant over the simulation. Fur-
ther, by comparing the individual ensemble members, it can be seen that EnKF does not
significantly alter the velocity trajectories and that each ensemble member oscillates around
the ensemble mean, further demonstrating that EnKF has rejected the experimental mea-
surements in the analysis. In comparison, when the uncertainty in the experimental data
approaches zero the predictions are much closer to the experimental data and the varia-
tion within the ensembles is very small. At an uncertainty of 7%, the recovered solution
has larger deviations from the measurements than for the case with ¢ — 0 but correctly
reproduces major transient flow features observed experimentally. These results show that
EnKF can correctly account for different levels of experimental uncertainties through the
gain matrix and is able to reject uncertain observations automatically.

Table 4 Reduction in the mean
normalized errors for three Experimental uncertainty Ey Ey Ey Ey

experimental uncertainties

e—>0 0.87 0.87 0.87 0.87
€e=T7% 0.68 0.83 0.83 0.78
€ —> 00 0.14 0.41 0.31 0.27
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Fig. 14 Temporal evolution of 0.55 w :
axial velocity for the different — (Ugnkr)
levels of experimental uncertainty 0.5 «  Exp
compared to the experimental
measurements at (x/D = 14.6, 0.45
y/D =0.037, z/D = 0.70); R
Top: “perfect” experimental 2 0.4
observation (¢ — 0); middle: =
. 0.35
€ = 7% experimental
uncertainty; bottom: uncertain 0.3
observations (¢ — o0). The
shaded region in gray represents 0.25
the rms of the ensemble members . . . .
and three ensemble trajectories 0 02 04 06 08 10 12 14 16 18
are shown by thin lines. Error t [ms]
bars represent 7% uncertainty in 0.55

measurement values

e=7%
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6.4 Assimilation frequency

From Section 5.6 it was found that the predictability time of the LES is approximately
three times larger than the time interval between experimental measurements. This suggests
that it should be possible to assimilate experimental data less frequently and still recover a
similar accuracy within the simulation. This observation is tested by rerunning the optimal
localization found in Section 6.2, using six ensembles, a localization of /¢ = 0.075 and
only assimilating every third set of measurements. As a first step in analyzing the results, the
reduction in the normalized error, E, for the axial velocity is compared for two normalized
errors and two assimilation time intervals in Table 5.

The first error is the normalized error reduction in the prior, E,f , at the end of the assim-
ilation window and the second is the normalized error reduction of the updated solution,
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Table 5 Reduction in the mean B
normalized errors for different Assimilation interval Ey E;
assimilation time intervals

0.1 ms 0.6 0.68
0.3 ms 0.5 0.65

E¢. For the updated solution, the normalized error reduction achieved from the simulations
where the data are assimilated every 0.1 ms and every 0.3 ms are almost identical through-
out the simulation. This demonstrates that the overall accuracy of the analysis after the
assimilation step is not adversely impacted by lowering the assimilation frequency. How-
ever, an important observation can be made when comparing the reduction in the forecast
error. With an assimilation interval of 0.1 ms, the forecast error reduction reaches a steady-
state value of approximately 60% after 1 ms of simulation time. In comparison, with the
observations assimilated every 0.3 ms the forecast error reduction reaches approximately
50%. By reducing the assimilation frequency, the simulation has more time for errors to
grow between assimilation steps. The growth of these errors causes each of the simulations
within the ensemble to diverge further from the “true” solution. This can also be observed
by comparing the transient axial velocity predictions obtained from these two sets of simu-
lations as shown in Fig. 15. When the assimilation is performed every 0.3 ms, the variance
between the ensembles grows continuously after the assimilation of the experimental obser-
vations. Following this growth, a large update is observed during the next assimilation step
which moves the predictions closer to the experimental data. In comparison, when assimila-
tion is done every 0.1 ms, smaller innovation steps are observed for the ensemble members
and smaller update steps are obtained over the majority of the assimilation interval. How-
ever, between 0.7 and 0.8 ms a significant deviation of the axial velocity can be seen and a
decrease in ensemble rms is observed. As the deviation occurs between assimilation steps
this behavior is due to the LES model and local flow dynamics. During subsequent assim-
ilation steps the axial velocity recovers towards the experimental data, demonstrating that
the algorithm helps bound the solution.

Overall, these results demonstrate that more frequent assimilation of the experimental
data has a positive impact on the analysis. This behavior may be amplified in the current

0.55 T T T o 0.55 - - - - -
— (UEnI(F> I (UEnKF>
0.5 . Exp 0.5 . Exp

025" assimilation 0.3 ms

025" assimilation 0.1 ms

0 02 04 06 08 10 12 14 16 18 0 02 04 06 08 10 12 14 16 18
t [ms] t[ms]

Fig. 15 Temporal evolution of axial velocity for the different assimilation time intervals compared to the
experimental measurements at (x/D = 14.6, y/D = 0.037, z/D = 0.70). Left assimilation every 0.1 ms,
Right assimilation every 0.3 ms. The shaded region in gray represents the rms of the ensemble members and
three ensemble trajectories are shown by thin lines

@ Springer



Flow, Turbulence and Combustion

study due to the small window in which experimental data are available and the small local-
ization radius. In cases where experimental data are available over the entire computational
domain, this behavior may be less severe as the entire flow field can be updated at every
assimilation time, potentially reducing or eliminating some sources of error.

6.5 Data sparsity

In the previous sections, high-repetition rate experimental data was assimilated into the LES.
However, the behavior of EnKF when sparse measurements are available is also of interest.
In the present study, the divergence-free velocity field calculated in Section 5.3 is down-
sampled to simulate the situation where sparse experimental data are available resulting in
three experimental data sets with between 10,000 and 280,000 velocity vectors available
at each assimilation step. For each observation resolution, a sequence of simulations with
different amounts of localization is performed to determine the localization that maximizes
error reduction. Six localization radii are utilized ranging from 5-80% of the integral length
scale to ensure that the complete range of localization is considered. Several important char-
acteristics can be observed from the relative reduction in error presented in Fig. 16. First,
the localization radius that produces the largest reduction in error increases as the avail-
able observations decrease. This behavior is due to coarsening the experimental resolution,
which requires a larger localization radius to ensure each control volume has sufficient
observations to assimilate. Second, the reduction of error is largest with the highest number
of observations and decreases when lower resolutions are utilized. This is attributed to the
reduction of available experimental data, which results in less information on the local flow
field being assimilated and the larger localization radius, which includes data points further
away from the computational cell. Accurately reproducing the covariance for these points is
difficult due to the limited number of ensembles and the weaker correlation between distant
points. As errors in the covariance matrix directly propagate into the analysis, the overall
reduction for larger localization radii is directly related to the accuracy of the constructed P
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Fig.16 Eg for different experimental resolution and localization values
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Table 6 Reduction in mean normalized errors for different localizations when assimilating 70,000 velocity
vectors

r/e E, E, Ey Ey

0.05 0.53 0.67 0.54 0.57
0.075 0.68 0.83 0.83 0.77
0.1 0.66 0.86 0.86 0.78
0.2 0.44 0.84 0.76 0.65

Maximum reduction for each value of Eg shown in bold

matrix. It should also be noted that the localization radius that minimizes the overall error
and error for each of the velocity components is not necessarily the same, as can be seen for
the middle data set shown in Table 6.

The resulting velocity fields for two localization radii, r/¢ = 0.075 and r/¢ = 0.1,
are shown in Fig. 17, along with the experimental data. Overall, the error reduction in the
axial velocity for these two localization radii are within 2%. This is perhaps due to the
stochastic nature of the EnKF method chosen for the current study. In comparison, the flow
field obtained with a localization of r/¢ = 0.1 is on average in better agreement with the
experimental measurements for the v and @ velocity fields, demonstrating that the behavior
of the axial velocity within the EnKF differs. We attribute this different behavior to the
ratio between errors associated with the numerical model, assessed from the P matrix and
experimental uncertainties from the C,. matrix being closer to unity for the axial velocity.

Experiments r/£ =0.075 r/€=0.1

x/D

0.75

/Up

0.08
/Uy

-0.08

0.12
w/Up
0.12
0 1 2 0 1 2 0 1 2
z/D z/D z/D

Fig. 17 Velocity contours for two localization values compared to experimental measurements. Red boxes
highlight areas where a localization radius of /¢ = 0.01 is in better agreement with the experimental data
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7 Conclusions

Three-dimensional velocity fields obtained from high-speed and high-resolution TPIV were
assimilated into LES using an ensemble Kalman filter for state estimation of a turbulent inert
jet. A baseline LES, without DA, demonstrated that the current simulation accurately repro-
duced the statistical behavior of the flow-field in the experimental measurement window.
The predictability of the LES was evaluated using the Lyapunov exponent and found to be
approximately 0.3 ms, three times longer than the experimental measurement interval (0.1 ms).
Thus, the current LES and experimental data set represent a viable test case for assessing
the performance of the ensemble Kalman filter and for understanding its impact on the state
estimation. The impact of different aspects of the DA-algorithm, such as data localization,
uncertainty in measurement data, assimilation frequency, sparsity of experimental data and
number of ensembles employed were investigated.

A series of simulations were performed with different localization parameters. For the
configuration under consideration with the prior error-covariance matrix estimated from six
ensembles, a localization radius of r/¢ = 0.075 was found to produce the best results.
Smaller localization radii resulted in the assimilation of an incomplete representation of
the flow field, whereas larger localization radii reduce the quality of the results due to the
deterioration of the quality of the sample prior error-covariance matrix. Using this optimal
localization radius, the measurement uncertainty utilized within the assimilation algorithm
was varied to quantify the range of possible solutions that could be obtained from the algo-
rithm. It was found that the reduction in the mean error between experimental data and the
solution obtained from EnKF strongly depends on the assumed experimental error. How-
ever, even with “perfect” experimental data some error remained as the numerical models
were imperfect. Thus, improved error quantification is required to provide a better estimate
of the experimental errors.

A reduction in the assimilation frequency was found to lead to a reduction in the quali-
tative prediction of the state estimate. However, it was shown that the use of an assimilation
frequency on the order of the characteristic predictability time as determined by the Lya-
punov exponent enables assimilation with little degradation in the updated state vector. An
increase in the number of ensembles improved the estimation of the prior error-covariance
matrix. Increasing the number of ensembles from six to eighteen was found to reduce the
error in the recovered solution by between 10-58% for the different velocity components
but increased the computational cost by a factor of three. Further, it was shown that the opti-
mal localization radius increases as the data available for assimilation decreases. In addition,
the quality of the recovered solution was found to deteriorate as less experimental data were
available for assimilation.

The present study demonstrates that the EnKF algorithm provides a robust method for
assimilating measurements into simulations, thereby enabling the direct utilization of mul-
tidimensional high-speed experiments for state estimation. The flexibility of the algorithm
allows for accommodating different levels of data sparsity, measurement frequencies, local-
ization and computational resources. With this, model evaluations and comparisons can be
performed by assessing the degree of deviation from experimental data and the size of the
updated region during the assimilation step.

The current work demonstrates that available computational resources and high repeti-
tion rate experimental capabilities are at a point where model evaluation through the use of
data assimilation is becoming feasible. The application of the ensemble Kalman filter and
other assimilation techniques for parameter estimation applied to LES is also of interest, but
a full evaluation of its potential is left for future work.
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