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I. INTRODUCTION
Many experimental problems in the natural sciences result in data
vhich can best be represented by linear combinations of exponentials of
the form

; At .
£(t) = . 1.1.1
(¥) oo T ( )

Among such problems are those dealing with growth, decay, ion concen-
tration, and suwrvival and mortality. Also, in general, the solution to
any problem which may be represented by linear differential equations
with constant coefficients is a linear combination of exponentials.

In most problems like those which have been mentioned, the parameters

o 8and A in equation (1.1.1) have biological or physical significance.
Therefore, in fitting a function of the form (1.1.1) to the data it is not
only necessary that the function approximate the data closely, but it is
also necessary that the parameters of (1.1.1) be accurately estimated.
Furthermore, a measswre of the accuracy of the estimation of the parameters
is reguired.

The present methods of estimating the parameters of a linear
combination of exponentials are often inadequate. Some of these methods
will be discussed in Chapter II. However, the primary purpose of this
paper is to introduce a newv estimatiom procedure which will overcome some

th th th

* (a, b, ¢) denotes the ¢~ equation in the b~ section of the a

chapter.



of the present difficulties, at least for special cases. This new
estimation procedure will be developed in Chapter III. Included will
be a discussion of the basic model for which the method is derived.
Chapter IV will be concerned with the limiting distribution of the
estimators obtained from the new procedure. Then in Chapter V, the
statistical properties of the estimators will be considered.

The small sample distribution of the estimators from the new
procedure will be studied in Chapter VI. Results from some empirical
sampling work will be reported in this chapter. Then in Chapter VII
possible extensions of the method will be considered and ways will be
deseribed in wvhich the new procedure may be applied to a greater number
of experimental situations. Chapter VII will also contain several
illustrations of the application of the new method as well as a limited
empirical comparison of the new procedure with presently existing methods.
Finally, Chapter VIII will be devoted to a critical evaluation of the
new procedure relative to other estimation procedures for linear combi-
nations of expomentials.



II. REVIEW OF LITERATURE

2.1 Iterative Maximum Likelihood Methods
Before turning to the development of the mew procedure, let us

look briefly at some of the estimation procedures now in existence.

The first method that we will coniidcr is an iterative procedure for
calculating maximum likelihood estimetes which has been presented by
risher [ 7 |7 ena 111ustratea vy Koshal [0, 21] . A detailed
discussion of this method and a few examples of its use are given by
Garwood [ 9] + Although the presemtation is applicsble to fitting the
parameters of any distribution, the particular application of the method
to a linear combination of exponentials follows directly from the gemeral
development .

In general, let Yyo Tps oy y‘ be & sample drawn at random
from a population of known form so that the sample has the joint demsity
function P(y, ©), vhere O represents a row vector of parameters
(01, Oy +ees 9.) and y 4is a row vector of the observatioms. For
example, suppose the variates y, @are independently and normally
distributed with means f(ti), where the fumetion f is given by
(1.1.1), and with common variance o= ., That is, let

yi = f(ti) * Qi 2 1 = 1’ 2, 00., ' ’ (20101)

* Numbers in square brackets refer to the bibliography.



vhere the errors e, are independent, normally distributed variates.

i
In this instance,

Py, 0) = (2 x 62)" dkti)a] .
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Now if we let L(y, ©) be the natural logarithm of P and '9\ be the

rov vector of maximum likelihood estimators lo\k of the parameters Gk 3

-é—é-x.(” ® A = 0 » b-l, 2, svey B o (20102)
ek 0=9

For our emlo* s

N
N 2 1 M t4.2
U, 0 == fal2x o -2y 2 (v, - £ o a2,

80 if we let @  Tepreseat a, condition (2.1.2) implies that in

this case

1 ¥ A g 4 Syt
.51;31.11(,‘.“ a e ki) a0, (2.1.3)
g

vhere the Qk and the /)\sk are maximum likelihood estimators.
Now let us postulate, in the general development, that an
approximation

*,Qn denotes a natural logarithm.
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to @ 1s aveilable. Then each partial derivative given by (2.1,2)
may be expanded in a Taylor series in terms of the elements of /0\
sbout the corresponding elements of 8 . If terms vhich involve
partial derivatives of L of order greater than two are ignored, the
resulting linear equations may be solved for the vector

N
al'(.l‘o) .
Then & new vector of estimates

ap = (8 + 8))

may be formed and the process repeated. If after, say, h iterations,
an is sufficiently close to a null vector, the resultant elements
of & are taken to be the maximum likelihood estimates of the
elements of 0 .

The expansion of equation (2.1.2) imn a truncated Taylor series

 gives rise to coefficients

£ @
- Y .
x‘r,"h a or “' !



The I‘r,s;h

well as the approximations in the vector %. Garwood observes that
the calculations are simplified if in the expression for the I’r

are functions of the observations in the vector y eas

,-‘}h
in each iteration the vy observations are replaced by the values

which they would be expected to have if in fact © were equal to its
current spproximation 8 o For instance, in the example introduced
earlier let us set “h"°a1-1 and )‘n'am: » hel, 2, .04y P

An expansion of the partial derivative given by (2.1.3) in a truncated
Taylor series about some vector lh,m 8 would include a
coefficient ?fﬂ“' form

82

= Iy, @
L,25 Y L(y, @)

0-‘1

N .
= - ..2'-5 2 ti aqllti (yi - “1 e'llti - él ak '.lkti)

o i=1 "‘1
N ' ;
ced By ety e ettt L £y ematy
¢ =l h=l

(2.1.4)

Now if © vmmtm.qulto 8, thenah would equal ‘Ehol,l
and 2 would equal '&,1’ hwl, 8 s¢ey P+« Furthermore, in
each case A would have as its expectation
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Thus, if the observations y, ere replaced by their expectations for
@ equal to o, equation (2.1.4) reduces to

; N
" +%1- Lo oty (2.1.5)
5]

L2 Pt

Two quite similar iterative methods have just been indicated for
calculating maximum likelihood estimates for the parameters in a linear
combination of exponentials. The first one involves carrying out the
iterations described above without making any simplifying substitutions for
the vy and will be called Method 1. The second, designsted Method 2, is
the modification introduced when the approximations suggested for the Yy
such as those which led to (2.1.5), are utilized. In the nonlinear
estimation examples vhich he tried, Garwood observed that Method 1
converged in fewer iterations then did Method 2, but that Mefaod 2
entailed less work per iteration.

A more detailed exposition of these iterative methods may be
found in Garwood's paper. However, & few more remarks are in order
here., Firstly, if the observations y, ave postulated to have
independent; normally distributed errors as in our example, these
iterative procedures lead to the lesst squares estimates of the
parsmeters as well u}&o maximum likelihood estimates. In this
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instance, Method 2 is the same as that developed for least squares
estination by Deming [ 5] , even thowgh the approsch 1s different.
Secondly, experience here in the Osk Ridge National Laboratory indicates
that these methods, when applied to linear combinations of exponentials,
are not in general amenable to calculation on desk computers because the
convergence is too slow. This is especially true of Method 2. In fact,
because the methods presented by Garwood have not been tried very
extensively even though fast automatic computers are now availeble,
little is known about their convergence properties.

2.2 The Prony Method
Another method for estimating the parameters of a linear combi-
nation of expomentials is presemted by Prony | 257 as & method of
interpolation, Whitteker snd Robinson [ 30 |deseribe a modification of
Prony's method vhile Householder| 15 |discusses the Whitteker and
Robinson version of the method as an estimation procedure. Householder

also suggests an extension of this estimation procedure.

The model underlying Prony's method is similar to that given by
equation (2.1.1) for the observations y; 1in our earlier example.
Hovever, the method requires that the ¥, be teken at equally spaced
intervals of time, so to the model given before we add the restriction
that tt-n for constant K . Also, the errors are nov only required
to have zero means.

The first step in the Prony procedure is to set each 71 equal
to its expectation. That is, set



". - kgak C')tn 2 im 1’ 2, sssy N. (2-2.1)

Now, when (2.2.1) holds, it is shown by Prony on the basis of some
results from the calculus of finite differences that each vy satisfies

e pﬂ‘ order difference equation of the form

P-1 P
Toap “ Toapr B+ o0 * (<1)"" 71 Byt (1) ¥, E, =0, (2.2.2)

$§=0,1,2, ..., N=p ,

mum:rmzmmtmm-mmemmmwm
exponentials/\. = exp. (<A K) . Thst is, E_ equals the sum of all
possible distinct products of the /\., taken r at a time. The next
step in the Prony method is to solve the equations (2.2.2), wkich are
linear in the functions E_, for estimates E, of these functions.
It is at this point that Prony's originsl presentation differs from
the estimstion version given by Whittaker snd Robinson. HNowever, once
estimates B, are obtained, both versions proceed in the same mamner.
Since the lr are the elementary symmetric functions of the exponentials
m.(-xk K) , the estimates "“"(‘Qi K) are determined by finding the
P roots of the polynomisl equation,

x"~§111"1+’x\ex"'2 ...+(-1)”x\p-o :

Finally, after the lt are estimated, estimates Qk of the coefficients
in (2.1.1) are determined by least squares.
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In hic presentation of this method, Prony requires that as many
parameters be included in the model as there are observetions available.
In this case (2.2.2) leeds to as meny linear equations in the function
E, es there are such functions. Hemce, the equationz (2.2.2) can be
solved exactly for the estimetes ©_. From an interpoletion point of
view Prony's approach does not impose a severe limitation on the method,
but it ic not acceptable from e staticticel viewpoint. Then it ils usually
desirable t0 make many more cbeservations than there are parameters to be
ectimated. Also, for large mumbers of observations Promy's original
method becomes to0 cumbersome couputationaslly. However, the aedaptation of
Prouy's method given in [13] and [30] 1o suitable for statistical
estimation purposes. In this version of the method the number of observa-
~ tions is ellowed 0 be larger than the muber of parameters to be esctimated.
Thus, equation (2.2.2) ylelds more equationc for the functions E_ than
there are such functions. But these equations are regarded as eguations
of condition, and from them estimates of the E!_ are obtained by least
squares calculations.

The estimates of the Er in the estimation versiom of Prony‘'s
method are not the seme as the estimates vhich would result if the
least squares technique were applied directly to the model for a linear
combination of expomentials. As pointed out by Householder, both the
coefficients y, and the E, of the set of equations (2.2.2) are
subject to error, while in the usuel least squares situation only the
B, would be subject to error. Therefore, we cannot attribute any
of the usual least squares properties to estimators obtained by the
Prony method, and, in fact, little is known regarding the properties
of these estimetors. In particular, we have no measure of the variances
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of such estimators.

Householder modifles the estimation version of the Prony method
80 that valid least squares estimates may be obtained. He essentially
applies the method as it is currently used to obtain initial estimates
of the exponents, and then he goes through an iterative procedure to
arrive at least squares estimates. The iterative method is that given
by Deming, which, as we have already observed, is the same as Method 2
in Garwood's paper if the observations are subject to normally distri-
buted errors. Householder also incorporates a test to determine how
many exponentials are needed to adequately represent the data in his
modification. Unfortunately, Householder's adaption of Prony's method
not only fails to converge sometimes, but it also has been known to
converge to unreasonable estimates, Whether this difficulty is inherent
in the iterative leacst squares method or 1s due to a failure of the Prony
estimation procedure to produce satisfactory initial estimates is not

known.

2.3 A Graphical Procedwure

Perhaps the most common way of fitting linear combinations of
exponentials is a graphical "peeling off" procedure applied to a plot
of the logarithms of the data against time. For the simplest case of
one exponential term, this procedure reduces to fitting & straight
line, usually by least squares, to such a semi-logarithmic plot of the
data. This method of fitting a single exponential with its coefficient
requires the assumption that the errors in the logarithms of the data
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are homogensous. For more than one exponentisl term, the data must be
such that a plot of the logarithms of the last few observations is
essentially linear. This situation often cbtains in a linear combination
of exponentiale vhen one of the exponente ’k in (1.1.1) is spprecisbly
smaller than any of the others, for beyond & certain point thst exponential
would be expected to be the only one contributing markedly to the total.
The first step in the grephical procedure is to determine the
linear relationship which exists on the tail of the semi-logarithmic
cwrve from sny two points on the tail, From this linear relationship
one of the terms in the linear combination of exponentials is found by
taking into account the linearity of the data on & semi-logaritimic plot.
Next & semi-logarithmic plot is made of the difference between the
experimental points and the corresponding caleculated points determined
from the term vhich has already been found. Then another linear fit is
made on the tail of this plot in order to cbtain ancther texm of the
linear combination of exponentials. The procedure is repeated until all
the experimental points sre included in the partitioning process.
Feurzeig and Tyler [ | note that although this method of fitting
linear combinations of exponentials is well known, it has received very
little attention in the literature. Therefore, they give & detalled
desoription of the method with severel illustrations. Previocus to
Feurseig and Tyler's paper, Suith end Morales [26| presemted an
epplication of the method and Runming [2:] dlscussed the special case
of a linear combination of two exponentials. This graphical method is
computationally easy and 1t freguently gives & good fit to the data.



However, no indication of the accuracy of the estimation of the
parameters is evailable. In fact, the mumber of exponential terms
included snd the values of the estimates obtained depend greatly on
the judgment of the statistician in partitioning the data to obtain
linear relstionships on the semi-logarithmic plots. Although the
method may be carried out emsily on desk computers, it 1s not essily
adaptable to calculation on asutometic computers becsuse of the
Judgment decisions required.
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III. THE NEW ESTIMATION PROCEDURE

3.1 The Model

A nev moniterative method for fitting linear combinations of
exponentials will be developed in this chapter. The mew method leads
to relatively simple estimators of the parameters of the model presented
in this section. Under this model observations Yy are specified such
that

V3= oMt , Op oM, L. % ot , TR (3.1.1)
i=0,1, 2, seny ﬂnp-lj Jﬂl, 8, TR

Also, we require that t,‘-n vhere K is a constant. Thus we have a
linear combination of p exponentials with observations takem at 2n p
equal intervels of length K , and with m observations made at each
point Ki . The total mmber of parsmeters is 2p , while the number
of points at vhich observations are made in 2n p , an integral multiple
of the mmber of parameters.
It is required in the model that o # 0 amd A > 0,

E=1, 2, «soy P, and this is realistic in most practical situstions.
However, a procedure like that presented in this paper could be developed
for negative A . The lk are further restricted so that xr.u‘
vhen rés . M,thcmorn e are assumed to be idemtically
and independently distributed with mesn szero end common verience o .

Actually, in order to caxry out the estimation procedure developed in



this chapter, it is only necessary to assume that the errors .iJ each
mmmmarmumm. However, the additional conditions
given here for the .13 make it possible to study the distributions and
properties of the estimators of the new procedure in later chapters.

The specification in the model that the mmber of cbservaticn
points ti be an integral multiple of the mmber of parameters iuposes
a8 severe practical limitation on the new method if it is to be applied
exactly. This specification essentially reguires that the experimenter
decide how many exponential terms to it before conducting his experiment.
Othexwise, the mumber of obeservation points might not be an integral
mltiple of 2p . However, spproximate methods of circumventing this
limitation will be introduced in Chapter VII. Two other conditions of
the model vhich are subject to criticism are the requirements that the
cbservation points be cvenly spaced and that the same nmber, =m , of
cbservations be made at each observation point. Experimenters maturally
tend to take more observations in intervals vhere the data seem more
varisble than in intervals vhere the data appear to level off near an
esymptote. The model will be modified in Chepter VII so that the value
of m may vary to some extent during an experiment and an approximate
solution will be given for some situstions in which the ¢, are not
evenly spaced.

Note that since the errors e“ eye only specified to be
identically and independently distriduted, negative observations are
not precluded by our model, In most practical applications of exponential
fitting, only positive ommtlomsi!mah. Hovever, ve may want
to specify a distribution for the o“ adunitting negestive observations,
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and that is not too unrealistic, for if the error variamce oo is

reasonsbly small, very few negative observations would be expected.
Observe thet the model also requires that the Yy have homogeneous
varisnces. This is in contrast to the assumption that the logarithms
of the 71.1 have homogeneous errors. As mentioned in the second chapter,
the latter esssumption is made vhen a single exponential is fitted by
fitting & straight line to a semi-logarithmic plot of the data. Further-
more, the assumption in the model presented in this section that the Qu
have zerc means gives the expectation,

C(’u) - al .dlti + 02 ..zet" + ess ¥ C(p ..)pti . (50102)

In order to sinplify the exposition of the new estimation
procedure, three special cases of the basic model as well as three slight
mnodifications of these three cases sre differentisted throughout this
paper. Case 1 refers to a single expomentisl with its coefficient while
Cese 2 denctes a linesr cowbination of two exponentisls. The general
case, wvhere 1 mey be any positive integer, is referred to as Case 3.
Thus the models for Va4 for these three cases are as follows:

Case 1: ’13 . 0’3“1 - au 3 120, 1, 2, «se, Bnel ; (3.1.3)

Case 2: y,, -clt"‘lt1+ 020‘13°i+cu 3420, 1,2, vouy bnel

(3.1.%)



5 yu kgak.'xkti*’.u} 1i=0,1, 2, sesy S0 pel .

(3.1.5)

In addition to the cases alresdy defined, the new estimation
procedure may be applied to what Keeping [ 17 | calls & modified exponentisl
function. The model for this fumection is the seme as that for Case 1
except for the addition of a constant term. A modified linear combimation
of exponentials may be defined similarly for p greater than one. Thus,
corresponding to Cases 1, 2, and 3, we have Cases &, 5, and 6 respectively,
mmmhtor ’1.1 are as follows:

Case b: y“-ao+alc’ni+cu;1ao, 1, 2, evep 0=l ;

():166)
Case 5: yu-ao+alt°)‘1t’~+oao'lﬁt1+¢“;
i = 0, 1'12’ enay ”‘1 ’ (5-1.7)
Case 6: ’“.%+£1 oxo'kkti-rcu i
i= O, 1, 2, veey (2"‘1)“1 . (5.1.8)

Por each of the six ceses defined sbove, the subseript J reaanges from
one to m . The conditions presented in this section for the coefficients



ak,theexpomts lk,theobsmationponts timmma '1.1
apply, of course, to each of the six special cases and ere the same
throughcut this paper unless otherwise stated.

3.2 The Estimetion Procedure for Case >

The new estimation procedure associated with the model presented
in Sectiomn 3.1 is conceptually simple. Firet the domain of the cbserva-
tion pointe t’. uuvmmumwoteqmmm T as
there are paremeters in the model. Thus, for Case 3 the t’_ are separated
into 2p groups. Since there are 2p n equally spaced poiats ti,mh
such growp vill contain n points ¢, . Ineluded in the first group will

be to » tl. 3 evsy tﬂﬁl 2 included in the second will be tﬂ 2 ta'bl’ seey
taa-l’ and in general t(g-l)n ’ t(q«l)ul 3 seey tqn-l will be included
in the o'" growp. There sre several other ways in which the t, could

be grouped without essentially changing the estimation procedure, but in
Section 5.5 it will be shown that the growping given here is in certain
respects coptimum.

The next step in the estimstion procedure is to let & be the
sua of all the cbservations mede at the points ¢, included in the

qt'h group. That is, set

%-1 n
8 = z ’13 y 921,28 oy 2, (3.2.1)

T fe(qel)n Jm2

where asccording to the model for Case 3 given by (3.1.5),

!‘u-él ak0°)‘kti+ou "



Since each e bas mean gerc in accordance with the assumptions listed

13
for our model in Section 3.1, the expectation of y“ is given by

6(’*3) - kgl (&"ﬁti . (3.2.2)

But t1 = Ki in our model. Therefore, substitution of (3.2.2) into
(3.2.1) yields

gn-l
- { z 5 ’ 2.
Cis) == 2 z.(q.nna"/\“ (3.2.3)
vhere
/\ k - ..lk‘ . , (5.2.&)

The right side of equation (3.2.3) is a gecmetric series vhich may be
sumed to give

(1 <A\y)
Espen £ Al TN (e 0.
< kel 2 oA\

(3.2.5)

The equation (3.2.5) is sctually a set of 2p equations for the
2p peremeters of our model in terms of the expectations C(sq). In
opder that estimators for the parsmeters may be cbtained from these

equations, we set the observation sums sq equal to their expected



values C(sq). The result iz the set of equations,

1 ‘/\a
81 . iMl&q‘l)n S—"-%!')‘ y a=1, 2, usy 2p, (3.2.6)

1l e Kk

vhich define the estimstors & cnq/’\\k-oxp.(-?‘x) sk ®ml, 2, ceey P o
It is interesting to note that owr procedure of reducing the cbservations
tc a8 many sums &8s there are perameters in the model, substituting
observations for their expectations, and then solving for estimates of
mmuammmwm*am[w] for fitting & linear
regression with error in both of the variates.

In oxrder to complete the new estimation procedure we need only
solve the set of equstions (3.2.6) for %, amd X . In the next
section we shall represent (3.2.6) in matrix notation and proceed with
2 direct solution for Case 3 vhich mekes extensive use of properties of
certain symsetric funmctions. Then in Section 3.4 & much shorter sclution
will be given which utiligzes certain results from the calculus of finite
differences. Illustraticns of the procedwre for the special Cases 1 and
2 will be presented in Section 3.D before the development of the procedure
for Case 6 is given in Section 3.6, Seetion 3.7 will be concerned with the
relastionship of the nev estimation procedure to the Prony method outlined
in Chapter II.

3.5 A Solution for Case 3 Estimators
To facilitate the solution of the set of equations (3.2.6) for
estimates of ’k and ak,umwmomimmm




notation. Also, in order to simplify the writing of this section, the

carets which designate the estimstors in equation (3.2.6) will be dropped

until the final steps in the solution of (3.2.6) for the estimators &
Let © be a colum vector of the coefficients a‘,mm"

&T - (01) %o ey %) .

Also, define column veetors = and § in such & way that

;!ll (Bl ¥ ] 82 3 ey SP) »

‘!! = (SP*':- 7 Sm 3 wasy Bep) .

let L bea pbyp matrix with elements

N

Then define two p by p diagomal matrices W and V with elenents

(1 \3)
v, = - 8§

re 1’/\’11’

Vu ‘/\? 8” »

¥ A superscript T denotes the tramspose of the matrix indicated.

** Unless otherwise indicated, when an element of & metrix or a determinant
is defined in this paper, r refers to the rov and ¢ to the column in
which the element iz located.
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vhere 8, =1, r=s, and a"-o,r,‘:. Now we may represent
the equations (3.2.6) vhich involve 819 Bgs easy ap as

IHG » : * (5;5»1)

Moreover, the equations involving swl’ 8:»2’ sevy sap nay be written

a8
LHVG: = !. B (505'2)

Now the inverse of W 1s a diagomal matrix with disgonal elements
(1A /w1 +/\}), X=1,2, ..., p, end hence the inverse of W
exists provided that/\, 4 1 . This 1s also a necessary condition for
W iteelf to be defimed. Hovever,/\, = exp.(-A, K) and cammot equal
one in accordance with our model since we have specified that the
expoment M K > O . Therefore, both W and W& exist. Further-
more, the matrix L is an alternent matrix, Its inverse also exists
under our model and is given below by (3.3.8). Since both W and
L™ exist, it is permissible to premultiply both sides of equetion
(3.3.1) by W1t to cbtatn
SR W

cs¥W LTE

This result, substituted in (3.3.2) gives

W.l qu E= 8 (5-503)



But WW™l « W™V = ¥ because diagonal matrices sve commutable in
maltipliestion. Hence equation (3.3.3) reduces to

LVL -} .E_ » (5.50“)

 Since the matriz W does mot sppear in (3.3.4), we no longer
have to deal with terms of the farm (1 «/\})/(1 </\,) in the
_sclution for the ), and each tive 8/\ , sppesrs in (3.3.4) 1t has
& multiple of n as an expoment. Therefore, as & further simplificetion,
ve let

xk ./\: = .m . | (305'5)

Now the elements of the matrices L and V of (5.3.4) mey be written
respectively as

Xﬂ"rﬂ ’

'ra"{ars d
To solve (3.3.4) for estimstes of the 1 , we meed to kmow L™ .
But since I 1s an alternent matrix, the form of its inverse is well
known and is indieated, for instence, by Aitken [1.;3_ ns] However,
in order to write L™~ in @ concise form, we must first definme several
terms. Dencte by C the set of elements X5 Xos ...,xb and by ci
the set C with the element x, deleted. Them let E(C) amd E(C,)
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be the sums of sll possible distinct products of the elements of the sets
¢ and Cy respectively taken r at a tm. That is, define Er(c) and
Er(ci) to be the r°0 order elementary symsetric functioms of C and C,
respectively. nr vas defined previously in Section 2.2, but with respect
to & different set of elcunté than those considered hpn. An elementary
symmetric function of order zerc is defined to be cne. Now, if we let

D= ;I/I;(xa - %) (3.3.6)

D, = ]/[ (x, - %) 5 (3.3.7)

1,3fh

we can show ss an extension of Aitken's discussion that I.'l has elements

D .

Continuing with our solution of (3.3.4), let us consider the

elements “rs of the p by p matrix U-LVI.’J’. Carryiag out the

matrix multiplicetion indicated by the definition of U , we find that

By * 1§1 (‘1)14'.'2 Dixf’r-l lp-s(ci)’ r,8=1,2,.00, P (3.3.9)

i
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We wish to simplify the expression (3.3.9) for these elements L
To do this, we shall make extensive use of two mathematical properties.

The first property with which we are concerned is given by the
equation

x, B, (C) =K, (0) -E, (c,), (3.3.10)

and 4t follows directly from the definitions of O,Ci and Br. The
second property is concerned with the quotient

-l ’
)L STRTE R (3.3.11)
% a8 Xy Dy »
vhere k {s e nonnegative integer. It is showm below that

Q=B pyr k=l (3.3.12)

=0 ’ k< p-l ,

given that

2 T
n&'. ﬂ-xi ) (3'5‘15)

vhere the summation is over all pqssfbu permutations of the nonnegative
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integers ay for which the sum of the ay is » . Br is called the
complete homogeneous symmetric function ér degree r , and lo is
defined to be cne.

To prove the relationship given by (3.3.12) in eonjumetion with
(3.3.13), we first note that D , as defined by (3.3.6), equals the
slternant | L| . This zesult is given, for instence, in [1, Pée .u.2] .
mo,mh-morof|x.| is an alternsnt determinsnt. In perticular,
the cofactor of any element f  1in the last rov of | L| is en
alternant of order (p - 1) and equals D, as defined by (3.3.7). Now
let us define ancther alternant | I, | which is like | L | except that
the elements in the last yow of | L, | are raised to the k' pover
instesd of the (p - 1)°° pover. If ve expand [ 1L, | in terms of the
elements of its last row, each element has the same cofactor as the
corresponding element of|1.‘|,unat.h¢retou

l L“I - x: D, *'*,‘5-1 Doy + et (-1)P x’l‘ D, (3.3.1%)

- (=1)PF él (-1)*t o D, -

Hence, since n-[nl,;gumat (3.3.11) reveals that

Q = [.X_'Sl s (3.5.15)

| 2]

But when k<(P~l),tvormcrlLk| sre the seme, ani therefore
|e|= % =0, 5<(p-1) . imivhen kD (p-1),



Iy
ll-;Tl- = nk"P%l P (5-5'16)

® result given in [20, Pa. 150] .  Therefore, referring to (3.3.15), we
conclude that Qk = lk-pc»l p K > P - 1. Thus ecuation (3.3.12) is
correct.

Now that the properties given by equetions (3.3.10) and (3.3.12)
have been established, let us proeood'vith our work 6:\ the elements L
of the U matrix, as given by (3.3.9). Applying (3.3.10) and (3.3.12)
to (3.3.9) repeatedly, we deduce that

g = (1P B 1(C) Qo+ (VPR o (0) Qg e

ses ¥ (‘1)?1 lp(c) Qp‘r.'-l j r”.lﬁal ses sy P o (5"°17)

lLet us refer to xr(c) simply as E_ . Now we may bring equation
(3.5.12) into play to evaluate the “x' factors in (3.3.17) giving the
general result that

s © <.1)P.. g}?-m-l %—1 i (.1)!""1 zp’u‘«’ &t-a s i
ese + (.l)p-l EP 'r-. H r,ld,ﬂ, essy P 5 (505.18)

vhere a function !rvith r > p ora function H, with r< o
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is defined to be zero.

Each term in the expression (3.3.18) is the product of en E,
function end an nr function. Furthermore, for any element - in
the r™ rov of U, the H_ function in the first term has subseript
(r - 1) , and this subscript decreases by one with each successive term
until for some term either Hr oxr zr vanishes. Similarly, the
subseripts on the xr functions increase by one with each successive
term. Hence, the matrix U , which has the . as elements, may be
represented as the product of two triangulsr matrices. For if we define
Py p triangmar mtrices § and H vith elememts (-1)"*'n
end H,_ respectively, we can see that

= . (3.3.19)
Since U = LVL™Y , (3.3.4) now may be vritten as

-

i

; - 2 . (303.20)
But the matrix H hes a simple inverse [1, e, 13.5] ; nemely the

P by p trisnguler matrix E with elevents (-1)" " E . Thus,
premultiplying both sides of (3.3.20) by B , we have

Es=Es (3.3.21)

The matrix equation (3.3.21) vhen multiplied cut ylelds a set
of p linear equations in the p elementary symmetric functions xt .



These equations are

BBy © Ep-lswa » Ep-zsw-) oy W bl)p-]xlswp = (-1)°" wp+l ?

wvs 0, 1, 2, veey p=l . (5.3022)

The sums sq are known functions of the observetions and therefore the
equations (3.3.22) may be solved by elementary meens for an estimator

A
Er of any Er. This solution may be presented as

/E\r.lfimnllj 32 =0, 1,2 «ooy P, (3.3.23)
where |-R|ua p by p persymmetric determinent with elements 8, _ .
and |R | 162 p by p deterninent vith elements 5., , r$ k-1,

and Sm,r > k.
Since the functions xr are the elementary symmetric fmctions
of the xk,mh X, is a root of the equation

- -l —2 P' P
R emP e g s (P ke (0B =0 . (3u3eY)
Thus, after substitution of @r for Er in this equation for

re=1,2, ..., p , estimators Qk of the xk may be cbtained by
finding the p roots of the equation

xp-’n?lxp'l +’E\28p-2 - yaq # (-1)”‘1@p-lx 4 (-l)pé\p =0 . (3.3.25)
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Because of the symmetry of the coefficients in equaticn (3.3.25), the
subscripts of the estimators % may be assigned in eny crder.

During the preceding exposition we have seen how the new
estimetion procedure leads to estimators % of the exponentials x -
In the remainder of this chapter we shell sssume thet these %  solutions
yielded by equation (35.3.25) ere admissible estimators. That is, we will
assume thet each rcot )’\k is real with 0 < Qk < 1, the range
dictated by the model for the perameters x . Conditions which are
necessary for equation (3.3.25) to have such admissible roots are discussed
in Section 5.6.

Now we wish to meke use of the Qk to compute estimators of the
parameters in cur model. Since by definitionm, x = exp.(-).k Kn) , we

teke ss our estimetors of the lk »

AN
).k'--;—; Xn?k' t.l’ 2, -on'p . (503026)

Then substitution of the %  1in (3.3.1) determines a set cf linear
equatione in N vhich mey be solved easily for estimators Qk of
the ccefficients G * In summation notaticn, these equaticns are

o § Qg-l (""Qk) A

k=l W " sq »y @= 1,2, eee, P o (3.3.27)

3.4 An Alternative Sclution for Cese 3 Estimators

In this section the equetion (3.2.6) will be transformed into

the set of eq\mticns (3.3.22) by another method. Suppose we let



5_1._.:/._..\_.".). (3.5.1)

Row recalling the definition of % given by equaticn (3.3..95), we may
write equation (3.2.6) as

4 -
S5 = 2 GkQE-l’ q.l, 2, .-.,QIJ . (3-“.2)

But functiocns, such as the Sq » of a discontinuous variable which,

like q , tekes on only integral values are kncwn to satisfy a difference
equation which is cf the same order as the number of unknown parsmeters
in each function (m[16]). Therefore, if we consider the Qk as known,
the 8 q satisfy a pth order difference equation which mey be used tc
find the estimators Qk . Moreover, for a polynomiel such as (3.4.2),
Householder [1&] shows that this difference equetion is of the form
(3.3.22) provided that the %) are all distinct. Now the perameters
x  ere all distinct since our model specifies thet A, # A, Tée.
Therefore, 1f the %, ere admissible estimators of the x, , they are
alsc distinct, and equation (3.3.22) is correct.

How thet we have again errived at the difference equation (3.3.22),
the estimators Qk,ﬁk, and #) may be cbtained in the seme memner
as before. However, the celculus of finite differences [ 16 ]dces lead
to the further results that the %, ere linearly independent and that
both the % ond the ’}k are unique provided that the %) sre all

distinct.
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3.5 Estimation for Ceses 1 and 2

We shall now illustrate the new estimaticn procedure fur Cases
L and 2. Additional exsmples sre given in Chapter VII. The mcdels for
these two cases, as defined in Section 3.1, mey be cbtained from the
model for Case 3 by setting p equal to cne and two respectively.

For Case 1 we have estimators % , A end 2 to calculate for
the parameters given in equation (3.1.3). HNote that the subscript k
is dropped fur Case 1 beceuse it alweys equals one in this instance.
Now there are two perameters in the model for Case 1, so we need to

calculate two sums sq . These sums are

T f (3.5.1)
S. = y 3,5.1
1 1s0 jal 13 7

=% (3.5.2)
S, = y . %:5.2
2 fen gu M

Alsc, for Case 1 there is only one elementary symmetric function, nsmely
E, , and therefcre ‘z\l =% . So, substitution in equation (3.3.23) with

p =1l ylelds

»®>

. (3.5.3)

L] '”m

-

Furthermore, from equations (3.3.26) end (3.3.27) we have that

8
1 . L ,Q,(.E) , (3.5.4)
En Sl



{4 m

)1
2 : (3.5.5)
m(S

S2)

let us apply these Case 1 estimetion equations to the data in
Table 1. This data is not sctual experimental data, but it is typical
of data, say, for successive determinations of the activity present in
a solution containing a pure rsdicactive substance. There are an even
number of points ¢ g » 80 the number cf cbeervation points is an integral
muitiplie of the number .f parameters as required by cur model. This
integral mmitiple, =n , is equal to four. K , the constant length of the

Table 1

ACTIVITY DETERMINATIORS VERSUS TIME

Time ti

Dosage Yy 6.81 | 4.70] 3.23 | 2.2 | 1.55 | 1.0T | 0.74 | 0.51

intervals between successive t’i » is one. Alsc, m , the number of
cbservations for each ti, is one, so we drop the subsceript Jj . HNow
if we group the t, as suggested in Section 3.2, we shall put to ’

end ¢

i

tl,ta, 51nthefitstgrwpam th,ts,té,mdt? in the

second. The corresponding cbservation sums » 88 given by (3.5.1) and

(3.5.2), are

=5 = 6a81. + 1"070 4 3025 + avak = .1.6-98 »
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82 - 1055 + 1.07 + o,rh + 051. = 3087 .

Then substituting S, and S, into equations (3.5.3), (3.5.4) and

1
(3.5.5), we £ind thet

Q.cm’ 'Ax.-m, ﬁ.60797.
Thus we may reprecent the data in Teble 1 by the function
P, = 6.797 7 TOM

For Case 2, four sums sq are required and are given by

=l i1
s-(l) Jfll Yyg09=1 238 .
g-l)n J=

There are also two functions Er to be estimated using equation

(3.3.25). Vith p =2, this expression for the T, yields
8 5 8, «8,8
2 Su 5, Sy
? = - ? 8 -sg 3 ]
1ls, s, "1 %3 7 Y2
s, ©
La ,33

(3.5.6)

(3.5.7)
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2 53
Sh S, 8 Sa
A -
2, - i 2L (3.5.8)
8 -

81 8o 8183 $2
Mthcexpomtinlut&mmﬁl and 'x\a for Case 2 are roots of the
equation

2 A A
X -311-0-82-0 2

vhich corresponds to equation (3.3.25) for the generel Case 3. Therefore,

we uay teke
A 1f 2 ‘2):
21-5.51'*(31-‘*!2) ’ (3.5.9)
- P
O ERYC ALY I

Finally, from (3.3.26) and (3.3.27) we find that

% .‘N‘ ‘ﬁ%"‘ In 2& » Em 1, 2 F) (305.10)

A “/n)(sl 2, - 55)
" u( - -8, - 8)

’ (3.5.11)
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Al -%’"‘)(s2 . S;Ql’
n(l - R)(E, - 2))

(3:5.12)

The estimation for Case 2 may be illustrated using the fictional
data in Teble 2. Suppose an experimental animel is injected with a test
material at time zerc. This data purports to represent the concentration

of the injected meterial in the animal at time ¢, measured through the

i
cunulative per cent of excretion of that material up to time t'i'

Table 2

CUMULATIVE PER CENT EXCRETION ¥y VERSUS TIME ti

101'23#567891011

yi 00& 10& 2.8& 5'72 5.'00 “-” 50“9 5086 6.]9 6.&2 6065 6076

Since there are twelve observations and four paremeters to be estimated,
n=3. As before, K and m are both one. Using eguation {3.5.6),
we find that

%'00&*1.82"2.8“. 5.26 ?

Sa = 5072 + h.ler + ,5099 = 13.11 ?

83 = 50"9 + 5086 + 6.19 o= 17-5& ?

Sh = 6.“2 + 6.65 + 6»76 - 19.83 K3



Then from equations (3.5.7) end (3.5.8) we obtain
B ersme , £ -0 .

These estimates, substituted into equations (3.5.9), lead to the
exponential estimates

R =oouz3 , R =063 .

and (3.5.12) give

A

=095 , A socams

61‘10078‘5 s 6\2“100167 »
Hence the data in Teble 2 may be fitted by the equation

/y\i = 10,784 ¢ 0°0190%y _ 15 367 o"0s100Nty

3.6 Estimetion for Cases 4, 5, and 6
Now that the estimation procedure has been developed for Cases 1

and 2 in particular as well as for Case 5, the results for Case 3 mey
be utilized to obtain estimators for Case 6. From equation (3.1.8)



4 K
Yyg = O+ ;21 o K" 4 ey » 1=0,1,2 ey (2pL)n-l  (3.6.1)

under our Case 6 model. Sums 8 q may be formed from the observations

Yy 3 in a manner similar to thet in which they were constructed for Case 3
to give
qn-l m
5 = 2 Z yiJ )y Q= 1, 2, seey 2p+l ’ (3.6.2)

T ie(q-l)n =

the only difference being in the range of the subscript gq . Taking the

expectations of the sums S q’ we have

p (r -/\)
C(sq) =mn oy +m L akj\éq'l)n ——, (3.6.3)

vhere '/\'k is still defined by equation (3.2.4). As before, we equate

the sums Sq to their expectations to arrive at the equations

A

n

4 A (A
sp=mBys BOAAJIE o, G

" - kel ;
Fo Hiwe atw M
WS.','.'.":J [‘E&I _/
m 7 Qh_

q-l, 2, vsoy 2p+l .
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At this point the solution for Cese 6 diverges from the pattern
esteblished for Case 3. We now perform a series of subtractions to
obtain the differences

8'a8 -8 y Q= l’ 2, ssey 2p . (5.6.5)

a “q  Tgel
In forming the S! ve eliminate Qo from our original set of (2p+l)

equations, giving the 2p new equetions

5q" " { g Afelin -(-1-—%“-)- y 91,2 ey . (3.6.6)
k

Next we define the matrices ® and s of Section 2.5 in terms of the

8‘; instead of the sq,am“cantm:nsultmgmtﬂues ' and s'

respectively. Then we let W' be e diagonal metrix with elements

n(2 ~AD?

¥ = ) .

rs 1A\, rs

Now the set of equations (3.6.6) can be represented by the two matrix

equations

LW o= ;' » (3'6'7)

LW Vass' (3.6.8)

which correspond to equations (3.3.1) and (5.3.2) for Case 3.
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Proceeding as before, ve may eliminate the vector o from the equations
(3.6.7) end (3.6.8) tc obtain the equation

LV L- E' = E' . ‘306.9)

This equation is of the seme form in terms of the s:l as (3.3.4) is in
terms of the sq , and like (3.3.4) it may be solved for estimators of
the exponents )‘k « Thus, the solution for estimators of the parameters
A is the same for Case 6 in terms of the st.l as it is for Case 3 in
terms of the sums sq .
From the above discussicn, it follows that to estimate the parsmeters
of a Case 6 model it is first necessary to compute the statistics s:l in
sccordance with equation (3.6.5). The next step is to substitute the S:l
for the corresponding Sq in the scluticn already derived for Case 3 to
cbtain estimators & of the expoments . These estimators, when
substituted for the lk in equation (3.6.7), lead to a set of linear
equations in the coefficients O 3 for k > 0, vwhich may be easily
solved for estimators v'z\k of the % o If we again let ’x\k = cxp.(-f)\uk Kn),

this set of linear equations which ylelds the é"\k ney be written as

- £§’1 ool % Qt-s' . G901, B seep P o (3.6.10)

These equetions correspond to the set (3.3.27) which were derived earlier

for Case 5. Finally, an estimator @O of o may be found for Case 6 by

substitution for the Qk and the rest of the Qk in the equation



(1 )
@O = _:lll; Sl - m El{“}k '—l—:%— . (5.6;11)

Now that the new estimstion procedure has been presented for the
general Case 6 model, estimators for Cases 4 and 5 may be easily determined
by setting p equal to cne and two respectively in the Case 6 derivation.
In this way it can be shown that for Case 4,

8. =8
0. 223 , (3.6.12)
81 - 82
1 - - R log > LT - log( > (3.6.13)
An 2
8, =8 S, 8, =« 8
QO - li\ ® A2 2 ’ (3.6.14)
m(1 - A2) :nn(.‘sl - 25, + 85)
L
A A 5 (82 - 8 )n
A (slomnao)(lo ) ) (31-82) l- —-———281'5& )
& a(1 - A") m(sl - 28, + 83)2

(3.6.15)
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Also, for Case 5,

” 2
N . slsu - alsj + 8235 - 528} + S} - Sﬂ

E, . ,  (3.6.16)
8185 = 8,8y + 5,85 + S8 - 53 - sg
- A
S, =8, + B.(8, - 58,)
Qa = 3 h El L £ . (3-6017)
82 - Sl /

A A
Estimators %,Qa,lluularormseﬁmobmdm Qland
@2 in the same way as they were for Case 2 in Section 3.5. Subsequently

estimators ﬁl,az and 30 ere given by

[(82'31)(1 +2) -sja,sl] (1-91/!‘) )

A :
) (3.6.18)
1 m(l - Ql)z (el . ’3\2)
L(sa - 8))(1+®) -: ! 51] i » 92 ) s (3.6.19)
n(l - 92) (32 ‘1)
4. L (-9 LA
0% Tm| ATRA TITRIA TTR TAm
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As an 1llustration of a Case 6 type estimation, let us again fit
the date in Table 2, but this time to a Case 4 model. Since there are
now only three parzmeters toc be estimated with the twelve observations,
n=4%, As before, K=m=1, Now from (3.6.2) it follows that

8§, = 0:60 + 1.82 & 2.& + 5.72 B 8-98 »

1

82 = hoho + u099 + 5.1’9 + 5.% - 2007“ s

8, = 6.19 + 6.42 + 6-65 + 6.76 = 26.02 .

3

Thus (3.6.12) yields

Q- -—-?—'-?—8—- = 0.454808

-

- 11.76
and (3.6.13) gives
e -i— An (0.44898) = 0.2002 .
Then, substituting into (3.6.1h4) and (3.6.15), we find that
By =1.5806 , B =- 70072 .

Hence the deta in Table 2 may also be fitted by the equation

91 - 7.5806 - 7.0272 €~0+2002 ty
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3.7 A Couparison with the Prony Method

In the estimation procedure which has been presented in this chapter,
sums 8q of observations are substituted in the equation for the expectations
C(sq) of these sums. Then in the course of the solution of the resulting
equations, the symmetric functions 'R\r of the 'x\k mey be presented as the
ratic (3.3.23) of two determinents. The elements of these determinants are
the sums Sq. But if we divide each Sq by mn , we shall divide both
the numerator and the denominator of the ratio (3.3.23) by (m)? , which
will leave the equations unchanged except for a substitution of groups
means for the corresponding sums Bq. Thus we may obtain the same
estimators by using erithmetic means instead of suus, and the estimation
procedure nmay alternatively be thought of as cne in vhich wmeans of cbserved
values are substituted for their expectations.

Another interesting characteristic of the nev estimation procedure
is its similarity to the Prony method outlined in Chapter II. In fact,

a comperison of (3.3.22) and (2.2.2) shows that these two equations are

of the same form, but that (2.2.2) involves cobservetions vy vhile (3.3.22)
can be expressed in terms of the sums sq or the corresponding arithmetic
means., S0 it might appear that the new method is comprised of the application
of the Prony method to group weans instead of individual cbservations. This
is not the case however, for such an application of the Prony procedure

would consist of taking eech group mean to represent the mid-point expoctation
for that group and then fitting these means by Prony's wethod. But the
expected values of the group meens are not equal to the group mid-point
expectations, and hence Prony's method epplied in this way emounts to

fitting an exponentisl model with parewmeters which differ from those defined

in the new procedure. Thus the new procedure is essentimlly different from



the Promy method. Moreover, the new procedure dces not require that the
nusber of perameters in the model be egual to the nurbers of cbservations
tc be fitted as did Prony's original interpolation method. MNeither does
it involve questionsble least squares calculations as does the estimation
version of Prony's method presented by Whitteker and Robinson [ 30] ;
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IV. THE LIMITING DISTRIBUTIONS OF THE ESTIMATORS

4.1 A Thecrem on Limiting Distributions for Large m

Although the estimstors produced by the new estimation procedure
are comparetively easy to calculate, they are not simple enocugh to
yield easily derived small sauple distributions. Reference t¢ analytical
investigatiocns of the small sample distributions of some of the estimators
will be mede in Chapter VI. Also, the results of an extensive empirical
study of the distributions of the estimstors for Cese 1 will be presented
there. Mesnwhile, in this chapter the limiting distributicns of sll the
estimators derived with the new estimation procedure will be determined.
Furthermcre, these distributions will be derived as either m , the number
of observations made at each cbeervation point t:l » or n , the number
of t, in esch of the 2p partitions of the t; » approsches infinity.

We shall first present & theorem from which limiting distributions
of the estimators may be determined as m —» OO with n held fixed.
This thecrem is applicsble to either Case 3 or Case 6. 1In the derivation
for Cese 3, qwl, 2, «vo) p , vhile for Case 6, qe 1, 2, ..., 2p+l.
How in Section 3.7 it was mentioned thet the estimﬁors cbtained by the
nevw procedure mey be expressed alternatively as functions of group means
instead of the group sums sq + Dencte these meens by Yq,where

Y @« —8_ , (b.1.1)



and define the expectation of any Y

. to be Ty From (4.1.1) 1t

fcllows that

1
nq = -Tn—i £ (sq) ° (h.l.2)

Then equations (3.2.3) and (3.2.5) for the é:(sq) lead to the relation-

ships
a = y 1,3
k! 5 i=(g-1)n k=l & © : )
1 X (g=1)n (1 '-/\-:)
= E 2 uk Akq O ———— ) (k.l.h)
kel d -_/\_k

where\Ak = exp.(-)k K) . Yq mey be evalusted in e similar way from
equations (3.2.1), (3.1.5) and (4.1.3) to give

.
y « L % ¥

y
q - i=(g-l)n Jj=1 i

‘ qne-l gnel m
. 5 E Gy e KL %3' Le "
fe(q-1)n kel ta(q-l)n ge=1 19
| gn=-1

= e
J=1 B ja(g-l )niJ
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In order tc prove the theorem we wish to present, we would like
to represent the Yq as functions of wmeans of identically distributed
variates except for constant parameters. Let us define a new error

term

1 qn~1
e ,= = J=21,2 «oopm . (b1.5)

e
aJ " i=(q-l)n

ij ’

Under the assumptions of our model, the errors eq P are identically
distributed variates with zero means and common veriance oa/n . Kow

if wve let

- 1 B

Qqs = JEl eq‘j ? (h.l-é)
we nay write Yq as

Yq = Th«l»;q . (h.l.?)

The Ty » 88 can be seen from equaticn (4.1.%), are independent of m,
and n is being held fixed in order to obtain limiting distributions
85 M ——p OO .

Let us define the function /0\ to be any one of the estimators
D8 ,o0r Qx cbtained by the new estimation procedure for either
Case 3 or Case 6. Since /9\ is a function of the means Iq vhich are

in turn functions of the §  end the 1 2 may also be considered
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as a function of the sample means 'é'q end the populstion means g

fs indiceted ebove, the e ere means of identically distributed varistes

q
vhile the Yq are not, for each Yq is the meen of cbservations vy 3
vhich under our model do not all heve the seme mesn. Nov Hsu [15] proves a
theorem vwhich gives the limiting distributions of functions of means
such as the 'é'q , and his theorem is eppliceble here. Let us define the
point 1 to be & row vector with the nq ag elements and the point Y
tc be a row vector with the rq es elements. Now in terms of the
estimation function % s Hsu's theorem becomes

Theorem 1. If the function ’ém of meens YQ possesses continuous
second order derivetives of every kind in a neighborhbod of the point 1 ,
then ER[6(Y) - 6(n)]  1s ncrmelly distributed in the limit as m—p SO

with mesn zero and variance

2 2
§ ‘q # ()&.1.8)

as long es aq;‘o for some gq , where

8 = S By . (4.1.9)
oY
q Y=1

4.2, Limiting Distributions for Large m

Since we have explicit formulas for the estimetors for Cases 1,
2, b, and 5, we could show that the conditions of Theorem 1 ere satisfied
for these estimators end then we could use Theorem 1 to obtain their
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limiting distributions as m—) 09 . However, in this sectl.u we shall
instead proceed directly tc the limiting distributions as m—yO00O of
the estimastors for the more general Cases 3 end 6 even though the esti-
mators for these cases cannct alweys be represented explicitly by algebraic
equations. Although the detailed demonstration in this section will be
for Case 3, it will be indicated that the results also hold for Case 6.
After limiting distributions for the general Cases 3 and 6 are considered,
particular results will be displayed for Cases 1 and &,

Before considering the % , the 'ik , or the & , 1t 1s first
necessery that we investigate the behavior of the £ for Y ina
neighborhood of 0. From equation (3.3.23), it can be seen that each
9 may be represented as the ratio of twe determinants in the 8 .

r q

If we substitute the terms nm!q for the corresponding Sq in (3.3.23),

N
the mn factors cancel ocut. Thus we may write Er as

Q - ' Pg-ml'

o I PI e Pol, R o, P (4.2.1)

vhere | P| end | 2 | eove the determinents | R| ama | R | of

equation (3.3.23) with the !q replacing the sq .

Both | P | and | Pp-r+l' are continuous everywvhere since each

of them involves only sums of productes of the Yq . Hence gr is
continuous in a neighborhood of n provided thet | P| 40 &t n.
Furthermore, derivatives of all orders of ’E\r with respect to the !'q
are 21l contimuous in & neighborhood of n if | P | # 0 et n,

for the kth order derivatives are ratios of continuous sums of products



of the Yq and |P|Ek + And since | Pl is a continucus function of
the Y , IP[;‘Oinsomneighborhoodofnititianotzeroat

7 . Hemce, to demonstrate the contimuity of the £, and their dertivatives
of all orders, or in other words, to demcnstrate that the Qr are analytic,
in a neighborhood of n , it is only necessary to show that

|®(n)] = 'P'm" o .

Pirst cbserve that since e -A: » (4.1.4) may be written as

N, = g' a& xg-l p)

k=1
where
. 1 (l"xk)
% * 7 % g i/n i

X

Under the assumptions of our model, o # 0 . Now reference to the
definitions just given for [P and |P(n)| and slso to the definition
of | R| eiven in connection with (3.3.23) reveals that | p(n)l has

elements

P
) 3 492 .
o1 k'

Thus |P(n)| -IBBTI , where B isa p by p matrix with elements
,/u‘; x:"l . But lBl is in twn given by



1
|B| = ((:a]" fzé eos «'s{))a l L' .

Now, es was shown in Sectiom 3.3,
L| = ‘I/l— (x, - x.)
| | 1>y + 97

andaimcallthexk are distinet under the assumptions of our wodel,
|| # 0. 80 ve conciude tnst

lP(n)l = o} af eee (_x;; | Lla £ 0 . (k.2.2)
Therefore, both the ﬁr end their derivatives of all orders with respect
to the !q are continuous in e neighborhood of . .

As we stated earlier, the estimators Qk s whose asympotic
distributions we are seeking, are roots of a p"h degree polynomial
equation vith ccefficients T, . Since the root: of such an equaticn
are continuous functions of the ccefficients [28, 8- 69] , and since
1t has been shown that the £ ere contimucus functions of the Y, i
@ neighborhood of 1 , it foliows that the Qk ere contiomous funciions
of the !'q in such a neighborhood. However, Theorem 1 requires continuity
of the second order partial derivatives of the % in a neighborhood
of n , and to prove that these derivatives are continucus we shall
refer to an implicit function thecrem frou the theory of functions of

real varisbles.
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This implicit function theorem is given, for instance, by Graves
[11] - Avpised to the polynomtal (3.3.25), vhere the coefficients £,
ere anelytic functions of the Yq in a neighborhood of n , it implies
not only the existence and contimuity of the second order derivatives of
the Qk , but of derivatives of all orders, in a neighborhood of 1
rrovided that two coaditions are setisfied. If we let

glx, 1) = = -Ql et N Qa 2 .. e (a1)P Qp ,  (4.2.3)
g (x, 1) = "?;; ets ), (h.2.4)
these conditions ere
E(xtz* "G(xkoﬂ)'oi k=1,2, ce0, P 3
—
Y=

&y (x, ¥) = glx ,nF 0, k21,2, co0yp .
e

Y=

Since, as will be indicsted later, Qr-Br, rwml, 2, vy pyatn ,
and since the xr are by definition the elementary symmetric functions
of the % s the first condition alwaye holds. However, the second
condition is satisfied if end cnly if no two of the positive comstants
%, are equal. But our model precludes eny two %, from being equal.
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Therefore, under the model specified earlier for Case 3, the second crder
pertial derivatives of the &  with respect to the Y, are contimuous
in some mighbbrhood of 1 .

Before applying Thecrem 1 tc the estimstors for Cese 3, we now
need only cbserve thet by virtue of the equating of 8 to e(sq) in
the estimation procedure, when !q = T\; for all g , the estimators
% =x ,k=1,2, ..., p. Thus, cn the basis of Theorem 1, it follows
that Jon'(£ - x) 1s esymptoticelly normally distributed vith meen
zero for laxge m , where k= 1, 2, .., P . Now let us quickly show
that both V' (- 3) ana Jan'(f, - ) ere also normally
distributed about a mean of gzerc in the linit as n-—h)p OO .

The ectimators §  ere related to the £ by the equation

A
)k-‘-'}ﬁ Xn% ’ k-l, 2’ .-.,P 2 (h'a'ﬁ)

vhich has second order partial derivatives

9
aag ._l Gk)a'r';ék 1 aegh ,

x, Kn & kn £ Oy, v,

k-l,a’ .oo’p .

Since Qk'xk at N and * > 0 for all k , there exists 2 neighbor-
hood about 1 where the Qk > 0 eand heve continucus second order

partial derivatives. Therefore, from (4.2.5) eand (4.2.6) it can be
seen that both the Qk and their second order partial derivatives with
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respect to the Yq must also be continuous in that neighborhood. Also,
uwpon substitution of x  for X 1in (5.2.5), it follows thet & = &
et 7 . Hence, we may conclude thet fmn (3, - A) bas a liniting
norpal distribution es m —p 0O Wwith mean zerc by virtue of Theorem 1.
Turning our attention nov to the estimator & , e first note
that by the seme ergument used to show that Qk'xk at 1 , it also
follows that a‘k =0, 8 7 . Thus, to demcnstrate the asymptotic
normelity of \ﬁ;‘((?k - &) for large n by Theorem 1, it is only
necessery to show that the second order partisl derivatives of G
with respect to the Yq are continuous in & neighborhood of 1 .

Substitution of mn Yq for 8_ in equation (3.3.27) shows that the

q
way be found by solving the set of equations

N
(w

k

1 . Y =] -
3 k !k -1-:——-7; {k !q K} q l’ 2' *hay P .
(%.2.7)

Now /’\k is continuous in a neighborhood of n, end at 1 ,’x\k-xk,
vhere 0 < % < 1. m::tou,tbueexidtsanai@borhoodor 1

A Al/n Ag=1
for vhich (1 xk)/(l % )} as well as X emd !q are continuocus.
It follows from (4.2.7) that in that meighborhood the 'c?k nay be
represented as ratios of continmuous determinants. As in the case of the

A
E_ , the Gk end their second order pertial derivelives with respect

b o
to the Yq will be continucus in & neighborheod of n if the deterninant
in the denominator is not zexv at 1 .

The denominator in the ratio which equals é\k may be shown to

equal (e, €55 «eo) cp)l L' , where
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Since x #1 for A, > © es specified in the model, each ¢, 1is

finite but not equal to zerc. Also, we have already seen that under

A
&

zero dencminetor et n , end both the 6 end their second order partiel

the restrictions of our model, |L| # © . Hence eech has a non-
derivatives with respect to the 'fq are continuous in some neighborhcod
of n « Therefore, Theorem 1 ylelds the result that ,/ i - (Qk - z;;k)
has a limiting normal distridbution with mean zerv as m—) ©O .,

So far the evaluation of the asymptotic variances of the estimators
~
0 €re
known functions of the expomential estimators % . Therefore, their

A
for Cese 3 has nct been menticned. The estimstors xk end

esymptotic variances, as well es those of the £ , follow directly from
equations (4.1.8) and (4.1.9) once the first portisl derivatives of the

£, with respect to each of the Y, ere known. The eveluation of these
pertiel derivetives ic aisc give. by Graves [11 . Let us define colum

vectors

T
8,(3: Y) = 5%- g (x, Y), 5%2’ &x, ¥)) ooy a%g-; a(x, Y) 5

(4.2.8)

?

(4.2.9)
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vhere g(x, Y) 1is defined by (4.2.3). /lso,let

gY(xk, Y) = g!(x, Y) s Ewd, B sany ¥ 4 (4.2.10)

=8

Bx(xk: Y) = Ex(x’ Y) » k=1,2, «oe), P , (4.2.11)

=2

where the scalar gx(x, Y) 1is defined by (4.2.4), How the vector Xy
of the first partial derivatives of any Qk with respect to the Y a

satisfies the equation

&%, 1)
Sx(%.v Y)

’ k= l, 2, esey P e (u.a'la)

Xey

With the help of (4.2.12), we may evaluate the aq derivatives

A
of equation (%.1.9) in Theorem 1 for any )’k . For

o
A
2 w %
—{k; = - —‘i-'\—‘ 2 q = l, 2, ...,2p . (hoaulj)
B!q Kn X
and 6%— 'x\k forany k aend q is given vy (4.2.12). Similarly,

6\,‘ in terms of the Qk’

qQ
equation (4.2.7) yields & solution for any
and the first pertial derivatives of the G; with respect to the Y

may be written in terme of the ’:?k and their first partial derivatives.

Hence, (%.1.9) way also be eveluated for any {z‘k with the help of (4.2.12).
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Then once the & derivatives are determined for either an Qk or &
A estimstor, (4.1.8) may be employed to find the asymptotic variance
of that ectimator for large m .

The limiting distributions just derived for Case 3 may be shown
in the ceme manner to hold for Case 6. We have already seem that
Theorem 1 i applicable to Cace 6 as well as to Case 3. Therefore,
in order to claim the results of this section for Case 6, we need only
chow that the continuity conditions of Theorem 1 are satisfied for
Cese 6. And to 4o this, ve need to demonstrate that the determinant

|p(n)| , evaluated by (4.2.2) for Case 3, and the denominators of the
A
%
(4.1.2) and the discussion leading up to (4.2.2), it can be seen that

et Y =7 are not zero for Cace 6. However, from (3.6.3), (3.6.10),
for Case 6,

| 2()] --1j @ -x) |Lf .

Since &{1 under our model and since the right side of (4.2.2) is

not equal to zero under owr model, |P(q)| # 0 for Case 6. Similarly,

the denominator of G , k = 1, 2, +v., P , evalusted at 7 for Case 6
equals ﬁ (L - x.) times the corresponding denominator for Case 3,

and is therefore not equal %o zero at 1n . Finally, from (3.6.11) it can also
be seen that Qo is continuous at Y = v . Thus, the limiting distributions

as m-— OQ already obtained for Case 3 also apply to Case 6.

In summary of this section thus far, it has been proved that the
A
estimators Qk' A, end Qk obtained by the new ectimation procedure



for peraweters in the genersl Case 5 and Case O models are such that
A
it ©

A vy
parameter, /mn (6 - 8) is asymptotically normelly distributed with
mean zerc for n fixed and » lerge. Also, @ wethod hag been given

denotes any one of the estimetors and © the corresponding

for determining the ssymptotic verdence of /wm Y6 - @) by using
(4.2.12), (4.1.8) and (4.1.9) in conjunction with the equation which
specifies @ in terms of the %, - This nethod is alsc applicable to
Cese 6 as well as Case 3. when using it for Case 6, the Bfk/btq are
still given by (4.2.13), but the af?o/arq are obtained from (3.6.11)
end the a(?k/axq » k=1,2, ..., P, from (3.6.10), vhere Y =S /un .
Also, the a&‘k/azq are still given by (4.2.12), but the vector Y now
has (2p + 1) elements instead of 2p elements as it had for Cese 3.
Before going on to limiting distributions es n—9 OO , let us
look et the limiting distributions as n—> OO for Cases 1 end 4 in
particular. Interpreted in terms of Case 1, the conclusions of the last
paragreph are that\/_m“(&\- x) ,/T(f - 1) andmc?- =) eve
2ll asymptotically normally distributed with zerc means for m large.
The asymptotic varionces for /WX - x) and /@YX - 1) uay be
determined by differentiating both (3.5.3) and (3.5.4) with respect to

Y, end Y, and then substituting in (4.1.9) and (4.1.8). 1In this way

1
A
we £ind that the asyuptotic veriences for / ma Y% - x) and /Tm XA - 1)

are

2 2 2
(ny + ng) ©

4
1

(b.2.14)

n
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(n‘la +ng) o
B %

(4.2.15)

leads to (ai-rag)oa for the asymptotic variance of \/m(a-a) »
where

i/a  1/n 1/n
“1[“"’1'2"2)("1 =g )y -np) ];
I s 1/n
(’ll - 732) L

8 =
(4.2.16)

2[ i/n  1/n 1/n]
nlen y - ) -y -ndap |

1/
(ny - )%y g

aas

PorCase b, vEm(E+x),  mGa2), Sm (& - o) ama
Jum (&) - a,) all have limiting normal distributions as m—y OO
with zero means and variances given by (aid-ag-vag) © . Differen-
tiation of (3.6.12), (3.6.13) and (3.6.14) and substitution in (4.1.9)
chous that for Vm (£ - x) ,

q2-q3 .a-—--—--l--é-ﬂ]'.q ’ 8, &= —— ]
= - ? 32
4 (ny = ) (ny = %) Some

(4.2.17)



for fm(%-2 ,

1 R Sl | . 1
B e———— = e LT e se——. s e ;
E Ka(q, - 1,) b Ka(ny = np)(np = 1y) T ’a(n, - 1,)
(%.2.18)
and for /m'(é\o - ao) "
(1 - 1,)°
" =
"l1 - 2“2 » ’13)
2 - -
o= (ny = 9)(ny n% st z9)
(ql - 2"2 + "3)
. (n, = y)°
3 (“1 = 2712 * 113)5—

Finally, in terms of the constant x=(n2—n3)/(n1-q2),th. 8
for ,/m(al-al) are

i L 1
a = - 1 x)3 (1 «x) 5+ n(l-3x)(1 - x") »

i 1 1
a2a~—(1—.——x—i§ nx(l+3x)(1-xn)-(l-x)(1+x)x{|,
- (%.2.20)
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i 1
(1 -x) x® - 2nx (1 - x™) .

"3 'm(l -x)3

4.3 Limiting Distributioms for large n

Up to this point limiting distributions have been derived with =n
congtant as m—> OO, vhere n is the mmber of points at which
observations are taken within each interval »and ™ 18 the number of
observations per point. HNow let us reverse the situation and hold m
constant, so that esymptotic distributions for large n wmay be found.

From Section 4.1 we have

1 gnel m
Y = o v—— z z e » ,‘03'1)
a® " T i=(g~1l)n =1 e (
The error term
s.r U5 . (4.3.2)
[ = o - e eSe
T B 4. (g-1)n B oy 4

may be thought of as the mean of the n identically distributed variates

Also, the term

n
(a-1)m (1 -A\)

Oit/\'k 1 "-/\-k
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and is not independent of n . In fact, in Sectiom 5.2 1t will be shown
that for constant m and constant T (=Kn) ,

Hu  q =94 » (.3.3)
n—oo

vhere the constant cp"1 is defined by

Al eL)T (1-ex") | (4.3.4)

Lt e

T %.
It is now apparent that unlike the situation vhen m was allowed to
grov large, when n inereeses, Yq may not be represented as in (4.1.7)
by a constant plus a mean of identically distributed variates. 5o now
Hsu's theorem may not be applied directly, as it was in Sectiom 4.1, to
obtain the desired limiting distributions as n —>» 00O . However, a
modification of Hsu's theorem, used in conjunction with a theorem
presented by Crame®, is applicable to the present situation.

From equations (4.3.1) and (4.3.2), ve have that

-t
Yq-‘qq-O-Qq ?

and therefore that
v (Y -9.) =/n lnq =gt # /= 3; ’ (4.3.5)

vhere . 1s defined by (4.3.4). The Central Limit Theorem [2,

PP 213-218] shows that the error term / n :; in equation (4.3.5)
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is asymptcticelly normally distributed for large n about a mean of

zerc with variance oa/m . Moweover, it may alsc be demcnstrated that

lim J/a - Qq) =0 , (4.3.6)
n—300

for reference to (4.1.4) and (4.3.4) shows that

72 - a1 - e~ MT/ny

e /o(n e~ % ) = E B, ’
n— ©o n—;oo =y ‘k(l . .—)k'r/n)

(4.3.7)

vhere the constant

N L

Then several epplications of L'Hospitel's rule yield the result that

T -n(l - e')k'r/n)

lin « lm =i e 0,
n —oco ‘/T'r).k(l -e')‘kT/n) ndc0 [La'

thus reducing (4.3.7) to (4.3.6). Now, applying e theorem given by Cranér
[ 2, re. 25&] to the equation (4.3.5), ve conclule that /T (Y, - @)
has the seme limiting distribution as /0" E; . Thet is, for n large
S (Y, - @,) 1is esymptotically nommally dictributed with meen zero and
veriance c:a/m .

Now let us refer egain to the thecrem of Hsu's [15] used in
Section 4.1. In deriving the limiting distributions of functions of
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sample means, Hsu utilizes only one property of normelized means such as
the ’;/_n"é’; : namely, their limiting distributions. Therefore, since
Jo (Y, - 9,) has the same liuiting distribution es /_n‘E; , Hsu's
thecren may Just eés well be proved In terms of the (Yq - q:q) instead
of the mesns 3; . Suck & yroof in the context of this paper would
lead to

Theorem 2. If the function /O\(Y) of means Yq possesses
continucus second crder derivatives of every kind in a neighborhood of
the point ¢ , then /. [5'(:) - 3(¢)] is normally distributed in the
limit as n — OO with mean gero and variance

Lo o? (4.5.8)
as long as bq,‘o for some q , where

3 A
q Y=p

In Theorem 2, @ 4is the point with the (pq as coordinates, while Y

and 6\ are the same as defined in Section 4.1. Theorem 2, like Theorem 1,

holds for both Case 3 and Case 6. Moreover, the derivatives Bg" /0\(1') ’

as stated in the last section, may be evaluated with the help of ?h.a.m).
In Section 4.2 we expressed the estimators cbtained by the new

procedure in terms of the sample means Y , and then we went om to show

q
that the estimators themselves as well as their second order partial

derivatives with respect to the Yq ere continucus in a neighborhood
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of n . A study of Section 4.2 reveals thet to demonstrate similar
continuity conditions for a neighboerhood of ¢ for both Case 3 and
Caese &, ve need only show that the following three properties hold for
Case 3 under the assumptions of our model:

(1) P f P TES
(2) o) = [P O
ool = L #o
(3) X =x .
Yo

Since our model specifies that czk,‘omxk>o,k-1,
2, ...,p,andthatlry‘xs , T #8 , ve deduce from equation (b4.3.%)
that °r"°s for r$ s . Furthermore, vhen Y = ¢ ,

vq" k§1 “k‘lq:-l ’
vhere

uk-';;':'(l"-w) » k-l,a’ seey P .
Note that uk,ﬁo in accordance with our model for every k . Now at
9 5 |P|, defined in Section 4.2 in connection with equation (4.2.1),

has elements



T0
i
Hence, by comparing these elements with those given for [P(n)| in
Section 4.2, we conclude by analogy with (4.2.2) that

lp(@)l = W ouy e u |Lf . (4.3.10)

Since it hes been shown thet |z.| # 0 under the assumptions of our model,
it follows that |P(¢)| F0.

We have shown that the first and second properties necessary to
prove contimuity of the estimators and their seccnd order derivatives in
a neighborhood of ¢ are satisfied. In order to show that the last one
holds, nemely that at o , Qk-xk,k-l, 2, «es, P , We recall from

h. . b 2

(4.3.3) that nii)mao “q = q)q Consequently, since X, is continucus

in & neighborhood of 1 , lim  Rn) = Xe) . But ®n) = x for ail
n—» oo

n , end therefore ?(cp)-x. Hence, the estimators Qk’,ik and 'o\k

and their second order partial derivatives are continucus in a neighborhood
of @ .
A

Nov we wish to complete the demonst:zstion that _/En'(6 - @) s
normelly distributed in the limit es n-—>» oo with zero mean and variance
given by (4.3.8), wvhere 6\ may denote any of the estimetors /‘\k » Qk or
c';}k and © denotes the corresponding population parsmeter. To do this it
is necessary to show that lim ek'“k et ¢ . Then Theorem 2 may be

n-=y ©O

applied to give all the desired limiting distributions, since it has already
been shown that ’x\k-xk at ¢ , and consequently that q-lk at that
point.

Substituting the g for the corresponding Y in (3.3.27), we

q
can see that the Gk uay be determined al ¢ by solving the following



1 2 a1 (2-%) 1 % _qel
P % TTEm AT LnoE e, eom

q.l'a, oo.’p .

But /x\k = x et 9, so substitution of x  for 'x‘k in (%.3.11) end
miltiplication of both sides of that equation by l".l‘ yields

g1 T)k {’\k -

Keeping in mind that we are interested in limiting distributions for the

/'“\k 88 n— o0, let us evaluate

™, /o

1im B lim e e (4.3.13)
n>oco n(l - xt[n) n> 00 , _ N/

vhere lk'r is constant. This limit is equal to

1im —
t—» 0 1l-@

vhich by L'Hospital's rule in turn equals lim et =1, Thus, as

t—> 0
n—> oo , (4.3.12) becomes



él zz-l (r - xk)(gk - ‘35k) =0, g= 1,2 00, P, (%.3.14)

vhich has es its solution, (o = oy . Hence, in the limit es n—) 0O ,
/rz\k - at 9 .

Now, on the basis of the results obteined in this secticn and the
proofs given in tfection 4.2, we conclude that as n—> OO , the
atstrivutions of /(% - %), JE'( -3) e Jm(G - o)
are asyuptotically normel with zero means and variences calculated from
(4.3.8) in Theorem 2 with the help of (k.3.9) and (4.2.12). Explicit
formules for the constants b_ given by (%.3.9) may be determined for

q
Cases 1 and 4 by substituting Pq for T in the formulas for the
corresponding 8, given in Sectiom 4.2.°

b.4 An Additional Limiting Distribution for Large n
In thie section we shall derive encther limiting distribution as

n—> o< which will be utilized in Chapter VI and which will help summerize
the results of this chapter. Letl us comsider the limiting distribution

as n—» o0 of

S o) - 6] _4/?[ S - Qo) ] -/ Be) - By ] ?
z
q

/ La 02 baa2
aQ Q q
\ ,
sz 2
q q (b.b.1)
Zagve.
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As before, q=1, 2, «v., p forCase 3and q=1, 2, ..., 2p+1 for
Case 6- From (’hl.9), (h'3‘5) and (ho}og) we deduce that

1. (k.4.2)

Moreover, since it has been shown in Sections 4.2 and 4.3 that at either

A A
n or w,xk'kalk‘ﬁ,k-l’e,ooo,p,

n S [Se) - @ =0 bk,
N CORCU (k.k.3)

for {0\ an or /l\k .

In order to complete this proof, we need to demonstrate that
(4..3) also holds for B =) , k=1, 2, ..., p . Now if the set of
equations (3.3.27) is solved for any given '&\k at both n end ¢ , the
two solutions will be ratios of determinants with identical denominators.
In our consideration of the continuity of the ﬁ\k at 1 and ¢ we have
already seen that this denominator is not zero at either 7 or ¢ .
By virtue of (4.3.13), it can also be seen that this denominator approaches
a constant as n—> ©© . The determinants in the numerators of the two

solutions will also be the same except for the kth columns. In the

solution for Qk at 1, this kth column will be the column vector
nT » While in the solution at ¢ it will be cpT « Now, like the

denominators, the cofactor of the elements in the kth colums will be
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identical for the two solutiocns and will approach constant limits as
n—> &0 . Therefore, expanding the numerator determinents about their

kf‘h columns, we find that

/C?\k(@)-/(i;‘(ﬂ)- qgl (°q-nq) Uq: E=1,2, ¢esy » ,

vhere lim U is a finite constent for every q . Now wvhen m ie
n—sc0 9

held constent,

A PN 'y
.y \/;;[a“w) ) q"(n)-] ) /qu-:l [n;m ooﬁ(%‘ Th)] [ ”-3;1;" "q] ’

Dy OO

k.l, 2’ seey P o

But from (4.3.6), n;izo‘/ n (?\q .Aqq) =0 for all q . Therefore,
(u‘hns) is also satisfied when G-’;’k’k-l’ 2, sesy P o

Now from (4.4.1), (4.%.2), (4.4.3) end a theorem given by Cranér
[2, P+ 25’&] , we deduce that the left side of (4.4.1) and

v oo ___QLL__!(.?.L_[A b4 ; S J (b.b.%)
i'. by ©

have the same limiting distribution ag n — ©0©O . But from Theorem 2

it follows that (4.%4.%) has an esymptotic standard normal distribution
N

from n lerge. Therefore, since ©(7n) = @ , we have that



Ym[6-0) (4.4.5)

/ an o

Q

hae a limiting -tanderd normal distribution as n—> o0 . But (4.4.5)
is alzo a standard normal variate in the limit es m—> 0O , & result
that follows from Theorem 1. Thus, the results of this chapter mey be
cumarized by saying that the distribution of (4.4.5) approeches the
ctandard normal distribution es either m or a—> oo and by noting
that a.q—) b

q
bq by (4.3.9).

as n —» OO, where 3, is defined by (4.1.9) and
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V. THE PROPERTIES OF THE ESTIMATORS

2.1 Sufficiency
This chapter will be concerned with the statistical properties

of the estimators derived with the new estimation procedure. In this
section we shall consider vhether or not the estimators 'a\k and Qk
are sufficient. To do this it is necessary to exemine the Jjoint density
function of the cbservations yi 3 However, ocur zodel does not specify
the distribution of the Yy 3 but only requires that the corresponding
errors, e, 3 be identically distributed with mean zeroc and common
variance 62 « Hence, in order to study the sufficiency of our estimators,
we shall first make the additional sssumption that the errors e, 3 and
consequently the observations A 3 are normally distributed.

Row, for Case 3, each vy 3 hag the density function

r(yid 3 ak’ &’ 02) - - exXp. [’ "']'-5 (yia - kg ﬂk ‘-thi)a] .
(]

2n ¢ 2

(5.2.1)
Thus the joint density function of the vy 3 is
2pn-l m 2pn-l m
‘q ﬂ t(yi.j P o ;kt 02) - L exp, | =~ L z z
1 =l (2r aa)mn 202 i=0 =1
Do e~Mty)? (5.1.2)
(yia . &_ ak ’

A
If the estimators Qk and )k cbtained by the new procedure are



77

sufficient, then the demsity function (5.1.2) must necesserily be

factorable into two functions, one of which involves only the estimators

2 and ’x\k and the parameters of (5.1.2) vhile the other is independent

of the parameters o end A <see [2, PP 1088-1189]) + Thus,
after expending the exponent of (5.1.2), we can see that the estimators

91‘ and ll\k are sufficient only if the sum

2pn-l w 2pn-l m
. P o ey L | (L g, § o et
10 Jul o T S [(3-1 g %

(5.1.3)

can be expressed without explicitly invelving 8 product of the observations

yu and the parameters % and Lk It can be shown that this is possible

only if n=1 . Then

A
m S; Kn( ~MKn
z yij = 81 = { ak e' 1-1) Q —— lk ) s (5.10#)

J=l l1-e

end therefore in (5.1.3) the sum L Yy
J=1

A
of the estimators ak and Lk. That is, when the errors e“ in our

N\
model are normally distributed, the estimators ek and ).k are sufficient

wmay be replaced by a function

only if the mmber of points ¢, at wvhich observations are taken is equal

4
to the nmuber of parameters in the model. This result may be showm to
hold for Case 6 as well as Case 3.

The estimators {"\k and Qk of the new estimation procedure have

been found to be sufficient in only one instance other than the one already
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mentioned under the assumption of normality. This instance cceurs when
both m end n=1l , as in the methed originally presented by Prony.
In this situetion, as can be seen from equation (5.1.4), each Yy is
itself @ function of the estimstors & end %\ , and therefore the
estimators @k and Qk are sufficient regardless of the distribution

of the errors ‘U .

5.2 Consistency

In order to prove consistency for the estimators derived with
the new estimation procedure es m—> 0O while n is held fixed, we
need only utilize results already cobtained. Means Yq have been defined
as have their expectations 1, , end these means converge in probability
es mw —y 0O to the corresponding g * Furthermore, continuity of each
of the estimators Q,&k and 'l\k in & neighborhood of 1 was
demonstrated in Section 4.2, It was also chown in that section that at
ns% ox ,6 =0 ema % e . Hence, on the basis of Sluteky's
theoren [27], we conclule thet the estimstors £, &4 sma X, converge
in probability to X . o0 and lk respectively s m—>S>o© .. But an
estimator @ 1is a comsistent estimate of © if it converges to @ in
probability (m [ 18, pg. 5]) « Therefore, Q,Gk and /ik are
consistent estimators of x , o end )\ respectively for large m.

In order to use Slutsky's theorem t0 prove that the estimators
are consistent es n—) OO with n fixed, we need to show that each
Yq converges in probability to some constant as n—» OO . Such a

probebility limit cen be found even though, as shown in Section 4.3, the
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!q cannot be regerded as means of identically distributed variates.
Froa eqmtim (30201) and (301.5)’

-] -l
8 =m qni: f.ake'w«r qnﬁ % e

e i=(q-l)n kel i=(qel)n Jj=l 13

Although we are letting n grov large, we wish tc keep the domein for

the t, constant in length, where ti-K:l. Thet is, vhen the number

i
of points at which observations are made is increased, the intervals
between points are shortened so that the length of the interval for
which the yu sun to sq is constent. This constant, as defined
eerlier, is T(=Kn) . How we may rewrite sq as a sequence in n

without involving the varisble K as follows:

gnel Ti qnel m
i a 5§ o e™m U :
"% jel)n wa E° Y a(al)n ga M

Thus, Ve mey express !q-sq/m as

1 gn-l _lk_'l_’_i_ - 1 qn-1 m
Y = Z e 0 - S z z e °
177 e ATTE ggln g M
(5.2.1)

Novfrauthadeﬁnit&onotadeﬂniteinteml[ﬁ] » it can be

seen that



T4
S R ; T 1 ¥ f
1im & - T at
n—) 0O T i=(g-l)n % © "7 (g=1)? k=1
‘% i % i (1-ehh) . (5.2.2)

Also, since in the model the e are independent, identically distributed

&
variates with mean zero and variance 02 s the mean

-l
I
i=(q-l)n J=l

B|»-

013

converges in probaebility to zero es n—> ©O . Therefore, teking the
probebility limit of both sides of equation (5.2.1) as n—y OO , we
can see that !q converges in probability to the constant given in
equation (5.2.2). Thus, referring to the definition of :pq given by
formula (4.3.4), we have that !q converges in probability to 9, ©s
n—> o090 -

In Section 4.3 it vas proved that at the point ¢ , %, amd A
ere continucus and equel to X, and l.k respectively. Thus Slutsky's
theoren [27] leads to the result thet %, end X are consistent
estimators of x and xk respectively vhen m 4is held fixed as
n—> 00 . It wes also demonstrated in Section 4.3 thet & 1s contimuwous
at ¢ , but instead of showing that /a\k-ak at @ , it was only shown

thet at @ , 1lim ak o In other words, the estimetor 2 is &

noyoo
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continuous function of n for this case, for the solution of equation
(4.3.11) involved a factor

g
. . (5.2.3)
(1l - z:/n)

It was shown in Section 4.3 that the expression in (5.2.3) —> 1 as
n—> 00 . Therefore, if we apply Slutsky's theorem to eguation (4.3.11)
apart from the factor (5.2.3), and then if we utilize the theorem that the
limit of a quotient is equal to the quotient of the corresponding limits,
vhere the limit in the denominstor is not zero, we still cbtain the desired
result. HNemely, es n—>O0Q , ek converges in probability to Oy 2
and hence G 1is & consistemt estimator of o for large n .

It is interesting to note that Qq is functionally independent
of m . However, as mentioned in Section 4.1, o is & function of u .

In fact, since

T).k o

1im
n—> oo a(1 - xt/n)

from (k.1.4) we deduce that

1 “x "1
niimao T]‘l“:flmgl. E(l-zk)x: )

Therefore, equation (4.3.4) reveals that

lim n, = .
n— o0 1 %0
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Hence, as both m and n—> OO , the Y, converge in probability to
the corresponding constents @ . It is immeterial whether the limiting
rrocess is carried cut with respect to m or with respect to n first.
The conclusion then is that the same consistency properties which hold
for m fixed wvhen n —) ©© still hold vhen both m and n—y oo ,
nemely, that %, , &, end 4 are consistent estimstors of x_, o

and ‘k respectively.

5.5 Bies

Although the estimators cobtained with the new estimation procedure
are consistent, and therefore unbiesed in the limit, they are not unbilased
for small samples. However, it does not seem feasible to determine
enalyticelly the extent of the biss in generel for small semples. Instead,
in this section an approximation to the biles will be given only for the
estimator % for Cases 1 end k. Later the extemt of the bias will be
investigated empirically in Chapter VI, which gives the results of an
extensive sempling survey for Case 1.

Let us first consider the exponential estimetor ¥ for Cese 1,
vhere %= Y,/Y, . If veexpand % 1in e Taylor series sbout the point

n = (ny, np) , we find that

(-1)™% (1, = 1™ (¥, - np)

r
:

% (-1,

o, 2,
Ty rel ﬂ?z

x
(¥, =n)"+ I
r=l r

(5.3.1)

This series converges only when Il’l—nl' < 1, since ’12/Yl has
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a singularity when Y, = O . Now, recalling from Chapter III that 7,/q,
equals the constant x , we may approximate the difference (Qo x) by

TPV G a p, X 1" (1 - )" (Y, - )
mE T+1 1" M) ¢ 2 '
r=1 Y re Ny

(5.3.2)

vhere only a finite mmiber N of the terms in (5.3.1) are used in the
approximation., Taking the expected values of both sides of (5.3.2), we
can approximete the bias, C (9 - xX) , of the estimator Q relative to

the constant expomential x as follows:

£ A "o g (-l)r "2 &
(x - x) = e T B (x,) (5.3.3)
1

vhere “r(Yl) is the r'® order central moment of Y, . Now if in (5.3.3)

we replace the expectations Ty and L) by the semple means 1'1 and Ya ’
wve obtain the biss approximation

¥ (1) v
ER-x) =2 I o ()| (5.3.4)
1 ne¥

Let us evaluate (5.3.4) under the assumption that the errors €3

in our Case 1 model are normally distributed with mean zero and common

variance 02 . Actually, since the expansion (5.3.1) converges only

when Yl lies in a cirele in the positive quadrant, it appears as if



we should further restriet the errors in such a way that Yl will always
be positive. But Fieller [5] has shown that vhen 7, > 0 and large
relative to the standard error of Yl » such a curtailed normal distribution

for the error: e differs very little from the usual normal distributiom.

1
My and T are both positive provided that the
coefficlent a > o,andlq1|>|n2| even though the corresponding

weans, Yl and Ya,hsnthasaumime. Therefore, Y would be

Now for Cuase 1,

expected to be large in absolute value relative to the standsrd error of

Yl .

no need to further restrict the errors .1.5 once they are assumed to be

Hence, vhen the Case 1 model is fitted to positive data, there is

normally distributed.

When the errors e are assumed to be normally distributed,

1
ur(yl)-o for r odd ,
oL
e (rel1)(r-3) ... (1) (%)2 for r even.

Thus substitution for %(71) in (5.3.4) gives

M 2\V
€(x-x) & 511 —-g%f (2v = 1)(2v = 3) ... (1) %)
V2 n
. 1=y (5.3.5)
M 2 v
2 2? - 1 27 - 3 LR R 1 - ’
~ 4 v?;]. ( ) ) (1) :‘?

vhere M is the largest integer in g-. But the right side of the
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approximation (5.3.5) is always positive. Therefore, when the errors

e are not only identically distributed as specified by owr model but

id
are elso normslly distributed, the expected bias of % for Case 1,

vhich is approximated by (5.3.5), is always positive. This bias decreases
a8 m,n or Yl becomes larger or as Q decreases.

A development similar to that already presented for Case 1 may be

used to obtein sn epproximstion to the bias of 2 for Case k. Corresponding

to equation (5.3.1), for Case %, when IYl-.-'ll-Yz-'ﬂe|<|ﬂ1"‘2|
> 0, we have the expansion

r

Y, - - Y. + 7 oo Y, %, = Y, +
ox (1o 2llThth) Py (AInt "e).
ZLiom-Yp+n J =0 %

(5.3.6)
From thies expansion we obtain an approximation, corresponding to that given
by (5.3.4) for Case 1, to the bias in X for Case k. This approximetion

is

b o
1" L oSyt iy (%)
£-x)2 %2 = =
C r=l (Y v X )r
1° Y -
0 I oepflon b, (L)
A 5 o EE-BT Mt Mropa o
+x
s (YQ - YB)(YI L Yz)r
Yo

(5.3.7)
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Ifweset Nef and 4f we assune that the errors e in our Cese b

i
nodel ere normelly distributed, (5.3.7) becomes
e 2 2
6(3\ -x) &2 2 Q u 1. 30 3 6 o -
m(Y, - 12)5 m(Y, - Y)Y - ¥,)  ma(y, - ¥)°
30 ob 60 oh

- 55 +  p—— . {5.3.8)
ua (Y, - 5)(!l - Ya)5 mn (!l - Y,)

As before for Case 1, the approximation (5.3.8) for Cese 4 is valid only
1f the expectation of the demcminstor of £, in this case (n, - n,) ,

is positive and large relative to the standard error of that denominator.
Thus (5.3.8) should be used as en epproximation to the bles of % relative
to x for Case 4 only if ('!l - 22) is positive and large relative to

its standard error even though the errors eu are assumed to be normally

distributed.

5.4 Efficiency
The estimetors yielded by the new estimation procedure are not in

general efficient, and no measures of their small sample efficiencies are
available. However, since meximum likelihood estimators are asymptotically
efficient, the essymptotic efficiengy of an estimator from the new method
can be determined by teking the retic of the asymptotic varisnce of the
corresponding meximum likelihood estimator to that of the estimator in
question.
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The asymptotic variances of the meximum iikelihood estimators of
the parameters in our modei can be found by inverting a matrix of products
of first pertial derivatives of €(y;,) with respect to those parameters

(sec [9]) . Ifwelet o ,k=1l,2 ..., 2 , represent our Case 3
parameters when the errors e“ are assumed to be normally distributed,
then this matrix bas elements

., = 2Pnil E d E(yiﬁ d C(vii)_
i=0 Jjml o o, o o,

Por example, for Case 1 with @,= ¢ and ca-),

;]
.a_.é_(.ﬁi?. = a.)‘ti 2 ___6...(_{!‘.4.)_ = ey ti Q.)‘t',. ’
. 3

and the matrix with which we are concerned has elements

2pn-l
¢y =m )X o Aty
i=0

2pn-1
Cip = Cy = M b A tie'mti
i=0

-1
2 2 o2y

cae-urza 1)&)

If we denote the corresponding elements of the inverse of this matrix



re s r,8=1, 2, then the asymptotic variances of the maximum

1102 and c2202

by ¢
likelihood estimators of ¢ end )\ are given by ¢
respectively.

Now when n =1 and the errors e in our model are normally

iJ
distributed, the estimators obtained by the new procedure, which have

already been shown to be sufficient in this instance, are also asymptotically
efficient. A glance at (4.2.15) and (4.2.16) and the definition of g given
by (4.1.%) shows that es m dincreases, the asymptotic variances of both &
and /): for Case 1 decrease proportionally. Also, it can be seen that if
everything but o is held fixed, the asymptotic veriance of ’}: is inversely

proportional to aa

while the variance of 6\ is not affected by changes in
@« . Moreover, if K , the distance between the observation points ti , 1s
allowed to very vhile the product )X as well s m , n end o remain
constant, the asymptotic variance of ? varies inversely with K2 wvhile
the asymptotic variance of Q is again unaffected. But the asymptotic
varisnces presented above for the maximum likelihood estimators of o and A
for Case 1 can be shown to be influenced in the same way by changes in m ,
in o, or in K when M is held constant., Therefore, in order to obtain
an idea of the asymptotic efficiency of the estimators yielded by the new
method for Case 1, we need only consider the relative effects on the asymptotic
variances of the maximum likelihood estimators and those from the new
procedure of allowing n to be greater than one and of varying A without
changing K or n . Such & comparison is made in Tables 3 and k.

The first rows of Tables 3 and 4 give the asymptotic variances
divided by 02 of the maximum likelihood estimators of o and A wvhile

the second rows contain the corresponding values for the estimators

from the new procedure computed through direct substitution in (4.2.15)



Table 3

8

Case 1 Asymptotic Variances and Efficiencies for Different Values of n

cenel, TeKne2, 1-}112

nel ne?2 ne=h ne8
A
A £\ 4 \ & A o *
M.L. Variances/c> || 1.000 | %.250 | 0.9%2 | 1.97% | o.771 | 1.149 [ 0.519 0.650F
N.P. Veriences/o> || 1.000 | %.250 | 1.605 | 3.778 | 1.697 | 2.593 | 1.250 | 1.530|
Efficiency || 1-000 | 1.000 | 0.593 | ©0.522 | 0.455 | 0.443 | 0,425 | 0.ke5
Table 4
Case 1 Asymptotic Veriances and Efficiences for Different Values of A
Q.m.lg T.‘n.a, n-2
"1-%ﬁnz 1-%£na refn2 2=z fne
21 %8| &1 21 2t.%1 & i\
M.L. vm/aa 0.79" 0.5"5 00%6 00619 0.9% 1-97“ 009% 15-229
N.P. Verisnces/o2 | 0.952 | 0.443 | 1,118 0.858 | 1.605| 3.778| 4.825 | 82.240
Efficiency 0.834 | 0.780 | 0.775( 0.721 | 0.593| 0.522| 0.206| 0.161

and (hoeolé) °

The third rows list asymptotic efficiencies of estimators

yielded by the new method. Note that these asymptotic efficienciles

decrease as either n or A becomes larger.




Similayr results to those already cited for Case 1 have been
cbtained for Cese 4. Again the asymptotic variances of both the maximmm
likelihood estimators end those from the new procedure are inversely
proportional t¢ m while in both cases the asynptotic variances of the
estimators of ) ere also inversely proportionsl to of and to K-
when M is held fixed. Both sets of asymptotic variances for estimators
of % and oy are wnaffected by changes in & and in no instance
does the value of % or the sign of oy enter into the calculation of
asymptotic veriences. Tables 5 and & for Case 4 correspond to Tables 3
and 4 for Case 1 and indicate the effect of changes in n and A on
the asymptotic efficiencies of the estimators derived with the new procedure.
The veriances for the new procedure vere calculated by substitution in
(4.2.18), (b.2.19), and (4.2.20).

Teble 5
Case b Asymptotic Variences and Efficiencies for Different Values of n
_-tal-mul, T=Kn, A= £n2

ned neb
A A Q A A Q
% o | % e |

MeLe. vmﬂ/dz 1.109 1.708 50” O.m 0-952 5.19"
N.P. Variences/o|| 1.981 | 1.84% |16.593 | 0.991 | 1.5e9 | 11.387
Efficiency 0.550 | 0.927 | 0.356 | 0.499 | 0.623 0.280
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Teble 6
Case 4 Asymptotic Veriances and Efficiencies for Different Values of A

-tal.m'l' Tene2, n=2

1--;- fn 2 r« fn2
/\ N A A
%o & 'y 90 é‘l \

M.L. Variances/o2 || 6.564 | 5.727 | 3.M45 | 1.109 | 1.708 | 5.905
N.P. Variences/o> | 16.500 | 12.2% | 9.608 | 1.981 | 1.844 | 16.5%3
m31m 0.598 0.468 003% : 0.560 00927 0.555

The results presented in this section are limited in scope and
epply only when the errors eu ere normally distributed. However,
Tables 3«6 do show that the estimators produced by the new procedure

are certainly not in general efficient and that esymptoticelly they are
quite inefficient under the conditions of this section.

5.5 Optimam Construction of the Sums SL

In Section 3.2 it was indicated that there are seversl ways of
forming the sums sq from the cbservations yu for vhich essentially
the seame method for estimeting the perameters of our model may be followed.
The procedure given there for calculating the Sqmsamt.obean
optimum procedure in some respects. In this section it will be shown

that it is indeed & better method than certain alternative methods.
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As an elternative construction for the Bq,htutake

- o el ‘
8, = ;).:.1 Eo Yopvsgel,j } 9= L0 2 s o (5:5:2)

Note that the subscript 1 of the model presented in Section 3.1, which
is represented in equation (5.5.1) by the subscript (2pv + g-1) , still
renges from zero to (2pa-1) . In order to forn the swms §_ , ve divide
the domain of the ‘bi intc n equal intervals instead of 2p intervals
as before. Then we let 5, be the sum of the chservations mede st the
first observation points in all of the intervals, S, be the sus of the
observations from the second cbservation points of all the intervals,
and so on. In the remainder of this section we shell continue to dencte
entities connected with the alternative construction of the sums sq

with an ssterisk as a superscript. 5o, corresponding to equation (3.2.3),

we have

& n-l 2pvelsq
E(sq) @ o vEO kgl akAk » Q=1 2, se.; 2, (5.5.2)

vhich sums to give
2pn

" esl (1 -A, )
C(Sq) = I é C!kAk kK sy Q= 1, 2, soey 2 .

A

(5:5.3)

As before, ./\k-m.(-kkx) « Following the same procedure used in
Section 3.3, we set (5.5.3) equal to s: , and then we solve for estimetors
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@ ead A of the parsmeters o, and X -

In order to facilitate the solutions for o and XA , it is
again expedient to resort to matrix algebra. We shall once more make
use of the matrix « defined in Sectiom 3.3, and we shall form column
ustrices § end § by substituting S for S in the metrices
& and s previously defined. It is alsc necessary to modify the
definitions of the elements of the p by p matrices L , VW and V used

in Section 3.3 as follows:

5 rel
Rl’ﬂ "A'B ?
2pn
Lo =AAL) .
v, = ?
TOaAR T

P
v:'l .'/\'l' bﬂ B

Corresponding to equations (3.3.1) and (3.3.2) for the sq , the equations
for the B; may now be represented by the two matrix equations

LW aed s (5.5.4)

vV viaes" . (5.5.5)



at the equation

*

= 2 - (505'6)

=
} 3
§
P
2

*

Because of the definitions given above, the vectors '5* and s
in the equation (5.5.6) are of the seme form in terms of the 8; as are

the matrices s and 8 of Section 3.3 in terms of the 8 Furthermore,

.
V' and L' are of the same form in the/\, thet the matrices V and L
of Section 3.5 are in terms of the x . Thus, from the anslogy between
(5.5.6) and (3.3.4), ve see that the solution given in Section 3.3 for the
%, 1s the correct solution for the/\ , 1n terus of the newly defined s;
That is, the solution obtained for/\ ] 1in terms of the 5, defined in
Soctma.iisnwtbcsolutionfor/\.k in terms of the s;. Hence, it
follows thet solutions for 5, and 7, may easily be cbteined in mich the
same ey that 3, end 'ik were derived in Section 3.3.

Not only can the B;bemdtoobtuucstmtorlinamaimim
to that developed for the S, but some of the properties of end %,
can also be shown to hold for the estimetors 0 m’i: In particuler,
the estimators 9, end 'i: are consistent for large m when n is held
fixed. However, consilstency for m fiwed and n lerge no longer obteins.
To demonstrate this, let us attempt to parallel the consistency proof given
in Section 5.2 88 n—> OO , but with the varisble S  instesd of S_ .

q q
From (5.5.1) it follows that

- n-1 -l
Sq = 0 z E ak '.xkx(apvﬂ‘l) + uz ;i 014 . (5‘507)
Va( k=l Ve J=1

Carrying out the seme sort of menipulations thet were used in Section 5.2,
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we find that (5.5.7) ylelds

* y B £ oy 2 (2pveq-1) g 3 B B
Y = & e kn p =+ = L L e B
a% W L g DOER L0 gm M

The last term, which is the mean ¢f the independent, identically distri-

buted errors e,. , is again zero in the limit as n-—-mpoOO . 80, referring

1
once wore to the definition of e definite integral [ 8] s we see that

| opT
lim x;-é-;,-f{ fpake"k*' at

n oo, k=L O

- 5%1,_ j‘x % (1 - e~ NPTy | (5.5.8)

But the right side of (5.5.8) is independent of ¢ , and hence in the
limit 88 n—p o© , all the Y; are equal. Thet is, the constant
luits ca: corresponding to the @, defined by equation (k.3.4) ere
all equel to the constant given by the right side of equation (5.5.8).
Therefore, the determinsut | ?(«p“)l , corresponding to the determinant
lP(:p) | evaluated by equetion (4.3.10), is singuler and equel to.zerc.

Since l P(cp*)' = 0 when the new estimation procedure is developed
in terms of the s; , it follows from equation (3.3.23) thet the estimators
E,—>OO if n—>0O. Hence the expomential estimators % slso
—3 00 if n —»OO and are then neither admissible nor consistent.
Therefore, the estimators q and ’i: » Which are computed from the Q: »
are not defined for large n either, and hence they are not consistent
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estimators of the parameters O and l.k « S0 it is evident thet
inereasing the number of cbservation pointe ¢t 1 would not be likely
to improve the accuracy of the estimators obtained with the alternative
method presented in this section for forming the sums S Q" Therefore,

the construction presented for the sums S _ in Chapter III is better

q
than that given in this section for the s* .

q

8o far we have considered only one alternative formation for the
sums S q which leads to summsble geometric series for the expectations
of the 8 q’ end wvhich is therefore amensble to an estimation procedure
similer to that developed in Chepter III. There are many other alternative
constructions which involve both the approsch used to obtain the 8 q
end that used to arrive st the s; . For instance, the domain of the
observation points ti might be divided in half, with the observations
from the first helf being used to form 8l ’ 82 g sesy sp by one of these
methods end with the remainder of the cbservations being used to form
Sp+l » sp+2, seep 82p by the other method. All such constructions would
meke at least two of the comstents ¢, and ¢ equal for rfés , and
hence, like the alternative method already considered, they would result
in estimators which would not be consistent for large n . The other
likely alternative constructions eare such that the § a would not all be
sums of the same number of y“ « This would complicate the solutions for
the estimators considerasbly and would not be edvantageous except perhaps
in special cases. Hence, we conclude that the construction for the sums
s‘i presented in Chepter III is an optimum constructiocn, at least by

comparison with the slternative constructions considered here.
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5.6 Conditions for Obteining Admissible Estimates

So far in this chapter it has been shown that the estimators

. yielded by the new estimation procedure are consistent, but not in
general sufficient, unbiased or asynptoticelly efficient. It has also
been demonstreted thet the construction given in Chepter III for the
sums © q is better then several altermative constructions which would
lead to the same sort of estimation procedure ez thaet presented in this
paper, Now we shall study conditions for the existence of admissible
solutions for the estimators of the new estimation procedure.

In the model specified in Chepter III, A, D 0 ,k=21,2, eea, P
and xrﬁxa forr ¢s , making 0 < % < 1,k=1,2, .oy po In
addition, the x, ere real and distinct. BSo in order for the estimators
%, to be admissible, we shall require that 0 < % € Lplnty ) cn B
and that the 4 be distinet and real. Now the % are the p roots of

the polynomiel

@ = -/E\ xp'l 4-/!\2 xp'2 - ses + (--].)]""'3‘%;’._;L X + (-1)p/2\p =0 ,

o] |
(5.6.1)
A N
vhere Eo = 1. 8ince the Er are the elewentery symmetric functions

of the X ,fnorderfor 0 < B < 1, k=1,2, ..., p, 1tis

necessary that

2'
o < ﬁr< - ) r-l,?, coo,P 2
! (p - r)



and that

A 78

< E_; 20,1, 2, «ue [(p-l)/z] :

Ep--x- r

vhere I:(p-l)/a denotes the largest integer in (p-l)/2 . Also, it

is necessary thet Ep < El Furtherwore, given 3 > 0, it follows
A

from fewton's rule of signs thet a necessary condition for all the x, to

be real is that each of the quantities

o N Val
1\ L% E
;E;‘ Lo %2

A

'd
L)
3

be positive, where

1
ka - p2
k! (p - k)

Rote that these conditions on the ’E\r are only necessary conditions, and

that they are not sufficient to guarantee an adumissible soluticu for the
Qk . Additional conditions which ere both necessary anl sufficlent for

the roots of (5.6.1), whether they are resl or complex, toc be less than
one in absolule velue are given by Samuelson [25]
Instead of testing the %r against all of the conditions given

A
above, it is usually wore expedient merely tc compute the Er and note
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vhether or not they are all positive. Then if one or more of the lx\r
is negative, the set of estimators Qk is not admissible. But if the
ﬁr are all positive, Sturm's theorem [28, PP. 105-107] may be used
to deteranine the number of real roots of the polynomiel (5.6.1) which
lie between zero and one. Sturm's theorem states that

"there exists a set of real polynomials f£(x) , £'(x) ,
ta(x) . f5(x), sy fm(x) whose degrees are in descending

order, such that, if b > a , the number of distinct
real roots of f(x) = 0 between x =2 and x=b is
equal to the excess of the number of changes of sign in
the sequence f, f', fa, eony fn vhen x = a over the

number of changes in sign when X =b ."
£'(x) denotes the first derivative of f(x) . Now let q, be the
quotient and (- 2) the remainder in the division of £ by f' . Then

fa(x) is given by
fa = ql f. - f )

The other functicns of Sturz's theorem may be similarly defined as follows:
f5 =q, £, - S

fh'quj'fi? s

o}

o L rm-l ' fm-a ¢

The new estimation procedure leads to an admissible set of estimators

'x\k if and only if the nppncation of Sturm's theorem shows that there
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ere p real roots ’x\k between zero and one, and provided the Qk are
distinet. Fulfillment of this latter condition can usually be demonstrated
only by solving for the roots Qk of the polynomial (5.6.1).

Stuwrn's theorem gives a satisfactory way of testing for an
sdnissible set of estimates % once the coefficients T, have been
calculated., Also, the conditions given above for the % which are
necessary for an admissible solution may be helpful in weeding out
inadnissible solutions, but again they cannct be applied unless the B
have been calculated. Since the calculation of the /x; is rather arduous
for p > 3, it would be desirable to obtain conditions for an aduissible
solution for the % which could be imposed upon the swms S, + However,
no such conditions which can be readily applied have been found except
vhen p=1 or 2.

For Case 1, where p = 1 and vwhere 'x\ corresponds to the ’x\k
in the sbove discussion, R = 8,/8, . It is immedintely evident that
4 is admissible, thst is, that % 1s real end lies between xero and one,
are not zero and ere of the same sign with

wvhenever S, and 8

1 2
| Sll > | 85| - For the modified exponential function, Case 4,

8, -85
Q. —2—4 .

B =8y
Now ’x\ is an admissible estimator whenever the sequence sl » 52 s .‘.’~,~3
is strictly monotone, either 1ncrcésing or decreasing, with Isl - 82' >
'52 - s,l .

One of the conditions necessary for en admissible solution for
A A

the % for Case 2 is that E, end E, be positive. From equations
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(3.5.7) it can be seen that this condition requires that the expressions

2 2
8183'8285 ,8185-82 and sash-s3 all be of the same sign.
Factoring 82 Sk out of the first expression, 82 83 out of the second,
and 85 sh out of the third, it follows that these expressions will be
of the ssme sign when all the S‘l are positive if and only if the sequence

a usually are
all positive in practice, this is e convenient necessery condition which

31/82 3 52/55 " Sz/sh is strictly monotone. Since the S

of'ten mey be easily used to eliminate an inadmissible solution. The other
necessery conditions given previously for the %, may eleo be expresced
in terms of the § a for Case 2, but they are sufficiently complicated so
that it iz es easy to carry out the actual solution as it is to make the
tests.

The discussion given ebove concerning conditions which mgst be
satisfied if an admissible solution is to result does not give any clear
indication of whether or not the new estimation procedure will lead to
admissible estimates in nmost practical problems. In the sampling survey
vhich will be reported in Chapter VI, some ides of how often admissible
solutions mey be expected to resuit will be gained. Also, situations
wvhich lead to insdmissible estimates will be more clearly depicted and
in Chepter VII it will be shown that for some such situations the new
estimation procedure may be used to fit e diffe:ent model then that
specified in this paper. One more point should be brought up here. So
far in this section e bave only discussed admissible solutions for the % .
But vhen %, 1s admtesible, % will be real and positive. Hence %
will have the seme range as that specified for lk,andaowhen ’x\k is
adnissible, ﬁ; vill be adnissible too. The same is true of the %, except

in rare instances when the /’\k ere admissible but one of the Aak is zero.
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VI. GMALL SAMPLE STUDIES

6.1 Distributicns and Confidence Limits

, In this chapter we shall cbtain confidence liwits for estimators
from the new procedure end then we shall present the date from en empirical
seupling study. However, it ie first of interest to note that although
no work hes been dome on the exsct distributions of the estimstors 5
ena % for either Case 3 or Case 6, the small sample aistributions of
the /’\k have been considered. For either Case 1 or Case 4, vhen the errors
4y @re normelly aistributed, £ is the ratic of two norually distributed

veristes, and its distribution has been stuiled by Fieller [5 ]end

verrill [22]. For the generul cases, Case 3 and Cose 6, the %, ore
roots of the polynomiel (3.3.25) with the E, , vhich are real and
continuous, as coefficients. The distributions of such roots have been
lavestigated by Haublen [12 ] end Girshick [w] Although these
vepers ave of mathematical interest, the distributions derived ere too
complex to yleld distributions or confidence limite for either the &)
or the ')\.k .

Exact confidence limits are available, bowever, for A for Cases 1

and 4, provided that the e are normally distributed. memr[é]

iJ
shows that

"if y end 2z eove estimates of { aend 17 subject to
random errore noruselly distributed about zero mean, and

i vyy, 'yz' VuMJQMntmm,buedonf

degrees of freedom eand independent of y and 2z , of the
variances snd oovariance of the erxror distribution, then
the fiducial [confidence] renge for £ = 93/{ consists
of these values for whi
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2 .2 2 2,2 .2
(27 -7 v, ) -2y -t v, )+ B (y -t v, ) £ 0

wvhere <t is the sppropriste level of the Student
distribution for £ degrees of freedom.”

An estimate 8- for o mey be obteined as indicated in the next

paragraph. Then for Cese 1, with y = 6, , z= 8, , ;-6(51);11
= 6(32) s Vv =0, va = ma" vu, p “E(sl)/ 6(52) = x, it

yz
follows from Fieller's cheoren that e confidence interval for x consists

of those values of = for which

2

2.2 2,2 2 .2
2--zmus trx)-» 2x 8,8, + X (Sl-ma za).s.o, (6.1.1)

(s

vhere © e is the o-level critical velue of the Student t.statistic with
2

the same nunber of degrees of freedom as the estimate s . The inequality
(6.1.1) is equivalent to the confidence interval

1/2
2 2 2.2 ]
slsa-s[mn (81+82-ms t“)r t, < . P
2 2 .2
sl-mns ta
/2
Sloe+s[mn (sfa-sg- mn 52 t:] tﬂ P )
. 4 01.2
2 2 .2
51- wn 8 ta

vhich is more convenient for celculation. Since A = -%fn % , vhere
T=Kn , and A is therefore o monotone function of x , for A,
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corresponding to (6.1.2), there exists the c-level confidence interval

1 2 2 2 2 .12
-11-.]:1 8182+s[nm (sl+82-mns ta)] v,
< 1-%}::(8?-:::1321;5)
i/2
< -%’n Slsa-a[mn(5§+s§-mn32t§] % o
(6.1.3)

We mentioned sbove that an estimate 92 of a2 is availeble.

If m , the masber of cbservations made at each point ti, is greater

2

than cne, an estimate s, of 32 may be formed for each ti by

- |
couputing
2 X1 9 -
31 . ﬁ JEJ_ (yu * yi) (601"‘)
where
5, % L (6.1.5)
y - o y . -1:5
i m ol id
Since under our model the °1J are assumed toc be homogeneous, the s’f
may then be pooled to form
2pa-l
&2 w B o o (6.1.6)
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vith 2pn(m-1) degrees of freedom for Cese 3 or

(2p+1)n-1
(2p+l)n 120

with (2p+1l)n (m-l) degrees of freedom for Case 6. As in the case of o

linear regression, ca may also be estimsted using the mean square

devistion of the Yy 3 from regression. 7The usual prectice for a non.
linear regression is to assign the same nurber of degrees of freedom to
this estimate as it would have in the linear case, namely, 2p(n-l) for
Cage 3 and (2p+l) (n-l) for Case 6. If, vhenm > 1, the expected
mean square deviation from regression is not greater than the expected

error mean square estimated by (6.1.6) or (6.1.7), the two nean squares

e 2

may be poocled in the calculation of an estizate s for ¢ . ¥When

m= 1, the nean squere deviation from regression is the only estimate

available for aa .

2

Now that the estimation of ¢ hes been discussed, let us also

apply Fieller's theorem to Case 4 when the e,, are assumed to be

i

normally distributed. In this cese we let y = 81
2

¢ '5(51) -E(Ba) » n=8(s,) .6(83,)’ Vg v ey .

o o , B ofil5,) ~E(;)] /[E(8;) ~&8,] = x . S0 & conridence
intervel for x consists of those velues of x for which

(¢ 4

[(s;.2 . 83)2 -2 mn s> t?':] . 2:[(51 - 8,) (8, - 85) + mn 6> t.2]

-+ x"’[(sl - 82)2 - 2 on 52 tg] < 0. (6.1.8)
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Like (6.1.1) for Case 1, for Case 4 the inequality (6.1.8) leads toc a
confidence interval for X . If we let

e [0, -0 0y )+ ] 0 o e

1

[2e, - 5,) (8, = 850 + 28, - 8% + 2(s, - 8% - 3an 42 6%) P o,
+ %fn [(Sl-' Sa)a - 2 mn 82 tf.;] p Y= O, 1 » (6.1.9)
this a~level confidence interval is
< < v
Lo - A = Ll . (6.1.10)

In addition to the special cases already considered, approxinate
confidence limits for any parsueter O or ).k estinated by the new
procedure may be derived from the results of Chapter IV. In Section 4.4
we found thet (4.4.5) bas asymptotically a stendard normel distridution.
Thereford, if we again let © represent any estimator derived with the
new procedure and let @ be the corresponding parameter, it can be
shown that the distribution of

Vo (8 - 0)

s/ L A°

q Q9

(6‘ 1.11)



107

approximates the Student t-distribution with the mumber of degrees of

freedon sssigned to 52 » vhere now

a@ = A = . (6.10]-2)
Y nsx LA

Hence, for an appruximate c-level confidence intervel sbout € , we take

1 1
A 1 2,3 < o< 2.1 2,5
) (——-—E Aq} st % 0 e+ ( s i‘. Aq) 8 ta. (6.1.13)

The computation of confidence limits using (6.1.10) and (6.1.13) will
be illustrated in Chapter VII.

6.2 An Bupiricel Study for Case 1
In order tc learn more ebout the sumsll sample cheracteristics of

the estimators developed in this paper, we investigated the properties
of these estinators eupirically for Case 1. The computations were done
on the Osk Ridge Hetional Laboretory's sutometic digital corputer, the
Orscle. A more extensive study was originally planned, but it has been
possible to consider only this epecial case during the time this paper
has been in prepsration. HNevertheless, the results reported here will
help in our cvéluatmn of the new procedure.

For Case 1, cbservations 31 3 vere generated in accordance with
the model presented in Secticn 3.1 with the additional specification
that the errore e” be norzelly distributed. Each eu was computed
by first generating sixteen random variastes from a rectangular distribu-
tion with zerc mean and then taking the mean of these veriates. In the
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calculation of the errors, o was taken fo be forty per cent of the mean
expected value of y“ « Then m was allowed to take on the values 1,
2, &, 8, 16 and 32, since, for instance, doudbling m umay also be iater-
preted as halving o? .

The computations were carried out with A teking on four different
values, uamely, fn 2, #fa2, £4n 2 anafn2. Mso, n wes
set equal to 2, 4, 6, 8 and 16. Each of the samples was generated with
T=Kne=2 and witha = 1. S0 eltogether, 120 sets of parameters were
used in the calculstions. The choice of A values, as we ghall see
later, makes it possible to investigate, for instance, the number of
half lives which should be observed in order to accurately estimate the
rate of decay of a radicactive substance. Alsoc, this empirical study
may be extended to any non-zerc value of « , for, under the conditions
of our study, changing o by a given factor would not affect 'i or
its variance, but it would multiply & by that factor end the variance
of © by the square of that factor. For each set of parameters the
calculations were continued until 1024 seamples were generated which led
to edmissible estimates. Meanwhile, the number of inadmissible solutions
obtained was recorded. The proportions of inadmissible solutions, for
all sets of parsmeters for which such solutions occurred, are given
later in Table 18. The distributions of the estimates 2 end A wvere
alsc recorded, as were the sample means and verisnces of the estimates.
The sample means end veriances of /L\ computed for Case 1 sre displayed
in Tebles 7-10 while those for £ are given in Tebles 1l-1h.
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Teble 7

N
SAVPLE MEANS AND VARIAKCES OF A

Case 1: lsé}n 2 = 17329

m ne 2 neb ne=b n =8 o= 16
4 ’f 26860 .215!;7 .1881¢ .18402 «17993
v(d) .obo27 | .01885 | .01208 | .ow01% | .00%65
2 2 28 | asesz | arms | 695 | 17309
v(®) 01876 | .o0932 | .oo691 | .00%28 | .oceT2
4 $ a8k | .amek | .a7ss | .amaeo | 17306
v(d) 00895 | .00532 | .o033% | .o0280 | .o0153
s || % ATTTL | amees | .8y | .78 | .17369
v(3) 00549 . 00280 00176 00135 | .00066
16 X 17845 17296 17269 17369 17345
vi}) 00287 | .o0135 | .o00%% | .o0071 | .co03k
w2 || % arsie | ames | azess | .aree2 | amme
v(®) 00128 | .000635 | .000% | .0003% | .00017




Table 8

A
SAMPLE MEANS AND VARIARCES OF A

case 1: A=zfn2 = 34657

ne?2 nel neb ne=8 ne lb

£ 40387 | 36855 | .7 | 36313 | .3hoes
V() 076335 | 03605 | .02026 | 00776 | .0OTHT
K 38508 | 357 | .3sus | .ssest | .3w76s
v(d) .0b206 | L0159 | .ooo45 | .oo751 | .00366
% 3560 | 7oL | w705 | .3koas | L3469

v(d) 01535 | .00681 | .oov7s | .00360 | .00187
3 ssi0 | @17 | .wvm7 | o8 | .3b7ss

v(}) 00728 | .00368 | .o02s52 | .o0182 | .00089
3 Shos9 | .ksBo | .musss | Lswesy | .mwrst

v(}) 00%2 | o077 | .oom27 | .00087 | .o006
A 3610 34645 . 34806 JIWE6T | 34605

v(}) 00168 | .00090 | .oo057 | .oooks | .oo0e3




Table 9

A
SAMPLE MEANS AND VARIANCES OF A

Case 1: l-gfnﬁ" «51986

n ne2 neb neb n=35 ne=l6
Ll A 56358 | .56557 | 53871 | w26 | L5395
V(%) 20925 | .05588 | .03537 | .c2661 | .01138
2 3 +56561 «Shh2g «ShhE1 52788 | .52270
v 07119 | .023%63 | .01686 | 01265 | .00SkS
v % 53827 | 52156 | .se6oo | .sesm | .seisy
v(}) 02642 | .01182 | .00689 | .00546 | .o02h9
e | % 53017 | .sems | .sesse | .s2205 | .seost
v(®) o122 | .0059 | .00370 | .o0262 | .00136
16 £ 52119 52121 52000 | .52016 | .5217h
v(®) 00505 | .o02;1 | .oo172 | .00128 | .00068
| f 52188 | .seooh | .seoks | .seo39 | .5e077
v .0027% | .00120 | .oo082 | .c0062 | .00033




Table 10

SAMPLE MEASS AND VARIANCES OF X

Cese 1: A= fu2 = .50315

m na?2 nab n=6 n=8 n = 16

1 % « TH0%0 JT57The « THE09 JT2h6h | 70333

| ) aThse | L2672 | Loesr | .omis | .oeo7t
2 | % 5802 | 72593 | T80 | .7us05 | .7oMAL

) .11015 4508 | L0313 02196 | .00911

s || % 73395 | 70627 | JG9991 | 60999 | 69679

v(d) 05005 | .o1929 | .o1311 | 00921 | .oo0k10

s || % 267 | Jeohe2 | JGoook | .7onée | .6oheo

v 01985 | .00856 | .00620 | .oo433 | .00209

6| 4 oz | 60608 | Leosse | .es6oe | 69853

v(}) 00878 | .oou31 | .00280 | .00205 | .00097

2 || & Gogkh | L69mB2 | JGos2 | 69372 | .6o30u

" v ouk9 | .o0219 | .o0u45 | .o0n0r | .ooosk




-
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Teble 1)

SAMPLE }EANS AND VARIANCES OF 2
Case 1: A = %‘»]n 2w ,17329

ne?2 neh ne=6 ne=8 n =16

1.10565% | 1.06526 | 1.02912 | 1.01586 | 1.01211
OTh12 05069 03722 .03112 01830
1.08753 | 1.02247 | 1.00548 | 1.00764 | 1.0010%
03606 .02610 02124 01606 | .00867
1.01895 | 1.00219 | 1.00553 | 1.00650 | 1.00229
02146 .01k 00959 00871 | .00499
1.00557 | 1.00072 | 1.00300 99913 | 1.0021k
- .0112% 00789 00516 00813 | .00215
1.00021 | 1.00151 99986 | 1.00060 | 1.00039
.00610 00358 - 00269 .00211 | .00112
99984 | 1.00100 | 1.00039 99907 | 99947
00277 | .00LTH 00143 00103 | 00037
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Table 12

SAMPLE MEANS AND VARIANCES OF &

Cese 1: A= %2}1 2w 34657

rzs]l ne2 n=h n=6 ne8 n =16
1 S 1.08065 | 1.02595 | 1.01566 | 1.02488 | 1.00466
A 06302 | .05296 | .03621 | .o3b31 | .01486
2 f & 1.0067 | 1.00838 | 1.00822 | 1.00969 | 1.00233
(D) 03876 | .o2585 .OL778 .01h59 | .oo791
|| A 1.00062 | 1.00137 | 1.00026 | 1.00210 | 1.00029
v® 019% | .o1x72 | .oo83h | .oo730 | .00378
8 || 2 1.00285 | 1.00006 | 1.00064 | 1.c026% | 1.00217
W 00049 | .00629 | .ooM58 | .00367 | .00183
16l 2 99806 | .99846 | .93873 | 1.00115 | 1.00163
w2 .00kl .0025% .00223 00176 | .00100
2 & .99755 | 1.00101 | 1.00155 | 1.00086 | .99879
W) .00231 00157 00113 00089 | .000%0
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Table 13

SAMPLE MEANS AND VARIANCES OF A

Cese 1: x-gﬁnz- .51986

m ne=2 ne=b neb ned naelb
1 ¢’§ 1.02012 1.03710 | 1.01548 1.01806 | 1.01606
V(& .05896 03486 | 03745 03047 | .o1469
2 4 1.01659 1.00927 | 1.0238% 1.00997 | 1.00620
6] 03207 02508 | .01885 01394 |  .00698
L 2 | 1.00481 | 1.003 | 1.00344 | 1.00396 | 1.00247
6] .01562 01162 | .00811 00655 | .00351
8 5 1.00647 | 1.00079 | 1.0082% | 1.00225 | 1.00208
v(A) - 0080k 00525 | .00402 00319 | .00180
16 § 1..00029 1.00107 +99955 1.00089 | 1.00231
v(?) .00368 .00277. | .00209 00156 |  .00097
32 2 1.00202 «99972 | 1.00021 1.0023% | 1.00063
v(2) .00193 00151 | .00093 00084 | .0OOHS




Table 1k

SAMPLE MEANS AND VARIANCES OF 2

Case 1: a-lna- 59315

ne2 R neo ne8 ne=16

1.00805 1,0%636 | 1.0408L 1.02354 | 1.01021
« 05597 06306 04506 03784 .0184%4
1.019%3 1.02348 | 1.007h1 1.01605 | 1.01020

<
(=) 3 5:) ad

, <
;)lf,;)

S

.02987 02721 02147 .01619 .00839

1.01249 1,00832 | 1.00566 1,00610 | 1.00461

<
B> >

S

01485 .01193 .00911 L0757 .00384

1.00397 1.,00100 | 1.00256 1.00666 | 1.00099

<
o~
>
N

1.00105 1,0033% | 1.00129 1.00198 | 1.00228

b §> =D

A

<

+00370 00272 00212 .00168 .00091

1.00263 1.0018% | 1.00215 1.00146 | 1.00083

Q>

-3
s

.
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Let us examine the variances in Tebles T-14% to determine the
accuracy of the estimation relative to changes in m and n for
constant A, o and T = Kn. It is important in this analysis that
we keep in mind the dual role of m of either determining the magnitude
of o or of specifying the number of observations taken for each ti'

For example, data recorded for m = 4, instead of being interpreted as
having occurred with ¢ = .%/2pn 2§”'1 . C(y“) and m = 4, could be
thought of as having arisen with o -1: ..g/Qpn 2P§'l & (yi J) and m = 1.
Thus the variances given for m = 1, though quite large, are not alarming
since in this instance ¢ 1is also large. Note that the sample variances
of both /}} and 9 are approximately halved each time m is doubled.

That is, the sample variances of both /1\ and {z\ are inversely proportional
to m . The same appears to be true with respect to n in Tables T7-10
for all the variances given for ')} and in Tables 1l-14 for the variances

of 6\ as n progresses from 8 to 16. Moreover, increases in n up to

n = 8 also decrease the sample variances of Q somevhat, but not
proportionally.

Tables T-14% also indicate the effect of changes in m and n on
the bias of the estimates. The averages ;§ given in Tables T-10 are
predominantly positively biased, as would be expected on the basis of
Section 4.3. 1In fact, only fifteen of the 120 averages reported in
Tables T-10 are negatively biased. Furthermore, in each table the bias
is greatest for small m and n and it tends to decrease with increasing
m and n. The same trend is noticeable in the averages é recorded

in Tebles 11-14, where only twelve of the 120 averages are negatively



biessed. This is not swrprising, for a positive biass in Q nakes
exp. (X t,) negatively biased and can be coupensated for by a positive
bies in the correspomding A

Now that we heve investigated the effects of changes in m end n
on the estimates for Case 1, let us analyze Tebles 7-14 with respect to
changes in ) . Comparisons smong these tables show that the positive
bmorfbecmsmonmnmoedas A increases. The same is true
to a lesser extenmt for %, even though the sample variances for & tend
to decresse es ) increases, at least until A=gfn 2, vhere in soue
instances the downward trend is reversed. On the other hand, increasing
A m:mwwtiomofmatwmmmamamumimor’i
in every instance., However, of more interest than changes in the actual
blas &nd sample veriance of % with incressing A are the effects on
both the bias and the stenderd deviation of 2 relative to A. Teble 15,
vhich hes been computed from Table 8, indicates the magnitude of these
stetistics for our stuly. By comstructing similer tables from Tebles 7,
9 end 10 it can be shown that relative bies of A is reduced for small
m and n as )\ dncreeses. But es m and n become large, the relative
blas of % decresses more repidly for smell A then for large A.
Furthermore, the standard deviation of A relative to ) decreases as
A becomes larger.

If ) 1s increased, E,(yu) w o exp. (=A t;) becomes smaller,
and the e“uemmmmmmmmmalhr.
Thus we might expect the variation in % not only to be lees relative
to A for large ) f£hen for emall ) , but to also be less in absolute
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Table 15

X  RELATIVE T0 A

m ns=2 nelb neb nw=d n=16
1 bias/A +165 063 036 .08 .008
8.de/2 636 +300 «169 <148 062
2 bies/) J111 «023 013 +017 «003
sed./2A 350 131 079 +063 030
b || bias/x 017 +00% »001 +007 001
s.d./2 130 057 039 030 016
8 bias/A +OL5 005 002 +008 003
8+ds/A +O61L +031 021 015 007
16 || bias/a -+ 003 -+003 -:003 000 +003
ged./A <030 015 010 +007 00k
32 || bias/a -+ 001 -+ 000 00k +000 -.002
s.d./2 +01h «007 00k +O0k 002




value. However, an explanstion of the actual behavior of ,1\ as A

increases may be found by considering the relationship of A and T = Kn.
The caleulstions summrized in Tebles 7-lh were all done with t, renging
from O to b4 , that 4e, with T = 2. Since E(yyy)—> O more
rapidly with incressing 1 for a large A then for o smaller X , an
inerease in M when T ic kept constant tendc to make more observetions
nearly zero amd of little use in the estimation of ) , which is essentially
a rate of decline. Hence, the poorer sctimation obeerved for the lerger
values of X 4in Taebles T-10 way be ceused by a failwe to reduce T as
A is increaced. To investigate this possibility further, let ue study
the effect of changes in T on® eand & vhenboth A end n ave
held fixed.

Suppose in progressing from Teble 11 to Table 14 we regard the
increase in A instesd as an ineresse in T = Kn without changing
either the product A K ore(yu). The y,, will not be changed by
this interpretation becsuse of the way in vhich the ‘U are genersted
in our empirical study. Therefore, neither will € nor the varience of
2 ve changed for any given pedr of m and n values, for the ealeulation
of & from the yyy involves meither ) , K nor ¥. Thus Tebles
11-14 are not changed by the new interpretation. The same is not true
of Tebles T-10, however, for i‘ieinmulymmlto K,
sktag Wbt wrciouon 06 X Entorvety seopewitonsk Sw'2%, Sew fems
Tebles 7-10 we could comstruct new tebles for different values of either
K or T with A ond n held constant. A fev entries which would
appesr in such tables are given in Table 16.
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Table 16

SANMPLE MBEANS AND VARIANCES OF ’)} FOR VARYING T

Cese 1: A=jfa2e 17329

n | a Te2 | Tek T=6 |78
2| @ A 27695 | 7619 | 17986 | .17826
v(}) 00528 | .00188 00129 | .00137
b 16 ' ] «17306 17349 « 17500 «17h20
v(®) .00153 | .00O0MT .00028 | .00026
8 | 5 ATh23 | aThO9 | .aThbe | 17356
v(®) 00280 | .00092 | .00057 | .000% |
16| 2 ' ATHES | 17280 | 7373 | ATAT8
vd) 00287 | .00091 | .00056 | .00055
32| 6 ,§L 17208 | 17403 A7350 | 17376
vi®d) .00050 | .000L% .00009 | 00009




The behavior of X and V(%) 1n Table 16 as T increases is
similar to thet of 2 and V() in Tables 11-14 as either T or X
increases. From these tebles we conclude that 4f m and n are held
constant, an increase in T tends to reduce the sample variance of both
“ ent & w to & certain point, after vhich it appears that st lesst
the variance of 2 inereases and that the bias of both A end 2
increcses. But in sctunl experimentation, an increase in the range of
the ti. is uwsually accomplished by increasing n without keeping T
constant. As we have seen, inecreacing n with T constent tends to
decrease the sampling variances, but it is subject to diminiching
retwrne as n becomes larger. And vhen meking T larger ic accompanied
by inecreasing n , we would still evemtually expect poorer ectimation
with the new procedure. Hemce the results in Teble 7-16 indicate that,
for instance, continuing to cbserve half lives of a decaying radioactive
subgtance will yield better estimates for a Case 1 model at first, but
only until the observetions level off near zero.

In addition to otudying the effects of changes in mw , n A end
- 4 ona, 9 and their variences, let us compare some of the small
sample variances reported in this sectiom with the corresponding asymptotic
variances given in Section 5.%. Teble 17 presemts several pairs of
variances, and in the calculation of the asymptotic veriance in each pair
02 was computed in the monner preseribed for our empirieal study.
liote the closce sgreement of the small sample variences with the respective

asymptotic variancec.



Table 17

A COMPARISON OF ASYMPTOTIC AND SMALL SAMPLE VARIARCES
mul,Tna, 1- 932
¢ =k mean C(yu)

' = 2 nelb = 8
k v v | v® T v | vd T v

2 Asymptotic |.02411| .0%320| 01087 | .01660 | .00679 | .00830
Smell Semple|.01485| 05105 | .01193 | .01929 | .0075T | 00921

.18142| Asyuptotic |.00706 | .0L660 | 00544 | .00830 | +0O340 | LO0KLS
Smell Semple|.00739| 01945 | 00552 | .00856 | 00358 | 00433

" | Asymptotic |.00353| 00830 | .00272 | .00415 | 00170 | 00208
Small Semple|.00370| .00878 | .00272 | 0031 | .00L68 | 00203

The sample means and veariasnces of Tables 7-;17 have helped describe
the small sample distributions of X and & for Case 1. To further depict
these distributions, the sampling distributions of /l\ ebout A and of
? ebout o = 1 were recorded for each set of paraweters. For both
estimates intervals of 1/64k were used with sixteen intervals on each
side of the parameter in question. It would not be feasible to present
each of these distributions here, but some of them are given in Figures
1l and 2 to illustrate the effect of incressing m and n on these
distributions. These figures indicate the approach of these distributions
to normality as either m or n grows large, a result demonstrated

analytically in Chapter IV.
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To complete our discussion of the empirical sampling study for
Case 1, we need only look at the proportions of inadmissible solutions
obtained during the caleulations. For Case 1, an inadmissible solution
occurs vhen Yp & Y, , ac mentioned in Section 5.6. Also, as stated
before, the inadmicsible solutions reported here occurred while 1024
admiscible solutions were being computed for each set of parameters.
Table 18 includes all the inadmiseible solutions yielded by the empirical
wvork for Case 1. The results given there are encouraging because in
only one instance is there an entry for ¢ < 0.14142 times the memn
expectation of y“. However, the table indicates that under owr Case 1

model vhen the are normally distributed, the new ectimstion

|
procedure will prodi:e inadmissible solutions with a fairly high
frequency vhen )\ 412 sumll relative to 7.

The empirical sempling study for Cace 1 discusced in this section
hes reflected favorsbly upon the new ectimation procedure. Yet from
thisshﬁymeamotinferthatthemmmmhawamwnrum
general cases of owr model. For instance, as the number of terms in the
model increaces more necessary conditions must be satisfied in order for
a solution to be admiscible, so we would expect e higher frequency of
inadmiscible solutions. However, this cempling study does indicate

that the new procedure i:c adequuate vhen its model is applicsble.



PROPORTIONS OF INADMISSIBLE SOLUTIONS FOR CASE 1

127

Table 18

o
S
o

n n 5, s %}5 5] xm %ﬂh 2 5 o= %.Qn 2 3 s

1 2 192 .038 .011 .002
L 116 .015 0 0
6 .06k .002 0 0
8 .057 .001 0 0
16 .003 0 0 0

2 2 215 .015 0 oV |
Ly .038 0 0 0
6 .019 0 0 0
8 .008 0 0 0

i 2 .051 0 0 0
L .007 0 0 0
6 .003

8 2 .006
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VIi. [EXTENSIORS AND ILLUSTRATIONS

T.1 Extensions of the liodel

The model in Section 3.1 was formulated so that it could be
realistically applied to meny problems involving exponmential fitting,
and yet it was restricted sufficiently to make the development of the new

estimation procedure relatively simple. However, there are seversl useful
extensions of the model which require only minor slterations of the
estimation procedure. Some of these are indicated in Section 3.1, vhere
several assumptions of the model are declared unnecessary as far as the
estimation itself is concerned, but either are necessary in order for
certain properties of the estimators to hold or else are necessary to
meke the model conform to the experimental situations to which it is most
often epplied. In this section some additional extensions of the model
will be proposed.

The first extension results from removing the requirement that
all the ) be real. As pointed out by Willers [31] , there are some
situations in which complex exponents are meaningful. Then the model
fitted can conveniently be represented in terms of sine and cosine terms
as well as exponentials, thus giving & new model to which the new esti-
mation procedure applies. Another trivial modification of the model
consists of using a positive nmumber other than e as the base of all
the exponentials and logarithms in this paper.

As stated in the introduction, the estimation can also be carried

2

out vhen the e,, are not homogeneocus. And whern o varies only from

id



group to group, the limiting distributionsof Chapter IV are still wvalid
if a slight chenge is mede. In this instance, the expreseion (4.1.8) for
the asymptotic veriance of an estimator for n large becomes

V('O\) = z .i Gi ) (701:1)
q

th

8 is the varisnce of the cbservations in the q group, and

a
(4.3.8) is similerly affected. When estimstes aﬁ ere substituted for

the "g in (7.1.1) and vhen all of the 52 have the same number of

vhere o

degrees of freedom, we may assign thet number of degrees of freedom to
V(e) + But the developments of the next persgraph will make it possible

for the sﬁ

to have different nmumbers of degrees of freedom in accordance
with an extension of our model. In this cese, we shall be conservative
and assign to Y(O\) the smallest of these degrees of freedom.

The new procedure can be further extended to & model in which en
unequal number of observations are made at some of the points ti'
In fact, it is only necessary that the number of cbservations be the same
within any given group. Suppose in the procedure as
vhere the

for all of the ti

developed in Chepter III we let J range from 1 to mq,
subseript q denotes one of the 2p groups as before. Then, if we
replace each sqby Bq/aq and let m = 1, the development in

Chapter III spplies to this formulation. Although this extension
increases the applicebility of the new method, its use also requires

move care in the planning of en experiment. Freviously, if en experimenter

wanted to use the new procedure without introducing any epproximations,
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he had to take cboervations at a preseribed nmumber of points. Yet, for
instance, if he took observations st twelve points, he could attempt to
fit either 2, 3, 4, 6 or 12 expouential terms with these ocbserve-
tioms. But if he utilized the extension of the model presented in this
paragraph, he would be restricted fwrther in choosing the mmber of terms
to be fitted.

The final modificotions which we will suggest here concern the
constant o in the Case 6 wmedel. Instesd of remaining constant through-
out an experiment, % could for fnstance be s function of tx. In most
experinental situastions this would mean that Ay varies with time and
would lead to the model

At
yidgaoi"'é%‘)xi*'id.

Unless were a periodic function with period n , this wodel would

0l
complicete the new procedure considersbly. Yet a solution appears to be

feesible in some instances.
Instead of varying with i , %o eould refl et, say, block
effects vhen an experiment iz carried out with several animals. That is,

%9 could be a function of J , meking

Nty
yij-aoj‘fzgak' +.iJ.'

This formulation would not change the estimation sppreciebly since the
m
constant term ng o4 would be included in every sum S . Another
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possible extension along this line would be the inclusion of block, time
and interaction effects in the model. This would of course unduly
complicate the estimation with the new procedure except perhaps in special

cases.

7.2 Approximations to the Model
In order to utilize the new procedure it is often necessary to

make approximations. Sometimes the ti are not spaced in eccordance
with the model or else they cennot be divided evenly into 2p groups.
In some such situations & few interpolations or extrapolations will
supply the missing data and meke it possible to epply the new method.
This is done in the examples in Sections 7.4 and 7.5. Also, an
experimenter sometimes takes his data at unequsl intervels in such a way

that when the ¢, are divided into 2p groups of length T , n varies

i
from group to group. In this instance & sum sq may be formed as usual
for each group. Then a solution may be carried out as if nq instead
of n changed between groups without altering the product mqn for
any groupe. This latter approximation is rather crude, but interpolaticns
and extrapolations such as those suggested at first often do not weaken
the estimation if they are few in number relative to the number of
observations.

A useful epproximation is also aveilsble when m varies not only
from group to group, but for ti within the same group. In Section 7.l
we sav that, when m changes only from group to group, Bq/uq ney be
substituted for Sq in the solution in Chapter III with m = 1.

Similarly, as an approximation we may sverage the observations i3 for
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each point ¢, wvhen m varies within a group. Then these averages msy

i
be substituted for the yu in the new procedure with m = 1., In this
instence, the varience 02 in the basic model is a variance of means and
varies from one observation point to another, and this should be taken

into account in the computation of 02.

7.3 An Illustration for Cese 1
In this section the new estimation procedure will be used to fit

& Case 1 model to the data from an experiment conducted by Paul Urso in
the Biology Division of the Oak Ridge Nationsl Laboratory. Mr. Urso mede
nucleated bone marrov cell counts on mice both before and after X-irradiastion
of 900 roentgens. These counts are reported in Table 19, with those
made before irradiation recorded for zero days after irradiastion.

After plotting the averages given in the last row of Table 19, the
experimenter suggested that the data be fitted to a single exponential,
that is, to 2 Case 1 model. Since this entails the estimation of only
two parameters by the new procedure, we shall pertition the data of
Table 19 into two groups, with the counts for days O and 1 in the first
group and those for days 2 and 5 in the second, and hengée n = 2.

Also, since the interval between successive series of cuvunis is one day
in each instence, K = 1. The number of mice for which counts were

made varies within each of the groups, so we shall follow the recommenda-
tion made in Section 7.2 of replecing the observed counts ;r,'.1 for any
i , that is, for any day, by the average yu for that dey and by
letting m = 1 in the estimation equations. The average daily counts
ere given in the last row of Table 19. From these avereges, using
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Table 19

BONE MARROW CELL COUNTS OF X-IRRADIATED MICE

Days after X-Irradiation

0 1 2 3
11,137,200 3,062,000 437,000 96,250
9,418,750 5,075,000 766,666 112,500
10,267,500 $,050,000 1,087,500 237,500
12,487,500 3,312,500 368,750 75,000
Bone 11,700,000 2,775,000 1,206,250 150,000
Marrow 10,023,750 1,058,750 500,000 90,000
Counts 12,062, 500 2,000, 000 85,000 100,000
10,437,500 3,475,000 416,666 118,750
2,675,000 450,000 162,500
737,500
281,250
756,250
Averages 10,944,375.0 2,942,583.3 %91,111.0 | 126,944.0
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(5.,.1) m (30502)’ ve m

8, = 10,044,375.0 + 2,942,583.3 = 13.8870 x 10°
8. = 591,111.0 + 126,9“&.0 = 007181 b 4 106 .

e

Then (3+5.3), (3.5.4) end (3.5.5) yield

9--:%%% - o00a|L

L4

Tw -%,Qn 0.0517F = 1.h811 ,

2
#. (- 0.2970) (13.8070) 2202 )5 x 205 .
13.1689 x 10

Note that in the calculation of & for this example

Mo

= exp. [- (- %fnﬁ)] = e, (D)

end can be found merely by looking up /)} in tables of the negative

exponential function.
Now we may represent the data from Mr. Urso's experiment by the
estimation equation

9“ = (11.3143 x 106) 3-1.5811 %
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Frou this equation the following predicted values may be computed:

?0 e 11343 x20°
9 = 2.,5728 x 106

1 . ’
5»‘2 s 0.5850 x 10° ,
’y\s e 0.1330 x 10° .

It is a general feature of the new procedure that sums é\q calculated

from the yw equal the sq computed earlier from the experimental

data. 50, as a check on our computations, we compute

Ql = (11.3143 + 2.5728) x 105 = 13.8871 x 106 R

Qa L (0.”% + 001350) x 106 = 0-7180 - 4 106 »

and note that /S\qusq,q-l, 2, within the limits of rounding errors.
Then, as a measure of goodness of £it, we calculate

j.o A, - 72 -[(.5699)2+ (+3698)° + (.0061)% + (.oosna]xwm

= 0.2757 x 102 . (7e3.1)
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This sun of squared deviations of the means from the regression will be
coampered leter with similsr sums computed for other methods of estimation.

Next we should like tc estimate the veriances of X end 2 , but

in order to de this we must first compute an estimate 82 of the variance

of the average count per day. Using (6.1.4), we compute sample variances
of counts within each day to obtain

1157.599 x 100 , 1178.785 x 10° , 108.015L x 10° , 2.5032 x 10°

fordeys 0, 1 , 2 end 3 vrespectively. The corresponding sample
variences for the averages ere

= 144,700 x 10°

2 . 130976 x10°

= 9,001 x10°

2 = -278!109 ’

with 7, 8 , 11 end 8 degrees of freedom respectively. All of the
latter sample variances may be pooled to form

Ba = 63.”7 x 109 (70502)
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with 34 degrees of freedom. However, sg and especially .§ are quite
a bit smeller than -g end & . Therefore, it would seem reasonsble
2

to sssume thet o 1is homogeneous only for yu in the same group and

to compute esymptotic veriences for % end 2 es indicated by (7.1.1).

Further support for this spproach is furnighed by the deviations from

regression used in the celculation of (7.3.1). For an estimate of o®

frou the first group we pool 32 and 32

0 1toobt:1n

62 (1) = 137.381 x 10° (7.3.3)

2

with fifteen degrees of freedom while for the second group from &,

2
3

and
8, WwWe calculate

62 (2) = 5.328 x 10° (7.3.5)
vith nineteen degrees of freedom. Veriance estimates for A end 2
vill be computed using both the estimate (7.3.2) and the estimates
(7.3.3) end (T.3.4).
How let us estimate the asymptotic variance of /)’ by equation
(4.2.15). For nq, =1, 2 , wve take the meen Y = sq/m. Hence
in this example we let

’71 = % (13.8870 = 106) = 6.9435 x 106 ’

7'2 - % (0.7180 x 106) = 0.3590 x 106 .
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Substituting these estimates of the g along with the estimate (7.3.2)
of o= 4n (4.2.15) end dividing by mn , since we vamt the varience of

Y tnstead of /m '3, we obtain

V(ﬁ = Otm .

Similerly, if we use (7.3.3) and (7.5.4) to estimste of‘; ,a=1l, 2,
substitution in (7.1.1) ylelds

v(®) = c.o0882 .

Taking the squere roots of these variances, we compute the standard

deviations

8.8.() = 0.2487

when 5= 4s calculsted from all the cbservetions and

8.d.(%) = 0.0743

vhen o

is estimated separately for each group.
To compute asymplotic variances for 2 we first evaluate the
corresponding a_ , defined by (4.1.9), by substitution in (4.2,16). For

q
this example,

ﬁl'lcm » %-2.9192 »

2

Then, using the overall estimste (7.3.2) of o , we have

V(&) = Lo (o2« B)s® = smmr 2200
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On the other hand, the estimates (7.3.3) and (7.3.4) lead to
A l1.2 2 2 2 9
v(@) = — [al 8 (1) + as 8 (2)] = 240.437 x 107 .
The corresponding estimates of the standard deviation of 6\ are
0.6097 x 106 and 0.4903 x 106 respectively.
The standard deviations we have Just computed are those that

2 4 (6.1.12).

would be caleulated by substitution for a(% by A:‘:)
Hence we may quickly apply (6.1.12) to cobtain ap:roximte confidence
intervals for A and o . Using the five per cent level of Student's
t-statistic, vhich for 34 degrees of freedom is 2.032, and using standard

2

deviations calculated with s~ computed from all the dats, we computc

the 95 per cent confidence intervals

0.9757 & » £ 1.9865 ,

10.0754 x 106 £ a £ 12.5532 x 106 .

N

The corresponding confidence intervals computed using group estimates

of 02 and the five per cent level of Student's t-statistic with 15

degrees of freedom, as recommended in Section 7.1, are
1.3228 £ A & 1.639% ,
6

10.2695 x 1065 a € 12.3591 x 10~ .

These sets of confidence intervals illustrate the need for making realistie
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agsumptions sbout 02, that is, for not assuming that 02 is homogeneous
throughout an experiment vhen in fuct it varies from group to group.

The date in Table 19 afford us an opportunity to compare the new
procedure with the other methods of fitting mentioned in Chapter II. An
application of Prony's method, as given in [30] ;» to the averages
displayed in Table 19 lecads to the estimates 1.3314 and 9.3622 x 106

for ’L\ and {1\ respectively. These estimates in turn yield

5
L Gy -7)% -2 x20®

The 'peeling off" procedure, which for Case 1 reduces to fitting the

logarithms of the observations to a straight line by least squares, gives

A -1.se01 , &=11.3500 x 10°
5 (91 - ?1)2 - o.m x 1012 .
1=0

Finally, the iterative Deming procedure leads to least squares estimates

Aa1.35% , &-10.9609 x 10°

with

3
Z (91 - ?1)2 = 0.0551 b 4 1012 .
i=0

These would alsc be the maximum likelihood estimates under assumptions

of normality. HNote that the sum of squared deviations of the means from



1kl

the regression given earlier by (7.3.1) for the new procedure is, next
to that for the Deming least squares method, the smallest of those

computed in thig scction.

7.4 An Illustration for Case &4

The new estimation procedure has alsco been used to analyze the
date from some physics experiments at the Oak Ridge National Leboratory.
In one of these experiments Dr. Marvin Slater placed cylinders of
paraffin between a neutren souce and e polyethylene~ethylene proporticnal
counter and then he recorded the amount of radiation transmitted to the
counter through paraffin cylinders of different lengths. The counts he

made ere reported in Table 20.

Table 20
Neutron Counts for Different Lengths t4 of a
Paraffin Cylinder

ty 0 e ; i 8 | 12 16
Counts 67.9 | 36.3 | 17.2 | 8.2 | 3.5 | 2.

In this experiment there are two ways in which radiation cen be
trangmitted to the counter. One is directly through the peraffin and
would be expected to be exponentially related to the length of the
paraffin cylinder. Scattered radiation reflected from the walls and
other surroundings would alsc reach the counter and would be expected
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to be constant. Therefore, a Case & regression was suggested for the
date in Table 20. But this data does not satisfy all the requirements
of our Case 4 model, for all the increments in the lengths of the paraffin
cylinder are not equal. Two approximate solutions were tried however.
In one the count for ¢; = 2 was discarded and a value for ty = 20 of 2.6
wag extrapolated from a plot of the logarithms of the data so that the
number of ty would be an integral multiple of three, the number of
perameters. Thus, in this solution, K = 4 and n = 2. Since interpola-
tion is more apt to be accurate than is extrapolation, interpolated counts
for ty = 6 , 10 and 1h vere used in another somtio;i?c 2and n = 3.
The first of these alternative estimations resulted in the smaller sum of
squares of deviations from regression of the six original observations,
and therefore we shall present that estimation here.

The first step in the estimetion, wvith m=p =1, n = 2 and

K =4, is to compute
8, = 67.9 +17.2 = 85.1 ,
8p = 8.2 +3.5=1.7,
S3 = 2.8 + 2.6 = 5.4
from (3.6.2). Then (3.6.12), (3.6.13), (3.6.1%) and (3.6.15) yield

A (11.7 - 5.&)
X = -
(85.1 - 137}

-~ 0-035851 f]
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=% fa c.ossen = 0 z0602 ,

A (85.1)(5.4) - (.7)?

= , = 2,404,
aé 2 [85.1 - 2(11.7) + 5.4]

A (85.1 - 11.7)° [1 - (0.085831)
= — =
[85.1 - 2(11.7) + s.h]

= 62,099,

Hence the regression equation is

-~ 030692 ty
N = 2.40b + 62,099 e

| A
D= 6450, B =36.02,%, = 20.60, ¥ = 7.73,

Do = 39T, Dg = 2.86, 5, = 254,

In order to check our calculations, we use the ¥y to compute

/S\l = 85,10, /8\2 = 11.70 and QB = 5.40 vhich agree exactly with the

sq computed earlier. Also, we ﬁhd that the sum of sguares of deviations

from the regression of the observed y; , including y, , is 25.6438.
Hext let us cstimate 02 » the variance of the counts in Table 20

under our Case 4 model. Since only one observation was taken for each

ty, we must use the mean square deviation of the observations yy from
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the corresponding regression values, y; , to estimate 02 . This
mean square, calculsted using both yp and y,,, equals 7.8825 and
has three degrecs of freedom since there are thres parameters to be
estimnted with six original observations.

Varionce estimates for Q » 'c}u and Ql, may now be computed
from the asymptotic variance formmlas given in Section 4.2. For ';),

substitution of Sq/m = Sq/z for 1 q=1,2, 3, glves

qa ’
uy = 0.00341, tn = -.04309, 8y = 03968,

Then substituting these values and e 7.8825 in equation (4.1.8),
which gives the zsymptotic variance of v mn 6: - A), and dividing by

m = 2, we compute
v(x\) = 0.013566.
Similarly, (4.2.19) and (4.2.20) in conjunction with (4.1.8) yield
V(A (A
o) = 5.80988, V(o;) = 29.80689.
From these variances we calculated the standard deviations

G.d.(i) = 00116"7, s.do(%) - 2-“1057, Bodo(cl) - 50&59570
As in the example in 8eetion 7.3, these standard deviactions may
be substituted in (6.1.13) to obtain epproximate confidence limits. The

95 per cent confidence limite computed in this way are

-0.06369 £ A £ 0.67753
-5.266 £ a; £10.074
X

k. 727 o £ 79.471.



145

These limits are too wide to be of any use vhatsoever., Moreover,
computation of 95 per cent confidenece limits for A using (6.1.9)

and (6.1.10) gives
0.01622 A €00,

Inspection of equation (6.1.9) shows thet the upper confidence limit
for ) computed from that equation will ususlly be OO when s© is
large. In fact, all the extremely wide confidence limits calculated
in this section result from an inordinately large estimate of ca .

To complete this illustration, let us again present estimates
caleculated by some other estimation methods. To apply Prony's method
to a Case 4 model we first form Y] =¥y = ¥y 1=20,1, 2, =<,
in-2. The :,vi would be expected to follow a Case 1 model and may be
fitted by the Prony method as outlined in Chapter IX. Then the Case b
estimates for the ¥y may be computed from the Case 1 results obtained
for the y; . This extension of the Prony method to Cese 4 is similar
to that given for the new procedure in Section 3.6. The estimates

yielded by the Prony method for this example are

Q = 0‘15182‘&, Q} = "5.632’ Ql - 105.006.

In this example aOZ,O, and therefore we shall take@on()aa
the Prony estimate of 0. To apply the "peeling off” procedure to
this illustration we must first assign a value to 6\0 o If we let

Q) = 2,404, the estimate calculated by the new procedure, the estimates
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of X and @ yielded by the "peeling off" method are
A = 0.32099, B = 62.5719.

Finally, the third iteration with the Deming method after inserting the
new procedure estimates as initial estimotes gives corrections -0.00021,
~0.076 and 0.01135 which, when added to the products of the second
iteration, yield estimates 0.35258, 2.836 and 65.26) respectively for

A, Qg and o . In both this example and in the one presented in
Section 7.3 the Prony meibod apparently gives us good an estimate of A
ag the nev procedure does, but the new procedure results in more
reagonable estimates of the a . The sums of squares of the deviations
of the y; from the ?1 are 16.9220 and 7.7837 for the "peeling off”
and Deming procedures respectively. Such a sum of squares was not

computed for the Prony method because of its negative estimate of of.
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7«5 An Illustration for Cese 2

As a final illustration of the new estimation procedure we shall
apply it to the data in Teble 21. The logarithms of frequencies given
there describe the distribution of background pulses generated in e
proportional counter by neutron interaction with wells and gas plus pulses
due to circuit noise. The experiment was conducted by Dr. M. L. Rendolph
at the Ouk Ridge Nationsl Laboratory. No counts were made for pulse heights
of 14, 26, end 20 and those displayed in Teble 21 for these pulse heights
were obtained by interpolation. A plot of the data suggests a Case 2 model
and therefore that is the model we shall attempt to fit. This example will
not be studied as completely as were those in Sections 7.3 end T.%, but only
encugh calculations will be carried out to illustrate the general approach
given in Chapter IV for the computation of asymptotic veriances.

There are sixteen evenly spaced ti in Teble 21 with an interval
of two between successive ti andmnmmﬁrparmurstobeeatimted,
850 K=2 end n =4, Also, only one logerithm is recorded for eech t
80 m=1 . It can be shown thet substitution of these values along with
the date in Table 21 in the estimation equations derived for Case 2 in
Section 3.5 ylelds

81-18.600 » By =227 , 55-0.158 » 8 = 0,001 ;

A
%'1-&57 » %'0-%073 g'OQw}O » ’1\2-0.%17 H

Ql.'o.m ? %-0.}582 ; ano-ozl’l ? {!\2¢9.3977 .
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Teble 21

Logarithns ¥y of Frequencies of Pulse Heights ti
Generated in a Proportional Counter

% Yy

0 10.430

2 k. 703

b 2,321

6 1.140

8 0.615
10 0.325
12 0.170
1k 0,117
16 0.050
18 0.040
20 0.046
22 0.022
2k 0.036
26 c.021
28 0.018
30 0.016
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Let us use these results to estimate the asymptotic veriances of ()\1,
QE,GI and Qe epart from the estimetion of o- .
In the general procedure for computing asymptotic variences it is
£irst necessary to evaluate the af-‘,‘/?’xr‘l glven by (§.2.12) in conjunction
with (4.2.3), (4.2.4) and (4.2.8) through (4.2.11). From these equations

it follows that

wé' 8(% » ¥)
Ea— Qk . - '-'l———'—-_"\ F] (7'5'1)
a g&lx » ¥)

vhere for Case 2

’ (7.5.2)

a(f =2 -8 . (7.5.3)

In all of these equations and in the rest of this sec%ion, k=1, 2 and
q=1, 2, 3, 4 for Case 2. Using (7.5.3) and the estimates alreedy computed
for this exanple, we find that

6 (% » 1) = 09223 , g (R, 1) = -o09225 .

But to calculate the 3-3- g(lx\k,!),m&mmtormm\ntmn
q
of (7.5.1), wmnmmtmﬁr/azq .
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q q ’
Y, - LY. J
g..u_,:;.z._g ,
LYz - X 9y

A LY - g
32--—2——,‘—% = -2 3
LY, - Y 9
vhere we define
31-!115-1@ SRS 2 T A I 35-22!h-Y§ .

Then differentistion of /E\l and /5\2 yields

£1 9y Yy, = Jo¥5
X °

» 2

& -,
M
1

A ZQ‘
X, - ¢ PRl
2 2 32
1

A
®, a9y, -y R, -2 aYs - 3%
T T A
1 1
A A
e O ®w
O LA
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For our example Yq = sq/h « Therefore,

71-#.6500 ? !2-0.3& » Y ‘0-0’95, thOOW ’

3

Jy = 0.08955 , Jy = 0.09390 , .15 = 0.005435 ¥

From these !q and Jr values we compute

BQJ. aﬁ\2

a; = 6.75“‘ s E; = 006705 3
A

‘;!%; = - 3.9701 F} ;’i’ = - ,“0055“ )

ﬁ = 5l. & = .ll260 .

37; 51.9263 2 a: 3

Tow we have everything at hend to compute the ag(/:;,!)larq es
given by (7.5.2). Then substitution of these quantities and the g (% , ¥)
previously computed into (7.5.1) for our example ensbles us to compute

N\
= - 0,1926 , ﬁ;c-0.0lﬁlb :

S8
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A e,

£ = 0027”
A RA ’

& oy

a; = 001375 » ﬁs‘ m - ,‘.1077 »

& 5

a-.z-;-ﬂ.GB” » E;;‘Oomo .

For the %, the e of Theorem 1 as defined by (4.1.9) may now
be calculated by substitution in equation (4.2.13). In this way for /)}1
we compute

e = 0.02449 , &y = - 0.8217 , a, = 0.0LTAT , &) = - 6.%657 ,
A
and for 12 we calculate
ﬁ'o-om’.2-‘005”1,.3-8032*6,.,‘--00m .

Then substituting in (4.1.8) snd dividing by mn = 4 eince we want the
variance of the /); instead of the ,/m(;\\k-).k),newpntc

v(d) = 0.9t 6%, v(§y) = 17,8633 6% .

q
corresponding m!q,thu-muntinstho ék as
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p §
3 a1 - IR, - 1)
1-85)E, -8)

A o1 - 92%)(!2 . x,_Q_L)

TR, -R)

Then by differentiating the expression for the {’\1 and by referring to

(k.1.9), ve find thet for £ ,

1
8 .;% en(1-9)% (% -2 { a-2)& -5 [(1 -2y,

oY oY i,
A1 2 1An
+ %, a-!-q - E;) - (Y].Qa R Y et ay'q)]

1
-1 -915)(!192 - ra>[(1 -2

Similerly, for 6\2 ,

B} ) R
8y = ;% = n(1 - %@, - &7 {(1 - B, - ’:;)[(1 -%)(af -1,

1-1
o, R &2)]
oy

A 1
- B?q‘) - (5 - 1R)ER,

#,

%,



=]

A
p ! Bx‘a %
- -, - ’31’[(1 2 ) - -5 5
q q

All of the quantities needed to evaluste these derivatives have slready
been calculated, so from (7.5.3) and (7.5.5) we compute

nl-0.0168,12~~0.551’6,a3-20-6095,lh-~5.261b7
ror{z\l and
61-2.55'60.ae-—T‘u79,03-76-2966,a,‘-~1.9009

for ‘/"“\2 + Then sudstitution 1a (4,1.8) and division by mn = 4 as before
for the /l; yields

V(&) = 108.9630 & , "“,"\2) = 1470.5930 s .

An estimate '2 of u2 may be found in the same menner as it wes

in Section T.k, and it can be shown to equsl 0.03997. Then the following
standerd deviations way be calculated:

..d.‘Aﬁ) = 0.6614 » .Qd.(g) = 008,55 ?

8.4.(0)) = 2.0869 , s.d(my) = 7.6665 .
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VIII. SWMARY ARD CONCLUSIONS

A new estimation procedure has been developed in this paper for
a model specifying & linear combination of exponentials with data taken
at evenly spaced points, and for that model with a constemt term added.
Besides the derivation of the estimation equations for the new procedure,
the distributions and stetistical properties of the resultant ectimators
wvere ctudied. It was found that as the muiber of observation points or
as the number of obeervations taken at each such point becomes large,
the ectimators are comsistent and that their distributions approach
normal distributions. It wes also found that the estimators are biased
and generally ineffieient. Then the new procedwre was shown to be optimum
relative to certain similar procedures and conditions nececsary for odmissible
solutions were investigated. Confidence intervals were developed and several
examples plus & sampling swurvey were presented. Extensions of the model for
the nev procedure as well as some approximetions to be used in the application
of the procedure were also suggested.

In the efficiency study it was chown that the estimators yielded by
the new procedure are inefficient relative to the corresponding maximmm
likelihood estimators, vhich may be obtained by iterative methods. The
convergence of these iterative methode is often slow. But the new procedure
iz not an iterative procedure, and its estimates are wuch easier to compute
thar ore the maximum likelihood estimastes. So we conclude that the new
method, vhen its model is realistic, is edvantageous relative to the method
of waximm likelihood if adequate computing facilities are not available
to caleulate maximum likelihood estimates. Also, if it is more practical



156

to take a large number of observations, and thus obtain smell error
estimates with the new method even though it is inefficient, than it

iz to take fewer observations and compute maximum likelihood ectimmtes,
the pevw procedure ic again recommended. In any cace, the new procedure
provides a quick and easy way of computing initisl ectimstes for iterative
maximm likelihood caleulations.

The limited empirical comparisons which have been made between the
nev procedure and other non-iterative, easily applied procedures do not
provide an adequate basis for judging these methods relative to each other.
However, the nev procedure appears to be simpler computationally than the
Prony and "peeling off" methods. Also, if the variance of the cbservations
can be accwrately estimsted, variance estimates for the ectimates from the
nev procedure can be calculated and useful confidence limits for the
corresponding paremeters can be constructed. HHo such measures of error are
in general available for estimates from the Prony and "peeling off"
procedures. Furthermore, unlike those for the "peeling off" method, the
nev procedure calculations do not reguire any Judgment decisions. So if
the model for the new procedwre is eppropriete, thia procedure is in several
respectc optimm relative to the other non-iterative methods discussed in

this paper.



157

IX. ACKNOWLEDGMENTS

The author wishes to express his sincere appreciation to
for his patient guidance and to
for his helpful criticism.

The author is also grateful to » Who typed
wost of the thesis, to » Who helped s and
to » who typed an earlier draft of the thesis.

The research for this thesis was carried out at the Oak Ridge
National Leboratory and was made poscible by a fellowship sponsored
by the Oak Ridge Institute of Ruclear Studies.



2.

e

8.

9.

11.

158

X. BIBLIOGRAPHY

Adtken, A. C., Determinantes and Matrices, Edinburgh and London,
Oliver and Boyd, 1949.

Cramér, H., Mathemstical Methods of Stetistics, Princetom,
Princeton University Press, 1946.

Deming, W. E., Stetistical Adjustment of Data, New York, Joha
viley and Soms, Ine., 19%6, 128141,

Feurzeig, W. and Tyler, S. A., "A Note of Exponential Fitting of

Empirical Cwrves,” Argonne National Laboratory Quarterly
Report ANL-4401, Lemont, Illinois, 1950, 1l4-29.

Fieller, E. C., "The Distribution of the Index in a Normal Biveriate
Population,” Biometriks, 24 (1932), 428-440.

Fieller, E. C., "A Fundamental Formulas in the Statistics of Biologieal

Ascay and Some Appliecatiomns,” Quarterly Jowrnal of Phaymacy and
Pharmacology, 17 (1944), 117-123.

Fisher, R. A., "The Mathematical Foundations of Theoretical Statistics,”

Philosophical Pranssctions A, Royal Society of London, 222 (1922),
309-368.

Franklin, P., Methods of Advanced Calculus, New York and Lomdon,
MeGrew-Hill Book Company, Inc., 1944, 14145,

Garwood, F., "The Application of Maximum Likelihood to Dosage-Mortality
Curves,"” Biometrike, 32 (1941), 46-58.

Girshick, M. A., "Note on the Distribution of Roots of a Polynomial
with Random Complex Coefficients,” Amnals of ical

Statistics, 13 (194%2), 235-238.

Graves, L. M., The Theory of Functions of Real Varisbles, New York
- and London, MeGraw-Hill Book Company, Inc., 1946, 138-140.

Homblen, J. W., Distributions of Roots of Algebraic Equations with

Vorieble Coefficients, Ph.D. dissertation, Purdue University, 1955.




155

13. Householder, A. S., "On Prony's Method of Fitting Exponential
Decay Curves and Multiple-Hit Survival Curvee,” Oak Ridge
Hational Laboratory Report ORNL-455, Osk Ridge, Tennessee,
1949,

1%, Householder, A. S., Principles of Numerical Analysis, New York
and London, McGraw-Hill Book Company, Inc., 1953, 226-229.

15, Hsu, P. L., "The Limiting Distribution of Functions of Sample
Means and Applications to Testing Hypotheses,” Proceedings
of the Berkeley Symposium on Mathematical Statistice end
Probebility, (Auguet, 1945 and Jenuary, 1946), Berkeley end
Los Angeles, University of California Press, 1949, 359-364,

16. Jordon, C., Calculugs of Finite Differencee, New York, Chelsea
Publishing Compeny, 1947, 543-549,

17. Keeping, E. 8., "A Significance Test for Exponential Regression,”
The Annels of Mathematical Statistics, 22 (1951), 180-198.

18, Kendall, M. G., The Advanced Theory of Statistics, Vol, II, London
Charles Griffin and Company, Limited, 1946.

19. Koopman, B. 0., "On Distributions Admitting a Sufficient Statistic,”

Transactions of the American Mathematice Society, 39 (1936),
399-409.

20. Koshal, R. S., "Application of the Method of Maximum Likelihood to
the Improvement of Curves Fitted by the Method of Momente,"
Journal of the Royal Statistical Society, 96 (1933), 303-313.

21, Koshal, R, 8., "Maximum Likelihood and Minimal X in Relation to

Frequency Curves,” Annals of Bugenics, 9 (1939), 209-231.




22.

23.

26.

160

Merrill, A. S., "Frequency Distribution of an Index when Both the
Components Follow the Normel Law," Biometrika, 20A (1928),
53-63.

Prony, A. L., "Eseai Expe’rimnm et Analytique sur les Lois de la
Dilatsbilit¢ des Fluide Elastiques, et sur celles de la Force
Expansive de la Vapeur de 1' Eau et de la Vapeur de 1' Alkol,

/

3 Différentes Tempéretures,” Journal de 1' Ecole Polytechnigue,
Cahier 2 (an IV), 2h-35.

Running, T. R., Empirical Formules, New York, John Wilay and Sons,
Inc,, 1917, 58-61.

Semuelson, P. A., "Conditions that the Roots of a Polynomi al Be
Less than Unity in Absolute Value,” Aunals of Mathematical
Statistics, 12 (1941), 360-36h4.

Smith, R. E. and Moreles, M, F., "On the Theory of Blood Tissue
Exchanges. II. Applications,” Bulletin of Mathematical
Biophysics, 6(19k), 133-135.

Sverdrup, E., "The Limit Distribution of a Contimucus Function of
Rendom Variables,” Skandinaviek Aktuarietidskrift, 35 (1952), 1-10.

Turnbull, He W., Theory of Functions, Edinburgh and London, Oliver
end Boyd, 1947,

Wald, A., "The Fitting of Straight Lines if Both Variables are Subject
to Error,” Annals of Mathematicel Statistics, 11 (1940), 284-300.

whittaker, E, T. and Robinson, G., The Calculue of Observetions,
London and Glaegow, Blackie and Son, Limited, 1944, 369-371.

Willers, F. A., Practical Analyeis, New York, Dover Publicatioms, Inc.,
1948, 355-363.



The vita has been removed from
the scanned document



Abstract of ,

A NEW ESTIMATION PROCEDURE FOR
LINEAR COMBINATIONS OF EXPONENTIALS

by

Richard Garth gornell

Many experimental problems in the natural sciences result in data
which can best be represented by linear combinations of exponentials of

the form

P
£(t) = 2, Mt .
(t) Z o e

Among such problems are those dealing with growth, decay, ion concentration,
and survival and mortality. Also, in general, the solution to any problem
which may be represented by linear differential equations with constant
coefficients is a linear combination of exponentials. In most problems
like those which have been mentioned, the parameters @, and lk have
biological or physical significance. Therefore, in fitting the function
f(t) +to the data it is not only necessary that the function approximate
the data closely, but it is also necessary that the parameters o and lk
be accurately estimated. Furthermore, a measure of the accuracy of the
estimation of the parameters is required.

A new estimation procedure for linear combinations of exponentials
is developed in this paper. Unlike the iterative maximum likelihood and
least squares methods for estimating the parameters for such a model, the

new procedure is noniterative and can be easily applied. Also, in contrast



to other non-iterative methods, error estimates are available for
the parameter estimates yielded by the new procedure.

In the model for the new procedure the points t; at which
observations are taken are assumed to be equally spaced and the
number of such points is specified to be an integral multiple of the
number of parameters to be estimated. Moreover, each observation is
specified to have expectation f (t;) , where f is the function
mentiohed earlier, The coefficients o are agssumed to be non-zero
and the exponents lk are assumed to be distinct and positive. Then
in the derivation of new procedure, the observations are reduced to as
many sums as there are parameters to be egtimated. FEach of these sums
is equated to its expected value and the resultant equations are solved

for estimators of the parameters.

The estimators from the new procedure are shown to be asymptotically
normally distributed as either the number of points at which observations
are taken or the number of observations made at each such point approaches
infinity. The asymptotic variances obtained are used to form approximate
confidence limits for the o and xk « The statistical properties of the
estimators are also studied. It is found that they are consistent, but
not in general unbiased or efficient. Asymptotic efficiencies are calcu-
lated for a few sets of parameter values and a bias approximation is
obtained for two special cases. The new method is also shown to be optimum
relative to certain similar methods and necessary conditions for the new

procedure to lead to admissible estimates are studied.



In the last portion of the thesis a sampling study is reported
for observations generated with a model containing only one exponential
term and with errors which are normally distributed. The small sample
biases and variances for the estimates computed from these observations
are given and the effects of changes in the parameters in the model are
investigated. Then some actual experimental data are fitted using both
the new procedure‘and some alternative methods. The final chapter in

the body of the thesis contains a critical evaluation of the new procedure

relative to other estimation methods.
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