
vSAN SDKs Programming
Guide
VMware vSAN 6.6

vSAN SDKs Programming Guide

VMware, Inc. 2

You can find the most up-to-date technical documentation on the VMware website at:

https://docs.vmware.com/

If you have comments about this documentation, submit your feedback to

docfeedback@vmware.com

Copyright © 2017 VMware, Inc. All rights reserved. Copyright and trademark information.

VMware, Inc.
3401 Hillview Ave.
Palo Alto, CA 94304
www.vmware.com

https://docs.vmware.com/
mailto:docfeedback@vmware.com
http://pubs.vmware.com/copyright-trademark.html

Contents

1 Introduction to the vSAN Managmenet SDKs 4

2 Using the vSAN Management SDKs 5

vSAN Management SDK for Java 5

vSAN Management SDK for .NET 6

vSAN Management SDK for Python 7

vSAN Management SDK for Perl 8

vSAN Management SDK for Ruby 9

3 Setting Up a vSAN Cluster 11

Connecting to vCenter Server and Selecting Clusters for vSAN 11

Enabling vSAN on a Cluster 12

Enabling Deduplication and Compression on All-Flash Clusters 13

Configuring VMkernel Networking for vSAN 14

Claiming and Managing Disks 16

Configuring Fault Domains 18

Enabling the Performance Service 19

Assigning the vSAN License 19

4 Configuring a Stretched Cluster and Two Node 20

Deploying the vSAN Witness Appliance 20

Adding the vSAN Witness Appliance to vCenter Server 23

Configuring a vSAN Cluster as a Stretched Cluster or Two Node 24

5 vSAN On-Disk Format Upgrade 26

Determining the Current vSAN On-Disk Format 26

Performing the On-Disk Upgrade Preflight Check 28

Upgrading with Reduced Redundancy 28

VMware, Inc. 3

Introduction to the vSAN
Managmenet SDKs 1
The vSAN Managment SDKs bundle language bindings for accessing the vSAN Management API and
creating client applications for automating vSAN management tasks.

The vSAN Management API
The vSAN Management API is an extension of the vSphere API. Both vCenter Server and ESXi hosts
expose the vSAN Management API. You can use the vSAN Management API to implement client
applications performing the following tasks:

n Configure a vSAN cluster. You can configure all aspects of a vSAN cluster, such as set VMkernel
networking, claim disks, configure fault domains, enable deduplication and compression of all flash
clusters, and assign the vSAN license.

n Confiure a vSAN stretched cluster. You can deploy the vSAN Witness Appliance and configure an
existing vSAN cluster as a stretched cluster.

n Upgrade the vSAN on-disk format.

n Track the vSAN performance.

n Monitor the vSAN health.

The vSAN Management SDKs
The vSAN Management SDKs are delivered in five programming languages that you can use to access
the vSAN Management API and develop client applications for managing vSAN clusters.

VMware, Inc. 4

Using the vSAN Management
SDKs 2
The vSAN Management SDKs are delivered into five different programming languages, Java, .NET,
Python, Perl, and Ruby. Each of the five vSAN Management SDKs depend on the vSphere SDK delivered
for the corresponding programming language.

This section includes the following topics:

n vSAN Management SDK for Java

n vSAN Management SDK for .NET

n vSAN Management SDK for Python

n vSAN Management SDK for Perl

n vSAN Management SDK for Ruby

vSAN Management SDK for Java
The vSAN Management SDK for Java provides WSDL files, sample code, and API reference for
developing custom Java clients against the vSAN Management API. The
vSAN Management SDK for Java 6.6 depends on the vSphere Web Services SDK 6.0. You use the
vSphere Web Services SDK for logging in to vCenter Server and for retrieving vCenter Server managed
objects.

API Reference
The vSAN Management SDK for Java packs the API reference for the vSAN Management API, which you
can find under the docs directory.

WSDL Files
The vSAN Management SDK for Java includes the vsan.wsdl and vsanService.wsdl files in the
bindings/wsdl directory. You can use the WSDL definitions to build Java bindings for accessing the
vSAN Management API.

Running the Sample Applications
The vSAN Management SDK for Java includes sample applications, build and run scripts, as well as
dependent libraries. They are located under the samplecode directory in the SDK.

VMware, Inc. 5

You can use the sample code to get vSAN managed objects on vCenter Server or ESXi hosts.

Note You must have Python 2.7.13 or higher to run the build.py script.

Before you run the sample applications, make sure that you have the vSphere Web Services SDK on
your development environment, with the following directory structure:

VMware-vSphere-SDK-<version number>-build

 SDK

 vsphere-ws

Then copy the vsan-sdk-java directory at the same level as the vsphere-vs directory in the vSphere
Web Services SDK:

VMware-vSphere-SDK-<version number>-build

 SDK

 vsphere-ws

 vsan-sdk-java

To build the sample applications, run the $PYTHON build.py command.

Finally use the run script to run the sample applications under Windows or Linux:

./run.sh com.vmware.vsan.samples.<sample_name>

 --url https://<vCenter Server or host address>/sdk

 --username <username>

 --password <password>

To get information about the parameter usage, use -h or --help.

vSAN Management SDK for .NET
The vSAN Management SDK for .NET provides libraries, sample code, and API reference for developing
custom .NET clients against the vSAN Management API. The vSAN Management SDK for .NET 6.6
depends on the vSphere Web Services SDK 6.0. You use the vSphere Web Services SDK for logging in
to vCenter Server and for retrieving vCenter Server managed objects.

API Reference
The vSAN Management SDK for .NET packs the API reference for the vSAN Management API, which
you can find under the docs directory.

WSDL Files
The vSAN Management SDK for .NET includes vsan.wsdl and vsanService.wsdl in the
bindings/wsdl directory. You can use the WSDL definitions to build C# bindings for accessing the
vSAN Management API.

vSAN SDKs Programming Guide

VMware, Inc. 6

Building the vSAN C# DLL
You must have the following components to build the vSAN C# DLL:

n csc.exe. A C# compiler

n sgen.exe. An XML serializer generator tool

n WseWsdl3.exe. A WSDL to proxy class tool

n Microsoft.Web.Services3.dll

n Python 2.7.6

To build the vSAN C# DLL run the following command:

$ python builder.py vsan_wsdl vsanservice_wsdl

This command generates the following DLL files:

n VsanhealthService.dll

n VsanhealthService.XmlSerializers.dll

Running the Sample Applications
To run the sample applications, run the following command:

.\VsanHealth.exe --username <host or vCenter Server username>

 --url https://<host or vCenter Server address>/sdk

 --hostName <host or cluster name> --ignorecert --disablesso

To view information about the parameters, use --help.

vSAN Management SDK for Python
The vSAN Management SDK for Python provides language bindings, sample code, and API reference for
developing custom Python clients against the vSAN Management API. The
vSAN Management SDK for Python 6.6 depends on pyVmomi 6.5 which is the Python SDK for the
vSphere API. You use pyVmomi for logging in to vCenter Server and for retrieving vCenter Server
managed objects.

API Reference
The vSAN Management SDK for Python packs the API reference for the vSAN Management API, which
you can find under the docs directory.

vSAN SDKs Programming Guide

VMware, Inc. 7

Python Bindings
You can access the vSAN Management API by using the Python vsanmgmtObjects.py script under the
bindings directory.

To use the Phython bindings, place vsanmgmtObjects.py on a path where your Python applications
import.

Running the Sample Applications
The vSAN Management SDK for Python provide sample applications, which you can find under the
samplecode directory.

You can use the sample code to get vSAN managed objects on vCenter Server or ESXi hosts. The code
automatically identifies the target server type.

The vsaniscsisamples.py and vsaniscsisamples.py depend on the vsanapiutis.py, which
provides utility libraries for retrieving vSAN managed objects

To runt the sample applications, use the following commands:

python vsanapisamples.py -s <host or vCenter Server address> -u <username> -p <password>

 --cluster <cluster name>

python vsaniscsisamples.py -s <host or vCenter Server address> -u <username> -p <password>

--cluster <cluster name

To view information about the parameter usage, use -h or --help.

vSAN Management SDK for Perl
The vSAN Management SDK for Perl provides libraries, sample code, and API reference for developing
custom Java clients against the vSAN Management API. The vSAN Management SDK for Perl 6.6
depends on viperl 6.0 which is the Perl SDK for the vSphere API. You use viperl for logging in to
vCenter Server and for retrieving vCenter Server managed objects.

API Reference
The vSAN Management SDK for Perl packs the API reference for the vSAN Management API, which you
can find under the docs directory.

Perl Bindings
You can access the vSAN Management API by using the VIM25VsanmgmtRuntime.pm and
VIM25VsanmgmtStub.pm files that are located under the bindings directory. To use the Perl bindings,
place those two files on a path where Perl can find them.

vSAN SDKs Programming Guide

VMware, Inc. 8

Running the Sample Applications
The vSAN Management SDK for Perl SDK provides sample applications that are located under the
samplecode directory.

You can use the sample code to get vSAN managed objects on vCenter Server or ESXi hosts. The code
automatically identifies the target server type.

The vsanapisamples.pl depends on the VsanapiUtil.pm, which provides utility library for retrieving
vSAN managed objects.

Run the following sample to test the vCenter Server side API:

vsanapisample.pl --url https://<host>:<port>/sdk/vimService

 --username <username> --password <mypassword> --cluster_name <cluster name>

vsanapisample.pl --url https://<host>:<port>/sdk/vimService

 --username <username> --password <mypassword> --cluster_moid <cluster manager object ID>

Use this sample to test the iSCSI target service:

vsaniscsisample.pl --url https://<host>:<port>/sdk/vimService

 --username <username> --password <mypassword> --cluster_name <cluster name>

vsaniscsisample.pl --url https://<host>:<port>/sdk/vimService

 --username <username> --password <mypassword> --cluster_moid <cluster manager object ID>

To test the ESXi side API:

vsanapisample.pl --url https://<host>:<port>/sdk

 -username <username> --password <mypassword>

To view information about the parameters, use --help.

vSAN Management SDK for Ruby
The vSAN Management SDK for Ruby provides language bindings, sample code, and API reference for
developing custom Python clients against the vSAN Management API. The
vSAN Management SDK for Ruby 6.6 depends on RbVmomi 2.3, which is the Ruby SDK for the vSphere
API. You use RbVmomi for logging in to vCenter Server and to retrieve vCenter Server managed objects.

API Reference
The vSAN Management SDK for Ruby packs the API reference for the vSAN Management API, which
you can find under the docs directory.

Ruby Bindings
You can access the vSAN Management API by using vsanmgmt.api.rb file under the bindings
directory. Place the file on a path where Ruby can find it.

vSAN SDKs Programming Guide

VMware, Inc. 9

Running the Sample Applications
The vSAN Management SDK for Ruby SDK provides sample applications that are located under the
samplecode directory.

You can use the sample code to get vSAN managed objects on vCenter Server or ESXi hosts. The code
automatically identifies the target server type.

The vsanapisamples.rb depends on the vsanapiutis.rb, which provides a utility library for retrieving
vSAN managed objects

To rung the Ruby sample applications, use the following commands:

ruby vsanapisamples.rb -o <host or vCenter Server address> -u <username> -p <password>

 <cluster name>

ruby vsaniscsisamples.rb -o <host or vCenter Server address> -u <username> -p <password>

 <cluster name>

Use -h or --help to view information about the parameters.

vSAN SDKs Programming Guide

VMware, Inc. 10

Setting Up a vSAN Cluster 3
By using the vSAN Management API you can automate the configuration of a cluster for vSAN or you can
configure multiple clusters at a time. The steps for setting up a vSAN cluster by using the
vSAN Management API are similar to the steps that you go through when using the vSphere Web Client.

This section includes the following topics:

n Connecting to vCenter Server and Selecting Clusters for vSAN

n Enabling vSAN on a Cluster

n Enabling Deduplication and Compression on All-Flash Clusters

n Configuring VMkernel Networking for vSAN

n Claiming and Managing Disks

n Configuring Fault Domains

n Enabling the Performance Service

n Assigning the vSAN License

Connecting to vCenter Server and Selecting Clusters for
vSAN
Before you configure a vSAN cluster by using the vSAN Management API, first you must establish a
secure connection with vCenter Server and filter the clusters where you want to enable vSAN

In the below example, first a secure connection is established with vCenter Server through username and
password authentication. Then the getClusterInstance function is called with the cluster name passed
as an argument.

if sys.version_info[:3] > (2, 7, 8):

 context = ssl.create_default_context()

 context.check_hostname = False

 context.verify_mode = ssl.CERT_NONE

 # Connect to vCenter Server

 si = SmartConnect(host=args.host, user=args.user, pwd=password, port=int(args.port),

sslContext=context)

 # Disconnect from vCenter Sever upon exit

VMware, Inc. 11

 atexit.register(Disconnect, si)

 # Connect to a cluster that is passed as an argument

 cluster = getClusterInstance(args.clusterName, si)

Once you have established a secure connection with vCenter Server and identified the cluster, you have
to connect to that cluster. You can reuse the getClusterInstance function across your client application
to connect to clusters where you want to configure vSAN.

def getClusterInstance(clusterName, serviceInstance):

 content = serviceInstance.RetrieveContent()

 searchIndex = content.searchIndex

 datacenters = content.rootFolder.childEntity

 # Look for the cluster in each datacenter attached to vCenter Server

 for datacenter in datacenters:

 cluster = searchIndex.FindChild(datacenter.hostFolder, clusterName)

 if cluster is not None:

 return cluster return None

Enabling vSAN on a Cluster
Once you have filtered the clusters that you want to configure for vSAN, the next step is to enable vSAN
on these clusters.

In the vSphere Web Client, you use the Configure vSAN wizard to configure individual clusters for vSAN.
You must go through the wizard steps separately for every cluster. When you start the wizard on a cluster,
the first step is to enable vSAN.

vSAN SDKs Programming Guide

VMware, Inc. 12

To enable vSAN in your vSAN Management API client applications, you build an object of type
VimVsanReconfigSpec by passing a VsanClusterConfigInfo parameter with the property enable set
to true.

#Build vsanReconfigSpec step by step, it only takes effect after method VsanClusterReconfig is called

clusterConfig = vim.VsanClusterConfigInfo(enabled=True)

vsanReconfigSpec = vim.VimVsanReconfigSpec(modify=True, vsanClusterConfig=clusterConfig)

Enabling Deduplication and Compression on All-Flash
Clusters
For all-flash clusters, enable deduplication and compression when creating the vSAN cluster. If you
create the cluster without deduplication and compression and decide to enable them later on, the process
triggers rolling upgrade that is time consuming and might require a reduced availability.

In the vSphere Web Client, you enable deduplication and compression in the Configure vSAN wizard,
before you claim any disks for the cluster.

vSAN SDKs Programming Guide

VMware, Inc. 13

To enable deduplication and compression with the vSAN Management API, you set the
dataEfficiencyConfig property of the vsanReconfigSpec object with an object of type
VsanDataEfficiencyConfig.

if isallFlash:

print 'Enable deduplication and compression for VSAN'

 vsanReconfigSpec.dataEfficiencyConfig = vim.VsanDataEfficiencyConfig(

 compressionEnabled=args.enabledc,

 dedupEnabled=args.enabledc

)

Enabled/Disable Deduplication and Compression

task = vsanClusterSystem.VsanClusterReconfig(cluster, vsanReconfigSpec)

vsanapiutils.WaitForTasks([task], si)

Configuring VMkernel Networking for vSAN
You must configure every host that is part of the vSAN cluster with a VMkernel adapter that is tagged for
vSAN.

In the vSphere Web Client, you configure VMkernel networking for vSAN on each host individually by
using a standard switch, or you can use a vSphere Distributed Switch for easier and consistent
configuration. In both cases, you must configure the hosts with VMkernel network adapters for vSAN prior
to configuring the cluster for vSAN.

vSAN SDKs Programming Guide

VMware, Inc. 14

When you configure vSAN on a cluster, the Configure vSAN wizard validates the networking configuration
on the hosts. In case some of the hosts is missing a VMkernel network adapter enabled for vSAN, you
must suspend the configuration of the cluster, and set up the host networking for the vSAN traffic.

vSAN SDKs Programming Guide

VMware, Inc. 15

In your client applications, you can set up preselected VMkernel network adapters for the vSAN traffic.

Update the configuration spec for VMkernet хetworking
Enumerate the selected VMkernel adapter for each host, and add it to the list of tasks

 for host in hosts:

 print 'Enable vSAN traffic on host {} with {}'.format(hostProps[host]['name'],

args.vmknic)

 task = hostProps[host]['configManager.vsanSystem'].UpdateVsan_Task(configInfo)

 tasks.append(task)

Execute the tasks

 vsanapiutils.WaitForTasks(tasks, si)

Claiming and Managing Disks
You can add disks to the vSAN cluster during the initial configuration, or you can add them later on.

When claiming disks by using the Configure vSAN wizard in the vSphere Web Client, you can only see
the disks that are eligible, meaning they do not have existing vSAN partitions. vCenter Server filters out
the non-eligible disks and they are not exposed for adding to the vSAN cluster.

For all flash configurations, the wizard assigns the smaller devices as cache tiers and the larger devices
as capacity tiers. In a hybrid configuration, flash devices are assigned as cache tiers and HDD devices as
capacity tiers.

In your client applications, first you can query for eligible disks and optionally clear any existing vSAN
partitions on the non-eligible ones if needed.

Enumerate the ineligible disks

for host in hosts:

 disks = [result.disk for result in

 hostProps[host]['configManager.vsanSystem'].QueryDisksForVsan() if result.state ==

'ineligible']

 print 'Find ineligible disks {} in host {}'.format([disk.displayName for disk in disks],

hostProps[host]['name'])

 # For each disk, interactively ask the admin as to whether to individually wipe ineligible disks or

vSAN SDKs Programming Guide

VMware, Inc. 16

not

 for disk in disks:

 if yes('Do you want to wipe disk {}?\nPlease Always check the partition table and the data stored'

 ' on those disks before doing any wipe! (yes/no)?'.format(disk.displayName)):

 hostProps[host]['configManager.storageSystem'].UpdateDiskPartitions(disk.deviceName,

 vim.HostDiskPartitionSpec())

The second step is to differentiate between the smaller and the larger devices for an all flash
configuration and between the flash and the HDD devices for a hybrid configuration. Then you can claim
the disks respectively for cache and capacity tiers.

diskmap = {host: {'cache':[],'capacity':[]} for host in hosts}

 cacheDisks = []

 capacityDisks = []

For all flash architectures

if isallFlash:

 for host in hosts:

 ssds = [result.disk for result in hostProps[host]

['configManager.vsanSystem'].QueryDisksForVsan() if

 result.state == 'eligible' and result.disk.ssd]

 smallerSize = min([disk.capacity.block * disk.capacity.blockSize for disk in ssds])

 for ssd in ssds:

 size = ssd.capacity.block * ssd.capacity.blockSize

 if size == smallerSize:

 diskmap[host]['cache'].append(ssd)

 cacheDisks.append((ssd.displayName, sizeof_fmt(size), hostProps[host]['name']))

 else:

 diskmap[host]['capacity'].append(ssd)

 capacityDisks.append((ssd.displayName, sizeof_fmt(size), hostProps[host]['name']))

else:

For hybrid architectures

 for host in hosts:

 disks = [result.disk for result in hostProps[host]

['configManager.vsanSystem'].QueryDisksForVsan() if

 result.state == 'eligible']

 ssds = [disk for disk in disks if disk.ssd]

 hdds = [disk for disk in disks if not disk.ssd]

 for disk in ssds:

 diskmap[host]['cache'].append(disk)

 size = disk.capacity.block * disk.capacity.blockSize

 cacheDisks.append((disk.displayName, sizeof_fmt(size), hostProps[host]['name']))

 for disk in hdds:

 diskmap[host]['capacity'].append(disk)

 size = disk.capacity.block * disk.capacity.blockSize

 capacityDisks.append((disk.displayName, sizeof_fmt(size), hostProps[host]['name']))

for host,disks in diskmap.iteritems():

 if disks['cache'] and disks['capacity']:

 dm = vim.VimVsanHostDiskMappingCreationSpec(

 cacheDisks=disks['cache'], capacityDisks=disks['capacity'],

 creationType='allFlash' if isallFlash else 'hybrid',

vSAN SDKs Programming Guide

VMware, Inc. 17

 host=host)

 # Execute the task

 task = vsanVcDiskManagementSystem.InitializeDiskMappings(dm)

 tasks.append(task)

Configuring Fault Domains
If your vSAN cluster spans across multiple racks or blade server chassis, you can logically group the
hosts in fault domains to protect them against rack or chassis failure. You can separate the vSAN hosts
similarly to the way they are physically separated.

In the vSphere Web Client, you can group hosts in fault domains during the initial configuration of the
vSAN cluster or afterwards.

Here is an example of how to configure fault domains by using the vSAN Management API:

Perform these tasks if Fault Domains are passed as an argument

if args.faultdomains:

 print 'Add fault domains in vsan'

 faultDomains = []

 #args.faultdomains is a string like f1:host1,host2 f2:host3,host4

 for faultdomain in args.faultdomains.split():

 fname, hostnames = faultdomain.split(':')

 domainSpec = vim.cluster.VsanFaultDomainSpec(

 name=fname,

 hosts=[host for host in hosts

 if hostProps[host]['name'] in hostnames.split(',')]

)

 faultDomains.append(domainSpec)

Apply the Domain Specification to the vSAN Config

 vsanReconfigSpec.faultDomainsSpec = vim.VimClusterVsanFaultDomainsConfigSpec(

 faultDomains=faultDomains

)

vSAN SDKs Programming Guide

VMware, Inc. 18

Configure Fault Domains

task = vsanClusterSystem.VsanClusterReconfig(cluster, vsanReconfigSpec)

vsanapiutils.WaitForTasks([task], si)

Enabling the Performance Service
The performance service is disabled by default upon the creation of the vSAN cluster. You can enable the
performance service after you configure the vSAN cluster to monitor the performance of the cluster, the
participating hosts, disks, and VMs.

In the vSphere Web Client, you can enable the performance service from Health and Performance
settings on the cluster:

Here is how to enable the performance service by using the vSAN Management API:

print 'Enable perf service on this cluster'

Apply the Performance Service to the VSAN config

vsanPerfSystem = vcMos['vsan-performance-manager']

Apply the config update

task = vsanPerfSystem.CreateStatsObjectTask(cluster)

vsanapiutils.WaitForTasks([task], si)

Assigning the vSAN License
You must assign the vSAN licence to the vSAN cluster before the 60 day evaluation period expires.

In the vSphere Web Client, you assign a license to the vSAN cluster manually, through the Configure
vSAN wizard or through the Licensing option under Administration.

By using the vSAN Management API, you can automate the license assignment on the vSAN clusters in
your environment. This way, you can handle license upgrades and renewal more efficiently.

if args.vsanlicense:

 print 'Assign VSAN license'

 lm = si.content.licenseManager

 lam = lm.licenseAssignmentManager

 lam.UpdateAssignedLicense(entity=cluster._moId, licenseKey=args.vsanlicense)

vSAN SDKs Programming Guide

VMware, Inc. 19

Configuring a Stretched Cluster
and Two Node 4
You can automate the configuration of a vSAN stretched cluster and two node by using the
vSAN Management API.

This section includes the following topics:
n Deploying the vSAN Witness Appliance

n Adding the vSAN Witness Appliance to vCenter Server

n Configuring a vSAN Cluster as a Stretched Cluster or Two Node

Deploying the vSAN Witness Appliance
Deploying the vSAN Witness Appliance is an alternative to using a physical host to serve as the witness
node in your stretched cluster configuration. Unlike a physical host, the appliance does not require a
dedicated license or physical disks to store vSAN data.

You can download the vSAN Witness Appliance from the VMware Web site as a standard OVA file. Then
you can install it by using the vSphere Web Client just like any other OVA file.

You can also upload the vSAN Witness Appliance OVA file through a script. Start with uploading each of
the consisting OVA files separately in vCenter Server. First, create a function that uploads a single file in
vCenter Server.

def uploadFile(srcURL, dstURL, create, lease, minProgress, progressIncrement, vmName=None, log=None):

 '''

 This function will upload vmdk file to vc by using http protocol

 @param srcURL: source url

 @param dstURL: destnate url

 @param create: http request method

 @param lease: HttpNfcLease object

 @param minProgress: file upload progress initial value

 @param progressIncrement: file upload progress update value

 @param vmName: imported virtual machine name

 @param log: log object @return:

 '''

 srcData = urllib2.urlopen(srcURL)

 length = int(srcData.headers['content-length'])

 ssl._create_default_https_context = ssl._create_unverified_context

 protocol, hostPort, reqStr = splitURL(dstURL)

 dstHttpConn = createHttpConn(protocol, hostPort)

VMware, Inc. 20

 reqType = create and 'PUT' or 'POST'

 dstHttpConn.putrequest(reqType, reqStr)

 dstHttpConn.putheader('Content-Length', length)

 dstHttpConn.endheaders()

 bufSize = 1048768 # 1 MB

 total = 0

 progress = minProgress

 if log:

 # If args.log is available, then log to it

 log = log.info

 else

 log = sys.stdout.write

 log("%s: %s: Start: srcURL=%s dstURL=%s\n" % (time.asctime(time.localtime()), vmName, srcURL,

dstURL))

 log("%s: %s: progress=%d total=%d length=%d\n" % (time.asctime(time.localtime()), vmName, progress,

total, length))

 while True:

 data = srcData.read(bufSize)

 if lease.state != vim.HttpNfcLease.State.ready:

 break

 dstHttpConn.send(data)

 total = total + len(data)

 progress = (int)(total * (progressIncrement) / length)

 progress += minProgress

 lease.Progress(progress)

 if len(data) == 0:

 break

 log("%s: %s: Finished: srcURL=%s dstURL=%s\n" % (time.asctime(time.localtime()), vmName, srcURL,

dstURL))

 log("%s: %s: progress=%d total=%d length=%d\n" % \ (time.asctime(time.localtime()), vmName,

progress, total, length))

 log("%s: %s: Lease State: %s\n" % \

 (time.asctime(time.localtime()), vmName, lease.state))

 if lease.state == vim.HttpNfcLease.State.error:

 raise lease.error

 dstHttpConn.getresponse()

 return progress

Once you have a function for deploying a single file, create another one for uploading multiple files.

def uploadFiles(fileItems, lease, ovfURL, vmName=None, log=None):

 '''

 Upload witness vm's vmdk files to vCenter Server by using the HTTP protocol

 @param fileItems: the source vmdks read from ovf file

 @param lease: Represents a lease on a VM or a vApp, which can be used to import or export disks for

the entity

 @param ovfURL: witness vApp ovf url

 @param vmName: The name of witness vm @param log: @return:

 '''

 uploadUrlMap = {}

vSAN SDKs Programming Guide

VMware, Inc. 21

 for kv in lease.info.deviceUrl:

 uploadUrlMap[kv.importKey] = (kv.key, kv.url)

 progress = 5

 increment = (int)(90 / len(fileItems))

 for file in fileItems:

 ovfDevId = file.deviceId

 srcDiskURL = urlparse.urljoin(ovfURL, file.path)

 (viDevId, url) = uploadUrlMap[ovfDevId]

 if lease.state == vim.HttpNfcLease.State.error:

 raise lease.error

 elif lease.state != vim.HttpNfcLease.State.ready:

 raise Exception("%s: file upload aborted, lease state=%s" % \

 (vmName, lease.state))

 progress = uploadFile(srcDiskURL, url, file.create, lease, progress, increment, vmName, log)

The next step is to implement the DeployWitnessOVF function that configures the networking settings,
the supplied password as a vApp option, and the placement of the appliance on a specific host or
resource pool. The vSAN Witness Appliance only requires a password as an additional argument that you
need to set.

The DeployWitnessOVF function parses the contents of the OVF, but cannot parse the entire vSAN
Witness Appliance OVA. You must extract the contents of the witness OVA file to a folder containing the
OVF and other required files. The OVA file is a .tar archive, that you can extract by using a wide variety
of tools.

print 'Start to add virtual witness host'

 '''

 Steps to add the Witness Appliance, rather than a dedicating a physical ESXi host as the witness

node.

 1) Deploy the witness VM specifying host, storage, and network for the Witness VM

 2) Get the witness VM and add it to the data center as a witness host

 '''

 dc = searchIndex.FindChild(entity = si.content.rootFolder, name = args.datacenter)

 #specify the host for the witness VM

 hostSystem = getHostSystem(args.vmhost, dc, si)

 #specify the storage for the witness VM

 ds = searchIndex.FindChild(entity = dc.datastoreFolder, name = args.datastore)

 #specify the network for the witness VM

 if args.network:

 network = [net for net in dc.networkFolder.childEntity

 if net.name == args.network][0]

 else:

 network = dc.networkFolder.childEntity[0]

 witnessVm = DeployWitnessOVF(args.ovfurl, si, hostSystem, args.name, ds, dc.vmFolder,

vmPassword=args.vmpassword, network=network)

 task = witnessVm.PowerOn()

 vsanapiutils.WaitForTasks([task], si)

Wait for vm to power on and become available

 beginTime = time.time()

vSAN SDKs Programming Guide

VMware, Inc. 22

 while True:

 try:

 # Connect to the Witness Host

 SmartConnect(host=witnessVm.guest.ipAddress,

 user='root',

 pwd=args.vmpassword,

 port=443,

 sslContext=context)

 except:

 time.sleep(10)

 timeWaiting = time.time() ---- beginTime

 if timeWaiting > (15 * 60):

 raise Exception("Timed out waiting (>15min) for VM to up!")

 else:

 break

Adding the vSAN Witness Appliance to vCenter Server
After you deploy the vSAN Witness Appliance, you must add it to vCenter Server to serve as the witness
node in your stretched cluster or two node configuration. The witness node must not be part of the vSAN
cluster.

You can use the vSphere Web Client to add the vSAN Witness Appliance as a host to vCenter Server.
The vSphere Web Client is a preferred interface over the legacy vSphere Client, because you can assign
the vSphere Web Client license as part of the process.

To add the host programmatically, first create a function that adds the vSAN Witness Appliance as a host
in vCenter Server.

def AddHost(host, user='root', pwd=None, dcRef=None, si=None, sslThumbprint=None, port=443):

''' Add a host to a data center Returns a host system '''

 cnxSpec = vim.HostConnectSpec(

 force=True, hostName=host, port=port, userName=user, password=pwd, vmFolder=dcRef.vmFolder)

 if sslThumbprint:

 cnxSpec.sslThumbprint = sslThumbprint

 hostParent = dcRef.hostFolder

 try:

 task = hostParent.AddStandaloneHost(addConnected = True, spec = cnxSpec)

 vsanapiutils.WaitForTasks([task], si)

 return getHostSystem(host, dcRef, si)

 except vim.SSLVerifyFault as e:

 #By catching this exception, you don not need to input the host's thumbprint of the SSL certificate,

the logic below

 #does this automatically

 cnxSpec.sslThumbprint = e.thumbprint

 task = hostParent.AddStandaloneHost(addConnected = True, spec = cnxSpec)

 vsanapiutils.WaitForTasks([task], si)

 return getHostSystem(host, dcRef, si)

vSAN SDKs Programming Guide

VMware, Inc. 23

 except vim.DuplicateName as e:

 raise Exception("AddHost: ESX host %s has already been added to VC." % host)

Then call the function to add the host.

print 'Add witness host {} to datacenter {}'.format(witnessVm.name, args.witnessdc)

 dcRef = searchIndex.FindChild(entity = si.content.rootFolder, name = args.witnessdc)

 witnessHost = AddHost(witnessVm.guest.ipAddress, pwd=args.vmpassword, dcRef=dcRef, si=si)

Configuring a vSAN Cluster as a Stretched Cluster or Two
Node
You can configure a stretched cluster or two node when you create the vSAN cluster or after that.

Here's the process for configuring an already existing vSAN cluster as stretched cluster:

1 Select the hosts that will participate in the preferred fault domain.

2 Select the hosts that will participate in the secondary fault domain.

3 Select the witness host and configure cache and capacity disks for it.

4 Complete the configuration.

To configure a stretched cluster or two node setup by using the vSAN Management API, start by
enumerating the hosts in the cluster, selecting which hosts will go to the two domains, and save this data
to an array.

 preferedFd = args.preferdomain

 secondaryFd = args.seconddomain

 firstFdHosts = []

 secondFdHosts = []

 for host in hosts:

 if yes('Add host {} to preferred fault domain ? (yes/no)'.format(hostProps[host]['name'])):

 firstFdHosts.append(host)

 for host in set(hosts) - set(firstFdHosts):

 if yes('Add host {} to second fault domain ? (yes/no)'.format(hostProps[host]['name'])):

 secondFdHosts.append(host)

 faultDomainConfig = vim.VimClusterVSANStretchedClusterFaultDomainConfig(

 firstFdHosts = firstFdHosts,

 firstFdName = preferedFd,

 secondFdHosts = secondFdHosts,

 secondFdName = secondaryFd)

The next step is to define the eligible disks for the witness host.

 disks = [result.disk for result in witnessHost.configManager.vsanSystem.QueryDisksForVsan() if

 result.state == 'eligible']

 diskMapping = None

vSAN SDKs Programming Guide

VMware, Inc. 24

 if disks:

 ssds = [disk for disk in disks if disk.ssd]

 nonSsds = [disk for disk in disks if not disk.ssd]

 #host with hybrid disks

 if len(ssds) > 0 and len(nonSsds) > 0:

 diskMapping = vim.VsanHostDiskMapping(

 ssd = ssds[0],

 nonSsd = nonSsds

)

 #host with all-flash disks,choose the ssd with smaller capacity for cache layer.

 if len(ssds) > 0 and len(nonSsds) == 0:

 smallerSize = min([disk.capacity.block * disk.capacity.blockSize for disk in ssds])

 smallSsds = []

 biggerSsds = []

 for ssd in ssds:

 size = ssd.capacity.block * ssd.capacity.blockSize

 if size == smallerSize:

 smallSsds.append(ssd)

 biggerSsds.append(ssd)

 diskMapping = vim.VsanHostDiskMapping(

 ssd = smallSsds[0]

 nonSsd = biggerSsds

)

Once you have put the hosts into fault domain arrays and defined the eligible disks for the witness host,
you can configure the stretched cluster.

 print 'start to create stretched cluster'

 task = vsanScSystem.VSANVcConvertToStretchedCluster(

 cluster=cluster,

 faultDomainConfig=faultDomainConfig,

 witnessHost=witnessHost, preferredFd=preferedFd,

 diskMapping=diskMapping)

 vsanapiutils.WaitForTasks([task], si)

vSAN SDKs Programming Guide

VMware, Inc. 25

vSAN On-Disk Format Upgrade 5
After you upgrade your vSphere environment to a newer version, upgrade the vSAN on-disk format. The
latest on-disk format provides the complete feature set of vSAN.

Depending on the size of disk groups, the disk format upgrade can be time-consuming because the disk
groups are upgraded one at a time. For each disk group upgrade, all data from each device is evacuated
and the disk group is removed from the vSAN cluster. The disk group is then added back to vSAN with
the new on-disk format. For more details, see the Administering VMware vSAN documentation at
http://docs.vmware.com.

This section includes the following topics:
n Determining the Current vSAN On-Disk Format

n Performing the On-Disk Upgrade Preflight Check

n Upgrading with Reduced Redundancy

Determining the Current vSAN On-Disk Format
Before you upgrade the vSAN on-disk format, determine the current version of the on-disk format of your
vSAN cluster. You must also determine the latest supported format for the ESXi build that the vSAN
cluster is running.

In the vSphere Web Client, you can determine the current on-disk format under Configure > General on
the vSAN cluster.

VMware, Inc. 26

To determine the vSAN on-disk format programmatically, first connect to the cluster:

 cluster = getClusterInstance(args.clusterName, si)

 vcMos = vsanapiutils.GetVsanVcMos(si._stub, context=context)

 vsanUpgradeSystem = vcMos['vsan-upgrade-systemex']

 supportedVersion = vsanUpgradeSystem.RetrieveSupportedVsanFormatVersion(cluster)

 print 'The highest Virtual SAN disk format version that given cluster supports is

{}'.format(supportedVersion)

Next, create a function that compares the current on-disk format version to the latest supported version:

 def hasOlderVersionDisks(hostDiskMappings, supportedVersion):

 for hostDiskMappings in hostDiskMappings:

 for diskMapping in hostDiskMappings:

 if diskMapping.ssd.vsanDiskInfo.formatVersion < supportedVersion:

 return True

 for disk in diskMapping.nonSsd:

 if disk.vsanDiskInfo.formatVersion < supportedVersion:

 return True

 return False

Finally, gather each of the disk group member devices into diskMappings, then pass them into the
hasOlderVersionDisks function to determine if an upgrade is necessary or not:

 vsanSystems = CollectMultiple(si.content, cluster.host,

 ['configManager.vsanSystem']).values()

 vsanClusterSystem = vcMos['vsan-cluster-config-system']

 diskMappings = CollectMultiple(si.content, [vsanSystem['configManager.vsanSystem'] for vsanSystem in

vsanSystems],

 ['config.storageInfo.diskMapping']).values()

vSAN SDKs Programming Guide

VMware, Inc. 27

 diskMappings = [diskMapping['config.storageInfo.diskMapping'] for diskMapping in diskMappings]

 needsUpgrade = hasOlderVersionDisks(diskMappings, supportedVersion)

Performing the On-Disk Upgrade Preflight Check
When you upgrade the vSAN on-disk format through the vSphere Web Client, a preflight check-in is
performed. When you upgrade the on-disk format programmatically, you must also perform the pre-flight
check.

 print 'Perform VSAN upgrade preflight check'

 upgradeSpec = vim.VsanDiskFormatConversionSpec(

 dataEfficiencyConfig = vim.VsanDataEfficiencyConfig(

 compressionEnabled = args.enabledc, deduplicationEnabled = args.enabledc))

If many issues exist with the pre-flight check, you must resolve them before you upgrade. You can list the
reported issues so that they can be addressed.

 issues = vsanUpgradeSystem.PerformVsanUpgradePreflightCheckEx(cluster, spec = upgradeSpec).issues

 if issues:

 print 'Please fix the issues before upgrade VSAN'

 for issue in issues:

 print issue.msg

 eturn

Upgrading with Reduced Redundancy
vSAN on-disk format upgrades require the existing VM storage policies to be satisfied during the upgrade
process. For example, in a three node cluster, a Failure To Tolerate =1 policy requires three nodes.
Bringing a node offline to perform the upgrade would create reduced redundancy.

By default, the upgrade process does not permit reduced redundancy. Attempts to perform an on-disk
format upgrade without sufficient spare resources fail. In cases where the vSAN cluster has insufficient
resources to satisfy a VM storage policy, such as a three node cluster with FTT=1 using mirroring, you
must set a reduced redundancy flag. You cannot do this through the vSphere Web Client, you can use the
Ruby vSphere Remote Console (RVC).

You can also set the reduced redundancy flag programmatically. You can set the flag as part of initiating
the upgrade.

 print 'call PerformVsanUpgradeEx to upgrade disk versions'

 task = vsanUpgradeSystem.PerformVsanUpgradeEx(cluster=cluster,

performObjectUpgrade=args.objupgrade,

 allowReducedRedundancy=args.reduceredundancy)

vSAN SDKs Programming Guide

VMware, Inc. 28

	vSAN SDKs Programming Guide
	Contents
	Introduction to the vSAN Managmenet SDKs
	Using the vSAN Management SDKs
	vSAN Management SDK for Java
	vSAN Management SDK for .NET
	vSAN Management SDK for Python
	vSAN Management SDK for Perl
	vSAN Management SDK for Ruby

	Setting Up a vSAN Cluster
	Connecting to vCenter Server and Selecting Clusters for vSAN
	Enabling vSAN on a Cluster
	Enabling Deduplication and Compression on All-Flash Clusters
	Configuring VMkernel Networking for vSAN
	Claiming and Managing Disks
	Configuring Fault Domains
	Enabling the Performance Service
	Assigning the vSAN License

	Configuring a Stretched Cluster and Two Node
	Deploying the vSAN Witness Appliance
	Adding the vSAN Witness Appliance to vCenter Server
	Configuring a vSAN Cluster as a Stretched Cluster or Two Node

	vSAN On-Disk Format Upgrade
	Determining the Current vSAN On-Disk Format
	Performing the On-Disk Upgrade Preflight Check
	Upgrading with Reduced Redundancy

