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Abstract

In 1998, Jordan-Kinderleher-Otto [JKO98] proved a remarkable result that the
diffusion equation can be seen as a gradient flow of the Boltzmann entropy with
respect to the Wasserstein distance. This result has sparked off a large body of re-
search in the field of partial differential equations and others in the last two decades.
Many evolution equations have been proved to have a Wasserstein gradient flow struc-
ture such as the convection and nonlinear diffusion, the Cahn-Hilliard equation, the
thin-film equation and finite Markov chains, just to name a few. Not only revealing
physical nature of a PDE, a Wasserstein gradient flow structure can also be exploited
to prove its well-posedness, to characterise long-time behaviour and to study multi-
scale analysis. Recently, Adams-Dirr-Peletier-Zimmer [ADPZ11] has established an
intriguing connection between the JKO-Wasserstein gradient flow structure of the
diffusion equation with large-deviation principle of many Brownian motions showing
that the former can be derived from the latter. This result explains, among other
things, the microscopic origin of the combination of the Wasserstein metric and the
Boltzmann entropy that appeared in the JKO-scheme. In [DLR13, MPR14, EMR15]
this result has been generalised to other systems including the Fokker-Planck and
general Markov process with detailed balance.

However, the Wasserstein gradient flow theory is only applicable to dissipative
systems. In nature and applied sciences, there exist many non-dissipative systems.
A typical example is the Kramers (or kinetic Fokker Planck equation) that has been
used extensively in statistical mechanics and chemistry. In fact, the GENERIC (Gen-
eral Equation for Non-Equilibrium Reversible-Irreversible Coupling [Ött05]) frame-
work covers a large class of evolution equations that consist both conservative and
dissipative dynamics. A nature question is whether one can we generalise [JKO98]
and [ADPZ11] to such systems. In a series of papers [DPZ13a, DPZ13b, DLPS16,
DLP+16] we address this question. More specially, we show that a GENERIC struc-
ture of the Vlasov-Fokker-Planck equation is ultimately related to a large-deviation
principle of an underlying stochastic process [DPZ13a, DPZ13b]. Based on this con-
nection, we introduce new technique for coarse-graining (multi-scale analysis), both
qualitative and quantitative, of conservative-dissipative systems [DLPS16, DLP+16].

The aim of this crash course is to introduce these recent developments. That is to
(1) provide a brief introduction to generalised Wasserstein gradient flows and large-
deviation principles, (2) present connections between the two theories and (3) discuss
about applications in multi-scale analysis of PDEs. This notes is mainly based on my
PhD thesis carried out at the Eindhoven University of Technology. However, basic
knowledge, mostly in Section 1, is included. Due to the limitation of time, only main
heuristic ideas and main steps of proofs are presented; all details can be found in
[Duo14, DPZ13a, DPZ13b, DLPS16, DLP+16].

This mini-course was given at Department of Probability and Statistics, Hanoi
Institute of Mathematics in Summer 2015.
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1 Wasserstein gradient flows

The main aim of this section is to introduce the main result of [JKO98] that proves
that the diffusion equation is a gradient flow of the Boltzmann entropy with respect to
the Wassersetin metric. In order to state this result, we need to introduce thee relevant
concepts first. We will review the notion of a gradient flow in a finite dimensional space,
its approximation scheme and weak formulations. Then we will see how this is generalised
to a probabilistic space endowed with the Wasserstein metric. Having all these concepts,
we finally will be able to state and discuss the main result of [JKO98].

1.1 Gradient flows in Rd

To begin with let us recall that the gradient flow of a smooth functional E : Rd → R
is a map x : [0,∞)→ Rd which solves the differential equation

d

dt
x(t) = −∇E(x(t)) for t > 0, (1)

x(0) = x0.

1.2 Discrete approximation of gradient flows

To numerically solve the equation (1) we often use the implicit Euler scheme as follows.
Take h > 0 as a time step.

1. Step 1: xh0 = x0,

2. Step 2: Assume that xhk = x(kh) for k = 0, 1, ..., n are known. Find xhn+1 from the
following equation

xhn+1 − xhn
h

+∇E(xhn+1) = 0. (2)

Note that a solution of (2) is also a minimizer of the minimization problem

min
x∈Rd

‖x− xhn‖2

2h
+ E(x)− E(xhn), (3)

where ‖ · ‖ is the Euclidean metric. Hence solving (2) can be achieved by finding xhn+1 that
minimizes over x ∈ Rd

K(x) =
‖x− xhn‖2

2h
+ E(x)− E(xhn). (4)

Therefore the gradient flow (1) can be viewed as steepest descent of the functional K(x)
with respect to the Euclidean distance.
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1.3 Gradient flows on Riemannian manifolds

Let M be a Riemannian manifold, i.e. M is a real differentiable manifold, and for
each x ∈M there is an inner product gx on the tangent space TxM.

Let E : M → R be differentiable, x ∈ M and v be a tangent vector at x. The direc-
tional derivative of E at x along v, δvE(x), is defined as follows. Let γ(t) be a differentiable
curve in M with γ(0) = x and γ̇(0) = v. Then

δvE(x) :=
d

dt
E(γ(t))

∣∣∣
t=0
. (5)

The gradient of E , denoted by ∇E , is the vector field defined by

∇E : M→ TM
x 7→ ∇E(x) ∈ TxM,

such that
gx(∇E(x), v) = δvE(x) for all v ∈ TxM. (6)

The gradient flow of E is a curve x : [0,∞)→M which solves the differentiable equation

d

dt
x(t) = −∇E(x(t)) in Tx(t)M. (7)

1.4 Weak formulation of the gradient flows

An alternative way to formulate the gradient flow in (1) relies on using its weak form.
Let x : [0,∞)→ Rd be any differentiable map. We always have

d

dt
E(x(t)) = 〈∇E(x(t)), ẋ(t)〉

≥ −‖∇E(x(t))‖ · ‖ẋ(t)‖

≥ −1

2
‖∇E(x(t))‖2 − 1

2
‖ẋ(t)‖2.

The inequality becomes equality if and only if ẋ(t) has opposite direction and same length
as ∇E(x(t)), i.e., ẋ(t) = −∇E(x(t)). Hence we can reformulate the gradient flow in (1) as
follows.

Theorem 1.1 (Rayleigh principle). Assume that E ∈ C1(Rd). A curve x ∈ C1([0, T ]; Rn)
is gradient flow of E if and only if for each t ∈ [0, T ]

d

dt
E(x(t)) ≤ −1

2
‖∇E(x(t))‖2 − 1

2
‖ẋ(t)‖2, (8)

or equivalently

E(x(T ))− E(x(0)) +
1

2

∫ T

0

[
‖∇E(x(t))‖2 + ‖ẋ(t)‖2

]
dt ≤ 0. (9)
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This formulation can be generalized to the gradient flows on Riemannian manifold in
the previous section. Then (9) becomes

E(x(T ))− E(x(0)) +
1

2

∫ T

0

[
gx(t)(∇E(x(t)),∇E(x(t))) + gx(t)(ẋ(t), ẋ(t))

]
dt ≤ 0. (10)

1.5 Wasserstein distance

Let P2(Rd) be the set of probability measures with finite second moment, i.e.,

P2(Rd) =

{
ρ(dx)

∣∣∣ ∫
Rd

ρ(dx) = 1 and

∫
Rd

|x|2ρ(dx) <∞
}
. (11)

Given µ0, µ1 ∈ P2(Rd), we denote by Γ(µ0, µ1) the set of probability measures in Rd ×Rd

having µ0, µ1 as its marginals, i.e.,

Γ(µ0, µ1) = {γ ∈ P(Rd×Rd)
∣∣∣γ(A×Rd) = µ0(A), γ(Rd×A) = µ1(A) for all Borel sets A ⊂ Rd}.

(12)
The 2-Wasserstein distance between µ0 and µ1 ∈ P2(Rd) is defined via

d(µ0, µ1)2 = inf
γ∈Γ(µ0,µ1)

∫
Rd×Rd

|x− y|2γ(dxdy). (13)

Example 1.1. In several cases, the Wasserstein distance can be computed explicitly.

(1) W2(δa, δb) = |a− b|.

(2) W2

(
1
n

n∑
i=1

δxi ,
1
n

n∑
i=1

δyi

)2

= minσ∈Sn
1
n

n∑
i=1

|xi − yσ(i)|2.

(3) W2(N (a, σ2
1),N (b, σ2

2))2 = (a− b)2 + (σ1 − σ2)2.

1.6 P2(R
d) as a manifold

Remind that in a Riemannian manifoldM the distance between two points x0 and x1

is defined via

d(x0, x1)2 = inf{
∫ 1

0

gx(t)(ẋ(t), ẋ(t))dt
∣∣∣x ∈ C1([0, 1],M), x(0) = x0, x(1) = x1}. (14)

Brenier and Benamou [BB00] have shown a similar formula for the Wasserstein distance.
Let ρ0(dx) = ρ0(x)dx, ρ1(dx) = ρ1(x)dx ∈ P2(Rd). Then

d(ρ0, ρ1)2 = inf{
∫ 1

0

∫
Rd

|∇u|2 dρ(t) dt
∣∣∣ρ̇(t) = −∇ · (ρ∇u), ρ(0) = ρ0, ρ(1) = ρ1}(15)

= inf{
∫ 1

0

gρ(t)(ρ̇(t), ρ̇(t)) dt
∣∣∣ρ̇(t) = −∇ · (ρ∇u), ρ(0) = ρ0, ρ(1) = ρ1},(16)
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where

gρ(t)(ρ̇(t), ρ̇(t)) =

∫
Rd

|∇u|2dρ(t). (17)

The similarity between (14) and (16) suggests that we can formally view P2(Rd) as a
Riemannian manifold and that we can identify the tangent space at ρ(t), Tρ(t)P2(Rd), with
the family of functions u satisfying the continuity equation in (16)

Tρ(t)P2(Rd) =
{
u(t)

∣∣u ∈ C2([0, 1]; Rd) such that ρ̇(t) = −∇ · (ρ∇u)
}
, (18)

and the Riemannian metric gρ(t)(ρ̇(t), ρ̇(t)) is computed as in (17). By generalizing this we
can define the tangent space and the Riemannian metric at any point ρ ∈ P2(Rd). This
interpretation indeed was done first by Otto in [Ott01] and intensively later by Ambrosio,
Gigli and Savaré in the second part of the book [AGS08]. The appendix D.5 of [FK06] also
discusses on this.

In [Ott01] the tangent space TρP2(Rd) of ρ is defined by

s ∈ TρP2(Rd)⇔ s = −∇ · (ρ∇u), (19)

and the inner product by

gρ(s, s) =

∫
Rd

|∇u|2dρ. (20)

Hence for s1, s2 ∈ TρP2(Rd) we have

gρ(s1, s2) =
1

4
[gρ(s1 + s2)− gρ(s1 − s2)] =

∫
Rd

∇u1 · ∇u2dρ, (21)

where s1 = −∇ · (ρ∇u1) and s2 = −∇ · (ρ∇u2).

In [AGS08] the relationship in (19) is made precise as

TρP2(Rd) = {∇ϕ : ϕ ∈ C∞c (Rd)}
L2
ρ(Rd)

. (22)

In [FK06] TρP2(Rd) is identified with the space H−1,ρ(R
d)

H−1,ρ(Rd) =
{
u ∈ D′(Rd) : ‖u‖−1,ρ <∞

}
, (23)

where D′(Rd) is the space of Schwartz distributions on Rd and

‖u‖2
−1,ρ = sup

ϕ∈C∞c (Rd)

{
2〈u, ϕ〉 −

∫
Rd

|∇ϕ|2dρ
}
. (24)

With this identification in [FK06] the gradient of a functional on P2(Rd) is defined as
follows
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Definition 1.2. ([FK06, Definition 9.36]) Let E : P2(Rd) → [−∞,+∞] and ρ ∈ P2(Rd).
We say that gradient of E at ρ, denoted by ∇E(ρ) exists if it can be identified as the
unique element in D′(Rd) such that for each ϕ ∈ C∞c (Rd) and each ρ(t) : [0,∞)→ P2(Rd)
satisfying the continuity equation

∂tρ(t) + div(ρ(t)∇ϕ) = 0, ρ(0) = ρ in D′(Rd). (25)

we have

lim
t→0+

E(ρ(t))− E(ρ)

t
=: 〈∇E(ρ), ϕ〉 (26)

1.7 The result of Jordan-Kinderlehrer-Otto 1998

In 1998 Jordan-Kinderlehrer and Otto [JKO98] have made an important discovery
that the heat equation ∂tρ = ∆ρ can be expressed as steepest descent of the entropy
functional E(ρ) =

∫
ρ log ρ with respect to the so-called Wasserstein distance in the space

of probability measures on Rd. We now will recall the result in [JKO98].

Consider the heat equation
∂tρ = ∆ρ. (27)

(In [JKO98] the authors actually considered a more general equation ∂tρ = ∆ρ+div(∇Φ(x)ρ).
(27) is a special case of this equation when Φ(x) ≡ 0).

Define the entropy E(ρ) =
∫
Rd ρ log ρ. The main result in [JKO98] is the following.

Theorem 1.3. [JKO98] Let ρ0 ∈ P2(Rd) satisfy E(ρ0) <∞, and for a given h > 0, let ρkh
be the solution of the following scheme.

• ρ0
h = ρ0,

• Determine ρkh that minimizes over ρ ∈ P2(Rd)

Kh(ρ) =
1

2h
d(ρk−1

h , ρ)2 + E(ρ)− E(ρk−1
h ). (28)

Define ρh : (0,∞)×Rd → [0,∞) by

ρh(t) = ρkh for t ∈ [kh, (k + 1)h). (29)

Then ρh(t) ⇀ ρ(t) weakly in L1(Rd) for all t ∈ (0,∞) where ρ ∈ C∞((0,∞) ×Rd) is the
unique solution of the heat equation.

We notice that (4) and (28) have the same form. Hence the result above generalizes
the implicit Euler scheme to the infinite dimensional space P2(Rd) equipped with the
2-Wasserstein distance instead of the Euclidean one.
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The theorem above has sparked off a large body of research in the field of partial
differential equations and others in the last two decades. Many evolution equations have
been proved to have a Wasserstein gradient flow structure such as the convection and
nonlinear diffusion, the Cahn-Hilliard equation, the thin-film equation and finite Markov
chains, just to name a few. See [AGS08, Vil03] for excellent expositions about this topic.

However, in the theorem above it is not clear why the Wasserstein metric and the
Boltzmann entropy appear, why their combination gives rise to the diffusion equation. In
[ADPZ11], the author made the first attempt to answer this question. In order to introduce
this result, we need to introduce another concept, large-deviation principles of stochastic
processes, in the next section.

2 Large deviation principle

In this section, we review relevant knowledge on the theory of large-deviation principle.
We refer to [DZ87, FK06] for the full treatment of this theory.

Definition 2.1. Let X be a complete separable metric space. A sequence of X−valued
random variables Xn is said to satisfy the large deviation principle with a rate functional
I : X → [0,∞) if

1. lim infn→∞
1
n

logP(Xn ∈ A) ≥ − infx∈A I(x) for all open Borel subsets A ⊂ X,

2. lim supn→∞
1
n

logP(Xn ∈ B) ≤ − infx∈B I(x) for all closed Borel subsets B ⊂ X.

The rate functional I is good if its sub-level sets
{
x ∈ X

∣∣I(x) ≤ a
}

are compact for all
a ≥ 0.

2.1 Inverse of Varadhan’s lemma

Lemma 2.2. Let {Xn} be a sequence of S-valued RVs. Suppose that the sequence {Xn} is
exponentially tight and that the limit

Λ(f) = lim
n→∞

1

n
logE[enf(Xn)]

exists for each f ∈ Cb(S). Then {Xn} satisfies the LDP with a rate functional

I(x) = sup
f∈Cb(S)

{f(x)− Λ(f)}.

2.2 Contraction principle

Lemma 2.3 (contraction principle). Let Xn be an S-RVs with a tight distribution. Suppose
that Xn satisfies a LDP with a good rate functional I. Let (S ′, d′) be a metric space and
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suppose that F : S → S ′ is a measurable and continuous at x ∈ S for each x with I(x) <∞.
Define Yn = F ◦Xn. Then Yn also satisfies a LDP with a good rate functional

I ′(y) = inf{I(x) : F (x) = y}.

2.3 Examples of LDP

Example 1 (Cramer theorem): Xn are i.i.d real RVs with common generating function
M(θ) = E(exp(θX1)), and I(a) = supθ{θa − logM(θ)} is the Legendre transform of M .
Then 1

n

∑
iXi satisfies a LDP with rate functional I.

Example 1.1 (coin tossing) P (Xn) = 0 = P (Xn) = 1 = 1
2
. Then M(θ) = 1

2
(1 + eθ), and

I(a) = sup{θa− log
1

2
(1 + eθ)}

=

{
a log a+ (1− a) log(1− a) + log 2 if 0 ≤ a ≤ 1,

+∞, otherwise.

Example 2 (Sanov theorem): Xn are i.i.d with common distribution ν. Then 1
n

∑n
i=1 δXi

satisfies a LDP with the rate H(·||ν), which is the relative entropy w.r.t ν.

H(µ||ν) =

{∫
dµ log dµ

dν
, if dµ� dν,

+∞, others

3 Connection between gradient flows and Large De-

viation Principles

In this section, we introduce the main result in [ADPZ11] that establishes an intriguing
connection between Wasserstein gradient flow structure of the diffusion equation with large-
deviation principle of many Brownian motions.

3.1 The result of [ADPZ11]: Connection via Gamma conver-
gence

Let us first remind the definition of Gamma convergence in a metric space and narrow
convergence in a probability space.

Definition 3.1. [Bra02] Let X be a metric space. We say that a sequence fn : X → R Γ−
converges in X to f : X → R, denoted by fn

Γ−→ f , if for all x ∈ X we have
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• For every sequence xn converging to x

lim inf
n→∞

fn(xn) ≥ f(x), (30)

• There exists a sequence xn converging to x such that

lim
n→∞

fn(xn) = f(x). (31)

Definition 3.2. We say that a sequence ρn ∈ P(Rd) narrowly converges to ρ ∈ P(Rd),
denoted by ρn ⇒ ρ, if for all f ∈ Cb(Rd) we have∫

Rd

fdρn →
∫
Rd

fdρ. (32)

In [ADPZ11] the authors consider a family of n independent Brownian particles Xi(t) ∈
R, t ≥ 0 and they examine the empirical measure

Ltn :=
1

n

n∑
i=1

δXi(t). (33)

Let Pn =
⊗n

i=1 Pρ0 where Pρ0 is the probability measure under which a particle starts
with initial distribution ρ0. Let h, δ > 0 and ρ0 ∈ P(R) be given. Denote by Bδ(ρ0) the
open ball of radius δ with respect to the Levy metric on P(R). The authors showed that
the sequence Pn ◦ (Lhn)−1 satisfies under the condition that L0

n ∈ Bδ(ρ0) a large deviation

principle with rate functional Jh,δ(ρ, ρ0) and Jh,δ(ρ, ρ0)
Γ−→ Jh(ρ, ρ0) in P(R) where

Jh(ρ, ρ0) = inf
q∈Γ(ρ,ρ0)

H(q|q0), (34)

with q0(dxdy) = ρ0(dx) 1√
4πh

e−
(y−x)2

4h dy and

H(q|q0) =

{∫
R×R

dq
dq0

log dq
dq0
q0(dxdy) if q � q0

+∞ else.
(35)

Moreover the rate functional Jh(ρ, ρ0) is closely related to the entropy functional as stated
in the main theorem in [ADPZ11].

Theorem 3.3. [ADPZ11] Let L > 0 be fixed. There exists δ > 0 such that for each

ρ0 ∈ Aδ ∩ C([0, L]), where Aδ = {ρ ∈ L∞(0, L) :
∫ L

0
ρ(dx) = 1 and ‖ρ− L−1‖ < δ},

Jh(·; ρ0)− 1

4h
d(·, ρ0)2 Γ−→ 1

2
E(·)− 1

2
E(ρ0) as h→ 0 in the set Aδ. (36)

This means that

1. For each sequence ρh converging narrowly to ρ in Aδ we have

lim inf
h→0

Jh(ρ
h, ρ0)− 1

4h
d(ρh, ρ0)2 ≥ 1

2
E(ρh)− 1

2
E(ρ0). (37)

2. For each ρ ∈ Aδ, there exists a sequence (ρh) ⊂ Aδ with ρh ⇒ ρ such that

lim
h→0

Jh(ρ
h, ρ0)− 1

4h
d(ρh, ρ0)2 =

1

2
E(ρh)− 1

2
E(ρ0). (38)
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3.2 Weak formulation of gradient flow and the rate functional:
a direct connection

In this subsection we will analyze the example 14 in the book [FK06] to see a direct
connection between the gradient flow and large deviation principle. Let Ψ,Φ ∈ C2(Rd)
and consider the equation

∂

∂t
ρ = ∇ · (ρ∇(Ψ + ρ ∗ Φ)) +

1

2
∆ρ. (39)

where ρ ∗ Φ(x) =
∫
Rd Φ(x− y)ρ(dy). Let ρ ∈ P2(Rd) such that ρ(dx) = ρ(x)dx. Define

E(ρ) =
1

2
logZ +

1

2

∫
Rd

ρ(x) log ρ(x) dx+

∫
Rd

Ψ(x)dx+
1

2

∫
Rd×Rd

Φ(x− y)ρ(x)ρ(y)dxdy,

(40)
where Z is a constant. It is shown in chapter 9 (see also theorem D.28) in [FK06] that the
gradient of E at ρ is

∇E(ρ) = −1

2
∆ρ−∇ · (ρ∇(Ψ + ρ ∗ Φ)). (41)

and that the equation (39) is the gradient flow of E(ρ). Hence we can rewrite this equation
in the weak form as in (10) as follows

E(ρ(T ))− E(ρ(0)) +
1

2

∫ T

0

(
‖∂ρ
∂t
‖2
−1,ρ(t) + ‖∇E(ρ(t))‖2

−1,ρ(t)

)
dt ≤ 0. (42)

Now let consider a stochastic process

dXi,n(t) = −∇Ψ(Xi,n(t))dt− 1

n

n∑
j=1

∇Φ(Xi,n(t)−Xj,n(t))dt+ dWi(t). (43)

for i = 1, . . . , n, where {Wi : i = 1, . . . , n} are independent Rd-valued Brownian motions.
Let consider the empirical process

ρn(t, dx) =
1

n

n∑
i=1

δXi,n(t)(dx). (44)

Theorem 3.4. [FK06, Theorem 13.37] Under some certain conditions ρn(t, dx) satisfies
a large deviation principle in the path space CP2(Rd)[0,∞) with a good rate functional
I : CP2(Rd)[0,∞)→ [0,∞] with

I(ρ) = I0(ρ(0)) +
1

2

∫ ∞
0

‖ ∂
∂t
ρ− 1

2
∆ρ−∇ · (ρ∇(Ψ + ρ ∗ Φ))‖2

−1,ρ(t)dt. (45)

where I0(ρ(0)) is the rate functional for the initial process ρn(0).
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Let T > 0. By the remark 8.15 in [FK06] if we restrict to a bounded time interval
[0, T ] then for each ρ ∈ CP2(Rd)[0, T ] the rate functional becomes

IT (ρ) =
1

2

∫ T

0

‖ ∂
∂t
ρ− 1

2
∆ρ−∇ · (ρ∇(Ψ + ρ ∗ Φ))‖2

−1,ρ(t)dt. (46)

By (41) we can rewrite the rate functional IT (ρ) as follows

IT (ρ) =
1

2

∫ T

0

‖ ∂
∂t
ρ+∇E(ρ(t))‖2

−1,ρ(t)dt

=
1

2

∫ T

0

(
‖∂ρ
∂t
‖2
−1,ρ(t) + ‖∇E(ρ(t))‖2

−1,ρ(t) + 2〈∂ρ
∂t
,∇E(ρ(t))〉−1,ρ(t)

)
dt

= E(ρ(T ))− E(ρ(0)) +
1

2

∫ T

0

(
‖∂ρ
∂t
‖2
−1,ρ(t) + ‖∇E(ρ(t))‖2

−1,ρ(t)

)
dt. (47)

The rate functional is nothing but the left hand side of (42). We see that the rate functional
in the large deviation principle is directly related to the weak formulation of the gradient
flows.

3.3 Summary

We summarize the main points of the section.

• The Fokker-Planck equation ∂tρ = div(ρ∇Ψ) + ∆ρ is a Wasserstein gradient flow of
the free energy that can be approximated via the JKO-scheme using the functional
Kh .

• The Fokker-Planck equation is the thermodynamic limit of the particle systems

dXi(t) = −∇Ψ(Xi(t))dt+
√

2dWi(t),

and the empirical process satisfies a large-deviation principle with a rate functional
Jh.

• The two functional Kh and Jh are equivalent in the Gamma-convergence sense: Kh ≈
1
2
Jh as h ↓ 0.

• The connection between Wasserstein gradient flow and large-deviation principle can
also be seen in the continuous setting.

4 GENERIC and large deviation principle

In this section, we generalise the result in [ADPZ11] to the Kramers equation that
consists of both conservative (Hamiltonian flows) and dissipative (gradient flow) effects. We
also discuss about a more general class of evolution equations, the GENERIC framework
[DPZ13b].
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4.1 Langevin dynamics and Kramers equation

Langevin dynamics is an important model in molecular dynamics and statistical physics
which used to describe the dynamics of a molecular system. It is obtained as an application
of Newtwon’s second law where there are three forces acting on the system: an external
force, a friction and a random force.

mQ̈(t) = −∇V (Q(t))− γQ̇(t) +
√

2γkBTR(t),

Here Q(t) is the position of all atoms at time t, m: mass, V : external potential, γ friction
coefficient, kB: Boltzmann constant, T : absolute temperature, R(t) Gaussian noise. More
precisely, the system should be written as a stochastic differential equation

dQ(t) =
P (t)

m
dt,

dP (t) = −∇V (Q(t))dt− γP (t)

m
dt−

√
2γkBTdW (t).

Kramers’ equation is the evolution equation for the distribution ρt at time t, position q
and momentum p

∂tρt = − div(ρtJH) + divp(ρt
p

m
) + γkBT∆pρt.

Properties of Kramers equation:

• Not a Hamiltonian, neither a gradient flow. But a combination of them.

• A typical example of a GENERIC (General Equation for Non-Equilibrium Reversible-
Irreversible Coupling)

ż = L(z)
δE(z)

δz
+M(z)

δS(z)

δz
.

A GENERIC equation (General Equation for Non-Equilibrium Reversible-Irreversible Cou-
pling [Ött05]) for an unknown z in a state space Z is a mixture of both reversible and
dissipative dynamics:

∂tz = L dE + MdS. (48)

Here

• E, S : Z→ R are interpreted as energy and entropy functionals,

• dE, dS are appropriate derivatives of E and S (such as either the Fréchet derivative
or a gradient with respect to some inner product);

• L = L(z) is for each z an antisymmetric operator satisfying the Jacobi identity

{{F1,F2}L,F3}L + {{F2,F3}L,F1}L + {{F3,F1}L,F2}L = 0, (49)

for all functions Fi : Z → R, i = 1, 2, 3, where the Poisson bracket {·, ·}L is defined
via

{F,G}L := dF · L dG (50)
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• M = M(z) is symmetric and positive semidefinite.

Moreover, the building blocks {L,M,E, S} are required to fulfill the degeneracy conditions :
for all z ∈ Z,

L dS = 0, MdE = 0. (51)

As a consequence of these properties, energy is conserved along a solution, and entropy is
non-decreasing:

dE(z(t))

dt
= dE · dz

dt
= dE · (L dE + MdS) = 0,

dS(z(t))

dt
= dS · dz

dt
= dS · (L dE + MdS) = dS ·MdS ≥ 0.

A GENERIC system is then fully characterized by {Z,E, S, L,M}. Note that a gradient
flow is a special case of GENERIC when E = 0.

Can we derive GENERIC structure from microscopic particle models?

In this section, we will generalise the result in Chapter 1 to Kramers equation showing
that the GENERIC structure of Kramers equation arises from large-deviation principle of
a particle model.

4.2 Particle model

The particle system is constructed as follows. For i = 1, . . . , n

dQi(t) =
Pi(t)

m
dt,

dPi(t) = −∇V (Qi(t))dt− γ
Pi(t)

m
dt−

√
2γkBTdWi(t).

We consider the empirical process

ρn(t, dq, dp) =
1

n

n∑
i=1

δ(Qi(t),Pi(t))(dq, dp).

The above SDE models a system of particles in interaction with a heat bath, and
this interaction causes fluctuations of the natural energy (the Hamiltonian) of the particle
system,

Hn(Q1, . . . , Qn, P1, . . . , Pn) :=
1

n

n∑
i=1

[ P 2
i

2m
+ V (Qi)

]
+

1

2n2

n∑
i,j=1

ψ(Qi −Qj). (52)

Indeed, using Itô’s lemma the derivative of the expression above is

− 1

n

n∑
i=1

[
γ

m2
P 2
i dt−

γθd

m
dt+

√
2γθ

m
Pi dWi

]
,
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which has no reason to vanish. We add a single scalar unknown en and define its evolution
by the negative of the above, leading to the extended particle system

dQi =
Pi
m
dt, (53a)

dPi = −∇V (Qi) dt−
n∑
j=1

∇ψ(Qi −Qj)−
γ

m
Pi dt+

√
2γθ dWi, (53b)

den =
1

n

n∑
i=1

[
γ

m2
P 2
i dt−

γθd

m
dt+

√
2γθ

m
Pi dWi

]
, (53c)

with which Hn + en becomes deterministically constant. Note that en can be interpreted
as the energy of the heat bath; the flow of energy between the particle system and the heat
bath is described by the flow of energy between Hn and en.

4.3 From LDP to Kramers’ equation

In [DPZ13b], we show that

Theorem 4.1.

(1) The particle system above satisfies a large-deviation principle,

(2) The GENRERIC structure of the extended Kramers equation can be derived from the
large-deviation rate functional.

4.4 Summary

• Connection between PDEs and stochastic processes via LDP,

• The rate functional plays a key role: Finding limits of PDEs is equivalent to that of
rate functionals,

• Variational formulation of the rate functional gives rise to variational technique,

• Multi-scale analysis, coarse-graining are performed simultaneously,

• Both qualitative and quantitative multi-scale analysis,

• Potential use for a large class of PDEs.
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5 Multi-scale analysis of PDEs

In this section, we discuss about a variational technique introduced in [DLPS16,
DLP+16] to study multi-scale analysis of PDEs. This variational technique is based on
the connection between PDEs and large-deviation principle obtained in previous sections.
The advantage of this connection is that it allows us to study multi-scale analysis of non-
dissipative systems that existing methods could not treat. An abstract framework will be
introduced first. Then several examples, including the overdamped limit of the Kramers
equation and the small noise limit of a perturbed Hamiltonian, will be illustrated.

5.1 General framework

Suppose that ρε : [0, T ]→ P(X ) (X := RN), solves the ε-dependent problem

(Pε) :

{
∂tρ

ε = L∗ε ρε,
ρε(0) = ρε0.

(54)

The aim is to derive an ε-independent problem P that can be considered as an approxima-
tion (in a suitable sense) of (Pε) as ε→ 0,

(P) :

{
∂tρ = L∗ ρ,
ρ(0) = ρ0.

(55)

Here ρ : [0, T ]→ P(X0), where X0 is some Euclidean space.

Coarse-graining is a technique for such purpose. It consists of two steps. The first
one is to transform the problem (Pε) to a coarse-grained problem (P̂ε) defined on P(Y),
where Y is some coarse-grained Euclidean space, via a coarse-graining map Πε : X →
Y . The coarse-grained space is often of dimension less than the original space and as
a consequence the coarse-grained map is non-injective. The coarse-grained problem (P̂ε)
describes the evolution of the coarse-grained profile ρ̂ε which is the push-forward of ρε

under Πε, ρ̂
ε = Πε#ρ

ε : [0, T ]→ P(Y),

(P̂ε) :

{
∂tρ̂

ε = L̂∗ε(ρε) ρ̂ε,
ρ̂ε(0) = ρ̂ε0.

(56)

Note that the coarse-grained generator L̂∗ε(ρε) depends on ρε, therefore it is not Markovian
in general.

The second step is to derive (P) from (P̂ε). The success of the technique relies on
whether one can define an appropriate coarse-grained problem. Usually one also has to
rescale the temporal and/or the spatial variables appropriately depending on the effects
that one wishes to observe.
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5.2 Coarse-graining from large-deviation principle

For fixed ε the equation (Pε) can be derived from the rate functional of the large
deviation principle of the empirical process of an underlying particle system Xε

i . More
precisely,

ρε is a solution to (Pε) iff Iε(ρε) = 0,

where the rate functional Iε(ρε) is given by

Iε(ρε) = sup
f∈C∞c (R×X )

Gε(ρε, f). (57)

The functional Gε(ρε, f) has the following form

Gε(ρε, f) =

∫
X

[
fT dρ

ε
T − f0 dρ

ε
0

]
−
∫ T

0

∫
X

[
(∂t + Lε)ft

]
dρεtdt−

1

2

∫ T

0

∫
X
A∇ft · ∇ft dρεt dt,

where A is the diffusion matrix. In order to study the asymptotic behavior of ρε, we study
Gamma-convergence of the functional Iε instead. If one is only interested in convergence
of the solutions, one only needs to prove the liminf inequality in the Gamma-convergence
provided that the limiting functional is non-negative. In this chapter, we introduce a new
method for coarse-graining using the rate functional. The core idea of our method can be
summarized in the following four steps.

Step 1. Choose a special class of test functions: By taking f = g ◦ Πε, where g ∈
C∞c (R× Y), we obtain

Iε(ρε) ≥ sup
g∈C∞c (R×Y)

Gε(ρε, g ◦ Πε). (58)

Note that g ◦ Πε may not have compact support. Therefore, some approximation
argument may be required to ensure that g ◦ Πε is admissible.

Step 2. Compactness property for ρε and ρ̂ε. In this step, one needs to prove that ρε

and ρ̂ε possess appropriate compactness property. Assume that ρε
σ−→ ρ, ρ̂ε

σ̂−→ ρ̂,
where σ and σ̂ denote appropriate topologies.

Step 3. Prove that, up to an o(1) term, Gε(ρε, g ◦ Πε) depends only on g and the
coarse-grained variable ρ̂ε. We denote by Ĝε(ρ̂ε, g) the dominating term in
Gε(ρε, g ◦ Πε). In addition, suppose that we can pass to the limit, with respect
to the topology σ̂, in the functional Ĝε(ρ̂ε, g) for any fixed g. If this assumptions
hold, we may define

G(ρ̂, g) := lim
ε→0

Ĝε(ρ̂ε, g) for fixed g, (59)

and also
I(ρ̂) := sup

g
G(ρ̂, g). (60)
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Step 4. Derive the limiting system as the law ρ̂ ∈ C([0, T ],P(X0)) that uniquely
satisfies I(ρ̂) = 0.

We now apply this method to derive two limiting systems: the overdamped (high friction)
limit of the Kramers equation and the small-noise limit of a perturbed Hamiltonian system.

5.3 From a perturbed Hamiltonian system to diffusion on a graph

We now describe the small-noise limit. We consider the following stochastically per-
turbed Hamiltonian system and the time is rescaled t 7→ t/ε),

dQε =
1

ε
Pε, (61a)

dPε = −1

ε
∇V (Qε) +

√
2 dW. (61b)

The probability density ρε of (Qε, P ε) satisfies the following equation,

(Pε) ∂tρ
ε = −1

ε
div(ρεJ∇H) + ∆pρ

ε,

where H(q, p) = p2

2
+ V (q). The asymptotic behavior of this equation as ε ↓ 0 was first

studied by Freidlin and Wentzell [FW94]. They showed that the limiting system can be
described as a diffusion on a graph: over O(ε) time the solution follows level sets of H,
while at O(1) time scale, it performs a biased Brownian motion between level sets.

In this section, we re-prove this result as an illustration of our method. The associated
rate functional is as follows

Iε(ρε) = sup
f∈C∞c (R×R2)

{∫
R2d

[
fT dρ

ε
T − f0 dρ

ε
0

]
−
∫ T

0

∫
R2

[
∂tf +

1

ε
J∇H · ∇ft + ∆pft

]
dρεtdt

−1

2

∫ T

0

∫
R2

|∇pft|2
]
dρεtdt

}
. (62)

We now discuss the simplest case: d = 1 and V is a single-well potential (i.e. strictly
convex). In this case, the coarse-graining map is the Hamiltonian.

Theorem 5.1. [DLPS16] Assume that

(S1) The rate functional and the initial data are uniformly bounded,

sup
ε>0

[∫
Hρε0 + Iε(ρε)

]
< C. (63)

(S2) V is strictly convex, bounded from below and satisfies lim|q|→∞ V (q) = ∞. Without
loss of generality, we assume that V ≥ 0.
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(S3) (Growth conditions on H) There exist constant C such that

max{|∇H|, |∆H|} ≤ C(1 +H). (64)

Then the following hold

(1) (compactness properties) ρεt and the push-forward ρ̂ε := H#ρ
ε satisfy,

sup
t∈[0,T ]

sup
ε>0

∫
R2

Hρεt < C, for some C > 0, (65)

and
ρ̂ε −→ ρ̂ in C([0, T ],P(R)) for some ρ̂. (66)

(2) (local equilibrium property) ρt(dx) is “constant on level sets” in the sense that,

ρt(dx) = ρ̂t(H(x))
1

T (H(x))
dx, (67)

where T is defined in (69).

(3) (liminf inequality) Iε satisfies the following liminf-inequality

lim inf
ε→0

Iε(ρε) ≥ I(ρ̂), (68)

where

I(ρ̂) = sup
g∈C∞c (R×R)

[∫
R

gTdρ̂T −
∫
R

g0dρ̂0

−
∫ T

0

∫
R

(
∂tg(h) + b(h)g′(h) + a(h)g′′(h) +

1

2
a(h)(g′(h))2

)
ρ̂t(dh) dt

]
,

with

T (h) =

∫
H−1(H(h))

1

|∇H(x)|
H 1(dx), (H 1 is the 1-d Hausdorff measure), (69)

a(h) =
1

T (h)

∫
H−1(h)

|∇pH(x)|2

|∇H(x)|
H 1(dx), (70)

b(h) =
1

T (h)

∫
H−1(h)

∆pH(x)

|∇H(x)|
H 1(dx). (71)

(4) (The limiting system) The limiting system can be written as

∂tρ̂ = ∂h(a(h)∂hρ̂)− ∂h(b(h)ρ̂). (72)
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Proof. We sketch the main steps of the proof, details can be found in [DLPS16].

Since Iε(ρε) <∞ there exists hεt ∈ L2(0, T ;L2
∇(ρεt)) such that

∂tρ
ε
t = −1

ε
div(ρεJ∇H) + ∆pρ

ε − divp (hεtρ
ε
t).

The rate functional Iε(ρε) can be expressed in terms of hε as

Iε(ρε) =
1

2

∫ T

0

|hεt |2ρεt dt. (73)

Therefore, for t ∈ [0, T ] and f ∈ C2
c (R2d), we have

d

dt

∫
R2

f(x)ρεt(x)dx =

∫
R2

f(x)∂tρ
ε
t(x)dx (74)

=

∫
R2

(
1

ε
J∇H · ∇f + ∆pf +∇pf · hεt

)
ρεt . (75)

Substituting f = H in (75) we have the following formal calculation,

d

dt

∫
R2d

Hρεt =

∫
R2d

(
1

ε
J∇H · ∇H + ∆pH +∇pH · hεt

)
ρεt

≤
∫
R2d

(
∆pH +

1

2

[
|∇pH|2 + |hεt |2

])
ρεt

(64),(73)

≤ C

∫
R2d

(1 +H)ρεt + Iε(ρε).

Using (63) and a Gronwall-type estimate, we obtain∫
R2d

Hρεt < C.

To make these calculations rigorous we define for each m ∈ N, ψm ∈ C∞c (R) with 0 ≤
ψm ≤ 1 such that |ψ′m| ≤ ψm/m and |ψ′′m| ≤ ψm/m

2. We make the choice fm(x) =
H(x)ψm(H(x)), where note that fm ∈ C2

c (R2d). Proceeding as in calculation above and
using Gronwall type estimates we arrive at∫

R2d

fmρ
ε
t ≤ C.

Using monotone convergence theorem we obtain (65).

To prove (66), we will use [CL12, Theorem 3] which is an extension of the classical compact-
ness results of Simon [Sim86] to the case of semi-normed spaces. The spatial compactness of
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ρ̂ε is a direct consequence of (65) and the coercivity of V . To prove the time compactness,
we define three spaces

X1 = (M+(R), ‖ · ‖1BL), X2 = (M(R), ‖ · ‖BL), X3 = (C2
0(R))∗,

where

‖µ‖1BL = ‖µ‖BL +

∫
|x| dµ, ‖µ‖BL := sup

f∈BL(R), ‖f‖BL≤1

{∣∣∣ ∫ f dµ
∣∣∣} .

Here BL(R) denotes the space of bounded Lipschitz functions on R. Note that ‖ · ‖BL
metrizes the narrow topology. Then X1 is a seminormed nonnegative cone in X2. Moreover,
X1 ↪→↪→ X2 ↪→ X3. Take ϕ ∈ C2

0(R), we have∫
R2d

ϕρ̂ετ

∣∣∣∣τ=t+s

τ=t

=

∫
ϕ(H)ρετ

∣∣∣∣τ=t+s

τ=t

=

∫ t+s

t

∫
R2d

(
1

ε
J∇H(x) · ∇ϕ(H(x)) + ∆pϕ(H(x)) +∇pϕ(H(x))hετ

)
ρετ dτ.

The first term inside the integral above equals to 0. Using the argument as in the proof
of (65), we find that ∣∣∣∣ ∫

R2d

ϕρ̂εt+s −
∫
R2d

ϕρ̂εt

∣∣∣∣ ≤ Cs.

By [CL12, Theorem 3], ρ̂ε is relatively compact in C([0, T ],P(R)).

Now we prove (67). From (62), we have for every f ∈ C∞c (R×R2)∫ T

0

∫
R2

J∇H · ∇f dρεtdt ≤ ε

[∫
R2

[
f0ρ

ε
0 − fTρεT

]
+

∫ T

0

∫
R2

(
∂t + ∆pft +

1

2
|∇pft|2

)
dρεtdt+ Iε(ρε)

]
≤ Cε.

Substituting f by −f , we obtain the opposite inequality. This and together with (65) we
get ∫ T

0

∫
R2

J∇H · ∇f ρt(dx)dt = 0, for all f ∈ C∞c (R×R2). (76)

In particular, for each fixed t ∈ [0, T ] and f ∈ C2
c (R2),∫

R2

J∇H(x) · ∇f(x)ρt(dx) = 0. (77)

Choosing f(x) = ζ(H(x))ψ(x), where ψ ∈ C2
c (R2) is a spatial cutoff function, and applying

Disintegration Theorem [AGS08, Theorem 5.3.1], we get

0 =

∫
R2

J∇H(x) ·
(
ζ(H(x))∇ψ(x)

)
ρt(dx)

=

∫
R

ζ(h)ρ̂t(dh)

∫
H−1(h)

∇ψ(x) · J∇H(x)

|∇H(x)|
|∇H(x)|ρ̃t(dx|h).
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We denote τ := J∇H
|∇H| . Since τ ⊥ ∇H, |τ | = 1, τ is the tangential vector of the level set

H−1(h). Since the choice of ζ is arbitrary, we conclude

for ρ̂t-a.e. h ∈ R,

∫
H−1(h)

|∇H(x)|∂τψ(x)ρ̃t(dx|h) = 0. (78)

Since ψ is arbitrary, the above equality implies that |∇H|ρ̃t(dx|h) is constant on H−1(h).

This means that ρ̃t(dx|h) = c(h)
|∇H| where c(h) depends only on h but not x. Since ρ̃t(dx|h)

is a probability measure on H−1(h), the function c(h) can be found by

1 = c(h)

∫
H−1(h)

1

|∇H(x)|
H 1(dx),

or equivalently,

c(h) =
1

T (h)
,

where T (h) is defined in (69).

As a consequence, we get

ρ̃t(dx|h) =
H 1(dx)

T (h)|∇H(x)|
, for ρ̂t-a.e. h ∈ R. (79)

To obtain (67) we use the following co-area formula. The proof can be found in [MSZ03].

Lemma 5.2 (co-area formula for Sobolev mappings). Let H ∈ W 1,p
loc (Ω,R) where Ω ⊂ R2d

is an open subset such that ∇H(x) 6= 0 a.e. and g ∈ L1(R2d). Then,∫
Ω

g(x)dx =

∫
R

dh

( ∫
H−1(h)∩Ω

g(x)

|∇H(x)|
H2d−1(dx)

)
. (80)

Applying this lemma, on one hand, we have∫
R2

f(x)ρt(x) dx =

∫
R

dh

∫
H−1(h)

f(x)ρt(x)

|∇H(x)|
H 1(dx). (81)

On the other hand, from (79), we have for any f ∈ C2
c (R2),∫

R2

f(x)ρt(dx) =

∫
R

ρ̂t(dh)

∫
H−1(h)

f(x)ρ̃t(dx|h) =

∫
R

ρ̂t(dh)

T (h)

∫
H−1(h)

f(x)

|∇H(x)|
H1(dx).

(82)

Comparing (81) and (82) gives (67).

Next, we prove (68).
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We take f(t, x) = g(t,H(x)) for g ∈ C∞c (R × R) and pass to the limit in the rate
functional (62). We compute derivatives of f ,

∂tf = ∂tg(H), ∇f = g′(H)∇H, ∇pf = g′(H)∇pH, ∆pf = g′′(H)|∇pH|2 + g′(H)∆pg.

The first three terms are straightforward,∫
R2

[
fT dρ

ε
T − f0 dρ

ε
0

]
=

∫
R2

[
gT ◦H dρεT − f0 ◦H dρε0

]
=

∫
R2

[
gT dρ̂

ε
T − f0 dρ̂

ε
0

]
,∫ T

0

∫
R2

∂tf dρ
ε
tdt =

∫ T

0

∫
R

∂tg dρ̂
ε
tdt.

The fourth term vanishes since J is anti-symmetric,∫ T

0

∫
R2

J∇H · ∇ft dρεtdt =

∫ T

0

∫
R2

g′(H)J∇H · ∇H dρεtdt = 0.

To transform the last two terms we need to use (67) and (82). We have

lim inf
ε→0

∫ T

0

∫
R2

∆pfdρ
ε
tdt = lim inf

ε→0

∫ T

0

∫
R2

[
g′′(H(x))|∇pH(x)|2 + g′(H(x))∆pH(x)

]
ρεt(x)dxdt

(83)

=

∫ T

0

∫
R2

[
g′′(H(x))|∇pH(x)|2 + g′(H(x))∆pH(x)

]
ρt(x)dxdt

(82)
=

∫ T

0

∫
R

(
a(h)g′′(h) + b(h)g′(h)

)
ρ̂t(dh)dt,

and

lim inf
ε→0

∫ T

0

∫
R2

|∇pf |2dρεtdt = lim inf
ε→0

∫ T

0

∫
R2

(g′(H(x)))2|∇pH|2dρεtdt

=

∫ T

0

∫
R2

(g′(H(x)))2|∇pH|2dρtdt

(82)
=

∫ T

0

∫
R

a(h)(g′(h))2ρ̂t(dh)dt, (84)

where a(h), b(h) are defined in (70)-(71).

Combining all these terms we have,

Iε(ρε) ≥ sup
g∈C∞c (R×R)

[∫
R

gTdρ̂T −
∫
R

g0dρ̂0

−
∫ T

0

∫
R

(
∂tg(h) + b(h)g′(h) + a(h)g′′(h) +

1

2
a(h)(g′(h))2

)
ρ̂t(dh) dt

]
=: I(ρ̂).

Note that by choosing g = 0, we always have I(ρ̂) ≥ 0. The limiting system (72) then
follows from the form of the rate functional I(ρ̂).
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5.4 From the Kramers equation to the Fokker-Planck equation

In this section, we derive the Fokker-Planck equation as the overdamped (high friction)
limit of the Kramers equation. The overdamped limit was derived formally first in [Kra40]
and has been extensively studied in the literature from different point of view such as
asymptotic expansions or probabilistic methods, see for instance [Nel67, Wil76, GPK12]
and references therein. We reprove this result to illustrate our method.

We recall the Kramers equation

∂tρ = − divq

(
p

m
ρ

)
+ divp

(
∇qV (q)ρ

)
+ γ

[
divp

( p
m
ρ
)

+ θ∆pρ(t, q, p)
]
, (85)

where m, γ, θ are positive constants. For simplicity we set θ = 1. The overdamped limit
corresponds to the limit γ →∞ in (85).

Rescaling time appropriately (speeding up by 1/γ) we arrive at

∂tρ = −γ divq

(
p

m
ρ

)
+ γ divp

(
∇qV (q)ρ

)
+ γ2

[
divp

( p
m
ρ
)

+ ∆pρ
]
.

The large-deviation rate functional associated to this equation is (see (57))

Iγ(ρ) = sup
f∈C∞c (R×R2d)

[ ∫
R2d

(fTdρT − f0dρ0)−
T∫

0

∫
R2d

(
∂tf + γ

p

m
· ∇qf − γ∇qV · ∇pf − γ2 p

m
· ∇pf

+ γ2∆pf

)
dρtdt−

γ2

2

T∫
0

∫
R2d

|∇pf |2 dρtdt
]
.

(86)

The rate functional can be written in a more general form in terms of the generator L as,

Iγ(ρ) = sup
f∈C∞c (R×R2d)

{∫
R2d

[
fTρT − f0ρ0

]
−
∫ T

0

∫
R2d

(∂tft + (J − A)∇H · ∇ft + ∆pft

+
1

2
|∇pft|2) dρt dt

}
= sup

f∈C∞c (R×R2d)

{∫
R2d

[
fTρT − f0ρ0

]
−
∫ T

0

∫
R2d

(∂tft + Lft +
1

2
(∇ft)TA∇ft) dρt dt

}
,

(87)

where

Lf = (J − A)∇H · ∇f + div(A∇f), J = γ

(
0 I
−I 0

)
, A = γ2

(
0 0
0 I

)
.
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We recall definition of the relative entropy and the relative Fisher information. Let µ(dx) =
Z−1 exp(−H(x))dx be the invariant measure. The relative entropy H (ν

∣∣µ) and the relative
Fisher information RF (ν

∣∣µ) of a measure ν with respect to µ are respectively given by

H (ν
∣∣µ) =

{∫
R2d

dν
dµ

log dν
dµ
dµ if ν � µ,

∞ otherwise.
(88)

RF (ν
∣∣µ) =


∫
R2d

A∇ dν
dµ
·∇ dν

dµ
dν
dµ

dµ if dν = ν(x)dx,∇ dν
dµ
∈ L1

loc(R
2d),

∞ otherwise.
(89)

We define the coarse-graining map as follows,

Πγ : R2d → Rd

(q, p) 7→ Πγ(q, p) = q +
p

γ
.

Theorem 5.3. [DLPS16] Assume that

(B1) The rate functional and the initial data are uniformly bounded

sup
γ>0

[
Iγ(ργ) +

∫
R2d

ργ0 log ργ0 +Hργ0

]
<∞.

(B2) V is bounded from below and satisfies lim|q|→∞ = ∞ and ‖∇2V ‖∞ < ∞. Without
loss of generality, we assume V ≥ 0.

Then the following hold

1. (compactness properties) ργ and the push-forward ρ̂γ := Πγ#ρ
γ satisfy,

sup
t∈[0,T ]

sup
γ>0

∫
R2d

H(q, p)ργt (dqdp) <∞, (90)

and
ρ̂γ → σ in C([0, T ],P(Rd)) for some σ. (91)

2. (local equilibrium statement)

ργ ⇀ Z−1 exp

(
− p2

2m

)
σ in P([0, T ]×R2d). (92)

3. (liminf inequality) Iγ(ργ) satisfies the following liminf inequality

lim inf
γ→∞

Iγ(ργ) ≥ I(σ), (93)



27

where

I(σ) := sup
g∈C∞c (R×Rd)

∫
Rd

gTdσT −
∫
Rd

g0dσ0 −
T∫

0

∫
Rd

(∂tg −∇V · ∇g + ∆g)dσtdt

−1

2

T∫
0

∫
Rd

|∇g|2 dσtdt

 .
4. (the limiting system) σ satisfies the Fokker-Planck equation

∂tσ = div(∇V σ) + ∆σ. (94)

We now show the main steps of the proof; all details can be found in [DLPS16]. A
crucial step is to establish a priori estimate on the relative entropy and the relative Fisher
information.

A priori estimate (upper bound for the relative entropy and the relative
Fisher information).

Claim 1: It holds that

H (ργT
∣∣µ) +

1

2

∫ T

0

RF (ργt
∣∣µ) dt ≤ I(ργ) + H (ργ0

∣∣µ). (95)

As a consequence,

sup
t∈[0,T ]

sup
γ>0

∫
R2d

H(q, p)ργt (dqdp) <∞. (96)

We use the following variational formulation for the relative entropy and the Fisher infor-
mation [FK06, Chapter 9 and Appendix D6],

H (ρ
∣∣µ) = sup

ψ∈C∞c (R2d)

{∫
ψρ− log

∫
eψ dµ

}
,

1

2
RF (ρ|µ) = sup

ϕ∈C∞c (R2d)

{∫ (
− div(A∇ϕ) + A∇ϕ · ∇H − 1

2
(∇ϕ)TA∇ϕ

)
ρ
}
.

Given ϕ and ψ, we take f such that

∂tft + Lft +
1

2
(∇ft)TA∇ft = div(A∇ϕ)− A∇ϕ · ∇H +

1

2
(∇ϕ)TA∇ϕ, fT = ψ. (97)

For the Kramers, Lf = −γ p
m
· ∇qf + γ∇V (q) · ∇pf − γ2 p

m
· ∇pf + γ2∆pf and the

equation above becomes

∂tf − γ
p

m
· ∇qf + γ∇V (q) · ∇pf − γ2 p

m
· ∇pf + γ2∆pf +

γ2

2
|∇pf |2

= γ2∆pϕ− γ2∇pϕ ·
p

m
+
γ2

2
|∇pϕ|2. (98)
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Set F = exp(f/2), then f = 2 logF . F satisfies the following equation{
∂tF − γ p

m
· ∇qF + γ∇V (q) · ∇pF − γ2 p

m
· ∇pF + γ2∆pF = γ2F

4
[|∇pϕ|2 + 2∆pϕ] ,

FT = exp(ψ/2).

(99)

Assumption 5.1. Assume that we can take f as a test function in the variational formu-
lation of the rate functional (57).

Then we have

H (ρT
∣∣µ) +

1

2

∫ T

0

RF (ρt
∣∣µ) dt

= sup
ψ,ϕ

{∫
ρTψ − log

∫
eψ dµ−

∫ T

0

∫
R2d

[
div(A∇ϕ)− A∇ϕ · ∇H +

1

2
(∇ϕ)TA∇ϕ

]
ρt dt

}
(97)
= sup

ψ,ϕ

{∫
ρTfT −

∫ T

0

∫
R2d

[
∂tft + Lft +

1

2
(∇ft)TA∇ft

]
ρt dt− log

∫
eψ dµ

}
≤ I(ρ) + sup

ψ,ϕ

{∫
R2d

f0ρ0 − log

∫
R2d

efT dµ
}

≤ I(ρ) + H (ρ0

∣∣µ) + sup
ψ,ϕ

{
log

∫
R2d e

f0 dµ∫
R2d efT dµ

}
.

Now we prove that
∫
R2d e

f0 dµ ≤
∫
R2d e

fT dµ. This will be proven if we show that t 7→∫
R2d e

ft dµ is an increasing function. Indeed, we compute its derivative with respect to
time,

d

dt

∫
R2d

eft dµ

(97)
=

∫
R2d

(
− Lft −

1

2
(∇ft)TA∇ft + div(A∇ϕ)− A∇ϕ · ∇H +

1

2
(∇ϕ)TA∇ϕ

)
eft dµ.

Since

−
∫
R2d

eft−HLft =

∫
R2d

[−b(x) · ∇ft − div(A∇ft)]eft−H

=

∫
R2d

(−J + A)∇H · ∇ft eft−H +

∫
R2d

A∇ft · ∇(ft −H) eft−H

= −
∫
R2d

e−HJ∇H · ∇(eft) +

∫
R2d

(∇ft)TA∇ft eft−H

=

∫
R2d

eft div[e−HJ∇H] +

∫
R2d

(∇ft)TA∇ft eft−H

=

∫
R2d

A∇ft · ∇ft eft−H (since J is anti-symmetric),
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and ∫
R2d

div(A∇ϕ) eft−H = −
∫
R2d

A∇ϕ · ∇(ft −H) eft−H ,

it follows that

d

dt

∫
R2d

eft dµ =

∫
R2d

[
1

2
A∇ft · ∇ft +

1

2
A∇ϕ · ∇ϕ− A∇ϕ · ∇ft

]
eft−H

=
1

2

∫
R2d

A∇(ft − ϕ) · ∇(ft − ϕ) ≥ 0.

Therefore, t 7→
∫
eftµ is an increasing function. Thus we obtain∫

ef0 dµ ≤
∫
efT dµ.

The assertion (95) then follows. It is more helpful to use its explicit form as follows

sup
γ>0

{
sup
t∈[0,T ]

H (ργt
∣∣µ) +

1

2
γ2

∫ T

0

∫
R2d

1

ρtγ

∣∣∣ p
m
ργt +∇pρ

γ
t

∣∣∣2 dqdpdt}
≤ sup

γ>0
Iγ(ργt ) + H (ρ0

∣∣µ) < C. (100)

Now we prove (65). It follows from the above estimate that

sup
t∈[0,T ]

sup
γ>0

∫
R2d

ργt log ργt dqdp+

∫
R2d

H(q, p)ργt dqdp <∞. (101)

Let 0 < α < 1. We have

0 ≤H (ργt
∣∣Z−1

α exp(−αH)) =

∫
R2d

ργt log ργt dqdp+ α

∫
R2d

H(q, p)ργt dqdp+ logZα.

It implies that ∫
R2d

ργt log ργt dqdp ≥ −α
∫
R2d

H(q, p)ργt dqdp− logZα.

Substituting the above inequality into (101), we get

sup
t∈[0,T ]

sup
γ>0

∫
R2d

H(q, p)ργt dqdp <∞.

Verify the conjecture: We now show how the conjecture can be deduced from (95)
and (96).

1. Estimate (90) has been already proved in (96). Similarly as in the proof of part (1)
of Theorem 5.1, the compactness properties of ργ and ρ̂γ follows directly from (96).
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2. The local equilibrium statement is a consequence of the vanishing of the relative
Fisher information obtained from (100).

3. Now we prove the liminf inequality (93). In (86) by taking f(t, q, p) = g(t,Πγ(q, p)),
and using

∂tf = (∂tg) ◦ Πγ, ∇qf = (∇g) ◦ Πγ, ∇pf =
1

γ
(∇g) ◦ Πγ, ∆pf =

1

γ2
(∆g) ◦ Πγ,

∇V (q) = (∇V ) ◦ Πγ +∇V (q)−∇V
(
q +

1

γ
p
)
,

we get

Iγ(ργ) ≥
∫
Rd

gTdρ̂
γ
T −

∫
Rd

g0dρ̂
γ
0 −

T∫
0

∫
Rd

(∂tg −∇V · ∇g + ∆g)dρ̂γt dt

− 1

2

T∫
0

∫
Rd

|∇g|2 dρ̂γt dt+

∫ T

0

∫
R2d

[
∇V (q)−∇V

(
q +

1

γ
p

)]
· ∇g(t, q +

1

γ
p)dργt dt.

(102)

In order to pass to the limit, we need to control the last term in (102). Since∣∣∣∇V (q)−∇V
(
q +

1

γ
p

)∣∣∣ ≤ 1

γ
‖∇2V ‖∞|p|, |∇g(t, q +

1

γ
p)| ≤ ‖∇g‖∞,

we have ∣∣∣∣∣∣
T∫

0

∫
R2d

[
∇V (q)−∇V

(
q +

1

γ
p

)]
· ∇g(t, q +

1

γ
p)dργt dt

∣∣∣∣∣∣
≤ 1

γ

T∫
0

∫
R2d

‖∇2V ‖∞ ‖∇g‖∞ |p| dργt dt. (103)

Due to (96), the right hand side of (103) vanishes as γ →∞. Therefore

lim inf
γ→∞

Iγ(ργ) ≥ I(σ),

where

I(σ) := sup
g∈C∞c (R×Rd)

∫
Rd

gTdσT −
∫
Rd

g0dσ0 −
T∫

0

∫
Rd

(∂tg −∇V · ∇g + ∆g)dσtdt

−1

2

T∫
0

∫
Rd

|∇g|2 dσtdt

 .
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4. It follows from the structure of I that the limiting system is the Fokker-Planck
equation. In addition, according to [DG87], I is the rate functional of the large-
deviation principle for the empirical process

σn(t, dx) :=
1

n

n∑
i=1

δXi(t),

where dXi(t) = −∇V (Xi(t)) dt +
√

2 dWi(t) and Wi, i = 1, . . . , n are independent
Wiener processes.

To make the argument rigorous, we need to justify that the functions we used in Assump-
tion 5.1 and in Step 3 are indeed admissible. In Assumption 5.1, it is not straightforward to
see whether or not f = 2 logF , where F is a solution of (99), is bounded and has sufficient
regularity. We expect that this difficulty can be overcome by using the fact that (97) is a
hypoelliptic equation. In Step 3, the function f = g ◦ Πγ does not has compact support.
Hence, we need to approximate these two functions by a sequence of smooth functions
with compact support. Some modification of the argument in the proof of Lemma 4.11
in [DG87] might be required.
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