8 PRENTICE

CO V‘e -t-lI!i.I.ﬂ.LL

PY THON

prog Pamming
SECOND EDITION

v
New to Python? This is the definitive

guide 1o Python development for
experiented programmers

v

Covers tore longuoge features thoroughly,
including those found in the latest Python
releases — learn move thon just the syntax!

v
Learn odvanced topics such os regular

expressions, networking, mubtithreoding,
GUI, Web/CG1, and Python extensions

v

Includes brond-new chapters on
dotabase, Internet client, Java,/Jython,
and Microsalt Dffice

b 4

Presents hundreds of code snippets,
inferactive examples, ond prochicol exerdses
to strengthen your Python skills

WESLEY J. CHUN

NEXT B

core Core Python Programming, Second Edition
PYTHON
fropEnm—— By Wesley J. Chun

Publisher: Prentice Hall

Pub Date: September 18, 2006
Print ISBN-10: 0-13-226993-7
Print ISBN-13: 978-0-13-226993-3
Pages: 1120

Table of Contents | Index

Overview

Praise for Core Python Programming

"The long-awaited second edition of Wesley Chun's Core Python Programming proves to be well worth the
waitits deep and broad coverage and useful exercises will help readers learn and practice good Python."

Alex Martelli, author of Python in a Nutshell and editor of Python Cookbook

"There has been lot of good buzz around Wesley Chun's Core Python Programming. It turns out that all the buzz
is well earned. | think this is the best book currently available for learning Python. I would recommend Chun's
book over Learning Python (O'Reilly), Programming Python (O'Reilly), or The Quick Python Book (Manning)."
David Mertz, Ph.D., IBM DeveloperWorks®

"l have been doing a lot of research [on] Python for the past year and have seen a number of positive reviews
of your book. The sentiment expressed confirms the opinion that Core Python Programming is now considered
the standard introductory text."

Richard Ozaki, Lockheed Martin

"Finally, a book good enough to be both a textbook and a reference on the Python language now exists."
Michael Baxter, Linux Journal

"Very well written. It is the clearest, friendliest book | have come across yet for explaining Python, and putting
it in a wider context. It does not presume a large amount of other experience. It does go into some important
Python topics carefully and in depth. Unlike too many beginner books, it never condescends or tortures the
reader with childish hide-and-seek prose games. [It] sticks to gaining a solid grasp of Python syntax and

structure."

http://python.org bookstore Web site

"[1f] I could only own one Python book, it would be Core Python Programming by Wesley Chun. This book
manages to cover more topics in more depth than Learning Python but includes it all in one book that also more
than adequately covers the core language. [If] you are in the market for just one book about Python, |
recommend this book. You will enjoy reading it, including its wry programmer's wit. More importantly, you will
learn Python. Even more importantly, you will find it invaluable in helping you in your day-to-day Python

programming life. Well done, Mr. Chun!”

Ron Stephens, Python Learning Foundation

"I think the best language for beginners is Python, without a doubt. My favorite book is Core Python

Programming."

s003apr, MP3Car.com Forums

"Personally, | really like Python. It's simple to learn, completely intuitive, amazingly flexible, and pretty darned
fast. Python has only just started to claim mindshare in the Windows world, but look for it to start gaining lots
of support as people discover it. To learn Python, I'd start with Core Python Programming by Wesley Chun."

Bill Boswell, MCSE, Microsoft Certified Professional Magazine Online

"If you learn well from books, | suggest Core Python Programming. It is by far the best I've found. I'm a Python
newbie as well and in three months time I've been able to implement Python in projects at work (automating
MSOffice, SQL DB stuff, etc.)."

ptonman, Dev Shed Forums

"Python is simply a beautiful language. It's easy to learn, it's cross-platform, and it works. It has achieved many
of the technical goals that Java strives for. A one-sentence description of Python would be: 'All other languages
appear to have evolved over time--but Python was designed.' And it was designed well. Unfortunately, there
aren't a large number of books for Python. The best one I've run across so far is Core Python Programming."
Chris Timmons, C. R. Timmons Consulting

"If you like the Prentice Hall Core series, another good full-blown treatment to consider would be Core Python
Programming. It addresses in elaborate concrete detail many practical topics that get little, if any, coverage in
other books."

Mitchell L Model, MLM Consulting

"Core Python Programming is an amazingly easy read! The liberal use of examples helps clarify some of the
more subtle points of the language. And the comparisons to languages with which I'm already familiar (C/C++/

Java) get you programming in record speed."

Michael Santos, Ph.D., Green Hills Software

The Complete Developer's Guide to PythonFully Updated for Python 2.5

. New to Python? The definitive guide to Python development for experienced programmers

. Covers core language features thoroughly, including those found in the latest Python releases

. Learn advanced topics such as regular expressions, networking, multithreading, GUI, and Web/CGI

. Includes brand-new chapters on database, Internet, Jython, and COM Client programming

. Presents hundreds of code samples and practical exercises to strengthen your Python skills
Python is an agile, robust, expressive, fully object-oriented, extensible, and scalable programming language. It
combines the power of compiled languages with the simplicity and rapid development of scripting languages. In
Core Python Programming, Second Edition, leading Python developer and trainer Wesley Chun helps you
learn Python quickly and comprehensively so that you can immediately succeed with any Python project.
Using practical code examples, Chun introduces all the fundamentals of Python programming: syntax, objects
and memory management, data types, operators, files and 1/0, functions, generators, error handling and
exceptions, loops, iterators, functional programming, object-oriented programming and more. After you learn
the core fundamentals of Python, he shows you what you can do with your new skKills, delving into advanced
topics, such as regular expressions, networking programming with sockets, multithreading, GUI development,
Web/CGI programming and extending Python in C.
This edition reflects major enhancements in the Python 2.x series, including 2.5 as well as capabilities set for
future versions. It contains new chapters on database and Internet client programming, plus coverage of many
new topics, including new-style classes, Java and Jython, Microsoft Office (Win32 COM Client) programming,
and much more.

. Learn professional Python style, best practices, and good programming habits

. Gain a deep understanding of Python's objects and memory model as well as its OOP features, including

those found in Python's new-style classes

. Build more effective Web, CGI, Internet, and network and other client/server applications

. Learn how to develop your own GUI applications using Tkinter and other toolkits available for Python

. Improve the performance of your Python applications by writing extensions in C and other languages, or

enhance 1/0-bound applications by using multithreading

. Learn about Python's database APl and how to use a variety of database systems with Python, including
MySQL, Postgres, and SQLite

Core Python Programming delivers

Systematic, expert coverage of Python's core features

Powerful insights for developing complex applications

Easy-to-use tables and charts detailing Python modules, operators, functions, and methods

Dozens of professional-quality code examples, from quick snippets to full-fledged applications

MNEXT B

e prcy NEXT

core Core Python Programming, Second Edition
PYTHON
. By Wesley J. Chun

Publisher: Prentice Hall
Pub Date: September 18, 2006
Print ISBN-10: 0-13-226993-7

Print ISBN-13: 978-0-13-226993-3
Pages: 1120

Table of Contents | Index

Copyright
— Praise for Core Python Programming

— Prentice Hall Core Series

— Preface
Acknowledgments

_Part|: Core Python

Chapter 1. Welcome to Python!

—Section 1.1. What Is Python?

__Section 1.2. Origins

_Section 1.3. Features

Section 1.4. Downloading and Installing Python

___Section 1.5. Running Python

___Section 1.6. Python Documentation

___Section 1.7. Comparing Python

___Section 1.8. Other Implementations

_Section 1.9. Exercises

Chapter 2. Getting Started

___Section 2.1. Program Output, the print Statement, and "Hello World!"

_Section 2.2. Program Input and the raw_input()Built-in Function

_Section 2.3. Comments

_Section 2.4. Operators

__Section 2.5. Variables and Assignment

__Section 2.6. Numbers

_Section 2.7. Strings

Section 2.8. Lists and Tuples

___Section 2.9. Dictionaries

___Section 2.10. Code Blocks Use Indentation

___Section 2.11. if Statement

___Section 2.12. while Loop

___Section 2.13. for Loop and the range() Built-in Function

___Section 2.14. List Comprehensions

___Section 2.15. Files and the open() and file() Built-in Functions

___Section 2.16. Errors and Exceptions

_Section 2.17. Functions

__Section 2.18. Classes

_Section 2.19. Modules

_Section 2.20. Useful Functions

_Section 2.21. Exercises

Chapter 3. Python Basics

Section 3.1. Statements and Syntax

___Section 3.2. Variable Assignment

___Section 3.3. Identifiers

_Section 3.4. Basic Style Guidelines

—Section 3.5. Memory Management

___Section 3.6. First Python Programs

__Section 3.7. Related Modules/Developer Tools

_Section 3.8. Exercises
— Chapter 4. Python Objects
_Section 4.1. Python Objects

_Section 4.2. Standard Types

__Section 4.3. Other Built-in Types

__Section 4.4. Internal Types

__Section 4.5. Standard Type Operators

Section 4.6. Standard Type Built-in Functions

___Section 4.7. Type Factory Functions

___Section 4.8. Categorizing the Standard Types

__Section 4.9. Unsupported Types

___Section 4.10. Exercises

Chapter 5. Numbers

—Section 5.1. Introduction to Numbers

_Section 5.2. Integers

_Section 5.3. Double Precision Floating Point Numbers

_Section 5.4. Complex Numbers

_Section 5.5. Operators

_Section 5.6. Built-in and Factory Functions

_—Section 5.7. Other Numeric Types

Section 5.8. Related Modules

___Section 5.9. Exercises

Chapter 6. Sequences: Strings, Lists, and Tuples

__Section 6.1. Sequences

_Section 6.2. Strings

_Section 6.3. Strings and Operators

__Section 6.4. String-Only Operators

_Section 6.5. Built-in Functions

_Section 6.6. String Built-in Methods

Section 6.7. Special Features of Strings

___Section 6.8. Unicode

___Section 6.9. Related Modules

___Section 6.10. Summary of String Highlights

_—Section 6.11. Lists

__Section 6.12. Operators

___Section 6.13. Built-in Functions

___Section 6.14. List Type Built-in Methods

__Section 6.15. Special Features of Lists

__Section 6.16. Tuples

__Section 6.17. Tuple Operators and Built-in Functions

__Section 6.18. Special Features of Tuples

_—Section 6.19. Related Modules

_Section 6.20. *Copying Python Objects and Shallow and Deep Copies

Section 6.21. Summary of Sequences

___Section 6.22. Exercises

Chapter 7. Mapping and Set Types

___Section 7.1. Mapping Type: Dictionaries

___Section 7.2. Mapping Type Operators

___Section 7.3. Mapping Type Built-in and Factory Functions

___Section 7.4. Mapping Type Built-in Methods

___Section 7.5. Dictionary Keys

_Section 7.6. Set Types

__Section 7.7. Set Type Operators

_Section 7.8. Built-in Functions

__Section 7.9. Set Type Built-in Methods

_Section 7.10. Operator, Function/Method Summary Table for Set Types

_Section 7.11. Related Modules

Section 7.12. Exercises

Chapter 8. Conditionals and Loops

___Section 8.1. if Statement

___Section 8.2. else Statement

_Section 8.3. elif (aka else-if) Statement

___Section 8.4. Conditional Expressions (aka "the Ternary Operator")

_Section 8.5. while Statement

__Section 8.6. for Statement

__Section 8.7.

break Statement

__Section 8.8.

continue Statement

__Section 8.9.

pass Statement

Section 8.10.

else Statement ... Take Two

___Section 8.11.

lterators and the iter() Function

___Section 8.12.

List Comprehensions

___Section 8.13.

Generator Expressions

__Section 8.14.

Related Modules

__Section 8.15.

Exercises

Chapter 9. Fil

es and Input/Output

_Section 9.1.

File Objects

__Section 9.2.

File Built-in Functions [open() and file()]

_Section 9.3.

File Built-in Methods

__Section 9.4.

File Built-in Attributes

__Section 9.5.

Standard Files

__Section 9.6.

Command-Line Arguments

__Section 9.7.

File System

Section 9.8.

File Execution

___Section 9.9.

Persistent Storage Modules

___Section 9.10.

Related Modules

___Section 9.11.

Exercises

Chapter 10. Errors and Exceptions

_Section 10.1.

What Are Exceptions?

__Section 10.2.

Exceptions in Python

_Section 10.3.

Detecting and Handling Exceptions

_Section 10.4.

Context Management

_Section 10.5.

*Exceptions as Strings

_Section 10.6.

Raising Exceptions

_Section 10.7.

Assertions

_Section 10.8.

Standard Exceptions

_Section 10.9.

*Creating Exceptions

Section 10.10. Why Exceptions (Now)?

___Section 10.11. Why Exceptions at All?

___Section 10.12. Exceptions and the sys Module

___Section 10.13. Related Modules

___Section 10.14. Exercises

Chapter 11. Functions and Functional Programming

__Section 11.1.

What Are Functions?

__Section 11.2.

Calling Functions

__Section 11.3.

Creating Functions

__Section 11.4.

Passing Functions

___Section 11.5. Formal Arguments

___Section 11.6. Variable-Length Arguments

___Section 11.7. Functional Programming

___Section 11.8. Variable Scope

___Section 11.9. *Recursion

___Section 11.10. Generators

___Section 11.11. Exercises
— Chapter 12. Modules
_Section 12.1. What Are Modules?

_Section 12.2. Modules and Files

_Section 12.3. Namespaces

__Section 12.4. Importing Modules

__Section 12.5. Features of Module Import

Section 12.6. Module Built-in Functions

___Section 12.7. Packages

___Section 12.8. Other Features of Modules

___Section 12.9. Related Modules

___Section 12.10. Exercises

Chapter 13. Object-Oriented Programming

___Section 13.1. Introduction

___Section 13.2. Object-Oriented Programming

__Section 13.3. Classes

_—Section 13.4. Class Attributes

_Section 13.5. Instances

_Section 13.6. Instance Attributes

_Section 13.7. Binding and Method Invocation

__Section 13.8. Static Methods and Class Methods

Section 13.9. Composition

___Section 13.10. Subclassing and Derivation

___Section 13.11. Inheritance

___Section 13.12. Built-in Functions for Classes, Instances, and Other Objects

___Section 13.13. Customizing Classes with Special Methods

___Section 13.14. Privacy

___Section 13.15. *Delegation

___Section 13.16. Advanced Features of New-Style Classes (Python 2.2+)

_Section 13.17. Related Modules and Documentation

__Section 13.18. Exercises

— Chapter 14. Execution Environment

_Section 14.1. Callable Objects
_Section 14.2. Code Objects

Section 14.3. Executable Object Statements and Built-in Functions

___Section 14.4. Executing Other (Python) Programs

___Section 14.5. Executing Other (Non-Python) Programs

___Section 14.6. Restricted Execution

___Section 14.7. Terminating Execution

___Section 14.8. Miscellaneous Operating System Interface

_Section 14.9. Related Modules

__Section 14.10. Exercises

_Part Il: Advanced Topics

Chapter 15. Reqular Expressions

—Section 15.1. Introduction/Motivation

__Section 15.2. Special Symbols and Characters

Section 15.3. REs and Python

___Section 15.4. Reqular Expressions Example

___Section 15.5. Exercises

Chapter 16. Network Programming

___Section 16.1. Introduction

___Section 16.2. Sockets: Communication Endpoints

___Section 16.3. Network Programming in Python

—Section 16.4. *SocketServer Module

_Section 16.5. *Introduction to the Twisted Framework

_Section 16.6. Related Modules

_Section 16.7. Exercises

Chapter 17. Internet Client Programming

__Section 17.1. What Are Internet Clients?

_Section 17.2. Transferring Files

Section 17.3. Network News

___Section 17.4. Electronic Mail

___Section 17.5. Related Modules

___Section 17.6. Exercises

Chapter 18. Multithreaded Programming

___Section 18.1. Introduction/Motivation

_Section 18.2. Threads and Processes

___Section 18.3. Python, Threads, and the Global Interpreter Lock
_Section 18.4. thread Module

_Section 18.5. threading Module

__Section 18.6. Related Modules

__Section 18.7. Exercises

Chapter 19. GUI Programming

Section 19.1. Introduction

___Section 19.2. Tkinter and Python Programming

___Section 19.3. Tkinter Examples

__Section 19.4.

Brief Tour of Other GUIs

__Section 19.5.

Related Modules and Other GUIs

__Section 19.6.

Exercises

Chapter 20. Web Programming

__Section 20.1.

Introduction

_Section 20.2.

Web Surfing with Python: Creating Simple Web Clients

__Section 20.3.

Advanced Web Clients

Section 20.4.

CGl: Helping Web Servers Process Client Data

___Section 20.5.

Building CGI Applications

___Section 20.6.

Using Unicode with CGlI

_Section 20.7.

Advanced CGI

_Section 20.8.

Web (HTTP) Servers

_Section 20.9.

Related Modules

___Section 20.10. Exercises

— Chapter 21. Database Programming

_Section 21.1.

Introduction

__Section 21.2.

Python Database Application Programmer's Interface (DB-API)

__Section 21.3.

Object-Relational Managers (ORMs)

__Section 21.4.

Related Modules

_Section 21.5.

Exercises

Chapter 22. Extending Python

___Section 22.1.

Introduction/Motivation

___Section 22.2.

Extending Python by Writing Extensions

___Section 22.3.

Related Topics

__Section 22.4.

Exercises

Chapter 23. Miscellaneous

__Section 23.1.

Web Services

__Section 23.2.

Programming Microsoft Office with Win32 COM

__Section 23.3.

Python and Java Programming with Jython

__Section 23.4.

Exercises

Appendix A. Answers to Selected Exercises

Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8
Chapter 9
Chapter 10
Chapter 11

Chapter 12
Chapter 13
Chapter 14
Chapter 15
Chapter 16
Chapter 17
Chapter 18
Chapter 19
Chapter 20
Chapter 21
Chapter 22

Chapter 23
Appendix B. Reference Tables

Python Keywords
__Python Standard Operators and Functions

—Numeric Type Operators and Functions

__Sequence Type Operators and Functions

__String Format Operator Conversion Symbols

String Format Operator Directives

___String Type Built-in Methods

List Type Built-in Methods

___Dictionary Type Built-in Methods

__Set Types Operators and Functions

___File Object Methods and Data Attriobutes

___Python Exceptions

_Special Methods for Classes

__Python Operator Summary

Appendix 3. About the Author

Index

—

e prcy NEXT B

k=2
Copyright

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark
claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or
special sales, which may include electronic versions and/or custom covers and content particular to your
business, training goals, marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearsoned.com

Visit us on the Web: www.prenhallprofessional.com

Library of Congress Cataloging-in-Publication Data
Chun, Wesley.

Core Python programming / Wesley J. Chun. 2nd ed.

p. cm.

Includes bibliographical references and index.

ISBN 0-13-226993-7 (pbk. : alk. paper)

1.Python (Computer program language)l. Title.

QA76.73.P98C48 2006

005.13'3dc22

2006019559

Copyright © 2007 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright,
and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a
retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying,
recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc.

Rights and Contracts Department
One Lake Street

Upper Saddle River, NJ 07458

mailto:corpsales@pearsontechgroup.com
mailto:international@pearsoned.com
http://www.prenhallprofessional.com/

Fax: (201) 236-3290
Text printed in the United States on recycled paper at Courier in Stoughton, Massachusetts.

First printing, September 2006
Dedication

To my parents, who taught me that everybody is different.

And to my wife, who lives with someone who is different.

e prcy ExT

file:///D|/1/0132269937/14051536.html

e Py EXT

Praise for Core Python Programming

"The long-awaited second edition of Wesley Chun's Core Python Programming proves to
be well worth the waitits deep and broad coverage and useful exercises will help readers
learn and practice good Python."

Alex Martelli, author of Python in a Nutshell and editor of Python Cookbook

"There has been lot of good buzz around Wesley Chun's Core Python Programming. It
turns out that all the buzz is well earned. | think this is the best book currently available
for learning Python. | would recommend Chun's book over Learning Python (O'Reilly),
Programming Python (O'Reilly), or The Quick Python Book (Manning)."

David Mertz, Ph.D., IBM DeveloperWorks®

"l have been doing a lot of research [on] Python for the past year and have seen a
number of positive reviews of your book. The sentiment expressed confirms the opinion
that Core Python Programming is now considered the standard introductory text."

Richard Ozaki, Lockheed Martin

"Finally, a book good enough to be both a textbook and a reference on the Python
language now exists."

Michael Baxter, Linux Journal

"Very well written. It is the clearest, friendliest book | have come across yet for
explaining Python, and putting it in a wider context. It does not presume a large amount
of other experience. It does go into some important Python topics carefully and in depth.
Unlike too many beginner books, it never condescends or tortures the reader with childish
hide-and-seek prose games. [It] sticks to gaining a solid grasp of Python syntax and
structure."

http://python.org bookstore Web site

"[1f] I could only own one Python book, it would be Core Python Programming by Wesley
Chun. This book manages to cover more topics in more depth than Learning Python but
includes it all in one book that also more than adequately covers the core language. [If]
you are in the market for just one book about Python, I recommend this book. You will
enjoy reading it, including its wry programmer's wit. More importantly, you will learn
Python. Even more importantly, you will find it invaluable in helping you in your day-to-
day Python programming life. Well done, Mr. Chun!"

Ron Stephens, Python Learning Foundation

"l think the best language for beginners is Python, without a doubt. My favorite book is
Core Python Programming."

s003apr, MP3Car.com Forums

http://python.org/

"Personally, I really like Python. It's simple to learn, completely intuitive, amazingly
flexible, and pretty darned fast. Python has only just started to claim mindshare in the
Windows world, but look for it to start gaining lots of support as people discover it. To
learn Python, I'd start with Core Python Programming by Wesley Chun.”

Bill Boswell, MCSE, Microsoft Certified Professional Magazine Online

"If you learn well from books, | suggest Core Python Programming. It is by far the best
I've found. I'm a Python newbie as well and in three months time I've been able to
implement Python in projects at work (automating MSOffice, SQL DB stuff, etc.)."

ptonman, Dev Shed Forums

"Python is simply a beautiful language. It's easy to learn, it's cross-platform, and it
works. It has achieved many of the technical goals that Java strives for. A one-sentence
description of Python would be: 'All other languages appear to have evolved over timebut
Python was designed.’ And it was designed well. Unfortunately, there aren't a large
number of books for Python. The best one I've run across so far is Core Python
Programming.”

Chris Timmons, C. R. Timmons Consulting

"If you like the Prentice Hall Core series, another good full-blown treatment to consider
would be Core Python Programming. It addresses in elaborate concrete detail many
practical topics that get little, if any, coverage in other books."

Mitchell L Model, MLM Consulting

e prcy ExT

file:///D|/1/0132269937/14051536.html

Prentice Hall Core Series

Core J2EE Patterns, Second Edition, Alur/Malks/Crupi

Core PHP Programming, Third Edition, Atkinson/Suraski

Core Lego Mindstorms, Bagnall

Core JSTL, Geary

Core JavaServer Faces, Geary/Horstmann

Core Web Programming, Second Edition, Hall/Brown

Core Servlets and JavaServer Pages, Second Edition, Hall/Brown
Core Java™ 2, Volume IFundamentals, Horstmann/Cornell

Core Java™ 2, Volume I1Advanced Features, Horstmann/Cornell
Core C# and .NET, Perry

Core CSS, Second Edition, Schengili-Roberts

Core Security Patterns, Steel/Nagappan/Lai

Core Java Data Objects, Tyagi/Vorburger/McCammon/Bobzin

Core Web Application Development with PHP and MySQL, Wandschneider

NEXT B

NEXT B

file:///D|/1/0132269937/14051536.html

e Py EXT

Preface

Welcome to Core Python Programming!

We are delighted that you have engaged us to help you learn Python as quickly and as in-depth as
possible. Learning the syntax is one goal of this book; however, we also believe that if you learn how
Python works under the covers, you won't just be able to program in Python, but you will write more
effective Python applications even as a beginner to the language. As you know, just because you learn a
language's syntax does not make you competent in it right away.

Throughout the book, you will find many examples that you can try right in front of your computer. To
hammer the concepts home, you will also find fun and challenging exercises at the end of every chapter.
These easy and intermediate exercises are meant to test your learning and push your Python skills.
There simply is no substitute for experience. We believe you should not only pick up Python
programming skKills but also be able to master them in as short a time period as possible.

About This Book

This book differs from other Python books on the market by presenting a broad range of topics,
providing numerous examples, and going in-depth where necessary. This book does not require a
specific background such as prior knowledge of C or object-oriented programming. It is also not a large
case study book that does not facilitate picking up the language quickly. Finally, this book is not a pure
reference nor is it meant to be a quick "dive" into Python. What we have is an extremely comprehensive
introduction to the core features of the language (Part 1) followed by a set of chapters that delve into

specific areas of intermediate Python programming.

This book is 40 percent introductory, 40 percent intermediate to advanced, and 20 percent reference. It
is targeted toward technical professionals who are already familiar with programming in one other high-
level language, as well as university/college and secondary students. Because Python is used in larger
solutions such as Zope, Plone, MailMan, and Django, this book may be used by principals developing,
managing, maintaining, or integrating with those systems.

With regards to the code in this book, about a third of the first edition readers sent in complaints that
there were not enough large, full-fledged applications in the book, or that the code examples were not
long or comprehensive enough. Everyone else wrote that they loved the short, easy-to-understand
examples and were not bored of page after page of mind-numbing code. The philosophy behind more
short examples is to give you the ability to look at a piece of code and grasp its entirety. These turn into
building blocks to understanding and then can be incorporated into larger applications as well. There are
line-by-line explanations for most of the larger programs in the book. The abundant interpreter code
snippets scattered throughout the book are there for you to try on your computer as you are learning
Pythonuse the interactive interpreter as much as possible. You not only learn and improve your Python
from using it, but you can also benefit from working out bugs in your code before you paste it into your
source file.

Because you cannot learn Python well without practice, you will find the exercises at the end of every
chapter to be one of the greatest strengths of this book. They will test your knowledge of chapter topics
and definitions, as well as get you to code as much as possible. There is no substitute to learning a
programming language faster and more effectively than by building applications. You will find easy,
intermediate, and difficult problems to solve. It is also here that you may have to write one of those
"large" applications that many readers wanted to see in the book, but rather than having me do it, you
gain the most from such exercises. Appendix A features answers to selected problems from each

chapter.

Another set of first edition readers remarked how useful the reference tables were throughout the book,
and how they meticulously copied them for reference. Well, instead of flipping through each chapter
looking for the tables, we have summarized the most highly used ones in Appendix B. Thanks for all of
your feedback. | encourage you to keep talking to us and help us make a third edition possible and
better than its predecessors!

Finally, both the "Other References" appendix and the CD-ROM from the first edition are not included
with this edition. You would not believe how quickly Web links can become obsolete in six months much
less six years! The most up-to-date source code and Python interpreters can easily be downloaded for
offline use at the book's Web site, so there really is no reason to include a CD-ROM.

About the Reader

This book is meant for you if you are a programmer completely new to Python or already know some
Python but want to know more and improve your Python skillset. Python is used in many fields,
including engineering, information technology, science, business, entertainment, and so on. This means
that the list of Python users (and readers of this book) includes but is not limited to:

. Software engineers

» Hardware design/CAD engineers

o QA/testing and automation framework developers
o I1S/1T/system and network administrators

« Scientists and mathematicians

« Technical or project management staff

« Multimedia or audio/visual engineers

« SCM or release engineers

« Web masters and content management staff

« Customer/technical support engineers

. Database engineers and administrators

« Research and development engineers

« Software integration and professional services staff
« Collegiate and secondary educators

« Web service engineers

« Financial software engineers

« And many others

Some of the most famous companies using Python include Google, Yahoo!, NASA, Lucasfilm/Industrial
Light and Magic, Red Hat, Zope, Disney, Pixar, and Dreamworks.

The Author's Experience with Python

I discovered Python over a decade ago at a company called Fourll. At the time, the company had one
major product, the Fourll.com White Page directory service. Python was being used to design our next
product: the Rocketmail Web-based e-mail service that would eventually evolve into what today is
Yahoo!Mail.

It was fun learning Python and being on the original Yahoo!Mail engineering team. | helped rearchitect
the address book and spell checker. At the time, Python also made its way as part of a number of other
Yahoo! sites, including People Search, Yellow Pages, and Maps and Driving Directions, just to name a
few. | was the lead engineer for People Search.

Although Python was new to me then, it was fairly easy to pick upmuch simpler than other languages |
had learned in the past. The scarcity of textbooks at the time led me to primarily use the Library

Reference and Quick Reference Guide as my tools in learning, and also led to the motivation for the
book you are reading right now.

Since my days at Yahoo!, | have been able to use Python in all sorts of interesting ways at the jobs that
followed. In each case, | was able to harness the power of Python in solving the problems at hand and in
a timely manner. | have also developed several Python courses and have used this book to teach those
classes, truly eating my own dogfood.

Not only is Core Python Programming a great book to learn Python from, but it is also the best book to
teach Python with! As an engineer, | know what it takes to learn, understand, and apply a new
technology. As a professional instructor, | also know what is needed to deliver the most effective
sessions for clients. This provides the experience necessary to be able to give you real-world analogies
and tips that you cannot get from someone who is "just a trainer" or "just a book author."

About the Author's Writing Style: Technical, Yet Easy Reading

Rather than strictly a "beginners" book or a pure, hard-core computer science reference book, my
instructional experience indicates that an easy-to-read, yet technically oriented book serves our purpose
the best, which is to get you up to speed on Python as quickly as possible so that you can apply it to
your tasks posthaste. We will introduce concepts coupled with appropriate examples to expedite the
learning process. At the end of each chapter you will find numerous exercises to reinforce some of the
concepts and ideas acquired in your reading.

We are thrilled and humbled to be compared with Bruce Eckel's writing style (see the reviews to the first
edition at the book's Web site (http://corepython.com). This is not a dry college textbook. As the

author, I am having a conversation with you, as if you were attending one of my well-received Python
training courses. As a lifelong student, | constantly put myself in my student's shoes and tell you what
you need to hear in order to learn the concepts as quickly and as thoroughly as possible. You will find

reading this book fast and easy, without losing sight of the technical details.

As an engineer, | know what | need to tell you in order to teach you a concept in Python. As a teacher, |
can take technical details and boil them down into language that is easy to understand and grasp right
away. You are getting the best of both worlds with my writing and teaching styles, but you will enjoy
programming in Python even more.

About This Second Edition

At the time the first edition was published, Python was entering its second era with the release of
version 2.0. Since then, the language has seen significant improvements contributing to the overall
continuing success and acceptance of the language. Deficiencies have been removed and new features
added that bring a new level of power and sophistication to Python developers worldwide. We are
thrilled to be able to update this book yet still deliver easy reading along with comprehensive coverage
of the exciting new features. This book includes changes to Python 2.5, released in the fall of 2006, and
even some pre-announced features of 2.6 and beyond. As in the first edition, we aim to keep all of the
topics relevant for readers regardless of the Python version you are using, extending the lifetime of this
book, retarding its obsolescence.

Python is slowly going to be transitioning to the next big version change with a release affectionately
called "Python 3000" by its creator, Guido van Rossum. This is just the marketing name for Python 3.0,
or "Py3K" for short. It will be developed in parallel with the remaining 2.x releases. There will be some
incompatibilities with older versions of Python; however, the core team will work hard to ensure that
code will be backwards-compatible for the most part. (This is in tradition with any new Python release.)
Look mostly for interesting additions to the language as well as the disappearance of old design flaws
and deprecated features.

http://corepython.com/

We will continue to update the book's Web site with white papers, updates, and other related articles to
keep Core Python Programming as contemporary as possible, regardless of which new release of Python
you have migrated to.

The new topics we have added to this edition include:

« Boolean and set types (Chapters 5 and 7)
o New-style classes (Chapter 13)

Subclassing built-in types

Static methods and class methods
Slots

Properties

Descriptors

o Metaclasses

« Functions (Chapter 11)

Y s [s [|

Generators
Function (and method) decorators
Statically nested scoping
Inner functions
Closures

o Currying and partial function application
« Looping constructs (Chapter 8)

O 0o o o o

o lterators
o List comprehensions
o Generator expressions
o Extended import syntax (Chapter 12)

o as keyword
o Multi-line import
o Absolute importing
o Relative importing
« Improved exception handling features (Chapter 10)

0 with statement
o try-except-finally statement

In addition, we are proud to introduce three new chapters to the book: "Internet Client

Programming" (Chapter 17), "Database Programming" (Chapter 21), and "Miscellaneous" (Chapter 23).
These are a few intermediate areas where Python is used quite often. All existing chapters have been
refreshed and updated to the latest versions of Python. Please see the chapter guide that follows for
more details.

Chapter Guide

This book is divided into two main sections. The first part, taking up about two-thirds of the text, gives
you treatment of the "core" part of the language, and the second part provides a set of various
advanced topics to show what you can build using Python.

Python is everywheresometimes it is amazing to discover who is using Python and what they are doing

with itand although we would have loved to produce additional chapters on such topics as Java/Jython,
Win32 programming, CGI processing with HTM_gen, GUI programming with third-party toolkits
(wxWidgets, GTK+, Qt, etc.), XML processing, numerical and scientific processing, visual and graphics
image manipulation, and Web services and application frameworks (Zope, Plone, Django, TurboGears,
and so on), there simply wasn't enough time to develop these topics into their own chapters. However,
we are certainly glad that we were at least able to provide you with a good introduction to many of the
key areas of Python development including some of the topics mentioned previously.

Here is a chapter-by-chapter guide.

Part I: Core Python
Chapter 1Welcome to Python!

We begin by introducing Python to you, its history, features, benefits, and so on, as well as how to
obtain and install Python on your system.

Chapter 2Getting Started

If you are an experienced programmer and just want to see "how it's done" in Python, this is the right
place to go. We introduce the basic Python concepts and statements, and because many of these will be
familiar to you, you can simply learn the proper syntax in Python and get started right away on your
projects without sacrificing too much reading time.

Chapter 3Syntax and Style

This section gives you a good overview of Python's syntax as well as style hints. You will also be
exposed to Python's keywords and its memory management ability. Your first Python application will be
presented at the end of the chapter to give you an idea of what real Python code looks like.

Chapter 4Python Objects

This chapter introduces Python objects. In addition to generic object attributes, we will show you all of
Python's data types and operators, as well as show you different ways to categorize the standard types.
Built-in functions that apply to most Python objects will also be covered.

Chapter 5Numbers

In this chapter, we discuss Python's main numeric types: integers, floating point numbers, and complex
numbers. We look at operators and built-in and factory functions which apply to all numbers, and we
also briefly discuss a few other related types.

Chapter 6Sequences: Strings, Lists, and Tuples

Your first meaty chapter will expose you to all of Python's powerful sequence types: strings, lists, and
tuples. We will show you all the built-in functions, methods, and special features, which apply to each
type as well as all their operators.

Chapter 7Mapping and Set Types

Dictionaries are Python's mapping or hashing type. Like other data types, dictionaries also have
operators and applicable built-in functions and methods. We also cover Python's set types in this
chapter, discussing their operators, built-in and factory functions, and built-in methods.

Chapter 8Conditionals and Loops

Like many other high-level languages, Python supports loops such as for and whil e, as well as i f
statements (and related). Python also has a built-in function called range() which enables Python's f or

loop to behave more like a traditional counting loop rather than the "foreach" iterative type loop that it
is. Also included is coverage of auxiliary statements such as break, conti nue, and pass, as well as a

discussion of newer constructs like iterators, list comprehensions, and generator expressions.

Chapter 9Files and Input/Output

In addition to standard file objects and input/output, this chapter introduces you to file system access,
file execution, and persistent storage.

Chapter 10Errors and Exceptions

One of Python's most powerful constructs is its exception handling ability. You can see a full treatment
of it here, instruction on how to raise or throw exceptions, and more importantly, how to create your
own exception classes.

Chapter 11Functions and Functional Programming

Creating and calling functions are relatively straightforward, but Python has many other features that
you will find useful, such as default arguments, named or keyword arguments, variable-length
arguments, and some functional programming constructs. We also dip into variable scope and recursion
briefly. We will also discuss some advanced features such as generators, decorators, inner functions,
closures, and partial function application (a more generalized form of currying).

Chapter 12Modules

One of Python's key strengths is its ability to be extended. This feature allows for "plug-and-play" access
as well as promotes code reuse. Applications written as modules can be imported for use by other
Python modules with a single line of code. Furthermore, multiple module software distribution can be
simplified by using packages.

Chapter 130bject-Oriented Programming

Python is a fully object-oriented programming language and was designed that way from the beginning.
However, Python does not require you to program in such a manneryou may continue to develop
structural/procedural code as you like, and can transition to OO programming anytime you are ready to
take advantage of its benefits. Likewise, this chapter is here to guide you through the concepts as well
as advanced topics, such as operator overloading, customization, and delegation. Also included is
coverage of new features specific to new-style classes, including slots, properties, descriptors, and
metaclasses.

Chapter 14Execution Environment

The term "execution"” can mean many different things, from callable and executable objects to running
other programs (Python or otherwise). We discuss these topics in this chapter, as well as controlling
execution via the operating system interface and different ways of terminating execution.

Part Il: Advanced Topics

Chapter 15Regular Expressions

Regular expressions are a powerful tool used for pattern matching, extracting, and search-and-replace
functionality. Learn about them here.

Chapter 16Network Programming

So many applications today need to be network-oriented. You have to start somewhere. In this chapter,
you will learn to create clients and servers, using TCP/IP and UDP/IP, as well as get an introduction to
Socket Server and Twisted.

Chapter 17Internet Client Programming

In Chapter 16, we introduced network programming using sockets. Most Internet protocols in use today

were developed using sockets. In this chapter, we explore some of these higher-level libraries, which
are used to build clients of such Internet protocols. In particular, we focus on FTP, NNTP, SMTP, and
POP3 clients.

Chapter 18Multithreaded Programming

Multithreaded programming is a powerful way to improve the execution performance of many types of
application. This chapter ends the drought of written documentation on how to do threads in Python by
explaining the concepts and showing you how to correctly build a Python multithreaded application.

Chapter 19GUI Programming

Based on the Tk graphical toolkit, Tkinter is Python's default GUI development module. We introduce
Tkinter to you by showing you how to build simple sample GUI applications (say that ten times, real
fast!). One of the best ways to learn is to copy, and by building on top of some of these applications,
you will be on your way in no time. We conclude the chapter by presenting a more complex example, as
well as take a brief look at Tix, Pmw, wxPython, and PyGTK.

Chapter 20Web Programming

Web programming using Python takes three main forms: Web clients, Web servers, and the popular
Common Gateway Interface applications that help Web servers deliver dynamically-generated Web
pages. We will cover them all in this chapter: simple and advanced Web clients and CGI applications, as
well as how to build your own Web server.

Chapter 21Database Programming

What Python does for application programming carries to database programming as well. It is simplified,

and you will find it fun! We first review basic database concepts, then introduce you to the Python
database application programmer's interface (APl). We then show you how you can connect to a
relational database and perform queries and operations with Python. Finally, if you want hands-off using
the Structured Query Language (SQL) and want to just work with objects without having to worry about
the underlying database layer, we will introduce you to a few object-relational managers (ORMs), which
simplify database programming to yet another level.

Chapter 22Extending Python

We mentioned earlier how powerful it is to be able to reuse code and extend the language. In pure
Python, these extensions are modules, but you can also develop lower-level code in C, C++, or Java,
and interface those with Python in a seamless fashion. Writing your extensions in a lower-level
programming language gives you added performance and some security (because the source code does
not have to be revealed). This chapter walks you step-by-step through the extension building process.

Chapter 23Miscellaneous

This new chapter consists of bonus material that we would like to develop into full, individual chapters in
the next edition. Topics covered here include Web Services, Microsoft Office (Win32 COM Client)
Programming, and Java/Jython.

Optional Sections

Subsections or exercises marked with an asterisk (*) may be skipped due to their advanced or optional
nature. They are usually self-contained segments that can be addressed at another time.

Those of you with enough previous programming knowledge and who have set up their Python
development environments can skip the first chapter and go straight to Chapter 2, "Getting Started,"

where you can absorb Python and be off to the races.
Conventions

All program output and source code are in Couri er font. Python keywords appear in Couri er - Bol d font.
Lines of output with three leading greater than signs, >>>, represent the Python interpreter prompt.

"Core Notes" are highlighted with this logo.

"Core Style" notes are highlighted with this logo.

"Core Module" notes are highlighted with this logo.

00

"Core Tips" notes are highlighted with this logo.

4

New features to Python are highlighted with this logo. The version(s) of Python these features first
appeared in is given inside the logo.

Book Resources

I welcome any and all feedback: the good, the bad, and the ugly. If you have any comments,
suggestions, kudos, complaints, bugs, questions...anything at all, feel free to contact me at
cor epyt hon@ahoo. com

You will find errata source code, updates, upcoming talks, Python training, downloads, and other
information at the book's Web site located at:

http://corepython.com

e prcy ExT

mailto:corepython@yahoo.com
http://corepython.com/

e Py EXT

Acknowledgments

Acknowledgments for the Second Edition

Reviewers and Contributors
Shannon -jj Behrens (lead reviewer)
Michael Santos (lead reviewer)
Rick Kwan
Lindell Aldermann (co-author of the new Unicode section in Chapter 6)
Wai-Yip Tung (co-author of the Unicode example in Chapter 20)
Eric Foster-Johnson (co-author of Beginning Python)
Alex Martelli (editor of Python Cookbook and author of Python in a Nutshell)
Larry Rosenstein
Jim Orosz
Krishna Srinivasan

Chuck Kung
Inspiration
My wonderful children and pet hamster.
Production

Mark Taub and Debra Williams-Cauley (Acquisitions Editors)
Lara Wysong (Project Editor)
John Fuller (Managing Editor)

Sam RC (Project Manager at International Typesetting and Composition)

Acknowledgements for the First Edition

Reviewers and Contributors

Guido van Rossum (creator of the Python language)

Dowson Tong

James C. Ahlstrom (co-author of Internet Programming with Python)

S. Candelaria de Ram

Cay S. Horstmann (co-author of Core Java and Core JavaServer Faces)

Michael Santos

Greg Ward (creator of di stutils package and its documentation)

Vincent C. Rubino

Martijn Faassen

Emile van Sebille

Raymond Tsali

Albert L. Anders (co-author of MT Programming chapter)

Fredrik Lundh (author of Python Standard Library)

Cameron Laird

Fred L. Drake, Jr. (co-author of Python & XML and editor of the official Python
documentation)

Jeremy Hylton

Steve Yoshimoto

Aahz Maruch (author of Python for Dummies)

Jeffrey E. F. Friedl (author of Mastering Regular Expressions)

Pieter Claerhout

Catriona (Kate) Johnston

David Ascher (co-author of Learning Python and editor of Python Cookbook)

Reg Charney

Christian Tismer (creator of Stackless Python)

Jason Stillwell

and my students at UC Santa Cruz Extension

Inspiration
James P. Prior (my high school programming teacher)
Louise Moser and P. Michael Melliar-Smith (my graduate thesis advisors at UCSB)

Alan Parsons, Eric Woolfson, Andrew Powell, lan Bairnson, Stuart Elliott, David Paton, all
other Project participants, and fellow Projectologists and Roadkillers (for all the music,

support, and good times)

I would also like to thank my family, friends and the Lord above, who have kept me safe and sane
during this crazy period of late nights and abandonment. And finally, |1 would like give a big thanks to all
those who believed in me (you know who you arel!)l couldn't have done it without you. Those who

didn't... well, you know what you can do! : -)

Finally, 1 would like to thank you, my readers, and the Python community at large. | am excited at the
prospect of teaching you Python and hope that you enjoy your travels with me, on our second journey.

Wesley J. Chun
Silicon Valley, CA
(It's not as much a place as it is a state of sanity.)

July 2006

e Py EXT

file:///D|/1/0132269937/14051536.html

@ prev |
Part |I: Core Python

Chapter 1. Welcome to Python!

Chapter 2. Getting Started

Chapter 3. Python Basics

Chapter 4. Python Objects

Chapter 5. Numbers

Chapter 6. Sequences: Strings, Lists, and Tuples

Chapter 7. Mapping and Set Types

Chapter 8. Conditionals and Loops

Chapter 9. Files and Input/Output

Chapter 10. Errors and Exceptions

Chapter 11. Functions and Functional Programming

Chapter 12. Modules

Chapter 13. Object-Oriented Programming

Chapter 14. Execution Environment

e Py EXT

file:///D|/1/0132269937/14051536.html

@ prev |
Chapter 1. Welcome to Python!

Chapter Topics

« What Is Python?

« Origins of Python

« Python Features

« Downloading Python

« Installing Python

e« Running Python

o Python Documentation
« Comparing Python

o Other Implementations

Our introductory chapter provides some background on what Python is, where it came from, and what
some of its "bullet points" are. Once we have stimulated your interest and enthusiasm, we describe how
you can obtain Python and get it up and running on your system. Finally, the exercises at the end of the
chapter will make you comfortable with using Python, both in the interactive interpreter and also in
creating scripts and executing them.

e prcy ExT

@ prev |
1.1. What Is Python?

Python is an elegant and robust programming language that delivers both the power and general
applicability of traditional compiled languages with the ease of use (and then some) of simpler scripting
and interpreted languages. It allows you to get the job done, and then read what you wrote later. You
will be amazed at how quickly you will pick up the language as well as what kind of things you can do
with Python, not to mention the things that have already been done. Your imagination will be the only

limit.

e prcy ExT

e Py EXT

1.2. Origins

Work on Python began in late 1989 by Guido van Rossum, then at CWI (Centrum voor Wiskunde en
Informatica, the National Research Institute for Mathematics and Computer Science) in the Netherlands.
It was eventually released for public distribution in early 1991. How did it all begin? Like C, C++, Lisp,
Java, and Perl, Python came from a research background where the programmer was having a hard
time getting the job done with the existing tools at hand, and envisioned and developed a better way.

At the time, van Rossum was a researcher with considerable language design experience with the
interpreted language ABC, also developed at CWI, but he was unsatisfied with its ability to be developed
into something more. Having used and partially developed a higher-level language like ABC, falling back
to C was not an attractive possibility. Some of the tools he envisioned were for performing general
system administration tasks, so he also wanted access to the power of system calls that were available
through the Amoeba distributed operating system. Although van Rossum gave some thought to an
Amoeba-specific language, a generalized language made more sense, and late in 1989, the seeds of
Python were sown.

e Py EXT

file:///D|/1/0132269937/14051536.html

e Py EXT

1.3. Features

Although it has been around for well over fifteen years, some feel that Python is still relatively new to
the general software development industry. We should, however, use caution with our use of the word
"relatively," as a few years seem like decades when developing on "Internet time."

When people ask, "What is Python?" it is difficult to say any one thing. The tendency is to want to blurt
out all the things that you feel Python is in one breath. Python is (fill-in-the-blanks here). Just what are
some of those features? For your sanity, we will elucidate each here ... one at a time.

1.3.1. High Level

It seems that with every generation of languages, we move to a higher level. Assembly was a godsend
for those who struggled with machine code, then came FORTRAN, C, and Pascal, which took computing
to another plane and created the software development industry. Through C came more modern
compiled languages, C++ and Java. And further still we climb, with powerful, system-accessible,
interpreted scripting languages like Tcl, Perl, and Python.

Each of these languages has higher-level data structures that reduce the "framework" development time
that was once required. Useful types like Python's lists (resizeable arrays) and dictionaries (hash tables)
are built into the language. Providing these crucial building blocks in the core language encourages their
use and minimizes development time as well as code size, resulting in more readable code.

Because there is no one standard library for heterogeneous arrays (lists in Python) and hash tables
(Python dictionaries or "dicts" for short) in C, they are often reimplemented and copied to each new
project. This process is messy and error prone. C++ improves the situation with the standard template
library, but the STL can hardly compare to the simplicity and readability of Python's built-in lists and
dicts.

1.3.2. Object Oriented

Object-oriented programming (OOP) adds another dimension to structured and procedural languages
where data and logic are discrete elements of programming. OOP allows for associating specific
behaviors, characteristics, and/or capabilities with the data that they execute on or are representative
of. Python is an object-oriented (OO) language, all the way down to its core. However, Python is not just
an OO language like Java or Ruby. It is actually a pleasant mix of multiple programming paradigms. For
instance, it even borrows a few things from functional languages like Lisp and Haskell.

1.3.3. Scalable

Python is often compared to batch or Unix shell scripting languages. Simple shell scripts handle simple
tasks. They may grow (indefinitely) in length, but not truly in depth. There is little code-reusability and
you are confined to small projects with shell scripts. In fact, even small projects may lead to large and
unwieldy scripts. Not so with Python, where you can grow your code from project to project, add other
new or existing Python elements, and reuse code at your whim. Python encourages clean code design,
high-level structure, and "packaging" of multiple components, all of which deliver the flexibility,
consistency, and faster development time required as projects expand in breadth and scope.

The term "scalable" is most often applied to measuring hardware throughput and usually refers to
additional performance when new hardware is added to a system. We would like to differentiate this
comparison with ours here, which tries to reflect the notion that Python provides basic building blocks on

which you can build an application, and as those needs expand and grow, Python's pluggable and
modular architecture allows your project to flourish as well as maintain manageability.

1.3.4. Extensible

As the amount of Python code increases in your project, you will still be able to organize it logically by
separating your code into multiple files, or modules, and be able to access code from one module and
attributes from another. And what is even better is that Python's syntax for accessing modules is the
same for all modules, whether you access one from the Python standard library, one you created just a
minute ago, or even an extension you wrote in another language! Using this feature, you feel like you
have just "extended" the language for your own needs, and you actually have.

The most critical portions of code, perhaps those hotspots that always show up in the profiler or areas
where performance is absolutely required, are candidates for being rewritten as a Python extension
written in C. But again, the interface is exactly the same as for pure Python modules. Access to code
and objects occurs in exactly the same way without any code modification whatsoever. The only thing
different about the code now is that you should notice an improvement in performance. Naturally, it all
depends on your application and how resource-intensive it is. There are times where it is absolutely
advantageous to convert application bottlenecks to compiled code because it will decidedly improve
overall performance.

This type of extensibility in a language provides engineers with the flexibility to add-on or customize
their tools to be more productive, and to develop in a shorter period of time. Although this feature is self-
evident in mainstream third-generation languages (3GLs) such as C, C++, and even Java, the ease of
writing extensions to Python in C is a real strength of Python. Furthermore, tools like PyRex, which
understands a mix of C and Python, make writing extensions even easier as they compile everything to

C for you.

Python extensions can be written in C and C++ for the standard implementation of Python in C (also
known as CPython). The Java language implementation of Python is called Jython, so extensions would
be written using Java. Finally, there is IronPython, the C# implementation for the .NET or Mono
platforms. You can extend IronPython in C# or Visual Basic.NET.

1.3.5. Portable

Python can be found on a wide variety of systems, contributing to its continued rapid growth in today's
computing domain. Because Python is written in C, and because of C's portability, Python is available on
practically every type of platform that has an ANSI C compiler. Although there are some platform-
specific modules, any general Python application written on one system will run with little or no
modification on another. Portability applies across multiple architectures as well as operating systems.

1.3.6. Easy to Learn

Python has relatively few keywords, simple structure, and a clearly defined syntax. This allows the
student to pick up the language in a relatively short period of time. What may perhaps be new to
beginners is the OO nature of Python. Those who are not fully versed in the ways of OOP may be
apprehensive about jumping straight into Python, but OOP is neither necessary nor mandatory. Getting
started is easy, and you can pick up OOP and use when you are ready to.

1.3.7. Easy to Read

Conspicuously absent from the Python syntax are the usual mandatory symbols found in other
languages for accessing variables, code block definition, and pattern-matching. These include dollar
signs ($), semicolons (;), tildes (—~), and so on. Without all these distractions, Python code is much

more clearly defined and visible to the eye. In addition, much to many programmers' dismay (and
relief), Python does not give as much flexibility to write obfuscated code compared to other languages,
making it easier for others to understand your code faster and vice versa. Readability usually helps
make a language easy to learn, as we described above. We would even venture to claim that Python
code is fairly understandable even to a reader who has never seen a single line of Python before. Take a
look at the examples in the next chapter, "Getting Started," and let us know how well you fare.

1.3.8. Easy to Maintain

Maintaining source code is part of the software development lifecycle. Your software usually continues to
evolve until it is replaced or obsoleted. Quite often it lasts longer than a programmer's stay at a
company. Much of Python's success is that source code is fairly easy to maintain, dependent, of course,
on size and complexity. However, this conclusion is not difficult to draw given that Python is easy to
learn and easy to read. Another motivating advantage of Python is that upon reviewing a script you
wrote six months ago, you are less likely to get lost or pull out a reference book to get reacquainted
with your software.

1.3.9. Robust

Nothing is more powerful than allowing a programmer to recognize error conditions and provide a
software handler when such errors occur. Python provides "safe and sane" exits on errors, allowing the
programmer to be in the driver's seat. When your Python crashes due to errors, the interpreter dumps
out a "stack trace" full of useful information such as why your program crashed and where in the code
(file name, line number, function call, etc.) the error took place. These errors are known as exceptions.
Python even gives you the ability to monitor for errors and take an evasive course of action if such an
error does occur during runtime.

These exception handlers can take steps such as defusing the problem, redirecting program flow,
perform cleanup or maintenance measures, shutting down the application gracefully, or just ignoring it.
In any case, the debugging part of the development cycle is reduced considerably. Python's robustness
is beneficial for both the software designer and the user. There is also some accountability when certain
errors occur that are not handled properly. The stack trace that is generated as a result of an error
reveals not only the type and location of the error, but also in which module the erroneous code resides.

1.3.10. Effective as a Rapid Prototyping Tool

We've mentioned before how Python is easy to learn and easy to read. But, you say, so is a language
like BASIC. What more can Python do? Unlike self-contained and less flexible languages, Python has so
many different interfaces to other systems that it is powerful enough in features and robust enough that
entire systems can be prototyped completely in Python. Obviously, the same systems can be completed
in traditional compiled languages, but Python's simplicity of engineering allows us to do the same thing
and still be home in time for supper. Also, numerous external libraries have already been developed for
Python, so whatever your application is, someone may have traveled down that road before. All you
need to do is "plug-and-play” (some assembly required, as usual). There are Python modules and
packages that can do practically anything and everything you can imagine. The Python Standard Library
is fairly complete, and if you cannot find what you need there, chances are there is a third-party module
or package that can do the job.

1.3.11. A Memory Manager

The biggest pitfall with programming in C or C++ is that the responsibility of memory management is in
the hands of the developer. Even if the application has very little to do with memory access, memory
modification, and memory management, the programmer must still perform those duties, in addition to
the original task at hand. This places an unnecessary burden and responsibility upon the developer and

often provides an extended distraction.

Because memory management is performed by the Python interpreter, the application developer is able
to steer clear of memory issues and focus on the immediate goal of just creating the application that
was planned in the first place. This leads to fewer bugs, a more robust application, and shorter overall
development time.

1.3.12. Interpreted and (Byte-) Compiled

Python is classified as an interpreted language, meaning that compile-time is no longer a factor during
development. Traditionally, purely interpreted languages are almost always slower than compiled
languages because execution does not take place in a system's native binary language. However, like
Java, Python is actually byte-compiled, resulting in an intermediate form closer to machine language.
This improves Python's performance, yet allows it to retain all the advantages of interpreted languages.

Core Note: File extensions

Python source files typically end with the . py extension. The source is

byte-compiled upon being loaded by the interpreter or by being byte-
compiled explicitly. Depending on how you invoke the interpreter, it
may leave behind byte-compiled files with a . pyc or . pyo extension.

You can find out more about file extensions in Chapter 12, "Modules."

e Py EXT

e Py EXT

1.4. Downloading and Installing Python

The most obvious place to get all Python-related software is at the main Web site at http://python.org.
For your convenience, you can also go to the book's Web site at http://corepython.com and click on the

"Install Python" link to the leftwe have organized a grid with most contemporary versions of Python for
the most platforms, with a focus, of course, on the "Big Three.” Unix, Win 32, MacOS X.

As we alluded to earlier in Section 1.3.5, Python is available on a wide variety of platforms. They can be
broken down into these basic categories and available platforms:

« All Unix flavors (Linux, MacOS X, Solaris, FreeBSD, etc.)

« Win32 (Windows NT, 2000, XP, etc.)

« Older platforms: MacOS 8/9, Windows 3.x, DOS, 0S/2, AIX

. Handhelds (PDAs/phones): Nokia Series 60/SymbianOS, Windows CE/Pocket PC, Sharp Zaurus/
arm-linux, PalmOS

« Gaming consoles: Sony PS2, PSP; Nintendo GameCube

o Real-Time platforms: VxWorks, QNX

« Alternative implementations: Jython, IronPython, stackless

« Others

The most recent versions of Python will likely be found only on "the Big Three." In fact, current versions
of Linux and MacOS X already come with Python installedyou'll have to check to see which Python
release it is. Other versions will be older 2.x releases while some have yet to progress beyond 1.5.
Some come with binaries to install directly while others require you to build Python manually before
installation.

Unix (Linux, MacOS X, Solaris, *BSD, etc.)

As mentioned above, your Unix-based system may already have Python installed. The best way to check
is to run Python from the command line and see if it is both in your path and available. Just type:

myMac: ~ wesl ey$ pyt hon

Python 2.4 (#4, Mar 19 2005, 03:25:10)

[GCC 3.3 20030304 (Apple Conputer, Inc. build 1671)] on darw n

Type "hel p", "copyright", "credits" or "license" for nore information.
S>>

If starting Python fails, it doesn't mean it's not installed, just that it's not in your path. Hunt around for
it, and if you're unsuccessful, try building it manually, which isn't very difficult (see "Build It Yourself" on

the next page). If you're using certain versions of Linux, you can get the binary or source RPMs.

Windows/DOS

Download the . nsi file from python.org or corepython.com as described previously (i.e., pyt hon-2. 5. nsi)

and execute it to install Python. If you are planning on doing any kind of Win32 development, such as
with COM, MFC, or need any of the Win32 libraries, we also strongly suggest that you download and
install the Python for Windows Extensions. You can then run Python from a DOS command window or
via one of the IDEs, IDLE, the default Python IDE, or PythonWin, the IDE that comes with the Windows
Extensions distribution.

http://python.org/
http://corepython.com/
http://www.python.org/
http://www.corepython.com/

Build It Yourself

For most other platforms, download the .t gz file,. extract the files, and go to the main directory. Build
Python by performing the following:

1.

./configure
2.

make
3.

make i nstall

Python is usually installed in a standard location so you can find it rather easily. It has become quite
commonplace for systems today to have multiple versions of Python installed. While it is easy to find the
binary executable, you also have to deal with where the libraries are installed.

On Unix machines, the executable is usually installed in / usr/| ocal / bi n while the libraries are in / usr/
I ocal /i b/ pyt hon2. x where the 2. x is the version of Python you are using. For MacOS X, Python is

installed in / sw bi n and/or /usr/ | ocal / bi n, and the libraries are in/sw'lib,/usr/local /lib, and/or/
Li brary/ Framewor ks/ Pyt hon. f r amewor k/ Ver si ons.

On Windows, the default installation area is C:\ Pyt hon2x. TRy to avoid installing Python in C:\ Program
Files. Yes, we know it's the general place to put installed programs, but DOS does not support those
types of long names; it is usually aliased as Progra~1. This may also lead to problems running some
programs, so it's best to avoid it. So, let's say you installed Python in C:\ Pyt hon, then the standard
library files are typically installed in C:\ Pyt hon\ Li b.

e Py EXT

e Py EXT

1.5. Running Python

There are three different ways to start Python. The simplest way is by starting the interpreter
interactively, entering one line of Python at a time for execution. Another way to start Python is by
running a script written in Python. This is accomplished by invoking the interpreter on your script
application. Finally, you can run from a graphical user interface (GUI) from within an integrated
development environment (IDE). IDEs typically feature additional tools such as an integrated debugger,
text editor, and support for a wide range of source code control tools such as CVS.

1.5.1. Interactive Interpreter from the Command Line

You can enter Python and start coding right away in the interactive interpreter by starting it from the
command line. You can do this from Unix, DOS, or any other system that provides you a command-line
interpreter or shell window. One of the best ways to start learning Python is to run the interpreter
interactively. Interactive mode is also very useful later on when you want to experiment with specific
features of Python.

Unix (Linux, MacOS X, Solaris, *BSD, etc.)

To access Python, you will need to type in the full pathname to its location unless you have added the
directory where Python resides to your search path. Common places where Python is installed include /

usr/ bin and /usr/| ocal / bin.

We recommend that you add Python (i.e., the executable file pyt hon, or j pyt hon if you wish to use the

Java version of the interpreter) to your search path because you do not want to have to type in the full
pathname every time you wish to run interactively. Once this is accomplished, you can start the
interpreter with just its name.

To add Python to your search path, simply check your login startup scripts and look for a set of
directories given to the set pat h or PATH= directive. Adding the full path to where your Python interpreter

is located is all you have to do, followed by refreshing your shell's path variable. Now at the Unix prompt
(%or $, depending on your shell), you can start the interpreter just by invoking the name pyt hon (or
j pyt hon), as in the following.

$ pyt hon

Once Python has started, you'll see the interpreter startup message indicating version and platform and
be given the interpreter prompt ">>>" to enter Python commands. Figure 1-1 is a screen shot of what it
looks like when you start Python in a Unix (MacOS X) environment.

Figure 1-1. Starting Python in a Unix (MacOS X) window

[View full size image]

file:///D|/1/0132269937/images/chun_fig01_01_alt.jpg

8086 _Terminal — bash — ttyp3 — 80x25 — %3
mytlac:- wesch

mytac: - wescd python

Python 2.4 (4, Hax 19 X005, 03:25:10)

[Gce 3.3 20030304 (Apple Computer, Inc. build 1671)] on darwin
Type “help®, “copyright®, "cxredits" or *license® for more information.
et

>»> print 'Hello Woxld!®

Hello Wozld!

e e e

> import sys

»o ays.stdout. . weite(' Hello World!yn')

Hello World!

o

myMac:~ wescs [

~im

MRS

Windows/DOS

To add Python to your search path, you need to edit the C:\ aut oexec. bat file and add the full path to
where your interpreter is installed. It is usually either C:\ Pyt hon or C:\ Program Fi |l es \ Pyt hon (or its
short DOS name equivalent C:\ Progr a~1\ Pyt hon). From a DOS window (either really running in DOS or
started from Windows), the command to start Python is the same as Unix, pyt hon (see Figure 1-2). The
only difference is the prompt, which is C:\ >.

C.\ >pyt hon

Figure 1-2. Starting Python in a DOS/command window

[View full size image]

file:///D|/1/0132269937/images/chun_fig01_02_alt.jpg

et MS-D05 HFTE
icrosoft Windows HP [Uersion 5.1.26HH

Gy Copyright 1985-2081 Microsoft Corp.

MINDOWE s yetemd 2 dpyt hon

Python 2.4.2 <#67,. Se EB 2005, 12:41:11>» [HEC v. 138 32 bit {Intel?] on win3d2

g} "he lp'™. "copyreight". “ocredits" or "license’ For more infornation.
3

p2xy print "Hello World?*
ello World?
>3 K

CinWIHPOWE ~systemdd »

Command-Line Options

When starting Python from the command-line, additional options may be provided to the interpreter.
Here are some of the options to choose from:

-d Provide debug output

-0 Generate optimized bytecode (resulting in . pyo files)

-S Do not run importsite to look for Python paths on startup
v Verbose output (detailed trace on i nport statements)

-mmod ryn (library) nodul e as a script
-Q opt division options (see documentation)
-¢ ¢cmd Run Python script sent in as cnd string

file Run Python script from given file (see later)

1.5.2. As a Script from the Command Line
Unix (Linux, MacOS X, Solaris, *BSD, etc.)

From any flavor of Unix, a Python script can be executed by invoking the interpreter on your application
from the command line, as in the following:

$ python script. py

Python scripts end with a file extension of . py, as indicated above.

It is also possible in Unix to automatically launch the Python interpreter without explicitly invoking it by
name from the command line. If you are using any Unix-flavored system, you can use the shell-
launching (*'sh-bang") first line of your program:

#! /usr/ | ocal / bi n/ pyt hon

The file path, the part that follows the #!, is the full path location of the Python interpreter. As we
mentioned before, it is usually installed in /usr/| ocal / bi n or /usr/bi n. If not, be sure to get the exact

pathname correct so that you can run your Python scripts. Pathnames that are not correct will result in
the familiar Cormand not found error message.

As a preferred alternative, many Unix systems have a command named env, installed in either / bi n or /
usr/ bi n, which will look for the Python interpreter in your path. If you have env, your startup line can be
changed to something like this:

#! [/ usr/ bin/env python

or, if your env is located in / bi n,

#!/ bi n/ env python

env is useful when you either do not know exactly where the Python executable is located, or if it

changes location often, yet still remains available via your directory path. Once you add the proper
startup directive to the beginning of your script, it becomes directly executable, and when invoked,
loads the Python interpreter first, then runs your script. As we mentioned before, Python no longer has
to be invoked explicitly from the command. You only need the script name:

$ script.py

Be sure the file permission mode allows execution first. There should be an ' rwx' permissions getting for

the user in the long listing of your file. Check with your system administrator if you require help in
finding where Python is installed or if you need help with file permissions or the chnod(CHange MODe)

command.

Windows/DOS

The DOS command window does not support the auto-launching mechanism; however, at least with
WinXP, it is able to do the same thing as Windows: it uses the "file type" interface. This interface allows
Windows to recognize file types based on extension names and to invoke a program to handle files of
predetermined types. For example, if you install Python with PythonWin, double-clicking on a Python
script with the . py extension will invoke Python or PythonWin IDE (if you have it installed) to run your

script. Thus, running the following will have the same effect as double-clicking on it:

C.\> script.py

So now both Unix-based and Win32 systems can launch Python scripts without naming Python on the
command line, but you can always fall back on it if just calling the script leads to an error like

"command is not recognized."
1.5.3. In an Integrated Development Environment

You can run Python from a graphical user interface (GUI) environment as well. All you need is a GUI
application on your system that supports Python. If you have found one, chances are that it is also an
IDE (integrated development environment). IDEs are more than just graphical interfaces. They typically
have source code editors and trace and debugging facilities.

Unix (Linux, MacOS X, Solaris, *BSD, etc.)

IDLE is the very first Unix IDE for Python. It was also developed by Guido van Rossum and made its
debut in Python 1.5.2. IDLE stands for IDE with a raised "L," as in Integrated DevelLopment
Environment. Suspiciously, IDLE also happens to be the name of a Monty Python troupe member.
Hmmm.... IDLE is Tkinter-based, thus requiring you to have Tcl/Tk installed on your system. Current
distributions of Python include a minimal subset of the Tcl/Tk library so that a full install is no longer
required.

Also, if Python was automatically installed on your system or if you have a Python RPM, chances are it
does not include IDLE or Tkinter, so look for both before trying to run IDLE. (There is actually a separate
Tkinter RPM that you can download along with the Python one if you want it.) If you build Python
yourself and Tk libraries are available, then Tkinter will be automatically built along with Python, and
both Tkinter and IDLE will be installed when Python is.

If you want to run IDLE, you will find it where your standard library is installed: /usr/ 1 ocal /| i b/ pyt hon2.
x/idlelib/idle.py. If you build and install Python yourself, you may find a shortcut script called idl e in /
usr/ 1 ocal / bi n allowing you to just launch IDLE from your shell command-line prompt. A screen shot of
IDLE in Unix appears in Figure 1-3.

Figure 1-3. Starting IDLE in Unix

[View full size image]

file:///D|/1/0132269937/images/chun_fig01_03_alt.jpg

bl Eit Ghell [ebig Oplioed Windews g

Python 2.4 (H4, Mar 19 2005, 03:25:10) uf
[3oC 3.3 20030304 (Apple Computer, Inc. build 1671)] eon darwin
Type "copyright®, ®credics® or "licenze()* for more informaticn.

i i i b b b b b b i i i b i i i e e e e e e e e e e e e e e b b b b i i i i R i

Perscnal firewall software may warn about the connection IDLE
makes to its subprocess using this computer's internal loopback
interface. This connection is not visible on any external

interface and no data is sent to or received from the Internet.
ti it i 4 LA ST RS SRR RS RS S SRSl iSRS TdEESTERERERERSERERSE T

IDLE 1.1
EL

|

13 ol

MacOS X is very Unix-like (based on the Mach kernel with BSD services). Python is now compiled for
MacOS X with the traditional Unix build tools. The MacOS X distributions come with a compiled Python
interpreter; however, none of the special Mac-oriented tools (i.e., GNU readline, IDE, etc.) are installed.
The same applies for Tkinter and IDLE.

You tend to go download and build your own, but be careful: sometimes it is tricky to decouple your new
Python install from the Apple factory version. Do your research carefully first. You can also get Python
for MacOS X from Fink/FinkCommander and DarwinPorts:

http://fink.sourceforge.net/

http://darwinports.org

For the most up-to-date Mac stuff and information for Python, visit:

http://undefined.org/python

http://pythonmac.org/packages

Another option would be to download a MacOS X Universal binary from the Python Web site. This disk
image (DMG) file requires at least version 10.3.9 and will run on both PowerPC- and Intel-based Macs.

Windows

PythonWin is the first Windows interface for Python and is an IDE with a GUI. Included with the
PythonWin distribution are Windows API, and COM (Component Object Model, a.k.a. OLE [Object Linking
and Embedding] and ActiveX) extensions. PythonWin itself was written to the MFC (Microsoft Foundation

http://fink.sourceforge.net/
http://darwinports.org/
http://undefined.org/python
http://pythonmac.org/packages

Class) libraries, and it can be used as a development environment to create your own Windows
applications. You can download and install it from the Web sites shown on the next page.

PythonWin is usually installed in the same directory as Python, in its own subdirectory, C.\ Pyt hon2x\ Li b
\'si t e- packages\ pyt honwi n as the executable pyt honwi n. exe. PythonWin features a color editor, a new
and improved debugger, interactive shell window, COM extensions, and more. A screen snapshot of the
PythonWin IDE running on a Windows machine appears in Figure 1-4.

Figure 1-4. PythonWin environment in Windows

[View full size image]

¥ PythonWin

' PythonWwWin 1.6a2 (#0, Apr 6 2000, 11:45:12) [M3C 32 bit (Intel}] on win32
Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam
Portions Copyright 1994-2000 Mark Hammond (MHammond@skippinet.com.au)
b

¥ ! fusr/binSanr python

import ogi
from urllib import guote plus
from string import capwords

showFormf) ==» None
= def showForm(who, howmany) :
'showForm{) -- pressnts bhlank or data-filled fo

friends = '!
Lor i in [D, 10, 25, 50, 100]:
checked = '

You can find out more about PythonWin and the Python for Windows Extensions (also known as
"win32all") at the following locations organized by Mark Hammond:

http://starship.python.net/crew/mhammond/win32/

http://sourceforge.net/projects/pywin32/

IDLE is also available on the Windows platform, due to the portability of Tcl/Tk and Python/Tkinter. It
looks similar to its Unix counterpart (Figure 1-5).

file:///D|/1/0132269937/images/chun_fig01_04_alt.jpg
http://starship.python.net/crew/mhammond/win32/
http://sourceforge.net/projects/pywin32/

Figure 1-5. Starting IDLE in Windows

[View full size image]

Ble Gt Shel Debug Options Windows e

Python 2.4.2 (#67, Sep 28 2005, 12:41:11) [MSC ».1310 32 bhit (Intel)] on win3d2 S
Type "copyright”, "oredits” or "license(}” for more informatbion.

ol o ol ol ol o ol il i ol o ol o o ol ol e ol il ol il ol o o o ol ol ol o ol o ol ol ol ol ol ol o ol o ol ol ol

Personal firewall software may warn about the connection IDLE
makes to its subprocess using this computer's internal loopback
interface. This connection is not visible on any external

interface and no data is sent to or received from the Internst.
R EAA AR AR R A AR R AR AR R R R

IDLE 1.1.2

s

>3 prind Hello Worldl
Hells Worldl

= |

Lev 15(Cal 4

From Windows, IDLE can be found in the Li b\i dl el i b subdirectory where your Python interpreter is
found, usually C:\ Pyt hon2x. To start IDLE from a DOS command window, invoke i dl e. py. You can also
invoke i dl e. py from a Windows environment, but that starts an unnecessary DOS window. Instead,
double-click on i dl e. pyw. Files ending in . pyw will not open a DOS command window to run the script in.
In fact, your author just creates a shortcut to C. \ Pyt hon2x\ Li b\i dl el i b\i dl e. pyw on the desktop that can
be double-clicked ... simple!

1.5.4. Other IDEs and Execution Environments

Many software professionals actually prefer to code in their favorite text editor such as vi(m) or emacs.
In addition to these and the IDEs mentioned in the previous section, there are good number of Open
Source and commercial IDEs as well. Here is a short list:

Open Source
o IDLE (comes with Python distribution)

http://python.org/idle/

« PythonWin + Win32 Extensions

http://starship.python.net/crew/sKippy/win32

file:///D|/1/0132269937/images/chun_fig01_05_alt.jpg
http://python.org/idle/
http://starship.python.net/crew/skippy/win32

« IPython (enhanced Interactive Python)

http://ipython.scipy.org

« IDE Studio (IDLE+more)

http://starship.python.net/crew/mike/ldle

« Eclipse

http://pydev.sf.net

http://eclipse.org/

Commercial

« WingIDE Python IDE by WingWare

http://wingware.com/

« Komodo IDE by ActiveState

http://activestate.com/Products/Komodo

General overall IDE list

http://wiki.python.org/moin/IntegratedDevelopmentEnvironments

Core Tip: Running the code examples in this book

You will find many example Python scripts and applications in this
book, which can be downloaded from the book's Web site. When you
run them, however, bear in mind that they were designed to execute
either from the command line (DOS command window or Unix shell)
or from an IDE. If you are using a Win32 system and double-click on a
Python program, a DOS window opens up but closes when the script
completes, so you may miss all of the output. If you encounter this
situation, just open up a DOS window normally and run it from the
command line or execute the script in an IDE instead. Alternatively,
you can add a raw_i nput () line at the bottom, which keeps the window

alive until you press the RETURN key.

MNEXT B

http://ipython.scipy.org/
http://starship.python.net/crew/mike/Idle
http://pydev.sf.net/
http://eclipse.org/
http://wingware.com/
http://activestate.com/Products/Komodo
http://wiki.python.org/moin/IntegratedDevelopmentEnvironments

e Py EXT

1.6. Python Documentation

Python documentation can be found in numerous places. The fastest way to get to it is by viewing the
online docs at the Python Web page. If you are not online and use a Win32 system, an offline
compressed help file is located at C:\ Pyt hon2x\ Doc\ Pyt hon2x. chm It uses an Internet Explorer (IE)
interface so that you are actually using a Web browser to view the docs. Other offline options include
Adobe Portable Document Format (PDF) or PostScript (PS) files in Letter and A4 sizes. Finally, if you
download the Python distribution, you will get the LaTeX source.

At the book's Web site, we created a page with a grid that has links to the docs for most versions of
Python. Just visit http://corepython.com and click on "Documentation” to the left.

e prcy ExT

http://corepython.com/
file:///D|/1/0132269937/14051536.html

e Py EXT

1.7. Comparing Python

Python has been compared with many languages. One reason is that it provides many features found in
other languages. Another reason is that Python itself is derived from many other languages, including
ABC, Modula-3, C, C++, Algol-68, SmallTalk, and Unix shell and other scripting languages, to name a
few. Python is a virtual "greatest hits": van Rossum combined the features he admired most in the other
languages he had studied and brought them together for our programming sanity.

However, more often than not, since Python is an interpreted language, you will find that most of the
comparisons are with Perl, Java, Tcl, and JavaScript. Perl is another scripting language that goes well
beyond the realm of the standard shell scripts. Like Python, Perl gives you the power of a full
programming language as well as system call access.

Perl's greatest strength is in its string pattern matching ability, providing an extremely powerful regular
expression matching engine. This has pushed Perl to become the de facto language for string text
stream filtering, recognition, and extraction, and it is still the most popular language for developing
Internet applications through Web servers' Common Gateway Interface (CGIl). Python's regular
expression engine is based significantly on Perl's.

However, Perl's obscure and overly symbolic syntax is much more difficult to decipher, resulting in a
steep learning curve that inhibits the beginner, frustrating those for whom grasping concepts is impeded
by semantics. This, coupled with Perl's "feature" of providing many ways of accomplishing the same
task, introduces inconsistency and factionization of developers. Finally, all too often the reference book
is required reading to decipher a Perl script that was written just a couple of months back.

Python is often compared to Java because of their similar OO nature and syntax. Java's syntax, although
much simpler than C++'s, can still be fairly cumbersome, especially if you want to perform just a small
task. Python's simplicity offers a much more rapid development environment than using just pure Java.
One major evolution in Python's relationship with Java is the development of Jython, a Python
interpreter written completely in Java. It is now possible to run Python programs with only the presence
of a Java VM (virtual machine). We will mention more of Jython's advantages briefly in the following
section, but for now we can tell you that in the Jython scripting environment, you can manipulate Java
objects, Java can interact with Python objects, and you have access to your normal Java class libraries
as if Java has always been part of the Python environment.

Python is now often compared to Ruby as well, due to the popularity of the Rails project. As we
mentioned above, Python is a wider mix of multiple programming paradigms. It is not purely OO like
Ruby and does not have Smalltalk-like blocks, perhaps Ruby’'s most distinguishable feature. Python does
have a byte-code interpreter, where Ruby does not. Python is perhaps more readable, as Ruby can
really be thought of as more of an OO Perl. With regard to Rails, Python has several own Web
application frameworks, such as Django and Turbogears, to name two.

Tcl is another scripting language that shares similarities shares Python. Tcl is one of the first truly easy-
to-use scripting languages to provide the programmer extensibility as well as system call access. Tcl is
still popular today and perhaps somewhat more restrictive (due to its limited types) than Python, but it
shares Python's ability to extend past its original design. More importantly, Tcl is often used with its
graphical toolkit partner, Tk, in developing graphical user interface (GUI) applications. Due to its
popularity, Tk has been ported to Perl (Perl/Tk) and Python (Tkinter). Also, it can be argued that
Python's classes, modules, and packages make writing large programs in Python more pleasant than
writing them in Tcl.

Python has some light functional programming (FP) constructs, which likens it to languages such as Lisp
or Scheme. Although Python cannot be considered a traditional functional language, it continues to

borrow features from languages such as Lisp and Haskell. For instance, list comprehensions were a
welcome addition from the Haskell world, and Lisp programmers will feel at home with | anbda, map,

filter, and reduce.

JavaScript is another OO language very similar to Python. Any proficient JavaScript programmer will
have little or no difficulty learning Python. The particularly astute reader will note that JavaScript is
based on a prototype system, whereas Python follows a more traditional OO system that differentiates
objects and classes.

Here is a list of some Web pages that have information on comparing or transitioning between Python
and other languages:

Perl

http://www?2.linuxjournal.com/article/3882

http://llama.med.harvard.edu/—fgibbons/PerIPythonPhrasebook.html

http://aplawrence.com/Unixart/pythonvsperl.html

http://pleac.sf.net/pleac python

http://www.garshol.priv.no/download/text/perl.html

Java

http://dirtsimple.org/2004/12/python-is-not-java.html

http://twistedmatrix.com/users/glyph/rant/python-vs-java.html

http://netpub.cstudies.ubc.ca/oleary/python/python java comparison.php

Lisp

http://strout.net/python/pythonvslisp.html

http://norvig.com/python-lisp.html

Ruby

http://blog.ianbicking.org/ruby-python-power.html

http://www.rexx.com/—oinkoink/Ruby v Python.html

http://dev.rubycentral.com/faq/rubyfag-2.html

Perl, C++

http://www2.linuxjournal.com/article/3882
http://aplawrence.com/Unixart/pythonvsperl.html
http://pleac.sf.net/pleac_python
http://www.garshol.priv.no/download/text/perl.html
http://dirtsimple.org/2004/12/python-is-not-java.html
http://twistedmatrix.com/users/glyph/rant/python-vs-java.html
http://netpub.cstudies.ubc.ca/oleary/python/python_java_comparison.php
http://strout.net/python/pythonvslisp.html
http://norvig.com/python-lisp.html
http://blog.ianbicking.org/ruby-python-power.html
http://www.rexx.com/~oinkoink/Ruby_v_Python.html
http://dev.rubycentral.com/faq/rubyfaq-2.html

http://strombergers.com/python/

Perl, Java, C++

http://furryland.org/—mikec/bench/

C++, Java, Ruby

http://dmh2000.com/cjpr

Perl, Java, PHP, Tcl
http://www-128.ibm.com/developerworks/linux/library/l-python101.html
http://www-128.ibm.com/developerworks/linux/library/l-script-survey/

C, C++, Java, Perl, Rexx, Tcl

http://www.ubka.uni-karlsruhe.de/indexer-vvv/ira/2000/5

You can access a number of other comparisons between Python and other languages at:

http://www.python.org/doc/Comparisons.html

e Py EXT

http://strombergers.com/python/
http://dmh2000.com/cjpr
http://www.ubka.uni-karlsruhe.de/indexer-vvv/ira/2000/5
http://www.python.org/doc/Comparisons.html

e Py EXT

1.8. Other Implementations

The "standard" version of Python is C-compiled, aka CPython. There are a few other Python
implementations. We will describe some here, but for more on the various Python implementations out
there, check out:

http://python.org/dev/implementations.html

Java

As we mentioned in the previous section, a Python interpreter completely written in Java, called Jython,
is currently available. Although there are still minor differences between the two interpreters, they are
very similar and provide a comparable startup environment.

What are the advantages of Jython? Jython ...

« Can run anywhere a Java virtual machine (JVM) can be found

« Provides access to Java packages and class libraries

« Furnishes a scripting environment for Java development

- Enables ease of testing for Java class libraries

« Offers access to Java's native exception handling ability

« Delivers JavaBeans property and introspection ability

« Encourages Python-to-Java development (and vice versa)

« Gives GUI developers access to Java AWT/Swing libraries

« Utilizes Java's native garbage collector (so CPython's was not implemented)

A full treatment of Jython is beyond the scope of this text, but there is a good amount of
information online. Jython is still an ongoing development project, so keep an eye out for new
features. You can get more information at the Jython Web site at:

http://jython.org

.NET/Mono

There is now a Python implementation completely in C#, called IronPython. It is targeted at the .NET
and Mono environments. You can integrate an IronPython interpreter in a .NET application that can
interact with .NET objects. Extensions to IronPython can be implemented in C# or VisualBasic.NET. In
addition, there is another .NET/Mono language that is Python-inspired, and it is called Boo. You can find
out more information about IronPython and Boo at:

http://codeplex.com/Wiki/View.aspx?ProjectName=IlronPython

http://boo.codehaus.org/

Stackless

One of the limitations of CPython is that for each Python function call, it results in a C function call. (For
the computer science-oriented, we are talking about stack frames here.) This implies restrictions on
CPython, most notably a limitation on the total number of concurrent function calls. This can make it

http://python.org/dev/implementations.html
http://jython.org/
http://codeplex.com/Wiki/View.aspx?ProjectName=IronPython
http://boo.codehaus.org/

difficult to implement effective user-level threading libraries or highly recursive applications in Python. If
this total is exceeded, then your program will crash. By using a "stackless" implementation, you are
freed from this restriction and can have any number of Python stack frames for the one C stack frame.
This allows you to have many function calls and supports a very large number of threads. The main
stackless implementation of Python is called ... Stackless (surprise!).

The only problem with Stackless is that it requires significant changes to the existing CPython
interpreter, so it is seen as an independent fork. Another project called Greenlets that also supports
microthreads is available as a standard C extension and can be used with an unmodified version of
Python. You can read about both of these projects at:

http://stackless.com

http://codespeak.net/py/current/doc/greenlet.html

e Py EXT

http://stackless.com/
http://codespeak.net/py/current/doc/greenlet.html

e Py EXT

1.9. Exercises

1-1. Python Installation. Check if Python is installed on your system. If not, download and
install it!

1-2. Executing Python. How many different ways are there to run Python? Which do you
prefer and why?

1-3. Python Standard Library.
a.

Find where the Python executables and standard library modules are installed
on your system.

Take a look at some of the standard library files, for example, string. py. It will
help you get acclimated to looking at Python scripts.

1-4. Interactive Execution. Start your Python interactive interpreter. You can invoke it by
typing in its full pathname or just its name (pyt hon or pyt hon. exe) if you have installed
its location in your search path. (You can use any version or implementation of Python
that is convenient to you, e.g., command line, GUI/IDE, Jython, IronPython, or
Stackless.) The startup screen should look like the ones depicted in this chapter. When
you see the >>>, that means the interpreter is ready to accept your Python commands.

Try entering the command for the famous Hello World! program by typing pri nt
‘Hello World!" (and press RETURN), then exit the interpreter. On Unix systems, "“D
will send the EOF signal to terminate the Python interpreter, and on DOS systems, the
keypress is “Z. Exiting from windows in graphical user environments like the
Macintosh, PythonWin or IDLE on Windows, or IDLE on Unix can be accomplished by
simply closing their respective windows.

1-5. Scripting. As a follow-up to Exercise 1-4, create "Hello World!" as a Python script that

does exactly the same thing as the interactive exercise above. If you are using the
Unix system, try setting up the automatic startup line so that you can run the program
without invoking the Python interpreter.

1-6. Scripting. Create a script that displays your name, age, favorite color, and a bit about
you (background, interests, hobbies, etc.) to the screen using the print statement.

e Py EXT

file:///D|/1/0132269937/14051536.html

@ prev |
Chapter 2. Getting Started

Chapter Topics

« Introduction
o Input/Output
« Comments

« Operators

« Variables and Assignment
« Python Types

« Indentation

« Loops and Conditionals

« Files

o Errors

o Functions

o Classes

o Modules

This "quick start" section is intended to "flash" Python to you so that any constructs recognized from
previous programming experience can be used for your immediate needs. The details will be spelled out
in succeeding chapters, but a high-level tour is one fast and easy way to get you into Python and show
you what it has to offer. The best way to follow along is to bring up the Python interpreter in front of you
and try some of these examples, and at the same time you can experiment on your own.

We introduced how to start up the Python interpreter in Chapter 1 as well as in the exercises (Problems
1-4). In all interactive examples, you will see the Python primary (>>>) and secondary (...) prompts.
The primary prompt is a way for the interpreter to let you know that it is expecting the next Python
statement, while the secondary prompt indicates that the interpreter is waiting for additional input to
complete the current statement.

You will notice two primary ways that Python "does things™ for you: statements and expressions
(functions, equations, etc.). Most of you already know the difference between the two, but in case you
need to review, a statement is a body of control which involves using keywords. It is similar to issuing a
command to the interpreter. You ask Python to do something for you, and it will do it. Statements may
or may not lead to a result or output. Let us use the print statement for the programmer's perennial

first example, Hello World:

>>> print '"Hello Wrld!"
Hel 1o Worl d!

Expressions, on the other hand, do not use keywords. They can be simple equations that you use with
mathematical operators, or can be functions which are called with parentheses. They may or may not
take input, and they may or may not return a (meaningful) value. (Functions that do not explicitly
return a value by the programmer automatically return None, Python's equivalent to NULL.) An example
of a function that takes input and has a return value is the abs() function, which takes a number and

returns its absolute value is:

>>> abs(4)
4
>>> abs(-4)
4

We will introduce both statements and expressions in this chapter. Let us continue with more about the
print statement.

e prcy ExT

file:///D|/1/0132269937/14051536.html

e Py EXT

2.1. Program Output, the pri nt Statement, and "Hello World!"

In some languages, such as C, displaying to the screen is accomplished with a function, e.qg., printf(),

while with Python and most interpreted and scripting languages, it is a statement. Many shell script
languages use an echo command for program output.

Core Note: Dumping variable contents in interactive interpreter

Usually when you want to see the contents of a variable, you use the
print statement in your code. However, from within the interactive
interpreter, you can use the print statement to give you the string
representation of a variable, or just dump the variable rawthis is
accomplished by simply giving the name of the variable.

In the following example, we assign a string variable, then use pri nt
to display its contents. Following that, we issue just the variable name.

>>> nyString = 'Hello World!"
>>> print nmyString

Hell o Worl d!

>>> nyString

"Hello World!'

Notice how just giving only the name reveals quotation marks around
the string. The reason for this is to allow objects other than strings to
be displayed in the same manner as this stringbeing able to display a
printable string representation of any object, not just strings. The
quotes are there to indicate that the object whose value you just
dumped to the display is a string. Once you become more familiar with
Python, you will recognize that str() is used for print statements,
while repr () is what the interactive interpreter calls to display your
objects.

The underscore () also has special meaning in the interactive
interpreter: the last evaluated expression. So after the code above has
executed, _ will contain the string:

>>>
Hel | o Worl d!

Python's print statement, paired with the string format operator (%), supports string substitution,
much like the printf () function in C:

>>> print "% is nunber %l!'" % ("Python", 1)
Pyt hon is nunmber 1!

% means to substitute a string while %@ indicates an integer should be substituted. Another popular one
is % for floating point numbers. We will see more examples throughout this chapter. Python is fairly
flexible, though, so you could pass in a number to % without suffering any consequences with more
rigid languages. See Section 6.4.1 for more information on the string format operator.

The print statement also allows its output directed to a file. This feature was added way back in Python
2.0. The >> symbols are used to redirect the output, as in this example with standard error:

i mport sys
print >> sys.stderr, 'Fatal error: invalid input!’
Here is the same example with a lodfile:

logfile = open('/tmp/nylog.txt', "a')
print >> logfile, 'Fatal error: invalid input!’
| ogfile.close()

e Py NEXT

e Py EXT

2.2. Program Input and the raw_i nput () Built-in Function

The easiest way to obtain user input from the command line is with the raw_i nput () built-in function. It

reads from standard input and assigns the string value to the variable you designate. You can use the
i nt () built-in function to convert any numeric input string to an integer representation.

>>> user = raw_i nput('Enter login name: ')
Enter |ogin nanme: root

>>> print 'Your login is:', user

Your login is: root

The earlier example was strictly for text input. A numeric string input (with conversion to a real integer)
example follows below:

>>> num = raw_i nput (' Now enter a nunber: ')

Now enter a nunber: 1024

>>> print 'Doubling your nunber: %' % (int(num * 2)
Doubl i ng your nunber: 2048

The int () function converts the string numto an integer so that the mathematical operation can be
performed. See Section 6.5.3 for more information in the raw_i nput () built-in function.

Core Note: Ask for help in the interactive interpreter

If you are learning Python and need help on a new function you are
not familiar with, it is easy to get that help just by calling the hel p()

built-in function and passing in the name of the function you want help
with:

>>> hel p(raw_i nput)
Hel p on built-in function raw_input in nodule _ builtin__:

raw_i nput (...)
raw_i nput ([pronpt]) -> string

Read a string fromstandard input. The trailing newmine is

stripped. If the user hits ECF (Unix: Cl-D, Wndows: Ctl-Z
+Return), raise EOFError. On Unix, GNU readline is used if

enabl ed. The pronpt string, if given, is printed without a
trailing newine before reading.'

Core Style: Keep user interaction outside of functions

It's very tempting for beginners to put print statements and raw_i nput
() functions wherever they need to display information to or get
information from a user. However, we would like to suggest that
functions should be kept "clean,” meaning they should silently be used
purely to take parameters and provide return values. Get all the
values needed from the user, send them all to the function, retrieve
the return value, and then display the results to the user. This will
enable you to use the same function elsewhere without having to
worry about customized output. The exception to this rule is if you
create functions specifically to obtain input from the user or display
output.More importantly, it is good practice to separate functions into
two categories: those that do things (i.e., interact with the user or set
variables) and those that calculate things (usually returning results). It
is surely not bad practice to put a pri nt statement in a function if that

was its purpose.

MEXT B

e Py EXT

2.3. Comments

As with most scripting and Unix-shell languages, the hash or pound (#) sign signals that a comment
begins from the # and continues until the end of the line.

>>> # one comment
... print "Hello World!" # another conment
Hel | o Worl d!

There are special comments called documentation strings, or "doc strings" for short. You can add a
"comment" at the beginning of a module, class, or function string that serves as a doc string, a feature
familiar to Java programmers:

def foo():
"This is a doc string."
return True

Unlike regular comments, however, doc strings can be accessed at runtime and be used to automatically
generate documentation.

e Py EXT

e Py EXT

2.4. Operators

The standard mathematical operators that you are familiar with work the same way in Python as in most
other languages.

+ } * / /] % * %

Addition, subtraction, multiplication, division, and modulus (remainder) are all part of the standard set
of operators. Python has two division operators, a single slash character for classic division and a double-
slash for "floor" division (rounds down to nearest whole number). Classic division means that if the
operands are both integers, it will perform floor division, while for floating point numbers, it represents
true division. If true division is enabled, then the division operator will always perform that operation,
regardless of operand types. You can read more about classic, true, and floor division in Chapter 5,

"Numbers."

There is also an exponentiation operator, the double star/asterisk (**). Although we are emphasizing

the mathematical nature of these operators, please note that some of these operators are overloaded
for use with other data types as well, for example, strings and lists. Let us look at an example:

>>> print -2 * 4 + 3 ** 2
1

As you can see, the operator precedence is what you expect: + and - are at the bottom, followed by
*, 1,1/, and % then comes the unary + and -, and finally, we have ** at the top. ((3 ** 2) is calculated
first, followed by (-2 * 4), then both results are summed together.)

Python also provides the standard comparison operators, which return a Boolean value indicating the
truthfulness of the expression:

< <= > >= == | = <>

Trying out some of the comparison operators we get:

>>> 2 < 4

True

>>> 2 ==

Fal se

>>> 2 > 4

Fal se

>>> 6.2 <= 6
Fal se

>>> 6.2 <= 6.2
True

>>> 6.2 <= 6.20001
True

Python currently supports two "not equal” comparison operators, ! = and <>. These are the C-style and
ABC/Pascal-style notations. The latter is slowly being phased out, so we recommend against its use.

Python also provides the expression conjunction operators:

and or not

We can use these operations to chain together arbitrary expressions and logically combine the Boolean
results:

>>> 2 < 4 and 2 ==
Fal se

>>> 2 > 4 0or 2 <4
True

>>> not 6.2 <= 6
True

>>> 3 < 4 <5

True

The last example is an expression that may be invalid in other languages, but in Python it is really a
short way of saying:

>>> 3 < 4 and 4 < 5

You can find out more about Python operators in Section 4.5 of the text.

Core Style: Use parentheses for clarification

Parentheses are a good idea in many cases, such as when the
outcome is altered if they are not there, if the code is difficult to read
without them, or in situations that might be confusing without them.
They are typically not required in Python, but remember that
readability counts. Anyone maintaining your code will thank you, and
will thank you later.

e Py EXT

e Py EXT

2.5. Variables and Assignment

Rules for variables in Python are the same as they are in most other high-level languages inspired by (or
more likely, written in) C. They are simply identifier names with an alphabetic first character
"alphabetic" meaning upper-or lowercase letters, including the underscore (_). Any additional
characters may be alphanumeric or underscore. Python is case-sensitive, meaning that the identifier
"cAskt" is different from "CaSe."

Python is dynamically typed, meaning that no pre-declaration of a variable or its type is necessary. The
type (and value) are initialized on assignment. Assignments are performed using the equal sign.

>>> counter = 0

>>> mles = 1000.0

>>> nanme = ' Bob'

>>> counter = counter + 1

>>> kiloneters = 1.609 * mles

>>> print "% mles is the sane as % km % (niles, kil oneters)
1000. 000000 mles is the sane as 1609. 000000 km

We have presented five examples of variable assignment. The first is an integer assignment followed by
one each for floating point numbers, one for strings, an increment statement for integers, and finally, a
floating point operation and assignment.

Python also supports augmented assignment, statements that both refer to and assign values to
variables. You can take the following expression ...

n=n?* 10

...and use this shortcut instead:

n *= 10

Python does not support increment and decrement operators like the ones in C: n++ or --n. Because +
and - - are also unary operators, Python will interpret --n as - (-n) == n, and the same is true for ++n.

e prcy ExT

e Py EXT

2.6. Numbers

Python supports five basic numerical types, three of which are integer types.
« int (signed integers)

o long (long integers)

o bool (Boolean values)
» float (floating point real numbers)
« conpl ex (complex numbers)

Here are some examples:

i nt 0101 84 -237 0x80 017 -680 -0X92

| ong 29979062458L -841401 0xDECADEDEADBEEFBADFEEDDEAL

bool True Fal se

fl oat 3.14159 4. 2E-10 -90. 6.022e23 -1. 609E- 19
compl ex 6. 23+1. 5] -1.23-875J 0+1j 9.80665-8.31441J -.0224+0j

Numeric types of interest are the Python long and complex types. Python long integers should not be
confused with C | ongs. Python longs have a capacity that surpasses any C | ong. You are limited only by
the amount of (virtual) memory in your system as far as range is concerned. If you are familiar with
Java, a Python long is similar to numbers of the Bi gl nt eger class type.

Moving forward, ints and longs are in the process of becoming unified into a single integer type.
Beginning in version 2.3, overflow errors are no longer reportedthe result is automagically converted to
a long. In a future version of Python, the distinction will be seamless because the trailing "L" will no
longer be used or required.

Boolean values are a special case of integer. Although represented by the constants true and Fal se, if
put in a numeric context such as addition with other numbers, true is treated as the integer with value
1, and Fal se has a value of O.

Complex numbers (numbers that involve the square root of -1, so-called "imaginary" numbers) are not
supported in many languages and perhaps are implemented only as classes in others.

There is also a sixth numeric type, decimal, for decimal floating numbers, but it is not a built-in type.
You must import the deci mal module to use these types of numbers. They were added to Python
(version 2.4) because of a need for more accuracy. For example, the number 1.1 cannot be accurately
representing with binary floating point numbers (floats) because it has a repeating fraction in binary.
Because of this, numbers like 1.1 look like this as a float:

>>> 1.1

1. 1000000000000001
>>> print decinmal.Decinmal ('1.1")
1.1

All numeric types are covered in Chapter 5.

e prcy ExT

e Py EXT

2.7. Strings

Strings in Python are identified as a contiguous set of characters in between quotation marks. Python
allows for either pairs of single or double quotes. Triple quotes (three consecutive single or double
quotes) can be used to escape special characters. Subsets of strings can be taken using the index ([])

and slice ([: 1) operators, which work with indexes starting at O in the beginning of the string and
working their way from -1 at the end. The plus (+) sign is the string concatenation operator, and the
asterisk (*) is the repetition operator. Here are some examples of strings and string usage:

>>> pystr = 'Python'

>>> iscool = 'is cool!’
>>> pystr[0]

' p

>>> pystr[2: 5]

"tho

>>> jscool [: 2]

i

>>> jscool [3:]

‘cool !

>>> j scool [-1]

Vy

>>> pystr + iscool
"Pythonis cool!’

>>> pystr + ' ' + iscool
"Python is cool !’

>>> pystr * 2

" Pyt honPyt hon'

>>> 't * 20

>>> pystr = pyt hon
is cool""’

>>> pystr

"python\nis cool"

>>> print pystr

pyt hon

is cool

>>>

You can learn more about strings in Chapter 6.

e prcy ExT

file:///D|/1/0132269937/14051536.html

e Py EXT

2.8. Lists and Tuples

Lists and tuples can be thought of as generic "arrays™ with which to hold an arbitrary number of
arbitrary Python objects. The items are ordered and accessed via index offsets, similar to arrays, except
that lists and tuples can store different types of objects.

There are a few main differences between lists and tuples. Lists are enclosed in brackets ([]) and
their elements and size can be changed. Tuples are enclosed in parentheses (()) and cannot be

updated (although their contents may be). Tuples can be thought of for now as "read-only" lists.
Subsets can be taken with the slice operator ([] and [:]) in the same manner as strings.

>>> alist =[1, 2, 3, 4]
>>> ali st

[1, 2, 3, 4]
>>> ali st[0]

1

>>> alist[2:]

[3, 4]

>>> alist[: 3]

[1, 2, 3]

>>> alist[1l] =5
>>> ali st

[1, 5, 3, 4]

Slice access to a tuple is similar, except it cannot be modified:

>>> aTuple = ('robots', 77, 93, 'try")
>>> aTupl e
('robots', 77, 93, 'try")
>>> aTupl e[: 3]
('robots', 77, 93)
>>> aTuple[l] =5
Traceback (innernost |ast):
File "<stdin>", line 1, in ?
TypeError: object doesn't support item assignnent

You can find out a lot more about lists and tuples along with strings in Chapter 6.

e prcy | NEXT B

file:///D|/1/0132269937/14051536.html

e Py EXT

2.9. Dictionaries

Dictionaries (or "dicts™ for short) are Python's mapping type and work like associative arrays or hashes
found in Perl; they are made up of key-value pairs. Keys can be almost any Python type, but are usually
numbers or strings. Values, on the other hand, can be any arbitrary Python object. Dicts are enclosed by
curly braces ({ }).

>>> abDict = {'"host': 'earth'} # create dict
>>> aDict['port'] = 80 # add to dict
>>> aDi ct

{"host': '"earth', 'port': 80}
>>> abDi ct. keys()

["host', '"port']
>>> aDict[' host']
"earth’

>>> for key in abDict:
print key, abDict][key]

host earth
port 80

Dictionaries are covered in Chapter 7.

e prcy | NEXT B

file:///D|/1/0132269937/14051536.html

e Py EXT

2.10. Code Blocks Use Indentation

Code blocks are identified by indentation rather than using symbols like curly braces. Without extra
symbols, programs are easier to read. Also, indentation clearly identifies which block of code a
statement belongs to. Of course, code blocks can consist of single statements, too.

When one is new to Python, indentation may comes as a surprise. Humans generally prefer to avoid
change, so perhaps after many years of coding with brace delimitation, the first impression of using pure
indentation may not be completely positive. However, recall that two of Python's features are that it is
simplistic in nature and easy to read. If you have a strong dislike of indentation as a delimitation ***, we
invite you to revisit this notion half a year from now. More than likely, you will have discovered that life
without braces is not as bad as you had originally thought.

e Py EXT

e Py EXT

2.11.i f Statement

The standard i f conditional statement follows this syntax:

i f expression:
if_suite

If the expressi on is non-zero or TRue, then the statement if_suite is executed; otherwise, execution

continues on the first statement after. Suite is the term used in Python to refer to a sub-block of code
and can consist of single or multiple statements. You will notice that parentheses are not required in i f

statements as they are in other languages.

if x <.0:
print '"x" must be atleast 0!’

Python supports an el se statement that is used with i f in the following manner:

i f expression:
if suite
el se:
el se suite

Python has an "else-if" spelled as el i f with the following syntax:

if expressionl:
if_suite

el if expression2:
elif_suite

el se:
el se suite

At the time of this writing, there has been some discussion pertaining to a swi t ch or case statement, but

nothing concrete. It is possible that we will see such an animal in a future version of the language. This
may also seem strange and/or distracting at first, but a set of i f-el i f - el se statements are not as "ugly"

because of Python's clean syntax. If you really want to circumvent a set of chained if-elif-el se
statements, another elegant workaround is using a f or loop (see Section 2.13) to iterate through your
list of possible "cases."

You can learn more aboutif, elif, and el se statements in the conditional section of Chapter 8.

e Py EXT

e Py EXT

2.12. whil e Loop

The standard whi | e conditional loop statement is similar to the i f. Again, as with every code sub-block,
indentation (and dedentation) are used to delimit blocks of code as well as to indicate which block of
code statements belong to:

whi | e expression:
while_suite

The statement whi | e_sui t e is executed continuously in a loop until the expression becomes zero or
false; execution then continues on the first succeeding statement. Like i f statements, parentheses are

not required with Python whi | e statements.

>>> counter = 0

>>> while counter < 3:
print 'loop #%l' % (counter)
counter += 1

| oop #0
| oop #1
| oop #2

Loops such as whi I e and for (see below) are covered in the loops section of Chapter 8.

e prcy | NEXT B

file:///D|/1/0132269937/14051536.html

e Py EXT

2.13. for Loop and the range() Built-in Function

The for loop in Python is more like a f or each iterative-type loop in a shell scripting language than a
traditional f or conditional loop that works like a counter. Python's f or takes an iterable (such as a
sequence or iterator) and traverses each element once.

>>> print 'l like to use the Internet for:'

| like to use the Internet for:

>>> for itemin ['e-mail', 'net-surfing' , 'honework',
"chat']:

print item
e-mai |
net - surfing

honmewor k
chat

Our output in the previous example may look more presentable if we display the items on the same line
rather than on separate lines. print statements by default automatically add a NEWLINE character at

the end of every line. This can be suppressed by terminating the print statement with a comma (,).

print 'l like to use the Internet for:'

for itemin ['e-mail', "net-surfing', 'homework', 'chat']:
print item

pri nt

The code required further modification to include an additional pri nt statement with no arguments to

flush our line of output with a terminating NEWLINE; otherwise, the prompt will show up on the same
line immediately after the last piece of data output. Here is the output with the modified code:

| like to use the Internet for:
e-mai |l net-surfing homework chat

Elements in print statements separated by commas will automatically include a delimiting space
between them as they are displayed.

Providing a string format gives the programmer the most control because it dictates the exact output
layout, without having to worry about the spaces generated by commas. It also allows all the data to be
grouped together in one placethe tuple or dictionary on the right-hand side of the format operator.

>>> who = 'knights'
>>> what = "Ni!'
>>> print 'We are the', who, 'who say', what, what, what, what
We are the knights who say Ni! Ni! Ni! Ni!
>>> print 'We are the % who say %' %\
(who, ((what + ' ") * 4))
We are the knights who say Ni! Ni!l Ni! Ni!

Using the string format operator also allows us to do some quick string manipulation before the output,
as you can see in the previous example.

We conclude our introduction to loops by showing you how we can make Python's f or statement act

more like a traditional loop, in other words, a numerical counting loop. Because we cannot change the
behavior of a f or loop (iterates over a sequence), we can manipulate our sequence so that it is a list of

numbers. That way, even though we are still iterating over a sequence, it will at least appear to perform
the number counting and incrementing that we envisioned.

>>> for eachNumin [0, 1, 2]:
print eachNum

[EEN

Within our loop, eachNum contains the integer value that we are displaying and can use it in any
numerical calculation we wish. Because our range of numbers may differ, Python provides the range()

built-in function to generate such a list for us. It does exactly what we want, taking a range of numbers
and generating a list.

>>> for eachNumin range(3):
print eachNum

[EEN

For strings, it is easy to iterate over each character:

>>> foo = ' abc'

>>> for ¢ in foo:
print c

a

b

c

The range() function has been often seen with | en() for indexing into a string. Here, we can display both
elements and their corresponding index value:

>>> foo = 'abc'

>>> for i in range(len(foo)):
print foo[i], '"(%)' %i

a (0)

b (1)

c (2)

However, these loops were seen as restrictiveyou either index by each element or by its index, but
never both. This led to the enunerat e() function (introduced in Python 2.3) that does give both:

>>> for i, ch in enunerate(foo):
print ch, '"(%)' %i

a (0)

b (1)

c (2)

e Py EXT

e Py EXT

2.14. List Comprehensions

These are just fancy terms to indicate how you can programmatically use a f or loop to put together an
entire list on a single line:

>>> squared = [x ** 2 for x in range(4)]

>>> for i in squared:
print i

0

1

4

9

List comprehensions can do even fancier things like being selective of what to include in the new list:

>>> sqdEvens = [x ** 2 for x in range(8) if not x % 2]
>>>

>>> for i in sqdEvens:
print i

16
36

e prcy ExT

file:///D|/1/0132269937/14051536.html

e Py EXT

2.15. Files and the open() and fil e() Built-in Functions

File access is one of the more important aspects of a language once you are comfortable with the
syntax; there is nothing like the power of persistent storage to get some real work done.

How to Open a File

handl e = open(file_nane, access_node = 'r')

The fil e_name variable contains the string name of the file we wish to open, and access_node is either
‘r' for read, 'w for write, or'a' for append. Other flags that can be used in the access_node string

include the ' +' for dual read-write access and the ' b' for binary access. If the mode is not provided, a
default of read-only (' r') is used to open the file.

If open() is successful, a file object will be returned as the handle (handl e). All succeeding access to this

file must go through its file handle. Once a file object is returned, we then have access to the other
functionality through its methods such as readl i nes() and cl ose() . Methods are attributes of file objects

and must be accessed via the dotted attribute notation (see the following Core Note).
Core Note: What are attributes?

Attributes are items associated with a piece of data. Attributes can be
simple data values or executable objects such as functions and
methods. What kind of objects have attributes? Many. Classes,
modules, files, and complex numbers just some of the Python objects
that have attributes.

How do | access object attributes? With the dotted attribute notation,
that is, by putting together the object and attribute names, separated
by a dot or period: object.attribute.

Here is some code that prompts the user for the name of a text file, then opens the file and displays its
contents to the screen:

filename = raw_input (' Enter file name: ')
fobj = open(filenane, 'r')
for eachLine in fobj:
print eachLi ne,
fobj.close()

Rather than looping to read and display one line at a time, our code does something a little different. We
read all lines in one fell swoop, close the file, and then iterate through the lines of the file. One
advantage to coding this way is that it permits the file access to complete more quickly. The output and
file access do not have to alternate back and forth between reading a line and printing a line. It is
cleaner and separates two somewhat unrelated tasks. The caveat here is the file size. The code above is
reasonable for files with reasonable sizes. Very large data files may take up too much memory, in which

case you would have to revert back to reading one line at a time. (A good example can be found in the
next section.)

The other interesting statement in our code is that we are again using the comma at the end of the
print statement to suppress the printing of the NEWLINE character. Why? Because each text line of the

file already contains NEWLINEs at the end of every line. If we did not suppress the NEWLINE from being
added by print, our display would be double-spaced.

The fil e() built-in function was recently added to Python. It is identical to open(), but is named in such
a way to indicate that is a factory function (producing file objects), similar to how i nt () produces
integers and di ct () results in dictionary objects. In Chapter 9, we cover file objects, their built-in
methods attributes, and how to access your local file system. Please refer to Chapter 9 for all the details.

e Py NEXT

file:///D|/1/0132269937/14051536.html

e Py EXT

2.16. Errors and Exceptions

Syntax errors are detected on compilation, but Python also allows for the detection of errors during
program execution. When an error is detected, the Python interpreter raises (aka throws, generates,
triggers) an exception. Armed with the information that Python's exception reporting can generate at
runtime, programmers can quickly debug their applications as well as fine-tune their software to take a
specific course of action if an anticipated error occurs.

To add error detection or exception handling to your code, just "wrap" it with a TRy- except statement.
The suite following the TRy statement will be the code you want to manage. The code that comes after
the except will be the code that executes if the exception you are anticipating occurs:

try:
filename = raw_input('Enter file nane: ')
fobj = open(filenane, 'r')
for eachLine in fobj:
print eachLi ne,
fobj.close()
except [Cerror, e:
print 'file open error:', e

Programmers can explicitly raise an exception with the rai se command. You can learn more about
exceptions as well as see a complete list of Python exceptions in Chapter 10.

e Py EXT

file:///D|/1/0132269937/14051536.html

e Py EXT

2.17. Functions

Like many other languages, functions in Python are called using the functional operator (()), functions

must be declared before they can be called. You do not need to declare function (return) types or
explicitly return values (None, Python's NULL object is returned by default if one is not given.)

Python can be considered "call by reference.” This means that any changes to these parameters within
the function affect the original objects in the calling function. However, the caveat is that in Python, it is
really dependent on the object type being passed. If that object allows updating, then it behaves as you
would expect from "call by reference,” but if that object's value cannot be changed, then it will behave
like "call by value."

How to Declare Functions

def function_nane([argunents]):
"optional docunentation string"
function_suite

The syntax for declaring a function consists of the def keyword followed by the function name and any
arguments that the function may take. Function arguments such as arguments above are optional,
which is why they are enclosed in brackets above. (Do not physically put brackets in your code!) The
statement terminates with a colon (the same way that an i f or whi | e statement is terminated), and a
code suite representing the function body follows. Here is one short example:

def addMe2Me(x):
"apply + operation to argunent'
return (X + Xx)

This function, presumably meaning "add me to me" takes an object, adds its current value to itself and
returns the sum. While the results are fairly obvious with numerical arguments, we point out that the
plus sign works for almost all types. In other words, most of the standard types support the + operator,

whether it be numeric addition or sequence concatenation.

How to Call Functions

>>> addMe2Me(4. 25)

8.5

>>>

>>> addMe2Me(10)

20

>>>

>>> addMe2Me(' Pyt hon')
" Pyt honPyt hon'

>>>

>>> addMe2Me([-1, 'abc'])
[-1, "abc', -1, '"abc']

\%

Calling functions in Python is similar to function invocations in many other high-level languages, by
giving the name of the function followed by the functional operator, a pair of parentheses. Any optional
parameters go between the parentheses, which are required even if there are no arguments. Observe
how the +operator works with non-numeric types.

Default Arguments

Functions may have arguments that have default values. If present, arguments will take on the
appearance of assignment in the function declaration, but in actuality, it is just the syntax for default
arguments and indicates that if a value is not provided for the parameter, it will take on the assigned
value as a default.

>>> def foo(debug=True):
"deternmine if in debug node with default argunent'

i f debug:
print '"in debug node'
print 'done'
>>> foo()
i n debug node
done

>>> f oo(Fal se)
done

In the example above, the debug parameter has a default value of t rue. When we do not pass in an
argument to the function f oo() , debug automatically takes on a value of true. On our second call to f oo
(), we deliberately send an argument of Fal se, so that the default argument is not used.

Functions have many more features than we could describe in this introductory section. Please refer to
Chapter 11 for more details.

e Py EXT

e Py EXT

2.18. Classes

Classes are a core part of object-oriented programming and serve as a "container" for related data and
logic. They provide a "blueprint” for creating "real" objects, called instances. Because Python does not
require you to program in an object-oriented way (like Java does), classes are not required learning at
this time. However, we will present some examples here for those who are interested in getting a sneak

peek.
How to Declare Classes

class Cl assNane (base_cl ass[es]):

"optional docunentation string"
stati c_nmenber decl arations
met hod _decl ar ati ons

Classes are declared using the cl ass keyword. A base or parent class is optional; if you do not have one,
just use obj ect as the base class. This header line is followed by an optional documentation string, static
member declarations, and any method declarations.

cl ass Food ass(object):
"""ny very first class: FooC ass"""

version = 0.1 # class (data) attribute
def __init_ (self, nne" John Doe'):
mn "COnStruCt or maon
sel f.nane = nm # class instance (data) attribute

print'Created a class instance for', nm
def shownane(sel f):
"""display instance attribute and cl ass nane
print 'Your nane is', self.nane
print "My nane is', self._ class__._ nane
def shower (self):
"""display class(static) attribute"""
print self.version # references FooCd ass.version
def addMe2Me(sel f, x): # does not use 'self’
"""apply + operation to argunent"""
return x + x

(LTI

In the above class, we declared one static data type variable ver si on shared among all instances and
four methods, __init__ (), shownane(), shower (), and the familiar addve2Me() . The show* () methods do
not really do much but output the data they were created to output. The __init__ () method has a
special name, as do all those whose names begin and end with a double underscore (__).

The __init__() method is a function provided by default that is called when a class instance is created,
similar to a constructor and called after the object has been instantiated. __init__ () can be thought of

as a constructor, but unlike constructors in other languages, it does not create an instanceit is really just
the first method that is called after your object has been created.

Its purpose is to perform any other type of "start up” necessary for the instance to take on a life of its
own. By creating our own __init__() method, we override the default method (which does not do

anything) so that we can do customization and other "extra things" when our instance is created. In our
case, we initialize a class instance attribute or member called nane. This variable is associated only with

class instances and is not part of the actual class itself. __init__ () also features a default argument,

introduced in the previous section. You will no doubt also notice the one argument which is part of every
method, sel f.

What is sel f ? It is basically an instance's handle to itself, the instance on which a method was called.
Other OO languages often use an identifier called thi s.

How to Create Class Instances

>>> fool = Food ass()
Created a class instance for John Doe

The string that is displayed is a result of a call to the __init__() method which we did not explicitly have
to make. When an instance is created, __init__ () is automatically called, whether we provided our own
or the interpreter used the default one.

Creating instances looks just like calling a function and has the exact same syntax. They are both known
as "callables."” Class instantiation uses the same functional operator as invoking a function or method.

Now that we have successfully created our first class instance, we can make some method calls, too:

>>> f00l. shownane()

Your nane is John Doe

My nanme is _ nmain__.Food ass
>>>

>>> f00l. shower ()

0.1

>>> print fool.addMe2Me(5)

10

>>> print fool.addMe2Me(' xyz')
XYZXyz

The result of each function call is as we expected. One interesting piece of data is the class name. In the
shownane() method, we displayed the sel f. __class__.__name__ variable which, for an instance,

represents the name of the class from which it has been instantiated. (sel f. __cl ass__ refers to the
actual class.) In our example, we did not pass in a name to create our instance, so the ' John Doe'
default argument was used. In our next example, we do not use it.

>>> f 002 = FooCd ass(' Jane Smith')
Created a class instance for Jane Snith
>>> f 002. shownane()

Your nane is Jane Smth

My nane is Food ass

There is plenty more on Python classes and instances in Chapter 13.

NEXT B

e Py EXT

2.19. Modules

A module is a logical way to physically organize and distinguish related pieces of Python code into
individual files. A module can contain executable code, functions, classes, or any and all of the above.

When you create a Python source file, the name of the module is the same as the file except without the
trailing . py extension. Once a module is created, you may import that module for use from another

module using the i nport statement.

How to Import a Module

i mport nodul e_nane

How to Call a Module Function or Access a Module Variable

Once imported, a module's attributes (functions and variables) can be accessed using the familiar dotted
attribute notation:

nmodul e. function()
nodul e. vari abl e

We will now present our Hello World! example again, but using the output functions inside the sys
module.

>>> jnport sys

>>> sys.stdout.wite('Hello Wrld!\n")

Hell o Worl d!

>>> sys. platform

"wi n32'

>>> gsys. version

"2.4.2 (#67, Sep 28 2005, 10:51:12) [MSC v.1310 32 bit
(Intel)]"

This code behaves just like our original Hello World! using the pri nt statement. The only difference is
that the standard output wite() method is called, and the NEWLINE character needs to be stated
explicitly because, unlike the pri nt statement, wite() does not do that for you.

You can find out more information on modules and importing in Chapter 12.

We will cover all of the above topics in much greater detail throughout the text, but hopefully we have
provided enough of a "quick dip in the pool" to facilitate your needs if your primary goal is to get started
working with Python as quickly as possible without too much serious reading.

Core Note: What is a "PEP"?

You will find references throughout the book to PEP. A PEP is a Python
Enhancement Proposal, and this is the way new features are
introduced to future versions of Python. They are usually advanced
reading from the beginner's point of view, but they provide a full
description of a new feature, the rationale or motivation behind it, a
new syntax if that is necessary, technical implementation details,
backwards-compatibility information, etc. Agreement has to be made
between the Python development community, the PEP authors and
implementors, and finally, the creator of Python itself, Guido van
Rossum, adoringly referred to as the BDFL (Benevolent Dictator for
Life), before any new feature is integrated. PEP 1 introduces the PEP,
its purpose and guidelines. You can find all of the PEPs in PEP O, the
PEP index, at: http://python.org/dev/peps.

NEXT B

http://python.org/dev/peps

e Py NEXT

2.20. Useful Functions

In this chapter, we have seen some useful built-in functions. We summarize them in Table 2.1 and

present a few other useful ones (note that these may not be the full syntax, only what we feel would be
useful for you now).

Table 2.1. Useful Built-1n Functions for New Python Programmers

Function Description

dir([obj]) Display attributes of obj ect or the names of global variables if no
parameter given

hel p([obj]) Display obj ect 's documentation string in a pretty-printed format or
enters interactive help if no parameter given

int(obj) Convert obj ect to an integer
| en(obj) Return length of obj ect
open(fn, node) Open file fn with node ('r' =read, 'w = write)

range([[start,]stop[,step]) Return a list of integers that begin at start up to but not including st op
in increments of step; start defaults to 0, and st ep defaults to 1

raw_i nput (str) Wait for text input from the user, optional prompt string can be
provided

str(obj) Convert obj ect to a string

type(obj) Return type of obj ect (a type object itself!)

e Py NEXT

file:///D|/1/0132269937/14051536.html
file:///D|/1/0132269937/14051536.html

e Py EXT

2.21. Exercises

2-1. Variables, print, and the String Format Operator. Start the interactive interpreter.
Assign values to some variables (strings, numbers, etc.) and display them within the
interpreter by typing their names. Also try doing the same thing with the pri nt
statement. What is the difference between giving just a variable name versus using it
in conjunction with print ? Also try using the string format operator (%) to become
familiar with it.

2-2. Program Output. Take a look at the following Python script:

#! [usr/ bin/ env python
1+2* 4

What do you think this script does?

What do you think this script will output?

Type the code in as a script program and execute it. Did it do what you
expected? Why or why not?

How does execution differ if you are running this code from within the
interactive interpreter? Try it and write down the results.

How can you improve the output of the script version so that it does what you
expect/want?

2-3. Numbers and Operators. Enter the interpreter. Use Python to add, subtract, multiply,
and divide two numbers (of any type). Then use the modulus operator to determine
the remainder when dividing one number by another, and finally, raise one number to
the power of another by using the exponentiation operator.

2-4.

User Input with raw_i nput () .

a.

Create a small script to use raw_i nput () built-in function to take a string input
from the user, then display to the user what he/she just typed in.

Add another piece of similar code, but have the input be numeric. Convert the
value to a number (using either i nt () or any of the other numeric conversion

functions), and display the value back to the user. (Note that if your version of
Python is older than 1.5, you will need to use the string. at o*() functions to

perform the conversion.)

Loops and Numbers. Create some loops using both whil e and for.

Write a loop that counts from 0 to 10 using a whi | e loop. (Make sure your
solution really does count from 0 to 10, not O to 9 or 1 to 10.)

Do the same loop as in part (a), but use a for loop and the range() built-in
function.

Conditionals. Detect whether a number is positive, negative, or zero. Try using fixed
values at first, then update your program to accept numeric input from the user.

Loops and Strings. Take a user input string and display string, one character at a time.
As in your above solution, perform this task with a whi | e loop first, then with a f or

loop.

Loops and Operators. Create a fixed list or tuple of five numbers and output their sum.
Then update your program so that this set of numbers comes from user input. As with
the problems above, implement your solution twice, once using whi | e and again with

for.

2-9.

2-10.

2-11.

2-12.

More Loops and Operators. Create a fixed list or tuple of five numbers and determine
their average. The most difficult part of this exercise is the division to obtain the
average. You will discover that integer division truncates and that you must use
floating point division to obtain a more accurate result. The fl oat () built-in function

may help you there.

User Input with Loops and Conditionals. Use raw i nput () to prompt for a number

between 1 and 100. If the input matches criteria, indicate so on the screen and exit.
Otherwise, display an error and reprompt the user until the correct input is received.

Menu-Driven Text Applications. Take your solutions to any number of the previous five
problems and upgrade your program to present a menu-driven text-based application
that presents the user with a set of choices, e.g., (1) sum of five numbers, (2)
average of five numbers,...s; (X) Quit. The user makes a selection, which is then
executed. The program exits when the user chooses the "quit" option. The great
advantage of a program like this is that it allows the user to run as many iterations of
your solutions without necessarily having to restart the same program over and over
again. (It is also good for the developer who is usually the first user and tester of their
applications!)

The dir () Built-In Function.

Start up the Python interpreter. Run the dir () built-in function by simply
typing dir () at the prompt. What do you see? Print the value of each element
in the list you see. Write down the output for each and what you think each is.

You may be asking, so what does dir () do? We have already seen that adding
the pair of parentheses after di r causes the function to run. Try typing just the
name di r at the prompt. What information does the interpreter give you? What
do you think it means?

The type() built-in function takes any Python object and returns its type. Try
running it on dir by entering type(dir) into the interpreter. What do you get?

For the final part of this exercise, let us take a quick look at Python
documentation strings. We can access the documentation for the dir ()

function by appending . __doc__after its name. So from the interpreter, display
the document string for di r () by typing the following at the prompt: print dir.
__doc__. Many of the built-in functions, methods, modules, and module

attributes have a documentation string associated with them. We invite you to

2-13.

2-14.

2-15.

put in your own as you write your code; it may help another user down the
road.

Finding Out More About the sys Module with dir ().

Start the Python interpreter again. Run the dir() command as in the previous
exercise. Now import the sys module by typing i nport sys at the prompt. Run
the di r () command again to verify that the sys module now shows up. Now
run the dir () command on the sys module by typing di r (sys) . Now you see all
the attributes of the sys module.

Display the versi on and pl at f or mvariables of the sys module. Be sure to
prepend the names with sys to indicate that they are attributes of sys. The

version variable contains information regarding the version of the Python
interpreter you are using, and the platform attribute contains the name of the
computer system that Python believes you are running on.

Finally, call the sys. exit () function. This is another way to quit the Python

interpreter in case the keystrokes described above in problem 1-4 do not get
you out of Python.

Operator Precedence and Grouping with Parentheses.
Rewrite the mathematical expression of the print statement in Section 2.4, but try to

group pairs of operands correctly, using parentheses.

Elementary Sorting.

a.
Have the user enter three numeric values and store them in three different
variables. Without using lists or sorting algorithms, manually sort these three
numbers from smallest to largest.

b.

How would you change your solution in part (a) to sort from largest to
smallest?

2-16. Files. Type in and/or run the file display code in Section 2.15. Verify that it works on
your system and try different input files as well.

e Py EXT

file:///D|/1/0132269937/14051536.html

@ prev |
Chapter 3. Python Basics

Chapter Topics

« Statements and Syntax
« Variable Assignment

o ldentifiers and Keywords
« Basic Style Guidelines

« Memory Management

« First Python Programs

Our next goal is to go through the basic Python syntax, describe some general style guidelines, then
brief you on identifiers, variables, and keywords. We will also discuss how memory space for variables is
allocated and deallocated. Finally, we will be exposed to a much larger example Python programtaking
the plunge, as it were. No need to worry, there are plenty of life preservers around that allow for
swimming rather than the alternative.

e Py EXT

e Py EXT

3.1. Statements and Syntax

Some rules and certain symbols are used with regard to statements in Python:

« Hash mark (#) indicates Python comments

« NEWLINE (\n) is the standard line separator (one statement per line)
« Backslash (\) continues a line

« Semicolon (;) joins two statements on a line

o Colon (;) separates a header line from its suite

. Statements (code blocks) grouped as suites

« Suites delimited via indentation

« Python files organized as modules

3.1.1. Comments (#)

First things first: Although Python is one of the easiest languages to read, it does not preclude the
programmer from proper and adequate usage and placement of comments in the code. Like many of its
Unix scripting brethren, Python comment statements begin with the pound sign or hash symbol (#). A
comment can begin anywhere on a line. All characters following the # to the end of the line are ignored
by the interpreter. Use them wisely and judiciously.

3.1.2. Continuation (\)

Python statements are, in general, delimited by NEWLINESs, meaning one statement per line. Single
statements can be broken up into multiple lines by use of the backslash. The backslash symbol (\) can
be placed before a NEWLINE to continue the current statement onto the next line.

check conditions
if (weather _is _hot == 1) and \
(shark_warni ngs == 0):
send_got o_beach_nesg_t o_pager ()

There are two exceptions where lines can be continued without backslashes. A single statement can take
up more than one line when enclosing operators are used, i.e., parentheses, square brackets, or braces,
and when NEWLINEs are contained in strings enclosed in triple quotes.

display a string with triple quotes

print """hi there, this is a long nessage for you
that goes over nultiple lines... you will find

out soon that triple quotes in Python all ows

this kind of fun! it is like a day on the beach!'"'

set sone variabl es
go_surf, get_a tan_while, boat_size, toll_noney = (1,
"wi ndsurfing', 40.0, -2.00)

Given a choice between using the backslash and grouping components you can break up with a
NEWLINE, i.e., with parentheses, we recommend the latter as it is more readable.

3.1.3. Multiple Statement Groups as Suites (:)

Groups of individual statements making up a single code block are called "suites"” in Python (as we
introduced in Chapter 2). Compound or complex statements, such asif, whil e, def, and cl ass, are
those that require a header line and a suite. Header lines begin the statement (with the keyword) and
terminate with a colon (tt) and are followed by one or more lines that make up the suite. We will refer

to the combination of a header line and a suite as a clause.
3.1.4. Suites Delimited via Indentation

As we introduced in Section 2.10, Python employs indentation as a means of delimiting blocks of code.

Code at inner levels are indented via spaces or tabs. Indentation requires exact indentation; in other
words, all the lines of code in a suite must be indented at the exact same level (e.g., same number of
spaces). Indented lines starting at different positions or column numbers are not allowed; each line
would be considered part of another suite and would more than likely result in syntax errors.

Core Style: Indent with four spaces and avoid using tabs

As someone who is perhaps new to block delimitation using
whitespace, a first obvious question might be: How many spaces
should | use? We think that two is too short, and six to eight is too
many, so we suggest four spaces for everyone. Also, because tabs
vary in the number of spaces depending on your system, we
recommend not using tabs if there is any hint of cross-platform
development. Both of these style guidelines are also supported by
Guido van Rossum, the creator of Python, and documented in the
Python Style Guide. You will find the same suggestions in our style
guide in Section 3.4.

A new code block is recognized when the amount of indentation has increased, an d its termination is
signaled by a "dedentation,™ or a reduction of indentation matching a previous level's. Code that is not
indented, i.e., the highest level of code, is considered the "main" portion of the script.

The decision to create code blocks in Python using indentation was based on the belief that grouping
code in this manner is more elegant and contributes to the ease of reading to which we alluded earlier.
It also helps avoid "dangling-else"-type problems, including ungrouped single statement clauses (those
where a C i f statement does not use braces at all, but has two indented statements following). The
second statement will execute regardless of the conditional, leading to more programmer confusion until
the light bulb finally blinks on.

Finally, no "holy brace wars" can occur when using indentation. In C (also C++ and Java), starting
braces may be placed on the same line as the header statement, or may start the very next line, or may
be indented on the next line. Some like it one way, some prefer the other, etc. You get the picture.

3.1.5. Multiple Statements on a Single Line (;)

The semicolon (;) allows multiple statements on a single line given that neither statement starts a new
code block. Here is a sample snip using the semicolon:

inmport sys; x = 'foo'; sys.stdout.write(x + '\n")

We caution the reader to be wary of chaining multiple statements on individual lines as it makes code
much less readable, thus less "Pythonic."

3.1.6. Modules

Each Python script is considered a module. Modules have a physical presence as disk files. When a
module gets large enough or has diverse enough functionality, it may make sense to move some of the
code out to another module. Code that resides in modules may belong to an application (i.e., a script
that is directly executed), or may be executable code in a library-type module that may be "imported"
from another module for invocation. As we mentioned in the last chapter, modules can contain blocks of
code to run, class declarations, function declarations, or any combination of all of those.

e prcy | NEXT

file:///D|/1/0132269937/14051536.html

e Py EXT

3.2. Variable Assignment

This section focuses on variable assignment. We will discuss which identifiers make valid variables in
Section 3.3.

Assignment Operator

The equal sign (=) is the main Python assignment operator. (The others are augmented assignment
operator [see next section].)

anlnt = -12

astring = 'cart'

aFloat = -3.1415 * (5.0 ** 2)

anotherString = 'shop' + 'ping

aList = [3.14el10, '2nd elm of a list', 8.82-4.371j]

Be aware now that assignment does not explicitly assign a value to a variable, although it may appear
that way from your experience with other programming languages. In Python, objects are referenced, so
on assignment, a reference (not a value) to an object is what is being assigned, whether the object was
just created or was a pre-existing object. If this is not 100 percent clear now, do not worry about it. We
will revisit this topic later on in the chapter, but just keep it in mind for now.

Also, if you are familiar with C, you know that assignments are treated as expressions. This is not the
case in Python, where assignments do not have inherent values. Statements such as the following are
invalid in Python:

>>> x = 1
>>> y (x = x + 1) # assignnents not expressions!
File "<stdin>", line 1
y = (x =x + 1)

AN

SyntaxError: invalid syntax

Chaining together assignments is okay, though (more on this later):

>>>y = x =x +1
>>> X, Y
(2, 2)

Augmented Assignment

Beginning in Python 2.0, the equal sign can be combined with an arithmetic operation and the resulting
value reassigned to the existing variable. Known as augmented assignment, statements such as ...

... can now be written as ...

X += 1

Augmented assignment refers to the use of operators, which imply both an arithmetic operation as well
as an assignment. You will recognize the following symbols if you come from a C/C++ or Java
background:

+= -= * = /= % *r=
<<= >>= &= A= | =

Other than the obvious syntactical change, the most significant difference is that the first object (A in
our example) is examined only once. Mutable objects will be modified in place, whereas immutable
objects will have the same effect as A = A + B (with a new object allocated) except that A is only
evaluated once, as we have mentioned before.

>>> m= 12

>>> moyE 7

>>>m

5

>>S> m*r= 2

>>>m

25

>>> alist = [123, 'xyz']
>>> alist += [45. 6e7]
>>> ali st

[123, 'xyz', 456000000. 0]

Python does not support pre-/post-increment nor pre-/post-decrement operators such as x++ or - - x.

Multiple Assignment

>>>x =y =z =1
>>> X

1

>>> y

1

>>> 7

1

In the above example, an integer object (with the value 1) is created, and x, y, and z are all assigned

the same reference to that object. This is the process of assigning a single object to multiple variables.
It is also possible in Python to assign multiple objects to multiple variables.

"Multuple" Assignment

Another way of assigning multiple variables is using what we shall call the "multuple" assignment. This
is not an official Python term, but we use "multuple" here because when assigning variables this way,
the objects on both sides of the equal sign are tuples, a Python standard type we introduced in Section

2.8.

>>> X, y, z =1, 2, "a string'
>>> X

1

>>> y

2

>>> 7

"a string'

In the above example, two integer objects (with values 1 and 2) and one string object are assigned to x,
y, and z respectively. Parentheses are normally used to denote tuples, and although they are optional,
we recommend them anywhere they make the code easier to read:

>>> (X, y, z) = (1, 2, "a string')

If you have ever needed to swap values in other languages like C, you will be reminded that a
temporary variable, i.e., t np, is required to hold one value while the other is being exchanged:

/* swapping variables in C */

tnmp = x;
X =Y,
y = tnp;

In the above C code fragment, the values of the variables x and y are being exchanged. The t np variable

is needed to hold the value of one of the variables while the other is being copied into it. After that step,
the original value kept in the temporary variable can be assigned to the second variable.

One interesting side effect of Python's "multuple” assignment is that we no longer need a temporary
variable to swap the values of two variables.

swappi ng variables in Python
>>> x, y =1, 2
>>> X

1

>>> y

2

>>> X, y =Yy, X
>>> X

2

>>> y

1

Obviously, Python performs evaluation before making assignments.

file:///D|/1/0132269937/14051536.html

NEXT B

e Py EXT

3.3. Identifiers

Identifiers are the set of valid strings that are allowed as names in a computer language. From this all-
encompassing list, we segregate out those that are keywords, names that form a construct of the
language. Such identifiers are reserved words that may not be used for any other purpose, or else a
syntax error (Synt axError exception) will occur.

Python also has an additional set of identifiers known as built-ins, and although they are not reserved
words, use of these special names is not recommended. (Also see Section 3.3.3.)

3.3.1. Valid Python Identifiers

The rules for Python identifier strings are like most other high-level programming languages that come
from the C world:

« First character must be a letter or underscore (_)
« Any additional characters can be alphanumeric or underscore
» Case-sensitive

No identifiers can begin with a number, and no symbols other than the underscore are ever allowed. The
easiest way to deal with underscores is to consider them as alphabetic characters. Case-sensitivity
means that identifier f oo is different from Foo, and both of those are different from FOO.

3.3.2. Keywords

Python's keywords are listed in Table 3.1. Generally, the keywords in any language should remain

relatively stable, but should things ever change (as Python is a growing and evolving language), a list of
keywords as well as an i skeywor d() function are available in the keywor d module.

Table 3.1. Python Keywords

[al
and b c] break
as[—1 assert[—1
cl ass continue def del
elif el se except exec
finally for from gl obal
i f i mport in is
| anbda not or pass
print rai se return try
whi | e b d e
Wi t h[—1 yi el d[—1 None[—1

file:///D|/1/0132269937/14051536.html

[access keyword obsoleted as of Python 1.4.

Bl New in Python 2.6.

1 New in Python 1.5.

4 New in Python 2.3.
I Not a keyword but made a constant in Python 2.4.

3.3.3. Built-ins

In addition to keywords, Python has a set of "built-in" names available at any level of Python code that
are either set and/or used by the interpreter. Although not keywords, built-ins should be treated as
"reserved for the system” and not used for any other purpose. However, some circumstances may call
for overriding (aka redefining, replacing) them. Python does not support overloading of identifiers, so
only one name "binding" may exist at any given time.

We can also tell advanced readers that built-ins are members of the __buil ti ns__ module, which is

automatically imported by the interpreter before your program begins or before you are given the >>>
prompt in the interactive interpreter. Treat them like global variables that are available at any level of
Python code.

3.3.4. Special Underscore Identifiers

Python designates (even more) special variables with underscores both prefixed and suffixed. We will
also discover later that some are quite useful to the programmer while others are unknown or useless.
Here is a summary of the special underscore usage in Python:

e _xxx Do not import with ' fromnodul e i nport *'
e _ xxx__ System-defined name

« __xxx Request private name mangling in classes

Core Style: Avoid using underscores to begin variable names

Because of the underscore usage for special interpreter and built-in
identifiers, we recommend that the programmer avoid beginning
variable names with the underscore. Generally, a variable named _xxx

is considered "private" and should not be used outside that module or
class. It is good practice to use _xxx to denote when a variable is

private. Since variables named __xxx__ often mean special things to
Python, you should avoid naming normal variables this way.

e Py EXT

file:///D|/1/0132269937/14051536.html

e Py EXT

3.4. Basic Style Guidelines

Comments

You do not need to be reminded that comments are useful both to you and those who come after you.
This is especially true for code that has been untouched by man (or woman) for a time (that means
several months in software development time). Comments should not be absent, nor should there be
novellas. Keep the comments explanatory, clear, short, and concise, but get them in there. In the end,
it saves time and energy for everyone. Above all, make sure they stay accurate!

Documentation

Python also provides a mechanism whereby documentation strings can be retrieved dynamically through
the _ doc__ special variable. The first unassigned string in a module, class declaration, or function

declaration can be accessed using the attribute obj . _doc__ where obj is the module, class, or function
name. This works during runtime too!

Indentation

Since indentation plays a major role, you will have to decide on a spacing style that is easy to read as
well as the least confusing. Common sense also plays a role in choosing how many spaces or columns to
indent.

1 or 2 Probably not enough; difficult to determine which block of code statements belong to

8 to 10 May be too many; code that has many embedded levels will wrap around, causing the source
to be difficult to read

Four spaces is very popular, not to mention being the preferred choice of Python's creator. Five and six
are not bad, but text editors usually do not use these settings, so they are not as commonly used. Three
and seven are borderline cases.

As far as tabs go, bear in mind that different text editors have different concepts of what tabs are. It is
advised not to use tabs if your code will live and run on different systems or be accessed with different
text editors.

Choosing ldentifier Names

The concept of good judgment also applies in choosing logical identifier names. Decide on short yet
meaningful identifiers for variables. Although variable length is no longer an issue with programming
languages of today, it is still a good idea to keep name sizes reasonable length. The same applies for
naming your modules (Python files).

Python Style Guide(s)

Guido van Rossum wrote up a Python Style Guide ages ago. It has since been replaced by no fewer than

file:///D|/1/0132269937/14051536.html

three PEPs: 7 (Style Guide for C Code), 8 (Style Guide for Python Code), and 257 (DocString
Conventions). These PEPs are archived, maintained, and updated regularly.

Over time, you will hear the term "Pythonic," which describes the Python way of writing code, organizing
logic, and object behavior. Over more time, you will come to understand what that means. There is also
another PEP, PEP 20, which lists the Zen of Python, starting you on your journey to discover what
Pythonic really means. If you are not online and need to see this list, then use i nport this from your

interpreter. Here are some links:

www.python.org/doc/essays/styleguide.html

www.python.org/dev/peps/pep-0007/

www.python.org/dev/peps/pep-0008/

www.python.org/dev/peps/pep-0020/

www.python.org/dev/peps/pep-0257/

3.4.1. Module Structure and Layout

Modules are simply physical ways of logically organizing all your Python code. Within each file, you
should set up a consistent and easy-to-read structure. One such layout is the following:

(1) startup line (Unix)
(2) nodul e docunent ation
(3) nodul e inports

(4) variable declarations
(5) class declarations
(6) function declarations
(7) "main" body

HoHHHFHHH

Figure 3-1 illustrates the internal structure of a typical module.

Figure 3-1. Typical Python file structure

http://www.python.org/doc/essays/styleguide.html
http://www.python.org/dev/peps/pep-0007/
http://www.python.org/dev/peps/pep-0008/
http://www.python.org/dev/peps/pep-0020/
http://www.python.org/dev/peps/pep-0257/

#/usr/bin/env python (1) Startup line (Unix)

"this 18 a test module" (2) Module documentation
import sys :

et ol (3) Module imports

debug = True (4) (Global) Variable declarations

class FooClass (object):
"Foo class" (5) Class declarations (if any)

pass

def test|():
"tegt function®

foo = Foollass () (6) Function declarations (if any)

if debug:
print 'ran test(}’

1f _I'li:'lll]E_ == '_I'['lalrl_' i {-?} umainls md?

1. Startup line

Generally used only in Unix environments, the startup line allows for script
execution by name only (invoking the interpreter is not required).

2. Module documentation

Summary of a module's functionality and significant global variables; accessible
externally as nodul e.__doc__.

Module imports

Import all the modules necessary for all the code in current module; modules are
imported once (when this module is loaded); imports within functions are not
invoked until those functions are called.

Variable declarations

Declare here (global) variables that are used by multiple functions in this module.
We favor the use of local variables over globals, for good programming style
mostly, and to a lesser extent, for improved performance and less memory usage.

Class declarations

Any classes should be declared here. A class is defined when this module is

imported and the cl ass statement executed. Documentation variable is cl ass.
__doc__.

Function declarations

Functions that are declared here are accessible externally as nodul e. function() ;
function is defined when this module is imported and the def statement executed.
Documentation variable is function. __doc__

"main" body

All code at this level is executed, whether this module is imported or started as a
script; generally does not include much functional code, but rather gives direction
depending on mode of execution.

Core Style: "main™ calls mai n()

The main body of code tends to contain lines such as the ones you see
above, which check the __nane__ variable and take appropriate action

(see Core Note on the following page). Code in the main body typically
executes the class, function, and variable declarations, then checks
__nane__ to see whether it should invoke another function (often called

mai n()), which performs the primary duties of this module. The main
body usually does no more than that. (Our example above uses t est ()
rather than mai n() to avoid confusion until you read this Core Style
sidebar.)

Regardless of the name, we want to emphasize that this is a great
place to put a test suite in your code. As we explain in Section 3.4.2,
most Python modules are created for import use only, and calling such
a module directly should invoke a regression test of the code in such a
module.

Most projects tend to consist of a single application and import any required modules. Thus it is
important to bear in mind that most modules are created solely to be imported rather than to execute as
scripts. We are more likely to create a Python library-style module whose sole purpose is to be imported
by another module. After all, only one of the modulesthe one that houses the main applicationwill be
executed, either by a user from the command line, by a batch or timed mechanism such as a Unix cron

job, via a Web server call, or through a GUI callback.

With that fact in hand, we should also remember that all modules have the ability to execute code. All
Python statements in the highest level of codethat is, the lines that are not indentedwill be executed on
import, whether desired or not. Because of this "feature,” safer code is written such that everything is in
a function except for the code that should be executed on an import of a module. Again, usually only the
main application module has the bulk of the executable code at its highest level. All other imported
modules will have very little on the outside, and everything in functions or classes. (See Core Note that
follows for more information.)

Core Note: nane__ indicates how module was loaded

Because the "main" code is executed whether a module is imported or
executed directly, we often need to know how this module was loaded
to guide the execution path. An application may wish to import the
module of another application, perhaps to access useful code which
will otherwise have to be duplicated (not the OO thing to do).
However, in this case, you only want access to this other application's
code, not necessarily to run it. So the big question is, "Is there a way
for Python to detect at runtime whether this module was imported or
executed directly?" The answer is ... (drum roll ...) yes! The _ nane__

system variable is the ticket.

« __nane__ contains module name if imported
« __nanme__ contains' __main__' if executed directly

3.4.2. Create Tests in the Main Body

For good programmers and engineers, providing a test suite or harness for our entire application is the
goal. Python simplifies this task particularly well for modules created solely for import. For these

modules, you know that they would never be executed directly. Wouldn't it be nice if they were invoked
to run code that puts that module through the test grinder? Would this be difficult to set up? Not really.

The test software should run only when this file is executed directly, i.e., not when it is imported from
another module, which is the usual case. Above and in the Core Note, we described how we can
determine whether a module was imported or executed directly. We can take advantage of this
mechanism by using the _ _nane__ variable. If this module was called as a script, plug the test code right
in there, perhaps as part of mai n() or test() (or whatever you decide to call your "second-level" piece of

code) function, which is called only if this module is executed directly.

The "tester" application for our code should be kept current along with any new test criteria and results,
and it should run as often as the code is updated. These steps will help improve the robustness of our
code, not to mention validating and verifying any new features or updates.

Tests in the main body are an easy way to provide quick coverage of your code. The Python standard
library also provides the uni ttest module, sometimes referred to as PyUnit, as a testing framework. Use

of uni ttest is beyond the scope of this book, but it is something to consider when you need serious
regression testing of a large system of components.

e prcy | NEXT

file:///D|/1/0132269937/14051536.html

e Py EXT

3.5. Memory Management

So far you have seen a large number of Python code samples. We are going to cover a few more details
about variables and memory management in this section, including:

« Variables not declared ahead of time

« Variable types not declared

« No memory management on programmers' part
« Variable names can be "recycled"

. del statement allows for explicit "deallocation”

3.5.1. Variable Declarations (or Lack Thereof)

In most compiled languages, variables must be declared before they are used. In fact, C is even more
restrictive: variables have to be declared at the beginning of a code block and before any statements
are given. Other languages, like C++ and Java, allow "on-the-fly" declarations, i.e., those which occur in
the middle of a body of codebut these name and type declarations are still required before the variables
can be used. In Python, there are no explicit variable declarations. Variables are "declared” on first
assignment. Like most languages, however, variables cannot be accessed until they are (created and)
assigned:

>>> a
Traceback (innernost |ast):
File "<stdin>", line 1, in ?

NameError: a

Once a variable has been assigned, you can access it by using its nhame:

>>> X 4

>>> y "this is a string'
>>> X

4

>>> y

"this is a string'

3.5.2. Dynamic Typing

Another observation, in addition to lack of variable declaration, is the lack of type specification. In
Python, the type and memory space for an object are determined and allocated at runtime. Although
code is byte-compiled, Python is still an interpreted language. On creationthat is, on assignmentthe
interpreter creates an object whose type is dictated by the syntax that is used for the operand on the
right-hand side of an assignment. After the object is created, a reference to that object is assigned to
the variable on the left-hand side of the assignment.

3.5.3. Memory Allocation

file:///D|/1/0132269937/14051536.html

As responsible programmers, we are aware that when allocating memory space for variables, we are
borrowing system resources, and eventually, we will have to return that which we borrowed back to the
system. Python simplifies application writing because the complexities of memory management have
been pushed down to the interpreter. The belief is that you should be using Python to solve problems
with and not have to worry about lower-level issues that are not directly related to your solution.

3.5.4. Reference Counting

To keep track of objects in memory, Python uses the simple technique of reference counting. This
means that internally, Python keeps track of all objects in use and how many interested parties there
are for any particular object. You can think of it as simple as card-counting while playing the card game
blackjack or 21. An internal tracking variable, called a reference counter, keeps track of how many
references are being made to each object, called a refcount for short.

When an object is created, a reference is made to that object, and when it is no longer needed, i.e.,
when an object's refcount goes down to zero, it is garbage-collected. (This is not 100 percent true, but
pretend it is for now.)

Incrementing the Reference Count

The refcount for an object is initially set to 1 when an object is created and (its reference) assigned.

New references to objects, also called aliases, occur when additional variables are assigned to the same
object, passed as arguments to invoke other bodies of code such as functions, methods, or class
instantiation, or assigned as members of a sequence or mapping.

Let us say we make the following declarations:

X = 3.14
y =X

The statement x = 3. 14 allocates a floating point number (float) object and assigns a reference x to it. x
is the first reference, hence setting that object's refcount to one. The statementy = x creates an alias vy,
which "points to" the same integer object as x (see Figure 3-2). A new object is not created for y.

Figure 3-2. An object with two references
x “_\‘

¥

Instead, the only thing that happens is that the reference count for this object is incremented by one (to
2). This is one way in which an object's refcount goes up. Other ways it can increment include the object
being passed into a function call, and when the object is added to a container object such as a list.

In summary, an object's refcount is increased when

« It (the object) is created

X = 3.14

« Additional aliases for it are created

« It is passed to a function (new local reference)

f oobar (x)
« It becomes part of a container object
myList = [123, x, 'xyz']
Now let us look at how reference counts go down.
Decrementing the Reference Count

When references to an object "go away," the refcount is decreased. The most obvious case is when a
reference goes out of scope. This occurs most often when the function in which a reference is made
completes. The local (automatic) variable is gone, and an object's reference counter is decremented.

A reference also goes away when a variable is reassigned to another object. For example:

foo = 'xyz'
bar = foo
foo = 123

The reference count for string object "xyz" is one when it is created and assigned to f oo. It is then
incremented when bar is added as an alias. However, when f oo is reassigned to the integer 123, the
reference count to "xyz" is decremented by one.

Other ways in which an object's reference count goes down include explicit removal of a reference using
the del statement (see next section), when an object is removed from a container (or if the reference

count to that container itself goes to zero).
In summary, an object's refcount is decreased when:

« A local reference goes out of scope, i.e., when foobar () (see previous example) terminates
« Aliases for that object are explicitly destroyed

del vy # or del x

« An alias is reassigned to another object (taking on a new reference)

x = 123

« It is explicitly removed from a container object

nyLi st. renove(x)

« The container itself is deallocated

del myLi st # or goes out-of -scope
See Section 11.8 for more information on variable scope.
del Statement

The del statement removes a single reference to an object. Its syntax is:

del obj1[, obj2[,... objN]

For example, executing del y in the example above has two results:

« Removes name y from current namespace
« Lowers reference count to object x (by one)

Further still, executing del x will remove the final reference to the object, decrementing the reference

counter to zero and causing the object to become "inaccessible” or "unreachable."” It is at this point that
the object becomes a candidate for garbage collection. Note that any tracing or debugging facility may
keep additional references to an object, delaying or postponing that object from being garbage-collected.

3.5.5. Garbage Collection

Memory that is no longer being used is reclaimed by the system using a mechanism known as garbage
collection. The interpreter keeps track of reference counts as above, but it is up to the garbage collector
to deallocate the memory. The garbage collector is a separate piece of code that looks for objects with
reference counts of zero. It is also responsible to check for objects with a reference count greater than
zero that need to be deallocated. Certain situations lead to cycles.

A cyclic reference is where you have (at least two) objects that refer to each other, and even if all other
references fall by the wayside, these references still exist, meaning that reference counting alone is not
good enough.

Python's garbage collector is actually a combination of reference counting and the periodic invocation of
a cyclic garbage collector. When an object's refcount reaches zero, the interpreter pauses to deallocate
it and all objects that were reachable only from that object. In addition to this reference counting, the
garbage collector also notices if a large number of objects have been allocated (and not deallocated
though reference counting). In such cases, the interpreter will pause to try to clear out any
unreferenced cycles.

e prcy | NEXT B

file:///D|/1/0132269937/14051536.html

e Py EXT

3.6. First Python Programs

Now that we are familiar with the syntax, style, variable assignment, and memory allocation, it is time
to look at slightly more complex code. You may or may not be familiar with all of the constructs of
Python that we're going to show, but we believe that Python is so simple and elegant that you should be
able to figure out what each piece of code does.

We are going to introduce two related scripts that manipulate text files. The first, makeText Fi | e. py,

creates text files. It prompts the user for each line of text and writes the results to a file. The other,
readText Fi |l e. py, reads and displays the contents of a text file to the screen.

Take a look at both now, and see if you can figure out how each works.

Example 3.1. File Create (makeText Fil e. py)

This application prompts the user for a (nonexistent) filename, then has the user enter
each line of that file (one at a time). Finally, it writes the entire text file to disk.

#!/usr/ bin/env python

"makeTextFile.py -- create text file'

s = os.linesep

1

2

3

4

5 inmport os
6

7

8 # get filenane
9

while True:
10
11 i f os.path.exists(fnane):
12 print "ERROR '%' already exists" % fnane
13 el se:
14 br eak
15
16 # get file content (text) lines
17 all =[]
18 print "\nEnter lines ('.' by itself to quit).\n"
19

20 # loop until user term nates input
21 while True:

22 entry = raw_input('> ")
23 if entry =="'.":

24 br eak

25 el se:

26 al | . append(entry)
27

28 # wite lines to file with proper line-ending
29 fobj = open(fnane, 'w)

30 fobj.witelines(['%%' %(x, Is) for x in all])
31 fobj.close()

32 print ' DONE!'

file:///D|/1/0132269937/14051536.html

Lines 13

The Unix startup line is followed by the module documentation string. Keep your documentation string
simple yet descriptive enough to be useful. Ours is a bit short, but so is this script. (We invite the reader
to take a look at the documentation string at the commencement of the cgi module in the standard

library for a seriously lengthy example of module documentation.)
Lines 56

We import the operating system (os) module next, and in line 6, we create a new local alias for the
| i nesep attribute of that module. By doing this, we can shorten the name of the variable and also speed
up access to it.

Core Tip: Use local variables to substitute for module attributes

Names like os. | i nesep require the interpreter to do two lookups: (1)

| ookup os to find that it is a module, and (2) look up the i nesep
attribute of that module. Because modules are also global variables,
we pay another penalty. If you use an attribute like this often in a
function, we recommend you alias it to a single local variable. Lookups
are much fasterlocal variables are always searched first before globals,
and we don't have attribute lookups either. This is one of the tricks in
making your programs faster: replace often-used (and name-lengthy)
module attributes with local references. Your code runs faster and has
less clutter with a shorter name.

In our code snippet, we do not have a function to show you an
example of using a local alias. Instead, we have a global alias, which is
halfway there. At least we do not have to perform two lookups to get
to the object.

Lines 814

If it is not apparent already, this is an "infinite loop," meaning we are presented with a body of code that
will repeat and run forever unless we exit the looplook for a br eak statement somewhere! The while true

conditional causes this to happen because whi | e statements execute whenever its conditional expression
evaluates to Boolean true, and true is Boolean true.

Lines 1014 prompt the user for an unused filename, meaning that the filename entered should not be
the name of an already existing file. The raw_i nput () built-in function takes an argument to use as the

prompt to the user. The resulting string entered by the user is the return value of raw_i nput (), which in
this case gets assigned to f nane.

If the user is unlucky enough to pick a name already in use, we notify the user and return the user to
the prompt to enter another (file)name. Note that os. pat h. exi st s() is a helper function in the os. path

(sub)module, which helps us make this determination. Only when a file with such a name does not exist,

meaning that os. pat h. exi st s() returns Fal se, do we break out of this loop and continue.
Lines 1626

This is the part of our application that gives the user some instruction and prompts them for the
contents of our text file, one line at a time. The al | list will hold each linewe initialize it on line 17. Line

21 begins another infinite loop, which prompts the user for each line of the text file and only terminates
when they enter a period '." on a line by itself. The i f - el se statement on lines 2326 look for that

sentinel and break out of the loop if it is seen (line 24); otherwise it adds another line to our total (line
26).

Lines 2832

Now that we have the entire contents in memory, we need to dump it to the text file. Line 29 opens the
file for write, and line 30 writes each line to the file. Every file requires a line terminator (or termination
character[s]). The construct on line 30, called a list comprehension, does the following: for every line in
our file, append it with the appropriate line terminator for our platform. ' %%' puts a line next to the

termination character(s), and the grouping (x, | s) represents each line x of all lines and the
terminatorfor Unix, itis'\n', DOS and Win32, '\r\n', etc. By using os. | i nesep, we do not need to have

code to check which operating system this program is running on in order to determine which line
terminating character(s) to use.

The file object's writelines() method then takes the resulting list of lines (now with terminators) and
writes it to the file. The file is then closed in line 31, and we are done!

Not too bad, right? Now let us look at how to view the file we just created! For this, we have your
second Python program, readText Fi | e. py. As you will see, it is much shorter than nakeTextfil e. py. The

complexity of file creation is almost always greater than the reading of it. The only new and interesting
part for you is the appearance of an exception handler.

Lines 13
These are the Unix startup line and module documentation string as usual.

Lines 57

Unlike makeText Fi | e. py where we kept pegging the user for names until they he or she chooses an
unused filename, we don't care in this example.

Example 3.2. File Read and Display (readText Fi |l e. py)

#!/usr/ bin/env python
"readTextFile.py -- read and display text file'
get filenane

fname = raw_input (' Enter filenane: ')
print

O©oO~NOUIA~WNPE

attenpt to open file for reading
10 try:

11 fobj = open(fnane, 'r')

12 except 1 OError, e:

13 print "*** file open error:", e
14 el se:

15 # di splay contents to the screen
16 for eachLine in fobj:

17 print eachLi ne,

18 fobj.close()

In other words, we are performing the validation elsewhere (if at all). Line 7 just displays a new line to
separate the prompting of the filename and the contents of the file.

Lines 918

This next Python construct (other than the comment) represents the rest of the script. Thisisatry-
except - el se statement. The try clause is a block of code that we want to monitor for errors. In our code
(lines 1011), we are attempting to open the file with the name the user entered.

The except clause is where we decide what type of errors we're looking out for and what to do if such
errors occur. In this case (lines 1213), we are checking to see if the file open() failedthis is usually an
| CError type of error.

Finally, lines 1418 represent the el se clause of a try- except the code that is executed if no errors
occurred in the TRy block. In our case, we display each line of the file to the screen. Note that because

we are not removing the trailing whitespace (line termination) characters from each line, we have to
suppress the NEWLINE that the print statement automatically generatesthis is done by adding a trailing

comma to the end of the print statement. We then close the file (line 18), which ends the program.

One final note regarding the use of os. pat h. exi st s() and an exception handler: The author is generally

in favor of the former, when there is an existing function that can be used to detect error conditionsand
even more simply, where the function is Boolean and gives you a "yes" or "no" answer. (Note that there
is probably already an exception handler in such a function.) Why do you have to reinvent the wheel
when there's already code just for that purpose?

An exception handler is best applied when there isn't such a convenient function, where you the
programmer must recognize an "out of the ordinary" error condition and respond appropriately. In our
case, we were able to dodge an exception because we check to see if a file exists, but there are many
other situations that may cause a file open to fail, such as improper permissions, the connection to a
network drive is out, etc. For safety's sake, you may end up with "checker" functions like os. pat h. exi st s
() in addition to an exception handler, which may be able to take care of a situation where no such
function is available.

You will find more examples of file system functions in Chapter 9 and more about exception handling in
Chapter 10.

e Py EXT

file:///D|/1/0132269937/14051536.html

e Py EXT

3.7. Related Modules/Developer Tools

The Python Style Guide (PEP 8), Python Quick Reference Guide, and the Python FAQ make for great
reading as developer "tools." In addition, there are some modules that may help you become a more
proficient Python programmer:

« Debugger: pdb
« Logger: | oggi ng
o Profilers: profile, hotshot, cProfile

The debugging module pdb allows you to set (conditional) breakpoints, single-step through lines of code,
and check out stack frames. It also lets you perform post-mortem debugging.

The I oggi ng module, which was added in Python 2.3, defines functions and classes that help you

implement a flexible logging system for your application. There are five levels of logging you can use:
critical, error, warning, info, and debug.

Python has had a history of profilers, mostly because they were implemented at different times by
different people with different needs. The original Python profil e module was written in pure Python and

measured the time spent in functions, the total time as well as the time spent per call, either only the
time spent in particular functions or including subsequent (sub)functions calls from there. It is the oldest
and the slowest of the three profilers but still gives useful profiling information.

The hot shot module was added in Python 2.2 and was intended to replace profil e because it fixes
various errors that profil e was prone to and has improved performance due to being implemented in C.
Note that hot shot focuses on reducing profiling overhead during execution but could take longer to
deliver results. A critical bug in the timing code was fixed in Python 2.5.

The cProfil e module, which was added in Python 2.5, was meant to replace the hot shot and profile
modules. The one significant flaw identified by the authors of cProfil e is that it takes a long time to load

results from the log file, does not support detailed child function statistics, and some results appear
inaccurate. It is also implemented in C.

e Py EXT

e Py EXT

3.8. Exercises

3-1. ldentifiers. Why are variable name and type declarations not used in Python?

3-2. ldentifiers. Why are function type declarations not used in Python?

3-3. ldentifiers. Why should we avoid beginning and ending variable names with double
underscores?

3-4 Statements. Can multiple Python statements be written on a single line?
3-5 Statements. Can a single Python statement be written over multiple lines?

3-6. Variable Assignment.

Given the assignment x,y, z = 1, 2, 3, what do x, y, and z contain?

What do x, y, and z contain after executing: z, x,y =y, z, x?

3-7. ldentifiers. Which of the following are valid Python identifiers? If not, why not? Of the
invalid ones, which are keywords?

i nt 32 40XL $avi ng$ printf print
_print this sel f __hane__ 0x40L
bool true bi g-daddy 2hot 2t ouch type
thislsn'tAvar thislsAvar R U Ready Int true

i f do counter-1 access

The remaining problems deal with the nakeText Fi |l e. py and readText Fi | e. py programs.

3-8. Python Code. Copy the scripts to your file system and customize (tweak, improve)
them. Modifications can include adding your own comments, changing the prompts (‘>

is pretty boring), etc. Get comfortable looking at and editing Python code.

3-9. Porting. If you have Python installed on different types of computers, check to see if
there are any differences in the os. | i nesep characters. Write down the type/OS and

what | i nesep is.

3-10.

3-11.

3-12.

3-13.

Exceptions. Replace the call to os. pat h. exi st s() in nakeText Fi | e. py with an exception
handler as seen in readText Fi | e. py. On the flip side, replace the exception handler in
readText Fi | e. py with a call to os. pat h. exi sts().

String Formatting. Rather than suppressing the NEWLINE character generated by the
print statement in readText Fi | e. py, change your code so that you strip each line of its
whitespace before displaying it. In this case, you can remove the trailing comma from
the print statement. Hint: Use the string stri p() method.

Merging Source Files. Combine both programs into onecall it anything you like,
perhaps readNwri t eText Fi | es. py. Let the user choose whether to create or display a

text file.

*Adding Features. Take your readNwr it eText Fi | es. py solution from the previous

problem and add a major feature to it: Allow the user to edit an existing text file. You
can do this any way you wish, whether you let the user edit line by line or the entire
document at once. Note that the latter is much more difficult as you may need help
from a GUI toolkit or a screen-based text editing module such as curses. Give users
the option to apply the changes (saving the file) or discard them (leaving the original
file intact), and also ensure the original file is preserved in case the program exits
abnormally during operation.

NEXT B

@ prev |
Chapter 4. Python Objects

Chapter Topics

« Python Objects
o Built-in Types
« Standard Type Operators

o Value Comparison
o Object Identity Comparison
o Boolean

« Standard Type Built-in Functions

o Categorizing the Standard Types

« Miscellaneous Types
« Unsupported Types

We will now begin our journey to the core part of the language. First we will introduce what Python
objects are, then discuss the most commonly used built-in types. We then discuss the standard type
operators and built-in functions (BIFs), followed by an insightful discussion of the different ways to
categorize the standard types to gain a better understanding of how they work. Finally, we will conclude
by describing some types that Python does not have (mostly as a benefit for those of you with
experience in another high-level language).

e prcy | NEXT B

@ prEV_
4.1. Python Objects

Python uses the object model abstraction for data storage. Any construct that contains any type of value
is an object. Although Python is classified as an "object-oriented programming (OOP) language,” OOP is
not required to create perfectly working Python applications. You can certainly write a useful Python
script without the use of classes and instances. However, Python's object syntax and architecture
encourage or "provoke" this type of behavior. Let us now take a closer look at what a Python object is.

All Python objects have the following three characteristics: an identity, a type, and a value.

IDENTITY Unique identifier that differentiates an object from all others. Any object's identifier can be
obtained using the i d() built-in function (BIF). This value is as close as you will get to a
"memory address" in Python (probably much to the relief of some of you). Even better is
that you rarely, if ever, access this value, much less care what it is at all.

TYPE An object's type indicates what kind of values an object can hold, what operations can be
applied to such objects, and what behavioral rules these objects are subject to. You can
use the type() BIF to reveal the type of a Python object. Since types are also objects in
Python (did we mention that Python was object-oriented?), t ype() actually returns an
object to you rather than a simple literal.

VALUE Data item that is represented by an object.

All three are assigned on object creation and are read-only with one exception, the value. (For new-style
types and classes, it may possible to change the type of an object, but this is not recommended for the
beginner.) If an object supports updates, its value can be changed; otherwise, it is also read-only.
Whether an object's value can be changed is known as an object's mutability, which we will investigate
later on in Section 4.7. These characteristics exist as long as the object does and are reclaimed when an
object is deallocated.

Python supports a set of basic (built-in) data types, as well as some auxiliary types that may come into
play if your application requires them. Most applications generally use the standard types and create and
instantiate classes for all specialized data storage.

4.1.1. Object Attributes

Certain Python objects have attributes, data values or executable code such as methods, associated with
them. Attributes are accessed in the dotted attribute notation, which includes the name of the
associated object, and were introduced in the Core Note in Section 2.14. The most familiar attributes are
functions and methods, but some Python types have data attributes associated with them. Objects with
data attributes include (but are not limited to): classes, class instances, modules, complex numbers,

and files.

e Py EXT

k=2
4.2. Standard Types

« Numbers (separate subtypes; three are integer types)
o Integer

=« Boolean
« Long integer
o Floating point real number
o Complex number
« String
o List
« Tuple
« Dictionary

We will also refer to standard types as "primitive data types" in this text because these types represent
the primitive data types that Python provides. We will go over each one in detail in Chapters 5, 6, and 7.

e prcy ExT

e Py EXT

4.3. Other Built-in Types

o Type
« Null object (None)

« File

« Set/Frozenset

« Function/Method
« Module

« Class

These are some of the other types you will interact with as you develop as a Python programmer. We
will also cover all of these in other chapters of this book with the exception of the t ype and None types,

which we will discuss here.
4.3.1. Type Objects and the t ype Type Object

It may seem unusual to regard types themselves as objects since we are attempting to just describe all
of Python's types to you in this chapter. However, if you keep in mind that an object's set of inherent
behaviors and characteristics (such as supported operators and built-in methods) must be defined
somewhere, an object's type is a logical place for this information. The amount of information necessary
to describe a type cannot fit into a single string; therefore types cannot simply be strings, nor should
this information be stored with the data, so we are back to types as objects.

We will formally introduce the type() BIF below, but for now, we want to let you know that you can find
out the type of an object by calling t ype() with that object:

>>> type(42)
<type 'int'>

Let us look at this example more carefully. It does not look tricky by any means, but examine the return
value of the call. We get the seemingly innocent output of <type 'int'>, but what you need to realize is

that this is not just a simple string telling you that 42 is an integer. What you see as <type 'int'>is

actually a type object. It just so happens that the string representation chosen by its implementors has
a string inside it to let you know that it is an i nt type object.

Now you may ask yourself, so then what is the type of any type object? Well, let us find out:

>>> type(type(42))
<type 'type' >

Yes, the type of all type objects is type. The type type object is also the mother of all types and is the

default metaclass for all standard Python classes. It is perfectly fine if you do not understand this now.
This will make sense as we learn more about classes and types.

With the unification of types and classes in Python 2.2, type objects are playing a more significant role

in both object-oriented programming as well as day-to-day object usage. Classes are now types, and
instances are now objects of their respective types.

4.3.2. None, Python's Null Object

Python has a special type known as the Null object or NoneType. It has only one value, None. The type of
None is NoneType. It does not have any operators or BIFs. If you are familiar with C, the closest analogy
to the None type is voi d, while the None value is similar to the C value of NULL. (Other similar objects and
values include Perl's undef and Java's voi d type and nul | value.) None has no (useful) attributes and
always evaluates to having a Boolean Fal se value.

Core Note: Boolean values

All standard type objects can be tested for truth value and compared
to objects of the same type. Objects have inherent TRue or Fal se

values. Objects take a Fal se value when they are empty, any numeric
representation of zero, or the Null object None.

The following are defined as having f al se values in Python:

« None

. Fal se (Boolean)

« Any numeric zero:
« 0 (integer)

« 0.0 (float)

« OL (long integer)

e 0.0+0.0j (complex)
« "" (empty string)

e [] (empty list)

e () (empty tuple)

« {} (empty dictionary)

Any value for an object other than those above is considered to have a
true value, i.e., non-empty, non-zero, etc. User-created class

instances have a f al se value when their nonzero (__nonzero__()) or
length (__lIen__()) special methods, if defined, return a zero value.

e Py EXT

file:///D|/1/0132269937/14051536.html

e Py EXT

4.4. Internal Types

« Code

« Frame

« Traceback
« Slice

« Ellipsis

« Xrange

We will briefly introduce these internal types here. The general application programmer would typically
not interact with these objects directly, but we include them here for completeness. Please refer to the
source code or Python internal and online documentation for more information.

In case you were wondering about exceptions, they are now implemented as classes. In older versions
of Python, exceptions were implemented as strings.

4.4.1. Code Objects

Code objects are executable pieces of Python source that are byte-compiled, usually as return values
from calling the conpi | e() BIF. Such objects are appropriate for execution by either exec or by the eval

() BIF. All this will be discussed in greater detail in Chapter 14.

Code objects themselves do not contain any information regarding their execution environment, but
they are at the heart of every user-defined function, all of which do contain some execution context.
(The actual byte-compiled code as a code object is one attribute belonging to a function.) Along with the
code object, a function’s attributes also consist of the administrative support that a function requires,
including its name, documentation string, default arguments, and global namespace.

4.4.2. Frame Objects

These are objects representing execution stack frames in Python. Frame objects contain all the
information the Python interpreter needs to know during a runtime execution environment. Some of its
attributes include a link to the previous stack frame, the code object (see above) that is being executed,
dictionaries for the local and global namespaces, and the current instruction. Each function call results in
a new frame object, and for each frame object, a C stack frame is created as well. One place where you
can access a frame object is in a traceback object (see the following section).

4.4.3. Traceback Objects

When you make an error in Python, an exception is raised. If exceptions are not caught or "handled,"
the interpreter exits with some diagnostic information similar to the output shown below:

Traceback (innernost |ast):
File "<stdin>", line N?, in ???
Error Name: error reason

The traceback object is just a data item that holds the stack trace information for an exception and is
created when an exception occurs. If a handler is provided for an exception, this handler is given access
to the traceback object.

4.4.4. Slice Objects

Slice objects are created using the Python extended slice syntax. This extended syntax allows for
different types of indexing. These various types of indexing include stride indexing, multi-dimensional
indexing, and indexing using the Ellipsis type. The syntax for multi-dimensional indexing is sequence
[startl : endl, start2 : end2], or using the ellipsis, sequence [..., startl : endl]. Slice objects can also

be generated by the slice() BIF.

Stride indexing for sequence types allows for a third slice element that allows for "step"-like access with
a syntax of sequence[starting_index : ending_index : stride].

Support for the stride element of the extended slice syntax have been in Python for a long time, but
until 2.3 was only available via the C API or Jython (and previously JPython). Here is an example of
stride indexing:

>>> foostr = 'abcde'
>>> foostr[::-1]

' edcha’

>>> foostr[::-2]
'eca'

>>> foolist = [123, 'xba', 342.23, 'abc']
>>> foolist[::-1]
["abc', 342.23, 'xba', 123]

4.4.5. Ellipsis Objects

Ellipsis objects are used in extended slice notations as demonstrated above. These objects are used to
represent the actual ellipses in the slice syntax (...). Like the Null object None, ellipsis objects also have

a single name, El li psi s, and have a Boolean TRue value at all times.
4.4.6. XRange Objects

XRange objects are created by the BIF xrange(), a sibling of the range() BIF, and used when memory is
limited and when range() generates an unusually large data set. You can find out more about r ange()

and xrange() in Chapter 8.

For an interesting side adventure into Python types, we invite the reader to take a look at the t ypes
module in the standard Python library.

e Py EXT

e Py EXT

4.5. Standard Type Operators

4.5.1. Object Value Comparison

Comparison operators are used to determine equality of two data values between members of the same
type. These comparison operators are supported for all built-in types. Comparisons yield Boolean TRue or

Fal se values, based on the validity of the comparison expression. (If you are using Python prior to 2.3
when the Boolean type was introduced, you will see integer values 1 for TRue and O for Fal se.) A list of
Python's value comparison operators is given in Table 4.1.

Table 4.1. Standard Type Value Comparison
Operators

Operator Function

exprl < expr2 expril is less than expr2

exprl > expr2 expri is greater than expr2

exprl <= expr2 exprl is less than or equal to expr2
exprl >= expr2 exprl is greater than or equal to expr2
exprl == expr2 expril is equal to expr2

exprl !'= expr2 expril is not equal to expr2 (C-style)

exprl <> expr?2) [al
exprl is not equal to expr2 (ABC/Pascal-style)

& This "ot equal” sign will be phased out in future version of Python. Use ! = instead.

Note that comparisons performed are those that are appropriate for each data type. In other words,
numeric types will be compared according to numeric value in sign and magnitude, strings will compare
lexicographically, etc.

>>> 2 ==

True

>>> 2,46 <= 8. 33
True

>>> 5+4j >= 2- 3]
True

>>> 'abc' == 'xyz
Fal se

>>> "abc' > 'xyz'

Fal se

>>> 'abc' < 'xyz'

True

>>> [3, 'abc'] == ['"abc', 3]
Fal se

>>> [3, 'abc'] == [3, 'abc']
True

Also, unlike many other languages, multiple comparisons can be made on the same line, evaluated in
left-to-right order:

>>> 3 < 4 <7 # sane as (3 <4) and (4 < 7))
True

>>> 4 > 3 == # sane as (4 >3) and (3 == 3)
True

>> 4 <3 <51=2«<7

Fal se

We would like to note here that comparisons are strictly between object values, meaning that the
comparisons are between the data values and not the actual data objects themselves. For the latter, we
will defer to the object identity comparison operators described next.

4.5.2. Object Identity Comparison

In addition to value comparisons, Python also supports the notion of directly comparing objects
themselves. Objects can be assigned to other variables (by reference). Because each variable points to
the same (shared) data object, any change effected through one variable will change the object and
hence be reflected through all references to the same object.

In order to understand this, you will have to think of variables as linking to objects now and be less
concerned with the values themselves. Let us take a look at three examples.

Example 1: fool and foo2 reference the same object

fool = foo2 = 4.3

When you look at this statement from the value point of view, it appears that you are performing a
multiple assignment and assigning the numeric value of 4.3 to both the f ool and f oo2 variables. This is

true to a certain degree, but upon lifting the covers, you will find that a numeric object with the contents
or value of 4.3 has been created. Then that object's reference is assigned to both f ool and f oo2,

resulting in both f ool and f oo2 aliased to the same object. Figure 4-1 shows an object with two
references.

Figure 4-1. f ool and f oo2 reference the same object

fool e
,wﬂﬁﬁfaﬂﬂv

fooZ2

Example 2: fool and foo2 reference the same object

4.3
f ool

fool
f 002

This example is very much like the first: A numeric object with value 4.3 is created, then assigned to
one variable. When f o002 = fool occurs, foo2 is directed to the same object as f ool since Python deals

with objects by passing references. f 002 then becomes a new and additional reference for the original
value. So both fool and f oo2 now point to the same object. The same figure above applies here as well.

Example 3: fool and foo2 reference different objects

fool = 4.3
f 002 1.3

+ 3.0

This example is different. First, a numeric object is created, then assigned to fool. Then a second
numeric object is created, and this time assigned to f 002. Although both objects are storing the exact
same value, there are indeed two distinct objects in the system, with f ool pointing to the first, and f oo2
being a reference to the second. Figure 4-2 shows we now have two distinct objects even though both
objects have the same value.

Figure 4-2. f ool and f 002 reference different objects

fool fooz

T [T~ 43

Why did we choose to use boxes in our diagrams? Well, a good way to visualize this concept is to
imagine a box (with contents inside) as an object. When a variable is assigned an object, that creates a
"label" to stick on the box, indicating a reference has been made. Each time a new reference to the
same object is made, another sticker is put on the box. When references are abandoned, then a label is
removed. A box can be "recycled" only when all the labels have been peeled off the box. How does the
system keep track of how many labels are on a box?

Each object has associated with it a counter that tracks the total number of references that exist to that
object. This number simply indicates how many variables are "pointing to" any particular object. This is
the reference count that we introduced in Chapter 3, Sections 3.5.5- 3.5.7 Python provides the i s and

i s not operators to test if a pair of variables do indeed refer to the same object. Performing a check
such as

aisb

i s an equival ent expression to

id(a) == id(b)

The object identity comparison operators all share the same precedence level and are presented in Table
4.2.

Table 4.2. Standard Type Object Identity
Comparison Operators

Operator Function

obj1is obj2 obj1 is the same object as obj2

obj1is not obj2 objl is not the same object as obj2

In the example below, we create a variable, then another that points to the same object.

>>>a =[5 'hat', -9.3]
>>> p = a

>>> ais b

True

>>> ais not b
Fal se

>>>

>>> ph = 2.5e-5
>>> P

2.5e-005

>>> a

[5, "hat', -9.3]
>>> ais b

Fal se

>>> g is not b
True

Both the i s and not identifiers are Python keywords.

Core Note: Interning

In the above examples with the f ool and f 002 objects, you will notice

that we use floating point values rather than integers. The reason for
this is although integers and strings are immutable objects, Python
sometimes caches them to be more efficient. This would have caused
the examples to appear that Python is not creating a new object when
it should have. For example:

>>> a =1
>>> jd(a)
8402824
>>>ph =1
>>> j d(b)
8402824
>>>

>>>c¢ = 1.0
>>> id(c)
8651220
>>>d = 1.0
>>> jd(d)
8651204

In the above example, a and b reference the same integer object, but
c and d do not reference the same float object. If we were purists, we
would want a and b to work just like ¢ and d because we really did ask
to create a new integer object rather than an alias, asin b = a.

Python caches or interns only simple integers that it believes will be
used frequently in any Python application. At the time of this writing,
Python interns integers in the range(-1, 100) but this is subject to
change, so do not code your application to expect this.

In Python 2.3, the decision was made to no longer intern strings that

do not have at least one reference outside of the "interned strings
table.” This means that without that reference, interned strings are no
longer immortal and subject to garbage collection like everything else.
A BIF introduced in 1.5 to request interning of strings, i ntern(), has

now been deprecated as a result.

4.5.3. Boolean

Expressions may be linked together or negated using the Boolean logical operators and, or, and not, all

of which are Python keywords. These Boolean operations are in highest-to-lowest order of precedence in
Table 4.3. The not operator has the highest precedence and is immediately one level below all the

comparison operators. The and and or operators follow, respectively.

Table 4.3. Standard Type Boolean Operators

Operator Function

not expr Logical NOT of expr (negation)
exprl and expr2 Logical AND of exprl and expr2 (conjunction)

exprl orexpr2 Logical OR of exprl and expr2 (disjunction)

>>> x, y = 3.1415926536, -1024
>>> x < 5.0

True

>>> not (X < 5.0)

Fal se

>>> (x < 5.0) or (y > 2.718281828)
True

>>> (x < 5.0) and (y > 2.718281828)
Fal se

>>> not (X is vy)

True

Earlier, we introduced the notion that Python supports multiple comparisons within one expression.
These expressions have an implicit and operator joining them together.

>>> 3 <4 <7 # same as "(3 <4) and (4 <7)"
True

e Py EXT

e Py EXT

4.6. Standard Type Built-in Functions

Along with generic operators, which we have just seen, Python also provides some BIFs that can be
applied to all the basic object types: cnp() ,repr(),str(),type(), and the single reverse or back quotes

(" 7) operator, which is functionally equivalent to repr ().

Table 4.4. Standard Type Built-in Functions

Function Operation

cnp(obj 1, obj2) Compares obj 1 and obj 2, returns integer i where:
i < O0ifobjl<obj2
i > 0if obj 1 > obj2
i == 0 if obj 1 == obj2

repr(obj) or "obj" Returns evaluatable string representation of obj

str(obj) Returns printable string representation of obj
type(obj) Determines type of obj and return type object
4.6.1. type()

We now formally introduce type() . In Python versions earlier than 2.2, type() is a BIF. Since that

release, it has become a "factory function." We will discuss these later on in this chapter, but for now,
you may continue to think of type() as a BIF. The syntax for type() is:

type(obj ect)

type() takes an object and returns its type. The return value is a type object.

>>> type(4) # int type
<type 'int'>

>>>

>>> type('Hello World!") # string type
<type 'string' >

>>>

>>> type(type(4)) # type type

<type 'type' >

In the examples above, we take an integer and a string and obtain their types using the type() BIF; in
order to also verify that types themselves are types, we call t ype() on the output of a type() call.

file:///D|/1/0132269937/14051536.html

Note the interesting output from the type() function. It does not look like a typical Python data type, i.

e., a number or string, but is something enclosed by greater-than and less-than signs. This syntax is
generally a clue that what you are looking at is an object. Objects may implement a printable string
representation; however, this is not always the case. In these scenarios where there is no easy way to
"display" an object, Python "pretty-prints" a string representation of the object. The format is usually of
the form: <obj ect _sonet hi ng_or _anot her >. Any object displayed in this manner generally gives the object
type, an object ID or location, or other pertinent information.

4.6.2. cnp()

The cnp() BIF CoMPares two objects, say, obj 1 and obj 2, and returns a negative number (integer) if obj 1

is less than obj 2, a positive number if obj 1 is greater than obj 2, and zero if obj 1 is equal to obj 2. Notice
the similarity in return values as C's strcnp() . The comparison used is the one that applies for that type

of object, whether it be a standard type or a user-created class; if the latter, cnp() will call the class’s
special __cnp__() method. More on these special methods in Chapter 13, on Python classes. Here are
some samples of using the cnp() BIF with numbers and strings.

>>>a, b =-4, 12

>>> cmp(a, b)
-1

>>> cnp(b, a)
1

>>> ph = -4
>>> cnp(a, b)
0

>>>

>>> a, b = "'abc', 'xyz'
>>> cnp(a, b)
-23

>>> cnp(b, a)
23

>>> b = ' abc'
>>> cnp(a, b)
0

We will look at using cnp() with other objects later.
4.6.3.str() and repr() (and =~ Operator)

The str() STRing and repr () REPResentation BIFs or the single back or reverse quote operator (=~)

come in very handy if the need arises to either re-create an object through evaluation or obtain a
human-readable view of the contents of objects, data values, object types, etc. To use these operations,
a Python object is provided as an argument and some type of string representation of that object is
returned. In the examples that follow, we take some random Python types and convert them to their
string representations.

>>> str(4.53-2j)
'(4.53-2j)"

>>>

>>> str(1)

e

>>>

>>> str(2el0)
' 20000000000. 0

>>>
>>> str([0, 5, 9, 9])
[0, 5, 9, 9]

>>>

>>> repr([0, 5, 9, 9])
[0, 5, 9, 9]

>>>

>>> [0, 5 9, 9]
[0, 5, 9, 9]

Although all three are similar in nature and functionality, only repr() and *° do exactly the same thing,

and using them will deliver the "official" string representation of an object that can be evaluated as a
valid Python expression (using the eval () BIF). In contrast, str() has the job of delivering a "printable"

string representation of an object, which may not necessarily be acceptable by eval (), but will look nice
in a print statement. There is a caveat that while most return values from repr () can be evaluated, not
all can:

>>> eval (" type(type)))
File "<stdin>", line 1

eval (‘type(type)z\‘)

SyntaxError: invalid syntax

The executive summary is that repr () is Python-friendly while str() produces human-friendly output.

However, with that said, because both types of string representations coincide so often, on many
occasions all three return the exact same string.

Core Note: Why have both repr() and " ?

Occasionally in Python, you will find both an operator and a function
that do exactly the same thing. One reason why both an operator and
a function exist is that there are times where a function may be more
useful than the operator, for example, when you are passing around
executable objects like functions and where different functions may be
called depending on the data item. Another example is the double-star
(**) and pow() BIF, which performs "x to the y power" exponentiation

for x ** y or pow(x,y).

4.6.4.type() and i si nstance()

Python does not support method or function overloading, so you are responsible for any "introspection
of the objects that your functions are called with. (Also see the Python FAQ 4.75.) Fortunately, we have
the type() BIF to help us with just that, introduced earlier in Section 4.3.1.

What's in a name? Quite a lot, if it is the name of a type. It is often advantageous and/or necessary to
base pending computation on the type of object that is received. Fortunately, Python provides a BIF just
for that very purpose. type() returns the type for any Python object, not just the standard types. Using

the interactive interpreter, let us take a look at some examples of what type() returns when we give it
various objects.

>>> type('")
<type 'str'>
>>>

>>> 5 = 'xyz'
>>> type(s)
<type 'str'>
>>>

>>> type(100)
<type 'int'>
>>> type(0+0j)
<type 'conpl ex' >
>>> type(O0OL)
<type 'long' >
>>> type(0.0)
<type 'float'>
>>>

>>> type([])
<type 'list'>
>>> type(())
<type 'tuple'>
>>> type({})
<type 'dict'>
>>> type(type)
<type 'type' >
>>>

>>> cl ass Foo: pass # newstyle class

>>> foo = Foo()
>>> cl ass Bar(object): pass # newstyle class

>>> par = Bar ()

>>>

>>> t ype(Foo)

<type 'cl assobj'>

>>> type(foo)

<type 'instance'>

>>> type(Bar)

<type 'type' >

>>> type(bar)

<class ' _main__.Bar'>

Types and classes were unified in Python 2.2. You will see output different from that above if you are
using a version of Python older than 2.2:

>>> type('")

<type 'string' >

>>> type(OL)

<type 'long int'>

>>> type({})

<type 'dictionary' >

>>> type(type)

<type 'builtin_function_or_nethod >

>>>

>>> t ype(Foo) # assunes Foo created as in above

<type 'class' >
>>> type(foo) # assunes foo instantiated al so
<type 'instance'>

In addition to type(), there is another useful BIF called i si nst ance() . We cover it more formally in
Chapter 13 (Object-Oriented Programming), but here we can introduce it to show you how you can use
it to help determine the type of an object.

Example

We present a script in Example 4.1 that shows how we can use i si nstance() and type() in a runtime
environment. We follow with a discussion of the use of type() and how we migrated to using i si nst ance
() instead for the bulk of the work in this example.

Example 4.1. Checking the Type (t ypechk. py)

The function di spl ayNunifype() takes a numeric argument and uses the type() built-in to
indicate its type (or "not a number," if that is the case).

1 #!/usr/bin/env python

2

3 def displayNumlype(nun:

4 print num 'is',

5 if isinstance(num (int, long, float, conplex)):
6 print 'a nunber of type:', type(nunm).__nane__
7 el se:

8 print 'not a nunber at all!!’

9

10 di spl ayNumrype(-69)

11 di spl ayNunilype(9999999999999999999999L)
12 di spl ayNumrype(98. 6)

13 di spl ayNumType(-5. 2+1. 9j)

14 di spl ayNumlype(' xxx")

Running t ypechk. py, we get the following output:

-69 is a nunber of type: int
9999999999999999999999 is a nunber of type: |ong
98.6 is a nunber of type: float

(-5.2+1.9)) is a nunmber of type: conplex

XXX is not a nunber at all!

The Evolution of This Example
Original

The same function was defined quite differently in the first edition of this book:

def di spl ayNumlype(nunj:

print num "is",

if type(num) == type(0):
print 'an integer’

elif type(nunm) == type(OL):
print "a |l ong'

elif type(num) == type(0.0):
print "a float'

elif type(nun) == type(0+0j):
print 'a conplex nunber'

el se:
print 'not a nunber at all!!’

As Python evolved in its slow and simple way, so must we. Take a look at our original conditional
expression:

if type(num) == type(0)...

Reducing Number of Function Calls

If we take a closer look at our code, we see a pair of calls to t ype(). As you know, we pay a small price
each time a function is called, so if we can reduce that number, it will help with performance.

An alternative to comparing an object's type with a known object's type (as we did above and in the
example below) is to utilize the t ypes module, which we briefly mentioned earlier in the chapter. If we
do that, then we can use the type object there without having to "calculate it." We can then change our
code to only having one call to the type() function:

>>> jnport types
>>> | f type(num) == types.IntType...

Object Value Comparison versus Object Identity Comparison

We discussed object value comparison versus object identity comparison earlier in this chapter, and if
you realize one key fact, then it will become clear that our code is still not optimal in terms of
performance. During runtime, there is always only one type object that represents an integer. In other
words, type(0), type(42), type(-100) are always the same object: <type 'int'> (and this is also the
same object as types. | nt Type).

If they are always the same object, then why do we have to compare their values since we already
know they will be the same? We are "wasting time" extracting the values of both objects and comparing
them if they are the same object, and it would be more optimal to just compare the objects themselves.
Thus we have a migration of the code above to the following:

if type(num is types.IntType... # or type(0)

Does that make sense? Object value comparison via the equal sign requires a comparison of their
values, but we can bypass this check if the objects themselves are the same. If the objects are different,

then we do not even need to check because that means the original variable must be of a different type
(since there is only one object of each type). One call like this may not make a difference, but if there
are many similar lines of code throughout your application, then it starts to add up.

Reduce the Number of Lookups

This is a minor improvement to the previous example and really only makes a difference if your
application performs makes many type comparisons like our example. To actually get the integer type
object, the interpreter has to look up the t ypes name first, and then within that module's dictionary, find

I nt Type. By using fromi nport, you can take away one lookup:

fromtypes inport IntType
if type(num is IntType ...

Convenience and Style

The unification of types and classes in 2.2 has resulted in the expected rise in the use of the i si nstance
() BIF. We formally introduce i si nst ance() in Chapter 13 (Object-Oriented Programming), but we will
give you a quick preview now.

This Boolean function takes an object and one or more type objects and returns t r ue if the object in
question is an instance of one of the type objects. Since types and classes are now the same, i nt is now
a type (object) and a class. We can use i si nst ance() with the built-in types to make our i f statement
more convenient and readable:

if isinstance(num int)...

Using i si nst ance() along with type objects is now also the accepted style of usage when introspecting
objects’ types, which is how we finally arrive at our updated t ypechk. py application above. We also get
the added bonus of i si nst ance() accepting a tuple of type objects to check against our object with
instead of having anif-elif-else if we were to use only type().

4.6.5. Python Type Operator and BIF Summary

A summary of operators and BIFs common to all basic Python types is given in Table 4.5. The

progressing shaded groups indicate hierarchical precedence from highest-to-lowest order. Elements
grouped with similar shading all have equal priority. Note that these (and most Python) operators are
available as functions via the oper at or module.

Table 4.5. Standard Type Operators and Built-
in Functions

Operator/Function Description t| al

Resul

String representation

String representation str

cp(obj 1, obj 2) Compares two objects i nt
repr(obj) String representation str
str(obj) String representation str
type(obj) Determines object type tYypPe

< Less than bool
> Greater than bool
<= Less than or equal to bool
>= Greater than or equal to Pool
== Equal to bool
1= Not equal to bool
<> Not equal to bool

is The same as bool

i's not Not the same as bool

not Logical negation bool
and Logical conjunction bool
or Logical disjunction bool

[l Boolean comparisons return either TRue or Fal se.

MNEXT B

file:///D|/1/0132269937/14051536.html

=1 NExT

4.7. Type Factory Functions

Since Python 2.2 with the unification of types and classes, all of the built-in types are now classes, and
with that, all of the "conversion" built-in functions like i nt (), type(), list(), etc., are now factory

functions. This means that although they look and act somewhat like functions, they are actually class
names, and when you call one, you are actually instantiating an instance of that type, like a factory
producing a good.

The following familiar factory functions were formerly built-in functions:

e int(), long(), float(), conplex()
e str(), unicode(), basestring()

o list(), tuple()

« type()

Other types that did not have factory functions now do. In addition, factory functions have been added
for completely new types that support the new-style classes. The following is a list of both types of
factory functions:

dict()

bool ()

set (), frozenset()
obj ect ()

cl assnet hod()
stati cmet hod()
super ()

property()

file()

=1 NExT

file:///D|/1/0132269937/14051536.html

e Py EXT

4.8. Categorizing the Standard Types

If we were to be maximally verbose in describing the standard types, we would probably call them
something like Python's "basic built-in data object primitive types."

« "Basic," indicating that these are the standard or core types that Python provides

« "Built-in," due to the fact that these types come by default in Python

. "Data," because they are used for general data storage

« "Object,” because objects are the default abstraction for data and functionality

« "Primitive,"” because these types provide the lowest-level granularity of data storage
. "Types," because that's what they are: data types!

However, this description does not really give you an idea of how each type works or what functionality
applies to them. Indeed, some of them share certain characteristics, such as how they function, and
others share commonality with regard to how their data values are accessed. We should also be
interested in whether the data that some of these types hold can be updated and what kind of storage
they provide.

There are three different models we have come up with to help categorize the standard types, with each
model showing us the interrelationships between the types. These models help us obtain a better
understanding of how the types are related, as well as how they work.

4.8.1. Storage Model

The first way we can categorize the types is by how many objects can be stored in an object of this
type. Python's types, as well as types from most other languages, can hold either single or multiple
values. A type which holds a single literal object we will call atomic or scalar storage, and those which
can hold multiple objects we will refer to as container storage. (Container objects are also referred to as
composite or compound objects in the documentation, but some of these refer to objects other than
types, such as class instances.) Container types bring up the additional issue of whether different types
of objects can be stored. All of Python's container types can hold objects of different types. Table 4.6

categorizes Python's types by storage model.

Table 4.6. Types Categorized by the Storage Model

Storage Model Category Python Types That Fit Category

Scalar/atom Numbers (all numeric types), strings (all are literals)

Container Lists, tuples, dictionaries

Although strings may seem like a container type since they "contain" characters (and usually more than
one character), they are not considered as such because Python does not have a character type (see
Section 4.8). Thus strings are self-contained literals.

4.8.2. Update Model

Another way of categorizing the standard types is by asking the question, "Once created, can objects be
changed, or can their values be updated?" When we introduced Python types early on, we indicated that
certain types allow their values to be updated and others do not. Mutable objects are those whose
values can be changed, and immutable objects are those whose values cannot be changed. Table 4.7

illustrates which types support updates and which do not.

Table 4.7. Types Categorized by the Update
Model

Update Model Category Python Types That Fit Category

Mutable Lists, dictionaries

Immutable Numbers, strings, tuples

Now after looking at the table, a thought that must immediately come to mind is, "Wait a minute! What
do you mean that numbers and strings are immutable? I've done things like the following":

"Pyt hon nunbers and strings’
"are inmutabl e?! ? What gives?'
0

i+ 1

—_— X
I

"They sure as heck don't look immutable to me!"™ That is true to some degree, but looks can be
deceiving. What is really happening behind the scenes is that the original objects are actually being
replaced in the above examples. Yes, that is right. Read that again.

Rather than referring to the original objects, new objects with the new values were allocated and (re)
assigned to the original variable names, and the old objects were garbage-collected. One can confirm
this by using the i d() BIF to compare object identities before and after such assignments.

If we added calls to i d() in our example above, we may be able to see that the objects are being
changed, as below:

>>> x = 'Python nunbers and strings’
>>> print id(x)

16191392

>>> x = 'are inmmutabl e?!'? Wiat gives?
>>> print id(x)

16191232

>> | =0

>>> print id(i)

7749552

>>) =) + 1

>>> print id(i)

7749600

Your mileage will vary with regard to the object IDs as they will differ between executions. On the flip

side, lists can be modified without replacing the original object, as illustrated in the code below:

>>> alist = ["ammnia', 83, 85, 'lady']
>>> ali st

['amonia', 83, 85, 'lady']

>>>

>>> alist][2]
85

>>>

>>> jd(aList)
135443480
>>>

>>> alist][2]
>>> ali st 3]
>>> ali st
['amoDnia', 83, 86, 'stereo']
>>>

>>> jd(aList)

135443480

>>>

>>> ali st. append(' gaudy')

>>> alist.append(aList[2] + 1)

aList[2] + 1
'stereo’

>>> ali st

['amonia', 83, 86, 'stereo', 'gaudy', 87]
>>>

>>> j d(aList)

135443480

Notice how for each change, the ID for the list remained the same.
4.8.3. Access Model

Although the previous two models of categorizing the types are useful when being introduced to Python,
they are not the primary models for differentiating the types. For that purpose, we use the access
model. By this, we mean, how do we access the values of our stored data? There are three categories
under the access model: direct, sequence, and mapping. The different access models and which types
fall into each respective category are given in Table 4.8.

Table 4.8. Types Categorized by the
Access Model

Access Model Category Types That Fit Category

Direct Numbers
Sequence Strings, lists, tuples
Mapping Dictionaries

Direct types indicate single-element, non-container types. All numeric types fit into this category.

Sequence types are those whose elements are sequentially accessible via index values starting at O.
Accessed items can be either single elements or in groups, better known as slices. Types that fall into
this category include strings, lists, and tuples. As we mentioned before, Python does not support a
character type, so, although strings are literals, they are a sequence type because of the ability to
access substrings sequentially.

Mapping types are similar to the indexing properties of sequences, except instead of indexing on a
sequential numeric offset, elements (values) are unordered and accessed with a key, thus making
mapping types a set of hashed key-value pairs.

We will use this primary model in the next chapter by presenting each access model type and what all
types in that category have in common (such as operators and BIFs), then discussing each Python
standard type that fits into those categories. Any operators, BIFs, and methods unique to a specific type
will be highlighted in their respective sections.

So why this side trip to view the same data types from differing perspectives? Well, first of all, why
categorize at all? Because of the high-level data structures that Python provides, we need to
differentiate the "primitive"” types from those that provide more functionality. Another reason is to be
clear on what the expected behavior of a type should be. For example, if we minimize the number of
times we ask ourselves, "What are the differences between lists and tuples again?" or "What types are
immutable and which are not?" then we have done our job. And finally, certain categories have general
characteristics that apply to all types in a certain category. A good craftsman (and craftswoman) should
know what is available in his or her toolboxes.

The second part of our inquiry asks, "Why all these different models or perspectives"? It seems that
there is no one way of classifying all of the data types. They all have crossed relationships with each
other, and we feel it best to expose the different sets of relationships shared by all the types. We also
want to show how each type is unique in its own right. No two types map the same across all categories.
(Of course, all numeric subtypes do, so we are categorizing them together.) Finally, we believe that
understanding all these relationships will ultimately play an important implicit role during development.
The more you know about each type, the more you are apt to use the correct ones in the parts of your
application where they are the most appropriate, and where you can maximize performance.

We summarize by presenting a cross-reference chart (see Table 4.9) that shows all the standard types,
the three different models we use for categorization, and where each type fits into these models.

Table 4.9. Categorizing the Standard Types

Data Type Storage Model Update Model Access Model

Numbers Scalar Immutable Direct

Strings Scalar Immutable Sequence
Lists Container Mutable Sequence
Tuples Container Immutable Sequence

Dictionaries Container Mutable Mapping

NEXT B

e Py EXT

4.9. Unsupported Types

Before we explore each standard type, we conclude this chapter by giving a list of types that are not
supported by Python.

char or byte

Python does not have a char or byte type to hold either single character or 8-bit integers. Use strings of
length one for characters and integers for 8-bit numbers.

pointer

Since Python manages memory for you, there is no need to access pointer addresses. The closest to an
address that you can get in Python is by looking at an object's identity using the i d() BIF. Since you

have no control over this value, it's a moot point. However, under Python's covers, everything is a
pointer.

i nt versus short versus | ong

Python's plain integers are the universal "standard" integer type, obviating the need for three different
integer types, e.g., C'sint, short, and | ong. For the record, Python's integers are implemented as C

I ongs. Also, since there is a close relationship between Python's i nt and | ong types, users have even

fewer things to worry about. You only need to use a single type, the Python integer. Even when the size
of an integer is exceed, for example, multiplying two very large numbers, Python automatically gives
you a long back instead of overflowing with an error.

fl oat versus doubl e

C has both a single precision fl oat type and double-precision doubl e type. Python's fl oat type is actually
a C doubl e. Python does not support a single-precision floating point type because its benefits are

outweighed by the overhead required to support two types of floating point types. For those wanting
more accuracy and willing to give up a wider range of numbers, Python has a decimal floating point
number too, but you have to import the deci mal module to use the Deci mal type. Floats are always
estimations. Decimals are exact and arbitrary precision. Decimals make sense concerning things like
money where the values are exact. Floats make sense for things that are estimates anyway, such as
weights, lengths, and other measurements.

e Py EXT

file:///D|/1/0132269937/14051536.html

e Py EXT

4.10. Exercises

4-1 Python Objects. What three attributes are associated with all Python objects? Briefly
describe each one.

4-2. Types. What does immutable mean? Which Python types are mutable and which are
not?

4-3. Types. Which Python types are sequences, and how do they differ from mapping
types”?

4-4. type(). What does the type() built-in function do? What kind of object does t ype()
return?

4-5 str() and repr (). What are the differences between the str() and repr () built-in
functions? Which is equivalent to the backquote ("~) operator?

4-6 Object Equality. What do you think is the difference between the expressions t ype(a)
== type(b) and type(a) is type(b)? Why is the latter preferred? What does i si nst ance
() have to do it all of this?

4-7. dir() Built-in Function. In several exercises in Chapter 2, we experimented with a
built-in function called di r (), which takes an object and reveals its attributes. Do the
same thing for the t ypes module. Write down the list of the types that you are familiar

with, including all you know about each of these types; then create a separate list of
those you are not familiar with. As you learn Python, deplete the "unknown™ list so
that all of them can be moved to the "familiar with™ list.

4-8. Lists and Tuples. How are lists and tuples similar? Different?

4-9.

*Interning. Given the following assignments:

10
10
100
100
10.0
10.0

DO O O T Q
(1 A | O | 1|

What is the output of each of the following and why?

a.

aisb

cisd

eisf

NEXT B

file:///D|/1/0132269937/14051536.html

@ prev |
Chapter 5. Numbers

Chapter Topics

« Introduction to Numbers
« Integers

o Boolean
o Standard Integers
o Long Integers
» Floating Point Real Numbers
o« Complex Numbers
+ Operators
o Built-in Functions
o Other Numeric Types
« Related Modules

In this chapter, we will focus on Python's numeric types. We will cover each type in detail, then present
the various operators and built-in functions that can be used with numbers. We conclude this chapter by
introducing some of the standard library modules that deal with numbers.

e prcy ExT

file:///D|/1/0132269937/14051536.html

e Py EXT

5.1. Introduction to Numbers

Numbers provide literal or scalar storage and direct access. A number is also an immutable type,
meaning that changing or updating its value results in a newly allocated object. This activity is, of
course, transparent to both the programmer and the user, so it should not change the way the
application is developed.

Python has several numeric types: "plain” integers, long integers, Boolean, double-precision floating
point real numbers, decimal floating point numbers, and complex numbers.

How to Create and Assign Numbers (Number Objects)

Creating numbers is as simple as assighing a value to a variable:

anlnt =1

alLong = -9999999999999999L

aFl oat = 3.1415926535897932384626433832795
aConpl ex = 1.23+4.56J

How to Update Numbers

You can "update" an existing number by (re)assigning a variable to another number. The new value can
be related to its previous value or to a completely different number altogether. We put quotes around
update because you are not really changing the value of the original variable. Because numbers are
immutable, you are just making a new number and reassigning the reference. Do not be fooled by what
you were taught about how variables contain values that allow you to update them. Python's object
model is more specific than that.

When we learned programming, we were taught that variables act like boxes that hold values. In
Python, variables act like pointers that point to boxes. For immutable types, you do not change the
contents of the box, you just point your pointer at a new box. Every time you assign another number to
a variable, you are creating a new object and assigning it. (This is true for all immutable types, not just
numbers.)

1
2.718281828

anl nt +
aFl oat

How to Remove Numbers

Under normal circumstances, you do not really "remove" a number; you just stop using it! If you really
want to delete a reference to a number object, just use the del statement (introduced in Section 3.5.6).
You can no longer use the variable name, once removed, unless you assign it to a new object;
otherwise, you will cause a NaneEr ror exception to occur.

del anl nt
del alLong, aFl oat, aConpl ex

Okay, now that you have a good idea of how to create and update numbers, let us take a look at
Python's four numeric types.

e prcy ExT

file:///D|/1/0132269937/14051536.html

e Py EXT

5.2. Integers

Python has several types of integers. There is the Boolean type with two possible values. There are the
regular or plain integers: generic vanilla integers recognized on most systems today. Python also has a
long integer size; however, these far exceed the size provided by C | ongs . We will take a look at these

types of integers, followed by a description of operators and built-in functions applicable only to Python
integer types.

5.2.1. Boolean

The Boolean type was introduced in Python 2.3. Objects of this type have two possible values, Boolean
TRue and Fal se. We will explore Boolean objects toward the end of this chapter in Section 5.7.1.

5.2.2. Standard (Regular or Plain) Integers

Python's "plain" integers are the universal numeric type. Most machines (32-bit) running Python will
provide a range of -231 to 231-1, that is -2, 147,483,648 to 2,147,483,647. If Python is compiled on a
64-bit system with a 64-bit compiler, then the integers for that system will be 64-bit. Here are some
examples of Python integers:

0101 84 -237 0x80 017 - 680 - 0X92

Python integers are implemented as (signed) | ongs in C. Integers are normally represented in base 10

decimal format, but they can also be specified in base 8 or base 16 representation. Octal values have a
"0" prefix, and hexadecimal values have either "Ox" or "OX" prefixes.

5.2.3. Long Integers

The first thing we need to say about Python long integers (or | ongs for short) is not to get them

confused with longs in C or other compiled languagesthese values are typically restricted to 32- or 64-
bit sizes, whereas Python longs are limited only by the amount of (virtual) memory in your machine. In
other words, they can be very L-O-N-G longs.

Longs are a superset of integers and are useful when your application requires integers that exceed the
range of plain integers, meaning less than -231 or greater than 231-1. Use of longs is denoted by the
letter "L", uppercase (L) or lowercase (I), appended to the integer's numeric value. Values can be

expressed in decimal, octal, or hexadecimal. The following are examples of longs:

16384L -Ox4E8L 017L -2147483648I 052144364L

299792458 0x DECADEDEADBEEFBADFEEDDEAL -5432101234L

Core Style: Use uppercase "L with long integers

Although Python supports a case-insensitive "L" to denote longs, we
recommend that you use only the uppercase "L" to avoid confusion
with the number one (1). Python will display only longs with a capital
"L ." As integers and longs are slowly being unified, you will only see
the "L" with evaluatable string representations (repr()) of longs.

Printable string representations (str()) will not have the "L ."

>>> along = 999999999
>>> along

999999999L

>>> print alLong
999999999

5.2.4. Unification of Integers and Long Integers

Both integer types are in the process of being unified into a single integer type. Prior to Python 2.2,

plain integer operations resulted in overflow (i.e., greater than the 232 range of numbers described
above), but in 2.2 or after, there are no longer such errors.

Python 2.1

>>> 0999 ** 8

Traceback (nost recent call last):
File "<stdin>, line 1, in ?

OverflowError: integer exponentiation

Python 2.2
>>> 9999 ** 8
99920027994400699944002799920001L

Removing the error was the first phase. The next step involved bit-shifting; it used to be possible to left-
shift bits out of the picture (resulting in 0):

>>> 2 << 32
0

In 2.3 such an operation gives a warning, but in 2.4 the warning is gone, and the operation results in a

real (long) value:

Python 2.3

>>> 2 << 32

__main__:1: FutureWarning: x<<y losing bits or changing
sign will return a long in Python 2.4

and up

0

Python 2.4

>>> 2 << 32
85899345921

Sooner or later (probably later), there will no longer be a long type (at least not at the user level).

Things will all happen quietly under the covers. Of course, those with C access will be able to enjoy both
types as before, meaning, however, that your C code will still need to be able to distinguish between the
different Python integer types. You can read more about the unification of integers and longs in PEP 237.

| 4 PREV NEXT

e Py EXT

5.3. Double Precision Floating Point Numbers

Floats in Python are implemented as C doubl es, double precision floating point real numbers, values that
can be represented in straightforward decimal or scientific notations. These 8-byte (64-bit) values
conform to the IEEE 754 definition (52M/11E/1S) where 52 bits are allocated to the mantissa, 11 bits to
the exponent (this gives you about + 10308.25 in range), and the final bit to the sign. That all sounds
fine and dandy; however, the actual degree of precision you will receive (along with the range and
overflow handling) depends completely on the architecture of the machine as well as the implementation
of the compiler that built your Python interpreter.

Floating point values are denoted by a decimal point (.) in the appropriate place and an optional "e"
suffix representing scientific notation. We can use either lowercase (e) or uppercase (E). Positive (+)

or negative (-) signs between the "e" and the exponent indicate the sign of the exponent. Absence of
such a sign indicates a positive exponent. Here are some floating point values:

0.0 -777. 1.6 -5.555567119 96e3 * 1.0
4.3e25 9.384e-23 -2.172818 float(12) 1. 000000001
3. 1416 4. 2E-10 - 90. 6. 022e23 -1. 609E- 19

e prcy ExT

e Py EXT

5.4. Complex Numbers

A long time ago, mathematicians were absorbed by the following equation:
x2=-1

The reason for this is that any real number (positive or negative) multiplied by itself results in a positive
number. How can you multiply any number with itself to get a negative number? No such real number
exists. So in the eighteenth century, mathematicians invented something called an imaginary number i
(or j, depending on what math book you are reading) such that:

j= -1

a

Basically a new branch of mathematics was created around this special number (or concept), and now
imaginary numbers are used in numerical and mathematical applications. Combining a real number with
an imaginary number forms a single entity known as a complex number. A complex number is any
ordered pair of floating point real numbers (x, y) denoted by x + yj where x is the real part and y is the

imaginary part of a complex number.

It turns out that complex numbers are used a lot in everyday math, engineering, electronics, etc.
Because it became clear that many researchers were reinventing this wheel quite often, complex
numbers became a real Python data type long ago in version 1.4.

Here are some facts about Python's support of complex numbers:

. Imaginary numbers by themselves are not supported in Python (they are paired with a real part
of 0.0 to make a complex number)

« Complex numbers are made up of real and imaginary parts

« Syntax for a complex number: real +i magj

« Both real and imaginary components are floating point values

« Imaginary part is suffixed with letter "J" lowercase (j) or uppercase (J)

The following are examples of complex numbers:

64.375+1] 4.23-8.5] 0.23-8.55] 1.23e-045+6. 7e+089;
6.23+1.5] -1.23-875] 0+1j 9.80665-8.31441J -.0224+0]

5.4.1. Complex Number Built-in Attributes

Complex numbers are one example of objects with data attributes (Section 4.1.1). The data attributes

are the real and imaginary components of the complex number object they belong to. Complex numbers
also have a method attribute that can be invoked, returning the complex conjugate of the object.

>>> aConpl ex = -8.333-1.47j
>>> aConpl ex
(-8.333-1.47j)

file:///D|/1/0132269937/14051536.html

>>> aConpl ex. r eal

-8.333

>>> aConpl ex. i mag

-1.47

>>> aConpl ex. conj ugat e()
(-8.333+1.47j)

Table 5.1 describes the attributes of complex numbers.

Table 5.1. Complex Number Attributes

Attribute Description
num real Real component of complex number num
num i mag Imaginary component of complex number num

num conj ugat e() Returns complex conjugate of num

e prcy | NEXT B

file:///D|/1/0132269937/14051536.html

e Py EXT

5.5. Operators

Numeric types support a wide variety of operators, ranging from the standard type of operators to
operators created specifically for numbers, and even some that apply to integer types only.

5.5.1. Mixed-Mode Operations

It may be hard to remember, but when you added a pair of numbers in the past, what was important
was that you got your numbers correct. Addition using the plus (+) sign was always the same. In
programming languages, this may not be as straightforward because there are different types of
numbers.

When you add a pair of integers, the + represents integer addition, and when you add a pair of floating
point numbers, the + represents double-precision floating point addition, and so on. Our little
description extends even to non-numeric types in Python. For example, the + operator for strings
represents concatenation, not addition, but it uses the same operator! The point is that for each data
type that supports the + operator, there are different pieces of functionality to "make it all work,"
embodying the concept of overloading.

Now, we cannot add a number and a string, but Python does support mixed mode operations strictly
between numeric types. When adding an integer and a float, a choice has to be made as to whether
integer or floating point addition is used. There is no hybrid operation. Python solves this problem using
something called numeric coercion. This is the process whereby one of the operands is converted to the
same type as the other before the operation. Python performs this coercion by following some basic
rules.

To begin with, if both numbers are the same type, no conversion is necessary. When both types are
different, a search takes place to see whether one number can be converted to the other's type. If so,
the operation occurs and both numbers are returned, one having been converted. There are rules that
must be followed since certain conversions are impossible, such as turning a float into an integer, or
converting a complex number to any non-complex number type.

Coercions that are possible, however, include turning an integer into a float (just add ".0") or converting
any non-complex type to a complex number (just add a zero imaginary component, e.g., "0j). The

rules of coercion follow from these two examples: integers move toward float, and all move toward
complex. The Python Language Reference Guide describes the coerce() operation in the following

manner.

« If either argument is a complex number, the other is converted to complex;

. Otherwise, if either argument is a floating point number, the other is converted to floating point;

. Otherwise, if either argument is a long, the other is converted to long;

« Otherwise, both must be plain integers and no conversion is necessary (in the upcoming
diagram, this describes the rightmost arrow).

The flowchart shown in Figure 5-1 illustrates these coercion rules.

Figure 5-1. Numeric coercion

file:///D|/1/0132269937/14051536.html

START with
both numbers

Either
complex?

Either
long int?

Mo

Both
long int?

Yes Yes Yes
h b h
Convert Convert Convert
non-complex non-float non-long
to complex to float to long
e ool ooy oo s ool oo ol o o L e e |
Y ¥ 0 ¥ ¥ % ¥

Automatic numeric coercion makes life easier for the programmer because he or she does not have to
worry about adding coercion code to his or her application. If explicit coercion is desired, Python does
provide the coer ce() built-in function (described later in Section 5.6.2).

The following is an example showing you Python's automatic coercion. In order to add the numbers (one
integer, one float), both need to be converted to the same type. Since float is the superset, the integer
is coerced to a float before the operation happens, leaving the result as a float:

>>> 1 + 4.5
5.5

5.5.2. Standard Type Operators

The standard type operators discussed in Chapter 4 all work as advertised for numeric types. Mixed-
mode operations, described above, are those which involve two numbers of different types. The values

are internally converted to the same type before the operation is applied.

Here are some examples of the standard type operators in action with numbers:

>>> 5.2 == 5.2

True

>>> -719 >= 833

Fal se

>>> 5+4e >= 2-3e

True

>> 2 <5<9 # sane as (2 <5)and (5 <9)
True

>>> 77 > 66 == 66 # same as (77 > 66)and (66 == 66)
True

>>> 0. < -90.4 <55.3e2 =3 < 181

Fal se

>>> (-1 < 1) or (1 < -1)

True

5.5.3. Numeric Type (Arithmetic) Operators

Python supports unary operators for no change and negation, + and -, respectively; and binary
arithmetic operators +, -, *, /, 9% and **, for addition, subtraction, multiplication, division, modulo, and
exponentiation, respectively. In addition, there is a new division operator, //, as of Python 2.2.

Division

Those of you coming from the C world are intimately familiar with classic divisionthat is, for integer
operands, floor division is performed, while for floating point numbers, real or true division is the
operation. However, for those who are learning programming for the first time, or for those who rely on
accurate calculations, code must be tweaked in a way to obtain the desired results. This includes casting
or converting all values to floats before performing the division.

The decision has been made to change the division operator in some future version of Python from
classic to true division and add another operator to perform floor division. We now summarize the
various division types and show you what Python currently does, and what it will do in the future.

Classic Division

When presented with integer operands, classic division truncates the fraction, returning an integer (floor
division). Given a pair of floating-point operands, it returns the actual floating-point quotient (true
division). This functionality is standard among many programming languages, including Python.
Example:

>>> 1/ 2 # performinteger result (floor)
0
>>> 1.0/ 2.0 # returns actual quotient

0.5

True Division

This is where division always returns the actual quotient, regardless of the type of the operands. In a
future version of Python, this will be the algorithm of the division operator. For now, to take advantage
of true division, one must give the from_ future__inport division directive. Once that happens, the

division operator (/) performs only true division:

>>> from __future__ inport division

>>>

>>> 1/ 2 # returns real quotient
0.5

>>> 1.0/ 2.0 # returns real quotient
0.5

Floor Division

A new division operator (//) has been created that carries out floor division: it always truncates the

fraction and rounds it to the next smallest whole number toward the left on the number line, regardless
of the operands' numeric types. This operator works starting in 2.2 and does not require the _ future__

directive above.

>>> 1 /] 2 # floors result, returns integer
0

>>> 1.0 // 2.0 # floors result, returns fl oat
0.0

>>> -1 /] 2 # nove | eft on nunber |ine

-1

There were strong arguments for as well as against this change, with the former from those who want
or need true division versus those who either do not want to change their code or feel that altering the
division operation from classic division is wrong.

This change was made because of the feeling that perhaps Python's division operator has been flawed
from the beginning, especially because Python is a strong choice as a first programming language for
people who aren't used to floor division. One of van Rossum'’s use cases is featured in his "What's New

in Python 2.2" talk:

def velocity(di stance, total Ti ne):
rate = distance / total Tine

As you can tell, this function may or may not work correctly and is solely dependent on at least one
argument being a floating point value. As mentioned above, the only way to ensure the correct value is
to cast both to floats, i.e., rate = float (distance) / float(total Ti me). With the upcoming change to
true division, code like the above can be left as is, and those who truly desire floor division can use the
new double-slash (//) operator.

Yes, code breakage is a concern, and the Python team has created a set of scripts that will help you
convert your code to using the new style of division. Also, for those who feel strongly either way and

only want to run Python with a specific type of division, check out the - di vi si on_st yl e option to the
interpreter. An option of - Qnew will always perform true division while - Qol d (currently the default) runs
classic division. You can also help your users transition to new division by using - Qvarn or - Qunar nal | .

More information about this big change can be found in PEP 238. You can also dig through the 2001
conp. | ang. pyt hon archives for the heated debates if you are interested in the drama. Table 5.2

summarizes the division operators in the various releases of Python and the differences in operation
when you import new division functionality.

Table 5.2. Division Operator Functionality

Operator 2.1.x and Older 2.2 and Newer (No Import) 2.2 and Newer (Import of di vi si on)

/ classic classic true

I n/a floor floor

Modulus

Integer modulo is straightforward integer division remainder, while for float, it is the difference of the
dividend and the product of the divisor and the quotient of the quantity dividend divided by the divisor
rounded down to the closest integer, i.e.,x - (math.floor(x/y) * y), or

S

For complex number modulo, take only the real component of the division result, i.e., x - (math. fl oor
((x/y).real) * y).

Exponentiation

The exponentiation operator has a peculiar precedence rule in its relationship with the unary operators:
it binds more tightly than unary operators to its left, but less tightly than unary operators to its right.
Due to this characteristic, you will find the ** operator twice in the numeric operator charts in this text.

Here are some examples:

>>> 3 ** D

9

>>> -3 ** 2 # ** binds tighter than - to its left
-9

>>> (-3) ** 2 # group to cause - to bind first

9

>>> 4.0 ** -1.0 # ** binds looser than - to its right
0. 25

In the second case, it performs 3 to the power of 2 (3-squared) before it applies the unary negation. We
need to use the parentheses around the "-3" to prevent this from happening. In the final example, we

see that the unary operator binds more tightly because the operation is 1 over quantity 4 to the first
power %41 or ¥4. Note that 1 / 4 as an integer operation results in an integer 0, so integers are not
allowed to be raised to a negative power (it is a floating point operation anyway), as we will show here:

>>> 4 ** -]
Traceback (innernost |ast):
File "<stdin>", line 1, in ?
Val ueError: integer to the negative power

Summary

Table 5.3 summarizes all arithmetic operators, in shaded hierarchical order from highest-to-lowest

priority. All the operators listed here rank higher in priority than the bitwise operators for integers found
in Section 5.5.4.

Table 5.3. Numeric Type Arithmetic Operators

Arithmetic Operator Function

exprl ™% expr2 expr 1 raised to the power of expr 2[éll

+expr (unary) expr sign unchanged

- expr (unary) negation of expr

exprl ¥ expr2 expr 1 raised to the power of expr 2[@]

exprl * expr2 expr 1l times expr2

exprl / expr2 expr 1 divided by expr 2 (classic or true division)
exprl // expr2 expr 1 divided by expr 2 (floor division [only])
exprl % expr?2 expr 1 modulo expr 2

exprl + expr2 expr 1 plus expr2

exprl - expr2 expr 1 minus expr2

&+ pinds tighter than unary operators to its left and looser than unary operators to its right.

Here are a few more examples of Python's numeric operators:

>>> -442 - 77
-519

>>>

>>> 4 ** 3

64

>>>

>>> 4,2 ** 3,2

98. 7183139527
>>> 8 [/ 3

2

>>> 8.0/ 3.0
2. 66666666667
>>> 8 % 3

2

>>> (60. - 32.) * (5./ 9.)
15. 5555555556
>>> 14 * 0x04
56

>>> 0170 / 4

30

>>> 0x80 + 0777

639

>>> 451 * 22L

990L

>>> 16399L + OxA94E8L

709879L

>>> -2147483648L - 52147483648L
-54294967296L

>>> 64.375+1] + 4.23-8. 5]
(68.605-7.5)

>>> 0+1] ** 2 # same as O+(lj**2)
(-1+0j)

>>> 1+1j ** 2 # sanme as 1+(lj**2)
0j

>>> (1+1j) ** 2

2]

Note how the exponentiation operator is still higher in priority than the binding addition operator that
delimits the real and imaginary components of a complex number. Regarding the last example above,
we grouped the components of the complex number together to obtain the desired result.

5.5.4. *Bit Operators (Integer-Only)

Python integers may be manipulated bitwise and the standard bit operations are supported: inversion,
bitwise AND, OR, and exclusive OR (aka XOR), and left and right shifting. Here are some facts regarding
the bit operators:

- Negative numbers are treated as their 2's complement value.

. Left and right shifts of N bits are equivalent to multiplication and division by (2 ** N) without
overflow checking.

« For longs, the bit operators use a "modified” form of 2's complement, acting as if the sign bit
were extended infinitely to the left.

The bit inversion operator (—) has the same precedence as the arithmetic unary operators, the highest
of all bit operators. The bit shift operators (<< and >>) come next, having a precedence one level
below that of the standard plus and minus operators, and finally we have the bitwise AND, XOR, and OR
operators (&, *, |), respectively. All of the bitwise operators are presented in the order of descending

priority in Table 5.4.

Table 5.4. Integer Type Bitwise Operators

Bitwise Operator

~num

nunl << nun®

nunl >> nun®

numl & nun®

nuni ~ nun®

nunil | nun®

Function

(unary) invert the bits of num yielding -(hum+ 1)
nunt left shifted by nun? bits

nunt right shifted by nun? bits

nunl bitwise AND with nun?

nunt bitwise XOR (exclusive OR) with nun2

numl bitwise OR with nun2

Here we present some examples using the bit operators using 30 (011110), 45 (101101), and 60

(111100):
>>> 30 & 45
12

>>> 30 | 45
63

>>> 45 & 60
44

>>> 45 | 60
61

>>> ~30

-31

>>> ~45

-46

>>> 45 << 1
90

>>> 60 >> 2
15

>>> 30 N 45
51

NEXT B

file:///D|/1/0132269937/14051536.html

e Py EXT

5.6. Built-in and Factory Functions

5.6.1. Standard Type Functions

In the last chapter, we introduced the cnp(), str(), and type() built-in functions that apply for all

standard types. For numbers, these functions will compare two numbers, convert numbers into strings,
and tell you a number's type, respectively. Here are some examples of using these functions:

>>> cnp(-6, 2)
-1

>>> cnp(-4.333333, -2.718281828)
-1

>>> cnp(OxFF, 255)

0

>>> str(OxFF)

' 255

>>> str(55. 3e2)

' 5530. 0

>>> type(OxFF)

<type 'int'>

>>> type(98765432109876543210L)
<type 'long' >

>>> type(2-1j)

<type 'conpl ex' >

5.6.2. Numeric Type Functions

Python currently supports different sets of built-in functions for numeric types. Some convert from one
numeric type to another while others are more operational, performing some type of calculation on their
numeric arguments.

Conversion Factory Functions

Theint(), long(), float(), and conpl ex() functions are used to convert from any numeric type to

another. Starting in Python 1.5, these functions will also take strings and return the numerical value
represented by the string. Beginning in 1.6, i nt () and | ong() accepted a base parameter (see below) for

proper string conversionsit does not work for numeric type conversion.

A fifth function, bool (), was added in Python 2.2. At that time, it was used to normalize Boolean values

to their integer equivalents of one and zero for true and false values. The Boolean type was added in
Python 2.3, so true and false now had constant values of TRue and Fal se (instead of one and zero). For

more information on the Boolean type, see Section 5.7.1.

file:///D|/1/0132269937/14051536.html

In addition, because of the unification of types and classes in Python 2.2, all of these built-in functions
were converted into factory functions. Factory functions, introduced in Chapter 4, just means that these
objects are now classes, and when you "call” them, you are just creating an instance of that class.

They will still behave in a similar way to the new Python user so it is probably something you do not
have to worry about.

The following are some examples of using these functions:

>>> jnt(4.25555)

4
>>> | ong(42)

42L

>>> f| oat (4)

4.0

>>> conpl ex(4)
(4+0j)

>>>

>>> conpl ex(2.4, -8)
(2.4-8j)

>>>

>>> conpl ex(2. 3e-10, 45. 3e4)
(2. 3e-10+453000j)

Table 5.5 summarizes the numeric type factory functions.

Table 5.5. Numeric Type Factory Functions!®l
Class (Factory Function) Operation
. [b] Returns the Boolean value of obj , e.g., the value of
bool (obj) . .
executing obj.__nonzero_ ()
int(obj, base=10) Returns integer representation of string or number obj ;

similar to string. atoi () ; optional base argument
introduced in 1.6

I ong(obj, base=10) Returns long representation of string or number obj ;
similar to string. atol () ; optional base argument

introduced in 1.6

f1oat (obj) Returns floating point representation of string or number
obj ; similar to string. at of ()

conpl ex(str) or conpl ex(real, inmg=0.0) Returns complex number representation of str, or builds
one given real (and perhaps imaginary) component(s)

2l Prior to Python 2.3, these were all built-in functions.

B New in Python 2.2 as built-in function, converted to factory function in 2.3.
Operational

Python has five operational built-in functions for numeric types: abs(), coerce(), di vnod(), pow), and
round() . We will take a look at each and present some usage examples.

abs() returns the absolute value of the given argument. If the argument is a complex number, then
mat h. sqrt (num . real 2 + num i mag?) is returned. Here are some examples of using the abs() built-in
function:

>>> abs(-1)

1

>>> abs(10.)

10.0

>>> abs(1.2-2.1j)
2.41867732449

>>> abs(0.23 - 0.78)
0.55

The coerce() function, although it technically is a numeric type conversion function, does not convert to

a specific type and acts more like an operator, hence our placement of it in our operational built-ins
section. In Section 5.5.1, we discussed numeric coercion and how Python performs that operation. The

coerce() function is a way for the programmer to explicitly coerce a pair of numbers rather than letting

the interpreter do it. This feature is particularly useful when defining operations for newly created
numeric class types. coerce() just returns a tuple containing the converted pair of numbers. Here are

some examples:

>>> coerce(l, 2)

(1, 2)

>>>

>>> coerce(1.3, 134L)
(1.3, 134.0)

>>>

>>> coerce(l, 134L)
(1L, 134L)

>>>

>>> coerce(lj, 134L)

(1j, (134+0j))

>>>

>>> coerce(l.23-41j, 134L)
((1.23-41j), (134+0j))

The di vnod() built-in function combines division and modulus operations into a single function call that
returns the pair (quotient, remainder) as a tuple. The values returned are the same as those given for
the classic division and modulus operators for integer types. For floats, the quotient returned is mat h.
f1 oor (numt/ nun) and for complex numbers, the quotient is mat h. f | oor ((nunt/ nun).r eal).

>>> di vrod(10, 3)
(3, 1)
>>> di vnod(3, 10)
(0, 3)

>>> di vod(10, 2. 5)

(4.0, 0.0)

>>> di vnod(2. 5, 10)

(0.0, 2.5)

>>> di vod(2+1j, 0.5-1j)
(0j, (2+1j))

Both pow() and the double star (**) operator perform exponentiation; however, there are differences
other than the fact that one is an operator and the other is a built-in function.

The ** operator did not appear until Python 1.5, and the pow() built-in takes an optional third
parameter, a modulus argument. If provided, pow() will perform the exponentiation first, then return the

result modulo the third argument. This feature is used for cryptographic applications and has better
performance than pow x,y) % z since the latter performs the calculations in Python rather than in C-like

pow(x, y, z).

>>> pow 2, 5)

32

>>>5

>>> pow 5, 2)

25

>>> pow 3. 141592, 2)
9. 86960029446

>>>

>>> pow(1+1j, 3)
(-2+2)

The round() built-in function has a syntax of round(f1t, ndi g=0). It normally rounds a floating point

number to the nearest integral number and returns that result (still) as a float. When the optional ndi g
option is given, round() will round the argument to the specific number of decimal places.

>>> round(3)

3.0

>>> round(3. 45)

3.0

>>> round(3. 4999999)

3.0

>>> round(3.4999999, 1)

3.5

>>> inport math

>>> for eachNumin range(10):
print round(math. pi, eachNum

0

1

.14

. 142

. 1416

. 14159

. 141593

. 1415927

. 14159265

. 141592654

. 1415926536

WwWwwwwwwwww:

>>> round(-3.5)
-4.0

>>> round(- 3. 4)
-3.0

>>> round(- 3. 49)
-3.0

>>> round(-3.49, 1)
-3.5

Note that the rounding performed by round() moves away from zero on the number line, i.e., round(.5)
goes to 1 and round(-.5) goes to -1. Also, with functions like i nt (), round(), and mat h. fl oor (), all may

seem like they are doing the same thing; it is possible to get them all confused. Here is how you can
differentiate among these:

« int() chops off the decimal point and everything after (aka truncation).
« floor() rounds you to the next smaller integer, i.e., the next integer moving in a negative

direction (toward the left on the number line).
« round() (rounded zero digits) rounds you to the nearest integer period.

Here is the output for four different values, positive and negative, and the results of running these three
functions on eight different numbers. (We reconverted the result from i nt () back to a float so that you

can visualize the results more clearly when compared to the output of the other two functions.)

>>> inport math

>>> for eachNumin (.2, .7, 1.2, 1.7, -.2, -.7, -1.2, -1.7):
print "int(% 1f)\t%. 1f" % (eachNum float (int(eachNum))
print "floor(% 1f)\t%. 1f" % (eachNum
mat h. f | oor (eachNun))
print "round(% 1f)\t%. 1f" % (eachNum round(eachNum))
print '-' * 20

int(0.2) +0.0
fl oor(0.2) +0.0
round(0. 2) +0.0
int(0.7) +0.0
floor(0.7) +0.0
round(0. 7) +1.0
int(1.2) +1.0
floor(1.2) +1.0
round(1. 2) +1.0
int(1.7) +1.0
floor(1.7) +1.0
round(1.7) +2.0
int(-0.2) +0.0
floor(-0.2) -1.0
round(-0.2) +0.0
int(-0.7) +0.0
floor(-0.7) -1.0
round(-0.7) -1.0

int(-1.2) 1.0

floor(-1.2) -2.0
round(-1.2) -1.0
int(-1.7) -1.0

floor(-1.7) -2.0
round(-1.7) -2.0

Table 5.6 summarizes the operational functions for numeric types.

Table 5.6. Numeric Type Operational Built-in Functions2!

Function Operation
abs(num Returns the absolute value of num
coerce(nunt, nung) Converts nunt and nun? to the same numeric type and returns the converted

pair as a tuple

di viod(nunt, nun®) Division-modulo combination returns (nunt / nun2, nunl % nunR) as a tuple;
for floats and complex, the quotient is rounded down (complex uses only real
component of quotient)

pow(nunil, nun2, nmod=1) Raises nunil to nun2 power, quantity modulo nod if provided

round(flt, ndig=0) (Floats only) takes a float fIt and rounds it to ndi g digits, defaulting to zero
if not provided

] Except for r ound() , which applies only to floats.

5.6.3. Integer-Only Functions

In addition to the built-in functions for all numeric types, Python supports a few that are specific only to
integers (plain and long). These functions fall into two categories, base presentation with hex() and oct

(), and ASCII conversion featuring chr () and ord() .
Base Representation

As we have seen before, Python integers automatically support octal and hexadecimal representations in
addition to the decimal standard. Also, Python has two built-in functions that return string
representations of an integer's octal or hexadecimal equivalent. These are the oct () and hex() built-in
functions, respectively. They both take an integer (in any representation) object and return a string with
the corresponding value. The following are some examples of their usage:

>>> hex(255)
"Oxff'

>>> hex(23094823l)
' 0x1606627L'

>>> hex(65535*2)
"Ox1fffe'

>>>
>>>

oct (255)

' 0377
>>> oct (23094823l)

' 0130063047L"

>>> oct (65535*%2)
' 0377776’

ASCII Conversion

Python also provides functions to go back and forth between ASCII (American Standard Code for
Information Interchange) characters and their ordinal integer values. Each character is mapped to a

unique number in a table numbered from 0 to 255. This number does not change for all computers using

the ASCII table, providing consistency and expected program behavior across different systems. chr ()

takes a single-byte integer value and returns a one-character string with the equivalent ASCII character.
ord() does the opposite, taking a single ASCII character in the form of a string of length one and returns

the corresponding ASCII value as an integer:

>>>

97
>>>

65
>>>

48

>>>
L) al
>>>
1 Al
>>>
1) Ol

ord('a")
ord('A")

ord('0")

chr (97)
chr (65L)

chr (48)

Table 5.7 shows all built-in functions for integer types.

Function

hex(num

oct (num

chr (num

ord(chr)

uni chr (num

Table 5.7. Integer Type Built-in Functions

Operation

Converts numto hexadecimal and returns as string
Converts numto octal and returns as string
Takes ASCII value numand returns ASCII character as string; O <= num<= 255 only

Takes ASCII or Unicode chr (string of length 1) and returns corresponding ordinal ASCII
value or Unicode code point, respectively

Takes a Unicode code point value num and returns its Unicode character as a Unicode
string; valid range depends on whether your Python was built as UCS-2 or UCS-4

file:///D|/1/0132269937/14051536.html

NEXT B

e Py EXT

5.7. Other Numeric Types

5.7.1. Boolean "Numbers"

Boolean types were added to Python starting in version 2.3. Although Boolean values are spelled "True
and "False,"” they are actually an integer subclass and will behave like integer values one and zero,
respectively, if used in a numeric context. Here are some of the major concepts surrounding Boolean

types:

« They have a constant value of either true or Fal se.

« Booleans are subclassed from integers but cannot themselves be further derived.
« Objects that do not have a __nonzero__ () method default to true.

« Recall that Python objects typically have a Boolean Fal se value for any numeric zero or empty
set.

« Also, if used in an arithmetic context, Boolean values TRue and Fal se will take on their numeric
equivalents of 1 and O, respectively.

« Most of the standard library and built-in Boolean functions that previously returned integers will
now return Booleans.

« Neither TRue nor Fal se are keywords yet but will be in a future version.

All Python objects have an inherent true or Fal se value. To see what they are for the built-in types,
review the Core Note sidebar in Section 4.3.2. Here are some examples using Boolean values:

intro

>>> bool (1)
True

>>> bool (True)
True

>>> bool (0)
Fal se

>>> pool ('1')
True

>>> bool (' 0")
True

>>> bool ([])
Fal se

>>> bool ((1,))
True

usi ng Bool eans nunerically
>>> foo = 42

>>> par = foo < 100

>>> bar

True

>>> print bar + 100

101

>>> print '9%' % bar

True

>>> print '9%' % bar
1

no __nonzero_ ()
>>> class C. pass

>>> ¢ = ()
>>>
>>> bool (c)
True
>>> pool (CQ)
True

nonzero () overridden to return Fal se
>>> class C
def __nonzero__(self):
return Fal se
>>> ¢ = ()
>>> bool (c¢)
Fal se

>>> bool (O
True

OH NO! (do not attenpt)
>>> True, False = False, True
>>> bool (True)

Fal se

>>> bool (Fal se)

True

You can read more about Booleans in the Python documentation and PEP 285.
5.7.2. Decimal Floating Point Numbers

Decimal floating point numbers became a feature of Python in version 2.4 (see PEP 327), mainly
because statements like the following drive many (scientific and financial application) programmers
insane (or at least enrage them):

>>> 0.1
0. 1000000000000001

Why is this? The reason is that most implementations of doubles in C are done as a 64-bit IEEE 754
number where 52 bits are allocated for the mantissa. So floating point values can only be specified to 52
bits of precision, and in situations where you have a(n endlessly) repeating fraction, expansions of such
values in binary format are snipped after 52 bits, resulting in rounding errors like the above. The

value .1 is represented by 0.11001100110011 ... * 2-3 because its closest binary approximation

is .0001100110011 ..., or 1/16 + 1/32 + 1/256 + ...

As you can see, the fractions will continue to repeat and lead to the rounding error when the repetition

cannot "be continued.” If we were to do the same thing using a decimal number, it looks much "better"
to the human eye because they have exact and arbitrary precision. Note in the below that you cannot
mix and match decimals and floating point numbers. You can create decimals from strings, integers, or
other decimals. You must also import the deci nal module to use the Deci mal number class.

>>> from deci mal inport Deci nal
>>> dec = Decimal (.1)

Traceback (nost recent call last):

File "<stdin>", line 1, in ?

File "/usr/local/lib/python2.4/decimal.py", line 523, in __new _

rai se TypeError("Cannot convert float to Decimal. " +

TypeError: Cannot convert float to Decimal. First convert the float to
a string
>>> dec = Decimal ('.1")
>>> dec

Deci mal ("0.1")
>>> print dec

0.1
>>> dec + 1.0
Traceback (nost recent call |ast):
File "<stdin>", line 1, in ?
File "/usr/local/lib/python2.4/decimal.py”, line 906, in __add_ _
other = _convert_other(other)
File "/usr/local/lib/python2.4/decinal.py", line 2863, in

_convert _ot her

rai se TypeError, "You can interact Decimal only with int, [ong or
Deci mal data types."
TypeError: You can interact Decimal only with int, |long or Decinal data

types.
>>>

>>> dec + Decinmal ('1.0")

Deci mal ("1.1")

>>> print dec + Decinmal ('1.0")
1.1

You can read more about decimal numbers in the PEP as well as the Python documentation, but suffice it
to say that they share pretty much the same numeric operators as the standard Python number types.
Since it is a specialized numeric type, we will not include decimals in the remainder of this chapter.

e prcy ExT

e Py EXT

5.8. Related Modules

There are a number of modules in the Python standard library that add on to the functionality of the
operators and built-in functions for numeric types. Table 5.8 lists the key modules for use with numeric

types. Refer to the literature or online documentation for more information on these modules.

Table 5.8. Numeric Type Related Modules

Module Contents
deci mal Decimal floating point class Decimal
array Efficient arrays of numeric values (characters, ints, floats, etc.)

math/cmath gtandard C library mathematical functions; most functions available in mat h are
implemented for complex numbers in the cmat h module

oper at or Numeric operators available as function calls, i.e., operator.sub(m n) is equivalent to the
difference (m - n) for numbers mand n

random Various pseudo-random number generators (obsoletes r and and wHRandom)

For advanced numerical and scientific mathematics applications, there are well-known third-party
packages Numeric (NumPy) and SciPy, which may be of interest to you. More information on those two
packages can be found at:

http://numeric.scipy.org/

http://scipy.org/

Core Module: random

& The randommodule is the general-purpose place to go if you are

n looking for random numbers. This module comes with various pseudo-

a random number generators and comes seeded with the current
timestamp so it is ready to go as soon as it has loaded. Here are some
of the most commonly used functions in the r andom module:

randint() Takes two integer values and returns a random integer
between those values inclusive

randrange() Takes the same input as range() and returns a random
integer that falls within that range

http://numeric.scipy.org/
http://scipy.org/

uni f orm()

random()

choi ce()

Does almost the same thing as randi nt (), but returns

a float and is inclusive only of the smaller number
(exclusive of the larger number)

Works just like uni f orn{) except that the smaller

number is fixed at 0.0, and the larger number is fixed

at 1.0

Given a sequence (see Chapter 6), randomly selects
and returns a sequence item

We have now come to the conclusion of our tour of all of Python's numeric types. A summary of

operators and built-in functions for numeric types is given in Table 5.9.

Table 5.9. Operators and Built-in Functions for All Numeric Types

Operator/Built-in Description

abs()

chr ()

coer ce()
conpl ex()
di viod()
f1oat ()
hex()
int ()

I'ong()

oct ()
ord()
pow()

round()

<101

[cl

+

Absolute value

Character

Numeric coercion

Complex factory function

Division/modulo
Float factory function

Hexadecimal string

Int factory function
Long factory function

Octal string
Ordinal

Exponentiation

Float rounding

Exponentiation

No change

Int Long

Float Complex Resul

(str)

Jal

tupl e
conpl ex
tupl e

fl oat

number

fl oat

number

number

11

%

<<

>>

[a]

[b]

[Unary operator.

Negation

Bit inversion

Exponentiation

Multiplication

Classic or true division
Floor division
Modulo/remainder
Addition

Subtraction

Bit left shift

Bit right shift

Bitwise AND

Bitwise XOR

Bitwise OR

%

u‘{
4

A result of "number" indicates any of the four numeric types, perhaps the same as the operands.

** has a unique relationship with unary operators; see Section 5.5.3 and Table 5.2.

number

int/long

number

number
number
number
number
number
number
int/long
int/long
int/long

int/long

int/long

MEXT B

e Py EXT

5.9. Exercises

The exercises in this chapter may first be implemented as applications. Once full functionality and
correctness have been verified, we recommend that the reader convert his or her code to functions that
can be used in future exercises. On a related note, one style suggestion is not to use pri nt statements

in functions that return a calculation. The caller can perform any output desired with the return value.
This keeps the code adaptable and reusable.

5-1. Integers. Name the differences between Python's regular and long integers.

5-2. Operators.

Create a function to calculate and return the product of two numbers.

The code which calls this function should display the result.

5-3. Standard Type Operators. Take test score input from the user and output letter grades
according to the following grade scale/curve:

A.

90-100
B.

80-89
C.

70-79
D.

60-69
E.

<60

5-4.

5-5.

5-6.

5-7.

5-9.

Modulus. Determine whether a given year is a leap year, using the following formula:
a leap year is one that is divisible by four, but not by one hundred, unless it is also
divisible by four hundred. For example, 1992, 1996, and 2000 are leap years, but
1967 and 1900 are not. The next leap year falling on a century is 2400.

Modulus. Calculate the number of basic American coins given a value less than 1
dollar. A penny is worth 1 cent, a nickel is worth 5 cents, a dime is worth 10 cents,
and a quarter is worth 25 cents. It takes 100 cents to make 1 dollar. So given an
amount less than 1 dollar (if using floats, convert to integers for this exercise),
calculate the number of each type of coin necessary to achieve the amount,
maximizing the number of larger denomination coins. For example, given $0.76, or 76
cents, the correct output would be "3 quarters and 1 penny." Output such as "76
pennies" and "2 quarters, 2 dimes, 1 nickel, and 1 penny" are not acceptable.

Arithmetic. Create a calculator application. Write code that will take two numbers and
an operator in the format: N1 OP N2, where N1 and N2 are floating point or integer
values, and OP is one of the following: +, -, *, /, % **, representing addition,

subtraction, multiplication, division, modulus/remainder, and exponentiation,
respectively, and displays the result of carrying out that operation on the input
operands. Hint: You may use the string split() method, but you cannot use the exal

() built-in function.

Sales Tax. Take a monetary amount (i.e., floating point dollar amount [or whatever
currency you use]), and determine a new amount figuring all the sales taxes you must
pay where you live.

Geometry. Calculate the area and volume of:

a.

squares and cubes

circles and spheres

Style. Answer the following numeric format questions:

Why does 17 + 32 give you 49, but 017 + 32 give you 47 and 017 + 032 give
you 41, as indicated in the examples below?

>>> 17 + 32
49

>>> 017+ 32
47

>>> 017 + 032
41

5-10.

5-12.

5-13.

5-14.

5-15.

Why do we get 134L and not 1342 in the example below?

>>> 56| + 78|
134L

Conversion. Create a pair of functions to convert Fahrenheit to Celsius temperature
values. C = (F - 32) * (5 / 9) should help you get started. We recommend you try
true division with this exercise, otherwise take whatever steps are necessary to ensure
accurate results.

Modulus.

Using loops and numeric operators, output all even numbers from 0 to 20.

b.
Same as part (a), but output all odd numbers up to 20.

C.
From parts (a) and (b), what is an easy way to tell the difference between
even and odd numbers?

d.

Using part (c), write some code to determine if one number divides another. In
your solution, ask the user for both numbers and have your function answer
"yes" or "no" as to whether one number divides another by returning TRue or

Fal se, respectively.

Limits. Determine the largest and smallest ints, floats, and complex numbers that your
system can handle.

Conversion. Write a function that will take a time period measured in hours and
minutes and return the total time in minutes only.

Bank Account Interest. Create a function to take an interest percentage rate for a
bank account, say, a Certificate of Deposit (CD). Calculate and return the Annual
Percentage Yield (APY) if the account balance was compounded daily.

GCD and LCM. Determine the greatest common divisor and least common multiple of
a pair of integers.

5-16. Home Finance. Take an opening balance and a monthly payment. Using a loop,
determine remaining balances for succeeding months, including the final payment.
"Payment 0" should just be the opening balance and schedule monthly payment
amount. The output should be in a schedule format similar to the following (the
numbers used in this example are for illustrative purposes only):

Ent er openi ng bal ance: 100. 00
Enter nonthly paynent: 16.13

Ampunt Remai ni ng
Pynt # Pai d Bal ance
0 $ 0.00 $100. 00
1 $16. 13 $ 83.87
2 $16. 13 $ 67.74
3 $16. 13 $ 51.61
4 $16. 13 $ 35.48
5 $16. 13 $ 19.35
6 $16. 13 $ 3.22
7 $ 3.22 $ 0.00

5-17. *Random Numbers. Read up on the randommodule and do the following problem:
Generate a list of a random number (1 < N <= 100) of random numbers (0 <= n <=
231.1). Then randomly select a set of these numbers (1 <= N <= 100), sort them, and
display this subset.

e Py EXT

e Py EXT

Chapter 6. Sequences: Strings, Lists, and Tuples

Chapter Topics

« Introduction to Sequences
« Strings

» Lists

o Tuples

The next family of Python types we will be exploring are those whose items are ordered sequentially and
accessible via index offsets into its set of elements. This group, known as sequences, includes the
following types: strings (regular and unicode), lists, and tuples.

We call these sequences because they are made up of sequences of "items" making up the entire data
structure. For example, a string consists of a sequence of characters (even though Python does not have
an explicit character type), so the first character of a string "Hel | 0" is' H , the second character is'e',

and so on. Likewise, lists and tuples are sequences of various Python objects.

We will first introduce all operators and built-in functions (BIFs) that apply to all sequences, then cover
each type individually. For each sequence type, we will detail the following:

« Introduction

« Operators

« Built-in functions

« Built-in methods (if applicable)
« Special features (if applicable)
« Related modules (if applicable)

We will conclude this chapter with a reference chart that summarizes all of the operators and functions
applicable to all sequences. Let us begin by taking a high-level overview.

e Py EXT

file:///D|/1/0132269937/14051536.html

e Py EXT

6.1. Sequences

Sequence types all share the same access model: ordered set with sequentially indexed offsets to get to
each element. Multiple elements may be selected by using the slice operators, which we will explore in

this chapter. The numbering scheme used starts from zero (0) and ends with one less than the length of
the sequencethe reason for this is because we began at 0. Figure 6-1 illustrates how sequence items are

stored.

Figure 6.1. How sequence elements are stored and accessed

0 1 2 N-2 N—1
Sequence LI

N AN —N-2) 2 -1

N == length of sequence == 1en(sequence)

6.1.1. Standard Type Operators

The standard type operators (see Section 4.5) generally work with all sequence types. Of course, one

must comparisons with a grain of salt when dealing with objects of mixed types, but the remaining
operations will work as advertised.

6.1.2. Sequence Type Operators

A list of all the operators applicable to all sequence types is given in Table 6.1. The operators appear in
hierarchical order from highest to lowest with the levels alternating between shaded and not.

Table 6.1. Sequence Type Operators

Sequence Operator Function

seq[i nd] Element located at index i nd of seq

seq[indl : ind2] Elements from i nd1 up to but not including i nd2 of seq
seq * expr seq repeated expr times

seql + seq2 Concatenates sequences seql and seq2

obj in seq Tests if obj is a member of sequence seq

file:///D|/1/0132269937/14051536.html

obj not in seq Tests if obj is not a member of sequence seq

Membership (in, not in)

Membership test operators are used to determine whether an element is in or is a member of a
sequence. For strings, this test is whether a character is in a string, and for lists and tuples, it is whether
an object is an element of those sequences. The i n and not i n operators are Boolean in nature; they

return t rue if the membership is confirmed and Fal se otherwise.

The syntax for using the membership operators is as follows:

obj [not] in sequence

Concatenation (+)

This operation allows us to take one sequence and join it with another sequence of the same type. The
syntax for using the concatenation operator is as follows:

sequencel + sequence2

The resulting expression is a new sequence that contains the combined contents of sequences
sequencel and sequence2. Note, however, that although this appears to be the simplest way
conceptually to merge the contents of two sequences together, it is not the fastest or most efficient.

For strings, it is less memory-intensive to hold all of the substrings in a list or iterable and use one final
j oi n() string method call to merge them together. Similarly for lists, it is recommend that readers use

the ext end() list method instead of concatenating two or more lists together. Concatenation comes in

handy when you need to merge two sequences together on the fly and cannot rely on mutable object
built-in methods that do not have a return value (or more accurately, a return value of None). There is

an example of this case in the section below on slicing.
Repetition (*)

The repetition operator is useful when consecutive copies of sequence elements are desired. The syntax
for using the repetition operator is as follows:

sequence * copies_int
The number of copies, copi es_i nt, must be an integer (prior to 1.6, long integers were not allowed). As

with the concatenation operator, the object returned is newly allocated to hold the contents of the
multiply replicated objects.

Slices([1, [: 1, [::1)

To put it simply: sequences are data structures that hold objects in an ordered manner. You can get
access to individual elements with an index and pair of brackets, or a consecutive group of elements

with the brackets and colons giving the indices of the elements you want starting from one index and
going up to but not including the ending index.

Now we are going to explain exactly what we just said in full detail. Sequences are structured data types
whose elements are placed sequentially in an ordered manner. This format allows for individual element
access by index offset or by an index range of indices to select groups of sequential elements in a

sequence. This type of access is called slicing, and the slicing operators allow us to perform such access.

The syntax for accessing an individual element is:

sequence[i ndex]

sequence is the name of the sequence and i ndex is the offset into the sequence where the desired
element is located. Index values can be positive, ranging from O to the maximum index (which is length
of the sequence less one). Using the | en() function (which we will formally introduce in the next

section), this gives an index with the range 0 <=index <= | en (sequence)- 1.

Alternatively, negative indexes can be used, ranging from -1 to the negative length of the sequence, -1 en
(sequence), i.e., -1 en(sequence) <=index <= -1. The difference between the positive and negative

indexes is that positive indexes start from the beginning of the sequences and negative indexes work
backward from the end.

Attempting to retrieve a sequence element with an index outside of the length of the sequence results in
an | ndexError exception:

>>> nanes = (' Faye', 'Leanna', 'Daylen')
>>> print nanes|4]
Traceback (nmost recent call last):

File "<stdin>", line 1, in ?

I ndexError: tuple index out of range

Because Python is object oriented, you can also directly access an element of a sequence (without first
having to assign it to a variable) like this:

>>> print ('Faye', 'Leanna', 'Daylen')[1]

Leanna

This comes in handy especially in cases where you have called a function and know that you are going
to get back a sequence as a return value but are only interested in one or more elements and not the
whole thing. So how do we select multiple elements?

Accessing a group of elements is similar to accessing just a single item. Starting and ending indexes
may be given, separated by a colon (:). The syntax for accessing a group of elements is:

sequence[starting_i ndex: endi ng_i ndex]

Using this syntax, we can obtain a "slice" of elements in sequence from the starting_i ndex up to but not
including the element at the endi ng_i ndex index. Both starting_i ndex and endi ng_i ndex are optional, and

if not provided, or if None is used as an index, the slice will go from the beginning of the sequence or
until the end of the sequence, respectively.

In Figures 6-2 to 6-6, we take an entire sequence (of soccer players) of length 5, and explore how to
take various slices of such a sequence.

Figure 6-2. Entire sequence:sequence Or sequence] :]

Figure 6-3. Sequence slice: sequence[0: 3] Or sequence[: 3]

Figure 6-4. Sequence slice: sequence[2: 5] Or sequence[2:]

Figure 6-5. Sequence slice: sequence[1: 3]

o o o=
b o

Figure 6-6. Sequence slice: sequence][3]

'

- s

Extended Slicing with Stride Indices

The final slice syntax for sequences, known as extended slicing, involves a third index known as a stride.
You can think of a stride index like a "step" value as the third element of a call to the range() built-in

function or a f or loop in languages like C/C++, Perl, PHP, and Java.

Extended slice syntax with stride indices has actually been around for a long time, built into the Python
virtual machine but accessible only via extensions. This syntax was even made available in Jython (and
its predecessor JPython) long before version 2.3 of the C interpreter gave everyone else access to it.
Here are a few examples:

Here are a few examples:

>>> s = 'abcdef gh'

>>> s[::-1] # think of it as 'reverse'

' hgf edcba’

>>> s[:: 2] # think of it as skipping by 2
"aceg'

More on Slice Indexing

The slice index syntax is more flexible than the single element index. The starting and ending indices
can exceed the length of the string. In other words, the starting index can start off well left of O, that is,
an index of -100 does not exist, but does not produce an error. Similarly, an index of 100 as an ending
index of a sequence with fewer than 100 elements is also okay, as shown here:

>>> (' Faye', 'Leanna', 'Daylen')[-100: 100]
(' Faye', 'Leanna', 'Daylen')

Here is another problem: we want to take a string and display it in a loop. Each time through we would
like to chop off the last character. Here is a snippet of code that does what we want:

>>> s = 'abcde

>>> | = -1

>>> for i in range(-1, -len(s), -1):
print s[:i]

abcd

abc

ab
a

However, what if we wanted to display the entire string at the first iteration? Is there a way we can do it
without adding an additional pri nt s before our loop? What if we wanted to programmatically specify no

index, meaning all the way to the end? There is no real way to do that with an index as we are using
negative indices in our example, and - 1 is the "smallest” index. We cannot use 0, as that would be

interpreted as the first element and would not display anything:

>>> s[: 0]

Our solution is another tip: using None as an index has the same effect as a missing index, so you can

get the same functionality programmatically, i.e., when you are using a variable to index through a
sequence but also want to be able to access the first or last elements:

>>> s = 'abcde'

>>> for i in [None] + range(-1, -len(s), -1):
print s[:i]

abcde

abcd

abc

ab
a

So it works the way we want now. Before parting ways for now, we wanted to point out that this is one
of the places where we could have created a list [None] and used the ext end() method to add the range

() output, or create a list with the range() elements and inserted None at the beginning, but we are
(horribly) trying to save several lines of code here. Mutable object built-in methods like ext end() do not
have a return value, so we could not have used:

>>> for i in [None].extend(range(-1, -len(s), -1)):
print s[:i]
Traceback (nost recent call |ast):
File "<stdin>, line 1, in ?

TypeError: iteration over non-sequence

The reason for the error is that [None] . extend(...) returns None, which is neither a sequence nor an
iterable. The only way we could do it without adding extra lines of code is with the list concatenation

above.
6.1.3. Built-in Functions (BIFs)

Before we look at sequence type BIFs, we wanted to let you know that you will be seeing the term
iterable mixed in with sequence. The reason for this is that iterables are more generalized and include
data types like sequences, iterators, or any object supporting iteration.

Because Python's f or loops can iterate over any iterable type, it will seem like iterating over a pure
sequence, even if it isn't one. Also, many of Python's BIFs that previously only accepted sequences as
arguments have been upgraded to take iterators and iterator-like objects as well, hence the basket
term, "iterable."

We will discuss in detail in this chapter BIFs that have a strong tie to sequences. We will discuss BIFs
that apply more specifically to iteration in loops in Chapter 8, "Conditionals and Loops."

Conversion/Casting

The list(), str(), and tupl e() BIFs are used to convert from any sequence type to another. You can

also think of them as casting if coming over from another language, but there really is no conversion or
casting going on. These "converters" are really factory functions (introduced in Chapter 4) that take an

object and (shallow) copy its contents into a newly generated object of the desired type. Table 6.2 lists
the sequence type conversion functions.

Table 6.2. Sequence Type Conversion Factory Functions

Function Operation
list(iter) Converts i ter able to a list
str(obj) Converts obj to string (a printable string representation)

uni code(obj) Converts obj to a Unicode string (using default encoding)

basestring() Abstract factory function serves only as parent class of str and uni code, so cannot be
called/instantiated (see Section 6.2)

tuple(iter) Convertsiterable to a tuple

Again, we use the term "convert"” loosely. But why doesn't Python just convert our argument object into
another type? Recall from Chapter 4 that once Python objects are created, we cannot change their

identity or their type. If you pass a list to li st (), a (shallow) copy of the list's objects will be made and

inserted into the new list. This is also similar to how the concatenation and repetition operators that we
have seen previously do their work.

A shallow copy is where only references are copied...no new objects are made! If you also want copies
of the objects (including recursively if you have container objects in containers), you will need to learn
about deep copies. More information on shallow and deep copies is available toward the end of this
chapter.

The str () function is most popular when converting an object into something printable and works with
other types of objects, not just sequences. The same thing applies for the Unicode version of str(),
uni code() . The list() and tupl e() functions are useful to convert from one to another (lists to tuples

and vice versa). However, although those functions are applicable for strings as well since strings are
sequences, using tupl e() and list() to turn strings into tuples or lists (of characters) is not common

practice.

Operational

Python provides the following operational BIFs for sequence types (see Table 6.3 below). Note that | en
(), reversed(), and sum() can only accept sequences while the rest can take iterables. Alternatively, max
() and nmi n() can also take a list of arguments

Table 6.3. Sequence Type Operational Built-in Functions

Function

[al

enunerate(iter)

| en(seq)

max(iter, key=None) or max(arg0O, argl...,

mn(iter, key=None) or mn(arg0O, argl...

[b]

Icl

reversed(seq)

sorted(iter, func=None, key=None, rever se=Fal se)

sun(seq, init:O)[gl

zip([ito, itd,... itN])[gl

key=None)

key=None)

[c]

Operation

Takes an i ter able and returns an
enumerate object (also an iterator) which
generates 2-tuple elements (index, item) of
iter (PEP 279)

Returns length (number of items) of seq

Returns "largest” element initer or returns
"largest™ of (arg0, argl, .); if key is
present, it should be a callback to pass to
the sort () method for testing

Returns "smallest" element initer; returns
"smallest" of (arg0, argi, .); if key is
present, it should be a callback to pass to
the sort () method for testing

Takes sequence and returns an iterator that
traverses that sequence in reverse order
(PEP 322)

Takes an iterable i ter and returns a sorted
list; optional arguments func, key, and
reverse are the same as for the list.sort ()

built-in method

Returns the sum of the numbers of seq and
optional i ni tial value; it is equivalent to
reduce (operator.add, seq, init)

Returns a list of tuples whose elements are
members of each iterable passed into it, i.
e.,[(ito[0],it1[0],... itN[0]), (itoO[1],
it1[1],... itN1]),... (itOo[n], it1
[n],... itN[n])], where n is the minimum
cardinality of all of the iterables

& New in Python 2.3.

] key argument new in Python 2.5.

' New in Python 2.4.

[New in Python 2.0; more flexibility added in Python 2.4.

We will provide some examples of using these functions with each sequence type in their respective
sections.

e Py EXT

file:///D|/1/0132269937/14051536.html

. prev_
6.2. Strings

Strings are among the most popular types in Python. We can create them simply by enclosing
characters in quotes. Python treats single quotes the same as double quotes. This contrasts with most
other shell-type scripting languages, which use single quotes for literal strings and double quotes to
allow escaping of characters. Python uses the "raw string" operator to create literal quotes, so no
differentiation is necessary. Other languages such as C use single quotes for characters and double
quotes for strings. Python does not have a character type; this is probably another reason why single
and double quotes are treated the same.

Nearly every Python application uses strings in one form or another. Strings are a literal or scalar type,
meaning they are treated by the interpreter as a singular value and are not containers that hold other
Python objects. Strings are immutable, meaning that changing an element of a string requires creating a
new string. Strings are made up of individual characters, and such elements of strings may be accessed
sequentially via slicing.

With the unification of types and classes in 2.2, there are now actually three types of strings in Python.
Both regular string (str) and Unicode string (uni code) types are actually subclassed from an abstract

class called basest ri ng. This class cannot be instantiated, and if you try to use the factory function to
make one, you get this:

>>> pasestring('foo')
Traceback (nost recent call last):
File "<stdin>", line 1, in <nmodul e>
TypeError: The basestring type cannot be instantiated

How to Create and Assign Strings

Creating strings is as simple as using a scalar value or having the str() factory function make one and
assigning it to a variable:

>>> aString = 'Hello Wrld!" # using single quotes
>>> anotherString = "Python is cool!" # double quotes
>>> print aString # print, no quotes!
Hell o Worl d!

>>> anot her Stri ng # no print, quotes!

"Python is cool !

>>> s = str(range(4)) # turn list to string
>>> S
"To, 1, 2, 3]

How to Access Values (Characters and Substrings) in Strings

Python does not support a character type; these are treated as strings of length one, thus also

considered a substring. To access substrings, use the square brackets for slicing along with the index or
indices to obtain your substring:

>>> aString = 'Hello World!"
>>> aString[0]

"H

>>> aString[1: 5]

"ello

>>> aString[6:]

"Worl d!’

How to Update Strings

You can "update" an existing string by (re)assigning a variable to another string. The new value can be
related to its previous value or to a completely different string altogether.

>>> aString = aString[:6] + 'Python!'

>>> aString

"Hel | o Python!'

>>> aString = 'different string altogether’
>>> aString

"different string altogether'

Like numbers, strings are not mutable, so you cannot change an existing string without creating a new
one from scratch. That means that you cannot update individual characters or substrings in a string.
However, as you can see above, there is nothing wrong with piecing together parts of your old string
into a new string.

How to Remove Characters and Strings

To repeat what we just said, strings are immutable, so you cannot remove individual characters from an
existing string. What you can do, however, is to empty the string, or to put together another string that
drops the pieces you were not interested in.

Let us say you want to remove one letter from "Hello World!"...the (lowercase) letter "l," for example:

"Hell o World!'
astring[:3] + aString[4:]

>>> aString
>>> aString
>>> aString
"Hel o World!'

To clear or remove a string, you assign an empty string or use the del statement, respectively:

>>> asString = "'
>>> aString

>>> del aString

In most applications, strings do not need to be explicitly deleted. Rather, the code defining the string

eventually terminates, and the string is eventually deallocated.

e prcy | NEXT B

e Py EXT

6.3. Strings and Operators

6.3.1. Standard Type Operators

In Chapter 4, we introduced a number of operators that apply to most objects, including the standard

types. We will take a look at how some of those apply to strings. For a brief introduction, here are a few
examples using strings:

>>> strl = 'abc'

>>> str2 = 'Imm'

>>> str3 = ' xyz'

>>> strl < str?2

True

>>> str2 = str3

True

>>> strl < str3 and str2 == 'xyz'
Fal se

When using the value comparison operators, strings are compared lexicographically (ASCII value order).
6.3.2. Sequence Operators
Slices([Jand[: 1)

Earlier in Section 6.1.1, we examined how we can access individual or a group of elements from a
sequence. We will apply that knowledge to strings in this section. In particular, we will look at:

« Counting forward
« Counting backward
« Default/missing indexes

For the following examples, we use the single string ' abcd' . Provided in the figure is a list of positive
and negative indexes that indicate the position in which each character is located within the string itself.

0 1_2 3
5| b le |id
-4 =3-2 -]

Using the length operator, we can confirm that its length is 4:

>>> aString = 'abcd
>>> | en(aString)
4

file:///D|/1/0132269937/14051536.html

When counting forward, indexes start at O to the left and end at one less than the length of the string
(because we started from zero). In our example, the final index of our string is:

final _i ndex len(aString) - 1
4 - 1

=3

We can access any substring within this range. The slice operator with a single argument will give us a
single character, and the slice operator with a range, i.e., using a colon (:), will give us multiple

consecutive characters. Again, for any ranges [start: end], we will get all characters starting at offset

start up to, but not including, the character at end. In other words, for all characters x in the range
[start:end], start <= x < end.

>>> aString[0]
A
>>> aString[1: 3]
' be!
>>> aString[2: 4]
Ced!
>>> aString[4]
Traceback (innernost |ast):

File "<stdin>", line 1, in ?

I ndexError: string index out of range

Any index outside our valid index range (in our example, O to 3) results in an error. Above, our access
of aString[2: 4] was valid because that returns characters at indexes 2 and 3, i.e., '¢' and 'd', but a

direct access to the character at index 4 was invalid.

When counting backward, we start at index -1 and move toward the beginning of the string, ending at
negative value of the length of the string. The final index (the first character) is located at:

final _i ndex = -len(asString)
= -4

>>> aString[-1]

1 dl

>>> aString[-3:-1]

1 bCl

>>> aString[-4]

L} al

When either a starting or an ending index is missing, they default to the beginning or end of the string,
respectively.

>>> aString[2:]

ed
>>> aString[l:]
" bcd'

>>> aString[:-1]
" abc’

>>> aString[:]
"abcd'

Notice how the omission of both indices gives us a copy of the entire string.

Membership (in, not in)

The membership question asks whether a (sub)string appears in a (nother) string. true is returned if
that character appears in the string and Fal se otherwise. Note that the membership operation is not

used to determine if a substring is within a string. Such functionality can be accomplished by using the
string methods or string module functions fi nd() orindex() (and their brethren rfind() and ri ndex()).

Below are a few more examples of strings and the membership operators. Note that prior to Python 2.3,
the i n (and not i n) operators for strings only allowed a single character check, such as the second
example below (is 'n" a substring of 'abcd"). In 2.3, this was opened up to all strings, not just characters.

>>> 'pc¢' in 'abcd

True

>>>'n' in 'abcd'

Fal se

>>> 'nm not in 'abcd
True

In Example 6.1, we will be using the following predefined strings found in the stri ng module:

>>> jnport string

>>> string. uppercase

" ABCDEFGHI JKLMNOPQRSTUVWKYZ'

>>> string. | owercase

" abcdef ghi j kl mopgr st uvwxyz'

>>> string.letters

" abcdef ghi j kl mopqgr st uvwxyz ABCDEFGHI J KL MNOPQRSTUVWKYZ'
>>> string.digits

' 0123456789'

Example 6.1 is a small script called i dcheck. py which checks for valid Python identifiers. As we now

know, Python identifiers must start with an alphabetic character. Any succeeding characters may be
alphanumeric.

Example 6.1. ID Check (i dcheck. py)

Tests for identifier validity. First symbol must be alphabetic and remaining symbols must
be alphanumeric. This tester program only checks identifiers that are at least two
characters in length.

#!usr/ bi n/ env python

i mport string

1
2
3
4
5 alphas = string.letters +
6 nunms = string.digits

7

8 print "Welconme to the Identifier Checker v1.0'
9 print 'Testees nmust be at least 2 chars |long.'
10 nylnput = raw_input('ldentifier to test? ')

11

12 if len(nylnput) > 1:

13

14 if nmylnput[0] not in alphas:

15 print "'""invalid: first synbol nust be
16 al phabetic''

17 el se:

18 for otherChar in nylnput[1:]:

19

20 i f otherChar not in al phas + nuns:
21 print """invalid: renmining
22 synbol s nmust be al phanuneric''
23 br eak

24 el se:

25 print "okay as an identifier"

The example also shows use of the string concatenation operator (+) introduced later in this section.

Running this script several times produces the following output:

$ python idcheck. py

Wl come to the Identifier Checker v1.0
Testees nmust be at |east 2 chars | ong.
Identifier to test? counter

okay as an identifier

$

$ pyt hon idcheck. py

Wel come to the Identifier Checker v1.0
Testees nmust be at | east 2 chars | ong.
Identifier to test? 3d effects
invalid: first synbol nust be al phabetic

Let us take apart the application line by line.

Lines 36

Import the stri ng module and use some of the predefined strings to put together valid alphabetic and

numeric identifier strings that we will test against.

Lines 812

Print the salutation and prompt for user input. The i f statement on line 12 filters out all identifiers or
candidates shorter than two characters in length.

Lines 1416

Check to see if the first symbol is alphabetic. If it is not, display the output indicating the result and
perform no further processing.

Lines 1718
Otherwise, loop to check the other characters, starting from the second symbol to the end of the string.

Lines 2023

Check to see if each remaining symbol is alphanumeric. Note how we use the concatenation operator
(see below) to create the set of valid characters. As soon as we find an invalid character, display the
result and perform no further processing by exiting the loop with br eak.

Core Tip: Performance

In general, repeat performances of operations or functions as
arguments in a loop are unproductive as far as performance is
concerned.

while i < len(nmyString):
print 'character % is:', nyString[i]

The loop above wastes valuable time recalculating the length of string
myStri ng. This function call occurs for each loop iteration. If we simply
save this value once, we can rewrite our loop so that it is more
productive.

length = len(nyString)
while i < length:
print'character % is:', nyString[i]

The same idea applies for this loop above in Example 6.1.

for otherChar in nylnput[1:]:
if otherChar not in al phas + nuns:

The for loop beginning on line 18 contains an i f statement that
concatenates a pair of strings. These strings do not change throughout
the course of the application, yet this calculation must be performed

for each loop iteration. If we save the new string first, we can then
reference that string rather than make the same calculations over and
over again:

al phnuns = al phas + nuns
for otherChar in mylnput[1:]:
i f otherChar not in al phnuns:

Lines 2425

It may be somewhat premature to show you a for - el se loop statement, but we are going to give it a
shot anyway. (For a full treatment, see Chapter 8). The el se statement for a f or loop is optional and, if
provided, will execute if the loop finished in completion without being "broken" out of by break. In our
application, if all remaining symbols check out okay, then we have a valid identifier name. The result is
displayed to indicate as such, completing execution.

This application is not without its flaws, however. One problem is that the identifiers tested must have
length greater than 1. Our application "as is" is not reflective of the true range of Python identifiers,
which may be of length 1. Another problem with our application is that it does not take into
consideration Python keywords, which are reserved names that cannot be used for identifiers. We leave
these two tasks as exercises for the reader (see Exercise 6-2).

Concatenation (+)

Runtime String Concatenation

We can use the concatenation operator to create new strings from existing ones. We have already seen
the concatenation operator in action above in Example 6-1. Here are a few more examples:

>>> ' Spani sh'" + 'Inquisition
' Spani shl nqui si tion'

>>>

>>> 'Spanish' + ' ' + '"Inquisition'

' Spani sh | nqui sition'

>>>

>>> g = 'Spanish’ +' ' + '"Inquisition' + ' Made Easy'
>>> g

" Spani sh I nqui sition Made Easy'

>>>

>>> jnport string
>>> string.upper(s[:3] + s[20]) # archai c (see bel ow)
' SPAM

The last example illustrates using the concatenation operator to put together a pair of slices from string
s, the "Spa" from "Spanish" and the "M" from "Made." The extracted slices are concatenated and then

sent to the string. upper () function to convert the new string to all uppercase letters. String methods
were added to Python back in 1.6 so such examples can be replaced with a single call to the final string

method (see example below). There is really no longer a need to import the stri ng module unless you
are trying to access some of the older string constants which that module defines.

Note: Although easier to learn for beginners, we recommend not using string concatenation when
performance counts. The reason is that for every string that is part of a concatenation, Python has to
allocate new memory for all strings involved, including the result. Instead, we recommend you either
use the string format operator (%), as in the examples below, or put all of the substrings in a list, and

using one j oi n() call to put them all together:

>>> U8 %' % (' Spanish', 'lnquisition')

' Spani sh I nquisition'

>>>

>>> s ="' ' join((' Spanish', '"lInquisition', 'Made Easy'))
>>> S

" Spani sh I nqui sition Made Easy'

>>>

>>> # no need to inmport string to use string. upper():
>>> ("%%' % (s[:3], s[20])).upper()
' SPAM

Compile-Time String Concatenation

The above syntax using the addition operator performs the string concatenation at runtime, and its use
is the norm. There is a less frequently used syntax that is more of a programmer convenience feature.

Python's syntax allows you to create a single string from multiple string literals placed adjacent to each
other in the body of your source code:

>>> foo = "Hell 0" "world!'
>>> f 00

"Hel | owor | d!"

It is a convenient way to split up long strings without unnecessary backslash escapes. As you can see
from the above, you can mix quotation types on the same line. Another good thing about this feature is
that you can add comments too, like this example:

>>> f = urllib.urlopen('http://' # protocol

"l ocal host' # host nane
' 8000 # port
"/cgi-bin/friends2. py') # file

As you can imagine, here is what ur| open() really gets as input:

>>> '"http://" 'localhost' ':8000" '/cgi-bin/friends2. py'
"http://local host: 8000/ cgi-bin/friends2. py'

Regular String Coercion to Unicode

When concatenating regular and Unicode strings, regular strings are converted to Unicode first before
the operation occurs:

>>> '"Hello" +u ' + "Wrld + u'!'
u' Hello World!'

Repetition (*)

The repetition operator creates new strings, concatenating multiple copies of the same string to
accomplish its functionality:

>>> "Nl * 3

"NIN N

>>>

>>> ' * x40

LI R IR R I b b b S I S S R b b I b I b I S S b S b I S I I
>>>

>>> print "-' * 20, "Hello World!'', "-' * 20
-------------------- Hello Wrld! -----------momm--
>>> who = 'knights'

>>> who * 2

" kni ght skni ght s’

>>> who
"kni ght s’

As with any standard operator, the original variable is unmodified, as indicated in the final dump of the
object above.

e Py EXT

file:///D|/1/0132269937/14051536.html

e Py EXT

6.4. String-Only Operators

6.4.1. Format Operator (%)

Python features a string format operator. This operator is unique to strings and makes up for the lack of
having functions from C's printf () family. In fact, it even uses the same symbol, the percent sign (%9,

and supports all the printf() formatting codes.

The syntax for using the format operator is as follows:

format _string % (argunments_to_convert)

The format _stri ng on the left-hand side is what you would typically find as the first argument to printf
() : the format string with any of the embedded %codes. The set of valid codes is given in Table 6.4. The
arguments_to_convert parameter matches the remaining arguments you would send to printf (), namely
the set of variables to convert and display.

Table 6.4. Format Operator Conversion Symbols

Format Symbol Conversion

Y% Character (integer [ASCII value] or string of length 1)
a String conversion via repr () prior to formatting
%
s String conversion via str () prior to formatting
v I % Signed decimal integer
%J[Q] Unsigned decimal integer
%D[g] (Unsigned) octal integer
%([Q]/ o (Unsigned) hexadecimal integer (lower/UPPERcase letters)
e | % Exponential notation (with lowercase 'e'/UPPERcase 'E')
% | % - - :
Floating point real number (fraction truncates naturally)
9 I % The shorter of % and % / Y%E%and %%

W Percent character (%) unescaped

file:///D|/1/0132269937/14051536.html

& New in Python 2.0; likely unique only to Python.

1) oar 01 o/ 4 of negative int will return a signed string in Python 2.4.

Python supports two formats for the input arguments. The first is a tuple (introduced in Section 2.8,
formally in 6.15), which is basically the set of arguments to convert, just like for C's printf (). The
second format that Python supports is a dictionary (Chapter 7). A dictionary is basically a set of hashed

key-value pairs. The keys are requested in the format _stri ng, and the corresponding values are
provided when the string is formatted.

Converted strings can either be used in conjunction with the print statement to display out to the user
or saved into a new string for future processing or displaying to a graphical user interface.

Other supported symbols and functionality are listed in Table 6.5.

Table 6.5. Format Operator Auxiliary Directives

Symbol Functionality

Argument specifies width or precision

- Use left justification

+ Use a plus sign (+) for positive numbers
<Sp> Use space-padding for positive numbers
Add the octal leading zero ('0") or hexadecimal leading '0x' or '0X', depending on whether 'x'

or 'X' were used.

0 Use zero-padding (instead of spaces) when formatting numbers

% '986 leaves you with a single literal "%

(var) Mapping variable (dictionary arguments)

mn mis the minimum total width and n is the number of digits to display after the decimal point

(if applicable)

As with C's printf (), the asterisk symbol (*) may be used to dynamically indicate the width and

precision via a value in argument tuple. Before we get to our examples, one more word of caution: long
integers are more than likely too large for conversion to standard integers, so we recommend using
exponential notation to get them to fit.

Here are some examples using the string format operator:
Hexadecimal Output

>>> "Ox" 9% 108

' Be
>>>

>>> "oX" 9% 108
'6C

>>>

>>> "OogX" % 108
' OX6C

>>>

>>> " OgEx" % 108
' Ox6c¢’

Floating Point and Exponential Notation Output

>>>
>>> ' 0" 9% 1234. 567890
'1234. 567890

>>>
>>> ' 0p 2f' 9% 1234. 567890
''1234. 57"

>>>

>>> ' oUE % 1234. 567890
"1. 234568E+03'

>>>

>>> "0’ % 1234. 567890
'1.234568e+03'

>>>
>>> "0g' % 1234.567890
'1234.57"

>>>

>>> ' U5 9% 1234.567890
'1234. 57"

>>>

>>> "0e" 9% (11111111111111111111111L)
"1.111111e+21"

Integer and String Output

>>> "0pd" % 4
I+4l
>>>

>>> "0pd" % -4

L

>>>

>>> "we are at %@%06 % 100

"we are at 100%

>>>

>>> 'Your host is: %' % 'earth'

"Your host is: earth'

>>>

>>> '"Host: %\tPort: %' % ('mars', 80)
"Host: mars Port: 80

>>>

>>> num = 123

>>> 'dec: %/ oct: %to/ hex: %X % (num num nun)
"dec: 123/oct: 0173/ hex: OX7B

>>>

> "MM DD YY = 992d/ 992d/ %" % (2, 15, 67)
"MV DD YY = 02/ 15/ 67"
>>>
>>>w, p ="'Wb', 'page

> "http://xxx.yyy.zzz/ %/ %.htmd' % (w, p)
"http://xxx.yyy.zzz/ Wb/ page. ht m '

The previous examples all use tuple arguments for conversion. Below, we show how to use a dictionary
argument for the format operator:

>>> 'There are % howmany)d ‘V(I ang)s Quotation Synbols' %\
{'lang': 'Python', 'howrany': 3}
There are 3 Python Quotation Synbols'

Amazing Debugging Tool

The string format operator is not only a cool, easy-to-use, and familiar feature, but a great and useful
debugging tool as well. Practically all Python objects have a string presentation (either evaluatable from
repr() or'',or printable from str()). The print statement automatically invokes the str() function for

an object. This gets even better. When you are defining your own objects, there are hooks for you to
create string representations of your object such that repr() and str() (and'' and print) return an

appropriate string as output. And if worse comes to worst and neither repr () or str() is able to display
an object, the Pythonic default is at least to give you something of the format:

<... sonething that is useful ...>

6.4.2. String Templates: Simpler Substitution

The string format operator has been a mainstay of Python and will continue to be so. One of its
drawbacks, however, is that it is not as intuitive to the new Python programmer not coming from a C/C+
+ background. Even for current developers using the dictionary form can accidentally leave off the type
format symbol, i.e., %1 ang) vs. the more correct % | ang) s. In addition to remembering to put in the

correct formatting directive, the programmer must also know the type, i.e., is it a string, an integer, etc.

The justification of the new string templates is to do away with having to remember such details and use
string substitution much like those in current shell-type scripting languages, the dollar sign ($).

The string module is temporarily resurrected from the dead as the new Tenpl at e class has been added
to it. Tenpl at e objects have two methods, substitute() and safe_substitute(). The former is more
strict, throwing KeyEr ror exceptions for missing keys while the latter will keep the substitution string
intact when there is a missing key:

>>> fromstring inport Tenpl ate

>>> s = Tenpl ate(' There are ${howrany} ${lang} Quotation Synbols')
>>>

>>> print s.substitute(lang="Python', howrany=3)

There are 3 Python Quotation Synbols

>>>
>>> print s.substitute(lang="Python')

Traceback (nost recent call |ast):
File "<stdin>", line 1, in ?
File "/usr/local/lib/python2.4/string.py", line 172, in substitute
return self.pattern.sub(convert, self.tenplate)
File "/usr/local/lib/python2.4/string.py", line 162, in convert
val = mappi ng[naned]
KeyError: 'howrany'
>>>

>>> print s.safe _substitute(lang="Python')
There are ${howrany} Python Quotati on Synbols

The new string templates were added to Python in version 2.4. More information about them can be
found in the Python Library Reference Manual and PEP 292.

6.4.3. Raw String Operator (r/R)

The purpose of raw strings, introduced back in version 1.5, is to counteract the behavior of the special
escape characters that occur in strings (see the subsection below on what some of these characters
are). In raw strings, all characters are taken verbatim with no translation to special or non-printed
characters.

This feature makes raw strings absolutely convenient when such behavior is desired, such as when
composing regular expressions (see the re module documentation). Regular expressions (REs) are
strings that define advanced search patterns for strings and usually consist of special symbols to
indicate characters, grouping and matching information, variable names, and character classes. The
syntax for REs contains enough symbols already, but when you have to insert additional symbols to
make special characters act like normal characters, you end up with a virtual "alphanumersymbolic"
soup! Raw strings lend a helping hand by not requiring all the normal symbols needed when composing
RE patterns.

The syntax for raw strings is exactly the same as for normal strings with the exception of the raw string
operator, the letter "r," which precedes the quotation marks. The "r" can be lowercase (r) or uppercase

(R) and must be placed immediately preceding the first quote mark.

In the first of our three examples, we really want a backslash followed by an 'n* as opposed to a
NEWLINE character:

>>> '\ n'
I\nl
>>> print '\n'

>>> r'\n'

"\\n'

>>> print r'\n'
\n

Next, we cannot seem to open our README file. Why not? Because the \t and \r are taken as special

symbols which really are not part of our filename, but are four individual characters that are part of our
file pathname.

>>> f = open(' C.\wi ndows\tenp\readne.txt', 'r")

Traceback (nost recent call |ast):
File "<stdin>", line 1, in ?
f = open(’' C.\wi ndows\tenp\readne.txt', 'r")

|CError: [Errno 2] No such file or directory: 'C\\w n-
dows\\tenp\readne. t xt'

>>> f = open(r' C.\wi ndows\tenmp\readne.txt', 'r')

>>> f . readline()

"Tabl e of Contents (please check tinestanps for |ast
update!)\n'

>>> f.cl ose()

Finally, we are (ironically) looking for a raw pair of characters \ n and not NEWLINE. In order to find it,

we are attempting to use a simple regular expression that looks for backslash-character pairs that are
normally single special whitespace characters:

>>> jnport re
>>> m= re.search('\\[rtfvn]', r'Hello World!\n")
>>> if mis not None: m group()

>>> m= re.search(r'\\[rtfvn]', r'Hello Wrld!'\n")
>>> if mis not None: m group()

"“\\n'

6.4.4. Unicode String Operator (u/U)

The Unicode string operator, uppercase (U) and lowercase (u), introduced with Unicode string support in

Python 1.6, takes standard strings or strings with Unicode characters in them and converts them to a
full Unicode string object. More details on Unicode strings are available in Section 6.7.4. In addition,
Unicode support is available via string methods (Section 6.6) and the regular expression engine. Here

are some examples:

u' abc' U+0061 U+0062 W+0063
u'\ul234 U+1234
u' abc\ul234\ n* U+0061 U+0062 U+0063 U+1234 U+0012

The Unicode operator can also accept raw Unicode strings if used in conjunction with the raw string
operator discussed in the previous section. The Unicode operator must precede the raw string operator.

ur' Hel l o\ n\Wor | d!'

e Py EXT

file:///D|/1/0132269937/14051536.html

e Py EXT

6.5. Built-in Functions

6.5.1. Standard Type Functions

cnp()

As with the value comparison operators, the cnp() built-in function also performs a lexicographic (ASCII
value-based) comparison for strings.

>>> strl = 'abc'
>>> str2 ='Ilm'
>>> str3 = ' xyz'

>>> cnp(strl, str2)

-11

>>> cnp(str3, strl)
23

>>> cnp(str2, 'Im')
0

6.5.2. Sequence Type Functions
len()

>>> strl = 'abc'

>>> | en(stril)

3

>>> [en('Hello World!")
12

The 1 en() built-in function returns the number of characters in the string as expected.

max() and min()

>>> str2 ='Im'
>>> str3 = 'xyz'
>>> max(str2)
-

>>> mn(str3)
Ly

Although more useful with other sequence types, the max() and ni n() built-in functions do operate as

advertised, returning the greatest and least characters (lexicographic order), respectively. Here are a
few more examples:

>>> mn('abl2cd')
1 1!

>>> m n(' AB12CD)
Cq

>>> min(' ABabCDcd')
) Al

enuner at e()

>>> s = 'foobar'
>>> for i, t in enunerate(s):
print i, t

O~ WNELO
-~ 9 T OO0 ™

zi p()

>> s, t ="'foa', 'obr'
>>> zip(s, t)
[¢f, "o), ("o, "b), ("a, "r')]

6.5.3. String Type Functions
raw_i nput ()

The built-in raw_i nput () function prompts the user with a given string and accepts and returns a user-
input string. Here is an example using raw_ i nput () :

>>> user _input = raw_i nput ("Enter your nane: ")
Enter your name: John Doe

>>>

>>> user _i nput

"John Doe'

>>>

>>> | en(user _i nput)

8

Earlier, we indicated that strings in Python do not have a terminating NUL character like C strings. We
added in the extra call to I en() to show you that what you see is what you get.

str() and uni code()

Both str () and uni code() are factory functions, meaning that they produce new objects of their type

respectively. They will take any object and create a printable or Unicode string representation of the
argument object. And, along with basestri ng, they can also be used as arguments along with objects in

i si nstance() calls to verify type:

>>> jsinstance(u \OxAB' , str)
Fal se

>>> not isinstance('foo', unicode)

True

>>> jsinstance(u' ', basestring)

True

>>> not isinstance('foo', basestring)
Fal se

chr (), unichr(),and ord()

chr () takes a single integer argument in range(256) (e.g., between O and 255) and returns the
corresponding character. uni chr () does the same thing but for Unicode characters. The range for uni chr
(), added in Python 2.0, is dependent on how your Python was compiled. If it was configured for UCS2
Unicode, then a valid value falls in range(65536) or 0XO0O00-OxFFFF; for UCS4, the value should be in
range(1114112) or 0x000000-0x110000. If a value does not fall within the allowable range(s), a

Val ueEr ror exception will be raised.

ord() is the inverse of chr () (for 8-bit ASCII strings) and uni chr () (for Unicode objects)it takes a single

character (string of length 1) and returns the corresponding character with that ASCII code or Unicode
code point, respectively. If the given Unicode character exceeds the size specified by your Python
configuration, a TypeError exception will be thrown.

>>> chr (65)
CA
>>> ord('a')
97
>>> uni chr (12345)
u' \ u3039'
>>> chr (12345)
Traceback (nost recent call last):
File "<stdin>", line 1, in ?
chr (12345)
Val ueError: chr() arg not in range(256)
>>> ord(u' \ufffff")
Traceback (nost recent call last):
File "<stdin>", line 1, in ?
ord(u' \ufffff"')
TypeError: ord() expected a character, but string of
l ength 2 found
>>> ord(u'\u2345")
9029

e Py EXT

e Py EXT

6.6. String Built-in Methods

String methods were added to Python in the 1.6 to 2.0 timeframethey also were added to Jython. These
methods replace most of the functionality in the stri ng module as well as to add new functionality.

Table 6.6 shows all the current methods for strings. All string methods should fully support Unicode
strings. Some are applicable only to Unicode strings.

Table 6.6. String Type Built-in Methods

Method Name Description
string.capitalize() Capitalizes first letter of string
string. center(w dth) Returns a space-padded st ri ng with the original

string centered to a total of wi dt h columns

string. count(str, beg= 0, end=l en(string)) Counts how many times str occurs in string, or
in a substring of stri ng if starting index beg and
ending index end are given

string. decode(encodi ng=' UTF-8', errors="strict') Returns decoded string version of string; on
error, default is to raise a Vval ueError unless

errors is given with 'i gnore' or 'repl ace’

string. encode(encodi ng=' UTF-8', errors="strict') Returns encoded string version of string; on
[al error, default is to raise a Vval ueError unless

errors is given with 'i gnore' or 'repl ace’

string. endswi t h(obj, beg=0, end=len(stri ng))[gl’ Dete_rmlr_les if string or a s_ubs_trlng of string (if
starting index beg and ending index end are

[el given) ends with obj where obj is typically a
string; if obj is a tuple, then any of the strings in
that tuple; returns true if so, and Fal se otherwise

string. expandt abs(t absi ze=8) Expands tabs in string to multiple spaces;
defaults to 8 spaces per tab if t absi ze not
provided

string.find(str, beg=0end=l en(string)) Determine if str occurs in string, orina

substring of stri ng if starting index beg and
ending index end are given; returns index if found
and -1 otherwise

string.index(str, beg=0, end=l en(string)) Same as find(), but raises an exception if str not
found
[al [b] [c] Returns true if string has at least 1 character

string.isal num() .
and all characters are alphanumeric and Fal se

otherwise

[a] [b] [c]

string.isal pha()))
string.isdeci mal ()[Ql,[gl,[gl
string.isdi git()[gl,[gl
string.isl ovver()[gl,[gl
string.isnuneri C()[Q]’[Q]’[Ql
string.i sspace()[gl,[g1
stri ng.istitle()[gl,[g1
string.i supper()[gl,[Ql

string.join(seq)

string.!ljust(w dth)

string. | ower()

string.lstrip()

[el

string.partition(str)

string.replace(strl, str2, numestring. count
(strl))

string.rfind(str, beg=0, end=len(string))
string.rindex(str, beg=0, end=len(string))

string.rjust(w dth)

[el

string.rpartition(str)

string.rstrip()

Returns TRue if string has at least 1 character
and all characters are alphabetic and Fal se
otherwise

Returns TRue if stri ng contains only decimal digits
and Fal se otherwise

Returns true if stri ng contains only digits and
Fal se otherwise

Returns true if string has at least 1 cased

character and all cased characters are in
lowercase and Fal se otherwise

Returns true if stri ng contains only numeric
characters and Fal se otherwise

Returns true if stri ng contains only whitespace
characters and Fal se otherwise

Returns true if string is properly "titlecased" (see
title()) and Fal se otherwise

Returns TRue if stri ng has at least one cased

character and all cased characters are in
uppercase and Fal se otherwise

Merges (concatenates) the string representations
of elements in sequence seq into a string, with
separator string

Returns a space-padded string with the original
string left-justified to a total of wi dt h columns

Converts all uppercase letters in string to
lowercase

Removes all leading whitespace in string

Like a combination of find() and split(), splits
string into a 3-tuple (string_pre_str, str,
string_post_str) on the first occurrence of str ; if
not found, string_pre_str == string

Replaces all occurrences of str1 in string with
str2, or at most numoccurrences if numgiven

Same as find(), but search backward in string
Same as i ndex(), but search backward in string

Returns a space-padded string with the original
string right-justified to a total of wi dt h columns

Same as partition(), but search backwards in
string

Removes all trailing whitespace of stri ng

string.split(str="", numestring.count(str))

[b] [c]

string.splitlines(nunestring.count('\n')) ,

string.startsw th(obj, beg=0, end=l en(string))

[b] [el

string.strip([obj])

string. swapcase()

[b] [c]

string.title() ,

string.transl ate(str, del="")

string. upper ()

string.zfill (w dth)

[a]

I Not available as a st r i ng module function in 1.5.2.

®I New or updated in Python 2.5.

I New in Jython 2.1.

g Applicable to Unicode strings only.

Some examples of using string methods:

>>> quest = 'what is your favorite color?
>>> quest.capitalize()

"What is your favorite col or?

>>>

>>> quest . center (40)

' what is your favorite color?
>>>

>>> quest.count (' or')

2

>>>

>>> quest.endswi th(' bl ue')

Fal se

Splits st ri ng according to delimiter str (space if
not provided) and returns list of substrings; split
into at most numsubstrings if given

Splits string at all (or num) NEWLINEs and returns
a list of each line with NEWLINEs removed

Determines if string or a substring of string (if
starting index beg and ending index end are
given) starts with obj where obj is typically a
string; if obj is a tuple, then any of the strings in
that tuple; returns true if so, and Fal se otherwise

Performs both I'strip() and rstrip() onstring

Inverts case for all letters in string

Returns "titlecased” version of stri ng, that is, all
words begin with uppercase, and the rest are
lowercase (also see istitle())

Translates string according to translation table
str (256 chars), removing those in the del string

Converts lowercase letters in stri ng to uppercase

Returns original stri ng left-padded with zeros to
a total of wi dt h characters; intended for numbers,
zfill () retains any sign given (less one zero)

Applicable to Unicode strings only in 1.6, but to all string types in 2.0.

>>>

>>> quest.endswith(' color?")
True

>>>

>>> quest.find('or', 30)

-1

>>>

>>> quest.find('or', 22)

25

>>

>>> quest.index('or', 10)

16

>>>

>>> "' join(quest.split())
"what :is:your:favorite: col or?
>>> quest.replace(' favorite color', 'quest')
>>>

"what is your quest?

>>>

>>> quest . upper ()

"VWHAT | S YOUR FAVORI TE COLOR?

The most complex example shown above is the one with split() andjoin(). We first call split() on our

string, which, without an argument, will break apart our string using spaces as the delimiter. We then
take this list of words and call j oi n() to merge our words again, but with a new delimiter, the colon.

Notice that we used the split() method for our string to turn it into a list, and then, we used the j oi n()
method for ' ;' to merge together the contents of the list.

e Py EXT

e Py EXT

6.7. Special Features of Strings

6.7.1. Special or Control Characters

Like most other high-level or scripting languages, a backslash paired with another single character
indicates the presence of a "special” character, usually a nonprintable character, and that this pair of
characters will be substituted by the special character. These are the special characters we discussed
above that will not be interpreted if the raw string operator precedes a string containing these
characters.

In addition to the well-known characters such as NEWLINE (\n) and (horizontal) tab (\t), specific

characters via their ASCII values may be used as well: \ 000 or \ xXX where 000 and XX are their
respective octal and hexadecimal ASCII values. Here are the base 10, 8, and 16 representations of O,
65, and 255:

ASCI1 ASCII ASCII

Decimal 0 65 255
Octal \000 \101 \177

Hexadecimal \x00 \ x41 \ xFF

Special characters, including the backslash-escaped ones, can be stored in Python strings just like
regular characters.

Another way that strings in Python are different from those in C is that Python strings are not
terminated by the NUL (AOOO) character (ASCII value 0). NUL characters are just like any of the other
special backslash-escaped characters. In fact, not only can NUL characters appear in Python strings, but
there can be any number of them in a string, not to mention that they can occur anywhere within the
string. They are no more special than any of the other control characters. Table 6.7 represents a

summary of the escape characters supported by most versions of Python.

Table 6.7. String Literal Backslash
Escape Characters

/X Oct Dec Hex Char Description

\0 000 O 0x00 NUL Null character
\a 007 7 0x07 BEL Bell

\b 010 8 0x08 BS Backspace

file:///D|/1/0132269937/14051536.html

\t 011 9 0x09 HT Horizontal tab

\n 012 10 Ox0A LF Linefeed/Newline

\v 013 11 0x0B VT Vertical tab

\r 015 13 0x0D CR Carriage return

\" 042 34 0x22 " Double quote
\" 047 39 0x27 Single quote/apostrophe
\\ 134 92 0x5C \ Backslash

As mentioned before, explicit ASCII octal or hexadecimal values can be given, as well as escaping a
NEWLINE to continue a statement to the next line. All valid ASCII character values are between O and
255 (octal 0177, hexadecimal OXFF).

\ 00O Cctal value OO0 (range is 0000 to 0177)
\ XXX "x'" plus hexadeci mal value XX (range is 0X00 to OxFF)
\ escape NEW.I NE for statenent continuation

One use of control characters in strings is to serve as delimiters. In database or Internet/Web
processing, it is more than likely that most printable characters are allowed as data items, meaning that
they would not make good delimiters.

It becomes difficult to ascertain whether or not a character is a delimiter or a data item, and by using a
printable character such as a colon (:) as a delimiter, you are limiting the number of allowed

characters in your data, which may not be desirable.

One popular solution is to employ seldomly used, nonprintable ASCII values as delimiters. These make
the perfect delimiters, freeing up the colon and the other printable characters for more important uses.

6.7.2. Triple Quotes

Although strings can be represented by single or double quote delimitation, it is often difficult to
manipulate strings containing special or nonprintable characters, especially the NEWLINE character.
Python's triple quotes comes to the rescue by allowing strings to span multiple lines, including verbatim
NEWLINEs, tabs, and any other special characters.

The syntax for triple quotes consists of three consecutive single or double quotes (used in pairs,
naturally):

>>> hi = "''"'hi

there' "'

>>> hi # repr()
"hi\nt here'

>>> print hi # str()
hi

t here

Triple quotes lets the developer avoid playing quote and escape character games, all the while bringing
at least a small chunk of text closer to WYSIWIG (what you see is what you get) format.

The most powerful use cases are when you have a large block of HTML or SQL that would be completely
inconvenient to use by concanentation or wrapped with backslash escapes:

errHTML = """
<HTML><HEAD><TI TLE>
Fri ends CA Deno</ Tl TLE></ HEAD>

<BODY><H3>ERROR</ H3>

%s </ B><P>

<FORM><| NPUT TYPE=button VALUE=Back
ONCLI CK="wi ndow. hi st ory. back() " ></ FORM>
</ BODY></ HTML>

cursor. execut e(
CREATE TABLE users (
| ogi n VARCHAR(8),
ui d | NTEGER,
prid | NTEGER)

)

6.7.3. String Immutability

In Section 4.7.2, we discussed how strings are immutable data types, meaning that their values cannot
be changed or modified. This means that if you do want to update a string, either by taking a substring,
concatenating another string on the end, or concatenating the string in question to the end of another
string, etc., a new string object must be created for it.

This sounds more complicated than it really is. Since Python manages memory for you, you won't really
notice when this occurs. Any time you modify a string or perform any operation that is contrary to
immutability, Python will allocate a new string for you. In the following example, Python allocates space
for the strings, ' abc' and ' def' . But when performing the addition operation to create the string

"abcdef' , new space is allocated automatically for the new string.

>>> 'abc' + ' def’
"abcdef’

Assigning values to variables is no different:

>>> s = 'abc'
>>> s = s + 'def’
>>> S

"abcdef’

In the above example, it looks like we assigned the string 'abc' to stri ng, then appended the string 'def’
to string. To the naked eye, strings look mutable. What you cannot see, however, is the fact that a new

string was created when the operation "s + ' def' " was performed, and that the new object was then
assigned back to s. The old string of ' abc' was deallocated.

Once again, we can use the i d() built-in function to help show us exactly what happened. If you recall,
i d() returns the "identity" of an object. This value is as close to a "memory address" as we can get in
Python.

>> s = 'abc'
>>>

>>> j d(s)
135060856

>>>

>>> s += ' def'’
>>> | d(s)
135057968

Note how the identities are different for the string before and after the update. Another test of
mutability is to try to modify individual characters or substrings of a string. We will now show how any
update of a single character or a slice is not allowed:

>>> S

"abcdef’
>>>

>>> g[2] ='C
Traceback (innernost |ast):

File "<stdin>", line 1, in ?
AttributeError: _ setitem _
>>>
>>> s[3:6] = 'DEF
Traceback (innernost |ast):

File "<stdin>", line 1, in ?
AttributeError: _ setslice

Both operations result in an error. In order to perform the actions that we want, we will have to create
new strings using substrings of the existing string, then assign those new strings back to string:

>>> S

"abcdef’

>>>

>>> s = "U8C¥%' % (s[0:2], s[3:])
>>> g

"abCdef"’

>>>

>>> s[0:3] + 'DEF

" abCDEF'

So for immutable objects like strings, we make the observation that only valid expressions on the left-
hand side of an assignment (to the left of the equals sign [=]) must be the variable representation of
an entire object such as a string, not single characters or substrings. There is no such restriction for the
expression on the right-hand side.

file:///D|/1/0132269937/14051536.html

NEXT B

e Py EXT

6.8. Unicode

Unicode string support, introduced to Python in version 1.6, is used to convert between multiple double-
byte character formats and encodings, and includes as much functionality as possible to manage these
strings. With the addition of string methods (see Section 6.6), Python strings and regular expressions
are fully featured to handle a wide variety of applications requiring Unicode string storage, access, and
manipulation. We will do our best here to give an overview of Unicode support in Python. But first, let us
take a look at some basic terminology and then ask ourselves, just what is Unicode?

6.8.1. Terminology

Table 6.8. Unicode Terminology

Term Meaning

ASCII American Standard Code for Information Interchange
BMP Basic Multilingual Plane (plane 0)

BOM Byte Order Mark (character that denotes byte-ordering)

CJK/CIJKV Abbreviation for Chinese-Japanese-Korean (and -Vietnamese)

Code point Similar to an ASCII value, represents any value in the Unicode codespace, e.g., within
range(1114112) or integers from 0x000000 to Ox10FFFF.

Octet Ordered sequence of eight bits as a single unit, aka (8-bit) byte

UCS Universal Character Set

UCSs2 Universal Character Set coded in 2 octets (also see UTF-16)

UCs4 Universal Character Set coded in 4 octets

UTF Unicode or UCS Transformation Format

UTF-8 8-bit UTF Transformation Format (unsigned byte sequence one to four bytes in length)
UTF-16 16-bit UTF Transformation Format (unsigned byte sequence usually one 16-bit word [two

bytes] in length; also see UCS2)

6.8.2. What Is Unicode?

Unicode is the miracle and the mystery that makes it possible for computers to support virtually any
language on the planet. Before Unicode, there was ASCII, and ASCII was simple. Every English
character was stored in the computer as a seven bit number between 32 and 126. When a user entered
the letter A into a text file, the computer would write the letter A to disk as the number 65. Then when
the computer opened that file it would translate that number 65 back into an A when it displayed the file
contents on the screen.

ASCII files were compact and easy to read. A program could just read in each byte from a file and

convert the numeric value of the byte into the corresponding letter. But ASCII only had enough numbers
to represent 95 printable characters. Later software manufacturers extended ASCII to 8 bits, which
provided an additional 128 characters, but 223 characters still fell far short of the thousands required to
support all non-European languages.

Unicode overcomes the limitations of ASCII by using one or more bytes to represent each character.
Using this system, Unicode can currently represent over 90,000 characters.

6.8.3. How Do You Use Unicode?

In the early days, Python could only handle 8-bit ASCII. Strings were simple data types. To manipulate
a string, a user had to create a string and then pass it to one of the functions in the stri ng module.

Then in 2000, we saw the releases of Python 1.6 (and 2.0), the first time Unicode was supported in
Python.

In order to make Unicode strings and ASCII strings look as similar as possible, Python strings were
changed from being simple data types to real objects. ASCII strings became Stri ngTypes and Unicode

strings became Uni codeTypes. Both behave very similarly. Both have string methods that correspond to
functions in the string module. The stri ng module was not updated and remained ASCII only. It is now

deprecated and should never be used in any Unicode-compliant code. It remains in Python just to keep
legacy code from breaking.

Handling Unicode strings in Python is not that different from handling ordinary ASCII strings. Python
calls hard-coded strings string literals. By default all string literals are treated as ASCII. This can be
changed by adding the prefix u to a string literal. This tells Python that the text inside of the string

should be treated as Unicode.

>>> "Hello Worl d" # ASCI I string
>>> u"Hello Wrld" # Unicode string

The built-in functions str() and chr () were not updated to handle Unicode. They only work with regular
ASCII strings. If a Unicode string is passed to str () it will silently convert the Unicode string to ASCII. If
the Unicode string contains any characters that are not supported by ASCII, str () will raise an
exception. Likewise, chr () can only work with numbers 0 to 255. If you pass it a numeric value (of a
Unicode character, for example) outside of that range, it will raise an exception.

New BIFs uni code() and uni chr () were added that act just like str() and chr () but work with Unicode
strings. The function uni code() can convert any Python data type to a Unicode string and any object to a
Unicode representation if that object has an __uni code__ () method. For a review of these functions, see
Sections 6.1.3 and 6.5.3.

6.8.4. What Are Codecs?

The acronym codec stands for COder/DECoder. It is a specification for encoding text as byte values and
decoding those byte values into text. Unlike ASCII, which used only one byte to encode a character into
a number, Unicode uses multiple bytes. Plus Unicode supports several different ways of encoding
characters into bytes. Four of the best-known encodings that these codecs can convert are: ASCII, I1SO
8859-1/Latin-1, UTF-8, and UTF-16.

The most popular is UTF-8, which uses one byte to encode all the characters in ASCII. This makes it
easier for a programmer who has to deal with both ASCII and Unicode text since the numeric values of

the ASCII characters are identical in Unicode.

For other characters, UTF-8 may use one or four bytes to represent a letter, three (mainly) for CJK/East
Asian characters, and four for some rare, special use, or historic characters. This makes it more difficult
for programmers who have to read and write the raw Unicode data since they cannot just read in a fixed
number of bytes for each character. Luckily for us, Python hides all of the details of reading and writing
the raw Unicode data for us, so we don't have to worry about the complexities of reading multibyte
characters in text streams. All the other codecs are much less popular than UTF-8. In fact, | would say
most Python programmers will never have to deal with them, save perhaps UTF-16.

UTF-16 is probably the next most popular codec. It is simpler to read and write its raw data since it
encodes every character as a single 16-bit word represented by two bytes. Because of this, the ordering
of the two bytes matters. The regular UTF-16 code requires a Byte Order Mark (BOM), or you have to
specifically use UTF-16-LE or UTF-16-BE to denote explicit little endian and big endian ordering.

UTF-16 is technically also variable-length like UTF-8 is, but this is uncommon usage. (People generally
do not know this or simply do not even care about the rarely used code points in other planes outside
the Basic Multilingual Plane (BMP). However, its format is not a superset of ASCII and makes it
backward-incompatible with ASCII. Therefore, few programs implement it since most need to support
legacy ASCII text.

6.8.5. Encoding and Decoding

Unicode support for multiple codecs means additional hassle for the developer. Each time you write a
string to a file, you have to specify the codec (also called an "encoding") that should be used to
translate its Unicode characters to bytes. Python minimizes this hassle for us by providing a Unicode
string method called encode() that reads the characters in the string and outputs the right bytes for the

codec we specify.

So every time we write a Unicode string to disk we have to "encode" its characters as a series of bytes
using a particular codec. Then the next time we read the bytes from that file, we have to "decode" the
bytes into a series of Unicode characters that are stored in a Unicode string object.

Simple Example

The script below creates a Unicode string, encodes it as some bytes using the UTF-8 codec, and saves it
to a file. Then it reads the bytes back in from disk and decodes them into a Unicode string. Finally, it
prints the Unicode string so we can see that the program worked correctly.

Line-by-Line Explanation
Lines 17

The usual setup plus a doc string and some constants for the codec we are using and the name of the
file we are going to store the string in.

Lines 919

Here we create a Unicode string literal, encode it with our codec, and write it out to disk (lines 9-13).
Next, we read the data back in from the file, decode it, and display it to the screen, suppressing the
print statement's NEWLINE because we are using the one saved with the string (lines 15-19).

Example 6.2. Simple Unicode String Example (uni Fil e. py)

This simple script writes a Unicode string to disk and reads it back in for display. It encodes
it into UTF-8 for writing to disk, which it must then decode in to display it.

#!/usr/ bin/env python

An exanple of reading and witing Unicode strings: Wites
a Unicode string to a file in utf-8 and reads it back in.

CODEC = 'utf-8'
FI LE = '"uni code. t xt'

O©CoO~NOOOTHA~ WNPEF

hel | o_out u"Hello world\n"

byt es_out hel | o_out . encode(CODEC)
f = open(FILE, "w')
f.wite(bytes_out)

f.close()

PR R R
AWNRFRO
I

=
(6]

f = open(FILE, "r")

bytes in = f.read()

f.close()

hell o_in = bytes_in.decode(CODEC)
print hello_in,

el
© o~

When we run the program we get the following output:

$ uni code_exanpl e. py

Hello Wrld

We also find a file called unicode.txt on the file system that contains the same string the program
printed out.

$ cat unicode. t xt

Hel |l o Wor | d!

Simple Web Example

We show a similar and simple example of using Unicode with CGI in the Web Programming chapter
(Chapter 20).

6.8.6. Using Unicode in Real Life

Examples like this make it look deceptively easy to handle Unicode in your code, and it is pretty easy, as
long as you follow these simple rules:

« Always prefix your string literals with u.
« Never use str() ... always use uni code() instead.

« Never use the outdated st ri ng moduleit blows up when you pass it any non-ASCII characters.

« Avoid unnecessary encoding and decode of Unicode strings in your program. Only call the encode
() method right before you write your text to a file, database, or the network, and only call the
decode() method when you are reading it back in.

These rules will prevent 90 percent of the bugs that can occur when handling Unicode text. The problem
is that the other 10 percent of the bugs are beyond your control. The greatest strength of Python is the
huge library of modules that exist for it. They allow Python programmers to write a program in ten lines
of code that might require a hundred lines of code in another language. But the quality of Unicode
support within these modules varies widely from module to module.

Most of the modules in the standard Python library are Unicode compliant. The biggest exception is the
pi ckl e module. Pickling only works with ASCII strings. If you pass it a Unicode string to unpickle, it will

raise an exception. You have to convert your string to ASCII first. It is best to avoid using text-based
pickles. Fortunately, the binary format is now the default and it is better to stick with it. This is
especially true if you are storing your pickles in a database. It is much better to save them as a BLOB
than to save them as a TEXT or VARCHAR field and then have your pickles get corrupted when someone
changes your column type to Unicode.

If your program uses a bunch of third-party modules, then you will probably run into a number of
frustrations as you try to get all of the programs to speak Unicode to each other. Unicode tends to be an
all-or-nothing proposition. Each module in your system (and all systems your program interfaces with)
has to use Unicode and the same Unicode codec. If any one of these systems does not speak Unicode,
you may not be able to read and save strings properly.

As an example, suppose you are building a database-enabled Web application that reads and writes
Unicode. In order to support Unicode you need the following pieces to all support Unicode:

. Database server (MySQL, PostgreSQL, SQL Server, etc.)
. Database adapter (M/SQLdb, etc.)

« Web framework (nmod_pyt hon, cgi , Zope, Plane, Django etc.)

The database server is often the easiest part. You just have to make sure that all of your tables use the
UTF-8 encoding.

The database adapter can be trickier. Some database adapters support Unicode, some do not. MySQLdb,

for instance, does not default to Unicode mode. You have to use a special keyword argument
use_uni code in the connect () method to get Unicode strings in the result sets of your queries.

Enabling Unicode is very simple to do in nod_pyt hon. Just set the text-encoding field to "utf-8" on the
request object and nod_pyt hon handles the rest. Zope and other more complex systems may require
more work.

6.8.7. Real-Life Lessons Learned

Mistake #1: You have a large application to write under significant time pressure. Foreign language
support was a requirement, but no specifics are made available by the product manager. You put off
Unicode-compliance until the project is mostly complete ... it is not going to be that much effort to add
Unicode support anyway, right?

Result #1: Failure to anticipate the foreign-language needs of end-users as well as integration of
Unicode support with the other foreign language-oriented applications that they used. The retrofit of the
entire system would be extremely tedious and time-consuming.

Mistake #2: Using the string module everywhere including calling str() and chr () in many places
throughout the code.

Result #2: Convert to string methods followed by global search-and-replace of str() and chr() with
uni code() and uni chr (). The latter breaks all pickling. The pickling format has to be changed to binary.
This in turn breaks the database schema, which needs to be completely redone.

Mistake #3: Not confirming that all auxiliary systems support Unicode fully.

Result #3: Having to patch those other systems, some of which may not be under your source control.
Fixing Unicode bugs everywhere leads to code instability and the distinct possibility of introducing new
bugs.

Summary: Enabling full Unicode and foreign-language compliance of your application is a project on its
own. It needs to be well thought out and planned carefully. All software and systems involved must be
"checked off," including the list of Python standard library and/or third-party external modules that are
to be used. You may even have to bring onboard an entire team with internationalization (or "I18N")
experience.

6.8.8. Unicode Support in Python
uni code() Built-in Function

The Unicode factory function should operate in a manner similar to that of the Unicode string operator
(u/ U). It takes a string and returns a Unicode string.

decode()/ encode() Built-in Methods

The decode() and encode() built-in methods take a string and return an equivalent decoded/encoded
string. decode() and encode() work for both regular and Unicode strings. decode() was added to Python
in 2.2.

Unicode Type

A Unicode string object is subclassed from basestring and an instance is created by using the uni code()
factory function, or by placing a u or U in front of the quotes of a string. Raw strings are also supported.
Prepend a ur or UR to your string literal.

Unicode Ordinals

The standard or d() built-in function should work the same way. It was enhanced recently to support
Unicode objects. The uni chr () built-in function returns a Unicode object for a character (provided it is a
32-bit value); otherwise, a Val ueError exception is raised.

Coercion

Mixed-mode string operations require standard strings to be converted to Unicode objects.

Exceptions

Uni codeError is defined in the exceptions module as a subclass of val ueError. All exceptions related to
Unicode encoding/decoding should be subclasses of Uni codeError. See also the string encode() method.

Standard Encodings

Table 6.9 presents an extremely short list of the more common encodings used in Python. For a more
complete listing, please see the Python Documentation. Here is an online link:

http://docs.python.org/lib/standard-encodings.html

RE Engine Unicode-Aware

The regular expression engine should be Unicode aware. See the re Code Module sidebar in Section 6.9.

Table 6.9. Common Unicode Codecs/Encodings

Codec Description

utf-8 8-bit variable length encoding (default encoding)
utf-16 16-bit variable length encoding (little/big endian)
utf-16-le UTF-16 but explicitly little endian

utf-16-be UTF-16 but explicitly big endian

asci i 7-bit ASCII codepage

i s0-8859-1 ISO 8859-1 (Latin-1) codepage

uni code- escape (See Python Unicode Constructors for a definition)

raw uni code-escape (See Python Unicode Constructors for a definition)

native Dump of the internal format used by Python

String Format Operator

For Python format strings: % performs str(u) for Unicode objects embedded in Python strings, so the
output will be u. encode(<def aul t encodi ng>) . If the format string is a Unicode object, all parameters are

coerced to Unicode first and then put together and formatted according to the format string. Numbers
are first converted to strings and then to Unicode. Python strings are interpreted as Unicode strings
using the <default encoding>. Unicode objects are taken as is. All other string formatters should work
accordingly. Here is an example:

u'% %" % (u"abc", "abc") = u"abc abc"

http://docs.python.org/lib/standard-encodings.html

MEXT B

e Py NEXT

6.9. Related Modules

Table 6.10 lists the key related modules for strings that are part of the Python standard library.

Table 6.10. Related Modules for String Types

Module Description

string String manipulation and utility functions, i.e., Template class
re Regular expressions: powerful string pattern matching
struct Convert strings to/from binary data format

¢/ Stringl O String buffer object that behaves like a file

base64 Base 16, 32, and 64 data encoding and decoding

codecs Codec registry and base classes

crypt Performs one-way encryption cipher

diffli b[ﬂ Various "differs" for sequences

hashl i b[Q] APl to many different secure hash and message digest algorithms
hrrac[gl Keyed-hashing for message authentication

mjs[gl RSA's MD5 message digest authentication

rotor Provides multi-platform en/decryption services

Sha[g] NIST's secure hash algorithm SHA

Pr r ni rings for in Intern r I
Stri ngprep[g] epares Unicode strings for use i ternet protocols

t ext wr ap[gl Text-wrapping and filling

uni codedata ynjcode database

@ New in Python 2.1.
B New in Python 2.5.

' New in Python 2.2.

[Obsoleted in Python 2.5 by hashl i b module.

I New in Python 2.3.
Core Module: re

Regular expressions (REs) provide advanced pattern matching scheme
ﬂn for strings. Using a separate syntax that describes these patterns, you
a can effectively use them as "filters" when passing in the text to
perform the searches on. These filters allow you to extract the
matched patterns as well as perform find-and-replace or divide up
strings based on the patterns that you describe.

The re module, introduced in Python 1.5, obsoletes the original r egex
and regsub modules from earlier releases. It represented a major
upgrade in terms of Python's support for regular expressions, adopting
the complete Perl syntax for REs. In Python 1.6, a completely new
engine was written (SRE), which added support for Unicode strings as
well as significant performance improvements. SRE replaces the old
PCRE engine, which had been under the covers of the regular
expression modules.

Some of the key functions in the re module include: conpil e()
compiles an RE expression into a reusable RE object; match() attempts
to match a pattern from the beginning of a string; search() searches
for any matching pattern in the string; and sub() performs a search-
and-replace of matches. Some of these functions return match objects
with which you can access saved group matches (if any were found).
All of Chapter 15 is dedicated to regular expressions.

e Py EXT

. prev_ NEXT B
6.10. Summary of String Highlights

Characters Delimited by Quotation Marks

You can think of a string as a Python data type that you can consider as an array or contiguous set of
characters between any pair of Python quotation symbols, or quotes. The two most common quote
symbols for Python are the single quote, a single forward apostrophe ('), and the double quotation

mark ("). The actual string itself consists entirely of those characters in between and not the quote
marks themselves.

Having the choice between two different quotation marks is advantageous because it allows one type of
quote to serve as a string delimiter while the other can be used as characters within the string without

the need for special escape characters. Strings enclosed in single quotes may contain double quotes as

characters and vice versa.

No Separate Character Type

Strings are the only literal sequence type, a sequence of characters. However, characters are not a type,
so strings are the lowest-level primitive for character storage and manipulation. Characters are simply
strings of length one.

String Format Operator (%) Provides pri nt f () -like Functionality

The string format operator (see Section 6.4.1) provides a flexible way to create a custom string based

on variable input types. It also serves as a familiar interface to formatting data for those coming from
the C/C++ world.

Triple Quotes

In Section 6.7.2, we introduced the notion of triple quotes, which are strings that can have special

embedded characters like NEWLINEs and tabs. Triple-quoted strings are delimited by pairs of three
single ' ') or double (* " ") quotation marks.

Raw Strings Takes Special Characters Verbatim

In Section 6.4.2, we introduced raw strings and discussed how they do not interpret special characters

escaped with the backslash. This makes raw strings ideal for situations where strings must be taken
verbatim, for example, when describing regular expressions.

Python Strings Do Not End with NUL or "\O'

One major problem in C is running off the end of a string into memory that does not belong to you. This
occurs when strings in C are not properly terminated with the NUL or "\O' character (ASCII value of
zero). Along with managing memory for you, Python also removes this little burden or annoyance.
Strings in Python do not terminate with NUL, and you do not have to worry about adding them on.
Strings consist entirely of the characters that were designated and nothing more.

file:///D|/1/0132269937/14051536.html

NEXT B

e Py EXT

6.11. Lists

Like strings, lists provide sequential storage through an index offset and access to single or consecutive
elements through slices. However, the comparisons usually end there. Strings consist only of characters
and are immutable (cannot change individual elements), while lists are flexible container objects that
hold an arbitrary number of Python objects. Creating lists is simple; adding to lists is easy, too, as we
see in the following examples.

The objects that you can place in a list can include standard types and objects as well as user-defined
ones. Lists can contain different types of objects and are more flexible than an array of C structs or
Python arrays (available through the external array module) because arrays are restricted to containing
objects of a single type. Lists can be populated, empty, sorted, and reversed. Lists can be grown and
shrunk. They can be taken apart and put together with other lists. Individual or multiple items can be
inserted, updated, or removed at will.

Tuples share many of the same characteristics of lists and although we have a separate section on
tuples, many of the examples and list functions are applicable to tuples as well. The key difference is
that tuples are immutable, i.e., read-only, so any operators or functions that allow updating lists, such
as using the slice operator on the left-hand side of an assignment, will not be valid for tuples.

How to Create and Assign Lists

Creating lists is as simple as assigning a value to a variable. You handcraft a list (empty or with
elements) and perform the assignment. Lists are delimited by surrounding square brackets ([]). You
can also use the factory function.

>>> alist = [123, '"abc', 4.56, ['inner', "list'], 7-9j]
>>> anot herList = [None, 'sonmething to see here']
>>> print aList

[123, "abc', 4.56, ["inner', "list'], (7-9))]

>>> print anot herLi st

[None, 'sonething to see here']

>>> ali st That StartedEnpty = []

>>> print alistThatStartedEnpty

[]

>>> |ist('foo')

["f', "0, "0"]

How to Access Values in Lists

Slicing works similar to strings; use the square bracket slice operator ([]) along with the index or
indices.

>>> ali st[0]

123
>>> alist[1:4]
['abc', 4.56, ['inner', "list']]

>>> alist[: 3]

[123, 'abc', 4.56]
>>> alist[3][1]
"list'

How to Update Lists

You can update single or multiple elements of lists by giving the slice on the left-hand side of the
assignment operator, and you can add to elements in a list with the append() method:

>>> ali st

[123, "abc', 4.56, ['inner', "list'], (7-9))]

>>> alist[2]

4.56

>>> alist[2] = 'float replacer’

>>> ali st

[123, 'abc', 'float replacer', ["inner', "list'], (7-9))]
>>>

>>> anot her Li st. append("hi, i'm new here")

>>> print anotherlLi st

[None, 'sonething to see here', "hi, i'mnew here"]

>>> ali st That Start edEnpty. append(' not enpty anynore')
>>> print aListThat StartedEnpty
['not enpty anynore']

How to Remove List Elements and Lists

To remove a list element, you can use either the del statement if you know exactly which element(s)
you are deleting or the renove() method if you do not know.

>>> ali st

[123, '"abc', 'float replacer', ['inner', "list'], (7-9))]
>>> del aList[1]

>>> ali st

[123, 'float replacer', ['inner', "list'], (7-9j)]

>>> ali st.renove(123)

>>> ali st

['float replacer', ["inner', "list'], (7-9))]

You can also use the pop() method to remove and return a specific object from a list.

Normally, removing an entire list is not something application programmers do. Rather, they tend to let
it go out of scope (i.e., program termination, function call completion, etc.) and be deallocated, but if
they do want to explicitly remove an entire list, they use the del statement:

del aLi st

e Py EXT

e Py EXT

6.12. Operators

6.12.1. Standard Type Operators

In Chapter 4, we introduced a number of operators that apply to most objects, including the standard
types. We will take a look at how some of those apply to lists.

>>> [istl = ["abc', 123]

>>> |ist2 = ['xyz', 789]

>>> [ist3 = ["abc', 123]

>>> listl < list2

True

>>> |jst2 < list3

Fal se

>>> |ist2 >list3 and listl == list3
True

When using the value comparison operators, comparing numbers and strings is straightforward, but not
so much for lists, however. List comparisons are somewhat tricky, but logical. The comparison operators
use the same algorithm as the cnp() built-in function. The algorithm basically works like this: the

elements of both lists are compared until there is a determination of a winner. For example, in our
example above, the output of ' abc' versus ' xyz' is determined immediately, with ' abc' < ' xyz',

resultinginlistl < list2andlist2 >= |ist3. Tuple comparisons are performed in the same manner as
lists.

6.12.2. Sequence Type Operators
Slices([Jand[: 1)

Slicing with lists is very similar to strings, but rather than using individual characters or substrings,
slices of lists pull out an object or a group of objects that are elements of the list operated on. Focusing
specifically on lists, we make the following definitions:

>>> num|i st [43, -1.23, -2, 6.19e5]
>>> str_|ist ["jack', "jumped', 'over', 'candlestick']
>>> mxup_ list =[4.0, [1, 'x'], 'beef', -1.9+6j]

Slicing operators obey the same rules regarding positive and negative indexes, starting and ending
indexes, as well as missing indexes, which default to the beginning or to the end of a sequence.

>>> num | ist[1]

-1.23

>>>

>>> numlist[1:]
[-1.23, -2, 619000. 0]
>>>

>>> numlist[2:-1]
[-2]

>>>

>>> str_|ist[2]

"over'

>>> str_list[:2]
['jack', "junped']
>>>

>>> mi xup_l i st

[4.0, [1, '"x'], '"beef', (-1.946j)]
>>> mioxup_|ist[1]

[1, "x']

Unlike strings, an element of a list might also be a sequence, implying that you can perform all the
sequence operations or execute any sequence built-in functions on that element. In the example below,
we show that not only can we take a slice of a slice, but we can also change it, and even to an object of
a different type. You will also notice the similarity to multidimensional arrays.

>>> mioxup_list[1][1]
' X
>>> mxup_list[1][1] = -64.875

>>> m xup_li st

[4.0, [1, -64.875], 'beef', (-1.9+6j)]

Here is another example using num | i st :

>>> num | i st

[43, -1.23, -2, 6.19e5]

>>>

>>> numlist[2:4] = [16.0, -49]

>>>

>>> num | i st

[43, -1.23, 16.0, -49]

>>>

>>> num | ist[0] = [65535L, 2e30, 76.45-1.3j]
>>>

>>> num|i st

[[65535L, 2e+30, (76.45-1.3j)], -1.23, 16.0, -49]

Notice how, in the last example, we replaced only a single element of the list, but we replaced it with a
list. So as you can tell, removing, adding, and replacing things in lists are pretty freeform. Keep in mind
that in order to splice elements of a list into another list, you have to make sure that the left-hand side
of the assignment operator (=) is a slice, not just a single element.

Membership (in, not in)

With lists (and tuples), we can check whether an object is a member of a list (or tuple).

>>> m xup_li st

[4.0, [1, "x'], '"beef', (-1.9+6j)]
>>>

>>> ' peef' in mxup_|list

True

>>>

>>> ' x'" in mxup_list

Fal se

>>>

>>> 'x' in mxup_list[1]
True

>>> num | i st

[[65535L, 2e+030, (76.45-1.3j)], -1.23, 16.0, -49]
>>>

>>> -49 in numli st

True
>>>

>>> 34 in numli st

Fal se
>>>

>>> [65535L, 2e+030, (76.45-1.3j)] in numli st
True

Note how ' x' is not a member of mi xup_Il i st. That is because ' x' itself is not actually a member of
m xup_l i st. Rather, it is a member of m xup_uplist[1], which itself is a list. The membership operator is
applicable in the same manner for tuples.

Concatenation (+)

The concatenation operator allows us to join multiple lists together. Note in the examples below that
there is a restriction of concatenating like objects. In other words, you can concatenate only objects of
the same type. You cannot concatenate two different types even if both are sequences.

>>> num | i st [43, -1.23, -2, 6.19e5]

>>> str _list = ['"jack', "junped' , 'over', 'candlestick']
>>> mxup_list =[4.0, [1, 'x'], 'beef', -1.9+6j]
>>>

>>> num|list + mxup_|ist
[43, -1.23, -2, 619000.0, 4.0, [1, '"x"], 'beef', (-1.9+6j)]

>>>
>>> str_|list + numlist
['jack', "junped' , 'over', 'candlestick', 43, -1.23, -2, 619000. 0]

As we will discover in Section 6.13, starting in Python 1.5.2, you can use the ext end() method in place
of the concatenation operator to append the contents of a list to another. Using ext end() is

advantageous over concatenation because it actually appends the elements of the new list to the
original, rather than creating a new list from scratch like + does. ext end() is also the method used by the

augmented assignment or in-place concatenation operator (+=), which debuted in Python 2.0.

We would also like to point out that the concatenation operator does not facilitate adding individual
elements to a list. The upcoming example illustrates a case where attempting to add a new item to the
list results in failure.

>>> numlist + '"newiten

Traceback (innernost |ast):
File "<stdin>", line 1, in ?
TypeError: illegal argunment type for built-in operation

This example fails because we had different types to the left and right of the concatenation operator. A
combination of (list + string) is not valid. Obviously, our intention was to add the ' new i teni string to

the list, but we did not go about it the proper way. Fortunately, we have a solution:

Use the append() list built-in method (we will formally introduce append() and all other built-in methods
in Section 6.13):

>>> num | ist.append(' new item)

Repetition (*)

Use of the repetition operator may make more sense with strings, but as a sequence type, lists and
tuples can also benefit from this operation, if needed:

>>> numlist * 2
[43, -1.23, -2, 619000.0, 43, -1.23, -2, 619000. 0]
>>>

>>> numlist * 3
[43, -1.23, -2, 619000.0, 43, -1.23, -2, 619000.0, 43,
-1.23, -2, 619000. 0]

Augmented assignment also works, beginning in Python 2.0:

>>> hr = '-'
>>> hr *= 30
>>> Nr

6.12.3. List Type Operators and List Comprehensions

There are really no special list-only operators in Python. Lists can be used with most object and
sequence operators. In addition, list objects have their own methods. One construct that lists do have
however, are list comprehensions. These are a combination of using list square brackets and a f or -loop
inside, a piece of logic that dictates the contents of the list object to be created. We cover list
comprehensions in Chapter 8, but we present a simple example here as well as a few more throughout
the remainder of the the chapter:

>>> [i * 2 for i in[8, -2, 5]]

[16, -4, 10]

>>> [i for i inrange(8) if i %2 == 0]
[0, 2, 4, 6]

file:///D|/1/0132269937/14051536.html

NEXT B

e Py EXT

6.13. Built-in Functions

6.13.1. Standard Type Functions

cnp()

In Section 4.6.1, we introduced the cnp() built-in function with examples of comparing numbers and
strings. But how would cnp() work with other objects such as lists and tuples, which can contain not
only numbers and strings, but other objects like lists, tuples, dictionaries, and even user-created objects?

>>> |istl, list2 = [123, 'xyz'], [456, 'abc']
>>> cnp(listl, list2)

-1

>>>

>>> cnmp(list2, listl)

1

>>> [ist3 = list2 + [789]

>>> |jist3

[456, 'abc', 789]
>>>

>>> cnp(list2, [ist3)
-1

Compares are straightforward if we are comparing two objects of the same type. For numbers and
strings, the direct values are compared, which is trivial. For sequence types, comparisons are somewhat
more complex, but similar in manner. Python tries its best to make a fair comparison when one cannot
be made, i.e., when there is no relationship between the objects or when types do not even have
compare functions, then all bets are off as far as obtaining a "logical" decision.

Before such a drastic state is arrived at, more safe-and-sane ways to determine an inequality are
attempted. How does the algorithm start? As we mentioned briefly above, elements of lists are iterated
over. If these elements are of the same type, the standard compare for that type is performed. As soon
as an inequality is determined in an element compare, that result becomes the result of the list
compare. Again, these element compares are for elements of the same type. As we explained earlier,
when the objects are different, performing an accurate or true comparison becomes a risky proposition.

When we compare |ist1 with |i st 2, both lists are iterated over. The first true comparison takes place
between the first elements of both lists, i.e., 123 vs. 456. Since 123 < 456, |ist1 is deemed "smaller."

If both values are the same, then iteration through the sequences continues until either a mismatch is
found, or the end of the shorter sequence is reached. In the latter case, the sequence with more
elements is deemed "greater." That is the reason why we arrived above at list2 < |ist3. Tuples are

compared using the same algorithm. We leave this section with a summary of the algorithm highlights:

1.

Compare elements of both lists.

If elements are of the same type, perform the compare and return the result.

3.
If elements are different types, check to see if they are numbers.
a.
If numbers, perform numeric coercion if necessary and compare.
b.
If either element is a number, then the other element is "larger” (numbers are "smallest™).
C.
Otherwise, types are sorted alphabetically by name.
4.
If we reach the end of one of the lists, the longer list is "larger."
5.

If we exhaust both lists and share the same data, the result is a tie, meaning that O is returned.
6.13.2. Sequence Type Functions
l en()

For strings, | en() gives the total length of the string, as in the number of characters. For lists (and
tuples), it will not surprise you that | en() returns the number of elements in the list (or tuple).

Container objects found within count as a single item. Our examples below use some of the lists already
defined above in previous sections.

>>> | en(num.list)
4
>>>

>>> [en(numlist*2)
8

max() and mi n()

max() and nmi n() did not have a significant amount of usage for strings since all they did was to find the
"largest" and "smallest" characters (lexicographically) in the string. For lists (and tuples), their
functionality is more defined. Given a list of like objects, i.e., numbers or strings only, max() and ni n()
could come in quite handy. Again, the quality of return values diminishes as mixed objects come into
play. However, more often than not, you will be using these functions in a situation where they will
provide the results you are seeking. We present a few examples using some of our earlier-defined lists.

>>> max(str_list)

" park’

>>> max(num|ist)

[65535L, 2e+30, (76.45-1.3j)]
>>> mn(str_list)

' candl| esti ck'

>>> m n(num.list)

-49

sorted() and reversed()

>>> g = ['They', 'stanp', 'them, 'when', "they're", 'snmall"']
>>> for t in reversed(s):
print t,

smal |l they're when them stanp They
>>> sorted(s)
[' They', "small', 'stamp', 'them, "they're", 'when']

For beginners using strings, notice how we are able to mix single and double quotes together in
harmony with the contraction "they're." Also to those new to strings, this is a note reminding you that
all string sorting is lexicographic and not alphabetic (the letter "T" comes before the letter "a" in the
ASCII table.)

enuner at e() and zi p()

>>> albuns = ['tales', 'robot', 'pyramd']

>>> for i, albumin enunerate(al buns):
print i, album

0 tales

1 robot

2 pyranmd

>>>

>>> fn =['ian', '"stuart', 'david']

>>> | n =['bairnson', "elliott', 'paton']

>>>

>>> for i, j in zip(fn, In):

print ("% %' % (i,j)).title()

| an Bai rnson
Stuart Elliott
Davi d Pat on

sun()

>>> a = [6, 4, 5]

>>> reduce(operator.add, a)
15

>>> sun(a)

15

>>> sum(a, 5)

20

>>> a = [6., 4., 5.]
>>> sun(a)

15.0

l'ist() and tuple()

The i st () and tupl e() factory functions take iterables like other sequences and make new lists and
tuples, respectively, out of the (just shallow-copied) data. Although strings are also sequence types,
they are not commonly used with i st () and tupl e() . These built-in functions are used more often to

convert from one type to the other, i.e., when you have a tuple that you need to make a list (so that
you can modify its elements) and vice versa.

>>> alist = ['"tao', 93, 99, 'tine']

>>> aTupl e = tupl e(aList)

>>> alist, aTuple

(['tao', 93, 99, 'tine'], ('tao', 93, 99, 'tine'))

>>> alist == aTuple

Fal se

>>> anotherList = list(aTuple)
>>> agli st == anot herLi st

True

>>> ali st is anotherlList

Fal se

>>> [id(x) for x in aList, aTuple, anotherList]
[10903800, 11794448, 11721544]

As we already discussed at the beginning of the chapter, neither 1i st () nor tupl e() performs true
conversions (see also Section 6.1.2). In other words, the list you passed to t upl e() does not turn into a
list, and the tuple you give to | i st () does not really become a list. Although the data set for both (the
original and new object) is the same (hence satisfying ==), neither variable points to the same object
(thus failing i s). Also notice that, even though their values are the same, a list cannot "equal” a tuple.

6.13.3. List Type Built-in Functions

There are currently no special list-only built-in functions in Python unless you consider range() as oneits
sole function is to take numeric input and generate a list that matches the criteria. range() is covered in
Chapter 8. Lists can be used with most object and sequence built-in functions. In addition, list objects
have their own methods.

e Py EXT

file:///D|/1/0132269937/14051536.html

e Py EXT

6.14. List Type Built-in Methods

Lists in Python have methods. We will go over methods more formally in an introduction to object-
oriented programming in Chapter 13, but for now think of methods as functions or procedures that apply

only to specific objects. So the methods described in this section behave just like built-in functions
except that they operate only on lists. Since these functions involve the mutability (or updating) of lists,
none of them is applicable for tuples.

You may recall our earlier discussion of accessing object attributes using the dotted attribute notation:
obj ect. attribute. List methods are no different, using | i st. met hod() . We use the dotted notation to
access the attribute (here it is a function), then use the function operators (()) in a functional
notation to invoke the methods.

We can use dir () on a list object to get its attributes including its methods:

>>> dir(list) # or dir([])

['"_add__', ' _class__', '__contains_', ' __delattr__ ",
' delitem ', ' delslice_ ', ' doc_', ' eq_ "',

' _ge ', ' _getattribute ', ' getitem ',

' getslice ', ' _gt_ ', " hash_', ' iadd__',
im0t ittt iter__ ', Y e ", " len_ ",
ot ' mil ', ' ne ', ' _new_ ', ' reduce_ ',
" reduce ex_ ', ' _repr__', ' reversed ', ' __rmul__",
' setattr_ ', ' setitem ', ' setslice_ ', ' _str__ ',
"append', 'count', 'extend', 'index', 'insert', 'pop',
"renmove', 'reverse', 'sort']

Table 6.11 shows all the methods currently available for lists. Some examples of using various list
methods are shown later.

Table 6.11. List Type Built-in Methods

List Method Operation
| i st.append(obj) Adds obj to the end of | i st
li st.count (obj) Returns count of how many times obj occurs in
list
[al Appends contents of seq to | i st

l'ist.extend(seq)

list.index(obj, i=0, j=len(list)) Returns lowest index k where | i st [k] ==obj and
i <= k<j ; otherwise Val ueError raised

list.insert(index, obj) Inserts obj into |i st at offset i ndex

file:///D|/1/0132269937/14051536.html

a Removes and returns obj at given or last i nd
Iist.pop(index:-l)[—1 oDj g i ndex

from |i st
list.renove(obj) Removes object obj from | i st
list.reverse() Reverses objects of i st in place

[b] Sorts list members with optional comparison
function; key is a callback when extracting
elements for sorting, and if reverse flag is true,

then list is sorted in reverse order

list.sort(func=None, key=None, reverse=Fal se)

& New in Python 1.5.2.

] Support for key and r ever se added in Python 2.4.

>>> nusi c_nmedia = [45]

>>> nusi c_nedi a

[45]

>>>

>>> nusi c_nedia.insert (0, 'conmpact disc')

>>> musi c_nedi a

[' conpact disc', 45]

>>>

>>> musi c_nedi a. append(' 1 ong playing record')
>>> nusi c_nedi a

[' conpact disc', 45, 'long playing record']
>>>

>>> nusic_nedia.insert(2, '8-track tape')

>>> nusi c_nedi a

[' compact disc', 45, '8-track tape', 'long playing record']

In the preceding example, we initiated a list with a single element, then checked the list as we either
inserted elements within the list, or appended new items at the end. Let's now determine if elements are
in a list and how to find out the location of where items are in a list. We do this by using the i n operator

and i ndex() method.

>>> 'cassette' in nusic_nedia
Fal se
>>> ' conpact disc' in nusic_nedia
True
>>> musi c_nedi a. i ndex(45)
1
>>> musi c_nedi a. i ndex(' 8-track tape')
2
>>> musi c_nedi a. i ndex(' cassette')
Traceback (innernost |ast):
File "<interactive input>", line 0, in ?
Val ueError: list.index(x): x not in |ist

Oops! What happened in that last example? Well, it looks like using i ndex() to check if items are in a list
is not a good idea, because we get an error. It would be safer to check using the membership operator

i n (or not in) first, and then using i ndex() to find the element's location. We can put the last few calls
to i ndex() in a single for loop like this:

for eachMedi aType in (45, '8-track tape', 'cassette'):
i f eachMedi aType in nusic_mnedi a:
print nusic_nedia.index(eachMedi aType)

This solution helps us avoid the error we encountered above because i ndex() is not called unless the

object was found in the list. We will find out later how we can take charge if the error occurs, instead of
bombing out as we did above.

We will now test drive sort () and reverse(), methods that will sort and reverse the elements of a list,
respectively.

>>> nusi c_nedi a

['conpact disc', 45, '8-track tape', 'long playing record]
>>> nusi c_nedi a. sort ()

>>> nusi c_nedi a

[45, '8-track tape', 'conpact disc', 'long playing record']
>>> musi c_nedi a. reverse()

>>> nusi c_nedi a

['long playing record' , 'conpact disc', '8-track tape', 45]

Core Note: Mutable object methods that alter the object have no
return value!

One very obvious place where new Python programmers get caught is
when using methods that you think should return a value. The most
obvious one is sort () :

>>> musi c_nedi a. sort () # where is the output?!?
>>>

The caveat about mutable object methods like sort (), extend(), and
reverse() is that these will perform their operation on a list in place,
meaning that the contents of the existing list will be changed, but
return None! Yes, it does fly in the face of string methods that do
return values:

>>> 'l eanna, silly girl!' . upper()
"LEANNA, SILLY G RL!'

Recall that strings are immutablemethods of immutable objects cannot
modify them, so they do have to return a new object. If returning an
object is a necessity for you, then we recommend that you look at the
reversed() and sorted() built-in functions introduced in Python 2.4.

These work just like the list methods only they can be used in
expressions because they do return objects. However, obviously the

original list object is left as is, and you are getting a new object back.

Going back to the sort () method, the default sorting algorithm employed by the sort () method is a

derivative of MergeSort (modestly named "timsort™), which is O(Ig(n!)). We defer all other explanation
to the build files where you can get all the detailssource code: bj ects/|i stobject.c and algorithm

description: Obj ects/listsort.txt.

The ext end() method will take the contents of one list and append its elements to another list:

>>> new_nedia = ['24/96 digital audio disc', 'DvVD Audio
di sc', 'Super Audio CD]

>>> nusi c_nedi a. ext end(new_nedi a)

>>> nusi c_nedi a

['long playing record', 'conpact disc', '8-track tape',
45, '24/96 digital audio disc', 'DVD Audio disc', 'Super
Audi o CD]

The argument to extend() can be any iterable, starting with 2.2. Prior to that, it had to be a sequence

object, and prior to 1.6, it had to be a list. With an iterable (instead of a sequence), you can do more
interesting things like:

>>> notd = []

>>> not d. append(' MSG OF THE DAY')

>>> f = open('/etc/notd' , 'r")

>>> ot d. ext end(f)

>>> f.cl ose()

>>> notd

[' MSG OF THE DAY', 'Welconme to Darwin!\n']

pop(), introduced in 1.5.2, will either return the last or requested item from a list and return it to the
caller. We will see the pop() method in Section 6.15.1 as well as in the Exercises.

e Py EXT

file:///D|/1/0132269937/14051536.html

e Py EXT

6.15. Special Features of Lists

6.15.1. Creating Other Data Structures Using Lists

Because of their container and mutable features, lists are fairly flexible and it is not very difficult to build
other kinds of data structures using lists. Two that we can come up with rather quickly are stacks and
queues.

Stack

A stack is a last-in-first-out (LIFO) data structure that works similarly to a cafeteria dining plate spring-
loading mechanism. Consider the plates as objects. The first object off the stack is the last one you put
in. Every new object gets "stacked" on top of the newest objects. To "push" an item on a stack is the
terminology used to mean you are adding onto a stack. Likewise, to remove an element, you "pop" it off
the stack. Example 6.3 shows a menu-driven program that implements a simple stack used to store

strings.

Example 6.3. Using Lists as a Stack (st ack. py)

This simple script uses lists as a stack to store and retrieve strings entered through this
menu-driven text application using only the append() and pop() list methods.

#!/usr/ bin/env python
stack =[]

def pushit():
st ack. append(raw_i nput (' Enter new string: ').strip())

def popit():
if len(stack) ==
10 print 'Cannot pop froman enpty stack!'’
11 el se:
12 print 'Removed [', 'stack.pop()', ']’

O© 0O ~NOOOTDWNPF

14 def viewstack():

15 print stack # calls str() internally
17 CVDs = {'u': pushit, "o': popit, '"v': viewstack}
19 def shownrenu():

20 pr = """

21 p(Y sh

22 p(Op

23 (V)iew

24 (Quit

26 Enter choice:

file:///D|/1/0132269937/14051536.html

28 whil e True:

29 whil e True:

30 try:

31 choice = raw_input(pr).strip()[0].Iower()
32 except (ECFError, Keyboardl nterrupt, | ndexError):
33 choice = '('

34

35 print "\ nYou picked: [%]' % choice

36 if choice not in 'uovq

37 print "lInvalid option, try again'

38 el se:

39 br eak

40

41 if choice =="'q":

42 br eak

43 CMVDs|[choi ce] ()

44

45 if _name_ =="'_ main__

46 showrenu()

Line-by-Line Explanation

Lines 13

In addition to the Unix startup line, we take this opportunity to clear the stack (a list).
Lines 56

The pushit () function adds an element (a string prompted from the user) to the stack.
Lines 812

The popit () function removes an element from the stack (the more recent one). An error occurs when

trying to remove an element from an empty stack. In this case, a warning is sent back to the user.
When an object is popped from the stack, the user sees which element was removed. We use single
backquotes or backticks (') to symbolize the repr () command, showing the string complete with

quotes, not just the contents of the string.

Lines 1415

The vi ewst ack() function displays the current contents of the stack.
Line 17

Although we cover dictionaries formally in the next chapter, we wanted to give you a really small
example of one here, a command vector (CMDs). The contents of the dictionary are the three "action”

functions defined above, and they are accessed through the letter that the user must type to execute
that command. For example, to push a string onto the stack, the user must enter ' u', so'u' is how

access the pushit () from the dictionary. The chosen function is then executed on line 43.

Lines 1943

The entire menu-driven application is controlled from the showrenu() function. Here, the user is

prompted with the menu options. Once the user makes a valid choice, the proper function is called. We
have not covered exceptions and try-except statement in detail yet, but basically that section of the

code allows a user to type ™D (EOF, which generates an EOFEr ror) or ~C (interrupt to quit, which
generates a Keyboar dl nt errupt error), both of which will be processed by our script in the same manner
as if the user had typed the ' q' to quit the application. This is one place where the exception-handling
feature of Python comes in extremely handy. The outer whi | e loop lets the user continue to execute

commands until they quit the application while the inner one prompts the user until they enter a valid
command option.

Lines 4546

This part of the code starts up the program if invoked directly. If this script were imported as a module,
only the functions and variables would have been defined, but the menu would not show up. For more
information regarding line 45 and the __nane__ variable, see Section 3.4.1.

Here is a sample execution of our script:

$ stack. py

p(U sh
pP(Op
(V)i ew
(Quit

Enter choice: u

You picked: [u]
Enter new string: Python

p(U) sh
p(Op
(V)iew
(Quit

Enter choice: u

You picked: [u]
Enter new string: is

p(U sh
p(Op
(V)i ew
(Quit

Enter choice: u

You picked: [u]
Enter new string: cool!

p(U)sh
pP(Op
(V)i ew

(Quit
Enter choice: v

You picked: [V]
['Python', "is', 'cool!"]

p(U sh
p(Op
(V)i ew
(Quit

Enter choice: o

You picked: [O0]
Renoved ['cool!"]

p(U sh
p(Op

(V)i ew
(Quit

Enter choice: o

You picked: [0]
Renoved ['is']

p(UY) sh
p(Op

(V)i ew
(Quit

Enter choice: o

You picked: [0]
Renoved [' Python']

p(U) sh
p(Op
(V)iew
(Quit

Enter choice: o

You picked: [0]
Cannot pop froman enpty stack

p(UY sh
p(Op
(V)iew
(Quit

Enter choice: ~D

You picked: [q]

Queue

A queue is a first-in-first-out (FIFO) data structure, which works like a single-file supermarket or bank
teller line. The first person in line is the first one served (and hopefully the first one to exit). New
elements join by being "enqueued" at the end of the line, and elements are removed from the front by
being "dequeued.” The following code shows how, with a little modification from our stack script, we can
implement a simple queue using lists.

Example 6.4. Using Lists as a Queue (queue. py)

This simple script uses lists as a queue to store and retrieve strings entered through this
menu-driven text application, using only the append() and pop() list methods.

1 #!/usr/bin/env python

2

3 queue =[]

4

5 def enQ):

6 queue. append(raw_i nput (' Enter new string: ').strip())
7

8 def deQ):

9 if len(queue) ==

10 print 'Cannot pop froman enpty queue!'’
11 el se:

12 print 'Renmoved [', 'queue.pop(0)', ']’
13

14 def viewQ):

15 print queue # calls str() internally
16

17 CVDs = {'e': enQ 'd': deQ 'vVv': viewd

18

19 def showrenu():

20 pr = """

21 (E) nqueue
22 (D) equeue
23 (V)iew
24 (Quit

26 Enter choi ce:

28 whil e True:

29 whil e True:

30 try:

31 choice = raw_input(pr).strip()[0].lower()
32 except (EOCFError, Keyboardl nterrupt, | ndexError):
33 choice = '('

35 print "\ nYou picked: [%]' % choice
36 if choice not in 'devq':

37 print "lInvalid option, try again
38 el se:

39 br eak

41 if choice == 'q":
42 br eak

43 CVDs|[choi ce] ()

45 if __name_ =="'__main__
46 shownenu()

Line-by-Line Explanation

Because of the similarities of this script with the st ack. py script, we will describe in detail only the lines
which have changed significantly:

Lines 17

The usual setup plus some constants for the rest of the script to use.

Lines 56

The enqQ() function works exactly like pushit (), only the name has been changed.

Lines 812

The key difference between the two scripts lies here. The deQ) function, rather than taking the most
recent item as popi t () did, takes the oldest item on the list, the first element.

Lines 17, 21-24, 36
The opti ons have been changed, so we need to reflect that in the prompt string and our validator.

We present some output here as well:

$ queue. py
(E) nqueue
(D) equeue
(V)i ew
(Quit

Enter choice: e

You picked: [e]
Ent er new queue el enent: Bring out

(E) nqueue
(D) equeue
(V)i ew
(Quit

Enter choice: e

You picked: [e€]
Ent er new queue el enent: your dead!

(E) nqueue
(D) equeue
(V)i ew
(Quit

Enter choice: v

You picked: [V]
['Bring out', 'your dead!']

(E) nqueue
(D) equeue
(V)i ew
(Quit

Enter choice: d

You picked: [d]
Renoved ['Bring out']

(E) nqueue
(D) equeue
(V)i ew
(Quit

Enter choice: d

You picked: [d]
Renmoved ['your dead!']

(E) nqueue
(D) equeue
(V)i ew
(Quit

Enter choice: d

You picked: [d]
Cannot dequeue from enpty queue!

(E) nqueue
(D) equeue
(V)i ew
(Quit

Ent er choice: ~D
You picked: [(]

| 4 PREV NEXT B

file:///D|/1/0132269937/14051536.html

e Py EXT

6.16. Tuples

Tuples are another container type extremely similar in nature to lists. The only visible difference
between tuples and lists is that tuples use parentheses and lists use square brackets. Functionally, there
is a more significant difference, and that is the fact that tuples are immutable. Because of this, tuples
can do something that lists cannot do . . . be a dictionary key. Tuples are also the default when dealing
with a group of objects.

Our usual modus operandi is to present the operators and built-in functions for the more general
objects, followed by those for sequences and conclude with those applicable only for tuples, but because
tuples share so many characteristics with lists, we would be duplicating much of our description from the
previous section. Rather than providing much repeated information, we will differentiate tuples from lists
as they apply to each set of operators and functionality, then discuss immutability and other features
unique to tuples.

How to Create and Assign Tuples

Creating and assigning tuples are practically identical to creating and assigning lists, with the exception
of empty tuplesthese require a trailing comma (,) enclosed in the tuple delimiting parentheses (())
to prevent them from being confused with the natural grouping operation of parentheses. Do not forget
the factory function!

>>> aTuple = (123, 'abc', 4.56, ['inner', '"tuple'], 7-9j)
>>> anot her Tupl e = (None, 'sonething to see here')
>>> print aTuple

(123, "abc', 4.56, ['inner', "tuple'], (7-9)))

>>> print anotherTuple

(None, 'sonething to see here')

>>> enpti est Possi bl eTupl e = (None,)

>>> print enptiestPossibleTuple

(None,)

>>> tuple(' bar')

("b', "a', 'r")

How to Access Values in Tuples

Slicing works similarly to lists. Use the square bracket slice operator ([]) along with the index or
indices.

>>> aTupl e[1: 4]
(‘abc', 4.56, ['"inner', "tuple'])

>>> aTupl e[: 3]
(123, '"abc', 4.56)
>>> aTupl e[3] [1]
"tupl e’

How to Update Tuples

Like numbers and strings, tuples are immutable, which means you cannot update them or change values
of tuple elements. In Sections 6.2 and 6.3.2, we were able to take portions of an existing string to

create a new string. The same applies for tuples.

>>> aTuple = aTupl e[0], aTuple[l], aTuple[-1]
>>> aTupl e
(123, "abc', (7-9j))

>>> tupl = (12, 34.56)
>>> tup2 = ('abc', 'xyz')
>>> tup3 = tupl + tup2
>>> tup3

(12, 34.56, 'abc', 'xyz')

How to Remove Tuple Elements and Tuples

Removing individual tuple elements is not possible. There is, of course, nothing wrong with putting
together another tuple with the undesired elements discarded.

To explicitly remove an entire tuple, just use the del statement to reduce an object's reference count. It

will be deallocated when that count is zero. Keep in mind that most of the time one will just let an object
go out of scope rather than using del , a rare occurrence in everyday Python programming.

del aTuple

e prcy ExT

file:///D|/1/0132269937/14051536.html

e Py EXT

6.17. Tuple Operators and Built-in Functions

6.17.1. Standard and Sequence Type Operators and Built-in Functions

Object and sequence operators and built-in functions act the exact same way toward tuples as they do
with lists. You can still take slices of tuples, concatenate and make multiple copies of tuples, validate
membership, and compare tuples.

Creation, Repetition, Concatenation

>>>t = (['xyz', 123], 23, -103.4)

>>> t

(['xyz', 123], 23, -103.4)

>>> 1t % 2

(["xyz', 123], 23, -103.4, ['xyz', 123], 23, -103.4)
>>>1t =t + ("free', 'easy')

>>> t

(['xyz"', 123], 23, -103.4, 'free', 'easy')

Membership, Slicing

>>> 23 in t

True

>>> 123 in t

Fal se

>>> t[0][1]

123

>>> t[1:]

(23, -103.4, 'free', 'easy')

Built-in Functions

>>> str(t)

(['xyz', 123], 23, -103.4, 'free', 'easy')
>>> [en(t)

5

>>> max(t)

"free'

>>> mn(t)

-103. 4

>>> cnp(t, (['xyz', 123], 23, -103.4, 'free', 'easy'))
0

>>> |ist(t)

[['xyz', 123], 23, -103.4, 'free', 'easy']

Operators

>>> (4, 2) < (3, 5H)

Fal se

>>> (2, 4) < (3, -1)
True
>>> (2, 4) == (3, -1)
Fal se
>>> (2, 4) == (2, 4)
True

6.17.2. Tuple Type Operators and Built-in Functions and Methods

Like lists, tuples have no operators or built-in functions for themselves. All of the list methods described
in the previous section were related to a list object's mutability, i.e., sorting, replacing, appending, etc.
Since tuples are immutable, those methods are rendered superfluous, thus unimplemented.

=1 exT

e Py EXT

6.18. Special Features of Tuples

6.18.1. How Are Tuples Affected by Immutability?

Okay, we have been throwing around this word "immutable" in many parts of the text. Aside from its
computer science definition and implications, what is the bottom line as far as applications are
concerned? What are all the consequences of an immutable data type?

Of the three standard types that are immutablenumbers, strings, and tuplestuples are the most
affected. A data type that is immutable simply means that once an object is defined, its value cannot be
updated, unless, of course, a completely new object is allocated. The impact on numbers and strings is
not as great since they are scalar types, and when the sole value they represent is changed, that is the
intended effect, and access occurs as desired. The story is different with tuples, however.

Because tuples are a container type, it is often desired to change single or multiple elements of that
container. Unfortunately, this is not possible. Slice operators cannot show up on the left-hand side of an
assignment. Recall this is no different for strings, and that slice access is used for read access only.

Immutability does not necessarily mean bad news. One bright spot is that if we pass in data to an API
with which we are not familiar, we can be certain that our data will not be changed by the function
called. Also, if we receive a tuple as a return argument from a function that we would like to manipulate,
we can use the li st () built-in function to turn it into a mutable list.

6.18.2. Tuples Are Not Quite So "Immutable”

Although tuples are defined as immutable, this does not take away from their flexibility. Tuples are not
quite as immutable as we made them out to be. What do we mean by that? Tuples have certain
behavioral characteristics that make them seem not as immutable as we had first advertised.

For example, we can join strings together to form a larger string. Similarly, there is nothing wrong with
putting tuples together to form a larger tuple, so concatenation works. This process does not involve
changing the smaller individual tuples in any way. All we are doing is joining their elements together.
Some examples are presented here:

>>> s "first'

>>>s = s + ' second

>>> S

"first second'

>>>

>>>t = ("third, '"fourth')
>>> t

("third , '"fourth")

>>>

>>t =t + ("fifth', "sixth")
>>>

("third, '"fourth', 'fifth', 'sixth")

The same concept applies for repetition. Repetition is just concatenation of multiple copies of the same
elements. In addition, we mentioned in the previous section that one can turn a tuple into a mutable list
with a simple function call. Our final feature may surprise you the most. You can "modify" certain tuple
elements. Whoa. What does that mean?

Although tuple objects themselves are immutable, this fact does not preclude tuples from containing
mutable objects that can be changed.

>>>t = (['xyz', 123], 23, -103.4)
>>>

(["xyz', 123], 23, -103.4)

>>> t[0][1]

123

>>> t[0][1] = ['abc', 'def']

>>> t

(['xyz', ['abc', "def']], 23, -103.4)

In the above example, although t is a tuple, we managed to "change" it by replacing an item in the first
tuple element (a list). We replaced t[0] [1] , formerly an integer, with a list [* abc', 'def']. Although we
modified only a mutable object, in some ways, we also "modified” our tuple.

6.18.3. Default Collection Type

Any set of multiple objects, comma-separated, written without identifying symbols, i.e., brackets for
lists, parentheses for tuples, etc., defaults to tuples, as indicated in these short examples:

>>> 'abc', -4.24e93, 18+6.6j, 'xyz'
('abc', -4.24e+093, (18+6.6j), 'xyz')

>>>
>>> x, y =1, 2
>>> X, Yy

(1, 2)

Any function returning multiple objects (also no enclosing symbols) is a tuple. Note that enclosing
symbols change a set of multiple objects returned to a single container object. For example:

def fool():

return obj 1, obj2, obj3
def foo2():

return [obj 1, obj2, obj3]
def foo03():

return (obj 1, obj2, obj3)

In the above examples, fool() calls for the return of three objects, which come back as a tuple of three
objects, f002() returns a single object, a list containing three objects, and f 003() returns the same thing
as fool(). The only difference is that the tuple grouping is explicit.

Explicit grouping of parentheses for expressions or tuple creation is always recommended to avoid
unpleasant side effects:

>>> 4, 2 <3, 5 # int, conparison, int

(4, True, 5)
>>> (4, 2) < (3, 5) # tuple conparison
Fal se

In the first example, the less than (<) operator took precedence over the comma delimiter intended
for the tuples on each side of the less than sign. The result of the evaluation of 2 < 3 became the second

element of a tuple. Properly enclosing the tuples enables the desired result.
6.18.4. Single-Element Tuples

Ever try to create a tuple with a single element? You tried it with lists, and it worked, but then you tried
and tried with tuples, but you cannot seem to do it.

>>> ["abc']
['abc']

>>> type(['abc']) # a list

<type 'list'>

>>>

>>> (' xyz')

'xyz'

>>> type((' xyz')) # a string, not a tuple
<type 'str'>

It probably does not help your case that the parentheses are also overloaded as the expression grouping
operator. Parentheses around a single element take on that binding role rather than serving as a
delimiter for tuples. The workaround is to place a trailing comma (,) after the first element to indicate

that this is a tuple and not a grouping.
>>> (' xyz',)

("xyz',)

6.18.5. Dictionary Keys

Immutable objects have values that cannot be changed. That means that they will always hash to the
same value. That is the requirement for an object being a valid dictionary key. As we will find out in the
next chapter, keys must be hashable objects, and tuples meet that criteria. Lists are not eligible.

Core Note: Lists versus Tuples

One of the questions in the Python FAQ asks, "Why are there separate
tuple and list data types?" That question can also be rephrased as, "Do
we really need two similar sequence types?" One reason why having
lists and tuples is a good thing occurs in situations where having one
is more advantageous than having the other.

One case in favor of an immutable data type is if you were
manipulating sensitive data and were passing a mutable object to an
unknown function (perhaps an API that you didn't even write!). As the
engineer developing your piece of the software, you would definitely
feel a lot more secure if you knew that the function you were calling
could not alter the data.

An argument for a mutable data type is where you are managing
dynamic data sets. You need to be able to create them on the fly,
slowly or arbitrarily adding to them, or from time to time, deleting
individual elements. This is definitely a case where the data type must
be mutable. The good news is that with the i st () and tupl e() built-in
conversion functions, you can convert from one type to the other
relatively painlessly.

list() and tupl e() are functions that allow you to create a tuple from
a list and vice versa. When you have a tuple and want a list because
you need to update its objects, the 1i st () function suddenly becomes
your best buddy. When you have a list and want to pass it into a
function, perhaps an API, and you do not want anyone to mess with
the data, the tupl e() function comes in quite useful.

MEXT B

file:///D|/1/0132269937/14051536.html

e Py EXT

6.19. Related Modules

Table 6.12 lists the key related modules for sequence types. This list includes the array module to which

we briefly alluded earlier. These are similar to lists except for the restriction that all elements must be of
the same type. The copy module (see optional Section 6.20 below) performs shallow and deep copies of

objects. The operat or module, in addition to the functional equivalents to numeric operators, also
contains the same four sequence types. The t ypes module is a reference of type objects representing all
types that Python supports, including sequence types. Finally, the UserLi st module contains a full class

implementation of a list object. Because Python types cannot be subclassed, this module allows users to
obtain a class that is list-like in nature, and to derive new classes or functionality. If you are unfamiliar
with object-oriented programming, we highly recommend reading Chapter 13.

Table 6.12. Related Modules for Sequence Types

Module Contents

array Features the array restricted mutable sequence type, which requires all of its
elements to be of the same type

copy Provides functionality to perform shallow and deep copies of objects (see 6.20
below for more information)

operat or Contains sequence operators available as function calls, e.g., oper at or. concat (m
n) is equivalent to the concatenation (m + n) for sequences mand n

. Perl-style regular expression search (and match); see Chapter 15

Stringl O cStringl O Treats long strings just like a file object, i.e., read(), seek(), etc.; C-compiled
version is faster but cannot be subclassed

Cext wr ap[gl Utility functions for wrapping/filling text fields; also has a class
types Contains type objects for all supported Python types
[b] High-performance container data types

col | ecti ons

& New in Python 2.3.

(o] New in Python 2.4.

e prcy ExT

. pREV_
6.20. *Copying Python Objects and Shallow and Deep Copies

Earlier in Section 3.5, we described how object assignments are simply object references. This means

that when you create an object, then assign that object to another variable, Python does not copy the
object. Instead, it copies only a reference to the object.

For example, let us say that you want to create a generic profile for a young couple; call it per son. Then

you copy this object for both of them. In the example below, we show two ways of copying an object,
one uses slices and the other a factory function. To show we have three unrelated objects, we use theid

() built-in function to show you each object's identity. (We can also use the i s operator to do the same
thing.)

>>> person = ['nanme', ['savings', 100.00]]
>>> hubby = person[:] # slice copy
>>> wifey = |ist(person) # fac func copy
>>> [id(x) for x in person, hubby, w fey]

[11826320, 12223552, 11850936]

Individual savings accounts are created for them with initial $100 deposits. The names are changed to
customize each person's object. But when the husband withdraws $50.00, his actions affected his wife's
account even though separate copies were made. (Of course, this is assuming that we want them to
have separate accounts and not a single, joint account.) Why is that?

>>> hubby] 0] 'j oe'

>>> wi fey[0] 'j ane'

>>> hubby, wifey

(['"joe', ['savings', 100.0]], ['jane', ['savings', 100.0]])
>>> hubby[1][1] = 50.00

>>> hubby, wifey

(['joe', ['savings', 50.0]], ['jane', ['savings', 50.0]])

The reason is that we have only made a shallow copy. A shallow copy of an object is defined to be a
newly created object of the same type as the original object whose contents are references to the
elements in the original object. In other words, the copied object itself is new, but the contents are not.
Shallow copies of sequence objects are the default type of copy and can be made in any number of
ways: (1) taking a complete slice [:], (2) using a factory function, e.g., list(), dict(), etc., or (3)
using the copy() function of the copy module.

Your next question should be: When the wife's name is assigned, how come it did not affect the
husband's name? Shouldn't they both have the name 'jane' now? The reason why it worked and we

don't have duplicate names is because of the two objects in each of their lists, the first is immutable (a
string) and the second is mutable (a list). Because of this, when shallow copies are made, the string is
explicitly copied and a new (string) object created while the list only has its reference copied, not its
members. So changing the names is not an issue but altering any part of their banking information is.
Here, let us take a look at the object IDs for the elements of each list. Note that the banking object is
exactly the same and the reason why changes to one affects the other. Note how, after we change their
names, that the new name strings replace the original ' name' string:

BEFORE:

>>> [id(x) for x in hubby]
[9919616, 11826320]
>>> [id(x) for x in wfey]
[9919616, 11826320]

AFTER:

>>> [id(x) for x in hubby]
[12092832, 11826320]
>>> [id(x) for x in wfey]
[12191712, 11826320]

If the intention was to create a joint account for the couple, then we have a great solution, but if we
want separate accounts, we need to change something. In order to obtain a full or deep copy of the
objectcreating a new container but containing references to completely new copies (references) of the
element in the original objectwe need to use the copy. deepcopy() function. Let us redo the entire

example but using deep copies instead:

>>> person = ['nanme', ['savings', 100.00]]
>>> hubby = person

>>> jnport copy

>>> wi fey = copy. deepcopy(person)

>>> [id(x) for x in person, hubby, wfey]

[12242056, 12242056, 12224232]

>>> hubby[0] = 'joe'

>>> wifey[0] = "jane'

>>> hubby, w fey

(["joe', ['savings', 100.0]], ['jane', ['savings', 100.0]])
>>> hubby[1] [1] = 50. 00

>>> hubby, wifey

(["joe', ['savings', 50.0]], ['jane', ['savings', 100.0]])

Now it is just the way we want it. For Kickers, let us confirm that all four objects are different:

>>> [id(x) for x in hubby]
[12191712, 11826280]
>>> [id(x) for x in wfey]
[12114080, 12224792]

There are a few more caveats to object copying. The first is that non-container types (i.e., numbers,

strings, and other "atomic" objects like code, type, and xr ange objects) are not copied. Shallow copies of

sequences are all done using complete slices. Finally, deep copies of tuples are not made if they contain

only atomic objects. If we changed the banking information to a tuple, we would get only a shallow copy

even though we asked for a deep copy:

>>> person = ['nanme', ('savings', 100.00)]
>>> newPer son = copy. deepcopy(person)

>>> [id(x) for x in person, newPerson]

[12225352, 12226112]

>>> [id(x) for x in person]

[9919616, 11800088]
>>> [id(x) for x in newPerson]
[9919616, 11800088]

Core Module: copy

& The shallow and deep copy operations that we just described are
u found in the copy module. There are really only two functions to use

ﬁ from this module: copy() creates shallow copy, and deepcopy() creates
a deep copy.

e prcy | NEXT B

e Py EXT

6.21. Summary of Sequences

Sequence types provide various mechanisms for ordered storage of data. Strings are a general medium
for carrying data, whether it be displayed to a user, stored on a disk, transmitted across the network, or
be a singular container for multiple sources of information. Lists and tuples provide container storage
that allows for simple manipulation and access of multiple objects, whether they be Python data types or
user-defined objects. Individual or groups of elements may be accessed as slices via sequentially
ordered index offsets. Together, these data types provide flexible and easy-to-use storage tools in your
Python development environment. We conclude this chapter with a summary of operators, built-in
functions and methods for sequence types given in Table 6.13.

Table 6.13. Sequence Type Operators, Built-in
Functions and Methods

Operator, Built-in Function or Method String List Tuple

[1 (list creation) °
0 .
append() .
capitalize() .
center () R
chr() .
cnp() . . .
count () ° °
decode() R
encode() °
endswi t h() °
expandt abs() .
ext end() .
find() .
hex() .
i ndex() ° °

insert() °

i sdeci mal ()
i sdigit()
i sl over ()

i snumeri c()
i sspace()
istitle()
i supper ()

join()
I en()
list()
ljust ()

I ower ()
I'strip()
max ()

mi n()
oct ()
ord()
pop()
raw i nput ()
remove()
repl ace()
repr()
reverse()
rfind()
ri ndex()
rjust()
rstrip()
sort ()
split()
splitlines()

startsw th()

str() ° ° °

strip() .
swapcase() °
split() .
title() .
tuple() . . .
type() . . .
upper () .
zfill () .
. (attributes) ° °
[1 (slice) o ° o
[:] . . .
% .
+ . . .
in ° ° °
not in ° ° °

NEXT B

e Py EXT

6.22. Exercises

6-1. Strings. Are there any string methods or functions in the string module that will help
me determine if a string is part of a larger string?

6-2. String ldentifiers. Modify the i dcheck. py script in Example 6-1 such that it will

determine the validity of identifiers of length 1 as well as be able to detect if an
identifier is a keyword. For the latter part of the exercise, you may use the keyword

module (specifically the keywor d. kwi i st list) to aid in your cause.

6-3. Sorting.

Enter a list of numbers and sort the values in largest-to-smallest order.

Do the same thing, but for strings and in reverse alphabetical (largest-to-
smallest lexicographic) order.

6-4. Arithmetic. Update your solution to the test score exercise in the previous chapter
such that the test scores are entered into a list. Your code should also be able to come
up with an average score. See Exercises 2-9 and 5-3.

6-5. Strings.

a.
Update your solution to Exercise 2-7 so that you display a string one character
at a time forward and backward.

b.
Determine if two strings match (without using comparison operators or the cnp
() built-in function) by scanning each string. Extra credit: Add case-
insensitivity to your solution.

C.

Determine if a string is palindromic (the same backward as it is forward). Extra
credit: Add code to suppress symbols and whitespace if you want to process
anything other than strict palindromes.

file:///D|/1/0132269937/14051536.html

6-6.

6-7.

6-8.

6-9.

6-10.

Take a string and append a backward copy of that string, making a palindrome.

Strings. Create the equivalent to string. strip(): Take a string and remove all leading
and trailing whitespace. (Use of string. *strip() defeats the purpose of this exercise.)

Debugging. Take a look at the code we present in Example 6.4 (buggy. py).

Study the code and describe what this program does. Add a comment to every
place you see a comment sign (#). Run the program.

This problem has a big bug in it. It fails on inputs of 6, 12, 20, 30, etc., not to
mention any even number in general. What is wrong with this program?

Fix the bug in (b).

Lists. Given an integer value, return a string with the equivalent English text of each
digit. For example, an input of 89 results in "eight-nine" being returned. Extra credit:
Return English text with proper usage, i.e., "eighty-nine." For this part of the exercise,
restrict values to be between 0 and 1,000.

Conversion. Create a sister function to your solution for Exercise 5.13 to take the total
number of minutes and return the same time interval in hours and minutes,
maximizing on the total number of hours.

Strings. Create a function that will return another string similar to the input string, but
with its case inverted. For example, input of "Mr. Ed" will result in "mR. eD" as the
output string.

Example 6.4. Buggy Program (buggy. py)

This is the program listing for Exercise 6-7. You will determine what this program does, add
comments where you see "#"s, determine what is wrong with it, and provide a fix for it.
1 #!/usr/bin/env python

2

3 #

4 numstr = raw_input('Enter a nunber: ")
5

6 #

7 numnum = int(numstr)

8

9 #

10 fac_list = range(1, num numtl)

11 print "BEFORE:", 'fac_list'

12

13 #

14 i =0

15

16 #

17 while i < len(fac_list):

18

19 #

20 if numnum%fac_ list[i] ==

21 del fac list[i]

22 #

23 i =i +1

25

26 #

27 print "AFTER ", 'fac_list"'

6-11. Conversion.

Create a program that will convert from an integer to an Internet Protocol (IP)
address in the four-octet format of WWW.XXX.YYY.ZZZ.

Update your program to be able to do the vice versa of the above.

6-12.

6-13.

Strings.

a.

Create a function called fi ndchr (), with the following declaration:

def findchr(string, char)

findchr () will look for character char in string and return the index of the first
occurrence of char, or -1 if that char is not part of string. You cannot use
string.*find() orstring.*index() functions or methods.

b.
Create another function called rfi ndchr () that will find the last occurrence of a
character in a string. Naturally this works similarly to fi ndchr (), but it starts its
search from the end of the input string.

C.

Create a third function called subchr () with the following declaration:

def subchr(string, origchar, newchar)

subchr () is similar to fi ndchr () except that whenever ori gchar is found, it is
replaced by newchar . The modified string is the return value.

Strings. The stri ng module contains three functions, atoi (), atol (), and atof (), that

convert strings to integers, long integers, and floating point numbers, respectively. As
of Python 1.5, the Python built-in functionsint (), I ong(), and fl oat () can also

perform the same tasks, in addition to conpl ex(), which can turn a string into a

complex number. (Prior to 1.5, however, those built-in functions converted only
between numeric types.)

An atoc() was never implemented in the stri ng module, so that is your task here. at oc
() takes a single string as input, a string representation of a complex number, e.g., '-
1. 23e+4-5.67] ', and returns the equivalent complex number object with the given
value. You cannot use eval (), but conpl ex() is available. However, you can only use
conpl ex() with the following restricted syntax: conpl ex(real, inmag) where real and

i mag are floating point values.

6-14.

6-15.

6-16.

6-17.

6-18.

*Random Numbers. Design a "rock, paper, scissors" game, sometimes called
"Rochambeau,” a game you may have played as a kid. Here are the rules. At the same
time, using specified hand motions, both you and your opponent have to pick from
one of the following: rock, paper, or scissors. The winner is determined by these rules,
which form somewhat of a fun paradox:

the paper covers the rock,

the rock breaks the scissors,

the scissors cut the paper. In your computerized version, the user enters his/
her guess, the computer randomly chooses, and your program should indicate
a winner or draw/tie. Note: The most algorithmic solutions use the fewest
number of i f statements.

Conversion.

Given a pair of dates in some recognizable standard format such as MM/DD/YY
or DD/MM/YY, determine the total number of days that fall between both dates.

Given a person's birth date, determine the total number of days that person
has been alive, including all leap days.

Armed with the same information from (b) above, determine the number of
days remaining until that person’s next birthday.

Matrices. Process the addition and multiplication of a pair of M by N matrices.

Methods. Implement a function called nyPop(), which is similar to the list pop()
method. Take a list as input, remove the last object from the list and return it.

In the zi p() example of Section 6.12.2, what does zi p(fn, I n) return?

6-19. Multi-Column Output. Given any number of items in a sequence or other container,
display them in equally-distributed number of columns. Let the caller provide the data
and the output format. For example, if you pass in a list of 100 items destined for
three columns, display the data in the requested format. In this case, two columns
would have 33 items while the last would have 34. You can also let the user choose

horizontal or vertical sorting.

e prcy | NEXT B

file:///D|/1/0132269937/14051536.html

@ prev |
Chapter 7. Mapping and Set Types

Chapter Topics

« Mapping Type: Dictionaries

Operators
Built-in Functions

O

a

o Built-in Methods

o Dictionary Keys
o Set Types

o Operators
o Built-in Functions

o Built-in Methods
« Related Modules

In this chapter, we take a look at Python's mapping and set types. As in earlier chapters, an introduction
is followed by a discussion of the applicable operators and factory and built-in functions (BIFs) and
methods. We then go into more specific usage of each data type.

e prcy | NEXT B

e Py EXT

7.1. Mapping Type: Dictionaries

Dictionaries are the sole mapping type in Python. Mapping objects have a one-to-many correspondence
between hashable values (keys) and the objects they represent (values). They are similar to Perl hashes
and can be generally considered as mutable hash tables. A dictionary object itself is mutable and is yet
another container type that can store any number of Python objects, including other container types.
What makes dictionaries different from sequence type containers like lists and tuples is the way the data
are stored and accessed.

Sequence types use numeric keys only (numbered sequentially as indexed offsets from the beginning of
the sequence). Mapping types may use most other object types as keys; strings are the most common.
Unlike sequence type keys, mapping keys are often, if not directly, associated with the data value that is
stored. But because we are no longer using "sequentially ordered" keys with mapping types, we are left
with an unordered collection of data. As it turns out, this does not hinder our use because mapping
types do not require a numeric value to index into a container to obtain the desired item. With a key,
you are "mapped” directly to your value, hence the term "mapping type.” The reason why they are
commonly referred to as hash tables is because that is the exact type of object that dictionaries are.
Dictionaries are one of Python's most powerful data types.

Core Note: What are hash tables and how do they relate to
dictionaries?

Sequence types use sequentially ordered numeric keys as index
offsets to store your data in an array format. The index number
usually has nothing to do with the data value that is being stored.
There should also be a way to store data based on another associated
value such as a string. We do this all the time in everyday living. You
file people's phone numbers in your address book based on last name,
you add events to your calendar or appointment book based on date
and time, etc. For each of these examples, an associated value to a
data item was your key.

Hash tables are a data structure that does exactly what we described.
They store each piece of data, called a value, based on an associated
data item, called a key. Together, these are known as key-value pairs.
The hash table algorithm takes your key, performs an operation on it,
called a hash function, and based on the result of the calculation,
chooses where in the data structure to store your value. Where any
one particular value is stored depends on what its key is. Because of
this randomness, there is no ordering of the values in the hash table.
You have an unordered collection of data.

The only kind of ordering you can obtain is by taking either a
dictionary's set of keys or values. The keys() or val ues() method

returns lists, which are sortable. You can also call i tens() to get a list

of keys and values as tuple pairs and sort that. Dictionaries
themselves have no implicit ordering because they are hashes.

Hash tables generally provide good performance because lookups
occur fairly quickly once you have a key.

Python dictionaries are implemented as resizeable hash tables. If you are familiar with Perl, then we can
say that dictionaries are similar to Perl's associative arrays or hashes.

We will now take a closer look at Python dictionaries. The syntax of a dictionary entry is key: val ue Also,
dictionary entries are enclosed in braces ({ }).

How to Create and Assign Dictionaries

Creating dictionaries simply involves assigning a dictionary to a variable, regardless of whether the
dictionary has elements or not:

>>> dictl = {}

>>> dict2 {'nane': 'earth', 'port': 80}
>>> dictl, dict2

({}, {'port': 80, '"nane': 'earth'})

In Python versions 2.2 and newer, dictionaries may also be created using the factory function di ct ().
We discuss more examples later when we take a closer look at di ct (), but here's a sneak peek for now:

>>> fdict = dict((['x", 1], ['y', 2]))
>>> fdict
{'y': 2, "x': 1}

In Python versions 2.3 and newer, dictionaries may also be created using a very convenient built-in
method for creating a "default” dictionary whose elements all have the same value (defaulting to None if

not given), fronkeys():

>>> ddict = {}.fronkeys(('x', 'y'), -1)

>>> ddi ct

{"y': -1, "x': -1}

>>>

>>> edict = {}.fronkeys(('foo', 'bar'))
>>> edi ct

{"foo': None, 'bar': None}

How to Access Values in Dictionaries

To traverse a dictionary (normally by key), you only need to cycle through its keys, like this:

>>> dict2 = {"nane': 'earth', 'port': 80}
>>>
>>>> for key in dict2.keys():
print 'key=%, val ue=%' % (key, dict2[key])

key=nane, val ue=earth
key=port, val ue=80

Beginning with Python 2.2, you no longer need to use the keys() method to extract a list of keys to loop

over. Iterators were created to simplify accessing of sequence-like objects such as dictionaries and files.
Using just the dictionary name itself will cause an iterator over that dictionary to be used in a f or | oop:

>>> dict2 = {"nane': 'earth', 'port': 80}
>>>
>>>> for key in dict?2:
print 'key=%, value=%' % (key, dict2[key])

key=nane, val ue=earth
key=port, val ue=80

To access individual dictionary elements, you use the familiar square brackets along with the key to
obtain its value:

>>> dict2[' nane']
"earth’
>>>

>>> print 'host % is running on port %d %\
(dict2["'nane'], dict2['port'])
host earth is running on port 80

Dictionary di ct 1 defined above is empty while di ct 2 has two data items. The keys in di ct 2 are ' nane’
and ' port', and their associated value items are ' earth' and 80, respectively. Access to the value is
through the key, as you can see from the explicit access to the ' nane' key.

If we attempt to access a data item with a key that is not part of the dictionary, we get an error:

>>> dict2[' server']

Traceback (innernost |ast):
File "<stdin>, line 1, in ?

KeyError: server

In this example, we tried to access a value with the key ' server' which, as you know from the code

above, does not exist. The best way to check if a dictionary has a specific key is to use the dictionary's
has_key() method, or better yet, the i n or not i n operators starting with version 2.2. The has_key()

method will be obsoleted in future versions of Python, so it is best to just use i n or not in.

We will introduce all of a dictionary's methods below. The Boolean has_key() and the in and not in
operators are Boolean, returning true if a dictionary has that key and Fal se otherwise. (In Python
versions preceding Boolean constants [older than 2.3], the values returned are 1 and O, respectively.)

>>> "server' in dict2 # or dict2. has_key('server')

Fal se

>>> 'nane' in dict # or dict2.has_key(' nane')
True

>>> dict2[' nane']

"earth’

Here is another dictionary example mixing the use of numbers and strings as keys:

>>> dict3 = {}

>>> dict3[1] = 'abc'

>>> dict3['1'] 3.14159

>>> dict 3[3. 2] ' Xyz'

>>> dict3

{3.2: '"xyz', 1. "abc', '"1': 3.14159}

Rather than adding each key-value pair individually, we could have also entered all the data for di ct 3 at
the same time:

dict3 = {3.2: '"xyz', 1. "abc', '"1': 3.14159}

Creating the dictionary with a set key-value pair can be accomplished if all the data items are known in
advance (obviously). The goal of the examples using di ct 3 is to illustrate the variety of keys that you
can use. If we were to pose the question of whether a key for a particular value should be allowed to
change, you would probably say, "No." Right?

Not allowing keys to change during execution makes sense if you think of it this way: Let us say that
you created a dictionary element with a key and value. Somehow during execution of your program, the
key changed, perhaps due to an altered variable. When you went to retrieve that data value again with
the original key, you got a KeyError (since the key changed), and you had no idea how to obtain your

value now because the key had somehow been altered. For this reason, keys must be hashable, so
numbers and strings are fine, but lists and other dictionaries are not. (See Section 7.5.2 for why keys

must be hashable.)

How to Update Dictionaries

You can update a dictionary by adding a new entry or element (i.e., a key-value pair), modifying an
existing entry, or deleting an existing entry (see below for more details on removing an entry).

>>> dict2[' nane']
>>> dict2[' port']

"venus' # update existing entry
6969 # update existing entry

>>> dict2['arch'] = 'sunos5' # add new entry
>>>

>>> print 'host % nane)s is running on port %port)d %
dict2
host venus is running on port 6969

If the key does exist, then its previous value will be overridden by its new value. The pri nt statement

above illustrates an alternative way of using the string format operator (%), specific to dictionaries.
Using the dictionary argument, you can shorten the pri nt request somewhat because naming of the

dictionary occurs only once, as opposed to occurring for each element using a tuple argument.

You may also add the contents of an entire dictionary to another dictionary by using the updat e() built-
in method. We will introduce this method in Section 7.4.

How to Remove Dictionary Elements and Dictionaries

Removing an entire dictionary is not a typical operation. Generally, you either remove individual
dictionary elements or clear the entire contents of a dictionary. However, if you really want to "remove"
an entire dictionary, use the del statement (introduced in Section 3.5.5). Here are some deletion

examples for dictionaries and dictionary elements:

del dict2[' nane'] # renmove entry with key 'nang'
di ct2.clear() # remove all entries in dictl
del dict2 # delete entire dictionary

di ct 2. pop(' nane') # remove & return entry w key

Core Tip: Avoid using built-in object names as identifiers for
variables!

For those of you who began traveling in the Python universe before
version 2.3, you may have once used di ct as an identifier for a
dictionary. However, because di ct () is now a type and factory
function, overriding it may cause you headaches and potential bugs.
The interpreter will allow such overriding-hey, it thinks you seem
smart and look like you know what you are doing! So be careful. Do
NOT use variables named after built-in types like: dict, list, file,

bool , str, i nput, or | en!

e prcy | NEXT B

file:///D|/1/0132269937/14051536.html

e Py EXT

7.2. Mapping Type Operators

Dictionaries will work with all of the standard type operators but do not support operations such as
concatenation and repetition. Those operations, although they make sense for sequence types, do not
translate to mapping types. In the next two subsections, we introduce you to the operators you can use
with dictionaries.

7.2.1. Standard Type Operators

The standard type operators were introduced in Chapter 4. Here are some basic examples using some of
those operators:

>>> dict4 = {"abc': 123}

>>> dictb = {'"abc': 456}

>>> dict6 = {"abc': 123, 98.6: 37}

>>> dict7 = {'xyz': 123}

>>> dict4 < dicth

True

>>> (dict4 < dict6) and (dict4 < dict7)
True

>>> (dictbh < dict6) and (dictb5 < dict7)
True

>>> dict6 < dict7

Fal se

How are all these comparisons performed? Like lists and tuples, the process is a bit more complex than
it is for numbers and strings. The algorithm is detailed in Section 7.3.1.

7.2.2. Mapping Type Operators

Dictionary Key-Lookup Operator ([])

The only operator specific to dictionaries is the key-lookup operator, which works very similarly to the
single element slice operator for sequence types.

For sequence types, an index offset is the sole argument or subscript to access a single element of a
sequence. For a dictionary, lookups are by key, so that is the argument rather than an index. The key-
lookup operator is used for both assigning values to and retrieving values from a dictionary:

d k] =v # set value 'v' in dictionary with key 'k’
d[k] # |l ookup value in dictionary with key 'k’

(Key) Membership (in, not in)

Beginning with Python 2.2, programmers can use the i n and not i n operators to check key membership

instead of the has_key() method:

>>> 'nane’ in dict2
True
>>> ' phone' in dict2
Fal se

NEXT B

e Py EXT

7.3. Mapping Type Built-in and Factory Functions

7.3.1. Standard Type Functions [type(), str(),and cnp()]

The type() factory function, when applied to a dict, returns, as you might expect, the di ct type, "<type
"dict'>". The str() factory function will produce a printable string representation of a dictionary. These
are fairly straightforward.

In each of the last three chapters, we showed how the cnp() BIF worked with numbers, strings, lists,

and tuples. So how about dictionaries? Comparisons of dictionaries are based on an algorithm that starts
with sizes first, then keys, and finally values. However, using cnp() on dictionaries isn't usually very

useful.

The next subsection goes into further detail about the algorithm used to compare dictionaries, but this is
advanced reading, and definitely optional since comparing dictionaries is not very useful or very
common.

*Dictionary Comparison Algorithm

In the following example, we create two dictionaries and compare them, then slowly modify the
dictionaries to show how these changes affect their comparisons:

>>> dictl = {}
>>> dict2 = {"host': "earth', 'port': 80}
>>> cnp(dictl, dict?2)

-1

>>> dictl['host'] = "earth’
>>> cnp(dictl, dict2)

-1

In the first comparison, di ct 1 is deemed smaller because di ct 2 has more elements (2 items vs. O

items). After adding one element to di ct 1, it is still smaller (2 vs. 1), even if the item added is also in
di ct 2.

>>> dictl['port'] = 8080
>>> cnp(dictl, dict2)

>>> dictl]' port'] = 80
>>> cnp(dictl, dict2)

After we add the second element to di ct 1, both dictionaries have the same size, so their keys are then

compared. At this juncture, both sets of keys match, so comparison proceeds to checking their values.
The values for the ' host' keys are the same, but when we get to the ' port' key, dict 2 is deemed larger

because its value is greater than that of dict1's ' port' key (8080 vs. 80). When resetting di ct 2's ' port'
key to the same value as dict1's ' port' Kkey, then both dictionaries form equals: They have the same

file:///D|/1/0132269937/14051536.html

size, their keys match, and so do their values, hence the reason that 0 is returned by cnp().

>>> dictl[' prot'] = "tcp'
>>> cnp(dictl, dict2)
1

>>> dict2['prot'] = 'udp'
>>> cnp(dictl, dict2)
-1

As soon as an element is added to one of the dictionaries, it immediately becomes the "larger one," as
in this case with di ct 1. Adding another key-value pair to di ct 2 can tip the scales again, as both

dictionaries' sizes match and comparison progresses to checking keys and values.

>>> cdict = {'fruits':1}
>>> ddict = {'fruits':1}
>>> cnp(cdict, ddict)

0

>>> cdict['oranges'] =0
>>> ddict['apples'] =0
>>> cnp(cdict, ddict)

14

Our final example reminds as that cnp() may return values other than -1, O, or 1. The algorithm pursues
comparisons in the following order.

(1) Compare Dictionary Sizes

If the dictionary lengths are different, then for cnp (dict1, dict2), cnp() will return a positive number if

di ct 1 is longer and a negative number if di ct 2 is longer. In other words, the dictionary with more keys
is greater, i.e.,

len(dictl) > len(dict2) = dictl > dict2

(2) Compare Dictionary Keys

If both dictionaries are the same size, then their keys are compared; the order in which the keys are
checked is the same order as returned by the keys() method. (It is important to note here that keys

that are the same will map to the same locations in the hash table. This keeps key-checking consistent.)
At the point where keys from both do not match, they are directly compared and cnp() will return a

positive number if the first differing key for di ct 1 is greater than the first differing key of di ct 2.
(3) Compare Dictionary Values

If both dictionary lengths are the same and the keys match exactly, the values for each key in both
dictionaries are compared. Once the first key with non-matching values is found, those values are
compared directly. Then cnp() will return a positive number if, using the same key, the value in dict1 is

greater than the value in di ct 2.

(4) Exact Match

If we have reached this point, i.e., the dictionaries have the same length, the same keys, and the same
values for each key, then the dictionaries are an exact match and 0 is returned.

Figure 7-1 illustrates the dictionary compare algorithm we just outlined.

Figure 7-1. How dictionaries are compared

[View full size image]

START with
both dictionaries

Comparing dictionaries

Values
differ?

Lengths
differ?

return{omp {len(dictl) leni{dict2) |

¥

return (cmp (dictlEevN, dict2EeyHN])

h

return (erp (dictlVall, dict2Vall)l)

¥

return (i)

7.3.2. Mapping Type Related Functions

dict ()

The di ct () factory function is used for creating dictionaries. If no argument is provided, then an empty
dictionary is created. The fun happens when a container object is passed in as an argument to di ct ().

If the argument is an iterable, i.e., a sequence, an iterator, or an object that supports iteration, then
each element of the iterable must come in pairs. For each pair, the first element will be a new key in the
dictionary with the second item as its value. Taking a cue from the official Python documentation for di ct

0):

file:///D|/1/0132269937/images/chun_fig07_01_alt.jpg

>>> dict(zip(('x', "y'), (1, 2)))

{'y': 2, "x': 1}

>>>dict([["x", 1], ['y", 2]])

{'y': 2, "x': 1}

>>> dict([("xy'[i-1], i) for i in range(l,3)])
{'y': 2, "x': 1}

If it is a(nother) mapping object, i.e., a dictionary, then di ct () will just create a new dictionary and copy

the contents of the existing one. The new dictionary is actually a shallow copy of the original one and
the same results can be accomplished by using a dictionary's copy() built-in method. Because creating a

new dictionary from an existing one using di ct () is measurably slower than using copy(), we
recommend using the latter.

Starting in Python 2.3, it is possible to call di ct () with an existing dictionary or keyword argument
dictionary (** function operator, covered in Chapter 11):

>>> di ct (x=1, y=2)
{"y': 2, "x'": 1}
>>> dict8 = dict(x=1, y=2)

>>> dict8

{'y': 2, "x': 1}

>>> dict9 = dict(**dict8)
>>> dict9

{"y': 2, "x': 1}

We remind viewers that the di ct 9 example is only an exercise in understanding the calling semantics of
di ct () and not a realistic example. It would be wiser (and better performance-wise) to execute
something more along the lines of:

>>> dict9 = dict8.copy()
>>> dict9
{*y': 2, "x : 1}

l en()

The I en() BIF is flexible. It works with sequences, mapping types, and sets (as we will find out later on
in this chapter). For a dictionary, it returns the total number of items, that is, key-value pairs:

>>> dict2 = {'nanme': 'earth', 'port': 80}
>>> dict2

{"port': 80, '"name': 'earth'}

>>> | en(dict2)

2

We mentioned earlier that dictionary items are unordered. We can see that above, when referencing
di ct 2, the items are listed in reverse order from which they were entered into the dictionary.

hash()

The hash() BIF is not really meant to be used for dictionaries per se, but it can be used to determine
whether an object is fit to be a dictionary key (or not). Given an object as its argument, hash() returns

the hash value of that object. The object can only be a dictionary key if it is hashable (meaning this
function returns a[n integer] value without errors or raising an exception). Numeric values that are
equal (when pitted against each other using a comparison operator) hash to the same value (even if
their types differ). A TypeError will occur if an unhashable type is given as the argument to hash() (and

consequently if an attempt is made to use such an object as the key when assigning a value to a
dictionary):

>>> hash([])
Traceback (innernost |ast):

File "<stdin>", line 1, in ?
TypeError: |ist objects are unhashable
>>>
>>> dict2[{}] = 'foo
Traceback (nost recent call last):

File "<stdin>", line 1, in ?

TypeError: dict objects are unhashable

In Table 7.1, we summarize these three mapping type related functions.

Table 7.1. Mapping Type Related Functions

Function Operation

dict([container]) Factory function for creating a dictionary populated with items from cont ai ner, if
provided; if not, an empty dict is created

| en(mappi ng) Returns the length of mappi ng (number of key-value pairs)

hash(obj) Returns hash value of obj

e prcy ExT

file:///D|/1/0132269937/14051536.html

NEXT B

7.4. Mapping Type Built-in Methods

Dictionaries have an abundance of methods to help you get the job done, as indicated in Table 7.2.

Table 7.2.

Method Name

. a
dlct.clear[—1

()
[al

dict.clear

0

Icl

dict.fronmkeys (seq, val =None)

a
di ct. get (key, default:None)[—1

di ct. has_key (key)

dict.itens()

dict. keys()

dict.iter *

0

dict.pop[gl(key [, default])

e
dict.setdefault (key, default:hbne)[—l

di ct. updat e(di ct 2)[g]

di ct. val ues()

& New in Python 1.5.

[b]

' New in Python 2.3.

Dictionary Type Methods

Operation

Removes all elements of di ct

Returns a (shallow[gl) copy of di ct

Creates and returns a new dictionary with the elements of
seq as the keys and val as the initial value (defaults to None

if not given) for all keys

For key key, returns value or def aul t if key not in di ct (note
that def aul t 's default is None)

Returns TRue if key is in dict, Fal se otherwise; partially
deprecated by the i n and not in operators in 2.2 but still
provides a functional interface

Returns a list of the (key, value) tuple pairs of di ct
Returns a list of the keys of di ct

iteritems(), iterkeys(), itervalues() are all methods that

behave the same as their non-iterator counterparts but
return an iterator instead of a list

Similar to get () but removes and returns di ct [key] if key
present and raises KeyError if key not in di ct and def aul t
not given

Similar to get (), but sets di ct [key] =def aul t if key is not
already in di ct

Add the key-value pairs of di ct 2 to di ct

Returns a list of the values of di ct

More information regarding shallow and deep copies can be found in Section 6.19.

] New in Python 2.2.

® New in Python 2.0.

Below, we showcase some of the more common dictionary methods. We have already seen has_key()
and its replacements i n and not in at work above. Attempting to access a nonexistent key will result in
an exception (KeyError) as we saw in Section 7.1.

Basic dictionary methods focus on their keys and values. These are keys(), which returns a list of the
dictionary's keys, val ues(), which returns a list of the dictionary's values, and i tens(), which returns a

list of (key, value) tuple pairs. These are useful when you wish to iterate through a dictionary's keys or
values, albeit in no particular order.

>>> di ct 2. keys()

['port', '"nane']

>>>

>>> di ct 2. val ues()

[80, "earth']

>>>

>>> dict2.itens()

[("port', 80), ('nane', 'earth')]

>>>

>>> for eachKey in dict2.keys():
print "dict2 key', eachKey, 'has value', dict2[eachKey]

di ct2 key port has val ue 80
di ct2 key nane has val ue earth

The keys() method is fairly useful when used in conjunction with a f or loop to retrieve a dictionary's

values as it returns a list of a dictionary's keys. However, because its items (as with any keys of a hash
table) are unordered, imposing some type of order is usually desired.

In Python versions prior to 2.4, you would have to call a dictionary's keys() method to get the list of its
keys, then call that list's sort () method to get a sorted list to iterate over. Now a built-in function
named sorted(), made especially for iterators, exists, which returns a sorted iterator:

>>> for eachKey in sorted(dict?2):
. print 'dict2 key', eachKey, 'has value',
di ct 2[eachKey]

di ct 2 key nane has val ue earth
dict2 key port has value 80

The updat e() method can be used to add the contents of one directory to another. Any existing entries

with duplicate keys will be overridden by the new incoming entries. Nonexistent ones will be added. All
entries in a dictionary can be removed with the cl ear () method.

>>> dict2= {'"host':'earth', 'port':80}

>>> dict3= {' host':'venus', 'server':'http'}
>>> di ct 2. updat e(di ct3)

>>> dict2

{"server': '"http', 'port': 80, 'host': 'venus'}
>>> dict3.clear()

>>> dict3

{}

The copy() method simply returns a copy of a dictionary. Note that this is a shallow copy only. Again,
see Section 6.19 regarding shallow and deep copies. Finally, the get () method is similar to using the

key-lookup operator ([]), but allows you to provide a default value returned if a key does not exist. If
a key does not exist and a default value is not given, then None is returned. This is a more flexible option

than just using key-lookup because you do not have to worry about an exception being raised if a key
does not exist.

>>> dict4 = dict2. copy()

>>> dict4

{"server': '"http', 'port': 80, 'host': 'venus'}
>>> dict4.get (' host')

"venus'

>>> dict4. get (' xxx")

>>> type(dict4. get (' xxx'))

<type ' None'>

>>> dict4.get('xxx', 'no such key')
'"no such key'

The built-in method, set defaul t (), added in version 2.0, has the sole purpose of making code shorter by

collapsing a common idiom: you want to check if a dictionary has a key. If it does, you want its value. If
the dictionary does not have the key you are seeking, you want to set a default value and then return it.
That is precisely what set def aul t () does:

>>> myDict = {"host': '"earth', 'port': 80}
>>> nyDict. keys()

['"host', "port']

>>> nyDict.itens()

[("host', '"earth'), ('port', 80)]

>>> myDict.setdefaul t(' port', 8080)

80

>>> myDict.setdefault('prot', "tcp')

tep!

>>> myDict.itens()

[("prot', "tcp'), ('host', '"earth'), ('port', 80)]

Earlier, we took a brief look at the fronkeys() method, but here are a few more examples:

>>> {}.fronkeys(' xyz')

{"y': None, '"x': None, 'z': None}

>>>

>>> {}.fronkeys(('love', '"honor'), True)
{"love': True, 'honor': True}

Currently, the keys(), itens(), and val ues() methods return lists. This can be unwieldy if such data
collections are large, and the main reason why iteritens(), iterkeys(), anditerval ues() were added
to Python in 2.2. They function just like their list counterparts only they return iterators, which by lazier
evaluation, are more memory-friendly. In future versions of Python, even more flexible and powerful
objects will be returned, tentatively called views. Views are collection interfaces which give you access
to container objects. For example, you may be able to delete a key from a view, which would then alter
the corresponding dictionary accordingly.

e Py EXT

e Py EXT

7.5. Dictionary Keys

Dictionary values have no restrictions. They can be any arbitrary Python object, i.e., from standard
objects to user-defined objects. However, the same cannot be said of keys.

7.5.1. More Than One Entry per Key Not Allowed

One rule is that you are constrained to having only one entry per key. In other words, multiple values
per the same key are not allowed. (Container objects such as lists, tuples, and other dictionaries are
fine.) When key collisions are detected (meaning duplicate keys encountered during assignment), the
last (most recent) assignment wins.

>>> dictl = {' foo':789, 'foo': 'xyz'}
>>> dictl

{"foo': "xyz'}

>>>

>>> dictl]['foo'] = 123

>>> dictl

{'"foo': 123}

Rather than producing an error, Python does not check for key collisions because that would involve
taking up memory for each key-value pair assigned. In the above example where the key ' foo' is given

twice on the same line, Python applies the key-value pairs from left to right. The value 789 may have
been set at first, but is quickly replaced by the string ' xyz' . When assigning a value to a nonexistent

key, the key is created for the dictionary and value added, but if the key does exist (a collision), then its
current value is replaced. In the above example, the value for the key ' f oo’ is replaced twice; in the

final assignment, ' xyz' is replaced by 123.

7.5.2. Keys Must Be Hashable

As we mentioned earlier in Section 7.1, most Python objects can serve as keys; however they have to

be hashable objectsmutable types such as lists and dictionaries are disallowed because they cannot be
hashed.

All immutable types are hashable, so they can definitely be used as keys. One caveat is numbers:
Numbers of the same value represent the same key. In other words, the integer 1 and the float 1.0
hash to the same value, meaning that they are identical as keys.

Also, there are some mutable objects that are (barely) hashable, so they are eligible as keys, but there
are very few of them. One example would be a class that has implemented the __hash__() special

method. In the end, an immutable value is used anyway as __hash__() must return an integer.

Why must keys be hashable? The hash function used by the interpreter to calculate where to store your
data is based on the value of your key. If the key was a mutable object, its value could be changed. If a
key changes, the hash function will map to a different place to store the data. If that was the case, then
the hash function could never reliably store or retrieve the associated value. Hashable keys were chosen
for the very fact that their values cannot change. (This question can also be found in the Python FAQ.)

file:///D|/1/0132269937/14051536.html

We know that numbers and strings are allowed as keys, but what about tuples? We know they are
immutable, but in Section 6.17.2, we hinted that they might not be as immutable as they could be. The
clearest example of that was when we modified a list object that was one of our tuple elements. To
allow tuples as valid keys, one more restriction must be enacted: Tuples are valid keys only if they only
contain immutable arguments like numbers and strings.

We conclude this chapter on dictionaries by presenting a program (user pw. py as in Example 7.1) that
manages usernames and passwords in a mock login entry database system. This script accepts new
users given that they provide a login name and a password. Once an "account™ has been set up, an
existing user can return as long as the user gives the login and correct password. New users cannot
create an entry with an existing login name.

Example 7.1. Dictionary Example (user pw. py)

This application manages a set of users who join the system with a login name and a
password. Once established, existing users can return as long as they remember their login
and password. New users cannot create an entry with someone else's login name.

#1/usr/ bin/env python

db = {}

pronpt = 'login desired:
whil e True:
nanme = raw_i nput (promnpt)

1
2
3
4
5 def newuser():
6
7
8
9 i f db. has_key(nane):

10 pronpt = 'nane taken, try another: '
11 conti nue

12 el se:

13 br eak

14 pwd = raw_i nput (' passwd: ')

15 db[nane] = pwd

16

17 def ol duser():

18 nane = raw_input('login: ")

19 pwd = raw_ i nput (' passwd: ')

20 passwd = db. get (nane)

21 if passwd == pwd:

22 print 'wel cone back', name
23 el se:

24 print 'login incorrect’

25

26 def showrenu():

27 pronpt = """

28 (N ew User Login
29 (E)xisting User Login

30 (Quit

31

32 Enter choice:

33

34 done = Fal se

35 whi | e not done:

36

37 chosen = Fal se

38 whi | e not chosen:

39 try:
40 choice =
raw_i nput (pronpt).strip()[0].| ower()
41 except (ECFError, Keyboardlnterrupt):
42 choice = '¢
43 print "\ nYou picked: [%]' % choice
44 if choice not in 'neq':
45 print "invalid option, try again'
46 el se:
47 chosen = True
48
49 if choice == 'q': done = True
50 if choice == 'n': newuser ()
51 if choice == "e': ol duser()
52
53 if __nane__ =="'_main_'
54 showrenu()

Line-by-Line Explanation
Lines 13

After the Unix-startup line, we initialize the program with an empty user database. Because we are not
storing the data anywhere, a new user database is created every time this program is executed.

Lines 515

The newuser () function is the code that serves new users. It checks to see if a name has already been

taken, and once a new name is verified, the user is prompted for his or her password (no encryption
exists in our simple program), and his or her password is stored in the dictionary with his or her user
name as the key.

Lines 1724

The ol duser () function handles returning users. If a user returns with the correct login and password, a

welcome message is issued. Otherwise, the user is notified of an invalid login and returned to the menu.
We do not want an infinite loop here to prompt for the correct password because the user may have
inadvertently entered the incorrect menu option.

Lines 2651

The real controller of this script is the shownenu() function. The user is presented with a friendly menu.

The prompt string is given using triple quotes because it takes place over multiple lines and is easier to
manage on multiple lines than on a single line with embedded '\ n' symbols. Once the menu is

displayed, it waits for valid input from the user and chooses which mode of operation to follow based on
the menu choice. The try- except statements we describe here are the same as for the st ack. py and

queue. py examples from the last chapter (see Section 6.14.1).

Lines 5354

This is the familiar code that will only call showrenu() to start the application if the script was involved
directly (not imported). Here is a sample execution of our script:

$ user pw. py

(N)ew User Login
(E)xisting User Login
(Quit

Enter choice: n

You picked: [n]
| ogin desired: king arthur
passwd: grail

(N)ew User Login
(E)xisting User Login
(Quit

Enter choice: e

You picked: [e]

| ogin: sir knight
passwd: flesh wound
| ogin incorrect

(N)ew User Login
(E)xisting User Login
(Quit

Enter choice: e

You picked: [e]

| ogi n: king arthur
passwd: grail

wel cone back king arthur

(N)ew User Login
(E)xi sting User Login
(Quit

Ent er choice: ~D
You picked: [q]

e Py EXT

file:///D|/1/0132269937/14051536.html

e Py EXT

7.6. Set Types

In mathematics, a set is any collection of distinct items, and its members are often referred to as set
elements. Python captures this essence in its set type objects. A set object is an unordered collection of
hashable values. Yes, set members would make great dictionary keys. Mathematical sets translate to
Python set objects quite effectively and testing for set membership and operations such as union and
intersection work in Python as expected.

Like other container types, sets support membership testing via i n and not i n operators, cardinality
using the | en() BIF, and iteration over the set membership using for loops. However, since sets are
unordered, you do not index into or slice them, and there are no keys used to access a value.

There are two different types of sets available, mutable (set) and immutable (frozenset). As you can

imagine, you are allowed to add and remove elements from the mutable form but not the immutable.
Note that mutable sets are not hashable and thus cannot be used as either a dictionary key or as an
element of another set. The reverse is true for frozen sets, i.e., they have a hash value and can be used
as a dictionary key or a member of a set.

Sets became available in Python 2.3 via the sets module and accessed via the | mut abl eSet and Set

classes. However, it was decided that having them as built-in types was a better idea, so these classes
were then ported to C along with some improvements and integrated into Python 2.4. You can read

more about those improvements as well as set types in general in PEP 218 at http://python.org/peps/
pep-0218.html.

2.3/2.4

Although sets are now an official Python type, they have often been seen in many Python applications
(as user-defined classes), a wheel that has been reinvented many times over, similar to complex
numbers (which eventually became a Python type way back in 1.4). Until current versions of Python,
most users have tried to shoehorn set functionality into standard Python types like lists and dictionaries
as proxies to a real set type (even if they were not the perfect data structure for their applications). Now
users have more options, including a "real" set type.

Before we go into detail regarding Python set objects, we have to mentally translate the mathematical
symbols to Python (see Table 7.3) so that we are clear on terminology and functionality.

Table 7.3. Set Operation and Relation Symbols

Mathematical Symbol Python Symbol Description

. in Is a member of

E not in Is not a member of

= == Is equal to

http://python.org/peps/pep-0218.html
http://python.org/peps/pep-0218.html

1= Is not equal to

< Is a (strict) subset of

<= Is a subset of (includes improper subsets)

Is a (strict) superset of

>= Is a superset of (includes improper supersets)
& Intersection

| Union

> e CONNUINNMNH
V

~
1

Difference or relative complement

n Symmetric difference

How to Create and Assign Set Types

There is no special syntax for sets like there is for lists ([]) and dictionaries ({ }) for example. Lists
and dictionaries can also be created with their corresponding factory functions i st () and dict(), and

that is also the only way sets can be created, using their factory functions set () and frozenset () :

>>> s = set (' cheeseshop')

>>> S

set(['c', 'e', "h", "0, '"p', "s'])
>>> t = frozenset (' bookshop')

>>>

frozenset(['b', "h'", "k', "o, 'p', "s'])
>>> type(s)

<type 'set'>

>>> type(t)

<type 'frozenset'>

>>> | en(s)

6

>>> [en(s) == len(t)

True

>>> S5 ==

Fal se

How to Access Values in Sets

You are either going to iterate through set members or check if an item is a member (or not) of a set:

>>> 'k' in's

Fal se

>>> '"k' int
True

>>> '¢' not int
True

>>> for I in s:

print i

U)UOD'('DO:

How to Update Sets

You can add and remove members to and from a set using various built-in methods and operators:

>>> s.add('z")

>>> S

set(['c', e, '"h', "o, '"p', 's', '2'])

>>> s, update(' pypi')

>>> S

set(['c', '"e, "i'", "h', "0, '"p', 's', 'y, "'"z'])
>>> s.renove(' z')

>>> S

set(['c', '€, "i'", "h', "o, "p', 's', 'y'])
>>> s -= set('pypi')

>>> S

set(['c', e, "h', "0, '"s'])

As mentioned before, only mutable sets can be updated. Any attempt at such operations on immutable
sets is met with an exception:

>>> t,add('z')
Traceback (nost recent call last):
File "<stdin>", line 1, in ?
AttributeError: 'frozenset' object has no attribute 'add

How to Remove Set Members and Sets

We saw how to remove set members above. As far as removing sets themselves, like any Python object,
you can let them go out of scope or explicitly remove them from the current namespace with del . If the

reference count goes to zero, then it is tagged for garbage collection.

>>> del s
>>>

e prcy ExT

e Py EXT

7.7. Set Type Operators

7.7.1. Standard Type Operators (all set types)
Membership (in, not in)

As for sequences, Python's in and not in operators are used to determine whether an element is (or is
not) a member of a set.

>>> s = set (' cheeseshop')
>>> t = frozenset (' bookshop')
>>> "K' in s

Fal se

>>> '"k' int

True

>>>'¢' not int

True

Set Equality/Inequality

Equality (or inequality) may be checked between the same or different set types. Two sets are equal if
and only if every member of each set is a member of the other. You can also say that each set must be a
(n improper) subset of the other, e.g., both expressionss <=t ands >=t are true, or (s <=t and s >=
t) i s TRue. Equality (or inequality) is independent of set type or ordering of members when the sets

were createdit is all based on the set membership.

>>> g ==
Fal se

>>> g 1=t

True

>>> u = frozenset(s)

>>> 5§ ==

True

>>> set (' posh') == set('shop')
True

Subset Of/Superset Of

Sets use the Python comparison operators to check whether sets are subsets or supersets of other sets.
The "less than" symbols (<, <=) are used for subsets while the "greater than” symbols (>, >=) are used

for supersets.

Less-than and greater-than imply strictness, meaning that the two sets being compared cannot be equal
to each other. The equal sign allows for less strict improper subsets and supersets.

Sets support both proper (<) and improper (<=) subsets as well as proper (>) and improper (>=)

supersets. A set is "less than" another set if and only if the first set is a proper subset of the second set
(is a subset but not equal), and a set is "greater than" another set if and only if the first set is a proper

superset of the second set (is a superset but not equal).

>>> set ('shop') < set('cheeseshop')
True

>>> set (' bookshop') >= set (' shop')
True

7.7.2. Set Type Operators (All Set Types)
Union (|)

The union operation is practically equivalent to the OR (or inclusive disjunction) of sets. The union of
two sets is another set where each element is a member of at least one of the sets, i.e., a member of
one set or the other. The union symbol has a method equivalent, uni on().

>>> s |t

set(['c', "b", "e, "h', "k', "o, '"p', "'s'])

Intersection (&)

You can think of the intersection operation as the AND (or conjunction) of sets. The intersection of two
sets is another set where each element must be a member of at both sets, i.e., a member of one set
and the other. The intersection symbol has a method equivalent, i ntersection().

>>> 35 &t

set(['h", "s', "0, '"p']

Difference/Relative Complement (-)

The difference, or relative complement, between two sets is another set where each element is in one
set but not the other. The difference symbol has a method equivalent, di ff erence().

>>> 5 -

set(['c', 'e'])

Symmetric Difference (")

Similar to the other Boolean set operations, symmetric difference is the XOR (or exclusive disjunction) of
sets. The symmetric difference between two sets is another set where each element is a member of one
set but not the other. The symmetric difference symbol has a method equivalent, synmmetri c_di fference

0 -

>>> g Nt
set(['k', 'b'", 'e, '¢c'])

Mixed Set Type Operations

In the above examples, s is a set while t is a frozenset. Note that each of the resulting sets from using

the set operators above result in sets. However note that the resulting type is different when the
operands are reversed:

>>>t | s

frozenset(['c', 'b'", e, "h', "k', "o, 'p', 's'])
>>>t N s

frozenset(['c', 'b'", "e', "k'])

>>> 1t - S

frozenset (['k', 'b'])

If both types are sets or frozensets, then the type of the result is the same type as each of the
operands, but if operations are performed on mixed types (set and frozenset, and vice versa), the type
of the resulting set is the same type as the left operand, which we can verify in the above.

And no, the plus sign is not an operator for the set types:

>>> vy = 5 + t

Traceback (nobst recent call last):
File "<stdin>", line 1, in ?
TypeError: unsupported operand type(s) for + 'set' and
"set’
>>> Yy = S | t
>>>

set(['c', '"b", '"e, "h', "k', "o, '"p', "s'])
>>> | en(v)

8

>>> 5§ < V

True

7.7.3. Set Type Operators (Mutable Sets Only)
(Union) Update (| =)

The update operation adds (possibly multiple) members from another set to the existing set. The
method equivalent is updat e() .

>>> s = set (' cheeseshop')

>>> u = frozenset(s)

>>> s | = set('pypi")

>>> S

set(['c', "e, "i'", "h', "o, "p', "s', '"y'1])

Retention/Intersection Update (& =)

The retention (or intersection update) operation keeps only the existing set members that are also
elements of the other set. The method equivalent is i nt ersecti on_updat e() .

>>> s = set(u)

>>> s &= set('shop')
>>> S
set(['h', 's', "0, 'p'])

Difference Update (- =)

The difference update operation returns a set whose elements are members of the original set after
removing elements that are (also) members of the other set. The method equivalent is
di fference_update().

>>> s = set(u)

>>> s -= set('shop')
>>> S

set(['c', 'e'])

Symmetric Difference Update (~ =)

The symmetric difference update operation returns a set whose members are either elements of the
original or other set but not both. The method equivalent is symetri c_di f f erence_updat e() .

>>> s = set(u)

>>> t = frozenset (' bookshop')
>>> g A=t

>>> S

set(['c', "b", "e, "k'])

e Py EXT

file:///D|/1/0132269937/14051536.html

e Py EXT

7.8. Built-in Functions

7.8.1. Standard Type Functions

l en()

The I en() BIF for sets returns cardinality (or the number of elements) of the set passed in as the
argument.

>>> s = set(u)
>>> S
set(['p',
>>> | en(s)
6

7.8.2. Set Type Factory Functions
set () and frozenset ()

The set () and frozenset () factory functions generate mutable and immutable sets, respectively. If no

argument is provided, then an empty set is created. If one is provided, it must be an iterable, i.e., a
sequence, an iterator, or an object that supports iteration such as a file or a dictionary.

>>> set ()

set([])

>>> set ([])

set([])

>>> set (())

set([])

>>> set (' shop')

set(['h', "s'", "0, '"p'])

>>>

>>> frozenset(['foo', 'bar'])

frozenset(['foo', 'bar'])

>>>

>>> f = open(' nunbers', 'w)

>>> for i in range(5):
f.wite('%\n' %i)

>>> f . cl ose()

>>> f = open(' nunbers', 'r")

>>> set (f)

set(['0O\n', "3\n', "1\n'", "4\n', "2\n'])
>>> f . cl ose()

e Py EXT

file:///D|/1/0132269937/14051536.html

e Py EXT

7.9. Set Type Built-in Methods

7.9.1. Methods (All Set Types)

We have seen the operator equivalents to most of the built-in methods, summarized in Table 7.4.

Table 7.4. Set Type Methods

Method Name Operation

S.issubset(t) Returns TRue if every member of s is in t, Fal se otherwise
S.issuperset(t) Returns true if every member of s is in t, Fal se otherwise
S. union(t) Returns a new set with the members of s or t
s.intersection(t) Returns a new set with members of s and t
s.difference(t) Returns a new set with members of s but not t

s.symretric_difference(t) Returns a new set with members of s ort but not both

s. copy() Returns a new set that is a (shallow) copy of s

The one method without an operator equivalent is copy() . Like the dictionary method of the same name,
it is faster to create a copy of the object using copy() than it is using a factory function like set (),
frozenset (), ordict().

7.9.2. Methods (Mutable Sets Only)

Table 7.5 summarizes all of the built-in methods that only apply to mutable sets, and similar to the
methods above, we have already seen most of their operator equivalents.

Table 7.5. Mutable Set Type Methods

Method Name Operation

s. update(t) Updates s with elements added from t ; in other words, s now has
members of either s ort

s.intersection_update(t) Updates s with members of both s and t

s. di fference_update(t) Updates s with members of s without elements of t

s.symetric_difference_update(t) ypdates s with members of s or t but not both
s. add(obj) Adds object obj to set s

s. renove(obj) Removes object obj from set s; KeyError raised if obj is not an
element of s (obj not ins)

s. di scard(obj) Removes object obj if obj is an element of s (obj ins)
s. pop() Removes and returns an arbitrary object of s
s.clear() Removes all elements from s

The new methods here are add(), renove(), discard(), pop(), and cl ear (). For the methods that take
an object, the argument must be hashable.

7.9.3. Using Operators versus Built-in Methods

As you can see, there are many built-in methods that have near-equivalents when using operators. By
"near-equivalent,"” we mean that there is one major difference: when using the operators, both
operands must be sets while for the methods, objects can be iterables too. Why was it implemented this
way? The official Python documentation states that "[this] precludes error-prone constructions like set

(*abc') [and] ' cbs' in favor of the more readable set (' abc').intersection(' cbs')."

e Py EXT

e Py EXT

7.10. Operator, Function/Method Summary Table for Set Types

In Table 7.6, we summarize all of the set type operators, functions, and methods.

Table 7.6. Set Type Operators, Functions, and Methods

Function/Method Name Operator Equivalent Description

All Set Types

I en(s) Set cardinality: number of elements in s

set([obj]) Mutable set factory function; if obj
given, it must be iterable, new set
elements taken from obj ; if not, creates
an empty set

frozenset ([obj]) Immutable set factory function;
operates the same as set () except
returns immutable set

obj ins Membership test: is obj an element of s?

obj not ins Non-membership test: is obj not an
element ofs?

s ==t Equality test: do s and t have exactly
the same elements?

sl=t Inequality test: opposite of ==

s <t (Strict) subset test; s ' =t and all
elements of s are members of t

n

-1 ssubset (1) s <=t Subset test (allows improper subsets):
all elements of s are members of t

s >t (Strict) superset test: s ' =t and all
elements of t are members of s

2]

-1 ssuperset (t) s >=t Superset test (allows improper
supersets): all elements of t are
members of s

s.union(t) s|t Union operation: elements in's ort

s.intersection(t) s &t Intersection operation: elements in s
and t

s.di fference(t) s -t Difference operation: elements in s that

are not elements of t

file:///D|/1/0132269937/14051536.html

s.symmetric_ difference(t) s At Symmetric difference operation:
elements of either s or t but not both

s. copy() Copy operation: return (shallow) copy of
S

Mutable Sets Only

s. updat e(t) s|=t (Union) update operation: members of t
added to s
s.intersection_update(t) s &=t Intersection update operation: s only

contains members of the original s and t

s.difference_ update(t) s-=t Difference update operation: s only
contains original members who are not
int

s.symetric_ difference_ update(t) g =y Symmetric difference update operation:
s only contains members of s or t but
not both

s. add(obj) Add operation: add obj to s

s. remove(obj) Remove operation: remove obj from s;

KeyError raised if obj notins

s. di scard(obj) Discard operation: friendlier version of
renmove() remove obj from s if obj ins

s. pop() Pop operation: remove and return an
arbitrary element of s

s.clear() Clear operation: remove all elements of s

e prcy | NEXT B

file:///D|/1/0132269937/14051536.html

e Py EXT

7.11. Related Modules

The set s module became available in 2.3 and may be useful if you wish to subclass the Set or
I nmut abl eSet classes. Although set types were integrated into Python 2.4, there are currently no plans to
deprecate the module.

Some general online references for sets which you may find useful include:

http://en.wikipedia.org/wiki/Set

http://www.geocities.com/basicmathsets/set.html

http://www.math.uah.edu/stat/foundations/Sets.xhtml

e prcy | NEXT B

http://en.wikipedia.org/wiki/Set
http://www.geocities.com/basicmathsets/set.html
http://www.math.uah.edu/stat/foundations/Sets.xhtml
file:///D|/1/0132269937/14051536.html

e Py EXT

7.12. Exercises

7-1 Dictionary Methods. What dictionary method would we use to combine two dictionaries
together?

7-2. Dictionary Keys. We know that dictionary values can be arbitrary Python objects, but
what about the keys? Try using different types of objects as the key other than
numbers or strings. What worked for you and what didn't? As for the failures, why do
you think they didn't succeed?

7-3. Dictionary and List Methods.
a.

Create a dictionary and display its keys alphabetically.

Now display both the keys and values sorted in alphabetical order by the key.

Same as part (b), but sorted in alphabetical order by the value. (Note: This has
no practical purpose in dictionaries or hash tables in general because most
access and ordering [if any] is based on the keys. This is merely an exercise.)

7-4. Creating Dictionaries. Given a pair of identically sized lists, say, [1, 2, 3,...], and
[*abc', 'def', 'ghi',...], process all that list data into a single dictionary that looks
like: { 1:"abc', 2:'def', 3:'ghi',...}.

7-5. userpw2. py. The following problems deal with the program in Example 7.1, a manager
of a database of name-password key-value pairs.

a.
Update the script so that a timestamp (see the ti ne module) is also kept with
the password indicating date and time of last login. This interface should
prompt for login and password and indicate a successful or failed login as
before, but if successful, it should update the last login timestamp. If the login
occurs within four hours of the last login, tell the user, "You already logged in
at: <last_ login_tinmestanp>."

b.
Add an "administration™ menu to include the following two menu options: (1)
remove a user and (2) display a list of all users in the system and their
passwords

C.
The passwords are currently not encrypted. Add password-encryption if so
desired (see the crypt, rotor, or other cryptographic modules).

d.
*Add a GUI interface, i.e., Tkinter, on top of this application.

e.
Allow usernames to be case-insensitive.

f.
Restrict usernames by not allowing symbols or whitespace.

g.

Merge the "new user" and "old user" options together. If a new user tries to log
in with a nonexistent username, prompt if they are new and if so, do the
proper setup. Otherwise, they are an existing user so log in as normal.

7-6.

7-8.

7-9.

Lists and Dictionaries. Create a crude stock portfolio database system. There should
be at least four data columns: stock ticker symbol, number of shares, purchase price,
and current priceyou can add more if you wish, such as percentage gain(loss), 52-
week high/low, beta, etc.

Have the user input values for each column to create a single row. Each row should be
created as list. Another all-encompassing list will hold all these rows. Once the data is
entered, prompt the user for one column to use as the sort metric. Extract the data
values of that column into a dictionary as keys, with their corresponding values being
the row that contains that key. Be mindful that the sort metric must have non-
coincidental keys or else you will lose a row because dictionaries are not allowed to
have more than one value with the same key. You may also choose to have additional
calculated output, such as percentage gain/loss, current portfolio values, etc.

Inverting Dictionaries. Take a dictionary as input and return one as output, but the
values are now the keys and vice versa.

Human Resources. Create a simple name and employee number dictionary application.
Have the user enter a list of names and employee numbers. Your interface should
allow a sorted output (sorted by name) that displays employee names followed by
their employee numbers. Extra credit: Come up with an additional feature that allows
for output to be sorted by employee numbers.

Translations.

Create a character translator (that works similar to the Unix tr command).
This function, which we will call TR() , takes three strings as arguments: source,
destination, and base strings, and has the following declaration:

def tr(srcstr, dststr, string)

srcstr contains the set of characters you want "translated,"” dst str contains
the set of characters to translate to, and string is the string to perform the
translation on. For example, if srcstr == "abc’, dststr == 'mo’, and string ==
‘abcdef *, then tr () would output'modef . Note that | en(srcstr) == len(dststr).
For this exercise, you can use the chr() and ord() BIFs, but they are not
necessary to arrive at a solution.

Add a new flag argument to this function to perform case-insensitive
translations.

Update your solution so that it can process character deletions. Any extra

7-10.

7-11.

7-12.

7-13.

characters in srcstr that are beyond those that could be mapped to characters
in dst str should be filtered. In other words, these characters are mapped to no
characters in dst str, and are thus filtered from the modified string that is
returned. For example, if srcstr =='abcdef ', dststr == "'mo’, and string ==
‘abcdef ghi *, then tr () would output ‘moghi . Note now that | en(srcstr) >= len
(dststr).

Encryption. Using your solution to the previous problem, and create a "rot13"
translator. "rot13" is an old and fairly simplistic encryption routine whereby each letter
of the alphabet is rotated 13 characters. Letters in the first half of the alphabet will be
rotated to the equivalent letter in the second half and vice versa, retaining case. For
example, a goes to n and X goes to K. Obviously, numbers and symbols are immune

from translation.

(b) Add an application on top of your solution to prompt the user for strings to encrypt
(and decrypt on reapplication of the algorithm), as in the following examples:

% rot 13. py

Enter string to rotl3: This is a short sentence.
Your string to en/decrypt was: [This is a short
sentence.].

The rot13 string is: [Guvf vf n fubeg fragrapr.].
%

% rot 13. py

Enter string to rotl13: Guvf vf n fubeg fragrapr.
Your string to en/decrypt was: [CGuvf vf n fubeg
fragrapr.].

The rotl13 string is: [This is a short sentence.].

Definitions. What constitutes valid dictionary keys? Give examples of valid and invalid
dictionary keys.

Definitions. (a) What is a set in the mathematical sense? (b) What is a set type as it
relates to Python?

Random Numbers. The next problems use a customization of Exercise 5-17: use
randi nt () or randrange() in the randommodule to generate a set of numbers: generate

between 1 to 10 random numbers numbered randomly between O and 9 (inclusive).
These values constitute a set A (A can be mutable or otherwise). Create another
random set B in a similar manner. Display A | B and A & B each time sets A and B are
generated.

7-14.

7-15.

User Validation. Alter the previous problem where instead of displaying A | B and A &
B, ask the user to input solutions to A | B and A & B, and let the user know if his or
her solution was right or wrong. If it is not correct, give the user the ability to correct
and revalidate his or her answers. Display the correct results if three incorrect answers
are submitted. Extra credit: Use your knowledge of sets to generate potential subsets
and ask the user whether they are indeed subsets (or not), and provide corrections
and answers as necessary as in the main part of this problem.

Set Calculator. This exercise is inspired by Exercise 12.2 in the free online Java
textbook located at http://math.hws.edu/javanotes. Create an application that allows
users to input a pair of sets, A and B, and allow users to give an operation symbol, i.
e.,in,not in, & |, ", <, <=, > >=, ==, 1=, etc. (For sets, you define the input
syntaxthey do not have to be enclosed in brackets as the Java example.) Parse the
entire input string and execute the operation on the input sets as requested by the
user. Your solution should require fewer lines of Python than the one in Java.

MNEXT B

http://math.hws.edu/javanotes

| 41 PREV |
Chapter 8. Conditionals and Loops

NEXT B

Chapter Topics

i f Statement

el se Statement

elif Statement

Conditional Expressions
whi | e Statement

f or Statement

br eak Statement

conti nue Statement

pass Statement

el se Statement ... Take Two

Iterators
List Comprehensions
Generator Expressions

The primary focus of this chapter are Python's conditional and looping statements, and all their related
components. We will take a close look atif, while, for, and their friends el se, elif, break, conti nue,

and pass.

NEXT B

file:///D|/1/0132269937/14051536.html

e Py EXT

8.1.i f Statement

The i f statement for Python will seem amazingly familiar. It is made up of three main components: the

keyword itself, an expression that is tested for its truth value, and a code suite to execute if the
expression evaluates to non-zero or true. The syntax for an i f statement is:

i f expression:
expr_true_suite

The suite of the i f clause, expr_true_suite, will be executed only if the above conditional expression
results in a Boolean true value. Otherwise, execution resumes at the next statement following the suite.

8.4.1. Multiple Conditional Expressions

The Boolean operators and, or, and not can be used to provide multiple conditional expressions or
perform negation of expressions in the same i f statement.

if not warn and (system./|oad >= 10):
print "WARNING | osing resources”
warn += 1

8.1.2. Single Statement Suites

If the suite of a compound statement, i.e., i f clause, whil e or for loop, consists only of a single line, it
may go on the same line as the header statement:

i f make_hard_copy: send_data_to_printer()
Single line statements such as the above are valid syntax-wise; however, although it may be
convenient, it may make your code more difficult to read, so we recommend you indent the suite on the

next line. Another good reason is that if you must add another line to the suite, you have to move that
line down anyway.

e Py EXT

e Py EXT

8.2. el se Statement

Like other languages, Python features an el se statement that can be paired with an i f statement. The
el se statement identifies a block of code to be executed if the conditional expression of the i f statement
resolves to a false Boolean value. The syntax is what you expect:

i f expression:
expr_true_suite

el se:
expr_false_suite

Now we have the obligatory usage example:

i f passwd == user. passwd:
ret_str = "password accepted"
id = user.id
valid = True
el se:
ret_str = "invalid password entered... try again!"
valid = Fal se

8.2.1. "Dangling el se" Avoidance

Python's design of using indentation rather than braces for code block delimitation not only helps to
enforce code correctness, but it even aids implicitly in avoiding potential problems in code that is
syntactically correct. One of those such problems is the (in)famous "dangling else" problem, a semantic
optical illusion.

We present some C code here to illustrate our example (which is also illuminated by K&R and other
programming texts):

/* dangling-else in C */
if (balance > 0.00)
if (((balance - ant) > min_bal) && (atmcashout() == 1))
printf("Here's your cash; please take all bills.\n");
el se
printf("Your balance is zero or negative.\n");

The question is, which i f does the el se belong to? In the C language, the rule is that the el se stays with
the closest i f. In our example above, although indented for the outer i f statement, the el se statement
really belongs to the inner i f statement because the C compiler ignores superfluous white space. As a

result, if you have a positive balance but it is below the minimum, you will get the horrid (and
erroneous) message that your balance is either zero or negative.

Although solving this problem may be easy due to the simplistic nature of the example, any larger
sections of code embedded within this framework may be a hair-pulling experience to root out. Python
puts up guardrails not necessarily to prevent you from driving off the cliff, but to steer you away from
danger. The same example in Python will result in one of the following choices (one of which is correct):

i f balance > 0. 00:
if balance - ant > nin_bal and atm cashout():
print "Here's your cash; please take all bills."
el se:
print 'Your balance is zero or negative.'

or

i f balance > 0. 00:
if balance - ant > nin_bal and atm cashout():
print "Here's your cash; please take all bills."
el se:
print 'Your balance is zero or negative.'

Python's use of indentation forces the proper alignment of code, giving the programmer the ability to
make a conscious decision as to which i f an el se statement belongs to. By limiting your choices and
thus reducing ambiguities, Python encourages you to develop correct code the first time. It is impossible
to create a dangling else problem in Python. Also, since parentheses are not required, Python code is
easier to read.

e Py EXT

file:///D|/1/0132269937/14051536.html

e Py EXT

8.3.elif (akael se-if) Statement

elif is the Python el se-i f statement. It allows one to check multiple expressions for truth value and
execute a block of code as soon as one of the conditions evaluates to true. Like the el se, the el i f
statement is optional. However, unlike el se, for which there can be at most one statement, there can be
an arbitrary number of el i f statements following an i f.

i f expressionl:
exprl true_suite
el i f expression2:
expr2_true_suite

el i f expressionN:
exprN_ true_suite
el se:
none_of the_above_suite

Proxy for swi t ch/ case Statement?

At some time in the future, Python may support the swi t ch or case statement, but you can simulate it
with various Python constructs. But even a good number of i f-el i f statements are not that difficult to
read in Python:

if user.cnd == 'create':
action = "create itent
elif user.cnd == "del ete':
action = "delete iteni
elif user.cnd == 'update':
action = 'update item
el se:
action = 'invalid choice... try again!’

Although the above statements do work, you can simplify them with a sequence and the membership
operator:

if user.cnd in ('create', 'delete', 'update'):
action = "% item % user.cnd

el se:
action = 'invalid choice... try again!'

We can create an even more elegant solution using Python dictionaries, which we learned about in
Chapter 7, "Mapping and Set Types."

negs = {'create': 'create item,

"delete': '"delete itent,
"update': 'update iteni}
default = '"invalid choice... try again!’

action = nsgs. get (user.cnd, default)

One well-known benefit of using mapping types such as dictionaries is that the searching is very fast
compared to a sequential lookup as in the above if-elif-el se statements or using a f or loop, both of

which have to scan the elements one at a time.

e Py NEXT

file:///D|/1/0132269937/14051536.html

e Py EXT

8.4. Conditional Expressions (aka "the Ternary Operator")

If you are coming from the C/C++ or Java world, it is difficult to ignore or get over the fact that Python
has not had a conditional or ternary operator (C ? X : Y) for the longest time. (Cis the conditional

expression; X represents the resultant expression if Cis true and Y if Cis Fal se.) van Rossum Guido has

resisted adding such a feature to Python because of his belief in keeping code simple and not giving
programmers easy ways to obfuscate their code.

However, after more than a decade, he has given in, mostly because of the error-prone ways in which
people have tried to simulate it using and and or, many times incorrectly. According to the FAQ, the one
way of getting it rightis (Cand [X] or [Y])[0] . The only problem was that the community could not
agree on the syntax. (You really have to take a look at PEP 308 to see all the different proposals.) This
is one of the areas of Python in which people have expressed strong feelings.

The final decision came down to van Rossum Guido choosing the most favored (and his most favorite) of
all the choices, then applying it to various modules in the standard library. According to the PEP, "this
review approximates a sampling of real-world use cases, across a variety of applications, written by a
number of programmers with diverse backgrounds." And this is the syntax that was finally chosen for
integration into Python 2.5: Xif Celse Y.

The main motivation for even having a ternary operator is to allow the setting of a value based on a
conditional all on a single line, as opposed to the standard way of using an i f - el se statement, as in this

mi n() example using numbers x and y:

>>> x, y =4, 3
>>> | f x <y
smal | er
el se:
smal | er

1
X

1
<

>>> smal | er
3

In versions prior to 2.5, Python programmers at best could do this:

>>> smaller = (x <y and [x] or [y])[O]
>>> smal | er
3

In versions 2.5 and newer, this can be further simplified to:

>>> smaller = x if x <y elsey
>>> smal | er
3

NEXT B

file:///D|/1/0132269937/14051536.html

e Py EXT

8.5. whi | e Statement

Python's whi | e is the first looping statement we will look at in this chapter. In fact, it is a conditional
looping statement. In comparison with an i f statement where a true expression will result in a single
execution of the i f clause suite, the suite in a whi | e clause will be executed continuously in a loop until
that condition is no longer satisfied.

8.5.1. General Syntax

Here is the syntax for a whi | e loop:
whi | e expression:

suite_to_repeat

The suite_to_repeat clause of the whil e loop will be executed continuously in a loop until expr essi on
evaluates to Boolean Fal se. This type of looping mechanism is often used in a counting situation, such
as the example in the next subsection.

8.5.2. Counting Loops

count = 0
while (count < 9):
print 'the index is:', count

count += 1

The suite here, consisting of the pri nt and increment statements, is executed repeatedly until count is
no longer less than 9. With each iteration, the current value of the index count is displayed and then

bumped up by 1. If we take this snippet of code to the Python interpreter, entering the source and
seeing the resulting execution would look something like:

>>> count = 0
>>> while (count < 9):
print 'the index is:', count

count +=1

t he

index is: O
the index is: 1
the index is: 2
the index is: 3
the index is: 4
the index is: 5
the index is: 6
the index is: 7
the index is: 8

8.5.3. Infinite Loops

One must use caution when using whi | e loops because of the possibility that the condition never
resolves to a false value. In such cases, we would have a loop that never ends on our hands. These
"infinite" loops are not necessarily bad thingsmany communications "servers™ that are part of client/
server systems work exactly in that fashion. It all depends on whether or not the loop was meant to run
forever, and if not, whether the loop has the possibility of terminating; in other words, will the
expression ever be able to evaluate to false?

whil e True:
handl e, indata = wait_for_client_connect ()
outdata = process_request (i ndata)
ack result_to_client(handl e, outdata)

For example, the piece of code above was set deliberately to never end because TRue is not going to
somehow change to Fal se. The main point of this server code is to sit and wait for clients to connect,

presumably over a network link. These clients send requests which the server understands and
processes.

After the request has been serviced, a return value or data is returned to the client who may either drop
the connection altogether or send another request. As far as the server is concerned, it has performed

its duty to this one client and returns to the top of the loop to wait for the next client to come along. You
will find out more about client/server computing in Chapter 16, "Network Programming™ and Chapter 17,

"Internet Client Programming."

e prcy ExT

e Py EXT

8.6. f or Statement

The other looping mechanism in Python comes to us in the form of the for statement. It represents the

single most powerful looping construct in Python. It can loop over sequence members, it is used in list
comprehensions and generator expressions, and it knows how to call an iterator's next () method and

gracefully ends by catching St opl terati on exceptions (all under the covers). If you are new to Python,
we will tell you now that you will be using f or statements a lot.

Unlike the traditional conditional looping f or statement found in mainstream languages like C/C++,
Fortran, or Java, Python's for is more akin to a shell or scripting language's iterative f or each loop.

8.6.1. General Syntax

The for loop traverses through individual elements of an iterable (like a sequence or iterator) and
terminates when all the items are exhausted. Here is its syntax:

for iter _var in iterable:
suite to_repeat

With each loop, the iter_var iteration variable is set to the current element of the iterable (sequence,
iterator, or object that supports iteration), presumably for use in suite_to_repeat.

8.6.2. Used with Sequence Types

In this section, we will see how the f or loop works with the different sequence types. The examples will
include string, list, and tuple types.

>>> for each Letter in 'Nanmes':
print 'current letter:', each Letter

current letter:
current letter:
current letter:
current letter:
current letter:

o3z

When iterating over a string, the iteration variable will always consist of only single characters (strings
of length 1). Such constructs may not necessarily be useful. When seeking characters in a string, more
often than not, the programmer will either use i n to test for membership, or one of the string module

functions or string methods to check for sub strings.

One place where seeing individual characters does come in handy is during the debugging of sequences
in a for loop in an application where you are expecting strings or entire objects to show up in your pri nt

statements. If you see individual characters, this is usually a sign that you received a single string
rather than a sequence of objects.

There are three basic ways of iterating over a sequence:

Iterating by Sequence Item

>>> naneList = ['Walter', "N cole", 'Steven', 'Henry']
>>> for eachNanme in namelList:
print eachNane, "Linf

VWal ter Lim
Ni col e Lim

Steven Lim
Henry Lim

In the above example, a list is iterated over, and for each iteration, the eachNane variable contains the
list element that we are on for that particular iteration of the loop.
Iterating by Sequence Index

An alternative way of iterating through each item is by index offset into the sequence itself:

>>> naneList = ['Cathy', "Terry", 'Joe', 'Heather', 'Lucy']
>>> for nanel ndex in range(len(nameList)):

print "Liu,", naneList[nanel ndex]
Liu, Cathy
Liu, Terry
Liu, Joe
Li u, Heat her
Liu, Lucy

Rather than iterating through the elements themselves, we are iterating through the indices of the list.

We employ the assistance of the | en() built-in function, which provides the total number of elements in
the tuple as well as the range() built-in function (which we will discuss in more detail below) to give us
the actual sequence to iterate over.

>>> | en(naneLi st)

5

>>> range(l en(naneList))
[0, 1, 2, 3, 4]

Using range() , we obtain a list of the indexes that nanel ndex iterates over; and using the slice/subscript
operator ([]), we can obtain the corresponding sequence element.

Those of you who are performance pundits will no doubt recognize that iteration by sequence item wins
over iterating via index. If not, this is something to think about. (See Exercise 8-13.)

Iterating with Item and Index

The best of both worlds comes from using the enuner at e() built-in function, which was added to Python
in version 2.3. Enough said ... here is some code:

>>> naneList = ['Donn', 'Shirley', 'Ben', 'Janice',
"David', 'Yen', 'Wendy']
>>> for i, eachLee in enunerate(naneList):

print "%l % Lee" % (i+1, eachLee)

Donn Lee
Shirley Lee

N -

Ben Lee
Jani ce Lee
Davi d Lee
Yen Lee
Wendy Lee

~NOoO Ok~ W

8.6.3. Used with Iterator Types

Using f or loops with iterators is identical to using them with sequences. The only difference is that the
for statement must do a little bit of extra work on your behalf. An iterator does not represent a set of
items to loop over.

Instead, iterator objects have a next () method, which is called to get subsequent items. When the set of
items has been exhausted, the iterator raises the St oplt erati on exception to signal that it has finished.
Calling next () and catching St oplteration is built-in to the f or statement.

When you are using a f or loop with an iterator, the code is nearly identical to that of looping over

sequence items. In fact, for most cases, you cannot tell that you are iterating over a sequence or an
iterator, hence the reason why you will see us refer to iterating over an iterable, which could mean a
sequence, an iterator, or any object that supports iteration, e.g., has a next () method.

8.6.4. range() Built-in Function

We mentioned above during our introduction to Python's f or loop that it is an iterative looping
mechanism. Python also provides a tool that will let us use the for statement in a traditional pseudo-

conditional setting, i.e., when counting from one number to another and quitting once the final number
has been reached or some condition is no longer satisfied.

The built-in function range() can turn your f or each-like f or loop back into one that you are more familiar
with, i.e., counting from O to 10, or counting from 10 to 100 in increments of 5.

range() Full Syntax

Python presents two different ways to use range(). The full syntax requires that two or all three integer
arguments are present:

range(start, end, step=1)

range() will then return a list where for any k, start <= k < end and k iterates from start to end in
increments of st ep. st ep cannot be 0, or an error condition will occur.

>>> range(2, 19, 3)

[2, 5 8, 11, 14, 17]

If st ep is omitted and only two arguments given, st ep takes a default value of 1.

>>> range(3, 7)

[3, 4, 5, 6]

Let's take a look at an example used in the interpreter environment:

>>> for eachVal in range(2, 19, 3):

print "value is:", eachVval
value is: 2
value is: 5
value is: 8
value is: 11
value is: 14
value is: 17

Qur for loop now "counts™ from 2 to 19, incrementing by steps of 3. If you are familiar with C, then you
will notice the direct correlation between the arguments of range() and those of the variables in the C
for loop:

/* equivalent loop in C */
for (eachvVal = 2; eachVal < 19; eachVal += 3) {
printf("value is: %\ n", eachVal);

}

Although it seems like a conditional loop now (checking if eachval < 19), reality tells us that r ange()

takes our conditions and generates a list that meets our criteria, which in turn is used by the same
Python f or statement.

range() Abbreviated Syntax
range() also has two abbreviated syntax formats:

range(end)

range(start, end)

We saw the shortest syntax earlier in Chapter 2. Given only a single value, start defaults to O, step
defaults to 1, and range() returns a list of numbers from zero up to the argument end:

>>> range(5)
[0, 1, 2, 3, 4]

Given two values, this midsized version of range() is exactly the same as the long version of r ange()
taking two parameters with st ep defaulting to 1. We will now take this to the Python interpreter and
plug in for and print statements to arrive at:

>>> for count in range(2, 5):
print count

ENEANNN

Core Note: Why not just one syntax for range() ?

Now that you know both syntaxes for range(), one nagging question

you may have is, why not just combine the two into a single one that
looks like this?

range(start=0, end, step=1) # invalid

This syntax will work for a single argument or all three, but not two. It
is illegal because the presence of step requires start to be given. In

other words, you cannot provide end and st ep in a two-argument
version because they will be (mis)interpreted as start and end.

8.6.5. xrange() Built-in Function

xrange() is similar to range() except that if you have a really large range list, xrange() may come in

handier because it does not have to make a complete copy of the list in memory. This built-in was made
for exclusive use in f or loops. It does not make sense outside a f or loop. Also, as you can imagine, the

performance will not be as good because the entire list is not in memory. In future versions of Python,
range() will eventually become like xrange(), returing an iterable object (not a list nor an iterator

though)it will be similar to views as discussed in the previous chapter.

8.6.6. Sequence-Related Built-in Functions
sorted(), reversed(), enumerate(), zip()

Below are some examples of using these loop-oriented sequence-related functions. The reason why they

are "sequence-related" is that half of them (sorted() and zi p()) return a real sequence (list), while the
other two (reversed() and enunerat e()) return iterators (sequence-like).

>>> al buns = (' Poe', 'CGaudi', 'Freud', 'Poe2')
>>> years = (1976, 1987, 1990, 2003)
>>> for albumin sorted(al buns):

print al bum

Freud Gaudi Poe Poe2

>>>

>>> for albumin reversed(al buns):
print al bum

Poe2 Freud Gaudi Poe

>>>

>>> for i, albumin enunerate(al buns):
print i, album

0 Poe

1 Gaudi

2 Freud

3 Poe2

>>>

>>> for album yr in zip(al buns, years):
print yr, al bum

1976 Poe

1987 Gaudi

1990 Freud
2003 Poe2

Now that we have covered all the loops Python has to offer, let us take a look at the peripheral
commands that typically go together with loops. These include statements to abandon the loop (br eak)

and to immediately begin the next iteration (conti nue).

e Py NEXT

file:///D|/1/0132269937/14051536.html

e Py EXT

8.7. br eak Statement

The br eak statement in Python terminates the current loop and resumes execution at the next
statement, just like the traditional br eak found in C. The most common use for br eak is when some
external condition is triggered (usually by testing with an i f statement), requiring a hasty exit from a
loop. The break statement can be used in both whil e and for loops.

count = num/ 2
whil e count > O:
if num % count ==
print count, 'is the largest factor of', num
br eak
count -=1

The task of this piece of code is to find the largest divisor of a given number num We iterate through all
possible numbers that could possibly be factors of num using the count variable and decrementing for
every value that does not divide num The first number that evenly divides numis the largest factor, and
once that number is found, we no longer need to continue and use br eak to terminate the loop.

phone2r enove = '555-1212"
for eachPhone in phonelLi st:

i f eachPhone == phone2renove:
print "found", phone2renove,
del et eFr omPhoneDB(phone2r enpve)
br eak

del eti ng'

The break statement here is used to interrupt the iteration of the list. The goal is to find a target
element in the list, and, if found, to remove it from the database and break out of the loop.

e prcy | NEXT B

e Py EXT

8.8. cont i nue Statement

Core Note: conti nue statements

Whether in Python, C, Java, or any other structured language that
features the conti nue statement, there is a misconception among
some beginning programmers that the traditional conti nue statement
"immediately starts the next iteration of a loop."” While this may seem
to be the apparent action, we would like to clarify this somewhat
invalid supposition. Rather than beginning the next iteration of the
loop when a conti nue statement is encountered, a conti nue statement
terminates or discards the remaining statements in the current loop
iteration and goes back to the top. If we are in a conditional loop, the
conditional expression is checked for validity before beginning the next
iteration of the loop. Once confirmed, then the next iteration begins.
Likewise, if the loop were iterative, a determination must be made as
to whether there are any more arguments to iterate over. Only when
that validation has completed successfully can we begin the next
iteration.

The conti nue statement in Python is not unlike the traditional conti nue found in other high-level
languages. The conti nue statement can be used in both whil e and for loops. The whi | e loop is
conditional, and the for loop is iterative, so using conti nue is subject to the same requirements (as

highlighted in the Core Note above) before the next iteration of the loop can begin. Otherwise, the loop
will terminate normally.

valid = Fal se

count 3

whil e count > O:
i nput = raw_i nput ("enter password")
check for valid passwd
for eachPasswd in passwdLi st:

i f input == eachPasswd:
valid = True
br eak
if not valid: # (or valid == 0)
print "invalid input"
count -=1
conti nue
el se:
br eak

In this combined example using whi l e, for, if, break, and conti nue, we are looking at validating user
input. The user is given three opportunities to enter the correct password; otherwise, the val i d variable
remains a false value of 0, which presumably will result in appropriate action being taken soon after.

e Py EXT

e Py EXT

8.9. pass Statement

One Python statement not found in C is the pass statement. Because Python does not use curly braces

to delimit blocks of code, there are places where code is syntactically required. We do not have the
equivalent empty braces or single semicolon the way C does to indicate "do nothing." If you use a
Python statement that expects a sub-block of code or suite, and one is not present, you will get a syntax
error condition. For this reason, we have pass, a statement that does absolutely nothingit is a true NOP,

to steal the "No OPeration" assembly code jargon. Style- and development-wise, pass is also useful in
places where your code will eventually go, but has not been written yet (in stubs, for example):

def foo _func():
pass

or

if user_choice == "do_calc':
pass

el se:
pass

This code structure is helpful during the development or debugging stages because you want the
structure to be there while the code is being created, but you do not want it to interfere with the other
parts of the code that have been completed already. In places where you want nothing to execute, pass

is a good tool to have in the box.

Another popular place is with exception handling, which we will take a look at in Chapter 10; this is

where you can track an error if it occurs, but take no action if it is not fatal (you just want to keep a
record of the event or perform an operation under the covers if an error occurs).

e prcy ExT

file:///D|/1/0132269937/14051536.html

e Py EXT

8.10. el se Statement ... Take Two

In C (as well as in most other languages), you will not find an el se statement outside the realm of
conditional statements, yet Python bucks the trend again by offering these in whil e and f or loops. How
do they work? When used with loops, an el se clause will be executed only if a loop finishes to
completion, meaning they were not abandoned by br eak.

One popular example of el se usage in a whi | e statement is in finding the largest factor of a number. We
have implemented a function that performs this task, using the el se statement with our whi | e loop. The
showvaxFact or () function in Example 8.1 (maxFact . py) utilizes the el se statement as part of a whi | e loop.

Example 8.1. whil e-el se Loop Example (maxFact . py)

This program displays the largest factors for numbers between 10 and 20. If the number is
prime, the script will indicate that as well.

1 #!/ usr/ bin/env python

2

3 def showivaxFactor (num:

4 count = num/ 2

5 whil e count > 1:

6 i f num % count ==

7 print 'largest factor of % is %' %\
8 (num count)

9 br eak

10 count -=1

11 el se:

12 print num "is prinme"

13

14 for eachNumin range(10, 21):

15 showvaxFact or (eachNum)

The loop beginning on line 3 in showMaxFact or () counts down from half the amount (starts checking if

two divides the number, which would give the largest factor). The loop decrements each time (line 10)
through until a divisor is found (lines 6-9). If a divisor has not been found by the time the loop
decrements to 1, then the original number must be prime. The el se clause on lines 11-12 takes care of
this case. The main part of the program on lines 14-15 fires off the requests to showvaxFact or () with the
numeric argument.

Running our program results in the following output:

| argest factor of 10 is 5
11 is prinme
| argest factor of 12 is 6
13 is prinme

file:///D|/1/0132269937/14051536.html

| argest factor
| argest factor
| argest factor
17 is prinme

| ar gest factor
19 is prine

| argest factor

of

14
15
16

18 i

20 i

is
is
is

ol

10

Likewise, a for loop can have a post-processing el se. It operates exactly the same way as for a whil e
loop. As long as the for loop exits normally (not via break), the el se clause will be executed. We saw
such an example in Section 8.5.3.

Table 8.1 summarizes with which conditional or looping statements auxiliary statements can be used.

Table 8.1. Auxiliary Statements to
Loops and Conditionals

Auxiliary Statements

elif
el se

br eak

conti nue

[al

pass

[a]

except,finally).

Loops and Conditionals

i f whil e for

pass is valid anywhere a suite (single or multiple statements) is required (also includes el i f, el se, cl ass, def, TRy,

NEXT B

file:///D|/1/0132269937/14051536.html

e Py EXT

8.11. Iterators and theiter () Function

8.11.1. What Are lterators?

Iterators were added to Python in version 2.2 to give sequence-like objects a sequence-like interface.
We formally introduced sequences back in Chapter 6. They are just data structures that you can
"iterate" over by using their index starting at 0 and continuing till the final item of the sequence.
Because you can do this "counting,” iterating over sequences is trivial. Iteration support in Python works
seamlessly with sequences but now also allows programmers to iterate through non-sequence types,
including user-defined objects.

Iterators come in handy when you are iterating over something that is not a sequence but exhibits
behavior that makes it seem like a sequence, for example, keys of a dictionary, lines of a file, etc. When
you use loops to iterate over an object item, you will not be able to easily tell whether it is an iterator or
a sequence. The best part is that you do not have to care because Python makes it seem like a
seguence.

8.11.2. Why lIterators?

The defining PEP (234) cites that iterators:

« Provide an extensible iterator interface.

« Bring performance enhancements to list iteration.

« Allow for big performance improvements in dictionary iteration.

« Allow for the creation of a true iteration interface as opposed to overriding methods originally
meant for random element access.

« Be backward-compatible with all existing user-defined classes and extension objects that
emulate sequences and mappings.

« Result in more concise and readable code that iterates over non-sequence collections (mappings
and files, for instance).

8.11.3. How Do You lterate?

Basically, instead of an index to count sequentially, an iterator is any item that has a next () method.
When the next item is desired, either you or a looping mechanism like f or will call the iterators next ()
method to get the next value. Once the items have been exhausted, a Stoplterati on exception is raised,
not to indicate an error, but to let folks know that we are done.

Iterators do have some restrictions, however. For example, you cannot move backward, go back to the
beginning, or copy an iterator. If you want to iterate over the same objects again (or simultaneously),
you have to create another iterator object. It isn't all that bad, however, as there are various tools to
help you with using iterators.

There is a reversed() built-in function that returns an iterator that traverses an iterable in reverse order.
The enunerat e() BIF also returns an iterator. Two new BIFs, any() and al |l (), made their debut in Python
2.5they will return true if any or all items traversed across an iterator have a Boolean true value,
respectively. We saw earlier in the chapter how you can use it in a f or loop to iterate over both the
index and the item of an iterable. There is also an entire module called i t ert ool s that contains various
iterators you may find useful.

8.11.4. Using lterators with ...
Sequences

As mentioned before, iterating through Python sequence types is as expected:

>>> nmyTuple = (123, 'xyz', 45.67)

>>> | = iter(myTuple)

>>> j . next()

123

>>> . next()

' xyz'

>>> | . next()

45. 67

>>> j . next()

Traceback (nost recent call last):
File "", line 1, in ?

Stoplteration

If this had been an actual program, we would have enclosed the code inside a try-except block.
Sequences now automatically produce their own iterators, so a f or loop:

for i in seq:
do_sonet hing_to(i)

under the covers now really behaves like this:

fetch = iter(seq)
whil e True:
try:
i = fetch. next()
except Stoplteration:
br eak
do_sonet hing_to(i)

However, your code does not need to change because the for loop itself calls the iterator's next ()
method (as well as monitors for Stopl teration).

Dictionaries

Dictionaries and files are two other Python data types that received the iteration makeover. A
dictionary's iterator traverses its keys. The idiom for eachKey i n nyDi ct. keys() can be shortened to f or

eachKey i n nyDi ct as shown here:

>>> | egends = { ('Poe', "author'): (1809, 1849, 1976),
('"Gaudi', '"architect'): (1852, 1906, 1987),
(' Freud', 'psychoanalyst'): (1856, 1939, 1990)
}

>>> for eachLegend in | egends:
print 'Name: %\tCccupation: %' % eachLegend
print * Birth: %\tDeath: 9%\tA bum %\n' \
% | egends[eachLegend]

Nane: Freud Cccupation: psychoanal yst

Birth: 1856 Deat h: 1939 Al bum 1990
Nane: Poe Qccupation: aut hor

Birth: 1809 Deat h: 1849 Al bum 1976
Nane: Gaudi Cccupation: architect

Birth: 1852 Deat h: 1906 Al bum 1987

In addition, three new built-in dictionary methods have been introduced to define the iteration: nyDi ct.

i terkeys() (iterate through the keys), nyDict.iterval ues() (iterate through the values), and nyDi ct.
iteritems() (iterate through key/value pairs). Note that the i n operator has been modified to check a
dictionary's keys. This means the Boolean expression nyDi ct. has_key(anyKey) can be simplified as anyKey
innyDict.

Files

File objects produce an iterator that calls the readl i ne() method. Thus, they loop through all lines of a
text file, allowing the programmer to replace essentially f or eachLi ne i n nyFile.readlines() with the
more simplistic f or eachLine in nyFile:

>>> nyFile = open(' config-win.txt')
>>> for eachLine in nyFile:
print eachLi ne, # comma suppresses extra \n

[Edi t or W ndow]
font-nane: courier new
font-size: 10

>>> nyFil e. cl ose()

8.11.5. Mutable Objects and Iterators

Remember that interfering with mutable objects while you are iterating them is not a good idea. This
was a problem before iterators appeared. One popular example of this is to loop through a list and
remove items from it if certain criteria are met (or not):

for eachURL in all URLs:
if not eachURL.startswith('http://"):
al I URLs. renpove(eachURL) # YI KES! !

All sequences are immutable except lists, so the danger occurs only there. A sequence's iterator only
keeps track of the Nth element you are on, so if you change elements around during iteration, those
updates will be reflected as you traverse through the items. If you run out, then Stoplteration will be

raised.

When iterating through keys of a dictionary, you must not modify the dictionary. Using a dictionary's
keys() method is okay because keys() returns a list that is independent of the dictionary. But iterators

are tied much more intimately with the actual object and will not let us play that game anymore:

>>> myDict = {'a': 1, 'b': 2, '¢c': 3, 'd: 4}
>>> for eachKey in nyDict:

print eachKey, nyDi ct[eachKey]

del myDi ct[eachKey]

al

Traceback (nost recent call |ast):
File "", line 1, in ?

RuntinmeError: dictionary changed size during iteration

This will help prevent buggy code. For full details on iterators, see PEP 234.

8.11.6. How to Create an lIterator

You can take an item and call iter () on it to turn it into an iterator. Its syntax is one of the following:
iter(obj)

iter(func, sentinel)

If you call iter() with one object, it will check if it is just a sequence, for which the solution is simple: It

will just iterate through it by (integer) index from O to the end. Another way to create an iterator is with
a class. As we will see in Chapter 13, a class that implements the __iter__ () and next () methods can be

used as an iterator.

If you call iter() with two arguments, it will repeatedly call func to obtain the next value of iteration
until that value is equal to sentinel.

e Py EXT

file:///D|/1/0132269937/14051536.html

e Py EXT

8.12. List Comprehensions

List comprehensions (or "list comps" for short) come to us from the functional programming language
Haskell. They are an extremely valuable, simple, and flexible utility tool that helps us create lists on the
fly. They were added to Python in version 2.0.

Up ahead in Functions (Chapter 11), we will be discussing long-time Python functional programming
features like | anbda, map(), and filter (). They have been around in Python for quite a while, but with
list comprehensions, they have simplified their use to only requiring a list comp instead. map() is a
function that applies an operation to list members, and filter() filters out list members based on a
conditional expression. Finally, | anbda allows you to create one-line function objects on the fly. It is not

important that you learn them now, but you will see examples of them in this section because we are
discussing the merits of list comps. Let us take a look at the simpler list comprehension syntax first:

[expr for iter_var in iterable]

The core of this statement is the f or loop, which iterates over each item of iterable. The prefixed expr is

applied for each member of the sequence, and the resulting values comprise the list that the expression
yields. The iteration variable need not be part of the expression.

Here is a sneak preview of some code from Chapter 11. It has a | anbda function that squares the
members of a sequence:

>>> map(lanbda x: x ** 2, range(6))

[0, 1, 4, 9, 16, 25]

We can replace this code with the following list comprehension statement:
>>> [x ** 2 for x in range(6)]

[0, 1, 4, 9, 16, 25]

In the new statement, only one function call (range()) is made (as opposed to threer ange(), map(), and
the | anbda function). You may also use parentheses around the expression if [(x ** 2) for x i nrange
(6)] is easier for you to read. This syntax for list comprehensions can be a substitute for and is more
efficient than using the map() built-in function along with | anmbda.

List comprehensions also support an extended syntax with the i f statement:

[expr for iter_var in iterable if cond_expr]

This syntax will filter or "capture" sequence members only if they meet the condition provided for in the
cond_expr conditional expression during iteration.

Recall the following odd() function below, which determines whether a numeric argument is odd or even
(returning 1 for odd numbers and O for even numbers):

def odd(n):
return n %2

We were able to take the core operation from this function, and use it with filter() and | anbda to
obtain the set of odd numbers from a sequence:

>>> seq = [11, 10, 9, 9, 10, 10, 9, 8, 23, 9, 7, 18, 12, 11, 12]
>>> filter(lanbda x: X %2, seq)
[12, 9, 9, 9, 23, 9, 7, 11]

As in the previous example, we can bypass the use of filter() and | anbda to obtain the desired set of
numbers with list comprehensions:

>>> [x for x inseq if x % 2]
[12, 9, 9, 9, 23, 9, 7, 11]

Let us end this section with a few more practical examples.
Matrix Example

Do you want to iterate through a matrix of three rows and five columns? It is as easy as:

>>> [(x+1,y+1) for x in range(3) for y in range(5)]
[((1, 1), (1, 2), (1, 3), (1, 4, (1, 5, (2, 1), (2, 2), (2,
3), (2, 4, (2, 5, (3, 1), (3 2, (3 3), (3 4), (3 3]

Disk File Example

Now let us say we have the following data file and want to count the total number of non-whitespace
characters in the file hhga. t xt :

And the Lord spake, saying, "First shalt thou take out the
Holy Pin. Then shalt thou count to three, no nore, no |ess.
Three shall be the nunmber thou shalt count, and the number of
the counting shall be three. Four shalt thou not count,

nei ther count thou two, excepting that thou then proceed to
three. Five is right out. Once the nunber three, being the
third nunber, be reached, then | obbest thou thy Holy Hand

G enade of Antioch towards thy foe, who, being naughty in My
sight, shall snuff it."

We know that we can iterate through each line with for line in data, but more than that, we can also go

and split each line up into words, and we can sum up the number of words to get a total like this:

>>> f = open(' hhga.txt', 'r")
>>> [en([word for lineinf for word in line.split()])
91

Let us get a quick total file size:

i nport os
>>> 0s.stat (' hhga.txt').st_size
499L

Assuming that there is at least one whitespace character in the file, we know that there are fewer than
499 non-whitespace characters in the file. We can sum up the length of each word to arrive at our total:

>>> f . seek(0)
>>> sun([len(word) for line inf for word in line.split()])
408

Note we have to rewind back to the beginning of the file each time through because the iterator
exhausts it. But wow, a non-obfuscated one-liner now does something that used to take many lines of
code to accomplish!

As you can see, list comps support multiple nested f or loops and more than one i f clause. The full

syntax can be found in the official documentation. You can also read more about list comprehensions in
PEP 202.

e prcy | NEXT B

file:///D|/1/0132269937/14051536.html

e Py EXT

8.13. Generator Expressions

Generator expressions extend naturally from list comprehensions ("list comps"). When list comps came
into being in Python 2.0, they revolutionized the language by giving users an extremely flexible and
expressive way to designate the contents of a list on a single line. Ask any long-time Python user what
new features have changed the way they program Python, and list comps should be near the top of the
list.

Another significant feature that was added to Python in version 2.2 was the generator. A generator is a
specialized function that allows you to return a value and "pause” the execution of that code and resume
it at a later time. We will discuss generators in Chapter 11.

The one weakness of list comps is that all of the data have to be made available in order to create the
entire list. This can have negative consequences if an iterator with a large dataset is involved. Generator
expressions resolve this issue by combining the syntax and flexibility of list comps with the power of
generators.

Introduced in Python 2.4, generator expressions are similar to list comprehensions in that the basic

syntax is nearly identical; however, instead of building a list with values, they return a generator that
"yields" after processing each item. Because of this, generator expressions are much more memory
efficient by performing "lazy evaluation." Take a look at how similar they appear to list comps:

LIST COMPREHENSION:

[expr for iter_var in iterable if cond _expr]

GENERATOR EXPRESSION:

(expr for iter_var in iterable if cond_expr)

Generator expressions do not make list comps obsolete. They are just a more memory-friendly
construct, and on top of that, are a great use case of generators. We now present a set of generator
expression examples, including a long-winded one at the end showing you how Python code has
changed over the years.

Disk File Example

In the previous section on list comprehensions, we took a look at finding the total number of non-
whitespace characters in a text file. In the final snippet of code, we showed you how to perform that in
one line of code using a list comprehension. If that file became unwieldy due to size, it would become
fairly unfriendly memory-wise because we would have to put together a very long list of word lengths.

Instead of creating that large list, we can use a generator expression to perform the summing. Instead

of building up this long list, it will calculate individual lengths and feed it to the sun() function, which
takes not just lists but also iterables like generator expressions. We can then shorten our example
above to be even more optimal (code- and execution-wise):

>>> sum(l en(word) for line in data for word in line.split())
408

All we did was remove the enclosing list comprehension square brackets: Two bytes shorter and it saves
memory ... very environmentally friendly!

Cross-Product Pairs Example

Generator expressions are like list comprehensions in that they are lazy, which is their main benefit.
They are also great ways of dealing with other lists and generators, like rows and col s here:

rows = [1, 2, 3, 17]

def cols(): # exanpl e of sinple generator
yield 56
yield 2
yield 1

We do not need to create a new list. We can piece together things on the fly. Let us create a generator
expression for rows and col s:

X_product _pairs = ((i, j) for i inrows for j in cols())

Now we can loop through x_product _pai rs, and it will loop through rows and col s lazily:

>>> for pair in x_product_pairs:

print pair
(1, 56)
(1, 2)
(1, 1)
(2, 56)
(2, 2)
(2, 1)
(3, 56)
(3, 2)
(3, 1)
(17, 56)
(17, 2)
(17, 1)

Refactoring Example

Let us look at some evolutionary code via an example that finds the longest line in a file. In the old

days, the following was acceptable for reading a file:

f = open('/etc/notd', 'r'")
l ongest = 0
while True:
linelen = len(f.readline().strip())
if not linelen: break
if linelen > | ongest:
| ongest = linelen
f.close()
return | ongest

Actually, this is not that old. If it were really old Python code, the Boolean constant TRue would be the
integer one, and instead of using the string stri p() method, you would be using the stri ng module:

i mport string

Ien(st.ring.strip(f.readline()))

Since that time, we realized that we could release the (file) resource sooner if we read all the lines at
once. If this was a log file used by many processes, then it behooves us not to hold onto a (write) file
handle for an extended period of time. Yes, our example is for read, but you get the idea. So the
preferred way of reading in lines from a file changed slightly to reflect this preference:

f = open('/etc/motd , 'r'")
l ongest = 0
all Lines = f.readlines()

f.close()
for line in allLines:
linelen = len(line.strip())
if linelen > | ongest:
| ongest = linelen

return | ongest

List comps allow us to simplify our code a little bit more and give us the ability to do more processing
before we get our set of lines. In the next snippet, in addition to reading in the lines from the file, we
call the string stri p() method immediately instead of waiting until later.

f = open('/etc/motd' , 'r'")
| ongest = 0

allLines = [x.strip() for x in f.readlines()]
f.close()
for Iine in allLines:
linelen = len(line)
if linelen > | ongest:
| ongest = linelen

return | ongest

Still, both examples above have a problem when dealing with a large file as readl i nes() reads in all its
lines. When iterators came around, and files became their own iterators, readl i nes() no longer needed
to be called. While we are at it, why can't we just make our data set the set of line lengths (instead of

lines)? That way, we can use the max() built-in function to get the longest string length:

f = open('/etc/motd , 'r'")

all LineLens = [len(x.strip()) for x in f]
f.close()

return max(all Li neLens)

The only problem here is that even though you are iterating over f line by line, the list comprehension
itself needs all lines of the file read into memory in order to generate the list. Let us simplify our code
even more: we will replace the list comp with a generator expression and move it inside the call to max()
so that all of the complexity is on a single line:

f = open('/etc/motd , 'r'")

| ongest = max(len(x.strip()) for x in f)
f.close()

return | ongest

One more refactoring, which we are not as much fans of, is dropping the file mode (defaulting to read)
and letting Python clean up the open file. It is not as bad as if it were a file open for write, however, but
it does work:

return max(len(x.strip()) for x in open('/etc/notd"))

We have come a long way, baby. Note that even a one-liner is not obfuscated enough in Python to make
it difficult to read. Generator expressions were added in Python 2.4, and you can read more about them
in PEP 289.

e prcy ExT

file:///D|/1/0132269937/14051536.html

e Py EXT

8.14. Related Modules

Iterators were introduced in Python 2.2, and the i tert ool s module was added in the next release (2.3)
to aid developers who had discovered how useful iterators were but wanted some helper tools to aid in

their development. The interesting thing is that if you read the documentation for the various utilities in
itertools, you will discover generators. So there is a relationship between iterators and generators. You

can read more about this relationship in Chapter 11, "Functions".

e prcy ExT

e Py EXT

8.15. Exercises

8-1. Conditionals. Study the following code:

statenent A

if x > 0:
statenment B
pass

elif x < 0:
statenent C
pass

el se:
statenent D
pass

statement E

a.
Which of the statements above (A, B, C, D, E) will be executed if x < 0?
b.
Which of the statements above will be executed if x = = 0?
C.

Which of the statements above will be executed if x > 0?

8-2. Loops. Write a program to have the user input three (3) numbers: (f)rom, (t)o, and (i)
ncrement. Count from f to t in increments of i, inclusive of f and t. For example, if the
input is f == 2, t == 26, and i == 4, the program would output: 2, 6, 10, 14, 18, 22,
26.

8-3.

8-5.

8-6.

8-7.

8-8.

range(). What argument(s) could we give to the range() built-in function if we wanted
the following lists to be generated?

a.

[0, 1, 2, 3, 4, 5 6, 7, 8 9]
b.

[3, 6, 9, 12, 15, 18]
C.

[-20, 200, 420, 640, 860]

Prime Numbers. We presented some code in this chapter to determine a number's
largest factor or if it is prime. Turn this code into a Boolean function called i spri ne()

such that the input is a single value, and the result returned is true if the number is
prime and Fal se otherwise.

Factors. Write a function called get f act or s() that takes a single integer as an
argument and returns a list of all its factors, including 1 and itself.

Prime Factorization. Take your solutions for i spri ne() and getfactors() in the
previous problems and create a function that takes an integer as input and returns a
list of its prime factors. This process, known as prime factorization, should output a
list of factors such that if multiplied together, they will result in the original number.
Note that there could be repeats in the list. So if you gave an input of 20, the output
would be [2, 2, 5].

Perfect Numbers. A perfect number is one whose factors (except itself) sum to itself.
For example, the factors of 6 are 1, 2, 3, and 6. Since 1 + 2 + 3 is 6, it (6) is
considered a perfect number. Write a function called i sperfect () which takes a single

integer input and outputs 1 if the number is perfect and O otherwise.

Factorial. The factorial of a number is defined as the product of all values from one to
that number. A shorthand for N factorial is N! where N! == factorial(N) == 1* 2 * 3

* ...* (N-2) * (N-1) * N. So 4!l ==1* 2 * 3 * 4. Write a routine such that given N, the
value N! is returned.

8-9. Fibonacci Numbers. The Fibonacci number sequence is 1, 1, 2, 3, 5, 8, 13, 21, etc. In
other words, the next value of the sequence is the sum of the previous two values in
the sequence. Write a routine that, given N, displays the value of the Nth Fibonacci
number. For example, the first Fibonacci number is 1, the 6th is 8, and so on.

8-10. Text Processing. Determine the total number of vowels, consonants, and words
(separated by spaces) in a text sentence. Ignore special cases for vowels and
consonants such as "h," "y,"” "qu," etc. Extra credit: create code to handle those
special case.

8-11. Text Processing. Write a program to ask the user to input a list of names, in the
format "Last Name, First Name," i.e., last name, comma, first name. Write a function
that manages the input so that when/if the user types the names in the wrong order, i.
e., "First Name Last Name," the error is corrected, and the user is notified. This
function should also keep track of the number of input mistakes. When the user is
done, sort the list, and display the sorted names in "Last Name, First Name" order.

EXAMPLE input and output (you don't have to do it this way exactly):

% nanet r ack. py
Enter total nunmber of nanes: 5

Pl ease enter nane 0: Smith, Joe

Pl ease enter nane 1: Mary Wng

>> Wong format... should be Last, First.

>> You have done this 1 time(s) already. Fixing input.
Pl ease enter nane 2: Ham|ton, Cerald

Pl ease enter nane 3: Royce, Linda

Pl ease enter nane 4. Wnston Sal em

>> Wong format... should be Last, First.

>> You have done this 2 time(s) already. Fixing input.

The sorted list (by last nanme) is:
Ham | ton, Gerald
Royce, Linda
Sal em W nston
Smith, Joe
Wng, Mary

8-12. (Integer) Bit Operators. Write a program that takes begin and end values and prints
out a decimal, binary, octal, hexadecimal chart like the one shown below. If any of the
characters are printable ASCII characters, then print those, too. If none is, you may
omit the ASCII column header.

SAMPLE QUTPUT 1

Enter begin value: 9
Enter end val ue: 18

DEC Bl N CCT HEX
9 01001 11 9
10 01010 12 a
11 01011 13 b
12 01100 14 c
13 01101 15 d
14 01110 16 e
15 01111 17 f
16 10000 20 10
17 10001 21 11
18 10010 22 12

Enter begin val ue: 26
Enter end val ue: 41

DEC Bl N CCT HEX ASCI |
26 011010 32 la

27 011011 33 1b

28 011100 34 1c

29 011101 35 1d

30 011110 36 le

31 011111 37 1f

32 100000 40 20

33 100001 41 21 !
34 100010 42 22 '
35 100011 43 23 #
36 100100 44 24 $
37 100101 45 25 %
38 100110 46 26 &
39 100111 47 27 '
40 101000 50 28 (
41 101001 51 29)

8-13. Performance. In Section 8.5.2, we examined two basic ways of iterating over a
sequence: (1) by sequence item, and (2) via sequence index. We pointed out at the
end that the latter does not perform as well over the long haul (on my system here, a
test suite shows performance is nearly twice as bad [83% worse]). Why do you think
that is?

NEXT B

KI==3
Chapter 9. Files and Input/Output

Chapter Topics

« File Objects

o File Built-in Functions
o File Built-in Methods
o File Built-in Attributes

« Standard Files

« Command-Line Arguments

« File System

« File Execution

« Persistent Storage

« Related Modules

This chapter is intended to give you an in-depth introduction to the use of files and related input/output
capabilities of Python. We introduce the file object (its built-in function, and built-in methods and
attributes), review the standard files, discuss accessing the file system, hint at file execution, and briefly
mention persistent storage and modules in the standard library related to "file-mania."

e Py EXT

e Py EXT

9.1. File Objects

File objects can be used to access not only normal disk files, but also any other type of "file" that uses
that abstraction. Once the proper "hooks" are installed, you can access other objects with file-style
interfaces in the same manner you would access normal files.

You will find many cases where you are dealing with "file-like" objects as you continue to develop your
Python experience. Some examples include "opening a URL" for reading a Web page in real-time and
launching a command in a separate process and communicating to and from it like a pair of
simultaneously open files, one for write and the other for read.

The open() built-in function (see below) returns a file object that is then used for all succeeding

operations on the file in question. There are a large number of other functions that return a file or file-
like object. One primary reason for this abstraction is that many input/output data structures prefer to
adhere to a common interface. It provides consistency in behavior as well as implementation. Operating
systems like Unix even feature files as an underlying and architectural interface for communication.
Remember, files are simply a contiguous sequence of bytes. Anywhere data need to be sent usually
involves a byte stream of some sort, whether the stream occurs as individual bytes or blocks of data.

e prcy ExT

file:///D|/1/0132269937/14051536.html

e Py EXT

9.2. File Built-in Functions [open() and fil e()]

As the key to opening file doors, the open() [and fil e()] built-in function provides a general interface to
initiate the file input/output (1/0) process. The open() BIF returns a file object on a successful opening

of the file or else results in an error situation. When a failure occurs, Python generates or raises an
| OError exceptionwe will cover errors and exceptions in the next chapter. The basic syntax of the open()

built-in function is:

file_ object = open(file_nane, access node='r', buffering=-1)

The fil e_name is a string containing the name of the file to open. It can be a relative or absolute/full
pathname. The access_node optional variable is also a string, consisting of a set of flags indicating which
mode to open the file with. Generally, files are opened with the modes 'r," 'w,' or ' a," representing

read, write, and append, respectively. A' U mode also exists for universal NEWLINE support (see
below).

Any file opened with mode 'r' or ' U must exist. Any file opened with ' w' will be truncated first if it
exists, and then the file is (re)created. Any file opened with ' a' will be opened for append. All writes to
files opened with ' a* will be from end-of-file, even if you seek elsewhere during access. If the file does
not exist, it will be created, making it the same as if you opened the file in'w mode. If you are a C
programmer, these are the same file open modes used for the C library function f open() .

There are other modes supported by fopen() that will work with Python's open(). These include the ' +'
for read-write access and ' b’ for binary access. One note regarding the binary flag: ' b’ is antiquated on

all Unix systems that are POSIX-compliant (including Linux) because they treat all files as binary files,
including text files. Here is an entry from the Linux manual page for f open(), from which the Python open

() function is derived:

The mode string can also include the letter "b" either as a last character or as a character
between the characters in any of the two-character strings described above. This is
strictly for compatibility with ANSI C3.159-1989 ("ANSI C") and has no effect; the "b" is
ignored on all POSIX conforming systems, including Linux. (Other systems may treat text
files and binary files differently, and adding the "b" may be a good idea if you do 1/0 to a
binary file and expect that your program may be ported to non-Unix environments.)

You will find a complete list of file access modes, including the use of ' b' if you choose to use it, in Table
9.1. If access_node is not given, it defaults automatically to ' r .’

Table 9.1. Access Modes for File Objects

File Mode Operation

r Open for read

file:///D|/1/0132269937/14051536.html

U or [a] Open for read with universal NEWLINE support (PEP 278)

w Open for write (truncate if necessary)

a Open for append (always works from EOF, create if necessary)
r+ Open for read and write

w Open for read and write (see w above)

at Open for read and write (see a above)

rb Open for binary read

wb Open for binary write (see w above)

ab Open for binary append (see a above)

rb+ Open for binary read and write (see r + above)
wo+ Open for binary read and write (see w+ above)
ab+ Open for binary read and write (see a+ above)

& New in Python 2.5.

The other optional argument, buffering, is used to indicate the type of buffering that should be
performed when accessing the file. A value of 0 means no buffering should occur, a value of 1 signals
line buffering, and any value greater than 1 indicates buffered 1/0 with the given value as the buffer
size. The lack of or a negative value indicates that the system default buffering scheme should be used,
which is line buffering for any teletype or tty-like device and normal buffering for everything else. Under
normal circumstances, a buf f eri ng value is not given, thus using the system default.

Here are some examples for opening files:

fp = open('/etc/notd") #open file for read
fp = open('test', 'wW) #open file for wite
fp = open('data', 'r+') #open file for read/wite
fp = open(r'c:\io.sys', 'rb") #open binary file for read

9.2.1. Thefil e() Factory Function

The fil e() built-in function came into being in Python 2.2, during the types and classes unification. At

this time, many built-in types that did not have associated built-in functions were given factory functions
to create instances of those objects, i.e., dict (), bool (), file(), etc., to go along with those that did, i.

e., list(), str(), etc.

Both open() and fil e() do exactly the same thing and one can be used in place of the other. Anywhere

you see references to open(), you can mentally substitute fil e() without any side effects whatsoever.

For foreseeable versions of Python, both open() and fil e() will exist side by side, performing the exact
same thing. Generally, the accepted style is that you use open() for reading/writing files, while fil e() is
best used when you want to show that you are dealing with file objects, i.e., i f instance(f, file).

9.2.2. Universal NEWLINE Support (UNS)

In an upcoming Core Note sidebar, we describe how certain attributes of the os module can help you
navigate files across different platforms, all of which terminate lines with different endings, i.e., \n, \r,
or \r\n. Well, the Python interpreter has to do the same thing, toothe most critical place is when
importing modules. Wouldn't it be nicer if you just wanted Python to treat all files the same way?

That is the whole point of the UNS, introduced in Python 2.3, spurred by PEP 278. When you use the ' U

flag to open a file, all line separators (or terminators) will be returned by Python via any file input
method, i.e., read*(), as a NEWLINE character (\ n) regardless of what the line-endings are. (The ' ruU

mode is also supported to correlate with the ' rb' option.) This feature will also support files that have
multiple types of line-endings. A file. new i nes attribute tracks the types of line separation characters
"seen."

If the file has just been opened and no line-endings seen, fil e. new i nes is None. After the first line, it is
set to the terminator of the first line, and if one more type of line-ending is seen, then fil e. new i nes

becomes a tuple containing each type seen. Note that UNS only applies to reading text files. There is no
equivalent handling of file output.

UNS is turned on by default when Python is built. If you do not wish to have this feature, you can
disable it by using the - - wi t hout - uni ver sal - new i nes switch when running Python's confi gure script. If

you must manage the line-endings yourself, then check out the Core Note and use those os module
attributes!

e Py EXT

file:///D|/1/0132269937/14051536.html

e Py EXT

9.3. File Built-in Methods

Once open() has completed successfully and returned a file object, all subsequent access to the file

transpires with that "handle.” File methods come in four different categories: input, output, movement
within a file, which we will call "intra-file motion,” and miscellaneous. A summary of all file methods can
be found in Table 9.3. We will now discuss each category.

9.3.1. Input

The read() method is used to read bytes directly into a string, reading at most the number of bytes
indicated. If no si ze is given (the default value is set to integer - 1) or si ze is negative, the file will be
read to the end. It will be phased out and eventually removed in a future version of Python.

The readl i ne() method reads one line of the open file (reads all bytes until a line-terminating character

like NEWLINE is encountered). The line, including termination character(s), is returned as a string. Like
read(), there is also an optional si ze option, which, if not provided, defaults to - 1, meaning read until

the line-ending characters (or EOF) are found. If present, it is possible that an incomplete line is
returned if it exceeds si ze bytes.

The readl i nes() method does not return a string like the other two input methods. Instead, it reads all

(remaining) lines and returns them as a list of strings. Its optional argument, si zhi nt, is a hint on the
maximum size desired in bytes. If provided and greater than zero, approximately si zhi nt bytes in whole
lines are read (perhaps slightly more to round up to the next buffer size) and returned as a list.

In Python 2.1, a new type of object was used to efficiently iterate over a set of lines from a file: the
xreadl i nes object (found in the xreadl i nes module). Calling fil e. xreadl i nes() was equivalent to

xreadl i nes. xreadl i nes(fil e). Instead of reading all the lines in at once, xreadl i nes() reads in chunks at
a time, and thus were optimal for use with f or loops in a memory-conscious way. However, with the
introduction of iterators and the new file iteration in Python 2.3, it was no longer necessary to have an
xreadl i nes() method because it is the same as usingiter(file), orin afor loop, is replaced by for
eachLineinfile. Easy come, easy go.

Another odd bird is the readi nt o() method, which reads the given number of bytes into a writable buffer
object, the same type of object returned by the unsupported buf f er () built-in function. (Since buf f er ()
is not supported, neither is readi nto().)

9.3.2. Output

The wite() built-in method has the opposite functionality as read() and readl i ne(). It takes a string
that can consist of one or more lines of text data or a block of bytes and writes the data to the file.

The witelines() method operates on a list just like readl i nes(), but takes a list of strings and writes

them out to a file. Line termination characters are not inserted between each line, so if desired, they
must be added to the end of each line before witelines() is called.

Note that there is no "wri teline()" method since it would be equivalent to calling write() with a single
line string terminated with a NEWLINE character.

Core Note: Line separators are preserved

When reading lines in from a file using file input methods like r ead()
or readl i nes(), Python does not remove the line termination

characters. It is up to the programmer. For example, the following
code is fairly common to see in Python code:

f = open('nyFile', 'r")
data = [line.strip() for line in f.readlines()]
f.close()

Similarly, output methods like wite() orwitelines() do not add line

terminators for the programmer... you have to do it yourself before
writing the data to the file.

9.3.3. Intra-file Motion

The seek() method (analogous to the fseek() function in C) moves the file pointer to different positions
within the file. The offset in bytes is given along with a relative offset location, whence. A value of 0, the

default, indicates distance from the beginning of a file (note that a position measured from the
beginning of a file is also known as the absolute offset), a value of 1 indicates movement from the

current location in the file, and a value of 2 indicates that the offset is from the end of the file. If you
have used fseek() as a C programmer, the values 0, 1, and 2 correspond directly to the constants
SEEK_SET, SEEK_CUR, and SEEK_END, respectively. Use of the seek() method comes into play when opening
a file for read and write access.

tell () is a complementary method to seek() ; it tells you the current location of the filein bytes from the
beginning of the file.

9.3.4. File Iteration

Going through a file line by line is simple:

for eachLine in f:

Inside this loop, you are welcome to do whatever you need to with eachLi ne, representing a single line
of the text file (which includes the trailing line separators).

Before Python 2.2, the best way to read in lines from a file was using fil e. readl i nes() to read in all the

data, giving the programmer the ability to free up the file resource as quickly as possible. If that was
not a concern, then programmers could call fil e.readl i ne() to read in one line at a time. For a brief

time, file.xreadl i nes() was the most efficient way to read in a file.

Things all changed in 2.2 when Python introduced iterators and file iteration. In file iteration, file objects
became their own iterators, meaning that users could now iterate through lines of a file using a f or loop

without having to call read* () methods. Alternatively, the iterator next method, fil e. next () could be
called as well to read in the next line in the file. Like all other iterators, Python will raise St opl teration
when no more lines are available.

So remember, if you see this type of code, this is the "old way of doing it," and you can safely remove
the call to readl i ne().

for eachLine in f.readline():

File iteration is more efficient, and the resulting Python code is easier to write (and read). Those of you
new to Python now are getting all the great new features and do not have to worry about the past.

9.3.5. Others

The cl ose() method completes access to a file by closing it. The Python garbage collection routine will

also close a file when the file object reference has decreased to zero. One way this can happen is when
only one reference exists to a file, say, fp = open(...), and f p is reassigned to another file object before

the original file is explicitly closed. Good programming style suggests closing the file before
reassignment to another file object. It is possible to lose output data that is buffered if you do not
explicitly close a file.

The fil eno() method passes back the file descriptor to the open file. This is an integer argument that
can be used in lower-level operations such as those featured in the os module, i.e., os.read().

Rather than waiting for the (contents of the) output buffer to be written to disk, calling the f1 ush()
method will cause the contents of the internal buffer to be written (or flushed) to the file immediately.

i satty() is a Boolean built-in method that returns t r ue if the file is a tty-like device and Fal se otherwise.
The TRuncat e() method truncates the file to the size at the current file position or the given si ze in bytes.

9.3.6. File Method Miscellany

We will now reprise our first file example from Chapter 2:

filename = raw_input ('Enter file name: ')
f = open(filenane, 'r')
all Lines = f.readlines()
f.close()
for eachLine in allLines:
print eachLine, # suppress print's NEW.I NE

We originally described how this program differs from most standard file access in that all the lines are
read ahead of time before any display to the screen occurs. Obviously, this is not advantageous if the
file is large. In that case, it may be a good idea to go back to the tried-and-true way of reading and
displaying one line at a time using a file iterator:

filename = raw_input (' Enter file nane: ')
f = open(filenane, 'r')
for eachLine in f:
print eachLi ne,
f.close()

Core Note: Line separators and other file system inconsistencies

One of the inconsistencies of operating systems is the line separator
character that their file systems support. On POSIX (Unix family or
Mac OS X) systems, the line separator is the NEWLINE (\n)
character. For old MacOS, it is the RETURN (\r), and DOS and Win32
systems use both (\r\n). Check your operating system to determine
what your line separator(s) are.

Other differences include the file pathname separator (POSIX uses "/",
DOS and Windows use "\", and the old MacOS uses ":"), the separator
used to delimit a set of file pathnames, and the denotations for the
current and parent directories.

These inconsistencies generally add an irritating level of annoyance
when creating applications that run on all three platforms (and more if
more architectures and operating systems are supported).
Fortunately, the designers of the os module in Python have thought of
this for us. The os module has five attributes that you may find useful.
They are listed in Table 9.2.

Table 9.2. s Module Attributes to Aid in Multi-
platform Development

os Module

Attribute Description

linesep String used to separate lines in a file

sep String used to separate file pathname components
pat hsep String used to delimit a set of file pathnames
curdir String name for current working directory

pardir String name for parent (of current working directory)

Regardless of your platform, these variables will be set to the correct
values when you import the os module: One less headache to worry
about.

We would also like to remind you that the comma placed at the end of the pri nt statement is to
suppress the NEWLINE character that pri nt normally adds at the end of output. The reason for this is
because every line from the text file already contains a NEWLINE. readl i ne() and readl i nes() do not

strip off any whitespace characters in your line (see exercises.) If we omitted the comma, then your text
file display would be doublespaced one NEWLINE which is part of the input and another added by the
print statement.

File objects also have a truncat e() method, which takes one optional argument, si ze. If it is given, then
the file will be truncated to, at most, si ze bytes. If you call TRuncat e() without passing in a size, it will
default to the current location in the file. For example, if you just opened the file and call TRuncat e(),

your file will be effectively deleted, truncated to zero bytes because upon opening a file, the "read head"
is on byte O, which is what tel | () returns.

Before moving on to the next section, we will show two more examples, the first highlighting output to
files (rather than input), and the second performing both file input and output as well as using the seek

() and tell () methods for file positioning.

filename = raw_input (' Enter file nane: ')

fobj = open(filenane, 'wW)
while True:
aLine = raw_input("Enter aline ('.'" to quit): ")
if aLine !'=".":
fobj.wite('%%' % (aLine, os.linesep)
el se:
br eak

fobj.close()

Here we ask the user for one line at a time, and send them out to the file. Our call to the wite()
method must contain a NEWLINE because raw_i nput () does not preserve it from the user input. Because

it may not be easy to generate an end-of-file character from the keyboard, the program uses the period
(.) as its end-of-file character, which, when entered by the user, will terminate input and close the file.

The second example opens a file for read and write, creating the file from scratch (after perhaps
truncating an already existing file). After writing data to the file, we move around within the file using
seek() . We also use the tel | () method to show our movement.

>>> f = open('/tnp/x', 'w+')
>>> f. tell()

>>> f . wite('test line 1\n') # add 12-char string [0-11]
>>> f.tell ()

12
>>> f . wite('test line 2\n') # add 12-char string [12-23]
>>> f. tell() # tell us current file location (end))

24

>>> f . seek(-12, 1)
>>> f . tell ()

12

>>> f.readline()

"test line 2\012
>>> f.seek(0, 0)

>>> f . readline()

"test line 1\012
>>> f . tell()

12

>>> f.readline()

"test line 2\012'
>>> f. tell()

24

>>> f . cl ose()

nove back 12 bytes
to beginning of line 2

nove back to begi nning

back to line 2 again

at the end again

close file

Table 9.3 lists all the built-in methods for file objects.

File Object Method

file.close()
file.fileno()
file.flush()

file.isatty()

a
fiIe.next[—l

()

file.read(size=-1)

[b]

file.readinto (buf, size)

file.readline(size=-1)

file.readlines(sizhint=0)

fiIe.xreadIines[gl()

file.seek(off, whence=0)

file.tell()

Table 9.3. Methods for File Objects

Operation

Closes file
Returns integer file descriptor (FD) for file
Flushes internal buffer for file

Returns true if fil e is a tty-like device and Fal se otherwise

Returns the next line in the file [similar to file.readline()] or
raises Stoplteration if no more lines are available

Reads si ze bytes of file, or all remaining bytes if si ze not given or
is negative, as a string and return it

Reads si ze bytes from fil e into buffer buf (unsupported)
Reads and returns one line from fi | e(includes line-ending
characters), either one full line or a maximum of si ze characters

Reads and returns all lines from fil e as a list (includes all line
termination characters); if si zhi nt given and > 0, whole lines are
returned consisting of approximately si zhi nt bytes (could be
rounded up to next buffer's worth)

Meant for iteration, returns lines in fi |l e read as chunks in a more
efficient way than readl i nes()

Moves to a location within fil e, of f bytes offset from whence (0 ==
beginning of file, 1 == current location, or 2 == end of file)

Returns current location within fil e

file. truncate(size=file.tell()) Truncatesfile toat most size bytes, the default being the current
file location

file.wite(str) Writes string str tofile

file.witelines(seq) Writes seq of strings to fil e; seq should be an iterable producing
strings; prior to 2.2, it was just a list of strings

& New in Python 2.2.
B New in Python 1.5.2 but unsupported.

[New in Python 2.1 but deprecated in Python 2.3.

e Py EXT

e Py EXT

9.4. File Built-in Attributes

File objects also have data attributes in addition to methods. These attributes hold auxiliary data related
to the file object they belong to, such as the file name (fil e. nane), the mode with which the file was

opened (fil e. mode), whether the file is closed (fil e. cl osed), and a flag indicating whether an additional
space character needs to be displayed before successive data items when using the print statement
(file.softspace). Table 9.4 lists these attributes along with a brief description of each.

Table 9.4. Attributes for File Objects

File Object Attribute Description

file.closed TRue if fil e is closed and Fal se otherwise

Encoding that this file useswhen Unicode strings are written to file, they will
be converted to byte strings using fil e. encodi ng; a value of None indicates

that the system default encoding for converting Unicode strings should be used

file.encoding

file. mode Access mode with which fil e was opened
file.nanme Name of file
file newli nes[gl None if no line separators have been read, a string consisting of one type of
') line separator, or a tuple containing all types of line termination characters
read so far
file.softspace 0 if space explicitly required with print, 1 otherwise; rarely used by the

programmergenerally for internal use only

B New in Python 2.3.

e prcy ExT

file:///D|/1/0132269937/14051536.html
file:///D|/1/0132269937/14051536.html

e Py EXT

9.5. Standard Files

There are generally three standard files that are made available to you when your program starts. These
are standard input (usually the keyboard), standard output (buffered output to the monitor or display),
and standard error (unbuffered output to the screen). (The "buffered" or "unbuffered" output refers to
that third argument to open()). These files are named st di n, st dout, and stderr and take their names

from the C language. When we say these files are "available to you when your program starts," that
means that these files are pre-opened for you, and access to these files may commence once you have
their file handles.

Python makes these file handles available to you from the sys module. Once you import sys, you have
access to these files as sys. stdin, sys. stdout, and sys. stderr. The print statement normally outputs to
sys. st dout while the raw_i nput () built-in function receives its input from sys. st di n.

Just remember that since sys. * are files, you have to manage the line separation characters. The pri nt
statement has the built-in feature of automatically adding one to the end of a string to output.

e prcy ExT

file:///D|/1/0132269937/14051536.html

e Py EXT

9.6. Command-Line Arguments

The sys module also provides access to any command-line arguments via sys. ar gv. Command-line

arguments are those arguments given to the program in addition to the script name on invocation.
Historically, of course, these arguments are so named because they are given on the command line
along with the program name in a text-based environment like a Unix- or DOS-shell. However, in an IDE
or GUI environment, this would not be the case. Most IDEs provide a separate window with which to
enter your "command-line arguments."” These, in turn, will be passed into the program as if you started
your application from the command line.

Those of you familiar with C programming may ask, "Where is argc?" The names "argc" and "argv" stand
for "argument count" and "argument vector," respectively. The ar gv variable contains an array of strings
consisting of each argument from the command line while the ar gc variable contains the number of
arguments entered. In Python, the value for argc is simply the number of items in the sys. ar gv list, and
the first element of the list, sys. argv[0], is always the program name. Summary:

« sys.argv is the list of command-line arguments
e len(sys.argv) is the number of command-line arguments(aka ar gc)

Let us create a small test program called ar gv. py with the following lines:

i mport sys
print 'you entered', len(sys.argv), 'argunents...'
print 'they were:', str(sys.argv)

Here is an example invocation and output of this script:

$ argv.py 76 tales 85 hawk
you entered 5 argunents...
they were: ['"argv.py', '76', 'tales', '85 , 'haw']

Are command-line arguments useful? Commands on Unix-based systems are typically programs that
take input, perform some function, and send output as a stream of data. These data are usually sent as
input directly to the next program, which does some other type of function or calculation and sends the
new output to another program, and so on. Rather than saving the output of each program and
potentially taking up a good amount of disk space, the output is usually "piped" into the next program
as its input.

This is accomplished by providing data on the command line or through standard input. When a program
displays or sends output to the standard output file, the result would be displayed on the screenunless
that program is also "piped" to another program, in which case that standard output file is really the
standard input file of the next program. | assume you get the drift by now!

Command-line arguments allow a programmer or administrator to start a program perhaps with
different behavioral characteristics. Much of the time, this execution takes place in the middle of the
night and runs as a batch job without human interaction. Command-line arguments and program
options enable this type of functionality. As long as there are computers sitting idle at night and plenty
of work to be done, there will always be a need to run programs in the background on our very

expensive "calculators."

Python has two modules to help process command-line arguments. The first (and original), get opt is
easier but less sophisticated, while opt par se, introduced in Python 2.3, is more powerful library and is
much more object-oriented than its predecessor. If you are just getting started, we recommend get opt ,
but once you outgrow its feature set, then check out opt par se.

MEXT B

9.7. File System

NEXT B

Access to your file system occurs mostly through the Python os module. This module serves as the
primary interface to your operating system facilities and services from Python. The os module is actually

a front-end to the real module that is loaded, a module that is clearly operating systemdependent. This
"real” module may be one of the following: posi x (Unix-based, i.e., Linux, MacOS X, *BSD, Solaris,

etc.), nt (Win32), mac (old MacOS), dos (DOS), os2 (0S/2), etc. You should never import those modules
directly. Just import os and the appropriate module will be loaded, keeping all the underlying work

hidden from sight. Depending on what your system supports, you may not have access to some of the
attributes, which may be available in other operating system modules.

In addition to managing processes and the process execution environment, the os module performs
most of the major file system operations that the application developer may wish to take advantage of.
These features include removing and renaming files, traversing the directory tree, and managing file
accessibility. Table 9.5 lists some of the more common file or directory operations available to you from

the os module.

Table 9.5. os Module File/Directory Access Functions

Function

File Processing

nkfifo()/nknod()[gl

remove()/ unlink()

rename()/renames()

*st at [91()
sym i nk()
utime()

tnpfile()

wal k()[gl

Directories/Folders

chdi r()/fcholir()[éll

chroot()[gl
listdir()

Directories/Folders

[b]

Description

Create named pipe/create filesystem node

Delete file

Rename file
Return file statistics

Create symbolic link
Update timestamp

Create and open (‘w+b") new temporary file

Generate filenames in a directory tree

Change working directory/via a file descriptor
Change root directory of current process

List files in directory

a Return current working directory/same but in Unicode
getcwd()/ get cvvolu()[—1 g Yy

nkdir () / makedirs() Create directory(ies)
rodir()/renmovedirs() Remove directory(ies)

Access/Permissions

access() Verify permission modes
chrmod() Change permission modes
[al Change owner and group ID/same, but do not follow links

chown() /I chown()

umask() Set default permission modes

File Descriptor Operations

open() Low-level operating system open [for files, use the standard open()
built-in functions

read()/wite() Read/write data to a file descriptor

dup() / dup2() Duplicate file descriptor/same but to another FD

Device Numbers

makedev() [a] Generate raw device number from major and minor device numbers

Extract major/minor device number from raw device number
e or () LY i nor () 121 act major/minor device number from raw device numbe

@ New in Python 2.3.
B New in Python 1.5.2.
T |ncludes st at(),Istat(),xstat().

[New in Python 2.2.

A second module that performs specific pathname operations is also available. The os. pat h module is
accessible through the os module. Included with this module are functions to manage and manipulate
file pathname components, obtain file or directory information, and make file path inquiries. Table 9.6
outlines some of the more common functions in os. pat h.

Table 9.6. os. pat h Module Pathname Access
Functions

Function Description

Separation

basenane() Remove directory path and return leaf name

di rnane() Remove leaf name and return directory path
join() Join separate components into single pathname
split() Return (di rname(), basename()) tuple

splitdrive() Return (drivenane, pat hnane) tuple
splitext() Return (fil enane, ext ensi on) tuple

Information

getatime() Return last file access time

getctime() Return file creation time

getntime() Return last file modification time

get si ze() Return file size (in bytes)

Inquiry

exi sts() Does pathname (file or directory) exist?

i sabs() Is pathname absolute?

isdir() Does pathname exist and is a directory?
istile() Does pathname exist and is a file?

i slink() Does pathname exist and is a symbolic link?
I smount () Does pathname exist and is a mount point?
sarmefil e() Do both pathnames point to the same file?

These two modules allow for consistent access to the file system regardless of platform or operating
system. The program in Example 9.1 (ospat hex. py) test drives some of these functions from the os and

os. pat h modules.

Example 9.1. os & os. pat h Modules Example (ospat hex. py)

This code exercises some of the functionality found in the os and os. pat h modules. It
creates a test file, populates a small amount of data in it, renames the file, and dumps its
contents. Other auxiliary file operations are performed as well, mostly pertaining to
directory tree traversal and file pathname manipulation.

#! [/ usr/ bin/env python

1
2
3 inport os

4 for tnpdir in ("/tnp', r'c:\tenmp'):
5 if os.path.isdir(tnpdir):

6

7

8

br eak
el se

print 'no tenp directory avail abl e’
9 tmpdir ="'
10
11 if tnpdir:
12 os. chdir(tnpdir)
13 cwd = os.getcwd()
14 print '*** current tenporary directory'
15 print cwd
16
17 print '*** creating exanple directory...
18 os. nkdi r (' exanpl e")
19 0s. chdir (' exanpl e")
20 cwd = os.getcwd()
21 print '*** new working directory:
22 print cwd
23 print '*** original directory listing:'
24 print os.listdir(cwd)
25
26 print '*** creating test file...'
27 fobj = open('test', 'wW)
28 fobj.wite('foo\n')
29 fobj.wite('bar\n')
30 fobj.close()
31 print '*** updated directory listing:'
32 print os.listdir(cwd)
33
34 print "*** renamng 'test' to 'filetest.txt'"
35 os.renanme('test', 'filetest.txt")
36 print '*** updated directory listing:'
37 print os.listdir(cwd)
38
39 path = os.path.join(cwd, os.listdir (cwd)[0])
40 print "*** full file pathnane'
41 print path
42 print '*** (pathnanme, basenane) ==
43 print os.path.split(path)
44 print '*** (filenanme, extension) ==
45 print os.path.splitext(os.path. basenane(path))
46
47 print '*** displaying file contents:'
48 fobj = open(path)
49 for eachLine in fobj:
50 print eachLi ne,
51 fobj.close()

52

53 print '*** deleting test file

54 0s. renove(pat h)

55 print '*** updated directory listing:'
56 print os.listdir(cwd)

57 os.chdir(os. pardir)

58 print '*** deleting test directory'

59 os.rndir (' exanple')

60 print '*** DONE

The os. pat h submodule to os focuses more on file pathnames. Some of the more commonly used
attributes are found in Table 9.6.

Running this program on a Unix platform, we get the following output:

$ ospat hex. py

*** current tenporary directory
/[tnp

*** creating exanple directory...
*** new working directory:

[t mp/ exanpl e

*** original directory listing:
[]

*** creating test file..

*** ypdated directory listing:
['test']

*** renanming 'test' to 'filetest.txt
*** updated directory listing:
["filetest.txt']

*** full file pathnane:

[tnp/ exanpl e/ fil etest.txt

*** (pat hnane, basenane) ==
("/tnp/exanple', 'filetest.txt"')

*** (filenanme, extension) ==

("filetest', ".txt")

*** displaying file contents:
f oo

bar

*** deleting test file

*** updated directory listing:
[]

*** deleting test directory
*** DONE

Running this example from a DOS window results in very similar execution:

C.\ >pyt hon ospat hex. py

*** current tenporary directory
c:\wi ndows\tenp

*** creating exanple directory...
*** new working directory:

c: \wi ndows\t emp\ exanpl e

*** original directory listing:

[]

*** creating test file...

*** updated directory listing:
['test']

*** renamng 'test' to 'filetest.txt'
*** ypdated directory listing:
['filetest.txt']

*** full file pathnane:

c:\wi ndows\tenmp\ exanpl e\fil etest.txt
*** (pat hnane, basenane) ==

("c:\\wi ndows\\temp\\exanple', "filetest.txt")
*** (filenanme, extension) ==

("filetest', ".txt')

*** displaying file contents:
f oo

bar

*** deleting test file

*** ypdated directory listing:
[]

*** deleting test directory
*** DONE

Rather than providing a line-by-line explanation here, we will leave it to the reader as an exercise.
However, we will walk through a similar interactive example (including errors) to give you a feel for
what it is like to execute this script one step at a time. We will break into the code every now and then
to describe the code we just encountered.

>>> jnport os

>>> os.path.isdir('/tnp")
True

>>> os.chdir('/tnp')

>>> cwd = o0s. getcwd()
>>> cwd

'/tn'p'

This first block of code consists of importing the os module (which also grabs the os. pat h module). We
verify that ' /t np' is a valid directory and change to that temporary directory to do our work. When we
arrive, we call the get cwd() method to tell us where we are.

>>> os. nkdir (' exanpl e')

>>> os. chdir (' exanple')

>>> cwd = os. getcwd()

>>> cwd

"/t np/ exanpl e'

>>>

>>> os.listdir() # oops, forgot nane
Traceback (innernost |ast):

File "<stdin>", line 1, in ?
TypeError: function requires at |east one argunent
>>>

>>> os.listdir(cwd) # that's better :)
[]

Next, we create a subdirectory in our temporary directory, after which we will use the li stdir() method

to confirm that the directory is indeed empty (since we just created it). The problem with our first call to
listdir() was that we forgot to give the name of the directory we want to list. That problem is quickly

remedied on the next line of input.

>>> fobj = open('test', '"wW)
>>> fobj.wite('foo\n")

>>> fobj.wite('bar\n")

>>> fobj.close()

>>> 0s.|istdir(cwd)

["test']

We then create a test file with two lines and verify that the file has been created by listing the directory
again afterward.

>>> os.renane('test', 'filetest.txt")
>>> o0s. listdir(cwd)
['filetest.txt']

>>>

>>> path = os.path.join(cwd, os.listdir(cwd)[0])
>>> pat h

"/tnp/ exanple/filetest.txt'

>>>

>>> 0s. path.isfile(path)

True

>>> 0s. path.isdir(path)

Fal se

>>>

>>> 0s. pat h. split(path)
("/tnp/exanple', 'filetest.txt"')

>>>
>>> 0s. pat h. splitext(os. path. basenane(path))
("filetest', ".ext')

This section is no doubt an exercise of os. pat h functionality, testing join(), isfile(), isdir() which we
have seen earlier, split(), basenane(), and splitext(). We also call the renane() function from os. Next,
we display the file, and finally, we delete the temporary files and directories:

>>> fobj = open(path)

>>> for eachLine in fobj:
print eachlLi ne,

foo

bar

>>> fobj.close()

>>> 0s. renove(pat h)

>>> o0s. listdir(cwd)

[]

>>> 0s. chdir(os. pardir)
>>> os. rndir (' exanple')

Core Module(S): os (and os. pat h)

As you can tell from our lengthy discussion above, the os and os. path

modules provide different ways to access the file system on your
computer. Although our study in this chapter is restricted to file access
only, the os module can do much more. It lets you manage your
process environment, contains provisions for low-level file access,
allows you to create and manage new processes, and even enables
your running Python program to "talk" directly to another running
program. You may find yourself a common user of this module in no
time. Read more about the os module in Chapter 14.

MNEXT B

e Py EXT

9.8. File Execution

Whether we want to simply run an operating system command, invoke a binary executable, or another
type of script (perhaps a shell script, Perl, or Tcl/Tk), this involves executing another file somewhere
else on the system. Even running other Python code may call for starting up another Python interpreter,
although that may not always be the case. In any regard, we will defer this subject to Chapter 14,

"Execution Environment." Please proceed there if you are interested in how to start other programs,

perhaps even communicating with them, and for general information regarding Python's execution
environment.

e Py EXT

e Py EXT

9.9. Persistent Storage Modules

In many of the exercises in this text, user input is required. After many iterations, it may be somewhat
frustrating being required to enter the same data repeatedly. The same may occur if you are entering a
significant amount of data for use in the future. This is where it becomes useful to have persistent
storage, or a way to archive your data so that you may access them at a later time instead of having to
re-enter all of that information. When simple disk files are no longer acceptable and full relational
database management systems (RDBMSs) are overkill, simple persistent storage fills the gap. The
majority of the persistent storage modules deals with storing strings of data, but there are ways to
archive Python objects as well.

9.9.1. pi ckl e and mar shal Modules

Python provides a variety of modules that implement minimal persistent storage. One set of modules
(mar shal and pi ckl e) allows for pickling of Python objects. Pickling is the process whereby objects more

complex than primitive types can be converted to a binary set of bytes that can be stored or transmitted
across the network, then be converted back to their original object forms. Pickling is also known as
flattening, serializing, or marshalling. Another set of modules (dbhash/ bsddb, dom gdbm dunbdbm) and

their "manager” (anydbm) can provide persistent storage of Python strings only. The last module (shel ve)
can do both.

As we mentioned before, both marshal and pi ckl e can flatten Python objects. These modules do not

provide "persistent storage" per se, since they do not provide a hamespace for the objects, nor can they
provide concurrent write access to persistent objects. What they can do, however, is to pickle Python
objects to allow them to be stored or transmitted. Storage, of course, is sequential in nature (you store
or transmit objects one after another). The difference between mar shal and pi ckl e is that marshal can

handle only simple Python objects (numbers, sequences, mapping, and code) while pi ckl e can

transform recursive objects, objects that are multi-referenced from different places, and user-defined
classes and instances. The pi ckl e module is also available in a turbo version called cPi ckl e, which

implements all functionality in C.
9.9.2. DBM-style Modules

The *db* series of modules writes data in the traditional DBM format. There are a large number of
different implementations: dbhash/ bsddb, dbm, gdbm, and dunbdbm If you are particular about any specific
DBM module, feel free to use your favorite, but if you are not sure or do not care, the generic anydbm

module detects which DBM-compatible modules are installed on your system and uses the "best” one at
its disposal. The dumbdbm module is the most limited one, and is the default used if none of the other

packages is available. These modules do provide a namespace for your objects, using objects that
behave similar to a combination of a dictionary object and a file object. The one limitation of these
systems is that they can store only strings. In other words, they do not serialize Python objects.

9.9.3. shel ve Module

Finally, we have a somewhat more complete solution, the shel ve module. The shel ve module uses the
anydbmmodule to find a suitable DBM module, then uses cPi ckl e to perform the pickling process. The
shel ve module permits concurrent read access to the database file, but not shared read/write access.
This is about as close to persistent storage as you will find in the Python standard library. There may be

file:///D|/1/0132269937/14051536.html

other external extension modules that implement "true" persistent storage. The diagram in Figure 9-1

shows the relationship between the pickling modules and the persistent storage modules, and how the
shelve object appears to be the best of both worlds.

Figure 9-1. Python modules for serialization and persistency

anydbm
dbm
marshal
gdbm
pickle
dbhash
dumbdbm
Provide serialization or Provide dictionary- and file-like
pickling of Python objects object to allow for persistent

storage of strings

shelve

Provides serialization or pickling of Python objects
as well as a dictionary- and file-like object to allow
for persistent storage of such flattened objects

Core Module: pi ckl e and cPi ckl e

The pi ckl e module allows you to store Python objects directly to a file

without having to convert them to strings or to necessarily write them
out as binary files using low-level file access. Instead, the pi ckl e

module creates a Python-only binary version that allows you to cleanly
read and write objects in their entirety without having to worry about
all the file details. All you need is a valid file handle, and you are ready
to read or write objects from or to disk.

The two main functions in the pi ckl e module are dunp() and | oad() .
The dunp() function takes a file handle and a data object and saves

the object in a format it understands to the given file. When a pickled
object is loaded from disk using | oad() , it knows exactly how to

restore that object to its original configuration before it was saved to
disk. We recommend you take a look at pi ckl e and its "smarter"

brother, shel ve, which gives you dictionary-like functionality so there
is even less file overhead on your part. cPi ckl e is the faster C-
compiled version of pi ckl e.

MNEXT B

file:///D|/1/0132269937/14051536.html

e prcy | NEXT

9.10. Related Modules

There are plenty of other modules related to files and input/output, all of which work on most of the
major platforms. Table 9.7 lists some of the filerelated modules.

Table 9.7. Related File Modules

Module(s) Contents

base64 Encoding/decoding of binary strings to/from text strings

bi nasci i Encoding/decoding of binary and ASClI-encoded binary strings
bZZ[gl] Allows access to BZ2 compressed files

csv[ﬂ Allows access to comma-separated value files

‘il ecnp[g]_ Compares directories and files

fileinput Iterates over lines of multiple input text files

get opt / opt parse[gl Provides command-line argument parsing/manipulation

gl ob/ fnmat ch Provides Unix-style wildcard character matching

gzip/zlib Reads and writes GNU zip (gzi p) files (needs zI i b module for compression)
shutil Offers high-level file access functionality

¢/ Sstringl O Implements file-like interface on top of string objects

carfil e[g] Reads and writes TAR archive files, even compressed ones

tenpfile Generates temporary file names or files

uu uuencode and uudecode files

Zipfile o Tools and utilities to read and write ZIP archive files

@ New in Python 2.3.
I New in Python 2.0.

[New in Python 1.6.

file:///D|/1/0132269937/14051536.html

The fil ei nput module iterates over a set of input files and reads their contents one line at a time,

allowing you to iterate over each line, much like the way the Perl (< >) operator works without any
provided arguments. File names that are not explicitly given will be assumed to be provided from the
command-line.

The gl ob and f nmat ch modules allow for file name pattern-matching in the good old-fashioned Unix shell-
style, for example, using the asterisk (*) wildcard character for all string matches and the (?) for
matching single characters.

Core Tip: Tilde (~) expansion via os. pat h. expanduser ()

Although the gl ob and f nmat ch allow for Unix-style pattern-matching,

they do not enable the expansion of the tilde (home directory)
character, ~ . This is handled by the os. pat h. expanduser () function.

You pass in a path containing a tilde, and it returns the equivalent
absolute file path. Here are two examples, in a Unix-based
environment and in Win32:

>>> 0s. pat h. expanduser (' ~; / py')
' [home/ wesl ey/ py'

>>> 0s. pat h. expanduser (' ~; / py"')
"C:\\Docunents and Settings\\wesley/py'

In addition, Unix-flavored systems also support the " ~user " notation

indicating the home directory for a specific user. Also, note that the
Win32 version does not change forward slashes to the DOS
backslashes in a directory path.

The gzi p and zl i b modules provide direct file access to the zl i b compression library. The gzi p module,
written on top of the zl i b module, allows for standard file access, but provides for automatic gzi p-
compatible compression and decompression. bz2 is like gzi p but for bzipped files.

The zi pfil e module introduced in 1.6 allows the programmer to create, modify, and read zi p archive
files. (The tarfil e module serves as an equivalent for TAR archive files.) In 2.3, Python was given the
ability to import modules archived in zip files as well. See Section 12.5.7 for more information.

The shuti| module furnishes high-level file access, performing such functions as copying files, copying
file permissions, and recursive directory tree copying, to name a few.

The tenpfil e module can be used to generate temporary filenames and files.

In our earlier chapter on strings, we described the Stri ngl O module (and its C-compiled companion
cStringl O), and how it overlays a file interface on top of string objects. This interface includes all of the
standard methods available to regular file objects.

The modules we mentioned in the Persistent Storage section above (Section 9.9) include examples of a
hybrid file- and dictionary-like object.

Some other Python modules that generate file-like objects include network and file socket objects
(socket module), the popen*() file objects that connect your application to other running processes (os

and popen2 modules), the f dopen() file object used in low-level file access (os module), and opening a
network connection to an Internet Web server via its Uniform Resource Locator (URL) address (urllib

module). Please be aware that not all standard file methods may be implemented for these objects.
Likewise, they may provide functionality in addition to what is available for regular files.

Refer to the documentation for more details on these file access-related modules. In addition, you can
find out more about file()/open(), files, file objects, and UNS at:

http://docs.python.org/lib/built-in-funcs.html

http://docs.python.org/lib/bltin-file-objects.html

http://www.python.org/doc/2.3/whatsnew/node7.html

http://www.python.org/doc/peps/pep-0278/

e Py EXT

http://docs.python.org/lib/built-in-funcs.html
http://docs.python.org/lib/bltin-file-objects.html
http://www.python.org/doc/2.3/whatsnew/node7.html
http://www.python.org/doc/peps/pep-0278/
file:///D|/1/0132269937/14051536.html

e Py EXT

9.11. Exercises

9-1. File Filtering. Display all lines of a file, except those that start with a pound sign (#),
the comment character for Python, Perl, Tcl, and most other scripting languages.

Extra credit: Also strip out comments that begin after the first character.
9-2. File Access. Prompt for a number N and file F, and display the first N lines of F.
9-3. File Information. Prompt for a filename and display the number of lines in that text file.

9-4. File Access. Write a "pager" program. Your solution should prompt for a filename, and
display the text file 25 lines at a time, pausing each time to ask the user to "press a
key to continue.”

9-5. Test Scores. Update your solution to the test scores problems (Exercises 5-3 and 6-4)

by allowing a set of test scores be loaded from a file. We leave the file format to your
discretion.

9-6. File Comparison. Write a program to compare two text files. If they are different, give
the line and column numbers in the files where the first difference occurs.

9-7. Parsing Files. Win32 users: Create a program that parses a Windows . i ni file. POSIX
users: Create a program that parses the / et ¢/ servi ces file. All other platforms: Create
a program that parses a system file with some kind of structure to it.

9-8. Module Introspection. Extract module attribute information. Prompt the user for a
module name (or accept it from the command line). Then, using dir() and other built-

in functions, extract all its attributes, and display their names, types, and values.

9-9. "PythonDoc." Go to the directory where your Python standard library modules are
located. Examine each .py file and determine whether a __doc__ string is available for
that module. If so, format it properly and catalog it. When your program has
completed, it should present a nice list of those modules that have documentation
strings and what they are. There should be a trailing list showing which modules do
not have documentation strings (the shame list). Extra credit: Extract documentation
for all classes and functions within the standard library modules.

9-10.

9-11.

9-12.

Home Finances. Create a home finance manager. Your solution should be able to
manage savings, checking, money market, certificate of deposit (CD), and similar
accounts. Provide a menu-based interface to each account as well as operations such
as deposits, withdrawals, debits, and credits. An option should be given to a user to
remove transactions as well. The data should be stored to file when the user quits the
application (but randomly during execution for backup purposes).

Web site Addresses.

Write a URL bookmark manager. Create a text-driven menu-based application
that allows the user to add, update, or delete entries. Entries include a site
name, Web site URL address, and perhaps a one-line description (optional).
Allow search functionality so that a search "word" looks through both names
and URLs for possible matches. Store the data to a disk file when the user
quits the application, and load up the data when the user restarts.

(b) Upgrade your solution to part (a) by providing output of the bookmarks to
a legible and syntactically correct HTML file (.ht mor .ht nl) so that users can
then point their browsers to this output file and be presented with a list of their
bookmarks. Another feature to implement is allowing the creation of "folders"
to allow grouping of related bookmarks. Extra credit: Read the literature on
regular expressions and the Python re module. Add regular expression

validation of URLs that users enter into their databases.

Users and Passwords.

Do Exercise 7-5, which keeps track of usernames and passwords. Update your code to

support a "last login time" (7-5a). See the documentation for the time module to
obtain timestamps for when users "log in" to the system.

Also, create the concept of an "administrative” user that can dump a list of all the
users, their passwords (you can add encryption on top of the passwords if you wish [7-
5c]), and their last login times (7-5b).

a.
The data should be stored to disk, one line at a time, with fields delimited by
colons (:), e.g., "j oe: boohoo: 953176591. 145", for each user. The number of
lines in the file will be the number of users that are part of your system.

b.

Further update your example such that instead of writing out one line at a
time, you pickle the entire data object and write that out instead. Read the
documentation on the pi ckl e module to find out how to flatten or serialize your

9-13.

9-14.

object, as well as how to perform 1/0 using picked objects. With the addition of
this new code, your solution should take up fewer lines than your solution in

part (a).

Replace your login database and explicit use of pi ckl e by converting your code
to use shel ve files. Your resulting source file should actually take up fewer lines
than your solution to part (b) because some of the maintenance work is gone.

Command-Line Arguments.
a.

What are they, and why might they be useful?

Write code to display the command-line arguments which were entered.

Logging Results. Convert your calculator program
(Exercise 5-6) to take input from the command line, i.e.,

$calc.py 1 + 2

Output the result only. Also, write each expression and result to a disk file. Issuing a
command of...

$ calc.py print

... will cause the entire contents of the "register tape" to be dumped to the screen and
file reset/truncated. Here is an example session:

$calc.py 1 + 2
3

$ calc.py 3 "~ 3
27

$ calc.py print
1+ 2

3

37N 3

27

$ calc.py print
$

Extra credit: Also strip out comments that begin after the first character.

9-15. Copying Files. Prompt for two filenames (or better yet, use command-line arguments).
The contents of the first file should be copied to the second file.

9-16. Text Processing. You are tired of seeing lines on your e-mail wrap because people type
lines that are too long for your mail reader application. Create a program to scan a
text file for all lines longer than 80 characters. For each of the offending lines, find the
closest word before 80 characters and break the line there, inserting the remaining
text to the next line (and pushing the previous next line down one). When you are
done, there should be no lines longer than 80 characters.

9-17. Text Processing. Create a crude and elementary text file editor. Your solution is menu-
driven, with the following options:

1.

create file [prompt for filename and any number of lines of input],

display file [dump its contents to the screen],

edit file (prompt for line to edit and allow user to make changes),

save file, and

quit.

9-18. Searching Files. Obtain a byte value (0-255) and a filename. Display the number of
times that byte appears in the file.

9-19.

9-20.

9-21.

9-22.

9-23.

Generating Files. Create a sister program to the previous problem. Create a binary
data file with random bytes, but one particular byte will appear in that file a set
number of times. Obtain the following three values:

1.

a byte value (0-255),

the number of times that byte should appear in the data file, and

the total number of bytes that make up the data file.

Your job is to create that file, randomly scatter the requested byte across the file,
ensure that there are no duplicates, the file contains exactly the number of
occurrences that byte was requested for, and that the resulting data file is exactly the
size requested.

Compressed Files. Write a short piece of code that will compress and decompress
gzipped or bzipped files. Confirm your solution works by using the command-line gzi p

or bzi p2 programs or a GUI program like PowerArchiver, Stufflt, and/or WinZip.

ZIP Archive Files. Create a program that can extract files from or add files to, and
perhaps creating, a ZIP archive file.

ZIP Archive Files. The unzip -1 command to dump the contents of ZIP archive is
boring. Create a Python script called | szi p. py that gives additional information such

as: the compressed file size, the compressed percentage of each file (by comparing
the original and compressed file sizes), and a full ti me. cti me() timestamp instead of

the unzip output (of just the date and HH:MM). Hint: The date_ti ne attribute of an
archived file does not contain enough information to feed to ti ne. nkti nme() ... it is up to
youl!

TAR Archive Files. Repeat the previous problem for TAR archive files. One difference
between these two types of files is that ZIP files are generally compressed, but TAR
files are not and usually require the support of gzi p or bzi p2. Add either type of

compression support. Extra credit: Support both gzi p and bzi p2.

9-24. File Transfer Between Archive Files. Take your solutions from the previous two
problems and write a program that moves files between ZIP (. zi p) and TAR/gzip (.

tgz/.tar.gz) or TAR/bzip2 (.tbz/.tar. bz2) archive files. The files may preexist; create
them if necessary.

9-25. Universal Extractor. Create an application that will take any number of files in an
archived and/or compression format, i.e., . zip, .tgz, .tar.gz, .gz, . bz2, .tar. bz2, .
t bz, and a target directory. The program will uncompress the standalone files to the
target while all archived files will be extracted into subdirectories named the same as
the archive file without the file extension. For example, if the target directory was
i nconi ng, and the input files were header .t xt. gz and dat a. t gz, header. t xt will be

extracted to i nconi ng while the files in dat a. t gz will be pulled out into i nconi ng/ dat a.

e Py EXT

e Py EXT

Chapter 10. Errors and Exceptions

Chapter Topics

« What Are Exceptions?

« EXxceptions in Python

o Detecting and Handling Exceptions
« Context Management

« Raising Exceptions

« Assertions

« Standard Exceptions

« Creating Exceptions

« Why Exceptions?

« Related Modules

Errors are an everyday occurrence in the life of a programmer. In days hopefully long since past, errors
were either fatal to the program (or perhaps the machine) or produced garbage output that was not
recognized as valid input by other computers or programs or by the humans who submitted the job to
be run. Any time an error occurred, execution was halted until the error was corrected and code was re-
executed. Over time, demand surged for a "softer” way of dealing with errors other than termination.
Programs evolved such that not every error was malignant, and when they did happen, more diagnostic
information was provided by either the compiler or the program during runtime to aid the programmer
in solving the problem as quickly as possible. However, errors are errors, and any resolution usually
took place after the program or compilation process was halted. There was never really anything a piece
of code could do but exit and perhaps leave some crumbs hinting at a possible causeuntil exceptions and
exception handling came along.

Although we have yet to cover classes and object-oriented programming in Python, many of the

. . [1]
concepts presented here involve classes and class instances.
optional section on how to create your own exception classes.

We conclude the chapter with an

1 As of Python 1.5, all standard exceptions are implemented as classes. If new to classes, instances, and other object-
oriented terminology, the reader should see Chapter 13 for clarification.

This chapter begins by exposing the reader to exceptions, exception handling, and how they are
supported in Python. We also describe how programmers can generate exceptions within their code.
Finally, we reveal how programmers can create their own exception classes.

e Py EXT

e Py EXT

10.1. What Are Exceptions?

10.1.1. Errors

Before we get into detail about what exceptions are, let us review what errors are. In the context of
software, errors are either syntactical or logical in nature. Syntax errors indicate errors with the
construct of the software and cannot be executed by the interpreter or compiled correctly. These errors
must be repaired before execution can occur.

Once programs are semantically correct, the only errors that remain are logical. Logical errors can either
be caused by lack of or invalid input, or, in other cases, by the inability of the logic to generate,
calculate, or otherwise produce the desired results based on the input. These errors are sometimes
known as domain and range failures, respectively.

When errors are detected by Python, the interpreter indicates that it has reached a point where
continuing to execute in the current flow is no longer possible. This is where exceptions come into the
picture.

10.1.2. Exceptions

Exceptions can best be described as action that is taken outside of the normal flow of control because of
errors. This action comes in two distinct phases: The first is the error that causes an exception to occur,
and the second is the detection (and possible resolution) phase.

The first phase takes place when an exception condition (sometimes referred to as exceptional
condition) occurs. Upon detection of an error and recognition of the exception condition, the interpreter
performs an operation called raising an exception. Raising is also known as triggering, throwing, or
generating, and is the process whereby the interpreter makes it known to the current control flow that
something is wrong. Python also supports the ability of the programmer to raise exceptions. Whether
triggered by the Python interpreter or the programmer, exceptions signal that an error has occurred.
The current flow of execution is interrupted to process this error and take appropriate action, which
happens to be the second phase.

The second phase is where exception handling takes place. Once an exception is raised, a variety of
actions can be invoked in response to that exception. These can range anywhere from ignoring the
error, to logging the error but otherwise taking no action, performing some corrective measures and
aborting the program, or alleviating the problem to allow for resumption of execution. Any of these
actions represents a continuation, or an alternative branch of control. The key is that the programmer
can dictate how the program operates when an error occurs.

As you may have already concluded, errors during runtime are primarily caused by external reasons,
such as poor input, a failure of some sort, etc. These causes are not under the direct control of the
programmer, who can anticipate only a few of the errors and code the most general remedies.

Languages like Python, which support the raising andmore importantlythe handling of exceptions,
empower the developer by placing them in a more direct line of control when errors occur. The
programmer not only has the ability to detect errors, but also to take more concrete and remedial
actions when they occur. Due to the ability to manage errors during runtime, application robustness is
increased.

Exceptions and exception handling are not new concepts. They are also present in Ada, Modula-3, C++,

Eiffel, and Java. The origins of exceptions probably come from operating systems code that handles
exceptions such as system errors and hardware interruptions. Exception handling as a software tool
made its debut in the mid-1960s with PL/1 being the first major programming language that featured
exceptions. Like some of the other languages supporting exception handling, Python is endowed with
the concepts of a "try" block and "catching™ exceptions and, in addition, provides for more "disciplined”
handling of exceptions. By this we mean that you can create different handlers for different exceptions,
as opposed to a general "catch-all" code where you may be able to detect the exception that occurred in
a post-mortem fashion.

e prcy | NEXT B

e Py EXT

10.2. Exceptions in Python

As you were going through some of the examples in the previous chapters, you no doubt noticed what
happens when your program "crashes" or terminates due to unresolved errors. A "traceback" notice
appears along with a notice containing as much diagnostic information as the interpreter can give you,
including the error name, reason, and perhaps even the line number near or exactly where the error
occurred. All errors have a similar format, regardless of whether running within the Python interpreter or
standard script execution, providing a consistent error interface. All errors, whether they be syntactical
or logical, result from behavior incompatible with the Python interpreter and cause exceptions to be
raised.

Let us take a look at some exceptions now.

NaneError: attempt to access an undeclared variable

>>> f 00
Traceback (innernost |ast):
File "<stdin>", line 1, in ?

NameError: nanme 'foo' is not defined

NaneEr r or indicates access to an uninitialized variable. The offending identifier was not found in the
Python interpreter's symbol table. We will be discussing namespaces in the next two chapters, but as an
introduction, regard them as "address books" linking names to objects. Any object that is accessible
should be listed in a namespace. Accessing a variable entails a search by the interpreter, and if the
name requested is not found in any of the namespaces, a NaneErr or exception will be generated.

Zer oDi vi si onError: division by any numeric zero

>>> 1/0
Traceback (innernost |ast):
File "<stdin>", line 1, in ?

ZeroDivisionError: integer division or nmodulo by zero

Our example above used floats, but in general, any numeric division-by-zero will result in a
Zer oDi vi si onError exception.

Synt axError: Python interpreter syntax error

>>> for
File "<string>", line 1

for

N

SyntaxError: invalid syntax

Synt axEr r or exceptions are the only ones that do not occur at run-time. They indicate an improperly
constructed piece of Python code which cannot execute until corrected. These errors are generated at
compile-time, when the interpreter loads and attempts to convert your script to Python bytecode. These
may also occur as a result of importing a faulty module.

I ndexError: request for an out-of-range index for sequence

>>> alist =[]
>>> alist[0]
Traceback (innernost |ast):
File "<stdin>", line 1, in ?
I ndexError: list index out of range

I ndexError is raised when attempting to access an index that is outside the valid range of a sequence.

KeyError: request for a non-existent dictionary key

>>> aDict = {"host': "earth', 'port': 80}
>>> print aDict['server']
Traceback (innernost |ast):
File "<stdin>", line 1, in ?
KeyError: server

Mapping types such as dictionaries depend on keys to access data values. Such values are not retrieved
if an incorrect/nonexistent key is requested. In this case, a KeyErroris raised to indicate such an incident

has occurred.
| CError: input/output error

>>> f = open("bl ah")
Traceback (innernost |ast):
File "<stdin>", line 1, in ?
|OError: [Errno 2] No such file or directory: 'blah'

Attempting to open a nonexistent disk file is one example of an operating system input/output (1/0)
error. Any type of 1/0 error raises an | Cerror exception.

AttributeError: attempt to access an unknown object attribute

>>> cl ass nyCl ass(object):
pass

>>> mylnst = myd ass()

>>> nyl nst. bar = ' spani

>>> nyl nst. bar

" spani

>>> nyl nst. foo

Traceback (innernost |ast):
File "<stdin>, line 1, in ?

AttributeError: foo

In our example, we stored a value in nyl nst . bar, the bar attribute of instance nyl nst . Once an attribute
has been defined, we can access it using the familiar dotted-attribute notation, but if it has not, as in

our case with the f oo (non-)attribute, an Attri but eError occurs.

e Py EXT

file:///D|/1/0132269937/14051536.html

e Py EXT

10.3. Detecting and Handling Exceptions

Exceptions can be detected by incorporating them as part of a try statement. Any code suite of a TRy
statement will be monitored for exceptions.

There are two main forms of the TRy statement: TRy-except and try-finally. These statements are
mutually exclusive, meaning that you pick only one of them. A try statement can be accompanied by
one or more except clauses, exactly one final |y clause, or a hybrid try-except-finally combination.

try-except statements allow one to detect and handle exceptions. There is even an optional el se clause
for situations where code needs to run only when no exceptions are detected. Meanwhile, TRy-finally

statements allow only for detection and processing of any obligatory cleanup (whether or not exceptions
occur), but otherwise have no facility in dealing with exceptions. The combination, as you might
imagine, does both.

10.3.1. try- except Statement

The TRy- except statement (and more complicated versions of this statement) allows you to define a
section of code to monitor for exceptions and also provides the mechanism to execute handlers for
exceptions.

The syntax for the most general try- except statement is given below. It consists of the keywords along
with the try and except blocks (try_suite and except_suite) as well as optionally saving the reason of
failure:

try:

try suite # watch for exceptions here
except Exception[, reason]:

except _suite # exception-handling code

Let us give one example, then explain how things work. We will use our | CError example from above.
We can make our code more robust by adding a try- except "wrapper” around the code:

>>> try:
f = open('blah', "r")
except | Cerror, e:

print 'could not open file:', e

could not open file: [Errno 2] No such file or directory

file:///D|/1/0132269937/14051536.html

As you can see, our code now runs seemingly without errors. In actuality, the same | OCError still

occurred when we attempted to open the nonexistent file. The difference? We added code to both detect
and handle the error. When the | OError exception was raised, all we told the interpreter to do was to

output a diagnostic message. The program continues and does not "bomb out"” as our earlier examplea
minor illustration of the power of exception handling. So what is really happening codewise?

During runtime, the interpreter attempts to execute all the code within the try statement. If an
exception does not occur when the code block has completed, execution resumes past the except
statement. When the specified exception named on the except statement does occur, we save the
reason, and control flow immediately continues in the handler (all remaining code in the TRy clause is
skipped) where we display our error message along with the cause of the error.

In our example above, we are catching only | OError exceptions. Any other exception will not be caught
with the handler we specified. If, for example, you want to catch an OSError, you have to add a handler
for that particular exception. We will elaborate on the try- except syntax more as we progress further in
this chapter.

Core Note: Skipping code, continuation, and upward propagation

The remaining code in the try suite from the point of the exception is
never reached (hence never executed). Once an exception is raised,
the race is on to decide on the continuing flow of control. The
remaining code is skipped, and the search for a handler begins. If one
is found, the program continues in the handler.

If the search is exhausted without finding an appropriate handler, the
exception is then propagated to the caller's level for handling,
meaning the stack frame immediately preceding the current one. If
there is no handler at the next higher level, the exception is yet again
propagated to its caller. If the top level is reached without an
appropriate handler, the exception is considered unhandl ed, and the
Python interpreter will display the traceback and exit.

10.3.2. Wrapping a Built-in Function

We will now present an interactive examplestarting with the bare necessity of detecting an error, then
building continuously on what we have to further improve the robustness of our code. The premise is in
detecting errors while trying to convert a numeric string to a proper (numeric object) representation of
its value.

The fl oat () built-in function has a primary purpose of converting any numeric type to a float. In Python
1.5, fl oat () was given the added feature of being able to convert a number given in string
representation to an actual float value, obsoleting the use of the at of () function of the stri ng module.
Readers with older versions of Python may still use string. atof (), replacing fl oat (), in the examples
we use here.

>>> f| oat (12345)
12345.0

>>> f| oat ('12345")
12345.0

>>> f| oat (' 123. 45e67')

1. 2345e+069

Unfortunately, fl oat () is not very forgiving when it comes to bad input:

>>> float('foo')
Traceback (innernost |ast):
File "<stdin>", line 1, in ?
float('foo")
Val ueError: invalid literal for float(): foo

>>>
>>> float(['"this is', 1, 'list'])
Traceback (innernost |ast):
File "<stdin>", line 1, in ?
float(['this is', 1, "list'])

TypeError: float() argunent nmust be a string or a nunber

Notice in the errors above that f | oat () does not take too kindly to strings that do not represent

numbers or non-strings. Specifically, if the correct argument type was given (string type) but that type
contained an invalid value, the exception raised would be Vval ueError because it was the value that was

improper, not the type. In contrast, a list is a bad argument altogether, not even being of the correct
type; hence, TypeError was thrown.

Our exercise is to call f1 oat () "safely,” or in a more "safe manner,” meaning that we want to ignore error

situations because they do not apply to our task of converting numeric string values to floating point
numbers, yet are not severe enough errors that we feel the interpreter should abandon execution. To
accomplish this, we will create a "wrapper" function, and, with the help of TRy- except , create the

environment that we envisioned. We shall call it safe_f 1 oat (). In our first iteration, we will scan and
ignore only Val ueError s, because they are the more likely culprit. TypeErrors rarely happen since
somehow a non-string must be given to fl oat () .

def safe_ float(obj):
try:
return float(obj)
except Val ueError:
pass

The first step we take is to just "stop the bleeding." In this case, we make the error go away by just
"swallowing it." In other words, the error will be detected, but since we have nothing in the except suite

(except the pass statement, which does nothing but serve as a syntactical placeholder for where code is
supposed to go), no handling takes place. We just ignore the error.

One obvious problem with this solution is that we did not explicitly return anything to the function caller
in the error situation. Even though None is returned (when a function does not return any value

explicitly, i.e., completing execution without encountering a r et ur n obj ect statement), we give little or
no hint that anything wrong took place. The very least we should do is to explicitly return None so that
our function returns a value in both cases and makes our code somewhat easier to understand:

def safe_float(obj):
try:
retval = float(obj)
except Val ueError:

retval = None
return retval

Bear in mind that with our change above, nothing about our code changed except that we used one
more local variable. In designing a well-written application programmer interface (APIl), you may have
kept the return value more flexible. Perhaps you documented that if a proper argument was passed to
safe_float (), then indeed, a floating point number would be returned, but in the case of an error, you
chose to return a string indicating the problem with the input value. We modify our code one more time
to reflect this change:

def safe float(obj):

try:
retval = float(obj)
except Val ueError:
retval = 'could not convert non-nunber to float'

return retval

The only thing we changed in the example was to return an error string as opposed to just None. We
should take our function out for a test drive to see how well it works so far:

>>> safe float('12.34")

12. 34

>>> safe float('bad input')

‘coul d not convert non-nunber to float'

We made a good startnow we can detect invalid string input, but we are still vulnerable to invalid
objects being passed in:

>>> safe float({'a': 'Dict'})
Traceback (innernost |ast):
File "<stdin>", line 3, in ?
retval = float(obj)
TypeError: float() argunent must be a string or a number

We will address this final shortcoming momentarily, but before we further modify our example, we
would like to highlight the flexibility of the try- except syntax, especially the except statement, which

comes in a few more flavors.
10.3.3. t ry Statement with Multiple except s

Earlier in this chapter, we introduced the following general syntax for except :

except Exception[, reason]:
suite _for_exception_Exception

The except statement in such formats specifically detects exceptions named Excepti on. You can chain
multiple except statements together to handle different types of exceptions with the same TRy:

except Exceptionl[, reasonl]:
suite for_exception_Exceptionl

except Exception2[, reason2]:
suite for_exception_Exception2

This same try clause is attempted, and if there is no error, execution continues, passing all the except

clauses. However, if an exception does occur, the interpreter will look through your list of handlers
attempting to match the exception with one of your handlers (except clauses). If one is found, execution

proceeds to that except suite.

Our saf e_f | oat () function has some brains now to detect specific exceptions. Even smarter code would
handle each appropriately. To do that, we have to have separate except statements, one for each
exception type. That is no problem as Python allows except statements can be chained together. We will

now create separate messages for each error type, providing even more detail to the user as to the
cause of his or her problem:

def safe_float(obj):

try:

retval = float(obj)
except Val ueError:

retval = 'could not convert non-nunber to float'
except TypeError:

retval = 'object type cannot be converted to float'

return retval

Running the code above with erroneous input, we get the following:

>>> safe_float('xyz')

"could not convert non-nunber to float’
>>> safe float(())

"argunment nust be a string'

>>> safe fl oat (200L)

200.0

>>> safe_fl oat (45.67000)

45. 67

10.3.4. except Statement with Multiple Exceptions

We can also use the same except clause to handle multiple exceptions. except statements that process
more than one exception require that the set of exceptions be contained in a tuple:

except (Exceptionl, Exception2)[, reason]:
suite_for_Exceptionl_and_Exception2

The above syntax example illustrates how two exceptions can be handled by the same code. In general,
any number of exceptions can follow an except statement as long as they are all properly enclosed in a

tuple:

except (Excl[, Exc2[, ... ExcN])[, reason]:
suite for_exceptions Excl to ExcN

If for some reason, perhaps due to memory constraints or dictated as part of the design that all
exceptions for our saf e_fl oat () function must be handled by the same code, we can now accommodate

that requirement:

def safe float(obj):

try:
retval = float(obj)
except (ValueError, TypeError):
retval = "argunent nust be a nunber or nuneric string'

return retval

Now there is only the single error string returned on erroneous input:

>>> safe float (' Spanish Inquisition')
"argunment nust be a nunber or nuneric string
>>> safe float([])

"argunent nust be a nunber or nuneric string
>>> safe_float('1.6")

1.6

>>> safe float(1.6)

1.6

>>> safe_fl oat (932)

932.0

10.3.5. Catching All Exceptions

Using the code we saw in the previous section, we are able to catch any number of specific exceptions
and handle them. What about cases where we want to catch all exceptions? The short answer is yes, we
can definitely do it. The code for doing it was significantly improved in 1.5 when exceptions became
classes. Because of this, we now have an exception hierarchy to follow.

If we go all the way up the exception tree, we find Excepti on at the top, so our code will look like this:

try:

except Exception, e:
error occurred, |og

e', etc.

Less preferred is the bare except clause:

try:

except :
error occurred, etc.

This syntax is not as "Pythonic" as the other. Although this code catches the most exceptions, it does

not promote good Python coding style. One of the chief reasons is that it does not take into account the
potential root causes of problems that may generate exceptions. Rather than investigating and
discovering what types of errors may occur and how they may be prevented from happening, we have a
catch-all that may not do the right thing.

We are not naming any specific exceptions to catchit does not give us any information about the
possible errors that could happen in our TRy block. Another thing is that by catching all errors, you may
be silently dropping important errors that really should be sent to the caller to properly take care of
them. Finally, we do not have the opportunity to save the reason for the exception. Yes, you can get it
through sys. exc_ info(), but then you would have to import sys and execute that functionboth of which
can be avoided, especially if all we wanted was the instance telling us why the exception occurred. It is
a distinct possibility that the bare exception clause will be deprecated in a future release of Python. (See

also Core Style note).

One aspect of catching all exceptions that you need to be aware of is that there are several exceptions
that are not due to an error condition. These two exceptions are Syst enExit and Keyboar dl nt er r upt .
Syst enkxi t is for when the current Python application wants to quit, and Keyboar dl nt er rupt is when a

user presses CTRL-C (™C) to terminate Python. These will be caught by both code snippets above when
we really want to pass them upward. A typical workaround code pattern will look like this:

try:

except (Keyboardlnterupt, Systenkxit):

user wants to quit

raise # rerai se back to caller
except Exception:

handle real errors

A few things regarding exceptions did change in Python 2.5. Exceptions were moved to new-style
classes, a new "mother of all exception" classes named BaseExcepti on was installed, and the exception

hierarchy was switched around (very slightly) to get rid of that idiom of having to create two handlers.
Both Keyboardl nterrupt and SystenExit have been pulled out from being children of Excepti on to being

its peers:

- BaseException
| - Keyboardl nt errupt
| - Systenkxit
| - Exception
|- (all other current built-in exceptions)

You can find the entire exception hierarchy (before and after these changes) in Table 10.2.

The end result is that now you do not have to write the extra handler for those two exceptions if you
have a handler for just Excepti on. This code will suffice:

try:

except Exception, e:
handl e real errors

If you really want to catch all errors, you can still do that too, but use BaseExcepti on instead:

try:

except BaseException, e:
handle all errors

And of course, there is the less preferred bare except .

Core Style: Do not handle and ignore all errors

The try-except statement has been included in Python to provide a
powerful mechanism for programmers to track down potential errors
and perhaps to provide logic within the code to handle situations
where it may not otherwise be possible, for example, in C. The main
idea is to minimize the number of errors and still maintain program
correctness. As with all tools, they must be used properly.

One incorrect use of TRy-except is to serve as a giant bandage over
large pieces of code. By that we mean putting large blocks, if not your
entire source code, within a try and/or have a large generic except to
"filter" any fatal errors by ignoring them:

this is really bad code
try:

| arge_bl ock_of code # bandage of |arge piece of code
except Excepti on: # sanme as except:

pass # blind eye ignoring all errors

Obviously, errors cannot be avoided, and the job of TRy- except is to
provide a mechanism whereby an acceptable problem can be remedied
or properly dealt with, and not be used as a filter. The construct above
will hide many errors, but this type of usage promotes a poor
engineering practice that we certainly cannot endorse.

Bottom line: Avoid using try- except around a large block of code with
a pass just to hide errors. Instead, either handle specific exceptions
and ignore them (pass), or handle all errors and take a specific action.
Do not do both (handle all errors, ignore all errors).

10.3.6. "Exceptional Arguments"

No, the title of this section has nothing to do with having a major fight. Instead, we are referring to the
fact that an exception may have an argument or reason passed along to the exception handler when
they are raised. When an exception is raised, parameters are generally provided as an additional aid for

the exception handler. Although reasons for exceptions are optional, the standard built-in exceptions do
provide at least one argument, an error string indicating the cause of the exception.

Exception parameters can be ignored in the handler, but the Python provides syntax for saving this
value. We have already seen it in the syntax above: to access any provided exception reason, you must
reserve a variable to hold the argument. This argument is given on the except header line and follows

the exception type you are handling. The different syntaxes for the except statement can be extended to
the following:

singl e exception
except Exception[, reason]:
suite_for_Exception_with_Argunent

multiple exceptions
except (Exceptionl, Exception2, ..., ExceptionN[, reason]:
suite for_ Exceptionl_to_ ExceptionN w th_Argunent

reason is a class instance containing diagnostic information from the code raising the exception. The
exception arguments themselves go into a tuple that is stored as an attribute of the class instance, an
instance of the exception class from which it was instantiated. In the first alternate syntax above, reason
is an instance of the Excepti on class.

For most standard built-in exceptions, that is, exceptions derived from St andar dErr or , the tuple consists
of a single string indicating the cause of the error. The actual exception name serves as a satisfactory
clue, but the error string enhances the meaning even more. Operating system or other environment
type errors, i.e., | CError, will also include an operating system error number that precedes the error
string in the tuple.

Whether a reason contains just a string or a combination of an error number and a string, calling str

(reason) should present a human-readable cause of an error. However, do not lose sight that reason is
really a class instanceyou are only getting the error information via that class's special method __str__

() . We have a complete treatment of special methods as we explore object-oriented programming in
Chapter 13.

The only caveat is that not all exceptions raised in third-party or otherwise external modules adhere to
this standard protocol of error string or error number and error string. We recommend you follow such a
standard when raising your own exceptions (see Core Style note).

Core Style: Follow exception argument protocol

When you raise built-in exceptions in your own code, try to follow the
protocol established by the existing Python code as far as the error
information that is part of the tuple passed as the exception
argument. In other words, if you raise a Val ueError, provide the same
argument information as when the interpreter raises a Val ueErr or
exception, and so on. This helps keep the code consistent and will
prevent other applications that use your module from breaking.

The example below is when an invalid object is passed to the fl oat () built-in function, resulting in a
TypeError exception:

>>> try:

float(['float() does not', 'like lists', 2])
except TypeError, diag:# capture diagnostic info
pass

>>> type(diag)

<cl ass 'exceptions. TypeError' >

>>>

>>> print diag

float() argunment nust be a string or a nunber

The first thing we did was cause an exception to be raised from within the try statement. Then we
passed cleanly through by ignoring but saving the error information. Calling the type() built-in function,
we were able to confirm that our exception was indeed an instance of the TypeError exception class.
Finally, we displayed the error by calling print with our diagnostic exception argument.

To obtain more information regarding the exception, we can use the special _ cl ass__ instance attribute,

which identifies which class an instance was instantiated from. Class objects also have attributes, such
as a documentation string and a string name that further illuminate the error type:

>>> di ag # exception instance object
<exceptions. TypeError instance at 8121378>

>>> diag. class_ # exception class object

<cl ass exceptions. TypeError at 80f6d50>

>>> diag. __class__._ doc__ # exception class docunentation string
"I nappropriate argunent type.'

>>> diag. __class__._ nane__ # exception class nane

"TypeError'

As we will discover in Chapter 13Classes and OOP the special instance attribute __ cl ass__ exists for all
class instances, and the __doc__ class attribute is available for all classes that define their documentation
strings.

We will now update our safe_fl oat () one more time to include the exception argument, which is passed
from the interpreter from within f | oat () when exceptions are generated. In our last modification to
safe_float (), we merged both the handlers for the val ueError and TypeError exceptions into one
because we had to satisfy some requirement. The problem, if any, with this solution is that no clue is
given as to which exception was raised or what caused the error. The only thing returned is an error
string that indicated some form of invalid argument. Now that we have the exception argument, this no
longer has to be the case.

Because each exception will generate its own exception argument, if we chose to return this string
rather than a generic one we made up, it would provide a better clue as to the source of the problem. In
the following code snippet, we replace our single error string with the string representation of the
exception argument.

def safe_float(object):
try:
retval = fl oat (object)
except (ValueError, TypeError), diag:
retval = str(diag)

return retval

Upon running our new code, we obtain the following (different) messages when providing improper input
to safe_fl oat (), even if both exceptions are managed by the same handler:

>>> safe float('xyz')

"invalid literal for float(): xyz'
>>> safe float({})

"object can't be converted to float’

10.3.7. Using Our Wrapped Function in an Application

We will now feature safe_float () in a mini application that takes a credit card transaction data file
(carddat a. t xt) and reads in all transactions, including explanatory strings. Here are the contents of our
example carddat a. t xt file:

% cat carddata.txt
carddata. t xt
previ ous bal ance
25

debits

21.64

541. 24

25

credits

-25

-541. 24

finance charge/l ate fees
7.30

5

Our program, cardrun. py, is given in Example 10.1.

Example 10.1. Credit Card Transactions (cardrun. py)

We use safe_float() to process a set of credit card transactions given in a file and read in as
strings. A log file tracks the processing.

1 #!/usr/bin/env python

2

3 def safe_float(obj):

4 "safe version of float()'

5 try:

6 retval = fl oat(obj)

7 except (ValueError, TypeError), diag:
8 retval = str(diag)

9 return retval

10

11 def main():
12 "handl es all the data processing'

13 |l og = open('cardlog.txt', "w)

14 try:

15 ccfile = open('carddata.txt', 'r")
16 except | CError, e:

17 log.wite('no txns this nmonth\n')
18 | og. cl ose()

19 return

20

21 txns = ccfile.readlines()
22 ccfile.close()
23 total = 0.00

24 log.write('account log:\n")

25

26 for eachTxn in txns:

27 result = safe_fl oat(eachTxn)

28 if isinstance(result, float):

29 total += result

30 log.wite('data... processed\n')
31 el se:

32 log.wite('ignored: %' %result)

33 print '$%2f (new balance)' % (total)
34 | 0og. cl ose()

35
36 if name__ =="'_ main__"':
37 mai n()

Line-by-Line Explanation

Lines 39

This chunk of code contains the body of our safe_fl oat () function.
Lines 1134

The core part of our application performs three major tasks: (1) read the credit card data file, (2)
process the input, and (3) display the result. Lines 14-22 perform the extraction of data from the file.
You will notice that there is a TRy- except statement surrounding the file open.

A log file of the processing is also kept. In our example, we are assuming the log file can be opened for
write without any problems. You will find that our progress is kept by the log. If the credit card data file
cannot be accessed, we will assume there are no transactions for the month (lines 16-19).

The data are then read into the t xns (transactions) list where it is iterated over in lines 26-32. After
every call to safe_float (), we check the result type using the i si nstance() built-in function. In our
example, we check to see if safe_float () returns a string or float. Any string indicates an error situation

with a string that could not be converted to a number, while all other values are floats that can be
added to the running subtotal. The final new balance is then displayed as the final line of the nai n()

function.

Lines 3637

These lines represent the general "start only if not imported" functionality.Upon running our program,
we get the following output:

$ cardrun. py
$58. 94 (new bal ance)

Taking a peek at the resulting log file (cardl og. t xt), we see that it contains the following log entries
after cardrun. py processed the transactions found in carddat a. t xt :

$ cat cardl og.txt

account | og:

ignored: invalid literal for float(): # carddata.txt
ignored: invalid literal for float(): previous bal ance

data... processed

ignored: invalid literal for float(): debits
data... processed

data... processed

data... processed

ignored: invalid literal for float(): credits
data... processed

data... processed

ignored: invalid literal for float(): finance charge/
| ate fees

data... processed

data... processed

10.3.8. el se Clause

We have seen the el se statement with other Python constructs such as conditionals and loops. With
respect to try-except statements, its functionality is not that much different from anything else you
have seen: The el se clause executes if no exceptions were detected in the preceding try suite.

All code within the try suite must have completed successfully (i.e., concluded with no exceptions
raised) before any code in the el se suite begins execution. Here is a short example in Python
pseudocode:

i mport 3rd_party_nodul e

log = open('logfile.txt', "wW)
try:
3rd_party _nodul e. function()
except:
log.wite("*** caught exception in nodul e\n")
el se:

log.wite("*** no exceptions caught\n")

| og. cl ose()

In the preceding example, we import an external module and test it for errors. A log file is used to

determine whether there were defects in the third-party module code. Depending on whether an
exception occurred during execution of the external function, we write differing messages to the log.

10.3.9.final | y Clause

A finally clause is one where its suite or block of code is executed regardless of whether an exception
occurred or whether it was caught (or not). You may use a final | y clause with TRy by itself or with try-
except (with or without an el se clause). The standalone try-finally is covered in the next section, so
we will just focus on the latter here.

Starting in Python 2.5, you can use the final | y clause (again) with TRy- except or try-except-el se. We
say "again" because believe it or not, it is not a new feature. This was a feature available in Python back
in the early days but was removed in Python 0.9.6 (April 1992). At the time, it helped simplify the
bytecode generation process and was easier to explain, and van Rossum believed that a unified try-
except (-el se)-finally would not be very popular anyway. How things change well over a decade later!

Here is what the syntax would look like with try-except-else-finally:

try:
A
except MyExcepti on:
B
el se:
C
finally:
D

The equivalent in Python 0.9.6 through 2.4.x. is the longer:

try:
try:
A
except MyExcepti on:
B
el se:
C
finally:
D

Of course, in either case, you can have more than one except clause, however the syntax requires at
least one except clause and both the el se and fi nal | y clauses are optional. A B, C, and D are suites (code
blocks). The suites will execute in that order as necessary. (Note the only flows possible are A-C-D
[normal] and A-B-D [exception].) The final |y block will be executed whether exceptions occur in A,B,
and/or C. Code written with the older idiom will continue to run, so there are no backward-compatibility
problems.

10.3.10. try-final | y Statement

An alternative is to use final ly alone with try. The try-final | y statement differs from its try- except

brethren in that it is not used to handle exceptions. Instead it is used to maintain consistent behavior
regardless of whether or not exceptions occur. We know that the fi nal | y suite executes regardless of an

exception being triggered within the try suite.

try:
try suite
finally:
finally suite # executes regardless

When an exception does occur within the try suite, execution jumps immediately to the final | y suite.
When all the code in the final |y suite completes, the exception is reraised for handling at the next
higher layer. Thus it is common to see atry-finally nested as part of a TRy- except suite.

One place where we can add a TRy-fi nal | y statement is by improving our code in car drun. py so that we
catch any problems that may arise from reading the data from the carddat a. t xt file. In the current code
in Example 10.1, we do not detect errors during the read phase (using readl i nes()):

try:

ccfile = open('carddata.txt")
except | OError:

log.write('no txns this nonth\n')

txns = ccfile.readlines()
ccfile.close()

It is possible for readl i nes() to fail for any number of reasons, one of which is if carddat a. t xt was a file

on the network (or a floppy) that became inaccessible. Regardless, we should improve this piece of code
so that the entire input of data is enclosed in the try clause:

try:
ccfile = open('carddata.txt', 'r")
txns = ccfile.readlines()
ccfile.close()

except | CError:
log.wite('no txns this nmonth\n')

All we did was to move the readl i nes() and cl ose() method calls to the TRy suite. Although our code is
more robust now, there is still room for improvement. Notice what happens if there was an error of
some sort. If the open succeeds, but for some reason th readl i nes() call does not, the exception will
continue with the except clause. No attempt is made to close the file. Wouldn't it be nice if we closed the
file regardless of whether an error occurred or not? We can make it a reality using TRy-final ly:

try:
try:
ccfile = open('carddata.txt', 'r")
txns = ccfile.readlines()
except | Cerror:

log.wite('no txns this nmonth\n')
finally:
ccfile.close()

This code snippet will attempt to open the file and read in the data. If an error occurs during this step, it
is logged, and then the file is properly closed. If no errors occur, the file is still closed. (The same
functionality can be achieved using the unified try-except-final | y statement above.) An alternative

implementation involves switching the try-except and try-finally clauses:

try:
try:
ccfile = open(' carddata.txt', 'r")
txns = ccfile.readlines()
finally:

ccfile.close()
except | OError:
log.wite('no txns this month\n')

The code works virtually the same with some differences. The most obvious one is that the closing of
the file happens before the exception handler writes out the error to the log. This is because final ly

automatically reraises the exception.

One argument for doing it this way is that if an exception happens within the fi nal | y block, you are able

to create another handler at the same outer level as the one we have, so in essence, be able to handle
errors in both the original try block as well as the final Iy block. The only thing you lose when you do

this is that if the fi nal | y block does raise an exception, you have lost context of the original exception
unless you have saved it somewhere.

An argument against having the final | y inside the except is that in many cases, the exception handler
needs to perform some cleanup tasks as well, and if you release those resources with a fi nal | y block
that comes before the exception handler, you have lost the ability to do so. In other words, the finally
block is not as "final" as one would think.

One final note: If the code in the fi nal | y suite raises another exception, or is aborted due to a ret urn,
br eak, or conti nue statement, the original exception is lost and cannot be reraised.

10.3.11. try-except -el se-final ly: akathe Kitchen Sink

We can combine all the varying syntaxes that we have seen so far in this chapter to highlight all the
different ways you can handle exceptions:

try:
try_suite
except Exceptionl:
suite for_ Exceptionl

except (Exception2, Exception3, Exception4):
suite for_ Exceptions_2 3 and 4

except Exception5, Argunentb:
suite for_ Exception5_ plus_argunent

except (Exception6, Exception7), Argunent67:
suite _for_ Exceptions6_and_7_ pl us_ar gunent

except:
suite_for_all _other_exceptions

el se:
no_exceptions_detected suite
finally:

al ways_execute_suite

Recall from above that using a fi nal | y clause combined with TRy- except or try-except-el se is "new" as

of Python 2.5. The most important thing to take away from this section regarding the syntax is that you
must have at least one except clause; both the el se and fi nal | y clauses are optional.

e Py EXT

file:///D|/1/0132269937/14051536.html

e Py EXT

10.4. Context Management

10.4.1. wi t h Statement

The unification of TRy- except and TRy-final | y as described above makes programs more "Pythonic,"

meaning, among many other characteristics, simpler to write and easier to read. Python already does a
great job at hiding things under the covers so all you have to do is worry about how to solve the
problem you have. (Can you imagine porting a complex Python application into C++ or Java?!?)

Another example of hiding lower layers of abstraction is the wi t h statement, made official as of Python
2.6. (It was introduced in 2.5 as a preview and to serve warnings for those applications using wi t h as an
identifier that it will become a keyword in 2.6. To use this feature in 2.5, you must import it with from
__future__inportwth_statenent.)

Like try-except-finally, the wi t h statement, has a purpose of simplifying code that features the
common idiom of using the TRy-except and try-final |y pairs in tandem. The specific use that the with
statement targets is when TRy- except and try-finally are used together in order to achieve the sole

allocation of a shared resource for execution, then releasing it once the job is done. Examples include
files (data, logs, database, etc.), threading resources and synchronization primitives, database
connections, etc.

However, instead of just shortening the code and making it easier to use like try-except-finally, the
wi t h statement's goal is to remove the TRy, except, and final | y keywords and the allocation and release
code from the picture altogether. The basic syntax of the wi t h statement looks like this:

with context_expr [as var]:
with_suite

It looks quite simple, but making it work requires some work under the covers. The reason is it not as
simple as it looks is because you cannot use the wi t h statement merely with any expression in Python.

It only works with objects that support what is called the context management protocol. This simply
means that only objects that are built with "context management"” can be used with a wi t h statement.

We will describe what that means soon.

Now, like any new video game hardware, when this feature was released, some folks out there took the
time to develop new games for it so that you can play when you open the box. Similarly, there were
already some Python objects that support the protocol. Here is a short list of the first set:

o file

« deci mal . Cont ext

o tHRead. LockType

e threading. Lock

o threadi ng. RLock

e threading. Condition
« tHReadi ng. Semaphore

+ tHReadi ng. BoundedSemaphor e

Since files are first on the list and the simplest example, here is a code snippet of what it looks like to
use a wi t h statement:

with open('/etc/passwd', 'r') as f:
for eachLine in f:
...do stuff with eachLine or f...

What this code snippet will do is... well, this is Python, so you can probably already guess. It will do
some preliminary work, such as attempt to open the file, and if all goes well, assign the file object to f.

Then it iterates over each line in the file and does whatever processing you need to do. Once the file has
been exhausted, it is closed. If an exception occurs either at the beginning, middle, or end of the block,
then some cleanup code must be done, but the file will still be closed automatically.

Now, because a lot of the details have been pushed down and away from you, there are really two levels
of processing that need to occur: First, the stuff at the user levelas in, the things you need to take care
of as the user of the objectand second, at the object level. Since this object supports the context
management protocol, it has to do some "context management.”

10.4.2. *Context Management Protocol

Unless you will be designing objects for users of the wi t h statement, i.e., programmers who will be using

your objects to design their applications with, most Python programmers are going to be just users of
the wi t h statement and can skip this optional section.

We are not going into a full and deep discussion about context management here, but we will explain
the types of objects and the functionality that are necessary to be protocol-compliant and thus be
eligible to be used with the wi t h statement.

Previously, we described a little of how the protocol works in our example with the file object. Let us
elaborate some more here.

Context Expression (cont ext _expr), Context Manager

When the wi t h statement is executed, the context expression is evaluated to obtain what is called a

context manager. The job of the context manager is to provide a context object. It does this by invoking
its required __context __() special method. The return value of this method is the context object that will

be used for this particular execution of the wi t h_sui t e. One side note is that a context object itself can

be its own manager, so context_expr can really be either a real context manager or a context object
serving as its own manager. In the latter case, the context object also has a __context _ () method,

which returns sel f, as expected.
Context Object,with_suite

Once we have a context object, its __enter__ () special method is invoked. This does all the preliminary
stuff before the wi t h_sui t e executes. You will notice in the syntax above that there is an optional as var
piece following cont ext _expr on the wi t h statement line. If var is provided, it is assigned the return value
of __enter__(). If not, the return value is thrown away. So for our file object example, its context
object's __enter__() returns the file object so it can be assigned to f.

Now the wi t h_sui t e executes. When execution of wi t h_sui t e terminates, whether "naturally” or via
exception, the context object’'s __exit__ () special method is called.__exit__ () takes three arguments. If

wi t h_sui t e terminates normally, all three parameters passed in are None. If an exception occurred, then
the three arguments are the same three values returned when calling the sys. exc_i nfo() function (see
section 10.12): type (exception class), val ue (this exception's instance), and t raceback, the
corresponding traceback object.

It is up to you to decide how you want to handle the exception here in __exit__(). The usual thing to do
after you are done is not to return anything from __exit__ () or return None or some other Boolean Fal se

object. This will cause the exception to be reraised back to your user for handling. If you want to
explicitly silence the exception, then return any object that has a Boolean TRue value. If an exception did

not occur or you returned t rue after handling an exception, the program will continue on the next
statement after the wi t h clause.

Since context management makes the most sense for shared resources, you can imagine that the
_enter__() and __exit__() methods will primarily be used for doing the lower-level work required to

allocate and release resources, i.e., database connections, lock allocation, semaphore decrement, state
management, opening/closing of files, exception handling, etc.

To help you with writing context managers for objects, there is the cont extli b module, which contains

useful functions/decorators with which you can apply over your functions or objects and not have to
worry about implementing a class or separate _ _context __ (), __enter_ (), __exit__() special methods.

For more information or more examples of context management, check out the official Python
documentation on the wi t h statement and cont ext|i b module, class special methods (related to wi th

and contexts), PEP 343, and the "What's New in Python 2.5" document.

e Py EXT

file:///D|/1/0132269937/14051536.html

e Py EXT

10.5. *Exceptions as Strings

Prior to Python 1.5, standard exceptions were implemented as strings. However, this became limiting in
that it did not allow for exceptions to have relationships to each other. With the advent of exception
classes, this is no longer