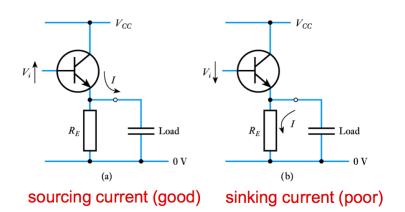
# 2 Power

### **Power Amplifiers**

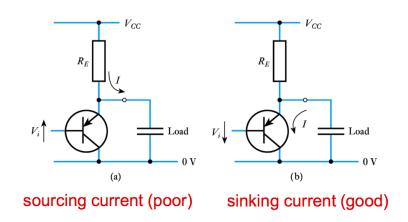
- Amplifiers that produce voltage amplification or current amplification also produce power amplification
- However, the term **power amplifier** is normally reserved for circuits whose main function is to deliver large amounts of power
- These can be produced using FETs or bipolar transistors, or using special purpose devices such as **thyristors**.


### **BIPOLAR TRANSISTOR POWER AMPLIFIERS**

When designing a power amplifier we normally require a low output resistance so that the circuit can deliver a high output current

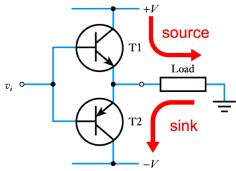
- we often use an **emitter-follower** (i.e. buffer amplifier)
- this does not produce voltage gain but has a **low output resistance**,  $r_o \approx r_e \approx 25\Omega$
- in many cases the load applied to a power amplifier is not simply **resistive** but also has an **inductive** or **capacitive** element

### CURRENT SOURCES AND LOADS


- When driving a reactive load, we need to supply current at some times (the output acts as a **current source**)
- At other times we need to absorb current (the output acts as a current sink)

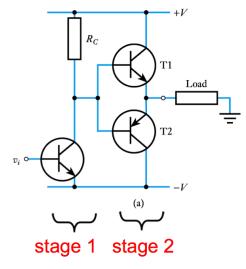


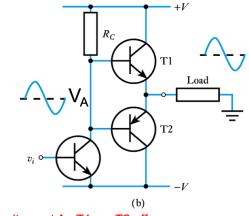
This circuit is a **good current source** but, the one on the right has a **poor current sink** (since the stored charge must be removed by  $R_E$ ).


**Resistors** need to be avoided as they consume a lot of power and take up a lot of space.

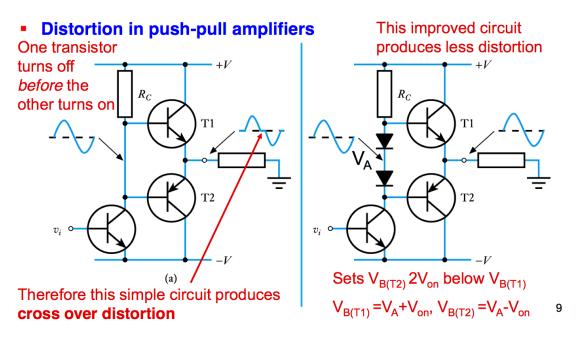
An alternative circuit using *pnp* transistors is a **good current sink**, but a **poor current source**, as it uses  $R_E$ . The gain is about 1.



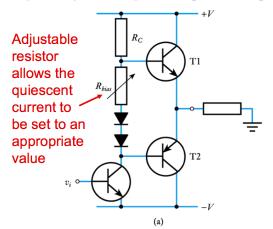

### **Push-Pull Amplifiers**


- Combining these circuits can produce an arrangement that is both a good current source and a good current sink. This is called a **push-pull amplifier**.
- This has a low output resistance when both sourcing and sinking current
- Only one transistor is turned-on at a time.




redraw

#### **PUSH-PULL STAGE**






Positive voltage at A - T1 on, T2 off Negative voltage at A - T1 off, T2 on (BUT: BJTs need  $V_{BE}$ =0.7V when on, so for signal values -0.7<V<sub>A</sub><0.7V, none is ON ) <sup>8</sup>

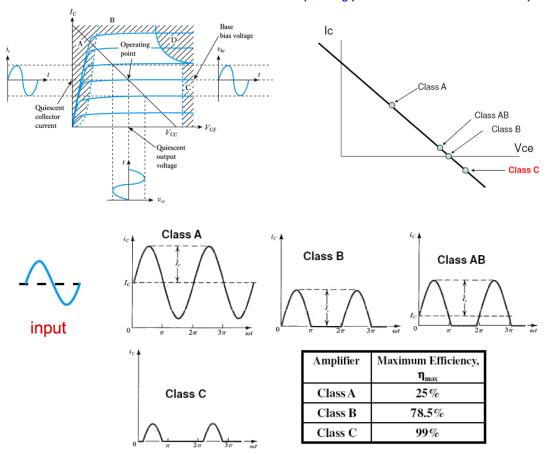


- Although the inclusion of diodes **reduces the distortion**, it does not remove it all together.
- The current through the transistors is greater than that through the diodes, and therefore the turn-on voltage across each diode is slightly less than the  $V_{BE}$  of each transistor.
- Therefore, some distortion still remains.
  - Improved push-pull output stage arrangements



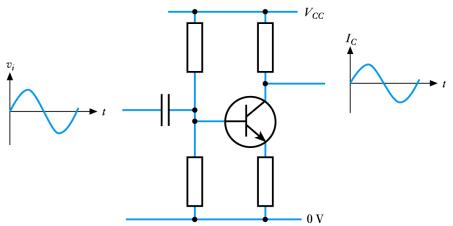
#### AMPLIFIER EFFICIENCY

An important consideration in the design of power amplifiers is efficiency


 $Efficiency = \frac{Power Dissipated in the Load}{Power Absorbed from the Supply}$ 

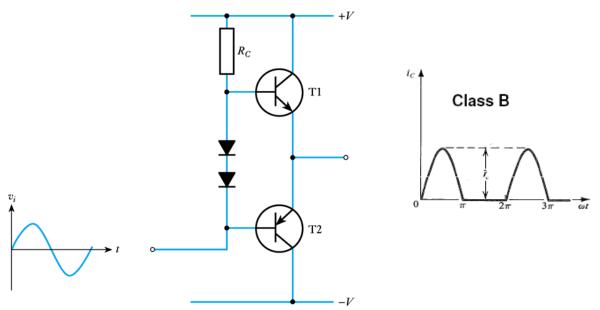
Efficiency determines the power dissipated in the amplifier itself.

**Power dissipation** is important because it determines the amount of waste heat produced. (Excess heat may require heat sinks, cooling fans etc.).


# **Classes of Amplifiers**

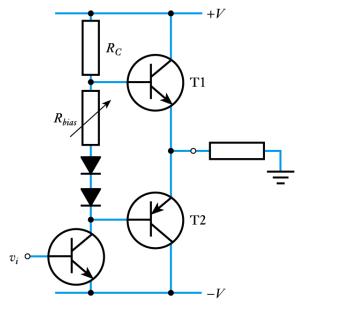


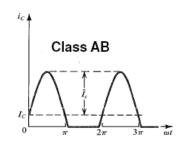



### **CLASS A**

- Active device conducts for complete cycle of input signal
- Example shown here with input stage
- Poor efficiency (normally less than 25%)
- Low distortion

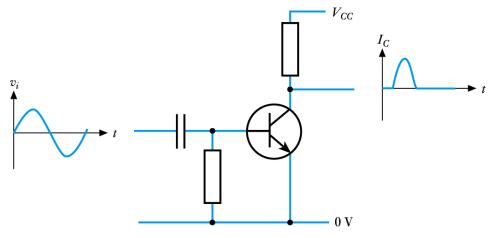



#### **CLASS B**


- Active devices conducts for half of the complete cycle of input signal (operating point is at the edge)
- Good efficiency (up to 78%)
- Quiescent current is zero
- Considerable distortion



#### **CLASS AB**

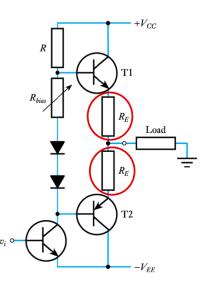

- Active devices conducts for more than half but less than the complete cycle of input signal.
- Example shown here (with appropriate  $R_{bias}$ )
- Efficiency depends on bias
- Distortion depends on bias



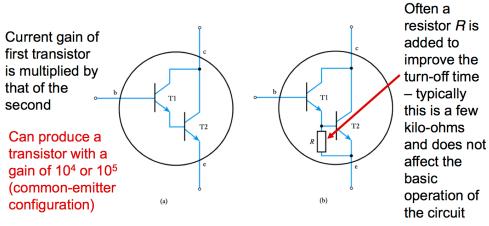


### CLASS C

- Active devices conducts for less than half the complete cycle of input signal
- Operating point is adjusted accordingly
- Example shown here
- High efficiency (approaching 100%)
- Gross distortion




### **Design Techniques**


#### **OUT STAGE TECHNIQUES**

### Back to our amplifier:

- Insert feedback resistors
  - The stability of the earlier circuit can be improved by adding small emitter resistors
    - These provide negative feedback
    - Stabilises the quiescent current
    - R<sub>bias</sub> is adjusted to compensate



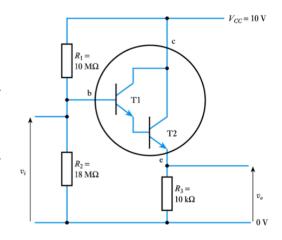
#### DARLINGTON TRANSISTORS



Base-emitter voltage is about 1.4 V

- A high input resistance buffer amplifier
- Example: For the circuit indicated:

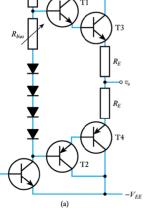
# Quiescent output voltage


 $V_B \approx V_{CC} \frac{R_2}{R_1 + R_2} = 10 \times \frac{18 \text{ M}\Omega}{10 \text{ M}\Omega + 18 \text{ M}\Omega} = 6.4 \text{ V}$  $V_{o(quiescent)} = V_E = V_B - V_{BE} = 6.4 - 1.4 = 5.0 \text{ V}$ 

### Small signal voltage gain

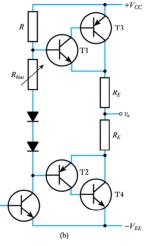
Small signal voltage gain  $\approx 1$  (Common Collector)

#### **Small signal input resistance**

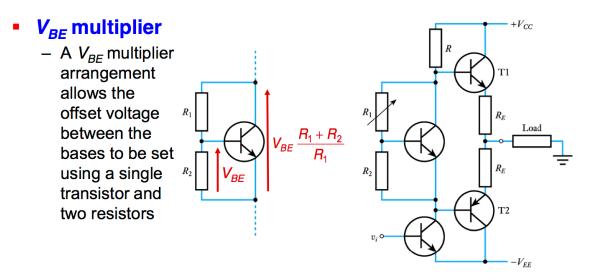

 $R_i \approx R_1 //R_2 = 10 \text{ M}\Omega //18 \text{ M}\Omega = 6.4 \text{ M}\Omega$ 



- A common application of Darlington and complementary Darlington transistors is in the production of power transistors.
- Conventional high-power transistors have a relatively low gain, perhaps 10 60
- A typical Darlington power transistor would have a much higher gain Perhaps a minimum gain of 1000 at 10 A


#### **OUTPUT STAGE TECHNIQUES**

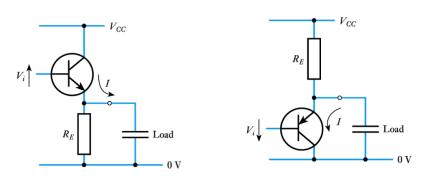
- Insert Darlington transistors
  - Since the gain of power transistors is normally quite low, Darlington transistors are sometimes used
  - The offset between the bases is adjusted to suit
  - Darlington pairs provide high input impedance
  - Complementary Darlington pairs provide even larger input impedance and almost 100% negative feedback



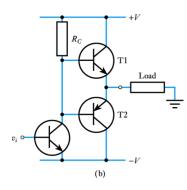

 $+V_{cc}$ 

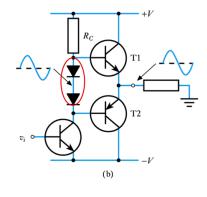
Use of Darlington pairs

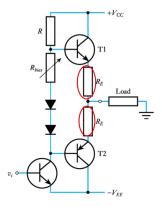



Use of complementary Darlington pairs 25

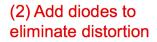



(a) A  $V_{BE}$  multiplier

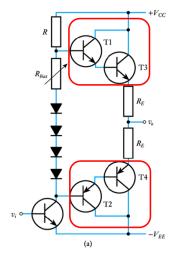

(b) An output stage using a  $V_{BE}$  multiplier

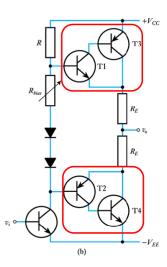

# Power Amplifier Design Stages




### Started with the good current source/sink configurations






(1) Simple pushpull amplifier



(3) Add resistances for negative feedback

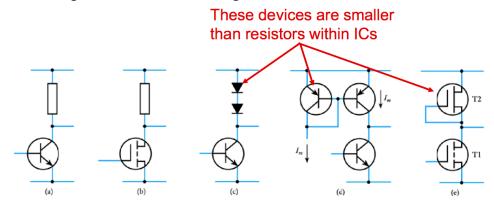




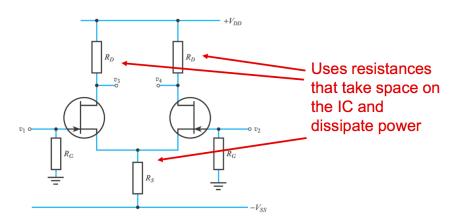
 $R_{1}$   $R_{E}$  Load  $R_{E}$   $R_{E}$ 

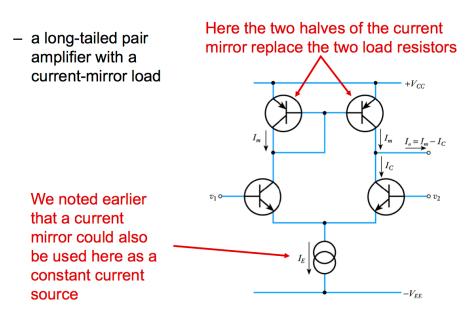
(b) An output stage using a  $V_{BE}$  multiplier

(5) Replace diodes with  $V_{\text{BE}}$  multiplier


(4a) Add Darlington transistors

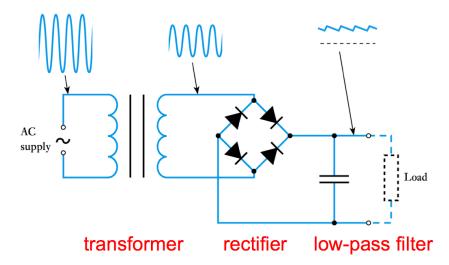
(4b) Complimentary Darlington transistors


### Design for Integration


### Another example on how to remove resistances

- When producing integrated circuits, resistors are to be avoided
- A range of active load arrangements are used

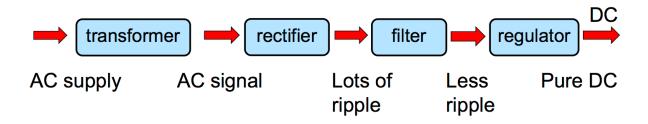



- Earlier we studied the differential amplifier

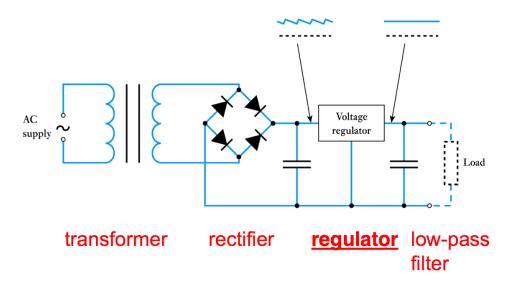




# **Power Supply Basics**


# Unregulated DC power supplies

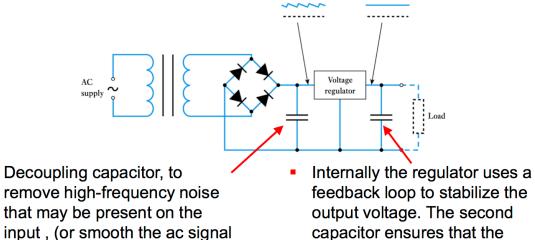



#### NEED FOR REGULATORS

- A simple power supply consisting of only transformer, rectifier, reservoir and low pass filter however, does have some drawbacks.
- The output voltage of the power supply unit (PSU) tends to fall as more current is drawn from the output. This is due to:
  - The reservoir capacitor being discharged more on each cycle.
  - Greater voltage drop across the resistor.
- These problems can be largely overcome by **including a regulator stage** at the power supply output. The regulator transforms the voltage and takes away any ripple.
- The basic power supply circuits described here are commonly used in DC adaptors supplied with many electronics products.

### DC POWER SUPPLY DESIGN - MAIN STAGES OF SIGNAL CONVERSION

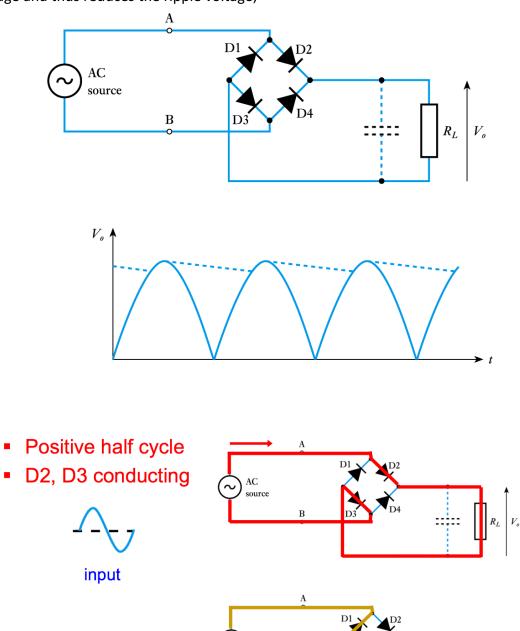



#### **REGULATED DC POWER SUPPLIES**

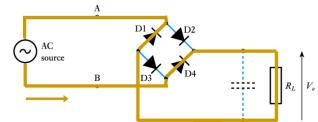


### **ROLE OF CAPACITORS IN REGULATORS**

after the bridge)


Modern day regulators require two capacitors (may/may-not be integrated within the regulator)



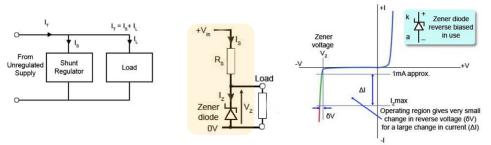

capacitor ensures that the feedback loop is stable

# Full Wave Rectifier – Bridge

Use of a diode bridge reduces the time for which the capacitor has to maintain the output voltage and thus reduces the ripple voltage;



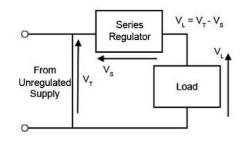
- Negative half cycle
- D1, D4 conducting




**Example:** Assume a power supply using a bridge rectifier connected to a 60Hz input. The output should be  $V_{out} = 13.8$ V across a load resistance of  $0.276\Omega$ . A voltage regulator is in series with the bridge, and requires a minimum of 1.2V. a) Determine the value of the filter capacitor C which produces a maximum voltage ripple at the input of the regulator of 5V. b) Determine the rms voltage of the secondary winding of the transformer + 1.2V -R<sub>L</sub>=0.276 Ω Load 13.8 V+ 1.2V -R<sub>L</sub>=0.276 Ω Load 13.8 V Output of 1. Current lows in C<sub>1</sub> during charging regulator 2. Current  $i_C$  flows out of C1 after the peak of the cycle, and continues for Ripple =5V half period (approximately) The current needs to be constant, to 3. keep the voltage on the load constant 1/60Hz Solution (part a): The capacitor supplies current into the • load for half period to keep its voltage constant. Only 5V drop in the C<sub>1</sub> voltage is allowed  $i_c = i_R = \frac{V_R}{R} = \frac{13.8V}{0.276} = 50A$ The current needed in the load is: (supplied by  $C_1$ ) The current in/out of the capacitor is:  $i_c \approx -C \frac{\Delta v_c}{\Delta t}$  thus  $C \approx -i_c \frac{\Delta t}{\Delta v_c}$ The period of the signal out of the bridge is:  $\Delta t = \frac{1}{2 \ge 60 Hz} = 8.33 ms$ Since  $\Delta v_c = 5V$   $C \approx i_c \frac{\Delta t}{\Delta v_c} = 50A \frac{8.33 \text{ x } 10^{-3} \text{ s}}{5V} = 83.3 \text{ mF}$ Solution (part b): Need to identify the peak voltage, so add all voltage drops: Remember: The on-voltage for each diode is Von~0.7V The bridge has two diodes switched on at a time  $V_{p} = V_{out} + V_{reg.} + V_{ripple} + V_{D1} + V_{D2}$ Therefore = 13.8 + 1.2 + 5 + 0.7 + 0.7 = 21.4V

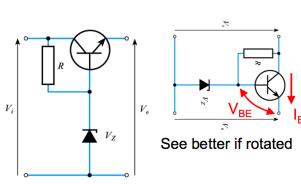
and

$$V_{rms} = \frac{V_p}{\sqrt{2}} = 15.13V$$

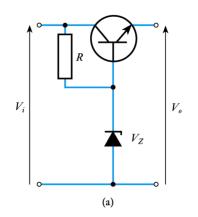

### Shunt Regulator (Voltage Reference)



- Shunt regulator - Ensures a stable voltage across the load at all times.
  - Achieved by regulating the current.
- Zener diode in reverse breakdown - The extra current goes through the diode, rather than the load.
- Limitations: small currents/voltages, as much as the diode can handle.
- **Example:** Consider the output of a bridge rectifier. Assume the ac voltage supplying the bridge rectifier has a peak voltage V=17V and a 60Hz frequency. Design the rest of the power supply using a Zener diode in the regulator section. The output should be V<sub>out</sub>=12V and the maximum output current should be 50mA. Assume the Zener diode can handle 1.2W and that the minimum current flow required through the Zener is appr. ~ 1mA. a) What is the maximum current that the Zener can handle? b) Determine the value of C such that the voltage does not drop below 14V c) Determine the value of the series resistance d) Determine the maximum power dissipation in the resistance Explain the problem: Design: V<sub>n</sub>=17V/60Hz Find Rs 1 2. Find C R, Load Zener =12 V diode Output of regulator ΟV  $I_1 = 50 \text{mA}$  $I_7 = 1 \text{mA} (\text{min})$ Ripple =17V-14V=3V (max) P=1.2W (max) (assuming ideal diodes)

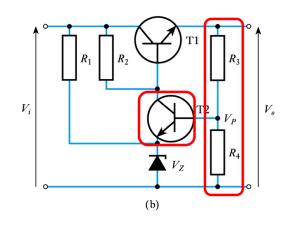

Solution (assuming ideal diodes): and therefore  $i_{\text{max}} = \frac{P}{v} = \frac{1.2W}{12} = 0.1A = 100 \text{ mA}$ a)  $P = v \ge i$ For C pick something b) Assuming the diodes are ideal: larger (even 5x) to  $C \approx -i_c \frac{\Delta t}{\Delta v_c} = 0.05 \frac{1/(2 \ge 60 Hz)}{17V - 14V} = \frac{0.00833s}{3V} = 139 \mu F$ ensure more current can be supplied (Zener current is not constant) c) Series resistance:  $R_s = \frac{\Delta V_{Rs}}{i} = \frac{14V - 12V}{0.05A} = 40\Omega$  For Rs pick something a bit smaller to ensure a bit smaller to ensure Design for lowest voltage (14V) - worst case scenario always at least 12V on output d)  $P_{\text{max}} = \Delta V_{\text{max}}^2 / R_s = (V_{\text{max}}^{in} - V_{out})^2 / R_s = (17V - 12V) / 40\Omega = 0.625W$ Solution (assuming non-ideal diodes): b) Assuming non-ideal, the capacitance will be larger:  $C \approx -i_c \frac{\Delta t}{\Delta v_c} = 0.05 \frac{1/(2 \ge 60 Hz)}{(17V - 2 \ge 0.7V) - 14V} = \frac{0.00833s}{1.6V} = 260 \mu F$ c) Series resistance:  $R = \frac{\Delta V}{i} = \frac{14V - 12V}{0.05A} = 40\Omega$ **d)**  $P_{\text{max}} = \Delta V_{\text{max}}^2 / R = \left(V_{\text{max}}^{in} - 2 \times V_{on} - V_{out}\right)^2 / R$ Note: Now the rest of the power is dissipated  $=(17V - 2 \times 0.7V - 12V)^2 / 40\Omega = 0.324W$ in the bridge diodes

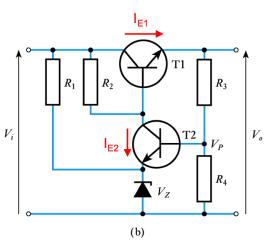
### Series Regulator




- Series regulator
  - Ensures a stable voltage across the load at all times.
  - Achieved by regulating the voltage drop across it using a negative feedback system.

### Voltage regulators





- Stable voltage reference at the base of the power transistor TR by V<sub>z</sub>
  - $V_{out}$ + $V_{BE}$ = $V_z$  therefore  $V_{out}$ = $V_z$ - $V_{BE}$
  - If  $V_{out}$ =V<sub>E</sub> drops, V<sub>BE</sub> increases, I<sub>E</sub> increases, and V<sub>out</sub> increases again.
  - If V<sub>out</sub> =V<sub>E</sub> increases, V<sub>BE</sub> drops,
    I<sub>E</sub> decreases, and V<sub>out</sub> decreases again

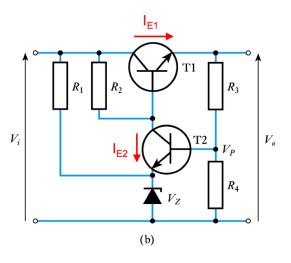


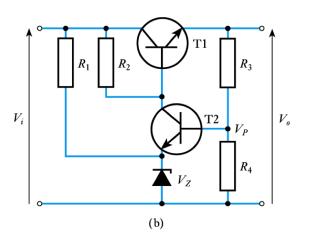


- If V<sub>out</sub> drops:
- V<sub>P</sub> drops,
- V<sub>BE2</sub> drops (since V<sub>Z</sub> is const.
- I<sub>E2</sub> drops,
- current through R<sub>2</sub> drops
- the potential difference
- across R<sub>2</sub> drops, - V<sub>C2</sub> =V<sub>B1</sub> increases (since Vi remains the same),
- V<sub>BE1</sub> increases,
- I<sub>E1</sub> increases, and
- V<sub>out</sub> increases again.

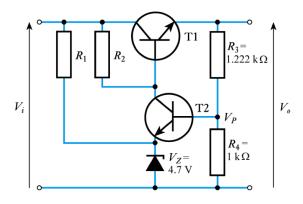





Feedback using T2


If V<sub>out</sub> increases:

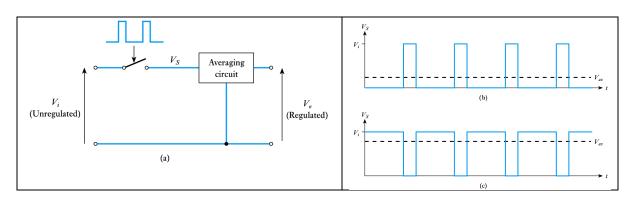
- V<sub>P</sub> increases,
- V<sub>BE2</sub> increases (V<sub>Z</sub> is const.)
- I<sub>E2</sub> increases,
- current through R<sub>2</sub> increases
- the potential difference across R<sub>2</sub> increases,
- $V_{C2} = V_{B1}$  drops,
- $V_{BE1}$  drops,
- $I_{E1}$  drops, and
- V<sub>out</sub> drops again.


### The role of the Zener diode

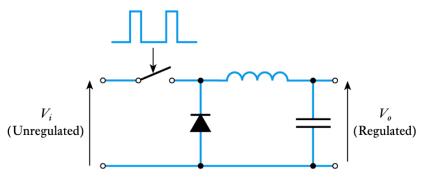
- The emitter voltage is held constant by the Zener diode
- Thus the circuit stabilises at a point where the voltage at the midpoint of the potential divide (Vp) is approximately equal to + 0.7V



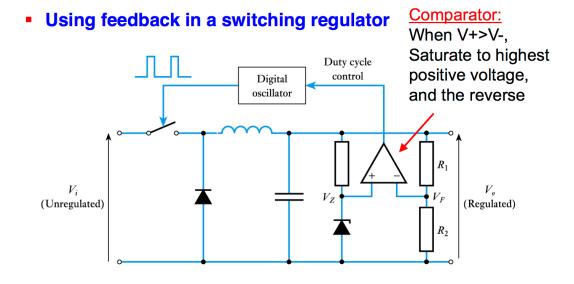



 Example: Determine the output voltage of the following regulator (assuming that the input voltage is sufficiently high to allow normal operation).




$$\begin{split} V_P &= V_Z + 0.7V \text{, therefore;} \\ V_o &= (V_Z + 0.7V) \frac{R_3 + R_4}{R_4} = (4.7 + 0.7V) \frac{1.222 \text{ k}\Omega + 1 \text{ k}\Omega}{1 \text{ k}\Omega} \\ v_o &= 12.0 \text{ V} \end{split}$$

# Switch Mode Power Supplies


- Uses a switching regulator
- Output voltage is controlled by the duty-cycle of the switch
- Uses an averaging circuit to 'smooth' output



### AN LC AVERAGING CIRCUIT



- When switch closed current flows through the inductor and into the capacitor (diode passes no current)
- Although, time current is stored in the inductor
- When switch opens, current is supplied by the inductor
- This forward biases the diode
- Current is taken from the capacitor by the load and the voltage drops (ripple)



- The voltage  $V_F$  is formed from  $R_1$  and  $R_2$ .
- This is compared to the Zener output  $(V_z)$
- The output from the comparator is used to vary the duty cycle.
- Thus the output is maintained that  $V_F$  equals  $V_Z$

$$V_F = V_o \frac{R_2}{R_1 + R_2} = V_Z$$

therefore;

$$V_O = V_Z \frac{R_1 + R_2}{R_2}$$