
Soft Computing

K.-H.
Zimmermann

Preliminaries

Soft Computing

– Introduction to Machine Learning –

Karl-Heinz Zimmermann

TUHH

July 13, 2021

c©K.-H. Zimmermann

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 1 / 919

Soft Computing

K.-H.
Zimmermann

Preliminaries

Prof. Dr. Karl-Heinz Zimmermann
Hamburg University of Technology
21071 Hamburg
Germany

This monograph is listed in the GBV database and the TUHH library.

All rights reserved
c©2021, by Karl-Heinz Zimmermann, author

https://doi.org/10.15480/882.3652

http://hdl.handle.net/11420/9878

urn:nbn:de:gbv:830-882.0139751

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 2 / 919

Soft Computing

K.-H.
Zimmermann

Preliminaries

Preface

Contents

Formalities

Literature

Digitalization

Preliminaries Preface

Preface

Soft Computing is a branch of computer science that deals with
computationally hard tasks such as NP complete problems for
which the known algorithms do not deliver solutions in polynomial
time. In opposition to conventional (hard) computing, soft
computing provides solutions which may tolerate imprecision,
partial truth, uncertainty, and approximation. The paradigm of soft
computing is foremost the human mind – learning and inference.
The principal fields of soft computing are basically machine
learning, fuzzy logic, and evolutionary computation. The
applications of soft computing lie in prominent fields such as
artificial intelligence and knowledge engineering. The course
provides an introduction to soft computing particularly to the
increasingly important field of machine learning.
∗Starred material can be safely skipping on a first reading without
loss of continuity. An index will be separately available.

Hamburg, October 2020 Karl-Heinz Zimmermann

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 3 / 919

Soft Computing

K.-H.
Zimmermann

Preliminaries

Preface

Contents

Formalities

Literature

Digitalization

Preliminaries Preface

Dedication

To my family

for sempiternal

support.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 4 / 919

Soft Computing

K.-H.
Zimmermann

Preliminaries

Preface

Contents

Formalities

Literature

Digitalization

Preliminaries Contents

Contents

Bayesian networks

Statistical inference and learning

Artificial neural networks

Fuzzy logic

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 5 / 919

Soft Computing

K.-H.
Zimmermann

Preliminaries

Preface

Contents

Formalities

Literature

Digitalization

Preliminaries Contents

Contents - Chapters

1 Introduction to Bayesian networks

2 Hidden Markov model

3 Inference and learning in Bayesian networks

4 Statistical inference and learning

5 Sequence alignment

6 Tree models

7 Artificial neural networks

8 Fuzzy logic

Appendix

9 Computational statistics with R

10 Markov processes

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 6 / 919

Soft Computing

K.-H.
Zimmermann

Preliminaries

Preface

Contents

Formalities

Literature

Digitalization

Preliminaries Formalities

Corona Times

Lecture is online, not always live.

Lectures will be recorded for later use.

Exam is oral in February or March.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 7 / 919

Soft Computing

K.-H.
Zimmermann

Preliminaries

Preface

Contents

Formalities

Literature

Digitalization

Preliminaries Formalities

Formalities

Schedule:

Tuesday, 10:00 - 11:00 am (live)
Wednesday (recorded)

StudIP: appointments, manuscript, recorded lecture (media
links)

Exam: oral (20-25 min)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 8 / 919

Soft Computing

K.-H.
Zimmermann

Preliminaries

Preface

Contents

Formalities

Literature

Digitalization

Preliminaries Formalities

Oral Exam (25 min.)

Topics:

Bayesian networks

Hidden Markov model

Statistical inference and learning

Artificial neural networks

Fuzzy logic.

∗No starred material, no R.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 9 / 919

Soft Computing

K.-H.
Zimmermann

Preliminaries

Preface

Contents

Formalities

Literature

Digitalization

Preliminaries Literature

Literature
David Barber, Bayes Reasoning and Machine Learning, Cambridge Univ. Press, Cambridge, 2012.

Ernst Klement, Radko Mesiar, Endre Pap, Triangular Norms, Kluwer, Dordrecht, 2000.

Timo Koski, John M. Noble, Bayesian Networks, Wiley, New York, 2009.

Hidetoshi Nishimori, Statistical Physics of Spin Glasses and Information Processing, Oxford Univ.
Press, London, 2001.

Raul Royas, Neural Networks, Springer, Berlin, 1996.

Lior Pachter, Bernd Sturmfels, Algebraic Statistics for Computational Biology, Cambridge Univ.
Press, Cambridge, 2005.

Karl-Heinz Zimmermann, Algebraic Statistics, TubDok, Hamburg, 2016.

Karl-Heinz Zimmermann, Soft Computing, Manuscript, Hamburg, 2018.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 10 / 919

Soft Computing

K.-H.
Zimmermann

Preliminaries

Preface

Contents

Formalities

Literature

Digitalization

Preliminaries Digitalization

Digitalization

Conversion of analog data to digital data.

Big data: storage of large data and data retrieval

Machine learning: structure of data, learning
(estimation), inference

Infrastructure: sensors, actors, communication networks,
embedded systems.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 11 / 919

Soft Computing

K.-H.
Zimmermann

Preliminaries

Preface

Contents

Formalities

Literature

Digitalization

Preliminaries Digitalization

Bayesian Networks

Graphical representation of probabilistic relationships between
random variables

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 12 / 919

Soft Computing

K.-H.
Zimmermann

Preliminaries

Preface

Contents

Formalities

Literature

Digitalization

Preliminaries Digitalization

Bayesian Networks

Applications in artificial intelligence, expert systems, machine
learning

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 13 / 919

Soft Computing

K.-H.
Zimmermann

Preliminaries

Preface

Contents

Formalities

Literature

Digitalization

Preliminaries Digitalization

Hidden Markov Model

Spatial and temporal pattern analysis

GFED@ABCX1

��

// GFED@ABCX2

��

// GFED@ABCX3

��

// . . . // GFED@ABCXn

��GFED@ABCY1 GFED@ABCY2 GFED@ABCY3 . . . GFED@ABCYn

Inference: Given output sequence y1y2 . . . yn, find most
probable state sequence x1x2 . . . xn (Viterbi algorithm)

Learning: Estimate transition probabilities
(Estimation-Maximation, Baum-Welch algorithm)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 14 / 919

Soft Computing

K.-H.
Zimmermann

Preliminaries

Preface

Contents

Formalities

Literature

Digitalization

Preliminaries Digitalization

Tree Models

Analysis of phylogenetic trees

t9

t3

t10

t2

t1

t5

t8

t7

t4

t6

Inference: Given contemporary species (leaves), find
most probable anchestors (Felsenstein algorithm)

Learning: Estimate transition probabilities (Jukes-Cantor
model and others)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 15 / 919

Soft Computing

K.-H.
Zimmermann

Preliminaries

Preface

Contents

Formalities

Literature

Digitalization

Preliminaries Digitalization

Sequence Alignment

Sequence alignment is the basic operation of molecular
biologists

Inference: Given pairwise scores, find optimal alignment
(Needleman-Wunsch algorithm)

Global inference: Find the optimal alignments for all
pairwise scores (polytope propagation)

Learning: Estimate pairwise scores (PAM, Blosum)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 16 / 919

Soft Computing

K.-H.
Zimmermann

Preliminaries

Preface

Contents

Formalities

Literature

Digitalization

Preliminaries Digitalization

Neural Networks

Artificial neural networks can generalize from examples, used
in diagnosis, prediction, and recognition. Deep learning is the
new black!

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 17 / 919

Soft Computing

K.-H.
Zimmermann

Preliminaries

Preface

Contents

Formalities

Literature

Digitalization

Preliminaries Digitalization

Neural Networks

Linear classification of data (perceptron):

−1 0 1 2

−
0.

5
0.

0
0.

5
1.

0
1.

5
2.

0

x[,1]

x[
,2

]

−
1

1

−0.5 0.0 0.5 1.0 1.5 2.0

−1

0

1

2

o
o

o

o

o

o

o

o

o

o

o

o

o

o

x

x

x

x

x

x

SVM classification plot

X2

X
1

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 18 / 919

Soft Computing

K.-H.
Zimmermann

Preliminaries

Preface

Contents

Formalities

Literature

Digitalization

Preliminaries Digitalization

Vector Support Machine

−2 −1 0 1 2 3 4

−
2

−
1

0
1

2
3

x[,1]

x[
,2

]

−2 −1 0 1 2 3 4

−
2

−
1

0
1

2
3

X1

X
2

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 19 / 919

Soft Computing

K.-H.
Zimmermann

Preliminaries

Preface

Contents

Formalities

Literature

Digitalization

Preliminaries Digitalization

Neural Networks

Recognition of handwritten digits:

MNist: Database of handwritten digits.

Database (50 MB) consists of 60,000 digits for training and
10,000 digits for testing.

Black-white digits consist of 28× 28 = 784 pixels (intensity
values 0-255).

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 20 / 919

Soft Computing

K.-H.
Zimmermann

Preliminaries

Preface

Contents

Formalities

Literature

Digitalization

Preliminaries Digitalization

Neural Networks

Artificial neural network has several layers with a few
thousand neurons.

Hardware: CPU and graphics cards

Error rate 0,35%, i.e., 35 of 10,000 test digits are wrongly
classified.

Challenges: large number of parameters (12 mio.), efficient
implementation.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 21 / 919

Soft Computing

K.-H.
Zimmermann

Preliminaries

Preface

Contents

Formalities

Literature

Digitalization

Preliminaries Digitalization

Fuzzy Logic

A fuzzy control system analyzes analog input values in terms
of discrete variables to yield an analog output value.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 22 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional
Independence

Markov
Equivalence

Using R

Part I

Introduction to Bayesian Networks

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 23 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional
Independence

Markov
Equivalence

Using R

Contents

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional Independence

Markov Equivalence

Bayesian Networks in R

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 24 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional
Independence

Markov
Equivalence

Using R

Contents

Knowledge

Probabilistic concepts, Bayes’ rule

Basic connections, d-dependence, belief network

Markov equivalence, essential graph

Skills

Computation of d-dependence

Factorization of joint probability distribution along DAG

Computation of essential graph

Specification of belief network using R

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 25 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional
Independence

Markov
Equivalence

Using R

Probabilities

Probabilities

Joint probabilities

Conditional and marginal probabilities

Bayes’ rule

Independence

Conditional independence

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 26 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional
Independence

Markov
Equivalence

Using R

Probabilities

Joint Probability Distribution

Given random variables X and Y over finite state sets X and Y,
resp.

The joint probability function p = pX,Y is a probability
distribution over X × Y; i.e.,

p(x, y) ≥ 0 for all (x, y) ∈ X × Y, (1)

and
∑

(x,y)∈X×Y

p(x, y) = 1. (2)

Example: adult population with X (gender, male or female)
and Y (age, 18-100).

Joint probability distribution contains complete information
about the random variables, may not be available. However,
conditional probabilities (smaller building blocks of low order)
might be known.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 27 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional
Independence

Markov
Equivalence

Using R

Probabilities

Marginal Distribution

Given joint probability function pX,Y over state set X × Y.
The distribution pX of X is the marginal distribution of pX,Y

given by

pX(x) =
∑

y∈Y

pX,Y (x, y), x ∈ X . (3)

Given random variables X and Y both over state set {0, 1}
and joint probability distribution p = pX,Y given by

p Y = 0 Y = 1
X = 0 0.06 0.14
X = 1 0.24 0.56

Then the marginals are

pX(0) = 0.20, pX(1) = 0.80, pY (0) = 0.30, pY (1) = 0.70.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 28 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional
Independence

Markov
Equivalence

Using R

Probabilities

Conditional Probability Distribution

Given random variables X and Y over X and Y, resp.
The conditional probability of x ∈ X given y ∈ Y is defined as

pX|Y (x|y) =
pX,Y (x, y)

pY (y)
. (4)

In particular, if pY (y) = 0, then pX|Y (x|y) is undefined.
For each y ∈ Y with pY (y) 6= 0, the function pX|Y (·|y) is a
probability distribution over X , since pX|Y (x|y) ≥ 0 for all
x ∈ X and

∑

x

pX|Y (x|y) =
∑

x

pX,Y (x, y)

pY (y)
=

1

pY (y)

∑

x

pX,Y (x, y)

=
pY (y)

pY (y)
= 1.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 29 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional
Independence

Markov
Equivalence

Using R

Probabilities

Conditional Probability Distribution – Example

Given random variables X and Y both over state set {0, 1} and
joint probability distribution p = pX,Y given by

p Y = 0 Y = 1
X = 0 0.06 0.14
X = 1 0.24 0.56

The marginals are

pX(0) = 0.20, pX(1) = 0.80, pY (0) = 0.30, pY (1) = 0.70.

The conditional probability distribution pX|Y is

pX|Y (0|0) = 0.06/0.30 = 0.20, pX|Y (0|1) = 0.14/0.70 = 0.20,
pX|Y (1|0) = 0.24/0.30 = 0.80, pX|Y (1|1) = 0.56/0.70 = 0.80.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 30 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional
Independence

Markov
Equivalence

Using R

Probabilities

Bayes’ Rule

For all x ∈ X and y ∈ Y,

pX,Y (x, y) = pX|Y (x|y)pY (y) (5)

and

pX,Y (x, y) = pY |X(y|x)pX(x). (6)

This gives Bayes’ rule

pX|Y (x|y) =
pY |X(y|x)pX(x)

pY (y)
. (7)

where

pX prior probability,
pY evidence,
pY |X likelihood,
pX|Y posterior probability.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 31 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional
Independence

Markov
Equivalence

Using R

Probabilities

Bayes’ Rule – Example

Animal population: 60% female (F) and 40% male (M).
Disease (D): 10% of the females and 5% of the males
suffering.

Random variables X and Y with state sets {F,M} and
{D, D̄}, resp.
Joint probability distribution p = pX,Y :

p Y = D Y = D̄
X = F 0.06 0.54
X =M 0.02 0.38

Priors: pX(F) = 0.60 and pX(M) = 0.40.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 32 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional
Independence

Markov
Equivalence

Using R

Probabilities

Bayes’ Rule – Example (Cont’d)

Likelihoods:

pY |X(D|F) = pX,Y (F,D)

pX(F)
= 0.10, pY |X(D̄|F) = 0.90,

and

pX|Y (D|M) =
pX,Y (M,D)

pY (M)
= 0.05, pX|Y (D̄|M) = 0.95.

Law of total probability:

pY (D) = pX(F) · pY |X(D|F) + pX(M) · pY |X(D|M) = 0.08,

so pX(D̄) = 0.92.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 33 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional
Independence

Markov
Equivalence

Using R

Probabilities

Bayes’ Rule – Example (Cont’d)

By Bayes’ rule, the posteriories are

pX|Y (F |D) =
pX(F) · pY |X(D|F)

pY (D)
= 0.75

and so
pX|Y (M |D) = 1− pX|Y (F |D) = 0.25.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 34 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional
Independence

Markov
Equivalence

Using R

Probabilities

Independence

Given random variables X and Y over X and Y, resp.
X and Y are (statistically) independent if

pX,Y = pX · pY . (8)

One random variable gives no extra information about the
other one.

The random variables X and Y in the first example are
independent:

pX,Y (0, 0) = 0.06 = 0.20 · 0.30 = pX(0)pY (0),
pX,Y (0, 1) = 0.14 = 0.20 · 0.70 = pX(0)pY (1),
pX,Y (1, 0) = 0.24 = 0.80 · 0.30 = pX(1)pY (0),
pX,Y (1, 1) = 0.56 = 0.80 · 0.70 = pX(1)pY (1).

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 35 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional
Independence

Markov
Equivalence

Using R

Probabilities

Proposition

Given random variables X and Y over X and Y, resp.
The variables X and Y are independent iff for all x ∈ X and y ∈ Y
with pY (y) > 0,

pX|Y (x|y) = pX(x). (9)

Proof.

Let X and Y be independent. Then
pX(x)pY (y) = pX,Y (x, y) = pX|Y (x|y)pY (y) and so
pX|Y (x|y) = pX(x) since pY (y) > 0.

Conversely, let pX|Y (x|y) = pX(x) for all states x ∈ X and
y ∈ Y with pY (y) > 0. Since pX,Y (x, y) = pX|Y (x|y)pY (y),
we have pX,Y (x, y) = pX(x)pY (y).

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 36 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional
Independence

Markov
Equivalence

Using R

Probabilities

Observation

Given random variables X, Y , and Z with joint probability function
pX,Y,Z .
The joint probability distribution pX,Y,Z factors as follows,

pX,Y,Z = pX|Y,ZpY |ZpZ , (10)

since

pX,Y,Z = pX|Y,ZpY,Z (11)

and

pY,Z = pY |ZpZ . (12)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 37 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional
Independence

Markov
Equivalence

Using R

Probabilities

Proposition

Given random variables X1, . . . , Xn.
The joint probability function pX1,...,Xn

is given by

pX1,X2,...,Xn
=

n∏

i=1

pXi|Xi+1,...,Xn
. (13)

Proof.

We have
pX1,X2,...,Xn

= pX1|X2,...,Xn
pX2,...,Xn

.

By induction, the result follows.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 38 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional
Independence

Markov
Equivalence

Using R

Probabilities

Conditional Independence

Given random variables X, Y , and Z over state sets X , Y, and Z,
resp.
The variables X and Y are conditionally independent given Z,
written

X ⊥ Y | Z, (14)

if for all (x, y, z) ∈ X × Y × Z,

pX,Y,Z(x, y, z) = pX|Z(x | z)pY |Z(y | z)pZ(z). (15)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 39 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional
Independence

Markov
Equivalence

Using R

Probabilities

Proposition

Two random variables X and Y are conditionally independent
given the random variable Z iff for all (x, y, z) ∈ X × Y × Z with
pY |Z(y | z) > 0 and pZ(z) > 0,

pX|Y,Z(x | y, z) = pX|Z(x | z). (16)

Proof.

We have

pX,Y,Z(x, y, z) = pX|Y,Z(x | y, z)pY |Z(y | z)pZ(z).

The variables X and Y are conditionally independent given Z iff

pX,Y,Z(x, y, z) = pX|Z(x | z)pY |Z(y | z)pZ(z).

Since pY |Z(y | z) > 0 and pZ(z) > 0, we have
pX|Y,Z(x | y, z) = pX|Z(x | z).

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 40 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional
Independence

Markov
Equivalence

Using R

Probabilities

Proposition

Two random variables X and Y are conditionally independent
given the random variable Z iff for all (x, y, z) ∈ X × Y × Z with
pZ(z) > 0,

pX,Y |Z(x, y|z) = pX|Z(x|z)pY |Z(y|z). (17)

Proof.

We have
pX,Y,Z(x, y, z) = pX,Y |Z(x, y | z)pZ(z).

The variables X and Y are conditionally independent given Z iff

pX,Y,Z(x, y, z) = pX|Z(x | z)pY |Z(y | z)pZ(z).

Since pZ(z) > 0, we have
pX,Y |Z(x, y|z) = pX|Z(x|z)pY |Z(y|z).

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 41 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional
Independence

Markov
Equivalence

Using R

Probabilities

Coin Experiment

Given random variables X and Y both over state set {h, t}
denoting the outcome of first and second throwing of fair coin,
resp.

Suppose there is no dependency in the throwing, i.e, the
variables X and Y are independent,

pX,Y = pXpY .

Let random variable Z over {0, 1, 2} denotes the number of
heads obtained in both throwings.

Claim that the variables X and Y are not conditionally
independent given Z.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 42 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional
Independence

Markov
Equivalence

Using R

Probabilities

Coin Experiment (Cont’d)

The variables X and Y are not conditionally independent given Z.

Proof.

By definition, pX,Y |Z(h, h|1) = 0.

By definition, pX|Z(h|1) = pX,Z(h,1)
pZ(1) .

We have

pX,Z(h, 1) = pX,Y (h, t) = pX(h)pY (t) =
1

22
=

1

4

We have

pZ(1) = pX(h)pY (t) + pX(t)pY (h) =
1

22
+

1

22
=

1

2
.

So pX|Z(h|1) = 1
2 and by symmetry pY |Z(h|1) = 1

2 .

Thus pX|Z(h|1)pY |Z(h|1) > 0, but pX,Y |Z(h, h|1) = 0. �

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 43 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional
Independence

Markov
Equivalence

Using R

Graph Concepts

Graph Concepts

Directed and undirected graphs

Graph data

Trails and paths

Connected and complete graphs

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 44 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional
Independence

Markov
Equivalence

Using R

Graph Concepts

Graph Definition (Classical)

An undirected graph G = (V,E) is a pair with

V finite node set and

E edge set with E ⊆
(
V
2

)
,

where
(
V
2

)
denotes the set of all 2-subsets of V .

An edge {u, v} in G is denoted by u− v.

Example

?>=<89:;a ?>=<89:;b ?>=<89:;c

?>=<89:;d ?>=<89:;e

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 45 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional
Independence

Markov
Equivalence

Using R

Graph Concepts

Graph Concepts

A directed graph or digraph G = (V,E) is a pair with

V finite node set and
E edge set with E ⊆ (V × V) \ {(v, v) | v ∈ V }.

The edges are ordered pairs of distinct nodes.

Let (u, v) ∈ E be an edge:

(u, v) undirected if also (v, u) ∈ E, written u− v.
(u, v) directed if (v, u) 6∈ E, written u→ v.

Write u · · · v if there is an edge of some type between u and v.

Let G be a graph:

G undirected if all edges in G are undirected.
G directed (or digraph) if all edges in G are directed.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 46 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional
Independence

Markov
Equivalence

Using R

Graph Concepts

Example

The figure shows graph, undirected graph, and directed graph
(digraph):

?>=<89:;a
��

?>=<89:;b ?>=<89:;c

?>=<89:;d //?>=<89:;e

?>=<89:;a ?>=<89:;b ?>=<89:;c

?>=<89:;d ?>=<89:;e
?>=<89:;a
��

//?>=<89:;b
��

//?>=<89:;c

?>=<89:;d //?>=<89:;e

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 47 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional
Independence

Markov
Equivalence

Using R

Graph Concepts

Neighborhood

Let G = (V,E) be a graph and u, v, w, x ∈ V .

u parent of v if (u, v) ∈ E. The parent set of v is

Π(v) = {u ∈ V | (u, v) ∈ E}. (18)

w child of v if (v, w) ∈ E. The set of children of v is

Γ(v) = {w ∈ V | (v, w) ∈ E}. (19)

x neighbor of v if x parent or child of v. The set of neighbors
of v is

N(v) = Π(v) ∪ Γ(v). (20)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 48 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional
Independence

Markov
Equivalence

Using R

Graph Concepts

Example

Given the digraph

?>=<89:;a
��

//?>=<89:;b
��

//?>=<89:;c

?>=<89:;d //?>=<89:;e
The parent of e are b, d, the children of a are b, d, and the
neighbors of b are a, c, e.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 49 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional
Independence

Markov
Equivalence

Using R

Graph Concepts

Subgraphs

Let G = (V,E) be a graph and U be a subset of V .

GU = (U,EU) is a subgraph of G if EU ⊆ E ∩ (U × U).

The edges in GU are edges between nodes of U in G.

If EU = E ∩ (U × U), then GU = (U,EU) is the subgraph
induced by U .

An induced subgraph GU contains an edge (u, v), u, v ∈ U ,
iff (u, v) is an edge in G.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 50 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional
Independence

Markov
Equivalence

Using R

Graph Concepts

Example

The figure shows graph, subgraph, and induced subgraph.

?>=<89:;a ?>=<89:;b ?>=<89:;c

?>=<89:;d ?>=<89:;e

?>=<89:;a ?>=<89:;b

?>=<89:;d ?>=<89:;e
?>=<89:;a ?>=<89:;b

?>=<89:;d ?>=<89:;e

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 51 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional
Independence

Markov
Equivalence

Using R

Graph Concepts

Trails, Paths, and Cycles

Let G = (V,E) be a graph and u, v be distinct nodes in G.

A trail in G of length k ≥ 1 between u and v is a sequence of
nodes w = (w0, . . . , wk) such that w0 = u, wk = v, and
wi · · ·wi+1 for each 0 ≤ i ≤ k − 1.

A undirected path in G of length k ≥ 1 from u and v is a trail
w = (w0, . . . , wk) in G such that w0 = u, wk = v, and
wi − wi+1 for each 0 ≤ i ≤ k − 1.

A directed path in G of length k ≥ 1 from u and v is a trail
w = (w0, . . . , wk) in G such that w0 = u, wk = v, and
wi → wi+1 for each 0 ≤ i ≤ k − 1.

A (directed, undirected) cycle in G is a (directed, undirected)
path w = (w0, . . . , wk) in G with w0 = wk.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 52 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional
Independence

Markov
Equivalence

Using R

Graph Concepts

Example

Consider the graph

?>=<89:;a //?>=<89:;b
��

?>=<89:;c

?>=<89:;d ?>=<89:;e
Trails: (a, b, c), (a, d, e, b, c)

Directed path: (a, b, e)

Undirected path: (a, d, e)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 53 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional
Independence

Markov
Equivalence

Using R

Graph Concepts

Anchestors and Descendants

Let G = (V,E) be a graph and u, v be distinct nodes in G.

The node v is a descendant of node u if there is a directed
path from u to v, but no directed path from v to u.

The node v is an ancestor of node u if u is a descendant of v.

Consider the graph

?>=<89:;a
��

//?>=<89:;b
��

//?>=<89:;c

?>=<89:;d //?>=<89:;e
The descendants of a are b, c, d, e, the ancestors of c are a, b.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 54 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional
Independence

Markov
Equivalence

Using R

Graph Concepts

DAG

A graph G = (V,E) G is a directed acyclic graph (DAG) if G
is a digraph and there are no directed cycles in G.

The figure shows DAG and digraph with cycle:

?>=<89:;a
��

//?>=<89:;b
��

//?>=<89:;c

?>=<89:;d //?>=<89:;e

?>=<89:;a //?>=<89:;b
��

//?>=<89:;c

?>=<89:;d

OO

?>=<89:;eoo

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 55 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional
Independence

Markov
Equivalence

Using R

Belief Networks

Belief Networks

Ordering of nodes in DAG

Introduction of belief network

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 56 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional
Independence

Markov
Equivalence

Using R

Belief Networks

Topological Sorting

Given DAG G = (V,E) with node set V = {v1, . . . , vn}.
There is an ordering (vσ(1), . . . , vσ(n)) of the nodes of G such that
for each 1 ≤ i ≤ n, the parent set of the node vσ(i) is a subset of
{vσ(1), . . . , vσ(i−1)}.

Proof.

The DAG G is cycle-free and thus has at least one node, say vj1 ,
which has no children (case k = 1).
For each k = 1, . . . , n, consider the subgraph of G with n− k + 1
nodes. Take a node which has no children. Let vjk be such a node
and put σ(n− k + 1) = jk. Remove the node vjk and all
corresponding edges. This provides a subgraph which is a DAG
with n− k nodes. Continuing in this way gives the required
ordering.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 57 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional
Independence

Markov
Equivalence

Using R

Belief Networks

Example

The DAG below gives several orderings satisfying the above
condition such as

(v3, v2, v1, v4, v5, v6)

or
(v3, v2, v1, v4, v6, v5).

Add nodes from behind which have no children in the shrinking
DAG.

?>=<89:;v2

 ❇
❇❇

❇❇
❇❇

❇❇

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥
⑥

?>=<89:;v3

 ❇
❇❇

❇❇
❇❇

❇❇

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥
⑥

?>=<89:;v4

 ❇
❇❇

❇❇
❇❇

❇❇
?>=<89:;v1

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥
⑥

?>=<89:;v5

?>=<89:;v6

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 58 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional
Independence

Markov
Equivalence

Using R

Belief Networks

Belief Network

Given DAG G = (V,E) with nodes (random variables) X1, . . . , Xn,
and collection p of conditional probability distributions of the
random variables.
(G, p) is a belief network if the following holds:

For each node Xi without parent, there is a probability
distribution pXi

.

For each node Xi ∈ V with parent set Πi 6= ∅, there is a
conditional probability distribution pXi|Πi

.

The joint probability function pX1,...,Xn
factors according to

the (spatial) Markov property,

pX1,...,Xn
=

n∏

i=1

pXi|Πi
. (21)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 59 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional
Independence

Markov
Equivalence

Using R

Belief Networks

Example

Consider the belief network by the DAG below.

The random variables X1, . . . , X4 have parent sets
Π(X1) = ∅, Π(X2) = {X1}, Π(X3) = {X1}, and
Π(X4) = {X2, X3}.
Factoring of joint probability function:

pX1,X2,X3,X4
= pX1

· pX2|X1
· pX3|X2,X1

· pX4|X3,X2,X1
, by (13)

= pX1
· pX2|X1

· pX3|X1
· pX4|X3,X2

, by (21).

GFED@ABCX1

 ❇
❇❇

❇❇
❇❇

❇❇

~~⑤⑤
⑤⑤
⑤⑤
⑤⑤
⑤

GFED@ABCX2

 ❇
❇❇

❇❇
❇❇

❇❇
GFED@ABCX3

~~⑤⑤
⑤⑤
⑤⑤
⑤⑤
⑤

GFED@ABCX4

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 60 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional
Independence

Markov
Equivalence

Using R

Belief Networks

Example: Hidden Markov Model

Belief network with DAG:

GFED@ABCX1

��

// GFED@ABCX2

��

// GFED@ABCX3

��

// . . . // GFED@ABCXn

��GFED@ABCY1 GFED@ABCY2 GFED@ABCY3 . . . GFED@ABCYn

Joint probability distribution (n = 4):

pX1,...,X4,Y1,...,Y4
=

pX1
pY1|X1

pX2|X1
pY2|X2

pX3|X2
pY3|X3

pX4|X3
pY4|X4

.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 61 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional
Independence

Markov
Equivalence

Using R

Belief Networks

∗Belief Networks – Free Parameters

Given belief network with random variables X1, . . . , Xn over
common state set {0, 1}.

The non-factored joint probability function pX1,...,Xn
has

2n − 1 free parameters.

The factored joint probability function pX1,...,Xn
in (21) has

2u(X1) + . . .+ 2u(Xn) (22)

free parameters, where u(Xi) is the number of parents of Xi.

Example
Take random variable X:

X has no parent (1 free parameter): pX (0) = 1− pX (1).

X has one parent Y (2 free parameters): pX|Y (0|0) = 1− pX|Y (1|0) and

pX|Y (0|1) = 1− pX|Y (1|1).

X has two parents Y, Z (4 free parameters): pX|Y,Z(0|0, 0) = 1− pX|Y,Z(1|0, 0),
pX|Y,Z(0|0, 1) = 1− pX|Y,Z(1|0, 1) pX|Y,Z(0|1, 0) = 1− pX|Y,Z(1|1, 0), and
pX|Y,Z(0|1, 1) = 1− pX|Y,Z(1|1, 1).

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 62 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional
Independence

Markov
Equivalence

Using R

Belief Networks

Example: Printer Troubleshooting (Microsoft Windows 95)

The belief network below has 26 nodes. Suppose all random
variables have binary state sets. Then the joint probability
distribution has 226 − 1 = 67.108.863 parameters. As a belief
network, by (22), the number of parameters is
17 · 1 + 0 · 21 + 4 · 22 + 2 · 23 + 3 · 24 = 97. Impressive!

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 63 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional
Independence

Markov
Equivalence

Using R

Belief Networks

Example: Soft XOR Gate

Hard version and soft version of XOR gate:

X Y Z = X ⊕ Y
0 0 0
0 1 1
1 0 1
1 1 0

X Y pZ|X,Y (1|x, y)
0 0 0.10
0 1 0.98
1 0 0.80
1 1 0.20

Consider the belief network

?>=<89:;X // ?>=<89:;Z ?>=<89:;Yoo (23)

with priors pX(1) = 0.60 and pY (1) = 0.80. Then the joint
probability distribution is

pX,Y,Z = pXpY pZ|X,Y .

Claim that the random variables X and Y are not conditionally
independent given Z.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 64 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional
Independence

Markov
Equivalence

Using R

Belief Networks

Example: Soft XOR Gate (Cont’d)
Joint probability distribution

pX,Y,Z(0, 0, 0) = 0.40 · 0.20 · 0.90 = 0.072,

pX,Y,Z(0, 0, 1) = 0.40 · 0.20 · 0.10 = 0.008,

pX,Y,Z(0, 1, 0) = 0.40 · 0.80 · 0.02 = 0.0064,

pX,Y,Z(0, 1, 1) = 0.40 · 0.80 · 0.98 = 0.3136,

pX,Y,Z(1, 0, 0) = 0.60 · 0.20 · 0.20 = 0.024,

pX,Y,Z(1, 0, 1) = 0.60 · 0.20 · 0.80 = 0.096,

pX,Y,Z(1, 1, 0) = 0.60 · 0.80 · 0.80 = 0.384,

pX,Y,Z(1, 1, 1) = 0.60 · 0.80 · 0.20 = 0.096.

Compute pX|Z(1|0) · pY |Z(1|0) and pX,Y |Z(1, 1|0).

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 65 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional
Independence

Markov
Equivalence

Using R

Belief Networks

Example: Soft XOR Gate (Cont’d)
By marginalization,

pX,Z(1, 0) =
∑

y

pX,Y,Z(1, y, 0) = 0.408,

pY,Z(1, 0) =
∑

x

pX,Y,Z(x, 1, 0) = 0.3904,

pZ(0) =
∑

x,y

pX,Y,Z(x, y, 0) = 0.4864.

Then

pX|Z(1|0) =
pX,Z(1, 0)

pZ(0)
=

0.408

0.4864
= 0.8389,

pY |Z(1|0) =
pY,Z(1, 0)

pZ(0)
=

0.3904

0.4864
= 0.8026,

pX,Y |Z(1, 1|0) =
pX,Y,Z(1, 1, 0)

pZ(0)
=

0.384

0.4864
= 0.7895.

We have pX|Z(1|0) · pY |Z(1|0) = 0.6884 6= 0.7895 = pX,Y |Z(1, 1|0). Thus the random

variables X and Y are not conditionally independent given Z.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 66 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional
Independence

Markov
Equivalence

Using R

Conditional Independence

Conditional Independence

Basic connections

D-separation

Markov blankets

Faithful belief networks

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 67 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional
Independence

Markov
Equivalence

Using R

Conditional Independence

Serial Connection

A serial connection of three random variables X1, X2, and X3

has the form

GFED@ABCX1
// GFED@ABCX2

// GFED@ABCX3

The variable X2 is serial or the intermediate cause.

As a belief network, the joint probability distribution factors as

pX1,X2,X3
= pX1

pX2|X1
pX3|X2

. (24)

Thus by Bayes’ rule,

pX1,X3|X2
=

pX1,X2,X3

pX2

=

︷ ︸︸ ︷
pX1

pX2|X1
pX3|X2

pX2

(25)

=

︷ ︸︸ ︷
pX2

pX1|X2
pX3|X2

pX2

= pX1|X2
· pX3|X2

.

By (17), X1 and X3 are conditionally independent given X2.
K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 68 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional
Independence

Markov
Equivalence

Using R

Conditional Independence

Serial Connection – Example

In the belief network below, social environment S influences
education E which in turn affects job J . Then social environment
and job are conditionally independent given the education.

?>=<89:;S // ?>=<89:;E // ?>=<89:;J

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 69 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional
Independence

Markov
Equivalence

Using R

Conditional Independence

Diverging Connection

A diverging connection of three random variables X1, X2,
and X3 has the form

GFED@ABCX2
GFED@ABCX1

//oo GFED@ABCX3

The variable X1 is diverging or the common cause.

As a belief network, the probability distribution factors as

pX1,X2,X3
= pX1

pX2|X1
pX3|X1

. (26)

Thus we obtain

pX2,X3|X1
=

pX1,X2,X3

pX1

=
pX1

pX2|X1
pX3|X1

pX1

= pX2|X1
pX3|X1

. (27)

By (17), X2 and X3 are conditionally independent given X1.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 70 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional
Independence

Markov
Equivalence

Using R

Conditional Independence

Diverging Connection – Example

In the belief network below, icy roads I influence the crashing of
the drivers A and B. Then the crashing of both A and B is
conditionally independent given icy roads.

?>=<89:;A ?>=<89:;I //oo ?>=<89:;B

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 71 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional
Independence

Markov
Equivalence

Using R

Conditional Independence

Converging Connection

A converging connection of three random variables X1, X2,
and X3 has the form

GFED@ABCX2
// GFED@ABCX1

GFED@ABCX3
oo

The variable X1 is converging or the common effect.

As a belief network, the probability distribution pX1,X2,X3

factors as

pX1,X2,X3
= pX2

pX3
pX1|X2,X3

. (28)

The random variables X2 and X3 may not be conditionally
independent given X1 – see Soft XOR gate (23).

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 72 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional
Independence

Markov
Equivalence

Using R

Conditional Independence

Converging Connection

In a converging connection,

GFED@ABCX2
// GFED@ABCX1

GFED@ABCX3
oo

if X1 is unknown, then X2 and X3 are independent.

Proof.

For all x2 ∈ X 2 and x3 ∈ X 3,

pX2,X3
(x2, x3) =

∑

x1∈X1

pX1,X2,X3
(x1, x2, x3)

=
∑

x1∈X1

pX2
(x2)pX3

(x3)pX1|X2,X3
(x1 | x2, x3)

= pX2
(x2)pX3

(x3)
∑

x1∈X1

pX1|X2,X3
(x1 | x2, x3)

= pX2
(x2)pX3

(x3).

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 73 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional
Independence

Markov
Equivalence

Using R

Conditional Independence

Converging Connection – Example

In the belief network below, rain R and sprinkler S influence the
wetness of grass A. If there is no information about the condition
of grass A, then R and S are conditionally independent.

?>=<89:;R // ?>=<89:;A ?>=<89:;Soo

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 74 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional
Independence

Markov
Equivalence

Using R

Conditional Independence

Converging Connection

Consider the converging connection

GFED@ABCX2
// GFED@ABCX1

��

GFED@ABCX3
oo

GFED@ABCX4

where X1 is converging and has descendant X4.
As a belief network, the probability distribution pX1,X2,X3,X4

factors as

pX1,X2,X3,X4
= pX2

pX3
pX1|X2,X3

pX4|X1
. (29)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 75 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional
Independence

Markov
Equivalence

Using R

Conditional Independence

Converging Connection

If in the above belief network X1 and X4 are unknown, then X2

and X3 are independent.

Proof.

For all x2 ∈ X 2 and x3 ∈ X 3,

pX2,X3
(x2, x3)

=
∑

x1∈X1

∑

x4∈X4

pX1,X2,X3,X4
(x1, x2, x3, x4)

=
∑

x1∈X1

∑

x4∈X4

pX2
(x2)pX3

(x3)pX1|X2,X3
(x1 | x2, x3)pX4|X1

(x4 | x1)

= pX2
(x2)pX3

(x3)
∑

x1∈X1

pX1|X2,X3
(x1 | x2, x3)

∑

x4∈X4

pX4|X1
(x4 | x1)

= pX2
(x2)pX3

(x3).

More generally, if in a converging connection X2 → X1 ← X3 the
converging random variable X1 and all its descendants are not
instantiated, the variables X2 and X3 are independent.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 76 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional
Independence

Markov
Equivalence

Using R

Conditional Independence

Serial and Diverging Connections

Consider the three belief networks

GFED@ABCX1
// GFED@ABCX2

// GFED@ABCX3

GFED@ABCX1
GFED@ABCX2

oo GFED@ABCX3
oo

GFED@ABCX1
GFED@ABCX2

//oo GFED@ABCX3

In each case, the joint probability distribution factors as

pX1,X2,X3
= pX1

pX2|X1
pX3|X2

. (30)

However, the converging connection is of totally different nature!

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 77 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional
Independence

Markov
Equivalence

Using R

Conditional Independence

Serial and Diverging Connections

In each case, the joint probability distribution factors as

pX1,X2,X3
= pX1

pX2|X1
pX3|X2

. (31)

Proof.
In the first network,

pX1,X2,X3
= pX1

pX2|X1
pX3|X2

.

In the second network, apply Bayes’ rule twice,

pX1,X2,X3
=

︷ ︸︸ ︷
pX3

pX2|X3
pX1|X2

= pX3|X2
pX2

pX1|X2
︸ ︷︷ ︸

= pX3|X2
pX2|X1

pX1
.

In the third network, apply Bayes’ rule,

pX1,X2,X3
=

︷ ︸︸ ︷
pX2

pX1|X2
pX3|X2

= pX1
pX2|X1

pX3|X2
.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 78 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional
Independence

Markov
Equivalence

Using R

Conditional Independence

D-Separation

Given DAG G = (V,E) with nodes labeled by random variables,
X,Y ∈ V and S ⊆ V with X,Y 6∈ S.

A trail τ between X and Y is blocked by S if there is a node
Z on the trail such that one of the following holds:

Z is a converging node along the trail τ and neither Z
nor any of its descendents belong to S, or
Z is a serial or diverging node along the trail τ and Z
belongs to S.

Then the node Z is blocking the trail τ .

The nodes X and Y are d-separated or blocked by S if all
trails between X,Y are blocked by S, written

X ⊥ Y |G S. (32)

Otherwise, X and Y are d-connected or non-blocked by S.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 79 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional
Independence

Markov
Equivalence

Using R

Conditional Independence

D-Separation

Consider the three belief networks

serial
GFED@ABCX1

// GFED@ABCX2
// GFED@ABCX3

serial
GFED@ABCX1

GFED@ABCX2
oo GFED@ABCX3

oo

diverging GFED@ABCX1
GFED@ABCX2

//oo GFED@ABCX3

In each case, the trail between X1 and X3 is blocked by S = {X2}
and so X1 and X3 are d-separated by S.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 80 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional
Independence

Markov
Equivalence

Using R

Conditional Independence

D-Separation

Schematic d-separation of X and Y by S with Z ∈ S:

serial
?>=<89:;X /.-,()*+ // ?>=<89:;Z ///.-,()*+ ?>=<89:;Y

serial
?>=<89:;X /.-,()*+ ?>=<89:;Zoo /.-,()*+oo ?>=<89:;Y

diverging
?>=<89:;X /.-,()*+ ?>=<89:;Z //oo /.-,()*+ ?>=<89:;Y

converging ?>=<89:;X /.-,()*+ ///.-,()*+
��❄

❄❄
❄❄

❄❄
❄❄

��⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧

/.-,()*+oo ?>=<89:;Y

/.-,()*+ /.-,()*+
K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 81 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional
Independence

Markov
Equivalence

Using R

Conditional Independence

D-Separation – Example

Consider the DAG below. Let S = {X2, X3, X4}.
X1 and X6 are d-separated given S; each trail between them
has a serial node (X2, X3 or X4) in S.

X5 and X6 are d-separated given S; each trail between them
contains the diverging node X2 in S or a serial node (X3 or
X4) in S.

GFED@ABCX1

 ❇
❇❇

❇❇
❇❇

❇❇

~~⑤⑤
⑤⑤
⑤⑤
⑤⑤
⑤

��GFED@ABCX2

 ❇
❇❇

❇❇
❇❇

❇❇

~~⑤⑤
⑤⑤
⑤⑤
⑤⑤
⑤

GFED@ABCX3

��

GFED@ABCX4

 ❇
❇❇

❇❇
❇❇

❇❇

~~⑤⑤
⑤⑤
⑤⑤
⑤⑤
⑤

GFED@ABCX5
GFED@ABCX6

GFED@ABCX7

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 82 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional
Independence

Markov
Equivalence

Using R

Conditional Independence

D-Separation – Example (Cont’d)

Consider the DAG below. Let S = {X1, X3}.
X2 and X4 are d-separated given S; each trail between them
contains the converging node X6 not in S or the diverging
node X1 in S.

GFED@ABCX1

 ❇
❇❇

❇❇
❇❇

❇❇

~~⑤⑤
⑤⑤
⑤⑤
⑤⑤
⑤

��GFED@ABCX2

 ❇
❇❇

❇❇
❇❇

❇❇

~~⑤⑤
⑤⑤
⑤⑤
⑤⑤
⑤

GFED@ABCX3

��

GFED@ABCX4

 ❇
❇❇

❇❇
❇❇

❇❇

~~⑤⑤
⑤⑤
⑤⑤
⑤⑤
⑤

GFED@ABCX5
GFED@ABCX6

GFED@ABCX7

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 83 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional
Independence

Markov
Equivalence

Using R

Conditional Independence

Markov Blanket

The Markov blanket of a node X in a DAG G is the set of
nodes composed of its parents, its children, and the parents of
its children (not X itself).

In the DAG below, the Markov blanket of X3 consists of X1

(parent), X6 (child), and X2, X4 (parents of children).

GFED@ABCX1

 ❇
❇❇

❇❇
❇❇

❇❇

~~⑤⑤
⑤⑤
⑤⑤
⑤⑤
⑤

��GFED@ABCX2

 ❇
❇❇

❇❇
❇❇

❇❇

~~⑤⑤
⑤⑤
⑤⑤
⑤⑤
⑤

GFED@ABCX3

��

GFED@ABCX4

 ❇
❇❇

❇❇
❇❇

❇❇

~~⑤⑤
⑤⑤
⑤⑤
⑤⑤
⑤

GFED@ABCX5
GFED@ABCX6

GFED@ABCX7

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 84 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional
Independence

Markov
Equivalence

Using R

Conditional Independence

Markov Blanket

Given a DAG G = (V,E). Let X and Y be nodes in G and S be a
subset of nodes not containing X and Y . If S contains the Markov
blanket of X, the nodes X and Y are d-separated given S.

Proof.

Let τ be a trail between X and Y .

If X → X1 → X2 . . ., then X1 ∈ S is a serial node.

If X ← X1 → X2 . . ., then X1 ∈ S is a diverging node.

If X ← X1 ← X2 . . ., then X1 ∈ S is a serial node.

If X → X1 ← X2 . . ., then X1 ∈ S is a converging node.
Since S contains the Markov blanket of X, we have X2 ∈ S.
The trail may proceed as follows:

If X → X1 ← X2 → X3..., then X2 is a diverging node.
If X → X1 ← X2 ← X3..., then X2 is a serial node.

In each case, the trail τ is blocked by S as required.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 85 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional
Independence

Markov
Equivalence

Using R

Conditional Independence

D-Separation – Example

Consider the DAG below.

The Markov blanket of node X3 is S = {X1, X2, X4, X6}.
X3 and X5 (or X3 and X7) are d-separated given S.

GFED@ABCX1

 ❇
❇❇

❇❇
❇❇

❇❇

~~⑤⑤
⑤⑤
⑤⑤
⑤⑤
⑤

��GFED@ABCX2

 ❇
❇❇

❇❇
❇❇

❇❇

~~⑤⑤
⑤⑤
⑤⑤
⑤⑤
⑤

GFED@ABCX3

��

GFED@ABCX4

 ❇
❇❇

❇❇
❇❇

❇❇

~~⑤⑤
⑤⑤
⑤⑤
⑤⑤
⑤

GFED@ABCX5
GFED@ABCX6

GFED@ABCX7

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 86 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional
Independence

Markov
Equivalence

Using R

Conditional Independence

Conditional Independence and D-Separation

Let (G, p) be a belief network with random variables X1, . . . , Xn.
For any three disjoint subsets A, B, and S of {X1, . . . , Xn} if A
and B are d-separated given S, then A and B are conditionally
independent given S; i.e.,

A ⊥ B |G S =⇒ A ⊥ B | S. (33)

Conditional independence is purely probabilistic, while d-separation
is purely graph-theoretical.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 87 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional
Independence

Markov
Equivalence

Using R

Conditional Independence

Conditional Independence and D-Separation – Example

Consider the DAG below. Let S = {X1, X3}.
X2 and X4 are d-separated given S.

Thus X2 and X4 are conditionally independent given S.

GFED@ABCX1

 ❇
❇❇

❇❇
❇❇

❇❇

~~⑤⑤
⑤⑤
⑤⑤
⑤⑤
⑤

��GFED@ABCX2

 ❇
❇❇

❇❇
❇❇

❇❇

~~⑤⑤
⑤⑤
⑤⑤
⑤⑤
⑤

GFED@ABCX3

��

GFED@ABCX4

 ❇
❇❇

❇❇
❇❇

❇❇

~~⑤⑤
⑤⑤
⑤⑤
⑤⑤
⑤

GFED@ABCX5
GFED@ABCX6

GFED@ABCX7

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 88 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional
Independence

Markov
Equivalence

Using R

Conditional Independence

Conditional Independence and D-Separation

A belief network (G, p) with random variables X1, . . . , Xn is
faithful if for any three disjoint subsets A, B, and S of
{X1, . . . , Xn},

A ⊥ B |G S ⇐⇒ A ⊥ B | S. (34)

A faithful belief network is also called a Bayesian network.

The design of Bayesian networks requires a good analysis of the
probabilistic model.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 89 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional
Independence

Markov
Equivalence

Using R

Conditional Independence

Causality

Causality comes into play in belief networks when the model
contains no explicit temporal information.

Causality refer to the connection of one process (cause) with
another process (effect) and the second depends on the first.

A joint probability function pX,Y can be written as pX|Y pY ;
think of Y causes X.

There are pitfalls, e.g., Simpson’s paradox.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 90 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional
Independence

Markov
Equivalence

Using R

Conditional Independence

Simpson’s Paradox

Consider the belief network of patients with gender (G), male or
female, treated by drug (D), yes or no, who recover (R), yes or no.

?>=<89:;G

�� ��❅
❅❅

❅❅
❅❅

❅❅

?>=<89:;D // ?>=<89:;R

The joint probability distribution factors as

pG,D,R = pR|G,D · pD|G · pG.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 91 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional
Independence

Markov
Equivalence

Using R

Conditional Independence

Simpson’s Paradox (Cont’d)

Sample data:

Recovered Not recovered Rate of recovery

Males
Given drug 18 12 0.60
Not given drug 7 3 0.70
Females
Given drug 2 8 0.20
Not given drug 9 21 0.30
Combined
Given drug 20 20 0.50

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 92 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional
Independence

Markov
Equivalence

Using R

Conditional Independence

Simpson’s Paradox (Cont’d)

Does the drug cause increased recovery?

If males or females are considered separately, the answer is no:
0.60 < 0.70 for males and 0.20 < 0.30 for females.

If the gender information is ignored, more people will recover
when given the drug than when given not:

18

30
<

7

10
and

2

10
<

9

30
, but

18 + 2

30 + 10
>

7 + 9

10 + 30
.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 93 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional
Independence

Markov
Equivalence

Using R

Conditional Independence

Simpson’s Paradox (Cont’d)

The model with (causal) link G→ D is different from the model in
which this link is removed:

?>=<89:;G

��❅
❅❅

❅❅
❅❅

❅❅

?>=<89:;D // ?>=<89:;R

giving the joint probability distribution

pG,D,R = pR|G,D · pG · pD.

Causality comes into play in belief networks with no explicit
temporal information referring to the connection of one process
(cause) with another process (effect).

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 94 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional
Independence

Markov
Equivalence

Using R

Markov Equivalence

Markov Equivalence

Skeleton and immoralities

Essential graphs

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 95 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional
Independence

Markov
Equivalence

Using R

Markov Equivalence

Markov Equivalence

Let G = (V,E) and G′ = (V,E′) be DAGs with node set V .

G ≤ G′ means that each pair of nodes X,Y which is
d-separated by a set S of nodes of G with X,Y 6∈ S is also
d-separated by the same set in G′.

G and G′ are Markov equivalent if G ≤ G′ and G′ ≤ G.
Markov equivalence is an equivalence relation on the set of
DAGs with common node set.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 96 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional
Independence

Markov
Equivalence

Using R

Markov Equivalence

Markov Equivalence – Example

Consider the four DAGs

GFED@ABCX1
// GFED@ABCX2

// GFED@ABCX3

GFED@ABCX1
GFED@ABCX2

oo GFED@ABCX3
oo

GFED@ABCX1
GFED@ABCX2

//oo GFED@ABCX3

GFED@ABCX1
// GFED@ABCX2

GFED@ABCX3
oo

The first three ones are Markov equivalent with X1 ⊥ X3 |G X2,
while the fourth one is not Markov equivalent to the other ones.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 97 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional
Independence

Markov
Equivalence

Using R

Markov Equivalence

Skeleton and Immoralities

Let G = (V,E) be a DAG.

The skeleton of G is the (undirected) graph Gu = (V,Eu)
resulting from G by making all edges undirected.

An immorality in G is a triple (u, v, w) of three distinct nodes
in G such that u→ v and w → v, but the edges u→ w,
w → u, and u− w do not belong to G.

?>=<89:;u
��❅

❅❅
❅❅

❅❅
❅❅

?>=<89:;w
~~⑥⑥
⑥⑥
⑥⑥
⑥⑥
⑥

?>=<89:;v

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 98 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional
Independence

Markov
Equivalence

Using R

Markov Equivalence

Skeleton and Immoralities – Example

An immorality (u, v, w) and three non-immoralities:

?>=<89:;u
��❅

❅❅
❅❅

❅❅
❅❅

?>=<89:;w
~~⑥⑥
⑥⑥
⑥⑥
⑥⑥
⑥

?>=<89:;v

?>=<89:;u
��❅

❅❅
❅❅

❅❅
❅❅

// ?>=<89:;w
~~⑥⑥
⑥⑥
⑥⑥
⑥⑥
⑥

?>=<89:;v
?>=<89:;u

��❅
❅❅

❅❅
❅❅

❅❅
?>=<89:;w

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥
⑥

oo

?>=<89:;v

?>=<89:;u
��❅

❅❅
❅❅

❅❅
❅❅

?>=<89:;w
~~⑥⑥
⑥⑥
⑥⑥
⑥⑥
⑥

?>=<89:;v

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 99 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional
Independence

Markov
Equivalence

Using R

Markov Equivalence

Skeleton and Immoralities – Example

Consider the four DAGs

GFED@ABCX1
// GFED@ABCX2

// GFED@ABCX3

GFED@ABCX1
GFED@ABCX2

oo GFED@ABCX3
oo

GFED@ABCX1
GFED@ABCX2

//oo GFED@ABCX3

GFED@ABCX1
// GFED@ABCX2

GFED@ABCX3
oo

All DAGs have the same skeleton X1 −X2 −X3 but only the last
one has an immorality (X1, X2, X3).

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 100 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional
Independence

Markov
Equivalence

Using R

Markov Equivalence

Skeleton and Immoralities

Given DAGs G = (V,E) and G′ = (V,E′) with same skeleton and
immoralities. Then for each node v ∈ V , the Markov blanket of v
in G is equal to the Markov blanket of v in G′.

∗Proof.

Let u be a parent of v in G. Since G and G′ have the same
skeleton, the node u is a parent or a child of v in G′. Thus u is in
the Markov blanket of v in G′. The same holds if u is a child of v
in G.
Let u be a parent of a child w of v in G. If u and v are connected
by a directed edge, we are back in the above case. Otherwise, we
have an immorality v → w ← u in G. Since G and G′ have the
same immoralities, v → w ← u is also an immorality in G′. Hence,
the node u lies also in the Markov blanket of v in G′. �

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 101 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional
Independence

Markov
Equivalence

Using R

Markov Equivalence

Markov Equivalence

Two DAGs have the same skeleton and the same immoralities iff
they are Markov equivalent.

∗Proof.

Let G and G′ be two DAGs with the same skeleton and
immoralities. Then for any two nodes u and v and any subset S of
nodes containing the Markov blanket of v but not containing v and
u, we have that u and v are d-separated in G given S if and only if
u and v are d-separated in G′ given S. It follows that G and G′

have the same independence structure and hence are Markov
equivalent.
Conversely, if two DAGs have the same d-dependence structure,
they have the same skeleton and the same immoralities. �

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 102 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional
Independence

Markov
Equivalence

Using R

Markov Equivalence

Markov Equivalence – Example

Consider the four DAGs

G1 : ?>=<89:;v
 ❆

❆❆
❆❆

❆❆
❆❆

?>=<89:;u
!!❈

❈❈
❈❈

❈❈
❈❈

==④④④④④④④④④ ?>=<89:;x

?>=<89:;w

>>⑥⑥⑥⑥⑥⑥⑥⑥⑥

G2 : ?>=<89:;v
 ❆

❆❆
❆❆

❆❆
❆❆

?>=<89:;u

==④④④④④④④④④ ?>=<89:;x

?>=<89:;w

>>⑥⑥⑥⑥⑥⑥⑥⑥⑥

aa❈❈❈❈❈❈❈❈❈

G3 : ?>=<89:;v
 ❆

❆❆
❆❆

❆❆
❆❆

}}④④
④④
④④
④④
④

?>=<89:;u
!!❈

❈❈
❈❈

❈❈
❈❈

?>=<89:;x

?>=<89:;w

>>⑥⑥⑥⑥⑥⑥⑥⑥⑥

G4 : ?>=<89:;v
 ❆

❆❆
❆❆

❆❆
❆❆

}}④④
④④
④④
④④
④

?>=<89:;u ?>=<89:;x

?>=<89:;w

>>⑥⑥⑥⑥⑥⑥⑥⑥⑥

aa❈❈❈❈❈❈❈❈❈

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 103 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional
Independence

Markov
Equivalence

Using R

Markov Equivalence

Markov Equivalence – Example (Cont’d)

All DAGs have the skeleton

?>=<89:;v
❆❆

❆❆
❆❆

❆❆
❆

?>=<89:;u
❆❆

❆❆
❆❆

❆❆
❆

⑥⑥⑥⑥⑥⑥⑥⑥⑥ ?>=<89:;x

?>=<89:;w
⑥⑥⑥⑥⑥⑥⑥⑥⑥

and they have the immorality (v, x, w) in common.

The DAGs G1, G2, and G3 have no further immoralities and
so are Markov equivalent.

The DAG G4 has an additional immorality (v, u, w) and so is
not Markov equivalent to the other ones.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 104 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional
Independence

Markov
Equivalence

Using R

Markov Equivalence

Essential Graphs

The essential graph of a DAG G is a graph G∗ such that

G and G∗ have same skeleton.

An edge in G∗ is directed if it is directed with the same
orientation in each DAG which is Markov equivalent to G.
Otherwise, the edge is undirected. The directed edges in G∗

are the essential edges of G.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 105 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional
Independence

Markov
Equivalence

Using R

Markov Equivalence

Essential Graphs – Example

Consider the eight digraphs

G1 : ?>=<89:;v
 ❆

❆❆
❆❆

❆❆
❆❆

?>=<89:;u
!!❈

❈❈
❈❈

❈❈
❈❈

==④④④④④④④④④
// ?>=<89:;x

?>=<89:;w

>>⑥⑥⑥⑥⑥⑥⑥⑥⑥

G2 : ?>=<89:;v
 ❆

❆❆
❆❆

❆❆
❆❆

?>=<89:;u

==④④④④④④④④④
// ?>=<89:;x

?>=<89:;w

>>⑥⑥⑥⑥⑥⑥⑥⑥⑥

aa❈❈❈❈❈❈❈❈❈

G3 : ?>=<89:;v
 ❆

❆❆
❆❆

❆❆
❆❆

}}④④
④④
④④
④④
④

?>=<89:;u
!!❈

❈❈
❈❈

❈❈
❈❈

// ?>=<89:;x

?>=<89:;w

>>⑥⑥⑥⑥⑥⑥⑥⑥⑥

G4 : ?>=<89:;v
 ❆

❆❆
❆❆

❆❆
❆❆

}}④④
④④
④④
④④
④

?>=<89:;u // ?>=<89:;x

?>=<89:;w

>>⑥⑥⑥⑥⑥⑥⑥⑥⑥

aa❈❈❈❈❈❈❈❈❈

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 106 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional
Independence

Markov
Equivalence

Using R

Markov Equivalence

Essential Graphs – Example (Cont’d)

G5 : ?>=<89:;v
 ❆

❆❆
❆❆

❆❆
❆❆

?>=<89:;u
!!❈

❈❈
❈❈

❈❈
❈❈

==④④④④④④④④④ ?>=<89:;xoo

?>=<89:;w

>>⑥⑥⑥⑥⑥⑥⑥⑥⑥

G6 : ?>=<89:;v
 ❆

❆❆
❆❆

❆❆
❆❆

?>=<89:;u

==④④④④④④④④④ ?>=<89:;xoo

?>=<89:;w

>>⑥⑥⑥⑥⑥⑥⑥⑥⑥

aa❈❈❈❈❈❈❈❈❈

G7 : ?>=<89:;v
 ❆

❆❆
❆❆

❆❆
❆❆

}}④④
④④
④④
④④
④

?>=<89:;u
!!❈

❈❈
❈❈

❈❈
❈❈

?>=<89:;xoo

?>=<89:;w

>>⑥⑥⑥⑥⑥⑥⑥⑥⑥

G8 : ?>=<89:;v
 ❆

❆❆
❆❆

❆❆
❆❆

}}④④
④④
④④
④④
④

?>=<89:;u ?>=<89:;xoo

?>=<89:;w

>>⑥⑥⑥⑥⑥⑥⑥⑥⑥

aa❈❈❈❈❈❈❈❈❈

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 107 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional
Independence

Markov
Equivalence

Using R

Markov Equivalence

Essential Graphs – Example (Cont’d)

All digraphs have the same skeleton and share the immorality
(v, x, w).

The directed edges v → x and w → x are essential in G1.

The other three edges of G1 can be oriented in 23 = 8
possible ways.

From these eight digraphs, only five are acyclic (i.e.,
G1, G2, G3, G4, G8) and from these five digraphs, only three
(i.e., G1, G2, G3) have the same immorality as in G1 and no
further one.

The Markov-equivalence class of G1 is {G1, G2, G3}.
The directed edge u→ x occurs in each member of the
Markov-equivalence class of G1 and so is essential too.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 108 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional
Independence

Markov
Equivalence

Using R

Markov Equivalence

Essential Graphs – Example (Cont’d)

Essential graph of G1:

G∗
1 : ?>=<89:;v

 ❆
❆❆

❆❆
❆❆

❆❆

?>=<89:;u
❈❈

❈❈
❈❈

❈❈
❈

④④④④④④④④④
// ?>=<89:;x

?>=<89:;w

>>⑥⑥⑥⑥⑥⑥⑥⑥⑥

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 109 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional
Independence

Markov
Equivalence

Using R

Using R

Belief Networks in R

The package bnlearn is an R library (2009) for Bayesian networks.
The library is loaded by the command

> library(bnlearn)

A graph structure (bn object) can be generated in three different
ways:

edge (arc) set of edge-induced graph,

adjacency matrix, and

model formula.

Moreover, random graph structures can be created.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 110 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional
Independence

Markov
Equivalence

Using R

Using R

Graph Generation

Generation of an empty graph with a given node set:

> e = empty.graph(LETTERS[1:6])

> class(e)

[1] "bn"

> e

Random/Generated Bayesian network

model:

[A][B][C][D][E][F]

nodes: 6

arcs: 0

undirected arcs: 0

directed arcs: 0

average markov blanket size: 0.00

average neighborhood size: 0.00

average branching factor: 0.00

generation algorithm: Empty

Multiple empty graphs can be specified by the num argument.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 111 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional
Independence

Markov
Equivalence

Using R

Using R

Graph Generation

Generation of graph structure from an edge set:

> arc.set = matrix(c("A", "B", "A", "C", "D", "C"),

+ ncol = 2, byrow = TRUE,

+ dimnames = list(NULL, c("from", "to")))

> arc.set

from to

[1,] "A" "B"

[2,] "A" "C"

[3,] "D" "C"

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 112 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional
Independence

Markov
Equivalence

Using R

Using R

Graph Generation

The created arc set can be assigned to a bn object:

> arcs(e) = arc.set

> e

Random/Generated Bayesian network

model:

[A][D][E][F][B|A][C|A:D]

nodes: 6

arcs: 3

undirected arcs: 0

directed arcs: 3

average markov blanket size: 1.33

average neighborhood size: 1.00

average branching factor: 0.50

generation algorithm: Empty

Undirected arcs can be specified by including arcs in both
directions.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 113 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional
Independence

Markov
Equivalence

Using R

Using R

Graph Generation

Generation of graph structure by using an adjacency matrix:

> adj = matrix(0L, ncol=6, nrow = 6,

+ dimnames = list(LETTERS[1:6], LETTERS[1:6]))

> adj["A", "B"] = 1L

> adj["A", "C"] = 1L

> adj["D", "C"] = 1L

> adj

A B C D E F

A 0 1 1 0 0 0

B 0 0 0 0 0 0

C 0 0 0 0 0 0

D 0 0 1 0 0 0

E 0 0 0 0 0 0

F 0 0 0 0 0 0

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 114 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional
Independence

Markov
Equivalence

Using R

Using R

Graph Generation

The generated arc set can be assigned to a bn object:

> amat(e) = adj

> e

Random/Generated Bayesian network

model:

[A][D][E][F][B|A][C|A:D]

nodes: 6

arcs: 3

undirected arcs: 0

directed arcs: 3

average markov blanket size: 1.33

average neighborhood size: 1.00

average branching factor: 0.50

generation algorithm: Empty

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 115 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional
Independence

Markov
Equivalence

Using R

Using R

Graph Generation

Generation of a graph structure by a model formula:

> model2network("[A][B][C|A:B][D|C][E|C:D][F|A:B:C]")

Random/Generated Bayesian network

model:

[A][B][C|A:B][D|C][E|C:D][F|A:B:C]

nodes: 6

arcs: 8

undirected arcs: 0

directed arcs: 8

average markov blanket size: 3.00

average neighborhood size: 2.67

average branching factor: 1.33

generation algorithm: Empty

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 116 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional
Independence

Markov
Equivalence

Using R

Using R

Graph Generation

Generation of a graph structure using the empty (or an existing)
graph:

> e = empty.graph(LETTERS[1:6])

> modelstring(e) = "[A][B|A][C|B][D|C][E|D][F|E]"

> e

Random/Generated Bayesian network

model:

[A][B|A][C|B][D|C][E|D][F|E]

nodes: 6

arcs: 5

undirected arcs: 0

directed arcs: 5

average markov blanket size: 1.67

average neighborhood size: 1.67

average branching factor: 0.83

generation algorithm: Empty

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 117 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional
Independence

Markov
Equivalence

Using R

Using R

Graph Generation

Generation of a random graph from an ordered node set. The arcs
are sampled independently with a given probability of inclusion.

> g = random.graph(LETTERS[1:6], prob = 0.1)

> g

Random/Generated Bayesian network

model:

[A][B][C][E][D|A:C][F|B:E]

nodes: 6

arcs: 4

undirected arcs: 0

directed arcs: 4

average markov blanket size: 2.00

average neighborhood size: 1.33

average branching factor: 0.67

generation algorithm: Full Ordering

arc sampling probability: 0.1

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 118 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional
Independence

Markov
Equivalence

Using R

Using R

Graph Plotting

Plotting of a DAG associated with a belief network using the
Rgraphviz package:

> belief.net = model2network(

+ "[B][C][D][F][A|B:C:D][E|A:F]")

> graphviz.plot(belief.net)

?>=<89:;B

��❅
❅❅

❅❅
❅❅

❅❅
?>=<89:;C

��

?>=<89:;D

~~⑦⑦
⑦⑦
⑦⑦
⑦⑦
⑦

?>=<89:;F

��❅
❅❅

❅❅
❅❅

❅❅
?>=<89:;A

��?>=<89:;E

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 119 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Probabilities

Graph Concepts

Belief Networks

Conditional
Independence

Markov
Equivalence

Using R

Using R

Graph Information

Extracting information from a graph structure:

> parents(belief.net, "A")

[1] "B" "C" "D"

> children(belief.net, "A")

[1] "E"

> nbr(belief.net, "A")

[1] "B" "C" "D" "E"

> mb(belief.net, "A")

[1] "B" "C" "D" "E" "F"

> root.nodes(belief.net)

[1] "B" "C" "D" "F"

> leaf.nodes(belief.net)

[1] "E"

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 120 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

Part II

Hidden Markov Model

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 121 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

Contents

Contents

Belief network

Learning conditional probabilities (fully observed and
hidden model)

Probabilistic inference of output marginals

Example: Finding CpG islands

Using R

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 122 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

Contents

Knowledge

Belief network of HMM

Probabilistic inference

Learning conditional probability distributions

Applications of HMM

Skills

Viterbi algorithm

EM algorithm
∗Baum-Welch algorithm

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 123 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

Belief Network

Belief Network

Structure of belief network

Joint probability distribution

Example: dishonest casino dealer

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 124 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

Belief Network

Belief Network

Given integer n ≥ 1.

X1, . . . , Xn random variables over finite state set Σ.

Y1, . . . , Yn random variables over finite state set Σ′.

Σ and Σ′ are the state and output alphabets, resp.

Put l = |Σ| and l′ = |Σ′|.
Random vectors X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn)
have state sets Σn and Σ′n, resp.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 125 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

Belief Network

Belief Network

Belief network (Gn, p) for n = 4:

GFED@ABCX1

��

// GFED@ABCX2

��

// GFED@ABCX3

��

// GFED@ABCX4

��GFED@ABCY1 GFED@ABCY2 GFED@ABCY3 GFED@ABCY4

Joint probability distribution factors w.r.t. the network:

pX,Y = pX1,...,X4,Y1,...,Y4
(35)

= pX1
pY1|X1

pX2|X1
pY2|X2

pX3|X2
pY3|X3

pX4|X3
pY4|X4

.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 126 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

Belief Network

Belief Network

Joint probability distribution factors w.r.t. the network:

pX,Y = pX1,...,Xn,Y1,...,Yn
(36)

= pX1
pY1|X1

pX2|X1
. . . pXn|Xn−1

pYn|Xn
.

For simplicity, initial distribution pX1
is uniform,

pX1
(x) =

1

l
, x ∈ Σ. (37)

The network is homogeneous, i.e.,

pXi+1|Xi
for 1 ≤ i ≤ n− 1 are all equal, and

pYi|Xi
for 1 ≤ i ≤ n are all equal.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 127 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

Belief Network

Belief Network

State transition probabilities

θx,x′ = pXi+1|Xi
(x′|x), x, x′ ∈ Σ, 1 ≤ i ≤ n− 1, (38)

Emission probabilities

θ′x,y = pYi|Xi
(y|x), x ∈ Σ, y ∈ Σ′, 1 ≤ i ≤ n. (39)

Joint probability distribution

pX1,...,Xn,Y1,...,Yn
(x1, . . . , xn, y1, . . . , yn) (40)

=
1

l
θ′x1,y1

θx1,x2
θ′x2,y2

θx2,x3
. . . θxn−1,xn

θ′xn,yn
.

Start with state x1, emit y1, move from x1 to x2, emit y2,
move from x2 to x3, emit y3 and so on. At the end, move
from xn−1 to xn, emit yn.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 128 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

Belief Network

Belief Network – Example

Dishonest casino dealer tosses fair (F) or loaded (L) coin with
outcomes head (h) or tail (t).

Loaded coin has probability 0.75 to get head and 0.25 to get
tail.

Dealer changes coins with probability 0.1.

State alphabet Σ = {F,L} and emission alphabet Σ′ = {h, t}.
Conditional probabilities

θF,F = 0.9, θF,L = 0.1, θL,F = 0.1, θL,L = 0.9

and

θ′F,h = 0.5, θ′F,t = 0.5, θ′L,h = 0.75, θ′L,t = 0.25.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 129 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

Belief Network

Belief Network – Example (Cont’d)

State transition graph of casino model:

start

0.5
��✤
✤
✤ start

0.5
��✤
✤
✤

?>=<89:;F0.9 44

0.1
--

��✤
✤
✤

?>=<89:;L 0.9ii

��✤
✤
✤

0.1

mm

0.5(h), 0.5(t) output 0.75(h), 0.25(t)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 130 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

Belief Network

Belief Network – Example (Cont’d)

Joint probability distribution

pX1,...,X4,Y1,...,Y4
(FFLF, htht)

=
1

2
θ′F,hθF,F θ

′
F,tθF,Lθ

′
L,hθL,F θ

′
F,t

= 0.5 · 0.5 · 0.9 · 0.5 · 0.1 · 0.75 · 0.1 · 0.5 = 0.00042.

Given a sequence of coin tosses we wish to determine when the
dealer has used the biased and fair coins.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 131 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

Belief Network

∗Bernoulli Experiment

Total probability of n coin tosses (trail) with k heads,

P (Sn = k) =

(
n

k

)

pk(1− p)n−k, 0 ≤ k ≤ n, (41)

where Sn =
∑n

i=1Xi and Xi is the binary random variable with
success probability P (Xi = 1) = p (head).

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 132 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

Belief Network

∗Statistical Hypothesis Testing I

Left-sided test:

Null hypothesis H0 : p = p0

Alternative hypothesis H1 : p < p0

Accept H0: A = {k + 1, . . . , n}
Reject H0: A = {0, . . . , k}
Type 1 error: P (Sn ≤ k) ≤ α; H0 is rejected but correct.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 133 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

Belief Network

∗Statistical Hypothesis Testing I – Example

Left-sided test: ideal six-sided die

Null hypothesis H0 : p = 1
6

Alternative hypothesis H1 : p < 1
6

Accept H0: A = {k + 1, . . . , 50},
Reject H0: A = {0, . . . , k}
Type 1 error: P (S50 ≤ k) ≤ 0.05 gives k = 3 (tabulated)

Sampling n = 50 times has given 4 times the outcome 6

4 ∈ A and so H0 cannot be rejected

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 134 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

Belief Network

∗Statistical Hypothesis Testing II

Right-sided test:

Null hypothesis H0 : p = p0

Alternative hypothesis H1 : p > p0

Accept H0: A = {0, . . . , k}
Reject H0: A = {k + 1, . . . , n}
Type 1 error: P (Sn ≥ k + 1) ≤ α or P (Sn ≤ k) ≥ 1− α

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 135 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

Learning FOM

Learning in Fully Observed Markov Model

Structure of fully observed model

Sufficient statistic

Maximum likelihood estimate

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 136 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

Learning FOM

Learning in Fully Observed Markov Model

Fully observed Markov model: Observer has access to both state
sequence and associated output (emission) sequence.

Objective is to learn or estimate the conditional probabilities.

Sample data consist of pairs of state and output sequences.

Maximum likelihood estimation solves the problem.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 137 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

Learning FOM

Fully Observed Markov Model

Given integer n ≥ 1.

Belief network (Gn, p) of HMM with joint probability
distribution

pX,Y = pX1,...,Xn,Y1,...,Yn
(42)

= pX1
pY1|X1

pX2|X1
. . . pXn|Xn−1

pYn|Xn
.

Parameters for transition probabilities

Θ = {θ = (θx,x′) | θx,x′ ≥ 0,
∑

x′

θx,x′ = 1} (43)

and emission probabilities

Θ′ = {θ′ = (θ′x,y) | θ′x,y ≥ 0,
∑

y

θ′x,y = 1}. (44)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 138 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

Learning FOM

Fully Observed Markov Model

Parameters for state transition probabilities

θx,x′ = pXi+1|Xi
(x′|x), x, x′ ∈ Σ, 1 ≤ i ≤ n− 1, (45)

and emission probabilities

θ′x,y = pYi|Xi
(y|x), x ∈ Σ, y ∈ Σ′, 1 ≤ i ≤ n. (46)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 139 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

Learning FOM

Fully Observed Markov Model

Estimate the transition probabilities using a sample set.

Given collection of N independent sequence pairs called
database,

D = (d1, . . . , dN). (47)

The r-th sample

dr = (x(r), y(r)) (48)

is given by state sequence x(r) = x
(r)
1 . . . x

(r)
n ∈ Σn and

output sequence y(r) = y
(r)
1 . . . y

(r)
n ∈ Σ′n, 1 ≤ r ≤ N .

Joint probability of sample dr depending on the parameters,

pX,Y |Θ,Θ′(dr | θ, θ′) = (49)

1

l
θ′
x
(r)
1 ,y

(r)
1

θ
x
(r)
1 ,x

(r)
2
θ′
x
(r)
2 ,y

(r)
2

θ
x
(r)
2 ,x

(r)
3
. . . θ

x
(r)
n−1,x

(r)
n
θ′
x
(r)
n ,y

(r)
n

.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 140 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

Learning FOM

Fully Observed Markov Model

ux,y is the number of times the pair (x, y) ∈ Σn × Σ′n is
observed in the sample set.

Thus

∑

(x,y)

ux,y = N. (50)

Likelihood function

L(θ, θ′) =

N∏

r=1

pX,Y |Θ,Θ′(dr | θ, θ′) (51)

=
∏

(x,y)

pX,Y |Θ,Θ′(x, y | θ, θ′)ux,y .

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 141 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

Learning FOM

Fully Observed Markov Model – Example

In view of the occasionally dishonest casino with n = 4, given
N = 8 samples

d1 = FFFF, hhhh d2 = FFFL, hhtt d3 = FFFF, hhhh
d4 = FFFL, hhtt d5 = FFFF, hhhh d6 = FFFL, hhtt
d7 = LLLL, hhhh d8 = LLLL, hhtt.

Then
uFFFF,hhhh = 3, uFFFL,hhtt = 3,
uLLLL,hhhh = 1, uLLLL,hhtt = 1.

Likelihood function:

L(θ, θ′) =

N∏

r=1

pX,Y (dr)

= pX,Y (FFFF, hhhh)
3 · pX,Y (FFFL, hhtt)

3

· pX,Y (LLLL, hhhh) · pX,Y (FFFF, hhtt)

=
1

28
θ15FF θ

3
FLθ

0
LF θ

6
LLθ

′18
Fhθ

′3
Ftθ

′6
Lhθ

′5
Lt.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 142 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

Learning FOM

Fully Observed Markov Model

va,b is the number of occurrences of (a, b) ∈ Σ2 as a
consecutive pair in the sequence x in any of the observed
pairs (x, y): x = . . . ab

v′a,c is the number of occurrences of (a, c) ∈ Σ× Σ′ at the
same positions in the sequences x and y in any of the
observed pairs (x, y):

(
x
y

)
= . . .

(
a
c

)
. . ..

Likelihood function (up to a constant)

L(θ, θ′) =
∏

a,b

θvab

a,b ·
∏

a,c

θ′
v′
ac

a,c . (52)

Log-likelihood function ℓ(θ, θ′) = logL(θ, θ′)

ℓ(θ, θ′) =
∑

a,b

va,b log(θa,b) +
∑

a,c

v′a,c log(θ
′
a,c). (53)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 143 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

Learning FOM

Fully Observed Markov Model

The sufficient statistic of the model is given by the data

v = ((va,b), (v
′
a,c)). (54)

The likelihood function (52) is seen through these data!

Linear transformation yields v from given data u = (ux,y),

v = A(l,l′),n · u, (55)

where A(l,l′),n is an integral matrix.

A(l,l′),n has d = l · l + l · l′ rows labeled by the pairs
(a, b) ∈ Σ2 and in turn by the pairs (a, c) ∈ Σ× Σ′.

A(l,l′),n has m = ln · l′n columns labeled by the pairs of words
x ∈ Σn and y ∈ Σ′n.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 144 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

Learning FOM

Fully Observed Markov Model – Example (Cont’d)

In view of the occasionally dishonest casino with n = 4, given
N = 8 samples

d1 = FFFF, hhhh d2 = FFFL, hhtt d3 = FFFF, hhhh
d4 = FFFL, hhtt d5 = FFFF, hhhh d6 = FFFL, hhtt
d7 = LLLL, hhhh d8 = LLLL, hhtt.

Then
uFFFF,hhhh = 3, uFFFL,hhtt = 3,
uLLLL,hhhh = 1, uLLLL,hhtt = 1.

Likelihood function

L(θ, θ′) =
1

28
θ15FF θ

3
FLθ

0
LF θ

6
LLθ

′18
Fhθ

′3
Ftθ

′6
Lhθ

′5
Lt.

We have

vFF = 15, vFL = 3, vLF = 0, vLL = 6,
v′Fh = 18, v′Ft = 3, v′Lh = 6, v′Lt = 5,

and v = A(2,2),4 · u.
K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 145 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

Learning FOM

Fully Observed Markov Model – Example (Cont’d)

In view of the occasionally dishonest casino with n = 4, the
8× 256 matrix A(2,2),4 is as follows,

A
t
(2,2),4 =

FF FL LF LL Fh Ft Lh Lt

FFFF, hhhh 3 0 0 0 4 0 0 0
FFFF, hhht 3 0 0 0 3 1 0 0
FFFF, hhth 3 0 0 0 3 1 0 0
FFFF, hhtt 3 0 0 0 2 2 0 0

.

.

.
LLLL, tttt 0 0 0 3 0 0 0 4

.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 146 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

Learning FOM

∗Fully Observed Markov Model

A(l,l′),n has entry k in row (a, b) ∈ Σ2 and column (x, y) if k
is the number of times the word ab is consecutive in the word
x,

A(l,l′),n has entry k′ in row (a, c) ∈ Σ× Σ′ and column (x, y)
if k′ is the number of times the symbols a and c occur at the
same positions in the words x and y.

A(l,l′),n has column sums (n− 1) + n = 2n− 1, since each
word of length n has n− 1 consecutive length-2 words and
two words of length n pair in n positions.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 147 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

Learning FOM

Fully Observed Markov Model

Given the Likelihood function (up to a constant)

L(θ, θ′) =
∏

a,b

θvab

a,b ·
∏

a,c

θ′
v′
ac

a,c . (56)

The maximum likelihood estimate of L(θ, θ′) is

θ̂a,b =
va,b

∑

b′∈Σ va,b′
, a, b ∈ Σ, (57)

and

θ̂′a,c =
v′a,c

∑

c′∈Σ′ v′a,c′
, a ∈ Σ, c ∈ Σ′. (58)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 148 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

Learning FOM

Fully Observed Markov Model – Example (Cont’d)

Reconsider the occasionally dishonest dealer with n = 4:

vFF = 15, vFL = 3, vLF = 0, vLL = 6,
v′Fh = 18, v′Ft = 3, v′Lh = 6, v′Lt = 5,

The optimal parameters are

θ̂FF =
15

15 + 3
=

15

18
, θ̂FL =

3

18
,

θ̂LF =
0

0 + 6
= 0, θ̂LL = 1,

θ̂′Fh =
18

18 + 3
=

18

21
, θ̂′Ft =

3

21
,

θ̂′Lh =
6

6 + 5
=

6

11
, θ̂′Lt =

5

11
.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 149 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

Learning FOM

Fully Observed Markov Model – Example (Derivative)

Reconsider the occasionally dishonest dealer with n = 4:

L(θ, θ′) =
1

2N
θvFF

FF θvFL

FL θvLF

LF θvLL

LL θ′
v′
Fh

Fh θ
′v

′
Ft

Ft θ
′v

′
Lh

Lh θ
′v

′
Lt

Lt

=
1

2N
θvFF

FF (1− θFF)
vFLθvLF

LF (1− θLF)
vLL

θ′
v′
Fh

Fh (1− θ′Fh)
v′
Ftθ′

v′
Lh

Lh (1− θ′Lh)
v′
Lt

In view of the log-likelihood function (up to a constant),

ℓ(θ, θ′) = vFF log θFF + vFL log(1− θFF) + . . .

set the derivatives to zero,

∂ℓ

∂θFF
=
vFF

θFF
− vFL

1− θFF
= 0, i.e. θ̂FF =

vFF

vFF + vFL
.

This gives a critical point (θ̂, θ̂′).

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 150 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

Learning FOM

Proof.
Let Σ = {a1, . . . , al} and Σ′ = {c1, . . . , cl′}.

For each state ai ∈ Σ, 1 ≤ i ≤ l, we have
∑l

j=1 θaiaj
= 1.

The parameters θaiaj
with 1 ≤ j ≤ l appear in the log-likelihood function ℓ(θ, θ′) as the

partial sum

ℓi =

l∑

j=1

vaiaj
log(θaiaj

).

Using θaial
= 1−∑l−1

j=1 θaiaj
, the partial derivative of ℓi with respect to θaiaj

becomes

∂ℓi

∂θaiaj

=
vaiaj

θaiaj

−
vaial

1−
∑l−1

j=1 θaiaj

.

Equating this expression to 0 gives

θ̂aiaj
=

vaiaj
∑

l
k=1

vaiak

.

Similar for the emission probabilitities θ̂′aick
with 1 ≤ k ≤ l′.

Thus (θ̂, θ̂′) = (θ̂aiaj
, θ̂′aick

) is a critial point of the likelihood function.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 151 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

Learning FOM

Proof (Cont’d).

Claim that this point maximizes the likelihood function. Indeed,

ℓ(θ, θ
′
) =

∑

a∈Σ

∑

b∈Σ

vab log θab +
∑

a∈Σ

∑

c∈Σ′

v
′
ac log θ

′
ac

=
∑

a∈Σ

∑

b∈Σ

∑

b′∈Σ

vab′ θ̂ab log θab +
∑

a∈Σ

∑

c∈Σ′

∑

c′∈Σ′

v
′
ac′ θ̂

′
ac log θ

′
ac, by (57, 58),

=
∑

a∈Σ

va
∑

b∈Σ

θ̂ab log θab +
∑

a∈Σ

v
′
a

∑

c∈Σ′

θ̂
′
ac log θ

′
ac

=
∑

a∈Σ

va

∑

b∈Σ

θ̂ab log θ̂ab −
∑

b∈Σ

θ̂ab log
θ̂ab

θab

+
∑

a∈Σ

v
′
a

∑

c∈Σ′

θ̂
′
ac log θ̂

′
ac −

∑

c∈Σ′

θ̂
′
ac log

θ̂′ac

θ′ac

=
∑

a∈Σ

−va
(

H(θ̂a) +D(θ̂a‖θa)
)

+
∑

a∈Σ

−v′a
(

H(θ̂
′
a) +D(θ̂

′
a‖θ

′
a)
)

where va =
∑

b∈Σ vab, v
′
a =

∑

c∈Σ′ vac, θa = (θab)b∈Σ, θ′a = (θ′ac)c∈Σ′ ,

θ̂a = (θ̂ab)b∈Σ, and θ̂′a = (θ̂′ac)c∈Σ′ for each symbol a ∈ Σ.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 152 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

Learning FOM

Proof (Cont’d).
We have

ℓ(θ, θ
′
) =

∑

a∈Σ

−va
(

H(θ̂a) +D(θ̂a‖θa)
)

+
∑

a∈Σ

−v′a
(

H(θ̂
′
a) +D(θ̂

′
a‖θ

′
a)
)

≤ −
∑

a∈Σ

(

vaH(θ̂a) + v
′
aH(θ̂

′
a)
)

=
∑

a∈Σ

va
∑

b∈Σ

(

θ̂ab log θ̂ab

)

+ v
′
a

∑

c∈Σ′

(

θ̂
′
ac log θ̂

′
ac

)

=
∑

a∈Σ

∑

b∈Σ

vab log θ̂ab +
∑

c∈Σ′

v
′
ac log θ̂

′
ac

 , by (57, 58),

= ℓ(θ̂, θ̂
′
),

where for two distributions p = (p1, . . . , pn) and q = (q1, . . . , qn),

H(p) = −
n∑

i=1

pi log(pi)

is the entropy and

D(p ‖ q) =
n∑

i=1

pi log
pi

qi
≥ 0

is the Kullback-Leibler measure. �

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 153 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

Probabilistic Inference

Probabilistic Inference of Output Marginals

Probabilistic inference refers to the computation of posterior
probabilities.

Objective is to calculate the marginal probability of the
output variables.

Efficient solution makes use of sum-product decomposition.

Basis of the Viterbi algorithm.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 154 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

Probabilistic Inference

Probabilistic Inference of Output Marginals

Given integer n ≥ 1.

Belief network (Gn, p) of HMM with joint probability
distribution

pX,Y = pX1,...,Xn,Y1,...,Yn
(59)

= pX1
pY1|X1

pX2|X1
. . . pXn|Xn−1

pYn|Xn
.

Suppose the conditional probabilities

θx,x′ = pXi+1|Xi
(x′|x), x, x′ ∈ Σ, 1 ≤ i ≤ n− 1, (60)

and

θ′x,y = pYi|Xi
(y|x), x ∈ Σ, y ∈ Σ′, 1 ≤ i ≤ n, (61)

are known.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 155 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

Probabilistic Inference

Probabilistic Inference of Output Marginals

The probability of output sequence y = (y1, . . . , yn) is given
by the marginal distribution

pY1,...,Yn
(y1, . . . , yn) (62)

=
∑

x1,...,xn

pX1,...,Xn,Y1,...,Yn
(x1, . . . , xn, y1, . . . , yn)

=
1

l

∑

x1∈Σ

. . .
∑

xn∈Σ

θ′x1,y1
θx1,x2

θ′x2,y2
θx2,x3

· · · θxn−1,xn
θ′xn,yn

.

The straightforward computation has runtime O(nln), since
the set Σn has ln elements and each joint probability has 2n
factors.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 156 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

Probabilistic Inference

Probabilistic Inference of Output Marginals – Example

Reconsider the occasionally dishonest dealer with n = 4.

Output marginals

pY1,Y2,Y3,Y4
(y1, y2, y3, y4)

=
1

2

∑

x1∈Σ

. . .
∑

x4∈Σ

θ′x1,y1
θx1,x2

θ′x2,y2
θx2,x3

θ′x3,y3
θx3,x4

θ′x4,y4
.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 157 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

Probabilistic Inference

Sum-Product Decomposition

Decomposition of the output marginal by distributivity,

pY (y) (63)

= pY1,...,Yn
(y1, . . . , yn)

=
1

l

∑

xn∈Σ

θ′xn,yn

∑

xn−1∈Σ

θxn−1,xn
θ′xn−1,yn−1

(

· · ·
(
∑

x2∈Σ

θx2,x3
θ′x2,y2

(
∑

x1∈Σ

θx1,x2
θ′x1,y1

))

· · ·
))

.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 158 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

Probabilistic Inference

Sum-Product Decomposition – Example

Reconsider the occasionally dishonest dealer with n = 4.

pY (y)

= pY1,...,Y4
(y1, . . . , y4)

=
1

l

∑

x4∈Σ

θ
′
x4,y4

∑

x3∈Σ

θx3,x4
θ
′
x3,y3

∑

x2∈Σ

θx2,x3
θ
′
x2,y2

∑

x1∈Σ

θx1,x2
θ
′
x1,y1

Computation (from inner to outer brackets):

M [1, x] =
∑

x1∈Σ

θx1,x · θ′x1,y1
, x ∈ Σ,

M [2, x] =
∑

x2∈Σ

θx2,x · θ′x2,y2
·M [1, x2], x ∈ Σ,

M [3, x] =
∑

x3∈Σ

θx3,x · θ′x3,y3
·M [2, x3], x ∈ Σ,

pY (y) =
1

l

∑

x4∈Σ

θ′x4,y4
·M [3, x4].

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 159 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

Probabilistic Inference

Sum-Product Decomposition

Evaluation of pY (y) using an (n− 1)× l table M ,

M [1, x] =
∑

x1∈Σ

θx1,x · θ′x1,y1
, x ∈ Σ,

M [k, x] =
∑

xk∈Σ

θxk,x · θ′xk,yk
·M [k − 1, xk],

x ∈ Σ, 2 ≤ k ≤ n− 1,

pY (y) =
1

l

∑

xn∈Σ

θ′xn,yn
·M [n− 1, xn].

Computation has runtime O(l2n), since the table M has O(ln)
entries and each entry (summation) is evaluated in O(l) steps.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 160 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

Viterbi Algorithm

Viterbi Algorithm

Calculate the most probable state sequences which produce a
given output sequence.

Named after Andrew Viterbi (1967) who proposed it as
decoding algorithm for convolutional codes over noisy
channels.

Deduction by tropicalization of sum-product decomposition.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 161 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

Viterbi Algorithm

Semirings

A semiring is a set R 6= ∅ with two binary operations, addition +
and multiplication ·, such that

(R,+) is a commutative monoid with identity element 0.

(R, ·) is a monoid with identity element 1.

Multiplication distributes over addition, i.e., for all a, b, c ∈ R,

a · (b+ c) = (a · b) + (a · c) and (a+ b) · c = (a · c) + (b · c).

Multiplication with 0 annihilates R, i.e., for all a ∈ R,
a · 0 = 0 = 0 · a.

A semiring is commutative if the multiplication is commutative,
i.e., for all a, b ∈ R, a · b = b · a.
A semiring is idempotent if the addition is idempotent, i.e., for all
a ∈ R, a+ a = a.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 162 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

Viterbi Algorithm

Semirings

A semiring is an algebraic structure similar to a ring, but
without the requirement that each element must have an
additive inverse. Thus each ring is a semiring.

The set of natural numbers N0 forms a commutative semiring
with the ordinary addition and multiplication.

Likewise, the set of non-negative real numbers R≥0 forms a
commutative semiring with the ordinary addition and
multiplication, written (R≥0,+, ·).
The set R ∪ {∞} together with the operations

x⊕ y = min{x, y}, (64)

x⊙ y = x+ y (65)

for all x, y ∈ R ∪ {∞}, with x+∞ =∞ =∞+ x, forms an
idempotent commutative semiring with additive identity ∞
and multiplicative identity 0.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 163 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

Viterbi Algorithm

Semirings

The semiring (R ∪ {∞},min,+) is called min-plus algebra or
tropical algebra.

Additive and multiplicative inverses may not exist; e.g., the
equations 3⊕ x = 10 and ∞⊙ x = 1 have no solutions
x ∈ R ∪ {∞}.
The mapping

φ : R≥0 → R ∪ {∞} : x 7→ − log x (66)

is bijective and strictly monotonic decreasing with φ(0) =∞,
φ(1) = 0, and

φ(x · y) = φ(x)⊙ φ(y), x, y ∈ R≥0. (67)

This mapping is the tropicalization of the ordinary semiring
(R≥0,+, ·).

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 164 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

Viterbi Algorithm

Semirings

Tropicalization x 7→ − log x.

infinity

0
0

-infinity

x

infinity

Tropicalization maps large probabilities to small weights and vice
versa; maximization of probabilities corresponds to the
minimization of weights.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 165 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

Viterbi Algorithm

Tropicalization

semiring R≥0

addition +
multiplication ·
data x
large probabilities

→

semiring R ∪ {∞}
addition ⊕ (min)
multiplication ⊙ (add)
data − log x
small weights

(68)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 166 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

Viterbi Algorithm

Viterbi Algorithm

Given integer n ≥ 1.

Given belief network (Gn, p) of HMM with joint probability
distribution

pX,Y = pX1,...,Xn,Y1,...,Yn

= pX1
pY1|X1

pX2|X1
. . . pXn|Xn−1

pYn|Xn
. (69)

Suppose the parameters for state transition

θx,x′ = pXi+1|Xi
(x′|x), x, x′ ∈ Σ, 1 ≤ i ≤ n− 1, (70)

and emission

θ′x,y = pYi|Xi
(y|x), x ∈ Σ, y ∈ Σ′, 1 ≤ i ≤ n, (71)

are known.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 167 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

Viterbi Algorithm

Viterbi Algorithm

The probability of output sequence y = (y1, . . . , yn) is given
by the marginal distribution

pY (y) (72)

= pY1,...,Yn
(y1, . . . , yn)

=
∑

x1,...,xn

pX1,...,Xn,Y1,...,Yn
(x1, . . . , xn, y1, . . . , yn)

=
1

l

∑

x1∈Σ

. . .
∑

xn∈Σ

θ′x1,y1
θx1,x2

θ′x2,y2
θx2,x3

· · · θxn−1,xn
θ′xn,yn

.

Given output sequence y ∈ Σ′n. The objective is to find one
(or all) state sequences x ∈ Σn with maximum likelihood

pX|Y (x|y) =
pX,Y (x, y)

pY (y)
. (73)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 168 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

Viterbi Algorithm

Viterbi Algorithm

The observed sequence y ∈ Σ′n is fixed, so the likelihood
pX|Y (x|y) is directly proportional to the joint probability
pX,Y (x, y) if pY (y) > 0.

Suppose pY (y) > 0. Then the aim is to find a state sequence
x̄ ∈ Σn with the property

x̄ = argmaxx∈Σn{pX|Y (x|y)} (74)

= argmaxx∈Σn{pX,Y (x, y)}.

Each optimal state sequence x̄ is called an explanation of the
observed sequence y. The explanations can be found by
tropicalization of sum-product decomposition.

Tropicalization means that replacing ordinary sums by tropical
sums and ordinary multiplication by tropical
multiplication (68).

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 169 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

Viterbi Algorithm

Viterbi Algorithm

Put

w(y) = − log pY (y) and w(x, y) = − log pX,Y (x, y). (75)

Tropicalization

w(y) =
⊕

x∈Σn

w(x, y) = min
x∈Σn

w(x, y). (76)

The explanations x̄ are obtained by evaluation in the tropical
algebra,

x̄ = argminx∈Σn{w(x, y)}. (77)

The value w(y) can be efficiently computed by tropicalizing
the sum-product decomposition of the marginal probability
pY (y).

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 170 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

Viterbi Algorithm

Viterbi Algorithm

Replace the transition probabilities by weights,

uab = − log θab and vac = − log θ′ac (78)

for all a, b ∈ Σ, c ∈ Σ′.

In the sum-product decomposition (63) replace sums by
tropical sums and products by tropical products,

w(y) =
⊕

xn

vxn,yn
⊙

⊕

xn−1

uxn−1,xn
⊙ vxn−1,yn−1

⊙
(

· · ·
(
⊕

x1

ux1,x2
⊙ vx1,y1

)

· · ·
))

. (79)

For each output sequence y ∈ Σ′n, the tropicalization w(y) of
the marginal probability pY (y) provides the explanations of y.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 171 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

Viterbi Algorithm

Sum-Product Decomposition – Example

Reconsider the occasionally dishonest dealer with n = 4:

w(y)

=
⊕

x4∈Σ

vx4,y4

⊕

x3∈Σ

ux3,x4
vx3,y3

⊕

x2∈Σ

ux2,x3
vx2,y2

⊕

x1∈Σ

ux1,x2
vx1,y1

Computation (from inner to outer brackets):

M [1, x] =
⊕

x1∈Σ

ux1,x ⊙ vx1,y1
, x ∈ Σ,

M [2, x] =
⊕

x2∈Σ

ux2,x ⊙ vx2,y2
⊙M [1, x2], x ∈ Σ,

M [3, x] =
⊕

x3∈Σ

ux3,x ⊙ vx3,y3
⊙M [2, x3], x ∈ Σ,

w(y) =
⊕

x4∈Σ

vx4,y4
⊙M [3, x4].

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 172 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

Viterbi Algorithm

Sum-Product Decomposition – Example (Cont’d)

Reformulation of computation for n = 4:

M [1, x] = min
x1∈Σ

ux1,x + vx1,y1
, x ∈ Σ,

M [2, x] = min
x2∈Σ

ux2,x + vx2,y2
+M [1, x2], x ∈ Σ,

M [3, x] = min
x3∈Σ

ux3,x + vx3,y3
+M [2, x3], x ∈ Σ,

w(y) = min
x4∈Σ

vx4,y4
+M [3, x4].

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 173 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

Viterbi Algorithm

Viterbi Algorithm

The tropicalized term w(y) can be computed by evaluating
iteratively the tropicalized sum-product decomposition using an
(n− 1)× l table M :

M [1, x] :=
⊕

x1∈Σ

ux1,x ⊙ vx1,y1
, x ∈ Σ,

M [k, x] :=
⊕

xk∈Σ

uxk,x ⊙ vxk,yk
⊙M [k − 1, xk],

x ∈ Σ, 2 ≤ k ≤ n− 1,

w(y) :=
⊕

xn∈Σ

vxn,yn
⊙M [n− 1, xn].

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 174 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

Viterbi Algorithm

Viterbi Algorithm

Rewritten algorithm using the ordinary operations:

M [1, x] := min
x1∈Σ

ux1,x + vx1,y1
, x ∈ Σ,

M [k, x] := min
xk∈Σ

uxk,x + vxk,yk
+M [k − 1, xk],

x ∈ Σ, 2 ≤ k ≤ n− 1,

w(y) := min
xn∈Σ

vxn,yn
+M [n− 1, xn].

This is the Viterbi algorithm and the computed explanations are
the Viterbi sequences.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 175 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

Viterbi Algorithm

Viterbi Algorithm

The Viterbi algorithm consists of a forward algorithm
evaluating the data (table M) and a backward algorithm
providing the optimal decisions (explanations).

In the forward algorithm, for each step k, 1 ≤ k ≤ n, all
states x ∈ Σ which attain the minimum in the minimization
step can be recorded.

This information can be used by the backward algorithm to
trace back all optimal decisions (states) from the last (n) to
the first position (1) and so provide all explanations.

Time complexity is O(l2n) as described by the sum-product
decomposition of the output marginals.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 176 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

Viterbi Algorithm

Viterbi Algorithm

Viterbi algorithm follows the paradigm of dynamic
programming.

Dynamic programming was developed by Richard Bellman in
the 1950s.

A dynamic programming algorithm consists of forward
algorithm (data evaluation) and backward algorithm (optimal
decisions).

Dynamic programming is applicable if the subproblems have
the same structure and the subproblems can be recursively
nested.

The Viterbi algorithm is not only optimal for the whole
sequence y ∈ Σ′n but also for each prefix of y.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 177 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

Viterbi Algorithm

Viterbi Algorithm

Require: Sequence y ∈ Σ′n, scores (uab) and (vac)
Ensure: Tropicalized term w(y)
M ← matrix[0..n, 1..l]
for x← 1 to l do

M [0, x]← 0
end for

for k ← 1 to n− 1 do

for x← 1 to l do
M [k, x]←∞
for x′ ← 1 to l do

M [k, x]← min{M [k, x], ux′,x + vx′,yk
+M [k − 1, x′]} {Record all x which

attain the minimum}
end for

end for

end for

for x← 1 to l do
M [n, x]← vx,yn +M [n− 1, x]

end for

w ←∞
for x← 1 to l do

w ← min{w,M [n, x]} {Record all x which attain the minimum}
end for

return w = w(y)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 178 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

Viterbi Algorithm

Viterbi Algorithm – Example

Reconsider the occasionally dishonest casino with the weights

?>=<89:;F1 44

3
,,

��✤
✤
✤

?>=<89:;L 1ii

��✤
✤
✤

2

ll

2(h), 2(t) output 1(h), 3(t)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 179 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

Viterbi Algorithm

Viterbi Algorithm – Example (Cont’d)

Trellis for output sequence y = tthh:

t t h h

F 0+2 +1 //

+2

""❉
❉

❉
❉ 3+2 +1 //

+2

""❉
❉❉

❉❉
❉❉

❉ 6+2 +1 //

+2

""❋
❋

❋
❋ 9+2 // 11

L 0+3 +1 //

+3

<<③
③

③
③

4+3 +1 //

+3

<<③
③

③
③

8+1 +1 //

+3

<<①
①

①
①

10+1 // 11

Solid arrows show where the minima are attained.

The trace back given by the paths of solid arrows provides the
explanations: FFFF , FFLL, and LLLL.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 180 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

Viterbi Algorithm

Viterbi Algorithm – Example (Cont’d)

Subproblem: trellis for output subsequence y = tth:

t t h

F 0+2 +1 //

+2

""❉
❉

❉
❉ 3+2 +1 //

+2

""❉
❉❉

❉❉
❉❉

❉ 6+2 // 8

L 0+3 +1 //

+3

<<③
③

③
③

4+3 +1 //

+3

<<③
③

③
③

8+1 // 9

Solid arrows show where the minima are attained.

The trace back given by the paths of solid arrows provides the
explanation: FFF .

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 181 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

EM Algorithm

Learning in Hidden Markov Model

Objective is to learn or estimate the conditional probabilities.

Sample data consist only of output sequences.

Solution by EM algorithm and more efficiently by BW
algorithm.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 182 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

EM Algorithm

EM Algorithm for HMM

Require: Hidden Markov model, joint probability function

pX,Y |Θ×Θ′ , parameter space Θ×Θ′ ⊆ R
l(l−1)
>0 ×R

l(l′−1)
>0 , integer

n ≥ 1, observed (output) data u = (uy) ∈ N
l′n

Ensure: Maximum likelihood estimate (θ∗, θ′∗) ∈ Θ×Θ′

[Init] Threshold ǫ > 0 and parameters (θ, θ′) ∈ Θ×Θ′

[E-Step] Define matrix U = (ux,y) ∈ R
ln×l′n with

ux,y =
uy · pX,Y |Θ×Θ′(x, y|θ, θ′)

pY |Θ×Θ′(y|θ, θ′) , x ∈ Σn, y ∈ Σ′n

[M-Step] Compute solution (θ̂, θ̂′) ∈ Θ×Θ′ of the likelihood
function ℓX,Y using data set U = (ux,y), linear
transformation (55) and equations (57,58)

[Compare] If ℓY (θ̂, θ̂
′)− ℓY (θ, θ′) > ǫ, set θ ← θ̂ and θ′ ← θ̂′

and resume with E-step, see (91)

[Output] θ∗ ← θ̂, θ′∗ ← θ̂

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 183 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

EM Algorithm

EM Algorithm for HMM

Init (θ, θ′), (uy)y, ǫ > 0

��

E-step (ux,y)x,y

FOM
��

M-step (θ̂, θ̂′)

��

(θ, θ′)← (θ̂, θ̂′)

ii❘❘❘❘❘❘❘❘❘❘❘❘❘❘

Comp ℓY (θ̂, θ̂
′)− ℓY (θ, θ′) > ǫ

no

��

yes
55❧❧❧❧❧❧❧❧❧❧❧❧❧

stop

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 184 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

EM Algorithm

EM Algorithm for HMM – Example

In view of the occasionally dishonest casino with n = 4, given
N = 8 samples

d1 = hhhh, d2 = hhtt, d3 = hhhh, d4 = hhtt,
d5 = hhhh, d6 = hhtt, d7 = tttt, d8 = htth.

Counts

uhhhh = 3, uhhtt = 3 uhtth = 1, utttt = 1.

Likelhood function

LY (θ, θ
′) =

N∏

i=1

pY |Θ×Θ′(di|θ, θ′)

= pY (hhhh)
3pY (hhtt)

3pY (htth)pY (tttt).

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 185 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

EM Algorithm

EM Algorithm for HMM – Example (Cont’d)

Log-likelihood function

ℓY (θ, θ
′) =

3 log pY (hhhh) + 3 log pY (hhtt) + log pY (htth) + log pY (tttt).

Given the parameters (θ, θ′), the estimated values (E-step)

ux,y =
uy · pX,Y (x, y)

pY (y)
, x ∈ Σn, y ∈ Σ′n,

are computed by calculating directly the joint probabilities

pX,Y (x, y) =
1

2
θ′x1,y1

θx1,x2
θ′x2,y2

θx2,x3
θ′x3,y3

θx3,x4
θ′x4,y4

and the marginal probabilities by using the sum-product
decomposition (63),

pY (y) =
∑

x

pX,Y (x, y).

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 186 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

EM Algorithm

EM Algorithm for HMM

In the E-step, the marginal probabilities pY (y|θ, θ′) can be
computed efficiently by the sum-product decomposition.

In the M-step, the maximal estimates θ̂ and θ̂′ can be
calculated as in the fully observed model (57, 58).

The EM algorithm switches back and forth between the fully
observed and the hidden model!

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 187 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

EM Algorithm

EM Algorithm (General)

Given random vectors Y and Z with finite state sets
Y = {y(1), . . . , y(m)} and Z = {z(1), . . . , z(n)}, resp.
Suppose the joint probability distribution depends on the
parameters θ of a parameter set Θ. Write

fij(θ) = pY,Z|Θ(y
(i), z(j)), 1 ≤ i ≤ m, 1 ≤ j ≤ n. (80)

Marginal distribution with respect to Y ,

fi(θ) = pY |Θ(y
(i)) =

n∑

j=1

fij(θ), 1 ≤ i ≤ m. (81)

This quantity is often intractable such as in the case when the
number of values of Z grows exponentially with the sequence
length making the exact calculation of the marginals
extremely difficult.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 188 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

EM Algorithm

EM Algorithm (Hidden Case)

Take collection of N independent samples from state space Y,

D = (y(i1), . . . , y(iN)), (82)

where 1 ≤ i1, . . . , iN ≤ m.

This collection gives rise to the data vector

u = (u1, . . . , um) ∈ N
m, (83)

where ui is the number of occurrences of the state y(i) in the
sequence D, 1 ≤ i ≤ m.

We have

m∑

i=1

ui = N. (84)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 189 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

EM Algorithm

EM Algorithm (Hidden Case)

Objective is to maximize the likelihood function with respect
to the parameters θ ∈ Θ for the observed data,

L(θ) =

m∏

i=1

fi(θ)
ui . (85)

Log-likelihood function:

ℓY (θ) = u1 · log f1(θ) + · · ·+ um · log fm(θ). (86)

The data vector u forms the sufficient statistic of the model.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 190 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

EM Algorithm

EM Algorithm (Fully Observed Case)

Consider collection of N independent sample pairs from state
space Y × Z,

D = ((y(i1), z(j1)), . . . , (y(iN), z(jN))) (87)

where 1 ≤ i1, . . . , iN ≤ m and 1 ≤ j1, . . . , jN ≤ n.
This collection gives rise to the data vector

U = (uij) ∈ N
m×n, (88)

where uij is the number of occurrences of the sequence pair
(y(i), z(j)) in the sequence D with ui =

∑n
j=1 uij , 1 ≤ i ≤ m.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 191 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

EM Algorithm

EM Algorithm (Fully Observed Case)

The objective is to maximize the likelihood function w.r.t.
parameters θ ∈ Θ for the observed sequence pairs,

LY,Z(θ) =
∏

i,j

fij(θ)
uij . (89)

Log-likelihood function

ℓY,Z(θ) = u11 · log f11(θ) + · · ·+ umn · log fmn(θ). (90)

Assumption: Optimal parameters attained by maximization of
ℓY,Z(θ) can be efficiently computed such as for HMM.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 192 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

EM Algorithm

EM Algorithm (General)

Require: Joint probability function pY,Z|Θ, parameter set Θ ⊆ R
d,

observed data u = (ui) ∈ N
m

Ensure: Maximum likelihood estimate θ∗ ∈ Θ of the log-likelihood
function ℓY (θ)
[Init] Threshold ǫ > 0 and parameter θ ∈ Θ
[E-Step] Define matrix U = (uij) ∈ R

m×n
>0 with

uij =
ui · fij(θ)
fi(θ)

[M-Step] Compute solution θ̂ ∈ Θ of the likelihood function ℓY,Z
using data set U = (uij)

[Compare] If ℓY (θ̂)− ℓY (θ) > ǫ, set θ ← θ̂ and resume with
E-step, see (91)

[Output] θ∗ ← θ̂

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 193 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

EM Algorithm

EM Algorithm (General)

During each iteration of the EM algorithm, the value of the
log-likelihood function increases:

ℓY (θ̂) ≥ ℓY (θ). (91)

If ℓY (θ̂) = ℓY (θ), then θ̂ is a critical point (local maximum) of the
log-likelihood function.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 194 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

EM Algorithm

∗Proof
We have

ℓY (θ̂)− ℓY (θ) =
m∑

i=1

ui · [log fi(θ̂)− log fi(θ)]

=
m∑

i=1

n∑

j=1

uij · [log fij(θ̂)− log fij(θ)]

+
m∑

i=1

ui ·

log

(
fi(θ̂)

fi(θ)

)

−
n∑

j=1

uij

ui

· log
(
fij(θ̂)

fij(θ)

)

 .

The first term in this expression equals ℓY,Z(θ̂)− ℓY,Z(θ) and is non-negative due to the M-step.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 195 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

EM Algorithm

Proof (Cont’d)
Claim that the second term is also non-negative. Indeed, the parenthesized expression can be written by
the E-step as follows,

log

(
fi(θ̂)

fi(θ)

)

−
n∑

j=1

uij

ui

· log
(
fij(θ̂)

fij(θ)

)

= log

(
fi(θ̂)

fi(θ)

)

+

n∑

j=1

fij(θ)

fi(θ)
· log

(
fij(θ)

fij(θ̂)

)

.

Since fi(θ) =
∑

j fij(θ) for each 1 ≤ i ≤ m, this expression can be rewritten as

n∑

j=1

fij(θ)

fi(θ)
· log

(
fi(θ̂)

fi(θ)

)

+
n∑

j=1

fij(θ)

fi(θ)
· log

(
fij(θ)

fij(θ̂)

)

and thus amounts to

n∑

j=1

fij(θ)

fi(θ)
· log

(
fi(θ̂)

fij(θ̂)
·
fij(θ)

fi(θ)

)

. (92)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 196 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

EM Algorithm

Proof (Cont’d)
Take the non-negative quantities

πj =
fij(θ)

fi(θ)
and σj =

fij(θ̂)

fi(θ̂)
, 1 ≤ j ≤ n.

Then we have
π1 + . . . + πn = 1 = σ1 + . . . + σn.

Thus the vectors π and σ are probability distributions. The expression (92) is the Kullback-Leibler
divergence from π to σ,

D(π‖σ) =
n∑

j=1

πj · log
(
πj

σj

)

.

The Kullback-Leibler measure is always nonnegative,

D(π‖σ) ≥ 0.

It follows that the second expression is also non-negative and the claim follows. Hence, we have
ℓY (θ̂) ≥ ℓY (θ).

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 197 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

EM Algorithm

Proof (Cont’d)

Suppose ℓY (θ̂) = ℓY (θ) for some θ, θ̂ ∈ Θ. Then the expression in (92) must be zero. But the
Kullback-Leibler divergence satisfies D(π‖σ) = 0 if and only if π = σ. Thus we have

fij(θ)

fi(θ)
=
fij(θ̂)

fi(θ̂)
, 1 ≤ i ≤ m, 1 ≤ j ≤ n. (93)

Therefore, we have

0 =
∂ℓY,Z(θ̂)

∂θk

=
m∑

i=1

n∑

j=1

uij

fij(θ̂)
·
∂fij(θ̂)

∂θk

=
m∑

i=1

n∑

j=1

ui

fi(θ̂)
·
∂fij

∂θk
(θ̂)

=

m∑

i=1

ui

fi(θ̂)
·

∂

∂θk

n∑

j=1

fij

 (θ̂)

=
m∑

i=1

ui

fi(θ̂)
·
(

∂

∂θk
fi

)

(θ̂) =
∂ℓY (θ̂)

∂θk
, 1 ≤ k ≤ d,

where in the third equation we used both the E-step and (93). �

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 198 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

∗BW Algorithm

Baum-Welch Algorithm

Structure of HMM allows a more efficient implementation of
the EM algorithm known as the Baum-Welch algorithm.

Dynamic programming algorithm developed in the late 1960s.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 199 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

∗BW Algorithm

Baum-Welch Algorithm

Given data vector u = (uy) ∈ N
l′n , where uy is the number of

times the output sequence y ∈ Σ′n is observed.

The full data vector U = (ux,y) ∈ N
ln×l′n is not available,

where ux,y denotes the number of times the pair
(x, y) ∈ Σn × Σ′n is observed.

The EM algorithm estimates in the E-step the counts of the
full data vector by the quantity

ux,y =
uy · pX,Y |Θ×Θ′(x, y|θ, θ′)

pY |Θ×Θ′(y|θ, θ′) , x ∈ Σn, y ∈ Σ′n. (94)

These counts are used in (57, 58) to provide the sufficient
statistic (v, v′) of the model, which is used in the M-step to
derive updated parameter values θ, θ′.

In the BW algorithm, the sufficient statistic (v, v′) can be
directly calculated by dynamic programming.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 200 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

∗BW Algorithm

Baum-Welch Algorithm

Let y ∈ Σ′n.

The forward probability

fy,s(i) = pY1,...,Yi,Xi
(y1, . . . , yi, s), s ∈ Σ, 1 ≤ i ≤ n, (95)

is the joint probability that the prefix y1 . . . yi of the observed
sequence y having length i ends in state s.

The backward probability

by,s(i) = pYi+1,...,Yn|Xi
(yi+1, . . . , yn | s), s ∈ Σ, 1 ≤ i ≤ n, (96)

is the conditional probability that the suffix yi+1 . . . yn of the
observed sequence y having length n− i starts in state s.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 201 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

∗BW Algorithm

Baum-Welch Algorithm

The probability pY (y|θ, θ′) of the emitted sequence y can be
calculated by the forward probabilities,

pY (y|θ, θ′) =
∑

r∈Σ

fy,r(n). (97)

For each emitted sequence y ∈ Σ′n, consider the l × n
matrices

Fy = (fy,r(i)) and By = (by,r(i)) (98)

with r ∈ Σ and 1 ≤ i ≤ n, of the forward and backward
probabilities, resp.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 202 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

∗BW Algorithm

Baum-Welch Algorithm

The entries of the matrices Fy and By can be efficiently
computed in an iterative manner,

fy,r(1) =
1

l
θ′r,y1

, r ∈ Σ, (99)

fy,r(i) = θ′r,yi

∑

s∈Σ

fy,s(i− 1) · θsr, (100)

r ∈ Σ, 2 ≤ i ≤ n,

and

by,r(n) = 1, r ∈ Σ, (101)

by,r(i) =
∑

s∈Σ

θrs · θ′s,yi+1
· by,s(i+ 1), (102)

r ∈ Σ, 1 ≤ i ≤ n− 1.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 203 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

∗BW Algorithm

Baum-Welch Algorithm – Example

Reconsider the dishonest casino dealer with output sequence
y = (y1, . . . , y4), n = 4.

fy,r(1) =
1

2
θ′r,y1

, r ∈ Σ,

fy,r(2) = θ′r,y2

∑

s∈Σ

fy,s(1)θsr

=
1

2
θ′r,y2

(
θ′F,y1

θF,r + θ′L,y1
θL,r

)
, r ∈ Σ,

fy,r(3) = θ′r,y3

∑

s∈Σ

fy,s(2)θsr

=
1

2
θ′r,y3

(fy,F (2)θF,r + fy,L(2)θL,r) , r ∈ Σ,

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 204 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

∗BW Algorithm

Baum-Welch Algorithm – Example (Cont’d)

fy,r(4) = θ′r,y4

∑

s∈Σ

fy,s(3)θsr

=
1

2
θ′r,y4

(fy,F (3)θF,r + fy,L(3)θL,r) , r ∈ Σ,

=
∑

x1,x2,x3∈Σ

pX,Y (x1, x2, x3, r, y1, y2, y3, y4).

and

pY (y1, . . . , y4) =
∑

r∈Σ

fy,r(4)

=
∑

x1,x2,x3,x4∈Σ

pX,Y (x1, x2, x3, x4, y1, y2, y3, y4).

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 205 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

∗BW Algorithm

Baum-Welch Algorithm

In view of the sufficient statistic (v, v′), we have for all r, s ∈ Σ
and t ∈ Σ′,

vrs =
∑

y∈Σ′n

uy
p(y|θ, θ′)

n−1∑

i=1

fy,r(i) · θr,s · θ′s,yi+1
· by,s(i+ 1)(103)

v′rt =
∑

y∈Σ′n

uy
p(y|θ, θ′)

n−1∑

i=1

fy,r(i) · by,r(i+ 1) · I(yi=t), (104)

where IA denotes the indicator function of statement A; i.e.,
IA = 1 if A is true and IA = 0 otherwise.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 206 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

∗BW Algorithm

Baum-Welch Algorithm – Proof

For each state sequence x ∈ Σn,

vrs =
∑

y∈Σ′n

∑

x∈Σn

n−1∑

i=1

I(xixi+1=rs) · ux,y.

Thus in view of the definition of ux,y in the E-step,

vrs =
∑

y∈Σ′n

uy
p(y|θ, θ′)

n−1∑

i=1

∑

x∈Σn

I(xixi+1=rs) · p(x, y|θ, θ′).

The innermost term is the sum of all probabilities of pairs (x, y) for
an output sequence y and all state sequences x such that
xixi+1 = rs; i.e., observing the sequence y and a transition from
state r to state s at position i.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 207 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

∗BW Algorithm

Baum-Welch Algorithm – Proof (Cont’d)

Therefore,

∑

x∈Σn

I(xixi+1=rs) · p(x, y|θ, θ′)

= P (Y = y,Xi = r,Xi+1 = s)

= P (Y1 = y1, . . . , Yi = yi, Xi = r)

·P (Xi+1 = s | Xi = r)

·P (Yi+1 = yi+1 | Xi+1 = s)

·P (Yi+2 = yi+2, . . . , Yn = yn | Xi+1 = s)

= fy,r(i) · θrs · θ′syi+1
· by,s(i+ 1).

The second assertion can be similarly proved. �

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 208 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

∗BW Algorithm

Baum-Welch Algorithm

In the BW algorithm, the l × n forward and backward
probability matrices (Fy)y and (By)y need to be maintained
to calculate the sufficient statistic (v, v′) using (103, 104).

In the EM algorithm, an ln × l′n matrix U = (ux,y) needs to
be maintained from which the sufficient statistic (v, v′) can
be established using (94).

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 209 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

∗BW Algorithm

Baum-Welch Algorithm for HMM

Require: Hidden Markov model, joint probability function

pX,Y |Θ×Θ′ , parameter space Θ×Θ′ ⊆ R
l(l−1)
>0 ×R

l(l′−1)
>0 , integer

n ≥ 1, observed data u = (uy) ∈ N
l′n

Ensure: Maximum likelihood estimate (θ∗, θ′∗) ∈ Θ×Θ′

[Init] Threshold ǫ > 0 and parameters (θ, θ′) ∈ Θ×Θ′

[E-Step] Compute the sufficient statistic (v, v′) by dynamic
programming in (103, 104)

[M-Step] Compute solution (θ̂, θ̂′) ∈ Θ×Θ′ of the likelihood
function ℓX,Y using (v, v′) and (57, 58)

[Compare] If ℓY (θ̂, θ̂
′)− ℓY (θ, θ′) > ǫ, set θ ← θ̂ and θ′ ← θ̂′

and resume with E-step, see (91)

[Output] θ∗ ← θ̂, θ′∗ ← θ̂

The difference between the EM and BW algorithms lies in the
E-step, which is more efficient in the BW algorithm.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 210 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

∗BW Algorithm

BW Algorithm for HMM

Init (θ, θ′), (uy)y, ǫ > 0

��

E-step (va,b)a,b, (v
′
a,c)a,c

FOM
��

M-step (θ̂, θ̂′)

��

(θ, θ′)← (θ̂, θ̂′)

ii❘❘❘❘❘❘❘❘❘❘❘❘❘

Comp ℓY (θ̂, θ̂
′)− ℓY (θ, θ′) > ǫ

no

��

yes
55❧❧❧❧❧❧❧❧❧❧❧❧❧

stop

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 211 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

CpG Islands

CpG Islands

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 212 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

CpG Islands

CpG Islands

Region of a genome with higher frequency of CpG sites than in
the rest of the genome.

Formal definition: CpG island is a region with at least 250 bp
and a GC percentage of at least 60%.

CpG is shorthand for ”–C–phosphate–G–”, i.e., cytosine and
guanine separated by one phosphate residue on the same
single DNA strand (covalent bond).

Do not mix up with the base pairs C· · · G where C and G lie
opposite to each other on complementary strands (hydrogen
bond).

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 213 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

CpG Islands

CpG Islands

CpG islands located in the promoter region of genes can play
important role in gene silencing.

Cytosines in CpG dinucleotides can be methylated (have
methyl group CH3 attached) to form 5-methylcytosine.

The presence of multiple methylated CpG sites in CpG islands
of promoters causes stable silencing of genes.

In cancer, loss of expression of genes occurs about 10 times
more frequently by hypermethylation of promoter CpG islands
than by mutation.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 214 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

CpG Islands

CpG Islands

In computational biology, two questions about CpG islands arise.

1 Decide whether a short stretch of a genomic DNA strand lies
inside of a CpG island.

2 Find the CpG regions of a long stretch of a genomic DNA
strand.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 215 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

CpG Islands

Markov Model

Build two Markov models from a set of human DNA
sequences with a total of 48 putative CpG islands.

The + model corresponds to the regions labelled as CpG
islands, the − model is associated with the remaining regions.

The conditional probabilities for each model,

θ+XY =
c+XY

∑

Z c
+
XZ

and θ−XY =
c−XY

∑

Z c
−
XZ

, (105)

where c+XY and c−XY are the number of times the
nucleotide Y followed the nucleotide X in a CpG island and
non-island, respectively.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 216 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

CpG Islands

Markov Model

Conditional probabilities for + model and − model:

+ A C G T

A 0.180 0.274 0.426 0.120
C 0.171 0.368 0.274 0.188
G 0.161 0.339 0.375 0.125
T 0.079 0.355 0.384 0.182

− A C G T

A 0.300 0.205 0.285 0.210
C 0.322 0.298 0.078 0.302
G 0.248 0.246 0.298 0.208
T 0.177 0.239 0.292 0.292

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 217 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

CpG Islands

Markov Model – Inference (Problem 1)

Consider DNA sequence w = w1 . . . wn.

Calculate in both Markov chains the probabilities of lying
inside and outside of a CpG island:

p+(w) =
1

4
θ+w1,w2

θ+w2,w3
· · · θ+wn−1,wn

(106)

and

p−(w) =
1

4
θ−w1,w2

θ−w2,w3
· · · θ−wn−1,wn

. (107)

Use log odds ratio for discrimination:

S(w) = log
p+(w)

p−(w)
=
∑

i

log
θ+wi,wi+1

θ−wi,wi+1

. (108)

If the value of S(w) is positive, there is a high chance that
the DNA sequence represents a CpG island; otherwise, not.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 218 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

CpG Islands

Hidden Markov Model

Build hidden Markov model for entire DNA sequence that
incorporates both Markov models above.

States are relabeled such that A+, C+, G+, and T+ determine
areas of CpG island and A−, C−, G−, and T− provide areas of
non-islands.

For simplicity, assume there is a uniform conditional
probability of switching between islands and non-islands.

Let p+ and p− = 1− p+ denote the probabilities for staying
inside and outside of a CpG island, resp.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 219 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

CpG Islands

Hidden Markov Model

Conditional probabilities for HMM:

θ A+ C+ G+ T+

A+ 0.180p+ 0.274p+ 0.426p+ 0.120p+

C+ 0.171p+ 0.368p+ 0.274p+ 0.188p+

G+ 0.161p+ 0.339p+ 0.375p+ 0.125p+

T+ 0.079p+ 0.355p+ 0.384p+ 0.182p+

A−
1−p−

4
1−p−

4
1−p−

4
1−p−

4

C−
1−p−

4
1−p−

4
1−p−

4
1−p−

4

G−
1−p−

4
1−p−

4
1−p−

4
1−p−

4

T−
1−p−

4
1−p−

4
1−p−

4
1−p−

4

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 220 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

CpG Islands

Hidden Markov Model

Conditional probabilities for HMM:

θ A− C− G− T−

A+
1−p+

4
1−p+

4
1−p+

4
1−p+

4

C+
1−p+

4
1−p+

4
1−p+

4
1−p+

4

G+
1−p+

4
1−p+

4
1−p+

4
1−p+

4

T+
1−p+

4
1−p+

4
1−p+

4
1−p+

4
A− 0.300p− 0.205p− 0.285p− 0.210p−

C− 0.322p− 0.298p− 0.078p− 0.302p−

G− 0.248p− 0.246p− 0.298p− 0.208p−

T− 0.177p− 0.239p− 0.292p− 0.292p−

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 221 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

CpG Islands

Hidden Markov Model

The conditional output probabilities are all 0 and 1.

The states X+ and X− output the symbol X with certainty,

θ′X+,Y = θ′X−,Y =

{
1 if X = Y,
0 if X 6= Y.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 222 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

CpG Islands

Hidden Markov Model

There are three associated problems:

1 Given the model parameters, a DNA sequence (output), and a
state sequence. Calculate the joint probability of this pair of
sequences.

For instance, the joint probability that the DNA sequence CGCG
is generated by the state sequence C+G+C+G+ is

p(C+G+C+G+, CGCG)

=
1

8
θ′C+,CθC+,G+

θ′G+,GθG+,C+
θ′C+,CθC+,G+

θ′G+,G.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 223 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

CpG Islands

Hidden Markov Model – Inference (Problem 2)

2 Given the model parameters and a DNA sequence (output).
Find the maximum likelihood of generating the output sequence.

This problem can be tackled by the Viterbi algorithm which
calculates all explanations. When an explanation has a substring
consisting only of + states, a CpG island is predicted.

For instance, consider an output sequence and a corresponding
(hypothetic) state sequence,

A C C C A T C G C C G A T T

A− C+ C+ C+ A− T− C+ G+ C+ C+ G+ A− T− T−

This state sequence suggests that the DNA strand has two CpG

islands.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 224 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

CpG Islands

Hidden Markov Model – Learning

3 Given a sample set of DNA sequences (output), find the most
likely set of conditional probabilities. This amounts to the
estimation of the conditional probabilities of the hidden Markov
model given the data set. The EM or BW algorithm can tackle
this problem.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 225 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

Using R

Hidden Markov Model in R

The R library HMM maintained by Lin Himmelmann (2010)
provides procedures for learning and inference in hidden
Markov models.

Initialisation of HMM:

> library("HMM")

> hmm = initHMM(c("F","L"), c("h","t"),

transProbs

= matrix(c(0.8,0.2,0.2,0.8),2),

emissionProbs

= matrix(c(0.5,0.4,0.5,0.6),2))

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 226 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

Using R

Hidden Markov Model in R

The print command provides a summary of the stats of the
defined model.

> print(hmm)

$States

[1] "F" "L"

$Symbols

[1]a "h" "t"

$startProbs

F L

0.5 0.5

$transProbs

to

from F L

F 0.8 0.2

T 0.2 0.8

$emissionProbs

symbols

states h t

F 0.5 0.5

T 0.4 0.6

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 227 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

Using R

Hidden Markov Model in R

Computation of forward probabilities for a sequence of
observations:

> observe = c("h","t","t","t")

> logForwardProbabilities = forward(hmm, observe)

> print(logForwardProbabilities)

index

states 1 2 3 4

F -1.386294 -2.120264 -2.803460 -3.450556

L -1.609438 -2.071473 -2.591868 -3.141582

Computation of most probable path for a sequence of
observations by Viterbi algorithm:

> posterior = viterbi(hmm, observe)

> print(posterior)

[1] "L" "L" "L" "L"

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 228 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

Using R

Hidden Markov Model in R

Learning the parameters from observations using BW algorithm or
viterbiTraining.

> hmm = initHMM(c("F","L"), c("h","t"),

transProbs = matrix(c(0.8,0.2,0.2,0.8),2),

emissionProbs = matrix(c(0.5,0.5,0.5,0.5),2))

> a = sample(c(rep("h",100), rep("t",200)))

> observe = c(a)

> bw = baumWelch(hmm, observe, 10)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 229 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic
Inference

Viterbi Algorithm

EM Algorithm

∗BW Algorithm

CpG Islands

Using R

Using R

Hidden Markov Model in R

The print command provides a summary of the stats of the
defined model.

> print(bw$hmm)

$States

[1] "F" "L"

$Symbols

[1]a "h" "t"

$startProbs

F L

0.5 0.5

$transProbs

to

from F L

F 0.8 0.2

T 0.2 0.8

$emissionProbs

symbols

states h t

F 0.3333333 0.6666667

L 0.3333333 0.6666667

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 230 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

Part III

Sequence Alignment

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 231 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

Contents

Contents

Representation of pairwise alignment

∗Point-accepted mutation (learning)

Belief network (PHMM)

Needleman-Wunsch algorithm

Parametric sequence alignment

Polytope propagation algorithm

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 232 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

Contents

Knowledge

Representation of pairwise alignment

Pair-hidden Markov model

∗Point-accepted mutation

Parametric sequence alignment

Skills

Needleman-Wunsch algorithm

Polytope propagation algorithm

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 233 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

Contents

Pairwise Alignment

Pairwise alignment of DNA or AA sequences is a fundamental
task in computational biology.

Goal is to find homologous positions in biological sequences.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 234 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

Representation

Representation of Pairwise Alignment

Two-row representation

Edit-string representation

Graph representation

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 235 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

Representation

Representation of Pairwise Alignment

Given alphabet Σ with l symbols and ’−’ additional symbol,
called blank.

Σ′ = Σ ∪ {′−′} extended alphabet of Σ.

DNA alphabet Σ = {A, C, G, T}.
Extended DNA alphabet Σ′ = {A, C, G, T,−}.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 236 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

Representation

Representation of Pairwise Alignment

Given two strings y = y1 . . . ym and z = z1 . . . zn of lengths
m and n over alphabet Σ, respectively.

The alignment of y and z is a pair of aligned strings (u, v)
over Σ′ such that

u and v have the same length,
u and v are copies of y and z with inserted blanks,
respectively,
alignment (u, v) does not allow blanks at the same
position:

(
−
−

)
.

Two aligned strings have minimal length max{m,n} and maximal
length m+ n.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 237 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

Representation

Representation of Pairwise Alignment – Example

Given strings y = ACGTAGC and z = ACCGAGACC over DNA
alphabet.
Alignment of y and z:

A C − G − T A − G C

A C C G A G A C − C

Alignment of minimal length:

A C − G − T A G C

A C C G A G A C C

Alignment of maximal length:

A C G T A G C − − − − − − − − −
− − − − − − − A C C G A G A C C

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 238 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

Representation

Representation of Pairwise Alignment

An alignment of (y, z) can be represented by a word x over
the edit alphabet Π = {H, I,D}.
The word x is called edit string .

The letters of the edit alphabet stand for homology (H),
insertion (I), and deletion (D).

Letter I stands for insertion (indel) in the first string y.

Letter D stands for deletion (indel) in the first string y.

Letter H stands for character change (mutation or mismatch)
including the identity change (match).

Write #H, #I, and #D for the number of instances of H, I,
and D in an edit string, respectively.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 239 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

Representation

Representation of Pairwise Alignment – Example

Given strings y = ACGTAGC and z = ACCGAGACC.
An alignment of y and z including the edit string x is

x = H H I H I H H I D H
u = A C − G − T A − G C

v = A C C G A G A C − C

We have #H = 6, #I = 3, and #D = 1.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 240 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

Representation

Representation of Pairwise Alignment

Let y ∈ Σm and z ∈ Σn. A string x over edit alphabet Π
represents alignment of y and z over Σ iff the number of symbols
in the edit string x satisfies

#H +#D = m and #H +#I = n. (109)

Proof.

Given an alignment (u, v) of the pair (y, z). Then #H +#D = m
is the length of the string u and #H +#I = n is the length of the
string v.
Conversely, let x be an edit string satisfying (109). Reading the
string x from left to right reproduces accordingly an alignment of
the pair (y, z).

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 241 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

Representation

Representation of Pairwise Alignment

Let Am,n be the set of all strings over the edit alphabet Π which
satisfy (109).

D(m,n) = |Am,n| (110)

is called Delannoy number.

Proposition

Let m,n ≥ 0. The Delannoy number D(m,n) is given by the
coefficient of the monomial XmY n in the generating function

f(X,Y) =
1

1−X − Y −XY . (111)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 242 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

Representation

Proof.

Consider the expansion of the generating function

1

1−X − Y −XY =

∞∑

m=0

∞∑

n=0

am,nX
mY n, am,n ∈ Z. (112)

The coefficients are characterized by the linear recurrence

am,n = am−1,n + am,n−1 + am−1,n−1 (113)

for all m ≥ 0, n ≥ 0, m+ n ≥ 1, and initial condition

a0,0 = 1, am,−1 = 0, and a−1,n = 0 (114)

for all m,n ≥ 0.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 243 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

Representation

Proof (Cont’d).

The same recurrence holds for the cardinality of Am,n, as there are
three possibilities for last symbol of an edit string x:

x = . . . H
u = . . . ym
v = . . . zn
x = . . . D
u = . . . ym
v = . . . zn − . . . −
x = . . . I
u = . . . ym − . . . −
v = . . . zn

Thus

|Am,n| = |Am−1,n|+ |Am,n−1|+ |Am−1,n−1| (115)

for all m ≥ 0, n ≥ 0, m+ n ≥ 1.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 244 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

Representation

Proof (Cont’d).

Moreover, A0,0 has only one element, the empty string, and Am,n

is the empty set if m < 0 or n < 0.
Thus the coefficients am,n and the cardinalities |Am,n| satisfy the
same initial condition and the same recurrence. Equality follows. �

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 245 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

Representation

Representation of Pairwise Alignment

The first few Delannoy numbers D(m,n):

m\n 0 1 2 3 4 5 6 7 8
0 1 1 1 1 1 1 1 1 1
1 1 3 5 7 9 11 13 15 17
2 1 5 13 25 41 61 85 113 145
3 1 7 25 63 129 231 377 575 833
4 1 9 41 129 321 681 1, 289 2, 241 3, 649
5 1 11 61 231 681 1, 683 3, 653 7, 183 13, 073
6 1 13 85 377 1, 289 3, 653 8, 989 19, 825 40, 081
7 1 15 113 575 2, 241 7, 183 19, 825 48, 639 108, 545
8 1 17 145 833 3, 649 13, 073 40, 081 108, 545 265, 729
9 1 19 181 1, 159 5, 641 22, 363 75, 517 224, 143 598, 417

10 1 21 221 1, 561 8, 361 36, 365 134, 245 433, 905 1, 256, 465

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 246 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

Representation

Representation of Pairwise Alignment

Given strings y and z of lengths m and n over Σ, resp.
The alignment graph of strings y and z is the directed graph
G = Gm,n with node set

N(G) = {0, 1, . . . ,m} × {0, 1, . . . , n}

and edge set E(G) with

(east) edge (i, j)→ (i, j + 1) labelled I,

(south) edge (i, j)→ (i+ 1, j) labelled D, and

(south-east) edge (i, j)→ (i+ 1, j + 1) labelled H.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 247 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

Representation

Representation of Pairwise Alignment – Example

Given sequences y = ACG and z = ACC over the DNA alphabet.
The edit string x = HHDI provides the alignment

H H D I
A C G −
A C − C

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 248 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

Representation

Representation of Pairwise Alignment – Example (Cont’d)

The alignment x = HHDI can be traced by the solid path in the
alignment graph G3,3:

− A C C

− GFED@ABC0, 0
I

//❴❴❴

D

��✤
✤
✤

H
!!❈

❈❈
❈❈

❈❈
❈❈

GFED@ABC0, 1
I

//❴❴❴

D

��✤
✤
✤

H
!!❈

❈
❈

❈
❈

GFED@ABC0, 2
I

//❴❴❴

D

��✤
✤
✤

H
!!❈

❈
❈

❈
❈

GFED@ABC0, 3

D

��✤
✤
✤

A GFED@ABC1, 0
I

//❴❴❴

D

��✤
✤
✤

H
!!❈

❈
❈

❈
❈

GFED@ABC1, 1
I

//❴❴❴

D

��✤
✤
✤

H
!!❈

❈❈
❈❈

❈❈
❈❈

GFED@ABC1, 2
I

//❴❴❴

D

��✤
✤
✤

H
!!❈

❈
❈

❈
❈

GFED@ABC1, 3

D

��✤
✤
✤

C GFED@ABC2, 0
I

//❴❴❴

D

��✤
✤
✤

H
!!❈

❈
❈

❈
❈

GFED@ABC2, 1
I

//❴❴❴

D

��✤
✤
✤

H
!!❈

❈
❈

❈
❈

GFED@ABC2, 2
I

//❴❴❴

D

�� H
!!❈

❈
❈

❈
❈

GFED@ABC2, 3

D

��✤
✤
✤

G GFED@ABC3, 0
I

//❴❴❴ GFED@ABC3, 1
I

//❴❴❴ GFED@ABC3, 2
I

// GFED@ABC3, 3

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 249 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

Representation

Representation of Pairwise Alignment

The set of all alignments Am,n corresponds one-to-one with the set
of all directed paths from node (0, 0) to node (m,n) in the
alignment graph Gm,n.

Proof.

Let x be an edit string of Am,n. Then (109) holds and so x
provides a path in the graph Gm,n from (0, 0) to (m,n).

Conversely, given a path in the graph Gm,n from (0, 0) to
(m,n). The labeling of the path provides a string x over the
edit alphabet that satisfies (109). Thus the string x is an edit
string corresponding to an alignment in Am,n.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 250 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

Representation

Representation of Pairwise Alignment

Let m,n ≥ 0. Then

D(m,n) =

min{m,n}
∑

k=0

(
m+ n− k
m− k

)(
n

k

)

. (116)

Proof.

Let k ≥ 0. For k homology steps (H), there must be m− k deletion
steps (D) and n− k insertion steps (I) in order to travel from node
(0, 0) to node (m,n). These steps can be performed in any order
and thus can be described by all words of length m+ n− k with k
symbols H, m− k symbols D, and n− k symbols I. The number of
these words is given by the multinomial coefficient

(
m+ n− k

k,m− k, n− k

)

=

(
m+ n− k
m− k

)(
n

k

)

.

We have k = 0, . . . ,max{m,n}.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 251 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

∗PAM

∗PAM

Proteins and amino acids

Point-accepted mutations

PAM matrices

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 252 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

∗PAM

Proteins and Amino Acids

Protein: large biomolecule consisting of one or more long
chains of amino acid residues.

Functionality includes catalysis of metabolic reactions,
replication of DNA, transport of modules.

A protein is transcribed and translated from the nucleotide
sequence of a gene and then folds into three-dimensional
structure. Correct folding is required to provide functionality.

Proteins are linear polymers consisting of a linear sequence of
up to 20 distinct amino acids.

Amino acids are biomolecules containing an amino (-NH2)
group, a carboxyl (-COOH) group, and a side chain (R group)
which is specific to each amino acid.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 253 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

∗PAM

Tumor-Suppressor P53

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 254 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

∗PAM

Point-Accepted Mutations

Point accepted mutation (PAM) is the substitution of a single
amino acid in the AA sequence (primary structure) of a
protein by another single amino acid, which is accepted by the
process of natural selection.

This definition does not include all point mutations in the
DNA of an organism. E.g., silent mutations which do not
significantly change the phenotype of an organism are not
accepted mutations. The same holds for lethal mutations or
mutations rejected by natural selection in other ways.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 255 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

∗PAM

Point-Accepted Mutations

PAM matrix is a 20× 20 matrix P = (pij) in which the rows
and columns are labeled by the 20 standard amino acids.

Entry pij provides the conditional probability of amino acid i
being substituted by amino acid j through a sequence of one
or more point accepted mutations during a given evolutionary
interval.

There are distinct PAM matrices for different lengths of
evolutionary intervals.

The PAM matrices were invented by Margaret Dayhoff (1978)
using 1572 observed mutations in the phylogenetic tree of 71
families of closely related proteins. (Alignments of these
proteins have ≥ 85% identity resulting supposingly from single
mutation event.)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 256 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

∗PAM

Point-Accepted Mutations

Dayhoff’s procedure for the invention of the PAM matrices.

A = (aij) is a 20× 20 matrix (labeled by AAs) recording the
number of mismatches.

A is symmetric, since samples come from organisms alive
today and so the direction of a mutation cannot be
determined.

Diagonal entries of A are neglected.

N is the total number of amino acids.

Next record mutability and frequency of the occurring amino acids.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 257 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

∗PAM

Point-Accepted Mutations

Frequency of amino acid i with ni occurrences,

fi =
ni
N
. (117)

Mutability of amino acid i,

mi =
1

ni

20∑

j=1
j 6=i

aij . (118)

Relation between frequency and mutability,

Nfi = ni =
1

mi

20∑

j=1
j 6=i

aij . (119)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 258 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

∗PAM

Point-Accepted Mutations

M = (mij) is a 20× 20 mutation matrix (labeled by AAs).

Entry mij is the conditional probability that amino acid i
mutates into amino acid j.

The non-diagonal entries are defined as

mij = µaij
mi

∑20
j=1
j 6=i

aij
= µ

aij
Nfi

= µ
aij
ni
, (120)

where µ is a constant of proportionality.

Since the conditional probabilities of amino acid i to mutate
must sum up to 1, we have

mii = 1−
20∑

j=1
j 6=i

mij . (121)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 259 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

∗PAM

Point-Accepted Mutations

Relation between mutability and mutation,

mii = 1−
20∑

j=1
j 6=i

mij

= 1−
20∑

j=1
j 6=i

µ
aij
ni

= 1− µ 1

ni

20∑

j=1
j 6=i

aij

= 1− µmi. (122)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 260 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

∗PAM

Point-Accepted Mutations

The symmetry of matrix A = (aij) recording the number of
mismatches gives the relation of detailed balance:

fimij =
µ

N
aij =

µ

N
aji = fjmji. (123)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 261 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

∗PAM

Point-Accepted Mutations

Compute the values of mutation matrix M = (mij) for a
short time frame.

Then establish matrices for longer time periods using the
assumption that the mutations can be modeled by a
homogeneous Markov chain.

Base unit of time for the PAM matrices is called PAM unit
(time required for one mutation to emerge per 100 amino
acids).

Constant µ controls the proportion of amino acids left
unchanged.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 262 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

∗PAM

Point-Accepted Mutations

The mutation matrix for the PAM-1 matrix is established by
assuming that 99% of the amino acids in a sequence are
conserved. The expression nimii is the number of conserved
amino acid units of type i. Thus the total number of
conserved amino acids is given by

20∑

i=1

nimii =

20∑

i=1

ni(1− µmi) = N − µN
20∑

i=1

fimi, (124)

where ni = Nfi and
∑

i ni = N .

The value µ needs to be chosen such that 99% identical amino
acids are produced after mutation. This gives the equation

1− µ
20∑

i=1

fimi = 0.99. (125)

This µ value can be used in the mutation matrix for the
PAM-1 matrix.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 263 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

∗PAM

Point-Accepted Mutations

Consider the homogeneous Markov chain of protein mutation
whose transition matrix is given by the mutation matrix
M1 =M of the PAM-1 matrix. Then for each integral time
step n ≥ 1, the mutation matrix Mn of the PAM-n matrix is
defined by the n-th power of the mutation matrix M1,

Mn =Mn
1 . (126)

Extraploration into the future.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 264 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

∗PAM

Homogeneous Markov Chains

a //

��❄
❄❄

❄❄
❄❄

❄ a //

��❄
❄❄

❄❄
❄❄

❄ a //

��❄
❄❄

❄❄
❄❄

❄ a //

��❄
❄❄

❄❄
❄❄

❄ a . . .

b //

??⑧⑧⑧⑧⑧⑧⑧⑧
b //

??⑧⑧⑧⑧⑧⑧⑧⑧
b //

??⑧⑧⑧⑧⑧⑧⑧⑧
b //

??⑧⑧⑧⑧⑧⑧⑧⑧
b . . .

Initial probability distribution

p0 =

(
pa
pb

)

.

Transition matrix of conditional probabilities

M =

(
maa mab

mba mbb

)

.

Probability distribution after n steps,

pn =Mnp0, n ≥ 0.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 265 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

∗PAM

PAM Matrices

The PAM-n matrix is constructed from the ratio of the
probability of point accepted mutations substituting amino
acid j by amino acid i, to the probability of these amino acids
to be aligned by chance; that is, the entries of the PAM-n

matrix Pn = (p
(n)
ij) are given by

p
(n)
ij = log

fim
(n)
ij

fifj
= log

m
(n)
ij

fj
, (127)

where Mn = (m
(n)
ij) is the corresponding mutation matrix.

Note that if the alignment of two proteins using the PAM-n
matrix is considered and the proteins are related, then the
evolutionary interval separating them is the time taken for n
point accepted mutations to take place per 100 amino acids.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 266 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

∗PAM

PAM Matrices

Each PAM matrix Pn is symmetric.

Proof.

Claim that for each integer k ≥ 1, the non-diagonal entries of the
mutation matrix Mn satisfy the relation of detailed balance,

fim
(k)
ij = fjm

(k)
ji . (128)

Indeed, by (123), fimij = fjmji for the non-diagonal entries of
the mutation matrix M =M1. Suppose the assertion holds for
some integer k ≥ 1.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 267 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

∗PAM

Proof (Cont’d).

By using the expansion of the product
Mk+1 =Mk ·M =M ·Mk, we obtain

fim
(k+1)
ij = fi

20∑

l=1

m
(k)
il mlj =

20∑

l=1

(fim
(k)
il)mlj

=
20∑

l=1

(flm
(k)
li)mlj =

20∑

l=1

m
(k)
li (flmlj)

=

20∑

l=1

m
(k)
li (fjmjl) = fj

20∑

l=1

mjlm
(k)
li

= fjm
(k+1)
ji .

Thus the non-diagonal entries of the PAM-k matrix satisfy

p
(k)
ij = log

fim
(k)
ij

fifj
= log

fjm
(k)
ji

fjfi
= p

(k)
ji . (129)

�
K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 268 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

∗PAM

PAM Matrices

The choice of the PAM-n matrix for some integer n ≥ 1
requires to determine the number of mutations that have
occurred per 100 amino acids. The value n is usually not
accessible and therefore needs to be estimated.

However, if two proteins are compared, the number m of
mutated amino acids per 100 amino acids can be calculated.
These values are approximately related as follows,

m

100
= 1− e−n/100. (130)

PAM-250 matrix is the commonly used scoring matrix for
protein sequence comparison.

Another class of scoring matricxes are known as BLOSUM;
PAM-250 matrix is comparable with BLOSUM45 matrix.

BLOSUM looks directly at mutations in motifs of related
sequences, while PAM extrapolates evolutionary information
making use of closely related sequences.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 269 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

∗PAM

PAM Matrices

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 270 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

PHMM

Pair Hidden Markov Model

Given two sequences y and z over Σ of length m and n, resp.

Conditional probabilities

θa,b, a, b ∈ Σ′, and θ′x,x′ , x, x′ ∈ Π. (131)

Probability of aligned pair (u, v) of (y, z) with edit string x,

pX,Y,Z(x, u, v) =

|x|
∏

i=1

θui,vi
·
|x|−1
∏

i=1

θ′xi,xi+1
, (132)

where the initial probabilities are uniform (neglected).

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 271 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

PHMM

Pair Hidden Markov Model – Example

Pairwise alignment:

x = H H I H D H
u = A C − G G T

v = A G C G − G

Probability of alignment

pX,Y,Z(x, u, v) =

θA,Aθ
′
H,HθC,Gθ

′
H,Iθ−,Cθ

′
I,HθG,Gθ

′
H,DθG,−θ

′
D,HθT,G.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 272 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

PHMM

Pair Hidden Markov Model

Given two sequences y and z over Σ of length m and n, resp.

The probability of the sequences y and z is given by the
marginal probability

pY,Z(y, z) =
∑

x∈Am,n

pX,Y,Z(x, y
(x), z(x)) (133)

where (y(x), z(x)) is the alignment of the strings (y, z) given
by edit string x ∈ Am,n.

Am,n;i denotes the set of all edit strings in Am,n of length i,

pY,Z(y, z) =

m+n∑

i=max{m,n}

∑

x∈Am,n;i

pX,Y,Z(x, y
(x), z(x)) (134)

Runtime O((m+ n)D(m,n)), since Am,n has D(m,n)
elements, x has length ≤ m+ n, and pX,Y,Z(x, y

(x), z(x)) has
≤ 2(m+ n) factors.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 273 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

Marginal Probabilities

Marginal Probabilities

Computation of marginal probabilites

Sum-product decomposition of marginal probabilities

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 274 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

Marginal Probabilities

Marginal Probabilities

Given strings y and z of lengths m and n over Σ, resp.

The probability of y and z is given by the marginal probability

pY,Z(y, z) =
∑

x∈Am,n

pX,Y,Z(x, y
(x), z(x)) (135)

where (y(x), z(x)) is the alignment of the strings (y, z) given
by edit string x ∈ Am,n.

y≤i denotes the prefix y1 . . . yi of y of length i, 1 ≤ i ≤ m,

z≤j denotes the prefix z1 . . . zj of z of length j, 1 ≤ j ≤ n.
M [i, j, x] is the probability of observing the aligned pair of
prefixes y≤i and z≤j and x is the last symbol in the edit
string.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 275 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

Marginal Probabilities

Sum-Product Decomposition

Decomposition of marginal probability pY,Z(y, z):

pY,Z(y, z) =
∑

x∈Π

M [m,n, x], (136)

where

M [i, j, I] = θ−,zj ·
∑

x∈Π

θ′x,I ·M [i, j − 1, x], (137)

M [i, j,D] = θyi,− ·
∑

x∈Π

θ′x,D ·M [i− 1, j, x], (138)

M [i, j,H] = θyi,zj ·
∑

x∈Π

θ′x,H ·M [i− 1, j − 1, x]. (139)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 276 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

Marginal Probabilities

Sum-Product Decomposition

The alignment of the prefixes y≤i and z≤j :

h = . . . I
y≤i = . . . yi − . . . −
z≤j = . . . zj
h = . . . D
y≤i = . . . yi
z≤j = . . . zj − . . . −
h = . . . H
y≤i = . . . yi
z≤j = . . . zj

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 277 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

Marginal Probabilities

Sum-Product Decomposition

Initial conditions:

M [0, 0, x] = 1, x ∈ Π, (140)

M [0, j, x] = 0, x ∈ {H,D}, 1 ≤ j ≤ n, (141)

M [i, 0, x] = 0, x ∈ {H, I}, 1 ≤ i ≤ m, (142)

M [0, j, I] = M [0, j − 1, I] · θ′I,I · θ−,zj , (143)

M [i, 0, D] = M [i− 1, 0, D] · θ′D,D · θyi,−. (144)

Runtime O(mn), since the table M has O(mn) entries and each
entry is computed in a constant number of steps.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 278 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

Marginal Probabilities

Sum-Product Decomposition - Example (Maple)

For y = ACG and z = ACC we obtain pY,Z(y, z) as

20*tC_^2*t_A*t_C*t_G*tA_

+ 6*tC_^2*t_G*t_C*tAA

+ 3*tC_^2*t_G*t_A*tCA

+ tC_^2*t_A*t_C*tGA

+ 4*tC_*t_G*t_C*tA_*tAC

+ 7*tC_*t_G*tCC*t_A*tA_

+ 3*tC_*t_G*tCC*tAA

+ 9*tC_*tGC*t_A*t_C*tA_

+ 3*tC_*tGC*t_C*tAA

+ 2*t_C*tGC*tA_*tCA

+ t_G*tCC*tA_*tAC

+ tGC*t_C*tA_*tAC

+ 2*tGC*tCC*t_A*tA_

+ tGC*tCC*tAA.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 279 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

Marginal Probabilities

Sum-Product Decomposition - Example (Cont’d)

The expression pY,Z(y, z) has 14 terms and each term stands
for an alignment.

The total number of alignments is D(3, 3) = 63 (equals the
sum of coefficients).

For instance, the term 2 ∗ C ∗ GC ∗ A ∗ CAa stands for the
alignments

A C G −
− A C C

and
A C − G

− A C C

aCommuting variables.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 280 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

Needleman-Wunsch Algorithm

Needleman-Wunsch (NW) Algorithm

Tropicalization of sum-product decomposition

Needleman-Wunsch algorithm (dynamic programming)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 281 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

Needleman-Wunsch Algorithm

Tropicalization of Sum-Product Decomposition

Given strings y and z of lengths m and n over Σ, respectively.

The objective is to find one (or all) edit strings x ∈ Am,n

which maximize the likelihood

pX|Y,Z(x|y, z) =
pX,Y,Z(x, y, z)

pY,Z(y, z)
. (145)

Since the observed sequences y and z are fixed, the likelihood
pX|Y,Z(x|y, z) is directly proportional to the joint probability
pX,Y,Z(x, y, z) provided that pY,Z(y, z) > 0.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 282 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

Needleman-Wunsch Algorithm

Tropicalization of Sum-Product Decomposition

Let pY,Z(y, z) > 0. The aim is to find the state sequences
(edit strings) x̄ ∈ Am,n with

x̄ = argmaxx∈Am,n
{pX|Y,Z(x|y(x), z(x))} (146)

= argmaxx∈Am,n
{pX,Y,Z(x, y

(x), z(x))}, (147)

where (y(x), z(x)) is the alignment of the strings (y, z) given
by the edit string x ∈ Am,n.

Each optimal edit string x̄ is called an explanation of the
observed pair (y, z). The explanations can be found by
tropicalization.

Tropicalization: Replace each sum by tropial sum and each
product by tropical product.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 283 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

Needleman-Wunsch Algorithm

Tropicalization of Sum-Product Decomposition

Put w(y, z) = − log pY,Z(y, z) and
w(x, y, z) = − log pX,Y,Z(x, y, z).

Then tropicalization of (133) gives

w(y, z) =
⊕

x∈Am,n

w(x, y(x), z(x)). (148)

Thus the tropicalization of the marginal distribution
pY,Z(y, z) solves the alignment problem:

w(y, z) = min
x∈Am,n

w(x, y(x), z(x)). (149)

The explanations x̄ are obtained by evaluation in the tropical
algebra,

x̄ = argminx∈Am,n
{w(x, y(x), z(x))}. (150)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 284 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

Needleman-Wunsch Algorithm

Tropicalization of Sum-Product Decomposition

Write

M [i, j, x] := − logM [i, j, x] (151)

for 1 ≤ i ≤ m, 1 ≤ j ≤ n, and x ∈ Π.

Put

u(a, b) = − log θa,b, a, b ∈ Σ′, (152)

v(x, x′) = − log θ′x,x′ x, x′ ∈ Π. (153)

By tropicalization of (136),

w(y, z) =
⊕

x∈Π

M [m,n, x]. (154)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 285 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

Needleman-Wunsch Algorithm

Tropicalization of Sum-Product Decomposition

M [i, j, I] = u(−, zj)⊙
⊕

x∈Π

v(x, I)⊙M [i, j − 1, x], (155)

M [i, j,D] = u(yi,−)⊙
⊕

x∈Π

v(x,D)⊙M [i− 1, j, x], (156)

M [i, j,H] = u(yi, zj)⊙
⊕

x∈Π

v(x,H)⊙M [i− 1, j − 1, x],(157)

and

M [0, 0, x] = 0, x ∈ Π, (158)

M [0, j, x] = ∞, x ∈ {H,D}, 1 ≤ j ≤ n, (159)

M [i, 0, x] = ∞, x ∈ {H, I}, 1 ≤ i ≤ m, (160)

M [0, j, I] = M [0, j − 1, I]⊙ v(I, I)⊙ u(−, zj), (161)

M [i, 0, D] = M [i− 1, 0, D]⊙ v(D,D)⊙ v(yi,−). (162)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 286 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

Needleman-Wunsch Algorithm

Needleman-Wunsch Algorithm

The NW algorithm is a special case of this sum-product
algorithm neglecting the conditional probabilities
corresponding to the edit alphabet.

Runtime O(mn), since the table M has O(mn) entries and
each entry is computed in a constant number of steps.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 287 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

Needleman-Wunsch Algorithm

Needleman-Wunsch Algorithm

Require: Strings y ∈ Σm, z ∈ Σn, weights u(a, b) for a, b ∈ Σ′

Ensure: Edit string x ∈ Am,n with minimal weight w(y(x), z(x))
M ← matrix[0..m, 0..n]
M [0, 0]← 0
for i← 1 to m do

M [i, 0]←M [i− 1, 0] + u(yi,−)
end for

for j ← 1 to n do

M [0, j]←M [0, j − 1] + u(−, zj)
end for

for i← 1 to m do

for j ← 1 to n do

M [i, j]← min{M [i− 1, j − 1] + u(yi, zj),M [i− 1, j] +
u(yi,−),M [i, j − 1] + u(−, zj)}
Color the edges directed to (i, j) that attain the minimum

end for

end for

Trace a path P in the backward direction from (m,n) to (0, 0)
by following an arbitrary sequence of colored edges.
Output the edit string x of the path P in forward direction.K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 288 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

Needleman-Wunsch Algorithm

Needleman-Wunsch Algorithm

j − 1 j

i− 1 M(i− 1, j − 1)

u(yi,zj)

''❖❖
❖❖❖

❖❖❖
❖❖❖

❖❖❖
M(i− 1, j)

u(yi,−)

��

i M(i, j − 1)
u(−,zj) // M(i, j)

M [i, j] is the minimum of

M [i− 1, j − 1] + u(yi, zj),

M [i− 1, j] + u(yi,−),
M [i, j − 1] + u(−, zj).

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 289 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

Needleman-Wunsch Algorithm

Needleman-Wunsch Algorithm – Example

Given strings y = ACG and z = ACC.

Scores: matches −3, mismatches 1, indels 2.

Optimal alignment with score −5:

x = H H H
y(x) = A C G

z(x) = A C C

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 290 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

Needleman-Wunsch Algorithm

Needleman-Wunsch Algorithm – Example (Cont’d)

Alignment graph G3,3: The nodes exhibit the values of the
table M and the colored edges are indicated by solid lines.

− A C C

− ?>=<89:;0
2

//

2

�� −3
 ❅

❅❅
❅❅

❅❅
❅❅

?>=<89:;2
2

//❴❴❴❴

2

��✤
✤
✤

1
!!❈

❈
❈

❈
❈

?>=<89:;4
2

//❴❴❴❴

2

��✤
✤
✤

1
!!❈

❈
❈

❈
❈

?>=<89:;6

2

��✤
✤
✤

A ?>=<89:;2
2

//❴❴❴

2

�� 1
 ❅

❅
❅

❅
❅

GFED@ABC−3
2

//

2

�� −3
!!❈

❈❈
❈❈

❈❈
❈❈

GFED@ABC−1
2

//

2

��✤
✤
✤

−3
!!❈

❈❈
❈❈

❈❈
❈❈

?>=<89:;1

2

��✤
✤
✤

C ?>=<89:;4
2

//❴❴❴

2

�� 1
 ❅

❅
❅

❅
❅

GFED@ABC−1
2

//❴❴❴

2

�� 1
!!❈

❈
❈

❈
❈

GFED@ABC−6
2

//

2

�� 1
!!❈

❈❈
❈❈

❈❈
❈❈

GFED@ABC−4
2

��✤
✤
✤

G ?>=<89:;6
2

//❴❴❴ ?>=<89:;1
2

//❴❴❴ GFED@ABC−4
2

//❴❴❴ GFED@ABC−5
K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 291 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

Parametric Alignment

Parametric Sequence Alignment

Polytope algebra

Newton polytopes

Polytope propagation algorithm

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 292 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

Parametric Alignment

Parametric Sequence Alignment

Given strings y and z of lengths m and n over Σ, respectively.

Goal is to find all optimal alignments of y and z by varying
over a large class of scoring schemes.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 293 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

Parametric Alignment

Polytopes

A subset C of Rn is convex if for each pair of distinct points a, b
in C, the closed line segment with endpoints a and b is fully
contained in C.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 294 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

Parametric Alignment

Polytopes

The convex hull of a finite set S = {s1, . . . , sm} of points
in R

n is the set of all convex combinations of its points,

conv(S) =

{
m∑

i=1

λisi | ∀i : λi ≥ 0,

m∑

i=1

λi = 1

}

. (163)

A bounded convex polytope is the convex hull of a finite set
of points (V-representation), or the intersection of a finite
number of halfspaces (H-representation).

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 295 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

Parametric Alignment

Affine Subspaces

An affine subspace of Rn is a subset A of Rn such that if
s1, . . . , sm ∈ A, m ≥ 0, then λ1s1 + . . .+ λmsm ∈ A
whenever λ1, . . . , λm ∈ R with

∑

i λi = 1.

Each affine subspace A is the translate of a unique linear
subspace U of Rn, i.e.,

A = v + U = {v + u | u ∈ U} (164)

for some v ∈ R
n.

The dimension of an affine subspace A of Rn is the dimension
of the unique linear subspace U of Rn with A = v + U ,
v ∈ R

n.

Example: affine lines versus lines through origin (subspaces of
dimension 1).

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 296 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

Parametric Alignment

Affine Subspaces

The affine hull of a set S ⊆ R
n is the smallest affine subspace

containing S,

{λ1s1 + . . .+ λmsm | m ≥ 0, si ∈ S, λi ∈ R,
∑

i

λi = 1}.(165)

The dimension of a polytope in R
n is the dimension of its

affine hull in R
n, i.e., the smallest affine subspace in R

n

containing the polytope.

A point has dimension 0, a line segment has dimension 1, a
convex polygon has dimension 2, and a convex polyhedron
has dimension 3.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 297 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

Parametric Alignment

Polytopes

A face of a convex polytope is a nonempty intersection of the
polytope with a halfspace such that all interior points of the
polytope lie on one side of the halfspace.

If the polytope is d-dimensional, its facets are its
(d− 1)-dimensional faces, its vertices are the 0-dimensional
faces, and its edges are the 1-dimensional faces.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 298 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

Parametric Alignment

Cones

A cone in R
n is a subset of Rn such that if s1, . . . , sm ∈ C,

m ≥ 0, then λ1s1 + . . .+ λmsm ∈ C whenever λi ≥ 0,
1 ≤ i ≤ m.

The positive hull of a set S ⊆ R
n is the smallest cone

containing S,

{λ1s1 + . . .+ λmsm | m ≥ 0, si ∈ S, λi ≥ 0}. (166)

The positive hull of a set S ⊆ R
n is convex.

Examples of cones are the half-lines (rays) in R, the
quadrants in R

2, the octants in R
3, and the half-spaces

(w.r.t. hyperplanes).

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 299 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

Parametric Alignment

Polytopes

A fan in R
n is a family F = {C1, C2, . . . , Cm} of nonempty cones

with the following properties:

Each non-empty face of a cone in F is also a cone in F .
The intersection of any two cones in F is a face of both.

A fan F in R
n is complete if the union

⋃F = C1 ∪ . . . ∪ Cm

equals Rn.
A fan F in R

n is pointed if {0} is a cone in F and therefore a face
of each cone in F .

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 300 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

Parametric Alignment

Polytopes – Example

The (pointed) fan in R
2 has m = 11 cones, five of which are

2-dimensional, five (half-rays) are 1-dimensional and one is
0-dimensional (intersection point).

❄❄❄❄❄❄❄❄

⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧

⑧⑧⑧⑧⑧⑧⑧⑧

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 301 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

Parametric Alignment

Linear Programming

Linear programming is a method to minimize a linear function over
a convex set.
The canonical form of linear program in R

n:

min cTx
s.t. Ax ≥ b
and x ≥ 0

(167)

where A ∈ R
m×n, b ∈ R

m, and c ∈ R
n are given and x is the

vector of variables.

Objective function R
n → R : x 7→ cTx = 〈c, x〉 is minimized

over convex set P = {x ∈ R
n | Ax ≥ b, x ≥ 0}.

Minimal vectors x ∈ R
n form a face F of P .

Normal cone NP (F) consists of all vectors c ∈ R
n such that

the minimum is attained at F .

Inverse problem of linear programming.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 302 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

Parametric Alignment

Linear Programming - Example

Vector c is perpendicular to the hyperplanes.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 303 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

Parametric Alignment

Polytopes

Let P be a polytope in R
n and let F be a face of P .

The normal cone NP (F) of P at F is defined such that for each
w ∈ R

n,

w ∈ NP (F) ⇐⇒ F is the set of all points in R
n

at which P → R : x 7→ 〈x,w〉 (168)

attains the minimum.

In particular, if F = {v} is a vertex of P , its normal cone NP (v)
consists of all points w such that the linear maps
P → R : x 7→ 〈x,w〉 attain the minimum at the point v.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 304 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

Parametric Alignment

Polytopes

Let P be a polytope in R
n and let F be a face of P . The normal

cone NP (F) is a cone in R
n with dimension

dimNP (F) = n− dimF. (169)

Proof.

For each w ∈ R
n, let fw : P → R : x 7→ 〈x,w〉 be the scalar

product with fixed w. Let v, w ∈ R
n such that the linear mappings

fv and fw attain the minimum at F , and let λ ≥ 0 and µ ≥ 0.
Then the linear mapping fλv+µw attains the minimum at F and so
λv + µw also belongs to NP (F). Hence, NP (F) is a cone.

Let F be a k-face. Then the face F is determined by n− k linearly
independent linear equations and the cone NP (F) is determined by
k linearly independent linear equations. Hence, the dimension
formula holds.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 305 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

Parametric Alignment

Polytopes

The collection of all non-empty normal cones NP (F), as F runs
over all faces of P , is called the normal fan of P denoted by N (P).

Let P be a polytope of Rn. The normal fan N (P) is a complete
fan of Rn.

Proof.

Let w ∈ R
n. If we put F = P ∩HP,w with intersecting hyperplane

HP,w, then w ∈ NP (F). It follows that the normal cones are
non-empty and their union is Rn.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 306 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

Parametric Alignment

Polytopes – Example

A triangle and its normal cones:

✑
✑
✑

✑
✑
✑

✑✑

❆
❆
❆

❆
❆

v w

u

✑
✑
✑

✑
✑
✑

✑✑

❆
❆
❆

❆
❆

❏
❏

NP (v)
✟✟✟

NP (w)

❏
❏

✟✟✟
NP (u)

NP (vw)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 307 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

Parametric Alignment

Polytopes – Example (Cont’d)

The normal fan of the above triangle:

❏
❏

❏
❏❏

✟✟✟✟✟✟

NP (vw)

NP (u)

NP (v) NP (w)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 308 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

Parametric Alignment

Polytope Algebra

Let n ≥ 1. The polytope algebra in R
n is a triple (Pn,⊕,⊙)

consisting of the set Pn of all bounded convex polytopes in R
n and

two binary operations:

Addition:

P ⊕Q = conv(P ∪Q), (170)

Multiplication (Minkowski sum):

P ⊙Q = {p+ q | p ∈ P, q ∈ Q}. (171)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 309 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

Parametric Alignment

Polytope Algebra – Example

Two non-collinear line segments P and Q in R
2 and their sum

P ⊕Q and product P ⊙Q:

Q

❋
❋

❋
❋

❋
❋

❋
❋

❋
❋

❋

Q

❴❴❴❴❴❴❴❴❴

P ⊕Q P ⊙Q

P P

✤
✤
✤
✤
✤
✤
✤

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 310 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

Parametric Alignment

Polytope Algebra

The polytope algebra (Pn,⊕,⊙) on R
n is an idempotent

commutative semiring.

Proof.

(Pn,⊕) is a commutative monoid with identity element ∅.
(Pn,⊙) is a commutative monoid with identity element {0}.
A convex set does not change if its convex hull is taken. Thus
the addition of polytopes is idempotent.

The multiplication with the empty set annihilates Pn.

In view of distributivity, take p ∈ P , q ∈ Q, and r ∈ R. Then
for each 0 ≤ λ ≤ 1,

p+ (λq + (1− λ)r) = λ(p+ q) + (1− λ)(p+ r).

The left-hand side is a point in P ⊙ (Q⊕R) and the
right-hand side is a point in (P ⊙Q)⊕ (P ⊙R). �

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 311 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

Parametric Alignment

Polytope Algebra – Example

Consider the polytope algebra P1 in R
1.

The elements of P1 are the line segments

[a, b] = {λa+ (1− λ)b | 0 ≤ λ ≤ 1}, a, b ∈ R. (172)

Sum of two line segments [a, b] and [c, d],

[a, b]⊕ [c, d] = [min{a, c},max{b, d}]. (173)

Product of two line segments [a, b] and [c, d],

[a, b]⊙ [c, d] = [a+ c, b+ d]. (174)

The polytope algebra in R
n can be viewed as a natural

higher-dimensional generalization of the tropical algebra.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 312 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

Parametric Alignment

Polytope algebra

The mapping f : P1 → R ∪ {∞} : [a, b] 7→ a is an epimorphism
from the polytope algebra P1 onto the tropical algebra.

Proof.

The mapping is well-defined and we have f(∅) =∞ and
f({0}) = f([0, 0]) = 0.

For any two line segments [a, b] and [c, d] in P1, we have

f([a, b]⊕ [c, d]) = f([min{a, c},max{b, d}]) = min{a, c}
= a⊕ c = f([a, b])⊕ f([c, d])

and

f([a, b]⊙ [c, d]) = f([a+ c, b+ d]) = a+ c

= a⊙ c = f([a, b])⊙ f([c, d]).

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 313 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

Parametric Alignment

Newton Polytopes

Let K[X1, . . . , Xn] be the polynomial ring in the unknowns
X1, . . . , Xn over the field K.
Each polynomial f in K[X1, . . . , Xn] has the form

f =
∑

α∈Nn
0

cαX
α, (175)

where the sum is finite and each involved term cαX
α consists of

the product of coefficient cα ∈ K
∗ = K \ {0} and monomial Xα in

the variables X1, . . . , Xn,

Xα = Xα1
1 · · ·Xαn

n . (176)

The degree of monomial Xα is |α| = α1 + . . .+ αn.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 314 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

Parametric Alignment

Newton Polytopes

The Newton polytope of polynomial

f =
∑

α∈Nn
0

cαX
α (177)

is the convex polytope

NP(f) = conv({α ∈ N
n
0 | cα 6= 0}). (178)

The Newton polytope is generated by the exponents of the
monomials involved in the polynomial measuring shape or
sparsity of the polynomial.

The actual values of the coefficients cα do not matter in the
definition of the Newton polytope.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 315 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

Parametric Alignment

Newton Polytopes – Example

Each polynomial in K[X,Y] of the form

f = aXY + bX2 + cY 3 + d,

where a, b, c, d ∈ K
∗ = K \ {0}, has the Newton polytope

P = conv({(1, 1), (2, 0), (0, 3), (0, 0)}),

since

XY = X1
1X

1
2 = X(1,1), X2 = X2

1X
0
2 = X(2,0),

Y 3 = X0
1X

3
2 = X(0,3), 1 = X0

1X
0
2 = X(0,0).

This is a triangle with vertices (2, 0), (0, 3), (0, 0) and interior
node (1, 1).

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 316 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

Parametric Alignment

Newton Polytopes

Let f and g be polynomials in K[X1, . . . , Xn]. Then

NP(f · g) = NP(f)⊙NP(g) (179)

and

NP(f + g) ⊆ NP(f)⊕NP(g), (180)

where equality holds if all coefficients in the polynomials f and g
are positive (i.e. terms cannot cancel).

(2X2Y + 5XY) + (3XY 2 − 5XY) = 2X2 + 3XY 2.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 317 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

Parametric Alignment

Newton Polytopes – Example

In R[X,Y] consider the polynomials

f = Xp + 1 and g = Y q + 1,

where p and q are positive integers. The corresponding Newton
polytopes are line segments in R

2 given by

NP(f) = conv({(0, 0), (p, 0)}) = {(x, 0) | 0 ≤ x ≤ p}

and

NP(g) = conv({(0, 0), (0, q)}) = {(0, y) | 0 ≤ y ≤ q}.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 318 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

Parametric Alignment

Newton Polytopes – Example (Cont’d)

The sum f + g has the Newton polytope

NP(f + g) = NP(Xp + Y q + 2)

= conv({(p, 0), (0, q), (0, 0)}),

which is a triangle with vertices (0, 0), (p, 0), and (0, q).

The product f · g has the Newton polytope

NP(f · g) = NP(XpY q +Xp + Y q + 1)

= conv({(p, q), (p, 0), (0, q), (0, 0)}),

which is a rectangle with vertices (0, 0), (p, 0), (0, q), and (p, q).

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 319 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

Parametric Alignment

Newton Polytopes – Example (Cont’d)

NP(g)

❏
❏

❏
❏

❏
❏

❏
❏

❏
❏

❏
❏

❏

NP(g)

❴❴❴❴❴❴❴❴❴❴

NP(f + g) NP(f · g)

NP(f) NP(f)

✤
✤
✤
✤
✤
✤
✤

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 320 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

Parametric Alignment

Polytope Propagation

Given strings y and z of lengths m and n over alphabet Σ,
resp.

The conditional probabilities

θa,b, a, b ∈ Σ′, and θ′x,x′ , x, x′ ∈ Π, (181)

are the unknowns of the polynomial ring

R[θ, θ′] = R[{θa,b | a, b ∈ Σ′}, {θ′x,x′ | x, x′ ∈ Π}]. (182)

Note that (a, b) 6= (−,−).
Each marginal probability f(y, z) is then a polynomial in this
ring.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 321 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

Parametric Alignment

Polytope Propagation

Each polynomial f(y, z) is assigned its Newton polytope
in Pn, where n denotes the number of unknowns in R[θ, θ′];
i.e.,

n = (|Σ′|2 − 1) · |Π|2. (183)

Newton polytope NP(f(y, z)) of the marginal probability
f(y, z) in the polytope algebra Pn is evaluated by
polytopization of (136) instead of tropicalization (154):

NP(f(y, z)) =
⊕

x∈Π

P(m,n, x). (184)

Polytopization: Replace each sum by polytope sum and each
product by polytope product.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 322 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

Parametric Alignment

Polytope Propagation

P(i, j, I) = NP(θ−,zj)⊙
⊕

x

P(i, j − 1, x)⊙NP(θ′x,I), (185)

P(i, j,D) = NP(θyi,−)⊙
⊕

x

P(i− 1, j, x)⊙NP(θ′x,D), (186)

P(i, j,H) = (187)

NP(θyi,zj)⊙
⊕

x

P(i− 1, j − 1, x)⊙NP(θ′x,H),

and

P(0, 0, x) = {0}, x ∈ Π, (188)

P(0, j, x) = ∅, x ∈ {H,D}, 1 ≤ j ≤ n, (189)

P(i, 0, x) = ∅, x ∈ {H, I}, 1 ≤ i ≤ m, (190)

P(0, j, I) = P(0, j − 1, I)⊙NP(θ′I,I)⊙NP(θ−,zj), (191)

P(i, 0, D) = P(i− 1, 0, D)⊙NP(θ′D,D)⊙NP(θyi,−).(192)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 323 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

Parametric Alignment

∗Statistical Inference

The normal cones of the polytope NP(f(y, z)) corresponding to
the vertices provide the explanations of the marginal
probability f(y, z).

Idea

Consider density function with parameters

g(θ) =

M∑

i=1

θvi1
1 · · · θvid

d , (193)

where vi = (vi1, . . . , vid) ∈ N
d
0, 1 ≤ i ≤M .

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 324 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

Parametric Alignment

Statistical Inference

For fixed value of θ ∈ R
d
>0, the problem is to find a term

θ
vj1

1 · · · θvjd

d , 1 ≤ j ≤M , in the expression g(θ) with maximum
value

j = argmaxi{θvi1
1 · · · θvid

d }. (194)

Each such solution is called an explanation of the model. Putting
wi = − log θi and w = (w1, . . . , wd) gives

− log(θvi1
1 · · · θvid

d) = −[vi1 log(θ1) + · · ·+ vid log(θd)]

= 〈vi, w〉. (195)

This amounts to finding a vector vj that minimizes the linear
expression

〈vj , w〉 =
d∑

i=1

wivji, 1 ≤ j ≤M. (196)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 325 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

Parametric Alignment

Statistical Inference

This minimization problem is equivalent to the linear programming
problem

min〈x,w〉.
s.t. x ∈ NP(g)

(197)

Indeed, the Newton polytope NP(g) of the polynomial g is the
convex hull of the points vi, 1 ≤ i ≤M , and the vertices of this
polytope form a subset of these points. But the minimal value of a
linear functional x 7→ 〈x,w〉 over a polytope is attained at a vertex
of the polytope.

Proposition

For a fixed parameter w, the problem of solving the statistical
inference problem is equivalent to the linear programming problem
of minimizing the linear functional x 7→ 〈x,w〉 over the Newton
polytope NP(g), see (197).

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 326 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

Parametric Alignment

Statistical Inference

For varying values of θ ∈ R
d, find the set of parameters w for

which the vertex vj gives the explanation.
That is, find all points w such that the linear functional x 7→ 〈x,w〉
attains its minimum at the point vj .
This set is given by NNP(g)(vj), the normal cone of the polytope
NP(g) at the vertex vj .

Proposition

The set of all parameters w for which the vertex vj provides the
explanation equals the normal cone of the polytope NP(g) at the
vertex vj .

The normal cones associated with the vertices of the Newton
polytope NP(g) are part of the normal fan NNP(g) of the Newton
polytope NP(g). The normal fan provides a decomposition of the
parameter space into regions, but only the regions corresponding to
the vertices of the polytope are relevant for statistical inference.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 327 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

Parametric Alignment

Polytope Propagation – Example

Simplified pair-hidden Markov model for alignment of DNA
sequences with two parameters (unknowns) X and Y ,

θa,a = X, a ∈ {A, C, G, T},
θa,b = Y, a, b ∈ {A, C, G, T,−}, a 6= b, (a, b) 6= (−,−),
θ′x,x′ = 1, x, x′ ∈ {H, I,D}.

Given DNA sequences y and z of length m and n, resp.
Viewing X and Y as unknowns over R gives
f(y, z) ∈ R[X,Y].

Basic Newton polytopes

PX = NP(X) = {(1, 0)}, X = X1
1X

0
2 = X(1,0),

and

PY = NP(Y) = {(0, 1)}, Y = X0
1X

1
2 = X(0,1).

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 328 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

Parametric Alignment

Polytope Propagation – Example (Cont’d)

Polytope propagation algorithm for evaluation of marginal
probability f(y, z) in P2:

NP(f(y, z)) = P(m,n),

where

P(i, j) =
(
P(i− 1, j − 1)⊙NP(θyi,zj)

)
⊕ (P(i− 1, j)⊙ PY)

⊕ (P(i, j − 1)⊙ PY)

and

P(0, 0) = {(0, 0)},
P(i, 0) = P(i− 1, 0)⊙ PY ,

P(0, j) = P(0, j − 1)⊙ PY .

P(i, 0) and P(0, j) are translates of polytopes by unit vectors,
P(i, j) is given by the convex hull of three translates of polytopes
by unit vectors, 1 ≤ i ≤ m and 1 ≤ j ≤ n.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 329 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

Parametric Alignment

Polytope Propagation – Example (Cont’d)

j − 1 j

i− 1 P(i− 1, j − 1)

PX/PY

''❖❖
❖❖❖

❖❖❖
❖❖❖

❖❖
P(i− 1, j)

PY

��

i P(i, j − 1)
PY // P(i, j)

P(i, j) =
(
P(i− 1, j − 1)⊙NP(θyi,zj)

)

⊕ (P(i− 1, j)⊙ PY)

⊕ (P(i, j − 1)⊙ PY) .

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 330 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

Parametric Alignment

Polytope Propagation – Example (Cont’d)

More concretely,

NP(f(y, z)) = P(m,n),

where

P(i, j) = conv [P(i, j − 1) + {(0, 1)},

P(i− 1, j − 1) +

{
{(1, 0)} if yi = zj ,
{(0, 1)} otherwise,

P(i− 1, j) + {(0, 1)}] ,

and

P(0, 0) = {(0, 0)},
P(i, 0) = P(i− 1, 0) + {(0, 1)},
P(0, j) = P(0, j − 1) + {(0, 1)}.

. . .+ {(0, 1)} shift north; . . .+ {(1, 0)} shift east.
K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 331 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

Parametric Alignment

Polytope Propagation – Example (Cont’d)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 332 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

Parametric Alignment

Polytope Propagation – Example (Cont’d)

T

✲

✻
s

✲

✻
s

s

❝

A

✲

✻

❝

✲

✻

s

s

−
−

✲

✻

s

T

✲

✻

s

C

✲

✻
s

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 333 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

Parametric Alignment

Polytope Propagation – Example (Cont’d)

Resulting polytope P = NP(f(ATCG, TCGG)):

✲

✻

❆
❆

❆
❆

❆
❆

❆
❆

❆
❆

❆
❆

❍❍❍❍❆
❆
❆
❆

0 x

y

P

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 334 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

Parametric Alignment

Polytope Propagation – Example (Cont’d)

The normal cones of the polytope P = NP(f(ATCG, TCGG)) given
by the vertices:

❆
❆
❆

❆
❆

❆
❆

❆
❆
❆

❆
❆

❍❍❍❍❆
❆

❆
❆

✟✟✟✟✟✟

✁
✁
✁

✁
✁
✁

✟✟✟✟✟✟

✁
✁

✁
✁

✁
✁

✟✟✟✟✟✟

✟✟✟✟✟✟

P

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 335 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

Parametric Alignment

Polytope Propagation – Example (Cont’d)

Normal fan of the polytope NP(f(ATCG, TCGG)):

✲

✻

✟✟✟✟✟✟

✟✟✟✟✟✟

✁
✁

✁
✁

✁
✁

0

−x+ 2y = 0

−2x+ y = 0

−x+ 2y = 0

y = 0

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 336 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

Parametric Alignment

Polytope Propagation – Example (Cont’d)

The normal cones of the vertices yield the optimal sequence
alignments.

For instance, the cone of the vertex (3, 2) is given by the
intersection of two halfspaces defined by the inequalities
−X + 2Y < 0 and −2X + Y < 0.

Take an arbitrary point in this cone, say (1, 0), and calculate
an optimal alignment for the associated scoring scheme with
X = 1 (matches) and Y = 0 (mismatches and indels) using
the Needleman-Wunsch algorithm.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 337 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

Parametric Alignment

Polytope Propagation – Example (Cont’d)

The optimal alignments of the sequences ATCG and TCGG:

vertex normal cone scoring alignment

(0, 8) −x+ 2y > 0 (0,1)
A T C − G

− T C G G

y > 0

(0, 5) −x+ 2y > 0 (-3,-1)
A T C − G

− T C G G

y < 0

(1, 3) −x+ 2y < 0 (-2,-2)
A T C G − − − −
− − − − T C G G

−2x+ y > 0

(3, 2) −x+ 2y < 0 (1,0)
A T C G − −
− − T C G G

−2x+ y < 0

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 338 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Representation

∗PAM

PHMM

Marginal
Probabilities

Needleman-
Wunsch
Algorithm

Parametric
Alignment

Parametric Alignment

Dynamic Programming

The Needleman-Wunsch and polytope propagation algorithms
follow the principle of dynamic programming (Bellman, 1955).
A dynamic programming algorithm consists of

forward algorithm evaluating the data, and

backward algorithm providing the optimal policies.

A dynamic programming algorithm solves not only the original
problem but also each subproblem.
Here the subproblems correspond to the alignments of the prefixes
y≤i and z≤j of the given strings y and z, resp,

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 339 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Part IV

Statistical Inference and Learning

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 340 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Contents

Contents

Näıve Bayesian classification

Data fitting

Clustering and classification

Approximate Bayesian computation

Support vector machines

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 341 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Näıve Bayesian Classifier

Näıve Bayesian Classifier

Training

Classification

Example: Iris flower data

M. Mitzenmacher, E. Upfal: Probability and Computing,
Cambridge Univ. Press, 2017.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 342 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Näıve Bayesian Classifier

Näıve Bayesian Classifier

Introduced in the early 1960s.

Näıve Bayesian classifiers form a family of probabilistic
classifiers based on Bayes’ rule and a strong independence
assumption between the features.

Easy to implement, but may lead to misleading classification
results if the features are not independent.

Overcomes the curse of dimensionality (Richard E. Bellman):
When the dimensionality increases, the volume of the sample
space increases so fast that the available data become sparse;
sparsity is a hindrance when striving for statistical significance.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 343 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Näıve Bayesian Classifier

Näıve Bayesian Classifier

Given random variables X1, . . . , Xn over finite state sets
X 1, . . . ,Xn, resp.

Random vector X = (X1, . . . , Xn) is a feature vector over
state space X = X 1 × . . .×Xn.

Random variable C over set of possible classifications
C = {c1, . . . , cm}.
Suppose there is collection D = (d1, . . . , dN) of N
independent samples called database.

Sample dr is represented by feature vector

x(dr) = (xr,1, . . . , xr,n) ∈ X (198)

and classification label cr = c(dr) ∈ C, 1 ≤ r ≤ N .

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 344 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Näıve Bayesian Classifier

Näıve Bayesian Classifier

Labeled sample set and new sample:

x1 = x11 x12 . . . x1n c1
x2 = x21 x22 . . . x2n c2

...
xN = xN1 xN2 . . . xNn cN
x∗ = x∗1 x∗2 . . . x∗n c∗ ?

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 345 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Näıve Bayesian Classifier

Näıve Bayesian Classifier – Example

Subject classification of text documents:

Each sample could be a text document corresponding to a
web page or e-mail.

Feature vector could describe features of the text document
such as subject header and text length.

Classification set could be a collection of labels such as spam
or non-spam.

Given a text document associated to a web page or e-mail,
the task is to classify the document according to the features
of the document.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 346 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Näıve Bayesian Classifier

Näıve Bayesian Classifier

Given database D.

Suppose the n features are independent.

Posterior distribution via Bayes’ rule,

pC|X(cj | x∗) =
pX|C(x

∗ | cj) · pC(cj)
pX(x∗)

(199)

=

∏n
i=1 pXi|C(x

∗
i | cj) · pC(cj)

pX(x∗)
.

Denominator is independent of cj and thus can be viewed as
a normalizing constant.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 347 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Näıve Bayesian Classifier

Näıve Bayesian Classifier

Given database D.

Empirical marginal distribution of the label cj ,

pC(cj) =
|{r | c(dr) = cj}|

|D| , (200)

where |D| = N .

Empirical conditional distribution of i-th feature value x∗i
given cj ,

pXi|C(x
∗
i | cj) =

|{r | x = x(dr), xri = x∗i , c(dr) = cj}|
|{r | c(dr) = cj}|

.(201)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 348 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Näıve Bayesian Classifier

Näıve Bayesian Classifier - Training

Require: Database D = (d1, . . . , dN) of samples with feature
vectors xr = x(dr) ∈ X and classification labels c(dr) ∈ C

Ensure: Posterior distribution
for each label c ∈ C do

for each feature i ∈ {1, . . . , n} do
for each feature value xi ∈ X i do

compute pXi|C(xi | c) = |{r|xr=x(dr),xri=xi,c(dr)=c}|
|{r|c(dr)=c}|

end for

end for

end for

for each label c ∈ C do

compute pC(c) =
|{r|c(dr)=c}|

|D|

end for

Time complexity O(|C| · |X |) depends on sizes of X =
∏n

i=1 X i

and C.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 349 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Näıve Bayesian Classifier

Näıve Bayesian Classifier

Given new sample d∗ with feature vector

x(d∗r) = x∗ = (x∗1, . . . , x
∗
n). (202)

By (199), calculate for each label c ∈ C,

l(c) =

(
n∏

i=1

pXi|C(x
∗
i | c)

)

pC(c) ∝ pC|X(c | x∗). (203)

Maximum a posteriori (MAP) estimation: Classify sample d∗

to the class with highest probability l(c).

Empirical conditional posterior distribution for the label c∗

given sample x∗,

pC|X(c∗ | x∗) =
∏n

i=1 pXi|C(x
∗
i | c∗) · pC(c∗)

pX(x∗)
. (204)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 350 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Näıve Bayesian Classifier

Näıve Bayesian Classifier - Classification

Require: Database D = (d1, . . . , dN) of samples with feature
vectors xr = x(dr) ∈ X and classification labels c(dr) ∈ C, new
sample d∗ with feature vector x(d∗) = x∗ = (x∗1, . . . , x

∗
n)

Ensure: Classification label c∗ with maximal conditional posterior
probability
l← 0
for each label c ∈ C do

l′ ←∏n
i=1 pXi|C(x

∗
i | c) · pC(c)

if l < l′ then
l← l′

c∗ ← c
end if

end for

return c∗

In practical computations, the products calculated may lead to
underflow. Therefore, it is wise to work with logarithms.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 351 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Näıve Bayesian Classifier

Näıve Bayesian Classifier – Example (Cont’d)

The R package naivebayes (Michal Majka, 2018)
implements the näıve Bayesian classifer.

The library is loaded by the command

> library(naivebayes)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 352 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Näıve Bayesian Classifier

Näıve Bayesian Classifier – Example (Cont’d)

The Iris flower data set is a multivariate dataset established
by the statistician Ronald Fisher (1890-1962) in 1936.

The data set consists of 150 samples from three Iris species:
Iris setosa, Iris versicolor, and Iris virginica.

Four features have been measured from each sample:

length and width of sepals (in cm),
length and width of petals (in cm).

Fisher has developed a linear discriminant model to
distinguish the species from each other.

The aim is to provide a näıve Bayesian classifier with
classification labels given by the Iris species.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 353 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Näıve Bayesian Classifier

Näıve Bayesian Classifier – Example (Cont’d)

Iris flower

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 354 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Näıve Bayesian Classifier

Näıve Bayesian Classifier – Example (Cont’d)

Viewing the dataset

> iris

Sepal length Sepal width Petal length Petal width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa

.

.

.
51 7.0 3.2 4.7 1.4 versicolor
52 6.4 3.2 4.4 1.5 versicolor
53 6.9 3.1 4.9 1.5 versicolor
54 5.5 2.3 4.0 1.3 versicolor
55 6.5 2.8 4.6 1.5 versicolor

.

.

.
146 6.7 3.0 5.2 2.3 virginica
147 6.3 2.5 5.0 1.9 virginica
148 6.5 3.0 5.2 2.0 virginica
149 6.2 3.4 5.4 2.3 virginica
150 5.9 3.0 5.1 1.8 virginica

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 355 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Näıve Bayesian Classifier

Näıve Bayesian Classifier – Example (Cont’d)

Command naive bayes fits the näıve Bayesian model with a
predictor; independence among class labels is assumed.

> data(iris)

> nb <- naive_bayes(Species ~ ., data=iris)

> nb

A priori probabilities

setosa versicolor virginica

0.3333333 0.3333333 0.3333333

Tables:

Sepal.Length setosa versicolor virginica

mean 5.0060000 5.9360000 6.5880000

sd 0.3524897 0.5161711 0.6358796

Sepal.Width setosa versicolor virginica

mean 3.4280000 2.7700000 2.9740000

sd 0.3790644 0.3137983 0.3224966

Petal.Length setosa versicolor virginica

mean 1.4620000 4.2600000 5.5520000

sd 0.1736640 0.4699110 0.5518947

Petal.Width setosa versicolor virginica

mean 0.2460000 1.3260000 2.0260000

sd 0.1053856 0.1977527 0.2746501

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 356 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Näıve Bayesian Classifier

Näıve Bayesian Classifier – Example (Cont’d)

Plotting of the empirical distributions of the individual features
with respect to the classification labels:

> plot(nb, "Sepal.Length")

> plot(nb, "Sepal.Width")

> plot(nb, "Petal.Length")

> plot(nb, "Petal.Width")

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 357 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Näıve Bayesian Classifier

Näıve Bayesian Classifier – Example (Cont’d)

Individual empirical distributions of features conditioned by class
labels:

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Sepal.Length

D
en

si
ty

setosa
versicolor
virginica

2.0 2.5 3.0 3.5 4.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Sepal.Width
D

en
si

ty

setosa
versicolor
virginica

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 358 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Näıve Bayesian Classifier

Näıve Bayesian Classifier – Example (Cont’d)

Individual empirical distributions of features conditioned by class
labels:

1 2 3 4 5 6 7

0.
0

0.
5

1.
0

1.
5

2.
0

Petal.Length

D
en

si
ty

setosa
versicolor
virginica

0.5 1.0 1.5 2.0 2.5

0
1

2
3

Petal.Width
D

en
si

ty

setosa
versicolor
virginica

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 359 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Näıve Bayesian Classifier

Näıve Bayesian Classifier – Example (Cont’d)

For testing purposes, the data set is divided into a training set and
a test set.

> ind_iris <- sample(1:nrow(iris),

size=round(0.3*nrow(iris)))

> ind_iris

[1] 61 112 34 43 82 84 138 126 47 97

[11] 86 19 134 57 119 26 44 111 62 140

[21] 11 128 28 108 106 54 144 4 124 5

[31] 113 72 25 90 150 120 52 139 94 146

[41] 88 49 137 75 96

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 360 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Näıve Bayesian Classifier

Näıve Bayesian Classifier – Example (Cont’d)

The training and test sets make up 70% and 30% of the data set,
respectively.

> iris_train <- iris[-ind_iris,]

> iris_train

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1 5.1 3.5 1.4 0.2 setosa

2 4.9 3.0 1.4 0.2 setosa

3 4.7 3.2 1.3 0.2 setosa

6 5.4 3.9 1.7 0.4 setosa

...

149 6.2 3.4 5.4 3.2 virginica

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 361 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Näıve Bayesian Classifier

Näıve Bayesian Classifier – Example (Cont’d)

The training and test sets make up 70% and 30% of the data set,
respectively.

> iris_test <- iris[ind_iris,]

> iris_test

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

61 5.0 2.0 3.5 1.0 versicolor

112 6.4 2.7 5.3 1.9 viriginica

34 5.5 4.2 1.4 0.2 setosa

43 4.4 3.2 1.3 0.2 setosa

...

96 5.7 3.0 4.2 1.2 versicolor

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 362 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Näıve Bayesian Classifier

Näıve Bayesian Classifier – Example (Cont’d)

Command predict provides the classification; it returns for each
test sample the label with maximal conditional posterior probability.

> nb_iris <- naive_bayes(Species ~ ., iris_train)

> predict(nb_iris, iris_test)

[1] versicolor virginica setosa setosa versicolor versicolor

[7] virginica virginica setosa versicolor versicolor setosa

[13] versicolor versicolor virginica virginica setosa virginica

[19] versicolor virginica setosa virginica setosa virginica

[25] virginica versicolor virginica setosa virginica setosa

[31] virginica versicolor setosa versicolor virginica versicolor

[37] versicolor virginica versicolor versicolor virginica versicolor

[43] virginica versicolor versicolor

Levels. setosa versicolor viriginica

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 363 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Näıve Bayesian Classifier

Näıve Bayesian Classifier – Example (Cont’d)

> head(predict(nb-iris, iris_test, type="prob"))

setosa versicolor viriginica

[1,] 3.169305e-41 9.999992e-01 7.682960e-07

[2,] 2.918437e-167 6.036875e-03 9.939631e-01

[3,] 1.000000e+00 8.072905e-22 1.919866e-27

[4,] 1.000000e+00 5.674804e-19 7.638931e-28

[5,] 6.620915e-49 9.999991e-01 8.523488e-07

[6,] 4.548898e-136 7.641880e-01 2.3581120-01

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 364 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Data Fitting

Least Squares Data Fitting

Least squares method (C.F. Gauss)

Data fitting

Example: Iris flower data

S. Boyd, L. Vandenberghe: Introduction to Applied Linear Algebra,
Cambridge Univ. Press, 2018.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 365 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Data Fitting

Least Squares Method

Given tall real-valued m× n matrix A; i.e., m > n.

System of linear equations

Ax = b (205)

with b ∈ R
m is over-determined; m equations with n variables

where m > n.

Solution of (205) exists if b is a linear combination of the
columns of A; i.e.,

rk(A) = rk(A|b). (206)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 366 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Data Fitting

Least Squares Method

If there is no solution of (205), a vector x is searched for
which the residual

r = Ax− b (207)

is minimized,

‖Ax− b‖2 = ‖r‖2 = r21 + . . .+ r2m. (208)

The problem of finding a vector x̂ ∈ R
n which

minimizes (208) is the problem of least squares or regression.

Each vector x̂ which satisfies

‖Ax̂− b‖2 ≤ ‖Ax− b‖2 (209)

for all x ∈ R
n is called least squares approximate solution of

Ax = b.

If the optimal residual norm ‖Ax̂− b‖ is small, then x̂
approximately solves Ax = b.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 367 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Data Fitting

Least Squares Method

Suppose the matrix A has linearly independent columns. Then the
solution of the least squares problem Ax = b is given by

x̂ = (AtA)−1Atb. (210)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 368 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Data Fitting

∗Proof.
Suppose the columns of A are linearly independent.

Claim that the Gram matrix AtA is invertible. Indeed, let x ∈ R
n with (AtA)x = 0. Then

0 = x
t
0 = x

t
(A

t
A)x = x

t
A

t
Ax = (Ax)

t
(Ax) = ‖Ax‖2

and so by the norm Ax = 0. Since the columns of A are linearly independent, it follows that
x = 0.

Claim that for each vector x ∈ R
n with x 6= x̂,

‖Ax̂− b‖ ≤ ‖Ax− b‖.

Indeed, write

‖Ax− b‖2 = ‖(Ax− Ax̂)− (Ax̂− b)‖2

= ‖Ax− Ax̂‖2 + ‖Ax̂− b‖2 + 2(Ax− Ax̂)t(Ax̂− b),

by using the identity

‖a + b‖2 = (a + b)
t
(a + b) = ‖a‖2 + ‖b‖2 + 2a

t
b.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 369 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Data Fitting

Proof (Cont’d)
Moreover,

(Ax− Ax̂)t(Ax̂− b) = (x− x̂)tAt
(Ax̂− b)

= (x− x̂)t(At
Ax̂− At

b)

= (x− x̂)t0 = 0,

by using (AtA)x̂ = Atb. Then

‖Ax− b‖2 = ‖Ax− Ax̂‖2 + ‖Ax̂− b‖2.

Since the first term on the right-hand side is nonnegative, we obtain

‖Ax− b‖2 ≥ ‖Ax̂− b‖2.

Thus x̂ is a minimizer of ‖Ax− b‖.
Claim that x̂ is the unique minimizer of ‖Ax− b‖. Indeed, suppose that

‖Ax− b‖2 = ‖Ax̂− b‖2. Then it follows that ‖A(x− x̂)‖2 = 0 which by the norm
implies that A(x− x̂) = 0. But the columns of A are linearly independent and so we arrive at
x = x̂, as required. �

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 370 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Data Fitting

Example (Maple)

Consider the least squares problem Ax = b, where

A =

2 0
−1 1
0 2

 , b =

1
0
−1

 .

This over-determined systems has three linear equations in two
variables,

2x1 = 1, −x1 + x2 = 0, 2x2 = −1,

and has no solution. The associated least squares problem is

min{(2x1 − 1)2 + (−x1 + x2)
2 + (2x2 + 1)2},

which has the unique solution

x̂ =

(
1/3
−1/3

)

.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 371 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Data Fitting

Example (Maple) Cont’d

This solution can be verified by the Maple code

> with(LinearAlgebra):

> A := Matrix([[2,0],[-1,1],[0,2]]):

> b := Vector([1,0,-1]):

> x := LeastSquares(A, b):

> r := A.x-b:

Note that the least square approximate solution x̂ does not satisfy
Ax = b and the associated residual is

r̂ = Ax̂− b =
(

−1

3
,−2

3
,
1

3

)t

with optimal residual norm

‖r̂‖2 =
2

3
.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 372 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Data Fitting

Least Squares Solution

Gram-Schmidt orthogonalization

Pseudo-inverse

QR factorization

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 373 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Data Fitting

Gram-Schmidt

Given a collection of vectors a1, . . . , an ∈ R
m.

Construct a collection of vectors q1, . . . , qn ∈ R
m with the

following properties:

For each 1 ≤ i ≤ n, ai is a linear combination of
q1, . . . , qi and qi is a linear combination of a1, . . . , ai.
If the vectors a1, . . . , ai−1 are linearly independent, but
a1, . . . , ai are linearly dependent, the algorithm detects
this and stops; i.e., the algorithm finds the first vector ai
which is a linear combination of the previous vectors
a1, . . . , ai−1.
If the vectors a1, . . . , an are linearly independent, the
algorithm produces an orthonormal collection of vectors
q1, . . . , qn.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 374 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Data Fitting

Gram-Schmidt Algorithm

Require: Vectors a1, . . . , an ∈ R
m

Ensure: Orthonormal system of vectors q1, . . . , qn ∈ R
m or

abortion.
for i from 1 to n do

q̃i ← ai − (qt1ai)q1 − . . .− (qti−1ai)qi−1

if q̃i = 0 then

return Abortion
end if

qi ← q̃i/‖q̃i‖
end for

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 375 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Data Fitting

Gram-Schmidt

Suppose the vectors a1, . . . , an ∈ R
m be linearly independent.

Let A be the m× n matrix with columns a1, . . . , an.

Let Q be the m× n matrix with orthonormal columns
q1, . . . , qn ∈ R

m.

Orthonormality gives the matrix equation

QtQ = In (211)

in which the i, j entry is the scalar product qtiqj = δij , where
δ is the Kronecker delta.

Relation between ai and qi in Gram-Schmidt algorithm,

ai = (qt1ai)q1 + . . .+ (qti−1ai)qi−1 + ‖q̃i‖qi, (212)

1 ≤ i ≤ n.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 376 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Data Fitting

Gram-Schmidt

Put

ai = R1iq1 + . . .+Riiqi, 1 ≤ i ≤ n, (213)

where Rij = qtiaj for i < j and Rii = ‖q̃i‖. Define Rij = 0
for i > j.

Then (213) becomes in matrix form

A = QR, (214)

which is the QR factorization of A.

The m× n matrix Q has orthonormal columns and the n× n
matrix R is upper triangular with positive diagonal entries.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 377 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Data Fitting

Pseudo Inverse

Suppose the matrix A has linearly independent columns.

The matrix AtA is invertible.

Indeed, let x ∈ R
n with (AtA)x = 0. Then

0 = xt0 = xt(AtA)x = xtAtAx = (Ax)t(Ax) = ‖Ax‖2

and so by the norm, Ax = 0. But the columns of A are
linearly independent and hence x = 0.

The matrix

A† = (AtA)−1At (215)

is called the pseudo-inverse of A.

The pseudo-inverse of A is a left inverse of A, since

A†A = ((AtA)−1At)A = (AtA)−1(AtA) = I. (216)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 378 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Data Fitting

Pseudo Inverse

The pseudo-inverse of A can be calculated using the QR
factorization of A, since

AtA = (QR)t(QR) = RtQtQR = RtR (217)

and so

A† = (AtA)−1At (218)

= (RtR)−1(QR)t

= R−1R−tRtQt

= R−1Qt.

Note that for an invertible matrix A,

(At)−1 = (A−1)t, (219)

which is also represented by A−t.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 379 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Data Fitting

QR Factorization

Suppose the matrix A has linearly independent columns.

Take the QR factorization A = QR.

The pseudo-inverse A† = R−1Qt of A satisfies by (210),

x̂ = (AtA)−1Atb = A†b = R−1Qtb (220)

and so

Rx̂ = Qtb. (221)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 380 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Data Fitting

Least Squares Algorithm via QR Factorization

Require: Tall real-valued m× n matrix A with independent
columns and vector b ∈ R

m

Ensure: Least squares approximate solution x̂
Compute QR factorization of A
Compute Qtb
Solve the triangular system of equations Rx̂ = Qtb via back
substitution

Correctness

Follows from (221).

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 381 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Data Fitting

Example (Maple)

Consider the matrix

A =

2 0
−1 1
0 2

 .

QR factorization of A,

> with(LinearAlgebra):

> A := Matrix([[2,0],[-1,1],[0,2]]):

> Q,R := QRDecomposition(A):

where

Q =

2
5

√
5 1

30

√
30

− 1
5

√
5 1

15

√
30

0 1
6

√
30

 , R =

(√
5 − 1

5

√
5

0 2
5

√
30

)

.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 382 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Data Fitting

Example (Maple) Cont’d

Pseudo-inverse of A,

> B := MatrixInverse(A);

where

B =

(
5
12 − 1

6
1
12

1
12

1
6

5
12

)

.

Approximate solution of the above least squares problem,

x̂ = Bb =

(
1/3
−1/3

)

.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 383 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Data Fitting

Least Squares Data Fitting

Given sample data

x(1), . . . , x(N) ∈ R
n

and
y(1), . . . , y(N) ∈ R,

where (x(i), y(i)) denotes the ith sample pair.

Form a model of the relationship between the sample pairs

f̂(x) ≈ y, (222)

where f̂ : Rn → R is called the predictor.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 384 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Data Fitting

Least Squares Data Fitting

Suppose the model function has the form

f̂(x) = θ1f1(x) + . . .+ θpfp(x), (223)

where fi : R
n → R are basis functions or feature mappings

and θ1, . . . , θp are real-valued model parameters. This
predictor is linear in the parameters.

When the basis functions are given, the task is to choose the
model parameters accordingly.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 385 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Data Fitting

Least Squares Data Fitting

Prediction error for sample pair (x(i), y(i)),

r(i) = y(i) − f̂(x(i)) = y(i) − ŷ(i), 1 ≤ i ≤ N. (224)

Vector notation

y = (y(1), . . . , y(N)), (225)

ŷ = (ŷ(1), . . . , ŷ(N)), (226)

r = (r(1), . . . , r(N)). (227)

Residual can be written as

r = y − ŷ. (228)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 386 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Data Fitting

Least Squares Data Fitting

A common measure how well the model predicts the observed
sample data is the RMS prediction error rms(r) of the
residual r.

The root-mean-square (RMS) value of a vector
x = (x1, . . . , xn) ∈ R

n is

rms(x) =

√

x21 + . . .+ x2n
n

=
‖x‖√
n
. (229)

The minimization of rms(r) w.r.t. the model parameters
θ1, . . . , θp given the sample set is a least squares problem.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 387 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Data Fitting

Least Squares Data Fitting

Write ŷ(i) = f̂(x(i)) in terms of the model parameters,

ŷ(i) = ai1θ1 + . . .+ aipθp, 1 ≤ i ≤ N, (230)

where A = (aij) denotes the N × p matrix with

aij = f̂j(x
(i)), 1 ≤ i ≤ N, 1 ≤ j ≤ p. (231)

The jth column of A is given by the jth basis function f̂j
evaluated at the data x(1), . . . , x(N).

The ith row of A consists of the values of p basis functions at
the data point x(i).

Writing θ = (θ1, . . . , θp)
t, we obtain in matrix form

ŷ = Aθ, (232)

where A is a tall N × p matrix.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 388 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Data Fitting

Least Squares Data Fitting

Aim is to find the model parameter vector θ.

Sum of the squares of the residuals is given by

‖r‖2 = ‖y − ŷ‖2 = ‖y −Aθ‖2. (233)

Suppose the columns of the matrix A are linearly independent.

Then the least squares problem provides the best model
parameter vector θ̂,

θ̂ = (AtA)−1Aty = A†y. (234)

The solution θ̂ is the least squares fitting on the sample set.

The number ‖y −Aθ̂‖2 is the minimum sum square error.

The number ‖y −Aθ̂‖2/N is the minimum mean square error
(MMSE) of the model.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 389 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Data Fitting

Polynomial Fit

Simple model of polynomial fit (n = 1) makes use of the univariate
polynomial functions

f1(x) = 1, f2(x) = x, . . . , fp(x) = xp−1. (235)

Model function (223) has then the form

f̂(x) = θ1 + θ2x+ . . .+ θpx
p−1. (236)

Matrix A in (231) has thus the shape

A =

1 x(1) . . . (x(1))p−1

1 x(2) . . . (x(2))p−1

...
...

1 x(N) . . . (x(N))p−1

. (237)

This is a Vandermonde matrix: Columns of A are linearly
independent if the numbers x(1), . . . , x(N) include at least p
distinct values.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 390 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Data Fitting

Vandermonde Matrix

The real-valued matrix

A =

1 x1 x21 . . . xn−1
1

1 x2 x22 . . . xn−1
2

...
...

...
. . .

...
1 xn x2n . . . xn−1

n

(238)

has the determinant

det(A) =
∏

1≤i<j≤n

(xj − xi). (239)

The matrix A is a Vandermonde matrix.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 391 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Data Fitting

∗Proof.

All entries in the ith column have total degree i− 1.

By the Leibniz formula, all terms in the determinant have
total degree

0 + 1 + 2 + . . .+ (n− 1) =
n(n− 1)

2
.

For i 6= j substitute xi for xj . The resulting matrix has two
equal columns and so zero determinant.

By the factor theorem, xj − xi is a divisor of det(A).

By the unique factorization of multivariate polynomials,

det(A) = q
∏

1≤i<j≤n

(xj − xi)

where q is a polynomial.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 392 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Data Fitting

Proof (Cont’d).

By comparing degrees, the polynomial q is a constant.

The term corresponding to the diagonal entries of A is

1x2x
2
3 · · ·xn−1

n ,

which is also the monomial by taking the first terms in all the
factors in

∏

1≤i<j≤n(xj − xi). Thus the constant q is 1.

�

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 393 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Data Fitting

Regression

The regression model has the shape

ŷ = xtβ + v ∈ R, (240)

where x ∈ R
n, β ∈ R

n is the weight vector and v ∈ R is the
offset.

Write the regression model as

ŷ = xtθ′ + θ1, (241)

where the basis functions are

f1(x) = 1, fi(x) = xi−1, 2 ≤ i ≤ n+ 1, (242)

with v = θ1, β = θ′ = (θ2, . . . , θn+1) and p = n+ 1.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 394 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Data Fitting

Regression

General N × p matrix A is then of the form

A =
(
1 Xt

)
, (243)

where X is the feature matrix with columns x(1), . . . , x(N),
i.e.,

A =

1 x
(1)
1 x

(1)
2 · · · x

(1)
n

1 x
(2)
1 x

(2)
2 · · · x

(2)
n

...
...

...
. . .

...

1 x
(N)
1 x

(N)
2 · · · x

(N)
n

. (244)

Model is then given by

ŷ = Aθ. (245)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 395 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Data Fitting

Iris Dataset

Reconsider the Iris dataset and compare the sepal and petal
lengths.

> data(iris)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 396 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Data Fitting

Iris Dataset

Linear regression:

> x = iris$Sepal.Length

> y = iris$Petal.Length

> model1 = lm(y ~ x)

> coefficients(model1)

(Intercept) x

-7.101443 1.858433

Linear model (regression line):

y = 1.86x− 7.10.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 397 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Data Fitting

Iris Dataset (Cont’d)

ŷ values:

> fitted.values(model1)

1 2 3

2.3765648 2.0048782 1.6331916 ...

Residuals:

> residuals(model1)

1 2 3

-0.976564819 -0.604878224 -0.333181628 ...

y values:

> y

[1] 1.4 1.4 1.3 ...

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 398 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Data Fitting

Iris Dataset

Polynomial regression:

> new_x = cbind(x, x^2)

> model2 = lm(y ~ new_x)

> coefficients(model2)

(Intercept) new_xx new_x

-17.4467139 5.3921642 -0.2958593

Quadratic model (regression parabola):

y = −17.45 + 5.40x− 0.30x2.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 399 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Data Fitting

Iris Dataset (Cont’d)

ŷ values:

> fitted.values(model1)

1 2 3

2.3580220 1.8713078 1.3609249 ...

Residuals:

> residuals(model1)

1 2 3

-0.958021952 -0.471307798 -0.060924896 ...

y values:

> y

[1] 1.4 1.4 1.3 ...

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 400 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Data Fitting

Iris Dataset (Cont’d)

Plotting both models,

> ggplot(data=iris)

+ geom_point(aes(x = iris$Sepal.Length,

y = iris$Petal.Length))

+ geom_point(aes(x = iris$Sepal.Length,

y = model1$fit,color="red"))

+ geom_point(aes(x = iris$Sepal.Length,

y = model2$fit,color="blue"))

+ theme(panel.background=element_blank())

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 401 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Data Fitting

Iris Dataset (Cont’d)

Linear versus quadratic fit for sepal and petal lengths of Iris data:

0

2

4

6

5 6 7 8

iris$Sepal.Length

iri
s$

P
et

al
.L

en
gt

h

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 402 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Clustering and Classification

Clustering and Classification

Clustering problem

k-means algorithm

Boolean classification

Least squares classification

Examples: Iris dataset, protein intake, Titanic

S. Boyd, L. Vandenberghe: Introduction to Applied Linear Algebra,
Cambridge Univ. Press, 2018.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 403 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Clustering and Classification

Clustering

Fundamental problem in machine learning

Applications in unsupervised learning

Famous clustering method called k-means

Example: protein intake

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 404 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Clustering and Classification

Clustering

Given a collection of samples x1, . . . , xN in the Euclidean
space R

n.

The aim is to partition the samples into k clusters or groups
such that the vectors in each cluster are close to each other
w.r.t. Euclidean metric.

The number of clusters k is usually much smaller than the
number of samples N ; values of k range from a handful to a
few hundred and values of N range from a few hundred to
billions.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 405 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Clustering and Classification

Clustering – Example

Iris data set is a multivariate data set consisting of 50 samples
each from one of three Iris species:

Iris setosa, Iris versicolor, and Iris virginica.

Each sample is characterized by four features:

Length and width of sepals (in cm).
Length and width of petals (in cm).

Scatterplots (below) compare the features in pairs of the
three species.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 406 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Clustering and Classification

Clustering – Example

Clustering of the features in pairs of the 150 Iris samples:

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 407 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Clustering and Classification

Clustering

Given a collection of samples x1, . . . , xN ∈ R
n.

A clustering of these data into k groups denoted 1, . . . , k is
an assignment such that sample xi is designated to group ci,
1 ≤ i ≤ N .

The jth group of samples is thus given by

Gj = {xi | ci = j}, 1 ≤ j ≤ k. (246)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 408 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Clustering and Classification

Clustering

Each group Gj is assigned a representative (center) vector
zj ∈ R

n, 1 ≤ j ≤ k.
Vector zj should be close to the vectors in the corresponding
group Gj ; i.e., the quantities

‖xi − zci‖, 1 ≤ i ≤ N, (247)

should be as small as possible; xi is assigned class ci and zci
is center of class.

Clustering is assigned the overall value

Jc =
1

N

N∑

i=1

‖xi − zci‖2, (248)

which is the mean-square distance between the samples and
the corresponding representatives.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 409 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Clustering and Classification

Clustering

Mean-square distance Jc depends on the cluster assignment c
and the choice of the cluster representatives z1, . . . , zk.

Aim is to find a cluster assignment and cluster representatives
such that the objective Jc is minimized; such a clustering is
optimal.

In practice, finding an optimal clustering is usually intractable.

k-means algorithm provides generally a good approximation to
the optimal clustering; solutions found by the k-means
algorithm are usually suboptimal.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 410 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Clustering and Classification

Clustering – Fixed Representatives I

First, suppose the group representatives z1, . . . , zk are fixed.

The task is to find the cluster assignment c1, . . . , cN which
minimizes the objective Jc; this problem can be solved in an
exact manner!

The choice of the cluster ci to which sample xi belongs is
only affected by the ith term of the objective Jc,

1

N
‖xi − zci‖2. (249)

This term can be minimized by choosing ci as the value
j ∈ {1, . . . , k} such that

1

N
‖xi − zj‖2

becomes minimal.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 411 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Clustering and Classification

Clustering – Fixed Representatives II

Sample xi is thus assigned the nearest neighbor among the
representatives,

‖xi − zci‖2 = min
1≤j≤k

‖xi − zj‖2, 1 ≤ i ≤ N. (250)

Thus when the cluster representatives are fixed, the optimal
group assignment can be found by designating each sample to
its nearest representative.

Objective Jc is then given by

Jc =
1

N

N∑

i=1

min
1≤j≤k

‖xi − zj‖2. (251)

This is the mean of the squared distance between the samples
and their closest representative.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 412 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Clustering and Classification

Clustering – Optimizing the Group Representatives I

Second, suppose the group assignment is fixed; i.e., sample xi
is assigned cluster ci, 1 ≤ i ≤ N .

Task is to choose the group representatives such that the
objective Jc is minimized; this problem can be solved in an
exact manner.

Objective Jc is decomposed into k partial sums such that
each term is designated to one group,

Jc = Jc,1 + . . .+ Jc,k, (252)

where

Jc,j =
1

N

∑

i∈Gj

‖xi − zj‖2, 1 ≤ j ≤ k, (253)

is the partial sum corresponding to the jth group.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 413 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Clustering and Classification

Clustering – Optimizing the Group Representatives II

Choice of group representative zj only affects the term Jc,j .

Each representative zj can thus be chosen to minimize the
corresponding sum Jc,j .

Vector zj can be selected as the centroid of the samples in
the group Gj ,

zj =
1

|Gj |
∑

i∈Gj

xi, 1 ≤ j ≤ k, (254)

where |Gj | denotes the cardinality of the group Gj .

Objective Jc in (252) can thus be minimized by choosing each
group representative as the centroid of the samples in the
associated group.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 414 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Clustering and Classification

Clustering – k-means Algorithm

Require: List of samples x1, . . . , xN in R
n, initial list z1, . . . , zk of

group representatives
Ensure: Partitioning of samples into k groups by minimizing Jc

repeat

for i from 1 to N do

Assign sample xi to the group associated with the nearest
representative

end for

for j from 1 to k do

Set zj to be the centroid of the samples in group j
end for

until Time elapsed or objective Jc changes only slightly over
several iterations

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 415 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Clustering and Classification

Clustering – k-means Algorithm

k-means algorithm (Stuard Lloyd, 1957) iterates between the
two subproblems: updating the group assignment and
updating the group representatives.

In each step, the objective Jc gets improved unless the step
does not change the assignment.

Ties can be broken by assigning sample xi to group zj with
the smallest value of j.

In the same step, it can happen that one or more groups are
empty; such groups should be deleted and then the algorithm
would come up with fewer than k groups.

If the group assignment is the same in two consecutive
iterations, the representatives will also not change and then
the algorithm should terminate as it will not find further
improvements.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 416 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Clustering and Classification

Clustering – k-means Algorithm

Initial setting of the group representatives is purely random.

k-means algorithm is a heuristic.

It is thus common to run the algorithm several times with
different initial representatives and then to choose the
assignment with the smalles objective Jc.

It is also common to run the k-means algorithm for several
values of k and compare the results and particularly the
resulting objectives.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 417 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Clustering and Classification

Clustering – Example

Consider 25 European countries and their protein intake (in
percent) from several food sources:

> url = ’http://www.biz.uiowa.edu/faculty/jledolter/

DataMining/protein.csv’

> food <- read.csv(url)

> food

Country RedMeat WhiteMeat Eggs ...

#1 Albania 10.1 1.4 0.5

#2 Austria 8.9 14.0 4.3

#3 Belgium 13.5 9.3 4.1

#4 Bulgaria 7.8 6.0 1.6

#5 Czech 9.7 11.4 2.8

#6 Denmark 10.6 10.8 3.7

#7 EGermany 8.4 11.6 3.7

#8 Finland 9.5 4.9 2.7

#9 France 18.0 9.9 3.3

#10 Greece 10.2 3.0 2.8
K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 418 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Clustering and Classification

Clustering – Example (Cont’d)

#11 Hungary 5.3 12.4 2.9

#12 Ireland 13.9 10.0 4.7

#13 Italy 9.0 5.1 2.9

#14 Holland 9.5 13.6 3.6

#15 Norway 9.4 4.7 2.7

#16 Poland 6.9 10.2 2.7

#17 Portugal 6.2 3.7 1.1

#18 Romania 6.2 6.3 1.5

#19 Spain 7.1 3.4 3.1

#20 Sweden 9.9 7.8 3.5

#21 Switz 13.1 10.1 3.1

#22 UK 17.4 5.7 4.7

#23 USSR 9.3 4.6 2.1

#24 WGermany 11.4 12.5 4.1

#25 Yugoslava 4.4 5.0 1.2

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 419 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Clustering and Classification

Clustering – Example (Cont’d)

k-means algorithm with N = 25 and k = 3 applied to the protein
intake of white meat and red meat:

> set.seed(123456789)

> grpMeat <- kmeans(food[,c("WhiteMeat","RedMeat")],

centers=3, nstart=10)

> grpMeat

K-means clustering with 3 clusters of sizes 8,12,5

Cluster means:

WhiteMeat RedMeat

1 12.062500 8.837500

2 4.658333 8.258333

3 9.000000 15.180000

Clustering vector

[1] 2 1 3 2 1 1 1 2 3 2 1 3 2 1 2 1 2 2 2 2 3 3 2 1 2

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 420 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Clustering and Classification

Clustering – Example (Cont’d)

Cluster assignments:

> o = order(grpMeat$cluster)

> data.frame(food$Country[o],grpMeat$cluster[o])

food.Country.o. grpMeat.cluster.o

1 Austria 1

2 Czech 1

3 Denmark 1

4 EGermany 1

5 Hungary 1

6 Holland 1

7 Poland 1

8 WGermany 1

9 Albania 2

10 Bulgaria 2

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 421 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Clustering and Classification

Clustering – Example (Cont’d)

11 Finland 2

12 Greece 2

13 Italy 2

14 Norway 2

15 Portugal 2

16 Romania 2

17 Spain 2

18 Sweden 2

19 USSR 2

20 Yugoslavia 2

21 Belgium 3

22 France 3

23 Ireland 3

24 Switz 3

25 UK 3

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 422 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Clustering and Classification

Clustering – Example (Cont’d)

Graphical representation of clustering solution:

> plot(food$Red, food$White, type="n", xlim=C(3,19),

xlab="Red Meat", ylab="White Meat",

text(x=food$Red, y=foot$White,

labels=food$Country, col=grpMeat$cluster+1))

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 423 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Clustering and Classification

Clustering – Example (Cont’d)

5 10 15

2
4

6
8

10
12

14

Red Meat

W
hi

te
 M

ea
t

Albania

Austria

Belgium

Bulgaria

Czechoslovakia
Denmark

E Germany

Finland

France

Greece

Hungary

Ireland

Italy

Netherlands

Norway

Poland

Portugal

Romania

Spain

Sweden

Switzerland

UK

USSR

W Germany

Yugoslavia

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 424 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Clustering and Classification

Classification

Boolean classification

Least squares classification

Example: Titanic

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 425 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Clustering and Classification

Classification

The outcome or the dependent variable y takes on a finite
number of values (label or categorial).

In the simplest case, the categorial variable has just two
values such as true or false, or spam or not spam.

This is called binary or Boolean classification problem.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 426 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Clustering and Classification

Boolean Classification

The dependent variable y takes on the values y = +1 which
means true and y = −1 which means false.

The model is given by a classifier f̂ : Rn → {±1} with

ŷ = f̂(x). (255)

The classifier will be constructed from the observed sample
data.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 427 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Clustering and Classification

Boolean Classification

For given data x, y with predicted outcome ŷ = f̂(x), there exist
four possibilities:

True positive: y = +1 and ŷ = +1.

True negative: y = −1 and ŷ = −1.
False positive: y = −1 and ŷ = +1.

False negative: y = +1 and ŷ = −1.
Note:

In the first two cases the predicted label is correct.

In the last two cases the predicted label is incorrect.

The third case of false positives is referred to as type I error.

The fourth case of false negatives is referred to as type II
error.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 428 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Clustering and Classification

Boolean Classification

Given a collection of samples x(1), . . . , x(N), categorials
y(1), . . . , y(N) and model function f̂ .

The four outcome possibilities can be displayed in the form of
a contingency table:

Outcome ŷ = +1 ŷ = −1 Total

y = +1 Ntp Nfn Np

y = −1 Nfp Ntn Nn

All Ntp +Nfp Nfn +Ntn N

(256)

This gives the confusion matrix:

(
Ntp Nfn

Nfp Ntn

)

. (257)

The off-diagonal entries Nfn and Nfp provide the numbers of
the two types of error.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 429 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Clustering and Classification

Boolean Classification

These data give rise to several performance measures:

The error rate gives the fraction of the committed errors:

Nfp +Nfn

N
. (258)

The recall rate or sensitivity gives the fraction of data points
with y = +1 that are correctly guessed ŷ = +1:

Ntp

Np
. (259)

The false alarm rate gives the fraction of data points with
y = −1 which are incorrectly guessed ŷ = +1:

Nfp

Nn
. (260)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 430 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Clustering and Classification

Boolean Classification

The specificity gives the fraction of the data points with
y = −1 which are correctly guessed ŷ = −1:

Ntn

Nn
. (261)

The precision is the fraction of true predictions which are
correct:

Ntp

Ntp +Nfp
. (262)

A decent classifier will have small error rate and false alarm rate,
and high recall rate, specificity and precision.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 431 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Clustering and Classification

Boolean Classification – Example

Contingency table for spam detection of emails:

Outcome ŷ = +1 (spam) ŷ = −1 (not spam) Total
y = +1 (spam) 88 15 103

y = −1 (not spam) 33 719 752
All 121 734 855

Note:

Number of sample emails N = 855 of which 103 are spam
(y = +1) and 752 are not spam (y = −1).
Classifier provides 88 true positives, 719 true negatives, 33
false positives, and 15 false negatives.

Error rate (33 + 15)/855 = 5.61%, recall rate
88/103 = 85.44%, false alarm rate 33/752 = 4.39%,
specificity 719/752 = 95.61%, precision 88/121 = 72.73%.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 432 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Clustering and Classification

Least Squares Classification

Given basis functions f1, . . . , fp and parameters θ1, . . . , θp.

The sum squared error is to be minimized,

(y(1) − f̃(x(1)))2 + . . .+ (y(N) − f̃(x(N)))2, (263)

where f̃ is the least squares fit over the sample set,

f̃(x) = θ1f1(x) + . . .+ θpfp(x). (264)

The least squares classifier f̂ is then defined as

f̂(x) = sgn(f̃(x)), (265)

where the sign function is used with sgn(z) = +1 if z ≥ 0 and
sgn(z) = −1 if z < 0.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 433 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Clustering and Classification

Least Squares Classification

The idea behind the least squares classifier is that the value
f̃(x) is a real number that is ideally close to +1 if y(i) = +1
and close to −1 if y(i) = −1.
As the outcome must be binary, it is natural to choose the
sign function.

The least squares classifier is often used with a regression
model,

f̃(x) = xtβ + v, (266)

where the classifier has the form

f̂(x) = sgn(xtβ + v). (267)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 434 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Clustering and Classification

Classification – Titanic

The library caret provides functions for training and plotting
classification and regression models.

Consider the Titanic data set:

> titanicDF <- read.csv(’http://math.ucdenver.edu/RTutorial/titanic.txt’,sep=’\t’)

> head(titanicDF)

Name PClass Age Sex Survived

1 Allen, Miss Elisabeth Walten 1st 29.00 female 1

2 Allison, Miss Helen Loraine 1st 2.00 female 0

3 Allison, Mr Hudson Joshua Creighton 1st 30.00 male 0

4 Allison, Mrs Hudson JC 1st 25.00 female 0

5 Allison, Master Hudson Trevor 1st 0.92 male 1

6 Anderson, Mr Harry 1st 47.00 male 1

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 435 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Clustering and Classification

Classification – Titanic (Cont’d)

Structure of data:

> print(str(titanicDF))

’data frame’: 1313 obs. of 5 variables:

$ Name : Factor w/ 1310 levels "Abbing, Mr Antony",...

$ PClass : Factor w/ 3 levels "1st","2nd","3rd": 1 1 1 1 1 ...

$ Age : num 29 2 30 25 0.92 47 ...

$ Sex : Factor w/ 2 levels "female","male": 1 1 2 1 2 2 ...

$ Survived : int 1 0 0 0 1 1 ...

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 436 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Clustering and Classification

Classification – Titanic (Cont’d)

The Name variable values are unique, the title (Mr, Mrs, Miss) is
extracted:

> titanicDF$Title <- ifelse(grepl(’Mr’,titanicDF$Name),’Mr’,

ifelse(grepl(’Mrs’,titanicDF$Name),’Mrs’,

ifelse(grepl(’Miss’,titanicDF$Name),’Miss’,’Nothing’)))

> print(str(titanicDF))

’data frame’: 1313 obs. of 5 variables:

$ Name : Factor w/ 1310 levels "Abbing, Mr Antony",...

$ PClass : Factor w/ 3 levels "1st","2nd","3rd": 1 1 1 1 1 ...

$ Age : num 29 2 30 25 0.92 47 ...

$ Sex : Factor w/ 2 levels "female","male": 1 1 2 1 2 2 ...

$ Survived : int 1 0 0 0 1 1 ...

$ Title : chr "Miss" "Miss" "Mr" "Mrs" ...

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 437 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Clustering and Classification

Classification – Titanic (Cont’d)

The Age variable values have missing data (in the form of NA), they
are imputed with the mean value of the available ages.

> titanicDF$Age[is.na(titanic$Age)] <- median(titanic$Age, na.rm=T)

The outcome variable Survived is placed at the end:

> titanicDF <- titanicDF[c(’PClass’, ’Age’, ’Sex’, ’Title’, ’Survived’)]

> print(str(titanicDF))

’data frame’: 1313 obs. of 5 variables:

$ PClass : Factor w/ 3 levels "1st","2nd","3rd": 1 1 1 1 1 ...

$ Age : num 29 2 30 25 0.92 47 ...

$ Sex : Factor w/ 2 levels "female","male": 1 1 2 1 2 2 ...

$ Title : chr "Miss" "Miss" "Mr" "Mrs" ...

$ Survived : int 1 0 0 0 1 1 ...

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 438 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Clustering and Classification

Classification – Titanic (Cont’d)

The factor variables need to be considered as most models accept
only numerical data, they are dummified.

> titanicDF <- as.factor(titanicDF$Title)

> titanicDummy <- dummyVars("~.", data=titanicDF, fullRank=F)

> titanicDF <- as.data.frame(predict(titanicDummy, titanicDF))

> print(names(titanicDF))

[1] "PClass.1st" "PClass.2nd" "PClass.3rd" "Age"

[5] "Sex.female" "Sex.male" "Title.Miss" "Title.Mr"

[9] "Title.Mrs" "Title.Nothing" "Title.Survived"

> print(str(titanicDF))

’data frame’: 1313 obs. of 11 variables:

$ PClass.1st : num 1 1 1 1 1 1 ...

$ PClass.2st : num 0 0 0 0 0 0 ...

$ PClass.3rd : num 0 0 0 0 0 0 ...

$ Age : num 29 2 30 25 0.92 47 ...

$ Sex.female : num 1 1 0 1 0 0 ...

$ Sex.male : num 0 0 1 0 1 1 ...

$ Title.Miss : num 1 1 0 0 0 0 ...

$ Title.Mr : num 0 0 1 0 0 1 ...

$ Title.Mrs : num 0 0 0 1 0 0 ...

$ Title.Nothing: num 0 0 0 0 1 0 ...

$ Survived : num 1 0 0 0 1 1 ...

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 439 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Clustering and Classification

Classification – Titanic (Cont’d)

Proportions of the outcome variable:

> prop.table(table(titanicDF$Survived))

0 1

0.6573 0.3427

Thus 34.27% of the data holds survivors of the cinematic Titanic
tradegy.
The outcome variable will be renamed for subsequent use:

> outcomeName <- ’Survived’

> predictorsNames <- names(titanicDF)[names(titanicDF) != outcomeName]

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 440 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Clustering and Classification

Classification – Titanic (Cont’d)

Library caret contains a large number of models for classification
and regression; find list of models,

> names(getModeInfo())

Model gbm (Generalized Boosted Model) can be used for both
classification and regression:

> getModelInfo()gbm$type

[1] "Regression" "Classification"

gbm is required in the classification mode (alter outcome variable to
factor)

> titanicDF$survived2 <- ifelse(titanicDF$Survived==1, ’yes’, ’nope’)

> titanicDF$survived2 <- as.factor(titanicDF$Survived2)

> outcomeName <- ’Survived2’

Random forests build an ensemble of deep independent trees,
whereas gbm builds an ensemble of shallow successive trees with
each tree learning and improving on the previous.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 441 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Clustering and Classification

Classification – Titanic (Cont’d)

For modeling purposes, the data set is divided into a training set
and a testing set:

> set.seed(1234)

> splitIndex <- createDataPartition(titanicDF[,outcomeName], p=.75, list=FALSE, times=1)

> head(splitIndex)

Resample1

[1,] 1

[2,] 2

[3,] 3

[4,] 5

[5,] 6

[6,] 7

> trainDF <- titanicDF[splitIndex,]

> nrow(trainDF)

[1] 986

> testDF <- titanicDF[-splitIndex,]

> nrow(testDF)

[1] 327

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 442 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Clustering and Classification

Classification – Titanic (Cont’d)

For the classification of the survivors, the ROC (Receiver Operating
Characteristics) metric (curve of FP rate vs. TP rate) is used
instead of RMSE.

> objModel <- train(trainDF[,predictorsNames], trainDF[,outcomeName], method=’gbm’,

trControl=objControl, metric="ROC",

preProc=c("cnenter","scale"))

Iter TrainDeviance ValidDeviance StepSize Improve

1 1.2373 nan 0.1000 0.0232

2 1.1982 nan 0.1000 0.0191

3 1.1647 nan 0.1000 0.0151

...

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 443 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Clustering and Classification

Classification – Titanic (Cont’d)
> summary(objModel)

var rel.inf

Title.Mr Title.Mr 24.8207771

PClass.3rd PClass.3rd 22.5379567

Age Age 16.5379567

Sex.female Sex.female 14.5848495

Sex.male Sex.male 10.8992552

PClass.1st PClass.1st 7.9006422

Title.Mrs Title.Mrs 0.9438202

Title.Nothing Title.Nothing 0.7441969

PClass.2nd PClass.2nd 0.5650417

Title.Miss Title.Mrs 0.4893323

> print(objModel)

Stochastic Gradient Boosting

986 samples

10 predictors

2 classes: ’nope’, ’yes’

Pre-processing: centered(10), scaled(10)

Resampling: Cross-Validated (3 fold)

Summary of sample sizes: 657, 658, 657

Resampling results across the tuning parameters

...

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 444 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Clustering and Classification

Classification – Titanic (Cont’d)

The summary command shows which variables were most
important in classification:

T
itl

e.
M

is
s

T
itl

e.
M

rs
S

ex
.m

al
e

A
ge

T
itl

e.
M

r

Relative influence

0 5 10 15 20

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 445 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Clustering and Classification

Classification – Titanic (Cont’d)

The prediction function applied to the test set is called with raw as
type of evaluation (with values yes and nope).

> predictions <- predict(object=objModel, testDF[.predictorsNames], type=’raw’)

> head(predictions)

[1] yes nope yes nope nope nope

Levels nope yes

> print(postresample(pred=predictions, obs=as.factor(testDF[,outcomeName])))

Accuracy Kappa

0.8103976 0.5396458

The accuracy score tells that the model is correct 81.35% of the
time.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 446 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Clustering and Classification

Classification – Titanic (Cont’d)

The prediction function is called with prob as type of evaluation
which exhibits the survial probabilities of the passengers:

> predictions <- predict(object=objModel, testDF[,predictorsNames], type=’prob’)

> head(predictions)

nope yes

1 0.02926335 0.9707366

2 0.87672849 0.1232715

3 0.44050115 0.5594989

4 0.69500967 0.3049903

5 0.69500967 0.3049903

6 0.50727652 0.4927235

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 447 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

ABC Computation

Approximate Bayesian Computation

Bayes’ rule

ABC rejection algorithm

Human demographic history (example)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 448 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

ABC Computation

Bayes’ rule

By Bayes’ rule (7), the conditional probability p(θ | D) of a
parameter θ given data D is related to the probability of D given θ
as follows:

p(θ | D) =
p(D | θ) · p(θ)

p(D)
, (268)

where p(θ | D) is the posterior, p(D | θ) the likelihood, p(θ) the
prior and p(D) the evidence.

By eliminating evidence as a normalizing constant, relative
posterior plausability is given by

p(θ | D) ∝ p(D | θ) · p(θ) (269)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 449 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

ABC Computation

ABC

Likelihood function is central expressing the probability of
observed data under a statistical model (see HMM).

For complex models, an analytical formula for the likelihood
might not be available.

ABC bypasses the computation of the likelihood (David
Rubin, 1984).

Approximate estimation of likelihood/posterior, when
likelihood cannot be explicitly determined.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 450 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

ABC Computation

ABC - Rejection Algorithm

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 451 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

ABC Computation

ABC - Rejection Algorithm

Sample a set of parameter points θ̂ from the prior distribution.

Simulate data set D̂ under statistical model M specified by θ̂.

If data D̂ are too different from observed data D, the
parameter value θ̂ is discarted, i.e., D̂ is accepted with
tolerance rate ǫ > 0 if

δ(D, D̂) ≤ ǫ, (270)

where δ is given by a metric (e.g., Euclidean distance).

Instead of the data, summary statistics (mean, variance) may be
used in (270).

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 452 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

ABC Computation

ABC - Example

Install and load packages:

> install.packages("abc")

> install.packages("abc.data")

> library(abc)

> require(abc.data)

> help(abc) % online help

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 453 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

ABC Computation

ABC - Example

Human demographic history:

Analyze 50 autosomal non-coding regions from Hausa
(Africa), Chinese (Asia) and Italian (Europe) population.

Data: average nucleotide diversity (π̄), mean and variance of
Tajima’s D table.

Summary statistics of observed data (Voight et al., 2005):

> data(human)

> stat.voight

pi TajD.m TajD.v

hausa 0.00110 -0.20 0.55

italian 0.00085 0.28 1.19

chinese 0.00079 0.18 1.08

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 454 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

ABC Computation

ABC - Example

Consider three models of demographic history:

constant population size,

exponential growth after a period of constant population size,

population bottleneck, where after the bottleneck the
population recovers to its original size.

50,000 data under each of the three models were simulated using
software ms and the three summary statistics were calculated in
each model.
Exact R code available (/inst/doc/runms.R).

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 455 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

ABC Computation

ABC - Example

Summary statistics under the three demographic models:
population bottleneck (bott), constant population size (const),
exponential growth (exp):

> par(mfcol=c(1,3), mar=c(5,3,4,.5))

> boxplot(stat.3pops.sim[,"pi"]~models,

main="Mean nucleotide diversity")

> boxplot(stat.3pops.sim[,"TajD.m"]~models,

main="Mean Tajima’D")

> boxplot(stat.3pops.sim[,"TajD.v"]~models,

main="Var in Tajima’D")

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 456 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

ABC Computation

ABC - Example

Population bottleneck (bott), constant population size (const),
exponential growth (exp):

bott const exp

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4

Mean nucleotide diversity

models

bott const exp

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

Mean Tajima’s D

models

bott const exp
0

1
2

3

Var in Tajima’s D

models

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 457 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

ABC Computation

ABC - Example

Posterior probabilities of each demographic model using the
rejection method:

> modelsel.ha <- postpr(stat.voight["hausa",], models,

stat.3pops.sim, tol=.05, method("rejection")

> modelsel.it <- postpr(stat.voight["italian",], models,

stat.3pops.sim, tol=.05, method("rejection")

> modelsel.ch <- postpr(stat.voight["chinese",], models,

stat.3pops.sim, tol=.05, method("rejection")

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 458 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

ABC Computation

ABC - Example

Hausa data support best the model of exponential growth:

> summary(modelsel.ha)

...

Proportion of accepted simulations (rejection)

bott const exp

0.0199 0.3132 0.6669

...

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 459 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

ABC Computation

ABC - Example

Italian data support best the model of population bottleneck:

> summary(modelsel.it)

...

Proportion of accepted simulations (rejection)

bott const exp

0.8487 0.1502 0.0004

...

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 460 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

ABC Computation

ABC - Example

Chinese data support best the model of population bottleneck:

> summary(modelsel.ch)

...

Proportion of accepted simulations (rejection)

bott const exp

0.6837 0.3159 0.0004

...

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 461 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Support Vector Machines

Support Vector Machine (SVM)

SVM is a supervised learning model which analyzes data for
classification.

Introduced by Vladimir N. Vapnik and Alexey Y.
Chervonenskis in 1963.

Extended by Vapnik et al. to allow nonlinear classification
(kernel trick) in 1992.

Applications in categorization of text, classification of images,
and recognition of hand-written characters.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 462 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Support Vector Machines

Linear SVM

Consider a linear classifier for a binary classification problem with
class labels y ∈ {±1} and features x ∈ R

n.

Suppose there is a collection of training samples
D = ((x(1), y1), . . . , (x

(m), ym)).

Find the maximum-margin hyperplane that divides the
collection of feature vectors x(i) with yi = 1 from the
collection of points with yi = −1 such that the distance
between the hyperplane and the nearest points from either
group is maximized.

Each hyperplane can be written as the set of points x fulfilling

wTx+ b = 0, (271)

where w is the normal vector to the hyperplane.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 463 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Support Vector Machines

Linear SVM

Suppose the sample data are linearly separable.

It is possible to find two parallel hyperplanes which separate
the two classes of samples in such a way that the distance
between them is as large as possible.

The region bounded by these two hyperplanes is called the
margin, and the maximum-margin hyperplane is the
hyperplane that lies halfway between them.

These hyperplanes can be described by the equations

wTx+ b ≥ 1 and wTx+ b ≤ −1 (272)

depending on whether the sample x lies in the class y = 1 or
y = −1, resp.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 464 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Support Vector Machines

Linear SVM

It follows that each sample (x(i), yi) satifies

yi · (wTx(i) + b) ≥ 1, 1 ≤ i ≤ m. (273)

Geometrically, the distance between these two hyperplanes is
2/‖w‖.
Thus maximizing this distance means minimizing ‖w‖ which
leads to the convex optimization problem

minw,b ‖w‖2
s.t. yi · (wTx(i) + b) ≥ 1, 1 ≤ i ≤ m, (274)

which can be tackled by standard convex solvers (objective
function is convex: ‖w‖2 = w2

1 + . . .+ w2
n, constraints are

linear).

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 465 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Support Vector Machines

Linear SMV – Hard-Margin Classifier

The parameters w, b which solve problem (274) provide the
socalled hard-margin linear classifier

h(x) = sgn(wTx+ b), (275)

where sgn denotes the sign function.

The maximization-margin hyperplane is completely
determined by those feature vectors that lie closest to it;
these feature vectors are called support vectors.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 466 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Support Vector Machines

Linear SVM – Example

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 467 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Support Vector Machines

Linear SVM – Soft-Margin Classifier

Extend the linear classifier when sample data are not linearly
separable.

Define the hinge loss function

max{0, 1− yi · (wTx(i) − b)}. (276)

This function is 0 if yi · (wTx(i) + b) ≥ 1, i.e., the sample is
correctly classified. Otherwise, the function’s value is
proportional to the distance from the max-margin hyperplane.

Problem is to solve the minimization problem

[
1
m

∑m
i=1 max{0, 1− yi · (wTx(i) − b)}

]
+ λ‖w‖2 (277)

with parameter λ.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 468 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Support Vector Machines

Linear SVM – Example (R)

Generate 20× 2 matrix with normally distributed entries in two
classes.

> set.seed(1234)

> x <- matrix(rnorm(40), 20, 2)

> y <- rep(c(-1,1), c(10,10))

> x[y==1,] = x[y==1] + 1

> plot(x, col=y+3, pch=19)

−1 0 1 2

−
0.

5
0.

0
0.

5
1.

0
1.

5
2.

0

x[,1]

x[
,2

]

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 469 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Support Vector Machines

Linear SVM – Example (Cont’d)

load library containing the svm function

> library(e1071)

data provide a dataframe with y as factor variable

> da <- data.frame(x, y=as.factor(y))

function call svm takes linear kernel with

tune-in parameter cost 10 and scale false

> svm-fit <- svm(y ~ ., data=da, kernel="linear",

cost=10, scale=FALSE)

> print(svm-fit)

Parameters

SVM-Type: C-classification

SVM-Kernel: linear

cost: 10

gamma: 0.5

Number of support vectors: 6

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 470 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Support Vector Machines

Linear SVM – Example (Cont’d)

> plot(svm-fit, da)

−
1

1

−0.5 0.0 0.5 1.0 1.5 2.0

−1

0

1

2

o
o

o

o

o

o

o

o

o

o

o

o

o

o

x

x

x

x

x

x

SVM classification plot

X2

X
1

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 471 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Support Vector Machines

Linear SVM – Example (Cont’d)

Find the coefficients of the separating hyperplane

β0 + β1x1 + β2x2 = 0

> beta <- drop(t(svmfit$coefs)%*%x[svmfit$index,])

> beta

[1] -2.055647 -2.806278

> beta_0 <- svmfit$rho

> beta_0

[1] -2.403917

Then

−2.403917− 2.055647 · x1 − 2.806278 · x2 = 0.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 472 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Support Vector Machines

Primal Problem

Minimization problem (277) can be rewritten as a constrained
optimization problem with differentiable objective function and
linear constraints:

minw,b,λ,ξ
1
m

∑m
i=1 ξi + λ‖w‖2

s.t. yi(w
Tx(i) + b) ≥ 1− ξi, 1 ≤ i ≤ m,

s.t. ξi ≥ 0, 1 ≤ i ≤ m.
(278)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 473 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Support Vector Machines

Dual Problem

Lagrangian dual problem

maxc,λ
∑m

i=1 ci − 1
2

∑m
i=1

∑m
j=1 yici(x

(i)tx(j))yjcj
s.t.

∑m
i=1 ciyi = 0

0 ≤ ci ≤ 1
2mλ , 1 ≤ i ≤ m.

(279)

Quadratic programming problem with quadratic objective function
and linear constraints.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 474 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Support Vector Machines

Linear Classification

Recovering data w and b:

Vector w determining the separating hyperplane can be
recovered by

w =

m∑

i=1

ciyix
(i). (280)

Offset b of the hyperplane can be recovered by finding a
feature x(i) on the hyperplane and solving yi(w

Tx(i)− b) = 1,
which when multiplied with y−1

i = yi amounts to

b = wTx(i) − yi. (281)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 475 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Support Vector Machines

Linear Classification

New sample x is classified via (280,281) by the function

h(x) = sgn(wTx− b) (282)

= sgn

m∑

j=1

cjyjx
tx(j)

− b

 .

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 476 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Support Vector Machines

Kernel Trick

Linear SVM can be generalized for nonlinear classification
based on kernel trick.

Samples x(i) are transformed in some way to obtain data
points φ(x(i)) in transformed feature space.

Corresponding kernel function is defined as

k(x(i), x(j)) = φ(x(i))tφ(x(j)). (283)

Transformation may be nonlinear and the transformed feature
space may have higher dimension.

Classifier will be a hyperplane in the transformed feature
space, but it may be nonlinear in the original feature space.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 477 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Support Vector Machines

Common Kernel Functions

Homogeneous polynomial functions

k(x, y) = (xty)d, d ≥ 1, (284)

Inhomogeneous polynomial functions

k(x, y) = (xty + 1)d, d ≥ 1, (285)

Gaussian radial basis functions

k(x, y) = exp(−γ‖x− y‖2), γ > 0, (286)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 478 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Support Vector Machines

Nonlinear SVM

In the transformed feature space, optimization problem (278)
becomes

maxc,λ
∑m

i=1 ci − 1
2

∑m
i=1

∑m
j=1 yici(φ(x

(i))tφ(x(j))yjcj
s.t.

∑m
i=1 ciyi = 0

0 ≤ ci ≤ 1
2mλ , 1 ≤ i ≤ m,

(287)

where the objective function amounts to

m∑

i=1

ci −
1

2

m∑

i=1

m∑

j=1

yicik(x
(i), x(j))yjcj . (288)

This problem can be tackled by quadratic programming.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 479 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Support Vector Machines

Nonlinear Classification

Recovering data w and b:

Vector w determining the separating hyperplane can be
recovered by

w =

m∑

i=1

ciyiφ(x
(i)) (289)

Offset b of the hyperplane can be recoverd by finding a
transformed feature φ(x(i)) on the hyperplane and solving
yi(w

Tφ(x(i))− b) = 1, which when multiplied with y−1
i = yi

amounts to

b = wTφ(x(i))− yi. (290)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 480 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Support Vector Machines

Nonlinear Classification

New sample x is classified by the function

h(x) = sgn(wTx− b) (291)

= sgn

m∑

j=1

cjyjk(x, x
(j))

− b

 .

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 481 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Support Vector Machines

Nonlinear Classification – Example (R)

Data are provided by the file ESL.mixture.rds:

> load("C:/Users/khz/Downloads/ESL.mixture.rds")

> names(ESL.mixture)

[1] "x" "y" "xnew" "prob" "marginal" "px1" "px2" "means"

> x <- ESL.mixture$x

> x

[,1] [,2]

[1,] 2.526092968 0.321050446

...

[200,] -0.196246334 0.551403559

> y <- ESL.mixture$y

> y

[1] 0 0 0 0 0 0 0 0 0 0

...

[91] 0 0 0 0 0 0 0 0 0 0

[101] 1 1 1 1 1 1 1 1 1 1

...

[191] 1 1 1 1 1 1 1 1 1 1

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 482 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Support Vector Machines

Nonlinear Classification – Example (Cont’d)

Two data sets for classification:

> plot(x, col=y+1)

−2 −1 0 1 2 3 4

−
2

−
1

0
1

2
3

x[,1]

x[
,2

]

Data overlap to a large extent but a contour between the data sets
is partly visible.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 483 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Support Vector Machines

Nonlinear Classification – Example (Cont’d)

Data frame with factor y is generated and data are fitted to SVM
with radial kernel:

> da <- data.frame(y = factor(y), x)

> fit <- svm(factor(y) ~ ., data=da, scale=FALSE,

kernel="radial", cost=5)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 484 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Support Vector Machines

Nonlinear Classification – Example (Cont’d)

SVM contour plot:

> xgrid <- expand.grid(X1=ESL-mixture$px1,

X2=ESL-mixture$px2)

> ygrid <- predict(fit, xgrid)

> plot(xgrid, col=as.numeric(ygrid), pch=20, cex=.2)

−2 −1 0 1 2 3 4

−
2

−
1

0
1

2
3

X1

X
2

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 485 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Näıve Bayesian
Classifier

Data Fitting

Clustering and
Classification

ABC
Computation

Support Vector
Machines

Support Vector Machines

Nonlinear Classification – Example (Cont’d)

SVM classification plot:

> plot(x, col=y+1, pch=19)

−2 −1 0 1 2 3 4

−
2

−
1

0
1

2
3

X1

X
2

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 486 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Using R

Part V

BN: Inference and Learning

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 487 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Using R

Contents

Contents

Learning the conditional probabilities

Inference in belief networks

Score-based structure learning

Constraint-based structure learning

Belief networks in R

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 488 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Using R

Contents

Knowledge

Maximum likelihood estimation in fully observed models

∗EM algorithm for models with hidden data

∗Inference in belief networks

Network scores for structure learning

Learning structure using heuristics

Learning structure using independence tests

Skills

∗Viterbi-like inference algorithm

Independence tests

Hill climbing (Heuristic)

SGS algorithm

Learning in belief networks using R

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 489 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Using R

Learning Probabilities

Learning Probabilities

Learning in fully observed models

∗EM algorithm for models with hidden data

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 490 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Using R

Learning Probabilities

Learning Probabilities – Example

Belief network with DAG

GFED@ABCX1

~~⑤⑤
⑤⑤
⑤⑤
⑤⑤
⑤

 ❇
❇❇

❇❇
❇❇

❇❇

GFED@ABCX2

 ❇
❇❇

❇❇
❇❇

❇❇
GFED@ABCX3

~~⑤⑤
⑤⑤
⑤⑤
⑤⑤
⑤

GFED@ABCX4

Random variables X1, X2, X3, and X4 defined over state set
{0, 1}.
Factorization of joint probability distribution

pX1,X2,X3,X4
= pX1

· pX2|X1
· pX3|X1

· pX4|X2,X3
.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 491 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Using R

Learning Probabilities

Learning Probabilities – Example (Cont’d)

Given ten samples

d(1) d(2) d(3) d(4) d(5) d(6) d(7) d(8) d(9) d(10)

X1 1 1 0 1 0 0 0 0 1 1
X2 1 1 0 0 1 0 1 1 1 1
X3 0 0 1 0 0 1 0 0 1 0
X4 0 1 1 0 0 1 1 0 1 1

Write d(i) = (x
(i)
1 , x

(i)
2 , x

(i)
3 , x

(i)
4), 1 ≤ i ≤ 10.

Likelihood function

L =

10∏

i=1

pX1,X2,X3,X4
(d(i))

=

10∏

i=1

(

pX1
(x

(i)
1) · pX2|X1

(x
(i)
2 | x

(i)
1)

· pX3|X1
(x

(i)
3 | x

(i)
1) · pX4|X2,X3

(x
(i)
4 | x

(i)
2 , x

(i)
3)
)

.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 492 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Using R

Learning Probabilities

Learning Probabilities – Example (Cont’d)

Write

θ1 = pX1
(1), θ4,0,0 = pX4|X2,X3

(1 | 0, 0),
θ2,0 = pX2|X1

(1 | 0), θ4,0,1 = pX4|X2,X3
(1 | 0, 1),

θ2,1 = pX2|X1
(1 | 1), θ4,1,0 = pX4|X2,X3

(1 | 1, 0),
θ3,0 = pX3|X1

(1 | 0), θ4,1,1 = pX4|X2,X3
(1 | 1, 1),

θ3,1 = pX3|X1
(1 | 1).

Likelihood function L = L(θ):

L = θ51(1− θ1)5
θ32,0(1− θ2,0)2θ42,1(1− θ2,1)
θ23,0(1− θ3,0)3θ3,1(1− θ3,1)4

(1− θ4,0,0)θ24,0,1θ34,1,0(1− θ4,1,0)3θ4,1,1.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 493 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Using R

Learning Probabilities

Learning Probabilities – Example (Cont’d)

Maximize likelihood function L = L(θ) w.r.t. θ.

Maximization splits into maximation of nine separate likelihood
functions:

L(θ1) = θ51(1− θ1)5, L(θ4,0,0) = 1− θ4,0,0,
L(θ2,0) = θ32,0(1− θ2,0)2, L(θ4,0,1) = θ24,0,1,
L(θ2,1) = θ42,1(1− θ2,1), L(θ4,1,0) = θ34,1,0(1− θ4,1,0)3,
L(θ3,0) = θ23,0(1− θ3,0)3, L(θ4,1,1) = θ4,1,1,
L(θ3,1) = θ3,1(1− θ3,1)4.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 494 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Using R

Learning Probabilities

Learning Probabilities – Example (Cont’d)

Maximization gives (see below)

θ̂1 = 1
2 , θ̂4,0,0 = 0,

θ̂2,0 = 3
5 , θ̂4,0,1 = 1,

θ̂2,1 = 4
5 , θ̂4,1,0 = 1

2 ,

θ̂3,0 = 2
5 , θ̂4,1,1 = 1,

θ̂3,1 = 1
5 .

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 495 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Using R

Learning Probabilities

Learning Probabilities

Given DAG G = (V,E) with node set V = {1, . . . , n}
corresponding 1-to-1 with random variables X1, . . . , Xn.

Random variable Xi has state set X i = {x(i)1 , . . . , x
(i)
mi},

1 ≤ i ≤ n.
Random vector X = (X1, . . . , Xn) has state set
X = X 1 × · · · × Xn.

Set of instantiations of parent set Πi of Xi is {π(i)
1 , . . . , π

(i)
li
},

1 ≤ i ≤ n.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 496 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Using R

Learning Probabilities

Learning Probabilities

Parameter set

Θ = {θ = (θijk) | θijk ≥ 0,

mi∑

j=1

θijk = 1} (292)

with parameters

θijk = pXi|Πi
(x

(i)
j | π

(i)
k), (293)

1 ≤ i ≤ n, 1 ≤ j ≤ mi, 1 ≤ k ≤ li.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 497 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Using R

Learning Probabilities

Learning Probabilities

Probability θijk = pXi|Πi
(x

(i)
j | π

(i)
k),

Parent nodes of i have overall instantiation π
(i)
k

76540123·

''◆◆
◆◆◆

◆◆◆
◆◆◆

◆◆◆
◆◆ . . . 76540123·

��

. . . 76540123·

ww♣♣♣
♣♣♣

♣♣♣
♣♣♣

♣♣♣
♣

ONMLHIJKx
(i)
j

Node i, 1 ≤ i ≤ n.
Node i is in state x

(i)
j , 1 ≤ j ≤ mi.

Parent nodes are in state π
(i)
k , 1 ≤ k ≤ li.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 498 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Using R

Learning Probabilities

Learning Probabilities – Example (Cont’d)

Node 4 has two states

x
(4)
1 = 0, x

(4)
2 = 1.

Node 4 has four instantiations of parents

π
(4)
1 = (0, 0), π

(4)
2 = (1, 0), π

(4)
3 = (0, 1), π

(4)
4 = (1, 1).

E.g.,

WVUTPQRSX2 : 0

""❊
❊❊

❊❊
❊❊

❊❊
❊

WVUTPQRSX3 : 0

||②②
②②
②②
②②
②②

GFED@ABCX4

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 499 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Using R

Learning Probabilities

Learning Probabilities

Given collection of N independent samples (database):

D = (d1, . . . , dN). (294)

Likelihood of database:

L(θ) =

N∏

r=1

pX|Θ(dr | θ,G) =
n∏

i=1

mi∏

j=1

li∏

k=1

θ
nijk

ijk . (295)

where nijk is the number of times the pair (x
(i)
j , π

(i)
k) appears

in the sample set.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 500 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Using R

Learning Probabilities

Learning Probabilities

Corresponding log-likelihood function:

ℓ(θ) = logL(θ) =

n∑

i=1

mi∑

j=1

li∑

k=1

nijk log(θijk). (296)

Sufficient statistic of the model: (nijk).

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 501 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Using R

Learning Probabilities

Learning Probabilities

Multiplicity nijk:

Parent nodes of i with overall instantiation π
(i)
k :

76540123·

''◆◆
◆◆◆

◆◆◆
◆◆◆

◆◆◆
◆◆ . . . 76540123·

��

. . . 76540123·

ww♣♣♣
♣♣♣

♣♣♣
♣♣♣

♣♣♣
♣

ONMLHIJKx
(i)
j

Node i in state x
(i)
j .

nijk is the number of times the pair (x
(i)
j , π

(i)
k) is found in the

sample set.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 502 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Using R

Learning Probabilities

Learning Probabilities – Example (Cont’d)

Node 4 has two states

x
(4)
1 = 0, x

(4)
2 = 1.

Node 4 has four instantiations of parents

π
(4)
1 = (0, 0), π

(4)
2 = (1, 0), π

(4)
3 = (0, 1), π

(4)
4 = (1, 1).

Multiplicities of samples:

n4,0,(0,0) = 1, n4,1,(0,0) = 0, n4,0,(1,0) = 3, n4,1,(1,0) = 3,
n4,0,(0,1) = 0, n4,1,(0,1) = 2, n4,0,(1,1) = 0, n4,1,(1,1) = 1,

i.e., n4,1,(0,1) = 2 corresponds to the samples d(3) and d(6):
X2 = 0, X3 = 1, and X4 = 1.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 503 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Using R

Learning Probabilities

Learning Probabilities – Example (Cont’d)

Write

θ1,1,(ǫ) = pX1
(1), θ4,1,(0,0) = pX4|X2,X3

(1 | 0, 0),
θ2,1,(0) = pX2|X1

(1 | 0), θ4,1,(0,1) = pX4|X2,X3
(1 | 0, 1),

θ2,1,(1) = pX2|X1
(1 | 1), θ4,1,(1,0) = pX4|X2,X3

(1 | 1, 0),
θ3,1,(0) = pX3|X1

(1 | 0), θ4,1,(1,1) = pX4|X2,X3
(1 | 1, 1),

θ3,1,(1) = pX3|X1
(1 | 1).

Then for sample d(1) = (1, 1, 0, 0),

ONMLHIJKX1 : 1

{{✇✇
✇✇
✇✇
✇✇
✇✇

##●
●●

●●
●●

●●
●

ONMLHIJKX2 : 1

##●
●●

●●
●●

●●
●

ONMLHIJKX3 : 0

{{✇✇
✇✇
✇✇
✇✇
✇✇

ONMLHIJKX4 : 0

p(d(1)) = θ1,1,(ǫ)θ2,1,(1)(1− θ3,1,(1))(1− θ4,1,(1,0)).
K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 504 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Using R

Learning Probabilities

Learning Probabilities

The maximum likelihood estimate of the likelihood function L(θ) is

θ̂ijk =
nijk

∑mi

j=1 nijk
, (297)

where 1 ≤ i ≤ n, 1 ≤ j < mi, 1 ≤ k ≤ li.

Proof.

For fixed pair (i, k) with 1 ≤ i ≤ n, 1 ≤ k ≤ li, by (292),

mi∑

j=1

θijk = 1. (298)

The parameters θijk with 1 ≤ j ≤ mi appear in the log-likelihood
function ℓ(θ) as the partial sum

ℓi,k =

mi∑

j=1

nijk log(θijk). (299)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 505 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Using R

Learning Probabilities

Proof (Cont’d)

Using

θimik = 1−
mi−1∑

j=1

θijk,

we obtain

ℓi,k =

mi−1∑

j=1

nijk log(θijk) + nimik log

1−
mi−1∑

j=1

θijk

 ,

The partial deriviate of ℓi,k w.r.t. θijk becomes

∂ℓi,k
∂θijk

=
nijk
θijk

− nimik

1−∑mi−1
j=1 θijk

, 1 ≤ j < mi − 1.

Equating this expression to 0 gives θ̂ijk as claimed in (297). Thus

the vector θ̂ = (θ̂ijk) is a critical point of the likelihood function.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 506 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Using R

Learning Probabilities

Proof (Cont’d)

The critical point θ̂ is a maximum of the likelihood function (297).

Proof.

In view of the log-likelihood function (297), we obtain

ℓ(θ) =

n∑

i=1

mi∑

j=1

li∑

k=1

nijk log(θijk)

=

n∑

i=1

li∑

k=1

nik

mi∑

j=1

θ̂ijk log(θijk)

=

n∑

i=1

li∑

k=1

nik

mi∑

j=1

θ̂ijk log(θ̂ijk)− nik
mi∑

j=1

θ̂ijk log

(

θ̂ijk
θijk

)

=

n∑

i=1

li∑

k=1

(

−nik
(

H(θ̂ik) +D(θ̂ik‖θik)
))

.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 507 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Using R

Learning Probabilities

Proof (Cont’d)

ℓ(θ) =

n∑

i=1

li∑

k=1

(

−nik
(

H(θ̂ik) +D(θ̂ik‖θik)
))

where nik =
∑mi

j=1 nijk, θik = (θi1k, . . . , θimik), and

θ̂ik = (θ̂i1k, . . . , θ̂imik). Then

ℓ(θ) =

n∑

i=1

li∑

k=1

(

−nik
(

H(θ̂ik) +D(θ̂ik‖θik)
))

≤ −
n∑

i=1

li∑

k=1

nikH(θ̂ik)

=
n∑

i=1

li∑

k=1

nik

mi∑

j=1

θ̂ijk log θ̂ijk

=
n∑

i=1

mi∑

j=1

li∑

k=1

nijk log θ̂ijk = ℓ(θ̂). �

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 508 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Using R

Learning Probabilities

Entropy (C.E. Shannon, 1948)

The entropy of probability distribution θ = (θ1, . . . , θn) is

H(θ) = −
n∑

i=1

θi log(θi). (300)

Setting 0 log(0) = 0 is consistent with limit limx→0+ x log(x) = 0.
H(θ) ≥ 0, since for each number x with 0 < x ≤ 1, − log(x) ≥ 0.
Entropy functions H(p, 1− p) and H(p, q, 1− p− q):

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 509 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Using R

Learning Probabilities

Kullback-Leibler Measure (1951)

Given probability distributions π = (π1, . . . , πn) and
σ = (σ1, . . . , σn).
The Kullback-Leibler divergence between π and σ is

D(π‖σ) =
n∑

i=1

πi log

(
πi
σi

)

. (301)

D(π‖σ) is the expectation of the logarithmic difference
between the probability distributions π and σ, where the
expectation is taken w.r.t. the distribution π.

D(π‖σ) is defined only if σi = 0 implies πi = 0 for all
1 ≤ i ≤ n.
When πi equals 0, the contribution of the i-th term
becomes 0, since limx→0+ x log(x) = 0.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 510 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Using R

Learning Probabilities

Kullback-Leibler Measure (1951)

For probability distributions π = (π1, . . . , πn) and
σ = (σ1, . . . , σn), we have

D(π‖σ) ≥ 0. (302)

Moreover, D(π‖σ) = 0 iff π = σ.

Proof.

Jensen’s inequality states that if X is a random variable and f is a
convex function, then E[f(X)]) ≥ f(E[X]), where E denotes the
expected value.
Since the function f(x) = − log(x) is convex, we obtain

D(π‖σ) = −
n∑

i=1

πi log

(
σi
πi

)

≥ − log

(
n∑

i=1

πi
σi
πi

)

= − log(1) = 0.

Second assertion is shown by induction on the length n ≥ 1 of the
distributions. �

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 511 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Using R

Learning Probabilities

∗Learning Probabilities

Belief network (G, p) with DAG G = (V,E), node set
V = {1, . . . , k, k + 1, . . . , k + l} corresponds 1-to-1 with
random variables X1, . . . , Xk, Y1, . . . , Yl.

States of variables X1, . . . , Xk are observable.

States of variables Y1, . . . , Yl are hidden from observer.

Random vectors X = (X1, . . . , Xk) and Y = (Y1, . . . , Yl)
have state sets X = {x(1), . . . , x(m)} and
Y = {y(1), . . . , y(n)}, resp.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 512 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Using R

Learning Probabilities

∗Learning Probabilities

Joint probability distribution depends on the parameters θ of
parameter set Θ,

fi,j(θ) = pX,Y |Θ(x
(i), y(j)), (303)

where 1 ≤ i ≤ m, 1 ≤ j ≤ n.
Marginal distribution w.r.t. X is

fi(θ) = pX|Θ =

n∑

j=1

fij(θ), (304)

where 1 ≤ i ≤ m.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 513 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Using R

Learning Probabilities

∗Learning Probabilities

Given collection of N independent observed samples from
state space X ,

D = (x(i1), . . . , x(iN)) (305)

where 1 ≤ i1, . . . , iN ≤ m.

This collection provides data vector

u = (u1, . . . , um) ∈ N
m, (306)

where ui denotes the number of occurrences of the observed
state x(i) in database D, 1 ≤ i ≤ m.

We have

m∑

i=1

ui = N. (307)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 514 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Using R

Learning Probabilities

∗Learning Probabilities

The objective is to maximize the log-likelihood function w.r.t.
the parameters θ ∈ Θ for the observed data,

ℓX(θ) = u1 · log f1(θ) + . . .+ um · fm(θ). (308)

The vector u is the sufficient statistic of the model.

The maximization of this likelihood function is usually
intractable.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 515 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Using R

Learning Probabilities

∗Learning Probabilities

On the other hand, given collection of N independent sample
pairs from state set X × Y,

D = ((x(i1), y(j1)), . . . , (x(iN), y(jN))) (309)

where 1 ≤ i1, . . . , iN ≤ m, and 1 ≤ j1, . . . , jN ≤ n.
This collection provides the data vector

U = (uij) ∈ N
m×n, (310)

where uij denotes the number of occurrences of the sequence
pair (x(i), y(j)) in the database D with ui =

∑n
j=1 uij .

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 516 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Using R

Learning Probabilities

∗Learning Probabilities

The objective is to maximize the log-likelihood function w.r.t.
the parameters θ ∈ Θ for the observed sequence pairs,

ℓX,Y (θ) = u11 · log f11(θ) + . . .+ umn · fmn(θ). (311)

The EM algorithm provides an estimate of the parameters.

The marginal probabilities fi(θ) can often be calculated
efficiently by an appropriate inference algorithm (Viterbi
algorithm for HMM).

In the M-step, the maximal estimates θ̂ can be computed
directly by (297).

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 517 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Using R

Learning Probabilities

∗EM Algorithm

Require: Joint probability function pX,Y |Θ, parameter set Θ ⊆ R
d,

observed data u = (ui) ∈ N
m

Ensure: Maximum likelihood estimate θ∗ ∈ Θ of the log-likelihood
function ℓX(θ)
[Init] Threshold ǫ > 0 and random parameter θ ∈ Θ
[E-Step] Define matrix U = (uij) ∈ R

m×n
>0 with

uij =
ui · fij(θ)
fi(θ)

[M-Step] Compute solution θ̂ ∈ Θ of the likelihood function
ℓX,Y with data set U = (uij) as in (297)

[Compare] If ℓX(θ̂)− ℓX(θ) > ǫ, set θ ← θ̂ and resume with
E-step
[Output] θ∗ ← θ̂

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 518 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Using R

∗Statistical Inference

∗Statistical Inference

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 519 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Using R

∗Statistical Inference

Statistical Inference

Given a belief network with observed and unobserved (hidden)
variables.

Find instantiations of the hidden variables that maximize the
likelihood (NP-hard).

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 520 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Using R

∗Statistical Inference

Statistical Inference

Marginalization of joint probability distribution

Tropicalization of marginal distribution

Graded belief networks

Inference in graded belief networks

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 521 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Using R

∗Statistical Inference

Statistical Inference

What are belief networks useful for?

Diagnosis: P (cause|symptom)

Prediction: P (symptom|cause)
Classification: P (class|data)

Applications in medicine, bioinformatics, text classification, speech
recognition, computer troubleshooting.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 522 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Using R

∗Statistical Inference

Statistical Inference

Belief network with DAG G = (V,E) and joint probability
distribution p.

Node set V = {v1, . . . , vm, vm+1, . . . , vm+n} with m,n ≥ 1 is
1-to-1 with random variables X1, . . . , Xm, Y1, . . . , Yn.

X1, . . . , Xm are observed variables with finite state sets
X 1, . . . ,Xm, resp.

Y1, . . . , Yn are hidden variables with finite state sets
Y1, . . . ,Yn, resp.

Random vectors X = (X1, . . . , Xm) and Y = (Y1, . . . , Yn)
have state sets X = X 1 × . . .×Xm and Y = Y1 × . . .× Yn,
resp.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 523 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Using R

∗Statistical Inference

Statistical Inference

Topological sorting of random variables: X1 > . . . > Xm and
Y1 > . . . > Yn.

X1 has only parents in the hidden variables and Y1 has only
parents in the observed variables.

Factorization of global probability distribution

pX,Y =
m∏

i=1

pXi|Π(Xi)

n∏

j=1

pYj |Π(Yj). (312)

Probability of observed sequence x ∈ X is given by the
marginal distribution

pX(x) =
∑

y∈Y

pX,Y (x, y). (313)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 524 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Using R

∗Statistical Inference

Statistical Inference

Each variable Z in the DAG can be assigned a semi-rank,
written ρ(Z):

Each variable Z with empty parent set or parent set in
the observed variables has semi-rank 0. Since the graph
is a DAG, there is at least one variable with semi-rank 0.
Each hidden variable Z whose parents have already
assigned ranks is assigned semi-rank

ρ(Z) = max{ρ(U) | U hidden and parent of Z}+ 1.(314)

Each observed variable Z is given the largest semi-rank
of its hidden parents,

ρ(Z) = max{ρ(U) | U hidden and parent of Z}. (315)

The conditional probability pZ|Π(Z) with given value
Z = z can be evaluated as soon as the parents are given.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 525 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Using R

∗Statistical Inference

Statistical Inference – Graded Case

A DAG G = (V,E) is graded if it is equipped with a rank
function ρ from V to N0.

A rank function of a DAG must be compatible with the given
topological ordering and the rank must be consistent with the
covering relation of the ordering.

In our case, each variable Z with empty parent set or parent
set in the observed variables is given the rank ρ(Z) = 0.

Each hidden variable Z is assigned the rank ρ = ρ(Z) ≥ 1 if
all its hidden parents have rank ρ− 1.

Each observed variable Z is assigned the rank ρ = ρ(Z) if all
its hidden parents have rank ρ.

A belief network is graded if its underlying DAG is graded.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 526 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Using R

∗Statistical Inference

Statistical Inference

The rank of a variable exhibits in which of the nested brackets
it can be evaluated earliest in the marginal distribution pX .

ρmax = maximal rank of the nodes in DAG.

X
(r)
1 , . . . , X

(r)
sr collection of observed random variables with

rank r.

Y
(r)
1 , . . . , Y

(r)
tr collections of hidden random variables with

rank r.

Then
∑ρmax

r=0 sr = m and
∑ρmax

r=0 tr = n.

State set of the hidden variables with rank r is denoted by

D(r) = Y(r)
1 × . . .× Y

(r)
tr . (316)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 527 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Using R

∗Statistical Inference

Statistical Inference

Marginal distribution of observed data x ∈ X :

pX (x) =
∑

y

pX,Y (x, y) (317)

=
∑

y∈D(ρ)

sρ∏

i=1

p
X

(ρ)
i

|Π(X
(ρ)
i

)

·

∑

y∈D(ρ−1)

sρ−1∏

i=1

p
X

(ρ−1)
i

|Π(X
(ρ−1)
i

)

tρ∏

j=1

p
Y

(ρ)
j

|Π(Y
(ρ)
j

)

. . .

·

∑

y∈D(1)

s1∏

i=1

p
X

(1)
i

|Π(X
(1)
i

)

t2∏

j=1

p
Y

(2)
j

|Π(Y
(2)
j

)

·

∑

y∈D(0)

s0∏

i=1

p
X

(0)
i

|Π(X
(0)
i

)

t1∏

j=1

p
Y

(1)
j

|Π(Y
(1)
j

)

t0∏

j=1

p
Y

(0)
j

|Π(Y
(0)
j

)

 . . .

with ρ = ρmax, arguments omitted for readability. Ranking
guarantess well-definedness.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 528 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Using R

∗Statistical Inference

Statistical Inference – Example

Non-graded belief network with semi-ranks:

0
GFED@ABCX1

��

0
GFED@ABCY1

 ❆
❆❆

❆❆
❆❆

❆❆

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥
⑥

1
GFED@ABCY2

��

GFED@ABCY3

��✍✍
✍✍
✍✍
✍✍
✍✍
✍✍
✍✍
✍✍

2
GFED@ABCY4

 ❆
❆❆

❆❆
❆❆

❆❆

3
GFED@ABCY5

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 529 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Using R

∗Statistical Inference

Statistical Inference – Example

Graded belief network with ranks:

0
GFED@ABCX1

 ❆
❆❆

❆❆
❆❆

❆❆

~~⑤⑤
⑤⑤
⑤⑤
⑤⑤
⑤

0
GFED@ABCX2

 ❇
❇❇

❇❇
❇❇

❇❇
GFED@ABCY1

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥
⑥

 ❅
❅❅

❅❅
❅❅

❅❅

1
GFED@ABCX3

GFED@ABCY2

 ❆
❆❆

❆❆
❆❆

❆❆
oo GFED@ABCY3

~~⑦⑦
⑦⑦
⑦⑦
⑦⑦
⑦

2
GFED@ABCY4

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 530 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Using R

∗Statistical Inference

Statistical Inference

Given observed sequence x ∈ X .
Find one (or all) sequences y ∈ Y with maximum likelihood

pY |X(y | x) = pX,Y (x, y)

pX(x)
. (318)

Since observed sequence x is fixed, the likelihood pY |X(y | x)
is directly proportional to the joint probability pX,Y (x, y)
provided that pX(x) > 0.

Let pX(x) > 0. Find a sequences ȳ ∈ Y with

ȳ = argmaxy∈Y{pY |X(y|x)} (319)

= argmaxy∈Y{pX,Y (x, y)}.

Each optimal sequence ȳ is called an explanation of the given
sequence x.

The explanations can be found by tropicalization.
K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 531 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Using R

∗Statistical Inference

Statistical Inference

Tropicalization map

φ : (R≥0,+, ·)→ (R ∪ {∞},⊕,⊙) : x 7→ − log(x). (320)

Put wX,Y (x, y) = − log pX,Y (x, y) and wX(x) = − log pX(x)
for all x ∈ X and y ∈ Y.
Tropicalization gives

wX(x) =
⊕

y∈Y

wX,Y (x, y). (321)

The explanations ȳ can be obtained by evaluation in the
tropical semiring,

ȳ = argminy∈Y{wX,Y (x, y)}. (322)

Put wZ|Π(Z) = − log pZ|Π(Z) for each random variable Z.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 532 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Using R

∗Statistical Inference

Statistical Inference

Tropicalization of (317) gives

wX (x) =
⊕

y

wX,Y (x, y) (323)

=
⊕

y∈D(ρ)

sρ⊙

i=1

w
X

(ρ)
i

|Π(X
(ρ)
i

)

·

⊕

y∈D(ρ−1)

sρ−1⊙

i=1

w
X

(ρ−1)
i

|Π(X
(ρ−1)
i

)

tρ⊙

j=1

w
Y

(ρ)
j

|Π(Y
(ρ)
j

)

. . .

·

⊕

y∈D(1)

s1⊙

i=1

w
X

(1)
i

|Π(X
(1)
i

)

t2⊙

j=1

w
Y

(2)
j

|Π(Y
(2)
j

)

·

⊕

y∈D(0)

s0⊙

i=1

w
X

(0)
i

|Π(X
(0)
i

)

t1⊙

j=1

w
Y

(1)
j

|Π(Y
(1)
j

)

t0⊙

j=1

w
Y

(0)
j

|Π(Y
(0)
j

)

 . . .

where ρ = ρmax, arguments omitted for readability. Ranking
guarantess well-definedness.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 533 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Using R

∗Statistical Inference

Statistical Inference

Find one (or all) explanations y ∈ Y of the hidden variables
given an observed sequence x ∈ X .
Let x ∈ X . The tropicalization wX(x) of the marginal
probability pX(x) provides the explanations of the observed
sequence x.

The tropicalization of the marginal probability does not
overcome the NP-hardness of the inference problem.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 534 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Using R

∗Statistical Inference

Statistical Inference – Graded Case

Inference in a graded belief network has the advantage that in
the computation of the r-th expression

⊕

y∈D(r)

sr⊙

i=1

w
X

(r)
i |Π(X

(r)
i)
⊙

tr+1⊙

j=1

w
Y

(r+1)
j |Π(Y

(r+1)
j)

, (324)

the terms w
X

(r)
i |Π(X

(r)
i)

and w
Y

(r+1)
j |Π(Y

(r+1)
j)

depend only on

the parent values y′ ∈ D(r) of the hidden variables of rank r,
0 ≤ r ≤ ρmax − 1.

By gradedness, the hidden parents of hidden variable Y with
rank r = ρ(Y) ≥ 1 have rank r − 1

The inference algorithm is similar to the Viterbi algorithm
(below).

Computation of array element A[r, y] with rank r and
y ∈ D(r) requires only the array elements A[r − 1, y′] with
y′ ∈ D(r − 1) of the previous rank.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 535 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Using R

∗Statistical Inference

Statistical Inference – Graded Case

The complexity of the evaluation of the tropicalized term
wX(x) depends on the underlying DAG.

The array A has size
∑ρmax

r=0 |D(r)| and the computation of
array element A[r, y] requires O(|D(r − 1)| · (sr + tr)) steps.

Suppose all state sets have l elements. Then we have
D(r) = ltr for all 0 ≤ r ≤ ρmax.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 536 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Using R

∗Statistical Inference

Statistical Inference – Graded Case – Best Case

All hidden random variables have the same rank and common
observed ascendants (ρmax = 0).

In the graded DAG below, ρ(X1) = ρ(Y1) = . . . = ρ(Yn) = 0.

For each observed value x1 ∈ X 1,

wX1
(x1) = min

y1,...,yn

(
wY1|X1

(y1|x1) + . . .+ wYn|X1
(yn|x1)

)

= min
y1

(
wY1|X1

(y1|x1)
)
+ . . .+min

yn

(
wYn|X1

(yn|x1)
)

Fully decoupled minimization has time complexity O(ln).

GFED@ABCX1

ww♥♥♥
♥♥♥

♥♥♥
♥♥♥

♥♥♥
♥♥

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥
⑥

�� ''❖❖
❖❖❖

❖❖❖
❖❖❖

❖❖❖
❖❖

GFED@ABCY1 GFED@ABCY2 GFED@ABCY3 . . . GFED@ABCYn

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 537 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Using R

∗Statistical Inference

Statistical Inference – Graded Case - HMM

In the hidden Markov model (HMM), the hidden random
variables form a chain (ρmax = n− 1 and tr = 1 for each
0 ≤ r ≤ ρmax).

In the graded DAG below, ρ(Xr) = ρ(Yr) = r − 1 for
1 ≤ r ≤ n.

GFED@ABCY1 //

��

GFED@ABCY2 //

��

. . . // ONMLHIJKYn−1
//

��

GFED@ABCYn

��GFED@ABCX1
GFED@ABCX2 . . . WVUTPQRSXn−1

GFED@ABCXn

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 538 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Using R

∗Statistical Inference

Statistical Inference – Graded Case - HMM (Cont’d)

Viterbi algorithm calculates for each observed sequence
x = x1 . . . xn ∈ X the following,

A[0, y] := wX1
(x1) + wY1

(y),

A[1, y] := min
y1

(
wY2|Y1

(y|y1) + wX2|Y2
(x2|y)

+A[0, y1])

. . .

A[n− 1, y] := min
yn−1

(
wYn|Yn−1

(y|yn−1) + wXn|Yn
(xn|y)

+A[n− 2, yn−1])

wX(x) := min
yn

A[n− 1, yn].

Runtime O(l2n), since the array has size n · l and the
computation of each array element requires O(l) steps.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 539 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Using R

∗Statistical Inference

Statistical Inference – Graded Case - Worst Case

All hidden random variables have the same rank and common
observed descendants (ρmax = 0).

In the graded DAG below, ρ(Y1) = . . . = ρ(Yn) = ρ(X1) = 0.

For each observed value x = x1 ∈ X 1,

wX1
(x1) = min

y1,...,yn

(

wX1|Y1,...,Yn
(x1|y1, . . . , yn) +

n∑

i=1

wYi
(yi)

)

.

Fully coupled minimization has time complexity O(lnn).

GFED@ABCY1

''PP
PPP

PPP
PPP

PPP
PPP

GFED@ABCY2

 ❆
❆❆

❆❆
❆❆

❆❆
GFED@ABCY3

��

. . . GFED@ABCYn

ww♦♦♦
♦♦♦

♦♦♦
♦♦♦

♦♦♦
♦

GFED@ABCX1

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 540 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Using R

∗Statistical Inference

Statistical Inference – Example

Reconsider the graded belief network

0
GFED@ABCX1

 ❆
❆❆

❆❆
❆❆

❆❆

~~⑤⑤
⑤⑤
⑤⑤
⑤⑤
⑤

0
GFED@ABCX2

 ❇
❇❇

❇❇
❇❇

❇❇
GFED@ABCY1

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥
⑥

 ❅
❅❅

❅❅
❅❅

❅❅

1
GFED@ABCX3

GFED@ABCY2

 ❆
❆❆

❆❆
❆❆

❆❆
oo GFED@ABCY3

~~⑦⑦
⑦⑦
⑦⑦
⑦⑦
⑦

2
GFED@ABCY4

Ranks: ρ(X1) = ρ(X2) = ρ(Y1) = 0, ρ(X3) = ρ(Y2) = ρ(Y3) = 1,
and ρ(Y4) = 2.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 541 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Using R

∗Statistical Inference

Statistical Inference – Example (Cont’d)

Suppose hidden variables Y1, . . . , Y4 have common state set
Σ = {a, b}. Then D(0) = Σ, D(1) = Σ2, and D(2) = Σ.

A[0, a] = wY1|X1
(a|x1) + wX1

(x1) + wX2|X1
(x2|x1),

A[0, b] = wY1|X1
(b|x1) + wX1

(x1) + wX2|X1
(x2|x1),

A[1, aa] = min
y1∈D(0)

(

A[0, y1] + wY2|X2,Y1
(a|x2, y1) + wY3|Y1

(a|y1) + wX3|Y2
(x3|a)

)

A[1, ab] = min
y1∈D(0)

(

A[0, y1] + wY2|X2,Y1
(a|x2, y1) + wY3|Y1

(b|y1) + wX3|Y2
(x3|a)

)

A[1, ba] = min
y1∈D(0)

(

A[0, y1] + wY2|X2,Y1
(b|x2, y1) + wY3|Y1

(a|y1) + wX3|Y2
(x3|b)

)

,

A[1, bb] = min
y1∈D(0)

(

A[0, y1] + wY2|X2,Y1
(b|x2, y1) + wY3|Y1

(b|y1) + wX3|Y2
(x3|b)

)

,

A[2, a] = min
y2y3∈D(1)

(

A[1, y2y3] + wY4|X2,Y3
(a|x2, y3)

)

,

A[2, b] = min
y2y3∈D(1)

(

A[1, y2y3] + wY4|X2,Y3
(b|x2, y3)

)

.

and wX(x1, x2, x3) = miny4∈D(2)A[2, y4] = min{A[2, a], A[2, b]}.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 542 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Score-based

Constraint-based

Using R

Learning Structure

Structure Learning

Score-based structure learning

Constraint-based structure learning

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 543 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Score-based

Constraint-based

Using R

Learning Structure

Structure Learning – Assumptions

Causal sufficiency: There are no common unobserved (also
known as hidden or latent) variables in the domain that are
parents of one or more of the observed random variables in
the domain.

Markov property: Each random variable depends only on its
parents, i.e., is independent of all its non-decendents given its
parents.

Faithfulness: All independence relations valid for the domain
are those entailed by the (spatial) Markov property (21):

pX1,...,Xn
=

n∏

i=1

pXi|Πi
.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 544 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Score-based

Constraint-based

Using R

Learning Structure

Structure Learning – Approaches

Score-based methods use heuristics to assign scores to the
candidate belief networks in order to find a network with
maximal score.

Constraint-based methods learn the network structure by
analyzing the probabilistic relations entailed by the Markov
property via conditional independence tests and then aim to
construct the network that fulfills the associated d-separation
statements.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 545 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Score-based

Constraint-based

Using R

Learning Structure Score-based

Score-Based Structure Learning

Likelihood as network score

Posterior probability as network score

Hill climbing for structure learning

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 546 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Score-based

Constraint-based

Using R

Learning Structure Score-based

Likelihood as Network Score

Given DAG G = (V,E) with node set V = {1, . . . , n} and
edge set (structure) E.

E is the set of all possible edge sets each of which providing a
DAG with the node set V .

Random variables X1, . . . , Xn correspond 1-to-1 with node
set V .

Random variable Xi has state set X i = {x(i)1 , . . . , x
(i)
mi},

1 ≤ i ≤ n.
Random vector X = (X1, . . . , Xn) has state set
X = X 1 × · · · × Xn.

Given structure E ∈ E , the set of instantiations of parent set

Πi of Xi is {π(i)
1 , . . . , π

(i)
li
} with li ≥ 0, 1 ≤ i ≤ n.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 547 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Score-based

Constraint-based

Using R

Learning Structure Score-based

Likelihood as Network Score

Parameter set

Θ = {θ = (θijk) | θijk ≥ 0,
∑

j

θijk = 1}. (325)

Parameters (conditional probability that Xi = x
(i)
j when

Πi = π
(i)
k),

θijk = pXi|Πi
(x

(i)
j | π

(i)
k), (326)

where 1 ≤ i ≤ n, 1 ≤ j ≤ mi, 1 ≤ k ≤ li.
For each pair (i, k) with 1 ≤ i ≤ n and 1 ≤ k ≤ li, we have

mi∑

j=1

θijk = 1. (327)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 548 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Score-based

Constraint-based

Using R

Learning Structure Score-based

Likelihood as Network Score

Given collection of N independent samples (database):

D = (d1, . . . , dN). (328)

dr = (x
(1)
j1,r

, . . . , x
(n)
jn,r

) ∈ X denotes the r-th sample.

Maximum likelihood estimate of sample set D:

p̂X|E(D | E) =

n∏

i=1

mi∏

j=1

li∏

k=1

θ̂
nijk

ijk , (329)

where nijk is the number of times the pair (x
(i)
j , π

(i)
k) appears

in the sample set

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 549 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Score-based

Constraint-based

Using R

Learning Structure Score-based

Likelihood as Network Score

Maximum likelihood estimate (297) of the likelihood function
L(θ,E) depending on the structure E,

θ̂ijk =
nijk

∑mi

j=1 nijk
, (330)

where 1 ≤ i ≤ n, 1 ≤ j < mi, 1 ≤ k ≤ li.
Akaike information criterion (AIC) score

log pE|X(E | D) = log p̂X|E(D | E)− d, (331)

where d =
∑n

i=1(mi − 1)li by (292) is the number of free
parameters in the local distribution functions.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 550 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Score-based

Constraint-based

Using R

Learning Structure Score-based

Likelihood as Network Score

Bayesian information criterion (BIC) score

log pE|X(E | D) = log p̂X|E(D | E)− d

2
logN, (332)

where d =
∑n

i=1(mi − 1)li by (292) is the number of free
parameters in the local distribution functions.

In the language R, the AIC and BIC scores can be invoked by
the keywords aic and bic, respectively.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 551 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Score-based

Constraint-based

Using R

Learning Structure Score-based

Posterior Probability as Network Score

Let A(n) denote the number of DAGs with n labeled nodes.

Put A(0) = 1. Then for each number n ≥ 1,

A(n) =

n∑

i=1

(−1)i+1

(
n

i

)

2i(n−i)A(n− i). (333)

The problem of locating all possible graph structures is NP-hard.
Therefore, the enumeration of all structures with n nodes is
practically infeasible.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 552 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Score-based

Constraint-based

Using R

Learning Structure Score-based

Proof.

Consider DAGs with node set V = {1, . . . , n}. Let Pi be the set of
DAGs with node set V in which the node i is a leaf; i.e, a node
with degree 1. The number of DAGs with this node set which is in
none of the Pi’s is 0. Thus by the principle of inclusion-exclusion,

0 = A(n)−

∑

I⊆V

I 6=∅

(−1)|I|+1

∣
∣
∣
∣
∣
∣

⋂

j∈I

Pj

∣
∣
∣
∣
∣
∣

 . (334)

Claim that the cardinality of the set
⋂

j∈I Pj with |I| = i is

2i(n−i)A(n− i). Indeed, there are i leaves and these nodes can
only be adjacent to the remaining n− i nodes, making a total of
2i(n−i) possible configurations of the edges. Moreover, the
subgraph induced by the other n− i nodes may be any of the
A(n− i) possible DAGs. This proves the claim. This number
depends only on the size of the subset I of V . Since there are

(
n
i

)

subsets of V with i elements, the result follows.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 553 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Score-based

Constraint-based

Using R

Learning Structure Score-based

Posterior Probability as Network Score

Cooper-Herskovits likelihood of graph structure E ∈ E ,

pX|E(D | E) =
n∏

i=1

li∏

k=1

(mi − 1)!

(nik +mi − 1)!

mi∏

j=1

nijk! (335)

where nik is the number of occurrences of the pairs

(x
(i)
j , π

(i)
k) with 1 ≤ j ≤ mi; i.e.,

nik =

mi∑

j=1

nijk. (336)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 554 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Score-based

Constraint-based

Using R

Learning Structure Score-based

Posterior Probability as Network Score

By Bayes’ rule, the posterior probability of graph structure E
given data set D is

pE|X(E | D) =
pX|E(D | E) · pE(E)

pX(D)
. (337)

pE(E) is the prior probability over the state space of the edge
sets.

pX(D) is the estimate of the database.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 555 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Score-based

Constraint-based

Using R

Learning Structure Score-based

Posterior Probability as Network Score

Score-based algorithms maximize posterior probability called
Bayesian Dirichlet (BD) score,

pE|X(E | D) =
pX|E(D | E) · pE(E)

pX(D)
. (338)

Probability of database (by the law of total probability)

pX(D) =

A(n)
∑

i=1

pX|E(D | Ei) · pE(Ei). (339)

Maximizing the numerator in (338) is sufficient, since D is
fixed and the estimate pX(D) is independent of graph
structure E.

In the language R, the BD score is invoked by the keyword
bde.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 556 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Score-based

Constraint-based

Using R

Learning Structure Score-based

Posterior Probability as Network Score

Estimate pE(E) using prior information.

User assigns to each pair of random variables Xi and Xj a
probability distribution with three values,

P ({Xi → Xj}) + P ({Xj → Xi}) + P ({Xi · · ·Xj}) = 1,(340)

where Xi → Xj , Xj → Xi, and Xi · · ·Xj indicate that there
is an edge Xi → Xj , an edge Xj → Xi, and no edge
Xi · · ·Xj , respectively.

For a pair Xi and Xj for which the user cannot specify a
prior, the uniform distribution is assumed,

P ({Xi → Xj}) = P ({Xj → Xi}) = P ({Xi · · ·Xj}) =
1

3
.(341)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 557 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Score-based

Constraint-based

Using R

Learning Structure Score-based

Posterior Probability as Network Score

Estimate pE(E) using prior information – modification in case of
partial information.

Suppose the user assigns to P ({Xi → Xj}) the value q,
0 ≤ q ≤ 1, but no values to P ({Xj → Xi}) and
P ({Xi · · ·Xj}). Then put

P ({Xj → Xi}) = P ({Xi · · ·Xj}) = (1− q)/2. (342)

For a given structure E, the prior probabilities are obtained by
multiplying the appropriate probabilities over all edges in E
and normalizing to give pE(E).

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 558 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Score-based

Constraint-based

Using R

Learning Structure Score-based

Calculation of Prior Information – Example

Given random variables X1, X2, X3 with partial prior information

GFED@ABCX1

3/4
 ❇

❇❇
❇❇

❇❇
❇❇

GFED@ABCX2

1/2
~~⑤⑤
⑤⑤
⑤⑤
⑤⑤
⑤

GFED@ABCX3

Completion to full prior:

P ({Xi → Xj}) P ({Xj → Xi}) P ({Xi · · ·Xj})
X1, X2

1
3

1
3

1
3

X1, X3
3
4

1
8

1
8

X2, X3
1
2

1
4

1
4

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 559 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Score-based

Constraint-based

Using R

Learning Structure Score-based

Heuristics in Optimization

Heuristic: method for solving a problem when classical
methods fail or are too slow; optimality, completeness, and
accuracy are traded for speed.

Universe is the set of all possible solutions of the given
problem.

Local search is a heuristic for tackling computationally hard
optimization problems.

Local search algorithms move from one solution to another
until a solution suspected to be optimal is found or time has
elapsed.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 560 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Score-based

Constraint-based

Using R

Learning Structure Score-based

Hill Climbing

Hill climbing is an iterative local search method.

For structure learning, the set of all DAGs with n nodes is
considered as the universe.

The neighborhood of a DAG E is given by all DAGs which
result from E by adding, deleting or reversing one edge.
Beware of cycles!

The language R has a built-in hill-climbing algorithm for
structure learning called hc.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 561 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Score-based

Constraint-based

Using R

Learning Structure Score-based

Hill Climbing
Require: Random variables X1, . . . , Xn, data set D, score σ, maximum number of iterations Tmax
Ensure: Edge set of DAG
E ← edge set of a DAG with n nodes {Initialization}
σmax ← σ(E)
Emax ← E

for t from 1 to Tmax do

for each DAG E′ in the neighborhood of E do

if σ(E′) > σmax then

σmax ← σ(E′)
Emax ← E′

end if

end for

if σmax > σ(E) then

E ← Emax {Continue with edge set that has max. score in neighborhood}
else

return E {Exit if no edge set with better score in neighborhood found}
end if

end for

return E

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 562 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Score-based

Constraint-based

Using R

Learning Structure Constraint-based

Constraint-Based Structure Learning

Conditional independence tests

Pearson’s chi-squared test

SGS algorithm

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 563 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Score-based

Constraint-based

Using R

Learning Structure Constraint-based

Conditional Independence Tests

Mutual information

Pearson’s chi-squared test

Conditional independence tests for discrete data are functions of
the conditional probability tables given by the structure of the
network through the observed frequences

{nijk | 1 ≤ i ≤ U, 1 ≤ j ≤ V, 1 ≤ k ≤W} (343)

for random variables X and Y and all configurations of the
conditioning variables S.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 564 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Score-based

Constraint-based

Using R

Learning Structure Constraint-based

Mutual Information

Test statistic

µ(X,Y |S) =
U∑

i=1

V∑

j=1

W∑

k=1

nijk
n

log
nijkn++k

ni+kn+jk
, (344)

where n = n+++ is the sample size.

In the language R, both the asymptotic chi-squared test (mi)
and a Monte Carlo test (mc-mi) are available.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 565 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Score-based

Constraint-based

Using R

Learning Structure Constraint-based

Pearson’s chi-squared test

Test statistic (for contingency tables)

χ2(X,Y |S) =
U∑

i=1

V∑

j=1

W∑

k=1

(nijk −mijk)
2

mijk
(345)

with

mijk =
ni+kn+jk

n++k
. (346)

In the language R, both the asymptotic chi-squared test (x2)
and a Monte Carlo test (mc-x2) are available.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 566 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Score-based

Constraint-based

Using R

Learning Structure Constraint-based

Conditional Independence Tests

Null hypothesis: variables X and Y are statistically
independent given S.

Alternative hypothesis: variables have a relationship where the
structure of relationship is not specified.

Independence test for S = ∅: (U − 1)(V − 1) is the number
of degrees of freedom.

Small p-value (typically ≤ 0.05) indicates strong evidence
against the null hypothesis, larger values only weak evidence.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 567 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Score-based

Constraint-based

Using R

Learning Structure Constraint-based

Conditional Independence Test in R

Consider the built-in data set lizards,

> library(bnlearn)

> data(lizards)

The data set contains three variables:

Species (species of the lizard) is a two-level factor with levels
Sagrei and Distichus.

Height is a two-level factor with levels high (greater than
4.75 feet) and low (less or equal to 4.75 feet).

Diameter is a two-level factor with levels wide (greater than
4 inches) and narrow (less or equal to 4 inches).

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 568 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Score-based

Constraint-based

Using R

Learning Structure Constraint-based

Conditional Independence Test in R (Cont’d)

Visualization of data set

> lizards

Species Diameter Height

1 Sagrei narrow low

2 Sagrei narrow low

...

100 Sagrei narrow high

...

409 Distichus wide high

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 569 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Score-based

Constraint-based

Using R

Learning Structure Constraint-based

Conditional Independence Test in R (Cont’d)

Test conditional independence of two factors from the third one
using the command ci.test.

>H = lizard$Height

>D = lizard$Diameter

>S = lizard$Species

> ci.test(H, D, S, data=lizards, test="x2") // asymptotic chi-squared test

Pearson’s X^2

data: H ~ D | S

x2 = 2.0174, df = 2, p-value = 0.3647

> ci.test(H, S, D, data=lizards, test="x2") // asymptotic chi-squared test

Pearson’s X^2

data: H ~ S | D

x2 = 11.617, df = 2, p-value = 0.003002

> ci.test(S, D, H, data=lizards, test="x2") // asymptotic chi-squared test

Pearson’s X^2

data: S ~ D | H

x2 = 13.781, df = 2, p-value = 0.001017

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 570 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Score-based

Constraint-based

Using R

Learning Structure Constraint-based

SGS Algorithm

SGS algorithm is named after the inventors Peter Spirtes, Clark
Glymour, Richard Scheines (1993):

The skeleton of the network given as undirected graph with
the colletion of random variables as node set is estimated.

The existence of an edge between two variables X and Y is
tested by a number of independence tests. If faithfulness
holds and there is an edge X − Y , then all independence tests
should fail. Otherwise, there is a subset S d-separating them.
This determines the undirected connectivity.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 571 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Score-based

Constraint-based

Using R

Learning Structure Constraint-based

SGS Algorithm (Cont’d)

The directionality of the edges is determined.

For this, triples of variables X, Y , and Z are considered such
that X − Z and Y − Z are edges but X − Y is not. If
X 6⊥ Y | S for all S = S′ ∪ {Z} with S′ ⊆ V \ {X,Y, Z},
then no subset including Z can d-separate X and Y . Thus Z
is a converging node and hence the directionality of the edges
X − Z and Y − Z is set to X → Z and Y → Z.

The directions obtained in the second step are propagated
while maintaining acyclicity.

For a belief network X → Y → Z, the direction of either edge
cannot be determined by any set of independence statements, since
two other networks with the same undirected structure, namely
X ← Y ← Z and X ← Y → Z, belong to the same equivalence
class with respect to the conditional independence statements (31).

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 572 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Score-based

Constraint-based

Using R

Learning Structure Constraint-based

Drawbacks of constraint-based algorithms

Lack of robustness in the sense that small changes of the
input like single errors in the independence tests may have
large effects on the output of the algorithm given by the
structure of a belief network.

The runtime of this type of algorithms is exponential in the
number of variables of the domain, which makes them
impractical for larger domains with tens or hundreds of
variables.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 573 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Using R

Using R

Bayesian Networks in R

Learning the graph structure

Learning the probability distribution

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 574 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Using R

Using R

Structure Learning in R

Load library bnlearn:

> library(bnlearn)

Data set learning.test consists of 5000 six-tuples over the set
{a, b, c}5 × {a, b} described by six discrete variables A, . . . , F ,
called categorial variables or factors, with two (F) or three levels
(A, . . . , E).

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 575 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Using R

Using R

Structure Learning in R

> data(learning.test)

> str(learning.test)

’data.frame’: 5000 obs. of 6 variables:

$ A: Factor w/ 3 levels "a","b","c": 2 2 1 1 1 3 ...

$ B: Factor w/ 3 levels "a","b","c": 3 1 1 1 1 3 ...

$ C: Factor w/ 3 levels "a","b","c": 2 3 1 1 2 1 ...

$ D: Factor w/ 3 levels "a","b","c": 1 1 1 1 3 3 ...

$ E: Factor w/ 3 levels "a","b","c": 2 2 1 2 1 3 ...

$ F: Factor w/ 2 levels "a","b": 2 2 1 2 1 1 1 2 ...

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 576 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Using R

Using R

Structure Learning in R

The values of the factor A are

> learning.test$A

[1] b b a a a c c b b b c c c b a a c b b c c c b a b

[38] c c c c a ...

...

[4996] a c b a a

levels: a b c

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 577 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Using R

Using R

Structure Learning in R

Learning the structure of data set learning.test by GS algorithm
(variant of SGS):

> bn.gs <- gs(learning.test)

> bn.gs

Bayesian network learned via Constraint-based methods

model:

[partially directed graph]

nodes: 6

arcs: 5

undirected arcs: 1

directed arcs: 4

average markov blanket size: 2.33

average neighborhood size: 1.67

average branching factor: 0.67

learning algorithm: Grow-Shrink

conditional independence test: Mutual Information (discrete)

alpha threshold: 0.05

tests used in the learning procedure: 43

optimized: TRUE

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 578 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Using R

Using R

Structure Learning in R

Resulting partially directed graph:

A

B

C

D

E

F

The undirected edge can be detected by undirected.arc

> undirected.arc(bn.gs)

from to

[1,] "A" "B"

[2,] "B" "A"

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 579 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Using R

Using R

Structure Learning in R

Transformation of partially directed graph into DAG using set.arc

(setting arc direction) or drop.arc (dropping arc):

> bn.dag <- set.arc(bn.gs, "A", "B")

// set arc A -> B

> modelstring(bn.dag)

[1] "[A][C][F][B|A][D|A:C][E|B:F]"

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 580 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Using R

Using R

Structure Learning in R

Learning the structure of data set learning.test by hill-climbing
algorithm:

> bn.hc <- hc(learning.test, score="aic")

> bn.hc

Bayesian network learned via Score-based methods

model:

[A][C][F][B|A][D|A:C][E|B:F]

nodes: 6

arcs: 5

undirected arcs: 0

directed arcs: 5

average markov blanket size: 2.33

average neighborhood size: 1.67

average branching factor: 0.83

learning algorithm: Hill-Climbing

conditional independence test: Akaike Information Criterion

penalization coefficient: 1

test used in the learning procedure: 40

optimized: TRUE

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 581 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Using R

Using R

Structure Learning in R

Resulting DAG:

A

B

C

D

E

F

Compare structures by compare:

> compare(bn.gs, bn.hc)

[1] FALSE

> compare(bn.dag, bn.hc)

[1] TRUE

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 582 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Using R

Using R

Structure Learning in R

Enter prior information on the domain by blacklist and
whitelist.

Arcs whitelisted are present, arcs blacklisted are absent.

Any arc blacklisted and whitelisted is defined to be whitelisted
and removed from the blacklist.

Any arc whitelisted in both directions such as A→ B and
B → A is present in the learned structure, but the choice of
direction is made by the learning algorithm.

Any arc blacklisted in both directions such as A→ B and
B → A will not be present in the learned structure.

Any arc whitelisted in one of two possible directions is
guaranteed to be present in the learned structure.

Any arc blacklisted in one of two possible directions will not
be present in the learned structure.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 583 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Using R

Using R

Structure Learning in R

Prior information about the relationship between nodes can be
whitelisted or blacklisted.

> bn.bl <- gs(learning.test, blacklist=c("B", "A"))

> compare(bn.bl, bn.hc)

[1] TRUE

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 584 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Using R

Using R

Learning the Conditional Probabilities

Consider data set learning.test with network structure resulting
from GS algorithm

> bn.ndag = gs(learning.test)

> bn.dag = set.arc(bn.ndag, from="A", to="B")

Maximum likelihood estimate by bn.fit

> mle.condprob = bn.fit(bn.dag, learning.test)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 585 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Using R

Using R

Learning the Conditional Probabilities
> mle.condprob

Bayesian network parameters

Parameters of node A (multinomial distribution)

Conditional probability table:

a b c

0.3336 0.3340 0.3324

Parameters of node B (multinomial distribution)

Conditional probability table:

A

B a b c

a 0.85611511 0.44491018 0.11492178

b 0.02517986 0.22095808 0.09446450

c 0.11870504 0.33413174 0.79061372

Parameters of node C (multinomial distribution)

Conditional probability table:

a b c

0.7434 0.2048 0.0518

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 586 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Using R

Using R

Learning the Conditional Probabilities
> mle.condprob

...

Parameters of node D (multinomial distribution)

Conditional probability table:

, , C = a

A

D a b c

a 0.80081301 0.09251810 0.10530547

b 0.09024390 0.80209171 0.11173633

c 0.10894309 0.10539019 0.78295820

, , C = b

A

D a b c

a 0.18079096 0.88304094 0.24695122

b 0.13276836 0.07017544 0.49490244

c 0.68644068 0.04678363 0.25914634

, , C = c

A

D a b c

a 0.42857143 0.34117647 0.13333333

b 0.20238095 0.38823529 0.44444444

c 0.36904762 0.27058824 0.42222222

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 587 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Using R

Using R

Learning the Conditional Probabilities
> mle.condprob

...

Parameters of node E (multinomial distribution)

Conditional probability table:

, , F = a

B

E a b c

a 0.80524979 0.20588235 0.11837378

b 0.09737511 0.17973856 0.11448141

c 0.09737511 0.61437908 0.76614481

, , F = b

B

E a b c

a 0.40050804 0.31679389 0.23759542

b 0.49026249 0.36641221 0.50667939

c 0.10922947 0.31679389 0.25572519

Parameters of node F (multinomial distribution)

Conditional probability table:

a b

0.5018 0.4982

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 588 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Learning
Probabilities

∗Statistical
Inference

Learning
Structure

Using R

Using R

Learning the Conditional Probabilities

Plot of conditional probability pD|A,C as barchart:

> bn.fit.barchart(mle.condprob$D)

Conditional Probabilities

Probabilities

Le
ve

ls

a

b

c

a
a

0.0 0.2 0.4 0.6 0.8

b
a

c
a

a

b

c

a
b

b
b

c
b

a

b

c

0.0 0.2 0.4 0.6 0.8

a
c

b
c

0.0 0.2 0.4 0.6 0.8

c
c

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 589 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Part VI

Artificial Neural Networks

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 590 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Contents

Contents

Introduction to artificial neural networks

Multilayer perceptron

Deep Learning with Keras

Universal function representation and approximation

Hopfield network

Self-organizing maps

∗Spiking neural networks

Neural networks in R

Pattern recognition uses features from the physiology of the brain –
ANN as computational model.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 591 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

ANN Technology

Introduction to Artificial Neural Networks

Perceptron

Linear separability

Perceptron learning algorithm

Linear programming for perceptron learning

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 592 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

ANN Technology

Artificial Neural Networks (ANNs)

Neuron consists of cell body (soma), dendritic tree and single
axon.

Neurons receive signals via dendrites, soma sends signal (if
threshold is reached) across the axon to other cells.

Human brain has about 9 · 1010 neurons.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 593 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

ANN Technology

Threshold Logic Unit (TLU)

First ANN as computing machine by Warren Mc Culloch and
Walter Pitts (1943):

Activity of neuron is all or nothing operation.

Exitation of neuron if a certain number of synapses is excited
within a period of time.

Delay within the nervous system is only by synaptic delay.

Activity of inhibitory synapse prevents excitation of neuron.

Interconnection network is time invariant.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 594 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

ANN Technology

Mathematical Model of Artificial Neuron

x1

w1

""❋
❋❋

❋❋
❋❋

❋❋
❋

... ∑@GAFBECD // φ@GAFBECD // y

xn

wn

<<②②②②②②②②②②
xn+1 = 1

b

OO

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 595 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

ANN Technology

Mathematical Model of Artificial Neuron

Input signals x1, . . . , xn, bias xn+1 = 1

Weights w1, . . . , wn, wn+1 = b

Linear combination of the input signals and weights

u =

n∑

i=1

wixi. (347)

Addition of bias (affine linear combination) gives activation
potential (hyperplane in R

n)

h = u+ b. (348)

Output of neuron using activation function φ,

y = φ(h) = φ

(
n∑

i=1

wixi + b

)

. (349)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 596 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

ANN Technology

Perceptron

First algorithmically described ANN by Frank Rosenblatt
(1958)

Threshold function for artificial neuron:

y = φ(h) =

{
+1 if h ≥ 0,
−1 otherwise.

(350)

Usage is classification of a collection of input signals
x1, . . . , xn into one of two subclasses A and B of Rn.

Decision rule classifies real-valued point x = (x1, . . . , xn) to
A if output y = 1, and B if y = −1.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 597 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

ANN Technology

Definition

Let A,B be finite subsets of Euclidean space R
n.

A and B are linearly separable if there are real numbers
w1, . . . , wn, wn+1 such that

n∑

i=1

wiai ≥ wn+1 for each (a1, . . . , an) ∈ A (351)

and

n∑

i=1

wibi < wn+1 for each (b1, . . . , bn) ∈ B. (352)

A and B are absolutely linearly separable if they are linearly
separable and the condition on the points (a1, . . . , an) ∈ A is
strengthened to

n∑

i=1

wiai > wn+1. (353)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 598 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

ANN Technology

Example

Two linearly separable sets in R
2:

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 599 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

ANN Technology

Proposition

Two finite subsets A and B of Rn which are linearly separable are
also absolutely linear separable.

Proof.

Suppose A and B are linearly separable. Then there are real
numbers w1, . . . , wn, wn+1 such that

∑n
i=1 wiai ≥ wn+1 for each

point (a1, . . . , an) ∈ A and
∑n

i=1 wibi < wn+1 for each point
(b1, . . . , bn) ∈ B. Put

γ = max{
n∑

i=1

wibi − wn+1 | (b1, . . . , bn) ∈ B}.

Then γ < 0.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 600 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

ANN Technology

Proof (cont’d).

Claim that replacing wn+1 by w′ = wn+1 + γ/2 makes A and B
absolutely linear separable.
Indeed, for each point (a1, . . . , an) ∈ A,

n∑

i=1

wiai − (w′ − γ/2) =
n∑

i=1

wiai − wn+1 ≥ 0.

Thus
∑n

i=1 wiai − w′ ≥ −γ/2 > 0 and hence
∑n

i=1 wiai > w′.
Similarly, for each point (b1, . . . , bn) ∈ B,

n∑

i=1

wibi − (w′ − γ/2) =
n∑

i=1

wibi − wn+1 ≤ γ.

Thus
∑n

i=1 wibi − w′ ≤ γ/2 < 0 and hence
∑n

i=1 wibi < w′. �

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 601 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

ANN Technology

Perceptron Learning Algorithm

Given two linearly separable classes A and B in R
n.

Input: two finite training sets A and B of A and B, resp.
Find extended weight vector w = (w1, . . . , wn, wn+1) with
wn+1 = −θ such that for each extended input
x = (x1, . . . , xn, 1),

〈w, x〉 > 0 if x ∈ A (354)

and

〈w, x〉 < 0 if x ∈ B. (355)

Supervised learning from labeled training data!

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 602 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

ANN Technology

Perceptron Learning Algorithm

Require: Finite linearly separable subsets A and B of Rn

Ensure: Weight vector w for linear separability
Choose randomly a weight vector w0

w ← w0

repeat

Select randomly a vector x ∈ A ∪B
if x ∈ A and 〈w, x〉 ≤ 0 then

w ← w + x
else if x ∈ B and 〈w, x〉 ≥ 0 then

w ← w − x
end if

until All vectors in A ∪B are classified correctly
return w

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 603 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

ANN Technology

Proposition

Let A and B be finite and linearly separable subsets of Rn.
The perceptron learning algorithm with input A,B provides a
weight vector w after a finite number of steps which absolutely
separates the two sets.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 604 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

ANN Technology

Proof.

The sets A and B are joined into a single set C = A ∪ B−, where B− = {−b | b ∈ B}
consists of the negated elements of B.

The vectors in C can be normalized, since if a weight vector w satisfies 〈w, x〉 > 0 for all
x ∈ C, then 〈w, ηx〉 = η〈w, x〉 > 0 for all x ∈ C and any constant η > 0.

The weight vector can be normalized by the same argument and can be chosen to absolutely
separate the sets A and B. This vector is denoted by w∗.

Suppose after iteration t + 1 of the percetron learning algorithm the weight vector wt+1 has been
computed, and that at time t the vector x ∈ C has been incorrectly classified by the weight vector wt.
Thus we have wt+1 = wt + x. Consider the cosine of the angle between the vectors wt+1 and w∗,

cos β =
〈w∗, wt+1〉
‖wt+1‖

.

We have

〈w∗
, wt+1〉 = 〈w∗

, wt + x〉 = 〈w∗
, wt〉 + 〈w∗

, x〉 ≥ 〈w∗
, wt〉 + ǫ,

where ǫ = min{〈w∗, c〉 | c ∈ C}. Since the weight vector w∗ provides an absolute separation of A
and B, we have ǫ > 0. By induction, we obtain

〈w∗
, wt+1〉 ≥ 〈w∗

, w0〉 + (t + 1)ǫ.

Moreover,

‖wt+1‖2 = 〈wt + x,wt + x〉 = ‖wt‖2 + 2〈wt, x〉 + ‖x‖2.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 605 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

ANN Technology

Proof (cont’d).

But we have corrected wt using the input x and so 〈wt, x〉 ≤ 0. Thus by hypothesis, we have

‖wt+1‖2 ≤ ‖wt‖2 + ‖x‖2 ≤ ‖wt‖2 + 1.

By induction, we obtain

‖wt+1‖2 ≤ ‖w0‖2 + (t + 1).

Therefore,

cos β =
〈w∗, wt+1〉
‖wt+1‖

≥
〈w∗, w0〉 + (t + 1)ǫ
√
‖w0‖2 + (t + 1)

When t becomes large, the term on the right-hand side grows proportionally to
√
t. Since ǫ is positive,

the term can become arbitrarily large. But cos β ≤ 1 and so the parameter t must be bounded from
above. Hence, the number of corrections to the weight vector must be finite. �

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 606 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

ANN Technology

∗Accelerated Perceptron Learning Algorithm

Require: Finite linearly separable subsets A and B of Rn

Ensure: Weight vector w for linear separability
Choose randomly a weight vector w0

w ← w0

repeat

Select randomly a vector x ∈ A ∪B
if x ∈ A and 〈w, x〉 ≤ 0 then

δ ← −〈w, x〉
Choose a small number ǫ > 0
w ← w + δ+ǫ

‖x‖2x

else if x ∈ B and 〈w, x〉 ≥ 0 then

δ ← −〈w, x〉
Choose a small number ǫ > 0
w ← w + δ−ǫ

‖x‖2x

end if

until All vectors in A ∪B are classified correctly
return w

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 607 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

ANN Technology

Proposition

Let A and B be finite and linearly separable subsets of Rn.
The accelerated perceptron learning algorithm with input A,B
provides a weight vector w after a finite number of steps which
absolutely separates the two sets.

Proof.

Similar to perceptron learning algorithm.

Corrective Learning

The weight vector is not just reinforced, but completely corrects
the error committed.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 608 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

ANN Technology

Example

Take a Boolean function f : {0, 1}n → {0, 1} with arity n ≥ 1.

The fibres of f are

f−1(0) = {x ∈ {0, 1}n | f(x) = 0}

and
f−1(1) = {x ∈ {0, 1}n | f(x) = 1}.

Then
{0, 1}n = f−1(0) ∪ f−1(1).

For which Boolean function f are the associated fibres linearly
separable?

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 609 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

ANN Technology

Example (cont’d)

In view of Boolean AND function, the fibres

f−1(0) = {(0, 0), (0, 1), (1, 0)} and f−1(1) = {(1, 1)}

are linearly separable.

Take training sets A = {(0, 0, 1), (0, 1, 1), (1, 0, 1)} and
B = {(1, 1, 1)}.
Start with weight vector w = (0, 0, 0).

The perceptron learning algorithm outputs (after 8 steps)
weight vector w = (−3,−2, 4) or normalized vector
(−0.56,−0.37, 0.74).
We have

〈(0, 0, 1), w〉 = 4, 〈(0, 1, 1), w〉 = 2,
〈(1, 0, 1), w〉 = 3, 〈(1, 1, 1), w〉 = −1.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 610 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

ANN Technology

Example (cont’d)

Maple code:

> with(LinearAlgebra):

> x1:=Vector([0,0,1]): x2:=Vector([0,1,1]):

> x3:=Vector([1,0,1]): x4:=Vector([1,1,1]):

> w:=Vector([0,0,0]):

> bval:=TRUE: i:=0:

> while (bval = TRUE) do

> bval:=FALSE: i:=i+1:

> if DotProduct(x1,w)<=0 then w:=w+x1; bval:=TRUE fi;

> if DotProduct(x2,w)<=0 then w:=w+x2; bval:=TRUE fi;

> if DotProduct(x3,w)<=0 then w:=w+x3; bval:=TRUE fi;

> if DotProduct(x4,w)>=0 then w:=w-x4; bval:=TRUE fi;

> end;

> print(i); print(w);

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 611 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

ANN Technology

Example (cont’d)

The Boolean XOR function has the fibres

f−1(0) = {(0, 0), (1, 1)} and f−1(1) = {(0, 1), (1, 0)}.

AND is linearly separable, but XOR is not!

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 612 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

ANN Technology

Linear Programming for Perceptron Learning

Given training sets A = {a1, . . . , ak} and B = {b1, . . . , bl} of
classes A and B in R

n, respectively.
Define the real-valued (k + l)× n matrix

A′ =

a11 . . . a1n
a21 . . . a2n
... . . .

...
ak1 . . . akn
−b11 . . . −b1n
−b21 . . . −b2n
... . . .

...
−bl1 . . . −bln

. (356)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 613 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

ANN Technology

Linear Programming for Perceptron Learning

Take small number ǫ > 0, put e = (ǫ, . . . , ǫ)t.
Consider the linear program

min w1 + . . .+ wn,
s.t. A′ · w ≥ e (357)

The set of feasible solutions {w ∈ R
n | A′ · w ≥ e} provides a

hyperplane that linearly separates the training sets.

Proposition

The linear program is solvable iff the training sets A and B are
absolutely separable.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 614 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

ANN Technology

Example

For the Boolean AND function, the linear program is

min w1 + w2 + w3.
s.t. w3 ≥ ǫ

w2 + w3 ≥ ǫ
w1 + w3 ≥ ǫ

−w1 − w2 − w3 ≥ ǫ

Maple code

> with(Optimization):

> e := 0.01:

> LPSolve(w1+w2+w3, {w3>=e, w2+w3>=e, w1+w3>=e,

-w1-w2-w3>=e});

gives solution w1 = −0.02, w2 = −0.02, w3 = 0.03.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 615 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

ANN Technology

Example

For the Boolean XOR function, the linear program is

min w1 + w2 + w3.
s.t. −w3 ≥ ǫ

w2 + w3 ≥ ǫ
w1 + w3 ≥ ǫ

−w1 − w2 − w3 ≥ ǫ

Maple code

> with(Optimization):

> e := 0.01:

> LPSolve(w1+w2+w3, {-w3>=e, w2+w3>=e, w1+w3>=e,

-w1-w2-w3>=e});

returns message that no feasible solution exists.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 616 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Multilayer Perceptron

Multilayer Perceptron (MLP)

Structure of MLP

Training of MLP

Backpropagation algorithm

Backpropagation in R

MNist

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 617 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Multilayer Perceptron

Multilayer Perceptron (MLP)

Layered feedforward artificial neural network with input
and output.

Directed graph with sequence of layers of nodes, each
layer is fully connected to the successive layer.

Apart from input nodes, nodes are perceptrons with
nonlinear activation function.

Three or more layers: input layer, one or more hidden
layers, and output layer.

An n layered MLP has input layer, n− 1 hidden layers,
and output layer.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 618 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Multilayer Perceptron

Example

Two-layered MLP:

output layer ?>=<89:;1 . . . ?>=<89:;k . . . GFED@ABCm2

hidden layer ?>=<89:;1

OO 88♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣

33❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣ . . . ?>=<89:;j

OO
gg◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆

77♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦
. . . GFED@ABCm1

OOgg❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖

kk❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲

input layer ?>=<89:;1

OO 77♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣

33❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣ . . . ?>=<89:;i

OO
gg◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆

77♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦
. . . GFED@ABCm0

OOgg❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖

kk❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 619 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Multilayer Perceptron

Definition

MLP has n ≥ 2 layers with l-th layer having ml units
(neurons), 1 ≤ l ≤ n.
in(i) = value of i-th input neuron.

w
(l)
ij = weight between i-th unit of layer l − 1 and j-th

unit of layer l.

The j-th unit of layer l computes the value

s
(l)
j = f (l)

(
∑

i

s
(l−1)
i w

(l)
ij

)

. (358)

where f (l) denotes an activation function; let’s assume a
common activation function for all units.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 620 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Multilayer Perceptron

Definition

Notation for j-th neuron in l-th layer of MLP:

?>=<89:;1

w
(l)
1j ❇

❇❇
❇❇

❇❇
❇❇

❇
?>=<89:;1

... ?>=<89:;j
w

(l+1)
j,ml+1

 ❆
❆❆

❆❆
❆❆

❆❆
❆

w
(l+1)
j1

>>⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥ ...

ONMLHIJKml−1

w
(l)
ml−1,j

>>⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥ ONMLHIJKml+1

s
(l)
j = f (l)

(
∑

i

s
(l−1)
i w

(l)
ij

)

.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 621 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Multilayer Perceptron

Two-Layered MLP

Layered computation:

s
(2)
k = f (2)

∑

j

s
(1)
j w

(2)
jk

 , (359)

s
(1)
j = f (1)

(
∑

i

s
(0)
i w

(1)
ij

)

, (360)

s
(0)
i = in(i). (361)

Network output:

s
(2)
k = f (2)

∑

j

s
(1)
j w

(2)
jk

 (362)

= f (2)

∑

j

f (1)

(
∑

i

s
(0)
i w

(1)
ij

)

w
(2)
jk

 .

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 622 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Multilayer Perceptron

S-shaped Activation Functions

Sigmoid function:

sig(x) =
1

1 + e−x
, x ∈ R. (363)

Bounded, differentiable, positive derivative at each point.

Hyperbolic tangent:

tanh(x) = 2 · sig(2x)− 1, x ∈ R. (364)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 623 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Multilayer Perceptron

Training of MLP

1 Take training patterns x(1), . . . , x(M) in R
m.

2 Set up MLP with n ≥ 2 layers.

3 Generate random initial weights from certain range.

4 Select error function E depending on the weights; take error
bound ǫ > 0 and learning rate η > 0.

5 Update weights according to the negative of the gradient of
the error function,

∆w
(l)
ab = −η ∂E

∂w
(l)
ab

. (365)

One set of updates of all the weights for all training patterns
is called an epoch of training.

6 Repeat weight update (step 5) until error is < ǫ.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 624 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Multilayer Perceptron

Training of MLP II

y(p) = desired output for training pattern x(p).

s
(n,p)
i = actual output in output layer for training pattern x(p).

s
(l,p)
i = s

(l)
i indicates dependence on the p-th training pattern.

Adjust the network weights in order to minimize the error
function

E =
1

2

M∑

p=1

mn∑

j=1

(

y
(p)
j − s(n,p)j

)2

. (366)

E = E(w) is a multivariate function of the network

weights w
(l)
ij .

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 625 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Multilayer Perceptron

Training of MLP III

Method for minimizing the error function is the local method
of gradient descent.

Multivariate function f(x) differentiable in neighborhood of
point p decreases fastest if travelling from p in direction of
negative gradient of f at p:

p′ = p− η∇f(p) (367)

for some small number η > 0. Then f(p) ≥ f(p′).
Start with initial point p(0) and take sequence of points
(p(k))k≥0 such that

p(k+1) = p(k) − η∇f(p(k)), k ≥ 0. (368)

Then the sequence of points (p(k))k≥0 may converge to local
minimum,

f(p(0)) ≥ f(p(1)) ≥ f(p(2)) ≥ (369)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 626 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Multilayer Perceptron

Training of Two-layered MLP

Layered computation (f (2) = identity function):

s
(2)
k =

∑

j

s
(1)
j w

(2)
jk =

∑

j

f (1)

(
∑

i

s
(0)
i w

(1)
ij

)

w
(2)
jk , (370)

s
(1)
j = f (1)

(
∑

i

s
(0)
i w

(1)
ij

)

, (371)

s
(0)
i = in(i). (372)

Partial derivative of error function w.r.t. weight w
(l)
ab :

∂E

∂w
(l)
ab

= −
∑

p

∑

k

(

y
(p)
k − s(2,p)k

)

· ∂s
(2,p)
k

∂w
(l)
ab

. (373)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 627 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Multilayer Perceptron

Training of Two-layered MLP II

Difference quotient (δ = Kronecker delta):

∂s
(2)
k

∂w
(2)
ab

=
∑

j

s
(1)
j

∂w
(2)
jk

∂w
(2)
ab

=
∑

j

s
(1)
j δjaδkb = s(1)a δkb (374)

and (f = f (1))

∂s
(2)
k

∂w
(1)
ab

=
∑

j

f ′

(
∑

i

s
(0)
i w

(1)
ij

)

·
(
∑

i

s
(0)
i

∂w
(1)
ij

∂w
(1)
ab

)

· w(2)
jk

= f ′

(
∑

i

s
(0)
i w

(1)
ib

)

· s(0)a w
(2)
bk . (375)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 628 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Multilayer Perceptron

Training of Two-layered MLP III

Substitute difference quotients back into error function:

∆w
(2)
ab = −η ∂E

∂w
(2)
ab

(376)

= η
∑

p

∑

k

(

y
(p)
k − s(2,p)k

)

· s(1,p)a δkb, by (373,374),

= η
∑

p

(

y
(p)
b − s(2,p)b

)

· s(1,p)a ,

∆w
(1)
ab = −η ∂E

∂w
(1)
ab

(377)

= η
∑

p

∑

k

(

y
(p)
k − s(2,p)k

)

· f ′
(
∑

i

s
(0,p)
i w

(1)
ib

)

· s(0,p)a w
(2)
bk ,

using (373,375).

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 629 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Multilayer Perceptron

Training of Two-layered MLP IV

Take as activation function the sigmoid function

f(x) = 1/(1 + e−x). (378)

Then

f ′(x) =
e−x

(1 + e−x)2
= f(x) · (1− f(x)). (379)

Thus by (376) (activiation function = identity function)

∆w
(2)
ab = η

∑

p

(

y
(p)
b − s(2,p)b

)

· s(1,p)a (380)

and by (371,377)

∆w
(1)
ab = (381)

η
∑

p

∑

k

(

y
(p)
k − s(2,p)k

)

f(s
(1,p)
b)f

(

1− s(1,p)b

)

s(0,p)a w
(2)
bk .

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 630 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Multilayer Perceptron

Training of Two-layered MLP V

Define output error between desired and actual output:

δ
(2)
b = yb − s(2)b , 1 ≤ b ≤ m2. (382)

Then the updating rules have the form by (380)

∆w
(2)
ab = η

∑

p

δ
(2,p)
b · s(1,p)a (383)

and by (381)

∆w
(1)
ab = (384)

η
∑

p

(
∑

k

δ
(2,p)
k w

(2)
bk

)

f(s
(1,p)
b)f

(

1− s(1,p)b

)

· s(0,p)a .

The output error at unit b is back-propagated from output unit k

by the weight w
(2)
bk .

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 631 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Multilayer Perceptron

General MLP

Extend update rule to MLPs with n ≥ 2 layers.

Output error between desired and actual output:

δ
(n)
b = yb − s(n)b , 1 ≤ b ≤ mn. (385)

Error is propagated back successively to the preceeding layers:

δ
(l)
b =

(
∑

k

δ
(l+1)
k w

(l+1)
bk

)

· f ′

∑

j

s
(l−1)
j w

(l)
jb

 . (386)

Weight updates:

∆w
(l)
ab = η

∑

p

δ
(l,p)
b s(l−1,p)

a . (387)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 632 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Multilayer Perceptron

Backpropagation algorithm

Require: MLP with n ≥ 2 layers, training patterns x(1), . . . , x(M)

in R
m with desired outputs y(1), . . . , y(M), error function

E = E(w), small numbers ǫ > 0 and η > 0
Ensure: Trained MLP with total error E(w) < ǫ

Choose random weights w
(l)
ab

Compute output s(n,p) for each pattern p by (358)
Compute error function E(w) by (366)
while E(w) ≥ ǫ do

Compute weight updates ∆w
(l)
ab by (387)

Compute new weights w
(l)
ab by (367)

Compute output s(n,p) for each pattern p by (358)
Compute error function E(w) by (366)

end while

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 633 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Multilayer Perceptron

Backpropagation in R

Library neuralnet for training of neural networks:

> library(neuralnet)

Generate MLP for Boolean XOR function:

> XOR <- c(0,1,1,0)

> xor.data <- data.frame(expand.grid(c(0,1),c(0,1)),

XOR)

> print(net.xor <- neuralnet(XOR~Var1+Var2,

xor.data, hidden=2, rep=5))

> plot(net.xor, rep="best")

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 634 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Multilayer Perceptron

Backpropagation in R

MLP for Boolean XOR function:

10.40418

1.
67

74
7

Var2

8.36857

1.62055Var1

1.59763

−2.51046

XOR

−3.6161

−2.49304

1

0.15414

1

Error: 0.000354 Steps: 105

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 635 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Multilayer Perceptron

Backpropagation in R

Command prediction gives correct responses to all input
combinations:

> prediction(net.xor)

Data Error: 0;

$rep1

Var1 Var2 XOR

1 0 0 0.009656447796

2 1 0 0.995312514830

3 0 1 0.977844488036

4 1 1 0.018569238192

$data

Var1 Var2 XOR

1 0 0 0

2 1 0 1

3 0 1 1

4 1 1 0

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 636 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Multilayer Perceptron

Remarks on MLP

Two modes of learning: stochastic and batch; compromise is
mini-batch.

Design of appropriated MLP for given problem is key.

Under-fitting:
Too few hidden units lead to high training errors, cannot
capture underlying trends in data, poor predictive
performance.
Over-fitting:
Too many hidden units result in low training errors,
excessively complex model, poor predictive performance.

Gradient descent with backpropagation may not find global
optimum of error function E, only local minimum.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 637 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Multilayer Perceptron

Example (Deep Learning) – MNist

Deep learning (buzzword) refers to artificial neural networks
with many processing layers.

MNist is a database of handwritten digits for image
processing systems.

Database has 60,000 training images and 10,000 testing
images (50 MB).

Most widely used benchmark for isolated handwritten digit
recognition.

Black-white images are normalized to 28× 28 = 784 pixels,
pixel intensity ranges from 0 (background) to 255 (max
foreground).

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 638 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Multilayer Perceptron

Example – MNist (cont’d)

Handwritten digits:

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 639 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Multilayer Perceptron

Digitalized Handwritten Digit

5 10 15 20 25

5
10

15
20

25

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 640 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Multilayer Perceptron

Example – MNist (cont’d)

Some machine learning algorithms have attained human-like
performance with MNist data.

Weakest algorithm listed has error rate 12% (linear classifier).

Today, there are neural network algorithms listed whose error
rates range from 0.21% to 0.35% .

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 641 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Multilayer Perceptron

Example – MNist (cont’d)

Deep neural network algorithm by Dan Ciresan et al. (2010)
uses backpropagation, error rate 0.35%.

Trained are 5 MLPs with 2 to 9 hidden layers and varying
numbers of hidden units (Table below).

This gives 1.34 to 12.11 million free parameters in the form of
weights.

Original grey scale images are mapped to real values
pixelIntensity

127.5 − 1.0 in the interval [−1.0, 1.0] which are then
fed into the input layer.

Weights are initialized with uniform random distribution in
[−0.05, 0.05].
Activation function is scaled hyperbolic tangent
y(h) = A · tanh(B · h) with A = 1.7159 and B = 0.6666.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 642 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Multilayer Perceptron

Example – MNist (cont’d)

For each training epoch, the MNist training set gets slightly
deformed by rotation, scaling, and shearing.

Simulations were carried out on a computer with a Core2
Quad 9450 2.66 GHz processor, 3 GB of RAM, and a
GTX280 graphics card.

This has led to a speedup of the algorithm by a factor of 40.

The best MLP has error rate of 0.35% which amounts to 35
out of 10,000 test images.

The misclassified test images are shown in the article and are
only partially detectable by a human!

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 643 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Multilayer Perceptron

Example – MNist (cont’d)

MLPs for handwritten digit detection:

ID architecture test error weights
(neurons per layer) (millions)

1 1000, 50, 10 0.49 1.34
2 1500, 1000, 50, 10 0.46 3.26
3 2000, 1500, 1000, 50, 10 0.41 6.69
4 2500, 2000, 1500, 1000, 50, 10 0.35 12.11
5 9× 1000, 10 0.44 8.86

The output layer has always 10 neurons corresponding to the 10
digits. Decision is made using the principle ”winner takes it all”.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 644 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Deep Learning via Keras

Keras

Keras is a high-level neural network API focussing on fast
experimentation.

Same code can run on CPU or GPU.

User-friendly API for prototyping deep learning models.

Built-in support for convolutional networks (computer vision)
and recurrent networks (sequence processing).

Capable of running with Tensorflow backend (software library
for differential programming).

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 645 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Deep Learning via Keras

R Interface to Keras

Download package:

> install.packages("keras")

Load package and tensorflow backend:

> library(keras)

> install_keras()

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 646 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Deep Learning via Keras

MNist Dataset

MNist is already included in the Keras/Tensorflow installation.

mnist <- dataset_mnist()

Dataset is given by

Training set:

Sample images x: 60,000 28× 28 pixel images with grey
scale representation (pixels as integers 0 . . . 255)
Responses y: vector of length 60,000 with corresponding
digits between 0 and 9.

Testing set: same as training set, but with 10,000 images and
responses.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 647 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Deep Learning via Keras

MNist Dataset

Detailled structure of dataset:

> str(mnist)

List of 2

$ train: List of 2

.. $ x: int [1:60000, 1:28, 1:28] 0 0 0 0 0 0 0 0 0 0 ...

.. $ y: int [1:60000(1d)] 5 0 4 1 9 2 1 3 1 4

$ test: List of 2

.. $ x: int [1:10000, 1:28, 1:28] 0 0 0 0 0 0 0 0 0 0 ...

.. $ y: int [1:10000(1d)] 7 2 1 0 4 1 4 9 5 9

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 648 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Deep Learning via Keras

MNist Dataset

Preparation of features (x) and responses (y) for both training and
testing.

> x_train <- mnist$train$x

> y_train <- mnist$train$y

> x_test <- mnist$test$x

> y_test <- mnist$test$y

Check the structure of datasets:

> str(x_train)

int [1:60000, 1:28, 1:28] 0 0 0 0 0 0 0 0 0 0 ...

int [1:60000(1d)] 5 0 4 1 9 2 1 3 1 4

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 649 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Deep Learning via Keras

Plotting of Images

> index_image = 28 # arbitrary

> input_matrix <- x_train[index_image, 1:28, 1:28]

rotate image by 90 degree

> output_matrix <- apply(input_matrix, 2, rev)

> output_matrix <- t(output_matrix)

> image(1:28, 1:28, output_matrix,

col=gray.colors(256), xlab="", ylab="")

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 650 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Deep Learning via Keras

Image Plotting

Image number 28:

5 10 15 20 25

5
10

15
20

25

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 651 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Deep Learning via Keras

Image Representation

Image number 28:

> input_matrix

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] ...

[1,] 0 0 0 0 0 0 0 0 0 0

[2,] 0 0 0 0 0 0 0 0 0 0

[3,] 0 0 0 0 0 0 0 0 0 0

[4,] 0 0 0 0 0 0 0 0 0 0

[5,] 0 0 0 0 0 0 0 0 0 0

[6,] 0 0 0 0 0 0 0 0 0 0

[7,] 0 0 0 0 0 0 39 158 158 158

[8,] 0 0 0 0 0 0 226 253 253 253

[9,] 0 0 0 0 0 0 139 253 253 253

[10,] 0 0 0 0 0 0 39 34 34 34

...

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 652 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Deep Learning via Keras

Parameter Setup

> batch_size <- 128

> num_classes <- 10

> epochs <- 10

> img_rows <- 28

> img_cols <- 28

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 653 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Deep Learning via Keras

Data Preprocessing: Adding Channel

In view of CNN, the m× n input images are m× n× k 3D arrays
with k ≥ 1 channels.

> x_train <- array_reshape(x_train, c(nrow(x_train),

img_rows, img_cols, 1))

> x_test <- array_reshape(x_test, c(nrow(x_test),

img_rows, img_cols, 1))

> input_shape <- c(img_rows, img_cols, 1)

> str(x_train)

num [1:60000, 1:28, 1:28, 1] 0 0 0 0 0 0 0 0 0 0 ...

For greyscale images, one channel is sufficient.
For RGB color images, one needs three channels.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 654 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Deep Learning via Keras

Data Preprocessing: Scaling and Categorial Variable

Scaling the input values to be between 0 and 1:

> x_train <- x_train / 255

> x_test <- x_test / 255

Response variable is converted to categorial:

> y_train <- to_categorial(y_train, num_classes)

> y_test <- to_categorial(y_test, num_classes)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 655 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Deep Learning via Keras

CNN Model Structure

Inventor of CNN is Yann LeCun (2016).

CNN consists of one or more convolutional layers followed by
a pooling layer.

In deep learning, CNN consists of a sequence of such
combined layers.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 656 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Deep Learning via Keras

CNN Model Structure

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 657 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Deep Learning via Keras

CNN Model Structure

Convolutional layer performs discrete convolution via small
convolution matrix:

g(x, y) = (ω ∗ f)(x, y) =
a∑

i=−a

b∑

j=−b

ω(i, j)f(x− i, y − j)(388)

where g(x, y) is the filtered image, f(x, y) is the original
image, and ω is the filter kernel, (2a+ 1× 2b+ 1) matrix.

Kernels can cause a wide range of effects, e.g., edge detection:

ω =

0 1 0
1 −4 1
0 1 0

 .

Activation function of neuron is given by rectified linear unit
(relu) f(x) = max{0, x} or its differentiable approximation
f(x) = ln(1 + ex) (for backpropagation).

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 658 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Deep Learning via Keras

CNN Model Structure

In the pooling (or subsampling) layer the idea is to remove
superfluous information.

Pooling layer should prevent overfitting, reduce data and
speed-up computation.

Max-pooling is most commonly used:

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 659 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Deep Learning via Keras

CNN Model Structure

Layers in actual CNN:

2D convolutional layers parametrized with kernel size, number
of filters, activation function.

Pooling layer is applied after each 2D convolutional layer;
pool size of 2× 2 halves the size.

Dropout layer for regularization; e.g., dropout rate of 0.8
refers to (random) deletion of 20% of the neurons preventing
overfitting.

Flatten layer converts 3D tensor to 1D tensor.

Dense layer (MLP) connects to target response classes.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 660 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Deep Learning via Keras

CNN Model for MNist

CNN model with two 2D convolutional layers with max-pooling.

> cnn_model <- keras_model_sequential() %>%

+ layer_conv_2d(filters=32, kernel_size=c(3,3),

activation=’relu’, input_shape=input_shape) %>%

+ layer_max_pooling_2d(pool_size=c(2,2)) %>%

+ layer_conv_2d(filters=64, kernel_size=c(3,3),

activation=’relu’) %>%

+ layer_max_pooling_2d(pool_size=c(2,2)) %>%

+ layer_dropout(rate=0.25) %>%

+ layer_flatten() %>%

+ layer_dense(units=128, activation=’relu’) %>%

+ layer_dropout(rate=0.5) %>%

+ layer_dense(units=num_classes, activation=’softmax’)

softmax = normalized e-function

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 661 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Deep Learning via Keras

CNN Model for MNist

Compilation of defined CNN model:

> cnn_model %>% compile

+ loss = loss_categorial_crossentropy,

+ optimizer = optimizer_adadelta(),

+ metrics = c(’accuracy’)

)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 662 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Deep Learning via Keras

CNN Model for MNist

Training of the model via 10 epochs:

cnn_history <- cnn_model %>% fit(

+ x_train, y_train,

+ batch_size = batch_size,

+ epochs = epochs,

+ validation_split = 0.2)

Train on 48000 samples, validate on 12000 samples

This program is run on CPU (approx. 30 min). The training time
can be significantly reduced if run on GPU.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 663 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Deep Learning via Keras

CNN Model for MNist

Training accuracy

Epoch 1/10

48000/48000 - accuracy: 0.8861

Epoch 2/10

48000/48000 - accuracy: 0.9639

Epoch 3/10

48000/48000 - accuracy: 0.9723

Epoch 4/10

48000/48000 - accuracy: 0.9783

Epoch 5/10

48000/48000 - accuracy: 0.9803

Epoch 6/10

48000/48000 - accuracy: 0.9822

Epoch 7/10

48000/48000 - accuracy: 0.9842

Epoch 8/10

48000/48000 - accuracy: 0.9850

Epoch 9/10

48000/48000 - accuracy: 0.9870

Epoch 10/10

48000/48000 - accuracy: 0.9875

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 664 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Deep Learning via Keras

CNN Model for MNist

> plot(cnn_history)

lo
ss

ac
cu

ra
cy

2 4 6 8 10

0.1

0.2

0.3

0.900

0.925

0.950

0.975

epoch

data

training

validation

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 665 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Deep Learning via Keras

CNN Model for MNist

Model prediction of new images:

> cnn_pred <- cnn_model %>%

+ predict_classes(x_test)

> head(cnn_pred, n=10)

[1] 7 2 1 0 4 1 4 9 5 9

Check number of misclassified images

> sum(cnn_pred != mnist$test$y)

[1] 83

Error rate of 0.83% means 83 out of 10.000 test images.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 666 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Deep Learning via Keras

CNN Model for MNist

Check misclassified images whether human can do better:

> missed_image = mnist$test$x[cnn_pred!=mnist$test$y,,]

> missed_digit = mnist$test$y[cnn_pred!=mnist$test$y]

> missed_pred = cnn_pred[cnn_pred!=mnist$test$y]

> index_image = 2 # arbitrary

> input_matrix <- missed_image[index_image, 1:28, 1:28]

> output_matrix <- apply(input_matrix, 2, rev)

> output_matrix <- t(output_matrix)

> image(1:28, 1:28, output_matrix,

col=gray.colors(256),

xlab=paste(

’Image for digit ’, missed_digit[index_image],

’, wrongly predicted as ’,missed_pred[index_image]),

ylab="")

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 667 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Deep Learning via Keras

CNN Model for MNist

5 10 15 20 25

5
10

15
20

25

Image for digit 5 , wrongly predicted as 3

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 668 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Universality

Universal Function Representation and Approximation

Fundamental results about representation and approximation
capabilities of feedforward neural networks.

Kolmogorov network

∗Sprecher’s learning algorithm

∗Cybenko’s approximation network

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 669 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Universality

Theorem (Kolmogorow, 1957)

Let n ≥ 2. Each continuous function f : [0, 1]n → R has a
representation of the form

f(x1, . . . , xn) =

2n+1∑

q=1

φq

(
n∑

p=1

ψp,q(xp)

)

, (389)

where φq and ψp,q are monadic continuous functions,
1 ≤ q ≤ 2n+ 1 and 1 ≤ p ≤ n.
The inner functions ψp,q are monotonic increasing and independent
of the function f .

Kolmogorov’s proof is not constructive; unclear how to choose the
involved monadic functions.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 670 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Universality

Universal Function Representation and Approximation

Rewrite the representation of f :

f(x1, . . . , xn) = φ1(y1) + φ2(y2) + . . .+ φ2n+1(y2n+1),
yq = ψ1,q(x1) + ψ2,q(x2) + . . .+ ψn,q(xn),

1 ≤ q ≤ 2n+ 1.
(390)

Layered network for the computation of continuous function:

∑ |f

∑ |φ1

55❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧
. . .

∑ |φ2n+1

jj❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯

ψ1,1

;;①①①①①①①①
. . . ψn,1

cc❋❋❋❋❋❋❋❋❋
. . . ψ1,2n+1

99ssssssssss
. . .

ee▲▲▲▲▲▲▲

x1

cc●●●●●●●●●

33❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣
. . . xn

rrrrrrr

kk❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 671 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Universality

Example

Dyadic continuous function f : [0, 1]2 → R has representation

f(x1, x2) =

5∑

q=1

φq(yq),

where the φq are monadic continuous functions and

y1 = ψ1,1(x1) + ψ2,1(x2),

...

y5 = ψ1,5(x1) + ψ2,5(x2),

where the ψp,q are monadic continuous functions.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 672 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Universality

Example

Consider the dyadic multiplication f(x1, x2) = x1 · x2. Then

x1 · x2 =
1

4
(x1 + x2)

2 − 1

4
(x1 − x2)2.

Define the functions

φ1(t) =
1

4
t2, φ2(t) = −

1

4
t2, φ3(t) = φ4(t) = φ5(t) = 0

and

ψ1,1(x) = ψ2,1(x) = ψ1,2(x) = x and ψ2,2(x) = −x.

Then

x1 · x2 = φ1(x1 + x2) + φ2(x1 + (−x2))
= φ1 (ψ1,1(x1) + ψ2,1(x2)) + φ2 (ψ1,2(x1) + ψ2,2(x2)) .

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 673 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Universality

Example (cont’d)

Layered network structure for dyadic multiplication:

ψ11

""❋
❋❋

❋❋
❋❋

❋

x1

��✵
✵✵
✵✵
✵✵
✵✵
✵✵
✵✵
✵✵
✵

>>⑥⑥⑥⑥⑥⑥⑥⑥
ψ21

//∑ |φ1

%%❑❑
❑❑

❑❑
❑❑

❑❑

∑ |x1 · x2

x2

FF✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍

 ❆
❆❆

❆❆
❆❆

❆ ψ12
//∑ |φ2

99ssssssssss

ψ21

<<①①①①①①①①

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 674 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Universality

∗Theorem (Sprecher, 1965)

Let n ≥ 2. Each continuous function f : [0, 1]n → R has a
representation of the form

f(x1, . . . , xn) =
2n∑

q=0

φq

(
n∑

p=1

λpψ(xp + qα)

)

, (391)

where ψ and φ0, . . . , φ2n are continuous functions, and α and
λ1, . . . , λn are constants.
The inner function ψ is monotonic increasing and independent of
the function f .

This representation uses one inner function ψ plus n+ 1 constants
α, λ1, . . . , λn instead of (2n+ 1)n inner functions ψp,q.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 675 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Universality

Sprecher’s Learning Algorithm

Given dyadic continuous function f : [0, 1]2 → R.

Define inner function ψ.

Construct sequence of continuous functions (fi) which
converges uniformly to f .

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 676 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Universality

Sprecher’s Inner Function

Let k ≥ 1. Consider the terminating decimals of length k,

dk =

k∑

r=1

ir
10r

, (392)

where 0 ≤ ir ≤ 9 for each 1 ≤ r ≤ k.
Example: For k = 3, we have 0.001, 0.100, and 0.999.

Define point function ψ1 as

ψ1(d1) = d1 (393)

for each terminating decimal d1 of length 1. Extend ψ1 to
continuous staircase function on [0, 1] by connecting
consecutive points with line segments; this gives the identity
function on [0, 1].

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 677 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Universality

Sprecher’s Inner Function

Second, define point function ψ2 on terminating decimals of length
k = 2,

ψ2

(
i2
102

)

=

{
i2

10β(2) if 0 ≤ i2 ≤ 8,
1
2

(
8

10β(2) +
1
10

)
if i2 = 9,

(394)

ψ2

(
1

10

)

=
1

10
(395)

and

ψ2

(
i1
10

+
i2
102

)

=
i1
10

+ ψ2

(
i2
102

)

. (396)

Extend ψ2 to continuous staircase function on [0, 1] by connecting
consecutive points with line segments.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 678 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Universality

Sprecher’s Inner Function

The point function ψ2 and its extension to a continuous staircase
function:

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 679 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Universality

Sprecher’s Inner Function

Qk = the set of terminating rational numbers of length k ≥ 1
in [0, 1].

Q =
⋃

k≥0Qk the set of all terminating rational numbers in
[0, 1].

Q is dense in [0, 1]; i.e., each interval contained in [0, 1] has
an element of Q.

For k ≥ 1 define the point function ψk on Qk as

ψk(dk) = (397)

dk k = 1,
ψk

(
dk − ik

10k

)
+ ik

10β(k) k > 1 and 0 ≤ ik ≤ 8,
1
2

(
ψk

(
dk − 1

10k

)
+ ψk−1

(
dk + 1

10k

))
k > 1 and ik = 9.

Extend ψk to continuous staircase function on [0, 1] by connnecting
consecutive points with line segments.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 680 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Universality

Sprecher’s Inner Function

The set of real numbers is the set of limits of infinite decimal
sequences, i.e., each real number x ∈ [0, 1] has a
representation to base 10 as

x =
∞∑

r=1

ir
10r

= lim
k→∞

k∑

r=1

ir
10r

. (398)

Define the limit of the sequence of (extended) functions (ψk)
by extending the dense set Q to [0, 1],

ψ(x) = lim
k→∞

ψk

(
k∑

r=1

ir
10r

)

. (399)

The (pointwise) limit exists and the limiting function ψ is
continuous and monotonic increasing; note that ψ is Lipschitz
continuous, but not smooth.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 681 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Universality

Sprecher’s Outer Functions

For the terminating decimals of length k, put

δk =
8

9 · 10k = 8

∞∑

r=k+1

1

10r
. (400)

Consider the intervals of length δk,

Ik(dk) = [dk, dk + δk]. (401)

The inverval Ik(dk) contains the disjoint union of nine
intervals,

Ik+1(dk)
·∪ Ik+1(dk +

1

10k+1
)

·∪ . . . ·∪ Ik+1(dk +
8

10k+1
),(402)

and the interval Ik+1(dk + 9
10k+1) lies in the gap between the

intervals Ik(dk) and Ik(dk + 1
10k

).

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 682 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Universality

Sprecher’s Outer Functions

For each number k ≥ 1, the intervals Ik(dk) will be translated
by the displacements

q

9 · 10 = q

∞∑

r=2

1

10r
, 0 ≤ q ≤ 4. (403)

This gives a larger family of intervals,

Iq,k =
[

dk −
q

9 · 10 , dk + δk −
q

9 · 10
]

. (404)

We have I0,k(dk) = Ik(dk). The geometry of the translated
intervals is similar to that of the intervals Ik(dk).

Define the Cartesian products

Sq,k(d1k, d2k) = Iq,k(d1k)× Iq,k(d2k), 0 ≤ q ≤ 4, k ≥ 1,(405)

where d1k and d2k are terminating decimals of length k.
These squares have diameter

√
2 · δk.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 683 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Universality

Sprecher’s Outer Functions

Claim that the given continuous function f : [0, 1]2 → R can be
represented as

f(x1, x2) = φ0(y0) + . . .+ φ4(y4), (406)

yq = ψ(x1 + qα) + λψ(x2 + qα), 0 ≤ q ≤ 4.

Construct a sequence of continuous functions (fi) which converges
uniformly to f .

Supremum norm of real-valued bounded function f on [0, 1]2,

‖f‖ = sup{|f(x, y)| | (x, y) ∈ [0, 1]2}. (407)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 684 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Universality

Sprecher’s Outer Functions

Let k = k1 ≥ 1. Define the functions φq,1 as

φq,1(yq) =
1

3
f(d1,k1

, d2,k1
), 0 ≤ q ≤ 4, (408)

for each (x1, x2) ∈ Sq,k1
(d1,k1

, d2,k1
). Extend these functions

to continuous staircase functions on [0, 1] by connecting
consecutive points with line segments.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 685 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Universality

Sprecher’s Outer Functions

Define the function f1 as

f1(x1, x2) = (409)
4∑

q=0

φq,1(yq) =

4∑

q=0

φq,1(ψ(x1 + qα) + λψ(x2 + qα)).

Take an error value ǫ > 0 and choose the number k1 large
enough such that

|f1(x1, x2)− f1(x′1, x′2)| ≤ ǫ‖f‖ (410)

for all pairs (x1, x2), (x
′
1, x

′
2) in Sq,k1

(d1,k1
, d2,k1

).

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 686 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Universality

Sprecher’s Outer Functions

For each point (x1, x2) ∈ [0, 1]2, we have

|f(x1, x2)− φq,1(yq)| ≤
1

3
ǫ‖f‖. (411)

It follows that for all (x1, x2) ∈ [0, 1]2,

|f(x1, x2)− f1(x1, x2)| ≤
(

ǫ+
2

3

)

‖f‖. (412)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 687 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Universality

Sprecher’s Outer Functions

By continuing this process, we obtain for each r ≥ 1,

‖φq,r‖ ≤
1

3

(

ǫ+
2

3

)r−1

‖f‖, 0 ≤ q ≤ 4, (413)

and

‖f −
r∑

i=1

fi‖ ≤
(

ǫ+
2

3

)r

‖f‖. (414)

We have (ǫ+ 2
3)

r → 0 for r →∞ if 0 < ǫ < 1
3 . With this

setting, the function series (
∑

i fi) and (φq,i) are convergent
uniformly to the functions f and φq, respectively. It follows
that the functions f and φq, 0 ≤ q ≤ 4, are continuous.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 688 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Universality

Corollary

Each multivariate continuous function can be represented by a
network of monadic functions and addition operations called
Kolmogorov network.

See diagram in manuscript.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 689 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Universality

∗Approximation Result

Approximation of continuous function when exact
reproducibility is not required and a bounded approximation
error is accepted.

C(In) = space of continuous functions on In = [0, 1]n;
supremum norm on C(In) is denoted by ‖ · ‖.
M(In) = space of finite, signed regular Borel measures on In.

A function σ : R→ R is discriminatory if for some measure
µ ∈M(In),

∫

In

σ

(
n∑

i=1

xiyi + θ

)

dµ(x) = 0 (415)

for all y ∈ R
n and θ ∈ R implies that µ = 0.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 690 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Universality

A function σ : R→ R is sigmoidal if

lim
x→∞

σ(x) = 1 and lim
x→−∞

σ(x) = −1. (416)

Proposition

Let σ be a discriminatory function. The finite sums of the form

F (x) =

m∑

j=1

αjσ

(
n∑

i=1

xiyji + θj

)

, x ∈ In, (417)

with parameters αj , yji, θj ∈ R are dense in C(In); that is, for all
f ∈ C(In) and ǫ > 0, there is a sum F (x) with

|F (x)− f(x)| < ǫ for all x ∈ In. (418)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 691 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Universality

Proof [Sketch]

Let L = set of functions F (x) as above; L is a linear
subspace of C(In).

Claim that closure of L denoted by L is dense in C(In); L
closed proper subspace of C(In). Suppose L is not all of
C(In);

Hahn-Banach theorem: ∃ bounded linear functional ℓ 6= 0 on
C(In) with ℓ(L) = ℓ(L) = 0.

Riesz representation theorem: Functional ℓ has the form

ℓ(h) =

∫

In

h(x)dµ(x), h ∈ C(In), (419)

for some µ ∈M(In).

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 692 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Universality

Proof [Sketch] cont’d

σ (
∑n

i=1 xiyi + θ) ∈ L for all y ∈ R
n and θ ∈ R. Then

∫

In

σ

(
n∑

i=1

xiyi + θ

)

dµ(x) = 0 (420)

for all y ∈ R
n and θ ∈ R.

But σ is discriminatory and so µ = 0 contradicting the
hypothesis that ℓ 6= 0. Hence, the subspace L is dense in
C(In).

Lemma

Each continuous sigmoidal function σ is discriminatory.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 693 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Universality

Theorem (Cybenko, 1989)

Let σ be a continuous sigmoidal function. The finite sums of the
shape

F (x) =
m∑

j=1

αjσ

(
n∑

i=1

xiyji + θj

)

, x ∈ In, (421)

with parameters αj , yji, θj ∈ R are dense in C(In); that is, for all
f ∈ C(In) and ǫ > 0, there is a sum F (x) with

|F (x)− f(x)| < ǫ for all x ∈ In. (422)

Use the Proposition and note that by the Lemma continuous
sigmoidal functions are discriminatory.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 694 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Universality

Network for the approximation of continuous function f :

∑ |F

∑ |σ

66♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠
. . .

∑ |σ

OO

. . .
∑ |σ

hh◗◗◗◗◗◗◗◗◗◗◗◗◗◗◗

x1

OO 22❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢

66❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧
. . . xi

OOhh❘❘❘❘❘❘❘❘❘❘❘❘❘❘❘❘

66❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧
. . . xn

OOhh❘❘❘❘❘❘❘❘❘❘❘❘❘❘❘❘

ll❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳
1

aa❈❈❈❈❈❈❈❈

kk❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱

ll❩❩❩

MLPs with one hidden layer can approximate continuous functions
with arbitrary precision if there are no constraints on the number of
units and the size of the weights.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 695 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Universality

Pattern Classification

µ = Lebesgue measure on In.

Partition of In into k disjoint measurable subsets P1, . . . , Pk

of In.

Find decision function f : In → {1, . . . , k} such that

f(x) = i ⇐⇒ x ∈ Pi, x ∈ In. (423)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 696 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Universality

Theorem

Let σ be a continuous sigmoidal function and let f be a decision
function for any finite measurable partition of In with Lebesgue
measure µ. For each ǫ > 0, there is a finite sum of the shape

F (x) =
m∑

j=1

αjσ

(
n∑

i=1

xiyji + θj

)

, x ∈ In, (424)

with parameters αj , yji, θj ∈ R and a subset D of In such that
µ(D) ≥ 1− ǫ and

|F (x)− f(x)| < ǫ for all x ∈ D. (425)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 697 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Universality

Proof.

Lusin’s theorem states that each measurable function is a
continuous function on nearly all its domain. More precisely, there
is a continuous function h : In → R and a subset D of In such
that µ(D) ≥ 1− ǫ and h(x) = f(x) for all x ∈ D. Thus by
Cybenko’s result, there is a function F of the required form such
that |F (x)− h(x)| < ǫ for all x ∈ In. Hence,
|F (x)− f(x)| = |F (x)− h(x)| < ǫ for all x ∈ D.

MLPs with one hidden layer can approximate these kind of decision
functions with arbitrary precision if there are no constraints on the
number of units and the size of the weights.
The total measure of incorrectly classified points can be made
arbitrarily small.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 698 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Hopfield Network

Hopfield Network

Recurrent neural network

Hebb’s learning rule

Example: letter restoration

∗Ising model

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 699 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Hopfield Network

Recurrent neural network: neural network structure with
bidirectional connections (Hopfield, 1982)

?>=<89:;s1

♥♥♥
♥♥♥

♥♥♥
♥♥♥

♥♥♥
♥

PPP
PPP

PPP
PPP

PPP
P

✍✍
✍✍
✍✍
✍✍
✍✍
✍✍
✍✍
✍✍

✵✵
✵✵
✵✵
✵✵
✵✵
✵✵
✵✵
✵✵

?>=<89:;s2

♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥

❆❆
❆❆

❆❆
❆❆

❆

❯❯❯❯
❯❯❯❯

❯❯❯❯
❯❯❯❯

❯❯❯❯
❯❯❯❯

❯ ?>=<89:;s5

PPPPPPPPPPPPPPPP

⑥⑥
⑥⑥
⑥⑥
⑥⑥
⑥

✐✐✐✐
✐✐✐✐

✐✐✐✐
✐✐✐✐

✐✐✐✐
✐✐✐✐

✐

?>=<89:;s3

❆❆❆❆❆❆❆❆❆

✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍

✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐ ?>=<89:;s4

⑥⑥⑥⑥⑥⑥⑥⑥⑥

❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯

✵✵✵✵✵✵✵✵✵✵✵✵✵✵✵✵

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 700 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Hopfield Network

Structure

Neuron i has state si ∈ {±1}; si = 1 if neuron is excited
transmitting a signal, si = −1 if neuron is at rest.

Synaptic efficacy (weight) wij between neurons i and j can
be positive (excitatory) or negative (inhibitory).

Local field (input to neuron i)

hi =
∑

j

wij(sj + 1). (426)

Input signal from neuron j to neuron i is 2wij if sj = 1 and 0
if sj = −1.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 701 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Hopfield Network

Structure

Neuron i is excited if local field exceeds threshold θi at time t:

si(t+∆t) = sgn

∑

j

wij(sj(t) + 1)− θi

= sgn (hi(t)− θi)

=

{
+1 if hi(t) ≥ θi,
−1 otherwise.

(427)

Assume threshold θi is proportional to synaptic efficacy of
input neurons, i.e., θi =

∑

j wij . Then

si(t+∆t) = sgn

∑

j

wijsj(t)

 . (428)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 702 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Hopfield Network

Structure

Given a recurrent neural network with N neurons.

Study the problem of memorization of patterns.

Take collection of patterns of excitation {ξ(1), . . . , ξ(p)},
where ξ(µ) = (ξ

(µ)
1 , . . . , ξ

(µ)
N) ∈ {±1}N for 1 ≤ µ ≤ p.

The memorized patterns should be stable fixed points under
the time evolution rule:

If

si(t) = ξ
(µ)
i (429)

for all 1 ≤ i ≤ N and for some t ≥ 0 and some 1 ≤ µ ≤ p,
then

si(t+∆t) = ξ
(µ)
i (430)

for all 1 ≤ i ≤ N .

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 703 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Hopfield Network

Hebb’s Rule

For random patterns, each pattern ξ(µ) is a stable fixed point
as long as p is not too large and we put

wij =
1

N

p
∑

µ=1

ξ
(µ)
i ξ

(µ)
j , 1 ≤ i 6= j ≤ N. (431)

Moreover, wii = 0.

Suppose si(t) = ξ
(µ)
i for all 1 ≤ i ≤ N and some t ≥ 0 and

some 1 ≤ µ ≤ p. Then by (428,431),

si(t+∆t) = sgn

∑

j

wijξ
(µ)
j

 (432)

= sgn

1

N

∑

j

∑

ν

ξ
(ν)
i ξ

(ν)
j ξ

(µ)
j

 .

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 704 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Hopfield Network

Hebb’s Rule

Approximate orthogonality relation between random patterns
holds for large N ,

1

N

∑

j

ξ
(µ)
j ξ

(ν)
j = δν,µ +O(

1√
N

). (433)

Then

sgn

∑

j

wijξ
(µ)
j

 = sgn

1

N

∑

j

∑

ν

ξ
(ν)
i ξ

(ν)
j ξ

(µ)
j

 (434)

= sgn

(
∑

ν

ξ
(ν)
i δν,µ

)

= sgn
(

ξ
(µ)
i

)

.

Thus si(t+∆t) = ξ
(µ)
i for all 1 ≤ i ≤ N and sufficiently large

N .

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 705 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Hopfield Network

Hebb’s Rule

Update of neurons:

Asynchronous mode: only one neuron is updated in each time
step usually picked uniformly at randon.

Synchronous mode: all neurons are updated at the same time;
in large networks this requires a global clock to maintain
synchronization.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 706 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Hopfield Network

Example – Letter Memorization

Generating letters C, D, J, M:

C <- matrix(c(-1, 1, 1, 1,-1, 1,-1,-1,-1, 1, 1,-1,-1,-1, 1, 1,-1,-1,-1, 1, 1,-1,-1,-1, 1),

nrow=5, ncol=5)

D <- matrix(c(1,-1,-1,-1,-1, 1, 1, 1, 1, 1, 1,-1,-1,-1, 1, 1,-1,-1,-1, 1,-1, 1, 1, 1,-1),

nrow=5, ncol=5)

J <- matrix(c(1,-1,-1, 1, 1, 1,-1,-1,-1, 1, 1,-1,-1,-1, 1, 1, 1, 1, 1,-1, 1,-1,-1,-1,-1),

nrow=5, ncol=5)

M <- matrix(c(1, 1, 1, 1, 1,-1, 1,-1,-1,-1,-1,-1, 1,-1,-1,-1, 1,-1,-1,-1, 1, 1, 1, 1, 1),

nrow=5, ncol=5)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 707 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Hopfield Network

Example – Letter Memorization (Cont’d)

Print the letters:

> show.letter <- function(letter.vector) {

+ letter.vector[letter.vector == 1] <- "*"

+ letter.vector[letter.vector == -1] <- " "

+ col.names(letter.vector) <- rep("",5)

+ row.names(letter.vector) <- rep("",5)

+ print(letter.vector, quote = FALSE)

+ }

> for (i in mget(ls(pattern = "^[A-Z]")))

+ {show.letter(i)}

* * * *

*

*

*

* * * *

...

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 708 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Hopfield Network

Example – Letter Memorization (Cont’d)

Generate distorted letters:

> mutate <- function(letter.vector, number.pixel.flips){

+ letter.vector[sample(length(letter.vector),

number.pixel.flips)] <-

letter.vector[sample(length(letter.vector),

number.pixel.flips)]

+ return(letter.vector)

+ }

> mutated.C <- mutate(C,8)

> mutated.D <- mutate(D,8)

> mutated.J <- mutate(J,8)

> mutated.M <- mutate(M,8)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 709 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Hopfield Network

Example – Letter Memorization (Cont’d)

Draw the mutated letters

> for (i in mget(ls(pattern = "mutated")))

+ {show.letter(i)}

* *

* * *

* *

*

* * * *

...

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 710 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Hopfield Network

Example – Letter Memorization (Cont’d)

Store all 4 letter pixels into a 4× 25 weight matrix; each letter has
25 pixels. Hopfield network has 25 computational neurons.

> x <- matrix(c(C,D,J,M), nrow=4, byrow=T)

Function uses Hebbian learning to restore the mutated letters back
to original.

> hopfield <- function(current.letter, iteration,

memory=w){

+ w <- t(x) %*% x

+ diag(w) <- 0

+ for (i in 1:iteration){

+ a <- w %*% as.vector(current.letter)

+ current.letter <- ifelse(a>0, 1, -1)

+ }

+ return(show.letter(matrix(current.letter,

ncol=5, nrow=5)))

+ }

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 711 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Hopfield Network

Example – Letter Memorization (Cont’d)

Draw all the iterations (5 per letter) of restoration process

> for (i in mget(ls(pattern = "mutated"))) {

+ for (iter in 1:5) {

+ hopfield(current.letter = i, iteration = iter)

+ }

+ }

* * * *

*

*

*

* * *

##

* * * *

*

*

*

* * * *

...

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 712 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Hopfield Network

∗Ising Model

Problem of memory retrieval can be analyzed by equilibrium
statistical mechanics of Ising model.

Ising model developed by physicist Ernst Ising in 1924 is one
of the simplest model of interacting many-body systems.

Statistical mechanics has powerful tools to clarify macroscopic
properties of many-body systems using the interaction
between microscopic particles.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 713 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Hopfield Network

Ising Model

Let d ≥ 1. Take undirected graph given by a d-dimensional
lattice Λ

Nodes are sites. Assume lattice Λ has N sites.

For each site i ∈ Λ, there is an Ising spin given by a discrete
variable si with spin values in the set {±1}.
A spin configuration s = (si) is an assignment of spin values
to the lattice sites. In view of magnetism, Ising spins are
microscopic magnetic moments pointing up (↑) or down (↓).

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 714 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Hopfield Network

Ising Model

Square 2D lattice

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 715 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Hopfield Network

Ising Model

A bond is a pair of adjacent lattice sites (i, j). B denotes the
set of bonds.

Interaction energy of bond (i, j) is −wijsisj ; the interaction
is −wij if si = sj and wij if si 6= sj .

In view of magnetism, two interacting spins are oriented in the
same direction (↑↑ or ↓↓) if wij > 0.

Positive interaction wij > 0 may lead to macroscopic
magnetism (ferromagnetism).

Negative interaction wij < 0 supports antiparallel states of
interacting spins (antiferromagnetism).

Each site i may have an external magnetic field hi interacting
with it; the term −hisi is called Zeeman energy. If hi > 0,
the spin site i desires to line up in positive direction.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 716 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Hopfield Network

Ising Model

Hamiltonian (total energy) of spin configuration s = (si)

H(s) = −
∑

(i,j)∈B

wijsisj − µ
N∑

i=1

hisi,

where µ denotes the magnetic moment.

Boltzmann distribution: probability of spin configuration
s = (si)

P (s) =
e−βH(s)

Z
,

with inverse temperature β = 1/T and Boltzmann factor
e−βH(s).

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 717 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Hopfield Network

Ising Model

Partition function (normalizing constant)

Z =
∑

s

e−βH(s) =
∑

s1=±1

. . .
∑

sN=±1

e−βH(s1,...,sN).

The sum over all possible spin configurations is denoted by

Z = Tr e−βH .

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 718 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Hopfield Network

Ising Model

The thermal average of a physical quantity f is computed by
using the Boltzmann distribution,

〈f〉 =
∑

s

f(s)P (s).

An order parameter with ferromagnetic interactions is
magnetization

m =
1

N

〈
N∑

i=1

si

〉

=
1

N
Tr

((
N∑

i=1

si

)

P (s)

)

.

Phase transition: m 6= 0 for T < Tc (ferromagnetic phase)
and m = 0 (paramagnetic phase) for T > Tc for critical
temperature Tc (transition point).

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 719 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Hopfield Network

Ising Model

Simplification of Ising model: w = wij for each bond
(i, j) ∈ B.

Hamiltonian

H(s) = −w
∑

(i,j)∈B

sisj − h
∑

i

si.

Calculation of expectation value 〈f〉 is difficult, since partition
function Z has 2N terms.

Approximation by mean-field theory.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 720 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Hopfield Network

Ising Model - Meanfield Theory

Spin variable si splits into mean (magnetization) m = 〈si〉N
and deviation (fluctuation) δsi = si −m.

Hamiltonian

H(s) = −w
∑

(i,j)∈B

(m+ δsi)(m+ δsj)− h
∑

i

si.

If the fluctuation is small, the Hamiltonian becomes

H(s) = −wmNB − wm
∑

(i,j)∈B

(δsi + δsj)− h
∑

i

si,

where NB = |B| is the number of bonds.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 721 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Hopfield Network

Ising Model - Meanfield Theory

Coordination number z is the number of sites adjacent to a
site. Then NB = zN/2.

Hamiltonian

H(s) = −wm2NB − wmz
∑

i

δsi − h
∑

i

si

= wm2NB − (wmz + h)
∑

i

si.

System looks like a collection of non-interacting spins; effects
of interaction between spins are shifted into magnetization.

Partition function

Z = Tr exp

(

β

(

−wm2NB + (wmz + h)
∑

i

si

))

.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 722 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Hopfield Network

Ising Model - Meanfield Theory

Partition function

Z = Tr exp

(

β

(

−wm2NB + (wmz + h)
∑

i

si

))

= e−βwm2NBTr exp

(

β(wmz + h)
∑

i

si

)

= e−βwm2NB (2 coshβ(wmz + h))
N
.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 723 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Hopfield Network

Ising Model - Meanfield Theory

Proof (last equality):

ZN = Tr exp

(

β(wmz + h)
∑

i

si

)

=
∑

s1=±1

. . .
∑

sN=±1

eβ(wmz+h)
∑

i si

=
∑

s1=±1

. . .
∑

sN=±1

eβ(wmz+h)s1 · · · eβ(wmz+h)sN

=
∑

s1=±1

eβ(wmz+h)s1 . . .
∑

sN=±1

eβ(wmz+h)sN

=

(
∑

s=±1

eβ(wmz+h)s

)N

= ZN
1 .

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 724 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Hopfield Network

Ising Model - Meanfield Theory

Proof (cont’d):

Z1 =
∑

s=±1

eβ(wmz+h)s = eβ(wmz+h) + e−β(wmz+h)

= 2 coshβ(wmz + h).

Thus

ZN = (2 coshβ(wmz + h))
N
.

�

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 725 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Hopfield Network

Ising Model - Meanfield Theory

Magnetization

m =
Tr sie

−βH

Z
= tanhβ(wmz + h).

Proof:

Z ′
N = Tr sie

−βH

=
∑

s1=±1

s1 . . .
∑

sN=±1

sNe
β(wmz+h)

∑

i si

=
∑

s1=±1

s1e
β(wmz+h)s1 . . .

∑

sN=±1

sNe
β(wmz+h)sN

=

(
∑

s=±1

seβ(wmz+h)s

)N

= Z ′N
1 .

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 726 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Hopfield Network

Ising Model - Meanfield Theory

Proof (cont’d):

Z ′
1 =

∑

s=±1

seβ(wmz+h)s = eβ(wmz+h) − e−β(wmz+h)

= 2 sinhβ(wmz + h)

with tanh(x) = sinh(x)
cosh(x) . Hyperbolic functions:

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 727 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Hopfield Network

Ising Model - Meanfield Theory

Equation of state determines the order parameter

m =
Tr sie

−βH

Z
= tanhβ(wmz + h).

Spontaneous magnetization in the absense of external field
h = 0,

m = tanhβ(wmz).

Consider the expansion

tanhx = x− x3

3
+

2x5

15
− 17x7

315
± . . . , |x| < π

2
,

Taking the first term in the expansion of tanhβwmz gives

m = βwmz

which yields the critical temperature Tc = wz.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 728 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Hopfield Network

Ising Model - Meanfield Theory

Free energy:

F = −T logZ = −NT log (2 coshβ(wmz + h)) +NBwm
2.

Expand RHS in powers of m to fourth order,

F = −NT log 2 +
wzN

2
(1− βwz)m2 +

N

12
(wmz)4β3.

The coefficient of m2 alters the sign at Tc = wz.

The free energy has two minima located at m 6= 0 if T < T2
and one minimum at m = 0 if T > Tc.

The magnetization in thermal equilibrium is zero if T > Tc
and is nonzero if T < Tc

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 729 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Hopfield Network

Hopfield Model

The number of embedded patterns p is finite.

Partition function is described by Hamiltonian,

Z = Tr exp

β

2N

∑

µ

(
∑

i

siξ
(µ)
i

)2

 .

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 730 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Hopfield Network

Hopfield Model

New integration variable mµ to linearize the square of the
exponent,

Z = Tr

∫ p∏

µ=1

dm
(µ)

exp

−
1

2
Nβ

∑

µ

m
2
µ + β

∑

µ

mµ

∑

i

siξ
(µ)
i

=

∫ p∏

µ=1

dm
(µ)

exp

(

−
1

2
Nβ〈m,m〉 +

∑

i

log(2 cosh β〈m, ξi〉)
)

,

where m = (m(1), . . . ,m(p))t, ξi = (ξ
(1)
i , . . . , ξ

(p)
i)t,

1 ≤ i ≤ N , and the multiplicative constant has been deleted
as it does not influence the overall physical behavior.

In the thermodynamic limit N →∞, the free energy per
degree of freedom N is

f = − T
N

logTr e−βH =
1

2
〈m,m〉 − T

N

∑

i

log(2 coshβ〈m, ξi〉).

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 731 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Hopfield Network

Hopfield Model

Equation of state

m =
1

N

∑

i

ξi tanhβ〈m, ξi〉.

In the thermodynamic limit, the sum over all neurons i
becomes equivalent to the average over the random
components of the vector ξ = (ξ(1), . . . , ξ(p)) which
corresponds to the configurational average denoted by [·].
Configurational average of relative free energy

[f] = −T [logZ] = −T
∫
∏

(ij)

wijP (wij) logZ

=
1

2
〈m,m〉 − T [log(2 coshβ〈m, ξ〉)].

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 732 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Hopfield Network

Hopfield Model

Equation of state

m = [ξ tanhβ〈m, ξ〉].

Retrieving the first pattern gives m = m1 and
m2 = . . . = mp = 0. This gives the mean-field solution with
h = 0,

m = [ξ(1) tanhβ〈m, ξ(1)〉] = tanhβm.

There are two solution m 6= 0 for T = β−1 < 1 (red line);
otherwise, there is one solutions (blue line).

If T = 0, the stable state is m = ±1 and a perfect retrieval of
the embedded pattern (or its complement) is achieved.

The Hopfield model with a finite number of patterns works at
low temperature as an associative memory which is able to
retrieve the appropriate memorized pattern if a noisy variant
of the pattern is intially given.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 733 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Hopfield Network

Hopfield Model

The equation x = tanhβx has one solution (blue) or two solutions
(red).

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 734 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Self-Organizing Networks

Self-Organizing Maps

Topographic maps

Kohonen network

Learning

Example: SOM for Iris dataset

∗Iterated local search

∗Principal component analysis

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 735 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Self-Organizing Networks

Self-Organizing Maps (SOM)

SOM provides data compression mapping high-dimensional
sample space to low-dimensional feature space.

SOM is established by unsupervised learning (no teacher).

Assumption: Class membership is inherent in the input
patterns defining common features and the network is able to
identify some of those features during the training session.

SOM and k-means are identical if the radius of the
neighborhood function in SOM is identical to zero.

Large self-organizing maps may exhibit emergent properties.
Emergent properties are phenomena in which larger entities
arise through the interactions of smaller or simpler entities
such that the larger entities show properties the smaller
entities do not show, like macroscopic physical properties or
swarming.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 736 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Self-Organizing Networks

Topographic Map

Ordered projection of sensory surface (retina, skin, eardrum)
to structure of central nervous system.

Construct artificial topographic map by learning via
self-organization in neurobiologically inspired manner.

Nonlinear generalization of principal component analysis
(PCA).

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 737 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Self-Organizing Networks

Kohonen Networks

Form a class of self-organizing maps (Teuvo Kohonen, 1980).

Kohonen network is an ANN with

feed-forward topology,
single input layer,
single computational layer,
neurons arranged in one- or two-dimensional regularly
spaced grid.

Each neuron in input layer is connected to each neuron in
computational layer.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 738 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Self-Organizing Networks

Kohonen Network

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 739 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Self-Organizing Networks

Kohonen Network – Learning

Self-organization procedure:

Initialization: The connecting weights are initialized with
small values around zero chosen uniformly at random.

Competition: For each input pattern, each neuron computes
its value of a discriminant function and the neuron with the
smallest value is declared as the winner.

Cooperation: The winning neuron determines the spatial
location of a topographic neighborhood of excited neurons.

Adaption: The excited neurons decrease their values of the
discriminant function by adjusting their weights such that the
response of the winning neuron is enhanced for similar input
patterns.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 740 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Self-Organizing Networks

Kohonen Network – Learning

Input patterns are vectors in R
d.

Computational layer has N neurons.

wij = weight between input neuron j and neuron i in
computational layer, 1 ≤ i ≤ N , 1 ≤ j ≤ d.
Winning neuron (closest to input pattern x)

I(x) = argmin{di(x) =
d∑

j=1

(xj − wij)
2 | 1 ≤ i ≤ N}. (435)

Neurons in the topographic neighborhood tend to get excited
too; excitation decays with the distance from the winning
neuron.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 741 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Self-Organizing Networks

Kohonen Network – Learning

Dik = distance between neurons i and k in computational
layer.

Topographic neighborhood of winning neuron (Gaussian
function)

Ti,I(x) = exp

(

−
D2

i,I(x)

2σ2

)

, 1 ≤ i ≤ N. (436)

Time adaptive neighborhood decreases with time

σ(t) = σ0 exp(−t/τσ) (437)

for some σ0, τσ > 0.

Ti,I(x) is maximal for neuron I(x) and decreases
monotonously to 0 as the distance from I(x) becomes large.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 742 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Self-Organizing Networks

Kohonen Network – Learning

Weight update of neurons in the topographic neighborhood of
winning neuron,

∆wij = η(t) · Ti,I(x) · (xj − wij) (438)

Time adaptive learning rate decreases with time

η(t) = η0 exp(−t/τη) (439)

for some η0, τη > 0

Aim is to move the weight vectors wi of neurons in the
topographic neighborhood of the winning neuron closer to the
input pattern.

Proper selection of parameters (σ0, τσ, η0, τη) by iterated local
search.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 743 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Self-Organizing Networks

Kohonen Network – Learning Algorithm

Require: Kohonen network with input layer of d neurons and
computational layer of N neurons, parameter set (σ0, τσ, η0, τη),
training patterns x(1), . . . , x(M) in R

d, small number ǫ > 0
Ensure: Trained Kohonen network for feature extraction
Choose random weights wij

repeat

Draw sample input pattern x = x(l) for some 1 ≤ l ≤M .
Compute the winning neuron I(x) in computational layer
Update the weights by the increments ∆wij

until Magnitudes of all weight increments are smaller than ǫ
during the last M steps.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 744 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Self-Organizing Networks

Example: SOM for Iris Dataset

The 150-sample Iris dataset is mapped to a 5× 5 grid of hexagonal
units:

install the kohnen package

> install.packages("kohonen")

load the kohonen package

> library(kohonen)

scale the iris data

> iris.sc = scale(iris[,1:4])

build the grid

> iris.grid = somgrid(xdim=5,ydim=5,topo="hexagonal")

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 745 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Self-Organizing Networks

Example: SOM for Iris Dataset (Cont’d)

Generate the model:

> iris.som = som(iris.sc, grid=iris.grid, rlen=100,

alpha=(0.05,0.01))

The som function has several parameters:

grid: rectangular or hexagonal group of units (format is
returned by somegrid).

rlen: number of iterations the dataset is presented to the
network.

alpha: learning rate, start with 0.05 and stop at 0.01.

Variable iris.som$codes (codebook) holds the weight vector for
each neuron in the grid.
Variable iris.som$changes indicates the size of adaptions to the
codebook vectors during training.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 746 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Self-Organizing Networks

Example: SOM for Iris Dataset (Cont’d)

Training progress (number of iterations vs. mean distance to
closest unit):

> plot(iris.som, type="changes")

Training progress

Iteration vs. mean distance to closest unit.
K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 747 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Self-Organizing Networks

Example: SOM for Iris Dataset (Cont’d)

Node counts (how many samples are mapped to each node on the
map):

> plot(iris.som, type="count")

Counts plot

2

4

6

8

10

12

14

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 748 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Self-Organizing Networks

Example: SOM for Iris Dataset (Cont’d)

Neighbor distance (U-matrix, distance between each node and its
neighbours on the map):

> plot(iris.som, type="dist.neighbours")

Neighbour distance plot

0.5

1

1.5

2

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 749 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Self-Organizing Networks

Example: SOM for Iris Dataset (Cont’d)

Codes/Weight vectors (normalized values of the original variables
used to generate SOM):

> plot(iris.som, type="codes")

Sepal.Length
Sepal.Width

Petal.Length
Petal.Width

Codes plot

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 750 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Self-Organizing Networks

SOM Learning and Clustering

Intuitive method for segmentation.

Simple algorithm, easy to explain to non-data scientists.

New data can be mapped to trained model for prediction.

Lack of parallelization for very large datasets.

Difficult to map a collection of variables to 2D plane.

Requires numerical data.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 751 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Self-Organizing Networks

∗Iterated Local Search (ILS)

Stochastic search method for tuning the parameters of
heuristic algorithm.

Take fixed parameter set θb ∈ Θ as baseline.

The ILS algorithm determines the best k ≥ 1 parameter sets
on training set of the heuristic.

These parameter sets are compared with the baseline by
Wilcoxon T test.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 752 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Self-Organizing Networks

Iterated Local Search

Require: Parameter space Θ, heuristic A = A(θ), integer K ≥ 1,
small number ǫ > 0

Ensure: Best parameter set θ∗ ∈ Θ found
Choose initial parameter set θ ∈ Θ; θ∗ ← θ
repeat

Take new parameter set θ′ from the neighborhood of θ
if A(θ′) < A(θ) then
θ ← θ′

if A(θ′) < A(θ∗) then
θ∗ ← θ′

end if

else

Draw random number r ∈ [0, 1] uniformly at random
if r < exp(−(A(θ′)−A(θ))) then
θ ← θ′

end if

end if

until Improvements |A(θ′)−A(θ)| < ǫ during last K steps
return θ∗

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 753 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Self-Organizing Networks

Iterated Local Search

Stochastic search method for tuning the parameters of heuristic
algorithm.

Set of N samples (xi, yi) with xi 6= yi, 1 ≤ i ≤ N .

Calculate |xi − yi| and sgn(yi − xi) for 1 ≤ i ≤ N .

Rank the pairs beginning with the smallest as 1.

ri = rank of pair (xi, yi), 1 ≤ i ≤ N .

Here two self-organizing networks A and B with the same
input set configured with different parameter sets could be

compared by their weight vectors (w
(A)
ij) and (w

(B)
ij).

Under the null hypothesis, the networks can be discriminated
whether they provide significantly different feature maps or
not.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 754 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Self-Organizing Networks

Wilcoxon T-Test

Non-parametric statistical hypothesis test for determining if two
independent sample sets were selected from populations with the
same distribution.

Null hypothesis H0: difference between the pairs follows
symmetric distribution around zero.

Calculate test statistic (as sum of signed ranks)

T =
N∑

i=1

sgn(yi − xi) · ri. (440)

Under the null hypothesis H0, T has specific distribution with

expected value of 0 and variance of N(N+1)(2N+2)
6 .

Compare T with critical value from reference table such that
null hypothesis is rejected if |T | > Tcrit,N .

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 755 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Self-Organizing Networks

Iterated Local Search – Example (R)

Consider data set immer (with sample size N = 30) recording the
barley yield in the years 1931 and 1932 from the same field.

> library(MASS) # load the MASS package

> head(immer)

Loc Var Y1 Y2

1 UF M 81.0 80.0

2 UF S 105.4 82.3

3 UF V 119.7 80.4

4 UF T 109.7 87.2

5 UF P 98.3 84.2

6 W M 146.6 100.4

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 756 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Self-Organizing Networks

Iterated Local Search – Example (R)

Wilcoxon T-test at 0.05 significance level:

> wilcox.test(immer$Y1,immer$Y2,paired=TRUE)

Wilcoxon signed rank test without continuity correction

data: immer$Y1 and immer$Y2

V = 368.5, p-value = 0.005318

alternative hypothesis: true location shift is not equal

warning message:

In wilcox.test.default(immer$Y1,immer$Y2,paired=TRUE):

cannot compute exact p-value with ties

p-value 0.005318 < 0.05 significance level
⇒ Strong evidence against the null hypothesis (rejected).
⇒ Barley yields from 1931 and 1932 are from different populations.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 757 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Self-Organizing Networks

∗Principal Component Analysis (PCA)

PCA (multivariate statistical technique) for the analysis of
correlated data set.

PCA (Karl Pearson, 1857-1936) is an application of singular
value decomposition (SVD).

The objective is to extract the important information from a
data set in form of a set of orthogonal data.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 758 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Self-Organizing Networks

Principal Component Analysis (PCA)

Given A = (aij) real-valued n× d matrix with rows as n
(data) points in R

d.

Find the best k-dimensional subspace of Rd with respect to
the points.

Best means optimizing the sum of squares of the
perpendicular distances of the points to the subspace.

Euclidean norm of vector v,

‖v‖ =
√
∑

i

v2i . (441)

Euclidean distance between vectors u and v,

d(u, v) = ‖u− v‖ =
√
∑

i

(ui − vi)2. (442)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 759 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Self-Organizing Networks

Principal Component Analysis (PCA)

First singular vector v1 of A,

v1 = argmax{‖Av‖ | v ∈ R
d, ‖v‖ = 1}. (443)

Best-fit line through the origin for the n points in R
d given by

the rows of the matrix A.

First singular value of A,

σ1(A) = ‖Av1‖. (444)

Let a1, . . . , an denote the rows of the matrix A. Then

‖Av1‖2 =
n∑

i=1

〈ai, v1〉2, (445)

where |〈ai, v1〉| is the length of the projection of ai onto v1.
σ2
1 is the sum of the squares of the projections of the given

points to the line determined by v1.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 760 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Self-Organizing Networks

Principal Component Analysis (PCA)

Continuing this way establishes singular vectors v1, v2, . . . , vr,

argmax{‖Av‖ | v ∈ R
d, ‖v‖ = 1, v ⊥ v1, . . . , v ⊥ vr}=0.(446)

The vectors v1, . . . , vr form an orthonormal basis of a
subspace V of Rd.

The assignment

πV (w) =

r∑

i=1

〈w, vi〉vi, w ∈ R
d, (447)

gives a linear mapping called orthogonal projection from R
d

onto V .

Any vector w ∈ R
d can be uniquely written as w = v + v′,

where v ∈ V and v′ ∈ V ⊥.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 761 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Self-Organizing Networks

Proposition

Let A be a real-valued n× d matrix with singular vectors
v1, . . . , vr.

For each 1 ≤ k ≤ r, let Vk be the subspace of Rd spanned by the
vectors v1, . . . , vk.

Then Vk is the best-fit k-dimensional subspace for A.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 762 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Self-Organizing Networks

Proof.

The assertion is clear for k = 1. By induction, let Vk−1 be a
best-fit k − 1-dimensional subspace for A. Suppose W is a best-fit
k-dimensional subspace for A. Choose a basis {w1, . . . , wk} of W
such that wk is perpendicular to v1, . . . , vk−1. Then

‖Aw1‖2 + . . .+ ‖Awk−1‖2 + ‖Awk‖2
≤ ‖Av1‖2 + . . .+ ‖Avk−1‖2 + ‖Awk‖2,

since Vk−1 is optimal. But the vector wk is perpendicular to
v1, . . . , vk−1 and so by definition of vk we have ‖Awk‖2 ≤ ‖Avk‖2.
Thus

‖Aw1‖2 + . . .+ ‖Awk−1‖2 + ‖Awk‖2
≤ ‖Av1‖2 + . . .+ ‖Avk−1‖2 + ‖Avk‖2.

Thus Vk is as least as good as W and hence optimal.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 763 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Self-Organizing Networks

Principal Component Analysis (PCA)

The image of the subspace of singular vectors of A is spanned
by the vectors

ui =
1

σi(A)
Avi, 1 ≤ i ≤ r. (448)

The vectors ui are normalized, since ‖Avi‖ = σi(A) for
1 ≤ i ≤ r.
The vectors ui are the left singular vectors of A, and the
singular vectors vi of A are the right singular vectors of A.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 764 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Self-Organizing Networks

Proposition

Let A be a real-valued n× d matrix A of rank r.

The left singular vectors u1, . . . , ur of A are mutually orthogonal
and we have

A =

r∑

i=1

σiuiv
t
i . (449)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 765 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Self-Organizing Networks

Proof

The assertion holds for r = 1. By induction, suppose the result
holds for matrices of rank r − 1. Consider the matrix

B = A− σ1u1vt1.

Then Bv1 = Av1 − σ1u1vt1v1 = Av1 − σ1 1
σ1
(Av1)(v

t
1v1) = 0. The

first right singular vector w of B is perpendicular to v1. But for
each vector w perpendicular to v1, we have Bw = Aw. Thus the
first singular vector of B equals the second singular vector of A.
By repeating this argument, B has the right singular vectors
v2, . . . , vr and the left singular vectors u2, . . . , ur, which are
mutually orthogonal. Moreover, by induction,

B =
r∑

i=2

σiuiv
t
i

and so A =
∑r

i=1 σiuiv
t
i .

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 766 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Self-Organizing Networks

Proof (cont’d)

The vector u1 is orthogonal to the vectors u2, . . . , ur. To see this,
assume that 〈u1, ui〉 6= 0 for some 2 ≤ i ≤ r; suppose that
〈u1, ui〉 > 0. Then for some infinitesimally small number ǫ > 0, the
vector

A

(
v1 + ǫvi
‖v1 + ǫvi‖

)

=
σ1u1 + ǫσiui√

1 + ǫ2
.

has length as least as large as its component along u1, which is
given by

〈

u1,
σ1u1 + ǫσiui√

1 + ǫ2

〉

= (σ1 + ǫσi〈u1, ui〉)
(

1− ǫ2

2
+O(ǫ4)

)

= σ1 + ǫσi〈u1, ui〉 −O(ǫ2) > σ1.

This contradicts the hypothesis. �

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 767 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Self-Organizing Networks

Singular Value Decomposition

Let A be a real-valued n× d matrix with right singular vectors
v1, . . . , vr, left singular vectors u1, . . . , ur, and singular values
σ1, . . . , σr.

Then the matrix A has a decomposition into a sum of rank-one
matrices,

A =

r∑

i=1

σiuiv
t
i . (450)

In matrix form, the singular value decomposition is

A = UDV t, (451)

where U is the n× r matrix whose columns contain the left
singular vectors of A, D is the r × r diagonal matrix whose
diagonal entries are the singular values of A, and V is the r × d
matrix whose columns consists of the right singular vectors of A.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 768 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Self-Organizing Networks

Singular Value Decomposition – Maple

Maple code

> with(LinearAlgebra):

> with(RandomTools):

> n := 4: d := 2:

> A := Matrix(n,d,generator=rand(1..5)):

> U,S,V := SingularValues(A,output=[’U’,’S’,’Vt’]):

> U, S, V;

We have U ·D · V = A, where diagonal matrix D has the entries
of S along its main diagonal.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 769 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Self-Organizing Networks

Singular Value Decomposition – Maple (cont’d)

A =

5 2
5 2
3 4
4 5

U =

−0.48 −0.52 −0.43 −0.56
−0.48 −0.52 0.46 0.53
−0.45 0.45 0.60 −0.49
−0.58 0.51 −0.49 0.40

S =

10.75
2.90
0
0

V =

(
−0.79 −0.62
−0.62 0.79

)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 770 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Self-Organizing Networks

Singular Value Decomposition

Let A be a real-valued n× d matrix with right singular vectors
v1, . . . , vr, left singular vectors u1, . . . , ur, and singular values
σ1, . . . , σr.

For each 1 ≤ k ≤ r, take the truncated sum of A up to the
k-th term,

Ak =
k∑

i=1

σiuiv
t
i . (452)

The matrix Ak has rank k.

The 2-norm of a matrix A is given by

‖A‖2 = max{‖Av‖ | ‖v‖ = 1}. (453)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 771 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Self-Organizing Networks

Proposition

We have ‖A−Ak‖22 = σ2
k+1.

Proof.

We have A−Ak =
∑r

i=k+1 σiuiv
t
i . Let v be the first singular

vector of A−Ak. Then v is a linear combination of v1, . . . , vr.
Write v =

∑r
i=1 αivi. Then

‖(A−Ak)v‖ = ‖
r∑

i=k+1

σiuiv
t
i

r∑

j=1

αjvj‖ = ‖
r∑

i=k+1

αiσiuiv
t
ivi‖

= ‖
r∑

i=k+1

αiσiui‖ =

√
√
√
√

r∑

i=k+1

α2
iσ

2
i .

A vector v maximizing the last expression subject to ‖v‖ = 1 has
αk+1 = 1 and αi = 0 for k + 2 ≤ i ≤ r.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 772 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Self-Organizing Networks

Theorem

Let A be an n× d matrix.
For each n× d matrix B of rank ≤ k,

‖A−Ak‖2 ≤ ‖A−B‖2. (454)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 773 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Self-Organizing Networks

Proof

If the matrix A has rank ≤ k, then ‖A−Ak‖2 = 0 and so the
result follows.
Assume the matrix A has rank > k. Suppose B is an n× d matrix
of rank ≤ k such that ‖A−B‖2 < σk+1. Then the kernel W of
the matrix B has dimension ≥ d− k. Let V be the subspace of Rd

spanned by the first k + 1 singular vectors v1, . . . , vk+1 of A. Since
the subspace V has dimension k + 1, the subspaces V and W
cannot trivially intersect. Thus there is a nonzero vector w in W .
We may assume that w is a unit vector; i.e., ‖w‖ = 1.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 774 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Self-Organizing Networks

Proof (cont’d)

By definition, ‖A−B‖22 ≥ ‖(A−B)w‖2. Since Bw = 0, we
obtain ‖A−B‖22 ≥ ‖Aw‖2. Since w lies in V ,

‖Aw‖2 = ‖
r∑

i=1

σiuiv
t
iw‖2

= ‖
r∑

i=1

σi〈vi, w〉ui‖2

=

k+1∑

i=1

σ2
i 〈vi, w〉2

≥ σ2
k+1

k+1∑

i=1

〈vi, w〉2 = σ2
k+1.

Thus ‖A−B‖22 ≥ σ2
k+1 and hence the result follows. �

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 775 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Self-Organizing Networks

Applications of Singular Value Decomposition

Data compression

Spectral decomposition

Principal component analysis

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 776 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Self-Organizing Networks

Data Compression

Let A = (aij) be an n× n matrix, where aij denotes the
intensity of the pixel (i, j).

Complexity of storing matrix A is O(n2).

Take the approximation matrix Ak given by the first k
singular values and the first k left and right singular vectors.

Complexity of storing matrix Ak is O(kn) with k ≤ n.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 777 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Self-Organizing Networks

Spectral Decomposition

Let A be a real-valued n× d matrix.

The n×n matrix B = AAt is symmetric and positive definite.

If A =
∑r

i=1 σiuiv
t
i is the singular value decomposition, then

B =
∑r

i=1 σ
2
i uiu

t
i.

Proof.

We have

B = AAt =

(
r∑

i=1

σiuiv
t
i

)(
r∑

i=1

σiuiv
t
i

)t

=

r∑

i=1

r∑

j=1

σiσjuiv
t
ivju

t
j

=

r∑

i=1

σ2
i uiu

t
j .

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 778 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Self-Organizing Networks

Principle Component Analysis

Suppose there are customer-product data where n customers
can buy d products.

Suppose n× d matrix A = (aij) represents customer-product
behavior; aij is the amount (probability) of product j bought
by customer i.

Which basic k factors (like sex, age, income) determine the
customer’s purchase behavior?

Consider the best rank k approximation Ak corresponding to
the first k singular values.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 779 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Self-Organizing Networks

Iris Flower Data Set

Multivariate dataset established by Ronald Fisher (1890-1962)
in 1936.

Data set consists of 150 samples from three Iris species: Iris
setosa, Iris versicolor, and Iris virginica.

Four measured features: length and width of sepals and petals
(in cm).

Fisher developed a linear discriminant model to distinguish
the species from each other.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 780 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Self-Organizing Networks

Iris Flower Data Set

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 781 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Self-Organizing Networks

Iris Flower Data Set – R
> iris

Sepal length Sepal width Petal length Petal width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa

.

.

.
51 7.0 3.2 4.7 1.4 versicolor
52 6.4 3.2 4.4 1.5 versicolor
53 6.9 3.1 4.9 1.5 versicolor
54 5.5 2.3 4.0 1.3 versicolor
55 6.5 2.8 4.6 1.5 versicolor

.

.

.
146 6.7 3.0 5.2 2.3 virginica
147 6.3 2.5 5.0 1.9 virginica
148 6.5 3.0 5.2 2.0 virginica
149 6.2 3.4 5.4 2.3 virginica
150 5.9 3.0 5.1 1.8 virginica

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 782 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Self-Organizing Networks

Iris Flower Data Set – R

> irispca <- princomp(iris[-5])

> summary(irispca)

Comp.1 Comp.2 Comp.3 Comp.4
Standard deviation 2.049 0.491 0.279 0.154
Proportion of variance 0.925 0.053 0.017 0.005
Cumulative proportion 0.925 0.978 0.995 1.000

Thus 92.5% of the variation in the dataset is explained by the first
component alone, and 97.8% is explained by the first two
components.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 783 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Self-Organizing Networks

Iris Flower Data Set – R

> irispca$loadings

Comp.1 Comp.2 Comp.3 Comp.4
Sepal length 0.361 -0.657 0.582 0.315
Sepal width -0.730 -0.598 -0.320
Petal length 0.857 0.173 -0.480
Petal width 0.358 0.017 0.754

Loadings are the eigenvectors scaled by the square root of the
corresponding eigenvalues.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 784 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Self-Organizing Networks

Iris Flower Data Set – R

> irispca$scores

Comp.1 Comp.2 Comp.3 Comp.4
1 -2.684 -0.319 0.028 0.002
2 -2.714 0.177 0.210 0.099
3 -2.889 0.145 -0.018 0.020
4 -2.745 0.318 -0.031 0.077
5 -2.729 -0.327 0.090 -0.061
...

The scores given by the base change using the eigenvectors
are the coefficients of the loadings providing the observations.

The analysis suggests that the first two components are
sufficient to explain the data.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 785 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

∗Spiking Neural Networks

∗Spiking Neural Networks

Generations of artificial neural network models

Spiking neuron model

∗Information coding

∗Learning

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 786 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

∗Spiking Neural Networks

Spiking Neural Networks

Spiking neural networks (SNNs) are ANN models that mimic
more closely neural network structures in the brain.

SNNs take also the concept of timing into account.

Neurons do not fire at each propagation cycle but fire only
when a membrane potential reaches a specific value
(threshold).

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 787 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

∗Spiking Neural Networks

Generations of Neural Network Models

Neural networks can be classifed according to their computational
units into three generations.

First generation:

McCulloch-Pitts neuron (percepton, threshold gate) is the
basic computational unit.

It gives rise to several neural network models with binary
encoded output such as multilayer perceptron, Hopfield nets,
Boltzmann machines.

Networks of the first generation are universal for digital
computations, i.e., each Boolean function can be calculated
by some multilayer perceptron with a single hidden layer.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 788 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

∗Spiking Neural Networks

Generations of Neural Network Models

Neural networks can be classifed according to their computational
units into three generations.

Second generation:

The computational units are equipped with an activation
function (sigmoid or hyperbolic tangent) which has a
continuous set of possible output values.

It gives rise to several neural network models with continuous
input and output sets such as feedforward and recurrent
netral nets.

Networks of the second generation are univeral for analog
computations, i.e., each continuous function with compact
domain and range can be approximated well by a network
with a single hidden layer.

Networks of the second generation are trained by supervised
learning algorithms based on gradient descent such as
backpropagation.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 789 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

∗Spiking Neural Networks

Generations of Neural Network Models

Neural networks can be classifed according to their computational
units into three generations.

Third generation:

In the first two generations, the neurons are modeled by rate
coding in the form of real number values that represent the
activation level.

The computational units are spiking neurons (integrate and
fire) neurons.

This model has been the result of investigations in
neurobiology which indicates that many biological neural
systems use the timing of single action potentials (spikes) to
encode information.

The temporal coding scheme addresses the temporal
relationship between the firing of neurons.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 790 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

∗Spiking Neural Networks

Spiking Neuron Model

In the spiking neuron model, a neuron v fires whenever its
potential Pv reaches a certain threshold Θv.

The potential Pv models the electric membrane potential in a
real neuron; Pv is the sum of excitory postsynaptic potentials
(EPSPs) and inhibitory postsynaptic potentials (IPSPs).

The firing of a presynaptic neuron u at time s contributes to
the potential Pv of neuron v at time t ≥ s, written Pv(t),
whose amount is given by the term

wu,vǫu,v(t− s), (455)

where wu,v is a weight value and ǫu,v(t− s) is a response
function.

The weight wu,v in the term (455) is a measure of strength
(efficacy) of the synapse between neurons u and v.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 791 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

∗Spiking Neural Networks

Spiking Neuron Model

In view of learning, the weight wu,v can be substituted by a
function wu,v(t) depending on time.

A biological synapse is either excitatory or inhibitory and does
not change its state over time.

The potential Pv is assumed to have the value 0 if
postsynaptic potentials are absent and the threshold value Θv

is positive.

In a biological neuron, the resting membrane potential is
about −70mV and the firing threshold of the rested neuron is
about −50mV. The postsynaptic potential (EPSP or IPSP)
changes the potential temporarily by a few mV.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 792 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

∗Spiking Neural Networks

Spiking Neuron Model

When a neuron v fires at time t′, it will not fire again for a few
msec after time t′ independent of the size of the potential.

This refractory effect is modeled by a threshold function
Θv(t− t′) which is rocket-high for small values of t− t′.
In the deterministic (noise-free) model of spiking neurons it is
assumed that a neuron v fires whenever the potential Pv(t)
reaches the function Θv(t− t′)
It is assumed that Θv(t− t′) = Θ(0) for small values t− t′,
where Θ(0) is the resting value;

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 793 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

∗Spiking Neural Networks

Spiking Neuron Model

The (deterministic) spiking neuron network (SNN) (W. Maass,
1995) consists of

finite set V of spiking neurons,

set E ⊆ V × V of synapses,

weight wu,v ≥ 0 and response function ǫu,v : R≥0 → R≥0 for
each synapse (u, v) ∈ E,

threshold function Θv : R≥0 → R≥0 for each neuron v ∈ V .

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 794 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

∗Spiking Neural Networks

Spiking Neuron Model

Suppose Fu ⊆ R≥0 is the set of firing times (spike trains) of
neuron u.

The potential at the trigger zone of neuron v at time t is

Pv(t) =
∑

u∈V
(u,v)∈E

∑

s∈Fu
s<t

wu,vǫu,v(t− s). (456)

A neuron v fires at time t when the potential Pv(t) reaches
the threshold Θv(t− t′), where t′ is the time of the most
recent firing of neuron v.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 795 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

∗Spiking Neural Networks

Spiking Neuron Model

In the spiking neural model, there is a set Vin ⊆ V of input
neurons and a set Vout ⊆ V of output neurons.

For each input neuron u ∈ Vin, the firing times Fu are given
from outside of the model. The output of the network is given
by the spike trains Fv of the output neurons v.

In the stochastic (noisy) version of the spiking neural network
model, the differences Pv(t)−Θv(t− t′) are governed by the
probability that the neuron v fires at time t (W. Gerstner,
1995).

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 796 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

∗Spiking Neural Networks

Information Coding

A fundamental coding method is temporal coding (Maass, 1997):

The firing time of a neuron encodes a value in the sense that
an early firing of the neuron represents a large value.

Consider a neuron v which receives excitatory input from m
neurons u1, . . . , um with corresponding weights w1, . . . , wm.

The analog input from presynaptic neuron ui is mapped by
the standard sigmoid function to a value xi in [0, 1].

The firing time of neuron ui is ti = T1 − cxi, where c > 0 is a
constant and T1 signifies the beginning of a time frame
lasting for the period c.

The neuron v fires at time determined by T2 −
∑

i wisi,
where si = cxi, 1 ≤ i ≤ m, with T2 > T1 being a constant.

This computation can be performed on the basis of competitive
temporal coding without explicit reference to T1 and T2.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 797 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

∗Spiking Neural Networks

Information Coding

Temporal coding:

✲

✲

✲

✲

✲

spikes u5

u4

u3

u2

u1

�
�

�
�
�
�✒

✟✟✟✟✟✟✯
✲

❍❍❍❍❍❍❥

❅
❅

❅
❅
❅
❅❘

w1

w2

w3

w4

w5

weights

✲
neuron v

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 798 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

∗Spiking Neural Networks

Learning

The research on spiking neural networks has mainly been
focused on unsupervised learning (Ruf, Schmidt, 1998).

The objective of unsupervised learning is to allow the network
to self-organize and eventually learn to discriminate between
input patterns which have no explicit identification.

The most prominent example of an artifical neural network in
the second generation trained by unsupervised learning is
Kohonen’s self-organizing map (SOM).

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 799 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

∗Spiking Neural Networks

Learning

Given a collection of input vectors s(l) = (sl1, . . . , slm) of an
SNN with m input vectors and n competitive neurons.

Each competitive neuron vj receives synaptic feedforward
input from each input neuron ui with wij and lateral synaptic
input from each competitive neuron vk, k 6= j, with weight
w′

kj .

The latter weights allow to implement a distance function
between the competitive neurons.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 800 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

∗Spiking Neural Networks

Learning

At each cycle of the learning phase, one input vector s(l) is
randomly chosen and presented to the network.

Each competitive neuron vj then computes the weighted sum
∑

i wijsli as described in the section about information
coding.

If the input vector and the weight vector for each neuron are
normalized, the weighted sum represents the similarity
between the two vectors with respect to the Euclidean
distance.

The earlier the competitive neuron vj fires, the more similar is
its weight vector to the input vector; i.e., the winner among
the layer of competitive neurons fires first.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 801 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

∗Spiking Neural Networks

Learning

The learning rule is

∆wij = η
To − tj
To

(sli − wij), (457)

where tj is the firing time of the jth competitive neuron vj .

The rule applies only to neurons that have fired before a
certain time To.

The factor (To − tj)/To provides the neighborhood function,
which is largest for the winner neuron and decreases for
neurons which fire later.

It has been demonstrated that the learning works pretty well
for standard one-dimensional input patterns.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 802 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Neural Networks in R

Neural Networks in R

R-library deepnet provides procedures for deep learning
architectures and neural network algorithms (Xiao Rong, 2014).
Loading of library:

> library(deepnet)

A single or multiple hidden layer network can be defined by the
command nn.train.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 803 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Neural Networks in R

Neural Networks in R - Example

Consider two normally distributed data sets with given mean and
variance,

> var1 <- c(rnorm(50, 0.0, 0.5),rnorm(50, 10.0, 200.0))

> var2 <- c(rnorm(50, 0.1, 0.5),rnorm(50, 9.0, 200.0))

Merge these sample sets into 100× 2 matrix of input data,

> x <- matrix(c(var1, var2), nrow=100, ncol=2) //samples

> x

[,1] [,2]

[1,] -0.18657632 0.08037026

...

[50] -0.30735384 -0.07672294

[51] -249.07337659 -111.72856325

...

[100] -0.31854956 37.67063888

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 804 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Neural Networks in R

Neural Networks in R - Example (cont’d)

Desired output data is given by vector of length 100,

> y <- c(rep(1,50), rep(0,50)) // target values

The input data x[1,] . . . x[50,] and x[51,] . . . x[100,] have desired
output values 1 and 0, respectively.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 805 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Neural Networks in R

Neural Networks in R - Example (cont’d)

Define ANN with two input units, one output unit and 10 hidden
units and train the network by 1000 epochs:

> nnet <- nn.train(x, y, hidden=c(10), numepochs=1000)

Specification of network:

> nnet

$input_dim

[1] 2

$output_dim

[1] 1

$hidden

[1] 10

$size

[1] 2 10 1

$activiationfun

[1] "sigm"

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 806 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Neural Networks in R

Neural Networks in R - Example (cont’d)

Specification of network (cont’d):

$learningrate

[1] 0.8

$W // weights

$W[[1]]

...

$W[[2]]

...

$B // biases

$B[[1]]

...

$B[[2]]

...

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 807 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Neural Networks in R

Neural Networks in R - Example (cont’d)

Predict new samples by the command nn.predict:

> test_var1 <- c(rnorm(50, 0.1, 0.51),

rnorm(50, 10.1, 200.1))

> test_var2 <- c(rnorm(50, 0.2, 0.51),

rnorm(50, 9.1, 200.1))

> test_x <- matrix(test_var1, test_var2),

nrow=100, ncol=2)

> y_test <- nn.predict(nnet, test_x)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 808 / 919

Soft Computing

K.-H.
Zimmermann

Contents

ANN Technology

Multilayer
Perceptron

Deep Learning via
Keras

Universality

Hopfield Network

Self-Organizing
Networks

∗Spiking Neural
Networks

Neural Networks
in R

Neural Networks in R

Neural Networks in R - Example (cont’d)

Output is given by the raw values of the classes:

> y_test

[,1]

[1,] 0.95784997

...

[50,] 0.95993372

[51,] 0.07435817

...

[100,] 0.02650158

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 809 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Part VII

Fuzzy Sets

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 810 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Contents

Contents

Triangular norms

Fuzzy sets and fuzzy numbers

Fuzzy inference and fuzzy control

∗Stochastic fuzzy sets

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 811 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Contents

Knowledge

Triangular norms

Fuzzy logic

Fuzzy sets and numbers

Skills

Fuzzy control and inference using R

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 812 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Contents

Fuzzy Sets

Fuzzy sets generalize ordinary set theory.

Introduced independently by Lofti Zadeh and Dieter Klaua
(1965).

Applications in decision based systems and knowledge
engineering.

No learning needed in fuzzy inference and control.

Goal is introduction to fuzzy sets and their applications based
on triangular norms.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 813 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Triangular Norms

Triangular Norms

Triangular norms were first studied in probabilistic metric spaces
(Karl Menger, 1942).

Triangular norms and conorms

Duality and continuity

Important triangular norms

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 814 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Triangular Norms

Triangular Norms

A mapping T : [0, 1]2 → [0, 1] is a triangular norm or t-norm if for
all x, y, z ∈ [0, 1],

Commutativity:

T (x, y) = T (y, x) (458)

Associativity:

T (x, T (y, z)) = T (T (x, y), z) (459)

Unit element:

T (x, 1) = x (460)

Monotonicity:

y ≤ z =⇒ T (x, y) ≤ T (x, z). (461)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 815 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Triangular Norms

Triangular Norms – Example

Four basic t-norms:

Minimum:

TM (x, y) = min{x, y} (462)

Probabilistic product:

TP (x, y) = x · y (463)

Lukasiewicz t-norm:

TL(x, y) = max{x+ y − 1, 0} (464)

Drastic product:

TD(x, y) =

{
0 if 0 ≤ x, y < 1,
min{x, y} otherwise.

(465)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 816 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Triangular Norms

Triangular Norms – Example (cont’d)

The above t-norms are defined in Maple as follows:

> M := (x,y) -> min(x,y);

> P := (x,y) -> x*y;

> L := (x,y) -> max(x+y-1,0);

> D := (x,y) -> piecewise(x=1, y, y=1, x, 0);

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 817 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Triangular Norms

Triangular Norms – Example (cont’d)

T-norms TM and TP :

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 818 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Triangular Norms

Triangular Norms – Example (cont’d)

T-norms TL and TD:

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 819 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Triangular Norms

Triangular Norms

Basic properties of t-norm T :

Boundary conditions:

T (0, x) = T (x, 0) = 0, x ∈ [0, 1], (466)

since for each x ∈ [0, 1], T (0, x) ≤ T (0, 1) = 0, and

T (1, x) = T (x, 1) = x, x ∈ [0, 1]. (467)

Boundedness:

T (x, x) ≤ x, x ∈ [0, 1]. (468)

Joint monotonicity:

T (x1, y1) ≤ T (x2, y2) (469)

if x1 ≤ x2 and y1 ≤ y2 for all x1, y1, x2, y2 ∈ [0, 1].

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 820 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Triangular Norms

Triangular Norms

A t-norm T1 is weaker than a t-norm T2, written T1 ≤ T2, if

T1(x, y) ≤ T2(x, y), x, y ∈ [0, 1]. (470)

Each t-norm T satisfies

TD ≤ T ≤ TM . (471)

Ordering of the four basic t-norms:

TD < TL < TP < TM . (472)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 821 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Triangular Norms

Triangular Norms

The minimum t-norm TM is the only t-norm T satisfying

T (x, x) = x, x ∈ [0, 1]. (473)

The drastic product TD is the only t-norm T fulfilling

T (x, x) = 0, x ∈ [0, 1[. (474)

Proof.

Suppose T is a t-norm with T (x, x) = x for all x ∈ [0, 1].
Then for all x, y ∈ [0, 1] with y ≤ x, monotonicity implies
y = T (y, y) ≤ T (x, y) ≤ TM (x, y) = y. Hence, T = TM .

Suppose T is a t-norm with T (x, x) = 0 for all x ∈ [0, 1[.
Then for all x, y ∈ [0, 1[with y ≤ x, monotonicity implies
0 ≤ T (x, y) ≤ T (x, x) = 0. Moreover, T (x, 1) = x for all
x ∈ [0, 1]. Hence, T = TD.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 822 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Triangular Norms

Triangular Norms

A mapping S : [0, 1]2 → [0, 1] is a triangular conorm or t-conorm if
for all x, y, z ∈ [0, 1],

Commutativity:

S(x, y) = S(y, x) (475)

Associativity:

S(x, S(y, z)) = S(S(x, y), z) (476)

Unit element:

S(x, 0) = x (477)

Monotonicity:

y ≤ z =⇒ S(x, y) ≤ S(x, z). (478)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 823 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Triangular Norms

Triangular Norms – Example

Four basic t-conorms:

Maximum:

SM (x, y) = max{x, y} (479)

Probabilistic sum:

SP (x, y) = x+ y − x · y (480)

Lukasiewicz t-conorm:

SL(x, y) = min{x+ y, 1} (481)

Drastic sum:

SD(x, y) =

{
1 if 0 < x, y ≤ 1,
max{x, y} otherwise.

(482)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 824 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Triangular Norms

Triangular Norms – Example (cont’d)

These t-conorms are defined in Maple as follows:

> M := (x,y) -> max(x,y);

> P := (x,y) -> x+y-x*y;

> L := (x,y) -> min(x+y,1);

> D := (x,y) -> piecewise(x=0, y, y=0, x, 1);

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 825 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Triangular Norms

Triangular Norms – Example (cont’d)

T-conorms SM and SP :

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 826 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Triangular Norms

Triangular Norms – Example (cont’d)

T-conorms SL and SD:

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 827 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Triangular Norms

Triangular Norms

Basic properties of t-conorm S:

Boundary conditions:

S(1, x) = S(x, 1) = 1, x ∈ [0, 1], (483)

since for each x ∈ [0, 1], S(1, x) ≥ S(1, 0) = 1, and

S(0, x) = x, x ∈ [0, 1]. (484)

Boundedness:

S(x, x) ≥ x, x ∈ [0, 1]. (485)

Joint monotonicity:

S(x1, y1) ≤ S(x2, y2) (486)

if x1 ≤ x2 and y1 ≤ y2 for all x1, y1, x2, y2 ∈ [0, 1].

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 828 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Triangular Norms

Triangular Norms

For a given t-norm T , the t-conorm S given by

S(x, y) = 1− T (1− x, 1− y) (487)

is the dual t-conorm of T , written S = T ∗,

For a given t-conorm S, the t-norm T given by

T (x, y) = 1− S(1− x, 1− y) (488)

is the dual t-norm of S, written T = S∗.

For each t-norm T and each t-conorm S, we have

(T ∗)∗ = T and (S∗)∗ = S. (489)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 829 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Triangular Norms

Triangular Norms

The pairs of t-norms and t-conorms

(TM , SM), (TP , SP), (TL, SL), (TD, SD) (490)

are mutually dual to each other.

For t-norms T1 and T2,

T1 ≤ T2 =⇒ T ∗
2 ≤ T ∗

1 . (491)

For t-conorms S1 and S2,

S1 ≤ S2 =⇒ S∗
2 ≤ S∗

1 . (492)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 830 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Triangular Norms

Triangular Norms

Each t-conorm S satisfies

SM ≤ S ≤ SD. (493)

The four basic t-conorms have the following ordering,

SM < SP < SL < SD. (494)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 831 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Triangular Norms

Triangular Norms

A function f : [0, 1]2 → [0, 1] is continuous if for all
convergent sequences (xn)n≥0 and (yn)n≥0 in [0, 1],

f
(

lim
n→∞

xn, lim
n→∞

yn

)

= lim
n→∞

f(xn, yn). (495)

[0, 1] is a compact subset of R and so the continuity of a
function f : [0, 1]2 → [0, 1] is equivalent to its uniform
continuity.

A t-norm is continuous iff its dual t-conorm is continuous.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 832 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Triangular Norms

Triangular Norms – Example

The basic t-norms TM , TP , and TL as well as their dual
t-conorms SM , SP , and SL are continuous.

The drastic product TD and the drastic sum SD are not
continuous.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 833 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Properties of Triangular Norms

Properties of Triangular Norms

Partially ordered semigroups and duality

De Morgan triples and Fuzzy logic

Lattice monoids and residuum operation

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 834 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Properties of Triangular Norms

Triangular Norms

Given set M 6= ∅ and dyadic operation ∗ :M ×M →M .

(M, ∗) is semigroup if ∗ is associative, i.e., for all x, y, z ∈M ,
x ∗ (y ∗ z) = (x ∗ y) ∗ z.
Semigroup (M, ∗) is commutative if ∗ is commutative, i.e.,
for all x, y ∈M , x ∗ y = y ∗ x.
a ∈M is annihilator of semigroup (M, ∗) if for each x ∈M ,
x ∗ a = a = a ∗ x.
(M, ∗, e) is monoid if (M, ∗) semigroup and e ∈M unit
element, i.e., for all x ∈M , x ∗ e = x = e ∗ x.
Monoid (M, ∗, e) is commutative if ∗ is commutative.

The unit element of a monoid is uniquely determined, since if e, e′

are unit elements, then e′ = ee′ = e.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 835 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Properties of Triangular Norms

Triangular Norms

Let � be a partial order on a set M .

(M, ∗,�) is partially ordered semigroup if

(M, ∗) is semigroup.
Operation ∗ is order preserving, i.e., for all x, y, z ∈M ,

y � z =⇒ x ∗ y � x ∗ z ∧ y ∗ x � z ∗ x. (496)

In particular, if � is linear (or total) order on M , the partially
ordered semigroup (M, ∗,�) is fully ordered.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 836 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Properties of Triangular Norms

Triangular Norms

Two semigroups (M, ∗) and (N, ◦) are isomorphic if there is a
bijection φ :M → N such that for all x, y ∈M ,

φ(x ∗ y) = φ(x) ◦ φ(y). (497)

Two partially ordered semigroups (M, ∗,�) and (N, ◦,⊑) are
isomorphic if there is a bijection φ :M → N such that for all
x, y ∈M ,

φ(x ∗ y) = φ(x) ◦ φ(y) (498)

and φ is order preserving, i.e.,

x � y =⇒ φ(x) ⊑ φ(y). (499)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 837 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Properties of Triangular Norms

Triangular Norms

A mapping T : [0, 1]2 → [0, 1] is a t-norm iff

([0, 1], T,≤) (500)

is a fully ordered commutative semigroup with unit element 1
and annihilator 0.

A mapping S : [0, 1]2 → [0, 1] is a t-conorm iff

([0, 1], S,≤) (501)

is a fully ordered commutative semigroup with unit element 0
and annihilator 1.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 838 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Properties of Triangular Norms

Triangular Norms

Given fully ordered semigroups (M, ∗,�) and (N, ◦,⊑), and
strictly decreasing bijection φ :M → N .

(M, ∗,�) is φ-dual to (N, ◦,⊑) if for all x, y ∈M ,

φ(x ∗ y) = φ(x) ◦ φ(y). (502)

(M, ∗,�) is φ-dual to (N, ◦,⊑) iff (N, ◦,⊑) is φ−1-dual to
(M, ∗,�).
If the orders are ignored, the semigroups (M, ∗) and (N, ◦)
are simply isomorphic.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 839 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Properties of Triangular Norms

Triangular Norms – Construction of New Norms

Given mapping F : [0, 1]2 → [0, 1] such that ([0, 1], F,≤) is fully
ordered semigroup and φ : [0, 1]→ [0, 1] is strictly decreasing
bijection.

Define the mapping Fφ : [0, 1]2 → [0, 1] with

Fφ(x, y) = φ−1(F (φ(x), φ(y))). (503)

Then

([0, 1], Fφ,≤) is a fully ordered semigroup.

If F is a t-norm, then Fφ is a t-conorm φ-dual to F .

If F is a t-conorm, then Fφ is a t-norm φ-dual to F .

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 840 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Properties of Triangular Norms

Triangular Norms – Example

For any strictly decreasing bijection φ : [0, 1]→ [0, 1], the minimum
norm satisfies

(TM)φ = SM , (SM)φ = TM , (504)

and the drastic norm satisfies

(TD)φ = SD, (SD)φ = TD. (505)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 841 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Properties of Triangular Norms

Triangular Norms – Example

Take the strictly decreasing bijection

φ : [0, 1]→ [0, 1] : x 7→ 1− x. (506)

Since φ−1(x) = 1− x,

(TP)φ(x, y) = φ−1(TP (φ(x), φ(y)))

= φ−1((1− x)(1− y))
= φ−1(1− (x+ y − xy))
= x+ y − xy
= SP (x, y).

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 842 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Properties of Triangular Norms

Triangular Norms

Consider duality by extension of Boolean negation.

A non-increasing function N : [0, 1]→ [0, 1] is a negation if

N(0) = 1 and N(1) = 0. (507)

A negation N : [0, 1]→ [0, 1] is strict if N is continuous and
strictly decreasing.

A strict negation N : [0, 1]→ [0, 1] is strong if N is an
involution, i.e., N ◦N = id[0,1] or N = N−1.

A strict negation N : [0, 1]→ [0, 1] is a strictly decreasing bijection.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 843 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Properties of Triangular Norms

Triangular Norms – Negations

> plot([1-x, 1-x^2, 1-sqrt(x), sqrt(1-x)], x = 0..1,

color = ["red", "blue", "green", "yellow"],

axis = [gridlines=[10, color=grey]]);

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 844 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Properties of Triangular Norms

Triangular Norms – Negations

The most important strong negation is the standard negation
Ns : [0, 1]→ [0, 1] defined by

Ns(x) = 1− x. (508)

The negation N : [0, 1]→ [0, 1] given by

N(x) = 1− x2 (509)

is strict but not strong, since N−1(x) =
√
1− x.

The negation NG : [0, 1]→ [0, 1] given by

NG(x) =

{
1 if x = 0,
0 otherwise,

(510)

is not strict and thus not strong, called Gödel negation.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 845 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Properties of Triangular Norms

Triangular Norms – Construction of New Norms

Given t-norm T and strict negation N . The mapping
S : [0, 1]2 → [0, 1] given by

S(x, y) = N−1(T (N(x), N(y))) (511)

is a t-conorm which is N -dual to T ; compare with (503).

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 846 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Properties of Triangular Norms

Triangular Norms

(T, S,N) is a De Morgan triple if T is a t-norm, S is a
t-conorm and N is a strong negation such that for all
x, y ∈ [0, 1],

S(x, y) = N−1(T (N(x), N(y))), (512)

T (x, y) = N−1(S(N(x), N(y))). (513)

A De Morgan triple (T, S,N) satisfies the law of the excluded
middle if for all x ∈ [0, 1],

T (x,N(x)) = 0 and S(x,N(x)) = 1. (514)

If T (x,N(x)) = 0, then

S(x,N(x)) = N(T (N(x), N2(x))) = N(T (N(x), x))

= N(0) = 1.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 847 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Properties of Triangular Norms

Triangular Norms - Example

(TM , SM , Ns) is a De Morgan triple, since

TM (Ns(x), Ns(y)) = min{1− x, 1− y} = 1−max{x, y}
= Ns(SM (x, y)),

but it does not satisfy the law of the excluded middle:

TM (x,Ns(x)) = min{x, 1− x},
SM (x,Ns(x)) = max{x, 1− x}.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 848 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Properties of Triangular Norms

∗Triangular Norms

Let L be a non-empty set.

A pair (L,�) is a lattice if � is a partial ordering on L such
that for any two elements x, y ∈ L it also contains their join
x ∨ y, i.e, the supremum of {x, y}, and their meet x ∧ y, i.e,
the infimum of {x, y}.
A lattice (L,�) is complete if for each subset B of L, the
join

∨
B and meet

∧
B exist and are contained in L.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 849 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Properties of Triangular Norms

∗Triangular Norms

Let (L,�) be a lattice and (L, ∗, e) be a monoid.

(L, ∗,�) is an l-monoid if for all x, y, z ∈ L,

x ∗ (y ∨ z) = (x ∗ y) ∨ (x ∗ z) (515)

and

(x ∨ y) ∗ z = (x ∗ z) ∨ (y ∗ z). (516)

An l-monoid (L, ∗,�) is commutative if the semigroup (L, ∗)
is commutative.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 850 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Properties of Triangular Norms

∗Triangular Norms

Let (L,�) be a lattice and (L, ∗, e) be a monoid.

A commutative l-monoid (L, ∗,�) is residuated if there is a
dyadic operation →∗ on L, called ∗-residuum, such that for
all x, y, z ∈ L,

x ∗ y � z ⇐⇒ x � y →∗ z. (517)

An l-monoid (L, ∗,�) is integral if there is a greatest element
in the lattice (L,�) which coincides with e.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 851 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Properties of Triangular Norms

∗Triangular Norms

For each mapping T : [0, 1]2 → [0, 1] the following are
equivalent:

([0, 1], T,≤) is a commutative residuated integral
l-monoid.
T is a left-continuous t-norm.

In this case, the T -residuum →T has the form

x→T y = sup{z ∈ [0, 1] | T (x, z) ≤ y}. (518)

As a consequence, for each left-continuous t-norm T we have
x→T y = 1 iff x ≤ y, since T (x, 1) = x for all x.

Residual implication is an extension of Boolean implication to
[0, 1]-valued logic.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 852 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Properties of Triangular Norms

∗Triangular Norms – Example

The minimum t-norm TM gives rise to the Gödel implication

x→M y =

{
1 if x ≤ y,
y otherwise.

(519)

Special case: Boolean implication for Boolean values,

0→M 0 = 1, 0→M 1 = 1, 1→M 0 = 0, 1→M 1 = 1.(520)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 853 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Properties of Triangular Norms

∗Triangular Norms – Example

The product t-norm TP provides the Goguen implication

x→P y =

{
1 if x ≤ y,
y
x otherwise.

(521)

The Lukasiewicz t-norm TL yields the Lukasiewicz implication

x→L y = min{1− x+ y, 1}. (522)

The triple ([0, 1], TD,≤) is a commutative integral l-monoid
that is not residuated since TD is not left-continuous.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 854 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Properties of Triangular Norms

∗Triangular Norms – Example (cont’d)

Residual implications →M , →P , and →L:

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 855 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Fuzzy Sets

Fuzzy Sets

Crisp sets and characteristic functions

Fuzzy sets and membership functions

Kernel, support, and α-cut

Intersection, union, and negation of fuzzy sets

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 856 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Fuzzy Sets

Fuzzy Sets

Given a universe (set) X.

A subset A of X is a crisp set.

A crisp set A ⊆ X can be identified with its characteristic
function χA : X → {0, 1} defined by

χA(x) =

{
1 if x ∈ A,
0 otherwise.

(523)

Universe X and empty set ∅ are identified by the constant
functions χX : x 7→ 1 and χ∅ : x 7→ 0, resp.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 857 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Fuzzy Sets

Fuzzy Sets

Given a universe X.

A fuzzy subset A of X is given by its membership function

µA : X → [0, 1],

where for each x ∈ A the quantity µA(x) is the degree of
membership of x in A.

Let A and B be fuzzy subsets of X.

A is a subset of B, written A ⊆ B, if µA ≤ µB ,
A is equal to B, written A = B, if µA = µB .

A characteristic function is a special membership function;
i.e., each crisp subset of X is a special fuzzy subset of X.

The degree of membership µA(x) can be seen as the truth value of
the statement ”x is element of A”.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 858 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Fuzzy Sets

Fuzzy Sets

Each fuzzy subset A of X can be associated with a number of
crisp subsets of X:

The kernel of A is defined by

ker(A) = {x ∈ X | µA(x) = 1}. (524)

The support of A is given as

supp(A) = {x ∈ X | µA(x) > 0}. (525)

For each α ∈ [0, 1], the α-cut of A is

[A]α = {x ∈ X | µA(x) ≥ α}. (526)

A fuzzy subset A of X is normal if the kernel of A is non-empty;
i.e., µA(x0) = 1 for some x0 ∈ X.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 859 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Fuzzy Sets

Fuzzy Sets

Let X be a universe.

For each fuzzy subset A of X,

ker(A) = [A]1 and supp(A) =
⋃

α∈]0,1]

[A]α. (527)

A fuzzy subset A of X is a crisp set iff

ker(A) = supp(A) = A. (528)

For the family ([A]α)α∈[0,1] of α-cuts of a fuzzy subset A
of X,

[A]0 = X and [A]α ⊆ [A]β if α ≥ β. (529)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 860 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Fuzzy Sets

Fuzzy Sets

Given De Morgan triple (T, S,N) and fuzzy subsets A,B of X.

Intersection of A and B:

µA∩TB(x) = T (µA(x), µB(x)) (530)

Union of A and B:

µA∪SB(x) = S(µA(x), µB(x)) (531)

Complement of A:

µ\NA(x) = N(µA(x)). (532)

De Morgan triple (T, S,N) may not satisfy the law of the excluded
middle, i.e., for all x ∈ [0, 1],

µA∩T \NA(x) = 0 and µA∪S\NA(x) = 1. (533)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 861 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Fuzzy Sets

Fuzzy Sets – Example

Given fuzzy sets A and B over X = R.
Consider intersection, union, and negation via the minimum t-norm,

> M := x -> min(A(x),B(x));

> P := x -> max(A(x),B(x));

> N := x -> 1-x;

Given fuzzy sets A and B over X = R:

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 862 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Fuzzy Sets

Fuzzy Sets – Example (cont’d)

Intersection and union of the above fuzzy sets A and B, and
negation of above fuzzy set A:

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 863 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Fuzzy Sets

Fuzzy Sets – Example

De Morgan triple (TL, SL, Ns) satisfies the law of the excluded
middle. Indeed, for all x ∈ [0, 1],

TL(x,Ns(x)) = max{x+ (1− x)− 1, 0} = 0

and
SL(x,Ns(x)) = min{x+ (1− x), 1} = 1.

Thus for all x ∈ [0, 1],

µA∩TL
\NsA

(x) = TL(µA(x), Ns(µA(x))) = 0

and
µA∪SL

\NsA
(x) = SL(µA(x), Ns(µA(x))) = 1.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 864 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Fuzzy Numbers

Fuzzy Numbers

Upper semicontinuous fuzzy numbers

Gaussian fuzzy numbers

Fuzzy intervals

Piecewise linear fuzzy numbers

Fuzzy reals

∗Zadeh’s extension principle

Processes:

Fuzzification: integer/real 7→ fuzzy number

Defuzzification: fuzzy number 7→ integer/real

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 865 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Fuzzy Numbers

Fuzzy Numbers

A fuzzy subset A of X = R is a fuzzy quantity.

A fuzzy quantity A is convex if for all α ∈ [0, 1] the α-cut
[A]α is a convex subset of R, i.e., interval of R.

A fuzzy quantity A, which is normal, convex and has a
bounded kernel, is a fuzzy number.

Fuzzy numbers model linguistic quantities like ”approximately
20 degrees Celcius”.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 866 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Fuzzy Numbers

Fuzzy Numbers – Example

Fuzzy numbers:

No fuzzy numbers:

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 867 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Fuzzy Numbers

∗Fuzzy Numbers

A = (l, r, F,G) is upper semicontinuous fuzzy number if

l and r are real numbers with l < r,

F,G :]0,∞[→ [0, 1] are non-increasing left-continuous
mappings such that for all x ∈ R,

µA(x) =

F (l − x) if x ∈]−∞, l[,
1 if x ∈ [l, r],
G(x− r) if x ∈]r,∞[.

(534)

The interval [l, r] is the kernel of A, and F and G determine the
left and right shape of A, resp.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 868 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Fuzzy Numbers

Fuzzy Numbers

A Gaussian fuzzy number is an upper semicontinuous fuzzy number

A = (x0, x0, Fα, Fα), (535)

where x0 ∈ R, α ∈]0,∞[, and for all x ∈]0,∞[the shape function
Fα :]0,∞[→ [0, 1[is

Fα(x) = e−
x2

α . (536)

The corresponding membership function is

µA(x) = e−
(x−x0)2

α . (537)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 869 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Fuzzy Numbers

Fuzzy Numbers

Plot of Gaussian fuzzy number A in Maple:

> A := exp(-(x-10)^2/20):

> plot([A,0.5],x=0..20,0..1.1, axes=boxed,

gridlines=true, thickness=[2,2],

color=[blue,black], font=[helvetica,12],

linestyle=[solid,dash]);

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 870 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Fuzzy Numbers

∗Fuzzy Numbers

A fuzzy interval is a fuzzy number

A = (l, r, α, β)L,R, (538)

where

l, r ∈ R,

α, β ∈ [0,∞[, (α left spread of A and β right spread of A),

L,R :]0, 1]→ [0, 1[are non-increasing left-continuous
mappings with L(x) > 0 and R(x) > 0 for all x ∈]0, 1[such
that

µA(x) =

L
(
l−x
α

)
if x ∈]l − α, l[,

1 if x ∈ [l, r],

R
(

x−r
β

)

if x ∈]r, r + β[,

0 otherwise.

(539)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 871 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Fuzzy Numbers

∗Fuzzy Numbers

A fuzzy interval A can be defined in Maple as follows,

> A := piecewise(l-a<x and x<l, L((l-x)/a),

l<x and x<r, 1,

r<x and x<r+b, R((x-r)/b), 0):

Define L and R accordingly.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 872 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Fuzzy Numbers

Fuzzy Numbers

A piecewise linear fuzzy number is a fuzzy interval with
L(x) = x and R(x) = 1− x for all x ∈]0, 1].
A piecewise linear fuzzy number (l, r, α, β)L,R is triangular if
l = r, and trapezoidal if l < r.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 873 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Fuzzy Numbers

∗Fuzzy Numbers

A fuzzy real is a fuzzy quantity A with a non-decreasing
left-continuous membership function.

A piecewise linear fuzzy real is a pair A = (x0, x0 + ǫ) with
x0 ∈ R and ǫ ∈ [0,∞[such that

µA(x) =

0 if x ∈]−∞, x0],
x−x0

ǫ if x ∈]x0, x0 + ǫ],
1 if x ∈]x0 + ǫ,∞].

(540)

The membership value µA(x) is the truth value of ”x is larger
than x0”.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 874 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Fuzzy Numbers

∗Fuzzy Numbers

An infinite fuzzy real A is given by membership function

µA(x) =

{

0 if x ∈]−∞, x0],
e
− x

x0x−x2
0 if x ∈]x0,∞[,

x0 ∈]0,∞[. (541)

Piecewise linear fuzzy real and infinite fuzzy real:

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 875 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Fuzzy Numbers

∗Fuzzy Numbers – Zadeh’s extension principle

Given t-norm T and dyadic operation · : R2 → R.

Define the operation ⊙ : F(R)2 → F(R) on the class of fuzzy
quantities such that for all z ∈ R,

µA⊙TB(z) = (542)

sup{T (µA(x), µB(y)) | x, y ∈ R, x · y = z}.

Let A and B be crisp subsets of R. The operation ⊙T is the
ordinary complex product

A⊙T B = A ·B = {a · b | a ∈ A, b ∈ B} (543)

using the characteristic function as membership function.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 876 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Fuzzy Numbers

∗Fuzzy Numbers

Let T1 and T2 be t-norms with T1 ≤ T2. Then for any two
fuzzy quantities A and B and any dyadic operation
· : R2 → R we have

µA⊙T1
B ≤ µA⊙T2

B . (544)

Let T be a t-norm. Then for any two fuzzy quantities A and
B and any dyadic operation · : R2 → R,

µA⊙TD
B ≤ µA⊙TB ≤ µA⊙TM

B . (545)

In the following, we concentrate on the extension ⊕T of addition
operation + on R.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 877 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Fuzzy Numbers

∗Fuzzy Numbers

Let A = (l1, r1, F1, G1) and B = (l2, r2, F2, G2) be upper
semicontinuous fuzzy numbers.

Minimum t-norm:

A⊕TM
B = (l1 + l2, r1 + r2, (546)

((−F1)
(−1) + (−F2)

(−1))(−1),

((−G1)
(−1) + (−G2)

(−1))(−1)),

where f (−1) is the pseudo-inverse of the monotonous
function f ,

Drastic product:

A⊕TD
B = (547)

(l1 + l2, r1 + r2,max(F1, F2),max(G1, G2)).

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 878 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Fuzzy Numbers

∗Fuzzy Numbers

The pseudo-inverse of a monotonous function f : [a, b]→ [c, d] is
defined by

f (−1)(y) = sup{x ∈ [a, b] | (f(x)− y)(f(b)− f(a)) < 0}. (548)

Construct the graph of pseudo-inverse f (−1) of a monotonous
function f : [a, b]→ [c, d] as follows:

Draw vertical line segments at the discontinuities of f .

Reflect the graph of f at the identity function y = x.

Remove all vertical line segments from the reflected graph
except for their lowest points.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 879 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Fuzzy Numbers

∗Fuzzy Numbers

Construction of pseudo-inverse:

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 880 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Fuzzy Numbers

∗Fuzzy Numbers

Let A = (l1, r1, α1, β1)L,R and B = (l2, r2, α2, β2)L,R be fuzzy
intervals with the same shapes L and R.

Minimum t-norm:

A⊕TM
B = (549)

(l1 + l2, r1 + r2, α1 + α2, β1 + β2)L,R.

Drastic product:

A⊕TD
B = (550)

(l1 + l2, r1 + r2,max(α1, α2),max(β1, β2))L,R.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 881 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Fuzzy Numbers

∗Fuzzy Numbers

The sum of two triangular fuzzy intervals can be plotted in Maple

as follows:

> plot([A,B,add_M_AB,add_D_AB,0.5],x=0..11,0..1.1,

axes=boxed, gridlines=true, thickness=[2,2],

color=[blue,red,violet,green,black],

font=[helvetica,12],

linestyle=[solid,solid,solid,solid,dash]);

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 882 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Fuzzy Numbers

∗Fuzzy Numbers

Let A and B be fuzzy reals.

Minimum t-norm:

A⊕TM
B = (µ

(−1)
A + µ

(−1)
B)(−1) (551)

Drastic product:

A⊕TD
B(x) = max(µ(x− a), µB(x− b)), (552)

where a = inf{x ∈ R | µA(x) = 1} and
b = inf{x ∈ R | µB(x) = 1}.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 883 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Fuzzy Numbers

∗Fuzzy Numbers

Let A = (l1, r1, α1, β1) and B = (l2, r2, α2, β2) be piecewise
linear fuzzy numbers. Then

A⊕TL
B = (l1 + l2, r1 + r2,max(α1, α2),max(β1, β2))(553)

Let A = (x1, ǫ1) and B = (x2, ǫ2) be piecewise linear fuzzy
reals. Then

A⊕TL
B = (x1 + x2 +min(ǫ1, ǫ2), x1 + x2 + ǫ1 + ǫ2). (554)

Let A = (x1, x1, Fα, Fα) and B = (x2, x2, Fβ , Fβ) be
Gaussian fuzzy numbers. Then

A⊕TP
B = (x1 + x2, x1 + x2, Fα+β , Fα+β). (555)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 884 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Fuzzy Inference

Fuzzy Inference

Fuzzy inference is the process of finding a mapping from an input
fuzzy set to an output fuzzy set. Application is decision making.

Fuzzy product and fuzzy relation

Zadeh’s compositional rule of inference

Zadeh’s fuzzy relational equation

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 885 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Fuzzy Inference

Fuzzy Inference

Let X and Y be two universes, A ⊆ X and B ⊆ Y fuzzy subsets,
and T be a t-norm.
Define the product A×T B as the fuzzy subset of the (Cartesian
product) universe X × Y as

µA×TB(x, y) = T (µA(x), µB(y)). (556)

The value µA×TB(x, y) can be interpreted as the truth value of ”x
is element of A and y is element of B”.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 886 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Fuzzy Inference

Fuzzy Inference

Given fuzzy subsets A and B of X = R below.
Consider the t-norms TM , TP , and TL defined in Maple as follows,

> M := (x,y) -> min(A(x),B(y));

> P := (x,y) -> A(x) * B(y);

> L := (x,y) -> max(A(x)+B(y)-1,0);

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 887 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Fuzzy Inference

Fuzzy Inference

Fuzzy products A×T B with t-norms TM , TP , and TL:

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 888 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Fuzzy Inference

Fuzzy Inference

For two crisp sets X and Y , the Cartesian product X × Y is a
crisp set.

Each crisp subset R of X × Y is called a relation on X × Y .

More generally, a fuzzy relation R on X × Y is a fuzzy subset
of X × Y given by its membership function
µR : X × Y → [0, 1].

The value µR(x, y) can be interpreted as the truth value of
”x and y are in relation R”.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 889 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Fuzzy Inference

Fuzzy Inference – Zadeh’s Compositional Inference Rule

Let T be a t-norm, A be a fuzzy subset of X, and R be a fuzzy
relation on X × Y .
The fuzzy subset A ◦T R of Y is defined by its membership function

µA◦TR(y) = sup{T (µA(x), µR(x, y)) | x ∈ X}. (557)

A fuzzy subset A of X is associated to a fuzzy subset B = A ◦T R
of Y given by the membership function µA◦TR.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 890 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Fuzzy Inference

Fuzzy Inference – Zadeh’s Compositional Inference Rule

Given a function f : X → Y by its graph

R = {(x, f(x)) | x ∈ X}. (558)

If A is a crisp subset of X, then A ◦T R is a crisp subset of Y
given by the image f(A).

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 891 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Fuzzy Inference

Fuzzy Inference – Zadeh’s Compositional Inference Rule

Evaluation of Zadeh’s rule:

Cylindric extension of fuzzy set A to fuzzy set A× Y :

µA×Y (x, y) = µA(x). (559)

Intersection of fuzzy set A× Y with fuzzy relation R:

µ(A×Y)∩TR(x, y) = T (µA×Y (x, y), µR(x, y))

= T (µA(x), µR(x, y)). (560)

Projection of fuzzy set (A× Y) ∩T R onto Y :

µA◦TR(y) = sup{µ(A×Y)∩TR(x, y) | x ∈ X} (561)

= sup{T (µA(x), µR(x, y) | x ∈ X}.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 892 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Fuzzy Inference

Fuzzy Inference - Zadeh’s Fuzzy Relational Equation

Given fuzzy subset A of X, fuzzy subset B of Y , and t-norm T .

Find a fuzzy relation R on X × Y such that

A ◦T R = B. (562)

Fuzzy relation RT (A,B) on X × Y given by the membership
function provides the fuzzy relation A ◦T R = B (T
left-continuous),

µRT (A,B)(x, y) = µA(x)→T µB(y). (563)

T -residuum →T is given by

µA(x)→T µB(y) (564)

= sup{z ∈ [0, 1] | T (µA(x), z) ≤ µB(y)}.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 893 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Fuzzy Inference

Fuzzy Inference – Example

Consider the fuzzy subsets A and B of R below.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 894 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Fuzzy Inference

Fuzzy Inference – Example (cont’d)

Fuzzy relations RT (A,B) using t-norms TM , TP , and TL:

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 895 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Fuzzy Inference

Fuzzy Inference – Example

Customers of a restaurant rate the quality of service (QoS)
and the quality of food (QoF) on a scale of 0 to 10.

Suppose QoS and QoF are given by fuzzy numbers A and B
below, resp.

The relation between QoS and QoF can be measured by fuzzy
relation RT (A,B) w.r.t. t-norm T .

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 896 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Fuzzy Inference

Fuzzy Inference – Example (cont’d)

Fuzzy relation between QoS and QoF using t-norms TM , TP , and
TL:

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 897 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Fuzzy Control

Fuzzy Control

A fuzzy control system is a control system based on fuzzy logic –
no learning involved. Application is machine control.

Mamdani controller

Takagi-Sugeno controller

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 898 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Fuzzy Control

Fuzzy Control – Mamdani Controller

Given input universe X,

A1, . . . , An normal fuzzy subsets of X,

B1, . . . , Bn normal fuzzy subsets of R,

T t-norm.

Consider the rulebase

IF x is A1, THEN y is B1,
IF x is A2, THEN y is B2,
...
IF x is An, THEN y is Bn.

(565)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 899 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Fuzzy Control

Fuzzy Control – Mamdani Controller

Membership function of fuzzy relation R ⊆ X × R,

µR(x, y) = (566)

max{T (µA1
(x), µB1

(y)), . . . , T (µAn
(x), µBn

(y))}.

I/O function FM : X → R of Mamdani controller,

FM (x) =

∫

R
µR(x, y) · ydy
∫

R
µR(x, y)dy

, (567)

where
∫

R
µR(x, y)dy > 0 for all x ∈ X (requires measure

theoretic assumptions).

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 900 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Fuzzy Control

Fuzzy Control – Mamdani Controller

Input given by A1, B1 and A2, B2:

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 901 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Fuzzy Control

Fuzzy Control – Mamdani Controller

Integration via Maple:

> f:=int(max(A1(x)*B1(y),A2(x)*B2(y)),y=0..1);

Output

f(x) = 0.10

0 x < 0.45,
−4.5 + 10x x < 0.55,
6.5− 10x x ≤ 0.65,
0 0.65 < x

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 902 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Fuzzy Control

Fuzzy Control – Mamdani Controller

Integration via Maple:

> g:=int(max(A1(x)*B1(y)*y,A2(x)*B2(y)*y),y=0..1);

Output

g(x) = 0.065 ·

0 x < 0.45,
−4.5 + 10x x < 0.55,
6.5− 10x x ≤ 0.65,
0 0.65 < x

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 903 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Fuzzy Control

Fuzzy Control – Takagi-Sugeno Controller

Given input universe X,

A1, . . . , An normal fuzzy subsets of X with
∑n

i=1 µAi
(x) > 0

for all x ∈ X,

g1, . . . , gn mappings from X to R.

Consider the rulebase

IF x is A1, THEN y = g1(x),
IF x is A2, THEN y = g2(x),
...
IF x is An, THEN y = gn(x).

(568)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 904 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Fuzzy Control

Fuzzy Control – Takagi-Sugeno Controller

I/O function FTS : X → R of Takagi-Sugeno controller,

FTS(x) =

∑n
i=1 µAi

(x) · gi(x)
∑n

i=1 µAi
(x)

. (569)

The Takagi-Sugeno controller can be viewed as a special case of
the Mamdani controller if the involved functions g1, . . . , gn are
constant; i.e., gi(x) = yi for all x ∈ X and 1 ≤ i ≤ n.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 905 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Fuzzy Control

Fuzzy Control – Basic Tipping Problem

A customer evaluates QoF and QoS and then decides upon the tip
using the golden rules:

If food is rancid and service is poor, tip is cheap.

If service is good, tip is average.

If food is delicious and service is excellent, tip is generous.

Cheap tip is 5 %, average tip is 15 %, and generous tip is 25 % of
the total bill.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 906 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Fuzzy Control

Fuzzy Control – Basic Tipping Problem (cont’d)

Customers rate QoS on a scale of 1 to 10.
Fuzzy numbers for QoS: poor (q1), good (q2), and excellent (q3):

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 907 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Fuzzy Control

Fuzzy Control – Basic Tipping Problem (cont’d)

Takagi-Sugeno controller:

FTS(x) =
q1(x) · 0.05 + q2(x) · 0.15 + q3(x) · 0.25

q1(x) + q2(x) + q3(x)
, 1 ≤ x ≤ 10.

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 908 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Fuzzy Sets in R

Fuzzy Sets in R

The R package sets provides data structures and basic operations
for ordinary sets and generalizations such as fuzzy sets.

> library(sets)

Fix a universe to work with,

> sets_options("universe", seq(1, 100, 0.5))

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 909 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Fuzzy Sets in R

Fuzzy Sets in R

Specify Gaussian fuzzy numbers corresponding to temperature
(Fahrenheit), humidity (percentage), precipitation (rain), and
weather (for output).

> variables <- set(

temp = fuzzy_partition(varnames=c(cold=30,

good=70, hot=90), sd=5.0),

hum = fuzzy_partition(varnames=c(dry=30,

good=70, wet=80), sd=3.0),

prec = fuzzy_partition(varnames=c(no.rain=30,

little.rain=60, rain=90), sd=7.5),

weather = fuzzy_partition(varnames=c(bad=40, ok=65,

perfect=80),

FUN=fuzzy_cone, radius=10)

// function generator

)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 910 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Fuzzy Sets in R

Fuzzy Sets in R

Specification of fuzzy rules:

> rules <- set(

fuzzy_rule(temp %is% good && hum %is% dry

&& prec %is% no.rain, weather %is% perfect),

fuzzy_rule(temp %is% hot && hum %is% wet

&& prec %is% rain, weather %is% bad),

fuzzy_rule(temp %is% cold, weather %is% bad),

fuzzy_rule(temp %is% good || hum %is% good

|| prec %is% little.rain, weather %is% ok),

fuzzy_rule(temp %is% hot && prec %is% little.rain,

weather %is% ok),

fuzzy_rule(temp %is% hot && hum %is% dry

&& prec %is% little.rain, weather %is% ok)

)

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 911 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Fuzzy Sets in R

Fuzzy Sets in R

Build a system for fuzzy inference:

> model <- fuzzy_system(variables, rules)

The printing of the specified model yields a summary of the data.

> print(model)

A fuzzy system consisting of 4 variables and 6 rules.

Variables:

weather (bad, ok, perfect)

hum (dry, good, wet)

temp (cold, good, hot)

prec (no.rain, little.rain, rain)

Rules:

temp %is% good && hum %is% dry && prec %is% no.rain ==> weather %is% perfect

temp %is% hot && hum %is% wet && prec %is% rain ==> weather %is% bad

temp %is% cold ==> weather %is% bad

%temp %is% good || hum %is% good || prec %is% little.rain ==> weather %is% ok

temp %is% hot && prec %is% little.rain ==> weather %is% ok

temp %is% hot && hum %is% dry && prec %is% little.rain ==> weather %is% ok

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 912 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Fuzzy Sets in R

Fuzzy Sets in R

Plot of the fuzzy numbers:

weather

Universe

M
em

be
rs

hi
p

G
ra

de

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 20 40 60 80 100

bad ok perfect

hum

Universe

M
em

be
rs

hi
p

G
ra

de

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 20 40 60 80 100

dry good wet

temp

Universe

M
em

be
rs

hi
p

G
ra

de

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 20 40 60 80 100

cold good hot

prec

Universe

M
em

be
rs

hi
p

G
ra

de

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 20 40 60 80 100

no.rain little.rain rain

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 913 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Fuzzy Sets in R

Fuzzy Sets in R

Fuzzy inference with temperature of 75oF, zero humidity, and
precipitation of 70%:

> ex <- fuzzy_inference(model,

list(temp=75, hum=0, prec=70))

Defuzzification transforms the resulting fuzzy number into a
number of the universe:

> gset_defuzzify(ex, "centroid")

[1] 65

Thus according to the inference, the weather is 65 and so ok (see
weather plot).

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 914 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Fuzzy Sets in R

Fuzzy Sets in R

Reconsider the tipping problem.

> sets_options("universe", seq(from=0, to=25, by=0.1))

First set up the fuzzy variables.

> variables <- set(

service=fuzzy_partition(

varnames=c(poor=0, good=5, excellent=10), sd=3),

food=fuzzy_variable(

rancid=fuzzy_trapezoid(corners=c(-2,0,2,4)),

delicious=fuzzy_trapezoid(corners=c(7,9,11,13))),

tip=fuzzy_partition(

varnames=c(cheap=5, average=12, generous=20),

FUN=fuzzy_cone, radius=5))

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 915 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Fuzzy Sets in R

Fuzzy Sets in R

Next set up the fuzzy rules.

> rules <- set(

fuzzy_rule(service %is% poor

|| food %is% rancid, tip %is% cheap),

fuzzy_rule(service %is% good, tip %is% average),

fuzzy_rule(service %is% excellent

|| food %is% delicious, tip %is% generous))

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 916 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Fuzzy Sets in R

Fuzzy Sets in R

The fuzzy variables and rules are combined into a fuzzy system.

> system <- fuzzy_system(variables, rules)

The data of the fuzzy system can be printed.

> print(system)

A fuzzy system consisting of 3 variable and 3 rules.

Variables:

food(rancid, delicious)

tip(cheap, average, generous)

service(poor, good, excellent)

Rules:

service %is% poor || food %is% rancid => tip %is% cheap

service %is% good => tip %is% average

service %is% excellent || food %is% delicious

=> tip %is% generous

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 917 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Fuzzy Sets in R

Fuzzy Sets in R

> plot(system)

food

Universe

M
em

be
rs

hi
p

G
ra

de

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 5 10 15 20 25

rancid decilicous

tip

Universe

M
em

be
rs

hi
p

G
ra

de

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 5 10 15 20 25

cheap average generous

service

Universe

M
em

be
rs

hi
p

G
ra

de

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 5 10 15 20 25

poor goodexcellent

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 918 / 919

Soft Computing

K.-H.
Zimmermann

Contents

Triangular Norms

Properties of
Triangular Norms

Fuzzy Sets

Fuzzy Numbers

Fuzzy Inference

Fuzzy Control

Fuzzy Sets in R

Fuzzy Sets in R

Fuzzy Sets in R

Fuzzy inference with service 3 and food 8:

> fi <- fuzzy_inference(system, list(service=3, food=8))

Defuzzification transforms the resulting fuzzy number into a
number of the universe:

> gset_defuzzify(fi, "centroid")

[1] 9.433852

Thus according to the inference, the tip is 9.4 and so average (see
foot plot).

K.-H. Zimmermann (TUHH) Soft Computing July 13, 2021 919 / 919

	Preliminaries
	Preface
	Contents
	Formalities
	Literature
	Digitalization

	Bayesian Networks
	Contents
	Probabilities
	Graph Concepts
	Belief Networks
	Conditional Independence
	Markov Equivalence
	Belief Networks in R

	Hidden Markov Model
	Contents
	Belief Network
	Learning in Fully Observed Model
	Probabilistic Inference of Output Marginals
	Viterbi Algorithm
	Learning in Hidden Markov Model
	*Baum-Welch Algorithm
	Finding CpG Islands
	Hidden Markov Model in R

	Alignment
	Contents
	Representation
	*PAM
	Pair Hidden Markov Model
	Marginal Probabilities
	Needleman-Wunsch Algorithm
	Parametric Alignment

	Statistical Inference and Learning
	Contents
	Naïve Bayesian Classifier
	Least Squares Data Fitting
	Clustering and Classification
	Approximate Bayesian Computation
	Support Vector Machines

	Bayesian Networks
	Contents
	Learning Probabilities
	*Statistical Inference
	Learning Structure
	Score-based
	Constraint-based

	Bayesian Networks in R

	ANN
	Contents
	ANN Technology
	Multilayer Perceptron
	Deep Learning via Keras
	Universality
	Hopfield Network
	Self-Organizing Networks
	*Spiking Neural Networks
	Neural Networks in R

	Fuzzy Logic
	Contents
	Triangular Norms
	Properties of Triangular Norms
	Fuzzy Sets
	Fuzzy Numbers
	Fuzzy Inference
	Fuzzy Control
	Fuzzy Sets in R

