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Preface

Anatolii Illarionovich Shirshov (1921–1981) was an outstanding Russian mathe-
matician whose works made a decisive contribution to the theory of associative,
Lie, Jordan, and alternative rings. He created a large scientific school whose rep-
resentatives have worked successfully in many different areas of algebra. For a
period of fifteen years (1959–1973), A.I. Shirshov was Deputy Director of the (now
Sobolev) Institute of Mathematics of the Siberian Branch of the Russian Academy
of Sciences (the Director was S.L. Sobolev) and in this and other positions he made
a substantial contribution to the organization and early development of both the
Sobolev Institute and the entire Siberian Branch of the Academy.

The present collection contains English translations (by M. Bremner and
M. Kochetov) of all the published scientific works of A.I. Shirshov with the ex-
ception of his book Rings that are nearly associative, M: Nauka, 1978 (With
K.A. Zhevlakov, A.M. Slinko and I.P. Shestakov) (translated by H.F. Smith, N.Y.:
Academic Press, 1982) and some articles whose content is included in later more
extensive publications. The works are ordered chronologically.

February 2009 L.A. Bokut
V. Latyshev
I.P. Shestakov
E.I. Zelmanov
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Perspectives on Shirshov’s Height Theorem

Alexei Kanel-Belov and Louis H. Rowen

In this survey we consider the impact of Shirshov’s Height Theorem on algebra.
In order to avoid duplication, we often refer to Kemer’s survey article [Kem09] in
this volume for further details. Proofs of various quoted results are given in the
book [BBL97], and in the authors’ book [BR05].

1. Historical background to Shirshov’s Theorem

Let F denote a field. An F -algebra is called affine if it is finitely generated as an
algebra. An F -algebra is algebraic if each element a satisfies an algebraic equation
over F ; i.e., if the dimension [F [a] : F ] < ∞. We say that an algebra A has PI-
degree n if A satisfies a multilinear polynomial identity (PI) of degree n. One of
the early tests of the utility of PI-theory was whether it could provide a framework
for a positive solution of the following famous problem of Kurosh:

Are affine algebraic algebras necessarily finite dimensional?

Although now known to be false for associative algebras in general (cf. [Gol64]),
Kurosh’s problem was solved for associative PI-algebras by Kaplansky [Kap50],
building on work of Jacobson and Levitzki, as described in [Kem09]. However,
Kaplansky’s elegant proof, relying on topology and structure theory, is not con-
structive.

Digression. In hindsight, Kurosh’s problem for PI-algebras has an easy so-
lution using standard results from structure theory. Here is a modification of the
argument given in [Pro73]. By [Pro73, Lemma 2.6], if A is not finite-dimensional,
there is a prime ideal P maximal with respect to A/P not being finite-dimensional,
so we may assume that A is a prime affine algebraic PI-algebra. But then the
center C of A is a field, so A is simple, by [Row88, Corollary 6.1.29], and thus

This research was supported by the Israel Science Foundation, grant #1178/06. The authors
would like to thank L. Bokut, A. Kemer, E. Zelmanov, and U. Vishne for helpful comments on
drafts of this survey.
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finite-dimensional over C, by Kaplansky’s Theorem. Then a version of the Artin-
Tate Lemma [Row88, Proposition 6.2.5] says the field C is affine and thus finite-
dimensional over F , implying R is finite-dimensional over F . (This argument also
works more generally for affine algebras integral over a commutative Noetherian
ring.)

A different approach to Kurosh’s problem, taken by A.I. Shirshov [Shir57a],
[Shir57b], involves the detailed analysis of words and their relations, as given in
Shirshov’s Height Theorem:

Let A be a finitely generated algebra of PI-degree d. Then there exists a finite
set Y ⊂ A and an integer h̃ ∈ N such that A is linearly spanned by the set of
elements of the form

vk1
1 vk2

2 · · · vkh

h where h ≤ h̃, vi ∈ Y.

For Y we may take the set of words of length ≤ d. Such Y is called a Shirshov
base of the algebra A, and h̃ is called the Shirshov height h(A).

The object of this survey is to describe the impact of this pioneering theo-
rem. Shirshov’s theorem immediately yields an independent positive solution of
Kurosh’s problem and of other related problems for PI-algebras. Specifically, if Y
is a Shirshov base consisting of algebraic elements, then the algebra A is finite-
dimensional. Thus, Shirshov’s theorem explicitly determines the set of elements
whose algebraicity implies algebraicity of the whole algebra. (It is worth noting
that Procesi [Pro73] later discovered a structural proof of Shirshov’s theorem also,
by means of reducing first to prime rings and then utilizing traces.) We also have

Corollary 1.1. If A is a PI-algebra of PI-degree d and all words in its generators
of length ≤ d are algebraic, then A is locally finite.

Let us briefly sketch the proof of Shirshov’s Theorem. Suppose that A =
F{a1, . . . , a�} is an affine algebra. Ordering the letters a1 < · · · < a� induces
the lexicographic order on the set Ω∗ of words in the generators {a1, . . . , a�}. We
consider this as a total order, where a proper initial subword v of a wordw is defined
to precede w. But note that this order is not preserved under multiplication; for
example a2 ≺ a2a1 but a2

2 � (a2a1)2. A word w is reducible if it can be written as
a linear combination of smaller words.

Definition 1.2. A word w is called d-decomposable if it contains a subword w1 · · ·wd

such that w1 · · ·wd � wπ(1) · · ·wπ(d) for any permutation π of {1, . . . , d}.
A (multilinear) PI of degree d can be used to rewrite any d-decomposable

word as a sum of smaller words; thus, the irreducible words are d-indecomposable.
Shirshov proved Shirshov’s Lemma, which asserts that, for any given r > 0, any
long enough d-indecomposable word must contain a nonempty word ur where
|u| ≤ d. Shirshov’s height theorem follows from an algorithmic argument given in
[BR05, p. 50].
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Shirshov’s Height Theorem also yields a result about the Gelfand-Kirillov
dimension GK(A) of an affine algebra A. Recall that

GK(A) = lim
n→∞

ln dim(VA(n))
ln(n)

,

where VA(n) is the vector space generated by the words of length ≤ n in the
generators of A. A related concept is the (Poincaré-)Hilbert Series

HA = 1 +
∑

dnλ
n,

where dn = dim(VA(n)/VA(n − 1)), the number of irreducible words of length
n. (Strictly speaking, HA depends on the given set of generators of A, whereas
GK(A) is independent of the choice of generators.)

Corollary 1.3 (Berele [Ber93]). GK(A) <∞, for any affine PI-algebra A.

To prove the corollary, it suffices to observe that the number of solutions
of the inequality k1|v1| + · · · + kh|vh| ≤ n with h ≤ h̃ does not exceed N h̃, and
therefore GK(A) ≤ h(A).

Shirshov’s beautiful theorem, which also is formulated for algebras over arbi-
trary commutative rings, opened the way to the combinatoric school of PI-theory,
which has led to many breakthroughs in recent years. (Ironically, Shirshov’s work
was unknown in the West until Amitsur brought it to attention in 1973. Thus,
for many years, there was a parallel development of PI-theory on both sides of
the former “iron curtain,” along mostly combinatoric lines in the former Soviet
Union and along structural lines in the West. Although our focus in this survey is
on Shirshov’s influence, and thus on the Russian school, we also describe parallel
results in the West.)

1.1. The radical of an affine PI-algebra and the Nagata-Higman Theorem

One of the early applications of Shirshov’s Theorem was in a seemingly unre-
lated direction. Using structure theory, Amitsur [Am57] showed that the Jacobson
radical J(A) of an affine PI-algebra is nil. This led to the question of whether
J(A) is nilpotent, which was formally raised by Latyshev in his dissertation. Shir-
shov’s Theorem is a key tool in verifying this assertion when R satisfies the PI’s
of n× n matrices, as shown by Razmyslov [Raz74a], who also proved that a com-
plete solution is equivalent to the conjecture that every affine PI-algebra satisfies
the standard PI. Kemer[Kem80] verified this latter conjecture in characteristic 0.
Braun [Br84] was the first to prove the nilpotence of J(A) for arbitrary affine A,
using the structure of Azumaya algebras. A nice exposition of Braun’s theorem
can also be found in Lvov [Lv83].

Incidentally, much earlier, Dubnov and Ivanov, and independently, Nagata
and Higman [Hig56] showed that in characteristic 0, any nil algebra of bounded
index n is nilpotent. The original bounds for the nilpotence index were exponen-
tial in n. Better bounds have been obtained as an outgrowth of Shirshov’s work.
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Razmyslov [Raz74b] showed that n2 is an upper bound, and Kuzmin obtained the
lower bound n2+n−2

2 , described in [BR05, p. 341].

1.2. Representable algebras

An F -algebra is called representable if it can be embedded into Mn(K) for some
field extension K ⊃ F and some n. (More generally, we can take K commu-
tative Noetherian, in view of [An92].) Shirshov’s Theorem implies that for any
representable affine PI-algebra A, one may adjoin the characteristic coefficients of
finitely many words of the generators, to obtain a PI-algebra Â, called the trace
ring or characteristic closure, which is finite over its center but also possesses
a nonzero ideal contained in A. The use of this conductor ideal, discovered by
Razmyslov [Raz74a] (and later, independently, by Schelter [Sch76]) is one of the
keys to the structure of affine PI-algebras, and is used in Razmyslov’s work on the
Jacobson radical described above.

Another application of the characteristic closure is to the Hilbert series of an
algebra; Answering a question raised by Procesi [Pro73], Belov proved that any
relatively free, affine PI-algebra has a rational Hilbert series (with respect to a
suitable set of generators); cf. [BR05, Chapter 9] for this and related results. On
the other hand, Theorem 3.5 below provides examples of representable algebras
with non-rational Hilbert series.

1.3. Specht’s conjecture

One of the most famous problems in PI-theory was Specht’s conjecture, that every
set of identities is a consequence of a finite set of identities. (More formally, every T -
ideal of the free algebra is finitely generated as a T -ideal.) As described in [Kem09],
this question was settled affirmatively by Kemer [Kem87], [Kem90b] whenever the
base field F is infinite, and later by Belov for arbitrary affine PI-algebras. The
characteristic closure is one component of the proofs, and the nilpotence of the
radical is another important aspect, so Shirshov’s theorem plays an important role.
The key step of Kemer’s theorem is that each affine PI-algebra over an infinite field
satisfies the same PI’s as a suitable finite-dimensional algebra; it follows at once
that the corresponding relatively free algebra is representable. (Belov extended
this fact to affine algebras over arbitrary commutative Noetherian rings.)

2. Generalizations to nonassociative algebras

Shirshov’s Height Theorem has been extended to various classes of nonassociative
algebras. In his original paper, Shirshov applied his theorem to special Jordan
algebras. Zelmanov [Zel91] obtained the following analog for ad-identities of Lie
algebras:

Say an associative word in X is special if it is the leading word appearing
in some Lie word (i.e., word with respect to the Lie multiplication). The word w
is Zelmanov d-decomposable if it can be written as a product of subwords w =
w′w1w

′
1w2w

′
2 · · ·wdw

′
dw

′′ with each wi special and w1 � w2 · · · � wd. Then, for
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any �, k, d, there is β = β(�, k, d) such that any Zelmanov d-indecomposable word
w of length ≥ β in � letters must contain a nonempty subword of the form uk,
with u special.

Zelmanov’s result is a major ingredient in his celebrated solution of the re-
stricted Burnside problem. S.P. Mishchenko [Mis90] obtained an analogue of Shir-
shov’s Height Theorem for Lie algebras with a “sparse” identity. S.V. Pchelintsev
[Pch84] proved an analog for alternative and (−1, 1) cases. Belov [Bel88b] proved
a version for a certain class of rings asymptotically close to associative rings, in-
cluding alternative and Jordan PI-algebras.

3. Questions arising in connection with Shirshov’s Theorem

Shirshov’s Height Theorem also gives rise to various notions, which we examine in
turn.

3.1. d-decomposable words

We start with d-decomposable words; cf. Definiton 1.2. An equivalent formulation:
A word w is d-decomposable if it can be written in the form s0v1s1v2 . . . s−1vdsd

where v1 � v2 � · · · � vd. The next proposition below demonstrates the impor-
tance of the notion of d-decomposability.

Proposition 3.1 (A.I. Shirshov).

a) Suppose that a word w is d-decomposable. Then any word obtained from w
by means of a nonidentical permutation is lexicographically less than w.

b) If an algebra A satisfies a PI

x1 · · ·xd =
∑

σ �=id∈Sd

ασxσ(1) · · ·xσ(d)

of degree d, then any d-decomposable word w can be written as a linear com-
bination of words of lower order.

Thus in an algebra of PI-degree d, any word not representable as a linear
combination of lower-order words is not d-decomposable, and it suffices to check
that the set of d-indecomposable words has bounded height.

3.1.1. d-decomposable words and codimensions. Regev [Reg72] introduced the
codimension sequence in order to prove that the tensor product of PI-algebras
is a PI-algebra. Namely, let Wn denote the F -space of multilinear polynomials in
x1, . . . , xn, and

cn = dimF (Wn/(Wn ∩ id(A));
then cn is exponentially bounded, for any PI-degree n.

A theorem of Dilworth enables one to bound the number of d-indecomposable
words of length n by n2(d−1). Latyshev [Lat72] discovered a quicker proof of Regev’s
tensor product theorem by using Dilworth’s Theorem, and showing that cn(A) is
bounded by the number of d-indecomposable multilinear words. This estimate of
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the codimension series led to the result of Kemer, Regev, and Amitsur that any
polynomial identity whose Young tableau contains a rectangle (whose size is a
suitably large function of n) is a consequence of any given polynomial identity
of degree n. (This is the basis of Kemer’s “super-trick” to pass from identities of
nonaffine algebras to identities of affine superalgebras.)

On the other hand, there is an interesting refinement of the Hilbert series.
The multivariate Poincaré-Hilbert series of an affine algebra A = F{a1, . . . , a�} is
defined as

H(A) =
∑

diλ
i1
1 · · ·λi�

� ,

where

di = dimF

(
V̄A(i));

here i = (i1, . . . , i�), and V̄A(i) is the vector space spanned by irreducible words of
length ≤ iu in the generator ai of A, for 1 ≤ u ≤ �.

Kemer [Kem95, §2] proved that the number of d-indecomposable multilinear
words of length n equals the codimension of the space of multilinear polynomials of
degree n, with traces, of Md(F ). By Formanek [For84], this codimension sequence
can be calculated precisely, using the multivariate Hilbert series.

Thus, Shirshov’s approach motivates the use of combinatorics to compute
codimensions, and to introduce the use of invariants of matrices. In this regard,
Razmyslov [Raz74b], Helling[Hel74], and Procesi[Pro76], independently showed in
characteristic 0 that every PI is a consequence of the Hamilton-Cayley equation
(which can be written as a trace identity). This follows from the two Fundamental
Theorems of Invariant Theory, which respectively are as follows:

• All invariants can be expressed in terms of traces.
• All relations between invariants are consequences of the Hamilton-Cayley

trace identity.

In characteristic p > 0 one must study all of the coefficients of the Hamilton-
Cayley equation as individual functions, arising from homogeneous forms (not
necessarily linear), since they cannot be computed in terms of the trace. Kemer
[Kem90b] developed the theory of identities involving these forms. Donkin[Do94]
proved the analog of the First Fundamental Theorem of Invariant Theory, and
Zubkov [Zubk96] proved the analog of the Second Fundamental Theorem.

In a similar vein, Razmyslov’s student Zubrilin developed the technique of
incorporating coefficients of the characteristic polynomial into Capelli polynomials,
which leads to a combinatoric proof of the Razmyslov-Kemer-Braun theorem, as
exposed in [BR05, §2.5].

Kemer [Kem95] showed that, unlike the situation in characteristic 0, any PI-
algebra A (not necessarily affine) of characteristic p > 0 satisfies all the multilinear
identities of a finite-dimensional algebra; combining this with the cited work of
Donkin, Zubkov, and Zubrilin, yields that A satisfies all PI’s of a finite-dimensional
algebra; cf. [Bel00].



Perspectives on Shirshov’s Height Theorem 9

3.2. Estimates of Shirshov height

Shirshov’s original proof was purely combinatorial (based on an elimination tech-
nique he developed for Lie algebras), but did not provide a reasonable estimate for
the height. Kolotov [Kol81] obtained an estimate for h(A) ≤ ssm

(m = PI-deg(A),
and s is the number of generators). In the Dniester Notebook (most recent version
[Dne93]), Zelmanov asked for an exponential bound, which was obtained later by
Belov [Bel88a]:

Theorem 3.1. Suppose A is a PI-algebra of PI-degree d, generated by � elements.
Then the height of A over the set of words having length ≤ m is bounded by a
function h(m, �) where h(m, �) < 2m�m+1.

3.2.1. Burnside-type problems. A word w = uk, for k > 1, is called cyclic or
periodic. By problems of Burnside type, we mean problems related to periodic
words. Combinatorics play an important role. The following basic lemma yields
computational tools involving subwords which are described in [Bel07] and provide
the bounds given in Theorem 3.1. The technique is illustrated in the slightly weaker
result given in [BR05, Theorem 2.74].

Lemma 3.2 (on overlapping). If two periodic words of respective periods m and n
contain identical subwords having length m+n−gcd(m,n) then they have identical
periods.

3.3. The essential height of an algebra

Definition 3.3. An algebra A is said to have essential height ≤ h over a subset Y ,
if there is a finite set S ⊂ A (which may depend on Y ) such that A is spanned as
a vector space by

Y [h],S = {s0ym1
1 s1 · · · st−1y

mt
t st : mi ∈ N, yi ∈ Y, si ∈ S, t ≤ h}.

In this case, Y is called an essential Shirshov base, and S the supplementary set.

Essential height is an estimate for GK-dimension; also, the converse is true
for representable algebras.

Theorem 3.2 (A.Ya. Belov [BBL97]). Suppose A is a finitely generated repre-
sentable algebra and HEssY (A) <∞. Then HEssY (A) = GK(A).

This equality is useful in both directions. First of all, it shows for a repre-
sentable algebra A that HEssY (A) is independent of the choice of Y . In the other
direction, since HEssY (A) must be an integer, one has:

Corollary 3.4 (V.T. Markov). The Gelfand-Kirillov dimension of a representable
affine algebra is an integer.

Due to the representability of relatively free affine algebras (noted above),
the Gelfand-Kirillov dimension of a relatively free algebra also equals the essential
height.
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Clearly, an essential Shirshov base is a Shirshov base iff it generates A as
an algebra. Boundedness of essential height over Y implies a positive solution of
“Kurosh’s problem over Y .” The converse is much less trivial.

Theorem 3.3 (A.Ya. Belov). Suppose A is a graded PI-algebra, and Y is a finite
set of homogeneous elements. Let Y (n) denote the ideal generated by all nth powers
of elements of Y . If the algebra A/Y (n) is nilpotent for each n, then Y is an s-base
for A. If in this situation Y generates A as an algebra, then Y is a Shirshov base
for A.

We proceed to formulate a generalization of this theorem for the non-graded
case. We must confront the following counterexample to the straightforward con-
verse of Kurosh’s problem: Suppose A = Q[x, 1/x]. Each projection π such that
π(x) is algebraic has finite-dimensional image. Nevertheless the set {x} is not an
s-base for A.

Thus we need a stronger definition:

Definition 3.5. A set M ⊂ A is called a Kurosh set if it satisfies the condition that
for any projection π : A⊗K[X ] → A′, if the image π(M) is integral over π(K[X ]),
then π(M) is finite over π(K[X ]).

Theorem 3.4 (A.Ya. Belov). Let A be a PI-algebra, M ⊆ A a Kurosh subset in A.
Then M is an s-base for A.

Thus, boundedness of essential height is a non-commutative generalization
of integrality. The following proposition shows that Theorem 3.4 does generalize
Theorem 3.3:

Proposition 3.6. Let A be a graded algebra, Y a set of homogeneous elements. If
the algebra A/Y (n) is locally nilpotent for all n, then Y is a Kurosh set.

3.4. Normal bases and monomial algebras

Shirshov’s combinatoric approach leads us to the combinatoric study of bases. Let
A = F{a1, . . . , a�} be an associative affine algebra. A word is called reducible if
it can be written as a linear combination of lexicographically smaller words; the
normal base of the algebra A is the set of all irreducible words in the generators;
cf. [BBL97], [BRV06], [Dr00], [Lat88], [Ufn85].

A monomial algebra is an algebra that can be described in terms of rela-
tions that are monomials in the generators. Any affine algebra A has its associated
monomial algebra possessing the same Hilbert series; namely one factors the free
algebra by the set of reducible words in the generators of A, cf. [BR05, Propo-
sition 9.8]. The associated monomial algebra of an algebra A also has the same
Shirshov base, although it may not satisfy the same PI’s. Nevertheless, their easier
relations make monomial algebras a useful tool in studying Shirshov bases. This
discussion follows [BRV06]; the reader should also consult [BBL97].

In case an affine monomial algebra A is PI, it has bounded essential height
over a (finite) Shirshov base Y , which we may assume to be a set of words in
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the generators. Take a supplementary set S as in Definition 3.3 that contains Y .
Choose a subset of Y [h],S that spans A. Given

w = s0y
m1
1 s1 · · · st−1y

mt
t st (1)

(with yi ∈ Y and si ∈ S, and t bounded by the height), we rewrite it in the
same manner with s0 ∈ S of maximal possible length, then with ym1

1 of maximal
possible length, and so on. (s0, y1, s1, . . . , st−1, yt, st) is called the type of w. The
type of a subword of a w of type θ is called a subtype of θ.

By an exponential polynomial in the variables m1, . . . ,mt we mean an ex-
pression of the form ∑

fj(m1, . . . ,mt)αm1
1j · · ·αmt

tj

where fj are polynomials over a finite algebraic extension K of F , and αij ∈ K.
For example,

P (m1, . . . ,mt) = (5 −√
2)m1 −m4

2 · 3m1

is an exponential polynomial over Q.

Theorem 3.5. A monomial algebra A over F is representable iff:

1. A has essential height over a finite set Y (with a supplementary set S), such
that every word in the generators of A has a unique type, and there are finitely
many types.

2. For each type θ = (s0, y1, s1, y2, . . . , yt, st), there is a finite system Pθ,j of
exponential equations over k, in the variables m1, . . . ,mt, such that

⋃

θ

{s0ym1
1 s1 · · · ymt

t st : ∃j Pθ,j(m1, . . . ,mt) �= 0}

is a normal base.

The construction of monomial algebras is thus equivalent to the solution of
arbitrary exponential polynomials. But this is algorithmically unsolvable by the
celebrated theorem of Davis-Putnam-Robinson [DPR61]. Thus there is no algo-
rithm to determine whether there is an isomorphism (given in terms of the gener-
ators) for two monomial subalgebras of the matrix algebra over a polynomial ring
of characteristic 0. On the other hand, this isomorphism problem is algorithmi-
cally solvable in characteristic p > 0. More precisely, Belov and Chilikov [BC00],
[BRV06] proved over a field of characteristic p that the set of p-adic representa-
tions of exponential equations (with unknowns in N) forms a “regular language.”
Thus, an inaccessible problem in characteristic 0 becomes algorithmically solvable
in positive characteristic.

3.5. The conjecture of Amitsur and Shestakov

S. Amitsur and I.P. Shestakov conjectured that if the algebra A satisfies the iden-
tities of Mn(F ) and all words having length not exceeding n are algebraic, then A
is finite-dimensional. I.V. Lvov reduced this assertion to the following:
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Let A = F{a1, . . . , a�} be a finite-dimensional subalgebra (without 1) of a
matrix algebra of order n. If all words in a1, . . . , a� of length ≤ n are nilpotent,
then the algebra A is nilpotent.

Shestakov’s conjecture was proved by V.A. Ufnarovsky [Ufn85] and by
G.P. Chekanu [Che88]. Their Independence Theorem may be formulated as fol-
lows [Che88], [Ufn90]:

Theorem 3.6 (Independence Theorem). Suppose the following is true:

1. a word w = ai1 · · · ain is minimal under the lexicographical order in the set
of all nonzero products of length n;

2. all terminal subwords of w are nilpotent.

Then the initial subwords of w are linearly independent.

Here is a key step. A word is called extremal if it does not lexicographically
precede any nonzero word.

Lemma 3.7. Any set of pairwise incomparable subwords of an extremal word is
independent.

To deduce I.P. Shestakov’s conjecture (or, equivalently, I.V. L’vov’s assertion)
from this theorem, we consider the following construction:

Remark 3.8. Given an algebra A and a right module V , the algebra Ã is defined
additively as A⊕ V , with multiplication defined as follows: V · V = A · V = 0, and
the product of elements from V and A is given by the module multiplication.

We take a faithful representation of A acting on an n-dimensional right vector
space V . Taking a base v1, . . . , vn of this space, then, for some vi we have viw �= 0.
Viewing V as a right A-module, we form the algebra Ã of Remark 3.8, ordering
the generators by v1 � · · · � vn � a1 � · · · � as, and apply the Independence
Theorem. Later, Belov and Chekanu showed that we may take the {vi} to be the
set of words from Shestakov’s conjecture. Another proof of this fact was obtained
by V. Drensky.

The original proofs of the Independence Theorem were rather complicated.
Application of hyperwords, described below, allow a considerable simplification.

Subsequent papers of these authors contained various refinements and gen-
eralizations of these theorems. Here is another elegant result of Chekanu [Che96]:

Theorem 3.7. Suppose a word w is extremal and non-periodic, of length n. If
wn �= 0, then the algebra generated by the letters of w contains a nilpotent element
of index exactly n.

3.6. Hyperwords in algebras

Many of the combinatorial results in this survey are most easily proved using
infinite words, or hyperwords, so we conclude with a discussion of basic auxiliary
facts and constructions related to hyperwords in algebras.
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Definition 3.9. A hyperword is a word infinite in both directions; a word infinite
only to the left (resp. right) is called a left (resp. right) hyperword.

u∞ denotes the hyperword having period u, and u∞/2 the left (resp. right)
hyperword having period u and terminal (resp. initial) subword u.

The context will always make clear whether we consider a left or right hy-
perword, so we do not distinguish the notation between them. For example, the
expression u∞/2wv∞/2 indicates that u∞/2 is a left hyperword and v∞/2 is a right
hyperword.

Right hyperwords form a linearly ordered set with respect to the lexicograph-
ical order. For a right hyperword w, we let (w)k denote the initial subword of w
having length k.

Lemma 3.10 ([BBL97]). Let C be an arbitrary collection of words having unbounded
length. Then there exists a hyperword w such that each of its subwords is a subword
of a word from C.

Although evaluating a hyperword in an algebra does not make sense, we can
define whether or not it equals 0 (according to whether some subword equals 0),
and this leads to the notion of linear independence of hyperwords in A:

Definition 3.11.

a) A hyperword w is called a zero hyperword if it includes a subword of finite
length equal to 0, and a nonzero hyperword otherwise.

b) A finite set of right hyperwords {wi} is called linearly dependent if there exist
{αi} such that some of them are not zero and for all sufficiently large k we
have ∑

αi(wi)k = 0.

c) Suppose w is a right hyperword in an algebra A, M is a right A-module, and
m ∈M . We say that mw �= 0 if m(w)k �= 0 for all k. Otherwise Mw = 0.

d) Suppose {w1, . . . , wn} is a set of right hyperwords in an algebra A, and M is
a right A-module. We say that

∑
miwi = 0 for mi ∈ M if

∑
mi(wi)k = 0

for all sufficiently large k.

Proposition 3.12.

a) A finitely generated non-nilpotent algebra A contains non-zero hyperwords.
b) Suppose A is a finitely generated algebra, M is a finitely generated right A-

module. If MAk �= 0 for all k > 0, then there exist m ∈ M and a right
hyperword w such that mw �= 0.

The existence of a least upper bound and of a greatest lower bound for any
set of right hyperwords implies the following

Proposition 3.13.

a) Let w be a hyperword. Then the set of right hyperwords whose subwords are
all subwords of w contains maximal and minimal hyperwords.

b) Suppose ∀k mAk �= 0. Then the set of right hyperwords w such that mw �= 0
contains a maximal and a minimal hyperword.
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c) If A is non-nilpotent, then the set of nonzero right hyperwords in A contains
a maximal and a minimal hyperword.

Let u be the maximal word in an algebra A among all nonzero words in A
having length ≤ n. Unfortunately u may have no extension to a word of greater
length. Thus, to utilize hyperwords, we need the following construction:

Construction 1. Let A be an algebra having generators as � · · · � a1. Put
a1 � x and consider the free product A′ = A ∗ F 〈x〉.

Each word u in A is an initial subword of some hyperword in A′. If u is the
maximal word in A among all words having length at most |u|, then the maximal
hyperword in A′ beginning with u is a hyperword in A. If ũ is a hyperword in A
for which each initial subword has this property, then the maximal hyperword in
A′ is ũ.

The following construction is useful for treating modules.
Construction 2. Suppose A is an algebra having generators as � · · · � a1,

and V is a finitely generated right A-module having generators mk � · · · � m1.
Put m1 � as, a1 � x, and Ã as in Remark 3.8. Define A′′ = Ã ∗F 〈x〉/I where the
ideal I is generated by elements of the form xmi.

In the algebra A′′, the maximal right hyperword begins with mk, and each
word in Ã may be extended to a hyperword in A′′; if MAk �= 0 for all k, then the
maximal hyperword in Ã begins with some mi.

If u is the maximal word in A among all words having length at most |u| that
act nontrivially on the generators of the module, then after renumbering the mi

suitably, the maximal hyperword in A′′ is a hyperword in Ã. If u is a hyperword in
Ã such that each of its initial subwords has the above property, then the maximal
hyperword in A′′ is u.

Note that if an algebra has no nonzero nilpotent ideals, then any word may
be extended to a hyperword. The following observation is useful.

Proposition 3.14. If an algebra contains no nonzero periodic hyperword, then all
of its words are nilpotent.

The technique of hyperwords seems to lie rather close to the lines of structure
theory, as illustrated in the following theorem and its proof, cf. [Bel07].

Theorem 3.8. The set of irreducible words in a PI-algebra A has bounded height
over the set of words whose degree does not exceed the PI-degree of A.

Proof. Suppose m is the minimal degree of identities holding in an algebra A of
PI-degree d. Since A has bounded height over the set of words having degree ≤ m,
it suffices to show that if |u| is a nonperiodic word of length > n then the word
uk for sufficiently large k is a linear combination of words of smaller lexicographic
order.

Step 1. Consider the right A-module M defined by a generator v and by
the relations vw = 0 whenever w ≺ u∞/2. Our goal is to show that Muk = 0
for some k. Indeed, some power uk is spanned by smaller lexicographic words. By
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virtue of Shirshov’s Height Theorem, the set of irreducible words has bounded
height over Ym, the set of words of degree ≤ m. But if each sufficiently large power
of a nonperiodic word having length d may be linearly represented by smaller
words, then the words having length > d may be excluded from Ym.

Step 2. The correspondence λ : vs → vus defines a well-defined endomor-
phism of the module M , hence M may be considered as an A[λ]-module. Our goal
is to show that Mλk = 0 for some k, or equivalently that M = M ⊗F[λ, λ−1] = 0.

Step 3. If Mλk ∈ M · J(AnnM) where J(AnnM) is the Jacobson radical
of the annihilator of M , then Mλ�k ∈ M · J(AnnM)�, and by the nilpotence
of the radical, Mλ�k = 0 for sufficiently large �. Hence, we may assume that
J(AnnM) = 0.

Step 4. Using primary decomposition, we reduce to the case for which M is
a faithful module over a primary ring B.

Step 5. Elements of the center Z(B) have trivial annihilator, so we may
localize relative to them; replacing Z(B) by an algebraic extension, we reduce to
the case for which B is the algebra of some dimension k ≤ n over a field, and M
is a k-dimensional vector space.

Step 6. Since M is a vector space of dimension < |u|, the vectors �vu0, �vu1,
. . . , �vun−1 are linearly dependent (where ui is the initial subword of length i in
the word u, and u0 = 1). Thus we have the equality

∑

i∈I

λi�viui = 0 (2)

where I ⊆ {0, . . . , n − 1}, λi ∈ F\0. To each ui we attach a word u(i) so that
uiu

(i) = u|u|. Let u(j) be the least of those u(i) which are involved in the formula
(2). Write the equality (2) in the form

�vjuj =
∑

i∈I\{j}
βi�viui (3)

where βi = −αi/αj. But then

�vu|u| = �vjuju
(j) =

∑

i∈I\{j}
βi�viuiu

(j). (4)

If i ∈ I\{j}, then u(j) ≺ u(i) and uiu
(j) ≺ uiu

(i) = u|u|; hence vuiu
(j) = 0.

Thus all terms in the right side of (4) are zero. Hence �vu|u| = 0, as desired. �

Hyperwords facilitate proofs of the Independence Theorem, Shirshov’s Height
Theorem, nilpotence of the Lie algebra generated by sandwiches [Ufn90], proof
of the Bergman Gap Theorem, (that any algebra of GK dimension greater than
1, has GK dimension at least 2, together with a description of the base having
growth function VA(n) = n(n+3)

2 ), and also describe various properties of monomial
algebras [BBL97] as well as other combinatorial results for semigroups and rings.
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On Shirshov’s Papers for Lie Algebras

Leonid Bokut

Shirshov published six papers on Lie algebras in which he found the following
results (in order of publication, 1953–1962):

• Some years before Witt [84], the “Shirshov-Witt theorem” [1].
• Some years before Lazard [62], the “Lazard-Shirshov elimination process” [1].

This is often called “Lazard elimination”; see for example [79].
• The first example of a Lie ring that is not representable into any associative

ring [2]; see also P. Cartier [37] and P.M. Cohn [43].
• In the same year as Chen-Fox-Lyndon [38], the “Lyndon-Shirshov basis” of

a free Lie algebra (Lyndon-Shirshov Lie words) [6]. This is often called the
“Lyndon basis”; see for example [63], [79], [64].

• Independently of Lyndon [65], the “Lyndon-Shirshov (associative) words” [6].
They are often called “Lyndon words”; see for example [63]. In the literature
they are also often called “(Shirshov’s) regular words” or “Lyndon-Shirshov
words”; see for example [42], [24], [13], [32], [85], [76], [14].

• The algorithmic criterion to recognize Lie polynomials in a free associative
algebra over any commutative ring [6]. The algorithm is based on the property
that the maximal (in deg-lex ordering) associative word of any Lie polynomial
is an associative Lyndon-Shirshov word. The Friedrichs criterion [45] follows
from the Shirshov algorithmic criterion (see [6]).

• In the same year as Chen-Fox-Lyndon [38], the “central result on Lyndon-
Shirshov words”: any word is a unique non-decreasing product of Lyndon-
Shirshov words [6]. This is often called the “Lyndon theorem” or the “Chen-
Fox-Lyndon theorem”.

• The reduction algorithm for Lie polynomials: the elimination of the maximal
Lyndon-Shirshov Lie word of a Lie polynomial in a Lyndon-Shirshov Lie
word [6]. The algorithm based on the Special Bracketing Lemma [6, Lemma
4], which in turn depends on the “central result on Lyndon-Shirshov words”
above.

• The theorem that any Lie algebra of countable dimension is embeddable into
two-generated Lie algebra with the same number of defining relations [6].
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• Some years before Viennot [82], the “Hall-Shirshov bases” of a free Lie algebra
[7]: a series of bases that contains the Hall basis and the Lyndon-Shirshov
basis and depends on an ordering of basic Lie words such that [w] = [[u][v]] >
[v]. They are often called “Hall sets”; see for example [79].

• Some years before Hironaka [53] and Buchberger [35], [36], the “Gröbner-
Shirshov basis theory” for Lie polynomials (Lie algebras) explicitly and for
noncommutative polynomials (associative algebras) implicitly [9]. This theory
includes the definition of composition (s-polynomial), reduction algorithm, al-
gorithm for producing a Gröbner-Shirshov basis (this is an infinite algorithm
of Knuth-Bendix types [55]; see also the software implementations in [48], [87],
[15]), and “Composition-Diamond Lemma”. The Shirshov’s “Composition-
Diamond Lemma” for associative algebras was formulated explicitly in [25]
and rediscovered by G. Bergman [16] under the name “Diamond Lemma for
ring theory”. The “Gröbner-Shirshov basis theory” for associative algebras
was rediscovered by T. Mora [78] under the name “non-commutative Gröbner
basis theory”. The analogous theory for polynomials (commutative algebras)
was found by B. Buchberger [35], [36] under the name “Gröbner basis the-
ory”; similar ideas for (commutative) formal series were found by H. Hironaka
[53] under the name “standard basis theory”.

• The “Freiheitssatz” and the decidability of the word problem for one-relator
Lie algebras [9].

• The first linear basis of the free product of Lie algebras [10].
• The first example showing that an analogue of the Kurosh subgroup theorem

is not valid for subalgebras of the free product of Lie algebras [10].

Let us give some comments on these papers and further developments. See also
V.K. Kharchenko’s comments to some of these papers elsewhere in this volume.

In the paper [1], A.I. Shirshov, an aspirant (Ph.D. student) of A.G. Kurosh,
proved that any subalgebra of a free Lie algebra is also free. This result was inspired
by Kurosh’s theorem [60] that any subalgebra of free non-associative algebra is also
free. The former result was independently proved by E. Witt [84] three years later
and is now called the Shirshov-Witt theorem. In this paper, Shirshov used the “Kd-
lemma” to rewrite, in particular, a basic Lie word on a set X = {xi : i = 1, 2, . . .}
as a basic Lie word on the independent set [xix

k
1 ] = [. . . [xix1] . . . x1] (i > 1, k ≥ 0);

see Lemma 3 and Corollary 2 in [1]. This is often called the “Lazard elimination
process” (Lazard [62]); see Theorem 0.6 of [79], cf. [34].

In the paper [2], Shirshov constructed the first example showing that the
PBW theorem is not valid in general for Lie algebras over a commutative ring
Σ (Σ-algebras). In this paper, Shirshov was able to construct a Lie Σ-algebra L
with an element a in the center of L such that a belongs to the center of any Lie
Σ-algebra extension of L. On the other hand, he gives a construction showing that
the analogous extension result is not valid in general for associative Σ-algebras.
Other counter-examples to the PBW theorem for Lie rings were constructed by
P. Cartier [37] and P.M. Cohn [43].
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In the paper [4], Shirshov proved that any subalgebra of a free commutative
(anti-commutative) non-associative algebra is also free. He established linear bases
of free (anti)commutative algebras, and later he used these bases for his “Gröbner-
Shirshov basis theory” for (anti)commutative algebras, namely, for “Composition-
Diamond Lemmas” for these algebras (see below [8]).

In the paper [5], Shirshov proves that any countably generated special Jordan
(non-associative, (anti)commutative) algebra over a commutative ring can be em-
bedded into a two-generated special Jordan (non-associative, (anti)commutative)
algebra with the same number of defining relations. For groups, this is the famous
Higman-Neumann-Neumann theorem [51]. A.I. Malcev [72] proved an analogous
result for associative algebras. The analogous problem for Lie algebras was open
until Shirshov’s next paper [6].

Speaking about Shirshov’s paper [6], I cannot help but cite P.M. Cohn’s
review (Zbl 0080.25503): “The author varies the usual construction of basic com-
mutators in Lie rings by ordering words lexicographically and not by length [the
“Lyndon-Shirshov basis”, see also Chen-Fox-Lyndon [38]; in [42], P.M. Cohn cred-
ited this basis together with “Lyndon-Shirshov words” to Shirshov alone – L.B.].
This is used to give a very short proof of the theorem (Magnus, this Zbl. 16, 194
[see [69] – L.B.]; Witt, this Zbl 16, 244 [see [83] – L.B.]) that the Lie algebra ob-
tained from a free associative algebra is free, with appropriate modification for the
case of restricted Lie algebras. Secondly he derives the Friedrichs criterion (this
Zbl. 52, 45 [see [45] – L.B.]) for Lie elements (see also P.M. Cohn [44] and R.
Lyndon [66] – L.B.). As the third application he proves that every Lie algebra L
can be embedded in a Lie algebra M such that in M any subalgebra of countable
dimension is contained in a two-generated subalgebra. This is proved by show-
ing that in the free associative algebra on two generators a, b (over a field), the
elements

dk = [[a, [a, bk]], [a, b]], k = 1, 2, . . . ([x, y] = xy − yx),

form a distinguished set in the Lie algebra on two generators a, b (cf. Shirshov,
this Zbl 71, 257 [see [5] – L.B.]).

Let us formulate the last statement, Lemma 10 of [6], explicitly. Let k〈a, b〉
be the free associative algebra over a field k on two generators a, b, let Lie(a, b) be
the Lie algebra of Lie polynomials of k〈a, b〉 (the free Lie algebra on {a, b}), and
let L∞ = Lie(dk : k = 1, 2, . . .) be the Lie subalgebra of Lie(a, b), generated by
{dk : k = 1, 2, . . .} above. By the Kd-lemma [1] (the Lazard-Shirshov elimination
process), L∞ is the free Lie algebra on the countable set {dk : k ≥ 1}. Let S be a
subset of L∞. Then

AssoIdk〈a,b〉(S) ∩ L∞ = LieIdL∞(S),

where the former is the associative ideal (in k〈a, b〉) generated by S, and the latter
is the Lie ideal (in L∞) generated by S. Shirshov also noticed that from the last
statement the PBW theorem follows. In the proof of Lemma 10, Shirshov used the
leading (maximal in the deg-lex order) associative monomials of Lie and associative
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polynomials, and Lemma 4 on the “special bracketing” of a Lyndon-Shirshov word
with a fixed Lyndon-Shirshov subword. The Special Bracketing Lemma is crucial:
it allows him to define the reduction algorithm for Lie polynomials (he used this
algorithm in the proof of Lemma 10), and to define later in [9] the notion of
composition of two Lie polynomials (an analog of Buchberger’s s-polynomial in
Gröbner basis theory). By the way, in the proof of the Special Bracketing Lemma,
he used the fact that any word c can be uniquely expressed as the product of a non-
decreasing series of Lyndon-Shirshov words, c = c1c2 . . . ck with c1 ≤ c2 ≤ · · · ≤ ck
(k ≥ 0). Actually, this remark is an important theorem often called the Lyndon
theorem or the Chen-Fox-Lyndon theorem (see [38]). For example, this result is
cited in the following way by Springer Online, Encyclopedia of Mathematics (edited
by Michiel Hazewinkel): Lyndon words – “The central result on Lyndon words is
the following Chen-Fox-Lyndon theorem: any word can be expressed as a unique
non-decreasing product of Lyndon words”.

All in all, Shirshov’s paper [6] can be viewed, in particular, as an important
step toward the Gröbner-Shirshov basis theory for associative and Lie algebras [9].

A.I. Shirshov [7] “varies the usual construction of basic commutators” [P.
Hall [49] for groups and M. Hall [50] for Lie algebras – L.B.] in a free Lie algebra
by ordering basic Lie words {[w]} in any way such that [w] > [v] if [w] = [[u][v]].
For example, an ordering based on the length (the Hall words), or an ordering
based on lexicographical ordering (the Lyndon-Shirshov basis), both enjoy this
property. He proves that any ordering of this kind leads to a linear basis of a free
Lie algebra. Actually, this paper is a part of Shirshov’s Thesis [3]. As mentioned
above, Shirshov’s series of bases were rediscovered later by Viennot [82] and are
now often called “Hall bases” (see [79]). There is another example of “Hall-Shirshov
bases”, that give bases of free solvable Lie algebras ([18], see also [80] and [79],
Ch. 5.3). In the paper [41], a first example of right normed basis of a free Lie
algebra is found. Though it is not a Hall-Shirshov basis, it is closely connected to
Lyndon–Shirshov words.

In the paper [8], Shirshov invented the “Gröbner-Shirshov basis theory” for
(anti)commutative non-associative algebras based on the “Composition-Diamond
Lemmas” for those algebras (see Lemma 2 in [8]). In particular, it implies the de-
cidability of the word problem for any finitely presented (anti)commutative non-
associative algebra. Also, the reduction algorithm is defined in order to find a
“Gröbner-Shirshov basis” of any finitely generated ideal in a free (anti)commu-
tative algebra. Shirshov also mentioned that the same results are valid for non-
associative algebras. The decidability of the word problem for non-associative al-
gebras was proved by A.I. Zhukov [86], another student of A.G. Kurosh. Actually,
Zhukov invented a kind of “Gröbner-Shirshov basis theory” for non-associative al-
gebras. The difference is that he did not use any linear ordering of non-associative
words; for a non-associative polynomial f , he chose any non-associative word of
maximal length from f as a “leading monomial” of f .

Shirshov’s paper [9] is truly a pioneering paper in the subject. He starts with
the definition of the composition of two Lie polynomials f, g (explicitly) and two
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associative polynomials (implicitly) via the leading associative words f̄ , ḡ of poly-
nomials in the deg-lex ordering: Let w = f̄b = aḡ for some associative words
a, b such that f̄ = ac, ḡ = cb and c �= 1 (where 1 is the empty word). Then
the associative composition (f, g)c (this is Shirshov’s original notation; we now
use (f, g)w) is defined as follows: (f, g)c = fb − ag. For Lie polynomials f , g,
one needs to put extra Lie brackets on fb and ga. This is done according to the
above mentioned Special Bracketing Lemma 4 [6]. This is a really important and
crucial notion for the Gröbner-Shirshov basis theory for both Lie and associative
algebras. Together with the above definition of reduction of one Lie polynomial
modulo another (see the same paper [6]), it leads to an infinite algorithm to con-
struct the Gröbner-Shirshov basis Sc starting with any set of Lie (associative)
polynomials S. He proves Lemma 3, which is now called the Composition Lemma,
or the Composition-Diamond Lemma, for Lie polynomials: if f ∈ Ideal(S) then
the leading associative word f̄ contains as a subword s̄ for some s ∈ Sc (see also
[32], [27]). Actually, he assumes the extra condition that S should be stable in
some sense (see below), but he did not use the stability condition in the proof of
the lemma (this condition is essential in order that Sc should be a recursive set
for, say, finite S; he kips the stability condition having in mind the application of
his theory to the word problem for Lie algebras). In [24], Shirshov’s Composition
Lemma for Lie polynomials was formulated in the modern form: Let S be a set of
Lie polynomials that is closed under compositions (i.e., a Gröbner-Shirshov basis).
If f ∈ Ideal(S) then f̄ = as̄b for some s ∈ S and some associative words a, b. Clo-
sure means that any composition (i.e., composition of inclusion and composition
of intersection) (f, g)w of polynomials f , g from S is trivial, i.e., it is zero after
the reduction leading words of S. One may use a weaker form of the triviality that
(f, g)w =

∑
αi(aisibi) for some si ∈ S, αi ∈ k (the ground field) and some asso-

ciative words ai, bi (with extra Lie bracketing), such that the leading associative
words ais̄ibi of each expression are strictly less than w. The same Composition
Lemma is valid for non-commutative associative polynomials with a much easier
proof.

A.I. Shirshov gives three applications of his Composition Lemma for Lie
algebras.

Theorem 1. For any Lie polynomial f , there is no non-zero composition (f, f)w.
Then the reduction algorithm gives a solution of the word problem for any one-
relator Lie algebra Lie(X |f = 0).

This is because any one-element set in a free Lie algebra is Gröbner-Shirshov
basis. One may apply Shirshov’s reduction algorithm for Lie polynomials. For
groups, it is the famous result of W. Magnus [67]. S.I. Adjan [12] proved it for
any semigroup with one defining relation of the form u = 1. V.N. Gerasimov [47]
proved the decidability result for an associative one-relator algebra k〈X |f(X) = 0〉
over a field k where the maximal homogeneous part f̃ of f(X) has no a proper
two-sided divisor (from f̃ = gh = h′g it follows g ∈ k).
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In the paper [18], there is an application of the Shirshov’s theorem: Any
Lie algebra L is embeddable into an algebraically closed Lie algebra M (in the
sense that any equation f(x1, . . . , xn) = 0 in the variables X = {x1, x2, . . .} with
coefficients in M has a solution in M ; here f belongs to a free Lie product (see
[10] below) of a free Lie algebra Lie(X) and M , f �∈M).

Theorem 2. The word problem is decidable for any Lie algebra with a finite number
of homogeneous defining relations.

This is because any finite homogeneous set of Lie (associative) polynomials
is a stable set in the sense of this paper. So, one may find all elements of Sc

up to some fixed degree, and then apply Shirshov’s reduction algorithm to the
polynomial under consideration.

Theorem 3. (Freeness Theorem). Let L be a Lie algebra with one defining relation
s = 0. Then any subalgebra of L, generated by all but one letter involved in s, is
the free Lie algebra on these free generators.

For groups, this is the famous “Freiheitssatz” by W. Magnus [68]. The Free-
ness Theorem is also valid for an associative algebra with one defining relation
(L.G. Makar-Limanov [71]). The proof does not use the Gröbner-Shirshov basis
theory for associative algebras, but rather the existence of algebraically closed
associative algebras (L.G. Makar-Limanov [70]). The Freeness theorem is proved
for a pre-Lie (or right-symmetric) one-relator algebra (D. Kozybaev, L. Makar-
Limanov, U. Umirbaev [56]).

Shirshov’s paper [9] implicitly contains the Gröbner-Shirshov basis theory for
associative algebras too, because he constantly used the fact that any Lie polyno-
mial is at the same time a non-commutative polynomial. For example, the maximal
term of a Lie polynomial is defined to be its maximal word as a non-commutative
polynomial, the definition of the Lie composition (the Lie s-polynomial) of two
Lie polynomials begins with their composition as non-commutative polynomials
and then puts some special Lie brackets on it, and so on. The main Composition-
Diamond Lemma for associative polynomials is actually proved in the paper: we
need only to “forget” about the Lie brackets in the proof of this lemma for Lie
polynomials (Lemma 3 [9]). The Composition-Diamond Lemma was explicitly for-
mulated much later in papers L.A. Bokut [25] and G. Bergman [16].

We formulate Shirshov’s Composition-Diamond Lemma for associative alge-
bras following his paper [9] by “forgetting” the brackets, i.e., with only the change
of “Lie polynomials” to “non-commutative polynomials”. Let k〈X〉 be the free
associative algebra over a field k on a set X , such that the free monoid X∗ is
well-ordered by the deg-lex ordering. For a polynomial f , Shirshov [9] denotes by
f the maximal word of f . Let f , g be two monic polynomials (possibly equal), let
w ∈ X∗ be such that w = acb, where f = ac, g = cb and a, b, c are words with
c nonempty. Then (f, g)c = fb − ag is called an (associative) composition of f, g
(this is Shirshov’s original notation, now we use (f, g)w); for Lie polynomials f ,
g, Shirshov puts some special brackets into [fb] − [ag] such that [fb] − [ag] < w.
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Let S be a reduced set in k〈X〉 and let Sc be a reduced set obtained from S by
(transfinite) induction applying the following elementary operations: joining to S
a composition of two elements of S and applying the reduction algorithm to the
resulting set (until one gets a reduced set with only trivial compositions after the
reduction). In current terminology, Sc is a Gröbner-Shirshov basis of the ideal gen-
erated by S, and the process of adding compositions is Shirshov’s algorithm. He
calls S a stable set if, at each step, the degree of the composition (f, g)w, after the
reduction, is bigger than the degree of f , g (or (f, g)w is zero after the reduction).
Of course, if S is a finite (or recursive) stable set, then Sc is a recursive set and
from the next lemma the word problem is solvable in the algebra with defining
relations S. Now suppose that S is a Gröbner-Shirshov basis in the sense that S
is a reduced set and any composition of intersection of elements of S is zero after
the reduction (S is complete or closed under compositions). Hence S is a stable
set in the sense of Shirshov. Then Lemma 3 of [9] has the following “forgetting
brackets” form (see [25]).

Shirshov’s Composition-Diamond Lemma for Associative Algebras. Let S ⊂ k〈X〉
be a Gröbner-Shirshov basis of the ideal Id(S). If f ∈ Id(S), then f = asb, for
some s ∈ S and a, b ∈ X∗. Hence the set of S-irreducible words Irr(S), that do
not contain maximal words of polynomials from S as subwords, is a k-basis of the
algebra k〈X |S〉.

It is easy to see that the converse is also true (see [16]).
In the paper [10], Shirshov found a linear basis of a free product of Lie

algebras with an amalgamation as an application of his Composition-Diamond
Lemma for Lie algebras. Then he found an example proving that an analog of the
Kurosh subgroup theorem [61] for a free product of groups, as well as Kurosh’s [60]
and Gainov’s [46] theorems for subalgebras of free products of non-associative or
(anti)commutative non-associative algebras, are not valid for subalgebras of free
products of Lie algebras. Kukin [59], [58] found a description of subalgebras of free
(amalgamated) products of Lie algebras.

In the paper [24], Shirshov’s Composition-Diamond Lemma was systemat-
ically used in order to prove the following embedding theorem: Let M be any
recursively enumerable set of natural numbers. Let

LM = Lie(a, b, c, a1, b1, c1 | [abkc] = [a1b
k
1c1], k ∈M)

be a recursively presented Lie algebra. Then LM is embeddable into a finitely pre-
sented Lie algebra L. If M is not recursive, then the word problem is undecidable
in LM and hence in L.

This gave the negative solution of the word problem for Lie algebras. An
explicit example of a finitely presented Lie algebra with undecidable word problem
was given by Kukin [57]. The proof in [24] used Matiyasevich’s solution of Hilbert’s
10th problem [73] and some ideas of the Higman theorem [52] that any recursively
presented group is embeddable into a finitely presented group. There remained
the problem of whether any recursively presented Lie (associative) algebra can be
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embedded into a finitely presented Lie (associative) algebra. V. Belyaev [17] solved
positively the problem for associative algebras.

In the paper [25], Shirshov’s Composition-Diamond Lemma for associative
algebras was used to prove an embedding theorem for associative algebras: For any
associative algebras A, Ai (i = 1, 2, 3, 4) with appropriate cardinality conditions,
for example, all of them are algebras of countable dimension and Ai (i = 1, 2, 3, 4)
is the union of a countable increasing series of subalgebras with factors of countable
dimension. Then A can be embedded into a simple associative algebra which is a
sum of Ai (i = 1, 2, 3, 4); in particular, A can be embedded into a finitely generated
simple associative algebra. By the way, answering a question raised by [25], Shelah
[81] constructed an example of an associative algebra of uncountable dimension
which is not a union of a countable increasing series of subalgebras with factors of
uncountable dimension.

In the paper [26], Shirshov’s Composition-Diamond Lemma for Lie algebras
was used to prove an embedding theorem for Lie algebras: Any Lie algebra is
embeddable into an algebraically closed (in particular simple) Lie algebra which
is a sum of four prescribed Lie subalgebras with the same cardinality conditions
as in [25] above.

In the papers [20], [21], [23], there were found normal forms of elements of
Novikov’s and Boone’s groups, as well as relative normal forms of some groups of
quotients of multiplicative semigroups of some rings. Actually, those normal forms
are the (relative) irreducible words for (relative) Gröbner-Shirshov bases of the
groups, see [33], [39].

In the papers [74], [75], there were proved Composition-Diamond Lemmas
for colore Lie superalgebras, Lie p-algebras and Lie p-superalgebras.

In the papers [54], [40], there were proved Composition-Diamond Lemmas
for modules.

In the paper [28], it was proved Composition-Diamond Lemma for associative
conformal algebras.

Some other papers on Gröbner–Shirshov bases one may found in surveys [29],
[30], [31].
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Math 177(1937), pp. 105–115.

[70] Makar-Limanov, L. Algebraically closed skew fields. J. Algebra 93, 117–135 (1985).

[71] Makar-Limanov, L.G. On algebras with one relation. Usp. Mat. Nauk 30, No.2(182),
217 (1975).

[72] Malcev, A.I.,On representation of nonassociative rings. Uspehi Mat. Nauk N.S. 7
(1952), 181–185.

[73] Matiyasevich, Yu.V. Enumerable sets are diophantine. Russian original) Sov. Math.,
Dokl. 11, 354–358 (1970); translation from Dokl. Akad. Nauk SSSR 191, 279–282
(1970).

[74] Mikhalev, A.A., The junction lemma and the equality problem for color Lie super-
algebras. Vestnik Moskov. Univ. Ser. 1. Mat. Mekh. 1989, no. 5, 88–91. English
translation: Moscow Univ. Math. Bull. 44 (1989), 87–90.

[75] A.A. Mikhalev, Shirshov’s composition techniques in Lie superalgebras (non-commu-
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Shirshov bases of ideals of free algebras over commutative rings. (English. Russian
original) Program. Comput. Softw. 24, No. 6, 271–272 (1998); translation from Pro-
grammirovanie 1998, No.6, 10–11 (1998).





Some of A.I. Shirshov Works

V.K. Kharchenko

In his first published paper “Subalgebras of free Lie algebras” A.I. Shirshov proved
for Lie algebras an analog of the famous Nielsen-Schreier theorem: every subalgebra
of a free Lie algebra is free. Three years later this theorem was independently
proved and extended to restricted Lie algebras by E. Witt [38]. Much later this
result was generalized to Lie superalgebras (A.S. Shtern [29]), and to colored Lie
superalgebras (A.A. Mikhalev [20, 21, 22]). These results went through further
development in the field of quantum algebra as follows. The Shirshov–Witt theorem
for Lie algebras over fields of characteristic zero admits an equivalent formulation
in terms of a free associative algebra: Every Hopf subalgebra of a free algebra
k〈yi〉 with the coproduct set up by ∆(yi) = yi ⊗ 1 + 1 ⊗ yi is free. If we consider
the free algebra as a braided Hopf algebra with a very special braiding (τ(yi ⊗
yj) = pijyj ⊗ yi, pijpji = 1), then we get a reformulation of the Mikhalev-Shtern
generalization as well. We may consider the free associative algebra k〈V 〉 as a
braided Hopf algebra provided that V is a braided space with arbitrary braiding
(not necessary invertible). In this setting the braided version of the Shirshov-Witt
theorem takes up the following form [12]. If a subalgebra U ⊆ k〈V 〉 is a right
categorical right coideal, that is ∆(U) ⊆ U⊗k〈V 〉, τ(k〈V 〉 ⊗U) ⊆ U⊗k〈V 〉, then
U is a free subalgebra.

A detailed investigation of free generators for subalgebras of a free Lie al-
gebra and their ranks can be found in the papers [15, 23, 25]. An analogue of
Schreier’s formula was found by V. Petrogradsky for free Lie (super)algebras in
terms of formal power series [27, 28]. Description of automorphism groups of free
Lie algebras is closely related to the theorem of A.I. Shirshov on subalgebras. In
1964 P. Cohn [4] proved that the automorphisms of free Lie algebras of a finite
rank are tame, i.e., the automorphism group is generated by elementary automor-
pisms. Defining relations of the automorphism group were described in 2007 by
U.U. Umirbaev [36]. A detailed investigation of automorphisms of free Lie algebras
and their applications can be found in the papers [15, 26, 23, 34, 35, 24, 25, 27].
The Shirshov-Witt theorem on subalgebras gives also the decidability of the occur-
rence problem for free Lie algebras (see, also [15]). In 1990 U.U. Umirbaev proved
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[32] that finitely generated subalgebras of free Lie algebras are finitely separable.
The occurrence problem for free Lie algebras and for relatively free algebras was
studied in [33, 6, 7].

In a small note “On representation of Lie rings in associative rings” A.I.
Shirshov constructed an example of a Lie ring that has no faithful representations
in associative rings. This example shows that the Poincare-Birkhoff-Witt theorem
may not be extended to Lie algebras over arbitrary commutative rings. Recall that
the original proof of the PBW-theorem for Lie algebras over fields remains valid
for Lie algebras over commutative rings, provided that the algebra is a free module
over the ring of scalars [1, 37]. However it is not evident if a free Lie algebra over
any commutative ring indeed is a free module over the ring of scalars. A.I. Shir-
shov in his fundamental paper “On free Lie rings” showed in particular that this
question has an affirmative answer. Independently M. Lazard [17] and P. Cartier
[2] proved that every Lie algebra over a Dedekind domain has a representation
in an associative ring. If the ring of scalars itself is an algebra over the rationals,
the representation exists as well (P. Cohn [3]). Later H.-J. Higgins in [8] found
necessary and sufficient conditions for the module structure for a Lie algebra over
a commutative ring to have a representation in an associative ring. It should be
emphasized that the embedding problems are the most subtle problems located at
the interfaces between algebra and logic. Sometimes in this area deep and exten-
sive investigations trace back to publications with serious gaps and errors, see for
example the historical notes [30]. Even in our time there appear such publications
concerning the representation of generalizations of Lie algebras in associative rings
in serious mathematical journals (see a discussion in [12, Section 5]).

In the paper “On free Lie rings” in order to construct a basis of a free Lie
algebra (over a commutative ring) A.I. Shirshov introduced a class of words that
is fundamental for modern combinatorial theory. This class of words was indepen-
dently discovered by R. Lyndon several years before [19]. Now these words are
called Lyndon words or Lyndon-Shirshov words, see M. Lothaire [18].

The method of Lyndon-Shirshov words remains a very effective tool for mod-
ern investigations in algebra. This allows one to construct a PBW-basis in ar-
bitrary Hopf algebra generated by skew-primitive semi-invariants, [11], or in a
braided Hopf algebra with a so-called triangular set of primitive generators [31].
In a more general setting, [5], it is possible to find some kind of factorization of
graded Hopf algebras using Lyndon-Shirshov words. An interesting development
is due to P. Lalonde and A. Ram. They found an elegant representation of the
Lyndon-Shirshov basis for classical finite-dimensional simple Lie algebras, see [16,
Figure 1]. More recently the method of Lyndon-Shirshov words has proved to be an
extremely important tool for classification of right coideal subalgebras in quantum
groups [13, 14].

One more result from the paper “On free Lie rings” that has a reflection
to contemporaneity, the Freiderich criterion (Theorem 3 in that paper), shows
that the elements of a given free Lie algebra (over a commutative ring Σ) can
be distinguished in the enveloping free associative algebra (over Σ) as primitive
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elements with respect to the diagonal coproduct. Even though A.I. Shirshov did not
introduce the very same coproduct, in Theorem 3 one may replace the commuting
variables ai, a

′
i with ai ⊗ 1 and 1 ⊗ ai respectively. Then the condition

f(a1 + a′1, . . . , an + a′n) = f(a1, . . . , an) + f(a′1, . . . , a
′
n)

reduces to ∆(f) = f ⊗1+1⊗ f, where ∆ is the diagonal coproduct defined on the
generators via ∆(ai) = ai ⊗ 1 + 1⊗ ai and extended to the enveloping free algebra
as an algebra homomorphism ∆ : AΣR → AΣR ⊗ AΣR.

In the paper “On rings with identity relations” A.I. Shirshov in particular
proves that every associative PI-ring algebraic over a central subring Z1 is in some
sense finite over Z1 (Theorem 4 in the paper). This new notion of finiteness is close
to but not identical with the notion of finitely generated module. It is interesting
that essentially the same notion over a not necessarily central subring appears
in the modern noncommutative Galois theory. More precisely a subring A ⊆ R is
called (right) Shirshov finite over a subring D ⊆ R if there exists a finite number of
elements r1, r2, . . . , rk such that A ⊆ r1D+r2D+ · · ·+rkD. The Shirshov theorem
(Theorem 4 in the paper) says that Rn is Shirshov finite over Z1, where n is the
degree of PI-identity of the finitely generated ring R. The same finiteness relation
in local form exists between a given semiprime ring R and its Galois subring RG

with respect to a finite group G of automorphisms, [9, 10, Theorem 5.10.1]. In
more detail, suppose that semiprime associative ring R has no additive |G|-torsion
(or more generally G is a Maschke group, [9, 10, Definition 5.4.13]). Then R has
an essential two-sided ideal I that is locally finite in the Shirshov sense over the
fixed ring RG = {r ∈ R | ∀g ∈ G, g(r) = r}. Here the local finiteness means that
each finitely generated right ideal A ⊆ I is Shirshov finite over RG as a subring.
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gebra i Logika, 38, N4(1999), 476–507. English translation: Algebra and Logic, 38,
N4(1999), 259–276 (QA/0005101).

[12] V.K. Kharchenko, Braided version of Shirshov–Witt theorem, Journal of Algebra,
294, N1(2005), 196–225.

[13] V.K. Kharchenko, PBW-bases of coideal subalgebras and a freeness theorem, Trans-
actions of the American Mmathematical Society, v. 360, N10(2008), 5121–5143.

[14] V.K. Kharchenko, A.V. Lara Sagahon, Right coideal subalgebras in Uq(sln+1), Jour-
nal of Algebra, v. 319 (2008), 2571–2625.

[15] G.P. Kukin, Primitive elements of free algebras, Algebra i Logika, v. 9, N4(1970),
458–472. English translation: Algebra and Logic, v. 9 (1970), 275–284.

[16] P. Lalonde, A. Ram, Standard Lyndon bases of Lie algebras and enveloping algebras,
Transactions of the American Mathematical Society, v. 347, N5(1995), 1821–1830.
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Comments on Shirshov’s Height Theorem

Alexander Kemer

In 1941 A.G. Kurosh [1] posed the problem: Is every finitely-generated alge-
braic associative algebra finite-dimensional? In 1964 E.S. Golod and I.R. Shafare-
vich [2, 3] constructed a counterexample: they presented an infinite-dimensional
finitely-generated nil-algebra. This counterexample shows that in general finitely-
generated algebraic associative algebras are very far from being finite-dimensional.

Every problem can be considered not only as an explicit problem but as a
direction of research. In the case of Kurosh’s problem such a direction can be
formulated in the following way: Find the conditions which imply that a finitely
generated algebra is finite-dimensional.

Before the counterexample of Golod-Shafarevich was constructed, many pos-
itive results on Kurosh’s problem were obtained. In 1945 N. Jacobson [4] solved the
problem of Kurosh for algebraic algebras of bounded index. In 1946 J. Levitzky [5]
proved that for a finitely generated PI-algebra over a commutative ring, if each
element is nilpotent then the algebra is nilpotent. Finally, in 1948 I. Kaplansky [6]
solved Kurosh’s problem for PI-algebras over a field. All of these results became
classical and are included in textbooks on ring theory. The great role of these re-
sults in ring theory is well known. In fact, the structure theory of rings developed
around the problem of A.G. Kurosh.

In 1957 A.I. Shirshov proved his famous theorem on height:

Theorem (A.I. Shirshov [7]). For any finitely-generated associative PI-algebra
A over a commutative ring R with 1, there exist a natural number h and elements
a1, . . . , an ∈ A such that any element of A can be represented as an R-linear
combination of elements of the form

aα1
i1

· · · aαk
ik
,

where k < h.

We note that an algebra A over a commutative ring R with 1 is called a
PI-algebra if A satisfies some polynomial identity f = 0 such that the ideal of the
ring R generated by the coefficients of the highest-degree terms of the polynomial
f contains 1.
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The positive solution of Kurosh’s problem for PI-algebras over a ring follows
immediately from Shirshov’s theorem. Indeed, since the elements a1, . . . , an ∈ A
are algebraic (the elements a1, . . . , an are taken from the conclusion of the theorem
on height), the degrees αi are bounded. Hence the algebra A is a finitely-generated
R-module.

Comparing the solutions of Kurosh’s problem obtained by I. Kaplansky and
A.I. Shirshov one notes that the solution of I. Kaplansky is based on the well-
developed structure theory of rings, but makes little use of the PI-condition. In
fact, the PI-condition is used in two statements: (1) The radical of a finitely-
generated algebraic PI-algebra is nilpotent; (2) A matrix algebra of order n does
not satisfy a polynomial identity of degree less than 2n. These statements are quite
easy from the contemporary point of view.

The solution of A.I. Shirshov does not use the structure theory at all. More-
over A.I. Shirshov also made little use of algebraicity. It follows from the above
that it is sufficient to require algebraicity only for some finite set of elements.
But the most important merit of the theorem on height is that it was proved for
algebras over a commutative ring. Many of the results in ring theory concerning
PI-algebras would not have been obtained if the theorem on height were true only
for algebras over fields.

With the first results about PI-algebras it became clear that the PI-condition
is a peculiar finiteness condition. In 1957 S. Amitsur [8] proved a remarkable the-
orem: The radical of a finitely-generated PI-algebra is a nil-ideal. This theorem
once again corroborated that the PI-condition is a finiteness condition, and al-
lowed V.N. Latyshev at that time to formulate rather boldly the problem: Is the
radical of a finitely-generated PI-algebra nilpotent? (See [9].) A great contribution
to the solution of this problem was made by Yu.P. Razmyslov [10] who proved that
the radical of finitely-generated PI-algebra over a field is nilpotent if and only if the
algebra satisfies some standard identity. To prove this statement, Yu.P. Razmyslov
constructed an embedding of certain algebras into algebras which are algebraic over
the center and then applied the theorem on height. Yu.P. Razmyslov was the first
algebraist to apply the theorem on height very often and deeply. For algebras over
a field of characteristic zero, Latyshev’s problem was solved by A.R. Kemer [11]
who proved that every finitely-generated PI-algebra over a field of characteristic
zero satisfies a standard identity of some order. Indeed this result and the theorem
of Razmyslov mentioned above imply the positive solution of Latyshev’s problem
in the case of characteristic zero. In 1982, A. Braun [12] solved Latyshev’s problem
positively for algebras over a commutative Noetherian ring. At present the theo-
rem on the nilpotency of the radical of a finitely-generated PI-algebra is known
as the theorem of Braun-Kemer-Razmyslov.

In 1974, Yu.P. Razmyslov introduced a new concept of trace identity, and
proved that each trace identity of the matrix algebra of order n over a field of
characteristic 0 follows from the Cayley-Hamilton trace identity of degree n and
the identity Tr(1) = n [13]. Little later C. Procesi [14] proved actually the same
result in the terms of invariants.
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The Cayley-Hamilton identity of degree n has the form

Xn(x) = xn + b1(x)xn−1 + · · · + bn(x) = 0,

where the coefficient bm(x) is a form of degree m. In the case of characteristic zero
the coefficients bm(x) can be represented as linear combinations of trace monomials
of the form

Tr(xi1 )α1Tr(xi2 )α2 · · ·Tr(xik )αk .

Of course this theorem of Yu.P. Razmyslov does not concern the theorem on height
directly, but the idea of trace identities gives a way of embedding (if possible)
a finitely-generated PI-algebra over a field into a finite-dimensional algebra (a
matrix algebra) over a larger field (such algebras are called representable). Indeed,
let a finitely-generated algebra A over a field F be embeddable into the matrix
algebra Mn(K), F ⊆ K. Consider the F -subalgebra C = SA, where S is the F -
subalgebra (with unity) of the field K generated by all the elements bm(a) (a ∈ A)
where the elements bm(a) are the coefficients of the Cayley-Hamilton identity of
degree n. It follows from this that in the case of characteristic zero the algebra A
is embeddable into the algebra

D = A⊗ T 〈A〉/J,
where T 〈A〉 is the commutative algebra generated by the symbols Tr(a), a ∈ A,
the trace on the algebra A⊗ T 〈A〉 is defined by the formula

Tr
(∑

ak ⊗ tk

)
=
∑

Tr(ak)tk,

and the ideal J is generated by the elements Xn(d) (d ∈ A⊗T 〈A〉). In the case of
characteristic p the algebra A⊗ T 〈A〉 is generated by the symbols bm(a) (a ∈ A).
The forms bm(x) are defined in the same manner but with more complicated
formulas.

Assume that the algebra A is embeddable into the algebra D. Then the
algebra A is embeddable into the algebra

D′ = A⊗ T ′〈A〉/J ∩A⊗ T ′〈A〉,
where T ′〈A〉 is the subalgebra of A⊗ T 〈A〉 generated by the elements bm(ai) (the
elements ai are taken from the conclusion of the theorem on height). The algebra
D′ is finitely-generated and algebraic over the commutative algebra T ′〈A〉 because
it satisfies the Cayley-Hamilton identity. By the theorem on height the algebra D′

is a finitely-generated T ′〈A〉-module. Since the algebra T ′〈A〉 is noetherian, by a
theorem of K. Beidar [15] the algebras D′ and A are representable. In 1995 the
theorem of Razmyslov in the case of characteristic p was proved by A.R. Kemer
at the multilinear level [16] and little later A.N. Zubkov proved this theorem at
the homogeneous level [17].

A very important problem in the theory of PI-algebras was posed by W.
Specht [18] in 1950: Does every associative algebra over a field of characteristic zero
have a finite basis of identities? The finite basis problem makes sense for algebras
over any field, and even for rings, groups and arbitrary general algebraic systems.
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A positive solution of the finite basis problem for a given class of algebraic systems
is a sort of classification of these algebraic systems in the language of identities.

A rather large number of papers have been devoted to Specht’s problem for
associative algebras over a field of characteristic zero. We note the most important
results. In 1977 V.N. Latyshev [19] proved that any associative algebra over a field
of characteristic zero satisfying a polynomial identity of the form

[x1, . . . , xn] · · · [y1, . . . , yn] = 0,

has a finite basis of identities. This result was also obtained independently by G.
Genov [20] and A. Popov [21].

In 1982 A.R. Kemer reduced the Specht problem to the finite basis prob-
lem for graded identities of finitely-generated associative PI-superalgebras [22]
and in 1986 he solved the Specht problem positively [23]. The first proof of the
theorem on the finite basis of identities was rather complicated. A little later in
1987 A.R. Kemer [24] proved that relatively free finitely-generated associative PI-
superalgebras over a field of characteristic zero are representable. This theorem
implies the theorem on the finite basis, and explains the reason why the Specht
problem has a positive solution. This reason is that finite-generated PI-algebras
over a field of characteristic zero cannot be distinguished in the language of iden-
tities from finite-dimensional algebras. More precisely, for every finitely-generated
PI-algebra A there exists a finitely-dimensional algebra C such that the ideals of
identities of these algebras are equal. In 1988 A.R. Kemer proved the same result
for algebras over an infinite field of characteristic p [25].

The main idea of the proof of this theorem is to approach step-by-step the
given T -ideal Γ by the ideals of identities of finite-dimensional algebras. At the
first step there is constructed a finite-dimensional algebra C0 such that

T [C0] ⊆ Γ.

The existence of this algebra follows from the theorem on nilpotency of Braun-
Kemer-Razmyslov and the theorem of J. Lewin [33]. The most difficult part of the
proof is the following statement: If T [C] ⊆ Γ, T [C] �= Γ (C is finite-dimensional)
then there exists a finite-dimensional algebra C′ such that

T [C] ⊆ T [C′] ⊆ Γ, T [C] �= T [C′].

The proof of this statement uses identities with forms and the standard application
of the theorem on height which was described above.

Examples of infinitely-based algebras in the case of characteristic p were
constructed in 1999 by V.V. Schigolev [26] and A.Ya. Belov [27].

In 1998 A.Ya. Belov [28] announced a positive solution of the local finite
basis problem for algebras over a commutative noetherian ring, and announced a
result about the representability of the relatively free algebra over a commutative
noetherian ring in some weak sense: The relatively free finitely-generated PI-
algebra A over a commutative noetherian ring R is embeddable into some algebra
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A′ over a commutative noetherian ring R′ such that A′ is a finitely-generated R′-
module (R ⊆ R′). In other words the algebra A is embeddable into the algebra of
endomorphisms of some finitely generated R′-module.

Regarding the methods of A.Ya. Belov we should note that most of the ideas
of A.Ya. Belov are combinatorial, and come from the theorem on height and other
results of A.I. Shirshov. A.Ya. Belov developed the combinatorial ideas of A.I.
Shirshov which made it possible to consider more complicated combinatorial sit-
uations than in the theorem on height. In this sense one can call A.Ya. Belov a
successor of A.I. Shirshov.

Another nice idea is applying Zariski closure. This idea was new for PI-
theory. The algebras of endomorphisms of finitely generated modules over a ring
have a more complicated structure than finite-dimensional algebras, but applying
Zariski closure A.Ya. Belov proved that a finitely-generated PI-algebra A over a
commutative noetherian ring R has the same identities as some algebra C over a
commutative noetherian ring R′, R ⊆ R′, satisfying the property that the radi-
cal of the algebra C splits off and is nilpotent, i.e., C = P + RadC, where the
subalgebra C is semisimple. Applying Zariski closure A.Ya. Belov also obtained a
lot of information about the semiprime part P . We note that the main results of
A.Ya. Belov are not yet published.

We also mention the results devoted to the estimation of height in the theorem
of A.I. Shirshov. The height h(A) of an algebra A depends on the number of
generators s and the minimal degree of identities m = deg(A). The estimate for
the height which follows from the proof of the theorem on height is not satisfactory.
In 1982 A.G. Kolotov [29] obtained the estimate

h(a) ≤ ssm

.

In [30] E.I. Zelmanov raised a question about the exponential estimate of the
height. The positive answer was obtained by A. Ya. Belov in 1988 [31, 32].
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Brief Review of the Life and Work
of A.I. Shirshov

Evgenii Kuzmin

An outstanding Russian mathematician, Anatolĭı Illarionovich Shirshov was born
on the 8th of August 1921 in the village of Kolyvan in the Novosibirsk Region.
Before the war he started his studies in Tomsk University and then went to the
front as a volunteer, and after demobilization in 1946 he continued his studies in
Voroshilovgrad (now Lugansk) Pedagogical Institute. He combined his studies at
the Institute with working as a mathematics teacher at a secondary school.

In 1950, A.I. Shirshov entered the Graduate School of the Faculty of Me-
chanics and Mathematics at Moscow State University (MSU) where he studied
under the supervision of Professor A.G. Kurosh. After successful defence in 1953
of his Candidate of Science thesis, Some problems in the theory of nonassocia-
tive rings and algebras, he started working at the Department of Higher Algebra
at MSU, first as Assistant, and starting in 1955, as Docent. In 1957–1960, A.I.
Shirshov worked as the First Deputy Dean of the Faculty (the Dean was A.N.
Kolmogorov). These years witnessed the blossoming of his creative scientific activ-
ity: in rapid succession he published works in which he laid the foundation for a
new direction in modern algebra, the theory of rings that are nearly associative. In
1958, A.I. Shirshov defended his Doctor of Science thesis, On some classes of rings
that are nearly associative, and in 1961 he was promoted to the rank of Professor.

In 1960, A.I. Shirshov, upon the invitation of Academicians S.L. Sobolev,
I.N. Vekua and A.I. Malcev, decided to participate in the realization of an impor-
tant national program: raising the level of scientific activity in his native region
of Siberia. Like many other scientists of the time, who answered the call of the
Government, he took an active part in the organization of the Siberian Branch of
the Academy of Sciences of the USSR. Together with Academician A.I. Malcev,
he became one of the founders of the Siberian school of algebra and logic. By
his scientific, administrative and public activities, he made a great contribution
to the foundation and development of the Mathematical Institute and the entire
Siberian Branch. From 1960 to 1973, he was Deputy Director of the Mathematical
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Institute of the Siberian Branch, and from 1967 to his last days, he was the Head
of Division of Ring Theory of the Mathematical Institute. Simultaneously he con-
ducted extensive pedagogical work as a Professor of the Department of Algebra
and Mathematical Logic of Novosibirsk State University.

In 1964, A.I. Shirshov was elected a Corresponding Member of the Academy
of Sciences of the USSR. He became a member of the Bureau of the Mathematical
Division of the Academy of Sciences, a member of the National Committee of
Soviet Mathematicians, Chairman of the Committee on Algebra of the Academy
of Sciences, and also a member of several scientific councils and editorial boards.

The circle of scientific interests of A.I. Shirshov was rather extensive: algebra,
mathematical logic, number theory, and projective geometry. However, his creative
activity was concentrated mostly on ring theory and problems of algebra on the
border with mathematical logic. When A.I. Shirshov started his research in the
theory of rings that are nearly associative (1953), this theory simply did not exist:
there were merely definitions of various classes of nonassociative rings and some
isolated results about these rings. Now, it is a well-developed branch of algebra
that includes as its components the theories of infinite-dimensional Lie algebras,
the theory of alternative algebras, the theory of Jordan algebras, and also the
theories of wider classes of algebras: Malcev algebras, binary-Lie algebras, right-
alternative algebras, and others. The theory of rings that are nearly associative
owes its modern development largely to the works of A.I. Shirshov and his students.

Already in the first works of A.I. Shirshov on ring theory we find brilliant
results that have become classical: the theorem on freeness of subalgebras of free
Lie algebras, and the theorem on embedding of an arbitrary Lie algebra with
a countable number of generators into a Lie algebra with two generators. The
bases of the free Lie algebra constructed by A.I. Shirshov (the Lyndon-Shirshov
basis, the Hall-Shirshov bases) have played an important role in the solution of
various types of algorithmic problems in the theory of Lie algebras, and also find
applications in group theory. The attention of specialists was attracted by A.I.
Shirshov’s beautiful example of a Lie algebra over a ring which does not have an
enveloping associative algebra over the same ring.

In group theory as well as ring theory an important role is played by prob-
lems of Burnside type; one of the best-known problems of this kind is the problem
posed by A.G. Kurosh: is an associative algebraic algebra necessarily locally finite?
As is well known, in the general case this problem of Kurosh was given a negative
answer by E.S. Golod: on the other hand, this problem was given a positive an-
swer by Kaplansky in the class of associative algebras which satisfy a polynomial
identity. A.I. Shirshov suggested a general combinatorial approach that provides
a positive solution to the problem of Kurosh for alternative and special Jordan al-
gebras of bounded degree, and proves local nilpotency in the particular case of nil
rings of bounded index. Turning his attention to associative rings with identical
relations, A.I. Shirshov proved a theorem on local boundedness of their heights
which is an essential strengthening of the theorem of Kaplansky. Introducing nat-
ural definitions of algebraicity and local finiteness over a subring of the center, he
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obtained another generalization of Kaplansky’s theorem: an alternative ring with
a non-trivial identity, which is algebraic over a subring of its center, is locally finite
over that subring.

Perhaps the most beautiful and difficult theorem of A.I. Shirshov is the state-
ment that any Jordan algebra with two generators is special. This served as the
starting point of a long series of works by American authors on Jordan algebras
with two and three generators and on identities of Jordan algebras.

An important event for algebra was the publication of the monograph Rings
that are nearly associative (Moscow, Nauka, 1978) written by A.I. Shirshov in
collaboration with his students K.A. Zhevlakov, A.M. Slinko and I.P. Shestakov.

Among the algorithmic problems of algebra, to A.I. Shirshov belongs the
solution of the word problem and the proof of the freeness theorem in the classes
of commutative and anticommutative algebras and Lie algebras with one defining
relation (using what is now called Gröbner-Shirshov basis theory). He also solved
the word problem for solvable Lie algebras of index 2.

The works of A.I. Shirshov in the theory of rings that are nearly associative
have cleared the way for further investigations in this area. In the works of his
students and followers, many problems stated by A.I. Shirshov were solved: de-
cidability of the word problem in the class of all Lie algebras and in the class of
solvable Lie algebras; the problem of computing the basis rank of the varieties of
alternative and Malcev algebras; the problem of describing the subalgebras of the
free product of Lie algebras; the problem of local nilpotency of Jordan nil-algebras
of bounded index; and others.

In the last years of his life, A.I. Shirshov was actively engaged in theory of
projective planes. He developed a new algebraic approach to the study of projective
planes; in particular he constructed a simple explicit “base” of a free projective
plane. This approach allowed the formulation of a series of problems and a new
viewpoint on the known results and problems in the theory of projective planes.
To these problems A.I. Shirshov devoted an extended plenary report at the 14th
All-Union Algebra Conference in Novosibirsk in 1977.

A.I. Shirshov devoted much attention and care to the training of the next
generation of young scientists; he considered this the duty of a scientist. The school
of algebra created by him was an object of personal pride.

A.I. Shirshov died on the 28th of February 1981 after a prolonged serious
illness. The profound ideas of his works remain alive.





A Word about the Teacher

Evgenii Kuzmin

Strict and attentive, but at the same time fatherly and warm – a glance above the
glasses (in a simple thin frame). He walked through the rows of students looking
into notebooks, checking how the problem written on the blackboard was being
solved. September 1955: a seminar in higher algebra is in progress for the students
of the 104th section of the first year in the Faculty of Mechanics and Mathemat-
ics [Mehmat] at MSU. The seminar is run by the Teacher, Anatoly Illarionovich
Shirshov, a young assistant in the Department of Higher Algebra at MSU. The
Department is headed by Alexander Gennadievich Kurosh, the author of the text-
book “A Course in Higher Algebra” and the monograph “Group Theory”. A.I.
stops next to me, nods with satisfaction and calls me to the blackboard: “Kuzmin,
come and tell us how to solve this problem”. I go up and explain it. Stopping me
before I finish, A.I. asks the audience: “Who knows how to complete the solution?
Vinogradov, come to the blackboard.”

To be called to the blackboard is an honour; it must be earned. We have
some rather strong folks in our class, future doctors of science Sasha Vinogradov,
Borya Vainberg, Dima Fuks, Galina Turina (a talented mathematician who, un-
fortunately, was killed in an untimely accident rafting on northern rivers), Valera
Kudryavtsev, Galina Blohina, Vitya Ivnitsky and your humble servant Zhenya
(Evgenii) Kuzmin. The studies at Mehmat came easily to me, and I especially
enjoyed algebra, with its strict logic of calculations and somewhat dry beauty
of algebraic structures and abstract theories. We could not imagine how different
higher mathematics is from school mathematics! And it was rare luck to meet your
life-long Teacher during the first few days of university studies. A.I. noticed me,
started to give me separate, more difficult and interesting homework assignments,
and once offered a completely unusual problem:

“There is a theorem of Shirokov which gives a positive answer to the con-
jecture of Kaplansky on the quasi-nilpotency of the commutator in an associative
valuation ring under one extra condition of an algebraic nature. Shirokov proved
his theorem using methods of functional analysis. But Kaplansky himself is an
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algebraist, and his problem is also formulated algebraically. So I think that there
must exist a purely algebraic proof of this theorem. Try to find such a proof!”

After some time I managed to do it! (Later in my diploma thesis I extended
Shirokov’s theorem to flexible valuation rings, which are a wide generalization of
associative rings.) The reaction of Shirshov was unexpected. He brought me to
his seminar, where the participants were students one or two years older than me,
and said: “Look at this boy. He solved a problem of Kaplansky!” Of course, it was
Shirokov who solved the problem of Kaplansky; I merely re-proved his theorem.
A.I. simply wanted to praise me, and his words gave me wings. I began to attend
his seminar and then his special course in ring theory, where he explained his
ideas, amazing in their beauty and complexity, related to alternative, Jordan and
Lie rings – the ideas that created a new direction in ring theory and were the basis
of Shirshov’s doctoral thesis.

The core of Shirshov’s seminar consisted of five people: L. A. Bokut, G.V. Do-
rofeev, E.N. Kuzmin, V.N. Latyshev, and K.A. Zhevlakov, whom somebody called
the “magnificent five”. These five direct students of A.I. became the basis on which
the school of Shirshov emerged; in the framework of this school the well-known
doctors of science were formed: V.T. Filippov, A.Ya. Kanel-Belov, A.V. Iltyakov,
A.R. Kemer, V.K. Kharchenko, P.S. Kolesnikov, G.P. Kukin, Yu.N. Malcev, Yu.A.
Medvedev, A.A. Nikitin, S.V. Pchelintsev, V.V. Shchigolev, I.P. Shestakov, A.M.
Slinko, S.R. Sverchkov, U.U. Umirbaev, E.I. Zelmanov, V.N. Zhelyabin – not to
mention numerous candidates of science (like members of Shirshov’s Ring Theory
Department at Sobolev Institute A.Z. Ananin, V.N. Gerasimov, A.T. Kolotov,
I.V. Lvov, A.N. Koryukin, V.A. Parfenov, A.P. Pojidaev, V.G. Skosyrskii, O.N.
Smirnov, A.I. Valitskas, S.Yu. Vasilovskii).

A distinguishing trait of Shirshov’s creative work was its exceptional individ-
uality: he wrote all his main works by himself, without co-authors. This trait was
largely inherited by his students. One day, after a regular session of the Academy of
Sciences, he recounted that, during a break between meetings, he was approached
by I.M. Gelfand, a well-known “co-authorizer”, who said, holding Shirshov by a
button of his jacket, that he had some ideas about Jordan algebras: “Would you
like, Anatoly Illarionovich, to think about them?” A.I. refused; he did not want to
join the numerous ranks of co-authors of Izrail Moiseevich.

Something similar also happened to me. After struggling with the problem
of existence of an analytic Moufang loop with a given tangent Malcev algebra, I
ventured to ask A.I. for help. The answer was like a cold shower: “If you don’t
want to work on this problem yourself, I will give it to somebody else”. In a few
years it dawned upon me how to make use of the Campbell-Hausdorff series, and
the proof was found! How happy was A.I. for me! He used to say: “This is your
second doctoral thesis”.

Shirshov’s treatment of his students was truly fatherly. He was happy for our
successes as a father would be – and what were our successes compared to his truly
outstanding achievements?! – and he looked after us even in everyday life. It was
impossible not to feel a grateful love for this Man, our great Teacher.



A.I. Shirshov’s Works
on Alternative and Jordan Algebras

Ivan Shestakov and Efim Zelmanov

This survey is an extended version of Section 3 of the paper [3] by L.A. Bokut and
the first author, which was based on the report delivered at the Second Interna-
tional Conference on Algebra in memory of A.I. Shirshov, held in Barnaul, Russia
in August 1991.

We consider here the contribution of A.I. Shirshov to the theories of alterna-
tive and Jordan algebras. In the middle of the 1950s, when A.I. Shirshov began to
investigate these algebras, there was no general structure theory. Only the struc-
ture theory of finite-dimensional algebras had been developed in the works of
M. Zorn, A.A. Albert, N. Jacobson, R.D. Schafer, and others [9, 20]. As to the
infinite-dimensional case, only some isolated results, such as the Bruck-Kleinfeld-
Skornyakov theorem on alternative division rings [2, 27], had begun to appear. The
results of A.I. Shirshov and, more importantly, the ideas and methods developed
in his papers, provided a basis for the creation of structure theories for alternative
and Jordan algebras in the general case.

Recall that at that time the structure theory of associative rings was already
well-developed. One of its main achievements was I. Kaplansky’s solution [11] of
the A.G. Kurosh problem for algebraic PI-algebras. Although the Kurosh problem
is easily reformulated for alternative or Jordan algebras, the proof of I. Kaplansky
could not be translated to these classes of algebras since they lacked any structure
theory. As has already been mentioned in other surveys in this volume, A.I. Shir-
shov looked at the Kurosh problem from the combinatorial point of view, and this
approach permitted him not only to obtain more profound results in the associa-
tive case, but also to solve the problem for alternative and special Jordan algebras.
Furthermore, these works were of fundamental significance for the entire develop-
ment of the theory of alternative rings. They clearly demonstrated the intrinsic
unity of the theories of Jordan and alternative algebras.

Recall that an algebra A is said to be alternative if, for all a, b ∈ A, the
subalgebra generated by a, b is associative. An algebra J is said to be Jordan if it
satisfies the identities xy = yx and (x2y)x = x2(yx).
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The best-known example of an alternative algebra is the algebra of Cayley
numbers. The typical example of a Jordan algebra is the algebra A(+) = 〈A,+, ◦〉,
where A is an associative algebra and a ◦ b = 1

2 (ab + ba). If a Jordan algebra J
is embeddable into the algebra A(+) for a suitable associative algebra A, then J
is called a special Jordan algebra; in this case we denote by A(J) = algA(J) the
enveloping algebra of J .

A.I. Shirshov proved that if J is an algebraic special Jordan PI-algebra, then
the algebra A(J) is locally finite. In particular, the algebra J itself is locally finite
in this case. The proof of this striking result should be considered together with the
proof of the celebrated Height Theorem (see the other surveys in this volume). Both
proofs are based on a Ramsey-type combinatorial statement which has implications
far beyond algebra.

A word v is said to be n-divisible if it can be represented as v = v1 . . . vn where
v > vσ(1) . . . vσ(n) lexicographically for an arbitrary nonidentical permutation σ.

The Shirshov N(k, s, n)-lemma. For arbitrary integers k, s, n ≥ 1 there exists an
integer N(k, s, n) such that an arbitrary word in x1, . . . xk of length N(k, s, n)
contains a subword us or an n-divisible subword.

The proof of this lemma involves induction on k. Let k ≥ 2. Modulo the
induction assumption it is sufficient to consider only words in the finite set

T = { xi
kxi1 . . . xir | 1 ≤ i < s, 1 ≤ i1, . . . , ir ≤ k−1, r < N(k−1, s, n) }.

An (n−1)-divisible word in T gives rise to an n-divisible word in the alphabet
x1, . . . , xk. The key observation of Shirshov that allowed him to apply this combi-
natorics to special Jordan algebras is that an arbitrary T -word is a Jordan word;
that is, a lexicographically greatest monomial in a homogeneous Jordan expression
in x1, . . . , xk.

Shirshov’s result works for alternative algebras as well. If B is an alternative
algebra, then B(+) is a special Jordan algebra, and moreover, an enveloping algebra
A(B(+)) is isomorphic to the algebra of right multiplications,

R(B) = alg〈Rb | b ∈ B〉, Rb : x �→ xb.

Thus, we have the transitions,

B is an
algebraic
alternative
PI-algebra

=⇒
B(+) is an
algebraic
Jordan
PI-algebra

=⇒
A(B(+))
∼= R(B) is
locally
finite

=⇒
B is
locally
finite,

which give a solution to the Kurosh problem for alternative algebras. The idea of
the transition from associative algebras to alternative algebras via Jordan algebras,

Associative algebras
Jordan algebras

=⇒ Alternative algebras,

plays a crucial role in many further investigations.
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We remark that the reduction of the Restricted Burnside Problem [36, 37, 38]
to Engel Lie algebras [35] was based on the Lie analogue of Shirshov’s N(k, s, n)-
lemma. A word in x1, . . . , xk is said to be a Lie word if it is the lexicographically
greatest word in a homogeneous linear combination of commutators in x1, . . . , xk.

Theorem. For arbitrary integers k, s, n ≥ 1, there exists an integer L(k, s, n) such
that an arbitrary word in x1, . . . , xk of length L(k, s, n) contains a subword us

where u is a Lie word, or a subword v1u1v2u2 . . . un−1vn where v1, . . . , vn are Lie
words, such that

v1u1v2 . . . un−1vn > vσ(1)u1vσ(2)u2 . . . un−1vσ(n),

lexicographically, for any nonidentical permutation σ.

In [34] the Kurosh problem for arbitrary (not necessarily special) Jordan PI-
algebras was solved. It is a typical situation for Jordan algebras, when a theorem
is first proved for special algebras and then extended to the class of all algebras. In
this connection, it is very important to determine conditions sufficient for speciality
of an algebra. In this direction, A.I. Shirshov proved the fundamental theorem that
the free Jordan algebra with two generators is special. Combined with the earlier
result by P. Cohn [4], the theorem implies that every Jordan algebra with two gen-
erators is special. A.I. Shirshov considered this theorem as one of his best results.
The claim is quite simple whereas the proof is difficult and sophisticated. The the-
orem served as a source of diverse research in several directions. The first of them
relates to the investigation of the structure of free Jordan algebras J [x, y, z, . . .]
with more than two generators.

We ought to say that A.I. Shirshov was always interested in studying prob-
lems related to the structure of free algebras. His first works are devoted to free
Lie algebras. His last results are concerned with the structure of free projective
planes. He also formulated a series of questions on the structure of free Jordan,
alternative, Malcev, and other algebras [5].

The first result on the structure of the free Jordan algebra J [X ], |X | ≥ 3, was
obtained in 1959 by A.A. Albert and L.J. Paige [1]. They proved that this algebra is
neither special nor even a homomorphic image of a special Jordan algebra. (Earlier
P. Cohn in [4] showed that the class of special Jordan algebras is not closed under
homomorphic images.) This implies that the algebra J [x, y, z] contains nonzero
elements vanishing in every special Jordan algebra (such elements are called s-
identities). In 1966, C.M. Glennie [7] presented a concrete s-identity of degree 8.
Until now, no essentially new s-identities have been found, and the question of
their description is still open. Moreover, he proved that there are no s-identities
of degree ≤ 7 and no homogeneous s-identities in three variables, which are linear
in one of them. It is curious that these two facts provided all the identities that
are needed for the structure theory [33].

In the case of special algebras, the role of a free algebra is played by the
free special Jordan algebra SJ [X ], which is defined as the minimal subspace of the
free associative algebra Assoc[X ] that contains X and is closed with respect to
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the Jordan product a ◦ b. The elements of SJ [X ] are called Jordan elements. It is
easy to see that SJ [X ] ⊆ H(Assoc[X ], ∗), where H(Assoc[X ], ∗) is the subspace
of symmetric elements of Assoc[X ] with respect to the involution ∗ which is the
identity on X : (x1x2 · · ·xn)∗ = xn · · ·x2x1. The subspace H(Assoc[X ], ∗) is closed
with respect to the Jordan product and hence may be considered as a Jordan
algebra. It is generated as an algebra by the set X and by all tetrads {xixjxkxl} =
xixjxkxl + xlxkxjxi; when |X | ≤ 3 then H(Assoc[X ], ∗) = SJ [X ], and when
|X | > 3 then H(Assoc[X ], ∗) strictly contains SJ [X ] (since tetrads in general are
not Jordan elements).

An important tool to “diminish the gap” between H(Assoc[X ], ∗) and SJ [X ]
was invented by E. Zelmanov [33]. An element n ∈ SJ [X ] is called a tetrad-eater
if the tetrad {nabc} is a Jordan element for any a, b, c ∈ SJ [X ]. E. Zelmanov con-
structed an ideal I in SJ [X ] which consists of tetrad-eaters; it satisfies the condi-
tion I = H(A(I), ∗), that is, I coincides with the subspace of symmetric elements
in its enveloping algebra. The tetrad-eater ideal I is essential to the classification
of prime Jordan algebras [33]. Among various corollaries of the classification, it
was proved that the algebra J [X ] is not prime for |X | > 3. The generators of I
in [33] are of quite large degree. The following example, due to V. Skosyrsky [28],
presents a tetrad-eater of minimal known degree:

λ(x, y, z, t, u) = [[[x, y]2, x], [[[z, t]2, z], u]].

One can easily check that this is a Jordan element; moreover, the ideal of SJ [X ]
generated by all homogeneous elements of this type consists of tetrad-eaters.

As of now there are no known criteria to determine when an element of
Assoc[X ] is a Jordan element.

A series of interesting results on the structure of the free Jordan algebra J [X ]
was obtained by Yu.A. Medvedev [16, 17]. He proved in particular that
(1) If |X | ≥ 3, then the algebra J [X ] has nontrivial center and contains Albert

subrings (central orders in 27-dimensional exceptional simple Jordan alge-
bras).

(2) If |X | ≥ 32, then J [X ] contains nonzero nilpotent elements and nontrivial nil
ideals.

In the joint paper by Yu.A. Medvedev and E. Zelmanov [18], it was proved that
(3) If |X | is infinite, then the nil radical of J [X ] is neither nilpotent nor solvable.

The first two results had their analogues in the theory of free alternative algebras
[32]. The third is specific for Jordan algebras. As E.I. Zelmanov and I.P. Shestakov
showed [39], the nil radical of a free alternative algebra over a field of characteristic
zero is nilpotent. It is interesting that nilpotency of the radical in the alternative
case as well as nonnilpotency of the radical in the Jordan case was proved by
analyzing the structure of simple superalgebras and their identities.

Another direction stemming from the Shirshov theorem on two-generated
Jordan algebras relates to investigating the problems of speciality, finding certain
criteria of speciality, and studying the influence of identities of an algebra on its
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speciality. Together with A.I. Shirshov, P. M. Cohn was a pioneer in this direction
[4]. The direction was further developed in the works by A.M. Slin’ko [29] and
S.R. Sverchkov [30, 31]. In the papers [14, 22, 19, 13, 8, 23, 24] this approach
was extended to Jordan superalgebras and to other classes of algebras. We present
one of the results of S.R. Sverchkov [30]: The class of special Jordan algebras
regarded as a quasivariety cannot be determined by a set of quasi-identities (that
is, expressions of the type “f(x) = 0 ⇒ g(x) = 0”) in finitely many variables.

One of the important and difficult problems in the theory of nonassociative
algebras is the construction of effective bases of free algebras. A.I. Shirshov con-
structed bases for free Lie algebras, and free commutative and anticommutative
algebras, and formulated this problem for free alternative, free Jordan, free Mal-
cev, and other free algebras [5, problem 1.160]. In the case of free Jordan algebras,
no effective bases are known for J [X ], |X | > 2 and SJ [X ], |X | > 3. In the case of
alternative algebras, a base for the free algebra Alt[x, y, z] was constructed by A.
Iltiakov [10] who also proved that this algebra has no nilpotent elements, contrary
to Alt[X ] for |X | > 3. In [25, 26] bases of free Malcev and alternative superalgebras
on one odd generator are constructed.

The structure of the free alternative algebras Alt[X ] for |X | > 3 was studied
by I.P. Shestakov (see [32]). In particular, in [21] he solved the following problem
of A.I. Shirshov [5, problem 1.159]: Let Altn denote the variety generated by a free
alternative algebra with n generators. Does the chain of varieties

Alt1 ⊆ Alt2 ⊆ · · · ⊆ Altn ⊆ Altn+1 ⊆ · · · ,
stabilize after a finite number of steps? The answer turned out to be negative. It
was proved in [21] that Altn ⊂ Alt2n+1 strictly for any n. Later, V. T. Filippov
[6] showed that if the base field has characteristic different from 2 and 3 then
Altn ⊂ Altn+1 strictly for any n.

A.I. Shirshov posed the analogous problem for free Jordan, free Malcev, and
other free algebras. A negative answer for the variety Mal of Malcev algebras was
obtained in [21] by I.P. Shestakov; later V.T. Filippov refined this result in [6] by
proving that Maln ⊂Maln+1 strictly for any n �= 3. For n = 3 the question is still
open. The corresponding problem for the variety Jor of Jordan algebras remains
open; it is known only that Jor1 ⊂ Jor2 ⊂ Jor3 strictly. In the light of the above
results, it seems very interesting to construct bases of the free Jordan and free
Malcev algebras on three generators. In particular, are these algebras semiprime
like Alt[x, y, z]?

It seems natural to reformulate the problem above on the chain of varieties in
the framework of superalgebras. Recall that a variety of algebras M is said to have
finite basic rank if it can be generated by a finitely generated algebra; the minimal
number of generators in this case is called the basic rank of M. For example, the
varieties of all associative and all Lie algebras have basic rank 2, the varieties Alt
and Mal, or the variety generated by a Grassmann algebra on an infinite number
of generators, have infinite basic rank. Similarly, we will say that a variety M
has a finite basic superrank if the corresponding variety of M-superalgebras is
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generated by a finitely generated superalgebra; a pair (m,n) of m even and n odd
generators of such a superalgebra we call a basic superrank of M if it is minimal
right lexicographically.

The notion of basic superrank is a more refined characteristic of a variety;
this fact is evidenced by the following theorem by A.R. Kemer [12] which played
a crucial role in his solution of the Specht problem: Every variety of associative
algebras over a field of characteristic 0 has a finite basic superrank. The variety of
alternative algebras which are solvable of index 2 provides a nonassociative exam-
ple: it has infinite basic rank but its basic superrank is (0, 1). In this connection,
the following question arises: What is the value of basic superrank for the variety
Alt of alternative alebras? Is it finite?

Finally, we want to mention one work by A.I. Shirshov which greatly influ-
enced the development of the theory of nonassociative algebras. This is the survey
Some questions of the theory of rings that are nearly associative. Many students of
A.I. Shirshov, and the students of his students, began their acquaintance with ring
theory while perusing this article. On the one hand, it is accessible for beginners,
on the other hand, it contains a whole program of further study, and a series of
attractive and still open problems.

In recent years, the theory of nonassociative algebras has gained wide recog-
nition; its methods penetrate deeply into other domains of mathematics, not only
into algebra but also into geometry, analysis, and theoretical physics. A great part
of the merit for this belongs to A.I. Shirshov, who was a harbinger of the theory
and whose marvelous theorems will adorn it forever.

References

[1] A.A. Albert and L.J. Paige, On a homomorphism property of certain Jordan alge-
bras, Trans. Amer. Math. Soc. 92 (1959), 20–29.

[2] R.H. Bruck and E. Kleinfeld, The structure of alternative division rings, Proc. Amer.
Math. Soc. 2, no. 6 (1951), 878–890.

[3] L.A. Bokut’ and I.P. Shestakov, Some results by A.I. Shirshov and his school, Con-
temporary Mathematics, 184, 1995, 1–12.

[4] P. Cohn, On homomorphic images of special Jordan algebras, Canad. J. Math. 6
(1954), 253–264.

[5] Dnestrovskaya Tetrad’, Open problems in the theory of rings and modules, Institute
of Mathematics, Novosibirsk, 1993 (in Russian). English translation: Lect. Notes
Pure Appl. Math., 246, Non-associative algebra and its applications, 461–516, Chap-
man & Hall / CRC, Boca Raton, FL, 2006.

[6] V.T. Filippov, On varieties of Malcev and alternative algebras generated by algebras
of finite rank, Trudy Inst. Mat. SOAN SSSR, Novosibirsk, v. 4, 1984, 139–156.

[7] C.M. Glennie, Some identities valid in special Jordan algebras but not valid in all
Jordan algebras, Pacific J. Math. 16, no. 1 (1966), 47–59.

[8] A.N. Grishkov, I.P. Shestakov, Speciality of Lie-Jordan Algebras, J. Algebra, 237
(2001), 621–636.



A.I. Shirshov’s Works on Alternative and Jordan Algebras 61

[9] N. Jacobson, Structure and Representations of Jordan Algebras, AMS colloquium
Publ., vol. 39, Providence, R.I., 1968.

[10] A.V. Iltiakov, Free alternative algebras of rank 3. Algebra i Logika 23, No. 2 (1984),
136–158.

[11] I. Kaplansky, Topological representations of algebras. II, Trans. Amer. Math. Soc.
68, no. 1 (1950), 62–75.

[12] A.R. Kemer, Varieties and Z2-graded algebras, Izv. Akad. Nauk SSSR, Ser. Mat.
48(1984), 1042–1059.
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Subalgebras of Free Lie Algebras

A.I. Shirshov

1. Introduction

In the work of A.G. Kurosh [2] it is proved that every subalgebra of a free nonas-
sociative algebra is free. It would be natural to investigate the possibility of trans-
ferring this theorem to the most important classes of relatively free algebras whose
general definition was given in the work of A.I. Malcev [3].

The widest class of such algebras that includes all classes of algebras that have
been studied sufficiently deeply is the class of power associative algebras, i.e., the
algebras in which each element generates an associative subalgebra. However, the
corresponding theorem for this class of algebras is false, because the free associative
algebra with one generator already contains subalgebras that are not free (see A.G.
Kurosh [2]). For the same reason, this theorem does not hold for Jordan algebras,
for alternative algebras, and also for right or left alternative algebras. It is not
difficult to convince oneself that this theorem does not hold for power-commutative
or flexible algebras either, for reasons similar to those stated above.

These considerations, however, are not valid for free Lie algebras, since in
them a single element generates a one-dimensional subspace with zero multiplica-
tion, for which the theorem on subalgebras holds trivially. In the present work, it
is proved that every subalgebra of every free Lie algebra is free.

This work was carried out under the supervision of A.G. Kurosh, to whom I
find it my pleasant duty to express deep gratitude.

2. Preliminary concepts

Let R = {aα} be a set of symbols where α ranges over some nonempty set of
indices. From elements of R one can form nonassociative words of various lengths
as is done in the work of A.G. Kurosh [2].

Mat. Sbornik N.S. 33 (75), (1953), no. 2, 441–452.
c© 2009 Translated from the Russian original by M.R. Bremner and M.V. Kochetov.



66 A.I. Shirshov

Definition 1. We will call words of length 1, i.e., elements of R, regular words, and
we will order them arbitrarily. Assuming that regular words of length less than
n, n > 1, are already defined and ordered by the relation ≤ in such a way that
shorter words precede longer words, we call a word w of length n regular if the
following conditions are satisfied:

1) w = uv where u and v are regular words and u > v;
2) if u = u1u2 then u2 ≤ v.

We will order arbitrarily the regular words of length n defined in this way, and
declare that they are greater than shorter words.

Definition 2. Suppose we have a regular word d. We will call a regular word w,
w > d, d-reducible if w = uv, v > d, and d-irreducible otherwise.

Obviously, for each regular word w, w > d, one can determine if it is d-
reducible or d-irreducible. If it turns out that w is d-reducible, then w = uv where
each word u, v is regular and greater than d, and thus one can determine if each
is d-reducible or d-irreducible. Continuing this process, we will clearly arrive at
a unique representation of the word w as a product (with some arrangement of
brackets) of d-irreducible words. We will call this representation a d-factorization
of w.

Definition 3. We will say that two nonassociative words u and v have the same
content relative to R if each element aα ∈ R occurs in u and v the same number
of times.

Clearly, the words that have the same content relative to R also have the
same length.

Let A be a free Lie algebra over a field P with the same set R of free gener-
ators. The elements of A are linear combinations of nonassociative words formed
from elements of R with coefficients from the field P ; in this case, two elements
are considered equal if one can be obtained from the other by a finite number of
applications of the distributive laws and the identical relations:

x2 = 0, (1)

(xy)z + (yz)x+ (zx)y = 0, (2)

or identical transformations in the additive group.
Hall [1] proved:

Theorem 1. Regular words, for any fixed choice of ordering in the definition, form
a basis of the algebra A.

The proof of this theorem can found in the cited work of Hall. (It is easy to
see that Hall’s assumption of finiteness of the number of generators of the algebra
A is not essential.) In the following, it is important that the process used in that
proof allows one to express each word in the algebra A as a linear combination of
regular words of the same content relative to R.
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Theorem 1 and the above remark imply the following result of a combinatorial
nature:

Corollary 1. The number of regular words of the same given content relative to R
does not depend on the choice of ordering in the definition of regular words.

Indeed, let regular words be defined in two different ways, and letMi (i = 1, 2)
be the sets of all words which are regular according to the first (respectively second)
sense and have the same given content relative to R. By Theorem 1 the elements
of each set Mi in A are linearly independent over P , and any element of each of
these sets is a linear combination of the elements of the other set, which proves
the corollary.

Given an arbitrary Lie algebra L, one can speak of a regular form of its
elements. For this, one must fix some set M = {vγ} of generators and consider the
homomorphism of the free Lie algebra L, with the set M = {vγ} of free generators
which are in one-to-one correspondence with the elements of M , onto L.

An M -word, i.e., an element of L of the form w = vγ1vγ2 · · · vγk
where vγj ∈

M with some arrangement of brackets, will be called Mτ -regular if, for the set M
the regular words have been defined in some way τ and the word w = vγ1 vγ2 · · · vγk

in elements of M is regular. Generally speaking, for an element of L, an Mτ -regular
form, i.e., a representation as a linear combination of Mτ -regular words, is not
uniquely defined, but for any M -word w there exists an expression as a linear
combination of Mτ -regular words with the same content relative to M as w. To
find such an expression, one must find an analogous expression for the word w and
then pass to the homomorphic image.

For consistency of notation in what follows, we will denote by D the free Lie
algebra on the set of free generators that are in one-to-one correspondence with
the generators of the given Lie algebra D.

Definition 4. We will say that a set R of elements of the free Lie algebra A is
independent if R generates a free subalgebra of A and is a system of free generators
of that subalgebra.

For example, the set R itself is independent. In what follows we will assume
that for the set R the regular words are defined in some fixed way and we will call
those words R-regular.

Let d be a fixed R-regular word, and Kd the set of d-irreducible words. The
set Kd generates some subalgebra Ad of A. The set Kd consists of R-regular
words, and thus it is already ordered by the fixed order of R-regular words. We
will transfer this order to the set Kd of free generators of the free Lie algebra Ad,
and starting with this order we will define in some fixed way Kd-regularKd-words.
After that, it also makes sense to speak of Kd-regular Kd-words. As was shown
above, there exists a representation of each Kd-word as a linear combination of
regular Kd words of the same content relative to Kd.

Lemma 1. Every Kd-word can be represented as a linear combination of Kd-words
of the same content relative to Kd which are in fact R-regular.
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This lemma is obvious for Kd-words whose Kd-length (i.e., length relative to
Kd) is 1, since the elements of Kd are in fact R-regular.

Suppose the lemma has been proved for Kd-words whose Kd-length is less
than n, n > 1. A word w whose Kd-length is equal to n can be represented
as a product of two Kd-words of smaller Kd-length which can, by the inductive
hypothesis, be rewritten in R-regular form with the same content relative to Kd.
Therefore, we can assume that w = uv where u and v are R-regular Kd-words;
we can also assume that u > v in the sense of the ordering of R-regular words
because in the contrary case we would have written w = −vu. If u is a Kd-word
of Kd-length 1, then w is already R-regular because u and v are R-regular, u > v,
and if u = u1u2 then u2 ≤ d < v by definition of d-irreducibility. If the Kd-length
of u is greater than 1, then it suffices to consider the case when u = u1u2 and
u2 > v, since in the contrary case w would already be R-regular.

So let w = (u1u2)v where u1, u2, v are R-regular Kd-words, u1 > u2 > v. By
relation (2),

w = (u1u2)v = (u1v)u2 + u1(u2v). (3)

Since the lengths of the words u1v and u2v are greater than the length of v,
rewriting u1v and u2v in R-regular form we obtain Kd-words that are greater
than v relative to the ordering of words in R. Applying distributivity and removing
words of the form uu if they appear, and using anticommutativity to make the
right factor less than the left factor, we obtain an expression of w as a linear
combination of words, each of which, as w itself, consists of two R-regular factors
with the right factor less than the left factor but now greater than v. We do the
same with each of these words as with w. Because of the finiteness of the number
of words with a given content, this process will terminate after a finite number of
steps; this means that we have obtained the required expression for w.

Lemma 2. Kd-regular Kd-words are linearly independent in A.

For the proof of Lemma 2 it suffices to prove linear independence of Kd-
regular Kd-words with the same content relative to Kd, since by Lemma 1 each
Kd-regular Kd-word is a linear combination of R-regular Kd-words of the same
content which are linearly independent by Theorem 1.

For Kd-words of Kd-length 1, the statement of Lemma 2 is obvious. Assume
by induction that, in any free Lie algebra A0, for any R0-regular word d0, Kd0-
regular Kd0-words of Kd0-length less than n are linearly independent.

Suppose there exists a linear dependence between Kd-regular Kd-words of
Kd-length n, n > 1, that have given content relative to Kd. Now let w be the
smallest element of Kd that appears in these linearly dependent words. Subject the
Kd-regular Kd-words under consideration to w-factorization, which makes sense
in Ad and also in Ad by the homomorphism Ad → Ad. All w-irreducible words
that can appear here will have the form u or [· · · (uw) · · · ]w where u ∈ Kd, u �=
w. Therefore they will be R-regular, i.e., belong to the set Kw of R-regular w-
irreducible words.
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The elements Kw will be ordered in a different way depending on whether
we consider them as R-words or as Kd-words. Thus we introduce two definitions
of regular words in Aw and we will distinguish KwR-regular Kw-words and Kwd-
regular Kw-words, depending on whether the ordering in Kw is induced by the
ordering of the regular words of A or the ordering of the regular words of Ad. In this
sense we will speak of KwR-regular and Kwd-regular Kw-words in the subalgebra
Aw generated by the set Kw.

In view of the fact that w by assumption occurs in each of our linearly depen-
dent Kd-regular Kd-words, and since for w itself w-reducibility or w-irreducibility
does not make sense, it follows that the Kw-length of the Kd-regular Kd-words
under consideration will be less than n, and thus the assumed linear dependence is
at the same time a linear dependence between Kd-regular Kw-words of Kw-length
less than n. By the inductive hypothesis, KwR-regular Kw-words of length less
than n are linearly independent. By Corollary 1 the number of KwR-regular Kw-
words of a fixed content is equal to the number of Kwd-regular Kw-words of the
same content. From the possibility of representing a KwR-regular Kw-word as a
linear combination of Kwd-regular Kw-words of the same content, and vice versa,
it follows that the Kwd-regular Kw-words of Kw-length less than n are linearly
independent.

Applying Lemma 1 to the algebra Ad it is possible to express anyKwd-regular
word as a linear combination of Kd-regular words of the same content relative to
Kw. On the other hand, it is obvious that everyKw-word is a linear combination of
Kwd-regular Kw-words of the same content. Passing to the homomorphic images
we obtain the corresponding statement for the subalgebra Ad.

By the inductive hypothesis, Kwd-regular Kwd-words of Kw-length less than
n are linearly independent in the algebra Ad; therefore the numbers ofKwd-regular
andKd-regularKw-words ofKw-length less than n and the same content are equal.

An analogous statement holds also for Kw-words. Therefore the Kw-words
of Kw-length less than n that are Kd-regular are linearly independent, which
however contradicts the above-mentioned linear dependence of these words. This
proves Lemma 2.

Lemma 3. The set Kd is independent.

The homomorphism Ad → Ad is, by Lemma 2, an isomorphism, since only
the zero element of Ad is mapped to the zero element of Ad. The existence of an
isomorphism between Ad and the free Lie algebra Ad proves Lemma 3.

Corollary 2. In the free Lie algebra with two generators there exists a subalgebra
that is a free Lie algebra with a countably infinite set of generators.

Let a and b be the generators of the free Lie algebra. Then the countable
set of words of the form ab, (ab)b, [(ab)b)b], . . . is independent since each of these
words belongs to the independent set Kb of b-irreducible words. From this the
desired conclusion follows.
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In the free Lie algebra A with the set of free generators R, to each element
w there corresponds uniquely a natural number n(w), the degree of the element
w. The degree of w can be defined as the greatest length of regular words in
the representation of w in terms of the basis of regular words. Obviously, this
does not depend on the definition of regular words. The sum of the terms in this
representation of w whose length is equal to n(w) will be called the highest part
of w. The element w will be called homogeneous if it coincides with its highest
part. In an analogous sense, we can define degree, highest part, and homogeneity
relative to one of the free generators of the algebra A.

3. Main theorem

Let B be an arbitrary subalgebra of the free Lie algebra A. We will construct a
finite or countably infinite increasing sequence of integers kn (n = 0, 1, 2, . . .) and
a sequence of subalgebras Bn ⊂ B similarly to the way it is done in the work of
A.G. Kurosh [2]: define k0 = 0 and B0 = 0; if km and Bm are already defined for all
m = 0, 1, . . . , n− 1, let kn be the least degree of elements in B that do not belong
to Bn−1, and let Bn be the subalgebra of B generated by all elements whose degree
does not exceed kn.

Lemma 4. In B it is possible to choose a subset M such that
(1) no element a ∈ M has its highest part in the subalgebra generated by the

highest parts of the elements of M\ {a}, and
(2) the subalgebra B is generated by the set M.

The set Kn of elements of the subalgebra Bn whose degree does not exceed
kn is a linear subspace and the set K′

n of elements of the subalgebra Bn−1 whose
degree does not exceed kn is a linear subspace of Kn.

Choose arbitrarily one representative for each coset in a basis of the linear
space Kn/K′

n and let Mn be this set. Now let M =
⋃

n≥1 Mn. We will prove that
the set M satisfies the requirements of Lemma 4.

We will denote the elements of M by bβ and their highest parts by b′β. Suppose
that for bβ ∈ Mn the following equality holds:

b′β =
∑

γ �=β

αγb
′
γ +

∑

γ,δ �=β

αγδb
′
γb

′
δ + · · · +

∑

γ,δ,...,ν �=β

αγδ···νb′γb
′
δ · · · b′ν , (4)

where some bracket arrangement is assumed for each summand with more than
two factors, and the α’s with subscripts are elements of the field P .

The second and following summations on the right-hand side of equation (4)
may contain factors of degree greater than the degree of b′β . Then, when we rewrite
these products in the regular form, they will either become zero or will keep the
same degree. In view of the linear independence of regular words, all such terms
must cancel each other, and hence we may assume that the first summation con-
tains only the elements of the same degree as b′β, and that the remaining elements
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b′ appearing on the right-hand side of equation (4) have degree strictly less than
the degree of b′β, but their products have the same degree as b′β.

The highest part of the element

bβ −
∑

γ �=β

αγbγ −
∑

γ,δ �=β

αγδbγbδ − · · · −
∑

γ,δ,...,ν �=β

αγδ···νbγbδ · · · bν

of the subalgebra Bn, has degree less than kn, and thus this element already
belongs to the subalgebra Bn−1, which leads to a contradiction with the linear
independence of the cosets from which we chose the elements of Mn. Requirement
(1) for the set M has been proved.

To prove that requirement (2) holds, we observe that the subalgebra Bn

is generated by the subalgebra Bn−1 and the set Mn, from which it follows by
induction that the subalgebra Bn is generated by the set

⋃n
k=1 Mk for all n. Since

for each c ∈ B there exists a natural number q such that c ∈ Bq, requirement (2)
has been proved.

By a nonassociative polynomial we mean an element of the free nonassociative
algebra S over the field P with a countably infinite set of free generators x1, x2,
. . . . Let S be the free Lie algebra over the same field with free generators a1,
a2, . . . , where regular words in S have been defined in some way. There exists a
natural homomorphism of S onto S that sends the polynomial f(xi1 , xi2 , . . .) to the
element f(ai1 , ai2 , . . .). We will call two polynomials in S equivalent if their images
in S are equal. We will call a polynomial f(xi1 , xi2 , . . .) non-trivial if its image
f(ai1 , ai2 , . . .) is nonzero. Let ϕ(ai1 , ai2 , . . .) be the regular form of this image.
Then the polynomial ϕ(xi1 , xi2 , . . .) equivalent to the polynomial f(xi1 , xi2 , . . .)
will be called regular. Clearly, any part of a regular polynomial is non-trivial.

Theorem 2. Any subalgebra B of a free Lie algebra A is free.

Suppose we are given a free Lie algebra A over the field P with the set R of
free generators, and a subalgebra B. According to Lemma 4, we choose a set M
and we will prove that it is independent.

Assume that for some finite system of elements b1, b2, . . . , bq in M, there
exists a non-trivial relation F (b1, b2, . . . , bq) = 0, i.e., F (x1, x2, . . . , xq) is a non-
trivial polynomial which we may take to be regular; from this we will derive a
contradiction. We may assume that n(bi) ≤ n(bj) for i < j.

Lemma 5. Under the above assumption, there exists a finite set M1 of homogeneous
elements of the algebra A that satisfies requirement (1) of Lemma 4, and some
non-trivial relation F1 = 0 among the elements of M1.

The regular polynomial F (x1, x2, . . . , xq) can be represented as the following
sum of two polynomials:

F (x1, x2, . . . , xq) = F1(x1, x2, . . . , xq) + F ′
2(x1, x2, . . . , xq).

To each term of the polynomial F under the substitution of bi for xi (i = 1, 2, . . . , q)
there corresponds a natural number, namely the sum of the degrees relative to R
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of all factors of the form bi that occur in the given term. Then, we denote by F1

the sum of all terms for which this sum of degrees is maximal.
Let bi = b′i +b′′i where b′i is the leading term of bi (i = 1, 2, . . . , q). Then, from

the relation

F (b1, . . . , bq) = F (b′1 + b′′1 , . . . , b
′
q + b′′q )

= F (b′1, . . . , b
′
q) + F ′(b′1, . . . , b

′
q, b

′′
1 , . . . , b

′′
q )

= F1(b′1, . . . , b
′
q) + F ′

2(b
′
1, . . . , b

′
q) + F ′(b′1, . . . , b

′
q, b

′′
1 , . . . , b

′′
q )

= 0,

it follows that F1(b′1, . . . , b
′
q) = 0 by the definition of the polynomial F1. The non-

triviality of the polynomial F1 follows from the fact that it is regular as part of
the regular polynomial F . The required set M1 is b′1, b

′
2, . . . , b′q.

Lemma 6. Suppose there exists a set M1 = {b′i} (i = 1, 2, . . . , q) and a non-trivial
relation

F1(b′1, . . . , b
′
q) = 0,

that satisfy the conditions of Lemma 5. Suppose that the elements of the set M′
2 =

{ci} (i = 1, 2, . . . , q) are in one-to-one correspondence with the elements of the
set M1 and have the form ci = b′i + vi (i = 1, 2, . . . , q) where vi is an element of
the subalgebra generated by the elements b′k with k < i, and vi either is zero or
has the same degree relative to R as b′i. Then there exists a non-trivial relation
F2(c1, . . . , cq) = 0 and the set M′

2 satisfies the same conditions as the set M1.

First of all, let us prove that there exists a representation bi = ci + v′i (i =
1, 2, . . . , q) where v′i is zero or an element of the subalgebra generated by the
elements cj (j < i) whose degree is equal to the degree of vi. We set b′1 = c1.
Suppose we have found the required representation for all b′k with k < m. Then,
from the equality b′m = cm−vm, after replacing all b′j (j < m) in vm by the already
found expressions, it follows that there exists the required expression for b′m.

We separate, from the non-trivial polynomial F1(b′1, . . . , b
′
q) which we may

suppose regular, the part F11 that has the highest degree relative to b′q, and then
from F11 we separate the part F12 that has the highest degree relative to b′q−1, and
so on; finally, from F1,q−1 we separate the part F1q that has the highest degree
relative to b′1. Let us substitute the expressions we have found for b′k into the
relation f1 = 0:

F (b′1, . . . , b
′
q) = F1q(b′1, . . . , b

′
q) + F 1(b′1, . . . , b

′
q)

= F1q(c1 + v′1, . . . , cq + v′q) + F 1(c1 + v′1, . . . , cq + v′q)

= F1q(c1, . . . , cq) + ϕ(c1, . . . , cq)

= F2(c1, . . . , cq)
= 0.
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The polynomial F1q is non-trivial since it is regular; and obviously it does not
have terms of the same content relative to M′

2 as any term of the polynomial ϕ.
It follows that the polynomial F2 is non-trivial.

Now we prove that the element cj ∈ M′
2 does not belong to the subalgebra

generated by the set M′
2 \ cj . Assuming the contrary, we obtain the equation

cj =
∑

k1 �=j

αk1ck1 +
∑

k1,k2 �=j

αk1k2ck1ck2 + · · · +
∑

k1,...,kn �=j

αk1···knck1ck2 · · · ckn ,

where we assume for each product with n > 2 there is some arrangement of
brackets.

Repeating verbatim what was said above about equation (4), we will assume
that the element cj and all elements ck1 that occur in the first summation have
the same degree, and all factors in the second and following summations on the
right-hand side have strictly smaller degrees. Let c� have the greatest index among
the elements cj , ck1 . Then, replacing all ci by their expressions in terms of b′i, we
obtain that b′i belongs to the subalgebra generated by the other elements of the
set M1, which contradicts Lemma 5. This completes the proof.

Lemma 7. Under the conditions of Lemma 6, there exists a set M2 of elements
which satisfy requirement (1) of Lemma 4, are homogeneous in each element of R,
and satisfy some non-trivial relation.

We choose arbitrarily some generator aα ∈ R from among the elements of
the set M1. Each element b′i ∈ M1 can be written in the form

b′i = bi1 + bi2 + · · · + bini ,

where bik is the part of the element b′i that has degree k relative to aα (i =
1, 2, . . . , q; k = 0, 1, . . . , ni). If b2n2 belongs to the subalgebra generated by the
element b1n1 , i.e., b2n2 = γb1n1 , γ ∈ P , then we replace the element b′2 in M1

by the element b′2 − γb′1 and denote the resulting set M12, using for symmetry
the notation M11 = M1; otherwise, we set M12 = M11. Suppose the sets M1r

(r = 1, 2, . . . , �; � < q) have already been constructed. If, in the set M1� the element
b�+1,n�+1, that is a part of the element b′�+1, does not belong to the subalgebra
generated by the highest parts, relative to aα, of the preceding elements of M1�,
then we will set M1,�+1 = M1�. If, on the other hand, b�+1,n�+1 belongs to that
subalgebra, then we replace the element b′�+1 by the element b′�+1 − v�+1 where
v�+1 is an element of the subalgebra generated by the elements of M1� preceding
the element b′�+1, whose highest part relative to aα is the same as for b′�+1. We
denote the resulting set by M1,�+1. We may assume that the highest part relative
to aα of the element b′�+1 − v�+1 does not belong to the subalgebra generated by
the highest parts relative to aα of the elements of M1� that precede b′�+1, because
this can be easily achieved by an appropriate choice of v�+1. Finally, we will obtain
a set M1q = M′ such that the highest part of each element relative to aα does
not belong to the subalgebra generated by the highest parts (relative to aα) of
the preceding elements. In fact, the highest part relative to aα of each element of
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M′ does not belong to the subalgebra generated by the similar parts of the other
elements, since assuming the contrary immediately leads to a contradiction as in
the proof of Lemma 6.

Applying Lemma 6 at each step of the above construction we obtain that no
element of the set M′ belongs to the subalgebra generated by the other elements,
and we also obtain a certain non-trivial relation F ′′ = 0 for the elements of this
set. We write each element c′k ∈ M in the form c′k = c′k1 + c′k2 where c′k1 is the
highest part of the element c′k relative to aα, and separate in each polynomial F ′′

the highest part F ′′
1 relative to aα. Then we will have

F ′′(c′1, . . . , c
′
q) = F ′′

1 (c′1, . . . , c
′
q) + F ′′

2 (c′1, . . . , c
′
q)

= F ′′
1 (c′11, . . . , c

′
q1) + ϕ′′(c′11, . . . , c

′
q1, c

′
12, . . . , c

′
q2)

= 0.

In view of the fact that each term of F ′′
1 (c′11, . . . , c′q1) has the highest degree in aα,

these terms cannot cancel with the terms of the polynomial ϕ′′; moreover, F ′′
1 is

non-trivial as a part of a regular polynomial.
Thus we have obtained the set M′′ = {c′i1} of elements which are homoge-

neous in aα, and a non-trivial relation F ′′
1 = 0 satisfied by these elements. Enu-

merating one by one all the generators that occur in the elements of the set M1

we find obtain the desired set M2 and some non-trivial relation for its elements.
Lemmas 5, 6 and 7 allow us to assume that the set M1 = {b′i} (i = 1, 2, . . . , q)

consists of elements that are homogeneous in each generator and satisfy require-
ment (1) of Lemma 4.

If M1 contains elements of degree 1, then by homogeneity they must have
the form γaµ where γ ∈ P , aµ ∈ R. Therefore we can assume that such elements
have the form aµ ∈ R, i.e., they are simply free generators.

The ordered q-tuple (ν1; ν2; . . . ; νq) of natural numbers, where νk is the degree
of b′k, will be called the height of the set M1. We order the set of all possible heights
lexicographically, and assume that for the sets with smaller height there are no non-
trivial relations if those sets satisfy requirement (1) of Lemma 4. This assumption
is justified by considering the sets of height ε = (1; 1; . . . ; 1) that consist only of
free generators.

Assume (ν1; ν2; . . . ; νq) > (1; 1; . . . ; 1); this means that some νk > 1. Then,
in the element b′k, we can find a generator aλ that is not one of the b′m, since
otherwise requirement (1) of Lemma 4 would be violated.

Let us reorder the generators to make aλ the smallest if this is not already
the case, and rewrite all b′i in regular form relative to some new definition of
regular words that depends on this order. After this, we subject the words in the
elements of the set M1 to aλ-factorization. By Lemma 3, aλ-irreducible words
form an independent set; thus all our considerations can be transferred to the free
Lie algebra Aaλ

generated by the set Kaλ
of aλ-irreducible words. Since aλ is the

smallest of the generators, all other generators will be aλ-irreducible; therefore,
the degree of each word relative to the new system of free generators of Aaλ
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will be equal to the difference between its degree relative to the old system of
free generators of the algebra A and its degree relative to aλ. It follows that the
elements of M1 which are homogeneous in each of the old generators will also be
homogeneous relative to the new systems of generators, but the set M1 itself will
have a smaller height. Obviously, the height will not become zero and also the set
will retain a non-trivial relation. This contradicts the inductive hypothesis and
consequently proves the theorem.

The theorem on subalgebras of free Lie algebras proved above cannot be
transferred to rings, since for example the subring, of the free Lie ring with gener-
ators a and b, generated by the elements 2a, b, ab is not free because the generators
2a, b, ab satisfy the relation

(2a)b− 2(ab) = 0,

and as can be easily seen there is no other system of generators for this subring
that would not satisfy a non-trivial relation.
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On the Representation of Lie Rings
in Associative Rings

A.I. Shirshov

V.M. Kurochkin [1] has formulated the following theorem: Every Σ-operator Lie
ring L has a faithful representation in an associative Σ-operator ring A, where
Σ is an arbitrary domain of operators for the ring L. In a subsequent note [2],
V.M. Kurochkin pointed out the insufficient rigor of the proof he proposed for this
theorem.

In the present paper, an example is constructed which demonstrates that, for
the above formulation, the theorem is not valid.

Consider a linear space A with basis elements ai (i = 1, 2, . . . , 13) over the
field GF (2). We make the space A into a ring by defining multiplication according
to the following formulas:

a1a2 = a2a1 = a11; a1a3 = a3a1 = a13; a2a3 = a3a2 = a12;
a1a8 = a8a1 = a2a6 = a6a2 = a3a5 = a5a3 = a10;

and in all remaining cases aiaj = 0. Since the following equations hold identically
as a consequence of the multiplication table,

x2 = 0; (xy)z = 0;

the ring A is a Lie ring.
Now let Σ be the linear space over the same field with basis elements ei

(i = 0, 1, 2, 3). Define a multiplication in Σ as follows:

eie0 = e0ei = ei, i = 0, 1, 2, 3; eiej = 0, i, j �= 0.

Define an action of the elements of Σ on the elements of A in the following way:

e0ai = ai, i = 1, 2, . . . , 13;
e1a1 = a4; e1a2 = a5; e1a3 = a6; e1a12 = a10; e1ak = 0, 3 < k < 12, k = 13;
e2a1 = a5; e2a2 = a7; e2a3 = a8; e2a13 = a10; e2at = 0, 3 < t < 13;

Uspekhi Mat. Nauk N.S. 8, (1953), no. 5 (57), 173–175.
c© 2009 Translated from the Russian original by M.R. Bremner and M.V. Kochetov.
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e3a1 = a6; e3a2 = a8; e3a3 = a9; e3a11 = a10; e3a� = 0, 3 < � < 11, � = 12, 13.

By distributivity we define the action of any element of Σ on any element of A.
In this way, the ring A becomes a Σ-operator Lie ring. Indeed, from the

displayed table it follows that (eiej)ak = ei(ejak) for i �= 0, j �= 0. Obviously,
for i = 0 and j = 0 this equation also holds. Therefore, (σ1σ2)b = σ1(σ2b) where
σ1, σ2 ∈ Σ and b ∈ A. Further, if aiaj = ak then k = 10, 11, 12, 13. Suppose
k = 10; then the equation (erai)aj = ai(eraj) = era10 can be easily verified
directly. For k = 11, it is sufficient to consider the equation a1a2 = a11. In this
case also, (era1)a2 = a1(era2) = era11, where a nonzero result is possible only
for r = 0 and r = 3. The situation is similar for k = 12 and k = 13. Now,
if aiaj = 0 then, for example, for i = 1 we will have j = 1, 4, . . . , 7, 9, 13 and
(era1)aj = a1(eraj) = 0. Similarly for i = 2 and i = 3. From this it easily follows
that (σb1)b2 = b1(σb2) = σ(b1b2) where σ ∈ Σ, b1, b2 ∈ A, which completes the
proof of the fact that A is a Σ-operator ring.

We now show that, in no matter which Σ-operator Lie ring A we embed the
ring A, the element a10 will always be an absolute zero-divisor1 of A.

Indeed, let x be an arbitrary element of A. Then,

0 = [x(e1a2 + a5)]a3 + (xa1)(e2a3 + a8) + [x(a6 + e1a3)]a2

= [x(e1a2)]a3 + (xa5)a3 + (xa1)(e2a3) + (xa1)a8 + (xa6)a2 + [x(e1a3)]a2

= (xa3)(e1a2) + x[(e1a2)a3] + [x(e2a1)]a3 + [x(e2a1)]a3 + (xa1)(e3a2)

+ [x(e3a1)]a2 + (xa3)(e1a2)

= x[(e1a2)a3]
= xa10,

where we have used the Jacobi identity, the fact that A is a Σ-operator ring, and
the fact that all elements of the additive group of A have order 2.

Suppose there exists an associative Σ-operator ring B whose commutator
Lie ring B− contains A as a Σ-admissible subring. Then it is obvious that to the
element a10 there corresponds some element of the center of B, such that for any
embedding of the ring B into any other associative Σ-operator ring B, this element
is mapped to the center of B.

We now obtain a contradiction from the following result:

Lemma 1. Any associative Σ-operator ring B, such that e0� = � for any � ∈ B, can
be embedded into some associative Σ-operator ring B such that the intersection of
the center Z of B with B equals zero2.

For the proof it suffices to consider the case in which Σ is a commutative
associative ring with identity element e0 acting on B as the identity automorphism.

1That is, a central element. [Translators]
2To make the condition of the lemma hold in our case, it suffices to consider, instead of the ring
B, the Σ-admissible subring generated by all elements of A.
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Consider the collection B of symbols of the form (σi, bi1, bi2, bi3) where σi ∈
Σ, and bik ∈ B, k = 1, 2, 3. We will regard two symbols (σi, bi1, bi2, bi3) and
(σj , bj1, bj2, bj3) as equal if and only if σi = σj , bik = bjk, k = 1, 2, 3.

We make the collection B into a Σ-operator ring by defining addition, multi-
plication, and the action of σ ∈ Σ on an element b ∈ B by the following formulas:

(σi, bi1, bi2, bi3) + (σj , bj1, bj2, bj3) = (σi + σj , bi1 + bj1, bi2 + bj2, bi3 + bj3);

(σi, bi1, bi2, bi3) · (σj , bj1, bj2, bj3) = (0, σjbi3 + bi3bj1, σibj3 + bi2bj3, bi3bj3);

σ(σi, bi1, bi2, bi3) = (σσi, σbi1, σbi2, σbi3).

It is easy to verify that all the axioms of a Σ-operator ring are satisfied.
The ring B is an associative ring, since

[(σi, bi1, bi2, bi3) · (σj , bj1, bj2, bj3)] · (σk, bk1, bk2, bk3)

= (σi, bi1, bi2, bi3) · [(σj , bj1, bj2, bj3) · (σk, bk1, bk2, bk3)]

= (0, σkbi3bj3 + bi3bj3bk1, σibj3bk3 + bi2bj3bk3, bi3bj3bk3),

and it contains a subring of symbols (0, 0, 0, bi3) that is isomorphic to the ring B.
On the other hand, for bi3 �= 0, from the equations

(e0, 0, 0, 0) · (0, 0, 0, bi3) = (0, 0, bi3, 0), and

(0, 0, 0, bi3) · (e0, 0, 0, 0) = (0, bi3, 0, 0),

it follows that

(e0, 0, 0, 0) · (0, 0, 0, bi3) �= (0, 0, 0, bi3) · (e0, 0, 0, 0),

which completes the proof of the lemma.
From the contradiction just obtained, it follows that the Σ-operator ring A

cannot be faithfully represented in any associative Σ-operator ring. This example
also shows that Ado’s theorem cannot be generalized to rings over an arbitrary
ring of operators.

It would be interesting to find necessary and sufficient conditions for the
existence of a faithful representation of a given Σ-operator Lie ring R. Lazard [3]
proved that if Σ is a principal ideal ring, then such a representation exists for
any R. One can also prove the following theorem: If no element σ ∈ Σ, σ �= 0,
annihilates an absolute zero-divisor of R, then a faithful representation always
exists.
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Subalgebras of Free Commutative and
Free Anticommutative Algebras

A.I. Shirshov

1. It is known (see A.G. Kurosh [2]) that any subalgebra of the free nonassociative
algebra is free. It is natural to ask the corresponding question for relatively free
algebras (see A.I. Malcev [3]), of course restricting oneself to the most important
classes of algebras.

In the work of the present author [4], it is proved that every subalgebra of a
free Lie algebra is also free. In the same paper it is pointed out that the analogous
theorem is not valid for free associative, alternative, right- or left-alternative, or
Jordan algebras, and also for flexible algebras, and power-associative or power-
commutative algebras. It is easy to see that this theorem is valid for free nilpotent
algebras of class 1, and not valid for free nilpotent algebras of class k, k > 1.

Among the most important classes of algebras, there remain only the com-
mutative and anticommutative algebras. In the present paper, it is proved that
for the free algebras of these two classes, the corresponding problem has a posi-
tive solution. For brevity and convenience of exposition, we will call commutative
algebras C-algebras and anticommutative algebras AC-algebras.

Analogously to the definitions of A.I. Malcev [3] we call an algebra A over a
field P a free ε-algebra where ε = C or ε = AC if it is defined by some set R of
generators and by the identical relation

xy + δyx = 0, (1)

where δ = −1 for ε = C and δ = +1 for ε = AC, and also for ε = AC we will
assume1 that the characteristic of P is not 2 since this case will be included in the
case ε = C.

In the proof of Theorem 1 below, we use a method that is similar to Hall’s
method in [1], and in the proof of Theorem 2 below, we partially use the methods

Mat. Sbornik N.S. 34 (76), (1954), no. 1, 81–88.
c© 2009 Translated from the Russian original by M.R. Bremner and M.V. Kochetov.
1According to current terminology, an anticommutative algebra in characteristic 2 should also
satisfy x2 = 0 for all x, and this case is not included in the author’s considerations. [Translators]
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of A.G. Kurosh [2] and of the present author [4]. The present work can be studied
independently of the above-mentioned papers, although it can be regarded as a
sequel to the present author’s work [4].

The present work was carried out under the supervision of A.G. Kurosh, to
whom the author expresses his deep gratitude.

2. Let R = {aα} be some set of symbols where α takes values in some non-empty
set of indices.

Consider nonassociative words of various lengths formed from these symbols,
in the sense of the definitions given in the work of A.G. Kurosh [2]; we will call
them R-words or simply words.

Definition. Words of length 1 will be called ε-regular and ordered arbitrarily.
Assuming that ε-regular words of length less than n, n > 1, have been already
defined and ordered in such a way that words of smaller length precede words of
greater length, a word w of length n will be called ε-regular if

1) w = uv where u and v are ε-regular words;
2) u ≥ v for ε = C and u > v for ε = AC.

We order arbitrarily the ε-regular words of length n defined in this way, and declare
them to be greater than regular words of smaller length.

The symbols <, >, ≤, ≥ as applied to ε-regular words in the above definition,
as well as in the remainder of this paper, will be understood in the sense of the
ordering of these words.

Theorem 1. The collection of all ε-regular words for ε = C,AC forms a basis of
the free ε-algebra A with the system of free generators R.

We demonstrate a method that allows us to assign uniquely, to each word w
of the free ε-algebra A, some element w∗ of the same algebra such that

w∗ = w in the algebra A, (2)

where w∗ is either an ε-regular word with coefficient +1 or −1, or 0. For words of
length 1, we set w∗ = w.

Suppose such a method is already defined for words of length less than n,
and let w be a word of length n, n > 1. Then w = uv. We set

w∗ = u∗v∗, if u∗ ≥ v∗ in case ε = C, or u∗ > v∗ in case ε = AC;

w∗ = 0 if u∗ = v∗ in case ε = AC;

w∗ = −δv∗u∗ if u∗ < v∗.

Obviously, all the conditions imposed on w∗ are satisfied.
Each element a ∈ A has the form

a =
k∑

i=1

αiwi, (3)
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where αi are elements of the base field, and wi are some words, not necessarily
distinct. Clearly, the element a can be written in the form

a =
k∑

i=1

αiw
∗
i , (4)

from which it follows that every element of the free ε-algebra can be represented
as a linear combination of ε-regular words.

The zero element of the algebra A only admits a representation of the form

0 =
∑

i

αiai1ai2 · · ·aini [cidi + δdici]bi1bi2 · · · bimi ,

where α ∈ P , and a, b, c, d are some words, and an appropriate arrangement of
parentheses is assumed. One immediately sees that the ε-regular expression of the
right-hand side obtained after applying distributivity and replacing each of the re-
sulting words by the corresponding starred word, gives zero. Since for an ε-regular
word w we have w∗ = w, it follows that there do not exist two distinct ε-regular
expressions for the same element, which is equivalent to the linear independence
of ε-regular words. The theorem is proved.

The unique expression of an element a as a linear combination of ε-regular
words will be denoted by a∗.

In the free ε-algebra A, to each element a there corresponds a natural number
n(a), the degree of a, defined as the greatest length of the ε-regular words occurring
in a∗.

The sum of the terms of the element a∗, i.e., ε-regular words with coefficients
in P , whose degree is equal to n(a), will be called the highest part of the element a.

3. The purpose of the present work is the proof of the following theorem.

Theorem 2. Every subalgebra B of a free ε-algebra A (where ε = C or ε = AC) is
also free.

Thanks to the existence of the concept of degree, we can use the method of
A.G. Kurosh [2] to construct, for each subalgebra B of the free ε-algebra A, a finite
or countably infinite sequence of integers kn and subalgebras Bn (n = 1, 2, . . .),
where k0 = 0, B0 = 0, kn is the smallest degree of elements of the subalgebra B
which have not been included in Bn−1, and Bn is the subalgebra generated in B
by the elements whose degree does not exceed kn.

The set Kn of elements of Bn whose degree does not exceed kn is a linear
subspace, and the set K′

n of elements of Bn−1 whose degree does not exceed kn

is a subspace of Kn. We arbitrarily choose one representative from each coset in
a basis of the linear space Kn/K′

n and denote the resulting set by Mn. Now let
M =

⋃
n≥1 Mn. We prove that the set M has the following properties:

A. The highest part of each element a, a ∈ M, does not belong to the subalgebra
generated by the highest parts of the elements of the set M\ {a};

B. The subalgebra B is generated by the set M.
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Suppose, contrary to property A, that the highest part a of some element a ∈ M
belongs to the subalgebra generated by the highest parts of the elements of the
set M\ {a}, i.e.,

a =
∑

i

αiai +
∑

i,j

αijbi bj + · · · +
∑

i,j,...,k

αij···kci cj · · · ck,

where α ∈ P , and parentheses are placed appropriately. Then all b, . . . , c that
occur in the second and following summations can obviously be assumed to have
degree less than the degree of a, and all ai that occur in the first summation can
be assumed to be distinct from a and to have degree equal to the degree of a,
i.e., all corresponding elements a, ai must belong to the same set Mn. It follows
that for the cosets A, Ai represented by the elements a, ai there exists a linear
dependence relation A−∑i αiAi = 0, which contradicts the choice of these cosets.
Thus, property A has been proved.

To prove property B, it suffices to observe that the subalgebra Bn is generated
by the set

⋃n
k=1 Mk.

4. We will call any element of the free nonassociative algebra S, with the set
X = {x1, x2, . . .} of free generators, a nonassociative polynomial. Let S be the free
ε-algebra with generators a1, a2, . . . over the same field P . There exists a natural
homomorphism of S onto S that sends the polynomial f(xi1 , xi2 , . . .) to the element
f(ai1 , ai2 , . . .). We will call two polynomials S equivalent if their images in S are
equal. We will call a polynomial f(xi1 , xi2 , . . .) non-trivial if its image is nonzero.
If in S, regular words are defined and ϕ(ai1 , ai2 , . . .) is the ε-regular form of the
element f(ai1 , ai2 , . . .), then the polynomials f(xi1 , xi2 , . . .) and ϕ(xi1 , xi2 , . . .) are
equivalent. In this case, we will call the polynomial ϕ(xi1 , xi2 , . . .) ε-regular, and
then obviously any part of ϕ will also be ε-regular.

We now assume that there exists some non-trivial relation f(b1, b2, . . . , bq) =
0 for the elements of M, i.e., f(x1, x2, . . . , xq) is a non-trivial polynomial which can
in fact be taken to be regular, and we derive a contradiction from this assumption.

Lemma. If, in the free ε-algebra A there exists a finite set of elements bi (where
i = 1, 2, . . . , q, and n(bi) ≥ n(bj) for i > j) which satisfy property A and some non-
trivial relation f(b1, b2, . . . , bq) = 0, then the elements of the finite set M = {ci}
(i = 1, 2, . . . , q) that have the form ci = bi + wi, where wi is an element of the
subalgebra generated by the elements bk (k < i) and either wi = 0 or n(wi) = n(bi),
also satisfy property A and some non-trivial relation f ′(c1, c2, . . . , cq) = 0.

We will first prove that there exist expressions

bi = ci + w′
i (i = 1, 2, . . . , q)

where w′
i is an element (possibly zero) of the subalgebra generated by the elements

ck (k < i). Indeed, b1 = c1. Assuming that for all i < k the desired expression has
been found, we can replace, in the equation

bk = ck − wk,
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all bj (j < k) that occur in wk by the already found expressions in terms of ci,
after which we obtain the desired expression for bk.

We will prove that property A holds for the elements of the set M. If the
highest part cj of some element cj ∈ M belongs to the subalgebra generated by
the highest parts of the elements of M\{cj}, then analogously to what was done
in the proof of property A for the set M, we may assume that cj belongs to the
subalgebra generated by ck, k < j. But then, using the obvious equations

ci = bi + wi (i = 1, 2, . . . , q),

where wi is the highest part of wi, to replace all ci by their expressions in terms of
bi (i = 1, 2, . . . , q), we obtain an expression of the element bj in terms of b�, � < j,
which contradicts the assumption.

Now we prove that the elements of the set M satisfy some non-trivial relation.
Separate, in the polynomial f(x1, x2, . . . , xq), the highest part relative to xq, i.e.,
the collection of the terms that contain the factor xq the maximal number of times.
Denote this part by fq. Now separate in fq the highest part fq−1 relative to xq−1,
and so on, and finally separate in f2 the highest part f1 relative to x1. After this
we have:

f(b1, b2, . . . , bq) = f1(b1, b2, . . . , bq) + f ′
1(b1, b2, . . . , bq)

= f1(c1 + w′
1, . . . , cq + w′

q) + f ′
1(c1 + w′

1, . . . , cq + w′
q)

= f1(c1, . . . , cq) + ϕ(c1, . . . , cq)

= f ′(c1, . . . , cq)
= 0.

The polynomial f ′(c1, . . . , cq) cannot be trivial because the polynomials f1 and ϕ
do not have terms of the same content and f1 is a non-trivial polynomial. This
completes the proof of the lemma.

Based on the lemma, one can easily prove that the assumption of the existence
of a non-trivial relation among the elements of M implies the existence of a finite
set N of elements, that satisfy property A and some non-trivial relation, such that
in each of them any term included in the highest part is not the product of leading
terms (relative to the fixed ordering of ε-regular words) of the other elements of
the set.

To prove this statement, we enumerate the finite subset of elements of M
that occur in the non-trivial relation f = 0 and denote the resulting finite set by
M1 where M1 = {bi} (i = 1, 2, . . . , q). Without loss of generality we assume that
for i > j either n(bi) > n(bj) or bi ≥ bj where bi, bj are the ε-regular words of the
leading terms of the elements bi, bj . We will show that using the lemma we can
obtain bi > bj for i > j. Separate in M1 the subset M1k of elements of degree k.
Consider in M1k the subset M1k of elements with the greatest leading terms (up
to a coefficient from the field P ). Let

M1k = {bi} (i = ik, ik + 1, . . . , ik + qk).
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Replacing in M1k the subset M1k by the set of elements

bik
, bik+1 − α1bik

, bik+2 − α2bik
, . . . , bik+qk

− αqk
bik
,

where αs (s = 1, 2, . . . , qk) are the elements of the field P chosen such that in
the differences above the leading terms cancel, we obtain that in the set M1k

there will be only one element with leading term bik
and the leading terms of all

other elements will be less than bik
. Doing the same with the set {bi1+s − αsbik

}
(s = 1, 2, . . . , qk) and so on, we transform the set M1k into a set in which all
leading terms are distinct. We perform the same transformations for all possible
k. Obviously, these transformations conform to the requirements of the lemma.

If it now turns out that some term w of the highest part of some element
w of the resulting set can be represented as a product of leading terms of other
elements of the set, then obviously the latter terms will not have greater degree.
Therefore we can eliminate the term w in w by subtracting from w the product of
the corresponding elements with the appropriate arrangement of parentheses. We
assume by induction that the elements of the set under consideration that precede
the element w are such that the terms of their highest parts can no longer be
represented as products of leading terms of other elements. It is clear that, even
if after performing the subtraction we obtain new terms that can be represented
as products of leading terms of other elements, then the number of such factors
in such terms is strictly less than the corresponding number for the term w. The
proof can now be completed by a straightforward induction.

Let us now prove that the properties satisfied by the set N are contradictory.
Indeed, let f = 0 be a non-trivial relation satisfied by the elements of the set N ,
and let

e = αbi1bi2 · · · bis , α ∈ P, bik
∈ N (k = 1, 2, . . . , s),

where parentheses are arranged in a certain way, be one of the terms of the regular
polynomial f ; this term is chosen from among the terms for which the number
n =

∑s
k=1 n(bik

) is maximal, in such a way that the number s is maximal. We
show that, when the word

e = bi1 bi2 · · · bis ,

where bik
is the leading term of the element bik

and parentheses are arranged in
the same way as before, is rewritten in ε-regular form e∗, there will be no such
term among the other ε-regular words obtained by representing the left-hand side
of the non-trivial relation f = 0 as a linear combination of ε-regular R-words.
Indeed, such a word could only appear after rewriting some product of terms of
highest parts of elements of N in ε-regular form. Assume that there is a term,

m = βbj1 bj2 · · · bjr ,

where bjk
is some term in the highest part of the element bjk

, such that m∗ and
e∗ are similar terms. Then, since all bjk

and bik
are assumed to be ε-regular, from

the process of constructing w∗ from w it follows that m∗ can be represented as
a product of the same words bj1 , . . . , bjr with possibly a different order and a
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different arrangement of parentheses. The same applies to the term e∗. If some
term bjk

is not in fact the leading term of the element bjk
, then it cannot be

represented as a product of leading terms of the elements of N (we recall that
analogous statements are made up to a factor from the field P ); therefore, from
the similarity of e∗ and m∗, it follows that bjk

taken in a product with other terms
bjt must give the leading term big ; but from here it follows that r > s which is

impossible. Therefore, all bjk
are in fact the leading terms of the corresponding

elements. On the other hand, from the equation

(αe−m)∗ = 0, α ∈ P,

it follows that
(α1e−m)∗ = 0, α1 ∈ P,

where m = βbj1bj2 · · · bjr is the term of the polynomial f from which the term
m could be obtained. Therefore, since the polynomial f is ε-regular, e and m are
similar terms, which is a contradiction. This completes the proof of Theorem 2.
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On Special J-rings

A.I. Shirshov

1. Introduction

A commutative ring such that for every pair of elements a and b the following
equation holds,

J0{a, b} ≡ (a2b)a− a2(ba) = 0, (1)
is called a Jordan ring1. In the first four sections of this paper, we will consider
Jordan algebras2 over an arbitrary ring of coefficients Σ, assuming only that Σ is a
unital ring and that for each element a in the Jordan algebra there exists a unique
element b such that 2b = a. Clearly, in this case the equation 2a = 0 implies a = 0.
In such Jordan algebras, i.e., Jordan algebras without elements of order 2 in the
additive group, the following equations hold:

J1{x, y, z, t} ≡
[(yz)x]t+ [(ty)x]z + [(zt)x]y − (yz)(xt) − (ty)(xz) − (zt)(xy) = 0, (2)

J2{x, y, z, t} ≡
[(yz)x]t+ [(ty)x]z + [(zt)x]y − [(xz)y]t− [(tx)y]z − [(zt)y]x = 0. (3)

The validity of equation (2) follows from the relation

J0{y+z+t, x} − J0{−y+z+t, x} − J0{y−z+t, x} − J0{y+z−t, x}
= 8J1{x, y, z, t},

which can be verified by direct computation, and then equation (3) follows from
(2) using the relation

J2{x, y, z, t} = J1{x, y, z, t} − J1{y, x, z, t}.

Mat. Sbornik N.S. 38 (80), (1956), no. 2, 149–166.
c© 2009 Translated from the Russian original by M.R. Bremner and M.V. Kochetov.
1Literally, “J-ring”. We adopt the modern terminology, “Jordan ring”. [Translators]
2Literally, “Jordan rings with an arbitrary ring Σ of operators”. [Translators]
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Jordan algebras also satisfy the relation

(bas)at = (bat)as, (4)

which generalizes equation (1). Indeed, suppose that relation (4) holds for expo-
nents s1 and t1 such that s1 + t1 < s+ t. Then, from the equation

J1{as+t−3, a, a, ba} − aJ1{as+t−3, a, a, b} = as+t−1(ba) − (bas+t−1)a = 0,

which is implied by the inductive hypothesis, the validity of equation (4) follows
in the case when one of s or t equals 1. For s = t there is nothing to prove. If
1 < s < t, then from the equation

J1{b, a, as−1, at}
= [(bas)at − (bat)as] + [(bat+1)as−1 − (bas−1)at+1] + [(bas+t−1)a− (ba)as+t−1]
= 0

it easily follows that the proof can be completed by induction on min(s, t). From
equation (4) it is easy to obtain associativity for the powers of one element.

It is known that if A is an associative algebra over Σ which admits unique
division by 2, then introducing in A the new multiplication

a · b =
1
2
(ab+ ba),

we obtain a Jordan algebra A(+) with the same additive group and new multipli-
cation. A Jordan algebra I over Σ is called special if there exists an associative
algebra A over Σ such that the Jordan algebra A(+) contains a subalgebra isomor-
phic to I. Even in the case of algebras over a field, it is known [1] that not every
Jordan algebra is special.

In the case of algebras over a field, Cohn [2] proved that a homomorphic image
of a special Jordan algebra is not necessarily special. It follows that the class of
special Jordan algebras cannot be defined by identical relations. In the present
paper, it is proved that a Jordan algebra over Σ that has a finite or countably
infinite set of generators is special if and only if it can be embedded into a Jordan
algebra over Σ with two generators.

In the last section of this paper, we remove the requirement that for every
element a there exists an element b such that 2b = a. This condition will be replaced
by the weaker condition that there are no elements of order 2 in the additive group.
It is clear that in this case we will be forced to consider the operation a◦b = ab+ba.

2. An embedding theorem

Consider the free associative algebra A over Σ (see the definition in [3]) with
two generators a and b. We will assume that the ring Σ admits unique division
by 2. Let A′ be the subalgebra of A generated by the elements of the set T =
{bab, ba2b, . . . , banb, . . .}.
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Lemma 1. The subalgebra A′ is a free associative algebra over Σ with the set T of
free generators.

Proof. We introduce the notation: banb = cn. Let f(x1, x2, . . . , xk) be an associa-
tive polynomial with coefficients in Σ (with all similar terms combined) such that
f(c1, c2, . . . , ck) = 0. Clearly,

xn1
i1
xn2

i2
· · ·xns

is
�= xm1

j1
xm2

j2
· · ·xmt

jt
implies cn1

i1
cn2
i2

· · · cns

is
�= cm1

j1
cm2
j2

· · · cmt

jt
.

Hence it follows that f ≡ 0, and this proves the lemma. �

Let N ′ be an ideal of the algebra A′ over Σ. Then N ′ generates in A some
ideal N .

Lemma 2. For any ideal N ′ of the algebra A′, the following equality holds: N∩A′ =
N ′.

Proof. Obviously, N ∩ A′ ⊇ N ′. Let n be an element of the ideal N ; then n =∑
i cin

′
idi where n′

i ∈ N ′ and ci, di are monomials of A. Let n ∈ A′. This means
that all terms that occur in the expression of n such that ci or di does not belong
to A′ must cancel each other. This implies that n ∈ N ′, and this proves the
lemma. �

Theorem 1. Every special Jordan algebra I over Σ that has a finite or countably
infinite number of generators can be embedded into a special Jordan algebra over
Σ with two generators.

Proof. Obviously, the associative algebra B over Σ in which the algebra I can
be represented can be assumed to have a finite or countably infinite number of
generators. It is also clear that the algebra B is isomorphic to a quotient algebra
A′ of the algebra A′ by some ideal N ′. From Lemma 2 it follows that the quotient
algebra A, of the algebra A with respect to the corresponding ideal N , contains
a subalgebra isomorphic to A′, and therefore also isomorphic to B. Since bakb =
2b · (b · ak) − ak · b2 it follows that the algebra I is isomorphic to the subalgebra
generated in A

(+)
by the two generators a and b that are the images of the elements

a and b. This proves the theorem. �

Clearly, as a byproduct we have reproved the theorem of A.I. Malcev [3]
that states that any associative algebra over Σ with a finite or countably infinite
number of generators can be embedded into an associative algebra over Σ with
two generators.

Remark. From the proof of Theorem 1 it follows that the generators of the algebra
I can be expressed in terms of the generators a and b using only the algebra product
without scalar multiplication.
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3. Main theorem

Consider the set S of associative words in two generators a and b. The degree
of an associative word will be understood in the usual sense; in addition, we will
introduce the notion of height. The heights of the associative words

an1bm1an2bm2 · · ·ankbmk and an1bm1an2bm2 · · · ankbmkank+1 ,

and also of the words obtained from these by interchanging a and b, will be re-
spectively 2k and 2k+1. The words of the form as and br have height 1, the words
asbr and bras have height 2, and so on.

We define a mapping α → α of the set S onto itself as follows: for α ∈ S
we set α = α if α has height 1, and α = dmc if α = cdm where d is one of the
generators a and b.

To each associative word α in S we assign an element α∗ of the free Jordan
algebra I over Σ with two generators a and b as follows:

α∗ =






α if α has height 1,
as ◦ br if α = asbr or α = bras,

am ◦ (can)∗ + (amc)∗ ◦ an − c∗ ◦ am+n if α = amcan,

2am ◦ (bn ◦ c∗) + 2bn ◦ (am ◦ c∗) − 2(am ◦ bn) ◦ c∗ − (bncam)∗

if α = amcbn.

(5)

Interchanging a and b in the third and fourth cases, we obtain two more formulas.
The symbol ◦ in the right-hand side means the multiplication in the free Jordan
algebra; in the fourth case one should also take into account that the height of the
word bncam is smaller than the height of the word α = amcbn.

For two associative words α and β we introduce the operation

α ◦ β =
1
4
(
αβ + αβ + βα+ βα

)
, (6)

where in the right-hand side we have an element of the free associative algebra A
over Σ on two generators a and b. The two meanings of the operation ◦ should not
cause confusion, as can be seen from the Main Lemma stated below.

The next two formulas follow immediately from the definition:

(α)∗ = α∗ and (α ◦ β)∗ = (β ◦ α)∗. (7)

By straightforward computation, one can verify the equation

J1(α, β, γ, δ) = 0, (8)

where α, β, γ, δ are words from S and the multiplication is performed in the sense
of the operation ◦. Clearly, from this it follows that

J2(α, β, γ, δ) = 0. (9)

The validity of equations (8) and (9) will also be clear from what follows.
We extend the operations ∗, , ◦ linearly to the elements of the free associative

algebra over Σ with generators a and b.
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Main Lemma. For associative words α and β in two generators a and b, the fol-
lowing equation holds:

(α ◦ β)∗ = α∗ ◦ β∗.

The proof of the Main Lemma, owing to its complexity, will be given in the next
section; now we will consider its consequences.

Let A be the free associative algebra over Σ with two generators a and b. In
the Jordan algebra A(+), the elements a and b generate a subalgebra A(+)

0 .

Lemma 3. Every element of the algebra A(+)
0 can be represented as a linear com-

bination (with coefficients from Σ) of elements of the form α + α where α is an
associative word in a and b.

Proof. Obviously, it suffices to prove Lemma 3 for monomials relative to the op-
eration · of the algebra A(+)

0 . For monomials of the form ar or bs, the lemma is
obvious. Suppose we have some monomial M = N · P of the algebra A(+)

0 where
N and P are monomials of lower degree for which we assume that Lemma 3 is
valid. Then the validity of Lemma 3 follows from the equation:

(α+ α) · (β + β
)

=
1
2
(
αβ + αβ

)
+

1
2
(
αβ + βα

)
+

1
2
(
αβ + βα

)
+

1
2
(
αβ + βα

)
.

This completes the proof. �

Theorem 2. The algebra A
(+)
0 is isomorphic to the free Jordan algebra I over Σ

with generators a and b.

Proof. To each element of the form (α + α)/2 of the algebra A(+)
0 where α ∈ S,

we assign the element α∗ of I. By Lemma 3 this mapping can be extended to the
entire additive group of the algebra A(+)

0 .
We show that this mapping is a homomorphism from A

(+)
0 to I. It follows

from the definition that this mapping is Σ-linear (it preserves addition, and mul-
tiplication by elements of Σ). From the equation
[
1
2

(α+ α)
]
·
[
1
2
(
β + β

)]
=

1
8
(
αβ + αβ + αβ + αβ + βα + βα+ βα+ βα

)

=
1
4

(
αβ + βα

2

)
+

1
4

(
αβ + βα

2

)
+

1
4

(
αβ + βα

2

)
+

1
4

(
αβ + βα

2

)
,

it follows that to the product of the elements (α + α)/2 and (β + β)/2 there
corresponds the following element of I:

1
4

[
(αβ)∗ +

(
αβ
)∗

+ (βα)∗ +
(
βα
)∗]

= (α ◦ β)∗ = α∗ ◦ β∗,

where we have used the Main Lemma and the bilinearity of the operation ∗. This
implies that the image of the product equals the product of the images.
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We now show that each element of the algebra I is the image of some element
of the algebra A(+)

0 . Indeed, the elements of I of the form as and br have obvious
pre-images; if we now assume the existence of pre-images for elements n and p of
the algebra I, then clearly there exists a pre-image for m = n ◦ p. The proof can
now be completed by induction and the passage from monomials to polynomials.

Since the Jordan algebra I is free, it is clear that the mapping just constructed
is an isomorphism, and this completes the proof. �

Every ideal I1 of the algebra A(+)
0 , being a subset of the algebra A, generates

in it some ideal I1.

Lemma 4. For every ideal I1 of the algebra A(+)
0 , the following equality holds:

I1 ∩A(+)
0 = I1.

Proof. From Lemma 3 it follows that each element s of the algebraA(+)
0 , considered

as an associative polynomial, satisfies the relation s = s. Let v be an element of
the intersection I1∩A(+)

0 . Then v, being an element of the ideal I1, can be written
as

v =
∑

k

ckikdk,

where ik ∈ I1 and ck, dk are associative words. Since v is an element of the algebra
A

(+)
0 , we have

v =
1
2

(v + v) =
∑

k

ck ik dk + dk ik ck
2

.

We show that each summand

ek =
ck ik dk + dk ik ck

2
belongs to the ideal I1. We carry out an induction on the sum of the heights of the
words ck and dk. If this sum is equal to 1, i.e., one of the words has the form ar or bs

and the other is empty, then the statement is obvious. Suppose the statement has
been proved for all smaller sums. We show that in this case the statement is true
if both words ck and dk are nonempty. Then, up to interchanging the generators
a and b, there are two possible cases:

(1) ek =
amcan + ancam

2
, and so

ek = am · ca
n + anc

2
+ an · a

mc+ cam

2
− am+n · c+ c

2
,

(2) ek =
amcbn + bncam

2
, and so

ek = 2am ·
(
bn · c+ c

2

)
+ 2bn ·

(
am · c+ c

2

)
− 2 (bn · am) · c+ c

2

− bncam + amcbn

2
.
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Clearly, in both cases, the conditions of the inductive hypothesis are satisfied,
provided that

ek �= amikb
n + bnika

m

2
,

and in the remaining case,

ek = am · (bn · ik) + bn · (am · ik) − (bn · am) · ik.
It remains to consider the case when

ek =
ikCD +DC ik

2
.

This case can be reduced to a previous case using the inductive hypothesis and
the equation

ek = 2D · ikC + Cik
2

− DikC + CikD

2
,

if we assume that D = D. We are permitted to make this assumption by separating
asD a factor of height 1. Therefore, we have proved that I1∩A(+)

0 ⊆ I1. The reverse
inclusion is obvious, and this completes the proof of the lemma. �

Theorem 3. Every Jordan algebra N over Σ with two generators is special.

Proof. From Theorem 1 it follows that the algebra N is isomorphic to a quotient
algebra of A(+)

0 by some ideal I1. Lemma 4 implies that, in the quotient algebra
A/I1, distinct elements of the algebra A(+)

0 /I1 have distinct images. From here it
follows that the Jordan algebra N ∼= A

(+)
0 /I1 is isomorphic to a subalgebra of the

Jordan algebra (A/I1)(+). This completes the proof. �

Remark. The statements of Lemmas 3 and 4 for algebras over a field are contained
in the results of Cohn [2], where a special case of Theorem 3 is also proved, stating
that a homomorphic image of a special Jordan algebra (over a field) with two
generators is a special Jordan algebra.

4. Main lemma

We start the proof of the Main Lemma. In the course of the proof, for associative
words α and β, we will assume the following inductive hypotheses:

1) The lemma holds for pairs of words for which the sum of the heights is less
than the corresponding sum for α and β.

2) The lemma holds for pairs of words for which the sum of the heights is equal
to the corresponding sum for α and β, but the sum of the degrees is less than
the corresponding sum for α and β.

The basis of the induction is the obvious validity of the lemma when the sum of
heights equals 2.
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3) The lemma holds for pairs of words for which the sum of the heights as well
as the sum of the degrees are equal to the corresponding sums for α and β, but
the smaller of the heights is less than the smaller of the heights of α and β.

The basis of the induction for the last hypothesis will be justified below, where it
will be shown that the lemma holds if one of the heights of α and β is less than 3.

Suppose now that β has height greater than 2, and the height of α is not less
than the height of β. Then,

β∗ =
∑

i

σi (c∗i ◦ d∗i ) ◦ e∗i +
∑

j

σja
kj ◦ bsj ,

where σk are some coefficients. By the bilinearity of all the operations, to prove
the lemma it suffices to consider in place of β∗ the elements β1 = (c∗ ◦ d∗) ◦ e∗ and
β2 = ak ◦ bs.

From inductive hypothesis 3) it follows that

α∗ ◦ β∗
2 = α∗ ◦ (ak ◦ bs) =

[
α ◦ (ak ◦ bs)]∗ = (α ◦ β2)

∗
.

From equation (2) it follows that

α∗ ◦ β∗
1 = α∗ ◦ [(c∗ ◦ d∗) ◦ e∗]

= J1{e∗, c∗, d∗, α∗} − [(α∗ ◦ c∗) ◦ e∗] ◦ d∗ − [(α∗ ◦ d∗) ◦ e∗] ◦ c∗
+ (α∗ ◦ e∗) ◦ (c∗ ◦ d∗) + (α∗ ◦ c∗) ◦ (d∗ ◦ e∗) + (α∗ ◦ d∗) ◦ (c∗ ◦ e∗),

but according to inductive hypothesis 3) and equation (8) we have

α∗ ◦ β∗
1 = [α ◦ β1 − J1{e, c, d, a}]∗ = (α ◦ β1)

∗ .

This completes the proof of the lemma.
It will be far more difficult to justify the basis for inductive hypothesis 3).

Here the proof will consist of a number of cases.

4.1. Case 1: α = ambsDbr, β = an

From the definitions of ∗ and ◦, and equation (2), it follows that

(α ◦ β)∗ − α∗ ◦ β∗ =
1
2

(ambsDbran)∗ +
1
2
(
am+nbsDbr

)∗ − (ambsDbr)∗ ◦ an

=
1
2
am ◦ (bsDbran)∗ − 1

2
an ◦ (ambsDbr)∗ − 1

2
am+n ◦ (bsDbr)∗

+
1
2
(
am+nbsDbr

)∗

= am ◦ {bs ◦ [an ◦ (Dbr)∗]} + am ◦ {an ◦ [bs ◦ (Dbr)∗]}
− am ◦ {(an ◦ bs) ◦ (Dbr)∗]} − 1

2
am ◦ (anDbr+s)∗ − 1

2
an ◦ (ambsDbr)∗

− 1
2
am+n ◦ (bsDbr)∗ +

1
2
(am+nbsDbr)∗
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= J2{bs, (Dbr)∗, am, an} − an ◦ {bs ◦ [am ◦ (Dbr)∗]} − (am+n ◦ bs) ◦ (Dbr)∗

+ bs ◦ [am+n ◦ (Dbr)∗] + an ◦ [(am ◦ bs) ◦ (Dbr)∗]

+ am ◦ {an ◦ [bs ◦ (Dbr)∗]} − 1
2
am ◦ (anDbr+s)∗ − 1

2
an ◦ (ambsDbr)∗

− 1
2
am+n ◦ (bsDbr)∗ +

1
2
(am+nbsDbr)∗.

Using inductive hypothesis 1), we can write the following equations:

an ◦ {bs ◦ [am ◦ (Dbr)∗]} = (10)
1
4

[
an ◦ (bsamDbr)∗ + an ◦ (bsDbram)∗ + an ◦ (amDbr+s)∗ + an ◦ (Dbrambs)∗

]
,

(am+n ◦ bs) ◦ (Dbr)∗ = (11)
1
4

[
(am+nbsDbr)∗ + (bsam+nDbr)∗ + (Dbram+nbs)∗ + (Dbr+sam+n)∗

]
,

bs ◦ [am+n ◦ (Dbr)∗] = (12)
1
4

[
(bsam+nDbr)∗ + (bsDbram+n)∗ + (am+nDbr+s)∗ + (Dbram+nbs)∗

]
,

an ◦ [(am ◦ bs) ◦ (Dbr)∗] = (13)
1
4

[
an ◦ (ambsDbr)∗ + an ◦ (bsamDbr)∗ + an ◦ (Dbrambs)∗ + an ◦ (Dbr+sam)∗

]
,

1
2
am ◦ (anDbr+s)∗ =

1
4

[
(am+nDbr+s)∗ + (anDbr+sam)∗

]
, (14)

1
2
am+n ◦ (bsDbr)∗ =

1
4

[
(am+nbsDbr)∗ + (bsDbram+n)∗

]
. (15)

Using equation (4), and inductive hypothesis 1), we obtain the equation

am ◦ {an ◦ [bs ◦ (Dbr)∗]} = an ◦ {am ◦ [bs ◦ (Dbr)∗]} (16)

=
1
4

[
an ◦ (ambsDbr)∗ + an ◦ (amDbr+s)∗

+ an ◦ (bsDbram)∗ + an ◦ (Dbr+sam)∗
]
.

Substituting the right-hand sides of equations (10–16) for the corresponding terms
in the preceding expression for (α ◦ β)∗ − α∗ ◦ β∗, and combining like terms, we
obtain:

(α ◦ β)∗ − α∗ ◦ β∗ =
1
2
an ◦ (Dbr+sam

)∗ − 1
4
(
Dbr+sam+n

)∗ − 1
4
(
anDbr+sam

)∗ = 0,

by inductive hypothesis 1).
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4.2. Case 2: α = asDam, β = at

First we prove the validity of the lemma for s = m. In this case, it follows from
the definitions of the operations, inductive hypothesis 1), and equation (4), that

(α ◦ β)∗ =
(
asDas ◦ at

)∗ =
1
2
(
asDas+t

)∗ +
1
2
(
as+tDas

)∗ (17)

=
1
2
as ◦ (Das+t

)∗ +
1
2
as+t ◦ (asD)∗ +

1
2
as+t ◦ (Das)∗ +

1
2
as ◦ (as+tD

)∗

− a2s+t ◦D∗

= as ◦ (D∗ ◦ as+t
)

+ as+t ◦ (as ◦D∗) − a2s+t ◦D∗

= 2as+t ◦ (as ◦D∗) − a2s+t ◦D∗.

By inductive hypothesis 2) we have:

α∗ ◦ β∗ = (asDas)∗ ◦ at = at ◦ [2as ◦ (as ◦D) − a2s ◦D]∗ (18)

= 2at ◦ [as ◦ (as ◦D∗)] − at ◦ (a2s ◦D∗).

From equations (17) and (18) it follows that:

(α ◦ β)∗ − α∗ ◦ β∗

= 2as+t ◦ (as ◦D∗) + at ◦ (a2s ◦D∗)− 2at ◦ [as ◦ (as ◦D∗)] − a2s+r ◦D∗

= −J1{as, as, at, D∗} = 0.

In the proof of the general case, we will assume that s > m. We can do this
without loss of generality, because in the contrary case, we can consider α instead
of α. Using hypothesis 2) we obtain:

α∗ ◦ β∗ = (asDam)∗ ◦ at (19)

= at ◦ {2am ◦ [am ◦ (as−mD)] − a2m ◦ (as−mD)]}∗
= 2at ◦ {am ◦ [am ◦ (as−mD)∗]} − at ◦ [a2m ◦ (as−mD)∗]

= J2{am, (as−mD)∗, at, am} + 2am+t ◦ [am ◦ (as−mD)∗] − a2m+t ◦ (as−mD)∗

= (asD)∗ ◦ am+t + (as−mDam)∗ ◦ am+t − a2m+t ◦ (as−mD)∗.

From equation (19) it follows that the proof can be completed by induction on the
degree of β, with constant sums of heights and degrees of α and β.

Assuming that the lemma holds for t′ > t, we have:

(as−mDam)∗ ◦ am+t =
1
2
(as+tDam)∗ +

1
2
(as−mDa2m+t)∗. (20)

From inductive hypothesis 1) it follows that:

(asD)∗ ◦ am+t =
1
2
(am+t+sD)∗ +

1
2
(asDam+t)∗, (21)

and

a2m+t ◦ (as−mD)∗ =
1
2
(am+t+sD)∗ +

1
2
(as−mDa2m+t)∗. (22)
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Using equations (20), (21) and (22), we obtain from (19):

α∗ ◦ β∗ =
1
2
(as+tDam)∗ +

1
2
(asDam+t)∗ = (α ◦ β)∗,

as desired.

Remark. The sum of heights in Case 1 is odd, and in Case 2 is even. From trans-
formations (17) through (22) it is clear that the proof in Case 2 reduces to Case
1 with the sum of heights being smaller by 1. Therefore the validity of the Main
Lemma for Case 2 with the sum of the heights of α and β equal to 2� can be
assumed as soon as the validity is assumed for Case 1 with the corresponding sum
equal to 2�− 1. This remark will be needed in the proof of Case 5.

4.3. Case 3: α = ambsDbrat, β = bn

First we consider the easier special case when the word D is empty. Let α1 =
ambsat. Then from equations (2), (4), and the definitions of the operations, it
follows that

(α1 ◦ β)∗ =
1
2
(ambsatbn)∗ +

1
2
(bnambsat)∗

= am ◦ [bn ◦ (bs ◦ at)] + bn ◦ [am ◦ (bs ◦ at)] − (bn ◦ am) ◦ (bs ◦ at)

− 1
2
bn+s ◦ am+t + bn ◦ [at ◦ (am ◦ bs)] + at ◦ [bn ◦ (am ◦ bs)]

− (bn ◦ at) ◦ (bs ◦ am) − 1
2
bn+s ◦ am+t

= J1{bn, bs, at, am} − bs ◦ (bn ◦ at+m) + 2bn ◦ [am ◦ (bs ◦ at)]

= 2[am ◦ (bs ◦ at)] ◦ bn − (at+m ◦ bs) ◦ bn = α∗
1 ◦ β∗,

as desired. In the general case, the proof is much longer.
Using inductive hypothesis 1), the definitions of the operations, and equation

(4), we obtain

(α ◦ β)∗ − α∗ ◦ β∗ = [(ambsDbrat) ◦ bn]∗ − (ambsDbrat)∗ ◦ bn

=
1
2
(ambsDbratbn)∗ +

1
2
(bnambsDbrat)∗ − (ambsDbrat)∗ ◦ bn

= am ◦ [bn ◦ (bsDbrat)∗] + bn ◦ [am ◦ (bsDbrat)∗] − (bn ◦ am) ◦ (bsDbrat)∗

− 1
2
(bn+sDbrat+m)∗ + bn ◦ [at ◦ (ambsDbr)∗] + at ◦ [bn ◦ (ambsDbr)∗]

− (at ◦ bn) ◦ (ambsDbr)∗ − 1
2
(am+tbsDbr+n)∗ − bn ◦ [am ◦ (bsDbrat)∗]

− bn ◦ [at ◦ (ambsDbr)∗] + bn ◦ [am+t ◦ (bsDbr)∗]

= am ◦ [bn ◦ (bsDbrat)∗] − (bn ◦ am) ◦ (bsDbrat)∗ + at ◦ [bn ◦ (ambsDbr)∗]

− (at ◦ bn) ◦ (ambsDbr)∗ − 1
2
(bn+sDbrat+m)∗ − 1

2
(am+tbsDbr+n)∗

+ bn ◦ [am+t ◦ (bsDbr)∗]
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= am ◦ [bn ◦ (bsDbrat)∗] − (bn ◦ am) ◦ (bsDbrat)∗

+ 2at ◦ {bn ◦ [am ◦ (bsDbr)∗]} − at ◦ [bn ◦ (bsDbram)∗]

− 2(at ◦ bn) ◦ [am ◦ (bsDbr)∗] + (at ◦ bn) ◦ (bsDbram)∗

− 1
2
(bn+sDbrat+m)∗ − 1

2
(am+tbsDbr+n)∗ + bn ◦ [am+t ◦ (bsDbr)∗]

= 2am ◦ 〈bn ◦ {bs ◦ [at ◦ (Dbr)∗]}〉 + 2am ◦ 〈bn ◦ {at ◦ [bs ◦ (Dbr)∗]}〉
− 2am ◦ {bn ◦ [(at ◦ bs) ◦ (Dbr)∗]} − 2(am ◦ bn) ◦ {bs ◦ [at ◦ (Dbr)∗]}
− 2(am ◦ bn) ◦ {at ◦ [bs ◦ (Dbr)∗]} + 2(am ◦ bn) ◦ [(at ◦ bs) ◦ (Dbr)∗]

− 2at ◦ 〈bn ◦ {bs ◦ [am ◦ (Dbr)∗]}〉 − 2at ◦ 〈bn ◦ {am ◦ [bs ◦ (Dbr)∗]}〉
+ 2at ◦ {bn ◦ [(am ◦ bs) ◦ (Dbr)∗]} + 2(at ◦ bn) ◦ {bs ◦ [am ◦ (Dbr)∗]}
+ 2(at ◦ bn) ◦ {am ◦ [bs ◦ (Dbr)∗]} − 2(at ◦ bn) ◦ [(am ◦ bs) ◦ (Dbr)∗]

+ 2at ◦ {bn ◦ [am ◦ (bsDbr)∗]} − 2(at ◦ bn) ◦ [am ◦ (bsDbr)∗]

− 1
2
(bn+sDbrat+m)∗ − 1

2
(am+tbsDbr+n)∗ + bn ◦ [am+t ◦ (bsDbr)∗]

− am ◦ [bn ◦ (atDbr+s)∗] + at ◦ [bn ◦ (amDbr+s)∗]

+ (am ◦ bn) ◦ (atDbr+s)∗ − (at ◦ bn) ◦ (amDbr+s)∗

= 2J1{bn, am, bs, at ◦ (Dbr)∗} − 2bs ◦ 〈bn ◦ {am ◦ [at ◦ (Dbr)∗]}〉
− 2[(am ◦ bs) ◦ bn] ◦ [at ◦ (Dbr)∗] + 2bn+s ◦ {am ◦ [at ◦ (Dbr)∗]}
+ 2{bn ◦ [at ◦ (Dbr)∗]} ◦ (am ◦ bs) − 2at ◦ 〈bn ◦ {am ◦ [bs ◦ (Dbr)∗]}
+ 2(at ◦ bn) ◦ {am ◦ [bs ◦ (Dbr)∗]} − 2J1{bn, am, at ◦ bs, (Dbr)∗}
+ 2(at ◦ bs) ◦ {bn ◦ [am ◦ (Dbr)∗]} + 2{bn ◦ [am ◦ (at ◦ bs)]} ◦ (Dbr)∗

− 2[(at ◦ bs) ◦ bn] ◦ [am ◦ (Dbr)∗] − 2[am ◦ (at ◦ bs)] ◦ [bn ◦ (Dbr)∗]

− 2J1{bn, at, bs, am ◦ (Dbr)∗} + 2bs ◦ 〈bn ◦ {at ◦ [am ◦ (Dbr)∗]}〉
+ 2[(at ◦ bs) ◦ bn] ◦ [am ◦ (Dbr)∗] − 2bn+s ◦ {at ◦ [am ◦ (Dbr)∗]}
− 2{bn ◦ [am ◦ (Dbr)∗]} ◦ (at ◦ bs) + 2am ◦ 〈bn ◦ {at ◦ [bs ◦ (Dbr)∗]}〉
− 2(am ◦ bn) ◦ {at ◦ [bs ◦ (Dbr)∗]} + 2J1{bn, at, am ◦ bs, (Dbr)∗}
− 2(am ◦ bs) ◦ {bn ◦ [at ◦ (Dbr)∗]} − 2{bn ◦ [at ◦ (am ◦ bs)]} ◦ (Dbr)∗

+ 2[(am ◦ bs) ◦ bn] ◦ [at ◦ (Dbr)∗] + 2[at ◦ (am ◦ bs)] ◦ [bn ◦ (Dbr)∗]

+ 2at ◦ {bn ◦ [am ◦ (bsDbr)∗]} − 2(at ◦ bn) ◦ [am ◦ (bsDbr)∗]

− 1
2
(bn+sDbrat+m)∗ − 1

2
(am+tbsDbr+n)∗ + bn ◦ [am+t ◦ (bsDbr)∗]

− am ◦ [bn ◦ (atDbr+s)∗] + (am ◦ bn) ◦ (atDbr+s)∗

+ at ◦ [bn ◦ (amDbr+s)∗] − (at ◦ bn) ◦ (amDbr+s)∗
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= −2at ◦ 〈bn ◦ {am ◦ [bs ◦ (Dbr)∗]}〉 + 2(at ◦ bn) ◦ {am ◦ [bs(Dbr)∗]}
+ 2am ◦ 〈bn ◦ {at ◦ [bs ◦ (Dbr)∗]}〉 − 2(am ◦ bn) ◦ {at ◦ [bs ◦ (Dbr)∗]}
+ 2at ◦ {bn ◦ [am ◦ (bsDbr)∗]} − 2(at ◦ bn) ◦ [am ◦ (bsDbr)∗]

− 1
2
(bn+sDbrat+m)∗ − 1

2
(am+tbsDbr+n)∗ + bn ◦ [am+t ◦ (bsDbr)∗]

− am ◦ [bn ◦ (atDbr+s)∗] + (am ◦ bn) ◦ (atDbr+s)∗

+ at ◦ [bn ◦ (amDbr+s)∗] − (at ◦ bn) ◦ (amDbr+s)∗

= −2at ◦ 〈bn ◦ {am ◦ [bs ◦ (Dbr)∗]}〉 + 2(at ◦ bn) ◦ {am ◦ [bs ◦ (Dbr)∗]}
+ 2J1{bn, at, am, bs ◦ (Dbr)∗} − 2at ◦ 〈bn ◦ {am ◦ [bs ◦ (Dbr)∗]}〉
− 2(am+t ◦ bn) ◦ [bs ◦ (Dbr)∗] + 2(at ◦ bn) ◦ {am ◦ [bs ◦ (Dbr)∗]}
+ 2am+t ◦ {bn ◦ [bs ◦ (Dbr)∗]} + 2at ◦ {bn ◦ [am ◦ (bsDbr)∗]}
− 2(at ◦ bn) ◦ [am ◦ (bsDbr)∗] − 1

2
(bn+sDbrat+m)∗ − 1

2
(am+tbsDbr+n)∗

+ bn ◦ [am+t ◦ (bsDbr)∗] − am ◦ [bn ◦ (atDbr+s)∗] + (am ◦ bn) ◦ (atDbr+s)∗

+ at ◦ [bn ◦ (amDbr+s)∗] − (at ◦ bn) ◦ (amDbr+s)∗

= −2at ◦ {bn ◦ [am ◦ (Dbr+s)∗]} + 2(at ◦ bn) ◦ [am ◦ (Dbr+s)∗]

− 2(am+t ◦ bn) ◦ [bs ◦ (Dbr)∗] + 2(am+t ◦ {bn ◦ [bs ◦ (Dbr)∗]}
− 1

2
(bn+sDbrat+m)∗ − 1

2
(am+tbsDbr+m)∗ + bn ◦ [am+t ◦ (bsDbr)∗]

− am ◦ [bn ◦ (atDbr+s)∗] + (am ◦ bn) ◦ (atDbr+s)∗

+ at ◦ [bn ◦ (amDbr+s)∗] − (at ◦ bn) ◦ (amDbr+s)∗

=
1
4

[
− (atbnamDbr+s)∗ − (atbnDbs+ram)∗ − (at+mDbr+s+n)∗

− (atDbr+sambn)∗ − (bnamDbr+sat)∗ − (bnDbr+sam+t)∗

− (amDbr+s+nat)∗ − (Dbr+sambnat)∗ + (atbnamDbr+s)∗

+ (atbnDbr+sam)∗ + (bnat+mDbr+s)∗ + (bnatDbr+sam)∗

+ (amDbr+satbn)∗ + (Dbr+sam+tbn)∗ + (amDbr+s+nat)∗

+ (Dbr+sambnat)∗ − (am+tbn+sDbr)∗ − (bnam+tbsDbr)∗

− (am+tbnDbr+s)∗ − (bnam+tDbr+s)∗ − (bsDbram+tbn)∗

− (bsDbr+nam+t)∗ − (Dbr+sam+tbn)∗ − (Dbr+s+nam+t)∗

+ (am+tbn+sDbr)∗ + (am+tbnDbr+s)∗ + (am+tbsDbr+n)∗

+ (am+tDbr+s+n)∗ + (bn+sDbram+t)∗ + (bnDbr+sam+t)∗

+ (bsDbr+nam+t)∗ + (Dbr+s+nam+t)∗ − 2(bn+sDbrat+m)∗

− 2(am+tbsDbr+n)∗ + (bnam+tbsDbr)∗ + (bn+sDbram+t)∗
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+ (am+tbsDbr+n)∗ + (bsDbram+tbn)∗ − (ambnatDbr+s)∗

− (am+tDbr+s+n)∗ − (bnatDbr+sam)∗ − (atDbr+s+nam)∗

+ (ambnatDbr+s)∗ + (bnam+tDbr+s)∗ + (atDbr+sambn)∗

+ (atDbr+s+nam)∗ + (atbnamDbr+s)∗ + (at+mDbr+s+n)∗

+ (bnamDbr+sat)∗ + (amDbr+s+nat)∗ − (atbnamDbr+s)∗

− (bnat+mDbr+s)∗ − (amDbr+satbn)∗ − (amDbr+s+nat)∗
]

= 0,

as was to be established.

4.4. Case 4: α = amDbn, β = atbq

From the definition of operation ∗ it follows that

(bqamDbnat)∗ = 2bq ◦ [at ◦ (amDbn)∗] + 2at ◦ [bq ◦ (amDbn)∗]

− 2(at ◦ bq) ◦ (amDbn)∗ − (am+tDbn+q)∗.

From this equation we have:

α∗ ◦ β∗ = (amDbn)∗ ◦ (at ◦ bq)
= bq ◦ [at ◦ (amDbn)∗] + at ◦ [bq ◦ (amDbn)∗] (23)

− 1
2
(am+tDbn+q)∗ − 1

2
(bqamDbnat)∗.

Using inductive hypothesis 1), and the relation proved in Case 3, we obtain the
equations

bq ◦ [at ◦ (amDbn)∗] = bq ◦ (at ◦ amDbn)∗ = [bq ◦ (at ◦ amDbn)]∗ (24)

=
1
4
(bqat+mDbn)∗ +

1
4
(bqamDbnat)∗ +

1
4
(at+mDbn+q)∗ +

1
4
(amDbnatbq)∗,

at ◦ [bq ◦ (amDbn)∗] = [at ◦ (bq ◦ amDbn)]∗ (25)

=
1
4
(atbqamDbn)∗ +

1
4
(at+mDbn+q)∗ +

1
4
(bqamDbnat)∗ +

1
4
(amDbn+qat)∗.

From equations (23), (24) and (25) it follows that

α∗ ◦ β∗ =
1
4

[
(bqat+mDbn)∗ + (amDbnatbq)∗ + (atbqamDbn)∗ + (amDbn+qat)∗

]

= (α ◦ β)∗.

Clearly, the same proof is valid if the word D is empty.

4.5. Case 5: α = amDan, β = apbq

4.5.1. Step 1. First of all we prove that the lemma holds if m = n. Using inductive
hypothesis 1) and the relation proved in Case 1, we have:

α∗ ◦ β∗ = (anDan)∗ ◦ (ap ◦ bq) = [an ◦ (anD +Dan) − a2n ◦D]∗ ◦ (ap ◦ bq)



On Special J-rings 103

= [an ◦ (anD +Dan)∗] ◦ (ap ◦ bq) − (a2n ◦D∗) ◦ (ap ◦ bq)
= 2[an ◦ (an ◦D∗)] ◦ (ap ◦ bq) − (a2n ◦D∗) ◦ (ap ◦ bq)
= 2J2{an, D∗, an, ap ◦ bq} − 2{an ◦ [an ◦ (ap ◦ bq)]} ◦D∗

− 2{an ◦ [D∗ ◦ (ap ◦ bq)]} ◦ an + 4{D∗ ◦ [an ◦ (ap ◦ bq)]} ◦ an

+ (a2n ◦D∗) ◦ (ap ◦ bq)
= −2{an ◦ [D∗ ◦ (ap ◦ bq)]} ◦ an + 4{D∗ ◦ [an ◦ (ap ◦ bq)]} ◦ an

+ (a2n ◦D∗) ◦ (ap ◦ ba) − J1{an, an, ap, bq} ◦D∗ + (bq ◦ a2n+p) ◦D∗

− 2[an+p ◦ (an ◦ bq)] ◦D∗ − [a2n ◦ (ap ◦ bq)] ◦D∗

=
[− 2{an ◦ [D ◦ (ap ◦ bq)] ◦ an + 4{D ◦ [an ◦ (ap ◦ bq)]} ◦ an

+ (a2n ◦D) ◦ (ap ◦ bq) − J1{an, an, ap, bq} ◦D
+ (bq ◦ a2n+p) ◦D − 2[an+p ◦ (an ◦ bq)] ◦D − [a2n ◦ (ap ◦ bq)] ◦D ]∗

=
[− 2{an ◦ [an ◦ (ap ◦ bq)]} ◦D − 2{an ◦ [D ◦ (ap ◦ bq)]} ◦ an

+ 4{D ◦ [an ◦ (ap ◦ bq)]} ◦ an + (a2n ◦D) ◦ (ap ◦ bq) ]∗

=
[− 2J2{an, D, an, ap ◦ bq} + 2[an ◦ (an ◦D)] ◦ (ap ◦ bq)
− (a2n ◦D) ◦ (ap ◦ bq) ]∗

=
{

[2an ◦ (an ◦D) − a2n ◦D] ◦ (ap ◦ bq)}∗ =
[
anDan ◦ (ap ◦ bq)]∗

= (α ◦ apbq)∗ = (α ◦ β)∗.

4.5.2. Step 2. Now suppose that the lemma holds for some pair of words α1 =
atDar, β1 = akbs. We will show that in this case the lemma also holds for the
words α2 = atDak, β2 = arbs. Indeed,

α∗
2 ◦ β∗

2 = (atDak)∗ ◦ (ar ◦ bs)
= 2[(atD)∗ ◦ ak] ◦ (ar ◦ bs) − (at+kD)∗ ◦ (ar ◦ bs)
= −2J1{(atD)∗, ak, ar, bs} + 2[(atD)∗ ◦ ak+r] ◦ bs + 2[(atD)∗ ◦ (ak ◦ as)] ◦ ar

+ 2[(atD)∗ ◦ (ar ◦ bs)] ◦ ak − 2[(atD)∗ ◦ bs] ◦ ak+r

− 2[(atD)∗ ◦ ar] ◦ (ak ◦ bs) − (at+kD)∗ ◦ (ar ◦ bs)
=
[− 2J1{atD, ak, ar, bs} + 2(atD ◦ ak+r) ◦ bs + 2[atD ◦ (ak ◦ bs)] ◦ ar

+ 2[atD ◦ (ar ◦ bs)] ◦ ak − 2(atD ◦ bs) ◦ ak+r − (at+rD) ◦ (ak ◦ bs)
− (at+kD) ◦ (ar ◦ bs) ]∗ − (atDar)∗ ◦ (ak ◦ bs)

= −α∗
1 ◦ β∗

1 +
[
2(atD ◦ ar) ◦ (ak ◦ bs) + 2(atD ◦ ak) ◦ (ar ◦ bs)

− (at+rD) ◦ (ak ◦ bs) − (at+kD) ◦ (ar ◦ bs) ]∗

= −α∗
1 ◦ β∗

1 +
[
atDar ◦ (ak ◦ bs) + atDak ◦ (ar ◦ bs)]∗

= −α∗
1 ◦ β∗

1 + (α1 ◦ β1)∗ + (α2 ◦ β2)∗ = (α2 ◦ β2)∗.
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The claim is proved.

4.5.3. Step 3. Finally we prove that if the lemma holds for some words α3 =
a2sDar, β3 = apbq then it also holds for the words α4 = asDar+s and β3. Indeed,

α∗
4 ◦ β∗

3 = (asDar+s)∗ ◦ (ap ◦ bq) = 2{as ◦ [as ◦ (Dar)∗]} ◦ (ap ◦ bq) (26)

= 2J2{as, ap ◦ bq, as, (Dar)∗} − 2{as ◦ [(ap ◦ bq) ◦ (Dar)∗]} ◦ as

− 2{as ◦ [as ◦ (ap ◦ bq)]} ◦ (Dar)∗ + 4{(ap ◦ bq) ◦ [as ◦ (Dar)∗]} ◦ as

+ 2[(ap ◦ bq) ◦ a2s] ◦ (Dar)∗ − [a2s ◦ (Dar)∗] ◦ (ap ◦ bq)
= −2{as ◦ [(ap ◦ bq) ◦ (Dar)∗]} ◦ as + 4{(ap ◦ bq) ◦ [as ◦ (Dar)∗]} ◦ as

− [a2s ◦ (Dar)∗] ◦ (ap ◦ bq) − J1{as, as, ap, bq} ◦ (Dar)∗

+ (bq ◦ a2s+p) ◦ (Dar)∗ − 2[(as ◦ bq) ◦ as+p] ◦ (Dar)∗

+ [(ap ◦ bq) ◦ a2s] ◦ (Dar)∗

= −2{as ◦ [(ap ◦ bq) ◦ (Dar)∗]} ◦ as + 4{(ap ◦ bq) ◦ [as ◦ (Dar)∗]} ◦ as

− [a2s ◦ (Dar)∗] ◦ (ap ◦ bq) + (bq ◦ a2s+p) ◦ (Dar)∗

− 2J2{as+p, bq, as, (Dar)∗} + J2{a2s, bq, ap, (Dar)∗}
+ 2{as+p ◦ [bq ◦ (Dar)∗]} ◦ as + 2{as+p ◦ [as ◦ (Dar)∗]} ◦ bq
− 2(bq ◦ a2s+p) ◦ (Dar)∗ − 2{bq ◦ [as+p ◦ (Dar)∗]} ◦ as

− 2{bq ◦ [as ◦ (Dar)∗]} ◦ as+p − {a2s ◦ [bq ◦ (Dar)∗]} ◦ ap

− {a2s ◦ [ap ◦ (Dar)∗]} ◦ bq + (bq ◦ a2s+p) ◦ (Dar)∗

+ {bq ◦ [a2s ◦ (Dar)∗]} ◦ ap + {bq ◦ [ap ◦ (Dar)∗]} ◦ a2s.

Using inductive hypothesis 2) we can move the symbol ∗ outside the braces in the
first two monomials of the right-hand side of equation (26). As a result we obtain
the monomials

{as ◦ [(ap ◦ bq) ◦ (Dar)]}∗ ◦ as and {(ap ◦ bq) ◦ [as ◦ (Dar)]}∗ ◦ as. (27)

After performing all the ◦ operations inside the braces, we obtain, either monomials
whose heights will not exceed one less than the sum of the heights of α and β,
or words whose heights are equal to the sum of the heights of the words α and β
but which together with the word as form a pair of the form considered in Case 2.
Using the cases already established, and the remark in Case 2, we conclude that
the monomials (27) are equal respectively to the monomials

〈{as ◦ [(ap ◦ bq) ◦Dar]} ◦ as〉∗ and 〈{(ap ◦ bq) ◦ [as ◦Dar]} ◦ as〉∗. (28)

Since it is obvious that

[a2s ◦ (Dar)∗] ◦ (ap ◦ bq) = [a2s ◦Dar]∗ ◦ (ap ◦ bq)
=

1
2
(a2sDar)∗ ◦ (ap◦q) +

1
2
(Da2s+r)∗ ◦ (ap ◦ bq),
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for the right-hand side of equation (26), using the cases established earlier or
inductive hypothesis 1), we can move the operation ∗ outside the parentheses
everywhere except in the term

1
2
(a2sDar)∗ ◦ (apbq).

We do this, and then perform the transformations done in (26) in the reverse order:

α∗
4 ◦ β∗

3 =
〈
− 2{as ◦ [(ap ◦ bq) ◦ (Dar)]} ◦ as + 4{(ap ◦ bq) ◦ [as ◦Dar]} ◦ as

− 1
2
Da2s+r ◦ (ap ◦ bq) + (bq ◦ a2s+p) ◦Dar − 2J2{as+p, bq, as, Dar}

+ J2{a2s, bq, ap, Dar} + 2{as+p ◦ [bq ◦Dar]} ◦ as + 2{as+p ◦ [as ◦Dar]} ◦ bq
− 2(bq ◦ a2s+p) ◦Dar − 2[bq ◦ (as+p ◦Dar)] ◦ as − 2[bq ◦ (as ◦Dar)] ◦ as+p

− [a2s ◦ (bq ◦Dar)] ◦ ap − [a2s ◦ (ap ◦Dar)] ◦ bq + (bq ◦ a2s+p) ◦Dar

+ [bq ◦ (a2s ◦Dar)] ◦ ap + [bq ◦ (ap ◦Dar)] ◦ a2s
〉∗

− 1
2
(a2sDar)∗ ◦ (ap ◦ bq)

=
〈
− 2{as ◦ [(ap ◦ bq) ◦Dar]} ◦ as + 4[(ap ◦ bq) ◦ (as ◦Dar)] ◦ as

− 1
2
Da2s+r ◦ (ap ◦ bq) + (bq ◦ a2s+p) ◦Dar − 2[as+p ◦ (bq ◦ as)] ◦Dar

+ [a2s ◦ (bq ◦ ap)] ◦Dar
〉∗

− 1
2
α∗

3 ◦ β∗
3

=
〈
− 2{as ◦ [(ap ◦ bq) ◦Dar]} ◦ as + 4[(ap ◦ bq) ◦ (as ◦Dar)] ◦ as

− 1
2
Da2s+r ◦ (ap ◦ bq) + J1{as, as, ap, bq} ◦Dar

− 2{as ◦ [as ◦ (ap ◦ bq)]} ◦Dar + 2[a2s ◦ (bq ◦ ap)] ◦Dar
〉∗

− 1
2
α∗

3 ◦ β∗
3

=
〈
− 2J2{as, ap ◦ bq, as, Dar} + 2[as ◦ (as ◦Dar)] ◦ (ap ◦ bq)

− 1
2
Da2s+r ◦ (ap ◦ bq)

〉∗
− 1

2
α∗

3 ◦ β∗
3

=
1
2
[a2sDar ◦ (ap ◦ bq)]∗ + [asDar+s ◦ (ap ◦ bq)]∗ − 1

2
α∗

3 ◦ β∗
3

=
1
2
(α3 ◦ β3)∗ + (α4 ◦ β3)∗ − 1

2
α∗

3 ◦ β∗
3 = (α4 ◦ β3)∗.

4.5.4. Step 4.

Definition. By the δ-transformation of a pair of natural numbers t and s, t > s,
we will mean the transformation that replaces this pair by the pair t− s, 2s.

Lemma 5. Starting with an arbitrary triple n, p, q of natural numbers, and using
a finite number of δ-transformations, we can pass to another triple of natural
numbers at least two of which are equal.
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Proof. Let γ be the greatest natural number such that at least one of the numbers
n + p, n + q, p + q is divisible by 2γ . The proof will be complete if we can show
that, in the case where n, p, q are pairwise distinct, the number γ can be increased
by one by δ-transformations.

Obviously, γ > 0. First we show that if the sum of n and p is divisible by
2γ then by δ-transformations we can replace them by a pair of numbers such that
either they are equal or they are both are divisible by 2γ . Let

n+ p = 2γ(2s− 1), n > p, p = 2µ(2q − 1), µ < γ.

Then after one δ-transformation both resulting numbers will be divisible by 2µ+1.
Clearly, for this argument we need simultaneously n �= p and µ < γ. It is therefore
obvious that after a finite number of steps we will arrive at a pair of numbers that
are either equal or both divisible by 2γ .

On the basis of the preceding argument, we may assume that two of the
given three numbers, say n and p, are divisible by 2γ . Clearly, one of the numbers
n and p is divisible by 2γ+1 since otherwise their sum would be divisible by 2γ+1.
Without loss of generality, we may assume that the greater of the numbers n and
p is divisible by 2γ+1, since in the contrary case this can be easily obtained by
doubling the smaller of the numbers n and p sufficiently many times at the expense
of the greater. On the basis of the above arguments, we may assume that

n > p, n+ p = 2γ(2s− 1), n = 2γ+1k.

As to the number q, there are two possible cases:

1) q > p: Then, replacing the pair q, p by the pair 2p, q − p we see that the
number 2p is divisible by 2γ+1 and therefore the sum n+ 2p is also divisible
by 2γ+1.

2) q < p: Then, the δ-transformations

(n, p, q) −→ (n, p− q, 2q) −→ (n− p+ q, 2p− 2q, 2q)

lead to a triple of natural numbers, for two of which, 2p−2q and 2q, the sum
is divisible by 2γ+1.

This completes the proof of Lemma 5. �

Now let us complete the proof of Case 5.
The natural numbers m, n, p that occur in the expressions for α and β can

be subjected to arbitrary permutations because of Step 2 and the possibility of
replacing α by α. Step 3 allows us to perform δ-transformations on them. Because
of Lemma 5, we can obtain after a finite number of steps the equality of two of
these natural numbers. The proof can be completed by Step 1. Case 5 is finished.

The cases considered above together with the cases that can be obtained from
them by interchanging a and b or by replacing α by α justify the basis of inductive
hypothesis 3). This completes the proof of the Main Lemma.
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5. The operation ab + ba

In the preceding sections, we assumed everywhere that the associative ring Σ
admits division by 2. Suppose that we have an associative algebra B over Σ such
that for some elements a and b in B there does not exist an element c for which
2c = ab + ba, but the characteristic of the algebra is not 2. Then in the algebra
B we can introduce the operation a ◦ b = ab + ba, relative to which the additive
group of B will again be a Jordan algebra over Σ. We show that in this case also
the main results of this article are valid.

Lemma 6. Any associative ring Σ with characteristic different from 2 can be em-
bedded in a ring Σ that admits unique division by 2.

Proof. Consider the set Σ of pairs (σ, 2k) where σ ∈ Σ, and k ≥ 0 is an integer.
We will consider the pairs (σ1, 2k1) and (σ2, 2k2) to be equivalent if 2k2σ1 = 2k1σ2.
We define addition and multiplication of the pairs in the familiar way:

(σ1, 2k1) + (σ2, 2k2) =
(
2k2σ1 + 2k1σ2, 2k1+k2

)
,

(σ1, 2k1)(σ2, 2k2) =
(
σ1σ2, 2k1+k2

)
.

Obviously, the ring Σ satisfies the requirements of Lemma 6. �

Suppose we have a Jordan algebra M over Σ with a finite or countably infinite
set of generators, which is special in the new sense, i.e., there exists an associative
algebra B over Σ whose Jordan algebra B(+)

(2) with respect to the operation ◦
contains a subalgebra isomorphic to M. Such algebras will be called semispecial.

We introduce a new multiplication × on B by the equation a × b = 2ab
for a, b ∈ B. The additive group of B relative to the old addition and the new
multiplication × will be an associative algebra B(×) over Σ. This algebra can be
embedded into the algebra B(×) over Σ of pairs (b, 2k) in the way described for
Σ. If the action of the elements of Σ is defined by (σ, 2s)(b, 2k) = (σb, 2k+s), then
the subset of B(×) consisting of the pairs (m, 2t), where m belongs to the subset
of elements of the additive group of B that correspond to the elements of M, will
obviously be a special Jordan algebra over Σ. By Theorem 1, it can be embedded
into a special Jordan algebra over Σ with two generators.

Each element of the algebra B(×) under this embedding can be expressed in
terms of the generators using only the operation × without the action of Σ, as can
be seen from the remark to Theorem 1. If we now return from the multiplication
× to the multiplication ab = 1

2a×b, then relative to this operation, the algebra M
will be embedded into a semispecial Jordan algebra with two generators over Σ,
which can also be considered as an algebra over Σ. Clearly, the subalgebra over Σ
generated by the two generators will be smaller than the corresponding subalgebra
over Σ, but it will still contain the algebra M as can be easily verified. Thus, we
have proved the following theorem:
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Theorem 4. Every semispecial Jordan algebra M over Σ with a finite or countably
infinite number of generators, and without elements of order 2 in the additive
group, can be embedded into a semispecial Jordan algebra with two generators
over Σ.

Suppose we have a Jordan algebra N with two generators over Σ; regarding
N we now assume only that its additive group does not have elements of order 2.
Since the construction of Lemma 6 applies in this case, we may assume that the
algebra N is embedded into the algebra N of pairs of the form (n, 2k) for n ∈ N
(k = 0, 1, 2, . . .) which is a Jordan algebra over Σ. By Theorem 3, N is a special
Jordan algebra over Σ. If we now introduce a new operation a ∗ b = 1

2ab on the
corresponding associative algebra A over Σ, then it is obvious that with respect
to the algebra A(∗) the Jordan algebra N will be a semispecial Jordan algebra
over Σ. If we regard the algebra A(∗) as an algebra over Σ, then the subalgebra
N (over Σ) of the algebra

(A(∗))(+)

(2)
will be semispecial. Thus, we have proved the

following theorem:

Theorem 5. Every Jordan algebra N over Σ with two generators and without
elements of order 2 in the additive group is semispecial.
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Some Theorems on Embedding of Rings

A.I. Shirshov

1. Introduction

The present work is a sequel to the author’s article [4]. The main topic is special
Jordan algebras over rings, but the methods employed also allow us to obtain new
results for other classes of algebras. The main result of the present article concern-
ing special Jordan algebras is a necessary and sufficient condition for speciality (or
semispeciality) of a Jordan algebra formulated in terms of the algebra itself (Theo-
rems 8 and 9). Other new theorems deal with the general theory of nonassociative
rings (Theorems 2, 3, 4, 5).

2. Some embedding theorems

Suppose we have a commutative1 associative ring Σ and a set Ω of (nonassociative)
multilinear polynomials in the independent variables x, y, z, . . . with coefficients
in Σ. Then we can speak of Ω-algebras over Σ, i.e., algebras over Σ in which the
polynomials in Ω vanish identically after substituting elements of the algebra for
the variables x, y, z, . . . . In the usual sense we will speak of free Ω-algebras over
Σ. Generally speaking, all algebras considered here will be nonassociative.

Definition 1. Let Sk be the free Ω-algebra over Σ with k generators. A countably
infinite subset N of Sk, which is a free generating set for the subalgebra T it
generates in Sk, will be called distinguished if any ideal I of T is the intersection
of the ideal I generated by I in Sk with the subalgebra T .

Definition 2. The smallest natural number k (if it exists) for which Sk contains a
distinguished subset will be called the basis rank2 of the set Ω over Σ.

Mat. Sbornik N.S. 40 (82), (1956), no. 1, 65–72.
c© 2009 Translated from the Russian original by M.R. Bremner and M.V. Kochetov.
1The word “commutative” is omitted in the Russian. [Translators]
2Literally, the “dimension”. [Translators]
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Theorem 1. If a set of identical relations Ω has basis rank k over the ring Σ, then
any Ω-algebra R over Σ that has a finite or countably infinite set of generators can
be isomorphically embedded into some Ω-algebra with k generators.

Proof. Suppose that we have a distinguished subset N in the free Ω-algebra Sk,
and as before let T be the Ω-subalgebra generated by N in Sk. Then the algebra
R is isomorphic to the quotient of T by some ideal I. The ideal I generates in Sk

an ideal I such that I = I ∩ T . Therefore the quotient algebra Sk/I contains a
subalgebra isomorphic to T/I and hence to R. �

Theorem 2. If some set Ω of identical relations has basis rank k over Σ, then any
Ω-algebra K over Σ can be isomorphically embedded into an Ω-algebra N over
Σ each of whose countable subsets is contained in a subalgebra generated by k
elements.

Proof. We will assume that the collection {Bα} of countably infinite subsets of
K is well-ordered by the index variable α which ranges over some well-ordered
set. Suppose we have already constructed an Ω-algebra Kα over Σ that is an
extension of the algebra K such that each subset Bβ, β < α, is already contained
in a subalgebra generated by k elements. If Bα itself lies in a subalgebra with
k generators then we set Kα+1 = Kα. Now suppose that Bα does not lie in
any subalgebra of Kα with k generators. We extend the set Bα to some set Λα of
generators of Kα. Consider the free Ω-algebra Qα over Σ with the set of generators
Λ′

α of the same cardinality as Λα. Then we arbitrarily select k elements a1, a2,
. . . , ak in the set Λ′

α, and a distinguished set Tα in the free Ω-algebra Qαk over Σ
that is generated in the algebra Qα by the elements ai (i = 1, 2, . . . , k). Select a
countably infinite subset tα1 , . . . , tαr , . . . of the set Tα that has a countably infinite
complement in Tα. Clearly, the subalgebra Kα generated in Qα by the set

Λα = {tαs | s = 1, 2, . . .} ∪ (Λ′
α \ {ai | i = 1, . . . , k}),

is a free Ω-algebra, since from any relation which is non-trivial (i.e., not a conse-
quence of Ω) we could obtain a non-trivial relation for the elements of the set Tα

by replacing the generators from Λα that are not in Tα by arbitrary elements of Tα.
From this it follows that the algebra Kα is isomorphic to the quotient algebra of
Kα by some ideal Iα, where Iα can be chosen such that the images of the elements
tαi (i = 1, 2, . . . , r, . . .) correspond to the elements of Bα. The ideal Iα generates in
Qα some ideal Iα. We will prove that Iα ∩Kα = Iα.

Let d be an arbitrary element of this intersection. Since d ∈ Iα, it can be
written as a (nonassociative) polynomial each of whose terms contains a factor
from Iα; and since d ∈ Kα, it can be written as a polynomial in elements of Λα.
Comparing these two expressions, we obtain an equation in the free Ω-algebra
Qα over Σ, which obviously will still be valid if the free generators from the set
Λ′

α \ {ai | i = 1, . . . , k} which occur in it are replaced by (distinct) elements of the
set Tα \ {tαs | s = 1, 2, . . .}. Let I

0

α be the ideal of Qαk generated by the finite set
of elements obtained as a result of this replacement of the elements Iα that occur
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in the expression for d, and let I0
α be the ideal generated by the same elements

in the subalgebra generated by Tα. From the fact that Tα is a distinguished set,
it follows that, after this replacement, the element d becomes an element of the
ideal I0

α. Using the fact that Tα is a set of free generators for the subalgebra it
generates, we can perform the reverse replacement which gives us an expression
for d as an element of Iα.

From the claim just proved it follows that the quotient algebra Qα/Iα con-
tains a subalgebra isomorphic to the algebraKα, and under the natural embedding
the set Bα is contained in a subring generated by k elements, namely the images
of the elements of the set {ai | i = 1, . . . , k}. We extend the algebra Kα to the
algebra isomorphic to Qα/Iα and denote the extended algebra by Kα+1.

If γ is a limit ordinal then by Kγ we denote the union of the increasing chain
of algebras

⋃
δ<γ Kδ.

By an obvious transfinite induction, it follows that the algebra K can be
extended to an Ω-algebra K ′ over Σ such that every countably infinite subset of
K is contained in a subalgebra of K ′ generated by k elements. Analogously, the
algebra K ′ can be extended to K ′′ and so on. The union N =

⋃
K(γ) of this

increasing chain of algebras will obviously satisfy the conditions of the theorem if
γ ranges over all ordinals of the first two classes. This completes the proof. �

We now consider applications of Theorem 2 to some particular cases.

1) The set Ω is empty and Σ is an arbitrary ring.

Lemma 1. The set T = {aa2, a2a2, (a2a)a2, [(a2a)a]a2, . . .} is a distinguished subset
of the free algebra S over Σ on one generator a.

Proof. Let S0 be the subring of S generated by T , let I0 be an ideal of S0, and let
I be the ideal of S generated by I0. If q is an element of the intersection S0 ∩ I,
then q can be written as a polynomial, each of whose terms qi is a product of an
element of I0 and some monomials in S. If at least one of the latter monomials
does not belong to S0, then from the definition of T it follows that none of the
monomials obtained by expanding qi belongs to S0. Since q ∈ S0, all such qi must
cancel each other, and thus q ∈ I0. This completes the proof. �

2) The set Ω consists of the relation xy − yx = 0, and Σ is an arbitrary ring.

Lemma 2. The set TC = {a2a2, (a2a)a2, [(a2a)a]a2, . . .} is a distinguished subset
of the free commutative algebra SC over Σ on one generator a.

Proof. From [3] it follows that the elements of SC are linear combinations with
coefficients from Σ of the so-called C-regular words. Taking this into account, we
can complete the proof similarly to the proof of Lemma 1. �

3) The set Ω consists of the relation xy + yx = 0, and Σ is an arbitrary ring.

Lemma 3. The set TAC = {[(ab)b](ab), {[(ab)b]b}(ab), . . .} is a distinguished subset
of the free anticommutative algebra SAC over Σ on two generators a and b.
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The proof is similar, using the results of [3]. Obviously, in the general case
the basis rank here is 2, but in the case when all elements of Σ have additive order
2 we will obtain a commutative algebra and thus the basis rank will be 1.

4) The set Ω consists of the relation (xy)z−x(yz) = 0, and Σ is an arbitrary ring.

Lemma 4. The set TA = {bab, ba2b, ba3b, . . .} is a distinguished subset of the free
associative algebra SA over Σ on two generators a and b.

See the proof of this lemma in [4].
Theorem 2 and Lemmas 1–4 imply the following Theorems:

Theorem 3. Every algebra over Σ can be embedded into an algebra over Σ in
which every countably infinite subset is contained in a subalgebra generated by one
element.

This theorem generalizes a result of A.I. Zhukov [5].

Theorem 4. Every commutative (resp. anticommutative) algebra over Σ can be
embedded into a commutative (resp. anticommutative) algebra over Σ in which ev-
ery countably infinite subset is contained in a subalgebra generated by one element
(resp. by two elements).

Theorem 5. Every associative algebra over Σ can be embedded into an associative
algebra over Σ in which every countably infinite subset is contained in a subalgebra
generated by two elements.

Theorem 5 generalizes a result of A.I. Malcev [2].

3. Applications to special Jordan algebras

Special Jordan rings cannot be immediately included into the scheme explained
in Section 1 because there does not exist a set of identical relations defining this
class of algebras (see [1], [4]). Suppose we have some algebra J over Σ. In the case
when J is generated by a finite or countably infinite set is considered in [4], where
it is shown that J can be embedded into a Jordan algebra with two generators.
First we will assume that Σ admits division by 2.

Theorem 6. Any special Jordan algebra J over Σ can be isomorphically embedded
into a special Jordan algebra J each of whose countable subsets is contained in a
subalgebra generated by two elements.

Proof. Since the algebra J is special, it can be represented isomorphically in some
associative algebra K over Σ. By Theorem 5, the algebra K is embeddable in an
associative algebra N over Σ, each of whose countable subsets is contained in a
subalgebra generated by two elements. Since the set TA of Lemma 4 consists of
the Jordan polynomials ts = basb = 2b ◦ (b ◦ as) − as ◦ b2, it is clear that, upon
extending the algebra K, each countably infinite subset Bα that appears in the
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proof of Theorem 2 will be contained in a special Jordan subalgebra generated by
two elements, namely the images of the elements a and b. Obviously, we will also
have to carry out this construction for the countably infinite subsets Bα that are
contained in a subalgebra generated by two elements but do not consist of Jordan
polynomials in these two elements. It follows that each countably infinite subset
of the algebra N will be contained in a special Jordan subalgebra generated by
two elements. To the associative algebra N there corresponds the special Jordan
algebra N (+). This completes the proof. �

A question arises regarding the validity of the converse to Theorem 6: Is a
Jordan algebra special if each of its countable subsets is contained in a subalgebra
with two generators, that is, in a special Jordan algebra [4]? A positive answer to
this question will be given in a somewhat more general form.

We will call a Jordan algebra locally special if each of its finitely generated
subalgebras is special.

Theorem 7. Any locally special Jordan algebra J is special.

Proof. By J we will denote a set of elements that is in one-to-one correspondence
with the algebra J . Consider the free associative algebra A over Σ with the set J
of free generators, and its ideal I1 generated by all elements of the form3

αi = a1i + b1i − c1i, βj =
1
2
(
a2jb2j + b2ja2j

)− c2j , γk = σka3k − c3k,

whenever the following equations hold in the algebra J :

a1i + b1i = c1i, a2j ◦ b2j = c2j , σka3k = c3k.

We will prove that the Jordan algebra J is isomorphically represented in the quo-
tient algebra A/I1. For this it suffices to show that I1 ∩ J equals zero. Assume to
the contrary that we have the following relation:

∑

i

diαisi +
∑

j

rjβjtj +
∑

k

nkγkmk = q, (1)

where q ∈ J and d, s, r, t, n, m may be absent4. Since (1) is a relation among the
generators of a free associative algebra over Σ, it must hold in any associative alge-
bra over Σ for arbitrary elements in one-to-one correspondence with the elements
under consideration. However, to the finite set T of elements of J that occur in
relation (1), there corresponds a finite set of elements T in J . By local speciality
of J , there exists an associative algebra A1 that represents the subalgebra of J
generated by the finite set T . For the elements of the set T in A1, the relation (1)
must hold, but obviously the left-hand side of (1) vanishes in A1, which gives a
contradiction. �

The results of Theorems 6 and 7 can be formulated as follows:

3It is implicit that σk ∈ Σ. [Translators]
4It is implicit that q �= 0. [Translators]
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Theorem 8. If the ring Σ admits unique division by 2, then a Jordan algebra J over
Σ is special if and only if it is isomorphically embeddable in a Jordan algebra each
of whose countable subsets is contained in a subalgebra generated by two elements.

If we restrict ourselves to the assumption that the additive group of the
algebra J has no elements of order 2, then we can consider semispecial Jordan
algebras (see [4]).

Theorem 9. If the additive group of the Jordan algebra J has no elements of order
2, then J is semispecial if and only if J is isomorphically embeddable in a Jordan
algebra each of whose countable subsets is contained in a subalgebra generated by
two elements.

Proof. From semispeciality of J it follows that there exists an associative algebra
K1 in which the algebra J is isomorphically represented by the operation a ◦ b =
ab+ ba. We may assume that the additive group of the algebra K1 does not have
elements of order 2, since the collection of elements of order 2s in the additive
group of a ring is an ideal for which the corresponding quotient ring does not
contain elements a satisfying 2sa = 0 for some natural number s. The intersection
of this ideal with the set that corresponds in K1 to the algebra J will be zero.
The algebra K1 can be extended to an algebra K with unique division by 2 ([4],
Lemma 6). At the same time, the base ring Σ will be extended to Σ with unique
division by 2.

We introduce in K a new associative operation a× b = 2ab. Then the special
algebra K(+) considered relative to the operation a · b = 1

2 (a × b + b × a) can
be embedded into a Jordan algebra N over Σ, each of whose countable subsets is
contained in a subalgebra generated by two elements. Returning to the original
operation ab = 1

2 (a× b), we convince ourselves that the algebra J is embedded in
the desired way, since an algebra over Σ is also an algebra over Σ.

Conversely, suppose that J is embedded into a corresponding algebraN . Then
in N ([4], Theorem 5) each finite subset is contained in a semispecial algebra. The
proof can be completed by repeating the proof of Theorem 7 but replacing βj by
β′

j = a2jb2j + b2ja2j − c2j . �

4. Algebras of finite dimension

In this section we consider a refinement of the previous results for algebras of finite
dimension.

Let A be an associative algebra of finite dimension over some field F . Ob-
viously, A has a finite system of generators {ci} (i = 1, 2, . . . ,m). Consider the
free associative algebra B with two generators a and b over F . The subalgebra B′

generated in B by the elements c′i = baib (i = 1, 2, . . . ,m, . . .) is a free associative
algebra with a countably infinite set of generators. Let I ′ be the kernel of the
homomorphism of B′ onto A, and let I be the ideal generated by I ′ in B. We may
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assume5 that c′m+i ∈ I ′ (i = 1, 2, . . .). Further, let I1 be the ideal of B generated by
the elements of the form aba, bk, am+k−2 (k = 3, 4, . . .). We will prove the equality

(I + I1) ∩ B′ = I ′.

Suppose that the element i + i1 in the sum of ideals I + I1 is an element of B′.
From the obvious relation I1 ∩ B′ ⊆ I it follows that i1 ∈ I, and thus i + i1 ∈ I.
The proof can be completed using the equality I ∩ B′ = I ′, which is proved in
the work [4]. The quotient algebra B = B/(I + I ′) therefore contains a subalgebra
isomorphic to A, and is clearly an algebra with two generators. In addition to the
cosets corresponding to the elements of A, the algebra B contains only a finite
number of linearly independent cosets, and thus is an algebra of finite dimension.
Thus, we have proved the following result:

Theorem 10. Any associative algebra A of finite dimension over a field F is iso-
morphic to a subalgebra of an associative algebra B with two generators and finite
dimension over F .

Now consider a special Jordan algebra J of finite dimension with basis a1,
a2, . . ., an. Let A be an associative algebra in which J is represented. It is easy to
show that the subalgebra of A generated by the elements a1, a2, . . . , an has finite
dimension. Indeed, any product of elements ai that contains more than n factors
can be represented as a linear combination of such products with a smaller number
of factors. This follows from the equation ai ◦ aj = 1

2 (aiaj + ajai) =
∑
ckijak,

because in the product under consideration there will be at least two equal factors,
which by a sequence of transpositions can be moved next to each other, and then
it will become possible to decrease the number of factors. From this, using the
proof of Theorem 10, the next result follows.

Theorem 11. Any special Jordan algebra J of finite dimension over the field F of
characteristic �= 2 is isomorphic to a subalgebra of a special Jordan algebra J with
two generators and finite dimension over F .

Remark 1. Special Jordan algebras over fields of characteristic 2 are Lie algebras. It
is known that a Lie algebra of finite dimension can be represented in an associative
algebra of finite dimension; the question of the number of generators has not been
considered for this case.

Remark 2. Without changing the methods, it is easy to obtain analogues of The-
orems 10 and 11 for finite algebras, or algebras of finite rank over some ring of
coefficients.

References

[1] P.M. Cohn, On homomorphic images of special Jordan algebras, Canadian J. Math.
6 (1954) 253–264.

5It is also implicit that c′i maps to ci for i = 1, . . . , m. [Translators]



116 A.I. Shirshov

[2] A.I. Malcev, On a representation of nonassociative rings, Uspekhi Mat. Nauk N.S. 7
(1952) 181–185.

[3] A.I. Shirshov, Subalgebras of free commutative and free anticommutative algebras,
Mat. Sbornik 34 (1954) 81–88.

[4] A.I. Shirshov, On special J-rings, Mat. Sbornik 38 (1956) 149–166.

[5] A.I. Zhukov, Reduced systems of defining relations for nonassociative algebras, Mat.
Sbornik 27 (1950) 267–280.



On some Nonassociative Nil-rings
and Algebraic Algebras

A.I. Shirshov

1. Introduction

In the works of Levitzki [5] and Jacobson [3] devoted to the solution of the problem
of Kurosh [4], it is proved that any associative algebraic algebra of bounded degree
is locally finite, and that every associative nil-ring of bounded index is locally
nilpotent. The problem of Kurosh can be stated for any class of power associative
algebras [1], but already Lie algebras give an example showing that the problem
does not have a positive solution for arbitrary power associative algebras.

In the present paper, a positive solution is given for the analogous problem
(also in the bounded case) for special Jordan algebras and for alternative algebras,
under a natural restriction on the characteristic of the base field (Theorems 4 and
8). For nil rings, results generalizing the theorem of Levitzki in the associative case
are also obtained (Theorems 2 and 7).

2. Preliminary results

Consider the associative words formed from the elements of some finite ordered
set of symbols:

R = {ai} (i = 1, 2, . . . , k), ai > aj if i > j.

Definition 1. A word of the form1 α = ak · · · akai1ai2 · · · ais where it �= k (t =
1, 2, . . . , s), s ≥ 1 will be called ak-irreducible.

Definition 2. A representation of the word β (if possible) as the product of a
number of ak-irreducible words will be called an ak-factorization of the word β.

Mat. Sbornik N.S. 41 (83), (1957), no. 3, 381–394.
c© 2009 Translated from the Russian original by M.R. Bremner and M.V. Kochetov.
1It is implicit that ak occurs at least once. [Translators]
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It is easy to see that for a word β there exists an ak-factorization, which is
moreover unique, if and only if β starts with the symbol ak and ends with a symbol
different from ak. The following is an example of an a3-factorization of a word on
three symbols:

(a3a3a2a1a1a2a1)(a3a1)(a3a3a3a1a1a2)(a3a1a2).

On the set of all associative words in the elements of the set R, we introduce
a partial order: for words α and β of the same length we declare α > β if this
relation holds in the lexicographical sense. We order lexicographically the set T
of all ak-irreducible words; when the word α is the beginning of the word β (i.e.,
β = αai1ai2 · · · aim , it �= k, t = 1, 2, . . . ,m) we declare α > β.

Definition 3. The associative word γ will be called n-decomposable if it can be
represented as the product of n subwords in such a way that, for any non-identity
permutation of these subwords, the resulting associative word is strictly less than γ.

For example, the word a3a1a2a2a1a1a2a1a1a1 is 3-decomposable and admits
several 3-decompositions:

(a3a1)(a2a2a1a1)(a2a1a1a1), (a3a1a2)(a2a1a1)(a2a1a1a1),

(a3)(a1a2a2a1a1a2)(a1a1a1), etc.;

the word a1a2a1a3a2a1a2a3a2 is not 2-decomposable.
The words that admit ak-factorization can be considered as words formed

from the elements of the set T . In this case also, it makes sense to consider n-de-
composable words. In the rest of the paper, where it could lead to confusion, we
will speak about nR-decomposable or nT -decomposable words, specifying which
set of symbols is to be regarded as generators.

When we consider words formed from elements of the set T , we will call them
T -words (as opposed to R-words); analogously, we will use the terms T -length and
R-length.

Lemma 1. For any associative T -word α, nT -decomposability implies nR-decom-
posability.

Proof. Let α = α1α2 · · ·αn be an nT -decomposition of α; then α, α1, . . . , αn

admit an ak-factorization. From Definition 3 it follows that α > αi1αi2 · · ·αin in
the sense of the set T whenever (i1, i2, . . . , in) is a non-identity permutation of the
symbols 1, 2, . . . , n. It is easy to see that this relation also holds in the sense of the
set R. Therefore, this nT -decomposition is also an nR-decomposition. The lemma
has been proved. �
Lemma 2. If the word α is (n − 1)T -decomposable, then the word αak is nR-de-
composable.

Proof. Lemma 1 implies the existence of the following (n− 1)R-decomposition of
the word α:

α = (akai1 · · · a′i1)(akai2 · · · a′i2) · · · (akain−1 · · ·a′in−1
),
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where a, a′ ∈ R, a′it
�= ak (t = 1, 2, . . . , n− 1). We will prove that for the word αak

we have the following nR-decomposition:

αak = (ak)(ai1 · · ·a′i1ak)(ai2 · · · a′i2ak) · · · (ain−1 · · · a′in−1
ak).

Indeed, any permutation of the factors of αak that fixes the first factor ak, trans-
forms αak into α′ak where α′ is obtained by some permutation of the factors in
the given (n− 1)T -decomposition of α. Therefore, α > α′ and αak > α′ak. Now, if
we consider permutations that move the symbol ak from the first position, then it
is obvious that the result of applying such a permutation to αak will start with a
strictly smaller number of symbols ak as compared to αak. Thus, it will be strictly
less than αak. The lemma has been proved. �

Lemma 3. For any three natural numbers k, s, n there exists a natural num-
ber N(k, s, n) such that in any associative word of length N(k, s, n) in k or-
dered symbols there exists either a subword repeated s times consecutively or an
n-decomposable subword (or both).

Proof. It is easy to see that the natural numbers N(k, s, 1) andN(1, s, n) satisfying
the conditions of the lemma exist for any k, s, n. Suppose we are given some
natural numbers k and n. We make the inductive assumption that there exist
natural numbers N(k − 1, s, n) and N(k, s, n− 1) satisfying the conditions of the
lemma for all natural numbers k and s.

Consider an arbitrary associative word α of length

[s+N(k − 1, s, n)]
[
N
(
kN(k−1,s,n)+s, s, n− 1

)
+ 1
]
,

in elements of our familiar set R. If, at the beginning of α there is a number of the
symbols ai other than ak, and their number is not less than N(k − 1, s, n), then
we can apply the inductive hypothesis to the subword α′ that is at the beginning
of the word α and depends only on k− 1 symbols. Therefore, we may assume that
the length of the word α′ (if it exists) is less than N(k − 1, s, n). At the end of
the word α there may be a subword α′′ = akak · · · ak. We may suppose that if
α′′ exists then its length is less than s, for in the contrary case the conclusion of
the lemma would hold. Removing the words α′ and α′′ (if they exist) we obtain a
subword α1 whose length is greater than

[s+N(k − 1, s, n)]N
(
kN(k−1,s,n)+s, s, n− 1

)
.

Having performed ak-factorization of the word α1, we may assume in addition
that the length of each ak-irreducible word that occurs in this ak-factorization is
less than the number s+N(k−1, s, n), for in the contrary case such a word would
contain either s consecutive symbols ak or a subword of length N(k − 1, s, n)
not containing the symbol ak. It is easy to see that there exist no more than
kN(k−1,s,n)+s distinct ak-irreducible words with the above-mentioned restriction
on length. We will regard the word α1 as a T -word. Since its T -length is strictly
greater than N(kN(k−1,s,n)+s, s, n−1), in α1 there exists either a subword repeated
s times consecutively or an (n− 1)T -decomposable subword β.
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If this second alternative holds, then by the strict inequality for the length
of α1 we may assume that the subword β is immediately followed by the symbol
ak. By Lemma 2 the subword βak is nR-decomposable. In this case, as well as
obviously in the case when the first alternative holds, the conclusion of the lemma
is true. Therefore we set

N(k, s, n) = [s+N(k − 1, s, n)]
[
N
(
kN(k−1,s,n)+s, s, n− 1

)
+ 1
]
.

This completes the proof of Lemma 3. �

Definition 4. An element b of the free associative ring A with the setR of generators
will be called a Jordan polynomial if there exists a natural number t such that the
element 2tb can be represented as a polynomial in the elements of R with respect
to addition and the Jordan multiplication a ◦ b = ab+ ba.

For example, the element a1a2a1 is a Jordan polynomial in the sense of
Definition 4, because 22a1a2a1 = 2a1 ◦ (a1 ◦ a2) − (a1 ◦ a1) ◦ a2.

Definition 5. An associative word α in the elements of R will be called special if
there exists a homogeneous Jordan polynomial bα such that the highest word of
bα is α, and this occurs in bα with coefficient of the form 2t (t = 0, 1, . . .).

Lemma 4. Every T -word α is special (relative to the set R).

Proof. If the T -length of α equals 1, i.e.,

α = akak · · · akai1ai2 · · · aim (ir �= k; r = 1, 2, . . . ,m),

then bα = [· · · [· · · (ak ◦ ak) ◦ · · · ◦ ak] ◦ ai1 ] ◦ · · · aim .
Suppose the statement of the lemma has been proved for T -words whose

T -length is strictly less than the T -length of α (which is greater than 1). Then,

α = βakak · · ·akai1ai2 · · · aim (ir �= k; r = 1, 2, . . . ,m),

where β is a T -word to which the inductive hypothesis applies. Let bβ be a Jordan
polynomial that corresponds to β. Then a simple calculation shows that we may
take as bα the Jordan polynomial

[· · · [[bβ ◦ [[· · · (ak ◦ ak) ◦ · · · ◦ ak] ◦ ai1 ]] ◦ ai2 ] · · · ] ◦ aim

+ [· · · [[[bβ ◦ [· · · (ak ◦ ak) ◦ · · · ◦ ak]] ◦ ai1 ] ◦ ai2 ] · · · ] ◦ aim

− [· · · [[(bβ ◦ ai1) ◦ [· · · (ak ◦ ak) ◦ · · · ◦ ak]] ◦ ai2 ] · · · ] ◦ aim .

The lemma has been proved. �

Consider an arbitrary algebra K which will in general be nonassociative. Let
Γ be a subsemigroup of the additive group of K, and suppose that the elements
of Γ satisfy the following homogeneous identical relation (in K):

f(γp1
1 , γp2

2 , . . . , γpk

k ) = 0, for all γi ∈ Γ.

Here, f(xp1
1 , x

p2
2 , . . . , x

pk

k ) denotes a (nonassociative) homogeneous polynomial in
the variables xi (i = 1, 2, . . . , k), in each of whose monomials xi occurs pi times,
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and whose coefficients can be taken to be elements of an arbitrary associative
ring2 Σ.

Definition 6. By the multilinear polynomial

f(x11, . . . , x1p1 , x21, . . . , x2p2 , . . . , xk1, . . . , xkpk
),

corresponding to the polynomial

f(xp1
1 , x

p2
2 , . . . , x

pk

k ),

we mean the polynomial obtained from f by first replacing each variable xi by
one of the variables xis so that in each monomial exactly one xis occurs, and
then summing over all permutations of the symbols xi1, xi2, . . . , xipi for all i =
1, 2, . . . , k.

For example, if
f(x3

1, x
2
2) = [(x1x2)x1](x1x2),

then

f(x11, x12, x13, x21, x22) =

[(x11x21)x12](x13x22) + [(x11x22)x12](x13x21) + [(x11x21)x13](x12x22)

+ [(x11x22)x13](x12x21) + [(x12x21)x11](x13x22) + [(x12x22)x11](x13x21)

+ [(x12x21)x13](x11x22) + [(x12x22)x13](x11x21) + [(x13x21)x11](x12x22)

+ [(x13x22)x11](x12x21) + [(x13x21)x12](x11x22) + [(x13x22)x12](x11x21).

Lemma 5. For arbitrary elements γij (i = 1, 2, . . . , k; j = 1, 2, . . . , pi) of the semi-
group Γ in K, the following relation holds:

f(γ11, . . . , γ1p1 , γ21, . . . , γ2p2 , . . . , γk1, . . . , γkpk
) = 0.

Proof. Suppose that

p1 = p2 = · · · = ps−1 = 1, ps > 1.

From the properties of the semigroup Γ it follows that the polynomial

f
(
x1, x2, . . . , xs−1, (xs1 + xs2 + · · · + xsps)

ps , x
ps+1
s+1 , . . . , x

pk

k

)

−
ps∑

q=1

f
(
x1, x2, . . . , xs−1,

[( ps∑

j=1

xsj

)− xsq

]ps
, x

ps+1
s+1 , . . . , x

pk

k

)

+
∑

ps≥q1>q2≥1

f
(
x1, x2, . . . , xs−1,

[( ps∑

j=1

xsj

)− xsq1 − xsq2

]ps
, x

ps+1
s+1 , . . . , x

pk

k

)

− · · · + (−1)ps−1

ps∑

t=1

f
(
x1, x2, . . . , xs−1, x

ps

t , x
ps+1
s+1 , . . . , x

pk

k

)
,

vanishes, if the variables are replaced by arbitrary elements of Γ.

2It is implicit that Σ is also commutative. [Translators]
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Now a simple calculation performed for each monomial of the polynomial f
shows that the polynomial above is linear in each variable xsi (i = 1, 2, . . . , ps),
and can be obtained from f by first replacing each occurrence of the variable xs in
each term by one of the variables xsi so that in each monomial of f exactly one xsi

occurs, and then summing over all permutations of the symbols xs1, xs2, . . . , xsps .
Performing this construction consecutively for all s from 1 to k, we obtain the
desired result. This completes the proof of the lemma. �

Remark. This rather simple statement, in a weaker formulation, has appeared
many times already in algebraic papers, but usually it was proved for algebras
over a field (see, for example, [6]) with some restrictions on the field.

3. Semispecial Jordan rings and algebras

Consider a semispecial Jordan ring I, i.e., a ring embeddable in some associative
ring A0(I) such that the set of elements corresponding to the elements of I forms a
Jordan ring isomorphic to I with respect to addition and the Jordan multiplication
a ◦ b = ab+ ba. If, for some element c of I there exists a natural number n(c) such
that cn(c)−1 �= 0 and cn(c) = 0, then we will call c as usual a nilpotent element of
index n(c).

Definition 7. If all elements of the ring I are nilpotent, and their indices are
uniformly bounded, then we will say that I is a Jordan nil-ring of bounded index.

Definition 8. An arbitrary ring S is called nilpotent if there exists a natural number
N(S) such that the product of any N(S) elements of S, with any arrangement of
brackets, is equal to zero.

Theorem 1. Any semispecial Jordan nil-ring of bounded index with finitely many
generators, and without elements of order 2 in the additive group, is nilpotent.

Definition 9. The intersection of all subrings of A0(I) that contain I will be called
an enveloping associative ring A(I) of the semispecial Jordan ring I.

It is easy to see that the enveloping ring A(I) is the subring generated in
A0(I) by an arbitrary set of generators of I.

The validity of Theorem 1 will follow from Theorem 2, which generalizes a
theorem of Levitzki [5] (generally speaking).

Theorem 2. Any enveloping associative ring A(I), without elements of order 2 in
the additive group, of a semispecial Jordan nil-ring I of bounded index with a finite
number of generators, is nilpotent.

Proof. Suppose the ring I has R = {ai} (i = 1, 2, . . . , k) as a set of generators.
We will regard the same set R as a set of generators of A(I). We will carry out
the proof of Theorem 2 by induction, assuming its validity in the case when the
number of generators of I equals k − 1.
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Consider an arbitrary R-word α of length m[N(M,n, n) + 2] where m is the
maximal length of nonzero ak-irreducible words (here we are using the inductive
hypothesis), M is the number of such words, and n is a bound on the indices of
the elements of I. Then, in the word α we can find a subword β that is a T -word
and has T -length equal to N(M,n, n).

By Lemma 3, in the word β there exists either a subword repeated n times
consecutively, or an n-decomposable subword γ. We will consider both possibilities
one after the other.

1. β = β1 γγ · · · γ︸ ︷︷ ︸
n times

β2. By Lemma 4, the word γ is special. Thus, there exists

a natural number p such that 2pγ is the highest term of a Jordan polynomial
bγ . Since bnγ = 0, the element 2npβ can be written as a linear combination with
integral coefficients of words of the same R-length that strictly precede the word
β. Therefore 2npα can also be expressed in a similar way.

2. β = β1γ1γ2 · · · γnβ2. The elements of I form a subgroup of the additive
subgroup of A(I). By Lemma 5, the relation xn

1 = 0 that holds in A(I) for the
elements of I, implies the relation

∑
p xi1xi2 · · ·xin = 0, where the summation

extends over all permutations (i1, i2, . . . in) of the symbols 1, 2, . . . , n.
By Lemma 4, the elements γi are special, and thus, up to a factor of the form

2s, each element γi is the highest term of a Jordan polynomial bγi .
Using the definition of n-decomposition, and the defining property of the

Jordan polynomials bγi , we see that the relation
∑

p bγi1
bγi2

· · · bγin
= 0 implies

that the element 2sβ, for some non-negative integer s, can be expressed as a linear
combination with integral coefficients of words preceding β. Therefore, 2sα can
also be expressed in a similar way.

Thus, we have arrived at the conclusion that either α = 0 or the element 2sα
can be expressed as a linear combination with integral coefficients of words that
have the same R-length as α but precede α. Since a decreasing sequence of words
of the same length must terminate, it follows that for some non-negative integer s1,
we have the equality 2s1α = 0; the absence of elements of order 2 in the additive
group of A(I) implies that α = 0. Theorems 2 and 1 have been proved. �

Without changing the notation, we will now assume that I is a special al-
gebraic Jordan algebra over a field F of characteristic different from 2 and that
the degrees of the elements of I are bounded by n. In other words, each element
of I is a root of some (associative) polynomial of degree n in one variable x with
coefficients from F (compare [4]).

Let Pt(x1, x2, . . . , xt) =
∑±xi1xi2 · · ·xit be the alternating sum of the n!

terms that are obtained from the product x1x2 · · ·xt by all possible permutations
of the factors; the sign of each term depends on the parity (even + or odd −) of
the corresponding permutation.
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Lemma 6. For any elements a, b1, b2, . . . , bn−1 of the algebra I, the following equa-
tion holds in any enveloping associative algebra A(I):

P2n−1(a, a2, . . . , an, b1, b2, . . . , bn−1) = 0.

Proof. It is easy to see that each alternating sum Pt of the above form equals zero
if any two of the arguments are equal. On the other hand, by assumption, for each
element a ∈ I there exist elements δi(a) ∈ F such that

an = δ1(n)an−1 + δ2(n)an−2 + · · · .
To complete the proof of Lemma 6, we substitute the above expression for an into
the left-hand side of the desired equation. �

The equation just proved is not trivial, i.e., it does not hold in all associative
algebras. Indeed, the term ab1a

2b2 · · · an−1bn−1a
n, for example, appears only once.

Theorem 3. Any enveloping associative algebra A(I) of a special algebraic Jordan
algebra I of bounded degree over a field F of characteristic �= 2, is locally finite,
i.e., each finite subset of its elements generates a subalgebra of finite dimension.

Proof. Any subalgebra AQ(I) of A(I), that has a finite number of generators, is
contained in a subalgebra AR(I) whose set of generators R = {ai} (i = 1, 2, . . . , k)
consists of elements of I. We will prove the finiteness of the dimension of AR(I) by
induction on k. Assume that subalgebras generated in A(I) by k− 1 elements of I
have finite dimension. Then, there exists a natural number m such that each word
of length ≥ m formed from elements of the set R′ = R \ {ak} can be expressed as
a linear combination of words of smaller length. Consider an R-word α of length

(m+ n)
[
N

(
M,n,

1
2
(n2 + 3n− 2)

)
+ 1
]
,

where M is the number of distinct ak-irreducible words that cannot be represented
as linear combinations of R-words of smaller R-length, and n is a bound on the
degrees of the elements of I. Theorem 3 will be proved if we can show that α can
be represented as a linear combination of words of smaller R-length.

If α = α′βα′′ where α′ is an R′-word, β is a T -word, and α′′ = akak · · · ak,
then we may assume that the R-lengths of the words α′ and α′′ are less than
(respectively) m and n, because in the contrary case there would be nothing to
prove. Then, the R-length of β is greater than

(m+ n)N
(
M,n,

1
2
(n2 + 3n− 2)

)
.

We may assume that each of the ak-irreducible words that occur in β cannot be
represented as a linear combination of R-words of smaller R-length. Each such
word has R-length less than m+ n. Thus, the T -length of β is greater than

N

(
M,n,

1
2
(n2 + 3n− 2)

)
.
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By Lemma 3 we can claim that in the word β there exists either a T -subword
repeated n times consecutively or a 1

2 (n2 + 3n− 2)-decomposable T -subword. We
will consider separately both possibilities.

1. β = β1γ1γ1 · · · γ1β2. Using the algebraicity of the Jordan polynomial bγ1

defined analogously to how it was done in the proof of Theorem 2, we obtain an
expression of β (and thus also of α) as a linear combination of preceding words (in
the sense of lexicographical order) and words of smaller R-length.

2. β = β1γ1γ2 · · · γn′β2 for n′ = 1
2 (n2 + 3n− 2). By Lemmas 6 and 5, for the

Jordan polynomials bγis
(s = 1, 2, . . . , n′) we have a non-linear relation of degree

n′ = (1+2+· · ·+n)+(n−1). From this it follows that the product bγ1bγ2 · · · bγn′ can
be expressed as a linear combination of products obtained from it by permuting
the factors. As in the proof of Theorem 2, we conclude that it is possible to express
the word β, and thus also α, as a linear combination of preceding words.

Applying the argument repeatedly to the words produced, we will obtain in
the end an expression of α as a linear combination of words of smaller R-length.
This completes the proof of the theorem. �

The following result is an obvious consequence of Theorem 3:

Theorem 4. Any special algebraic Jordan algebra of bounded degree, over a field F
of characteristic �= 2, is locally finite.

Remark 1. The question remains open, whether we can remove the hypotheses of
semispeciality and speciality in Theorems 1 and 4. However, from the work of the
present author [8] and Theorems 1 and 4, it follows that any two elements generate
a nilpotent subring (respectively a subalgebra of finite dimension) in a Jordan nil-
ring of bounded index (respectively in an algebraic Jordan algebra of bounded
degree) under the same restriction on the additive group of the ring (respectively
the characteristic of the base field of the algebra).

Remark 2. The restrictions on the additive group (respectively on the character-
istic of the field) are essential, as shown already by the example of the free Lie
algebra on two generators over a field of characteristic 2, which is a semispecial
Jordan algebra by Birkhoff and Witt (see [2] and [9]) but has infinite dimension.

4. Right alternative and alternative rings and algebras

It is well known that a ring S is called right alternative (respectively, left-alterna-
tive) if for any two elements a and b we have (ab)b = a(bb) (respectively, b(ba) =
(bb)a). A ring that is simultaneously right and left alternative is called alternative.
It is known [7] that, under the operation of addition and Jordan multiplication
a ◦ b = ab+ ba, the elements of a right alternative ring form a semispecial Jordan
ring. Lemma 5 implies the following well-known multilinear relation:

(ab)c+ (ac)b = a(bc) + a(cb), (1)

for all elements a, b and c of a right alternative ring S.
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Fixing a set of generators R of the right alternative ring S and assuming
that S has no elements of order 2 in its additive group, we transfer Definition 4 to
the elements of the right alternative ring. For example, the element (a1a2)a1 is a
Jordan polynomial since using relation (1) we can easily verify that

22(a1a2)a1 = 2a1 ◦ (a2 ◦ a1) − (a1 ◦ a1) ◦ a2;

on the other hand, the element a1(a2a1) is not a Jordan polynomial.

Definition 10. Let ai1ai2 · · · ais be an associative word in the elements of the set
R. Then we set

〈ai1ai2 · · · ais〉 = {· · · [(ai1ai2)ai3 ]ai4 · · · }ais .

We extend the operation 〈 〉 to nonassociative words by ignoring the existing
arrangement of parentheses, and then to linear combinations of those words. For
example,

〈 (ab)(cd) +m[n(pq)] 〉 = [(ab)c]d+ [(mn)p]q.

We will indicate by a bar over some subword or element that this subword or
element is considered as a generator and is not subjected to change. For example,

〈 [ (ab) (cd) ] (mn) 〉 = {[(ab)(cd)]m}n = 〈 [(ab)(cd)] (mn) 〉,
and

〈 [ (ab) (cd) ] (mn) 〉 = {[(ab)c]d}(mn).

If an element q of the free nonassociative ring on the set of generators R lies
in the ideal generated by the element of the form (ab)b − a(bb), then obviously
〈q〉 = 0.

Lemma 7. If m is an element of a right alternative ring S that has no elements
of order 2 in the additive group, and d is a Jordan polynomial, then we have the
equation:

md = 〈md〉.
Proof. By the last remark, it suffices to prove the lemma under the assumption
that d is a Jordan monomial, i.e., it can be written as the Jordan product of some
factors from R.

If d has degree 1, i.e., is an element of R, then there is nothing to prove.
Suppose d has degree n > 1, and for lower degrees the statement has already been
proved. Then d = d1 ◦ d2, where d1 and d2 are Jordan monomials to which we can
apply the inductive hypothesis. Then

md = m(d1d2) +m(d2d1) = (md1)d2 + (md2)d1 = 〈md1〉d2 + 〈md2〉d1

= 〈(md1)d2〉 + 〈(md2)d1〉 = 〈m(d1 ◦ d2)〉 = 〈md〉.
Here we have used equation (1), the inductive hypothesis, and the linearity of the
operation 〈 〉. This completes the proof. �
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Lemma 7 and the fact proved above that the element (a1a2)a1 is a Jordan
polynomial, imply under our assumptions the following well-known equation:

a[(bc)b] = [(ab)c]b, (2)

for all elements a, b and c of S.

Lemma 8. Under the assumptions of Lemma 7, we have d = 〈d〉.
Proof. Using the method of the proof of Lemma 7 and the lemma itself, we obtain
this series of equations:

d = d1 ◦ d2 = d1d2 + d2d1 = 〈 d1 d2 〉 + 〈 d2 d1 〉 = 〈d1d2〉 + 〈d2d1〉 = 〈d〉,
which complete the proof. �

Definition 11. A monomial q of the free nonassociative ring with the set of gener-
ators R = {ai} (i = 1, 2, . . . , k) is called an r1-word if q = 〈q〉. By induction we
define an ri-word to be an r1-word in ri−1-words. For example, the words

{[(a1a2)a3]a4}a5 and ({(a1a2)[(a2a1)a3]}a4)(a1a3),

are respectively r1- and r2-words.

Lemma 9. Every element b, of an alternative ring C that has no elements of order
2 in its additive group, can be represented as a linear combination with integer
coefficients of r2-words in any set R of generators of C.

Proof. Obviously, it suffices to prove the lemma assuming that b is a monomial.
For monomials of degree ≤ 3 the statement of the lemma is trivial. Suppose that
the lemma has been proved for degrees < n, and the degree of the monomial b is
n. Using this assumption we have:

b = b′b′′ =
∑

i

b2i(c2id1i), where bji, cji, dji are rj-words.

It now suffices to prove the lemma for monomials of degree n of the form
b2i(c2id1i). If the degree of the monomial c2id1i is less than or equal to 2, then our
statement is trivially true. Let us perform a second induction, with the inductive
hypothesis that the lemma is valid for monomials of degree n if the degree of the
right factor is less than m.

Suppose now that the monomial b2i(c2id1i) has degree n, and that the mono-
mial c2id1i has degree m where 3 ≤ m < n. First we assume that the monomial
d1i has degree 1. We will need these two well-known relations,

(ab)c+ (ba)c = a(bc) + b(ac), (3)

(ab)c+ (cb)a = a(bc) + c(ba), (4)

that hold for any elements a, b, c of an alternative ring. Relation (3) is the analogue
of relation (1) and holds in any left alternative ring; relation (4) (flexibility) is an
immediate consequence of the relations (1) and (3). Using consecutively relations
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(4) and (1) we obtain:

b2i(c2id1i) = −d1i(c2ib2i) + (b2ic2i)d1i + (d1ic2i)b2i

= d1i(b2ic2i) − (d1ib2i)c2i + (b2ic2i)d1i.

We can apply the second inductive hypothesis to the monomials (d1ib2i)c2i and
(b2ic2i)d1i.

Consider the monomial d1i(b2ic2i). Its factor b2ic2i has degree n−1, so b2ic2i =∑
t �2tp1t. Using consecutively relations (3) and (1), we have

d1i(b2ic2i) =
∑

t

d1i(�2tp1t) =
∑

t

[−�2t(d1ip1t) + (d1i�2t)p1t + (�2td1i)p1t]

=
∑

t

[�2t(p1td1i) − (�2tp1t)d1i + (d1i�2t)p1t].

Since the monomial d1i has degree 1, and �jt and pjt are rj-words, then obviously
the inductive hypothesis applies to all the words that we obtain (p1td1i is an
r1-word, and (d1i�2t)p1t can be expressed in terms of r2-words, since when we
right-multiply an r2-word by an r1-word we obtain an r2-word by Definition 11).

Thus the lemma has been proved assuming the inductive hypotheses and
making the additional assumption on d1i. This provides the basis for a third in-
duction with the hypothesis that the lemma is valid if we assume the second
inductive hypothesis when the degree of d1i is less than k. Suppose now that this
degree is equal to k for 1 < k < m.

Keeping the same meaning of the indices, we have

b2i(c2id1i) = b2i[c2i(d′1ias)],

where the monomial d′1i has degree k − 1 and as ∈ R.
Applying Lemma 5 to relation (2), we obtain the relation

a[(b′c)b′′] + a[(b′′c)b′] = [(ab′)c]b′′ + [(ab′′)c]b′, (5)

that holds for all elements a, b′, b′′, c of the ring C. Using consecutively relations
(1) and (5) we obtain

b2i[c2i(d′1ias)] = −b2i[(d′1ias)c2i] + ω1 = b2i[(c2ias)d′i1] + ω2 = ω3,

where the ωi are linear combinations of monomials to which we can apply the
inductive hypothesis. This completes the proof of Lemma 9. �

Definition 12. A ring S with a set of generators R is called right nilpotent relative
to R if there exists a natural number m such that for any R-monomial d of degree
≥ m we have 〈d〉 = 0.

Since any right alternative ring S is a power associative ring, Definition 7 of
nil rings can be transferred without any change to right alternative rings.

Theorem 5. Every right alternative nil-ring S of bounded index without elements
of order 2 in the additive group is locally right-nilpotent relative to any set of
generators.
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Theorem 5 is a consequence of the following result:

Theorem 6. If the Jordan polynomials of a right alternative ring S, without el-
ements of order 2 in the additive group and with a set of generators R = {ai}
(i = 1, 2, . . . , k), are nilpotent of uniformly bounded index, then S is right-nilpotent
relative to R.

Proof. Let the number n be a bound on the indices of the Jordan polynomials of
the ring S. In the free associative ring A with the set of generators R, we consider
the ideal I1 generated by the n-th powers of all Jordan polynomials. Theorem 2
implies that, for any monomial q of the ring A with degree ≥ m[N(M,n, n) + 2],
there exists a natural number sq such that 2sqq ∈ I1, i.e., 2sqq =

∑
r �rcrj

n
r dr,

where the �r are integers, the cr and dr are monomials which may be absent, and
the jr are Jordan polynomials.

Since the last equation holds in the free associative ring, then in any (nonas-
sociative) ring on the same set of generators, the following relation will be valid:

2sq〈q〉 =
∑

r

�r〈crjn
r dr〉.

Using Lemma 7 and if necessary Lemma 8, we obtain that in the ring S,

2sq〈q〉 =
∑

r

�r〈〈crjn
r 〉dr〉 =

∑

r

�r〈〈cr〉jn
r dr〉 = 0,

since any power of a Jordan polynomial is again a Jordan polynomial. This com-
pletes the proof of Theorems 5 and 6. �
Theorem 7. Any alternative nil-ring S of bounded index, without elements of or-
der 2 in the additive group, is locally nilpotent.

Proof. Every finite set R = {ai} (i = 1, 2, . . . , k) in the ring S generates, by
Theorem 6, a subring that is right-nilpotent relative to R. The finite set R1 of
nonzero r1-words in S generates a subring S1 that is right-nilpotent relative to
R1. From the proof of Lemma 9 it follows that any R-monomial q in the ring
S can be written as a linear combination with integer coefficients of r2-words of
the same R-length. If q is an r2-word of sufficiently large R-length, then from the
right-nilpotency of the ring S1 it follows that q = 0. This completes the proof. �
Lemma 10. In any right alternative algebra S, which is algebraic of bounded degree
over a field F of characteristic �= 2 and is generated by a finite set R, there exist
only finitely many linearly independent r1-words (relative to R).

Proof. For any Jordan polynomial js, the following equation holds:

fs(js) = jn
s + δs1j

n−1
s + δs2j

n−2
s + · · · = 0,

where δsi ∈ F .
Consider the free associative algebra A over F with the set R of generators,

and the ideal I1 in A generated by all elements fs(js). From Theorem 3 it follows
that the quotient algebra A = A/I1 is locally finite.
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We will show that the linear dependence in A of the images of some words qi
(i = 1, 2, . . . , t) implies the linear dependence of the r1-words 〈qi〉 in the algebra
S. The former linear dependence is equivalent to the following relation in the free
associative algebra A:

t∑

i=1

µiqi +
∑

s

ρscsfs(js)ds = 0,

where µ, ρ ∈ F and cs, ds are some monomials. As in the proof of Theorem 6, we
obtain that

t∑

i=1

µi〈qi〉 +
∑

s

ρs〈〈cs〉 fs(js) ds〉 = 0,

from which it follows that
∑t

i=1 µi〈qi〉 = 0 in the algebra A. This completes the
proof. �
Theorem 8. Any algebraic alternative algebra S of bounded degree over a field F
of characteristic �= 2 is locally finite.

The validity of this theorem follows immediately from Lemmas 9 and 10.
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On Rings with Identical Relations

A.I. Shirshov

1. Introduction

The present work is a sequel to the author’s paper [6]. In order to avoid repeating
numerous definitions and explaining many notations, which would take up an
unjustifiable amount of space, the author will limit himself to frequent references.

The first part of this work (§2) is devoted to associative rings with identical
relations. In that section, Theorem 1 is proved, which establishes a local finiteness
property for such rings, and consequences of that theorem which follow almost
immediately are pointed out, including in particular the theorem of Kaplansky [2]
on local finiteness of algebraic algebras with identical relations. In the last section
(§3), a certain generalization of Kaplansky’s theorem to the case of alternative
rings (Theorem 5) is proved.

2. Associative rings with identical relations

First we consider associative algebras that satisfy one or more identical relations.
Examples of such algebras are commutative algebras and algebras of finite dimen-
sion. These examples demonstrate the breadth of this class of associative algebras,
and the importance of obtaining general theorems that hold for arbitrary associa-
tive algebras with identical relations.

It is known (see for example [4] and [6]) that one may assume that such an
algebra satisfies a multilinear identity. Obviously, such an identity can always be
written in the form

x1x2 · · ·xn =
∑

(i1,i2,...,in)

αi1i2···inxi1xi2 · · ·xin , (1)

Mat. Sbornik N.S. 43 (85), (1957), no. 2, 277–283.
c© 2009 Translated from the Russian original by M.R. Bremner and M.V. Kochetov.
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where the summation on the right side is over all permutations (i1, i2, . . . , in) of
the symbols 1, 2, . . . , n other than the identity permutation (1, 2, . . . , n), and all
the coefficients αi1i2...in belong to the base field.

Definition 1. If a word s in some symbols v1, v2, . . . , vr can be written in the form

s = vm1
i1
vm2

i2
· · · vmk

ik
where vi�

�= vi�+1 ,

then the natural number k will be called the height of the word s relative to the
set {vi}.

Obviously, the word s = v1v1v2v1v1v2v1v1v2, for example, has height 6 rela-
tive to the set {v1, v2}, and height 1 relative to the word v1v1v2.

Definition 2. Let A be an algebra with a finite number of generators a1, a2, . . . , a�.
Suppose that there exists a set t1, t2, . . . , tk of elements which are homogeneous
in each ai such that each word s in the generators ai is equal in A to some linear
combination of words in the elements tj that have the same content (relative to
the set {ai}) as the word s and have height (relative to the set {tj}) less than
or equal to some given number q. In this case, we will say that the algebra A has
bounded height. If every finite subset of an algebra B generates a subalgebra of
bounded height, then we will say that the algebra B has locally bounded heights.

Obviously, any commutative algebra has locally bounded heights.

Theorem 1. Any associative algebra (over a field) which satisfies an identical re-
lation of degree n has locally bounded heights (relative to some set of words whose
degrees are less than n, with respect to any set of generators).

Proof. Suppose the algebra A is generated by a1, a2, . . . , ak. According to Lemma
3 of [6], there exists a natural number N = N(n) such that for every word of
length N in the generators ai there exists either an n-decomposable subword [6,
Definition 3] or a subword of the form b2

n

. First, we will prove that if b has length
m ≥ n then some subword of the word b2

n

is itself n-decomposable; without
loss of generality we may assume that the word b cannot be written in the form
b
t

for some t > 1. Using cyclic permutations of the generators, we can form m
different words from the word b, namely b = b0, b1, . . ., bm−1. We can order these
words lexicographically: bi0 > bi1 > · · · > bim−1 . Obviously, the word b2

n

can be
written in the form b2

n

= cb′i0b
′
i1 · · · b′im−1

, where each of the words b′i has bi as
an initial subword. Furthermore, it is obvious that the subword b′i0b

′
i1
· · · b′im−1

is
m-decomposable, and consequently, it contains an n-decomposable subword. By
relation (1), every n-decomposable word can be represented as a linear combination
of (lexicographically) smaller words. From this, it follows that every word of length
N in the generators ai is equal to a linear combination of words that have the same
content relative to the generators but contain subwords of the form b2

n

where b
has length < n.

The last remark implies that if the height of a word s is sufficiently large,
and the word s does not contain n-decomposable subwords, then there exists a
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subword s1 of the form s1 = bnb′ where the lengths m, m′ of the words b, b′ satisfy
the inequality n > m ≥ m′ and the word b′ is not an initial subword of b. Since
the set of possibilities for the words b and b′ is finite, it easily follows that there
exists a sufficiently large natural number M such that every word s of height M
relative to some set of words of length < n is a linear combination of words of the
same content which are lexicographically not greater than s and such that each of
these words has n equal subwords of the form s1 = bnb′ (which are not necessarily
consecutive). However, every such word has a subword that is n-decomposable in
one of the following ways:

α0(bnb′α1b)(bn−1b′α2b
2)(bn−2b′α3b

3) · · · (bb′αn),

α0b
n(b′α1b

n−1)(bb′α2b
n−2)(b2b′α3b

n−3) · · · (bn−1b′αn),

depending on which of the words b and b′ is lexicographically greater. Therefore,
each word of height ≥M can be written as a linear combination of words of smaller
height. The proof is complete. �

Now we pass to associative algebras over an arbitrary commutative associa-
tive coefficient ring Σ.

Definition 3. An identical relation satisfied by an associative algebra over Σ will be
called admissible if (after combining similar terms) at least one of the coefficients
of a term of highest degree is equal to 1.

Theorem 2. If an associative ring C over Σ satisfies an admissible identical relation
of degree n, then the ring C has locally bounded heights (relative to some set of
words whose degrees are less than n, with respect to any set of generators).

Proof. Suppose that the distinguished term of degree n (with coefficient 1) of the
identity involves the variables x1, x2, . . . , xk to degrees n1, n2, . . . , nk (respectively)
with

∑k
i=1 ni = n. Linearizing this term [6, Lemma 5] consecutively with respect

to x1, x2, . . . , xk, we eliminate all the terms in which at least one of the xi has
degree less than ni. (If ni = 1 then we consider the relation

φ(xi, x
′
i) = f(xi + x′i) − f(x′i) = 0,

where f is the left side of the original identity.) Since similar terms cannot appear
as a result of this process, the multilinear identity thus obtained will have at least
one term with coefficient 1. Performing, if necessary, a permutation of the variables,
we obtain an identity of the form (1) which was used in the proof of Theorem 1.
The remainder of the proof is a repetition of the proof of Theorem 1. �

We now consider some corollaries of the results already proved.

Theorem 3. Let A be an associative ring over Σ with an admissible identical rela-
tion of degree n. If all products in A of fewer than n generators are nilpotent, then
A is locally nilpotent.

The proof of this theorem is obvious.



134 A.I. Shirshov

Corollary 1. If all products of degree ≤ n of the generators of an associative algebra
A of dimension n are nilpotent, then A is nilpotent.

This statement follows from the known fact that any algebra of dimension n
satisfies an identical relation of degree n + 1: the alternating sum of all (n + 1)!
distinct products of n+ 1 distinct variables is identically zero.

Definition 4. An element a of an associative ring A will be called algebraic1 over
the subring Z1 of the center Z of A if there exist elements zi ∈ Z1 and a natural
number m such that this equation holds:

am =
m−1∑

i=1

zia
m−i.

Definition 5. If the associative ring A has elements b1, b2, . . . , bk such that for some
natural number m every element c ∈ Am can be written in the form

c =
k∑

i=1

zibi,

where the elements zi belong to the subring Z1 of the center Z, then A will be
called finite over Z1.

As in the case of algebras of finite dimension, it is obvious that a ring, which
is finite over its center, satisfies an admissible identical relation. The following
stronger result follows immediately from Theorem 2.

Theorem 4. Let A be an associative ring with a finite number of generators and
an admissible identical relation of degree n. If all products in A of fewer than n
generators are algebraic over the subring Z1 of the center of A, then A is finite
over Z1.

In the special case where Z1 is the zero subring, Theorem 4 includes Levitski’s
theorem [3]; it also contains a more general theorem of Kaplansky [2] (it suffices
to adjoin a unit element).

3. Alternative and special Jordan rings with identical relations

In what follows, we will consider alternative rings without elements of order 2 in
the additive group, satisfying some identical relation which is not a consequence
of associativity.

Definition 6. An identical relation f(x1, x2, . . . , xn) = 0, satisfied by an alternative
ring, will be called essential if at least one of the coefficients of the highest degree
terms of the element 〈f〉 [6, Definition 9] of the free nonassociative ring in the
generators xi is equal to 1 (after combining similar terms).

1The current term is “integral”. [Translators]
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Definition 7. An identical relation I = 0 in a special Jordan ring will be called
admissible if the relation F = 0 is admissible, where F is the associative polynomial
obtained by expanding the Jordan polynomial I.

Lemma 1. If an alternative ring K satisfies an essential identical relation, then
the corresponding special Jordan ring K+ satisfies an admissible identical relation.

Proof. Let f(x1, x2, . . . , xq) = 0 be the identical relation that holds inK. If we sub-
stitute in f the monomial xyi for xi then we obtain an essential relation φ(x, y) = 0.
If φ(x, y) is the polynomial obtained from φ by reversing the order of variables in
each monomial, then [5, §3] the ring K satisfies the admissible essential identical
relation ψ(x, y) = φ(x, y)φ(x, y) = 0. However, the polynomial ψ(x, y) is a Jordan
polynomial, since ψ = ψ (see [1, 5]); we have also used the associativity of an
alternative ring on two generators. Regarding ψ(x, y) ≡ I(x, y) as a Jordan poly-
nomial, we see that the Jordan polynomial I(x, y) is identically zero in K+. The
proof of the lemma is complete. �

Definition 8. The center Z of a (nonassociative) ring T is the set of all elements
x ∈ T such that xa = ax and (xa)b = x(ab) = a(bx) for all elements a, b ∈ T .

It is easy to verify that Z is a subring.

Remark. When we consider the center of an alternative ring, we can, generally
speaking, limit ourselves in Definition 8 to the condition xa = ax. We do not do
this, because we do not wish to distract the reader from the main goal of this work
by the details that arise.

We extend Definitions 4 and 5 to alternative rings.

Theorem 5. Let K be an alternative ring with a finite number of generators and an
essential identical relation. If Z1 is any subring of the center for which all Jordan
monomials in r2-words of the generators are algebraic over Z1, then K is finite
over Z1.

Proof. Let λ be the maximal element of the set R of generators of the ring K.
Consider an r1-word w in the elements of the set R such that λ occurs consecutively
fewer than m(λ) times where m(λ) is the degree of the element λ. We perform
λ-factorization of the associative word w obtained from w by omitting parentheses,
and denote by dλ(w) the number of λ-irreducible factors.

Suppose that in the word w there appear k distinct λ-irreducible words and
dλ(w) > N(k, s, n) [6, Lemma 3], where n is the degree2 of the identical relation
that holds in K, and s ≥ 2n is the upper bound on the degrees of all r1-words v
that correspond to subwords v of w formed by λ-irreducible subwords for which
dλ(v) < n. From [6, Lemma 3] and the proof of Theorem 1 it follows that the word
w has a subword u which has either the form u = u1u2 · · ·un−1un or the form

2The number n should denote not the degree of the identity in K but in K+. In general it is not
the same and much bigger. [Editors]
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u = (u′)s where u′ and ui are words formed by λ-irreducible words, dλ(u′) < n,
and u1u2 · · ·un−1un is an n-decomposition of u.

In each of these cases, we can express the word w as a linear combination of
r1-words that are smaller than w, together with words with coefficients in the ring
Z1 such that the R-lengths of these latter words are strictly less than the R-length
of w. Since the arguments are completely analogous, we will consider only the first
case.

Let w = αuβ where u = u1u2 · · ·un−1un. The words ui (up to a scalar multi-
ple of the form 2t) are the maximal (associative) words of some Jordan monomials
bui [6, Lemma 4]. Thus the element

W = 〈αbu1bu2 · · · bunβ〉 = 〈αbu1bu2 · · · bunβ〉,
(recall the notation3 from [6, §4]) has w as the leading term. According to the last
lemma, there exists a Jordan polynomial I(x1, x2, . . . , xn) that is identically zero
in K and has the word x1x2 · · ·xn as its maximal (associative) word. Since

〈αI(bu1 , bu2 , . . . , bun)β〉 = 0, and

〈αI(bu1 , bu2 , . . . , bun)β〉 = 〈αI(bu1 , bu2 , . . . , bun)β〉,
the word w is equal to a linear combination of (lexicographically) smaller r1-words.

Using the above arguments, we carry out induction on the number of gen-
erators, and see that first, every sufficiently long λ-irreducible word is a linear
combination of shorter λ-irreducible words, which justifies the introduction of the
number k, and second, every sufficiently long r1-word is a linear combination of
shorter r1-words with coefficients in Z1. This statement immediately carries over
to r2-words which, by virtue of Lemma 9 of reference [6], completes the proof. �

Let us point out, for example, the following two corollaries of Theorem 5.

Corollary 2. Any alternative algebraic algebra with an essential identical relation
is locally finite.

The proof of this statement follows from the sufficiently obvious fact that
adjoining a unit element preserves algebraicity and also preserves the property of
having an identical relation. (For example, the identical relation

f(x1, x2, . . . , xn)
∑

(−1)i〈xi1xi2 · · ·xin〉 = 0

holds4, where f(x1, x2, . . . , xn) = 0 is the original relation and i = (i1, i2, . . . , in)
ranges over all permutations of the symbols 1, 2, . . . , n, and (−1)i = ±1 according
to the parity of the permutation i.)

3The bar here has a different meaning from earlier in this proof, up to and including the first
sentence of this paragraph. [Translators]
4In fact, this identical relation may not hold. For instance, if f(x, y) = xxy = 0 holds in A, then
xxy[x, y] = 0 does not necessary hold in the algebra A⊕Z1 with an external unit element 1. We
can consider instead the identical relation f([x1, y1], . . . , [xn, yn]). [Editors]
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Corollary 3. The enveloping associative algebra, of an algebraic special Jordan
algebra of characteristic �= 2 with a finite number of generators and an identical
relation, has finite dimension.

The proof of this statement follows from the fact that the existence of an iden-
tical relation for the Jordan polynomials in the generators is sufficient to guarantee
that the number of linearly independent r1-words is finite.
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On Free Lie Rings

A.I. Shirshov

1. Introduction

Let Σ be a commutative associative ring with unit, let R = {aα} be some set of
symbols, and let AΣR be the free associative algebra over Σ with free generating
set R. In the ring AΣR, the set R generates a Lie subring A

(−)
ΣR with respect to the

operations x ◦ y = xy − yx, addition, and scalar multiplication by elements of Σ.
If Σ is a field, then it is known that A

(−)
ΣR is the free Lie algebra with free

generating set R. This result can be derived as an immediate corollary of the
Birkhoff-Witt theorem [1, 10]. Since the Birkhoff-Witt theorem cannot be general-
ized to algebras over an arbitrary coefficient ring [7], the question naturally arises
whether the ring A

(−)
ΣR is free for arbitrary Σ. In the present paper, a positive

answer is given to this question.
For the cases when Σ is a field of characteristic 0 (and also for the case of

the so-called restricted Lie algebras), a number of authors [2, 3, 4, 6, 9] concerned
themselves with the problem of determining necessary and sufficient conditions
under which a given element of AΣR belongs to A

(−)
ΣR . In §3 this problem is

resolved without any restrictions on the ring Σ.
Finally, in §4 it is proved that any Lie algebra over a field, with at most

countable dimension, can be isomorphically embedded into a Lie algebra with two
generators.

All the above-mentioned results are simultaneously proved for restricted Lie
algebras.

2. Choice of basis in the ring A
(−)
ΣR

Consider the set R of associative words generated by the elements of R.

Mat. Sbornik N.S. 45 (87), (1958), no. 2, 113–122.
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Defining arbitrarily some total order on the set R, we partially order lexico-
graphically the set R. The order relation will be undefined only for pairs of words
in which one word is an initial subword of the other.

Definition 1. An associative word u is called regular if u > u2u1 for any factoriza-
tion u = u1u2 where u1 and u2 are nonempty.

For example, the word a3a3a2a3a2a1 is regular because it is greater than the
words a3a2a3a2a1a3, a2a3a2a1a3a3, a3a2a1a3a3a2, etc.

If u and v are regular words and u = vv1, then we will define v > u.

Remark. If u = vv1 is a regular word, then u > v1 since v1 cannot coincide with
any initial subword of u.

Definition 2. A nonassociative R-word [u] will be called regular if
(1) the associative word u, obtained by omitting the parentheses, is regular; and
(2) if [u] = [v][w] then [v] and [w] are regular words; and
(3) if [u] = [[v1][v2]][w] then v2 ≤ w.

It is easy to see that regular words are defined inductively, and that one can
determine effectively whether a given nonassociative word is regular or not. We
also remark that in Condition (2) it is implicit by Condition (1) that v > w.

Lemma 1. In any regular associative word, one can place parentheses in one and
only one way such that the resulting nonassociative word is regular.

Proof. Suppose the lemma is proved for words whose lengths are less than n.
Suppose that a given regular associative word u of length n > 1 contains an
element aβ ∈ R that is less than all the other elements of R occurring in u. Then
it is obvious that the word u begins with an element of R that is greater than aβ .
From Definition 2 it follows that for any placement of parentheses in the word u
that results in a regular nonassociative word, only one placement of parenthesis is
possible for subwords of the form aγaβaβ · · ·aβ :

{· · · [(aγaβ)aβ ] · · · }aβ (aγ > aβ).

Replacing in the word [u] every subword of the form

[· · · (aγ aβ)aβ · · · ]aβ︸ ︷︷ ︸
k times

,

by the symbol ak
γ , and setting ak

γ > a�
δ if either aγ > aδ or γ = δ, k < �, we obtain a

new regular word [u] in the symbols ak
γ (k = 0, 1, 2, . . .), a0

γ = aγ . If the conclusion
of the lemma did not hold for the word [u], then obviously it would not hold for
the word u either. However, by the inductive hypothesis, this is impossible. The
proof is complete. �

By virtue of the one-to-one correspondence between regular associative and
nonassociative words that has just been established, we will retain the symbol [u]
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to denote the regular nonassociative word corresponding to the regular associative
word u.

We denote by LΣR the free Lie algebra over Σ with free generating set R.

Lemma 2. Every element of the free Lie algebra LΣR over Σ with free generating
set R can be represented as a linear combination of regular words with coefficients
from Σ.

Proof. Obviously, it suffices to prove the lemma only for words in the elements of
the set R. Suppose a word v has length n, and that the lemma has been proved
for words of smaller length. Then

v = uw =
∑

i

∑

k

σik[ui][wk],

where σik ∈ Σ, and ui and wk are regular words with ui > wk. If

[ui][wk] = [[ui1 ][ui2 ]][wk] and ui2 > wk,

then obviously
[ui][wk] = [[ui1 ][wk]][ui2 ] + [ui1 ][[ui2 ][wk]].

If we now assume in addition that the associative words, obtained by omitting
parentheses in the regular words that occur in the expressions for [ui1 ][wk] and
[ui2 ][wk], are greater than wk, then the proof will be complete by induction on the
smallest factor. �
Lemma 3. If we write the regular word [v] ∈ A

(−)
ΣR as an element of the associative

algebra AΣR, then in this expression v will appear with coefficient 1 and all other
associative words that occur will be less than v.

Proof. For words of length 1, Lemma 3 is trivially valid. Suppose it is valid for
words of lengths less than n. If [v] is a word of length n > 1 then [v] = [u][w]. If
we denote by t the associative expression for a Lie word t, then obviously

[v] = [u] [w] − [w] [u].

Since u > w and (by the inductive hypothesis) the maximal words in the expres-
sions [u] [w], [w] [u] are equal respectively to the words uw, wu and have coefficient
1, it follows that the maximal word occurring in [v] is equal to uw = v and has
coefficient 1. The proof is complete. �

Theorem 1. The rings LΣR and A
(−)
ΣR are isomorphic.

Proof. Let the element � ∈ LΣR be sent to the element �, under the homomorphism
ϕ of the ring LΣR onto the ring A

(−)
ΣR extending the correspondence between the

generators. If � �= 0, then by Lemma 2 we can assume that the element � is written
as a linear combination of regular words, and the coefficient σ of the maximal word
[�1] is not zero. Then by Lemma 3, we have � �= 0 since the word �1 in the element
� appears with the same coefficient σ. The proof is complete. �

In §4 we will need the following result.
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Lemma 4. Suppose that a regular associative R-word u has the form u = α�β where
� is a regular subword; the words α and β may be empty. Then in the placement
of parentheses in the word [u], one pair of parentheses will occur in the position
α(�β1)β2 where β1β2 = β and each of the words β1, β2 may be empty. Furthermore,
parentheses can be placed in the regular word �β1 as follows:

{· · · [(�β(1)
1 )β(2)

1 ] · · · }β(s)
1 ,

where β(i)
1 are regular words with β(1)

1 ≤ β
(2)
1 ≤ · · · ≤ β

(s)
1 , and in each of the words

�, β(i)
1 parentheses are placed in the unique way prescribed by Lemma 1, and1 the

maximal (associative) word of the resulting expression
(
α{· · · [(�β(1)

1 )β(2)
1 ] · · · }β(s)

1

)
β2,

is equal to u.

Proof. Let aβ be the smallest of the generators that occurs in u. If � has length
1 then there is nothing to prove. Suppose that the lemma is valid if u has length
less than n where n > 1.

If u has length n, then (as in the proof of Lemma 1) we represent it as
a word in the symbols ak

γ . Assuming that the length of � is greater than 1, we
note that it starts with a symbol other than aβ, and in the new representation
it will be replaced by a new word �1 which, regarded as an R-word, can differ
by several factors aβ appended on the right. It is easy to see that the R-word �1
will be regular. Considering the words u and �1 as words in the symbols ak

γ , we
find ourselves in a situation where we can apply the inductive hypothesis. The
remainder of the argument is obvious, and this completes the proof. �

To conclude this section, we will show how Theorem 1 implies Witt’s formula
[10] for the rank of the homogeneous submodule of degree q in the free Lie algebra.

Definition 3. An associative word v is called periodic if it can be written as the
product of k (k > 1) equal words. Two associative words u and w are called
cyclically comparable if there exist representations u = u1u2, w = w1w2 such that
u1 = w2, u2 = w1.

It is easy to see that the set of all associative words is partitioned into disjoint
classes of cyclically comparable words. The following statements are trivial.

Lemma 5. Each class of cyclically comparable non-periodic words contains one and
only one regular word.

Lemma 6. No class of cyclically comparable periodic words contains a regular word.

Let ψq(n) be the rank of the submodule of homogeneous polynomials of
degree q in the free Lie algebra on n generators. The number ψq(n) coincides with

1The rest of this sentence has been added by the Editors.
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the number of regular words of length q in n symbols. From Lemmas 5 and 6, we
obtain the following equation:

nq = q ψq(n) + d1ψd1(n) + · · · + dsψds(n),

where nq is the number of all associative words of length q in n symbols, and the
di are the divisors of q (other than q itself). The Dedekind inversion principle2

immediately gives Witt’s formula:

ψn(q) =
1
q

∑

s|q
µ(s)nq/s

where µ(s) is the Möbius function.

3. Free restricted Lie rings

Suppose that the characteristic of the coefficient ring Σ is a prime number p. The
associative ring AΣR that was considered in §1 is obviously a ring of characteristic
p. It is known [5] that in this case the element (a+ b)p − ap − bp = ϕ(a, b) of the
ring AΣR is a Lie polynomial in the elements a and b.

Definition 4. A Lie algebra L over Σ in which a unary operation x[p] is defined is
called a restricted Lie algebra if

(a+ b)[p] = a[p] + b[p] + ϕ(a, b), a · b[p] = [· · · (a · b) · b · · · ]b︸ ︷︷ ︸
p times

, (σa)[p] = σpa[p],

for all elements a, b ∈ L and σ ∈ Σ.

Obviously any associative algebra over Σ becomes a restricted Lie algebra
with respect to addition and the operations a ◦ b = ab − ba, a[p] = ap. In the
free ring AΣR, the set R generates a restricted Lie algebra A

(p)
ΣR. We introduce the

following notation:

x[pk] = [· · · (x [p])[p] · · · ][p]

︸ ︷︷ ︸
k times

.

Lemma 7. Every element of an arbitrary restricted Lie algebra A over Σ with
generating set R can be written as a linear combination with coefficients in Σ of
elements of the form u[pk] (k = 0, 1, 2, . . .) where u is a regular nonassociative
word.

The proof of this result follows immediately from Definition 4 and Lemma 2.

Definition 5. An associative word v is called p-regular if it has the form upk

(k =
0, 1, 2, . . .) where u is a regular word.

2This is now usually called the Möbius inversion formula. [Translators]
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Definition 6. Elements of the ring A
(p)
ΣR that have the form [u]p

k

, where [u] is a
regular nonassociative R-word relative to the operation a ◦ b = ab− ba, are called
p-regular elements.

Lemma 8. The set of p-regular elements of A
(p)
ΣR is linearly independent over Σ.

Proof. Obviously, the leading term of the polynomial which is the associative ex-
pansion of the p-regular element [u]p

k

will be the p-regular associative word upk

.
Therefore distinct p-regular elements correspond to distinct maximal words. From
this the lemma follows. �

Lemmas 7 and 8 immediately imply the following result.

Theorem 2. The algebra A
(p)
ΣR is a free restricted Lie algebra over Σ with generating

set R and a basis consisting of the p-regular elements.

From the above constructions we immediately obtain an algorithm that allows
us to determine, for a given element a of the algebra AΣR, whether or not it belongs
to the algebras A

(−)
ΣR or A

(p)
ΣR. For this determination, one should separate the

lexicographically maximal monomial σu in the expression of the element a. If the
word u is not regular (respectively, p-regular) then the corresponding membership
question is answered in the negative. If the word is regular (respectively, p-regular)
then subtracting from a the element σ[u] (respectively, σ[u1]p

k

) where [u], [u1] are
the corresponding regular nonassociative words, we obtain an element a1 whose
maximal monomial will be less than the monomial σu. After a finite number of
steps this process will terminate. From this algorithm one can obtain the following
criterion of Friedrichs [4].

Theorem 3. An element f(a1, a2, . . . , as) of the algebra AΣR belongs3 to A
(p)
ΣR if

and only if the relations aia
′
j = a′jai imply the equation4

f(a1 + a′1, a2 + a′2, . . . , as + a′s) = f(a1, a2, . . . , as) + f(a′1, a
′
2, . . . , a

′
s).

Proof. The proof of the necessity of the conditions is by induction and is almost
trivial. Let us prove the sufficiency for the case of characteristic 0 (the proof of
the general case is similar).

Let d be an element of AΣR that does not belong to A
(−)
ΣR . Then, after a finite

number of steps of the above-mentioned algorithm, we will obtain an element di

whose leading term is σui where the word ui is not regular. Then ui = vw where
wv ≥ ui; and5 wv is maximal among the words that are cyclically comparable
with ui. It is easy to see, however, that in the expression

di(a1 + a′1, a2 + a′2, . . . , as + a′s) − di(a1, a2, . . . , as) − di(a′1, a
′
2, . . . , a

′
s),

3In the case of characteristic 0, one must replace A
(p)
ΣR by A

(−)
ΣR . [Translators]

4Today this is expressed in terms of the coproduct on the algebra AΣR. [Translators]
5(without loss of generality). [Translators]
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the element

v(a1, . . . , as)w(a′1, . . . , a
′
s) = w(a′1, . . . , a

′
s) v(a1, . . . , as),

occurs with coefficient σ �= 0. The proof is complete. �

4. Theorems on embeddings of Lie algebras and
restricted Lie algebras

In what follows we will denote by L a Lie algebra over an arbitrary field or a
restricted Lie algebra over a field of characteristic p > 0. Our task is to demonstrate
the possibility of embedding L into an appropriate algebra with two generators
under certain assumptions of countability, and then to generalize this result. Let
A be the free associative algebra on two generators a and b.

Lemma 9. The elements

dk = [a ◦ {[· · · (a ◦ b) ◦ b · · · ] ◦ b}]︸ ︷︷ ︸
k times

◦(a ◦ b) (k = 1, 2, . . .),

of A generate (under the operations a ◦ b and a[p]) a free Lie algebra (respectively
a free restricted Lie algebra) L(a, b), and constitute a set T of free generators.

Proof. We order the set T by setting dk > ds for k < s. It is easy to verify that
every regular nonassociative T -word (respectively, p-regular T -element) is a regular
nonassociative R-word (respectively, p-regular R-element). From this follows the
linear independence of regular nonassociative T -words (respectively, p-regular T -
elements), and this proves the lemma. �
Lemma 10. The set T = {dk} is distinguished (in the sense of Definition 1 of [8]).

Proof. Let J be an ideal of L(a, b) and J1 the ideal generated by J in A. It suffices
to prove the equality J1 ∩ L(a, b) = J (in fact the definition of ‘distinguished’
demands that J ′

1 ∩ L(a, b) = J where J ′
1 is the ideal of the Lie algebra A(−)

generated by J). Consider some element � in J1:

� =
∑

i

mi =
∑

i

αi�iβi,

where the αi and βi are monomials (possibly empty) in a and b, and the �i are
elements of J and thus of L(a, b), that is, Lie polynomials in the elements of T .
Let �i be the maximal word among the words of highest degree that occur in
the associative expansion of �i. Obviously, �i is a regular (respectively p-regular)
associative word. Among the words of the form αi�iβi that have highest degree,
we choose one which is maximal in the lexicographical sense: t = αj�jβj . Assume
that � ∈ L(a, b).

Case 1: Suppose that the word t does not occur6 among the other associative
words that occur in the expansion of �. Then the word t is regular (respectively

6Literally, “does not have similars”. [Translators]
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p-regular) and contains a regular (respectively p-regular) subword �j . We place
parentheses in the word t in the unique way which makes it a regular nonassociative
word (p-regular element). By virtue of Lemma 4, one pair of these parentheses will
be placed as follows7: αj [�jβ1j ]β2j where β1jβ2j = βj and each of the words β1j ,
β2j may be empty. Moreover, after the required placement of parentheses, the word
�jβ1j will take the form

�′ = [· · · (�j ◦ β(1)) ◦ β(2) · · · ] ◦ β(k),

where �j and βs are regular nonassociative words and β(1) ≤ β(2) ≤ · · · ≤ β(k).
The word t is the product of words of the form a2bkab (k = 1, 2, . . .) since

otherwise, performing the algorithm of expressing � as a linear combination of the
basis elements of the algebra A(−) (respectively, the free restricted algebra A(p)),
we would obtain a leading term which is not a T -word; but it is obvious that every
element of L(a, b) contains only T -words in its expression in terms of the basis of
regular words. From this it easily follows that each of the words β(s), as well as αj

and β2j , is a T -word.
The element �′′ = {αj [�jβ1j ]β2j}, in which the parentheses inside the square

brackets are placed in the same way as in �′, and elsewhere in the way prescribed
for regular words, will obviously be a nonassociative T -polynomial that belongs
to the intersection J1 ∩ L(a, b); from the proof of Lemma 4 it follows that its
lexicographically maximal word, among the words of highest degree, coincides with
t. Therefore, in the difference �− �′′ the analogous word will be lexicographically
smaller or will have lower degree.

Our argument does not apply only in the case when t is a pk-th power of �j .
Let

t = qs�jq
pk+k1−pk1−s,

where �j = qpk1 , and q is a regular word. The element (�j)pk

of the ideal J can be
written in the form

(
�j + ω

)pk

=
(
�j + ω

)pk−1
�j = qpk+k1−pk1

�j +
∑

k

εk�j ,

where ω stands for the terms smaller than �j, and the leading terms of the ele-
ments εk�j of the ideal J1 are less than t. On the other hand, by virtue of the
representation

qs�jq
pk+k1−pk1−s =

pk+k1−pk1−s∑

t=1

qs+t−1(�j ◦ q)qpk+k1−pk1−s−t + qpk+k1−pk1
�j

= s1 + qpk+k1−pk1
�j = s1 + (�j)pk −

∑

k

εk�j ,

7We have added a bar over �j . [Translators]
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where s1 is also an element of J1 with leading term less than t, we see that after
subtracting from � the element (�j)pk

(that obviously belongs to the ideal J) we
will obtain an element of J1 with leading term less than t.

Case 2: Suppose that we have several maximal words: t1, t2, . . ., tr. Take any
two of them:

t1 = αj�jβj, t2 = αk�kβk.

Again several subcases are possible.
(a) t1 = t2 = αj �j γj �k βk. In this case mj (the element to which the word

t1 belongs) can be written, up to a scalar coefficient, in the form

mj = αj �j γj �k βk = αj �j γj �k βk − ωj = mk + ω,

where ω and ωj are polynomials whose terms are smaller than t1 or have lower
degree; and ωj as well as ω belong to the ideal J1. Combining similar terms reduces
the number of distinct ts.

(b) t1 = t2 = αj�1j�2j�3jβk where �1j�2j = �j and �2j�3j = �k; also �j and �k
are regular words (one of the words �1j and �3j may be empty). From regularity
of the words �j and �k and the Remark after Definition 1, it follows that the word
�1j�2j�3j is regular. From Lemma 4 it follows that the placement of parentheses in
the word [�1j�2j�3j ] on the subword �k coincides with the placement of parentheses
in the word [ �k ]:

[�1j�2j�3j ] = �′1{�′2 · · · (�′s[ �k ]) · · · }.
The same lemma implies that we may place parentheses in the word �1j�2j�3j as
follows:

{([ �j ]�′′1)�′′2 · · · }�′′q ,
where �′′1 ≤ �′′2 ≤ · · · ≤ �′′q , and the �′′r are regular words with the corresponding
placement of parentheses. In this case each of the words �tj (t = 1, 2, 3), �′p, �

′′
r is

a product of words of the form a2bkab (k = 1, 2, . . .). Obviously, the element

αj

(
�′1 ◦ {�′2 ◦ · · · (�′s ◦ �k) · · · } + {· · · [(�j ◦ �′′1) ◦ �′′2 ] · · · ◦ �′′q}

)
βk,

of the ideal J1, coincides up to some lower terms with the sum mj +mk. Therefore
the words t1 and t2 in this case can be replaced by one word (or both can be
omitted).

One can argue analogously using Lemma 4 in the case where �j = �1j�2j�3j

and �2j = �k.

(c) t1 = t2 = αj�1j�2j�3jβk where �1j�2j = �j = qpr

, �2j�3j = �k = qps

(s > r) and �2j = qn. Then we can reduce the number of the words ts by using
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the equations

�j�3j = �jq
ps−n =

ps−n−1∑

t=0

qt(� ◦ q)qps−n−t−1 + qps−n�j = ω1 + qps−n�j

= ω1 + qps−n�j
ps−r−1

�j = ω1 + qpr−n
(
�j

ps−r

−
∑

i

εi�j

)

= qpr−n�p
s−r

j + ω2 = �1j�k + qpr−n
(
�p

s−r

j − �k

)
+ ω2 = �1j�k + ω3,

where ωi, as well as εi�j, are elements of the ideal J1 with smaller leading terms.
Considering the remaining possible cases, including those in which one of the

words �j or �k is regular and the other is p-regular but not regular, by analogous
arguments we can reduce the number of words ts. Having reduced this number to
1, we will be under the conditions of Case 1. These arguments imply that after a
finite number of steps we will express � as an element of the ideal J . The proof is
complete. �
Theorem 4. Every Lie algebra or restricted Lie algebra of at most countable rank
can be isomorphically embedded into an appropriate algebra with two generators
over the same field.

Theorem 5. Any Lie algebra (respectively restricted Lie algebra) can be isomor-
phically embedded into a Lie algebra (respectively restricted Lie algebra) with the
property that every subalgebra of countable rank is contained in a subalgebra with
two generators.

Theorems 4 and 5 are corollaries of Lemma 10 as well as Theorems 1 and 2 of
[8]; it is necessary to remark that although the statements of the latter Theorems
do not formally include the case of restricted Lie algebras, the given proofs also
remain valid in this case without any changes.

It is easy to see that the algebras obtained here are automatically represented
in an associative algebra. Therefore, the proof given here also contains a proof of
the Birkhoff-Witt theorem [1], [10] and the theorem of Jacobson [5].
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On a Problem of Levitzki

A.I. Shirshov

An associative ring S is called a nil-ring if every element of S is nilpotent. Lev-
itzki [4] posed the following problem: Is every nil-ring nilpotent? This problem
was solved in the affirmative by Levitzki himself [5] for the case in which the ele-
ments of S have globally bounded indices of nilpotency. Later, Kaplansky [2], who
was investigating the more general problem of Kurosh [3], extended the result of
Levitzki to nil-rings with polynomial identities. In the present note an affirmative
solution is given to Levitzki’s problem for the wider class of rings introduced by
Drazin [1].

Let Λ = {λi}, i = 1, 2, . . . , h be some set of variables, and let π(λ) =
λi1λi2 · · ·λik

be some monomial in these variables. Denote by Tπ(λ) the set of all
monomials in Λ of degree ≥ k and distinct from π(λ). For any sequence of elements
{xi}, i = 1, 2, . . . , h, of the ring S, we denote by π(x) the element xi1xi2 · · ·xik

and by Tπ(x) the set of all elements of S obtained by replacing the variables λi by
the corresponding elements xi in each monomial of Tπ(λ).

If there exists a monomial π(λ), such that for any collection of elements xi,
i = 1, 2, . . . , h, of the ring S the element π(x) belongs to the right ideal generated
by Tπ(x), then the monomial π(λ) is called a strongly pivotal monomial of S, and
S is called a ring with strongly pivotal monomial. For brevity, we will call such
rings SP -rings.

Drazin [1] has shown that the class of SP -rings contains the rings with mini-
mum condition on right ideals and the rings with polynomial identity. In the same
paper it was shown that for any SP -ring the monomial π(λ) can be assumed to
be linear in each variable λi. Under some strong restrictions, Drazin, using essen-
tially the methods of Kaplansky, gave an affirmative solution to the problem of
Kurosh for SP -algebras, i.e., he proved local finiteness of algebraic SP -algebras
of a particular type. However, Drazin himself points out the difficulties that did
not allow him to solve even the Levitzki problem for SP -rings without additional
restrictions.

Doklady Akad. Nauk SSSR 120, (1958), no. 1, 41–42.
c© 2009 Translated from the Russian original by M.R. Bremner and M.V. Kochetov.
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If a strongly pivotal monomial π(λ), which in the sequel will be assumed
linear in each variable λi, has degree t, then the SP -ring S will be called an
SP -ring of degree t.

Lemma. Let S be a nil SP -ring of degree t, and let I be the ideal generated by the
elements at

i where ai, i = 1, 2, . . . , n, is some fixed set of elements of S. Then for
any natural number q > t there exists a natural number k = k(q) such that the
ideal Ik is contained in the ideal generated by the elements aq

i .

Proof. Suppose that there exists a natural number r such that the ideal Ir is
contained in the ideal generated by the elements am

i , i = 1, 2, . . . , n, for some fixed
m ≥ t. In order to prove the lemma we will show that there exists a natural number
r1 such that the ideal Ir1 is contained in the ideal generated by the elements am+1

i .
Every element of the ideal Ir(nt+1) can be written as a sum of products of

nt+1 elements of the form α am
j β where α and β are monomials in the generators

of S. In each such product there exists an element am
j that occurs at least t + 1

times. Therefore, each such product can be written in the form

c1Dct+2 = c1d1d2 · · · dtct+2

= c1(am
j c2aj)(am−1

j c3a
2
j)(a

m−2
j c4a

3
j ) · · · (am−t+1

j ct+1a
t
j)ct+2.

By assumption, the monomialD belongs to the right ideal generated by all possible
products of its factors d1, d2, . . ., dt which are distinct from D itself and have total
degree (with respect to the elements di) greater than or equal to that of D.

For any other monomial of degree t in the elements di, there exist two adjacent
elements dj1 and dj2 with j1 ≥ j2. In each such case, in the corresponding segment,
there is a word

dj1dj2 = am−j1+1
j cj1+1a

j1
j a

m−j2+1
j cj2+1a

j2
j

= am−j1+1
j cj1+1a

m+1+(j1−j2)
j cj2+1a

j2
j .

It is easy to see that all such elements belong to the ideal generated by am+1
j .

From this it follows that c1D = ω1 + c1Dq where ω1 is an element of the ideal
generated by the element am+1

j . But then

c1D = ω1 + ω1q + c1Dq
2 = ω1 + ω1q + ω1q

2 + c1Dq
3 = · · ·

= ω1 + ω1q + ω1q
2 + · · · + ω1a

� + c1Dq
�+1,

for any �. The lemma now follows from nilpotency of the element q. For the number
r1 we can take r(nt+ 1). �
Theorem. Any nil SP -ring is locally nilpotent.

Proof. Let S be a nil SP -ring of degree t with a finite number of generators, and
let J be the ideal generated by all possible elements at, a ∈ S. The quotient ring
S/J is nilpotent by Levitzki’s theorem [5], and this means that there exists a
natural number M such that any element of the form bi1bi2 · · · biM , where the bis

are the generators of S, belongs to the ideal J . Since there is only a finite number
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of elements of the form bi1bi2 · · · biM , the ideal SM is contained in some ideal J1

which is contained in J and is generated by some finite set of elements at
i. The

lemma implies nilpotency of the ideal J1, and hence of the ring S. �
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Some Problems in the Theory of Rings
that are Nearly Associative

A.I. Shirshov

The words “some problems” in the title of this article mean primarily that the
article considers absolutely no results about algebras of finite dimension. Among
other questions that remain outside the scope of the article, we mention, for exam-
ple, various theorems about decomposition of algebras (see for example [47, 70])
which are closely related to the theory of algebras of finite dimension.

The author is grateful to A.G. Kurosh and L.A. Skornyakov who got ac-
quainted with the first draft of the manuscript and made a series of very valuable
comments.

1. Introduction

1. Until recently the theory of rings and algebras was regarded exclusively as
the theory of associative rings and algebras. This was a result of the fact that
the first rings encountered in the course of the development of mathematics were
associative (and commutative) rings of numbers and rings of functions, and also
associative rings of endomorphisms of Abelian groups, in particular, rings of linear
transformations of vector spaces.

In the survey article by A.G. Kurosh [40] he persuasively argued that the
contemporary theory of associative rings is only a part of a general theory of
rings, although it continues to play a very important role in mathematics. The
present article, in contrast to the article of A.G. Kurosh, is dedicated to a survey
of one part of the theory of rings: precisely, the theory of rings, which although
nonassociative, are more or less connected with associative rings. More precise
connections will be mentioned during the discussion of particular classes of rings.

Uspekhi Mat. Nauk 13, (1958), no. 6 (84), 3–20.
c© 2009 Translated from the Russian original by M.R. Bremner and N.P. Fomenko, with the
assistance of M.V. Kochetov and A.P. Pozhidaev.
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Because the classes of rings that are studied in this article were mentioned to
some extent in the article of A.G. Kurosh, there is some intersection in the content
of these two articles. In what follows, the author assumes that the following notions
are understood: rings, algebras, ideals, quotient rings, rings with a domain Σ of
operators (or Σ-operator rings1). These notions and also some other main notions
of the theory of rings can be found in the same article by A.G. Kurosh.

2. We briefly describe the origins of the theory of nonassociative rings. Examples of
such rings were known a long time ago. The nonassociativity of the vector product
of 3-dimensional vectors was known in mechanics. With this operation and vector
addition the collection of vectors is a Lie ring. Another very beautiful example is
the algebra of so-called Cayley numbers, which have been used in different parts
of mathematics.

The development of the theory of continuous groups in general and Lie groups
in particular contributed to the study of Lie algebras of finite dimension, which
are closely connected to Lie groups. Another connection between Lie algebras and
groups which appears to be very fruitful has been studied in the works of W.
Magnus [45], I.N. Sanov [50], A.I. Kostrikin [35] and others.

There is an interesting relationship between associative rings on the one hand
and Lie rings and Jordan rings2 on the other hand, constructed by the introduction
of a new operation on an associative ring. This relationship, in addition to giving
certain information about Lie rings and Jordan rings, allows us to study associative
rings themselves from some new directions.

3. Because there are differences between the properties of rings in different classes,
there are few results which have a universal character. We will describe some of
them.

Let A be an associative ring, and let a be some element of the ring A. It is
possible to connect with this element a new operation of “multiplication” which is
defined by x·y = axy. It is easy to check that the set of elements of the ringA forms,
under this operation and addition, a ring (in general, already nonassociative),
which we will denote byA(a). In [48] A.I. Malcev proved that any ring is isomorphic
to some subring of a ring of the form A(a).

Let the additive group of an associative ring be decomposed into the direct
sum of subgroups A1 and A2. Then every element a ∈ A allows a unique rep-
resentation of the form a = a1 + a2. Under the operations of “multiplication”
x · y = (xy)1 and addition the set of elements of the ring A is a ring (in general,
nonassociative). We denote this ring by A′. In [66] L.A. Skornyakov proved that
any ring is isomorphic to some subring of a ring of the form A′.

The preceding results of Malcev and Skornyakov indicate the possibility of
developing the entire theory of rings in terms of associative rings. However, nobody
until now has been able to get any precise theorems about rings of some class based

1That is, an algebra over the commutative associative coefficient ring Σ. [Translators]
2Literally, “J-rings”. [Translators]
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on this method. Among the reasons for this is the fact that we cannot transfer the
properties of A to A(a) and A′. So, for example, if A is a Lie ring, then the rings
A(a) and A′ may not be Lie rings.

The results and problems that correspond to different classes of rings are
formulated very differently and require specific methods, and because of this it is
difficult to imagine the development of the entire theory of rings from the theory
of one specific, sufficiently studied class.

4. In the theory of rings, as in the theory of groups and other algebraic systems,
free systems play an important role: free rings, free associative rings, free Lie rings,
etc.

Let ν be a cardinal number. The free ring (free associative ring, free Lie
ring, etc.) on ν generators is a ring (associative ring, Lie ring, etc.) which has a
system S of generators of cardinality ν such that any mapping from S onto any
system of generators of any ring (associative ring, Lie ring, etc.) can be extended
to a homomorphism of rings. The free ring Aν with the set S of generators of
cardinality ν can be built constructively by the following steps.

We will call the elements of the set S words of length 1. If α and β are words
of lengths m and n (respectively) then the symbol (α)(β) will be called a word of
length m+ n; furthermore, we will consider two words (α)(β) and (α1)(β1) to be
equal if and only if α = α1 and β = β1. The collection of finite sums of the form∑

s ksγs where ks is an integer and γs is a word (we assume γs �= γt when s �= t)
becomes a ring, which we will denote by Aν , when we define the operations as
follows:

∑

s

ksγs +
∑

s

lsγs =
∑

s

(ks + ls)γs,

∑

s

ksγs ·
∑

t

ltγt =
∑

s,t

kslt(γs)(γt).

It is easy to check that the ring Aν satisfies the above-formulated definition, and
that any ring that satisfies that definition is isomorphic to Aν .

If the symbols ks are allowed to come from some associative ring Σ and we
define

k
∑

s

ksγs =
∑

s

(kks)γs, k ∈ Σ,

then the ring Aν will be a free Σ-operator ring with ν generators in the sense of
Σ-operator homomorphisms. If, furthermore, Σ is a field, then Aν is a free algebra
with ν generators over the field Σ.

In the works of Kurosh [39, 41] it was proved that any subalgebra of a free
algebra is again free, and some generalizations of this result to free sums of algebras
were given. A.I. Zhukov [74] solved positively the word problem3 for algebras4 with

3Literally, the “problem of equality”. [Translators]
4That is, nonassociative algebras. [Translators]
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a finite number of generators and a finite number of defining relations which is
analogous to the famous word problem in the theory of groups.

5. With additional axioms, or so-called identical relations, we may define various
classes of rings. The general method applied to this problem is as follows.

Let Aω be the free ring with a countably infinite number of generators xi

(i = 1, 2, . . .). In the ring Aω we consider a subset Q. Any ring C which satisfies
the condition that any substitution of any elements of C into the generators xi

in any element of the set Q gives zero, will be regarded as belonging to the class
defined by the set Q, or simply to the class of Q-rings. If in some free ring Aν

we take the ideal J generated by the elements obtained by substituting all the
elements of Aν into the generators xi in the elements of Q, then the quotient ring
D = Aν/J will be isomorphic to the free Q-ring in the sense given earlier. For
example, if the set Q consists of the single element (x1x2)x3 − x1(x2x3) then we
obtain the class of associative rings. If the set Q consists of elements qα, then it
is sometimes said that the class of Q-rings is defined by the identical relations
qα = 0. The same concepts can be defined in a very similar way for Σ-operator
Q-rings.

For the case when the set Q is finite, Yu.I. Sorkin [69] showed that the corre-
sponding class of rings can be given with the help of one ternary operation (that
is, defined on ordered triples of elements) and one relation which this operation
must satisfy.

2. Alternative rings

1. It is known that the field of complex numbers can be represented as the collection
of pairs of real numbers with the natural addition and the familiar definition of
multiplication. If on the Abelian group of ordered pairs (p, q) of complex numbers
with coordinate-wise addition is defined an operation of multiplication by the
formula

(p1, q1) · (p2, q2) = (p1p2 − q2q1, q2p1 + q1p2), (1)

where p2 and q2 are the complex conjugates of the complex numbers p2 and q2,
then one can easily check that with respect to these operations the set we are
considering is a ring. In this ring it happens that the equations AX = B and
XC = D have a uniquely determined solution when A �= 0, C �= 0 and so this
ring is the (associative but not commutative) division ring of real quaternions.
If in equation (1) we replace the symbols pi and qi by real quaternions, and we
understand p to be the quaternion conjugate of the quaternion p = (a, b) – that
is, p = (a,−b) – then the pairs of quaternions become a ring with respect to these
operations, which in this case is a nonassociative division ring. If for every real
number α and pair (p, q) we define α(p, q) = (αp, αq), then the additive groups of
the above division rings become vector spaces over the field of real numbers with
corresponding dimensions 4 and 8, and the division rings become algebras over the
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field of real numbers. The constructed nonassociative algebra of dimension 8 over
the field of real numbers is called the algebra of Cayley numbers. In what follows
we will denote it by R8.

2. The associator of the elements a, b, c in any ring is defined to be the element

[a, b, c] = (ab)c− a(bc).

The algebra R8 satisfies the following identical relations,

[x, y, y] = 0, (2)

[x, x, y] = 0, (3)

[x, y, x] = 0, (4)

each of which is implied by the other two. Rings in which the identical relations
(2)–(4) are satisfied are called alternative. A more general class of 8-dimensional
alternative algebras was studied by Dickson. These algebras received the name
Cayley-Dickson algebras.

In this and the following section (if this is not stated explicitly) for simplicity
of language we will assume that the additive groups of the rings do not contain
elements of order 2.

We next list some identical relations that hold in every alternative ring:

[(xy)z]y = x[(yz)y], (5)

y[z(yx)] = [y(zy)]x, (6)

(xy)(zx) = x[(yz)x]. (7)

To prove relation (5) we notice that substitution of y + z for y in equation (2)
leads to the equation

[x, y, z] = −[x, z, y]. (8)
Using equations (2) and (8) gives

2x[(yz)y] = x
[
2(yz)y + [z, y, y]− [y, z, y]− [y, y, z]

]

= x
[
(yz)y + (zy)y − zy2 + y(zy) − y2z + y(yz)

]

= [x(yz)]y + (xy)(yz) − [x, yz, y]− [x, y, yz] + [x(zy)]y + (xy)(zy)

− [x, zy, y] − [x, y, zy] + [x, z, y2] + [x, y2, z]− (xz)y2 − (xy2)z

=
[
x(yz) + x(zy)

]
y + (xy)(yz + zy) − [(xz)y]z − [(xy)y]z

= 2[(xy)z]y.

Thus equation (5) is proved, and for its proof we used only equation (2). From this
it follows that equation (5) holds in any ring which satisfies equation (2), that is,
in any so-called right alternative ring. The proofs of equations (6) and (7) are left
to the reader.

3. Let us notice one property of alternative rings, which makes them close to
associative rings. Let a and b be two elements of some alternative ring A, and let
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D be the subring of the ring A generated by the elements a and b. It happens that
the ring D is associative. To prove this proposition it is enough to show that any
two elements of the ring D obtained by different parenthesizations of an associative
monomial in a and b are equal.

Let c be some associative monomial as described. We denote by 〈c〉 the nonas-
sociative monomial obtained from the monomial c by the following parenthesiza-
tion: when c = c1a or c = c1b we let 〈c〉 = (〈c1〉)a or 〈c〉 = (〈c1〉)b, respectively; and
〈a〉 = a, 〈b〉 = b. For example, 〈a2bab2〉 = ((((aa)b)a)b)b. If d is a nonassociative
monomial with some parenthesization, then we will denote by d the associative
monomial obtained by removing the parentheses from d. The associativity of the
ring D is equivalent to the equation d = 〈d〉 holding where d is any nonassociative
monomial in the generators a and b. The last equality, which is obvious if the
degree of the monomial d in a and b is less than or equal to 3, will be proved by
induction on the degree of d.

Let the degree of the monomial d be greater than 3: d = d1d2, d1 = a〈d3〉,
and we assume that the equality to be proved holds for monomials with lower
degree. Then we have the following cases:

(i) d2 = 〈d4〉a, d = (a〈d3〉)(〈d4〉a) = [a(〈d3〉〈d4〉)]a = 〈d〉,

where we have used equation (7). If the monomial 〈d3〉 is empty, then the proof
works using equation (4).

(ii) d2 = (b〈d4〉)b, d = (a〈d3〉)[(b〈d4〉)b] = [(d1b)〈d4〉]b = 〈d〉,

where equation (5) was used. Finally,

(iii) d2 = (a〈d4〉)b,
d = (a〈d3〉)[(a〈d4〉)b]

= −(a〈d3〉)[b(a〈d4〉)] + [(a〈d3〉)(a〈d4〉)]b+ [(a〈d3〉)b](a〈d4〉)
= −〈d5〉 + 〈d〉 + d5,

where we have used equation (8) and also the above-proved identities from cases
(i) and (ii). Repeating (if necessary) the same transformation on d5 and so on, we
come in a finite number of steps to the identity which we are proving.

4. In spite of the noted closeness of alternative rings to associative rings, as of now
there is no general method which allows us to prove identities in alternative rings.
Each of the presently known such identities requires a separate and in some cases
very difficult proof. This happens because as of now there is no known method to
build constructively free alternative rings, so there is no known algorithm which
solves the word problem in free alternative rings; that is, an algorithm which allows
us, for every element of this ring written in terms of the generators, to determine
if it is zero or not.
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We mention the following interesting identity:

[ (ab− ba)2, c, d ] (ab− ba) = 0,

which was proved by Kleinfeld (see for example [67]) and which shows that in the
free alternative ring there are zero divisors.

5. The study of alternative rings in general began with the study of alternative
division rings, which in the theory of projective planes play the role of the so-called
natural division rings of alternative planes (see [65]); that is, planes for which the
little Desargues theorem holds.

In the works of L.A. Skornyakov [62, 63] a full description is given of alterna-
tive but not associative division rings. It happens that every such division ring is
an algebra of dimension 8 over some field (a Cayley-Dickson algebra). Later and
independently of Skornyakov this statement was proved by Bruck and Kleinfeld [8],
but Kleinfeld [29] proved that even simplicity (that is, not having two-sided ideals)
of an alternative but not associative ring implies that the ring is a Cayley-Dickson
algebra.

If for an element a of some ring A there exists a natural number n(a) such that
an(a) = 0 (with any parenthesization of the expression an(a)), then this element is
called a nilpotent element. If all the elements in a ring (resp. ideal) are nilpotent,
it is called a nil-ring (resp. nil-ideal).

Recently Kleinfeld [30] strengthened his results by proving that any alterna-
tive but not associative ring, in which the intersection of all the two-sided ideals
is not a nil-ideal, is a Cayley-Dickson algebra over some field. Hence the class of
alternative rings is much larger than the class of associative rings, but only outside
the limits of the above-mentioned classes of rings.

6. Some attention has been given to right alternative rings (rings which satisfy
identity (2)). Skornyakov [64] proved that every right alternative division ring is
alternative. Kleinfeld [28] proved that for the alternativity of a right alternative
ring it is sufficient that [x, y, z]2 = 0 implies [x, y, z] = 0. Smiley [68] analyzed the
proof of Kleinfeld and noticed that it is sufficient to check only these cases: x = y,
x = yz − zy, x = (yz − zy)y, x = [y, y, z], or z = wy and x = [y, y, w] for some w.
We know about the structure of free right alternative rings as little as we know
about the structure of free alternative rings. The study of these rings is one of the
main tasks of the theory of alternative rings.

It would be interesting to find out whether there are any identical relations
which are not implied by (2)–(4) and are satisfied in the free alternative ring with
three generators as, for example, the relation (xy)z − x(yz) = 0 is satisfied by the
free alternative ring with two generators.

Because alternative rings are close relatives of associative rings, we may ask of
any statement which holds for associative rings whether it also holds for alternative
rings. One such problem (the Kurosh problem) will be discussed in the next section.
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San Soucie [51, 52] studied alternative and right alternative rings in charac-
teristic 2 (2x = 0).

3. Jordan rings

1. Let A be an associative ring. If we set a ◦ b = ab + ba, then with respect to
addition and the operation ◦ the set of elements of the ring A becomes a ring
which is in general nonassociative. We denote this ring by A(+). For an associative
algebra B (or a Σ-operator ring) it is possible in a similar way to define an algebra
B(+) over the same field (or a Σ-operator ring); for an algebra it is more convenient
to use the operation a ◦ b = 1

2 (ab + ba). It is easy to check that in the ring A(+)

the following identities hold:

a ◦ b = b ◦ a, (9)

((a ◦ a) ◦ b) ◦ a = (a ◦ a) ◦ (b ◦ a). (10)

Rings in which the multiplication satisfies (9) and (10) are called J-rings or Jordan
rings.

It can happen that some subset of a ring, which is not a subring, becomes
a Jordan ring under the operation ◦. As an example, consider the set of all real
symmetric matrices of some fixed degree n. A Jordan ring which is isomorphic to
a subring of some ring of the form A(+) is called a special Jordan ring. Special
Jordan algebras can be defined in a similar way.

2. Not every Jordan ring and not every Jordan algebra is special. The classical
example, that will be discussed below, of a non-special (often called exceptional)
Jordan algebra of finite dimension belongs to Albert [5].

In the algebra R8, which was discussed at the beginning of Section 2, for
any element s = (p, q) we set s = (p,−q). In the set of all matrices of degree 3
with elements from the algebra R8 we consider the subspace C27 of self-conjugate
matrices (that is, matrices which do not change when the elements are conjugated
and the matrix is transposed). It is possible to check that the set C27 with respect
to addition, the usual multiplication of real numbers, and the operation s ◦ t =
1
2 (s · t+ t · s) is a Jordan algebra of dimension 27 over the field of real numbers.

Let x be an element of the algebra R8. Denote by xij the matrix S from the
algebra C27 in which sij = x and sji = x and all other entries are zero; by e denote
the identity of the algebra R8.

Assume that there exists an associative algebra A, such that the Jordan
algebra A(+) has a subalgebra C′

27 isomorphic to the algebra C27. For simplicity
in what follows we will identify the algebra C′

27 with the algebra C27. If s, t ∈ C27

then it is obvious that s · t+ t ·s = st+ ts where st is the product of the elements s
and t in the algebra A. The last observation allows us to easily verify the following
equations:

e2ij = eijeij = eij · eij = eii + ejj , (11)
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eiixij + xijeii = ejjxij + xijejj = xij , (12)

ekkxij + xijekk = 0 (for k �= i, j), (13)

x12y23 + y23x12 = (x · y)13, (14)

x12y13 + y13x12 = (x · y)23, (15)

x13y23 + y23x13 = (x · y)12. (16)

From equation (13) we have

ekk(ekkxij + xijekk) = (ekkxij + xijekk)ekk = 0,

and because of e2kk = ekk, it easily follows that

ekkxij = xijekk = 0 (k �= i, j). (17)

Setting fij = eii + ejj , from the obvious equalities

fijxij + xijfij = 2xij , 2fijxij = fijxij + fijxijfij ,

we easily obtain
fijxij = fijxijfij = xijfij = xij . (18)

Finally,
eiiyijeii = ejjyijejj = 0, (19)

because, for example,

eiiyijeii = eii(yij − eiiyij) = 0,

(equation (12)).
If x ∈ R8 then we set x′ = e11x12e12. We show that the map x → x′ is a

homomorphism of the algebra R8 into the algebra A. Clearly (x + y)′ = x′ + y′.
From equations (14)–(17) it follows that

(x · y)′ = e11(x · y)12e12 = e11(x13y23 + y23x13)e12 = e11x13y23e12

= e11(x12e23 + e23x12)y23e12 = e11x12e23y23e12

= e11x12e23(y12e13 + e13y12)e12.

On the other hand,

y12e13e12 = y12e13f13e12 = y12e13e11e12 = (y23 − e13y12)e11e12
= −e13y12e11e12 = −e13f13y12e11e12 = −e13e11y12e11e12 = 0,

e23e13y12 = e23e13f12y12 = e23e13e11y12 = (e12 − e13e23)e11y12 = e12e11y12.

Making the corresponding substitution in the expression (x · y)′ we get

(x · y)′ = e11x12e12e11y12e12 = x′y′.

Because of the absence of proper ideals in the algebra R8, and also because e′ =
e11e12e12 = e11f12 = e11 �= 0, we conclude that the algebra R8 is isomorphic to
a subalgebra of the associative algebra A, which contradicts the nonassociativity
of the algebra R8. This contradiction shows that there is no associative algebra A
with the required properties.
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3. It would be natural to assume that special Jordan algebras satisfy some system
of identities which do not follow from (9) and (10).

At the present time such identities have not been found. Moreover, every
attempt to characterize special Jordan rings with the help of any system of iden-
tities must be completely unsuccessful, because Cohn [9] gave many examples of
non-special Jordan algebras which are homomorphic images of special Jordan alge-
bras. It was also shown by Cohn that any homomorphic image of a special Jordan
algebra with two generators is also a special Jordan algebra.

Let B be some Jordan ring. We define by the formula

{a, b, c} = (ab)c+ (bc)a− (ca)b,

a ternary operation on the set of elements of the ring B. It is easy to check that
if B is a special Jordan ring then we have the identity

{a, b, a}2 = {a, {b, a2, b}, a}. (20)

Hall [15] and Harper [17] independently proved that (20) holds for any Jordan ring.
In the author’s work [58] it was proved that every Jordan ring on two generators
is special. From this result it easily follows that any identity which involves, like
(20), only two variables and which holds in any special Jordan ring, also holds in
any Jordan ring. This result was recently reproved by Jacobson and Paige [26].

At present it is still not known whether the identities

{{a, x, a}, x, {a, x, b}} = {{{a, x, a}, x, b}, x, a}, (21)

{{x, b, x}, a, {x, b, x}} = {x, {b, {x, a, x}, b}, x}, (22)

which hold in any special Jordan ring, also hold in any Jordan ring. These identities
were pointed out by Jacobson; he proved in [27] that they hold in C27.

Jacobson proposed the question: Does there exist a Jordan algebra which is
not a homomorphic image of a special Jordan algebra?

Albert [6] proved that the algebra C27 is not a homomorphic image of any
special Jordan algebra of finite dimension.

The above-mentioned problem is equivalent to the following: Is the free Jor-
dan ring on more than two generators special or not? A positive answer would
trivially imply the solution of the word problem for a free Jordan ring, but still it
would not imply a solution of the problem of finding a basis for the free Jordan
algebra on three or more generators (see Cohn [9]).

4. If, on the set of elements of a right-alternative ring T , we define the operation
a ◦ b = ab + ba, then it is easy to show that in this case the ring T (+) will be a
Jordan ring. However, it turns out that the class of all Jordan rings that can be
obtained in this way is equal to the class of all special Jordan rings. Indeed, the
mapping f : x → Rx of elements of the ring T to the associative ring, generated
in the ring T ∗ of all endomorphisms of the additive group of the ring T by right
multiplications Rx (aRx = ax), is a homomorphism of the ring T (+) onto some
subring of the special Jordan ring T ∗(+). The mapping f will be an isomorphism
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if we initially extend the ring T by an identity element (after which the extended
ring remains right alternative).

The possibility of associating with every right alternative ring an associative
ring (in general, not unique), through the corresponding (special) Jordan ring,
turns out to be very useful in the study of right alternative rings, and so also in
the study of alternative rings.

Using this method, the author proved in [59, 60] that all the results obtained
as of the present towards solving the Kurosh problem [38] (or its special case, the
Levitzky problem) for associative algebras (or rings) also hold for alternative alge-
bras (or rings) and for special Jordan algebras (or Jordan rings). Let us formulate
one of them:

An alternative ring D with a finite number of generators and the identical
relation xn = 0 is nilpotent, that is, there exists a natural number N such that any
product of N elements of D is zero.

The closest generalization of Jordan rings are the so-called noncommutative
Jordan rings, the study of which was started by Schafer. The natural place for
them in the present article is in the last section.

4. Lie rings

1. A ring which satisfies the identical relations

x2 = 0, (23)

(xy)z + (yz)x+ (zx)y = 0, (24)

is called a Lie ring.
In this article we completely avoid the discussion of Lie algebras of finite

dimension, an exposition of which would be more natural in connection with the
theory of Lie groups.

If, in an associative ring A we define a new operation by the equation a · b =
ab − ba, then the set of elements of A will be a Lie ring with this operation and
addition. We denote this new ring byA(−). Birkhoff [7] and Witt [71] independently
proved that every Lie algebra is isomorphic to a subalgebra of some algebra of the
form A(−). If we use the terminology of Jordan rings, then we can say that every
Lie ring is special.

Lazard [42] and Witt [72] studied representations of Σ-operator Lie rings in
Σ-operator associative rings. The existence of such a representation was proved
by them in the case when Σ is a principal ideal domain, and in particular for Lie
rings without operators. The example constructed by the author in [57] shows that
there exist non-representable Σ-operator Lie rings which do not have elements of
finite order in the additive group.

I.D. Ado [1, 2] proved that any finite-dimensional Lie algebra over the field
of complex numbers can be represented in a finite-dimensional associative algebra.
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Later Harish-Chandra [16] and Iwasawa [24] proved that Ado’s theorem holds for
any finite-dimensional Lie algebra.

We mention the cycle of works of Herstein [19]–[21], which, in essence, belong
to the theory of associative rings and are dedicated to studying the ring A(−) under
various assumptions on the ring A.

2. There are interesting relations between the theory of Lie rings and the theory
of groups.

Let K be the ring of formal power series with rational coefficients in the
noncommutative variables xi (i = 1, 2, . . .). Magnus [45] proved that the elements
yi = 1 + xi of the ring K generate a free subgroup G of the multiplicative group
of the ring K, and that every element of the subgroup Gn (the n-th commutator
subgroup5) has the form 1+�n +ω, where �n is some homogeneous Lie polynomial
(with respect to the operations a · b and a + b) of degree n in the generators xi,
and ω is a formal power series in which all the terms have degree greater than n.
Then because of known criteria [11, 12, 44] which allow us to determine whether
a given polynomial is a Lie polynomial, the above mentioned representation of the
free group allows us to determine whether any given element lies in one term or
another of the lower central series.

The elements zi = exi of the ring K also generate a free group [46] and
if exey = et then t is a power series, the terms of which are homogeneous Lie
polynomials in x and y [18].

The relations which exist between the theory of groups and the theory of
Lie rings allow us to obtain group-theoretical results from statements proved for
Lie rings. For example, Higman [23] proved nilpotency (see the definition below)
of any Lie ring which has an automorphism of prime order without nonzero fixed
points. This statement allowed him to prove nilpotency of finite solvable groups
which have an automorphism satisfying the analogous conditions.

Earlier Lazard [43] studied nilpotent groups using extensively the apparatus
of Lie ring theory.

3. We consider one more circle of questions which are relevant to the theory of
groups.

A Lie ring L is called a ring satisfying the n-th Engel condition if for any
elements x and y we have the relation

{· · · [(x y)y] · · · }y︸ ︷︷ ︸
n y’s

= 0.

We introduce the following notation:

L = L1 = L(1), Lk = Lk−1L, L(k) = L(k−1)L(k−1).

A Lie ring is called nilpotent (resp. solvable) if there exists a natural number m
such that Lm = 0 (resp. L(m) = 0).

5That is, the n-th term of the lower central series. [Translators]
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With some restrictions on the additive group, Higgins [22] proved that solv-
able rings satisfying the n-th Engel condition are nilpotent. Then Cohn [10] con-
structed an example of a solvable Lie ring whose additive group is a p-group and
which satisfies the p-th Engel condition, but is not nilpotent. For Lie rings with
a finite number of generators and some restrictions on the additive group, A.I.
Kostrikin [37] proved that the Engel condition implies nilpotency. This result is
especially interesting because from it follows the positive solution of the group-
theoretical restricted Burnside problem for p-groups with elements of prime order
[35, 36].

An element a in a Lie algebra L is called algebraic if the endomorphism
Ra : x �→ xa generates a finite-dimensional subalgebra in the (associative) algebra
of all endomorphisms of the additive group of the algebra L.

It is not known whether there exists a Lie algebra with a finite number of
generators and infinite dimension in which every element is algebraic. This problem
is analogous to the famous Kurosh problem [38] for associative algebras.

We mention one easier but unsolved problem. Let the Lie algebra L be such
that any two elements belong to a subalgebra, the dimension of which does not
exceed some fixed number. Does it follow from this that every finite subset of the
algebra L belongs to some subalgebra of finite dimension?

4. An important role in the theory of Lie rings is played by free Lie rings. In
contrast to free alternative rings and free Jordan rings, free Lie rings have been
thoroughly studied. M. Hall [14] pointed out a method for constructing a basis
of a free Lie algebra; E. Witt [71] found a formula for computing the rank of the
homogeneous modules in a free Lie algebra on a finite number of generators.

We briefly describe one constructive method of building a free Lie ring. Let
A be a free associative Σ-operator ring with some set R = {ai} (i = 1, 2, . . . , k) as
a set of free generators. It turns out that [61] the elements of the set R generate
in the Lie ring A(−) a free Lie ring L for which they are free generators. We
order the elements of the set R in some way, and then we order lexicographically
every set of (associative) monomials of the same degree in the elements of the set
R. Let W be the set of all monomials w such that w = w1w2 > w2w1, for any
representation of the monomial w as a product of two monomials w1 and w2. Let
v ∈ W with v = v1v2 where v1 is a monomial from W of minimal degree such
that v2 ∈W . We parenthesize the monomial v in the following way: v = (v1)(v2),
and we repeat this method of parenthesization on the monomials v1 and v2. The
set of nonassociative monomials obtained from the elements of the set W by this
method of parenthesization with the operation interpreted as a · b = ab− ba will
be a basis of the ring L.

The author in [56] and independently Witt in [73] proved that any subalgebra
of a free Lie algebra is again free. This theorem is analogous to the theorem of
Kurosh mentioned in Section 1 for subalgebras of free algebras.
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Using the above method of constructing a free Lie algebra allowed the au-
thor in [61] to prove that any Lie algebra of finite or countable dimension can be
embedded in a Lie algebra with two generators.

Analogous theorems about embedding of arbitrary algebras and of associative
rings were proved respectively by A.I. Zhukov [74] and A.I. Malcev [48].

5. The study of Lie algebras over fields of prime characteristic has led to the
discussion of so-called restricted Lie algebras.

In a restricted Lie algebra over a field of characteristic p > 0 an additional
unary operation is defined with some natural axioms which are typical of the usual
(associative) p-th power. Jacobson [25] proved a theorem for restricted Lie algebras
analogous to the Birkhoff-Witt theorem, which in this case already includes a
theorem similar to Ado’s theorem.

6. Recently A.I. Malcev [49] considered a class of binary-Lie rings, which are re-
lated to Lie rings in a way analogous to the way alternative rings are related to
associative rings. A ring is called binary-Lie if every two elements lie in some Lie
subring.

A.T. Gainov [13] proved that in the case of a ring without elements of order 2
in the additive group, for a ring to be binary-Lie it is sufficient that these identities
hold:

x2 = [(xy)y]x+ [(yx)x]y = 0.
If, on the set of elements of some alternative ring D, we define the above

described operation a · b = ab − ba, then in the ring D(−), as was shown by A.I.
Malcev [49], these relations hold identically:

x2 = [(x · y) · z] · x+ [(y · z) · x] · x+ [(z · x) · x] · y − (x · y) · (x · z) = 0. (25)

Rings satisfying the identities (25) are called by A.I. Malcev Moufang-Lie rings,
and he also showed that the class of Moufang-Lie rings6 without elements of ad-
ditive order 6 is properly contained in the class of binary-Lie rings.

Recently Kleinfeld [31] proved that a Moufang-Lie ring M without elements
of additive order 2 which has an element a such that aM = M is a Lie ring. A
corresponding result can clearly be formulated in the language of alternative rings.

The problem of the truth of a theorem, similar to the Birkhoff-Witt theorem,
connecting the theory of Moufang-Lie rings with the theory of alternative rings
remains open.

5. Some wider classes of rings

1. As was shown earlier, a ring is alternative if and only if every two elements lie
in some associative subring.

Algebraists working in the theory of rings have been attracted for a long time
to the wider class of rings with associative powers. A ring is called power-associative

6Now called Malcev rings. [Translators]
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if every element lies in some associative subring. It is not difficult to check that all
the classes of rings discussed in the present article are power-associative.

In the case of rings for which the additive group has no torsion, Albert [3] has
shown that the identities x2x = xx2 and (x2x)x = x2x2 are sufficient to guarantee
power-associativity. This result was recently given another proof by A.T. Gainov
[13]. Albert proved in [4] that if in the additive group of a ring there are no elements
of order 30 then power-associativity follows from the identities

(xy)x = x(yx) and (x2x)x = x2x2.

For rings of small characteristic some sufficient conditions for power-associativity
were found by Kokoris [32, 33].

2. We mention one method for studying power-associative rings which has been
used extensively in the works of Albert.

Let A be a commutative power-associative ring in which the equation 2x = a
has a unique solution for every a ∈ A and which contains an idempotent e (e2 = e).
Then it turns out that every element b ∈ A has a unique representation in the form
b = b0 + b1 + b1/2 where bλe = λbλ; that is, the ring A can be represented as the
direct sum of three modules A = A0 + A1 + A1/2, the study of which gives some
information about the ring A. If the ring A is noncommutative, then we can study
the commutative ring A(+) which is obtained from the ring A with the help of the
new multiplication a ◦ b = 1

2 (ab+ ba). It is obvious that the subrings generated by
a single element in the rings A and A(+) are the same. Therefore the ring A(+) is
again power-associative.

Another very wide class of rings is the class of flexible rings; that is, rings
which satisfy the identical relation (4). All the rings discussed in this article, except
for right alternative rings, are from this class.

No significant results, which would go beyond the class of algebras of finite
dimension, have been obtained for flexible rings.

3. It would be natural to expect a deeper study of flexible power-associative rings.
However, comparatively recently Schafer [53] began the study of the class of

so-called noncommutative Jordan rings, defined by identities (4) and (10), which
is slightly narrower than the class of flexible power-associative rings, but contains
most of the rings mentioned above.

The study of this class of rings at the present time is restricted to the theory
of algebras of finite dimension (see [54, 55, 34]); however, we can hope that in the
future a sufficiently interesting theory of this class of rings will be constructed.

In conclusion, we mention one very wide class, the so-called power-commu-
tative rings; that is, rings in which every element belongs to a commutative (but
not necessarily associative) subring. This class includes not only the flexible rings,
but also the power-associative rings. Unfortunately, at this point in time, we do
not even know whether this class can be defined by a finite system of identities.
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Some Algorithmic Problems for ε-algebras

A.I. Shirshov

Introduction

The word problem1, stated relative to one or another algebraic system, has at-
tracted the attention of many mathematicians. In the works of A.A. Markov [1]
and E. Post [3] it was proved for the first time that there exist algebraic systems
(semigroups) with undecidable word problem. The most significant achievement in
this direction is the result of P.S. Novikov [2] that establishes undecidability of the
word problem for groups. In 1950, A.I. Zhukov [5], while studying free nonassocia-
tive algebras, established that in the case in which one does not assume that the
algebra satisfies any identical relation (for instance, associativity) the word prob-
lem (as well as some other algorithmic problems) is decidable. From the results
obtained for semigroups, it easily follows that the word problem is undecidable for
associative algebras.

The above-mentioned facts show that it is of interest to discover classes of
algebras defined by identical relations for which the word problem or some other
algorithmic problems are decidable. In the present work, the word problem is
solved for commutative and anticommutative algebras (ε-algebras). Moreover, in
these cases, the more general membership problem is solved, and a theorem is
proved that is analogous to a known theorem on freeness in group theory.

1. The word problem

In the study of commutative and anticommutative algebras, we will for brevity use
the terminology introduced in the work [4]. Hence, commutative and anticommu-
tative algebras will be called respectively C-algebras and AC-algebras. The term
ε-algebras with ε = C or ε = AC will be used when there is no need to distinguish

Sibirsk Mat. Zh. 3, (1962), no. 1, 132–137.
c© 2009 Translated from the Russian original by M.R. Bremner and M.V. Kochetov.
1Literally, “the problem of identity”. [Translators]



176 A.I. Shirshov

the two cases. In [4] the definition of ε-regular words is given, and it is shown that
they form a basis of the free ε-algebra. This result will also be used in the sequel
without further mention.

Let E be the free ε-algebra over some field P (fixed once and for all), and let
R = {aα}, α ∈ I, be a set of free generators. We choose in E an arbitrary finite
set of elements S and denote by 〈S〉 the ideal generated in E by S. To solve the
word problem in this case means to provide an algorithm that allows us, for an
arbitrary finite set S and an arbitrary element a ∈ E, to determine whether or
not a belongs to 〈S〉.

The definition of ε-regular words requires that some ordering be fixed. In the
sequel we will make the convention that, given two ε-regular words u = u1u2 and
v = v1v2 of equal length ≥ 2, the greater word is either the one with greater first
factor (u1 or v1), or if these are equal, then the one with greater second factor (u2

or v2). With respect to this ordering, we will speak of the leading term a of any
element a in the algebra E.

The concept of a subword of a nonassociative word is sufficiently well known.
Formally, it can be defined (by induction) on the word length, for example as
follows.

Definition 1. Let u be a word of length ≥ 2 with u = u1u2. Then u, u1, u2 and
the subwords of u1 and u2 are called subwords of u.

Definition 2. A set S of elements of E is called reduced if no element of S has a
leading term which is a subword of the leading term of another element of S, and
all the coefficients of the leading terms are equal to 1.

We now prove a few auxiliary results.

Lemma 1. Let S be a finite set of elements of E. Then there exists a reduced finite
set S′ such that 〈S′〉 = 〈S〉.
Proof. In the expression of the elements of S, there occurs only a finite subset
R′ of elements of R. Let si, i = 1, 2, . . . , n, be the elements of S, and let si be
the leading term of si; then obviously we may assume that the coefficients of the
leading terms of the elements of S are equal to 1. The symbol Σ = (s1, s2, . . . , sn)
where si ≤ sj if i > j will be called the type of the set S, and the number n will
be called the length of the type.

The set of all possible types that correspond to finite subsets of E, the expres-
sions of whose elements only involve elements from R′, will be ordered as follows:
if the lengths of the types are equal then the order is lexicographical, and shorter
types precede longer types.

Suppose that the finite set S is not reduced, i.e., the leading term sj of some
element sj ∈ S is a subword of the leading term si of an element si ∈ S, i �= j.
Then obviously there exists an element tj of the ideal 〈sj〉 such that si = tj and
hence the leading term di of the element di = si − tj will be smaller than the
word si. Denote by S1 the set obtained from S by replacing the element si by the
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element di. Obviously 〈S〉 = 〈S1〉 and the type of S1 is smaller than the type of S.
The proof is complete since any decreasing sequence of types must terminate. �
Lemma 2. An element t ∈ E lies in the ideal 〈S〉, where S = {si}, i = 1, 2, . . . , n,
is a finite reduced set, only if at least one of the words si, i = 1, 2, . . . , n, is a
subword of t.

Proof. If t ∈ 〈S〉 then obviously t can be represented as a linear combination of
products di, i = 1, 2, . . . ,m, of one of the elements2 ski of S and some number of
ε-regular words. Here we may assume that each di is an ε-regular word that has a
subword ski , and replacing this subword by ski turns di into di.

The last statement is obvious if ε = C, but it requires additional considera-
tions if ε = AC. In this second case, one should look at products of the form sisi.
But then, by virtue of the equation

sisi = si[si − (si − si)] = −si(si − si),

it is clear that in this case also the required representation is possible. In the
more general case of the expression σiσi, where σi is an AC-regular word with a
distinguished subword ski satisfying the above conditions, the argument is similar.

Among the ε-regular words di, i = 1, 2, . . . ,m, we select the maximal. If this
word is unique, then the lemma is proved. Assume now that the maximal word di

is equal to the word dj . Since S is reduced, each of the subwords ski , skj of the
word dj does not occur as a subword of the other in the expression of the word
dj (although they can be equal3). Therefore, without loss of generality, we may
assume that

dj = b1b2 · · · bpjskic1c2 · · · cqjskjf1f2 · · · frj ,

where parentheses are placed in a certain way and all b, c, f are ε-regular words.
By virtue of the equation

dj = b1b2 · · · bpjskic1c2 · · · cqjskjf1f2 · · · frj

+ b1b2 · · · bpjskic1c2 · · · cqj (skj − skj )f1f2 · · · frj

+ b1b2 · · · bpj (ski − ski)c1c2 · · · cqjskjf1f2 · · · frj ,

it is obvious that the element dj can be written as a linear combination of the
element di and some other elements formed in a similar way to the elements dk,
k = 1, 2, . . . ,m, but having smaller leading terms. After combining like terms, the
number of elements dk whose leading terms coincide and are maximal is reduced
by 1. The proof is complete by an obvious induction. �

From Lemmas 1 and 2 we easily obtain the following algorithm which solves
the word problem for ε-algebras as stated at the beginning of this section:
(a) In a finite number of steps one performs replacement of the set S by the

reduced set S′ (Lemma 1).

2In this proof, we have replaced sik(i) , sjk(j) by ski
, skj

respectively. [Translators]
3The original says “although they can be subwords of each other”. [Translators]
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(b) If the word a does not contain a subword that coincides with the leading
term of one of the elements S′, then Lemma 2 implies that a /∈ 〈S〉. If to
the contrary such a subword is found, then it is easy to construct an element
a1 ∈ 〈S〉 such that a = a1 and hence a−a1 will be less that a.

It is easy to see that the element a lies in the ideal 〈S〉 if and only if the element
b = a− a1 lies in 〈S〉. The rest is obvious.

For ε-algebras, as well as nonassociative algebras [5], we have the following
result.

Theorem. (Freeness Theorem) Suppose that the expression of an element c ∈ E,
in terms of the elements of the basis of ε-regular words, contains the generating
element aα ∈ R. Then the images of the elements of the set R \ {aα} generate a
free ε-algebra in the quotient E/〈c〉.
Proof. In the construction of the basis of ε-regular words, we make the convention
that for two such words the greater is the one whose expression contains the
generator aα more times, regardless of the degrees of the words. The words that
contain the generator aα the same number of times will be ordered in the usual
way. Obviously, any subword v of the word u will be smaller than this word u, and
any decreasing sequence of words that are ε-regular (in this sense) must terminate.

The proof of Theorem 1 of the work [4] can be applied to this situation
without essential changes. The above way of ordering ε-regular words guarantees
that the leading term c of an element c contains the generator aα. Lemma 2, whose
proof is still valid, states in our case that the maximal word v, of any element v in
the ideal 〈c〉, contains a subword that coincides with c. From this it follows that
the (free) subalgebra E′ of E generated by the set R \ {aα} has zero intersection
with the ideal 〈c〉. This is equivalent to the statement of the theorem. �

2. The membership problem

The word problem is a special case of the so-called membership problem, which
for the case considered in this paper has the following formulation:

An arbitrary finite set V = {vj}, j = 1, 2, . . . , k, of elements of the
algebraE generates a subalgebra [V ]. It is necessary to find an algorithm
that allows us to determine whether or not the image of an arbitrary
element t ∈ E, under the natural homomorphism of E onto the quotient
algebra E′ = E/〈S〉 where S = {si}, i = 1, 2, . . . , n, belongs to the
image [V ]′ of [V ] under this homomorphism.

Obviously, when considering the membership problem for sets S and V and ele-
ments t, one can make the following assumptions without loss of generality:

(1) The set S is reduced.
(2) None of the words t and vj , j = 1, 2, . . . , k, contains any of the words si as a

subword.



Some Algorithmic Problems for ε-algebras 179

(3) The coefficients of the leading terms of the elements t and vj , j = 1, 2, . . . , k,
are equal to 1.

(4) Each element vj does not belong to the subalgebra of E generated by the
leading terms of the elements of the set V \ {vj}.

One can achieve Conditions (1)–(4) in a finite number of steps without changing
the ideal 〈S〉, the subalgebra V , or the image t′ of the element t. The proof of
this fact essentially repeats the argument given in the proof of Lemma 1. For
example, if it happens that some element vj belongs to the subalgebra generated
by the elements vi, i �= j, then instead of the element vj one should consider the
difference v′j = vj − uj where uj ∈ [V ] and v′j < vj.

Let λ be the maximum of the degrees of the elements of S. We will describe
a process for modifying the set V . Suppose some element si has the form si =
vi1vi2 · · · viq with some placement of parentheses. Then to the set V we adjoin the
element v′ = vi1vi2 · · · viq − si with the same placement of parentheses. Note that
the degrees of the elements vik

that appear in the expression of the element v′ are
less than λ. If necessary, to the set V ′ = V ∪ {v′} we apply the transformations
which ensure Conditions (2)–(4). We repeat this entire process as many times as
required.

Since, after each step, the set of words of degree ≤ λ, which can be obtained
by multiplying the leading terms of the elements of the corresponding V (i), can
only increase, and the number of ε-regular words of degree ≤ λ that occur in this
process is finite, the process will lead in the end to a set V1 satisfying the following
conditions:
− Conditions (2)–(4) above;
− the images of the algebras [V1] and [V ], under the natural homomorphism of

the algebra E onto the quotient algebra E/〈S〉, coincide;
− if for some placement of parentheses sj = vj1vj2 · · · vjp for some j, j1, j2, . . .,
jp, then the element sj − vj1vj2 · · · vjp can be represented as the sum w + τ
where w ∈ [V1], τ ∈ 〈S〉, w < sj and τ < sj .

The totality of these conditions imposed on the sets S and V1 and the element t
will be called for brevity Condition (5).

Lemma 3. The image of an element t ∈ E belongs to the image of the subalgebra
[V1] under the natural homomorphism of E onto the quotient algebra E/〈S〉 only
if t ∈ [V 1] where V 1 is the set of leading terms of the elements of V1; here we
assume that Condition (5) is satisfied.

Proof. Indeed, suppose that t = u+σ where u ∈ [V1] and σ ∈ 〈S〉. The leading term
σ of σ contains some word sp as a subword where sp ∈ S (Lemma 2). Obviously,
u ∈ [V 1]. If σ �= u (ignoring the coefficients) then the lemma is proved, since t �= σ
by Condition (2) and therefore t = u.

Now assume that u = σ. Then for the element sp that is a subword of σ we
have the representation sp = vp1vp2 · · · vp�

with some placement of parentheses.
By Condition (5) we have sp − vp1vp2 · · · vp�

= u′ + σ′ where u′ ∈ [V1], σ′ ∈ 〈S〉,
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u′ < sp and σ′ < sp. Thus sp = u′′ + σ′, u′′ ∈ [V1]. The element σ can be written
in the form σ = σ1 + σ2 where σ1 is obtained by replacing the subword sp in σ
by the element sp, and also σ2 is in 〈S〉 with σ2 < σ1. Obviously, σ1 = σ = u.
Replacing the factor sp in σ1 by the expression u′′ + σ′, we obtain the following
expression for the element t: t = u + u1 + σ3 where u1 ∈ [V1] and σ3 ∈ 〈S〉 with
σ3 < σ. The process of decreasing the leading terms of the summands in 〈S〉 that
occur in the expression for t cannot continue indefinitely. The proof is completed
by the obvious remark that the condition u ∈ [V1] implies u ∈ [V 1]. The lemma is
proved. �

Lemma 3 implies the following algorithm for solving the membership problem
for ε-algebras as stated above:
(a) Rewrite the element t, and the elements of the sets V and S, so that they

satisfy Conditions (1)–(4).
(b) Extend the set V to the set V1 satisfying Condition (5).
(c) If t ∈ [V1] then instead of the element t consider the difference t1 = t − w,

where w ∈ [V1] and w = t, so that the leading term of t1 is smaller than t.
(d) If at any step the current difference equals zero, then the result concerning t

is affirmative; if the process terminates with a nonzero element tr, then the
result is negative.

Remark 1. The above stated algorithm also applies of course to the case of nonas-
sociative algebras considered in the work [5] by A.I. Zhukov. Therefore, the mem-
bership problem is decidable also for algebras without any identical relations.

Remark 2. In the same way as in [5], the finiteness problem is decidable for ε-
algebras.
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Some Algorithmic Problems for Lie Algebras

A.I. Shirshov

1. Introduction

In a previous work [2] the author considered some algorithmic problems in the
theory of ε-algebras. The same paper mentioned some literature relevant to these
problems.

In the present paper, we consider the analogous problems for Lie algebras.
Unfortunately, we cannot obtain the solution of the word problem in this case.
However, the word problem can be solved for Lie algebras with one defining rela-
tion, and for Lie algebras with a homogeneous system of defining relations.

Moreover, for Lie algebras we will prove a freeness theorem analogous to the
corresponding theorem in group theory.

2. Definition of composition

Let L be the free Lie algebra over a field P with the set R = {aα}, α ∈ I, of free
generators. For brevity of exposition, in what follows we will use the definitions
and results of the author’s work [1] without particular explanation.

Having fixed once and for all an ordering on the set R, we define regular
associative and regular nonassociative words formed by the elements of this set.
In the work [1], it is shown that the regular nonassociative words form a basis of
L. In what follows, unless otherwise indicated, when we speak of some element
of L, we will mean its representation as a linear combination of the elements of
this basis. The regular associative word that corresponds to the leading term of
an element b ∈ L (without coefficient) will be denoted by b.

Sibirsk Mat. Zh. 3, (1962), no. 2, 292–296.
c© 2008 Translated from the Russian original by M.R. Bremner and M.V. Kochetov.
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We choose in L two arbitrary elements b and c such that b = b1b2 and c = c1c2
with b2 = c1, where b1, b2, c2 are (nonempty associative) words and the coefficients
of the leading terms of the elements b and c equal 1.

Lemma 1. The associative word u = b1b2c2 = b1c1c2 is regular.

Proof. Suppose u = w1w2 and w1 is a subword of b. Then b = w1v, b > v, and
hence w1w2 > w2w1. In the case when w2 is a subword of c2, i.e., c2 = c′2w2, the
inequality w1w2 > w2w1 follows from the obvious inequalities w2 < c2 < c < u.
The proof is complete. �

According to Lemma 4 of [1], we form nonassociative words u1 and u2 by
placing parentheses in the word u in two different ways1:

u1 = {· · · [(̃bq1)q2] · · · }qs,
where the qi are regular nonassociative words and q1q2 · · · qs = c2, with q1 ≤ q2 ≤
· · · ≤ qs; and

u2 = r1{r2 · · · [rt−1(rtc̃)] · · · },
where the rj are regular nonassociative words and r1r2 · · · rt = b1. Let

u′1 = {· · · [(bq1)q2] · · · }qs, u′2 = r1{r2 · · · [rt−1(rtc)] · · · }.
Definition 1. The element t = α(u′1 − u′2), where α ∈ P is the inverse of the
coefficient of the leading term of u′1 − u′2, will be called the composition (b, c)c1 of
the elements b and c relative to the word c1.

Therefore, the notion of composition is defined for some but not all pairs b
and c of elements of L, and essentially depends on the word c1.

Lemma 2. No composition can be formed for the pair (b, b).

Proof. It suffices to show that there cannot be two representations b = b1b2 = b2b3
where b2 is a nonempty associative word. Suppose that b = b1b2 = b2b3. From the
definition of regularity it follows that b > b3b2, i.e., b1 > b3; on the other hand,
b > b2b1, i.e., b3 > b1: an obvious contradiction. �

Note that if the composition (b, c)c1 is defined for some word c1, then the
composition (c, b)b1 of the elements c and b cannot be formed, since the assumption
of the existence of the composition (b, c)c1 implies the inequality b > c.

1We have added tildes over b and c in the following equations for u1 and u2; the tilde means the
regular nonassociative word corresponding to a given regular associative word. See the proof of
Lemma 3. [Translators]
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3. Some word problems

We consider some definitions necessary for what follows.

Definition 2. A finite set S = {si}, i = 1, 2, . . . , k, of elements of the algebra L is
called reduced if none of the associative words si is a subword of another word sj

(si, sj ∈ S) and the coefficients of the leading terms of the elements equal 1.

Let S be a reduced set of elements of L, and let S∗ be the set of the leading
terms of the elements of S and the elements obtained from S by all possible
compositions (repeated any number of times).

Definition 3. A reduced set S of elements of L will be called stable if

(i) the degree of the composition (s′, s′′)c of two elements s′ and s′′, belonging
to S or obtained from S by any number of compositions, is greater than the
degree of each of the elements s′ and s′′, and

(ii) no element of S∗ contains another element of S∗ as a subword (in particular,
the elements of S∗ are distinct).

Theorem 1. Let S be a stable set of elements of L. Then there exists an algorithm
that allows us to determine, in a finite number of steps, whether or not an arbitrary
element t ∈ L belongs to the ideal 〈S〉 generated by S in L.

We will obtain Theorem 1 from the following lemma.

Lemma 3. An element t ∈ L belongs to the ideal 〈S〉 generated in L by the elements
of a stable set S, only if the word t contains one of the words of S∗ as a subword.

Proof. Suppose t ∈ 〈S〉. Then t can be written as a linear combination of elements
di of the form

di = c1c2 · · · ckispif1f2 · · · f�i ,

with some placement of parentheses, where si ∈ S and cj, fj are regular words.
Since for any regular associative words u and v, the greater of the words uv and
vu is regular, we may assume without loss of generality that the following word is
regular:

di = c1c2 · · · ckispif1f2 · · · f�i
.

The claim of the lemma is obvious if the word d1, which is the greatest of the
words di of highest degree, does not occur among the other words2 dj , j �= 1,
corresponding to the element t.

Now suppose that d1 = dj , j �= 1. Consider the first and simplest case in
which spj is a subword of one of the words c1c2 · · · ck1 or f1f2 · · · f �1 . Consider the
former case (the latter is analogous). From the regularity of dj , sp1 , spj it follows

2We have added a bar here, and twice in the first sentence of the next paragraph. [Translators]
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(by Lemma 4 of [1]) that we can place parentheses in the word dj in the following
way3:

d′ =

c1c2 · · · cq[· · · (( s̃pjc
′
q+1 )c′q+2) · · · c′r] · · · ck1 [· · · (( s̃p1f

′
1 )f ′

2) · · · f ′
m]fm+1 · · · f�1 ,

where c′ρ and f ′
ν are regular words,

c′q+1 ≤ c′q+2 ≤ · · · ≤ c′r, and f ′
1 ≤ f ′

2 ≤ · · · ≤ f ′
m,

and the remaining parentheses are placed in the same way as in d̃j , where the
symbol ˜ means the regular nonassociative word corresponding to a given regular
associative word. Furthermore, let d′1 and d′j denote the elements of L obtained
from d′ by replacing s̃p1 by sp1 and s̃pj by spj respectively.

The differences d1 − d′1 and dj − d′j can obviously be written as linear com-
binations of elements similar to the elements di but having smaller leading terms
than4 d1. As in the proof of Lemma 2 of [2], one can show that the difference
d′j − d′1 can be written in an analogous way. From this, by virtue of the equation

dj = d1 − (d1 − d′1) + (d′j − d′1) + (dj − d′j),

it follows that the element dj can be replaced by the sum of d1 and some other
similar elements with smaller leading terms. Combining like terms will either de-
crease the number of occurrences of the leading term or produce an expression
with a smaller leading term. The induction is obvious.

One more case is possible: sp1 = e1e2, spj = e2e3. Then by Lemma 1, the
subword e1e2e3 of d1 is regular, and on e = e1e2e3 parentheses can be placed in
two ways as described in the definition of composition; we can then extend each
of these placements of parentheses in a unique way to a complete placement of
parentheses on d1. Let δ be the difference of the elements d′′1 and d′′j obtained from

3We have omitted the primes on c1, . . ., cq. [Translators]
4Let us simplify and put d′1 = d′j = (c spj c′sp1f) where c, c′, f are some associative words

and (. . .) is the same placement of parentheses as in Shirshov’s paper. (We shorten Shirshov’s
notation, and instead of two expressions d′1, d′j we use only one). Then, for example, d1 − d′1 has

the shorter form (c spj c′sp1f) − (c spj c′sp1f) where c, c′, f are the same associative words, and

the maximal associative words of each expression d1 and d′1 are equal to d1. Then we can rewrite

d1 as an associative expression c spj c′sp1f with maximal word d1 plus a linear combination of

associative expressions aisp1bi with maximal words less than d1. We can do the same with d′1.
The result is

D = d1 − d′1 =
∑

1≤j≤k

αjajsp1bj ,

with maximal words less than d1. Without loss of generality, we can assume a1sp1b1 > a2sp1b2 >
. . . , since the maximal word of sp1 is a regular word, and any regular word has the property that

its prefix cannot coincide with its suffix. Then D = a1sp1b1. By Lemma 4 of [1], one can place

parentheses to obtain (a1sp1b1) with the maximal word equal to D. Then D − α1(a1sp1b1) has

the same form as D, but its maximal word is less than D. The result now follows by induction
on the maximal word. [Editors]
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those described above by replacing the words s̃p1 , s̃pj by sp1 , spj respectively; then
δ can be obtained from the word d1 by replacing the word e by the composition
(sp1 , spj )e2 and subsequently placing parentheses as on the words d′′1 and d′′j . As
in the previous case, the proof is completed by considering the equation

dj = d1 − (d1 − d′′1 ) + (dj − d′′j ) − δ.

The lemma is proved. �
To prove Theorem 1 it suffices to verify that one can write down in a finite

number of steps all the elements of the set S∗ whose degrees do not exceed the
degree of the element t. If the word t occurs in an element of S∗ as a subword,
then in the ideal 〈S〉 there can be found an element t0 such that t0 = t. Then
instead of the element t, one should consider the difference t− t0.

The theorem is proved.

Corollary 1. There exists an algorithm that solves the word problem for Lie algebras
with one defining relation.

This follows from the obvious stability of a set that consists of one element.

Corollary 2. There are no Lie algebras with one defining relation that have a finite
dimension ≥ 3.

This statement follows from the fact that in a Lie algebra with defining
relation s = 0, all the distinct words vi, such that vi does not contain s as a
subword, are linearly independent.

Theorem 2. There exists an algorithm that solves the word problem for Lie algebras
with a homogeneous set of defining relations.

Proof. Suppose that in the algebra L some homogeneous set S has been selected. If
S is not reduced, then it can be replaced by a reduced set S1 such that 〈S〉 = 〈S1〉.
Indeed, if si (si ∈ S) is a subword of sj (sj ∈ S), then one constructs an element
s0 of the ideal 〈si〉 such that s0 = sj , and considers the element s′j = sj − s0
instead of the element sj.

The proof that this process of reduction will terminate in a finite number
of steps coincides with the proof of Lemma 1 in [2]. Obviously, the resulting set
S1 will consist of homogeneous elements. Since the composition of homogeneous
elements is homogeneous, the requirement on degrees in the definition of stability
is satisfied. It is also obvious that after a finite number of steps one can write
down all elements of S∗ whose degrees do not exceed the degree of a given element
t ∈ L; during this procedure it may be necessary to perform the reduction process
on the sets obtained from S1 by adjoining compositions of certain elements. The
proof is completed as in Theorem 1. �
Theorem 3. (Freeness Theorem) Let L0 be a Lie algebra with a set R of generators
and one defining relation s = 0 whose left side contains the generator aα. Then
the subalgebra L′

0, generated in L0 by the set R \ {aα}, is free.
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Proof. In addition to the natural ordering of the regular words that form a basis
of the free Lie algebra L, we will consider the following ordering. A regular word
u is considered to be greater than a regular word v if the generator aα occurs in
u more times than in v. If aα occurs in u and v the same number of times, then
these words are first compared by degree, and if the degrees are equal, then by the
usual lexicographical comparison of the words u and v. The associative word s that
corresponds to the leading term of an element s in the sense of the new ordering,
may be different from the word s. Repeating the arguments used in the proof of
Lemma 3, and applying Lemma 2, we obtain the result that an element t belongs
to the ideal 〈s〉 only if5 the word s is a subword of t. Since the generator aα occurs
in the expression of s, it follows that the subalgebra L′

0 has zero intersection with
the ideal 〈s〉. This is equivalent to the claim of the theorem. �
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On a Hypothesis in the Theory of Lie Algebras

A.I. Shirshov

1. Introduction

The concepts of a free group and the free product of groups, as well as the re-
sults related to these concepts, have their analogues in the theory of algebras. It
is known, for example, that any subalgebra of a free Lie algebra is also free. This
result is analogous to the well-known theorem of Nielsen-Schreier in group theory.
The results of A.T. Gainov [1] on subalgebras of the free commutative and free an-
ticommutative products of algebras, are analogous to the theorem of A.G. Kurosh
[2] on subgroups of the free product of groups. Under the influence of this analogy,
there existed a conjecture that subalgebras of the free Lie product of Lie algebras
are described by a theorem analogous to the theorem of A.T. Gainov cited above.
In the present note, we prove that this is not the case. Moreover, we give here a
construction of interest in its own right, which it is natural to call the free Lie
product of Lie algebras with an amalgamated subalgebra.

2. The free Lie product of Lie algebras with an amalgamated
subalgebra

Let Lα (α ∈ I) be a family of Lie algebras over some fixed field P , each of which
contains a subalgebra Lα,0 which is isomorphic to a given algebra L0. We construct
a Lie algebra L with the following properties:
(1) L contains subalgebras L′

α which are isomorphic to the algebras Lα (α ∈ I)
respectively;

(2) the intersection L′
0 =
⋂
L′

α of the algebras L′
α is a subalgebra isomorphic to

L0, and some fixed isomorphism of L0 with L′
0 can be extended to isomor-

phisms of Lα with L′
α for all α;

(3) L is generated by the subalgebras L′
α (α ∈ I).

Sibirsk Mat. Zh. 3, (1962), no. 2, 297–301.
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We choose an arbitrary basis of L0, and for each α ∈ I we extend its isomorphic
image in Lα to a basis of this latter algebra. As a result of this, we obtain a set
S of elements of the algebras Lα, namely S = {eαγ} (α ∈ I, γ ∈ Jα), where all
the index sets Jα contain subsets J ′

α of equal cardinality (which we will identify in
what follows: J ′

α = J ′) such that γ ∈ J ′
α implies eαγ ∈ Lα,0. Clearly, the symbols

eαγ and eβγ will not be distinguished if γ ∈ J ′.
We take a set R = {fαγ} (α ∈ I, γ ∈ Jα) in one-to-one correspondence with

S, and make it into the set of free generators of the free Lie algebra L. We choose
a basis of L formed by regular words (see [3]), starting from some ordering of the
sets I and Jα, where the ordering of Jα extends some ordering of J ′, and the
conditions γ ∈ J ′, δ ∈ Jα, δ /∈ J ′

α imply that γ < δ. That is, fαγ < fα′γ′ if either
α < α′, or α = α′, γ < γ′. Consider the ideal Q of L generated by all elements of
the form

qαγδ = fαγfαδ −
∑

τ

pτ
αγδfατ (γ > δ),

where the following equation holds in the algebra Lα:

eαγeαδ =
∑

τ

pτ
αγδeατ (pτ

αγδ ∈ P ).

Definition. A basis word v of the algebra L will be called special if the corre-
sponding regular associative word does not contain subwords of the form fαβfαβ′ ,
β > β′.

Clearly, a special word of length ≥ 2 can contain none of the symbols fαβ

when β ∈ J ′.

In what follows, by the leading term of an element t ∈ L we will mean the
lexicographically maximal term among the terms of the highest degree.

Lemma 1. An element t ∈ L belongs to the ideal Q only if its leading term is not
special.

Proof. Suppose that an element t of the algebra L belongs to the ideal Q, i.e., t can
be represented as a linear combination of products of elements qαγδ with elements
of R. Obviously, the leading term of each of the elements qαγδ corresponds to a
regular associative word that contains a subword of the form fαβfαβ′ , β > β′.

If the greatest of these leading terms does not occur among the other leading
terms, then the claim is proved. Otherwise, some of the leading terms are equal,
and in view of the complete analogy with the proof of Lemma 3 of [4], it suffices to
consider only the case in which the equal regular associative words, corresponding
to the equal leading terms, have the form c1c2 · · · csfαβfαγfαδd1d2 · · · dr, and the
products themselves have the form

v1 = c1c2 · · · cs
(
fαβfαγ −

∑

τ

pτ
αβγfατ

)
fαδ d1d2 · · · dr,

v2 = c1c2 · · · csfαβ

(
fαγfαδ −

∑

τ

pτ
αγδfατ

)
d1d2 · · · dr,
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where β > γ > δ and the parentheses on the products v1 and v2 are placed in the
same way. By virtue of the known properties of the structure constants of a Lie
algebra, the following equation holds:

v1 = c1c2 · · · cs
(
fαβfαδ −

∑

τ

pτ
αβδfατ

)
fαγd1d2 · · · dr

+ c1c2 · · · csfαβ

(
fαγfαδ −

∑

τ

pτ
αγδfατ

)
d1d2 · · ·dr + w,

where the omitted parentheses are placed as on the element v1, and the element
w is a linear combination of the elements1 of the form qαγδ, but of lower degree.

Having performed the corresponding substitution in the expression for the
element t, and combined like terms (the second summand in the expression for v1
coincides with v2), we either decrease the number of the above-mentioned products
with equal leading terms, or reduce the leading term itself. The proof is completed
by induction on the leading term2. �

Now consider the quotient algebra L = L/Q. Lemma 1 implies that the
images of special words are linearly independent in L.

Theorem 1. The images of the special words form a basis of the algebra L.

Proof. By the remark preceding the statement of the theorem, it suffices to prove
that the images of regular words can be represented as linear combinations of
special words. A regular word is not special if it contains either
(1) a subword of the form fαβfαγ , β > γ, or
(2) a subword of the form fαβ(fαγw), β > γ, where w is a regular word, or
(3) a subword of the form fαβ(uv) where the regular associative word that cor-

responds to u starts with fαγ , β > γ.
In the first case, since

fαβfαγ −
∑

τ

pτ
αβγfατ ≡ 0 (mod Q),

the word can be replaced by a linear combination of words of lower degree. In the
second case, it follows from the equation

fαβ(fαγw) = (fαβfαγ)w + fαγ(fαβw),

that the given word can be replaced by a linear combination of words either of
lower degree or smaller in the lexicographical sense. The argument in the third
case is analogous. The rest is obvious. �

It is also obvious that the algebra L satisfies the required conditions stated
at the beginning of this section. Furthermore, it is clear that L can be homomor-
phically mapped onto any Lie algebra satisfying the same list of conditions, and
that the kernel of this homomorphism will have zero intersection with each of the

1Multiplied by the ci and dj . [Translators]
2And on the number of products with equal leading terms. [Translators]
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algebras L′
α. From the latter remark it easily follows that L is uniquely determined

up to isomorphism. Therefore, L does not depend on the choice of whichever or-
dering of the sets I and Jα is used in the construction of L. By analogy with the
well-known definition in group theory, we will call L the free Lie product of the
Lie algebras Lα with an amalgamated subalgebra L0.

3. On subalgebras of free Lie products of Lie algebras

A special case of the construction considered above is the free Lie product of Lie
algebras Lα, α ∈ I, obtained with the assumption that L0 = 0, i.e., J ′ is the empty
set. As in the general case, the free Lie product is commutative, associative, and
has many properties usually associated with free compositions. We point out only
one of them.

Lemma 2. Let L be the free Lie product of the Lie algebras Lα, α ∈ I. Then
the quotient L of L by the ideal Sβ, generated in L by one of the factors Lβ, is
isomorphic to the free Lie product of the Lα, α ∈ I, I = I \ {β}.

The proof of this statement follows immediately from the fact that an element
c ∈ L belongs to the ideal Sβ if and only if each basis element occurring in the
expression of c contains at least one of the generators fβµ.

Theorem 2. There exist Lie algebras such that their free Lie product has a subal-
gebra that is not free, is not isomorphic to any subalgebra of any of the factors,
and cannot be decomposed as the free Lie product of any of its subalgebras.

Proof. Let L1 be a 1-dimensional Lie algebra with generator e11, and let L2 be
the 2-dimensional Lie algebra with basis e21, e22 such that e22e21 = e21. Let L be
the free Lie product of L1 and L2. It follows from the above discussion that for a
basis of L we can choose the collection of special words, i.e., regular nonassociative
words whose corresponding associative words do not contain the subword e22e21.
Note that here we assume the following ordering: e22 > e21 > e11.

Consider the subalgebra L′ of L generated by the elements e21, e22, e21e11,
e22e11. First we show that L′ is isomorphic to the Lie algebra L∗ with four gener-
ators c1, c2, c3, c4 and two defining relations:

c4c1 + c3c2 − c1 = 0, c4c2 − c2 = 0.

We establish the following correspondence among the generators:

c4 → e22, c3 → e22e11, c2 → e21, c1 → e21e11.

Since the following relations hold in the algebra,

e22(e21e11) + (e22e11)e21 − e21e11 = 0, e22e21 − e21 = 0,

the correspondence above extends to a homomorphism of algebras from L∗ onto
L′. The algebra L∗ is one of the algebras for which the word problem is decidable
(see [4]).
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As basis elements of L∗ we can take the regular nonassociative words whose
corresponding associative words do not contain the subwords c4c1 or c4c2. However,
it is easy to see that every nonzero linear combination of such elements corresponds
to a nonzero element of L′. Therefore, the above-mentioned homomorphism is an
isomorphism.

In what follows, we will work with the algebra L∗. We will assume that L∗

does not contain subalgebras of finite dimension, except for those of dimension 1
and the subalgebra generated by c4 and c2, since such a subalgebra would give the
required example; for the same reason, we will assume that the free Lie product of
Lie algebras which do not have finite-dimensional subalgebras except for those of
dimension 1, does not contain such subalgebras either. From this it follows that,
if L∗ were decomposed as the free Lie product of algebras L1 and L2, then one of
them, say L1, would contain the elements c4 and c2.

The ideal T generated by these elements contains the element c1, and hence
the quotient algebra L∗/T is 1-dimensional; however by Lemma 2 it is isomorphic
to L2. The algebra L∗ is not isomorphic to L, since it does not contain an element
that together with c4 and c2 would generate L∗. Therefore, the algebra L1 is not
generated by c4 and c2. It cannot be decomposed into the free Lie product of two
Lie algebras, since otherwise it would follow from Lemma 2 that the quotient of
L∗ by the ideal T would not be 1-dimensional. Therefore, as the required example,
we can take the subalgebra L1 of L. The theorem is proved. �
Remark. In fact, even the algebra L′ cannot be decomposed as a free Lie product
of its subalgebras. However, the proof of this fact is considerably more complicated
than the proof given above.

The theorem just proved shows that subalgebras of the free Lie product of Lie
algebras have a rather complicated structure, and the problem of their description
is of great interest.
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On the Bases of a Free Lie Algebra

A.I. Shirshov

Introduction

In the work of M. Hall [1], a certain way of fixing a basis of a free Lie algebra
is indicated. However, the concrete bases which one needs to construct, in order
to solve certain problems, do not always fall into Hall’s scheme. For instance, the
basis of a free Lie algebra considered in the work [2] cannot be constructed using
Hall’s method. For this reason, in each such case it is necessary to reprove that
a certain subset of a free Lie algebra is a basis. Below, we give a method that
generalizes Hall’s method for choosing a basis in a free Lie algebra.

A construction of a basis of a free Lie algebra

Let R = {aα} be a set of symbols, where α ranges over a nonempty set of indices.
The set of all nonassociative words that can be formed from the elements of R will
be denoted by K.

Definition 1. Nonassociative words of length 1 in K will be called regular and
ordered arbitrarily. Suppose regular words for all lengths less than n have already
been defined and ordered by some relation > such that for any regular words u, v
and w the condition w = uv implies w > v. Then a word t of length n, n > 1, will
be called regular if

1) t = rs where r and s are regular words with r > s, and
2) if r = r1r2 then r2 ≤ s.

The regular words of length ≤ n defined in this way will be ordered arbitrarily,
except that we preserve the existing ordering of the regular words of length less
than n, and require as before that w = uv implies w > v.

Algebra Logika 1, (1962), no. 1, 14–19.
c© 2009 Translated from the Russian original by M.R. Bremner and M.V. Kochetov.
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The ordering described in this definition can be realized, for instance, by
ordering words of the same length arbitrarily and declaring that words of smaller
length precede words of greater length (see Hall [1]). This case, however, does not
exhaust all the possibilities.

We indicate a method that assigns to every element w of K the unique formal
expression,

w∗ =
k(w)∑

i=1

n
(w)
i wi,

where k(w) ≥ 0, the n(w)
i are nonzero elements of the base field, and the wi are

distinct regular words. If the length of the word w equals 1, then we set w∗ = w.
Assume by induction that for words w whose length is less than n the following
conditions hold:

i) the required method has been indicated,
ii) the words wi obtained by this method have the same content relative to R

as w (i.e., in each of these words every element of R occurs the same number
of times as in w),

iii) if w is the product of two distinct regular words, w = uv, then all the wi,
i = 1, 2, . . . , k(w), are greater than the lesser of u and w (in the sense of the
ordering of regular words), and

iv) if w is regular then w∗ = w, i.e., k(w) = 1 and n(w)
1 = 1.

Suppose now that a word w has length n > 1. Then w = uv. By the inductive
hypothesis it follows that the expressions,

u∗ =
k(u)∑

i=1

n
(u)
i ui, v∗ =

k(v)∑

j=1

n
(v)
j vj ,

have already been defined. Let

w′ =
k(u)∑

i=1

k(v)∑

j=1

n
(u)
i n

(v)
j uivj .

We delete in the expression w′ the terms n(v)
j n

(u)
i uivj in which ui = vj , and replace

each term in which ui < vj by the expression −n(u)
i n

(v)
j vjui.

After performing the formal combination of like terms, and removing the
terms whose coefficients turn out to be zero, we denote the resulting expression by
w′′. In the expression w′′, if it turns out that for some muivj we have ui = u′iu

′′
i

with u′′i > vj , then we replace each such expression by m(u′ivj)u′′i +mu′i(u
′′
i vj); we

act analogously for the elements mvjui if it turns out that vj = v′jv
′′
j with v′′j > ui.

After this, we combine like terms and denote the resulting expression by w′′′. For
each monomial that occurs in w′′′ we perform all the transformations that have
been done for w, each time replacing the monomial in w′′′ by the corresponding
formal expression, multiplied by the original coefficient of the monomial; we then
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combine like terms. Then for the resulting expression w(4) we perform the same
transformations as were done for w′′′, and so forth. We will show that at some
step this process must stabilize.

Indeed, by the inductive hypothesis for the element uivj , with each passage
to the sum of products of regular words, the lesser of the factors will be greater
than the lesser of the words ui and vj . However, also by the inductive hypothesis,
the content of the words will not change, but the number of words with the same
content is finite. This stabilized expression obtained for w we will take as w∗.

Therefore, we have indicated a method which, to each word w of length n,
assigns in a unique manner the formal expression w∗. Since at each step the content
of the words is preserved, all the wj will have the same content as w. If w = uv is a
product of two regular words, then all the wi will be greater than the lesser of the
words u and v, since at no step can a decrease of the lesser factor occur, and hence
wi = uivi where vi is not less than the lesser of the words u and v, but wi > vi

by Definition 1. In the case that w is regular, it cannot undergo any changes, and
hence w∗ = w. Therefore, all the assumptions of the inductive hypothesis have
been verified for words of length n.

Now consider the vector space A over the base field with the basis of regular
words. We make this space into an algebra S by defining the product of basis
elements as follows:

vi · vj = (vivj)∗.

Theorem. The algebra S is the free Lie algebra with the set of generators R.

Proof. First we prove that S is a Lie algebra. The construction for w∗ explained
above shows that

(∑

i

δiai +
∑

j

δ′juj

)
·
(∑

i

δiai +
∑

j

δ′juj

)
= 0,

which implies that the identical relation x2 = 0 holds in S.
It is more difficult to prove that the Jacobi identity holds. By virtue of its

multilinearity, it suffices to show that if ui, uj, uk are regular words, then

[(uiuj)∗uk]∗ + [(ujuk)∗ui]∗ + [(ukui)∗uj ]∗ = 0. (1)

If the sum of the lengths of ui, uj, uk equals 3, then the validity of equation
(1) follows from the definition of the operation w∗. Assume by induction that for
any set R, and any way of defining regular R-words, i.e., words formed from the
symbols of the set R, equation (1) holds if the sum of the lengths of ui, uj , uk is
less than n. Suppose now that ui, uj, uk are such that the sum of their lengths
equals n, n > 3. Let aβ be the lowest symbol (in terms of the ordering) of the set
R, from among the symbols that occur in ur (r = i, j, k).

First, we assume that ur �= aβ (r = i, j, k). Consider the set of symbols
R′ = {an

α}, n = 0, 1, 2, . . ., where aα ∈ R and aα > aβ. To each R′-word w we
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assign an R-word w by replacing in w each symbol an
α by the monomial

[· · · (aα aβ)aβ · · · ]aβ︸ ︷︷ ︸
n times

.

We will say that the word w is regular if the corresponding word w is regular,
and we will order regular R′-words using the already defined ordering of the corre-
sponding regular R-words. Then R′-words of length 1 are regular, and R′-words of
length n, n > 1, are regular if and only if they satisfy the conditions of Definition
1. Therefore, the definition of regular R′-words agrees with Definition 1. In our
words ur (r = i, j, k) there occur symbols from R that are not less than aβ , and by
Definition 1 the symbol aβ can occur only in words of the form [· · · (aαaβ)aβ · · · ]aβ ;
hence we can find R′-words ur (r = i, j, k) which correspond, in the sense explained
above, to the R-words ur (r = i, j, k). Since aβ occurs in at least one of the words
ur (r = i, j, k), the sum of the lengths of the R′-words ur (r = i, j, k) is less than
n. Hence by the inductive hypothesis it follows that

[(uiuj)∗uk]∗ + [(ujuk)∗ui]∗ + [(ukui)∗uj ]∗ = 0.

But each transformation for (uiuj)∗ etc. corresponds to an analogous transforma-
tion for (uiuj)∗ etc., and as a result of performing these transformations, we obtain
elements which correspond as explained above. Hence equation (1) holds in this
case.

Now assume that aβ equals one of our words, for instance uk. Then equation
(1) takes the form

[(uiuj)∗aβ]∗ + [(ujaβ)∗ui]∗ + [(aβui)∗uj ]∗ = 0. (2)

We also assume that ui �= aβ, uj �= aβ and ui �= aj , since otherwise equation (2) is
obvious. Without loss of generality, we may assume that ui > uj , since otherwise,
using the equation (uv)∗ = −(vu)∗, we can reduce equation (2) to the equation

[(ujui)∗aβ]∗ + [(uiaβ)∗uj]∗ + [(aβuj)∗ui]∗ = 0.

If it turns out that the following equation holds,

(uiuj)∗ = uiuj, (3)

then

[(uiuj)∗aβ ]∗ + [(ujaβ)∗ui]∗ + [(aβui)∗uj ]∗ =

[(uiaβ)∗uj ]∗ + [ui(ujaβ)∗]∗ + [(ujaβ)∗ui]∗ + [(aβui)∗uj]∗ = 0,

by the definition of the operation w∗, and hence equation (2) holds. Equation (3)
is valid if the length of ui equals 1, or if ui has the form ui1ui2 where ui2 ≤ uj .
Hence we can exclude these cases and assume that ui = ui1ui2 where ui2 > uj .
Consider the finite set of pairs u′i, u

′
j of regular words which can be formed from

the symbols that occur in ui, uj and for which u′i ≥ u′j. Let u′′j be the maximal
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value taken on by u′j. Then (u′′i u
′′
j )∗ = u′′i u

′′
j where u′′i is some value of the word

u′i that corresponds to the word u′′j . Indeed, if u′′i = u′′i1u
′′
i2 with u′′i2 > u′′j , then

(w′′)∗ = (u′′i u
′′
j )∗ = [(u′′i1u

′′
j )∗u′′i2]

∗ + [u′′i1(u
′′
i2u

′′
j )∗]∗.

During the application of the operation ∗, the content of the words does not
change, and the lowest factor will not decrease, but each of the regular words in
the expressions (u′′i1u

′′
j )∗, (u′′i2u

′′
j )∗, u′′i2, u

′′
i1 is greater than u′′j . Hence, u′′j is not

maximal. Therefore, equation (2) holds for the words u′′i , u′′j , aβ. We carry out
induction on the finite number of values of the word u′′j in the pairs of words
defined above.

Assume by induction that equation (2) holds for all possible values of the
pairs u′i, u

′
j with u′j > uj. From the definition of the operation ∗ it follows that

{[(ui1ui2)uj ]∗aβ}∗ = {[(ui1uj)∗ui2]∗aβ}∗ + {[ui1(ui2uj)∗]∗aβ}∗. (4)

Since each of the words ui1, ui2, uj is distinct from aβ, from the case proved above
the following equations hold:

[(ujaβ)∗(ui1ui2)]∗ = {[(ujaβ)∗ui1]∗ui2}∗ + {ui1[(ujaβ)∗ui2]∗}∗, (5)

{[(aβui1)∗ui2]∗uj}∗ = [(aβui1)∗(ui2uj)∗]∗ + {[(aβui1)∗uj]∗ui2}∗, (6)

{[ui1(aβui2)∗]∗uj}∗ = [(ui1uj)∗(aβui2)∗]∗ + {ui1[(aβui2)∗uj ]∗}∗. (7)

Finally, from the inductive hypothesis it follows that

{[aβ(ui1ui2)]∗uj}∗ = {[(aβui1)∗ui2]∗uj}∗ + {[ui2(aβui2)∗]∗uj}∗, (8)

{ui1[(ujaβ)∗ui2]∗}∗ + {ui1[(ui2uj)∗aβ ]∗}∗ + {ui1[(aβui2)∗uj]∗}∗ = 0, (9)

{[(ui1uj)∗ui2]∗aβ}∗ = {[(ui1uj)∗aβ ]∗ui2}∗ + [(ui1uj)∗(ui2aβ)∗]∗, (10)

{[ui1(ui2uj)∗]∗aβ}∗ = [(ui1aβ)∗(ui2uj)∗]∗ + {ui1[(ui2uj)∗aβ ]∗}∗, (11)

{[(ujaβ)∗ui1]∗ui2}∗ + {[(aβui1)∗uj ]∗ui2}∗ + {[(ui1uj)∗aβ ]∗ui2}∗ = 0. (12)

Adding separately the left and right sides of equations (4)–(12) with the corre-
sponding sides of the obvious equations,

[(ui1uj)∗(ui2aβ)∗]∗ = −[(ui1uj)∗(aβui2)∗]∗, (13)

[(ui1aβ)∗(ui2uj)∗]∗ = −[(aβui2)∗(ui2uj)∗]∗, (14)

and comparing the results, we obtain

{[(ui1ui2)uj ]∗aβ}∗ + [(ujaβ)∗(ui1ui2)]∗ + {[aβ(ui1ui2)]∗uj}∗ = 0,

which completes the proof that S is a Lie algebra.
Now let S be any Lie algebra with R as the set of generators. To each element

h =
∑

i δiai +
∑

j δ
′
juj of the algebra S we assign the analogously written element

h of S where δi, δ′j are elements of the base field. Since the transformations that
carry the word w to the element w∗ can be performed in any Lie algebra, it follows
that the above-mentioned correspondence is a homomorphism of S onto S. �
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Instead of coefficients from the base field one can consider integers. In this
case, we will obtain a free Lie ring S. From what has been proved it follows that
regular words form a basis of the free Lie ring, which is a generalization of the well-
known theorem of Hall [1], since Definition 1 is broader than the corresponding
definition given by Hall.

Obviously, this also implies a group-theoretic statement generalizing the
corresponding result of Hall. To be specific, we introduce the notation [x, y] =
xyx−1y−1 in the free group G with R as a set of free generators, and call a com-
mutator product (i.e., an R-word with some placement of square brackets) regular
if it is regular in the sense of Definition 1. Then from the well-known isomorphism
of the group Gn/Gn+1 with the subgroup generated by words of length n in the
additive group of the free Lie ring with generating set R, it follows that regular
commutator products of length n form a basis of the Abelian group Gn/Gn+1.
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On Some Groups which are Nearly Engel

A.I. Shirshov

1. Introduction

In the present work, we give a certain modification of one of the possible definitions
of an Engel group. As a consequence of this, we define a class of groups which in
the finite case turns out to be wider than the class of Engel groups. For the finite
case, we obtain a complete description of groups of this wider class (Section 3).
In Section 4 we define a subclass of Engel groups that contains in particular the
3-Engel groups.

In this work we formulate several problems that can, in the author’s opinion,
attract the attention of mathematicians.

The author expresses his gratitude to M.I. Kargapolov, who looked over the
manuscript and made a number of important remarks.

2. The definition of ν-group

Let G be a group. We introduce the following notation:

[a, b, 1] = [a, b] = aba−1b−1; [a, b, k] = [ [a, b, k − 1], b ] (k = 2, 3, . . .).

A group G in which, for any two elements a and b and some fixed number k, the
equality [a, b, k] = e holds, where e is the identity element of G, is called k-Engel or
simply Engel. Obviously, any nilpotent group is Engel. However, it is not known up
to now if there exist Engel groups which are not locally nilpotent. Local nilpotence
has been proved only for 3-Engel groups [2].

The definition of Engel groups can be formulated in a slightly different way.
Suppose that a variety M1 of groups is determined by the equation

f1(x, y) = ϕ1(x, y),

Algebra Logika 2, (1963), no. 5, 5–18.
c© 2009 Translated from the Russian original by M.R. Bremner and M.V. Kochetov.
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where f1 and ϕ1 are words in the variables x and y. Then setting

f2(x, y) = f1(xyx−1, y), ϕ2(x, y) = ϕ1(xyx−1, y),

we define a new variety M2 by the equation

f2(x, y) = ϕ(x, y).

Clearly M1 ⊆ M2. Analogously, we define the varieties M3, M4, and so on. Ap-
plying the above process to the variety E1 of Abelian groups, i.e., to the relation
xy = yx, we obtain the variety E2 determined by the relation xyx−1y = yxyx−1,
or equivalently by the relation [x, y, 2] = e. Since [xyx−1, y, k] = [x, y, k + 1], the
variety Ek coincides with the variety of k-Engel groups.

The passage from M1 to M2 consists in replacing arbitrary elements x and y
by a pair of conjugates xyx−1 and y. Taking into account that a pair of conjugate
elements can always be written in the form xy and yx, we can define in a simi-
lar way another process of passing from a variety M (1) to another variety M (2).
Suppose that the variety M (1) is determined by the relation

f (1)(x, y) = ϕ(1)(x, y).

Setting
f (2)(x, y) = f (1)(xy, yx), ϕ(2)(x, y) = ϕ(1)(xy, yx),

we define the variety M (2) by the relation

f (2)(x, y) = ϕ(2)(x, y).

Analogously, we define the varieties M(k), k = 3, 4, . . .. Applying this process to
the variety E1 = N (1) of Abelian groups, i.e., again to the relation xy = yx, we
obtain the variety N (2) determined by the relation xy2x = yx2y, the variety N (3)

determined by the relation xy2xyx2y = yx2yxy2x, and so on.

Definition 1. The groups that belong to the variety N (k) will be called νk-groups
or simply ν-groups.

The first question that arises in connection with the study of ν-groups is the
question of the relation of this class with the class of Engel groups. Obviously, the
varieties E2 and N (2) coincide, since each of them is determined by the commu-
tativity of any two conjugate elements. As the following theorem shows, starting
with k = 3, the varieties Ek and N (k) no longer coincide.

Theorem 1. A group G is 3-Engel if and only if it satisfies the following identical
relations:

xy2xyx2y = yx2yxy2x, (1)

xy2xyxyx2y = yx2yyxxy2x. (2)

The relations (1) and (2) are independent.
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Proof. Let G be a 3-Engel group. Then by virtue of the easily and immediately
verifiable relation,

xy2xyx2yx−1y−2x−1y−1x−2y−1

= [x, yx, 3]yx2yxy2x[x−1, y−1x−1, 3]x−1y−2x−1y−1x−2y−1,

it is obvious that G satisfies relation (1). In addition, since in the group G we have

e = [x, yx, 3] = xy2xy−1x−1yx2yx−1y−1 · y−1x−2y−1,

it follows that

e = y−1x−2y−1 · xy2xy−1x−1yx2yx−1y−1

= y−1x−2y−1xy2xy−1x−2y−1yxyx2yx−1y−1.

Using the already established relation (1), we obtain

e = y−1x−2y−1 · y−1x−2y−1xy2x · yx2y · x−1y−1,

or equivalently xy2x · yx · yx2y = yx2y · yx · xy2x, i.e., relation (2).
If we now assume that G satisfies relations (1) and (2), then doing the just

performed transformations in the reverse order, we obtain [x, yx, 3] = e, or equiv-
alently [x, y, 3] = e.

To prove the independence of relations (1) and (2), it suffices to give examples
of groups in which one of the relations holds but not the other.

It is easy to verify that the symmetric group S3 of degree 3 satisfies relation
(1). It is well known that S3 is not Engel, and hence does not satisfy relation (2).
Another group with the same properties is, for example, the free product of two
groups of order 2.

Denote by Z3 the collection of all pairs of the form (εi, t) where t is an
arbitrary complex number, and εi is one of the three cube roots of unity. We define
multiplication of elements of Z3 by the formula (εi, t1)(εj , t2) = (εiεj , t1εj + t2).
It is easy to verify that the set Z3, with the above operation, is a group that is
isomorphic to the group of all rotations of the complex plane, by angles that are
multiples of 2π/3 around various points, and all translations. A direct computation
shows that the identity (2) holds in Z3. On the other hand, setting α = (εi, 1),
β = (1, 1), εi �= 1, we convince ourselves that αβ2αβα2β �= βα2βαβ2α. We note
that the group Z3 is a solvable group with Abelian commutator subgroup. �
Remark 1. The theorem just proved indicates the possibility of defining 3-Engel
groups by relations that make sense for semigroups. Relations (1) and (2) can
therefore be taken as the definition of a 3-Engel semigroup. From the results of
the works [2] and [4] it follows that a 3-Engel semigroup with cancelation is locally
nilpotent.

It would be interesting to find semigroup relations (if they exist) that define
k-Engel groups for any k. The following two questions are also of interest:

1) Do there exist Engel groups that are not ν-groups?
2) Do there exist ν-groups that are not locally solvable?
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Negative answers to both of these questions would give an affirmative solution to
the problem of local nilpotence of Engel groups.

3. Finite ν-groups

In this section, we consider finite ν-groups in a little more detail. The example of
the group S3 shows that there exist finite ν-groups that are not nilpotent. On the
other hand, the example of the alternating group A4 shows that there exist finite
solvable groups which are not ν-groups.

In Section 1, the νk-groups were defined by the equation

f (k)(x, y) = ϕ(k)(x, y), where f (1)(x, y) = xy, ϕ(1)(x, y) = yx.

By induction we show that

f (k)(x, y) = f (k−1)(x, y)ϕ(k−1)(x, y); ϕ(k)(x, y) = ϕ(k−1)(x, y) f (k−1)(x, y).

Indeed,

f (k)(x, y) = f (k−1)(xy, yx) = f (k−2)(xy, yx)ϕ(k−2)(xy, yx)

= f (k−1)(x, y)ϕ(k−1)(x, y),

and the second equation is proved similarly.
Consider the set S of pairs (a, b) of elements of a group G. On the set S

we define the mapping ϕ that sends each pair (a, b) to the pair (ab, ba); we write
(a, b)ϕ = (ab, ba). The pairs of the form (a, a) will be called trivial. Obviously, G is
a ν-group if and only if some power of the mapping ϕ sends every pair to a trivial
pair. The group A4 mentioned above is not a ν-group because

((1, 2, 3), (1, 3, 4))ϕ2
= ((1, 2, 3), (1, 3, 4)).

Obviously, no power of the mapping ϕ can send ((1, 2, 3), (1, 3, 4)) to a trivial pair.
It follows from the work of A.I. Malcev [4] that any nilpotent group G is a

ν-group. A wider class of ν-groups is described by the following theorem.

Theorem 2. A group G which is an extension of a nilpotent group, by a nilpotent
group with an identical relation of the form x2k

= e, is a ν-group.

Proof. By assumption, G has a nilpotent normal subgroup N , such that the quo-
tient group G � G/N is a nilpotent group with the identical relation x2k

= e.
Therefore, any pair (a, b) of elements of G is sent by a power of ϕ to a pair of the
form (cn, cm), n,m ∈ N , c2

k ∈ N . Since

(cn, cm)ϕ = (c2 · c−1ncm, c2 · c−1mcn) = (c2n1, c
2m1), n1,m ∈ N,

it follows that ϕk sends the pair (cn, cm) to a pair of the form (n,m), n,m ∈ N
which, by nilpotence of the group N , will be sent by some power of ϕ to a trivial
pair. The theorem is proved. �

The description of finite ν-groups of odd order is achieved by the following
theorem.
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Theorem 3. A finite ν-group of odd order is nilpotent.

For the proof we will need some auxiliary results.

Lemma 1. Let s and t be natural numbers with (s, t) = 1. Then the matrix A(s,t)

of the form

A(s,t) =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

1 0 0 · · · 0
0 1 0 · · · 0
...

...
...

...
0 0 0 · · · 0

−1 0 0 · · · 0
0 −1 0 · · · 0
...

...
...

...
0 0 0 · · · −1

︸ ︷︷ ︸
s

−1 0 0 · · · 0
0 −1 0 · · · 0
...

...
...

...
0 0 0 · · · −1
0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

...
0 0 0 · · · 1

︸ ︷︷ ︸
t

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

= Es+t −
∥∥∥∥

0t×s Et

Es 0s×t

∥∥∥∥ ,

has rank s + t − 1. (Here Eq and 0r×p are the identity and zero matrices of the
indicated sizes.)

Proof. Without loss of generality, we may assume that s > t since otherwise we
could transpose the matrix A(s,t). We now add the first row of A(s,t) to the (t+1)-
st row, the second row to the (t+2)-nd row, and so on, finally adding row t to row
2t. As a result of these operations we obtain the new matrix A(1)

(s,t) of the form

A
(1)
(s,t) =

∥∥∥∥∥
Et 0t×(s−t) −Et

0s×t A(s−t,t)

∥∥∥∥∥ .

Let r(C) denote the rank of a matrix C. Clearly,

r(A(s,t)) = t+ r(A(s−t,t)).

Since (s− t, t) = 1, the proof is completed by induction:

r(A(s,t)) = t+ (s− t) + t− 1 = t+ s− 1.

The lemma is proved. �

Lemma 2. Let G be a ν-group, let p and q be distinct odd primes, and let a ∈ G be
an element such that aq belongs to the centralizer of an element b of order p lying
in an Abelian normal subgroup N of G. Then a belongs to the centralizer of b.

Proof. Let bs = a−sbas. Obviously,

(ab, a)ϕ = (a2b1, a
2b0), (a2b1, a

2b0)ϕ = (a4b3b0, a
4b2b1),
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and so on. The indices of the elements b are reduced modulo q, and the powers of
the elements br are reduced modulo p. A pair

C =
(
a2i

bk0
0 b

k1
1 · · · bkq−1

q−1 , a
2i

b�00 b
�1
1 · · · b�q−1

q−1

)
,

is sent by ϕ to the pair

Cϕ =
(
a2i+1

bk0
2i b

k1
2i+1 · · · b

kq−1

2i+q−1b
�0
0 b

�1
1 · · · b�q−1

q−1 ,

a2i+1
b�02ib

�1
2i+1 · · · b

�q−1

2i+q−1b
k0
0 b

k1
1 · · · bkq−1

q−1

)
.

Consider the q-dimensional vector spaceQ over the field of congruence classes mod-
ulo p. If a = (α0, α1, . . . , αq−1) ∈ Q then we set a(1) = (αq−1, α0, α1, . . . , αq−2),
and by induction a(t) = (a(t−1))(1). To the pair C we assign the number 2i and
the vector c ∈ Q of the form

c = (k0 − �0, k1 − �1, . . . , kq−1 − �q−1), C �→ (2i, c).

Obviously, in this way, to the pair Cϕ will be assigned the pair (2i+1, C(2i) − C):

Cϕ �→ (2i+1, C(2i) − C).

If we start transforming consecutively (with ϕ) the pair (a2b1, a
2b0), then all the

vectors in Q that correspond to the resulting pairs will belong to the subspace Q′

which consists of vectors for which the sum of the coordinates equals zero. Since
the number of vectors in Q′ is finite, and the numbers 2i can be reduced modulo
q, it follows that there will be repetitions in the indicated sequence of vectors for
which the corresponding numbers are congruent modulo q.

On the other hand, if we wish to recover C from the known vector C(2i) −C,
then we obtain a system of q linear equations with q unknowns, such that the
coefficient matrix has the form A(s,t), (s, t) = 1, which by Lemma 1 is a matrix of
rank q−1. Its columns, as well as the column of constant terms, are vectors in the
subspace Q′. Clearly, this system of equations will have a unique solution in Q′.
The above-mentioned sequence of vectors will therefore be periodic, and the vector
(−1, 1, 0, . . . , 0) which begins the sequence will reoccur as far from the beginning
as we wish. However, at a sufficient distance from the beginning of the sequence,
all occurring pairs will be trivial, and hence the pair (asb1, a

sb0) corresponding
to our vector will also be trivial. Therefore b1 = b0 and ab = ba. The lemma is
proved. �
Proof. (of Theorem 3) Assume that the claim of the theorem is valid for groups
that have order less than that of G. Then all subgroups of G are supersolvable,
and therefore the group G is solvable [3]; hence one of the commutator subgroups
G(s) is an Abelian normal subgroup.

Let Np be the primary component of G(s) relative to a prime number p, and
let d be one of the elements of order p in Np. The element d lies in a normal
subgroup Ñp ⊆ G all of whose elements have order p. By the inductive hypothesis,
the quotient group G/Ñp is nilpotent, and hence is the direct product of its Sylow
subgroups. The subgroup Qp ⊆ G, that corresponds to the Sylow p-subgroup of
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G/Ñp, is the unique Sylow p-subgroup, and thus is a normal subgroup of G. Its
center Zp is also a normal subgroup of G. Let b be an element of order p in Zp, and
let a be an element of order m with (m, p) = 1. If q is one of the prime factors of
m, then by Lemma 2 the element am/q lies in the centralizer of b. Considering the
prime factorization ofm/q, and repeating the argument as many times as required,
we arrive at the statement that a lies in the centralizer of b.

Therefore, the element b is in the center Z of the group G. The quotient group
G/Z of G by the (non-trivial) center Z is nilpotent by the inductive hypothesis.
Therefore G is also nilpotent. Theorem 3 is proved. �

Below we will give a complete description of finite ν-groups. To this end, we
first prove two more lemmas.

Lemma 3. If a ν-group G has an Abelian normal subgroup N which is a 2-group
of odd index, then N is a direct factor of G.

Proof. Assume that the statement of the lemma is valid for groups whose order is
smaller than that of G.

Let a ∈ N , a2 = e, b ∈ G. Since (aba, b)ϕ = (a · baba · a, baba), it is clear that
the mapping ϕ replaces b by baba. We form the sequence

b1 = b, b2 = b1ab1a, . . . , bi = bi−1abi−1a, . . . .

Since G is a ν-group, for some n we have abna = bn, i.e., (abn−1)2 = (bn−1a)2. On
the other hand, for some q we have (abn−1)2q+1 ∈ N . Hence

(abn−1)2q+1a = a(abn−1)2q+1.

But (abn−1)2q+1a = a(bn−1a)2q+1. Therefore (abn−1)2q+1 = (bn−1a)2q+1, and
hence abn−1 = bn−1a. From this we see that the equation abna = bn implies
abn−1a = bn−1. It immediately follows that ab = ba. Therefore, the elements of
order 2 of the group N form a subgroup Z of the center of G.

By the inductive hypothesis, the quotient G � G/Z decomposes as a direct
product G = P × N where P is a subgroup of odd order, and the intersection
of the corresponding subgroup P ⊆ G with N is Z. By the inductive hypothesis,
P = P1 ×Z. Since the group P1 coincides with the set of all elements of odd order
in P , it follows that P1 is a normal subgroup of G, and the elements of P1 commute
with the elements of N . Therefore, G = P1 ×N . The lemma is proved. �

Lemma 4. If a Sylow 2-subgroup N of a finite ν-group G is normal, then it is a
direct factor.

Proof. The center Z of N is a normal subgroup of G. Performing induction on
the index of nilpotence of N , we consider the quotient group G � G/Z. Now the
argument is completely identical to that concluding the proof of Lemma 3. �

Theorem 4. The extensions of nilpotent groups of odd order by 2-groups are the
only ν-groups among finite groups.
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Proof. According to Theorem 2, it suffices to prove that any finite ν-group is an
extension of a nilpotent group of odd order by a 2-group.

We choose a Sylow 2-subgroup Q in the ν-group G, an arbitrary subgroup
S ⊆ Q, and an element a of odd order in the normalizer of S. Then in the group
T = 〈a, S〉 generated by a and S, the group S will be a normal Sylow 2-subgroup,
and hence a direct factor by Lemma 4. Therefore, the element a is in the centralizer
of the group T . Now appealing to the well-known result on the existence of p-
complements [1, Theorem 14.4.7] we conclude that G has a normal subgroup of
odd order for which the corresponding quotient group is a 2-group. The theorem
is proved. �

Theorem 4 gives a complete description of finite ν-groups.

4. One subclass of ν-groups

With each element c of a semigroup G, we can associate a mapping ϕc from the set
S of pairs of elements of G to itself that sends the pair (a, b) to the pair (acb, bca):

(a, b)ϕc = (acb, bca).

If the semigroup G has an identity element e, then it is clear that the map ϕe

coincides with the mapping ϕ considered earlier. All possible mappings ϕc generate
a semigroup [G], of self-mappings of the set S, which we will call adjoint to G.

In the theory of semigroups, two completely different concepts of nilpotence
are used, brought to the theory of semigroups on the one hand from ring theory
and on the other hand from group theory. We need to distinguish them.

Definition 2. A semigroup G with zero is called r-nilpotent if there exists a natural
number n such that a1a2 · · · an = 0 for all elements ai of G.

A.I. Malcev [4] gave the following definition in a slightly different form.

Definition 3. A semigroup G is called g-nilpotent if the adjoint semigroup [G] is
r-nilpotent. (The role of zero in [G] is played by the mapping which sends any pair
in S to a trivial pair.)

A.I. Malcev showed in the same work that if G is a group, then the concept
of g-nilpotence coincides with the usual concept of nilpotence for groups.

Definition 4. A pair (a, b) in S will be called m-central and written (a, b)m if every
element of the semigroup [G]m sends it to a trivial pair.

Lemma 5. In a group G with generators c1, c2, . . ., ck, the condition (a, b)n is
equivalent to the conjunction of the conditions (ab, ba)n−1 and (acib, bcia)n−1 for
i = 1, 2, . . . , k.

Proof. By definition, we declare that (a, b)0 means a = b. Obviously, the condition
(a, b)n implies the indicated k + 1 conditions.
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For the proof of the converse, we first take n = 1. Then we have ab = ba and
acib = bcia for i = 1, 2, . . . , k. The following equations are obvious: ciba−1 = a−1bci
and ba−1 = a−1b. Clearly, the element a−1b lies in the center. Therefore, for any
d we have adb = bda, i.e., (a, b)1. Now suppose that the lemma has been proved
for all natural numbers less than n, and that the following conditions hold:

(ab, ba)n−1, (acib, bcia)n−1, i = 1, 2, . . . , k.

Obviously, the center Z of G is non-trivial. Denoting by d the image of an element
d ∈ G in the quotient group G � G/Z, we have

(ab, ba)n−2, (a ci b, b ci a)n−2, i = 1, 2, . . . , k.

From the inductive hypothesis it follows that (a, b)n−1, i.e., any element from
[G ]n−1 sends the pair (a, b) to a pair of the form (d, d). This means that any
element of [G]n−1 sends the pair (a, b) to a pair of the form (d, dz), z ∈ Z, and
hence any element of [G]n sends the pair (a, b) to a trivial pair, i.e., we have (a, b)n.
The lemma is proved. �

The lemma easily implies the following interesting property of 3-Engel groups.

Theorem 5. Any two conjugate elements of a 3-Engel group generate a 2-Engel
group.

Proof. In the 3-Engel group G we choose any two conjugate elements a and b,
which can always be written in the form a = cd and b = dc with c, d ∈ G. From
equations (1) and (2) it follows that

ab2a = ba2b, ab3a = babab, ba3b = ababa.

From Lemma 5 it follows that the condition (ab, ba)1 holds in the group G1 gener-
ated by a and b. Now we prove the condition (a, b)2 for which it suffices to verify
the conditions (a2b, ba2)1 and (ab2, b2a)1. By the obvious symmetry we will prove
only the condition (a2b, ba2)1, which is equivalent to the equations:

a2b2a2 = ba4b, a2baba2 = ba5b, a2b3a2 = ba2ba2b.

However,

a2b2a2 = aba2ba = ba4b, a2baba2 = aba3ba = ba5b, a2b3a2 = abababa = ba2ba2b,

where we have used in every case the condition (ab, ba)1, i.e., abqba = baqab for
all q ∈ G1. The theorem is proved. �

The result of Theorem 5 suggests the following definition.

Definition 5. Abelian groups will be called σ1-groups. Any group in which any
two conjugate elements generate a σi−1-group will be called a σi-group. Finally,
σi-groups, as i ranges over all natural numbers, will be called σ-groups.

Remark 2. We can also speak of σ-semigroups if by conjugate elements we under-
stand elements of the form xy and yx.
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Remark 3. Obviously, σ-groups lie in the intersection of the classes of ν-groups
and Engel groups. It is not known to the author whether there exist Engel groups
that are not σ-groups. Local nilpotence of σk-groups for k > 3 is also unclear.

Definition 6. A group G will be called weakly nilpotent of bounded index if there
exists a natural number k such that any subgroup of G generated by two elements
is nilpotent with nilpotence index less than or equal to k.

Theorem 6. Every weakly nilpotent group of bounded index is a σ-group.

Proof. Let G be a weakly nilpotent group of weak nilpotence index not exceeding
k. We show that any two conjugate elements in G generate a nilpotent subgroup of
nilpotence index not exceeding k−1. In what follows, by the symbol (c1, c2, . . . , cs)
we will understand the simple commutator in the sense of M. Hall’s book [1].
Suppose elements x1 and x2 = y−1x1y generate a subgroup Q in G. In any simple
commutator t = (xi1, xi2, . . . , xik) where is takes values 1 or 2, we have either
xi1 = xi2 and hence t = e, or the commutator (xi1, xi2) can be written as a triple
commutator. Indeed,

(x1, x2) = (x1, y
−1x1y) = (y−1x1y, y

−1, y−1x1y),

(x2, x1) = (y−1x1y, x1) = (x1, y1, x1).

Therefore any commutator t of the indicated form is equal to the identity in G.
The proof that the nilpotence index of Q does not exceed k − 1, and hence the
proof of Theorem 6 (by an obvious induction), follow immediately from the next
lemma. �

Lemma 6. Let the group F be generated by a1, a2, . . ., am. Then any normal
subgroup that contains all simple commutators of the form αi = (ai1, ai2, . . . , ait),
is = 1, 2, . . . ,m, where t is an arbitrary natural number, contains Ft (term t in
the lower central series).

Proof. For t = 1 the statement is trivial. Suppose now that τ = (q1, q2, . . . , qt−1, qt)
is an arbitrary simple commutator, qi ∈ F . By the inductive hypothesis, we
conclude that the commutator τ ′ = (q1, q2, . . . , qt−1) lies in the normal sub-
group generated by the commutators of the form Ai = (ai1, ai2, . . . , ait−1 ), i.e.,
τ ′ =

∏
i �

−1
i Ai�i. Using the well-known formulas relating commutators,

(xy, z) = y−1(x, z)y(y, z), (x, yz) = (x, z)z−1(x, y)z,

(x−1, y) = x(x, y)−1x−1, (x, y−1) = y(x, y)−1y−1,

we convince ourselves that the commutator τ lies in any normal subgroup contain-
ing all commutators of the form (�−1

i Ai�i, ai), and hence in the normal subgroup
generated by the commutators (Ai, �iai�

−1
i ). Using the stated formulas one more

time, we arrive at the conclusion that τ is contained in the normal subgroup gener-
ated by all commutators of the form αi. If N is the normal subgroup generated in
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F by all commutators of the form αi, then the quotient group F � F/N satisfies
the following identical relation:

(x1, x2, . . . , xt) = e,

which is equivalent to the statement of the lemma. The lemma, and hence Theo-
rem 6, are proved. �

It is very probable that the converse of Theorem 6 is also true.
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On Some Identical Relations for Algebras

A.I. Shirshov

1. In the work of A.I. Malcev [2], results of a general nature are applied in particular
to the classification of identical relations of degree 3 for associative algebras. It
is shown there that, under natural assumptions on the characteristic, any such
identical relation is a linear combination of the following relations:

∑

(i1,i2,i3)

xi1xi2xi3 = 0, (1)

∑

(i1,i2,i3)

(−1)σixi1xi2xi3 = 0, (2)

x1x2x3 + x2x1x3 − x2x3x1 − x3x2x1 = 0, (3)

x1x2x3 + x1x3x2 − x3x1x2 − x3x2x1 = 0, (4)

where the summations in relations (1) and (2) are performed over all substitutions,
and σi is the number of inversions in the permutation (i1, i2, i3) of 1, 2, 3.

In the present note, we study algebras that satisfy one of the relations (3)
and (4) and show that such algebras, in a sense to be made precise later, are close
to commutative. In conclusion, we give and study a generalization of this closeness
to commutativity.

2. For brevity, throughout this note, algebras with relations (3) and (4) will be
called µ-algebras and µ′-algebras respectively.

Theorem 1. Let S be a µ-algebra over a field P of characteristic �= 2. Then the
ideal S3 lies in the center Z of S, and the ideal S2 is commutative.

Proof. It is easy to see that when relation (3) holds identically, these relations
follow:

x2x4x3x1 + x4x2x3x1 − x4x3x1x2 − x3x1x4x2 = 0, (5)

−x3x4x2x1 − x4x3x2x1 + x4x2x1x3 + x2x1x4x3 = 0, (6)

Sibirsk Mat. Zh. 7, (1966), no. 4, 963–966
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−x2x1x4x3 − x1x2x4x3 + x1x4x3x2 + x4x3x1x2 = 0, (7)

−x3x4x1x2 − x4x3x1x2 + x4x1x2x3 + x1x2x4x3 = 0, (8)

x3x4x1x2 + x4x3x1x2 − x4x1x3x2 − x1x4x3x2 = 0, (9)

−x2x4x3x1 − x4x2x3x1 + x4x3x2x1 + x3x4x2x1 = 0, (10)

−x4x2x1x3 − x4x1x2x3 + x4x1x3x2 + x4x3x1x2 = 0. (11)

Adding equations (5)–(11) we obtain

x4x3x1x2 − x3x1x4x2 = 0. (12)

Furthermore, the relations

x4x2x1x3 − x2x1x4x3 = 0, (13)

x4x1x2x3 − x1x2x4x3 = 0, (14)

are corollaries of relation (12). If we subtract the left side of relation (7) from the
sum of the left sides of relations (11), (13), (14) then we obtain

x4x1x3x2 − x1x4x3x2 = 0. (15)

Relations (12) and (15) together are equivalent to a system of relations of the form

x1x2x3x4 − xi1xi2xi3x4 = 0, (16)

where (i1, i2, i3) is an arbitrary permutation of 1, 2, 3. Using relation (16) we
rewrite relation (11) in the form

2x4x1x3x2 − 2x2x4x1x3 = 0,

or equivalently,
x2(x4x1x3) = (x4x1x3)x2. (17)

Finally, repeated application of the last relation gives

(x2x4)(x1x3) = (x1x3)(x2x4). (18)

The last two relations constitute the statement of the theorem. �

Remark 1. It follows from the proof that the restriction on characteristic is only
essential in the derivations of relations (17) and (18); relation (16) is valid without
restriction.

Remark 2. From the fact that an algebra which is anti-isomorphic to a µ-algebra
is a µ′-algebra, it follows that Theorem 1 holds also for µ′-algebras.

3. Consider the following properties of an algebra A:

α) some power Ak of A is a commutative algebra;
β) some power At of A lies in the center.

Lemma 1. Properties α and β are equivalent.
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Proof. Obviously, β implies α. Now, if A satisfies property α, then it is obvious
that

(x1x2 · · ·xk)(xk+1 · · ·x2kx2k+1) = (xk+1 · · ·x2k)(x2k+1x1 · · ·xk)
= x2k+1x1 · · ·xkxk+1 · · ·x2k.

In other words, A satisfies property β for t = 2k. �

Definition 1. An algebra A that satisfies α and β will be called a KD-algebra.

The statement of Theorem 1 can be strengthened using the following lemma.

Lemma 2. If every algebra A satisfying a multilinear identical relation

F (x1, x2, . . . , xk) = 0,

over a field of characteristic zero is a KD-algebra, then every algebra B over the
same field satisfying an identical relation of the form

F (xt1
1 , x

t2
2 , . . . , x

tk

k ) = 0,

where the ti are arbitrary natural numbers, is also a KD-algebra.

Proof. Let t = max(t1, t2, . . . , tk). Then it was shown by Higman [1] that there
exists a natural number f(t) such that any element of the ideal Bf(t) can be
written as a linear combination of the s-th powers of elements of B, where s is
any natural number less than or equal to t. From this it follows that the algebra
Bf(t) satisfies the identical relation F (x1, x2, . . . , xk) = 0, and thus by assumption
Bf(t) is a KD-algebra. Hence for some number q the algebra [Bf(t)]q = Bqf(t) is
commutative. �

Theorem 2. Any algebra A with identical relation

xt1
1 x

t2
2 x

t3
3 + xt2

2 x
t1
1 x

t3
3 − xt2

2 x
t3
3 x

t1
1 − xt3

3 x
t2
2 x

t1
1 = 0, (19)

over a field of characteristic zero, is a KD-algebra.

Remark 3. The result of Higman used above allows us to point out that for algebras
over a field of characteristic zero, any identity of the form

xpyq − yqxp = 0, (20)

is equivalent to the definition of a KD-algebra.

4. The study of KD-algebras is of interest, if only for the reason that they include
commutative and nilpotent algebras. But there is yet another reason.

Definition 2. An associative algebra is called locally Noetherian if every increasing
chain of right ideals of every finitely generated subalgebra stabilizes after a finite
number of steps.

Theorem 3. Every KD-algebra is locally Noetherian.
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Proof. Obviously, a finitely generated subalgebra S of aKD-algebra is itself aKD-
algebra, and hence is an extension of the commutative finitely generated algebra
Sm by the nilpotent finite-dimensional algebra S/Sm; in both of these algebras,
every increasing chain of right ideals must terminate. Hence, for any increasing
chain of right ideals J1 ⊂ J2 ⊂ · · · ⊂ Jn ⊂ · · · there exists a number k such that
Sm ∩ Jk = Sm ∩ Jk+r and Jk = Jk+r, where Jp is the pre-image of the ideal Jp

under the natural homomorphism of S onto S/Sm, and r is any natural number.
This immediately implies that Jk = Jk+r. �
Corollary. An algebra with identical relation (19) over a field of characteristic zero
is locally Noetherian.

5. It is well known that the sum of any finite number of nilpotent ideals is a
nilpotent ideal. On the other hand, it is not difficult to construct an example of an
algebra in which the sum of two commutative ideals is not a commutative ideal.
For this reason, the following result is of interest.

Theorem 4. The sum of any finite number of KD-ideals (i.e., ideals that are KD-
algebras) of an algebra A is again a KD-ideal.

Proof. It suffices to prove the claim for two ideals. Let J1 and J2 be KD-ideals of
the algebra A, and let Z1 and Z2 be their respective centers. Then

J t1
1 ⊂ Z1, J t2

2 ⊂ Z2, (J1 + J2)t1+t2−1 ⊂ Z1 + Z2.

If z1, z′1, z′′1 ∈ Z1 and z2, z′2, z′′2 ∈ Z2 then

(z1 + z2)(z′1 + z′2)(z
′′
1 + z′′2 ) = (z′′1 + z′′2 )(z1 + z2)(z′1 + z′2),

which can be easily and immediately verified. The commutativity of the ideal

[(J1 + J2)t1+t2−1]2 = (J1 + J2)2t1+2t2−2,

follows from this. �
Remark 4. The theorem just proved could be used in an obvious way to construct
KD-radicals analogous to radicals based on nilpotency.
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On Some Positively Definable Varieties
of Groups

A.I. Shirshov

1. A variety N of groups will be called positively definable if it can be defined by
identical relations that do not include variables with negative powers.

For example, the variety of Abelian groups is obviously positively definable.
A.I. Malcev [2] proved positive definability of the varieties of nilpotent groups
(with a given index of nilpotence) and showed that the varieties of solvable groups
are not positively definable. In the author’s work [3], it is also shown that the
varieties of Engel groups for n = 2 and n = 3 are positively definable, and are
determined respectively by the identities (A) and (B):

xy2x = yx2y, (A)

xy2xyx2y = yx2yxy2x, xy2xyxy2y = yx2y2x2y2x. (B)

In the present note, we prove positive definability for a sufficiently broad class of
varieties, which generalizes the class of n-nilpotent groups introduced by Baer [1].

Let [a, b]s = (ab)sb−sa−s where a, b are elements of a group G and s is an
integer, and let (k) = (k1, k2, . . . , kt) be a t-tuple of integers.

Definition 1. A group G is called nilpotent relative to the t-tuple (k) if for any
elements ai, i = 0, 1, 2, . . . , t, the following equality holds:

(a0, a1, . . . , at)(k)
def= [[. . . [a0, a1]k1 , . . .]kt−1 , at]kt = e. (1)

Obviously, the collection of all groups that are nilpotent relative to a fixed
t-tuple (k) is a variety. This variety will be denoted by

N(k) = N(k1,k2,...,kt).

Special cases of varieties of the form N(k) are the n-nilpotent groups introduced
by Baer [1]. The following statement holds.
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Theorem. Any variety of the form N(k) is positively definable.

2. We consider the so-called n-center of the group G.

Definition 2. The collection of all elements z in G, such that [z, a]n = e for all
a ∈ G, is called the n-center of G and is denoted by Zn(G).

Obviously, Z−1(G) coincides with the center of G.

Lemma 1. For every element a ∈ G and every z ∈ Zn(G) we have [a, z]n = e.

Proof. The claim follows from the easily verified equation

[a, z]n = an[z, z−1a−1]na−n,

and the definition of Zn(G). �

It is well known, and can be easily verified, that the n-center is a characteristic
subgroup. The following statement can also be immediately verified.

Lemma 2. We have Zn(G) = Z1−n(G).

3. We fix a t-tuple (k) = (k1, k2, . . . , kt) and associate to it two sequences of
recursively defined elements of the free group with generators x, y, z1, z2, . . ., zt:

u0 = x, v0 = y,

us = uks−1
s−1 (vs−1zs)ks−1vs−1, vs = vks

s−1(zsus−1)ks−1 for ks ≥ 1,

us = u−ks
s−1(vs−1zs)−ksvs−1, vs = v1−ks

s−1 (zsus−1)−ks for ks < 1,





(2)

for s = 1, 2, . . . t.

Definition 3. A group G is called a (k)-group if it satisfies the identical relation
ut = vt.

Lemma 3. A group G is a (k)-group if and only if it is nilpotent relative to the
t-tuple (k).

Proof. We carry out induction on the length of (k), remarking that the case of
length 1 is included in the general argument. We write (k′) = (k1, k2, . . . , kt−1).

Assume it has been proved that any group nilpotent relative to (k′) is a
(k′)-group, and suppose that a group G is nilpotent relative to (k). Then

(a0, a1, . . . , at−1)(k′) ∈ Zkt(G) = Z1−kt(G).

For this reason, the group G = G/Zkt(G) is nilpotent relative to (k′), and hence
by the inductive hypothesis it is a (k′)-group. Therefore,

ut−1v
−1
t−1 ∈ Zkt(G) = Z1−kt(G),

for any corresponding values of the words ut−1 and vt−1 in the group G. Hence
for any q ∈ G it follows that

(ut−1v
−1
t−1vt−1q)α = (ut−1v

−1
t−1)

α(vt−1q)α, where α = max(kt, 1 − kt).
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In other words,
(ut−1q)α(vt−1q)−α = (ut−1v

−1
t−1)

α. (3)
Since the right side does not depend on q, it follows from (3) that

(ut−1q)α(vt−1q)−α = (ut−1zt)α(vt−1zt)−α, (4)

which is valid for all values of zt. Setting q = v−1
t−1u

−1
t−1 in (4), and performing the

obvious transformations, we obtain

(ut−1v
−1
t−1u

−1
t−1)

αuα
t−1 = (ut−1zt)α(vt−1zt)−α,

ut−1v
−α
t−1u

α−1
t−1 = (ut−1zt)α(vt−1zt)−α, (5)

uα−1
t−1 (vt−1zt)α−1vt−1 = vα

t−1(ztut−1)α−1. (6)

Therefore, the group G satisfies the identical relation ut = vt; i.e., it is a (k)-group.
Conversely, suppose that G is a (k)-group; i.e., it satisfies relation (6), and

hence also (5). Since the left side of relation (5) does not depend on zt, obviously
relation (4) holds. If, in the latter relation, we set zt = v−1

t−1p, then we obtain

(ut−1q)α(vt−1q)−α = (ut−1v
−1
t−1p)

αp−α. (7)

If, in relation (7), we make the two substitutions, q = e and q = p = e, then we
obtain respectively

uα
t−1v

−α
t−1 = (ut−1v

−1
t−1p)

αp−α, (8)

uα
t−1v

−α
t−1 = (ut−1v

−1
t−1)

α. (9)

From these last relations it follows that

(ut−1v
−1
t−1p)

α = (ut−1v
−1
t−1)

αpα, (10)

for all p ∈ G; i.e., ut−1v
−1
t−1 ∈ Zkt(G) = Z1−kt(G). By assumption, the group G is

nilpotent relative to (k′), and hence G is nilpotent relative to (k). The lemma is
proved. �

The statement of the theorem follows trivially from the lemma.
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On the Definition of the Binary-Lie Property

A.I. Shirshov

In the present note we construct an example of an algebra over a field of charac-
teristic 2 that satisfies the identical relations

x2 = 0 and [(xy)y]x + [(yx)x]y = 0,

but is not binary-Lie. This example has been announced earlier [2]. For the neces-
sary definitions and the history of the problem, see for example the work [1].

Over an arbitrary field P of characteristic 2, a 16-dimensional algebra A with
basis ai, i = 1, 2, . . . , 16, is determined by the following multiplication table:

aiaj = ajai for i, j = 1, 2, . . . , 16,
a1a2 = a3, a1a3 = a5, a1a4 = a7, a1a5 = a8,
a1a6 = a10, a1a7 = a12, a1a9 = a13, a1a10 = a15,
a2a3 = a4, a2a4 = a6, a2a5 = a7, a2a7 = a9 + a10,
a2a8 = a11 + a12, a2a11 = a13, a2a12 = a15 + a16, a3a4 = a9,
a3a5 = a11, a3a7 = a14, a4a5 = a16;

all remaining products equal zero. It is easy to verify directly that the algebra A
is generated by the elements a1 and a2; it is also obvious that c2 = 0 for all c ∈ A.

Theorem. The algebra A satisfies the identity

[(xy)y]x+ [(yx)x]y = 0, (1)

but it is not a Lie algebra; i.e., it is not binary-Lie, since it is generated by two
elements.

We remark that identity (1) is equivalent to the identity

J(xy, x, y) = 0, (2)

where J(x, y, z) def= (xy)z + (yz)x+ zx)y is the Jacobian of the elements x, y, z.

Algebra Logika 10, (1971), no. 1, 100–102.
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Lemma. If, for all distinct basis elements ai, aj, ak, a� of the algebra A, the
following equations hold,

Φ1(ai, aj)
def= J(aiaj , ai, aj) = 0,

Φ2(ai, aj , ak) def= J(aiaj , ai, ak) + J(aiak, ai, aj) = 0,

Φ3(ai, aj , ak, a�)
def=

J(ai, aj , ak, a�) + J(aia�, ak, aj) + J(akaj , ai, a�) + J(aka�, ai, aj) = 0,

then A satisfies the identity (1): Φ1(x, y) = 0.

Proof. It is easy to see (computing by hand if this is not clear) that

Φ1(a+ b, c+ d) = Φ1(a, c) + Φ1(a, d) + Φ1(b, c) + Φ1(b, d) + Φ2(a, c, d)

+ Φ2(b, c, d) + Φ2(c, a, b) + Φ2(d, a, b) + Φ3(a, c, b, d),

Φ2(a+ b, c, a) = Φ2(a, c, d) + Φ2(b, c, d) + Φ3(a, c, b, d).

From the above equations, as well as the multilinearity of Φ3, it follows that for
all u, v ∈ A the element Φ1(u, v) can be written as a linear combination of the
elements indicated in the statement of the lemma. In general, the indices i, j, k, �
occurring in this expression may coincide. But in this case, either the index of the
corresponding Φs changes or we obviously obtain zero. The lemma is proved. �
Proof. (of the theorem) For the proof of the theorem, we assign to each basis
element ai the weights pj(ai), j = 0, 1, 2, i = 1, 2, . . . , 16, according to the following
table:

pj(ai) a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16

p0 1 1 2 3 3 4 4 4 5 5 5 5 6 6 6 6
p1 1 0 1 1 2 1 2 3 2 2 3 3 3 3 3 3
p2 0 1 1 2 1 3 2 1 3 3 2 2 3 3 3 3

It easy to verify that ps(aiaj) = ps(ai) + ps(aj), s = 0, 1, 2, if aiaj �= 0. As
a result of this remark and the lemma, it suffices for the proof of equation (1)
to verify the vanishing only of those Φ for which the sum of all weights ps,
s = 0, 1, 2, of the arguments of the corresponding Jacobians, does not exceed
the limit value; namely, Φ1(a1, a2), Φ2(a1, a2, a3), Φ2(a1, a2, a4), Φ2(a2, a1, a3),
Φ2(a2, a1, a5), Φ2(a3, a1, a2). The verification is obvious. On the other hand,

J(a1, a2, a7) = a13 + a14 + a16 �= 0.

The theorem is proved. �
Remark. Some quotients of the algebra A have the same property. For instance, it
is easy to see that the subspace J of A with basis {a6, a8, a9, a10, a11, a12, a13, a15,
a16} is an ideal, and that in the quotient B = A/J we have J(b1, b2, b7) = b14 �= 0
where bi is the image of ai under the natural homomorphism of A onto B. Finally,
if P = GF (2), then B is a finite ring (with 128 elements) which satisfies the
property indicated above.
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On the Theory of Projective Planes

A.I. Shirshov and A.A. Nikitin

In 1976, in the special course on Projective Planes given at Novosibirsk State
University, and later in 1977, in the report on Projective Planes given at the
Fourteenth All-Union Algebra Conference, A.I. Shirshov presented the concept
of a projective plane as a partial algebraic system. This approach allowed the
formulation of a number of new problems, together with a new viewpoint on known
results and problems in the theory of projective planes. In the present work, we
discuss part of the results contained in the special course and in the report, and
also some further developments.

In the study of projective planes, different authors starting with M. Hall [2]
implicitly used a partial binary operation. Projective planes as a partial algebraic
system were considered for the first time by Magari [7]. The works of Giovagnoli
[1] and Kim and Roush [5] also follow this approach.

In [7] and [1], free and completely free projective planes were constructed as
partial algebraic systems, in which every element was regarded as an equivalence
class defined on the set of nonassociative words in the generators of the plane. In §2
of the present article, we give constructions of free and completely free projective
planes as partial algebraic systems, in which each element is uniquely represented
as a nonassociative word in the generators of the plane.

In the above-mentioned special course and report, A.I. Shirshov gave a con-
struction of an embedding of the completely free projective plane with a finite
number of generators into the completely free projective plane with four genera-
tors, and formulated the problem of constructing an embedding of the completely
free projective plane with a countable number of generators into the completely
free projective plane with a finite number of generators.

In 1972, Johnson [4] showed that every free projective plane with a finite
number of generators is a homomorphic image of a completely free projective
plane with four generators. In §4 of the present work, we show that in the com-
pletely free projective plane CF(C1) with four generators, there exists a countable
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subconfiguration C0 such that CF(C1) is freely generated by C0. Based on this
result, we further prove that any finite or countably infinite projective plane is a
homomorphic image of the completely free projective plane with four generators.

Theorems 1 and 2 were obtained by A.I. Shirshov, and Theorems 3 and 4 by
A.A. Nikitin.

1. Preliminary definitions and results

1. Let A be an arbitrary nonempty set, and let A0 and 0A be subsets of A such
that A = A0 ∪ 0A and A0 ∩ 0A = ∅. In this case we will say that (A0, 0A) is a
partition of A. Here one of the subsets A0 and 0A may be empty.

We now fix a partition (A0, 0A) of A. Elements a and b in A will be called
unitypical relative to the partition (A0, 0A) if a and b belong to the same subset
of the partition (A0, 0A). Otherwise, the elements a and b in A will be called
non-unitypical relative to this partition.

Suppose now that on the set A, with a fixed partition (A0, 0A), a partial
binary commutative operation · is defined, such that the following conditions hold:

1.1. If a and b are distinct unitypical elements of A relative to (A0, 0A), then the
product a · b is defined.

1.2. If the product a · b is defined for elements a and b in A, then a and b are
distinct unitypical elements, but a and a · b are non-unitypical relative to
(A0, 0A).

1.3. If the products a · b, a · c and (a · b) · (a · c) are defined for elements a, b and
c in A, then we have

(a · b) · (a · c) = a. (1)

1.4. The set A contains pairwise distinct elements a, b, c and d such that the
products a · b, b · c, c · d and d · a are defined and pairwise distinct.

Such a partial algebraic system 〈A, (A0, 0A), ·〉 will be called a projective plane.
Suppose that a partial binary commutative operation ∗ is defined on the set

A with a fixed partition (A0, 0A) such that Conditions 1.2 and 1.3 hold, as well as
the condition

1.5. If the products a ∗ b and a ∗ c are defined for elements a, b and c in A, and
a ∗ b �= a ∗ c, then the product (a ∗ b) ∗ (a ∗ c) is also defined.

Here for the operation ∗ one or both of the Conditions 1.1 and 1.4 may not nec-
essarily hold. A partial algebraic system with a partial binary commutative op-
eration ∗ satisfying Conditions 1.2, 1.3 and 1.5 will occasionally be denoted by
〈A, (A0, 0A), ∗〉.
Example 1. Let B be an arbitrary nonempty subset of elements of a projective
plane P = 〈A, (A0, 0A), ·〉. Then the partition (A0, 0A) of the set A of elements
of the projective plane P determines a partition (B0, 0B) of the set B where
B0 = B ∩ A0 and 0B = B ∩ 0A. For the elements of B the concepts of unitypical
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and non-unitypical elements are defined in the natural way relative to the parti-
tion (B0, 0B). The operation · defined in P induces a partial binary commutative
operation ◦ on the set B. For this operation ◦ Conditions 1.2, 1.3 and 1.5 hold.

Let A = 〈A, (A0, 0A), ∗〉 be a partial algebraic system with a partial binary
commutative operation ∗ satisfying Conditions 1.2, 1.3 and 1.5. We will say that
an element a in A is a divisor of an element b in A if there exists an element c in
A such that b = a ∗ c. The set of all divisors of an element b in A will be denoted
by TA

b .
In what follows, the symbol of the operation ∗ defined in a partial algebraic

system satisfying Conditions 1.2, 1.3 and 1.5 will be occasionally omitted if this
does not lead to misunderstanding.

Proposition 1. Let A = 〈A, (A0, 0A), ∗〉 be a partial algebraic system with a partial
binary commutative operation ∗ satisfying Conditions 1.2, 1.3 and 1.5. Then

(a) If the equation ab = cd holds for elements a, b, c in A, and the product ac is
defined, then we have ab = ac;

(b) If a, b, c and d are pairwise distinct elements of A0 such that the elements
ab, bc, cd and da are defined and pairwise distinct, then in the set 0A there
exist pairwise distinct elements a, b, c and d such that the elements ab, bc,
cd and da are defined and pairwise distinct.

Proof. Indeed, if the product ac is defined and ab �= ac, then from Condition 1.5
it follows that the products (ab)(ac) and (cd)(ac) are defined. From Condition 1.3
and the assumption of the proposition we obtain a = (ab)(ac) = (cd)(ac) = c. But
this contradicts Condition 1.2. Therefore, ab = ac and part (a) is proved.

For the proof of part (b) it suffices to set a = ab, b = bc and c = cd, d = da
and then use the assumptions of the proposition, Conditions 1.3 and 1.5, and the
statement of part (a). �

The following result holds:

Proposition 2. 1 Let P = 〈A, (A0, 0A), ∗〉 be a projective plane. Then, if the prod-
ucts ab, (ab)c and [(ab)c]a are defined for elements a, b and c, then the following
equation holds: [(ab)c]a = ab.

2. Now consider a set A with a fixed partition (A0, 0A) in a different situation.
Suppose that a symmetric relation α is defined on the set A, such that α includes
only pairs of elements which are non-unitypical relative to the partition (A0, 0A).
If, for any elements a, b, c and d in A, the conditions (a, c), (b, c), (a, d), (b, d) ∈ α
imply that at least one of the equations a = b, c = d holds, then the relation
α is called an incidence relation relative to the partition (A0, 0A). The system
〈A, (A0, 0A), α〉 thus obtained is sometimes called a partial plane.

1In this regard, see also [5].
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If it does not lead to misunderstanding, then an incidence relation α relative
to the partition (A0, 0A) will be called an incidence relation, and if a pair (a, b)
belongs to α then we will sometimes say that the elements a and b are incident.

Remark 1. If the elements of A0 are called ‘points’, and the elements of 0A are
called ‘lines’, and we declare that a point a is incident to a line b if and only if b
passes through a, then as a result we obtain an interpretation of a partial plane.
If we interchange the names of the elements of A0 and 0A, then we obtain another
interpretation which is sometimes called the ‘dual’ of the first interpretation.

Suppose now that on the set A there is a partition (A0, 0A), an incidence rela-
tion α relative to (A0, 0A), and a partial binary commutative operation · satisfying
Conditions 1.2, 1.3 and 1.5 relative to (A0, 0A). We will say that the operation ·
and the relation α are compatible on A if the following conditions hold:
1.6. If the equation a · b = c holds for elements a, b and c in A, then we have

(a, c) ∈ α and (b, c) ∈ α.
1.7. If (a, c) ∈ α and (b, c) ∈ α and also a �= b, then a · b is defined and we have

a · b = c.
In what follows, a partial algebraic system A = 〈A, (A0, 0A), ·, α〉, where the

partial binary commutative operation · (satisfying Conditions 1.2, 1.3, 1.5) and
the incidence relation α are compatible on A, will be called a configuration.

Remark 2. Condition 1.7 implies that the partial operation · in a configuration is
uniquely determined by the incidence relation α.

Remark 3. Condition 1.6 implies that if, for each element a in a configuration
A = 〈A, (A0, 0A), ·, α〉 either TA

a �= ∅ or there exists an element b in A such that
a ∈ TA

b , then the relation α is uniquely determined by the partial operation · . If
we define a symmetric relation α̃ on the set A in such way that (a, b) ∈ α̃ if and
only if either a ∈ TA

b or b ∈ TA
a , then we obtain the equation α = α̃. In particular,

it follows from this that the definition of projective plane given above is equivalent
to the traditional definition, and that any partial plane can be considered as a
configuration.

In what follows, we will sometimes omit the set of elements in the sym-
bol for a configuration, and indicate only the partition. Thus, for example, A =
〈(A0, 0A), ·, α〉. Here we assume that A = A0 ∪ 0A and A0 ∩ 0A = ∅.
Example 2. Let B = 〈B, (B0, 0B), ◦〉 be one of the partial algebraic systems from
Example 1, and let P = 〈A, (A0, 0A), ·〉 be the projective plane containing B.
Denote by α the incidence relation on A that is compatible with the operation · in
P, and let β be the relation induced by α on the set B, namely β = (B ×B) ∩ α.
Then β is an incidence relation compatible on B with the partial operation ◦
defined on B, and the partial algebraic system 〈(B0, 0B), ◦, β〉 is a configuration.

3. At the present time in the theory of projective planes, it is traditional to use a
number of definitions going back to [2, 3, 8, 9]. Below in this subsection, we give
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the corresponding definitions and concepts in the form that is convenient for the
rest of this paper.

A configuration B = 〈(B0, 0B), ◦, β〉 will be called an extension of a config-
uration A = 〈(A0, 0A), ·, α〉 if B0 ⊇ A0, 0B ⊇ 0A and β ⊇ α.

Remark 4. It immediately follows from this definition, and the compatibility of
the corresponding operations and incidence relations in the configurations A and
B, that if the product a · b is defined for elements a and b in A, then the product
a ◦ b is also defined in B and we have a · b = a ◦ b.

If B is an extension of a configuration A, then A will sometimes be called a
subconfiguration of B; this will be written in the form B ⊇ A or A ⊆ B.

An extension B of a configuration A will be called a one-step extension, if
for any element a in B that is not contained in A, there exist elements b and c in
A such that a = bc.

A one-step extension B of a configuration A will be called a complete one-
step extension if for any two distinct unitypical elements a and b in A, there exists
an element c in B such that ab = c.

A one-step extension B of a configuration A will be called a free one-step
extension if for any element a in B that is not contained in A, there exist two and
only two elements b and c in A such that a = bc.

An extension B of a configuration A will be called a complete free one-step
extension if this extension is simultaneously a complete one-step extension and a
free one-step extension.

We will say that a configuration A = 〈A, (A0, 0A), ·, α〉 is closed if the oper-
ation · satisfies Condition 1.1.

A subconfiguration A of a configuration B will be called a closed subconfig-
uration if A is closed as a configuration.

A closed subconfiguration A of a projective plane P will be called a projective
subplane in P if A is a projective plane.

Let B be a closed configuration and let A be a subconfiguration of B. We
denote by 〈A〉B the intersection of all closed subconfigurations in B that contain
A as a subconfiguration.

For a subconfiguration A in a closed configuration B, we set by definition
A[0] = A. Now, if for a natural number i the configuration A[i−1] is defined, then
by A[i] we denote the complete one-step extension of the configuration A[i−1] in
B. Then we have the following result.

Proposition 3. 2 The configuration 〈A〉B is closed and we have 〈A〉B =
⋃∞

i=0 A[i].

We will say that a closed configuration B is generated by a configuration A
if we have 〈A〉B = B.

In the case when a closed configuration B is generated by a configuration A,
and for any natural number i the one-step extension A[i] ⊇ A[i−1] is a complete
free one-step extension, then we will say that B is freely generated by A.

2See also for example Theorem 11.3 in [3].
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A projective plane P is called free if P is freely generated by a configuration
A = 〈(A0, 0A), ·, α〉 such that the set 0A has only one element a, the set A0 has
at least four elements, and only two elements in the set A0 are not incident to the
element a in 0A.

A configuration A = 〈(A0, 0A), ·, α〉 will be called a configuration without
incidence if α = ∅.

A projective plane P will be called completely free if P is freely generated
by a configuration A = 〈(A0, 0A), ·, ∅〉 without incidence. In this case, we will also
say that P is freely generated by the set A = A0 ∪ 0A.

We will say that configurations A1 and A2 are freely equivalent if there exists
a natural number n and configurations B1, B2, . . ., Bn such that B1 = A1,
Bn = A2, and for any natural number i, i = 1, 2, . . . , n − 1, either Bi is a free
one-step extension of Bi+1 or, vice versa, Bi+1 is a free one-step extension of Bi.

In the case when a projective plane P is freely generated by a configuration
A = 〈A, (A0, 0A), ·, α〉 containing a finite number of elements, then following [2]
we will call the number

r(A) = 2|A| − 1
2
|α|,

the rank of the configuration A. The following result holds.

Remark 5. [2] If A is a finite configuration and B is a configuration that is freely
equivalent to A, then their ranks are equal: r(A) = r(B).

By virtue of Remark 5, in the case when a projective plane P is freely gener-
ated by a configuration A of finite rank r(A), it is natural to call the number r(A)
the rank of the plane P. In all other cases, the rank of a freely generated plane
will be understood to be the cardinality of the set of its elements.

Remark 6. From the results of [6, §1] it follows that a projective plane P is free if
and only if either

(1) P is a completely free plane of infinite rank, or
(2) P is a completely free plane of finite rank, and in this case the rank r(P) of

the plane P is an even number, or
(3) P is a free plane of finite rank which is an odd number, and in this case there

exists a configuration A = 〈(A0, 0A), ·, α〉 such that the plane P is freely
generated by A, where

(i) the set A0 contains n elements, n ≥ 4, i.e., A0 = {t1, t2, . . . , tn},
(ii) the set 0A contains one element p, i.e., 0A = {p},
(iii) the operation is nowhere defined in A, and
(iv) α = {(tn, p), (p, tn)}.
We will say that a plane P is freely generated by the set A if P is freely

generated by a configuration of the form 〈A, (A0, 0A), ·, ∅〉 where A = A0 ∪ 0A.
We have the following result:
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Proposition 4. 3 Let P be a projective plane freely generated by a configuration
B without incidence. Then there exists a set A of unitypical elements in P such
that P is freely generated by the configuration A = 〈(A, ∅), ·, ∅〉 and A is freely
equivalent to B.

The following holds:

Proposition 5. 4 Let a projective plane P be freely generated by a configuration A,
and let a configuration B be freely equivalent to A. Then P is also freely generated
by B.

2. Constructions of free and completely free projective planes

1. We give a construction for a completely free plane freely generated by a fixed
set V of symbols where |V | ≥ 4.

Construction 1. Fix a set of pairwise distinct symbols V = {vi} where i ranges
over a well-ordered set I of indices and the cardinality of V is at least 4. We
denote by W (V ) the set of all nonassociative words in the alphabet V . As usual,
the number d(w) of occurrences of elements of the set V in a word w in W (V ) will
be called the V -length of w. If it does not lead to misunderstanding, the V -length
will be called simply the length.

On the set W (V ) we define a lexicographical order as follows. For words u
and w in W (V ) we set u > w if either (i) the length of u is greater than the length
of w, or (ii) the lengths of u and w equal 1 and the index of u is greater than the
index of w, or (iii) the lengths of u and w are equal, u = u1u2, w = w1w2 and
u1 > w1, or (iv) the lengths of u and w are equal, u = u1u2, w = w1w2, u1 = w1

and u2 > w2.
The words of length 1 in W (V ) will be called regular words of the first type

(of length 1) relative to the set V . The words of length 2 in W (V ) of the form vivj

where vi > vj will be called regular words of the second type (of length 2) relative
to the set V .

A word w in W (V ) of length 3k + 1 (respectively 3k + 2) will be called a
regular word of the first type (respectively of the second type) relative to the set
V , if

(1) w = w1w2 where w1 and w2 are regular words of the second (respectively
first) type, and w1 is greater than w2, and

(2) if w = (w′
1w

′′
1 )(w′

2w
′′
2 ) then the intersection of the sets {w′

1, w
′′
1} and {w′

2, w
′′
2}

is empty, and
(3) if w = ((w′

1w
′′
1 )w′′′

1 )w2 or w = (w′′′
1 (w′

1w
′′
1 ))w2 then w2 is not an element of

the set {w′
1, w

′′
1}.

3See for example Lemma 1 in [6].
4See for example Theorem 4.2 in [2].
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If it does not lead to misunderstanding, then words which are regular relative to
the set V will be called simply regular.

The set of all regular words of the first (respectively second) type contained
in W (V ) will be denoted by W 0 (respectively 0W ).

If, for elements w1 and w2 in W (V ), one of the words w1w2 and w2w1 is
regular, then we will denote this regular word by w1w2.

On the set W 0 ∪ 0W we define a partial binary commutative operation · in
the following way. Given distinct unitypical regular words w1 and w2,
2.1. if one of the words w1w2 and w2w1 is regular, then w1 · w2 = w1w2,
2.2. if w1 = w′

1w
′′
1 , w2 = w′

2w
′′
2 and the intersection {w′

1, w
′′
1} ∩ {w′

2, w
′′
2} contains

an element w, then w1 · w2 = w,
2.3. if w1 = (w′

1w2)w′′
1 then w1 · w2 = w′

1w2, and
2.4. in all other cases the operation · on the elements of W 0 ∪ 0W is undefined.
The partial algebraic system 〈(W 0, 0W ), ·〉 obtained in this way will be regarded
as the result of Construction 1 for the set V and denoted by CF(V ).

Lemma 1. The partial algebraic system CF(V ) is a projective plane.

Proof. We observe that for the operation · in CF(V ), Conditions 1.1, 1.2 and
1.4 follow immediately from the definition of this operation and the definition of
regular words relative to the set V . To verify Condition 1.3 we need to prove that if
w1, w2, w3 are unitypical words such that w1 �= w2, w1 �= w3 and w1 ·w2 �= w1 ·w3,
then equation (1) holds. For this, it suffices to consider the following cases5:

(a) w1w2 = w1w2, and either w1 · w3 = w1w3 or w3 = (w1w′
3)w

′′
3 or w1 =

(w3w′
1)w

′′
1 or w1 = w′

1w
′′
1 , w3 = w1w′

3;
(b) w1 = w′

1w
′′
1 , w2 = w′

1w
′
2, and either w3 = w′′

1w
′
3 or w3 = (w1w′

3)w
′′
3 ;

(c) w3 = (w1w′
3)w

′′
3 , and either w1 = (w2w′

1)w
′′
1 or w2 = (w1w′

2)w
′′
2 ;

(d) w1 = w′
1w

′′
1 , w2 = w′

1w
′
2, and either w3 = w′

1w
′
3 or w1 = (w3w′′′

1 )w′′′′
1 ;

(e) w1 = (w2w′
1)w

′′
1 , w1 = (w3w′′′

1 )w′′′′
1 .

Cases (a)–(c) follow immediately from Conditions 2.1–2.3.
In case (d) the equation w3 = w′

1w
′
3 and Condition 2.2 imply w1 ·w2 = w1 ·w3,

which contradicts the assumption. Now let w1 = (w3w′′′
1 )w′′′′

1 . Then from w1 =
w′

1w
′′
1 it follows that either w3w′′′

1 = w′
1, w

′′′′
1 = w′′

1 or w3w′′′
1 = w′′

1 , w′′′′
1 = w′

1.
From Conditions 2.2 and 2.3, and from w1 · w2 �= w1 · w3, we obtain w′′

1 = w3w′′′
1

and w′
1 = w′′′′

1 . Therefore (w1 · w2)(w1 · w3) = w1.
In case (e), from Condition 2.3 we obtain w1 ·w2 = w2w′

1 and w1 ·w3 = w3w′′′
1 .

From this, and from the equation w1 ·w2 �= w1 ·w3 it follows that w2 · w′
1 �= w3w′′′

1 .
Hence w′′

1 = w3w′′′
1 and w′′′′

1 = w2w′
1. Therefore

(w1 · w2) · (w1 · w3) = (w2w′
2) · (w3w′′′

1 ) = (w2w′
1) (w3w′′′

1 ) = w1.

5In the rest of this proof, there are some typographical errors in the original text, especially
regarding the superscripts. We have attempted to correct these errors. [Translators]
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All the necessary cases have been considered. Thus the operation · in CF(V ) satis-
fies Conditions 1.1–1.4. Therefore the partial algebra system CF(V ) is a projective
plane. �

Now we prove the following result:

Theorem 1. Let V be a set containing at least four elements, and let CF(V ) be the
partial algebraic system resulting from Construction 1 for the set V . Then CF(V )
is a completely free projective plane, freely generated by the set V of unitypical
elements.

Proof. From the construction of the plane CF(V ) it follows that we can choose in
CF(V ) a subconfiguration of the form D = 〈(V, ∅), ·, ∅〉. Consider the sequence of
configurations D[0] = D, D[1], . . ., D[i].

From the definitions of the operation · in CF(V ) and the configuration D[1],
it follows that for any w ∈ D[1], since w = uv, we have u, v ∈ D[0], and if w /∈ D[0]

and u1, v1 ∈ D[0] are such that w = u1v1, then w = u1v1. Thus D[1] ⊃ D[0] is a
free one-step extension. Therefore we have the basis of the induction.

Assume, for any natural number i not exceeding a natural number s, that
D[i] ⊃ D[i−1] is a free one-step extension.

Now choose arbitrarily an element w ∈ D[s+1]. Then by definition of a com-
plete one-step extension it follows that in D[s] there exist elements u and v such
that w = u · v. The definition of the operation · in CF(V ) implies that we have the
following cases:
(a) w = uv,
(b) u = wu′, v = wv′,
(c) w = w1w2 and either u = wu′, v = wi, i ∈ {1, 2}, or v = wv′, u = wi,

i ∈ {1, 2}.
In cases (b) and (c) it follows from the inductive hypothesis that w ∈ D[s]. This
contradicts the choice of w in D[s+1]. Therefore we have the equation w = uv and
hence the inductive step from s to s + 1: that is, D[s+1] ⊂ D[s] is a free one-step
extension. Therefore, for any natural number i, D[i] ⊂ D[i−1] is a free one-step
extension, and

CF(V ) =
∞⋃

i=1

D[i−1] = 〈D〉CF(V ).

From this and Lemma 1 we obtain that CF(V ) is a completely free projective
plane, freely generated by the configuration D. �

2. Now we apply Construction 1 to build a free projective plane of odd rank.

Construction 2. Let Vn = {v1, v2, . . . , vn} be a set consisting of n (n ≥ 5) pairwise
distinct symbols. We define the elements of Vn to be unitypical. Let CF(Vn) =
〈(W 0

n ,
0Wn), ·〉 be the completely free projective plane freely generated by the set

Vn, which is built according to Construction 1. Let W 0
n and 0Wn be the sets of all

regular words relative to Vn of the first and second types respectively; let W ′
n be
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the subset of W 0
n ∪ 0Wn consisting of the regular words that are formed from the

elements of the set Vn−1 = Vn \ {vn} = {v1, v2, . . . , vn−1}; let W ′′
n be the subset of

W 0
n ∪ 0Wn consisting of the regular words that have subwords of the form vnvn−1

but do not have subwords of the form vnv where v is an arbitrary regular word of
the first type distinct from vn−1.

The operation · defined in the plane CF(Vn) induces on the set W ′
n ∪W ′′

n a
partial operation ◦. The partial algebraic system thus obtained,

〈(
(W ′

n ∪W ′′
n ) ∩W 0

n , (W
′
n ∪W ′′

n ) ∩ 0Wn), ◦〉,
will be denoted by F(Ṽn) where Ṽn = {v1, v2, . . . , vn−1; vnvn−1} and regarded as
the result of Construction 2.

It immediately follows from the definition that F(Ṽn) is a closed subconfig-
uration in the projective plane CF(Vn). From this, and from the construction of
the configuration F(Ṽn), it follows that F(Ṽn) is a projective plane. From the def-
inition of multiplication in the plane CF(Vn) it follows that F(Ṽn) is generated by
the configuration of the form

Dn =
〈
Ṽn,
({v1, v2, . . . , vn}, {vnvn−1}

)
, ∗, ν〉,

where ν = {(vn−1, vnvn−1), (vnvn−1, vn)}, and for all elements in Dn the operation
∗ is undefined.

If we apply, to the sequence of configurations D
[0]
n = Dn, D

[1]
n , . . ., D

[i]
n , . . .,

arguments analogous to those done in the proof of Theorem 1 for the sequence
D, D[1], . . ., D[i], . . ., then we obtain that for any natural number i, the complete
one-step extension D[i] ⊃ D[i−1] is a free one-step extension, and

C(Ṽn) =
∞⋃

i=1

D[i−1]
n = 〈D〉C(Ṽn).

Thus we have the next result.

Proposition 6. The partial algebraic system F(Ṽn) built in Construction 2 is a free
projective plane of rank 2n− 1 where n ≥ 5.

From Propositions 4 and 6, Remark 6, Theorem 1, and Constructions 1 and
2, we obtain the following result.

Remark 7. Any free (including also completely free) projective plane can be re-
garded as a partial algebraic system in which every element has the form of a
suitable regular word.

Remark 8. 6 In [1] and [7] are given constructions of free and completely free
projective planes, but the elements of these planes are defined by the authors only
up to a certain equivalence relation which is not always convenient for applications.

6With regard to completely free projective planes, see also [5].
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3. On embeddings of projective planes

1. We have the following construction.

Construction 3. Let C1 = {a1, a2, a3, a4} be a fixed set of four elements. We define

e1 =
[(

(a4a2)(a3a1)
)(

(a4a1)(a3a2)
)]

(a2a1),

e2 =
[(

(a4a2)(a3a1)
)(

(a4a1)(a3a2)
)]

(a4a3),

e3 =
[(

(a4a3)(a2a1)
)(

(a4a1)(a3a2)
)]

(a3a1),

e4 =
[(

(a4a3)(a2a1)
)(

(a4a1)(a3a2)
)]

(a4a2),

e5 =
[(

(a4a3)(a2a1)
)(

(a4a2)(a3a1)
)]

(a3a2),

e6 =
[(

(a4a3)(a2a1)
)(

(a4a2)(a3a1)
)]

(a4a2).

We further set

g1 = (e2a2)(e1a4), g2 = (e3a2)(e2a1), g3 = (e4a1)(e3a4),

g4 = (e5a1)(e4a3), g5 = (e6a2)(e1a3), g6 = (e6a3)(e5a4).

We will regard the set G = {g1, g2, g3, g4, g5, g6} as the result of Construction 3.
It immediately follows from the definition of the elements of the set G that all
of them are regular words relative to C1. Hence, the set G is contained in the
projective plane CF(C1) obtained from the set C1 according to Construction 1.
Now consider the subconfiguration 〈(G, ∅), ·, ∅〉 in CF(C1), where the operation · is
undefined for all pairs of elements in the set G. This configuration will be denoted
by G.

We have the following result.

Proposition 7. In the projective plane CF(C1), the configuration G̃ = 〈G〉CF(C1) is
a completely free plane, freely generated by the set G which consists of six unitypical
elements.

Proof. For the proof of this statement, it suffices to observe that any word that
is regular relative to the set G is also regular relative to the set C1. Hence, for
any natural number i, the complete one-step extension G[i] ⊃ G[i−1] is also a free
one-step extension within the plane CF(C1). The claim of the proposition follows
from this and from the fact that G̃ = 〈G〉CF(C1) = 〈G〉G̃. �

Construction 4. Let Vn = {v1, v2, . . . , vn} where n ≥ 6, and let CF(Vn) be the
completely free projective plane obtained from the set Vn according to Construc-
tion 1. For any quadruple (i1, i2, i3, i4) of natural numbers such that 1 ≤ i1 < i2 <
i3 < i4 ≤ n, we will denote by h(i1, i2, i3, i4) the word

(
(vi4vi3)(vi2vi1)

)(
(vi4vi2 )(vi3vi1)

)
. (2)

The set H of all words (2) formed from the elements of the set Vn will be regarded
as the result of Construction 4. It is clear from the construction of the elements ofH
that all of them are regular words relative to the set Vn, and hence H is contained
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in the projective plane CF(Vn). Now consider the configuration 〈(H, ∅), ·, ∅〉 where
the operation · is undefined for all pairs of elements in H . We will denote this
configuration by H.

The proof of the next result is similar to that of Proposition 7.

Proposition 8. In the projective plane CF(Vn) the configuration H̃ = 〈H〉CF(Vn) is
a completely free plane, freely generated by the set H of unitypical elements.

Observe that since the cardinality |Vn| of the set Vn equals n, the cardinality
|H | of the set H equals

(
n
4

)
. Hence if n ≥ 6 then |H | > |Vn|. This, together with

Propositions 7 and 8, implies the following result.

Theorem 2. Let C1 be a set which contains four symbols, and let CF(C1) be the
completely free projective plane freely generated by the set C1 of unitypical ele-
ments. Then for any natural number n ≥ 4, there exists a projective subplane of
CF(C1) which is a completely free projective plane freely generated by a set of n
unitypical elements.

It is easy to see that the rank of a free plane cannot be smaller than 8. Hence
from Theorem 2 and Proposition 6 we obtain the following result.

Corollary 1. [2] For any natural number n ≥ 8, the completely free plane CF(C1)
contains a projective subplane which is a free projective plane of rank n.

2. In what follows we will need the next result.

Lemma 2. Let CF(V ) be the completely free projective plane freely generated by the
set V , and let U be a set of unitypical elements in CF(V ) such that

(i) for any two distinct words ui and uj in U , there exists7 a word uiuj in CF(V )
which is regular relative to V , and

(ii) if, in the expression of an element uk in U , there occurs a word u which is
regular relative to V , then for any words of the form uw1 or (uw2)w3 which
are regular relative to V , we have uk �= uw1 and uk �= (uw2)w3.

Then any word which is regular relative to U is also regular relative to V .

Proof. For words of U -length 1 or 2 that are regular relative to U , the statement
of the lemma follows immediately from the assumptions. Thus we have the basis
of induction on the U -lengths of the words.

Assume that any word of U -length n which is regular relative to U is also
regular relative to V , and consider an arbitrary word w that is regular relative to
U and has U -length n+ 1 ≥ 2. For the word w there exist words x1 and x2 that
are regular relative to U such that w = x1x2 and the U -lengths of both of these
words are strictly less than n + 1, and hence the inductive hypothesis applies to
the words x1 and x2.

From the definition of regular words, it follows that if w fails to be regular
relative to V , then we are in one of the following cases:

7That is, either uiuj or ujui is regular relative to V , and hence uiuj is defined. [Translators]
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(a) x1 = y′1y
′′
1 , x2 = y′2y

′′
2 , and the intersection {y′1, y′′1} ∩ {y′2, y′′2} is not empty;

(b) there exist elements z′ and z′′ such that for some index i ∈ {1, 2} the elements
xi, x3−i, z′, z′′ satisfy x3−i = (xiz′)z′′.

We consider the two cases separately.
(a) From the definition of regular words, it follows that the words y′1, y

′′
1 , y′2,

y′′2 cannot simultaneously be regular relative to the set U . Hence, without loss of
generality, we can assume that y′′2 is not regular relative to U ; but in this case
x2 ∈ U . If now at least one of the elements y′1, y

′′
1 is not regular relative to U , then

x1 ∈ U and hence by the conditions of the lemma there exists a word x1x2 that
is regular relative to V , which contradicts the original assumption. Hence y′1 and
y′′1 are regular relative to U . From this, and from the fact that the intersection
{y′1, y′′1} ∩ {y′2, y′′2} is not empty, we can assume without loss of generality that
y′1 = y′2. Therefore the word w has the form x1x2 = (y′1y

′′
1 ) (y′1y

′′
2 ).

First consider x1. This word has the form y′1y
′′
1 , where y′1 and y′′1 are words

that are regular relative to U , and hence the U -lengths of both of the words y′1
and y′′1 are less than the U -length of x. From this, and the fact that x2 ∈ U , it
follows that y′1 is a word of second type relative to U , and hence there exist words
v′ and v′′, regular relative to U , such that the U -lengths of both of v′ and v′′ are
strictly less than the U -length of y′1 and we have y′1 = v′v′′. But then x2 has the
form y′1y

′′
2 = (v′v′′)y′′2 , which contradicts the assumptions of the lemma. For this

reason, case (a) is impossible.
(b) From the definition of regular words, it follows that the elements z′ and

z′′ cannot simultaneously be regular relative to U . If z′′ is not regular relative
to U , then the word (xiz′)z′′ must be an element of U . But this contradicts the
assumptions of the lemma. If z′′ is regular relative to U , then z′ is not regular rel-
ative to U , and in this case either xiz′ ∈ U or (xiz′)z′′ ∈ U , which also contradicts
the assumptions of the lemma. Consequently case (b) is also impossible.

Therefore, the word w is regular relative to V , contrary to the assumption.
Hence any word w which is regular relative to U and has U -length n + 1 is also
regular relative to V . The induction is complete. �

Construction 5. Let C1 = {a1, a2, a3, a4} be a fixed set of symbols, and let G =
{g1, g2, g3, g4, g5, g6} be the set of words resulting from Construction 3. Take the
elements g1, g2, g3, g4 from G and substitute them for the elements a1, a2, a3, a4

respectively into the words g1, g2, g3, g4, g5, g6. Denote the resulting words by g1,1,
g1,2, g1,3, g1,4, g1,5, g1,6. Now suppose that for any natural number i the words gi,1,
gi,2, gi,3, gi,4, gi,5, gi,6 have been constructed. Then we denote by gi+1,1, gi+1,2,
gi+1,3, gi+1,4, gi+1,5, gi+1,6 the words resulting from substituting the elements gi,1,
gi,2, gi,3, gi,4 for the symbols a1, a2, a3, a4 respectively into the words g1, g2, g3,
g4, g5, g6. We denote the element g6 by g0,6. We define the set

G = {g0,6, g1,6, . . . , gi,6, . . .},
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to be the result of Construction 5. It follows from the definition of the elements
of G, that for any natural number i, the element gi−1,6 is a regular word relative
to C1. Hence the set G is contained in the projective plane CF(C1) obtained from
the set C1 according to Construction 1. Consider in CF(C1) the subconfiguration
〈(G, ∅), ·, ∅〉 where the operation · is undefined for all pairs of elements of G. Denote
this configuration by G.

It follows from the construction of G, that C1 and G are sets of unitypical
elements satisfying the conditions of Lemma 2. Thus any word that is regular
relative to G is also regular relative to C1. Hence for any natural number i, the
complete one-step extension G

[i] ⊃ G
[i−1]

in the plane CF(C1) is a free one-step
extension. For this reason the closed configuration 〈G〉CF(C1) is a completely free
projective plane, freely generated by a countable set G of unitypical elements.
Therefore we have the following result.

Theorem 3. Let C1 be a set of four elements, let CF(C1) be the completely free
projective plane freely generated by the set C1 of unitypical elements, and let G be
the countable set of elements obtained according to Construction 5. Then CF(C1)
contains a projective subplane which is a completely free projective plane freely
generated by the set G of unitypical elements.

4. On homomorphisms of projective planes

1. The following result holds.

Lemma 3. Let CF(V ) be the completely free projective plane, freely generated by
the set V of unitypical elements according to Construction 1. Let A1, A2, . . ., An,
. . . be a sequence of subconfigurations in CF(V ) such that

(i) A1 = 〈(V, ∅), ·, ∅〉,
(ii) for any natural number i the configuration Ai+1 is a free one-step extension

of Ai, and
(iii) A0

def=
⋃∞

i=1 Ai �= CF(V ).
Then the following conditions hold:
(a) for any natural number n, if w ∈ An+1 and w /∈ An then in An there exist

elements u and v such that w = uv;
(b) the projective plane CF(V ) is freely generated by the configuration A0.

Proof. (a) In the case n = 1, the claim is obvious. Thus we have a basis for the
induction. Suppose, for all natural numbers k < n, that from w ∈ Ak+1, w /∈ Ak

it follows that there exist elements u and v in Ak such that w = uv. Now choose
arbitrarily an element w in An+1 such that w /∈ An, and let u and v be the elements
in An such that w = u · v.

From the definition of the plane CF(V ), and Conditions 2.1–2.3 in the defi-
nition of the operation · in CF(V ), it follows that the equation w = u · v holds in
CF(V ) in any of the following cases:
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• w = uv;
• u = wu′, v = wv′;
• w = w1w2 and either u = wu′, v = wi, i ∈ {1, 2}, or v = wv′, u = wi,
i ∈ {1, 2}.

Assume that
u = wu′. (3)

Then u /∈ A1. From this, and from the assumptions of the lemma, it follows
that there exists a smallest natural number s such that 1 < s ≤ n, u ∈ As,
u /∈ As−1. Hence from the inductive hypothesis, the definition of regular words in
Construction 1, and equation (3), it follows that w, u′ ∈ As−1. But this contradicts
the choice of the element w. The case v = wv′ is treated similarly. Therefore,
w = uv. The inductive step is complete. Part (a) of the lemma is proved.

(b) We show that for any natural number n, the complete one-step extension
A

[n]
0 ⊃ A

[n−1]
0 is a free one-step extension.

Let n = 1. We choose arbitrarily an element w in A
[1]
0 such that w /∈ A

[0]
0 = A0.

Then in A0 there exist elements u and v such that w = u ·v. From the definition of
the configuration A0 it follows that there exists a smallest natural number s such
that u ∈ As. Now, if u > w then from the definition of the multiplication in the
plane CF(V ) it follows that w occurs in the expression of the word u. Hence from
part (a) of this lemma we obtain w ∈ As ⊂ A0. This contradicts the choice of w.
Consequently u < v. Similarly one shows that v < w. From this and the definition
of multiplication in the plane CF(V ), it follows that w = uv, i.e., for w there exist
two and only two elements u and v in A0 such that w = u · v. For this reason the
extension A

[1]
0 ⊃ A0 is a complete free one-step extension. Therefore we have the

basis of induction.
Now suppose, for any natural number k < n, that the extension A

[k]
0 ⊃ A

[k−1]
0

is a complete free one-step extension, and that for any element w ∈ A
[k]
0 with

w /∈ A
[k−1]
0 there exist elements u and v in A

[k−1]
0 for which w = uv. Choose

arbitrarily an element w ∈ A
[n]
0 such that w /∈ A

[n−1]
0 . Then for this element there

exist elements u and v in A
[n−1]
0 such that w = u · v. From this, the inductive

hypothesis, and the definition of the operation · in the plane CF(V ), it follows
that w > u and w > v. Hence w = uv, and the extension A

[n]
0 ⊃ A

[n−1]
0 is a

complete free one-step extension. The inductive step is complete. Therefore part
(b) is also proved. �

2. We have the following construction.

Construction 6. Let C1 = {a1, a2, a,a4} be a fixed set of four elements, and let
CF(C1) be the completely free projective plane obtained from C1 according to
Construction 1. In the alphabet C1, we introduce notation for words which will
be needed in what follows: b0,m, c0,j, d0,j , e0,m, f0,k, g0,� where m = 1, 2, . . ., 6,
j = 1, 2, 3, k = 1, 2, . . ., 12, � = 1, 2, 3, 4, as displayed in Table 1; in each column,
the definition of the element in the first row is given in the second row.
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b0,1 b0,2 b0,3 b0,4 b0,5 b0,6 c0,1 c0,2

a2a1 a3a1 a3a2 a4a1 a4a2 a4a3 b0,4b0,3 b0,5b0,2

c0,3 d0,1 d0,2 d0,3 e0,1 e0,2 e0,3 e0,4

b0,6b0,1 c0,2c0,1 c0,3c0,1 c0,3c0,2 d0,1b0,1 d0,1b0,6 d0,2b0,2 d0,2b0,9

e0,5 e0,6 f0,1 f0,2 f0,3 f0,4 f0,5 f0,6

d0,3b0,3 d0,3b0,4 e0,1a3 e0,1a4 e0,2a1 e0,2a2 e0,3a2 e0,3a4

f0,7 f0,8 f0,9 f0,10 f0,11 f0,12 g0,1 g0,2

e0,4a1 e0,4a3 e0,5a1 e0,5a4 e0,6a2 e0,6a3 f0,4f0,2 f0,5f0,3

g0,3 g0,4

f0,7f0,6 f0,9f0,8

Table 1. Definition of the words b0,m, c0,j , d0,j , e0,m, f0,k, g0,�.

Now, if for a natural number i we have already defined the elements bi−1,m,
ci−1,j , di−1,j , ei−1,m, fi−1,k, gi−1,� where m = 1, 2, . . ., 6, j = 1, 2, 3, k = 1, 2,
. . ., 12, � = 1, 2, 3, 4, then we denote by bi,m, ci,j , di,j , ei,m, fi,k, gi,� respectively
the words obtained by substituting the words gi−1,1, gi−1,2, gi−1,3, gi−1,4 for a1,
a2, a3, a4 respectively in the expressions of the words b0,m, c0,j , d0,j , e0,m, f0,k,
g0,� where m = 1, 2, . . . , 6, j = 1, 2, 3, k = 1, 2, . . . , 12, � = 1, 2, 3, 4. We denote by
C0 the set of words

{a1, a2, a3, a4} ∪ {bi,m, ci,j , di,j , ei,m, fi,k, gi,�},
where i = 0, 1, . . . and m = 1, 2, . . . , 6, j = 1, 2, 3, k = 1, 2, . . . , 12, � = 1, 2, 3, 4.

Remark 9. Every element of the set C0 is a regular word relative to C1, and hence
we have C0 ⊂ CF(C1).

By definition C1 = {a1, a2, a3, a4}. Now, if for some natural number i the set
C6i−5 has been defined, then by C6i−4, C6i−3, C6i−2, C6i−1, C6i, C6i+1 respectively
we denote the following sets:

C6i−5 ∪ {bi−1,m}, m = 1, 2, . . . , 6; C6i−4 ∪ {ci−1,j}, j = 1, 2, 3;

C6i−3 ∪ {di−1,j}, j = 1, 2, 3; C6i−2 ∪ {ei−1,m}, m = 1, 2, . . . , 6;

C6i−1 ∪ {fi−1,k}, k = 1, 2, . . . , 12; C6i ∪ {gi−1,�}, � = 1, 2, 3, 4.

On each of the sets Ci, i = 0, 1, . . . we define a partial binary commutative opera-
tion fi (respectively) as follows:
4.1. If, for two distinct unitypical elements a and b in the set Ci, the product a · b,

using the operation · defined in the plane CF(C1), is also contained in Ci,
then fi(a, b) = a · b, i = 0, 1, . . ..



On the Theory of Projective Planes 239

a1 a2 a3 a4 b0,1 b0,2 b0,3 b0,4

b0,1 b0,1 b0,2 b0,4 a1 a1 a2 a1

b0,2 b0,3 b0,3 b0,5 a2 a3 a3 a4

b0,4 b0,5 b0,6 b0,6 c0,3 c0,2 c0,1 c0,2

f0,3 f0,4 f0,1 f0,2 e0,1 e0,3 e0,5 e0,6

f0,7 f0,5 f0,8 f0,6

f0,9 f0,11 f0,12 f0,10

b0,5 b0,6 c0,1 c0,2 c0,3 d0,1 d0,2 d0,3

a2 a3 b0,3 b0,2 b0,1 c0,1 c0,1 c0,2

a4 a4 b0,4 b0,5 b0,6 c0,2 c0,3 c0,3

c0,3 c0,1 d0,1 d0,1 d0,2 e0,1 e0,3 e0,5

e0,4 e0,2 d0,2 d0,3 d0,3 e0,2 e0,4 e0,6

e0,1 e0,2 e0,3 e0,4 e0,5 e0,6 f0,1 f0,2

b0,1 b0,6 b0,2 b0,5 b0,3 b0,4 a3 a4

d0,1 d0,1 d0,2 d0,2 d0,3 d0,3 e0,1 e0,1

f0,1 f0,3 f0,5 f0,7 f0,9 f0,11 g0,1

f0,2 f0,4 f0,6 f0,8 f0,10 f0,12

f0,3 f0,4 f0,5 f0,6 f0,7 f0,8 f0,9 f0,10

a1 a2 a2 a4 a1 a3 a1 a4

e0,2 e0,2 e0,3 e0,3 e0,4 e0,4 e0,5 e0,5

g0,2 g0,1 g0,2 g0,3 g0,3 g0,4 g0,4

f0,11 f0,12 g0,1 g0,2 g0,3 g0,4

a2 a3 f0,2 f0,3 f0,6 f0,8

e0,6 e0,6 f0,4 f0,5 f0,7 f0,9

b1,1 b1,1 b1,2 b1,4

b1,2 b1,3 b1,3 b1,5

b1,4 b1,5 b1,6 b1,6

f1,3 f1,4 f1,1 f1,2

f1,7 f1,5 f1,8 f1,6

f1,9 f1,11 f1,12 f1,10

Table 2. The incidence relation α0 (basis of induction).

4.2. In all other cases we declare that the operation fi on Ci is undefined, i =
0, 1, . . ..

Table 2 gives the incidence relation for elements of C0: in each column, the
first row gives an element w ∈ C0, and the other rows give the elements of C0
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bi,1 bi,2 bi,3 bi,4
gi−1,1 gi−1,1 gi−1,2 gi−1,1

gi−1,2 gi−1,3 gi−1,3 gi−1,4

ci,3 ci,2 ci,1 ci,1
ei,1 ei,3 ei,5 ei,6

bi,5 bi,6 ci,1 ci,2 ci,3 di,1 di,2 di,3

gi−1,2 gi−1,3 bi,3 bi,2 bi,1 ci,2 ci,1 ci,2
gi−1,4 gi−1,4 bi,4 bi,5 bi,6 ci,3 ci,3 ci,3
ci,2 ci,3 di,1 di,1 di,2 ei,1 ei,3 ei,5

ei,4 ei,2 di,2 di,3 di,3 ei,2 ei,4 ei,6

ei,1 ei,2 ei,3 ei,4 ei,5 ei,6 fi,1 fi,2

bi,1 bi,6 bi,2 bi,5 bi,3 bi,4 gi−1,3 gi−1,4

di,1 di,1 di,2 di,2 di,3 di,3 ei,1 ei,1

fi,1 fi,3 fi,5 fi,7 fi,9 fi,11 gi,1

fi,2 fi,4 fi,6 fi,8 fi,10 fi,12

fi,3 fi,4 fi,5 fi,6 fi,7 fi,8 fi,9 fi,10

gi−1,1 gi−1,2 gi−1,2 gi−1,4 gi−1,1 gi−1,3 gi−1,1 gi−1,4

ei,2 ei,2 ei,3 ei,3 ei,4 ei,4 ei,5 ei,6

gi,2 gi,1 gi,2 gi,3 gi,3 gi,4 gi,4

fi,11 fi,12 gi,1 gi,2 gi,3 gi,4

gi−1,2 gi−1,3 fi,2 fi,3 fi,6 fi,8

ei,1 ei,6 fi,4 fi,5 fi,7 fi,9

bi+1,1 bi+1,1 bi+1,2 bi+1,4

bi+1,2 bi+1,3 bi+1,3 bi+1,5

bi+1,4 bi+1,5 bi+1,6 bi+1,6

fi+1,3 fi+1,4 fi+1,1 fi+1,2

fi+1,7 fi+1,5 fi+1,8 fi+1,6

fi+1,9 fi+1,11 fi+1,12 fi+1,10

Table 3. The incidence relation α0 (inductive step).

which are incident with w in CF(C1). This incidence relation8 will be denoted by
α0. We construct a sequence of configurations using Tables 2 and 3.

Let C0 and 0C be the sets of regular words of first and second type respec-
tively relative to the set C1 in the plane CF(C1). Choose arbitrarily an element
w in CF(C1) such that for some elements u and v in CF(C1) we have w = uv.

8Table 2 gives the basis of the induction defining α0, and Table 3 gives the inductive step.
[Translators]
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Then the pairs of the form (w, u), (u,w), (w, v) and (v, w) will be called the basic
incidences of the element w, and the set {(w, u), (u,w), (w, v), (v, w)} will be
denoted by Ow and called the full set of basic incidences of w in CF(C1).

We define the sequence of sets α1, α2, . . ., αi, . . . as follows:

4.3. Set by definition α1 = ∅.
4.4. If, for some natural number i the set αi has already been defined, then we

define αi+1 in this way: for all elements in Ci+1 \ Ci we denote by βi+1 the
union of all full sets of basic incidences,

βi+1 =
⋃

w∈Ci+1\Ci

Ow,

and define αi+1 = αi ∪ βi+1.

For each natural number i, we will denote by Ci the partial algebraic system
〈
(Ci ∩C0, Ci ∩ 0C), fi, αi

〉
, i = 1, 2, . . . ,

where fi is the partial binary commutative operation defined on Ci and satisfying
Conditions 4.1 and 4.2, and the relation αi is defined for each i according to
Conditions 4.3 and 4.4.

It follows immediately from the definitions of fi and αi, and the construction
of the sets Ci, i = 1, 2, . . ., that αi is an incidence relation relative to the partition
(Ci ∩ C0, Ci ∩ 0C) such that αi and fi are compatible on the set. Therefore we
have the following result.

Lemma 4. For every natural number i, the partial algebraic system

Ci =
〈
(Ci ∩ C0, Ci ∩ 0C), fi, αi

〉
,

is a configuration, and the extension Ci+1 ⊃ Ci is free.

Denote by C0 the configuration equal to the union of the configurations Ci,
i = 1, 2, . . .:

C0 =
∞⋃

i=1

Ci.

The configuration C0 will be regarded as the result of Construction 6.

Remark 10. It follows from the construction of the sequence of configurations C1,
C2, . . ., Ci, . . . that the configuration C0 can also be defined as follows:

C0 =
〈
(C0 ∩ C0, C0 ∩ 0C), α0, f0

〉
,

where α0 is defined by Tables 2 and 3, and f0 is the partial binary commutative
operation satisfying Conditions 4.1 and 4.2.

For the sequence of configurations Ci, i = 1, 2, . . ., and the configuration C0,
by virtue of their constructions and Lemma 4, all the conditions of Lemma 3 are
satisfied. Hence the following holds.
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Lemma 5. Let CF(C1) be the completely free projective plane freely generated by
the set C1 of unitypical elements according to Construction 1, and let C0 be the
configuration resulting from Construction 6. Then CF(C1) is freely generated by C0.

3. Let B1 and B2 be configurations contained respectively in the projective planes
A1 and A2. A mapping ϕ of B1 onto B2 will be called a homomorphism of con-
figurations if the incidence of the elements x and y in B1 implies the incidence of
the elements ϕ(x) and ϕ(y) in B2. In the case Ai = Bi, i = 1, 2, we will say that
ϕ is a homomorphism of projective planes from A1 onto A2.

Construction 7. Let U0 = {u1, u2, . . . , ui, . . .} be a fixed countable set of symbols
ordered according to the indices, and let CF(U0) be the completely free plane
freely generated by U0 according to Construction 1. Denote by 0U the set of all
words of the form ui+1ui where i = 1, 2, . . . . Denote by U the subconfiguration
〈(U0, 0U), ∗, α〉 in the projective plane CF(U0), where α is the union of the full
sets of basic incidences for all elements of 0U ,

α =
⋃

w∈0U

Ow,

the partial binary commutative operation ∗ is defined on the set U0∩0U as follows,

ui+1 ∗ ui = ui+1ui, (ui+2ui+1) ∗ (ui+1ui) = ui+1, i = 1, 2, . . . ,

and all remaining products in U are undefined. The configuration U just obtained
will be regarded as the result of Construction 7.

We have the following result.

Lemma 6. Let U0 be a countable set of symbols, and let CF(U0) be the completely
free projective plane obtained from U0 according to Construction 1. Let C1 be a set
consisting of four symbols, and let CF(C1) be the completely free projective plane
obtained from C1 according to Construction 1. Then there exists a homomorphism
θ of projective planes from CF(C1) onto CF(U0).

Proof. First, we construct a mapping θ of the configuration C0, obtained as the
result of Construction 6, onto the configuration U, obtained as the result of Con-
struction 7:

θ(a�) = θ(c0,j) = θ(e0,m) = u1,

θ(b0,m) = θ(d0,j) = θ(f0,k) = u2u1,

θ(g0,�) = u2, . . . , θ(gi−1,�) = θ(ci,j) = θ(ei,m) = ui+1,

θ(bi,m) = θ(di,j) = θ(fi,k) = ui+2ui+1,

where m = 1, 2, . . . , 6, j = 1, 2, 3, k = 1, 2, . . . , 12, � = 1, 2, 3, 4, i = 1, 2, . . . .
It is clear from inspection of Tables 2 and 3, and the definition of the map-

ping θ, that if elements a and b are incident in the configuration C0 then the
elements θ(a) and θ(b) are incident in the configuration U. Hence the mapping θ
is a homomorphism of configurations from C0 onto U.
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The configuration U is freely equivalent to the configuration 〈U0, (U0, ∅), ·, ∅〉,
and hence by Proposition 5 the projective plane CF(U0) is freely generated by the
configuration U.

In [3] it is shown that if the plane P1 is freely generated by a configuration A1,
the plane P2 is generated by a configuration A2, and there exists a homomorphism
τ of configurations from A1 onto A2, then there exists a homomorphism τ of
projective planes from P1 onto P1 such that τ is an extension of τ .

From this, together with Lemma 5, the definition of the configurations C0

and U, and the construction of the homomorphism θ, it follows that there exists a
homomorphism θ of projective planes from CF(C1) onto CF(U0) such that θ is an
extension of θ. The lemma is proved. �

For what follows we will need the next result.

Proposition 9. [10] Let P = 〈(P 0, 0P ), ·〉 be a projective plane where P 0 and 0P
are the sets of elements of the first and second types in P . Then there exists a
completely free projective plane CF(V ) such that CF(V ) is freely generated by a set
V of unitypical elements, where the cardinalities of the sets P 0 and V are equal
and there exists a homomorphism of planes from CF(V ) onto P.

Now we will prove the following result.

Theorem 4. Any finite or countably infinite projective plane is a homomorphic im-
age of a completely free projective plane freely generated by a set of four elements.

Proof. Let P = 〈(P 0, 0P ), ·〉 be an arbitrary finite or countable infinite projec-
tive plane. Then from Proposition 9 it follows that there exists a completely free
projective plane P1 = CF(V ) such that P1 is freely generated by the set V of uni-
typical elements, where the cardinalities of P 0 and V are equal, and there exists
a homomorphism τ1 of planes from P1 onto P. Observe that any completely free
projective plane, freely generated by a finite or countably infinite set, consists of
a countably infinite set of elements.

If U0 is a countably infinite set of symbols, and CF(U0) is the completely free
projective plane freely generated by the set U0 according to Construction 1, then
it follows from Proposition 9 that there exists a homomorphism τ of planes from
CF(U0) onto P1.

By Proposition 4 it follows that if a plane is freely generated by a set of four
elements, then this plane can also be freely generated by a set of four unitypical
elements. For this reason let C1 = {a1, a2, a3, a4} be a set of four elements, let
CF(C1) be the completely free plane obtained from C1 according to Construction 1,
and let θ be the homomorphism of planes from CF(C1) onto CF(U0) constructed
in Lemma 6. Then we obtain the following sequence of homomorphisms:

CF(C1)
θ−→ CF(U0) τ1−→ P1

τ−→ P.

The composition of these homomorphisms gives the required homomorphism of
planes from CF(C1) onto P. �
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Corollary 2. [4] Any projective plane with a finite number of generators is a ho-
momorphic image of a completely free projective plane freely generated by a set of
four elements.
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