Soft Computing

- Introduction to Machine Learning -

Karl-Heinz Zimmermann

TUHH

July 13, 2021

Soft Computing
 K.-H.
 Zimmermann

Preliminaries

Prof. Dr. Karl-Heinz Zimmermann Hamburg University of Technology 21071 Hamburg
Germany

This monograph is listed in the GBV database and the TUHH library.

All rights reserved
(c) 2021, by Karl-Heinz Zimmermann, author
https://doi.org/10.15480/882.3652
http://hdl.handle.net/11420/9878
urn:nbn:de:gbv:830-882.0139751

Preface

Soft Computing is a branch of computer science that deals with computationally hard tasks such as NP complete problems for which the known algorithms do not deliver solutions in polynomial time. In opposition to conventional (hard) computing, soft computing provides solutions which may tolerate imprecision, partial truth, uncertainty, and approximation. The paradigm of soft computing is foremost the human mind - learning and inference. The principal fields of soft computing are basically machine learning, fuzzy logic, and evolutionary computation. The applications of soft computing lie in prominent fields such as artificial intelligence and knowledge engineering. The course provides an introduction to soft computing particularly to the increasingly important field of machine learning.
*Starred material can be safely skipping on a first reading without loss of continuity. An index will be separately available.
Hamburg, October 2020 Karl-Heinz Zimmermann

Dedication

```
To my family for sempiternal support.
```


Contents

- Bayesian networks
- Statistical inference and learning
- Artificial neural networks
- Fuzzy logic

Soft Computing
K.-H.

Zimmermann

Preliminaries Preface
Contents
Formalities
Literature
Digitalization

Contents - Chapters

1 Introduction to Bayesian networks
2 Hidden Markov model
3 Inference and learning in Bayesian networks
4 Statistical inference and learning
5 Sequence alignment
6 Tree models
7 Artificial neural networks
8 Fuzzy logic
Appendix
9 Computational statistics with R
10 Markov processes
K.-H.

Corona Times

■ Lecture is online, not always live.
■ Lectures will be recorded for later use.

- Exam is oral in February or March.

Soft Computing

K.-H.

Formalities

- Schedule:
- Tuesday, 10:00-11:00 am (live)
- Wednesday (recorded)
- StudIP: appointments, manuscript, recorded lecture (media links)
- Exam: oral (20-25 min)

Oral Exam (25 min.)

Topics:

- Bayesian networks

■ Hidden Markov model

- Statistical inference and learning

■ Artificial neural networks

- Fuzzy logic.
*No starred material, no R.

```
Soft Computing
    K.-H.
    Zimmermann
Preliminaries
Preface
Contents
Formalities
Literature
Digitalization
```


Literature

- David Barber, Bayes Reasoning and Machine Learning, Cambridge Univ. Press, Cambridge, 2012.
- Ernst Klement, Radko Mesiar, Endre Pap, Triangular Norms, Kluwer, Dordrecht, 2000.
- Timo Koski, John M. Noble, Bayesian Networks, Wiley, New York, 2009.
- Hidetoshi Nishimori, Statistical Physics of Spin Glasses and Information Processing, Oxford Univ. Press, London, 2001.
- Raul Royas, Neural Networks, Springer, Berlin, 1996.
- Lior Pachter, Bernd Sturmfels, Algebraic Statistics for Computational Biology, Cambridge Univ. Press, Cambridge, 2005.
- Karl-Heinz Zimmermann, Algebraic Statistics, TubDok, Hamburg, 2016.
- Karl-Heinz Zimmermann, Soft Computing, Manuscript, Hamburg, 2018.

Digitalization

Conversion of analog data to digital data.
■ Big data: storage of large data and data retrieval

- Machine learning: structure of data, learning (estimation), inference
■ Infrastructure: sensors, actors, communication networks, embedded systems.

Soft Computing
K.-H.

Zimmermann

Preliminaries
Preface
Contents
Formalities
Literature
Digitalization

Bayesian Networks

Graphical representation of probabilistic relationships between random variables

Soft Computing
K.-H.

Zimmermann

Preliminaries
Preface
Contents
Formalities
Literature
Digitalization

Bayesian Networks

Applications in artificial intelligence, expert systems, machine learning

Hidden Markov Model
Spatial and temporal pattern analysis

■ Inference: Given output sequence $y_{1} y_{2} \ldots y_{n}$, find most probable state sequence $x_{1} x_{2} \ldots x_{n}$ (Viterbi algorithm)

- Learning: Estimate transition probabilities (Estimation-Maximation, Baum-Welch algorithm)
Soft Computing
K.-H.
Zimmermann

Tree Models

Analysis of phylogenetic trees

- Inference: Given contemporary species (leaves), find most probable anchestors (Felsenstein algorithm)
- Learning: Estimate transition probabilities (Jukes-Cantor model and others)

Soft Computing
K.-H.

Zimmermann

Preliminaries
Preface
Contents
Formalities
Literature
Digitalization

Sequence Alignment

Sequence alignment is the basic operation of molecular biologists

Histone H1 (residues 120-180)
HUMAN KKASKPKKAASKAPTKKPKATPVKKAKKKLAATPKKAKKPKTVKAKPVKASKPKKAKPVK MOUSE KKAAKPKKAASKAPSKKPKATPVKKAKKKPAATPKKAKKPKVVKVKPVKASKPKKAKTVK

RAT KKAAKPKKAASKAPSKKPKATPVKKAKKKPAATPKKAKKPKIVKVKPVKASKPKKAKPVK
COW KKAAKPKKAASKAPSKKPKATPVKKAKKKPAATPKKTKKPKTVKAKPVKASKPKKTKPVK CHIMP KKASKPKKAASKAPTKKPKATPVKKAKKKLAATPKKAKKPKTVKAKPVKASKPKKAKPVK ***:**********:************** ******:**** **, **********:* **

NON-CONSERVED
AMINO ACIDS

■ Inference: Given pairwise scores, find optimal alignment (Needleman-Wunsch algorithm)

- Global inference: Find the optimal alignments for all pairwise scores (polytope propagation)
■ Learning: Estimate pairwise scores (PAM, Blosum)

Soft Computing
K.-H.

Zimmermann

Preliminaries
Preface
Contents
Formalities
Literature
Digitalization

Neural Networks

Artificial neural networks can generalize from examples, used in diagnosis, prediction, and recognition. Deep learning is the new black!

Soft Computing
K.-H.

Zimmermann

Preliminaries
Preface
Contents
Formalities
Literature
Digitalization

Neural Networks

Linear classification of data (perceptron):

Soft Computing

K.-H.

Zimmermann

Preliminaries
Preface
Contents
Formalities
Literature
Digitalization

Vector Support Machine

Neural Networks
K.-H.

Zimmerman
Recognition of handwritten digits:

$$
\begin{array}{llllllllllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 \\
3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 \\
4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 \\
5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 \\
6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 \\
7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 \\
8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 \\
9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9
\end{array}
$$

- MNist: Database of handwritten digits.
- Database (50 MB) consists of 60,000 digits for training and 10,000 digits for testing.
- Black-white digits consist of $28 \times 28=784$ pixels (intensity values 0-255).

Neural Networks

- Artificial neural network has several layers with a few thousand neurons.
- Hardware: CPU and graphics cards

■ Error rate $0,35 \%$, i.e., 35 of 10,000 test digits are wrongly classified.

- Challenges: large number of parameters (12 mio.), efficient implementation.

Fuzzy Logic

A fuzzy control system analyzes analog input values in terms of discrete variables to yield an analog output value.


```
Soft Computing
    K.-H.
    Zimmermann
Contents
Probabilities
Graph Concepts
Part I
Belief Networks
Conditional
Independence
Markov
Equivalence
```


Introduction to Bayesian Networks

Contents

- Probabilities
- Graph Concepts
- Belief Networks

■ Conditional Independence

- Markov Equivalence
- Bayesian Networks in R

Knowledge

- Probabilistic concepts, Bayes' rule
- Basic connections, d-dependence, belief network

■ Markov equivalence, essential graph

Skills

- Computation of d-dependence
- Factorization of joint probability distribution along DAG
- Computation of essential graph

■ Specification of belief network using R

Contents

Probabilities
Graph Concepts
Belief Networks
Conditional
Independence
Markov
Equivalence

Probabilities

- Joint probabilities

■ Conditional and marginal probabilities

- Bayes' rule

■ Independence

- Conditional independence

Soft Computing
K.-H.

Zimmermann

Contents
Probabilities
Graph Concepts
Belief Networks
Conditional Independence

Markov Equivalence Using R

Joint Probability Distribution

Given random variables X and Y over finite state sets \mathcal{X} and \mathcal{Y}, resp.

- The joint probability function $p=p_{X, Y}$ is a probability distribution over $\mathcal{X} \times \mathcal{Y}$; i.e.,

$$
\begin{equation*}
p(x, y) \geq 0 \quad \text { for all }(x, y) \in \mathcal{X} \times \mathcal{Y} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{(x, y) \in \mathcal{X} \times \mathcal{Y}} p(x, y)=1 \tag{2}
\end{equation*}
$$

■ Example: adult population with X (gender, male or female) and Y (age, 18-100).

- Joint probability distribution contains complete information about the random variables, may not be available. However, conditional probabilities (smaller building blocks of low order) might be known.

Marginal Distribution

Given joint probability function $p_{X, Y}$ over state set $\mathcal{X} \times \mathcal{Y}$.
■ The distribution p_{X} of X is the marginal distribution of $p_{X, Y}$ given by

$$
\begin{equation*}
p_{X}(x)=\sum_{y \in \mathcal{Y}} p_{X, Y}(x, y), \quad x \in \mathcal{X} \tag{3}
\end{equation*}
$$

- Given random variables X and Y both over state set $\{0,1\}$ and joint probability distribution $p=p_{X, Y}$ given by

$$
\begin{array}{c|cc}
p & Y=0 & Y=1 \\
\hline X=0 & 0.06 & 0.14 \\
X=1 & 0.24 & 0.56
\end{array}
$$

Then the marginals are

$$
p_{X}(0)=0.20, p_{X}(1)=0.80, p_{Y}(0)=0.30, p_{Y}(1)=0.70
$$

Conditional Probability Distribution

Given random variables X and Y over \mathcal{X} and \mathcal{Y}, resp.

- The conditional probability of $x \in \mathcal{X}$ given $y \in \mathcal{Y}$ is defined as

$$
\begin{equation*}
p_{X \mid Y}(x \mid y)=\frac{p_{X, Y}(x, y)}{p_{Y}(y)} \tag{4}
\end{equation*}
$$

In particular, if $p_{Y}(y)=0$, then $p_{X \mid Y}(x \mid y)$ is undefined.
■ For each $y \in \mathcal{Y}$ with $p_{Y}(y) \neq 0$, the function $p_{X \mid Y}(\cdot \mid y)$ is a probability distribution over \mathcal{X}, since $p_{X \mid Y}(x \mid y) \geq 0$ for all $x \in \mathcal{X}$ and

$$
\begin{aligned}
\sum_{x} p_{X \mid Y}(x \mid y) & =\sum_{x} \frac{p_{X, Y}(x, y)}{p_{Y}(y)}=\frac{1}{p_{Y}(y)} \sum_{x} p_{X, Y}(x, y) \\
& =\frac{p_{Y}(y)}{p_{Y}(y)}=1
\end{aligned}
$$

Conditional Probability Distribution - Example

Given random variables X and Y both over state set $\{0,1\}$ and joint probability distribution $p=p_{X, Y}$ given by

p	$Y=0$	$Y=1$
$X=0$	0.06	0.14
$X=1$	0.24	0.56

The marginals are

$$
p_{X}(0)=0.20, p_{X}(1)=0.80, p_{Y}(0)=0.30, p_{Y}(1)=0.70
$$

The conditional probability distribution $p_{X \mid Y}$ is

$$
\begin{array}{ll}
p_{X \mid Y}(0 \mid 0)=0.06 / 0.30=0.20, & p_{X \mid Y}(0 \mid 1)=0.14 / 0.70=0.20, \\
p_{X \mid Y}(1 \mid 0)=0.24 / 0.30=0.80, & p_{X \mid Y}(1 \mid 1)=0.56 / 0.70=0.80 .
\end{array}
$$

Soft Computing
 K.-H.

Contents
Probabilities
Graph Concepts
Belief Networks
Conditional
Independence
Markov
Equivalence

Bayes' Rule

■ For all $x \in \mathcal{X}$ and $y \in \mathcal{Y}$,

$$
\begin{equation*}
p_{X, Y}(x, y)=p_{X \mid Y}(x \mid y) p_{Y}(y) \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
p_{X, Y}(x, y)=p_{Y \mid X}(y \mid x) p_{X}(x) \tag{6}
\end{equation*}
$$

- This gives Bayes' rule

$$
\begin{equation*}
p_{X \mid Y}(x \mid y)=\frac{p_{Y \mid X}(y \mid x) p_{X}(x)}{p_{Y}(y)} \tag{7}
\end{equation*}
$$

where

- p_{X} prior probability,
- p_{Y} evidence,
- $p_{Y \mid X}$ likelihood,
- $p_{X \mid Y}$ posterior probability.

Bayes' Rule - Example

- Animal population: 60% female (F) and 40% male (M). Disease (D): 10% of the females and 5% of the males suffering.
- Random variables X and Y with state sets $\{F, M\}$ and $\{D, \bar{D}\}$, resp.

■ Joint probability distribution $p=p_{X, Y}$:

p	$Y=D$	$Y=\bar{D}$
$X=F$	0.06	0.54
$X=M$	0.02	0.38

- Priors: $p_{X}(F)=0.60$ and $p_{X}(M)=0.40$.

Probabilities
Graph Concepts
Belief Networks
Conditional
Independence
Markov
Equivalence
Using R

Bayes' Rule - Example (Cont'd)

■ Likelihoods:

$$
p_{Y \mid X}(D \mid F)=\frac{p_{X, Y}(F, D)}{p_{X}(F)}=0.10, p_{Y \mid X}(\bar{D} \mid F)=0.90
$$

and

$$
p_{X \mid Y}(D \mid M)=\frac{p_{X, Y}(M, D)}{p_{Y}(M)}=0.05, p_{X \mid Y}(\bar{D} \mid M)=0.95
$$

- Law of total probability:

$$
\begin{aligned}
& p_{Y}(D)=p_{X}(F) \cdot p_{Y \mid X}(D \mid F)+p_{X}(M) \cdot p_{Y \mid X}(D \mid M)=0.08 \\
& \text { so } p_{X}(\bar{D})=0.92
\end{aligned}
$$

Contents

Probabilities
Graph Concepts
Belief Networks
Conditional
Independence
Markov
Equivalence
Bayes' Rule - Example (Cont'd)

- By Bayes' rule, the posteriories are

$$
p_{X \mid Y}(F \mid D)=\frac{p_{X}(F) \cdot p_{Y \mid X}(D \mid F)}{p_{Y}(D)}=0.75
$$

and so

$$
p_{X \mid Y}(M \mid D)=1-p_{X \mid Y}(F \mid D)=0.25 .
$$

Contents
Probabilities
Graph Concepts
Belief Networks

Conditional

 IndependenceMarkov Equivalence

Using R

Independence

Given random variables X and Y over \mathcal{X} and \mathcal{Y}, resp.

- X and Y are (statistically) independent if

$$
\begin{equation*}
p_{X, Y}=p_{X} \cdot p_{Y} \tag{8}
\end{equation*}
$$

One random variable gives no extra information about the other one.

- The random variables X and Y in the first example are independent:

$$
\begin{aligned}
& p_{X, Y}(0,0)=0.06=0.20 \cdot 0.30=p_{X}(0) p_{Y}(0) \\
& p_{X, Y}(0,1)=0.14=0.20 \cdot 0.70=p_{X}(0) p_{Y}(1) \\
& p_{X, Y}(1,0)=0.24=0.80 \cdot 0.30=p_{X}(1) p_{Y}(0) \\
& p_{X, Y}(1,1)=0.56=0.80 \cdot 0.70=p_{X}(1) p_{Y}(1)
\end{aligned}
$$

Contents

Probabilities
Graph Concepts
Belief Networks

Conditional

Independence
Markov Equivalence

Proposition

Given random variables X and Y over \mathcal{X} and \mathcal{Y}, resp.
The variables X and Y are independent iff for all $x \in \mathcal{X}$ and $y \in \mathcal{Y}$ with $p_{Y}(y)>0$,

$$
\begin{equation*}
p_{X \mid Y}(x \mid y)=p_{X}(x) . \tag{9}
\end{equation*}
$$

Proof.

■ Let X and Y be independent. Then

$$
p_{X}(x) p_{Y}(y)=p_{X, Y}(x, y)=p_{X \mid Y}(x \mid y) p_{Y}(y) \text { and so }
$$ $p_{X \mid Y}(x \mid y)=p_{X}(x)$ since $p_{Y}(y)>0$.

- Conversely, let $p_{X \mid Y}(x \mid y)=p_{X}(x)$ for all states $x \in \mathcal{X}$ and $y \in \mathcal{Y}$ with $p_{Y}(y)>0$. Since $p_{X, Y}(x, y)=p_{X \mid Y}(x \mid y) p_{Y}(y)$, we have $p_{X, Y}(x, y)=p_{X}(x) p_{Y}(y)$.

Contents

Probabilities
Graph Concepts
Belief Networks
Conditional
Independence
Markov
Equivalence
Using R

Observation

Given random variables X, Y, and Z with joint probability function $p_{X, Y, Z}$.
The joint probability distribution $p_{X, Y, Z}$ factors as follows,

$$
\begin{equation*}
p_{X, Y, Z}=p_{X \mid Y, Z} p_{Y \mid Z} p_{Z}, \tag{10}
\end{equation*}
$$

since

$$
\begin{equation*}
p_{X, Y, Z}=p_{X \mid Y, Z} p_{Y, Z} \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
p_{Y, Z}=p_{Y \mid Z} p_{Z} . \tag{12}
\end{equation*}
$$

Contents

Probabilities
Graph Concepts
Belief Networks
Conditional
Independence
Markov
Equivalence
Using R

Proposition

Given random variables X_{1}, \ldots, X_{n}.
The joint probability function $p_{X_{1}, \ldots, X_{n}}$ is given by

$$
\begin{equation*}
p_{X_{1}, X_{2}, \ldots, X_{n}}=\prod_{i=1}^{n} p_{X_{i} \mid X_{i+1}, \ldots, X_{n}} \tag{13}
\end{equation*}
$$

Proof.
We have

$$
p_{X_{1}, X_{2}, \ldots, X_{n}}=p_{X_{1} \mid X_{2}, \ldots, X_{n}} p_{X_{2}, \ldots, X_{n}} .
$$

By induction, the result follows.

Contents

Probabilities
Graph Concepts
Belief Networks
Conditional
Independence
Markov Equivalence

Conditional Independence

Given random variables X, Y, and Z over state sets \mathcal{X}, \mathcal{Y}, and \mathcal{Z}, resp.
The variables X and Y are conditionally independent given Z, written

$$
\begin{equation*}
X \perp Y \mid Z \tag{14}
\end{equation*}
$$

if for all $(x, y, z) \in \mathcal{X} \times \mathcal{Y} \times \mathcal{Z}$,

$$
\begin{equation*}
p_{X, Y, Z}(x, y, z)=p_{X \mid Z}(x \mid z) p_{Y \mid Z}(y \mid z) p_{Z}(z) . \tag{15}
\end{equation*}
$$

Contents
Probabilities
Graph Concepts
Belief Networks

Conditional

Independence

Markov Equivalence Using R

Proposition

Two random variables X and Y are conditionally independent given the random variable Z iff for all $(x, y, z) \in \mathcal{X} \times \mathcal{Y} \times \mathcal{Z}$ with $p_{Y \mid Z}(y \mid z)>0$ and $p_{Z}(z)>0$,

$$
\begin{equation*}
p_{X \mid Y, Z}(x \mid y, z)=p_{X \mid Z}(x \mid z) . \tag{16}
\end{equation*}
$$

Proof.

We have

$$
p_{X, Y, Z}(x, y, z)=p_{X \mid Y, Z}(x \mid y, z) p_{Y \mid Z}(y \mid z) p_{Z}(z) .
$$

The variables X and Y are conditionally independent given Z iff

$$
p_{X, Y, Z}(x, y, z)=p_{X \mid Z}(x \mid z) p_{Y \mid Z}(y \mid z) p_{Z}(z) .
$$

Since $p_{Y \mid Z}(y \mid z)>0$ and $p_{Z}(z)>0$, we have $p_{X \mid Y, Z}(x \mid y, z)=p_{X \mid Z}(x \mid z)$.

Contents
Probabilities
Graph Concepts
Belief Networks

Conditional

Independence

Markov Equivalence

Proposition

Two random variables X and Y are conditionally independent given the random variable Z iff for all $(x, y, z) \in \mathcal{X} \times \mathcal{Y} \times \mathcal{Z}$ with $p_{Z}(z)>0$,

$$
\begin{equation*}
p_{X, Y \mid Z}(x, y \mid z)=p_{X \mid Z}(x \mid z) p_{Y \mid Z}(y \mid z) . \tag{17}
\end{equation*}
$$

Proof.
We have

$$
p_{X, Y, Z}(x, y, z)=p_{X, Y \mid Z}(x, y \mid z) p_{Z}(z) .
$$

The variables X and Y are conditionally independent given Z iff

$$
p_{X, Y, Z}(x, y, z)=p_{X \mid Z}(x \mid z) p_{Y \mid Z}(y \mid z) p_{Z}(z) .
$$

Since $p_{Z}(z)>0$, we have

$$
p_{X, Y \mid Z}(x, y \mid z)=p_{X \mid Z}(x \mid z) p_{Y \mid Z}(y \mid z) .
$$

Coin Experiment

Given random variables X and Y both over state set $\{h, t\}$ denoting the outcome of first and second throwing of fair coin, resp.

- Suppose there is no dependency in the throwing, i.e, the variables X and Y are independent,

$$
p_{X, Y}=p_{X} p_{Y}
$$

- Let random variable Z over $\{0,1,2\}$ denotes the number of heads obtained in both throwings.
- Claim that the variables X and Y are not conditionally independent given Z.

Soft Computing

K.-H.

Contents

Probabilities
Graph Concepts
Belief Networks
Conditional Independence

Coin Experiment (Cont'd)

The variables X and Y are not conditionally independent given Z.

Proof.

- By definition, $p_{X, Y \mid Z}(h, h \mid 1)=0$.
- By definition, $p_{X \mid Z}(h \mid 1)=\frac{p_{X, Z}(h, 1)}{p_{Z}(1)}$.

■ We have

$$
p_{X, Z}(h, 1)=p_{X, Y}(h, t)=p_{X}(h) p_{Y}(t)=\frac{1}{2^{2}}=\frac{1}{4}
$$

- We have

$$
p_{Z}(1)=p_{X}(h) p_{Y}(t)+p_{X}(t) p_{Y}(h)=\frac{1}{2^{2}}+\frac{1}{2^{2}}=\frac{1}{2} .
$$

■ So $p_{X \mid Z}(h \mid 1)=\frac{1}{2}$ and by symmetry $p_{Y \mid Z}(h \mid 1)=\frac{1}{2}$.

- Thus $p_{X \mid Z}(h \mid 1) p_{Y \mid Z}(h \mid 1)>0$, but $p_{X, Y \mid Z}(h, h \mid 1)=0$.

```
Soft Computing
    K.-H.
    Zimmermann
Contents
Probabilities
Graph Concepts
Belief Networks
Conditional
Independence
Markov
Equivalence
```


Graph Concepts

```
- Directed and undirected graphs
- Graph data
- Trails and paths
- Connected and complete graphs
```

Contents
Probabilities
Graph Concepts
Belief Networks
Conditional
Independence
Markov Equivalence

Using R

Graph Definition (Classical)

An undirected graph $G=(V, E)$ is a pair with
■ V finite node set and

- E edge set with $E \subseteq\binom{V}{2}$,
where $\binom{V}{2}$ denotes the set of all 2 -subsets of V.
An edge $\{u, v\}$ in G is denoted by $u-v$.

Example

Graph Concepts

- A directed graph or digraph $G=(V, E)$ is a pair with

■ V finite node set and
■ E edge set with $E \subseteq(V \times V) \backslash\{(v, v) \mid v \in V\}$.
The edges are ordered pairs of distinct nodes.
■ Let $(u, v) \in E$ be an edge:
$\square(u, v)$ undirected if also $(v, u) \in E$, written $u-v$.
■ (u, v) directed if $(v, u) \notin E$, written $u \rightarrow v$.
Write $u \cdots v$ if there is an edge of some type between u and v.

- Let G be a graph:
- G undirected if all edges in G are undirected.

■ G directed (or digraph) if all edges in G are directed.

Soft Computing

Contents

Probabilities
Graph Concepts
Belief Networks
Conditional
Independence
Markov Equivalence

Example

The figure shows graph, undirected graph, and directed graph (digraph):

Neighborhood

Let $G=(V, E)$ be a graph and $u, v, w, x \in V$.

- u parent of v if $(u, v) \in E$. The parent set of v is

$$
\begin{equation*}
\Pi(v)=\{u \in V \mid(u, v) \in E\} . \tag{18}
\end{equation*}
$$

- w child of v if $(v, w) \in E$. The set of children of v is

$$
\begin{equation*}
\Gamma(v)=\{w \in V \mid(v, w) \in E\} . \tag{19}
\end{equation*}
$$

- x neighbor of v if x parent or child of v. The set of neighbors of v is

$$
\begin{equation*}
N(v)=\Pi(v) \cup \Gamma(v) . \tag{20}
\end{equation*}
$$

Soft Computing

Contents

Probabilities
Graph Concepts
Belief Networks
Conditional
Independence

Markov

Equivalence
Using R

Example

Given the digraph

The parent of e are b, d, the children of a are b, d, and the neighbors of b are a, c, e.

Contents

Probabilities
Graph Concepts Belief Networks

Conditional Independence

Subgraphs
Let $G=(V, E)$ be a graph and U be a subset of V.

- $G_{U}=\left(U, E_{U}\right)$ is a subgraph of G if $E_{U} \subseteq E \cap(U \times U)$.

The edges in G_{U} are edges between nodes of U in G.
■ If $E_{U}=E \cap(U \times U)$, then $G_{U}=\left(U, E_{U}\right)$ is the subgraph induced by U.
An induced subgraph G_{U} contains an edge $(u, v), u, v \in U$, iff (u, v) is an edge in G.

Soft Computing

Contents

Probabilities
Graph Concepts
Belief Networks
Conditional
Independence
Markov
Equivalence

Example

The figure shows graph, subgraph, and induced subgraph.

Contents
Probabilities
Graph Concepts Belief Networks

Conditional Independence

Trails, Paths, and Cycles

Let $G=(V, E)$ be a graph and u, v be distinct nodes in G.

- A trail in G of length $k \geq 1$ between u and v is a sequence of nodes $w=\left(w_{0}, \ldots, w_{k}\right)$ such that $w_{0}=u, w_{k}=v$, and $w_{i} \cdots w_{i+1}$ for each $0 \leq i \leq k-1$.
- A undirected path in G of length $k \geq 1$ from u and v is a trail $w=\left(w_{0}, \ldots, w_{k}\right)$ in G such that $w_{0}=u, w_{k}=v$, and $w_{i}-w_{i+1}$ for each $0 \leq i \leq k-1$.
- A directed path in G of length $k \geq 1$ from u and v is a trail $w=\left(w_{0}, \ldots, w_{k}\right)$ in G such that $w_{0}=u, w_{k}=v$, and $w_{i} \rightarrow w_{i+1}$ for each $0 \leq i \leq k-1$.
- A (directed, undirected) cycle in G is a (directed, undirected) path $w=\left(w_{0}, \ldots, w_{k}\right)$ in G with $w_{0}=w_{k}$.
Soft Computing
Contents
Probabilities
Graph Concepts
Belief Networks
Conditional
Independence
Markov
Equivalence

Example

Consider the graph

- Trails: $(a, b, c),(a, d, e, b, c)$
- Directed path: (a, b, e)
- Undirected path: (a, d, e)

Anchestors and Descendants

Let $G=(V, E)$ be a graph and u, v be distinct nodes in G.

- The node v is a descendant of node u if there is a directed path from u to v, but no directed path from v to u.
- The node v is an ancestor of node u if u is a descendant of v.
- Consider the graph

The descendants of a are b, c, d, e, the ancestors of c are a, b.

Contents

Probabilities
Graph Concepts
Belief Networks
Conditional
Independence
Markov Equivalence

Using R

DAG

- A graph $G=(V, E) G$ is a directed acyclic graph (DAG) if G is a digraph and there are no directed cycles in G.
- The figure shows DAG and digraph with cycle:


```
Soft Computing
    K.-H.
    Zimmermann
Contents
Probabilities
Graph Concepts
```

Belief Networks
Conditional
Independence
Markov
Equivalence

Belief Networks

- Ordering of nodes in DAG
- Introduction of belief network

Topological Sorting

Given DAG $G=(V, E)$ with node set $V=\left\{v_{1}, \ldots, v_{n}\right\}$.
There is an ordering $\left(v_{\sigma(1)}, \ldots, v_{\sigma(n)}\right)$ of the nodes of G such that for each $1 \leq i \leq n$, the parent set of the node $v_{\sigma(i)}$ is a subset of $\left\{v_{\sigma(1)}, \ldots, v_{\sigma(i-1)}\right\}$.

Proof.

The DAG G is cycle-free and thus has at least one node, say $v_{j_{1}}$, which has no children (case $k=1$).
For each $k=1, \ldots, n$, consider the subgraph of G with $n-k+1$ nodes. Take a node which has no children. Let $v_{j_{k}}$ be such a node and put $\sigma(n-k+1)=j_{k}$. Remove the node $v_{j_{k}}$ and all corresponding edges. This provides a subgraph which is a DAG with $n-k$ nodes. Continuing in this way gives the required ordering.

Soft Computing

K.-H.

Zimmermann

Contents

Probabilities
Graph Concepts
Belief Networks
Conditional
Independence
Markov Equivalence

Using R

Example

The DAG below gives several orderings satisfying the above condition such as

$$
\left(v_{3}, v_{2}, v_{1}, v_{4}, v_{5}, v_{6}\right)
$$

Or

$$
\left(v_{3}, v_{2}, v_{1}, v_{4}, v_{6}, v_{5}\right)
$$

Add nodes from behind which have no children in the shrinking DAG.

Belief Network

Given DAG $G=(V, E)$ with nodes (random variables) X_{1}, \ldots, X_{n}, and collection p of conditional probability distributions of the random variables.
(G, p) is a belief network if the following holds:

- For each node X_{i} without parent, there is a probability distribution $p_{X_{i}}$.
- For each node $X_{i} \in V$ with parent set $\Pi_{i} \neq \emptyset$, there is a conditional probability distribution $p_{X_{i} \mid \Pi_{i}}$.
- The joint probability function $p_{X_{1}, \ldots, X_{n}}$ factors according to the (spatial) Markov property,

$$
\begin{equation*}
p_{X_{1}, \ldots, X_{n}}=\prod_{i=1}^{n} p_{X_{i} \mid \Pi_{i}} \tag{21}
\end{equation*}
$$

Soft Computing
 K.-H.
 Contents
 Probabilities
 Graph Concepts

Belief Networks
Conditional
Independence
Markov
Equivalence
Using R

Example

Consider the belief network by the DAG below.

- The random variables X_{1}, \ldots, X_{4} have parent sets $\Pi\left(X_{1}\right)=\emptyset, \Pi\left(X_{2}\right)=\left\{X_{1}\right\}, \Pi\left(X_{3}\right)=\left\{X_{1}\right\}$, and $\Pi\left(X_{4}\right)=\left\{X_{2}, X_{3}\right\}$.
- Factoring of joint probability function:

$$
\begin{aligned}
p_{X_{1}, X_{2}, X_{3}, X_{4}} & =p_{X_{1}} \cdot p_{X_{2} \mid X_{1}} \cdot p_{X_{3} \mid X_{2}, X_{1}} \cdot p_{X_{4} \mid X_{3}, X_{2}, X_{1}}, \text { by }(13) \\
& =p_{X_{1}} \cdot p_{X_{2} \mid X_{1}} \cdot p_{X_{3} \mid X_{1}} \cdot p_{X_{4} \mid X_{3}, X_{2}}, \text { by }(21) .
\end{aligned}
$$

Contents

Probabilities
Graph Concepts
Belief Networks

Conditiona

Independence
Markov
Equivalence
Using R

Example: Hidden Markov Model

Belief network with DAG:

Joint probability distribution $(n=4)$:

$$
\begin{aligned}
& p_{X_{1}, \ldots, X_{4}, Y_{1}, \ldots, Y_{4}}= \\
& \quad p_{X_{1}} p_{Y_{1} \mid X_{1}} p_{X_{2} \mid X_{1}} p_{Y_{2} \mid X_{2}} p_{X_{3} \mid X_{2}} p_{Y_{3} \mid X_{3}} p_{X_{4} \mid X_{3}} p_{Y_{4} \mid X_{4}} .
\end{aligned}
$$

Soft Computing
K.-H.

Zimmermann

Contents

Probabilities
Graph Concepts
Belief Networks
Conditional Independence

Markov Equivalence

Using R

*Belief Networks - Free Parameters

Given belief network with random variables X_{1}, \ldots, X_{n} over common state set $\{0,1\}$.

- The non-factored joint probability function $p_{X_{1}, \ldots, X_{n}}$ has $2^{n}-1$ free parameters.
- The factored joint probability function $p_{X_{1}, \ldots, X_{n}}$ in (21) has

$$
\begin{equation*}
2^{u\left(X_{1}\right)}+\ldots+2^{u\left(X_{n}\right)} \tag{22}
\end{equation*}
$$

free parameters, where $u\left(X_{i}\right)$ is the number of parents of X_{i}.

Example

Take random variable X :

- X has no parent (1 free parameter): $p_{X}(0)=1-p_{X}(1)$.
- X has one parent Y (2 free parameters): $p_{X \mid Y}(0 \mid 0)=1-p_{X \mid Y}(1 \mid 0)$ and $p_{X \mid Y}(0 \mid 1)=1-p_{X \mid Y}(1 \mid 1)$.
- $\quad X$ has two parents Y, Z (4 free parameters): $p_{X \mid Y, Z}(0 \mid 0,0)=1-p_{X \mid Y, Z}(1 \mid 0,0)$, $p_{X \mid Y, Z}(0 \mid 0,1)=1-p_{X \mid Y, Z}(1 \mid 0,1) p_{X \mid Y, Z}(0 \mid 1,0)=1-p_{X \mid Y, Z}(1 \mid 1,0)$, and $p_{X \mid Y, Z}(0 \mid 1,1)=1-p_{X \mid Y, Z}(1 \mid 1,1)$.

Contents
Probabilities
Graph Concepts
Belief Networks
Conditional Independence

Markov Equivalence

Using R

Example: Printer Troubleshooting (Microsoft Windows 95)

The belief network below has 26 nodes. Suppose all random variables have binary state sets. Then the joint probability distribution has $2^{26}-1=67.108 .863$ parameters. As a belief network, by (22), the number of parameters is $17 \cdot 1+0 \cdot 2^{1}+4 \cdot 2^{2}+2 \cdot 2^{3}+3 \cdot 2^{4}=97$. Impressive!

Soft Computing
 Example: Soft XOR Gate

K.-H.

Contents
Probabilities
Graph Concepts
Belief Networks
Conditional
Independence
Markov
Equivalence
Hard version and soft version of XOR gate:

X	Y	$Z=X \oplus Y$		X	Y	$p_{Z \mid X, Y}(1 \mid x, y)$
0	0	0		0	0	0.10
0	1	1		0	1	0.98
1	0	1		1	0	0.80
1	1	0		1	1	0.20

Consider the belief network

$$
\begin{equation*}
X \longrightarrow Z<Y \tag{23}
\end{equation*}
$$

with priors $p_{X}(1)=0.60$ and $p_{Y}(1)=0.80$. Then the joint probability distribution is

$$
p_{X, Y, Z}=p_{X} p_{Y} p_{Z \mid X, Y}
$$

Claim that the random variables X and Y are not conditionally independent given Z.

Soft Computing

K.-H.

Contents

Probabilities
Graph Concepts

Example: Soft XOR Gate (Cont'd)

Joint probability distribution

$$
\begin{aligned}
& p_{X, Y, Z}(0,0,0)=0.40 \cdot 0.20 \cdot 0.90=0.072, \\
& p_{X, Y, Z}(0,0,1)=0.40 \cdot 0.20 \cdot 0.10=0.008, \\
& p_{X, Y, Z}(0,1,0)=0.40 \cdot 0.80 \cdot 0.02=0.0064, \\
& p_{X, Y, Z}(0,1,1)=0.40 \cdot 0.80 \cdot 0.98=0.3136, \\
& p_{X, Y, Z}(1,0,0)=0.60 \cdot 0.20 \cdot 0.20=0.024, \\
& p_{X, Y, Z}(1,0,1)=0.60 \cdot 0.20 \cdot 0.80=0.096, \\
& p_{X, Y, Z}(1,1,0)=0.60 \cdot 0.80 \cdot 0.80=0.384, \\
& p_{X, Y, Z}(1,1,1)=0.60 \cdot 0.80 \cdot 0.20=0.096 .
\end{aligned}
$$

Compute $p_{X \mid Z}(1 \mid 0) \cdot p_{Y \mid Z}(1 \mid 0)$ and $p_{X, Y \mid Z}(1,1 \mid 0)$.

Soft Computing

K.-H.

Zimmermann

Contents

Probabilities
Graph Concepts
Belief Networks

Conditional

Independence
Markov Equivalence

Using R

Example: Soft XOR Gate (Cont'd)

By marginalization,

$$
\begin{aligned}
p_{X, Z}(1,0) & =\sum_{y} p_{X, Y, Z}(1, y, 0)=0.408 \\
p_{Y, Z}(1,0) & =\sum_{x} p_{X, Y, Z}(x, 1,0)=0.3904 \\
p_{Z}(0) & =\sum_{x, y} p_{X, Y, Z}(x, y, 0)=0.4864
\end{aligned}
$$

Then

$$
\begin{aligned}
p_{X \mid Z}(1 \mid 0) & =\frac{p_{X, Z}(1,0)}{p_{Z}(0)}=\frac{0.408}{0.4864}=0.8389, \\
p_{Y \mid Z}(1 \mid 0) & =\frac{p_{Y, Z}(1,0)}{p_{Z}(0)}=\frac{0.3904}{0.4864}=0.8026, \\
p_{X, Y \mid Z}(1,1 \mid 0) & =\frac{p_{X, Y, Z}(1,1,0)}{p_{Z}(0)}=\frac{0.384}{0.4864}=0.7895 .
\end{aligned}
$$

We have $p_{X \mid Z}(1 \mid 0) \cdot p_{Y \mid Z}(1 \mid 0)=0.6884 \neq 0.7895=p_{X, Y \mid Z}(1,1 \mid 0)$. Thus the random variables X and Y are not conditionally independent given Z.

```
Soft Computing
    K.-H.
Zimmermann
Contents
Probabilities
Graph Concepts
```


Conditional Independence

```
- Basic connections
- D-separation
- Markov blankets
- Faithful belief networks
```


Soft Computing

K.-H.

Zimmermann

Contents
Probabilities
Graph Concepts
Belief Networks
Conditional
Independence
Markov
Equivalence
Using R

Serial Connection

- A serial connection of three random variables X_{1}, X_{2}, and X_{3} has the form

The variable X_{2} is serial or the intermediate cause.

- As a belief network, the joint probability distribution factors as

$$
\begin{equation*}
p_{X_{1}, X_{2}, X_{3}}=p_{X_{1}} p_{X_{2} \mid X_{1}} p_{X_{3} \mid X_{2}} \tag{24}
\end{equation*}
$$

Thus by Bayes' rule,

$$
\begin{align*}
& p_{X_{1}, X_{3} \mid X_{2}}=\frac{p_{X_{1}, X_{2}, X_{3}}}{p_{X_{2}}}=\frac{\overbrace{{p_{1}}_{1} p_{X_{2} \mid X_{1}}} p_{X_{3} \mid X_{2}}}{p_{X_{2}}} \tag{25}\\
&=\frac{\overbrace{p_{X_{2}} p_{X_{1} \mid X_{2}}}}{p_{X_{2}}} p_{X_{3} \mid X_{2}} \\
&=p_{X_{1} \mid X_{2}} \cdot p_{X_{3} \mid X_{2}} .
\end{align*}
$$

By (17), X_{1} and X_{3} are conditionally independent given X_{2}.

Serial Connection - Example

In the belief network below, social environment S influences education E which in turn affects job J. Then social environment and job are conditionally independent given the education.

Diverging Connection

- A diverging connection of three random variables X_{1}, X_{2}, and X_{3} has the form

The variable X_{1} is diverging or the common cause.

- As a belief network, the probability distribution factors as

$$
\begin{equation*}
p_{X_{1}, X_{2}, X_{3}}=p_{X_{1}} p_{X_{2} \mid X_{1}} p_{X_{3} \mid X_{1}} . \tag{26}
\end{equation*}
$$

Thus we obtain

$$
\begin{align*}
p_{X_{2}, X_{3} \mid X_{1}} & =\frac{p_{X_{1}, X_{2}, X_{3}}}{p_{X_{1}}}=\frac{p_{X_{1}} p_{X_{2} \mid X_{1}} p_{X_{3} \mid X_{1}}}{p_{X_{1}}} \\
& =p_{X_{2} \mid X_{1}} p_{X_{3} \mid X_{1}} . \tag{27}
\end{align*}
$$

By (17), X_{2} and X_{3} are conditionally independent given X_{1}.

Contents

Probabilities
Graph Concepts
Belief Networks
Conditional
Independence
Markov
Equivalence
Using R

Diverging Connection - Example

In the belief network below, icy roads I influence the crashing of the drivers A and B. Then the crashing of both A and B is conditionally independent given icy roads.

Converging Connection

- A converging connection of three random variables X_{1}, X_{2}, and X_{3} has the form

The variable X_{1} is converging or the common effect.

- As a belief network, the probability distribution $p_{X_{1}, X_{2}, X_{3}}$ factors as

$$
\begin{equation*}
p_{X_{1}, X_{2}, X_{3}}=p_{X_{2}} p_{X_{3}} p_{X_{1} \mid X_{2}, X_{3}} \tag{28}
\end{equation*}
$$

- The random variables X_{2} and X_{3} may not be conditionally independent given X_{1} - see Soft XOR gate (23).

Converging Connection

In a converging connection,

if X_{1} is unknown, then X_{2} and X_{3} are independent.

Proof.

For all $x_{2} \in \mathcal{X}_{2}$ and $x_{3} \in \mathcal{X}_{3}$,

$$
\begin{aligned}
p_{X_{2}, X_{3}}\left(x_{2}, x_{3}\right) & =\sum_{x_{1} \in \mathcal{X}_{1}} p_{X_{1}, X_{2}, X_{3}}\left(x_{1}, x_{2}, x_{3}\right) \\
& =\sum_{x_{1} \in \mathcal{X}_{1}} p_{X_{2}}\left(x_{2}\right) p_{X_{3}}\left(x_{3}\right) p_{X_{1} \mid X_{2}, X_{3}}\left(x_{1} \mid x_{2}, x_{3}\right) \\
& =p_{X_{2}}\left(x_{2}\right) p_{X_{3}}\left(x_{3}\right) \sum_{x_{1} \in \mathcal{X}_{1}} p_{X_{1} \mid X_{2}, X_{3}}\left(x_{1} \mid x_{2}, x_{3}\right) \\
& =p_{X_{2}}\left(x_{2}\right) p_{X_{3}}\left(x_{3}\right)
\end{aligned}
$$

```
Soft Computing
    K.-H.
    Zimmermann
Contents
Probabilities
Graph Concepts
Belief Networks
Conditional
Independence
Markov
Equivalence
Using R
```


Converging Connection - Example

In the belief network below, rain R and sprinkler S influence the wetness of grass A. If there is no information about the condition of grass A, then R and S are conditionally independent.

Converging Connection

Consider the converging connection

where X_{1} is converging and has descendant X_{4}.
As a belief network, the probability distribution $p_{X_{1}, X_{2}, X_{3}, X_{4}}$ factors as

$$
\begin{equation*}
p_{X_{1}, X_{2}, X_{3}, X_{4}}=p_{X_{2}} p_{X_{3}} p_{X_{1} \mid X_{2}, X_{3}} p_{X_{4} \mid X_{1}} \tag{2}
\end{equation*}
$$

Soft Computing
K.-H.

Zimmermann

Contents
Probabilities
Graph Concepts
Belief Networks
Conditional Independence

Markov

Equivalence
Using R

Converging Connection

If in the above belief network X_{1} and X_{4} are unknown, then X_{2} and X_{3} are independent.

Proof.

For all $x_{2} \in \mathcal{X}_{2}$ and $x_{3} \in \mathcal{X}_{3}$,

$$
\begin{aligned}
& p_{X_{2}, X_{3}}\left(x_{2}, x_{3}\right) \\
& \quad=\sum_{x_{1} \in \mathcal{X}_{1}} \sum_{x_{4} \in \mathcal{X}_{4}} p_{X_{1}, X_{2}, X_{3}, X_{4}}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \\
& \quad=\sum_{x_{1} \in \mathcal{X}_{1}} \sum_{x_{4} \in \mathcal{X}_{4}} p_{X_{2}}\left(x_{2}\right) p_{X_{3}}\left(x_{3}\right) p_{X_{1} \mid X_{2}, X_{3}}\left(x_{1} \mid x_{2}, x_{3}\right) p_{X_{4} \mid X_{1}}\left(x_{4} \mid x_{1}\right) \\
& \quad=p_{X_{2}}\left(x_{2}\right) p_{X_{3}}\left(x_{3}\right) \sum_{x_{1} \in \mathcal{X}_{1}} p_{X_{1} \mid X_{2}, X_{3}\left(x_{1} \mid x_{2}, x_{3}\right) \sum_{x_{4} \in \mathcal{X}_{4}} p_{X_{4} \mid X_{1}}\left(x_{4} \mid x_{1}\right)} \quad=p_{X_{2}}\left(x_{2}\right) p_{X_{3}}\left(x_{3}\right) .
\end{aligned}
$$

More generally, if in a converging connection $X_{2} \rightarrow X_{1} \leftarrow X_{3}$ the converging random variable X_{1} and all its descendants are not instantiated, the variables X_{2} and X_{3} are independent.
K.-H.

Serial and Diverging Connections

Consider the three belief networks

In each case, the joint probability distribution factors as

$$
\begin{equation*}
p_{X_{1}, X_{2}, X_{3}}=p_{X_{1}} p_{X_{2} \mid X_{1}} p_{X_{3} \mid X_{2}} . \tag{30}
\end{equation*}
$$

However, the converging connection is of totally different nature!

Soft Computing

Serial and Diverging Connections

In each case, the joint probability distribution factors as

$$
\begin{equation*}
p_{X_{1}, X_{2}, X_{3}}=p_{X_{1}} p_{X_{2} \mid X_{1}} p_{X_{3} \mid X_{2}} . \tag{31}
\end{equation*}
$$

Proof.

- In the first network,

$$
p_{X_{1}, X_{2}, X_{3}}=p_{X_{1}} p_{X_{2} \mid X_{1}} p_{X_{3} \mid X_{2}}
$$

- In the second network, apply Bayes' rule twice,

$$
\begin{aligned}
p_{X_{1}, X_{2}, X_{3}} & =\overbrace{p_{X_{3}} p_{X_{2} \mid X_{3}}} p_{X_{1} \mid X_{2}}=p_{X_{3} \mid X_{2}} \underbrace{p_{X_{2}} p_{X_{1} \mid X_{2}}} \\
& =p_{X_{3} \mid X_{2}} p_{X_{2} \mid X_{1}} p_{X_{1}} .
\end{aligned}
$$

- In the third network, apply Bayes' rule,

$$
p_{X_{1}, X_{2}, X_{3}}=\overbrace{p_{X_{2}} p_{X_{1} \mid X_{2}}} p_{X_{3} \mid X_{2}}=p_{X_{1}} p_{X_{2} \mid X_{1}} p_{X_{3} \mid X_{2}}
$$

D-Separation

Given DAG $G=(V, E)$ with nodes labeled by random variables, $X, Y \in V$ and $S \subseteq V$ with $X, Y \notin S$.

- A trail τ between X and Y is blocked by S if there is a node Z on the trail such that one of the following holds:
- Z is a converging node along the trail τ and neither Z nor any of its descendents belong to S, or
- Z is a serial or diverging node along the trail τ and Z belongs to S.

Then the node Z is blocking the trail τ.

- The nodes X and Y are d-separated or blocked by S if all trails between X, Y are blocked by S, written

$$
\begin{equation*}
\left.X \perp Y\right|_{G} S \tag{32}
\end{equation*}
$$

Otherwise, X and Y are d-connected or non-blocked by S.

D-Separation

Consider the three belief networks

In each case, the trail between X_{1} and X_{3} is blocked by $S=\left\{X_{2}\right\}$ and so X_{1} and X_{3} are d-separated by S.

Soft Computing
K.-H.

Zimmermann

D-Separation

Schematic d-separation of X and Y by S with $Z \in S$:

Contents
Probabilities
Graph Concepts
Belief Networks
Conditional
Independence

Markov

Equivalence

Using R

serial

serial diverging
converging

Soft Computing
K.-H.

Contents
Probabilities
Graph Concepts
Belief Networks
Conditional
Independence
Markov
Equivalence
Using R

D-Separation - Example

Consider the DAG below. Let $S=\left\{X_{2}, X_{3}, X_{4}\right\}$.

- X_{1} and X_{6} are d-separated given S; each trail between them has a serial node $\left(X_{2}, X_{3}\right.$ or $\left.X_{4}\right)$ in S.
- X_{5} and X_{6} are d-separated given S; each trail between them contains the diverging node X_{2} in S or a serial node (X_{3} or X_{4}) in S.

D-Separation - Example (Cont'd)

Consider the DAG below. Let $S=\left\{X_{1}, X_{3}\right\}$.

- X_{2} and X_{4} are d-separated given S; each trail between them contains the converging node X_{6} not in S or the diverging node X_{1} in S.

K.-H.

Contents
Probabilities
Graph Concepts
Belief Networks
Conditional
Independence
Markov
Equivalence
Using R
Markov Blanket
■ The Markov blanket of a node X in a DAG G is the set of nodes composed of its parents, its children, and the parents of its children (not X itself).

- In the DAG below, the Markov blanket of X_{3} consists of X_{1} (parent), X_{6} (child), and X_{2}, X_{4} (parents of children).

K.-H.

Markov Blanket

Given a DAG $G=(V, E)$. Let X and Y be nodes in G and S be a subset of nodes not containing X and Y. If S contains the Markov blanket of X, the nodes X and Y are d-separated given S.

Proof.

Let τ be a trail between X and Y.
■ If $X \rightarrow X_{1} \rightarrow X_{2} \ldots$, then $X_{1} \in S$ is a serial node.
■ If $X \leftarrow X_{1} \rightarrow X_{2} \ldots$, then $X_{1} \in S$ is a diverging node.

- If $X \leftarrow X_{1} \leftarrow X_{2} \ldots$, then $X_{1} \in S$ is a serial node.

■ If $X \rightarrow X_{1} \leftarrow X_{2} \ldots$, then $X_{1} \in S$ is a converging node. Since S contains the Markov blanket of X, we have $X_{2} \in S$. The trail may proceed as follows:

■ If $X \rightarrow X_{1} \leftarrow X_{2} \rightarrow X_{3} \ldots$, then X_{2} is a diverging node.
■ If $X \rightarrow X_{1} \leftarrow X_{2} \leftarrow X_{3} \ldots$, then X_{2} is a serial node.
In each case, the trail τ is blocked by S as required.

Contents

Probabilities
Graph Concepts
Belief Networks
Conditional Independence

Markov Equivalence

Using R

D-Separation - Example

Consider the DAG below.

- The Markov blanket of node X_{3} is $S=\left\{X_{1}, X_{2}, X_{4}, X_{6}\right\}$.
- X_{3} and X_{5} (or X_{3} and X_{7}) are d-separated given S.

Contents
Probabilities
Graph Concepts
Belief Networks
Conditional
Independence
Markov
Equivalence
Using R

Conditional Independence and D-Separation

Let (G, p) be a belief network with random variables X_{1}, \ldots, X_{n}. For any three disjoint subsets A, B, and S of $\left\{X_{1}, \ldots, X_{n}\right\}$ if A and B are d-separated given S, then A and B are conditionally independent given S; i.e.,

$$
\begin{equation*}
\left.A \perp B\right|_{G} S \quad \Longrightarrow \quad A \perp B \mid S \tag{33}
\end{equation*}
$$

Conditional independence is purely probabilistic, while d-separation is purely graph-theoretical.

Contents
Probabilities
Graph Concepts
Belief Networks
Conditional Independence

Markov Equivalence

Using R
Conditional Independence and D-Separation - Example Consider the DAG below. Let $S=\left\{X_{1}, X_{3}\right\}$.

- X_{2} and X_{4} are d-separated given S.
- Thus X_{2} and X_{4} are conditionally independent given S.

Contents

Probabilities
Graph Concepts
Belief Networks
Conditional
Independence

Markov

 EquivalenceUsing R

Conditional Independence and D-Separation

A belief network (G, p) with random variables X_{1}, \ldots, X_{n} is faithful if for any three disjoint subsets A, B, and S of $\left\{X_{1}, \ldots, X_{n}\right\}$,

$$
\left.A \perp B\right|_{G} S \quad \Longleftrightarrow \quad A \perp B \mid S
$$

A faithful belief network is also called a Bayesian network.

The design of Bayesian networks requires a good analysis of the probabilistic model.

Contents

Probabilities
Graph Concepts
Belief Networks
Conditional
Independence
Markov
Equivalence
Using R

Causality

- Causality comes into play in belief networks when the model contains no explicit temporal information.
- Causality refer to the connection of one process (cause) with another process (effect) and the second depends on the first.
- A joint probability function $p_{X, Y}$ can be written as $p_{X \mid Y} p_{Y}$; think of Y causes X.
- There are pitfalls, e.g., Simpson's paradox.

Soft Computing

Simpson's Paradox

Consider the belief network of patients with gender (G), male or female, treated by drug (D), yes or no, who recover (R), yes or no.

The joint probability distribution factors as

$$
p_{G, D, R}=p_{R \mid G, D} \cdot p_{D \mid G} \cdot p_{G}
$$

Contents
Probabilities
Graph Concepts Belief Networks

Conditional Independence

Markov Equivalence

Simpson's Paradox (Cont'd)
Sample data:

	Recovered	Not recovered	Rate of recovery
Males			
Given drug	18	12	0.60
Not given drug	7	3	0.70
Females			
Given drug	2	8	0.20
Not given drug	9	21	0.30
Combined			
Given drug	20	20	0.50

Simpson's Paradox (Cont'd)

Does the drug cause increased recovery?

- If males or females are considered separately, the answer is no: $0.60<0.70$ for males and $0.20<0.30$ for females.
- If the gender information is ignored, more people will recover when given the drug than when given not:

$$
\frac{18}{30}<\frac{7}{10} \text { and } \frac{2}{10}<\frac{9}{30}, \text { but } \frac{18+2}{30+10}>\frac{7+9}{10+30} .
$$

Contents
Probabilities
Graph Concepts
Belief Networks
Conditional
Independence
Markov
Equivalence
Using R

Simpson's Paradox (Cont'd)

The model with (causal) link $G \rightarrow D$ is different from the model in which this link is removed:

giving the joint probability distribution

$$
p_{G, D, R}=p_{R \mid G, D} \cdot p_{G} \cdot p_{D}
$$

Causality comes into play in belief networks with no explicit temporal information referring to the connection of one process (cause) with another process (effect).

```
Soft Computing
    K.-H.
    Zimmermann
Contents
Probabilities
Graph Concepts
Belief Networks
Conditional
Independence
Markov
Equivalence
```


Markov Equivalence

```
- Skeleton and immoralities
- Essential graphs

Markov Equivalence
Let \(G=(V, E)\) and \(G^{\prime}=\left(V, E^{\prime}\right)\) be DAGs with node set \(V\).
- \(G \leq G^{\prime}\) means that each pair of nodes \(X, Y\) which is d-separated by a set \(S\) of nodes of \(G\) with \(X, Y \notin S\) is also d-separated by the same set in \(G^{\prime}\).
- \(G\) and \(G^{\prime}\) are Markov equivalent if \(G \leq G^{\prime}\) and \(G^{\prime} \leq G\).
- Markov equivalence is an equivalence relation on the set of DAGs with common node set.

\section*{Markov Equivalence - Example}

Consider the four DAGs


Graph Concepts
Belief Networks
Conditional
Independence


Markov
Equivalence
Using \(R\)


The first three ones are Markov equivalent with \(\left.X_{1} \perp X_{3}\right|_{G} X_{2}\), while the fourth one is not Markov equivalent to the other ones.

\section*{Skeleton and Immoralities}

Let \(G=(V, E)\) be a DAG.
- The skeleton of \(G\) is the (undirected) graph \(G^{u}=\left(V, E^{u}\right)\) resulting from \(G\) by making all edges undirected.
- An immorality in \(G\) is a triple \((u, v, w)\) of three distinct nodes in \(G\) such that \(u \rightarrow v\) and \(w \rightarrow v\), but the edges \(u \rightarrow w\), \(w \rightarrow u\), and \(u-w\) do not belong to \(G\).


\section*{Contents}

Probabilities
Graph Concepts
Belief Networks
Conditional
Independence
Markov Equivalence

Using R

Skeleton and Immoralities - Example
An immorality \((u, v, w)\) and three non-immoralities:


Soft Computing
K.-H.

\section*{Contents}

Probabilities
Graph Concepts
Belief Networks
Conditional
Independence
Markov
Equivalence
Using R

Skeleton and Immoralities - Example
Consider the four DAGs



All DAGs have the same skeleton \(X_{1}-X_{2}-X_{3}\) but only the last one has an immorality ( \(X_{1}, X_{2}, X_{3}\) ).

\section*{Skeleton and Immoralities}

Given DAGs \(G=(V, E)\) and \(G^{\prime}=\left(V, E^{\prime}\right)\) with same skeleton and immoralities. Then for each node \(v \in V\), the Markov blanket of \(v\) in \(G\) is equal to the Markov blanket of \(v\) in \(G^{\prime}\).

\section*{*Proof.}

Let \(u\) be a parent of \(v\) in \(G\). Since \(G\) and \(G^{\prime}\) have the same skeleton, the node \(u\) is a parent or a child of \(v\) in \(G^{\prime}\). Thus \(u\) is in the Markov blanket of \(v\) in \(G^{\prime}\). The same holds if \(u\) is a child of \(v\) in \(G\).
Let \(u\) be a parent of a child \(w\) of \(v\) in \(G\). If \(u\) and \(v\) are connected by a directed edge, we are back in the above case. Otherwise, we have an immorality \(v \rightarrow w \leftarrow u\) in \(G\). Since \(G\) and \(G^{\prime}\) have the same immoralities, \(v \rightarrow w \leftarrow u\) is also an immorality in \(G^{\prime}\). Hence, the node \(u\) lies also in the Markov blanket of \(v\) in \(G^{\prime}\).

\section*{Markov Equivalence}

Two DAGs have the same skeleton and the same immoralities iff they are Markov equivalent.
*Proof.
Let \(G\) and \(G^{\prime}\) be two DAGs with the same skeleton and immoralities. Then for any two nodes \(u\) and \(v\) and any subset \(S\) of nodes containing the Markov blanket of \(v\) but not containing \(v\) and \(u\), we have that \(u\) and \(v\) are d-separated in \(G\) given \(S\) if and only if \(u\) and \(v\) are d-separated in \(G^{\prime}\) given \(S\). It follows that \(G\) and \(G^{\prime}\) have the same independence structure and hence are Markov equivalent.
Conversely, if two DAGs have the same d-dependence structure, they have the same skeleton and the same immoralities.

Soft Computing
K.-H.

Zimmermann

\section*{Contents}

Probabilities
Graph Concepts

\section*{Belief Networks}

\section*{Conditional}

Independence
Markov
Equivalence

Markov Equivalence - Example
Consider the four DAGs


\section*{Soft Computing}
K.-H.

Zimmermann

Contents
Probabilities
Graph Concepts
Belief Networks
Conditional
Independence
Markov
Equivalence
Using \(R\)

\section*{Markov Equivalence - Example (Cont'd)}

All DAGs have the skeleton

and they have the immorality \((v, x, w)\) in common.
- The DAGs \(G_{1}, G_{2}\), and \(G_{3}\) have no further immoralities and so are Markov equivalent.
- The DAG \(G_{4}\) has an additional immorality \((v, u, w)\) and so is not Markov equivalent to the other ones.

\section*{Essential Graphs}

The essential graph of a DAG \(G\) is a graph \(G^{*}\) such that
- \(G\) and \(G^{*}\) have same skeleton.
- An edge in \(G^{*}\) is directed if it is directed with the same orientation in each DAG which is Markov equivalent to \(G\). Otherwise, the edge is undirected. The directed edges in \(G^{*}\) are the essential edges of \(G\).

\section*{Soft Computing \\ Essential Graphs - Example}

\section*{Consider the eight digraphs}

\section*{Contents}

Probabilities
Graph Concepts
Belief Networks

\section*{Conditional}

Independence
Markov
Equivalence


Soft Computing
K.-H.

Zimmermann

\section*{Contents}

Probabilities
Graph Concepts
Belief Networks

\section*{Conditional}

Independence
Markov
Equivalence
Using R

\section*{Essential Graphs - Example (Cont'd)}


\section*{Essential Graphs - Example (Cont'd)}
- All digraphs have the same skeleton and share the immorality \((v, x, w)\).

■ The directed edges \(v \rightarrow x\) and \(w \rightarrow x\) are essential in \(G_{1}\).
- The other three edges of \(G_{1}\) can be oriented in \(2^{3}=8\) possible ways.
- From these eight digraphs, only five are acyclic (i.e., \(G_{1}, G_{2}, G_{3}, G_{4}, G_{8}\) ) and from these five digraphs, only three (i.e., \(G_{1}, G_{2}, G_{3}\) ) have the same immorality as in \(G_{1}\) and no further one.
- The Markov-equivalence class of \(G_{1}\) is \(\left\{G_{1}, G_{2}, G_{3}\right\}\).
- The directed edge \(u \rightarrow x\) occurs in each member of the Markov-equivalence class of \(G_{1}\) and so is essential too.

\section*{Contents}

Probabilities
Graph Concepts

\section*{Essential Graphs - Example (Cont'd)}

\section*{Essential graph of \(G_{1}\) :}

\section*{Belief Networks}

Conditional
Independence
Markov
Equivalence
Using R


\section*{Belief Networks in R}

The package bnlearn is an \(R\) library (2009) for Bayesian networks. The library is loaded by the command
> library(bnlearn)
A graph structure (bn object) can be generated in three different ways:

■ edge (arc) set of edge-induced graph,
- adjacency matrix, and
- model formula.

Moreover, random graph structures can be created.
```

Soft Computing
K.-H.
Zimmermann
Contents
Probabilities
Graph Concepts
Belief Networks
Conditional
Independence
Markov
Equivalence
Using R

```

\section*{Graph Generation}
```

Generation of an empty graph with a given node set:
> e = empty.graph(LETTERS[1:6])
> class(e)
[1] "bn"
$>e$
Random/Generated Bayesian network model:
[A] [B] [C] [D] [E] [F]
nodes: 6
arcs: 0
undirected arcs: 0
directed arcs: 0
average markov blanket size: 0.00
average neighborhood size: 0.00
average branching factor: 0.00
generation algorithm: Empty
Multiple empty graphs can be specified by the num argument.

```

\section*{Contents}

Probabilities
Graph Concepts
Belief Networks
Conditional
Independence
Markov
Equivalence
Using R

\section*{Graph Generation}

Generation of graph structure from an edge set:
```

> arc.set = matrix(c("A", "B", "A", "C", "D", "C"),

+ ncol = 2, byrow = TRUE,
+ dimnames = list(NULL, c("from", "to")))
> arc.set
from to
[1,] "A" "B"
[2,] "A" "C"
[3,] "D" "C"

```

\section*{Graph Generation}

The created arc set can be assigned to a bn object:
\(>\operatorname{arcs}(e)=\operatorname{arc} . s e t\)
> e
Random/Generated Bayesian network model:

\section*{[A] [D] [E] [F][B|A][C|A:D]}
nodes: 6
arcs: 3
undirected arcs: 0
directed arcs: 3
average markov blanket size: 1.33
average neighborhood size: 1.00
average branching factor: 0.50
generation algorithm: Empty
Undirected arcs can be specified by including arcs in both directions.

Contents
Probabilities
Graph Concepts
Belief Networks
Conditional
Independence
Markov
Equivalence
Using R

\section*{Graph Generation}

Generation of graph structure by using an adjacency matrix:
> adj = matrix(OL, ncol=6, nrow = 6,
+ dimnames = list(LETTERS[1:6], LETTERS[1:6]))
> adj["A", "B"] = 1L
> adj["A", "C"] = 1L
> adj["D", "C"] = 1L
> adj
A B C D E F
A 011000
B 000000
C 000000
D 001000
E 000000
F 000000

Contents
Probabilities
Graph Concepts
Belief Networks
Conditional Independence

Markov Equivalence

Using R

\section*{Graph Generation}

The generated arc set can be assigned to a bn object:
```

> amat(e) = adj
> e
Random/Generated Bayesian network
model:
[A] [D] [E] [F][B|A] [C|A:D]
nodes: 6
arcs:
3
undirected arcs: 0
directed arcs: 3
average markov blanket size:
1.33
average neighborhood size: 1.00
average branching factor:
generation algorithm:
0.50
Empty

```

\section*{Graph Generation}

Contents
Probabilities
Graph Concepts
Belief Networks
Conditional Independence

Markov Equivalence

Using R

Generation of a graph structure by a model formula:
> model2network(" [A] [B] [C|A:B][D|C] [E|C:D] [F|A:B:C]") Random/Generated Bayesian network model:
\([A][B][C \mid A: B][D \mid C][E \mid C: D][F \mid A: B: C]\)
nodes:
6
arcs: 8
undirected arcs: 0
directed arcs: 8
average markov blanket size: \(\quad 3.00\)
average neighborhood size: 2.67
average branching factor: 1.33 generation algorithm: Empty

\section*{Graph Generation}

Generation of a graph structure using the empty (or an existing) graph:
> e = empty.graph(LETTERS[1:6])
> modelstring(e) = "[A][B|A][C|B][D|C][E|D][F|E]"
\(>e\)
Random/Generated Bayesian network model:
[A] [B|A] [C|B][D|C][E|D][F|E] nodes:6

arcs: ..... 5
undirected arcs: ..... 0
directed arcs: ..... 5
average markov blanket size: ..... 1.67
average neighborhood size: ..... 1.67
average branching factor: ..... 0.83
generation algorithm:

Contents
Probabilities
Graph Concepts
Belief Networks
Conditional Independence

Markov Equivalence

Using R

\section*{Graph Generation}

Generation of a random graph from an ordered node set. The arcs are sampled independently with a given probability of inclusion.
```

> g = random.graph(LETTERS[1:6], prob = 0.1)
>g
Random/Generated Bayesian network
model:
[A] [B] [C] [E] [D|A:C] [F|B:E]
nodes: 6
arcs: 4
undirected arcs: 0
directed arcs: 4
average markov blanket size: 2.00
average neighborhood size: 1.33
average branching factor: 0.67
generation algorithm: Full Ordering
arc sampling probability:
0.1

```

\section*{Contents}

Probabilities
Graph Concepts
Belief Networks
Conditional
Independence
Markov Equivalence

Using R

\section*{Graph Plotting}

Plotting of a DAG associated with a belief network using the Rgraphviz package:
```

> belief.net = model2network(
$+\quad$ "[B][C][D][F][A|B:C:D][E|A:F]")
> graphviz.plot(belief.net)

```


Contents
Probabilities
Graph Concepts
Belief Networks
Conditional
Independence
Markov Equivalence

Using R

\section*{Graph Information}

Extracting information from a graph structure:
> parents(belief.net, "A")
[1] "B" "C" "D"
> children(belief.net, "A")
[1] "E"
> nbr (belief.net, "A")
[1] "B" "C" "D" "E"
> mb (belief.net, "A")
[1] "B" "C" "D" "E" "F"
> root.nodes(belief.net)
[1] "B" "C" "D" "F"
> leaf.nodes(belief.net)
[1] "E"
```

Soft Computing
K.-H.
Zimmermann
Contents
Belief Network
Learning FOM
Probabilistic
Inference
Viterbi Algorithm
EM Algorithm
* BW Algorithm
CpG Islands
Using R

```

\section*{Part II}

\section*{Hidden Markov Model}

Contents
- Belief network
- Learning conditional probabilities (fully observed and hidden model)
- Probabilistic inference of output marginals

■ Example: Finding CpG islands
■ Using R

Contents
Belief Network
Learning FOM
Probabilistic
Inference
Viterbi Algorithm
EM Algorithm
*BW Algorithm
CpG Islands
Using R

Knowledge
■ Belief network of HMM
- Probabilistic inference
- Learning conditional probability distributions
- Applications of HMM

Skills
- Viterbi algorithm
- EM algorithm
- *Baum-Welch algorithm

\section*{Contents}

Belief Network
Learning FOM
Probabilistic
Inference

\section*{Belief Network}
- Structure of belief network
- Joint probability distribution

■ Example: dishonest casino dealer

\title{
Soft Computing
}

Contents
Belief Network
Learning FOM
Probabilistic
Inference
Viterbi Algorithm
EM Algorithm
*BW Algorithm
CpG Islands
Using \(R\)

Belief Network
Given integer \(n \geq 1\).
- \(X_{1}, \ldots, X_{n}\) random variables over finite state set \(\Sigma\).
- \(Y_{1}, \ldots, Y_{n}\) random variables over finite state set \(\Sigma^{\prime}\).

■ \(\Sigma\) and \(\Sigma^{\prime}\) are the state and output alphabets, resp.
■ Put \(l=|\Sigma|\) and \(l^{\prime}=\left|\Sigma^{\prime}\right|\).
- Random vectors \(X=\left(X_{1}, \ldots, X_{n}\right)\) and \(Y=\left(Y_{1}, \ldots, Y_{n}\right)\) have state sets \(\Sigma^{n}\) and \(\Sigma^{\prime n}\), resp.

\section*{Belief Network}

Belief network \(\left(G_{n}, p\right)\) for \(n=4\) :

Belief Network
Learning FOM
Probabilistic Inference

Viterbi Algorithm
EM Algorithm
*BW Algorithm

\section*{CpG Islands}

Using \(R\)


Joint probability distribution factors w.r.t. the network:
\[
\begin{align*}
p_{X, Y} & =p_{X_{1}, \ldots, X_{4}, Y_{1}, \ldots, Y_{4}}  \tag{35}\\
& =p_{X_{1}} p_{Y_{1} \mid X_{1}} p_{X_{2} \mid X_{1}} p_{Y_{2} \mid X_{2}} p_{X_{3} \mid X_{2}} p_{Y_{3} \mid X_{3}} p_{X_{4} \mid X_{3}} p_{Y_{4} \mid X_{4}}
\end{align*}
\]

\section*{Belief Network}
- Joint probability distribution factors w.r.t. the network:
\[
\begin{align*}
p_{X, Y} & =p_{X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}}  \tag{36}\\
& =p_{X_{1}} p_{Y_{1} \mid X_{1}} p_{X_{2} \mid X_{1}} \ldots p_{X_{n} \mid X_{n-1}} p_{Y_{n} \mid X_{n}}
\end{align*}
\]
- For simplicity, initial distribution \(p_{X_{1}}\) is uniform,
\[
\begin{equation*}
p_{X_{1}}(x)=\frac{1}{l}, \quad x \in \Sigma \tag{37}
\end{equation*}
\]
- The network is homogeneous, i.e.,
- \(p_{X_{i+1} \mid X_{i}}\) for \(1 \leq i \leq n-1\) are all equal, and
- \(p_{Y_{i} \mid X_{i}}\) for \(1 \leq i \leq n\) are all equal.

\section*{Belief Network}
- State transition probabilities
\[
\begin{equation*}
\theta_{x, x^{\prime}}=p_{X_{i+1} \mid X_{i}}\left(x^{\prime} \mid x\right), \quad x, x^{\prime} \in \Sigma, 1 \leq i \leq n-1 \tag{38}
\end{equation*}
\]
- Emission probabilities
\[
\begin{equation*}
\theta_{x, y}^{\prime}=p_{Y_{i} \mid X_{i}}(y \mid x), \quad x \in \Sigma, y \in \Sigma^{\prime}, 1 \leq i \leq n \tag{39}
\end{equation*}
\]
- Joint probability distribution
\[
\begin{align*}
& p_{X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)  \tag{40}\\
& \quad=\frac{1}{l} \theta_{x_{1}, y_{1}}^{\prime} \theta_{x_{1}, x_{2}} \theta_{x_{2}, y_{2}}^{\prime} \theta_{x_{2}, x_{3}} \ldots \theta_{x_{n-1}, x_{n}} \theta_{x_{n}, y_{n}}^{\prime}
\end{align*}
\]

Start with state \(x_{1}\), emit \(y_{1}\), move from \(x_{1}\) to \(x_{2}\), emit \(y_{2}\), move from \(x_{2}\) to \(x_{3}\), emit \(y_{3}\) and so on. At the end, move from \(x_{n-1}\) to \(x_{n}\), emit \(y_{n}\).

\section*{Belief Network - Example}

Dishonest casino dealer tosses fair (F) or loaded (L) coin with outcomes head (h) or tail ( t ).

■ Loaded coin has probability 0.75 to get head and 0.25 to get tail.
- Dealer changes coins with probability 0.1.
- State alphabet \(\Sigma=\{F, L\}\) and emission alphabet \(\Sigma^{\prime}=\{h, t\}\).
- Conditional probabilities
\[
\theta_{F, F}=0.9, \quad \theta_{F, L}=0.1, \quad \theta_{L, F}=0.1, \quad \theta_{L, L}=0.9
\]
and
\[
\theta_{F, h}^{\prime}=0.5, \quad \theta_{F, t}^{\prime}=0.5, \quad \theta_{L, h}^{\prime}=0.75, \quad \theta_{L, t}^{\prime}=0.25
\]

Soft Computing

\section*{Contents}

Belief Network
Learning FOM
Probabilistic
Inference
Viterbi Algorithm
EM Algorithm * BW Algorithm

CpG Islands
Using R

\section*{Belief Network - Example (Cont'd)}

State transition graph of casino model:


\section*{Contents}

\section*{Belief Network}

Learning FOM
Probabilistic Inference

Viterbi Algorithm
EM Algorithm *BW Algorithm CpG Islands

\section*{Belief Network - Example (Cont'd)}

Joint probability distribution
\[
\begin{aligned}
& p_{X_{1}, \ldots, X_{4}, Y_{1}, \ldots, Y_{4}}(F F L F, h t h t) \\
& \quad=\frac{1}{2} \theta_{F, h}^{\prime} \theta_{F, F} \theta_{F, t}^{\prime} \theta_{F, L} \theta_{L, h}^{\prime} \theta_{L, F} \theta_{F, t}^{\prime} \\
& \quad=0.5 \cdot 0.5 \cdot 0.9 \cdot 0.5 \cdot 0.1 \cdot 0.75 \cdot 0.1 \cdot 0.5=0.00042
\end{aligned}
\]

Given a sequence of coin tosses we wish to determine when the dealer has used the biased and fair coins.

\section*{Contents}

\section*{Belief Network}

Learning FOM
Probabilistic
Inference
Viterbi Algorithm
EM Algorithm *BW Algorithm CpG Islands

Using R
*Bernoulli Experiment
Total probability of \(n\) coin tosses (trail) with \(k\) heads,
\[
\begin{equation*}
P\left(S_{n}=k\right)=\binom{n}{k} p^{k}(1-p)^{n-k}, \quad 0 \leq k \leq n, \tag{41}
\end{equation*}
\]
where \(S_{n}=\sum_{i=1}^{n} X_{i}\) and \(X_{i}\) is the binary random variable with success probability \(P\left(X_{i}=1\right)=p\) (head).

\section*{Contents}

Belief Network
Learning FOM
Probabilistic
Inference
*Statistical Hypothesis Testing I
Left-sided test:
- Null hypothesis \(H_{0}: p=p_{0}\)
- Alternative hypothesis \(H_{1}: p<p_{0}\)
- Accept \(H_{0}: A=\{k+1, \ldots, n\}\)
- Reject \(H_{0}: \bar{A}=\{0, \ldots, k\}\)
- Type 1 error: \(P\left(S_{n} \leq k\right) \leq \alpha ; H_{0}\) is rejected but correct.

Contents
Belief Network
Learning FOM
Probabilistic
Inference
Viterbi Algorithm
EM Algorithm
* BW Algorithm

CpG Islands
Using R
*Statistical Hypothesis Testing I - Example
Left-sided test: ideal six-sided die
- Null hypothesis \(H_{0}: p=\frac{1}{6}\)
- Alternative hypothesis \(H_{1}: p<\frac{1}{6}\)
- Accept \(H_{0}: A=\{k+1, \ldots, 50\}\),
- Reject \(H_{0}: \bar{A}=\{0, \ldots, k\}\)
- Type 1 error: \(P\left(S_{50} \leq k\right) \leq 0.05\) gives \(k=3\) (tabulated)
- Sampling \(n=50\) times has given 4 times the outcome 6

■ \(4 \in A\) and so \(H_{0}\) cannot be rejected

\section*{Contents}

Belief Network
Learning FOM
Probabilistic
Inference
Viterbi Algorithm
EM Algorithm
*BW Algorithm
CpG Islands
Using R
*Statistical Hypothesis Testing II
Right-sided test:
- Null hypothesis \(H_{0}: p=p_{0}\)
- Alternative hypothesis \(H_{1}: p>p_{0}\)
- Accept \(H_{0}: A=\{0, \ldots, k\}\)
- Reject \(H_{0}: \bar{A}=\{k+1, \ldots, n\}\)
- Type 1 error: \(P\left(S_{n} \geq k+1\right) \leq \alpha\) or \(P\left(S_{n} \leq k\right) \geq 1-\alpha\)

\section*{Contents}

Belief Network
Learning FOM
Probabilistic
Inference
Learning in Fully Observed Markov Model
- Structure of fully observed model
- Sufficient statistic
- Maximum likelihood estimate

Learning in Fully Observed Markov Model Fully observed Markov model: Observer has access to both state sequence and associated output (emission) sequence.
- Objective is to learn or estimate the conditional probabilities.
- Sample data consist of pairs of state and output sequences.
- Maximum likelihood estimation solves the problem.

\section*{Fully Observed Markov Model}

Given integer \(n \geq 1\).
■ Belief network \(\left(G_{n}, p\right)\) of HMM with joint probability distribution
\[
\begin{align*}
p_{X, Y} & =p_{X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}}  \tag{42}\\
& =p_{X_{1}} p_{Y_{1} \mid X_{1}} p_{X_{2} \mid X_{1}} \ldots p_{X_{n} \mid X_{n-1}} p_{Y_{n} \mid X_{n}}
\end{align*}
\]
- Parameters for transition probabilities
\[
\begin{equation*}
\Theta=\left\{\theta=\left(\theta_{x, x^{\prime}}\right) \mid \theta_{x, x^{\prime}} \geq 0, \sum_{x^{\prime}} \theta_{x, x^{\prime}}=1\right\} \tag{43}
\end{equation*}
\]
and emission probabilities
\[
\begin{equation*}
\Theta^{\prime}=\left\{\theta^{\prime}=\left(\theta_{x, y}^{\prime}\right) \mid \theta_{x, y}^{\prime} \geq 0, \sum_{y} \theta_{x, y}^{\prime}=1\right\} \tag{44}
\end{equation*}
\]

\section*{Contents}

\section*{Belief Network}

Learning FOM
Probabilistic
Inference
Viterbi Algorithm
EM Algorithm * BW Algorithm CpG Islands

Using \(R\)

\section*{Fully Observed Markov Model}
- Parameters for state transition probabilities
\[
\begin{equation*}
\theta_{x, x^{\prime}}=p_{X_{i+1} \mid X_{i}}\left(x^{\prime} \mid x\right), \quad x, x^{\prime} \in \Sigma, 1 \leq i \leq n-1, \tag{45}
\end{equation*}
\]
and emission probabilities
\[
\begin{equation*}
\theta_{x, y}^{\prime}=p_{Y_{i} \mid X_{i}}(y \mid x), \quad x \in \Sigma, y \in \Sigma^{\prime}, 1 \leq i \leq n . \tag{46}
\end{equation*}
\]

\section*{Soft Computing}
K.-H.

\section*{Contents}

Belief Network
Learning FOM
Probabilistic
Inference
Viterbi Algorithm
EM Algorithm *BW Algorithm CpG Islands Using R

\section*{Fully Observed Markov Model}

Estimate the transition probabilities using a sample set.
- Given collection of \(N\) independent sequence pairs called database,
\[
\begin{equation*}
D=\left(d_{1}, \ldots, d_{N}\right) \tag{47}
\end{equation*}
\]
- The \(r\)-th sample
\[
\begin{equation*}
d_{r}=\left(x^{(r)}, y^{(r)}\right) \tag{48}
\end{equation*}
\]
is given by state sequence \(x^{(r)}=x_{1}^{(r)} \ldots x_{n}^{(r)} \in \Sigma^{n}\) and output sequence \(y^{(r)}=y_{1}^{(r)} \ldots y_{n}^{(r)} \in \Sigma^{\prime n}, 1 \leq r \leq N\).
- Joint probability of sample \(d_{r}\) depending on the parameters,
\[
\begin{align*}
& p_{X, Y \mid \Theta, \Theta^{\prime}}\left(d_{r} \mid \theta, \theta^{\prime}\right)=  \tag{49}\\
& \quad \frac{1}{l} \theta_{x_{1}^{(r)}, y_{1}^{(r)}}^{\prime} \theta_{x_{1}^{(r)}, x_{2}^{(r)}} \theta_{x_{2}^{(r)}, y_{2}^{(r)}}^{\prime} \theta_{x_{2}^{(r)}, x_{3}^{(r)}} \ldots \theta_{x_{n-1}^{(r)}, x_{n}^{(r)}} \theta_{x_{n}^{(r)}, y_{n}^{(r)}}^{\prime} .
\end{align*}
\]

\section*{Fully Observed Markov Model}
- \(u_{x, y}\) is the number of times the pair \((x, y) \in \Sigma^{n} \times \Sigma^{n}\) is observed in the sample set.
- Thus
\[
\begin{equation*}
\sum_{(x, y)} u_{x, y}=N \tag{50}
\end{equation*}
\]
- Likelihood function
\[
\begin{align*}
L\left(\theta, \theta^{\prime}\right) & =\prod_{r=1}^{N} p_{X, Y \mid \Theta, \Theta^{\prime}}\left(d_{r} \mid \theta, \theta^{\prime}\right)  \tag{51}\\
& =\prod_{(x, y)} p_{X, Y \mid \Theta, \Theta^{\prime}}\left(x, y \mid \theta, \theta^{\prime}\right)^{u_{x, y}} .
\end{align*}
\]

\section*{Fully Observed Markov Model - Example}

In view of the occasionally dishonest casino with \(n=4\), given \(N=8\) samples
\[
\begin{array}{lll}
d_{1}=F F F F, h h h h & d_{2}=F F F L, h h t t & d_{3}=F F F F, h h h h \\
d_{4}=F F F L, h h t t & d_{5}=F F F F, h h h h & d_{6}=F F F L, h h t t \\
d_{7}=L L L L, h h h h & d_{8}=L L L L, h h t t . &
\end{array}
\]

Then
\[
\begin{array}{ll}
u_{F F F F, h h h h}=3, & u_{F F F L, h h t t}=3 \\
u_{L L L L, h h h h}=1, & u_{L L L L, h h t t}=1
\end{array}
\]

Likelihood function:
\[
\begin{aligned}
L\left(\theta, \theta^{\prime}\right)= & \prod_{r=1}^{N} p_{X, Y}\left(d_{r}\right) \\
= & p_{X, Y}(F F F F, h h h h)^{3} \cdot p_{X, Y}(F F F L, h h t t)^{3} \\
& \cdot p_{X, Y}(L L L L, h h h h) \cdot p_{X, Y}(F F F F, h h t t) \\
= & \frac{1}{2^{8}} \theta_{F F}^{15} \theta_{F L}^{3} \theta_{L F}^{0} \theta_{L L}^{6} \theta_{F h}^{\prime \prime} \theta_{F t}^{3} \theta_{L h}^{\prime 6} \theta_{L t}^{\prime 5} .
\end{aligned}
\]

\section*{Fully Observed Markov Model}

■ \(v_{a, b}\) is the number of occurrences of \((a, b) \in \Sigma^{2}\) as a consecutive pair in the sequence \(x\) in any of the observed pairs \((x, y): x=\ldots a b \ldots\)
- \(v_{a, c}^{\prime}\) is the number of occurrences of \((a, c) \in \Sigma \times \Sigma^{\prime}\) at the same positions in the sequences \(x\) and \(y\) in any of the observed pairs \((x, y):\binom{x}{y}=\ldots\binom{a}{c} \ldots\).
- Likelihood function (up to a constant)
\[
\begin{equation*}
L\left(\theta, \theta^{\prime}\right)=\prod_{a, b} \theta_{a, b}^{v_{a b}} \cdot \prod_{a, c} \theta_{a, c}^{\prime v_{a c}^{\prime}} \tag{52}
\end{equation*}
\]

■ Log-likelihood function \(\ell\left(\theta, \theta^{\prime}\right)=\log L\left(\theta, \theta^{\prime}\right)\)
\[
\begin{equation*}
\ell\left(\theta, \theta^{\prime}\right)=\sum_{a, b} v_{a, b} \log \left(\theta_{a, b}\right)+\sum_{a, c} v_{a, c}^{\prime} \log \left(\theta_{a, c}^{\prime}\right) \tag{53}
\end{equation*}
\]

\section*{Fully Observed Markov Model}
- The sufficient statistic of the model is given by the data
\[
\begin{equation*}
v=\left(\left(v_{a, b}\right),\left(v_{a, c}^{\prime}\right)\right) \tag{54}
\end{equation*}
\]

The likelihood function (52) is seen through these data!
■ Linear transformation yields \(v\) from given data \(u=\left(u_{x, y}\right)\),
\[
\begin{equation*}
v=A_{\left(l, l^{\prime}\right), n} \cdot u \tag{55}
\end{equation*}
\]
where \(A_{\left(l, l^{\prime}\right), n}\) is an integral matrix.
■ \(A_{\left(l, l^{\prime}\right), n}\) has \(d=l \cdot l+l \cdot l^{\prime}\) rows labeled by the pairs \((a, b) \in \Sigma^{2}\) and in turn by the pairs \((a, c) \in \Sigma \times \Sigma^{\prime}\).
- \(A_{\left(l, l^{\prime}\right), n}\) has \(m=l^{n} \cdot l^{n n}\) columns labeled by the pairs of words \(x \in \Sigma^{n}\) and \(y \in \Sigma^{\prime n}\).

\section*{Fully Observed Markov Model - Example (Cont'd)}

In view of the occasionally dishonest casino with \(n=4\), given \(N=8\) samples
\[
\begin{array}{lll}
d_{1}=F F F F, h h h h & d_{2}=F F F L, h h t t & d_{3}=F F F F, h h h h \\
d_{4}=F F F L, h h t t & d_{5}=F F F F, h h h h & d_{6}=F F F L, h h t t \\
d_{7}=L L L L, h h h h & d_{8}=L L L L, h h t t . &
\end{array}
\]

Then
\[
\begin{array}{lc}
u_{F F F F, h h h h}=3, & u_{F F F L, h h t t}=3 \\
u_{L L L L, h h h h}=1, & u_{L L L L, h h t t}=1
\end{array}
\]

Likelihood function
\[
L\left(\theta, \theta^{\prime}\right)=\frac{1}{2^{8}} \theta_{F F}^{15} \theta_{F L}^{3} \theta_{L F}^{0} \theta_{L L}^{6} \theta_{F h}^{\prime 18} \theta_{F t}^{\prime 3} \theta_{L h}^{\prime 6}{\theta^{\prime 5}}_{L t}^{5}
\]

We have
\[
\begin{array}{llll}
v_{F F}=15, & v_{F L}=3, & v_{L F}=0, & v_{L L}=6, \\
v_{F h}^{\prime}=18, & v_{F t}^{\prime}=3, & v_{L h}^{\prime}=6, & v_{L t}^{\prime}=5,
\end{array}
\]
and \(v=A_{(2,2), 4} \cdot u\).

\section*{Contents}

\section*{Belief Network}

Learning FOM
Probabilistic
Inference
Fully Observed Markov Model - Example (Cont'd)
In view of the occasionally dishonest casino with \(n=4\), the \(8 \times 256\) matrix \(A_{(2,2), 4}\) is as follows,
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & FF & FL & LF & \(L L\) & \(F h\) & \(F t\) & Lh & \(L t\) \\
\hline FFFF, hhhh & ( 3 & 0 & 0 & 0 & 4 & 0 & 0 & \\
\hline FFFFF, hhht & ( 3 & 0 & 0 & 0 & 3 & 1 & 0 & 0 \\
\hline FFFFF, hhth & 3 & 0 & 0 & 0 & 3 & 1 & 0 & 0 \\
\hline \(A_{(2,2), 4}^{t}=F F F F, h h t t\) & 3 & 0 & 0 & 0 & 2 & 2 & 0 & 0 \\
\hline LLLL , tttt & \({ }_{0}\) & 0 & 0 & 3 & 0 & 0 & 0 & 4 \\
\hline
\end{tabular}

\section*{Contents}

Belief Network
Learning FOM
Probabilistic
Inference
Viterbi Algorithm
EM Algorithm *BW Algorithm CpG Islands Using R

\section*{*Fully Observed Markov Model}
- \(A_{\left(l, l^{\prime}\right), n}\) has entry \(k\) in row \((a, b) \in \Sigma^{2}\) and column \((x, y)\) if \(k\) is the number of times the word \(a b\) is consecutive in the word \(x\),
- \(A_{\left(l, l^{\prime}\right), n}\) has entry \(k^{\prime}\) in row \((a, c) \in \Sigma \times \Sigma^{\prime}\) and column \((x, y)\) if \(k^{\prime}\) is the number of times the symbols \(a\) and \(c\) occur at the same positions in the words \(x\) and \(y\).
- \(A_{\left(l, l^{\prime}\right), n}\) has column sums \((n-1)+n=2 n-1\), since each word of length \(n\) has \(n-1\) consecutive length- 2 words and two words of length \(n\) pair in \(n\) positions.

\section*{Fully Observed Markov Model}

Given the Likelihood function (up to a constant)
\[
\begin{equation*}
L\left(\theta, \theta^{\prime}\right)=\prod_{a, b} \theta_{a, b}^{v_{a b}} \cdot \prod_{a, c} \theta_{a, c}^{\prime v_{a}^{\prime} a_{c}} . \tag{56}
\end{equation*}
\]

The maximum likelihood estimate of \(L\left(\theta, \theta^{\prime}\right)\) is
\[
\begin{equation*}
\hat{\theta}_{a, b}=\frac{v_{a, b}}{\sum_{b^{\prime} \in \Sigma} v_{a, b^{\prime}}}, \quad a, b \in \Sigma, \tag{57}
\end{equation*}
\]
and
\[
\begin{equation*}
\hat{\theta}_{a, c}^{\prime}=\frac{v_{a, c}^{\prime}}{\sum_{c^{\prime} \in \Sigma^{\prime}} v_{a, c^{\prime}}^{\prime}}, \quad a \in \Sigma, c \in \Sigma^{\prime} . \tag{58}
\end{equation*}
\]

\section*{Fully Observed Markov Model - Example (Cont'd)}

Reconsider the occasionally dishonest dealer with \(n=4\) :
\[
\begin{gathered}
v_{F F}=15, \\
v_{F h}^{\prime}=18,
\end{gathered} v_{F L}^{\prime}=3, \quad v_{L F}^{\prime}=3, \quad v_{L h}^{\prime}=6, \quad v_{L L}=6, \quad v_{L t}^{\prime}=5, ~ \$
\]

The optimal parameters are
\[
\begin{aligned}
\hat{\theta}_{F F} & =\frac{15}{15+3}=\frac{15}{18}, \quad \hat{\theta}_{F L}=\frac{3}{18} \\
\hat{\theta}_{L F} & =\frac{0}{0+6}=0, \quad \hat{\theta}_{L L}=1 \\
\hat{\theta}_{F h}^{\prime} & =\frac{18}{18+3}=\frac{18}{21}, \quad \hat{\theta}_{F t}^{\prime}=\frac{3}{21} \\
\hat{\theta}_{L h}^{\prime} & =\frac{6}{6+5}=\frac{6}{11}, \quad \hat{\theta}_{L t}^{\prime}=\frac{5}{11}
\end{aligned}
\]

\section*{Fully Observed Markov Model - Example (Derivative)}

Reconsider the occasionally dishonest dealer with \(n=4\) :
\[
\begin{aligned}
L\left(\theta, \theta^{\prime}\right)= & \frac{1}{2^{N}} \theta_{F F}^{v_{F F}} \theta_{F L}^{v_{F} L} \theta_{L F}^{v_{L F}} \theta_{L L}^{v_{L L}} \theta_{F h}^{\prime v_{F h}^{\prime}} \theta_{F t}^{\prime v_{F t}^{\prime}} \theta_{L h}^{\prime} v_{L h}^{\prime} \theta_{L t}^{\prime} v_{L t}^{\prime} \\
= & \frac{1}{2^{N}} \theta_{F F}^{v_{F F}}\left(1-\theta_{F F}\right)^{v_{F L}} \theta_{L F}^{v_{L F}}\left(1-\theta_{L F}\right)^{v_{L L}} \\
& {\theta^{\prime} v_{F h}^{\prime}}^{\prime}\left(1-\theta_{F h}^{\prime}\right)^{v_{F t}^{\prime}} \theta_{L h}^{\prime v_{L h}^{\prime}}\left(1-\theta_{L h}^{\prime}\right)^{v_{L t}^{\prime}}
\end{aligned}
\]

In view of the log-likelihood function (up to a constant),
\[
\ell\left(\theta, \theta^{\prime}\right)=v_{F F} \log \theta_{F F}+v_{F L} \log \left(1-\theta_{F F}\right)+\ldots
\]
set the derivatives to zero,
\[
\frac{\partial \ell}{\partial \theta_{F F}}=\frac{v_{F F}}{\theta_{F F}}-\frac{v_{F L}}{1-\theta_{F F}}=0, \text { i.e. } \hat{\theta}_{F F}=\frac{v_{F F}}{v_{F F}+v_{F L}} .
\]

This gives a critical point \(\left(\hat{\theta}, \hat{\theta}^{\prime}\right)\).

\section*{Soft Computing}
K.-H.

Zimmermann

Contents
Belief Network
Learning FOM
Probabilistic
Inference
Viterbi Algorithm
EM Algorithm
*BW Algorithm
CpG Islands
Using \(R\)

\section*{Proof.}

Let \(\Sigma=\left\{a_{1}, \ldots, a_{l}\right\}\) and \(\Sigma^{\prime}=\left\{c_{1}, \ldots, c_{l^{\prime}}\right\}\).
- For each state \(a_{i} \in \Sigma, 1 \leq i \leq l\), we have \(\sum_{j=1}^{l} \theta_{a_{i}} a_{j}=1\).
- The parameters \(\theta_{a_{i}} a_{j}\) with \(1 \leq j \leq l\) appear in the log-likelihood function \(\ell\left(\theta, \theta^{\prime}\right)\) as the partial sum
\[
\ell_{i}=\sum_{j=1}^{l} v_{a_{i} a_{j}} \log \left(\theta_{a_{i} a_{j}}\right)
\]
- Using \(\theta a_{i} a_{l}=1-\sum_{j=1}^{l-1} \theta_{a_{i} a_{j}}\), the partial derivative of \(\ell_{i}\) with respect to \(\theta_{a_{i}} a_{j}\) becomes
\[
\frac{\partial \ell_{i}}{\partial \theta_{a_{i} a_{j}}}=\frac{v_{a_{i} a_{j}}}{\theta_{a_{i} a_{j}}}-\frac{v_{a_{i} a_{l}}}{1-\sum_{j=1}^{l-1} \theta_{a_{i} a_{j}}} .
\]
- Equating this expression to 0 gives
\[
\hat{\theta}_{a_{i} a_{j}}=\frac{v_{a_{i} a_{j}}}{\sum_{k=1}^{l} v_{a_{i} a_{k}}} .
\]
- Similar for the emission probabilitities \(\hat{\theta}_{a_{i} c_{k}}^{\prime}\) with \(1 \leq k \leq l^{\prime}\).
- Thus \(\left(\hat{\theta}, \hat{\theta}^{\prime}\right)=\left(\hat{\theta}_{a_{i}} a_{j}, \hat{\theta}_{a_{i} c_{k}}^{\prime}\right)\) is a critial point of the likelihood function.

Soft Computing
K.-H.

Zimmermann

Contents
Belief Network
Learning FOM
Probabilistic
Inference
Viterbi Algorithm
EM Algorithm * BW Algorithm

\section*{CpG Islands}

Using R

\section*{Proof (Cont'd).}

Claim that this point maximizes the likelihood function. Indeed,
\[
\begin{aligned}
\ell\left(\theta, \theta^{\prime}\right)= & \sum_{a \in \Sigma} \sum_{b \in \Sigma} v_{a b} \log \theta_{a b}+\sum_{a \in \Sigma} \sum_{c \in \Sigma^{\prime}} v_{a c}^{\prime} \log \theta_{a c}^{\prime} \\
= & \sum_{a \in \Sigma} \sum_{b \in \Sigma} \sum_{b^{\prime} \in \Sigma} v_{a b^{\prime}} \hat{\theta}_{a b} \log \theta_{a b}+\sum_{a \in \Sigma} \sum_{c \in \Sigma^{\prime}} \sum_{c^{\prime} \in \Sigma^{\prime}} v_{a c^{\prime}}^{\prime} \hat{\theta}_{a c}^{\prime} \log \theta_{a c}^{\prime}, \text { by }(57,58) \\
= & \sum_{a \in \Sigma} v_{a} \sum_{b \in \Sigma} \hat{\theta}_{a b} \log \theta_{a b}+\sum_{a \in \Sigma} v_{a}^{\prime} \sum_{c \in \Sigma^{\prime}} \hat{\theta}_{a c}^{\prime} \log \theta_{a c}^{\prime} \\
= & \sum_{a \in \Sigma} v_{a}\left(\sum_{b \in \Sigma} \hat{\theta}_{a b} \log \hat{\theta}_{a b}-\sum_{b \in \Sigma} \hat{\theta}_{a b} \log \frac{\hat{\theta}_{a b}}{\theta_{a b}}\right) \\
& +\sum_{a \in \Sigma} v_{a}^{\prime}\left(\sum_{c \in \Sigma^{\prime}} \hat{\theta}_{a c}^{\prime} \log \hat{\theta}_{a c}^{\prime}-\sum_{c \in \Sigma^{\prime}} \hat{\theta}_{a c}^{\prime} \log \frac{\hat{\theta}_{a c}^{\prime}}{\theta_{a c}^{\prime}}\right) \\
= & \sum_{a \in \Sigma}-v_{a}\left(H\left(\hat{\theta}_{a}\right)+D\left(\hat{\theta}_{a} \| \theta_{a}\right)\right)+\sum_{a \in \Sigma}-v_{a}^{\prime}\left(H\left(\hat{\theta}_{a}^{\prime}\right)+D\left(\hat{\theta}_{a}^{\prime} \| \theta_{a}^{\prime}\right)\right)
\end{aligned}
\]
where \(v_{a}=\sum_{b \in \Sigma} v_{a b}, v_{a}^{\prime}=\sum_{c \in \Sigma^{\prime}} v_{a c}, \theta_{a}=\left(\theta_{a b}\right)_{b \in \Sigma}, \theta_{a}^{\prime}=\left(\theta_{a c}^{\prime}\right)_{c \in \Sigma^{\prime}}\), \(\hat{\theta}_{a}=\left(\hat{\theta}_{a b}\right)_{b \in \Sigma}\), and \(\hat{\theta}_{a}^{\prime}=\left(\hat{\theta}_{a c}^{\prime}\right)_{c \in \Sigma^{\prime}}\) for each symbol \(a \in \Sigma\).

\section*{Soft Computing}
K.-H.

Zimmermann

Contents
Belief Network
Learning FOM
Probabilistic
Inference
Viterbi Algorithm
EM Algorithm
*BW Algorithm
CpG Islands
Using R

\section*{Proof (Cont'd).}

We have
\[
\begin{aligned}
\ell\left(\theta, \theta^{\prime}\right) & =\sum_{a \in \Sigma}-v_{a}\left(H\left(\hat{\theta}_{a}\right)+D\left(\hat{\theta}_{a} \| \theta_{a}\right)\right)+\sum_{a \in \Sigma}-v_{a}^{\prime}\left(H\left(\hat{\theta}_{a}^{\prime}\right)+D\left(\hat{\theta}_{a}^{\prime} \| \theta_{a}^{\prime}\right)\right) \\
& \leq-\sum_{a \in \Sigma}\left(v_{a} H\left(\hat{\theta}_{a}\right)+v_{a}^{\prime} H\left(\hat{\theta}_{a}^{\prime}\right)\right) \\
& =\sum_{a \in \Sigma}\left(v_{a} \sum_{b \in \Sigma}\left(\hat{\theta}_{a b} \log \hat{\theta}_{a b}\right)+v_{a}^{\prime} \sum_{c \in \Sigma^{\prime}}\left(\hat{\theta}_{a c}^{\prime} \log \hat{\theta}_{a c}^{\prime}\right)\right) \\
& =\sum_{a \in \Sigma}\left(\sum_{b \in \Sigma} v_{a b} \log \hat{\theta}_{a b}+\sum_{c \in \Sigma^{\prime}} v_{a c}^{\prime} \log \hat{\theta}_{a c}^{\prime}\right), \text { by }(57,58), \\
& =\ell\left(\hat{\theta}, \hat{\theta}^{\prime}\right),
\end{aligned}
\]
where for two distributions \(p=\left(p_{1}, \ldots, p_{n}\right)\) and \(q=\left(q_{1}, \ldots, q_{n}\right)\),
\[
H(p)=-\sum_{i=1}^{n} p_{i} \log \left(p_{i}\right)
\]
is the entropy and
\[
D(p \| q)=\sum_{i=1}^{n} p_{i} \log \frac{p_{i}}{q_{i}} \geq 0
\]
is the Kullback-Leibler measure.

\section*{Probabilistic Inference of Output Marginals}

Learning FOM
Probabilistic Inference

Viterbi Algorithm
EM Algorithm
- Probabilistic inference refers to the computation of posterior probabilities.
- Objective is to calculate the marginal probability of the output variables.

■ Efficient solution makes use of sum-product decomposition.
- Basis of the Viterbi algorithm.
K.-H.

\section*{Contents}

Belief Network
Learning FOM
Probabilistic Inference

Viterbi Algorithm
EM Algorithm
*BW Algorithm
CpG Islands
Using R

\section*{Probabilistic Inference of Output Marginals}

Given integer \(n \geq 1\).
■ Belief network \(\left(G_{n}, p\right)\) of HMM with joint probability distribution
\[
\begin{align*}
p_{X, Y} & =p_{X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}}  \tag{59}\\
& =p_{X_{1}} p_{Y_{1} \mid X_{1}} p_{X_{2} \mid X_{1}} \ldots p_{X_{n} \mid X_{n-1}} p_{Y_{n} \mid X_{n}}
\end{align*}
\]
- Suppose the conditional probabilities
\[
\begin{equation*}
\theta_{x, x^{\prime}}=p_{X_{i+1} \mid X_{i}}\left(x^{\prime} \mid x\right), \quad x, x^{\prime} \in \Sigma, 1 \leq i \leq n-1 \tag{60}
\end{equation*}
\]
and
\[
\begin{equation*}
\theta_{x, y}^{\prime}=p_{Y_{i} \mid X_{i}}(y \mid x), \quad x \in \Sigma, y \in \Sigma^{\prime}, 1 \leq i \leq n \tag{61}
\end{equation*}
\]
are known.

\section*{Probabilistic Inference of Output Marginals}

■ The probability of output sequence \(y=\left(y_{1}, \ldots, y_{n}\right)\) is given by the marginal distribution
\[
\begin{aligned}
& p_{Y_{1}, \ldots, Y_{n}}\left(y_{1}, \ldots, y_{n}\right) \\
& \quad=\sum_{x_{1}, \ldots, x_{n}} p_{X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right) \\
& \quad=\frac{1}{l} \sum_{x_{1} \in \Sigma} \ldots \sum_{x_{n} \in \Sigma} \theta_{x_{1}, y_{1}}^{\prime} \theta_{x_{1}, x_{2}} \theta_{x_{2}, y_{2}}^{\prime} \theta_{x_{2}, x_{3}} \cdots \theta_{x_{n-1}, x_{n}} \theta_{x_{n}, y_{n}}^{\prime} .
\end{aligned}
\]
- The straightforward computation has runtime \(O\left(n l^{n}\right)\), since the set \(\Sigma^{n}\) has \(l^{n}\) elements and each joint probability has \(2 n\) factors.

\section*{Contents}

\section*{Belief Network}

Learning FOM
Probabilistic Inference

Viterbi Algorithm
EM Algorithm
*BW Algorithm
CpG Islands
Using R
Probabilistic Inference of Output Marginals - Example Reconsider the occasionally dishonest dealer with \(n=4\).
- Output marginals
\[
\begin{aligned}
& p_{Y_{1}, Y_{2}, Y_{3}, Y_{4}}\left(y_{1}, y_{2}, y_{3}, y_{4}\right) \\
& \quad=\frac{1}{2} \sum_{x_{1} \in \Sigma} \ldots \sum_{x_{4} \in \Sigma} \theta_{x_{1}, y_{1}}^{\prime} \theta_{x_{1}, x_{2}} \theta_{x_{2}, y_{2}}^{\prime} \theta_{x_{2}, x_{3}} \theta_{x_{3}, y_{3}}^{\prime} \theta_{x_{3}, x_{4}} \theta_{x_{4}, y_{4}}^{\prime} .
\end{aligned}
\]

Contents
Belief Network
Learning FOM
Probabilistic Inference

Viterbi Algorithm
EM Algorithm
*BW Algorithm
CpG Islands
Using \(R\)

\section*{Sum-Product Decomposition}

Decomposition of the output marginal by distributivity,
\[
\begin{align*}
& p_{Y}(y)  \tag{63}\\
& \quad=p_{Y_{1}, \ldots, Y_{n}}\left(y_{1}, \ldots, y_{n}\right) \\
& =\frac{1}{l} \sum_{x_{n} \in \Sigma} \theta_{x_{n}, y_{n}}^{\prime}\left(\sum_{x_{n-1} \in \Sigma} \theta_{x_{n-1}, x_{n}} \theta_{x_{n-1}, y_{n-1}}^{\prime}\right. \\
& \\
& \\
& \left.\left(\cdots\left(\sum_{x_{2} \in \Sigma} \theta_{x_{2}, x_{3}} \theta_{x_{2}, y_{2}}^{\prime}\left(\sum_{x_{1} \in \Sigma} \theta_{x_{1}, x_{2}} \theta_{x_{1}, y_{1}}^{\prime}\right)\right) \cdots\right)\right)
\end{align*}
\]

Soft Computing
K.-H.

Zimmermann

Contents
Belief Network
Learning FOM
Probabilistic Inference

Viterbi Algorithm
EM Algorithm *BW Algorithm

CpG Islands
Using R

\section*{Sum-Product Decomposition - Example}

Reconsider the occasionally dishonest dealer with \(n=4\).
\[
\begin{aligned}
p_{Y} & (y) \\
& =p_{Y_{1}, \ldots, Y_{4}}\left(y_{1}, \ldots, y_{4}\right) \\
& =\frac{1}{l} \sum_{x_{4} \in \Sigma} \theta_{x_{4}, y_{4}}^{\prime}\left(\sum_{x_{3} \in \Sigma} \theta_{x_{3}, x_{4}} \theta_{x_{3}, y_{3}}^{\prime}\left(\sum_{x_{2} \in \Sigma} \theta_{x_{2}, x_{3}} \theta_{x_{2}, y_{2}}^{\prime}\left(\sum_{x_{1} \in \Sigma} \theta_{x_{1}, x_{2}} \theta_{x_{1}, y_{1}}^{\prime}\right)\right)\right)
\end{aligned}
\]

Computation (from inner to outer brackets):
\[
\begin{aligned}
M[1, x] & =\sum_{x_{1} \in \Sigma} \theta_{x_{1}, x} \cdot \theta_{x_{1}, y_{1}}^{\prime}, \quad x \in \Sigma, \\
M[2, x] & =\sum_{x_{2} \in \Sigma} \theta_{x_{2}, x} \cdot \theta_{x_{2}, y_{2}}^{\prime} \cdot M\left[1, x_{2}\right], x \in \Sigma, \\
M[3, x] & =\sum_{x_{3} \in \Sigma} \theta_{x_{3}, x} \cdot \theta_{x_{3}, y_{3}}^{\prime} \cdot M\left[2, x_{3}\right], x \in \Sigma, \\
p_{Y}(y) & =\frac{1}{l} \sum_{x_{4} \in \Sigma} \theta_{x_{4}, y_{4}}^{\prime} \cdot M\left[3, x_{4}\right] .
\end{aligned}
\]

\section*{Sum-Product Decomposition}

Evaluation of \(p_{Y}(y)\) using an \((n-1) \times l\) table \(M\),
\[
\begin{aligned}
M[1, x]= & \sum_{x_{1} \in \Sigma} \theta_{x_{1}, x} \cdot \theta_{x_{1}, y_{1}}^{\prime}, \quad x \in \Sigma, \\
M[k, x]= & \sum_{x_{k} \in \Sigma} \theta_{x_{k}, x} \cdot \theta_{x_{k}, y_{k}}^{\prime} \cdot M\left[k-1, x_{k}\right], \\
& x \in \Sigma, 2 \leq k \leq n-1, \\
p_{Y}(y)= & \frac{1}{l} \sum_{x_{n} \in \Sigma} \theta_{x_{n}, y_{n}}^{\prime} \cdot M\left[n-1, x_{n}\right] .
\end{aligned}
\]

Computation has runtime \(O\left(l^{2} n\right)\), since the table \(M\) has \(O(l n)\) entries and each entry (summation) is evaluated in \(O(l)\) steps.

\section*{Viterbi Algorithm}
- Calculate the most probable state sequences which produce a given output sequence.
- Named after Andrew Viterbi (1967) who proposed it as decoding algorithm for convolutional codes over noisy channels.
- Deduction by tropicalization of sum-product decomposition.

Viterbi Algorithm
EM Algorithm
*BW Algorithm CpG Islands

Using R

\section*{Semirings}

A semiring is a set \(R \neq \emptyset\) with two binary operations, addition + and multiplication \(\cdot\), such that
- \((R,+)\) is a commutative monoid with identity element 0 .
- \((R, \cdot)\) is a monoid with identity element 1.
- Multiplication distributes over addition, i.e., for all \(a, b, c \in R\),
\[
a \cdot(b+c)=(a \cdot b)+(a \cdot c) \text { and }(a+b) \cdot c=(a \cdot c)+(b \cdot c)
\]
- Multiplication with 0 annihilates \(R\), i.e., for all \(a \in R\), \(a \cdot 0=0=0 \cdot a\).

A semiring is commutative if the multiplication is commutative, i.e., for all \(a, b \in R, a \cdot b=b \cdot a\).

A semiring is idempotent if the addition is idempotent, i.e., for all \(a \in R, a+a=a\).

\section*{Semirings}

■ A semiring is an algebraic structure similar to a ring, but without the requirement that each element must have an additive inverse. Thus each ring is a semiring.

■ The set of natural numbers \(\mathbb{N}_{0}\) forms a commutative semiring with the ordinary addition and multiplication.

■ Likewise, the set of non-negative real numbers \(\mathbb{R}_{\geq 0}\) forms a commutative semiring with the ordinary addition and multiplication, written \(\left(\mathbb{R}_{\geq 0},+, \cdot\right)\).

■ The set \(\mathbb{R} \cup\{\infty\}\) together with the operations
\[
\begin{align*}
& x \oplus y=\min \{x, y\}  \tag{64}\\
& x \odot y=x+y \tag{65}
\end{align*}
\]
for all \(x, y \in \mathbb{R} \cup\{\infty\}\), with \(x+\infty=\infty=\infty+x\), forms an idempotent commutative semiring with additive identity \(\infty\) and multiplicative identity 0 .
- The mapping

\section*{Semirings}
- The semiring \((\mathbb{R} \cup\{\infty\}\), min,+ ) is called min-plus algebra or tropical algebra.
- Additive and multiplicative inverses may not exist; e.g., the equations \(3 \oplus x=10\) and \(\infty \odot x=1\) have no solutions \(x \in \mathbb{R} \cup\{\infty\}\).
\[
\begin{equation*}
\phi: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R} \cup\{\infty\}: x \mapsto-\log x \tag{66}
\end{equation*}
\]
is bijective and strictly monotonic decreasing with \(\phi(0)=\infty\), \(\phi(1)=0\), and
\[
\begin{equation*}
\phi(x \cdot y)=\phi(x) \odot \phi(y), \quad x, y \in \mathbb{R}_{\geq 0} . \tag{67}
\end{equation*}
\]

This mapping is the tropicalization of the ordinary semiring \(\left(\mathbb{R}_{\geq 0},+, \cdot\right)\).

\section*{Semirings}
```

Tropicalization $x \mapsto-\log x$.
Viterbi Algorithm
EM Algorithm
*BW Algorithm
CpG Islands
Using R

```
```

```
Soft Computing
```

```
Soft Computing
    K.-H.
    K.-H.
Zimmermann
```

Zimmermann

```
Contents
Belief Network
Learning FOM
Probabilistic
Inference
```


Contents

Belief Network

Learning FOM
Probabilistic
Inference
Viterbi Algorithm
EM Algorithm
*BW Algorithm
CpG Islands
Using R
Tropicalization
$\left.\begin{array}{l}\text { semiring } \mathbb{R}_{\geq 0} \\ \text { addition }+ \\ \text { multiplication } \cdot \\ \text { data } x \\ \text { large probabilities }\end{array}\right\} \rightarrow\left\{\begin{array}{l}\text { semiring } \mathbb{R} \cup\{\infty\} \\ \text { addition } \oplus(\min) \\ \text { multiplication } \odot(\text { add }) \\ \text { data }-\log x \\ \text { small weights }\end{array}\right.$

Viterbi Algorithm

Given integer $n \geq 1$.

- Given belief network $\left(G_{n}, p\right)$ of HMM with joint probability distribution

$$
\begin{align*}
p_{X, Y} & =p_{X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}} \\
& =p_{X_{1}} p_{Y_{1} \mid X_{1}} p_{X_{2} \mid X_{1}} \ldots p_{X_{n} \mid X_{n-1}} p_{Y_{n} \mid X_{n}} \tag{69}
\end{align*}
$$

- Suppose the parameters for state transition

$$
\begin{equation*}
\theta_{x, x^{\prime}}=p_{X_{i+1} \mid X_{i}}\left(x^{\prime} \mid x\right), \quad x, x^{\prime} \in \Sigma, 1 \leq i \leq n-1 \tag{70}
\end{equation*}
$$

and emission

$$
\begin{equation*}
\theta_{x, y}^{\prime}=p_{Y_{i} \mid X_{i}}(y \mid x), \quad x \in \Sigma, y \in \Sigma^{\prime}, 1 \leq i \leq n \tag{71}
\end{equation*}
$$

are known.

Viterbi Algorithm

■ The probability of output sequence $y=\left(y_{1}, \ldots, y_{n}\right)$ is given by the marginal distribution

$$
\begin{aligned}
& p_{Y}(y) \\
& \quad=p_{Y_{1}, \ldots, Y_{n}}\left(y_{1}, \ldots, y_{n}\right) \\
& \quad=\sum_{x_{1}, \ldots, x_{n}} p_{X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right) \\
& \quad=\frac{1}{l} \sum_{x_{1} \in \Sigma} \ldots \sum_{x_{n} \in \Sigma} \theta_{x_{1}, y_{1}}^{\prime} \theta_{x_{1}, x_{2}} \theta_{x_{2}, y_{2}}^{\prime} \theta_{x_{2}, x_{3}} \cdots \theta_{x_{n-1}, x_{n}} \theta_{x_{n}, y_{n}}^{\prime} .
\end{aligned}
$$

■ Given output sequence $y \in \Sigma^{\prime n}$. The objective is to find one (or all) state sequences $x \in \Sigma^{n}$ with maximum likelihood

$$
\begin{equation*}
p_{X \mid Y}(x \mid y)=\frac{p_{X, Y}(x, y)}{p_{Y}(y)} \tag{73}
\end{equation*}
$$

Viterbi Algorithm

■ The observed sequence $y \in \Sigma^{\prime n}$ is fixed, so the likelihood $p_{X \mid Y}(x \mid y)$ is directly proportional to the joint probability $p_{X, Y}(x, y)$ if $p_{Y}(y)>0$.

■ Suppose $p_{Y}(y)>0$. Then the aim is to find a state sequence $\bar{x} \in \Sigma^{n}$ with the property

$$
\begin{align*}
\bar{x} & =\operatorname{argmax}_{x \in \Sigma^{n}}\left\{p_{X \mid Y}(x \mid y)\right\} \tag{74}\\
& =\operatorname{argmax}_{x \in \Sigma^{n}}\left\{p_{X, Y}(x, y)\right\} .
\end{align*}
$$

Each optimal state sequence \bar{x} is called an explanation of the observed sequence y. The explanations can be found by tropicalization of sum-product decomposition.

■ Tropicalization means that replacing ordinary sums by tropical sums and ordinary multiplication by tropical multiplication (68).

Soft Computing

K.-H.

Contents
Belief Network
Learning FOM
Probabilistic
Inference
Viterbi Algorithm
EM Algorithm *BW Algorithm CpG Islands Using R

Viterbi Algorithm

- Put

$$
\begin{equation*}
w(y)=-\log p_{Y}(y) \quad \text { and } \quad w(x, y)=-\log p_{X, Y}(x, y) \tag{75}
\end{equation*}
$$

- Tropicalization

$$
\begin{equation*}
w(y)=\bigoplus_{x \in \Sigma^{n}} w(x, y)=\min _{x \in \Sigma^{n}} w(x, y) \tag{76}
\end{equation*}
$$

The explanations \bar{x} are obtained by evaluation in the tropical algebra,

$$
\begin{equation*}
\bar{x}=\operatorname{argmin}_{x \in \Sigma^{n}}\{w(x, y)\} \tag{77}
\end{equation*}
$$

The value $w(y)$ can be efficiently computed by tropicalizing the sum-product decomposition of the marginal probability $p_{Y}(y)$.

Soft Computing

K.-H.

Zimmermann

Contents
Belief Network
Learning FOM
Probabilistic
Inference
Viterbi Algorithm
EM Algorithm
*BW Algorithm

CpG Islands

Using R

Viterbi Algorithm

- Replace the transition probabilities by weights,

$$
\begin{equation*}
u_{a b}=-\log \theta_{a b} \quad \text { and } \quad v_{a c}=-\log \theta_{a c}^{\prime} \tag{78}
\end{equation*}
$$

for all $a, b \in \Sigma, c \in \Sigma^{\prime}$.

- In the sum-product decomposition (63) replace sums by tropical sums and products by tropical products,

$$
\begin{align*}
w(y)= & \bigoplus_{x_{n}} v_{x_{n}, y_{n}} \odot\left(\bigoplus_{x_{n-1}} u_{x_{n-1}, x_{n}} \odot v_{x_{n-1}, y_{n-1}}\right. \\
& \left.\odot\left(\cdots\left(\bigoplus_{x_{1}} u_{x_{1}, x_{2}} \odot v_{x_{1}, y_{1}}\right) \cdots\right)\right) . \tag{79}
\end{align*}
$$

- For each output sequence $y \in \Sigma^{\prime n}$, the tropicalization $w(y)$ of the marginal probability $p_{Y}(y)$ provides the explanations of y.

Viterbi Algorithm
EM Algorithm *BW Algorithm CpG Islands Using R

Sum-Product Decomposition - Example

Reconsider the occasionally dishonest dealer with $n=4$:
$w(y)$
$=\underset{x_{4} \in \Sigma}{\oplus} v_{x_{4}, y_{4}}\left(\underset{x_{3} \in \Sigma}{\oplus} u_{x_{3}, x_{4}} v_{x_{3}, y_{3}}\left(\underset{x_{2} \in \Sigma}{\oplus} u_{x_{2}, x_{3}} v_{x_{2}, y_{2}}\left(\underset{x_{1} \in \Sigma}{\oplus} u_{x_{1}, x_{2}} v_{x_{1}, y_{1}}\right)\right)\right.$
Computation (from inner to outer brackets):

$$
\begin{aligned}
M[1, x] & =\bigoplus_{x_{1} \in \Sigma} u_{x_{1}, x} \odot v_{x_{1}, y_{1}}, \quad x \in \Sigma, \\
M[2, x] & =\bigoplus_{x_{2} \in \Sigma} u_{x_{2}, x} \odot v_{x_{2}, y_{2}} \odot M\left[1, x_{2}\right], x \in \Sigma, \\
M[3, x] & =\bigoplus_{x_{3} \in \Sigma} u_{x_{3}, x} \odot v_{x_{3}, y_{3}} \odot M\left[2, x_{3}\right], x \in \Sigma, \\
w(y) & =\bigoplus_{x_{4} \in \Sigma} v_{x_{4}, y_{4}} \odot M\left[3, x_{4}\right] .
\end{aligned}
$$

Contents

Belief Network

Learning FOM
Probabilistic Inference

Viterbi Algorithm
EM Algorithm
*BW Algorithm
CpG Islands
Using R

Sum-Product Decomposition - Example (Cont'd)

Reformulation of computation for $n=4$:

$$
\begin{aligned}
M[1, x] & =\min _{x_{1} \in \Sigma} u_{x_{1}, x}+v_{x_{1}, y_{1}}, \quad x \in \Sigma, \\
M[2, x] & =\min _{x_{2} \in \Sigma} u_{x_{2}, x}+v_{x_{2}, y_{2}}+M\left[1, x_{2}\right], x \in \Sigma, \\
M[3, x] & =\min _{x_{3} \in \Sigma} u_{x_{3}, x}+v_{x_{3}, y_{3}}+M\left[2, x_{3}\right], x \in \Sigma, \\
w(y) & =\min _{x_{4} \in \Sigma} v_{x_{4}, y_{4}}+M\left[3, x_{4}\right] .
\end{aligned}
$$

Viterbi Algorithm

The tropicalized term $w(y)$ can be computed by evaluating iteratively the tropicalized sum-product decomposition using an $(n-1) \times l$ table M :

$$
\begin{aligned}
M[1, x] & :=\bigoplus_{x_{1} \in \Sigma} u_{x_{1}, x} \odot v_{x_{1}, y_{1}}, \quad x \in \Sigma, \\
M[k, x]:= & \bigoplus_{x_{k} \in \Sigma} u_{x_{k}, x} \odot v_{x_{k}, y_{k}} \odot M\left[k-1, x_{k}\right], \\
& x \in \Sigma, 2 \leq k \leq n-1, \\
w(y) & :=\bigoplus_{x_{n} \in \Sigma} v_{x_{n}, y_{n}} \odot M\left[n-1, x_{n}\right] .
\end{aligned}
$$

Contents
Belief Network
Learning FOM
Probabilistic
Inference
Viterbi Algorithm
EM Algorithm
*BW Algorithm
CpG Islands
Using R

Viterbi Algorithm

Rewritten algorithm using the ordinary operations:

$$
\begin{aligned}
M[1, x] & :=\min _{x_{1} \in \Sigma} u_{x_{1}, x}+v_{x_{1}, y_{1}}, \quad x \in \Sigma, \\
M[k, x] & :=\min _{x_{k} \in \Sigma} u_{x_{k}, x}+v_{x_{k}, y_{k}}+M\left[k-1, x_{k}\right] \\
& x \in \Sigma, 2 \leq k \leq n-1, \\
w(y) & :=\min _{x_{n} \in \Sigma} v_{x_{n}, y_{n}}+M\left[n-1, x_{n}\right] .
\end{aligned}
$$

This is the Viterbi algorithm and the computed explanations are the Viterbi sequences.

Viterbi Algorithm

Contents
Belief Network
Learning FOM
Probabilistic Inference

Viterbi Algorithm
EM Algorithm *BW Algorithm CpG Islands Using R

- The Viterbi algorithm consists of a forward algorithm evaluating the data (table M) and a backward algorithm providing the optimal decisions (explanations).
- In the forward algorithm, for each step $k, 1 \leq k \leq n$, all states $x \in \Sigma$ which attain the minimum in the minimization step can be recorded.
- This information can be used by the backward algorithm to trace back all optimal decisions (states) from the last (n) to the first position (1) and so provide all explanations.
- Time complexity is $O\left(l^{2} n\right)$ as described by the sum-product decomposition of the output marginals.

Viterbi Algorithm

- Viterbi algorithm follows the paradigm of dynamic programming.
- Dynamic programming was developed by Richard Bellman in the 1950s.
- A dynamic programming algorithm consists of forward algorithm (data evaluation) and backward algorithm (optimal decisions).
- Dynamic programming is applicable if the subproblems have the same structure and the subproblems can be recursively nested.
- The Viterbi algorithm is not only optimal for the whole sequence $y \in \Sigma^{\prime n}$ but also for each prefix of y.

Soft Computing

K.-H.

Zimmermann

Contents

Belief Network
Learning FOM
Probabilistic
Inference
Viterbi Algorithm
EM Algorithm
*BW Algorithm

CpG Islands

Using R

Viterbi Algorithm

```
Require: Sequence \(y \in \Sigma^{\prime n}\), scores ( \(u_{a b}\) ) and ( \(v_{a c}\) )
Ensure: Tropicalized term \(w(y)\)
    \(M \leftarrow \operatorname{matrix}[0 . . n, 1 . . l]\)
    for \(x \leftarrow 1\) to \(l\) do
    \(M[0, x] \leftarrow 0\)
    end for
    for \(k \leftarrow 1\) to \(n-1\) do
        for \(x \leftarrow 1\) to \(l\) do
        \(M[k, x] \leftarrow \infty\)
        for \(x^{\prime} \leftarrow 1\) to \(l\) do
                \(M[k, x] \leftarrow \min \left\{M[k, x], u_{x^{\prime}, x}+v_{x^{\prime}, y_{k}}+M\left[k-1, x^{\prime}\right]\right\}\) \{Record all \(x\) which
                attain the minimum \(\}\)
            end for
        end for
    end for
    for \(x \leftarrow 1\) to \(l\) do
        \(M[n, x] \leftarrow v_{x, y_{n}}+M[n-1, x]\)
    end for
    \(w \leftarrow \infty\)
    for \(x \leftarrow 1\) to \(l\) do
        \(w \leftarrow \min \{w, M[n, x]\}\) \{Record all \(x\) which attain the minimum \}
    end for
    return \(w=w(y)\)
```


Contents

Belief Network

Learning FOM
Probabilistic
Inference
Viterbi Algorithm
EM Algorithm
*BW Algorithm
CpG Islands
Using R

Viterbi Algorithm - Example

Reconsider the occasionally dishonest casino with the weights

Soft Computing
K.-H.

Contents
Belief Network
Learning FOM
Probabilistic
Inference
Viterbi Algorithm
EM Algorithm
*BW Algorithm
CpG Islands
Using R

Viterbi Algorithm - Example (Cont'd)
Trellis for output sequence $y=t t h h$:

- Solid arrows show where the minima are attained.
- The trace back given by the paths of solid arrows provides the explanations: $F F F F, F F L L$, and $L L L L$.

```
Soft Computing
    K.-H.
    Zimmermann
Contents
Belief Network
Learning FOM
Probabilistic
Inference
```

Viterbi Algorithm
EM Algorithm
*BW Algorithm
CpG Islands

Viterbi Algorithm - Example (Cont'd)

Subproblem: trellis for output subsequence $y=t t h$:

■ Solid arrows show where the minima are attained.

- The trace back given by the paths of solid arrows provides the explanation: FFF.

Learning in Hidden Markov Model

- Objective is to learn or estimate the conditional probabilities.
- Sample data consist only of output sequences.
- Solution by EM algorithm and more efficiently by BW algorithm.

EM Algorithm for HMM

Require: Hidden Markov model, joint probability function $p_{X, Y \mid \Theta \times \Theta^{\prime}}$, parameter space $\Theta \times \Theta^{\prime} \subseteq \mathbb{R}_{>0}^{l(l-1)} \times \mathbb{R}_{>0}^{l\left(l^{\prime}-1\right)}$, integer $n \geq 1$, observed (output) data $u=\left(u_{y}\right) \in \mathbb{N}^{l^{\prime n}}$
Ensure: Maximum likelihood estimate $\left(\theta^{*}, \theta^{*}\right) \in \Theta \times \Theta^{\prime}$ [Init] Threshold $\epsilon>0$ and parameters $\left(\theta, \theta^{\prime}\right) \in \Theta \times \Theta^{\prime}$
[E -Step] Define matrix $U=\left(u_{x, y}\right) \in \mathbb{R}^{l^{n} \times l^{\prime n}}$ with

$$
u_{x, y}=\frac{u_{y} \cdot p_{X, Y \mid \Theta \times \Theta^{\prime}}\left(x, y \mid \theta, \theta^{\prime}\right)}{p_{Y \mid \Theta \times \Theta^{\prime}}\left(y \mid \theta, \theta^{\prime}\right)}, \quad x \in \Sigma^{n}, y \in \Sigma^{\prime n}
$$

[M-Step] Compute solution $\left(\hat{\theta}, \hat{\theta}^{\prime}\right) \in \Theta \times \Theta^{\prime}$ of the likelihood function $\ell_{X, Y}$ using data set $U=\left(u_{x, y}\right)$, linear transformation (55) and equations $(57,58)$
[Compare] If $\ell_{Y}\left(\hat{\theta}, \hat{\theta}^{\prime}\right)-\ell_{Y}\left(\theta, \theta^{\prime}\right)>\epsilon$, set $\theta \leftarrow \hat{\theta}$ and $\theta^{\prime} \leftarrow \hat{\theta}^{\prime}$ and resume with E-step, see (91)
[Output] $\theta^{*} \leftarrow \hat{\theta}, \theta^{\prime *} \leftarrow \hat{\theta}$

Soft Computing
K.-H.

Zimmermann

Contents
Belief Network
Learning FOM
Probabilistic
Inference
Viterbi Algorithm
EM Algorithm *BW Algorithm

CpG Islands

Using R
M-step

Comp

EM Algorithm for HMM

EM Algorithm for HMM - Example

In view of the occasionally dishonest casino with $n=4$, given $N=8$ samples

$$
\begin{array}{llll}
d_{1}=h h h h, & d_{2}=h h t t, & d_{3}=h h h h, & d_{4}=h h t t \\
d_{5}=h h h h, & d_{6}=h h t t, & d_{7}=t t t t, & d_{8}=h t t h
\end{array}
$$

Counts

$$
u_{h h h h}=3, \quad u_{h h t t}=3 \quad u_{h t t h}=1, \quad u_{t t t t}=1
$$

Likelhood function

$$
\begin{aligned}
L_{Y}\left(\theta, \theta^{\prime}\right) & =\prod_{i=1}^{N} p_{Y \mid \Theta \times \Theta^{\prime}}\left(d_{i} \mid \theta, \theta^{\prime}\right) \\
& =p_{Y}(h h h h)^{3} p_{Y}(h h t t)^{3} p_{Y}(h t t h) p_{Y}(t t t t)
\end{aligned}
$$

Soft Computing

K.-H.

Zimmermann

Contents
Belief Network
Learning FOM
Probabilistic
Inference
Viterbi Algorithm
EM Algorithm *BW Algorithm CpG Islands Using R

EM Algorithm for HMM - Example (Cont'd)

Log-likelihood function
$\ell_{Y}\left(\theta, \theta^{\prime}\right)=$
$3 \log p_{Y}(h h h h)+3 \log p_{Y}(h h t t)+\log p_{Y}(h t t h)+\log p_{Y}(t t t t)$.
Given the parameters $\left(\theta, \theta^{\prime}\right)$, the estimated values (E -step)

$$
u_{x, y}=\frac{u_{y} \cdot p_{X, Y}(x, y)}{p_{Y}(y)}, \quad x \in \Sigma^{n}, y \in \Sigma^{\prime n}
$$

are computed by calculating directly the joint probabilities

$$
p_{X, Y}(x, y)=\frac{1}{2} \theta_{x_{1}, y_{1}}^{\prime} \theta_{x_{1}, x_{2}} \theta_{x_{2}, y_{2}}^{\prime} \theta_{x_{2}, x_{3}} \theta_{x_{3}, y_{3}}^{\prime} \theta_{x_{3}, x_{4}} \theta_{x_{4}, y_{4}}^{\prime}
$$

and the marginal probabilities by using the sum-product decomposition (63),

$$
p_{Y}(y)=\sum_{x} p_{X, Y}(x, y)
$$

EM Algorithm for HMM

- In the E-step, the marginal probabilities $p_{Y}\left(y \mid \theta, \theta^{\prime}\right)$ can be computed efficiently by the sum-product decomposition.
- In the M-step, the maximal estimates $\hat{\theta}$ and $\hat{\theta}^{\prime}$ can be calculated as in the fully observed model (57, 58).
- The EM algorithm switches back and forth between the fully observed and the hidden model!
- Suppose the joint probability distribution depends on the parameters θ of a parameter set Θ. Write

$$
\begin{equation*}
f_{i j}(\theta)=p_{Y, Z \mid \Theta}\left(y^{(i)}, z^{(j)}\right), \quad 1 \leq i \leq m, 1 \leq j \leq n . \tag{80}
\end{equation*}
$$

■ Marginal distribution with respect to Y,

$$
\begin{equation*}
f_{i}(\theta)=p_{Y \mid \Theta}\left(y^{(i)}\right)=\sum_{j=1}^{n} f_{i j}(\theta), \quad 1 \leq i \leq m . \tag{81}
\end{equation*}
$$

This quantity is often intractable such as in the case when the number of values of Z grows exponentially with the sequence length making the exact calculation of the marginals extremely difficult.

Soft Computing
K.-H.

Zimmermann

Contents
Belief Network
Learning FOM
Probabilistic
Inference
Viterbi Algorithm
EM Algorithm *BW Algorithm

CpG Islands

Using R

EM Algorithm (Hidden Case)

- Take collection of N independent samples from state space \mathcal{Y},

$$
\begin{equation*}
D=\left(y^{\left(i_{1}\right)}, \ldots, y^{\left(i_{N}\right)}\right), \tag{82}
\end{equation*}
$$

where $1 \leq i_{1}, \ldots, i_{N} \leq m$.

- This collection gives rise to the data vector

$$
\begin{equation*}
u=\left(u_{1}, \ldots, u_{m}\right) \in \mathbb{N}^{m}, \tag{83}
\end{equation*}
$$

where u_{i} is the number of occurrences of the state $y^{(i)}$ in the sequence $D, 1 \leq i \leq m$.

- We have

$$
\begin{equation*}
\sum_{i=1}^{m} u_{i}=N . \tag{84}
\end{equation*}
$$

Contents
Belief Network
Learning FOM
Probabilistic
Inference
Viterbi Algorithm
EM Algorithm *BW Algorithm CpG Islands Using R

EM Algorithm (Hidden Case)

- Objective is to maximize the likelihood function with respect to the parameters $\theta \in \Theta$ for the observed data,

$$
\begin{equation*}
L(\theta)=\prod_{i=1}^{m} f_{i}(\theta)^{u_{i}} . \tag{85}
\end{equation*}
$$

■ Log-likelihood function:

$$
\begin{equation*}
\ell_{Y}(\theta)=u_{1} \cdot \log f_{1}(\theta)+\cdots+u_{m} \cdot \log f_{m}(\theta) \tag{86}
\end{equation*}
$$

The data vector u forms the sufficient statistic of the model.

EM Algorithm (Fully Observed Case)
■ Consider collection of N independent sample pairs from state space $\mathcal{Y} \times \mathcal{Z}$,

$$
\begin{equation*}
D=\left(\left(y^{\left(i_{1}\right)}, z^{\left(j_{1}\right)}\right), \ldots,\left(y^{\left(i_{N}\right)}, z^{\left(j_{N}\right)}\right)\right) \tag{87}
\end{equation*}
$$

where $1 \leq i_{1}, \ldots, i_{N} \leq m$ and $1 \leq j_{1}, \ldots, j_{N} \leq n$.

- This collection gives rise to the data vector

$$
\begin{equation*}
U=\left(u_{i j}\right) \in \mathbb{N}^{m \times n}, \tag{88}
\end{equation*}
$$

where $u_{i j}$ is the number of occurrences of the sequence pair $\left(y^{(i)}, z^{(j)}\right)$ in the sequence D with $u_{i}=\sum_{j=1}^{n} u_{i j}, 1 \leq i \leq m$.

EM Algorithm (Fully Observed Case)

- The objective is to maximize the likelihood function w.r.t. parameters $\theta \in \Theta$ for the observed sequence pairs,

$$
\begin{equation*}
L_{Y, Z}(\theta)=\prod_{i, j} f_{i j}(\theta)^{u_{i j}} \tag{89}
\end{equation*}
$$

- Log-likelihood function

$$
\begin{equation*}
\ell_{Y, Z}(\theta)=u_{11} \cdot \log f_{11}(\theta)+\cdots+u_{m n} \cdot \log f_{m n}(\theta) \tag{90}
\end{equation*}
$$

- Assumption: Optimal parameters attained by maximization of $\ell_{Y, Z}(\theta)$ can be efficiently computed such as for HMM.

Contents
Belief Network
Learning FOM
Probabilistic
Inference
Viterbi Algorithm
EM Algorithm *BW Algorithm CpG Islands Using R

EM Algorithm (General)

Require: Joint probability function $p_{Y, Z \mid \Theta}$, parameter set $\Theta \subseteq \mathbb{R}^{d}$, observed data $u=\left(u_{i}\right) \in \mathbb{N}^{m}$
Ensure: Maximum likelihood estimate $\theta^{*} \in \Theta$ of the log-likelihood function $\ell_{Y}(\theta)$
[Init] Threshold $\epsilon>0$ and parameter $\theta \in \Theta$
[E-Step] Define matrix $U=\left(u_{i j}\right) \in \mathbb{R}_{>0}^{m \times n}$ with

$$
u_{i j}=\frac{u_{i} \cdot f_{i j}(\theta)}{f_{i}(\theta)}
$$

[M-Step] Compute solution $\hat{\theta} \in \Theta$ of the likelihood function $\ell_{Y, Z}$ using data set $U=\left(u_{i j}\right)$
[Compare] If $\ell_{Y}(\hat{\theta})-\ell_{Y}(\theta)>\epsilon$, set $\theta \leftarrow \hat{\theta}$ and resume with
E-step, see (91)
[Output] $\theta^{*} \leftarrow \hat{\theta}$

EM Algorithm (General)

During each iteration of the EM algorithm, the value of the log-likelihood function increases:

$$
\begin{equation*}
\ell_{Y}(\hat{\theta}) \geq \ell_{Y}(\theta) . \tag{91}
\end{equation*}
$$

If $\ell_{Y}(\hat{\theta})=\ell_{Y}(\theta)$, then $\hat{\theta}$ is a critical point (local maximum) of the log-likelihood function.

Soft Computing

K.-H.

Zimmermann

Contents

Belief Network
Learning FOM
Probabilistic
Inference
Viterbi Algorithm
EM Algorithm
*BW Algorithm
CpG Islands

*Proof

We have

$$
\begin{aligned}
\ell_{Y}(\hat{\theta})-\ell_{Y}(\theta)= & \sum_{i=1}^{m} u_{i} \cdot\left[\log f_{i}(\hat{\theta})-\log f_{i}(\theta)\right] \\
= & \sum_{i=1}^{m} \sum_{j=1}^{n} u_{i j} \cdot\left[\log f_{i j}(\hat{\theta})-\log f_{i j}(\theta)\right] \\
& +\sum_{i=1}^{m} u_{i} \cdot\left(\log \left(\frac{f_{i}(\hat{\theta})}{f_{i}(\theta)}\right)-\sum_{j=1}^{n} \frac{u_{i j}}{u_{i}} \cdot \log \left(\frac{f_{i j}(\hat{\theta})}{f_{i j}(\theta)}\right)\right) .
\end{aligned}
$$

The first term in this expression equals $\ell_{Y, Z}(\hat{\theta})-\ell_{Y, Z}(\theta)$ and is non-negative due to the M-step.

Soft Computing

K.-H.

Zimmermann

Contents

Belief Network
Learning FOM
Probabilistic
Inference

Viterbi Algorithm

EM Algorithm *BW Algorithm

CpG Islands

Proof (Cont'd)

Claim that the second term is also non-negative. Indeed, the parenthesized expression can be written by the E-step as follows,
$\log \left(\frac{f_{i}(\hat{\theta})}{f_{i}(\theta)}\right)-\sum_{j=1}^{n} \frac{u_{i j}}{u_{i}} \cdot \log \left(\frac{f_{i j}(\hat{\theta})}{f_{i j}(\theta)}\right)=\log \left(\frac{f_{i}(\hat{\theta})}{f_{i}(\theta)}\right)+\sum_{j=1}^{n} \frac{f_{i j}(\theta)}{f_{i}(\theta)} \cdot \log \left(\frac{f_{i j}(\theta)}{f_{i j}(\hat{\theta})}\right)$.

Since $f_{i}(\theta)=\sum_{j} f_{i j}(\theta)$ for each $1 \leq i \leq m$, this expression can be rewritten as

$$
\sum_{j=1}^{n} \frac{f_{i j}(\theta)}{f_{i}(\theta)} \cdot \log \left(\frac{f_{i}(\hat{\theta})}{f_{i}(\theta)}\right)+\sum_{j=1}^{n} \frac{f_{i j}(\theta)}{f_{i}(\theta)} \cdot \log \left(\frac{f_{i j}(\theta)}{f_{i j}(\hat{\theta})}\right)
$$

and thus amounts to

$$
\begin{equation*}
\sum_{j=1}^{n} \frac{f_{i j}(\theta)}{f_{i}(\theta)} \cdot \log \left(\frac{f_{i}(\hat{\theta})}{f_{i j}(\hat{\theta})} \cdot \frac{f_{i j}(\theta)}{f_{i}(\theta)}\right) \tag{92}
\end{equation*}
$$

Soft Computing

K.-H.

Zimmermann

Contents
Belief Network
Learning FOM

Probabilistic

Inference
Viterbi Algorithm
EM Algorithm *BW Algorithm CpG Islands

Using R

Proof (Cont'd)

Take the non-negative quantities

$$
\pi_{j}=\frac{f_{i j}(\theta)}{f_{i}(\theta)} \quad \text { and } \quad \sigma_{j}=\frac{f_{i j}(\hat{\theta})}{f_{i}(\hat{\theta})}, \quad 1 \leq j \leq n
$$

Then we have

$$
\pi_{1}+\ldots+\pi_{n}=1=\sigma_{1}+\ldots+\sigma_{n}
$$

Thus the vectors π and σ are probability distributions. The expression (92) is the Kullback-Leibler divergence from π to σ,

$$
D(\pi \| \sigma)=\sum_{j=1}^{n} \pi_{j} \cdot \log \left(\frac{\pi_{j}}{\sigma_{j}}\right)
$$

The Kullback-Leibler measure is always nonnegative,

$$
D(\pi \| \sigma) \geq 0
$$

It follows that the second expression is also non-negative and the claim follows. Hence, we have $\ell_{Y}(\hat{\theta}) \geq \ell_{Y}(\theta)$.

Soft Computing

K.-H.

Zimmermann

Contents

Belief Network

Learning FOM

Probabilistic

Inference

Viterbi Algorithm

EM Algorithm *BW Algorithm

CpG Islands

Using R

Proof (Cont'd)

Suppose $\ell_{Y}(\hat{\theta})=\ell_{Y}(\theta)$ for some $\theta, \hat{\theta} \in \Theta$. Then the expression in (92) must be zero. But the Kullback-Leibler divergence satisfies $D(\pi \| \sigma)=0$ if and only if $\pi=\sigma$. Thus we have

$$
\begin{equation*}
\frac{f_{i j}(\theta)}{f_{i}(\theta)}=\frac{f_{i j}(\hat{\theta})}{f_{i}(\hat{\theta})}, \quad 1 \leq i \leq m, 1 \leq j \leq n . \tag{93}
\end{equation*}
$$

Therefore, we have

$$
\begin{aligned}
0 & =\frac{\partial \ell_{Y, Z}(\hat{\theta})}{\partial \theta_{k}} \\
& =\sum_{i=1}^{m} \sum_{j=1}^{n} \frac{u_{i j}}{f_{i j}(\hat{\theta})} \cdot \frac{\partial f_{i j}(\hat{\theta})}{\partial \theta_{k}} \\
& =\sum_{i=1}^{m} \sum_{j=1}^{n} \frac{u_{i}}{f_{i}(\hat{\theta})} \cdot \frac{\partial f_{i j}}{\partial \theta_{k}}(\hat{\theta}) \\
& =\sum_{i=1}^{m} \frac{u_{i}}{f_{i}(\hat{\theta})} \cdot\left(\frac{\partial}{\partial \theta_{k}} \sum_{j=1}^{n} f_{i j}\right)(\hat{\theta}) \\
& =\sum_{i=1}^{m} \frac{u_{i}}{f_{i}(\hat{\theta})} \cdot\left(\frac{\partial}{\partial \theta_{k}} f_{i}\right)(\hat{\theta})=\frac{\partial \ell_{Y}(\hat{\theta})}{\partial \theta_{k}}, \quad 1 \leq k \leq d
\end{aligned}
$$

where in the third equation we used both the E-step and (93).

Contents

Belief Network

Learning FOM
Probabilistic
Inference

Baum-Welch Algorithm

- Structure of HMM allows a more efficient implementation of the EM algorithm known as the Baum-Welch algorithm.

■ Dynamic programming algorithm developed in the late 1960s.

Baum-Welch Algorithm

■ Given data vector $u=\left(u_{y}\right) \in \mathbb{N}^{l^{\prime n}}$, where u_{y} is the number of times the output sequence $y \in \Sigma^{\prime n}$ is observed.

- The full data vector $U=\left(u_{x, y}\right) \in \mathbb{N}^{n} \times l^{\prime n}$ is not available, where $u_{x, y}$ denotes the number of times the pair $(x, y) \in \Sigma^{n} \times \Sigma^{\prime n}$ is observed.

■ The EM algorithm estimates in the E-step the counts of the full data vector by the quantity

$$
\begin{equation*}
u_{x, y}=\frac{u_{y} \cdot p_{X, Y \mid \Theta \times \Theta^{\prime}}\left(x, y \mid \theta, \theta^{\prime}\right)}{p_{Y \mid \Theta \times \Theta^{\prime}}\left(y \mid \theta, \theta^{\prime}\right)}, \quad x \in \Sigma^{n}, y \in \Sigma^{\prime n} \tag{94}
\end{equation*}
$$

■ These counts are used in $(57,58)$ to provide the sufficient statistic $\left(v, v^{\prime}\right)$ of the model, which is used in the M-step to derive updated parameter values θ, θ^{\prime}.

■ In the BW algorithm, the sufficient statistic $\left(v, v^{\prime}\right)$ can be directly calculated by dynamic programming.

Contents
Belief Network
Learning FOM
Probabilistic
Inference
Viterbi Algorithm
EM Algorithm
*BW Algorithm
CpG Islands
Using R

Baum-Welch Algorithm

Let $y \in \Sigma^{\prime n}$.

- The forward probability

$$
\begin{equation*}
f_{y, s}(i)=p_{Y_{1}, \ldots, Y_{i}, X_{i}}\left(y_{1}, \ldots, y_{i}, s\right), s \in \Sigma, 1 \leq i \leq n \tag{95}
\end{equation*}
$$

is the joint probability that the prefix $y_{1} \ldots y_{i}$ of the observed sequence y having length i ends in state s.

- The backward probability
$b_{y, s}(i)=p_{Y_{i+1}, \ldots, Y_{n} \mid X_{i}}\left(y_{i+1}, \ldots, y_{n} \mid s\right), s \in \Sigma, 1 \leq i \leq n$, (96)
is the conditional probability that the suffix $y_{i+1} \ldots y_{n}$ of the observed sequence y having length $n-i$ starts in state s.

Baum-Welch Algorithm

- The probability $p_{Y}\left(y \mid \theta, \theta^{\prime}\right)$ of the emitted sequence y can be calculated by the forward probabilities,

$$
\begin{equation*}
p_{Y}\left(y \mid \theta, \theta^{\prime}\right)=\sum_{r \in \Sigma} f_{y, r}(n) \tag{97}
\end{equation*}
$$

■ For each emitted sequence $y \in \Sigma^{\prime n}$, consider the $l \times n$ matrices

$$
\begin{equation*}
F_{y}=\left(f_{y, r}(i)\right) \quad \text { and } \quad B_{y}=\left(b_{y, r}(i)\right) \tag{98}
\end{equation*}
$$

with $r \in \Sigma$ and $1 \leq i \leq n$, of the forward and backward probabilities, resp.

Baum-Welch Algorithm

- The entries of the matrices F_{y} and B_{y} can be efficiently computed in an iterative manner,

$$
\begin{align*}
f_{y, r}(1)= & \frac{1}{l} \theta_{r, y_{1}}^{\prime}, \quad r \in \Sigma, \tag{99}\\
f_{y, r}(i)= & \theta_{r, y_{i}}^{\prime} \sum_{s \in \Sigma} f_{y, s}(i-1) \cdot \theta_{s r}, \tag{100}\\
& r \in \Sigma, 2 \leq i \leq n,
\end{align*}
$$

and

$$
\begin{align*}
b_{y, r}(n)= & 1, \quad r \in \Sigma \tag{101}\\
b_{y, r}(i)= & \sum_{s \in \Sigma} \theta_{r s} \cdot \theta_{s, y_{i+1}}^{\prime} \cdot b_{y, s}(i+1) \tag{102}\\
& r \in \Sigma, 1 \leq i \leq n-1
\end{align*}
$$

Contents

Belief Network
Learning FOM
Probabilistic
Inference
Viterbi Algorithm
EM Algorithm
*BW Algorithm

CpG Islands

Baum-Welch Algorithm - Example

Reconsider the dishonest casino dealer with output sequence

$$
y=\left(y_{1}, \ldots, y_{4}\right), n=4 .
$$

$$
\begin{aligned}
f_{y, r}(1) & =\frac{1}{2} \theta_{r, y_{1}}^{\prime}, \quad r \in \Sigma \\
f_{y, r}(2) & =\theta_{r, y_{2}}^{\prime} \sum_{s \in \Sigma} f_{y, s}(1) \theta_{s r} \\
& =\frac{1}{2} \theta_{r, y_{2}}^{\prime}\left(\theta_{F, y_{1}}^{\prime} \theta_{F, r}+\theta_{L, y_{1}}^{\prime} \theta_{L, r}\right), \quad r \in \Sigma \\
f_{y, r}(3) & =\theta_{r, y_{3}}^{\prime} \sum_{s \in \Sigma} f_{y, s}(2) \theta_{s r} \\
& =\frac{1}{2} \theta_{r, y_{3}}^{\prime}\left(f_{y, F}(2) \theta_{F, r}+f_{y, L}(2) \theta_{L, r}\right), \quad r \in \Sigma,
\end{aligned}
$$

Soft Computing
K.-H.

Zimmermann

Contents

Belief Network
Learning FOM
Probabilistic
Inference
Viterbi Algorithm
EM Algorithm

* BW Algorithm CpG Islands Using R

Baum-Welch Algorithm - Example (Cont'd)

$$
\begin{aligned}
f_{y, r}(4) & =\theta_{r, y_{4}}^{\prime} \sum_{s \in \Sigma} f_{y, s}(3) \theta_{s r} \\
& =\frac{1}{2} \theta_{r, y_{4}}^{\prime}\left(f_{y, F}(3) \theta_{F, r}+f_{y, L}(3) \theta_{L, r}\right), \quad r \in \Sigma \\
& =\sum_{x_{1}, x_{2}, x_{3} \in \Sigma} p_{X, Y}\left(x_{1}, x_{2}, x_{3}, r, y_{1}, y_{2}, y_{3}, y_{4}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
p_{Y}\left(y_{1}, \ldots, y_{4}\right) & =\sum_{r \in \Sigma} f_{y, r}(4) \\
& =\sum_{x_{1}, x_{2}, x_{3}, x_{4} \in \Sigma} p_{X, Y}\left(x_{1}, x_{2}, x_{3}, x_{4}, y_{1}, y_{2}, y_{3}, y_{4}\right)
\end{aligned}
$$

Contents

Belief Network
Learning FOM
Probabilistic
Inference
Viterbi Algorithm
EM Algorithm
*BW Algorithm
CpG Islands

Baum-Welch Algorithm

In view of the sufficient statistic $\left(v, v^{\prime}\right)$, we have for all $r, s \in \Sigma$ and $t \in \Sigma^{\prime}$,

$$
\begin{align*}
v_{r s} & =\sum_{y \in \Sigma^{\prime n}} \frac{u_{y}}{p\left(y \mid \theta, \theta^{\prime}\right)} \sum_{i=1}^{n-1} f_{y, r}(i) \cdot \theta_{r, s} \cdot \theta_{s, y_{i+1}}^{\prime} \cdot b_{y, s}(i+1 \nmid 103) \\
v_{r t}^{\prime} & =\sum_{y \in \Sigma^{\prime n}} \frac{u_{y}}{p\left(y \mid \theta, \theta^{\prime}\right)} \sum_{i=1}^{n-1} f_{y, r}(i) \cdot b_{y, r}(i+1) \cdot I_{\left(y_{i}=t\right)} \tag{104}
\end{align*}
$$

where I_{A} denotes the indicator function of statement A; i.e., $I_{A}=1$ if A is true and $I_{A}=0$ otherwise.

Contents
Belief Network
Learning FOM
Probabilistic
Inference
Viterbi Algorithm
EM Algorithm
*BW Algorithm
CpG Islands
Using R

Baum-Welch Algorithm - Proof

For each state sequence $x \in \Sigma^{n}$,

$$
v_{r s}=\sum_{y \in \Sigma^{\prime n}} \sum_{x \in \Sigma^{n}} \sum_{i=1}^{n-1} I_{\left(x_{i} x_{i+1}=r s\right)} \cdot u_{x, y}
$$

Thus in view of the definition of $u_{x, y}$ in the E-step,

$$
v_{r s}=\sum_{y \in \Sigma^{\prime n}} \frac{u_{y}}{p\left(y \mid \theta, \theta^{\prime}\right)} \sum_{i=1}^{n-1} \sum_{x \in \Sigma^{n}} I_{\left(x_{i} x_{i+1}=r s\right)} \cdot p\left(x, y \mid \theta, \theta^{\prime}\right)
$$

The innermost term is the sum of all probabilities of pairs (x, y) for an output sequence y and all state sequences x such that $x_{i} x_{i+1}=r s$; i.e., observing the sequence y and a transition from state r to state s at position i.

Baum-Welch Algorithm - Proof (Cont'd)

Therefore,

$$
\begin{aligned}
\sum_{x \in \Sigma^{n}} & I_{\left(x_{i} x_{i+1}=r s\right)} \cdot p\left(x, y \mid \theta, \theta^{\prime}\right) \\
= & P\left(Y=y, X_{i}=r, X_{i+1}=s\right) \\
= & P\left(Y_{1}=y_{1}, \ldots, Y_{i}=y_{i}, X_{i}=r\right) \\
& \cdot P\left(X_{i+1}=s \mid X_{i}=r\right) \\
& \cdot P\left(Y_{i+1}=y_{i+1} \mid X_{i+1}=s\right) \\
& \cdot P\left(Y_{i+2}=y_{i+2}, \ldots, Y_{n}=y_{n} \mid X_{i+1}=s\right) \\
= & f_{y, r}(i) \cdot \theta_{r s} \cdot \theta_{s y_{i+1}}^{\prime} \cdot b_{y, s}(i+1)
\end{aligned}
$$

The second assertion can be similarly proved.

Baum-Welch Algorithm

- In the BW algorithm, the $l \times n$ forward and backward probability matrices $\left(F_{y}\right)_{y}$ and $\left(B_{y}\right)_{y}$ need to be maintained to calculate the sufficient statistic $\left(v, v^{\prime}\right)$ using $(103,104)$.
- In the EM algorithm, an $l^{n} \times l^{\prime n}$ matrix $U=\left(u_{x, y}\right)$ needs to be maintained from which the sufficient statistic (v, v^{\prime}) can be established using (94).

Baum-Welch Algorithm for HMM

Require: Hidden Markov model, joint probability function $p_{X, Y \mid \Theta \times \Theta^{\prime}}$, parameter space $\Theta \times \Theta^{\prime} \subseteq \mathbb{R}_{>0}^{l(l-1)} \times \mathbb{R}_{>0}^{l\left(l^{\prime}-1\right)}$, integer $n \geq 1$, observed data $u=\left(u_{y}\right) \in \mathbb{N}^{l^{\prime n}}$
Ensure: Maximum likelihood estimate $\left(\theta^{*}, \theta^{*}\right) \in \Theta \times \Theta^{\prime}$ [Init] Threshold $\epsilon>0$ and parameters $\left(\theta, \theta^{\prime}\right) \in \Theta \times \Theta^{\prime}$ [E-Step] Compute the sufficient statistic $\left(v, v^{\prime}\right)$ by dynamic programming in $(103,104)$ [M-Step] Compute solution $\left(\hat{\theta}, \hat{\theta}^{\prime}\right) \in \Theta \times \Theta^{\prime}$ of the likelihood function $\ell_{X, Y}$ using $\left(v, v^{\prime}\right)$ and $(57,58)$
[Compare] If $\ell_{Y}\left(\hat{\theta}, \hat{\theta}^{\prime}\right)-\ell_{Y}\left(\theta, \theta^{\prime}\right)>\epsilon$, set $\theta \leftarrow \hat{\theta}$ and $\theta^{\prime} \leftarrow \hat{\theta}^{\prime}$ and resume with E-step, see (91)
[Output] $\theta^{*} \leftarrow \hat{\theta}, \theta^{\prime *} \leftarrow \hat{\theta}$
The difference between the EM and BW algorithms lies in the E-step, which is more efficient in the BW algorithm.

Soft Computing
K.-H.

Zimmermann

Contents
Belief Network
Learning FOM
Probabilistic
Inference
Viterbi Algorithm
EM Algorithm

* BW Algorithm

CpG Islands

Using R
M-step

Comp

BW Algorithm for HMM


```
Soft Computing
K.-H.
Zimmermann
```


Contents

Belief Network
Learning FOM
Probabilistic Inference

Viterbi Algorithm
EM Algorithm
*BW Algorithm
CpG Islands
Using R

CpG Islands

Contents
Belief Network
Learning FOM
Probabilistic
Inference
Viterbi Algorithm
EM Algorithm
*BW Algorithm
CpG Islands
Using R

CpG Islands

- Region of a genome with higher frequency of CpG sites than in the rest of the genome.
- Formal definition: CpG island is a region with at least 250 bp and a GC percentage of at least 60%.

■ CpG is shorthand for "-C-phosphate-G-", i.e., cytosine and guanine separated by one phosphate residue on the same single DNA strand (covalent bond).

- Do not mix up with the base pairs $\mathrm{C} \cdots \mathrm{G}$ where C and G lie opposite to each other on complementary strands (hydrogen bond).

Contents
Belief Network
Learning FOM
Probabilistic
Inference
Viterbi Algorithm
EM Algorithm
*BW Algorithm
CpG Islands
Using R

CpG Islands

■ CpG islands located in the promoter region of genes can play important role in gene silencing.

- Cytosines in CpG dinucleotides can be methylated (have methyl group CH_{3} attached) to form 5-methylcytosine.
- The presence of multiple methylated CpG sites in CpG islands of promoters causes stable silencing of genes.
- In cancer, loss of expression of genes occurs about 10 times more frequently by hypermethylation of promoter CpG islands than by mutation.

CpG Islands

In computational biology, two questions about CpG islands arise.
1 Decide whether a short stretch of a genomic DNA strand lies inside of a CpG island.

2 Find the CpG regions of a long stretch of a genomic DNA strand.

Markov Model

Contents
Belief Network
Learning FOM
Probabilistic
Inference
Viterbi Algorithm
EM Algorithm
*BW Algorithm
CpG Islands
Using R

$$
\begin{equation*}
\theta_{X Y}^{+}=\frac{c_{X Y}^{+}}{\sum_{Z} c_{X Z}^{+}} \quad \text { and } \quad \theta_{X Y}^{-}=\frac{c_{X Y}^{-}}{\sum_{Z} c_{X Z}^{-}}, \tag{105}
\end{equation*}
$$

where $c_{X Y}^{+}$and $c_{X Y}^{-}$are the number of times the nucleotide Y followed the nucleotide X in a CpG island and non-island, respectively.

Markov Model

Conditional probabilities for + model and - model:

+	A	C	G	T
A	0.180	0.274	0.426	0.120
C	0.171	0.368	0.274	0.188
G	0.161	0.339	0.375	0.125
T	0.079	0.355	0.384	0.182
-	A	C	G	T
A	0.300	0.205	0.285	0.210
C	0.322	0.298	0.078	0.302
G	0.248	0.246	0.298	0.208
T	0.177	0.239	0.292	0.292

Soft Computing
K.-H.

Zimmermann

Contents
Belief Network
Learning FOM
Probabilistic
Inference
Viterbi Algorithm
EM Algorithm
*BW Algorithm
CpG Islands

Markov Model - Inference (Problem 1)

- Consider DNA sequence $w=w_{1} \ldots w_{n}$.
- Calculate in both Markov chains the probabilities of lying inside and outside of a CpG island:

$$
\begin{equation*}
p^{+}(w)=\frac{1}{4} \theta_{w_{1}, w_{2}}^{+} \theta_{w_{2}, w_{3}}^{+} \cdots \theta_{w_{n-1}, w_{n}}^{+} \tag{106}
\end{equation*}
$$

and

$$
\begin{equation*}
p^{-}(w)=\frac{1}{4} \theta_{w_{1}, w_{2}}^{-} \theta_{w_{2}, w_{3}}^{-} \cdots \theta_{w_{n-1}, w_{n}}^{-} \tag{107}
\end{equation*}
$$

■ Use log odds ratio for discrimination:

$$
\begin{equation*}
S(w)=\log \frac{p^{+}(w)}{p^{-}(w)}=\sum_{i} \log \frac{\theta_{w_{i}, w_{i+1}}^{+}}{\theta_{w_{i}, w_{i+1}}^{-}} . \tag{108}
\end{equation*}
$$

If the value of $S(w)$ is positive, there is a high chance that the DNA sequence represents a CpG island; otherwise, not.

Contents
Belief Network
Learning FOM
Probabilistic Inference

Viterbi Algorithm
EM Algorithm *BW Algorithm

CpG Islands
Using R

Hidden Markov Model

Build hidden Markov model for entire DNA sequence that incorporates both Markov models above.

- States are relabeled such that A_{+}, C_{+}, G_{+}, and T_{+}determine areas of CpG island and $\mathrm{A}_{-}, \mathrm{C}_{-}, \mathrm{G}_{-}$, and T_{-}provide areas of non-islands.
- For simplicity, assume there is a uniform conditional probability of switching between islands and non-islands.
- Let p^{+}and $p^{-}=1-p^{+}$denote the probabilities for staying inside and outside of a CpG island, resp.

Contents

Belief Network
Learning FOM

Hidden Markov Model

Conditional probabilities for HMM:

Probabilistic Inference

Viterbi Algorithm
EM Algorithm
*BW Algorithm
CpG Islands
Using R

θ	A^{+}	C^{+}	G^{+}	T^{+}
A^{+}	$0.180 p^{+}$	$0.274 p^{+}$	$0.426 p^{+}$	$0.120 p^{+}$
C^{+}	$0.171 p^{+}$	$0.368 p^{+}$	$0.274 p^{+}$	$0.188 p^{+}$
G^{+}	$0.161 p^{+}$	$0.339 p^{+}$	$0.375 p^{+}$	$0.125 p^{+}$
T^{+}	$0.079 p^{+}$	$0.355 p^{+}$	$0.384 p^{+}$	$0.182 p^{+}$
A^{-}	$\frac{1-p^{-}}{4}$	$\frac{1-p^{-}}{4}$	$\frac{1-p^{-}}{4}$	$\frac{1-p^{-}}{4}$
C^{-}	$\frac{1-p^{-}}{4}$	$\frac{1-p^{-}}{4}$	$\frac{1-p^{-}}{4}$	$\frac{1-p^{-}}{4}$
G^{-}	$\frac{1-p^{-}}{4}$	$\frac{1-p^{-}}{4}$	$\frac{1-p^{-}}{4}$	$\frac{1-p^{-}}{4}$
$\mathrm{~T}^{-}$	$\frac{1-p^{-}}{4}$	$\frac{1-p^{-}}{4}$	$\frac{1-p^{-}}{4}$	$\frac{1-p^{-}}{4}$

Soft Computing

Contents

Belief Network
Learning FOM

Hidden Markov Model

Conditional probabilities for HMM:

Probabilistic

 InferenceViterbi Algorithm
EM Algorithm
*BW Algorithm
CpG Islands
Using R

θ	A^{-}	C^{-}	G^{-}	T^{-}
A^{+}	$\frac{1-p^{+}}{4}$	$\frac{1-p^{+}}{4}$	$\frac{1-p^{+}}{4}$	$\frac{1-p^{+}}{4}$
C^{+}	$\frac{1-p^{+}}{4}$	$\frac{1-p^{+}}{4}$	$\frac{1-p^{+}}{4}$	$\frac{1-p^{+}}{4}$
G^{+}	$\frac{1-p^{+}}{4}$	$\frac{1-p^{+}}{4}$	$\frac{1-p^{+}}{4}$	$\frac{1-p^{+}}{4}$
$\mathrm{~T}^{+}$	$\frac{1-p^{+}}{4}$	$\frac{1-p^{+}}{4}$	$\frac{1-p^{+}}{4}$	$\frac{1-p^{+}}{4}$
$\mathrm{~A}^{-}$	$0.300 p^{-}$	$0.205 p^{-}$	$0.285 p^{-}$	$0.210 p^{-}$
C^{-}	$0.322 p^{-}$	$0.298 p^{-}$	$0.078 p^{-}$	$0.302 p^{-}$
G^{-}	$0.248 p^{-}$	$0.246 p^{-}$	$0.298 p^{-}$	$0.208 p^{-}$
T^{-}	$0.177 p^{-}$	$0.239 p^{-}$	$0.292 p^{-}$	$0.292 p^{-}$

Contents

Belief Network

Learning FOM
Probabilistic
Inference
Hidden Markov Model

- The conditional output probabilities are all 0 and 1.
- The states X^{+}and X^{-}output the symbol X with certainty,

$$
\theta_{X^{+}, Y}^{\prime}=\theta_{X^{-}, Y}^{\prime}= \begin{cases}1 & \text { if } X=Y, \\ 0 & \text { if } X \neq Y .\end{cases}
$$

Contents
Belief Network
Learning FOM
Probabilistic
Inference
Viterbi Algorithm
EM Algorithm
*BW Algorithm
CpG Islands
Using R

Hidden Markov Model
There are three associated problems:
1 Given the model parameters, a DNA sequence (output), and a state sequence. Calculate the joint probability of this pair of sequences.
For instance, the joint probability that the DNA sequence CGCG is generated by the state sequence $\mathrm{C}_{+} \mathrm{G}_{+} \mathrm{C}_{+} \mathrm{G}_{+}$is

$$
\begin{aligned}
& p\left(C_{+} G_{+} C_{+} G_{+}, C G C G\right) \\
& \quad=\frac{1}{8} \theta_{C_{+}, C}^{\prime} \theta_{C_{+}, G_{+}} \theta_{G_{+}, G}^{\prime} \theta_{G_{+}, C_{+}} \theta_{C_{+}, C}^{\prime} \theta_{C_{+}, G_{+}} \theta_{G_{+}, G}^{\prime} .
\end{aligned}
$$

Contents
Belief Network
Learning FOM
Probabilistic
Inference
Viterbi Algorithm
EM Algorithm
*BW Algorithm
CpG Islands
Using R

Hidden Markov Model - Inference (Problem 2)
2 Given the model parameters and a DNA sequence (output). Find the maximum likelihood of generating the output sequence. This problem can be tackled by the Viterbi algorithm which calculates all explanations. When an explanation has a substring consisting only of + states, a CpG island is predicted.
For instance, consider an output sequence and a corresponding (hypothetic) state sequence,

$$
\begin{array}{llllllllllllll}
\mathrm{A} & \mathrm{C} & \mathrm{C} & \mathrm{C} & \mathrm{~A} & \mathrm{~T} & \mathrm{C} & \mathrm{G} & \mathrm{C} & \mathrm{C} & \mathrm{G} & \mathrm{~A} & \mathrm{~T} & \mathrm{~T} \\
\mathrm{~A}^{-} & \mathrm{C}^{+} & \mathrm{C}^{+} & \mathrm{C}^{+} & \mathrm{A}^{-} & \mathrm{T}^{-} & \mathrm{C}^{+} & \mathrm{G}^{+} & \mathrm{C}^{+} & \mathrm{C}^{+} & \mathrm{G}^{+} & \mathrm{A}^{-} & \mathrm{T}^{-} & \mathrm{T}^{-}
\end{array}
$$

This state sequence suggests that the DNA strand has two CpG islands.

Hidden Markov Model - Learning
3 Given a sample set of DNA sequences (output), find the most likely set of conditional probabilities. This amounts to the estimation of the conditional probabilities of the hidden Markov model given the data set. The EM or BW algorithm can tackle this problem.

Contents
Belief Network
Learning FOM
Probabilistic
Inference
Viterbi Algorithm
EM Algorithm
*BW Algorithm
CpG Islands
Using R

Hidden Markov Model in R

■ The R library HMM maintained by Lin Himmelmann (2010) provides procedures for learning and inference in hidden Markov models.

■ Initialisation of HMM:

```
> library("HMM")
> hmm = initHMM( c("F","L"), c("h","t"),
        transProbs
                        = matrix(c(0.8,0.2,0.2,0.8),2),
        emissionProbs
            = matrix(c(0.5,0.4,0.5,0.6),2))
```


Soft Computing

$\mathrm{K} .-\mathrm{H}$.
Zimmermann

Contents
Belief Network
Learning FOM
Probabilistic
Inference
Viterbi Algorithm
EM Algorithm
*BW Algorithm
CpG Islands
Using R
Hidden Markov Model in R
The print command provides a summary of the stats of the defined model.

```
> print(hmm)
$States
[1] "F" "L"
$Symbols
[1]a "h" "t"
$startProbs
    F L
0.5 0.5
$transProbs
        to
from F L
    F 0.8 0.2
    T 0.2 0.8
$emissionProbs
        symbols
states h t
        F 0.5 0.5
        T 0.4 0.6
```


Hidden Markov Model in R

- Computation of forward probabilities for a sequence of observations:
> observe = c("h","t","t","t")
> logForwardProbabilities = forward(hmm, observe)
> print(logForwardProbabilities)
index

states	1	2	3	4
F	-1.386294	-2.120264	-2.803460	-3.450556
L	-1.609438	-2.071473	-2.591868	-3.141582

■ Computation of most probable path for a sequence of observations by Viterbi algorithm:
> posterior = viterbi(hmm, observe)
> print (posterior)
[1] "L" "L" "L" "L"

Contents

Belief Network
Learning FOM
Probabilistic
Inference
Viterbi Algorithm
EM Algorithm *BW Algorithm

CpG Islands
Using R
Hidden Markov Model in R
Learning the parameters from observations using BW algorithm or viterbiTraining.
> hmm = initHMM(c("F","L"), c("h","t"), transProbs $=$ matrix $(c(0.8,0.2,0.2,0.8), 2)$, emissionProbs $=$ matrix $(c(0.5,0.5,0.5,0.5), 2))$
> a = sample(c(rep("h",100), rep("t",200)))
$>$ observe $=c(a)$
> bw = baumWelch(hmm, observe, 10)

Soft Computing

K.-H.

Zimmermann

Contents
Belief Network
Learning FOM
Probabilistic
Inference
Viterbi Algorithm
EM Algorithm
*BW Algorithm
CpG Islands
Using R
Hidden Markov Model in R
The print command provides a summary of the stats of the defined model.

```
> print(bw$hmm)
$States
[1] "F" "L"
$Symbols
[1]a "h" "t"
$startProbs
    F L
0.5 0.5
$transProbs
        to
    from F L
        F 0.8 0.2
        T 0.2 0.8
$emissionProbs
        symbols
states h t
        F 0.3333333 0.6666667
        L 0.3333333 0.6666667
```


Contents

Representation
*PAM

Part III

PHMM

Marginal Probabilities

Needleman-

Sequence Alignment

Contents

- Representation of pairwise alignment
- *Point-accepted mutation (learning)
- Belief network (PHMM)
- Needleman-Wunsch algorithm
- Parametric sequence alignment
- Polytope propagation algorithm
Soft Computing
K.-H.
Zimmermann
Contents Knowledge
Representation
*PAM
PHMM
Marginal
Probabilities
Needleman-
Wunsch
- Representation of pairwise alignment
- Pair-hidden Markov model
- *Point-accepted mutation
- Parametric sequence alignment

Skills

- Needleman-Wunsch algorithm
- Polytope propagation algorithm

```
Soft Computing
    K.-H.
Zimmermann
```

Contents
Representation
*PAM
PHMM
Marginal Probabilities

NeedlemanWunsch Algorithm

Parametric Alignment

Pairwise Alignment

- Pairwise alignment of DNA or AA sequences is a fundamental task in computational biology.
- Goal is to find homologous positions in biological sequences.

HUMAN KKASKPKKAASKAPTKKPKATPVKKAKKKLAATPKKAKKPKTVKAKPVKASKPKKAKPVK MOUSE KKAAKPKKAASKAPSKKPKATPVKKAKKKPAATPKKAKKPKVVKVKPVKASKPKKAKTVK RAT KKAAKPKKAASKAPSKKPKATPVKKAKKKPAATPKKAKKPKIVKVKPVKASKPKKAKPVK COW KKAAKPKKAASKAPSKKPKATPVKKAKKKPAATPKKTKKPKTVKAKPVKASKPKKTKPVK CHIMP KKASKPKKAASKAPTKKPKATPVKKAKKKLAATPKKAKKPKTVKAKPVKASKPKKAKPVK ***:**********:************** $* * * * * *: * * * * * *, * * * * * * * * * *: * *$

NON-CONSERVED AMINO ACIDS

Contents

Representation

* PAM

PHMM
Marginal
Probabilities
Needleman-
Wunsch
Algorithm

Representation of Pairwise Alignment

- Two-row representation

■ Edit-string representation

- Graph representation

Representation of Pairwise Alignment

- Given alphabet Σ with l symbols and '-' additional symbol, called blank.

■ $\Sigma^{\prime}=\Sigma \cup\left\{{ }^{\prime}-^{\prime}\right\}$ extended alphabet of Σ.

- DNA alphabet $\Sigma=\{\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{T}\}$.
- Extended DNA alphabet $\Sigma^{\prime}=\{\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{T},-\}$.

Representation of Pairwise Alignment

■ Given two strings $y=y_{1} \ldots y_{m}$ and $z=z_{1} \ldots z_{n}$ of lengths m and n over alphabet Σ, respectively.

- The alignment of y and z is a pair of aligned strings (u, v) over Σ^{\prime} such that
- u and v have the same length,

■ u and v are copies of y and z with inserted blanks, respectively,
■ alignment (u, v) does not allow blanks at the same position: $\binom{-}{-}$.

Two aligned strings have minimal length $\max \{m, n\}$ and maximal length $m+n$.

Soft Computing
K.-H.

Contents
Representation
*PAM
PHMM
Marginal
Probabilities
Needleman-
Wunsch
Algorithm
Parametric
Alignment

Representation of Pairwise Alignment - Example
Given strings $y=$ ACGTAGC and $z=$ ACCGAGACC over DNA alphabet.
Alignment of y and z :

$$
\begin{array}{cccccccccc}
\text { A } & \mathrm{C} & - & \mathrm{G} & - & \mathrm{T} & \mathrm{~A} & - & \mathrm{G} & \mathrm{C} \\
\mathrm{~A} & \mathrm{C} & \mathrm{C} & \mathrm{G} & \mathrm{~A} & \mathrm{G} & \mathrm{~A} & \mathrm{C} & - & \mathrm{C}
\end{array}
$$

Alignment of minimal length:

A	C	-	G	-	T	A	G	C
A	C	C	G	A	G	A	C	C

Alignment of maximal length:

$$
\begin{array}{cccccccccccccccc}
\text { A } & \text { C } & \text { G } & \text { T } & \text { A } & \text { G } & \text { C } & - & - & - & - & - & - & - & - & - \\
- & - & - & - & - & - & - & \text { A } & \text { C } & \text { C } & \text { G } & \text { A } & \text { G } & \text { A } & \text { C } & \text { C }
\end{array}
$$

Representation of Pairwise Alignment

- An alignment of (y, z) can be represented by a word x over the edit alphabet $\Pi=\{H, I, D\}$.
- The word x is called edit string.
- The letters of the edit alphabet stand for homology (H), insertion (I), and deletion (D).

■ Letter I stands for insertion (indel) in the first string y.

- Letter D stands for deletion (indel) in the first string y.

■ Letter H stands for character change (mutation or mismatch) including the identity change (match).

■ Write $\# H, \# I$, and $\# D$ for the number of instances of H, I, and D in an edit string, respectively.

Contents

Representation
*PAM
PHMM
Marginal Probabilities

NeedlemanWunsch Algorithm

Representation of Pairwise Alignment - Example
Given strings $y=$ ACGTAGC and $z=$ ACCGAGACC.
An alignment of y and z including the edit string x is

$$
\begin{array}{cccccccccccc}
x & = & H & H & I & H & I & H & H & I & D & H \\
u & = & \mathrm{A} & \mathrm{C} & - & \mathrm{G} & - & \mathrm{T} & \mathrm{~A} & - & \mathrm{G} & \mathrm{C} \\
v & = & \mathrm{A} & \mathrm{C} & \mathrm{C} & \mathrm{G} & \mathrm{~A} & \mathrm{G} & \mathrm{~A} & \mathrm{C} & - & \mathrm{C}
\end{array}
$$

We have $\# H=6, \# I=3$, and $\# D=1$.

Contents
Representation

* PAM

PHMM
Marginal
Probabilities
Needleman-
Wunsch
Algorithm
Parametric Alignment

Representation of Pairwise Alignment

Let $y \in \Sigma^{m}$ and $z \in \Sigma^{n}$. A string x over edit alphabet Π represents alignment of y and z over Σ iff the number of symbols in the edit string x satisfies

$$
\begin{equation*}
\# H+\# D=m \quad \text { and } \quad \# H+\# I=n . \tag{109}
\end{equation*}
$$

Proof.

Given an alignment (u, v) of the pair (y, z). Then $\# H+\# D=m$ is the length of the string u and $\# H+\# I=n$ is the length of the string v.
Conversely, let x be an edit string satisfying (109). Reading the string x from left to right reproduces accordingly an alignment of the pair (y, z).

Representation of Pairwise Alignment

Let $\mathcal{A}_{m, n}$ be the set of all strings over the edit alphabet Π which satisfy (109).

$$
\begin{equation*}
D(m, n)=\left|\mathcal{A}_{m, n}\right| \tag{110}
\end{equation*}
$$

is called Delannoy number.

Proposition

Let $m, n \geq 0$. The Delannoy number $D(m, n)$ is given by the coefficient of the monomial $X^{m} Y^{n}$ in the generating function

$$
\begin{equation*}
f(X, Y)=\frac{1}{1-X-Y-X Y} . \tag{111}
\end{equation*}
$$

Proof.

Contents
Representation

PHMM
Marginal
Probabilities
Needleman-
Wunsch
Algorithm
Parametric
Alignment

Consider the expansion of the generating function

$$
\begin{equation*}
\frac{1}{1-X-Y-X Y}=\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} a_{m, n} X^{m} Y^{n}, \quad a_{m, n} \in \mathbb{Z} \tag{112}
\end{equation*}
$$

The coefficients are characterized by the linear recurrence

$$
\begin{equation*}
a_{m, n}=a_{m-1, n}+a_{m, n-1}+a_{m-1, n-1} \tag{113}
\end{equation*}
$$

for all $m \geq 0, n \geq 0, m+n \geq 1$, and initial condition

$$
\begin{equation*}
a_{0,0}=1, \quad a_{m,-1}=0, \quad \text { and } \quad a_{-1, n}=0 \tag{114}
\end{equation*}
$$

for all $m, n \geq 0$.

Soft Computing
K.-H.

Zimmermann

Contents
Representation

* PAM

PHMM
Marginal
Probabilities
Needleman-
Wunsch
Algorithm
Parametric Alignment

Proof (Cont'd).

The same recurrence holds for the cardinality of $\mathcal{A}_{m, n}$, as there are three possibilities for last symbol of an edit string x :

Thus

$$
\begin{equation*}
\left|\mathcal{A}_{m, n}\right|=\left|\mathcal{A}_{m-1, n}\right|+\left|\mathcal{A}_{m, n-1}\right|+\left|\mathcal{A}_{m-1, n-1}\right| \tag{115}
\end{equation*}
$$

for all $m \geq 0, n \geq 0, m+n \geq 1$.

Contents
Representation

PHMM
Marginal
Probabilities
Needleman-
Wunsch
Algorithm
Parametric
Alignment

Proof (Cont'd).

Moreover, $\mathcal{A}_{0,0}$ has only one element, the empty string, and $\mathcal{A}_{m, n}$ is the empty set if $m<0$ or $n<0$.
Thus the coefficients $a_{m, n}$ and the cardinalities $\left|\mathcal{A}_{m, n}\right|$ satisfy the same initial condition and the same recurrence. Equality follows. \square

Contents

Representation

* PAM

PHMM
Marginal
Probabilities
Needleman-
Wunsch
Algorithm
Parametric
Alignment

Representation of Pairwise Alignment

The first few Delannoy numbers $D(m, n)$:

$m \backslash n$	0	1	2	3	4	5	6	7	8
0	1	1	1	1	1	1	1	1	1
1	1	3	5	7	9	11	13	15	17
2	1	5	13	25	41	61	85	113	145
3	1	7	25	63	129	231	377	575	833
4	1	9	41	129	321	681	1,289	2,241	3,649
5	1	11	61	231	681	1,683	3,653	7,183	13,073
6	1	13	85	377	1,289	3,653	8,989	19,825	40,081
7	1	15	113	575	2,241	7,183	19,825	48,639	108,545
8	1	17	145	833	3,649	13,073	40,081	108,545	265,729
9	1	19	181	1,159	5,641	22,363	75,517	224,143	598,417
10	1	21	221	1,561	8,361	36,365	134,245	433,905	$1,256,465$

Contents
Representation

* PAM

PHMM
Marginal Probabilities

NeedlemanWunsch Algorithm

Parametric Alignment

Representation of Pairwise Alignment

Given strings y and z of lengths m and n over Σ, resp.
The alignment graph of strings y and z is the directed graph $G=G_{m, n}$ with node set

$$
N(G)=\{0,1, \ldots, m\} \times\{0,1, \ldots, n\}
$$

and edge set $E(G)$ with

- (east) edge $(i, j) \rightarrow(i, j+1)$ labelled I,
- (south) edge $(i, j) \rightarrow(i+1, j)$ labelled D, and

■ (south-east) edge $(i, j) \rightarrow(i+1, j+1)$ labelled H.

Contents

Representation of Pairwise Alignment - Example

Given sequences $y=$ ACG and $z=$ ACC over the DNA alphabet.
The edit string $x=H H D I$ provides the alignment

H	H	D	I
A	C	G	-
A	C	-	C

Soft Computing

K.-H.

Contents

Representation

* PAM

PHMM
Marginal
Probabilities
Needleman-

Wunsch

Algorithm
Parametric Alignment

Representation of Pairwise Alignment - Example (Cont'd)
The alignment $x=H H D I$ can be traced by the solid path in the alignment graph $G_{3,3}$:

Contents
Representation

* PAM

PHMM
Marginal
Probabilities
Needleman-
Wunsch
Algorithm
Parametric Alignment

Representation of Pairwise Alignment

The set of all alignments $\mathcal{A}_{m, n}$ corresponds one-to-one with the set of all directed paths from node $(0,0)$ to node (m, n) in the alignment graph $G_{m, n}$.

Proof.
■ Let x be an edit string of $\mathcal{A}_{m, n}$. Then (109) holds and so x provides a path in the graph $G_{m, n}$ from $(0,0)$ to (m, n).

- Conversely, given a path in the graph $G_{m, n}$ from $(0,0)$ to (m, n). The labeling of the path provides a string x over the edit alphabet that satisfies (109). Thus the string x is an edit string corresponding to an alignment in $\mathcal{A}_{m, n}$.

Representation of Pairwise Alignment

Let $m, n \geq 0$. Then

$$
\begin{equation*}
D(m, n)=\sum_{k=0}^{\min \{m, n\}}\binom{m+n-k}{m-k}\binom{n}{k} \tag{116}
\end{equation*}
$$

Proof.

Let $k \geq 0$. For k homology steps (H), there must be $m-k$ deletion steps (D) and $n-k$ insertion steps (I) in order to travel from node $(0,0)$ to node (m, n). These steps can be performed in any order and thus can be described by all words of length $m+n-k$ with k symbols $\mathrm{H}, m-k$ symbols D , and $n-k$ symbols I . The number of these words is given by the multinomial coefficient

$$
\binom{m+n-k}{k, m-k, n-k}=\binom{m+n-k}{m-k}\binom{n}{k} .
$$

We have $k=0, \ldots, \max \{m, n\}$.

Contents

Representation

* PAM

PHMM
Marginal Probabilities

Needleman-
Wunsch
Algorithm
*PAM

- Proteins and amino acids
- Point-accepted mutations
- PAM matrices

Parametric
Alignment

Proteins and Amino Acids

■ Protein: large biomolecule consisting of one or more long chains of amino acid residues.

■ Functionality includes catalysis of metabolic reactions, replication of DNA, transport of modules.

- A protein is transcribed and translated from the nucleotide sequence of a gene and then folds into three-dimensional structure. Correct folding is required to provide functionality.
- Proteins are linear polymers consisting of a linear sequence of up to 20 distinct amino acids.

■ Amino acids are biomolecules containing an amino $\left(-\mathrm{NH}_{2}\right)$ group, a carboxyl (- COOH) group, and a side chain (R group) which is specific to each amino acid.

Soft Computing
K.-H.

Zimmermann

Contents
Representation

* PAM

PHMM
Marginal Probabilities

NeedlemanWunsch Algorithm

Parametric Alignment

Tumor-Suppressor P53

Contents

Point-Accepted Mutations

- Point accepted mutation (PAM) is the substitution of a single amino acid in the AA sequence (primary structure) of a protein by another single amino acid, which is accepted by the process of natural selection.
- This definition does not include all point mutations in the DNA of an organism. E.g., silent mutations which do not significantly change the phenotype of an organism are not accepted mutations. The same holds for lethal mutations or mutations rejected by natural selection in other ways.

Point-Accepted Mutations

■ PAM matrix is a 20×20 matrix $P=\left(p_{i j}\right)$ in which the rows and columns are labeled by the 20 standard amino acids.

■ Entry $p_{i j}$ provides the conditional probability of amino acid i being substituted by amino acid j through a sequence of one or more point accepted mutations during a given evolutionary interval.

- There are distinct PAM matrices for different lengths of evolutionary intervals.

■ The PAM matrices were invented by Margaret Dayhoff (1978) using 1572 observed mutations in the phylogenetic tree of 71 families of closely related proteins. (Alignments of these proteins have $\geq 85 \%$ identity resulting supposingly from single mutation event.)

Point-Accepted Mutations

Dayhoff's procedure for the invention of the PAM matrices.

- $A=\left(a_{i j}\right)$ is a 20×20 matrix (labeled by AAs) recording the number of mismatches.
- A is symmetric, since samples come from organisms alive today and so the direction of a mutation cannot be determined.
- Diagonal entries of A are neglected.
- N is the total number of amino acids.

Next record mutability and frequency of the occurring amino acids.

Point-Accepted Mutations

- Frequency of amino acid i with n_{i} occurrences,

$$
\begin{equation*}
f_{i}=\frac{n_{i}}{N} . \tag{117}
\end{equation*}
$$

- Mutability of amino acid i,

$$
\begin{equation*}
m_{i}=\frac{1}{n_{i}} \sum_{\substack{j=1 \\ j \neq i}}^{20} a_{i j} \tag{118}
\end{equation*}
$$

- Relation between frequency and mutability,

$$
\begin{equation*}
N f_{i}=n_{i}=\frac{1}{m_{i}} \sum_{\substack{j=1 \\ j \neq i}}^{20} a_{i j} . \tag{119}
\end{equation*}
$$

Point-Accepted Mutations

- $M=\left(m_{i j}\right)$ is a 20×20 mutation matrix (labeled by AAs).
- Entry $m_{i j}$ is the conditional probability that amino acid i mutates into amino acid j.
- The non-diagonal entries are defined as

$$
\begin{equation*}
m_{i j}=\mu a_{i j} \frac{m_{i}}{\sum_{\substack{j=1 \\ j \neq i}}^{20} a_{i j}}=\mu \frac{a_{i j}}{N f_{i}}=\mu \frac{a_{i j}}{n_{i}} \tag{120}
\end{equation*}
$$

where μ is a constant of proportionality.
■ Since the conditional probabilities of amino acid i to mutate must sum up to 1 , we have

$$
\begin{equation*}
m_{i i}=1-\sum_{\substack{j=1 \\ j \neq i}}^{20} m_{i j} \tag{121}
\end{equation*}
$$

Point-Accepted Mutations

- Relation between mutability and mutation,

$$
\begin{align*}
& \text { *PAM } \\
& \qquad \begin{aligned}
& \text { PHMM }_{i i}=1-\sum_{\substack{j=1 \\
j \neq i}}^{20} m_{i j} \\
& \text { Marginal } \\
& \text { Probabilities }
\end{aligned} \\
& \begin{array}{l}
\text { Needleman- } \\
\text { Wunsch } \\
\text { Algorithm }
\end{array} \\
& \begin{array}{l}
\text { Parametric } \\
\text { Alignment }
\end{array} \\
& \\
& \\
& \\
&
\end{align*}
$$

Contents

Representation

Point-Accepted Mutations

- The symmetry of matrix $A=\left(a_{i j}\right)$ recording the number of mismatches gives the relation of detailed balance:

$$
\begin{equation*}
f_{i} m_{i j}=\frac{\mu}{N} a_{i j}=\frac{\mu}{N} a_{j i}=f_{j} m_{j i} . \tag{123}
\end{equation*}
$$

Point-Accepted Mutations

■ Compute the values of mutation matrix $M=\left(m_{i j}\right)$ for a short time frame.

- Then establish matrices for longer time periods using the assumption that the mutations can be modeled by a homogeneous Markov chain.

■ Base unit of time for the PAM matrices is called PAM unit (time required for one mutation to emerge per 100 amino acids).

- Constant μ controls the proportion of amino acids left unchanged.

Soft Computing

K.-H.

Zimmermann

Contents

Representation

* PAM

PHMM
Marginal
Probabilities
NeedlemanWunsch Algorithm

Parametric Alignment

Point-Accepted Mutations

■ The mutation matrix for the PAM-1 matrix is established by assuming that 99% of the amino acids in a sequence are conserved. The expression $n_{i} m_{i i}$ is the number of conserved amino acid units of type i. Thus the total number of conserved amino acids is given by

$$
\begin{equation*}
\sum_{i=1}^{20} n_{i} m_{i i}=\sum_{i=1}^{20} n_{i}\left(1-\mu m_{i}\right)=N-\mu N \sum_{i=1}^{20} f_{i} m_{i} \tag{124}
\end{equation*}
$$

where $n_{i}=N f_{i}$ and $\sum_{i} n_{i}=N$.
■ The value μ needs to be chosen such that 99% identical amino acids are produced after mutation. This gives the equation

$$
\begin{equation*}
1-\mu \sum_{i=1}^{20} f_{i} m_{i}=0.99 \tag{125}
\end{equation*}
$$

This μ value can be used in the mutation matrix for the PAM-1 matrix.

Point-Accepted Mutations

■ Consider the homogeneous Markov chain of protein mutation whose transition matrix is given by the mutation matrix $M_{1}=M$ of the PAM-1 matrix. Then for each integral time step $n \geq 1$, the mutation matrix M_{n} of the PAM- n matrix is defined by the n-th power of the mutation matrix M_{1},

$$
\begin{equation*}
M_{n}=M_{1}^{n} \tag{126}
\end{equation*}
$$

Extraploration into the future.

Soft Computing

Homogeneous Markov Chains

- Initial probability distribution

$$
p_{0}=\binom{p_{a}}{p_{b}} .
$$

- Transition matrix of conditional probabilities

$$
M=\left(\begin{array}{ll}
m_{a a} & m_{a b} \\
m_{b a} & m_{b b}
\end{array}\right) .
$$

- Probability distribution after n steps,

$$
p_{n}=M^{n} p_{0}, \quad n \geq 0 .
$$

K.-H.

PAM Matrices

■ The PAM- n matrix is constructed from the ratio of the probability of point accepted mutations substituting amino acid j by amino acid i, to the probability of these amino acids to be aligned by chance; that is, the entries of the PAM- n matrix $P_{n}=\left(p_{i j}^{(n)}\right)$ are given by

$$
\begin{equation*}
p_{i j}^{(n)}=\log \frac{f_{i} m_{i j}^{(n)}}{f_{i} f_{j}}=\log \frac{m_{i j}^{(n)}}{f_{j}} \tag{127}
\end{equation*}
$$

where $M_{n}=\left(m_{i j}^{(n)}\right)$ is the corresponding mutation matrix.
■ Note that if the alignment of two proteins using the PAM-n matrix is considered and the proteins are related, then the evolutionary interval separating them is the time taken for n point accepted mutations to take place per 100 amino acids.

Contents
Representation

* PAM

PHMM
Marginal
Probabilities
NeedlemanWunsch Algorithm

Parametric Alignment

PAM Matrices

Each PAM matrix P_{n} is symmetric.

Proof.

Claim that for each integer $k \geq 1$, the non-diagonal entries of the mutation matrix M_{n} satisfy the relation of detailed balance,

$$
\begin{equation*}
f_{i} m_{i j}^{(k)}=f_{j} m_{j i}^{(k)} . \tag{128}
\end{equation*}
$$

Indeed, by (123), $f_{i} m_{i j}=f_{j} m_{j i}$ for the non-diagonal entries of the mutation matrix $M=M_{1}$. Suppose the assertion holds for some integer $k \geq 1$.

Soft Computing

K.-H.

Contents

Representation
*PAM
PHMM
Marginal
Probabilities
Needleman-
Wunsch
Algorithm
Parametric
Alignment

Proof (Cont'd).
By using the expansion of the product
$M^{k+1}=M^{k} \cdot M=M \cdot M^{k}$, we obtain

$$
\begin{aligned}
f_{i} m_{i j}^{(k+1)} & =f_{i} \sum_{l=1}^{20} m_{i l}^{(k)} m_{l j}=\sum_{l=1}^{20}\left(f_{i} m_{i l}^{(k)}\right) m_{l j} \\
& =\sum_{l=1}^{20}\left(f_{l} m_{l i}^{(k)}\right) m_{l j}=\sum_{l=1}^{20} m_{l i}^{(k)}\left(f_{l} m_{l j}\right) \\
& =\sum_{l=1}^{20} m_{l i}^{(k)}\left(f_{j} m_{j l}\right)=f_{j} \sum_{l=1}^{20} m_{j l} m_{l i}^{(k)} \\
& =f_{j} m_{j i}^{(k+1)}
\end{aligned}
$$

Thus the non-diagonal entries of the PAM- k matrix satisfy

$$
\begin{equation*}
p_{i j}^{(k)}=\log \frac{f_{i} m_{i j}^{(k)}}{f_{i} f_{j}}=\log \frac{f_{j} m_{j i}^{(k)}}{f_{j} f_{i}}=p_{j i}^{(k)} \tag{129}
\end{equation*}
$$

K.-H

PAM Matrices

- The choice of the PAM- n matrix for some integer $n \geq 1$ requires to determine the number of mutations that have occurred per 100 amino acids. The value n is usually not accessible and therefore needs to be estimated.
- However, if two proteins are compared, the number m of mutated amino acids per 100 amino acids can be calculated. These values are approximately related as follows,

$$
\begin{equation*}
\frac{m}{100}=1-e^{-n / 100} \tag{130}
\end{equation*}
$$

■ PAM-250 matrix is the commonly used scoring matrix for protein sequence comparison.

- Another class of scoring matricxes are known as BLOSUM; PAM-250 matrix is comparable with BLOSUM45 matrix.
- BLOSUM looks directly at mutations in motifs of related sequences, while PAM extrapolates evolutionary information making use of closely related sequences.

Contents

Representation
*PAM
PHMM
Marginal
Probabilities
Needleman
Wunsch
Algorithm
Parametric
Alignment

PAM250 scoring matrix

Cys	12																			
Ser	0	2																		
Thr	$\cdot 2$	1	3																	
Pro	-1	1	0	6																
Ala	$\cdot 2$	1	1	1	2															
Gly	. 3	1	0	. 1	1	5														
Asn	4	1	0	-1	0	0	2													
Asp	. 5	0	0	$\cdot 1$	0	1	2	4												
Glu	- 5	0	0	-1	0	0	1	3	4											
Gin	- 5	-1	-1	0	0	-1	1	2	2	4										
His	3	-1	-1	0	-1	. 2	2	1	1	3	6									
Arg	4	0	-1	0	- 2	-3	0	-1	-1	1	2	6								
Lys	. 5	0	0	-1	-1	. 2	1	0	0	1	0	3	5							
Met	- 5	-2	-1	2	-1	-3	-2	- 5	-2	-1	-2	0	0	6						
lle	$\cdot 2$	-1	0	-2	-1	-3	-2	-2	-2	-2	-2	$\cdot 2$	$\cdot 2$	2	5					
Leu	-6	-3	-2	. 3	. 2	4	-3	- 4	. 3	-2	-2	3	.3	4	2	6				
Val	$\cdot 2$	-1	0	-1	0	-1	-2	-2	-2	-2	-2	-2	$\cdot 2$	2	4	2	4			
Phe	4	-3	-3	- 5	-4	- 5	4	-6	- 5	- 5	-2	4	5	0	I	2	-1	9		
Tyz	0	-3	-3	-5	-3	-5	-2	-4	-4	- 4	0	4	-4	-2	-1	-1	-2	7	10	
Trp	-8	-2	-5	. 6	- 6	. 7	- 4	-7	. 7	- 5	-3	2	. 3	4	- 5	-2	. 6	0	0	17
	c	S	1	P	A	G	N	D	E	Q	H	K	K	M		L	V	F		W

Pair Hidden Markov Model

Given two sequences y and z over Σ of length m and n, resp.

- Conditional probabilities

$$
\begin{equation*}
\theta_{a, b}, \quad a, b \in \Sigma^{\prime}, \quad \text { and } \quad \theta_{x, x^{\prime}}^{\prime}, \quad x, x^{\prime} \in \Pi . \tag{131}
\end{equation*}
$$

■ Probability of aligned pair (u, v) of (y, z) with edit string x,

$$
\begin{equation*}
p_{X, Y, Z}(x, u, v)=\prod_{i=1}^{|x|} \theta_{u_{i}, v_{i}} \cdot \prod_{i=1}^{|x|-1} \theta_{x_{i}, x_{i+1}}^{\prime} \tag{132}
\end{equation*}
$$

where the initial probabilities are uniform (neglected).

Contents
Representation
*PAM
PHMM
Marginal
Probabilities
Needleman-

Pair Hidden Markov Model - Example

Pairwise alignment:

$$
\begin{array}{rccccccc}
x & = & H & H & I & H & D & H \\
u & = & \mathrm{A} & \mathrm{C} & - & \mathrm{G} & \mathrm{G} & \mathrm{~T} \\
v & = & \mathrm{A} & \mathrm{G} & \mathrm{C} & \mathrm{G} & - & \mathrm{G}
\end{array}
$$

Probability of alignment

$$
\begin{aligned}
& p_{X, Y, Z}(x, u, v)= \\
& \quad \theta_{A, A} \theta_{H, H}^{\prime} \theta_{C, G} \theta_{H, I}^{\prime} \theta_{-, C} \theta_{I, H}^{\prime} \theta_{G, G} \theta_{H, D}^{\prime} \theta_{G,-} \theta_{D, H}^{\prime} \theta_{T, G}
\end{aligned}
$$

Soft Computing

K.-H.

Zimmermann

Contents
Representation

* PAM

PHMM
Marginal
Probabilities
Needleman-
Wunsch
Algorithm
Parametric Alignment

Pair Hidden Markov Model

Given two sequences y and z over Σ of length m and n, resp.

- The probability of the sequences y and z is given by the marginal probability

$$
\begin{equation*}
p_{Y, Z}(y, z)=\sum_{x \in \mathcal{A}_{m, n}} p_{X, Y, Z}\left(x, y^{(x)}, z^{(x)}\right) \tag{133}
\end{equation*}
$$

where $\left(y^{(x)}, z^{(x)}\right)$ is the alignment of the strings (y, z) given by edit string $x \in \mathcal{A}_{m, n}$.

■ $\mathcal{A}_{m, n ; i}$ denotes the set of all edit strings in $\mathcal{A}_{m, n}$ of length i,

$$
\begin{equation*}
p_{Y, Z}(y, z)=\sum_{i=\max \{m, n\}}^{m+n} \sum_{x \in \mathcal{A}_{m, n ; i}} p_{X, Y, Z}\left(x, y^{(x)}, z^{(x)}\right) \tag{134}
\end{equation*}
$$

■ Runtime $O((m+n) D(m, n))$, since $\mathcal{A}_{m, n}$ has $D(m, n)$ elements, x has length $\leq m+n$, and $p_{X, Y, Z}\left(x, y^{(x)}, z^{(x)}\right)$ has $\leq 2(m+n)$ factors.

Marginal Probabilities

- Computation of marginal probabilites
- Sum-product decomposition of marginal probabilities
where $\left(y^{(x)}, z^{(x)}\right)$ is the alignment of the strings (y, z) given by edit string $x \in \mathcal{A}_{m, n}$.
- $y_{\leq i}$ denotes the prefix $y_{1} \ldots y_{i}$ of y of length $i, 1 \leq i \leq m$,
- $z_{\leq j}$ denotes the prefix $z_{1} \ldots z_{j}$ of z of length $j, 1 \leq j \leq n$.
- $M[i, j, x]$ is the probability of observing the aligned pair of prefixes $y_{\leq i}$ and $z_{\leq j}$ and x is the last symbol in the edit string.

Sum-Product Decomposition

Decomposition of marginal probability $p_{Y, Z}(y, z)$:

$$
\begin{equation*}
p_{Y, Z}(y, z)=\sum_{x \in \Pi} M[m, n, x] \tag{136}
\end{equation*}
$$

where

$$
\begin{align*}
M[i, j, I] & =\theta_{-, z_{j}} \cdot \sum_{x \in \Pi} \theta_{x, I}^{\prime} \cdot M[i, j-1, x] \tag{137}\\
M[i, j, D] & =\theta_{y_{i},-} \cdot \sum_{x \in \Pi} \theta_{x, D}^{\prime} \cdot M[i-1, j, x] \tag{138}\\
M[i, j, H] & =\theta_{y_{i}, z_{j}} \cdot \sum_{x \in \Pi} \theta_{x, H}^{\prime} \cdot M[i-1, j-1, x] . \tag{139}
\end{align*}
$$

Soft Computing

Sum-Product Decomposition

The alignment of the prefixes $y_{\leq i}$ and $z_{\leq j}$:

h	$=$		\ldots			I
$y_{\leq i}$	$=$	\ldots	y_{i}	-	\ldots	-
$z_{\leq j}$	$=$		\cdots			z_{j}
h	$=$		\ldots			D
$y_{\leq i}$	$=$		\cdots			y_{i}
$z_{\leq j}$	$=$	\ldots	z_{j}	-	\ldots	-
h	$=$	\cdots	H			
$y_{\leq i}$	$=$	\cdots	y_{i}			
$z_{\leq j}$	$=$	\cdots	z_{j}			

Contents
Representation

* PAM

PHMM
Marginal Probabilities

Needleman-
Wunsch
Algorithm
Parametric Alignment

Sum-Product Decomposition

Initial conditions:

$$
\begin{align*}
M[0,0, x] & =1, \quad x \in \Pi, \tag{140}\\
M[0, j, x] & =0, \quad x \in\{H, D\}, 1 \leq j \leq n, \tag{141}\\
M[i, 0, x] & =0, \quad x \in\{H, I\}, 1 \leq i \leq m, \tag{142}\\
M[0, j, I] & =M[0, j-1, I] \cdot \theta_{I, I}^{\prime} \cdot \theta_{-, z_{j}}, \tag{143}\\
M[i, 0, D] & =M[i-1,0, D] \cdot \theta_{D, D}^{\prime} \cdot \theta_{y_{i},-} . \tag{144}
\end{align*}
$$

Runtime $O(m n)$, since the table M has $O(m n)$ entries and each entry is computed in a constant number of steps.

Contents
Representation
*PAM
PHMM
Marginal
Probabilities
Needleman-
Wunsch
Algorithm
Parametric Alignment

Sum-Product Decomposition - Example (Maple)

For $y=\mathrm{ACG}$ and $z=\mathrm{ACC}$ we obtain $p_{Y, Z}(y, z)$ as

$$
\begin{aligned}
& +6 * \mathrm{tC} \text { _ } 2 * t_{-} \mathrm{G} * \mathrm{t} \text { _C*tAA } \\
& +3 * \mathrm{tC} \text { _ } 2 * \mathrm{t}_{-} \mathrm{G} * \mathrm{t} \text { _A } A \mathrm{tCA} \\
& +\mathrm{tC} \text { _ }{ }^{2} 2 * \mathrm{t}_{-} \mathrm{A} * \mathrm{t}_{-} \mathrm{C} * \mathrm{tGA} \\
& +4 * \mathrm{tC} \text { _*t_G*t_C*tA_*tAC } \\
& +7 * \mathrm{tC} \text { _ } * \mathrm{t} \text { _G*tCC*t_A*tA_ } \\
& +3 * \mathrm{tC} \mathrm{H}_{-} \text {t_G*tCC*tAA } \\
& +9 * \mathrm{tC} \text { _ } * \mathrm{tGC} * \mathrm{t} \text { _A } \mathrm{A}_{\mathrm{t}} \text { _C* } \mathrm{tA}_{-} \\
& +3 * \mathrm{tC} \text { _*tGC*t_C*tAA } \\
& +2 * \mathrm{t} \text { _C*tGC*tA_*tCA } \\
& +\mathrm{t}_{-} \mathrm{G} * \mathrm{tCC} * \mathrm{tA} \mathrm{~A}_{\mathrm{t}} \mathrm{tAC} \\
& +\mathrm{tGC} * \mathrm{t} \text { _C*tA_*tAC } \\
& +2 * t G C * t C C * t _A * t A_{-} \\
& +\mathrm{tGC} * \mathrm{tCC} * \mathrm{tAA} \text {. }
\end{aligned}
$$

Sum-Product Decomposition - Example (Cont'd)

■ The expression $p_{Y, Z}(y, z)$ has 14 terms and each term stands for an alignment.

■ The total number of alignments is $D(3,3)=63$ (equals the sum of coefficients).

■ For instance, the term $2 *{ }^{-} \mathrm{C} * \mathrm{GC} * \mathrm{~A}_{-} * \mathrm{CA}^{a}$ stands for the alignments

$$
\begin{array}{ccccccccc}
\mathrm{A} & \mathrm{C} & \mathrm{G} & - & & \text { and } & \mathrm{A} & \mathrm{C} & - \\
- & \mathrm{A} & \mathrm{C} & \mathrm{C} & & \mathrm{G} \\
- & \mathrm{A} & \mathrm{C} & \mathrm{C}
\end{array}
$$

${ }^{a}$ Commuting variables.

Needleman-Wunsch (NW) Algorithm

- Tropicalization of sum-product decomposition
- Needleman-Wunsch algorithm (dynamic programming)

Contents

Tropicalization of Sum-Product Decomposition

■ Given strings y and z of lengths m and n over Σ, respectively.

- The objective is to find one (or all) edit strings $x \in \mathcal{A}_{m, n}$ which maximize the likelihood

$$
\begin{equation*}
p_{X \mid Y, Z}(x \mid y, z)=\frac{p_{X, Y, Z}(x, y, z)}{p_{Y, Z}(y, z)} \tag{145}
\end{equation*}
$$

■ Since the observed sequences y and z are fixed, the likelihood $p_{X \mid Y, Z}(x \mid y, z)$ is directly proportional to the joint probability $p_{X, Y, Z}(x, y, z)$ provided that $p_{Y, Z}(y, z)>0$.

Tropicalization of Sum-Product Decomposition

$■$ Let $p_{Y, Z}(y, z)>0$. The aim is to find the state sequences (edit strings) $\bar{x} \in \mathcal{A}_{m, n}$ with

$$
\begin{align*}
\bar{x} & =\operatorname{argmax}_{x \in \mathcal{A}_{m, n}}\left\{p_{X \mid Y, Z}\left(x \mid y^{(x)}, z^{(x)}\right)\right\} \tag{146}\\
& =\operatorname{argmax}_{x \in \mathcal{A}_{m, n}}\left\{p_{X, Y, Z}\left(x, y^{(x)}, z^{(x)}\right)\right\} \tag{147}
\end{align*}
$$

Needleman-
where $\left(y^{(x)}, z^{(x)}\right)$ is the alignment of the strings (y, z) given by the edit string $x \in \mathcal{A}_{m, n}$.

- Each optimal edit string \bar{x} is called an explanation of the observed pair (y, z). The explanations can be found by tropicalization.

■ Tropicalization: Replace each sum by tropial sum and each product by tropical product.

Soft Computing
K.-H.

Contents

NeedlemanWunsch Algorithm

Parametric Alignment

Tropicalization of Sum-Product Decomposition

■ Put $w(y, z)=-\log p_{Y, Z}(y, z)$ and

$$
w(x, y, z)=-\log p_{X, Y, Z}(x, y, z)
$$

■ Then tropicalization of (133) gives

$$
\begin{equation*}
w(y, z)=\bigoplus_{x \in \mathcal{A}_{m, n}} w\left(x, y^{(x)}, z^{(x)}\right) \tag{148}
\end{equation*}
$$

- Thus the tropicalization of the marginal distribution $p_{Y, Z}(y, z)$ solves the alignment problem:

$$
\begin{equation*}
w(y, z)=\min _{x \in \mathcal{A}_{m, n}} w\left(x, y^{(x)}, z^{(x)}\right) \tag{149}
\end{equation*}
$$

The explanations \bar{x} are obtained by evaluation in the tropical algebra,

$$
\begin{equation*}
\bar{x}=\operatorname{argmin}_{x \in \mathcal{A}_{m, n}}\left\{w\left(x, y^{(x)}, z^{(x)}\right)\right\} . \tag{150}
\end{equation*}
$$

Tropicalization of Sum-Product Decomposition

- Write

$$
\begin{align*}
u(a, b) & =-\log \theta_{a, b}, & & a, b \in \Sigma^{\prime}, \tag{152}\\
v\left(x, x^{\prime}\right) & =-\log \theta_{x, x^{\prime}}^{\prime} & & x, x^{\prime} \in \Pi . \tag{153}
\end{align*}
$$

- By tropicalization of (136),

$$
\begin{equation*}
w(y, z)=\bigoplus_{x \in \Pi} M[m, n, x] . \tag{154}
\end{equation*}
$$

Contents
Representation
*PAM
PHMM
Marginal
Probabilities
NeedlemanWunsch Algorithm

Parametric Alignment

Tropicalization of Sum-Product Decomposition

$$
\begin{align*}
M[i, j, I] & =u\left(-, z_{j}\right) \odot \bigoplus_{x \in \Pi} v(x, I) \odot M[i, j-1, x], \tag{155}\\
M[i, j, D] & =u\left(y_{i},-\right) \odot \bigoplus_{x \in \Pi} v(x, D) \odot M[i-1, j, x],(156) \tag{156}\\
M[i, j, H] & =u\left(y_{i}, z_{j}\right) \odot \bigoplus_{x \in \Pi} v(x, H) \odot M[i-1, j-1, x](157)
\end{align*}
$$

and

$$
\begin{align*}
M[0,0, x] & =0, \quad x \in \Pi \tag{158}\\
M[0, j, x] & =\infty, \quad x \in\{H, D\}, 1 \leq j \leq n, \tag{159}\\
M[i, 0, x] & =\infty, \quad x \in\{H, I\}, 1 \leq i \leq m \tag{160}\\
M[0, j, I] & =M[0, j-1, I] \odot v(I, I) \odot u\left(-, z_{j}\right) \tag{161}\\
M[i, 0, D] & =M[i-1,0, D] \odot v(D, D) \odot v\left(y_{i},-\right) . \tag{162}
\end{align*}
$$

Needleman-Wunsch Algorithm

- The NW algorithm is a special case of this sum-product algorithm neglecting the conditional probabilities corresponding to the edit alphabet.
- Runtime $O(m n)$, since the table M has $O(m n)$ entries and each entry is computed in a constant number of steps.

Needleman-Wunsch Algorithm

Require: Strings $y \in \Sigma^{m}, z \in \Sigma^{n}$, weights $u(a, b)$ for $a, b \in \Sigma^{\prime}$ Ensure: Edit string $x \in \mathcal{A}_{m, n}$ with minimal weight $w\left(y^{(x)}, z^{(x)}\right)$
$M \leftarrow \operatorname{matrix}[0 . . m, 0 . . n]$

$$
M[0,0] \leftarrow 0
$$

for $i \leftarrow 1$ to m do

$$
M[i, 0] \leftarrow M[i-1,0]+u\left(y_{i},-\right)
$$

end for

for $j \leftarrow 1$ to n do

$$
M[0, j] \leftarrow M[0, j-1]+u\left(-, z_{j}\right)
$$

end for

for $i \leftarrow 1$ to m do

 for $j \leftarrow 1$ to n do $M[i, j] \leftarrow \min \left\{M[i-1, j-1]+u\left(y_{i}, z_{j}\right), M[i-1, j]+\right.$ $\left.u\left(y_{i},-\right), M[i, j-1]+u\left(-, z_{j}\right)\right\}$Color the edges directed to (i, j) that attain the minimum end for
end for
Trace a path P in the backward direction from (m, n) to $(0,0)$ by following an arbitrary sequence of colored edges.

Soft Computing
K.-H.

Zimmermann

Contents
Representation

* PAM

PHMM
Marginal
Probabilities
NeedlemanWunsch
Algorithm
Parametric Alignment

Needleman-Wunsch Algorithm

$$
j-1 \quad j
$$

$$
i-1
$$

$M[i, j]$ is the minimum of
■ $M[i-1, j-1]+u\left(y_{i}, z_{j}\right)$,
■ $M[i-1, j]+u\left(y_{i},-\right)$,
■ $M[i, j-1]+u\left(-, z_{j}\right)$.

Contents

Representation
*PAM
PHMM
Marginal
Probabilities
NeedlemanWunsch
Algorithm
Parametric
Alignment

Needleman-Wunsch Algorithm - Example

- Given strings $y=$ ACG and $z=$ ACC.
- Scores: matches -3 , mismatches 1 , indels 2 .
- Optimal alignment with score -5 :

$$
\begin{array}{lllll}
x & = & H & H & H \\
y^{(x)} & = & \mathrm{A} & \mathrm{C} & \mathrm{G} \\
z^{(x)} & = & \mathrm{A} & \mathrm{C} & \mathrm{C}
\end{array}
$$

Soft Computing
K.-H.

Zimmermann

Contents
Representation

*PAM

PHMM
Marginal
Probabilities
Needleman-
Wunsch
Algorithm
Parametric
Alignment

Needleman-Wunsch Algorithm - Example (Cont'd)
Alignment graph $G_{3,3}$: The nodes exhibit the values of the table M and the colored edges are indicated by solid lines.

Contents

Representation

Parametric Sequence Alignment

- Polytope algebra
- Newton polytopes
- Polytope propagation algorithm

Contents

Representation

Parametric Sequence Alignment

■ Given strings y and z of lengths m and n over Σ, respectively.

- Goal is to find all optimal alignments of y and z by varying over a large class of scoring schemes.

Contents

Representation

PHMM
Marginal
Probabilities
Needleman-
Wunsch
Algorithm
Parametric Alignment

Polytopes
A subset C of \mathbb{R}^{n} is convex if for each pair of distinct points a, b in C, the closed line segment with endpoints a and b is fully contained in C.

K.-H.

Contents
Representation

*PAM

PHMM
Marginal
Probabilities
Needleman-
Wunsch
Algorithm
Parametric Alignment

Polytopes

- The convex hull of a finite set $S=\left\{s_{1}, \ldots, s_{m}\right\}$ of points in \mathbb{R}^{n} is the set of all convex combinations of its points,

$$
\begin{equation*}
\operatorname{conv}(S)=\left\{\sum_{i=1}^{m} \lambda_{i} s_{i} \mid \forall i: \lambda_{i} \geq 0, \sum_{i=1}^{m} \lambda_{i}=1\right\} . \tag{163}
\end{equation*}
$$

■ A bounded convex polytope is the convex hull of a finite set of points (V -representation), or the intersection of a finite number of halfspaces (H -representation).

Affine Subspaces

- An affine subspace of \mathbb{R}^{n} is a subset A of \mathbb{R}^{n} such that if $s_{1}, \ldots, s_{m} \in A, m \geq 0$, then $\lambda_{1} s_{1}+\ldots+\lambda_{m} s_{m} \in A$ whenever $\lambda_{1}, \ldots, \lambda_{m} \in \mathbb{R}$ with $\sum_{i} \lambda_{i}=1$.
- Each affine subspace A is the translate of a unique linear subspace U of \mathbb{R}^{n}, i.e.,

$$
\begin{equation*}
A=v+U=\{v+u \mid u \in U\} \tag{164}
\end{equation*}
$$

for some $v \in \mathbb{R}^{n}$.

- The dimension of an affine subspace A of \mathbb{R}^{n} is the dimension of the unique linear subspace U of \mathbb{R}^{n} with $A=v+U$, $v \in \mathbb{R}^{n}$.
- Example: affine lines versus lines through origin (subspaces of dimension 1).

Affine Subspaces

- The affine hull of a set $S \subseteq \mathbb{R}^{n}$ is the smallest affine subspace containing S,

$$
\left\{\lambda_{1} s_{1}+\ldots+\lambda_{m} s_{m} \mid m \geq 0, s_{i} \in S, \lambda_{i} \in \mathbb{R}, \sum_{i} \lambda_{i}=1\right\}(165)
$$

- The dimension of a polytope in \mathbb{R}^{n} is the dimension of its affine hull in \mathbb{R}^{n}, i.e., the smallest affine subspace in \mathbb{R}^{n} containing the polytope.
- A point has dimension 0 , a line segment has dimension 1 , a convex polygon has dimension 2 , and a convex polyhedron has dimension 3.
K.-H.

Contents

Representation

Needleman-
Wunsch Algorithm

Parametric Alignment

Polytopes

- A face of a convex polytope is a nonempty intersection of the polytope with a halfspace such that all interior points of the polytope lie on one side of the halfspace.
- If the polytope is d-dimensional, its facets are its $(d-1)$-dimensional faces, its vertices are the 0 -dimensional faces, and its edges are the 1-dimensional faces.

Cones

Contents
Representation

- A cone in \mathbb{R}^{n} is a subset of \mathbb{R}^{n} such that if $s_{1}, \ldots, s_{m} \in C$, $m \geq 0$, then $\lambda_{1} s_{1}+\ldots+\lambda_{m} s_{m} \in C$ whenever $\lambda_{i} \geq 0$, $1 \leq i \leq m$.
- The positive hull of a set $S \subseteq \mathbb{R}^{n}$ is the smallest cone containing S,

$$
\begin{equation*}
\left\{\lambda_{1} s_{1}+\ldots+\lambda_{m} s_{m} \mid m \geq 0, s_{i} \in S, \lambda_{i} \geq 0\right\} \tag{166}
\end{equation*}
$$

- The positive hull of a set $S \subseteq \mathbb{R}^{n}$ is convex.
- Examples of cones are the half-lines (rays) in \mathbb{R}, the quadrants in \mathbb{R}^{2}, the octants in \mathbb{R}^{3}, and the half-spaces (w.r.t. hyperplanes).

Contents

Representation

Polytopes

A fan in \mathbb{R}^{n} is a family $\mathcal{F}=\left\{C_{1}, C_{2}, \ldots, C_{m}\right\}$ of nonempty cones with the following properties:

■ Each non-empty face of a cone in \mathcal{F} is also a cone in \mathcal{F}.

- The intersection of any two cones in \mathcal{F} is a face of both.

A fan \mathcal{F} in \mathbb{R}^{n} is complete if the union $\bigcup \mathcal{F}=C_{1} \cup \ldots \cup C_{m}$ equals \mathbb{R}^{n}.
A fan \mathcal{F} in \mathbb{R}^{n} is pointed if $\{0\}$ is a cone in \mathcal{F} and therefore a face of each cone in \mathcal{F}.

Contents
Representation
*PAM
PHMM
Marginal
Probabilities
Needleman-
Wunsch
Algorithm
Parametric Alignment

Polytopes - Example

The (pointed) fan in \mathbb{R}^{2} has $m=11$ cones, five of which are 2-dimensional, five (half-rays) are 1-dimensional and one is 0 -dimensional (intersection point).

Soft Computing

K.-H.

Contents

Representation

Linear Programming

Linear programming is a method to minimize a linear function over a convex set.
The canonical form of linear program in \mathbb{R}^{n} :

$$
\begin{array}{ll}
\min & c^{T} x \\
\text { s.t. } & A x \geq b \tag{167}\\
\text { and } & x \geq 0
\end{array}
$$

where $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$, and $c \in \mathbb{R}^{n}$ are given and x is the vector of variables.

- Objective function $\mathbb{R}^{n} \rightarrow \mathbb{R}: x \mapsto c^{T} x=\langle c, x\rangle$ is minimized over convex set $P=\left\{x \in \mathbb{R}^{n} \mid A x \geq b, x \geq 0\right\}$.

■ Minimal vectors $x \in \mathbb{R}^{n}$ form a face F of P.

- Normal cone $N_{P}(F)$ consists of all vectors $c \in \mathbb{R}^{n}$ such that the minimum is attained at F.
- Inverse problem of linear programming.

Soft Computing
K.-H.

Zimmermann

Contents

Representation

*PAM

PHMM
Marginal
Probabilities
Needleman-
Wunsch
Algorithm
Parametric Alignment

Linear Programming - Example

Vector c is perpendicular to the hyperplanes.

Polytopes

Let P be a polytope in \mathbb{R}^{n} and let F be a face of P.
The normal cone $N_{P}(F)$ of P at F is defined such that for each $w \in \mathbb{R}^{n}$,

$$
\begin{align*}
w \in N_{P}(F) \Longleftrightarrow & F \text { is the set of all points in } \mathbb{R}^{n} \\
& \text { at which } P \rightarrow \mathbb{R}: x \mapsto\langle x, w\rangle \tag{168}\\
& \text { attains the minimum. }
\end{align*}
$$

In particular, if $F=\{v\}$ is a vertex of P, its normal cone $N_{P}(v)$ consists of all points w such that the linear maps $P \rightarrow \mathbb{R}: x \mapsto\langle x, w\rangle$ attain the minimum at the point v.
K.-H.

Zimmermann

Contents

Representation

*PAM

PHMM
Marginal
Probabilities
NeedlemanWunsch Algorithm

Parametric Alignment

Polytopes

Let P be a polytope in \mathbb{R}^{n} and let F be a face of P. The normal cone $N_{P}(F)$ is a cone in \mathbb{R}^{n} with dimension

$$
\begin{equation*}
\operatorname{dim} N_{P}(F)=n-\operatorname{dim} F . \tag{169}
\end{equation*}
$$

Proof.

For each $w \in \mathbb{R}^{n}$, let $f_{w}: P \rightarrow \mathbb{R}: x \mapsto\langle x, w\rangle$ be the scalar product with fixed w. Let $v, w \in \mathbb{R}^{n}$ such that the linear mappings f_{v} and f_{w} attain the minimum at F, and let $\lambda \geq 0$ and $\mu \geq 0$. Then the linear mapping $f_{\lambda v+\mu w}$ attains the minimum at F and so $\lambda v+\mu w$ also belongs to $N_{P}(F)$. Hence, $N_{P}(F)$ is a cone.

Let F be a k-face. Then the face F is determined by $n-k$ linearly independent linear equations and the cone $N_{P}(F)$ is determined by k linearly independent linear equations. Hence, the dimension formula holds.

Contents
Representation

Polytopes

The collection of all non-empty normal cones $N_{P}(F)$, as F runs over all faces of P, is called the normal fan of P denoted by $\mathcal{N}(P)$.

Let P be a polytope of \mathbb{R}^{n}. The normal fan $\mathcal{N}(P)$ is a complete fan of \mathbb{R}^{n}.

Proof.

Let $w \in \mathbb{R}^{n}$. If we put $F=P \cap H_{P, w}$ with intersecting hyperplane $H_{P, w}$, then $w \in N_{P}(F)$. It follows that the normal cones are non-empty and their union is \mathbb{R}^{n}.

Soft Computing
 Polytopes - Example
 A triangle and its normal cones:

Contents

Representation
*PAM
PHMM
Marginal

Probabilities

Needleman-
Wunsch
Algorithm
Parametric Alignment

Contents
Representation
*PAM
PHMM
Marginal Probabilities

Needleman-
Wunsch
Algorithm
Parametric Alignment

Polytopes - Example (Cont'd)

The normal fan of the above triangle:

Contents

Representation

PHMM
Marginal
Probabilities
Needleman-
Wunsch
Algorithm
Parametric
Alignment

Polytope Algebra

Let $n \geq 1$. The polytope algebra in \mathbb{R}^{n} is a triple $\left(\mathcal{P}_{n}, \oplus, \odot\right)$ consisting of the set \mathcal{P}_{n} of all bounded convex polytopes in \mathbb{R}^{n} and two binary operations:

- Addition:

$$
\begin{equation*}
P \oplus Q=\operatorname{conv}(P \cup Q), \tag{170}
\end{equation*}
$$

- Multiplication (Minkowski sum):

$$
\begin{equation*}
P \odot Q=\{p+q \mid p \in P, q \in Q\} . \tag{171}
\end{equation*}
$$

Polytope Algebra - Example

Contents

Representation
*PAM
PHMM
Marginal
Probabilities
Needleman-
Wunsch
Algorithm
Parametric Alignment

Two non-collinear line segments P and Q in \mathbb{R}^{2} and their sum $P \oplus Q$ and product $P \odot Q$:

Polytope Algebra

The polytope algebra $\left(\mathcal{P}_{n}, \oplus, \odot\right)$ on \mathbb{R}^{n} is an idempotent commutative semiring.

Proof.

- ($\left.\mathcal{P}_{n}, \oplus\right)$ is a commutative monoid with identity element \emptyset.
- $\left(\mathcal{P}_{n}, \odot\right)$ is a commutative monoid with identity element $\{0\}$.
- A convex set does not change if its convex hull is taken. Thus the addition of polytopes is idempotent.
- The multiplication with the empty set annihilates \mathcal{P}_{n}.
- In view of distributivity, take $p \in P, q \in Q$, and $r \in R$. Then for each $0 \leq \lambda \leq 1$,

$$
p+(\lambda q+(1-\lambda) r)=\lambda(p+q)+(1-\lambda)(p+r) .
$$

The left-hand side is a point in $P \odot(Q \oplus R)$ and the right-hand side is a point in $(P \odot Q) \oplus(P \odot R)$.

Polytope Algebra - Example

Consider the polytope algebra \mathcal{P}_{1} in \mathbb{R}^{1}.

- The elements of \mathcal{P}_{1} are the line segments

$$
\begin{equation*}
[a, b]=\{\lambda a+(1-\lambda) b \mid 0 \leq \lambda \leq 1\}, \quad a, b \in \mathbb{R} \tag{172}
\end{equation*}
$$

■ Sum of two line segments $[a, b]$ and $[c, d]$,

$$
\begin{equation*}
[a, b] \oplus[c, d]=[\min \{a, c\}, \max \{b, d\}] . \tag{173}
\end{equation*}
$$

- Product of two line segments $[a, b]$ and $[c, d]$,

$$
\begin{equation*}
[a, b] \odot[c, d]=[a+c, b+d] . \tag{174}
\end{equation*}
$$

The polytope algebra in \mathbb{R}^{n} can be viewed as a natural higher-dimensional generalization of the tropical algebra.

Polytope algebra

The mapping $f: \mathcal{P}_{1} \rightarrow \mathbb{R} \cup\{\infty\}:[a, b] \mapsto a$ is an epimorphism from the polytope algebra \mathcal{P}_{1} onto the tropical algebra.

Proof.

- The mapping is well-defined and we have $f(\emptyset)=\infty$ and $f(\{0\})=f([0,0])=0$.
- For any two line segments $[a, b]$ and $[c, d]$ in \mathcal{P}_{1}, we have

$$
\begin{aligned}
f([a, b] \oplus[c, d]) & =f([\min \{a, c\}, \max \{b, d\}])=\min \{a, c\} \\
& =a \oplus c=f([a, b]) \oplus f([c, d])
\end{aligned}
$$

and

$$
\begin{aligned}
f([a, b] \odot[c, d]) & =f([a+c, b+d])=a+c \\
& =a \odot c=f([a, b]) \odot f([c, d]) .
\end{aligned}
$$

Newton Polytopes

Let $\mathbb{K}\left[X_{1}, \ldots, X_{n}\right]$ be the polynomial ring in the unknowns X_{1}, \ldots, X_{n} over the field \mathbb{K}.
Each polynomial f in $\mathbb{K}\left[X_{1}, \ldots, X_{n}\right]$ has the form

$$
\begin{equation*}
f=\sum_{\alpha \in \mathbb{N}_{0}^{n}} c_{\alpha} X^{\alpha} \tag{175}
\end{equation*}
$$

where the sum is finite and each involved term $c_{\alpha} X^{\alpha}$ consists of the product of coefficient $c_{\alpha} \in \mathbb{K}^{*}=\mathbb{K} \backslash\{0\}$ and monomial X^{α} in the variables X_{1}, \ldots, X_{n},

$$
\begin{equation*}
X^{\alpha}=X_{1}^{\alpha_{1}} \cdots X_{n}^{\alpha_{n}} . \tag{176}
\end{equation*}
$$

The degree of monomial X^{α} is $|\alpha|=\alpha_{1}+\ldots+\alpha_{n}$.
K.-H.

Newton Polytopes

The Newton polytope of polynomial

$$
\begin{equation*}
f=\sum_{\alpha \in \mathbb{N}_{0}^{n}} c_{\alpha} X^{\alpha} \tag{177}
\end{equation*}
$$

is the convex polytope

$$
\begin{equation*}
\mathrm{NP}(f)=\operatorname{conv}\left(\left\{\alpha \in \mathbb{N}_{0}^{n} \mid c_{\alpha} \neq 0\right\}\right) \tag{178}
\end{equation*}
$$

- The Newton polytope is generated by the exponents of the monomials involved in the polynomial measuring shape or sparsity of the polynomial.
- The actual values of the coefficients c_{α} do not matter in the definition of the Newton polytope.
where $a, b, c, d \in \mathbb{K}^{*}=\mathbb{K} \backslash\{0\}$, has the Newton polytope

$$
P=\operatorname{conv}(\{(1,1),(2,0),(0,3),(0,0)\}),
$$

since

$$
\begin{array}{ll}
X Y=X_{1}^{1} X_{2}^{1}=X^{(1,1)}, & X^{2}=X_{1}^{2} X_{2}^{0}=X^{(2,0)} \\
Y^{3}=X_{1}^{0} X_{2}^{3}=X^{(0,3)}, & 1=X_{1}^{0} X_{2}^{0}=X^{(0,0)}
\end{array}
$$

This is a triangle with vertices $(2,0),(0,3),(0,0)$ and interior node (1,1).

Newton Polytopes

Let f and g be polynomials in $\mathbb{K}\left[X_{1}, \ldots, X_{n}\right]$. Then

$$
\begin{equation*}
\mathrm{NP}(f \cdot g)=\mathrm{NP}(f) \odot \mathrm{NP}(g) \tag{179}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{NP}(f+g) \subseteq \mathrm{NP}(f) \oplus \mathrm{NP}(g), \tag{180}
\end{equation*}
$$

where equality holds if all coefficients in the polynomials f and g are positive (i.e. terms cannot cancel).

$$
\left(2 X^{2} Y+5 X Y\right)+\left(3 X Y^{2}-5 X Y\right)=2 X^{2}+3 X Y^{2}
$$

Contents
Representation

* PAM

PHMM
Marginal
Probabilities
NeedlemanWunsch Algorithm

Parametric Alignment

Newton Polytopes - Example

 In $\mathbb{R}[X, Y]$ consider the polynomials$$
f=X^{p}+1 \quad \text { and } \quad g=Y^{q}+1,
$$

where p and q are positive integers. The corresponding Newton polytopes are line segments in \mathbb{R}^{2} given by

$$
\mathrm{NP}(f)=\operatorname{conv}(\{(0,0),(p, 0)\})=\{(x, 0) \mid 0 \leq x \leq p\}
$$

and

$$
\mathrm{NP}(g)=\operatorname{conv}(\{(0,0),(0, q)\})=\{(0, y) \mid 0 \leq y \leq q\} .
$$

Newton Polytopes - Example (Cont'd)

The sum $f+g$ has the Newton polytope

$$
\begin{aligned}
\mathrm{NP}(f+g) & =\mathrm{NP}\left(X^{p}+Y^{q}+2\right) \\
& =\operatorname{conv}(\{(p, 0),(0, q),(0,0)\})
\end{aligned}
$$

which is a triangle with vertices $(0,0),(p, 0)$, and $(0, q)$.
The product $f \cdot g$ has the Newton polytope

$$
\begin{aligned}
\mathrm{NP}(f \cdot g) & =\mathrm{NP}\left(X^{p} Y^{q}+X^{p}+Y^{q}+1\right) \\
& =\operatorname{conv}(\{(p, q),(p, 0),(0, q),(0,0)\})
\end{aligned}
$$

which is a rectangle with vertices $(0,0),(p, 0),(0, q)$, and (p, q).

Soft Computing

> K.-H.

Zimmermann

Contents
Representation

* PAM

PHMM
Marginal Probabilities

Needleman-
Wunsch
Algorithm
Parametric
Alignment

Newton Polytopes - Example (Cont'd)

Polytope Propagation

■ Given strings y and z of lengths m and n over alphabet Σ, resp.

- The conditional probabilities

$$
\begin{equation*}
\theta_{a, b}, \quad a, b \in \Sigma^{\prime}, \quad \text { and } \quad \theta_{x, x^{\prime}}^{\prime}, \quad x, x^{\prime} \in \Pi \tag{181}
\end{equation*}
$$

are the unknowns of the polynomial ring

$$
\begin{equation*}
\mathbb{R}\left[\theta, \theta^{\prime}\right]=\mathbb{R}\left[\left\{\theta_{a, b} \mid a, b \in \Sigma^{\prime}\right\},\left\{\theta_{x, x^{\prime}}^{\prime} \mid x, x^{\prime} \in \Pi\right\}\right] \tag{182}
\end{equation*}
$$

Note that $(a, b) \neq(-,-)$.

- Each marginal probability $f(y, z)$ is then a polynomial in this ring.

Polytope Propagation

■ Each polynomial $f(y, z)$ is assigned its Newton polytope in \mathcal{P}_{n}, where n denotes the number of unknowns in $\mathbb{R}\left[\theta, \theta^{\prime}\right]$; i.e.,

$$
\begin{equation*}
n=\left(\left|\Sigma^{\prime}\right|^{2}-1\right) \cdot|\Pi|^{2} . \tag{183}
\end{equation*}
$$

- Newton polytope $\mathrm{NP}(f(y, z))$ of the marginal probability $f(y, z)$ in the polytope algebra \mathcal{P}_{n} is evaluated by polytopization of (136) instead of tropicalization (154):

$$
\begin{equation*}
\mathrm{NP}(f(y, z))=\bigoplus_{x \in \Pi} \mathcal{P}(m, n, x) . \tag{184}
\end{equation*}
$$

- Polytopization: Replace each sum by polytope sum and each product by polytope product.

Soft Computing

Contents

Representation

*PAM

PHMM
Marginal
Probabilities
NeedlemanWunsch Algorithm

Parametric Alignment

Polytope Propagation

$$
\begin{align*}
\mathcal{P}(i, j, I)= & \mathrm{NP}\left(\theta_{-, z_{j}}\right) \odot \bigoplus_{x} \mathcal{P}(i, j-1, x) \odot \mathrm{NP}\left(\theta_{x, I}^{\prime}\right),(185) \\
\mathcal{P}(i, j, D)= & \mathrm{NP}\left(\theta_{y_{i},-}\right) \odot \bigoplus_{x} \mathcal{P}(i-1, j, x) \odot \operatorname{NP}\left(\theta_{x, D}^{\prime}\right),(186) \\
\mathcal{P}(i, j, H)= & \tag{187}\\
& \mathrm{NP}\left(\theta_{y_{i}, z_{j}}\right) \odot \bigoplus \mathcal{P}(i-1, j-1, x) \odot \operatorname{NP}\left(\theta_{x, H}^{\prime}\right),
\end{align*}
$$

and

$$
\begin{align*}
& \mathcal{P}(0,0, x)=\{0\}, \quad x \in \Pi, \tag{188}\\
& \mathcal{P}(0, j, x)=\emptyset, \quad x \in\{H, D\}, 1 \leq j \leq n, \tag{189}\\
& \mathcal{P}(i, 0, x)=\emptyset, \quad x \in\{H, I\}, 1 \leq i \leq m, \tag{190}\\
& \mathcal{P}(0, j, I)=\mathcal{P}(0, j-1, I) \odot \operatorname{NP}\left(\theta_{I, I}^{\prime}\right) \odot \operatorname{NP}\left(\theta_{-, z_{j}}\right), \tag{191}\\
& \mathcal{P}(i, 0, D)=\mathcal{P}(i-1,01) \tag{192}\\
&(190) \odot \operatorname{NP}\left(\theta_{D, D}^{\prime}\right) \odot \operatorname{NP}\left(\theta_{y_{i},-}\right)(192)
\end{align*}
$$

*Statistical Inference
The normal cones of the polytope $\operatorname{NP}(f(y, z))$ corresponding to the vertices provide the explanations of the marginal probability $f(y, z)$.

Idea
Consider density function with parameters

$$
\begin{equation*}
g(\theta)=\sum_{i=1}^{M} \theta_{1}^{v_{i 1}} \cdots \theta_{d}^{v_{i d}} \tag{193}
\end{equation*}
$$

where $v_{i}=\left(v_{i 1}, \ldots, v_{i d}\right) \in \mathbb{N}_{0}^{d}, 1 \leq i \leq M$.

Soft Computing
K.-H.

Statistical Inference

For fixed value of $\theta \in \mathbb{R}_{>0}^{d}$, the problem is to find a term $\theta_{1}^{v_{j 1}} \cdots \theta_{d}^{v_{j d}}, 1 \leq j \leq M$, in the expression $g(\theta)$ with maximum value

$$
\begin{equation*}
j=\operatorname{argmax}_{i}\left\{\theta_{1}^{v_{i 1}} \cdots \theta_{d}^{v_{i d}}\right\} \tag{194}
\end{equation*}
$$

Each such solution is called an explanation of the model. Putting $w_{i}=-\log \theta_{i}$ and $w=\left(w_{1}, \ldots, w_{d}\right)$ gives

$$
\begin{align*}
-\log \left(\theta_{1}^{v_{i 1}} \cdots \theta_{d}^{v_{i d}}\right) & =-\left[v_{i 1} \log \left(\theta_{1}\right)+\cdots+v_{i d} \log \left(\theta_{d}\right)\right] \\
& =\left\langle v_{i}, w\right\rangle \tag{195}
\end{align*}
$$

This amounts to finding a vector v_{j} that minimizes the linear expression

$$
\begin{equation*}
\left\langle v_{j}, w\right\rangle=\sum_{i=1}^{d} w_{i} v_{j i}, \quad 1 \leq j \leq M \tag{196}
\end{equation*}
$$

Statistical Inference

This minimization problem is equivalent to the linear programming problem

$$
\begin{array}{ll}
& \min \langle x, w\rangle . \\
\text { s.t. } & x \in \mathrm{NP}(g) \tag{197}
\end{array}
$$

Indeed, the Newton polytope $\operatorname{NP}(g)$ of the polynomial g is the convex hull of the points $v_{i}, 1 \leq i \leq M$, and the vertices of this polytope form a subset of these points. But the minimal value of a linear functional $x \mapsto\langle x, w\rangle$ over a polytope is attained at a vertex of the polytope.

Proposition

For a fixed parameter w, the problem of solving the statistical inference problem is equivalent to the linear programming problem of minimizing the linear functional $x \mapsto\langle x, w\rangle$ over the Newton polytope $\mathrm{NP}(g)$, see (197).
K.-H.

Zimmermann

Contents

NeedlemanWunsch Algorithm

Parametric Alignment

Statistical Inference

For varying values of $\theta \in \mathbb{R}^{d}$, find the set of parameters w for which the vertex v_{j} gives the explanation.
That is, find all points w such that the linear functional $x \mapsto\langle x, w\rangle$ attains its minimum at the point v_{j}.
This set is given by $N_{\mathrm{NP}(g)}\left(v_{j}\right)$, the normal cone of the polytope $\mathrm{NP}(g)$ at the vertex v_{j}.

Proposition

The set of all parameters w for which the vertex v_{j} provides the explanation equals the normal cone of the polytope $\mathrm{NP}(g)$ at the vertex v_{j}.

The normal cones associated with the vertices of the Newton polytope $\mathrm{NP}(g)$ are part of the normal fan $\mathcal{N}_{\mathrm{NP}(g)}$ of the Newton polytope $\mathrm{NP}(g)$. The normal fan provides a decomposition of the parameter space into regions, but only the regions corresponding to the vertices of the polytope are relevant for statistical inference.

Polytope Propagation - Example

- Simplified pair-hidden Markov model for alignment of DNA sequences with two parameters (unknowns) X and Y,

$$
\begin{aligned}
\theta_{a, a} & =X, \quad a \in\{\mathrm{~A}, \mathrm{C}, \mathrm{G}, \mathrm{~T}\} \\
\theta_{a, b} & =Y, \quad a, b \in\{\mathrm{~A}, \mathrm{C}, \mathrm{G}, \mathrm{~T},-\}, a \neq b,(a, b) \neq(-,-), \\
\theta_{x, x^{\prime}}^{\prime} & =1, \quad x, x^{\prime} \in\{H, I, D\} .
\end{aligned}
$$

- Given DNA sequences y and z of length m and n, resp. Viewing X and Y as unknowns over \mathbb{R} gives $f(y, z) \in \mathbb{R}[X, Y]$.
- Basic Newton polytopes

$$
\mathcal{P}_{X}=\operatorname{NP}(X)=\{(1,0)\}, \quad X=X_{1}^{1} X_{2}^{0}=X^{(1,0)},
$$

and

$$
\mathcal{P}_{Y}=\mathrm{NP}(Y)=\{(0,1)\}, \quad Y=X_{1}^{0} X_{2}^{1}=X^{(0,1)} .
$$

Soft Computing

K.-H.

Contents

Representation

* PAM

PHMM
Marginal
Probabilities
Needleman-
Wunsch
Algorithm
Parametric Alignment

Polytope Propagation - Example (Cont'd)

Polytope propagation algorithm for evaluation of marginal probability $f(y, z)$ in \mathcal{P}_{2} :

$$
\mathrm{NP}(f(y, z))=\mathcal{P}(m, n),
$$

where

$$
\begin{aligned}
\mathcal{P}(i, j)= & \left(\mathcal{P}(i-1, j-1) \odot \operatorname{NP}\left(\theta_{y_{i}, z_{j}}\right)\right) \oplus\left(\mathcal{P}(i-1, j) \odot \mathcal{P}_{Y}\right) \\
& \oplus\left(\mathcal{P}(i, j-1) \odot \mathcal{P}_{Y}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\mathcal{P}(0,0) & =\{(0,0)\} \\
\mathcal{P}(i, 0) & =\mathcal{P}(i-1,0) \odot \mathcal{P}_{Y} \\
\mathcal{P}(0, j) & =\mathcal{P}(0, j-1) \odot \mathcal{P}_{Y} .
\end{aligned}
$$

$\mathcal{P}(i, 0)$ and $\mathcal{P}(0, j)$ are translates of polytopes by unit vectors, $\mathcal{P}(i, j)$ is given by the convex hull of three translates of polytopes by unit vectors, $1 \leq i \leq m$ and $1 \leq j \leq n$.

Soft Computing
K.-H.

Zimmermann

Contents
Representation
*PAM
PHMM
Marginal
Probabilities
NeedlemanWunsch Algorithm

Parametric Alignment

Polytope Propagation - Example (Cont'd)

$$
j-1
$$

$$
j
$$

$$
\begin{aligned}
i-1 \quad & \mathcal{P}(i-1, j-1) \\
i & \\
\mathcal{P}(i, j)= & \left(\mathcal{P}(i-1, j-1) \odot \operatorname{NP}\left(\theta_{y_{i}, z_{j}}\right)\right) \\
& \oplus\left(\mathcal{P}(i-1, j) \odot \mathcal{P}_{Y}\right) \\
& \oplus\left(\mathcal{P}(i, j-1) \odot \mathcal{P}_{Y}\right) .
\end{aligned}
$$

Soft Computing

Contents

Representation

PHMM
Marginal
Probabilities
NeedlemanWunsch Algorithm

Parametric Alignment

Polytope Propagation - Example (Cont'd)

More concretely,

$$
\mathrm{NP}(f(y, z))=\mathcal{P}(m, n),
$$

where

$$
\begin{aligned}
\mathcal{P}(i, j)= & \operatorname{conv}[\mathcal{P}(i, j-1)+\{(0,1)\}, \\
& \mathcal{P}(i-1, j-1)+ \begin{cases}\{(1,0)\} & \text { if } y_{i}=z_{j}, \\
\{(0,1)\} & \text { otherwise },\end{cases} \\
& \mathcal{P}(i-1, j)+\{(0,1)\}]
\end{aligned}
$$

and

$$
\begin{aligned}
\mathcal{P}(0,0) & =\{(0,0)\} \\
\mathcal{P}(i, 0) & =\mathcal{P}(i-1,0)+\{(0,1)\} \\
\mathcal{P}(0, j) & =\mathcal{P}(0, j-1)+\{(0,1)\}
\end{aligned}
$$

$\ldots+\{(0,1)\}$ shift north; $\ldots+\{(1,0)\}$ shift east.

Soft Computing
K.-H.

Zimmermann

Contents

Representation
*PAM
PHMM
Marginal
Probabilities
Needleman-
Wunsch
Algorithm
Parametric Alignment

Polytope Propagation - Example (Cont'd)

Soft Computing
K.-H.

Zimmermann

Contents
Representation

* PAM

PHMM
Marginal
Probabilities
Needleman-
Wunsch
Algorithm
Parametric Alignment

Polytope Propagation - Example (Cont'd)

The normal cones of the polytope $P=\mathrm{NP}(f($ ATCG, TCGG $))$ given by the vertices:

Soft Computing

Contents

Representation

* PAM

PHMM
Marginal

Probabilities

Needleman-
Wunsch
Algorithm
Parametric Alignment

Polytope Propagation - Example (Cont'd)

Normal fan of the polytope $\operatorname{NP}(f($ ATCG, TCGG$))$:

Polytope Propagation - Example (Cont'd)

- The normal cones of the vertices yield the optimal sequence alignments.
- For instance, the cone of the vertex $(3,2)$ is given by the intersection of two halfspaces defined by the inequalities $-X+2 Y<0$ and $-2 X+Y<0$.
- Take an arbitrary point in this cone, say (1,0), and calculate an optimal alignment for the associated scoring scheme with $X=1$ (matches) and $Y=0$ (mismatches and indels) using the Needleman-Wunsch algorithm.

Contents
Representation
*PAM
PHMM
Marginal
Probabilities
Needleman-
Wunsch
Algorithm
Parametric Alignment

Polytope Propagation - Example (Cont'd)

The optimal alignments of the sequences ATCG and TCGG:

vertex	normal cone	scoring	alignment							
$(0,8)$	$-x+2 y>0$	$(0,1)$				T	C	-		G
$y>0$										
$(0,5)$	$-x+2 y>0$	$(-3,-1)$				T	C	-	c	
$y<0$										
$(1,3)$	$-x+2 y<0$	$(-2,-2)$	A	T	C	G			-	G
$-2 x+y>0$										
$(3,2)$	$-x+2 y<0$	$(1,0)$		A	T	C	c		G	G
$-2 x+y<0$										

Dynamic Programming

The Needleman-Wunsch and polytope propagation algorithms follow the principle of dynamic programming (Bellman, 1955).
A dynamic programming algorithm consists of

- forward algorithm evaluating the data, and
- backward algorithm providing the optimal policies.

A dynamic programming algorithm solves not only the original problem but also each subproblem. Here the subproblems correspond to the alignments of the prefixes $y_{\leq i}$ and $z_{\leq j}$ of the given strings y and z, resp,

```
Soft Computing
    K.-H.
    Zimmermann
```


Contents

```
Naïve Bayesian Classifier
Data Fitting
Clustering and Classification
```

```
ABC
Computation
```


Part IV

Statistical Inference and Learning

Contents
■ Naïve Bayesian classification

- Data fitting

■ Clustering and classification

- Approximate Bayesian computation

■ Support vector machines

Naïve Bayesian Classifier

- Training
- Classification
- Example: Iris flower data
M. Mitzenmacher, E. Upfal: Probability and Computing, Cambridge Univ. Press, 2017.

Contents
Naïve Bayesian Classifier

Data Fitting
Clustering and Classification

ABC

Computation
Support Vector Machines

Naïve Bayesian Classifier

- Introduced in the early 1960s.
- Naïve Bayesian classifiers form a family of probabilistic classifiers based on Bayes' rule and a strong independence assumption between the features.

■ Easy to implement, but may lead to misleading classification results if the features are not independent.

- Overcomes the curse of dimensionality (Richard E. Bellman): When the dimensionality increases, the volume of the sample space increases so fast that the available data become sparse; sparsity is a hindrance when striving for statistical significance.

Naïve Bayesian Classifier

■ Given random variables X_{1}, \ldots, X_{n} over finite state sets $\mathcal{X}_{1}, \ldots, \mathcal{X}_{n}$, resp.

- Random vector $X=\left(X_{1}, \ldots, X_{n}\right)$ is a feature vector over state space $\mathcal{X}=\mathcal{X}_{1} \times \ldots \times \mathcal{X}_{n}$.
- Random variable C over set of possible classifications $\mathcal{C}=\left\{c_{1}, \ldots, c_{m}\right\}$.
- Suppose there is collection $D=\left(d_{1}, \ldots, d_{N}\right)$ of N independent samples called database.
- Sample d_{r} is represented by feature vector

$$
\begin{equation*}
x\left(d_{r}\right)=\left(x_{r, 1}, \ldots, x_{r, n}\right) \in \mathcal{X} \tag{198}
\end{equation*}
$$

and classification label $c_{r}=c\left(d_{r}\right) \in \mathcal{C}, 1 \leq r \leq N$.

Soft Computing

Contents

Naïve Bayesian Classifier

Data Fitting
Clustering and Classification

ABC
Computation
Support Vector Machines

Naïve Bayesian Classifier

Labeled sample set and new sample:

$$
\begin{aligned}
x_{1} & = \\
x_{11} & x_{12} \\
x_{2} & = \\
x_{21} & x_{22} \\
& \ldots \\
& \vdots \\
& \\
& \\
1 n & x_{2 n}
\end{aligned} c_{2} .
$$

Contents
Naïve Bayesian Classifier

Data Fitting
Clustering and Classification

ABC

Computation
Support Vector Machines

Naïve Bayesian Classifier - Example

Subject classification of text documents:

- Each sample could be a text document corresponding to a web page or e-mail.
- Feature vector could describe features of the text document such as subject header and text length.
- Classification set could be a collection of labels such as spam or non-spam.
- Given a text document associated to a web page or e-mail, the task is to classify the document according to the features of the document.

Naïve Bayesian Classifier

Given database D.

- Suppose the n features are independent.

■ Posterior distribution via Bayes' rule,

$$
\begin{align*}
p_{C \mid X}\left(c_{j} \mid x^{*}\right) & =\frac{p_{X \mid C}\left(x^{*} \mid c_{j}\right) \cdot p_{C}\left(c_{j}\right)}{p_{X}\left(x^{*}\right)} \tag{199}\\
& =\frac{\prod_{i=1}^{n} p_{X_{i} \mid C}\left(x_{i}^{*} \mid c_{j}\right) \cdot p_{C}\left(c_{j}\right)}{p_{X}\left(x^{*}\right)} .
\end{align*}
$$

Denominator is independent of c_{j} and thus can be viewed as a normalizing constant.

Naïve Bayesian Classifier

Given database D.

- Empirical marginal distribution of the label c_{j},

$$
\begin{equation*}
p_{C}\left(c_{j}\right)=\frac{\left|\left\{r \mid c\left(d_{r}\right)=c_{j}\right\}\right|}{|D|}, \tag{200}
\end{equation*}
$$

where $|D|=N$.

- Empirical conditional distribution of i-th feature value x_{i}^{*} given c_{j},

$$
p_{X_{i} \mid C}\left(x_{i}^{*} \mid c_{j}\right)=\frac{\left|\left\{r \mid x=x\left(d_{r}\right), x_{r i}=x_{i}^{*}, c\left(d_{r}\right)=c_{j}\right\}\right|}{\left|\left\{r \mid c\left(d_{r}\right)=c_{j}\right\}\right|}
$$

K.-H.

Zimmermann

Contents
Naïve Bayesian Classifier

Data Fitting
Clustering and Classification

ABC
Computation
Support Vector Machines

Naïve Bayesian Classifier - Training

Require: Database $D=\left(d_{1}, \ldots, d_{N}\right)$ of samples with feature vectors $x_{r}=x\left(d_{r}\right) \in \mathcal{X}$ and classification labels $c\left(d_{r}\right) \in \mathcal{C}$
Ensure: Posterior distribution
for each label $c \in \mathcal{C}$ do
for each feature $i \in\{1, \ldots, n\}$ do for each feature value $x_{i} \in \mathcal{X}_{i}$ do
compute $p_{X_{i} \mid C}\left(x_{i} \mid c\right)=\frac{\left|\left\{r \mid x_{r}=x\left(d_{r}\right), x_{r i}=x_{i}, c\left(d_{r}\right)=c\right\}\right|}{\left|\left\{r \mid c\left(d_{r}\right)=c\right\}\right|}$ end for end for

end for

for each label $c \in \mathcal{C}$ do
compute $p_{C}(c)=\frac{\left|\left\{r \mid c\left(d_{r}\right)=c\right\}\right|}{|D|}$
end for
Time complexity $O(|\mathcal{C}| \cdot|\mathcal{X}|)$ depends on sizes of $\mathcal{X}=\prod_{i=1}^{n} \mathcal{X}_{i}$ and \mathcal{C}.

Soft Computing

K.-H.

Contents

Naïve Bayesian Classifier

Data Fitting
Clustering and Classification

ABC
Computation
Support Vector Machines

Naïve Bayesian Classifier

Given new sample d^{*} with feature vector

$$
\begin{equation*}
x\left(d_{r}^{*}\right)=x^{*}=\left(x_{1}^{*}, \ldots, x_{n}^{*}\right) . \tag{202}
\end{equation*}
$$

- By (199), calculate for each label $c \in \mathcal{C}$,

$$
\begin{equation*}
l(c)=\left(\prod_{i=1}^{n} p_{X_{i} \mid C}\left(x_{i}^{*} \mid c\right)\right) p_{C}(c) \propto p_{C \mid X}\left(c \mid x^{*}\right) . \tag{203}
\end{equation*}
$$

- Maximum a posteriori (MAP) estimation: Classify sample d^{*} to the class with highest probability $l(c)$.
- Empirical conditional posterior distribution for the label c^{*} given sample x^{*},

$$
\begin{equation*}
p_{C \mid X}\left(c^{*} \mid x^{*}\right)=\frac{\prod_{i=1}^{n} p_{X_{i} \mid C}\left(x_{i}^{*} \mid c^{*}\right) \cdot p_{C}\left(c^{*}\right)}{p_{X}\left(x^{*}\right)} \tag{204}
\end{equation*}
$$

Naïve Bayesian Classifier - Classification

Require: Database $D=\left(d_{1}, \ldots, d_{N}\right)$ of samples with feature vectors $x_{r}=x\left(d_{r}\right) \in \mathcal{X}$ and classification labels $c\left(d_{r}\right) \in \mathcal{C}$, new sample d^{*} with feature vector $x\left(d^{*}\right)=x^{*}=\left(x_{1}^{*}, \ldots, x_{n}^{*}\right)$
Ensure: Classification label c^{*} with maximal conditional posterior probability
$l \leftarrow 0$
for each label $c \in \mathcal{C}$ do
$l^{\prime} \leftarrow \prod_{i=1}^{n} p_{X_{i} \mid C}\left(x_{i}^{*} \mid c\right) \cdot p_{C}(c)$
if $l<l^{\prime}$ then
$l \leftarrow l^{\prime}$
$c^{*} \leftarrow c$
end if
end for
return c^{*}
In practical computations, the products calculated may lead to underflow. Therefore, it is wise to work with logarithms.

Naïve Bayesian Classifier - Example (Cont'd)

- The R package naivebayes (Michal Majka, 2018) implements the naïve Bayesian classifer.
- The library is loaded by the command
> library(naivebayes)

Naïve Bayesian Classifier - Example (Cont'd)

■ The Iris flower data set is a multivariate dataset established by the statistician Ronald Fisher (1890-1962) in 1936.

■ The data set consists of 150 samples from three Iris species: Iris setosa, Iris versicolor, and Iris virginica.

■ Four features have been measured from each sample:

- length and width of sepals (in cm),
- length and width of petals (in cm).

■ Fisher has developed a linear discriminant model to distinguish the species from each other.

- The aim is to provide a naïve Bayesian classifier with classification labels given by the Iris species.
K.-H.

Zimmermann

Contents
Naïve Bayesian Classifier

Data Fitting
Clustering and Classification

ABC
Computation
Support Vector Machines

Naïve Bayesian Classifier - Example (Cont'd)

Iris flower

Soft Computing
K.-H.

Zimmermann

Contents
Naïve Bayesian Classifier

Data Fitting
Clustering and Classification

ABC
Computation
Support Vector Machines

Naïve Bayesian Classifier - Example (Cont'd)

Viewing the dataset
> iris

	Sepal length	Sepal width	Petal length	Petal width	Species
1	5.1	3.5	1.4	0.2	setosa
2	4.9	3.0	1.4	0.2	setosa
3	4.7	3.2	1.3	0.2	setosa
4	4.6	3.1	1.5	0.2	setosa
5	5.0	3.6	1.4	0.2	setosa
\vdots					
51					
52	6.4	3.2	4.7	1.4	versicolor
53	6.9	3.2	4.4	1.5	versicolor
54	5.5	3.1	4.9	1.5	versicolor
55	6.5	2.3	4.0	1.3	versicolor
		2.8	4.6	1.5	versicolor
\vdots					
146	6.7	3.0	5.2	2.3	virginica
147	6.3	2.5	5.0	1.9	virginica
148	6.5	3.0	5.2	2.0	virginica
149	6.2	3.4	5.4	2.3	virginica
150	5.9	3.0	5.1	1.8	virginica

Soft Computing
 Naïve Bayesian Classifier - Example (Cont'd)
 K.-H.

Zimmermann
Command naive_bayes fits the naïve Bayesian model with a predictor; independence among class labels is assumed.
Contents
Naïve Bayesian Classifier

Data Fitting
Clustering and Classification

ABC
Computation
Support Vector Machines

```
> data(iris)
> nb <- naive_bayes(Species ~ ., data=iris)
>nb
```

A priori probabilities
setosa versicolor virginica
0.33333330 .33333330 .3333333

Tables:

Sepal.Length setosa versicolor virginica mean 5.00600005 .93600006 .5880000 sd $0.3524897 \quad 0.51617110 .6358796$

Sepal.Width setosa versicolor virginica mean 3.42800002 .77000002 .9740000 sd $0.3790644 \quad 0.31379830 .3224966$

Petal.Length setosa versicolor virginica mean 1.46200004 .26000005 .5520000 sd $0.1736640 \quad 0.4699110 \quad 0.5518947$

Petal.Width setosa versicolor virginica mean 0.24600001 .32600002 .0260000 sd $0.1053856 \quad 0.1977527 \quad 0.2746501$
K.-H. Zimmermann (TUHH) Soft Computing

July 13, 2021

Contents
Naïve Bayesian Classifier

Data Fitting
Clustering and Classification

ABC
Computation
Support Vector Machines

Naïve Bayesian Classifier - Example (Cont'd)
Plotting of the empirical distributions of the individual features with respect to the classification labels:
> plot(nb, "Sepal.Length")
> plot(nb, "Sepal.Width")
> plot(nb, "Petal.Length")
> plot(nb, "Petal.Width")
K.-H.

Zimmermann

Contents
Naïve Bayesian Classifier

Data Fitting
Clustering and Classification

ABC

Computation
Support Vector Machines

Naïve Bayesian Classifier - Example (Cont'd)

Individual empirical distributions of features conditioned by class labels:

Contents

Naïve Bayesian Classifier

Naïve Bayesian Classifier - Example (Cont'd)

Individual empirical distributions of features conditioned by class labels:

Contents
Naïve Bayesian Classifier

Data Fitting
Clustering and Classification

ABC

Computation
Support Vector Machines

Naïve Bayesian Classifier - Example (Cont'd)
For testing purposes, the data set is divided into a training set and a test set.
> ind_iris <- sample(1:nrow(iris), size=round(0.3*nrow(iris)))
> ind_iris
[1] $\begin{array}{lllllllllll}61 & 112 & 34 & 43 & 82 & 84 & 138 & 126 & 47 & 97\end{array}$
[11] $8619 \quad 134 \quad 57119 \quad 2644111 \quad 62140$
[21] $111 \begin{array}{llllllllll}128 & 28 & 108 & 106 & 54 & 144 & 4 & 124 & 5\end{array}$
[31] $113 \quad 72 \quad 25 \quad 90 \quad 150 \quad 120 \quad 52139 \quad 94146$
[41] $88 \quad 49 \quad 137 \quad 7596$

Contents
Naïve Bayesian Classifier

Data Fitting
Clustering and Classification

ABC
Computation
Support Vector Machines

Naïve Bayesian Classifier - Example (Cont'd)

The training and test sets make up 70% and 30% of the data set, respectively.
> iris_train $<-\quad$ iris [-ind_iris, $]$
> iris_train
Sepal.Length Sepal. Width Petal.Length Petal. Width Species
1

Naïve Bayesian Classifier - Example (Cont'd)
The training and test sets make up 70% and 30% of the data set, respectively.
> iris_test <- iris[ind_iris,]

Contents
Naïve Bayesian Classifier

Data Fitting
Clustering and Classification

ABC
Computation
Support Vector Machines

Naïve Bayesian Classifier - Example (Cont'd)

Command predict provides the classification; it returns for each test sample the label with maximal conditional posterior probability.

```
> nb_iris <- naive_bayes(Species ~ ., iris_train)
> predict(nb_iris, iris_test)
```

| [1] versicolor virginica | setosa | setosa | versicolor versicolor |
| :--- | :--- | :--- | :--- | :--- |
| [7] virginica virginica setosa | versicolor versicolor setosa | | |
| [13] versicolor versicolor virginica | virginica setosa | virginica | |
| [19] versicolor virginica setosa | virginica setosa | virginica | |
| [25] virginica versicolor virginica | setosa | virginica setosa | |
| [31] virginica versicolor setosa | versicolor virginica | versicolor | |
| [37] versicolor virginica versicolor versicolor virginica versicolor | | | |
| [43] virginica versicolor versicolor | | | |
| Levels. setosa versicolor viriginica | | | |

Contents
Naïve Bayesian Classifier

Data Fitting
Clustering and Classification

ABC
Computation
Support Vector Machines

> Naïve Bayesian Classifier - Example (Cont'd)
> > head(predict(nb-iris, iris_test, type="prob"))
> setosa versicolor viriginica
> [1,] 3.169305e-41 9.999992e-01 7.682960e-07
> [2,] $2.918437 \mathrm{e}-1676.036875 \mathrm{e}-039.939631 \mathrm{e}-01$
> [3,] $1.000000 \mathrm{e}+008.072905 \mathrm{e}-221.919866 \mathrm{e}-27$
> [4,] 1.000000e+00 5.674804e-19 7.638931e-28
> [5,] 6.620915e-49 9.999991e-01 8.523488e-07
> [6,] 4.548898e-136 7.641880e-01 2.3581120-01

Least Squares Data Fitting

- Least squares method (C.F. Gauss)
- Data fitting
- Example: Iris flower data
S. Boyd, L. Vandenberghe: Introduction to Applied Linear Algebra, Cambridge Univ. Press, 2018.

Least Squares Method

- Given tall real-valued $m \times n$ matrix A; i.e., $m>n$.
- System of linear equations

$$
\begin{equation*}
A x=b \tag{205}
\end{equation*}
$$

with $b \in \mathbb{R}^{m}$ is over-determined; m equations with n variables where $m>n$.

- Solution of (205) exists if b is a linear combination of the columns of A; i.e.,

$$
\begin{equation*}
\operatorname{rk}(A)=\operatorname{rk}(A \mid b) . \tag{206}
\end{equation*}
$$

Soft Computing

K.-H.

Zimmermann

Contents

Naïve Bayesian Classifier

Data Fitting
Clustering and Classification

ABC

Computation
Support Vector Machines

Least Squares Method

- If there is no solution of (205), a vector x is searched for which the residual

$$
\begin{equation*}
r=A x-b \tag{207}
\end{equation*}
$$

is minimized,

$$
\begin{equation*}
\|A x-b\|^{2}=\|r\|^{2}=r_{1}^{2}+\ldots+r_{m}^{2} \tag{208}
\end{equation*}
$$

■ The problem of finding a vector $\hat{x} \in \mathbb{R}^{n}$ which minimizes (208) is the problem of least squares or regression.

■ Each vector \hat{x} which satisfies

$$
\begin{equation*}
\|A \hat{x}-b\|^{2} \leq\|A x-b\|^{2} \tag{209}
\end{equation*}
$$

for all $x \in \mathbb{R}^{n}$ is called least squares approximate solution of $A x=b$.

■ If the optimal residual norm $\|A \hat{x}-b\|$ is small, then \hat{x} approximately solves $A x=b$.

Contents

Naïve Bayesian Classifier

Data Fitting
Clustering and Classification

Least Squares Method

Suppose the matrix A has linearly independent columns. Then the solution of the least squares problem $A x=b$ is given by

$$
\begin{equation*}
\hat{x}=\left(A^{t} A\right)^{-1} A^{t} b . \tag{210}
\end{equation*}
$$

Soft Computing

K.-H.

Zimmermann

Contents

Naïve Bayesian Classifier

Data Fitting

Clustering and Classification

ABC

Computation
Support Vector Machines

*Proof.

Suppose the columns of A are linearly independent.

- Claim that the Gram matrix $A^{t} A$ is invertible. Indeed, let $x \in \mathbb{R}^{n}$ with $\left(A^{t} A\right) x=0$. Then

$$
0=x^{t} 0=x^{t}\left(A^{t} A\right) x=x^{t} A^{t} A x=(A x)^{t}(A x)=\|A x\|^{2}
$$

and so by the norm $A x=0$. Since the columns of A are linearly independent, it follows that $x=0$.

- Claim that for each vector $x \in \mathbb{R}^{n}$ with $x \neq \hat{x}$,

$$
\|A \hat{x}-b\| \leq\|A x-b\| .
$$

Indeed, write

$$
\begin{aligned}
\|A x-b\|^{2} & =\|(A x-A \hat{x})-(A \hat{x}-b)\|^{2} \\
& =\|A x-A \hat{x}\|^{2}+\|A \hat{x}-b\|^{2}+2(A x-A \hat{x})^{t}(A \hat{x}-b)
\end{aligned}
$$

by using the identity

$$
\|a+b\|^{2}=(a+b)^{t}(a+b)=\|a\|^{2}+\|b\|^{2}+2 a^{t} b .
$$

Proof (Cont'd)

Contents
Naïve Bayesian Classifier

Data Fitting
Clustering and Classification

ABC
Computation
Support Vector Machines

$$
\begin{aligned}
(A x-A \hat{x})^{t}(A \hat{x}-b) & =(x-\hat{x})^{t} A^{t}(A \hat{x}-b) \\
& =(x-\hat{x})^{t}\left(A^{t} A \hat{x}-A^{t} b\right) \\
& =(x-\hat{x})^{t} 0=0,
\end{aligned}
$$

by using $\left(A^{t} A\right) \hat{x}=A^{t} b$. Then

$$
\|A x-b\|^{2}=\|A x-A \hat{x}\|^{2}+\|A \hat{x}-b\|^{2} .
$$

Since the first term on the right-hand side is nonnegative, we obtain

$$
\|A x-b\|^{2} \geq\|A \hat{x}-b\|^{2}
$$

Thus \hat{x} is a minimizer of $\|A x-b\|$.

- Claim that \hat{x} is the unique minimizer of $\|A x-b\|$. Indeed, suppose that $\|A x-b\|^{2}=\|A \hat{x}-b\|^{2}$. Then it follows that $\|A(x-\hat{x})\|^{2}=0$ which by the norm implies that $A(x-\hat{x})=0$. But the columns of A are linearly independent and so we arrive at $x=\hat{x}$, as required.

Soft Computing
K.-H.

Example (Maple)

Consider the least squares problem $A x=b$, where

$$
A=\left(\begin{array}{rr}
2 & 0 \\
-1 & 1 \\
0 & 2
\end{array}\right), \quad b=\left(\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right) .
$$

This over-determined systems has three linear equations in two variables,

$$
2 x_{1}=1, \quad-x_{1}+x_{2}=0, \quad 2 x_{2}=-1,
$$

and has no solution. The associated least squares problem is

$$
\min \left\{\left(2 x_{1}-1\right)^{2}+\left(-x_{1}+x_{2}\right)^{2}+\left(2 x_{2}+1\right)^{2}\right\},
$$

which has the unique solution

$$
\hat{x}=\binom{1 / 3}{-1 / 3} .
$$

Example (Maple) Cont'd

This solution can be verified by the Maple code

ABC

Computation
Support Vector Machines

Note that the least square approximate solution \hat{x} does not satisfy $A x=b$ and the associated residual is

$$
\hat{r}=A \hat{x}-b=\left(-\frac{1}{3},-\frac{2}{3}, \frac{1}{3}\right)^{t}
$$

with optimal residual norm

$$
\|\hat{r}\|^{2}=\frac{2}{3} .
$$

Contents

Naïve Bayesian
Classifier
Data Fitting
Clustering and
Classification
ABC
Computation
Support Vector Machines

Least Squares Solution

- Gram-Schmidt orthogonalization
- Pseudo-inverse
- QR factorization

Gram-Schmidt

■ Given a collection of vectors $a_{1}, \ldots, a_{n} \in \mathbb{R}^{m}$.
■ Construct a collection of vectors $q_{1}, \ldots, q_{n} \in \mathbb{R}^{m}$ with the following properties:

- For each $1 \leq i \leq n, a_{i}$ is a linear combination of q_{1}, \ldots, q_{i} and q_{i} is a linear combination of a_{1}, \ldots, a_{i}.
■ If the vectors a_{1}, \ldots, a_{i-1} are linearly independent, but a_{1}, \ldots, a_{i} are linearly dependent, the algorithm detects this and stops; i.e., the algorithm finds the first vector a_{i} which is a linear combination of the previous vectors a_{1}, \ldots, a_{i-1}.
■ If the vectors a_{1}, \ldots, a_{n} are linearly independent, the algorithm produces an orthonormal collection of vectors q_{1}, \ldots, q_{n}.

Contents

Naïve Bayesian Classifier

Data Fitting
Clustering and Classification

ABC
Computation
Support Vector Machines

Gram-Schmidt Algorithm

Require: Vectors $a_{1}, \ldots, a_{n} \in \mathbb{R}^{m}$
Ensure: Orthonormal system of vectors $q_{1}, \ldots, q_{n} \in \mathbb{R}^{m}$ or abortion.
for i from 1 to n do
$\tilde{q}_{i} \leftarrow a_{i}-\left(q_{1}^{t} a_{i}\right) q_{1}-\ldots-\left(q_{i-1}^{t} a_{i}\right) q_{i-1}$
if $\tilde{q}_{i}=0$ then
return Abortion
end if
$q_{i} \leftarrow \tilde{q}_{i} /\left\|\tilde{q}_{i}\right\|$
end for
K.-H.

Gram-Schmidt

Suppose the vectors $a_{1}, \ldots, a_{n} \in \mathbb{R}^{m}$ be linearly independent.

- Let A be the $m \times n$ matrix with columns a_{1}, \ldots, a_{n}.
- Let Q be the $m \times n$ matrix with orthonormal columns $q_{1}, \ldots, q_{n} \in \mathbb{R}^{m}$.
- Orthonormality gives the matrix equation

$$
\begin{equation*}
Q^{t} Q=I_{n} \tag{211}
\end{equation*}
$$

in which the i, j entry is the scalar product $q_{i}^{t} q_{j}=\delta_{i j}$, where δ is the Kronecker delta.

- Relation between a_{i} and q_{i} in Gram-Schmidt algorithm,

$$
\begin{equation*}
a_{i}=\left(q_{1}^{t} a_{i}\right) q_{1}+\ldots+\left(q_{i-1}^{t} a_{i}\right) q_{i-1}+\left\|\tilde{q}_{i}\right\| q_{i}, \tag{212}
\end{equation*}
$$

$$
1 \leq i \leq n .
$$

Gram-Schmidt

- Put

Naïve Bayesian Classifier

Data Fitting
Clustering and Classification

$$
\begin{equation*}
a_{i}=R_{1 i} q_{1}+\ldots+R_{i i} q_{i}, \quad 1 \leq i \leq n, \tag{213}
\end{equation*}
$$

where $R_{i j}=q_{i}^{t} a_{j}$ for $i<j$ and $R_{i i}=\left\|\tilde{q}_{i}\right\|$. Define $R_{i j}=0$ for $i>j$.

- Then (213) becomes in matrix form

$$
\begin{equation*}
A=Q R, \tag{214}
\end{equation*}
$$

which is the $Q R$ factorization of A.

- The $m \times n$ matrix Q has orthonormal columns and the $n \times n$ matrix R is upper triangular with positive diagonal entries.

Pseudo Inverse

Suppose the matrix A has linearly independent columns.

- The matrix $A^{t} A$ is invertible.

Indeed, let $x \in \mathbb{R}^{n}$ with $\left(A^{t} A\right) x=0$. Then

$$
0=x^{t} 0=x^{t}\left(A^{t} A\right) x=x^{t} A^{t} A x=(A x)^{t}(A x)=\|A x\|^{2}
$$

and so by the norm, $A x=0$. But the columns of A are linearly independent and hence $x=0$.

- The matrix

$$
\begin{equation*}
A^{\dagger}=\left(A^{t} A\right)^{-1} A^{t} \tag{215}
\end{equation*}
$$

is called the pseudo-inverse of A.

- The pseudo-inverse of A is a left inverse of A, since

$$
\begin{equation*}
A^{\dagger} A=\left(\left(A^{t} A\right)^{-1} A^{t}\right) A=\left(A^{t} A\right)^{-1}\left(A^{t} A\right)=I . \tag{216}
\end{equation*}
$$

Pseudo Inverse

- The pseudo-inverse of A can be calculated using the QR factorization of A, since

$$
\begin{equation*}
A^{t} A=(Q R)^{t}(Q R)=R^{t} Q^{t} Q R=R^{t} R \tag{217}
\end{equation*}
$$

and so

$$
\begin{align*}
A^{\dagger} & =\left(A^{t} A\right)^{-1} A^{t} \tag{218}\\
& =\left(R^{t} R\right)^{-1}(Q R)^{t} \\
& =R^{-1} R^{-t} R^{t} Q^{t} \\
& =R^{-1} Q^{t} .
\end{align*}
$$

Note that for an invertible matrix A,

$$
\begin{equation*}
\left(A^{t}\right)^{-1}=\left(A^{-1}\right)^{t} \tag{219}
\end{equation*}
$$

which is also represented by A^{-t}.

Contents

Naïve Bayesian Classifier

Data Fitting
Clustering and Classification

ABC
Computation
Support Vector Machines

QR Factorization

Suppose the matrix A has linearly independent columns.

- Take the QR factorization $A=Q R$.
- The pseudo-inverse $A^{\dagger}=R^{-1} Q^{t}$ of A satisfies by (210),

$$
\begin{equation*}
\hat{x}=\left(A^{t} A\right)^{-1} A^{t} b=A^{\dagger} b=R^{-1} Q^{t} b \tag{20}
\end{equation*}
$$

and so

$$
\begin{equation*}
R \hat{x}=Q^{t} b . \tag{221}
\end{equation*}
$$

Contents
Naïve Bayesian Classifier

Data Fitting
Clustering and Classification

ABC
Computation
Support Vector Machines

Least Squares Algorithm via QR Factorization

Require: Tall real-valued $m \times n$ matrix A with independent columns and vector $b \in \mathbb{R}^{m}$
Ensure: Least squares approximate solution \hat{x}
Compute QR factorization of A
Compute $Q^{t} b$
Solve the triangular system of equations $R \hat{x}=Q^{t} b$ via back substitution

Correctness
Follows from (221).

QR factorization of A,
> with(LinearAlgebra):
$>\mathrm{A}:=\operatorname{Matrix}([[2,0],[-1,1],[0,2]]):$
> Q,R := QRDecomposition(A):
where

$$
Q=\left(\begin{array}{rr}
\frac{2}{5} \sqrt{5} & \frac{1}{30} \sqrt{30} \\
-\frac{1}{5} \sqrt{5} & \frac{1}{15} \sqrt{30} \\
0 & \frac{1}{6} \sqrt{30}
\end{array}\right), \quad R=\left(\begin{array}{rr}
\sqrt{5} & -\frac{1}{5} \sqrt{5} \\
0 & \frac{2}{5} \sqrt{30}
\end{array}\right)
$$

Contents
Naïve Bayesian
Classifier
Data Fitting
Clustering and Classification

ABC

Computation
Support Vector Machines

Example (Maple) Cont'd

Pseudo-inverse of A,
> B := MatrixInverse(A);
where

$$
B=\left(\begin{array}{rrr}
\frac{5}{12} & -\frac{1}{6} & \frac{1}{12} \\
\frac{1}{12} & \frac{1}{6} & \frac{5}{12}
\end{array}\right) .
$$

Approximate solution of the above least squares problem,

$$
\hat{x}=B b=\binom{1 / 3}{-1 / 3} .
$$

Least Squares Data Fitting

■ Given sample data

$$
x^{(1)}, \ldots, x^{(N)} \in \mathbb{R}^{n}
$$

and

$$
y^{(1)}, \ldots, y^{(N)} \in \mathbb{R}
$$

where $\left(x^{(i)}, y^{(i)}\right)$ denotes the i th sample pair.
■ Form a model of the relationship between the sample pairs

$$
\begin{equation*}
\hat{f}(x) \approx y \tag{222}
\end{equation*}
$$

where $\hat{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is called the predictor.

Least Squares Data Fitting

- Suppose the model function has the form

$$
\begin{equation*}
\hat{f}(x)=\theta_{1} f_{1}(x)+\ldots+\theta_{p} f_{p}(x), \tag{223}
\end{equation*}
$$

where $f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ are basis functions or feature mappings and $\theta_{1}, \ldots, \theta_{p}$ are real-valued model parameters. This predictor is linear in the parameters.

- When the basis functions are given, the task is to choose the model parameters accordingly.

Least Squares Data Fitting

- Prediction error for sample pair $\left(x^{(i)}, y^{(i)}\right)$,

$$
\begin{equation*}
r^{(i)}=y^{(i)}-\hat{f}\left(x^{(i)}\right)=y^{(i)}-\hat{y}^{(i)}, \quad 1 \leq i \leq N . \tag{224}
\end{equation*}
$$

- Vector notation

$$
\begin{align*}
y & =\left(y^{(1)}, \ldots, y^{(N)}\right), \tag{225}\\
\hat{y} & =\left(\hat{y}^{(1)}, \ldots, \hat{y}^{(N)}\right), \tag{226}\\
r & =\left(r^{(1)}, \ldots, r^{(N)}\right) . \tag{227}
\end{align*}
$$

Residual can be written as

$$
\begin{equation*}
r=y-\hat{y} . \tag{228}
\end{equation*}
$$

Least Squares Data Fitting

- A common measure how well the model predicts the observed sample data is the RMS prediction error $\operatorname{rms}(r)$ of the residual r.
- The root-mean-square (RMS) value of a vector $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ is

$$
\begin{equation*}
\operatorname{rms}(x)=\sqrt{\frac{x_{1}^{2}+\ldots+x_{n}^{2}}{n}}=\frac{\|x\|}{\sqrt{n}} \tag{229}
\end{equation*}
$$

- The minimization of $\operatorname{rms}(r)$ w.r.t. the model parameters $\theta_{1}, \ldots, \theta_{p}$ given the sample set is a least squares problem.

Soft Computing

K.-H.

Least Squares Data Fitting

- Write $\hat{y}^{(i)}=\hat{f}\left(x^{(i)}\right)$ in terms of the model parameters,

$$
\begin{equation*}
\hat{y}^{(i)}=a_{i 1} \theta_{1}+\ldots+a_{i p} \theta_{p}, \quad 1 \leq i \leq N, \tag{230}
\end{equation*}
$$

where $A=\left(a_{i j}\right)$ denotes the $N \times p$ matrix with

$$
\begin{equation*}
a_{i j}=\hat{f}_{j}\left(x^{(i)}\right), \quad 1 \leq i \leq N, \quad 1 \leq j \leq p . \tag{231}
\end{equation*}
$$

- The j th column of A is given by the j th basis function \hat{f}_{j} evaluated at the data $x^{(1)}, \ldots, x^{(N)}$.
- The i th row of A consists of the values of p basis functions at the data point $x^{(i)}$.
- Writing $\theta=\left(\theta_{1}, \ldots, \theta_{p}\right)^{t}$, we obtain in matrix form

$$
\begin{equation*}
\hat{y}=A \theta, \tag{232}
\end{equation*}
$$

where A is a tall $N \times p$ matrix.

Least Squares Data Fitting

Aim is to find the model parameter vector θ.
■ Sum of the squares of the residuals is given by

$$
\begin{equation*}
\|r\|^{2}=\|y-\hat{y}\|^{2}=\|y-A \theta\|^{2} \tag{233}
\end{equation*}
$$

- Suppose the columns of the matrix A are linearly independent.
- Then the least squares problem provides the best model parameter vector $\hat{\theta}$,

$$
\begin{equation*}
\hat{\theta}=\left(A^{t} A\right)^{-1} A^{t} y=A^{\dagger} y . \tag{234}
\end{equation*}
$$

The solution $\hat{\theta}$ is the least squares fitting on the sample set.

- The number $\|y-A \hat{\theta}\|^{2}$ is the minimum sum square error.
- The number $\|y-A \hat{\theta}\|^{2} / N$ is the minimum mean square error (MMSE) of the model.

Polynomial Fit

Simple model of polynomial fit ($n=1$) makes use of the univariate polynomial functions

$$
\begin{equation*}
f_{1}(x)=1, f_{2}(x)=x, \ldots, f_{p}(x)=x^{p-1} \tag{235}
\end{equation*}
$$

Model function (223) has then the form

$$
\begin{equation*}
\hat{f}(x)=\theta_{1}+\theta_{2} x+\ldots+\theta_{p} x^{p-1} \tag{236}
\end{equation*}
$$

Matrix A in (231) has thus the shape

$$
A=\left(\begin{array}{cccc}
1 & x^{(1)} & \ldots & \left(x^{(1)}\right)^{p-1} \tag{237}\\
1 & x^{(2)} & \ldots & \left(x^{(2)}\right)^{p-1} \\
\vdots & & & \vdots \\
1 & x^{(N)} & \ldots & \left(x^{(N)}\right)^{p-1}
\end{array}\right)
$$

This is a Vandermonde matrix: Columns of A are linearly independent if the numbers $x^{(1)}, \ldots, x^{(N)}$ include at least p distinct values.

Soft Computing
K.-H.

Zimmermann

Contents
Naïve Bayesian Classifier

Data Fitting
Clustering and Classification
$A B C$
Computation
Support Vector Machines

Vandermonde Matrix
The real-valued matrix

$$
A=\left(\begin{array}{ccccc}
1 & x_{1} & x_{1}^{2} & \ldots & x_{1}^{n-1} \tag{238}\\
1 & x_{2} & x_{2}^{2} & \ldots & x_{2}^{n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_{n} & x_{n}^{2} & \ldots & x_{n}^{n-1}
\end{array}\right)
$$

has the determinant

$$
\begin{equation*}
\operatorname{det}(A)=\prod_{1 \leq i<j \leq n}\left(x_{j}-x_{i}\right) \tag{239}
\end{equation*}
$$

The matrix A is a Vandermonde matrix.

- All entries in the i th column have total degree $i-1$.

■ By the Leibniz formula, all terms in the determinant have total degree

$$
0+1+2+\ldots+(n-1)=\frac{n(n-1)}{2}
$$

■ For $i \neq j$ substitute x_{i} for x_{j}. The resulting matrix has two equal columns and so zero determinant.

- By the factor theorem, $x_{j}-x_{i}$ is a divisor of $\operatorname{det}(A)$.

■ By the unique factorization of multivariate polynomials,

$$
\operatorname{det}(A)=q \prod_{1 \leq i<j \leq n}\left(x_{j}-x_{i}\right)
$$

where q is a polynomial.

Contents

Naïve Bayesian Classifier

Data Fitting
Clustering and Classification

ABC

Computation
Support Vector Machines

Proof (Cont'd).

- By comparing degrees, the polynomial q is a constant.
- The term corresponding to the diagonal entries of A is

$$
1 x_{2} x_{3}^{2} \cdots x_{n}^{n-1}
$$

which is also the monomial by taking the first terms in all the factors in $\prod_{1 \leq i<j \leq n}\left(x_{j}-x_{i}\right)$. Thus the constant q is 1 .

Regression

- The regression model has the shape

$$
\begin{equation*}
\hat{y}=x^{t} \beta+v \in \mathbb{R}, \tag{240}
\end{equation*}
$$

where $x \in \mathbb{R}^{n}, \beta \in \mathbb{R}^{n}$ is the weight vector and $v \in \mathbb{R}$ is the offset.

- Write the regression model as

$$
\begin{equation*}
\hat{y}=x^{t} \theta^{\prime}+\theta_{1}, \tag{241}
\end{equation*}
$$

where the basis functions are

$$
\begin{equation*}
f_{1}(x)=1, \quad f_{i}(x)=x_{i-1}, \quad 2 \leq i \leq n+1, \tag{242}
\end{equation*}
$$

with $v=\theta_{1}, \beta=\theta^{\prime}=\left(\theta_{2}, \ldots, \theta_{n+1}\right)$ and $p=n+1$.

Regression

- General $N \times p$ matrix A is then of the form

$$
\begin{equation*}
A=\left(1 X^{t}\right), \tag{243}
\end{equation*}
$$

where X is the feature matrix with columns $x^{(1)}, \ldots, x^{(N)}$, i.e.,

$$
A=\left(\begin{array}{ccccc}
1 & x_{1}^{(1)} & x_{2}^{(1)} & \cdots & x_{n}^{(1)} \tag{244}\\
1 & x_{1}^{(2)} & x_{2}^{(2)} & \cdots & x_{n}^{(2)} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_{1}^{(N)} & x_{2}^{(N)} & \cdots & x_{n}^{(N)}
\end{array}\right)
$$

Model is then given by

$$
\begin{equation*}
\hat{y}=A \theta . \tag{245}
\end{equation*}
$$

Iris Dataset
Reconsider the Iris dataset and compare the sepal and petal lengths.

Naïve Bayesian
Classifier
Data Fitting
Clustering and Classification
$A B C$
Computation
Support Vector Machines

Iris Dataset

Linear regression:
> x = iris\$Sepal.Length
> y = iris\$Petal.Length
$>$ model1 $=\operatorname{lm}(\mathrm{y} \sim \mathrm{x})$
> coefficients(model1)
(Intercept) x
-7.101443 1.858433
Linear model (regression line):

$$
y=1.86 x-7.10 .
$$

```
Soft Computing
    K.-H.
    Zimmermann
Contents
Naive Bayesian
Classifier
Data Fitting
Clustering and
Classification
ABC
Computation
Support Vector
Machines
```

```
Iris Dataset (Cont'd)
```

Iris Dataset (Cont'd)
y values:
y values:
> fitted.values(model1)
> fitted.values(model1)
1 rrarer
1 rrarer
Residuals:
Residuals:
> residuals(model1)
> residuals(model1)
1 2 3
1 2 3
-0.976564819 -0.604878224 -0.333181628 ...
-0.976564819 -0.604878224 -0.333181628 ...
y values:
y values:
> y
> y
[1] 1.4 1.4 1.3 ...

```
[1] 1.4 1.4 1.3 ...
```


Contents

Naïve Bayesian Classifier

Data Fitting
Clustering and Classification

ABC
Computation
Support Vector Machines

Iris Dataset

Polynomial regression:
$>$ new_x $=$ cbind $\left(x, x^{\wedge} 2\right)$
$>$ model2 $=$ lm(y ~ new_x)
> coefficients(model2)
(Intercept) new_xx new_x
-17.4467139 5.3921642 -0.2958593
Quadratic model (regression parabola):

$$
y=-17.45+5.40 x-0.30 x^{2}
$$

```
Soft Computing
    K.-H.
    Zimmermann
Contents
Naive Bayesian
Classifier
Data Fitting
Clustering and
Classification
ABC
Computation
Support Vector
Machines
```


Iris Dataset (Cont'd)

```
\(\hat{y}\) values:
> fitted.values(model1)
\begin{tabular}{lrr}
1 & 2 & 3 \\
2.3580220 & 1.8713078 & \(1.3609249 \ldots\) \\
& &
\end{tabular}
> residuals(model1)
        1 2 3
-0.958021952 -0.471307798-0.060924896 ...
y values:
> y
[1] 1.4 1.4 1.3 ...
```


Contents

Naïve Bayesian Classifier

Data Fitting
Clustering and Classification

Computation
Support Vector Machines

Iris Dataset (Cont'd)

Plotting both models,
> ggplot(data=iris)

+ geom_point(aes(x = iris\$Sepal.Length, y = iris\$Petal.Length))
+ geom_point(aes(x = iris\$Sepal.Length, y = model1\$fit,color="red"))
+ geom_point(aes(x = iris\$Sepal.Length, y = model2\$fit, color="blue"))
+ theme(panel.background=element_blank())

```
Soft Computing
    K.-H.

\section*{Iris Dataset (Cont'd)}

Linear versus quadratic fit for sepal and petal lengths of Iris data:
Contents
Naïve Bayesian Classifier

Data Fitting
Clustering and Classification

ABC
Computation
Support Vector Machines


Contents
Naïve Bayesian Classifier

Data Fitting
Clustering and Classification

\section*{ABC}

Computation
Support Vector Machines

\section*{Clustering and Classification}
- Clustering problem
- \(k\)-means algorithm
- Boolean classification
- Least squares classification
- Examples: Iris dataset, protein intake, Titanic
S. Boyd, L. Vandenberghe: Introduction to Applied Linear Algebra, Cambridge Univ. Press, 2018.

\section*{Clustering}
- Fundamental problem in machine learning
- Applications in unsupervised learning
- Famous clustering method called \(k\)-means
- Example: protein intake

\section*{Contents}

Naïve Bayesian Classifier

Data Fitting
Clustering and Classification

ABC
Computation
Support Vector Machines

\section*{Clustering}
- Given a collection of samples \(x_{1}, \ldots, x_{N}\) in the Euclidean space \(\mathbb{R}^{n}\).
- The aim is to partition the samples into \(k\) clusters or groups such that the vectors in each cluster are close to each other w.r.t. Euclidean metric.
- The number of clusters \(k\) is usually much smaller than the number of samples \(N\); values of \(k\) range from a handful to a few hundred and values of \(N\) range from a few hundred to billions.

Contents
Naïve Bayesian Classifier

Data Fitting
Clustering and Classification

\section*{ABC}

Computation
Support Vector Machines

\section*{Clustering - Example}

■ Iris data set is a multivariate data set consisting of 50 samples each from one of three Iris species:

Iris setosa, Iris versicolor, and Iris virginica.
■ Each sample is characterized by four features:
■ Length and width of sepals (in cm ).
- Length and width of petals (in cm ).

■ Scatterplots (below) compare the features in pairs of the three species.

\section*{Clustering - Example}

Clustering of the features in pairs of the 150 Iris samples:

Contents
Naïve Bayesian Classifier

Data Fitting
Clustering and Classification

\section*{ABC}

Computation
Support Vector Machines

Iris Data (red=setosa,green=versicolor,blue=virginica)


\section*{Clustering}

■ Given a collection of samples \(x_{1}, \ldots, x_{N} \in \mathbb{R}^{n}\).
- A clustering of these data into \(k\) groups denoted \(1, \ldots, k\) is an assignment such that sample \(x_{i}\) is designated to group \(c_{i}\), \(1 \leq i \leq N\).
- The \(j\) th group of samples is thus given by
\[
\begin{equation*}
G_{j}=\left\{x_{i} \mid c_{i}=j\right\}, \quad 1 \leq j \leq k . \tag{246}
\end{equation*}
\]
- Vector \(z_{j}\) should be close to the vectors in the corresponding group \(G_{j}\); i.e., the quantities
\[
\begin{equation*}
\left\|x_{i}-z_{c_{i}}\right\|, \quad 1 \leq i \leq N, \tag{247}
\end{equation*}
\]
should be as small as possible; \(x_{i}\) is assigned class \(c_{i}\) and \(z_{c_{i}}\) is center of class.

■ Clustering is assigned the overall value
\[
\begin{equation*}
J_{c}=\frac{1}{N} \sum_{i=1}^{N}\left\|x_{i}-z_{c_{i}}\right\|^{2}, \tag{248}
\end{equation*}
\]
which is the mean-square distance between the samples and the corresponding representatives.

\section*{Contents}

Naïve Bayesian Classifier

Data Fitting
Clustering and Classification

ABC
Computation
Support Vector Machines

\section*{Clustering}

■ Mean-square distance \(J_{c}\) depends on the cluster assignment \(c\) and the choice of the cluster representatives \(z_{1}, \ldots, z_{k}\).
- Aim is to find a cluster assignment and cluster representatives such that the objective \(J_{c}\) is minimized; such a clustering is optimal.

■ In practice, finding an optimal clustering is usually intractable.
■ \(k\)-means algorithm provides generally a good approximation to the optimal clustering; solutions found by the \(k\)-means algorithm are usually suboptimal.

\section*{Clustering - Fixed Representatives I}

■ First, suppose the group representatives \(z_{1}, \ldots, z_{k}\) are fixed.
\(\square\) The task is to find the cluster assignment \(c_{1}, \ldots, c_{N}\) which minimizes the objective \(J_{c}\); this problem can be solved in an exact manner!
- The choice of the cluster \(c_{i}\) to which sample \(x_{i}\) belongs is only affected by the \(i\) th term of the objective \(J_{c}\),
\[
\begin{equation*}
\frac{1}{N}\left\|x_{i}-z_{c_{i}}\right\|^{2} \tag{249}
\end{equation*}
\]

■ This term can be minimized by choosing \(c_{i}\) as the value \(j \in\{1, \ldots, k\}\) such that
\[
\frac{1}{N}\left\|x_{i}-z_{j}\right\|^{2}
\]
becomes minimal.

\section*{Clustering - Fixed Representatives II}
- Sample \(x_{i}\) is thus assigned the nearest neighbor among the representatives,
\[
\begin{equation*}
\left\|x_{i}-z_{c_{i}}\right\|^{2}=\min _{1 \leq j \leq k}\left\|x_{i}-z_{j}\right\|^{2}, \quad 1 \leq i \leq N \tag{250}
\end{equation*}
\]
- Thus when the cluster representatives are fixed, the optimal group assignment can be found by designating each sample to its nearest representative.
- Objective \(J_{c}\) is then given by
\[
\begin{equation*}
J_{c}=\frac{1}{N} \sum_{i=1}^{N} \min _{1 \leq j \leq k}\left\|x_{i}-z_{j}\right\|^{2} . \tag{251}
\end{equation*}
\]

This is the mean of the squared distance between the samples and their closest representative.
- Task is to choose the group representatives such that the objective \(J_{c}\) is minimized; this problem can be solved in an exact manner.
- Objective \(J_{c}\) is decomposed into \(k\) partial sums such that each term is designated to one group,
\[
\begin{equation*}
J_{c}=J_{c, 1}+\ldots+J_{c, k} \tag{252}
\end{equation*}
\]
where
\[
\begin{equation*}
J_{c, j}=\frac{1}{N} \sum_{i \in G_{j}}\left\|x_{i}-z_{j}\right\|^{2}, \quad 1 \leq j \leq k \tag{253}
\end{equation*}
\]
is the partial sum corresponding to the \(j\) th group.

\section*{Clustering - Optimizing the Group Representatives II}
- Choice of group representative \(z_{j}\) only affects the term \(J_{c, j}\).
- Each representative \(z_{j}\) can thus be chosen to minimize the corresponding sum \(J_{c, j}\).
- Vector \(z_{j}\) can be selected as the centroid of the samples in the group \(G_{j}\),
\[
\begin{equation*}
z_{j}=\frac{1}{\left|G_{j}\right|} \sum_{i \in G_{j}} x_{i}, \quad 1 \leq j \leq k, \tag{254}
\end{equation*}
\]
where \(\left|G_{j}\right|\) denotes the cardinality of the group \(G_{j}\).
- Objective \(J_{c}\) in (252) can thus be minimized by choosing each group representative as the centroid of the samples in the associated group.

Clustering - \(k\)-means Algorithm
Require: List of samples \(x_{1}, \ldots, x_{N}\) in \(\mathbb{R}^{n}\), initial list \(z_{1}, \ldots, z_{k}\) of group representatives
Ensure: Partitioning of samples into \(k\) groups by minimizing \(J_{c}\) repeat
for \(i\) from 1 to \(N\) do
Assign sample \(x_{i}\) to the group associated with the nearest representative
end for
for \(j\) from 1 to \(k\) do
Set \(z_{j}\) to be the centroid of the samples in group \(j\)
end for
until Time elapsed or objective \(J_{c}\) changes only slightly over several iterations
K.-H.

Zimmermann

\section*{Contents}

Naïve Bayesian Classifier

Data Fitting
Clustering and Classification

\section*{ABC}

Computation
Support Vector Machines

\section*{Clustering - \(k\)-means Algorithm}

■ \(k\)-means algorithm (Stuard Lloyd, 1957) iterates between the two subproblems: updating the group assignment and updating the group representatives.

■ In each step, the objective \(J_{c}\) gets improved unless the step does not change the assignment.

■ Ties can be broken by assigning sample \(x_{i}\) to group \(z_{j}\) with the smallest value of \(j\).
- In the same step, it can happen that one or more groups are empty; such groups should be deleted and then the algorithm would come up with fewer than \(k\) groups.

■ If the group assignment is the same in two consecutive iterations, the representatives will also not change and then the algorithm should terminate as it will not find further improvements.

\section*{Contents}

Naïve Bayesian Classifier

Clustering and Classification

ABC
Computation
Support Vector Machines

\section*{Clustering - \(k\)-means Algorithm}
- Initial setting of the group representatives is purely random.
- \(k\)-means algorithm is a heuristic.
- It is thus common to run the algorithm several times with different initial representatives and then to choose the assignment with the smalles objective \(J_{c}\).
- It is also common to run the \(k\)-means algorithm for several values of \(k\) and compare the results and particularly the resulting objectives.

\section*{Soft Computing}
K.-H.

Zimmermann

Contents
Naïve Bayesian Classifier

Data Fitting
Clustering and Classification

\section*{ABC}

Computation
Support Vector Machines

\section*{Clustering - Example}

Consider 25 European countries and their protein intake (in percent) from several food sources:
> url = 'http://www.biz.uiowa.edu/faculty/jledolter/
DataMining/protein.csv'
> food <- read.csv(url)
\(>\) food
\# Country RedMeat WhiteMeat Eggs ...
\begin{tabular}{lrrrr} 
\#1 & Albania & 10.1 & 1.4 & 0.5 \\
\#2 & Austria & 8.9 & 14.0 & 4.3 \\
\#3 & Belgium & 13.5 & 9.3 & 4.1 \\
\#4 & Bulgaria & 7.8 & 6.0 & 1.6 \\
\#5 & Czech & 9.7 & 11.4 & 2.8 \\
\#6 & Denmark & 10.6 & 10.8 & 3.7 \\
\#7 & EGermany & 8.4 & 11.6 & 3.7 \\
\#8 & Finland & 9.5 & 4.9 & 2.7 \\
\#9 & France & 18.0 & 9.9 & 3.3 \\
\(\# 10\) & Greece & 10.2 & 3.0 & 2.8
\end{tabular}

Contents
Naive Bayesian Classifier

Data Fitting
Clustering and Classification

\section*{ABC}

Computation
Support Vector Machines

Clustering - Example (Cont'd)
\begin{tabular}{lrrrr} 
\#11 & Hungary & 5.3 & 12.4 & 2.9 \\
\#12 & Ireland & 13.9 & 10.0 & 4.7 \\
\#13 & Italy & 9.0 & 5.1 & 2.9 \\
\#14 & Holland & 9.5 & 13.6 & 3.6 \\
\#15 & Norway & 9.4 & 4.7 & 2.7 \\
\#16 & Poland & 6.9 & 10.2 & 2.7 \\
\#17 & Portugal & 6.2 & 3.7 & 1.1 \\
\#18 & Romania & 6.2 & 6.3 & 1.5 \\
\#19 & Spain & 7.1 & 3.4 & 3.1 \\
\#20 & Sweden & 9.9 & 7.8 & 3.5 \\
\#21 & Switz & 13.1 & 10.1 & 3.1 \\
\#22 & UK & 17.4 & 5.7 & 4.7 \\
\#23 & USSR & 9.3 & 4.6 & 2.1 \\
\#24 & WGermany & 11.4 & 12.5 & 4.1 \\
\#25 & Yugoslava & 4.4 & 5.0 & 1.2
\end{tabular}

\section*{Clustering - Example (Cont'd)}
\(k\)-means algorithm with \(N=25\) and \(k=3\) applied to the protein intake of white meat and red meat:
\(>\) set.seed(123456789)
> grpMeat <- kmeans(food[,c("WhiteMeat","RedMeat")], centers=3, nstart=10)
> grpMeat
K-means clustering with 3 clusters of sizes 8,12,5
Cluster means:
\begin{tabular}{rrr} 
& WhiteMeat & RedMeat \\
1 & 12.062500 & 8.837500 \\
2 & 4.658333 & 8.258333 \\
3 & 9.000000 & 15.180000
\end{tabular}

Clustering vector
[1] 2132111232132121222233212

\section*{Clustering - Example (Cont'd)}

Cluster assignments:
> o = order(grpMeat\$cluster)
)
\begin{tabular}{lcl} 
& food.Country.o. grpMeat.cluster.o \\
1 & Austria & 1 \\
2 & Czech & 1 \\
3 & Denmark & 1 \\
4 & EGermany & 1 \\
5 & Hungary & 1 \\
6 & Holland & 1 \\
7 & Poland & 1 \\
8 & WGermany & 1 \\
9 & Albania & 2 \\
10 & Bulgaria & 2
\end{tabular}
K.-H.

Zimmermann

Contents
Naïve Bayesian Classifier

Data Fitting
Clustering and Classification

\section*{ABC}

Computation
Support Vector Machines

Clustering - Example (Cont'd)
11 Finland 2
12 Greece 2
13 Italy 2
14 Norway 2
15 Portugal 2
16 Romania 2
17 Spain 2
18 Sweden 2
19 USSR 2
20 Yugoslavia 2
21 Belgium 3
22 France 3
23 Ireland 3
24 Switz 3
25 UK 3

\title{
Soft Computing
}
K.-H.

\section*{Contents}

\section*{Clustering - Example (Cont'd)}

Graphical representation of clustering solution:
> plot(food\$Red, food\$White, type="n", xlim=C(3,19), xlab="Red Meat", ylab="White Meat", text (x=food\$Red, y=foot\$White, labels=food\$Country, col=grpMeat\$cluster+1))

\section*{Soft Computing \\ Clustering - Example (Cont'd)}

\section*{Contents}

Naïve Bayesian Classifier

Data Fitting
Clustering and Classification

ABC
Computation
Support Vector Machines

\section*{Contents}

Naïve Bayesian

\section*{Classifier}

Data Fitting
Clustering and Classification

ABC
Computation
Support Vector Machines

\section*{Classification}
- Boolean classification
- Least squares classification

■ Example: Titanic

\section*{Classification}
- The outcome or the dependent variable \(y\) takes on a finite number of values (label or categorial).
- In the simplest case, the categorial variable has just two values such as true or false, or spam or not spam.
- This is called binary or Boolean classification problem.

\section*{Boolean Classification}
- The dependent variable \(y\) takes on the values \(y=+1\) which means true and \(y=-1\) which means false.
- The model is given by a classifier \(\hat{f}: \mathbb{R}^{n} \rightarrow\{ \pm 1\}\) with
\[
\begin{equation*}
\hat{y}=\hat{f}(x) . \tag{255}
\end{equation*}
\]
- The classifier will be constructed from the observed sample data.

\section*{Soft Computing}
K.-H.

\section*{Boolean Classification}

For given data \(x, y\) with predicted outcome \(\hat{y}=\hat{f}(x)\), there exist four possibilities:
- True positive: \(y=+1\) and \(\hat{y}=+1\).
- True negative: \(y=-1\) and \(\hat{y}=-1\).
- False positive: \(y=-1\) and \(\hat{y}=+1\).
- False negative: \(y=+1\) and \(\hat{y}=-1\).

Note:
- In the first two cases the predicted label is correct.
- In the last two cases the predicted label is incorrect.
- The third case of false positives is referred to as type I error.
- The fourth case of false negatives is referred to as type II error.

\section*{Boolean Classification}

Given a collection of samples \(x^{(1)}, \ldots, x^{(N)}\), categorials \(y^{(1)}, \ldots, y^{(N)}\) and model function \(\hat{f}\).
- The four outcome possibilities can be displayed in the form of a contingency table:
\begin{tabular}{|c|cc|c||}
\hline \hline Outcome & \(\hat{y}=+1\) & \(\hat{y}=-1\) & Total \\
\hline \hline\(y=+1\) & \(N_{t p}\) & \(N_{f n}\) & \(N_{p}\) \\
\(y=-1\) & \(N_{f p}\) & \(N_{t n}\) & \(N_{n}\) \\
\hline All & \(N_{t p}+N_{f p}\) & \(N_{f n}+N_{t n}\) & \(N\) \\
\hline \hline
\end{tabular}
- This gives the confusion matrix:
\[
\left(\begin{array}{cc}
N_{t p} & N_{f n}  \tag{257}\\
N_{f p} & N_{t n}
\end{array}\right) .
\]

The off-diagonal entries \(N_{f n}\) and \(N_{f p}\) provide the numbers of the two types of error.

\section*{Soft Computing}
K.-H.

\section*{Boolean Classification}

These data give rise to several performance measures:
- The error rate gives the fraction of the committed errors:
\[
\begin{equation*}
\frac{N_{f p}+N_{f n}}{N} . \tag{258}
\end{equation*}
\]
- The recall rate or sensitivity gives the fraction of data points with \(y=+1\) that are correctly guessed \(\hat{y}=+1\) :
\[
\begin{equation*}
\frac{N_{t p}}{N_{p}} \tag{259}
\end{equation*}
\]
- The false alarm rate gives the fraction of data points with \(y=-1\) which are incorrectly guessed \(\hat{y}=+1\) :
\[
\begin{equation*}
\frac{N_{f p}}{N_{n}} \tag{260}
\end{equation*}
\]

\section*{Boolean Classification}
- The specificity gives the fraction of the data points with \(y=-1\) which are correctly guessed \(\hat{y}=-1\) :
\[
\begin{equation*}
\frac{N_{t n}}{N_{n}} \tag{261}
\end{equation*}
\]
- The precision is the fraction of true predictions which are correct:
\[
\begin{equation*}
\frac{N_{t p}}{N_{t p}+N_{f p}} \tag{262}
\end{equation*}
\]

A decent classifier will have small error rate and false alarm rate, and high recall rate, specificity and precision.

Note:
■ Number of sample emails \(N=855\) of which 103 are spam \((y=+1)\) and 752 are not spam \((y=-1)\).

■ Classifier provides 88 true positives, 719 true negatives, 33 false positives, and 15 false negatives.

■ Error rate \((33+15) / 855=5.61 \%\), recall rate \(88 / 103=85.44 \%\), false alarm rate \(33 / 752=4.39 \%\), specificity \(719 / 752=95.61 \%\), precision \(88 / 121=72.73 \%\).
\(\square\) Given basis functions \(f_{1}, \ldots, f_{p}\) and parameters \(\theta_{1}, \ldots, \theta_{p}\).
■ The sum squared error is to be minimized,
\[
\begin{equation*}
\left(y^{(1)}-\tilde{f}\left(x^{(1)}\right)\right)^{2}+\ldots+\left(y^{(N)}-\tilde{f}\left(x^{(N)}\right)\right)^{2} \tag{263}
\end{equation*}
\]
where \(\tilde{f}\) is the least squares fit over the sample set,
\[
\begin{equation*}
\tilde{f}(x)=\theta_{1} f_{1}(x)+\ldots+\theta_{p} f_{p}(x) \tag{264}
\end{equation*}
\]
- The least squares classifier \(\hat{f}\) is then defined as
\[
\begin{equation*}
\hat{f}(x)=\operatorname{sgn}(\tilde{f}(x)) \tag{265}
\end{equation*}
\]
where the sign function is used with \(\operatorname{sgn}(z)=+1\) if \(z \geq 0\) and \(\operatorname{sgn}(z)=-1\) if \(z<0\).

\section*{Least Squares Classification}

■ The idea behind the least squares classifier is that the value \(\tilde{f}(x)\) is a real number that is ideally close to +1 if \(y^{(i)}=+1\) and close to -1 if \(y^{(i)}=-1\).
- As the outcome must be binary, it is natural to choose the sign function.
- The least squares classifier is often used with a regression model,
\[
\begin{equation*}
\tilde{f}(x)=x^{t} \beta+v \tag{266}
\end{equation*}
\]
where the classifier has the form
\[
\begin{equation*}
\hat{f}(x)=\operatorname{sgn}\left(x^{t} \beta+v\right) \tag{267}
\end{equation*}
\]

\section*{Contents}

Naïve Bayesian Classifier

Data Fitting
Clustering and Classification

\section*{ABC}

Computation
Support Vector Machines

\section*{Classification - Titanic}
- The library caret provides functions for training and plotting classification and regression models.
- Consider the Titanic data set:
> titanicDF <- read.csv('http://math.ucdenver.edu/RTutorial/titanic.txt',sep='\t')
\(>\) head(titanicDF)
Name PClass Age Sex Survived
1 Allen, Miss Elisabeth Walten 1st 29.00 female 1
2 Allison, Miss Helen Loraine 1st 2.00 female 0
3 Allison, Mr Hudson Joshua Creighton 1st 30.00 male 0
4 Allison, Mrs Hudson JC 1st 25.00 female 0
5 Allison, Master Hudson Trevor 1st 0.92 male 1
6 Anderson, Mr Harry
1st 47.00 male
1

\section*{Soft Computing}
K.-H.

Zimmermann

\section*{Contents}

Naïve Bayesian Classifier

Data Fitting
Clustering and Classification

\section*{ABC}

Computation
Support Vector Machines

\section*{Classification - Titanic (Cont'd)}

\section*{Structure of data:}
> print (str(titanicDF))
'data frame': 1313 obs. of 5 variables:
\$ Name : Factor w/ 1310 levels "Abbing, Mr Antony", ..
\$ PClass : Factor w/ 3 levels "1st","2nd","3rd": 11111 ...
\$ Age : num \(29230250.9247 \ldots\)
\$ Sex : Factor w/ 2 levels "female", "male": \(112122 \ldots\)
\$ Survived : int 100011 ...

\section*{Soft Computing}
K.-H.

Zimmermann

\section*{Contents}

Naïve Bayesian Classifier

Data Fitting

\section*{Classification - Titanic (Cont'd)}

The Name variable values are unique, the title (Mr, Mrs, Miss) is extracted:
Clustering and Classification

ABC
Computation
Support Vector Machines
```

> titanicDF$Title <- ifelse(grepl('Mr',titanicDF$Name),'Mr',
ifelse(grepl('Mrs',titanicDF$Name),'Mrs',
 ifelse(grepl('Miss',titanicDF$Name),'Miss','Nothing')))
> print(str(titanicDF))
'data frame': 1313 obs. of 5 variables:
\$ Name : Factor w/ 1310 levels "Abbing, Mr Antony",...
\$ PClass : Factor w/ 3 levels "1st","2nd","3rd": 1 1 1 1 1 ...
\$ Age : num 29 2 30 25 0.92 47 ...
\$ Sex : Factor w/ 2 levels "female","male": 1 1 2 1 2 2 ...
\$ Survived : int 1 0 0 0 1 1 ...
\$ Title : chr "Miss" "Miss" "Mr" "Mrs" ...

```

Contents
Naïve Bayesian Classifier

Data Fitting
Clustering and Classification

\section*{ABC}

Computation
Support Vector Machines

\section*{Classification - Titanic (Cont'd)}

The Age variable values have missing data (in the form of NA), they are imputed with the mean value of the available ages.
```

> titanicDF$Age[is.na(titanic$Age)] <- median(titanic\$Age, na.rm=T)

```

\section*{The outcome variable Survived is placed at the end:}
```

> titanicDF <- titanicDF[c('PClass', 'Age', 'Sex', 'Title', 'Survived')]
> print(str(titanicDF))
'data frame': }1313\mathrm{ obs. of 5 variables:
\$ PClass : Factor w/ 3 levels "1st","2nd","3rd": 1 1 1 1 1 ...
\$ Age : num 29 2 30 25 0.92 47 ...
\$ Sex : Factor w/ 2 levels "female","male": 1 1 2 1 2 2 ...
\$ Title : chr "Miss" "Miss" "Mr" "Mrs" ...
\$ Survived : int 1 0 0 0 1 1 ...

```
K.-H.

Zimmermann

\section*{Contents}

Naïve Bayesian Classifier

Data Fitting
Clustering and Classification

ABC
Computation
Support Vector Machines

\section*{Classification - Titanic (Cont'd)}

The factor variables need to be considered as most models accept only numerical data, they are dummified.
```

> titanicDF <- as.factor(titanicDF\$Title)
> titanicDummy <- dummyVars("~.", data=titanicDF, fullRank=F)
> titanicDF <- as.data.frame(predict(titanicDummy, titanicDF))
> print(names(titanicDF))
[1] "PClass.1st" "PClass.2nd" "PClass.3rd" "Age"
[5] "Sex.female" "Sex.male" "Title.Miss" "Title.Mr"
[9] "Title.Mrs" "Title.Nothing" "Title.Survived"
> print(str(titanicDF))
'data frame': }1313\mathrm{ obs. of 11 variables:
\$ PClass.1st : num 1 1 1 1 1 1 ...
\$ PClass.2st : num 0 0 0 0 0 0 ...
\$ PClass.3rd : num 0 0 0 0 0 0 ...
\$ Age : num 29 2 30 25 0.92 47 ...
\$ Sex.female : num 1 1 0 1 0 0 ...
\$ Sex.male : num 0 0 1 0 1 1 ...
\$ Title.Miss : num 1 1 0 0 0 0 ...
\$ Title.Mr : num 0 0 1 0 0 1 ...
\$ Title.Mrs : num 0 0 0 1 0 0 ...
\$ Title.Nothing: num 0 0 0 0 1 0 ...
\$ Survived : num 1 0 0 0 1 1 ...

```

\section*{Contents}

Naïve Bayesian Classifier

Data Fitting
Clustering and Classification

\section*{ABC}

Computation
Support Vector Machines

\section*{Classification - Titanic (Cont'd)}

Proportions of the outcome variable:
> prop.table(table(titanicDF\$Survived))
01
0.65730 .3427

Thus \(34.27 \%\) of the data holds survivors of the cinematic Titanic tradegy.
The outcome variable will be renamed for subsequent use:
```

> outcomeName <- 'Survived'
> predictorsNames <- names(titanicDF) [names(titanicDF) != outcomeName]
> predictorsNames <- names(titanicDF)[names(titanicDF) != outcomeName]

```
> names(getModeInfo())

Model gbm (Generalized Boosted Model) can be used for both classification and regression:
> getModelInfo()gbm\$type
[1] "Regression" "Classification"
gbm is required in the classification mode (alter outcome variable to factor)
> titanicDF\$survived2 <- ifelse(titanicDF\$Survived==1, 'yes', 'nope')
> titanicDF\$survived2 <- as.factor(titanicDF\$Survived2)
> outcomeName <- 'Survived2'

Random forests build an ensemble of deep independent trees, whereas gbm builds an ensemble of shallow successive trees with each tree learning and improving on the previous.

\section*{Soft Computing}
K.-H.

Zimmermann

Contents
Naïve Bayesian Classifier

Data Fitting
Clustering and Classification

ABC
Computation
Support Vector Machines

\section*{Classification - Titanic (Cont'd)}

For modeling purposes, the data set is divided into a training set and a testing set:
```

> set.seed(1234)
> splitIndex <- createDataPartition(titanicDF[,outcomeName], p=.75, list=FALSE, times=1)
> head(splitIndex)
Resample1
[1,] 1
[2,] 2
[3,] 3
[4,] 5
[5,] 6
[6,] 7
> trainDF <- titanicDF[splitIndex,]
> nrow(trainDF)
[1] 986
> testDF <- titanicDF[-splitIndex,]
> nrow(testDF)
[1] }32

```
```

Soft Computing

```
K.-H.

Zimmermann

\section*{Contents}

Naïve Bayesian Classifier

Data Fitting
Clustering and Classification

\section*{ABC}

Computation
Support Vector Machines

\section*{Classification - Titanic (Cont'd)}

For the classification of the survivors, the ROC (Receiver Operating Characteristics) metric (curve of FP rate vs. TP rate) is used instead of RMSE.
```

> objModel <- train(trainDF[,predictorsNames], trainDF[,outcomeName], method='gbm',
trControl=objControl, metric="ROC",
preProc=c("cnenter","scale"))
Iter TrainDeviance ValidDeviance StepSize Improve
$1.2373 \quad$ nan $0.1000 \quad 0.0232$
$2 \quad 1.1982$ nan $0.1000 \quad 0.0191$

3	1.1647	nan	0.1000	0.0151

```
```

Soft Computing
K.-H.
Zimmermann

```
Contents
Naïve Bayesian
Classifier
Data Fitting
Clustering and
Classification
ABC
Computation
Support Vector
Machines

\section*{Classification - Titanic (Cont'd)}

Contents
> summary (objModel)
```

 var rel.inf
 Title.Mr Title.Mr 24.8207771
PClass.3rd PClass.3rd 22.5379567
Age 16.5379567
Sex.female Sex.female 14.5848495
Sex.male Sex.male 10.8992552
PClass.1st PClass.1st 7.9006422
Title.Mrs Title.Mrs 0.9438202
Title.Nothing Title.Nothing 0.7441969
PClass.2nd PClass.2nd 0.5650417
Title.Miss Title.Mrs 0.4893323
> print(objModel)
Stochastic Gradient Boosting
986 samples
1 0 predictors
2 classes: 'nope', 'yes'
Pre-processing: centered(10), scaled(10)
Resampling: Cross-Validated (3 fold)
Summary of sample sizes: 657, 658, 657
Resampling results across the tuning parameters

```

Soft Computing
K.-H.

Zimmermann

Contents
Naïve Bayesian Classifier

Data Fitting
Clustering and Classification

ABC
Computation
Support Vector Machines

\section*{Classification - Titanic (Cont'd)}

The summary command shows which variables were most important in classification:


\section*{Contents}

Naïve Bayesian Classifier

Data Fitting
Clustering and Classification

ABC
Computation
Support Vector Machines

\section*{Classification - Titanic (Cont'd)}

The prediction function applied to the test set is called with raw as type of evaluation (with values yes and nope).
```

> predictions <- predict(object=objModel, testDF[.predictorsNames], type='raw')
> head(predictions)
[1] yes nope yes nope nope nope
Levels nope yes
> print(postresample(pred=predictions, obs=as.factor(testDF[,outcomeName])))
Accuracy Kappa
0.8103976 0.5396458

```

The accuracy score tells that the model is correct \(81.35 \%\) of the time.
```

Soft Computing

```
K.-H.

Zimmermann

Contents
Naïve Bayesian Classifier

\section*{Classification - Titanic (Cont'd)}

The prediction function is called with prob as type of evaluation which exhibits the survial probabilities of the passengers:
```

> predictions <- predict(object=objModel, testDF[,predictorsNames], type='prob')
> head(predictions)
nope yes
1 0.02926335 0.9707366
2 0.87672849 0.1232715
30.44050115 0.5594989
40.69500967 0.3049903
5 0.69500967 0.3049903
0.50727652 0.4927235

```

\section*{Soft Computing}
K.-H.

Zimmermann

\section*{Contents}

Naïve Bayesian Classifier

Data Fitting

\section*{Approximate Bayesian Computation}

■ Bayes' rule
- ABC rejection algorithm

■ Human demographic history (example)

\section*{Bayes' rule}

By Bayes' rule (7), the conditional probability \(p(\theta \mid D)\) of a parameter \(\theta\) given data \(D\) is related to the probability of \(D\) given \(\theta\) as follows:
\[
\begin{equation*}
p(\theta \mid D)=\frac{p(D \mid \theta) \cdot p(\theta)}{p(D)} \tag{268}
\end{equation*}
\]
where \(p(\theta \mid D)\) is the posterior, \(p(D \mid \theta)\) the likelihood, \(p(\theta)\) the prior and \(p(D)\) the evidence.

By eliminating evidence as a normalizing constant, relative posterior plausability is given by
\[
\begin{equation*}
p(\theta \mid D) \propto p(D \mid \theta) \cdot p(\theta) \tag{269}
\end{equation*}
\]

\section*{Contents}

Naïve Bayesian Classifier

Data Fitting
Clustering and Classification

\section*{ABC}

Computation
Support Vector Machines

\section*{ABC}

■ Likelihood function is central expressing the probability of observed data under a statistical model (see HMM).
- For complex models, an analytical formula for the likelihood might not be available.
- ABC bypasses the computation of the likelihood (David Rubin, 1984).
- Approximate estimation of likelihood/posterior, when likelihood cannot be explicitly determined.

Observational data

(1) Compurte summary statsistc p from observationad data
Clustering and Classification

ABC
Computation
Support Vector Machines

\section*{ABC - Rejection Algorithm}
- Sample a set of parameter points \(\hat{\theta}\) from the prior distribution.
- Simulate data set \(\hat{D}\) under statistical model \(M\) specified by \(\hat{\theta}\).
- If data \(\hat{D}\) are too different from observed data \(D\), the parameter value \(\hat{\theta}\) is discarted, i.e., \(\hat{D}\) is accepted with tolerance rate \(\epsilon>0\) if
\[
\begin{equation*}
\delta(D, \hat{D}) \leq \epsilon, \tag{270}
\end{equation*}
\]
where \(\delta\) is given by a metric (e.g., Euclidean distance).
Instead of the data, summary statistics (mean, variance) may be used in (270).

Soft Computing

\section*{ABC - Example}

\section*{Install and load packages:}
> install.packages("abc")
> install.packages("abc.data")
> library(abc)
> require(abc.data)
\(>\) help(abc)
\% online help

\section*{ABC - Example}

Human demographic history:
- Analyze 50 autosomal non-coding regions from Hausa (Africa), Chinese (Asia) and Italian (Europe) population.
- Data: average nucleotide diversity \((\bar{\pi})\), mean and variance of Tajima's D table.
Summary statistics of observed data (Voight et al., 2005):
> data(human)
> stat.voight
\begin{tabular}{lrrr} 
& pi & TajD.m & TajD.v \\
hausa & 0.00110 & -0.20 & 0.55 \\
italian & 0.00085 & 0.28 & 1.19 \\
chinese & 0.00079 & 0.18 & 1.08
\end{tabular}
```

Soft Computing
K.-H.
Zimmermann
Contents
Naive Bayesian
Classifier
Data Fitting
Clustering and
Classification
ABC
Computation
Support Vector
Machines

```

\section*{ABC - Example}
```

Consider three models of demographic history:

- constant population size,
■ exponential growth after a period of constant population size,
■ population bottleneck, where after the bottleneck the population recovers to its original size.
50,000 data under each of the three models were simulated using software ms and the three summary statistics were calculated in each model.
Exact R code available (/inst/doc/runms.R).

```

Contents
Naive Bayesian Classifier

Data Fitting
Clustering and Classification

\section*{ABC}

Computation
Support Vector Machines

\section*{ABC - Example}

Summary statistics under the three demographic models: population bottleneck (bott), constant population size (const), exponential growth (exp):
\(>\operatorname{par}(\operatorname{mfcol}=c(1,3), \operatorname{mar}=c(5,3,4, .5))\)
> boxplot(stat.3pops.sim[,"pi"] ~models, main="Mean nucleotide diversity")
> boxplot(stat.3pops.sim[,"TajD.m"]~models, main="Mean Tajima'D")
> boxplot(stat.3pops.sim[,"TajD.v"]~models, main="Var in Tajima'D")

Soft Computing
K.-H.

Zimmermann

Contents
Naïve Bayesian Classifier

Data Fitting
Clustering and Classification

ABC
Computation
Support Vector Machines

\section*{ABC - Example}

Population bottleneck (bott), constant population size (const), exponential growth (exp):

Mean nucleotide diversity


Mean Tajima's D


Var in Tajima's D


\section*{ABC - Example}

Posterior probabilities of each demographic model using the rejection method:
> modelsel.ha <- postpr(stat.voight["hausa",], models, stat.3pops.sim, tol=.05, method("rejection")
> modelsel.it <- postpr(stat.voight["italian",], models, stat.3pops.sim, tol=.05, method("rejection")
> modelsel.ch <- postpr(stat.voight["chinese",], models, stat.3pops.sim, tol=.05, method("rejection")

Naïve Bayesian
Classifier
Data Fitting
Clustering and Classification

\section*{ABC}

Computation
Support Vector Machines

\section*{ABC - Example}

Hausa data support best the model of exponential growth:
> summary(modelsel.ha)

Proportion of accepted simulations (rejection) bott const exp
0.01990 .31320 .6669

Naïve Bayesian
Classifier
Data Fitting
Clustering and Classification

\section*{ABC}

Computation
Support Vector Machines

\section*{ABC - Example}

Italian data support best the model of population bottleneck:
> summary(modelsel.it)
Proportion of accepted simulations (rejection) bott const exp
0.84870 .15020 .0004

\section*{ABC - Example}

Chinese data support best the model of population bottleneck:
> summary (modelsel.ch)

Proportion of accepted simulations (rejection) bott const exp
0.68370 .31590 .0004

Contents
Naïve Bayesian Classifier

Data Fitting
Clustering and Classification

\section*{ABC}

Computation
Support Vector Machines

\section*{Support Vector Machine (SVM)}

■ SVM is a supervised learning model which analyzes data for classification.
- Introduced by Vladimir N. Vapnik and Alexey Y. Chervonenskis in 1963.

■ Extended by Vapnik et al. to allow nonlinear classification (kernel trick) in 1992.

■ Applications in categorization of text, classification of images, and recognition of hand-written characters.

\section*{Linear SVM}

Consider a linear classifier for a binary classification problem with class labels \(y \in\{ \pm 1\}\) and features \(x \in \mathbb{R}^{n}\).
- Suppose there is a collection of training samples
\[
D=\left(\left(x^{(1)}, y_{1}\right), \ldots,\left(x^{(m)}, y_{m}\right)\right) .
\]
- Find the maximum-margin hyperplane that divides the collection of feature vectors \(x^{(i)}\) with \(y_{i}=1\) from the collection of points with \(y_{i}=-1\) such that the distance between the hyperplane and the nearest points from either group is maximized.
- Each hyperplane can be written as the set of points \(x\) fulfilling
\[
\begin{equation*}
w^{T} x+b=0, \tag{271}
\end{equation*}
\]
where \(w\) is the normal vector to the hyperplane.

\section*{Linear SVM}

Suppose the sample data are linearly separable.
- It is possible to find two parallel hyperplanes which separate the two classes of samples in such a way that the distance between them is as large as possible.
- The region bounded by these two hyperplanes is called the margin, and the maximum-margin hyperplane is the hyperplane that lies halfway between them.
- These hyperplanes can be described by the equations
\[
\begin{equation*}
w^{T} x+b \geq 1 \quad \text { and } \quad w^{T} x+b \leq-1 \tag{272}
\end{equation*}
\]
depending on whether the sample \(x\) lies in the class \(y=1\) or \(y=-1\), resp.

\section*{Linear SVM}
- It follows that each sample \(\left(x^{(i)}, y_{i}\right)\) satifies
\[
\begin{equation*}
y_{i} \cdot\left(w^{T} x^{(i)}+b\right) \geq 1, \quad 1 \leq i \leq m \tag{273}
\end{equation*}
\]
- Geometrically, the distance between these two hyperplanes is \(2 /\|w\|\).
- Thus maximizing this distance means minimizing \(\|w\|\) which leads to the convex optimization problem
\[
\begin{array}{ll}
\min _{w, b} & \|w\|^{2} \\
\text { s.t. } & y_{i} \cdot\left(w^{T} x^{(i)}+b\right) \geq 1, \quad 1 \leq i \leq m \tag{274}
\end{array}
\]
which can be tackled by standard convex solvers (objective function is convex: \(\|w\|^{2}=w_{1}^{2}+\ldots+w_{n}^{2}\), constraints are linear).

\section*{Linear SMV - Hard-Margin Classifier}
- The parameters \(w, b\) which solve problem (274) provide the socalled hard-margin linear classifier
\[
\begin{equation*}
h(x)=\operatorname{sgn}\left(w^{T} x+b\right), \tag{275}
\end{equation*}
\]
where sgn denotes the sign function.
- The maximization-margin hyperplane is completely determined by those feature vectors that lie closest to it; these feature vectors are called support vectors.

Soft Computing
K.-H.

Zimmermann

\section*{Linear SVM - Example}


\section*{Linear SVM - Soft-Margin Classifier}

Extend the linear classifier when sample data are not linearly separable.
- Define the hinge loss function
\[
\begin{equation*}
\max \left\{0,1-y_{i} \cdot\left(w^{T} x^{(i)}-b\right)\right\} . \tag{276}
\end{equation*}
\]
- This function is 0 if \(y_{i} \cdot\left(w^{T} x^{(i)}+b\right) \geq 1\), i.e., the sample is correctly classified. Otherwise, the function's value is proportional to the distance from the max-margin hyperplane.
- Problem is to solve the minimization problem
\[
\begin{equation*}
\left[\frac{1}{m} \sum_{i=1}^{m} \max \left\{0,1-y_{i} \cdot\left(w^{T} x^{(i)}-b\right)\right\}\right]+\lambda\|w\|^{2} \tag{277}
\end{equation*}
\]
with parameter \(\lambda\).

\title{
Soft Computing
}

Linear SVM - Example (R)
Generate \(20 \times 2\) matrix with normally distributed entries in two classes.
```

> set.seed(1234)
> x <- matrix(rnorm(40), 20, 2)
> y <- rep(c(-1,1), c(10,10))
> x[y==1,] = x[y==1] + 1
> plot(x, col=y+3, pch=19)

```


\section*{Linear SVM - Example (Cont'd)}
\# load library containing the svm function
> library (e1071)
\# data provide a dataframe with \(\$ y \$\) as factor variable
> da <- data.frame(x, y=as.factor(y))
\# function call svm takes linear kernel with
\# tune-in parameter cost 10 and scale false
> svm-fit <- svm(y ~ ., data=da, kernel="linear", cost=10, scale=FALSE)
> print(svm-fit)
Parameters
SVM-Type: C-classification
SVM-Kernel: linear
cost: 10
gamma: 0.5

Number of support vectors: 6
```

Soft Computing
K.-H.
Zimmermann
Contents
Naïve Bayesian
Classifier
Data Fitting
Clustering and
Classification
ABC
Computation
Support Vector
Machines
Linear SVM - Example (Cont'd)
> plot(svm-fit, da)

```

\section*{Machines}


\section*{Linear SVM - Example (Cont'd)}

Find the coefficients of the separating hyperplane
\[
\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}=0
\]
> beta <- drop(t(svmfit\$coefs) \%*\% C [svmfit\$index,])
\(>\) beta
[1] -2.055647 -2.806278
> beta_0 <- svmfit\$rho
> beta_0
[1] -2.403917
Then
\[
-2.403917-2.055647 \cdot x_{1}-2.806278 \cdot x_{2}=0 .
\]

\section*{Primal Problem}

Minimization problem (277) can be rewritten as a constrained optimization problem with differentiable objective function and linear constraints:
\[
\begin{array}{ll}
\min _{w, b, \lambda, \xi} & \frac{1}{m} \sum_{i=1}^{m} \xi_{i}+\lambda\|w\|^{2} \\
\text { s.t. } & y_{i}\left(w^{T} x^{(i)}+b\right) \geq 1-\xi_{i}, \quad 1 \leq i \leq m, \\
\text { s.t. } & \xi_{i} \geq 0, \quad 1 \leq i \leq m . \tag{278}
\end{array}
\]

Naïve Bayesian
Classifier
Data Fitting
Clustering and Classification

ABC
Computation
Support Vector Machines

\section*{Dual Problem}

Lagrangian dual problem
\[
\begin{array}{ll}
\max _{c, \lambda} & \sum_{i=1}^{m} c_{i}-\frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} y_{i} c_{i}\left(x^{(i)^{t}} x^{(j)}\right) y_{j} c_{j} \\
\text { s.t. } & \sum_{i=1}^{m} c_{i} y_{i}=0  \tag{279}\\
& 0 \leq c_{i} \leq \frac{1}{2 m \lambda}, \quad 1 \leq i \leq m
\end{array}
\]

Quadratic programming problem with quadratic objective function and linear constraints.

\section*{Linear Classification}

Recovering data \(w\) and \(b\) :
- Vector \(w\) determining the separating hyperplane can be recovered by
\[
\begin{equation*}
w=\sum_{i=1}^{m} c_{i} y_{i} x^{(i)} \tag{280}
\end{equation*}
\]
- Offset \(b\) of the hyperplane can be recovered by finding a feature \(x^{(i)}\) on the hyperplane and solving \(y_{i}\left(w^{T} x^{(i)}-b\right)=1\), which when multiplied with \(y_{i}^{-1}=y_{i}\) amounts to
\[
\begin{equation*}
b=w^{T} x^{(i)}-y_{i} . \tag{281}
\end{equation*}
\]

Soft Computing
K.-H.

Zimmermann

Contents
Naïve Bayesian Classifier

\section*{Linear Classification}
- New sample \(x\) is classified via \((280,281)\) by the function
\[
\begin{align*}
h(x) & =\operatorname{sgn}\left(w^{T} x-b\right)  \tag{282}\\
& =\operatorname{sgn}\left(\left(\sum_{j=1}^{m} c_{j} y_{j} x^{t} x^{(j)}\right)-b\right)
\end{align*}
\]

\section*{Kernel Trick}

■ Linear SVM can be generalized for nonlinear classification based on kernel trick.

■ Samples \(x^{(i)}\) are transformed in some way to obtain data points \(\phi\left(x^{(i)}\right)\) in transformed feature space.

■ Corresponding kernel function is defined as
\[
\begin{equation*}
k\left(x^{(i)}, x^{(j)}\right)=\phi\left(x^{(i)}\right)^{t} \phi\left(x^{(j)}\right) \tag{283}
\end{equation*}
\]
- Transformation may be nonlinear and the transformed feature space may have higher dimension.
- Classifier will be a hyperplane in the transformed feature space, but it may be nonlinear in the original feature space.

Contents
Naïve Bayesian Classifier

Data Fitting
Clustering and Classification

\section*{ABC}

Computation
Support Vector Machines

\section*{Common Kernel Functions}
- Homogeneous polynomial functions
\[
\begin{equation*}
k(x, y)=\left(x^{t} y\right)^{d}, \quad d \geq 1, \tag{284}
\end{equation*}
\]
- Inhomogeneous polynomial functions
\[
\begin{equation*}
k(x, y)=\left(x^{t} y+1\right)^{d}, \quad d \geq 1, \tag{285}
\end{equation*}
\]
- Gaussian radial basis functions
\[
\begin{equation*}
k(x, y)=\exp \left(-\gamma\|x-y\|^{2}\right), \quad \gamma>0, \tag{286}
\end{equation*}
\]

\section*{Nonlinear SVM}

In the transformed feature space, optimization problem (278) becomes
\[
\begin{array}{ll}
\max _{c, \lambda} & \sum_{i=1}^{m} c_{i}-\frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} y_{i} c_{i}\left(\phi\left(x^{(i)}\right)^{t} \phi\left(x^{(j)}\right) y_{j} c_{j}\right. \\
\mathrm{s.t.} & \sum_{i=1}^{m} c_{i} y_{i}=0 \\
& 0 \leq c_{i} \leq \frac{1}{2 m \lambda}, \quad 1 \leq i \leq m \tag{287}
\end{array}
\]
where the objective function amounts to
\[
\begin{equation*}
\sum_{i=1}^{m} c_{i}-\frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} y_{i} c_{i} k\left(x^{(i)}, x^{(j)}\right) y_{j} c_{j} \tag{288}
\end{equation*}
\]

This problem can be tackled by quadratic programming.

\section*{Nonlinear Classification}

Recovering data \(w\) and \(b\) :
- Vector \(w\) determining the separating hyperplane can be recovered by
\[
\begin{equation*}
w=\sum_{i=1}^{m} c_{i} y_{i} \phi\left(x^{(i)}\right) \tag{289}
\end{equation*}
\]
- Offset \(b\) of the hyperplane can be recoverd by finding a transformed feature \(\phi\left(x^{(i)}\right)\) on the hyperplane and solving \(y_{i}\left(w^{T} \phi\left(x^{(i)}\right)-b\right)=1\), which when multiplied with \(y_{i}^{-1}=y_{i}\) amounts to
\[
\begin{equation*}
b=w^{T} \phi\left(x^{(i)}\right)-y_{i} . \tag{290}
\end{equation*}
\]

\section*{Contents}

Naïve Bayesian

\section*{Classifier}

Data Fitting
Clustering and Classification

\section*{ABC}

Computation
Support Vector Machines

\section*{Nonlinear Classification}

New sample \(x\) is classified by the function
\[
\begin{align*}
h(x) & =\operatorname{sgn}\left(w^{T} x-b\right)  \tag{291}\\
& =\operatorname{sgn}\left(\left(\sum_{j=1}^{m} c_{j} y_{j} k\left(x, x^{(j)}\right)\right)-b\right)
\end{align*}
\]

Contents
Naïve Bayesian Classifier

Data Fitting
Clustering and Classification

ABC

\section*{Computation}

Support Vector Machines

\section*{Nonlinear Classification - Example (R)}

\section*{Data are provided by the file ESL.mixture.rds:}
```

> load("C:/Users/khz/Downloads/ESL.mixture.rds")
> names(ESL.mixture)
[1] "x" "y" "xnew" "prob" "marginal" "px1" "px2" "means"
> x <- ESL.mixture$x
> x
 [,1] [,2]
 [1,] 2.526092968 0.321050446
[200,] -0.196246334 0.551403559
> y <- ESL.mixture$y
y
[1] 0 0 0 0 0 0 0 0 0 0
[91] 0 0 0 0 0 0 0 0 0 0
[101] 1 1 1 1 1 1 1 1 1 1 1
[191] 1 1 1 1 1 1 1 1 1 1 1 1 1 1

```

Soft Computing
K.-H.

Contents
Naïve Bayesian Classifier

Data Fitting
Clustering and Classification

\section*{ABC}

Computation
Support Vector Machines

\section*{Nonlinear Classification - Example (Cont'd)}

Two data sets for classification:
> plot(x, col=y+1)


Data overlap to a large extent but a contour between the data sets is partly visible.

Nonlinear Classification - Example (Cont'd)
Data frame with factor \(y\) is generated and data are fitted to SVM with radial kernel:
```

> da <- data.frame (y = factor (y), x)
> fit <- svm(factor (y) ~ ., data=da, scale=FALSE,
kernel="radial", cost=5)

```

Soft Computing
K.-H.

Contents
Naïve Bayesian Classifier

Data Fitting
Clustering and Classification

\section*{ABC}

Computation
Support Vector Machines

\section*{Nonlinear Classification - Example (Cont'd)}

SVM contour plot:
> xgrid <- expand.grid(X1=ESL-mixture\$px1, X2=ESL-mixture\$px2)
> ygrid <- predict(fit, xgrid)
> plot(xgrid, col=as.numeric(ygrid), pch=20, cex=.2)


Nonlinear Classification - Example (Cont'd)
SVM classification plot:
> plot(x, col=y+1, pch=19)
Classification
ABC
Computation


Contents
Learning
Probabilities
*Statistical
Part V

\section*{Inference}

Learning
Structure
Using R

\section*{BN: Inference and Learning}

\section*{Contents}
- Learning the conditional probabilities

■ Inference in belief networks
■ Score-based structure learning
■ Constraint-based structure learning
■ Belief networks in R

\section*{Soft Computing \\ Knowledge}
K.-H.
- Maximum likelihood estimation in fully observed models
- *EM algorithm for models with hidden data
- *Inference in belief networks
- Network scores for structure learning
- Learning structure using heuristics

■ Learning structure using independence tests

\section*{Skills}
- *Viterbi-like inference algorithm
- Independence tests
- Hill climbing (Heuristic)
- SGS algorithm
- Learning in belief networks using R

\section*{Soft Computing}
K.-H.

Zimmermann

Contents
Learning
Probabilities

\section*{Learning Probabilities}
- Learning in fully observed models
- *EM algorithm for models with hidden data

Soft Computing
K.-H.

Zimmermann

Contents
Learning
Probabilities
*Statistical
Inference
Learning
Structure
Using R

Learning Probabilities - Example
Belief network with DAG


■ Random variables \(X_{1}, X_{2}, X_{3}\), and \(X_{4}\) defined over state set \(\{0,1\}\).
- Factorization of joint probability distribution
\[
p_{X_{1}, X_{2}, X_{3}, X_{4}}=p_{X_{1}} \cdot p_{X_{2} \mid X_{1}} \cdot p_{X_{3} \mid X_{1}} \cdot p_{X_{4} \mid X_{2}, X_{3}} .
\]

Soft Computing
K.-H.

Zimmermann

Contents
Learning
Probabilities
*Statistical

\section*{Inference}

Learning Structure

Using R

\section*{Learning Probabilities - Example (Cont'd)}

Given ten samples
\begin{tabular}{c|cccccccccc|} 
& \(d^{(1)}\) & \(d^{(2)}\) & \(d^{(3)}\) & \(d^{(4)}\) & \(d^{(5)}\) & \(d^{(6)}\) & \(d^{(7)}\) & \(d^{(8)}\) & \(d^{(9)}\) & \(d^{(10)}\) \\
\hline\(X_{1}\) & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 \\
\(X_{2}\) & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 \\
\(X_{3}\) & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
\(X_{4}\) & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1
\end{tabular}

Write \(d^{(i)}=\left(x_{1}^{(i)}, x_{2}^{(i)}, x_{3}^{(i)}, x_{4}^{(i)}\right), 1 \leq i \leq 10\).
Likelihood function
\[
\begin{aligned}
L= & \prod_{i=1}^{10} p_{X_{1}, X_{2}, X_{3}, X_{4}}\left(d^{(i)}\right) \\
= & \prod_{i=1}^{10}\left(p_{X_{1}}\left(x_{1}^{(i)}\right) \cdot p_{X_{2} \mid X_{1}}\left(x_{2}^{(i)} \mid x_{1}^{(i)}\right)\right. \\
& \left.\cdot p_{X_{3} \mid X_{1}}\left(x_{3}^{(i)} \mid x_{1}^{(i)}\right) \cdot p_{X_{4} \mid X_{2}, X_{3}}\left(x_{4}^{(i)} \mid x_{2}^{(i)}, x_{3}^{(i)}\right)\right)
\end{aligned}
\]

\section*{Learning Probabilities - Example (Cont'd)}

\section*{Write}

Learning
Probabilities
*Statistical

\section*{Inference}

Learning Structure
\[
\begin{array}{ll}
\theta_{1}=p_{X_{1}}(1), & \theta_{4,0,0}=p_{X_{4} \mid X_{2}, X_{3}}(1 \mid 0,0), \\
\theta_{2,0}=p_{X_{2} \mid X_{1}}(1 \mid 0), & \theta_{4,0,1}=p_{X_{4} \mid X_{2}, X_{3}}(1 \mid 0,1), \\
\theta_{2,1}=p_{X_{2} \mid X_{1}}(1 \mid 1), & \theta_{4,1,0}=p_{X_{4} \mid X_{2}, X_{3}}(1 \mid 1,0), \\
\theta_{3,0}=p_{X_{3} \mid X_{1}}(1 \mid 0), & \theta_{4,1,1}=p_{X_{4} \mid X_{2}, X_{3}}(1 \mid 1,1), \\
\theta_{3,1}=p_{X_{3} \mid X_{1}}(1 \mid 1) . &
\end{array}
\]

Likelihood function \(L=L(\theta)\) :
\[
\begin{aligned}
L= & \theta_{1}^{5}\left(1-\theta_{1}\right)^{5} \\
& \theta_{2,0}^{3}\left(1-\theta_{2,0}\right)^{2} \theta_{2,1}^{4}\left(1-\theta_{2,1}\right) \\
& \theta_{3,0}^{2}\left(1-\theta_{3,0}\right)^{3} \theta_{3,1}\left(1-\theta_{3,1}\right)^{4} \\
& \left(1-\theta_{4,0,0}\right) \theta_{4,0,1}^{2} \theta_{4,1,0}^{3}\left(1-\theta_{4,1,0}\right)^{3} \theta_{4,1,1} .
\end{aligned}
\]

\section*{Learning Probabilities - Example (Cont'd)}

Maximize likelihood function \(L=L(\theta)\) w.r.t. \(\theta\).
Maximization splits into maximation of nine separate likelihood functions:
\[
\begin{array}{ll}
L\left(\theta_{1}\right)=\theta_{1}^{5}\left(1-\theta_{1}\right)^{5}, & L\left(\theta_{4,0,0}\right)=1-\theta_{4,0,0} \\
L\left(\theta_{2,0}\right)=\theta_{2,0}^{3}\left(1-\theta_{2,0}\right)^{2}, & L\left(\theta_{4,0,1}\right)=\theta_{4,0,1}^{2} \\
L\left(\theta_{2,1}\right)=\theta_{2,1}^{4}\left(1-\theta_{2,1}\right), & L\left(\theta_{4,1,0}\right)=\theta_{4,1,0}^{3}\left(1-\theta_{4,1,0}\right)^{3}, \\
L\left(\theta_{3,0}\right)=\theta_{3,0}^{2}\left(1-\theta_{3,0}\right)^{3}, & L\left(\theta_{4,1,1}\right)=\theta_{4,1,1} \\
L\left(\theta_{3,1}\right)=\theta_{3,1}\left(1-\theta_{3,1}\right)^{4} . &
\end{array}
\]

Soft Computing

\section*{Contents}

Learning
Probabilities
* Statistical

Inference
Learning
Structure
Using R

Learning Probabilities - Example (Cont'd)
Maximization gives (see below)
\[
\begin{array}{ll}
\hat{\theta}_{1}=\frac{1}{2}, & \hat{\theta}_{4,0,0}=0, \\
\hat{\theta}_{2,0}=\frac{3}{5}, & \hat{\theta}_{4,0,1}=1, \\
\hat{\theta}_{2,1}=\frac{4}{5}, & \hat{\theta}_{4,1,0}=\frac{1}{2}, \\
\hat{\theta}_{3,0}=\frac{2}{5}, & \hat{\theta}_{4,1,1}=1, \\
\hat{\theta}_{3,1}=\frac{1}{5} . &
\end{array}
\]

\section*{Contents}

Learning Probabilities

\section*{Learning Probabilities}
- Given DAG \(G=(V, E)\) with node set \(V=\{1, \ldots, n\}\) corresponding 1-to-1 with random variables \(X_{1}, \ldots, X_{n}\).
- Random variable \(X_{i}\) has state set \(\mathcal{X}_{i}=\left\{x_{1}^{(i)}, \ldots, x_{m_{i}}^{(i)}\right\}\), \(1 \leq i \leq n\).
- Random vector \(X=\left(X_{1}, \ldots, X_{n}\right)\) has state set \(\mathcal{X}=\mathcal{X}_{1} \times \cdots \times \mathcal{X}_{n}\).
- Set of instantiations of parent set \(\Pi_{i}\) of \(X_{i}\) is \(\left\{\pi_{1}^{(i)}, \ldots, \pi_{l_{i}}^{(i)}\right\}\), \(1 \leq i \leq n\).

Soft Computing

\section*{Contents}

Learning Probabilities

\section*{Learning Probabilities}

■ Parameter set
\[
\begin{equation*}
\Theta=\left\{\theta=\left(\theta_{i j k}\right) \mid \theta_{i j k} \geq 0, \sum_{j=1}^{m_{i}} \theta_{i j k}=1\right\} \tag{292}
\end{equation*}
\]
with parameters
\[
\begin{array}{r}
\theta_{i j k}=p_{X_{i} \mid \Pi_{i}}\left(x_{j}^{(i)} \mid \pi_{k}^{(i)}\right) \\
1 \leq i \leq n, 1 \leq j \leq m_{i}, 1 \leq k \leq l_{i}
\end{array}
\]

\section*{Learning Probabilities}

Probability \(\theta_{i j k}=p_{X_{i} \mid \Pi_{i}}\left(x_{j}^{(i)} \mid \pi_{k}^{(i)}\right)\),
- Parent nodes of \(i\) have overall instantiation \(\pi_{k}^{(i)}\)

- Node \(i, 1 \leq i \leq n\).
- Node \(i\) is in state \(x_{j}^{(i)}, 1 \leq j \leq m_{i}\).
- Parent nodes are in state \(\pi_{k}^{(i)}, 1 \leq k \leq l_{i}\).

Learning Probabilities - Example (Cont'd)
■ Node 4 has two states
\[
x_{1}^{(4)}=0, x_{2}^{(4)}=1
\]
- Node 4 has four instantiations of parents
\[
\pi_{1}^{(4)}=(0,0), \pi_{2}^{(4)}=(1,0), \pi_{3}^{(4)}=(0,1), \pi_{4}^{(4)}=(1,1)
\]
E.g.,


\section*{Learning Probabilities}
- Given collection of \(N\) independent samples (database):
\[
\begin{equation*}
D=\left(d_{1}, \ldots, d_{N}\right) . \tag{294}
\end{equation*}
\]
- Likelihood of database:
\[
\begin{equation*}
L(\theta)=\prod_{r=1}^{N} p_{X \mid \Theta}\left(d_{r} \mid \theta, G\right)=\prod_{i=1}^{n} \prod_{j=1}^{m_{i}} \prod_{k=1}^{l_{i}} \theta_{i j k}^{n_{i j k}} \tag{295}
\end{equation*}
\]
where \(n_{i j k}\) is the number of times the pair \(\left(x_{j}^{(i)}, \pi_{k}^{(i)}\right)\) appears in the sample set.

\section*{Contents}

Learning
Probabilities
*Statistical
Inference
Learning
Structure
Using \(R\)

\section*{Learning Probabilities}
- Corresponding log-likelihood function:
\[
\begin{equation*}
\ell(\theta)=\log L(\theta)=\sum_{i=1}^{n} \sum_{j=1}^{m_{i}} \sum_{k=1}^{l_{i}} n_{i j k} \log \left(\theta_{i j k}\right) \tag{296}
\end{equation*}
\]
- Sufficient statistic of the model: \(\left(n_{i j k}\right)\).

\section*{Learning Probabilities}

Multiplicity \(n_{i j k}\) :
- Parent nodes of \(i\) with overall instantiation \(\pi_{k}^{(i)}\) :

- Node \(i\) in state \(x_{j}^{(i)}\).
- \(n_{i j k}\) is the number of times the pair \(\left(x_{j}^{(i)}, \pi_{k}^{(i)}\right)\) is found in the sample set.

\section*{Learning Probabilities - Example (Cont'd)}

■ Node 4 has two states
\[
x_{1}^{(4)}=0, x_{2}^{(4)}=1
\]

■ Node 4 has four instantiations of parents
\[
\pi_{1}^{(4)}=(0,0), \pi_{2}^{(4)}=(1,0), \pi_{3}^{(4)}=(0,1), \pi_{4}^{(4)}=(1,1)
\]

■ Multiplicities of samples:
\[
\begin{aligned}
& n_{4,0,(0,0)}=1, n_{4,1,(0,0)}=0, n_{4,0,(1,0)}=3, n_{4,1,(1,0)}=3 \\
& n_{4,0,(0,1)}=0, n_{4,1,(0,1)}=2, n_{4,0,(1,1)}=0, n_{4,1,(1,1)}=1
\end{aligned}
\]
i.e., \(n_{4,1,(0,1)}=2\) corresponds to the samples \(d^{(3)}\) and \(d^{(6)}\) :
\(X_{2}=0, X_{3}=1\), and \(X_{4}=1\).

\section*{Soft Computing}

Contents
Learning Probabilities
*Statistical

\section*{Inference}

Learning Structure

Using \(R\)

\section*{Learning Probabilities - Example (Cont'd)}

\section*{Write}
\[
\begin{array}{ll}
\theta_{1,1,(\epsilon)}=p_{X_{1}}(1), & \theta_{4,1,(0,0)}=p_{X_{4} \mid X_{2}, X_{3}}(1 \mid 0,0), \\
\theta_{2,1,(0)}=p_{X_{2} \mid X_{1}}(1 \mid 0), & \theta_{4,1,(0,1)}=p_{X_{4} \mid X_{2}, X_{3}}(1 \mid 0,1), \\
\theta_{2,1,(1)}=p_{X_{2} \mid X_{1}}(1 \mid 1), & \theta_{4,1,(1,0)}=p_{X_{4} \mid X_{2}, X_{3}}(1 \mid 1,0), \\
\theta_{3,1,(0)}=p_{X_{3} \mid X_{1}}(1 \mid 0), & \theta_{4,1,(1,1)}=p_{X_{4} \mid X_{2}, X_{3}}(1 \mid 1,1), \\
\theta_{3,1,(1)}=p_{X_{3} \mid X_{1}}(1 \mid 1) . &
\end{array}
\]

Then for sample \(d^{(1)}=(1,1,0,0)\),

\[
p\left(d^{(1)}\right)=\theta_{1,1,(\epsilon)} \theta_{2,1,(1)}\left(1-\theta_{3,1,(1)}\right)\left(1-\theta_{4,1,(1,0)}\right) .
\]

\section*{Soft Computing}

\section*{Learning Probabilities}

The maximum likelihood estimate of the likelihood function \(L(\theta)\) is
\[
\begin{equation*}
\hat{\theta}_{i j k}=\frac{n_{i j k}}{\sum_{j=1}^{m_{i}} n_{i j k}}, \tag{297}
\end{equation*}
\]
where \(1 \leq i \leq n, 1 \leq j<m_{i}, 1 \leq k \leq l_{i}\).

\section*{Proof.}

For fixed pair ( \(i, k\) ) with \(1 \leq i \leq n, 1 \leq k \leq l_{i}\), by (292),
\[
\begin{equation*}
\sum_{j=1}^{m_{i}} \theta_{i j k}=1 \tag{298}
\end{equation*}
\]

The parameters \(\theta_{i j k}\) with \(1 \leq j \leq m_{i}\) appear in the log-likelihood function \(\ell(\theta)\) as the partial sum
\[
\begin{equation*}
\ell_{i, k}=\sum_{j=1}^{m_{i}} n_{i j k} \log \left(\theta_{i j k}\right) \tag{299}
\end{equation*}
\]

\section*{Proof (Cont'd)}

Using
\[
\theta_{i m_{i} k}=1-\sum_{j=1}^{m_{i}-1} \theta_{i j k},
\]
we obtain
\[
\ell_{i, k}=\sum_{j=1}^{m_{i}-1} n_{i j k} \log \left(\theta_{i j k}\right)+n_{i m_{i} k} \log \left(1-\sum_{j=1}^{m_{i}-1} \theta_{i j k}\right),
\]

The partial deriviate of \(\ell_{i, k}\) w.r.t. \(\theta_{i j k}\) becomes
\[
\frac{\partial \ell_{i, k}}{\partial \theta_{i j k}}=\frac{n_{i j k}}{\theta_{i j k}}-\frac{n_{i m_{i} k}}{1-\sum_{j=1}^{m_{i}-1} \theta_{i j k}}, \quad 1 \leq j<m_{i}-1 .
\]

Equating this expression to 0 gives \(\hat{\theta}_{i j k}\) as claimed in (297). Thus the vector \(\hat{\theta}=\left(\hat{\theta}_{i j k}\right)\) is a critical point of the likelihood function.

\section*{Proof (Cont'd)}

The critical point \(\hat{\theta}\) is a maximum of the likelihood function (297).

\section*{Proof.}

In view of the log-likelihood function (297), we obtain
\[
\begin{aligned}
\ell(\theta) & =\sum_{i=1}^{n} \sum_{j=1}^{m_{i}} \sum_{k=1}^{l_{i}} n_{i j k} \log \left(\theta_{i j k}\right) \\
& =\sum_{i=1}^{n} \sum_{k=1}^{l_{i}}\left(n_{i k} \sum_{j=1}^{m_{i}} \hat{\theta}_{i j k} \log \left(\theta_{i j k}\right)\right) \\
& =\sum_{i=1}^{n} \sum_{k=1}^{l_{i}}\left(n_{i k} \sum_{j=1}^{m_{i}} \hat{\theta}_{i j k} \log \left(\hat{\theta}_{i j k}\right)-n_{i k} \sum_{j=1}^{m_{i}} \hat{\theta}_{i j k} \log \left(\frac{\hat{\theta}_{i j k}}{\theta_{i j k}}\right)\right) \\
& =\sum_{i=1}^{n} \sum_{k=1}^{l_{i}}\left(-n_{i k}\left(H\left(\hat{\theta}_{i k}\right)+D\left(\hat{\theta}_{i k} \| \theta_{i k}\right)\right)\right) .
\end{aligned}
\]

Soft Computing
K.-H.

Zimmermann

Contents
Learning Probabilities
*Statistical

\section*{Inference}

Learning Structure

Using R

\section*{Proof (Cont'd)}
\[
\ell(\theta)=\sum_{i=1}^{n} \sum_{k=1}^{l_{i}}\left(-n_{i k}\left(H\left(\hat{\theta}_{i k}\right)+D\left(\hat{\theta}_{i k} \| \theta_{i k}\right)\right)\right)
\]
where \(n_{i k}=\sum_{j=1}^{m_{i}} n_{i j k}, \theta_{i k}=\left(\theta_{i 1 k}, \ldots, \theta_{i m_{i} k}\right)\), and \(\hat{\theta}_{i k}=\left(\hat{\theta}_{i 1 k}, \ldots, \hat{\theta}_{i m_{i} k}\right)\). Then
\[
\begin{aligned}
\ell(\theta) & =\sum_{i=1}^{n} \sum_{k=1}^{l_{i}}\left(-n_{i k}\left(H\left(\hat{\theta}_{i k}\right)+D\left(\hat{\theta}_{i k} \| \theta_{i k}\right)\right)\right) \\
& \leq-\sum_{i=1}^{n} \sum_{k=1}^{l_{i}} n_{i k} H\left(\hat{\theta}_{i k}\right) \\
& =\sum_{i=1}^{n} \sum_{k=1}^{l_{i}} n_{i k} \sum_{j=1}^{m_{i}} \hat{\theta}_{i j k} \log \hat{\theta}_{i j k} \\
& =\sum_{i=1}^{n} \sum_{j=1}^{m_{i}} \sum_{k=1}^{l_{i}} n_{i j k} \log \hat{\theta}_{i j k}=\ell(\hat{\theta}) .
\end{aligned}
\]

Soft Computing
K.-H.

Zimmermann

Contents
Learning
Probabilities
*Statistical
Inference

Learning Structure

Using R

Entropy (C.E. Shannon, 1948)
The entropy of probability distribution \(\theta=\left(\theta_{1}, \ldots, \theta_{n}\right)\) is
\[
\begin{equation*}
H(\theta)=-\sum_{i=1}^{n} \theta_{i} \log \left(\theta_{i}\right) . \tag{300}
\end{equation*}
\]

Setting \(0 \log (0)=0\) is consistent with limit \(\lim _{x \rightarrow 0^{+}} x \log (x)=0\). \(H(\theta) \geq 0\), since for each number \(x\) with \(0<x \leq 1,-\log (x) \geq 0\). Entropy functions \(H(p, 1-p)\) and \(H(p, q, 1-p-q)\) :



\section*{Kullback-Leibler Measure (1951)}

Given probability distributions \(\pi=\left(\pi_{1}, \ldots, \pi_{n}\right)\) and \(\sigma=\left(\sigma_{1}, \ldots, \sigma_{n}\right)\).
The Kullback-Leibler divergence between \(\pi\) and \(\sigma\) is
\[
\begin{equation*}
D(\pi \| \sigma)=\sum_{i=1}^{n} \pi_{i} \log \left(\frac{\pi_{i}}{\sigma_{i}}\right) \tag{301}
\end{equation*}
\]

■ \(D(\pi \| \sigma)\) is the expectation of the logarithmic difference between the probability distributions \(\pi\) and \(\sigma\), where the expectation is taken w.r.t. the distribution \(\pi\).

■ \(D(\pi \| \sigma)\) is defined only if \(\sigma_{i}=0\) implies \(\pi_{i}=0\) for all \(1 \leq i \leq n\).
- When \(\pi_{i}\) equals 0 , the contribution of the \(i\)-th term becomes 0 , since \(\lim _{x \rightarrow 0^{+}} x \log (x)=0\).

Jensen's inequality states that if \(X\) is a random variable and \(f\) is a convex function, then \(E[f(X)]) \geq f(E[X])\), where \(E\) denotes the expected value.
Since the function \(f(x)=-\log (x)\) is convex, we obtain
\[
D(\pi \| \sigma)=-\sum_{i=1}^{n} \pi_{i} \log \left(\frac{\sigma_{i}}{\pi_{i}}\right) \geq-\log \left(\sum_{i=1}^{n} \pi_{i} \frac{\sigma_{i}}{\pi_{i}}\right)=-\log (1)=0 .
\]

Second assertion is shown by induction on the length \(n \geq 1\) of the distributions.

\section*{Contents}

Learning Probabilities
*Statistical Inference

Learning Structure

Using R
*Learning Probabilities
■ Belief network \((G, p)\) with DAG \(G=(V, E)\), node set \(V=\{1, \ldots, k, k+1, \ldots, k+l\}\) corresponds 1-to-1 with random variables \(X_{1}, \ldots, X_{k}, Y_{1}, \ldots, Y_{l}\).
- States of variables \(X_{1}, \ldots, X_{k}\) are observable.

■ States of variables \(Y_{1}, \ldots, Y_{l}\) are hidden from observer.
■ Random vectors \(X=\left(X_{1}, \ldots, X_{k}\right)\) and \(Y=\left(Y_{1}, \ldots, Y_{l}\right)\) have state sets \(\mathcal{X}=\left\{x^{(1)}, \ldots, x^{(m)}\right\}\) and \(\mathcal{Y}=\left\{y^{(1)}, \ldots, y^{(n)}\right\}\), resp.

\section*{*Learning Probabilities}
- Joint probability distribution depends on the parameters \(\theta\) of parameter set \(\Theta\),
\[
\begin{equation*}
f_{i, j}(\theta)=p_{X, Y \mid \Theta}\left(x^{(i)}, y^{(j)}\right), \tag{303}
\end{equation*}
\]
where \(1 \leq i \leq m, 1 \leq j \leq n\).
■ Marginal distribution w.r.t. \(X\) is
\[
\begin{equation*}
f_{i}(\theta)=p_{X \mid \Theta}=\sum_{j=1}^{n} f_{i j}(\theta), \tag{304}
\end{equation*}
\]
where \(1 \leq i \leq m\).

\section*{*Learning Probabilities}

■ Given collection of \(N\) independent observed samples from state space \(\mathcal{X}\),
\[
\begin{equation*}
D=\left(x^{\left(i_{1}\right)}, \ldots, x^{\left(i_{N}\right)}\right) \tag{305}
\end{equation*}
\]
where \(1 \leq i_{1}, \ldots, i_{N} \leq m\).
■ This collection provides data vector
\[
\begin{equation*}
u=\left(u_{1}, \ldots, u_{m}\right) \in \mathbb{N}^{m}, \tag{306}
\end{equation*}
\]
where \(u_{i}\) denotes the number of occurrences of the observed state \(x^{(i)}\) in database \(D, 1 \leq i \leq m\).

■ We have
\[
\begin{equation*}
\sum_{i=1}^{m} u_{i}=N \tag{307}
\end{equation*}
\]

\section*{*Learning Probabilities}
- The objective is to maximize the log-likelihood function w.r.t. the parameters \(\theta \in \Theta\) for the observed data,
\[
\begin{equation*}
\ell_{X}(\theta)=u_{1} \cdot \log f_{1}(\theta)+\ldots+u_{m} \cdot f_{m}(\theta) . \tag{308}
\end{equation*}
\]
- The vector \(u\) is the sufficient statistic of the model.
- The maximization of this likelihood function is usually intractable.
*Learning Probabilities
■ On the other hand, given collection of \(N\) independent sample pairs from state set \(\mathcal{X} \times \mathcal{Y}\),
\[
\begin{equation*}
D=\left(\left(x^{\left(i_{1}\right)}, y^{\left(j_{1}\right)}\right), \ldots,\left(x^{\left(i_{N}\right)}, y^{\left(j_{N}\right)}\right)\right) \tag{309}
\end{equation*}
\]
where \(1 \leq i_{1}, \ldots, i_{N} \leq m\), and \(1 \leq j_{1}, \ldots, j_{N} \leq n\).
- This collection provides the data vector
\[
\begin{equation*}
U=\left(u_{i j}\right) \in \mathbb{N}^{m \times n}, \tag{310}
\end{equation*}
\]
where \(u_{i j}\) denotes the number of occurrences of the sequence pair \(\left(x^{(i)}, y^{(j)}\right)\) in the database \(D\) with \(u_{i}=\sum_{j=1}^{n} u_{i j}\).

\section*{*Learning Probabilities}
- The objective is to maximize the log-likelihood function w.r.t. the parameters \(\theta \in \Theta\) for the observed sequence pairs,
\[
\begin{equation*}
\ell_{X, Y}(\theta)=u_{11} \cdot \log f_{11}(\theta)+\ldots+u_{m n} \cdot f_{m n}(\theta) \tag{311}
\end{equation*}
\]
- The EM algorithm provides an estimate of the parameters.
- The marginal probabilities \(f_{i}(\theta)\) can often be calculated efficiently by an appropriate inference algorithm (Viterbi algorithm for HMM).
- In the M -step, the maximal estimates \(\hat{\theta}\) can be computed directly by (297).

\section*{*EM Algorithm}

Require: Joint probability function \(p_{X, Y \mid \Theta}\), parameter set \(\Theta \subseteq \mathbb{R}^{d}\), observed data \(u=\left(u_{i}\right) \in \mathbb{N}^{m}\)
Ensure: Maximum likelihood estimate \(\theta^{*} \in \Theta\) of the log-likelihood function \(\ell_{X}(\theta)\)
[Init] Threshold \(\epsilon>0\) and random parameter \(\theta \in \Theta\)
[E-Step] Define matrix \(U=\left(u_{i j}\right) \in \mathbb{R}_{>0}^{m \times n}\) with
\[
u_{i j}=\frac{u_{i} \cdot f_{i j}(\theta)}{f_{i}(\theta)}
\]
[M-Step] Compute solution \(\hat{\theta} \in \Theta\) of the likelihood function \(\ell_{X, Y}\) with data set \(U=\left(u_{i j}\right)\) as in (297)
[Compare] If \(\ell_{X}(\hat{\theta})-\ell_{X}(\theta)>\epsilon\), set \(\theta \leftarrow \hat{\theta}\) and resume with E-step
[Output] \(\theta^{*} \leftarrow \hat{\theta}\)

\section*{Soft Computing}
K.-H.

Zimmermann
*Statistical Inference

\section*{Contents}

Learning
Probabilities
* Statistical Inference

Learning
Structure
Using R


\section*{Statistical Inference}
- Given a belief network with observed and unobserved (hidden) variables.
- Find instantiations of the hidden variables that maximize the likelihood (NP-hard).

\section*{Statistical Inference}
- Marginalization of joint probability distribution
- Tropicalization of marginal distribution
- Graded belief networks
- Inference in graded belief networks

Statistical Inference
What are belief networks useful for?
■ Diagnosis: \(P\) (cause|symptom)
- Prediction: \(P\) (symptom|cause)

■ Classification: \(P\) (class|data)
Applications in medicine, bioinformatics, text classification, speech recognition, computer troubleshooting.

\section*{Statistical Inference}
- Belief network with DAG \(G=(V, E)\) and joint probability distribution \(p\).

■ Node set \(V=\left\{v_{1}, \ldots, v_{m}, v_{m+1}, \ldots, v_{m+n}\right\}\) with \(m, n \geq 1\) is 1-to-1 with random variables \(X_{1}, \ldots, X_{m}, Y_{1}, \ldots, Y_{n}\).
- \(X_{1}, \ldots, X_{m}\) are observed variables with finite state sets \(\mathcal{X}_{1}, \ldots, \mathcal{X}_{m}\), resp.
- \(Y_{1}, \ldots, Y_{n}\) are hidden variables with finite state sets \(\mathcal{Y}_{1}, \ldots, \mathcal{Y}_{n}\), resp.
- Random vectors \(X=\left(X_{1}, \ldots, X_{m}\right)\) and \(Y=\left(Y_{1}, \ldots, Y_{n}\right)\) have state sets \(\mathcal{X}=\mathcal{X}_{1} \times \ldots \times \mathcal{X}_{m}\) and \(\mathcal{Y}=\mathcal{Y}_{1} \times \ldots \times \mathcal{Y}_{n}\), resp.

\section*{Statistical Inference}
- Topological sorting of random variables: \(X_{1}>\ldots>X_{m}\) and \(Y_{1}>\ldots>Y_{n}\).

■ \(X_{1}\) has only parents in the hidden variables and \(Y_{1}\) has only parents in the observed variables.

■ Factorization of global probability distribution
\[
\begin{equation*}
p_{X, Y}=\prod_{i=1}^{m} p_{X_{i} \mid \Pi\left(X_{i}\right)} \prod_{j=1}^{n} p_{Y_{j} \mid \Pi\left(Y_{j}\right)} \tag{312}
\end{equation*}
\]

■ Probability of observed sequence \(x \in \mathcal{X}\) is given by the marginal distribution
\[
\begin{equation*}
p_{X}(x)=\sum_{y \in \mathcal{Y}} p_{X, Y}(x, y) \tag{313}
\end{equation*}
\]

\section*{Statistical Inference}
- Each variable \(Z\) in the DAG can be assigned a semi-rank, written \(\rho(Z)\) :
- Each variable \(Z\) with empty parent set or parent set in the observed variables has semi-rank 0 . Since the graph is a DAG, there is at least one variable with semi-rank 0 .
- Each hidden variable \(Z\) whose parents have already assigned ranks is assigned semi-rank
\[
\rho(Z)=\max \{\rho(U) \mid U \text { hidden and parent of } Z\}+1(314)
\]
- Each observed variable \(Z\) is given the largest semi-rank of its hidden parents,
\[
\rho(Z)=\max \{\rho(U) \mid U \text { hidden and parent of } Z\} . \text { (315) }
\]

The conditional probability \(p_{Z \mid \Pi(Z)}\) with given value \(Z=z\) can be evaluated as soon as the parents are given.

\section*{Statistical Inference - Graded Case}
- A DAG \(G=(V, E)\) is graded if it is equipped with a rank function \(\rho\) from \(V\) to \(\mathbb{N}_{0}\).
- A rank function of a DAG must be compatible with the given topological ordering and the rank must be consistent with the covering relation of the ordering.

■ In our case, each variable \(Z\) with empty parent set or parent set in the observed variables is given the rank \(\rho(Z)=0\).

■ Each hidden variable \(Z\) is assigned the rank \(\rho=\rho(Z) \geq 1\) if all its hidden parents have rank \(\rho-1\).

■ Each observed variable \(Z\) is assigned the rank \(\rho=\rho(Z)\) if all its hidden parents have rank \(\rho\).
- A belief network is graded if its underlying DAG is graded.

\section*{Statistical Inference}

■ The rank of a variable exhibits in which of the nested brackets it can be evaluated earliest in the marginal distribution \(p_{X}\).
- \(\rho_{\max }=\) maximal rank of the nodes in DAG.

■ \(X_{1}^{(r)}, \ldots, X_{s_{r}}^{(r)}\) collection of observed random variables with rank \(r\).

■ \(Y_{1}^{(r)}, \ldots, Y_{t_{r}}^{(r)}\) collections of hidden random variables with rank \(r\).

■ Then \(\sum_{r=0}^{\rho_{\text {max }}} s_{r}=m\) and \(\sum_{r=0}^{\rho_{\text {max }}} t_{r}=n\).
■ State set of the hidden variables with rank \(r\) is denoted by
\[
\begin{equation*}
D(r)=\mathcal{Y}_{1}^{(r)} \times \ldots \times \mathcal{Y}_{t_{r}}^{(r)} \tag{316}
\end{equation*}
\]

Soft Computing
K.-H.

Zimmermann

Contents
Learning
Probabilities
* Statistical Inference

Learning Structure

Using R

\section*{Statistical Inference}

Marginal distribution of observed data \(x \in \mathcal{X}\) :
\[
\begin{align*}
p_{X}(x)= & \sum_{y} p_{X, Y}(x, y)  \tag{317}\\
= & \sum_{y \in D(\rho)} \prod_{i=1}^{s \rho} p_{X_{i}^{(\rho)} \mid \Pi\left(X_{i}^{(\rho)}\right)} \\
& \cdot\left(\sum_{y \in D(\rho-1)} \prod_{i=1}^{s \rho-1} p_{X_{i}}^{(\rho-1)} \mid \Pi\left(X_{i}^{(\rho-1)}\right) \prod_{j=1}^{s_{\rho}} p_{Y_{j}^{(\rho)} \mid \Pi\left(Y_{j}^{(\rho)}\right)}\right. \\
& \cdots \cdot\left(\sum_{y \in D(1)} \prod_{i=1}^{s_{1}} p_{X_{i}^{(1)} \mid \Pi\left(X_{i}^{(1)}\right)} \prod_{j=1}^{t_{2}} p_{Y_{j}^{(2)} \mid \Pi\left(Y_{j}^{(2)}\right)}\right. \\
& \cdot\left(\sum_{y \in D(0)} \prod_{i=1}^{s_{0}} p_{X_{i}^{(0)} \mid \Pi\left(X_{i}^{(0)}\right)}^{\left.\left.\prod_{j=1}^{t_{1}} p_{Y_{j}^{(1)}} \mid \Pi\left(Y_{j}^{(1)}\right) \prod_{j=1}^{t_{0}} p_{Y_{j}^{(0)} \mid \Pi\left(Y_{j}^{(0)}\right)}\right) \cdots\right)}\right.
\end{align*}
\]
with \(\rho=\rho_{\text {max }}\), arguments omitted for readability. Ranking guarantess well-definedness.

Soft Computing
K.-H.

Zimmermann

Contents
Learning
Probabilities
* Statistical Inference

\section*{Learning}

Structure
Using R

\section*{Statistical Inference - Example}

Non-graded belief network with semi-ranks:


\section*{Statistical Inference - Example}

\section*{Graded belief network with ranks:}


\section*{Statistical Inference}

■ Given observed sequence \(x \in \mathcal{X}\).
■ Find one (or all) sequences \(y \in \mathcal{Y}\) with maximum likelihood
\[
\begin{equation*}
p_{Y \mid X}(y \mid x)=\frac{p_{X, Y}(x, y)}{p_{X}(x)} \tag{318}
\end{equation*}
\]

■ Since observed sequence \(x\) is fixed, the likelihood \(p_{Y \mid X}(y \mid x)\) is directly proportional to the joint probability \(p_{X, Y}(x, y)\) provided that \(p_{X}(x)>0\).

■ Let \(p_{X}(x)>0\). Find a sequences \(\bar{y} \in \mathcal{Y}\) with
\[
\begin{align*}
\bar{y} & =\operatorname{argmax}_{y \in \mathcal{Y}}\left\{p_{Y \mid X}(y \mid x)\right\}  \tag{319}\\
& =\operatorname{argmax}_{y \in \mathcal{Y}}\left\{p_{X, Y}(x, y)\right\} .
\end{align*}
\]
- Each optimal sequence \(\bar{y}\) is called an explanation of the given sequence \(x\).

■ The explanations can be found by tropicalization.

\section*{Statistical Inference}
- Tropicalization map
\[
\begin{equation*}
\phi:\left(\mathbb{R}_{\geq 0},+, \cdot\right) \rightarrow(\mathbb{R} \cup\{\infty\}, \oplus, \odot): x \mapsto-\log (x) . \tag{320}
\end{equation*}
\]
- Put \(w_{X, Y}(x, y)=-\log p_{X, Y}(x, y)\) and \(w_{X}(x)=-\log p_{X}(x)\) for all \(x \in \mathcal{X}\) and \(y \in \mathcal{Y}\).
- Tropicalization gives
\[
\begin{equation*}
w_{X}(x)=\bigoplus_{y \in \mathcal{Y}} w_{X, Y}(x, y) \tag{321}
\end{equation*}
\]
- The explanations \(\bar{y}\) can be obtained by evaluation in the tropical semiring,
\[
\begin{equation*}
\bar{y}=\operatorname{argmin}_{y \in \mathcal{Y}}\left\{w_{X, Y}(x, y)\right\} . \tag{322}
\end{equation*}
\]

■ Put \(w_{Z \mid \Pi(Z)}=-\log p_{Z \mid \Pi(Z)}\) for each random variable \(Z\).

Soft Computing
K.-H.

Zimmermann

Contents
Learning
Probabilities
* Statistical Inference

Learning Structure

Using R

\section*{Statistical Inference}

Tropicalization of (317) gives
\[
\begin{aligned}
& w_{X}(x)=\bigoplus_{y} w_{X, Y}(x, y) \\
& =\bigoplus_{y \in D(\rho)} \bigodot_{i=1}^{s \rho} w_{X_{i}^{(\rho)} \mid \Pi\left(X_{i}^{(\rho)}\right)} \\
& \left(\bigoplus_{y \in D(\rho-1)} \bigodot_{i=1}^{s_{\rho-1}} w_{X_{i}^{(\rho-1)}} \mid \Pi\left(X_{i}^{(\rho-1)}\right) \bigodot_{j=1}^{t_{\rho}} w_{Y_{j}^{(\rho)} \mid \Pi\left(Y_{j}^{(\rho)}\right)}\right. \\
& \left(\bigoplus_{y \in D(1)} \bigodot_{i=1}^{s_{1}} w_{X_{i}^{(1)} \mid \Pi\left(X_{i}^{(1)}\right)} \bigodot_{j=1}^{t_{2}} w_{Y_{j}^{(2)} \mid \Pi\left(Y_{j}^{(2)}\right)}\right. \\
& \left(\bigoplus_{y \in D(0)} \bigodot_{i=1}^{s_{0}} w_{\left.\left.X_{i}^{(0)} \mid \Pi\left(X_{i}^{(0)}, \bigodot_{j=1}^{t_{1}} w_{Y_{j}^{(1)} \mid \Pi\left(Y_{j}^{(1)},\right.} \bigodot_{j=1}^{t_{0}} w_{Y_{j}^{(0)} \mid \Pi\left(Y_{j}^{(0)}\right)}\right) \cdots\right)\right) ~(\cdots)}\right.
\end{aligned}
\]
where \(\rho=\rho_{\text {max }}\), arguments omitted for readability. Ranking guarantess well-definedness.

\section*{Statistical Inference}
- Find one (or all) explanations \(\bar{y} \in \mathcal{Y}\) of the hidden variables given an observed sequence \(x \in \mathcal{X}\).
- Let \(x \in \mathcal{X}\). The tropicalization \(w_{X}(x)\) of the marginal probability \(p_{X}(x)\) provides the explanations of the observed sequence \(x\).
- The tropicalization of the marginal probability does not overcome the NP-hardness of the inference problem.

\section*{Statistical Inference - Graded Case}

■ Inference in a graded belief network has the advantage that in the computation of the \(r\)-th expression
\[
\begin{equation*}
\bigoplus_{y \in D(r)} \bigodot_{i=1}^{s_{r}} w_{X_{i}^{(r)} \mid \Pi\left(X_{i}^{(r)}\right)} \odot \bigodot_{j=1}^{t_{r+1}} w_{Y_{j}^{(r+1)} \mid \Pi\left(Y_{j}^{(r+1)}\right)} \tag{324}
\end{equation*}
\]
the terms \(w_{X_{i}^{(r)} \mid \Pi\left(X_{i}^{(r)}\right)}\) and \(w_{Y_{j}^{(r+1)} \mid \Pi\left(Y_{j}^{(r+1)}\right)}\) depend only on the parent values \(y^{\prime} \in D(r)\) of the hidden variables of rank \(r\), \(0 \leq r \leq \rho_{\max }-1\).
- By gradedness, the hidden parents of hidden variable \(Y\) with rank \(r=\rho(Y) \geq 1\) have rank \(r-1\)

■ The inference algorithm is similar to the Viterbi algorithm (below).

■ Computation of array element \(A[r, y]\) with rank \(r\) and \(y \in D(r)\) requires only the array elements \(A\left[r-1, y^{\prime}\right]\) with \(y^{\prime} \in D(r-1)\) of the previous rank.

\section*{Statistical Inference - Graded Case}
- The complexity of the evaluation of the tropicalized term \(w_{X}(x)\) depends on the underlying DAG.
- The array \(A\) has size \(\sum_{r=0}^{\rho_{\text {max }}}|D(r)|\) and the computation of array element \(A[r, y]\) requires \(O\left(|D(r-1)| \cdot\left(s_{r}+t_{r}\right)\right)\) steps.
- Suppose all state sets have \(l\) elements. Then we have \(D(r)=l^{t_{r}}\) for all \(0 \leq r \leq \rho_{\max }\).

\section*{Statistical Inference - Graded Case - Best Case}
- All hidden random variables have the same rank and common observed ascendants \(\left(\rho_{\max }=0\right)\).
- In the graded DAG below, \(\rho\left(X_{1}\right)=\rho\left(Y_{1}\right)=\ldots=\rho\left(Y_{n}\right)=0\).
- For each observed value \(x_{1} \in \mathcal{X}_{1}\),
\[
\begin{aligned}
w_{X_{1}}\left(x_{1}\right) & =\min _{y_{1}, \ldots, y_{n}}\left(w_{Y_{1} \mid X_{1}}\left(y_{1} \mid x_{1}\right)+\ldots+w_{Y_{n} \mid X_{1}}\left(y_{n} \mid x_{1}\right)\right) \\
& =\min _{y_{1}}\left(w_{Y_{1} \mid X_{1}}\left(y_{1} \mid x_{1}\right)\right)+\ldots+\min _{y_{n}}\left(w_{Y_{n} \mid X_{1}}\left(y_{n} \mid x_{1}\right)\right)
\end{aligned}
\]
- Fully decoupled minimization has time complexity \(O(\ln )\).


\section*{Statistical Inference - Graded Case - HMM}

■ In the hidden Markov model (HMM), the hidden random variables form a chain \(\left(\rho_{\max }=n-1\right.\) and \(t_{r}=1\) for each \(0 \leq r \leq \rho_{\max }\) ).

■ In the graded DAG below, \(\rho\left(X_{r}\right)=\rho\left(Y_{r}\right)=r-1\) for \(1 \leq r \leq n\).

K.-H.

Contents
Learning
Probabilities
* Statistical Inference

Learning Structure

Using R

\section*{Statistical Inference - Graded Case - HMM (Cont'd)}

■ Viterbi algorithm calculates for each observed sequence \(x=x_{1} \ldots x_{n} \in \mathcal{X}\) the following,
\[
\begin{aligned}
A[0, y]:= & w_{X_{1}}\left(x_{1}\right)+w_{Y_{1}}(y) \\
A[1, y]:= & \min _{y_{1}}\left(w_{Y_{2} \mid Y_{1}}\left(y \mid y_{1}\right)+w_{X_{2} \mid Y_{2}}\left(x_{2} \mid y\right)\right. \\
& \left.+A\left[0, y_{1}\right]\right) \\
& \cdots \\
A[n-1, y]:= & \min _{y_{n-1}}\left(w_{Y_{n} \mid Y_{n-1}}\left(y \mid y_{n-1}\right)+w_{X_{n} \mid Y_{n}}\left(x_{n} \mid y\right)\right. \\
& \left.+A\left[n-2, y_{n-1}\right]\right) \\
w_{X}(x):= & \min _{y_{n}} A\left[n-1, y_{n}\right] .
\end{aligned}
\]

■ Runtime \(O\left(l^{2} n\right)\), since the array has size \(n \cdot l\) and the computation of each array element requires \(O(l)\) steps.

\section*{Statistical Inference - Graded Case - Worst Case}
- All hidden random variables have the same rank and common observed descendants \(\left(\rho_{\max }=0\right)\).
- In the graded DAG below, \(\rho\left(Y_{1}\right)=\ldots=\rho\left(Y_{n}\right)=\rho\left(X_{1}\right)=0\).
- For each observed value \(x=x_{1} \in \mathcal{X}_{1}\),
\[
w_{X_{1}}\left(x_{1}\right)=\min _{y_{1}, \ldots, y_{n}}\left(w_{X_{1} \mid Y_{1}, \ldots, Y_{n}}\left(x_{1} \mid y_{1}, \ldots, y_{n}\right)+\sum_{i=1}^{n} w_{Y_{i}}\left(y_{i}\right)\right)
\]
- Fully coupled minimization has time complexity \(O\left(l^{n} n\right)\).


Soft Computing
K.-H.

Zimmermann

Contents
Learning
Probabilities
* Statistical Inference

Learning

\section*{Structure}

Using R

Statistical Inference - Example
Reconsider the graded belief network


Ranks: \(\rho\left(X_{1}\right)=\rho\left(X_{2}\right)=\rho\left(Y_{1}\right)=0, \rho\left(X_{3}\right)=\rho\left(Y_{2}\right)=\rho\left(Y_{3}\right)=1\), and \(\rho\left(Y_{4}\right)=2\).

\section*{Contents}

\section*{Statistical Inference - Example (Cont'd)}

Suppose hidden variables \(Y_{1}, \ldots, Y_{4}\) have common state set \(\Sigma=\{a, b\}\). Then \(D(0)=\Sigma, D(1)=\Sigma^{2}\), and \(D(2)=\Sigma\).

\section*{*Statistical} Inference

Learning Structure
\[
\begin{aligned}
& A[0, a]=w_{Y_{1} \mid X_{1}}\left(a \mid x_{1}\right)+w_{X_{1}}\left(x_{1}\right)+w_{X_{2} \mid X_{1}}\left(x_{2} \mid x_{1}\right), \\
& A[0, b]=w_{Y_{1} \mid X_{1}}\left(b \mid x_{1}\right)+w_{X_{1}}\left(x_{1}\right)+w_{X_{2} \mid X_{1}}\left(x_{2} \mid x_{1}\right), \\
& A[1, a a]=\min _{y_{1} \in D(0)}\left(A\left[0, y_{1}\right]+w_{Y_{2} \mid X_{2}, Y_{1}}\left(a \mid x_{2}, y_{1}\right)+w_{Y_{3} \mid Y_{1}}\left(a \mid y_{1}\right)+w_{X_{3} \mid Y_{2}}\left(x_{3} \mid a\right)\right) \\
& A[1, a b]=\min _{y_{1} \in D(0)}\left(A\left[0, y_{1}\right]+w_{Y_{2} \mid X_{2}, Y_{1}}\left(a \mid x_{2}, y_{1}\right)+w_{Y_{3} \mid Y_{1}}\left(b \mid y_{1}\right)+w_{X_{3} \mid Y_{2}}\left(x_{3} \mid a\right)\right) \\
& A[1, b a]=\min _{y_{1} \in D(0)}\left(A\left[0, y_{1}\right]+w_{Y_{2} \mid X_{2}, Y_{1}}\left(b \mid x_{2}, y_{1}\right)+w_{Y_{3} \mid Y_{1}}\left(a \mid y_{1}\right)+w_{X_{3} \mid Y_{2}}\left(x_{3} \mid b\right)\right) \\
& A[1, b b]=\min _{y_{1} \in D(0)}\left(A\left[0, y_{1}\right]+w_{Y_{2} \mid X_{2}, Y_{1}}\left(b \mid x_{2}, y_{1}\right)+w_{Y_{3} \mid Y_{1}}\left(b \mid y_{1}\right)+w_{X_{3} \mid Y_{2}}\left(x_{3} \mid b\right)\right) \\
& A[2, a]=\min _{y_{2} y_{3} \in D(1)}\left(A\left[1, y_{2} y_{3}\right]+w_{Y_{4} \mid X_{2}, Y_{3}}\left(a \mid x_{2}, y_{3}\right)\right), \\
& A[2, b]=\min _{y_{2} y_{3} \in D(1)}\left(A\left[1, y_{2} y_{3}\right]+w_{Y_{4} \mid X_{2}, Y_{3}}\left(b \mid x_{2}, y_{3}\right)\right) . \\
& \text { and } w_{X}\left(x_{1}, x_{2}, x_{3}\right)=\min _{y_{4} \in D(2)} A\left[2, y_{4}\right]=\min \{A[2, a], A[2, b]\} .
\end{aligned}
\]

\section*{Contents}

Learning
Probabilities
*Statistical
Inference
Learning Structure
Score-based
Constraint-based

\section*{Structure Learning \\ ■ Score-based structure learning \\ - Constraint-based structure learning}

\section*{Structure Learning - Assumptions}
- Causal sufficiency: There are no common unobserved (also known as hidden or latent) variables in the domain that are parents of one or more of the observed random variables in the domain.
- Markov property: Each random variable depends only on its parents, i.e., is independent of all its non-decendents given its parents.
- Faithfulness: All independence relations valid for the domain are those entailed by the (spatial) Markov property (21):
\[
p_{X_{1}, \ldots, X_{n}}=\prod_{i=1}^{n} p_{X_{i} \mid \Pi_{i}} .
\]

Structure Learning - Approaches
- Score-based methods use heuristics to assign scores to the candidate belief networks in order to find a network with maximal score.
- Constraint-based methods learn the network structure by analyzing the probabilistic relations entailed by the Markov property via conditional independence tests and then aim to construct the network that fulfills the associated d-separation statements.

\title{
Score-Based Structure Learning
}
- Likelihood as network score
- Posterior probability as network score
- Hill climbing for structure learning

\section*{Likelihood as Network Score}

■ Given DAG \(G=(V, E)\) with node set \(V=\{1, \ldots, n\}\) and edge set (structure) \(E\).

■ \(\mathcal{E}\) is the set of all possible edge sets each of which providing a DAG with the node set \(V\).
- Random variables \(X_{1}, \ldots, X_{n}\) correspond 1-to-1 with node set \(V\).

■ Random variable \(X_{i}\) has state set \(\mathcal{X}_{i}=\left\{x_{1}^{(i)}, \ldots, x_{m_{i}}^{(i)}\right\}\), \(1 \leq i \leq n\).

■ Random vector \(X=\left(X_{1}, \ldots, X_{n}\right)\) has state set \(\mathcal{X}=\mathcal{X}_{1} \times \cdots \times \mathcal{X}_{n}\).

■ Given structure \(E \in \mathcal{E}\), the set of instantiations of parent set \(\Pi_{i}\) of \(X_{i}\) is \(\left\{\pi_{1}^{(i)}, \ldots, \pi_{l_{i}}^{(i)}\right\}\) with \(l_{i} \geq 0,1 \leq i \leq n\).

\section*{Likelihood as Network Score}

■ Parameter set

Contents
Learning
Probabilities
*Statistical Inference

Learning
Structure
Score-based
Constraint-based
Using R
\[
\begin{equation*}
\Theta=\left\{\theta=\left(\theta_{i j k}\right) \mid \theta_{i j k} \geq 0, \sum_{j} \theta_{i j k}=1\right\} \tag{325}
\end{equation*}
\]
- Parameters (conditional probability that \(X_{i}=x_{j}^{(i)}\) when \(\left.\Pi_{i}=\pi_{k}^{(i)}\right)\),
\[
\begin{equation*}
\theta_{i j k}=p_{X_{i} \mid \Pi_{i}}\left(x_{j}^{(i)} \mid \pi_{k}^{(i)}\right), \tag{326}
\end{equation*}
\]
where \(1 \leq i \leq n, 1 \leq j \leq m_{i}, 1 \leq k \leq l_{i}\).
■ For each pair \((i, k)\) with \(1 \leq i \leq n\) and \(1 \leq k \leq l_{i}\), we have
\[
\begin{equation*}
\sum_{j=1}^{m_{i}} \theta_{i j k}=1 \tag{327}
\end{equation*}
\]

\section*{Likelihood as Network Score}
- Given collection of \(N\) independent samples (database):
\[
\begin{equation*}
D=\left(d_{1}, \ldots, d_{N}\right) \tag{328}
\end{equation*}
\]
- \(d_{r}=\left(x_{j_{1}, r}^{(1)}, \ldots, x_{j_{n}, r}^{(n)}\right) \in \mathcal{X}\) denotes the \(r\)-th sample.

■ Maximum likelihood estimate of sample set \(D\) :
\[
\begin{equation*}
\hat{p}_{X \mid \mathcal{E}}(D \mid E)=\prod_{i=1}^{n} \prod_{j=1}^{m_{i}} \prod_{k=1}^{l_{i}} \hat{\theta}_{i j k}^{n_{i j k}} \tag{329}
\end{equation*}
\]
where \(n_{i j k}\) is the number of times the pair \(\left(x_{j}^{(i)}, \pi_{k}^{(i)}\right)\) appears in the sample set

\section*{Likelihood as Network Score}
- Maximum likelihood estimate (297) of the likelihood function \(L(\theta, E)\) depending on the structure \(E\),
\[
\begin{equation*}
\hat{\theta}_{i j k}=\frac{n_{i j k}}{\sum_{j=1}^{m_{i}} n_{i j k}}, \tag{330}
\end{equation*}
\]
where \(1 \leq i \leq n, 1 \leq j<m_{i}, 1 \leq k \leq l_{i}\).
- Akaike information criterion (AIC) score
\[
\begin{equation*}
\log p_{\mathcal{E} \mid X}(E \mid D)=\log \hat{p}_{X \mid \mathcal{E}}(D \mid E)-d, \tag{331}
\end{equation*}
\]
where \(d=\sum_{i=1}^{n}\left(m_{i}-1\right) l_{i}\) by (292) is the number of free parameters in the local distribution functions.

\section*{Likelihood as Network Score}
- Bayesian information criterion (BIC) score
\[
\begin{equation*}
\log p_{\mathcal{E} \mid X}(E \mid D)=\log \hat{p}_{X \mid \mathcal{E}}(D \mid E)-\frac{d}{2} \log N \tag{332}
\end{equation*}
\]
where \(d=\sum_{i=1}^{n}\left(m_{i}-1\right) l_{i}\) by (292) is the number of free parameters in the local distribution functions.
- In the language R, the AIC and BIC scores can be invoked by the keywords aic and bic, respectively.

\section*{Contents}

Learning
Probabilities
*Statistical
Inference
Learning
Structure
Score-based
Constraint-based

\section*{Posterior Probability as Network Score}

Let \(A(n)\) denote the number of DAGs with \(n\) labeled nodes.
Put \(A(0)=1\). Then for each number \(n \geq 1\),
\[
\begin{equation*}
A(n)=\sum_{i=1}^{n}(-1)^{i+1}\binom{n}{i} 2^{i(n-i)} A(n-i) \tag{333}
\end{equation*}
\]

The problem of locating all possible graph structures is NP-hard. Therefore, the enumeration of all structures with \(n\) nodes is practically infeasible.

\section*{Proof.}

Consider DAGs with node set \(V=\{1, \ldots, n\}\). Let \(P_{i}\) be the set of DAGs with node set \(V\) in which the node \(i\) is a leaf; i.e, a node with degree 1 . The number of DAGs with this node set which is in none of the \(P_{i}\) 's is 0 . Thus by the principle of inclusion-exclusion,
\[
\begin{equation*}
0=A(n)-\left(\sum_{\substack{I \subseteq V \\ I \neq \emptyset}}(-1)^{|I|+1}\left|\bigcap_{j \in I} P_{j}\right|\right) \tag{334}
\end{equation*}
\]

Claim that the cardinality of the set \(\bigcap_{j \in I} P_{j}\) with \(|I|=i\) is \(2^{i(n-i)} A(n-i)\). Indeed, there are \(i\) leaves and these nodes can only be adjacent to the remaining \(n-i\) nodes, making a total of \(2^{i(n-i)}\) possible configurations of the edges. Moreover, the subgraph induced by the other \(n-i\) nodes may be any of the \(A(n-i)\) possible DAGs. This proves the claim. This number depends only on the size of the subset \(I\) of \(V\). Since there are \(\binom{n}{i}\) subsets of \(V\) with \(i\) elements, the result follows.

\section*{Posterior Probability as Network Score}

■ Cooper-Herskovits likelihood of graph structure \(E \in \mathcal{E}\),
\[
\begin{equation*}
p_{X \mid \mathcal{E}}(D \mid E)=\prod_{i=1}^{n} \prod_{k=1}^{l_{i}} \frac{\left(m_{i}-1\right)!}{\left(n_{i k}+m_{i}-1\right)!} \prod_{j=1}^{m_{i}} n_{i j k}! \tag{335}
\end{equation*}
\]
where \(n_{i k}\) is the number of occurrences of the pairs \(\left(x_{j}^{(i)}, \pi_{k}^{(i)}\right)\) with \(1 \leq j \leq m_{i}\); i.e.,
\[
\begin{equation*}
n_{i k}=\sum_{j=1}^{m_{i}} n_{i j k} \tag{336}
\end{equation*}
\]

\section*{Contents}

Learning
Probabilities
*Statistical Inference

Learning
Structure
Score-based
Constraint-based

\section*{Posterior Probability as Network Score}
- By Bayes' rule, the posterior probability of graph structure \(E\) given data set \(D\) is
\[
\begin{equation*}
p_{\mathcal{E} \mid X}(E \mid D)=\frac{p_{X \mid \mathcal{E}}(D \mid E) \cdot p_{\mathcal{E}}(E)}{p_{X}(D)} . \tag{337}
\end{equation*}
\]
- \(p_{\mathcal{E}}(E)\) is the prior probability over the state space of the edge sets.
- \(p_{X}(D)\) is the estimate of the database.

\section*{Posterior Probability as Network Score}
- Score-based algorithms maximize posterior probability called Bayesian Dirichlet (BD) score,
\[
\begin{equation*}
p_{\mathcal{E} \mid X}(E \mid D)=\frac{p_{X \mid \mathcal{E}}(D \mid E) \cdot p_{\mathcal{E}}(E)}{p_{X}(D)} . \tag{338}
\end{equation*}
\]
- Probability of database (by the law of total probability)
\[
\begin{equation*}
p_{X}(D)=\sum_{i=1}^{A(n)} p_{X \mid \mathcal{E}}\left(D \mid E_{i}\right) \cdot p_{\mathcal{E}}\left(E_{i}\right) \tag{339}
\end{equation*}
\]
- Maximizing the numerator in (338) is sufficient, since \(D\) is fixed and the estimate \(p_{X}(D)\) is independent of graph structure \(E\).
- In the language R , the BD score is invoked by the keyword bde.

\section*{Posterior Probability as Network Score}

Estimate \(p_{\mathcal{E}}(E)\) using prior information.
■ User assigns to each pair of random variables \(X_{i}\) and \(X_{j}\) a probability distribution with three values,
\(P\left(\left\{X_{i} \rightarrow X_{j}\right\}\right)+P\left(\left\{X_{j} \rightarrow X_{i}\right\}\right)+P\left(\left\{X_{i} \cdots X_{j}\right\}\right)=1(340)\)
where \(X_{i} \rightarrow X_{j}, X_{j} \rightarrow X_{i}\), and \(X_{i} \cdots X_{j}\) indicate that there is an edge \(X_{i} \rightarrow X_{j}\), an edge \(X_{j} \rightarrow X_{i}\), and no edge \(X_{i} \cdots X_{j}\), respectively.

■ For a pair \(X_{i}\) and \(X_{j}\) for which the user cannot specify a prior, the uniform distribution is assumed,
\[
P\left(\left\{X_{i} \rightarrow X_{j}\right\}\right)=P\left(\left\{X_{j} \rightarrow X_{i}\right\}\right)=P\left(\left\{X_{i} \cdots X_{j}\right\}\right)=\frac{1}{3}(341)
\]

\section*{Posterior Probability as Network Score}

Estimate \(p_{\mathcal{E}}(E)\) using prior information - modification in case of partial information.
- Suppose the user assigns to \(P\left(\left\{X_{i} \rightarrow X_{j}\right\}\right)\) the value \(q\), \(0 \leq q \leq 1\), but no values to \(P\left(\left\{X_{j} \rightarrow X_{i}\right\}\right)\) and \(P\left(\left\{X_{i} \cdots X_{j}\right\}\right)\). Then put
\[
\begin{equation*}
P\left(\left\{X_{j} \rightarrow X_{i}\right\}\right)=P\left(\left\{X_{i} \cdots X_{j}\right\}\right)=(1-q) / 2 . \tag{342}
\end{equation*}
\]
- For a given structure \(E\), the prior probabilities are obtained by multiplying the appropriate probabilities over all edges in \(E\) and normalizing to give \(p_{\mathcal{E}}(E)\).

\section*{Calculation of Prior Information - Example}

Contents
Given random variables \(X_{1}, X_{2}, X_{3}\) with partial prior information


Completion to full prior:
\begin{tabular}{c|ccc} 
& \(P\left(\left\{X_{i} \rightarrow X_{j}\right\}\right)\) & \(P\left(\left\{X_{j} \rightarrow X_{i}\right\}\right)\) & \(P\left(\left\{X_{i} \cdots X_{j}\right\}\right)\) \\
\hline\(X_{1}, X_{2}\) & \(\frac{1}{3}\) & \(\frac{1}{3}\) & \(\frac{1}{3}\) \\
\(X_{1}, X_{3}\) & \(\frac{3}{4}\) & \(\frac{1}{8}\) & \(\frac{1}{8}\) \\
\(X_{2}, X_{3}\) & \(\frac{1}{2}\) & \(\frac{1}{4}\) & \(\frac{1}{4}\)
\end{tabular}

\section*{Heuristics in Optimization}
- Heuristic: method for solving a problem when classical methods fail or are too slow; optimality, completeness, and accuracy are traded for speed.
- Universe is the set of all possible solutions of the given problem.
- Local search is a heuristic for tackling computationally hard optimization problems.

■ Local search algorithms move from one solution to another until a solution suspected to be optimal is found or time has elapsed.

\section*{Hill Climbing}
- Hill climbing is an iterative local search method.
- For structure learning, the set of all DAGs with \(n\) nodes is considered as the universe.
- The neighborhood of a DAG \(E\) is given by all DAGs which result from \(E\) by adding, deleting or reversing one edge. Beware of cycles!
- The language R has a built-in hill-climbing algorithm for structure learning called hc.

Soft Computing
K.-H.

Zimmermann

Contents
Learning
Probabilities
*Statistical Inference

Learning
Structure
Score-based
Constraint-based
Using R

\section*{Hill Climbing}

Require: Random variables \(X_{1}, \ldots, X_{n}\), data set \(D\), score \(\sigma\), maximum number of iterations \(T_{\max }\) Ensure: Edge set of DAG
\(E \leftarrow\) edge set of a DAG with \(n\) nodes \{Initialization \}
\(\sigma_{\max } \leftarrow \sigma(E)\)
\(E_{\max } \leftarrow E\)
for \(t\) from 1 to \(T_{\max }\) do
for each DAG \(E^{\prime}\) in the neighborhood of \(E\) do
if \(\sigma\left(E^{\prime}\right)>\sigma_{\max }\) then
\(\sigma_{\max } \leftarrow \sigma\left(E^{\prime}\right)\) \(E_{\max } \leftarrow E^{\prime}\)
end if
end for
if \(\sigma_{\max }>\sigma(E)\) then
\(E \leftarrow E_{\max }\{\) Continue with edge set that has max. score in neighborhood\}
else
return \(E\) \{Exit if no edge set with better score in neighborhood found \}
end if
end for
return \(E\)

\section*{Contents}

Learning
Probabilities
*Statistical
Inference
Learning
Structure
Score-based Constraint-based

Using R

\title{
Constraint-Based Structure Learning
}
- Conditional independence tests

■ Pearson's chi-squared test
- SGS algorithm

\title{
Conditional Independence Tests
}

■ Mutual information
■ Pearson's chi-squared test

Conditional independence tests for discrete data are functions of the conditional probability tables given by the structure of the network through the observed frequences
\[
\begin{equation*}
\left\{n_{i j k} \mid 1 \leq i \leq U, 1 \leq j \leq V, 1 \leq k \leq W\right\} \tag{343}
\end{equation*}
\]
for random variables \(X\) and \(Y\) and all configurations of the conditioning variables \(S\).

\section*{Mutual Information}
- Test statistic
\[
\begin{equation*}
\mu(X, Y \mid S)=\sum_{i=1}^{U} \sum_{j=1}^{V} \sum_{k=1}^{W} \frac{n_{i j k}}{n} \log \frac{n_{i j k} n_{++k}}{n_{i+k} n_{+j k}} \tag{344}
\end{equation*}
\]
where \(n=n_{+++}\)is the sample size.
- In the language R , both the asymptotic chi-squared test (mi) and a Monte Carlo test (mc-mi) are available.

\section*{Pearson's chi-squared test}
- Test statistic (for contingency tables)
\[
\begin{equation*}
\chi^{2}(X, Y \mid S)=\sum_{i=1}^{U} \sum_{j=1}^{V} \sum_{k=1}^{W} \frac{\left(n_{i j k}-m_{i j k}\right)^{2}}{m_{i j k}} \tag{345}
\end{equation*}
\]
with
\[
\begin{equation*}
m_{i j k}=\frac{n_{i+k} n_{+j k}}{n_{++k}} . \tag{346}
\end{equation*}
\]
- In the language R , both the asymptotic chi-squared test ( x 2 ) and a Monte Carlo test (mc-x2) are available.

\section*{Contents}

Learning
Probabilities
*Statistical Inference

Learning
Structure
Score-based
Constraint-based

\section*{Conditional Independence Tests}
- Null hypothesis: variables \(X\) and \(Y\) are statistically independent given \(S\).
- Alternative hypothesis: variables have a relationship where the structure of relationship is not specified.

■ Independence test for \(S=\emptyset:(U-1)(V-1)\) is the number of degrees of freedom.
- Small p-value (typically \(\leq 0.05\) ) indicates strong evidence against the null hypothesis, larger values only weak evidence.

\section*{Conditional Independence Test in R}

Learning
Consider the built-in data set lizards,
> library(bnlearn)
> data(lizards)
The data set contains three variables:
- Species (species of the lizard) is a two-level factor with levels Sagrei and Distichus.

■ Height is a two-level factor with levels high (greater than 4.75 feet) and low (less or equal to 4.75 feet).
- Diameter is a two-level factor with levels wide (greater than 4 inches) and narrow (less or equal to 4 inches).

\section*{Contents}

Learning
Probabilities
*Statistical
Inference
Learning
Structure
Score-based
Constraint-based

\section*{Using \(R\)}
Conditional Independence Test in R (Cont'd)
Visualization of data set

> lizards

\begin{tabular}{rrr} 
Species & Diameter & Height \\
Sagrei & narrow & low \\
Sagrei & narrow & low
\end{tabular}

100 Sagrei narrow high

409 Distichus wide high
K.-H.

Zimmermann

Contents
Learning
Probabilities
*Statistical Inference

Learning
Structure
Score-based Constraint-based

\section*{Conditional Independence Test in \(R\) (Cont'd)}

\section*{Test conditional independence of two factors from the third one using the command ci.test.}
```

>H = lizard$Height
>D = lizard$Diameter
>S = lizard\$Species
> ci.test(H, D, S, data=lizards, test="x2") // asymptotic chi-squared test
Pearson's X^2
data: H ~ D | S
x2 = 2.0174, df = 2, p-value = 0.3647
> ci.test(H, S, D, data=lizards, test="x2") // asymptotic chi-squared test
Pearson's X^2
data: H ~ S | D
x2 = 11.617, df = 2, p-value = 0.003002
> ci.test(S, D, H, data=lizards, test="x2") // asymptotic chi-squared test
Pearson's X^2
data: S ~ D | H
x2 = 13.781, df = 2, p-value = 0.001017

```

\section*{SGS Algorithm}

SGS algorithm is named after the inventors Peter Spirtes, Clark Glymour, Richard Scheines (1993):
- The skeleton of the network given as undirected graph with the colletion of random variables as node set is estimated. The existence of an edge between two variables \(X\) and \(Y\) is tested by a number of independence tests. If faithfulness holds and there is an edge \(X-Y\), then all independence tests should fail. Otherwise, there is a subset \(S\) d-separating them. This determines the undirected connectivity.
K.-H.

\section*{SGS Algorithm (Cont'd)}
- The directionality of the edges is determined.

For this, triples of variables \(X, Y\), and \(Z\) are considered such that \(X-Z\) and \(Y-Z\) are edges but \(X-Y\) is not. If \(X \not \perp Y \mid S\) for all \(S=S^{\prime} \cup\{Z\}\) with \(S^{\prime} \subseteq V \backslash\{X, Y, Z\}\), then no subset including \(Z\) can d-separate \(X\) and \(Y\). Thus \(Z\) is a converging node and hence the directionality of the edges \(X-Z\) and \(Y-Z\) is set to \(X \rightarrow Z\) and \(Y \rightarrow Z\).
- The directions obtained in the second step are propagated while maintaining acyclicity.

For a belief network \(X \rightarrow Y \rightarrow Z\), the direction of either edge cannot be determined by any set of independence statements, since two other networks with the same undirected structure, namely \(X \leftarrow Y \leftarrow Z\) and \(X \leftarrow Y \rightarrow Z\), belong to the same equivalence class with respect to the conditional independence statements (31).

\section*{Drawbacks of constraint-based algorithms}
- Lack of robustness in the sense that small changes of the input like single errors in the independence tests may have large effects on the output of the algorithm given by the structure of a belief network.
- The runtime of this type of algorithms is exponential in the number of variables of the domain, which makes them impractical for larger domains with tens or hundreds of variables.

\section*{Contents}

\title{
Bayesian Networks in R
}
- Learning the graph structure
- Learning the probability distribution

Structure Learning in R
Load library bnlearn:
> library (bnlearn)
Data set learning.test consists of 5000 six-tuples over the set \(\{a, b, c\}^{5} \times\{a, b\}\) described by six discrete variables \(A, \ldots, F\), called categorial variables or factors, with two \((F)\) or three levels \((A, \ldots, E)\).

Structure Learning in R
> data(learning.test)
> str(learning.test)
'data.frame': 5000 obs. of 6 variables:
\$ A: Factor w/ 3 levels "a","b","c": \(221113 \ldots\)
\$ B: Factor w/ 3 levels "a","b","c": 311113 ...
\$ C: Factor w/ 3 levels "a","b","c": 231121 ...
\$ D: Factor w/ 3 levels "a","b","c": \(1111133 \ldots\)
\$ E: Factor w/ 3 levels "a","b","c": \(221213 \ldots\)
\$ F: Factor \(\mathrm{w} / 2\) levels "a","b": \(22121112 \ldots\)

\section*{Contents}

Learning
Probabilities
*Statistical Inference

Learning
Structure
Using R
```

Structure Learning in R
The values of the factor A are
> learning.test\$A
[1] b b a a a c c b b b c c c b a a c b b c c c b a b
[38] с с с c a ...
[4996] a c b a a
levels: a b c

```
K.-H.

Zimmermann

Contents
Learning
Probabilities
*Statistical Inference

Learning Structure

Using R

\section*{Structure Learning in R}

\section*{Learning the structure of data set learning. test by GS algorithm (variant of SGS):}
> bn.gs <- gs(learning.test)
\(>\) bn.gs
Bayesian network learned via Constraint-based methods model:
[partially directed graph]
nodes: 6
arcs: 5
undirected arcs: 1
directed arcs: 4
average markov blanket size: 2.33
average neighborhood size: 1.67
average branching factor: 0.67
learning algorithm: Grow-Shrink
conditional independence test: Mutual Information (discrete)
alpha threshold: 0.05
tests used in the learning procedure: 43
optimized:
TRUE

\section*{Structure Learning in R}

\section*{Resulting partially directed graph:}


The undirected edge can be detected by undirected.arc
> undirected.arc(bn.gs)
from to
[1,] "A" "B"
[2,] "B" "A"

Structure Learning in R
Transformation of partially directed graph into DAG using set.arc (setting arc direction) or drop.arc (dropping arc):
> bn.dag <- set.arc(bn.gs, "A", "B") // set arc A -> B
> modelstring(bn.dag)
[1] " [A] [C] [F][B|A][D|A:C][E|B:F]"
K.-H.

Zimmermann

Contents
Learning
Probabilities
*Statistical Inference

Learning Structure

Using R

\section*{Structure Learning in R}

Learning the structure of data set learning.test by hill-climbing algorithm:
```

> bn.hc <- hc(learning.test, score="aic")
> bn.hc
Bayesian network learned via Score-based methods
model:
[A][C][F][B|A][D|A:C][E|B:F]
nodes: 6
arcs: 5
undirected arcs: 0
directed arcs: 5
average markov blanket size: 2.33
average neighborhood size: 1.67
average branching factor: 0.83
learning algorithm: Hill-Climbing
conditional independence test: Akaike Information Criterion
penalization coefficient:
test used in the learning procedure: 40
optimized:
TRUE

```

\section*{Structure Learning in R Resulting DAG:}

Contents
Learning
Probabilities
*Statistical
Inference
Learning
Structure
Using R


Compare structures by compare:
> compare(bn.gs, bn.hc)
[1] FALSE
> compare(bn.dag, bn.hc)
[1] TRUE

\section*{Structure Learning in R}

Enter prior information on the domain by blacklist and whitelist.
- Arcs whitelisted are present, arcs blacklisted are absent.
- Any arc blacklisted and whitelisted is defined to be whitelisted and removed from the blacklist.

■ Any arc whitelisted in both directions such as \(A \rightarrow B\) and \(B \rightarrow A\) is present in the learned structure, but the choice of direction is made by the learning algorithm.
- Any arc blacklisted in both directions such as \(A \rightarrow B\) and \(B \rightarrow A\) will not be present in the learned structure.
- Any arc whitelisted in one of two possible directions is guaranteed to be present in the learned structure.
- Any arc blacklisted in one of two possible directions will not be present in the learned structure.

\section*{Structure Learning in R}

Prior information about the relationship between nodes can be whitelisted or blacklisted.
> bn.bl <- gs(learning.test, blacklist=c("B", "A"))
\(>\) compare(bn.bl, bn.hc)
[1] TRUE

\section*{Learning the Conditional Probabilities}

Consider data set learning.test with network structure resulting from GS algorithm
> bn.ndag = gs(learning.test)
\(>\) bn.dag \(=\) set.arc(bn.ndag, from="A", to="B")
Maximum likelihood estimate by bn.fit
> mle.condprob = bn.fit(bn.dag, learning.test)
```

Soft Computing
K.-H.
Zimmermann
Contents
Learning
Probabilities
*Statistical
Inference
Learning
Structure
Using R

```

\section*{Learning the Conditional Probabilities}
```

> mle.condprob
Bayesian network parameters
Parameters of node A (multinomial distribution)
Conditional probability table:
a b c
0.33360 .33400 .3324
Parameters of node B (multinomial distribution)
Conditional probability table:
A
B a b c
a $0.856115110 .44491018 \quad 0.11492178$
b 0.025179860 .220958080 .09446450
c 0.118705040 .334131740 .79061372
Parameters of node C (multinomial distribution)
Conditional probability table:
a b c
$0.7434 \quad 0.20480 .0518$

```

\section*{Learning the Conditional Probabilities}

Learning
Probabilities
*Statistical Inference

Learning Structure

Using R
```

> mle.condprob
Parameters of node D (multinomial distribution)
Conditional probability table:
, , C = a
A
D a b b c
a 0.80081301 0.09251810 0.10530547
b 0.09024390 0.80209171 0.11173633
c 0.10894309 0.10539019 0.78295820
, , C = b
A
D a b c
a 0.18079096 0.88304094 0.24695122
b 0.13276836 0.07017544 0.49490244
c 0.68644068 0.04678363 0.25914634
, , C = c
A
D a b c
a 0.42857143 0.34117647 0.13333333
b 0.20238095 0.38823529 0.44444444
c 0.36904762 0.27058824 0.42222222

```
```

Soft Computing
K.-H.
Zimmermann

```
Contents
Learning the Conditional Probabilities
Learning
Probabilities
*Statistical
Inference
Learning
Structure
Using R
> mle.condprob
    Parameters of node E (multinomial distribution)
Conditional probability table:
, , \(\mathrm{F}=\mathrm{a}\)
    B
E a b c
    a 0.805249790 .205882350 .11837378
    b 0.097375110 .179738560 .11448141
    c 0.097375110 .614379080 .76614481
    , \(\mathrm{F}=\mathrm{b}\)
    B
E a b c
    a 0.400508040 .316793890 .23759542
    b 0.490262490 .366412210 .50667939
    c 0.109229470 .316793890 .25572519
    Parameters of node F (multinomial distribution)
Conditional probability table:
    a b
0.50180 .4982

Soft Computing
K.-H.

Zimmermann

Contents
Learning
Probabilities
*Statistical Inference

Learning Structure

Using R

\section*{Learning the Conditional Probabilities}

Plot of conditional probability \(p_{D \mid A, C}\) as barchart:
> bn.fit.barchart(mle.condprob\$D)


\title{
Soft Computing
}
K.-H.

Zimmermann

\section*{Contents}

ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing Networks
*Spiking Neural Networks

Neural Networks in \(R\)

\section*{Artificial Neural Networks}

Contents
ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing
Networks
*Spiking Neural Networks

Neural Networks in \(R\)

\section*{Contents}
- Introduction to artificial neural networks
- Multilayer perceptron
- Deep Learning with Keras
- Universal function representation and approximation
- Hopfield network
- Self-organizing maps
- *Spiking neural networks

■ Neural networks in R
Pattern recognition uses features from the physiology of the brain ANN as computational model.

\section*{Contents}

ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing
Networks
* Spiking Neural Networks

Neural Networks in R

Introduction to Artificial Neural Networks
- Perceptron

■ Linear separability
- Perceptron learning algorithm
- Linear programming for perceptron learning

Contents
ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfiedd Network
Self-Organizing
Networks
* Spiking Neural Networks

Neural Networks in \(R\)

\section*{Artificial Neural Networks (ANNs)}

- Neuron consists of cell body (soma), dendritic tree and single axon.
- Neurons receive signals via dendrites, soma sends signal (if threshold is reached) across the axon to other cells.
- Human brain has about \(9 \cdot 10^{10}\) neurons.

\section*{Contents}

ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfieid Network
Self-Organizing Networks
* Spiking Neural Networks

Neural Networks in \(R\)

\section*{Threshold Logic Unit (TLU)}

First ANN as computing machine by Warren Mc Culloch and Walter Pitts (1943):
- Activity of neuron is all or nothing operation.

■ Exitation of neuron if a certain number of synapses is excited within a period of time.

■ Delay within the nervous system is only by synaptic delay.
- Activity of inhibitory synapse prevents excitation of neuron.
- Interconnection network is time invariant.

Soft Computing
K.-H.

Zimmermann

\section*{Contents}

ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing Networks
* Spiking Neural Networks

Neural Networks in \(R\)

\section*{Mathematical Model of Artificial Neuron}


Soft Computing
K.-H.

Zimmermann

Contents
ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfieid Network
Self-Organizing Networks
* Spiking Neural Networks

Neural Networks in \(R\)

\section*{Mathematical Model of Artificial Neuron}

■ Input signals \(x_{1}, \ldots, x_{n}\), bias \(x_{n+1}=1\)
■ Weights \(w_{1}, \ldots, w_{n}, w_{n+1}=b\)
- Linear combination of the input signals and weights
\[
\begin{equation*}
u=\sum_{i=1}^{n} w_{i} x_{i} \tag{347}
\end{equation*}
\]
- Addition of bias (affine linear combination) gives activation potential (hyperplane in \(\mathbb{R}^{n}\) )
\[
\begin{equation*}
h=u+b \tag{348}
\end{equation*}
\]

■ Output of neuron using activation function \(\phi\),
\[
\begin{equation*}
y=\phi(h)=\phi\left(\sum_{i=1}^{n} w_{i} x_{i}+b\right) \tag{349}
\end{equation*}
\]

Contents
ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing
Networks
* Spiking Neural Networks

Neural Networks in R

\section*{Perceptron}

■ First algorithmically described ANN by Frank Rosenblatt (1958)

■ Threshold function for artificial neuron:
\[
y=\phi(h)= \begin{cases}+1 & \text { if } h \geq 0  \tag{350}\\ -1 & \text { otherwise }\end{cases}
\]

■ Usage is classification of a collection of input signals \(x_{1}, \ldots, x_{n}\) into one of two subclasses \(\mathcal{A}\) and \(\mathcal{B}\) of \(\mathbb{R}^{n}\).

■ Decision rule classifies real-valued point \(x=\left(x_{1}, \ldots, x_{n}\right)\) to \(\mathcal{A}\) if output \(y=1\), and \(\mathcal{B}\) if \(y=-1\).

\section*{Soft Computing}
K.-H.

Zimmermann

Contents
ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfieid Network
Self-Organizing
Networks
* Spiking Neural Networks

Neural Networks in \(R\)

\section*{Definition}

Let \(A, B\) be finite subsets of Euclidean space \(\mathbb{R}^{n}\).
- \(A\) and \(B\) are linearly separable if there are real numbers \(w_{1}, \ldots, w_{n}, w_{n+1}\) such that
\[
\begin{equation*}
\sum_{i=1}^{n} w_{i} a_{i} \geq w_{n+1} \quad \text { for each }\left(a_{1}, \ldots, a_{n}\right) \in A \tag{351}
\end{equation*}
\]
and
\[
\begin{equation*}
\sum_{i=1}^{n} w_{i} b_{i}<w_{n+1} \quad \text { for each }\left(b_{1}, \ldots, b_{n}\right) \in B \tag{352}
\end{equation*}
\]

■ \(A\) and \(B\) are absolutely linearly separable if they are linearly separable and the condition on the points \(\left(a_{1}, \ldots, a_{n}\right) \in A\) is strengthened to
\[
\begin{equation*}
\sum_{i=1}^{n} w_{i} a_{i}>w_{n+1} \tag{353}
\end{equation*}
\]
K.-H.

Zimmermann

\section*{Contents}

ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing Networks
* Spiking Neural Networks

Neural Networks in \(R\)

\section*{Example}

Two linearly separable sets in \(\mathbb{R}^{2}\) :


\section*{Contents}

ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfietd Network
Self-Organizing Networks
* Spiking Neural Networks

Neural Networks in \(R\)

\section*{Proposition}

Two finite subsets \(A\) and \(B\) of \(\mathbb{R}^{n}\) which are linearly separable are also absolutely linear separable.

\section*{Proof.}

Suppose \(A\) and \(B\) are linearly separable. Then there are real numbers \(w_{1}, \ldots, w_{n}, w_{n+1}\) such that \(\sum_{i=1}^{n} w_{i} a_{i} \geq w_{n+1}\) for each point \(\left(a_{1}, \ldots, a_{n}\right) \in A\) and \(\sum_{i=1}^{n} w_{i} b_{i}<w_{n+1}\) for each point \(\left(b_{1}, \ldots, b_{n}\right) \in B\). Put
\[
\gamma=\max \left\{\sum_{i=1}^{n} w_{i} b_{i}-w_{n+1} \mid\left(b_{1}, \ldots, b_{n}\right) \in B\right\} .
\]

Then \(\gamma<0\).

Contents
ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing
Networks
*Spiking Neural Networks

Neural Networks in R

\section*{Proof (cont'd).}

Claim that replacing \(w_{n+1}\) by \(w^{\prime}=w_{n+1}+\gamma / 2\) makes \(A\) and \(B\) absolutely linear separable.
Indeed, for each point \(\left(a_{1}, \ldots, a_{n}\right) \in A\),
\[
\sum_{i=1}^{n} w_{i} a_{i}-\left(w^{\prime}-\gamma / 2\right)=\sum_{i=1}^{n} w_{i} a_{i}-w_{n+1} \geq 0
\]

Thus \(\sum_{i=1}^{n} w_{i} a_{i}-w^{\prime} \geq-\gamma / 2>0\) and hence \(\sum_{i=1}^{n} w_{i} a_{i}>w^{\prime}\). Similarly, for each point \(\left(b_{1}, \ldots, b_{n}\right) \in B\),
\[
\sum_{i=1}^{n} w_{i} b_{i}-\left(w^{\prime}-\gamma / 2\right)=\sum_{i=1}^{n} w_{i} b_{i}-w_{n+1} \leq \gamma
\]

Thus \(\sum_{i=1}^{n} w_{i} b_{i}-w^{\prime} \leq \gamma / 2<0\) and hence \(\sum_{i=1}^{n} w_{i} b_{i}<w^{\prime}\).

\section*{Perceptron Learning Algorithm}
- Given two linearly separable classes \(\mathcal{A}\) and \(\mathcal{B}\) in \(\mathbb{R}^{n}\).
- Input: two finite training sets \(A\) and \(B\) of \(\mathcal{A}\) and \(\mathcal{B}\), resp.
- Find extended weight vector \(w=\left(w_{1}, \ldots, w_{n}, w_{n+1}\right)\) with \(w_{n+1}=-\theta\) such that for each extended input \(x=\left(x_{1}, \ldots, x_{n}, 1\right)\),
\[
\begin{equation*}
\langle w, x\rangle>0 \quad \text { if } x \in \mathcal{A} \tag{354}
\end{equation*}
\]
and
\[
\begin{equation*}
\langle w, x\rangle<0 \quad \text { if } x \in \mathcal{B} . \tag{355}
\end{equation*}
\]

Supervised learning from labeled training data!

\section*{Perceptron Learning Algorithm}

Require: Finite linearly separable subsets \(A\) and \(B\) of \(\mathbb{R}^{n}\)
Ensure: Weight vector \(w\) for linear separability
Choose randomly a weight vector \(w_{0}\)
\(w \leftarrow w_{0}\)
repeat
Select randomly a vector \(x \in A \cup B\)
if \(x \in A\) and \(\langle w, x\rangle \leq 0\) then \(w \leftarrow w+x\)
else if \(x \in B\) and \(\langle w, x\rangle \geq 0\) then \(w \leftarrow w-x\)
end if
until All vectors in \(A \cup B\) are classified correctly return \(w\)

Contents
ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing Networks
* Spiking Neural Networks

Neural Networks in \(R\)

\section*{Proposition}

Let \(A\) and \(B\) be finite and linearly separable subsets of \(\mathbb{R}^{n}\). The perceptron learning algorithm with input \(A, B\) provides a weight vector \(w\) after a finite number of steps which absolutely separates the two sets.

\section*{Soft Computing}

\section*{Proof.}
K.-H.

Zimmermann

\section*{Contents}

ANN Technology

\section*{Multilayer}

Perceptron
Deep Learning via Keras

\section*{Universality}

Hopfield Network
Self-Organizing Networks
* Spiking Neural Networks

Neural Networks in R

We have
- The sets \(A\) and \(B\) are joined into a single set \(C=A \cup B^{-}\), where \(B^{-}=\{-b \mid b \in B\}\) consists of the negated elements of \(B\).
- The vectors in \(C\) can be normalized, since if a weight vector \(w\) satisfies \(\langle w, x\rangle>0\) for all \(x \in C\), then \(\langle w, \eta x\rangle=\eta\langle w, x\rangle>0\) for all \(x \in C\) and any constant \(\eta>0\).
- The weight vector can be normalized by the same argument and can be chosen to absolutely separate the sets \(A\) and \(B\). This vector is denoted by \(w^{*}\).

Suppose after iteration \(t+1\) of the percetron learning algorithm the weight vector \(w_{t+1}\) has been computed, and that at time \(t\) the vector \(x \in C\) has been incorrectly classified by the weight vector \(w_{t}\). Thus we have \(w_{t+1}=w_{t}+x\). Consider the cosine of the angle between the vectors \(w_{t+1}\) and \(w^{*}\),
\[
\cos \beta=\frac{\left\langle w^{*}, w_{t+1}\right\rangle}{\left\|w_{t+1}\right\|}
\]
\[
\left\langle w^{*}, w_{t+1}\right\rangle=\left\langle w^{*}, w_{t}+x\right\rangle=\left\langle w^{*}, w_{t}\right\rangle+\left\langle w^{*}, x\right\rangle \geq\left\langle w^{*}, w_{t}\right\rangle+\epsilon
\]
where \(\epsilon=\min \left\{\left\langle w^{*}, c\right\rangle \mid c \in C\right\}\). Since the weight vector \(w^{*}\) provides an absolute separation of \(A\) and \(B\), we have \(\epsilon>0\). By induction, we obtain
\[
\left\langle w^{*}, w_{t+1}\right\rangle \geq\left\langle w^{*}, w_{0}\right\rangle+(t+1) \epsilon
\]

Moreover,
\[
\left\|w_{t+1}\right\|^{2}=\left\langle w_{t}+x, w_{t}+x\right\rangle=\left\|w_{t}\right\|^{2}+2\left\langle w_{t}, x\right\rangle+\|x\|^{2}
\]

\section*{Soft Computing}
K.-H.

Zimmermann

\section*{Contents}

ANN Technology

\section*{Multilayer}

Perceptron
Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing Networks
* Spiking Neural Networks

Neural Networks in \(R\)

\section*{Proof (cont'd).}

But we have corrected \(w_{t}\) using the input \(x\) and so \(\left\langle w_{t}, x\right\rangle \leq 0\). Thus by hypothesis, we have
\[
\left\|w_{t+1}\right\|^{2} \leq\left\|w_{t}\right\|^{2}+\|x\|^{2} \leq\left\|w_{t}\right\|^{2}+1
\]

By induction, we obtain
\[
\left\|w_{t+1}\right\|^{2} \leq\left\|w_{0}\right\|^{2}+(t+1)
\]

Therefore,
\[
\cos \beta=\frac{\left\langle w^{*}, w_{t+1}\right\rangle}{\left\|w_{t+1}\right\|} \geq \frac{\left\langle w^{*}, w_{0}\right\rangle+(t+1) \epsilon}{\sqrt{\left\|w_{0}\right\|^{2}+(t+1)}}
\]

When \(t\) becomes large, the term on the right-hand side grows proportionally to \(\sqrt{t}\). Since \(\epsilon\) is positive, the term can become arbitrarily large. But \(\cos \beta \leq 1\) and so the parameter \(t\) must be bounded from above. Hence, the number of corrections to the weight vector must be finite.

Soft Computing
K.-H.

Zimmermann

Contents
ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing Networks
* Spiking Neural Networks

Neural Networks in R

\section*{*Accelerated Perceptron Learning Algorithm}

Require: Finite linearly separable subsets \(A\) and \(B\) of \(\mathbb{R}^{n}\)
Ensure: Weight vector \(w\) for linear separability
Choose randomly a weight vector \(w_{0}\) \(w \leftarrow w_{0}\)
repeat
Select randomly a vector \(x \in A \cup B\)
if \(x \in A\) and \(\langle w, x\rangle \leq 0\) then \(\delta \leftarrow-\langle w, x\rangle\)
Choose a small number \(\epsilon>0\) \(w \leftarrow w+\frac{\delta+\epsilon}{\|x\|^{2}} x\)
else if \(x \in B\) and \(\langle w, x\rangle \geq 0\) then \(\delta \leftarrow-\langle w, x\rangle\)
Choose a small number \(\epsilon>0\) \(w \leftarrow w+\frac{\delta-\epsilon}{\|x\|^{2}} x\)
end if
until All vectors in \(A \cup B\) are classified correctly
return \(w\)

\section*{Contents}

ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing Networks
* Spiking Neural Networks

Neural Networks in \(R\)

\section*{Proposition}

Let \(A\) and \(B\) be finite and linearly separable subsets of \(\mathbb{R}^{n}\). The accelerated perceptron learning algorithm with input \(A, B\) provides a weight vector \(w\) after a finite number of steps which absolutely separates the two sets.

\section*{Proof.}

Similar to perceptron learning algorithm.

\section*{Corrective Learning}

The weight vector is not just reinforced, but completely corrects the error committed.

\section*{Contents}

ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing Networks
*Spiking Neural Networks

Neural Networks in \(R\)

\section*{Example}

Take a Boolean function \(f:\{0,1\}^{n} \rightarrow\{0,1\}\) with arity \(n \geq 1\).
- The fibres of \(f\) are
\[
f^{-1}(0)=\left\{x \in\{0,1\}^{n} \mid f(x)=0\right\}
\]
and
\[
f^{-1}(1)=\left\{x \in\{0,1\}^{n} \mid f(x)=1\right\} .
\]

Then
\[
\{0,1\}^{n}=f^{-1}(0) \cup f^{-1}(1) .
\]
- For which Boolean function \(f\) are the associated fibres linearly separable?

\section*{Example (cont'd)}

In view of Boolean AND function, the fibres
\[
f^{-1}(0)=\{(0,0),(0,1),(1,0)\} \quad \text { and } \quad f^{-1}(1)=\{(1,1)\}
\]
are linearly separable.
- Take training sets \(A=\{(0,0,1),(0,1,1),(1,0,1)\}\) and \(B=\{(1,1,1)\}\).
- Start with weight vector \(w=(0,0,0)\).
- The perceptron learning algorithm outputs (after 8 steps) weight vector \(w=(-3,-2,4)\) or normalized vector ( \(-0.56,-0.37,0.74\) ).
- We have
\[
\begin{array}{ll}
\langle(0,0,1), w\rangle=4, & \langle(0,1,1), w\rangle=2, \\
\langle(1,0,1), w\rangle=3, & \langle(1,1,1), w\rangle=-1 .
\end{array}
\]

\section*{Example (cont'd)}

Contents
ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing Networks
*Spiking Neural Networks

Neural Networks in R

Maple code:
```

> with(LinearAlgebra):
> x1:=Vector([0,0,1]): x2:=Vector ([0,1,1]):
> x3:=Vector([1,0,1]): x4:=Vector([1,1,1]):
$>\mathrm{w}:=\operatorname{Vector}([0,0,0])$:
> bval:=TRUE: i:=0:
> while (bval = TRUE) do
$>$ bval:=FALSE: i:=i+1:
$>$ if $\operatorname{DotProduct(x1,w)<=0~then~} \mathrm{w}:=\mathrm{w}+\mathrm{x} 1$; bval:=TRUE fi
$>$ if DotProduct $(x 2, w)<=0$ then $w:=w+x 2 ;$ bval:=TRUE fi;
$>$ if DotProduct(x3,w)<=0 then w:=w+x3; bval:=TRUE fi;
$>$ if DotProduct $(x 4, w)>=0$ then $w:=w-x 4 ;$ bval:=TRUE fi;
$>$ end;
> print(i); print(w);

```

Soft Computing
K.-H.

Zimmermann

\section*{Contents}

ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfieid Network
Self-Organizing Networks
* Spiking Neural Networks

Neural Networks in \(R\)

\section*{Example (cont'd)}

The Boolean XOR function has the fibres
\[
f^{-1}(0)=\{(0,0),(1,1)\} \quad \text { and } \quad f^{-1}(1)=\{(0,1),(1,0)\} .
\]



AND is linearly separable, but XOR is not!

\section*{Linear Programming for Perceptron Learning}

Given training sets \(A=\left\{a_{1}, \ldots, a_{k}\right\}\) and \(B=\left\{b_{1}, \ldots, b_{l}\right\}\) of classes \(\mathcal{A}\) and \(\mathcal{B}\) in \(\mathbb{R}^{n}\), respectively.
Define the real-valued \((k+l) \times n\) matrix
\[
A^{\prime}=\left(\begin{array}{ccc}
a_{11} & \ldots & a_{1 n}  \tag{356}\\
a_{21} & \ldots & a_{2 n} \\
\vdots & \ldots & \vdots \\
a_{k 1} & \ldots & a_{k n} \\
-b_{11} & \ldots & -b_{1 n} \\
-b_{21} & \ldots & -b_{2 n} \\
\vdots & \ldots & \vdots \\
-b_{l 1} & \ldots & -b_{l n}
\end{array}\right) .
\]

\section*{Contents}

ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfieid Network
Self-Organizing
Networks
* Spiking Neural Networks

Neural Networks in R

\section*{Linear Programming for Perceptron Learning}

Take small number \(\epsilon>0\), put \(e=(\epsilon, \ldots, \epsilon)^{t}\).
Consider the linear program
\[
\begin{array}{ll}
\min & w_{1}+\ldots+w_{n} \\
\text { s.t. } & A^{\prime} \cdot w \geq e \tag{357}
\end{array}
\]

The set of feasible solutions \(\left\{w \in \mathbb{R}^{n} \mid A^{\prime} \cdot w \geq e\right\}\) provides a hyperplane that linearly separates the training sets.

\section*{Proposition}

The linear program is solvable iff the training sets \(A\) and \(B\) are absolutely separable.
K.-H.

Contents
ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfieid Network
Self-Organizing Networks
* Spiking Neural Networks

Neural Networks in \(R\)

\section*{Example}

For the Boolean AND function, the linear program is
\[
\begin{array}{lr}
\min & w_{1}+w_{2}+w_{3} \\
\text { s.t. } & w_{3} \geq \epsilon \\
& w_{2}+w_{3} \geq \epsilon \\
w_{1}+w_{3} \geq \epsilon \\
& -w_{1}-w_{2}-w_{3} \geq \epsilon
\end{array}
\]

Maple code
> with(Optimization):
> e := 0.01:
\(>\) LPSolve(w1+w2+w3, \{w3>=e, w2+w3>=e, w1+w3>=e,
\[
-w 1-w 2-w 3>=e\}) ;
\]
gives solution \(w_{1}=-0.02, w_{2}=-0.02, w_{3}=0.03\).
K.-H.

Contents
ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfieid Network
Self-Organizing Networks
* Spiking Neural Networks

Neural Networks in \(R\)

\section*{Example}

For the Boolean XOR function, the linear program is
\[
\begin{array}{lr}
\min & w_{1}+w_{2}+w_{3} \\
\mathrm{s.t.} & -w_{3} \geq \epsilon \\
& w_{2}+w_{3} \geq \epsilon \\
w_{1}+w_{3} \geq \epsilon \\
& -w_{1}-w_{2}-w_{3} \geq \epsilon
\end{array}
\]

Maple code
> with(Optimization):
> e := 0.01:
\(>\) LPSolve(w1+w2+w3, \{-w3>=e, w2+w3>=e, w1+w3>=e,
\[
-w 1-w 2-w 3>=e\}) ;
\]
returns message that no feasible solution exists.

\title{
Multilayer Perceptron (MLP)
}
- Structure of MLP
- Training of MLP
- Backpropagation algorithm
- Backpropagation in R
- MNist

\section*{Multilayer Perceptron (MLP)}
- Layered feedforward artificial neural network with input and output.
- Directed graph with sequence of layers of nodes, each layer is fully connected to the successive layer.
- Apart from input nodes, nodes are perceptrons with nonlinear activation function.

■ Three or more layers: input layer, one or more hidden layers, and output layer.
- An \(n\) layered MLP has input layer, \(n-1\) hidden layers, and output layer.

\title{
Soft Computing
}

Contents
ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing
Networks
*Spiking Neural Networks

Neural Networks in \(R\)

\section*{Example}

Two-layered MLP:
output layer
hidden layer
input layer


Contents
ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing
Networks
* Spiking Neural Networks

Neural Networks in \(R\)

\section*{Definition}

■ MLP has \(n \geq 2\) layers with \(l\)-th layer having \(m_{l}\) units (neurons), \(1 \leq l \leq n\).
- in \((i)=\) value of \(i\)-th input neuron.
- \(w_{i j}^{(l)}=\) weight between \(i\)-th unit of layer \(l-1\) and \(j\)-th unit of layer \(l\).
■ The \(j\)-th unit of layer \(l\) computes the value
\[
\begin{equation*}
s_{j}^{(l)}=f^{(l)}\left(\sum_{i} s_{i}^{(l-1)} w_{i j}^{(l)}\right) . \tag{358}
\end{equation*}
\]
where \(f^{(l)}\) denotes an activation function; let's assume a common activation function for all units.

Soft Computing
K.-H.

Zimmermann

Contents
ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing Networks
* Spiking Neural Networks

Neural Networks in \(R\)

\section*{Definition}

Notation for \(j\)-th neuron in \(l\)-th layer of MLP:


Soft Computing
K.-H.

Zimmermann

\section*{Contents}

ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing
Networks
*Spiking Neural Networks

Neural Networks in \(R\)

\section*{Two-Layered MLP}

Layered computation:
\[
\begin{align*}
s_{k}^{(2)} & =f^{(2)}\left(\sum_{j} s_{j}^{(1)} w_{j k}^{(2)}\right),  \tag{359}\\
s_{j}^{(1)} & =f^{(1)}\left(\sum_{i} s_{i}^{(0)} w_{i j}^{(1)}\right),  \tag{360}\\
s_{i}^{(0)} & =\operatorname{in}(i) . \tag{361}
\end{align*}
\]

Network output:
\[
\begin{aligned}
s_{k}^{(2)} & =f^{(2)}\left(\sum_{j} s_{j}^{(1)} w_{j k}^{(2)}\right) \\
& =f^{(2)}\left(\sum_{j} f^{(1)}\left(\sum_{i} s_{i}^{(0)} w_{i j}^{(1)}\right) w_{j k}^{(2)}\right) .
\end{aligned}
\]

Soft Computing S-shaped Activation Functions
K.-H.

Zimmermann
- Sigmoid function:
\[
\begin{equation*}
\operatorname{sig}(x)=\frac{1}{1+e^{-x}}, \quad x \in \mathbb{R} \tag{363}
\end{equation*}
\]

Bounded, differentiable, positive derivative at each point.
- Hyperbolic tangent:
\[
\tanh (x)=2 \cdot \operatorname{sig}(2 x)-1, \quad x \in \mathbb{R}
\]


\section*{Training of MLP}

1 Take training patterns \(x^{(1)}, \ldots, x^{(M)}\) in \(\mathbb{R}^{m}\).
2 Set up MLP with \(n \geq 2\) layers.
3 Generate random initial weights from certain range.
4 Select error function \(E\) depending on the weights; take error bound \(\epsilon>0\) and learning rate \(\eta>0\).

5 Update weights according to the negative of the gradient of the error function,
\[
\begin{equation*}
\Delta w_{a b}^{(l)}=-\eta \frac{\partial E}{\partial w_{a b}^{(l)}} . \tag{365}
\end{equation*}
\]

One set of updates of all the weights for all training patterns is called an epoch of training.

6 Repeat weight update (step 5) until error is \(<\epsilon\).

\section*{Training of MLP II}

■ \(y^{(p)}=\) desired output for training pattern \(x^{(p)}\).
■ \(s_{i}^{(n, p)}=\) actual output in output layer for training pattern \(x^{(p)}\).
■ \(s_{i}^{(l, p)}=s_{i}^{(l)}\) indicates dependence on the \(p\)-th training pattern.
■ Adjust the network weights in order to minimize the error function
\[
\begin{equation*}
E=\frac{1}{2} \sum_{p=1}^{M} \sum_{j=1}^{m_{n}}\left(y_{j}^{(p)}-s_{j}^{(n, p)}\right)^{2} \tag{366}
\end{equation*}
\]
\(E=E(w)\) is a multivariate function of the network weights \(w_{i j}^{(l)}\).

\section*{Training of MLP III}

■ Method for minimizing the error function is the local method of gradient descent.

■ Multivariate function \(f(x)\) differentiable in neighborhood of point \(p\) decreases fastest if travelling from \(p\) in direction of negative gradient of \(f\) at \(p\) :
\[
\begin{equation*}
p^{\prime}=p-\eta \nabla f(p) \tag{367}
\end{equation*}
\]
for some small number \(\eta>0\). Then \(f(p) \geq f\left(p^{\prime}\right)\).
■ Start with initial point \(p^{(0)}\) and take sequence of points \(\left(p^{(k)}\right)_{k \geq 0}\) such that
\[
\begin{equation*}
p^{(k+1)}=p^{(k)}-\eta \nabla f\left(p^{(k)}\right), \quad k \geq 0 \tag{368}
\end{equation*}
\]

Then the sequence of points \(\left(p^{(k)}\right)_{k \geq 0}\) may converge to local minimum,
\[
\begin{equation*}
f\left(p^{(0)}\right) \geq f\left(p^{(1)}\right) \geq f\left(p^{(2)}\right) \geq \ldots \tag{369}
\end{equation*}
\]

\section*{Contents}

ANN Technology
Multilayer Perceptron

Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing Networks
*Spiking Neural Networks

Neural Networks in \(R\)

\section*{Training of Two-layered MLP}

Layered computation ( \(f^{(2)}=\) identity function):
\[
\begin{align*}
s_{k}^{(2)} & =\sum_{j} s_{j}^{(1)} w_{j k}^{(2)}=\sum_{j} f^{(1)}\left(\sum_{i} s_{i}^{(0)} w_{i j}^{(1)}\right) w_{j k}^{(2)} \\
s_{j}^{(1)} & =f^{(1)}\left(\sum_{i} s_{i}^{(0)} w_{i j}^{(1)}\right)  \tag{371}\\
s_{i}^{(0)} & =\operatorname{in}(i) \tag{372}
\end{align*}
\]

Partial derivative of error function w.r.t. weight \(w_{a b}^{(l)}\) :
\[
\begin{equation*}
\frac{\partial E}{\partial w_{a b}^{(l)}}=-\sum_{p} \sum_{k}\left(y_{k}^{(p)}-s_{k}^{(2, p)}\right) \cdot \frac{\partial s_{k}^{(2, p)}}{\partial w_{a b}^{(l)}} \tag{373}
\end{equation*}
\]

\section*{Training of Two-layered MLP II}

Difference quotient ( \(\delta=\) Kronecker delta):
\[
\begin{align*}
& \qquad \begin{aligned}
& \frac{\partial s_{k}^{(2)}}{\partial w_{a b}^{(2)}}=\sum_{j} s_{j}^{(1)} \frac{\partial w_{j k}^{(2)}}{\partial w_{a b}^{(2)}}=\sum_{j} s_{j}^{(1)} \delta_{j a} \delta_{k b}=s_{a}^{(1)} \delta_{k b} \\
& \text { and }\left(f=f^{(1)}\right)
\end{aligned}  \tag{374}\\
& \qquad \begin{aligned}
\frac{\partial s_{k}^{(2)}}{\partial w_{a b}^{(1)}} & =\sum_{j} f^{\prime}\left(\sum_{i} s_{i}^{(0)} w_{i j}^{(1)}\right) \cdot\left(\sum_{i} s_{i}^{(0)} \frac{\partial w_{i j}^{(1)}}{\partial w_{a b}^{(1)}}\right) \cdot w_{j k}^{(2)} \\
& =f^{\prime}\left(\sum_{i} s_{i}^{(0)} w_{i b}^{(1)}\right) \cdot s_{a}^{(0)} w_{b k}^{(2)} .
\end{aligned}
\end{align*}
\]

Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing
Networks
*Spiking Neural Networks

Neural Networks in \(R\)

Soft Computing
K.-H.

Zimmermann

Contents
ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing Networks
*Spiking Neural Networks

Neural Networks in \(R\)

\section*{Training of Two-layered MLP III}

Substitute difference quotients back into error function:
\[
\begin{aligned}
& \Delta w_{a b}^{(2)}=-\eta \frac{\partial E}{\partial w_{a b}^{(2)}} \\
&=\eta \sum_{p} \sum_{k}\left(y_{k}^{(p)}-s_{k}^{(2, p)}\right) \cdot s_{a}^{(1, p)} \delta_{k b}, \text { by }(373,374), \\
&=\eta \sum_{p}\left(y_{b}^{(p)}-s_{b}^{(2, p)}\right) \cdot s_{a}^{(1, p)}, \\
& \Delta w_{a b}^{(1)}=-\eta \frac{\partial E}{\partial w_{a b}^{(1)}} \\
&=\eta \sum_{p} \sum_{k}\left(y_{k}^{(p)}-s_{k}^{(2, p)}\right) \cdot f^{\prime}\left(\sum_{i} s_{i}^{(0, p)} w_{i b}^{(1)}\right) \cdot s_{a}^{(0, p)} w_{b k}^{(2)}, \\
& \text { using (373,375). }
\end{aligned}
\]

Soft Computing
K.-H.

Contents
ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing Networks
*Spiking Neural Networks

Neural Networks in \(R\)

Training of Two-layered MLP IV
Take as activation function the sigmoid function
\[
\begin{equation*}
f(x)=1 /\left(1+e^{-x}\right) . \tag{378}
\end{equation*}
\]

Then
\[
\begin{equation*}
f^{\prime}(x)=\frac{e^{-x}}{\left(1+e^{-x}\right)^{2}}=f(x) \cdot(1-f(x)) \tag{379}
\end{equation*}
\]

Thus by (376) (activiation function = identity function)
\[
\begin{equation*}
\Delta w_{a b}^{(2)}=\eta \sum_{p}\left(y_{b}^{(p)}-s_{b}^{(2, p)}\right) \cdot s_{a}^{(1, p)} \tag{380}
\end{equation*}
\]
and by \((371,377)\)
\[
\begin{align*}
& \Delta w_{a b}^{(1)}=  \tag{381}\\
& \quad \eta \sum_{p} \sum_{k}\left(y_{k}^{(p)}-s_{k}^{(2, p)}\right) f\left(s_{b}^{(1, p)}\right) f\left(1-s_{b}^{(1, p)}\right) s_{a}^{(0, p)} w_{b k}^{(2)}
\end{align*}
\]

\section*{Training of Two-layered MLP V}

Define output error between desired and actual output:
\[
\begin{equation*}
\delta_{b}^{(2)}=y_{b}-s_{b}^{(2)}, \quad 1 \leq b \leq m_{2} . \tag{382}
\end{equation*}
\]

Then the updating rules have the form by (380)
\[
\begin{equation*}
\Delta w_{a b}^{(2)}=\eta \sum_{p} \delta_{b}^{(2, p)} \cdot s_{a}^{(1, p)} \tag{383}
\end{equation*}
\]
and by (381)
\[
\begin{align*}
& \Delta w_{a b}^{(1)}=  \tag{384}\\
& \quad \eta \sum_{p}\left(\sum_{k} \delta_{k}^{(2, p)} w_{b k}^{(2)}\right) f\left(s_{b}^{(1, p)}\right) f\left(1-s_{b}^{(1, p)}\right) \cdot s_{a}^{(0, p)} .
\end{align*}
\]

The output error at unit \(b\) is back-propagated from output unit \(k\) by the weight \(w_{b k}^{(2)}\).

\section*{Contents}

ANN Technology
Multilayer Perceptron

Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing
Networks
*Spiking Neural Networks

Neural Networks in \(R\)

\section*{General MLP}

Extend update rule to MLPs with \(n \geq 2\) layers.
■ Output error between desired and actual output:
\[
\begin{equation*}
\delta_{b}^{(n)}=y_{b}-s_{b}^{(n)}, \quad 1 \leq b \leq m_{n} \tag{385}
\end{equation*}
\]

■ Error is propagated back successively to the preceeding layers:
\[
\begin{equation*}
\delta_{b}^{(l)}=\left(\sum_{k} \delta_{k}^{(l+1)} w_{b k}^{(l+1)}\right) \cdot f^{\prime}\left(\sum_{j} s_{j}^{(l-1)} w_{j b}^{(l)}\right) \tag{386}
\end{equation*}
\]
- Weight updates:
\[
\begin{equation*}
\Delta w_{a b}^{(l)}=\eta \sum_{p} \delta_{b}^{(l, p)} s_{a}^{(l-1, p)} \tag{387}
\end{equation*}
\]

ANN Technology
Multilayer Perceptron

Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing Networks
* Spiking Neural Networks

Neural Networks in \(R\)

\section*{Backpropagation algorithm}

Require: MLP with \(n \geq 2\) layers, training patterns \(x^{(1)}, \ldots, x^{(M)}\)
in \(\mathbb{R}^{m}\) with desired outputs \(y^{(1)}, \ldots, y^{(M)}\), error function
\(E=E(w)\), small numbers \(\epsilon>0\) and \(\eta>0\)
Ensure: Trained MLP with total error \(E(w)<\epsilon\)
Choose random weights \(w_{a b}^{(l)}\)
Compute output \(s^{(n, p)}\) for each pattern \(p\) by (358)
Compute error function \(E(w)\) by (366)
while \(E(w) \geq \epsilon\) do
Compute weight updates \(\Delta w_{a b}^{(l)}\) by (387)
Compute new weights \(w_{a b}^{(l)}\) by (367)
Compute output \(s^{(n, p)}\) for each pattern \(p\) by (358)
Compute error function \(E(w)\) by (366)
end while

Contents
ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing
Networks
* Spiking Neural Networks

Neural Networks in R

\section*{Backpropagation in R}

Library neuralnet for training of neural networks:
> library (neuralnet)
Generate MLP for Boolean XOR function:
> XOR <- c \((0,1,1,0)\)
> xor.data <- data.frame( expand.grid \((c(0,1), c(0,1))\), XOR)
> print( net.xor <- neuralnet( XOR~Var1+Var2, xor.data, hidden=2, rep=5))
> plot( net.xor, rep="best")

\section*{Soft Computing \\ K.-H. \\ Zimmermann \\ Backpropagation in R \\ MLP for Boolean XOR function:}

Contents
ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing Networks
* Spiking Neural Networks

Neural Networks in \(R\)


Error: 0.000354 Steps: 105

Soft Computing
K.-H.

Contents
ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing Networks
* Spiking Neural Networks

Neural Networks in \(R\)

\section*{Backpropagation in R}

Command prediction gives correct responses to all input combinations:
> prediction(net.xor)
Data Error: 0;
\$rep1
\begin{tabular}{lrrr} 
& Var1 & Var2 & XOR \\
1 & 0 & 0 & 0.009656447796 \\
2 & 1 & 0 & 0.995312514830 \\
3 & 0 & 1 & 0.977844488036 \\
4 & 1 & 1 & 0.018569238192
\end{tabular}
\$data
Var1 Var2 XOR
\begin{tabular}{llll}
1 & 0 & 0 & 0 \\
2 & 1 & 0 & 1 \\
3 & 0 & 1 & 1 \\
4 & 1 & 1 & 0
\end{tabular}

\section*{Remarks on MLP}

■ Two modes of learning: stochastic and batch; compromise is mini-batch.

■ Design of appropriated MLP for given problem is key.
■ Under-fitting:
Too few hidden units lead to high training errors, cannot capture underlying trends in data, poor predictive performance.
- Over-fitting:

Too many hidden units result in low training errors, excessively complex model, poor predictive performance.

■ Gradient descent with backpropagation may not find global optimum of error function \(E\), only local minimum.

\section*{Example (Deep Learning) - MNist}
- Deep learning (buzzword) refers to artificial neural networks with many processing layers.
- MNist is a database of handwritten digits for image processing systems.

■ Database has 60,000 training images and 10,000 testing images (50 MB).
- Most widely used benchmark for isolated handwritten digit recognition.
- Black-white images are normalized to \(28 \times 28=784\) pixels, pixel intensity ranges from 0 (background) to 255 (max foreground).

Contents
ANN Technology
Multilayer Perceptron

Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing Networks
*Spiking Neural Networks

Neural Networks in \(R\)

Example - MNist (cont'd)
Handwritten digits:
\[
\begin{array}{llllllllllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 \\
3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 \\
4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 \\
5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 \\
6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 \\
7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 \\
8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 \\
9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9
\end{array}
\]

Soft Computing
K.-H.

Zimmermann

\section*{Contents}

ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing Networks
* Spiking Neural Networks

Neural Networks in \(R\)

\section*{Digitalized Handwritten Digit}


\section*{Example - MNist (cont'd)}
- Some machine learning algorithms have attained human-like performance with MNist data.

■ Weakest algorithm listed has error rate \(12 \%\) (linear classifier).
- Today, there are neural network algorithms listed whose error rates range from \(0.21 \%\) to \(0.35 \%\).

\section*{Example - MNist (cont'd)}
- Deep neural network algorithm by Dan Ciresan et al. (2010) uses backpropagation, error rate \(0.35 \%\).
- Trained are 5 MLPs with 2 to 9 hidden layers and varying numbers of hidden units (Table below).
- This gives 1.34 to 12.11 million free parameters in the form of weights.
- Original grey scale images are mapped to real values \(\frac{\text { pixelIntensity }}{127.5}-1.0\) in the interval \([-1.0,1.0]\) which are then fed into the input layer.
- Weights are initialized with uniform random distribution in [-0.05, 0.05].
- Activation function is scaled hyperbolic tangent \(y(h)=A \cdot \tanh (B \cdot h)\) with \(A=1.7159\) and \(B=0.6666\).

Example - MNist (cont'd)
- For each training epoch, the MNist training set gets slightly deformed by rotation, scaling, and shearing.
- Simulations were carried out on a computer with a Core2 Quad 9450 2.66 GHz processor, 3 GB of RAM, and a GTX280 graphics card.
- This has led to a speedup of the algorithm by a factor of 40 .
- The best MLP has error rate of \(0.35 \%\) which amounts to 35 out of 10,000 test images.
- The misclassified test images are shown in the article and are only partially detectable by a human!

Contents
ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing Networks
* Spiking Neural Networks

Neural Networks in \(R\)

Example - MNist (cont'd)
MLPs for handwritten digit detection:
\begin{tabular}{cccr} 
ID & \begin{tabular}{c} 
architecture \\
(neurons per layer)
\end{tabular} & test error & \begin{tabular}{c} 
weights \\
(millions)
\end{tabular} \\
\hline 1 & \(1000,50,10\) & 0.49 & 1.34 \\
2 & \(1500,1000,50,10\) & 0.46 & 3.26 \\
3 & \(2000,1500,1000,50,10\) & 0.41 & 6.69 \\
4 & \(2500,2000,1500,1000,50,10\) & 0.35 & 12.11 \\
5 & \(9 \times 1000,10\) & 0.44 & 8.86
\end{tabular}

The output layer has always 10 neurons corresponding to the 10 digits. Decision is made using the principle "winner takes it all".

\section*{Contents}

ANN Technology
Multilayer Perceptron

Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing
Networks
* Spiking Neural Networks

Neural Networks in \(R\)

\section*{Keras}

Keras is a high-level neural network API focussing on fast experimentation.
- Same code can run on CPU or GPU.

■ User-friendly API for prototyping deep learning models.
■ Built-in support for convolutional networks (computer vision) and recurrent networks (sequence processing).
- Capable of running with Tensorflow backend (software library for differential programming).

\title{
Soft Computing
}
K.-H.

\section*{Contents}

ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing
Networks
* Spiking Neural Networks

R Interface to Keras
Download package:
> install.packages("keras")
Load package and tensorflow backend:
> library(keras)
> install_keras()

\section*{MNist Dataset}

MNist is already included in the Keras/Tensorflow installation.
mnist <- dataset_mnist()
Dataset is given by
- Training set:
- Sample images \(x\) : 60,000 \(28 \times 28\) pixel images with grey scale representation (pixels as integers \(0 \ldots 255\) )
- Responses \(y\) : vector of length 60,000 with corresponding digits between 0 and 9 .
- Testing set: same as training set, but with 10,000 images and responses.

Contents
ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing Networks
*Spiking Neural Networks

Neural Networks in \(R\)

\section*{MNist Dataset}

Detailled structure of dataset:
```

> str(mnist)
List of 2
\$ train: List of 2
.. \$ x: int [1:60000, 1:28, 1:28] 0 0 0 0 0 0 0 0 0 0
.. \$ y: int [1:60000(1d)] 5 0 4 1 9 2 1 3 1 4
\$ test: List of 2
.. \$ x: int [1:10000, 1:28, 1:28] 0 0 0 0 0 0 0 0 0 0
.. \$ y: int [1:10000(1d)] 7 2 1 0 4 1 4 9 5 9

```

\section*{MNist Dataset}

Preparation of features ( \(x\) ) and responses ( y ) for both training and testing.
> x_train <- mnist\$train\$x
> y_train <- mnist\$train\$y
> x_test <- mnist\$test\$x
> y_test <- mnist\$test\$y
Check the structure of datasets:
```

> str(x_train)

```


\section*{Contents}

ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfield Network
```

Plotting of Images
> index_image = 28 \# arbitrary
> input_matrix <- x_train[index_image, 1:28, 1:28]
\# rotate image by 90 degree
> output_matrix <- apply(input_matrix, 2, rev)
> output_matrix <- t(output_matrix)
> image(1:28, 1:28, output_matrix,
col=gray.colors(256), xlab="", ylab="")

```

\section*{Soft Computing \\ K.-H. \\ Zimmermann \\ Image Plotting \\ Image number 28:}

Contents
ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing Networks
* Spiking Neural Networks

Neural Networks in R
K.-H.

Zimmermann

\section*{Contents}

ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing Networks
* Spiking Neural Networks

Neural Networks in \(R\)

\section*{Image Representation}

\section*{Image number 28:}
```

> input_matrix

```
\begin{tabular}{crrrrrrrrrr}
{\([, 1]\)} & {\([, 2]\)} & {\([, 3]\)} & {\([, 4]\)} & {\([, 5]\)} & {\([, 6]\)} & {\([, 7]\)} & {\([, 8]\)} & {\([, 9]\)} & {\([, 10]\)} & \(\ldots\) \\
{\([1]\),} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
{\([2]\),} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
{\([3]\),} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
{\([4]\),} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
{\([5]\),} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
{\([6]\),} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
{\([7]\),} & 0 & 0 & 0 & 0 & 0 & 0 & 39 & 158 & 158 & 158 \\
{\([8]\),} & 0 & 0 & 0 & 0 & 0 & 0 & 226 & 253 & 253 & 253 \\
{\([9]\),} & 0 & 0 & 0 & 0 & 0 & 0 & 139 & 253 & 253 & 253 \\
{\([10]\),} & 0 & 0 & 0 & 0 & 0 & 0 & 39 & 34 & 34 & 34
\end{tabular}

\title{
Soft Computing
}
K.-H.

Zimmermann

\section*{Contents}

ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing Networks

\author{
Parameter Setup \\ > batch_size <- 128 \\ > num_classes <- 10 \\ > epochs <- 10 \\ > img_rows <- 28 \\ > img_cols <- 28
}
```

num [1:60000, 1:28, 1:28, 1] 0 0 0 0 0 0 0 0 0 0 ···..

```

For greyscale images, one channel is sufficient. For RGB color images, one needs three channels.

ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing Networks
*Spiking Neural Networks

Neural Networks in \(R\)

Data Preprocessing: Scaling and Categorial Variable Scaling the input values to be between 0 and 1:
> x_train <- x_train / 255
> x_test <- x_test / 255

Response variable is converted to categorial:
> y_train <- to_categorial (y_train, num_classes)
> y_test <- to_categorial(y_test, num_classes)

\section*{CNN Model Structure}
- Inventor of CNN is Yann LeCun (2016).
- CNN consists of one or more convolutional layers followed by a pooling layer.
- In deep learning, CNN consists of a sequence of such combined layers.
```

Soft Computing
K.-H.
Zimmermann

```

\section*{Contents}

ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing Networks
*Spiking Neural

\section*{CNN Model Structure} Networks

Neural Networks in \(R\)


\section*{CNN Model Structure}
- Convolutional layer performs discrete convolution via small convolution matrix:
\[
g(x, y)=(\omega * f)(x, y)=\sum_{i=-a}^{a} \sum_{j=-b}^{b} \omega(i, j) f(x-i, y-j)(388)
\]
where \(g(x, y)\) is the filtered image, \(f(x, y)\) is the original image, and \(\omega\) is the filter kernel, \((2 a+1 \times 2 b+1)\) matrix.

■ Kernels can cause a wide range of effects, e.g., edge detection:
\[
\omega=\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & -4 & 1 \\
0 & 1 & 0
\end{array}\right)
\]

■ Activation function of neuron is given by rectified linear unit (relu) \(f(x)=\max \{0, x\}\) or its differentiable approximation \(f(x)=\ln \left(1+e^{x}\right)\) (for backpropagation).

\section*{CNN Model Structure}
- In the pooling (or subsampling) layer the idea is to remove superfluous information.
- Pooling layer should prevent overfitting, reduce data and speed-up computation.

■ Max-pooling is most commonly used:
Hopfield Network
Self-Organizing Networks
* Spiking Neural Networks

Neural Networks in \(R\)


\section*{CNN Model Structure}

Layers in actual CNN:
- 2D convolutional layers parametrized with kernel_size, number of filters, activation function.
- Pooling layer is applied after each 2D convolutional layer; pool_size of \(2 \times 2\) halves the size.
- Dropout layer for regularization; e.g., dropout rate of 0.8 refers to (random) deletion of \(20 \%\) of the neurons preventing overfitting.
- Flatten layer converts 3D tensor to 1D tensor.

■ Dense layer (MLP) connects to target response classes.

\section*{Contents}

ANN Technology
Multilayer Perceptron

Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing Networks
*Spiking Neural Networks

Neural Networks in R

\section*{CNN Model for MNist}

CNN model with two 2D convolutional layers with max-pooling.
```

> cnn_model <- keras_model_sequential() %>%

+ layer_conv_2d(filters=32, kernel_size=c(3,3),
activation='relu', input_shape=input_shape) %>%
+ layer_max_pooling_2d(pool_size=c(2,2)) %>%
+ layer_conv_2d(filters=64, kernel_size=c(3,3),
activation='relu') %>%
+ layer_max_pooling_2d(pool_size=c(2,2)) %>%
+ layer_dropout(rate=0.25) %>%
+ layer_flatten() %%%
+ layer_dense(units=128, activation='relu') %>%
+ layer_dropout(rate=0.5) %>%
+ layer_dense(units=num_classes, activation='softmax')

```
softmax \(=\) normalized e-function

Contents
ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing
Networks
*Spiking Neural Networks

Neural Networks in \(R\)

\section*{CNN Model for MNist}

Compilation of defined CNN model:
> cnn_model \%>\% compile
+ loss = loss_categorial_crossentropy,
+ optimizer = optimizer_adadelta(),
+ metrics \(=c(\) 'accuracy')
)

Contents
ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing Networks
*Spiking Neural Networks

Neural Networks in R

\section*{CNN Model for MNist}

Training of the model via 10 epochs:
```

cnn_history <- cnn_model %>% fit(

+ x_train, y_train,
+ batch_size = batch_size,
+ epochs = epochs,
+ validation_split = 0.2)

```

Train on 48000 samples, validate on 12000 samples
This program is run on CPU (approx. 30 min ). The training time can be significantly reduced if run on GPU.
```

Soft Computing
K.-H.
Zimmermann
Contents
ANN Technology

```

\section*{CNN Model for MNist \\ Training accuracy}
Multilayer
Perceptron
Deep Learning via
Keras
Universality
Hopfield Network
Self-Organizing
Networks
*Spiking Neural
Networks
Neural Networks
in \(R\)
```

Epoch 1/10
48000/48000 - accuracy: 0.8861
Epoch 2/10
48000/48000 - accuracy: 0.9639
Epoch 3/10
48000/48000 - accuracy: 0.9723
Epoch 4/10
48000/48000 - accuracy: 0.9783
Epoch 5/10
48000/48000 - accuracy: 0.9803
Epoch 6/10
48000/48000 - accuracy: 0.9822
Epoch 7/10
48000/48000 - accuracy: 0.9842
Epoch 8/10
48000/48000 - accuracy: 0.9850
Epoch 9/10
48000/48000 - accuracy: 0.9870
Epoch 10/10
48000/48000 - accuracy: 0.9875

```

\section*{Soft Computing \\ K.-H. \\ Zimmermann \\ CNN Model for MNist \\ > plot(cnn_history)}

\section*{Contents}

ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing Networks
*Spiking Neural Networks

Neural Networks in \(R\)


Contents
ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing
Networks
* Spiking Neural Networks

Neural Networks in \(R\)

CNN Model for MNist
Model prediction of new images:
> cnn_pred <- cnn_model \%>\%
+ predict_classes(x_test)
> head(cnn_pred, n=10)
\[
\text { [1] } 7 \begin{array}{llllllllll} 
& 2 & 1 & 0 & 4 & 1 & 4 & 9 & 5 & 9
\end{array}
\]

Check number of misclassified images
> sum (cnn_pred ! = mnist\$test\$y)

\section*{[1] 83}

Error rate of \(0.83 \%\) means 83 out of 10.000 test images.
> missed_image = mnist\$test\$x[cnn_pred!=mnist\$test\$y,,]
\(>\) missed_digit \(=\) mnist\$test\$y[cnn_pred!=mnist\$test\$y]
> missed_pred \(=\) cnn_pred[cnn_pred!=mnist\$test\$y]
> index_image = 2 \# arbitrary
> input_matrix <- missed_image[index_image, 1:28, 1:28]
> output_matrix <- apply(input_matrix, 2, rev)
> output_matrix <- t(output_matrix)
> image(1:28, 1:28, output_matrix,
col=gray.colors(256),
xlab=paste (
'Image for digit ', missed_digit[index_image], ', wrongly predicted as ',missed_pred[index_image]) ylab="")
```

Soft Computing
K.-H.
Zimmermann
Contents
ANN Technology
Multilayer
Perceptron
Deep Learning via
Keras
Universality
Hopfield Network
Self-Organizing
Networks
*Spiking Neural
Networks
Neural Networks
in R

```

\section*{CNN Model for MNist}


\title{
Universal Function Representation and Approximation
}

Fundamental results about representation and approximation capabilities of feedforward neural networks.
- Kolmogorov network

■ *Sprecher's learning algorithm
- *Cybenko's approximation network

\section*{Theorem (Kolmogorow, 1957)}

Let \(n \geq 2\). Each continuous function \(f:[0,1]^{n} \rightarrow \mathbb{R}\) has a representation of the form
\[
\begin{equation*}
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{q=1}^{2 n+1} \phi_{q}\left(\sum_{p=1}^{n} \psi_{p, q}\left(x_{p}\right)\right) \tag{389}
\end{equation*}
\]
where \(\phi_{q}\) and \(\psi_{p, q}\) are monadic continuous functions, \(1 \leq q \leq 2 n+1\) and \(1 \leq p \leq n\).
The inner functions \(\psi_{p, q}\) are monotonic increasing and independent of the function \(f\).

Kolmogorov's proof is not constructive; unclear how to choose the involved monadic functions.

Soft Computing
K.-H.

Zimmermann

Contents
ANN Technology
Multilayer Perceptron

Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing Networks
* Spiking Neural Networks

Neural Networks in R

\section*{Universal Function Representation and Approximation} Rewrite the representation of \(f\) :
\[
\begin{align*}
f\left(x_{1}, \ldots, x_{n}\right)= & \phi_{1}\left(y_{1}\right)+\phi_{2}\left(y_{2}\right)+\ldots+\phi_{2 n+1}\left(y_{2 n+1}\right), \\
y_{q}= & \psi_{1, q}\left(x_{1}\right)+\psi_{2, q}\left(x_{2}\right)+\ldots+\psi_{n, q}\left(x_{n}\right),  \tag{390}\\
& 1 \leq q \leq 2 n+1 .
\end{align*}
\]

Layered network for the computation of continuous function:


Contents
ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing
Networks
*Spiking Neural Networks

Neural Networks in \(R\)

\section*{Example}

Dyadic continuous function \(f:[0,1]^{2} \rightarrow \mathbb{R}\) has representation
\[
f\left(x_{1}, x_{2}\right)=\sum_{q=1}^{5} \phi_{q}\left(y_{q}\right)
\]
where the \(\phi_{q}\) are monadic continuous functions and
\[
\begin{aligned}
y_{1} & =\psi_{1,1}\left(x_{1}\right)+\psi_{2,1}\left(x_{2}\right) \\
& \vdots \\
y_{5} & =\psi_{1,5}\left(x_{1}\right)+\psi_{2,5}\left(x_{2}\right)
\end{aligned}
\]
where the \(\psi_{p, q}\) are monadic continuous functions.

Soft Computing
K.-H.

Zimmermann

Contents
ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing Networks
* Spiking Neural Networks

Neural Networks in \(R\)

\section*{Example}

Consider the dyadic multiplication \(f\left(x_{1}, x_{2}\right)=x_{1} \cdot x_{2}\). Then
\[
x_{1} \cdot x_{2}=\frac{1}{4}\left(x_{1}+x_{2}\right)^{2}-\frac{1}{4}\left(x_{1}-x_{2}\right)^{2} .
\]

Define the functions
\[
\phi_{1}(t)=\frac{1}{4} t^{2}, \phi_{2}(t)=-\frac{1}{4} t^{2}, \phi_{3}(t)=\phi_{4}(t)=\phi_{5}(t)=0
\]
and
\[
\psi_{1,1}(x)=\psi_{2,1}(x)=\psi_{1,2}(x)=x \quad \text { and } \quad \psi_{2,2}(x)=-x .
\]

Then
\[
\begin{aligned}
x_{1} \cdot x_{2} & =\phi_{1}\left(x_{1}+x_{2}\right)+\phi_{2}\left(x_{1}+\left(-x_{2}\right)\right) \\
& =\phi_{1}\left(\psi_{1,1}\left(x_{1}\right)+\psi_{2,1}\left(x_{2}\right)\right)+\phi_{2}\left(\psi_{1,2}\left(x_{1}\right)+\psi_{2,2}\left(x_{2}\right)\right) .
\end{aligned}
\]
```

Soft Computing
K.-H.
Zimmermann

```

\section*{Example (cont'd)}

Layered network structure for dyadic multiplication:
Contents
ANN Technology
Multilayer
Perceptron
Deep Learning via
Keras
Universality
Hopfield Network
Self-Organizing
Networks
*Spiking Neural
Networks
Neural Networks
in \(R\)

Contents
ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing Networks
*Spiking Neural Networks

Neural Networks in \(R\)

*Theorem (Sprecher, 1965)
Let \(n \geq 2\). Each continuous function \(f:[0,1]^{n} \rightarrow \mathbb{R}\) has a representation of the form
\[
\begin{equation*}
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{q=0}^{2 n} \phi_{q}\left(\sum_{p=1}^{n} \lambda_{p} \psi\left(x_{p}+q \alpha\right)\right) \tag{391}
\end{equation*}
\]
where \(\psi\) and \(\phi_{0}, \ldots, \phi_{2 n}\) are continuous functions, and \(\alpha\) and \(\lambda_{1}, \ldots, \lambda_{n}\) are constants.
The inner function \(\psi\) is monotonic increasing and independent of the function \(f\).

This representation uses one inner function \(\psi\) plus \(n+1\) constants \(\alpha, \lambda_{1}, \ldots, \lambda_{n}\) instead of \((2 n+1) n\) inner functions \(\psi_{p, q}\).

\section*{Contents}

\section*{Sprecher's Learning Algorithm}

Given dyadic continuous function \(f:[0,1]^{2} \rightarrow \mathbb{R}\).
- Define inner function \(\psi\).
- Construct sequence of continuous functions \(\left(f_{i}\right)\) which converges uniformly to \(f\).

Contents
ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing
Networks
*Spiking Neural Networks

Neural Networks in \(R\)

\section*{Sprecher's Inner Function}

■ Let \(k \geq 1\). Consider the terminating decimals of length \(k\),
\[
\begin{equation*}
d_{k}=\sum_{r=1}^{k} \frac{i_{r}}{10^{r}}, \tag{392}
\end{equation*}
\]
where \(0 \leq i_{r} \leq 9\) for each \(1 \leq r \leq k\).
Example: For \(k=3\), we have 0.001, 0.100, and 0.999.
- Define point function \(\psi_{1}\) as
\[
\begin{equation*}
\psi_{1}\left(d_{1}\right)=d_{1} \tag{393}
\end{equation*}
\]
for each terminating decimal \(d_{1}\) of length 1 . Extend \(\psi_{1}\) to continuous staircase function on \([0,1]\) by connecting consecutive points with line segments; this gives the identity function on \([0,1]\).

\section*{Sprecher's Inner Function}

Second, define point function \(\psi_{2}\) on terminating decimals of length \(k=2\),
\[
\begin{align*}
\psi_{2}\left(\frac{i_{2}}{10^{2}}\right) & = \begin{cases}\left.\frac{i_{2}}{\frac{1}{0^{\beta(2)}}\left(\frac{8}{10}\right.}+\frac{1}{10^{\beta(2)}}+\frac{1}{10}\right) & \text { if } i_{2}=9\end{cases}  \tag{394}\\
\psi_{2}\left(\frac{1}{10}\right) & =\frac{1}{10} \tag{395}
\end{align*}
\]
and
\[
\begin{equation*}
\psi_{2}\left(\frac{i_{1}}{10}+\frac{i_{2}}{10^{2}}\right)=\frac{i_{1}}{10}+\psi_{2}\left(\frac{i_{2}}{10^{2}}\right) . \tag{396}
\end{equation*}
\]

Extend \(\psi_{2}\) to continuous staircase function on \([0,1]\) by connecting consecutive points with line segments.

\section*{Contents}

ANN Technology
Multilayer Perceptron

Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing Networks
* Spiking Neural Networks

Neural Networks in \(R\)

\section*{Sprecher's Inner Function}

The point function \(\psi_{2}\) and its extension to a continuous staircase function:


\section*{Soft Computing}
K.-H.

\section*{Contents}

ANN Technology
Multilayer Perceptron

Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing
Networks
*Spiking Neural Networks

Neural Networks in R

\section*{Sprecher's Inner Function}
- \(\mathcal{Q}_{k}=\) the set of terminating rational numbers of length \(k \geq 1\) in \([0,1]\).
- \(\mathcal{Q}=\bigcup_{k \geq 0} \mathcal{Q}_{k}\) the set of all terminating rational numbers in [0, 1].

■ \(\mathcal{Q}\) is dense in \([0,1]\); i.e., each interval contained in \([0,1]\) has an element of \(\mathcal{Q}\).

For \(k \geq 1\) define the point function \(\psi_{k}\) on \(\mathcal{Q}_{k}\) as
\[
\begin{aligned}
& \psi_{k}\left(d_{k}\right)= \\
& \qquad \begin{array}{ll}
d_{k} & k=1, \\
\psi_{k}\left(d_{k}-\frac{i_{k}}{10^{k}}\right)+\frac{i_{k}}{10^{\beta(k)}} & k>1 \text { and } 0 \leq i_{k} \leq 8 \\
\frac{1}{2}\left(\psi_{k}\left(d_{k}-\frac{1}{10^{k}}\right)+\psi_{k-1}\left(d_{k}+\frac{1}{10^{k}}\right)\right) & k>1 \text { and } i_{k}=9 .
\end{array}
\end{aligned}
\]

Extend \(\psi_{k}\) to continuous staircase function on \([0,1]\) by connnecting consecutive points with line segments.

\section*{Sprecher's Inner Function}
- The set of real numbers is the set of limits of infinite decimal sequences, i.e., each real number \(x \in[0,1]\) has a representation to base 10 as
\[
\begin{equation*}
x=\sum_{r=1}^{\infty} \frac{i_{r}}{10^{r}}=\lim _{k \rightarrow \infty} \sum_{r=1}^{k} \frac{i_{r}}{10^{r}} \tag{398}
\end{equation*}
\]

■ Define the limit of the sequence of (extended) functions \(\left(\psi_{k}\right)\) by extending the dense set \(\mathcal{Q}\) to \([0,1]\),
\[
\begin{equation*}
\psi(x)=\lim _{k \rightarrow \infty} \psi_{k}\left(\sum_{r=1}^{k} \frac{i_{r}}{10^{r}}\right) \tag{399}
\end{equation*}
\]

The (pointwise) limit exists and the limiting function \(\psi\) is continuous and monotonic increasing; note that \(\psi\) is Lipschitz continuous, but not smooth.

\section*{Sprecher's Outer Functions}
- For the terminating decimals of length \(k\), put
\[
\begin{equation*}
\delta_{k}=\frac{8}{9 \cdot 10^{k}}=8 \sum_{r=k+1}^{\infty} \frac{1}{10^{r}} . \tag{400}
\end{equation*}
\]
- Consider the intervals of length \(\delta_{k}\),
\[
\begin{equation*}
I_{k}\left(d_{k}\right)=\left[d_{k}, d_{k}+\delta_{k}\right] . \tag{401}
\end{equation*}
\]

The inverval \(I_{k}\left(d_{k}\right)\) contains the disjoint union of nine intervals,
\[
I_{k+1}\left(d_{k}\right) \dot{\cup} I_{k+1}\left(d_{k}+\frac{1}{10^{k+1}}\right) \dot{\cup} \ldots \dot{\cup} I_{k+1}\left(d_{k}+\frac{8}{10^{k+1}}\right)(402)
\]
and the interval \(I_{k+1}\left(d_{k}+\frac{9}{10^{k+1}}\right)\) lies in the gap between the intervals \(I_{k}\left(d_{k}\right)\) and \(I_{k}\left(d_{k}+\frac{1}{10^{k}}\right)\).

\section*{Soft Computing}
K.-H.

Zimmermann

Contents
ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing Networks
* Spiking Neural Networks

Neural Networks in R

\section*{Sprecher's Outer Functions}

■ For each number \(k \geq 1\), the intervals \(I_{k}\left(d_{k}\right)\) will be translated by the displacements
\[
\begin{equation*}
\frac{q}{9 \cdot 10}=q \sum_{r=2}^{\infty} \frac{1}{10^{r}}, \quad 0 \leq q \leq 4 \tag{403}
\end{equation*}
\]

This gives a larger family of intervals,
\[
\begin{equation*}
I_{q, k}=\left[d_{k}-\frac{q}{9 \cdot 10}, d_{k}+\delta_{k}-\frac{q}{9 \cdot 10}\right] \tag{404}
\end{equation*}
\]

■ We have \(I_{0, k}\left(d_{k}\right)=I_{k}\left(d_{k}\right)\). The geometry of the translated intervals is similar to that of the intervals \(I_{k}\left(d_{k}\right)\).
- Define the Cartesian products
\[
S_{q, k}\left(d_{1 k}, d_{2 k}\right)=I_{q, k}\left(d_{1 k}\right) \times I_{q, k}\left(d_{2 k}\right), 0 \leq q \leq 4, k \geq 1(405)
\]
where \(d_{1 k}\) and \(d_{2 k}\) are terminating decimals of length \(k\).
These squares have diameter \(\sqrt{2} \cdot \delta_{k}\).

\section*{Sprecher's Outer Functions}

Claim that the given continuous function \(f:[0,1]^{2} \rightarrow \mathbb{R}\) can be represented as
\[
\begin{align*}
f\left(x_{1}, x_{2}\right) & =\phi_{0}\left(y_{0}\right)+\ldots+\phi_{4}\left(y_{4}\right)  \tag{406}\\
y_{q} & =\psi\left(x_{1}+q \alpha\right)+\lambda \psi\left(x_{2}+q \alpha\right), \quad 0 \leq q \leq 4
\end{align*}
\]

Construct a sequence of continuous functions \(\left(f_{i}\right)\) which converges uniformly to \(f\).

Supremum norm of real-valued bounded function \(f\) on \([0,1]^{2}\),
\[
\begin{equation*}
\|f\|=\sup \left\{|f(x, y)| \mid(x, y) \in[0,1]^{2}\right\} . \tag{407}
\end{equation*}
\]

\section*{Contents}

ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing Networks
* Spiking Neural Networks

\section*{Sprecher's Outer Functions}

■ Let \(k=k_{1} \geq 1\). Define the functions \(\phi_{q, 1}\) as
\[
\begin{equation*}
\phi_{q, 1}\left(y_{q}\right)=\frac{1}{3} f\left(d_{1, k_{1}}, d_{2, k_{1}}\right), \quad 0 \leq q \leq 4, \tag{408}
\end{equation*}
\]
for each \(\left(x_{1}, x_{2}\right) \in S_{q, k_{1}}\left(d_{1, k_{1}}, d_{2, k_{1}}\right)\). Extend these functions to continuous staircase functions on \([0,1]\) by connecting consecutive points with line segments.

\section*{Sprecher's Outer Functions}
- Define the function \(f_{1}\) as
\[
\begin{align*}
& f_{1}\left(x_{1}, x_{2}\right)=  \tag{409}\\
& \quad \sum_{q=0}^{4} \phi_{q, 1}\left(y_{q}\right)=\sum_{q=0}^{4} \phi_{q, 1}\left(\psi\left(x_{1}+q \alpha\right)+\lambda \psi\left(x_{2}+q \alpha\right)\right)
\end{align*}
\]

Take an error value \(\epsilon>0\) and choose the number \(k_{1}\) large enough such that
\[
\begin{equation*}
\left|f_{1}\left(x_{1}, x_{2}\right)-f_{1}\left(x_{1}^{\prime}, x_{2}^{\prime}\right)\right| \leq \epsilon\|f\| \tag{410}
\end{equation*}
\]
for all pairs \(\left(x_{1}, x_{2}\right),\left(x_{1}^{\prime}, x_{2}^{\prime}\right)\) in \(S_{q, k_{1}}\left(d_{1, k_{1}}, d_{2, k_{1}}\right)\).

\section*{Contents}

ANN Technology

\section*{Multilayer}

Perceptron

\section*{Sprecher's Outer Functions}

■ For each point \(\left(x_{1}, x_{2}\right) \in[0,1]^{2}\), we have
\[
\begin{equation*}
\left|f\left(x_{1}, x_{2}\right)-\phi_{q, 1}\left(y_{q}\right)\right| \leq \frac{1}{3} \epsilon\|f\| \text {. } \tag{411}
\end{equation*}
\]

It follows that for all \(\left(x_{1}, x_{2}\right) \in[0,1]^{2}\),
\[
\begin{equation*}
\left|f\left(x_{1}, x_{2}\right)-f_{1}\left(x_{1}, x_{2}\right)\right| \leq\left(\epsilon+\frac{2}{3}\right)\|f\| . \tag{412}
\end{equation*}
\]

\section*{Sprecher's Outer Functions}
- By continuing this process, we obtain for each \(r \geq 1\),
\[
\begin{equation*}
\left\|\phi_{q, r}\right\| \leq \frac{1}{3}\left(\epsilon+\frac{2}{3}\right)^{r-1}\|f\|, \quad 0 \leq q \leq 4 \tag{413}
\end{equation*}
\]
and
\[
\begin{equation*}
\left\|f-\sum_{i=1}^{r} f_{i}\right\| \leq\left(\epsilon+\frac{2}{3}\right)^{r}\|f\| . \tag{414}
\end{equation*}
\]

■ We have \(\left(\epsilon+\frac{2}{3}\right)^{r} \rightarrow 0\) for \(r \rightarrow \infty\) if \(0<\epsilon<\frac{1}{3}\). With this setting, the function series \(\left(\sum_{i} f_{i}\right)\) and \(\left(\phi_{q, i}\right)\) are convergent uniformly to the functions \(f\) and \(\phi_{q}\), respectively. It follows that the functions \(f\) and \(\phi_{q}, 0 \leq q \leq 4\), are continuous.

\section*{Corollary}

Each multivariate continuous function can be represented by a network of monadic functions and addition operations called Kolmogorov network.

Universality
Hopfield Network
Self-Organizing
Networks
* Spiking Neural Networks

Neural Networks in \(R\)

See diagram in manuscript.

\section*{*Approximation Result}
- Approximation of continuous function when exact reproducibility is not required and a bounded approximation error is accepted.
- \(C\left(I_{n}\right)=\) space of continuous functions on \(I_{n}=[0,1]^{n}\); supremum norm on \(C\left(I_{n}\right)\) is denoted by \(\|\cdot\|\).
- \(M\left(I_{n}\right)=\) space of finite, signed regular Borel measures on \(I_{n}\).
- A function \(\sigma: \mathbb{R} \rightarrow \mathbb{R}\) is discriminatory if for some measure \(\mu \in M\left(I_{n}\right)\),
\[
\begin{equation*}
\int_{I_{n}} \sigma\left(\sum_{i=1}^{n} x_{i} y_{i}+\theta\right) d \mu(x)=0 \tag{415}
\end{equation*}
\]
for all \(y \in \mathbb{R}^{n}\) and \(\theta \in \mathbb{R}\) implies that \(\mu=0\).

\section*{Proposition}

Let \(\sigma\) be a discriminatory function. The finite sums of the form
\[
\begin{equation*}
F(x)=\sum_{j=1}^{m} \alpha_{j} \sigma\left(\sum_{i=1}^{n} x_{i} y_{j i}+\theta_{j}\right), \quad x \in I_{n} \tag{417}
\end{equation*}
\]
with parameters \(\alpha_{j}, y_{j i}, \theta_{j} \in \mathbb{R}\) are dense in \(C\left(I_{n}\right)\); that is, for all \(f \in C\left(I_{n}\right)\) and \(\epsilon>0\), there is a sum \(F(x)\) with
\[
\begin{equation*}
|F(x)-f(x)|<\epsilon \quad \text { for all } x \in I_{n} \tag{418}
\end{equation*}
\]

\section*{Proof [Sketch]}

■ Let \(L=\) set of functions \(F(x)\) as above; \(L\) is a linear subspace of \(C\left(I_{n}\right)\).

■ Claim that closure of \(L\) denoted by \(\bar{L}\) is dense in \(C\left(I_{n}\right) ; \bar{L}\) closed proper subspace of \(C\left(I_{n}\right)\). Suppose \(\bar{L}\) is not all of \(C\left(I_{n}\right)\);

■ Hahn-Banach theorem: \(\exists\) bounded linear functional \(\ell \neq 0\) on \(C\left(I_{n}\right)\) with \(\ell(L)=\ell(\bar{L})=0\).

■ Riesz representation theorem: Functional \(\ell\) has the form
\[
\begin{equation*}
\ell(h)=\int_{I_{n}} h(x) d \mu(x), \quad h \in C\left(I_{n}\right) \tag{419}
\end{equation*}
\]
for some \(\mu \in M\left(I_{n}\right)\).

\section*{Proof [Sketch] cont'd}
- \(\sigma\left(\sum_{i=1}^{n} x_{i} y_{i}+\theta\right) \in \bar{L}\) for all \(y \in \mathbb{R}^{n}\) and \(\theta \in \mathbb{R}\). Then
\[
\begin{equation*}
\int_{I_{n}} \sigma\left(\sum_{i=1}^{n} x_{i} y_{i}+\theta\right) d \mu(x)=0 \tag{420}
\end{equation*}
\]
for all \(y \in \mathbb{R}^{n}\) and \(\theta \in \mathbb{R}\).
■ But \(\sigma\) is discriminatory and so \(\mu=0\) contradicting the hypothesis that \(\ell \neq 0\). Hence, the subspace \(L\) is dense in \(C\left(I_{n}\right)\).

\section*{Lemma}

Each continuous sigmoidal function \(\sigma\) is discriminatory.

\section*{Theorem (Cybenko, 1989)}

Let \(\sigma\) be a continuous sigmoidal function. The finite sums of the shape
\[
\begin{equation*}
F(x)=\sum_{j=1}^{m} \alpha_{j} \sigma\left(\sum_{i=1}^{n} x_{i} y_{j i}+\theta_{j}\right), \quad x \in I_{n} \tag{421}
\end{equation*}
\]
with parameters \(\alpha_{j}, y_{j i}, \theta_{j} \in \mathbb{R}\) are dense in \(C\left(I_{n}\right)\); that is, for all \(f \in C\left(I_{n}\right)\) and \(\epsilon>0\), there is a sum \(F(x)\) with
\[
\begin{equation*}
|F(x)-f(x)|<\epsilon \quad \text { for all } x \in I_{n} . \tag{422}
\end{equation*}
\]

Use the Proposition and note that by the Lemma continuous sigmoidal functions are discriminatory.

Contents
ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing Networks
* Spiking Neural Networks

Neural Networks in \(R\)

Network for the approximation of continuous function \(f\) :


MLPs with one hidden layer can approximate continuous functions with arbitrary precision if there are no constraints on the number of units and the size of the weights.

\section*{Contents}

ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing Networks
*Spiking Neural Networks

Neural Networks in \(R\)

\section*{Pattern Classification}
- \(\mu=\) Lebesgue measure on \(I_{n}\).

■ Partition of \(I_{n}\) into \(k\) disjoint measurable subsets \(P_{1}, \ldots, P_{k}\) of \(I_{n}\).

■ Find decision function \(f: I_{n} \rightarrow\{1, \ldots, k\}\) such that
\[
\begin{equation*}
f(x)=i \quad \Longleftrightarrow \quad x \in P_{i}, \quad x \in I_{n} . \tag{423}
\end{equation*}
\]

Contents
ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing Networks
* Spiking Neural Networks

Neural Networks in \(R\)

\section*{Theorem}

Let \(\sigma\) be a continuous sigmoidal function and let \(f\) be a decision function for any finite measurable partition of \(I_{n}\) with Lebesgue measure \(\mu\). For each \(\epsilon>0\), there is a finite sum of the shape
\[
\begin{equation*}
F(x)=\sum_{j=1}^{m} \alpha_{j} \sigma\left(\sum_{i=1}^{n} x_{i} y_{j i}+\theta_{j}\right), \quad x \in I_{n}, \tag{424}
\end{equation*}
\]
with parameters \(\alpha_{j}, y_{j i}, \theta_{j} \in \mathbb{R}\) and a subset \(D\) of \(I_{n}\) such that \(\mu(D) \geq 1-\epsilon\) and
\[
\begin{equation*}
|F(x)-f(x)|<\epsilon \quad \text { for all } x \in D . \tag{425}
\end{equation*}
\]

\section*{Proof.}

Lusin's theorem states that each measurable function is a continuous function on nearly all its domain. More precisely, there is a continuous function \(h: I_{n} \rightarrow \mathbb{R}\) and a subset \(D\) of \(I_{n}\) such that \(\mu(D) \geq 1-\epsilon\) and \(h(x)=f(x)\) for all \(x \in D\). Thus by Cybenko's result, there is a function \(F\) of the required form such that \(|F(x)-h(x)|<\epsilon\) for all \(x \in I_{n}\). Hence, \(|F(x)-f(x)|=|F(x)-h(x)|<\epsilon\) for all \(x \in D\).

MLPs with one hidden layer can approximate these kind of decision functions with arbitrary precision if there are no constraints on the number of units and the size of the weights.
The total measure of incorrectly classified points can be made arbitrarily small.

\section*{Contents}

ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing
Networks

\section*{Hopfield Network}

■ Recurrent neural network
■ Hebb's learning rule
*Spiking Neural Networks

Neural Networks in \(R\)

\section*{Contents}

ANN Technology
Multilayer Perceptron

Deep Learning via Keras

\section*{Universality}

Hopfield Network
Self-Organizing Networks
* Spiking Neural Networks

Neural Networks in \(R\)

Recurrent neural network: neural network structure with bidirectional connections (Hopfield, 1982)


\section*{Contents}

ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing
Networks
*Spiking Neural Networks

Neural Networks in R

\section*{Structure}

■ Neuron \(i\) has state \(s_{i} \in\{ \pm 1\} ; s_{i}=1\) if neuron is excited transmitting a signal, \(s_{i}=-1\) if neuron is at rest.

■ Synaptic efficacy (weight) \(w_{i j}\) between neurons \(i\) and \(j\) can be positive (excitatory) or negative (inhibitory).
- Local field (input to neuron \(i\) )
\[
\begin{equation*}
h_{i}=\sum_{j} w_{i j}\left(s_{j}+1\right) \tag{426}
\end{equation*}
\]

Input signal from neuron \(j\) to neuron \(i\) is \(2 w_{i j}\) if \(s_{j}=1\) and 0 if \(s_{j}=-1\).
K.-H.

Contents
ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing Networks
*Spiking Neural Networks

Neural Networks in \(R\)

\section*{Structure}

■ Neuron \(i\) is excited if local field exceeds threshold \(\theta_{i}\) at time \(t\) :
\[
\begin{align*}
s_{i}(t+\Delta t) & =\operatorname{sgn}\left(\sum_{j} w_{i j}\left(s_{j}(t)+1\right)-\theta_{i}\right) \\
& =\operatorname{sgn}\left(h_{i}(t)-\theta_{i}\right) \\
& = \begin{cases}+1 & \text { if } h_{i}(t) \geq \theta_{i}, \\
-1 & \text { otherwise. }\end{cases} \tag{427}
\end{align*}
\]
- Assume threshold \(\theta_{i}\) is proportional to synaptic efficacy of input neurons, i.e., \(\theta_{i}=\sum_{j} w_{i j}\). Then
\[
\begin{equation*}
s_{i}(t+\Delta t)=\operatorname{sgn}\left(\sum_{j} w_{i j} s_{j}(t)\right) . \tag{428}
\end{equation*}
\]

\section*{Structure}
- Given a recurrent neural network with \(N\) neurons.
- Study the problem of memorization of patterns.
- Take collection of patterns of excitation \(\left\{\xi^{(1)}, \ldots, \xi^{(p)}\right\}\), where \(\xi^{(\mu)}=\left(\xi_{1}^{(\mu)}, \ldots, \xi_{N}^{(\mu)}\right) \in\{ \pm 1\}^{N}\) for \(1 \leq \mu \leq p\).

■ The memorized patterns should be stable fixed points under the time evolution rule:

If
\[
\begin{equation*}
s_{i}(t)=\xi_{i}^{(\mu)} \tag{429}
\end{equation*}
\]
for all \(1 \leq i \leq N\) and for some \(t \geq 0\) and some \(1 \leq \mu \leq p\), then
\[
\begin{equation*}
s_{i}(t+\Delta t)=\xi_{i}^{(\mu)} \tag{430}
\end{equation*}
\]
for all \(1 \leq i \leq N\).

Soft Computing
K.-H.

Zimmermann

Contents
ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing
Networks
* Spiking Neural Networks

Neural Networks in \(R\)

\section*{Hebb's Rule}
- For random patterns, each pattern \(\xi^{(\mu)}\) is a stable fixed point as long as \(p\) is not too large and we put
\[
\begin{equation*}
w_{i j}=\frac{1}{N} \sum_{\mu=1}^{p} \xi_{i}^{(\mu)} \xi_{j}^{(\mu)}, \quad 1 \leq i \neq j \leq N \tag{431}
\end{equation*}
\]

Moreover, \(w_{i i}=0\).
■ Suppose \(s_{i}(t)=\xi_{i}^{(\mu)}\) for all \(1 \leq i \leq N\) and some \(t \geq 0\) and some \(1 \leq \mu \leq p\). Then by \((428,431)\),
\[
\begin{align*}
s_{i}(t+\Delta t) & =\operatorname{sgn}\left(\sum_{j} w_{i j} \xi_{j}^{(\mu)}\right)  \tag{432}\\
& =\operatorname{sgn}\left(\frac{1}{N} \sum_{j} \sum_{\nu} \xi_{i}^{(\nu)} \xi_{j}^{(\nu)} \xi_{j}^{(\mu)}\right)
\end{align*}
\]

Soft Computing
K.-H.

Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing Networks
* Spiking Neural Networks

Neural Networks in \(R\)

\section*{Hebb's Rule}

■ Approximate orthogonality relation between random patterns holds for large \(N\),
\[
\begin{equation*}
\frac{1}{N} \sum_{j} \xi_{j}^{(\mu)} \xi_{j}^{(\nu)}=\delta_{\nu, \mu}+O\left(\frac{1}{\sqrt{N}}\right) \tag{433}
\end{equation*}
\]

■ Then
\[
\begin{aligned}
\operatorname{sgn}\left(\sum_{j} w_{i j} \xi_{j}^{(\mu)}\right) & =\operatorname{sgn}\left(\frac{1}{N} \sum_{j} \sum_{\nu} \xi_{i}^{(\nu)} \xi_{j}^{(\nu)} \xi_{j}^{(\mu)}\right) \\
& =\operatorname{sgn}\left(\sum_{\nu} \xi_{i}^{(\nu)} \delta_{\nu, \mu}\right)=\operatorname{sgn}\left(\xi_{i}^{(\mu)}\right)
\end{aligned}
\]

Thus \(s_{i}(t+\Delta t)=\xi_{i}^{(\mu)}\) for all \(1 \leq i \leq N\) and sufficiently large \(N\).

Hebb's Rule
Update of neurons:
- Asynchronous mode: only one neuron is updated in each time step usually picked uniformly at randon.
- Synchronous mode: all neurons are updated at the same time; in large networks this requires a global clock to maintain synchronization.

\section*{Soft Computing}
K.-H.

\section*{Contents}

ANN Technology

\section*{Multilayer}

Perceptron

\section*{Example - Letter Memorization Generating letters C, D, J, M:}
```

C <- matrix(c(-1, 1, 1, 1,-1, 1,-1,-1,-1, 1, 1,-1,-1,-1, 1, 1,-1,-1,-1, 1, 1,-1,-1,-1, 1),
nrow=5, ncol=5)
D <- matrix(c(1, -1,-1,-1,-1, 1, 1, 1, 1, 1, 1,-1,-1, -1, 1, 1,-1,-1,-1, 1,-1, 1, 1, 1,-1)
nrow=5, ncol=5)
J <- matrix(c(1, -1,-1, 1, 1, 1, -1,-1,-1, 1, 1,-1, -1,-1, 1, 1, 1, 1, 1,-1, 1,-1,-1,-1, -1),
nrow=5, ncol=5)
M <- matrix(c(1, 1, 1, 1, 1,-1, 1,-1,-1,-1,-1,-1, 1, -1,-1,-1, 1,-1,-1, -1, 1, 1, 1, 1, 1),
nrow=5, ncol=5)

```

Deep Learning via Keras

\section*{Universality}

Hopfield Network
Self-Organizing Networks
*Spiking Neural Networks

Neural Networks in R
K.-H.

\section*{Contents}

ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing
Networks
* Spiking Neural Networks

Neural Networks in \(R\)

\section*{Example - Letter Memorization (Cont'd)}

\section*{Print the letters:}
> show.letter <- function(letter.vector) \{ + letter.vector[letter.vector == 1] <- "*"
\(+\quad\) letter.vector[letter.vector \(==-1]\) <- " "
\(+\quad\) col.names(letter.vector) <- rep("",5)
\(+\quad\) row.names(letter.vector) <- rep("",5)
+ print(letter.vector, quote = FALSE)
+ \}
> for (i in mget(ls(pattern = "^[A-Z]")))
\(+\quad\) \{show.letter(i)\}


\section*{\#\# *}
\#\# *
\#\# *
\#\# * * * *

Contents
ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing
Networks
* Spiking Neural Networks

Neural Networks in \(R\)

\section*{Example - Letter Memorization (Cont'd)}

Generate distorted letters:
> mutate <- function(letter.vector, number.pixel.flips) \{
+ letter.vector[sample(length(letter.vector), number.pixel.flips)] <letter.vector[sample(length(letter.vector), number.pixel.flips)]
\(+\quad\) return(letter.vector)
\(+\}\)
> mutated.C <- mutate (C,8)
> mutated.D <- mutate(D,8)
> mutated. J <- mutate(J, 8)
> mutated. M <- mutate \((\mathrm{M}, 8\) )

Soft Computing
K.-H.

Contents

ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing
Networks
*Spiking Neural Networks

Neural Networks in \(R\)

\section*{Example - Letter Memorization (Cont'd)}
\# Draw the mutated letters
> for (i in mget(ls(pattern = "mutated")))
+ \{show.letter(i)\}


\section*{Soft Computing}
K.-H.

Zimmermann

\section*{Contents}

ANN Technology
Multilayer Perceptron

Deep Learning via Keras

Universality
Hopfield Network Self-Organizing Networks
* Spiking Neural Networks

Neural Networks in R

\section*{Example - Letter Memorization (Cont'd)}

Store all 4 letter pixels into a \(4 \times 25\) weight matrix; each letter has 25 pixels. Hopfield network has 25 computational neurons.
\(>\mathrm{x}<-\operatorname{matrix}(\mathrm{c}(\mathrm{C}, \mathrm{D}, \mathrm{J}, \mathrm{M})\), nrow=4, byrow=T)
Function uses Hebbian learning to restore the mutated letters back to original.
```

> hopfield <- function(current.letter, iteration,
memory=w) \{
$+\quad \mathrm{w}<-\mathrm{t}(\mathrm{x}) \% * \% \mathrm{x}$
$+\quad \operatorname{diag}(w)<-0$

+ for (i in 1:iteration)\{
$+\quad \mathrm{a}<-\mathrm{w} \% * \%$ as.vector (current.letter)
$+\quad$ current.letter <- ifelse (a>0, 1, -1)
$+\quad\}$
+ return(show.letter(matrix(current.letter,
ncol=5, nrow=5)))
$+\}$

```
K.-H.

Zimmermann

\section*{Contents}

ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing Networks
* Spiking Neural Networks

Neural Networks in \(R\)

\section*{Example - Letter Memorization (Cont'd)}

Draw all the iterations ( 5 per letter) of restoration process
```

> for (i in mget(ls(pattern = "mutated"))) {

+ for (iter in 1:5) {
+ hopfield(current.letter = i, iteration = iter)
+ }
+ }

```
\(\begin{array}{llllll}\text { \#\# } & * & * & * & * \\ \# \# & * & & & \\ \# \# & * & & & \\ \# \# & * & & & \\ \# \# & * & * & * \\ \# \# & & & \\ \# \# & * & * & * & * \\ \# \# & * & & & \\ \# \# & * & & & \\ \# \# & * & & & \\ \# \# & * & * & * & *\end{array}\)

\section*{Contents}

ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing
Networks
*Spiking Neural Networks

Neural Networks in R
*Ising Model
- Problem of memory retrieval can be analyzed by equilibrium statistical mechanics of Ising model.
- Ising model developed by physicist Ernst Ising in 1924 is one of the simplest model of interacting many-body systems.
- Statistical mechanics has powerful tools to clarify macroscopic properties of many-body systems using the interaction between microscopic particles.

\section*{Contents}

ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing Networks
* Spiking Neural Networks

Neural Networks in \(R\)

\section*{Ising Model}

■ Let \(d \geq 1\). Take undirected graph given by a \(d\)-dimensional lattice \(\Lambda\)
- Nodes are sites. Assume lattice \(\Lambda\) has \(N\) sites.

■ For each site \(i \in \Lambda\), there is an Ising spin given by a discrete variable \(s_{i}\) with spin values in the set \(\{ \pm 1\}\).
- A spin configuration \(s=\left(s_{i}\right)\) is an assignment of spin values to the lattice sites. In view of magnetism, Ising spins are microscopic magnetic moments pointing up ( \(\uparrow\) ) or down \((\downarrow)\).

Soft Computing

\section*{Contents}

ANN Technology
Multilayer

\section*{Perceptron}

Deep Learning via Keras

\section*{Universality}

Hopfield Network

\section*{Self-Organizing}

Networks
* Spiking Neural Networks

Neural Networks in R

\section*{Ising Model}
- Square 2D lattice


\section*{Ising Model}
- A bond is a pair of adjacent lattice sites \((i, j) . B\) denotes the set of bonds.
- Interaction energy of bond \((i, j)\) is \(-w_{i j} s_{i} s_{j}\); the interaction is \(-w_{i j}\) if \(s_{i}=s_{j}\) and \(w_{i j}\) if \(s_{i} \neq s_{j}\).
- In view of magnetism, two interacting spins are oriented in the same direction ( \(\uparrow \uparrow\) or \(\downarrow \downarrow\) ) if \(w_{i j}>0\).
- Positive interaction \(w_{i j}>0\) may lead to macroscopic magnetism (ferromagnetism).
Negative interaction \(w_{i j}<0\) supports antiparallel states of interacting spins (antiferromagnetism).
- Each site \(i\) may have an external magnetic field \(h_{i}\) interacting with it; the term \(-h_{i} s_{i}\) is called Zeeman energy. If \(h_{i}>0\), the spin site \(i\) desires to line up in positive direction.

\section*{Ising Model}
- Hamiltonian (total energy) of spin configuration \(s=\left(s_{i}\right)\)
\[
H(s)=-\sum_{(i, j) \in B} w_{i j} s_{i} s_{j}-\mu \sum_{i=1}^{N} h_{i} s_{i}
\]
where \(\mu\) denotes the magnetic moment.
- Boltzmann distribution: probability of spin configuration \(s=\left(s_{i}\right)\)
\[
P(s)=\frac{e^{-\beta H(s)}}{Z},
\]
with inverse temperature \(\beta=1 / T\) and Boltzmann factor \(e^{-\beta H(s)}\).

\section*{Contents}

ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing Networks
*Spiking Neural Networks

Neural Networks in \(R\)

\section*{Ising Model}
- Partition function (normalizing constant)
\[
Z=\sum_{s} e^{-\beta H(s)}=\sum_{s_{1}= \pm 1} \ldots \sum_{s_{N}= \pm 1} e^{-\beta H\left(s_{1}, \ldots, s_{N}\right)}
\]

The sum over all possible spin configurations is denoted by
\[
Z=\mathbf{T r} e^{-\beta H}
\]

\section*{Ising Model}
- The thermal average of a physical quantity \(f\) is computed by using the Boltzmann distribution,
\[
\langle f\rangle=\sum_{s} f(s) P(s) .
\]
- An order parameter with ferromagnetic interactions is magnetization
\[
m=\frac{1}{N}\left\langle\sum_{i=1}^{N} s_{i}\right\rangle=\frac{1}{N} \operatorname{Tr}\left(\left(\sum_{i=1}^{N} s_{i}\right) P(s)\right) .
\]
- Phase transition: \(m \neq 0\) for \(T<T_{c}\) (ferromagnetic phase) and \(m=0\) (paramagnetic phase) for \(T>T_{c}\) for critical temperature \(T_{c}\) (transition point).

Contents
ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

\section*{Universality}

Hopfield Network
Self-Organizing
Networks
* Spiking Neural Networks

Neural Networks in R

\section*{Ising Model}
- Simplification of Ising model: \(w=w_{i j}\) for each bond \((i, j) \in B\).
- Hamiltonian
\[
H(s)=-w \sum_{(i, j) \in B} s_{i} s_{j}-h \sum_{i} s_{i} .
\]
- Calculation of expectation value \(\langle f\rangle\) is difficult, since partition function \(Z\) has \(2^{N}\) terms.
- Approximation by mean-field theory.

\section*{Ising Model - Meanfield Theory}
- Spin variable \(s_{i}\) splits into mean (magnetization) \(m=\left\langle s_{i}\right\rangle N\) and deviation (fluctuation) \(\delta s_{i}=s_{i}-m\).

■ Hamiltonian
\[
H(s)=-w \sum_{(i, j) \in B}\left(m+\delta s_{i}\right)\left(m+\delta s_{j}\right)-h \sum_{i} s_{i} .
\]
- If the fluctuation is small, the Hamiltonian becomes
\[
H(s)=-w m N_{B}-w m \sum_{(i, j) \in B}\left(\delta s_{i}+\delta s_{j}\right)-h \sum_{i} s_{i},
\]
where \(N_{B}=|B|\) is the number of bonds.
K.-H.

\section*{Contents}

ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing Networks
*Spiking Neural Networks

Neural Networks in \(R\)

\section*{Ising Model - Meanfield Theory}
- Coordination number \(z\) is the number of sites adjacent to a site. Then \(N_{B}=z N / 2\).
- Hamiltonian
\[
\begin{aligned}
H(s) & =-w m^{2} N_{B}-w m z \sum_{i} \delta s_{i}-h \sum_{i} s_{i} \\
& =w m^{2} N_{B}-(w m z+h) \sum_{i} s_{i}
\end{aligned}
\]

System looks like a collection of non-interacting spins; effects of interaction between spins are shifted into magnetization.
- Partition function
\[
Z=\operatorname{Tr} \exp \left(\beta\left(-w m^{2} N_{B}+(w m z+h) \sum_{i} s_{i}\right)\right) .
\]

\section*{Contents}

ANN Technology

\section*{Multilayer}

Perceptron
Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing Networks
*Spiking Neural Networks

Neural Networks in \(R\)

\section*{Ising Model - Meanfield Theory}
- Partition function
\[
\begin{aligned}
Z & =\operatorname{Tr} \exp \left(\beta\left(-w m^{2} N_{B}+(w m z+h) \sum_{i} s_{i}\right)\right) \\
& =e^{-\beta w m^{2} N_{B}} \operatorname{Tr} \exp \left(\beta(w m z+h) \sum_{i} s_{i}\right) \\
& =e^{-\beta w m^{2} N_{B}}(2 \cosh \beta(w m z+h))^{N}
\end{aligned}
\]
K.-H.

Zimmermann

\section*{Contents}

ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing Networks
*Spiking Neural Networks

Neural Networks in \(R\)

\section*{Ising Model - Meanfield Theory}

Proof (last equality):
\[
\begin{aligned}
Z_{N} & =\operatorname{Tr} \exp \left(\beta(w m z+h) \sum_{i} s_{i}\right) \\
& =\sum_{s_{1}= \pm 1} \cdots \sum_{s_{N}= \pm 1} e^{\beta(w m z+h) \sum_{i} s_{i}} \\
& =\sum_{s_{1}= \pm 1} \cdots \sum_{s_{N}= \pm 1} e^{\beta(w m z+h) s_{1}} \cdots e^{\beta(w m z+h) s_{N}} \\
& =\sum_{s_{1}= \pm 1} e^{\beta(w m z+h) s_{1}} \cdots \sum_{s_{N}= \pm 1} e^{\beta(w m z+h) s_{N}} \\
& =\left(\sum_{s= \pm 1} e^{\beta(w m z+h) s}\right)^{N}=Z_{1}^{N}
\end{aligned}
\]

\title{
Soft Computing
}

Contents
ANN Technology
Multilayer Perceptron

Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing
Networks
* Spiking Neural Networks

Neural Networks in R

Ising Model - Meanfield Theory
Proof (cont'd):
\[
\begin{aligned}
Z_{1} & =\sum_{s= \pm 1} e^{\beta(w m z+h) s}=e^{\beta(w m z+h)}+e^{-\beta(w m z+h)} \\
& =2 \cosh \beta(w m z+h)
\end{aligned}
\]

Thus
\[
Z_{N}=(2 \cosh \beta(w m z+h))^{N} .
\]

Soft Computing
K.-H.

Zimmermann

Contents
ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing Networks
* Spiking Neural Networks

Neural Networks in \(R\)

\section*{Ising Model - Meanfield Theory}

\section*{Magnetization}
\[
m=\frac{\operatorname{Tr} s_{i} e^{-\beta H}}{Z}=\tanh \beta(w m z+h)
\]

Proof:
\[
\begin{aligned}
Z_{N}^{\prime} & =\operatorname{Tr} s_{i} e^{-\beta H} \\
& =\sum_{s_{1}= \pm 1} s_{1} \cdots \sum_{s_{N}= \pm 1} s_{N} e^{\beta(w m z+h) \sum_{i} s_{i}} \\
& =\sum_{s_{1}= \pm 1} s_{1} e^{\beta(w m z+h) s_{1}} \cdots \sum_{s_{N}= \pm 1} s_{N} e^{\beta(w m z+h) s_{N}} \\
& =\left(\sum_{s= \pm 1} s e^{\beta(w m z+h) s}\right)^{N}=Z_{1}^{N}
\end{aligned}
\]

Soft Computing
K.-H.

Zimmermann

Contents
ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing Networks
* Spiking Neural Networks

Neural Networks in R

\section*{Ising Model - Meanfield Theory}

Proof (cont'd):
\[
\begin{aligned}
Z_{1}^{\prime} & =\sum_{s= \pm 1} s e^{\beta(w m z+h) s}=e^{\beta(w m z+h)}-e^{-\beta(w m z+h)} \\
& =2 \sinh \beta(w m z+h)
\end{aligned}
\]
with \(\tanh (x)=\frac{\sinh (x)}{\cosh (x)}\). Hyperbolic functions:


\section*{Soft Computing \\ K.-H. \\ Ising Model - Meanfield Theory}
- Equation of state determines the order parameter
\[
m=\frac{\operatorname{Tr} s_{i} e^{-\beta H}}{Z}=\tanh \beta(w m z+h)
\]
- Spontaneous magnetization in the absense of external field \(h=0\),
\[
m=\tanh \beta(w m z)
\]
- Consider the expansion
\[
\tanh x=x-\frac{x^{3}}{3}+\frac{2 x^{5}}{15}-\frac{17 x^{7}}{315} \pm \ldots, \quad|x|<\frac{\pi}{2}
\]
- Taking the first term in the expansion of \(\tanh \beta w m z\) gives
\[
m=\beta w m z
\]
which yields the critical temperature \(T_{c}=w z\).

\section*{Ising Model - Meanfield Theory}

■ Free energy:
\[
F=-T \log Z=-N T \log (2 \cosh \beta(w m z+h))+N_{B} w m^{2}
\]

Expand RHS in powers of \(m\) to fourth order,
\[
F=-N T \log 2+\frac{w z N}{2}(1-\beta w z) m^{2}+\frac{N}{12}(w m z)^{4} \beta^{3} .
\]

The coefficient of \(m^{2}\) alters the sign at \(T_{c}=w z\).
- The free energy has two minima located at \(m \neq 0\) if \(T<T_{2}\) and one minimum at \(m=0\) if \(T>T_{c}\).
- The magnetization in thermal equilibrium is zero if \(T>T_{c}\) and is nonzero if \(T<T_{c}\)

Contents
ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing
Networks
* Spiking Neural Networks

Neural Networks in R

\section*{Hopfield Model}
- The number of embedded patterns \(p\) is finite.
- Partition function is described by Hamiltonian,
\[
Z=\operatorname{Tr} \exp \left(\frac{\beta}{2 N} \sum_{\mu}\left(\sum_{i} s_{i} \xi_{i}^{(\mu)}\right)^{2}\right)
\]

Hopfield Network

\section*{Hopfield Model}
- New integration variable \(m^{\mu}\) to linearize the square of the exponent,
\[
\begin{aligned}
Z & =\operatorname{Tr} \int \prod_{\mu=1}^{p} d m^{(\mu)} \exp \left(-\frac{1}{2} N \beta \sum_{\mu} m_{\mu}^{2}+\beta \sum_{\mu} m_{\mu} \sum_{i} s_{i} \xi_{i}^{(\mu)}\right) \\
& =\int \prod_{\mu=1}^{p} d m^{(\mu)} \exp \left(-\frac{1}{2} N \beta\langle m, m\rangle+\sum_{i} \log \left(2 \cosh \beta\left\langle m, \xi_{i}\right\rangle\right)\right),
\end{aligned}
\]
where \(m=\left(m^{(1)}, \ldots, m^{(p)}\right)^{t}, \xi_{i}=\left(\xi_{i}^{(1)}, \ldots, \xi_{i}^{(p)}\right)^{t}\),
\(1 \leq i \leq N\), and the multiplicative constant has been deleted as it does not influence the overall physical behavior.
\(■\) In the thermodynamic limit \(N \rightarrow \infty\), the free energy per degree of freedom \(N\) is
\(f=-\frac{T}{N} \log \operatorname{Tr} e^{-\beta H}=\frac{1}{2}\langle m, m\rangle-\frac{T}{N} \sum_{i} \log \left(2 \cosh \beta\left\langle m, \xi_{i}\right\rangle\right)\)
K.-H.

Hopfield Network
Self-Organizing Networks
*Spiking Neural Networks

Neural Networks in R

\section*{Hopfield Model}
- Equation of state
\[
m=\frac{1}{N} \sum_{i} \xi_{i} \tanh \beta\left\langle m, \xi_{i}\right\rangle
\]

■ In the thermodynamic limit, the sum over all neurons \(i\) becomes equivalent to the average over the random components of the vector \(\xi=\left(\xi^{(1)}, \ldots, \xi^{(p)}\right)\) which corresponds to the configurational average denoted by [•].
- Configurational average of relative free energy
\[
\begin{aligned}
{[f] } & =-T[\log Z]=-T \int \prod_{(i j)} w_{i j} P\left(w_{i j}\right) \log Z \\
& =\frac{1}{2}\langle m, m\rangle-T[\log (2 \cosh \beta\langle m, \xi\rangle)] .
\end{aligned}
\]

\section*{Hopfield Model}
- Equation of state
\[
m=[\xi \tanh \beta\langle m, \xi\rangle] .
\]

■ Retrieving the first pattern gives \(m=m_{1}\) and \(m_{2}=\ldots=m_{p}=0\). This gives the mean-field solution with \(h=0\),
\[
m=\left[\xi^{(1)} \tanh \beta\left\langle m, \xi^{(1)}\right\rangle\right]=\tanh \beta m
\]
- There are two solution \(m \neq 0\) for \(T=\beta^{-1}<1\) (red line); otherwise, there is one solutions (blue line).

■ If \(T=0\), the stable state is \(m= \pm 1\) and a perfect retrieval of the embedded pattern (or its complement) is achieved.

■ The Hopfield model with a finite number of patterns works at low temperature as an associative memory which is able to retrieve the appropriate memorized pattern if a noisy variant of the pattern is intially given.

Soft Computing
K.-H.

Zimmermann

Contents
ANN Technology
Multilayer

\section*{Perceptron}

Deep Learning via Keras

\section*{Universality}

Hopfield Network
Self-Organizing Networks
* Spiking Neural Networks

Neural Networks in \(R\)

\section*{Hopfield Model}

The equation \(x=\tanh \beta x\) has one solution (blue) or two solutions (red).


\section*{Contents}

ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing Networks
*Spiking Neural Networks

Neural Networks in \(R\)

Self-Organizing Maps
- Topographic maps
- Kohonen network
- Learning
- Example: SOM for Iris dataset
- *Iterated local search
- *Principal component analysis

\section*{Self-Organizing Maps (SOM)}

■ SOM provides data compression mapping high-dimensional sample space to low-dimensional feature space.
\(■\) SOM is established by unsupervised learning (no teacher).
■ Assumption: Class membership is inherent in the input patterns defining common features and the network is able to identify some of those features during the training session.
\(■\) SOM and \(k\)-means are identical if the radius of the neighborhood function in SOM is identical to zero.

■ Large self-organizing maps may exhibit emergent properties. Emergent properties are phenomena in which larger entities arise through the interactions of smaller or simpler entities such that the larger entities show properties the smaller entities do not show, like macroscopic physical properties or swarming.

Topographic Map
■ Ordered projection of sensory surface (retina, skin, eardrum) to structure of central nervous system.

■ Construct artificial topographic map by learning via self-organization in neurobiologically inspired manner.

■ Nonlinear generalization of principal component analysis (PCA).

\section*{Contents}

ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing Networks
* Spiking Neural Networks

Neural Networks in \(R\)

\section*{Kohonen Networks}
- Form a class of self-organizing maps (Teuvo Kohonen, 1980).
- Kohonen network is an ANN with
- feed-forward topology,
- single input layer,
- single computational layer,
- neurons arranged in one- or two-dimensional regularly spaced grid.
Each neuron in input layer is connected to each neuron in computational layer.

Soft Computing
K.-H.

Zimmermann

Contents
ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing Networks
*Spiking Neural Networks

Neural Networks in \(R\)

Kohonen Network


\section*{Kohonen Network - Learning}

Self-organization procedure:
- Initialization: The connecting weights are initialized with small values around zero chosen uniformly at random.
- Competition: For each input pattern, each neuron computes its value of a discriminant function and the neuron with the smallest value is declared as the winner.
- Cooperation: The winning neuron determines the spatial location of a topographic neighborhood of excited neurons.
- Adaption: The excited neurons decrease their values of the discriminant function by adjusting their weights such that the response of the winning neuron is enhanced for similar input patterns.

\section*{Kohonen Network - Learning}

Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing Networks
* Spiking Neural Networks

Neural Networks in \(R\)
- Input patterns are vectors in \(\mathbb{R}^{d}\).

■ Computational layer has \(N\) neurons.
■ \(w_{i j}=\) weight between input neuron \(j\) and neuron \(i\) in computational layer, \(1 \leq i \leq N, 1 \leq j \leq d\).
- Winning neuron (closest to input pattern \(x\) )
\[
I(x)=\arg \min \left\{d_{i}(x)=\sum_{j=1}^{d}\left(x_{j}-w_{i j}\right)^{2} \mid 1 \leq i \leq N\right\}
\]

■ Neurons in the topographic neighborhood tend to get excited too; excitation decays with the distance from the winning neuron.

\section*{Kohonen Network - Learning}
- \(D_{i k}=\) distance between neurons \(i\) and \(k\) in computational layer.
- Topographic neighborhood of winning neuron (Gaussian function)
\[
\begin{equation*}
T_{i, I(x)}=\exp \left(-\frac{D_{i, I(x)}^{2}}{2 \sigma^{2}}\right), \quad 1 \leq i \leq N \tag{436}
\end{equation*}
\]
- Time adaptive neighborhood decreases with time
\[
\begin{equation*}
\sigma(t)=\sigma_{0} \exp \left(-t / \tau_{\sigma}\right) \tag{437}
\end{equation*}
\]
for some \(\sigma_{0}, \tau_{\sigma}>0\).
- \(T_{i, I(x)}\) is maximal for neuron \(I(x)\) and decreases monotonously to 0 as the distance from \(I(x)\) becomes large.

\section*{Kohonen Network - Learning}
- Weight update of neurons in the topographic neighborhood of winning neuron,
\[
\begin{equation*}
\Delta w_{i j}=\eta(t) \cdot T_{i, I(x)} \cdot\left(x_{j}-w_{i j}\right) \tag{438}
\end{equation*}
\]
- Time adaptive learning rate decreases with time
\[
\begin{equation*}
\eta(t)=\eta_{0} \exp \left(-t / \tau_{\eta}\right) \tag{439}
\end{equation*}
\]
for some \(\eta_{0}, \tau_{\eta}>0\)
- Aim is to move the weight vectors \(w_{i}\) of neurons in the topographic neighborhood of the winning neuron closer to the input pattern.
- Proper selection of parameters \(\left(\sigma_{0}, \tau_{\sigma}, \eta_{0}, \tau_{\eta}\right)\) by iterated local search.

Contents
ANN Technology
Multilayer Perceptron

Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing Networks
* Spiking Neural Networks

Neural Networks in R

\section*{Kohonen Network - Learning Algorithm}

Require: Kohonen network with input layer of \(d\) neurons and computational layer of \(N\) neurons, parameter set ( \(\sigma_{0}, \tau_{\sigma}, \eta_{0}, \tau_{\eta}\) ), training patterns \(x^{(1)}, \ldots, x^{(M)}\) in \(\mathbb{R}^{d}\), small number \(\epsilon>0\)
Ensure: Trained Kohonen network for feature extraction
Choose random weights \(w_{i j}\) repeat

Draw sample input pattern \(x=x^{(l)}\) for some \(1 \leq l \leq M\). Compute the winning neuron \(I(x)\) in computational layer Update the weights by the increments \(\Delta w_{i j}\) until Magnitudes of all weight increments are smaller than \(\epsilon\) during the last \(M\) steps.

Contents
ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing Networks
* Spiking Neural Networks

Neural Networks in R

\section*{Example: SOM for Iris Dataset}

The 150 -sample Iris dataset is mapped to a \(5 \times 5\) grid of hexagonal units:
\# install the kohnen package
> install.packages("kohonen")
\# load the kohonen package
> library(kohonen)
\# scale the iris data
> iris.sc = scale(iris[,1:4])
\# build the grid
> iris.grid = somgrid(xdim=5,ydim=5,topo="hexagonal")

\section*{Example: SOM for Iris Dataset (Cont'd)}

Generate the model:

Contents
ANN Technology
Multilayer Perceptron

Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing Networks
*Spiking Neural Networks

Neural Networks in \(R\)
> iris.som \(=\) som(iris.sc, grid=iris.grid, rlen=100,
alpha=(0.05,0.01))

The som function has several parameters:
- grid: rectangular or hexagonal group of units (format is returned by somegrid).
- rlen: number of iterations the dataset is presented to the network.
- alpha: learning rate, start with 0.05 and stop at 0.01 .

Variable iris.som\$codes (codebook) holds the weight vector for each neuron in the grid.
Variable iris.som\$changes indicates the size of adaptions to the codebook vectors during training.
```

Soft Computing
K.-H.
Zimmermann
Contents
ANN Technology
Multilayer

```

\section*{Example: SOM for Iris Dataset (Cont'd)}
```

Training progress (number of iterations vs. mean distance to closest unit):
> plot(iris.som, type="changes")

```
Perceptron
Deep Learning via
Keras
Universality
Hopfield Network
Self-Organizing
Networks
* Spiking Neural
Networks
Neural Networks
in \(R\)

Training progress


Iteration vs. mean distance to closest unit.

Soft Computing
K.-H.

Zimmermann

Contents
ANN Technology
Multilayer Perceptron

Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing Networks
* Spiking Neural Networks

Neural Networks in \(R\)

\section*{Example: SOM for Iris Dataset (Cont'd)}

Node counts (how many samples are mapped to each node on the map):
> plot(iris.som, type="count")

Counts plot


Soft Computing
K.-H.

Zimmermann

Contents
ANN Technology
Multilayer Perceptron

Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing Networks
* Spiking Neural Networks

Neural Networks in \(R\)

\section*{Example: SOM for Iris Dataset (Cont'd)}

Neighbor distance (U-matrix, distance between each node and its neighbours on the map):
> plot(iris.som, type="dist.neighbours")

Neighbour distance plot


Soft Computing
K.-H.

Zimmermann

\section*{Contents}

ANN Technology
Multilayer Perceptron

Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing Networks
* Spiking Neural Networks

Neural Networks in R

\section*{Example: SOM for Iris Dataset (Cont'd)}

Codes/Weight vectors (normalized values of the original variables used to generate SOM):
> plot(iris.som, type="codes")

Codes plot


Sepal.Length \(\square\) Petal.Length Sepal.Width \(\square\) Petal.Width

\section*{Contents}

ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing Networks
* Spiking Neural Networks

Neural Networks in \(R\)

\section*{SOM Learning and Clustering}
- Intuitive method for segmentation.

■ Simple algorithm, easy to explain to non-data scientists.
■ New data can be mapped to trained model for prediction.
■ Lack of parallelization for very large datasets.
■ Difficult to map a collection of variables to 2D plane.
- Requires numerical data.

\section*{*Iterated Local Search (ILS)}
- Stochastic search method for tuning the parameters of heuristic algorithm.
- Take fixed parameter set \(\theta_{b} \in \Theta\) as baseline.
- The ILS algorithm determines the best \(k \geq 1\) parameter sets on training set of the heuristic.

■ These parameter sets are compared with the baseline by Wilcoxon \(T\) test.

Soft Computing
K.-H.

Zimmermann

Contents
ANN Technology
Multilayer Perceptron

Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing Networks
*Spiking Neural Networks

Neural Networks in R

\section*{Iterated Local Search}

Require: Parameter space \(\Theta\), heuristic \(A=A(\theta)\), integer \(K \geq 1\), small number \(\epsilon>0\)
Ensure: Best parameter set \(\theta^{*} \in \Theta\) found Choose initial parameter set \(\theta \in \Theta ; \theta^{*} \leftarrow \theta\) repeat

Take new parameter set \(\theta^{\prime}\) from the neighborhood of \(\theta\)
if \(A\left(\theta^{\prime}\right)<A(\theta)\) then
\(\theta \leftarrow \theta^{\prime}\)
if \(A\left(\theta^{\prime}\right)<A\left(\theta^{*}\right)\) then \(\theta^{*} \leftarrow \theta^{\prime}\)
end if
else
Draw random number \(r \in[0,1]\) uniformly at random if \(r<\exp \left(-\left(A\left(\theta^{\prime}\right)-A(\theta)\right)\right)\) then \(\theta \leftarrow \theta^{\prime}\)
end if
end if
until Improvements \(\left|A\left(\theta^{\prime}\right)-A(\theta)\right|<\epsilon\) during last \(K\) steps return \(\theta^{*}\)

\section*{Iterated Local Search}

Stochastic search method for tuning the parameters of heuristic algorithm.
- Set of \(N\) samples \(\left(x_{i}, y_{i}\right)\) with \(x_{i} \neq y_{i}, 1 \leq i \leq N\).
- Calculate \(\left|x_{i}-y_{i}\right|\) and \(\operatorname{sgn}\left(y_{i}-x_{i}\right)\) for \(1 \leq i \leq N\).
- Rank the pairs beginning with the smallest as 1 .
- \(r_{i}=\) rank of pair \(\left(x_{i}, y_{i}\right), 1 \leq i \leq N\).
- Here two self-organizing networks \(A\) and \(B\) with the same input set configured with different parameter sets could be compared by their weight vectors \(\left(w_{i j}^{(A)}\right)\) and \(\left(w_{i j}^{(B)}\right)\).
Under the null hypothesis, the networks can be discriminated whether they provide significantly different feature maps or not.

\section*{Wilcoxon T-Test}

Non-parametric statistical hypothesis test for determining if two independent sample sets were selected from populations with the same distribution.
- Null hypothesis \(H_{0}\) : difference between the pairs follows symmetric distribution around zero.
- Calculate test statistic (as sum of signed ranks)
\[
\begin{equation*}
T=\sum_{i=1}^{N} \operatorname{sgn}\left(y_{i}-x_{i}\right) \cdot r_{i} \tag{440}
\end{equation*}
\]

■ Under the null hypothesis \(H_{0}, T\) has specific distribution with expected value of 0 and variance of \(\frac{N(N+1)(2 N+2)}{6}\).
- Compare \(T\) with critical value from reference table such that null hypothesis is rejected if \(|T|>T_{\text {crit }, N}\).

Contents
ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing Networks
* Spiking Neural Networks

Neural Networks in \(R\)

Iterated Local Search - Example (R)
Consider data set immer (with sample size \(N=30\) ) recording the barley yield in the years 1931 and 1932 from the same field.
> library(MASS) \# load the MASS package
> head(immer)
\begin{tabular}{rrrrr}
\multicolumn{3}{c}{ Loc } & Var & Y1 \\
1 UF & M & 81.0 & 80.0 \\
2 & UF & S & 105.4 & 82.3 \\
3 & UF & V & 119.7 & 80.4 \\
4 & UF & T & 109.7 & 87.2 \\
5 & UF & P & 98.3 & 84.2 \\
6 & W & M & 146.6 & 100.4
\end{tabular}

\section*{Iterated Local Search - Example (R)}

Wilcoxon T-test at 0.05 significance level:
> wilcox.test(immer\$Y1,immer\$Y2,paired=TRUE)

Wilcoxon signed rank test without continuity correction
data: immer\$Y1 and immer\$Y2
\(\mathrm{V}=368.5\), p -value \(=0.005318\)
alternative hypothesis: true location shift is not equal
warning message:
In wilcox.test.default(immer\$Y1,immer\$Y2, paired=TRUE): cannot compute exact p-value with ties
p-value \(0.005318<0.05\) significance level
\(\Rightarrow\) Strong evidence against the null hypothesis (rejected).
\(\Rightarrow\) Barley yields from 1931 and 1932 are from different populations.
*Principal Component Analysis (PCA)
- PCA (multivariate statistical technique) for the analysis of correlated data set.
- PCA (Karl Pearson, 1857-1936) is an application of singular value decomposition (SVD).
- The objective is to extract the important information from a data set in form of a set of orthogonal data.

\section*{Soft Computing}
K.-H.

\section*{Principal Component Analysis (PCA)}

■ Given \(A=\left(a_{i j}\right)\) real-valued \(n \times d\) matrix with rows as \(n\) (data) points in \(\mathbb{R}^{d}\).
\(■\) Find the best \(k\)-dimensional subspace of \(\mathbb{R}^{d}\) with respect to the points.

■ Best means optimizing the sum of squares of the perpendicular distances of the points to the subspace.

■ Euclidean norm of vector \(v\),
\[
\begin{equation*}
\|v\|=\sqrt{\sum_{i} v_{i}^{2}} \tag{441}
\end{equation*}
\]

■ Euclidean distance between vectors \(u\) and \(v\),
\[
\begin{equation*}
d(u, v)=\|u-v\|=\sqrt{\sum_{i}\left(u_{i}-v_{i}\right)^{2}} \tag{442}
\end{equation*}
\]

\section*{Soft Computing}
K.-H.

Zimmermann

\section*{Contents}

ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing Networks
*Spiking Neural Networks

Neural Networks in R

\section*{Principal Component Analysis (PCA)}
- First singular vector \(v_{1}\) of \(A\),
\[
\begin{equation*}
v_{1}=\arg \max \left\{\|A v\|\left\|v \in \mathbb{R}^{d},\right\| v \|=1\right\} . \tag{443}
\end{equation*}
\]

Best-fit line through the origin for the \(n\) points in \(\mathbb{R}^{d}\) given by the rows of the matrix \(A\).
- First singular value of \(A\),
\[
\begin{equation*}
\sigma_{1}(A)=\left\|A v_{1}\right\| . \tag{444}
\end{equation*}
\]

Let \(a_{1}, \ldots, a_{n}\) denote the rows of the matrix \(A\). Then
\[
\begin{equation*}
\left\|A v_{1}\right\|^{2}=\sum_{i=1}^{n}\left\langle a_{i}, v_{1}\right\rangle^{2} \tag{445}
\end{equation*}
\]
where \(\left|\left\langle a_{i}, v_{1}\right\rangle\right|\) is the length of the projection of \(a_{i}\) onto \(v_{1}\). \(\sigma_{1}^{2}\) is the sum of the squares of the projections of the given points to the line determined by \(v_{1}\).
K.-H.

\section*{Principal Component Analysis (PCA)}

■ Continuing this way establishes singular vectors \(v_{1}, v_{2}, \ldots, v_{r}\), \(\arg \max \left\{\|A v\| \mid v \in \mathbb{R}^{d},\|v\|=1, v \perp v_{1}, \ldots, v \perp v_{r}\right\}=0(446)\)

The vectors \(v_{1}, \ldots, v_{r}\) form an orthonormal basis of a subspace \(V\) of \(\mathbb{R}^{d}\).
- The assignment
\[
\begin{equation*}
\pi_{V}(w)=\sum_{i=1}^{r}\left\langle w, v_{i}\right\rangle v_{i}, \quad w \in \mathbb{R}^{d} \tag{447}
\end{equation*}
\]
gives a linear mapping called orthogonal projection from \(\mathbb{R}^{d}\) onto \(V\).
- Any vector \(w \in \mathbb{R}^{d}\) can be uniquely written as \(w=v+v^{\prime}\), where \(v \in V\) and \(v^{\prime} \in V^{\perp}\).

Proposition
Let \(A\) be a real-valued \(n \times d\) matrix with singular vectors
\(v_{1}, \ldots, v_{r}\).
For each \(1 \leq k \leq r\), let \(V_{k}\) be the subspace of \(\mathbb{R}^{d}\) spanned by the vectors \(v_{1}, \ldots, v_{k}\).
Then \(V_{k}\) is the best-fit \(k\)-dimensional subspace for \(A\).
K.-H.

\section*{Contents}

ANN Technology
Multilayer Perceptron

Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing Networks
*Spiking Neural Networks

Neural Networks in \(R\)

\section*{Proof.}

The assertion is clear for \(k=1\). By induction, let \(V_{k-1}\) be a best-fit \(k\)-1-dimensional subspace for \(A\). Suppose \(W\) is a best-fit \(k\)-dimensional subspace for \(A\). Choose a basis \(\left\{w_{1}, \ldots, w_{k}\right\}\) of \(W\) such that \(w_{k}\) is perpendicular to \(v_{1}, \ldots, v_{k-1}\). Then
\[
\begin{aligned}
& \left\|A w_{1}\right\|^{2}+\ldots+\left\|A w_{k-1}\right\|^{2}+\left\|A w_{k}\right\|^{2} \\
& \quad \leq\left\|A v_{1}\right\|^{2}+\ldots+\left\|A v_{k-1}\right\|^{2}+\left\|A w_{k}\right\|^{2}
\end{aligned}
\]
since \(V_{k-1}\) is optimal. But the vector \(w_{k}\) is perpendicular to \(v_{1}, \ldots, v_{k-1}\) and so by definition of \(v_{k}\) we have \(\left\|A w_{k}\right\|^{2} \leq\left\|A v_{k}\right\|^{2}\). Thus
\[
\begin{aligned}
& \left\|A w_{1}\right\|^{2}+\ldots+\left\|A w_{k-1}\right\|^{2}+\left\|A w_{k}\right\|^{2} \\
& \quad \leq\left\|A v_{1}\right\|^{2}+\ldots+\left\|A v_{k-1}\right\|^{2}+\left\|A v_{k}\right\|^{2}
\end{aligned}
\]

Thus \(V_{k}\) is as least as good as \(W\) and hence optimal.

Contents
ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing Networks
* Spiking Neural Networks

Neural Networks in \(R\)

\section*{Principal Component Analysis (PCA)}
- The image of the subspace of singular vectors of \(A\) is spanned by the vectors
\[
\begin{equation*}
u_{i}=\frac{1}{\sigma_{i}(A)} A v_{i}, \quad 1 \leq i \leq r \tag{448}
\end{equation*}
\]
- The vectors \(u_{i}\) are normalized, since \(\left\|A v_{i}\right\|=\sigma_{i}(A)\) for \(1 \leq i \leq r\).
- The vectors \(u_{i}\) are the left singular vectors of \(A\), and the singular vectors \(v_{i}\) of \(A\) are the right singular vectors of \(A\).

\section*{Contents}

ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing Networks
* Spiking Neural

\section*{Proposition}

Let \(A\) be a real-valued \(n \times d\) matrix \(A\) of rank \(r\).
The left singular vectors \(u_{1}, \ldots, u_{r}\) of \(A\) are mutually orthogonal and we have
\[
\begin{equation*}
A=\sum_{i=1}^{r} \sigma_{i} u_{i} v_{i}^{t} \tag{449}
\end{equation*}
\]

\section*{Proof}

The assertion holds for \(r=1\). By induction, suppose the result holds for matrices of rank \(r-1\). Consider the matrix
\[
B=A-\sigma_{1} u_{1} v_{1}^{t} .
\]

Then \(B v_{1}=A v_{1}-\sigma_{1} u_{1} v_{1}^{t} v_{1}=A v_{1}-\sigma_{1} \frac{1}{\sigma_{1}}\left(A v_{1}\right)\left(v_{1}^{t} v_{1}\right)=0\). The first right singular vector \(w\) of \(B\) is perpendicular to \(v_{1}\). But for each vector \(w\) perpendicular to \(v_{1}\), we have \(B w=A w\). Thus the first singular vector of \(B\) equals the second singular vector of \(A\). By repeating this argument, \(B\) has the right singular vectors \(v_{2}, \ldots, v_{r}\) and the left singular vectors \(u_{2}, \ldots, u_{r}\), which are mutually orthogonal. Moreover, by induction,
\[
B=\sum_{i=2}^{r} \sigma_{i} u_{i} v_{i}^{t}
\]
and so \(A=\sum_{i=1}^{r} \sigma_{i} u_{i} v_{i}^{t}\).

Soft Computing
K.-H.

Zimmermann

\section*{Contents}

ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing Networks
*Spiking Neural Networks

Neural Networks in \(R\)

\section*{Proof (cont'd)}

The vector \(u_{1}\) is orthogonal to the vectors \(u_{2}, \ldots, u_{r}\). To see this, assume that \(\left\langle u_{1}, u_{i}\right\rangle \neq 0\) for some \(2 \leq i \leq r\); suppose that \(\left\langle u_{1}, u_{i}\right\rangle>0\). Then for some infinitesimally small number \(\epsilon>0\), the vector
\[
A\left(\frac{v_{1}+\epsilon v_{i}}{\left\|v_{1}+\epsilon v_{i}\right\|}\right)=\frac{\sigma_{1} u_{1}+\epsilon \sigma_{i} u_{i}}{\sqrt{1+\epsilon^{2}}}
\]
has length as least as large as its component along \(u_{1}\), which is given by
\[
\begin{aligned}
& \left\langle u_{1}, \frac{\sigma_{1} u_{1}+\epsilon \sigma_{i} u_{i}}{\sqrt{1+\epsilon^{2}}}\right\rangle \\
& \quad=\left(\sigma_{1}+\epsilon \sigma_{i}\left\langle u_{1}, u_{i}\right\rangle\right)\left(1-\frac{\epsilon^{2}}{2}+O\left(\epsilon^{4}\right)\right) \\
& \quad=\sigma_{1}+\epsilon \sigma_{i}\left\langle u_{1}, u_{i}\right\rangle-O\left(\epsilon^{2}\right)>\sigma_{1}
\end{aligned}
\]

This contradicts the hypothesis.

\section*{Soft Computing}
K.-H.

\section*{Contents}

ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing Networks
* Spiking Neural Networks

Neural Networks in R

\section*{Singular Value Decomposition}

Let \(A\) be a real-valued \(n \times d\) matrix with right singular vectors \(v_{1}, \ldots, v_{r}\), left singular vectors \(u_{1}, \ldots, u_{r}\), and singular values \(\sigma_{1}, \ldots, \sigma_{r}\).
Then the matrix \(A\) has a decomposition into a sum of rank-one matrices,
\[
\begin{equation*}
A=\sum_{i=1}^{r} \sigma_{i} u_{i} v_{i}^{t} \tag{450}
\end{equation*}
\]

In matrix form, the singular value decomposition is
\[
\begin{equation*}
A=U D V^{t} \tag{451}
\end{equation*}
\]
where \(U\) is the \(n \times r\) matrix whose columns contain the left singular vectors of \(A, D\) is the \(r \times r\) diagonal matrix whose diagonal entries are the singular values of \(A\), and \(V\) is the \(r \times d\) matrix whose columns consists of the right singular vectors of \(A\).

Contents
ANN Technology
Multilayer Perceptron

Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing Networks
* Spiking Neural Networks

Neural Networks in \(R\)

Singular Value Decomposition - Maple
Maple code
> with(LinearAlgebra):
> with(RandomTools):
\(>\mathrm{n}:=4: \mathrm{d}:=2\) :
\(>A:=\operatorname{Matrix}(n, d\), generator=rand(1..5)):
\(>\) U,S,V := SingularValues(A,output=['U','S','Vt']):
\(>\mathrm{U}, \mathrm{S}, \mathrm{V}\);
We have \(U \cdot D \cdot V=A\), where diagonal matrix \(D\) has the entries of \(S\) along its main diagonal.

Soft Computing
K.-H.

Zimmermann

Contents
ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing Networks
* Spiking Neural Networks

Neural Networks in \(R\)

Singular Value Decomposition - Maple (cont'd)
\[
\begin{gathered}
A=\left(\begin{array}{ll}
5 & 2 \\
5 & 2 \\
3 & 4 \\
4 & 5
\end{array}\right) \\
U=\left(\begin{array}{rrr}
-0.48 & -0.52 & -0.43 \\
-0.48 & -0.52 & 0.46 \\
-0.45 & 0.53 \\
-0.58 & 0.60 & -0.49 \\
0.51 & -0.49 & 0.40
\end{array}\right) \\
S=\left(\begin{array}{rr}
10.75 \\
2.90 \\
0 \\
0
\end{array}\right) \\
V=\left(\begin{array}{rr}
-0.79 & -0.62 \\
-0.62 & 0.79
\end{array}\right)
\end{gathered}
\]

\section*{Singular Value Decomposition}

Let \(A\) be a real-valued \(n \times d\) matrix with right singular vectors \(v_{1}, \ldots, v_{r}\), left singular vectors \(u_{1}, \ldots, u_{r}\), and singular values \(\sigma_{1}, \ldots, \sigma_{r}\).

■ For each \(1 \leq k \leq r\), take the truncated sum of \(A\) up to the \(k\)-th term,
\[
\begin{equation*}
A_{k}=\sum_{i=1}^{k} \sigma_{i} u_{i} v_{i}^{t} \tag{452}
\end{equation*}
\]

The matrix \(A_{k}\) has rank \(k\).
■ The 2-norm of a matrix \(A\) is given by
\[
\begin{equation*}
\|A\|_{2}=\max \{\|A v\| \mid\|v\|=1\} . \tag{453}
\end{equation*}
\]

Soft Computing
K.-H.

\section*{Contents}

ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing Networks
* Spiking Neural Networks

Neural Networks in \(R\)

\section*{Proposition}

We have \(\left\|A-A_{k}\right\|_{2}^{2}=\sigma_{k+1}^{2}\).

\section*{Proof.}

We have \(A-A_{k}=\sum_{i=k+1}^{r} \sigma_{i} u_{i} v_{i}^{t}\). Let \(v\) be the first singular vector of \(A-A_{k}\). Then \(v\) is a linear combination of \(v_{1}, \ldots, v_{r}\). Write \(v=\sum_{i=1}^{r} \alpha_{i} v_{i}\). Then
\[
\begin{aligned}
\left\|\left(A-A_{k}\right) v\right\| & =\left\|\sum_{i=k+1}^{r} \sigma_{i} u_{i} v_{i}^{t} \sum_{j=1}^{r} \alpha_{j} v_{j}\right\|=\left\|\sum_{i=k+1}^{r} \alpha_{i} \sigma_{i} u_{i} v_{i}^{t} v_{i}\right\| \\
& =\left\|\sum_{i=k+1}^{r} \alpha_{i} \sigma_{i} u_{i}\right\|=\sqrt{\sum_{i=k+1}^{r} \alpha_{i}^{2} \sigma_{i}^{2} .}
\end{aligned}
\]

A vector \(v\) maximizing the last expression subject to \(\|v\|=1\) has \(\alpha_{k+1}=1\) and \(\alpha_{i}=0\) for \(k+2 \leq i \leq r\).

\section*{Contents}

ANN Technology

\section*{Multilayer}

Perceptron
Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing Networks
* Spiking Neural Networks

Neural Networks in \(R\)

Theorem
Let \(A\) be an \(n \times d\) matrix. For each \(n \times d\) matrix \(B\) of rank \(\leq k\),
\[
\begin{equation*}
\left\|A-A_{k}\right\|_{2} \leq\|A-B\|_{2} . \tag{454}
\end{equation*}
\]

\section*{Contents}

ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing Networks
*Spiking Neural Networks

Neural Networks in \(R\)

\section*{Proof}

If the matrix \(A\) has rank \(\leq k\), then \(\left\|A-A_{k}\right\|_{2}=0\) and so the result follows.
Assume the matrix \(A\) has rank \(>k\). Suppose \(B\) is an \(n \times d\) matrix of rank \(\leq k\) such that \(\|A-B\|_{2}<\sigma_{k+1}\). Then the kernel \(W\) of the matrix \(B\) has dimension \(\geq d-k\). Let \(V\) be the subspace of \(\mathbb{R}^{d}\) spanned by the first \(k+1\) singular vectors \(v_{1}, \ldots, v_{k+1}\) of \(A\). Since the subspace \(V\) has dimension \(k+1\), the subspaces \(V\) and \(W\) cannot trivially intersect. Thus there is a nonzero vector \(w\) in \(W\). We may assume that \(w\) is a unit vector; i.e., \(\|w\|=1\).
K.-H.

Zimmermann

\section*{Contents}

ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing Networks
* Spiking Neural Networks

Neural Networks in R

\section*{Proof (cont'd)}

By definition, \(\|A-B\|_{2}^{2} \geq\|(A-B) w\|^{2}\). Since \(B w=0\), we obtain \(\|A-B\|_{2}^{2} \geq\|A w\|^{2}\). Since \(w\) lies in \(V\),
\[
\begin{aligned}
\|A w\|^{2} & =\left\|\sum_{i=1}^{r} \sigma_{i} u_{i} v_{i}^{t} w\right\|^{2} \\
& =\left\|\sum_{i=1}^{r} \sigma_{i}\left\langle v_{i}, w\right\rangle u_{i}\right\|^{2} \\
& =\sum_{i=1}^{k+1} \sigma_{i}^{2}\left\langle v_{i}, w\right\rangle^{2} \\
& \geq \sigma_{k+1}^{2} \sum_{i=1}^{k+1}\left\langle v_{i}, w\right\rangle^{2}=\sigma_{k+1}^{2}
\end{aligned}
\]

Thus \(\|A-B\|_{2}^{2} \geq \sigma_{k+1}^{2}\) and hence the result follows.

\section*{Contents}

ANN Technology
Multilayer
Perceptron

\section*{Applications of Singular Value Decomposition}
- Data compression
- Spectral decomposition

■ Principal component analysis

Contents
ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing Networks
*Spiking Neural Networks

Neural Networks in \(R\)

\section*{Data Compression}
- Let \(A=\left(a_{i j}\right)\) be an \(n \times n\) matrix, where \(a_{i j}\) denotes the intensity of the pixel \((i, j)\).
- Complexity of storing matrix \(A\) is \(O\left(n^{2}\right)\).
- Take the approximation matrix \(A_{k}\) given by the first \(k\) singular values and the first \(k\) left and right singular vectors.
- Complexity of storing matrix \(A_{k}\) is \(O(k n)\) with \(k \leq n\).

\section*{Soft Computing}
K.-H.

Zimmermann

Contents
ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing Networks
*Spiking Neural Networks

Neural Networks in R

\section*{Spectral Decomposition}
- Let \(A\) be a real-valued \(n \times d\) matrix.
- The \(n \times n\) matrix \(B=A A^{t}\) is symmetric and positive definite.
- If \(A=\sum_{i=1}^{r} \sigma_{i} u_{i} v_{i}^{t}\) is the singular value decomposition, then \(B=\sum_{i=1}^{r} \sigma_{i}^{2} u_{i} u_{i}^{t}\).

\section*{Proof.}

We have
\[
\begin{aligned}
B=A A^{t} & =\left(\sum_{i=1}^{r} \sigma_{i} u_{i} v_{i}^{t}\right)\left(\sum_{i=1}^{r} \sigma_{i} u_{i} v_{i}^{t}\right)^{t} \\
& =\sum_{i=1}^{r} \sum_{j=1}^{r} \sigma_{i} \sigma_{j} u_{i} v_{i}^{t} v_{j} u_{j}^{t} \\
& =\sum_{i=1}^{r} \sigma_{i}^{2} u_{i} u_{j}^{t}
\end{aligned}
\]

Contents
ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing Networks
*Spiking Neural Networks

Neural Networks in \(R\)

\section*{Principle Component Analysis}
- Suppose there are customer-product data where \(n\) customers can buy \(d\) products.
- Suppose \(n \times d\) matrix \(A=\left(a_{i j}\right)\) represents customer-product behavior; \(a_{i j}\) is the amount (probability) of product \(j\) bought by customer \(i\).
- Which basic \(k\) factors (like sex, age, income) determine the customer's purchase behavior?
- Consider the best rank \(k\) approximation \(A_{k}\) corresponding to the first \(k\) singular values.

\section*{Contents}

ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing Networks
* Spiking Neural Networks

Neural Networks in \(R\)

\section*{Iris Flower Data Set}

■ Multivariate dataset established by Ronald Fisher (1890-1962) in 1936.

■ Data set consists of 150 samples from three Iris species: Iris setosa, Iris versicolor, and Iris virginica.
- Four measured features: length and width of sepals and petals (in cm ).
- Fisher developed a linear discriminant model to distinguish the species from each other.

Soft Computing
K.-H.

Zimmermann

\section*{Contents}

ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing Networks
*Spiking Neural Networks

Neural Networks in R

Iris Flower Data Set


\section*{Soft Computing}
K.-H.

Zimmermann

\section*{Contents}

ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing Networks
*Spiking Neural Networks

Neural Networks
in \(R\)
Iris Flower Data Set - R
> iris
\begin{tabular}{rccccc} 
& Sepal length & Sepal width & Petal length & Petal width & Species \\
\hline 1 & 5.1 & 3.5 & 1.4 & 0.2 & setosa \\
2 & 4.9 & 3.0 & 1.4 & 0.2 & setosa \\
3 & 4.7 & 3.2 & 1.3 & 0.2 & setosa \\
4 & 4.6 & 3.1 & 1.5 & 0.2 & setosa \\
5 & 5.0 & 3.6 & 1.4 & 0.2 & setosa \\
\(\vdots\) & & & & & \\
\(\vdots\) & & & & & \\
51 & 7.0 & 3.2 & 4.7 & 1.4 & versicolor \\
53 & 6.4 & 3.2 & 4.4 & 1.5 & versicolor \\
54 & 6.9 & 3.1 & 4.9 & 1.5 & versicolor \\
55 & 5.5 & 2.3 & 4.0 & 1.3 & versicolor \\
\(\vdots\) & 6.5 & 2.8 & 4.6 & 1.5 & versicolor \\
\(\vdots\) & & & & & \\
146 & 6.7 & 3.0 & & & \\
147 & 6.3 & 2.5 & 5.2 & 2.3 & virginica \\
148 & 6.5 & 3.0 & 5.0 & 1.9 & virginica \\
149 & 6.2 & 3.4 & 5.2 & 2.0 & virginica \\
150 & 5.9 & 3.0 & 5.4 & 2.3 & virginica \\
& & & 5.1 & 1.8 & virginica
\end{tabular}

Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing Networks
*Spiking Neural Networks

Neural Networks in \(R\)
```

Iris Flower Data Set - R
> irispca <- princomp(iris[-5])
> summary(irispca)
> irispca <- princomp(iris[-5])
> summary(irispca)

```
\begin{tabular}{lcccc} 
& Comp.1 & Comp.2 & Comp.3 & Comp.4 \\
\hline Standard deviation & 2.049 & 0.491 & 0.279 & 0.154 \\
Proportion of variance & 0.925 & 0.053 & 0.017 & 0.005 \\
Cumulative proportion & 0.925 & 0.978 & 0.995 & 1.000
\end{tabular}

Thus \(92.5 \%\) of the variation in the dataset is explained by the first component alone, and \(97.8 \%\) is explained by the first two components.

\section*{Contents}

ANN Technology
Multilayer Perceptron

Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing Networks
* Spiking Neural Networks

Neural Networks in \(R\)

Iris Flower Data Set - R
> irispca\$loadings
\begin{tabular}{lcccc} 
& Comp.1 & Comp.2 & Comp.3 & Comp.4 \\
\hline Sepal length & 0.361 & -0.657 & 0.582 & 0.315 \\
Sepal width & & -0.730 & -0.598 & -0.320 \\
Petal length & 0.857 & 0.173 & & -0.480 \\
Petal width & 0.358 & & 0.017 & 0.754
\end{tabular}

Loadings are the eigenvectors scaled by the square root of the corresponding eigenvalues.

\section*{Iris Flower Data Set - R}
> irispca\$scores

Contents
ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing Networks
*Spiking Neural Networks

Neural Networks in \(R\)
\begin{tabular}{lrrrr} 
& Comp.1 & Comp.2 & Comp.3 & Comp.4 \\
\hline 1 & -2.684 & -0.319 & 0.028 & 0.002 \\
2 & -2.714 & 0.177 & 0.210 & 0.099 \\
3 & -2.889 & 0.145 & -0.018 & 0.020 \\
4 & -2.745 & 0.318 & -0.031 & 0.077 \\
5 & -2.729 & -0.327 & 0.090 & -0.061
\end{tabular}
- The scores given by the base change using the eigenvectors are the coefficients of the loadings providing the observations.
- The analysis suggests that the first two components are sufficient to explain the data.

\section*{Contents}

ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing
Networks
*Spiking Neural Networks
- Generations of artificial neural network models
- Spiking neuron model
- *Information coding
- *Learning
* Spiking Neural Networks

ANN Technology
Multilayer Perceptron

Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing Networks
* Spiking Neural Networks

Neural Networks in R

\section*{Spiking Neural Networks}
- Spiking neural networks (SNNs) are ANN models that mimic more closely neural network structures in the brain.
- SNNs take also the concept of timing into account.
- Neurons do not fire at each propagation cycle but fire only when a membrane potential reaches a specific value (threshold).

\section*{Generations of Neural Network Models}

Neural networks can be classifed according to their computational units into three generations.

First generation:
■ McCulloch-Pitts neuron (percepton, threshold gate) is the basic computational unit.

■ It gives rise to several neural network models with binary encoded output such as multilayer perceptron, Hopfield nets, Boltzmann machines.

■ Networks of the first generation are universal for digital computations, i.e., each Boolean function can be calculated by some multilayer perceptron with a single hidden layer.

Soft Computing
K.-H.

Zimmermann

\section*{Contents}

ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing Networks
* Spiking Neural Networks

\section*{Generations of Neural Network Models}

Neural networks can be classifed according to their computational units into three generations.

Second generation:
- The computational units are equipped with an activation function (sigmoid or hyperbolic tangent) which has a continuous set of possible output values.

■ It gives rise to several neural network models with continuous input and output sets such as feedforward and recurrent netral nets.

■ Networks of the second generation are univeral for analog computations, i.e., each continuous function with compact domain and range can be approximated well by a network with a single hidden layer.

■ Networks of the second generation are trained by supervised learning algorithms based on gradient descent such as backpropagation.

\section*{Generations of Neural Network Models}

Neural networks can be classifed according to their computational units into three generations.

Third generation:
- In the first two generations, the neurons are modeled by rate coding in the form of real number values that represent the activation level.
- The computational units are spiking neurons (integrate and fire) neurons.
- This model has been the result of investigations in neurobiology which indicates that many biological neural systems use the timing of single action potentials (spikes) to encode information.
- The temporal coding scheme addresses the temporal relationship between the firing of neurons.

\section*{Spiking Neuron Model}

■ In the spiking neuron model, a neuron \(v\) fires whenever its potential \(P_{v}\) reaches a certain threshold \(\Theta_{v}\).
- The potential \(P_{v}\) models the electric membrane potential in a real neuron; \(P_{v}\) is the sum of excitory postsynaptic potentials (EPSPs) and inhibitory postsynaptic potentials (IPSPs).

■ The firing of a presynaptic neuron \(u\) at time \(s\) contributes to the potential \(P_{v}\) of neuron \(v\) at time \(t \geq s\), written \(P_{v}(t)\), whose amount is given by the term
\[
\begin{equation*}
w_{u, v} \epsilon_{u, v}(t-s) \tag{455}
\end{equation*}
\]
where \(w_{u, v}\) is a weight value and \(\epsilon_{u, v}(t-s)\) is a response function.

■ The weight \(w_{u, v}\) in the term (455) is a measure of strength (efficacy) of the synapse between neurons \(u\) and \(v\).

\section*{Spiking Neuron Model}

■ In view of learning, the weight \(w_{u, v}\) can be substituted by a function \(w_{u, v}(t)\) depending on time.
- A biological synapse is either excitatory or inhibitory and does not change its state over time.

■ The potential \(P_{v}\) is assumed to have the value 0 if postsynaptic potentials are absent and the threshold value \(\Theta_{v}\) is positive.

■ In a biological neuron, the resting membrane potential is about -70 mV and the firing threshold of the rested neuron is about -50 mV . The postsynaptic potential (EPSP or IPSP) changes the potential temporarily by a few mV .

Contents
ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing Networks
*Spiking Neural Networks

Neural Networks in \(R\)

\section*{Spiking Neuron Model}
- When a neuron \(v\) fires at time \(t^{\prime}\), it will not fire again for a few msec after time \(t^{\prime}\) independent of the size of the potential.
- This refractory effect is modeled by a threshold function \(\Theta_{v}\left(t-t^{\prime}\right)\) which is rocket-high for small values of \(t-t^{\prime}\).
- In the deterministic (noise-free) model of spiking neurons it is assumed that a neuron \(v\) fires whenever the potential \(P_{v}(t)\) reaches the function \(\Theta_{v}\left(t-t^{\prime}\right)\)
- It is assumed that \(\Theta_{v}\left(t-t^{\prime}\right)=\Theta(0)\) for small values \(t-t^{\prime}\), where \(\Theta(0)\) is the resting value;

\section*{Contents}

ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing Networks
* Spiking Neural Networks

Neural Networks in \(R\)

\section*{Spiking Neuron Model}

The (deterministic) spiking neuron network (SNN) (W. Maass, 1995) consists of
- finite set \(V\) of spiking neurons,
- set \(E \subseteq V \times V\) of synapses,

■ weight \(w_{u, v} \geq 0\) and response function \(\epsilon_{u, v}: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}\) for each synapse \((u, v) \in E\),
- threshold function \(\Theta_{v}: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}\) for each neuron \(v \in V\).

Contents
ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing Networks
* Spiking Neural Networks

Neural Networks in R

\section*{Spiking Neuron Model}
- Suppose \(F_{u} \subseteq \mathbb{R}_{\geq 0}\) is the set of firing times (spike trains) of neuron \(u\).
- The potential at the trigger zone of neuron \(v\) at time \(t\) is
\[
\begin{equation*}
P_{v}(t)=\sum_{\substack{u \in V \\(u, v) \in E}} \sum_{\substack{s \in F_{u} \\ s<t}} w_{u, v} \epsilon_{u, v}(t-s) \tag{456}
\end{equation*}
\]
- A neuron \(v\) fires at time \(t\) when the potential \(P_{v}(t)\) reaches the threshold \(\Theta_{v}\left(t-t^{\prime}\right)\), where \(t^{\prime}\) is the time of the most recent firing of neuron \(v\).

\section*{Contents}

ANN Technology
Multilayer Perceptron

Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing Networks
* Spiking Neural Networks

Neural Networks in \(R\)

\section*{Spiking Neuron Model}

■ In the spiking neural model, there is a set \(V_{\text {in }} \subseteq V\) of input neurons and a set \(V_{\text {out }} \subseteq V\) of output neurons.
For each input neuron \(u \in V_{\mathrm{in}}\), the firing times \(F_{u}\) are given from outside of the model. The output of the network is given by the spike trains \(F_{v}\) of the output neurons \(v\).

■ In the stochastic (noisy) version of the spiking neural network model, the differences \(P_{v}(t)-\Theta_{v}\left(t-t^{\prime}\right)\) are governed by the probability that the neuron \(v\) fires at time \(t\) (W. Gerstner, 1995).

\section*{Information Coding}

A fundamental coding method is temporal coding (Maass, 1997):
- The firing time of a neuron encodes a value in the sense that an early firing of the neuron represents a large value.

■ Consider a neuron \(v\) which receives excitatory input from \(m\) neurons \(u_{1}, \ldots, u_{m}\) with corresponding weights \(w_{1}, \ldots, w_{m}\).
- The analog input from presynaptic neuron \(u_{i}\) is mapped by the standard sigmoid function to a value \(x_{i}\) in \([0,1]\).

■ The firing time of neuron \(u_{i}\) is \(t_{i}=T_{1}-c x_{i}\), where \(c>0\) is a constant and \(T_{1}\) signifies the beginning of a time frame lasting for the period \(c\).
\(\square\) The neuron \(v\) fires at time determined by \(T_{2}-\sum_{i} w_{i} s_{i}\), where \(s_{i}=c x_{i}, 1 \leq i \leq m\), with \(T_{2}>T_{1}\) being a constant.

This computation can be performed on the basis of competitive temporal coding without explicit reference to \(T_{1}\) and \(T_{2}\).

Soft Computing
K.-H.

Zimmermann

Contents
ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing Networks
*Spiking Neural Networks

Neural Networks in \(R\)

\section*{Information Coding}

Temporal coding:


\section*{Contents}

ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing Networks
* Spiking Neural Networks

Neural Networks in R

\section*{Learning}
- The research on spiking neural networks has mainly been focused on unsupervised learning (Ruf, Schmidt, 1998).
- The objective of unsupervised learning is to allow the network to self-organize and eventually learn to discriminate between input patterns which have no explicit identification.
- The most prominent example of an artifical neural network in the second generation trained by unsupervised learning is Kohonen's self-organizing map (SOM).

\section*{Contents}

ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing Networks
* Spiking Neural Networks

Neural Networks in \(R\)

\section*{Learning}
- Given a collection of input vectors \(s^{(l)}=\left(s_{l 1}, \ldots, s_{l m}\right)\) of an SNN with \(m\) input vectors and \(n\) competitive neurons.
- Each competitive neuron \(v_{j}\) receives synaptic feedforward input from each input neuron \(u_{i}\) with \(w_{i j}\) and lateral synaptic input from each competitive neuron \(v_{k}, k \neq j\), with weight \(w_{k j}^{\prime}\).
- The latter weights allow to implement a distance function between the competitive neurons.

\section*{Learning}

Contents
ANN Technology
Multilayer Perceptron

Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing Networks
* Spiking Neural Networks

Neural Networks in \(R\)
- At each cycle of the learning phase, one input vector \(s^{(l)}\) is randomly chosen and presented to the network.

■ Each competitive neuron \(v_{j}\) then computes the weighted sum \(\sum_{i} w_{i j} s_{l i}\) as described in the section about information coding.

■ If the input vector and the weight vector for each neuron are normalized, the weighted sum represents the similarity between the two vectors with respect to the Euclidean distance.

■ The earlier the competitive neuron \(v_{j}\) fires, the more similar is its weight vector to the input vector; i.e., the winner among the layer of competitive neurons fires first.

\section*{Learning}

The learning rule is
\[
\begin{equation*}
\Delta w_{i j}=\eta \frac{T_{o}-t_{j}}{T_{o}}\left(s_{l i}-w_{i j}\right), \tag{457}
\end{equation*}
\]
where \(t_{j}\) is the firing time of the \(j\) th competitive neuron \(v_{j}\).
- The rule applies only to neurons that have fired before a certain time \(T_{o}\).
- The factor \(\left(T_{o}-t_{j}\right) / T_{o}\) provides the neighborhood function, which is largest for the winner neuron and decreases for neurons which fire later.
- It has been demonstrated that the learning works pretty well for standard one-dimensional input patterns.

\section*{Neural Networks in R}

R-library deepnet provides procedures for deep learning architectures and neural network algorithms (Xiao Rong, 2014). Loading of library:
> library (deepnet)
A single or multiple hidden layer network can be defined by the command nn.train.

\section*{Neural Networks in R - Example}

Consider two normally distributed data sets with given mean and variance,
```

> var1 <- c(rnorm(50, 0.0, 0.5),rnorm(50, 10.0, 200.0))
> var2 <- c(rnorm(50, 0.1, 0.5),rnorm(50, 9.0, 200.0))

```

Merge these sample sets into \(100 \times 2\) matrix of input data,
```

> x <- matrix(c(var1, var2), nrow=100, ncol=2) //samples

```
\(>\mathrm{x}\)
\begin{tabular}{crr} 
& {\([, 1]\)} & {\([, 2]\)} \\
{\([1]\),} & -0.18657632 & 0.08037026 \\
\(\ldots\) & & \\
{\([50]\)} & -0.30735384 & -0.07672294 \\
{\([51]\)} & -249.07337659 & -111.72856325
\end{tabular}
    [100] -0.31854956 37.67063888

Neural Networks in R - Example (cont'd)
Desired output data is given by vector of length 100 ,
\(>y<-c(\operatorname{rep}(1,50), \operatorname{rep}(0,50)) / /\) target values
The input data \(x[1,] \ldots x[50\),\(] and x[51,] \ldots x[100\),\(] have desired\) output values 1 and 0 , respectively.

Soft Computing
K.-H.

Zimmermann

Contents
ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing Networks
* Spiking Neural Networks

Neural Networks in \(R\)

Neural Networks in R - Example (cont'd)
Define ANN with two input units, one output unit and 10 hidden units and train the network by 1000 epochs:
> nnet <- nn.train(x, y, hidden=c(10), numepochs=1000)
Specification of network:
> nnet
\$input_dim
[1] 2
\$output_dim
[1] 1
\$hidden
[1] 10
\$size
[1] 2101
\$activiationfun
[1] "sigm"

Soft Computing
K.-H.

Zimmermann

Contents
ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing Networks
* Spiking Neural Networks

Neural Networks in \(R\)

\section*{Neural Networks in R - Example (cont'd)}

Specification of network (cont'd):

\section*{\$learningrate}
[1] 0.8
\$W // weights
\$W [ [1] ]
\$W [ [2] ]
\$B // biases
\$B[[1]]
\$B [ [2] ]

Contents
ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing
Networks
*Spiking Neural Networks

Neural Networks in \(R\)

Neural Networks in R - Example (cont'd)
Predict new samples by the command nn. predict:
```

> test_var1 <- c(rnorm(50, 0.1, 0.51),
rnorm(50, 10.1, 200.1))
> test_var2 <- c(rnorm(50, 0.2, 0.51),
rnorm(50, 9.1, 200.1))
> test_x <- matrix(test_var1, test_var2),
nrow=100, ncol=2)
> y_test <- nn.predict(nnet, test_x)

```

Contents
ANN Technology
Multilayer
Perceptron
Deep Learning via Keras

Universality
Hopfield Network
Self-Organizing Networks
* Spiking Neural Networks

Neural Networks in R
```

Neural Networks in R - Example (cont'd)
Output is given by the raw values of the classes:
> y_test
[,1]
[1,] 0.95784997
[50,] 0.95993372
[51,] 0.07435817
[100,] 0.02650158

```
```

Soft Computing
K.-H.
Zimmermann

```

\section*{Contents}
```

Triangular Norms
Properties of
Triangular Norms
Fuzzy Sets
Fuzzy Numbers
Fuzzy Inference

```

\section*{Part VII}

\section*{Fuzzy Sets}

\title{
Soft Computing
}
K.-H.

Zimmermann

Contents
Triangular Norms
Properties of
Triangular Norms
Fuzzy Sets
Fuzzy Numbers
Fuzzy Inference
Fuzzy Control
Fuzzy Sets in R

\section*{Contents}
- Triangular norms

■ Fuzzy sets and fuzzy numbers
■ Fuzzy inference and fuzzy control
■ * Stochastic fuzzy sets
```

Soft Computing
K.-H.
Zimmermann
Contents
Triangular Norms
Properties of
Triangular Norms
Fuzzy Sets
Fuzzy Numbers
Fuzzy Inference
Knowledge

- Triangular norms
- Fuzzy logic
- Fuzzy sets and numbers

```

Fuzzy Control
Fuzzy Sets in R

\section*{Skills}
- Fuzzy control and inference using \(R\)

Contents
Triangular Norms
Properties of Triangular Norms

Fuzzy Sets
Fuzzy Numbers
Fuzzy Inference
Fuzzy Control
Fuzzy Sets in R

\section*{Fuzzy Sets}

■ Fuzzy sets generalize ordinary set theory.
- Introduced independently by Lofti Zadeh and Dieter Klaua (1965).

■ Applications in decision based systems and knowledge engineering.
- No learning needed in fuzzy inference and control.
- Goal is introduction to fuzzy sets and their applications based on triangular norms.

Contents
Triangular Norms
Properties of Triangular Norms

Fuzzy Sets
Fuzzy Numbers
Fuzzy Inference
Fuzzy Control
Fuzzy Sets in R

\section*{Triangular Norms}

Triangular norms were first studied in probabilistic metric spaces (Karl Menger, 1942).
- Triangular norms and conorms
- Duality and continuity
- Important triangular norms

\section*{Soft Computing}
K.-H.

Zimmermann

Contents
Triangular Norms
Properties of Triangular Norms

Fuzzy Sets
Fuzzy Numbers
Fuzzy Inference
Fuzzy Control
Fuzzy Sets in R

\section*{Triangular Norms}

A mapping \(T:[0,1]^{2} \rightarrow[0,1]\) is a triangular norm or \(t\)-norm if for all \(x, y, z \in[0,1]\),
- Commutativity:
\[
\begin{equation*}
T(x, y)=T(y, x) \tag{458}
\end{equation*}
\]
- Associativity:
\[
\begin{equation*}
T(x, T(y, z))=T(T(x, y), z) \tag{459}
\end{equation*}
\]
- Unit element:
\[
\begin{equation*}
T(x, 1)=x \tag{460}
\end{equation*}
\]
- Monotonicity:
\[
\begin{equation*}
y \leq z \Longrightarrow T(x, y) \leq T(x, z) . \tag{461}
\end{equation*}
\]

\section*{Soft Computing}
K.-H.

Zimmermann

Contents
Triangular Norms
Properties of Triangular Norms

Fuzzy Sets
Fuzzy Numbers
Fuzzy Inference
Fuzzy Control
Fuzzy Sets in R

\section*{Triangular Norms - Example}

Four basic t-norms:
- Minimum:
\[
\begin{equation*}
T_{M}(x, y)=\min \{x, y\} \tag{462}
\end{equation*}
\]
- Probabilistic product:
\[
\begin{equation*}
T_{P}(x, y)=x \cdot y \tag{463}
\end{equation*}
\]
- Lukasiewicz t-norm:
\[
\begin{equation*}
T_{L}(x, y)=\max \{x+y-1,0\} \tag{464}
\end{equation*}
\]
- Drastic product:
\[
T_{D}(x, y)= \begin{cases}0 & \text { if } 0 \leq x, y<1,  \tag{465}\\ \min \{x, y\} & \text { otherwise } .\end{cases}
\]

\section*{Triangular Norms - Example (cont'd)}

The above t-norms are defined in Maple as follows:
> M := ( \(x, y\) ) -> min \((x, y)\);
\(>\mathrm{P}:=(\mathrm{x}, \mathrm{y}) \rightarrow \mathrm{x} * \mathrm{y}\);
\(>\) L := (x,y) -> max \((x+y-1,0)\);
> D := (x,y) -> piecewise(x=1, y, y=1, x, 0);
```

Soft Computing
K.-H.
Zimmermann

```

\section*{Contents}

Triangular Norms
Properties of Triangular Norms

Fuzzy Sets
Fuzzy Numbers
Fuzzy Inference
Fuzzy Control
Fuzzy Sets in R

\section*{Triangular Norms - Example (cont'd)}

T-norms \(T_{M}\) and \(T_{P}\) :

```

Soft Computing
K.-H.
Zimmermann

```

\section*{Contents}

Triangular Norms
Properties of Triangular Norms

Fuzzy Sets
Fuzzy Numbers
Fuzzy Inference
Fuzzy Control
Fuzzy Sets in R

\section*{Triangular Norms - Example (cont'd)}

T-norms \(T_{L}\) and \(T_{D}\) :


\section*{Soft Computing}
K.-H.

Zimmermann

Contents
Triangular Norms
Properties of Triangular Norms

Fuzzy Sets
Fuzzy Numbers
Fuzzy Inference
Fuzzy Control
Fuzzy Sets in R

\section*{Triangular Norms}

Basic properties of t-norm \(T\) :
- Boundary conditions:
\[
\begin{equation*}
T(0, x)=T(x, 0)=0, \quad x \in[0,1], \tag{466}
\end{equation*}
\]
since for each \(x \in[0,1], T(0, x) \leq T(0,1)=0\), and
\[
\begin{equation*}
T(1, x)=T(x, 1)=x, \quad x \in[0,1] . \tag{467}
\end{equation*}
\]
- Boundedness:
\[
\begin{equation*}
T(x, x) \leq x, \quad x \in[0,1] . \tag{468}
\end{equation*}
\]
- Joint monotonicity:
\[
\begin{gather*}
T\left(x_{1}, y_{1}\right) \leq T\left(x_{2}, y_{2}\right)  \tag{469}\\
\text { if } x_{1} \leq x_{2} \text { and } y_{1} \leq y_{2} \text { for all } x_{1}, y_{1}, x_{2}, y_{2} \in[0,1] .
\end{gather*}
\]

\section*{Contents}

Triangular Norms
Properties of Triangular Norms

Fuzzy Sets
Fuzzy Numbers
Fuzzy Inference
Fuzzy Control

\section*{Triangular Norms}
- A t-norm \(T_{1}\) is weaker than a t-norm \(T_{2}\), written \(T_{1} \leq T_{2}\), if
\[
\begin{equation*}
T_{1}(x, y) \leq T_{2}(x, y), \quad x, y \in[0,1] . \tag{470}
\end{equation*}
\]
- Each t-norm \(T\) satisfies
\[
\begin{equation*}
T_{D} \leq T \leq T_{M} . \tag{471}
\end{equation*}
\]
- Ordering of the four basic t-norms:
\[
\begin{equation*}
T_{D}<T_{L}<T_{P}<T_{M} \tag{472}
\end{equation*}
\]

\section*{Soft Computing}
K.-H.

Zimmermann

\section*{Contents}

Triangular Norms
Properties of Triangular Norms

Fuzzy Sets
Fuzzy Numbers
Fuzzy Inference
Fuzzy Control
Fuzzy Sets in R

\section*{Triangular Norms}

■ The minimum t-norm \(T_{M}\) is the only t-norm \(T\) satisfying
\[
\begin{equation*}
T(x, x)=x, \quad x \in[0,1] . \tag{473}
\end{equation*}
\]
- The drastic product \(T_{D}\) is the only t-norm \(T\) fulfilling
\[
\begin{equation*}
T(x, x)=0, \quad x \in[0,1[. \tag{474}
\end{equation*}
\]

\section*{Proof.}
- Suppose \(T\) is a t-norm with \(T(x, x)=x\) for all \(x \in[0,1]\). Then for all \(x, y \in[0,1]\) with \(y \leq x\), monotonicity implies \(y=T(y, y) \leq T(x, y) \leq T_{M}(x, y)=y\). Hence, \(T=T_{M}\).
- Suppose \(T\) is a t-norm with \(T(x, x)=0\) for all \(x \in[0,1[\). Then for all \(x, y \in[0,1[\) with \(y \leq x\), monotonicity implies \(0 \leq T(x, y) \leq T(x, x)=0\). Moreover, \(T(x, 1)=x\) for all \(x \in[0,1]\). Hence, \(T=T_{D}\).

\section*{Soft Computing}
K.-H.

Zimmermann

Contents
Triangular Norms
Properties of Triangular Norms

Fuzzy Sets
Fuzzy Numbers
Fuzzy Inference
Fuzzy Control
Fuzzy Sets in R

\section*{Triangular Norms}

A mapping \(S:[0,1]^{2} \rightarrow[0,1]\) is a triangular conorm or \(t\)-conorm if for all \(x, y, z \in[0,1]\),

■ Commutativity:
\[
\begin{equation*}
S(x, y)=S(y, x) \tag{475}
\end{equation*}
\]
- Associativity:
\[
\begin{equation*}
S(x, S(y, z))=S(S(x, y), z) \tag{476}
\end{equation*}
\]

■ Unit element:
\[
\begin{equation*}
S(x, 0)=x \tag{477}
\end{equation*}
\]

■ Monotonicity:
\[
\begin{equation*}
y \leq z \Longrightarrow S(x, y) \leq S(x, z) . \tag{478}
\end{equation*}
\]

\section*{Soft Computing}
K.-H.

Zimmermann

Contents
Triangular Norms
Properties of Triangular Norms

Fuzzy Sets
Fuzzy Numbers
Fuzzy Inference
Fuzzy Control
Fuzzy Sets in R

\section*{Triangular Norms - Example}

Four basic t-conorms:
- Maximum:
\[
\begin{equation*}
S_{M}(x, y)=\max \{x, y\} \tag{479}
\end{equation*}
\]

■ Probabilistic sum:
\[
\begin{equation*}
S_{P}(x, y)=x+y-x \cdot y \tag{480}
\end{equation*}
\]

■ Lukasiewicz t-conorm:
\[
\begin{equation*}
S_{L}(x, y)=\min \{x+y, 1\} \tag{481}
\end{equation*}
\]
- Drastic sum:
\[
S_{D}(x, y)= \begin{cases}1 & \text { if } 0<x, y \leq 1  \tag{482}\\ \max \{x, y\} & \text { otherwise }\end{cases}
\]

\title{
Soft Computing
}

\section*{Contents}

Triangular Norms
Triangular Norms - Example (cont'd)
These t-conorms are defined in Maple as follows:
Fuzzy Numbers
Fuzzy Inference
\(>\mathrm{M}:=(\mathrm{x}, \mathrm{y}) \rightarrow \max (\mathrm{x}, \mathrm{y})\);
\(>P:=(x, y) \rightarrow x+y-x * y\);
\(>\mathrm{L}:=(\mathrm{x}, \mathrm{y}) \rightarrow \min (\mathrm{x}+\mathrm{y}, 1) ;\)
\(>\mathrm{D}:=(\mathrm{x}, \mathrm{y}) \rightarrow\) piecewise \((\mathrm{x}=0, \mathrm{y}, \mathrm{y}=0, \mathrm{x}, 1)\);
Soft Computing
    K.-H.
    Zimmermann

\section*{Contents}

Triangular Norms
Properties of Triangular Norms

Fuzzy Sets
Fuzzy Numbers
Fuzzy Inference
Fuzzy Control
Fuzzy Sets in R

\section*{Triangular Norms - Example (cont'd)}

T-conorms \(S_{M}\) and \(S_{P}\) :

```

Soft Computing
K.-H.
Zimmermann

```

\section*{Contents}

Triangular Norms
Properties of Triangular Norms

Fuzzy Sets
Fuzzy Numbers
Fuzzy Inference
Fuzzy Control
Fuzzy Sets in R

\section*{Triangular Norms - Example (cont'd)}

T-conorms \(S_{L}\) and \(S_{D}\) :


\section*{Soft Computing}
K.-H.

Zimmermann

Contents
Triangular Norms
Properties of Triangular Norms

Fuzzy Sets
Fuzzy Numbers
Fuzzy Inference
Fuzzy Control
Fuzzy Sets in R

\section*{Triangular Norms}

Basic properties of t-conorm \(S\) :
- Boundary conditions:
\[
\begin{equation*}
S(1, x)=S(x, 1)=1, \quad x \in[0,1], \tag{483}
\end{equation*}
\]
since for each \(x \in[0,1], S(1, x) \geq S(1,0)=1\), and
\[
\begin{equation*}
S(0, x)=x, \quad x \in[0,1] . \tag{484}
\end{equation*}
\]
- Boundedness:
\[
\begin{equation*}
S(x, x) \geq x, \quad x \in[0,1] . \tag{485}
\end{equation*}
\]
- Joint monotonicity:
\[
\begin{equation*}
S\left(x_{1}, y_{1}\right) \leq S\left(x_{2}, y_{2}\right) \tag{486}
\end{equation*}
\]
\[
\text { if } x_{1} \leq x_{2} \text { and } y_{1} \leq y_{2} \text { for all } x_{1}, y_{1}, x_{2}, y_{2} \in[0,1] \text {. }
\]

\section*{Triangular Norms}

■ For a given t -norm \(T\), the t -conorm \(S\) given by
\[
\begin{equation*}
S(x, y)=1-T(1-x, 1-y) \tag{487}
\end{equation*}
\]
is the dual \(t\)-conorm of \(T\), written \(S=T^{*}\),
- For a given t-conorm \(S\), the t-norm \(T\) given by
\[
\begin{equation*}
T(x, y)=1-S(1-x, 1-y) \tag{488}
\end{equation*}
\]
is the dual \(t\)-norm of \(S\), written \(T=S^{*}\).
- For each t-norm \(T\) and each t-conorm \(S\), we have
\[
\begin{equation*}
\left(T^{*}\right)^{*}=T \quad \text { and } \quad\left(S^{*}\right)^{*}=S \tag{489}
\end{equation*}
\]

\section*{Contents}

Triangular Norms
Properties of Triangular Norms

Fuzzy Sets
Fuzzy Numbers
Fuzzy Inference
Fuzzy Control
Fuzzy Sets in R

\section*{Triangular Norms}
- The pairs of t-norms and t-conorms
\[
\begin{equation*}
\left(T_{M}, S_{M}\right), \quad\left(T_{P}, S_{P}\right), \quad\left(T_{L}, S_{L}\right), \quad\left(T_{D}, S_{D}\right) \tag{490}
\end{equation*}
\]
are mutually dual to each other.
■ For t-norms \(T_{1}\) and \(T_{2}\),
\[
\begin{equation*}
T_{1} \leq T_{2} \quad \Longrightarrow \quad T_{2}^{*} \leq T_{1}^{*} . \tag{491}
\end{equation*}
\]
- For t-conorms \(S_{1}\) and \(S_{2}\),
\[
\begin{equation*}
S_{1} \leq S_{2} \quad \Longrightarrow \quad S_{2}^{*} \leq S_{1}^{*} . \tag{492}
\end{equation*}
\]

\section*{Contents}

Triangular Norms
Properties of Triangular Norms

Fuzzy Sets
Fuzzy Numbers
Fuzzy Inference
Fuzzy Control
Fuzzy Sets in R

\section*{Triangular Norms}
- Each t-conorm \(S\) satisfies
\[
\begin{equation*}
S_{M} \leq S \leq S_{D} \tag{493}
\end{equation*}
\]
- The four basic t -conorms have the following ordering,
\[
\begin{equation*}
S_{M}<S_{P}<S_{L}<S_{D} . \tag{494}
\end{equation*}
\]

\section*{Contents}

Triangular Norms
Properties of Triangular Norms

Fuzzy Sets
Fuzzy Numbers
Fuzzy Inference
Fuzzy Control

\section*{Triangular Norms}
- A function \(f:[0,1]^{2} \rightarrow[0,1]\) is continuous if for all convergent sequences \(\left(x_{n}\right)_{n \geq 0}\) and \(\left(y_{n}\right)_{n \geq 0}\) in \([0,1]\),
\[
\begin{equation*}
f\left(\lim _{n \rightarrow \infty} x_{n}, \lim _{n \rightarrow \infty} y_{n}\right)=\lim _{n \rightarrow \infty} f\left(x_{n}, y_{n}\right) . \tag{495}
\end{equation*}
\]
- \([0,1]\) is a compact subset of \(\mathbb{R}\) and so the continuity of a function \(f:[0,1]^{2} \rightarrow[0,1]\) is equivalent to its uniform continuity.
- A t-norm is continuous iff its dual t-conorm is continuous.

\section*{Contents}

Triangular Norms
Properties of Triangular Norms

Fuzzy Sets
Fuzzy Numbers
Fuzzy Inference
Fuzzy Control
Fuzzy Sets in R

\section*{Triangular Norms - Example}

■ The basic t-norms \(T_{M}, T_{P}\), and \(T_{L}\) as well as their dual t-conorms \(S_{M}, S_{P}\), and \(S_{L}\) are continuous.
- The drastic product \(T_{D}\) and the drastic sum \(S_{D}\) are not continuous.

\section*{Contents}

Triangular Norms
Properties of Triangular Norms

Fuzzy Sets
Fuzzy Numbers
Fuzzy Inference

\section*{Properties of Triangular Norms}
- Partially ordered semigroups and duality
- De Morgan triples and Fuzzy logic
- Lattice monoids and residuum operation

\section*{Contents}

Triangular Norms
Properties of Triangular Norms

Fuzzy Sets
Fuzzy Numbers
Fuzzy Inference
Fuzzy Control

\section*{Triangular Norms}

Given set \(M \neq \emptyset\) and dyadic operation \(*: M \times M \rightarrow M\).
- \((M, *)\) is semigroup if \(*\) is associative, i.e., for all \(x, y, z \in M\), \(x *(y * z)=(x * y) * z\).
- Semigroup \((M, *)\) is commutative if \(*\) is commutative, i.e., for all \(x, y \in M, x * y=y * x\).

■ \(a \in M\) is annihilator of semigroup \((M, *)\) if for each \(x \in M\), \(x * a=a=a * x\).
- ( \(M, *, e\) ) is monoid if \((M, *)\) semigroup and \(e \in M\) unit element, i.e., for all \(x \in M, x * e=x=e * x\).
- Monoid \((M, *, e)\) is commutative if \(*\) is commutative.

The unit element of a monoid is uniquely determined, since if \(e, e^{\prime}\) are unit elements, then \(e^{\prime}=e e^{\prime}=e\).

\section*{Contents}

Triangular Norms
Properties of Triangular Norms

Fuzzy Sets
Fuzzy Numbers
Fuzzy Inference
Fuzzy Control

\section*{Triangular Norms}

Let \(\preceq\) be a partial order on a set \(M\).
- ( \(M, *, \preceq\) ) is partially ordered semigroup if
- \((M, *)\) is semigroup.
- Operation \(*\) is order preserving, i.e., for all \(x, y, z \in M\),
\[
\begin{equation*}
y \preceq z \Longrightarrow x * y \preceq x * z \wedge y * x \preceq z * x . \tag{496}
\end{equation*}
\]

■ In particular, if \(\preceq\) is linear (or total) order on \(M\), the partially ordered semigroup ( \(M, *, \preceq\) ) is fully ordered.

\section*{Triangular Norms}
- Two semigroups \((M, *)\) and \((N, \circ)\) are isomorphic if there is a bijection \(\phi: M \rightarrow N\) such that for all \(x, y \in M\),
\[
\begin{equation*}
\phi(x * y)=\phi(x) \circ \phi(y) . \tag{497}
\end{equation*}
\]

■ Two partially ordered semigroups ( \(M, *, \preceq\) ) and ( \(N, \circ, \sqsubseteq\) ) are isomorphic if there is a bijection \(\phi: M \rightarrow N\) such that for all \(x, y \in M\),
\[
\begin{equation*}
\phi(x * y)=\phi(x) \circ \phi(y) \tag{498}
\end{equation*}
\]
and \(\phi\) is order preserving, i.e.,
\[
\begin{equation*}
x \preceq y \Longrightarrow \phi(x) \sqsubseteq \phi(y) . \tag{499}
\end{equation*}
\]

\section*{Contents}

Triangular Norms
Properties of Triangular Norms

Fuzzy Sets
Fuzzy Numbers
Fuzzy Inference
Fuzzy Control

\section*{Triangular Norms}
- A mapping \(T:[0,1]^{2} \rightarrow[0,1]\) is a t-norm iff
\[
\begin{equation*}
([0,1], T, \leq) \tag{500}
\end{equation*}
\]
is a fully ordered commutative semigroup with unit element 1 and annihilator 0 .
- A mapping \(S:[0,1]^{2} \rightarrow[0,1]\) is a t-conorm iff
\[
\begin{equation*}
([0,1], S, \leq) \tag{501}
\end{equation*}
\]
is a fully ordered commutative semigroup with unit element 0 and annihilator 1.

Contents
Triangular Norms
Properties of Triangular Norms

Fuzzy Sets
Fuzzy Numbers
Fuzzy Inference
Fuzzy Control
Fuzzy Sets in R

\section*{Triangular Norms}

Given fully ordered semigroups ( \(M, *, \preceq\) ) and ( \(N, \circ, \sqsubseteq\) ), and strictly decreasing bijection \(\phi: M \rightarrow N\).
- \((M, *, \preceq)\) is \(\phi\)-dual to \((N, \circ, \sqsubseteq)\) if for all \(x, y \in M\),
\[
\begin{equation*}
\phi(x * y)=\phi(x) \circ \phi(y) . \tag{502}
\end{equation*}
\]
- ( \(M, *, \preceq\) ) is \(\phi\)-dual to \((N, \circ, \sqsubseteq)\) iff \((N, \circ, \sqsubseteq)\) is \(\phi^{-1}\)-dual to \((M, *, \preceq)\).
- If the orders are ignored, the semigroups \((M, *)\) and ( \(N, \circ\) ) are simply isomorphic.

Triangular Norms - Construction of New Norms
Given mapping \(F:[0,1]^{2} \rightarrow[0,1]\) such that \(([0,1], F, \leq)\) is fully ordered semigroup and \(\phi:[0,1] \rightarrow[0,1]\) is strictly decreasing bijection.

Define the mapping \(F_{\phi}:[0,1]^{2} \rightarrow[0,1]\) with
\[
\begin{equation*}
F_{\phi}(x, y)=\phi^{-1}(F(\phi(x), \phi(y))) . \tag{53}
\end{equation*}
\]

Then
- ( \(\left.[0,1], F_{\phi}, \leq\right)\) is a fully ordered semigroup.
- If \(F\) is a t-norm, then \(F_{\phi}\) is a t-conorm \(\phi\)-dual to \(F\).
- If \(F\) is a t-conorm, then \(F_{\phi}\) is a t-norm \(\phi\)-dual to \(F\).

\section*{Contents}

Triangular Norms
Properties of Triangular Norms

Fuzzy Sets
Fuzzy Numbers
Fuzzy Inference
Fuzzy Control
Fuzzy Sets in R

\section*{Triangular Norms - Example}

For any strictly decreasing bijection \(\phi:[0,1] \rightarrow[0,1]\), the minimum norm satisfies
\[
\begin{equation*}
\left(T_{M}\right)_{\phi}=S_{M}, \quad\left(S_{M}\right)_{\phi}=T_{M}, \tag{504}
\end{equation*}
\]
and the drastic norm satisfies
\[
\begin{equation*}
\left(T_{D}\right)_{\phi}=S_{D}, \quad\left(S_{D}\right)_{\phi}=T_{D} . \tag{505}
\end{equation*}
\]

\section*{Contents}

Triangular Norms
Properties of Triangular Norms

Fuzzy Sets
Fuzzy Numbers
Fuzzy Inference
Fuzzy Control
Fuzzy Sets in R

\section*{Triangular Norms - Example}

Take the strictly decreasing bijection
\[
\begin{equation*}
\phi:[0,1] \rightarrow[0,1]: x \mapsto 1-x \tag{506}
\end{equation*}
\]

Since \(\phi^{-1}(x)=1-x\),
\[
\begin{aligned}
\left(T_{P}\right)_{\phi}(x, y) & =\phi^{-1}\left(T_{P}(\phi(x), \phi(y))\right) \\
& =\phi^{-1}((1-x)(1-y)) \\
& =\phi^{-1}(1-(x+y-x y)) \\
& =x+y-x y \\
& =S_{P}(x, y)
\end{aligned}
\]

Contents
Triangular Norms
Properties of Triangular Norms

Fuzzy Sets
Fuzzy Numbers
Fuzzy Inference
Fuzzy Control

\section*{Triangular Norms}

Consider duality by extension of Boolean negation.
- A non-increasing function \(N:[0,1] \rightarrow[0,1]\) is a negation if
\[
\begin{equation*}
N(0)=1 \quad \text { and } \quad N(1)=0 . \tag{507}
\end{equation*}
\]
- A negation \(N:[0,1] \rightarrow[0,1]\) is strict if \(N\) is continuous and strictly decreasing.
- A strict negation \(N:[0,1] \rightarrow[0,1]\) is strong if \(N\) is an involution, i.e., \(N \circ N=\operatorname{id}_{[0,1]}\) or \(N=N^{-1}\).

A strict negation \(N:[0,1] \rightarrow[0,1]\) is a strictly decreasing bijection.

Soft Computing
K.-H.

Zimmermann

\section*{Contents}

Triangular Norms
Properties of Triangular Norms

Fuzzy Sets
Fuzzy Numbers
Fuzzy Inference
Fuzzy Control
Fuzzy Sets in R

\section*{Triangular Norms - Negations}
> plot([1-x, \(\left.1-x^{\wedge} 2,1-\operatorname{sqrt}(x), \operatorname{sqrt}(1-x)\right], x=0 . .1\), color = ["red", "blue", "green", "yellow"], axis = [gridlines=[10, color=grey]]);

- The most important strong negation is the standard negation \(N_{s}:[0,1] \rightarrow[0,1]\) defined by
\[
\begin{equation*}
N_{s}(x)=1-x . \tag{508}
\end{equation*}
\]
- The negation \(N:[0,1] \rightarrow[0,1]\) given by
\[
\begin{equation*}
N(x)=1-x^{2} \tag{509}
\end{equation*}
\]
is strict but not strong, since \(N^{-1}(x)=\sqrt{1-x}\).
- The negation \(N_{G}:[0,1] \rightarrow[0,1]\) given by
\[
N_{G}(x)= \begin{cases}1 & \text { if } x=0  \tag{510}\\ 0 & \text { otherwise }\end{cases}
\]
is not strict and thus not strong, called Gödel negation.

\section*{Contents}

Triangular Norms
Properties of Triangular Norms

Fuzzy Sets
Fuzzy Numbers
Fuzzy Inference
Fuzzy Control
Fuzzy Sets in R

Triangular Norms - Construction of New Norms Given t-norm \(T\) and strict negation \(N\). The mapping \(S:[0,1]^{2} \rightarrow[0,1]\) given by
\[
\begin{equation*}
S(x, y)=N^{-1}(T(N(x), N(y))) \tag{511}
\end{equation*}
\]
is a t-conorm which is \(N\)-dual to \(T\); compare with (503).

\section*{Triangular Norms}

■ \((T, S, N)\) is a De Morgan triple if \(T\) is a t-norm, \(S\) is a t -conorm and \(N\) is a strong negation such that for all \(x, y \in[0,1]\),
\[
\begin{align*}
S(x, y) & =N^{-1}(T(N(x), N(y))),  \tag{512}\\
T(x, y) & =N^{-1}(S(N(x), N(y))) . \tag{513}
\end{align*}
\]
- A De Morgan triple \((T, S, N)\) satisfies the law of the excluded middle if for all \(x \in[0,1]\),
\[
\begin{equation*}
T(x, N(x))=0 \quad \text { and } \quad S(x, N(x))=1 . \tag{514}
\end{equation*}
\]

If \(T(x, N(x))=0\), then
\[
\begin{aligned}
S(x, N(x)) & =N\left(T\left(N(x), N^{2}(x)\right)\right)=N(T(N(x), x)) \\
& =N(0)=1 .
\end{aligned}
\]

\section*{Contents}

Triangular Norms
Properties of Triangular Norms

Fuzzy Sets
Fuzzy Numbers
Fuzzy Inference
Fuzzy Control
Fuzzy Sets in R

\section*{Triangular Norms - Example}
( \(T_{M}, S_{M}, N_{s}\) ) is a De Morgan triple, since
\[
\begin{aligned}
T_{M}\left(N_{s}(x), N_{s}(y)\right) & =\min \{1-x, 1-y\}=1-\max \{x, y\} \\
& =N_{s}\left(S_{M}(x, y)\right),
\end{aligned}
\]
but it does not satisfy the law of the excluded middle:
\[
\begin{aligned}
& T_{M}\left(x, N_{s}(x)\right)=\min \{x, 1-x\}, \\
& S_{M}\left(x, N_{s}(x)\right)=\max \{x, 1-x\} .
\end{aligned}
\]

Triangular Norms
Properties of Triangular Norms

Fuzzy Sets
Fuzzy Numbers
Fuzzy Inference
Fuzzy Control
Fuzzy Sets in R
*Triangular Norms
Let \(L\) be a non-empty set.
- A pair \((L, \preceq)\) is a lattice if \(\preceq\) is a partial ordering on \(L\) such that for any two elements \(x, y \in L\) it also contains their join \(x \vee y\), i.e, the supremum of \(\{x, y\}\), and their meet \(x \wedge y\), i.e, the infimum of \(\{x, y\}\).
- A lattice \((L, \preceq)\) is complete if for each subset \(B\) of \(L\), the join \(\bigvee B\) and meet \(\bigwedge B\) exist and are contained in \(L\).

Contents
Triangular Norms
Properties of Triangular Norms

Fuzzy Sets
Fuzzy Numbers
Fuzzy Inference
Fuzzy Control
Fuzzy Sets in R
*Triangular Norms
Let \((L, \preceq)\) be a lattice and \((L, *, e)\) be a monoid.
- ( \(L, *, \preceq\) ) is an l-monoid if for all \(x, y, z \in L\),
\[
\begin{equation*}
x *(y \vee z)=(x * y) \vee(x * z) \tag{515}
\end{equation*}
\]
and
\[
\begin{equation*}
(x \vee y) * z=(x * z) \vee(y * z) \tag{516}
\end{equation*}
\]

■ An I-monoid \((L, *, \preceq)\) is commutative if the semigroup \((L, *)\) is commutative.

\section*{Contents}

Triangular Norms
Properties of Triangular Norms

Fuzzy Sets
Fuzzy Numbers
Fuzzy Inference
Fuzzy Control
Fuzzy Sets in R
*Triangular Norms
Let \((L, \preceq)\) be a lattice and \((L, *, e)\) be a monoid.
- A commutative I-monoid \((L, *, \preceq)\) is residuated if there is a dyadic operation \(\rightarrow_{*}\) on \(L\), called \(*\)-residuum, such that for all \(x, y, z \in L\),
\[
\begin{equation*}
x * y \preceq z \quad \Longleftrightarrow \quad x \preceq y \rightarrow_{*} z . \tag{517}
\end{equation*}
\]
- An I-monoid \((L, *, \preceq)\) is integral if there is a greatest element in the lattice \((L, \preceq)\) which coincides with \(e\).

\section*{*Triangular Norms}
- For each mapping \(T:[0,1]^{2} \rightarrow[0,1]\) the following are equivalent:
- ( \([0,1], T, \leq)\) is a commutative residuated integral I-monoid.
- \(T\) is a left-continuous t-norm.

In this case, the \(T\)-residuum \(\rightarrow_{T}\) has the form
\[
\begin{equation*}
x \rightarrow_{T} y=\sup \{z \in[0,1] \mid T(x, z) \leq y\} . \tag{518}
\end{equation*}
\]
- As a consequence, for each left-continuous t-norm \(T\) we have \(x \rightarrow_{T} y=1\) iff \(x \leq y\), since \(T(x, 1)=x\) for all \(x\).
- Residual implication is an extension of Boolean implication to [0, 1]-valued logic.

Triangular Norms
Properties of Triangular Norms

Fuzzy Sets
Fuzzy Numbers
Fuzzy Inference
Fuzzy Control
*Triangular Norms - Example
- The minimum t-norm \(T_{M}\) gives rise to the Gödel implication
\[
x \rightarrow_{M} y= \begin{cases}1 & \text { if } x \leq y  \tag{519}\\ y & \text { otherwise }\end{cases}
\]

Special case: Boolean implication for Boolean values,
\[
0 \rightarrow_{M} 0=1,0 \rightarrow_{M} 1=1,1 \rightarrow_{M} 0=0,1 \rightarrow_{M} 1=1 . \text { (520) }
\]
```

Soft Computing
K.-H.
Zimmermann

```

Contents
Triangular Norms
Properties of Triangular Norms

Fuzzy Sets
Fuzzy Numbers
Fuzzy Inference
Fuzzy Control
Fuzzy Sets in R
*Triangular Norms - Example
- The product t-norm \(T_{P}\) provides the Goguen implication
\[
x \rightarrow_{P} y= \begin{cases}1 & \text { if } x \leq y  \tag{521}\\ \frac{y}{x} & \text { otherwise. }\end{cases}
\]
- The Lukasiewicz t-norm \(T_{L}\) yields the Lukasiewicz implication
\[
\begin{equation*}
x \rightarrow_{L} y=\min \{1-x+y, 1\} . \tag{522}
\end{equation*}
\]
- The triple ( \([0,1], T_{D}, \leq\) ) is a commutative integral I-monoid that is not residuated since \(T_{D}\) is not left-continuous.
```

Soft Computing
K.-H.
Zimmermann

```

\section*{Contents}

Triangular Norms
Properties of Triangular Norms

Fuzzy Sets
Fuzzy Numbers
Fuzzy Inference
Fuzzy Control
Fuzzy Sets in R
*Triangular Norms - Example (cont'd)
Residual implications \(\rightarrow_{M}, \rightarrow_{P}\), and \(\rightarrow_{L}\) :

```

Soft Computing
K.-H.
Zimmermann
Contents
Triangular Norms
Properties of
Triangular Norms
Fuzzy Sets
Fuzzy Numbers
Fuzzy Inference
Fuzzy Control
Fuzzy Sets in R

```

\section*{Fuzzy Sets}
```

- Crisp sets and characteristic functions
- Fuzzy sets and membership functions
- Kernel, support, and α-cut
- Intersection, union, and negation of fuzzy sets

```

Contents
Triangular Norms
Properties of Triangular Norms

Fuzzy Sets
Fuzzy Numbers
Fuzzy Inference
Fuzzy Control
Fuzzy Sets in R

\section*{Fuzzy Sets}

Given a universe (set) \(X\).
- A subset \(A\) of \(X\) is a crisp set.
- A crisp set \(A \subseteq X\) can be identified with its characteristic function \(\chi_{A}: X \rightarrow\{0,1\}\) defined by
\[
\chi_{A}(x)= \begin{cases}1 & \text { if } x \in A  \tag{523}\\ 0 & \text { otherwise }\end{cases}
\]
- Universe \(X\) and empty set \(\emptyset\) are identified by the constant functions \(\chi_{X}: x \mapsto 1\) and \(\chi_{\emptyset}: x \mapsto 0\), resp.

\section*{Fuzzy Sets}

Given a universe \(X\).
- A fuzzy subset \(A\) of \(X\) is given by its membership function
\[
\mu_{A}: X \rightarrow[0,1],
\]
where for each \(x \in A\) the quantity \(\mu_{A}(x)\) is the degree of membership of \(x\) in \(A\).

■ Let \(A\) and \(B\) be fuzzy subsets of \(X\).
- \(A\) is a subset of \(B\), written \(A \subseteq B\), if \(\mu_{A} \leq \mu_{B}\),
- \(A\) is equal to \(B\), written \(A=B\), if \(\mu_{A}=\mu_{B}\).
- A characteristic function is a special membership function; i.e., each crisp subset of \(X\) is a special fuzzy subset of \(X\).

The degree of membership \(\mu_{A}(x)\) can be seen as the truth value of the statement " \(x\) is element of \(A\) ".

Soft Computing
K.-H.

Zimmermann

Contents
Triangular Norms
Properties of Triangular Norms

Fuzzy Sets
Fuzzy Numbers
Fuzzy Inference
Fuzzy Control
Fuzzy Sets in R

\section*{Fuzzy Sets}

Each fuzzy subset \(A\) of \(X\) can be associated with a number of crisp subsets of \(X\) :
- The kernel of \(A\) is defined by
\[
\begin{equation*}
\operatorname{ker}(A)=\left\{x \in X \mid \mu_{A}(x)=1\right\} . \tag{524}
\end{equation*}
\]
- The support of \(A\) is given as
\[
\begin{equation*}
\operatorname{supp}(A)=\left\{x \in X \mid \mu_{A}(x)>0\right\} . \tag{525}
\end{equation*}
\]
- For each \(\alpha \in[0,1]\), the \(\alpha\)-cut of \(A\) is
\[
\begin{equation*}
[A]_{\alpha}=\left\{x \in X \mid \mu_{A}(x) \geq \alpha\right\} . \tag{526}
\end{equation*}
\]

A fuzzy subset \(A\) of \(X\) is normal if the kernel of \(A\) is non-empty; i.e., \(\mu_{A}\left(x_{0}\right)=1\) for some \(x_{0} \in X\).

\section*{Fuzzy Sets}

Let \(X\) be a universe.
- For each fuzzy subset \(A\) of \(X\),
\[
\begin{equation*}
\operatorname{ker}(A)=[A]_{1} \quad \text { and } \quad \operatorname{supp}(A)=\bigcup_{\alpha \in] 0,1]}[A]_{\alpha} . \tag{527}
\end{equation*}
\]
- A fuzzy subset \(A\) of \(X\) is a crisp set iff
\[
\begin{equation*}
\operatorname{ker}(A)=\operatorname{supp}(A)=A \tag{528}
\end{equation*}
\]

■ For the family \(\left([A]_{\alpha}\right)_{\alpha \in[0,1]}\) of \(\alpha\)-cuts of a fuzzy subset \(A\) of \(X\),
\[
\begin{equation*}
[A]_{0}=X \quad \text { and } \quad[A]_{\alpha} \subseteq[A]_{\beta} \quad \text { if } \alpha \geq \beta \tag{529}
\end{equation*}
\]

\section*{Soft Computing}
K.-H.

Zimmermann

Contents
Triangular Norms
Properties of Triangular Norms

Fuzzy Sets
Fuzzy Numbers
Fuzzy Inference
Fuzzy Control
Fuzzy Sets in R

\section*{Fuzzy Sets}

Given De Morgan triple ( \(T, S, N\) ) and fuzzy subsets \(A, B\) of \(X\).
- Intersection of \(A\) and \(B\) :
\[
\begin{equation*}
\mu_{A \cap_{T} B}(x)=T\left(\mu_{A}(x), \mu_{B}(x)\right) \tag{530}
\end{equation*}
\]
- Union of \(A\) and \(B\) :
\[
\begin{equation*}
\mu_{A \cup_{S} B}(x)=S\left(\mu_{A}(x), \mu_{B}(x)\right) \tag{531}
\end{equation*}
\]
- Complement of \(A\) :
\[
\begin{equation*}
\mu_{\backslash_{N} A}(x)=N\left(\mu_{A}(x)\right) \tag{532}
\end{equation*}
\]

De Morgan triple \((T, S, N)\) may not satisfy the law of the excluded middle, i.e., for all \(x \in[0,1]\),
\[
\begin{equation*}
\mu_{A \cap_{T} \backslash_{N} A}(x)=0 \text { and } \mu_{A \cup_{S} \backslash_{N} A}(x)=1 \tag{533}
\end{equation*}
\]
K.-H.

Zimmermann

\section*{Contents}

Triangular Norms
Properties of Triangular Norms

Fuzzy Sets
Fuzzy Numbers
Fuzzy Inference
Fuzzy Control
Fuzzy Sets in R

\section*{Fuzzy Sets - Example}

Given fuzzy sets \(A\) and \(B\) over \(X=\mathbb{R}\).
Consider intersection, union, and negation via the minimum t-norm,
\(>M:=x \rightarrow \min (A(x), B(x)) ;\)
\(>P:=x \rightarrow \max (A(x), B(x))\);
\(>\mathrm{N}:=\mathrm{x}->1-\mathrm{x}\);
Given fuzzy sets \(A\) and \(B\) over \(X=\mathbb{R}\) :


Contents
Triangular Norms
Properties of Triangular Norms Fuzzy Sets

Fuzzy Numbers
Fuzzy Inference
Fuzzy Control
Fuzzy Sets in R

Fuzzy Sets - Example (cont'd)
Intersection and union of the above fuzzy sets \(A\) and \(B\), and negation of above fuzzy set \(A\) :




\section*{Fuzzy Sets - Example}

De Morgan triple ( \(T_{L}, S_{L}, N_{s}\) ) satisfies the law of the excluded middle. Indeed, for all \(x \in[0,1]\),
\[
T_{L}\left(x, N_{s}(x)\right)=\max \{x+(1-x)-1,0\}=0
\]
and
\[
S_{L}\left(x, N_{s}(x)\right)=\min \{x+(1-x), 1\}=1
\]

Thus for all \(x \in[0,1]\),
\[
\mu_{A \cap_{T_{L} \backslash N_{s}} A}(x)=T_{L}\left(\mu_{A}(x), N_{s}\left(\mu_{A}(x)\right)\right)=0
\]
and
\[
\mu_{A \cup_{S_{L} \backslash N_{s}} A}(x)=S_{L}\left(\mu_{A}(x), N_{s}\left(\mu_{A}(x)\right)\right)=1
\]

\section*{Fuzzy Numbers}
- Upper semicontinuous fuzzy numbers
- Gaussian fuzzy numbers
- Fuzzy intervals
- Piecewise linear fuzzy numbers
- Fuzzy reals

■ *Zadeh's extension principle
Processes:
■ Fuzzification: integer/real \(\mapsto\) fuzzy number
- Defuzzification: fuzzy number \(\mapsto\) integer/real

\section*{Contents}

Triangular Norms
Properties of Triangular Norms

Fuzzy Sets
Fuzzy Numbers
Fuzzy Inference
Fuzzy Control
Fuzzy Sets in R

\section*{Fuzzy Numbers}
- A fuzzy subset \(A\) of \(X=\mathbb{R}\) is a fuzzy quantity.

■ A fuzzy quantity \(A\) is convex if for all \(\alpha \in[0,1]\) the \(\alpha\)-cut \([A]_{\alpha}\) is a convex subset of \(\mathbb{R}\), i.e., interval of \(\mathbb{R}\).
- A fuzzy quantity \(A\), which is normal, convex and has a bounded kernel, is a fuzzy number.

■ Fuzzy numbers model linguistic quantities like "approximately 20 degrees Celcius'

Soft Computing
K.-H.

Zimmermann

\section*{Contents}

Triangular Norms
Properties of Triangular Norms

Fuzzy Sets
Fuzzy Numbers
Fuzzy Inference
Fuzzy Control
Fuzzy Sets in R

\section*{Fuzzy Numbers - Example}

\section*{Fuzzy numbers:}


No fuzzy numbers:



\section*{*Fuzzy Numbers}
\(A=(l, r, F, G)\) is upper semicontinuous fuzzy number if
- \(l\) and \(r\) are real numbers with \(l<r\),
- \(F, G:] 0, \infty[\rightarrow[0,1]\) are non-increasing left-continuous mappings such that for all \(x \in \mathbb{R}\),
\[
\mu_{A}(x)= \begin{cases}F(l-x) & \text { if } x \in]-\infty, l[,  \tag{534}\\ 1 & \text { if } x \in[l, r], \\ G(x-r) & \text { if } x \in] r, \infty[.\end{cases}
\]

The interval \([l, r]\) is the kernel of \(A\), and \(F\) and \(G\) determine the left and right shape of \(A\), resp.

\section*{Fuzzy Numbers}

A Gaussian fuzzy number is an upper semicontinuous fuzzy number
\[
\begin{equation*}
A=\left(x_{0}, x_{0}, F_{\alpha}, F_{\alpha}\right), \tag{535}
\end{equation*}
\]
where \(\left.x_{0} \in \mathbb{R}, \alpha \in\right] 0, \infty[\), and for all \(x \in] 0, \infty[\) the shape function \(\left.F_{\alpha}:\right] 0, \infty[\rightarrow[0,1[\) is
\[
\begin{equation*}
F_{\alpha}(x)=e^{-\frac{x^{2}}{\alpha}} . \tag{536}
\end{equation*}
\]

The corresponding membership function is
\[
\begin{equation*}
\mu_{A}(x)=e^{-\frac{\left(x-x_{0}\right)^{2}}{\alpha}} . \tag{537}
\end{equation*}
\]

Soft Computing
K.-H.

\section*{Contents}

Triangular Norms
Properties of Triangular Norms

Fuzzy Sets
Fuzzy Numbers
Fuzzy Inference
Fuzzy Control
Fuzzy Sets in R

\section*{Fuzzy Numbers}

Plot of Gaussian fuzzy number \(A\) in Maple:
> A := \(\exp (-(x-10) \wedge 2 / 20):\)
> plot([A, 0.5],x=0..20,0..1.1, axes=boxed, gridlines=true, thickness=[2,2], color=[blue,black], font=[helvetica,12], linestyle=[solid,dash]);


\section*{*Fuzzy Numbers}

A fuzzy interval is a fuzzy number
\[
\begin{equation*}
A=(l, r, \alpha, \beta)_{L, R}, \tag{538}
\end{equation*}
\]
where
- \(l, r \in \mathbb{R}\),
- \(\alpha, \beta \in[0, \infty[,(\alpha\) left spread of \(A\) and \(\beta\) right spread of \(A)\),
- \(L, R:] 0,1] \rightarrow[0,1[\) are non-increasing left-continuous mappings with \(L(x)>0\) and \(R(x)>0\) for all \(x \in] 0,1[\) such that
\[
\mu_{A}(x)= \begin{cases}L\left(\frac{l-x}{\alpha}\right) & \text { if } x \in] l-\alpha, l[,  \tag{539}\\ 1 & \text { if } x \in[l, r], \\ R\left(\frac{x-r}{\beta}\right) & \text { if } x \in] r, r+\beta[, \\ 0 & \text { otherwise. }\end{cases}
\]

\title{
Soft Computing
}

\section*{Contents}

Triangular Norms
Properties of Triangular Norms

Fuzzy Sets
Fuzzy Numbers
Fuzzy Inference
Fuzzy Control
Fuzzy Sets in R
*Fuzzy Numbers
A fuzzy interval \(A\) can be defined in Maple as follows,
\(>A:=p i e c e w i s e(1-a<x\) and \(x<l, L((1-x) / a)\), \(1<x\) and \(x<r, 1\), \(r<x\) and \(x<r+b, R((x-r) / b), 0)\) :

Define \(L\) and \(R\) accordingly.

Contents
Triangular Norms
Properties of Triangular Norms

Fuzzy Sets
Fuzzy Numbers
Fuzzy Inference
Fuzzy Control
Fuzzy Sets in R

\section*{Fuzzy Numbers}
- A piecewise linear fuzzy number is a fuzzy interval with \(L(x)=x\) and \(R(x)=1-x\) for all \(x \in] 0,1]\).
- A piecewise linear fuzzy number \((l, r, \alpha, \beta)_{L, R}\) is triangular if \(l=r\), and trapezoidal if \(l<r\).



\section*{Contents}

Triangular Norms
Properties of Triangular Norms

Fuzzy Sets
Fuzzy Numbers
Fuzzy Inference
Fuzzy Control
Fuzzy Sets in R

\section*{*Fuzzy Numbers}
- A fuzzy real is a fuzzy quantity \(A\) with a non-decreasing left-continuous membership function.
- A piecewise linear fuzzy real is a pair \(A=\left(x_{0}, x_{0}+\epsilon\right)\) with \(x_{0} \in \mathbb{R}\) and \(\epsilon \in[0, \infty[\) such that
\[
\mu_{A}(x)= \begin{cases}0 & \text { if } \left.x \in]-\infty, x_{0}\right]  \tag{540}\\ \frac{x-x_{0}}{\epsilon} & \text { if } \left.x \in] x_{0}, x_{0}+\epsilon\right] \\ 1 & \text { if } \left.x \in] x_{0}+\epsilon, \infty\right]\end{cases}
\]

The membership value \(\mu_{A}(x)\) is the truth value of " \(x\) is larger than \(x_{0}{ }^{\prime \prime}\).

\section*{*Fuzzy Numbers}

An infinite fuzzy real \(A\) is given by membership function
\[
\mu_{A}(x)=\left\{\begin{array}{ll}
0 & \text { if } \left.x \in]-\infty, x_{0}\right],  \tag{541}\\
e^{-\frac{x}{x_{0} x-x_{0}^{2}}} & \text { if } x \in] x_{0}, \infty[,
\end{array} \quad x_{0} \in\right] 0, \infty[.
\]

\section*{Fuzzy Sets}

Fuzzy Numbers
Fuzzy Inference
Fuzzy Control
Fuzzy Sets in R
Piecewise linear fuzzy real and infinite fuzzy real:


*Fuzzy Numbers - Zadeh's extension principle
Given t-norm \(T\) and dyadic operation \(\cdot: \mathbb{R}^{2} \rightarrow \mathbb{R}\).
- Define the operation \(\odot: \mathcal{F}(\mathbb{R})^{2} \rightarrow \mathcal{F}(\mathbb{R})\) on the class of fuzzy quantities such that for all \(z \in \mathbb{R}\),
\[
\begin{align*}
& \mu_{A \odot_{T} B}(z)=  \tag{542}\\
& \quad \sup \left\{T\left(\mu_{A}(x), \mu_{B}(y)\right) \mid x, y \in \mathbb{R}, x \cdot y=z\right\} .
\end{align*}
\]
- Let \(A\) and \(B\) be crisp subsets of \(\mathbb{R}\). The operation \(\odot_{T}\) is the ordinary complex product
\[
\begin{equation*}
A \odot_{T} B=A \cdot B=\{a \cdot b \mid a \in A, b \in B\} \tag{543}
\end{equation*}
\]
using the characteristic function as membership function.

\section*{*Fuzzy Numbers}
\(■\) Let \(T_{1}\) and \(T_{2}\) be t-norms with \(T_{1} \leq T_{2}\). Then for any two fuzzy quantities \(A\) and \(B\) and any dyadic operation \(\cdot: \mathbb{R}^{2} \rightarrow \mathbb{R}\) we have
\[
\begin{equation*}
\mu_{A \odot_{T_{1}} B} \leq \mu_{A \odot_{T_{2}} B} \tag{544}
\end{equation*}
\]

■ Let \(T\) be a t-norm. Then for any two fuzzy quantities \(A\) and \(B\) and any dyadic operation \(\cdot: \mathbb{R}^{2} \rightarrow \mathbb{R}\),
\[
\begin{equation*}
\mu_{A \odot_{T_{D}} B} \leq \mu_{A \odot_{T} B} \leq \mu_{A \odot_{T_{M}} B} \tag{545}
\end{equation*}
\]

In the following, we concentrate on the extension \(\oplus_{T}\) of addition operation + on \(\mathbb{R}\).
K.-H.

Zimmermann

Contents
Triangular Norms
Properties of Triangular Norms

Fuzzy Sets
Fuzzy Numbers
Fuzzy Inference
Fuzzy Control
Fuzzy Sets in R

\section*{*Fuzzy Numbers}

Let \(A=\left(l_{1}, r_{1}, F_{1}, G_{1}\right)\) and \(B=\left(l_{2}, r_{2}, F_{2}, G_{2}\right)\) be upper semicontinuous fuzzy numbers.

■ Minimum t-norm:
\[
\begin{align*}
A \oplus_{T_{M}} B= & \left(l_{1}+l_{2}, r_{1}+r_{2},\right.  \tag{546}\\
& \left(\left(-F_{1}\right)^{(-1)}+\left(-F_{2}\right)^{(-1)}\right)^{(-1)}, \\
& \left.\left(\left(-G_{1}\right)^{(-1)}+\left(-G_{2}\right)^{(-1)}\right)^{(-1)}\right),
\end{align*}
\]
where \(f^{(-1)}\) is the pseudo-inverse of the monotonous function \(f\),
- Drastic product:
\[
\begin{align*}
& A \oplus_{T_{D}} B=  \tag{547}\\
& \quad\left(l_{1}+l_{2}, r_{1}+r_{2}, \max \left(F_{1}, F_{2}\right), \max \left(G_{1}, G_{2}\right)\right) .
\end{align*}
\]

\section*{*Fuzzy Numbers}

The pseudo-inverse of a monotonous function \(f:[a, b] \rightarrow[c, d]\) is defined by
\[
\begin{equation*}
f^{(-1)}(y)=\sup \{x \in[a, b] \mid(f(x)-y)(f(b)-f(a))<0\} . \tag{548}
\end{equation*}
\]

Construct the graph of pseudo-inverse \(f^{(-1)}\) of a monotonous function \(f:[a, b] \rightarrow[c, d]\) as follows:
- Draw vertical line segments at the discontinuities of \(f\).
- Reflect the graph of \(f\) at the identity function \(y=x\).
- Remove all vertical line segments from the reflected graph except for their lowest points.
```

Soft Computing
K.-H.
Zimmermann
Fuzzy Sets

```

\section*{Contents}

Triangular Norms
Properties of Triangular Norms

Fuzzy Numbers
Fuzzy Inference

\section*{Fuzzy Control}

Fuzzy Sets in R

\section*{*Fuzzy Numbers}
```

Construction of pseudo-inverse:

```


\section*{*Fuzzy Numbers}

Let \(A=\left(l_{1}, r_{1}, \alpha_{1}, \beta_{1}\right)_{L, R}\) and \(B=\left(l_{2}, r_{2}, \alpha_{2}, \beta_{2}\right)_{L, R}\) be fuzzy intervals with the same shapes \(L\) and \(R\).
- Minimum t-norm:
\[
\begin{align*}
& A \oplus_{T_{M}} B=  \tag{549}\\
& \quad\left(l_{1}+l_{2}, r_{1}+r_{2}, \alpha_{1}+\alpha_{2}, \beta_{1}+\beta_{2}\right)_{L, R} .
\end{align*}
\]
- Drastic product:
\[
\begin{aligned}
& A \oplus_{T_{D}} B= \\
& \quad\left(l_{1}+l_{2}, r_{1}+r_{2}, \max \left(\alpha_{1}, \alpha_{2}\right), \max \left(\beta_{1}, \beta_{2}\right)\right)_{L, R} .
\end{aligned}
\]

\section*{Soft Computing}
K.-H.

Zimmermann

Contents
Triangular Norms
Properties of Triangular Norms

Fuzzy Sets
Fuzzy Numbers
Fuzzy Inference
Fuzzy Control
Fuzzy Sets in R

\section*{*Fuzzy Numbers}

The sum of two triangular fuzzy intervals can be plotted in Maple as follows:
> plot([A,B,add_M_AB,add_D_AB,0.5],x=0..11,0..1.1, axes=boxed, gridlines=true, thickness=[2,2], color=[blue, red, violet, green, black], font=[helvetica,12],
linestyle=[solid,solid,solid,solid,dash]);


\section*{Contents}

Triangular Norms
Properties of Triangular Norms

Fuzzy Sets
Fuzzy Numbers
Fuzzy Inference
Fuzzy Control
Fuzzy Sets in R

\section*{*Fuzzy Numbers}

Let \(A\) and \(B\) be fuzzy reals.
- Minimum t-norm:
\[
\begin{equation*}
A \oplus_{T_{M}} B=\left(\mu_{A}^{(-1)}+\mu_{B}^{(-1)}\right)^{(-1)} \tag{551}
\end{equation*}
\]
- Drastic product:
\[
\begin{equation*}
A \oplus_{T_{D}} B(x)=\max \left(\mu(x-a), \mu_{B}(x-b)\right), \tag{552}
\end{equation*}
\]
where \(a=\inf \left\{x \in \mathbb{R} \mid \mu_{A}(x)=1\right\}\) and \(b=\inf \left\{x \in \mathbb{R} \mid \mu_{B}(x)=1\right\}\).

\section*{*Fuzzy Numbers}

■ Let \(A=\left(l_{1}, r_{1}, \alpha_{1}, \beta_{1}\right)\) and \(B=\left(l_{2}, r_{2}, \alpha_{2}, \beta_{2}\right)\) be piecewise linear fuzzy numbers. Then
\[
A \oplus_{T_{L}} B=\left(l_{1}+l_{2}, r_{1}+r_{2}, \max \left(\alpha_{1}, \alpha_{2}\right), \max \left(\beta_{1}, \beta_{2}\right)\right)(553)
\]
- Let \(A=\left(x_{1}, \epsilon_{1}\right)\) and \(B=\left(x_{2}, \epsilon_{2}\right)\) be piecewise linear fuzzy reals. Then
\[
A \oplus_{T_{L}} B=\left(x_{1}+x_{2}+\min \left(\epsilon_{1}, \epsilon_{2}\right), x_{1}+x_{2}+\epsilon_{1}+\epsilon_{2}\right) .(554)
\]

■ Let \(A=\left(x_{1}, x_{1}, F_{\alpha}, F_{\alpha}\right)\) and \(B=\left(x_{2}, x_{2}, F_{\beta}, F_{\beta}\right)\) be Gaussian fuzzy numbers. Then
\[
\begin{equation*}
A \oplus_{T_{P}} B=\left(x_{1}+x_{2}, x_{1}+x_{2}, F_{\alpha+\beta}, F_{\alpha+\beta}\right) \tag{555}
\end{equation*}
\]
```

Soft Computing
K.-H.
Zimmermann
Contents
Triangular Norms
Properties of
Triangular Norms
Fuzzy Sets
Fuzzy Numbers
Fuzzy Inference
Fuzzy Control
Fuzzy Sets in R

```

\section*{Fuzzy Inference}
```

Fuzzy inference is the process of finding a mapping from an input fuzzy set to an output fuzzy set. Application is decision making.

- Fuzzy product and fuzzy relation
■ Zadeh's compositional rule of inference
- Zadeh's fuzzy relational equation

```

\section*{Contents}

Triangular Norms
Properties of Triangular Norms

Fuzzy Sets
Fuzzy Numbers
Fuzzy Inference
Fuzzy Control
Fuzzy Sets in R

\section*{Fuzzy Inference}

Let \(X\) and \(Y\) be two universes, \(A \subseteq X\) and \(B \subseteq Y\) fuzzy subsets, and \(T\) be a t-norm.
Define the product \(A \times_{T} B\) as the fuzzy subset of the (Cartesian product) universe \(X \times Y\) as
\[
\begin{equation*}
\mu_{A \times_{T} B}(x, y)=T\left(\mu_{A}(x), \mu_{B}(y)\right) . \tag{556}
\end{equation*}
\]

The value \(\mu_{A \times_{T} B}(x, y)\) can be interpreted as the truth value of " \(x\) is element of \(A\) and \(y\) is element of \(B^{\prime \prime}\).

\section*{Fuzzy Inference}

Contents
Triangular Norms
Properties of
Triangular Norms
Fuzzy Sets
Fuzzy Numbers
Given fuzzy subsets \(A\) and \(B\) of \(X=\mathbb{R}\) below.
Consider the t-norms \(T_{M}, T_{P}\), and \(T_{L}\) defined in Maple as follows,
\(>M:=(x, y) \rightarrow \min (A(x), B(y)) ;\)
\(>P:=(x, y)->A(x) * B(y)\);
\(>\mathrm{L}:=(\mathrm{x}, \mathrm{y})->\max (\mathrm{A}(\mathrm{x})+\mathrm{B}(\mathrm{y})-1,0)\);
Fuzzy Inference
Fuzzy Control
Fuzzy Sets in R


Soft Computing
K.-H.

Zimmermann

\section*{Contents}

Triangular Norms
Properties of Triangular Norms

Fuzzy Sets
Fuzzy Numbers
Fuzzy Inference
Fuzzy Control
Fuzzy Sets in R

\section*{Fuzzy Inference}

Fuzzy products \(A \times_{T} B\) with t-norms \(T_{M}, T_{P}\), and \(T_{L}\) :


\section*{Contents}

Triangular Norms
Properties of Triangular Norms

Fuzzy Sets
Fuzzy Numbers
Fuzzy Inference
Fuzzy Control
Fuzzy Sets in R

\section*{Fuzzy Inference}
- For two crisp sets \(X\) and \(Y\), the Cartesian product \(X \times Y\) is a crisp set.

■ Each crisp subset \(R\) of \(X \times Y\) is called a relation on \(X \times Y\).
- More generally, a fuzzy relation \(R\) on \(X \times Y\) is a fuzzy subset of \(X \times Y\) given by its membership function \(\mu_{R}: X \times Y \rightarrow[0,1]\).
- The value \(\mu_{R}(x, y)\) can be interpreted as the truth value of " \(x\) and \(y\) are in relation \(R\) ".

Triangular Norms
Properties of Triangular Norms

Fuzzy Sets
Fuzzy Numbers
Fuzzy Inference
Fuzzy Control
Fuzzy Sets in R

Fuzzy Inference - Zadeh's Compositional Inference Rule Let \(T\) be a t-norm, \(A\) be a fuzzy subset of \(X\), and \(R\) be a fuzzy relation on \(X \times Y\).
The fuzzy subset \(A \circ_{T} R\) of \(Y\) is defined by its membership function
\[
\begin{equation*}
\mu_{A \circ_{T} R}(y)=\sup \left\{T\left(\mu_{A}(x), \mu_{R}(x, y)\right) \mid x \in X\right\} . \tag{557}
\end{equation*}
\]

A fuzzy subset \(A\) of \(X\) is associated to a fuzzy subset \(B=A \circ_{T} R\) of \(Y\) given by the membership function \(\mu_{A{ }_{\circ_{T} R} \text {. }}\).

Contents
Triangular Norms
Properties of Triangular Norms

Fuzzy Sets
Fuzzy Numbers
Fuzzy Inference
Fuzzy Control
Fuzzy Sets in R

Fuzzy Inference - Zadeh's Compositional Inference Rule Given a function \(f: X \rightarrow Y\) by its graph
\[
\begin{equation*}
R=\{(x, f(x)) \mid x \in X\} . \tag{558}
\end{equation*}
\]

If \(A\) is a crisp subset of \(X\), then \(A \circ_{T} R\) is a crisp subset of \(Y\) given by the image \(f(A)\).

Contents
Triangular Norms
Properties of Triangular Norms

Fuzzy Sets
Fuzzy Numbers
Fuzzy Inference
Fuzzy Control

Fuzzy Inference - Zadeh's Compositional Inference Rule Evaluation of Zadeh's rule:
- Cylindric extension of fuzzy set \(A\) to fuzzy set \(A \times Y\) :
\[
\begin{equation*}
\mu_{A \times Y}(x, y)=\mu_{A}(x) \tag{559}
\end{equation*}
\]

■ Intersection of fuzzy set \(A \times Y\) with fuzzy relation \(R\) :
\[
\begin{align*}
\mu_{(A \times Y) \cap_{T} R}(x, y) & =T\left(\mu_{A \times Y}(x, y), \mu_{R}(x, y)\right) \\
& =T\left(\mu_{A}(x), \mu_{R}(x, y)\right) \tag{560}
\end{align*}
\]

■ Projection of fuzzy set \((A \times Y) \cap_{T} R\) onto \(Y\) :
\[
\begin{align*}
\mu_{A \circ_{T} R}(y) & =\sup \left\{\mu_{(A \times Y) \cap_{T} R}(x, y) \mid x \in X\right\}  \tag{561}\\
& =\sup \left\{T\left(\mu_{A}(x), \mu_{R}(x, y) \mid x \in X\right\}\right.
\end{align*}
\]

\section*{Fuzzy Inference - Zadeh's Fuzzy Relational Equation}

Given fuzzy subset \(A\) of \(X\), fuzzy subset \(B\) of \(Y\), and t-norm \(T\).
- Find a fuzzy relation \(R\) on \(X \times Y\) such that
\[
\begin{equation*}
A \circ_{T} R=B . \tag{562}
\end{equation*}
\]

■ Fuzzy relation \(R_{T}(A, B)\) on \(X \times Y\) given by the membership function provides the fuzzy relation \(A \circ_{T} R=B\) ( \(T\) left-continuous),
\[
\begin{equation*}
\mu_{R_{T}(A, B)}(x, y)=\mu_{A}(x) \rightarrow_{T} \mu_{B}(y) . \tag{563}
\end{equation*}
\]
- \(T\)-residuum \(\rightarrow_{T}\) is given by
\[
\begin{align*}
& \mu_{A}(x) \rightarrow_{T} \mu_{B}(y)  \tag{564}\\
& \quad=\sup \left\{z \in[0,1] \mid T\left(\mu_{A}(x), z\right) \leq \mu_{B}(y)\right\} .
\end{align*}
\]

\section*{Contents}

Triangular Norms
Properties of Triangular Norms

Fuzzy Sets
Fuzzy Numbers
Fuzzy Inference
Fuzzy Control
Fuzzy Sets in R

\section*{Fuzzy Inference - Example}

Consider the fuzzy subsets \(A\) and \(B\) of \(\mathbb{R}\) below.


Soft Computing
K.-H.

Zimmermann

Contents
Triangular Norms
Properties of Triangular Norms

Fuzzy Sets
Fuzzy Numbers
Fuzzy Inference
Fuzzy Control
Fuzzy Sets in R
Fuzzy Inference - Example (cont'd)
Fuzzy relations \(R_{T}(A, B)\) using t-norms \(T_{M}, T_{P}\), and \(T_{L}\) :


Contents
Triangular Norms
Properties of Triangular Norms

Fuzzy Sets
Fuzzy Numbers
Fuzzy Inference
Fuzzy Control
Fuzzy Sets in R

\section*{Fuzzy Inference - Example}

■ Customers of a restaurant rate the quality of service (QoS) and the quality of food (QoF) on a scale of 0 to 10 .

■ Suppose QoS and QoF are given by fuzzy numbers \(A\) and \(B\) below, resp.

■ The relation between QoS and QoF can be measured by fuzzy relation \(R_{T}(A, B)\) w.r.t. t-norm \(T\).



Soft Computing

\section*{Contents}

Triangular Norms
Properties of Triangular Norms

Fuzzy Sets
Fuzzy Numbers
Fuzzy Inference
Fuzzy Control
Fuzzy Sets in R

Fuzzy Inference - Example (cont'd)
Fuzzy relation between QoS and QoF using t-norms \(T_{M}, T_{P}\), and \(T_{L}\) :



\title{
Soft Computing
}
K.-H.

Zimmermann

\section*{Contents}

Triangular Norms
Properties of
Triangular Norms
Fuzzy Sets
Fuzzy Numbers
Fuzzy Inference

\section*{Fuzzy Control}

A fuzzy control system is a control system based on fuzzy logic no learning involved. Application is machine control.
- Mamdani controller
- Takagi-Sugeno controller

Consider the rulebase
IF \(x\) is \(A_{1}\), THEN \(y\) is \(B_{1}\),
IF \(x\) is \(A_{2}\), THEN \(y\) is \(B_{2}\),

IF \(x\) is \(A_{n}\), THEN \(y\) is \(B_{n}\).

\section*{Contents}

Triangular Norms
Properties of Triangular Norms

Fuzzy Sets
Fuzzy Numbers
Fuzzy Inference
Fuzzy Control
Fuzzy Sets in R

\section*{Fuzzy Control - Mamdani Controller}
- Membership function of fuzzy relation \(R \subseteq X \times \mathbb{R}\),
\[
\begin{aligned}
& \mu_{R}(x, y)= \\
& \quad \max \left\{T\left(\mu_{A_{1}}(x), \mu_{B_{1}}(y)\right), \ldots, T\left(\mu_{A_{n}}(x), \mu_{B_{n}}(y)\right)\right\}
\end{aligned}
\]

■ I/O function \(F_{M}: X \rightarrow \mathbb{R}\) of Mamdani controller,
\[
\begin{equation*}
F_{M}(x)=\frac{\int_{\mathbb{R}} \mu_{R}(x, y) \cdot y d y}{\int_{\mathbb{R}} \mu_{R}(x, y) d y} \tag{567}
\end{equation*}
\]
where \(\int_{\mathbb{R}} \mu_{R}(x, y) d y>0\) for all \(x \in X\) (requires measure theoretic assumptions).

Soft Computing
K.-H.

Zimmermann

\section*{Contents}

Triangular Norms
Properties of Triangular Norms

Fuzzy Sets
Fuzzy Numbers
Fuzzy Inference
Fuzzy Control
Fuzzy Sets in R

Fuzzy Control - Mamdani Controller Input given by \(A_{1}, B_{1}\) and \(A_{2}, B_{2}\) :



Soft Computing

\section*{Contents}

Triangular Norms
Properties of Triangular Norms

Fuzzy Sets
Fuzzy Control - Mamdani Controller Integration via Maple:
> \(\mathrm{f}:=\operatorname{int}(\max (\mathrm{A} 1(\mathrm{x}) * \mathrm{~B} 1(\mathrm{y}), \mathrm{A} 2(\mathrm{x}) * \mathrm{~B} 2(\mathrm{y})), \mathrm{y}=0 . .1)\); Output
\[
f(x)=0.10 \begin{cases}0 & x<0.45 \\ -4.5+10 x & x<0.55 \\ 6.5-10 x & x \leq 0.65 \\ 0 & 0.65<x\end{cases}
\]

Soft Computing

\section*{Contents}

Triangular Norms
Properties of Triangular Norms

Fuzzy Sets
Fuzzy Numbers
Fuzzy Inference
Fuzzy Control
Fuzzy Sets in R

\section*{Fuzzy Control - Mamdani Controller} Integration via Maple:
\(>\mathrm{g}:=\operatorname{int}(\max (\mathrm{A} 1(\mathrm{x}) * \mathrm{~B} 1(\mathrm{y}) * \mathrm{y}, \mathrm{A} 2(\mathrm{x}) * \mathrm{~B} 2(\mathrm{y}) * \mathrm{y}), \mathrm{y}=0 \ldots 1)\); Output
\[
g(x)=0.065 \cdot \begin{cases}0 & x<0.45 \\ -4.5+10 x & x<0.55 \\ 6.5-10 x & x \leq 0.65 \\ 0 & 0.65<x\end{cases}
\]

\section*{Fuzzy Control - Takagi-Sugeno Controller}

Given input universe \(X\),
- \(A_{1}, \ldots, A_{n}\) normal fuzzy subsets of \(X\) with \(\sum_{i=1}^{n} \mu_{A_{i}}(x)>0\) for all \(x \in X\),
- \(g_{1}, \ldots, g_{n}\) mappings from \(X\) to \(\mathbb{R}\).

Consider the rulebase
\[
\begin{align*}
& \text { IF } x \text { is } A_{1} \text {, THEN } y=g_{1}(x), \\
& \text { IF } x \text { is } A_{2}, \text { THEN } y=g_{2}(x), \tag{568}
\end{align*}
\]

IF \(x\) is \(A_{n}\), THEN \(y=g_{n}(x)\).

Fuzzy Control - Takagi-Sugeno Controller
I/O function \(F_{T S}: X \rightarrow \mathbb{R}\) of Takagi-Sugeno controller,
\[
\begin{equation*}
F_{T S}(x)=\frac{\sum_{i=1}^{n} \mu_{A_{i}}(x) \cdot g_{i}(x)}{\sum_{i=1}^{n} \mu_{A_{i}}(x)} \tag{569}
\end{equation*}
\]

The Takagi-Sugeno controller can be viewed as a special case of the Mamdani controller if the involved functions \(g_{1}, \ldots, g_{n}\) are constant; i.e., \(g_{i}(x)=y_{i}\) for all \(x \in X\) and \(1 \leq i \leq n\).

\section*{Fuzzy Control - Basic Tipping Problem}

A customer evaluates QoF and QoS and then decides upon the tip using the golden rules:
- If food is rancid and service is poor, tip is cheap.
- If service is good, tip is average.
- If food is delicious and service is excellent, tip is generous.

Cheap tip is \(5 \%\), average tip is \(15 \%\), and generous tip is \(25 \%\) of the total bill.

\section*{Contents}

Triangular Norms
Properties of Triangular Norms

Fuzzy Sets
Fuzzy Numbers
Fuzzy Inference
Fuzzy Control
Fuzzy Sets in R
Fuzzy Control - Basic Tipping Problem (cont'd)
Customers rate QoS on a scale of 1 to 10 . Fuzzy numbers for QoS: poor \(\left(q_{1}\right)\), good \(\left(q_{2}\right)\), and excellent \(\left(q_{3}\right)\) :


Soft Computing
K.-H.

Zimmermann

Contents
Triangular Norms
Properties of Triangular Norms

Fuzzy Sets
Fuzzy Numbers
Fuzzy Inference
Fuzzy Control
Fuzzy Sets in R

\section*{Fuzzy Control - Basic Tipping Problem (cont'd)}

Takagi-Sugeno controller:
\[
F_{T S}(x)=\frac{q_{1}(x) \cdot 0.05+q_{2}(x) \cdot 0.15+q_{3}(x) \cdot 0.25}{q_{1}(x)+q_{2}(x)+q_{3}(x)}, 1 \leq x \leq 10
\]


\title{
Soft Computing
}

\section*{Contents}

Triangular Norms
Properties of Triangular Norms

Fuzzy Sets
Fuzzy Numbers
Fuzzy Inference
Fuzzy Control
Fuzzy Sets in R
Fuzzy Sets in R
The R package sets provides data structures and basic operations for ordinary sets and generalizations such as fuzzy sets.
> library (sets)
Fix a universe to work with,
> sets_options("universe", seq(1, 100, 0.5))

\section*{Fuzzy Sets in R}

Specify Gaussian fuzzy numbers corresponding to temperature (Fahrenheit), humidity (percentage), precipitation (rain), and weather (for output).
```

> variables <- set(
temp = fuzzy_partition(varnames=c(cold=30,
good=70, hot=90), sd=5.0),
hum = fuzzy_partition(varnames=c(dry=30,
good=70, wet=80), sd=3.0),
prec = fuzzy_partition(varnames=c(no.rain=30,
little.rain=60, rain=90), sd=7.5),
weather = fuzzy_partition(varnames=c(bad=40, ok=65,
perfect=80),
FUN=fuzzy_cone, radius=10)
// function generator
)

```

\section*{Fuzzy Sets in R}

Specification of fuzzy rules:
```

> rules <- set(
fuzzy_rule(temp %is% good \&\& hum %is% dry
\&\& prec %is% no.rain, weather %is% perfect),
fuzzy_rule(temp %is% hot \&\& hum %is% wet
\&\& prec %is% rain, weather %is% bad),
fuzzy_rule(temp %is% cold, weather %is% bad),
fuzzy_rule(temp %is% good || hum %is% good
|| prec %is% little.rain, weather %is% ok),
fuzzy_rule(temp %is% hot \&\& prec %is% little.rain,
weather %is% ok),
fuzzy_rule(temp %is% hot \&\& hum %is% dry
\&\& prec %is% little.rain, weather %is% ok)

```
    )

\section*{Soft Computing}
K.-H.

Zimmermann

Contents
Triangular Norms
Properties of Triangular Norms

Fuzzy Sets
Fuzzy Numbers
Fuzzy Inference
Fuzzy Control
Fuzzy Sets in R

\section*{Fuzzy Sets in R}

\section*{Build a system for fuzzy inference:}
> model <- fuzzy_system(variables, rules)
The printing of the specified model yields a summary of the data.
```

> print(model)
A fuzzy system consisting of 4 variables and 6 rules.
Variables:
weather (bad, ok, perfect)
hum (dry, good, wet)
temp (cold, good, hot)
prec (no.rain, little.rain, rain)
Rules:
temp %is% good \&\& hum %is% dry \&\& prec %is% no.rain ==> weather %is% perfect
temp %is% hot \&\& hum %is% wet \&\& prec %is% rain ==> weather %is% bad
temp %is% cold ==> weather %is% bad
%temp %is% good || hum %is% good || prec %is% little.rain ==> weather %is% ok
temp %is% hot \&\& prec %is% little.rain ==> weather %is% ok
temp %is% hot \&\& hum %is% dry \&\& prec %is% little.rain ==> weather %is% ok

```

Soft Computing
K.-H.

Zimmermann

\section*{Contents}

Triangular Norms
Properties of Triangular Norms

Fuzzy Sets
Fuzzy Numbers
Fuzzy Inference
Fuzzy Control
Fuzzy Sets in R

\section*{Fuzzy Sets in R}

\section*{Plot of the fuzzy numbers:}

\section*{Fuzzy Sets in R}

Fuzzy inference with temperature of \(75^{\circ} \mathrm{F}\), zero humidity, and precipitation of \(70 \%\) :
> ex <- fuzzy_inference(model,
list (temp=75, hum=0, prec=70))

Defuzzification transforms the resulting fuzzy number into a number of the universe:
> gset_defuzzify(ex, "centroid")
[1] 65
Thus according to the inference, the weather is 65 and so ok (see weather plot).

Contents
Triangular Norms
Properties of Triangular Norms

Fuzzy Sets
Fuzzy Numbers
Fuzzy Inference
Fuzzy Control
Fuzzy Sets in R

\section*{Fuzzy Sets in R}

Reconsider the tipping problem.
> sets_options("universe", seq(from=0, to=25, by=0.1))
First set up the fuzzy variables.
> variables <- set (
service=fuzzy_partition(
varnames=c (poor=0, good=5, excellent=10), \(s d=3\) ), food=fuzzy_variable(
rancid=fuzzy_trapezoid(corners=c \((-2,0,2,4)\) ),
delicious=fuzzy_trapezoid(corners=c(7,9,11,13))), tip=fuzzy_partition(
varnames=c (cheap=5, average=12, generous=20), FUN=fuzzy_cone, radius=5))

\title{
Soft Computing
}

\section*{Contents}

Triangular Norms
Properties of Triangular Norms

Fuzzy Sets
Fuzzy Numbers
Fuzzy Inference
Fuzzy Control
Fuzzy Sets in R

\section*{Fuzzy Sets in R}

Next set up the fuzzy rules.
> rules <- set \((\)
fuzzy_rule(service \%is\% poor
|| food \%is\% rancid, tip \%is\% cheap), fuzzy_rule(service \%is\% good, tip \%is\% average), fuzzy_rule(service \%is\% excellent
|| food \%is\% delicious, tip \%is\% generous))
```

Soft Computing
K.-H.
Zimmermann
Contents
Triangular Norms
Properties of
Triangular Norms
Fuzzy Sets
Fuzzy Numbers
Fuzzy Inference
Fuzzy Control
Fuzzy Sets in R

```

\section*{Fuzzy Sets in R}
```

The fuzzy variables and rules are combined into a fuzzy system.
> system <- fuzzy_system(variables, rules)
The data of the fuzzy system can be printed.

```
```

> print(system)

```
> print(system)
A fuzzy system consisting of 3 variable and 3 rules.
Variables:
food(rancid, delicious)
tip(cheap, average, generous)
service(poor, good, excellent)
Rules:
service %is% poor || food %is% rancid => tip %is% cheap
service %is% good => tip %is% average
service %is% excellent || food %is% delicious
                        => tip %is% generous
```


Soft Computing
 K.-H.
 Zimmermann
 Fuzzy Sets in R
 > plot(system)

Contents

Triangular Norms

Properties of Triangular Norms

Fuzzy Sets
Fuzzy Numbers
Fuzzy Inference
Fuzzy Contro
Fuzzy Sets in R

service


```
Soft Computing
    K.-H.
    Zimmermann
```

Contents
Triangular Norms
Properties of Triangular Norms

Fuzzy Sets
Fuzzy Numbers
Fuzzy Inference
Fuzzy Control
Fuzzy Sets in R

Fuzzy Sets in R

Fuzzy inference with service 3 and food 8:
> fi <- fuzzy_inference(system, list(service=3, food=8))
Defuzzification transforms the resulting fuzzy number into a number of the universe:
> gset_defuzzify(fi, "centroid")
[1] 9.433852
Thus according to the inference, the tip is 9.4 and so average (see foot plot).

