# FISHERIES RESEARCH BOARD OF CANADA 

BIOLOGICAL STATION<br>ST. ANDREWS, N.B.

ANNUAL REPORT
and

## INVESTIGATORS' SUMMARIES

## 1958-59

J. L. HART, DIRECTOA

# FISHERIES RESEARCH BOARD OF CANADA 

BIOLOGICAL STATION<br>ST. ANDREWS, N.B.

## ANNUAL REPORT

and

## INVESTIGATORS' SUMMARIES

1958-59
J. L. HART, DIRECTOR

REPORT FOR 1958 59 OF THE
BIOLOGIGAL STATION，ST．ANDREWS，N。B。

by Jo Lo Hart，Director

The Biological station at St．Andrews aims to meet the needs in marine and freshwater research of the Maritime Provinces．A large proportion of the research effort is directed to insistent problems in fishery management．Accord－ ingly，less effort and funds than desirable remain for more basic research．

Management problems are of several kinds．Fox resources that are in use，fish populations must be studied to suggest the best ways of conducting the fishery．This may require detailed life－history studies of fishes and of ways in which fishing gear operates．For resources that are not used，or are little used， research involves availability of the resource，where it is con－ centrated in commercial quantities，and suitable fishing gear． In many cases，especially but not exclusively in fresh water， management may consist of altering the environment．Examples of changing the environment would be the formation of impoundments in streams，fertilization of waters，hatching fish in hatcheries， pond holding of fish for planting，pond culture，predator control， and establishing dams for developing hydroelectric power．All these must be considered and evaluated．Most industrial changes in environment are deleterious．Methods of assessing and alleviating these are being established．

The Station ${ }^{3}$ s research program involves work in many places through the Maritimes．In some instances locations are determined by urgent local problems．More frequently，locations have been decided upon because they were especially suited to establishing principles for general application throughout the region。 The administrative headquarter＇s for the Board ${ }^{0}$ s biological work in the Maritimes is situated at St．Andrews．Data from field stations are analysed and reported there，and the continuing ready availability of cool，highly saline water makes it an excellent location for basic laboratory research on the conditions in－ fluencing the abundance and movements of many commercial species． A sub－station at Ellerslie， $\mathrm{P}_{\mathrm{o}} \mathrm{E}_{\mathrm{ol}} \mathrm{I}_{\circ}$ for oyster research，was set up in 1930 to restore the oyster stock after its depletion by disease early in the century and has been continued since as a good centre for oyster research for the region．Research on Irish Moss is also centred at the Ellerslie Substation．A statistical office is maintained in Halifax，$N_{0} S_{0}$ to make prem liminary analyses of groundfish catch data．These are both collected locally and fed in from subsidiary offites in Sydney and Lunenburg．An observer stationed at Yarmouth，NoSo，follows the effects of a growing iishery on herring stocks in southwest Nova Scotia。 Studies on the very important salmon ruas of the Miramichi River are cooordinated through a yearoround office in Chatham，NoB．Counting weirs at Curventon and Camp Adams in the

Northwest Miramichi and estuarial traps at Milbank are operated on a seasonal basis from Chatham. The main section the Pollett River does not admit adult salmon. Since complete control of seeding is possible, the river is particularly userul for propagation experiments. Work along these lines is carried out from a field headquarters in Elgin, NoB。 Counting weirs in Ellerslie Brook, PoE.Ios permit studies of the effects of vamious management practices on native populations of trout and sammon. A variety of trout management techniques is being troied with assistance of the Fish Culture Branch of the Depaptment of Fisheries. Yields to anglers are followed at crecy iake NoB.

Field work is sarried out year after year 2 :0m temporary headquarters at several points. Caraquet, No.Eo, is an important base for groundifish research. Lobster populations ase studfed annually at Port Maftland Fourchu, and Gabarus. Noso and at Tignish and Miminegash PoE.I。 Work on annual abuncance oi lobster and herring larvae in Northumberland Strait is based at Richibucto, N.Bo Demonstration stations at Shippegan, NoBo, and Malagash, $N_{0} S_{0}$, operated by the Fish Culture Branch of the Department of Fisheries were bases for testing the success enjoyed by transferring stocks of immune oysters to diseasemaadec New Brunswick and Nova Scotia. Clam Harbour. NoSos is the site Noze special tests with the mechanized clam digger, and Sam ory Pond. $\mathrm{N}_{\mathrm{o}} \mathrm{B}_{\mathrm{o}}$, for main trial plantings of European oysters.

The main shore research bases mentioned above are supplemented by various station vessels which girat monifty and extended the range of operations. The Harengivs ( $8 \% \mathrm{~s}$ ) was attached to the pelagic fisheries studies during the eerly part of the year and worked from the Bay of Fundy to Ceorges Bank. Later, work was carried out on Nova Scotia Banks ice the groundfish investigation. The J. J. Cowie ( 70 ft ) woiked in the southwestern Gulf oif St. Lawrence and in Bras dor Lake. Work on young lobsters in Northumberland Strait was camree out by the Pandalus II (50 ft). The Mallotus ( 54 ft ) and clupea. H . ( 30 ft ) have been invaluable as service boats at the St . Andrews and Ellerslie stations. The light shallow-draft Cyprina ( 35 ft ) was specially constructed to accommodate the mechanized clam digger. The Mercury ( 45 ft ), the Betty Lou IV ( 42 ft ) and the Paula Marie ( 56 ft ) were chartered for work in Passamaquoddy area. The Board's new research vessel, the $177-100$ A. Pameron was available for the Station's work during January to March. It allowed studies that would have otherwise been inpossible, and demonstrated the desirability of full-time use of an all-yearround offshore vessel.

The main building at the Station has receatily been augmented by a three-ficor, $135 \times 42 \mathrm{f}$, addition. Thss provided much needed fire proof laboratory and office acconnodation.

## LOBSTER

Lobsters are an important source of revenue to thousands of inshore fishermen throughout the Maritimes whose assets are skill and enterprise rather than extensive investment in gear and boats．They provide a cash income that is very important in the regional economy．

Population studies．The object of management in the lobster fishery is to approach best use of the resource．This involves combining large catch and high unit value．Fortunately these objectives can be sought together．There is evidence－not yet conclusive－othat the greatest yield of lobsters comes from allowing them to grow to moderate size before harvesting．In addition larger lobsters usually command a better price。 The indication that product value might be increased by size regulation is clear．The fishery lends itself to management in this way since the traps bring the catch to the surface undamaged．Size limits are an important part of the fishery regulations．Their effects on the lobster stock are followed by population stadies in representative areas．

The fisheries around Tignish and Miminegash $\mathrm{P}_{\circ} \mathrm{E}_{\circ} I_{\circ}$ ， are representative of the southern Gulf of $S t$ 。Lawrence．Because of local conditions for growth and the intensive fishery，they are highly productive of canning lobsters but large ones are relatively uncommon．The size limit was increased to $21 / 2$ inches carapace length in 1953．The landings at both ports have increased substantially since 1954 ，possibly because of improved protection of sub－legal sizes．In addition，survivors of a better than usual year brood are now being recruited to the fishery．An un－ expected $20 \%$ decrease in Tignish，1958，landings is possibly a direct result of intense illegal fishing in the summer of 1957. Further decreases may occur when poor 1953 and 1954 broods reach legal size。 However，test drags off Miminegash in the fall of 1958 give hopeful indications for 1959。 Enforcement problems in this area are difficult since a high proportion of the lobsters caught are below legal size。

The neighbouring ports of Gabarus and Fourchu， $\mathrm{N}_{\mathrm{ol}} \mathrm{S}_{\circ}$ ，in Cape Breton were selected for a comparative study of the effects of size limits．At Fourchu，the size limit has remained virtually unchanged since 1947 ．It restricts landings to those sizes acceptable to the live lobster trade。 At Gabarus，appreciably smaller size limits have been in effect since 1940。 In 1956，a plan approved by fishermen was adopted to increase the size limit each year．Unfortunately，this plan coincided with a natural decline in Cape Breton lobster stocks．Many fishermen blamed their reduced catches on the size－limit increase already adopted． As a result，the plan for further increase was dropped after 2 years． Landings at both ports improved somewhat in 1958 but the plan is still in abeyance．

Size regulations in Yarmouth County，NoS．，have remained essentially the same for 25 years．Studies of change in the lobster
population under ordinary conditions of exploi achon whe the same regulation have been based in Port Maitlands, Nos. twom 2750 to 1956 , landings declined steadily but hawe reecrexed sligntiy in the past 2 years. Sirce 1950 the fleet dropped fyom 43 to 25 boats. As a result, catch per boat has xemained at a reiathery high level and has increased apprectably in 1957 and 1958.

Theoretical treatment of effects of changing fishing practices is considered under the heading Mathematical Statistics.

Studies of early stages. In Northumberand strait, studies on lobsters of fishable size are supplemented by work on newly-hatched and submlegal lobsters.

When first hatched, lobster Lewyae swir freely 0 ose to the surface of the water for about 2 months airem which they settle on the bottom. Special geas allows guantiteative collections of juvenile stages. Information on eariy stages is collected on an annual basis to show what relationship exists betreen the amount of spawn hatching and numbers of iegai lobsters reemuited to the fishery 4 or 5 years later. In 1958 , both hatcin and survival were below the 10 -year average. Conseduently, relationy few larmae reached the stage of settiling on the botton.

Research hauls on the bottom in sping and fiali allow a censusing of lobster populations. There were good showings of "just sub=legal" lobsters in 1958. As many of these will be of legal size in the following yearg this is taken to augur well for the 1959 fishery.

Handling and holding lobsters. As about half ori the Canadian lobster catoh is maxketed alive, a great deal of attention has been given to satisfiactory conditions ror holding and shipping lobsters. Much has already been learned and placed at the disposal of the industry. Information concerns tolerance of extremes in temperature salinity, and oxygeng and theirinterrelationships. Work was continued during 1958 on tomperature accilmation, oxygen consumption in water and in airs and surviral in aix.

Earlier work has shown that necent tempensors history of a lobster has a marked effect on its tolexane to temperature。 Lobsters are said to be acclimated when they have jived long enough at a particular temperature to stebilize thefr temperature tolerance. Acclimation upwards from $8.5^{\circ} \mathrm{C}$ to $15^{\circ} \mathrm{C}$ as complete in 18 days, from $15^{\circ} \mathrm{C}$ to $20^{\circ} \mathrm{C}$ in 8 days, and from $20^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$ in 5 days. Upward acclimation progresses most xapicly at high temperatures. By adding acclimation times for two consecutive $5^{\circ} \mathrm{C}$ jumps, the time necessary for acclimation from $15^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$ is found to be 13 days. Earlier work showed that accilmation in one step from $14^{\circ}$ to $23^{\circ}$ took 22 days. This indicates that acclimation proceeds faster when lobsters are subjected to a series of small temperature changes.

The oxygen requirements of lobsters vader warious conditions are important in estimating holding sapedities for commercial storage units．These were studied during the summers of 1957 and 1958。 Oxygen needs varied markedly with temperature． Oxygen uptake for lobsters acclimated and tested at $25^{\circ} \mathrm{C}$ is double that for lobsters acclimated and tested at $5^{\circ} \mathrm{C}$ 。 The relationship between oxygen uptake and oxygen content of the water is more complex．Uptake increases with temperature at all levels of oxygen content．At any one temperature，a marked decrease in uptake occurs at low oxygen levels（ 3 cc per litre）．Aside from this，uptake at high temperatures depends on oxygen content throughout the whole range，but at lower temperatures，uptake is constant over all higher levels of oxygen．Sudden temperature changes have a pronounced effect on oxygen uptake．Uptake for lobsters acclimated to $13^{\circ} \mathrm{C}$ and suddenly transierred to $5^{\circ} \mathrm{C}$ was twice that of lobsters acclimated to $5^{\circ} \mathrm{C}$ 。

Knowledge of oxygen utilization in aix is espectaily important in assessing shipping techniques．Test．s were carried out on lobsters held in air of high relative numidety．They showed that oxygen utilization was greatest between $10^{\circ} \mathrm{C}$ and $12^{\circ} \mathrm{C}$ ，fell off toward $5^{\circ} \mathrm{C}$ and approached zero at $25^{\circ}{ }^{\circ}$ ．At higher temperatures，oxygen uptake is insufficient to meintain life and lobsters die．Lobsters are evidently not well adapted to using atmospheric oxygen as greatest uptake in air is only about $57 \%$ of that in water at the same temperature。 Sudden changes in temperature affect oxygen uptake in air markedly．Lobsters accilmated to $10^{\circ} \mathrm{C}$ and held in air at $20^{\circ} \mathrm{C}$ do not utilize oxygen and weaken rapidly．

Survival of lobsters in sealed containers was tested under varying conditions of temperature，oxygen，and carbon dioxide．Under experimental conditions，lobster survival was improved in an atmosphere of pure oxygen or with carbon dioxide removed．Other tests suggest that best survival in air will occur at temperatures not higher than acclimation temperature and at temperatures below $20^{\circ} \mathrm{C}$ 。

Air shipping of lobsters．Tests using difiterent light－ weight containers and insulators have been contiaved。 The most effective insulators proved to be styrolite beads，with wood shavings second．Their use seems to merit further investigation．

Inactivating lobster claws．When lobsters are to be stored，their claws are plugged so that they can ${ }^{\circ} t$ open for fighting and destroying each other．However，plugs cause deterior－ ation in nearby flesh and their use is prohibited in some European countries．Two alternative methods of inactivating claws were examined．They consist of cutting the extension tendon of the lobster ${ }^{8}$ s claw and using rubber bands to hold claws closed． Cutting tendons caused extra mortalityowpresumably from loss of blood。 Rubber bands gave results comparable to plugging．The method has merit if a suitable method of applying bands can be established。

## OYSTER

Oysters are capable of adding to incone：of Martimers living in areas where summer water temperatures ase nigho As oysters can be cultivated，knowledge of the factors pontrolling their abundance can be put to direct use．The Station＇s main research is，accordingly，devoted to developing methods of favouring the various steps in oyster reproduction and growth． During the last few years attention has been diveried from the main line of research by pressing problems aristing from opidemic disease．

Disease studies．About 8 years ago a lethal oyster disease，called Malpeque disease，with high morbidety crossed Northumberland Strait from Prince Edward Island whe\％e it was endemic and where the stock is immune．An epidemis swept along the mainland shore．Late in 1957 it invaded the pablic fitshery at Caraquet，NoBog and reached epidemic proporicons in 3958. About $87 \%$ of the 1957 population there is now dead．on the north shore of Miramichi Bay，disease spread both east and west Irom a focus at Neguac so that fisheries at Tabusintac and Dak Point now cease to exist。 Miscou Island，NoBog and Bras dior Lake $\mathrm{N}_{2} \mathrm{~S}_{0}$ ， are now the only unaffected stocks left in the Mawitumes．

In order to hasten rehabilitation in afffected areas， immune brood stock from Prince Edward Island has been transferred to affected areas by the Department of Fisheries．Aitex recommending this as a remedy，the responsibility os the Plsheries Research Board has been to evaluate the rehabilitation program． The Departmentis program called for mass transfexs beginning in the summer of 1957 and ending in 1959．So far 6.000 barrels have been moved．Results are promising．Transferred oysters have survived well and spawned copiously。 In some areas they have produced spat．Mainland oysters have grown poowiy and spawned little，if at all．It remains to be proved that the spat collected is disease resistant．＂With high hopes for the future no prediction regarding it is ventured．＂In the meantime a vigorous search for the elusive causative organism has been underway sod is stizl proceeding．

Mortality from a second and unknown ceuse 1 s affecting Malpeque Bay，PoE。I。 This was heavy in 1956 and 1957 on deep－ water beds and light on shallower beds．Accurate assessments of the situation were begun in 1958．So far oysters which were retained on deepwater beds showed poorer conditiong growthg and survival than imports or shallow water test animals．Tests are being continued through the eritical winter months．

Oyster culture studies．Attention is now being changed back to studies of positive culture methods．As a first step in a detailed study of spat collection，distribution of larvae was studied in the Bideford River．Tentative general conciusions are（1）that oyster larvae are not uniformiy distributed，（2）
all stages have the same distribution, and (3) there is no change in vertical distribution with tide.

The prediction of time of spatfall is dmportant as it can give oyster growers reliable indications of wher to put out clean cultch to catch spat. Observations during 1958 showed that studies of the percentage of dry weight of the oysters cannot be depended upon to demonstrate times of spawning activity and hence to forecast spatfalls. During 1958 plankton examınations in Bideford River gave good indications of the times of spatfall there but in other areas where plankton sampling was less regular forecasts were not reliable enough to be useful.

Other observations have turned up promising leads, for examples: In one comparison spat survival was found to be much higher in offshore locations than inshore. There are good indications that cultch texture and/or colour affects its efficiency. There are indications that a source of eariy spat has been discovered. Mussel shell is holding out promise as a practical cultch.

Laboratory growing of spat has demonstrated a great disparity of growth rate among young spat starting at equal size. Disparities on October 24 among spat that were ot equivalent size on August 11 were from 1.5 to 8.7 m 。 This raises many important practical questions about patterns of growth and mortality and concentrations of food.

Conway Narrows studies. One of the problems of the oyster industry is to bring young oysters through from the spat stage to a size where they can be planted successiruily on growing ground. This was formerly done on trays out tray culture is no longer feasible economically. Tests the the chanel of Conway Narrows give promise that it may supply an extensive area where suitable growth can take place without undue danger of smothering by silt or from starfish predation. Characteristic features of Conway Narrows are its shallow depth about 1 or 2 feet at mean low water and small tidal fluctuations of about $31 / 2$ feet on spring tides. Water temperatures of $21^{\circ} \mathrm{C}$ to $24^{\circ} \mathrm{C}$ are common in July and August. The bottom soil is sandy and relatively free of silt (less than $5 \%$ silt and clay on the Wentworth grade scale). There is a light variable covering of eelgrass, and small starfish, while present, are scarce. Fullscale tests of the area as a nursery ground are proposed and other suitable areas are being sought.

European oysters. Observations were continued on European oysters introduced to Sam Orr Pond in 1957 and on a supplementary shipment brought in by air freight man 1958. European oysters wintered well in Sam Orr Pund bat fatzed to survive in Oak Bay where excessive cold fresh witer evidently killed them. Spawning took place in Sam Orr Pond but the
resulting larvae failed to survive to spatting stage. There is some evidence that protozoan parasites are dixsotiy ox indirectly responsible for the deaths that do ocesm. The oysters are being tested for resistance to Maiperse disease.

## CLAMS

Clams contribute to the incomes of those l.ting by the sea and to the variety of native foods available in the Maritimes for local use and export. In recent years there has been a decline in clam stocks. This has had a wapety or causes. The Board ${ }^{0}$ s investigations indicate that a maln one is that use of common hand tools for clam digging wowis against the best interests of conservation. In recent years attention of the clam investigations has, accordingly, been given to the development and testing of a better method of haryesting slams.

Mechanized haryester. The mechanized harvester is designed to wash clams out of the soil onto an escalator which carries the catch to the surfoce where it can be picked over and valuable parts of the catch retained. After 2 yeacs of developmental work, its mechanical operation was satisficotory, and it was accepted as useful equipment for harvesting da* sisms and quahaugs. It was not until. 1958 that it could oe cxitically tested on softashell clams. The results show: (1) That the escalator digger buries very few of the small clans te disturbs (less than $10 \%$ ), and those $i t$ does bury are close to the surface where they are unlikely to smother. (2) Almost an the undersized clams that the escalator disturbs ase retaped to the track from which they were dug and most to within 50 ieet of the place of origin. (3) of those that afe returnes about $4 \%$ are too severely damaged to be able to dig back into the soil and will die. More than $90 \%$ are not seriously affected by the digger. This is emphatically better than the 40 to $50 \%$ destruction of undersized clams caused by hise ci hand digging tools.

Ocean quahaug The ocean quahaug (Aretice fislandica) is widely distributed in North Atlantic waters but is seldom seen because it favours (with us) depths of 10 to 20 fathoms. Exploratory fishing for this species with hydrauize and other types of dredges was undertaken. Trials with the hydioulic dredge led to the conclusion that ocean quahaugs ould be harvested at the rate of 75 bushels per day and isel operations by a commercial operatol who was assisted in rigging outg confirmed this opinion (90 bushels a day). Non mydrauiic dredges fished equally well on soff bottom but were ineffective on hard bottom.

## SCALLOP

The scallop fishery in Canada is of great and growing importance. From 1941 to 1951g it averaged about $700,000 \mathrm{lb}$ 。

In 1957，the catch was $3,410,000$ 1b of which $1,690,000$ came from Georges Bank．This was more than twice the Georges Bank landing of the preceding year and was succeeded by some $2,500,000 \mathrm{lb}$ in 1958．United States landings were about $18,000,000 \mathrm{lb}$ 。 The continued heavy exploitation has raised fears of overfishing and with it the prospects of international control．

Provisional observations show that the sizes of scallops differ markedly from bed to bed but that this is not shown in records of Canadian wharf landings because of fishing practices．Fishing practice aboard Canadian vessels also partly disguises changes in abundance because smaller scallops which are ordinarily discarded are shucked when catches are light． Present indications are that ring－size in scallop drags could be increased beyond a 3 －inch diameter without severely interfering with present landings．However，the longeterm advantage of increasing ring－size remains to be demonstrated．

Laboratory tests on scallops show that they can be adversely affected by rapid upward temperature changes such as may occur in the southern Gulf of St．Lawrence．The effects may be direct or indirect．Hydrographic changes large enough to produce direct mass mortality have been observed．These are less common than submlethal changes which cause inactivity and debility among scallops and may inordinately increase their susceptibility to predators．

## GROUNDFISH

The groundfish include many species．Prominent among them are cod，haddock，redfish，halibut，pollock，plafee and other flounders．Among them they provided nearly six hundred million pounds in the Maritimes and Quebec in 1957．This catch is about two thirds of the total landings in the region．Because the fishery is so large，quite small percentage improvement in its operations can result in a substantial increase in returns． For this reason，the attention of the investigation is directed toward increasing landings，reducing financial risks，increasing fishing power，and improving the quality of the products．

For the most part，the groundfish fishery is in inter． national waters and the Canadian fleet exploits the same stocks of fish as other nations．All these countries share an objective to make the best use of the fish stock．To forward this ideal， Canada works in co－operation with ten European countries and the United States through the International Commission for the North－ west Atlantic Fisheries（ICNAF）。 Cowordinated programs of research by member countries are considered by the Commission in recommend．． ing regulations to member countries．Much of the Canadian program in groundfish research is carried out to meet the needs of ICNAF。

Only more urgent problems can be met in any one year． During 1958 attention was directed toward：studies on amounts
and sizes and ages of fish caught and landed: migeations of cod and haddock; future recruitment of cod and haddos登; gear selection on cods haddock and plaice, and the ewferts of mesh regulation; plaice life history; and parasites afiecting fish acceptability. Other studies have of necessity been heid in abeyance during the year.

Catch statistics. The interpretation of catch statistics to meet Canadian and international needs calls for analysis on the basis of species caught, area and time of fishing, gear used, and extension of fishing effort. Pisheries Research Board staff meet these needs by applying information obtained from log books and fishermen interviews.

Total groundfish landings on the Canadian Atlantic coast (excluding Newfoundland) have increased from 480 mill fon pounds round fresh weight in 1952 to 585 mijilon pourds in 1957 . Most of the increase is attributable to the corminued growth of the otter trawl fleet which now takes about haze the groundifish landings. Conversion from line fishing to otter wiwhing changed the relative importance of the species anded. 24.93 the groundfish catoh was largely cod. By 1.957 a athouzh cod jandings had increased, they accounted for only half the growdinsh landings.

The increased intensity of the fishex nes been accompanied by decreasing catches of groundfish per unit of fishing effort and by a decline in the size and age of fisk in the landings.

So as to assess changes in the status ot the groundfish fishery, trends in length and age have been followed systematically. The average size of cod in aragger landings from the southwestern Gulf of St. Lawrence dropped to 3.8 pounds in 1958 , the lowest since small draggers were introduced in 1947 In 1958 the dominant age group was 5 years, and less than $15 \%$ of the cod landed by draggers were older than 8 years. On Nova Scotia grounds, the broods produced in 1949 and from 1952 to 1955 dominated cod catches.

Growth in captive cod. Observations in mature indicate that the response of cod to variations in food suppy are rem flected in the success of the fishery. Laboratory tests sonfirmed the impression that this could be the case. God fed maximum amounts over a year increased in length and esperially weight more than those fed on smaller rations. Proportional growth was faster among small cod than among larger ones on both diets. Under the conditions of the experiments cod transformed herring fed to them into cod flesh in a ratio betwean 2.1 and 2.4 to 1 。

Tagging studies. Tagging to demonstrate ingration patterns have been done on cod, haddock, and plaice.

In all, 2,112 cod caught by hand line, otber trawl. and traps were tagged around Magdalen Islands. There were
indications from returns that fish from traps haci a bevex chance of survival. Comparisons of tagging methods showed somewhat better returns for disc tags than for more loosely attached hydrostatic tags. Recoveries of these tags show a well defined pattern of seasonal movements that fits in well with conclusions based on tags put out on other fishing grounds. In general, cod move out of the Gulf of St. Lawrence into deeper water in the winter and back into the shallow water of the Gulf during the summer.

Few haddock (38) were tagged during 1978 but returns from previous taggings have been analysed. The taggings considered were in Northumberland Strait, the Browns-LaHaye area, Passamaquoddy Bay, and the entrance to the Bay of Fundy.

Returns from Northumberland Strait haddock tagging show a pattern of migration similar to the one shown 80.0 in the same region. Winter recaptures came from banks offshore from Nova Scotia. Spring and late fall returns were maindy from the east coast of Cape Breton. For the remainder oi the year, recaptures were scattered but most came from eastern Northumberland Strait.

The BrownsmLaHave tagging supports evidence of other kinds that there is little movement of fish across the Fundian Channel towards Georges Bank. There was evidence of a northwest movement in the direction of Lockeport, $N . S_{0}$, during the winter following tagging. Most returns came from the tagging area.

Five hundred plaice were tagged, 320 southeast of Shippegan Gully and 180 northeast of Miscou Island. both in the southwestern Gulf of St. Lawrence. High returns fiom the Shippegan tagging indicate an intense fishery and there were early indications of a northward ofishore movement during the summer.

Gulf census. The cod survey in the Gulf of St. Lawrence that started in 1957 was continued in 1958. It is designed to allow forecasts of recruitment and to assess effects of environmental factors on the abundance, distribution, anc movements of cod and plaice. The censusing program has not continued long enough to justify confidence or precision in forecasts based on it。However, if fish are recruited in the same way in 2959 as in 1958 it may be anticipated that the catch will again be made up mainly of 5myearmold cod and that as a result there will be no appreciable change in size of cod landed.

Haddock survey. A survey of groundfish populations on offshore Nova Scotian banks was begun in 1958. Like the Gulf census, it has the objectives of leading to shortaterm prediction of relative abundance of fish to the fishery and of determining the effects of environmental factors on numbers and behaviour of groundfish species. Experimental tows with covered nets showed relative numbers of commercial and undersized fish in catches.

Results obtained in the 1958 survey hold no especially bright hopes for the immediate future. The brood of haddock produced in 1952 has been the most prominent in commercial catches from the Nova Scotia banks since 1956. It was particularly important to Canadian landings through the years 1.956 and 1957. Preliminary observations on the 1958 haddock fishery show that the 1952 brood has been cut down during the summer months. No good brood has appeared in the fishery to replace that of 1952. It seems unlikely that the moderate broods coming up can provide a really lucrative fishery.

Selection and savings gear studies. A practical way to manage the groundfish resource is through regulating mesh sizes used in trawl nets. This has been shown to release smaller fish before they are brought on deck and exposed to handiing injuries. Scientific advisers to the International Commissior: for the Northwest Atlantic Fisheries have advised that the Commission recommend a minimum mesh size of $41 / 2$ inches for cod and haddock fishing in the waters surrounding the Maritime Provinces (ICNAF Sub-area 4). As a result, each of the member governments has enacted appropriate legislation. In addition, specifications have been proposed for the chafing gear in general use to permit the release of small fish, and still prevent unnecessary wear on the nets as they are being hauled aboard, loaded with fish. Effects of these regulations are being kept under review, and the situation is being followed to determine whether further changes in regulation might prove advantageous.

Studies on cod in the southwestern Guif ox St. Lawrence in 1958 showed that average discards by small-mesh (3 to $41 / 2-$ inch) draggers were $23 \%$ by number and $9 \%$ by weight. Discards by large-mesh ( $43 / 4-$ inch) draggers working on the same grounds were $12 \%$ and $5 \%$ respectively. These results confirm those of 1957. They indicate that $43 / 4$-inch mesh codends allow the release of about half of the small cod discarded from small-mesh codends.

Possible effects of employing a 5 l/2-inch mesh for cod in the southwestern Gulf of St。Lawrence were studied. Results of such a test depend upon culling practices in vogue and sizes of fish to be found on the fishing grounds. Under conditions prevailing in 1958 and anticipated for 1959, use of $5 \mathrm{l} / 2$-inch mesh would probably result in a small immediate reduction in the amount of fish landed and is not recommended. Longer term advantages may exist and should be considered as data become available.

Wastage of haddock by commercial trawlers using 4 1/2inch mesh codends was studied on the Nova Scotian banks. The amount caught and discarded differs according to the way in which the fish are to be handled. Smaller fish are retained for landing round than for landing dressed. In general 4 1/2-inch mesh nets released virtually all haddock below commercial size.

A mesh size appreciabiy larger than the 412 mach namia twine specified to meet ICNAF requirements would re ease significani quantities of currently marketable haddock.

Use of toposide chafing gear is a suty generai practice among the groundfish fleet in the Muy The way in which it may be applied to the net is accordingly recommended in detail by the ICNAF. seroes ot ofits of nets with and without the chafing gear applied as resoumended showed that there was no significant interference with release of fish by netting applied as authorized.

Methods of assessing groundfish regulations. It is important that effects of any regulations on fish stock and catch can be demonstrated beyond question. Accordtingly, much effort has been directed to methods of establishing the extent of the benefit (if any) obtafned by applying mesh regu?ations in the ICNAF area. Most attention has been atrected 60 ICNAF Sub-area 5 where a minimum $41 / 2$ inch mesh reguiation has been longest in effect and where most and best dete apply.

Difficulties in assessing changes anise fron absence of data on diseards prior to regulatoon end apun aramal variations in availability of young fish anc zoneratityo Theoretical studies indicate that efiects an whate tesa regulations can be measured more readty by poytatag stady joat data both before and after enactment of new regulationg. í system for avoiding misincerpretation aving from exroxs in age reading has been developed.

Porrocaecum studies. The study of Porrogaesum decipiens, a parasite which detracts from the masket quality of cod, was reduced during 1958 to an effort to fill in details in its life history。 Collections of small shrimpuifike mysids were made in the Bras dror Lake, where Porrocacoum is hrown to be abundant in cod. The mysids were found to contain a variety of parasites that resembled Porrocaegum. Careful examinetion showed that many of them were not in fact the parasite which was of interest but that some of them are probably young stages of Porrocaecum.

## PELAGIC PISHES

The pelagic fishes of the waters aronad the Mantime Provinces are little known and underwused. Fecoces controling availability and abundance of none of the spectes hate yet been critically studied and except for the fishere roz sardine herring in the Bay of Fundy region exploitation manes titite use of the potential。 Even in the Bay of Fundy negion it is possible that more aggressive fishing techniques could utilize the resource more effectively. Pelagic fishes accordingly, merit careful investigation to determine the size of the
resource, when and where they may be accessible to ommerciai exploitation, and at what level they can sustain a tishery.

During 1957 and 1958, work on pelagie fishes has been concentrated on the herring of the Passamaquoddy area and the Bay of Fundy generally in an attempt to desuce the probable effects on the herring fishery there of piacing dams at the entrance to Passamaquoddy Bay in order to develop hydroelectric power.

Herring statistics in the Passamaquoddy region. In the last 2 years, data on herring landings in Passamaquoddy Bay and its approaches have been collected in such a way as to relate them to the sites of proposed tidal power dans near the entrances to the bay. It is proposed to p.ace these dams so as to have a high pool (Passamaquoddy Bay) to be filled at high tides and a low pool (Cobscook Bay, etco) to be emptied at low tide. Power will be developed continuously at a power house situated between the two pools, Information has been collected and analysed in ciose collaboration with the Economics Service of the Department of Fisheries.

In 1958, 269 weirs were built as against 290 in 1957. Of the 269, 66 were in the higholeyel pool, 9 in the lowalevel pool, 76 in the approaches to Passamaquoddy Bay, 37 in the eastern section of Charlotte County: 64 at Grand Marana and 17 in Saint John County. There were 13 purse seiners and 31 drag seiners licensed in 1958 as compared to 1.7 and 22 respectively in 1957.

Total herring landings in Charlotte and Saint John Counties in 1958 amounted to about 36 mililion pounds or slightly more than $40 \%$ of the 1957 catch and only $47 \%$ of the 1937 -1957 average.

Comparison of 1957 and 1958 landings ascoxding to gear shows that whereas weir landings decreased considerably, drag and purse-seine catches kept up well.

Landings from weirs began in February and increased to a peak of 9.2 million pounds in September. Juys qugust, and September provided $85 \%$ of the total weir caten. Drag seining was confined to the period from July to october and took about 2.4 million pounds. Purse seining was done in all months except May and Tune。 Landings of 3.0 million pounds in March and 3.5 million pounds in September accounted for most of the total pursemseine catch of 7.9 mlll ion pounds.

When localities of the catch are related to the dam sites, it is found that in 1958 about 9.0 million pounds of herring were taken from the proposed higholevel poci, 0.4 million pounds from the low level pool, 3.7 million pounds immediately outside the Bay. 8.9 million pounds in the eastern section of Charlotte Gounty 6.9 million pounds at Grand Manan, and 6.9 million pounds in Saint John County.

An economic survey of the herring fishery in the Passamaquoddy area carried out by the Economics Service of the Department of Fisheries showed the average investment in a weir and its associated gear to be $\$ 5982$ ．The average replacement cost of a purse－seine unit is $\$ 248866$ 。

Herring tagging and movements．During 1．958，79，794 herring were tagged in 34 lots．The work extended from March 3 to September 24 and from western Nova Scotia to the coast of Maine and Point Lepreau．The tags were thin strips of coloured celluloid hooked through slits in the fishes ${ }^{\circ}$ opercula．

Altogether 2,739 tags were recovered． $60 \%$ within the first 2 weeks．About $61 \%$ of the recaptures were made within 5 miles of the tagging site。 About $3 \%$ showed movements of 15 to 55 miles．Movements in and out of Passamaquoddy Bay were quite general．Howeverg movements from the Passamaquoddy area to the coast of Maine were restrictedmothe only indications being the recovery in Cobscook Bay of one tag put on in Passamaquoddy Bay and the recovery on the outer Maine coast of a Cobscook Bay tag．

Herring behaviour and survival．Herring behaviour in relation to currents was studied by towing groups of fish in fish－net cages and observing them by underwater television． Two television units were employed，the first in cocoperation with the United States Fish and Wildife Service and the second through the courtesy of the National Research Council of Canada．

At current speeds below a minimum value probably near 0.8 feet per second，fish circled the cage without reference to the current．As the speed of the cage relative to the water increased，herring formed a group in the upstream end of the cage and close to its bottom．They swam from side to side，always turning upstream when meeting the walls．Orientation of the herring into the current became more pronounced as velocity increased，and the side to side deviations decreased until they were slight or irregular．With further velocity increases，the swimming speed of the herring increased until it reached a maximum when the fish，still heading upstream and swimming vigorously，slowly lost ground，tail first until they were swept against the mesh of the cage．

Maximum swimming speed was subject to special con－ sideration．It is defined as the speed at which $50 \%$ of the herring fail to keep pace with the cage over one minute when swimming at an increasing rate。 Such conditions might be found in nature where herring near the bottom are stemming an increas－ ing tidal flow．All currents above the maximum swimming speed will be able to move the herring in the direction of flow．

Maximum swimming speeds probably depend upon water temperatures and were found to vary with fish size．The tests were carried out between 11.6 and $12.4^{\circ} \mathrm{C}$ ．Maximum
swimming speeds ranged from 1.8 knots to 2.8 knots for 6 inch and llainch fish respectively.

Herring tolerance of high temperature was tested. Fish caught in water of $9.6^{\circ} \mathrm{C}$ and presumably acclimated to temperatures between 9 and $10^{\circ} \mathrm{C}$ were used in the exper ment. The upper lethal limit is defined as the temperature at which $50 \%$ of the herring die within 48 hours. It was found to be $21^{\circ} \mathrm{C}$ for small herring ( $31 / 2$ to 5 inches) and between $19^{\circ} \mathrm{C}$ and $21^{\circ} \mathrm{C}$ for 70 to 12-inch fish.

Ability of herring to withstand sudden changes in depth was tested by lowering caged herring ( $51 / 2$ to $81 / 2$ inches long) to a depth of about 150 fathoms at about 1.7 feet per second, and raising them again at about 2.6 feet per second. Obsexvations on fish for 2 hours after the treatment showed no indications of unusual behaviour. It is concluded, accordingly, that moderately rapid changes in depth from surface to 150 feet hawe no $11 l$ effects.

Plankton studies in relation to herring. Plankton studies in the Bay of Fundy and the Gulf of Maine have been undertaken to show general distribution of young herring and of the small floating animals they feed on.

During 1958, plankton collections were made at it stations that were occupied on each of 22 cruises carried out in the Passamaquoddy area. In addition, routine coilections for the years 1941 to l94's inclusive were examined. There were 3 special spring cruises from Grand Manan to St。Mary Bays 3 ofrshore cruises in the Bay of Fundy and Gulf of Maine. I5 exploratory cruises at the entrance to Passamaquoddy Bays and buwweekly surface tows at the Lurcher Lightship.

Results indicate that herring larwae are not produced in Passamaquoddy Bay. A few larvae have been fourd in the area but indications are that they move in on the flood tide probably through Western Passage.

Special spring cruises around Grand Manan and St。Mary Bay gave no indications of newly-hatched larvae such as would be expected from spring-spawning fish.

Offshore results indicate that major herring spawnings occur off the southwest coast of Nova Scotia, and on the northern edge of Georges Bank. The drift of laryae, as indicated by nontidal surface currents and increasing size as the distance from the spawning area increases, suggests that Nova Scotia and probably Georges Bank spawnings contribute to commerctal stocks of herring in inshore areas of southern New Brunswick.

Food of herring was found to be widely diversified and to vary with locality. Inside Passamaquoddy Bay herring were feeding extensively on characteristic Bay forms. Outside feeding seemed to be less active and to be mostiy on offshore
types. In general the pattern of feeding foliows ciosely the relative abundance of plankton in the region. Heavy feeding in June was followed by a decrease in July and August, a sharp increase in September, followed by a decrease in Detober. In late November, there was a slight renewal of feeding activity corresponding to an increase in abundance of plankton at that time.

Exploratory herring fishing. Herring fishing in both southern New Brunswick and Maine is carried on chiefly by weirs and bar seines close to shore. As a result little is known about the offshore distribution and abundance of herring. Exploratory fishing experiments were carried out in an attempt to increase knowledge on these points.

Bottom trawling on the northern edge of Georges Bank in October took moderate catches ot spawning herring for the fourth successive year. In January, small catches of large fish evidently recovering from autumn spawning were taken in small quantities (up to 350 lb per drag. average 150 lb )。

Dutch herring trawls and gili nets took herring in Kennebecasis Bay, but a wide variety of gear types xailed to take herring in the passages leading into and out of Passamaquoddy Bay.

Throughout the summer months, surveys with sonic sounders were carried out at weekly intervals throughout Passamaquoddy Bay. They showed that in general the greatest concentrations of herring are in the open areas away from small coves and inlets where weirs are located. This conclusion is supported by the catching of at least 2,250,000 lb of herring by comercia? purse seines in the middle of the Bay in September.

## Abundance of hexring larvae in the Gulf of St. Lawrence.

 An annual assessment of the abundance of larval herring in Northumberland Strait has been continued. It is based on the average numbers of larvae per tow at stations sampled in connection with lobster larvae surveys. The abundarice in 1958 is the lowest in the 8 years of the program and may re?lect a reduced spawning population caused by the epicemic fungus disease that swept the area in 1955 and in 1956. The bearing of small spawning and consequent small larval production on subsequent recruitment to the commercial fishery has not been demonstrated.Southwest Nova Scotia herring fishery. In $1.95^{\circ} 8$ Nova Scotia herring landings amounted to 102 million pounds of which about 87 million were taken in Digby, Yarmouth, and Shelburne Counties. This was more than double the amount taken in southwestern Nova Scotia in 1957. The increase is chiefly owing to successful purse seining for sardine-size herring in St. Mary Bay and the eastern part of Yarmouth County. Routine sampling of commercial catches for length, age, and vertebral number was
continued throughout the year. Analyses ox these data are incomplete, but there is no dradcation of decline ir size or age composition for samples obtained from the gill net fishery. Otoliths show that the majority of fish taken in the area are autumn spawers with ages ranging ixon 2 to yoexs.

Experiments on herring fishing me hoo e ks herining constitute an inadequately used resource attention fe directed to improving catring methods. Tests with dutit oets in Hermitage Bay, using gear supplied by the Industrial Development Service, have been continued and give consistently promising results. From April thiough June, catches averaged from 197 10 per net night (April) to 333 lb in Mayo. It is belleved that introduction of drift netting on the south coast of Newfoundland would increase present landings substantially。

Swordilsh studies. The Canadian iishexy fox swordfish is important and growing. Cetches in 1957 and 1958 exeeded five million pounds and had landed values in exefss of one and one quarter mfllion dollars. $\ln 1939$, tae cetoh wes less than 1.8 million pounds. During 1957 : 220 boats rontributed to the landings. Fiftyoutwof these were small boats operating close inshore and close to home ports longliners, schoonexs; arid dreggers capate of Axhing on Georges Bank or the Grand Banks.

Duxing field observations th was fond bat most of the swordfish harpooned had stomachs inll to hant anil os zoodo. It consisted of lancetfish lantemfish and oosetisio min most cases the food was fresh and not brocen vo. deecass the speazes eaten are deep-water forms it seems eviceat the the swordfish had been feeding at considerable depth and had come quikliy to the surface where they were caught.

## SALMON

The east coast of Canada is an important stronghold for the world's dwindling supply of Atlantic salmon. Famous angling rivers are found in the Maritimes area. Commercial fisheries provide salmon for both local and distant menus. Dual use of a single resource lends urgency to the need for facts in managing the fishery. Adminiscration is complicated by a sharing of authority among federal and proytncial govermment agencies. The situation is met by having researth and management programs reviewed by a Federal Prowinetal cooocineting Committee. Research programs are agreed upon and tavicled com operatively although most of the work is undertexers by the Fisheries Research Board.

The research program during 1958059 mag pe considered under a variety of headings. Firsto and basice to cther considerations, is analysis of fishing statisticso They define the problems and provide indices of success in meeting them。

Second is consideration of the migrations of Atalate salmon and assessment of their tendency to return to their natal stream. This is supplemented by a study of movements of mature salmon in the Miramichi River. Third is the study of the best way in which to produce smolts both by hatchery planting and natural reproduction. Fourth is the study of the azepet ois forest insecticides used to combat spruce budworms on salmon and how ill effects can be avoided. Finally is the study of the effects of hydroelectric development in the Sain John River and the effects of impoundments in general.

Statistics. Catch data collected by appropriate federal and provincial agencies show good landings in 1958 by both commercial fishermen and anglers. Commercial tishing in Quebec showed a $49 \%$ increase over 1957 landings. In the Maritime Region, commercial landings were up by $33 \%$. Increase was general throughout the region with the Gulf of St. Lawrence area up $27 \%$, the Pundy area $67 \%$ and the Atlantic area $8 \%$. The 5.58 total in Quebec was just more than half a million poundsiea the highest since 1953. In the Maritime Region, the 1958 total landing of over $1,100,000 \mathrm{lb}$ continued the steady improvement since 1955 when the catch fell below $700,000 \mathrm{lb}$ 。

The 1958 angling catches were the highest se\%orded since 1949 when the present system of collecting gatoh statistics was instituted. Over 65,000 fish were taken is the andtime Region. This represented an increase of $66 \%$ over the previous year. The improvement in the case of angling was ul\% in the Gulf of St. Lawrence area, $42 \%$ in the Fundy area and $205 \%$ in the Atlantic area. Angling pressure during 1958 was very high. As a result the catches per rod-day on various rivers showed less improvement over the previous year. In general. water conditions in 1958 were favourable for ascent of saimon and for angling. These facts may have been largely responsible for improved catches, rather than a significant incieese in the abundance of fish.

The progress of salmon (2-sea-year or older fish) and grilse (lesea-year fish) into the Northwest Miramichi River was followed at three check points. They are an estuarial trap at Millbank, and counting fences at Curventon 6 miles above tidewater and at Camp Adams, 33 miles farther up.

At Millbank in 1958 more than twice as meny groilse were taken as in 1957. This increase was chiefiy made up of very large catches following the commercial fishing season.

At the Curventon fence, the grilse count was about three times as high as in 1957 and the increase ocemped during the angling season. The increase was unexperted besatse the estimated population of large parr (2-yearmold fisc in the Northwest Miramichi in 1956 was smaller than in 195 , as a result of DDT spraying. Ordinarily these fish would have produced
grilse returning in 1958 and 1957 respectiveiv．Recent detailed studies of scales have shown that many young salmon that were classified as small parr（lyearoold tish）in 1956 and which were very abundant，later grew rapidy enough to beame smcits in 2957 and to migrate seaward with fish a year olcer．These was an improved run of large salmon at Curwenton La：e ths engaing season but the total run was down．The low ran was an emperted result of DDT spraying。

Counts at Camp Adams reflect those at the jower Curventon fence．Grilse were plentiful and salmon relatively scarce and both were available during the angling season．

Additional information about movement of fish into the Miramichi River was gained by tagging at Mintrame sad Gaventon． Fish were tagged in both 1957 and 1958 at Gurventcn。 Recoveries were markedly higher in 1958．This is probsily beceuse of greater exploitation．Salmon were evidently taken more readily in set nets during 1958.

Tagging showed great variability in the migration patterns of different fish．Some were recovered 70 miles upstream within 2 weeks．Others were takers a fer mfes mom wrypanis 2 months after tagging．Three salmon tagged oz Sepmajze 28，1958， were retaken 30 mies upriver at curyenton $2,-2,20043$ days later．

At Currenton， 259 grilse and 24 laxge sanon were tagged． Recoveries gave a minimum estinate of the maben of griise recaptured at $804 \%$ ．The average time taken for grise to treme the 33 miles from Curventon to Camp Adams was about 20 days．

Homing in salmon．In 1953 and 1954，about 25，000 salmon smolts were marked by distinet fin ciips at Curyenton and about 20，000 on the Dungaryon Riverwa tributawy of the Southwesto Miramichi．Recoveries from these markings have been given special attention during 1958．They show that saimon known to be of Miramichi origin are taken both as griise and older salmon over a wide area extending to Newfoundland and La wrador．It is estimated that about one third of the total catch or Miramichi fish is in Newfoundland and Labrador nets．Although sommercial fisheries in the Miramichi estuary took a mixture of fish from the two tributaries，recaptures by anging farthei upstream of 69 marked fish showed pronounced segregatios．Fomymine of 51 Northwestomarked fish were recovered from that trebutary and 16 out of 18 Dungarvon－marked fish came back from the souchwest Miramichi。

Use of hatchery stock to supplament netive saimon． Previous work by this Station has shown that a raasonable objective for smolt production is 5 per 100 square yards of wivem bottom where stocks are protected from onslaughts by mergansers．To produce this number of 2－yearoold smolts requires about 8 native
parr or 12 native underyearlings per 100 square yardso Alten natively it calls for about 35 hatchery underyearlings because they experience difficulty in getting established.

It may be anticipated that in nature because of overm fishing, catastrophe, polution etoos the nampers of undere yearlings or parr present may occasionally be inedsquate to make full use of the smolt potentiality of the river. Effectiveness of remedial measures is being explored.

In 1956, the native fingerling population in the Pollett River was found to be 6.8 fish per 100 square yards. This was supplemented by a planting of 99,000 large underyearlings ( 23 per 100 square yards). Presumably because their size was larger than expected (and larger even than that of the native stock) the planted fish survived well and at the expense of the native stock. The rate of smolt production from the area was up to expectation, 5.4 per 100 square yards, 1.0 from native stock, and L. 4 from hatchery plantings. Effectiveriess of well grown hatchery supplements is strongly indicated.

Researches associated with DDI. in 1.954 aerial spraying of spruce and balsam stands in the Miramichi watershed was begun to control ravages of spruce budworm which threatenec to destroy the forests. It very soon became evident that both salmon and aquatic insects on which they feed were being destroyed too. For the last 4 years, a significant part of the resegres ewfort for salmon has been dewoted to assessing effecta of the use of forest insecticides.

Studies on the effects on aquatio inseets were continued in 1958 at four colleoting sites Although there are variations between sites, the area as a whole still shows a low qoiume of aquatic insects with midges predominating. However, at one site larger caddisflies showed signs of revival and mayfiles contimued their comeback, first indicated in 1957.

Food studies on young salmon complement studies on aquatic insects. Underyeariings normally consume inmorure stages of chironomids (midges), and smallex forms or mayfiles. Parr at both stages tend to feed on caddisflies and lainge stoneflies. Lack of these stages could have serious effects on growth of later stages of premsmolt parr.

Detailed growth studies on young salmon in DDTosprayed watersheds show that survivors of fish sprayed as underyearlings, as yearlings, or as 2 -yearmolds will be below rormai size at the end of the year. Compensatory growth in subsequent years more than makes up the loss in first and second year fisho There is reason to believe that the increased growth can lead to migration as smolts at a younger age than usual.

During 1958, in cosoperation with the Porest Biology Division of the Department of Agriculture and with the assistance
of Rohm and Haas Co. of Canada, Ltdoy a search was began for insecticides that would be effective in controliing budworm but have no ill effects on salmon or stream insects. Several poisons were found ineffective against budworms, and it appears that future tests should be directed to improving the DDT formulation. Investigation along these lines should be continuad. The budworm epidemic has collapsed but there will be others. Further experiments should be undertaken soon to establish satisiactory control techniques before they are needed.

Effects of hydroelectric developments. Increasing use of the Saint John and other rivers for hydroeleetric development has turned attention to the effects on anadromous fish when natural water flows are altered.

In association with biologists of the Department of Fisheries and with the New Brunswick Electric Power Commission studies have included: (1) The assessment of young salmon populations above the Tobique dam. These studies are complicated by DDT spraying in the area. They showed many more underyearlings in 1958 than in 1957. (2) The smolt hold-up at Beechwood and methods of by-passing smolts. At present, the delays above the dam led smolt to suffier in wellmbeing. Methods of reducing delay are being explored. (3) Establishing a creel census for the Tobique flowage to assess the effects of the dam on fish species other than salmon and especially predatory fisho

Formation of a pond in Ellersife Broos to give better trout angling has provided opportunity to obsex.e the affects of an impoundment on salmon movements in a smail stream. The pond was found to block the passage of adult salwon upstream and deter their return to sea after spawning. Parre tended to concentrate in the pond and may become smolts a $y \in a r y$ later than normally. Small smolts in $195^{\prime} 7$ were retained in the pond for a year but in 1958 larger smolts showed no evidence of being held up. It is evident that quite small impoundments (7 acres) can interfere with the customary movement of salmon at several stages.

## TROUT

The trout fishery is important in the Maritime Provinces both as a tourist attraction and for relaxation of residents. As the fishery is inland and frequently in quite small bodies of water, it is susceptible to man-made changes in environment. Some of the changes are damaging but others can be brought about deliberately to increase use of the trout resource. Most of the work in trout research is devoted to exploring patious approaches to resource management with the intentions of increasing production and accessibility of trout. Some of the methods of management tested were planting hatchery stock, fertilizing water, control of predators, making impoundments. and introducing exotic species.

Crecy Lake．Experiments on unproductive Srecy Lake in the poor acid soils of southern New Brunswick showed that， even although spawning grounds were inferior，the introduction of hatchery stock was little use unless the potential of the lake was increased by adding fertilizerss and the lake＇s yield retained for anglers by controlling activities of predatory mammals and birds in the area．Eels are a predator in the lake．An attempt to reduce their numbers in the lace by trapping and by keeping out young elvers with a berrier at the lake ${ }^{\text {b }}$ outlet is under way．Some reduction in the number of eels seems evident but successful control is not yet assured．Studies of making the best use of the potential at Crecy Lake and Kerr Lake are being continued with the use of rainbow trout instead of native speckled trout．Former procedures with speckied trout are to be repeated in detail with rainbow trout so as to allow valid comparisons．

Ellerslie Brook．The short springofed streams of Prince Edward Island running through fertile land are highiy productive of trout．There the first problem is to make fissh accessible to anglers．This has been successfully attempted by damming Ellerslie Brook and some other streams close to their outlets．At Ellerslie Brook the situation has been closely followed since 1946．It has been found that formation of a 7 －acre pond did in fact greatly increase the availability of fish with the result that the nursery stream is now unable adequately to supply the pond with fish．A pond relatively smaller（ly acres）in relation to the size of larger Wilmot Stream was less successiful ir attiocting trout to remain for angiing．It is suggested that where pond size is small in relation to stream，screening may be desirable to retain fish in accessible water．

Stevenson ${ }^{1}$ s Pond。 At Stevenson ${ }^{1}$ s Pond（S eeres） observations on numbers and condition of the whole irout popula－ tion have been possible。 Observations indicate that the tributary stream system is insufficient to supply fish to utilize fiully potentialities of the pond for producing trout．Use of supple－ mentary hatchery stock seems indicated。 Further study is necessary to show the best number of outside fish to introduce．

Simpson ${ }^{0}$ s Pond．At Simpson ${ }^{\circ}$ s Pond（2． 3 acres） productivity of the introduced rainbow trout is being studied． Incidentally it was found that the introduction caused no effects on brook trout in the same waters．Indications so far are that rainbow trout grow faster than brook trout under similar con－ ditions．

Natural fluctuations．Since 1947 the population of brook trout in Ellerlsie Brook and neighbouring streams has been followed closely．The variations observed are of yalue in assess－ ing other situations．Annual variations in numbers of under． yearlings are evident and of much the same order of magnitude in

Hayes and Ellerslie Brooks. In years when stocks were low in the Ellerslie system, they were found to be low in many other streams in the region. When frazil ice conditions were severe in winter and spring, stocks of underyearlings were low in the following summer.

Silting and scouring produced marked changes in the brook. When part of the brook became silted, trout population there fell off. Scouring usually proved beneficial to producing older trout as pools are deepened and banks undercut, thus increasing cover. Brush also provides good hiding piaces for trout. After cover was removed from an area of streams a decrease in trout stocks was noted.

Trout have strong territorial tendencies. When the older trout population of a pool was doubled by stocking about $50 \%$ of the new trout moved out within 48 hours. Few of the resident population moved from the pool.

There was no indication of competition between trout and salmon for living space. They have different rabitats.

Trout older than yearlings move from Ellerslie Brook into the pond but there is little reverse movement. This has brought about a decrease in the average size of older trout in the stream. The productivity of the stream has not been affected by pond formation. During the past summer the stock of fingerlings and older trout in the stream were at pre-pond levels.

Tolerance of underyearlings to salt water. In Prince Edward Island, young salmon and trout are known to move into the salt water of the estuary. A series of experiments under artificial conditions showed that low salinities are tolerated and provide a measure of acclimation to full salinity which is complete in the case of salmon. Both salmon and trout tolerate simulated estuarial conditions with alternately full ( $28 \%$ ) salinity and fresh water at 6ohour intervals. Tolerance to salt water is much reduced by injuries involving loss of scales. Further and more precise studies along these lines are indicated to guide the use of estuaries in rearing young saimon and trout.

## ALEWIFE

The alewife is available in great numbers in Maritime rivers and their estuaries during its spring-spawning migration. It has been relatively neglected by industry but recently the pet food industry has placed it in great demand. New Brunswick landings increased from a 7.4 million pound average in the $1943-46$ period to 29.4 million pounds in 1951-54. Since then catches and availability have dropped, causing concern about continuity of supply. A preliminary survey of the species was begun in 1958 in comoperation with the Protection Branch of the Department of Fisheries.

The investigation took the course of examining in detail samples carefully taken by Fisheries Officess Examination and analysis is not yet complete but to date it shows that earlyrun fish (late April) differ from May and June samplas in length, eye size, and vertebral number. The later samples are indistinguishable in these respects. Spawning fish ranged in age from 4 to 7 with 5-yearmolds dominant. Scale examination suggests that most fish are mature at 4 or 5 and spawn eesh year thereafter.

SEAWEED
Of the immense resources in seaweed that abound on Maritimes shores only two provide regular products for sale. one is dulse that supplies a small demand from local enthusiasts and expatriates. The other is Irish Moss (Chondrus). mhts red alga is a regular article of commerge and the source of the carrageen used extensively as an emulsifying agent. The latter was accordingly selected for investigation.

The growth and replacement rates of Irish hoss are under study to provide information that applies to managing this resource. Growth is most rapid from May to July and falis off through the remainder of the summer, Small unbranched individual plants seem to grow fastest. Cropping (by experimental plucking) in one year markedly reduces the weight of yield from the same area a year later.

## BULLETIN ON ATIAANTIC COAST FISHES

Progress is being made in meeting a long felt need for an authoritative book on marine and anadromous fishes of the Canadian Atlantic Coast. A general account is aoout half done of fishes on the east and northeast coast of. Canada Erom the International Boundary to Hudson Strait and from the shore line to the 500-fathom contour at the edge of the Cortinentai Shelf. The completed book will include illustrations and kegs.

POLLUTIION
Freshwater and shore animals are subjeat to man-made changes in their environment. These changes can be beneficial or harmful, direct or indirect. Examples of benciicial changes are the fertilization of Creey Lake ${ }_{9}$ the formation of trout fishing ponds on Prince Edward Islands both mertioned in this report, or in the remedial construction of fishways around dams or impassable falls.

Unfortunately, examples of harmful changes aze more numerous. Many of them act both directly and indrectiy. Hydroelectric dams and other structures not ondy iostruct upand downstream movements of anadromous fishes. bit also have indirect effects. The impoundment above a dam may foster predators, may further interfere with migrationg and san be
expected to render spawning grounds amusabie sinte ocrodation of water through the substrate is reduced. DDI spaajing of forests not only kills fish dixesty but also kills the aquatic insects on which young saimon live through the first 2 or 3 years of life, thus altering the whole biologjeal economy. Lumbering and agricultural practice change rumoti paterns and create silting situations that spoll spawing zreas and alter stream faunas. Epen more obvious is the eftect or curning untreated domestle and Indistrial sewage ambo adatal waters. All these alterations becone dsletemous for fisho wost of them are also distasterul to man. Alh of them ase oeng moady considered under the heading of pollution.

In 1958, the $S t$, andrews Station took its intst step in the consideration and remedy of pollutior, whe mef.. erpeses was placed on a "base-line" survey of the Satr* fon Ftrex end chosen tributaries. Results are to be used for prodiothy and assessing future damage to fish by changes in river usage. sizeable municipalities lie on this xiver syetem and Pumacrexpension is planned for industry and hydroe?ectrie dogesopacino the amount and nature of the anfmal life on the river ootom were devined in the free-flowing section of the wiper and to the mpoundinents above the Beechwood and Tobique dans. Reporied aquee c. pollution at East Florenceville, Woodstook and Acoostook Rivers wee thecked. A study of Saint John River protiles leads to tee wormyston that the reduction in overwall miver area will we tolerabie at the 1,000 cubic feet per second proposed as a minnm relesse tron Beechwood. However, shallow areas may be the most sevenely affeoted, and the most important rox fish dife Gebute ot ananomous tash in the main river should be studed to detemphe whoner reduced water levels and veloelty of licw ores shoabe wili vause stranding of fish or mortality of eges.

## MATHEMATICAL STATLSTICS

Fisheries work involves many quantitative considexam tions. Diverse data complicated by many soures of stromust be carefully evaluated in reanhng concuston fon anioation. Even more difficult is the necessity to rowecast ohe xesults a* changes in regulations from the imperfect facomaty whet 4.5 available in fisheries work. These evalkations and forecasts call for the special training of a mathematimal suabstacoo.

During 1958, theoxetateal consideratan was given to the lobster fishery at Tigntisn in an effowt to establish total and natural mortality rates and populato gox growtins. These estimates. used in a steady state model, were considered in forecastonts effects of changing fishing praotices. Govalusiona must be accepted with some caution because of uncemtanty in data on which they are based. They indicate that th towat ishing effort were reduced by $50 \%$ from that aurwentiy ia extert, the yield of lobsters would be reduced by only $15 \%$ whlle the caten per trap
haul would almost double. Tentative conclusions concerning the effects of raising the lower size limit depend upon the estimate of natural mortality rate. Unless this is about $20 \%$ or lower, appreciable benefits cannot be predicted.

MAKING THE WORK KNOWN
With increased demands from government and industry for information about the fisheries, the Station has continued to develop research programs, in consultation with provincial and federal departments of government and with other nations. The work of investigation was shared in the International Commission for the Northwest Atlantic Fisheries, the International Passamaquoddy Fisheries Board, the Interdepartmental Shellfish Committee and the Federal-Provincial Salmon and Trout Research and Kanagement Committee。 These and other co-operative efforis have increased the amount and applicability of seientiric results. To make these results known and to encourage their use ${ }_{2}$ the Station has directed increasing effort toward their prompt distribution to fishermen, the fishing industry, branches of government, and fellow scientists. Information was spread by visits, meetings, letters, memoranda, addresses, iadio, television, and through writings in trade journals, newspapers, magazines, and in the Board's circular, progress report, journal and bulletin series. There is a continuing need to spread information about the Station's scientific work, and efforts toward this end will be continued and increased.
(April 1, 1958 to March 31, 1959)

Staff' other than seasonals or term are classified as of Maroch 31, 1959. Those employed for Industrial Development Service are marked IDS; those employed for International Passamaquoddy Fisheries Board project are marised IPFB.

| Director | J. L. Hart, Ph.D. |
| :--- | :--- |
| Director's Secretary, Clerk 4 | W. E. Young |
| Assistant Director, Senior Scientist | L. R. Day, M.A. |

## Groundfish Investigations

| Principal Scientist in charge | W. R. Martin, Ph.D. |
| :---: | :---: |
| Associate Scientist | L. M. Dicicie, Ph.D. |
| Associate Scientist | Y. M. L. Jear, Ph.D. |
| Associate Scientist | F. D. McCracier, Ph.D. |
| Assistant Scientist | A. C. Kohiges, M.Sc. (educational leave from Oct. 2/58) |
| Assistant Scientist | P. M. Fowles, M.Sc. |
| Technician 3 | D. N. Fitzgeraia |
| Technician 3 | G. J. W. Sullivan |
| Technician 1 | M. F. Fraser |
| Technician 1 | R. M. MacPherson |
| Technician 1 | N. J. McFarlane |
| Technician 1 | R. J. Thurioer |
| Assistant Technician 2 | Irma I. Thompson |
| Stenographer 3 | C. Ruth Garnett |
| Stenographer 3 | Shiriey W. Delong (firon April 21/58) |
| Stenographer 3 | Joy Sutherland (to May 22/58) |
| Associate Scientist - Term | D. M. Scott, Ph.D. (May 15-Sept. 12/58) |
| Technician 1 - Term | G. W. Condon, B.Sc. (from May 23/58) |
| Assistant Technician 1 - Term | Reta M. Greenlaw (Jan. 2 - March 31/59) |
| Student Assistant | L. L. MacLeod (May 14 .. Sept. 15/58) |
| Student Assistant | W. E. Russell (May 19 - Aug. 29/58) |
| Port Observer - Part-time | F. Berrigan |
| Port Observer - Part.-time | R. C. MacMillan |

## Anadromous Fishes

(a) Salmon Investigations

Principal Scientist in charge
C.J. Kerswill, Ph.D.

Associate Scientist
Associate Scientist
P. F. Elson, Ph.D.

Technician 2
Technician 1
Technician 1
M. H. A. Keenleyside, Ph.D.
E. J. Schofield
P.R. Graves
I. M. Jones

Assistant Tecimician 3
Assistant Technician 2
Assistant Technician 2
Stenographer 1
Associate Scientist－Term
Assistant Technician 3－Term
Assistant Technician 3－Term
Assistant Technisian 2 －Term
Assistant Technician 1 so Term
Assistant Tecimician 1 w Term
Assistant Technician I a Term
Student Assistant
Student Assistaint
Student Assistant
Student Assistant
Student Lissistant
Student Assistsint
Netman－Prevailing Rates
Netman－Prevailing Rates
Casual employees
（b）Trout Investigations
Serior Scientist in onarge
Assistant Scientiss
Technician 1
Assistant Teormician 3
＊Assistant Techniosan 2
Student Assistant
Pond Guardian－Parrotime
Pond Guardiall o Parto time
Casual employees

W．Go Ixjing
H．P．Barchard
L．R．MarFanlane
Elizabetin D．McAuley
F。P．ICe，Pho．（May 21 a Jurle 24／58）
G．W．Cooper（Apw． 2 －Nor．29／58）
E．F．Thompsion（June a－AuE $15 / 58$ ）
W．H．MasLean（Apr． 2 on NT：29／58）
HoD．Clark（Apr．－Uny $5 / 58$ ）
$W_{\text {o }}$ R Currie（Apr． 1 －Sept．30／58）
J．H．King（Apsi．I－Juiy $15 / 58$ ）
D．H．Bettis，BoSe．May $26-$ Sept．3／58）
J．K．Branoritit（May $29-$ Sept． $5 / 58$ ）
G．D．Maddison（May 20 －Sept． $15 / 58$ ）
J．E．MeInemey（May 5－Sept．5／58）
E．L．Miliss（May 14 Aug． $29 / 58$ ）

A。G．Soweres（Apro 2 o Dew。8／58）
E．Go Tuester（4per－I Now．29／58）
＊Also general labcratory assistance

## Crustacse

## Lobster Investigations

Prineipal Scientist ir charge
Associate Scientist
Assistant Scientist
Technician 2
Technician 1
Assistant Technician 3
Clerk 2
Student Assistiarit
Student Assistant
Assistiant Techrician 1 oTerm IDS
Assistant Technician 1 －Term IIS
Assistant Techmician I－Term IDS
Stenographer i © Casual

D．G．Wiluez，Pho
D．Wo MoLeese，Prod．
R．J．Gibscta B．A．（Eatm Sept．3／58）
R．C．Murray
U．J．Waisin
D．E．Groaham
Evelyn R．Macuizilan
Patriciz A。Hcit（May 16 －Sept．1／58）
R．D．Lisk，$A_{0} M_{0}$（May 29 ．．Aug．29／58）
H．L．Gunninghan（to May 31／58）
E．A。King（to May 31／58）
H．D．Penrey（to May 5 （53）
Hazel．L．Guant（Apy＂． 30 ．．May 9／58）

## Pelagic Fishes

Senior Scientist in charge
Associate Scientist
Assistant Scientist IPFB
Assistant Scientist
Technician I IPFB
Technician I IPFB
Technician 1
Assistant Technician 3
Assistant Technician 3
IPFB
Assistant Technician 2 IPFB
Assistant Technician 2
Assistant Technician 2
AFB
Assistant Technician I IPFB
Assistant Technician I TPFB
Assistant Technician I IPFB
Stenographer I IPFB
Stenographer I IPFB
Stenographer I IPFB
Technician I Term IPFB
Student Assistant IPFB
Student Assistant

## Molinsea

Senior Scientist in change
S.N. Tibbo, M.A.
R. A. McKenzie, M eA.

Vivien M. Brawn, M. Se.
J. E. H. Legume, $H_{0} A_{0}$
A. W. Holt
H. A. Smith
E. G. Sollows
A. W. Brown
C. F. Monaghan

Cariene $D$. Buret
Phyllis J. Gibson (to Dee. 31/50)
Delphine C. Macleilam, B. Se.
C. A. Dickson
L. D. Gamines
R. S. Hencruturs

Mary J。Fitzgereld (to May $16 / 58$ )
Janet I. Mahoney (from May 20/58)
R. Chariene Stuart (four üue 9/58)
M. E. MacLean (from Opt. $=158$ )
M. E. Mactuean (May 15 .Sept. 30/58)
G. Mo Somervilac, B.S?. (May 27 - Sept. 8/58)
(a) Clam and Scallop Investigations

Associate Scientist in charge Technician 3
Assistant Technician 2 Junior Scientist - Term
Technician 1 ~ Tern IDS
Student Assistant
Casual employees
(b) Oyster Investigations

Associate Scientist
Assistant Scientist
Technician 2
Assistant Technician 3
Maintenance Supervisor I
Associate Scientist - Term
Student Assistant
Student Assistant
Casual employees
N. F. Bourne, Pho. in om March 28/59)
J. S. MacPhaii

Esther I. Lord
Barbara L. Shaw, M.A. (May 22 - Sept. 9/58)
E. C. Burke (May 23-Noт. 28/58)

Joan E. Mortimer, B.So. (June 2-Sept.29/58)
R. R. Logic, Ph. D.
R. E. Dinar, Bo sc. (i nom Juan 25/58)
S. E. Tass, B. Sc.
E. B. Henderson
K. R. Otway
W. Bo Stallworthy, Ph.D. (May 15 - Sept.12/58)

Kathleen J。Blenkhorn, Bo St. (June 3-
Sept.12/58)
Wilhelmina Van Waibeek (Nay 20 - Avg. 29/59)

## Pollution Studies

Assistant Scientist in charge
J．B．Sprague，MaA．（From June 3／58）
Technician 1
D．L．Peer，B，So．（from Oct．2／58）
Casual employees

## Mathematical Statistician

Associate Scientist in charge<br>Student Assistant<br>J．E．Paloneino．M．A．（educational leave from<br>Sept．23／58－Feb．13／59）<br>Norma E．Broms（May 20 a Sept．8／58）

## Seaweeds Investigations

```
Assciate Scientist in charge - Pemo
```



## Taxonomy

Senior Scientist in charge
A． $\mathrm{H} . \mathrm{Leim}, \mathrm{Ph}, \mathrm{D}$ ．

Short－term Irvestigations ara Technical Sexvices （Museum，Library，Photography and Draiting
Senior Seientist in charge
L．R．Dey，MoA．
Technician 1
P。W。G。McMation
Clerk 2
M．Beryl Stinson
Student Assistart
Patricia W．Flieger（May 20 $\quad$ Sept．12／58）
Student Assistant
Noreen B．Keith（May 20 －Sept．19／58）

Administration and Maintenance
Administrative Officer 3 in charge I．A，Rogerg，A．C．B．A．
Accounts，Purchases，Stores and Persomel

| Principal Glerk | W．D。Eurton |
| :--- | :--- |
| Clerk 3 | Frances I。Stinson |
| Stenographer 2 | Chaulotte A。Gibscn |
| Storsman 1 | B．H．Foster |

Director＇s Secretary，Mail，Files and Switchooami

Clerk 4 in charge
Clerk 2
Stenographer 2
Stenographer 1
Clerk 1 ～Term

Winifred E．Young
Dorwithy K，McLaughtin
M．Barbara Stickney
Margaret A．Harpotet
Fiora Lu，Lengley May 1 －Det． $15 / 58^{\prime}$


## OCEANOGRAPHY

## Atlantic Oceanographic Group

Senior Scientist
Associate Scientist
Associate Scientist
Associate Scientist Assistant Scientist

Assistant Scientist IPFB
Junior Scientist IPFB
Technician 3
Technician 1
Technician 1
Assistant Technician 3
Assistant Technician 3
Assistant Technician I
Stenographer 2
Stenographer 2 －Term
Associatie Scientist－Term
Assistant Technician 2－Term IPFB
Assistant Technician 1 －Term
Student Assistant IPFB
Student Assistant IPFB
Student Assistant
Student Assistant
Student Assistant IPFB
Casual employees

Partotime mosignthouse Observers
D．L．Collins，Entry Island，M．I．
R．A．Doucette，Iurcher Lightship
M．R．MacKenzie，Bordens P．E．I．
D．M．Wilson，IPFB，Lepreau，N．B．

L．M．Lauzier，D．Sc．
W。B。Bailey，B．Sc．
N。J。Campbeil，PhoD。
R。W．Trites，Ph．D．
A．E．H．Colilin，M．S．（returmed educational
Leave May 2／58）（on educational．Leave fiom Nove．6／58）
F．D．Forgeror，B．Sc．
J．R．Cherrier，BoSc．
J．G．Claxk
を．II．Fill
G。B。Tayior
C．C．Cunningham
T．A．Grant
R．K．Robicheau
Maxueen Ro Eorgan（io Jun．30／59）
Jean E．Giinch（Feb．II－22．Sept．30／59）
D．G．MaeGregoz，MoA．（Tue 19－Sept．16／58）
W．A．Johnstore（May 2i－Sept．29／58）
C．B．Graham（Oct．I－Nor． 28,58 ）
B．L．Biackiord（May 23 －Sept．5／58）
R．L．Campbeit（May 12 －Sept．12／58）
Ruth J．Coates（May 25－Sept．12／53）
J．E．Cureis，B．Sc．（May 20－Sept．9／58）
H．D．Henaerson（May 20－Sept． $12 / 58$ ）

Biclogical Stations St。Andrews，$N$ ． $\mathrm{B}_{\text {。 }}$

$L_{0} R_{\text {。 }}$ Day，$M_{0} A$ 。（Western Onterio），Assistant Diretior．
Fish taxonomy and distribution
A．H．Leim， $\mathrm{Ph}_{\mathrm{a}} \mathrm{D}$ 。（Triontc）。

## Groundfish

$W_{0}$ R Martin，Pho $D$ ．（Michigan）。
I．M．Dickie， $\mathrm{Ph}_{\mathrm{o}} \mathrm{D}_{\mathrm{D}}$（Toronto）．
Y．M．L Jeans，Pho $\mathrm{D}_{\text {．（Toronto）}}$
F．D．McCracken $\mathrm{Ph}_{\mathrm{L}} \mathrm{D}_{\text {o }}$（Toronto）．

P．M．Powles，Mose（Western Ontario）．
D．M．Scott，PhoD．（MaGizi），Term，May 15 to September 32.

## Herring

S．N．Tibbo，MoA．（Toronto）．
R．A．McKenzie，M．A．（Toronto）．
Vivien M，Brawn，Mose．（Dunelm）
J：E．Ho Legare，M．A．（Eritish Coiumbia）。
Lobsters
$D_{0} G_{0}$ Wilier， $\mathrm{Ph}_{\mathrm{o}} \mathrm{D}_{\text {。（Toratio）}}$ ．
D．W．McLeese，Pho $\mathrm{D}_{\text {。 }}$（Toronto）．
R．J．Gibson，BoA．（Dublin），From September 3．

## Mathematicai Statisties

J．E．Paloheimo，M．A．（Toronto）．On educational leave September 23 tu February 13.

## Mollusea

J．C．Medcof， $\mathrm{Ph} \mathrm{D}_{\text {．（ }}$（Illinois）．
R．R．Logie， $\mathrm{Ph}_{\mathrm{o}} \mathrm{D}$ 。（Ratgers！
N．F．Bourne，Ph．D．（Toronto）．From March 18．

Barbara $L_{\text {．Shaw，}} \mathrm{M}_{0} \mathrm{~A}_{0}$（Westerm Ontario）．Term，May 22 to September 9． W．B．Stallworthry，Ph．D．（Torontc）．Terms May 15 to September 12.

## Pollution

J．B．Sprague，MoA．（Tcronto）．From June 3．
Salmon
C．J．Kerswill，Ph．D．（Toronto）．
PoF。Elson，Pho D．（Toronto）．
M．H．A．Keenleyside， $\mathrm{Ph}_{\mathrm{o}} \mathrm{D}$ 。（Groningen）．


Prout
M．W．Smith，Pho D．（Trronto）
J．W．Saunders，$M_{c} S_{C}$（Laral）．
Other
Ilewellya W．Hillis，Ph，D．（Michigan）．Volunteer intestigetor． Marshall Laird，D。Sc．（New Zealand）Volunteer investigato．a．
R．J．McIntyre，Mo $S_{c}$（Canterbury，$N_{0} Z_{0}$ ）．Volunteer investigator。
B．B．Parrish，Bo $\mathrm{S}_{\mathrm{c}}$ ．（Reading）．Special Consultant．

## OCEANOGRAPHY

 Chief Oceanographer（Headquarters at the Biological Station，St．Andrews）．

ATLANITC OCEANORRAPHIC GROUP（Headquarters at the Biological Stetion．St．Andrews）．

L．M．Lauzier，D，Sc．（Laval）．
W．B．Bailey，BoSc．（Atadia）．
N．J．Campbein， $\mathrm{Ph}_{\mathrm{o}} \mathrm{D}_{\text {。（British Columbia）．}}$
R．W．Trites，Ph．$D$ ．（British Columbia）．
A．E．H．Collin，MoSc．（Westerri Ontario）From edueationel Ieame May 2. On educational leave November 6.
F。D．Forgeron， $\mathrm{B}_{\mathrm{B}} \mathrm{Sec}_{\mathrm{c}}$（St． $\mathrm{F}_{0} \mathrm{X}_{\mathrm{o}}$ ）。
J．R．Chevrier，B．So．（Latai）．
D．G．MacGregor，M．A．（Oxon．）．Term，June 19 to September 16．

## PUBLICATIONS

（April 1 $1_{9}$ 1958，to December 31． 1958 ）
Bailey，W。Bo On the dominant flow in the Strait of Belle Isle。J。Fisho Res．Bd．Canada，Yol．15，No．6， pp．1163－1174．

Bond，R．M．，and J。C．Medcof．Epidemic shellfish poisoning in New Brunswick，1957．Canadian Medical Association Journal ${ }_{9}$ Vol。79，ppo19＊24。

Campbell，NoJ．Recent oceanographic activities of the Atlantic Oceanographic Group in the Eestern Arctic．Atlantic Prog．Rept．，No．69，pp． $18=21$ ．

Campbell，$N$ ．Jo，and $A$ 。 $E_{0}$ Collin．The discolouration of Foxe Basin Ice，J．Fish。Res．Bd．Ganada，Vol．15，No．6， pp。1175－1188。

Clark，John R．，Frank D。MeCracken，and Wilfred Templeman． Summary of Gear Selection Information Por the Commission Area．International Commission for the Northwest Atlantic Fisheries Annual Proceedings，Vol．8．（for 1957－58），pp．83－99。

Dickie，L．Mo Recent trends in the scallop fishery of eastern Canada。 Atlantic Prog。Rept。No．70．pp．3l－34。

Dickie，L．Mo Effects of high temperature on survival of the giant scallop．J．Fish。Res。Bd．Canada，Vol。15， No． $6, ~ p p$ ．1189－1211．

Hart，J．L．Some Sociological Effects of Quota Control of Fisheries．Canadian Fish Culturist，No．22，pp． 17－19。

Hart，J．Lo Fisheries Research Board of Canada，Biological Station，St．Andrews，NoBo，1908 1958 。 Fifty years of research in aquatic biology．J．Fish．Res．Bd． Canada，Vol．15，No．6，ppo11e？－1161．

Huntsman，A。G。 Shubenacadie salmon。J。Fish。Res。Bd。 Canada，Vol。 15 ， No 。 6 ，pp。1213－1218。

Jermolajev，E。G。（nee Kossiackine）Zooplankton of the inner Bay of Fundy．Jo Fish．Res．Bd．Canada， Vol．15，No．6，pp．1219m1228。

Kerswill，CoJo Regulation of the Atlantic Salmon Fisheries． Canadian Fish Culturist，No 22 ，pp．7－12。

Kerswill，C．J．Effects of DDT spraying in New Brunswick on future runs of adult Atlantic salmon．The Atlantic Advocate，Vol． 48 ，No．88，pp．65－68．

Kerswill，$C_{0} J_{\circ}, P_{\circ} F_{\circ} E l s o n$, and $M_{\circ} H$ ，$A$ Keenleyside。 Investi－ gation and Management of Atlantic Salmon in 1957．Part I．The Research Programme．Canadian Department of


Kerswill，CoJo A program to ensure Salmo salasis future。 The Atlantic Salmon Journal，Sept． 1958 ，No．3．pp．28－31．

Kohler，A．Co The validity of otolith age determinations for haddock（Melanogrammus aeglefinus L．）from the Lockeport， NoS．，area．J．Fisho Res．Bd．Canada，Vol． $15 \%$ No． 6, pp．1229－1238。

Kohler，A．Co，and J．Ro Clark．Haddock scalemotolith comparisons． J．Fish。Res．Bd．Canada，Vol．15，No．6，pp．1239－1246．

Lauzier，L。Mo，and R。W。Trites．The Deep Waters in the Laurentian Channelo Jo Fish。Res。Bd。Canada，Volo 15， No．6，pp．1247－1257．

Lauzier，L．Mo Surface sea water temperatures along the Canadian Atlantic Coast，1954－1957。 Atlantic Prog。Rept。No．71， pp。8－12。

Leim，A．Ho Fatness of small herring in the Bay of Fundy $J_{0}$ Fish。Res．Bd．Canada，Vol．15，No． $6, ~ p p .1259 .1267$.

Logie，R．Ro Epidemic Oyster Disease and Rehabilitation Transfers in 1957．Fisheries Research Board of Canada，St．Andrews Biological Station Circular General Sewes．No． $3 l_{9}$ 2 pp 。

Martin，W。R。 Summary of Research，1957．International Comission for the Northwest Atlantic Fisheries：Anmual Proceedings， Vol。8，1957－58，pp．22－26。

McCracken，F。Do On the biology and fishery of the Canadian Atlantic halibut Hippoglossus hippoglossus $L_{0}$ J。 Fish。Res。Bd。Canadag Vol。15，No．6，ppo 126901311．

McCracken，Fo Do French Trawler Methodso Canadian Department of Fisheries，Trade News，Vol．11，No．3，pp．8－10．

McCracken，F．Dos and John R。Clark。 Observations on the Cod Fishery in the Guif of St．Lawrence during the Spring of 1958．（Condensed）．International Commission for the Northwest Atlantic Fisheries，Annual Proceedings 8 Vol。8，（for 1957＊58）\％ppo 990100。

McKenzie，$R_{\text {。 }} A \circ$ ，and $B$ 。E。Skud。 Herring migrations in the Passamaquoddy regiono J。Fish。ResoBd。Canada， Vol．15：No．6，pp．1329－1343．

McKenzie，$R_{0} A_{0}$ Age and growth of the smelt，osmerus mordax （Mitchill），of the Miramichi River，New Brunswick． J．Fish。Res．Bd．Canada，Vol．15，No。6，pp．1313－ 1327.

McKenzie，$R_{0}$ Aog and S．N．Tibbo。Herring tagging in the Bay of Fundy（June to August，1957）。Atlantic Prog。 Rept。No。70，ppo10＝15。

McLeese，D．W．Air shipments of lobsters．Canadian Department of Fisheries，Trade News，Volo 10，No．9，pp．5－6．

McLeese，D．W．，and D．G．Wilder．The activity and catchability of the lobster（Homarus americanus）in relation to temperature J．Fish．Res．Bdo Canada，Vol．15， No．6，pp．1345－1354．

McLellan，H．J．Energy considerations in the Bay of Fundy system。 J．Fish。Res．Bd．Canada，Vol．15，No．2， pp．115－134。

Medcof，J．Coy and L．W．Thurber．Trial control of the greater clam drill（Lunatia heros）by manual collection． J。Fish。Res．Bd．Canada，Vol．15，No．6，pp．1355－ 1369。

Medcof，J．Co Stock－taking of molluscan shellfish resources and prospects for improvement．Atlantic Prog。 Rept． No．71，pp。21－26．

Medcof，J．C．，and Joan E。Mortimer．Introducing European oysters to the Maritimes．Atlantic Prog．Rept．No。 71，pp。27－29。

Medcof，J．Co Useful publications for oyster farmers of the Maritimes．Fisheries Research Board of Canada，St． Andrews Biological Station，Circular，General Series， No．32， 3 pp．（French and English versions．）

Paloheimo，J．E．A method of estimating naturul and fishing mortalities．J．Fish。Res．Bd。Canada，Volol5，No．4， pp．749－758。

Paloheimo，JoE。 Determination of natural and fishing mortalities；analysis of tag records off western Nova Scotia。J。Fish。Res．Bd．Canada，Vol。15， No．6，pp．1371－1381．

Powles，$P_{0} M_{0}$ Studies of reproduction and feeding of Atlantic cod（Gadus callarias $I_{0}$ ）in the southwestern Gulf of St．Lawrence。J．Fish。Res．Bd．Canada，Vol． 15，No．6，pp．1383－1402．

Scott，$D_{0} M_{0}$ Obseryations on marine birds ofe scuthwest Noya Scotia．Canadian Field Naturalists Volo 72，No．ig pp．15020．

Scott，$D_{0} M_{0}$ and $H, D$ Fishex Incidence of hae sesenid．
Porrocaecum decibiens，in the stomadms three species of seals along the southern Canedian Atiantic mainlando ilo Fisno Reso Bdo Canada，Folo i5，No． 4 ． pp． $495-516$ ．

Smith，Mo Wo Proince Edwaxd Island Trout Fishery。 The Department of Industry and Natural Resources．Charlottetown， PoE。Iog April 5，1958， 15 pp 。
 April 18398 ，pp 9 and 12.

Smith，Mo Wo，and ato Saunders．Movements oi brook trout （Salyelinus fontinalis（Mitonill））between and within fresh and salt watero．T．Eish．Kes．Bd．Canada，Vol． 15，No．6．pp．1403＊14．
 R．F．Temple．Gn the docurence and diveonpution of
 Fundy and the Gutf Maineo wo Fin．Ees．BCo danada． Vol． 5 ．No．6，pp． 1452.1469.

Warburton，Fi E Control of bung sponges or oystew beds． Atiantic Prog．Rept．No． $89, \mathrm{pp} . \mathrm{F}=11$.

Warburtong FoE。 Repzoduction by fused larvae in the boring sponge，dipona eslatar Granto Nature，Vo：。 181. No． 4607 \＆ppo $493-494$ ．

Warburtong FoE．Borring sponges．Cliona sppog of eastern Canada，with a note on the validity of $\mathcal{E}_{2}$ lobata． Canadian fournal of Zoology，Vol． 36, No．2，ppo $123 \mathrm{mL25}$.

Warburton，FoE．The maner in which the sponge Clona bores in calgarecus objects．Ganedian Toumel of Zoology， VoL．36．No．4．PPo $555-562$.

Wilder，$D_{0} G_{0}$ ，and $R_{0}$ ．GoMrsayo Do lobsters move ofesnore and onshore：Athantiv Prog．Rept．No． 69 pp．22a3．

Wilder，D。Go Regulation of the Iobster fishery danadian Fish Culturist．No．22．pp．13－16．

## MANUSCRIPT REPORTS <br> （to March 31 21959 ）

Atlantic Oceanographic Group．Canadian drift bottje datag Atlantic Goasto MS Rept．Series（Oceanographic and Limnological）${ }^{2}$ No．15， 80 pp 。

Black，W．Fo Biology of mysids of the Gxeat Bras dror． $\mathrm{l}_{\mathrm{o}}$ Station list，occurrence，mysids as fish food， vertical distribution．MS Rept。Series（Biological）， No．671， 37 pp 。

Collin，A．E．An oceanographic study of Prince Regent Inlet， the Gulf of Boothia and adjacent waters．MS Rept． Series（Oceanographic and Limnological）No．13， 66 pp 。

Collin，A。E。A Field Report of the Oceanographis Activities on I．G。Y。Drifft Station ${ }^{19}$ Bravo＂。 MS Report Series （Oceanographic and Limnological），No。33， 12 pp ．

Dickie，L．Mog and $\mathrm{C}_{\mathrm{o}} \mathrm{D}$ ．MąMnes．Gulf of St．Lawrence Scailop Explotationsmi957．MS Fefto Series（Biologi－ cal）s No．650． 62 pp ．

Huntsman，A．Go Salmon galues．MS Rept。Series（Biological）， No． 649 ． 26 pp 。

Leim，A。Ho Distribution of herstng lagres in the lower Bay of Fundy and adjacent waters．MS Eept．Series （Biological），No．652， 8 pp ．

Lisk，Ro D．The effects of temperature and ragen concentration on oxygen uptake of the American lopster in air and water．MS Rept．Series（Blological），No。 $662,60 \mathrm{pp}$ ．

Logie，Ro Ro Epidemic disease in Canadian Atlantic oysters （Crassostrea Yirginica）：MS Rept．Series（Biological）， No． $661,97 \mathrm{ppo}$

Parrish，Bo Bo An Appraisal of the Passamaquoddy Herring Problemo A report on Consultative Services．MS Rept． Series（Biological）s No．668， 34 pp．

Steele，DoHo Fishes taken in the Laurentian Channel，Gulf of St．Lawrence，between the Bird Rocks and the Saguenay River， 1953 and 1954。 MS Rept．Series（Biological）， No． $651,32 \mathrm{pp}$ 。

Warburton，$F$ 。E。 Outline of boring sponge investigations in Malpeque Bay，PoE．Ioy 1952ci956．MS Repto Series （Biological）．No．655： 21 pp．

## MANUSCRIPTS SUBMITIED FOR PUBLICETION

（including those published between Dec．31，1958．to Mar．31，1959）
Black，W。Fo Biology of mysids of the Great Bras alox．TII． Dafus mysids Kroyes（Isonodas Dafliae）a parasite of mysids．Ganadiam Toumal of Zoology．

Bousfield，E．Lo，and A。H。Leim。 The fauna of Minas Basin and Minas Channel．Contributions from the Naticnal Museum of Canada．

Campbell，N．J．An International Geophysfal Year Project of the Atlantic Oceanographic Group．Atlantic Prog．Rept．

Dickie，L．M．Effects of temperature on survivai and distribution of the giant scallop（Abstract）．Trans．Amer．Fish． Soc．Vol． 88.

Keenleyside，MoH．A．Effects of spruce budwom controd on salmon and other fishes in New Buanswo Canadian Fish Culturist．

Keenleyside，MoH。A．Insecticiaes and Whalso Ganadian


Kohler，A．Go Growth and parasites of cod during a pear in captivity．Atlantic Prog．Rept．

Laird，Marshall．Caliperia brewipes no sp．（Ciliata：Peritricha）， epizoic on Rela erinecea Mitchili at Saint Andrews，New Brunswick．Genadtar Tournall of Zoology．

Logie，R。Ro Oyster，Farming in Easteri Canada Canadian Audubono
Logie，R。 R。 PoE。Io oysters spearhead battle against disease。 The Guardian，Charlottetown．PoE．Io，February 27：1959， Second Section，pp，3m．

MacPhail，JoSo Shell fish hargesting tums to newharization． The Guardian，Charlotetown，Po．E．Ios February 27，1959， second Sections pp． 4 and 8 ．

McCracken，Fo D．Selection by largeomesh codends of flacriish and redfish．Proweedings of the Lispon Conference sponsored by ICNAF／ICES／FAO．

McCracken，$F$ 。 D．Effect of mesh size variation on selection span．Proceedings of the Lisbon Conference sponsored by ICNAF／ICES／FAO．

McCracken，F．Do Hook selection for cod and haddock．Proceedings of the Lisbon Conference sponsored by ICNAF／ICES／FAO．

McCracken，Fo D．Selection factors ror sod and hadaok wioh codends of different materials．Proceedings of the Lisbon Conference sponsored by ICNAF／ICES／FAO．

McKenzie，RoA。Marine and fresnwater fishes of the mramichi
 Canada．

Medcof，$J_{0} C_{0}$ Studies of stored oysters（Crassostéa virginica）． Proceedings of the National Shellfisheries Association．

Scattergood，Leslie $W_{0}$ ，and $S_{0} N_{\text {．Tibbo．The hering fishery }}$ of the northwest Atlantic．Bull．Fish。Res．Bd．Canada．

Scott，D．Mo Obserfations or marine bires ofe sechwestern Nova Scotia．Canadian Field－Naturalist．

Scottg $D_{0} M_{0}$ ，and $W_{0} R_{0}$ Martin。 Pine inctdence of nematodes in the fillets of small cod from rakeportg Nova Scotia． and the southwestern Gulf of $S$ ，daurence．Jo Fish。 Reso Bd．Canada，Vodo 16．No． 2
 the Gastriw sheld at the gyster Gegeostien virinica （Gnelfr）Ganadiaz Doanab of zoolog．

Smith，Mo W。 PoEoI。Trout Fishery，Canadian Fish Cuiturist。
Tibbo，S．No Driftwnetting for herring along the scuth coast of Newfoundland．Atlantic Prog．Rept。
 The Guardian Chambottetows：Posoo．Februasy 27．1959， Second sectiong $\mathrm{p}_{\mathrm{p}}$ 。 $\mathrm{I}_{8} \mathrm{i}_{8} \mathrm{~S}_{2}$ and 12．

## MANOSCRIPTS SUBMITTED FOR PUBLICATION <br> （Previously reported）

Battle，Helen $I$ A morphological and phys．o．ogica＂study of developmental processes in the threemsyired stfokleback （Gasterosteus aculeatus mo．Jo Ftsho Fes．BC．Canada．

Keenleyside， M 。H。A．Effects of spruse buawori controi on salmon and other iishes ix New Brunswlow。 Canadian Fish Culturist．

## ADDENLUM

Keenleyside ${ }_{8}$ M。H。A．Comparative effects of the insecticides， DDT and Malathion or young salmon．Ablantic Prog． Repto No． 69 ppo 3ob．

Martin，Wo Rog and $Y$ ofean Efferts of first year mesh regula－ tions on the northern New Brunswick dragger fishery． Atlantio Prog．Repto No．698 Ep．33－40．

## INDEX TO SUMMARY REPORTS

| Appendix | Number | Page |
| :--- | ---: | ---: |
| Lobster | $1-9$ | $1-16$ |
| Molluscan shellfish | $10-24$ | $17-40$ |
| Groundfish | $25-40$ | $41-79$ |
| Pelagic fishes | $41-60$ | $81-112$ |
| Trout | $61-71$ | $113-127$ |
| Salmon | $72-84$ | $129-157$ |
| Pollution | 85 | $159-164$ |
| Seaweed | $86-88$ | $165-170$ |
| Alewife | 89 | $171-173$ |
| Faunal records | $90-91$ | $175-179$ |
| Mathematical statistics | $92-93$ | $181-185$ |

Lobster investigations
Lobster population studies
The relative abundance of lobster larvae in Northumberland Strait
Relative abundance of young lobsters in Northumberland Strait
Methods of inactivating lobster claws
Oxygen consumption of the lobster
Temperature acclimation in the lobster
Light-weight methods for packing live lobsters
Preliminary observations of lobster survival in airo


No． 1

## LOBSTER INVESTIGATIONS

Research to provide the blological basis for wise use of our lobster resources has for several years been sarried out along four major lines of investigation as follows．

I．Population studies．Fieid stadies or the commercial fisheries at five or more ports have been arried out annually since 1944。 The work includes colleetion of de－ tailed catch and effort statistics．measurements at sample catches，taggings and growth studies a A detaviot nathematical analysis of the Tignisho PoE．Iog data ls neaotng omptetion （Appendix 93）。 Tabulation of the Miminegashg FoLozog and Port Maitland，NoSog data in preparation for similat analyses is well under way。 A new growth study invoived the maxing of 5,079 lobsters off Gabarus，$N_{0} S_{0,}$ in the spring ot 1958 。 First returns of these maried lobsters are expected in May 1959。 Experimental fishing of $\mathrm{St}_{\mathrm{t}}$ 。Andrews to determine the relation－ ship between catchabillty and temperature was cerminated in April．The data in conjunction with laboratory studies of activity have been published in the Journaio other features of the population studies are considered in Appendix 2。

II．Studies of larvae and post lapvae．The primary purpose of this work which is considered in more detail in Appendices 3 and 4 is to determine whether the coxmercial fishery can be predicted from our estimates of $2 a r$ mat and post larval abundance Prospects of identifying a pedactorshlp seem best with the unusually successtui 1952 yeatoriass which may have contributed heavily to the peak ix shery in -957058 ． If a relationship can be clearly established a modixited proo gram may be considered worth continuing on an indextalte basis as a service to the industry。

III。Gear improvement．Fairly intensive work to develop savings gear and a more durable eficient trap has been carried on from time to time．During the past year． however，we have done little more than act as adwisows to Department of Fisheries personnel in their tests on aluminum traps．One cylindrical aluminum trap of radical design built according to our suggestions by an Amherst．NoSog Ridm was tested off Miminegash $P_{\circ} \mathbb{F}_{0} J_{0}$ Thiss trap ilshed poorigo Unfortunately，it was lost before it could be modified in an attempt to improve its periormance．

IV Factors affocting the survival end oshaviour of lobsters．Active work in this field over the past 10 years has prowided the knowledge on which fapious advances in the care and handiling of Ilve lobsters have been based． During the past year，emphasis was placed on the oxygen requirements of lobstexs in air and in water and on their
ability to acelimate to temperature changes under vayous conditions（Appendices 6 and 7）．A thorough stagy of the factors involved in the survival of lobsters out of water was also started this year（Appendices 8 and 9．。

Technicians RoCoMuroay，UoJoWalshe and DoEoGroham did the field work and preliminary tabulation in commettion with the population studies．Mro Paloheimos assurted by Norma $E_{0}$ Wiley and the lobster investigation ccar：nes undertaken the mathematical analysus of the figash data。 RoJ．Gibson，Assistant Sclentist，joined the stafiliat Septo ember to assist with such analyses．The fileld coliections of larvae and post larvae were made by Capto $L_{0} I_{0} c r e s s$ In the 50 －foot MoB．Pandalus II．These collections were processed in the laboratory by Evelyn $\mathrm{R}_{0}$ MacM\＆llan and RoCoMurrayo DromeLeese with student assistants RoD。Lisk and Pasineta Ao Holt conducted the studies of lobster surwival．

$$
\mathrm{D}_{\mathrm{O}} \text { GOMIIder }
$$

No． 2

## LOBSTER POPULATION STUDIES

Lobster population studies were contaned in 1958 atfive ports．Comparable data for 13 to 15 yeas on landings， effort，size distributions and rates of exploftaton are now available for these porso．As an Lliustration ot some ime portant differences in the insheries of the se areas the size distributions in 1958 are plotted in the accompanyins ligure。
 the northern tip of Prince Edward Island axe typaciz of the smallolobster areas of the southern Gulf of sto Lawrence． The major difference in their lobster insheries is the seasnn which at Tignish extends mom May 1 to June 30 and at Mimineo gash from August 10 to oedober 5．Landings at both ports have increased substantially since 2954 ，possibly because of improved protection of sub－legal sizes and beceuse of the unusually good larval settlement in 1952．An unexpected $20 \%$ decrease in the fignish 1958 landings is possibly a direct result of intense illegal fishing in the summer of 2957。 Further decreases may oceur when the poor 1953 and 2954 year． classes reach legal size。 However，bottom dragging orit Miminegash this fall revealsd a good stock of subolegal lobsters and suggests good $f$ ishing in 1959．On the average， over half the catch by court at each port is below legal size． Towards the end or the season $80 \%$ or more may be subulegalo This abundance of short lobsters contributes eppreciably to the difficulties of enforeing size limits in such areas．The bulk of the legal catoh is made up of cannerosdze lobsters． The fisheries are so intensive that relatively rem dobsters reach the generally more valuable market sizes．

Gabarus and Foupehu，Nos．These contiguous ports on the outer coast of Cape Ereton Is iand were selected for a



comparative study of the etresta of sate limes. At Fourchu the size limit has pemanner vatuady whonaned stnes 1947 。
It restricts the legal catch to those sizes acceptable to the live lobster trade。 At Gabarua appredtably smater size limits have been in evfect since 1940 but in 1956 a plang approwed by the tishermeng was adopted to ancrease the size limit singhty each year. Vriortanately thim plam ouncided with a naturalg general deczins tn the capo Brecos lobster stocks. Many fishermerg howergy asoribed the decmine in their area to the sjew-1mit increases already odopted. As a result the pien was dropped after two yegrso iandings in both the Gabamus and Fouremu areas inproved sengitig in 1958 but there have not yet been suggestions of funther stze inmit increases of Gabarus. As may be seen from the acoompanying figure the size $11 m i t$ now in effect at gabarus is smail in relation to the size composithon of the cateho

Port Mastand. NoSa These Yarmouth Connty Lobster grounds are representatiwe of the highly productive soatho western Nova Scotia area. Lobstem canong was ghandoned over 25 years ago with the introductan ot a sige indt about equivalent to the one mon in afrecto Gn the aqerageg over half the lobsters caught axe below tegel site out the pera centage varies greatly in redation bo depth amotane riom 1950 to $1956^{6}$, Landugs deathed steadjy but bave pecopered slightly in the past two yearso Sxncy 1950 the fieet has dropped from 43 to 25 bots. A a reswlt tre catuh per boat has remained at a relatively hagh leqel and has dareased apprectably in 1957 and 1958.
Donotiches

No. 3
THE RELATYVE ABUNDANCE OR LOBSTEE LARYAE IN NORTHUMEERLAND STRAIT

Each summer since 2948, planiton tows for Lobster larvae have been made in the Northumberland stadit area between Richibucto MoBog and Miminegashy o, To The purpose has been to determine the seasonal ococreenceg growth. mortality rates, and relative abundace on the fomp reeo swimming larval stages. The spectalis destgned wedgeo shaped plankton net is made of grit gauze, $i 6$ meshes to the inch. It is 12 feet by 3 feet at the mouth and 25 feet longo The numbers of larwae cavent in bok taltwhour tows in 1958 were as tollows:

Numbe? ot larvae
Towing period
Stage I Stage It stage ITr SGage Ty Totar
June 16osept.15 13.087 2.705 1.672 $431 \quad 17935$

As an index of the relative abumance of the first and last larpal stages. the catch per tom is plotted in the


## Lobster

accompanying figure the data for 1948 have been omitted because the mesh size differed．In 1958 both the hatch and survival were below the 10 wyear average Consequently reo latively few larvae reached the fourth stage。

The study of possible relationships between larval settlement and subsequent commercial production 2 s seriously hampered by difficulties in age determinationo commerofal landings off Mminegash in 1958，in the immediate area of these larval collections，were the highest in over it yeass．This may be a result of the unusually large larval settlement in 1952。 If so，a decilne in the comercial catch should be anticipated when the relatively poor 1953 and 1954 year－classes reach legal size。

$$
D_{0} \mathrm{C}_{\circ} W \pm \mathrm{d} E
$$

NO． 4

## RELATIVE ABUNDANCE OF YOUNG LOBSTERS IN NORTHUMBERLAND STRAIT

Each spring and rall since 1952 a fine－meshed net has been dragged of fichibueto，$N$ ．B．to learn more about the growth，survival，and relative abundance of young iobsters． By 1956，after much testing or gear and bottom conditions， the equipment was standardized and a series of 14 stations selected。 In 1958，from May 6 to June 12.12029 lobsters were caught in 220 tenominute drags and from sepeember 16 to October 22，2，034 were caught in 241 drags．The relative abundance of the various sizes during the past tiree years， expressed as the eatch per 100 tenominute tows was as follows：

Number per 100 drags
Carapace length

|  | 36 |  | 27 |  | 58 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Spring | Fall | Spring | Fala | Spring | Fall |
| 48 | 49 | 48 | 23 | 33 | 65 |
| 71 | 140 | 65 | 126 | 86 | 256 |
| 151 | 300 | 97 | 257 | 166 | 307 |
| 1.53 | 288 | 144 | 245 | 241 | 251 |
| 30 | 59 | 58 | 45 | 46 | 42 |
| 10 | 7 | 7 | 6 | 7 | 5 |


| Totals | 463 | 843 | 419 | 702 | 479 | 826 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

In general the catoh per drag is greater in the fall than in the spring．This ds probably a reflection of seasonal differences in behaviour and availability rather than a true difference in abundanee．Fourth stage larvae declined in abundance from the sumer of 1956 to 1958．This is not reflected in the relative abundance of the smallest size group of young lobsters in the fall drags．Lobsters fust below the legal carapace length of $2 \frac{1}{2}$ inches should contribute importantiy to the fishery the following year．The good catches of sub－
legal lobsters in 1958 suggest that comerwal lataings in this area in 1959 shoula approximete the record 2988 atch. Popular opinion has held that legalesized jobsters do not occur in this area during the spring. The draggang operations show they are just as plextiful in the spotug as they were at the close of the previous fall seasono

DoGowider

No 。 5

## METHODS OE JNACTIVATING LOBSTER CRAWS

To reduce injuries and mortaltates among live lobsters during storage and shoment the daws must be in activated. In North Amertes this is wandyy acomminghed by inserting a small wooden ox plastac plag thto the jolnt of the claw. This plugging is usually done by the thenemeng sometimes as the lobsters are oanght but of ten when they are landed. The method is effective, chesp and fasto in the, however, the meat near the plug turns black and of chavours dewelopo With prolonged storage the aheil itself may disintegrate in the plugged area. In adatron, certain Eurcpean countwes prohibit plugging on the questronable grounds ox draethy fats latter objection 15 , howevers of theressing concern to out dealems since there appears to be a growing seasonal market ta Europe for live Canadian lobsters.

To explore other methods of anctivatang the daws. unplugged marketwse lobstars were wotaned :ron suthern Nova Scotia in march and shipped to St. Arorews. On March 27 these were divided into foum lots of 50. Both alaws of one lot were plugged with standaxd machine-made one zuch by onequarter inch birch plugs. The claws of the serond lot were banded with one inch by one chalf twoh netural cubbes bands of the type formerly used in Canada to a Indited extent and now used quite widely in Burope. The extensor tendons ot the third lot were eut so the lobsters could not opea their claws. The fourth lot was untreated and served as a controi. Ail lobsters were tagged with sewilly matered tagso

The four lots were stored separately an tends of running sea water. Each tank was checked visually each day and any dead lobsters examined and recorded. Onee a week the tanks were drained and the lobsters remowed to provide more detailed information on invurtes and mortallties. The lobsters were fed about once a week. When the experiment was terminated on August 8 after 133 daya the percentage mortalitues were as follows:

| Plugged |  |  |
| :---: | :---: | :---: |
| $54 \%$ | $56 \%$ | Eanded tendons |
| $78 \%$ | $98 \%$ |  |

These results clearizy show the value ox mactivating the claws and indcate that plugged or bended yobsters survive
better than those with cut tendone。 Bleedtng（s to 35 sco associated with the tendon cutting operation may be partially responsible for the higher mortalutes．Tre geaerally high mortalities in all lots are undoubtedly related to the fre quent handling。

Only one band and tow plags were wos showng that both last well for four months．Howerex，both beads and plugs were deteriorating tyy the end ot the experinnent and could not be expected to pextorn eficieneng for much longer． There was no indseation that claws weve lost as a direct reo sult of any of the treatments．

For pertods up to four months rubber bands anacto ivate lobster claws as effettively as wooder piags．They do not damage the meat and are acoeptable th all countoles． They are，however， 3 lower and more difficult to apply and are probably more costiy than plugs．Fox these reasons they are unlikely to become popular among fishemmen unless a simple method of applying them can be developed．

D．Cowider
No． 6

## OXYGEN COM BUMPTTON OF THE LOBSTER

 of survival and behevicurs the ctuay os oxyeos upence an lobsters was continued．phe resules ase d．imedmes praceucal importance for estimeting oxygen mequicements and noiatng capac－ ities of commercial storage umits．

## Oxygen uptake in water

During the summers of 1957 and 2958 the oxygen uptake of lobsters was determined at gproximate $5 \times$ Cointervals at acclimation temperatures ranging fom $5^{\circ}$ to 250 C 。 Average readings based on $\xi$ to 12 individual lobsters are shown in Figure I。 Oxygen uptake fox lobstens acclimated and tested at $25^{\circ} \mathrm{C}$ ．is double that for lobsters acelmated and tested at $5^{\circ} \mathrm{C}$ ．

Uptake in relation to oxygen content ot tne water was measured at approximate 506 。intervais at goolination temperatures ranging from $5^{\circ}$ to $25^{\circ} \mathrm{Co}$ Ayerage readings based on eight indivo Idual lobsters exposed to decreasing leqels of oxygen at each acclimation temperature are shown in pigure 2 。 Drygen uptake increases with temperature at ali levels of oxygen contento At any one temperature，m marked decmesse in uptake oocurs at oxygen levels lower than about 3 coflo The relethonship is complex because uptake is dependent on content ower the entire range of oxygen at high temperatures and is andependent of content at the higher levels of oxygen at lower temperatures．

Sudden temperature changes have a prownouneed effect


Average oxygen uptake
Figure 1 - Average oxygen uptake of lobsters in relation to acclimation temperature。


Figure 2 - Average oxygen uptake of lobsters in relation to acclimation temperature and to oxygen content of the water.
Lobster $-10=$


Figure 3 - Average oxygen uptake of lobsters in air in relation to acclimation temperature.


Figure 4 - Average oxygen uptake of lobsters in air as a percentage of that in water in relation to acclimation temperature。
on oxygen uptake．The uptake of lobsters acclimated to $13^{\circ} \mathrm{C}$ 。 and suddenly transferred to $5^{\circ} \mathrm{C}$ 。 watex was twice that of lobsters that had been acclimated to $5^{\circ} 0$ before testing．

Oxygen uptake in airo
The oxygen uptake of 8 wo 12 individual iobsters in air was detemmed at $5^{\circ} \mathrm{C}$ 。intervals at acelimation and test temperatures ranging from $5^{\circ}$ to $25^{\circ} \mathrm{C}$ 。 Hghh relative humidity，between 85 and $100 \%$ ，was maintained duming the tests． The resuits are shown in Figure 30．The uptake in airo reaches a maximum value at $10^{\circ}$ to $12^{\circ} \mathrm{C}$ 。g and approaches zero at $25^{\circ} \mathrm{C}$ 。 Uptake decreases at temperatures below 10 to $12^{\circ} \mathrm{C}$ ．As shown in Figure 4 ，when uptake in air is presented as a percentage of uptake in water at corresponding temperatures，the greatest uptake in air（at 10 to $12^{\circ} \mathrm{C}$ 。）is only about $57 \%$ of that in water．The percentage uptake $1 s 35 \%$ at $5^{\circ} \mathrm{Cos}$ and $2 \%$ at $25^{\circ} \mathrm{C}$ 。 At moderately high temperatures，oxygen uptake will be insuffo icient and result in the death of lobsters．

A sudden change in temperature has a pronounced effect on uptake in air．Lobsters accilmated to $10^{\circ} 6$ 。 and heid in air at $20^{\circ} \mathrm{C}$ 。 do not utilize oxygen and weaken raplaly。

Water flows or aeration necessary to maintsin high oxygen contents in commercial storage units for ixve lobsters can be estimated from these results for varous loads and temp－ eratures．

> Summary of RoDoLisk's report by DoW. McLeese

No． 7
TEMPERATURE ACCLIMATION IN THE LOBSTER
Acclimation is known to have a marked effect on many aspects of the survival and behaviour of lobsterg．A limited knowledge of temperature accilmation was obtained several years ago and the study was revived this summer to prowide a thorough knowledge of acclimation．An understanding of acclfmation rates involves a study of changes in tolerance to high and low temperatures for upward and downward changes in temperature。

Observations on gain and loss of heat tolerance for sudden temperature changes of about $5^{\circ} \mathrm{C}$ 。 upwards and downwards were made over the temperature range $8^{\circ}$ to $25^{\circ} \mathrm{C}$ ．Acclimation is judged to be complete when average survival time at a lethal high temperature becomes constant．

As shown in the accompanying figure acclimation up wards from $8.5^{\circ} \mathrm{C}$ 。 to $15^{\circ} \mathrm{C}$ 。is complete in 18 days $\mathrm{fr}^{\circ} \mathrm{mom} 15^{\circ}$ to $20^{\circ} \mathrm{C}$ 。in 8 days and from $20^{\circ}$ to $25^{\circ} \mathrm{C}$ 。in 5 days．upward aca climation progresses most rapidly at the higher temperatures． By adding acciimation times for two consecutive $5^{\circ} \mathrm{C}$ 。 jumps，


Figure 1 - Gain of heat tolerance for lobsters acclimating to approximate $5^{\circ} \mathrm{C}$. increases in temperature over the range $8.5^{\circ} \mathrm{C}$. to $25^{\circ} \mathrm{C}$ 。
acclimation for the total $20^{\circ} \mathrm{G}$ 。 change from 250 to 250 GO would be complete in 13 days．Our earalem work showe ${ }_{8}$
 $23^{\circ} \mathrm{C}$ 。 required 22 days．This suggests that acelimation proceeds faster in the same general pange or wemperatures in response to small rather than lawe gtopwise vemperature increases．

The resulta form downard accination omer the
same temperature range were variable and turthex work is required before definite conclustons mey be reachedo further studies will cover a wider wange of temperatwes yor upward and downard temperature chavges and the rates of $2.03 s$ and gain of cold tolerance．

> Sumary of PoA。Hegtos neport by Do Wodese

No． 8

## LIGHT WEIGHP METHODS FOR PACKING LIVE YOBSEERS

A demand for suttable lightowedght methoas $3 f^{\circ}$ packing live lobsters，partucularly for rapid transport over long distances by alr is steadily growing．two oontainers． a cardboard container insuiated with aluminum fogl Bathurst container）and a cardoatrd carton with 0 w wots shavag． have proved successiful for comercialmghed sidpments proplded low temperatures are maintainedo Depending os outside tempo eraturess up to 20 pounds of ice will indintann sut able bempo eratures for 36 houres in the Bathuxst cortednet．

Tests to detexame the effectuvaresi ox dionome amounts of lce in wood shavings packs are sumani．ned th the following table．Room temperature averaged 22.540 for 24 hours and temperature in the boxes was 12.59 G ．when packed．

| $\begin{aligned} & \text { Weight } \\ & \text { Ice } \\ & \left(1 b_{0}\right) \\ & \hline \end{aligned}$ | Number of lobsters | Final <br> temp．at 24 bro（oge） | $\begin{gathered} \text { Tempo } \\ \text { Inemease } \\ \text { oce } \end{gathered}$ | \％ <br> Weak <br> and <br> layd | Unme l ted $+0 e\left(\frac{8}{2}\right.$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | 50 | 19.2 | 6.7 | 28 | 33 |
| 15 | 50 | 17.2 | 4.7 | 6 | 57 |
| 20 | 50 | 16．8 | 4.0 | 8 | 40 |

The larger quantities of ice mesulced sh smailer temperature inoreases and smallen numbers of weak and dead lobsters．However the dee was not effective in keeping the boxes uniformiy cooko A derinate temperature gwadicit trom top to bottom was evident．Unipom cooling and mone etyonient use of the ice could be obtadned by distributing the toe throughout the packages in small watemproor mintso

Relative insulation qualities of various materials
To determine the relative insulating qualities of woodashavings，curon sponge，vermiculite and styrolite beads for use as lightoweight packing material for live lobsters． 10 lobsters were packed in each of four stmilar boxes each containing a different matexial．The boxes were packed at $3^{\circ} \mathrm{C}$ 。 and stored at a room temperature or $20.5^{\circ} \mathrm{C}$ ．for 24 hours without ice The temperature increase was followed．The results are summarized as follows：

| Material | $\begin{gathered} \text { Density } \\ \text { (lb/cuftol } \end{gathered}$ | $\begin{gathered} \text { Final } \\ \text { tempo at } \\ 24 \mathrm{ha} 0 \mathrm{C} . \\ \hline \end{gathered}$ | $\qquad$ | No． weak end dead |
| :---: | :---: | :---: | :---: | :---: |
| Wood shavings | 3 lb 。14 oz。 | 17.5 | 14.5 | 4 |
| Curon sponge | 1 lb 。 50.2 | 18.0 | 25.0 | 10 |
| Vermiculite | 5 Ib 。 $50 \mathrm{c}^{\circ}$ | 18．2 | 15.2 | 5 |
| Styrolite beads | 2 Lb 。 2 z 。 | 16.0 | 13.0 | 6 |

Temperature increase was the least with styrointe beads and approximately the same for the other three materials． In addition styrolite beads settled less during the holding period affording greater protection for the lobsters in the top layer．

Survival of lobsters was not expected to be satis－ factory because of high temperatures during the testo However survival in curon sponge was considerably less than in the other materials．A second test，using 20 lobsters in curon sponge under similar test conditions resulted in 19 weak and dead lobsters．Curon itself is not toxic to lobsters and the reason for the higher mortality is not understood．

When expanded，styrolite beads form a solid light－ weight material that is used as insulationo Two styrolite boxes with different wall thickness（ $\frac{3}{4}$ inch and 1 2nch）were tested using 35 and 33 lobsters respectively．The boxes were packed at $3^{\circ} \mathrm{C}$ 。 and stored at $20.5^{\circ} \mathrm{C}$ 。 for 30 hours．Temperatures in these boxes remained 40 to $5^{\circ} \mathrm{C}$ 。 lower than in a similar pack without insulation。 Percentage of weak and dead lobsters was high in this test because of high temperatures accumulation of $\mathrm{CO}_{2}$ and decrease in $\mathrm{o}_{2}$ in the tightiy sealed boxes．Aceumul－ ation of $\mathrm{CO}_{2}$ and decrease in $\mathrm{O}_{2}$ can be pievented by small air vents without seriously altering the insulation qualities of the styrolite box．

Cost，density，ease of handing and lobster quality are important considerations for economical commercial use of the materials．Wood shavings and styrolite plastio in box form offer promising leads for future development in shipping techniques for Canadian lobsters．

D．W．McLeese

No． 9
PRELIMINARY OBSERVATIONS OF LOBSTER SURVIVAL IN AIR
The live lobster trade has developed as such because lobsters will remain alive for several days in als under cer tain conditions．A study of the physiological needs and limit． ations imposed by a nom－aquatio environment covid lead to improved shipping conditions，thereby reducing losses and extend－ ing the safe shipping time．Some preliminary obsextations have provided promising leads for further work．

Air respiration
Oxygen uptake in air is only $57 \%$ of uptake in water at $10^{\circ} \mathrm{C}$ ．and the respiration rate decines until it is only $2 \%$ of that in water at $25^{\circ} \mathrm{C}$ 。 Weakening and death in air nay be caused by the build up of an oxygen debt．Some tests using sealed containers to compare survival in an oxygen atmosphere with survival of lobsters in air are sumarizedin the following table：

| Number of lobsters | Treatmeat | Duration of test shre． | $\begin{aligned} & \text { Condition } \\ & \text { of } \\ & \text { dobsters } \end{aligned}$ | $\mathrm{CO}_{2}$ | $\mathrm{O}_{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | alr at $20^{\circ} \mathrm{C}$ 。 | 19 | 2 dead | $1 \frac{1}{3}$ | 29 |
| 2 | 02 at $20^{\circ} \mathrm{C}$ 。 | 19 | 2 vigotous | 0 | 224 |
| 1 | air at $15{ }^{\circ} \mathrm{C}$ 。 | 22 | dead | 1 | 21 |
| 1 | alreat $15^{\circ} \mathrm{C}$ 。 | 35 | dead | 2 | 28 |
| 1 | 02 at $15^{\circ} \mathrm{C}$ ． | 47 | Figorous | 2 | 214 |
| 1 | $\mathrm{O}_{2}$ at $15^{\circ} \mathrm{C}$ 。 | 47 | wigoreus | 6 | 21. |
| 2 | alr at $15^{\circ} \mathrm{C}$ 。 | 29 | 2 weak | 3 | 18 |
| 2 | alr＋ascarite at $15^{\circ} \mathrm{C}$ 。 | 29 | 2 vigorous | 0 | 17 |
| 2 | alr＋activated |  | 2 vigorous |  |  |
|  | charcoal， $15^{\circ} \mathrm{C}$ 。 | 29 | 2 weak | 4 | 16 |
| 2 | $0_{2}$ at $15^{\circ} \mathrm{C}$ 。 | 29 | 2 vigorous | 5 | 21＋ |

Lobsters live longer in a sealed container without air renewal when exposed to an oxygen atmosphere．Accumulation of $\mathrm{CO}_{2}$ ，as oxygen content is reduced，contributes to weakening and death in air．If $\mathrm{CO}_{2}$ is removed onempaniy as it is produced． lobsters can withstand up to a $20 \%$ reduetion in oxygen contents． In airo In an oxygen atmosphere，gradual accunulation of $\mathrm{CO}_{2}$ up to 5 or $6 \%$ does not weaken the lobsters oser a $4 \%$ hour period．

Survival in relation to temperature
During fishing and paciring for shipment Lobsters may be exposed to alr temperatures higher ox lower than the water temperatures where they had been living。 The effect of short exposure to vaious air temperatures on survival is summarized in the following table：

Test
Acclimated temperatures Number of \％ temperature oco $(a \neq)\left({ }^{\circ} \mathrm{C}_{0}\right)$ lobsters dead

8－hour exposure

| 10 | 10 | 8 | 0 |
| :--- | :--- | :--- | :--- |
| 15 | 15 | 8 | 2 |
| 20 | 20 | 8 | 0 |
| 25 | 25 | 8 | 0 |
| 10 | 20 | 8 | 100 |

Sohour exposure

| 12 | 12 | 14 | 17 |
| :--- | :--- | :--- | :--- |
| 12 | 18 | 26 | 16 |
| 12 | 19 | 21 | 29 |
| 12 | 21 | 7 | 60 |

Lobsters acclymated and tested at the same temper． atures remalned gorons for 8 houss in alr up to $20^{\circ} \mathrm{C}$ ．All lobsters weakened in adr at $25^{\circ} \mathrm{C}$ 。 phose acelimated $6010^{\circ} \mathrm{C}$ 。 and held in air at $20^{9} G^{\circ}$ 。aded within 8 hours．Lobsters acclimated to $12^{\circ} 6$ and tested at air temperatures $x^{\circ}$ rom $12^{\circ}$ to $21^{\circ} \mathrm{C}$ 。for 5 hours showed hygher mordalstes at the higher tempo eratures．

These results suggest that best survival in afr will occur at alx temperatures mot higher than the acoirmation temperature，and definitely not higher than $20^{\circ} \mathrm{C}$ ．on the basis of other observations temperatures lower than the accilm－ ation temperatures are probably preferable espectaily for longer storage。

It is planned to expand this work to estanissh lethal levels and resistance times for lobsters in relation to air composition and temperature．

DoWoMcLeese

## MOLIUSCAN SHELLFISH SUMMARIES

Shellfish investigations
Oyster disease
Observations on larval distribution in Bideford River

## Spatfall prediction

Spatfall studies
Spatfall on commereial collectors
Laboratory growth and mortality of spat
Ecological survey of the Conway Narrows oyster bedding area
Introduction of the European oyster
Saltwater ponds for shellfish culture
Damage to soft-shell elam stocks by escalator digger
Study of Georges Bank scallop fishery
Hydrography and mass mortalities of scallops in the Gulf of St. Lawrence

Explorations for ocean quahaugs in Northumberland strait Shellfish and Passamaquoddy power development

## SHELLFISH INVESTIGATIONS

The shellfish investigators are faced with problems that are highly diversified．The scallop fishery on Georges Bank involves us in most of the problems that concern any fishery that is subject to international regulation。 The ${ }^{\text {momesticm }}$ ． inshore fisheries for seallops，clams，quahaugs ana＂wild＂ oysters create all the problems of conservationwesize limits．gear regulations and fishing seasonswothat arise in domestic fisheries for other types of fish．The species fust mentioned are occasion ally or regularly eaten raw and are commodities in invernational trade．Consequently they present us and the Department of Fisheries and the Department of National Healch and Weifare，who work with us，with public health problems，domestic and intere national（sewerage pollution and paralytic shellfiish poison）． The oyster is the only commercial fish on our coast that is cultured and culture involves a whole gamut of problems that are unique to that fishery。 They require the operation of this Station＇s only Subostation and involve us in many temeoonsuming housekeeping problems．Because there are nearly ig 500 oyster culturists on our coast who require advice and lnformation from time to time，shellfish investigators are constantly being drawn into contacts with individual growers because many of our efforts are of direct concern to them．We are also in constant communica－ tion with the Department of Fisheries which administers the oyster culture programs and with its Experimental Oyster Farms whose operators look to us for comoperation．

Besides attending to these matters we conduct explora．－ tions for unused stocks of species of shellfish thet are regularly exploited（bar clams）or for stocks of species that are not but could be exploited（ocean quahaugs）．We stuay diseases of shell－ fish and fortunately have been able to combat one ois them the Malpeque disease of oysters．We develop new types of fishing gear such as the mechanical shellfish harvester．We try to predict the effects of public works developments like causeways and tidal power dams on our fisheries．And we look for ways of increasing shellfish production by experimenting with exotic species that may be adaptable to our areas．To keep upotomdate in all these matters we must not only investigate，we must also keep informed by reading extensively and by travel．Last autumn the Program Head visited molluscan shellfish industrial and research centres in British Columbia and Washington State。

These assignments are most demanding and $1 t$ is under－ standable that our investigators are very busy．We are pleased to share our burdens now with Mro R。E。Drinnan，formerly engaged in shellfish research by the British Ministry of Agricuiture Fisheries and Food．This is the first time since $19+6$ wher Dr．Logie took charge of the Sub－Station that he has had an Assistant Scientist or Associate Scientist to assist him as his predecessors had．We are confident now in tackling the more deep． seated problems of the oyster industry．We are soryy so say
good-bye to Dr. Lo Mo Dickie who joined the gwomatish inmestigators last spring. For many years he has beer a staunon support and inspiration to our group and we hope his gucesacter whe have a share of Dr. Diokie's qualities. We also hope that he will join us soon because we have beer short-handed ricr ten months.

The appendices which rollow partly tilustrate how our efforts were distributed the the year just past. We nave aisc been active in investigational projects not mertioned in appendices (eogoy green srab studies) and we have contributed to the proceedings of:
(1) The International Convention for the Northest Atlantic Fisheries
(2) The Intermational Passamaquoday z sheries Board
(3) The Intexdepartmental Shelifish bomatese when has international relations
(4) The National Shelifisheries Asscuation (.B.A.)
(5) Department of Fishertes Martime Area Conference of Protection Officers
(6) U.S. Fish and Wildife Sexvice Spectal Conterence on Bast Coast Oyscer Mortalities
(7) Advisoxy Committee on the Oyster Fishery in the Maritimes Area
(8) Prince Edward Island Oyster Gecwers Association.

Most of these contributions have stressed applied aspects of our work but besides these we have contivibuted to the ifterature by publishing papers on both academic and immediately practical results of our work. As further means of disseminating our results, we have been intervjewec on T. $\%$ progenss. presented numerous radio addresses, held newspaper znterriews, yetted script for newspapers ${ }_{2}$ addressed pubive meetungs and prepared blue-print drawings of the mechanieal sheliuish haprester. These last were executed by Mr. Ronald Greendaw of the meintenance staff and have excited much favourable comment among prompective builders.

We have worked hard and some of the tasks have not been pleasant or easy. But we do have a satisfying feeling of having effected some advances in knowledge, understanding and human relationships and of having improved physical standards of living in our fishing commitites.
J.

No. 11

## OYSTER DISEASE

Mortalities in New Brunswick and Nova Scotia continued in 1958. In all previousiy affected areas oysuecs continued to die, although at lesser rates in some places. Disezse invaded Caraquet Bay public fishery late in 1957 and reached epidemic proportions in 1958. About $87 \%$ of the 1957 populatyon of this bed is now dead. On the north shore of Miramichi Bay, disease spread both east and west from the Neguac focus to encompass the Tabusintac and Oak Point bedso No accurate figures of mortality are available, but both fisheries ceased to function in 1958.

Mortality in central Malpeque Bay was Meave in 3950 and 1957 on deep-water beds and light on shallower beds resaz the mouth of Bentinck Cove。 Previous studies were all based cn arag samples but in 1958 experimental lots were placed in trays m the beds for closer observation. Littie Rock Bed was seiected as typical of deepowater ground and Littie Island Bed as representing shailower beds. Separate trays on each bed contained (a) about 400 oysters from the bed itself; (b) about 400 healthy young oysters from Conway Narrows. In addition a lot of 400 Littie Island oysters was placed in a tray on Little Rock. The rectprooni transfer would have been desirable, but was considered too risky. Observa. tions on survivalg conditiory and growth commenced dune 6.1958. Results for the period up to September 27 appear in the tabie below.

| Area of | Area of <br> origin | placement | Sept. 27 |  |
| :--- | :--- | :--- | :--- | :--- |

Little Rock natives hardly grew at all and had thin translucent meats. All other lots grew well and had meats in good condition. All lots on Iittle Rock Bed showed poorex survival than those on Little Island Bed, but, since the poorest surviwal is still fairly good, these differences are not significant yet. The greato est mortalities on beds like Little Rock have occurred oferewinter and in the spring. The experiment is continuing and we shail be on the watch for such changes.

Rehabilitation transiers of Prince Edwari Isiand brood stock to affected mainland areas were contimed by the Department of Fisheries in 1958. The program of transfers hs now a ocut $60 \%$ complete. Subastation personnel have evaluated these for suceess where local controls were maintained (Table)。

Obviously survivals have been striking．y higher among transferred Prince Edward Island oysters than among mainland natives．Conditions in 1958 were good and Prinee Edward Island transplants grew well and spawned copiously and produced spat in some places．Mainland oysters grew poorly and spawned little 8 if at all．

The spat we caught could have arisen from eny of three
 （3）PoE．I．x P．E．I．On the basis of numbers of parents and of their spawning conditiong the last of these is believed to have predominated and to yield resistant spat．We shall test their disease－resistance in 1959 and succeeding years．Last year we caught a set only at Malagash and tested it this yeas．The last two entries in the table show no clear evidence that they are resistant．Further data are necessary．

| Area of | Axea of | Experiment | \％Survival |
| :--- | :--- | :--- | :--- |
| origin | placement of | commenced | 1956 1957 1958 |

Shippegan，$N_{0} \mathrm{~B}_{0}$
East River，PoE。I． Shippegan，N．B．
Summerside， $\mathrm{P}_{\mathrm{B}} \mathrm{E}_{\mathrm{o}} \mathrm{I}$ 。
＊Shippegan，NoB． Summerside，PoE．I．

Neguac，N．B．
Bideford River ${ }_{z}$ PoE．I．
Neguac，$N . B_{0}$
Summerside，PoEoI．
Hardwicke，N．B．
Bideford Rivery P．E．I．
Hardwicke，NoB．
Summerside，P．E．I。
Mill Creek，N．B．
Bideford Riverg PoE。I。
Mill Creek，N．B．
Summerside，P．E．I。
Malagash，NoS．
East River，PoE。I。
Malagash，$N$ 。S
Summerside，P。E．I。
Malagash，NoS．
＊＊Malagash，Nos．

Shippegan，NoB。
Shippegang NoB。
Shippegan，N．B．
Shippegan，NoB
Shippegan，N．B．
Shippegang NoB．
Neguacs ${ }^{N}$ ．B．
Neguae，NoB。
Neguas ${ }^{2}$ NoB．
Neguac，N．B．
Hardwicke，NoB。
Hardwicke，N．B
Hardwicke，NoB
Hardwicke，NoB．
Mill Creek，NoBo
Mil1 Creek，N．B．
Mill Creek，N．B．
Mill Creek，NoB．
Malagash，NoS
Malagash，Nos．
Malagash，NoS．
Malagash，NoS．
Malagash，NoS．
Malagashg NoS．

| Aug ${ }^{\text {c }} 8.1956-9.8$ | \％ |
| :---: | :---: |
| Aug． 89195698.6 | 80.576. |
| June 12， 1957 | 37.51 .0 |
| June 12，19\％ | 86.981 .5 |
| May 16． 2998 | 32.5 |
| May 20． 2958 | 96.2 |
| July 12.175 | 44.514 .9 |
| July 12． 196 | 98.589 .0 |
| June 24． 29.3 | 86.2 |
| June 24． 2958 | 96.4 |
| June 13． 1957 | 69.330 .6 |
| June 4． 1957 | 97.982 .8 |
| June 23， 1958 | 65.7 |
| June 23． 1958 | 92.1 |
| July 110 $195 \%$ | 75.224 .7 |
| July 11． 2957 | 99.595 .0 |
| May 22． 1958 | 94.6 |
| May 22， 1958 | 98.6 |
| Aug．99， 195676.8 | 26.615 .0 |
| Aug．9， 195698.0 | 85.179 .1 |
| May 15， 2957 | 62.7 21．5 |
| May 15.1957 | 95.590 .5 |
| July 15.1958 | 81.6 |
| July 15， 1958 | 77.0 |

＊Two year olds．from a slightly different location．
Not strictly comparable to other native Shippegan lots．
＊＊Separated native spat of 1957 yearoclass。

In Neguac Bay，Mill Creek，and Malagash Basin the survival of natives from spring to freeze－up in 1958 approximated that of resistant Prince Edward Island stock transplanted in 1958。 This suggests that the epidemic has about run its course in these areas．

Laboratory work on the pathogen continued，The technique of bleeding from the heart was greatly improved．It was possible to decide that blood of healthy oysters is bacteriol－ ogically sterile on the media used，while that of diseased oysters exhibits a generalized bacteremia．There may be a bacterial pathogen but so far we can conclude only that healthy oysters have a good antiobacterial defense which breaks down in this disease．

The faeces of healthy and diseased oysters aiso differ both in their appearance and bacterial flora．Further work is necessary to discover why

It will be recalled from 1957 that a fungus was cultured with ease from diseased tissues placed in Ray ${ }^{\text {s }}$ Medyum．We planned to study the morphology and identity of this fungus in 1958．No success whatever was achieved in culture in Ray＇s or any other mycological medium．We plan to continue looking for this fungus next year because a similar or identical organism has been associated with recent outbreaks of oyster disease in the United States．

Ro Ho Logie
E．Bo Henderson
Wilhelmina van
Waibeek
No． 12
OBSERVATIONS ON LARVAL DISTRIBUTION IN BIDEFORD RIVER
In 1958 a new effort was made to describe the distribu－ tion of oyster larvae and its quantitative and quaiitative variation with time and environmental conditions in Bideford River．An understanding of these would permit better predictions of spatfall，rational placing of spat collectors and is basic to any attempt at controlled spat production．

The field work was darried out by Dr。W。B。Stallworthy and Mr．S．E．Vass．Great numbers of plankton samples were collected by pumping water through silk nets simultaneously from a number of water levels 4 at 3 woot intervals from top to bottom of the river．These samples were taken frim a boat running across a horizontal transect of the river．The examination of the samples is still under way．

Because the investigation was new，much time was spent in devising equipment and procedures and in adjusting programs to fit the problem as it revealed itself．Sample－tomsample variations in abundarice of larvae were so great as to demand more
intensive sampling than was carried out．Consequentiy few critical data are available especially for latesstage larvae which were least frequent though of greatest interest in our investigation．Nevertheless，some general conclusion appears．
（1）Oyster larvae are not uniformly distributed but show both vertical and horizontal variation in their concentration。
（2）All age groups show the same distribution in any transect．This can be claimed with reasonabie certainty for all but the latest stages．
（3）There was no detectable change with tide in the vertical distribution of larvae．

We can improve the sampling program and it is proposed to continue the work in 1959 and following years．The problems involved are at the very core of the oyster industry．

R．E．Drinnan
No． 13

## SPATFALL PREDICTION

Last year the per cent dry weight of oyster meats dropped sharply after spawning。 This year we investigated the possibie utility of this relationship for spatfall prediction．Observa－ tions were made on oysters from Bideford River g．E．I．firom Orangedale（Bras d＇Or Lakes）and Malagash，Noso，and from Shippegan， N．B．

At Bideford samples of ten oysters from three areas were collected at $2-4$ day intervals and the per cent dry welght of the meats obtained by weighing before and after drying at $100^{\circ} \mathrm{C}$ 。 The samples from other areas were less frequent but were treated in the same way．

There were many fluctuations in per cent dry weight of Bideford oysters but these were not consistently related to spawn－ ing activity although often coincident．The same was true for the other areas studied．The disparity between 1958 and 1957 results may reside in differing spawning behaviour in the two years．In 1958 there was little indication of periods of spawning separated by periods in which none occurred．Rather a picture of a steady level of spawning over a long period emerged．

Because observations on per cent dry weight cannot be depended on to detect spawning activity ${ }_{9}$ they cannot be used in predicting spatfall．

Prediction of spatfiall at Bideford was carried out by the usual routinewdetermining the sizemcomposition of larval populations，then extrapolating from modal sizes on known growth curves．

Larvae were first seen in plankton tows taken July 5 When water temperature had exceeded $20^{\circ} \mathrm{C}$. for some 5 days, after rising steadily from $14^{\circ} \mathrm{C}$. on June 16 . More larvae were found in subsequent tows and we predicted a light spatfall on or about July 27; a heavy set July 28 to August $I_{9}$ another peak August 12 to 14, and a light set August 24.

To check the reliability of these predictions we made daily counts of spat settling on scallop (Placopecter) shells suspended at 2 foot vertical intervals from the Substation wharfo There was a continuous spatfall from July 23 to August 27 with peak intensity ( 50 spat/shell/day) July 29 to August. 18. This pattern corresponds very well with that observed at other stations In the area (see Summary No. 14)。 Predictions were precise and provided 17 days? advance notice of major spatial.a.

This year's close agreement between predicted and observed spatfall should be viewed with caution. Predictions of intensity of spatfall are usuaily based on the observed abundance of rather young larvae. Whole broods of larvae mey perish ory if they survive, they may settle with a so-far unpreaictable patchy distribution.

Predictions for other areas, based on similaw, though less intensive larval sampling, were almost completely unrelated to subsequently observed spatfall. This almost eertainiy reflects inadequate sampling. Improvements can be suggested from what we learned this year about vertical and horizontal variations in larval abundance in Bideford River.

Ro E. Drinnan
Kathleen Blenkhorn
No. 14

## SPATFALL STUDIES

Spat collecting stations were establisned to uttemine the precision of spatfall predictions and to gatn informacion on behaviour and distribution of setting larvae. Stations were located along 3 transects in Bideford River and Psugh ${ }^{2}$ Creek, coinciding with sections from which most plankton samples were obtained. Positions of stations were selected to assure adequate sampling of shallow and deep water.

Clean, uniformmsized ( 4 in。 diameter) scaliop shells (Placopecten) weathered for 1 year were suspended at collection stations concave surface downwards, in a vertical series at lafoot intervals from high water level to the river bottom. These shells were changed at 30 or 4 day intervals dried in air and stored for examination when time permitted. The pesuits are still being assessed.

Spat first appeared July 21 to 24 , and appreciable numbers were first caught July 29 to August 1 . Spatfall rose
sharply to a maximum August 5 , deelining slowly unwiz august 17 . Shells exposed August 20 to September 5 caught, some epat. showing that late-season sets do occur.

Many spat on July 29 to August i ooliectors were dead when brought in, leaving emptys tmanslueant shells pale yeilow green in colour. These had grom little ow mot at an the the
 continued throughout the spatfall period. Approxuntely $9 \%$ of the spat examined were dead but in some samples $90 \%$.

Close study of records for Pagh"s Creek stations shows that mortalities were greatest (90\%) in the anshore ahallows and least ( $<20 \%$ ) in offshore positions (depths up to 70 fito. There are records for this area from former years of movetities immediately after settlement and of poor post-scotbenont growth followed by late-season mortailty. Obviously we are dealing here with a major industrial problem that should be better understood.

Several shells were examined on both surfiacs to discover preferences by setting oyster lamae。 Outer concex su:faces deeply ridged and dark in colour which faced upwards in our tests presented a marked contrast with the smoothg whtte, inner shivace which faced downwards. Approximately $70 \%$ of the catch was taken on the upper surface and $30 \%$ on the lower. When upper and zowes surfaces are identical, laryae generally show preterence for zwee surfaces. These obseryations show that the surface texture ans: regulates the efficiency of cultohma fact that is often cueztocedo

This yeares spatrall studies throw new ineht on the problems of commercial collestion of spat. lt is pioposed to continue the work in 1959.

So E. Vass

No. 15

## SPATFALL ON COMMERCIAL COLLECTORS

Spatfall in 1958 was better than average, all things considered. Results of observations are sumaroazed in the accompanying table. No counts were made on Snippegan and Orangedale collectors because the spat were separated early to provide stock for diseaseresistance studies.

In spite of heavy disease mortalities os native parent stocks at Shippegan, NoBos and Malagesh Wosos there was some spatfall in both areaso This is attributable te spawrings by introduced, diseasemesistant stocks from Prince Edward IsIand in 1957 and 1958.

For the thira year in succession Freedandy $P, E$. Tog collectors bore some very large spat indicating undetected early spawnings. The superior quality of eariy-caught spat warrants
closer observation of this area in 1959．It may assume an important place in spat collection programs conducted by the Department＇s Experimental Oyster Farm at Ellerslio．

Netherlands oyster culturists make extensive use of mussel shells as cultch by spreading them on the bottom immediately before spatfalls．In 1956 and 1957 this technique gave poor returns at Ellerslie apparently because of heavy silting．The 1958 success with mussel shells held off the bottom in slings is heartening because some of our growers who cannot or will not prepare egg－case filler collectors may be persuaded to use mussel shell．

Spat caught on mussel shells in Bideford River in 1957 and planted on the bottom in Conway Narrows have grown well this year but the problem of how to handle them to produce single oysters remains to be solved．

Spatfall on Egg－Case Filler and Mussei－Shell Collectors
Catch
Location Date（No．spat／filler）Remarks

Shippegan，N．B．－light
Malagash，NoS．Oct． 23 Orangedale，N．S．．－

P．E．I．Areas

| Freeland | Aug． 14 <br> Sept． 23 | 183 262 | Diameter 2 to 15 mm ． Mode 9 mim． Diameter up to 40 mm Mode 12 mm ． |
| :---: | :---: | :---: | :---: |
| Paugh＇s Creek | $\begin{aligned} & \text { Aug. } 8 \\ & \text { Sept. } 23 \\ & \text { Jan. } 13(1959) \end{aligned}$ | $\begin{array}{r} 305,000 \\ 2,450 \\ 2,570 \end{array}$ | Diameter $<10 \mathrm{~mm}$ 。 |
| Bideford River | Aug． 14 <br> Sept。23 <br> Jan．13（1959） | $\begin{aligned} & 7,620 \\ & 1,488 \\ & 1,588 \end{aligned}$ | Mode 0.45 mm 。 Diameter 2 to 15 mm ． Mode 7 mm ． <br> Diameter $<10 \mathrm{~mm}$ ． |

Mussel Shells held in chicken wire and fish netting slings
Sept． 13 12／shell Diameter 4 to 8 mm ．
Oct． 14 11／shell
Oct． 22 6／shell

Spat separated before counts could be made． Highly variable． Spat separated before counts could be made． Collectors badly fouled．

Diameter 2 to 15 mm ． Mode 9 man． Diameter up to 40 mm ． Mode 12 mm ．

Diameter $<10 \mathrm{~mm}$ 。
Mode $0.45^{\prime} \mathrm{mm}$ 。 Diameter 2 to 15 mm ． Mode 7 mm ． Diameter＜ 10 mm ．

| Sept． 13 | 12／shell | Diameter 4 to 8 mm ． |
| :---: | :---: | :---: |
| Oct． 14 | 11／shell |  |
| Oct． 22 | 6／shell | Apparently some fros damage． |

No． 16

## LABORATORY GROWTE AND MORTALITY OF SPAT

A knowledge of factors affecting spat surviral and growth is desirable in any spat－production program．Our special need for it became quite clear from observations on conmercial spat collectors in the early part of the 4958 season Growth and survival appeared poor（See summary No．iti）。

To obtain some measure of these urder conditions approx－ imating those in the field spat were held in laporatory tanks supplied continuously with sea water．This ailoned assessment of mortality and of growth of individual spat．To get stock for observation，scallop（Placopecten）shelis were suspeadea from the station wharf for the 24 hour period of August $?$ ．＂Four days after setting， 25 surviving spat on each of eight sheils were randomly selected and numbered．By starting obseryations on the fourth day we avoided the early mortality which had been observed in the field．Starting earlier would have neeessttated the handing of very large numbers of spat．

The spat were examined and measured at sincergals of approximately seven days until october z4。 The tigure shows mortality（calculated from all the spat）mean size（caloulated from the 38 survivors to Dotoder 240 and tank terperatures through－ out the period．

The mortality rate was relatively onscant rom the 3 rd to the 25 th day after setting with a maxmun dewwer the ilth and 18th。

The average growth rate of survizuns ineneased up to the 27th day and thereafter deciined until growth ceased in October． The range in the sizes of these spat，ail of the same age， increased enormously as the experiment progressed．They were approximately the same size on August 7 but on Occober 24 the smallest and largest measured 1.5 and 8.7 mm ．

Tank temperatures were generally above 200\％．until the 25 th day when they began a steady decline．This ehange was coincident with cessation of mortaisty and reduetion in growth rate．Growth ceased in the region of $12^{\circ} \mathrm{C}$ ．

These studies suggest lines along which furbher investi－ gation should be directed，mhe vast individual wariatica fn growth during the first seazon raises many quesuions about patterns of growth at all ages that have the greatest importance in oyster culture．The growth study should be contimued．mhe mortality pattern is equally mysterious．Such fartors as soncentrotion of possible foods must be considered as survival factirs in future work．

## Degrees Centigrade.




Tank temperature and morballity and grath of laboratory-reared oyster spat . Eilersile, $\bar{F} . E_{0}$ Io 1958.

No. 17

## ECOLOGICAL SURVEY OF THE CONWAY NARROWS OYSTER BEDDING AREA

The Conway Narrows experimental area consists of about 175 acres at the northwestern end of the shallow lagoon sheltered by the barrier bar which extends between Malpeque and Cascumpeque Bays. Plantings of spring threshed oyster spac made there in May of 1953 and again in May of 1956 by the Departuent of Fisheries were extraordinarily successful in producing high quality oysters for bedding on leases. During the past season the area was studied to determine its characteristics, to facilitote finding similar areas, and to assess the requirements for thture study.

The study area was closed to picking do prevent any disturbance of the remaining natural and experimenta? stocks of oysters. It is being set aside as an experimental reserve by the Department of Fisheries to develop methods of oyeter culture appropriate for the area.

## Hydrographic Conditions

The water is shallow, about 1 ft , to e ato deep at MoLoT., and the tidal fluctuation is small fabout 3 ft. at spring tides). As a result of this the water temperature $s$ generally closer to air temperature than the water in the gill outside the barrier bar. The water watms quickiy in sunifgt temperatures of $21-24^{\circ} \mathrm{C}$. were common during fuly and Adgust. vexy little direct information is yet available about winter conditions; ice is said to be slow in forming and to be relatively thin but there may be great variation from year to year. Winter comations are being observed this year. The salinity is aimost identical with that of adjacent gulf waters (approximately 27\%) and varies closely with it. Currents are slow, the fastest observed being about one-halfm.p.h. in the middle of the lagoon auring ebb tide. They are slower near the shores and at the bottom.

## Soil

The soil is sandy and relatively free from silt. More than $85 \%$ of the sediment is "medium or fine send (Wentworth grade scale) and les.s than $5 \%$ "silt and clay"。 Samples of the top 6 inches of soil were taken in the experimental area and in some of the similar areas being explored. Sleve analyses have been made on some samples. An analysis of soil texcure at the site of the 1956 planting is given below.

## Particle diameter range

Above 4 mm .<br>2.4<br>1-2<br>0.5-1<br>$0.25 \cdots 0.5$<br>$0.125=0.25$<br>0.062-0.125<br>Below 0.062

Mame of grade
pebbles
granules
very coarse sand
coarse sand
nedium sand
fine sard
very fline sand
silt and clay


O (occasional)

Penetroneter readings were made to describe the firmness of the floor of the lagoon. The readings are of douistful value because of technical difficulties in the use of the penetrometer. A pressure of 2 to 3 lb . was required to drive a 1 an. ${ }^{2}$ flat aisc 5 cm . into the botrom. Sinall loeal variacions occursed but generally firmness was uniform. The bottom here had properties similar to those of the shoreward eelgrass fringe ut the beach at the Biologieal SubuStation at Ellerslie. The bothom sediments there showed the same textural distribution as was obseved ten years earlier (19+8).

## Vegetation

There is a light general covering of eesgrass (Zostera marina) over the area. The density is vaxilable: fron $0 \mathrm{~m} j 0$ shoots per $625 \mathrm{cm.}^{2}$. The average density over the experimentai area was about 400 shoots per $m .2$. The plants are short and narrow.-leavedg the mean height of the longest leaf of the plants sampled was 11 cm. , and each individual shoot had about fixye leaves at any one time during the summer. This light cover ot shert eelgrass plants is probabiy important in maintaining the stability of the bottom in spite of wave and ace action; the silt load in the water is not sufficient to develop a muady bottom amorigst the eelgrass plants.

Algae encountered on the bottom wares Chaetomorpha Innum, Cladophora, Enteromorpha, Ulva lactuce (green algae); Chorda filum Eudesmes Fueus Stilophora and Sphaerotitehe. (brown algae); Ceramium. (red alga). Fucus and Chondrus oecurring attached to large rocks, were rare.

## Potential Predators or Competitors

Small starfish up to 2 it ino in diametery were present but relatively scarce. From two transects across the lagoon (each about 0.5 m . by 500 m ) I would estimate the population of starfish to be 0.08 starfish/m。2. Starfish were considered unable to live successfully at high temperatures and it had been hoped that this area would remain free from them. The starfish found here survived the warm temperatures ( $24^{\circ} \mathrm{C}$. ) and larger healthy starfish of 4 to 5 in. diameter were found feeding on musseis growing on pilings at the Biological Substation at water temperatures of $22^{\circ} \mathrm{C}$. Starfish may well be a potential problem here.

The following antmals of possible timputance also occurred: the rock orabs, Cances irroratus, sapper inapet: Crepidula fornicata; comon musset. Mxtilus edui;s: end moonshell, Polynices heros. Other common antmals obsemped were eels, flounders, razor ciems, periwinkles and varions species of snails. One of the marked charasteristies of the area is the relative scarcity of shellfish and yet the exoelient quality of the few oysters present.

## Exploration

Transpiants of 1956 oysters and of 1958 spat were made to two new areas in the experimental reserve to test its general suitability for rearing young oysters. Additional areas in Conway Narrows lagoon and in the lagoon becween Lennox Isiand and the barrier bar were examined and appered suttabie. Transm plants were made to two promising locations $x$ in cheve Nawows lagoon several miles distant from the study area. Attenpts to catch oyster spat on collectors in the stuay axea were tinsuscess. ful.

## Recommendations

More information showid be obtaried trom ayd.ographic conditions, survival of oysters, size of predator popuicitons? fertility, and winter conditions. Pests should be made to discover the best techniques for utilizing the area ror the production of seed or bedding oysters. New areas should be sougnt by looking for similar conditions and then by testang with exanspianted spat and oysters.

> A. Ro E Teyler

No. 18

## INTRODUCTION OF THE EUROPEAN OYSTER

This year obsexvations on survivors of the 1957 introduetion of European oysters (Ostrea edulis) from Norin Wales were continued and a second test lot was brought over.
winter sumvival of the oysters imported in the spring of 1957 (App. 19, 1957 Rept。) was tested in Sam Orr Pond and Oak Bay. Although both areas freeze over during winter, water bemperatures at depths greater than three feet remain at or above oc. because of tidal exchange with Fassamaquoddy Bayo Survival in Sam Orr Pond was 100\% and in Oak Bay zero. The Oak Bay mortality is attributed to a Jaruary thaw whish reduced saifinities to below the tolerance limit. The excellent survival in Sam Orr pond shows that in our waters European oysters san stand iong exposure to zero, or near-zero temperatures. if sainities remarr high.

Although growth was less this summex sonditions of meats and shell shape improved and there was a heavy spawning. Last year these oysters tended to be thin and smellomeated their
shells were fragile and flat and they were too young to spawn. The spawners this year released their larvae August 1 to 12. From August 5 to 12 there was no tidal exchange in the pond and conditions were optimal for larval retention. Nevertheless, the larvae grew little and disappeared soon after release. They seem to have died. There was heavy flushing of the pond by high tides beginning on August 14 and no larvae were found thereafter. Collectors set out soon after the larvae first appeared caught no spat. Chances for a set would have been better with a larger population of spawners. Apparently the pond did not afford satisfactory conditions for larval development this yeaz.

A second shipment of 5,000 two-yearmold Welsh oysters from the British Ministry of Agriculture, Fisheries and Food arrived by air freight in April 2958. These oysters iared much better than those sent by steamer in June 1957. qre survival after a month was $50 \%$ as compared with $5 \%$ last year。 Dro Marsinali Laird of the Institute of Parasitology examined some of the gying animals. Protozoans he found in them may be diretioiy or indirectiy responsible for the losses. The oysters were placed in wirew bottom trays in Sam Orr Pond where growth during the summer was excellent. Average diameter increased from $\frac{1}{2}$ to 3 inches ${ }_{9}$ the same as last year. In late summer two samples were sitipped to Ellerslie, P.E.I. One lot was placed in lavoratory aquaria and the other in a tray submerged in Bideford River. They grew well until November with little montality. The purpose of this transfer was twofold. we want to know whether this speeles ean stand lengthy exposure to submzero water temperatures which are character. istic of Gulf of St. Lawrence oyster inlets. and whether they are susceptible to the Malpeque disease. The answers to these questions will tell us if and in what areas European oysters can be grown on this coast. We plan to return these oysters to si\% Andrews next year before they spawno. These tests were planned f"o" last year but survivors of the 1957 importation were too few. This delayed parts of our program by a year. Another lot was transplanced in mid-autumn to the lower part of Oak Bay where it is most saline. It is hoped that these will fare better than similar 195 ? transfers.

We plan to test Sam Orr Pond for larvai survivai again in 1959 and we hope to discover the cause of failures. Pending results of tests for Malpeque disease resistance, we shall also look for better areas where largesscale importations may be planted in 1960 if this proves desirable. For these purposes we plan to obtain another test lot of young oysters foom Wales next spring.

No. 19

## SALTMATER PONDS FOR SHELLPISH CUIIURE

In 1957 we studied Sam Orr Pond to determine its suitability for shelifish culture and described its unusual physiographic faunal and floral characteristics (App. 18, 1957). In 1958 we studied its hydrography and its broods of shelifiish larvae. Circulation tıdal characteristics, and flushing rates regulate the success of broods throughout their pelagic life.

Accurate records of all tides entering the pond were obtained from a recording tide gauge and temperature and salinity records were carefully spaced to permit their correlation with tide gauge records. Speciai hydrographic observarions during complete tidal cycles (flood and ebb) were made when tides were in the neap, intermediate and spring phases, to diseover circulation patterns.

Temperatures are highest at neap periods when there is a pronounced vertical gradient. This practically d.acpears at spring tides. Fresh water, discharged into the pore oy a smail brook, does not penetrate more than 2 feet below the surface where a distinct halocline is frequentiy observed.

The history of broods of larvae of shipworms, (Teredo navalis), as well as of Buropean oysters was followed carefully in 1958. Neither species is found in the plankton of surrounding areas. Broods were completely flushed out of the pond by tides exceeding the sill level by $\frac{1}{2}$ feet and broods were significantly depleted by tides that exceeded the sill level by oni.y 1 foot.

Efficient culture of lameilibranchs in the pond would seem to require a dam at the sill to prevent fiushing and to "bottle up" larvae until after they grow to spatting size. Before considering any construction it is important to discover whether the pond is a suitable environment for larval growth and survival. A critical determining factor is the supply of planituon on which larvae feed. Gross features of the plankton appear from net tows made this summer. Diatoms are rare but dinoflagellate populations showing vertical stratification, are frequently dense. For next summer we plan to study productivity and nutrition in the pond, and in particular to determine the concentration of "umflagellates" available to the larvae as food. This is of fundamental importance in assessing Sam Orr Pond as an area for sheilfish culture. We shall continue smallmscale observations at Cak Bay for comparisons.

Joan E. Mortimer

No. 20
damage to sofroshell clam stocks by escalaton digger
Occasional observations on flats where our mechanized digger has been operated have indicated that it does inttle damage to those clams in its path which are too small to be marketed. But this conclusion was too vague to serve as a basis for advice to the Department of Fisheries on the wisdom of legalizing the use of this type of digger. In 1958, therefore, we attempted a precise measure of the damage it does.

The work was done at Clam Harbous's N.So using ciams ranging in size from $1 \frac{1}{4}$ to $1 \frac{3}{4}$ inches in length. For identifica tion their shells were all marked with Vo.ger ${ }^{\circ} \mathrm{sin}$. The machine was set to dig at the commercialmfishirg depth of 15 inches and otherwise run as if it were being operated in commensial itshiag. The test was carried out in three stages.

In the first stage the marked clams were xilled in formalin to prevent them from burying themselves after they passed through the machine. Groups of these were then reieased in the digging scoop when the machine was in full operation at high tide on a flat that is exposed at low tide. Most of che clams sifted through the mesh of the escalator belt and dropped back to the botton without ever coning to the surface of the water. about onethird of them passed on up the beit and dropped off the end into the water. At the next low tide we recovered, on the average, $90 \%$ of the clams that were released in each group and we mapped the pattern of their scattering over the beach in relation to the point of release. Most were in the track left by the digger. ${ }^{\text {the }}$ also counted the numbers with broken sheils. Some were damaged, seem ingly in the conveyor system. The worik was easy becaase the difger obviously buried very few and because those it did not bury could not dig in and were plain to see.

In the second stage of the test, marked, formilinkikiled clams were planted in plots on the intertidal beach at low tide. They were set out uniformiy at 9 per square foot and at friormais depths in the soil. At the next high tide the esealator digger was run through each plot and at the following low tide the damage to the clams and their scatter patterns were worked out as before. The recoveries were again very high. Apparently some clams are damaged by the lip of the scoop as it moves through the soil and before they enter the conveyor system.

In the third stage, living, marised clams were pianted as in the second stage and the digger was passed through the plots at the next high tide. When the flats were visited at the next low tide, a few clams were found on the surface and they all had broken sheils. By probing and digging in the softened soll in the digger track we were able to find almost all the clams the digger had displaced. These had already dug back into the soil and appeared none the worse for their experience. Again we mapped
their scatter patterns and got counts of damaged and undamaged clams. The shells of several of those counted as damaged seem to have been broken by the probing and digging.

Some of our results are summarized in the accompanying table:

Results of digging trials with escalatoretype digger and marked clams

|  | "Killed" clams <br> released in <br> Recovered <br> clams | "Killed" clams <br> digging scoopted | Live clams <br> planfed |
| :--- | :---: | :---: | :---: |
| \% found in dug <br> digger track | 87 | 90 | 98 |
| $\%$ then dug |  |  |  |

The results indicate that:
(1) The escalator digger buries very few of the smail clams it disturbs (less than 10\%) and those it does bury are close to the surface where they are not likely to smother.
(2) Aimost ail the under-sized clams the escalator digger disturbs are returned to the track, the ground from which they were dug, and most of them were deposited within 50 feet of the very spot in which ther were living before disturbance.
(3) Of those that are returned, approximately $4 \%$ are too severely damaged to be able to dig back into the soil and will die. More than $90 \%$ are not seriously affected by the digger.

It is to be admitted that relatively smail and isolated areas were involved in these tests. But it will be recalled that in similarly small areas we found digging with ordinary clam forks is highly destructive of the small clams left behind in the soil --40 to $60 \%$ of the stock is killed. From this it seems likely that we could realize heavier yields of soft-sheil ciams from our fiats if we harvested them with escalator diggers than if we continued to harvest them with conventional hand tools.

> J. S. MacPhail
> $J_{0}$ G. Medcof

No. 21

## study of georges bank scallop fishery

Since 1952 annual landings of scallop mease from Georges Bank have increased rapidly to new high levels so that this fishery is now economically the most valuable of alt tisheries in ICNAF Subarea 5\% United States landings rose from about 12.0 million pounds in 1952 to over 18.0 million in 1955 and have remained at about this level since. Canadian landings were less than 0.3 million pounds annually before 1952 , but reached about 2.5 million in 1958. Increases apparently result from increased scallop fishing effort, rather than from heavier landings by individual boats, and industry has become concerned that the heavier fishing may lead to "overfishing" of its resource. Because of the international character of the fishery, scientists of ICNAF countries have been asked to co-operate in a study of the status and prospects of the fishery. Specificaily they have been asked to judge the merits of an increase in mesh size of scallop dredges as a measure to ensure continuation or even inereases in the present high landings.

Canadian boats fish primarily on sealick steoks on eastern Georges, to the southeast of those filished yacst heayily by the United States. Our studies have been chlefly directed to the fishery in the former locality. In comoperation with scientists of the United States Fish and Wildife Service, records of catch and fishing effort are being collected, and sea trips are made to provide a basis for abundance and mortailiy studies.

Preliminary results indicate that there are remarkable differences in the density and size distribution cy scaliops from bed to bed. These differences show up in recorsis of catch per haul gathered during sea trips, but not in record of wharf landings. Landings show relatively little variation apparently because with present abundance, the fishing power of the vessels keeps the shucking facilities saturated most of the time and higher catches result in higher discards. Dafferences in landing from one boat to another are therefore principaily the result of differences in the shucking power, and in the sizes of scaliops saved from the catch.

In areas of the highest catch, the mean selection size was about 100 mm 。 shell height while in areas of smailez total catch, the selection size dropped to 95 mm . The selection range was narrow in areas where large scallops predominate, bat wide in areas where there were larger numbers of small scallops, some of which were included in landings. This flexibility in cull-size seems to be an important factor in cushioning lanaings against major effects of variations in density and abundance of scailops.

These data indicate that meshosize could ce increased considerably above the 3 -inch inside diameter currently used (mean selection size about 72 mm ) without seriously affecting present landings. However, the longeterm benefit of such a
change depends upon improving the survival anong smail seailops released from capture。 Data on survival among che discards are scanty，but present indications are that it is relatively high， and probably little affected by the handling and exposure they receive。 There is，furthermore，no good estimate of current fishing mortality rates．The long－term advantages of increasing mesh size are therefore open to question．

Increasing mesh size would probably decrease the amount of trash accumulated in drags and increases their efficiency as was shown for the Digby area（Appencix 25，Annual Report for 1952）．Such increased efficiency might improve landings in periods of scarcity of scallops，when landings would not be limited by shucking power to the extent that they are now． However，before recommending an increase in mesh size we should weigh possible longwterm benefits，against the disadvantages of reducing the flexibility in fishermeris choice of what sizes are worth shucking．

No． 22
HYDROGRAPHY AND MASS MORTALITIES OF SCAZLIOFG
IN THE GULF OF ST。 LAWRENCE
Analysis of a series of experiments designed to describe the giant scallop ${ }^{3}$ s tolerance of high water temperature was completed in 1958．High temperatures are directiy lethal．Upper lethal temperatures are raised by about $1.7^{\circ} \mathrm{G}$ ．per day by accima－ tion to high temperatures，but loss of the state or arcitmation to high temperatures is very slow，requiring more than 40 days in tanks and possibly as much as 3 months in nature．There appears to be a seasonal change in susceptability to high temperatures： upper lethal temperatures were lower in summer than in winter． Minimum upper lethal temperatures were theoretically $18.8^{\circ} \mathrm{C}$ ．for scallops in summer conditiong and $20^{\circ} \mathrm{C}$ 。for scailops in winter condition，although actual upper lethals are propabiy never iess than $20^{\circ} \mathrm{C}$ ．because loss of high temperature acclimation is so slow． Maximum upper lethals ranged from $23.5^{\circ} \mathrm{C}$ 。 to $25.3^{\circ} 3$ 。for seallops in summer and winter condition respectively．

Within the zone of thermal tolerance sudden increases or decreases in temperature may arrest scallop activity．After exposure to increased temperatures，recovery of nomal activity was rapid but after exposure to sudden decreases in temperature， recovery was very slow．The debility resulting from sudden temperature changes within the zone of thermal tolerance seems great enough to increase their susceptibility to predators． Sudden temperature changes within the zone of tolerance may there－ fore be indirectly＂lethal＂。

Records for the Gulf of St．Lawrence show that water temperature changes which can kill scailops directiy or indirectly may occur frequently in areas where mass mortaifities have been
observed. Furthermore, hydrographio phenomena whith can produce such sudden changes in the vicinity on scallop beds. have been described. However, there are no direct observations ct temperatures on scallop beds at times when mass morcalities have taken place. Records of mortalities and of hydrographis conditions are being compiled to assess the relative importance of temperature changes that are (1) directiy iethal. (2) debilitating and indirectly lethal.
L. M, Dickie

No. 23

## EXPLORATIONS FOR OGEAN QUAFATGS IN NORI HUMBERLAND STRATM

Ocean quahaugs (Arettea isuaticea) are wideny distributed in moderately deep North Atlantic waters but $f$ en on our people have ever seen them and nore are marketed in Ganeda. Reports of fishermen and a onemay seareh tor them with mporised gear in November 1956 convinced us that they were abundari at depths of 12 to 20 fathoms in the eastern entrance to Noxthumberiand Strait. The bottom seemed too hard to be filshed with a zorementonal non hydraulic quahaug dredge. But the quality of the cacch was high and samples submitted were approed oy one firm whied ordinarily uses bay quahaugs (Mercenaria mercenaria in its productso

This year we organizec and supervised a systematic exploration and trial fishlag for this weoles pinanced by the Industrial Development Service of the Depattment of Fisheries. A 65 -foot dragger, M/V Paule Marie (Fxaneis Doveette sinipper) was chartered for the month of August and equipped with a Long Isiande type hydraulic dredge, 300 feet of (4 ino dameter pressure hose, 300 feet of manila tow rope ( 5 ino cireumicerence) and the pumpmotor assembly capable of delivering 750 galions of water per minute at 40 pounds pressure per square inch borsowed risom our mechanical clam digger. M/B Cyprina. Mr. Eazl Duxees, engaged as a technician by the Department of Fisherlese was inmediately responsible for the work.

A hydraulic dredge has a series of water jets at its forward end. These do the actual digging and wash shellfish into the body of the dredge which follows aiong in the treneh cut by the jets. For the first few days of operation we were accompanied by Mr. Clifford Varin of the Fire Island Sea Clam Company? Long Island, NoY. He has had long experience in rigging and operating hydraulic dredges and taught us wery quickiy how to use our gear. We found good fishing off Cape Bears PoEoton in 17 tathoms.

To start with we compared catohes made ir a long series of hauls in this area over a buoyed course aeing combinations of different boat speeds. pump pressures. volwnes of water delivered to the dredge nozzles and difrerent diggingwiepth adjustments of the dredge. The animais are shailow burvowers for in was unnecessary to dig deeper than $40 x y$ imohes vo get good catahes

of undamaged quahaugs. The boat had to be operated at very low speeds (about l mile per hour) or it pulled the dredge out of its furrow and caught nothing. With these settings catches rose steadily from practically nothing, to an average or. 4 bushels per 10 -minute haul, as water pressures and volumes were increased from low values to the limits of the capacity of our pumping system. From the relationship worked out, it appeared that our catches could be doubled by rafsing the capacity to 1,500 gailons per minute at 100 pounds pressure. Pumps of this capacity are regularly in use in the United States for fishing bar clams.

A full day's fishing off Cape Bear simulating commercial operations yielded us 75 busneis which should permit profitable operations with prices for shellfish at present levals.

We took many fishermen. fish dealers and thoh processors out with us to demonstrate this method of fishing wher is new to our coast.- This left us only a little time to explore other areas. We found few rean quahaugs off Pictou Island, N.S. But we towed over only a small part of vast unexplored areas in this region that would seem from charts to be suitable habitats fior the species. We found none off Merigomish and none off Caps George. N.S. But we did make catches of 1 bushel per tow in Livingstone Cove, N.S. 9 on soft bottom. In this area we tested a New Bedroroctype (nonhydraulic) quahaug dredge. It fished as well as the Long Island hydraulic dredge here but when we tried it on hard bottom it caught only about a third as much as the Long Island dredge and broke the shells of one-third of its catoh. (See figure.)

Last autumn we assisted one operator, who accompanied us on several of our demonstration cruises, to rig and operate similar gear off Cape Bear. He was abie to take up to 90 bushels a day. We hope a fishery for ocean quanaugs will develop.

$$
\begin{aligned}
& \text { Jo S. MacPhaill }_{T_{0} \text { S. Medcof }}^{\text {E. Lurisee }}
\end{aligned}
$$

No. 24

## SHELLFISH AND PASSAMAQUODDY PCWER DEVELOPMENT:

Damming for power would alter habitats of shellfish living inside Passamaquoddy Bay in many ways. The most important would be:
(1) Reduction in tidal amplitude,
(2) Reduction in filushing rate,
(3) Increase in summer water temperatures.

The extents of these changes have been forecast by engineers and hydrographers. And we have been asked to predict, on the basis of their forecasts, fust how stocks of conmerciallyimportant shellfish would be afrected.

Shipworms（Teredo navalis）are nct ordinaxily rated as shellfish but they are bivaive molluscs wich plaritonte larvae． It is not generally known that they occur here unt we found them in two inlets tributary to Passamaquoddy．They spawn at， $15^{\circ} \mathrm{C}$ 。 With the expected increase in summer temperatores they woula quickly spread from present fooi and become abundart throughout the Bay．Reduced fiushing would retain the larvae in the Bay and favour abundance．Economicaliy they would quickly become the most important molluse in the area．All wooden struetures exposed to sea water would require regular and expensive protection against them。

Clams（Mya arenaria）are the most important shellfish now marketed from the Bay．This summer we studied their vertical distribution on tide flats，plotted beach concours．with assistance from Mr．A．J．Johnstone，and made forecasts．Damming would completely submerge present clam beds and eliminate the clam fishery until such time as young clams could estabiish themselves at higher levels in a new and much smaller intertidal zone。 The area that would be suitable for them would be about onewighth the size of the present stocked area．And is would take 4 to 6 years for clams to settle ard grow to markecable size in the new bed．It would probably be 10 years before they were sufficiently abundant to harvest．When harvested they would poobably yield $\$ 6,000$ per year instead of $\$ 45,000$ wheh is the long．term average． Changes in temperature and fushing rates wound heve monor effects on the populations．

Scallops（Placopecten mageilanicus）would be iavoured by reductions in flushing and increases in water teraperature．The larvae should develop faster so that fewer should be swept out of the Bay before they grew to settling size．

European oysters（Ostrea eduins）should find temperatures favourable for reproduction and growth after damming．They spawn at $15^{\circ} \mathrm{C}$ ．and it is too 001 d for them now．We are not sure，how－ ever，that they will establish themselves on this coast．

The native oyster（Grassostrea virginica）would probably find the water too cool even after daming．They spawn at $20^{\circ} \mathrm{C}$ ．

Other molluscs（eogog the deepwater clan Yoldia） living in the Bay are preyed upon by haddock and thus have an indirect economic importance．It is difficult to say how this mixed group would react to changes．

J．C．Medcof
Bayoara Shaw

## GROUNDFISH SUMMARIES

Groundfish research
Statistics and sampling
Cod growth in tanks
Magdalen Islands cod tagging
Gulf cod survey
Selection studies on Guif cod
Plaice studies
Haddock tagging
Haddock survey
Haddock discards
Selection and chafing gear studies
Assessing effects of the Georges Bank mesh regulation
A new role for study boats in assessing eftects of mesh regulation

Effects of mistakes in age determination on mortality estimates
Porrocaecum infestation in cod in captivity
Incidence of nematodes in crustaceans from the Bras d'Or Lakes in 1958


## GROUNDFISH RESEARCH

Total landings of groundfish from waters contiguous to the Canadian Atlantic coast have now reached two billion pounds. Canada takes more than one billion pounds, a eatch which is shared equally by Newfoundland with the other Atiantic provinces. On the Canadian Atlantic coast, the landed value of groundfish is about half that of all marine species.

The potential for increased total profits is the primary interest of the groundfish investigation. The various research projects are directed toward different aspects of this goal:

1. Increased landings. During the past 25 years, groundfish landings in Canada (excluding Newfoundland) have increased fairly steadily by some 300 million pounds. Greatex landings are anticipated. For each major stock of the important groundfish species, we are studying optimum size for first capture and optimum fishing intensity, as background for making best use of the resources available。 Effects of changes in fishing practices, such as different gears and larger mesh sizes, are being assessed. Density-dependent effects on recxuitment, growth, and mortalities are of current interest.
2. Reduced risk. Predictions of fluctuations in akundance are useful in reducing the risk involved in fishing operations. Tagging programs are helping to clarify seasonal variations in concentrations of fish. Survey projects are providing knowledge of the strength of premrecruit year-classes as a basis for making short-term predictions of changes in abundance. Correlations with hydrographic factors permit longer-term predictions, associated with climatic changes.
3. Increased efficiency. As landings increase, abundance of groundfish decreases. Costs of fishing have increased more rapidly than price of fish. Fishing for groundfish must compete with other progressive industries. For all of these reasons profitable fishing requires the most efficient methods available. During 1958 we have continued to assist the Development Service and Provincial Fisheries offices with commerciai trials of methods explored by the Station. Danish seining, pair trawling, gill netting, powermdory longlining, and Norwegian jigging all received attention. In otter trawling the advantages of manila over cotton, large meshes over small, and loose chafing gear over tight, were explored。 A trip on a large French otter trawler provided useful information on more efficient trawling methods. Trial and error exploration of known fishing methods appears to be reaching the point of diminishing returnso Further progress in this field will require research in gear technology and fish behavioux.

4．Increased price．Attractive fish products of high quajity lead to high demand and increased prices．Elimination of insh parasites is one method of increasing profits from groundfish． Lifemistory studies of the troublesome round worm，porrogecum decipiens，were completed during 1958．Experimental control of this parasite，by killing seals，has been recommended．

Progress in these fields of research has been accelerated by comordination with other agencies．Statistics have been improved by working closely with the Economics Service of the Department of Fisheries and the Bureau of Statistics． Industry has been most helpful in providing log records．recovered tags，and accommodation for personnel at fish plants and at sea． Close liaison was maintained with neighbouring groundfish research groups at St．John＇s，Grand River，and Wocds Hole．Participation in the research and management program of the International Commission for the Northwest Atlantic Fishelies has broadened our understanding of groundfish resources，and total proaluction from the ICNAF Area has increased substantially．

W。R。Martin
No ． 26

## STATISTICS AND SAMPLING

Six members of the groundfish statif are employed to collect and compile data on commercial landings．Tney colleet catch statistics and sample landings for size and age compo－ sition．

Statistics of area fished．gear fished and Iishing effort are collected by means of log books and interyiews from the mobile fleet．At the Halifax statistoles oifice these records are combined with purchase－slip statistics，collected by the Department of Fisheries，on trip cards．The cards are of Kwiksort－Pegbar design to facilitate analyseso During 1958， data on the 1957 cards were transferred to IBM caxds by the Bureau of Statistics in order to explore the adwantages of further mechanization。

These records are used to provide an annuai statistics report to ICNAF，and detailed catch and effort data for the principal populations of each major groundfish species．

Recent trends in landings are shown in Figure 1. Total groundfish landings on the Canadian Atlantic coast （excluding Newfoundland）have increased from 480 million pounds， round，fresh weight，in 1952 to 585 million in 2957 ．Most of the increase is attributable to a larger otter trawl fleet， which now takes about half the total groundfish landings．The increased landings have been taken from Nova Scotian grounds and the Gulf of St．Lawrence，rather than from the more distant Grand Banks．


Figure 1. Groundfjsh landings, Canada (excle dewfoundand), $9952-57$ 。

 II (May- July); III (Augowecto); IV (Novo- Jan. : OT fotter craw ? LI (longline), followed by mean length of sfube zi emo; numbea of otoliths (about i/5 of cod measured) in bracinera.

The recent upward trend is part of a lomererm increase in groundfish landings．In 1933 the total catch was oniy 250 million poundse less than nalf current landingso Mouh of the increase resulted from the greater importance of otece trawlers． In 1933 most groundfish were taken ry hook ant ilug and otter trawl landings were less than 20 mililon powas． $39105 \%$ otter trawl landings were 285 millon pounds，about have the tovel groundfish catch．This aonqersuon from Iline fishing to otter trawling changed the relative importance of species landed．In 1933 the groundfish catoh was largely cod．By 1957, at though cod landings had ircreased，they accounted for ondy half the groundfish landings．Haddock，plalce，rediish̆g halibut，and pollock were the other important species．

Increasing exploftation has been acsompantes by de－ creasing catch per unit of exfort of groupditsho an the Guif of St．Lawrence，for examples cod oatohes by raloweesem class draggers have dechined from about 40 to about 20 thousand pounds per week．Similarly，redfish catches by laxge otter trawlers have dropped below 2 thousand pounds per hour of deagging，and these vessels have extended their range or operations to Hamilton Inlet Bank，off゙ dadradoxg in oraer to maintadn prom fitable fishing．

Increased landings heye also been asso atated with smaller and younger fifsh in comeredel landing so Seek cod （over 10 lb．）no longer ontribute substantialisy io landings． The average size of cod in aragger landings $x^{\circ}$ rom the southwestern Gulf of St ．Lawrence dropped to 3.8 pounds $(59.8 \mathrm{~cm}$ ）in 1958 ， the lowest point since smal draggexs were intsoduced to the Gulf fishery in 1947。 In 1958 the aominant agemgroup was 5 years and less than $15 \%$ of the cod landed by draggers were odder than 8 years（Fig．2）。

Sampling of the major groundfish species was continued in 1958．About 19 thousand cod and 26 thousand haddock were measured．Otoliths were taken from one fifth of the fish measured．

Seasonal and geographic variations in the age compo sition of 1958 cod landings as read from otolthe by hyo Condon，are shown in Figure 2．The 1949 and the 1952055 year－ classes have been dominant on Nova Scotie gromado the 1950 and 1953 yearmclasses in the southerm Guif of Gt．Tewrence． Throughout most of the year the yorious cod fisherfes In ICNAF Subarea 4 depend mainly on small．young，finmatore exco older， mature cod are taken from spawning soneentretions during the first quarter of the year．

These statistics and sampling date on comercial landings form the basis for assessment of the status of the groundfish fisherfes．Mr．Sullivan is in charge of the statistical work，and Mre Fitzgerald controls the sampling program．Messrs．Fraser of Lunenburg，MacPherson of Bydney，
and Thurber of Halufax carry out most of the fiek programo Mrs．DeLong assists with the complation 0 statistose at Halifax．

W。F。MErgdo
No． 27

## OOD GROWTH TN TANKS

Experimentation on the controllea teeding of cod （Ann．Rept．1957－58，No．37）was terminated or september＇${ }^{2}$ 1958，with the accumulation of 5 weeks of continuous records． A preliminary analysis of the data was made by extracting figures for a year（ 52 weeks）of feeding and erowth in three tanks of largewsize and three tanks of smallwsize sod．

In order to separate focd requirements tor growth from food requirements for maintenence，one sanik edeh of large and small fish was kept on rations that netntined finem st constant weight。 Fsgures extrapolated from 4 g weeks or data showed that for the largensize cod $48 . \bar{z}$ ounces of zrozeng whole herring were required to keep thedx weight aonatant for the year．The initially smalles cod used tio onnes for maintenance during the same period．

An examination of growth data from the other tanks showed that increases in length and weight were greater for cod fed maximum amounts than for those on intermediate rations（see following table）．Differences were more noticeade in weight than in length measurementso It was also evident that at both feeding rates，the ratio of gromth in qeight to taitial weight was greater for the small metze groups ut codo

Average growth of cod and use of food during one year in caprividx

Rate of Initial growth Food Food for Food ror Convers．
feeding size Ltho ift sonsumed metntengace gawth factor

|  | O |  | In． | Oz。 | Oz。 | Ozi。 | Oz． |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Maximum | Lge。 | 26.7 | 4.3 | 26.2 | 106.7 | 48.5 | 58.2 | 2.2 |
| Maximum | Sm。 | 15.7 | 5.6 | 24.6 | 95.5 | 42.5 | 55.0 | 2.2 |
| Inter mediate | Lge。 | 26.4 |  | 16.0 | 87.3 | 48.5 | 38.8 | 2.4 |
| Inter－ mediate | Sm． | 15.8 | 3.5 | 13.3 | 69.0 | 42.5 | 27.5 | 2.1 |

By subtracting estimated mantenance rations from amounts of food consumed average quentitjes or food used for growth of individuals in eath of the four tanks were calculated． These figures were then divided by mean growth in weight to give conversion factors from food weight to fish weight．The table
shows that these factors were very similar for vagyag combin ations of sizes of fish and feeding rates. Botionage act smail cod on maximum rations converted food used for growth at the rate of 2.2 ounces of herring weigit to 1 ounce of cod weight. Fish on intermediate rations showed a singhty pooret conversion in large than in smail coa. In general, we may state that conversion factors for cod making intermediate to maximum growth range from 2.1 to 2.4 on a diet made up exclusively of whole herring。
A. C. Kohier

No. 28

## magdalen islands col taggun

Resuits of cod tagging at the Hagaiaen sulads for the combined years of 1957 and 1958 haye $y$ teldyd seb 4 niow. mation on cod stocks in the Gult of st, Hawrencs. lagging data for the period up to December 32, 1958, have been processed by the use of Kwiksort cards which provide switt agcess to data on movements, growth, and mortailides.

In late July and eariy August $1957, \mathrm{C}$. I. Bayers tagged l,201 cod from the M. V.J.J. Cowie. The cod were caught close to the Magdalens, about three quarters of them by hendilne and the remainder by otter trawi. Following leads suggested by earlier tagging studies, 911 cod were taged ty the wroter in the latter part of May 1958. They were obtained from cod and herring traps along the southeast coast of the hegdaien Isiands.

## Percentage recaptures

Detalls of the captures number tagged, tag type, and recaptures for the two years up to Decennex 31, 1958, are shown in the accompanying table. These results show higher recaptures for handlined cod than for those caught by otter towal. Disk tags gave higher returns than hydrostatio. over efourmonti period, August to November in 2957 and 1958, trapped ood gave higher returns in 1958 than either handl ined or dites mbawled cod did in 1957. There are many variabies to consider in such a comparison, but it is thought that tagging mortailities of cod tagged from traps are probabiy lower since the fish were in vigorous condition at the time of tagging.

## Movements

The locations of recoveries in 1957 and 2958 are shown in the accompanying figure. The first returns of cod tagged in July 1957 showed up close to the tagging area. Former studies showed few returns of cod tagged off northern New Brunswick and Cape Breton Island around the Magdalens, suggesting the existence of a separate stock in this latter area。 However, from January to April, tagged fish were recaptured outside the Guiti along the 100-fathom contour down as far as Banqueteatio The tollowing

## Magdalen Islands cod tag recoveries by year, type of tag, and method of capture, up to December 31, 1958.

|  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Method of | No. | Tag | No. | \% | No. | \% |
| capture | tagged | troe | recovered | recovered | recovered | recovered |

## 1957 tagging

| Otter trawl | 1775 | Hydrostatic | 8 | 4.6 | 14 | 8.4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Ctter trawI | 295 | Disk | 5 | 1.7 | 26 | 9.0 |
| Total | 470 |  | 13 | 2.8 | 40 | 8.8 |
| Handine | 425 | Hydrostatic | 19 | 4.5 | 40 | 9.9 |
| Handline | 306 | Disk | 11 | 3.6 | 40 | 13.6 |
| Total | 731 |  | 30 | 4.1 | 80 | 11.4 |
| GRAND TOTAL | 1,201 |  |  | 43 | 3.7 | 120 |

1258 tagging
From cod and


spring returns came in from the original tagging avea，and iatex in the summer spread through the Gulf of St．Rawrenee with concentrations at Bonaventure and Miscou Islande．Cod tagged in May 1958 spread through the Gulf in the same summes，staxting in June．The 1957 cod were apparently tagged too late the the sumner to show a northern movement into the Gulf during the same summer． These patterns of movements out of the Guif into deeper water in winter，and into shallower water of the Guls sumer are in general agreement with other tagging expewiments eawrisd out in the Gulf of St．Lawrenca．Magaalen Islands cod appear to be part of the New Brunswick Cape Breton cod stock．

Although two seasonal migration patterns appear clear， it should be remembered that fishing intensities probably exaggerate the picture。 The Gulf fishery is in spoing to fail only when waters are ice firee，while the Laurentian Channel fishery off Cape Breton is largely in winter arc early spring． In 1958 about one quarter of the winter retaras were by European vessels，Spanish，French，and Portuguese，while the remainder and nearly all summer returns were by Canadian boate．The smail amount of ice in the winter of 1958 favourea the winter fishery and the higher returns by Canadian vesselso

D．M．Powles

No． 29

## GULF COD SURVEY

The Guif cod survey started in 1957 （Ando Reptid 19570 58，No．38）was continued in 1958．Fieid obsetvations were carried out on the research vessel JoJ．Cowie cap\％。C。J。 Bayers）。A $3 / 4$ Yankee 35 otter trawl with a $1 \frac{1}{4}$ winch mesh cover was used throughout．In addition to observations on length， maturity stages，parasites，and stomach contents，a survey of the bottom fauna at some stations and of plankton（eges and larvae） at all stations was made in 1958.

From May 24 to November 28， 156 forty ifye minute tows were made．A total or 5,163 cod were caught．The average number of cod per tow was much lower in 1958 than in 1957： 33 compared with 82。

## Size composition

The size compositions of cod caught in the notthern and Miscou sectors and in the southern sector or the area surw veyed during the 2nd（May to Juiy）and the 3rd quayters（August to October）of 1957 and 1958 are shown in the aveompanying figure．The size compositions of cod landed at Caraquet．N．B． during the corresponding periods are also shown．Frequencies are expressed in percentages．


Size compositions of cod caught with a covered codend (Guif Survey) and of cod landed by commercial draggers at Caraquet, N.B.o during the 2nd and 3 rd quarters of 1957 and 1958.

The modal sizes observed in the commercial iandings appear in the survey catches also．In the 2nd quarter of 1957 landings showed a mode at 61 cm ．This corresponds to the 55 to 61 cm ．mode of the survey catches during the same period． Similarly，the modal sizes of 61 and 85 cm ．in the landings of the 3 rd quarter of 1957 correspond to the ones at 61 and 82 cm ． in the survey catches of the northern and Miscou sectors during the same period．In 1958 the modal size of landings in both the 2nd and 3 rd quarters was 52 cm ．This corresponds to the length mode at 46 to 52 cm ．in the survey catches of 1958 。

The figure also shows that small cod modal sizes of 22 and 31 cm ．in the 2nd quarter and 25 and 34 cm 。in the 3rd quarter $m$ formed a smaller proportion of the survey catches in 1958 than in 1957．

Growth
Preliminary age determinations indicate that the modal lengths of 22,31 ，and 43 cm 。 in the survey catches of the 2nd quarter of 1957 belong to the 1955，1954，and 1953 yearmolasses， respectively．The $19 \times \mathrm{cm}$ ．group caught in the southern sector during the 3rd quarter of 1957 presumably beiongs to the 1956 yearoclass．By following these modes from one quarter to the next，some idea of the growth of Gulf cod is obtained．These are shown in the following table：

Modal sizes in cmo of some yearmalasses in
the 1957 and 1958 survey catohes

$$
\frac{1957}{\text { 2nd quarter } 3 \text { rd quarter }} \frac{1958}{\text { 2nd quarter } 3 \text { quarter }}
$$

| 1955 | 22 | 25 | 31 | $?$ |
| ---: | ---: | :---: | ---: | ---: |
| 1954 | 31 | 37 | 46 | 46 |
| 1953 | 43 | 46 | 55 | $?$ |
|  |  | Southern sector |  |  |
|  |  |  |  |  |
| 1956 | 0 | 19 | 22 | 25 |
| 1955 | 22 | 25 | 31 | $?$ |
| 1954 | 31 | 34 | 40 | 46 |

Year－class

Northern and Miscou sectors

These figures indicate a growth of about 9 to 12 cm o a year in Gulf cod of age $\quad$ groups 1 to 4 。

## Prediction

On the basis of the data shown in the table， $\operatorname{cod} 43$ to 46 cm 。long（1953 yearmclass），caught during the 1957 survey （see figure），appear to make up the bulk of the commercial landings in 1958 when most cod were 52 cm 。long and 5 years old．

Similarly the 460 m ．cod（1954 yearoclass）observed in the 3rd quarter of the 1958 survey，especially in the northern and Miscou sectors，are expected to be 52 to 55 cm 。 10 ne （ 5 years old）in 1959．

As seen in the figure，more than twice ae many cod 46 cm ．long（ 1954 year－class）as cod 52 to 55 cm 。Long（i953 year class）were present in the survey catwhes of the 3ra quarter of 1958．If the 1958 survey catches are an indication of the relative strength of these two year classes it is anticio pated that the 1954 yearociass will replace the 1953 yearoclass as the dominant one in the 1.959 landings in norther New Brunswick．As in 1958，the bulk of the 1959 landings will be made up of 5－year coid cod．As a result．no appresiabie ohange from the small average size of cod landed in 19504 a artsipated in 1959。

Yives Jean
No ． 30

## SELECTION STUDIES ON GULF COD

Up to about July 1,1958 ，codends of a mesh size smaller than the $4 \frac{1}{2}$ inch reguxation were still in use in northern New Brunswick．After that date，however，most draggers used codends averaging $4 \frac{3}{4}$ inches in mesh size．It was therefore possible，as in 1957，to study the selection of vawious mesh sizes during commercial fishing operations．The resuits were compared with those of fine mesh survey studies and a mesh selection experiment with a $5 \frac{3}{4}$ inch mesh manila coaenc．

From May 26 so August 16，an observer：W。E．Russell， made 10 trips aboard commerclal draggers．Fowe taps wese made on draggers using small－mesh（ 3 to $4 \frac{1}{4}$ ino）and 5 trips on draggers using large mesh（ $4 \frac{3}{4}$ ino）codends．These araggers fished mostly on the Bonaventure Island grounds．A tenth trip was made in Chaleur Bay．Sea samples of up to 2，000 and shore samples of about 400 cod were measured for each trip．The 1957 data indicated that fish as large as 59 cm ．were discarded by commercial draggers．For this reason，sea and shore samples were equalized above 59 cm 。（Ann．Rept． $1957 \mathrm{co5}$ ，No．29）．In 1958，however，few fish below 50 cm ．were discarded．Sea and shore samples were therefore equalized above 50 cm ．

By comparing the numbers of cod caught and the numbers of cod landed in 1958 ，percentage figures for discards were obtained．The average discards on 4 trips by smallwesh draggers off Bonaventure Island were $23 \%$ by number and $9 \%$ by weight．The discards on 5 trips by large mesh draggers on the same fishing grounds averaged $12 \%$ by number and $5 \%$ by weight． These results confirm those of 1957．They indicate that $+\frac{3}{4}$ inch mesh codends allow the escape of a substantial number of small cod，and reduce discards by about one half．This is also evident in the lower portion of the accompanying figute where


Lergth in em.
Size compositions of (A) cod caught with covered colend, and of (B) cod caught with smallwesh (3 to $4 \frac{1}{4}$ inch) and largemmesh ( $4 \frac{3}{4}$ inch) codends, and of cod landed in northern New Brunswick in 1958. All frequencies equalized abcye 50 cm . Number of fish in brackets.
the size compositions of cod caught by smail and largemesh codends are plotted against size compositions of cod landed during 9 wastage trips. Syze compositions of cod caught with a fine-mesh codend (No. 29) are shown in the upper porvion cf the figure for comparison.

In order to consider the potential tox meleasing sifl greater numbers or small cod which are currenty wasteds the selectivity of a larger mesh coderid was tested in $49580^{\circ}$ The mesh selection experiment was carried out on the researah vessel J. J. Cowle with a $5 \frac{3}{4}$ inch mesh $75 / 4 \mathrm{ply}$ mantla codend with a fine-mesh cover. The length at which $50 \%$ of the cod escaped was 48 cm . A selection factor

$$
\left(\frac{50 \% \text { retention iengtin }}{\text { averagemesh size }}\right) \text { of } 3.3 \text { wa.s found. }
$$

When sizes of cod caught with $4 \frac{4}{4}$ winch codends furing normal. fishing operations were compared with sizes of coc caught with smalier meshes $-\infty$ to $4 \frac{1}{4}$ inches won seiection factors ranging from 3.3 to 3.7 were found.

In predicting the effects on landings of mesin sizes larger than the $4 \frac{3}{4}$ inch presentiy in use wariations in selection factor as well as in size compositions commerciel cuil and fishing efficiency of larger mesh codends must be takea into account. For instance, the $50 \%$ cuil poinc for \% wascage trips in 1957 varied from 44 to 55 cm . (average 50 cmo . This point varied from 43 to 50 cm . (average 46 cm ) for 10 restage trips in 1958. In order to measure the maximum exd minimina eifectis of $5-$ and $5 \frac{1}{2}$ inch mesh on lardings, the Lowest selection factor, 3.3, was applied to the 2957 catch data for large fish and a high commercial culi point. An fncrease of $5 \%$ in Lishing efficiency was assumed. Similarly, the highest selection factor, 3.7, was applied to the 1958 cateh data for smallex fish and a lower commercial cull point. No increase in efficiency was assumed. The resuits are shown in the following tables

Estimated effects of 5 m and 5 toineh mesh on discarig and landings in northern New Bruoswicic

| $\begin{gathered} 50 \% \text { cull } \\ \text { point } \\ \text { cm. } \\ \hline \end{gathered}$ | Selection factor | $\begin{gathered} \text { Efficyenoy } \\ \text { increase } \\ 1 n \% \\ \hline \end{gathered}$ |  |  | Initial effects |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | \% discard by numbers |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
| 50 | 3.3 | 5* | 12 | 6 | が | $+4$ |
| 46 | 3.7 | 0 | 1. | 0 | 05 | $\cdots$ |
| *for fish above $100 \%$ cull pointo 1.0 e, 59 cmo |  |  |  |  |  |  |

The above table shows that, with the current siwe composition of catch and culling practices most unmarketable sizes of cod would be released by $5 \frac{1}{2}$ inch mesh nets. The initial effeets of a 5 inch mesh on landings would probably range from a loss al about $5 \%$ to a gain of about ty. Initial effects of a $5 \frac{1}{2}$ incor mesh on landings
would probably range from a gain of about $4 \%$ t．o a loss of about 15\％．The longotern effects would depend on survival and growth of the cod that escape from the large meshes．

Since no apprectable change the size composition and cull size is antrictpated for 1959 the use of a manch mesh might lead to apprectabie inituai losses of ommerciala size cod．On the other hand discards woule be roduced to negligible quantities，and surwival and growth of releasel fish might more than compensate for inftiai losses．

Further observations on the effects of the regulation mesh size（ $4 \frac{1}{2}$ ino）appear to be destrable before commercial trials with a larger mesh size are undertaken。

Ywes Jean
No 。 31

## PLATCE STUDTES

Investigations of the American platoe，Hepogiossoides platessoldes were carmieg cut in conjunction whth the 1958 cod survey program in the southwestern Guili of Sto Jawnence．A tagging program was indtiated and reguiar sampies reae taken at three of the survey stations represerting depteqgit depthso Two additional samples were obtained sron within ted Bay of Chaleur by Dr．A 。 Mercotwe of the Man ine Biowogioai station， Grand Rivers P 。Q。

## Tagging

A number of plaice were tagged to fnitiace studies of mortalities，movements．and growth of this important species． In the latter part of sune 320 plaice were tagged southeast of Shippegan Gully in the iocalfty shown in Figure io The writer
 of 30 fathoms with a $3 / 4$ \＃35 Yankee otter trawl。 To dateg 86 tags or $27 \%$ have been recovered．rhis indicates a rather high rate of exploitation although it should be noted that fishing intensity in the particuiar area of tageing during 1958 was slightly higher than formex yearso

Tagged plaics were retaken during wher first summer in numbers very closely related to the numbers of earn lerigth tagged，except for small plaiee．Onity $15 \%$ oi those plaice under 30 cm 。 were recaptures．The $50 \%$ retantan potnt for the $4 \frac{1}{2}$ minch manila codend used by commexctal boates is $23 \mathrm{~cm} \cdot$ a figure too low to be the prinary cause of low recaptares：It is felt that low racaptures at lengths below 50 omo mene dus to tagged plaice belng owerlooked by the idshermen．Fery few fish below this length are landed at plantsg whereas many are caught and discarded at ses．


Figure 1.

Length - Weight Relation
Plaice, Oct. 1958
Caraquet, N.B.


Figure 2.

There were indications of movement offshore and away from the area of tagging during the summer，but the majority of plaice appeared to remain withen the immediate tagging area． Two plaice recaptured in September had moved about 100 miles north，one to the Bay of Chaleur and the other to Bonatenture Island．No returns in wich the location ot recapture was questionable have been plotted in Flgure 1.

In October， 180 plaice were tagged northeast of Miscou Island in a depth of $30 \times 40$ fathoms，and $i+7$ were tagged east of Orphan Bank in $50-60$ fathoms Plaice of lengths petween 15 cm 。 and 25 cm 。 were marked with dagger tags，while disk tags were used on fish above 22 cm 。 ${ }^{2} \mathrm{n}$ length．It is hoped by this overlap to obtain information on the relative effictency of dagger tags．Five disk tags have been returaed to dete． 312 from the area of taggine，while as yeto no daggex tags have been recovered．However，fishing in the area ceased shortly after the end of Oetober and will not be rasumed untis spring．

## Sampling

Approximately $I_{8} 200$ platee were smpied $n y$ recording the length，sexg and state of the gonads．The otollins were removed from one third of these and food onganimms were noted．

Spawnig took piace mostry duxing hay and fato June。 Plaice appeared to reach the spaming phase earaler in the shallow water of the Bay of Chalsur tham in the slightly deeper water around Miscou Islando Shoee oxiy mamping it the deepo water station gave small catches，comsisting mosciy of immature fish，further work will have to be done along this line to ensure that the samples token are xepresentative of stocks present in the area．Female gonads begen to ripea again in the same order with respect to areas，ztaring in Septembero in the shallow waters and October in the deeper waters．

Size at maturity for females was roughly equal over the area，at 35 to 40 cm 。 Definition and interpretation of the male sexual stages require further studies if we hope to comm pare areas with respect to size ar maturfifo

Otelith readings and growth data from taggeng will provide further information on whether reaj．differenees exist within the plaice stocks in the southwestern Gulf of St． Lawrence．Present indications are that there is one large stock of plaice in this area，with smail jocal vartationso

Studies have also been inttated in lengthwedght relations of plaice，a sample of which le plotted on a logelog scale in Figure 2．The sample was taken in Oevober from Bonaventure and Miscou Isiand grounds．A straishtwine relationship was obtained with a slope of 30.3 ．No differences between males and females or between the two areas are apparentio

## HADDOCK TAGGING

Only 38 haddock were tagged in 1958 ，but returns rrom earlier taggings have prowiced new dnformatson about haddock stocks and migrations．Details about the haddook taggings in 1956 and 1957 are summarimed in the poinowng table：

Areas，times，and number of haciock taged in $1956.57^{\circ}$

## Region

Northumberland Strait
Browns－LaHave
Passamaquoddy Bay
Grand Manan Channel Digby Neck


1956
1977 Naw 。anto
1957 Now。 जDew。
1957 Dec．

Nunbeg
Ne thod of Gaptcie 0 ose\％कomg petes mawi otter trawl 70 Otter trawl

Total recaptures through 1958 have reached about $13 \%$ of those tagged in the 1956 Northumbedand strait tagging about $4 \%$ for the 1957 BrownscolaHave Eank tagging a and about $16 \%$ for the Passamaquoddy Bay of Fundy taggineo All these were tagged with plastic diske ettached doxsaly through the flesh．

## Northumberland Strait tagging

Recaptures in 1958，while Jowes tham in $295 \%$ show the same seasonal pattera of distributun feconibed tu last yeais report）．Winter haddock reraptaees came fom onans of shore from Nova Scotia；spring and late fall recaptures were mainly from the east coast of Cape Bretono For the remainder of the year， recaptures were scattered but most came from the region of tagging， around eastern Noxthumberiand strait．

BrownsmaHave and Bay of Fundy taggings
Locations of tagged haddock recaptures between December 1957 and November 1958 are shown in the accompanying ingure． During the winter of $1957=58$ ，of 13 reported recaptures． 9 came from the region of taggingg 3 from off Lockepordo $N$ 。Sog and 1 from deep water of the South Channei region in the culf of Maine．Oniy 3 haddock were recaptured in the summex of 1958 ， 1 from Digby Neck， 1 from Browns Bank and 1 1rom Chedabucto Bay． Recaptures during the summer of 2957 （not shown $2 n$ fygure）were low and mainly from inshore grounds off westesn Nova Scotia．

Haddock tagged at the moith of the Bay of Fundy scattered widely during the succeediag winten fsee filigurejo 0r those tagged in the Passamaquoddy Bay area many were secaptured around Jeffreys Ledge and the South Chanmel zeguon or the western Gulf of Maine。 Significant numbers were aiso reporved recaptured from the area between Digby Neck and Browns Bank．or haddock


Recaptures of haddock tagged in 1957.
tagged oft Digby, 6 were recovered $i x$ this pertong $i$ mom Jeffreys Ledge and 4 from Brownobasearo Benk aise。

In the sumner of 1.958 e recaptares of Passmaquodagy
Bay tagged ilsh were mainiy fron the regica af teggre. Ah occasional recapture was reported from of Cape cod, ceorges Bank, Digby Neck, Scott's Bay, and St. Margaret's Bay. Three of the Digby Neok tags were retakeng on georges bam and the other 2 toward the head of the Byy of Funty.

## Discussion

Resuats from all the summer and rall hadook taggings have shown extensive seasonal migrations. The results suggest a fall-winter movement to the west and scath and a remurim noves ment by the followng summer to the toggne rezfon。

That Brown Bank and Georges Pum hadaock are separate stocks has been postruated on the basis of divierthoes ia growth, age, and size composition and vertebrel councs (use dempowate Fundian Channel between these baris us suggested as a barriex). The results from tagging on Browns Bank tand Uoso tagging on Georges) support this postulationo only a haddont tagged on Browns-LaHave have been retaken on Georges and South Channel in a year and a half following taggingo

Results from the winter tageing on Eromas Bank indicate a local stock with some fust movine an anaz to thehore grounds west of Cape Sabie. However, zesults of a hadaots tugging at Lockeport (1953) and these tagginge th the Day of rudy suggest that concentrations of fish from both these reghoms help support the wintermpring haddock fishery in the Brownematare region. Problems concerning muing of atoks may be furthew resolved if tagged haddock continue to be recaptuaed watir numbers for several years.

> M. D. Morrasken
> G. Ro Barmett

No. 33

## HADDORK SURVET

In August 1958 a survey of groundeish popalations on offshore Nova Scotian Banks was begun. The suryey program is aimed at measuring recruitment and determining the influence of environmental factors on the abundance distribution, and movements of groundfisho The resulte should leat to shortmerm predictions of the relative abunance of tish to the fishery. They also provide material to assess grewth rates of young fish not avallable tron comerchal landinge These data are necessary for considering the populatom dynamys of the stocks.

The area surveyed was Limited co regions ot Emerald and Sable Island Banks where the main species caught was haddock. From August 13 to 28, the Mo Vo Harengus (Capto Ho Ho Butier) made 48 tows of 45 minutes duration at the 30 stations shown in Figure 1. For all tows a \#36 manis trand (60wt. hesdrope) with a nylon eodend of $45 / 16$ mina mest mas wes. The eodend end was covered with a looseg $4 \frac{1}{2}$ winch mesh coves of Nyako

Haddock, cod, and on oceasion other species. if they predominated in the catoh, were measured to the nearest cent metre. Whole catches were measured whert grssibles and if they were too larges the catch was sampled. Gatobes in sedend and. cover were recorded sepaxately. These date provided incidentad information about selection oi the codend. on a pepresentative
 group) information about sex. goned developnent, perasites, ad food was recorded.

## Results

In the shailow water around sebse Isiand 10 w 20 fathoms haddock around 20 mio in length were most mumerous (Figo i)。 Probably these were the 1957 year-class (age determinations have not been analysed yet. o other sizes of hadack were not caught in large numbers. In deeper watex 20 fathoms smanest haddock were reduced in nombers. but haddock of nitermedjate size, with modes at 30 and 40 go wewt nunerone Larger hsddock, 48 cm . and over, were not as mumerous as joum amigar depths on top of Emerald Bank. In atill deeper water fef fathoms sontho west and west of the kanks heodock around er omo recurered again along with fair numbers ar large haddock but atormediate sizes were scarce. In the decpest watex northeast on Emerald Eank only redfish were taken。

Small numbers of cod were caught at almost all stations where haddock were taken but not in the shallow water on the west bar of Sable Island.

The data on parasite infestation and $\mathcal{L} 0$ od organisms have not been extensively analyzed. Oray a few specimens of the parasitic copepody Iernaeocera branchizeps were seen or ood gills and none on haddoko The parasitic sopepod Clavelia spog was more common, cocurring on the gills, anvs, fins, and in the buccal cavity of both species. However. their occurrence did not follow any easfly recognizable pateenn whith coula be used to recognize stocks.

Haddotk were feeding chiefly on botiton invervebrates. These included sea urohins, molluscs, cemmt arabsand sand dollars. Other species of invertebrates, auch as isopods, amphipodsg euphausids and mysids were commono wish wexe not an important part of the food in these colleotions.


Figure I. Size composition or haddoek by depth .... Subdirasion 4 , August $19>8$.


Figure $\underset{\text { Subdivision }}{\text { Stw. }}$ Age of hadack in otter trawi landings from

## Discussion

Although the size distribution of haddock has been presented in relation to depth，there does not appear to be a simple relation to any one environmental factor．Bottom temperatures are also related to depth，with warmest water in the shallows around Sable Island，coldest water on top of the banks in moderate dopths，and warmer water recurring again deeper．However，the absence of haddock northeast of Emerald Bank，and the apparent concentration of haddock on top of Emerald Bank，are not satisfactorily expianned by either depth or temperature as limiting factors．Further exploration of variations in other environmental factors and of the seasonal distribution of haddock is planned．

Until 1958，measures of abundance on yearomasses depended mainly upon sampling for age and Iength haddosis landed by commercial vessels．The suivers begfn to provide information about ycunger and smajer fish whioh soould become useful for prediction or sommercial limatags．

The 1952 yeareclass of hadock has been dominant in samples of the commercial landings from Nova，Gcotian Banks since 1956 （Fig．2）．It has been particularly important to Canadian landings from offshore banks throughout the years 1956 and 1957． Preliminary accounts of the 1958 hadjock fishery suggest that it has been reduced during the summer month．No outstanding year－ class since that of 195 has appeared the the tishezy．

> F. D. MCCracken
> N. Mo McFarlane

No。 34

## HADDOCK DISCARDS

Between May 23 and August 25 a student assistan L．L．MacLeod，made sis trips on comeroiah trawlexs from Nowa Scotian ports．Five trips wera on Large otter trawlers from Halifax，the sixth on a smalle ottea trawlex from Glace Bay． Fishing was mainly on Banquexeau，Sable Island Bank，and Middle Ground in ICNAF Subdivisions $4 V$ and $4 W$ ．

Sample measurements of haddock catches have been compared with samples of landings to obtain calculations of quantities and sizes of discards．In addition estimates of catches and discards for all species were recorded for each tow． Estimates of quantities of haddock caught and lincied are summarized in Tables I and II。

Discards from trips in which all haddook landed were gutted are summarized in Tabie I。 Discards ranged from 3 to $7 \%$ by weight and 6 to $15 \%$ by number．Calcalated total discards for all three trips were about $5 \%$ by wight and $10 \%$ by number。 These calculations agree well with visual estimates by the observer who estimated discards of trom $3 \$ 012 \%$ by weight．

Discards from trips in which part of the haddock landed were round（ungutted）are sumnarized in Tatie II。 Best calculations for the round haddcck portion of trips $D$ and $E$ are that 2 to $4 \%$ by weight were discarded．Discarids were lowex than for the＂gutted＂trips，A，B，C．Celculations agree with the observer＇s yisual estimates．

Table I。 Discard estimates from＂gutted＂haddock trips，May－ August 1958；mesh size $+\frac{1}{2}$ inches or more；top chaifing gear of netting and／or cowhide．

| Trip | Weight <br> landed | $\begin{aligned} & \text { No. } \\ & \text { landed } \end{aligned}$ | Weight caught | No． caught | \％discarded each trip |  | \％weight dis． carded（sea esidmates） |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Cwt | 100 | Cwt． | 800 | Wt． | No． |  |
| A | 955 | 392 | 1027 | 46.1 | 7 | 15 | 3 |
| $\stackrel{\text { B }}{\text { C }}$ | $\begin{array}{r}530 \\ 1390 \\ \hline\end{array}$ | 220 <br> 592 | $\begin{array}{r}554 \\ \hline 432\end{array}$ | 247 630 | 5 | 11 | 12 |
| Total | 2875 | 1204 | 3013 | 1338 | to 5 | to |  |

Table II．Discard estimates from＂round＂haddock trips，May－ August 1958；mesh size $4 \frac{7}{2}$ inches or more；top chafing gear of netting．

| Trip | Weight | No． | Weaght | No． | \％discarded each trif |  | \％weight dis carded（sea estimates） |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | landed | landed | caught | caught |  |  |  |
|  | Cwt。 | ${ }^{\circ} 00$ | Cwto | 000 | Wt． | No． |  |
| D |  |  |  |  |  |  |  |
| gutted | 251 |  | 398 | not | 37 | 56 | 34 |
| round | $\frac{449}{700}$ | 300 | 468 | stimated | （14） |  | $\frac{5}{18}$ |
| E |  |  |  |  |  |  |  |
| gutted | 27 |  | 42 | not | 33 | 47 | 12 |
| round | $\begin{array}{r} 563 \\ 590 \\ \hline \end{array}$ | 332 | $\frac{575}{615}$ | stimated | $\underline{2}$ | 5 | $\frac{2}{3}$ |
| Total | 1290 |  | 1.482 |  | 9 |  |  |

Calculations of the discards during the gutted portion of trips $D$ and $E$ are much jess adequate。 Changes in cull between the round and gutted portion of the trips affect the application of the shore samples to this portion of the trip．For the gutted portion of trip $D$, discards were calculated at $37 \%$ by weight （observer＇s estimate $34 \%$ ）．For trip E，calculated discards are
$33 \%$ for the gutted portion of the trip：onserveris estanates are only $12 \%$ 。

## Discussion

Numbers of discards depend upon the sise composition of fish available to the fishery，selestion by the gears and culling by the fishermen．All these are variable and depend upon area，seasong mesh size，and market conditions．

Previous sampling for wastage in 1951．52 snowed that commercial smail－mesh nets（about $27 / 8$ ino）were catching haddock of about 30 cm 。 in length in quantity．Discerds in the summer of $1951 m 52$ ranged between 40 and $60 \%$ by weight，Tirtuaily all haddock below 40 cm ．and some up to 45 cm ．in length were discarded．

In 1958，discards were mach Delow 295 －52 Ievels． Small fish were still found on the grounds tished by commercial trawlers．Results of the coveredonet survey on Sabie Isiand Bank showed haddock of about 30 cm ．in length to be numerous（see accompanying figure）．These would have been taken and discarded by small－mesh commercial nets，but were being released by large－ mesh nets of $4 \frac{1}{2}$ inches or more．

Most haddock caught by the largemesh nets in 1958 were being landed（see flgure）．Culling practices haye changed quite markedly since $2951-52$ ．While hadask were besigg saved round，virtualiy all fish down to 38 gimene being seved．Even when haddock were being gutted，vircually all haddoek down to 40 cm ．were saved．

It appears that the large．omesh nets of th whaes or slightly more are functioning to release virtually ait heddocix below commercial size．They are also releasing some Laddsck between the 35 m 40 cm 。 range，although the data from these commercial trips are too variable to allow selection exres to be drawn．Probably some haddock being released cound be landed as round haddock，but selection by the $4 \frac{1}{2}$ minch mesh approximates the cull for gutted haddock．It appears that mesh slzes appre－ ciably larger than $4 \frac{1}{2}$ inches，manila twine（or equivalent）， would release fair quantities of currently marketable haddock．

## other species

Estimated weight of discards for some other commercially important species are summarized in Table III．About i3\％of the cod caught were discarded，all under about 2 pounds in welght． Almost all the pollock caught were landed．on eamy twips 2.11 yellowtail were discarded，principaily as a reesult of the chalky condition of the fiesh．As the season progressed，discards decreased to about $5 \%$ for the final trip．Piscards of witeh were negligible．About $20 \%$ of the smalier redfish were discarded．


1. Haddock lengths, Sable Island Bank, covered-net survey.

2-4. Haddock lengths caught and landed by commercial otter trawlers from Subarea 4, May-August 1958.

Of non commercial species．relatively small quantyses of skate and silver hake were caught and all were discarded．

Table III．Discards of species other than haddowir wamated from observer＇s log records．

| Species | Estimated weight caught | Weight landed | Estimated \％weight discarded | Remarks |
| :---: | :---: | :---: | :---: | :---: |
|  | Cwt． | Cwto |  |  |
| Cod | 1449 | 1254 | 13 | Pish below 45 cm |
| Pollock | 544 | 543 | 0.2 |  |
| Yellowtail | 721 | 322 | 64 |  <br> discaide decrease <br> witin time aftex <br> spawrune。 |
| Witch | 266 | 256 | 4 |  |
| Redfish | 51 | 41 | 20 |  |

F。D．MaCracken
No． 35

## SELECTION AND CHAFING GEAR STUDIES

Mesh selection studies were continued on a reduced scale in 1958．Information about selection for a $45 / 160$ inch mesh nylon codend was obtained incidentally durirg the haddock survey on Sable Island Bank．In addition，between September 3－ 6，tests of topside chafing gear were made on Ememaid Bark， where catches were mainly haddock．Further teste of topside chafing gear followed discussions of this problem at the 1950 meeting of ICNAF．Conclusions at this meeting were：that topside chafing gear is widely used；that information aboue effects on escapement is weak；and that top pricrity should be given to covered－net trials with the type of topside chafing gear specified by ICNAF。

## Methods

For these experiments the M．V．Earengus towed a \＃36 manila trawl（ $60 \times f t$ ．headrope）in tows of $45-$ minutes duration． Twenty－one tows during the haddock survey，with a nyion codend of doublemstrand， 85 mard braided twine，seem suitabie for obtaining selection results．For all experiments a cover of 13 $\frac{1}{2}$ inch stretched mesh Nyak twine was used．

For the chafing gear experiments a doubuewstana manila codend of 75 myard， $4 \omega$ ply twine was usea．Mesh sige averaged about 5 inches with considerable varoution eloge the length of the codend．The aft quarter，which seems most


Selection curves for haddock with nyion and manila codeads. (Note transposition of both horizontal and verticail scale.)
important to escapement of fish with moderate catohes, averaged about $51 / 8$ inches. Twelve successful tows were made with the covered codend alone, then 8 tows with topside chafing gear added.

ICNAF specifications for chafing gear were used. The chafing gear was 18 meshes long, of new netting, attached across the codend 4 meshes ahead of the splitting strap, and along the laceage to 3 meshes from the codline mesh. Internal mesh diameter of the chafing gear became about $47 / 8$ inches. Visual inspection indicated that about the 4 aftermost meshes were clear. The top chafing gear was $1 \frac{2}{2}$ times the width of the codend, although the width was not wholly effectite since the cover over the whole was only about $1 . / 3$ wider than the coderd itself。

All mesh measurements of codends and chafing gear were made with the vedgewshape gauge specified by ICNAF。

## Results

Catches throughout were chiefly of hadeset. About 3,000 haddock were taken in the 21 tows with the 4 gitcodneh mesh nylon codend. Number within the sedection zange of this mesh size seem adequate。 The resulting selection wove is shown in the accompanying figure. The $50 \%$ retentwo length for the $45 / 16$ minch nylon mesh was about 43 am. 2 in the selection factor about 3.9 (selection factor $s$

$$
\frac{50 \% \text { retention length }}{\text { mesh size omo }}
$$

During the chafing gear experiments cerches of haddock averaged about 1,000 pounds per tow. Selection uyres tor tows without top chafing gear and for those with top ohetong gear are compared in the figure. There was iftile dyfexense bevwen the results of the two experiments. The $50 \%$ retertace lemgh with top chafing gear was slightiy highero abou: $4 \%$, wersual 41 mmog than without top chafing gearo This smail aitueneace is attrim buted to experimental errox and possibly to a sidge increase in mesh size during the course of the experimentio gevestion factors for the manila codend were about $30.2-303$ (variation th mesh size along the length of the codend reduces the precfsiov of this estimate).

Results of these experiments continue to seow a markedly higher selectivity for nylon than for mandeo Previous experiments indicated that codends of 4 winch mesh. sLigiewstrand nylon, and $43 / 8$ winch, doublecstrand, heapy twige mylon were equivalent in selection to a codend of $4 \frac{1}{2} c 9 n \omega_{2} \mathrm{~g}$ dowis.estrand manila. The current experiment with a mediumowelgite nylon twine indicates that for this netting a 4 winch doniviewstrand mesh is equivalent in selection to a $+\frac{1}{2}$ winch mesh manila.

Earlier experiments have shown that a dodbleciayered codend reduced escapement of fish. They have also shown that a chafing gear about $10 \%$ widex than the codend reducea eseapement. However, the current experiment has shown thet ohafyng gear $1 \frac{1}{2}$ times the width of the codend, and to ICNAF epesexcestous described above, did not reduce escapemert.

> F.D. MeCrecken

No • 36
ASSESSING EFFECTS OF THE GEORGES BANK MESH REWUEATYON
As recommended by the ICNAF Committes our Researeh and Statistics the stafif of the Biological Station St. Andrews, N. B.g has continued to coooperate with the staff of the Woods Hole Laboratory of the U. S. Fish and Wiiniife Service in studies aimed at assessment of effects of the Georges Bank haddock mesh regulation. At the time thes regulation was adopted by ICNAF, the Georges Bank haddokk
fishery was believed to be one of the few for whtoh data were available to permit establishment of an acouratse bsectine from which to measure whanges in catoh. It also appeared that this fishery was simple enough to allow collection of extquate follownup data. These features made it a stady or spader importance since no adequate assessmext of edfews ow a fishery regulation has yet been made. Progress reparts on extedn aspects of the cooperative study were presented to the sune 1958 Annual Meeting of ICNAF'

In the belief that effects of the mesh regalation can best be demonstrated by comparing yields from year diasses of known size before and aftex regulation recent investigations have been devoted to estimation of mortality rates and abundance of yearmolasses when they are young enough to be girestiy affected by the change in mesh size. The eariser work which had predicted an increase of 30 to $40 \%$ in long term yields had developed estimates of mortailty sf the 4 to gayeax old fish and used them as a basis for prediction. Howewerg the mesh regulation was designed to delay capture from age $1 \frac{1}{2}$ to age $2 \frac{1}{2}$ years ${ }^{2}$ and recentzy there have been indacations of changes in mortality rate with age。 Such resulus suggest that extrao polation of mortality rates from old to yourg riser nay be unjustified.

Studres during the year have indioated ondro

1. Beaduse data on discardeg hense total taconess ase not arailable prior to $19{ }^{6} 9$, the walidity of estmates of mortality and abundance of the $1 \frac{1}{2}$ to $2 \frac{1}{2} \times y e a r o l d s$ of the 1948 and earliex yearwslasses depends on the accurasy wth whith we can calculate discards from a series of data on the stza compositions of landings $s_{8}$ combined with the information on diseards which has been collected since 1950 . At least two apparently objectiwe methods have been suggested for cain culating catches of $2 \sim$ to $\frac{3}{2}-y e a r-o l d s_{9}$ but there $i s$ no satisfactory means of detecting possible eariy changes fa culling practices.
2. Calculations of abundance of yeapoclasses at early ages are complicated by remarkable changes in avasianility of young fish from season to season and from year to geas. These appear especially likely to affect catches of 2 z , 0 geaxic olds so that caloulated abundance of fish younger than age 2 may have littie resemblade to the actual.
3. Stuajies of mortality estimates derived rom insheries statistics show that the catoh data contain sufitudeat vaideno tified variation to give djscouragingly wide oorifience Iimits. Unless some of the sources of variation can be querifiled and eliminated, it is possibie that errors of eswimator will approach or even exceed the order of magnitude ore changes predicted to result from the regulation.
4. Recent increases in average size and weugh of tish landed appear to be greater then can be acvouthen ior on the basis of a change in growth rate alone, ano nay be aftret positive sign of long-term benefit from the regulation.

Some of the probiems encowntered daring the analyses may eventually be solved through gree.ter refinement of the data. For example, the data used so far have been we aghted anoayl total catches for all Georges Bank. Some of the sources of variability in mortality rate estimates may become apparent if the data are broken down into smaller time and atea natbs. Preliminary studies of models have also indicated thet some of the variability may be associated with errors in age determ mination. In addition, it has been shown that exrows in estimates of mortality of young haddock may hevz bese sntrow duced by calculating average mortality ower serera. agem classes if, instead of random variations, there are trends in mortality with age or time。

Methods of measuring and acoounting for errors from these and other sources are being investigated to perint improved accuracy in assessment of effects of mesh regulation by the system of comparing yields before and efres regulation. Alternative methods of assessment are ans beng scught.
I. M M Dickie

No。 37
A NEW ROLE FOR STUDY BOATS IN ASSESSTN RFPTETS OF MESH REGULATION

The accepted method for detecting effects of a mesh regulation is to compare a series of pre and postomegulation catches, corrected for differences in yearwclass abandance and mortality between the two periods. This requires collection of detailed catch and effort statistics over a sufficientiy long period so that confidence limits of the estimates of abundance and mortality are narrow enough to permit us to detect changes in catch of the size predicted to resuit from the regulation. A study fleet using the old mesh size is operated for a short time after the regulation to ensure that there are no remarkable changes in relative awailability of fish to new gear and to measure any changes in efficiency that take place.

Experience to dats fadicates that the lengeh of the series of prearegulation data that we need before this method can produce the precision necessary for measurement of effects of regulation may be prohibitively long for mot pishexses. Even for the Georges Bank haddock fishery whers a particularly long series of data is being anaiyzed, the degreo of precision is discouragingly low. It appears almost centain in this case that even if our methods should eventually permit us to demonstrate the predicted relatively Large difference s.n catwh
before and after regulation, we shall not be able so deteot what will probably be relatively smaller departuree of the actual catch from the expected.

Aside from sampling errors in age determination and incomplete data on catch and efforte the precision of mortality and abundance estimates from catoh statistics qaries directly with (1) the coefficient of correlation between mortaifty and effort, (2) the number of time intervals over which mortality rates are measured. (3) the amount of variation in effort during the study period. The coefficient of correlation is affected by many unidentifled sourees of variationg among the most important of which are probable changes in availability of the stocks from time to time. Precision can sometimes be improzed by lengthening the period of observations, although thas frequently increases the first error component. Howerer. the investigator generally requires a long series of date anyway in order to have sufficient variation in effert to permit separation of the fishing and natural mortality ra\% omponents.

Where long series of prearegulation data are not available, it appears possible that appropriate use of a study fleet during the period of change may be made to measure effects of mesh regulation with a precision at least as great as that afforded by the method just described. This Qlternative approach involves the introduetion of a variablemized study fleet to fish with the new proposed mesh size。 Using the mortality estimates from detailed statisties or both sections of the fleet, it is proposed that we should caicuiate how much would have been caught by the fleet using either type of gear alone. The difrerence in calculated eatches is a direct measure of the effect of a gear change sance the fieets wili have beex fishing the same yearcciasses.

The alculations and the tests involved in this alternative method are of exactly the same type as are used in the current methods of analysis when two types of gear ere in use. However, there appear to be several adzantages in the new approach. The most important is that if a small study fleet using the new mesh is introduced before a regulation and them a study fleet is exempted to use the old mesh after the reguw lation is enforced, we have introduced the maximum possibie variation in fishing effowt on the small sizes of fish directly affected by the mesh change. This gives maximum precision in the estimation of mortality and abundance at these critical early ages. Since the two types of gear fish the same stocks, it may also be possible to stuay the changes in avariability which affect the correlation between effort and mortality. Furthermore, although the length of time required for the study will differ from fishery to fisheryg precision comparable to that obtained by present analytic methods can probabis be obtained in significantly shorter time.

It must be recognized that, at besto the pretision of estimates of mortalities and abundance tron ustch data is low, so that our chances for measuring affects of a mesh regulation by this method alone are poor, no matter what analytis procedures are used. It seems likely, thereforeg that any intensive study of the type proposed here shonld make provision for other means of measuring mortality and abundance Chances for success would be much improwed if a study poat progran were accompanied by a tagging program and was done in an area where the biology of the species fished was weil understood.
I. M M Dickte

No. 38
EFFECTS OF MISTARES IN AGE DETERITIWATION ON MORTALITY ESTINATES

It is well known that there are errors made in the assignment of ages to fish lirom readings of annuli on scales and otoliths, especially among older fisho Studies reported by Gulland (1955) have shown that average mortality and growth rates derived from these data may not be mun in exrom provided that the precision of readings does not vary markediy i rom age to age, and the average mortality rate is taken ofex a sufficiently large number of yearociassez。 Howerer, fn calculations designed to compute mortaluties from catch statistiess we frequently wish to compare the apparent morcalisfes for different yearmclasses or to derime mortality estimetes swom relatively short series of data。 Erross in age readings may introduce substantial errors in analyses of these special suruations.

A preliminary examination has been made ot the conm sequences of mistakes in age determination in a sutuation such as that of the Georges Bank haddock fishery where we wish to determine abundance of individual yearmelasses in a regular succession of alternately weak and strong broods. The magnitude of age determination errors may be judged trom studies by Kohler and Clark (1958) comparing differences in the meadings from scales and otoliths from Georges Bank haddock. These studies have indicated that from ages 2 to 8 the disagreements in age assignment are symmetrical about the mean values. That is, there seems to be no bias towards reading fish at these ages consistently older or younger than they are. The distrio bution of scale ages at a given otclith age may thererole be taken as an index of the distribution of errors at that age. (Error distributions may be sfmilariy derived from she distribution of otolith ages at a given scale age. Using exrors of the magnitude shown by this study, models hawe been constructed which compare the actual and distorted age distrifutions for fluctuating fisheries, and mortality rates newe deen recalcum lated from the distributions.

The results show that, as expested, the owerais average mortality rates derived from the aotual and distorted
age distributions were identical．However，if calonations are made on the strong or weak yearmclasses alone，mortelity rates are significantiy over or underestimated respectiveiv，and the averages may be similarly biased if a preponderance of weak or strong year－classes is used to obtain the overail average． Furthermore，errors of the magnitude used in these nodels are sufficient to explain the apparent levelling of initially different yearmiass strengths which has been obserwed among Georges Bank haddock year classes between ages 2 and 8．A system for correcting the distortion in situations where a strong yearmolass is preceded and followed by weak yeaxoclasses has been suggested．The importance of such errors and the practicality of introducing corrections should be studied for a greater variety of situations．

No． 39

## PORROCAECUM INFESTATION IN COD IN CAFIIVITY

The examination of the cod remaining at the end of the growth experiment（No．2q）included inspection of the two fillets and skeletal section of each fish for larval nematodes（Porrocaecum decipiens）．D．N．Fitzgeraid，who was experienced in the technique of examinationg carrted out the observations．The results for 29 cod showed $38 \%$ of the fish were infected， $21 \%$ of the fillets and $17 \%$ of the skeletal sections from the fish contained worms．D。Mo Scott（Prog． Rept．Atlantic Coast Staog NO． $48, \mathrm{p}$ 。10）has snown that Porrocaecum does not occur in herring．Since these cod were fed exclusively upon herring for the prewious yearg it is unlikely that they became infected after they were confined to the tanks．The incjdence found in these cod was similar to that found in $195^{\prime} 7$ in cod from areas adjacent to the trap from which they were taken．It is inferred that the tank cod carried these worms from the time they were taken from the trap at Lockeport．

It was noted that an unusually large percentage of the worms（ $33 \%$ ）were found on the skin side of the finllet。 Scott has shown that the worms migrate from the stomach to the body cavity then into the cod masculature．The current obser－ vations indicate that the nematodes continue to move through the musculature away from the body cavity towards the epidermis．

A．O．Kohler
No． 40
INCIDENCE OF NEMATODES IN CRUSTACEANS FRROM THE BRAS D＇GR LAKES IN 1958

It has been known for several years that mysids in the Bras d＇or Lakes were infected with larval nematodes．Less
than 20 specimens of nematodes have been available for identim fication. None appeased to be Porrocaecum and all that coald be identified were Contracaecum. The possibilety silil exists that mysids or some other crust̂acean might serve as primary intermediate hosts for P . decipiens. Accordingly, in 1958, further collections of mysids were made in the Bras dios Lakes.

Seven collections were made in tily 2958 irom three localities in the Bras dior Lakes. One sample same from Baddeck Bay, two from near Coffin Islands and four from near Kempt Head.

Incidence of nematodes
Each crustacean was examined for neinatodes. The examination consisted of the semoral of the carapase and an inspection of the cephalothoracic region. The abdomen of each anfmat was examined but was fully dissected only in large syectmens (larger than 3 cm ).

One hundred and twelve nematodes were found. Thirtyo four were free in the jars in which the crustaceans had been preserved. Assuming that these omatodes had on tinated from the preserved crustacfans. the inctidence of nematodes was approximately $1.3 \%\left(\frac{112 \times 100}{8400}\right)$. The distribuiton by hosts of the remaining 76 nematodes is shown in Tabie i. linree groups of crustaceans were infected: mysids, euphausids, anc decapods. A single nematode was usually present in an infeoted host. However, 2 nematodes were found in each of 6 mysids, ano i mysid contained 3 nematodes. Because of the preponderance of mysids in the collections, it was not surprising to find that, most nematodes occurred in 4 speeies of myside. Bixtymo of the 71 nematodes found in mysids courd be assugred to derinfte species of mysids.

Most nematodes (47) were found in No americanag 9, 2 and 1 nematodes were found respectively in Mo metag I stene lepis, and E. erythrophthalma. In view of the scarcity of N. americana relative to the other mysids, the percentage incidence of nematodes was obviously much higher in N. americana.

Infected mysids were most conmon in the Kempt Head area. This can be attributed to the fact that $N$. americana was more common in that area than in the vicinity of coffin Island.

All the nematodes were larvae less than 15 mm . in length. All but 5 showed the generic characterfstios of Contracaecum. The remaining 5 are of pariteulaw interest to the present investigation as they belonged eithes to porrocaecum or to Anisakis. It may be noteworthy that 4 of these nematodes came from M. mixta and Mo stenolepiss but none was deriniteig from N. americana. The fifth came from a mysid whose state of preservation was too poor to permit generic determination. Further, it is interesting that 4 of il nematodes found in the
genus Mysis were either Porrocgecum or Anisakis. Ali 50 nematodes from Neomysis were Contracaecum.

Table I. Numbers of nematodes found in various crustaceans from the Bras dor Lakes, Juy 1958.

Locality Mysis Wysis Neom Exythrops Mysid Euphau- Deca- Free and date mixta


Coffin
Is.

| Juiy 10 |
| :---: |
| July 16 |

Kempt
Head

| July 9 |  | $\ldots$ | 9 | $\cdots$ | \% | 2 | 000 | 3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Juiy 10 | 5* | $\cdots$ | 27 | $\ldots$ | 3 | 2 | - | 7 |
| July 160 |  |  |  |  |  |  |  |  |
| July 19 | 3* | 1* | 13 | $\because$ | $\cdots$ |  | 1 | 12 |


|  | Total | 2 | 1 | 47 | 2 | 8 | 4 |  | 1 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

*indicates the distribution of nematodes of the genera forrocaecum or Anisakis.

Table II. Length in millimetres of certain characters of larval Porrocaecum or Anisakis recovered from mysids.

| $\begin{gathered} \text { Specimen } \\ \text { no. } \end{gathered}$ | Total length | Oesophagus | Ventricuius | Intestinal. caeoum | Oes of Vent. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 4.3 | 0.66 | 0.39 | - | 168 |
| 52 | 4.6 | 0.83 | 0.56 | \% | 146 |
| 64 | 4.7 | 0.62 | 0.45 | 0.16 | 138 |
| 23 | 5.5 | 0.70 | 0.41 | - | 179 |
| 3 | 8.5 | 1.0 | 0.56 | 0.08 ? | 279 |

Each of the 5 Porrocaechum or Anisakts was too small or too poorly preserved to permit dissection. Am intestinal caecum was present in one nematode and probably in another. No intes. tinal caecum was apparent in the remaining 3 nematodes. on this basis, these specimens could be either Anssakis or Pospocaecum larvae in which the caecum had not yet developed. There is slight evidence favouring the latter possibilaty. First, the ratios of the length of the oesophagus to that of the rentricuius
(Table II) resemble those determined by Templeman et ano (1957) for Porrocaecum rather than those of Anisakis. Tempieman showed that this ratio was usually less than $180 \%$ for Porrosaeoum but more than this for his specimens without a caecumo My own unpublished studies on Anisakis showed that in $75 \%$ of the specimens the oesophagus was more than twice as long as the ventriculus. Secondly, there is no host of adult Anjsakis known to occur regulariy in the Bras $\mathrm{d}^{\mathrm{B}} \mathrm{Or}$ Lakes.

In conclusiong two main points have beer established by the present study. First, nematodes which are probably Porrocaecum occur in mysids in the Bras d'Or Lakes. Secoadiys. euphausids and decapods are also hosts of nematodes in this region. To establish the frequency with which Porrgoaecum occurs in mysids and other crustaceans in this regiong it wound be necessary to collect much larger numbers of crustaceanso It would also be desirable to make collections at dififerent geasons of the year.

General sumnary of pelagie fish investigations
The Canadian swordfish fishery
The food and feeding habits of swordfish
The southwest Nova Scotia herring fishery
Abundance ot herring larvae in the Gulf of St. Iawrence
Herring drjftonet experimenta
An electrofishing experiment
Herring landings in the Passamaquoddy region
The economics of the "sardine" fishery of Charlotte County
Herring tagging experiments
Herring migrations and surface drift
Studies of herring behamioum
The survival of herring under environmental extzemes
The distribution of herring Larwae in the Bay of Fundy and the Gulf of Manne

The distribution of plankton in the quoddy region
The food of herring in Passamaquoddy Bay
Exploratory fishing for herring
Herring catches in relation to environment
The length and age composition of Charlotte County "sardines"
Lengthoweight relationships for "sardines"


No. 41

## GENERAL SUMMARY OF PELAGIC FISH INVESTIGATIONS

Pelagic fish research in 1958 continued to be concerned chiefly with a program of research and statistics des-gred to meet the needs of the International Passamaquoddy Fisheries Board in predicting the effects which the proposed Passamaquoddy power project might have on the fisheries of the area. This program began in 1957 and will be completed during the summer of 1959. Most of the projects are carried out co.operatively by the Fisheries Research Board of Canada and the United States Fish and Wildlife Service, particularly in the pooling of equipment and personnel for field operations, although scientific collaboration in analysis of data and interpretation of resuits is inciuded. Efforts by the Research Committee of Canadian and Jnited States scientists in planning and comrdinating the prograin and in progress reporting included four regular meetings of the Research Committee; two regular and two informal meetings of the International Passamaquoddy Fisheries Board four meetings of the Joint Engineering and Fisheries Committee; one jcint meeting of the Engineering and Fisheries Boards; three meetings of the International Joint Commission: two meetings of the Suisocommittee on Anadromous Fishes; two meetings of the Sub-Cominittee on Economics and two meetings of the Sub-Committee on Final Reports. The program, as a whole, was reviewed and appraised critically in consultation with Mr。B. B. Parrish of the Scottish Home Department who was employed for this purpose from mic. June to mid July.

Major emphasis continued to be placed on the herring fisheries which make up more than $80 \%$ of the totai fish landings in the area. Studies of catch, effort, investmenty and income statistics were intensified and improved. Total landings in Charlotte and Saint John Counties were 60\% below the previous year's catch. Net cash returns for weirs ( $\$$ I 2779) and for purse seines ( $\$ 27,263$ ) in 1956 and 1957 showed punse seining to be significantiy more profitable than weir fishing. Studies of migrations were accomplished by tagging and releasics 79,794 herring of which 2,739 ( $3.4 \%$ ) were recaptured. Experinents to establish behaviour patterns and the survival of herring under environmental extremes have provided valuable data for prediction of the effect of power dams on existing fisheries. Expicrations for larval herring and the distribution and abundance of planktonic forms provide a basis for determining the souse of the stocks and their method of transport to the fishing areas. Fishing experiments, the relation of catch to environment and the length, weight, and age composition of the commercial catches rounded out the biolcgical program. Studies of hydrogsaphic conditions including temperature salinity $_{8}$ and currents (Trites, AOG Annual Report 1958.059) are included in the investigation.

In genexal, the pelagic fishes of the Athantic Coast are only lightly fished axd as a group constitute the majo: potential for expansion of the fishing industry in the region. Studies have been carried on for several years to dusoorer ways and means of making better use of these resources pficts along these lines were restricted in 1958 to followng the rapid expansion of the herring fishery in southwest Wova Sootia and to the observation of two gear experiments an tins south and west coasts of Newfoundland. Landings of newsing in bouthw west Nova Scotia increased from 76.8 million pounds in 2.34 to 86.5 miliion pounds in 1958. Particular attention is given to changes that may take piace in the size and age composition of the stocks and in the annual recruitment. An experpiment in Hermitage Bay, Newioundland, demonstrated the ralue of the driftwnet method oin inshing and preliminary resulte of an electrofishing experiment in Port au Port Bay, Neworardand. were encouraging. Studes of the abundance ol berarigg yavae in the Gulf of St。 Lawrence indicated an extremeny low zarral production in 1958.

A study of the fishery and bjongy of swondrist mas initiated in 1958. The nature of the fisnery has menges orom a small-boat inshore fleet to an offshcre ficett on "awge ressels that are capabie of searohing for swowerneb one a ine ameao Catches in 1958 axceeded 5 minion powasa thecetod irusease since 1939.

During the year Iiasson with other gotermart ayensies and pelic welations thet ocented the attention of the peagic fish group included oowperative projects with the new Bronsuck Department of Industry and Development, the Woods Hole oceanum graphic Institution, the Maine Deparimeat of Sea and stoxe Fisheries, the National Research Council, the United States Fish and Wildiffe Service, and the Economic Service of the Depaitmeat of Fisheries. Consultative sexvices were made availabif, pert icularly to Bonda Foods and Sea Weed Products of Yarmoutb, Nova Scotia, and B.C. Fackers of Clamis Hartour. Noa Scotia. in proposed expansion of the hexring processing indus. ry. Sanadian Pacific Steamshius, Saint John Marine Transporte, end the Depart... ment of Transport have cooperated in sarrying out zeseareh projects. Fishermen, industry personne, and Depariment o. Fisheries Protection and Inspection officers have proided stata istics of catch, investment and income, and substantup. assistance in tagging experiments. Asian visitors to the Stathon wewe briefed on the work of the pelagic fish group and arrangements made for observation of activities in the field. Acgice and consultw ation on smelt problem in the Great Lakes were paraidec the Central. Station of the Fisheries Research Board and a discousse on tive Atlantic smelt fishery was made to the Department of Fishexies District Protection Ofilcersi Gonference in Helifano A bwooday herring symposium was sponsored as paret of the 50 oh Anniversaiy celebrations of the St. Andrews Station.

No. 42

## THE CANADIAN SWORDFISH FISHERY

The fishery for swordfish off the Canadian Atiantis coast is becoming increasingly important, particulay in the Province of Nova Scotia. Catches in 1957 and 1958 exceeded 5 million pounds with landed values of more than $12 / 4$ miliion dollars.

Swordfish are summer visitors to the Canadian Atlantic area and their distribution varies throughout a season and from one season to the next. Hence ${ }_{2}$ the success of the fishery depends to a considerable extent on knowledge of the factors that affect the distribution. An investigation of the species was begun in 1958 to become more familiar with the fishery, the biǎgeg of the fish, and to provide a background for the more extenste ingestigations that will be initiated soon. Mr. G.M. Somemic.ee wes responsible for carrying out the field work ard fc, the pelimine ary reporting。

During the 1957 season swordfish lardings wo inude 220 boats and vessels. Fiftyotwo of these wape suc - bects operatm ing close to their home ports. The other 268 were lasger vessels (longliners, schooners and draggers) that may fish sum Georges Bank to the Grand Banks. These offshore vessels aceoust for more than $90 \%$ of the landings and the fleet has bean increasing steadily since 1945. At the present time, longliners alone are being added to the fleet at the rate of $12 \cdots 2$ per year.


Canadian swordfish landings 1939-58.

There seems to be little reason for comeen aboas the supply of swordfish in the Canadian area. The Txi. daren ace nearly all large adults. There is no net fishing and mail fish are seldom caught. There is no eridence of any sybetratial change in the abundance of swordfish in recent years. Each tweividua. fish is the object of a speciad pursuit and the e...esey habits of the species probably protect it from wholesale eepture, as is the case of close-schocling fish.

The growth of the swordfish fishery 13 apparent foom the accompanying figure. During the past 20 years. "andings increased from $1,788,400$ pounds in 2939 to $5,286,255$ prands in 1958. The reason for the increase is probably at trsease in market demand but it has been made possibie by the cewelopment of an offshore fieet that is capable of searehing for smondish over a very wide area. It is believed by fishermen ab atcose of
 may provide the necessary background for grease. valuable resource.

$$
\text { Bowo } 2000
$$

No. 43

## THE FOOD AND FEEDING HABITS OF SWORDFISH

During the course of the swordfish invectigation in 2958, particular attention was given to food and feeding habits because of the influence these might have on the distribct.en of the fish and hence on the fishary.

Swordfish are caught while swimnixg levily at of neax the surface. About one third are seen actualy mparing and the remainder a few fieet below the surfane.

Eariier reports have suggested that the primetand roc. items of the swordfish are mackerel, menhadem, hyedis, somes hake, butterfish, herring, sattails, and squig. F. matmen we".ere that, in general. swordish strike into schoos of ans sineme. fish from below, disabling them by aiashing tron ate reas with the sword and then pieking ip the ractime.

While on beard the MoV. Fanny Faye M. . Voscmexilile found that the stomachs of most of the fish taker eel pom hals full to filled with food. This food consisted chisily di iancetfish with some lanternfish and rosefish. The majority of the food had been taken whole and showed no injury from being suruck with the sword. In many cases, digestion was not far admancec and it is obvious that the swordfish had been feeding at consicerable depth (lancetfish, lanternfisto and rosefish aze deerecibeling forms) and then returned quickiy to the surface aipess where they were caught.

The fact that swordfish iie at the surfase in relatively warm water would appear to be an aid to digestion similar to the rest or sleep that most animals take after feeding.

Ron. MoKenzie
No. 44
THE SOUTHWEST NOVA SCOTIA HERRING FISEEEE
Investigations of herring stocks in southwest Nova Scotia were continued in 1958 to follow the cousse of ar expanding fishery and to provide a better understanding of the 3Lology of herring in that area.

Nova Scotia landings in 1958 amounted to 202 million pounds of which about $85 \%$ wese taken in Digby, Yarmouts. and Shelburne Counties. Catches in this latter area were approximately 87 million pounds or more than double the 1957 figure ( 42 million pounds). The increase is attributed chiefiy to succeasiui purse seining for small herring (sardines) in St. Mary Bay and the eastern part of Yarmouth County. Samples of herming for biological studies were obtained from weirs, gill nets, and purse seines throughout Digby, Yarmouth, and Shelburne Counties. Emphasis was placed on the collection of larval herring and in obtaining information on the sizes of apawning areas and the densities of spawn on them. Fundamertal information on morenerts, cistribution, and abundance of both larwal and adult rexwing was reeorded smom interviews with purse seiners. Some herring teggive yes oaried out in the Digby Neck area but oniy three reccras, wede revorted.

There was some indication of increased spewnas astivity near the Tusket Islands although the majority of of spawninge took place in the Lurcher Shoai..Trinity Ledge ames. Most spawings took place during the late summer or early autumn. but lobster fishermen at Port Maitland reported substantiai amcunts of herring spawn deposited on lobster traps during the latter pam or May. Herring larvae were found most consistentiy in St. Mary Bay and 88\% of the plankton tows taken there contained layee rarying in numbers from 1 to 1,236 per 25 -minute tow with a standard l-metre plankton net.

Routine sampling of commercial catches $\mathcal{C o r}$ Length, age, and vertebral counts was continued throughout the year. Analyses of these data are incompiete but there is no indication of any decrease in the size and age composition of samples obtained from the gill-net fishery. Samples from purse seines is eamine? years are not available for comparison. Otoliths show thet the majority of the fish taken in the area are autumn-spawned types with ages varying from 2 to 9 years.

With the reduction in emphasis on Passamaquoddy investigations, it is proposed to intensify the study of hexsing stocks in southwest Nova Scotia.

ABUNDANGE OF HERRING LARVVAE IN THE GULF OF ST. ThNEENGE
For eight oonsecutive seasons (195.-58) stacies on the relative abunance of herring largae in the Gule or Stowerse have been based on plankton tows taken in the west entomea to Northumberland Strait for studies of the abuodanoe of lobster larvae and profided by Dr。 $\mathrm{In}_{\mathrm{a}} \mathrm{G}$ 。Wilder. The tews were taken wi.th a rectangular $12^{\prime} \times 3^{\prime}$ piankton net. towed at the suotace and were each of 30 minutes duration. In 295 and agair it 2958 , 271 of the lobster tows were examined whereas in the othew yeare samples were taken comprising all of the tows from four efthe 2 " stations. The examination of tows and the sorting and countirg of laraee were carried out hy Miss Phyliss J. Gibsom. The rumer of tows examined and the number of lawtee caught ead yec: reve ae zozows:


The aburdante of iarval herring both in totel numbers caught and in the average catrh per tow was at its. whes aerea in 1958. As pointed out in the Armual Report for $195-8$ (Appendix. No. 50), the small catches in 1956 and 2957 may have been caused by a reduction in the spawning stock because of mass mortalities that resulted frox a fingus disease. It is possible that this extended into the 1.958 season as the commercial fishery, which is dependent on the spawning stocks, remained at a low abo. However, this will not explain the obsexyed differences in abucanee of the larvae from 195 . to 2955 when only minor variations 2 n landings occurred. It is doubtiful whether predictions of comercial catches are possible from studies of Larsal abundarse anc stis proposed to study rather the relative abundanes of the garious yearorgasses in the fishery. It is piannea that this project will get underway during the 1959 seascn,

No. 46

## HERRING DRIFT-NET EXPERIMENTS

Herring landings on the south coast o. Newroundland declined from about 80 million pounds in 2946 to almost negligible quantities in 1957. Driftonet experiments were carried out in 1956, 1957 , and 1958 with the support of the Industrial Devel opment Service to discover the whereabouts of the herring stocks on which the fisheries have depended. In Fortune and Piacentia Bays only small quantities of herring were taker during the summer months and were of no significance comeroiaiky. In Hermitage Bay, however, large catehes were maüe thockghout Apriz. May, and June both in 1.957 (Annual Report fow 2957.58 , Apperiax No. 52) and in 2958. Mr. Bert Strigkand of He:mivag was responsible for the operation of the gear and fox protitng prew liminary reports.

The method of fiishing was the same during the two seasons. The nets were set some distance from the shore, attashed to the boat and allowed to drift from late evening uritil early morning on the following day. In 1958, the experiments were carried on from March 19 to July 1. A summary of the resuilte is given in the accompanying table.

| Month | Ne. of $f^{n}$ sets | Total no. nets used | motas catch | Av. Catch per net |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | Ito | 26. |
| March | 3 | 24 | 26 | 2 |
| April | 8 | 38 | $79+8 \mathrm{c}$ | $\because 97$ |
| May | 14 | 62 | 9, 6 | 335 |
| June | 9 | 45 | anger | 26 |
| July | 2 | 5 | -80 | 30 |
| Totals | 35 | 164 | 80.350 | 246 |

Although no comparative figures are ayailable, the aatches of herring in drift nets were much greater than catches in anchored nets set in the same general area during the same periog. On several occasions, wher large catches were made with drift zets, the anchored nets caught no herring whatsoever. It is experted that the introduction of drift, netting on a larger scale in other south-coast areas wound increase present landings substantially.
S.N. Tibbo

No. 47

## AN ELECTROFISHING EXPERIMENT

During November and December 1958g an eleotwefishing experiment was carried out in Port au Port Bay on the west coest,
of Newfoundland．The experinent was sponsored by the Indastrial Development Service of the Department of Fisheries and condueted from the M．V．Linda May owned and operated by Crosofe and Gompany of St．John＇s，Newfoundland．

The electrofishing equipment was manufactared at the International Electronics Laboratory in Hamburag．Gewnany，and installed and used by Mr．Karl Heinz Ulrichs？© ainventor：and two assistantscoMessrs．Hans Rump and Walter Redat．

The equipment consisted of a 100 KW ． $4+0 \mathrm{rat}$ ．A．G． generator；two electrodes：one（anode）attached to the end of the suction hose and the other（cathode）tied to the hose 10.3 .2 feet from the end；a powerful fish pump and a strong（appreximately 1．5 KW）underwater iight attached to the anode．

In theory，herring are brought to the inmediate vicinity of the hose opening by a combination of positive reactions to light and an electric field．

Experiments were carried on by first locating schools of herring with an echo sounder．The electrodes．hoce，and lights were then lowered to the approximate depth of the achool and put in operation．

During the period November $2+t$ to Doember $\mathbf{3}_{3}$ No．A．W． Holt of the St．Andrews Station was on boasd the Mo 0 ．Tige May observing the experiment．Sohocls of hexring wern cattiy located but atiempts to capture then were unsmonestuh．The operators made frequent adjustments to the equiprent particularly in the relative position of the electrodes and the etregegth and nature of the currento On December 13 to 18 ，some woceess was achieved and a total of 200 barrels of herring were＂．anas．

The usefuiness of this equipment for commeraial fishing has not yet been demonstrated but the results to date are encour aging。

SoN。Tibbo
No． 48

## HERRING LANDINGS IN THE PASSAMAQUODDY PEGION

The collection of daily records of herring aatches by individual weirs and seines in Charlotte and Saint Johr Gounties， New Brunswick，was continued and improved during 2958 ．Catohes have been tabulated according to gear，subwawea，anc nonths． They have also been axranged by regions in relation to the proposed Passamaquoddy dam sites。

In 1958， 376 weir licences were issued， 5 more than in 1957．However， 107 weirs（ 81 in 1957）were not built．of the 269 built， 66 were in the higholevel pools 9 in the Iowalevel
pool, 76 in the approaches to Passamaguoday Bay, 37 in the eastern section of Charlotte County, 64 at Grand Manar, and 17 in Saint John County. There were 13 purse seiners and 32 drag seiners licensed in 1958 as compared to 17 and ec respectively in 1957.

The total herring andings in Charictte enc Saint John Counties in 1958 amounted to about 36 miliion powda ow oniy slightly more than $40 \%$ of the 1957 eateh. Tre . 950 zardiegs inside Passamaquoddy Bay were approximately 9 micicon pouscs or slightly more than $25 \%$ of the 1957 cateh in this a"ea. In como parison the average longoterm (1937057) lanaings were app.cro. imately 77 million pounds for the whole area and in milion pounds for Passamaquoddy Bay.

A comparison of 1957 and 1958 landings accoccing to gear shows that, whereas weir andings decreased considarej-ry dragseine and purse-seine catches were oxiy slightiy belcw the 1957 figures.

Landings from weirs began in February and increased to a peak of 9.25 million pourds in September with $85 \%$ of the total weir catch ( 25.5 million pounds) being made in zuy, August, and September. Drag seining was confined to the period doty to october and about 2.4 milifon pounds were lended by this method. Purse seining was carried on for 4 months kegirnime, 3 January with a peak landing of 3 minion pounds in Marcl and a sota of 3.8 million pounds for the period. The pursemetre feshery began again in July and continued to the end of the yest. zerdings reached a peak of about 3.5 miliion pounds in Sepenber. with a total catch for the year of 7.9 million pourde.

In respect to the Passamaquoddy dan sutes, the total landings in 1958 were approximately 9.0 million pouras in the high-level pool, 0.4 million pounds in the lownevel poon. 3.? million pounds immediately outside the Bay 8.9 miliio.. pounds in the eastern section of Charlotte County, 6.9 miliso pounds at Grand Manan, and 6.9 milifon pounds in Saint John County.

The average landing per weir varied froin 28,500 pounds in the low-level pool to 91,700 pounds in the tigtolevel pool as compared to 90,000 and 511,000 pcunds respectively in 2957. The average landings for all wejrs inside the propesed dams was 84,400 pounds ( 457,000 pounds in 1957) ane for those outsice 100,000 pounds ( 207,000 pounds in i.957).
R.A。MaKenzie

No. 49
THE ECONOMICS OF THE "SARDINE FISHERY OF CHARLOTTE COUNTY
A survey of the primary fisheries of Charictte County for the period $1946-57$ was conducted in 2957 ars 295\%. The
 ation for use in the assessment of the impac. of yoposeci Passamaquoddy Power dams on the fisheries of the area. M. ${ }^{\circ}$. Fo Doucet of the Economics Service, Department of Fisheries, hed mator responsibility for the survey. Special emphasis was pleced on the herring weir and purse seine fishery. Most as data collected was of an inventory nature but for the yeara 1.956 and 1957 considerable detail was obtained covering landirgz? receipts. fixed and operating expenses as well as capltal assets such as boats, weirsy and other fishing equipment.

The sample of the herring weir fishery sumeyed was slightly in excess of $50 \%$ of the weirs Iicensed in 2956 and 1957 and was stratified according to locailty. One half of the purse seiners operating in 1956 and 2957 was surveyed but because of the smallness of this universe, the remainder of the ".neet will be included.

Compiete records were obtained for 82 hemang weirs. partial records for $1 C_{0}$ and inventores fer 46.30 . 0.371 weirs licensed in 1957, 284 were operative but only 288 eanght fisho Complete records were obtained for the 6 purse seiners that were surveyed.

The results of the stuay showed that the acmege row placement cost of a weir is 44,766 . By tare the wost raluable weir components are the stakes and the nete? whill respectively are $21.5 \%$ and $40.2 \%$ of the entire weir cost. The ayerege value of gear associated with the weir is $\$ 2926$. The avenage investo ment per weir with asscoiated gear is thexefcre \$5, ger.

The average gross income ir 1957 for woll enter. prises (about 116 individual weirs) was $\$ 2.625$ and the average net cash return was \$1.779. The main expenditu.ese vere for weir material, netting, and labour.

In contrast to weir fishing, the arexage replacement cost of purse seiners is $\$ 24,866$. However, the ayerage net return in 1957 was $\$ 27,263$ per seinex-mac.a.3 aserning to labour and $\$ 4,990$ to capital. Thus, from the stampoint of both labour and capital, purse seining is significanty moe procitabie than weir fishing.

No 。 50

## HERRING TAGG:ING EXPERTMENTS

From March 3 to September 24, 1958, 34 Lerring taggings were carried out. The United States Fish and Wilalifie Service at Boothbay Harbor, Maine, assisted in many cases and a total o: 79,794 herring were tagged (see table).

## Herring taggings and recaptures. 1958

Western Nova Scotia
Point Lepreau
Entrance to Passamaquoddy
Passamaquoddy, Canada
Passamaquoddy, United States
Grand Manan
Wolves Islands
Coast of Maine

| no. | \% |
| :---: | :---: |
| 3 | . 2 |
| $27 \%$ | 2.0 |
| 76 | 5.9 |
| 2.243 | 5.0 |
| 34 | 4.0 |
| 10 | . 2 |
| 243 | 4.9 |
| 33 | .7 |


| $\begin{array}{r} 3,531 \\ 17,759 \\ 13,567 \end{array}$ | 27 |
| :---: | :---: |
| 24.692 | $3,2+3$ |
| 8,569 | $3+3$ |
| 4.871 | 10 |
| 2,966 | 243 |
| 4.439 | 33 |

Totals
Returns from these taggings varied from 0 to $24 \%$. Altogether, 2,739 (3.4\%) were recaptured. Complete information on time and place of recovery of 100 tags was not provided, but of the other 2, 639 , $24 \%$ were recaught within a week of releas., $30 \%$ during the next week, $19 \%$ in the third week, $7 \%$ in the fourth wesk, $4 \%$ in the fifth week, and the remainder (10\%) spread chiefly over a period of 6 to 16 weeks following release. One tagged herring was at large 165 days. Over $80 \%$ of the recoveries were made in the packing plants and the remainder from fishing boats and carriers. No recoveries were made from United States reduction and pet rood plants that purchased more than $30 \%$ of the Canadian catch in 1958.

About $61 \%$ of the recaptures were made withir 5 miles of tagging site, $26 \%$ between 5 and 10 miles away, $10 \%$ between 10 and 15 miles away, and the remainder (3\%) from 15 to 55 miles from the tagging site. The numbers of distant recoveries decined with increasing distance. Three were retaken on opposite sides of the Bay of Fundy-atwo went from Passamaquoddy to Digby Neck and one did the reverse.

In 1957, no tagged fish crossed the Bay of Fundy. The three recorded in 1958 probably did, but landings at the time of recovery were being made from both sides of the Bay and some confusion as to origin of the fish may have occurred.

No recaptures of fish tagged in Charlotte Covaty were made westward along the coast of Maine, although one did go into Cobscook Bay and one from Cobscook Bay went southwestward along the coast of Maine. Many recoveries were made to the eastward in Charlotte County from herring tagged in Cobscook Bay and off the coast of Maine.

Recoveries from taggings in the Chariotte County area showed that herring move both in and out of Passamaquoddy Bay throughout the season. About midsummer, howeyer, there was a fairly pronounced movement from the Passamaquoddy area to east


Fieme 1。 Recaptures from hexring tagged at Birch Coves May 16, 1959.


Charlotte and to Saint Johe County, This shyw of we sastmard coincided with substantial increases the iandizes in tet pegiono

Recoveries from purswiseine operatolou th the middis of Passamaquoddy Bay in September Ootober showed tye\% tish tagged earlier around the shores of the Bay had mored otmenomy weeper water. Herring taggeü in the centwal area of the Rey fa Septo ember $\infty$ October moved into the northeast part of the Bay a Inttie later in the season.

As in 1957 more resaptures wewe mace nea the aastern than the western passages of Passamaquoddy Bayo

A test of the most suitable colour for tags sondreted at Connor ${ }^{9}$ s Brosn plant in Blacks Harbour gawe pe\% watume fom scarlet tags and 5y for marocin tags a sime ge oxpextuent in
 tags resulted in reooveries of 22 searlet. 3 yeara gad a marwo tags.

Tank experiments with opercular and doesta tage ahowed 11\% of the opercular tage and $36 \%$ of the dorsal tege wreace after 3 months. Thiryy thee per cent of the cpervere tags fell off as the operculum undex the tag wore awew me use of urethane as an araesthetic made tagging easier but dic not change the proportions surviving.
RoA. MoKeszie

No. 51
HERRING MIGRATYONS AND SURFACE DEIFTS
During 33 of the 34 herring tagging emeranents in 1958 (Appendix No. 50) driftt bottles were released at the same time as the tagged fish in an attempt to discover whether there was a relationship between herring migrations and the drat of surtece waters. In each of 31 taggings. 48 botitles wers reltasec., in the other two, 44 and 49 bottles were released, makleg a 0 at 2582 bottles altogether. For these experiment, the nurlew of heraing tagged and released was 77843 . There were 2.732 herwing tags and 499 drift bottles recotrered.

A comparison of the recoveries showed that ory aight releases, the tagged herring and the drift botties vent in the same direction (Fig. A and B); for four releases, tag and bottle recoveries were made in opposite directions (Fig。 0 ate D) fior twelve releases, there was no uniformity in the direction of tag and bottle movements and in the remairing nine releases, there were insufficient recoverjes of either tags or cotties for any conclusions.


Herring migrations and surrece dript

These experiments have indicated that tagged fish do not always move in the same direction as the surface turyents. Sometimes the surface layer may be very shallow and have no effect on the movements of fish. While there is insuffersient evidence to establish a pattern of herring migration, there is a suggestion of random movement with some tendency to swim against the current. There are undoubtedly other faetors affecto ing migration, such as enemies, reactions to light, vertical distributiong etcog and further investigations are necessary.

> R. A. MoKenzie
> R.W. Trites

No. 52

## STUDIES OF HERRING BEHAVIOUR

Herring groups confined in a cage orsentated with e component upstream when the cage was towed. fith trereasirg current speeds, the orientation upstream became more pronounced and finally the fish were displaced downstream tail first. Under these conditions the maximum swimming speed of rexring was found to vary from 1.8 knots for fish cf mean engeh 15.2 cm .9 to 2.8 knots for 26.9 cm . fish at about $12^{\circ} \mathrm{C}$.

Underwater television cruises
Two cruises using underwater television equpment were made during 1958. The firstg from May 16 to May $28_{9}$ used equipe ment belonging to the United States Fish and wildinte Service, Woods Hole, supervised by Mro R. Livingstose. The seconco from September 18 to October $I_{9}$ used the National Ressasch Council ${ }^{\circ}$ unit developed by Mr. W.M. Cameron.

During the latter part of the first craise and the whole of the second curiseg observations weme mace oc grops of freshly-caught herring placed in a meshoureved, seg? 0 Deet long, 4 feet wide, and t feet dsep. The eamera was arathed to
 of the cage was obtaned on the monttoz craess. The eage, who its attached frame supporifug the samera. was sums on above and in front from booms ore the M.T. Harengus so thes it coud be lowered, held or towed at any depth. When townes the wisg the cage acted as a fin so that the camera end of the cage always moved first through the water. A current meter was attached inside the cage, halfoway back and in the upper paw o Later calibration of this master meter with a secend cuxent meter supported in the position ocoupied by the fish during the experiment, allowed the velocity of water movement past the fish to be calculated. In the following account only results obtained from September 26 onwards are given as calibration for the earier days has not been completed.

## Behaviour of herring in water eurrents

The response of the herring to low natwrel ourrents was investigated by observing the behaviour of the fish ir the cage while the boat was anchored in marious tida" streams. The response observed in no way differed from their aepponse to the apparent current set up in the cage when it was towse. This suggests that the response was not to water durrents as auoh but based either on the displasement of fsh relatire to their visual field or perhaps to miror turbulence set up the passage of water through the front mesh. This latter expianation seems unlikely as when fish were lowered to 100 feet they maintained their orientation upsteam while the eage was tit oy artificial light, but drifted downstream when the light was tureed offifor


Underwater television camera and cage used to determine the maximum swimming speed of herring.

5 to 10 seconds. Failure of the telerision vamexa presented the intended experiment of keeping the hemring without 2 ight at this depth for a long enough pesiod to allow light ajaptarion. Ir the absence of light adaptation, the loss of orientation mentioned above must not be taken as evidenve that hering nataiaily coearro ing at 100 feet are at too low a hight intensity fow yisual omento ation in current to occur.

At current speeds teles a certarimicumariane, the herring circled the cage, theiw path determined by the walls and not related to the current, A minimur value for the owentation by current of $0.8 \mathrm{ft} . \mathrm{sec}$. was indicated by the telerision experi. ments but this reeds to be investigated further. As the speed of the cage through the water increased, the herrirg formed a group in the upstream end of the cage near the buttom ace bagan to swin from side to side, always turming upetrean when mettas the wanso The orientation of the herring into the curcea, aman nowe pro. nounced as the yelocity increased and the s.de tide ceriations decreased until they were slight and ixreguaz. dt higker curcent velocities the swiming speed of the heming wisecsed watil it reached a maximum when the fish stilh heading upsteen and swimming vigorously, siowiy lost grownd tail firat writh bey were swept against the mesh of the case.

## Maximum swimming sueed

To determine the maximum swiming speed a gioup of up to 50 herring seleoted by eye for unform siow were paased in the cage. The cage was then lowerec to 20 fest and hele there for 15 minutes. Tides or wind drift of the buat usasiy seased a minor current to pass throwg the eage undex these dedditiocs but the flow remained belom in $2 \mathrm{fto} / \mathrm{sec}$ 。 At, 2.5 mirobes the cage was towed at a graduaily increasing speed. A recori was kept of the behafiour of the herring and of the number of fish that had failed to kaep pace and were on the back mesh, as seen on the television soreen during each minute. A second observer recorded the carrent velocity on a minute by minute basis. The increase in speed contimued until all the fish had failed, when the cage wes raisoi, piecec ow deok. and the fish remowed for measuring. A temperature seading at 20 feet was taken between each t.cw.

From graphs of per entage of fish faswed and current speeds plotted against time the current speed at whoc $25 \%$, $50 \%$, and 75\% of the fish failed has been determined and is show in the accompanying tabje. The speed at whish $50 \%$ of the herxing failed to keep pace with the cage may be taken as the maximum swimming speed which may be maintained over one minate by fish of these sizes at these temperatures when swimming at an ancreas. ing rate. Such conditions might be found ia nature where herrirg near the bottom were steming an increasing thee fiono Az currents abofe the maximum swimming speed will be able to move the herring in the direction of filow.

Details and results of experiments to determine the maximum swimming speed of herring.


* $4075 \%$ fallure only

In the second and third columns of the tabie．results have been given for two groups of herring of the same mean length and of the same stock which were tested at the beginaing and the end of the day．Strong winds at the end of the cay making handling more difficult and necessitating an increase ia soed before the tow and not just the insreased holding times．aks．y to be the cause of the difference in swimming speed of the two groups．

The results have been given in the tabie in order of mean length．There is a statistically significant positive correlation between mean length and maximum swimmirg speeds the larger herring overcoming higher current velocities befove $50 \%$ failed．

> VoM. B:am

## No． 53

## THE SURVIVAL OF HERRING UNDER ENVIRONMENTAL EXTREMES

## Upper lethal temperature

The upper lethal temperature was detemaned for fire groups of unacclimated herring during Jure．ways Angrety and October．Of these orily the June and Ortober detrminations gave consistent incxemente of mortaily with temexature ad only the October determination is considered here。 in outber herring were tested in an area 3 fieet square by 18 inches ceop separated by a galvanized wire screen from the dexaces，thernoneters，and water inflow．The fish were taken from a wex as voroo dranso ported at $9.2^{\circ} \mathrm{C}$ ，and within three hours all the fisc were ia the experimental tanks，never having been brought out of water．

The herring used in the October determination fell into two distinct size groups and 10 large and 30 small herring were selected to make up each test group．When tie first 20 fish to die at $23^{\circ}$ and $21^{\circ} \mathrm{C}$ 。 were considered，it was found that there was a significant difference in the mean length of the first 10 to die in each tank and the second iC．In a group of herring ranging from 9.5 to 30.4 cm ． there is thas a differentiai mortalw ity with temperatures the larger fish dying mor夫 quickly at high temperatures than the smalles ones．

Length－frequency distribution of the whone test group showed a discrete population having a mean length of il． cm ． with S．D．of O．68．This corresponded to the 30 small fish initially assigned to each test temperature group．In the accompanying table， the percentage mortality of fish of this group and of the larger fish has been giwen separately．It can be seen that the uppex lethal temperature of the small 9 to 12 cm ．herring at 48 hours is close to $21^{\circ} \mathrm{C}$ ，and for the $\overline{\mathrm{L}} .7$ to 30 cm o herring is below this． falling between $19^{\circ}$ and $21^{\circ} \mathrm{C}$ ．


The ability of herring to withstand sudden changes in depth
The herring to be tested were enclosed in the inner of two mesh-covered cages in about a cubic yard of water. The outer cage was closely covered to reduce water movement through the cage as it was rapidly lowered or hauled through the water. On the first run, 86 herring were placed in the cage, the lid was closed and the cage was allowed to drop as quickly as it could strip wire off the winch, until it reached 150 feet. The rate of descent was $1.7 \mathrm{ft} / \mathrm{sec}$. The cage was left at 150 feet for five minutes and then hauled at a rate of 2.6 fitofses. to the surface. At the surface, the behaviour of these fish was seen to be normal and there was no mortality in the following two hours. A second run with 58 herring descending at $1.9 \mathrm{fto/sec}$. to 145 feet, and after five minutes being haulea at 2.2 ftos sec. to the surface, gave the same results. These fish were caught on the same day that they were tested and ranged inis suze from 14 to 21 cm . It is concluded that suden changes in depth from the surface to 150 feet have no ill effects on these fissh.

V.Mo Brawn

No. 54

## THE DISTRIBUTION OF HERRING LARVAE IN THE

## BAY OF FUNDY AND THE GULF OF MAINE

The great concentration of young herring in the Passamaquoddy region presents a problem of explaining why such a fishery should be centered in this area. It is pertinent therefore to determine the source and methods of perruitment that are responsibie for this fishery. Intensive sampilng for larval herring provides information on these points.

As in 1957. plankton collections in 1958 were made on a cowoperative basis by the Fisheries Researoh Board of Canada and the United States Fish and Wildlife Service。 During the year, 14 stations were occupied on each of 22 cruises carried out in the Passamaquoddy area. In additions collections made by the Fisheries Research Board at Prince stations 5 and 6 for the years 1941-46 inclusive have been examined. There were 3 special spring cruises from Grand Manan to St. Mary Bay, 3 offshore cruises in the Bay of Fundy and Gulf of Maine, 15 exploratory cruises at the entrances to Passamaquoddy and bi* weekly surface tows from early April to the end of December at the Lurcher Lightship.

The results indicate that herring larvae are not produced in Passamaquoddy Bay. A few larvae have been found in the area and the indications are that they move in on the flood tide, probably through Western Passage.


Herring spawning areas in the Bay of Fundy and the Gulf of Maine estimated from the distribution of newly hatched ( $4-9 \mathrm{~mm}$.) larvae.

Outside of Passamaquoddy in the Bay of fondy anci the Gulf of Maine, the major concentrations of herriag lazeas were found near Brier Island In September. In October. Large cono centrations of laryae were found an the nothern edge of Georges Bank and in the viainity of Trinity Ledges of subtherteria Nova
 Fundy during October, the heaviest concentratiche were found off
 the northern edge of Gsorges Bank but some were fome between there and Nova Scotia. The large Octoker concentratuons of larvae in the Bay of Fundy were followed by a mowe general distribution in the northern part of the Bay and alcng the west coast of Nova Scotia. Herring larvae were fery sparsely distributed in the Bay of Fundy and Gulf of Maine in Deqember. In January and February, the lawae were still moxe widedy dispersed and fewer were taken.

Three spectal epring cruses around Gand Manar and in St. Mary Bay faiaed to produce any newlyohatched hersing larvae, but the capture of one young laxpae in June on the Lurcher Shoals supplied evidence of sone spring spawning in this region.

The results indeate that major heaxyg spawings occur off the southwest chast of Nova shotia and on try chthave edge of Georges Bank, The drift of the arvae, as indinated by none tidal surface currents and increasing sise as tho divtance from the spawning areas thoreases, guggests that oniy Moa Soraia spawnings contribute substantially to the ommeratsl stooks of herring in the inahore azeas of sonthera New Brurewtizo
Jo. .H. Legare

No. 55

## THE DISTRIBUTION OF FLANKTON IN THE QUODDY REGION

The biology of plankton populations in Passamaquodidy Bay and its approaches is of spesial importance io the production and distribution of the young herring which support the large "sardine" fishery of the area.

Plankton sollections have besn made on a bicmonthly basis over a twomear period and a study at these eallectuns indicates a very complex problem with a geat rany spectes involved and their distribution and abundance verytg thoovgh. out a season and from one year to the nexto Tha artipe planition
 such as crustaceans, molluses etso may be concicerod to belong to the neritis group. Only the more common and most abundant forms are discussed here.

In January, February, and Mareh, the coperoc Caianus finmarchicus was the most abundant form at most stations. although


Tortanus discaudatus made up most of the collections at station 8 in the St. Croix River. Plarikton tows during ths pexoou were rich in adult chaetognaths, euphausilde, and anmelled. In Mareh. there were aiso large numbers of orab laxvae. From Mareh through July, larval forms of euphausiids, crabs, cladocerans, barnacles, fish, chaetognaths, and annelids made up most of the oullegtions. Large numbers of diatoms, eggs stphonophores, and medusae were also found. Puises of Calanus finmarchicus. Metridia iucens. Tortanus discaudatus, Acartia slausi, and Temora jongicornis were indicated at one or mure stations on seyeral occastons. The copepod taken most reguiarly in large numbers during this period was Pseudocalanus minutus. Copepods were abundant at a rew stations in August with Calanus making up most of the catch. At the same time large numbers of Pieurobrachia were foand throughout the Quoddy region. In September and October, the crpepod Centropages typicus dominated the catch with smaller numbers of ayhausideng Sagitta, and amphipods particulariy in oatober. Tas parkton collections in November and December were made up alnost entirely of Calanus finmarchicus although Centrooges and Iox abundant at a few stations.

The average volume of plankton per tow as giter by months for 1957 and 1958 in the accompanying zigure. The values for Passamaquoddy Bay and for the adjacent areas ate shown separately. The differences between the quantities taken in the two years are obvious, particularly far the sollecticas in tanuary, July, August, Detober, and December.

Special plankton collections to study the depth disw tribution of herring fiood organisms showed that in mid moming the majority of the plankton were in the deepanater layers while at night the largest quantities were taken near the suxtage.

Tides appear to play a major role in the horizontal dise tribution of planiston in the quoday region. Plankton concentrations were consistently larger in areas adjacent to the Bay and most of the forms found inside the Bay were also evident gnd in greater abundance immediately outside. Flood tides were generaily assoc. iated with an influx of plankton to Fassamaquoday Eay. The most important endemic copepods in Passamaquoddy Bay ir i9\%8 were Tortanus discaudatus. Acartia clausi, and Eurytumce hesayans in that order.

$$
\therefore \text { E. Ho Legare }
$$

No. 56

## THE FOOD OF HERRING IN PASSAMAQUODDY BAY

Various authors have discussed the rich feeding grounds of the Passamaqueddy area. As early as 1898 Mcore wrote mure remarkable abundance of herring in the vicinity of Passamaquoddy Bay is doubtless a direct relation to the rich supply of
nutritious food". There has, however, been very hthe evidence presented in support of this contention.

During the summer and autumn of 1958. an investigation was carried out in an attempt to relate the feeding habits of herring to the food available in the Quoddy region. Gamples of freshly-caught herring were preserved in $5 \%$ formain and brought to the laboratory for examination. A total ai 1,606 herring from Passamaquoddy Bay and its approaches were examined. The number of herring with food was 1,098 or $64.7 \%$ of the total. Each stomach was examined separately for typas of oxganisms. Average displacement volumes were calsulated for each sampie of about 100 fish.

The food of the herring was quite dserstifed and about 50 different organisms were identitied and recowted. Copepods. eggs, cypris Balanus laryaa, mussel larvae, eladocetary, and crab zoea occurred most frequentiy, Also appearing in Lawge numbers was the parasitic trematode Brachyphallus crenajuso There was a direct relationship between the size of the herring and the size of the food in their stomachs.

The relative importance of plankton organisms in the diet of herring varied according to the availability of food in the different localities. Inside Passamaquoddy Bay herring were feeding more actively than outside the Bay and the dominant organisms found in the stomachs were species of copepods endemic to the Bay such as Eurytemora herdmani Acartia Plade and fortanus discaudatus. Outside Passamaquoddy Bay neritio spectes of copepods such as Pseudocalanus minutus and Calanus fingarohtas and large numbers of harpacticid copepots and barnacle laryae were the main food items.

The pattern of feeding activity foiciows clusely the relative abundance of plarikton in the region. Heavy zeeding in June was followed by a fairly regular decrease in July and August; a sharp increase in September followed by another decrease in October. In late November there was a slight renewail of feeding activity which corresponded with an increase in abundance of plankton at that time.
JoE.H. Legare

No。 57

## EXPLORATORY FISHING FOR HERRING

Explorations for new areas and new methods of catching herring were continued in 1958. As for many of the Passamaquoddy projects, resources of equipment and personne were pocled with the United States Fish and Wildiffe Service for moze extensive and efficient operation. The present fishery in both southern

New Brunswick and in Mane is carried on chuefy whimete op bar seines close to the shore and little is knom o the ofer shore distribution and abundares of herring.

Bottomotrawi fishing was gaxped out on tre fonthera edge of Georges Bank in Jancary For 23 tows with e, etandard No. 41 trawl with a smallwinesh codend the average wawh amounted to approximately 120 pounds. Sone herring were taken in erfery tow but the maximum was on 350 pounds. These harining were large, mature fish that had recovered from spawaing. presumably during the prewious autumno

Dutch herring tramis and gill nets were uged from the MoV. Harengus in Kennebecasis Bayo Smali quantities of herring were taken in both。 In the gill betes which weat approximately 50 feet deep, the herring catches were eventy distanbuted from top to bottomi.

In an attempt to diseorer the entwaree and axit of herring to and from Passamaquoddy Bayg giat wetw, Tseacecotidd trawls, Dutch herring tum? and Lassson twemp weye weed withe out success. Thera wes no diffioulty with the oreration of the trawls but it was fourd to be impossibie to aroher gin nets in the Passages. These experiments were combined wht wegging operations and 10,000 marked herving were relemad matube Passage, None of the marked $\mathrm{t}^{2}$ sish were recepturec.

On Oetober 7, the MoV. Harengus fished with bottom trawls on the northern edge of Georges Bank. Moderate catches of herring were taken and sampled for biological studjes. This is now the fourth consecutive season that suceessful bottome trawl fishing has been carried out on Georges Banio.

Throughout the summer months, sonjcosoundex cruises were carried out weekly in Passamaquoddy Bay. These showed that, in general, the largest concentrations of herring are in the open areas away from the small coves and inlets where the weirs are located. Large quantities (at least 2250,000 pounds) of herring were taken by commercial purse seinexs in the efrry of the Bay in September。
GoMo TRDbo

No. 58
HERRING CATGHES IN RELATIONS TO ENVIROMMENT
Attempts to explain fluctuations in catches of herring in the Passamaquoddy region on the basis of variations in meteorom logical. hydrographiczand biological conditions were continued during 1958. Mx. E.D. Henderson, a summer student: was responsible for this assignment.

The project is of prime importance to the Passamaquoddy investigations. An understanding of the causes of present filuctuations in catch would assist materially in the prediction of changes in herring fisheries should power dams be instailed at the entrances to Passamaquoddy and Cobscook Bays.

In 1957, efforts were directed chiady owaros come parisons of catches with temperatures and river duscharge. In 1958, emphasis was placed on winds. sunshine, and plarkton prow duction although additional data on air and sea temperatures and river discharge were alsc examined.

The results of these studies were disarporintirg. Signm ificant correlations have been demonstrated between catch in some years and in some districts with certain physical sathors. but it has not been possibie to establish any consistent comrelation between catch and physical conditions over the period $19+7$ to 1956. For example, in only two of the ten years was there any significant relationship between catches and oversill aoundance of plankton in the area: comparisons of river discharge and catch per weir in the same year and for one and two years later proved fruitless; unusual catch years (high and low) compared with river discharge, salinities at various levels, plankton volumes, and cloud cover gave no significant results.

An overall appraisal of these studies suggests that while the abundance of herring in this area is probabiy related to the physical conditions of the environment, there is little or no relationship between abundance and catch. Perheps this is not surprising in view of an extremely variable market demand and the fact that the weirs and bar seines are only efficacious on the fringes of the area of distribution.
S.N. Tibbo

No. 59

## the lengit and age composition of charlotie county "sardines"

The major responsibility in the International Passamaquoddy Fisheries Investigations for the age and growth analyses of the herring in the Passamaquoddy Region has been delegated to the Unites States Fish and Wildiffe Service. Samples of herring were collected from all Quoddy areas except Quoddy Roads and eastern Campobello. In addition, there were two samples from Grand Manan and one from Geoxees Bank. Jeneths and verdebal eunta were recorded and forwarded to the Eocthosy Esrbor Laboratary.

Fifty two samples were obtained and 8,563 fish measured. Mean lengths waried from 96.7 to 188.4 mm . The accompanying figure gives an example of the length composition of the herring from catches in March. June, and September. Duming this period mean


Seasonal variation in length composition of "sardines"
sizes increased from approximately 125 mm 。in Mareh to 145 mm ． in June，and to 186 mm 。in September．

Examination of scales from 18 samples showed that $49 \%$ of the scales ware unreadable。 of the 968 fish，whose ages were determined $83 \%$ were $1^{+}, 15 \% ~ 2+$ and $2 \% ~ 3 t$ years olc．A comparison of the average size of these agecclasses month by month showed that most of the growth took place from May to August．

In contrast to the difficulty experienced in reading herring scales，Mr．Basil Parrish，Marine Laboratory，Aberdeen， aged some Passamaquoddy sardines by means of otolithis and exper－ ienced＂no difficulty whatsoever with age readings．All otoliths easily read＂．He also indicated that＂all otoliths（indicate） clear－cut autumn spawned．Centres（are）large and clear＂．

A change from scales to otoliths thus seems warranted， not only for age determinations but also for distinguishing between spring－and autumn－spawned fish．
R.A. MoKenzie

No． 60

## LENGTH－WEIGHT RELATIONSHIPS FOR＂SARDINES＂

In most of the samples of＂sardines＂that have been examined from the Passamaquoddy region，the only size measure－ ment recorded has been the iength from the end or the lower jaw to the tip of the longer lobe of the tail extended straight back


Length in cm ．
in line with the bodyo. This is adequate for descriptions of comparative sizes of fish in an area but has littie or no reference to the commercial fishery where the custon is to refer to landings in pounds or some other measure of weight. In order to provide a convenient means of converting the length of "sardines" in a sample to weights and hence to determine the actual numbers of fish caught, a lengthoweight relationship has been established. Samples were obtained during 2958 and the fish measured to the nearest millimetre and welighef to the nearest gram. All of the samples were examined fresh and in most cases individuals of the same length were weighed together and an average weight calculated.

Altogether, 2,052 "sardines" were examined. Lengths varied from 90 to 299 mm . and average weights from 4.3 to 215.0 gm . There were few indiryiduals longer than 2.0 mm . , but for the smaller sizes average $^{\text {a }}$ weights are based on 20 or more fish.

In the accompanying figure, average weights are plotted by centimetre length groups.

PoA。MoKenzid

## TROUT SUMMARIES

General summary of trout investigations
Alteration of a lake environment to improve prout anging
Control of the eel population cf a lake
Pond formation on streams to improve anging
(a) With pond relatively large in relation to size of stream
(b) with pond relatively small in relation to size of stream

Annual variations in standing exops of trout in relation to environmental changes and other factors in a Prince Edward Island stream

Adequacy of natural seeding to utilize rully the troutproducing capacities of artificial ponds on Prince Edward Island streams

Rainbow trout in Prince Edward Island waters
Relative value of rainbow and brook trout in utijizing the productive capacity of New Brunswick lakes

Evaluation of conditions for trout production in a flooded estuary

Alkalization of a farm fish pond
Tolerance of immature trout and salmon to salt water


## GENERAL SUMMARY OF TROUT INVESTIGAPIONS

Fresh waters can be altered physically, chemically, and biologically to provide better environments for trout and other sport species. Industriai. agricultural, and forestry operations may also alter fresh waters, but often adversely for fish production. Research to maintain and improve the trout fishery must accordingiy deal with both these opposing facets of habitat alteration. Concurrently, research must also be concerned with the development of procedures to make best use of the fish, and with providing information for regulation to achieve this end.

Fresh waters of the Maritime area can be usefully classified on a regional basis with respect to quality of water for trout production. This regional classification is primarily based on the character of the rock formations and the nature of the overlying soils. Research should be sufficiently diversified to overcome natural deficiencies in trout production and utilization peculiar to the several limnological regions.

Investigations have shown that stocking Maritime fresh waters of low to high production levels increased the supply of trout for anglers only to a minor degree. Coneurrent application of fertilization, control of ifsh-eating birds and mamals, and control of cannibalism to a shallow non-productive softwwater lake, representative of many in the Maritime's mainiand resulted in a higher productive level and a marked increase in yield of brook trout to anglers. Stocking was necessary and effective. Control of non-sport fish in Maritime lakes by poison increased trout production, but oniy commensurate with the trophic level of the waters. Ponds formed on hard-water, spring-fed streams are highly productive of trout. The availability and yield of trout to anglers from a stream system is improved by pond formation, but introductions of trout are needed in some situations to realize the full productive capacity of the ponds. Where brook trout move to salt water, a pond formed on a stream markedly reduces the sea runs, especially where size of pond is large in relation to size of the tributary stream and stock of young fish.

Currently, and for the near future, emphasis is placed on the following projects:

1. Pond formation to increase stocks of trout, their availability and utilization by angiers, as a public endeavour. and by private enterprise for sale of angling privileges.
2. Comparison of rainbow and brook trout in their abilities to utilize the varied productive capacities of Maritime fresh waters.
3. Improvement of nursery streams to increase the supply and survival of young trout.
4. Assessment of the effects of forestry operavions on trout (and salmon) streams.

Mow. Smith

No. 62

## aliteration of a lake environmeni TO IMPROVE TROUT ANGLING

The infertility of the waters in the mafority of lakes in New Brunswick and Nova Scotia conditions a low to mediocre fish production. Angling success in most lakes decines when they are subjected to a continued and increasing fishing effort.

Commercial fertilizers were added to Creey Lake, New Brunswick, as a means to improve the growth and production of brook trout. Crecy is a 50 acre headwater lake similar to many others in the Maritime provinces. Trout were planted to supplement a low natural production of young in order to insure sufficient stock to demonstrate any improvements in production that might result from the fertilization。

Fertilization improved the growtin pate of trout in Crecy Lake. The favourable result was largely anllfied, however, by increased predation by fishmeating birds and mamais, which were apparently attracted in great numbers to the lake by the consistent annual stocking, Control of these predators was undertaken, and attempts made to reduce the numbers of eels and older trout in the lake. Deferment of the openirg date for angling was made in one year (1956) to learn if better summer angling could be realized, The resuits of these actions are in part illustrated by the accompanying figure and may be summarized as follows:

1. Fertilization resulted in a better growth rate of trout in Crecy Lake, to the point that fingeriing trout (about 3 inches in length) planted in early September attained a suitable angling size ( 7 to 9 inches) by the next spring and early summer. A comparable rapid growth is not made by rrout in other lakes of the area.
2. Fertilization ${ }_{2}$ stosking, and predato: control when applied together resulted in a marked increase in the survival of trout and in the yield to anglers. An increased survival of planted fingerling trout to the anglers: catches from less than one to a maximum of +2 per cent was reaiized.
3. The majority of the planted trout were taken by anglers during the first year after stocking. Almost none survived to be angled during the third year after their introduc. tion into the lake.
4. Defermerit of the opening of the angling season from April 1 to June $l_{8}$ 1956, resulted in better catches to later dates in summer, but the total catch was smailer.


Results of fertilization and predator control upon survival of planted fingerling trout and the yield of trout to anglers. (There was no stocking of trout in 1957.)
5. The fapourable effects of the ferthlyation on the quantity of trout soods were transitory, being macmur the fourth year after fertilization, to fall. rapiely wo prewiertilization levels in the fifth and sixth years.
6. From the inception of predator control in late 1950, the average cost of each trout taken by the argiers approximated 75 cents. The lowest costs 45 cents. obtained when all management procedures were applied and the yield of trout was highest. The costs were for guardian semices throughout the year and for stooks of trout.

M. W. Smith

No. 63
CONTROL OF THE EEL POPULATION OF A EAKB
The American eel is a common predator sand competitor of trout in Maritime fresh waters. Control of ins nubers in tyout lakes is desirable. The eel is otadromous. Accowůnglys zongterm control would best be accomplished by prevencirig the eritrance of the young eels (elvers) into lakes.

In 1951, a barrier was erected, and has since been maintained, in Creey Lake outlet, New Brunswiok, at a point within 25 yards of the lake. The barriex consists of a low dam and sluice over which all of the overfiow from the lake is channelled to drop about two feet into the strean bed bedo. Oyeey is a headwater lake of 50 aeres thus the outiet is a smail streamo

Eels leave lakes at approaching matutity. Oatwaramoving eels have been captured in a trap maintanned in Grecy lake outlet throughout each year since 2950. The numbers of maturing eels taken in this trap serve as a gauge of the control measure. Eels have also been captured in Crecy lake proper by baited traps and set-lines during the summer months. This effore gives information on the eel population persisting on the lake and on the effective. ness of such fishing methods.

The majority of eels leave Crecy Lake when six to eight years of age. The barrier was instalied in 1932. Wf the barrier has been effective against the entrance of elvers, the numbers of large eels captured as they left the lake or by fishing in the lake should have declined in late years. The numbers of large eels taken in the outlet trap in 1957 and 1958 were 20 and 237 respectively. The average number per year from 1951 to 1956 inclusive was 320. In 1955 eels were taiken in the lake at a daily rate of 1.1 per 10 -hook set-ine, iri 1958 the rate was 0.5 . The apparent reduction in the number of large eels in the lake may be ascribed to the effects of the barrier on the entrance of elvers. It is perhaps too soon to experience a desired collapse of the eel population in the lake。

No. 64
POND FORMATION ON STREAMS TO IMPROVE ANGLFNC
Ponds formed on springofed trout streams usually provide good angling areas. Pond formation on Prince Edward. Isiand is viewed as a management procedure to improve availabilisy and utilization of brook trout stocks. Where trout rur 50 salt water, their movements are obviously curtailed by foming ponds.
(a) With pond relatively large in relation to size of stream.

The effects of pond formation on the moverents of brook trout between and within fresh and salt waterg and on the yield to anglers from the entire stream system, have peen stuaied at Ellerslie Brook, PoEoI. Whe brook has an effective iength for trout production of about $4 \frac{1}{2}$ miles. Movements of trout have largely been followed by installing twoway fish traps (1) near head of tide at mouth of brook in 1946 and (2) 650 yards up-stream in 1950. A 7-acre pond was formed between the two sets of traps in 1952.

The traps have been operated througholit the year and tended daily. Trout taken in the traps have been measured and jawtagged. Trout moving from salt water were released into the pond until December 3. $1955 \%$ thereafter they have beer. exguded. $A$ census of the trout taken by anglers has been kept anmally.

Pond formation reduced the movements of trout between fresh and salt water markedly. In the years 1946-1951. the numbers of movements into and out of the stream were 10,273 ana 10,472 respectively. After the pond was formed, 1952-1958. the inward and outward movements nurabered 3,322 and 2,429. Driring the same period, 1952-1958, the number of movements by tyout down-stream into the pond was 7,551 , but only 2,429 out to sait water. For a majority of the trout moving down stream the pond was apparently as suitable a habitat as the estuary had been previouslyg and held trout.

Angling records are iliustrated in the acsompanying figure. In the second year after pond formation, the total catch moved up sharply. The total effort increased commensurately so that the catch per rodehour was 1.2 as compared to ar average of 1.9 for the pre-pond years. In 1954,79 per cent or the total catch came from the pond. Since 1954 the total catch for the stream system has declined but most paricicularly that for the pond. The pond was drained in September 1958 and only 73 trout were found.

A major objective of the investigations was to determine if pond formation resulted in a better harvesting of trout by anglers from a strean system. This occurred, largely as a result of the attraction of more anglers to the pond. The annual average pre-pond effort was 810 rodmhours on the stream system; with the

pond the average was $I_{8} 555$ rodmhouxs. Apparenty at the highex level of effort the troutwproducing capacity of the stream system was not able to sustain appreciably higher catohes as weino

The brook is a good nursery for trout. There is no evidence that pond formation has adversely affered the population of yearling trout in the stream (Summary 65\%. To sabisfy the higher level of angling effort. with sustained highe\% atches, two actions are possibie to meet the situations iy mprove the stream for greater production of young fish or (2) augment the stock by plantings. What may very well occur is that effort will decrease with poorer angling successs permitting nsiural production to recoup the angling losses: particularly in the pond.
(b) With pond relatively smali in relation to size of stream.

The Government of Prince Edward Island has eacated a number of fishing ponds by damming streams at suttarie aites with earthen embankments. Overfiows from these ponds ane diceeted into new channels around one end of the embankment. Txout san move freely up or down the overflows. Movements of twout into and out of one of these ponds on wimot stream have been scubied over a threemyear period. Trout eaptured in a twoway emeg. Installed at the head of the overflow stream, have been encrewsted. measured and tagged. A thorough ereel census has been madrovared on the pond.

Wilmot pond is approximately 15 acres in sree. but much of the area has a depth of water less than 5 feet. The tributary streams have a length of about 20 miles. The pond 2 s relatively small in relation to the size of the tributary streams.

The traps were maintained from June thancugn December in 1956, and from April through December in 1957 and 1958. A record of the movements through the traps follows:

|  | Upostream | Downostregin |
| :--- | :---: | :---: |
| 1956 | 2,497 | 442 |
| 1957 | 2,061 | 1.298 |
| 1958 | 1,787 | 1.338 |

Dominant upestream movements were in Jine and Juiy and outward in April and May. The low number of downcserem movements recorded in 1956 resuited from no trapping. in Apris and May of that year.

The recorded numbers of trout taken by the anglers from the pond were 18397 in 1956. 18880 in 1957 , and 19948 in 1958. The proportion of tagged trout in these catches varied fxom 12 to 19 per cent. A thorough analysis of the movements of tagged trout at Wilmot has not been made. However, the low proportion of tagged trout in the catches from the pond in relation to untagged individuals taken, and in relation to the number of tagged trout that entered the pond, suggests that the $W i l m o t$ pond did not hold trout
to the degree experienced at Ellerslie．There is supporting evidence for this view in the recorded capture of 66 tagged trout in the tributary streams in 1958 with an incomplete cersus as against 231 taken in the pond with a thorough censins．The move－ ments of tagged trout suggest that to waintain a hizhers population of trout in Wilmot pond for greater angling suceesso screening against outward movements is required．

Mo Wio Smith

No． 65
ANNUAL VARIATIONS IN STANDING CROPS OF TROUT
IN RELATI ION TO ENV IRONMENTAL CHANGES AND
OTHER FACTORS IN A PRINCE EDWARD ISLAND SITEAM
Investigations begun in 1947 have been continued to date to evaluate the stocks of trout and salmon in Eilerslie Brook and its tributaries and to determine ultimately the effect of pond formation upon thern．

When making the annual summer population estimates the same sample sections of the stream were used in each year．With the exception of the 40 －yard section in the tributary Hayes，each section was 50 yards in length。

## Results

Marked armual fluctuations have been observed in the numbers of fingerlings（ís．sh of the year）and older wivut （yearlings and older）in Ellerslie and Hayes Brooks．Finctuations between years in the numbers of trout in the sample sections have also occurred．The factors，acting to bring about the observed fluctuations，may be grouped under two main headings：
（A）Cimatic factors，
（B）Environmental factors．

## （A）－Climatic factors

The following obsezvations illustrate some of the effects of climatic factors on the production of trout： 1 。 Annual varia－ tions in the numbers of fingerlings in Hayes and Ellerslie Brooks were of much the same order of magnitude。 2。 Ta years when stocks were low in the Elierslie system they were found to be low in many other streams of the regiono 3．When frazil ice anditions were severe in the winter and spring，stocks of fingerlings were low the following summer．

## （B）－Environmental factore

Shifts in the stream environment．silting and scouring have，in some years，brought about marked changes in cercain sections of the brook．When an area of the brook besomes covered by silt the trout population tialls off．The effects of scouring are
usually beneficial to older trout production. Pools are deepened and banks are under cut. This results in a greater number of hiding places or homes for older trout.

Brush in the stream aiso prowides exeeliont hiding places for trout. On the other hand, arter cover had been removed from areas of the stream a decrease in trout stozks was noted.

Population density. Older trout are limfted in their distribution in the stream by the number of availabie hiding places in the habitat. What happeris when a trout population is substant ially increased in number is illustrated by the following observam tions. When the older trout population in a pool was doubled by stocking, about $50 \%$ of the stocked trout moved out of the pool within 48 hours. Few of the resident population moved fxom the pool.

Competition with other species. There was no evidence to show that there was competition between trout and salmon for living space. The two speries occupy different types of habitats in the brook.

Impoundment, Trout older than yearlings move from the stream into the pond. There has been little moveme:nt from pond to stream. This has brought about a decrease in the average lengths of the older trout in the stream. The prouretivity of the stream has not been affected by pond formation. Driting the past summer stock of fingerlings and older trout were at pre-pond levels.
*. W. Sanders
No. 66

> ADEQUACY OF NATURAL SEEDING TO UTILIZE FULCY
> THE TROUT-PRODUC ING CAPACTT IES OF ARTIFICIAZ PONDS ON PRINCE EDWARD ISLAND STREAMS

An important question in the management of ponds formed on trout streams for increased production and availability of fish to the angler is whether the tributaries provide sufficient stock to utilize the full troutmproducing capacities of the pond. Ponds on Prince Edward Island streams are highly productive of trout. Because they are spring fed even small tributary streams effectively maintain pond levels and suitable temperatures for tout during the summer periods. Although these tributary streans are good nurseriesg their size presents a physical limftation upon the guantity of young trout that can be produced.

Information on the above question is being sought at Stevenson's Pond, P.E.I. Initially the extent to which the native stock, produced in the tributary stream is populatiag the pond is being assessed.

Stevenson's Pond has an area of 6.2 acres. It is fed by a stream of approximately 3 miles in length. Yearling and older
trout are prevented from moving down-stream from the pond by selfcleaning screens maintained throughout the year at the dam. Standing crops of trout in the pond are assessed by draining and the removal of the fish. The pond is closed to angling,

The pond was drained in June 1956 and all trout removed. The population was again assessed in September $195^{\circ} 7$ and the trout again removed. A second assessment was made in September 1958 at which time, however, the trout were returned to the pond after counting, measuring, and weighing.

Data on the number and lengths of trout in the standing crops are given in the accompanying tabie. In September 1957 the standing crop was 59 pounds per acre. In September 1958 it was less at 33 pounds per acre.

It has previousiy been determined for Stevenson's Pond that with initial densities of introduced yearling brook trout from 400 to 800 per acre, no significant differences were found in growth rate. The higher density was apparently below the carrying capacity of the pond. The density of trout in 1957 was of the order of the higher populations previously studied. The trout that were removed from the pond in 1957 and 1958 were in excellent condition. The results indicate that the contributions from the tributary stream, in this case small in relation to the size of the pond, were inadequate to utils.ze the full trout wroducing capacity of the pond. Supplement from introduced stock appears needed. It is proposed to determine to what extent stocking is required to supplement native production to provide maximum yields from the pond.

Length frequencies of brook trout from Sterenson's Pond

| Fork length | Number |  |
| :---: | :---: | :---: |
| in inches | 1957 | 1958 |
| Under 6 | 233 | 34 |
| 6-7 | 201 | 84 |
| 7-8 | 193 | 128 |
| 8-9 | 217 | 169 |
| 9-10 | 202 | 145 |
| Over 10 | -298 | 103 |
|  | 1,344 | 663 |

Percentage of total number 1252 2258 17 15
14
16
15
22
5
23
29
25
22
16
M.W. Smith

No. 67
RAINBOW TROUT IN PRINCE EDWARD ISLAND WATERS
The rainbow trout is not native to Maricins waters. By introductions, the species has become locaily established. In the Prince Edward Island area it is anadromous, and increasing numbers of steelheads are being taken. The rainiow trout must
now be considered as an estabiished sport fish in riand waters． There the rainbow trout has been superimposed on popvlations of native brook trout，either cccupying ecological niches not utilized by the latter，or entering into direct competition with it，or both．

Preliminary studies have been made at Simpson＇s Pond （ 2.3 acres），PoE．I．g to ascertain how well rainbow trout survive and grow in such situations．In October 1955．2， 172 underyearling rainbow trout were planted in simpson＇s Pond．The pond was screened to prevent escapement down－stream。 Each yeari since 1956 the survival and growth of these planted fish have beeri determined by draining the pond at approximately the same tine in early fall． The pond has been closed to public angling．Data are presented in the accompanying table．

Survival and growth of rainbow trout in simpeon＇s Pond

|  | Number | Average fork length （ino） | Average weight 102．）． | $\begin{gathered} \text { Annual } \\ \text { survival } \\ \hline \text { 名 } \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: |
| Planted 1955 | 1． 172 | 5.2 | 1.1 | － |
| Removed 1956 | 305 | 10.0 | 8.8 | 26 |
| Returned 1956 | 300 | 10.0 | E．8 | －0 |
| Removed 1957 | 167 | 12.6 | 73.0 | 56 |
| Returned 1957 | 130 | 12.6 | 13.0 | $-\infty$ |
| Removed 1958 | 72 | 16.5 | 28.3 | 55 |

Survival of rainbow trout from underyeariings to yearl－ ings was only moderate。 Growth at all ages was good，and appreciably suxpassed that for brook trout in the same pond．On September 22，1955，yearling brook trout removed jrom Simpson＇s Pond averaged 8.5 inches in forok length and 4.3 ounces in weight． By comparison，rainbow trout attained an average length and weight of 10.0 inches and 6.8 ounces as yearlings．

During the years that rainbow trout were held in Simpson＇s Pond it was not found possicle to exclude brook trout from the tributary stream．On draining the pond in 1956，1957， and 1958，the following numbers of brook trout were removed respectively： 249,671 and 750．Both brook and rainbow trout inhabited the pond without apparent effects upon each other． However，the total fish population in the pond was below that which could be supported，and there was no strong competition between the species for liwing space or food．

No． 68

## RELATIVE VALUE OF RAINBOW AND BROCK ITROCH IN UTILIZING TIHE PRODUCTIVE CAPAGITY OF NEW BRUNSWIGK LAKES

The rainbow treut grows faster reputedy ar withstand higher water temperatures，and utillzes zooplankton food more effectively than brook trout．One might juage that the rainbow trout could compete better and utilize more of the fishoproducing capacity of soft－water lakes of low to mediocre productivity．The possible superiority of the non oindigenous rainbow trout is being tested in two softwater lakes of Charlotte County，New Brunswick． These lakes are representative of many others in the Maritime area．

Underyearling rafnbow trout were int odueed into Kerr and Crecy Lakes in September i958．The survival to angiers catches and growth of planted brook trout in these lakes is known． In Crecy Lake the environment was aitered by fercilization and predator control．The survival and catchas of brook trout were markedly increased by these actions．There was zo attempt to alter the natural conditions in Kerr Lake，and asoseng with brook trout was unsuccessfui in producing better anginnc．Onder these two sets of conditions，（1）tepication of fertiligation and predator control at ceecy Lake and（2）with an unaicered natural environment in Kerr Lake，whil more anging success be realized from stocking rainbow trous？A positive answer io thes question would materially aid in the future management of many Maritime lakes for improved iishing．

M。旃。Smith
No． 69

## EVALUATION OF CONDITIONS FOR TROUT PRODUGRION

 IN A FLOODED ESTUARYThe causeway carrying the Trans－Canada Highway over the mouth of York River，Prince Edward Island，has formed a small． （ 500 acres）artificial lake on what was formeriy a fial estuapy． Salt water can enter the lake at high tide wia \＆stuit chrough the caluseway．The sluit is provided with a sluice thet permits trout to move into or out of the lake．

At the request of the Provincial Govermment a prelimin－ ary survey was made in 1956 to determine how well trovt move through the sluice，and to determine the suitabilsty of the lake as a trout habitat．Furthex obsexvations were made in 1957 and 1958.

## Findings

In 1956 and 1957 it was found that the wetexs of the lake were sharply stratified with respect to saliniuy and temperature in summer．Decomposition of organis motbes in the salt water，stagnated below about 6 feet in depth，remitied in a
depletion of dissoived oxygeno Fainly complete mexing of water in the lake took place in the fall.

Trout moved into the lake through the sivice. In summer they were found only in the shallow layer between the lower oxygen-deficient strata and the warm surfiace waters.

## Recommendations

As a remedial measure it was recommended that the inflow of salt water be stopped. The Provincial Govenment ciosed the sluice in October 1957.

## Hydrographie suryeys $n 1958$

Conditions in the lake in sumex dafrered littie from those observed in other years. Salinty deteminations made in the lake through the tidal gycle showed that salt water was flowing in through the slutce at high tides.

There is litile to be gained in making firbter surveys on the lake until such time as the salt water is prowented from entering the Lake.

> I. Wo Saunders Mo Sol Smith

No. 70

## ALKALILATION OF A RAPM PYEE POMD

Alkaline waters are generally more producive than soft. Most lakes in New Bxunswick and Nova Scotia have sotr waters. Liming such areas is indicated as a possibility tor raising their productive levels. Preliminary obserrations have been made on the effects of adding agricultural lime to a small farm fish pond (approximately one acre) at a submstation of the Department of Agriculture, Tower Hill, Chariotie County, NoB.

Four hundred pounds of land inme wers adied to the pond at the mouth of the small inlet strean. Application of 100 pounds each were made at approximately twoweek intervals fiom late July into September 1958. A minor increases 6.5 to 6.8 , in pH value of the water was noted. Conductivity rose from 25 to 39 reciprocal megohms. Colour from humic materials was moderately reduced.

The high buffering capacity of the water, plus run off, apparently dictated that large quantities of lime, weil above those used ( 130 lbo per acre - foot), were necessary to insiease the hardness of the water appreciably.

The quantities of lime necessary to have an appreciable effect would apparently limit practicai treatment of Maritime soft waters to those of only a few acres in s.rea at the most.

No。 71
tolerance of mmarure trout and salmon to sber water
Fingering and yearing trout have been observed in estuaries on Prince Edward Isiand．At Ellerslie Brook some salmon parr descend into the estuary in fall．To date ifttie is known regarding the tolerance of immature trout and salmon to sait water． A series of preliminary observations，designed to provide informa－ tion on the tolerance of young trout and salmer to salt water，was made at Ellerslie Brook．Prince Edward IsIand duzing 1958.

## Methoos

Fish were heid in battery far：eppome agal．eapacity） and supplied with afr from an aquarium punp．obsempations were made on 155 fish in different salinities ranging from 10 vo 28 parts per thousand．The range in size of the dixferent groups of fish tested was as follows：
Sajnon try（underyearitnge） 6.2 to 7.9 cm ．
Salmon parr（yearilings \＆older） 8.0 to 14．0 cn．
Trout fingerlines（underyeariings） 4.6 ro 7.9 cm ．
Older trout（yearings \＆older） 8.0 to 27.5 cm ．

1．In general，the larger the fish the more resistant it was to high salinity（28息）。

2．Salmon fry and trout fingerings dia not appear to have been adverseiy affected by water of low saithty（10\％）．

3．Salmon fry were more resistant to high salinity （28\％）than were troct fingerings．Some trout firgerlings were observed to die after 9 hours in water of $28 \%$ salnon fry were able to withstand 13 hours exposure to the same salinity berore any deaths occurred．

4．Fish showing signs of distressworepid swimming followed by loss of equilibriummein salt water，recovered when placed in fresh water．

5．There was a marked change in the outward appeaxance of both trout and salmon shortiy bef゙ore death．The fish became very thin，probably as a result of dehydration of the tissues． This change took place in relatively short time．

6．Trout（fingerlings and clder）and salmon（fry and parr）survived in simulated estuariai conditionswenalt water（28\％） changed to fresh water and alternating these two at 6－hour intervals．
7. After a week in simulated estuarial conditions, salmon fry were able to live in high salinity (28\%) without any apparent adverse effect.
8. Trout fingerilings heid for 24 hours in water of low salinity ( $10 \%$ ), survived better in water of high salinsty (28\%) than did non-acclimated fingerilings.
9. Fish from which scales had been removed died before uninjured fish when both groups were held in salt water under similar conditions. Care should be taken when mariking or handing trout or salmon near an estuary, not to injure the filsh.

The above observations show that trout and salmon of all ages can adapt to life in estuaries where the water varies from near fresh up to salinities of 28 parts per thousand.

There is an obvious need for a better understanding of the present or potential value of the estuary in rearing young salmon and trout.

J.W. Saunders

Atlantic salmon research
Atlantic salmon statistics
Runs of adult salmon into the Miramichi River
Evidence for homing of Atlantic salmon
Tagging of adult Miramichi salmon 1957 and 1958
Use of hatchery and native salmon stocks for best production of smolts

Young salmon populations in the Margaree area
Effects of forest spraying with insecticides on aquatic insects, Miramichi area

Growth of young salmon in Miramichi streams subjected to DDT
Effects of different insecticides on aquatic insects, salmon and other fishes, Richibucto area, 1958

Smolt production from the St. John River in relation to hydroelectric developinents

The effects of impoundment on the production and movements of Atlantic salmon in a Prince Edward Island stream

Underwater observations of Atlantic salmon and brook trout


## ATLANTIC SALMON RESEARCH

The research program for Atlantic salmon fe aimea at obtaining information to allow the various commerciaz and sport fisheries to be maintained，through managenent．at the most profitable level for all concerned．Since ig 4 it has been under a review by a FederalwProvincial Cowordinating Committee．Inrough annual meetings of the Scientific Subwcomittee of that group． and frequent liaison the work of the St．Andrews Station is closely associated with the management program of the Department of Fisheries and research and management programs in Newfoundiand and quebec．In 1958 the research program included a variety of projects that may be considered under several broad headings．

1。 Availability Catch statistics obtained by Protection staff of the Department since 1949 andicate the avallability of adult Atlantic salmon to commercial fishemen and anglers in the Maritime Provinces．They are reviewed at $\mathrm{St}_{\mathrm{t}}$ ．Andrews along with statistics from Quebec and Newfoundland and summarized annually in＂Trade News＂．

In 1958 commercial landings were genexally much higher than in 1957，although still below the average level of the past 30 years．Angling catches in 1958 in the Maritimes as a whole， and on many individual rivers were the highest recorded since collection of statistics began nine years ago．Water conditions in the rivers were particularly favourable for early and sustained ascent of fish in 2958.

2．Distribution and migrations．The distribution in fresh water of young salmon from firy to large prewsmolt parr can be determined by electromseining techniques developed mainly at the Pollett Riverg NoB．field station．In 1958 routine assessments were made at series of seining stations on the Poiletto Miramichi，and St．John
 on smolt production of experimental plantings of hatchery stock， forest spraying with DDT，hydroelectric development，predatory bird control，and other factors．

As they descend to the sea on a few representative rivers smolts can be trapped，counted and marked by finwelipping or tagged，for identification after they have reached the adult stage as grilse or older salmon。 In 2958 a record kigh of 30,000 smolts were counted and marked at the Pollett trap：these were produced jointly by a natural spawning experiment that has been in progress for several years，a planting of hatchery stock in 2956 that was calculated to give maximum smolt production et the rate of five smolts per 100 square yards，and experimental piantings of＂smolts＂ and＂postosmolts＂．In the Miramichi area 18,000 smolts were marked at Curventon on the Northwest Miramichis and 8,100 at a new trap on the Cains；neither of these traps were operated to capture all the smolts produced in the waters above，but only to provide a supply of fin－clipped fish of known origin．

In the Mirmichi estuary Swedish type "ags were applied to 1,000 smolts in June. 1958. It is noped that these or other tags will be found suitable for identification of fish from smolts to adults, as an improvement over finmelippinge In 1959 it is planned to tag 10,000 Miranichi smolts.

With facilities available at present it. is inpossible to learn the whereabouts of salmon between the saolit stage and the adult stage when they are catchable by commersial gear, angling, and adult research trapso In 1958 the usual data on catches of marked and unmarked adul.ts were obtained by technicians at North Sydney, N.S.a and Saint Johng N.Bos for? Newtoundland commercial landings, at Escuminac for the local drittonet fishery, in the Miramichi trapmetting and angling areas, and by fishery officers throughout the Maritime Provinces. Analysins of the 650 recaptures of marked fish including scale readings is not yet completed.

An adult sampling trap was operated throughout the openwater season in the Miramichi estuary at Millbanis for the fifth consecutive year; aduit traps were maintained on the Northwest Miramichi for the ninth year at Curventon and for the second year 33 miles upriver at Camp Adams. These research tyaps give a useful record of the occurrence of salmon oeforeg during, and after the public fishing seasons and help in evaluating present fishery regulations. In 1958 the muns of both grilse and jarge salmon into the estuary in the fall far exceeded the numbex entering during the public fishtng season, and far more grilse entered than in any year since sampling started five years ago.

Special attention was given to the recapture data obtained up to 1955 on adult salmon that had been marked as smolts at Curventon on the Northwest Miramichi and Pinewilie on the Dungarvon, tributary to the Southwest Miramichi. Many fish of Miramichi origin were taken in Newfoundland waters and it is estimated that over $1 / 4$ the total catch of Miramichi fish by rods and nets occurred in the Newfoundland and Labrador nets. A few Miramichi fish were taken in Maritime netting areas, but not in fresh water of rivers other than the Miramichio In the Miramichi, mixing of fish from the two branches occurred in estuarial nets, but in fresh water there was marked segregation, with an average of $99.6 \%$ correct return to the Curventon trap and $98.4 \%$ correct return to the Pineville trap over a five-year period。

Adult salmon have been tagged ati the Milibank estuarial trap and at the Curventon counting fence to learn the migration patterns, within the rivers of individual fish. In 1957 16\% and in 1958, $23 \%$ of the fish tagged at Millbank weie recaptured by commercial and sport tishermen and research gear. the rate of movement through the river and into the estuary was highly variable. Some were caught 70 miles upriver within two weeks; others were retaken near the tagging site after two nonths.

## Production of young.

Since 1941 an experimental stretch of the Pollett River has been used for smolt production studies because it has been inaccessible to spawning adults, unless it was desired to introduce them. Experiments with introduction of hatcherywreared underm yearlings under various conditions were completed in i957. Now an experiment to give the amount of natural spawning required for optimum smolt production is in progress, and field work on it should end in 1961. Data already available suggest that 250 eggs deposited in the river by wild adult salmon are equivalent to 35 planted hatchery underyearlings, per unit area of 100 square yards, in producing five smoits.

Recently the Polictt has been used also for an experimental planting of underyearlings calculated to suppaemen: a below-ncrmal native population. This situation would ofter exist in practice.

Since some arailabie freshwater rearing areas are decreasing in size and suitability through hydroeleotric developments and other environmental charges, experimental rejeases of large hatchery-reared fish that might migrate promptly as smolts have been made in 1957 and 1958 in the upper parts of the Pollett and Miramichi Rivers. Checking the downstream migrations at smolt traps below, showed that fish at least $51 / 2$ inches long in May of the year of planting will migrate without delay if planted during the regular period of smolt descent. Their contribution as adults to local or other fisheries should be known soon, since a fraction of the planted fish were marked.

The Pollett and Miramichi smolt production stuaies are made in areas provided with experimental merganser control. Removal of mergansers was shown to greatly benefit smolt proauction from planted underyearlings on the Pollett, and later, to have similar effects in improving parr survival on the Northwest Miramichi. In 1950 it was hoped to demonstrate the effects of mexganser control in improving the return of adults to the Miramichi system, but adverse effects of DDT spraying from 1951 to 1958 interfered with the experiment. A suitable experimental river is being sought elsewhere, and in 1957 and 1958 a preliminary censes of young salmon was made on the Nargaree River, $\mathrm{N}_{\mathrm{o}} \mathrm{S}_{\circ}$, accompanied by merganser census and banding operations by the Canadian Wildlife Service. Margaree merganser populations in the two years were of similar density to those of the Pollett before bird control.

Only a small fraction of the smolts produced on the Miramichi system can be trapped and counted on one or two tributaries. Estimates of total Miramichi smolt production are possible in years when adequate numbers of smolts can be marked at the upriver weirs, to mix with smolts from other branches, and be sampled at smolt traps operated in the estuary near Millbank. The 1958 estimate was 2.75 milliong as compared to estimates of. 1.7 million (1951), 0.8 million (1953), 1.5 millicn (1954), 1.3 million (1955), 2.0 million (1956), 1.3 million (1957)。

## Environmental changes.

Effort was continued in 1958 to assess the effeots on salmon of environmental changes that are associated with industry and which are expected to have tafavourable results. Forest spraying with DDT insecticide to control an outbreak of spruce budworms has been investigated since 1954 th the Miramichi area. In 1958 previous findings were confimmed. Adetional studies were made in 1958, cowoperatively with the Department of Agriculcure in the Richibucto area. in the hope of finding aiternative insecticides that would have less harmful effects on young salmon and their food than the regular DDIminooll applied ati a rate of $1 / 2 \mathrm{lb}$. DDT per acre. There were indications that $3 / 4 \mathrm{l}$. . of DDT per acre had little shortwterm effect on exther young saimon or aquatic insects, yet gave substemtial sontrol of budwoms. The budworm epidemic has collapsed ir New Bransway and no harther sprayings are scheduled as part of the forestry dayem.

Hydroelectric development of the st. Jom River was increased recently by completion of a power dam ac the mouth of the Tobique in 1953 and at Beechwood on the main stem in 1957. Both dams have fish passes, in contrast to the dan at Grand Falls which has barred the upper St. John to salmon spamang for mony years. Concern of foblque anglers over effects of the new dams lead to new fishery investigations in 1957 by Department and Board staff. These included in 1958: (1) assessment of young salmon populations above the Tobique dam which showed many more underyearlings than last year, probably resulting largely from hatchery plantings; (2) study of smolt holdwup at Beechwood and of methods to by-pass smolts; (3) establishment of systeratic ereel census in the Tobique flowage to assess effects of the dam on abundance of other species, particularly predatory rich.

At Ellerslie Brock, F.E.Ios pond formation has been studied by the St, Andrews Trout Investigation ase means of increasing trout stocks and their availability to anglers. Salmon also enter the stream and young salmon have been studied in relation to the changed environment. Adulcs and smolts have been held up by the pond. Such information should help analysis of effects of water impoundments elsewhere。

Control of predatory birds, discussed earlier, is also an environmental change but on the positive side as far as young salmon production is concerned.

Plans are being made to assess the longaterm effects of lumbering operations on salmon and trout production, using the upper waters of the Miramichi as the experimental area.

## Behaviour studies.

Since behaviour stodies are now recogaized to have fundamental importance in longoterm salmon investigations, a comprehensive outline of desirable research profects has been prepared. These come under the headings: distribution of salmon, tolerance limits, movements and migrations, social behaviour,
feeding, escape behaviour and spawning. To date the work has consisted mostly of observations and experiments in the field, but it is planned to begin laboratory research in 1959, using space and equipment in the new wing at the Station.

In 1958 progress was made in developing the use of skindiving equipment for studying the distribution and.behavjour of both young and adult salmon in shallow upriver areas of the Miramichi River. This would permit confirmation in the field, of laboratory behavioural studies.

## Liaison.

Since the salmon research program enlarged in 1949 in conjunction with the organization of the Federal-Provincial Com ordinating Committee, a major responsibility of the salmon staff has been to provide information to the public and maintain liaison with other agencies involved in Atiantic salmon research and management. In 1958-59 senior staff participated in one or more scheduled meetings of the following groups:

Co-ordinating Committee on Atlantic Salmon Ottawa. (February, 1958), Quebec City, (March, 1958)

Scientific Sub-committee on Atlantic Saimon and Trout -St. Andrews, NoBo, (Februarys 1959)

Regulations Sub-committee on Atlantic Salron o Moncton, (March, August, 1958), Montres?. (December, 1958)

Interdepartmental Coramittee on Forest Spraying Operations Ottawa, (January, 1958)

Investigational planning group of Department of agriculture, Forest Protection Limited, Fisheries Research Board staffs Fredericton, (February: March, 1958)

St. John RiveraBeechwood Study Committee Fredericton, (March, April, May, June, October, 1958, January 1959)

Anadromous Fish Committee, International Fassamaquoddy Fisheries Board -- Augusta, Meo, (August, 1958): Crono, Me., (December ${ }^{\text {1 1958) }}$

In addition, many informal discussions were held with commercial fishermen and anglers, mostly during field trips, to discuss salmon fishing problems. Contact was maintained with officers of the Department's Protection Service and Fish Culture Development Branch as frequently as time permitted, particularly where investigations of mutual interest were in progress.

Valuable contacts wi.th salmon investigators in Europe were made by DroElson in Septembers 1958, when he attended the ICES meeting in Copenhagen and made side trips to Sweden and the British Isles.

No. 73

## ATLANTIC SALMON STATTSTICS

Catch statistics on the commercial salmon fishery in Quebec waters are obtained from published reports of the Provincial Bureau of Statistics. For our analysis they have been assembled under four areas. Data on commercial and angling catches in the Maritime Provinces are provided by the Federa. Department of Fisheries. The latter are grouped under three arsas of the "Maritime Region"mothe Gulf, Fundy, and Atlantic Asees. The Gulf Area includes quebec landings on the Gaspe coast as far north as Cape Gaspé and extends around the Gulf of St. Lawrence to the Richmond-Victoria County line of the east soast of Cape Breton Island. The Atlantic Area extends frout thexe around the outer coast of Nova Scotia to Cape Sable, NoS. Tho Fundy Area extends from Cape Sable to Grand Manan Islande NoB.

Commercial catch, Quebec and Maritime Region.
Commercial landings in 1957 and 1958 are compared in Figure l. Simjlar statistics for the $1949 \times 1957$ period were shown graphically in Appendix No. 62 of the Anriual Report for 1957-58.

Table 1. Comparison of commereial catches oft salmon in 1957 and 1958 in Quebec and Maritime Region.

|  | $1957$ <br> Pounds | $\begin{gathered} 2958 \\ \text { Pouncis } \end{gathered}$ | $\begin{gathered} 1958 \\ \text { compared to } \\ 1957 \end{gathered}+$ |  |
| :---: | :---: | :---: | :---: | :---: |
| Quebec Total | 338,200 | 502,700 |  | 40\% |
| (a) Chaleur Bay | 124,400 | $219: 400$ |  | 74 |
| (b) South Shore St. Lawrence | 24,400 | 36.100 |  | 48 |
| (c) North Shore | 24,400 | 36.100 |  |  |
| St. Lawrence | 185,900 | 244,400 |  | 31 |
| (d) Anticosti | 3.500 | 2,800 | 20,\% |  |
| Maritime Region Total | 332,200 | 1,108,600 |  | 33\% |
| (a) Gulf Area |  |  |  |  |
| (b) (incl. Que. (a)) | 654.700 | 834,500 |  | 27 |
| (b) Atlantic Area | 38,500 | 41,600 |  | 8 |
| (c) Fundy Area | 139,000 | 232,500 |  | 67 |

In 1958 the total commercial catch in Quebec was the highest since 1953, when it also just exceeded 500,000 pounds. In the Maritime Region the 1958 total landings of over l, 100,000 pounds continued a steady upward trend since $1955^{\text {, when }}$, the catch fell below 700,000 pounds, the lowest level "ecorded there in the past 88 years. The last peak production in the Maritime Region occurred in 1930 when landings exceeded $5,000,000$ pounds.

The Quebec landings in Chaleur Bay were infinenced by the 1958 change in the opening of the season in the Gulf Area from June 5 to May 15. Many large salmon entered the area unusually early in 1958.

Table II。 Comparison of angling catches of salmon in 1957 and 1958, Maritime Region。

|  | 1957 |  |  | 1958 |  | 1958 catch1957 catch as \% of 1957 catch |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | No. Fish | Effort Rodwdays | $\mathrm{C}_{\mathrm{E}}$ | No. Fish | Effort Rodmodays |  |  |
| Maritime Region Total | 39,106 | 104,831. | 0.38 | 65,048 | 157,848 | 0.41 | 66\% |
| Gulf Area Total | 35,207 | $51_{8} 926$ | 0.68 | 56,764 | 748383 | 0.76 | 61 |
| Miramichi Svstem | 29.972 | 40.965 | 0.73 | 45,067 | 58.235 | 0.78 | 50 |
| Restigouche System | 3.437 | $1{ }_{8} 552$ | 2.2 | 9,268 | 28412 | 3.8 | 170 |
| Nipisiquit | 725 | 3.130 | 0.23 | 1.048 | 3.540 | 0.30 | 45 |
| Margaree | 185 | 1215 | 0.15 | 334 | 18275 | 0.26 | 81 |
| Atlantic Area Total | $1_{8} 237$ | 43.905 | 0.03 | 4,500 | 66,468 | 0.07 | 265\% |
| St. Mary | 143 | 1,440 | 0.10 | 735 | 4.392 | 0.17 | 415 |
| Moser | 81 | 4,690 | 0.02 | 207 | 6,475 | 0.03 | 156 |
| Lahave | 118 | 952 | 0.12 | 807 | 2.265 | 0.36 | 580 |
| Medway | 295 | 48992 | 0.06 | 1,038 | 7.668 | 0.14 | 252 |
| Sheet Harbour | 283 | 10,585 | 0.03 | 368 | 14.945 | 0.02 | 30 |
| Fundy Area Total | 2.662 | 98000 | 0.30 | 3.784 | 16.997 | 0.22 | 42\% |
| St. John (main) | 2,010 | 3.222 | 0.62 | 2,518 | 6,401 | 0.39 | 25 |
| Tobique | 65 | 260 | 0.25 | 186 | 539 | 0.35 | 186 |
| Nashwaak | 66 | 877 | 0.08 | 218 | 3.021 | 0.07 | 230 |
| Petitcodiac | 123 | 976 | 0.13 | 337 | I. 250 | 0.27 | 174 |

There was no appreciable change in fishing effort in 1958. The increased catches may be attributed to salmon being more plentiful in the vicinity of the nets during the fishing season than in recent years.

## Angling catch, Maritime Region.

The total angling catch and the effort in rod-days for the three Areas (exclusive of the Quebec portion of the Gulf Area) in 1957 and 1958 are given in Table II. Also shown are the total angling catches on several of the principal rivers of each Area.

In 1958 the total angling catch was higher in all three Areas of the Maritime Region than in 1957, and was the highest recorded since 1949 when the present system of collecting statistics was instituted.

In Table II the angling effort on rododays in the three Areas as a whole and on a few of the more productive rivers in each Area can be compared, as well as the catches per rodmay. Everywhere the angling effort was greater in 1958 than in 1957, and on most rivers the catch per rodmday was higher in 1958. Heavily fished rivers of moderate size in Nova Scotia like the Lahave and Medway provide about one fish or less per ten days of angling, whereas large rivers in New Brunswick like the Miramich may give seven or eight fish per ten days. The Restigouche gave best returns for angling effort with two fish per rodeday in 195 ? and almost four fish per rod-day in 1958.

Throughout the I9 98 angling season water conditions on most rivers were favourable for the ascent of samon and for angling. This may have been largely responsible for the improved catches rather than a significant ancrease in the abundance of fish.

```
O.0.K.Kerswill
```

No. 74

## RUNS OF ADJLI SALMON INTO THE MIRAMICH. RIVER

In 1958 an adult sampling trap was operated in the Miramichi Estuary at Millbank and two counting fences were maintained on the Northwest Miramichi River at Curventon and Camp Adams as in 1957. The estuarial trap, similar to regular commercial setnets, has been operated through the open-water season each year since 1954. Annual operation of the Curventon fence began in 1950; the upriver Camp Adams ience was installed first in 1957. Past records were summarized in Trade News, June, 1958 , page 6.

The following comments are offered on the data shown in the table:

Millbank trap. In 2958 ovev twice as many grilse were taken as in 1957, mainly because of a very large catch following the commercial fishing season. Only a small increase fn large salmon occurred in 1958, also mainly during the late run. Neither the catches of grilse norlarge salmon in the sampling trap during the 1.958 mj. ${ }^{(1)}$ season

Numbers of grilse and large salmon recorded in 1957 and 1958 at three Miramichi locations (Millbank estuarial trap, Curventon, and Camp Adams counting fences).

|  |  |  | Lar | 1mon |
| :---: | :---: | :---: | :---: | :---: |
| Millbank (Estuarial) 19 - |  |  |  | 1958 |
| sampling trap, 21 miles below head of tide) |  |  |  |  |
|  |  |  |  |  |
| Totals | 3855 | 84902 | 3867 | 4370 |
| Before commercial | 0 | 0 | 3 | 17 |
| During season | 1335 | 1.559 | 520 | 438 |
| During mid-season | -- | 593 | - | 111 |
| After season | 2.520 | 6250 | 3,344 | 3821 |
| Curventon (8 mile |  |  |  |  |
| above head of tide <br> Northwest Miramichi Ro) |  |  |  |  |
|  |  |  |  |  |
| Totals | 875 | 2419 | 205 | 579 |
| Before angling | 0 | 0 | 0 | 0 |
| season |  |  |  |  |
| During season | 400 | 1845 | 1.64 | 312 |
| After season | 475 | 474 | 542 | 267 |

Camp Adams ( 41 miles
above head of tide,
Northwest Miramichi Ro)

| Totals | 560 | 2033 | 151 | 102 |
| :--- | ---: | ---: | ---: | ---: |
| Before angling | 0 | 0 | 0 | 0 |
| season | 0 | 0 | 145 | 96 |
| During season | 534 | 1987 | 6 | 6 |


closed period appear to have been affected significaritly by the absence of other gear in the Estuary (as shown on chart of daily counts, not reproduced here).
Curventon fence. The grilse count was about three times higher in 1958 than in 1957, the increase occurring during the anging season. The increase was unexpected becouse the estimated population of large parr in the Northwest Miramichi in 1956 was smaller than in 1955 as a result of DDT spraying. Ordinarily these fish would have produced the grilse (age 3.1) returning in 1958 and 1957 respectively. Recent scale readings have indicated that many young salmon which were classified as small parr in 1956 and were very abundant, later grew rapidly enough to become twoyear smolts in 1957. This, combined with excellent conditions for ascent of adults in 2958, could account for the abundance of grilse in 1958.

Fewer large salmon were counted in 2958 than in 1957, and the level was about $50 \%$ below the 1950-1955 average, an expected result of DDT spraying.
Camp Adams fence. As at Curventon, griise in 1958 were over three times as plentiful as in 1957, the increase occurring mostly in the angling season. Large salmon wexe fewer in 1958, and again most ascended during the angling season. The 1958 increase in large salmon during the angling season at Curventon was due to a large late run in September; few of them ascended as far as Camp Adams. The low total run of large salmon at Camp Adams reflects the low early run past Curventon.

> C. ${ }^{T}$ Kerswill
> M. Ho Ao Keenleyside

No. 75
evidence for homing of athantic galmon
Several tagging projects by various agencies prior to 1950 in Canadian Atlantic waters showed that (1) many kelts move from Maritime estuaries to be caught one or two years later in the sea around Newfoundland as well as near the tagging site: (2) many virgin fish tagged in the sea of Newfound and move westway and are subject to capture both in the sea and rivers of the Maritime Provinces. There is only one published record of a fish marked in 1938 at the smolt stage on the Northeast Margaree River, $\mathrm{H}_{\mathrm{o}} \mathrm{So}_{\mathrm{o}}$ making a round trip to Newfoundland (tagged at Bonavista, june 1940) and back to the Northeast Margaree (recaptured by angier, September 1940). The early marking and tagging projects were not designed to provide information on the general pattern of migration and homing of salmon whose river of origin was known. Recent smolt marking projects on several rivers, combined with a widespread search for marked adults, have helped to clarify the picture.

Recapture data obtained in 1955 on salmon that were marked at the smolt stage on two Miramichi tributaries vere given special study in 1958. In both 1953 and 1954 good numbers of smolts were fin-clipped at both marking siteswabout 25,000 at the Northwest Miramichi (Curventong, NoBo) and about 20,000 at the Dungarvon (Pineville, N.Bo). It was to be expected, therefore, that many
one-sea-year adults (grilse) and two-seexyear adulus the most commonly caught large salmon) would appear in the 396 catches. The recaptures of marked fish by the fishing public: ciassified as grilse and older salmon are summarized in Table I . The examination of Newfoundland commercial catches were all made at Morth Sydney, N.S., and Saint John $\mathbb{N}_{0} \mathrm{~B}_{0}$, where the fish are repacked before further shipment.

The following points are shown by these data:
(i) Salmon known to be of Miramichi origin are caught both as grilse and older salmon in the commercial sea fisheries over a wide area and many are taken around the coasts of Newfoundland and Labrador. To correct the proportion of the total Newfoundland catch examined at North Sydney, NoSo, and Saint John. N. Bo. in 1955 the 55 marked salmon caught around Newfoundland would be multiplied by 3.35 giving 184. In the Miramichi drift netting area, all the landed fish were examined; in the Miramichi tap netting area most of the catch was examined carefully. It is esticated that about $1 / 4$ of the total catch of Miramichi fish by rods and nets oecurred in the Newfoundland and Labrador nets.
(ii) Miramichi fish from both tributaries were taken by shore nets in Chaleur Bay, but not in fresh water here of anywhere else outside the Maritime System.
(iii) The commercial fisheries near and in the Miramichi System took a rixture of salmon produced in the two tributaries.
(iv) In freshwater areas of the Miramichi watershed, recaptures of 69 angled marked fish showed proncunced segregation of the stocks in the two tributaries where they originated. Some straying occurred, as indicated by two Dungarvon marks taken in the Northwest Miramichi ( $4 \%$ of the 51 marks reported here), and two Northwest Miramichi marks taken in the Southwest Miremichi watershed ( $12 \%$ of the 18 reported here).

Information on the precision of homing to the natal stream is given by the retarns of marked fish to adult counting traps operated at the Curventon and Pineville smolt maricing sites from 1951 to 1956. These data are summarized in Table II。

From a total of 93,102 smolts marked at the NoW。Miramichi trap in the five years 1950 to 1954 inclusive, 895 ( $0.06 \%$ ) have returned. Only tree of these went to the wrong tributary giving 99.6\% correct return. From a total of 55,900 smolts marked at the Dungarvon trap, 362 ( $0.65 \%$ ) returned. Only six of these went to the wrong tributary, giving $98.4 \%$ correct return.

These data show a very pronounced segregation of marked returning adults to the streams in which they were produced.

There is still no proof that the large number of salmon that are available to commercial gear far away fron their rivers of origin in the Maritime Provinces can be expected to return to their home streams. To clarify the problem an intensive tagging

Table I. Miramichi marked salraon recaptured in 1955 by commercial fishernen and angiers.

|  | Marked on Northwest Miramichi $(\mathrm{Ad}+\mathrm{LV})$ | Marked on Dangarvori $(\mathrm{Ad}+\mathrm{RV})$ |
| :---: | :---: | :---: |
| Place of recapture | $\text { Grilse } \begin{aligned} & \begin{array}{l} \text { 2-sea-year } \\ (+) \text { Salmon } \end{array} \\ & \hline \end{aligned}$ | $\text { Grilse } \begin{aligned} & 2 \text { sea-year } \\ & (+) \text { Salmon } \end{aligned}$ |

## Commercial Nets

| Newfoundland | 8 | 19 | 6 | 22 | 55 |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Quebec |  | 1 |  |  | 1 |


| New Brunswick |  | 6 | 2 | 4 | 14 |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Chaleur Bay |  |  |  |  |  |
| Drift Nets off Escuminac. |  | 67 |  | 61 | 128 |

Trap Nets, Miramichi
Below Derby Junction Northwest Miramichi Southwest Miramichi

Nova Scotia 32
5
4

27
$\frac{1}{1}$
10
23 92
93
17
2
2

| Total by Nets | 51 | 124 | 27 | 113 | 315 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

## Angling

Miramichi River
Northwest M., below
$\begin{array}{lllll}\text { Curventon } & 8 & 11\end{array}$
Northwest Mo, above
Curventon
Sevogle (lower)
Southwest Mog upper Renous
Southwest Mo. Dungarvon I
Southwest M.g main river I
$28 \quad 6$

| Total by Rods | $44_{4}$ | 7 | 11 | 7 | 69 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Total Nets + Rods | 95 | 131 | 38 | 120 | 384 |

Newfoundland total, corrected for fraction examined $=55 \times 3.35=184$
Estimated fraction of total catch of Miramichi
fish taken by Newfoundland nets $=\quad \frac{184}{384+129}=$ approx. $\quad 1 / 4$

Table II. Returns of marked Atlantic salmon to two Miramichi traps where part of smolt run. was marked annually, 1950 1956.

|  | No. of |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| No. | returns | Per | No. at | Per cent |
| smolts | grilse \& | cent |  | correct |
| marked | older salmon | returns | trap | return |

Northwest
Miramichi R.
(Curventon)

| 1950 | 7,969 | 65 | 0.8 | 0 | 1.00 .0 |
| :---: | ---: | ---: | ---: | ---: | ---: |
| 1951 | 33,407 | 366 | 1.1 | 3 | 99.2 |
| 1952 | 848 | 29 | 3.0 | 0 | 100.0 |
| 1953 | 25,218 | 238 | 0.9 | 0 | 100.0 |
| 1954 | 25,660 | 197 | 0.8 | 0 | 100.0 |
| Total | 93,102 | 895 | 0.96 | 3 | 99.6 |
| Dungarvon R. |  |  |  |  |  |
| (Pineville) |  |  | 0 | 0.0 | 0 |
| 1950 | 253 | 0 | 0.8 | 1 | 100.0 |
| 1951 | 14,966 | 127 | 0.2 | 0 | 100.0 |
| 1952 | 4661 | 1 | 0.7 | 2 | 98.7 |
| 1953 | 19,966 | 149 | 0.4 | 3 | 95.5 |
| 1954 | 20,254 | 85 | 0.65 | 6 | 98.4 |
| Potal | 55,900 | 362 |  |  |  |

program is indicated, involving the release, at many distant points, of large numbers of tagged fish known, through marising, tagging or other criteria, to have originated in particular Maritime rivers.
C.J. Kerswill

$$
\text { TAGGING OF ADULT MTAMICHE SALMON a } 1957 \text { AND } 1958
$$

A. Estuarial tagging. In 1957 and 1953 Peterson type tags were attached to large salmon caught in the estuarial wap at Millbank, NoB., as they entered the Miramichi River. Sone os these fish were later recaptured by commerciai and sport fishermen and at the Curventon counting ferice on the Northwesc Miramichi Rever. In 1957 tagging was done from May to August; in 1958 from May to November. Data are presented in Table I.

The major point of interest is the inereased total per cent recapture in 1958, due mainly to a five fold increase in per cent recapture by commercial fishermen. This may be due to: a) lower tagging mortality andor tag loss ir. 1953; t) better com operation by fishermen in reporting tag recoveries in 7553 ; or c) a higher rate of exploitation of salmon in 1958. a) and b) are unlikely because the tagging and search for recovered tags has been done by the same experienced persomel for several years. Also, these factors should jeed to greater recoveries from anglers as well as set-net fishermen, which was not the case in 1958. Greater exploitation seems the most Iikely explanaticn. Salmon were more readily taken in setmets during the 1958 seasoa, due probably to a combination of environmental factors (frequent increases in river discharge, moderate summer temperatures, etco.

In both years a few tagged selmon wers athten domstream from the tagging site. This may reflect; a) tizh moving in and out of the river mouth before entering freeh water, b) fish moving into the Miramichi estwary and then out again on thesa way to other rivers to spawn or c) disturbance of upstrean migration by the tagging procedure.

The length of time between tagging and recapture shows that the rate of movement of salmon through the estuary and into the river is highly variable. Some tagged fish were recaptured 70 miles upriver within two weeks; others were retaken a few miles from Millbank two months after tagging. Three salmon tagged on September 18 , 1958, were retaken 30 mjies uprive: at Curventon 2, 12 , and 43 days later.

Table I. Recaptures during yean of tagging of lange salmon tagged at Millbank, NoB. Per cent recaptures by comercial and sport fishermen based on numbers tagged in respective open seasons.

| Year of tagging | Total |  | Commercial |  | Sport |  | Research gear |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | No. | \% rec. |  | \% $r \in c$ |  | \% re |  | \% rec. |
|  | tagged | (ncol | tagge | (20) | tages | 4rand | jag | (no.) |
| 1957 | 146 | $\begin{aligned} & 15 \circ \% \\ & (23) \end{aligned}$ | I46 | $(11)$ | 146 | $\begin{aligned} & 6.8 \\ & (30) \end{aligned}$ | 446 | $\begin{aligned} & 7.4 \\ & (2) \end{aligned}$ |
| 1958 | 221 | $\frac{23.1}{(5 i)}$ | 89 | $\begin{aligned} & 37.1 \\ & (33) \end{aligned}$ | 200 | $(10)$ | $22 I$ | $\begin{aligned} & 3.6 \\ & (8) \end{aligned}$ |

B. Freshwater tagging - Northwest Miramichi Riser. Jpstream migrating grilse and large salmon were tagged from May to November, 1958 at the Curventon counting fence. A smail vinyinte tag was attached with stainless stecl wire below the fishis dorsal fin. Some tagged fish later passed through the Camp Adans counting fence, 33 miles upstream; other tags were recovered by anglers. Data are shown in Table II.

A higher proportion of grilse than of large salmon was recaptured, but few large salmon were taged. The per cent recapture of tagged grilse by anglers ( $8.4 \%$ ) should approximate the proportion of the entire grilse ran taken by angling. if the following assumptions hold: a) an adequate proportion of the migrating grilse was tagged (about $10 \%$ in 1958), b) tagged fish mix with untagged, continue their migration and react to angling similarly to untagged fish, c) all recovered tags were turned fing d) ail grilse passing Curventon were trapped (unlikely in earily spring before fence installed). The validity of b) , c) and a) is question. able, due to lack of information. The proportion of grilse taken. by anglers is therefore probably higher than $8.4 \%$

The average rate of travel of grilse between the two fences is about 20 days. Except for a very few fish this rate varies little from June to September. No grilse taged after September reached the upper fence.

Table II. Recaptures during 1958 of salmon tagged at Curventon, NoBo, in 1958. Per cent recaptures by anglers based on numbers tagged during open season.

| Type offish | Totg |  | Anglezs |  | Canc Adams |  | Other |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | \%rec. Inoc) | tagged | \%rec. inol | No. taged | \% rec. croc) | . | $\begin{aligned} & \frac{1}{q} \text { rec. } \\ & (n o n \end{aligned}$ |
| Grilse | 259 | 30.3 $(78)$ | 203 | $\begin{gathered} 8.4 \\ (17) \end{gathered}$ | 259 | $\begin{aligned} & 22.8 \\ & (59) \end{aligned}$ | 259 | (2) |
| Large salmon | 24 | $\begin{array}{r} 12.5 \\ (3) \end{array}$ | 12 | $8.3$ | 24 | $\begin{aligned} & 8.3 \\ & (2) \end{aligned}$ | - | -- |

M。H. A. Keenleyside
No. 77
USE OF HATCHERY AND NATIVE SALMON STOCKS FOR BEST PRODUC'IION OF SMOLTS

Comparative smolt production from stocks of hatchery and native origin. A particular section of the Pollett River has been used for the past 17 years for studying smolt production under various conditions of predetor control and seeding. Control of mergansers and kingfishers has formed an integral part of the studies of seeding requirements reported below.

Field work for a study of the amount of hatchery underyearling stock (about 4 cm . long. needea to give the best smolt production was completed in 1957. The results are show graphically in Figure 1 .

The most reasonable rate of smolt production to aim for proved to be about five smolts per 100 square yards af river bottom. This required planting underyearlings at a rate of about 35 per 100 square yards.

Field work for a study of the amount ci spawning required to give similar production will be completed in 196. However, in 1958, the final year-class of native underyearings to be involved in this study was assessed. It seems reasonable therefore, to make a tentative prediction as to the final result from this study. The data required for such a prediction are shown in Figures 2. 39 and 4.

The unknown quantity which it is desired to establish js the "potential egg deposition" required. To estimate this, it is necessary to work back from the figure for best smolt production established by the studies of planted stocks. Rates of production below are given as numbers per 100 square yards of stream bed.

The number of parr required to get five smoits is indicated by the data plotted in Figure 2. About eight parr are needed.

In Figure 3 are plotted the numbers of parr resulting from various populations of native fiy (underyeariings). A survival rate of about $65 \%$ is indicated. This is the best figure avallable until the 1959 parr census is completed. The eicht parr required would necessitate a preceding population of ís unceryearm lings.

In terms of potential egg deposition. 12 maleryearlings would arise from something like 250 eggs per ioo square yards being brought into the river, as shown by the eggwunderyearling relationship pictured in Figure 4 .

The comparison between the hatchery stock requirements and natural spaming requirements is thus that about 35 hatchery underyearlings have equivalent value to 250 eggs brought to the river by wild adult salmon.

Effectiveness of a supplemental planting. In 1956, the native fingerling population in the Pollett was estimated to have a density of 6.8 fish per 100 square yards. This was expected to produce, at previously observed survival levels, just under three smolts per 100 square yards. With the meximum capacity of the stream set at six smolts per 100 square yards, this meant that a supplemental planting to produce three to four smoits per 100 square yards was needed. With the optimum hatchery underyearling.tomsmolt survival rate calculated as about 15 per cent. a planting of about 25 fry per 100 square yards, or 109,000 in the experirnental area was indicated. In practice, 99.000 ( 23 per 100 square yards) were planted in late September of which 9,000 were marked before planting by removal of the adipose fin. The fish received from the hatchery were larger than stocks used in earlier experiments (mean lengths $7.2 \pm 0.9 \mathrm{~cm}$. as against $3.6{ }^{\ddagger} 0.5 \mathrm{~cm}$ ) and even slightly exceeded the indigenous underyearlings ( $6.9 \pm 0.7 \mathrm{~cm}$.$) 。$


Table I. Seaward migrants from spring plantings of hatchery reared "smolts" and fall plantings of "postmsmolts". (About 5,000 fish per planting。)

|  |  | Mean length | per cent | rating | $\begin{aligned} & \text { length } \\ & 12 \mathrm{mil} \end{aligned}$ | migration downstream |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Date of |  | \& std. dev. | same | next | same | next |
| planting | Place. |  | spring fall | Spring fall | Spring fall | spring fall |

A. Spring plantings

B. Autumn olantings

| Sept. 11/57 Pollett | $16^{+} 2$ | - | 0 | 38 | $<1$ | $\cdots$ | - | $18^{+}$ | - $=$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sept. 5\%57 Miramichi | $16 \div 2$ | - | 0 | 22 | $<1$ | $\cdots$ | $\sim$ | $17 \pm$ | 2 $\times$ |
| Aug. 29/58 Pollett | $22 \pm 2$ | -- | $<1$ | (in | 1959) | $\cdots=$ | $\infty \times$ | (in | 1959) |
| Sept. 2/58 Miramichi | $22 \pm 2$ | - | 6 |  | \% | $\infty$ | $23 \pm 2$ |  | ロ |
| Sept. 11/58 Pollett | $23 \pm 2$ | $\cdots$ | 1 |  | n | $\infty$ | - |  | ${ }^{11}$ |

Survival rate of the planted stosk throngh the parr year was excellent, apparently exceeding that of the native. In 1958 the bulk of this mixed population migrated as smcltso Judging by the number of adipose-marked smolts the 1958 smoit run was composed of 19,008 planted fish (survival rate from planted winderyearlings, 19 per cent) ana 4,139 native fish (survival rate tron fuly underyearlings, 14 per cent). The rates of produczion per 100 square yards amount to $4 .{ }^{2} 4$ and 1.0 .

Production from this hatchery planting was greater than anticipated. The extra production appears to have been made at the expense of native stock already presentmonct a desirable feature. This may be accountable, at least in part, to two factors: (1) the planted stock was extra large in size as compared to that used in experiments from which survival rates were derived; (2) the late fall planting, with low temperature contributing to less urgent need for adjustment to a new environment, may have affected survival. It would appear also that the design involived an overestimate of smolt rearing capacity, thus necessitating loss of some stock, either native or introduced.

Planting smolts. Tnder certain conditions, it may be desirable to liberate larger hatchery-reared isin which will migrate to sea promptly and on return supplement experied de:iciencies of adult stocks. A series of experiments in which selected fish were liberated about 12 miles above counting weirs was carried out on the Pollett and Northwest Miramichi Rivers in $195 \%$ and 1958. Results are summarized in Table I. The following conclusions have been drawn.
(1) Fish should be selected for size, preferabiy a minimum 4 -inch total length in the previous fail, but perhaps equally well at $51 / 2$-inch minimum length in May of the year of planting.
(2) Those planted during the current lonal smolt season will migrate seaward almost immediately.
(3) Smolts, or more properly "post-smolts", held in hatcheries until late summer will not migrate in large numbers until the following spring, with interim mortality approximating that for pre-smolt parr planted in the autumn.

Ultimate values of planted stock. Useful information has accumulated on the means of using hatchery stock for increasing smolt runs. Large scale practical confirmation that such enhanced smolt runs will have commensurate value to the desired fisheries has still to be obtained. Some 125,000 marked smolts were liberated from the Pollett River between 1949 and 1956. Of these about 110,000 were of hatchery origin, mostly planted as underyearlings. Under 15,000 were from native spawned fish. The approximate observed values of these smolts have been as follows: for hatchery-reared stock originating in other rivers $0.02 \%$ returned to the planted river, none being recorded in other rivers, and $0.5 \%$ were taken in distant commercial fisheries; for native stock in the same stream, $4 \%$ have returned to the river of egg origin, none being recorded in other streams and no commercial returns being available as yet.

## YOUNG SALMON POPULATIONS IN THE MARGAREE AREA

The Margaree Area of Cape Breton, N. Sos is being considered as the site for a comoperative test of the practical value of controlling mergansers for improving salmon fisheries.

As part of the groundwork the second annual assessment of young salmon and other fish in selected sample areas of the Margaree and Middle Rivers was completed in 1958。 Comparison of the numbers found in the two years can be made from Table I.

Table I. Young salmon and other fish found in selected sample areas of Cape Breton streams, given as average numbers per 100 square yards of stream bottom.

| Year \& | Salmon |  | Trout | Eels |
| :---: | :---: | :---: | :---: | :---: |
|  | underm |  |  |  |
| Stream | yearlings | parr |  |  |
| 1957 |  |  |  |  |
| Forest Glen Brook | 20 | 39 | 7 | 2 |
| N.E. Margaree | 22 | 36 | 3 | 2 |
| Middle River | 40 | 34 | 1 | 2 |
| 1958 |  |  |  |  |
| Forest Glen Brook | 12 | 31. | 21 | 3 |
| NoE. Margaree | 16 | 17 | 5 | 11 |
| Middle River | 7 | 26 | 2 | 1 |

In 1958 the populations of underyearlings found were relatively low in both the Margaree, where the experimental procedure is to be applied, and in the Middle River, which is to serve as a control stream for the study.

The Margaree has apparently had an mpioved run of adults in 1958, which may well lead to improved populatjons of young. quite aside from any experimental procedure. In 1957 the mouth of the Middle River was partly blocked to spawners by highway construction. Young salmon there should increase as this is alleviated, which would obscure its immediate value as a control stream.

From the point of view of sound experimental procedure, delay in the application of merganser control until at least one more census of fish can be made seems to be indicated.

$$
\text { P。 } F_{0} \text { Elson }
$$

No. 79
EFFECTS OF FOREST SPRAYING WITH INSECTICIDES ON AQUATIC INSECTS, MIRAMICHI AREA

In 1955, the year after DDT spraying began in the Miramichi area, systematic cullecting of emerging aquatic insects was started on tributaries within the spray zone, and on a control strean just

outside．The work has continaed amally wh the ass．rtance of Dr。FoP．Ideg Jniversity of Torontog whose techurgues ar collecting and qualitative and quantitative anelyses have beca cseco fine data provide a useful means of assessing the extent and auration of effects of insecticide spraying on the food of yourg ahmonid fishes． Aquatic insects appear to be more sensitive as ind rators of the effects of spraying than do fioshes．The teonniques whi itkeiy play an important role in future studies ot effeets of ohemidaz insect control on fisheraes．

In 1958 coilections wexe ontinued nt the same four sites as in 1957 ，using 3 yarciaquare emexgence traps in sumian rapid sections at each eite。 Twenty－four hour collections were obtained through daily servicing of the traps． 5 days yex week：from late May through August．Figure 1 shows the weekly changes in emergence of all insects at the four sites through the 1688 seacon．

The main points shown oy the 2998 oolestuons sies
（1）Spraying of the Sevogle fon the raly time ir June． 1958 was followed by typical reduction in emergeree as ai aquatic insects for several weeks，Then a lavge emexgence ce chironomids （midges）occurred th Augusto（2）The Northyest Meramith sprayed only once， 4 years ago，still shows a low volume，when chonids predominating，but caddisflites show a coneback in one cage－trap． Mayflies were numerous in 1950 at this station．a buend which was noticed on a smaller scaie in 1957 g the fitst fear of sampling here． （3）Trout Brooks sprayed in 1956 ，showed sighs of reovery in 1958， with more caddisflies than fin 1957．Postospray recovery of ceddisw flies appears to have been much more rapid at Trou．Brook than in the Northwest Miramich．

Studies of the food of young saimon nave shom that fry normally consume the immature stages ot mallea mines of insects like chironomidsa and smallet forms of waflies and stonefles．The larger formsg like caddisfies and large stonemiess are more commonly taken by parr．Lack of these speetes could hape serfous effects on the growth of the later stages ot prewsmet．parro

$$
\begin{aligned}
& \text { grom segort by } \\
& 3.0 \text { 。 } \mathrm{de}
\end{aligned}
$$

No． 80
GROWTH OF YOUNG SALMON IN MTRAMCHI STREAMS GUBUECTED TO DDT
The heavy mortality of young saimon in firamichi streams subjected to DDT spraying has been reported before．This amounted to roughly 90 per cent for underyearlings： 80 per ceat for small parr（mostly yearlings）and 60 per eent for large par（mostly 2－year－olds）。

Aside from these primary effects on sumptra DDT spraying has secondary effects on smolt production from sach areas because of altered growth rates which probably result from $\left\{\begin{array}{c}\text {（ }) \text { change in }\end{array}\right.$ the composition of aquatic insect fauna usea as food and（2）charge in competitive conditions resulting from primary wotelitweso

Studies of growth have been made by examining scales of young fish taken in the same areas before, during and after sprayingo The assumption has been mede that a direct proportionality exists between the total length oi a fish and the length cin the anterior radius of a scale, but allowing for the fact that goung salmon are about $21 / 2 \mathrm{~cm}$. long at the time of scale formation. Information thus derived is summarized in the table.

Average lengths of young salmon taker in the Northwest Miramichi River from 1953 to 1957. as calculated from scale reading.


Two tentative conclusions emerge: (1) growth is noticeably curtailed in the year of spraying; (2) Erowth is increased above normal, i.e., there is "compensatory growth", in the year after spraying. There was some indication, not appearing in the table, that by 2 and 3 years after spraying, with young salmon populations back to normal numbers but insect fauna not fully recovered, growth may again be curtailed below normal. These considerations suggest the following generalizations about smolt production for sprayed streams where, as in the Northwest Miramichi, most smolts normally run as 3-yearmolds.
(1) Survivors of fish sprayed as urideryarings will be below normal size at the end of their first year. Compensatory growth in the next year may give a hi.gher than normal proportion of $2-y e a r$ smolts.
(2) Survivors of fish sprayed as yearlings will be below normal size at the end of their second year, so the proportion of 2-year smolts from such yearmelesses will be reduced. Compensatory growth in the third year should result in a greater than normal proportion of 3-year smolts.
(3) Survivors of fish sprayed as 2 wearaclds will be below normal size at the end of their third year, reducing the proportion of 3 -year smolts, but should nearly all make re-atively large 4 -year smolts.
(4) Survivors of fish sprayed in more than one year would be subject to corresponding effects on growth.

> P。F。EI son

No. 81
EFFECTS OF DIFFEREN' INSECTICIDES ON AQUATIC INSECTS, SALMON AND OTHER FISHES, RICHIBJCTO AREA, 1958

In 1958 a field experiment was undertairen in the vicinity of Richibucto, No.Bog in the hope of finding an insecticide that would be less harmful than regular DDTwin-oil to young Atlantic
salmon, but still give adequate control of spruce budworms. It was a co-operative effort by the Forest Biology Division of the Department of Agriculture and the Fisheries Researon Board.

The fisheries part of the project inclucied; (1) observing the survival of caged hatcherymreared yearling salmon, 2 to 3 inches long, held at the lower ends of 5 streams flowing through woodland sprayed with different insecticides, and in an unsprayed control stream; (2) observing the survival of similar fish planted above barrier fences erected at the lower ends of the 6 streans. and the survival of native brook trout and other fishes; (3) qualitative and quantitative analyses of adult aquatic insects collected 5 days per week throughout the season in square-yard cage traps installed on the 5 sprayed streams plus an unsprayed control. Unfortunately an experimental area was not available anywhere in New Brunswick to provide adequate supplies of native salmon fry: budworn-infested woodland and no previous DDT spraying.

The insecticides were DDT-in-oil applied at concentrations of $1,1 / 2$ and $1 / 4 \mathrm{lb}$, per acre and $\operatorname{DDDoinwoil}$ at $1 / 2$ and $1 / 4 \mathrm{lb}$ 。 per acre. Spraying of the insecticides by a pair of Stearman planes occurred from June 12 to 21 . Observations on fishes and aquatic insects extended from early June to mido August. followed by occasional checks on wild fish in the streams until freeze-up.

The data on fish survival show: (1) spreyings with DDT insecticide at rates of 1 lb, /acre and $1 / 2$ Ibofacre were followed by the death, within three weeks, of many hatcherywreared young salmon both cagemeld and free-living. With the highest concentration of DDT (l $1 \mathrm{~b}_{\mathrm{o}} / \mathrm{acre}$ ) $35 \%$ of the caged salmon died; with $\mathrm{l} / 2 \mathrm{lb} / \mathrm{l}$ acre DDT, $20 \%$ died. (2) wi.th these two insécticides many native brook trout, sticklebacks, and sculpirs died within afew days of spraying. (3) spraying with DDT at $1 / 4$ lb./acre and with DDD at $1 / 2 \mathrm{lb} . /$ acre and $1 / 4 \mathrm{lb} /$ acre had no observable effects on either introduced or native fish within a short postwspray period of three weeks. Observations on the caged specimens were more reliable than on free-living fish. Aftertree reeks deaths began to occur in the cage in the unsprayed control streamg presumably irom starvation.

The data for the period June 5 to August 6 on aquatic insect emergence in the 5 sprayed streams plus control. indicate that (l) DDT at $1 / 2$ lbo/acre was more toxic than $1 / 2$ lb./acre DDD, but both insecticides had observable effects, particularly in reducing the number of larger forms, e.gon caddisfilies, and causing great increases in production of chironomids; (2) DNT at $1 / 4 \mathrm{lb}$ 。/ acre was much less damaging to the insect faune than were the heavier concentrations of DDT.

DDD was ineffective in controlling budworms. as were two other products, Korlan and Sevin, checked at Richibucto on budworms but not on fish. It appears that in future tests of this kind, emphasis should be placed on improving the DDT formulation, for example by trying still lower concentrations. Although the recent budworm epidemic has collapsed, further experiments should be undertaken soon to improve control techniques in preparation for future outbreaks.

SMOLT PRODUCTION FROM THE ST. JOHN RIVER IN RELATIOR .. O. HYDROw ELECTRIC DEVELOPMENTS

The problems raised by hydroelectric development of the St. John River are important because of the vaire of St. John salmon and also because of the implications that future developments may have for salmon stocks e]sewhere. The Department of Fisheries and the Research Board have set up a comoperative program of study, with the New Brunswick Electric Power Conmission maintaining a close liaison and comperating in some fields.
(1) Assessment of young stocks. In 1957 the Board established a continuing program of censusing young salmon stocks in the rearing areas of the Tcbique system.

Native underyearlings were virtually absent in 1957, probably the result of extensive spraying of the watershed with DDT in that year. Yearlings and older parr were present in $1 / 2$ or less of the numbers usually found in similar areas.

In 1958 underyearlings were present in about $1 / 3$ of normal density. These represent the progeny of 569 adults ascending the Tobique Narrows fishway in 1957. That a relatively suali number of adults (average run, 1953-1956 was 4,285 ) should produce such a good showing of underyearlings is encouragiag. An increase by onehalf in the larger pair found in 1958 probably represents primarily the contribution of hatchery piantings, but also any inaccuracies inherent in the sampling method.

In 1958 Departmental biologists established that the lower main stem of the river supports young salmon of all stages. The potential importance of such areas is suggested by the production of a Swedish river which was comparabie in size and general physical characteristics before power development, to the St. John. The main stem of that river produced all the salmon for fisheries taking about $100,000 \mathrm{lb}$, a year in fresh water and an equal amount in associated tide water.
(2) Effects on smolts. Grolt delyy either in upper impounded waters or at dam faces could be a sericus factor if upriver rearing areas supply much of the young stocis. In 1958 the Department was unable to astablish, with a counting weir across a tributary, the existence of a downward migration either at normal smolt season or later in the year. A few swolts were teken by nets in the head pond. A systematic creel census on the head pond failed to reveal more than a few young salmon being caught by anglers in late May and early June. The Tobique smolt run of 1958 was probably less than half of normal because of earlier spraying of rearing areas with DDT.

At Beechwood there was an accumulation of smolts in the head gate slots of the dam, which at least established the existence of a normal smolt run from some parts of the St . John system above.

Table I. Size and condition factor (k) of young satmon collected in Beechwood head gate slots, summer $\mathbf{1 9 5 9}$.

| Date of collection |  | Number collected | Per cent in sample |  | Average |  | Average |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | leng |  |  | (cme) | sondit | (k) |
|  |  | smolts | parr | smolts | 2arr | smolts | parr |
| June | 4 |  | 6 | 100 | 0 | 15.7 | - | 0.67 | - |
|  | 21 |  | 50 | 100 | 0 | 15.2 | -100 | 0.71 | - |
| July | 5 | 100 | 80 | 20 | 16.8 | 10.4. | 0.58 | 0.84 |
|  | 12 | 104 | 100 | 0 | 16.0 | - | 0.57 | -- |
| Aug. | 21 | 31 | $\cdots$ | $\cdots$ | -0.0 | - |  |  |
|  | 2 | 16 | 4 | 56 | 26.3 | 10.t | 0.67 | 0.89 |
|  | 10 | 31 | 33 | 67 | 16.8 | 12.4 | 6.85 | 0.87 |
|  | 16 | 7 | 0 | 100 | 1 | 10.? | - | 0.95 |

Changes in the size of these fish indicate that there was some shift in populations, one group passing out of the collections as another entered. The normal condition factor for smolts is about 0.7 to 0.9 and of parr about 1.0 to 1.2 . Seasonal changes in condition factor of the Beechwood specimens indicate gradual starvation, either in the slots or as new groups entered. The last "smolts" to enter (Aug. 10) had apparentiy delayed long enough above the dam to revert towards the parr state, were in improved condition and might better be described as "post-smolts".

About $1 / 4$ of the smolts collected appeared to have passed through a smolt stage in 1957. About $1 / 3$ al.so showed slow growth associated with DDI spraying in 1 or 2 parr years.

The Beechwood head gate slots induce circurations in the surge towers which tend to catch and hold some smot ts there. Similar qualitative observations have been noted for similar installations in Europe. An unmeasured amount of pecedtion by large eels occurs in the Beechwood gate slots.

It has been found that most smolts prevented from making an early summer migration will not move seaward in iate summer or in autumn. Thus; there is increasing evidence of an important hold-up in impoundments.

Studies to solve this problem were initiated in 1958. The N.B.E.P.C., and the Board cowoperated in an expioratory study of means to provide more rapid passage of snolts over dams. An experimental system of water jets and DC eiectric fence was set up at the dam on the Pollett River, where smolts were delayed in 1958. The scheme was successful in transporting into a small. opening about $1 / 4$ of the smolts placed manually withir the influence of the experimental "fish path". In 3 hours of nightotime operation this opening accepted oniy 8 freewswimming smol.ts. However, without the fish path in operation no smolts entered.
(3) Upward migration of adult salmon. The Conservation and Development Service of the Department has accepted primary responsibility for studying the upward movement of adul.ts--required both for maintenance of stocks and for angling. The Board has
participated in an advisory capacity in respect to studies concerning fishway entrances. Salmon entered gallery ports over operating turbines more readily than other ports. No important difference could be established between the value of entrance orifices at the surface and those submerged several feet deep.
P。F。Elson

No. 83
THE EFFECTS OF IMPOUNDMENT ON THE PRODUCTION AND MOVEMENTS OF ATLANTIC SALMON IN A PRINCE EDWARD ISLAND STREAM

In connection with a study of the effects of impoundment on the trout populations of Ellerslie Brook, Prince Edward Island, data concerning the movements and production of saimon have been gathered.

A two-way counting fence (estuarial ferce) has been in operation at the mouth of Ellerslie Brook since the spring of 1947. A second fence (stream fence) was located 650 yards upstream from the estuarial fence in the fall of 1950. In the fall of 1952 a pond was formed in the area between the two fences. In 1953 and 1954 adult salmon captured in the estuarial trap were placed in the pond.

## Movements of adult salmon.

From 1947 through 1954, 102 spawners entered Ellerslie Brook. Females outnumbered males in all years. Some of the observed effects of the pond on the movements of adults were:

1. The pond tended to restrict upstrean movements of spawners. In 1953, 19 adults were placed in the pond, f'ive moived through the stream fence into the stream spawing areas. Again in 1954, 5 of 17 spawners moved into the stream.
2. Some females shed their eggs in the pond but there was no evidence of successful spawning there.
3. There was a marked tendency for salmon to remain in the pond following spawning. Salmon netted in the pond in late summer following spawning were in extremely poor condition.

## Movements of salmon parr.

In some years salmon parr moved in numbers through the stream fence in the fall. Some features of the movements are presented below:

1. Parr in the fall movements appeared to be all males.
2. Before impoundment parr moved in both directions through the stream fence. Following impoundment practically all movements were down into the pond.
3. Few parr that moved down through the stream fence continued on into the estuarg. In 1950 g 210 went acwn through the stream fence. During the same period only 13 moved into the estuary. The end result of the fall movemerts was a concentration of male parr in the lower part of the system.
4. Following impoundment there was ar incpease in the number of parr moving into the estuary in fall.

## Movements and production of salmon smoits.

Following pond formation smolts descending into the estuary were, on the average, larger than those descending into the pond from the stream. Angling records obtained on the pond showed that smolts were being retained in the pond. All smolts that descended through the stream fence in 1957 and in 1958 were marked. The results obtained from these marking programs were as follows:

1. Of the 95 smolts marked at the stream fence in 1957 only 28 were recaptured at the estuarial fence in the same spring.
2. Smolts retained in the pond were, for the most part, the smallest fish in the run.
3. In 1958 there was no evidence of smolts being retained in the pond. The run in 1958 consisted of large smolts.
4. Marking showed that smolts, produced. from parr in the pond, made significant contribitions to smolt runs into the estuary.
5. Smol.ts produced in the pond were predeminetely males.

Survival of pari and smolts in the pond.
Smolts. The 67 smolts held in the pond in 1957, suffered heavy mortalities. Five were angled there the following summer and two moved into the estuary in 1958. The pond was drained in summer 1958. No marked smol.ts were found.

Examination of scales from two of the angled smolts showed that there was an abrupt check in growth after the fish had entered the pond. This was followed by a period of relatively slow growth.

Parr. In the fall of 1956,192 parr moved into the pond. Data on their subsequent movements are presented below:

Into estuary as parr, fall 1956.......................32
Into estuary as smolts; spring 1957..................69
Angled in pond, summer $1957 \ldots 0.0 .0 . . . . . . . . . . .12$
Into estuary as parr, fall 1957.0.0.0.0.0.0.0.0.0.039
Into estuary as smolts $s_{2}$ spring 1.9580000 .0 .0 .0 .0 .13
Captured when pond was drained 1958............... 1

Survival of parr in the pond was good．of the 192 parr in the pond， $80 \%$ descended into the estuary， $46 \%$ of the salmon that left the pond did so as parr．

To date there is no explanation for the acan total mortality of the smolts held in the pond。

J。W。Saunders

No． 84
UNDERWATER OBSERVATIONS OF ATLANTIC SALMON AND BROOK TROUT
During August，1958，a series of observations was made of salmon and brook trout in the Northwest Miramichi River，N．B． Using flippers，face mask，snorkel breathing tube and a rubber skin－diver＇s suit fish were studied in water from a few inches to about six feet deep．When approached slowly and quietly the young fish could be observed from as short a distance as two thee fet．Adult salmon resting in pools during their upriver spawning migration could be approached with care to within three feet observation periods lasted $30-40$ minutes during which time student assistant $D_{0} G$ 。 Maddison recorded observations made by the swimmer and kept records of water temperature，light intensity，water flow，etc．A total of about $121 / 2$ hours was spent in swimming．

Several types of observations are possioie with this technique：

1）The species and general abundance of fish in an area can be determined quickly．This is especially useful in rapids and pools，where fish are difficult to observe from above the water＇s surface．The numbers and kinds of fish can then be correlated with environmental factors．

2）Several features of the behaviour of salmon and trout can be observed：a）the means by which fish hold positiong b）intre－and interspecific reactions，e．go，aggressive encounters during defence of territories，c）feeding．

Observing fish directly in their natural surroundings has its limitations（uncontrolled environment，occasional turbidity of water，difficulty of rapid recording of observations），but it can be an extremely valuable addition to the study of a species ${ }^{\circ}$ behaviour．Confirmation of laboratory findings in the field is vital to a behavioural investigation and swimming underwater in their natural habitat is one of the most efficient ways of study－ ing the behaviour of fish in the field．

MoH。A。Keenieyside


No. 85

## POLLUTION

The program of research on poliution 1 n new in 1958. Its primary aim is to investigate pollution whith affecks fisheries in the Maritimes area. Also within its scope are other manmade changes in the physical habitat of fiishes.

During 1958, main emphasis was piaced on a "basealine" survey of part of the Saint dohn Riyer sys\%er. Tinis is designed to serve as a reference point for assessing future chamges. Increased use of this river for disposal of wastes ana othez purposes seems likely. Some of the lavgest municipelities in New Brunswick are located on its banks and both poyatation and industry are expanding at present. ft is the largest river in the Maritimes, and plans are under way to develop more of its hydroelectric potential than the present $40 \%$ widiaation.

During the surveyg some cases of pollution were encountered, and a report is glyen below. Beechwood dam was within the study area, and two effects of this new constmation on fisheries were investigated.

Sampling stations are indiceted on the aceompanying map. Investigation at these points was limited to the physical nature of the river, and the bottomaiving invertebrates. Study of the latter prowides a rapid and meaningrul method of estimating the seriousness of pollution and other envisommential change.

Base-line survey of the Saint John Biver,
This section deals only with unimpouradec parts of the main river. Only high Itghts of the tindings are presented here。

Sampling stations spanned 60 miles, and were chosen to represent typical portions of the river. Findings were similar at all points. The profiles of the bottom in Figure 2 show that the river bed is fairly filat for a great proportion of its total width. Other conditions were also fairly unfform acxoss the river. The bottom was almost wholly of rocks. Rates of fiow were mostly 3 to 5 feet per second, and depths were 6 to 18 feet, excluding the immediate edges of the river. Because of high water during sampling, these rates and depths are greater than is normal during summer。

The bottom fauna was also uniformy and dominant forms were caddisflies (Hydropsychidae) and midge laryae (Tendipedidae). The former were mostly of the Hydropsyche bifida groups and the latter mostly a species of Calopsectra Both of these animals obtain their food by spinning nets, and are indieagors o.
continually flowing water Fumbers of individuais are given in the following table．The biovolume of the cadcissltes was much greater than that of the midges．Other organisms present were leeches，oligochaete woms，impets，and bavities．Total biovolume averaged 2.2 ml 。 per square metex．G：asea，banks were occasionally encountered duxing sampling，and vers paxien of invertebrates or neariy so．

Total volumes of invertebrates，and nanjess of domfnant organisms， for various habitats in the Saint Toher River aystem。（Al）figares are averages for one square meter of bothor a das induates absence，or small numbers，of the organism．

| Habitat | Biovolumemle |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \text { Hydrom } \\ & \text { Esvectate } \end{aligned}$ | $02 \mathrm{~g} 0=$ <br> Ghaeta | dutigies | Gsellus |
| Free filowing |  |  |  |  |  |
| Saint John |  |  |  |  |  |
| River | $2.2 \pm 0.5$ | $380 \pm 99$ | $\cdots$ | $560 \pm 150$ | － |
| Beechwood |  |  |  |  |  |
| impoundmento | $10.5{ }^{\text {4 }} 1.9$ | $\cdots$ | 1，400＋480 | $\therefore 0003360$ | $650 \pm 330$ |
| Tobique |  |  |  |  |  |
| impoundment | $3.5 \pm 0.9$ | － | $520 \pm 85$ | $230 \pm 290$ | － |

These results are not cf great practial importance at present．However the undournty of fondoge maiss them a useful yardstick for investigating tuture charges the wici from pollution and other equses．

Qccurrence of pollution
Routine sampling disclosed slight poliution oy food－ packing wastes at East ficrencesilie．Sludge deposits were heavy on the bank neax the outfalls but were light in the wiver，and restricted to a mile－long strip on one side．The bottom fauna indicated that reduetion of dissolved oxygen was negitgible．

The Meduxnekeag River，which joins the Saint dohn River at Woodstock，was reported locally to be polluted，Znyestigation showed that organic matter from sources in Marie rendered the portion of stream near the border unsuitable for fisio．Seven miles downstream from the border，the biote facicated hemy enrichment，but only mild deoxygenation．Seining showed that good populations of normal stream fishes were present．

Sampling in the Aroostook Razerp one mfie upstream
from its mouth indicated mild oxgarig polintion，At that places conditions could not be considered deleterious to pish ate。
studied
Woodstock was the largest municipalsty in the area effect on water quality of the Saint John River as it aifects fisheries.

## The impoundment at Beechwood

The Beechwood headpond is about 18 miles long. An important question at present is whether this body of water will be useful as a habitat for young salmon or other species of fish. Accordingly, some work was centred on this section of the river.

Permanent closure of the dam occurred less than a year before this survey, but considerable change had oceurred in that time. From the fisheries standpoint, silt had become the most important feature of the bottom along the whole finpounded section. The layer of silt will undoubtedly become tillat over several years. This has happened in the adjacent impoundment on the Tobique River, which is now five years old. No oxygen derinit is to be expected in the deeper water above Beechwood. This is pecause the dam is essentially of the "run-of the wiver ${ }^{p 8}$ types and besause outlets are near the bottom of the dain.

An estimate was made of production of invertebrates suitable for fish food in the Beechwood and Toblque neadponds. Over the length of the Beechwood impoundment, the biovolume of bottom organisms averaged 10.5 ml 。 per square meter. This figure is about five times greater than the biovolume for fisee flowing parts of the river. A large portion of the volume was contiributed by the crustacean ssellus intermedius, which enjoyed an explosive increase in numbers following damming of the river. an additional large contribution to the total woiume was made by midge larvae, mainly Tendipes decorus. Numbers of these organisms are given in the accompanying table. Both are readily used as food by small fish. A smaller proportion of the biovolume consisted of oligochaete worms, which are generally not tmportant as fish food.

Such heavy fertility is common immediately following impoundment of a section of river, and may be expected to decline in a few years. An estimate of future production of lish food is given by the Tobique headpond. Here the biowciune of bottom fauna was only 3.5 ml . per square meter. Almost $90 \%$ of this volume consisted of oligochaete worms, not destrable es fish food. Thus the impoundments do not seem to hold great promise for the future production of filsh.

## Drying of river bottom by operation of Beechwood Darn

There has been some concern about the esteces of ＂peaking＂operations at Beechwood dam during times of low flow in the river．At such times，more water flows past the dam at periods of peak demand for electricity．Oyernight and on week－ ends，when demand is low，water is conserved bentad the dam． Such operation affects long stretshes of the river．For instance，week－end periods of low flow past the dam at orand Falls have caused sharp weekly fluctuations a wecer levels at a point 95 miles downstream．This periodis loweotig of water level below the dam may damage salmon populationss fich use the river as a rearing area and as a migration rouba．It is possible that areas of bottom containing eggs may be cixied and that fish may be stranded in shallow water：exposing now to fuedatons．

A first step in assessing the sexioumaess of such damage is to estimate the amount of river bottom ilisely to be exposed by peaking at Beechwood Dam．Such an estamate can be made at East Florencerille。 A gauging station is lacated there， and the relation of water level to rate of discharge is known． （Data kindly supplied by the Department of Nosthern fifairs and National Rescurces．）This relation can be coplied to the profile of the river bed obtained at East Whorencemile，shown in Figure lG．This profile seems to be representative of the free－flowing sections of the river，although the water is a little shallower．

It has been suggested that illow throge Beerhwood should not fall below 1,000 dof．s．The emount of bottom exposed at this ilow may be compared with that to creguated river flow．Inspection of flow charts reveals thet onse $0 z^{\circ}$ twice a year，filows at East Florencerille may be faluaced to drop to levels of 3,000 to 5,000 ofoso for pery 2 s ar several weeks．In the five years for which records are arailebie，the lowest average monthly flow was 3,100 eofos．The actual minimum daily flow was itself a result of manipulations at dams．However，a looday average of flows at this time yfelds an estimate of $2,500 \mathrm{cof} \circ \mathrm{s}$ 。 as the 5 －year mininum it no regulation had occurred．From this．it seems that a reasonable estimate of expected minimum flows is about $3,000 \mathrm{G} . \mathrm{F}_{\mathrm{o}}$ 。

Exposure of bottom at this＂normal＂minirium flow is compared with exposure at 1，000 cofos．in Figure 2。 Considering the vertical exaggeration of 7.5 ，it is seen that iowering the flow to 1,000 c．f．s．exposes only a small addituonel portion of the bottom．The amount is a strip of approximately 1.0 or 20 feet at either side，less than $5 \%$ of the total bottoll area at normal low flows．Thus，if a minimum of 1 ， 000 offso were maintained through Beechwood，the extra exposure of botom in typical parts of the river is insignificant．

This conclusion must not be constraed to mean that the effect on saimon would be insignificant．Eowever，it senves to direct attention to other considerations when aro probably
$\square$


Figure 1. Cross-sectional profiles of the Saint John River. Section $A$ is above the entrance of the Aroostook River. Sections B, C, and D are above Beechwood dam at distances of $17.3,5.6$, and 0.6 miles. Sections $E, F$, and $G$ are 3.l, 6.9 , and 10.2 miles below the dam $G$ being at East Florencevilie. Vertical exaggeration: 3 times.


Figure 2. Water levels at East Florencevilie for various rates of discharge in the Saint John River. Vertical exaggeration: 7.5 times.
more important. For instance, the areas utilized by salmon for spawning and rearing may be atypic portions of the river. such as shallow gravel bars around islands: or riffle areas. The actual velocity of flow in the river may be an important factor in survival of salmon eggs and food organisms of young salmon. To assess the effects of flow manipulation in the Saint John River on salmon, research is clearly indicated along the following lines:
(1) path of migration of large salmon, with regard to likelihood of stranding;
(2) extent of spawning and rearing in the main river;
(3) the specific portions of the river used for spawning and rearing.

J。B。Sprague

## SEAWEED SUMMARIES

Seaweed investigations
Rate of growth of Irish Moss
Constitution and productivity of a population of Irish Moss

ALEWIFE<br>Preliminary alewife investigations, 1958

FAUNAL RECORDS
Records of unusual species from the Atlantic coast. 1958 Bulletin of Canadian Atlantic fishes

## MATHEMATICAL STATISTIGS

Mathematical statistician-oA summary of activities
Does it pay to control the lobster fishery at Tignish?


No. 86

## SEAWEED TNYEBHITAFTONS

The main object has beer a study of the nacure and continuity of the crop of ghondrus exispus. Then Moss. This has been done by measuring the rate of growth ta asea for individual spectmens, by examiang the poockacion otr the north shore of Prince Edward Tsiand in cexns ai deveiopmental classes, and by estimating the productivity of the botom. In addition, collections of marine slgae have been made at namerous localities in order to increase ous knowledge oin the martne flora of the Maritimes.

$$
\therefore \text { 。2. .aysor }
$$

No. 87

## RATE OF GRONX OF IRTSH MOSS

The rate of growtr of indtudazi Twash Moss plants was studied again this year by photoprincteg trdibitum piants with Ozalid paper. The individual piante were on woss partiy embedded in large concete blooks. At intewals the bious were hauled to the surface and the areas and lenghs of plants were measured. The methods have been described in the 2955 and 1956 Annual Reportso The manin sertes of measuremenss was made at Curtain Island in Malpeque Bey and a serond arles at Doyle's Gove on the Guir of St. Lawserce shore of Plice Edwad Tiland. Hydrographic conditions at both places are stafiar bat the Curtain Island position is less exposed. sulighty warmer in summer and often covered by ice and snow fre whter; the plants were about ten feet deep at Mod.T。 on t"at, nock ledges. A third group of plants was measured in the Eay or Thndy as Aime. New Brunswick, where the hydrograplic sondaczons ase very different; the tidal ampiltude is large, the weter temeths eold all year and is more turbid.

The growth rates of Trish Moss to 10.6 averaged some. what less but were generally of the same magntbide as in previous years. Growth rates at Curtain Islind are summazad end compared for different periods of the year and for different size deveiopment classes in the accompanying table. This has been done for Curtain Island plants only. These results show that geowth is most rapid in the period from May to July and ialls off through the remainder of the sumer. Also, there ts littie consistent difference between the growth tate of swaicer ittuecorenched and of largers muenebranched phants. Although the wember of observations is small. one might infer that urbratered speefmens of classes 1 and 2 grow most raptdy.

Seasonal growth rates of Irish Moss at

Year-
Class Mean growth in area per plant during seasonal period Winter May=June JunemJuly Juy-August

| 1958 | $0.0021 \mathrm{~cm}^{2} / \mathrm{cm}^{2} / \mathrm{day}$ | 0.0062 | 0.0074 | 0.0050 |
| :---: | :---: | :---: | :---: | :---: |
| A11 | $\pm 0.004$ (s.d.) | $\pm 0.0035$ | $\pm 0.0039$ | $+0.0037$ |
|  | $\overrightarrow{\mathrm{n}}=22, \quad 251$ days | 62, 36 | 51,30 | 5\%, 33 |

$\begin{array}{rr}1957 & 0.0025 \\ \text { All } & +0.0013 \\ \mathrm{n}=75\end{array}$ 240 days $\quad \begin{aligned} & \pm 0.0065 \\ & 55, \\ & 56-31\end{aligned}$

1956
All

| 0.0118 | 0.0066 |
| ---: | ---: |
| +0.0058 | +0.0035 |
| 16.30 | 7. |


| $\begin{aligned} & 1958 \\ & 1-2 \end{aligned}$ |  |  | 0.0085 | 0.0148 | 0.0110 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 5936 | 5.30 | 3833 |
| 3-4 | 0.00018 |  | 0.0062 | 0.0073 | 0.0060 |
|  | $\mathrm{n}=6$, | 251 days | 22,36 | 13. 30 | 13. 33 |
| 5-6 | 0.00019 |  | 0.0054 | 0.0068 | 0.0038 |
|  | $n=4$ | 251 days | 11. 36 | 25.30 | 32. 33 |
| 7 | 0.00274 |  | 0.0053 | 0.0081 | 0.0047 |
|  | $\mathrm{n}=3$, | 251 days | 5,36 | 5.30 | 3833 |

1957
1-2

3-4

5-6

7
$\begin{array}{lll}0.0087 & 0.0121 & 0.0126 \\ 1.026 & 7,38-1+5 & 1.940 .42\end{array}$
$\left.\begin{array}{lll}0.0139 & 0.0116 & 0.0052 \\ 11,26-31 & 23, & 38-45\end{array}\right) 17,40.42$

| 0.0116 | 0.0110 | 0.0059 |
| :--- | :--- | :--- |
| $18,26-31$ | $27,38-45$ | $26,40 .-42$ |
| 0.0112 | 0.0096 | 0.0051 |
| $25,26-31$ | $23,38-45$ | $9,40.42$ |

Classes: 1 and 2, small, unbranched specimeris;
3 and 4 , small, slightly branched (1-3X); 5 and 6, medium large ( 7010 cm.$)$, more branehed ( $(>3 \mathrm{X})$;

No． 88
CONSTITUTION AND PRODUCTIVITY OF A POPULATION OF IRESH MOSS
Quadrats，marked by one－metre squaces of pipe．were established in 1956 at Doyle＇s Cove，on the north shore of Prince Edward Island near North Rustico，in water aboyt 10 feet deep at M．L．T．Selected quadrats，at first of $\mathrm{i} .0 \mathrm{mo}_{\mathrm{L}}{ }^{2}$ area （1956）and latterly of $0.25 \mathrm{~m}^{2}$（ $1957 \sim 1958$ ），ware chopped of the algae growing on them by diving and plucking all specimens greater than about 2 cm ．long（some were missed and some lost）． This treatment was meant to simulate raking．Other species of algae were separated from the Chondrus，fresh weights were determined，and the Chondrus specimens were sorted into size．－ development classes．The Chondrus and other algae were dried in an oven at $105^{\circ} \mathrm{C}$ ．and weighed．Several of the quacizats were harvested two and three years in succession．The yjeid or Irish Moss and other algae from the quadrats is recorded in Tabie I。

Table I．Yield of Irish Moss monle Dos Cove quadrats， north shore，$P$ ．E．I．

| Year | $\begin{gathered} \text { Prior } \\ \text { treatinent } \end{gathered}$ | $\begin{gathered} \text { Quadrat } \\ \text { sizee } \\ \hline \end{gathered}$ | Yeld＿ver square metre |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\frac{\text { Chondzas }}{\text { No．Individs．Dr wimm Dher algae }}$ |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
| 1958 | none | 0.25 m .2 | $5200 \pm 1400$ | 6 | $5+0 \times 295$ | 6 | $150+30$ | 6 |
| 1957 | 1 | 0.25 | $3800 \pm 1630$ | 12 | $370 \pm 390$ | 12 | $80 \pm 35$ | 3 |
| 1956 | ＂ | 1.00 | $2550 \pm 720$ | 3 | $400 \pm 115$ | $+$ | 10，$\pm 70$ |  |
| 1958 | cropped | 0.25 | $2100+1140$ | 4 | $108 \pm 76$ | 4 | $190 \pm 88$ | 4 |
| 1957 | cropped | 0.25 | $2700 \pm 1770$ | 9 | $180 \pm 1.30$ | 9 | $121 \pm 78$ | 8 |
| 1958 | in 1956 | 0.25 |  | 1 |  |  |  |  |
|  | $\begin{aligned} & 1956 \text { and } \\ & 1957 \end{aligned}$ |  |  |  |  |  |  | 1 |

The density of Irish Moss on the bottom is variable，and this is reflected in the variation in yieid recorded in Table I。 A yield of $400-500 \mathrm{gm}$ 。 of Irish Moss（ovenworied per square metre was usual；there were about 2500.05000 individuel specimers per square metre．Cropping the area may reduse the numbex ot individuals present next year only slightiyg but there is a pronounced reduction in the weignt of the cyop obtafned in this next year（to about onewhif to onemifth）This confimms the result reported last year．Another resuit of cxopping fs a consistent increase in the number and weight of other slgae．

The size－development classes set up in 1956 are based on length of the individual specimen and the degree of its branch－ ing．

Class (1) unbranched, shorter than 6 cu.
(2) unbranched, longer than 5 cmos
(3) branched $I=3 X_{9}$ shorter than 0 cmog
(4) branched Im $3 X_{\text {, }}$ Ionger than 6 emon
(5) branched more than $3 \mathrm{X}_{\text {}}$ shoxter than 6 onog

(7) much branched, more than $4 X_{8}$ Longer than 10 cm .

These classes were set up to make possible an analysis of the distribution of smaller (younger) and larger (older) specimens in the population, and a comparison of the constitution of crops after different treatments. Three years ${ }^{\circledR}$ results are reported in Table II. The majority of individuals are always distributed in cilasses 1, small unbranched young specimens, 3. small slightly branched, and in 5 and 64 more-brenched, medium-iarge piants. The mairi mass of the crop is in olasses 5 , $b_{\text {g and }}^{?}$. Speeimens in elasses 5-? are the ones most likely to be removed by raking. About $85 \%$ of the total weight in all samples is accoanted for in these three classes, whereas they represent abcut $50-57 \%$ of the individuals removed. As pointed out last year, even fewer of the smaller plants would be taken in actual raking than in these tests, and those that were would come off as parts of the large clumps.

Many specinens are left behind in plucking the samples from the quadrats. Attempts were mace to olp oti all the specimens with scissors this year from 6 quadrats in omen to test the possibie effect of a mechanical olipping harvester on the abelity of the population to regenerate. The yield of Irish Moss as oven-dry weight, $404.8+203.7 \mathrm{gm} \cdot / \mathrm{m} .{ }^{2}$ (neb) was of the same order as that obtained by plucking the specimens. the weight of specimens left behind after plueking is not greato

To determine the distribution of sizewdeveiopment classes in the actual population on the sea-bottom, whole ciumps or clones were removed from the rocks, separated into the size ciasses, counted, and oven-dried. The result of a determination based on 20 clumps taken in June 1958 is recorded in Table III, Only $37 \%$ of the individuals in the natural population were of "rakeable" size (classes 5-7), but this percentage accounts for $85 \%$ of the weight of the natural population. Collecting stormetossed moss does not deplete the crop in any way. Raking will not do so permanently either, vriless an excessive removai of clumps occurred, or unless the same area were raked interisively every season so as to remove all larger specimens.

Table II. Composition of Irish Moss crop from Doyle's Cove quadrats, north shore, P.E.I.
 (a) natural population -a no prior harvesting

| 1958 | 0.25 | 6 | $20.8 \pm 7.6$ | $0.4+0.1$ | $25.1+17.3$ | $5.3 \pm 2.8$ | $21.1 \pm 10.5$ | $23 \cdot 7 \pm 2.9$ | $3.7 \pm 3 \cdot 2$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1957 | 0.25 | 12 | $22.1 \pm 10.3$ | $0.6 \pm 0.6$ | $21.5 \pm 11.6$ | $8.8 \pm 4.1$ | $10.9 \pm 7.5$ | $32.0 \pm 8.3$ | $4.1 \pm 2.5$ |
| 1956 | 1.00 | 3 | $17.2 \pm 1.9$ | $0.1 \pm 0.1$ | $13.5 \pm 6.9$ | $3.1 \pm 0.4$ | $23.5 \pm 3.2$ | $37.3 \pm 5.9$ | $5.3 \pm 6.7$ |

(b) harvested also during previous year
$1958 \quad 0.25 \quad 2 \quad 26.2+17.0 \quad 0.05$
B. - - Mean \% weight of Irish Moss per size-development class

| (a) natural population -m prior haryesting |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1958 | 0.25 | 6 | $2.4 \pm 0.1$ | $0.2 \pm 0.3$ | $8.6 \pm 5.0$ | $2.8 \pm 1.7$ | $18.0 \pm 10.7$ | $44.1 \pm 16.0$ | $23.8 \pm 21.9$ |  |
| 1958* | 0.25 | 6 | 3.2 | 0.2 | $8 \cdot 3$ | 3.9 | 15.7 | 48.4 | 20.3 | 0 |
| 1957* | 0.25 | 12 | 2.8 | 0.1 | 6.3 | 5.8 | 7.2 | 57.8 | 20.0 | 0 |
| 1956 | 1.00 | 3 | $1.0 \pm 0.6$ | $0.04 \pm 0.02$ | $3 \cdot 3+2.1$ | $1.4+0.3$ | $13.1+5.9$ | $62.2 \pm 8.6$ | $17.9 \pm 9.2$ | ¢ |

(b) harvested also during previous year
$\begin{array}{lllllllllll}1958 & 0.25 & 5 & 5.7 \pm 5.5 & 0.03+0.07 & 21.9 \pm 12.9 & 2.1 \pm 1.6 & 27.8 \pm 10.2 & 37.6 \pm 9.9 & 4.9+6.1\end{array}$

* Each of these series was derived by multiplying the mean \% number of individuals for the corresponding series in $A$ (a) above by the mean weight per individual for the elass (p.189 of the 1957-58 Annual Report) and then expressing each elass value (weight) as a percentage of the total.
Table III. Composition of the natural population by sizew
development classes, Doyle sove, P. E. I. June

| Mean \% of total | Size -development classes |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 | 5 | 6 |  |
| A. By number of individuals | 38.0 | 0.4 | 18.4 | 5.9 | 3.9 | 25.2 | 8.2\% |
| B. By weight | 4.2 | 0.1 | 6.1 | 3.4 | 4.0 | 60.9 | 22. $3 \%$ |

A. R. A. Taylor

No. 89
PRELIMINARY ALEWIFE INVESTIGATIONS, 1958
The Fish
The alewife, gaspereau, mulhaden or kyak (Pomolobus pseudoharengus) is anadromous along the coast of the Maritime Provinces and quebec and has become established in fresh water in Lake Ontario. Bearing a great resemblance to it. but considered by some authorities to be a different species. (Pomolobus aestivalis) is the blueback.

## The Fishery

Adults have long been fished commerejaily by gill netss traps and other methods including dip nets during their ascent in brackish and fresh water to spawning areas. They have been used as food fish in the fresh. smoked, or salted state and as bait for the lobster fishery. However, since 1949 with the opening of a market in New Branswick for alewives as raw material for the pet food industry, they have been in great demand. This demand is reflected in the course of the fishery in two large alewifeproducing river systems in New Brunswick between 1943 and 1958.

$$
\text { Alewife landings ( } \left.{ }^{8} 000 \mathrm{cwt.}\right)
$$

Saint John River | Miramichi |
| :---: |
| River | New Brunswick

## Harbour Area Head wionide Area (Grand Lake)

| $1943-46$ | 25 | 0.4 | 5 | 74 |
| :---: | :---: | :---: | :---: | ---: |
| $1951-54$ | 25 | 56 | 180 | 290 |
| 1955 | 9 | 90 | 80 | 200 |
| 1958 | 7 | 31 | - | - |

Excellent catches were made in the period 1951-54 stimulated by the pet food market. But this was followed by a steady decline from 1953 and 1954 to the present.

Results of a more detailed examination of the fishery from 1947-1958 in the head-of-tide area of the Saint Jonn River system showed the following:

Alewife fishery -head-ofotide area in Saint John River
Trap nets
$\frac{\text { Landings }}{1000 \text { cwt }} \frac{\text { licensed }}{\text { no. }} \frac{\text { Value to fishermen }}{\$ 1000}$

| $1947-48$ | 3 | (gill nets only) |  |
| :---: | :---: | :---: | :---: |
| 1949 | 3 | 7 | 5 |
| $1951-54$ | 58 | 50 | 5 |
| 1955 | 88 | 75 | 69 |
| 1958 | 31 | 107 | 25 |
|  |  | 92 |  |

The decrease in landings suggests increased effort may be using up the accumulated spawning stocks and causing a decrease in abundance in the Saint John River system.

## Investigation

The Department of Fisheries and Fisheries Research Board, recognizing the need for biological information upon which to base sound management policy, planned early in 1958 a limited co-operative program of observation and sampling of alewives in the Saint John River system at (1) harbour area (2) headmofetide (Grand Lake) area, and (3) upriver (Beeohwood) area; and in the Miramichi River system at Newcastie。 Circumstances prevented carrying out the program at Beechwood and Newcastle. From each of the other areas, weekly samples of fish were taken for biological atuaj, weekly catches were recorded. daily catches were recorded tron selected nets along with water temperatures, wind direcitor and force, amount of rainfall and water heights.

Analysis of catch records in the
Saint John River system
Best catches were made in the haroour area in May when water temperatures were $44^{\circ}$ to $46^{\circ} \mathrm{F}$. After May 32 there was a diversion of fishing effort to taking the higher priced salmon. In the head-of-iide area, first good catches were made when water temperatures reached $46^{\circ} \mathrm{F}$ 。 Catches increased steadily to a maximum in the last week of legal fishing (June 23 to 26), suggesting the run was not yet over. Fishery officers estimated from observations that only half the run was fished. Experiments by Maine biologists show that only $5 \%$ escapement fior spawning is adequate to perpetuate the run.

## Analysis of samples from the Saint John

River system for biological study
Results of examination of fish from the eariy, middle, and late part of the runs into Newcastle Creek in the headmofotide (Grand Lake) area showed the following:

## ALewife characteristics

|  | April 29 | May 27 | June 24 |
| :---: | :---: | :---: | :---: |
| Mean vertebral number | 49.01 | 48.64 | 48.56 |
| Mean fork length (mmod | 268.78 | 259.88 | 260.00 |
| Eye/head (\%) | 29.85 | 27.58 | 27.48 |
| \%/\% (\%) | 48.52 | 56.14 | 68/32 |
| Maturity (\%) | 8/86/4/2 | +/12/68/16 | 2/30/60/8 |
| ( $\mathrm{a} / \mathrm{b} / \mathrm{c} / \mathrm{d}$ ) |  |  | 2.30/60/8 |
| $\begin{aligned} & \text { Age composition (years) } \\ & (4 / 5 / 6 / 7 / ?) \end{aligned}$ | 28/50/8/0/14 | - | 28/46/10/4/22 |
| Mean age (years) | 4.76 | $\cdots$ | 5.0 |

Mean vertebral mumers, fork lengths, and eye to head proportions of earlym run fish differ aignificantiy fou those fot middew and latewrun fish. These characteristics in middle- and latewun fish do not differ significantiy. This suggests that the eariy run may be g o pseudoharengus and the middle and late murs be P。aestivalis or that eaxlymun fish begot eariymun fish. Further analyses are necessary. Females increase in proportion as the run progresses ( $50 \%$ to $70 \%$ ). This contradicts beliefs of United States biologists. Five per cent of the earlymun fiish had ripe gonads with water temperatures below $40^{\circ} \mathrm{F}$. while $70 \%$ of the middlem and latecun firs were ripe with water temperatures $55^{\circ}$ to $65^{\circ} \mathrm{F}_{\text {。 }}$ Early and latewrun fish range in age from 3 to 7 years with 5 -year olds dominant. Scales suggest a good proportion of the fiish mature at 3 and 4 years of age and spawn each year. With 5 -yearold fish dominento these lave presumably spawned at least once prewiousiy.

## Considerations

There is opportunjty to keep a watching briee on the course of the commercial fisheries in the Saint foht and Miramichi River systems through the Department ot Fisheries personne1. However, field studies by a biologist are needed to determine whether there is adequate recruitment. phis snvolves a detailed study of the biology of the alewife from first adult appearance to the descent of its progeny.

> I. Ro Day

No. 90
RECORDS OF UNUSUAL SPECIES FROM THE ATLANTIC COAST, 1958
The following species of urusual inve wherates, fishes and mamals haqe been reported or identivied in 1958.

## Crustacea

Neolithodes grimaldi (A. Milne Edwards and Bouvier).
A specimen of this spider crab was caugrt by a iongliner while fishing in deep water between Banquereau and Sable Island Bank, in September 1957. The carapace leagth is 12 cm. (rostrum broken). The spectmen was procared mo. Mo. $0_{0}$. Wo Sullivan. Identification was confiymed at the Thiten States National Museum.

## Mollusca

Chrysodomus (Beringius) assiant (Friele).
Egg cases of this gastropod were found near Harrington Harbour, $P$ oQos in 1957, by Mro GoM. Somerville. Jientified by Dr. Gunnar Thorson, Copenhagen, Denmark.

## Places

Cetorhinus maximus (Gunnerus). Basking shark.
A 40 foot shark, that was caught in a weix at the southern end of Grand Manan and reported in the "St. Croix Courier", July 17. 1958 , was doubtiess this species.

Hydrolagus affinis (Brito Capello). Chimaera.
A 109 cm . specimen was caught in early June l958, by the vessel Harry B. Nickerson III, Captain Wamen So Ley off the southwest corner of St. Plexre Bank at Lat. $4 \mathrm{~h}^{\circ} 47^{\circ} \mathrm{N}$. Long. $55^{\circ} 56^{\circ} \mathrm{W}$. in 750 fathoms. The specimen was sent in by Fisheries Inspector Jo Lockinan and is now in the coliection of the Royal Ontario Museum.

Acipenser brevirostrum Le Sueur. Shortbnosed stargeon.
A small sturgeon, 69 cm . long, was caught by the $M$ 。 $V$. Harengus in the Long Reach, Saint John River, No Bo. on May 30, 1957. It was placed in the Museum of the Biological Station by Miss Sheila Duff, who identified it as a short-nosed sturgeon. This determination was subsequently confirmed by Dro $V_{\circ}$. Vladykov; it appears to be the first authentic resord of this species for Canada.

Etrumeus sadina Mitohill：Round herring．
About 3 hogsheads of this fish were caught in a weir at Maces Bay， $\mathrm{N}_{\mathrm{s}} \mathrm{B}_{0}$ ，on September 3．1958．A few specimens were brought to the Biological Station by Mrs．Esther Lowd．

Coregonus clupeaformis（Mithill）．Common whitetish．
Two specimens were sent to the Brologicel station in 1958．The first， 29 cm 。 long was caught 4 n a herring wetr at Halls Harbouro Noso，on May 31．1958．A Larges 0ne 4 cmolong， was caught in a weir near Blacks Haroboure N．Bo，in fune or July 1958．Both identifications were confirmed by Dr．W．B．Scoti， Royal Ontario Museum．

Salmo gairdneri Richardson．Steelhead trout．
This species known as rainbow trout，is established in Prince Edward Msland．In September 1958 two seamun specimens were caught in a trap at Wilmot Brook，PoE．I．DroM．W。Smith states that these are the first seamun specimens reporied in eastern Canada．One， 4 itm．long and caught September 17，1958， is in the Biological Station oollections．

Omochelys cruentifes（goode and Bean）．Snake eel．
A specinen． 56 ou．long，was found an a erorasish stomach in late July 1958 ，The swordfish was uagit at lat． $45^{\circ}$ $30^{\prime} \mathrm{N}_{0}$ ，Long． $57^{\circ} 10^{\prime \prime} \mathrm{W}_{0}$ ，where it ats uhe shake eat is open to doubt．The specimen was sent in by Eishexas inspector W．No Duggan and it was identiffed by Drow，E．Seots anc．Mr．Wm．C． Schroeder．It is a first Ganadian record：the sperimen was also of record size．

Notacanthus nasus Bloch．Spiny eel．
One specimen， 99 cm ．long，was caught by the trawlero Acadia Snowbird on the Grand Banks in 70 fathoms in April 1958. It was sent in by Fisheries inspector ${ }^{2}$ ．Mo Meaghe：Another spiny eel was reported by MyoM．FoFraser as hawing been caught by the trawler Cape Alext on the southesn edge of the Grand Banks in 100 fathoms aiso in Apric 1958．It was approximately 75 cm 。long。

This species has not been reported from Ganadian waters previously．Two specimens were received in 1958．The first， 37 cm. long，was trawled in Passamacuioddy Bay，NoE．on June 7 ，
 specimen， 43 cm 。 long，was sent in by Fundy Coad Storage Company Ltd．，Beayer Harbours，M．B．Xt was reported as having been trawled in the nearby Bay of Fundy in eariy July．

Zenopsis ocellata（Storer）。 John Doxy．
A young specimen， 11 cm ．long，was caught on August 19， 1958，by the M． $\mathrm{V}_{\text {。 Harengus of }}$ the western end of Sabie Island Bank at Lat． $42^{\circ} 58^{\circ} \mathrm{N}$, Long． $61^{\circ} 56^{\circ} \mathrm{W}$ ．in about 200 fathoms depth．

Palinurichthys perciformis（Mitchill），Barrelfish．
A specimen， 30 cm 。 long，was taker by dipnet about August 25，1958，near Ryder＇s ledge Buoy，between Cape Sable and Bon Portage Island，NoS．The fish was sent in by Fisheries Inspector J。E．Daley through Mr．M．Fraser．

Roccus saxatilis（Walbaum）．Striped bass．
Three unusually large specimens hate been reported in the press．（1）A 20 pound specimen was caught in Gmand Lake，NoS． It was reported in the＂Halifax Mail－Star＂Cetiodes 28，1957：there was a supporting photograph．（2）A 75 mound speeimen was eaught near the junction of the Belleisie and Saint John Riyers．Ft was reported in the Saint John＂Telegraph woumal＂Peoruary 5，1958． （3）A $291 / 2$－pound specimen， 104 cm ．long，was taiken at the Reversing Falls，Saint John Harbour．$x t$ was reportec，with a supporting photograph，in the＂Telegraph wownai on why 15， 1958.

Sebastes marinus（Linnaeus）．Redfish．
An unusually large redfish，that was exindited at the Lunenburg Fisheries Exhibition，has been sent to the Biological Station by Mr．Mo Fo Fraser．It is 80 cn．long and veighs $231 / 2$ pounds：it is believed to be a record．It was eaught by Captain Russell Decker at Lat． $42^{\circ} 38^{\circ} \mathrm{No,Long} .62^{\circ} 56^{\circ} \mathrm{W}$ ．（offshore from Emerald Bank）in 275 fathoms on August 13． 1958.

Careproctus longipinnis Burke．（？）Sea snail．
A specimen， 23 cm 。 iong，taken by Gaptain Orlando Lace in 90 fathoms at the western end of Banquereau，in late April 1958，probably belonged to this species．Oniy a drawing and description were submitted through Mr．R．M．Ma＠Pherson and positive identification is not possible．

Tautoga onitis（Linnaeus）．Taukog．
It is worthy of note that a sport fishery for this species developed in 1957 in Eel Brook Lake，Yarmouth County N．S．（salt water）About 2,000 fish were saught in $295^{\circ} 7$ and 450 in 1958．This information，with specimens，was suppifed by Mr． E．G．Sollows．

Remora remora（Linnaeus）Remora．
A specimen， 23 cm ．long，was caught by the trawler Cape Bonnie southwest of Sable Island in Augast 1958．It was forwarded by Dr．W．J．Dyer．

Mola mola（Linnaeus）．Sunfish．
A specimen，weighing about 300 pounds，was caught off
Eastport，Maine，in mid July i958．Information from Mr．P。 Wentworth，U．S．Fish and Wildlife Serfice．it is uncerta．jn on which side of the international boundary the fish was caught．

Ceratias hBlbolli Króyer．Deep sea angler．
A specimen， 24 cm 。 Long，was caugnt by the trawler Cape Spry on July 7， 1958 in 150 fathoms et Lat． $49^{\circ} 10^{\circ} \mathrm{No}$ ， Long． $60^{\circ} 20^{\circ} \mathrm{W}$（east or Anticosti in the Gulf of St．Lawrence）． It was forwarded by Mr。R。M。MacPherson．

## Mammaila

Delphinapterus leucas（Pallas）．Beluga or white whale．
A specimen， $81 / 2$ feet long，was captured on the shore of Bedford Basin at the noxth end of Halifax， $\mathrm{N}_{\mathrm{o}} \mathrm{Sog}_{\mathrm{g}}$ in late May 1958．It was reporteds with photograph，in the＂Halifax Mail－ Star＂of June 2，1958。 Dr．V．D．Vladykov concurs in the identi－ fication．

A．H．Leim

No。 91

## BULLETIN ON CANADIAN ATLANTIC FISHES

A general account of the Atlantic Coast Fishes is sought by administrators，educators and the general public．The preparation of the text of such a Bulletin has reached an advanced stage．The area being covered is the east and nowtheast coast of Canada from the International Boundary to Hucson Strait；and from the shore line to the 500 fathom contour at the edge of the continental shelf＂。 Anadromous species involye coatitguous fresh waters．

For each species the text will include a description of the fish，with distinguishing features indicated separately，and a statement of its range，with the Canadian distribution in more detail．When information is available，the life history is dealt with under headings of migrations，breeding，growth rate，food， enemies，abundance，and，if commercially valuables，its importance is stated。

As of February 6, 1959 drafts have been prepared for 180 species. All of the commercially important ones have been covered, with the exception of the wolffishes, that are of minor importance. About a dozen moderately common species remain to be treated; however, there are several times as many northern and deep water forms still to be dealt with; it is anticipated that the total number will reach about 250 species Following completion of this portion of the Bulletin a key to the species will be developed.

Illustrations, on a trial basis, have been prepared on 12 species; other sources are being explored.

A。H。Leim

No. 92

## MATHEMATICAL STATISTICTANo-A SUMMARY OF ACTITITIES

A variety of work was done in 1958. Part of boe year, from september ong was spent on educations ieave.

The long connection with groundinst researeh has ied to two new methods of estimating natumal and fiishing morcalities. Explanations of these methods were prepared ard asoepted for publication.

In 1957 the work with lobster statisties was startedo The statistical assessment of the data is not yet finished but important results can be reportea. Thus in Summay wo. 93 the information pertinent to the managemert of the lobster lishery at Tignish is summarizedo

The lobster work has also given new impetus to additional theoretical work. The eoncepts of catchabilety and resulting fishing mortality are being studied with a probabitistic model. This work when completed wili help to solve the problem as to how to estimate population size from oatch, exiox., end atchability data.

A program for an electronte oomptes se wadate fishing and natural mortality rates has peen preparet. The tix: be used to assess the accuracy of the available tismexies sutisties in mortality studies.

A large share of the tine was spent with smailew problems arising from consulting service or with less sifentific projects. The latter include studjes of card systems to record fisheries data.

> J. E. Paicheimo

No. 93
DOES IT PAY TO CONTROL THE LOBSTEF FTSHERY AT qYGNISH?
 intensely studied by the lobster investigation since 1945. Some of the accumulation of statistios and Information has now been analyzed, and we can make a preliminary report or bnose results which are pertinent to the management of the fisasre.

Mortalities. In Table I the fishing mortalities are listed for the years 1947-1956. The figures are pased on the estimated removal of legalosize lobsters by inshing during the lobster season (May-June), and on the popuiation size estimates at the start of the season as determined from tageing. recapture data. The variations encountered, while not completely under. stood, are coryelated both with seasonal. water temperatures and with the amount of fishing effort expended. It should be noted
that the catchability and the the inshing mortaitay awo depend on the size of the lobster.

Table I. The mortality estimates The minus sign in front of the nataral mortainty rate indiedtes thet the surviral rate was over $200 \%$ by the amount shown.

| Year | $\begin{gathered} \text { Mortality } \\ \text { fishing } \\ \% \end{gathered}$ | ```estimates netwral % 8``` |  | Year | $\begin{gathered} \text { Mortaisty } \\ \text { Esishege } \\ \% \end{gathered}$ | estimates natural $\%$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1947 | 73 |  |  | 1952 | 68 | 15 | -.70 |
| 1948 | 77 |  |  | 1953 | 6 | 28 | 17 |
| 1949 | 59 | - .52 | $-119$ | 2924 | re | , | 3. |
| 1950 | 73 | $2+$ | $=43$ | 295 | \% | 5 | 58 |
| 1951 | 73 | $3{ }^{4}$ | 23 | 2936 | \% | 2 | .30 |

There have been no dimeotexpeximents bo dectrmine the natural (between seasons) moxtality. One growthomang experiment put it at about $20 \%$ he have also attempted to caleulate this mortality indinectly by emparing the calculated popalation at the start of the season with estimated population left in the water at the end of the prefions season Figure i inlustrates the situation. The solid hne mepresents the estimated stze composition of the legal-size maie stock at the atart of the 1953 season. This has been obtained by employine the popaiation size estimate, the length trequemy sampes of lardiagen and the known relative catehablities of differentwsize loosters. The broken line represents the estemated length compositosn at the start of the 1953 season of that made population which was left in the water and was of legal size at the end of the prefious (i952) season. This length comosition has been actameted by applying the growth data to the estimated length omposition of legadm size male lobstexs at the end of the 195 seasoris no allowance is made for natural mortality.

For each length group we have now wo abuatano estimates; one at the start of the season (solid line)s and the other one representing the abundance at the enc or ohe previous season of those lobsters whioh would grow into the stae group considered. To estimate the natural mortality we corsider only those groups which are unariected by recruitment and which fiall within the range of reliable growth datas in thes ase the $22-24$ cmo group has been selected. The ratio of the abunance of the lobsters in this group at the start of the season (3onid ine) to the estimated abundaree of the seme lobsters at the end of the previous season broker inne gives the staviven rate fod and hence the natural mortalyty rate this way the natural mortalities as listed in Tabie I are obtaired. The minus stign indicates the estimated survival rate was over $100 \%$ 。

Figure 1 - Comparison of the length composition of the 1953 population ( ${ }^{\circ}$ ) with that of the 1952 population (O') as estimated at the start of the 1953 season.


Figure 2 - Relative yield and catch per effort by weight from a group of legal-size lobsters for varying fishing mortality and for two alternative natural mortalities.


Vertical dotted line - Present level of effort

The natural mortality ingures jn Tabie It are affected by out of season fishing. Since this illegal finching may be quite extensive in some years the figures in Table I appear, even as variable as they are, quite low, Thus we suspect that there is recruitment to the area or that part of the stock is unaccessible but becomes accessible througla its movements; some bias may also be present in the estimates.

Growth. Growth studies of Thgnish lobsters were completed in 1957. We have empoyed these data to determine the growth by weight of the legal size lobster stock. In Table II the estimated total weight or legalmsize iobsters at the end of the season is tabulated for the years 1948-1953 along with the estimated weight of the same population at the stam of the next season, should there be no mortality between the seakors. The growth as calculated from these filgures "amee botsen $39 \%$ and 41\%。

Table II. Total estimated weight of the popiation of legal..size lobsters at the end of the season and the total weight of the same population after one yearis growth has been applied to it.

| Year | Total weight '000 it. |  | Total weight ater one yean's growth ${ }^{1} 000$ 12. |  | $\begin{gathered} \text { Growth } \\ \% \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1948 | 155 | 145 | 232 | 003 | 40 |
| 1949 | 397 | 29 | 559 | 393 | 41 |
| 1950 | 300 | 287 | 424 | 252 | 41 |
| 1951 | 297 | 167 | 423 | 235 | 42 |
| 1952 | 376 | 387 | 524 | 539 | 39 |
| 1953 | $27+$ | 493 | 385 | 600 | 40 |

Can we construct a model of the fishery? The information on growth, recruitinent, uovements and especialiy on natural mortality is stili too sketchy to wonstruct a statistically sound model of the Tignish Lobster fishery. Thus. for fastance, the natural mortality estimates are quite variabie and apply only to a small section of the legalmsize population. Nevertheless, some conclusions which are of practical importance can be drawn. Indeed, many fisheries are being regulated on the basis of veaker statistics.

Does it pay to control the total effort? To caleulate the yield for different totai fishing efforts at rignish, we have considered a group of legalesize lobsters and assumed that it remains in the fishery at the naximum for 3 years. The fixst year these lobsters have the same length frequercy as the average length frequency of legal -size (over $\frac{2 i}{2}$ jun caiapace length) lobsters at Tignish at the start of the seasono Fox a given number of trap hails the fishirg nortalicy and the yielc by different size groups can be calmiated. me dowth by weigh
between the first and second year (seasor) is given in Table II. The fishing mortality during the second season per given effort is obtained by estimating filist the length frequensy at the start of the second season. The growth between the second and third season is assumed, quite arbitrarily, to be the same as between the first and the second. Similariy the fishing mortality per given effort during the third season is assumed to be the same as during the second. Two alternative natural mortality rates are considered, namely $20 \%$ and $30 \%$ 。

The above assumptions provide a basis for calculating the relative yields at different levels of fishing. The calcula tions are presented graphically in Figure 2. The solid lines exhibit the relative yields per given number of trap hauls for assumed $20 \%$ and $30 \%$ natural mortaiities respectively. The broken lines represent the relative caton per effort figures. The present level of fishing mortality (on an average ciose to \% \% ) is brought about by a very high fishing effort. It appears; eogo, that if the total effort were reduced by $50 \%$ from the present level of fishing, the yield would be reduced by only about $1.5 \%$ while the catch per trap haul (effort) would almost double.

Doesit pay to increase the size limit? To evaluate the effect of increasing the minimum legal size for lobsters calculations similar to the above can be made. We have evaluated the effect of an increase from $21 / 2$ to $25 / 8$ inches carapace length. No appreciable benefits are noted except when the lower $20 \%$ natural mortality rate and the very high level of effort corresponding to $70 \%$ fishing mortality are assumed。

This may seem surprising since growth is about $40 \%$ by weight per year. However, with the assumptions made, those lobsters which are between $21 / 2$ and $25 / 8$ inches carapace length the first year are, in our calculations being fished only for 2 seasons with the higher size limit. If we knew that the life expectancy of lobsters at Tignish is higher than assumed, worth while benefits would be realized. However, with the present high level of fishing effort there are very few lobsters in the samples which could be considered having been legal size more than 3 years. Thus the data are missing to draw any more definite conclusions.

We note that the assumed short life expectancy was not critical when we considered the effect of restricting the total effort expended on the fishery. In the case of a higher true life expectancy, the expected yield would be relatively stili higher at lower levels of effort.

J. E. Paloheimo

