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Abstract. Fuel consumption is a crucial consideration in the aviation industry. This

last one, integral to global connectivity, faces significant environmental concerns due to the

escalating demand for air travel and its substantial contribution to greenhouse gas emissions.

In this thesis, we present predictive models calculating gate-to-gate fuel consumption,

using simple variables such as flight distance, and taking into account the available number

seats for each aircraft, in contrast with other flight consumption calculators. The main

goal of this work is to construct an indicator that can be used to compare emissions with

other travel alternatives. Specifically, we develop the theoretical framework for the presented

models and showcase their results. Using the model with best accuracy, a LightGBM model,

we demonstrate a real-world application by conducting a CO2 emission comparison between

flight and rail routes.
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Nomenclature

ICAO International Civil Aviation Organization

MIDT Market Information Data Tapes

GCD Great Circle distance

IMPACT Integrated Aircraft Noise and Emissions Modelling Platform

MTOM Maximum Take Off Mass

SVD Singular Value Decomposition

ASK Available Seats per Kilometer

MSE Mean Squared Error

LightGBM Light Gradient-Boosting Machine

MAPE Mean Absolute Percentage Error

PAX Passenger

IATA International Air Transport Association
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Introduction

In an era dominated by technological advances and rapid globalization, the aviation industry

plays a pivotal role in connecting the world. However, the constant demand for air travel

has raised significant environmental concerns, contributing substantially to greenhouse gas

emissions. While other industries, including within the transport sector, might be able to

substantially decarbonise, aviation faces serious challenges with a current focus on technolog-

ical solutions [1, 2], sustainable aviation fuels [3] and carbon compensation mechanisms [4, 5].

This concern is evident in various contemporary situations. For instance, in the recent in-

vestiture of Pedro Sánchez, the current prime minister of Spain, the agreement with another

political party played a key role. This agreement included the provision to eliminate short

flights if a train alternative of no more than 2.5 hours was available [6], thereby contributing

to the reduction of greenhouse gas emissions. Furthermore, major airline companies are

now offering integrated tickets to circumvent short-haul flights, replacing them with railway

transport when stopovers are required [7].

To comprehensively evaluate the impact of different means of transport and alternative

travel options, the consideration of indicators taking into account both emissions and the

number of passengers is essential. However, currently available models to assess aviation

emissions such as the ICAO Carbon Emissions Calculator [8], tend to focus on simple linear

relationships between distance and/or time and emissions or to be based on detailed fuel

consumption models, which require detailed parameters (e.g., fully defined trajectories) on

a flight-by-flight basis [9].

In this thesis, we present predictive models calculating gate-to-gate fuel consumption, using

simple variables such as flight distance, and taking into account the available number seats

for each aircraft, in contrast with other flight consumption calculators. The main goal of

this work is to construct an indicator that can be used to compare emissions with other

travel alternatives, such as the rail one. Specifically, we develop the theoretical framework

for the presented models, showcase their results, and demonstrate a real-world application

by conducting a CO2 emission comparison between flight and rail routes.
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Chapter 1

Data and objectives

This section will dive into the data and modelling objectives. We will start by outlining

our model objectives, followed by a detailed description of our data, including its source

and content. Subsequently, we will allocate multiple sections to comprehensively address the

data-preprocessing.

1.1 Modelling objectives

The main goal of this thesis is to build a model that can accurately calculate gate-to-

gate flight fuel consumption. Previous research indicates that extensive information is not

necessarily required to derive fuel consumption estimates [9]. In contrast to other calculators,

such as the International Civil Aviation Organization (ICAO) Carbon Emissions Calculator

[8], the model will take into account the available seats of each aircraft. This addition is

crucial for making fair comparisons of fuel consumption per passenger across other travel

alternatives. Additionally, it is worth noting that once fuel consumption is known, calculating

emissions such as CO2 becomes a straightforward process, making this type of model useful

to compute flight emissions.

1.2 Data and data preprocessing

The dataset used in this analysis originates from the Market Information Data Tapes (MIDT)

for Traffic Data, specifically capturing historical records of operations conducted to or from

Europe during the calendar year 2017. Table 1.1 describes the dataset columns of the pre-

sented dataset.

In particular, it contains 58125 different routes (number of rows) and 91 different aircraft

models. Since it contains all routes to or from Europe, we have a very wide interval for

the distance traveled, being 100 kilometers the minimum distance and 11961 kilometers the

maximum one.

6



1.2. DATA AND DATA PREPROCESSING 7

Column Name Description

Origin Airport Origin Airport

Destination Airport Destination Airport

Fleet Aircraft type, using the ICAO designation

Seats per Operation Number of available seats

Distance (km) Traveled distance, using the corresponding Great Circle Distance

(GCD) approximation

Depcount Number of times that the flight took place during the year 2017

FUEL BURNT KG Kilograms of fuel burn, obtained from IMPACT, the web-based

modelling platform from EUROCONTROL

Table 1.1: Column description of the dataset

As we can see on Figure 1.1, our data is not equally distributed. As one can assume, short

flights are more present compared to long-distance ones: the median, shown with a white

dot is located at 1286 km. This distance distribution of the data will add complexity to our

analysis.

Figure 1.1: Violin plot of the distribution of flight distances in our dataset



8 1.2. DATA AND DATA PREPROCESSING

1.2.1 GCD and corrections

The Integrated aircraft noise and emissions modelling platform (IMPACT) software estimates

the flight consumption from take-off to landing considering the Great Circle Distance (GCD)

between origin and arrival airports, which corresponds to the shortest distance between two

points on the surface of a sphere, measured along the surface of the sphere. Note that a

correction factor must be added due to different air traffic procedures, such as air traffic

congestion or routing deviations. ICAO suggests a factor correction based on the distance

[10] shown in Table 1.2.

GCD Correction to GCD

Less than 550 Km + 50 km

Between 550 km and 5500 km + 100km

Above 5500 km + 125 km

Table 1.2: GCD factor correction from ICAO methodology [10]

As we can appreciate in Table 1.2, this correction does not follow a proportional increase.

For instance, flights with distances falling between 550 and 5500 kilometers, a very wide

range in which more than 78% of our data falls, experience a correction of 100 kilometers,

no matter their flight distance. In order to make this correction continuous, we decided to

consider the Performance Review Report of 2022 [11], where it is stated that the horizontal

en-route flight inefficiency is of 3.08%1. This coefficient is computed taking the additional

distance flight with respect to the GCD. Thus, we applied

Corrected distance (km) =
1

1.0308
·Distance (km) (1.1)

in order to obtain a better estimation of the flight distance.

1.2.2 Fuel and taxi time

In aviation, taxiing is defined as the movement of an aircraft on the ground, under its own

power [12]. Taxi time and its corresponding fuel consumption accounts for emissions on-

ground. Even if for larger flights this coefficient could be considered negligible due to high

fuel consumption, it might contribute significantly to the total fuel consumption for short

flights. Thus, these emissions should be considered.

We define the taxi-in and taxi-out times as the duration between landing time and gate in

time, and between gate out time and take off time, respectively, illustrated in 1.2. These

intervals of time may differ in each route due to gate location or airport layout and configu-

ration, between others. In order to be able to measure this consumption, we need the taxi

1Vertical inefficiency was considered negligible for this correction.



1.2. DATA AND DATA PREPROCESSING 9

times and fuel consumption during this process.

Figure 1.2: Taxi-in and taxi-out illustration. Source:

EUROCONTROL

We used the taxi times provided by EU-

ROCONTROL [13], from which the mean

taxi-in/out time in minutes was available

for almost every airport in our dataset.

For airports without information, the mean

taxi/out times of all airports was considered,

which was 5.76 and 12.15 minutes, respec-

tively.

Fuel consumption during taxiing is a factor that varies depending on the aircraft model and

its number of engines. It is obvious that larger airplanes with a greater number of engines

result in higher fuel consumption. To provide accurate data, we have tried to find specific

values for each aircraft model in our database rather than relying on an average estimate.

Nevertheless, this information is not always available. For some of our models, we have been

able to find the taxi fuel consumption per second (kg/s), which we will call Available Fuel.

For others, estimations were necessary.

For models where precise taxi fuel consumption (Available Fuel) data is lacking, a classifi-

cation into 6 different categories was performed, following the RECAT-EU classification [14],

based on the certificated Maximum Take Off Mass (MTOM) and the span of the aircraft.

Within each category, we compute the mean Taxi Fuel consumption, drawing from avail-

able information (Available Fuel) on models falling into the respective category. Total

fuel consumption during taxi is then determined using the formula

Total = 60 · (Taxi-in+ Taxi-out) · Taxi Fuel. (1.2)

Model CAT Origin Dest Taxi in Taxi out Available Fuel Taxi Fuel Total

A320 D EIDW EGLL 8.05 14.45 0.212 0.212 282.38

A345 B LEMD MPTO 6.46 18.58 0.635 0.635 954.02

AT72 E LESO LEMD 8.97 8.21 - 0.179 184.51

B737 D UGTB UUWW 9.73 10.69 - 0.219 268.318

Table 1.3: Table illustrating the procedure of taxi correction. Taxi-in and Taxi-out in minutes,

Available Fuel, Taxi Fuel, and Total expressed in kg/second

As depicted in Table 1.3, when Available Fuel is present, it serves as the Taxi Fuel

coefficient in (1.2)—the taxi fuel consumption per second. Conversely, when this information

is not available, the mean of aircraft models with informed Available Fuel for each category

CAT is employed. Taxi fuel consumption for each aircraft model of our database can be found

in Appendix A.



Chapter 2

Methodology

Machine learning is a subfield of artificial intelligence that focuses on the development of

algorithms and statistical models that enable computer systems to improve their perfor-

mance on a specific task over time, without being explicitly programmed. Its essence lies in

the ability to learn from data and make decisions without human intervention. Among its

diverse set of techniques, we find Supervised Learning, one of its fundamental paradigms.

Supervised Learning is a type of machine learning where the algorithm is trained on a la-

beled dataset, comprising input-output pairs. This approach equips the algorithm to learn

a mapping function from input features to corresponding output labels. This paradigm is

particularly adept at tasks like classification and regression, being thus suitable for our prob-

lem, where we want to map some features, like the distance or the number of seats to the

fuel consumption. Note that some of the classical methods used, such as linear regression,

are indeed simple supervised machine learning models.

In this section we will present the methods used to try to model our dataset. In order to set

a notation, we will consider a data distribution (X, y) ∼ P(X,y), where X ∈ Rd is the feature

vector and y ∈ R the dependent variable we want to predict, that we will also call label.

We will assume that we are given n independent and identically distributed training pairs

{X(i), y(i)}ni=1 ⊂ Rd × R. Our goal is to find functions f̃ ∈ F = {f : Rd −→ R} that are

capable of obtaining good predictions in unseen samples.

In the first and second sections of this chapter, we will be will be following the notes from

the course Modern Machine Learning: Simple Methods that Work [15], by Adityanarayanan

Radhakrishnan, at MIT.
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2.1. LINEAR REGRESSION 11

2.1 Linear Regression

Let us begin by presenting one of the most basic ways to model our data: Linear Regression.

This method tries to find the line that best fits our training data, by splitting the response

variable yi, into a part that can be explained through linear combination of the explanatory

variables Xi, also called signal, and a part that can not be explained, εi, known as noise.

Thus, in linear regression we would like to find coefficients θ ∈ Rd+1 such that

y(i) = θ0 + θiX
(i)
1 + · · ·+ θdX

(i)
d + ε(i), for i ∈ {1, 2, . . . , d} (2.1)

In particular, once we have found a model, in order to be able to apply some theoretical

results we will need to check if our model verifies the hypothesis of a normal lineal model :

(1) It is linear, E
(
y | {Xj}j∈[d]

)
= θ0 + θ1X1 + . . .+ θdXd

(2) The variance is constant, V
(
ε(i) | y(i)

)
= σ2, (same value of σ2 for all i)

(3) All ε(i) are normally distributed

(4) For all i, j ∈ {1, 2, . . . , n}, i ̸= j the residuals ε(i), ε(j) are independent

These assumptions are based on some observations. Firstly, by the Central Limit Theo-

rem, any randomly distributed error should converge to a normal distribution when enough

samples are taken.. On the other hand, the constant variance assumption aims to prevent

scenarios where the approximation is effective only within a specific range of predicted values

but fails to accurately represent other segments. Consequently, there could be a situation

where a linear approximation works well in one part of the data but lacks accuracy in another

segment.

Returning to Equation (2.1), our main objective will be to find the best value θ, that we will

call θ̃, such that the error ε is minimized. To do so, we need to fix a certain loss function

and an algorithm that will minimize this loss function to find the optimal values for the θ

coefficients. In particular, from Equation (2.1), our function f̃ will have the form f̃(X) = θ̃X.

In order to develop the following ideas, we will fix a classical loss function, the mean squared

error :

Definition 2.1 (MSE). Let y be the actual value and ỹ be the predicted one. The mean

squared error (MSE) between y and ỹ is L(y, ỹ) = 1
2
∥y − ỹ∥22.

Now, rewriting it using the notation of Equation (2.1), we will find θ̃ by minimizing

L(θ) = 1

2

n∑
i=1

(y(i) − θX(i))2. (2.2)
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The only thing that now remains is to set an algorithm that is able to minimize (2.2). Even

if there are other algorithms that are able to give a closed-form solution, we will choose

gradient descent to continue presenting the following concepts.

Definition 2.2 (Gradient Descent). Given a loss function L(θ) : Rd −→ R, an initial value

θ0 ∈ R and λ ∈ R, the step size, also called learning rate, we define the gradient descent

algorithm as

θ(t+1) = θ(t) − λ∇θL(θ(t)) t ∈ Z+, (2.3)

that minimizes the loss function L(θ).

Let us now prove that for t→ ∞, we can identify the largest learning rate λ such that (2.3)

converges to a certain limit point. Before that we provide a definition of Singular Value

Decomposition (SVD) that will be used.

Definition 2.3 (SVD). Given a m × n real matrix M , a Singular Value Decomposition is

the factorization of the matrix M into M = UΣV t, where U, V are orthogonal matrices with

sizes r × r and n × n, and Σ is a r × n diagonal matrix with non-negative entries in the

diagonal.

It is a folklore theorem that such a decomposition always exists. With this definition we are

now able to prove the following theorem:

Theorem 2.4. Let X = (X(1), X(2), ..., X(n)) and y = (y(1), y(2), . . . , y(n)). Let σ1 be the

largest singular value of X. Initializing θ(0) = 0 and using gradient descent, the minimization

of the loss function

L(θ) = 1

2

n∑
i=1

(yi − θXi)
2,

converges to a global minimum, θ̂ = yX†, for 0 < λ < 2
σ2
1
, where X† is the Moore-Penrose

pseudoinverse of X.

Proof. Starting from gradient descent, we can write

θ(t+1) = θ(t) − λ∇θL(θ(t)) = θ(t) − λ(y − θX)XT .

Let M = XXT and M ′ = yXT . Thus, we have

θ(t+1) = θ(t)(I − λM) + λM ′.

By induction, let us prove that θ(t) = λM ′[(I−λM)t−1+(I−λM)t−2+ · · ·+(I−λM)1+ I].

For θ(0) = 0, it is trivially true. Let us suppose that it is true for θ(t) and prove it for

θ(t+1):

θ(t+1) = θ(t)(I − λM) + λM ′

= (λM ′[(I − λM)t−1 + (I − λM)t−2 + · · ·+ (I − λM)1 + I])(I − λM) + λM ′

= λM ′[(I − λM)t + (I − λM)t + · · ·+ (I − λM)1 + I].
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With this recurrence, consider the singular value decomposition of our matrix X = UΣV T ,

with Σ = diag(σ1, σ2, . . . , σr). Rewriting, we obtain:

M = (UΣV T )(UΣV T )T = UΣ2UT , M ′ = yV ΣUT .

Thus, the recurrence can be rewritten as follows:

θ(t) = λM ′UΣ+UT ,

where Σ+ = (I −λΣ2)t−1 +(I −λΣ2)t−2 + · · ·+(I −λΣ2)1 + I is a diagonal matrix with the

r first diagonal entries forming a geometric sum for λ < 2/σ2
1:

Σ+
i =

t−1∑
k=1

(1− λσ2
1)

k =
1− (1− λσ2

i )t

λσ2
1

,

resulting in

Σ+ =



1−(1−λσ2
1)

t

λσ2
1

0 . . . 0

0
1−(1−λσ2

2)
t

λσ2
2

. . . 0 0r×d−r

0 . . .
1−(1−λσ2

r)
t

λσ2
r

0d−r×r tId−r×d−r

 (2.4)

To finish, substituting M ′ by yV ΣUT , we obtain

θ(t) = yV Σ†UT with Σ† =


1−(1−λσ2

1)
t

σ1
0 . . .

0
1−(1−λσ2

2)
t

σ2
. . . 0r×d−r

0 . . .
1−(1−λσ2

r)
t

σr

0d−r×r 0d−r×d−r


Finally, taking t→ ∞, we can write

θ(∞) = lim
t→∞

θ(t) = yV Σ†UT where Σ† =


1
σ1

0 . . .

0 1
σ2

. . . 0r×d−r

0 . . . 1
σr

0d−r×r 0d−r×d−r


as we wanted.

An important result that Theorem 2.4 gives us for θ(0) = 0 is that, for all t ∈ N, θ(t) can
be written as the linear combination of the columns of our training matrix X, and thus, the

output of the training predictor always lies in the span of the training data. This note will

be a basic concept to use in the following section. Let us prove this statement:
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Proposition 2.5. Let
{
X(i)

}n
i=1

⊂ Rd and
{
y(i)
}n
i=1

⊂ R. Then there exist {αi}ni=1 ⊂ R,
such that the minimum ℓ2 norm minimizer, θ̃, for the loss:

L(θ) = 1

2

n∑
i=1

(
y(i) − θX(i)

)2
has the form

θ̂ =
n∑

i=1

αiX
(i)T . (2.5)

Proof. Let us begin proving that θ̃ = yX† is the minimum ℓ2 norm solution. Let us define

d = rank(X).

For n=d, we can declare that there is exactly one solution. In particular, solving the linear

system given by θ = yX−1 gives us the exact solution. For this case, X† = X−1.

For n > d, we know that computing the inverse of X is not possible. Instead, we will find

a solution that minimizes the MSE by setting the gradient of the MSE equal to zero:

∇wL(θ) = 0 =⇒ (y − wX)XT = 0 =⇒ w = yXT
(
XXT

)−1

Notice that XXT is invertible since n > d and the rank of X is d. Furthermore, substituting

X = UΣV T given by the singular value decomposition, we find that yXT
(
XXT

)−1
= yX†.

For the last remaining case, n < d, we know that there are infinitely many interpolating

solutions to linear regression from linear algebra. Taking any of them will suffice the condi-

tions of our statement, similarly to the n = d case.

Let us continue by showing that the solution given by gradient descent has the form of

Equation (2.5). To prove it, we will proceed using induction. Notice that for θ(0) it is

enough to set αi = 0 for all i. We will assume that Equation (2.5) holds for t and prove it

for t+ 1:

θ(t+1) = θ(t) − λ∇θL(θ(t)) = θ(t) + λ
(
y − θ(t)X

)
XT

Now, rewriting
(
y − θ(t)X

)
XT =

∑n
i=1 β

(t)
i X(i)T , it follows

θ(t+1) = θ(t) + λ

n∑
i=1

β
(t)
i X(i)T

=
n∑

i=1

(
α
(t)
i + λβ

(t)
i

)
X(i)T

=
n∑

i=1

α
(t+1)
i X(i)T ,

as we wanted to show.
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2.2 Kernel Regression

In this section we will like to extend the notion of linear regression into a nonlinear one.

Recall that an effective linear mapping from samples to labels rarely exists. Thus, we apply

a nonlinear transformation to our training data Xi. To formally define this set of transfor-

mations, let us first present the space in which they are defined:

Definition 2.6 (Hilbert Space). A Hilbert Space H is a real or complex inner product space

that is also a complete metric space with respect to the distance function induced by the

inner product.

Now, the functions we will apply to our training data belong to

F := {f : R −→ R such that f(x) = ⟨θ, ψ(x)⟩H, ψ : R −→ H, θ ∈ H}

where H is a Hilbert space with an inner product ⟨·, ·⟩H and ψ is a nonlinear feature map.

Usually, when selecting an appropriate feature transformation we are able to build an ef-

fective predictor, even while using linear functions. But how can we select an appropriate

feature transformation for any given dataset? This may be a hard question to answer when

there is no knowledge about useful features, and it is often beneficial to consider random

feature maps into a Hilbert space.

As we know, from Preposition 2.5 θ̃ can be written as in (2.5). We can repeat the same

analysis by substituting X by the sample matrix ψ(X), extending the prove to the case

when the H is a general Hilbert space as follows:

Theorem 2.7 (Representer Theorem). Let H be a Hilbert space with the inner product

⟨·, ·⟩H. Let
{
ψ
(
X(i)

)}n
i=1

⊂ H and
{
y(i)
}n
i=1

⊂ R. Then, there exist {αi}ni=1 ⊂ R, such that

the minimum H-norm minimizer, θ̃, for the loss:

L(θ) = 1

2

n∑
i=1

(
y(i) −

〈
θ, ψ

(
X(i)

)〉
H

)2
(2.6)

has the form

θ̃ =
n∑

i=1

αiψ
(
X(i)

)
. (2.7)

Proof. We prove the result by first showing that all minimizers of the loss differ only by

a term that is orthogonal to the transformed training samples, and then, we will use the

Pythagorean theorem to show that the solution in the span of the transformed training sam-

ples has minimum norm.

Let us consider the orthogonal decomposition of a θ̃ ∈ H onto the space spanned by ψ
(
X(i)

)
and its complement. In particular, there exists some orthonormal basis {ϕi}ni=1 ⊂ H for
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{
ψ
(
X(i)

)}n
i=1

and some v ∈ H orthogonal to all ϕi such that, by Proposition 2.5, we can

write:

θ̃ =
n∑

i=1

βiϕi + v

We thus have that:

L(θ̃) = 1

2

n∑
i=1

(
y(i) −

〈
θ̃, ψ

(
X(i)

)〉
H

)2
=

1

2

n∑
i=1

(
y(i) −

〈
n∑

i=1

βiϕi + v, ψ
(
X(i)

)〉
H

)2

=
1

2

n∑
i=1

(
y(i) −

〈
n∑

i=1

βiϕi, ψ
(
X(i)

)〉
H

)2

= L(θ̃)

Hence, the loss does not change when adding a term orthogonal to the span of the ψ
(
X(i)

)
.

Now, by the Pythagorean theorem:

∥θ̃∥2H =

∥∥∥∥∥
n∑

i=1

βiϕi + v

∥∥∥∥∥
2

H

=

∥∥∥∥∥
n∑

i=1

βiϕi

∥∥∥∥∥
2

H

+ ∥v∥2H ≥
∥∥∥θ̃∥∥∥2

H
,

as we wanted to show.

Once proved this Theorem, we can assert that for any ψ : Rd → H, we can solve a linear

regression problem in a Hilbert space, first finding the coefficients αi and and finally using

the representation for the minimum norm solution given by Theorem 2.7. This procedure is

what we call Kernel Regression.

Recall that, for solving our kernel regression, we would like to solve the problem of minimizing

the loss in Equation (2.6), which seems quite challenging. Using the result of Theorem 2.7,

we will convert this problem into solving a finite dimensional linear regression one: instead

of minimizing L(θ) over all possible values of θ, we minimize the loss L with respect to the

parameters {αi}ni=1. Thus, we have

L(θ) = 1

2

n∑
i=1

(
y(i) −

〈
θ, ψ

(
X(i)

)〉
H

)2
.

Taking θ =
∑n

i=1 αiψ
(
X(i)

)
, we can write
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L(θ) = 1

2

n∑
i=1

y(i) −〈 n∑
j=1

αjψ
(
X(j)

)
, ψ
(
X(i)

)〉
H

2

=
1

2

n∑
i=1


y(i) −

(
α1 α2 . . . αn

)

〈
ψ
(
X(1)

)
, ψ
(
X(i)

)〉
H〈

ψ
(
X(2)

)
, ψ
(
X(i)

)〉
H

...〈
ψ
(
X(n)

)
, ψ
(
X(i)

)〉
H


︸ ︷︷ ︸

K̂



2

. (2.8)

What Theorem 2.7 asserts is that finding the value of αi for all i will yield the min-

imum H-norm solution that minimizes the loss of Equation (2.7). What is important

about this last equation is that it show us that we only need to know the inner prod-

ucts
〈
ψ
(
X(i)

)
, ψ
(
X(j)

)〉
H for all i, j ∈ [n] to perform linear regression in a Hilbert space.

In addition, not even the map ψ is required, but rather the functional that yields the re-

quired inner products. Namely, we only need some function K : Rd × Rd → R such that

K(x, x̃) = ⟨ψ(x), ψ(x̃)⟩H. This is formalized by the notion of a kernel:

Definition 2.8 (Kernel). Given a nonempty set X , a kernel is a symmetric continuous

function K : X × X → R.

Note that specifying K to have this inner product form imposes the constraint K(x, x) ≥ 0.

Consequently, we will focus on kernels that adhere to the positive semi-definite constraint,

as defined below:

Definition 2.9 (Positive semi-definite kernel). Given nonempty set X , a kernel function

K : X ×X −→ R is positive semi-definite iff for any
{
X(i)

}n
i=1

⊂ X and for any {ci}ni=1 ⊂ R,

n∑
i=1

n∑
j=1

cicjK
(
X(i), X(j)

)
≥ 0.

Let us introduce the Kernel Regression framework by simplifying Equation (2.8) given the

kernel function notation:

Theorem 2.10 (Kernel Regression). Let H be a Hilbert space with inner product ⟨·, ·⟩H. Let
ψ : Rd → H and let K : Rd×Rd → R be a kernel function such that K(x, x̃) = ⟨ψ(x), ψ(x̃)⟩H.
The minimum H-norm minimizer of the loss:

L(θ) = 1

2

n∑
i=1

(
y(i) −

〈
θ, ψ

(
X(i)

)〉
H

)2
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is given by θ̃ =
∑n

i=1

[
yK̂†

]
i
ψ(X(i)), where K̂ ∈ Rn×n is the positive semi-definite matrix

with entries K̂i,j = K(X(i), X(j)). Moreover, the corresponding predictor, f̂ : Rd → R, is
given by

f̂(x) = yK̂†K̂(X, x)

where K̂(X, x) ∈ Rn with entries K̂(X, x)i = K
(
X(i), x

)
.

Proof. From the Representer Theorem 2.7, we already know θ̃ has the form θ̃ =
∑n

i=1 αiψ
(
X(i)

)
.

Thus, it only remains to show that the vector α = (α1, α2, . . . , αn) ∈ Rn×1 equals yK̂†. In

particular, from Equation (2.8), we know that we can rewrite our minimizer in matrix form

as

L(α) = 1

2
∥y − αK̂∥22

Now minimizing L(α) is equivalent to solving the linear system y = αK̂, which by Theorem

2.4, the solution is given by α = yK̂†. Hence,

θ̃ =
n∑

i=1

[
yK̂†

]
i
ψ(X(i))

Lastly, our predictor will be given by

f̂(x) =
〈
θ̃, ψ(x)

〉
H
=

〈
n∑

i=1

[
yK̂†

]
i
ψ
(
X(i)

)
, ψ(x)

〉
H

= yK̂†K̂(X, x),

as we wanted to show.

Notice that Theorem 2.10 show us that kernel regression method solves a linear regression

with a square matrix, making it faster to linear solvers. Moreover, finding the minimum

norm solution with kernel regression involves solving a convex optimization problem. With

this approach, the optimization becomes way more simpler. Moreover, kernel regression

offers interpretability of learned solutions in the sense that every prediction on a new sample

is just a weighted linear combination of labels for training examples. Hence, it is possible to

know which training examples were most influential in the prediction for a new sample.
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2.3 Decision Trees, Gradient Boosting and LightGBM

In the preceding sections, we explored the landscape of Linear and Kernel Regression, meth-

ods that are able to capture linear relationships and complex nonlinear patterns within data.

However, datasets often exhibit intricate structures that are challenging for a single model to

capture comprehensively. At this point, a very interesting supervised learning model comes

into play: Gradient Boosting. Before introducing it, let us introduce the decision trees, a

key point to develop this algorithm.

2.3.1 Decision trees

Before dealing with decision trees, we need to present certain definitions and concepts from

graph theory:

Definition 2.11 (Rooted Binary tree). A rooted binary tree T is a tree data structure where

each node has either 0 or 2 children. When an element in a binary tree has 2 children, we

typically name them left child and right child.

Definition 2.12 (Node). A node N in a binary tree is an element of the tree with the

following properties:

– It contains a value or data, denoted as NV .

– It may have a left child, denoted as Nleft, and a right child, denoted as Nright. These

children are also nodes in the binary tree.

– If a node has no left or right child, the corresponding child value is considered null.

Definition 2.13 (Parent, Root, Child, and Leaf Nodes). For a node N in a binary tree:

– If N has a child, then N is the parent of that child.

– If N has no parent, then N is the root of the tree.

– Each of Nleft and Nright is a child of N .

– If N has no children, then N is a leaf node, i.e., both Nleft and Nright are null.

Now that we have defined these key concepts, we can introduce Decision trees. Decision trees

provide us a highly effective solution to complex problems: they solve problems by breaking

them down into a series of sequential and hierarchical decisions. These trees can be thought

as a visual representation of a decision-making process, where each internal node, also known

as a decision or splitting node, represents a decision based on a particular feature. Thus,

each branch represents a potential outcome or state, and our data points are divided into

one or the other based on the value of a specific feature. Finally, the leaves of the decision

tree contain the final decisions made by the algorithm.
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Decision tree construction

A decision tree makes these splits based on a set of rules that are determined through a

process called recursive binary splitting. The goal of this process is to create what we call

binary splits (two children at each node), that are able to partition the data into subsets, in a

way that the model’s predictive accuracy is improved. This procedure requires the selection

of the best variable or feature, and the best threshold to split the data at each internal node

of the tree. This is done iterating over all possible variables and splits. For quantitatively

talk about best splits, we introduce impurity functions.

Definition 2.14 (Impurity Function). An Impurity Function is a function Φ from the space

of distributions ofK classes (i.e. K positive reals summing to 1 that represent the probability

of being in each class) to R, with some additional properties:

– Φ is permutation invariant: it only depends on probabilities p1, ..., pk but not in their

order.

– Φ achieves its maximum when pi = 1/k for all i, i.e. when the distribution is uniform.

– Φ achieves its maximum when pi = 1 for some i (and 0 for the rest), this is when the

distribution concentrates in one class.

An impurity function has to be thought as a function that awards having a distribution with

low variance or information. Some examples are:

– Entropy function: Φ = −
∑

1≤i≤K pi log pi

– Miss-classification rate: Φ = 1−maxj pj

– Gini index: Φ = −
∑

1≤i≤K pi(1− pi)

This is indeed what we want for our leaves: having only one class on it so we can be sure

about their classification. Our strategy now will be to iteratively maximize the value of the

impurity function in the children of each node. So, for each node, we will select the splitting

that maximizes the sum of the impurity function on the children nodes, given the training

data distribution. Finally, we will have a rule to stop the splitting. This rule can be having

low amount of training examples on the given node or a high value of the impurity function,

among others.
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2.3.2 Gradient Boosting

Once the concept of decision tree has been introduced, we can now introduce Gradient

Boosting, a supervised learning algorithm that we can describe as a potent ensemble learning

technique. Let us begin introducing the definition of weak learner :

Definition 2.15 (Weak Learner). A weak learner is a machine learning algorithm that

performs slightly better than random chance. In the context of ensemble learning, weak

learners are often used as building blocks to create a strong learner or a more robust model.

The main objective of Gradient Boosting is obtaining a strong classifier: it sequentially

builds a series of weak learners, refining the model by compensating the errors made by the

preceding models. In our implementation, we will consider these weak learners to be decision

trees.

Thus, the final strong learner is an ensemble of all decision trees

H(X) = α1h1(X) + α2h2(X) + · · ·+ αkhk(X),

where X is our training dataset and ht(X) for t ∈ {1, . . . , k} are the weak learners (decision

trees in our case).

Figure 2.1: Gradient boosting diagram, source: [16]

The algorithm of gradient boosting follows the next idea:

– Before starting, we have a training dataset withm points (X(i), y(i)), for i ∈ {1, . . . ,m},
withX = (X(1), X(2), . . . , X(m)) and y = (y(1), y(2), . . . , y(m)), a initial model ŷ = F0(X)

and a loss function L(y, ŷ) > 0.

How can we improve our model F0(X)? (since probably F0(X) ̸= y)

– Consider the residuals ε of our model such that F0(X) + ε = y.
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– Fit a new model h0(X) to ε so that the new prediction, F (X) = F0(X) + h0(X),

improve the previous one, F0(X). To do so, the new model h0(X, θ) will be fitted to

the descend direction of the gradient, that its

d = −∇L(y, F (X)) = −δL(y, F (x))
δF (X)

,

following the iterative method

Fk+1 = Fk(X) + λkdk,

where λk is the step-length.

Algorithm 1 Gradient Boosting Algorithm

Require: X =
(
X(1)T , . . . , X(m)T

)T
, y = (y1, . . . , ym)

T , h(X, θ),L(y, F (X)) and K ∈ N
1: F0(X) = γ, where γ is a constant.

2: for k = 1 to K do

3: Compute −∇L (y, Fk(X)) ▷ (opposite to gradient).

4: Fit a model h
(
X, θk

)
to −∇L (y, Fk(X)).

5: Calculate the optimal step-length, λk by solving:

λk = argmin
λ

L
(
y, Fk−1(X) + λh

(
X, θk

))
6: Update Fk+1(X) = Fk(X) + λkh

(
X, θk

)
.

7: end for
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2.3.3 LightGBM

To fit our model, we first need to discern between to type of variables: categorical and

numerical. Categorical variables are characterized by different categories or labels, such as

gender or types of cars, while numerical variables are defined by measurable quantities, like

height or temperature.

Thus, since several of our features are categorical, we have chosen LightGBM as a gradient

boosting framework, which is well known for easily supporting categorical variables, making

it a good candidate for our needs.

LightGBM [17] implements a conventional Gradient Boosting Decision Tree, where the trees

grow leaf-wise; that is, given a condition, only a single leaf is split, depending on the gain,

as we can see in Figure 2.2. Moreover this algorithm uses two novel techniques in order to

reduce complexity by down-sampling the data and the features: Gradient-Based One-Side

Sampling (GOSS) and Exclusive Feature Bundling (EFB).

Figure 2.2: Leaf-wise tree growth, source [18]

The first one, GOSS technique, has the goal of selecting a subset of the data to use when

training a gradient boosting model. It works by first sorting the training data by the gra-

dients of the loss function with respect to the current model, and then selecting certain

percentage of the data with the largest gradients, while randomly sampling the remaining

instances. This allows the model to focus on instances that are more important for training,

while still maintaining a diverse training set.

On the other hand, EFB aims to reduce the number of features used by regrouping mutually

exclusive features (the ones that do not take non-zero values simultaneously) into bundles,

treating them as a single feature. As proven in [17], finding the optimal bundle of exclusive

features is NP-hard, but a greedy algorithm can achieve a good approximation ratio.



Chapter 3

Results

In this chapter we will present the results of the theory presented in Chapter 2. The imple-

mented code can be found at https://github.com/silviag08/Flight-Fuel-Models.

First of all, we will consider a set of variables, renamed from table 1.1 for simplicity during

coding, or a variation of them with the corrections presented in Section 1.

Column Name Description

Origin Airport Origin Airport

Destination Airport Destination Airport

model Aircraft type, using the ICAO designation

seats Number of available seats

dist Traveled distance, in kilometers, using the corresponding GCD and

corrections described in subsection 1.2.1.

depcount Number of times that the flight took place during the year 2017

fuel burn total Grams of fuel burn during the flight per available seats and kilometer

(g/ASK), obtained from IMPACT, the web-based modelling platform

from EUROCONTROL, adding the correction of taxi fuel consump-

tion described in subsection 1.2.2

Table 3.1: Column description of the dataset

Note that during training, we will use the variable dist, containing the corrections described

in 1.2.1. Nevertheless, for a real application, corrections should be skipped since the model

is already trained considering them.

Dataset Number of Samples Percentage

Total 58125 100%

Train 46500 80%

Test 11625 20%

Table 3.2: Split sets information

24
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In order to assess our models accurately, so that we can gauge their performance on unseen

data, we will split our data into two distinct groups, train and test, described in Table 3.2,

that will use for training and predicting, respectively.

When evaluating a model, relying only on the training data can paint an overly positive

picture of its capabilities: the model becomes too focused on the training data, to the point

where it picks up on random variations or noise instead of the underlying patterns. While

this may result in impressive performance on the train set, the model may struggle to ef-

fectively apply its learning’s to new, unfamiliar data. When this happens, we say that the

model is overfitting. By incorporating a separate test set, we can ensure that our assessment

truly reflects the model’s ability to handle new data and avoids the dangers of overfitting,

giving us a more dependable and accurate measure of its performance.

To evaluate the performance of our models and to be able to compare them, setting a fixed

metric is required. From [9], MAPE metric could have been a great option:

Definition 3.1 (MAPE). Consider {Y }ni=1 and {Ŷ }ni=1 to be the sets of actual and predicted

values respectively. Then, the mean absolute percentage error (MAPE) is defined as follows

MAPE =
1

n

n∑
i=1

|Yi − Ŷi|
Yi

However, after examining the distribution of our data, we decided that a weighted metric

could be used, since some of our flights routes were significantly more frequent than others,

and hence they will also appear more while predicting. However, frequent flights are usually

shorter, and so is their fuel consumption. To tackle this problem, we consider a new set of

weights

{Wi}ni=1 =
depcounti · fuel consumptioni∑n
j=1 depcountj · fuel consumptionj

,

and thus, a new metric,

Definition 3.2 (WMAPE). Consider {Yi}ni=1 and {Ŷi}ni=1 to be the sets of actual and pre-

dicted values, respectively. Consider {Wi}ni=1 to be the set of weights associated with a

respective Yi. We usually assume that
∑n

i=1Wi = 1. Then, we define the weighted mean

absolute percentage error (WMAPE) as follows

WMAPE =
n∑

i=1

Wi ·
|Yi − Ŷi|

Yi
.

Note that this metric assigns greater significance to flights that are either highly frequent or

have substantial fuel consumption, i.e, to flights that contribute a larger proportion to the

overall fuel consumption. If we had considered an unweighted metric, it had could given too

much importance to very rare or/and short flights, which, in reality, contribute minimally



26 3.1. LINEAR REGRESSION

to the total global fuel consumption. In practical applications, those are not from big interest.

Throughout this section, we will use the WMAPE metric to evaluate our models, although

we will refer to it as MAPE for simplicity.

3.1 Linear Regression

In this section we will present the results following the linear regression approach presented

in subsection 2.1. From the paper Analytical Models for CO2 Emissions and Travel Time for

Short-to-Medium-Haul Flights Considering Available Seats [9], we know that our baseline is

considering a linear regression with the following features:

Column Name1 Description

seats Number of available seats

dist Traveled distance, in kilometers, using the corresponding GCD and

corrections described in subsection 1.2.1.

inv dist2 Inverse of dist

fuel burn total Grams of fuel burn during the flight per available seats and kilometer

(g/ASK), obtained from IMPACT the web-based modelling platform

from EUROCONTROL, adding the correction of taxi fuel consump-

tion described in subsection 1.2.2

Table 3.3: Column description of the dataset

In order to apply classical statistical results to evaluate how good our model is, for instance,

performing an analysis of variance using ANOVA, we need to check that the assumptions

mentioned at the beginning of subsection 2.1 are acceptable for our model. That is, checking

whether

ε(i) = y(i) − E(yi | Xi) = y(i) −
(
θ̃0 + θ̃1X

(i)
1 + . . .+ θ̃dX

(i)
d

)
for i ∈ {1, 2, . . . , d}

are close to being independent and identically distributed following a normal distribution

and, in particular, whether the linearity, the constancy of variance and the normality as-

sumptions hold. Note that one cannot check that directly because θi and, therefore, ε
(i) are

unknown.

2Note that inv dist is considered since fuel burn total has units grams
seats·km . The feature inv seats was

also considered but it decreased the accuracy of the model.
1Note that the column depcount is not present in table 3.3. This feature represents the frequency of a

flight route completed in 2017. While it does not offer pertinent information for training our model, it is

valuable for accounting for total fuel consumption.
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Instead, what one can analyze is whether that is approximately the case by analyzing the

best estimate we have for ε(i), which are the residuals:

e(i) = y(i) −
(
θ0 + θ1X

(i)
1 + . . .+ θdX

(i)
d

)
= y(i) − ŷ(i) for i ∈ {1, 2, . . . , d} (3.1)

Those are crucial for analyzing our model, since they “magnify” the lackings of it, and help

discover ways to fix it. In order to proceed with this study, we will consider a graphical

analysis of them, using the normal probability plot of residuals, also known as Q-Q plot. If

the normality assumption holds, residuals should be placed more or less along the identity

line [19].

Once our model is fitted, we obtain the following polynomial:

fuel burn total = 21.5839 + 8351.0606 · 1

dist
+ 0.0051 · dist− 0.0806 · seats (3.2)

Taking now 100 samples of our data and plotting a Q-Q plot, we can appreciate in Figure

3.1 that the residuals do not follow a normal distribution (red line).

Figure 3.1: Q-Q plot of residuals taking 100 random samples

When this happens, the usual procedure is to apply a non-linear transformation to our

features, taking into account their own distribution, in order to achieve normality on the

residuals. However, in our case, after apply several classical non-linear transformation to

tackle this problem, this did not work. Moreover, we do not have information to know which

kind of transformation should we apply. This arises a problem: when not satisfying the nor-

mal lineal model assumptions, we cannot use theoretical results to improve it. This points
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out that the lineal model is not the best one to adjust our data.

Yet, we can use our metric, defined in 3.2 to check the accuracy of the model considered in

Equation (3.2). For our data, the error is very large, reaching 16.86% on the test set. This

may be due to our data distribution, as shown in 1.1. To address this problem, we have also

trained 4 different models, splitting our data by distance, as shown in Table 3.4, following

the EUROCONTROL haul’s division [20],

Haul Type Distance N. of Samples Samples train Samples test

Short Haul dist < 500 8730 6984 1746

Medium Haul 500 ≤ dist < 1500 26392 21113 5279

Medium Long Haul 1500 ≤ dist < 4000 19601 15680 3921

Long dist ≥ 4000 3402 2721 681

Table 3.4: Description of Haul Types based on Distance (dist), based on [20]

with the purpose of finding a model, even if multiple of them, that fits better our data.

Thus, we will consider a different model that has been trained with only data belonging to

one of the different hauls, having then 4 different models for our data. We will refer to this

model as Linear Regression by haul. As we can appreciate in Table 3.5, the first table shows

us that this methodology is not good for every set of data: for Short and Medium hauls, the

accuracy decreases substantially, while for the others it increases notably, with a difference

of a 12.808% of MAPE in the Long haul dataset.

With the purpose of increasing the accuracy, we considered adding new variables. In partic-

ular, we studied the addition the variable CAT, a variable used during the corrections applied

to the distance in subsection 1.2.1. This variable divides the data into 6 different categories,

based on the aircraft model (model). We introduced this variable as 6 different binary vari-

ables, each one representing one of the categories, taking values 1 if the sample belongs to a

the category and 0 otherwise. As we can see reflected in the table 3.5, this implementation

increases our results significantly.

Moreover, a new model was considered, adding in this case the variable model instead of CAT.

Following the same approach as before, we had to add 91 binary variables, corresponding to

each of the different models of our dataset. We expected the model to be overfitting, but as

shown in last table of Table 3.5, the accuracy of the train and test sets is very similar. In

particular, training different models for each type of haul (see Linear Regression by haul+

model) gives us an outstanding performance compared to our first model.



3.1. LINEAR REGRESSION 29

Linear regression

Short Medium Medium Long Long Total

MAPE Train - - - - 17.754%

MAPE Test 19.721% 8.644% 19.432% 40.466% 16.860%

Linear regression by haul

Short Medium Medium Long Long Total

MAPE Train 20.805% 9.790% 11.117% 31.595% 17.754%

MAPE Test 20.636% 8.818% 11.468% 27.658% 16.860%

Linear Regression + CAT

Short Medium Medium Long Long Total

MAPE Train - - - - 14.988%

MAPE Test 16.480% 8.650% 11.582% 41.428% 14.659%

Linear Regression by haul + CAT

Short Medium Medium Long Long Total

MAPE Train 15.194% 9.250% 7.350% 31.281% 14.988%

MAPE Test 14.835% 8.115% 7.794% 28.178% 14.659%

Linear Regression + model

Short Medium Medium Long Long Total

MAPE Train - - - - 9.666%

MAPE Test 9.091% 5.580% 7.768% 32.216% 9.356%

Linear Regression by haul + model

Short Medium Medium Long Long Total

MAPE Train 7.852% 4.465% 5.030% 21.445% 9.666%

MAPE Test 7.794% 4.126% 5.147% 21.455% 9.356%

Table 3.5: Linear Regression accuracy using MAPE metric
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3.2 Kernel Regression

In this section we will discuss the results from the theory presented in section 2.2. As

developed, kernel regression tries to capture the underlying pattern or trend in the data

without making strong assumptions about the form of the relationship between variables.

In our case, our selected kernel function will be the Laplacian,

k(x, y) = exp(−γ∥x− y∥1),

where x, y are the input vectors, γ ∈ R and ∥x− y∥1 is the Manhattan distance between

the input vectors. The selection of this kernel function was the result of systematically

evaluate various kernels through a trial-and-error approach. The goal was to identify the

kernel that yielded optimal performance based on the selected metric. Note that this ker-

nel depends on γ, a parameter to be set. After some exploration, we decided to set γ = 0.005.

The main problem of this approach was that we have a huge set of data, and as developed in

theory, the computation of an inverse matrix is required. However, after different implemen-

tation approaches and the use of at least 16GB of memory, were able to train and predict

with this method. Nevertheless, we would like to remark on the computational time that

this method requires.

As illustrated in Table 3.6, training a specific model for each haul does not give significant

better results for every haul using kernel regression. Specifically, the only one for which

applying a kernel regression by haul results in better accuracy is for the Long haul dataset.

Moreover, it is clear comparing Tables 3.5 and 3.6 that kernel regression performs generally

better than linear regression. In particular, we cannot see an outstanding improvement using

categorical variables CAT and model as we saw with linear regression, but that is because

the model is already significantly better. However, note that Kernel Regression by haul +

model exhibits worse results than Kernel Regression + model. In particular, this last one

is also giving worst results than Linear Regression by haul + model when comparing most

of the haul sets errors. Nevertheless, it reduces the error of the Medium haul set more than

1%, where most of our data belongs. This is the reason why this kernel model obtains the

lower MAPE on the total test set until now.
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Kernel Regression

Short Medium Medium Long Long Total

MAPE Train - - - - 9.223%

MAPE Test 10.155% 7.194% 4.768% 30.201% 9.850%

Kernel Regression by haul

Short Medium Medium Long Long Total

MAPE Train 10.077% 7.437% 4.256% 24.675% 9.223%

MAPE Test 9.614% 7.432% 4.959% 26.588% 9.850%

Kernel regression + CAT

Short Medium Medium Long Long Total

MAPE Train - - - - 9.051%

MAPE Test 10.116% 7.120% 4.529% 29.802% 9.741%

Kernel regression by haul + CAT

Short Medium Medium Long Long Total

MAPE Train 9.923% 7.311% 3.986% 24.415% 9.051%

MAPE Test 9.495% 7.305% 4.694% 26.438% 9.741%

Kernel Regression + model

Short Medium Medium Long Long Total

MAPE Train - - - - 7.914%

MAPE Test 8.631% 5.976% 3.920% 28.073% 8.492%

Kernel Regression by haul + model

Short Medium Medium Long Long Total

MAPE Train 8.670% 6.462% 3.531% 22.786% 7.914%

MAPE Test 8.157% 6.405% 4.114% 24.868% 8.492%

Table 3.6: Kernel regression error using MAPE metric
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3.3 LightGBM

In this last section, we will present the results of the model that has given better results:

LightGBM. As commented in subsection 2.3.3, this model is profitable for regression tasks

such ours, due to its efficient and scalable gradient boosting framework, optimized for large

datasets, and its ability to handle complex non-linear relationships.

In this case, after considering the results obtained in sections 3.1 and 3.2, we can state that

the feature model holds significant importance. Therefore, the presented results include di-

rectly this feature.

Like any machine learning model, LightGBM includes adjustable parameters that influence

its performance, called hyperparameters. Finding the best hyperparameters for our model

based on the data, a process called finetuning, is an extremely important procedure in order

to obtain a good accuracy. The specific parameters we have set include:

– objective (‘regression’): loss function to be selected. In this case, ‘regression’,

was chosen, corresponding to the Mean Squared Error :

Mean Squared Error =
1

n

n∑
i=n

(Yi − Ŷi)
2.

– learning rate (0.15): step size at each iteration while moving toward a minimum

of the loss function.

– max depth (8): maximum depth of a tree. Can be used to prevent overfitting.

Other hyperparameters were left with default values. In particular, for training this model

we have considered another dataset, called validation.

Dataset Number of Samples Percentage

Total 58125 100%

Train 46500 80%

Validation 5813 10%

Test 5812 10%

Table 3.7: Split sets information

The monitoring of performance is specifically conducted on this validation dataset, using

early stopping :

Definition 3.3 (Early Stopping). Early stopping technique monitors the performance met-

rics on the validation set at regular intervals. If the performance on the validation set stops

improving or starts deteriorating, the training process is halted before completing all the

planned iterations.
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Specifically, we set the number of iterations for early stopping to 15. With the specified

parameters parameters, we obtained the following results:

Linear Regression + model

Short Medium Medium Long Long Total

MAPE Train - - - - 9.666%

MAPE Test 9.091% 5.580% 7.768% 32.216% 9.356%

Kernel Regression + model

Short Medium Medium Long Long Total

MAPE Train - - - - 7.914%

MAPE Test 8.631% 5.976% 3.920% 28.073% 8.492%

LightGBM

Short Medium Medium Long Long Total

MAPE Train - - - - 2.188%

MAPE Validation - - - - 3.110%

MAPE Test 3.873% 2.629% 1.532% 6.790% 3.460%

Table 3.8: Comparison table of different models using MAPE metric

As illustrated in Table 3.8, this model gives outstanding results compared to previous ap-

proaches, reaching an error of 3.46% on the test set.

Figure 3.2: Training steps vs MAPE

One thing worth noticing about this model

is illustrated in Figure 3.2, depicting the

evolution of the metric during the train-

ing steps of the model. We can see

a huge improvement in the first 100

steps (as one could expect) and a rea-

sonable improvement in the next 1000

steps. The remark is that all train, vali-

dation and test sets have a similar learn-

ing curve, so we do not detect overfit-

ting.
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Application: comparing rail and flight CO2 emissions

In this chapter we present a real-world application of our LightGBM model 3.3, the model

developed with better accuracy. The goal of this application will be analyzing the reduction

of CO2 emissions if a certain flight route will be replaced by a rail one, considering AVE

(high-speed train) rail routes. In particular, we will present results regarding a week of air

traffic in May 2023, with flights arriving/departing within Spain from the 1st to the 7th of

May 2023 [21, 22]. Note that some flights might depart on the 30th April or land on the 8th of

May. Further, the 1st of May is a public holiday in Spain, and the 2nd May is a public holiday

in the region of Madrid. This impacts directly the flight traffic. Information regarding CO2

emissions of AVE routes is obtained from EcoPassenger calculator [23].

Figure 4.1: Violin plot of the distance distribution

This dataset comprises 1538 flights which, in

contrast to the previous data used to train

1.2, they are not unique and do not include a

depcount column. In other words, each row in

our dataset represents an individual flight occur-

rence. The flight distance in this case is found

within a more restricted range, varying between

277 km and 894 km. Flight distance distribu-

tion in Figure 4.1 illustrates that most part of

the flights are classified as Short Haul flights,

while the others would belong to the Medium

Haul group, the description of which is made in

Table 4.1. Therefore, following the results ob-

tained in Table 3.8, we can expect an error between 2.5% and 4% if this new data behaves

similary as our LightGBM test dataset.

34
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4.1 Data preprocessing

For simplicity, we transformed the data into a dataset containing unique routes of flights,

and created a new column named depcount, representing the number of times a route has

taken place, as we had before. With this change, we obtain 226 rows of unique flight routes.

In particular, data follows the distribution illustrated in Table 4.1.

Haul Type Distance N. of Samples Expected MAPE

Short Haul dist < 500 101 3.873%

Medium Haul 500 ≤ dist < 1500 125 2.629%

Table 4.1: Description of Haul Types based on Distance (dist), based on [20]

The dataset used for this application contains models that our LightGBM model has not

seen before, since they were not in the database used to train the model. To tackle this

problem, we decided to substitute them by the more similar ones in our database, as shown

in Table 4.2. With this change, we ensure a better accuracy for the prediction of the fuel

consumption of these flights.

Model to be replaced New Model N. of flights affected3

AT75 AT72 16

AT76 AT72 14

A20N A320 135

A21N A321 14

B38M B737 18

Table 4.2: Model changes

The provided dataset contained 16 flights4 without model, and thus, without number of avail-

able seats (seats). Even if LightGBM is able to handle missing values, predictions of these

flights were not good, returning negative values. However, since dist, Arrival Airport

and Departure Airport were provided, we decided to map these flights with the mean of

seats of flights with the same flight route. In particular, predictions of these 16 flights,

corresponding to 6 different flight routes, were also computed taking the mean value of the

predictions for those flights with the same flight route.

3This column indicates the number of flights affected, not the flight routes affected.
4Again, we are talking about different flights, not flight routes.
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4.2 Results

For this study, we have chosen three distinct flight routes to analyze their respective CO2

emissions and draw comparisons with the rail emissions for the same routes. The selection

criteria included routes with no layovers and rail travel time of less than 3 hours.

Figure 4.2: Madrid Arrivals and Departures

Focusing on the capital of the country,

Madrid, which boasts superior rail connec-

tivity, we considered in Figure 4.2 a de-

scription of Madrid arrivals and departures.

It is evident that the flight routes between

Madrid-Barcelona or Barcelona-Madrid (typ-

ically featuring an equal number of flights

due to their round-trip nature), are the

most frequent ones, with a number of

flights performed of 126 and 128 respec-

tively. Moreover, it represents one of the

routes with the most efficient AVE connec-

tivity.

For our study, we have also chosen Madrid-

Málaga and Madrid-Sevilla routes, along with

their corresponding roundtrips. Other routes

may not have AVE direct connection with

Madrid, but could also be considered. How-

ever, we will focus on the mentioned ones.

From now on, when we mention Madrid-Barcelona, Madrid-Málaga, or Madrid-Sevilla, we

will also be encompassing their including round-trip journeys in our discussions.

For these routes, we find in Table 4.3 the number of flights with destination or origin Madrid,

representing together the 27,2% of our dataset. It also includes information obtained from

[23] about the train model, travel time and CO2 emissions per passenger that will be used

in our study. Note that the PAX in this table stands for passenger.

Route N. of flights

Madrid-Barcelona 254

Madrid-Málaga 97

Madrid-Sevilla 68

Train model CO2 kg/PAX Duration

AVL 6303 18.4 2:45 h

AVL 2216 13.4 2:56 h

AVE 2122 15.2 2:55 h

Table 4.3: Information regarding number of flights and train models selected, from or to

Madrid.



4.2. RESULTS 37

As we have seen in previous sections, fuel consumption varies in function of the aircraft

model. In Table 4.4, we present prediction results in function of the model, located in column

Fuel Pred (g/ASK). An additional column required for our analysis is also computed: CO2

(t/flight). These can be easily estimated from fuel burn using CO2 (g) = 3.157·fuel burn (g) ,

given by The International Air Transport Association (IATA) [24]. However, in order to

make a fear comparison with EcoPassenger’s train emissions, we need to use a larger factor,

CO2 (g) = 3.78 · fuel burn (g) [25]. (4.1)

This is due to its methodology approach, where they consider not only emissions during the

travel, but also during all life cycle of the respective energy source. With this information,

we are able to compute the column CO2 (t/flight) using a simple conversion factor:

CO2 (t/flight) = 3.78 · 10−6 · Fuel Pred. (g/ASK) · dist · seats,

leading to tonnes of CO2 per flight. Lastly, we have Total CO2 (t), representing the tonnes

of CO2 emitted by all flights by model, so multiplying CO2 (t/flight)· depcount.

At the end of each table, we can observe the Total CO2 Emissions (t), which is the sum

of the last column and represents the total emissions during a week for each of the routes,

including both ways.

Figure 4.3: Comparison total flight and train CO2 emissions.

In Figure 4.3 we illustrate the difference between the rail and flight emissions for each one

of the routes, considering the total CO2 emissions per route. As we can appreciate, the

reductions are outstanding, decreasing approximately a 70% the CO2 emissions for every

route. In Table 4.5 we can see a better description of the obtained values.
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Madrid-Barcelona Flight Route, 483 km

Model Seats depcount Fuel Pred. (g/ASK) CO2 (t/flight) Total CO2 (t)

A21N 183 48 25.726 8.597 412.644

A319 124 18 37.631 8.521 153.372

A320 150 126 31.233 8.555 1060.829

A321 185 28 28.424 9.602 268.856

B788 242 10 37.083 16.387 163.869

B789 335 18 33.176 20.295 365.307

CRJX 81 2 32.518 4.810 9.620

- 186 6 32.256 10.956 65.733

Total CO2 Emissions (t) 2500.231

Madrid-Málaga Flight Route, 430 km

Model Seats depcount Fuel Pred. (g/ASK) CO2 (t/flight) Total CO2 (t)

A320 150 36 32.483 7.922 285.181

A321 232 6 32.455 12.242 73.451

B738 160 48 31.725 8.253 396.126

CRJX 81 1 35.509 4.676 4.676

- 156 3 33.043 8.381 25.142

- 181 3 32.220 9.482 28.445

Total CO2 Emissions (t) 813.022

Madrid-Sevilla Flight Route, 395 km

Model Seats depcount Fuel Pred. (g/ASK) CO2 (t/flight) Total CO2 (t)

A320 150 36 33.621 7.529 271.060

A321 185 16 29.510 8.151 130.410

A321 232 8 33.117 11.471 91.766

A359 348 4 40.761 21.178 84.712

B738 160 2 32.175 7.686 15.372

CRJX 81 2 35.706 4.318 8.636

Total CO2 Emissions (t) 601.957

Table 4.4: Predictions for flights between Madrid-Barcelona, Madrid-Málaga and

Madrid-Sevilla (both ways)

Route Flight CO2 Rail CO2 CO2 reduction Reduction %

Madrid-Barcelona 2500.231 819.242 1680.989 67.2%

Madrid-Málaga 813.022 235.433 577.589 71%

Madrid-Sevilla 601.957 162.006 439.951 73%

Table 4.5: Comparative results between flight and rail CO2 emissions, expressed in tonnes.
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Recall that our data provides information regarding a week of airtraffic within Spain. Thus,

we can also draw conclusions about weekly CO2 emissions. Using our LightGBM model

3.3 and Equation (4.1), we estimate the total weekly CO2 emissions to be 14186 tonnes.

Through our analysis, we explore the potential impact of replacing all the studied flight

routes, namely Madrid-Barcelona, Madrid-Málaga, and Madrid-Sevilla (round trips), with

their corresponding rail routes, assuming that all passengers will choose a rail alternative.

This substitution is projected to reduce the total weekly CO2 emissions by 19%, equating

to a significant prevention of 2697 tonnes of CO2, illustrated in Figure 4.4. Note that this

situation is ideal, as not all flights on a certain route can be replaced, and not all passengers

on those flights may choose a rail alternative.

(a) Emissions produced by flights only (b) Emissions with train alternatives in selected routes

Figure 4.4: Weekly emission of airtraffic within Spain in (a) and emissions if replacing the

selected routes by train alternatives in (b)
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Conclusion

In this thesis we have developed the theory behind the predictive models presented: Linear

Regression, Kernel Regression and LightGBM. As anticipated, due to its complexity com-

pared to the others, the LightGBM model yields the most accurate results in predicting

fuel consumption, boasting a remarkably low MAPE of 3%. In contrast with other fuel

consumption calculators, this model has the peculiarity of not requiring extensive data on

the flight route for accurate predictions, relying only the aircraft model, the travel distance

and the number of available seats. Moreover, our model is a more dynamic tool compared

to alternative calculators, enabling the simultaneous computation of fuel consumption for

multiple flight routes.

Furthermore, we have applied noteworthy corrections to our data, specifically addressing

flight distance and taxi fuel consumption. In the case of taxi fuel consumption, we tried

to establish accurate approximations for 91 different aircraft models, aiming to enhance the

precision of our analyses.

Based on the results from our application study, which compares CO2 emissions between

rail and flight travel, we can see the importance of considering other less polluting travel

options when feasible. The significant reduction in emissions underscores the importance of

embracing more environmentally-friendly travel alternatives.

As future work, we could perform a further exploration to try to find better parameters for

our LightGBMmodel. Also, if the data is available, we could study the inclusion of additional

features that may impact fuel consumption, such as weather conditions, air traffic, or fuel

prices. Even if this adds complexity to our model, the incorporation of these features may

enhance notably the accuracy of it. Another point of improvement could be performing an

error study, where we take into account all our assumptions and data-preprocessing to give

a more robust value of the error.
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[21] Schäfer Matthias, Strohmeier Martin, Lenders Vincent, Martinovic Ivan, and Wilhem

Matthias. “Bringing up OpenSky: A Large-Scale ADS-B Sensor Network for Research”. Pro-

ceedings of the 13th International Symposium on Information Processing in Sensor Networks,

pages 83–94, 2014. Available at https://opensky-network.org/data/impala.

[22] OpenSky. A Quick Guide To OpenSky’s Impala Shell. Available at https://

opensky-network.org/data/impala.

[23] EcoPassenger. Compare the energy consumption, the CO2 emissions and other environ-

mental impacts for planes, cars and trains in passenger transport. Available at https:

//ecopassenger.hafas.de.

www.icao.int/environmental-protection/ CarbonOffset/Documents/Methodology%20ICAO%20Carbon%20Calculator_v11-2018.pdf
www.icao.int/environmental-protection/ CarbonOffset/Documents/Methodology%20ICAO%20Carbon%20Calculator_v11-2018.pdf
https://www.eurocontrol.int/publication/performance-review-report-prr-2022
https://www.eurocontrol.int/publication/performance-review-report-prr-2022
https://en.wikipedia.org/wiki/Taxiing
https://www.eurocontrol.int/publication/taxi-times-winter-2019-2020
https://www.eurocontrol.int/publication/taxi-times-winter-2019-2020
https://www.eurocontrol.int/sites/default/files/2021-07/recat-eu-released-september-2018.pdf
https://www.eurocontrol.int/sites/default/files/2021-07/recat-eu-released-september-2018.pdf
https://web.mit.edu/modernml/course/
https://link.springer.com/article/10.1007/s11277-021-08712-9
https://link.springer.com/article/10.1007/s11277-021-08712-9
https://www.eurocontrol.int/sites/default/files/2021-06/eurocontrol-think-paper-11-plane-and-train-right-balance.pdf
https://www.eurocontrol.int/sites/default/files/2021-06/eurocontrol-think-paper-11-plane-and-train-right-balance.pdf
https://opensky-network.org/data/impala
https://opensky-network.org/data/impala
https://opensky-network.org/data/impala
https://ecopassenger.hafas.de
https://ecopassenger.hafas.de


BIBLIOGRAPHY 43

[24] IATA. IATA Carbon Offset Program—Frequently Asked Questions. version 10.1. 2020. Avail-

able at https://www.iata.org/contentassets/922ebc4cbcd24c4d9fd55933e7070947/

icop_faq_general-for-airline-participants.pdf.

[25] EcoPassenger. Environmental Methodology and Data. 2016. Available at https://

ecopassenger.hafas.de/hafas-res/download/Ecopassenger_Methodology_Data.pdf.

[26] Harshad Khadilkar and Hamsa Balakrishnan. Estimation of Aircraft Taxi-out Fuel Burn using

Flight Data Recorder Archives. Massachusetts Institute of Technology, Cambridge, MA 02139,

USA. Available at https://www.mit.edu/~hamsa/pubs/KhadilkarBalakrishnanGNC2011.

pdf.

[27] StackExchange Aviation. How much fuel does the A380 use for taxiing before takeoff? .

Genx Engine. December 19, 2023. Available at https://aviation.stackexchange.com/

questions/50668/how-much-fuel-does-the-a380-use-for-taxiing-before-takeoff.

[28] Michael Gebicki. How much fuel do aircraft burn when they taxi? The Sydney Morning Herald.

February 9, 2018. Available at https://www.smh.com.au/traveller/reviews-and-advice/

how-much-fuel-do-aircraft-burn-when-they-taxi-20180209-h0vtp4.html.

[29] Jay Stowe. Flip the Script: GEnx Program Caps Off Big Year With LATAM Airlines Deal .

Genx Engine. December 19, 2023. Available at https://www.ge.com/news/taxonomy/term/

8570.

[30] Airline Pilot Central. EMB 145 Fuel Savings . January 4, 2019. Available at https://www.

airlinepilotcentral.com/articles/news/emb-145-fuel-savings.html.

[31] Aviaddicts. Fuel Flows . Available at https://forums.aviaddicts.com/wiki/print.php?

page=ejet:fuel_consumption.

[32] Abdulrazaq Lemu Salihu, Shannon M. Lloyd, and Ali Akgunduz. Electrification of airport

taxiway operations: A simulation framework for analyzing congestion and cost. Transportation

Research Part D: Transport and Environment, 97:102962, 2021.

[33] LET. L410 Flight Manual . April, 2019. Available at https://x-plane.hu/L-410/download/

L410%20Flight%20Manual.pdf.

https://www.iata.org/contentassets/922ebc4cbcd24c4d9fd55933e7070947/icop_faq_general-for-airline-participants.pdf
https://www.iata.org/contentassets/922ebc4cbcd24c4d9fd55933e7070947/icop_faq_general-for-airline-participants.pdf
https://ecopassenger.hafas.de/hafas-res/download/Ecopassenger_Methodology_Data.pdf
https://ecopassenger.hafas.de/hafas-res/download/Ecopassenger_Methodology_Data.pdf
https://www.mit.edu/~hamsa/pubs/KhadilkarBalakrishnanGNC2011.pdf
https://www.mit.edu/~hamsa/pubs/KhadilkarBalakrishnanGNC2011.pdf
https://aviation.stackexchange.com/questions/50668/how-much-fuel-does-the-a380-use-for-taxiing-before-takeoff
https://aviation.stackexchange.com/questions/50668/how-much-fuel-does-the-a380-use-for-taxiing-before-takeoff
https://www.smh.com.au/traveller/reviews-and-advice/how-much-fuel-do-aircraft-burn-when-they-taxi-20180209-h0vtp4.html
https://www.smh.com.au/traveller/reviews-and-advice/how-much-fuel-do-aircraft-burn-when-they-taxi-20180209-h0vtp4.html
https://www.ge.com/news/taxonomy/term/8570
https://www.ge.com/news/taxonomy/term/8570
https://www.airlinepilotcentral.com/articles/news/emb-145-fuel-savings.html
https://www.airlinepilotcentral.com/articles/news/emb-145-fuel-savings.html
https://forums.aviaddicts.com/wiki/print.php?page=ejet:fuel_consumption
https://forums.aviaddicts.com/wiki/print.php?page=ejet:fuel_consumption
https://x-plane.hu/L-410/download/L410%20Flight%20Manual.pdf
https://x-plane.hu/L-410/download/L410%20Flight%20Manual.pdf


Appendix A

Taxi fuel consumption by aircraft model

This appendix contains the table comprising the taxi fuel consumption per aircraft model used in

our computations. The column Available Fuel corresponds to the taxi fuel consumption obtained

from column Source. When it is informed, it serves directly as Taxi Fuel, the column from which

we extract the taxi fuel consumption. When not informed, the mean of aircraft models with known

Available Fuel for each CAT category is employed. CAT categories are obtained using RECAT-EU

classification [14].

Model CAT Available Fuel (kg/s) Taxi Fuel (kg/s) Source

A140 E 0.1797

A148 E 0.1797

A306 C 0.2775

A310 C 0.2775

A318 D 0.2088 [26]

A319 D 0.2088 0.2088 [26]

A320 D 0.2123 0.2123 [26]

A321 D 0.2208 0.2208 [26]

A332 B 0.3287 0.3287 [26]

A333 B 0.3287 0.3287 [26]

A340 B 0.6670

A343 B 0.6350 0.6350 [26]

A345 B 0.6350 0.6350 [26]

A346 B 0.6350 0.6350 [26]

A359 A 0.6670

A388 E 0.7370 0.7370 [27]

AN24 E 0.1797

AN26 F 0.1797

AN38 E 0.3330

AT43 E 0.1797

AT46 E 0.1797

AT72 E 0.1797
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Model CAT Available Fuel (kg/s) Taxi Fuel (kg/s) Source

ATP E 0.1797

B190 F 0.3330

B350 F 0.3330

B462 E 0.1797

B463 E 0.1797

B712 E 0.1797

B733 E 0.2380 0.2380

B734 E 0.1797

B735 E 0.2380 0.2380

B736 D 0.2191

B737 D 0.2191

B738 D 0.2320 0.2320

B739 D 0.2320 0.2320

B744 B 1.1000 1.1000 [28]

B748 B 1.1000 1.1000 [28]

B752 C 0.2775

B753 C 0.2775

B762 C 0.2497 0.2497

B763 C 0.3330 0.3330

B764 C 0.2497 0.2497

B772 B 0.6669

B773 B 0.6669

B77W B 0.5734 0.5734 [29]

B788 B 0.6669

B789 B 0.6669

BCS1 D 0.2191

BE20 F 0.3330

CRJ1 E 0.1797

CRJ2 E 0.1797

CRJ7 E 0.1797

CRJ9 E 0.1797

CRJX E 0.1797

D228 F 0.3330

D328 F 0.3330

DH8A E 0.1797

DH8B E 0.1797

DH8C E 0.1797

DH8D E 0.1797
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Model CAT Available Fuel (kg/s) Taxi Fuel (kg/s) Source

DHC6 F 0.3330

E120 F 0.3330

E135 E 0.1797

E145 E 0.2200 0.2200 [30]

E170 E 0.1300 0.1300 [31]

E190 E 0.1500 0.1500 [31]

E195 E 0.1500 0.1500 [31]

E75L E 0.1320 0.1320 [32]

F100 E 0.1797

F50 E 0.1797

F70 E 0.1797

IL96 B 0.6669

J328 E 0.1797

JS31 F 0.3330

JS32 F 0.3330

JS41 F 0.3330

L410 F 0.333 0.3330 [33]

MD80 D 0.2191

MD82 D 0.2191

MD83 D 0.2191

RJ1H E 0.1797

RJ85 E 0.1797

SB20 E 0.1797

SF34 F 0.3330

SU95 E 0.1797

SW4 F 0.3330

T134 E 0.1797

T154 D 0.2191

T204 C 0.2775

YK40 E 0.1797

YK42 E 0.1797
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