

Core Python Programming, Second Edition

Core Python Programming, Second Edition

By Wesley J. Chun
...

Publisher: Prentice Hall

Pub Date: September 18, 2006

Print ISBN-10: 0-13-226993-7

Print ISBN-13: 978-0-13-226993-3

Pages: 1120

Table of Contents | Index

Praise for Core Python Programming

"The long-awaited second edition of Wesley Chun's Core Python Programming proves to be well worth the

waitits deep and broad coverage and useful exercises will help readers learn and practice good Python."

Alex Martelli, author of Python in a Nutshell and editor of Python Cookbook

"There has been lot of good buzz around Wesley Chun's Core Python Programming. It turns out that all the buzz

is well earned. I think this is the best book currently available for learning Python. I would recommend Chun's

book over Learning Python (O'Reilly), Programming Python (O'Reilly), or The Quick Python Book (Manning)."

David Mertz, Ph.D., IBM DeveloperWorks®

"I have been doing a lot of research [on] Python for the past year and have seen a number of positive reviews

of your book. The sentiment expressed confirms the opinion that Core Python Programming is now considered

the standard introductory text."

Richard Ozaki, Lockheed Martin

"Finally, a book good enough to be both a textbook and a reference on the Python language now exists."

Michael Baxter, Linux Journal

"Very well written. It is the clearest, friendliest book I have come across yet for explaining Python, and putting

it in a wider context. It does not presume a large amount of other experience. It does go into some important

Python topics carefully and in depth. Unlike too many beginner books, it never condescends or tortures the

reader with childish hide-and-seek prose games. [It] sticks to gaining a solid grasp of Python syntax and

structure."

http://python.org bookstore Web site

file:///D|/1/0132269937/main.html (1 von 4) [13.11.2007 16:22:22]

Core Python Programming, Second Edition

"[If] I could only own one Python book, it would be Core Python Programming by Wesley Chun. This book

manages to cover more topics in more depth than Learning Python but includes it all in one book that also more

than adequately covers the core language. [If] you are in the market for just one book about Python, I

recommend this book. You will enjoy reading it, including its wry programmer's wit. More importantly, you will

learn Python. Even more importantly, you will find it invaluable in helping you in your day-to-day Python

programming life. Well done, Mr. Chun!"

Ron Stephens, Python Learning Foundation

"I think the best language for beginners is Python, without a doubt. My favorite book is Core Python

Programming."

s003apr, MP3Car.com Forums

"Personally, I really like Python. It's simple to learn, completely intuitive, amazingly flexible, and pretty darned

fast. Python has only just started to claim mindshare in the Windows world, but look for it to start gaining lots

of support as people discover it. To learn Python, I'd start with Core Python Programming by Wesley Chun."

Bill Boswell, MCSE, Microsoft Certified Professional Magazine Online

"If you learn well from books, I suggest Core Python Programming. It is by far the best I've found. I'm a Python

newbie as well and in three months time I've been able to implement Python in projects at work (automating

MSOffice, SQL DB stuff, etc.)."

ptonman, Dev Shed Forums

"Python is simply a beautiful language. It's easy to learn, it's cross-platform, and it works. It has achieved many

of the technical goals that Java strives for. A one-sentence description of Python would be: 'All other languages

appear to have evolved over time--but Python was designed.' And it was designed well. Unfortunately, there

aren't a large number of books for Python. The best one I've run across so far is Core Python Programming."

Chris Timmons, C. R. Timmons Consulting

"If you like the Prentice Hall Core series, another good full-blown treatment to consider would be Core Python

Programming. It addresses in elaborate concrete detail many practical topics that get little, if any, coverage in

other books."

Mitchell L Model, MLM Consulting

"Core Python Programming is an amazingly easy read! The liberal use of examples helps clarify some of the

more subtle points of the language. And the comparisons to languages with which I'm already familiar (C/C++/

Java) get you programming in record speed."

Michael Santos, Ph.D., Green Hills Software

file:///D|/1/0132269937/main.html (2 von 4) [13.11.2007 16:22:22]

Core Python Programming, Second Edition

The Complete Developer's Guide to PythonFully Updated for Python 2.5

● New to Python? The definitive guide to Python development for experienced programmers

● Covers core language features thoroughly, including those found in the latest Python releases

● Learn advanced topics such as regular expressions, networking, multithreading, GUI, and Web/CGI

● Includes brand-new chapters on database, Internet, Jython, and COM Client programming

● Presents hundreds of code samples and practical exercises to strengthen your Python skills

Python is an agile, robust, expressive, fully object-oriented, extensible, and scalable programming language. It

combines the power of compiled languages with the simplicity and rapid development of scripting languages. In

Core Python Programming, Second Edition, leading Python developer and trainer Wesley Chun helps you

learn Python quickly and comprehensively so that you can immediately succeed with any Python project.

Using practical code examples, Chun introduces all the fundamentals of Python programming: syntax, objects

and memory management, data types, operators, files and I/O, functions, generators, error handling and

exceptions, loops, iterators, functional programming, object-oriented programming and more. After you learn

the core fundamentals of Python, he shows you what you can do with your new skills, delving into advanced

topics, such as regular expressions, networking programming with sockets, multithreading, GUI development,

Web/CGI programming and extending Python in C.

This edition reflects major enhancements in the Python 2.x series, including 2.5 as well as capabilities set for

future versions. It contains new chapters on database and Internet client programming, plus coverage of many

new topics, including new-style classes, Java and Jython, Microsoft Office (Win32 COM Client) programming,

and much more.

● Learn professional Python style, best practices, and good programming habits

● Gain a deep understanding of Python's objects and memory model as well as its OOP features, including

those found in Python's new-style classes

● Build more effective Web, CGI, Internet, and network and other client/server applications

● Learn how to develop your own GUI applications using Tkinter and other toolkits available for Python

● Improve the performance of your Python applications by writing extensions in C and other languages, or

enhance I/O-bound applications by using multithreading

● Learn about Python's database API and how to use a variety of database systems with Python, including

MySQL, Postgres, and SQLite

Core Python Programming delivers

file:///D|/1/0132269937/main.html (3 von 4) [13.11.2007 16:22:22]

Core Python Programming, Second Edition

● Systematic, expert coverage of Python's core features

● Powerful insights for developing complex applications

● Easy-to-use tables and charts detailing Python modules, operators, functions, and methods

● Dozens of professional-quality code examples, from quick snippets to full-fledged applications

file:///D|/1/0132269937/main.html (4 von 4) [13.11.2007 16:22:22]

Table of Contents

Core Python Programming, Second Edition

By Wesley J. Chun
...

Publisher: Prentice Hall

Pub Date: September 18, 2006

Print ISBN-10: 0-13-226993-7

Print ISBN-13: 978-0-13-226993-3

Pages: 1120

Table of Contents | Index

 Copyright

 Praise for Core Python Programming

 Prentice Hall Core Series

 Preface

 Acknowledgments

 Part I: Core Python

 Chapter 1. Welcome to Python!

 Section 1.1. What Is Python?

 Section 1.2. Origins

 Section 1.3. Features

 Section 1.4. Downloading and Installing Python

 Section 1.5. Running Python

 Section 1.6. Python Documentation

 Section 1.7. Comparing Python

 Section 1.8. Other Implementations

 Section 1.9. Exercises

 Chapter 2. Getting Started

 Section 2.1. Program Output, the print Statement, and "Hello World!"

 Section 2.2. Program Input and the raw_input()Built-in Function

 Section 2.3. Comments

 Section 2.4. Operators

 Section 2.5. Variables and Assignment

 Section 2.6. Numbers

 Section 2.7. Strings

 Section 2.8. Lists and Tuples

 Section 2.9. Dictionaries

 Section 2.10. Code Blocks Use Indentation

 Section 2.11. if Statement

 Section 2.12. while Loop

file:///D|/1/0132269937/toc.html (1 von 8) [13.11.2007 16:22:30]

Table of Contents

 Section 2.13. for Loop and the range() Built-in Function

 Section 2.14. List Comprehensions

 Section 2.15. Files and the open() and file() Built-in Functions

 Section 2.16. Errors and Exceptions

 Section 2.17. Functions

 Section 2.18. Classes

 Section 2.19. Modules

 Section 2.20. Useful Functions

 Section 2.21. Exercises

 Chapter 3. Python Basics

 Section 3.1. Statements and Syntax

 Section 3.2. Variable Assignment

 Section 3.3. Identifiers

 Section 3.4. Basic Style Guidelines

 Section 3.5. Memory Management

 Section 3.6. First Python Programs

 Section 3.7. Related Modules/Developer Tools

 Section 3.8. Exercises

 Chapter 4. Python Objects

 Section 4.1. Python Objects

 Section 4.2. Standard Types

 Section 4.3. Other Built-in Types

 Section 4.4. Internal Types

 Section 4.5. Standard Type Operators

 Section 4.6. Standard Type Built-in Functions

 Section 4.7. Type Factory Functions

 Section 4.8. Categorizing the Standard Types

 Section 4.9. Unsupported Types

 Section 4.10. Exercises

 Chapter 5. Numbers

 Section 5.1. Introduction to Numbers

 Section 5.2. Integers

 Section 5.3. Double Precision Floating Point Numbers

 Section 5.4. Complex Numbers

 Section 5.5. Operators

 Section 5.6. Built-in and Factory Functions

 Section 5.7. Other Numeric Types

 Section 5.8. Related Modules

 Section 5.9. Exercises

 Chapter 6. Sequences: Strings, Lists, and Tuples

 Section 6.1. Sequences

file:///D|/1/0132269937/toc.html (2 von 8) [13.11.2007 16:22:30]

Table of Contents

 Section 6.2. Strings

 Section 6.3. Strings and Operators

 Section 6.4. String-Only Operators

 Section 6.5. Built-in Functions

 Section 6.6. String Built-in Methods

 Section 6.7. Special Features of Strings

 Section 6.8. Unicode

 Section 6.9. Related Modules

 Section 6.10. Summary of String Highlights

 Section 6.11. Lists

 Section 6.12. Operators

 Section 6.13. Built-in Functions

 Section 6.14. List Type Built-in Methods

 Section 6.15. Special Features of Lists

 Section 6.16. Tuples

 Section 6.17. Tuple Operators and Built-in Functions

 Section 6.18. Special Features of Tuples

 Section 6.19. Related Modules

 Section 6.20. *Copying Python Objects and Shallow and Deep Copies

 Section 6.21. Summary of Sequences

 Section 6.22. Exercises

 Chapter 7. Mapping and Set Types

 Section 7.1. Mapping Type: Dictionaries

 Section 7.2. Mapping Type Operators

 Section 7.3. Mapping Type Built-in and Factory Functions

 Section 7.4. Mapping Type Built-in Methods

 Section 7.5. Dictionary Keys

 Section 7.6. Set Types

 Section 7.7. Set Type Operators

 Section 7.8. Built-in Functions

 Section 7.9. Set Type Built-in Methods

 Section 7.10. Operator, Function/Method Summary Table for Set Types

 Section 7.11. Related Modules

 Section 7.12. Exercises

 Chapter 8. Conditionals and Loops

 Section 8.1. if Statement

 Section 8.2. else Statement

 Section 8.3. elif (aka else-if) Statement

 Section 8.4. Conditional Expressions (aka "the Ternary Operator")

 Section 8.5. while Statement

 Section 8.6. for Statement

file:///D|/1/0132269937/toc.html (3 von 8) [13.11.2007 16:22:30]

Table of Contents

 Section 8.7. break Statement

 Section 8.8. continue Statement

 Section 8.9. pass Statement

 Section 8.10. else Statement ... Take Two

 Section 8.11. Iterators and the iter() Function

 Section 8.12. List Comprehensions

 Section 8.13. Generator Expressions

 Section 8.14. Related Modules

 Section 8.15. Exercises

 Chapter 9. Files and Input/Output

 Section 9.1. File Objects

 Section 9.2. File Built-in Functions [open() and file()]

 Section 9.3. File Built-in Methods

 Section 9.4. File Built-in Attributes

 Section 9.5. Standard Files

 Section 9.6. Command-Line Arguments

 Section 9.7. File System

 Section 9.8. File Execution

 Section 9.9. Persistent Storage Modules

 Section 9.10. Related Modules

 Section 9.11. Exercises

 Chapter 10. Errors and Exceptions

 Section 10.1. What Are Exceptions?

 Section 10.2. Exceptions in Python

 Section 10.3. Detecting and Handling Exceptions

 Section 10.4. Context Management

 Section 10.5. *Exceptions as Strings

 Section 10.6. Raising Exceptions

 Section 10.7. Assertions

 Section 10.8. Standard Exceptions

 Section 10.9. *Creating Exceptions

 Section 10.10. Why Exceptions (Now)?

 Section 10.11. Why Exceptions at All?

 Section 10.12. Exceptions and the sys Module

 Section 10.13. Related Modules

 Section 10.14. Exercises

 Chapter 11. Functions and Functional Programming

 Section 11.1. What Are Functions?

 Section 11.2. Calling Functions

 Section 11.3. Creating Functions

 Section 11.4. Passing Functions

file:///D|/1/0132269937/toc.html (4 von 8) [13.11.2007 16:22:30]

Table of Contents

 Section 11.5. Formal Arguments

 Section 11.6. Variable-Length Arguments

 Section 11.7. Functional Programming

 Section 11.8. Variable Scope

 Section 11.9. *Recursion

 Section 11.10. Generators

 Section 11.11. Exercises

 Chapter 12. Modules

 Section 12.1. What Are Modules?

 Section 12.2. Modules and Files

 Section 12.3. Namespaces

 Section 12.4. Importing Modules

 Section 12.5. Features of Module Import

 Section 12.6. Module Built-in Functions

 Section 12.7. Packages

 Section 12.8. Other Features of Modules

 Section 12.9. Related Modules

 Section 12.10. Exercises

 Chapter 13. Object-Oriented Programming

 Section 13.1. Introduction

 Section 13.2. Object-Oriented Programming

 Section 13.3. Classes

 Section 13.4. Class Attributes

 Section 13.5. Instances

 Section 13.6. Instance Attributes

 Section 13.7. Binding and Method Invocation

 Section 13.8. Static Methods and Class Methods

 Section 13.9. Composition

 Section 13.10. Subclassing and Derivation

 Section 13.11. Inheritance

 Section 13.12. Built-in Functions for Classes, Instances, and Other Objects

 Section 13.13. Customizing Classes with Special Methods

 Section 13.14. Privacy

 Section 13.15. *Delegation

 Section 13.16. Advanced Features of New-Style Classes (Python 2.2+)

 Section 13.17. Related Modules and Documentation

 Section 13.18. Exercises

 Chapter 14. Execution Environment

 Section 14.1. Callable Objects

 Section 14.2. Code Objects

 Section 14.3. Executable Object Statements and Built-in Functions

file:///D|/1/0132269937/toc.html (5 von 8) [13.11.2007 16:22:30]

Table of Contents

 Section 14.4. Executing Other (Python) Programs

 Section 14.5. Executing Other (Non-Python) Programs

 Section 14.6. Restricted Execution

 Section 14.7. Terminating Execution

 Section 14.8. Miscellaneous Operating System Interface

 Section 14.9. Related Modules

 Section 14.10. Exercises

 Part II: Advanced Topics

 Chapter 15. Regular Expressions

 Section 15.1. Introduction/Motivation

 Section 15.2. Special Symbols and Characters

 Section 15.3. REs and Python

 Section 15.4. Regular Expressions Example

 Section 15.5. Exercises

 Chapter 16. Network Programming

 Section 16.1. Introduction

 Section 16.2. Sockets: Communication Endpoints

 Section 16.3. Network Programming in Python

 Section 16.4. *SocketServer Module

 Section 16.5. *Introduction to the Twisted Framework

 Section 16.6. Related Modules

 Section 16.7. Exercises

 Chapter 17. Internet Client Programming

 Section 17.1. What Are Internet Clients?

 Section 17.2. Transferring Files

 Section 17.3. Network News

 Section 17.4. Electronic Mail

 Section 17.5. Related Modules

 Section 17.6. Exercises

 Chapter 18. Multithreaded Programming

 Section 18.1. Introduction/Motivation

 Section 18.2. Threads and Processes

 Section 18.3. Python, Threads, and the Global Interpreter Lock

 Section 18.4. thread Module

 Section 18.5. threading Module

 Section 18.6. Related Modules

 Section 18.7. Exercises

 Chapter 19. GUI Programming

 Section 19.1. Introduction

 Section 19.2. Tkinter and Python Programming

 Section 19.3. Tkinter Examples

file:///D|/1/0132269937/toc.html (6 von 8) [13.11.2007 16:22:30]

Table of Contents

 Section 19.4. Brief Tour of Other GUIs

 Section 19.5. Related Modules and Other GUIs

 Section 19.6. Exercises

 Chapter 20. Web Programming

 Section 20.1. Introduction

 Section 20.2. Web Surfing with Python: Creating Simple Web Clients

 Section 20.3. Advanced Web Clients

 Section 20.4. CGI: Helping Web Servers Process Client Data

 Section 20.5. Building CGI Applications

 Section 20.6. Using Unicode with CGI

 Section 20.7. Advanced CGI

 Section 20.8. Web (HTTP) Servers

 Section 20.9. Related Modules

 Section 20.10. Exercises

 Chapter 21. Database Programming

 Section 21.1. Introduction

 Section 21.2. Python Database Application Programmer's Interface (DB-API)

 Section 21.3. Object-Relational Managers (ORMs)

 Section 21.4. Related Modules

 Section 21.5. Exercises

 Chapter 22. Extending Python

 Section 22.1. Introduction/Motivation

 Section 22.2. Extending Python by Writing Extensions

 Section 22.3. Related Topics

 Section 22.4. Exercises

 Chapter 23. Miscellaneous

 Section 23.1. Web Services

 Section 23.2. Programming Microsoft Office with Win32 COM

 Section 23.3. Python and Java Programming with Jython

 Section 23.4. Exercises

 Appendix A. Answers to Selected Exercises

 Chapter 2

 Chapter 3

 Chapter 4

 Chapter 5

 Chapter 6

 Chapter 7

 Chapter 8

 Chapter 9

 Chapter 10

 Chapter 11

file:///D|/1/0132269937/toc.html (7 von 8) [13.11.2007 16:22:30]

Table of Contents

 Chapter 12

 Chapter 13

 Chapter 14

 Chapter 15

 Chapter 16

 Chapter 17

 Chapter 18

 Chapter 19

 Chapter 20

 Chapter 21

 Chapter 22

 Chapter 23

 Appendix B. Reference Tables

 Python Keywords

 Python Standard Operators and Functions

 Numeric Type Operators and Functions

 Sequence Type Operators and Functions

 String Format Operator Conversion Symbols

 String Format Operator Directives

 String Type Built-in Methods

 List Type Built-in Methods

 Dictionary Type Built-in Methods

 Set Types Operators and Functions

 File Object Methods and Data Attriobutes

 Python Exceptions

 Special Methods for Classes

 Python Operator Summary

 Appendix 3. About the Author

 Index

file:///D|/1/0132269937/toc.html (8 von 8) [13.11.2007 16:22:30]

Copyright

Copyright

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark
claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or
special sales, which may include electronic versions and/or custom covers and content particular to your
business, training goals, marketing focus, and branding interests. For more information, please contact:

 U.S. Corporate and Government Sales
 (800) 382-3419
 corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

 International Sales
 international@pearsoned.com

Visit us on the Web: www.prenhallprofessional.com

Library of Congress Cataloging-in-Publication Data
 Chun, Wesley.
 Core Python programming / Wesley J. Chun. 2nd ed.
 p. cm.
 Includes bibliographical references and index.
 ISBN 0-13-226993-7 (pbk. : alk. paper)
 1.Python (Computer program language)I. Title.
 QA76.73.P98C48 2006
 005.13'3dc22
 2006019559

Copyright © 2007 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright,
and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a
retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying,
recording, or likewise. For information regarding permissions, write to:

 Pearson Education, Inc.
 Rights and Contracts Department
 One Lake Street
 Upper Saddle River, NJ 07458

file:///D|/1/0132269937/copyrightpg.html (1 von 2) [13.11.2007 16:22:31]

mailto:corpsales@pearsontechgroup.com
mailto:international@pearsoned.com
http://www.prenhallprofessional.com/

Copyright

 Fax: (201) 236-3290

Text printed in the United States on recycled paper at Courier in Stoughton, Massachusetts.

First printing, September 2006

Dedication

To my parents, who taught me that everybody is different.

And to my wife, who lives with someone who is different.

file:///D|/1/0132269937/copyrightpg.html (2 von 2) [13.11.2007 16:22:31]

file:///D|/1/0132269937/14051536.html

Praise for Core Python Programming

Praise for Core Python Programming

"The long-awaited second edition of Wesley Chun's Core Python Programming proves to
be well worth the waitits deep and broad coverage and useful exercises will help readers
learn and practice good Python."

Alex Martelli, author of Python in a Nutshell and editor of Python Cookbook

"There has been lot of good buzz around Wesley Chun's Core Python Programming. It
turns out that all the buzz is well earned. I think this is the best book currently available
for learning Python. I would recommend Chun's book over Learning Python (O'Reilly),
Programming Python (O'Reilly), or The Quick Python Book (Manning)."

David Mertz, Ph.D., IBM DeveloperWorks®

"I have been doing a lot of research [on] Python for the past year and have seen a
number of positive reviews of your book. The sentiment expressed confirms the opinion
that Core Python Programming is now considered the standard introductory text."

Richard Ozaki, Lockheed Martin

"Finally, a book good enough to be both a textbook and a reference on the Python
language now exists."

Michael Baxter, Linux Journal

"Very well written. It is the clearest, friendliest book I have come across yet for
explaining Python, and putting it in a wider context. It does not presume a large amount
of other experience. It does go into some important Python topics carefully and in depth.
Unlike too many beginner books, it never condescends or tortures the reader with childish
hide-and-seek prose games. [It] sticks to gaining a solid grasp of Python syntax and
structure."

http://python.org bookstore Web site

"[If] I could only own one Python book, it would be Core Python Programming by Wesley
Chun. This book manages to cover more topics in more depth than Learning Python but
includes it all in one book that also more than adequately covers the core language. [If]
you are in the market for just one book about Python, I recommend this book. You will
enjoy reading it, including its wry programmer's wit. More importantly, you will learn
Python. Even more importantly, you will find it invaluable in helping you in your day-to-
day Python programming life. Well done, Mr. Chun!"

Ron Stephens, Python Learning Foundation

"I think the best language for beginners is Python, without a doubt. My favorite book is
Core Python Programming."

s003apr, MP3Car.com Forums

file:///D|/1/0132269937/pref01.html (1 von 2) [13.11.2007 16:22:31]

http://python.org/

Praise for Core Python Programming

"Personally, I really like Python. It's simple to learn, completely intuitive, amazingly
flexible, and pretty darned fast. Python has only just started to claim mindshare in the
Windows world, but look for it to start gaining lots of support as people discover it. To
learn Python, I'd start with Core Python Programming by Wesley Chun."

Bill Boswell, MCSE, Microsoft Certified Professional Magazine Online

"If you learn well from books, I suggest Core Python Programming. It is by far the best
I've found. I'm a Python newbie as well and in three months time I've been able to
implement Python in projects at work (automating MSOffice, SQL DB stuff, etc.)."

ptonman, Dev Shed Forums

"Python is simply a beautiful language. It's easy to learn, it's cross-platform, and it
works. It has achieved many of the technical goals that Java strives for. A one-sentence
description of Python would be: 'All other languages appear to have evolved over timebut
Python was designed.' And it was designed well. Unfortunately, there aren't a large
number of books for Python. The best one I've run across so far is Core Python
Programming."

Chris Timmons, C. R. Timmons Consulting

"If you like the Prentice Hall Core series, another good full-blown treatment to consider
would be Core Python Programming. It addresses in elaborate concrete detail many
practical topics that get little, if any, coverage in other books."

Mitchell L Model, MLM Consulting

file:///D|/1/0132269937/pref01.html (2 von 2) [13.11.2007 16:22:31]

file:///D|/1/0132269937/14051536.html

Prentice Hall Core Series

Prentice Hall Core Series

Core J2EE Patterns, Second Edition, Alur/Malks/Crupi

Core PHP Programming, Third Edition, Atkinson/Suraski

Core Lego Mindstorms, Bagnall

Core JSTL, Geary

Core JavaServer Faces, Geary/Horstmann

Core Web Programming, Second Edition, Hall/Brown

Core Servlets and JavaServer Pages, Second Edition, Hall/Brown

Core Java™ 2, Volume IFundamentals, Horstmann/Cornell

Core Java™ 2, Volume IIAdvanced Features, Horstmann/Cornell

Core C# and .NET, Perry

Core CSS, Second Edition, Schengili-Roberts

Core Security Patterns, Steel/Nagappan/Lai

Core Java Data Objects, Tyagi/Vorburger/McCammon/Bobzin

Core Web Application Development with PHP and MySQL, Wandschneider

file:///D|/1/0132269937/pref02.html [13.11.2007 16:22:31]

file:///D|/1/0132269937/14051536.html

Preface

Preface

Welcome to Core Python Programming!

We are delighted that you have engaged us to help you learn Python as quickly and as in-depth as
possible. Learning the syntax is one goal of this book; however, we also believe that if you learn how
Python works under the covers, you won't just be able to program in Python, but you will write more
effective Python applications even as a beginner to the language. As you know, just because you learn a
language's syntax does not make you competent in it right away.

Throughout the book, you will find many examples that you can try right in front of your computer. To
hammer the concepts home, you will also find fun and challenging exercises at the end of every chapter.
These easy and intermediate exercises are meant to test your learning and push your Python skills.
There simply is no substitute for experience. We believe you should not only pick up Python
programming skills but also be able to master them in as short a time period as possible.

About This Book

This book differs from other Python books on the market by presenting a broad range of topics,
providing numerous examples, and going in-depth where necessary. This book does not require a
specific background such as prior knowledge of C or object-oriented programming. It is also not a large
case study book that does not facilitate picking up the language quickly. Finally, this book is not a pure
reference nor is it meant to be a quick "dive" into Python. What we have is an extremely comprehensive
introduction to the core features of the language (Part I) followed by a set of chapters that delve into
specific areas of intermediate Python programming.

This book is 40 percent introductory, 40 percent intermediate to advanced, and 20 percent reference. It
is targeted toward technical professionals who are already familiar with programming in one other high-
level language, as well as university/college and secondary students. Because Python is used in larger
solutions such as Zope, Plone, MailMan, and Django, this book may be used by principals developing,
managing, maintaining, or integrating with those systems.

With regards to the code in this book, about a third of the first edition readers sent in complaints that
there were not enough large, full-fledged applications in the book, or that the code examples were not
long or comprehensive enough. Everyone else wrote that they loved the short, easy-to-understand
examples and were not bored of page after page of mind-numbing code. The philosophy behind more
short examples is to give you the ability to look at a piece of code and grasp its entirety. These turn into
building blocks to understanding and then can be incorporated into larger applications as well. There are
line-by-line explanations for most of the larger programs in the book. The abundant interpreter code
snippets scattered throughout the book are there for you to try on your computer as you are learning
Pythonuse the interactive interpreter as much as possible. You not only learn and improve your Python
from using it, but you can also benefit from working out bugs in your code before you paste it into your
source file.

Because you cannot learn Python well without practice, you will find the exercises at the end of every
chapter to be one of the greatest strengths of this book. They will test your knowledge of chapter topics
and definitions, as well as get you to code as much as possible. There is no substitute to learning a
programming language faster and more effectively than by building applications. You will find easy,
intermediate, and difficult problems to solve. It is also here that you may have to write one of those
"large" applications that many readers wanted to see in the book, but rather than having me do it, you
gain the most from such exercises. Appendix A features answers to selected problems from each
chapter.

file:///D|/1/0132269937/pref03.html (1 von 9) [13.11.2007 16:22:33]

Preface

Another set of first edition readers remarked how useful the reference tables were throughout the book,
and how they meticulously copied them for reference. Well, instead of flipping through each chapter
looking for the tables, we have summarized the most highly used ones in Appendix B. Thanks for all of
your feedback. I encourage you to keep talking to us and help us make a third edition possible and
better than its predecessors!

Finally, both the "Other References" appendix and the CD-ROM from the first edition are not included
with this edition. You would not believe how quickly Web links can become obsolete in six months much
less six years! The most up-to-date source code and Python interpreters can easily be downloaded for
offline use at the book's Web site, so there really is no reason to include a CD-ROM.

About the Reader

This book is meant for you if you are a programmer completely new to Python or already know some
Python but want to know more and improve your Python skillset. Python is used in many fields,
including engineering, information technology, science, business, entertainment, and so on. This means
that the list of Python users (and readers of this book) includes but is not limited to:

● Software engineers
● Hardware design/CAD engineers
● QA/testing and automation framework developers
● IS/IT/system and network administrators
● Scientists and mathematicians
● Technical or project management staff
● Multimedia or audio/visual engineers
● SCM or release engineers
● Web masters and content management staff
● Customer/technical support engineers
● Database engineers and administrators
● Research and development engineers
● Software integration and professional services staff
● Collegiate and secondary educators
● Web service engineers
● Financial software engineers
● And many others

Some of the most famous companies using Python include Google, Yahoo!, NASA, Lucasfilm/Industrial
Light and Magic, Red Hat, Zope, Disney, Pixar, and Dreamworks.

The Author's Experience with Python

I discovered Python over a decade ago at a company called Four11. At the time, the company had one
major product, the Four11.com White Page directory service. Python was being used to design our next
product: the Rocketmail Web-based e-mail service that would eventually evolve into what today is
Yahoo!Mail.

It was fun learning Python and being on the original Yahoo!Mail engineering team. I helped rearchitect
the address book and spell checker. At the time, Python also made its way as part of a number of other
Yahoo! sites, including People Search, Yellow Pages, and Maps and Driving Directions, just to name a
few. I was the lead engineer for People Search.

Although Python was new to me then, it was fairly easy to pick upmuch simpler than other languages I
had learned in the past. The scarcity of textbooks at the time led me to primarily use the Library

file:///D|/1/0132269937/pref03.html (2 von 9) [13.11.2007 16:22:33]

Preface

Reference and Quick Reference Guide as my tools in learning, and also led to the motivation for the
book you are reading right now.

Since my days at Yahoo!, I have been able to use Python in all sorts of interesting ways at the jobs that
followed. In each case, I was able to harness the power of Python in solving the problems at hand and in
a timely manner. I have also developed several Python courses and have used this book to teach those
classes, truly eating my own dogfood.

Not only is Core Python Programming a great book to learn Python from, but it is also the best book to
teach Python with! As an engineer, I know what it takes to learn, understand, and apply a new
technology. As a professional instructor, I also know what is needed to deliver the most effective
sessions for clients. This provides the experience necessary to be able to give you real-world analogies
and tips that you cannot get from someone who is "just a trainer" or "just a book author."

About the Author's Writing Style: Technical, Yet Easy Reading

Rather than strictly a "beginners" book or a pure, hard-core computer science reference book, my
instructional experience indicates that an easy-to-read, yet technically oriented book serves our purpose
the best, which is to get you up to speed on Python as quickly as possible so that you can apply it to
your tasks posthaste. We will introduce concepts coupled with appropriate examples to expedite the
learning process. At the end of each chapter you will find numerous exercises to reinforce some of the
concepts and ideas acquired in your reading.

We are thrilled and humbled to be compared with Bruce Eckel's writing style (see the reviews to the first
edition at the book's Web site (http://corepython.com). This is not a dry college textbook. As the
author, I am having a conversation with you, as if you were attending one of my well-received Python
training courses. As a lifelong student, I constantly put myself in my student's shoes and tell you what
you need to hear in order to learn the concepts as quickly and as thoroughly as possible. You will find
reading this book fast and easy, without losing sight of the technical details.

As an engineer, I know what I need to tell you in order to teach you a concept in Python. As a teacher, I
can take technical details and boil them down into language that is easy to understand and grasp right
away. You are getting the best of both worlds with my writing and teaching styles, but you will enjoy
programming in Python even more.

About This Second Edition

At the time the first edition was published, Python was entering its second era with the release of
version 2.0. Since then, the language has seen significant improvements contributing to the overall
continuing success and acceptance of the language. Deficiencies have been removed and new features
added that bring a new level of power and sophistication to Python developers worldwide. We are
thrilled to be able to update this book yet still deliver easy reading along with comprehensive coverage
of the exciting new features. This book includes changes to Python 2.5, released in the fall of 2006, and
even some pre-announced features of 2.6 and beyond. As in the first edition, we aim to keep all of the
topics relevant for readers regardless of the Python version you are using, extending the lifetime of this
book, retarding its obsolescence.

Python is slowly going to be transitioning to the next big version change with a release affectionately
called "Python 3000" by its creator, Guido van Rossum. This is just the marketing name for Python 3.0,
or "Py3K" for short. It will be developed in parallel with the remaining 2.x releases. There will be some
incompatibilities with older versions of Python; however, the core team will work hard to ensure that
code will be backwards-compatible for the most part. (This is in tradition with any new Python release.)
Look mostly for interesting additions to the language as well as the disappearance of old design flaws
and deprecated features.

file:///D|/1/0132269937/pref03.html (3 von 9) [13.11.2007 16:22:33]

http://corepython.com/

Preface

We will continue to update the book's Web site with white papers, updates, and other related articles to
keep Core Python Programming as contemporary as possible, regardless of which new release of Python
you have migrated to.

The new topics we have added to this edition include:

● Boolean and set types (Chapters 5 and 7)
● New-style classes (Chapter 13)

�❍ Subclassing built-in types
�❍ Static methods and class methods
�❍ Slots
�❍ Properties
�❍ Descriptors
�❍ Metaclasses

● Functions (Chapter 11)

�❍ Generators
�❍ Function (and method) decorators
�❍ Statically nested scoping
�❍ Inner functions
�❍ Closures
�❍ Currying and partial function application

● Looping constructs (Chapter 8)

�❍ Iterators
�❍ List comprehensions
�❍ Generator expressions

● Extended import syntax (Chapter 12)

�❍ as keyword
�❍ Multi-line import
�❍ Absolute importing
�❍ Relative importing

● Improved exception handling features (Chapter 10)

�❍ with statement
�❍ try-except-finally statement

In addition, we are proud to introduce three new chapters to the book: "Internet Client
Programming" (Chapter 17), "Database Programming" (Chapter 21), and "Miscellaneous" (Chapter 23).
These are a few intermediate areas where Python is used quite often. All existing chapters have been
refreshed and updated to the latest versions of Python. Please see the chapter guide that follows for
more details.

Chapter Guide

This book is divided into two main sections. The first part, taking up about two-thirds of the text, gives
you treatment of the "core" part of the language, and the second part provides a set of various
advanced topics to show what you can build using Python.

Python is everywheresometimes it is amazing to discover who is using Python and what they are doing

file:///D|/1/0132269937/pref03.html (4 von 9) [13.11.2007 16:22:33]

Preface

with itand although we would have loved to produce additional chapters on such topics as Java/Jython,
Win32 programming, CGI processing with HTMLgen, GUI programming with third-party toolkits
(wxWidgets, GTK+, Qt, etc.), XML processing, numerical and scientific processing, visual and graphics
image manipulation, and Web services and application frameworks (Zope, Plone, Django, TurboGears,
and so on), there simply wasn't enough time to develop these topics into their own chapters. However,
we are certainly glad that we were at least able to provide you with a good introduction to many of the
key areas of Python development including some of the topics mentioned previously.

Here is a chapter-by-chapter guide.

Part I: Core Python

Chapter 1Welcome to Python!

We begin by introducing Python to you, its history, features, benefits, and so on, as well as how to
obtain and install Python on your system.

Chapter 2Getting Started

If you are an experienced programmer and just want to see "how it's done" in Python, this is the right
place to go. We introduce the basic Python concepts and statements, and because many of these will be
familiar to you, you can simply learn the proper syntax in Python and get started right away on your
projects without sacrificing too much reading time.

Chapter 3Syntax and Style

This section gives you a good overview of Python's syntax as well as style hints. You will also be
exposed to Python's keywords and its memory management ability. Your first Python application will be
presented at the end of the chapter to give you an idea of what real Python code looks like.

Chapter 4Python Objects

This chapter introduces Python objects. In addition to generic object attributes, we will show you all of
Python's data types and operators, as well as show you different ways to categorize the standard types.
Built-in functions that apply to most Python objects will also be covered.

Chapter 5Numbers

In this chapter, we discuss Python's main numeric types: integers, floating point numbers, and complex
numbers. We look at operators and built-in and factory functions which apply to all numbers, and we
also briefly discuss a few other related types.

Chapter 6Sequences: Strings, Lists, and Tuples

Your first meaty chapter will expose you to all of Python's powerful sequence types: strings, lists, and
tuples. We will show you all the built-in functions, methods, and special features, which apply to each
type as well as all their operators.

Chapter 7Mapping and Set Types

file:///D|/1/0132269937/pref03.html (5 von 9) [13.11.2007 16:22:33]

Preface

Dictionaries are Python's mapping or hashing type. Like other data types, dictionaries also have
operators and applicable built-in functions and methods. We also cover Python's set types in this
chapter, discussing their operators, built-in and factory functions, and built-in methods.

Chapter 8Conditionals and Loops

Like many other high-level languages, Python supports loops such as for and while, as well as if
statements (and related). Python also has a built-in function called range() which enables Python's for
loop to behave more like a traditional counting loop rather than the "foreach" iterative type loop that it
is. Also included is coverage of auxiliary statements such as break, continue, and pass, as well as a
discussion of newer constructs like iterators, list comprehensions, and generator expressions.

Chapter 9Files and Input/Output

In addition to standard file objects and input/output, this chapter introduces you to file system access,
file execution, and persistent storage.

Chapter 10Errors and Exceptions

One of Python's most powerful constructs is its exception handling ability. You can see a full treatment
of it here, instruction on how to raise or throw exceptions, and more importantly, how to create your
own exception classes.

Chapter 11Functions and Functional Programming

Creating and calling functions are relatively straightforward, but Python has many other features that
you will find useful, such as default arguments, named or keyword arguments, variable-length
arguments, and some functional programming constructs. We also dip into variable scope and recursion
briefly. We will also discuss some advanced features such as generators, decorators, inner functions,
closures, and partial function application (a more generalized form of currying).

Chapter 12Modules

One of Python's key strengths is its ability to be extended. This feature allows for "plug-and-play" access
as well as promotes code reuse. Applications written as modules can be imported for use by other
Python modules with a single line of code. Furthermore, multiple module software distribution can be
simplified by using packages.

Chapter 13Object-Oriented Programming

Python is a fully object-oriented programming language and was designed that way from the beginning.
However, Python does not require you to program in such a manneryou may continue to develop
structural/procedural code as you like, and can transition to OO programming anytime you are ready to
take advantage of its benefits. Likewise, this chapter is here to guide you through the concepts as well
as advanced topics, such as operator overloading, customization, and delegation. Also included is
coverage of new features specific to new-style classes, including slots, properties, descriptors, and
metaclasses.

Chapter 14Execution Environment

file:///D|/1/0132269937/pref03.html (6 von 9) [13.11.2007 16:22:33]

Preface

The term "execution" can mean many different things, from callable and executable objects to running
other programs (Python or otherwise). We discuss these topics in this chapter, as well as controlling
execution via the operating system interface and different ways of terminating execution.

Part II: Advanced Topics

Chapter 15Regular Expressions

Regular expressions are a powerful tool used for pattern matching, extracting, and search-and-replace
functionality. Learn about them here.

Chapter 16Network Programming

So many applications today need to be network-oriented. You have to start somewhere. In this chapter,
you will learn to create clients and servers, using TCP/IP and UDP/IP, as well as get an introduction to
SocketServer and Twisted.

Chapter 17Internet Client Programming

In Chapter 16, we introduced network programming using sockets. Most Internet protocols in use today
were developed using sockets. In this chapter, we explore some of these higher-level libraries, which
are used to build clients of such Internet protocols. In particular, we focus on FTP, NNTP, SMTP, and
POP3 clients.

Chapter 18Multithreaded Programming

Multithreaded programming is a powerful way to improve the execution performance of many types of
application. This chapter ends the drought of written documentation on how to do threads in Python by
explaining the concepts and showing you how to correctly build a Python multithreaded application.

Chapter 19GUI Programming

Based on the Tk graphical toolkit, Tkinter is Python's default GUI development module. We introduce
Tkinter to you by showing you how to build simple sample GUI applications (say that ten times, real
fast!). One of the best ways to learn is to copy, and by building on top of some of these applications,
you will be on your way in no time. We conclude the chapter by presenting a more complex example, as
well as take a brief look at Tix, Pmw, wxPython, and PyGTK.

Chapter 20Web Programming

Web programming using Python takes three main forms: Web clients, Web servers, and the popular
Common Gateway Interface applications that help Web servers deliver dynamically-generated Web
pages. We will cover them all in this chapter: simple and advanced Web clients and CGI applications, as
well as how to build your own Web server.

Chapter 21Database Programming

What Python does for application programming carries to database programming as well. It is simplified,

file:///D|/1/0132269937/pref03.html (7 von 9) [13.11.2007 16:22:33]

Preface

and you will find it fun! We first review basic database concepts, then introduce you to the Python
database application programmer's interface (API). We then show you how you can connect to a
relational database and perform queries and operations with Python. Finally, if you want hands-off using
the Structured Query Language (SQL) and want to just work with objects without having to worry about
the underlying database layer, we will introduce you to a few object-relational managers (ORMs), which
simplify database programming to yet another level.

Chapter 22Extending Python

We mentioned earlier how powerful it is to be able to reuse code and extend the language. In pure
Python, these extensions are modules, but you can also develop lower-level code in C, C++, or Java,
and interface those with Python in a seamless fashion. Writing your extensions in a lower-level
programming language gives you added performance and some security (because the source code does
not have to be revealed). This chapter walks you step-by-step through the extension building process.

Chapter 23Miscellaneous

This new chapter consists of bonus material that we would like to develop into full, individual chapters in
the next edition. Topics covered here include Web Services, Microsoft Office (Win32 COM Client)
Programming, and Java/Jython.

Optional Sections

Subsections or exercises marked with an asterisk (*) may be skipped due to their advanced or optional
nature. They are usually self-contained segments that can be addressed at another time.

Those of you with enough previous programming knowledge and who have set up their Python
development environments can skip the first chapter and go straight to Chapter 2, "Getting Started,"
where you can absorb Python and be off to the races.

Conventions

All program output and source code are in Courier font. Python keywords appear in Courier-Bold font.
Lines of output with three leading greater than signs, >>>, represent the Python interpreter prompt.

"Core Notes" are highlighted with this logo.

"Core Style" notes are highlighted with this logo.

"Core Module" notes are highlighted with this logo.

file:///D|/1/0132269937/pref03.html (8 von 9) [13.11.2007 16:22:33]

Preface

"Core Tips" notes are highlighted with this logo.

New features to Python are highlighted with this logo. The version(s) of Python these features first
appeared in is given inside the logo.

Book Resources

I welcome any and all feedback: the good, the bad, and the ugly. If you have any comments,
suggestions, kudos, complaints, bugs, questions...anything at all, feel free to contact me at
corepython@yahoo.com.

You will find errata source code, updates, upcoming talks, Python training, downloads, and other
information at the book's Web site located at:

http://corepython.com

file:///D|/1/0132269937/pref03.html (9 von 9) [13.11.2007 16:22:33]

mailto:corepython@yahoo.com
http://corepython.com/

Acknowledgments

Acknowledgments

Acknowledgments for the Second Edition

Reviewers and Contributors

Shannon -jj Behrens (lead reviewer)

Michael Santos (lead reviewer)

Rick Kwan

Lindell Aldermann (co-author of the new Unicode section in Chapter 6)

Wai-Yip Tung (co-author of the Unicode example in Chapter 20)

Eric Foster-Johnson (co-author of Beginning Python)

Alex Martelli (editor of Python Cookbook and author of Python in a Nutshell)

Larry Rosenstein

Jim Orosz

Krishna Srinivasan

Chuck Kung

Inspiration

My wonderful children and pet hamster.

Production

Mark Taub and Debra Williams-Cauley (Acquisitions Editors)

Lara Wysong (Project Editor)

John Fuller (Managing Editor)

Sam RC (Project Manager at International Typesetting and Composition)

Acknowledgements for the First Edition

file:///D|/1/0132269937/pref04.html (1 von 3) [13.11.2007 16:22:33]

Acknowledgments

Reviewers and Contributors

Guido van Rossum (creator of the Python language)

Dowson Tong

James C. Ahlstrom (co-author of Internet Programming with Python)

S. Candelaria de Ram

Cay S. Horstmann (co-author of Core Java and Core JavaServer Faces)

Michael Santos

Greg Ward (creator of distutils package and its documentation)

Vincent C. Rubino

Martijn Faassen

Emile van Sebille

Raymond Tsai

Albert L. Anders (co-author of MT Programming chapter)

Fredrik Lundh (author of Python Standard Library)

Cameron Laird

Fred L. Drake, Jr. (co-author of Python & XML and editor of the official Python
documentation)

Jeremy Hylton

Steve Yoshimoto

Aahz Maruch (author of Python for Dummies)

Jeffrey E. F. Friedl (author of Mastering Regular Expressions)

Pieter Claerhout

Catriona (Kate) Johnston

David Ascher (co-author of Learning Python and editor of Python Cookbook)

Reg Charney

file:///D|/1/0132269937/pref04.html (2 von 3) [13.11.2007 16:22:33]

Acknowledgments

Christian Tismer (creator of Stackless Python)

Jason Stillwell

and my students at UC Santa Cruz Extension

Inspiration

James P. Prior (my high school programming teacher)

Louise Moser and P. Michael Melliar-Smith (my graduate thesis advisors at UCSB)

Alan Parsons, Eric Woolfson, Andrew Powell, Ian Bairnson, Stuart Elliott, David Paton, all
other Project participants, and fellow Projectologists and Roadkillers (for all the music,
support, and good times)

I would also like to thank my family, friends and the Lord above, who have kept me safe and sane
during this crazy period of late nights and abandonment. And finally, I would like give a big thanks to all
those who believed in me (you know who you are!)I couldn't have done it without you. Those who
didn't... well, you know what you can do! :-)

Finally, I would like to thank you, my readers, and the Python community at large. I am excited at the
prospect of teaching you Python and hope that you enjoy your travels with me, on our second journey.

Wesley J. Chun

Silicon Valley, CA

(It's not as much a place as it is a state of sanity.)

July 2006

file:///D|/1/0132269937/pref04.html (3 von 3) [13.11.2007 16:22:33]

file:///D|/1/0132269937/14051536.html

Part I: Core Python

Part I: Core Python

Chapter 1. Welcome to Python!

Chapter 2. Getting Started

Chapter 3. Python Basics

Chapter 4. Python Objects

Chapter 5. Numbers

Chapter 6. Sequences: Strings, Lists, and Tuples

Chapter 7. Mapping and Set Types

Chapter 8. Conditionals and Loops

Chapter 9. Files and Input/Output

Chapter 10. Errors and Exceptions

Chapter 11. Functions and Functional Programming

Chapter 12. Modules

Chapter 13. Object-Oriented Programming

Chapter 14. Execution Environment

file:///D|/1/0132269937/part01.html [13.11.2007 16:22:34]

file:///D|/1/0132269937/14051536.html

Chapter 1. Welcome to Python!

Chapter 1. Welcome to Python!

Chapter Topics

● What Is Python?
● Origins of Python
● Python Features
● Downloading Python
● Installing Python
● Running Python
● Python Documentation
● Comparing Python
● Other Implementations

Our introductory chapter provides some background on what Python is, where it came from, and what
some of its "bullet points" are. Once we have stimulated your interest and enthusiasm, we describe how
you can obtain Python and get it up and running on your system. Finally, the exercises at the end of the
chapter will make you comfortable with using Python, both in the interactive interpreter and also in
creating scripts and executing them.

file:///D|/1/0132269937/ch01.html [13.11.2007 16:22:34]

Section 1.1. What Is Python?

1.1. What Is Python?

Python is an elegant and robust programming language that delivers both the power and general
applicability of traditional compiled languages with the ease of use (and then some) of simpler scripting
and interpreted languages. It allows you to get the job done, and then read what you wrote later. You
will be amazed at how quickly you will pick up the language as well as what kind of things you can do
with Python, not to mention the things that have already been done. Your imagination will be the only
limit.

file:///D|/1/0132269937/ch01lev1sec1.html [13.11.2007 16:22:34]

Section 1.2. Origins

1.2. Origins

Work on Python began in late 1989 by Guido van Rossum, then at CWI (Centrum voor Wiskunde en
Informatica, the National Research Institute for Mathematics and Computer Science) in the Netherlands.
It was eventually released for public distribution in early 1991. How did it all begin? Like C, C++, Lisp,
Java, and Perl, Python came from a research background where the programmer was having a hard
time getting the job done with the existing tools at hand, and envisioned and developed a better way.

At the time, van Rossum was a researcher with considerable language design experience with the
interpreted language ABC, also developed at CWI, but he was unsatisfied with its ability to be developed
into something more. Having used and partially developed a higher-level language like ABC, falling back
to C was not an attractive possibility. Some of the tools he envisioned were for performing general
system administration tasks, so he also wanted access to the power of system calls that were available
through the Amoeba distributed operating system. Although van Rossum gave some thought to an
Amoeba-specific language, a generalized language made more sense, and late in 1989, the seeds of
Python were sown.

file:///D|/1/0132269937/ch01lev1sec2.html [13.11.2007 16:22:34]

file:///D|/1/0132269937/14051536.html

Section 1.3. Features

1.3. Features

Although it has been around for well over fifteen years, some feel that Python is still relatively new to
the general software development industry. We should, however, use caution with our use of the word
"relatively," as a few years seem like decades when developing on "Internet time."

When people ask, "What is Python?" it is difficult to say any one thing. The tendency is to want to blurt
out all the things that you feel Python is in one breath. Python is (fill-in-the-blanks here). Just what are
some of those features? For your sanity, we will elucidate each here ... one at a time.

1.3.1. High Level

It seems that with every generation of languages, we move to a higher level. Assembly was a godsend
for those who struggled with machine code, then came FORTRAN, C, and Pascal, which took computing
to another plane and created the software development industry. Through C came more modern
compiled languages, C++ and Java. And further still we climb, with powerful, system-accessible,
interpreted scripting languages like Tcl, Perl, and Python.

Each of these languages has higher-level data structures that reduce the "framework" development time
that was once required. Useful types like Python's lists (resizeable arrays) and dictionaries (hash tables)
are built into the language. Providing these crucial building blocks in the core language encourages their
use and minimizes development time as well as code size, resulting in more readable code.

Because there is no one standard library for heterogeneous arrays (lists in Python) and hash tables
(Python dictionaries or "dicts" for short) in C, they are often reimplemented and copied to each new
project. This process is messy and error prone. C++ improves the situation with the standard template
library, but the STL can hardly compare to the simplicity and readability of Python's built-in lists and
dicts.

1.3.2. Object Oriented

Object-oriented programming (OOP) adds another dimension to structured and procedural languages
where data and logic are discrete elements of programming. OOP allows for associating specific
behaviors, characteristics, and/or capabilities with the data that they execute on or are representative
of. Python is an object-oriented (OO) language, all the way down to its core. However, Python is not just
an OO language like Java or Ruby. It is actually a pleasant mix of multiple programming paradigms. For
instance, it even borrows a few things from functional languages like Lisp and Haskell.

1.3.3. Scalable

Python is often compared to batch or Unix shell scripting languages. Simple shell scripts handle simple
tasks. They may grow (indefinitely) in length, but not truly in depth. There is little code-reusability and
you are confined to small projects with shell scripts. In fact, even small projects may lead to large and
unwieldy scripts. Not so with Python, where you can grow your code from project to project, add other
new or existing Python elements, and reuse code at your whim. Python encourages clean code design,
high-level structure, and "packaging" of multiple components, all of which deliver the flexibility,
consistency, and faster development time required as projects expand in breadth and scope.

The term "scalable" is most often applied to measuring hardware throughput and usually refers to
additional performance when new hardware is added to a system. We would like to differentiate this
comparison with ours here, which tries to reflect the notion that Python provides basic building blocks on

file:///D|/1/0132269937/ch01lev1sec3.html (1 von 4) [13.11.2007 16:22:35]

Section 1.3. Features

which you can build an application, and as those needs expand and grow, Python's pluggable and
modular architecture allows your project to flourish as well as maintain manageability.

1.3.4. Extensible

As the amount of Python code increases in your project, you will still be able to organize it logically by
separating your code into multiple files, or modules, and be able to access code from one module and
attributes from another. And what is even better is that Python's syntax for accessing modules is the
same for all modules, whether you access one from the Python standard library, one you created just a
minute ago, or even an extension you wrote in another language! Using this feature, you feel like you
have just "extended" the language for your own needs, and you actually have.

The most critical portions of code, perhaps those hotspots that always show up in the profiler or areas
where performance is absolutely required, are candidates for being rewritten as a Python extension
written in C. But again, the interface is exactly the same as for pure Python modules. Access to code
and objects occurs in exactly the same way without any code modification whatsoever. The only thing
different about the code now is that you should notice an improvement in performance. Naturally, it all
depends on your application and how resource-intensive it is. There are times where it is absolutely
advantageous to convert application bottlenecks to compiled code because it will decidedly improve
overall performance.

This type of extensibility in a language provides engineers with the flexibility to add-on or customize
their tools to be more productive, and to develop in a shorter period of time. Although this feature is self-
evident in mainstream third-generation languages (3GLs) such as C, C++, and even Java, the ease of
writing extensions to Python in C is a real strength of Python. Furthermore, tools like PyRex, which
understands a mix of C and Python, make writing extensions even easier as they compile everything to
C for you.

Python extensions can be written in C and C++ for the standard implementation of Python in C (also
known as CPython). The Java language implementation of Python is called Jython, so extensions would
be written using Java. Finally, there is IronPython, the C# implementation for the .NET or Mono
platforms. You can extend IronPython in C# or Visual Basic.NET.

1.3.5. Portable

Python can be found on a wide variety of systems, contributing to its continued rapid growth in today's
computing domain. Because Python is written in C, and because of C's portability, Python is available on
practically every type of platform that has an ANSI C compiler. Although there are some platform-
specific modules, any general Python application written on one system will run with little or no
modification on another. Portability applies across multiple architectures as well as operating systems.

1.3.6. Easy to Learn

Python has relatively few keywords, simple structure, and a clearly defined syntax. This allows the
student to pick up the language in a relatively short period of time. What may perhaps be new to
beginners is the OO nature of Python. Those who are not fully versed in the ways of OOP may be
apprehensive about jumping straight into Python, but OOP is neither necessary nor mandatory. Getting
started is easy, and you can pick up OOP and use when you are ready to.

1.3.7. Easy to Read

Conspicuously absent from the Python syntax are the usual mandatory symbols found in other
languages for accessing variables, code block definition, and pattern-matching. These include dollar
signs ($), semicolons (;), tildes (~), and so on. Without all these distractions, Python code is much

file:///D|/1/0132269937/ch01lev1sec3.html (2 von 4) [13.11.2007 16:22:35]

Section 1.3. Features

more clearly defined and visible to the eye. In addition, much to many programmers' dismay (and
relief), Python does not give as much flexibility to write obfuscated code compared to other languages,
making it easier for others to understand your code faster and vice versa. Readability usually helps
make a language easy to learn, as we described above. We would even venture to claim that Python
code is fairly understandable even to a reader who has never seen a single line of Python before. Take a
look at the examples in the next chapter, "Getting Started," and let us know how well you fare.

1.3.8. Easy to Maintain

Maintaining source code is part of the software development lifecycle. Your software usually continues to
evolve until it is replaced or obsoleted. Quite often it lasts longer than a programmer's stay at a
company. Much of Python's success is that source code is fairly easy to maintain, dependent, of course,
on size and complexity. However, this conclusion is not difficult to draw given that Python is easy to
learn and easy to read. Another motivating advantage of Python is that upon reviewing a script you
wrote six months ago, you are less likely to get lost or pull out a reference book to get reacquainted
with your software.

1.3.9. Robust

Nothing is more powerful than allowing a programmer to recognize error conditions and provide a
software handler when such errors occur. Python provides "safe and sane" exits on errors, allowing the
programmer to be in the driver's seat. When your Python crashes due to errors, the interpreter dumps
out a "stack trace" full of useful information such as why your program crashed and where in the code
(file name, line number, function call, etc.) the error took place. These errors are known as exceptions.
Python even gives you the ability to monitor for errors and take an evasive course of action if such an
error does occur during runtime.

These exception handlers can take steps such as defusing the problem, redirecting program flow,
perform cleanup or maintenance measures, shutting down the application gracefully, or just ignoring it.
In any case, the debugging part of the development cycle is reduced considerably. Python's robustness
is beneficial for both the software designer and the user. There is also some accountability when certain
errors occur that are not handled properly. The stack trace that is generated as a result of an error
reveals not only the type and location of the error, but also in which module the erroneous code resides.

1.3.10. Effective as a Rapid Prototyping Tool

We've mentioned before how Python is easy to learn and easy to read. But, you say, so is a language
like BASIC. What more can Python do? Unlike self-contained and less flexible languages, Python has so
many different interfaces to other systems that it is powerful enough in features and robust enough that
entire systems can be prototyped completely in Python. Obviously, the same systems can be completed
in traditional compiled languages, but Python's simplicity of engineering allows us to do the same thing
and still be home in time for supper. Also, numerous external libraries have already been developed for
Python, so whatever your application is, someone may have traveled down that road before. All you
need to do is "plug-and-play" (some assembly required, as usual). There are Python modules and
packages that can do practically anything and everything you can imagine. The Python Standard Library
is fairly complete, and if you cannot find what you need there, chances are there is a third-party module
or package that can do the job.

1.3.11. A Memory Manager

The biggest pitfall with programming in C or C++ is that the responsibility of memory management is in
the hands of the developer. Even if the application has very little to do with memory access, memory
modification, and memory management, the programmer must still perform those duties, in addition to
the original task at hand. This places an unnecessary burden and responsibility upon the developer and

file:///D|/1/0132269937/ch01lev1sec3.html (3 von 4) [13.11.2007 16:22:35]

Section 1.3. Features

often provides an extended distraction.

Because memory management is performed by the Python interpreter, the application developer is able
to steer clear of memory issues and focus on the immediate goal of just creating the application that
was planned in the first place. This leads to fewer bugs, a more robust application, and shorter overall
development time.

1.3.12. Interpreted and (Byte-) Compiled

Python is classified as an interpreted language, meaning that compile-time is no longer a factor during
development. Traditionally, purely interpreted languages are almost always slower than compiled
languages because execution does not take place in a system's native binary language. However, like
Java, Python is actually byte-compiled, resulting in an intermediate form closer to machine language.
This improves Python's performance, yet allows it to retain all the advantages of interpreted languages.

Core Note: File extensions

Python source files typically end with the .py extension. The source is
byte-compiled upon being loaded by the interpreter or by being byte-
compiled explicitly. Depending on how you invoke the interpreter, it
may leave behind byte-compiled files with a .pyc or .pyo extension.
You can find out more about file extensions in Chapter 12, "Modules."

file:///D|/1/0132269937/ch01lev1sec3.html (4 von 4) [13.11.2007 16:22:35]

Section 1.4. Downloading and Installing Python

1.4. Downloading and Installing Python

The most obvious place to get all Python-related software is at the main Web site at http://python.org.
For your convenience, you can also go to the book's Web site at http://corepython.com and click on the
"Install Python" link to the leftwe have organized a grid with most contemporary versions of Python for
the most platforms, with a focus, of course, on the "Big Three." Unix, Win 32, MacOS X.

As we alluded to earlier in Section 1.3.5, Python is available on a wide variety of platforms. They can be
broken down into these basic categories and available platforms:

● All Unix flavors (Linux, MacOS X, Solaris, FreeBSD, etc.)
● Win32 (Windows NT, 2000, XP, etc.)
● Older platforms: MacOS 8/9, Windows 3.x, DOS, OS/2, AIX
● Handhelds (PDAs/phones): Nokia Series 60/SymbianOS, Windows CE/Pocket PC, Sharp Zaurus/

arm-linux, PalmOS
● Gaming consoles: Sony PS2, PSP; Nintendo GameCube
● Real-Time platforms: VxWorks, QNX
● Alternative implementations: Jython, IronPython, stackless
● Others

The most recent versions of Python will likely be found only on "the Big Three." In fact, current versions
of Linux and MacOS X already come with Python installedyou'll have to check to see which Python
release it is. Other versions will be older 2.x releases while some have yet to progress beyond 1.5.
Some come with binaries to install directly while others require you to build Python manually before
installation.

Unix (Linux, MacOS X, Solaris, *BSD, etc.)

As mentioned above, your Unix-based system may already have Python installed. The best way to check
is to run Python from the command line and see if it is both in your path and available. Just type:

myMac:~ wesley$ python
Python 2.4 (#4, Mar 19 2005, 03:25:10)
[GCC 3.3 20030304 (Apple Computer, Inc. build 1671)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
">>>"

If starting Python fails, it doesn't mean it's not installed, just that it's not in your path. Hunt around for
it, and if you're unsuccessful, try building it manually, which isn't very difficult (see "Build It Yourself" on
the next page). If you're using certain versions of Linux, you can get the binary or source RPMs.

Windows/DOS

Download the .msi file from python.org or corepython.com as described previously (i.e., python-2.5.msi)
and execute it to install Python. If you are planning on doing any kind of Win32 development, such as
with COM, MFC, or need any of the Win32 libraries, we also strongly suggest that you download and
install the Python for Windows Extensions. You can then run Python from a DOS command window or
via one of the IDEs, IDLE, the default Python IDE, or PythonWin, the IDE that comes with the Windows
Extensions distribution.

file:///D|/1/0132269937/ch01lev1sec4.html (1 von 2) [13.11.2007 16:22:36]

http://python.org/
http://corepython.com/
http://www.python.org/
http://www.corepython.com/

Section 1.4. Downloading and Installing Python

Build It Yourself

For most other platforms, download the .tgz file,. extract the files, and go to the main directory. Build
Python by performing the following:

1.

./configure

2.

make

3.

make install

Python is usually installed in a standard location so you can find it rather easily. It has become quite
commonplace for systems today to have multiple versions of Python installed. While it is easy to find the
binary executable, you also have to deal with where the libraries are installed.

On Unix machines, the executable is usually installed in /usr/local/bin while the libraries are in /usr/
local/lib/python2.x where the 2.x is the version of Python you are using. For MacOS X, Python is
installed in /sw/bin and/or /usr/local/bin, and the libraries are in /sw/lib,/usr/local /lib, and/or /
Library/Frameworks/Python.framework/Versions.

On Windows, the default installation area is C:\Python2x. TRy to avoid installing Python in C:\Program
Files. Yes, we know it's the general place to put installed programs, but DOS does not support those
types of long names; it is usually aliased as Progra~1. This may also lead to problems running some
programs, so it's best to avoid it. So, let's say you installed Python in C:\Python, then the standard
library files are typically installed in C:\Python\Lib.

file:///D|/1/0132269937/ch01lev1sec4.html (2 von 2) [13.11.2007 16:22:36]

Section 1.5. Running Python

1.5. Running Python

There are three different ways to start Python. The simplest way is by starting the interpreter
interactively, entering one line of Python at a time for execution. Another way to start Python is by
running a script written in Python. This is accomplished by invoking the interpreter on your script
application. Finally, you can run from a graphical user interface (GUI) from within an integrated
development environment (IDE). IDEs typically feature additional tools such as an integrated debugger,
text editor, and support for a wide range of source code control tools such as CVS.

1.5.1. Interactive Interpreter from the Command Line

You can enter Python and start coding right away in the interactive interpreter by starting it from the
command line. You can do this from Unix, DOS, or any other system that provides you a command-line
interpreter or shell window. One of the best ways to start learning Python is to run the interpreter
interactively. Interactive mode is also very useful later on when you want to experiment with specific
features of Python.

Unix (Linux, MacOS X, Solaris, *BSD, etc.)

To access Python, you will need to type in the full pathname to its location unless you have added the
directory where Python resides to your search path. Common places where Python is installed include /
usr/bin and /usr/local/bin.

We recommend that you add Python (i.e., the executable file python, or jpython if you wish to use the
Java version of the interpreter) to your search path because you do not want to have to type in the full
pathname every time you wish to run interactively. Once this is accomplished, you can start the
interpreter with just its name.

To add Python to your search path, simply check your login startup scripts and look for a set of
directories given to the set path or PATH= directive. Adding the full path to where your Python interpreter
is located is all you have to do, followed by refreshing your shell's path variable. Now at the Unix prompt
(% or $, depending on your shell), you can start the interpreter just by invoking the name python (or
jpython), as in the following.

$ python

Once Python has started, you'll see the interpreter startup message indicating version and platform and
be given the interpreter prompt ">>>" to enter Python commands. Figure 1-1 is a screen shot of what it
looks like when you start Python in a Unix (MacOS X) environment.

Figure 1-1. Starting Python in a Unix (MacOS X) window

[View full size image]

file:///D|/1/0132269937/ch01lev1sec5.html (1 von 9) [13.11.2007 16:22:37]

file:///D|/1/0132269937/images/chun_fig01_01_alt.jpg

Section 1.5. Running Python

Windows/DOS

To add Python to your search path, you need to edit the C:\autoexec.bat file and add the full path to
where your interpreter is installed. It is usually either C:\Python or C:\Program Files \Python (or its
short DOS name equivalent C:\Progra~1\Python). From a DOS window (either really running in DOS or
started from Windows), the command to start Python is the same as Unix, python (see Figure 1-2). The
only difference is the prompt, which is C:\>.

C:\>python

Figure 1-2. Starting Python in a DOS/command window

[View full size image]

file:///D|/1/0132269937/ch01lev1sec5.html (2 von 9) [13.11.2007 16:22:37]

file:///D|/1/0132269937/images/chun_fig01_02_alt.jpg

Section 1.5. Running Python

Command-Line Options

When starting Python from the command-line, additional options may be provided to the interpreter.
Here are some of the options to choose from:

-d Provide debug output

-O Generate optimized bytecode (resulting in .pyo files)

-S Do not run importsite to look for Python paths on startup

-v Verbose output (detailed trace on import statements)

-m mod run (library) module as a script

-Q opt division options (see documentation)

-c cmd Run Python script sent in as cmd string

file Run Python script from given file (see later)

1.5.2. As a Script from the Command Line

Unix (Linux, MacOS X, Solaris, *BSD, etc.)

From any flavor of Unix, a Python script can be executed by invoking the interpreter on your application
from the command line, as in the following:

$ python script.py

Python scripts end with a file extension of .py, as indicated above.

file:///D|/1/0132269937/ch01lev1sec5.html (3 von 9) [13.11.2007 16:22:37]

Section 1.5. Running Python

It is also possible in Unix to automatically launch the Python interpreter without explicitly invoking it by
name from the command line. If you are using any Unix-flavored system, you can use the shell-
launching ("sh-bang") first line of your program:

#!/usr/local/bin/python

The file path, the part that follows the #!, is the full path location of the Python interpreter. As we
mentioned before, it is usually installed in /usr/local/bin or /usr/bin. If not, be sure to get the exact
pathname correct so that you can run your Python scripts. Pathnames that are not correct will result in
the familiar Command not found error message.

As a preferred alternative, many Unix systems have a command named env, installed in either /bin or /
usr/bin, which will look for the Python interpreter in your path. If you have env, your startup line can be
changed to something like this:

#!/usr/bin/env python

or, if your env is located in /bin,

#!/bin/env python

env is useful when you either do not know exactly where the Python executable is located, or if it
changes location often, yet still remains available via your directory path. Once you add the proper
startup directive to the beginning of your script, it becomes directly executable, and when invoked,
loads the Python interpreter first, then runs your script. As we mentioned before, Python no longer has
to be invoked explicitly from the command. You only need the script name:

$ script.py

Be sure the file permission mode allows execution first. There should be an 'rwx' permissions getting for
the user in the long listing of your file. Check with your system administrator if you require help in
finding where Python is installed or if you need help with file permissions or the chmod(CHange MODe)
command.

Windows/DOS

The DOS command window does not support the auto-launching mechanism; however, at least with
WinXP, it is able to do the same thing as Windows: it uses the "file type" interface. This interface allows
Windows to recognize file types based on extension names and to invoke a program to handle files of
predetermined types. For example, if you install Python with PythonWin, double-clicking on a Python
script with the .py extension will invoke Python or PythonWin IDE (if you have it installed) to run your
script. Thus, running the following will have the same effect as double-clicking on it:

C:\> script.py

So now both Unix-based and Win32 systems can launch Python scripts without naming Python on the
command line, but you can always fall back on it if just calling the script leads to an error like

file:///D|/1/0132269937/ch01lev1sec5.html (4 von 9) [13.11.2007 16:22:37]

Section 1.5. Running Python

"command is not recognized."

1.5.3. In an Integrated Development Environment

You can run Python from a graphical user interface (GUI) environment as well. All you need is a GUI
application on your system that supports Python. If you have found one, chances are that it is also an
IDE (integrated development environment). IDEs are more than just graphical interfaces. They typically
have source code editors and trace and debugging facilities.

Unix (Linux, MacOS X, Solaris, *BSD, etc.)

IDLE is the very first Unix IDE for Python. It was also developed by Guido van Rossum and made its
debut in Python 1.5.2. IDLE stands for IDE with a raised "L," as in Integrated DeveLopment
Environment. Suspiciously, IDLE also happens to be the name of a Monty Python troupe member.
Hmmm.... IDLE is Tkinter-based, thus requiring you to have Tcl/Tk installed on your system. Current
distributions of Python include a minimal subset of the Tcl/Tk library so that a full install is no longer
required.

Also, if Python was automatically installed on your system or if you have a Python RPM, chances are it
does not include IDLE or Tkinter, so look for both before trying to run IDLE. (There is actually a separate
Tkinter RPM that you can download along with the Python one if you want it.) If you build Python
yourself and Tk libraries are available, then Tkinter will be automatically built along with Python, and
both Tkinter and IDLE will be installed when Python is.

If you want to run IDLE, you will find it where your standard library is installed: /usr/local/lib/python2.
x/idlelib/idle.py. If you build and install Python yourself, you may find a shortcut script called idle in /
usr/local/bin allowing you to just launch IDLE from your shell command-line prompt. A screen shot of
IDLE in Unix appears in Figure 1-3.

Figure 1-3. Starting IDLE in Unix

[View full size image]

file:///D|/1/0132269937/ch01lev1sec5.html (5 von 9) [13.11.2007 16:22:37]

file:///D|/1/0132269937/images/chun_fig01_03_alt.jpg

Section 1.5. Running Python

MacOS X is very Unix-like (based on the Mach kernel with BSD services). Python is now compiled for
MacOS X with the traditional Unix build tools. The MacOS X distributions come with a compiled Python
interpreter; however, none of the special Mac-oriented tools (i.e., GNU readline, IDE, etc.) are installed.
The same applies for Tkinter and IDLE.

You tend to go download and build your own, but be careful: sometimes it is tricky to decouple your new
Python install from the Apple factory version. Do your research carefully first. You can also get Python
for MacOS X from Fink/FinkCommander and DarwinPorts:

http://fink.sourceforge.net/

http://darwinports.org

For the most up-to-date Mac stuff and information for Python, visit:

http://undefined.org/python

http://pythonmac.org/packages

Another option would be to download a MacOS X Universal binary from the Python Web site. This disk
image (DMG) file requires at least version 10.3.9 and will run on both PowerPC- and Intel-based Macs.

Windows

PythonWin is the first Windows interface for Python and is an IDE with a GUI. Included with the
PythonWin distribution are Windows API, and COM (Component Object Model, a.k.a. OLE [Object Linking
and Embedding] and ActiveX) extensions. PythonWin itself was written to the MFC (Microsoft Foundation

file:///D|/1/0132269937/ch01lev1sec5.html (6 von 9) [13.11.2007 16:22:37]

http://fink.sourceforge.net/
http://darwinports.org/
http://undefined.org/python
http://pythonmac.org/packages

Section 1.5. Running Python

Class) libraries, and it can be used as a development environment to create your own Windows
applications. You can download and install it from the Web sites shown on the next page.

PythonWin is usually installed in the same directory as Python, in its own subdirectory, C:\Python2x\Lib
\site-packages\pythonwin as the executable pythonwin.exe. PythonWin features a color editor, a new
and improved debugger, interactive shell window, COM extensions, and more. A screen snapshot of the
PythonWin IDE running on a Windows machine appears in Figure 1-4.

Figure 1-4. PythonWin environment in Windows

[View full size image]

You can find out more about PythonWin and the Python for Windows Extensions (also known as
"win32all") at the following locations organized by Mark Hammond:

http://starship.python.net/crew/mhammond/win32/

http://sourceforge.net/projects/pywin32/

IDLE is also available on the Windows platform, due to the portability of Tcl/Tk and Python/Tkinter. It
looks similar to its Unix counterpart (Figure 1-5).

file:///D|/1/0132269937/ch01lev1sec5.html (7 von 9) [13.11.2007 16:22:37]

file:///D|/1/0132269937/images/chun_fig01_04_alt.jpg
http://starship.python.net/crew/mhammond/win32/
http://sourceforge.net/projects/pywin32/

Section 1.5. Running Python

Figure 1-5. Starting IDLE in Windows

[View full size image]

From Windows, IDLE can be found in the Lib\idlelib subdirectory where your Python interpreter is
found, usually C:\Python2x. To start IDLE from a DOS command window, invoke idle.py. You can also
invoke idle.py from a Windows environment, but that starts an unnecessary DOS window. Instead,
double-click on idle.pyw. Files ending in .pyw will not open a DOS command window to run the script in.
In fact, your author just creates a shortcut to C:\Python2x\Lib\idlelib\idle.pyw on the desktop that can
be double-clicked ... simple!

1.5.4. Other IDEs and Execution Environments

Many software professionals actually prefer to code in their favorite text editor such as vi(m) or emacs.
In addition to these and the IDEs mentioned in the previous section, there are good number of Open
Source and commercial IDEs as well. Here is a short list:

Open Source

● IDLE (comes with Python distribution)

http://python.org/idle/

● PythonWin + Win32 Extensions

http://starship.python.net/crew/skippy/win32

file:///D|/1/0132269937/ch01lev1sec5.html (8 von 9) [13.11.2007 16:22:37]

file:///D|/1/0132269937/images/chun_fig01_05_alt.jpg
http://python.org/idle/
http://starship.python.net/crew/skippy/win32

Section 1.5. Running Python

● IPython (enhanced Interactive Python)

http://ipython.scipy.org

● IDE Studio (IDLE+more)

http://starship.python.net/crew/mike/Idle

● Eclipse

http://pydev.sf.net

http://eclipse.org/

Commercial

● WingIDE Python IDE by WingWare

http://wingware.com/

● Komodo IDE by ActiveState

http://activestate.com/Products/Komodo

General overall IDE list

http://wiki.python.org/moin/IntegratedDevelopmentEnvironments

Core Tip: Running the code examples in this book

You will find many example Python scripts and applications in this
book, which can be downloaded from the book's Web site. When you
run them, however, bear in mind that they were designed to execute
either from the command line (DOS command window or Unix shell)
or from an IDE. If you are using a Win32 system and double-click on a
Python program, a DOS window opens up but closes when the script
completes, so you may miss all of the output. If you encounter this
situation, just open up a DOS window normally and run it from the
command line or execute the script in an IDE instead. Alternatively,
you can add a raw_input() line at the bottom, which keeps the window
alive until you press the RETURN key.

file:///D|/1/0132269937/ch01lev1sec5.html (9 von 9) [13.11.2007 16:22:37]

http://ipython.scipy.org/
http://starship.python.net/crew/mike/Idle
http://pydev.sf.net/
http://eclipse.org/
http://wingware.com/
http://activestate.com/Products/Komodo
http://wiki.python.org/moin/IntegratedDevelopmentEnvironments

Section 1.6. Python Documentation

1.6. Python Documentation

Python documentation can be found in numerous places. The fastest way to get to it is by viewing the
online docs at the Python Web page. If you are not online and use a Win32 system, an offline
compressed help file is located at C:\Python2x\Doc\Python2x.chm. It uses an Internet Explorer (IE)
interface so that you are actually using a Web browser to view the docs. Other offline options include
Adobe Portable Document Format (PDF) or PostScript (PS) files in Letter and A4 sizes. Finally, if you
download the Python distribution, you will get the LaTeX source.

At the book's Web site, we created a page with a grid that has links to the docs for most versions of
Python. Just visit http://corepython.com and click on "Documentation" to the left.

file:///D|/1/0132269937/ch01lev1sec6.html [13.11.2007 16:22:37]

http://corepython.com/
file:///D|/1/0132269937/14051536.html

Section 1.7. Comparing Python

1.7. Comparing Python

Python has been compared with many languages. One reason is that it provides many features found in
other languages. Another reason is that Python itself is derived from many other languages, including
ABC, Modula-3, C, C++, Algol-68, SmallTalk, and Unix shell and other scripting languages, to name a
few. Python is a virtual "greatest hits": van Rossum combined the features he admired most in the other
languages he had studied and brought them together for our programming sanity.

However, more often than not, since Python is an interpreted language, you will find that most of the
comparisons are with Perl, Java, Tcl, and JavaScript. Perl is another scripting language that goes well
beyond the realm of the standard shell scripts. Like Python, Perl gives you the power of a full
programming language as well as system call access.

Perl's greatest strength is in its string pattern matching ability, providing an extremely powerful regular
expression matching engine. This has pushed Perl to become the de facto language for string text
stream filtering, recognition, and extraction, and it is still the most popular language for developing
Internet applications through Web servers' Common Gateway Interface (CGI). Python's regular
expression engine is based significantly on Perl's.

However, Perl's obscure and overly symbolic syntax is much more difficult to decipher, resulting in a
steep learning curve that inhibits the beginner, frustrating those for whom grasping concepts is impeded
by semantics. This, coupled with Perl's "feature" of providing many ways of accomplishing the same
task, introduces inconsistency and factionization of developers. Finally, all too often the reference book
is required reading to decipher a Perl script that was written just a couple of months back.

Python is often compared to Java because of their similar OO nature and syntax. Java's syntax, although
much simpler than C++'s, can still be fairly cumbersome, especially if you want to perform just a small
task. Python's simplicity offers a much more rapid development environment than using just pure Java.
One major evolution in Python's relationship with Java is the development of Jython, a Python
interpreter written completely in Java. It is now possible to run Python programs with only the presence
of a Java VM (virtual machine). We will mention more of Jython's advantages briefly in the following
section, but for now we can tell you that in the Jython scripting environment, you can manipulate Java
objects, Java can interact with Python objects, and you have access to your normal Java class libraries
as if Java has always been part of the Python environment.

Python is now often compared to Ruby as well, due to the popularity of the Rails project. As we
mentioned above, Python is a wider mix of multiple programming paradigms. It is not purely OO like
Ruby and does not have Smalltalk-like blocks, perhaps Ruby's most distinguishable feature. Python does
have a byte-code interpreter, where Ruby does not. Python is perhaps more readable, as Ruby can
really be thought of as more of an OO Perl. With regard to Rails, Python has several own Web
application frameworks, such as Django and Turbogears, to name two.

Tcl is another scripting language that shares similarities shares Python. Tcl is one of the first truly easy-
to-use scripting languages to provide the programmer extensibility as well as system call access. Tcl is
still popular today and perhaps somewhat more restrictive (due to its limited types) than Python, but it
shares Python's ability to extend past its original design. More importantly, Tcl is often used with its
graphical toolkit partner, Tk, in developing graphical user interface (GUI) applications. Due to its
popularity, Tk has been ported to Perl (Perl/Tk) and Python (Tkinter). Also, it can be argued that
Python's classes, modules, and packages make writing large programs in Python more pleasant than
writing them in Tcl.

Python has some light functional programming (FP) constructs, which likens it to languages such as Lisp
or Scheme. Although Python cannot be considered a traditional functional language, it continues to

file:///D|/1/0132269937/ch01lev1sec7.html (1 von 3) [13.11.2007 16:22:37]

Section 1.7. Comparing Python

borrow features from languages such as Lisp and Haskell. For instance, list comprehensions were a
welcome addition from the Haskell world, and Lisp programmers will feel at home with lambda, map,
filter, and reduce.

JavaScript is another OO language very similar to Python. Any proficient JavaScript programmer will
have little or no difficulty learning Python. The particularly astute reader will note that JavaScript is
based on a prototype system, whereas Python follows a more traditional OO system that differentiates
objects and classes.

Here is a list of some Web pages that have information on comparing or transitioning between Python
and other languages:

Perl

http://www2.linuxjournal.com/article/3882

http://llama.med.harvard.edu/~fgibbons/PerlPythonPhrasebook.html

http://aplawrence.com/Unixart/pythonvsperl.html

http://pleac.sf.net/pleac_python

http://www.garshol.priv.no/download/text/perl.html

Java

http://dirtsimple.org/2004/12/python-is-not-java.html

http://twistedmatrix.com/users/glyph/rant/python-vs-java.html

http://netpub.cstudies.ubc.ca/oleary/python/python_java_comparison.php

Lisp

http://strout.net/python/pythonvslisp.html

http://norvig.com/python-lisp.html

Ruby

http://blog.ianbicking.org/ruby-python-power.html

http://www.rexx.com/~oinkoink/Ruby_v_Python.html

http://dev.rubycentral.com/faq/rubyfaq-2.html

Perl, C++

file:///D|/1/0132269937/ch01lev1sec7.html (2 von 3) [13.11.2007 16:22:37]

http://www2.linuxjournal.com/article/3882
http://aplawrence.com/Unixart/pythonvsperl.html
http://pleac.sf.net/pleac_python
http://www.garshol.priv.no/download/text/perl.html
http://dirtsimple.org/2004/12/python-is-not-java.html
http://twistedmatrix.com/users/glyph/rant/python-vs-java.html
http://netpub.cstudies.ubc.ca/oleary/python/python_java_comparison.php
http://strout.net/python/pythonvslisp.html
http://norvig.com/python-lisp.html
http://blog.ianbicking.org/ruby-python-power.html
http://www.rexx.com/~oinkoink/Ruby_v_Python.html
http://dev.rubycentral.com/faq/rubyfaq-2.html

Section 1.7. Comparing Python

http://strombergers.com/python/

Perl, Java, C++

http://furryland.org/~mikec/bench/

C++, Java, Ruby

http://dmh2000.com/cjpr

Perl, Java, PHP, Tcl

http://www-128.ibm.com/developerworks/linux/library/l-python101.html

http://www-128.ibm.com/developerworks/linux/library/l-script-survey/

C, C++, Java, Perl, Rexx, Tcl

http://www.ubka.uni-karlsruhe.de/indexer-vvv/ira/2000/5

You can access a number of other comparisons between Python and other languages at:

http://www.python.org/doc/Comparisons.html

file:///D|/1/0132269937/ch01lev1sec7.html (3 von 3) [13.11.2007 16:22:37]

http://strombergers.com/python/
http://dmh2000.com/cjpr
http://www.ubka.uni-karlsruhe.de/indexer-vvv/ira/2000/5
http://www.python.org/doc/Comparisons.html

Section 1.8. Other Implementations

1.8. Other Implementations

The "standard" version of Python is C-compiled, aka CPython. There are a few other Python
implementations. We will describe some here, but for more on the various Python implementations out
there, check out:

http://python.org/dev/implementations.html

Java

As we mentioned in the previous section, a Python interpreter completely written in Java, called Jython,
is currently available. Although there are still minor differences between the two interpreters, they are
very similar and provide a comparable startup environment.

What are the advantages of Jython? Jython ...

● Can run anywhere a Java virtual machine (JVM) can be found
● Provides access to Java packages and class libraries
● Furnishes a scripting environment for Java development
● Enables ease of testing for Java class libraries
● Offers access to Java's native exception handling ability
● Delivers JavaBeans property and introspection ability
● Encourages Python-to-Java development (and vice versa)
● Gives GUI developers access to Java AWT/Swing libraries
● Utilizes Java's native garbage collector (so CPython's was not implemented)

A full treatment of Jython is beyond the scope of this text, but there is a good amount of
information online. Jython is still an ongoing development project, so keep an eye out for new
features. You can get more information at the Jython Web site at:

http://jython.org

.NET/Mono

There is now a Python implementation completely in C#, called IronPython. It is targeted at the .NET
and Mono environments. You can integrate an IronPython interpreter in a .NET application that can
interact with .NET objects. Extensions to IronPython can be implemented in C# or VisualBasic.NET. In
addition, there is another .NET/Mono language that is Python-inspired, and it is called Boo. You can find
out more information about IronPython and Boo at:

http://codeplex.com/Wiki/View.aspx?ProjectName=IronPython

http://boo.codehaus.org/

Stackless

One of the limitations of CPython is that for each Python function call, it results in a C function call. (For
the computer science-oriented, we are talking about stack frames here.) This implies restrictions on
CPython, most notably a limitation on the total number of concurrent function calls. This can make it

file:///D|/1/0132269937/ch01lev1sec8.html (1 von 2) [13.11.2007 16:22:38]

http://python.org/dev/implementations.html
http://jython.org/
http://codeplex.com/Wiki/View.aspx?ProjectName=IronPython
http://boo.codehaus.org/

Section 1.8. Other Implementations

difficult to implement effective user-level threading libraries or highly recursive applications in Python. If
this total is exceeded, then your program will crash. By using a "stackless" implementation, you are
freed from this restriction and can have any number of Python stack frames for the one C stack frame.
This allows you to have many function calls and supports a very large number of threads. The main
stackless implementation of Python is called ... Stackless (surprise!).

The only problem with Stackless is that it requires significant changes to the existing CPython
interpreter, so it is seen as an independent fork. Another project called Greenlets that also supports
microthreads is available as a standard C extension and can be used with an unmodified version of
Python. You can read about both of these projects at:

http://stackless.com

http://codespeak.net/py/current/doc/greenlet.html

file:///D|/1/0132269937/ch01lev1sec8.html (2 von 2) [13.11.2007 16:22:38]

http://stackless.com/
http://codespeak.net/py/current/doc/greenlet.html

Section 1.9. Exercises

1.9. Exercises

1-1. Python Installation. Check if Python is installed on your system. If not, download and
install it!

1-2. Executing Python. How many different ways are there to run Python? Which do you
prefer and why?

1-3. Python Standard Library.

a.

Find where the Python executables and standard library modules are installed
on your system.

b.

Take a look at some of the standard library files, for example, string.py. It will
help you get acclimated to looking at Python scripts.

1-4. Interactive Execution. Start your Python interactive interpreter. You can invoke it by
typing in its full pathname or just its name (python or python.exe) if you have installed
its location in your search path. (You can use any version or implementation of Python
that is convenient to you, e.g., command line, GUI/IDE, Jython, IronPython, or
Stackless.) The startup screen should look like the ones depicted in this chapter. When
you see the >>>, that means the interpreter is ready to accept your Python commands.

Try entering the command for the famous Hello World! program by typing print
'Hello World!' (and press RETURN), then exit the interpreter. On Unix systems, ˆD
will send the EOF signal to terminate the Python interpreter, and on DOS systems, the
keypress is ˆZ. Exiting from windows in graphical user environments like the
Macintosh, PythonWin or IDLE on Windows, or IDLE on Unix can be accomplished by
simply closing their respective windows.

1-5. Scripting. As a follow-up to Exercise 1-4, create "Hello World!" as a Python script that
does exactly the same thing as the interactive exercise above. If you are using the
Unix system, try setting up the automatic startup line so that you can run the program
without invoking the Python interpreter.

1-6. Scripting. Create a script that displays your name, age, favorite color, and a bit about
you (background, interests, hobbies, etc.) to the screen using the print statement.

file:///D|/1/0132269937/ch01lev1sec9.html [13.11.2007 16:22:38]

file:///D|/1/0132269937/14051536.html

Chapter 2. Getting Started

Chapter 2. Getting Started

Chapter Topics

● Introduction
● Input/Output
● Comments
● Operators
● Variables and Assignment
● Python Types
● Indentation
● Loops and Conditionals
● Files
● Errors
● Functions
● Classes
● Modules

This "quick start" section is intended to "flash" Python to you so that any constructs recognized from
previous programming experience can be used for your immediate needs. The details will be spelled out
in succeeding chapters, but a high-level tour is one fast and easy way to get you into Python and show
you what it has to offer. The best way to follow along is to bring up the Python interpreter in front of you
and try some of these examples, and at the same time you can experiment on your own.

We introduced how to start up the Python interpreter in Chapter 1 as well as in the exercises (Problems
1-4). In all interactive examples, you will see the Python primary (>>>) and secondary (...) prompts.
The primary prompt is a way for the interpreter to let you know that it is expecting the next Python
statement, while the secondary prompt indicates that the interpreter is waiting for additional input to
complete the current statement.

You will notice two primary ways that Python "does things" for you: statements and expressions
(functions, equations, etc.). Most of you already know the difference between the two, but in case you
need to review, a statement is a body of control which involves using keywords. It is similar to issuing a
command to the interpreter. You ask Python to do something for you, and it will do it. Statements may
or may not lead to a result or output. Let us use the print statement for the programmer's perennial
first example, Hello World:

 >>> print 'Hello World!'
 Hello World!

Expressions, on the other hand, do not use keywords. They can be simple equations that you use with
mathematical operators, or can be functions which are called with parentheses. They may or may not
take input, and they may or may not return a (meaningful) value. (Functions that do not explicitly
return a value by the programmer automatically return None, Python's equivalent to NULL.) An example
of a function that takes input and has a return value is the abs() function, which takes a number and
returns its absolute value is:

file:///D|/1/0132269937/ch02.html (1 von 2) [13.11.2007 16:22:39]

Chapter 2. Getting Started

 >>> abs(4)
 4
 >>> abs(-4)
 4

We will introduce both statements and expressions in this chapter. Let us continue with more about the
print statement.

file:///D|/1/0132269937/ch02.html (2 von 2) [13.11.2007 16:22:39]

file:///D|/1/0132269937/14051536.html

Section 2.1. Program Output, the print Statement, and "Hello World!"

2.1. Program Output, the print Statement, and "Hello World!"

In some languages, such as C, displaying to the screen is accomplished with a function, e.g., printf(),
while with Python and most interpreted and scripting languages, it is a statement. Many shell script
languages use an echo command for program output.

Core Note: Dumping variable contents in interactive interpreter

Usually when you want to see the contents of a variable, you use the
print statement in your code. However, from within the interactive
interpreter, you can use the print statement to give you the string
representation of a variable, or just dump the variable rawthis is
accomplished by simply giving the name of the variable.

In the following example, we assign a string variable, then use print
to display its contents. Following that, we issue just the variable name.

>>> myString = 'Hello World!'
>>> print myString
Hello World!
>>> myString
'Hello World!'

Notice how just giving only the name reveals quotation marks around
the string. The reason for this is to allow objects other than strings to
be displayed in the same manner as this stringbeing able to display a
printable string representation of any object, not just strings. The
quotes are there to indicate that the object whose value you just
dumped to the display is a string. Once you become more familiar with
Python, you will recognize that str() is used for print statements,
while repr() is what the interactive interpreter calls to display your
objects.

The underscore (_) also has special meaning in the interactive
interpreter: the last evaluated expression. So after the code above has
executed, _ will contain the string:

 >>> _
 Hello World!

Python's print statement, paired with the string format operator (%), supports string substitution,
much like the printf() function in C:

 >>> print "%s is number %d!" % ("Python", 1)
 Python is number 1!

file:///D|/1/0132269937/ch02lev1sec1.html (1 von 2) [13.11.2007 16:22:39]

Section 2.1. Program Output, the print Statement, and "Hello World!"

%s means to substitute a string while %d indicates an integer should be substituted. Another popular one
is %f for floating point numbers. We will see more examples throughout this chapter. Python is fairly
flexible, though, so you could pass in a number to %s without suffering any consequences with more
rigid languages. See Section 6.4.1 for more information on the string format operator.

The print statement also allows its output directed to a file. This feature was added way back in Python
2.0. The >> symbols are used to redirect the output, as in this example with standard error:

import sys
print >> sys.stderr, 'Fatal error: invalid input!'

Here is the same example with a logfile:

 logfile = open('/tmp/mylog.txt', 'a')
 print >> logfile, 'Fatal error: invalid input!'
 logfile.close()

file:///D|/1/0132269937/ch02lev1sec1.html (2 von 2) [13.11.2007 16:22:39]

Section 2.2. Program Input and the raw_input()Built-in Function

2.2. Program Input and the raw_input()Built-in Function

The easiest way to obtain user input from the command line is with the raw_input() built-in function. It
reads from standard input and assigns the string value to the variable you designate. You can use the
int() built-in function to convert any numeric input string to an integer representation.

 >>> user = raw_input('Enter login name: ')
 Enter login name: root
 >>> print 'Your login is:', user
 Your login is: root

The earlier example was strictly for text input. A numeric string input (with conversion to a real integer)
example follows below:

 >>> num = raw_input('Now enter a number: ')
 Now enter a number: 1024
 >>> print 'Doubling your number: %d' % (int(num) * 2)
 Doubling your number: 2048

The int() function converts the string num to an integer so that the mathematical operation can be
performed. See Section 6.5.3 for more information in the raw_input() built-in function.

Core Note: Ask for help in the interactive interpreter

If you are learning Python and need help on a new function you are
not familiar with, it is easy to get that help just by calling the help()
built-in function and passing in the name of the function you want help
with:

>>> help(raw_input)
Help on built-in function raw_input in module __builtin__:

raw_input(...)
 raw_input([prompt]) -> string

Read a string from standard input. The trailing newline is
stripped. If the user hits EOF (Unix: Ctl-D, Windows: Ctl-Z
+Return), raise EOFError. On Unix, GNU readline is used if
enabled. The prompt string, if given, is printed without a
trailing newline before reading.'

Core Style: Keep user interaction outside of functions

file:///D|/1/0132269937/ch02lev1sec2.html (1 von 2) [13.11.2007 16:22:40]

Section 2.2. Program Input and the raw_input()Built-in Function

It's very tempting for beginners to put print statements and raw_input
() functions wherever they need to display information to or get
information from a user. However, we would like to suggest that
functions should be kept "clean," meaning they should silently be used
purely to take parameters and provide return values. Get all the
values needed from the user, send them all to the function, retrieve
the return value, and then display the results to the user. This will
enable you to use the same function elsewhere without having to
worry about customized output. The exception to this rule is if you
create functions specifically to obtain input from the user or display
output.More importantly, it is good practice to separate functions into
two categories: those that do things (i.e., interact with the user or set
variables) and those that calculate things (usually returning results). It
is surely not bad practice to put a print statement in a function if that
was its purpose.

file:///D|/1/0132269937/ch02lev1sec2.html (2 von 2) [13.11.2007 16:22:40]

Section 2.3. Comments

2.3. Comments

As with most scripting and Unix-shell languages, the hash or pound (#) sign signals that a comment
begins from the # and continues until the end of the line.

 >>> # one comment
 ... print 'Hello World!' # another comment
 Hello World!

There are special comments called documentation strings, or "doc strings" for short. You can add a
"comment" at the beginning of a module, class, or function string that serves as a doc string, a feature
familiar to Java programmers:

 def foo():
 "This is a doc string."
 return True

Unlike regular comments, however, doc strings can be accessed at runtime and be used to automatically
generate documentation.

file:///D|/1/0132269937/ch02lev1sec3.html [13.11.2007 16:22:40]

Section 2.4. Operators

2.4. Operators

The standard mathematical operators that you are familiar with work the same way in Python as in most
other languages.

 + - * / // % **

Addition, subtraction, multiplication, division, and modulus (remainder) are all part of the standard set
of operators. Python has two division operators, a single slash character for classic division and a double-
slash for "floor" division (rounds down to nearest whole number). Classic division means that if the
operands are both integers, it will perform floor division, while for floating point numbers, it represents
true division. If true division is enabled, then the division operator will always perform that operation,
regardless of operand types. You can read more about classic, true, and floor division in Chapter 5,
"Numbers."

There is also an exponentiation operator, the double star/asterisk (**). Although we are emphasizing
the mathematical nature of these operators, please note that some of these operators are overloaded
for use with other data types as well, for example, strings and lists. Let us look at an example:

 >>> print -2 * 4 + 3 ** 2
 1

As you can see, the operator precedence is what you expect: + and - are at the bottom, followed by
*, /, //, and %; then comes the unary + and -, and finally, we have ** at the top. ((3 ** 2) is calculated
first, followed by (-2 * 4),then both results are summed together.)

Python also provides the standard comparison operators, which return a Boolean value indicating the
truthfulness of the expression:

 < <= > >= == != <>

Trying out some of the comparison operators we get:

 >>> 2 < 4
 True
 >>> 2 == 4
 False
 >>> 2 > 4
 False
 >>> 6.2 <= 6
 False
 >>> 6.2 <= 6.2
 True
 >>> 6.2 <= 6.20001
 True

file:///D|/1/0132269937/ch02lev1sec4.html (1 von 2) [13.11.2007 16:22:40]

Section 2.4. Operators

Python currently supports two "not equal" comparison operators, != and <>. These are the C-style and
ABC/Pascal-style notations. The latter is slowly being phased out, so we recommend against its use.

Python also provides the expression conjunction operators:

and or not

We can use these operations to chain together arbitrary expressions and logically combine the Boolean
results:

 >>> 2 < 4 and 2 == 4
 False
 >>> 2 > 4 or 2 < 4
 True
 >>> not 6.2 <= 6
 True
 >>> 3 < 4 < 5
 True

The last example is an expression that may be invalid in other languages, but in Python it is really a
short way of saying:

 >>> 3 < 4 and 4 < 5

You can find out more about Python operators in Section 4.5 of the text.

Core Style: Use parentheses for clarification

Parentheses are a good idea in many cases, such as when the
outcome is altered if they are not there, if the code is difficult to read
without them, or in situations that might be confusing without them.
They are typically not required in Python, but remember that
readability counts. Anyone maintaining your code will thank you, and
will thank you later.

file:///D|/1/0132269937/ch02lev1sec4.html (2 von 2) [13.11.2007 16:22:40]

Section 2.5. Variables and Assignment

2.5. Variables and Assignment

Rules for variables in Python are the same as they are in most other high-level languages inspired by (or
more likely, written in) C. They are simply identifier names with an alphabetic first character
"alphabetic" meaning upper-or lowercase letters, including the underscore (_). Any additional
characters may be alphanumeric or underscore. Python is case-sensitive, meaning that the identifier
"cAsE" is different from "CaSe."

Python is dynamically typed, meaning that no pre-declaration of a variable or its type is necessary. The
type (and value) are initialized on assignment. Assignments are performed using the equal sign.

 >>> counter = 0
 >>> miles = 1000.0
 >>> name = 'Bob'
 >>> counter = counter + 1
 >>> kilometers = 1.609 * miles
 >>> print '%f miles is the same as %f km' % (miles, kilometers)
 1000.000000 miles is the same as 1609.000000 km

We have presented five examples of variable assignment. The first is an integer assignment followed by
one each for floating point numbers, one for strings, an increment statement for integers, and finally, a
floating point operation and assignment.

Python also supports augmented assignment, statements that both refer to and assign values to
variables. You can take the following expression ...

 n = n * 10

...and use this shortcut instead:

 n *= 10

Python does not support increment and decrement operators like the ones in C: n++ or --n. Because +
and -- are also unary operators, Python will interpret --n as -(-n) == n, and the same is true for ++n.

file:///D|/1/0132269937/ch02lev1sec5.html [13.11.2007 16:22:40]

Section 2.6. Numbers

2.6. Numbers

Python supports five basic numerical types, three of which are integer types.

● int (signed integers)

�❍ long (long integers)
�❍ bool (Boolean values)

● float (floating point real numbers)
● complex (complex numbers)

Here are some examples:

int 0101 84 -237 0x80 017 -680 -0X92
long 29979062458L -84140l 0xDECADEDEADBEEFBADFEEDDEAL
bool True False
float 3.14159 4.2E-10 -90. 6.022e23 -1.609E-19
complex 6.23+1.5j -1.23-875J 0+1j 9.80665-8.31441J -.0224+0j

Numeric types of interest are the Python long and complex types. Python long integers should not be
confused with C longs. Python longs have a capacity that surpasses any C long. You are limited only by
the amount of (virtual) memory in your system as far as range is concerned. If you are familiar with
Java, a Python long is similar to numbers of the BigInteger class type.

Moving forward, ints and longs are in the process of becoming unified into a single integer type.
Beginning in version 2.3, overflow errors are no longer reportedthe result is automagically converted to
a long. In a future version of Python, the distinction will be seamless because the trailing "L" will no
longer be used or required.

Boolean values are a special case of integer. Although represented by the constants true and False, if
put in a numeric context such as addition with other numbers, true is treated as the integer with value
1, and False has a value of 0.

Complex numbers (numbers that involve the square root of -1, so-called "imaginary" numbers) are not
supported in many languages and perhaps are implemented only as classes in others.

There is also a sixth numeric type, decimal, for decimal floating numbers, but it is not a built-in type.
You must import the decimal module to use these types of numbers. They were added to Python
(version 2.4) because of a need for more accuracy. For example, the number 1.1 cannot be accurately
representing with binary floating point numbers (floats) because it has a repeating fraction in binary.
Because of this, numbers like 1.1 look like this as a float:

>>> 1.1
1.1000000000000001
 >>> print decimal.Decimal('1.1')
 1.1

file:///D|/1/0132269937/ch02lev1sec6.html (1 von 2) [13.11.2007 16:22:41]

Section 2.6. Numbers

All numeric types are covered in Chapter 5.

file:///D|/1/0132269937/ch02lev1sec6.html (2 von 2) [13.11.2007 16:22:41]

Section 2.7. Strings

2.7. Strings

Strings in Python are identified as a contiguous set of characters in between quotation marks. Python
allows for either pairs of single or double quotes. Triple quotes (three consecutive single or double
quotes) can be used to escape special characters. Subsets of strings can be taken using the index ([])
and slice ([:]) operators, which work with indexes starting at 0 in the beginning of the string and
working their way from -1 at the end. The plus (+) sign is the string concatenation operator, and the
asterisk (*) is the repetition operator. Here are some examples of strings and string usage:

 >>> pystr = 'Python'
 >>> iscool = 'is cool!'
 >>> pystr[0]
 'P'
 >>> pystr[2:5]
 'tho'
 >>> iscool[:2]
 'is'
 >>> iscool[3:]
 'cool!'
 >>> iscool[-1]
 '!'
 >>> pystr + iscool
 'Pythonis cool!'
 >>> pystr + ' ' + iscool
 'Python is cool!'
 >>> pystr * 2
 'PythonPython'
 >>> '-' * 20
 '--------------------'
 >>> pystr = '''python
 ... is cool'''
 >>> pystr
 'python\nis cool'
 >>> print pystr
 python
 is cool
 >>>

You can learn more about strings in Chapter 6.

file:///D|/1/0132269937/ch02lev1sec7.html [13.11.2007 16:22:41]

file:///D|/1/0132269937/14051536.html

Section 2.8. Lists and Tuples

2.8. Lists and Tuples

Lists and tuples can be thought of as generic "arrays" with which to hold an arbitrary number of
arbitrary Python objects. The items are ordered and accessed via index offsets, similar to arrays, except
that lists and tuples can store different types of objects.

There are a few main differences between lists and tuples. Lists are enclosed in brackets ([]) and
their elements and size can be changed. Tuples are enclosed in parentheses (()) and cannot be
updated (although their contents may be). Tuples can be thought of for now as "read-only" lists.
Subsets can be taken with the slice operator ([] and [:]) in the same manner as strings.

 >>> aList = [1, 2, 3, 4]
 >>> aList
 [1, 2, 3, 4]
 >>> aList[0]
 1
 >>> aList[2:]
 [3, 4]
 >>> aList[:3]
 [1, 2, 3]
 >>> aList[1] = 5
 >>> aList
 [1, 5, 3, 4]

Slice access to a tuple is similar, except it cannot be modified:

 >>> aTuple = ('robots', 77, 93, 'try')
 >>> aTuple
 ('robots', 77, 93, 'try')
 >>> aTuple[:3]
 ('robots', 77, 93)
 >>> aTuple[1] = 5
 Traceback (innermost last):
 File "<stdin>", line 1, in ?
 TypeError: object doesn't support item assignment

You can find out a lot more about lists and tuples along with strings in Chapter 6.

file:///D|/1/0132269937/ch02lev1sec8.html [13.11.2007 16:22:41]

file:///D|/1/0132269937/14051536.html

Section 2.9. Dictionaries

2.9. Dictionaries

Dictionaries (or "dicts" for short) are Python's mapping type and work like associative arrays or hashes
found in Perl; they are made up of key-value pairs. Keys can be almost any Python type, but are usually
numbers or strings. Values, on the other hand, can be any arbitrary Python object. Dicts are enclosed by
curly braces ({ }).

 >>> aDict = {'host': 'earth'} # create dict
 >>> aDict['port'] = 80 # add to dict
 >>> aDict
 {'host': 'earth', 'port': 80}
 >>> aDict.keys()
 ['host', 'port']
 >>> aDict['host']
 'earth'
 >>> for key in aDict:
 ... print key, aDict[key]
 ...
 host earth
 port 80

Dictionaries are covered in Chapter 7.

file:///D|/1/0132269937/ch02lev1sec9.html [13.11.2007 16:22:42]

file:///D|/1/0132269937/14051536.html

Section 2.10. Code Blocks Use Indentation

2.10. Code Blocks Use Indentation

Code blocks are identified by indentation rather than using symbols like curly braces. Without extra
symbols, programs are easier to read. Also, indentation clearly identifies which block of code a
statement belongs to. Of course, code blocks can consist of single statements, too.

When one is new to Python, indentation may comes as a surprise. Humans generally prefer to avoid
change, so perhaps after many years of coding with brace delimitation, the first impression of using pure
indentation may not be completely positive. However, recall that two of Python's features are that it is
simplistic in nature and easy to read. If you have a strong dislike of indentation as a delimitation ***, we
invite you to revisit this notion half a year from now. More than likely, you will have discovered that life
without braces is not as bad as you had originally thought.

file:///D|/1/0132269937/ch02lev1sec10.html [13.11.2007 16:22:42]

Section 2.11. if Statement

2.11. if Statement

The standard if conditional statement follows this syntax:

if expression:
 if_suite

If the expression is non-zero or TRue, then the statement if_suite is executed; otherwise, execution
continues on the first statement after. Suite is the term used in Python to refer to a sub-block of code
and can consist of single or multiple statements. You will notice that parentheses are not required in if
statements as they are in other languages.

 if x < .0:
 print '"x" must be atleast 0!'

Python supports an else statement that is used with if in the following manner:

 if expression:
 if_suite
 else:
 else_suite

Python has an "else-if" spelled as elif with the following syntax:

 if expression1:
 if_suite
 elif expression2:
 elif_suite
 else:
 else_suite

At the time of this writing, there has been some discussion pertaining to a switch or case statement, but
nothing concrete. It is possible that we will see such an animal in a future version of the language. This
may also seem strange and/or distracting at first, but a set of if-elif-else statements are not as "ugly"
because of Python's clean syntax. If you really want to circumvent a set of chained if-elif-else
statements, another elegant workaround is using a for loop (see Section 2.13) to iterate through your
list of possible "cases."

You can learn more about if, elif, and else statements in the conditional section of Chapter 8.

file:///D|/1/0132269937/ch02lev1sec11.html [13.11.2007 16:22:42]

Section 2.12. while Loop

2.12. while Loop

The standard while conditional loop statement is similar to the if. Again, as with every code sub-block,
indentation (and dedentation) are used to delimit blocks of code as well as to indicate which block of
code statements belong to:

while expression:
 while_suite

The statement while_suite is executed continuously in a loop until the expression becomes zero or
false; execution then continues on the first succeeding statement. Like if statements, parentheses are
not required with Python while statements.

 >>> counter = 0
 >>> while counter < 3:
 ... print 'loop #%d' % (counter)
 ... counter += 1

 loop #0
 loop #1
 loop #2

Loops such as while and for (see below) are covered in the loops section of Chapter 8.

file:///D|/1/0132269937/ch02lev1sec12.html [13.11.2007 16:22:42]

file:///D|/1/0132269937/14051536.html

Section 2.13. for Loop and the range() Built-in Function

2.13. for Loop and the range() Built-in Function

The for loop in Python is more like a foreach iterative-type loop in a shell scripting language than a
traditional for conditional loop that works like a counter. Python's for takes an iterable (such as a
sequence or iterator) and traverses each element once.

 >>> print 'I like to use the Internet for:'
 I like to use the Internet for:
 >>> for item in ['e-mail', 'net-surfing', 'homework',
 'chat']:
 ... print item
 ...
 e-mail
 net-surfing
 homework
 chat

Our output in the previous example may look more presentable if we display the items on the same line
rather than on separate lines. print statements by default automatically add a NEWLINE character at
the end of every line. This can be suppressed by terminating the print statement with a comma (,).

 print 'I like to use the Internet for:'
 for item in ['e-mail', 'net-surfing', 'homework', 'chat']:
 print item,
 print

The code required further modification to include an additional print statement with no arguments to
flush our line of output with a terminating NEWLINE; otherwise, the prompt will show up on the same
line immediately after the last piece of data output. Here is the output with the modified code:

 I like to use the Internet for:
 e-mail net-surfing homework chat

Elements in print statements separated by commas will automatically include a delimiting space
between them as they are displayed.

Providing a string format gives the programmer the most control because it dictates the exact output
layout, without having to worry about the spaces generated by commas. It also allows all the data to be
grouped together in one placethe tuple or dictionary on the right-hand side of the format operator.

 >>> who = 'knights'
 >>> what = 'Ni!'
 >>> print 'We are the', who, 'who say', what, what, what, what
 We are the knights who say Ni! Ni! Ni! Ni!
 >>> print 'We are the %s who say %s' % \
 ... (who, ((what + ' ') * 4))
 We are the knights who say Ni! Ni! Ni! Ni!

file:///D|/1/0132269937/ch02lev1sec13.html (1 von 3) [13.11.2007 16:22:43]

Section 2.13. for Loop and the range() Built-in Function

Using the string format operator also allows us to do some quick string manipulation before the output,
as you can see in the previous example.

We conclude our introduction to loops by showing you how we can make Python's for statement act
more like a traditional loop, in other words, a numerical counting loop. Because we cannot change the
behavior of a for loop (iterates over a sequence), we can manipulate our sequence so that it is a list of
numbers. That way, even though we are still iterating over a sequence, it will at least appear to perform
the number counting and incrementing that we envisioned.

 >>> for eachNum in [0, 1, 2]:
 ... print eachNum
 ...
 0
 1
 2

Within our loop, eachNum contains the integer value that we are displaying and can use it in any
numerical calculation we wish. Because our range of numbers may differ, Python provides the range()
built-in function to generate such a list for us. It does exactly what we want, taking a range of numbers
and generating a list.

 >>> for eachNum in range(3):
 ... print eachNum
 ...
 0
 1
 2

For strings, it is easy to iterate over each character:

 >>> foo = 'abc'
 >>> for c in foo:
 ... print c
 ...
 a
 b
 c

The range() function has been often seen with len() for indexing into a string. Here, we can display both
elements and their corresponding index value:

 >>> foo = 'abc'
 >>> for i in range(len(foo)):
 ... print foo[i], '(%d)' % i
 ...
 a (0)
 b (1)
 c (2)

file:///D|/1/0132269937/ch02lev1sec13.html (2 von 3) [13.11.2007 16:22:43]

Section 2.13. for Loop and the range() Built-in Function

However, these loops were seen as restrictiveyou either index by each element or by its index, but
never both. This led to the enumerate() function (introduced in Python 2.3) that does give both:

 >>> for i, ch in enumerate(foo):
 ... print ch, '(%d)' % i
 ...
 a (0)
 b (1)
 c (2)

file:///D|/1/0132269937/ch02lev1sec13.html (3 von 3) [13.11.2007 16:22:43]

Section 2.14. List Comprehensions

2.14. List Comprehensions

These are just fancy terms to indicate how you can programmatically use a for loop to put together an
entire list on a single line:

 >>> squared = [x ** 2 for x in range(4)]
 >>> for i in squared:
 ... print i

 0
 1
 4
 9

List comprehensions can do even fancier things like being selective of what to include in the new list:

 >>> sqdEvens = [x ** 2 for x in range(8) if not x % 2]
 >>>
 >>> for i in sqdEvens:
 ... print i

 0
 4
 16
 36

file:///D|/1/0132269937/ch02lev1sec14.html [13.11.2007 16:22:43]

file:///D|/1/0132269937/14051536.html

Section 2.15. Files and the open() and file() Built-in Functions

2.15. Files and the open() and file() Built-in Functions

File access is one of the more important aspects of a language once you are comfortable with the
syntax; there is nothing like the power of persistent storage to get some real work done.

How to Open a File

 handle = open(file_name, access_mode = 'r')

The file_name variable contains the string name of the file we wish to open, and access_mode is either
'r' for read, 'w' for write, or 'a' for append. Other flags that can be used in the access_mode string
include the '+' for dual read-write access and the 'b' for binary access. If the mode is not provided, a
default of read-only ('r') is used to open the file.

If open() is successful, a file object will be returned as the handle (handle). All succeeding access to this
file must go through its file handle. Once a file object is returned, we then have access to the other
functionality through its methods such as readlines() and close(). Methods are attributes of file objects
and must be accessed via the dotted attribute notation (see the following Core Note).

Core Note: What are attributes?

Attributes are items associated with a piece of data. Attributes can be
simple data values or executable objects such as functions and
methods. What kind of objects have attributes? Many. Classes,
modules, files, and complex numbers just some of the Python objects
that have attributes.

How do I access object attributes? With the dotted attribute notation,
that is, by putting together the object and attribute names, separated
by a dot or period: object.attribute.

Here is some code that prompts the user for the name of a text file, then opens the file and displays its
contents to the screen:

 filename = raw_input('Enter file name: ')
 fobj = open(filename, 'r')
 for eachLine in fobj:
 print eachLine,
 fobj.close()

Rather than looping to read and display one line at a time, our code does something a little different. We
read all lines in one fell swoop, close the file, and then iterate through the lines of the file. One
advantage to coding this way is that it permits the file access to complete more quickly. The output and
file access do not have to alternate back and forth between reading a line and printing a line. It is
cleaner and separates two somewhat unrelated tasks. The caveat here is the file size. The code above is
reasonable for files with reasonable sizes. Very large data files may take up too much memory, in which

file:///D|/1/0132269937/ch02lev1sec15.html (1 von 2) [13.11.2007 16:22:43]

Section 2.15. Files and the open() and file() Built-in Functions

case you would have to revert back to reading one line at a time. (A good example can be found in the
next section.)

The other interesting statement in our code is that we are again using the comma at the end of the
print statement to suppress the printing of the NEWLINE character. Why? Because each text line of the
file already contains NEWLINEs at the end of every line. If we did not suppress the NEWLINE from being
added by print, our display would be double-spaced.

The file() built-in function was recently added to Python. It is identical to open(), but is named in such
a way to indicate that is a factory function (producing file objects), similar to how int() produces
integers and dict() results in dictionary objects. In Chapter 9, we cover file objects, their built-in
methods attributes, and how to access your local file system. Please refer to Chapter 9 for all the details.

file:///D|/1/0132269937/ch02lev1sec15.html (2 von 2) [13.11.2007 16:22:43]

file:///D|/1/0132269937/14051536.html

Section 2.16. Errors and Exceptions

2.16. Errors and Exceptions

Syntax errors are detected on compilation, but Python also allows for the detection of errors during
program execution. When an error is detected, the Python interpreter raises (aka throws, generates,
triggers) an exception. Armed with the information that Python's exception reporting can generate at
runtime, programmers can quickly debug their applications as well as fine-tune their software to take a
specific course of action if an anticipated error occurs.

To add error detection or exception handling to your code, just "wrap" it with a TRy-except statement.
The suite following the TRy statement will be the code you want to manage. The code that comes after
the except will be the code that executes if the exception you are anticipating occurs:

 try:
 filename = raw_input('Enter file name: ')
 fobj = open(filename, 'r')
 for eachLine in fobj:
 print eachLine,
 fobj.close()
 except IOError, e:
 print 'file open error:', e

Programmers can explicitly raise an exception with the raise command. You can learn more about
exceptions as well as see a complete list of Python exceptions in Chapter 10.

file:///D|/1/0132269937/ch02lev1sec16.html [13.11.2007 16:22:44]

file:///D|/1/0132269937/14051536.html

Section 2.17. Functions

2.17. Functions

Like many other languages, functions in Python are called using the functional operator (()), functions
must be declared before they can be called. You do not need to declare function (return) types or
explicitly return values (None, Python's NULL object is returned by default if one is not given.)

Python can be considered "call by reference." This means that any changes to these parameters within
the function affect the original objects in the calling function. However, the caveat is that in Python, it is
really dependent on the object type being passed. If that object allows updating, then it behaves as you
would expect from "call by reference," but if that object's value cannot be changed, then it will behave
like "call by value."

How to Declare Functions

 def function_name([arguments]):
 "optional documentation string"
 function_suite

The syntax for declaring a function consists of the def keyword followed by the function name and any
arguments that the function may take. Function arguments such as arguments above are optional,
which is why they are enclosed in brackets above. (Do not physically put brackets in your code!) The
statement terminates with a colon (the same way that an if or while statement is terminated), and a
code suite representing the function body follows. Here is one short example:

 def addMe2Me(x):
 'apply + operation to argument'
 return (x + x)

This function, presumably meaning "add me to me" takes an object, adds its current value to itself and
returns the sum. While the results are fairly obvious with numerical arguments, we point out that the
plus sign works for almost all types. In other words, most of the standard types support the + operator,
whether it be numeric addition or sequence concatenation.

How to Call Functions

 >>> addMe2Me(4.25)
 8.5
 >>>
 >>> addMe2Me(10)
 20
 >>>
 >>> addMe2Me('Python')
 'PythonPython'
 >>>
 >>> addMe2Me([-1, 'abc'])
 [-1, 'abc', -1, 'abc']

file:///D|/1/0132269937/ch02lev1sec17.html (1 von 2) [13.11.2007 16:22:44]

Section 2.17. Functions

Calling functions in Python is similar to function invocations in many other high-level languages, by
giving the name of the function followed by the functional operator, a pair of parentheses. Any optional
parameters go between the parentheses, which are required even if there are no arguments. Observe
how the +operator works with non-numeric types.

Default Arguments

Functions may have arguments that have default values. If present, arguments will take on the
appearance of assignment in the function declaration, but in actuality, it is just the syntax for default
arguments and indicates that if a value is not provided for the parameter, it will take on the assigned
value as a default.

 >>> def foo(debug=True):
 ... 'determine if in debug mode with default argument'
 ... if debug:
 ... print 'in debug mode'
 ... print 'done'
 ...
 >>> foo()
 in debug mode
 done
 >>> foo(False)
 done

In the example above, the debug parameter has a default value of true. When we do not pass in an
argument to the function foo(), debug automatically takes on a value of true. On our second call to foo
(), we deliberately send an argument of False, so that the default argument is not used.

Functions have many more features than we could describe in this introductory section. Please refer to
Chapter 11 for more details.

file:///D|/1/0132269937/ch02lev1sec17.html (2 von 2) [13.11.2007 16:22:44]

Section 2.18. Classes

2.18. Classes

Classes are a core part of object-oriented programming and serve as a "container" for related data and
logic. They provide a "blueprint" for creating "real" objects, called instances. Because Python does not
require you to program in an object-oriented way (like Java does), classes are not required learning at
this time. However, we will present some examples here for those who are interested in getting a sneak
peek.

How to Declare Classes

 class ClassName (base_class[es]):
 "optional documentation string"
 static_member_declarations
 method_declarations

Classes are declared using the class keyword. A base or parent class is optional; if you do not have one,
just use object as the base class. This header line is followed by an optional documentation string, static
member declarations, and any method declarations.

 class FooClass(object):
 """my very first class: FooClass"""
 version = 0.1 # class (data) attribute
 def __init__(self, nm='John Doe'):
 """constructor"""
 self.name = nm # class instance (data) attribute
 print'Created a class instance for', nm
 def showname(self):
 """display instance attribute and class name"""
 print 'Your name is', self.name
 print 'My name is', self.__class__.__name__
 def showver(self):
 """display class(static) attribute"""
 print self.version # references FooClass.version
 def addMe2Me(self, x): # does not use 'self'
 """apply + operation to argument"""
 return x + x

In the above class, we declared one static data type variable version shared among all instances and
four methods, __init__(), showname(), showver(), and the familiar addMe2Me(). The show*() methods do
not really do much but output the data they were created to output. The __init__() method has a
special name, as do all those whose names begin and end with a double underscore (__).

The __init__() method is a function provided by default that is called when a class instance is created,
similar to a constructor and called after the object has been instantiated. __init__() can be thought of
as a constructor, but unlike constructors in other languages, it does not create an instanceit is really just
the first method that is called after your object has been created.

Its purpose is to perform any other type of "start up" necessary for the instance to take on a life of its
own. By creating our own __init__() method, we override the default method (which does not do

file:///D|/1/0132269937/ch02lev1sec18.html (1 von 3) [13.11.2007 16:22:44]

Section 2.18. Classes

anything) so that we can do customization and other "extra things" when our instance is created. In our
case, we initialize a class instance attribute or member called name. This variable is associated only with
class instances and is not part of the actual class itself. __init__() also features a default argument,
introduced in the previous section. You will no doubt also notice the one argument which is part of every
method, self.

What is self? It is basically an instance's handle to itself, the instance on which a method was called.
Other OO languages often use an identifier called this.

How to Create Class Instances

 >>> foo1 = FooClass()
 Created a class instance for John Doe

The string that is displayed is a result of a call to the __init__() method which we did not explicitly have
to make. When an instance is created, __init__() is automatically called, whether we provided our own
or the interpreter used the default one.

Creating instances looks just like calling a function and has the exact same syntax. They are both known
as "callables." Class instantiation uses the same functional operator as invoking a function or method.

Now that we have successfully created our first class instance, we can make some method calls, too:

 >>> foo1.showname()
 Your name is John Doe
 My name is __main__.FooClass
 >>>
 >>> foo1.showver()
 0.1
 >>> print foo1.addMe2Me(5)
 10
 >>> print foo1.addMe2Me('xyz')
 xyzxyz

The result of each function call is as we expected. One interesting piece of data is the class name. In the
showname() method, we displayed the self.__class__.__name__ variable which, for an instance,
represents the name of the class from which it has been instantiated. (self.__class__ refers to the
actual class.) In our example, we did not pass in a name to create our instance, so the 'John Doe'
default argument was used. In our next example, we do not use it.

 >>> foo2 = FooClass('Jane Smith')
 Created a class instance for Jane Smith
 >>> foo2.showname()
 Your name is Jane Smith
 My name is FooClass

There is plenty more on Python classes and instances in Chapter 13.

file:///D|/1/0132269937/ch02lev1sec18.html (2 von 3) [13.11.2007 16:22:45]

Section 2.18. Classes

file:///D|/1/0132269937/ch02lev1sec18.html (3 von 3) [13.11.2007 16:22:45]

Section 2.19. Modules

2.19. Modules

A module is a logical way to physically organize and distinguish related pieces of Python code into
individual files. A module can contain executable code, functions, classes, or any and all of the above.

When you create a Python source file, the name of the module is the same as the file except without the
trailing .py extension. Once a module is created, you may import that module for use from another
module using the import statement.

How to Import a Module

 import module_name

How to Call a Module Function or Access a Module Variable

Once imported, a module's attributes (functions and variables) can be accessed using the familiar dotted
attribute notation:

 module.function()
 module.variable

We will now present our Hello World! example again, but using the output functions inside the sys
module.

 >>> import sys
 >>> sys.stdout.write('Hello World!\n')
 Hello World!
 >>> sys.platform
 'win32'
 >>> sys.version
 '2.4.2 (#67, Sep 28 2005, 10:51:12) [MSC v.1310 32 bit
 (Intel)]'

This code behaves just like our original Hello World! using the print statement. The only difference is
that the standard output write() method is called, and the NEWLINE character needs to be stated
explicitly because, unlike the print statement, write() does not do that for you.

You can find out more information on modules and importing in Chapter 12.

We will cover all of the above topics in much greater detail throughout the text, but hopefully we have
provided enough of a "quick dip in the pool" to facilitate your needs if your primary goal is to get started
working with Python as quickly as possible without too much serious reading.

Core Note: What is a "PEP"?

file:///D|/1/0132269937/ch02lev1sec19.html (1 von 2) [13.11.2007 16:22:45]

Section 2.19. Modules

You will find references throughout the book to PEP. A PEP is a Python
Enhancement Proposal, and this is the way new features are
introduced to future versions of Python. They are usually advanced
reading from the beginner's point of view, but they provide a full
description of a new feature, the rationale or motivation behind it, a
new syntax if that is necessary, technical implementation details,
backwards-compatibility information, etc. Agreement has to be made
between the Python development community, the PEP authors and
implementors, and finally, the creator of Python itself, Guido van
Rossum, adoringly referred to as the BDFL (Benevolent Dictator for
Life), before any new feature is integrated. PEP 1 introduces the PEP,
its purpose and guidelines. You can find all of the PEPs in PEP 0, the
PEP index, at: http://python.org/dev/peps.

file:///D|/1/0132269937/ch02lev1sec19.html (2 von 2) [13.11.2007 16:22:45]

http://python.org/dev/peps

Section 2.20. Useful Functions

2.20. Useful Functions

In this chapter, we have seen some useful built-in functions. We summarize them in Table 2.1 and
present a few other useful ones (note that these may not be the full syntax, only what we feel would be
useful for you now).

Table 2.1. Useful Built-In Functions for New Python Programmers

Function Description

dir([obj]) Display attributes of object or the names of global variables if no
parameter given

help([obj]) Display object's documentation string in a pretty-printed format or
enters interactive help if no parameter given

int(obj) Convert object to an integer

len(obj) Return length of object

open(fn, mode) Open file fn with mode ('r' = read, 'w' = write)

range([[start,]stop[,step]) Return a list of integers that begin at start up to but not including stop
in increments of step; start defaults to 0, and step defaults to 1

raw_input(str) Wait for text input from the user, optional prompt string can be
provided

str(obj) Convert object to a string

type(obj) Return type of object (a type object itself!)

file:///D|/1/0132269937/ch02lev1sec20.html [13.11.2007 16:22:45]

file:///D|/1/0132269937/14051536.html
file:///D|/1/0132269937/14051536.html

Section 2.21. Exercises

2.21. Exercises

2-1. Variables, print, and the String Format Operator. Start the interactive interpreter.
Assign values to some variables (strings, numbers, etc.) and display them within the
interpreter by typing their names. Also try doing the same thing with the print
statement. What is the difference between giving just a variable name versus using it
in conjunction with print? Also try using the string format operator (%) to become
familiar with it.

2-2. Program Output. Take a look at the following Python script:

 #!/usr/bin/env python
 1 + 2 * 4

a.

What do you think this script does?

b.

What do you think this script will output?

c.

Type the code in as a script program and execute it. Did it do what you
expected? Why or why not?

d.

How does execution differ if you are running this code from within the
interactive interpreter? Try it and write down the results.

e.

How can you improve the output of the script version so that it does what you
expect/want?

2-3. Numbers and Operators. Enter the interpreter. Use Python to add, subtract, multiply,
and divide two numbers (of any type). Then use the modulus operator to determine
the remainder when dividing one number by another, and finally, raise one number to
the power of another by using the exponentiation operator.

file:///D|/1/0132269937/ch02lev1sec21.html (1 von 5) [13.11.2007 16:22:46]

Section 2.21. Exercises

2-4. User Input with raw_input().

a.

Create a small script to use raw_input() built-in function to take a string input
from the user, then display to the user what he/she just typed in.

b.

Add another piece of similar code, but have the input be numeric. Convert the
value to a number (using either int() or any of the other numeric conversion
functions), and display the value back to the user. (Note that if your version of
Python is older than 1.5, you will need to use the string.ato*() functions to
perform the conversion.)

2-5. Loops and Numbers. Create some loops using both while and for.

a.

Write a loop that counts from 0 to 10 using a while loop. (Make sure your
solution really does count from 0 to 10, not 0 to 9 or 1 to 10.)

b.

Do the same loop as in part (a), but use a for loop and the range() built-in
function.

2-6. Conditionals. Detect whether a number is positive, negative, or zero. Try using fixed
values at first, then update your program to accept numeric input from the user.

2-7. Loops and Strings. Take a user input string and display string, one character at a time.
As in your above solution, perform this task with a while loop first, then with a for
loop.

2-8. Loops and Operators. Create a fixed list or tuple of five numbers and output their sum.
Then update your program so that this set of numbers comes from user input. As with
the problems above, implement your solution twice, once using while and again with
for.

file:///D|/1/0132269937/ch02lev1sec21.html (2 von 5) [13.11.2007 16:22:46]

Section 2.21. Exercises

2-9. More Loops and Operators. Create a fixed list or tuple of five numbers and determine
their average. The most difficult part of this exercise is the division to obtain the
average. You will discover that integer division truncates and that you must use
floating point division to obtain a more accurate result. The float() built-in function
may help you there.

2-10. User Input with Loops and Conditionals. Use raw_input() to prompt for a number
between 1 and 100. If the input matches criteria, indicate so on the screen and exit.
Otherwise, display an error and reprompt the user until the correct input is received.

2-11. Menu-Driven Text Applications. Take your solutions to any number of the previous five
problems and upgrade your program to present a menu-driven text-based application
that presents the user with a set of choices, e.g., (1) sum of five numbers, (2)
average of five numbers,...s; (X) Quit. The user makes a selection, which is then
executed. The program exits when the user chooses the "quit" option. The great
advantage of a program like this is that it allows the user to run as many iterations of
your solutions without necessarily having to restart the same program over and over
again. (It is also good for the developer who is usually the first user and tester of their
applications!)

2-12. The dir() Built-In Function.

a.

Start up the Python interpreter. Run the dir() built-in function by simply
typing dir() at the prompt. What do you see? Print the value of each element
in the list you see. Write down the output for each and what you think each is.

b.

You may be asking, so what does dir() do? We have already seen that adding
the pair of parentheses after dir causes the function to run. Try typing just the
name dir at the prompt. What information does the interpreter give you? What
do you think it means?

c.

The type() built-in function takes any Python object and returns its type. Try
running it on dir by entering type(dir) into the interpreter. What do you get?

d.

For the final part of this exercise, let us take a quick look at Python
documentation strings. We can access the documentation for the dir()
function by appending .__doc__after its name. So from the interpreter, display
the document string for dir() by typing the following at the prompt: print dir.
__doc__. Many of the built-in functions, methods, modules, and module
attributes have a documentation string associated with them. We invite you to

file:///D|/1/0132269937/ch02lev1sec21.html (3 von 5) [13.11.2007 16:22:46]

Section 2.21. Exercises

put in your own as you write your code; it may help another user down the
road.

2-13. Finding Out More About the sys Module with dir().

a.

Start the Python interpreter again. Run the dir() command as in the previous
exercise. Now import the sys module by typing import sys at the prompt. Run
the dir() command again to verify that the sys module now shows up. Now
run the dir() command on the sys module by typing dir(sys). Now you see all
the attributes of the sys module.

b.

Display the version and platform variables of the sys module. Be sure to
prepend the names with sys to indicate that they are attributes of sys. The
version variable contains information regarding the version of the Python
interpreter you are using, and the platform attribute contains the name of the
computer system that Python believes you are running on.

c.

Finally, call the sys.exit() function. This is another way to quit the Python
interpreter in case the keystrokes described above in problem 1-4 do not get
you out of Python.

2-14. Operator Precedence and Grouping with Parentheses.

Rewrite the mathematical expression of the print statement in Section 2.4, but try to
group pairs of operands correctly, using parentheses.

2-15. Elementary Sorting.

a.

Have the user enter three numeric values and store them in three different
variables. Without using lists or sorting algorithms, manually sort these three
numbers from smallest to largest.

b.

How would you change your solution in part (a) to sort from largest to
smallest?

file:///D|/1/0132269937/ch02lev1sec21.html (4 von 5) [13.11.2007 16:22:46]

Section 2.21. Exercises

2-16. Files. Type in and/or run the file display code in Section 2.15. Verify that it works on
your system and try different input files as well.

file:///D|/1/0132269937/ch02lev1sec21.html (5 von 5) [13.11.2007 16:22:46]

file:///D|/1/0132269937/14051536.html

Chapter 3. Python Basics

Chapter 3. Python Basics

Chapter Topics

● Statements and Syntax
● Variable Assignment
● Identifiers and Keywords
● Basic Style Guidelines
● Memory Management
● First Python Programs

Our next goal is to go through the basic Python syntax, describe some general style guidelines, then
brief you on identifiers, variables, and keywords. We will also discuss how memory space for variables is
allocated and deallocated. Finally, we will be exposed to a much larger example Python programtaking
the plunge, as it were. No need to worry, there are plenty of life preservers around that allow for
swimming rather than the alternative.

file:///D|/1/0132269937/ch03.html [13.11.2007 16:22:46]

Section 3.1. Statements and Syntax

3.1. Statements and Syntax

Some rules and certain symbols are used with regard to statements in Python:

● Hash mark (#) indicates Python comments
● NEWLINE (\n) is the standard line separator (one statement per line)
● Backslash (\) continues a line
● Semicolon (;) joins two statements on a line
● Colon (:) separates a header line from its suite
● Statements (code blocks) grouped as suites
● Suites delimited via indentation
● Python files organized as modules

3.1.1. Comments (#)

First things first: Although Python is one of the easiest languages to read, it does not preclude the
programmer from proper and adequate usage and placement of comments in the code. Like many of its
Unix scripting brethren, Python comment statements begin with the pound sign or hash symbol (#). A
comment can begin anywhere on a line. All characters following the # to the end of the line are ignored
by the interpreter. Use them wisely and judiciously.

3.1.2. Continuation (\)

Python statements are, in general, delimited by NEWLINEs, meaning one statement per line. Single
statements can be broken up into multiple lines by use of the backslash. The backslash symbol (\) can
be placed before a NEWLINE to continue the current statement onto the next line.

 # check conditions
 if (weather_is_hot == 1) and \
 (shark_warnings == 0):
 send_goto_beach_mesg_to_pager()

There are two exceptions where lines can be continued without backslashes. A single statement can take
up more than one line when enclosing operators are used, i.e., parentheses, square brackets, or braces,
and when NEWLINEs are contained in strings enclosed in triple quotes.

 # display a string with triple quotes
 print '''hi there, this is a long message for you
 that goes over multiple lines... you will find
 out soon that triple quotes in Python allows
 this kind of fun! it is like a day on the beach!'''

 # set some variables
 go_surf, get_a_tan_while, boat_size, toll_money = (1,
 'windsurfing', 40.0, -2.00)

Given a choice between using the backslash and grouping components you can break up with a
NEWLINE, i.e., with parentheses, we recommend the latter as it is more readable.

file:///D|/1/0132269937/ch03lev1sec1.html (1 von 3) [13.11.2007 16:22:47]

Section 3.1. Statements and Syntax

3.1.3. Multiple Statement Groups as Suites (:)

Groups of individual statements making up a single code block are called "suites" in Python (as we
introduced in Chapter 2). Compound or complex statements, such as if, while, def, and class, are
those that require a header line and a suite. Header lines begin the statement (with the keyword) and
terminate with a colon (tt) and are followed by one or more lines that make up the suite. We will refer
to the combination of a header line and a suite as a clause.

3.1.4. Suites Delimited via Indentation

As we introduced in Section 2.10, Python employs indentation as a means of delimiting blocks of code.
Code at inner levels are indented via spaces or tabs. Indentation requires exact indentation; in other
words, all the lines of code in a suite must be indented at the exact same level (e.g., same number of
spaces). Indented lines starting at different positions or column numbers are not allowed; each line
would be considered part of another suite and would more than likely result in syntax errors.

Core Style: Indent with four spaces and avoid using tabs

As someone who is perhaps new to block delimitation using
whitespace, a first obvious question might be: How many spaces
should I use? We think that two is too short, and six to eight is too
many, so we suggest four spaces for everyone. Also, because tabs
vary in the number of spaces depending on your system, we
recommend not using tabs if there is any hint of cross-platform
development. Both of these style guidelines are also supported by
Guido van Rossum, the creator of Python, and documented in the
Python Style Guide. You will find the same suggestions in our style
guide in Section 3.4.

A new code block is recognized when the amount of indentation has increased, an d its termination is
signaled by a "dedentation," or a reduction of indentation matching a previous level's. Code that is not
indented, i.e., the highest level of code, is considered the "main" portion of the script.

The decision to create code blocks in Python using indentation was based on the belief that grouping
code in this manner is more elegant and contributes to the ease of reading to which we alluded earlier.
It also helps avoid "dangling-else"-type problems, including ungrouped single statement clauses (those
where a C if statement does not use braces at all, but has two indented statements following). The
second statement will execute regardless of the conditional, leading to more programmer confusion until
the light bulb finally blinks on.

Finally, no "holy brace wars" can occur when using indentation. In C (also C++ and Java), starting
braces may be placed on the same line as the header statement, or may start the very next line, or may
be indented on the next line. Some like it one way, some prefer the other, etc. You get the picture.

3.1.5. Multiple Statements on a Single Line (;)

The semicolon (;) allows multiple statements on a single line given that neither statement starts a new
code block. Here is a sample snip using the semicolon:

 import sys; x = 'foo'; sys.stdout.write(x + '\n')

file:///D|/1/0132269937/ch03lev1sec1.html (2 von 3) [13.11.2007 16:22:47]

Section 3.1. Statements and Syntax

We caution the reader to be wary of chaining multiple statements on individual lines as it makes code
much less readable, thus less "Pythonic."

3.1.6. Modules

Each Python script is considered a module. Modules have a physical presence as disk files. When a
module gets large enough or has diverse enough functionality, it may make sense to move some of the
code out to another module. Code that resides in modules may belong to an application (i.e., a script
that is directly executed), or may be executable code in a library-type module that may be "imported"
from another module for invocation. As we mentioned in the last chapter, modules can contain blocks of
code to run, class declarations, function declarations, or any combination of all of those.

file:///D|/1/0132269937/ch03lev1sec1.html (3 von 3) [13.11.2007 16:22:47]

file:///D|/1/0132269937/14051536.html

Section 3.2. Variable Assignment

3.2. Variable Assignment

This section focuses on variable assignment. We will discuss which identifiers make valid variables in
Section 3.3.

Assignment Operator

The equal sign (=) is the main Python assignment operator. (The others are augmented assignment
operator [see next section].)

 anInt = -12
 aString = 'cart'
 aFloat = -3.1415 * (5.0 ** 2)
 anotherString = 'shop' + 'ping'
 aList = [3.14e10, '2nd elmt of a list', 8.82-4.371j]

Be aware now that assignment does not explicitly assign a value to a variable, although it may appear
that way from your experience with other programming languages. In Python, objects are referenced, so
on assignment, a reference (not a value) to an object is what is being assigned, whether the object was
just created or was a pre-existing object. If this is not 100 percent clear now, do not worry about it. We
will revisit this topic later on in the chapter, but just keep it in mind for now.

Also, if you are familiar with C, you know that assignments are treated as expressions. This is not the
case in Python, where assignments do not have inherent values. Statements such as the following are
invalid in Python:

 >>> x = 1
 >>> y = (x = x + 1) # assignments not expressions!
 File "<stdin>", line 1
 y = (x = x + 1)
 ^
 SyntaxError: invalid syntax

Chaining together assignments is okay, though (more on this later):

 >>> y = x = x + 1
 >>> x, y
 (2, 2)

Augmented Assignment

Beginning in Python 2.0, the equal sign can be combined with an arithmetic operation and the resulting
value reassigned to the existing variable. Known as augmented assignment, statements such as ...

file:///D|/1/0132269937/ch03lev1sec2.html (1 von 4) [13.11.2007 16:22:47]

Section 3.2. Variable Assignment

 x = x + 1

... can now be written as ...

 x += 1

Augmented assignment refers to the use of operators, which imply both an arithmetic operation as well
as an assignment. You will recognize the following symbols if you come from a C/C++ or Java
background:

 += -= *= /= %= **=
 <<= >>= &= ^= |=

Other than the obvious syntactical change, the most significant difference is that the first object (A in
our example) is examined only once. Mutable objects will be modified in place, whereas immutable
objects will have the same effect as A = A + B (with a new object allocated) except that A is only
evaluated once, as we have mentioned before.

 >>> m = 12
 >>> m %= 7
 >>> m
 5
 >>> m **= 2
 >>> m
 25
 >>> aList = [123, 'xyz']
 >>> aList += [45.6e7]
 >>> aList
 [123, 'xyz', 456000000.0]

Python does not support pre-/post-increment nor pre-/post-decrement operators such as x++ or --x.

Multiple Assignment

 >>> x = y = z = 1
 >>> x
 1
 >>> y
 1
 >>> z
 1

In the above example, an integer object (with the value 1) is created, and x, y, and z are all assigned
the same reference to that object. This is the process of assigning a single object to multiple variables.
It is also possible in Python to assign multiple objects to multiple variables.

"Multuple" Assignment

file:///D|/1/0132269937/ch03lev1sec2.html (2 von 4) [13.11.2007 16:22:47]

Section 3.2. Variable Assignment

Another way of assigning multiple variables is using what we shall call the "multuple" assignment. This
is not an official Python term, but we use "multuple" here because when assigning variables this way,
the objects on both sides of the equal sign are tuples, a Python standard type we introduced in Section
2.8.

 >>> x, y, z = 1, 2, 'a string'
 >>> x
 1
 >>> y
 2
 >>> z
 'a string'

In the above example, two integer objects (with values 1 and 2) and one string object are assigned to x,
y, and z respectively. Parentheses are normally used to denote tuples, and although they are optional,
we recommend them anywhere they make the code easier to read:

 >>> (x, y, z) = (1, 2, 'a string')

If you have ever needed to swap values in other languages like C, you will be reminded that a
temporary variable, i.e., tmp, is required to hold one value while the other is being exchanged:

 /* swapping variables in C */
 tmp = x;
 x = y;
 y = tmp;

In the above C code fragment, the values of the variables x and y are being exchanged. The tmp variable
is needed to hold the value of one of the variables while the other is being copied into it. After that step,
the original value kept in the temporary variable can be assigned to the second variable.

One interesting side effect of Python's "multuple" assignment is that we no longer need a temporary
variable to swap the values of two variables.

 # swapping variables in Python
 >>> x, y = 1, 2
 >>> x
 1
 >>> y
 2
 >>> x, y = y, x
 >>> x
 2
 >>> y
 1

Obviously, Python performs evaluation before making assignments.

file:///D|/1/0132269937/ch03lev1sec2.html (3 von 4) [13.11.2007 16:22:47]

file:///D|/1/0132269937/14051536.html

Section 3.2. Variable Assignment

file:///D|/1/0132269937/ch03lev1sec2.html (4 von 4) [13.11.2007 16:22:47]

Section 3.3. Identifiers

3.3. Identifiers

Identifiers are the set of valid strings that are allowed as names in a computer language. From this all-
encompassing list, we segregate out those that are keywords, names that form a construct of the
language. Such identifiers are reserved words that may not be used for any other purpose, or else a
syntax error (SyntaxError exception) will occur.

Python also has an additional set of identifiers known as built-ins, and although they are not reserved
words, use of these special names is not recommended. (Also see Section 3.3.3.)

3.3.1. Valid Python Identifiers

The rules for Python identifier strings are like most other high-level programming languages that come
from the C world:

● First character must be a letter or underscore (_)
● Any additional characters can be alphanumeric or underscore
● Case-sensitive

No identifiers can begin with a number, and no symbols other than the underscore are ever allowed. The
easiest way to deal with underscores is to consider them as alphabetic characters. Case-sensitivity
means that identifier foo is different from Foo, and both of those are different from FOO.

3.3.2. Keywords

Python's keywords are listed in Table 3.1. Generally, the keywords in any language should remain
relatively stable, but should things ever change (as Python is a growing and evolving language), a list of
keywords as well as an iskeyword() function are available in the keyword module.

Table 3.1. Python Keywords
[a]

and
as

[b]
assert

[c] break

class continue def del

elif else except exec

finally for from global

if import in is

lambda not or pass

print raise return try

while
with

[b]
yield

[d]
None

[e]

file:///D|/1/0132269937/ch03lev1sec3.html (1 von 2) [13.11.2007 16:22:48]

file:///D|/1/0132269937/14051536.html

Section 3.3. Identifiers

[a] access keyword obsoleted as of Python 1.4.

[b] New in Python 2.6.

[c] New in Python 1.5.

[d] New in Python 2.3.

[e] Not a keyword but made a constant in Python 2.4.

3.3.3. Built-ins

In addition to keywords, Python has a set of "built-in" names available at any level of Python code that
are either set and/or used by the interpreter. Although not keywords, built-ins should be treated as
"reserved for the system" and not used for any other purpose. However, some circumstances may call
for overriding (aka redefining, replacing) them. Python does not support overloading of identifiers, so
only one name "binding" may exist at any given time.

We can also tell advanced readers that built-ins are members of the __builtins__ module, which is
automatically imported by the interpreter before your program begins or before you are given the >>>
prompt in the interactive interpreter. Treat them like global variables that are available at any level of
Python code.

3.3.4. Special Underscore Identifiers

Python designates (even more) special variables with underscores both prefixed and suffixed. We will
also discover later that some are quite useful to the programmer while others are unknown or useless.
Here is a summary of the special underscore usage in Python:

● _xxx Do not import with 'from module import *'
● __xxx__ System-defined name
● __xxx Request private name mangling in classes

Core Style: Avoid using underscores to begin variable names

Because of the underscore usage for special interpreter and built-in
identifiers, we recommend that the programmer avoid beginning
variable names with the underscore. Generally, a variable named _xxx
is considered "private" and should not be used outside that module or
class. It is good practice to use _xxx to denote when a variable is
private. Since variables named __xxx__ often mean special things to
Python, you should avoid naming normal variables this way.

file:///D|/1/0132269937/ch03lev1sec3.html (2 von 2) [13.11.2007 16:22:48]

file:///D|/1/0132269937/14051536.html

Section 3.4. Basic Style Guidelines

3.4. Basic Style Guidelines

Comments

You do not need to be reminded that comments are useful both to you and those who come after you.
This is especially true for code that has been untouched by man (or woman) for a time (that means
several months in software development time). Comments should not be absent, nor should there be
novellas. Keep the comments explanatory, clear, short, and concise, but get them in there. In the end,
it saves time and energy for everyone. Above all, make sure they stay accurate!

Documentation

Python also provides a mechanism whereby documentation strings can be retrieved dynamically through
the __doc__ special variable. The first unassigned string in a module, class declaration, or function
declaration can be accessed using the attribute obj.__doc__ where obj is the module, class, or function
name. This works during runtime too!

Indentation

Since indentation plays a major role, you will have to decide on a spacing style that is easy to read as
well as the least confusing. Common sense also plays a role in choosing how many spaces or columns to
indent.

1 or 2 Probably not enough; difficult to determine which block of code statements belong to

8 to 10 May be too many; code that has many embedded levels will wrap around, causing the source
to be difficult to read

Four spaces is very popular, not to mention being the preferred choice of Python's creator. Five and six
are not bad, but text editors usually do not use these settings, so they are not as commonly used. Three
and seven are borderline cases.

As far as tabs go, bear in mind that different text editors have different concepts of what tabs are. It is
advised not to use tabs if your code will live and run on different systems or be accessed with different
text editors.

Choosing Identifier Names

The concept of good judgment also applies in choosing logical identifier names. Decide on short yet
meaningful identifiers for variables. Although variable length is no longer an issue with programming
languages of today, it is still a good idea to keep name sizes reasonable length. The same applies for
naming your modules (Python files).

Python Style Guide(s)

Guido van Rossum wrote up a Python Style Guide ages ago. It has since been replaced by no fewer than

file:///D|/1/0132269937/ch03lev1sec4.html (1 von 6) [13.11.2007 16:22:48]

file:///D|/1/0132269937/14051536.html

Section 3.4. Basic Style Guidelines

three PEPs: 7 (Style Guide for C Code), 8 (Style Guide for Python Code), and 257 (DocString
Conventions). These PEPs are archived, maintained, and updated regularly.

Over time, you will hear the term "Pythonic," which describes the Python way of writing code, organizing
logic, and object behavior. Over more time, you will come to understand what that means. There is also
another PEP, PEP 20, which lists the Zen of Python, starting you on your journey to discover what
Pythonic really means. If you are not online and need to see this list, then use import this from your
interpreter. Here are some links:

www.python.org/doc/essays/styleguide.html

www.python.org/dev/peps/pep-0007/

www.python.org/dev/peps/pep-0008/

www.python.org/dev/peps/pep-0020/

www.python.org/dev/peps/pep-0257/

3.4.1. Module Structure and Layout

Modules are simply physical ways of logically organizing all your Python code. Within each file, you
should set up a consistent and easy-to-read structure. One such layout is the following:

(1) startup line (Unix)
(2) module documentation
(3) module imports
(4) variable declarations
(5) class declarations
(6) function declarations
(7) "main" body

Figure 3-1 illustrates the internal structure of a typical module.

Figure 3-1. Typical Python file structure

file:///D|/1/0132269937/ch03lev1sec4.html (2 von 6) [13.11.2007 16:22:48]

http://www.python.org/doc/essays/styleguide.html
http://www.python.org/dev/peps/pep-0007/
http://www.python.org/dev/peps/pep-0008/
http://www.python.org/dev/peps/pep-0020/
http://www.python.org/dev/peps/pep-0257/

Section 3.4. Basic Style Guidelines

1. Startup line

Generally used only in Unix environments, the startup line allows for script
execution by name only (invoking the interpreter is not required).

2. Module documentation

Summary of a module's functionality and significant global variables; accessible
externally as module.__doc__.

file:///D|/1/0132269937/ch03lev1sec4.html (3 von 6) [13.11.2007 16:22:48]

Section 3.4. Basic Style Guidelines

3. Module imports

Import all the modules necessary for all the code in current module; modules are
imported once (when this module is loaded); imports within functions are not
invoked until those functions are called.

4. Variable declarations

Declare here (global) variables that are used by multiple functions in this module.
We favor the use of local variables over globals, for good programming style
mostly, and to a lesser extent, for improved performance and less memory usage.

5. Class declarations

Any classes should be declared here. A class is defined when this module is
imported and the class statement executed. Documentation variable is class.
__doc__.

6. Function declarations

Functions that are declared here are accessible externally as module.function();
function is defined when this module is imported and the def statement executed.
Documentation variable is function.__doc__.

7. "main" body

All code at this level is executed, whether this module is imported or started as a
script; generally does not include much functional code, but rather gives direction
depending on mode of execution.

Core Style: "main" calls main()

The main body of code tends to contain lines such as the ones you see
above, which check the __name__ variable and take appropriate action
(see Core Note on the following page). Code in the main body typically
executes the class, function, and variable declarations, then checks
__name__ to see whether it should invoke another function (often called
main()), which performs the primary duties of this module. The main
body usually does no more than that. (Our example above uses test()
rather than main() to avoid confusion until you read this Core Style
sidebar.)

Regardless of the name, we want to emphasize that this is a great
place to put a test suite in your code. As we explain in Section 3.4.2,
most Python modules are created for import use only, and calling such
a module directly should invoke a regression test of the code in such a
module.

file:///D|/1/0132269937/ch03lev1sec4.html (4 von 6) [13.11.2007 16:22:48]

Section 3.4. Basic Style Guidelines

Most projects tend to consist of a single application and import any required modules. Thus it is
important to bear in mind that most modules are created solely to be imported rather than to execute as
scripts. We are more likely to create a Python library-style module whose sole purpose is to be imported
by another module. After all, only one of the modulesthe one that houses the main applicationwill be
executed, either by a user from the command line, by a batch or timed mechanism such as a Unix cron
job, via a Web server call, or through a GUI callback.

With that fact in hand, we should also remember that all modules have the ability to execute code. All
Python statements in the highest level of codethat is, the lines that are not indentedwill be executed on
import, whether desired or not. Because of this "feature," safer code is written such that everything is in
a function except for the code that should be executed on an import of a module. Again, usually only the
main application module has the bulk of the executable code at its highest level. All other imported
modules will have very little on the outside, and everything in functions or classes. (See Core Note that
follows for more information.)

Core Note: __name__ indicates how module was loaded

Because the "main" code is executed whether a module is imported or
executed directly, we often need to know how this module was loaded
to guide the execution path. An application may wish to import the
module of another application, perhaps to access useful code which
will otherwise have to be duplicated (not the OO thing to do).
However, in this case, you only want access to this other application's
code, not necessarily to run it. So the big question is, "Is there a way
for Python to detect at runtime whether this module was imported or
executed directly?" The answer is ... (drum roll ...) yes! The __name__
system variable is the ticket.

● __name__ contains module name if imported
● __name__ contains '__main__' if executed directly

3.4.2. Create Tests in the Main Body

For good programmers and engineers, providing a test suite or harness for our entire application is the
goal. Python simplifies this task particularly well for modules created solely for import. For these
modules, you know that they would never be executed directly. Wouldn't it be nice if they were invoked
to run code that puts that module through the test grinder? Would this be difficult to set up? Not really.

The test software should run only when this file is executed directly, i.e., not when it is imported from
another module, which is the usual case. Above and in the Core Note, we described how we can
determine whether a module was imported or executed directly. We can take advantage of this
mechanism by using the __name__ variable. If this module was called as a script, plug the test code right
in there, perhaps as part of main() or test() (or whatever you decide to call your "second-level" piece of
code) function, which is called only if this module is executed directly.

The "tester" application for our code should be kept current along with any new test criteria and results,
and it should run as often as the code is updated. These steps will help improve the robustness of our
code, not to mention validating and verifying any new features or updates.

file:///D|/1/0132269937/ch03lev1sec4.html (5 von 6) [13.11.2007 16:22:48]

Section 3.4. Basic Style Guidelines

Tests in the main body are an easy way to provide quick coverage of your code. The Python standard
library also provides the unittest module, sometimes referred to as PyUnit, as a testing framework. Use
of unittest is beyond the scope of this book, but it is something to consider when you need serious
regression testing of a large system of components.

file:///D|/1/0132269937/ch03lev1sec4.html (6 von 6) [13.11.2007 16:22:48]

file:///D|/1/0132269937/14051536.html

Section 3.5. Memory Management

3.5. Memory Management

So far you have seen a large number of Python code samples. We are going to cover a few more details
about variables and memory management in this section, including:

● Variables not declared ahead of time
● Variable types not declared
● No memory management on programmers' part
● Variable names can be "recycled"
● del statement allows for explicit "deallocation"

3.5.1. Variable Declarations (or Lack Thereof)

In most compiled languages, variables must be declared before they are used. In fact, C is even more
restrictive: variables have to be declared at the beginning of a code block and before any statements
are given. Other languages, like C++ and Java, allow "on-the-fly" declarations, i.e., those which occur in
the middle of a body of codebut these name and type declarations are still required before the variables
can be used. In Python, there are no explicit variable declarations. Variables are "declared" on first
assignment. Like most languages, however, variables cannot be accessed until they are (created and)
assigned:

 >>> a
 Traceback (innermost last):
 File "<stdin>", line 1, in ?
 NameError: a

Once a variable has been assigned, you can access it by using its name:

 >>> x = 4
 >>> y = 'this is a string'
 >>> x
 4
 >>> y
 'this is a string'

3.5.2. Dynamic Typing

Another observation, in addition to lack of variable declaration, is the lack of type specification. In
Python, the type and memory space for an object are determined and allocated at runtime. Although
code is byte-compiled, Python is still an interpreted language. On creationthat is, on assignmentthe
interpreter creates an object whose type is dictated by the syntax that is used for the operand on the
right-hand side of an assignment. After the object is created, a reference to that object is assigned to
the variable on the left-hand side of the assignment.

3.5.3. Memory Allocation

file:///D|/1/0132269937/ch03lev1sec5.html (1 von 4) [13.11.2007 16:22:49]

file:///D|/1/0132269937/14051536.html

Section 3.5. Memory Management

As responsible programmers, we are aware that when allocating memory space for variables, we are
borrowing system resources, and eventually, we will have to return that which we borrowed back to the
system. Python simplifies application writing because the complexities of memory management have
been pushed down to the interpreter. The belief is that you should be using Python to solve problems
with and not have to worry about lower-level issues that are not directly related to your solution.

3.5.4. Reference Counting

To keep track of objects in memory, Python uses the simple technique of reference counting. This
means that internally, Python keeps track of all objects in use and how many interested parties there
are for any particular object. You can think of it as simple as card-counting while playing the card game
blackjack or 21. An internal tracking variable, called a reference counter, keeps track of how many
references are being made to each object, called a refcount for short.

When an object is created, a reference is made to that object, and when it is no longer needed, i.e.,
when an object's refcount goes down to zero, it is garbage-collected. (This is not 100 percent true, but
pretend it is for now.)

Incrementing the Reference Count

The refcount for an object is initially set to 1 when an object is created and (its reference) assigned.

New references to objects, also called aliases, occur when additional variables are assigned to the same
object, passed as arguments to invoke other bodies of code such as functions, methods, or class
instantiation, or assigned as members of a sequence or mapping.

Let us say we make the following declarations:

 x = 3.14
 y = x

The statement x = 3.14 allocates a floating point number (float) object and assigns a reference x to it. x
is the first reference, hence setting that object's refcount to one. The statement y = x creates an alias y,
which "points to" the same integer object as x (see Figure 3-2). A new object is not created for y.

Figure 3-2. An object with two references

Instead, the only thing that happens is that the reference count for this object is incremented by one (to
2). This is one way in which an object's refcount goes up. Other ways it can increment include the object
being passed into a function call, and when the object is added to a container object such as a list.

In summary, an object's refcount is increased when

file:///D|/1/0132269937/ch03lev1sec5.html (2 von 4) [13.11.2007 16:22:49]

Section 3.5. Memory Management

● It (the object) is created

 x = 3.14

● Additional aliases for it are created

 y = x

● It is passed to a function (new local reference)

 foobar(x)

● It becomes part of a container object

 myList = [123, x, 'xyz']

Now let us look at how reference counts go down.

Decrementing the Reference Count

When references to an object "go away," the refcount is decreased. The most obvious case is when a
reference goes out of scope. This occurs most often when the function in which a reference is made
completes. The local (automatic) variable is gone, and an object's reference counter is decremented.

A reference also goes away when a variable is reassigned to another object. For example:

 foo = 'xyz'
 bar = foo
 foo = 123

The reference count for string object "xyz" is one when it is created and assigned to foo. It is then
incremented when bar is added as an alias. However, when foo is reassigned to the integer 123, the
reference count to "xyz" is decremented by one.

Other ways in which an object's reference count goes down include explicit removal of a reference using
the del statement (see next section), when an object is removed from a container (or if the reference
count to that container itself goes to zero).

In summary, an object's refcount is decreased when:

● A local reference goes out of scope, i.e., when foobar() (see previous example) terminates
● Aliases for that object are explicitly destroyed

 del y # or del x

● An alias is reassigned to another object (taking on a new reference)

 x = 123

file:///D|/1/0132269937/ch03lev1sec5.html (3 von 4) [13.11.2007 16:22:49]

Section 3.5. Memory Management

● It is explicitly removed from a container object

 myList.remove(x)

● The container itself is deallocated

 del myList # or goes out-of-scope

See Section 11.8 for more information on variable scope.

del Statement

The del statement removes a single reference to an object. Its syntax is:

 del obj1[, obj2[,... objN]]

For example, executing del y in the example above has two results:

● Removes name y from current namespace
● Lowers reference count to object x (by one)

Further still, executing del x will remove the final reference to the object, decrementing the reference
counter to zero and causing the object to become "inaccessible" or "unreachable." It is at this point that
the object becomes a candidate for garbage collection. Note that any tracing or debugging facility may
keep additional references to an object, delaying or postponing that object from being garbage-collected.

3.5.5. Garbage Collection

Memory that is no longer being used is reclaimed by the system using a mechanism known as garbage
collection. The interpreter keeps track of reference counts as above, but it is up to the garbage collector
to deallocate the memory. The garbage collector is a separate piece of code that looks for objects with
reference counts of zero. It is also responsible to check for objects with a reference count greater than
zero that need to be deallocated. Certain situations lead to cycles.

A cyclic reference is where you have (at least two) objects that refer to each other, and even if all other
references fall by the wayside, these references still exist, meaning that reference counting alone is not
good enough.

Python's garbage collector is actually a combination of reference counting and the periodic invocation of
a cyclic garbage collector. When an object's refcount reaches zero, the interpreter pauses to deallocate
it and all objects that were reachable only from that object. In addition to this reference counting, the
garbage collector also notices if a large number of objects have been allocated (and not deallocated
though reference counting). In such cases, the interpreter will pause to try to clear out any
unreferenced cycles.

file:///D|/1/0132269937/ch03lev1sec5.html (4 von 4) [13.11.2007 16:22:49]

file:///D|/1/0132269937/14051536.html

Section 3.6. First Python Programs

3.6. First Python Programs

Now that we are familiar with the syntax, style, variable assignment, and memory allocation, it is time
to look at slightly more complex code. You may or may not be familiar with all of the constructs of
Python that we're going to show, but we believe that Python is so simple and elegant that you should be
able to figure out what each piece of code does.

We are going to introduce two related scripts that manipulate text files. The first, makeTextFile.py,
creates text files. It prompts the user for each line of text and writes the results to a file. The other,
readTextFile.py, reads and displays the contents of a text file to the screen.

Take a look at both now, and see if you can figure out how each works.

Example 3.1. File Create (makeTextFile.py)

This application prompts the user for a (nonexistent) filename, then has the user enter
each line of that file (one at a time). Finally, it writes the entire text file to disk.

1 #!/usr/bin/env python
2
3 'makeTextFile.py -- create text file'
4
5 import os
6 ls = os.linesep
7
8 # get filename
9 while True:
10
11 if os.path.exists(fname):
12 print "ERROR: '%s' already exists" % fname
13 else:
14 break
15
16 # get file content (text) lines
17 all = []
18 print "\nEnter lines ('.' by itself to quit).\n"
19
20 # loop until user terminates input
21 while True:
22 entry = raw_input('> ')
23 if entry == '.':
24 break
25 else:
26 all.append(entry)
27
28 # write lines to file with proper line-ending
29 fobj = open(fname, 'w')
30 fobj.writelines(['%s%s' % (x, ls) for x in all])
31 fobj.close()
32 print 'DONE!'

file:///D|/1/0132269937/ch03lev1sec6.html (1 von 5) [13.11.2007 16:22:50]

file:///D|/1/0132269937/14051536.html

Section 3.6. First Python Programs

Lines 13

The Unix startup line is followed by the module documentation string. Keep your documentation string
simple yet descriptive enough to be useful. Ours is a bit short, but so is this script. (We invite the reader
to take a look at the documentation string at the commencement of the cgi module in the standard
library for a seriously lengthy example of module documentation.)

Lines 56

We import the operating system (os) module next, and in line 6, we create a new local alias for the
linesep attribute of that module. By doing this, we can shorten the name of the variable and also speed
up access to it.

Core Tip: Use local variables to substitute for module attributes

Names like os.linesep require the interpreter to do two lookups: (1)
lookup os to find that it is a module, and (2) look up the linesep
attribute of that module. Because modules are also global variables,
we pay another penalty. If you use an attribute like this often in a
function, we recommend you alias it to a single local variable. Lookups
are much fasterlocal variables are always searched first before globals,
and we don't have attribute lookups either. This is one of the tricks in
making your programs faster: replace often-used (and name-lengthy)
module attributes with local references. Your code runs faster and has
less clutter with a shorter name.

In our code snippet, we do not have a function to show you an
example of using a local alias. Instead, we have a global alias, which is
halfway there. At least we do not have to perform two lookups to get
to the object.

Lines 814

If it is not apparent already, this is an "infinite loop," meaning we are presented with a body of code that
will repeat and run forever unless we exit the looplook for a break statement somewhere! The while true
conditional causes this to happen because while statements execute whenever its conditional expression
evaluates to Boolean true, and true is Boolean true.

Lines 1014 prompt the user for an unused filename, meaning that the filename entered should not be
the name of an already existing file. The raw_input() built-in function takes an argument to use as the
prompt to the user. The resulting string entered by the user is the return value of raw_input(), which in
this case gets assigned to fname.

If the user is unlucky enough to pick a name already in use, we notify the user and return the user to
the prompt to enter another (file)name. Note that os.path.exists() is a helper function in the os.path
(sub)module, which helps us make this determination. Only when a file with such a name does not exist,

file:///D|/1/0132269937/ch03lev1sec6.html (2 von 5) [13.11.2007 16:22:50]

Section 3.6. First Python Programs

meaning that os.path.exists() returns False, do we break out of this loop and continue.

Lines 1626

This is the part of our application that gives the user some instruction and prompts them for the
contents of our text file, one line at a time. The all list will hold each linewe initialize it on line 17. Line
21 begins another infinite loop, which prompts the user for each line of the text file and only terminates
when they enter a period '.' on a line by itself. The if-else statement on lines 2326 look for that
sentinel and break out of the loop if it is seen (line 24); otherwise it adds another line to our total (line
26).

Lines 2832

Now that we have the entire contents in memory, we need to dump it to the text file. Line 29 opens the
file for write, and line 30 writes each line to the file. Every file requires a line terminator (or termination
character[s]). The construct on line 30, called a list comprehension, does the following: for every line in
our file, append it with the appropriate line terminator for our platform. '%s%s' puts a line next to the
termination character(s), and the grouping (x, ls) represents each line x of all lines and the
terminatorfor Unix, it is '\n', DOS and Win32, '\r\n', etc. By using os.linesep, we do not need to have
code to check which operating system this program is running on in order to determine which line
terminating character(s) to use.

The file object's writelines() method then takes the resulting list of lines (now with terminators) and
writes it to the file. The file is then closed in line 31, and we are done!

Not too bad, right? Now let us look at how to view the file we just created! For this, we have your
second Python program, readTextFile.py. As you will see, it is much shorter than makeTextfile.py. The
complexity of file creation is almost always greater than the reading of it. The only new and interesting
part for you is the appearance of an exception handler.

Lines 13

These are the Unix startup line and module documentation string as usual.

Lines 57

Unlike makeTextFile.py where we kept pegging the user for names until they he or she chooses an
unused filename, we don't care in this example.

Example 3.2. File Read and Display (readTextFile.py)

file:///D|/1/0132269937/ch03lev1sec6.html (3 von 5) [13.11.2007 16:22:50]

Section 3.6. First Python Programs

1 #!/usr/bin/env python
2
3 'readTextFile.py -- read and display text file'
4
5 # get filename
6 fname = raw_input('Enter filename: ')
7 print
8
9 # attempt to open file for reading
10 try:
11 fobj = open(fname, 'r')
12 except IOError, e:
13 print "*** file open error:", e
14 else:
15 # display contents to the screen
16 for eachLine in fobj:
17 print eachLine,
18 fobj.close()

In other words, we are performing the validation elsewhere (if at all). Line 7 just displays a new line to
separate the prompting of the filename and the contents of the file.

Lines 918

This next Python construct (other than the comment) represents the rest of the script. This is a try-
except-else statement. The try clause is a block of code that we want to monitor for errors. In our code
(lines 1011), we are attempting to open the file with the name the user entered.

The except clause is where we decide what type of errors we're looking out for and what to do if such
errors occur. In this case (lines 1213), we are checking to see if the file open() failedthis is usually an
IOError type of error.

Finally, lines 1418 represent the else clause of a try-exceptthe code that is executed if no errors
occurred in the TRy block. In our case, we display each line of the file to the screen. Note that because
we are not removing the trailing whitespace (line termination) characters from each line, we have to
suppress the NEWLINE that the print statement automatically generatesthis is done by adding a trailing
comma to the end of the print statement. We then close the file (line 18), which ends the program.

One final note regarding the use of os.path.exists() and an exception handler: The author is generally
in favor of the former, when there is an existing function that can be used to detect error conditionsand
even more simply, where the function is Boolean and gives you a "yes" or "no" answer. (Note that there
is probably already an exception handler in such a function.) Why do you have to reinvent the wheel
when there's already code just for that purpose?

An exception handler is best applied when there isn't such a convenient function, where you the
programmer must recognize an "out of the ordinary" error condition and respond appropriately. In our
case, we were able to dodge an exception because we check to see if a file exists, but there are many
other situations that may cause a file open to fail, such as improper permissions, the connection to a
network drive is out, etc. For safety's sake, you may end up with "checker" functions like os.path.exists
() in addition to an exception handler, which may be able to take care of a situation where no such
function is available.

file:///D|/1/0132269937/ch03lev1sec6.html (4 von 5) [13.11.2007 16:22:50]

Section 3.6. First Python Programs

You will find more examples of file system functions in Chapter 9 and more about exception handling in
Chapter 10.

file:///D|/1/0132269937/ch03lev1sec6.html (5 von 5) [13.11.2007 16:22:50]

file:///D|/1/0132269937/14051536.html

Section 3.7. Related Modules/Developer Tools

3.7. Related Modules/Developer Tools

The Python Style Guide (PEP 8), Python Quick Reference Guide, and the Python FAQ make for great
reading as developer "tools." In addition, there are some modules that may help you become a more
proficient Python programmer:

● Debugger: pdb
● Logger: logging
● Profilers: profile, hotshot, cProfile

The debugging module pdb allows you to set (conditional) breakpoints, single-step through lines of code,
and check out stack frames. It also lets you perform post-mortem debugging.

The logging module, which was added in Python 2.3, defines functions and classes that help you
implement a flexible logging system for your application. There are five levels of logging you can use:
critical, error, warning, info, and debug.

Python has had a history of profilers, mostly because they were implemented at different times by
different people with different needs. The original Python profile module was written in pure Python and
measured the time spent in functions, the total time as well as the time spent per call, either only the
time spent in particular functions or including subsequent (sub)functions calls from there. It is the oldest
and the slowest of the three profilers but still gives useful profiling information.

The hotshot module was added in Python 2.2 and was intended to replace profile because it fixes
various errors that profile was prone to and has improved performance due to being implemented in C.
Note that hotshot focuses on reducing profiling overhead during execution but could take longer to
deliver results. A critical bug in the timing code was fixed in Python 2.5.

The cProfile module, which was added in Python 2.5, was meant to replace the hotshot and profile
modules. The one significant flaw identified by the authors of cProfile is that it takes a long time to load
results from the log file, does not support detailed child function statistics, and some results appear
inaccurate. It is also implemented in C.

file:///D|/1/0132269937/ch03lev1sec7.html [13.11.2007 16:22:50]

Section 3.8. Exercises

3.8. Exercises

3-1. Identifiers. Why are variable name and type declarations not used in Python?

3-2. Identifiers. Why are function type declarations not used in Python?

3-3. Identifiers. Why should we avoid beginning and ending variable names with double
underscores?

3-4. Statements. Can multiple Python statements be written on a single line?

3-5. Statements. Can a single Python statement be written over multiple lines?

3-6. Variable Assignment.

a.

Given the assignment x, y, z = 1, 2, 3, what do x, y, and z contain?

b.

What do x, y, and z contain after executing: z, x, y = y, z, x?

3-7. Identifiers. Which of the following are valid Python identifiers? If not, why not? Of the
invalid ones, which are keywords?

int32 40XL $aving$ printf print

_print this self __name__ 0x40L

bool true big-daddy 2hot2touch type

thisIsn'tAVar thisIsAVar R_U_Ready Int true

if do counter-1 access _

The remaining problems deal with the makeTextFile.py and readTextFile.py programs.

3-8. Python Code. Copy the scripts to your file system and customize (tweak, improve)
them. Modifications can include adding your own comments, changing the prompts ('>'
is pretty boring), etc. Get comfortable looking at and editing Python code.

3-9. Porting. If you have Python installed on different types of computers, check to see if
there are any differences in the os.linesep characters. Write down the type/OS and
what linesep is.

file:///D|/1/0132269937/ch03lev1sec8.html (1 von 2) [13.11.2007 16:22:51]

Section 3.8. Exercises

3-10. Exceptions. Replace the call to os.path.exists() in makeTextFile.py with an exception
handler as seen in readTextFile.py. On the flip side, replace the exception handler in
readTextFile.py with a call to os.path.exists().

3-11. String Formatting. Rather than suppressing the NEWLINE character generated by the
print statement in readTextFile.py, change your code so that you strip each line of its
whitespace before displaying it. In this case, you can remove the trailing comma from
the print statement. Hint: Use the string strip() method.

3-12. Merging Source Files. Combine both programs into onecall it anything you like,
perhaps readNwriteTextFiles.py. Let the user choose whether to create or display a
text file.

3-13. *Adding Features. Take your readNwriteTextFiles.py solution from the previous
problem and add a major feature to it: Allow the user to edit an existing text file. You
can do this any way you wish, whether you let the user edit line by line or the entire
document at once. Note that the latter is much more difficult as you may need help
from a GUI toolkit or a screen-based text editing module such as curses. Give users
the option to apply the changes (saving the file) or discard them (leaving the original
file intact), and also ensure the original file is preserved in case the program exits
abnormally during operation.

file:///D|/1/0132269937/ch03lev1sec8.html (2 von 2) [13.11.2007 16:22:51]

Chapter 4. Python Objects

Chapter 4. Python Objects

Chapter Topics

● Python Objects
● Built-in Types
● Standard Type Operators

�❍ Value Comparison
�❍ Object Identity Comparison
�❍ Boolean

● Standard Type Built-in Functions
● Categorizing the Standard Types
● Miscellaneous Types
● Unsupported Types

We will now begin our journey to the core part of the language. First we will introduce what Python
objects are, then discuss the most commonly used built-in types. We then discuss the standard type
operators and built-in functions (BIFs), followed by an insightful discussion of the different ways to
categorize the standard types to gain a better understanding of how they work. Finally, we will conclude
by describing some types that Python does not have (mostly as a benefit for those of you with
experience in another high-level language).

file:///D|/1/0132269937/ch04.html [13.11.2007 16:22:51]

Section 4.1. Python Objects

4.1. Python Objects

Python uses the object model abstraction for data storage. Any construct that contains any type of value
is an object. Although Python is classified as an "object-oriented programming (OOP) language," OOP is
not required to create perfectly working Python applications. You can certainly write a useful Python
script without the use of classes and instances. However, Python's object syntax and architecture
encourage or "provoke" this type of behavior. Let us now take a closer look at what a Python object is.

All Python objects have the following three characteristics: an identity, a type, and a value.

IDENTITY Unique identifier that differentiates an object from all others. Any object's identifier can be
obtained using the id() built-in function (BIF). This value is as close as you will get to a
"memory address" in Python (probably much to the relief of some of you). Even better is
that you rarely, if ever, access this value, much less care what it is at all.

TYPE An object's type indicates what kind of values an object can hold, what operations can be
applied to such objects, and what behavioral rules these objects are subject to. You can
use the type() BIF to reveal the type of a Python object. Since types are also objects in
Python (did we mention that Python was object-oriented?), type() actually returns an
object to you rather than a simple literal.

VALUE Data item that is represented by an object.

All three are assigned on object creation and are read-only with one exception, the value. (For new-style
types and classes, it may possible to change the type of an object, but this is not recommended for the
beginner.) If an object supports updates, its value can be changed; otherwise, it is also read-only.
Whether an object's value can be changed is known as an object's mutability, which we will investigate
later on in Section 4.7. These characteristics exist as long as the object does and are reclaimed when an
object is deallocated.

Python supports a set of basic (built-in) data types, as well as some auxiliary types that may come into
play if your application requires them. Most applications generally use the standard types and create and
instantiate classes for all specialized data storage.

4.1.1. Object Attributes

Certain Python objects have attributes, data values or executable code such as methods, associated with
them. Attributes are accessed in the dotted attribute notation, which includes the name of the
associated object, and were introduced in the Core Note in Section 2.14. The most familiar attributes are
functions and methods, but some Python types have data attributes associated with them. Objects with
data attributes include (but are not limited to): classes, class instances, modules, complex numbers,
and files.

file:///D|/1/0132269937/ch04lev1sec1.html [13.11.2007 16:22:51]

Section 4.2. Standard Types

4.2. Standard Types

● Numbers (separate subtypes; three are integer types)

�❍ Integer

■ Boolean
■ Long integer

�❍ Floating point real number
�❍ Complex number

● String
● List
● Tuple
● Dictionary

We will also refer to standard types as "primitive data types" in this text because these types represent
the primitive data types that Python provides. We will go over each one in detail in Chapters 5, 6, and 7.

file:///D|/1/0132269937/ch04lev1sec2.html [13.11.2007 16:22:52]

Section 4.3. Other Built-in Types

4.3. Other Built-in Types

● Type
● Null object (None)
● File
● Set/Frozenset
● Function/Method
● Module
● Class

These are some of the other types you will interact with as you develop as a Python programmer. We
will also cover all of these in other chapters of this book with the exception of the type and None types,
which we will discuss here.

4.3.1. Type Objects and the type Type Object

It may seem unusual to regard types themselves as objects since we are attempting to just describe all
of Python's types to you in this chapter. However, if you keep in mind that an object's set of inherent
behaviors and characteristics (such as supported operators and built-in methods) must be defined
somewhere, an object's type is a logical place for this information. The amount of information necessary
to describe a type cannot fit into a single string; therefore types cannot simply be strings, nor should
this information be stored with the data, so we are back to types as objects.

We will formally introduce the type() BIF below, but for now, we want to let you know that you can find
out the type of an object by calling type() with that object:

>>> type(42)
<type 'int'>

Let us look at this example more carefully. It does not look tricky by any means, but examine the return
value of the call. We get the seemingly innocent output of <type 'int'>, but what you need to realize is
that this is not just a simple string telling you that 42 is an integer. What you see as <type 'int'> is
actually a type object. It just so happens that the string representation chosen by its implementors has
a string inside it to let you know that it is an int type object.

Now you may ask yourself, so then what is the type of any type object? Well, let us find out:

>>> type(type(42))
<type 'type'>

Yes, the type of all type objects is type. The type type object is also the mother of all types and is the
default metaclass for all standard Python classes. It is perfectly fine if you do not understand this now.
This will make sense as we learn more about classes and types.

With the unification of types and classes in Python 2.2, type objects are playing a more significant role
in both object-oriented programming as well as day-to-day object usage. Classes are now types, and
instances are now objects of their respective types.

file:///D|/1/0132269937/ch04lev1sec3.html (1 von 2) [13.11.2007 16:22:52]

Section 4.3. Other Built-in Types

4.3.2. None, Python's Null Object

Python has a special type known as the Null object or NoneType. It has only one value, None. The type of
None is NoneType. It does not have any operators or BIFs. If you are familiar with C, the closest analogy
to the None type is void, while the None value is similar to the C value of NULL. (Other similar objects and
values include Perl's undef and Java's void type and null value.) None has no (useful) attributes and
always evaluates to having a Boolean False value.

Core Note: Boolean values

All standard type objects can be tested for truth value and compared
to objects of the same type. Objects have inherent TRue or False
values. Objects take a False value when they are empty, any numeric
representation of zero, or the Null object None.

The following are defined as having false values in Python:

● None

● False (Boolean)
● Any numeric zero:
● 0 (integer)
● 0.0 (float)
● 0L (long integer)
● 0.0+0.0j (complex)
● "" (empty string)
● [] (empty list)
● () (empty tuple)
● {} (empty dictionary)

Any value for an object other than those above is considered to have a
true value, i.e., non-empty, non-zero, etc. User-created class
instances have a false value when their nonzero (__nonzero__()) or
length (__len__()) special methods, if defined, return a zero value.

file:///D|/1/0132269937/ch04lev1sec3.html (2 von 2) [13.11.2007 16:22:52]

file:///D|/1/0132269937/14051536.html

Section 4.4. Internal Types

4.4. Internal Types

● Code
● Frame
● Traceback
● Slice
● Ellipsis
● Xrange

We will briefly introduce these internal types here. The general application programmer would typically
not interact with these objects directly, but we include them here for completeness. Please refer to the
source code or Python internal and online documentation for more information.

In case you were wondering about exceptions, they are now implemented as classes. In older versions
of Python, exceptions were implemented as strings.

4.4.1. Code Objects

Code objects are executable pieces of Python source that are byte-compiled, usually as return values
from calling the compile() BIF. Such objects are appropriate for execution by either exec or by the eval
() BIF. All this will be discussed in greater detail in Chapter 14.

Code objects themselves do not contain any information regarding their execution environment, but
they are at the heart of every user-defined function, all of which do contain some execution context.
(The actual byte-compiled code as a code object is one attribute belonging to a function.) Along with the
code object, a function's attributes also consist of the administrative support that a function requires,
including its name, documentation string, default arguments, and global namespace.

4.4.2. Frame Objects

These are objects representing execution stack frames in Python. Frame objects contain all the
information the Python interpreter needs to know during a runtime execution environment. Some of its
attributes include a link to the previous stack frame, the code object (see above) that is being executed,
dictionaries for the local and global namespaces, and the current instruction. Each function call results in
a new frame object, and for each frame object, a C stack frame is created as well. One place where you
can access a frame object is in a traceback object (see the following section).

4.4.3. Traceback Objects

When you make an error in Python, an exception is raised. If exceptions are not caught or "handled,"
the interpreter exits with some diagnostic information similar to the output shown below:

Traceback (innermost last):
 File "<stdin>", line N?, in ???
ErrorName: error reason

The traceback object is just a data item that holds the stack trace information for an exception and is
created when an exception occurs. If a handler is provided for an exception, this handler is given access
to the traceback object.

file:///D|/1/0132269937/ch04lev1sec4.html (1 von 2) [13.11.2007 16:22:53]

Section 4.4. Internal Types

4.4.4. Slice Objects

Slice objects are created using the Python extended slice syntax. This extended syntax allows for
different types of indexing. These various types of indexing include stride indexing, multi-dimensional
indexing, and indexing using the Ellipsis type. The syntax for multi-dimensional indexing is sequence
[start1 : end1, start2 : end2], or using the ellipsis, sequence [..., start1 : end1]. Slice objects can also
be generated by the slice() BIF.

Stride indexing for sequence types allows for a third slice element that allows for "step"-like access with
a syntax of sequence[starting_index : ending_index : stride].

Support for the stride element of the extended slice syntax have been in Python for a long time, but
until 2.3 was only available via the C API or Jython (and previously JPython). Here is an example of
stride indexing:

>>> foostr = 'abcde'
>>> foostr[::-1]
'edcba'
>>> foostr[::-2]
'eca'
>>> foolist = [123, 'xba', 342.23, 'abc']
>>> foolist[::-1]
['abc', 342.23, 'xba', 123]

4.4.5. Ellipsis Objects

Ellipsis objects are used in extended slice notations as demonstrated above. These objects are used to
represent the actual ellipses in the slice syntax (...). Like the Null object None, ellipsis objects also have
a single name, Ellipsis, and have a Boolean TRue value at all times.

4.4.6. XRange Objects

XRange objects are created by the BIF xrange(), a sibling of the range() BIF, and used when memory is
limited and when range() generates an unusually large data set. You can find out more about range()
and xrange() in Chapter 8.

For an interesting side adventure into Python types, we invite the reader to take a look at the types
module in the standard Python library.

file:///D|/1/0132269937/ch04lev1sec4.html (2 von 2) [13.11.2007 16:22:53]

Section 4.5. Standard Type Operators

4.5. Standard Type Operators

4.5.1. Object Value Comparison

Comparison operators are used to determine equality of two data values between members of the same
type. These comparison operators are supported for all built-in types. Comparisons yield Boolean TRue or
False values, based on the validity of the comparison expression. (If you are using Python prior to 2.3
when the Boolean type was introduced, you will see integer values 1 for TRue and 0 for False.) A list of
Python's value comparison operators is given in Table 4.1.

Table 4.1. Standard Type Value Comparison
Operators

Operator Function

expr1 < expr2 expr1 is less than expr2

expr1 > expr2 expr1 is greater than expr2

expr1 <= expr2 expr1 is less than or equal to expr2

expr1 >= expr2 expr1 is greater than or equal to expr2

expr1 == expr2 expr1 is equal to expr2

expr1 != expr2 expr1 is not equal to expr2 (C-style)

expr1 <> expr2
expr1 is not equal to expr2 (ABC/Pascal-style)

[a]

[a] This "not equal" sign will be phased out in future version of Python. Use != instead.

Note that comparisons performed are those that are appropriate for each data type. In other words,
numeric types will be compared according to numeric value in sign and magnitude, strings will compare
lexicographically, etc.

>>> 2 == 2
True
>>> 2.46 <= 8.33
True
>>> 5+4j >= 2-3j
True
>>> 'abc' == 'xyz'
False

file:///D|/1/0132269937/ch04lev1sec5.html (1 von 6) [13.11.2007 16:22:53]

Section 4.5. Standard Type Operators

>>> 'abc' > 'xyz'
False
>>> 'abc' < 'xyz'
True
>>> [3, 'abc'] == ['abc', 3]
False
>>> [3, 'abc'] == [3, 'abc']
True

Also, unlike many other languages, multiple comparisons can be made on the same line, evaluated in
left-to-right order:

>>> 3 < 4 < 7 # same as (3 < 4) and (4 < 7)
True
>>> 4 > 3 == 3 # same as (4 > 3) and (3 == 3)
True
>>> 4 < 3 < 5 != 2 < 7
False

We would like to note here that comparisons are strictly between object values, meaning that the
comparisons are between the data values and not the actual data objects themselves. For the latter, we
will defer to the object identity comparison operators described next.

4.5.2. Object Identity Comparison

In addition to value comparisons, Python also supports the notion of directly comparing objects
themselves. Objects can be assigned to other variables (by reference). Because each variable points to
the same (shared) data object, any change effected through one variable will change the object and
hence be reflected through all references to the same object.

In order to understand this, you will have to think of variables as linking to objects now and be less
concerned with the values themselves. Let us take a look at three examples.

Example 1: foo1 and foo2 reference the same object

foo1 = foo2 = 4.3

When you look at this statement from the value point of view, it appears that you are performing a
multiple assignment and assigning the numeric value of 4.3 to both the foo1 and foo2 variables. This is
true to a certain degree, but upon lifting the covers, you will find that a numeric object with the contents
or value of 4.3 has been created. Then that object's reference is assigned to both foo1 and foo2,
resulting in both foo1 and foo2 aliased to the same object. Figure 4-1 shows an object with two
references.

Figure 4-1. foo1 and foo2 reference the same object

file:///D|/1/0132269937/ch04lev1sec5.html (2 von 6) [13.11.2007 16:22:53]

Section 4.5. Standard Type Operators

Example 2: foo1 and foo2 reference the same object

foo1 = 4.3
foo2 = foo1

This example is very much like the first: A numeric object with value 4.3 is created, then assigned to
one variable. When foo2 = foo1 occurs, foo2 is directed to the same object as foo1 since Python deals
with objects by passing references. foo2 then becomes a new and additional reference for the original
value. So both foo1 and foo2 now point to the same object. The same figure above applies here as well.

Example 3: foo1 and foo2 reference different objects

foo1 = 4.3
foo2 = 1.3 + 3.0

This example is different. First, a numeric object is created, then assigned to foo1. Then a second
numeric object is created, and this time assigned to foo2. Although both objects are storing the exact
same value, there are indeed two distinct objects in the system, with foo1 pointing to the first, and foo2
being a reference to the second. Figure 4-2 shows we now have two distinct objects even though both
objects have the same value.

Figure 4-2. foo1 and foo2 reference different objects

Why did we choose to use boxes in our diagrams? Well, a good way to visualize this concept is to
imagine a box (with contents inside) as an object. When a variable is assigned an object, that creates a
"label" to stick on the box, indicating a reference has been made. Each time a new reference to the
same object is made, another sticker is put on the box. When references are abandoned, then a label is
removed. A box can be "recycled" only when all the labels have been peeled off the box. How does the
system keep track of how many labels are on a box?

Each object has associated with it a counter that tracks the total number of references that exist to that
object. This number simply indicates how many variables are "pointing to" any particular object. This is
the reference count that we introduced in Chapter 3, Sections 3.5.5- 3.5.7 Python provides the is and
is not operators to test if a pair of variables do indeed refer to the same object. Performing a check
such as

file:///D|/1/0132269937/ch04lev1sec5.html (3 von 6) [13.11.2007 16:22:53]

Section 4.5. Standard Type Operators

a is b

is an equivalent expression to

id(a) == id(b)

The object identity comparison operators all share the same precedence level and are presented in Table
4.2.

Table 4.2. Standard Type Object Identity
Comparison Operators

Operator Function

obj1 is obj2 obj1 is the same object as obj2

obj1 is not obj2 obj1 is not the same object as obj2

In the example below, we create a variable, then another that points to the same object.

>>> a = [5, 'hat', -9.3]
>>> b = a
>>> a is b
True
>>> a is not b
False
>>>
>>> b = 2.5e-5
>>> b
2.5e-005
>>> a
[5, 'hat', -9.3]
>>> a is b
False
>>> a is not b
True

Both the is and not identifiers are Python keywords.

Core Note: Interning

file:///D|/1/0132269937/ch04lev1sec5.html (4 von 6) [13.11.2007 16:22:53]

Section 4.5. Standard Type Operators

In the above examples with the foo1 and foo2 objects, you will notice
that we use floating point values rather than integers. The reason for
this is although integers and strings are immutable objects, Python
sometimes caches them to be more efficient. This would have caused
the examples to appear that Python is not creating a new object when
it should have. For example:

>>> a = 1
>>> id(a)
8402824
>>> b = 1
>>> id(b)
8402824
>>>
>>> c = 1.0
>>> id(c)
8651220
>>> d = 1.0
>>> id(d)
8651204

In the above example, a and b reference the same integer object, but
c and d do not reference the same float object. If we were purists, we
would want a and b to work just like c and d because we really did ask
to create a new integer object rather than an alias, as in b = a.

Python caches or interns only simple integers that it believes will be
used frequently in any Python application. At the time of this writing,
Python interns integers in the range(-1, 100) but this is subject to
change, so do not code your application to expect this.

In Python 2.3, the decision was made to no longer intern strings that
do not have at least one reference outside of the "interned strings
table." This means that without that reference, interned strings are no
longer immortal and subject to garbage collection like everything else.
A BIF introduced in 1.5 to request interning of strings, intern(), has
now been deprecated as a result.

4.5.3. Boolean

Expressions may be linked together or negated using the Boolean logical operators and, or, and not, all
of which are Python keywords. These Boolean operations are in highest-to-lowest order of precedence in
Table 4.3. The not operator has the highest precedence and is immediately one level below all the
comparison operators. The and and or operators follow, respectively.

file:///D|/1/0132269937/ch04lev1sec5.html (5 von 6) [13.11.2007 16:22:53]

Section 4.5. Standard Type Operators

Table 4.3. Standard Type Boolean Operators

Operator Function

not expr Logical NOT of expr (negation)

expr1 and expr2 Logical AND of expr1 and expr2 (conjunction)

expr1 orexpr2 Logical OR of expr1 and expr2 (disjunction)

>>> x, y = 3.1415926536, -1024
>>> x < 5.0
True
>>> not (x < 5.0)
False
>>> (x < 5.0) or (y > 2.718281828)
True
>>> (x < 5.0) and (y > 2.718281828)
False
>>> not (x is y)
True

Earlier, we introduced the notion that Python supports multiple comparisons within one expression.
These expressions have an implicit and operator joining them together.

>>> 3 < 4 < 7 # same as "(3 < 4) and (4 < 7)"
True

file:///D|/1/0132269937/ch04lev1sec5.html (6 von 6) [13.11.2007 16:22:53]

Section 4.6. Standard Type Built-in Functions

4.6. Standard Type Built-in Functions

Along with generic operators, which we have just seen, Python also provides some BIFs that can be
applied to all the basic object types: cmp(),repr(),str(),type(), and the single reverse or back quotes
(``) operator, which is functionally equivalent to repr().

Table 4.4. Standard Type Built-in Functions

Function Operation

cmp(obj1, obj2) Compares obj1 and obj2, returns integer i where:

 i < 0 if obj1 < obj2

 i > 0 if obj1 > obj2

 i == 0 if obj1 == obj2

repr(obj) or `obj` Returns evaluatable string representation of obj

str(obj) Returns printable string representation of obj

type(obj) Determines type of obj and return type object

4.6.1. type()

We now formally introduce type(). In Python versions earlier than 2.2, type() is a BIF. Since that
release, it has become a "factory function." We will discuss these later on in this chapter, but for now,
you may continue to think of type() as a BIF. The syntax for type() is:

 type(object)

type() takes an object and returns its type. The return value is a type object.

 >>> type(4) # int type
 <type 'int'>
 >>>
 >>> type('Hello World!') # string type
 <type 'string'>
 >>>
 >>> type(type(4)) # type type
 <type 'type'>

In the examples above, we take an integer and a string and obtain their types using the type() BIF; in
order to also verify that types themselves are types, we call type() on the output of a type() call.

file:///D|/1/0132269937/ch04lev1sec6.html (1 von 8) [13.11.2007 16:22:55]

file:///D|/1/0132269937/14051536.html

Section 4.6. Standard Type Built-in Functions

Note the interesting output from the type() function. It does not look like a typical Python data type, i.
e., a number or string, but is something enclosed by greater-than and less-than signs. This syntax is
generally a clue that what you are looking at is an object. Objects may implement a printable string
representation; however, this is not always the case. In these scenarios where there is no easy way to
"display" an object, Python "pretty-prints" a string representation of the object. The format is usually of
the form: <object_something_or_another>. Any object displayed in this manner generally gives the object
type, an object ID or location, or other pertinent information.

4.6.2. cmp()

The cmp() BIF CoMPares two objects, say, obj1 and obj2, and returns a negative number (integer) if obj1
is less than obj2, a positive number if obj1 is greater than obj2, and zero if obj1 is equal to obj2. Notice
the similarity in return values as C's strcmp(). The comparison used is the one that applies for that type
of object, whether it be a standard type or a user-created class; if the latter, cmp() will call the class's
special __cmp__() method. More on these special methods in Chapter 13, on Python classes. Here are
some samples of using the cmp() BIF with numbers and strings.

>>> a, b = -4, 12
>>> cmp(a,b)
-1
>>> cmp(b,a)
1
>>> b = -4
>>> cmp(a,b)
0
>>>
>>> a, b = 'abc', 'xyz'
>>> cmp(a,b)
-23
>>> cmp(b,a)
23
>>> b = 'abc'
>>> cmp(a,b)
0

We will look at using cmp() with other objects later.

4.6.3. str() and repr() (and `` Operator)

The str() STRing and repr() REPResentation BIFs or the single back or reverse quote operator (``)
come in very handy if the need arises to either re-create an object through evaluation or obtain a
human-readable view of the contents of objects, data values, object types, etc. To use these operations,
a Python object is provided as an argument and some type of string representation of that object is
returned. In the examples that follow, we take some random Python types and convert them to their
string representations.

>>> str(4.53-2j)
'(4.53-2j)'
>>>
>>> str(1)
'1'
>>>

file:///D|/1/0132269937/ch04lev1sec6.html (2 von 8) [13.11.2007 16:22:55]

Section 4.6. Standard Type Built-in Functions

>>> str(2e10)
'20000000000.0'
>>>
>>> str([0, 5, 9, 9])
'[0, 5, 9, 9]'
>>>
>>> repr([0, 5, 9, 9])
'[0, 5, 9, 9]'
>>>
>>> `[0, 5, 9, 9]`
'[0, 5, 9, 9]'

Although all three are similar in nature and functionality, only repr() and `` do exactly the same thing,
and using them will deliver the "official" string representation of an object that can be evaluated as a
valid Python expression (using the eval() BIF). In contrast, str() has the job of delivering a "printable"
string representation of an object, which may not necessarily be acceptable by eval(), but will look nice
in a print statement. There is a caveat that while most return values from repr() can be evaluated, not
all can:

>>> eval(`type(type))`)
 File "<stdin>", line 1
 eval(`type(type))`)
 ^
SyntaxError: invalid syntax

The executive summary is that repr() is Python-friendly while str() produces human-friendly output.
However, with that said, because both types of string representations coincide so often, on many
occasions all three return the exact same string.

Core Note: Why have both repr() and ``?

Occasionally in Python, you will find both an operator and a function
that do exactly the same thing. One reason why both an operator and
a function exist is that there are times where a function may be more
useful than the operator, for example, when you are passing around
executable objects like functions and where different functions may be
called depending on the data item. Another example is the double-star
(**) and pow() BIF, which performs "x to the y power" exponentiation
for x ** y or pow(x,y).

4.6.4. type() and isinstance()

Python does not support method or function overloading, so you are responsible for any "introspection"
of the objects that your functions are called with. (Also see the Python FAQ 4.75.) Fortunately, we have
the type() BIF to help us with just that, introduced earlier in Section 4.3.1.

What's in a name? Quite a lot, if it is the name of a type. It is often advantageous and/or necessary to
base pending computation on the type of object that is received. Fortunately, Python provides a BIF just
for that very purpose. type() returns the type for any Python object, not just the standard types. Using

file:///D|/1/0132269937/ch04lev1sec6.html (3 von 8) [13.11.2007 16:22:55]

Section 4.6. Standard Type Built-in Functions

the interactive interpreter, let us take a look at some examples of what type() returns when we give it
various objects.

>>> type('')
<type 'str'>
>>>
>>> s = 'xyz'
>>> type(s)
<type 'str'>
>>>
>>> type(100)
<type 'int'>
>>> type(0+0j)
<type 'complex'>
>>> type(0L)
<type 'long'>
>>> type(0.0)
<type 'float'>
>>>
>>> type([])
<type 'list'>
>>> type(())
<type 'tuple'>
>>> type({})
<type 'dict'>
>>> type(type)
<type 'type'>
>>>
>>> class Foo: pass # new-style class
...
>>> foo = Foo()
>>> class Bar(object): pass # new-style class
...
>>> bar = Bar()
>>>
>>> type(Foo)
<type 'classobj'>
>>> type(foo)
<type 'instance'>
>>> type(Bar)
<type 'type'>
>>> type(bar)
<class '__main__.Bar'>

Types and classes were unified in Python 2.2. You will see output different from that above if you are
using a version of Python older than 2.2:

>>> type('')
<type 'string'>
>>> type(0L)
<type 'long int'>
>>> type({})
<type 'dictionary'>
>>> type(type)
<type 'builtin_function_or_method'>
>>>
>>> type(Foo) # assumes Foo created as in above

file:///D|/1/0132269937/ch04lev1sec6.html (4 von 8) [13.11.2007 16:22:55]

Section 4.6. Standard Type Built-in Functions

<type 'class'>
>>> type(foo) # assumes foo instantiated also
<type 'instance'>

In addition to type(), there is another useful BIF called isinstance(). We cover it more formally in
Chapter 13 (Object-Oriented Programming), but here we can introduce it to show you how you can use
it to help determine the type of an object.

Example

We present a script in Example 4.1 that shows how we can use isinstance() and type() in a runtime
environment. We follow with a discussion of the use of type() and how we migrated to using isinstance
() instead for the bulk of the work in this example.

Example 4.1. Checking the Type (typechk.py)

The function displayNumType() takes a numeric argument and uses the type() built-in to
indicate its type (or "not a number," if that is the case).

 1 #!/usr/bin/env python
 2
 3 def displayNumType(num):
 4 print num, 'is',
 5 if isinstance(num, (int, long, float, complex)):
 6 print 'a number of type:', type(num).__name__
 7 else:
 8 print 'not a number at all!!'
 9
 10 displayNumType(-69)
 11 displayNumType(9999999999999999999999L)
 12 displayNumType(98.6)
 13 displayNumType(-5.2+1.9j)
 14 displayNumType('xxx')

Running typechk.py, we get the following output:

-69 is a number of type: int
9999999999999999999999 is a number of type: long
98.6 is a number of type: float
(-5.2+1.9j) is a number of type: complex
xxx is not a number at all!!

The Evolution of This Example

Original

The same function was defined quite differently in the first edition of this book:

file:///D|/1/0132269937/ch04lev1sec6.html (5 von 8) [13.11.2007 16:22:55]

Section 4.6. Standard Type Built-in Functions

def displayNumType(num):
 print num, "is",
 if type(num) == type(0):
 print 'an integer'
 elif type(num) == type(0L):
 print 'a long'
 elif type(num) == type(0.0):
 print 'a float'
 elif type(num) == type(0+0j):
 print 'a complex number'
 else:
 print 'not a number at all!!'

As Python evolved in its slow and simple way, so must we. Take a look at our original conditional
expression:

if type(num) == type(0)...

Reducing Number of Function Calls

If we take a closer look at our code, we see a pair of calls to type(). As you know, we pay a small price
each time a function is called, so if we can reduce that number, it will help with performance.

An alternative to comparing an object's type with a known object's type (as we did above and in the
example below) is to utilize the types module, which we briefly mentioned earlier in the chapter. If we
do that, then we can use the type object there without having to "calculate it." We can then change our
code to only having one call to the type() function:

>>> import types
>>> if type(num) == types.IntType...

Object Value Comparison versus Object Identity Comparison

We discussed object value comparison versus object identity comparison earlier in this chapter, and if
you realize one key fact, then it will become clear that our code is still not optimal in terms of
performance. During runtime, there is always only one type object that represents an integer. In other
words, type(0), type(42), type(-100) are always the same object: <type 'int'> (and this is also the
same object as types.IntType).

If they are always the same object, then why do we have to compare their values since we already
know they will be the same? We are "wasting time" extracting the values of both objects and comparing
them if they are the same object, and it would be more optimal to just compare the objects themselves.
Thus we have a migration of the code above to the following:

if type(num) is types.IntType... # or type(0)

Does that make sense? Object value comparison via the equal sign requires a comparison of their
values, but we can bypass this check if the objects themselves are the same. If the objects are different,

file:///D|/1/0132269937/ch04lev1sec6.html (6 von 8) [13.11.2007 16:22:55]

Section 4.6. Standard Type Built-in Functions

then we do not even need to check because that means the original variable must be of a different type
(since there is only one object of each type). One call like this may not make a difference, but if there
are many similar lines of code throughout your application, then it starts to add up.

Reduce the Number of Lookups

This is a minor improvement to the previous example and really only makes a difference if your
application performs makes many type comparisons like our example. To actually get the integer type
object, the interpreter has to look up the types name first, and then within that module's dictionary, find
IntType. By using from-import, you can take away one lookup:

from types import IntType
if type(num) is IntType ...

Convenience and Style

The unification of types and classes in 2.2 has resulted in the expected rise in the use of the isinstance
() BIF. We formally introduce isinstance() in Chapter 13 (Object-Oriented Programming), but we will
give you a quick preview now.

This Boolean function takes an object and one or more type objects and returns true if the object in
question is an instance of one of the type objects. Since types and classes are now the same, int is now
a type (object) and a class. We can use isinstance() with the built-in types to make our if statement
more convenient and readable:

if isinstance(num, int)...

Using isinstance() along with type objects is now also the accepted style of usage when introspecting
objects' types, which is how we finally arrive at our updated typechk.py application above. We also get
the added bonus of isinstance() accepting a tuple of type objects to check against our object with
instead of having an if-elif-else if we were to use only type().

4.6.5. Python Type Operator and BIF Summary

A summary of operators and BIFs common to all basic Python types is given in Table 4.5. The
progressing shaded groups indicate hierarchical precedence from highest-to-lowest order. Elements
grouped with similar shading all have equal priority. Note that these (and most Python) operators are
available as functions via the operator module.

Table 4.5. Standard Type Operators and Built-
in Functions

Operator/Function Description
Result

[a]

String representation

file:///D|/1/0132269937/ch04lev1sec6.html (7 von 8) [13.11.2007 16:22:55]

Section 4.6. Standard Type Built-in Functions

`` String representation str

Built-in functions

cmp(obj1, obj2) Compares two objects int

repr(obj) String representation str

str(obj) String representation str

type(obj) Determines object type type

Value comparisons

< Less than bool

> Greater than bool

<= Less than or equal to bool

>= Greater than or equal to bool

== Equal to bool

!= Not equal to bool

<> Not equal to bool

Object comparisons

is The same as bool

is not Not the same as bool

Boolean operators

not Logical negation bool

and Logical conjunction bool

or Logical disjunction bool

[a] Boolean comparisons return either TRue or False.

file:///D|/1/0132269937/ch04lev1sec6.html (8 von 8) [13.11.2007 16:22:55]

file:///D|/1/0132269937/14051536.html

Section 4.7. Type Factory Functions

4.7. Type Factory Functions

Since Python 2.2 with the unification of types and classes, all of the built-in types are now classes, and
with that, all of the "conversion" built-in functions like int(), type(), list(), etc., are now factory
functions. This means that although they look and act somewhat like functions, they are actually class
names, and when you call one, you are actually instantiating an instance of that type, like a factory
producing a good.

The following familiar factory functions were formerly built-in functions:

● int(), long(), float(), complex()
● str(), unicode(), basestring()
● list(), tuple()
● type()

Other types that did not have factory functions now do. In addition, factory functions have been added
for completely new types that support the new-style classes. The following is a list of both types of
factory functions:

● dict()
● bool()
● set(), frozenset()
● object()
● classmethod()
● staticmethod()
● super()
● property()
● file()

file:///D|/1/0132269937/ch04lev1sec7.html [13.11.2007 16:22:55]

file:///D|/1/0132269937/14051536.html

Section 4.8. Categorizing the Standard Types

4.8. Categorizing the Standard Types

If we were to be maximally verbose in describing the standard types, we would probably call them
something like Python's "basic built-in data object primitive types."

● "Basic," indicating that these are the standard or core types that Python provides
● "Built-in," due to the fact that these types come by default in Python
● "Data," because they are used for general data storage
● "Object," because objects are the default abstraction for data and functionality
● "Primitive," because these types provide the lowest-level granularity of data storage
● "Types," because that's what they are: data types!

However, this description does not really give you an idea of how each type works or what functionality
applies to them. Indeed, some of them share certain characteristics, such as how they function, and
others share commonality with regard to how their data values are accessed. We should also be
interested in whether the data that some of these types hold can be updated and what kind of storage
they provide.

There are three different models we have come up with to help categorize the standard types, with each
model showing us the interrelationships between the types. These models help us obtain a better
understanding of how the types are related, as well as how they work.

4.8.1. Storage Model

The first way we can categorize the types is by how many objects can be stored in an object of this
type. Python's types, as well as types from most other languages, can hold either single or multiple
values. A type which holds a single literal object we will call atomic or scalar storage, and those which
can hold multiple objects we will refer to as container storage. (Container objects are also referred to as
composite or compound objects in the documentation, but some of these refer to objects other than
types, such as class instances.) Container types bring up the additional issue of whether different types
of objects can be stored. All of Python's container types can hold objects of different types. Table 4.6
categorizes Python's types by storage model.

Table 4.6. Types Categorized by the Storage Model

Storage Model Category Python Types That Fit Category

Scalar/atom Numbers (all numeric types), strings (all are literals)

Container Lists, tuples, dictionaries

Although strings may seem like a container type since they "contain" characters (and usually more than
one character), they are not considered as such because Python does not have a character type (see
Section 4.8). Thus strings are self-contained literals.

4.8.2. Update Model

file:///D|/1/0132269937/ch04lev1sec8.html (1 von 5) [13.11.2007 16:22:56]

Section 4.8. Categorizing the Standard Types

Another way of categorizing the standard types is by asking the question, "Once created, can objects be
changed, or can their values be updated?" When we introduced Python types early on, we indicated that
certain types allow their values to be updated and others do not. Mutable objects are those whose
values can be changed, and immutable objects are those whose values cannot be changed. Table 4.7
illustrates which types support updates and which do not.

Table 4.7. Types Categorized by the Update
Model

Update Model Category Python Types That Fit Category

Mutable Lists, dictionaries

Immutable Numbers, strings, tuples

Now after looking at the table, a thought that must immediately come to mind is, "Wait a minute! What
do you mean that numbers and strings are immutable? I've done things like the following":

x = 'Python numbers and strings'
x = 'are immutable?!? What gives?'
i = 0
i = i + 1

"They sure as heck don't look immutable to me!" That is true to some degree, but looks can be
deceiving. What is really happening behind the scenes is that the original objects are actually being
replaced in the above examples. Yes, that is right. Read that again.

Rather than referring to the original objects, new objects with the new values were allocated and (re)
assigned to the original variable names, and the old objects were garbage-collected. One can confirm
this by using the id() BIF to compare object identities before and after such assignments.

If we added calls to id() in our example above, we may be able to see that the objects are being
changed, as below:

>>> x = 'Python numbers and strings'
>>> print id(x)
16191392
>>> x = 'are immutable?!? What gives?'
>>> print id(x)
16191232
>>> i = 0
>>> print id(i)
7749552
>>> i = i + 1
>>> print id(i)
7749600

Your mileage will vary with regard to the object IDs as they will differ between executions. On the flip

file:///D|/1/0132269937/ch04lev1sec8.html (2 von 5) [13.11.2007 16:22:56]

Section 4.8. Categorizing the Standard Types

side, lists can be modified without replacing the original object, as illustrated in the code below:

>>> aList = ['ammonia', 83, 85, 'lady']
>>> aList
['ammonia', 83, 85, 'lady']
>>>
>>> aList[2]
85
>>>
>>> id(aList)
135443480
>>>
>>> aList[2] = aList[2] + 1
>>> aList[3] = 'stereo'
>>> aList
['ammonia', 83, 86, 'stereo']
>>>
>>> id(aList)
135443480
>>>
>>> aList.append('gaudy')
>>> aList.append(aList[2] + 1)
>>> aList
['ammonia', 83, 86, 'stereo', 'gaudy', 87]
>>>
>>> id(aList)
135443480

Notice how for each change, the ID for the list remained the same.

4.8.3. Access Model

Although the previous two models of categorizing the types are useful when being introduced to Python,
they are not the primary models for differentiating the types. For that purpose, we use the access
model. By this, we mean, how do we access the values of our stored data? There are three categories
under the access model: direct, sequence, and mapping. The different access models and which types
fall into each respective category are given in Table 4.8.

Table 4.8. Types Categorized by the
Access Model

Access Model Category Types That Fit Category

Direct Numbers

Sequence Strings, lists, tuples

Mapping Dictionaries

Direct types indicate single-element, non-container types. All numeric types fit into this category.

file:///D|/1/0132269937/ch04lev1sec8.html (3 von 5) [13.11.2007 16:22:56]

Section 4.8. Categorizing the Standard Types

Sequence types are those whose elements are sequentially accessible via index values starting at 0.
Accessed items can be either single elements or in groups, better known as slices. Types that fall into
this category include strings, lists, and tuples. As we mentioned before, Python does not support a
character type, so, although strings are literals, they are a sequence type because of the ability to
access substrings sequentially.

Mapping types are similar to the indexing properties of sequences, except instead of indexing on a
sequential numeric offset, elements (values) are unordered and accessed with a key, thus making
mapping types a set of hashed key-value pairs.

We will use this primary model in the next chapter by presenting each access model type and what all
types in that category have in common (such as operators and BIFs), then discussing each Python
standard type that fits into those categories. Any operators, BIFs, and methods unique to a specific type
will be highlighted in their respective sections.

So why this side trip to view the same data types from differing perspectives? Well, first of all, why
categorize at all? Because of the high-level data structures that Python provides, we need to
differentiate the "primitive" types from those that provide more functionality. Another reason is to be
clear on what the expected behavior of a type should be. For example, if we minimize the number of
times we ask ourselves, "What are the differences between lists and tuples again?" or "What types are
immutable and which are not?" then we have done our job. And finally, certain categories have general
characteristics that apply to all types in a certain category. A good craftsman (and craftswoman) should
know what is available in his or her toolboxes.

The second part of our inquiry asks, "Why all these different models or perspectives"? It seems that
there is no one way of classifying all of the data types. They all have crossed relationships with each
other, and we feel it best to expose the different sets of relationships shared by all the types. We also
want to show how each type is unique in its own right. No two types map the same across all categories.
(Of course, all numeric subtypes do, so we are categorizing them together.) Finally, we believe that
understanding all these relationships will ultimately play an important implicit role during development.
The more you know about each type, the more you are apt to use the correct ones in the parts of your
application where they are the most appropriate, and where you can maximize performance.

We summarize by presenting a cross-reference chart (see Table 4.9) that shows all the standard types,
the three different models we use for categorization, and where each type fits into these models.

Table 4.9. Categorizing the Standard Types

Data Type Storage Model Update Model Access Model

Numbers Scalar Immutable Direct

Strings Scalar Immutable Sequence

Lists Container Mutable Sequence

Tuples Container Immutable Sequence

Dictionaries Container Mutable Mapping

file:///D|/1/0132269937/ch04lev1sec8.html (4 von 5) [13.11.2007 16:22:56]

Section 4.8. Categorizing the Standard Types

file:///D|/1/0132269937/ch04lev1sec8.html (5 von 5) [13.11.2007 16:22:56]

Section 4.9. Unsupported Types

4.9. Unsupported Types

Before we explore each standard type, we conclude this chapter by giving a list of types that are not
supported by Python.

char or byte

Python does not have a char or byte type to hold either single character or 8-bit integers. Use strings of
length one for characters and integers for 8-bit numbers.

pointer

Since Python manages memory for you, there is no need to access pointer addresses. The closest to an
address that you can get in Python is by looking at an object's identity using the id() BIF. Since you
have no control over this value, it's a moot point. However, under Python's covers, everything is a
pointer.

int versus short versus long

Python's plain integers are the universal "standard" integer type, obviating the need for three different
integer types, e.g., C's int, short, and long. For the record, Python's integers are implemented as C
longs. Also, since there is a close relationship between Python's int and long types, users have even
fewer things to worry about. You only need to use a single type, the Python integer. Even when the size
of an integer is exceed, for example, multiplying two very large numbers, Python automatically gives
you a long back instead of overflowing with an error.

float versus double

C has both a single precision float type and double-precision double type. Python's float type is actually
a C double. Python does not support a single-precision floating point type because its benefits are
outweighed by the overhead required to support two types of floating point types. For those wanting
more accuracy and willing to give up a wider range of numbers, Python has a decimal floating point
number too, but you have to import the decimal module to use the Decimal type. Floats are always
estimations. Decimals are exact and arbitrary precision. Decimals make sense concerning things like
money where the values are exact. Floats make sense for things that are estimates anyway, such as
weights, lengths, and other measurements.

file:///D|/1/0132269937/ch04lev1sec9.html [13.11.2007 16:22:56]

file:///D|/1/0132269937/14051536.html

Section 4.10. Exercises

4.10. Exercises

4-1. Python Objects. What three attributes are associated with all Python objects? Briefly
describe each one.

4-2. Types. What does immutable mean? Which Python types are mutable and which are
not?

4-3. Types. Which Python types are sequences, and how do they differ from mapping
types?

4-4. type(). What does the type() built-in function do? What kind of object does type()
return?

4-5. str() and repr(). What are the differences between the str() and repr() built-in
functions? Which is equivalent to the backquote (``) operator?

4-6. Object Equality. What do you think is the difference between the expressions type(a)
== type(b) and type(a) is type(b)? Why is the latter preferred? What does isinstance
() have to do it all of this?

4-7. dir() Built-in Function. In several exercises in Chapter 2, we experimented with a
built-in function called dir(), which takes an object and reveals its attributes. Do the
same thing for the types module. Write down the list of the types that you are familiar
with, including all you know about each of these types; then create a separate list of
those you are not familiar with. As you learn Python, deplete the "unknown" list so
that all of them can be moved to the "familiar with" list.

4-8. Lists and Tuples. How are lists and tuples similar? Different?

file:///D|/1/0132269937/ch04lev1sec10.html (1 von 2) [13.11.2007 16:22:56]

Section 4.10. Exercises

4-9. *Interning. Given the following assignments:

a = 10
b = 10
c = 100
d = 100
e = 10.0
f = 10.0

What is the output of each of the following and why?

a.

a is b

b.

c is d

c.

e is f

file:///D|/1/0132269937/ch04lev1sec10.html (2 von 2) [13.11.2007 16:22:56]

file:///D|/1/0132269937/14051536.html

Chapter 5. Numbers

Chapter 5. Numbers

Chapter Topics

● Introduction to Numbers
● Integers

�❍ Boolean
�❍ Standard Integers
�❍ Long Integers

● Floating Point Real Numbers
● Complex Numbers
● Operators
● Built-in Functions
● Other Numeric Types
● Related Modules

In this chapter, we will focus on Python's numeric types. We will cover each type in detail, then present
the various operators and built-in functions that can be used with numbers. We conclude this chapter by
introducing some of the standard library modules that deal with numbers.

file:///D|/1/0132269937/ch05.html [13.11.2007 16:22:57]

file:///D|/1/0132269937/14051536.html

Section 5.1. Introduction to Numbers

5.1. Introduction to Numbers

Numbers provide literal or scalar storage and direct access. A number is also an immutable type,
meaning that changing or updating its value results in a newly allocated object. This activity is, of
course, transparent to both the programmer and the user, so it should not change the way the
application is developed.

Python has several numeric types: "plain" integers, long integers, Boolean, double-precision floating
point real numbers, decimal floating point numbers, and complex numbers.

How to Create and Assign Numbers (Number Objects)

Creating numbers is as simple as assigning a value to a variable:

anInt = 1
aLong = -9999999999999999L
aFloat = 3.1415926535897932384626433832795
aComplex = 1.23+4.56J

How to Update Numbers

You can "update" an existing number by (re)assigning a variable to another number. The new value can
be related to its previous value or to a completely different number altogether. We put quotes around
update because you are not really changing the value of the original variable. Because numbers are
immutable, you are just making a new number and reassigning the reference. Do not be fooled by what
you were taught about how variables contain values that allow you to update them. Python's object
model is more specific than that.

When we learned programming, we were taught that variables act like boxes that hold values. In
Python, variables act like pointers that point to boxes. For immutable types, you do not change the
contents of the box, you just point your pointer at a new box. Every time you assign another number to
a variable, you are creating a new object and assigning it. (This is true for all immutable types, not just
numbers.)

anInt += 1
aFloat = 2.718281828

How to Remove Numbers

Under normal circumstances, you do not really "remove" a number; you just stop using it! If you really
want to delete a reference to a number object, just use the del statement (introduced in Section 3.5.6).
You can no longer use the variable name, once removed, unless you assign it to a new object;
otherwise, you will cause a NameError exception to occur.

del anInt
del aLong, aFloat, aComplex

file:///D|/1/0132269937/ch05lev1sec1.html (1 von 2) [13.11.2007 16:22:57]

Section 5.1. Introduction to Numbers

Okay, now that you have a good idea of how to create and update numbers, let us take a look at
Python's four numeric types.

file:///D|/1/0132269937/ch05lev1sec1.html (2 von 2) [13.11.2007 16:22:57]

file:///D|/1/0132269937/14051536.html

Section 5.2. Integers

5.2. Integers

Python has several types of integers. There is the Boolean type with two possible values. There are the
regular or plain integers: generic vanilla integers recognized on most systems today. Python also has a
long integer size; however, these far exceed the size provided by C longs . We will take a look at these
types of integers, followed by a description of operators and built-in functions applicable only to Python
integer types.

5.2.1. Boolean

The Boolean type was introduced in Python 2.3. Objects of this type have two possible values, Boolean
TRue and False. We will explore Boolean objects toward the end of this chapter in Section 5.7.1.

5.2.2. Standard (Regular or Plain) Integers

Python's "plain" integers are the universal numeric type. Most machines (32-bit) running Python will
provide a range of -231 to 231-1, that is -2, 147,483,648 to 2,147,483,647. If Python is compiled on a
64-bit system with a 64-bit compiler, then the integers for that system will be 64-bit. Here are some
examples of Python integers:

0101 84 -237 0x80 017 -680 -0X92

Python integers are implemented as (signed) longs in C. Integers are normally represented in base 10
decimal format, but they can also be specified in base 8 or base 16 representation. Octal values have a
"0" prefix, and hexadecimal values have either "0x" or "0X" prefixes.

5.2.3. Long Integers

The first thing we need to say about Python long integers (or longs for short) is not to get them
confused with longs in C or other compiled languagesthese values are typically restricted to 32- or 64-
bit sizes, whereas Python longs are limited only by the amount of (virtual) memory in your machine. In
other words, they can be very L-O-N-G longs.

Longs are a superset of integers and are useful when your application requires integers that exceed the
range of plain integers, meaning less than -231 or greater than 231-1. Use of longs is denoted by the
letter "L", uppercase (L) or lowercase (l), appended to the integer's numeric value. Values can be
expressed in decimal, octal, or hexadecimal. The following are examples of longs:

16384L -0x4E8L 017L -2147483648l 052144364L

299792458l 0xDECADEDEADBEEFBADFEEDDEAL -5432101234L

file:///D|/1/0132269937/ch05lev1sec2.html (1 von 3) [13.11.2007 16:22:57]

Section 5.2. Integers

Core Style: Use uppercase "L" with long integers

Although Python supports a case-insensitive "L" to denote longs, we
recommend that you use only the uppercase "L" to avoid confusion
with the number one (1). Python will display only longs with a capital
"L ." As integers and longs are slowly being unified, you will only see
the "L" with evaluatable string representations (repr()) of longs.
Printable string representations (str()) will not have the "L ."

>>> aLong = 999999999l
>>> aLong
999999999L
>>> print aLong
999999999

5.2.4. Unification of Integers and Long Integers

Both integer types are in the process of being unified into a single integer type. Prior to Python 2.2,
plain integer operations resulted in overflow (i.e., greater than the 232 range of numbers described
above), but in 2.2 or after, there are no longer such errors.

Python 2.1

>>> 9999 ** 8
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
OverflowError: integer exponentiation

Python 2.2

>>> 9999 ** 8
99920027994400699944002799920001L

Removing the error was the first phase. The next step involved bit-shifting; it used to be possible to left-
shift bits out of the picture (resulting in 0):

>>> 2 << 32
0

In 2.3 such an operation gives a warning, but in 2.4 the warning is gone, and the operation results in a

file:///D|/1/0132269937/ch05lev1sec2.html (2 von 3) [13.11.2007 16:22:57]

Section 5.2. Integers

real (long) value:

Python 2.3

>>> 2 << 32
__main__:1: FutureWarning: x<<y losing bits or changing
sign will return a long in Python 2.4
and up
0

Python 2.4

>>> 2 << 32
8589934592L

Sooner or later (probably later), there will no longer be a long type (at least not at the user level).
Things will all happen quietly under the covers. Of course, those with C access will be able to enjoy both
types as before, meaning, however, that your C code will still need to be able to distinguish between the
different Python integer types. You can read more about the unification of integers and longs in PEP 237.

file:///D|/1/0132269937/ch05lev1sec2.html (3 von 3) [13.11.2007 16:22:57]

Section 5.3. Double Precision Floating Point Numbers

5.3. Double Precision Floating Point Numbers

Floats in Python are implemented as C doubles, double precision floating point real numbers, values that
can be represented in straightforward decimal or scientific notations. These 8-byte (64-bit) values
conform to the IEEE 754 definition (52M/11E/1S) where 52 bits are allocated to the mantissa, 11 bits to
the exponent (this gives you about ± 10308.25 in range), and the final bit to the sign. That all sounds
fine and dandy; however, the actual degree of precision you will receive (along with the range and
overflow handling) depends completely on the architecture of the machine as well as the implementation
of the compiler that built your Python interpreter.

Floating point values are denoted by a decimal point (.) in the appropriate place and an optional "e"
suffix representing scientific notation. We can use either lowercase (e) or uppercase (E). Positive (+)
or negative (-) signs between the "e" and the exponent indicate the sign of the exponent. Absence of
such a sign indicates a positive exponent. Here are some floating point values:

0.0 -777. 1.6 -5.555567119 96e3 * 1.0
4.3e25 9.384e-23 -2.172818 float(12) 1.000000001
3.1416 4.2E-10 -90. 6.022e23 -1.609E-19

file:///D|/1/0132269937/ch05lev1sec3.html [13.11.2007 16:22:58]

Section 5.4. Complex Numbers

5.4. Complex Numbers

A long time ago, mathematicians were absorbed by the following equation:

x2 = -1

The reason for this is that any real number (positive or negative) multiplied by itself results in a positive
number. How can you multiply any number with itself to get a negative number? No such real number
exists. So in the eighteenth century, mathematicians invented something called an imaginary number i
(or j, depending on what math book you are reading) such that:

Basically a new branch of mathematics was created around this special number (or concept), and now
imaginary numbers are used in numerical and mathematical applications. Combining a real number with
an imaginary number forms a single entity known as a complex number. A complex number is any
ordered pair of floating point real numbers (x, y) denoted by x + yj where x is the real part and y is the
imaginary part of a complex number.

It turns out that complex numbers are used a lot in everyday math, engineering, electronics, etc.
Because it became clear that many researchers were reinventing this wheel quite often, complex
numbers became a real Python data type long ago in version 1.4.

Here are some facts about Python's support of complex numbers:

● Imaginary numbers by themselves are not supported in Python (they are paired with a real part
of 0.0 to make a complex number)

● Complex numbers are made up of real and imaginary parts
● Syntax for a complex number: real+imagj
● Both real and imaginary components are floating point values
● Imaginary part is suffixed with letter "J" lowercase (j) or uppercase (J)

The following are examples of complex numbers:

64.375+1j 4.23-8.5j 0.23-8.55j 1.23e-045+6.7e+089j
6.23+1.5j -1.23-875J 0+1j 9.80665-8.31441J -.0224+0j

5.4.1. Complex Number Built-in Attributes

Complex numbers are one example of objects with data attributes (Section 4.1.1). The data attributes
are the real and imaginary components of the complex number object they belong to. Complex numbers
also have a method attribute that can be invoked, returning the complex conjugate of the object.

>>> aComplex = -8.333-1.47j
>>> aComplex
(-8.333-1.47j)

file:///D|/1/0132269937/ch05lev1sec4.html (1 von 2) [13.11.2007 16:22:58]

file:///D|/1/0132269937/14051536.html

Section 5.4. Complex Numbers

>>> aComplex.real
-8.333
>>> aComplex.imag
-1.47
>>> aComplex.conjugate()
(-8.333+1.47j)

Table 5.1 describes the attributes of complex numbers.

Table 5.1. Complex Number Attributes

Attribute Description

num.real Real component of complex number num

num.imag Imaginary component of complex number num

num.conjugate() Returns complex conjugate of num

file:///D|/1/0132269937/ch05lev1sec4.html (2 von 2) [13.11.2007 16:22:58]

file:///D|/1/0132269937/14051536.html

Section 5.5. Operators

5.5. Operators

Numeric types support a wide variety of operators, ranging from the standard type of operators to
operators created specifically for numbers, and even some that apply to integer types only.

5.5.1. Mixed-Mode Operations

It may be hard to remember, but when you added a pair of numbers in the past, what was important
was that you got your numbers correct. Addition using the plus (+) sign was always the same. In
programming languages, this may not be as straightforward because there are different types of
numbers.

When you add a pair of integers, the + represents integer addition, and when you add a pair of floating
point numbers, the + represents double-precision floating point addition, and so on. Our little
description extends even to non-numeric types in Python. For example, the + operator for strings
represents concatenation, not addition, but it uses the same operator! The point is that for each data
type that supports the + operator, there are different pieces of functionality to "make it all work,"
embodying the concept of overloading.

Now, we cannot add a number and a string, but Python does support mixed mode operations strictly
between numeric types. When adding an integer and a float, a choice has to be made as to whether
integer or floating point addition is used. There is no hybrid operation. Python solves this problem using
something called numeric coercion. This is the process whereby one of the operands is converted to the
same type as the other before the operation. Python performs this coercion by following some basic
rules.

To begin with, if both numbers are the same type, no conversion is necessary. When both types are
different, a search takes place to see whether one number can be converted to the other's type. If so,
the operation occurs and both numbers are returned, one having been converted. There are rules that
must be followed since certain conversions are impossible, such as turning a float into an integer, or
converting a complex number to any non-complex number type.

Coercions that are possible, however, include turning an integer into a float (just add ".0") or converting
any non-complex type to a complex number (just add a zero imaginary component, e.g., "0j"). The
rules of coercion follow from these two examples: integers move toward float, and all move toward
complex. The Python Language Reference Guide describes the coerce() operation in the following
manner.

● If either argument is a complex number, the other is converted to complex;
● Otherwise, if either argument is a floating point number, the other is converted to floating point;
● Otherwise, if either argument is a long, the other is converted to long;
● Otherwise, both must be plain integers and no conversion is necessary (in the upcoming

diagram, this describes the rightmost arrow).

The flowchart shown in Figure 5-1 illustrates these coercion rules.

Figure 5-1. Numeric coercion

file:///D|/1/0132269937/ch05lev1sec5.html (1 von 8) [13.11.2007 16:22:59]

file:///D|/1/0132269937/14051536.html

Section 5.5. Operators

Automatic numeric coercion makes life easier for the programmer because he or she does not have to
worry about adding coercion code to his or her application. If explicit coercion is desired, Python does
provide the coerce() built-in function (described later in Section 5.6.2).

The following is an example showing you Python's automatic coercion. In order to add the numbers (one
integer, one float), both need to be converted to the same type. Since float is the superset, the integer
is coerced to a float before the operation happens, leaving the result as a float:

>>> 1 + 4.5
5.5

5.5.2. Standard Type Operators

The standard type operators discussed in Chapter 4 all work as advertised for numeric types. Mixed-
mode operations, described above, are those which involve two numbers of different types. The values

file:///D|/1/0132269937/ch05lev1sec5.html (2 von 8) [13.11.2007 16:22:59]

Section 5.5. Operators

are internally converted to the same type before the operation is applied.

Here are some examples of the standard type operators in action with numbers:

>>> 5.2 == 5.2
True
>>> -719 >= 833
False
>>> 5+4e >= 2-3e
True
>>> 2 < 5 < 9 # same as (2 < 5)and (5 < 9)
True
>>> 77 > 66 == 66 # same as (77 > 66)and (66 == 66)
True
>>> 0. < -90.4 < 55.3e2 != 3 < 181
False
>>> (-1 < 1) or (1 < -1)
True

5.5.3. Numeric Type (Arithmetic) Operators

Python supports unary operators for no change and negation, + and -, respectively; and binary
arithmetic operators +, -, *, /, %, and **, for addition, subtraction, multiplication, division, modulo, and
exponentiation, respectively. In addition, there is a new division operator, //, as of Python 2.2.

Division

Those of you coming from the C world are intimately familiar with classic divisionthat is, for integer
operands, floor division is performed, while for floating point numbers, real or true division is the
operation. However, for those who are learning programming for the first time, or for those who rely on
accurate calculations, code must be tweaked in a way to obtain the desired results. This includes casting
or converting all values to floats before performing the division.

The decision has been made to change the division operator in some future version of Python from
classic to true division and add another operator to perform floor division. We now summarize the
various division types and show you what Python currently does, and what it will do in the future.

Classic Division

When presented with integer operands, classic division truncates the fraction, returning an integer (floor
division). Given a pair of floating-point operands, it returns the actual floating-point quotient (true
division). This functionality is standard among many programming languages, including Python.
Example:

>>> 1 / 2 # perform integer result (floor)
0
>>> 1.0 / 2.0 # returns actual quotient
0.5

file:///D|/1/0132269937/ch05lev1sec5.html (3 von 8) [13.11.2007 16:22:59]

Section 5.5. Operators

True Division

This is where division always returns the actual quotient, regardless of the type of the operands. In a
future version of Python, this will be the algorithm of the division operator. For now, to take advantage
of true division, one must give the from__future__import division directive. Once that happens, the
division operator (/) performs only true division:

>>> from __future__ import division
>>>
>>> 1 / 2 # returns real quotient
0.5
>>> 1.0 / 2.0 # returns real quotient
0.5

Floor Division

A new division operator (//) has been created that carries out floor division: it always truncates the
fraction and rounds it to the next smallest whole number toward the left on the number line, regardless
of the operands' numeric types. This operator works starting in 2.2 and does not require the __future__
directive above.

>>> 1 // 2 # floors result, returns integer
0
>>> 1.0 // 2.0 # floors result, returns float
0.0
>>> -1 // 2 # move left on number line
-1

There were strong arguments for as well as against this change, with the former from those who want
or need true division versus those who either do not want to change their code or feel that altering the
division operation from classic division is wrong.

This change was made because of the feeling that perhaps Python's division operator has been flawed
from the beginning, especially because Python is a strong choice as a first programming language for
people who aren't used to floor division. One of van Rossum's use cases is featured in his "What's New
in Python 2.2" talk:

def velocity(distance, totalTime):
 rate = distance / totalTime

As you can tell, this function may or may not work correctly and is solely dependent on at least one
argument being a floating point value. As mentioned above, the only way to ensure the correct value is
to cast both to floats, i.e., rate = float(distance) / float(totalTime). With the upcoming change to
true division, code like the above can be left as is, and those who truly desire floor division can use the
new double-slash (//) operator.

Yes, code breakage is a concern, and the Python team has created a set of scripts that will help you
convert your code to using the new style of division. Also, for those who feel strongly either way and

file:///D|/1/0132269937/ch05lev1sec5.html (4 von 8) [13.11.2007 16:22:59]

Section 5.5. Operators

only want to run Python with a specific type of division, check out the -Qdivision_style option to the
interpreter. An option of -Qnew will always perform true division while -Qold (currently the default) runs
classic division. You can also help your users transition to new division by using -Qwarn or -Qwarnall.

More information about this big change can be found in PEP 238. You can also dig through the 2001
comp.lang.python archives for the heated debates if you are interested in the drama. Table 5.2
summarizes the division operators in the various releases of Python and the differences in operation
when you import new division functionality.

Table 5.2. Division Operator Functionality

Operator 2.1.x and Older 2.2 and Newer (No Import) 2.2 and Newer (Import of division)

/ classic classic true

// n/a floor floor

Modulus

Integer modulo is straightforward integer division remainder, while for float, it is the difference of the
dividend and the product of the divisor and the quotient of the quantity dividend divided by the divisor
rounded down to the closest integer, i.e.,x - (math.floor(x/y) * y), or

For complex number modulo, take only the real component of the division result, i.e., x - (math.floor
((x/y).real) * y).

Exponentiation

The exponentiation operator has a peculiar precedence rule in its relationship with the unary operators:
it binds more tightly than unary operators to its left, but less tightly than unary operators to its right.
Due to this characteristic, you will find the ** operator twice in the numeric operator charts in this text.
Here are some examples:

>>> 3 ** 2
9
>>> -3 ** 2 # ** binds tighter than - to its left
-9
>>> (-3) ** 2 # group to cause - to bind first
9
>>> 4.0 ** -1.0 # ** binds looser than - to its right
0.25

In the second case, it performs 3 to the power of 2 (3-squared) before it applies the unary negation. We
need to use the parentheses around the "-3" to prevent this from happening. In the final example, we

file:///D|/1/0132269937/ch05lev1sec5.html (5 von 8) [13.11.2007 16:22:59]

Section 5.5. Operators

see that the unary operator binds more tightly because the operation is 1 over quantity 4 to the first
power ¼1 or ¼. Note that 1 / 4 as an integer operation results in an integer 0, so integers are not
allowed to be raised to a negative power (it is a floating point operation anyway), as we will show here:

>>> 4 ** -1
Traceback (innermost last):
 File "<stdin>", line 1, in ?
ValueError: integer to the negative power

Summary

Table 5.3 summarizes all arithmetic operators, in shaded hierarchical order from highest-to-lowest
priority. All the operators listed here rank higher in priority than the bitwise operators for integers found
in Section 5.5.4.

Table 5.3. Numeric Type Arithmetic Operators

Arithmetic Operator Function

expr1 ** expr2
expr1 raised to the power of expr2

[a]

+expr (unary) expr sign unchanged

-expr (unary) negation of expr

expr1 ** expr2
expr1 raised to the power of expr2

[a]

expr1 * expr2 expr1 times expr2

expr1 / expr2 expr1 divided by expr2 (classic or true division)

expr1 // expr2 expr1 divided by expr2 (floor division [only])

expr1 % expr2 expr1 modulo expr2

expr1 + expr2 expr1 plus expr2

expr1 - expr2 expr1 minus expr2

[a] ** binds tighter than unary operators to its left and looser than unary operators to its right.

Here are a few more examples of Python's numeric operators:

>>> -442 - 77
-519
>>>
>>> 4 ** 3
64
>>>
>>> 4.2 ** 3.2

file:///D|/1/0132269937/ch05lev1sec5.html (6 von 8) [13.11.2007 16:22:59]

Section 5.5. Operators

98.7183139527
>>> 8 / 3
2
>>> 8.0 / 3.0
2.66666666667
>>> 8 % 3
2
>>> (60. - 32.) * (5. / 9.)
15.5555555556
>>> 14 * 0x04
56
>>> 0170 / 4

30
>>> 0x80 + 0777
639
>>> 45L * 22L
990L
>>> 16399L + 0xA94E8L
709879L
>>> -2147483648L - 52147483648L
-54294967296L
>>> 64.375+1j + 4.23-8.5j
(68.605-7.5j)
>>> 0+1j ** 2 # same as 0+(lj**2)
(-1+0j)
>>> 1+1j ** 2 # same as 1+(lj**2)
0j
>>> (1+1j) ** 2
2j

Note how the exponentiation operator is still higher in priority than the binding addition operator that
delimits the real and imaginary components of a complex number. Regarding the last example above,
we grouped the components of the complex number together to obtain the desired result.

5.5.4. *Bit Operators (Integer-Only)

Python integers may be manipulated bitwise and the standard bit operations are supported: inversion,
bitwise AND, OR, and exclusive OR (aka XOR), and left and right shifting. Here are some facts regarding
the bit operators:

● Negative numbers are treated as their 2's complement value.
● Left and right shifts of N bits are equivalent to multiplication and division by (2 ** N) without

overflow checking.
● For longs, the bit operators use a "modified" form of 2's complement, acting as if the sign bit

were extended infinitely to the left.

The bit inversion operator (~) has the same precedence as the arithmetic unary operators, the highest
of all bit operators. The bit shift operators (<< and >>) come next, having a precedence one level
below that of the standard plus and minus operators, and finally we have the bitwise AND, XOR, and OR
operators (&, ^, |), respectively. All of the bitwise operators are presented in the order of descending
priority in Table 5.4.

Table 5.4. Integer Type Bitwise Operators

file:///D|/1/0132269937/ch05lev1sec5.html (7 von 8) [13.11.2007 16:22:59]

Section 5.5. Operators

Bitwise Operator Function

~num (unary) invert the bits of num, yielding -(num + 1)

num1 << num2 num1 left shifted by num2 bits

num1 >> num2 num1 right shifted by num2 bits

num1 & num2 num1 bitwise AND with num2

num1 ^ num2 num1 bitwise XOR (exclusive OR) with num2

num1 | num2 num1 bitwise OR with num2

Here we present some examples using the bit operators using 30 (011110), 45 (101101), and 60
(111100):

>>> 30 & 45
12
>>> 30 | 45
63
>>> 45 & 60
44
>>> 45 | 60
61
>>> ~30
-31
>>> ~45
-46
>>> 45 << 1
90
>>> 60 >> 2
15
>>> 30 ^ 45
51

file:///D|/1/0132269937/ch05lev1sec5.html (8 von 8) [13.11.2007 16:22:59]

file:///D|/1/0132269937/14051536.html

Section 5.6. Built-in and Factory Functions

5.6. Built-in and Factory Functions

5.6.1. Standard Type Functions

In the last chapter, we introduced the cmp(), str(), and type() built-in functions that apply for all
standard types. For numbers, these functions will compare two numbers, convert numbers into strings,
and tell you a number's type, respectively. Here are some examples of using these functions:

>>> cmp(-6, 2)
-1
>>> cmp(-4.333333, -2.718281828)
-1
>>> cmp(0xFF, 255)
0
>>> str(0xFF)
'255'
>>> str(55.3e2)
'5530.0'
>>> type(0xFF)
<type 'int'>
>>> type(98765432109876543210L)
<type 'long'>
>>> type(2-1j)
<type 'complex'>

5.6.2. Numeric Type Functions

Python currently supports different sets of built-in functions for numeric types. Some convert from one
numeric type to another while others are more operational, performing some type of calculation on their
numeric arguments.

Conversion Factory Functions

The int(), long(), float(), and complex() functions are used to convert from any numeric type to
another. Starting in Python 1.5, these functions will also take strings and return the numerical value
represented by the string. Beginning in 1.6, int() and long() accepted a base parameter (see below) for
proper string conversionsit does not work for numeric type conversion.

A fifth function, bool(), was added in Python 2.2. At that time, it was used to normalize Boolean values
to their integer equivalents of one and zero for true and false values. The Boolean type was added in
Python 2.3, so true and false now had constant values of TRue and False (instead of one and zero). For
more information on the Boolean type, see Section 5.7.1.

file:///D|/1/0132269937/ch05lev1sec6.html (1 von 8) [13.11.2007 16:23:00]

file:///D|/1/0132269937/14051536.html

Section 5.6. Built-in and Factory Functions

In addition, because of the unification of types and classes in Python 2.2, all of these built-in functions
were converted into factory functions. Factory functions, introduced in Chapter 4, just means that these
objects are now classes, and when you "call" them, you are just creating an instance of that class.

They will still behave in a similar way to the new Python user so it is probably something you do not
have to worry about.

The following are some examples of using these functions:

>>> int(4.25555)
4
>>> long(42)
42L
>>> float(4)
4.0
>>> complex(4)
(4+0j)
>>>
>>> complex(2.4, -8)
(2.4-8j)
>>>
>>> complex(2.3e-10, 45.3e4)
(2.3e-10+453000j)

Table 5.5 summarizes the numeric type factory functions.

Table 5.5. Numeric Type Factory Functions[a]

Class (Factory Function) Operation

bool(obj)
[b] Returns the Boolean value of obj, e.g., the value of

executing obj.__nonzero__()

int(obj, base=10) Returns integer representation of string or number obj;
similar to string.atoi(); optional base argument
introduced in 1.6

long(obj, base=10) Returns long representation of string or number obj;
similar to string.atol(); optional base argument
introduced in 1.6

float(obj) Returns floating point representation of string or number
obj; similar to string.atof()

complex(str) or complex(real, imag=0.0) Returns complex number representation of str, or builds
one given real (and perhaps imaginary) component(s)

[a] Prior to Python 2.3, these were all built-in functions.

file:///D|/1/0132269937/ch05lev1sec6.html (2 von 8) [13.11.2007 16:23:00]

Section 5.6. Built-in and Factory Functions

[b] New in Python 2.2 as built-in function, converted to factory function in 2.3.

Operational

Python has five operational built-in functions for numeric types: abs(), coerce(), divmod(), pow(), and
round(). We will take a look at each and present some usage examples.

abs() returns the absolute value of the given argument. If the argument is a complex number, then
math.sqrt(num .real2 + num.imag2) is returned. Here are some examples of using the abs() built-in
function:

>>> abs(-1)
1
>>> abs(10.)
10.0
>>> abs(1.2-2.1j)
2.41867732449
>>> abs(0.23 - 0.78)
0.55

The coerce() function, although it technically is a numeric type conversion function, does not convert to
a specific type and acts more like an operator, hence our placement of it in our operational built-ins
section. In Section 5.5.1, we discussed numeric coercion and how Python performs that operation. The
coerce() function is a way for the programmer to explicitly coerce a pair of numbers rather than letting
the interpreter do it. This feature is particularly useful when defining operations for newly created
numeric class types. coerce() just returns a tuple containing the converted pair of numbers. Here are
some examples:

>>> coerce(1, 2)
(1, 2)
>>>
>>> coerce(1.3, 134L)
(1.3, 134.0)
>>>
>>> coerce(1, 134L)
(1L, 134L)
>>>
>>> coerce(1j, 134L)
(1j, (134+0j))
>>>
>>> coerce(1.23-41j, 134L)
((1.23-41j), (134+0j))

The divmod() built-in function combines division and modulus operations into a single function call that
returns the pair (quotient, remainder) as a tuple. The values returned are the same as those given for
the classic division and modulus operators for integer types. For floats, the quotient returned is math.
floor(num1/num2) and for complex numbers, the quotient is math.floor((num1/num2).real).

>>> divmod(10,3)
(3, 1)
>>> divmod(3,10)
(0, 3)

file:///D|/1/0132269937/ch05lev1sec6.html (3 von 8) [13.11.2007 16:23:00]

Section 5.6. Built-in and Factory Functions

>>> divmod(10,2.5)
(4.0, 0.0)
>>> divmod(2.5,10)
(0.0, 2.5)
>>> divmod(2+1j, 0.5-1j)
(0j, (2+1j))

Both pow() and the double star (**) operator perform exponentiation; however, there are differences
other than the fact that one is an operator and the other is a built-in function.

The ** operator did not appear until Python 1.5, and the pow() built-in takes an optional third
parameter, a modulus argument. If provided, pow() will perform the exponentiation first, then return the
result modulo the third argument. This feature is used for cryptographic applications and has better
performance than pow(x,y) % z since the latter performs the calculations in Python rather than in C-like
pow(x, y, z).

>>> pow(2,5)
32
>>>s
>>> pow(5,2)
25
>>> pow(3.141592,2)
9.86960029446
>>>
>>> pow(1+1j, 3)
(-2+2j)

The round() built-in function has a syntax of round(flt,ndig=0). It normally rounds a floating point
number to the nearest integral number and returns that result (still) as a float. When the optional ndig
option is given, round() will round the argument to the specific number of decimal places.

>>> round(3)
3.0
>>> round(3.45)
3.0
>>> round(3.4999999)
3.0
>>> round(3.4999999, 1)
3.5
>>> import math
>>> for eachNum in range(10):
... print round(math.pi, eachNum)
...
3.0
3.1
3.14
3.142
3.1416
3.14159
3.141593
3.1415927
3.14159265
3.141592654
3.1415926536

file:///D|/1/0132269937/ch05lev1sec6.html (4 von 8) [13.11.2007 16:23:00]

Section 5.6. Built-in and Factory Functions

>>> round(-3.5)
-4.0
>>> round(-3.4)
-3.0
>>> round(-3.49)
-3.0
>>> round(-3.49, 1)
-3.5

Note that the rounding performed by round() moves away from zero on the number line, i.e., round(.5)
goes to 1 and round(-.5) goes to -1. Also, with functions like int(), round(), and math.floor(), all may
seem like they are doing the same thing; it is possible to get them all confused. Here is how you can
differentiate among these:

● int() chops off the decimal point and everything after (aka truncation).
● floor() rounds you to the next smaller integer, i.e., the next integer moving in a negative

direction (toward the left on the number line).
● round() (rounded zero digits) rounds you to the nearest integer period.

Here is the output for four different values, positive and negative, and the results of running these three
functions on eight different numbers. (We reconverted the result from int() back to a float so that you
can visualize the results more clearly when compared to the output of the other two functions.)

>>> import math
>>> for eachNum in (.2, .7, 1.2, 1.7, -.2, -.7, -1.2, -1.7):
... print "int(%.1f)\t%+.1f" % (eachNum, float(int(eachNum)))
... print "floor(%.1f)\t%+.1f" % (eachNum,
... math.floor(eachNum))
... print "round(%.1f)\t%+.1f" % (eachNum, round(eachNum))
... print '-' * 20
...
int(0.2) +0.0
floor(0.2) +0.0
round(0.2) +0.0

int(0.7) +0.0
floor(0.7) +0.0
round(0.7) +1.0

int(1.2) +1.0
floor(1.2) +1.0
round(1.2) +1.0

int(1.7) +1.0
floor(1.7) +1.0
round(1.7) +2.0

int(-0.2) +0.0
floor(-0.2) -1.0
round(-0.2) +0.0

int(-0.7) +0.0
floor(-0.7) -1.0
round(-0.7) -1.0

int(-1.2) -1.0

file:///D|/1/0132269937/ch05lev1sec6.html (5 von 8) [13.11.2007 16:23:00]

Section 5.6. Built-in and Factory Functions

floor(-1.2) -2.0
round(-1.2) -1.0

int(-1.7) -1.0
floor(-1.7) -2.0
round(-1.7) -2.0

Table 5.6 summarizes the operational functions for numeric types.

Table 5.6. Numeric Type Operational Built-in Functions[a]

Function Operation

abs(num) Returns the absolute value of num

coerce(num1, num2) Converts num1 and num2 to the same numeric type and returns the converted
pair as a tuple

divmod(num1, num2) Division-modulo combination returns (num1 / num2, num1 % num2) as a tuple;
for floats and complex, the quotient is rounded down (complex uses only real
component of quotient)

pow(num1, num2, mod=1) Raises num1 to num2 power, quantity modulo mod if provided

round(flt, ndig=0) (Floats only) takes a float flt and rounds it to ndig digits, defaulting to zero
if not provided

[a] Except for round(), which applies only to floats.

5.6.3. Integer-Only Functions

In addition to the built-in functions for all numeric types, Python supports a few that are specific only to
integers (plain and long). These functions fall into two categories, base presentation with hex() and oct
(), and ASCII conversion featuring chr() and ord().

Base Representation

As we have seen before, Python integers automatically support octal and hexadecimal representations in
addition to the decimal standard. Also, Python has two built-in functions that return string
representations of an integer's octal or hexadecimal equivalent. These are the oct() and hex() built-in
functions, respectively. They both take an integer (in any representation) object and return a string with
the corresponding value. The following are some examples of their usage:

>>> hex(255)
'0xff'
>>> hex(23094823l)
'0x1606627L'
>>> hex(65535*2)
'0x1fffe'

file:///D|/1/0132269937/ch05lev1sec6.html (6 von 8) [13.11.2007 16:23:00]

Section 5.6. Built-in and Factory Functions

>>>
>>> oct(255)
'0377'
>>> oct(23094823l)
'0130063047L'
>>> oct(65535*2)
'0377776'

ASCII Conversion

Python also provides functions to go back and forth between ASCII (American Standard Code for
Information Interchange) characters and their ordinal integer values. Each character is mapped to a
unique number in a table numbered from 0 to 255. This number does not change for all computers using
the ASCII table, providing consistency and expected program behavior across different systems. chr()
takes a single-byte integer value and returns a one-character string with the equivalent ASCII character.
ord() does the opposite, taking a single ASCII character in the form of a string of length one and returns
the corresponding ASCII value as an integer:

>>> ord('a')
97
>>> ord('A')
65
>>> ord('0')
48

>>> chr(97)
'a'
>>> chr(65L)
'A'
>>> chr(48)
'0'

Table 5.7 shows all built-in functions for integer types.

Table 5.7. Integer Type Built-in Functions

Function Operation

hex(num) Converts num to hexadecimal and returns as string

oct(num) Converts num to octal and returns as string

chr(num) Takes ASCII value num and returns ASCII character as string; 0 <= num <= 255 only

ord(chr) Takes ASCII or Unicode chr (string of length 1) and returns corresponding ordinal ASCII
value or Unicode code point, respectively

unichr(num) Takes a Unicode code point value num and returns its Unicode character as a Unicode
string; valid range depends on whether your Python was built as UCS-2 or UCS-4

file:///D|/1/0132269937/ch05lev1sec6.html (7 von 8) [13.11.2007 16:23:00]

file:///D|/1/0132269937/14051536.html

Section 5.6. Built-in and Factory Functions

file:///D|/1/0132269937/ch05lev1sec6.html (8 von 8) [13.11.2007 16:23:00]

Section 5.7. Other Numeric Types

5.7. Other Numeric Types

5.7.1. Boolean "Numbers"

Boolean types were added to Python starting in version 2.3. Although Boolean values are spelled "True"
and "False," they are actually an integer subclass and will behave like integer values one and zero,
respectively, if used in a numeric context. Here are some of the major concepts surrounding Boolean
types:

● They have a constant value of either true or False.
● Booleans are subclassed from integers but cannot themselves be further derived.
● Objects that do not have a __nonzero__() method default to true.
● Recall that Python objects typically have a Boolean False value for any numeric zero or empty

set.
● Also, if used in an arithmetic context, Boolean values TRue and False will take on their numeric

equivalents of 1 and 0, respectively.
● Most of the standard library and built-in Boolean functions that previously returned integers will

now return Booleans.
● Neither TRue nor False are keywords yet but will be in a future version.

All Python objects have an inherent true or False value. To see what they are for the built-in types,
review the Core Note sidebar in Section 4.3.2. Here are some examples using Boolean values:

intro
>>> bool(1)
True
>>> bool(True)
True
>>> bool(0)
False
>>> bool('1')
True
>>> bool('0')
True
>>> bool([])
False
>>> bool ((1,))
True

using Booleans numerically
>>> foo = 42
>>> bar = foo < 100
>>> bar
True
>>> print bar + 100
101
>>> print '%s' % bar
True

file:///D|/1/0132269937/ch05lev1sec7.html (1 von 3) [13.11.2007 16:23:01]

Section 5.7. Other Numeric Types

>>> print '%d' % bar
1

no __nonzero__()
>>> class C: pass
>>> c = C()
>>>
>>> bool(c)
True
>>> bool(C)
True

__nonzero__() overridden to return False
>>> class C:
... def __nonzero__(self):
... return False
...
>>> c = C()
>>> bool(c)
False
>>> bool(C)
True

OH NO!! (do not attempt)
>>> True, False = False, True
>>> bool(True)
False
>>> bool(False)
True

You can read more about Booleans in the Python documentation and PEP 285.

5.7.2. Decimal Floating Point Numbers

Decimal floating point numbers became a feature of Python in version 2.4 (see PEP 327), mainly
because statements like the following drive many (scientific and financial application) programmers
insane (or at least enrage them):

>>> 0.1
0.1000000000000001

Why is this? The reason is that most implementations of doubles in C are done as a 64-bit IEEE 754
number where 52 bits are allocated for the mantissa. So floating point values can only be specified to 52
bits of precision, and in situations where you have a(n endlessly) repeating fraction, expansions of such
values in binary format are snipped after 52 bits, resulting in rounding errors like the above. The
value .1 is represented by 0.11001100110011 ... * 2-3 because its closest binary approximation
is .0001100110011 ..., or 1/16 + 1/32 + 1/256 + ...

As you can see, the fractions will continue to repeat and lead to the rounding error when the repetition

file:///D|/1/0132269937/ch05lev1sec7.html (2 von 3) [13.11.2007 16:23:01]

Section 5.7. Other Numeric Types

cannot "be continued." If we were to do the same thing using a decimal number, it looks much "better"
to the human eye because they have exact and arbitrary precision. Note in the below that you cannot
mix and match decimals and floating point numbers. You can create decimals from strings, integers, or
other decimals. You must also import the decimal module to use the Decimal number class.

>>> from decimal import Decimal
>>> dec = Decimal(.1)
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
 File "/usr/local/lib/python2.4/decimal.py", line 523, in __new__
 raise TypeError("Cannot convert float to Decimal. " +
TypeError: Cannot convert float to Decimal. First convert the float to
a string
>>> dec = Decimal('.1')
>>> dec
Decimal("0.1")
>>> print dec
0.1
>>> dec + 1.0
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
 File "/usr/local/lib/python2.4/decimal.py", line 906, in __add__
 other = _convert_other(other)
 File "/usr/local/lib/python2.4/decimal.py", line 2863, in
_convert_other
 raise TypeError, "You can interact Decimal only with int, long or
Decimal data types."
TypeError: You can interact Decimal only with int, long or Decimal data
types.
>>>
>>> dec + Decimal('1.0')
Decimal("1.1")
>>> print dec + Decimal('1.0')
1.1

You can read more about decimal numbers in the PEP as well as the Python documentation, but suffice it
to say that they share pretty much the same numeric operators as the standard Python number types.
Since it is a specialized numeric type, we will not include decimals in the remainder of this chapter.

file:///D|/1/0132269937/ch05lev1sec7.html (3 von 3) [13.11.2007 16:23:01]

Section 5.8. Related Modules

5.8. Related Modules

There are a number of modules in the Python standard library that add on to the functionality of the
operators and built-in functions for numeric types. Table 5.8 lists the key modules for use with numeric
types. Refer to the literature or online documentation for more information on these modules.

Table 5.8. Numeric Type Related Modules

Module Contents

decimal Decimal floating point class Decimal

array Efficient arrays of numeric values (characters, ints, floats, etc.)

math/cmath Standard C library mathematical functions; most functions available in math are
implemented for complex numbers in the cmath module

operator Numeric operators available as function calls, i.e., operator.sub(m, n) is equivalent to the
difference (m - n) for numbers m and n

random Various pseudo-random number generators (obsoletes rand and wHRandom)

For advanced numerical and scientific mathematics applications, there are well-known third-party
packages Numeric (NumPy) and SciPy, which may be of interest to you. More information on those two
packages can be found at:

http://numeric.scipy.org/

http://scipy.org/

Core Module: random

The random module is the general-purpose place to go if you are
looking for random numbers. This module comes with various pseudo-
random number generators and comes seeded with the current
timestamp so it is ready to go as soon as it has loaded. Here are some
of the most commonly used functions in the random module:

randint() Takes two integer values and returns a random integer
between those values inclusive

randrange() Takes the same input as range() and returns a random
integer that falls within that range

file:///D|/1/0132269937/ch05lev1sec8.html (1 von 3) [13.11.2007 16:23:02]

http://numeric.scipy.org/
http://scipy.org/

Section 5.8. Related Modules

uniform() Does almost the same thing as randint(), but returns
a float and is inclusive only of the smaller number
(exclusive of the larger number)

random() Works just like uniform() except that the smaller
number is fixed at 0.0, and the larger number is fixed
at 1.0

choice() Given a sequence (see Chapter 6), randomly selects
and returns a sequence item

We have now come to the conclusion of our tour of all of Python's numeric types. A summary of
operators and built-in functions for numeric types is given in Table 5.9.

Table 5.9. Operators and Built-in Functions for All Numeric Types

Operator/Built-in Description Int Long Float Complex Result
[a]

abs() Absolute value • • • •
number

[a]

chr() Character • • str

coerce() Numeric coercion • • • • tuple

complex() Complex factory function • • • • complex

divmod() Division/modulo • • • • tuple

float() Float factory function • • • • float

hex() Hexadecimal string • • str

int() Int factory function • • • • int

long() Long factory function • • • • long

oct() Octal string • • str

ord() Ordinal (str) int

pow() Exponentiation • • • • number

round() Float rounding • float

**
[b] Exponentiation • • • • number

+
[c] No change • • • • number

file:///D|/1/0132269937/ch05lev1sec8.html (2 von 3) [13.11.2007 16:23:02]

Section 5.8. Related Modules

-
[c] Negation • • • • number

~
[c] Bit inversion • • int/long

**
[b] Exponentiation • • • • number

* Multiplication • • • • number

/ Classic or true division • • • • number

// Floor division • • • • number

% Modulo/remainder • • • • number

+ Addition • • • • number

- Subtraction • • • • number

<< Bit left shift • • int/long

>> Bit right shift • • int/long

& Bitwise AND • • int/long

^ Bitwise XOR • • int/long

| Bitwise OR • • int/long

[a] A result of "number" indicates any of the four numeric types, perhaps the same as the operands.

[b] ** has a unique relationship with unary operators; see Section 5.5.3 and Table 5.2.

[c] Unary operator.

file:///D|/1/0132269937/ch05lev1sec8.html (3 von 3) [13.11.2007 16:23:02]

Section 5.9. Exercises

5.9. Exercises

The exercises in this chapter may first be implemented as applications. Once full functionality and
correctness have been verified, we recommend that the reader convert his or her code to functions that
can be used in future exercises. On a related note, one style suggestion is not to use print statements
in functions that return a calculation. The caller can perform any output desired with the return value.
This keeps the code adaptable and reusable.

5-1. Integers. Name the differences between Python's regular and long integers.

5-2. Operators.

a.

Create a function to calculate and return the product of two numbers.

b.

The code which calls this function should display the result.

5-3. Standard Type Operators. Take test score input from the user and output letter grades
according to the following grade scale/curve:

A.

90-100

B.

80-89

C.

70-79

D.

60-69

E.

<60

file:///D|/1/0132269937/ch05lev1sec9.html (1 von 4) [13.11.2007 16:23:02]

Section 5.9. Exercises

5-4. Modulus. Determine whether a given year is a leap year, using the following formula:
a leap year is one that is divisible by four, but not by one hundred, unless it is also
divisible by four hundred. For example, 1992, 1996, and 2000 are leap years, but
1967 and 1900 are not. The next leap year falling on a century is 2400.

5-5. Modulus. Calculate the number of basic American coins given a value less than 1
dollar. A penny is worth 1 cent, a nickel is worth 5 cents, a dime is worth 10 cents,
and a quarter is worth 25 cents. It takes 100 cents to make 1 dollar. So given an
amount less than 1 dollar (if using floats, convert to integers for this exercise),
calculate the number of each type of coin necessary to achieve the amount,
maximizing the number of larger denomination coins. For example, given $0.76, or 76
cents, the correct output would be "3 quarters and 1 penny." Output such as "76
pennies" and "2 quarters, 2 dimes, 1 nickel, and 1 penny" are not acceptable.

5-6. Arithmetic. Create a calculator application. Write code that will take two numbers and
an operator in the format: N1 OP N2, where N1 and N2 are floating point or integer
values, and OP is one of the following: +, -, *, /, %, **, representing addition,
subtraction, multiplication, division, modulus/remainder, and exponentiation,
respectively, and displays the result of carrying out that operation on the input
operands. Hint: You may use the string split() method, but you cannot use the exal
() built-in function.

5-7. Sales Tax. Take a monetary amount (i.e., floating point dollar amount [or whatever
currency you use]), and determine a new amount figuring all the sales taxes you must
pay where you live.

5-8. Geometry. Calculate the area and volume of:

a.

squares and cubes

b.

circles and spheres

5-9. Style. Answer the following numeric format questions:

a.

Why does 17 + 32 give you 49, but 017 + 32 give you 47 and 017 + 032 give
you 41, as indicated in the examples below?

>>> 17 + 32
49
>>> 017+ 32
47
>>> 017 + 032
41

b.

file:///D|/1/0132269937/ch05lev1sec9.html (2 von 4) [13.11.2007 16:23:02]

Section 5.9. Exercises

Why do we get 134L and not 1342 in the example below?

>>> 56l + 78l
134L

5-10. Conversion. Create a pair of functions to convert Fahrenheit to Celsius temperature
values. C = (F - 32) * (5 / 9) should help you get started. We recommend you try
true division with this exercise, otherwise take whatever steps are necessary to ensure
accurate results.

5-11. Modulus.

a.

Using loops and numeric operators, output all even numbers from 0 to 20.

b.

Same as part (a), but output all odd numbers up to 20.

c.

From parts (a) and (b), what is an easy way to tell the difference between
even and odd numbers?

d.

Using part (c), write some code to determine if one number divides another. In
your solution, ask the user for both numbers and have your function answer
"yes" or "no" as to whether one number divides another by returning TRue or
False, respectively.

5-12. Limits. Determine the largest and smallest ints, floats, and complex numbers that your
system can handle.

5-13. Conversion. Write a function that will take a time period measured in hours and
minutes and return the total time in minutes only.

5-14. Bank Account Interest. Create a function to take an interest percentage rate for a
bank account, say, a Certificate of Deposit (CD). Calculate and return the Annual
Percentage Yield (APY) if the account balance was compounded daily.

5-15. GCD and LCM. Determine the greatest common divisor and least common multiple of
a pair of integers.

file:///D|/1/0132269937/ch05lev1sec9.html (3 von 4) [13.11.2007 16:23:02]

Section 5.9. Exercises

5-16. Home Finance. Take an opening balance and a monthly payment. Using a loop,
determine remaining balances for succeeding months, including the final payment.
"Payment 0" should just be the opening balance and schedule monthly payment
amount. The output should be in a schedule format similar to the following (the
numbers used in this example are for illustrative purposes only):

Enter opening balance:100.00
Enter monthly payment: 16.13

 Amount Remaining
Pymt# Paid Balance
----- ------ ---------
 0 $ 0.00 $100.00
 1 $16.13 $ 83.87
 2 $16.13 $ 67.74
 3 $16.13 $ 51.61
 4 $16.13 $ 35.48
 5 $16.13 $ 19.35
 6 $16.13 $ 3.22
 7 $ 3.22 $ 0.00

5-17. *Random Numbers. Read up on the random module and do the following problem:
Generate a list of a random number (1 < N <= 100) of random numbers (0 <= n <=
231-1). Then randomly select a set of these numbers (1 <= N <= 100), sort them, and
display this subset.

file:///D|/1/0132269937/ch05lev1sec9.html (4 von 4) [13.11.2007 16:23:02]

Chapter 6. Sequences: Strings, Lists, and Tuples

Chapter 6. Sequences: Strings, Lists, and Tuples

Chapter Topics

● Introduction to Sequences
● Strings
● Lists
● Tuples

The next family of Python types we will be exploring are those whose items are ordered sequentially and
accessible via index offsets into its set of elements. This group, known as sequences, includes the
following types: strings (regular and unicode), lists, and tuples.

We call these sequences because they are made up of sequences of "items" making up the entire data
structure. For example, a string consists of a sequence of characters (even though Python does not have
an explicit character type), so the first character of a string "Hello" is 'H', the second character is 'e',
and so on. Likewise, lists and tuples are sequences of various Python objects.

We will first introduce all operators and built-in functions (BIFs) that apply to all sequences, then cover
each type individually. For each sequence type, we will detail the following:

● Introduction
● Operators
● Built-in functions
● Built-in methods (if applicable)
● Special features (if applicable)
● Related modules (if applicable)

We will conclude this chapter with a reference chart that summarizes all of the operators and functions
applicable to all sequences. Let us begin by taking a high-level overview.

file:///D|/1/0132269937/ch06.html [13.11.2007 16:23:03]

file:///D|/1/0132269937/14051536.html

Section 6.1. Sequences

6.1. Sequences

Sequence types all share the same access model: ordered set with sequentially indexed offsets to get to
each element. Multiple elements may be selected by using the slice operators, which we will explore in
this chapter. The numbering scheme used starts from zero (0) and ends with one less than the length of
the sequencethe reason for this is because we began at 0. Figure 6-1 illustrates how sequence items are
stored.

Figure 6.1. How sequence elements are stored and accessed

6.1.1. Standard Type Operators

The standard type operators (see Section 4.5) generally work with all sequence types. Of course, one
must comparisons with a grain of salt when dealing with objects of mixed types, but the remaining
operations will work as advertised.

6.1.2. Sequence Type Operators

A list of all the operators applicable to all sequence types is given in Table 6.1. The operators appear in
hierarchical order from highest to lowest with the levels alternating between shaded and not.

Table 6.1. Sequence Type Operators

Sequence Operator Function

seq[ind] Element located at index ind of seq

seq[ind1 : ind2] Elements from ind1 up to but not including ind2 of seq

seq * expr seq repeated expr times

seq1 + seq2 Concatenates sequences seq1 and seq2

obj in seq Tests if obj is a member of sequence seq

file:///D|/1/0132269937/ch06lev1sec1.html (1 von 10) [13.11.2007 16:23:04]

file:///D|/1/0132269937/14051536.html

Section 6.1. Sequences

obj not in seq Tests if obj is not a member of sequence seq

Membership (in, not in)

Membership test operators are used to determine whether an element is in or is a member of a
sequence. For strings, this test is whether a character is in a string, and for lists and tuples, it is whether
an object is an element of those sequences. The in and not in operators are Boolean in nature; they
return true if the membership is confirmed and False otherwise.

The syntax for using the membership operators is as follows:

obj [not] in sequence

Concatenation (+)

This operation allows us to take one sequence and join it with another sequence of the same type. The
syntax for using the concatenation operator is as follows:

sequence1 + sequence2

The resulting expression is a new sequence that contains the combined contents of sequences
sequence1 and sequence2. Note, however, that although this appears to be the simplest way
conceptually to merge the contents of two sequences together, it is not the fastest or most efficient.

For strings, it is less memory-intensive to hold all of the substrings in a list or iterable and use one final
join() string method call to merge them together. Similarly for lists, it is recommend that readers use
the extend() list method instead of concatenating two or more lists together. Concatenation comes in
handy when you need to merge two sequences together on the fly and cannot rely on mutable object
built-in methods that do not have a return value (or more accurately, a return value of None). There is
an example of this case in the section below on slicing.

Repetition (*)

The repetition operator is useful when consecutive copies of sequence elements are desired. The syntax
for using the repetition operator is as follows:

sequence * copies_int

The number of copies, copies_int, must be an integer (prior to 1.6, long integers were not allowed). As
with the concatenation operator, the object returned is newly allocated to hold the contents of the
multiply replicated objects.

Slices ([], [:], [: :])

To put it simply: sequences are data structures that hold objects in an ordered manner. You can get
access to individual elements with an index and pair of brackets, or a consecutive group of elements

file:///D|/1/0132269937/ch06lev1sec1.html (2 von 10) [13.11.2007 16:23:04]

Section 6.1. Sequences

with the brackets and colons giving the indices of the elements you want starting from one index and
going up to but not including the ending index.

Now we are going to explain exactly what we just said in full detail. Sequences are structured data types
whose elements are placed sequentially in an ordered manner. This format allows for individual element
access by index offset or by an index range of indices to select groups of sequential elements in a
sequence. This type of access is called slicing, and the slicing operators allow us to perform such access.

The syntax for accessing an individual element is:

sequence[index]

sequence is the name of the sequence and index is the offset into the sequence where the desired
element is located. Index values can be positive, ranging from 0 to the maximum index (which is length
of the sequence less one). Using the len() function (which we will formally introduce in the next
section), this gives an index with the range 0 <= index <= len (sequence)-1.

Alternatively, negative indexes can be used, ranging from -1 to the negative length of the sequence, -len
(sequence), i.e., -len(sequence) <= index <= -1. The difference between the positive and negative
indexes is that positive indexes start from the beginning of the sequences and negative indexes work
backward from the end.

Attempting to retrieve a sequence element with an index outside of the length of the sequence results in
an IndexError exception:

>>> names = ('Faye', 'Leanna', 'Daylen')
>>> print names[4]
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
IndexError: tuple index out of range

Because Python is object oriented, you can also directly access an element of a sequence (without first
having to assign it to a variable) like this:

>>> print ('Faye', 'Leanna', 'Daylen')[1]
Leanna

This comes in handy especially in cases where you have called a function and know that you are going
to get back a sequence as a return value but are only interested in one or more elements and not the
whole thing. So how do we select multiple elements?

Accessing a group of elements is similar to accessing just a single item. Starting and ending indexes
may be given, separated by a colon (:). The syntax for accessing a group of elements is:

sequence[starting_index:ending_index]

Using this syntax, we can obtain a "slice" of elements in sequence from the starting_index up to but not
including the element at the ending_index index. Both starting_index and ending_index are optional, and

file:///D|/1/0132269937/ch06lev1sec1.html (3 von 10) [13.11.2007 16:23:04]

Section 6.1. Sequences

if not provided, or if None is used as an index, the slice will go from the beginning of the sequence or
until the end of the sequence, respectively.

In Figures 6-2 to 6-6, we take an entire sequence (of soccer players) of length 5, and explore how to
take various slices of such a sequence.

Figure 6-2. Entire sequence:sequence or sequence[:]

Figure 6-3. Sequence slice: sequence[0:3] or sequence[:3]

Figure 6-4. Sequence slice: sequence[2:5] or sequence[2:]

file:///D|/1/0132269937/ch06lev1sec1.html (4 von 10) [13.11.2007 16:23:04]

Section 6.1. Sequences

Figure 6-5. Sequence slice: sequence[1:3]

Figure 6-6. Sequence slice: sequence[3]

file:///D|/1/0132269937/ch06lev1sec1.html (5 von 10) [13.11.2007 16:23:04]

Section 6.1. Sequences

Extended Slicing with Stride Indices

The final slice syntax for sequences, known as extended slicing, involves a third index known as a stride.
You can think of a stride index like a "step" value as the third element of a call to the range() built-in
function or a for loop in languages like C/C++, Perl, PHP, and Java.

Extended slice syntax with stride indices has actually been around for a long time, built into the Python
virtual machine but accessible only via extensions. This syntax was even made available in Jython (and
its predecessor JPython) long before version 2.3 of the C interpreter gave everyone else access to it.
Here are a few examples:

Here are a few examples:

>>> s = 'abcdefgh'
>>> s[::-1] # think of it as 'reverse'
'hgfedcba'
>>> s[::2] # think of it as skipping by 2
'aceg'

More on Slice Indexing

The slice index syntax is more flexible than the single element index. The starting and ending indices
can exceed the length of the string. In other words, the starting index can start off well left of 0, that is,
an index of -100 does not exist, but does not produce an error. Similarly, an index of 100 as an ending
index of a sequence with fewer than 100 elements is also okay, as shown here:

>>> ('Faye', 'Leanna', 'Daylen')[-100:100]
('Faye', 'Leanna', 'Daylen')

file:///D|/1/0132269937/ch06lev1sec1.html (6 von 10) [13.11.2007 16:23:04]

Section 6.1. Sequences

Here is another problem: we want to take a string and display it in a loop. Each time through we would
like to chop off the last character. Here is a snippet of code that does what we want:

>>> s = 'abcde'
>>> i = -1
>>> for i in range(-1, -len(s), -1):
... print s[:i]
...
abcd
abc
ab
a

However, what if we wanted to display the entire string at the first iteration? Is there a way we can do it
without adding an additional print s before our loop? What if we wanted to programmatically specify no
index, meaning all the way to the end? There is no real way to do that with an index as we are using
negative indices in our example, and -1 is the "smallest" index. We cannot use 0, as that would be
interpreted as the first element and would not display anything:

>>> s[:0]
''

Our solution is another tip: using None as an index has the same effect as a missing index, so you can
get the same functionality programmatically, i.e., when you are using a variable to index through a
sequence but also want to be able to access the first or last elements:

>>> s = 'abcde'
>>> for i in [None] + range(-1, -len(s), -1):
... print s[:i]
...
abcde
abcd
abc
ab
a

So it works the way we want now. Before parting ways for now, we wanted to point out that this is one
of the places where we could have created a list [None] and used the extend() method to add the range
() output, or create a list with the range() elements and inserted None at the beginning, but we are
(horribly) trying to save several lines of code here. Mutable object built-in methods like extend() do not
have a return value, so we could not have used:

>>> for i in [None].extend(range(-1, -len(s), -1)):
... print s[:i]
...
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
TypeError: iteration over non-sequence

The reason for the error is that [None].extend(...) returns None, which is neither a sequence nor an
iterable. The only way we could do it without adding extra lines of code is with the list concatenation

file:///D|/1/0132269937/ch06lev1sec1.html (7 von 10) [13.11.2007 16:23:04]

Section 6.1. Sequences

above.

6.1.3. Built-in Functions (BIFs)

Before we look at sequence type BIFs, we wanted to let you know that you will be seeing the term
iterable mixed in with sequence. The reason for this is that iterables are more generalized and include
data types like sequences, iterators, or any object supporting iteration.

Because Python's for loops can iterate over any iterable type, it will seem like iterating over a pure
sequence, even if it isn't one. Also, many of Python's BIFs that previously only accepted sequences as
arguments have been upgraded to take iterators and iterator-like objects as well, hence the basket
term, "iterable."

We will discuss in detail in this chapter BIFs that have a strong tie to sequences. We will discuss BIFs
that apply more specifically to iteration in loops in Chapter 8, "Conditionals and Loops."

Conversion/Casting

The list(), str(), and tuple() BIFs are used to convert from any sequence type to another. You can
also think of them as casting if coming over from another language, but there really is no conversion or
casting going on. These "converters" are really factory functions (introduced in Chapter 4) that take an
object and (shallow) copy its contents into a newly generated object of the desired type. Table 6.2 lists
the sequence type conversion functions.

Table 6.2. Sequence Type Conversion Factory Functions

Function Operation

list(iter) Converts iterable to a list

str(obj) Converts obj to string (a printable string representation)

unicode(obj) Converts obj to a Unicode string (using default encoding)

basestring() Abstract factory function serves only as parent class of str and unicode, so cannot be
called/instantiated (see Section 6.2)

tuple(iter) Converts iterable to a tuple

Again, we use the term "convert" loosely. But why doesn't Python just convert our argument object into
another type? Recall from Chapter 4 that once Python objects are created, we cannot change their
identity or their type. If you pass a list to list(), a (shallow) copy of the list's objects will be made and
inserted into the new list. This is also similar to how the concatenation and repetition operators that we
have seen previously do their work.

A shallow copy is where only references are copied...no new objects are made! If you also want copies
of the objects (including recursively if you have container objects in containers), you will need to learn
about deep copies. More information on shallow and deep copies is available toward the end of this
chapter.

file:///D|/1/0132269937/ch06lev1sec1.html (8 von 10) [13.11.2007 16:23:04]

Section 6.1. Sequences

The str() function is most popular when converting an object into something printable and works with
other types of objects, not just sequences. The same thing applies for the Unicode version of str(),
unicode(). The list() and tuple() functions are useful to convert from one to another (lists to tuples
and vice versa). However, although those functions are applicable for strings as well since strings are
sequences, using tuple() and list() to turn strings into tuples or lists (of characters) is not common
practice.

Operational

Python provides the following operational BIFs for sequence types (see Table 6.3 below). Note that len
(), reversed(), and sum() can only accept sequences while the rest can take iterables. Alternatively, max
() and min() can also take a list of arguments

Table 6.3. Sequence Type Operational Built-in Functions

Function Operation

enumerate(iter)
[a] Takes an iterable and returns an

enumerate object (also an iterator) which
generates 2-tuple elements (index, item) of
iter (PEP 279)

len(seq) Returns length (number of items) of seq

max(iter, key=None) or max(arg0, arg1..., key=None)
[b] Returns "largest" element in iter or returns

"largest" of (arg0, arg1, ...); if key is
present, it should be a callback to pass to
the sort() method for testing

min(iter, key=None) or min(arg0, arg1.... key=None)

[b]
Returns "smallest" element in iter; returns
"smallest" of (arg0, arg1, ...); if key is
present, it should be a callback to pass to
the sort() method for testing

reversed(seq)
[c] Takes sequence and returns an iterator that

traverses that sequence in reverse order
(PEP 322)

sorted(iter, func=None, key=None, reverse=False)
[c] Takes an iterable iter and returns a sorted

list; optional arguments func, key, and
reverse are the same as for the list.sort()
built-in method

sum(seq, init=0)
[a] Returns the sum of the numbers of seq and

optional initial value; it is equivalent to
reduce (operator.add, seq, init)

zip([it0, it1,... itN])
[d] Returns a list of tuples whose elements are

members of each iterable passed into it, i.
e., [(it0[0], it1[0],... itN[0]), (it0[1],
it1[1],... itN[1]),... (it0[n], it1
[n],... itN[n])], where n is the minimum
cardinality of all of the iterables

file:///D|/1/0132269937/ch06lev1sec1.html (9 von 10) [13.11.2007 16:23:04]

Section 6.1. Sequences

[a] New in Python 2.3.

[b] key argument new in Python 2.5.

[c] New in Python 2.4.

[d] New in Python 2.0; more flexibility added in Python 2.4.

We will provide some examples of using these functions with each sequence type in their respective
sections.

file:///D|/1/0132269937/ch06lev1sec1.html (10 von 10) [13.11.2007 16:23:04]

file:///D|/1/0132269937/14051536.html

Section 6.2. Strings

6.2. Strings

Strings are among the most popular types in Python. We can create them simply by enclosing
characters in quotes. Python treats single quotes the same as double quotes. This contrasts with most
other shell-type scripting languages, which use single quotes for literal strings and double quotes to
allow escaping of characters. Python uses the "raw string" operator to create literal quotes, so no
differentiation is necessary. Other languages such as C use single quotes for characters and double
quotes for strings. Python does not have a character type; this is probably another reason why single
and double quotes are treated the same.

Nearly every Python application uses strings in one form or another. Strings are a literal or scalar type,
meaning they are treated by the interpreter as a singular value and are not containers that hold other
Python objects. Strings are immutable, meaning that changing an element of a string requires creating a
new string. Strings are made up of individual characters, and such elements of strings may be accessed
sequentially via slicing.

With the unification of types and classes in 2.2, there are now actually three types of strings in Python.
Both regular string (str) and Unicode string (unicode) types are actually subclassed from an abstract
class called basestring. This class cannot be instantiated, and if you try to use the factory function to
make one, you get this:

>>> basestring('foo')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: The basestring type cannot be instantiated

How to Create and Assign Strings

Creating strings is as simple as using a scalar value or having the str() factory function make one and
assigning it to a variable:

>>> aString = 'Hello World!' # using single quotes
>>> anotherString = "Python is cool!" # double quotes
>>> print aString # print, no quotes!
Hello World!
>>> anotherString # no print, quotes!
'Python is cool!'

>>> s = str(range(4)) # turn list to string
>>> s
'[0, 1, 2, 3]'

How to Access Values (Characters and Substrings) in Strings

Python does not support a character type; these are treated as strings of length one, thus also

file:///D|/1/0132269937/ch06lev1sec2.html (1 von 3) [13.11.2007 16:23:04]

Section 6.2. Strings

considered a substring. To access substrings, use the square brackets for slicing along with the index or
indices to obtain your substring:

>>> aString = 'Hello World!'
>>> aString[0]
'H'
>>> aString[1:5]
'ello'
>>> aString[6:]
'World!'

How to Update Strings

You can "update" an existing string by (re)assigning a variable to another string. The new value can be
related to its previous value or to a completely different string altogether.

>>> aString = aString[:6] + 'Python!'
>>> aString
'Hello Python!'
>>> aString = 'different string altogether'
>>> aString
'different string altogether'

Like numbers, strings are not mutable, so you cannot change an existing string without creating a new
one from scratch. That means that you cannot update individual characters or substrings in a string.
However, as you can see above, there is nothing wrong with piecing together parts of your old string
into a new string.

How to Remove Characters and Strings

To repeat what we just said, strings are immutable, so you cannot remove individual characters from an
existing string. What you can do, however, is to empty the string, or to put together another string that
drops the pieces you were not interested in.

Let us say you want to remove one letter from "Hello World!"...the (lowercase) letter "l," for example:

>>> aString = 'Hello World!'
>>> aString = aString[:3] + aString[4:]
>>> aString
'Helo World!'

To clear or remove a string, you assign an empty string or use the del statement, respectively:

>>> aString = ''
>>> aString
''
>>> del aString

In most applications, strings do not need to be explicitly deleted. Rather, the code defining the string

file:///D|/1/0132269937/ch06lev1sec2.html (2 von 3) [13.11.2007 16:23:04]

Section 6.2. Strings

eventually terminates, and the string is eventually deallocated.

file:///D|/1/0132269937/ch06lev1sec2.html (3 von 3) [13.11.2007 16:23:04]

Section 6.3. Strings and Operators

6.3. Strings and Operators

6.3.1. Standard Type Operators

In Chapter 4, we introduced a number of operators that apply to most objects, including the standard
types. We will take a look at how some of those apply to strings. For a brief introduction, here are a few
examples using strings:

>>> str1 = 'abc'
>>> str2 = 'lmn'
>>> str3 = 'xyz'
>>> str1 < str2
True
>>> str2 != str3
True
>>> str1 < str3 and str2 == 'xyz'
False

When using the value comparison operators, strings are compared lexicographically (ASCII value order).

6.3.2. Sequence Operators

Slices ([] and [:])

Earlier in Section 6.1.1, we examined how we can access individual or a group of elements from a
sequence. We will apply that knowledge to strings in this section. In particular, we will look at:

● Counting forward
● Counting backward
● Default/missing indexes

For the following examples, we use the single string 'abcd'. Provided in the figure is a list of positive
and negative indexes that indicate the position in which each character is located within the string itself.

Using the length operator, we can confirm that its length is 4:

>>> aString = 'abcd'
>>> len(aString)
4

file:///D|/1/0132269937/ch06lev1sec3.html (1 von 8) [13.11.2007 16:23:05]

file:///D|/1/0132269937/14051536.html

Section 6.3. Strings and Operators

When counting forward, indexes start at 0 to the left and end at one less than the length of the string
(because we started from zero). In our example, the final index of our string is:

final_index = len(aString) - 1
 = 4 - 1
 = 3

We can access any substring within this range. The slice operator with a single argument will give us a
single character, and the slice operator with a range, i.e., using a colon (:), will give us multiple
consecutive characters. Again, for any ranges [start:end], we will get all characters starting at offset
start up to, but not including, the character at end. In other words, for all characters x in the range
[start:end], start <= x < end.

 >>> aString[0]
'a'
>>> aString[1:3]
'bc'
>>> aString[2:4]
'cd'
>>> aString[4]
Traceback (innermost last):
 File "<stdin>", line 1, in ?
IndexError: string index out of range

Any index outside our valid index range (in our example, 0 to 3) results in an error. Above, our access
of aString[2:4] was valid because that returns characters at indexes 2 and 3, i.e., 'c' and 'd', but a
direct access to the character at index 4 was invalid.

When counting backward, we start at index -1 and move toward the beginning of the string, ending at
negative value of the length of the string. The final index (the first character) is located at:

 final_index = -len(aString)
 = -4
>>> aString[-1]
'd'
>>> aString[-3:-1]
'bc'
>>> aString[-4]
'a'

When either a starting or an ending index is missing, they default to the beginning or end of the string,
respectively.

>>> aString[2:]
'cd'
>>> aString[1:]
'bcd'
>>> aString[:-1]
'abc'
>>> aString[:]
'abcd'

file:///D|/1/0132269937/ch06lev1sec3.html (2 von 8) [13.11.2007 16:23:05]

Section 6.3. Strings and Operators

Notice how the omission of both indices gives us a copy of the entire string.

Membership (in, not in)

The membership question asks whether a (sub)string appears in a (nother) string. true is returned if
that character appears in the string and False otherwise. Note that the membership operation is not
used to determine if a substring is within a string. Such functionality can be accomplished by using the
string methods or string module functions find() or index() (and their brethren rfind() and rindex()).

Below are a few more examples of strings and the membership operators. Note that prior to Python 2.3,
the in (and not in) operators for strings only allowed a single character check, such as the second
example below (is 'n' a substring of 'abcd'). In 2.3, this was opened up to all strings, not just characters.

>>> 'bc' in 'abcd'
True
>>> 'n' in 'abcd'
False
>>> 'nm' not in 'abcd'
True

In Example 6.1, we will be using the following predefined strings found in the string module:

>>> import string
>>> string.uppercase
'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
>>> string.lowercase
'abcdefghijklmnopqrstuvwxyz'
>>> string.letters
'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'
>>> string.digits
'0123456789'

Example 6.1 is a small script called idcheck.py which checks for valid Python identifiers. As we now
know, Python identifiers must start with an alphabetic character. Any succeeding characters may be
alphanumeric.

Example 6.1. ID Check (idcheck.py)

file:///D|/1/0132269937/ch06lev1sec3.html (3 von 8) [13.11.2007 16:23:05]

Section 6.3. Strings and Operators

Tests for identifier validity. First symbol must be alphabetic and remaining symbols must
be alphanumeric. This tester program only checks identifiers that are at least two
characters in length.

1 #!usr/bin/env python
2
3 import string
4
5 alphas = string.letters + '_'
6 nums = string.digits
7
8 print 'Welcome to the Identifier Checker v1.0'
9 print 'Testees must be at least 2 chars long.'
10 myInput = raw_input('Identifier to test? ')
11
12 if len(myInput) > 1:
13
14 if myInput[0] not in alphas:
15 print '''invalid: first symbol must be
16 alphabetic'''
17 else:
18 for otherChar in myInput[1:]:
19
20 if otherChar not in alphas + nums:
21 print '''invalid: remaining
22 symbols must be alphanumeric'''
23 break
24 else:
25 print "okay as an identifier"

The example also shows use of the string concatenation operator (+) introduced later in this section.

Running this script several times produces the following output:

$ python idcheck.py
Welcome to the Identifier Checker v1.0
Testees must be at least 2 chars long.
Identifier to test? counter
okay as an identifier
$
$ python idcheck.py
Welcome to the Identifier Checker v1.0
Testees must be at least 2 chars long.
Identifier to test? 3d_effects
invalid: first symbol must be alphabetic

Let us take apart the application line by line.

Lines 36

Import the string module and use some of the predefined strings to put together valid alphabetic and

file:///D|/1/0132269937/ch06lev1sec3.html (4 von 8) [13.11.2007 16:23:05]

Section 6.3. Strings and Operators

numeric identifier strings that we will test against.

Lines 812

Print the salutation and prompt for user input. The if statement on line 12 filters out all identifiers or
candidates shorter than two characters in length.

Lines 1416

Check to see if the first symbol is alphabetic. If it is not, display the output indicating the result and
perform no further processing.

Lines 1718

Otherwise, loop to check the other characters, starting from the second symbol to the end of the string.

Lines 2023

Check to see if each remaining symbol is alphanumeric. Note how we use the concatenation operator
(see below) to create the set of valid characters. As soon as we find an invalid character, display the
result and perform no further processing by exiting the loop with break.

Core Tip: Performance

In general, repeat performances of operations or functions as
arguments in a loop are unproductive as far as performance is
concerned.

while i < len(myString):
 print 'character %d is:', myString[i]

The loop above wastes valuable time recalculating the length of string
myString. This function call occurs for each loop iteration. If we simply
save this value once, we can rewrite our loop so that it is more
productive.

length = len(myString)
while i < length:
 print'character %d is:', myString[i]

The same idea applies for this loop above in Example 6.1.

for otherChar in myInput[1:]:
 if otherChar not in alphas + nums:

The for loop beginning on line 18 contains an if statement that
concatenates a pair of strings. These strings do not change throughout
the course of the application, yet this calculation must be performed

file:///D|/1/0132269937/ch06lev1sec3.html (5 von 8) [13.11.2007 16:23:05]

Section 6.3. Strings and Operators

for each loop iteration. If we save the new string first, we can then
reference that string rather than make the same calculations over and
over again:

alphnums = alphas + nums
for otherChar in myInput[1:]:
 if otherChar not in alphnums:
 :

Lines 2425

It may be somewhat premature to show you a for-else loop statement, but we are going to give it a
shot anyway. (For a full treatment, see Chapter 8). The else statement for a for loop is optional and, if
provided, will execute if the loop finished in completion without being "broken" out of by break. In our
application, if all remaining symbols check out okay, then we have a valid identifier name. The result is
displayed to indicate as such, completing execution.

This application is not without its flaws, however. One problem is that the identifiers tested must have
length greater than 1. Our application "as is" is not reflective of the true range of Python identifiers,
which may be of length 1. Another problem with our application is that it does not take into
consideration Python keywords, which are reserved names that cannot be used for identifiers. We leave
these two tasks as exercises for the reader (see Exercise 6-2).

Concatenation (+)

Runtime String Concatenation

We can use the concatenation operator to create new strings from existing ones. We have already seen
the concatenation operator in action above in Example 6-1. Here are a few more examples:

>>> 'Spanish' + 'Inquisition'
'SpanishInquisition'
>>>
>>> 'Spanish' + ' ' + 'Inquisition'
'Spanish Inquisition'
>>>
>>> s = 'Spanish' + ' ' + 'Inquisition' + ' Made Easy'
>>> s
'Spanish Inquisition Made Easy'
>>>
>>> import string
>>> string.upper(s[:3] + s[20]) # archaic (see below)
'SPAM'

The last example illustrates using the concatenation operator to put together a pair of slices from string
s, the "Spa" from "Spanish" and the "M" from "Made." The extracted slices are concatenated and then
sent to the string.upper() function to convert the new string to all uppercase letters. String methods
were added to Python back in 1.6 so such examples can be replaced with a single call to the final string

file:///D|/1/0132269937/ch06lev1sec3.html (6 von 8) [13.11.2007 16:23:05]

Section 6.3. Strings and Operators

method (see example below). There is really no longer a need to import the string module unless you
are trying to access some of the older string constants which that module defines.

Note: Although easier to learn for beginners, we recommend not using string concatenation when
performance counts. The reason is that for every string that is part of a concatenation, Python has to
allocate new memory for all strings involved, including the result. Instead, we recommend you either
use the string format operator (%), as in the examples below, or put all of the substrings in a list, and
using one join() call to put them all together:

>>> '%s %s' % ('Spanish', 'Inquisition')
'Spanish Inquisition'
>>>
>>> s = ' '.join(('Spanish', 'Inquisition', 'Made Easy'))
>>> s
'Spanish Inquisition Made Easy'
>>>
>>> # no need to import string to use string.upper():
>>> ('%s%s' % (s[:3], s[20])).upper()
'SPAM'

Compile-Time String Concatenation

The above syntax using the addition operator performs the string concatenation at runtime, and its use
is the norm. There is a less frequently used syntax that is more of a programmer convenience feature.
Python's syntax allows you to create a single string from multiple string literals placed adjacent to each
other in the body of your source code:

>>> foo = "Hello" 'world!'
>>> foo
'Helloworld!'

It is a convenient way to split up long strings without unnecessary backslash escapes. As you can see
from the above, you can mix quotation types on the same line. Another good thing about this feature is
that you can add comments too, like this example:

>>> f = urllib.urlopen('http://' # protocol
... 'localhost' # hostname
... ':8000' # port
... '/cgi-bin/friends2.py') # file

As you can imagine, here is what urlopen() really gets as input:

>>> 'http://' 'localhost' ':8000' '/cgi-bin/friends2.py'
'http://localhost:8000/cgi-bin/friends2.py'

Regular String Coercion to Unicode

When concatenating regular and Unicode strings, regular strings are converted to Unicode first before
the operation occurs:

file:///D|/1/0132269937/ch06lev1sec3.html (7 von 8) [13.11.2007 16:23:05]

Section 6.3. Strings and Operators

>>> 'Hello' + u' ' + 'World' + u'!'
u'Hello World!'

Repetition (*)

The repetition operator creates new strings, concatenating multiple copies of the same string to
accomplish its functionality:

>>> 'Ni!' * 3
'Ni!Ni!Ni!'
>>>
>>> '*'*40
'**'
>>>
>>> print '-' * 20, 'Hello World!', '-' * 20
-------------------- Hello World! --------------------
>>> who = 'knights'
>>> who * 2
'knightsknights'

>>> who
'knights'

As with any standard operator, the original variable is unmodified, as indicated in the final dump of the
object above.

file:///D|/1/0132269937/ch06lev1sec3.html (8 von 8) [13.11.2007 16:23:05]

file:///D|/1/0132269937/14051536.html

Section 6.4. String-Only Operators

6.4. String-Only Operators

6.4.1. Format Operator (%)

Python features a string format operator. This operator is unique to strings and makes up for the lack of
having functions from C's printf() family. In fact, it even uses the same symbol, the percent sign (%),
and supports all the printf() formatting codes.

The syntax for using the format operator is as follows:

format_string % (arguments_to_convert)

The format_string on the left-hand side is what you would typically find as the first argument to printf
(): the format string with any of the embedded % codes. The set of valid codes is given in Table 6.4. The
arguments_to_convert parameter matches the remaining arguments you would send to printf(), namely
the set of variables to convert and display.

Table 6.4. Format Operator Conversion Symbols

Format Symbol Conversion

%c Character (integer [ASCII value] or string of length 1)

%r
[a] String conversion via repr() prior to formatting

%s String conversion via str() prior to formatting

%d / %i Signed decimal integer

%u
[b] Unsigned decimal integer

%o
[b] (Unsigned) octal integer

%x
[b]

/ %X
(Unsigned) hexadecimal integer (lower/UPPERcase letters)

%e / %E Exponential notation (with lowercase 'e'/UPPERcase 'E')

%f / %F Floating point real number (fraction truncates naturally)

%g / %G The shorter of %e and %f/%E% and %F%

%% Percent character (%) unescaped

file:///D|/1/0132269937/ch06lev1sec4.html (1 von 6) [13.11.2007 16:23:06]

file:///D|/1/0132269937/14051536.html

Section 6.4. String-Only Operators

[a] New in Python 2.0; likely unique only to Python.

[b] %u/%o/%x/%X of negative int will return a signed string in Python 2.4.

Python supports two formats for the input arguments. The first is a tuple (introduced in Section 2.8,
formally in 6.15), which is basically the set of arguments to convert, just like for C's printf(). The
second format that Python supports is a dictionary (Chapter 7). A dictionary is basically a set of hashed
key-value pairs. The keys are requested in the format_string, and the corresponding values are
provided when the string is formatted.

Converted strings can either be used in conjunction with the print statement to display out to the user
or saved into a new string for future processing or displaying to a graphical user interface.

Other supported symbols and functionality are listed in Table 6.5.

Table 6.5. Format Operator Auxiliary Directives

Symbol Functionality

* Argument specifies width or precision

- Use left justification

+ Use a plus sign (+) for positive numbers

<sp> Use space-padding for positive numbers

Add the octal leading zero ('0') or hexadecimal leading '0x' or '0X', depending on whether 'x'
or 'X' were used.

0 Use zero-padding (instead of spaces) when formatting numbers

% '%%' leaves you with a single literal '%'

(var) Mapping variable (dictionary arguments)

m.n m is the minimum total width and n is the number of digits to display after the decimal point
(if applicable)

As with C's printf(), the asterisk symbol (*) may be used to dynamically indicate the width and
precision via a value in argument tuple. Before we get to our examples, one more word of caution: long
integers are more than likely too large for conversion to standard integers, so we recommend using
exponential notation to get them to fit.

Here are some examples using the string format operator:

Hexadecimal Output

>>> "%x" % 108

file:///D|/1/0132269937/ch06lev1sec4.html (2 von 6) [13.11.2007 16:23:06]

Section 6.4. String-Only Operators

'6c'
>>>
>>> "%X" % 108
'6C'
>>>
>>> "%#X" % 108
'0X6C'
>>>
>>> "%#x" % 108
'0x6c'

Floating Point and Exponential Notation Output

>>>
>>> '%f' % 1234.567890
'1234.567890'
>>>
>>> '%.2f' % 1234.567890
'1234.57'
>>>
>>> '%E' % 1234.567890
'1.234568E+03'
>>>
>>> '%e' % 1234.567890
'1.234568e+03'
>>>
>>> '%g' % 1234.567890
'1234.57'
>>>
>>> '%G' % 1234.567890
'1234.57'
>>>
>>> "%e" % (1111111111111111111111L)
'1.111111e+21'

Integer and String Output

>>> "%+d" % 4
'+4'
>>>

>>> "%+d" % -4
'-4'
>>>
>>> "we are at %d%%" % 100
'we are at 100%'
>>>
>>> 'Your host is: %s' % 'earth'
'Your host is: earth'
>>>
>>> 'Host: %s\tPort: %d' % ('mars', 80)
'Host: mars Port: 80'
>>>
>>> num = 123
>>> 'dec: %d/oct: %#o/hex: %#X' % (num, num, num)
'dec: 123/oct: 0173/hex: 0X7B'

file:///D|/1/0132269937/ch06lev1sec4.html (3 von 6) [13.11.2007 16:23:06]

Section 6.4. String-Only Operators

>>>
>>> "MM/DD/YY = %02d/%02d/%d" % (2, 15, 67)
'MM/DD/YY = 02/15/67'
>>>
>>> w, p = 'Web', 'page'
>>> 'http://xxx.yyy.zzz/%s/%s.html' % (w, p)
'http://xxx.yyy.zzz/Web/page.html'

The previous examples all use tuple arguments for conversion. Below, we show how to use a dictionary
argument for the format operator:

>>> 'There are %(howmany)d %(lang)s Quotation Symbols' % \
... {'lang': 'Python', 'howmany': 3}
'There are 3 Python Quotation Symbols'

Amazing Debugging Tool

The string format operator is not only a cool, easy-to-use, and familiar feature, but a great and useful
debugging tool as well. Practically all Python objects have a string presentation (either evaluatable from
repr() or '',or printable from str()). The print statement automatically invokes the str() function for
an object. This gets even better. When you are defining your own objects, there are hooks for you to
create string representations of your object such that repr() and str() (and '' and print) return an
appropriate string as output. And if worse comes to worst and neither repr() or str() is able to display
an object, the Pythonic default is at least to give you something of the format:

<... something that is useful ...>

 6.4.2. String Templates: Simpler Substitution

The string format operator has been a mainstay of Python and will continue to be so. One of its
drawbacks, however, is that it is not as intuitive to the new Python programmer not coming from a C/C+
+ background. Even for current developers using the dictionary form can accidentally leave off the type
format symbol, i.e., %(lang) vs. the more correct %(lang)s. In addition to remembering to put in the
correct formatting directive, the programmer must also know the type, i.e., is it a string, an integer, etc.

The justification of the new string templates is to do away with having to remember such details and use
string substitution much like those in current shell-type scripting languages, the dollar sign ($).

The string module is temporarily resurrected from the dead as the new Template class has been added
to it. Template objects have two methods, substitute() and safe_substitute(). The former is more
strict, throwing KeyError exceptions for missing keys while the latter will keep the substitution string
intact when there is a missing key:

>>> from string import Template
>>> s = Template('There are ${howmany} ${lang} Quotation Symbols')
>>>
>>> print s.substitute(lang='Python', howmany=3)
There are 3 Python Quotation Symbols

file:///D|/1/0132269937/ch06lev1sec4.html (4 von 6) [13.11.2007 16:23:06]

Section 6.4. String-Only Operators

>>>
>>> print s.substitute(lang='Python')
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
 File "/usr/local/lib/python2.4/string.py", line 172, in substitute
 return self.pattern.sub(convert, self.template)
 File "/usr/local/lib/python2.4/string.py", line 162, in convert
 val = mapping[named]
KeyError: 'howmany'
>>>
>>> print s.safe_substitute(lang='Python')
There are ${howmany} Python Quotation Symbols

The new string templates were added to Python in version 2.4. More information about them can be
found in the Python Library Reference Manual and PEP 292.

6.4.3. Raw String Operator (r / R)

The purpose of raw strings, introduced back in version 1.5, is to counteract the behavior of the special
escape characters that occur in strings (see the subsection below on what some of these characters
are). In raw strings, all characters are taken verbatim with no translation to special or non-printed
characters.

This feature makes raw strings absolutely convenient when such behavior is desired, such as when
composing regular expressions (see the re module documentation). Regular expressions (REs) are
strings that define advanced search patterns for strings and usually consist of special symbols to
indicate characters, grouping and matching information, variable names, and character classes. The
syntax for REs contains enough symbols already, but when you have to insert additional symbols to
make special characters act like normal characters, you end up with a virtual "alphanumersymbolic"
soup! Raw strings lend a helping hand by not requiring all the normal symbols needed when composing
RE patterns.

The syntax for raw strings is exactly the same as for normal strings with the exception of the raw string
operator, the letter "r," which precedes the quotation marks. The "r" can be lowercase (r) or uppercase
(R) and must be placed immediately preceding the first quote mark.

In the first of our three examples, we really want a backslash followed by an 'n' as opposed to a
NEWLINE character:

>>> '\n'
'\n'
>>> print '\n'

>>> r'\n'
'\\n'
>>> print r'\n'
\n

Next, we cannot seem to open our README file. Why not? Because the \t and \r are taken as special
symbols which really are not part of our filename, but are four individual characters that are part of our
file pathname.

file:///D|/1/0132269937/ch06lev1sec4.html (5 von 6) [13.11.2007 16:23:06]

Section 6.4. String-Only Operators

>>> f = open('C:\windows\temp\readme.txt', 'r')

Traceback (most recent call last):
 File "<stdin>", line 1, in ?
 f = open('C:\windows\temp\readme.txt', 'r')
IOError: [Errno 2] No such file or directory: 'C:\\win-
dows\\temp\readme.txt'
>>> f = open(r'C:\windows\temp\readme.txt', 'r')
>>> f.readline()
'Table of Contents (please check timestamps for last
 update!)\n'
>>> f.close()

Finally, we are (ironically) looking for a raw pair of characters \n and not NEWLINE. In order to find it,
we are attempting to use a simple regular expression that looks for backslash-character pairs that are
normally single special whitespace characters:

 >>> import re
 >>> m = re.search('\\[rtfvn]', r'Hello World!\n')
 >>> if m is not None: m.group()
 ...
 >>> m = re.search(r'\\[rtfvn]', r'Hello World!\n')
 >>> if m is not None: m.group()
 ...
 '\\n'

6.4.4. Unicode String Operator (u / U)

The Unicode string operator, uppercase (U) and lowercase (u), introduced with Unicode string support in
Python 1.6, takes standard strings or strings with Unicode characters in them and converts them to a
full Unicode string object. More details on Unicode strings are available in Section 6.7.4. In addition,
Unicode support is available via string methods (Section 6.6) and the regular expression engine. Here
are some examples:

 u'abc' U+0061 U+0062 U+0063
 u'\u1234' U+1234
 u'abc\u1234\n' U+0061 U+0062 U+0063 U+1234 U+0012

The Unicode operator can also accept raw Unicode strings if used in conjunction with the raw string
operator discussed in the previous section. The Unicode operator must precede the raw string operator.

ur'Hello\nWorld!'

file:///D|/1/0132269937/ch06lev1sec4.html (6 von 6) [13.11.2007 16:23:06]

file:///D|/1/0132269937/14051536.html

Section 6.5. Built-in Functions

6.5. Built-in Functions

6.5.1. Standard Type Functions

cmp()

As with the value comparison operators, the cmp() built-in function also performs a lexicographic (ASCII
value-based) comparison for strings.

>>> str1 = 'abc'
>>> str2 = 'lmn'
>>> str3 = 'xyz'

>>> cmp(str1, str2)
-11
>>> cmp(str3, str1)
23
>>> cmp(str2, 'lmn')
0

6.5.2. Sequence Type Functions

len()

>>> str1 = 'abc'
>>> len(str1)
3
>>> len('Hello World!')
12

The len() built-in function returns the number of characters in the string as expected.

max() and min()

>>> str2 = 'lmn'
>>> str3 = 'xyz'
>>> max(str2)
'n'
>>> min(str3)
'x'

Although more useful with other sequence types, the max() and min() built-in functions do operate as
advertised, returning the greatest and least characters (lexicographic order), respectively. Here are a
few more examples:

>>> min('ab12cd')
'1'

file:///D|/1/0132269937/ch06lev1sec5.html (1 von 3) [13.11.2007 16:23:07]

Section 6.5. Built-in Functions

>>> min('AB12CD')
'1'
>>> min('ABabCDcd')
'A'

enumerate()

>>> s = 'foobar'
>>> for i, t in enumerate(s):
... print i, t
...

0 f
1 o
2 o
3 b
4 a
5 r

zip()

>>> s, t = 'foa', 'obr'
>>> zip(s, t)
[('f', 'o'), ('o', 'b'), ('a', 'r')]

6.5.3. String Type Functions

raw_input()

The built-in raw_input() function prompts the user with a given string and accepts and returns a user-
input string. Here is an example using raw_input():

>>> user_input = raw_input("Enter your name: ")
Enter your name: John Doe
>>>
>>> user_input
'John Doe'
>>>
>>> len(user_input)
8

Earlier, we indicated that strings in Python do not have a terminating NUL character like C strings. We
added in the extra call to len() to show you that what you see is what you get.

str() and unicode()

Both str() and unicode() are factory functions, meaning that they produce new objects of their type
respectively. They will take any object and create a printable or Unicode string representation of the
argument object. And, along with basestring, they can also be used as arguments along with objects in

file:///D|/1/0132269937/ch06lev1sec5.html (2 von 3) [13.11.2007 16:23:07]

Section 6.5. Built-in Functions

isinstance() calls to verify type:

>>> isinstance(u'\0xAB', str)
False

>>> not isinstance('foo', unicode)
True
>>> isinstance(u'', basestring)
True
>>> not isinstance('foo', basestring)
False

chr(), unichr(), and ord()

chr() takes a single integer argument in range(256) (e.g., between 0 and 255) and returns the
corresponding character. unichr() does the same thing but for Unicode characters. The range for unichr
(), added in Python 2.0, is dependent on how your Python was compiled. If it was configured for UCS2
Unicode, then a valid value falls in range(65536) or 0x0000-0xFFFF; for UCS4, the value should be in
range(1114112) or 0x000000-0x110000. If a value does not fall within the allowable range(s), a
ValueError exception will be raised.

ord() is the inverse of chr() (for 8-bit ASCII strings) and unichr() (for Unicode objects)it takes a single
character (string of length 1) and returns the corresponding character with that ASCII code or Unicode
code point, respectively. If the given Unicode character exceeds the size specified by your Python
configuration, a TypeError exception will be thrown.

>>> chr(65)
'A'
>>> ord('a')
97
>>> unichr(12345)
u'\u3039'
>>> chr(12345)
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
 chr(12345)
ValueError: chr() arg not in range(256)
>>> ord(u'\ufffff')
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
 ord(u'\ufffff')
TypeError: ord() expected a character, but string of
length 2 found
>>> ord(u'\u2345')
9029

file:///D|/1/0132269937/ch06lev1sec5.html (3 von 3) [13.11.2007 16:23:07]

Section 6.6. String Built-in Methods

6.6. String Built-in Methods

String methods were added to Python in the 1.6 to 2.0 timeframethey also were added to Jython. These
methods replace most of the functionality in the string module as well as to add new functionality.
Table 6.6 shows all the current methods for strings. All string methods should fully support Unicode
strings. Some are applicable only to Unicode strings.

Table 6.6. String Type Built-in Methods

Method Name Description

string.capitalize() Capitalizes first letter of string

string.center(width) Returns a space-padded string with the original
string centered to a total of width columns

string.count(str, beg= 0, end=len(string)) Counts how many times str occurs in string, or
in a substring of string if starting index beg and
ending index end are given

string.decode(encoding='UTF-8', errors='strict') Returns decoded string version of string; on
error, default is to raise a ValueError unless
errors is given with 'ignore' or 'replace'

string.encode(encoding='UTF-8', errors='strict')
[a]

Returns encoded string version of string; on
error, default is to raise a ValueError unless
errors is given with 'ignore' or 'replace'

string.endswith(obj, beg=0, end=len(string))
[b]

,
[e]

Determines if string or a substring of string (if
starting index beg and ending index end are
given) ends with obj where obj is typically a
string; if obj is a tuple, then any of the strings in
that tuple; returns true if so, and False otherwise

string.expandtabs(tabsize=8) Expands tabs in string to multiple spaces;
defaults to 8 spaces per tab if tabsize not
provided

string.find(str, beg=0end=len(string)) Determine if str occurs in string, or in a
substring of string if starting index beg and
ending index end are given; returns index if found
and -1 otherwise

string.index(str, beg=0, end=len(string)) Same as find(), but raises an exception if str not
found

string.isalnum()
[a]

,
[b]

,
[c] Returns true if string has at least 1 character

and all characters are alphanumeric and False
otherwise

file:///D|/1/0132269937/ch06lev1sec6.html (1 von 4) [13.11.2007 16:23:08]

Section 6.6. String Built-in Methods

string.isalpha()
[a]

,
[b]

,
[c] Returns TRue if string has at least 1 character

and all characters are alphabetic and False
otherwise

string.isdecimal()
[b]

,
[c]

,
[d] Returns TRue if string contains only decimal digits

and False otherwise

string.isdigit()
[b]

,
[c] Returns true if string contains only digits and

False otherwise

string.islower()
[b]

,
[c] Returns true if string has at least 1 cased

character and all cased characters are in
lowercase and False otherwise

string.isnumeric()
[b]

,
[c]

,
[d] Returns true if string contains only numeric

characters and False otherwise

string.isspace()
[b]

,
[c] Returns true if string contains only whitespace

characters and False otherwise

string.istitle()
[b]

,
[c] Returns true if string is properly "titlecased" (see

title()) and False otherwise

string.isupper()
[b]

,
[c] Returns TRue if string has at least one cased

character and all cased characters are in
uppercase and False otherwise

string.join(seq) Merges (concatenates) the string representations
of elements in sequence seq into a string, with
separator string

string.ljust(width) Returns a space-padded string with the original
string left-justified to a total of width columns

string.lower() Converts all uppercase letters in string to
lowercase

string.lstrip() Removes all leading whitespace in string

string.partition(str)
[e] Like a combination of find() and split(), splits

string into a 3-tuple (string_pre_str, str,
string_post_str) on the first occurrence of str; if
not found, string_pre_str == string

string.replace(str1, str2, num=string.count
(str1))

Replaces all occurrences of str1 in string with
str2, or at most num occurrences if num given

string.rfind(str, beg=0, end=len(string)) Same as find(), but search backward in string

string.rindex(str, beg=0, end=len(string)) Same as index(), but search backward in string

string.rjust(width) Returns a space-padded string with the original
string right-justified to a total of width columns

string.rpartition(str)
[e] Same as partition(), but search backwards in

string

string.rstrip() Removes all trailing whitespace of string

file:///D|/1/0132269937/ch06lev1sec6.html (2 von 4) [13.11.2007 16:23:08]

Section 6.6. String Built-in Methods

string.split(str="", num=string.count(str)) Splits string according to delimiter str (space if
not provided) and returns list of substrings; split
into at most num substrings if given

string.splitlines(num=string.count('\n'))
[b]

,
[c] Splits string at all (or num) NEWLINEs and returns

a list of each line with NEWLINEs removed

string.startswith(obj, beg=0, end=len(string))
[b]

,
[e]

Determines if string or a substring of string (if
starting index beg and ending index end are
given) starts with obj where obj is typically a
string; if obj is a tuple, then any of the strings in
that tuple; returns true if so, and False otherwise

string.strip([obj]) Performs both lstrip() and rstrip() on string

string.swapcase() Inverts case for all letters in string

string.title()
[b]

,
[c] Returns "titlecased" version of string, that is, all

words begin with uppercase, and the rest are
lowercase (also see istitle())

string.translate(str, del="") Translates string according to translation table
str (256 chars), removing those in the del string

string.upper() Converts lowercase letters in string to uppercase

string.zfill(width) Returns original string left-padded with zeros to
a total of width characters; intended for numbers,
zfill() retains any sign given (less one zero)

[a] Applicable to Unicode strings only in 1.6, but to all string types in 2.0.

[b] Not available as a string module function in 1.5.2.

[e] New or updated in Python 2.5.

[c] New in Jython 2.1.

[d] Applicable to Unicode strings only.

Some examples of using string methods:

>>> quest = 'what is your favorite color?'
>>> quest.capitalize()
'What is your favorite color?'
>>>
>>> quest.center(40)
' what is your favorite color? '
>>>
>>> quest.count('or')
2
>>>
>>> quest.endswith('blue')
False

file:///D|/1/0132269937/ch06lev1sec6.html (3 von 4) [13.11.2007 16:23:08]

Section 6.6. String Built-in Methods

>>>
>>> quest.endswith('color?')
True
>>>
>>> quest.find('or', 30)
-1
>>>
>>> quest.find('or', 22)
25
>>
>>> quest.index('or', 10)
16
>>>
>>> ':'.join(quest.split())
'what:is:your:favorite:color?'
>>> quest.replace('favorite color', 'quest')
>>>
'what is your quest?'
>>>
>>> quest.upper()
'WHAT IS YOUR FAVORITE COLOR?'

The most complex example shown above is the one with split() and join(). We first call split() on our
string, which, without an argument, will break apart our string using spaces as the delimiter. We then
take this list of words and call join() to merge our words again, but with a new delimiter, the colon.
Notice that we used the split() method for our string to turn it into a list, and then, we used the join()
method for ':' to merge together the contents of the list.

file:///D|/1/0132269937/ch06lev1sec6.html (4 von 4) [13.11.2007 16:23:08]

Section 6.7. Special Features of Strings

6.7. Special Features of Strings

6.7.1. Special or Control Characters

Like most other high-level or scripting languages, a backslash paired with another single character
indicates the presence of a "special" character, usually a nonprintable character, and that this pair of
characters will be substituted by the special character. These are the special characters we discussed
above that will not be interpreted if the raw string operator precedes a string containing these
characters.

In addition to the well-known characters such as NEWLINE (\n) and (horizontal) tab (\t), specific
characters via their ASCII values may be used as well: \OOO or \xXX where OOO and XX are their
respective octal and hexadecimal ASCII values. Here are the base 10, 8, and 16 representations of 0,
65, and 255:

 ASCII ASCII ASCII

Decimal 0 65 255

Octal \000 \101 \177

Hexadecimal \x00 \x41 \xFF

Special characters, including the backslash-escaped ones, can be stored in Python strings just like
regular characters.

Another way that strings in Python are different from those in C is that Python strings are not
terminated by the NUL (\000) character (ASCII value 0). NUL characters are just like any of the other
special backslash-escaped characters. In fact, not only can NUL characters appear in Python strings, but
there can be any number of them in a string, not to mention that they can occur anywhere within the
string. They are no more special than any of the other control characters. Table 6.7 represents a
summary of the escape characters supported by most versions of Python.

Table 6.7. String Literal Backslash
Escape Characters

/X Oct Dec Hex Char Description

\0 000 0 0x00 NUL Null character

\a 007 7 0x07 BEL Bell

\b 010 8 0x08 BS Backspace

file:///D|/1/0132269937/ch06lev1sec7.html (1 von 5) [13.11.2007 16:23:09]

file:///D|/1/0132269937/14051536.html

Section 6.7. Special Features of Strings

\t 011 9 0x09 HT Horizontal tab

\n 012 10 0x0A LF Linefeed/Newline

\v 013 11 0x0B VT Vertical tab

\f 014 12 0x0C FF Form feed

\r 015 13 0x0D CR Carriage return

\e 033 27 0x1B ESC Escape

\" 042 34 0x22 " Double quote

\' 047 39 0x27 ' Single quote/apostrophe

\\ 134 92 0x5C \ Backslash

As mentioned before, explicit ASCII octal or hexadecimal values can be given, as well as escaping a
NEWLINE to continue a statement to the next line. All valid ASCII character values are between 0 and
255 (octal 0177, hexadecimal 0XFF).

\OOO Octal value OOO (range is 0000 to 0177)
\xXX 'x' plus hexadecimal value XX (range is 0X00 to 0xFF)
\ escape NEWLINE for statement continuation

One use of control characters in strings is to serve as delimiters. In database or Internet/Web
processing, it is more than likely that most printable characters are allowed as data items, meaning that
they would not make good delimiters.

It becomes difficult to ascertain whether or not a character is a delimiter or a data item, and by using a
printable character such as a colon (:) as a delimiter, you are limiting the number of allowed
characters in your data, which may not be desirable.

One popular solution is to employ seldomly used, nonprintable ASCII values as delimiters. These make
the perfect delimiters, freeing up the colon and the other printable characters for more important uses.

6.7.2. Triple Quotes

Although strings can be represented by single or double quote delimitation, it is often difficult to
manipulate strings containing special or nonprintable characters, especially the NEWLINE character.
Python's triple quotes comes to the rescue by allowing strings to span multiple lines, including verbatim
NEWLINEs, tabs, and any other special characters.

The syntax for triple quotes consists of three consecutive single or double quotes (used in pairs,
naturally):

>>> hi = '''hi
there'''
>>> hi # repr()
'hi\nthere'
>>> print hi # str()
hi
there

file:///D|/1/0132269937/ch06lev1sec7.html (2 von 5) [13.11.2007 16:23:09]

Section 6.7. Special Features of Strings

Triple quotes lets the developer avoid playing quote and escape character games, all the while bringing
at least a small chunk of text closer to WYSIWIG (what you see is what you get) format.

The most powerful use cases are when you have a large block of HTML or SQL that would be completely
inconvenient to use by concanentation or wrapped with backslash escapes:

errHTML = '''
<HTML><HEAD><TITLE>
Friends CGI Demo</TITLE></HEAD>

<BODY><H3>ERROR</H3>
%s<P>
<FORM><INPUT TYPE=button VALUE=Back
ONCLICK="window.history.back()"></FORM>
</BODY></HTML>
'''

cursor.execute('''
 CREATE TABLE users (
 login VARCHAR(8),
 uid INTEGER,
 prid INTEGER)
''')

6.7.3. String Immutability

In Section 4.7.2, we discussed how strings are immutable data types, meaning that their values cannot
be changed or modified. This means that if you do want to update a string, either by taking a substring,
concatenating another string on the end, or concatenating the string in question to the end of another
string, etc., a new string object must be created for it.

This sounds more complicated than it really is. Since Python manages memory for you, you won't really
notice when this occurs. Any time you modify a string or perform any operation that is contrary to
immutability, Python will allocate a new string for you. In the following example, Python allocates space
for the strings, 'abc' and 'def'. But when performing the addition operation to create the string
'abcdef', new space is allocated automatically for the new string.

>>> 'abc' + 'def'
'abcdef'

Assigning values to variables is no different:

>>> s = 'abc'
>>> s = s + 'def'
>>> s
'abcdef'

In the above example, it looks like we assigned the string 'abc' to string, then appended the string 'def'
to string. To the naked eye, strings look mutable. What you cannot see, however, is the fact that a new

file:///D|/1/0132269937/ch06lev1sec7.html (3 von 5) [13.11.2007 16:23:09]

Section 6.7. Special Features of Strings

string was created when the operation "s + 'def'" was performed, and that the new object was then
assigned back to s. The old string of 'abc'was deallocated.

Once again, we can use the id() built-in function to help show us exactly what happened. If you recall,
id() returns the "identity" of an object. This value is as close to a "memory address" as we can get in
Python.

>> s = 'abc'
>>>
>>> id(s)
135060856
>>>
>>> s += 'def'
>>> id(s)
135057968

Note how the identities are different for the string before and after the update. Another test of
mutability is to try to modify individual characters or substrings of a string. We will now show how any
update of a single character or a slice is not allowed:

>>> s
'abcdef'
>>>
>>> s[2] = 'C'
Traceback (innermost last):
 File "<stdin>", line 1, in ?
AttributeError: __setitem__
>>>
>>> s[3:6] = 'DEF'
Traceback (innermost last):
 File "<stdin>", line 1, in ?
AttributeError: __setslice__

Both operations result in an error. In order to perform the actions that we want, we will have to create
new strings using substrings of the existing string, then assign those new strings back to string:

>>> s
'abcdef'
>>>
>>> s = '%sC%s' % (s[0:2], s[3:])
>>> s
'abCdef'
>>>
>>> s[0:3] + 'DEF'
'abCDEF'

So for immutable objects like strings, we make the observation that only valid expressions on the left-
hand side of an assignment (to the left of the equals sign [=]) must be the variable representation of
an entire object such as a string, not single characters or substrings. There is no such restriction for the
expression on the right-hand side.

file:///D|/1/0132269937/ch06lev1sec7.html (4 von 5) [13.11.2007 16:23:09]

file:///D|/1/0132269937/14051536.html

Section 6.7. Special Features of Strings

file:///D|/1/0132269937/ch06lev1sec7.html (5 von 5) [13.11.2007 16:23:09]

Section 6.8. Unicode

6.8. Unicode

Unicode string support, introduced to Python in version 1.6, is used to convert between multiple double-
byte character formats and encodings, and includes as much functionality as possible to manage these
strings. With the addition of string methods (see Section 6.6), Python strings and regular expressions
are fully featured to handle a wide variety of applications requiring Unicode string storage, access, and
manipulation. We will do our best here to give an overview of Unicode support in Python. But first, let us
take a look at some basic terminology and then ask ourselves, just what is Unicode?

6.8.1. Terminology

Table 6.8. Unicode Terminology

Term Meaning

ASCII American Standard Code for Information Interchange

BMP Basic Multilingual Plane (plane 0)

BOM Byte Order Mark (character that denotes byte-ordering)

CJK/CJKV Abbreviation for Chinese-Japanese-Korean (and -Vietnamese)

Code point Similar to an ASCII value, represents any value in the Unicode codespace, e.g., within
range(1114112) or integers from 0x000000 to 0x10FFFF.

Octet Ordered sequence of eight bits as a single unit, aka (8-bit) byte

UCS Universal Character Set

UCS2 Universal Character Set coded in 2 octets (also see UTF-16)

UCS4 Universal Character Set coded in 4 octets

UTF Unicode or UCS Transformation Format

UTF-8 8-bit UTF Transformation Format (unsigned byte sequence one to four bytes in length)

UTF-16 16-bit UTF Transformation Format (unsigned byte sequence usually one 16-bit word [two
bytes] in length; also see UCS2)

6.8.2. What Is Unicode?

Unicode is the miracle and the mystery that makes it possible for computers to support virtually any
language on the planet. Before Unicode, there was ASCII, and ASCII was simple. Every English
character was stored in the computer as a seven bit number between 32 and 126. When a user entered
the letter A into a text file, the computer would write the letter A to disk as the number 65. Then when
the computer opened that file it would translate that number 65 back into an A when it displayed the file
contents on the screen.

ASCII files were compact and easy to read. A program could just read in each byte from a file and

file:///D|/1/0132269937/ch06lev1sec8.html (1 von 8) [13.11.2007 16:23:10]

Section 6.8. Unicode

convert the numeric value of the byte into the corresponding letter. But ASCII only had enough numbers
to represent 95 printable characters. Later software manufacturers extended ASCII to 8 bits, which
provided an additional 128 characters, but 223 characters still fell far short of the thousands required to
support all non-European languages.

Unicode overcomes the limitations of ASCII by using one or more bytes to represent each character.
Using this system, Unicode can currently represent over 90,000 characters.

6.8.3. How Do You Use Unicode?

In the early days, Python could only handle 8-bit ASCII. Strings were simple data types. To manipulate
a string, a user had to create a string and then pass it to one of the functions in the string module.
Then in 2000, we saw the releases of Python 1.6 (and 2.0), the first time Unicode was supported in
Python.

In order to make Unicode strings and ASCII strings look as similar as possible, Python strings were
changed from being simple data types to real objects. ASCII strings became StringTypes and Unicode
strings became UnicodeTypes. Both behave very similarly. Both have string methods that correspond to
functions in the string module. The string module was not updated and remained ASCII only. It is now
deprecated and should never be used in any Unicode-compliant code. It remains in Python just to keep
legacy code from breaking.

Handling Unicode strings in Python is not that different from handling ordinary ASCII strings. Python
calls hard-coded strings string literals. By default all string literals are treated as ASCII. This can be
changed by adding the prefix u to a string literal. This tells Python that the text inside of the string
should be treated as Unicode.

>>> "Hello World" # ASCII string
>>> u"Hello World" # Unicode string

The built-in functions str() and chr() were not updated to handle Unicode. They only work with regular
ASCII strings. If a Unicode string is passed to str() it will silently convert the Unicode string to ASCII. If
the Unicode string contains any characters that are not supported by ASCII, str() will raise an
exception. Likewise, chr() can only work with numbers 0 to 255. If you pass it a numeric value (of a
Unicode character, for example) outside of that range, it will raise an exception.

New BIFs unicode() and unichr() were added that act just like str() and chr() but work with Unicode
strings. The function unicode() can convert any Python data type to a Unicode string and any object to a
Unicode representation if that object has an __unicode__() method. For a review of these functions, see
Sections 6.1.3 and 6.5.3.

6.8.4. What Are Codecs?

The acronym codec stands for COder/DECoder. It is a specification for encoding text as byte values and
decoding those byte values into text. Unlike ASCII, which used only one byte to encode a character into
a number, Unicode uses multiple bytes. Plus Unicode supports several different ways of encoding
characters into bytes. Four of the best-known encodings that these codecs can convert are: ASCII, ISO
8859-1/Latin-1, UTF-8, and UTF-16.

The most popular is UTF-8, which uses one byte to encode all the characters in ASCII. This makes it
easier for a programmer who has to deal with both ASCII and Unicode text since the numeric values of

file:///D|/1/0132269937/ch06lev1sec8.html (2 von 8) [13.11.2007 16:23:10]

Section 6.8. Unicode

the ASCII characters are identical in Unicode.

For other characters, UTF-8 may use one or four bytes to represent a letter, three (mainly) for CJK/East
Asian characters, and four for some rare, special use, or historic characters. This makes it more difficult
for programmers who have to read and write the raw Unicode data since they cannot just read in a fixed
number of bytes for each character. Luckily for us, Python hides all of the details of reading and writing
the raw Unicode data for us, so we don't have to worry about the complexities of reading multibyte
characters in text streams. All the other codecs are much less popular than UTF-8. In fact, I would say
most Python programmers will never have to deal with them, save perhaps UTF-16.

UTF-16 is probably the next most popular codec. It is simpler to read and write its raw data since it
encodes every character as a single 16-bit word represented by two bytes. Because of this, the ordering
of the two bytes matters. The regular UTF-16 code requires a Byte Order Mark (BOM), or you have to
specifically use UTF-16-LE or UTF-16-BE to denote explicit little endian and big endian ordering.

UTF-16 is technically also variable-length like UTF-8 is, but this is uncommon usage. (People generally
do not know this or simply do not even care about the rarely used code points in other planes outside
the Basic Multilingual Plane (BMP). However, its format is not a superset of ASCII and makes it
backward-incompatible with ASCII. Therefore, few programs implement it since most need to support
legacy ASCII text.

6.8.5. Encoding and Decoding

Unicode support for multiple codecs means additional hassle for the developer. Each time you write a
string to a file, you have to specify the codec (also called an "encoding") that should be used to
translate its Unicode characters to bytes. Python minimizes this hassle for us by providing a Unicode
string method called encode() that reads the characters in the string and outputs the right bytes for the
codec we specify.

So every time we write a Unicode string to disk we have to "encode" its characters as a series of bytes
using a particular codec. Then the next time we read the bytes from that file, we have to "decode" the
bytes into a series of Unicode characters that are stored in a Unicode string object.

Simple Example

The script below creates a Unicode string, encodes it as some bytes using the UTF-8 codec, and saves it
to a file. Then it reads the bytes back in from disk and decodes them into a Unicode string. Finally, it
prints the Unicode string so we can see that the program worked correctly.

Line-by-Line Explanation

Lines 17

The usual setup plus a doc string and some constants for the codec we are using and the name of the
file we are going to store the string in.

Lines 919

Here we create a Unicode string literal, encode it with our codec, and write it out to disk (lines 9-13).
Next, we read the data back in from the file, decode it, and display it to the screen, suppressing the
print statement's NEWLINE because we are using the one saved with the string (lines 15-19).

file:///D|/1/0132269937/ch06lev1sec8.html (3 von 8) [13.11.2007 16:23:10]

Section 6.8. Unicode

Example 6.2. Simple Unicode String Example (uniFile.py)

This simple script writes a Unicode string to disk and reads it back in for display. It encodes
it into UTF-8 for writing to disk, which it must then decode in to display it.

1 #!/usr/bin/env python
2 '''
3 An example of reading and writing Unicode strings: Writes
4 a Unicode string to a file in utf-8 and reads it back in.
5 '''
6 CODEC = 'utf-8'
7 FILE = 'unicode.txt'
8
9 hello_out = u"Hello world\n"
10 bytes_out = hello_out.encode(CODEC)
11 f = open(FILE, "w")
12 f.write(bytes_out)
13 f.close()
14
15 f = open(FILE, "r")
16 bytes_in = f.read()
17 f.close()
18 hello_in = bytes_in.decode(CODEC)
19 print hello_in,

When we run the program we get the following output:

$ unicode_example.py
Hello World

We also find a file called unicode.txt on the file system that contains the same string the program
printed out.

$ cat unicode.txt
Hello World!

Simple Web Example

We show a similar and simple example of using Unicode with CGI in the Web Programming chapter
(Chapter 20).

6.8.6. Using Unicode in Real Life

Examples like this make it look deceptively easy to handle Unicode in your code, and it is pretty easy, as
long as you follow these simple rules:

● Always prefix your string literals with u.
● Never use str()... always use unicode() instead.

file:///D|/1/0132269937/ch06lev1sec8.html (4 von 8) [13.11.2007 16:23:10]

Section 6.8. Unicode

● Never use the outdated string moduleit blows up when you pass it any non-ASCII characters.
● Avoid unnecessary encoding and decode of Unicode strings in your program. Only call the encode

() method right before you write your text to a file, database, or the network, and only call the
decode() method when you are reading it back in.

These rules will prevent 90 percent of the bugs that can occur when handling Unicode text. The problem
is that the other 10 percent of the bugs are beyond your control. The greatest strength of Python is the
huge library of modules that exist for it. They allow Python programmers to write a program in ten lines
of code that might require a hundred lines of code in another language. But the quality of Unicode
support within these modules varies widely from module to module.

Most of the modules in the standard Python library are Unicode compliant. The biggest exception is the
pickle module. Pickling only works with ASCII strings. If you pass it a Unicode string to unpickle, it will
raise an exception. You have to convert your string to ASCII first. It is best to avoid using text-based
pickles. Fortunately, the binary format is now the default and it is better to stick with it. This is
especially true if you are storing your pickles in a database. It is much better to save them as a BLOB
than to save them as a TEXT or VARCHAR field and then have your pickles get corrupted when someone
changes your column type to Unicode.

If your program uses a bunch of third-party modules, then you will probably run into a number of
frustrations as you try to get all of the programs to speak Unicode to each other. Unicode tends to be an
all-or-nothing proposition. Each module in your system (and all systems your program interfaces with)
has to use Unicode and the same Unicode codec. If any one of these systems does not speak Unicode,
you may not be able to read and save strings properly.

As an example, suppose you are building a database-enabled Web application that reads and writes
Unicode. In order to support Unicode you need the following pieces to all support Unicode:

● Database server (MySQL, PostgreSQL, SQL Server, etc.)
● Database adapter (MySQLdb, etc.)
● Web framework (mod_python, cgi, Zope, Plane, Django etc.)

The database server is often the easiest part. You just have to make sure that all of your tables use the
UTF-8 encoding.

The database adapter can be trickier. Some database adapters support Unicode, some do not. MySQLdb,
for instance, does not default to Unicode mode. You have to use a special keyword argument
use_unicode in the connect() method to get Unicode strings in the result sets of your queries.

Enabling Unicode is very simple to do in mod_python. Just set the text-encoding field to "utf-8" on the
request object and mod_python handles the rest. Zope and other more complex systems may require
more work.

6.8.7. Real-Life Lessons Learned

Mistake #1: You have a large application to write under significant time pressure. Foreign language
support was a requirement, but no specifics are made available by the product manager. You put off
Unicode-compliance until the project is mostly complete ... it is not going to be that much effort to add
Unicode support anyway, right?

Result #1: Failure to anticipate the foreign-language needs of end-users as well as integration of
Unicode support with the other foreign language-oriented applications that they used. The retrofit of the
entire system would be extremely tedious and time-consuming.

file:///D|/1/0132269937/ch06lev1sec8.html (5 von 8) [13.11.2007 16:23:10]

Section 6.8. Unicode

Mistake #2: Using the string module everywhere including calling str() and chr() in many places
throughout the code.

Result #2: Convert to string methods followed by global search-and-replace of str() and chr() with
unicode() and unichr(). The latter breaks all pickling. The pickling format has to be changed to binary.
This in turn breaks the database schema, which needs to be completely redone.

Mistake #3: Not confirming that all auxiliary systems support Unicode fully.

Result #3: Having to patch those other systems, some of which may not be under your source control.
Fixing Unicode bugs everywhere leads to code instability and the distinct possibility of introducing new
bugs.

Summary: Enabling full Unicode and foreign-language compliance of your application is a project on its
own. It needs to be well thought out and planned carefully. All software and systems involved must be
"checked off," including the list of Python standard library and/or third-party external modules that are
to be used. You may even have to bring onboard an entire team with internationalization (or "I18N")
experience.

6.8.8. Unicode Support in Python

unicode() Built-in Function

The Unicode factory function should operate in a manner similar to that of the Unicode string operator
(u / U). It takes a string and returns a Unicode string.

decode()/encode() Built-in Methods

The decode() and encode() built-in methods take a string and return an equivalent decoded/encoded
string. decode() and encode() work for both regular and Unicode strings. decode() was added to Python
in 2.2.

Unicode Type

A Unicode string object is subclassed from basestring and an instance is created by using the unicode()
factory function, or by placing a u or U in front of the quotes of a string. Raw strings are also supported.
Prepend a ur or UR to your string literal.

Unicode Ordinals

The standard ord() built-in function should work the same way. It was enhanced recently to support
Unicode objects. The unichr() built-in function returns a Unicode object for a character (provided it is a
32-bit value); otherwise, a ValueError exception is raised.

Coercion

Mixed-mode string operations require standard strings to be converted to Unicode objects.

file:///D|/1/0132269937/ch06lev1sec8.html (6 von 8) [13.11.2007 16:23:10]

Section 6.8. Unicode

Exceptions

UnicodeError is defined in the exceptions module as a subclass of ValueError. All exceptions related to
Unicode encoding/decoding should be subclasses of UnicodeError. See also the string encode() method.

Standard Encodings

Table 6.9 presents an extremely short list of the more common encodings used in Python. For a more
complete listing, please see the Python Documentation. Here is an online link:

http://docs.python.org/lib/standard-encodings.html

RE Engine Unicode-Aware

The regular expression engine should be Unicode aware. See the re Code Module sidebar in Section 6.9.

Table 6.9. Common Unicode Codecs/Encodings

Codec Description

utf-8 8-bit variable length encoding (default encoding)

utf-16 16-bit variable length encoding (little/big endian)

utf-16-le UTF-16 but explicitly little endian

utf-16-be UTF-16 but explicitly big endian

ascii 7-bit ASCII codepage

iso-8859-1 ISO 8859-1 (Latin-1) codepage

unicode-escape (See Python Unicode Constructors for a definition)

raw-unicode-escape (See Python Unicode Constructors for a definition)

native Dump of the internal format used by Python

String Format Operator

For Python format strings: %s performs str(u) for Unicode objects embedded in Python strings, so the
output will be u.encode(<default encoding>). If the format string is a Unicode object, all parameters are
coerced to Unicode first and then put together and formatted according to the format string. Numbers
are first converted to strings and then to Unicode. Python strings are interpreted as Unicode strings
using the <default encoding>. Unicode objects are taken as is. All other string formatters should work
accordingly. Here is an example:

u"%s %s" % (u"abc", "abc") u"abc abc"

file:///D|/1/0132269937/ch06lev1sec8.html (7 von 8) [13.11.2007 16:23:10]

http://docs.python.org/lib/standard-encodings.html

Section 6.8. Unicode

file:///D|/1/0132269937/ch06lev1sec8.html (8 von 8) [13.11.2007 16:23:10]

Section 6.9. Related Modules

6.9. Related Modules

Table 6.10 lists the key related modules for strings that are part of the Python standard library.

Table 6.10. Related Modules for String Types

Module Description

string String manipulation and utility functions, i.e., Template class

re Regular expressions: powerful string pattern matching

struct Convert strings to/from binary data format

c/StringIO String buffer object that behaves like a file

base64 Base 16, 32, and 64 data encoding and decoding

codecs Codec registry and base classes

crypt Performs one-way encryption cipher

difflib
[a] Various "differs" for sequences

hashlib
[b] API to many different secure hash and message digest algorithms

hmac
[c] Keyed-hashing for message authentication

md5
[d] RSA's MD5 message digest authentication

rotor Provides multi-platform en/decryption services

sha
[d] NIST's secure hash algorithm SHA

stringprep
[e] Prepares Unicode strings for use in Internet protocols

textwrap
[e] Text-wrapping and filling

unicodedata Unicode database

[a] New in Python 2.1.

[b] New in Python 2.5.

[c] New in Python 2.2.

file:///D|/1/0132269937/ch06lev1sec9.html (1 von 2) [13.11.2007 16:23:10]

Section 6.9. Related Modules

[d] Obsoleted in Python 2.5 by hashlib module.

[e] New in Python 2.3.

Core Module: re

Regular expressions (REs) provide advanced pattern matching scheme
for strings. Using a separate syntax that describes these patterns, you
can effectively use them as "filters" when passing in the text to
perform the searches on. These filters allow you to extract the
matched patterns as well as perform find-and-replace or divide up
strings based on the patterns that you describe.

The re module, introduced in Python 1.5, obsoletes the original regex
and regsub modules from earlier releases. It represented a major
upgrade in terms of Python's support for regular expressions, adopting
the complete Perl syntax for REs. In Python 1.6, a completely new
engine was written (SRE), which added support for Unicode strings as
well as significant performance improvements. SRE replaces the old
PCRE engine, which had been under the covers of the regular
expression modules.

Some of the key functions in the re module include: compile()
compiles an RE expression into a reusable RE object; match() attempts
to match a pattern from the beginning of a string; search() searches
for any matching pattern in the string; and sub() performs a search-
and-replace of matches. Some of these functions return match objects
with which you can access saved group matches (if any were found).
All of Chapter 15 is dedicated to regular expressions.

file:///D|/1/0132269937/ch06lev1sec9.html (2 von 2) [13.11.2007 16:23:10]

Section 6.10. Summary of String Highlights

6.10. Summary of String Highlights

Characters Delimited by Quotation Marks

You can think of a string as a Python data type that you can consider as an array or contiguous set of
characters between any pair of Python quotation symbols, or quotes. The two most common quote
symbols for Python are the single quote, a single forward apostrophe ('), and the double quotation
mark ("). The actual string itself consists entirely of those characters in between and not the quote
marks themselves.

Having the choice between two different quotation marks is advantageous because it allows one type of
quote to serve as a string delimiter while the other can be used as characters within the string without
the need for special escape characters. Strings enclosed in single quotes may contain double quotes as
characters and vice versa.

No Separate Character Type

Strings are the only literal sequence type, a sequence of characters. However, characters are not a type,
so strings are the lowest-level primitive for character storage and manipulation. Characters are simply
strings of length one.

String Format Operator (%) Provides printf()-like Functionality

The string format operator (see Section 6.4.1) provides a flexible way to create a custom string based
on variable input types. It also serves as a familiar interface to formatting data for those coming from
the C/C++ world.

Triple Quotes

In Section 6.7.2, we introduced the notion of triple quotes, which are strings that can have special
embedded characters like NEWLINEs and tabs. Triple-quoted strings are delimited by pairs of three
single (' ' ') or double (" " ") quotation marks.

Raw Strings Takes Special Characters Verbatim

In Section 6.4.2, we introduced raw strings and discussed how they do not interpret special characters
escaped with the backslash. This makes raw strings ideal for situations where strings must be taken
verbatim, for example, when describing regular expressions.

Python Strings Do Not End with NUL or '\0'

One major problem in C is running off the end of a string into memory that does not belong to you. This
occurs when strings in C are not properly terminated with the NUL or '\0' character (ASCII value of
zero). Along with managing memory for you, Python also removes this little burden or annoyance.
Strings in Python do not terminate with NUL, and you do not have to worry about adding them on.
Strings consist entirely of the characters that were designated and nothing more.

file:///D|/1/0132269937/ch06lev1sec10.html (1 von 2) [13.11.2007 16:23:11]

file:///D|/1/0132269937/14051536.html

Section 6.10. Summary of String Highlights

file:///D|/1/0132269937/ch06lev1sec10.html (2 von 2) [13.11.2007 16:23:11]

Section 6.11. Lists

6.11. Lists

Like strings, lists provide sequential storage through an index offset and access to single or consecutive
elements through slices. However, the comparisons usually end there. Strings consist only of characters
and are immutable (cannot change individual elements), while lists are flexible container objects that
hold an arbitrary number of Python objects. Creating lists is simple; adding to lists is easy, too, as we
see in the following examples.

The objects that you can place in a list can include standard types and objects as well as user-defined
ones. Lists can contain different types of objects and are more flexible than an array of C structs or
Python arrays (available through the external array module) because arrays are restricted to containing
objects of a single type. Lists can be populated, empty, sorted, and reversed. Lists can be grown and
shrunk. They can be taken apart and put together with other lists. Individual or multiple items can be
inserted, updated, or removed at will.

Tuples share many of the same characteristics of lists and although we have a separate section on
tuples, many of the examples and list functions are applicable to tuples as well. The key difference is
that tuples are immutable, i.e., read-only, so any operators or functions that allow updating lists, such
as using the slice operator on the left-hand side of an assignment, will not be valid for tuples.

How to Create and Assign Lists

Creating lists is as simple as assigning a value to a variable. You handcraft a list (empty or with
elements) and perform the assignment. Lists are delimited by surrounding square brackets ([]). You
can also use the factory function.

>>> aList = [123, 'abc', 4.56, ['inner', 'list'], 7-9j]
>>> anotherList = [None, 'something to see here']
>>> print aList
[123, 'abc', 4.56, ['inner', 'list'], (7-9j)]
>>> print anotherList
[None, 'something to see here']
>>> aListThatStartedEmpty = []
>>> print aListThatStartedEmpty
[]
>>> list('foo')
['f', 'o', 'o']

How to Access Values in Lists

Slicing works similar to strings; use the square bracket slice operator ([]) along with the index or
indices.

>>> aList[0]
123
>>> aList[1:4]
['abc', 4.56, ['inner', 'list']]
>>> aList[:3]
[123, 'abc', 4.56]
>>> aList[3][1]
'list'

file:///D|/1/0132269937/ch06lev1sec11.html (1 von 2) [13.11.2007 16:23:11]

Section 6.11. Lists

How to Update Lists

You can update single or multiple elements of lists by giving the slice on the left-hand side of the
assignment operator, and you can add to elements in a list with the append() method:

>>> aList
[123, 'abc', 4.56, ['inner', 'list'], (7-9j)]
>>> aList[2]
4.56
>>> aList[2] = 'float replacer'
>>> aList
[123, 'abc', 'float replacer', ['inner', 'list'], (7-9j)]
>>>
>>> anotherList.append("hi, i'm new here")
>>> print anotherList
[None, 'something to see here', "hi, i'm new here"]
>>> aListThatStartedEmpty.append('not empty anymore')
>>> print aListThatStartedEmpty
['not empty anymore']

How to Remove List Elements and Lists

To remove a list element, you can use either the del statement if you know exactly which element(s)
you are deleting or the remove() method if you do not know.

>>> aList
[123, 'abc', 'float replacer', ['inner', 'list'], (7-9j)]
>>> del aList[1]
>>> aList
[123, 'float replacer', ['inner', 'list'], (7-9j)]
>>> aList.remove(123)
>>> aList
['float replacer', ['inner', 'list'], (7-9j)]

You can also use the pop() method to remove and return a specific object from a list.

Normally, removing an entire list is not something application programmers do. Rather, they tend to let
it go out of scope (i.e., program termination, function call completion, etc.) and be deallocated, but if
they do want to explicitly remove an entire list, they use the del statement:

del aList

file:///D|/1/0132269937/ch06lev1sec11.html (2 von 2) [13.11.2007 16:23:11]

Section 6.12. Operators

6.12. Operators

6.12.1. Standard Type Operators

In Chapter 4, we introduced a number of operators that apply to most objects, including the standard
types. We will take a look at how some of those apply to lists.

>>> list1 = ['abc', 123]
>>> list2 = ['xyz', 789]
>>> list3 = ['abc', 123]
>>> 1ist1 < list2
True
>>> list2 < list3
False
>>> list2 > list3 and list1 == list3
True

When using the value comparison operators, comparing numbers and strings is straightforward, but not
so much for lists, however. List comparisons are somewhat tricky, but logical. The comparison operators
use the same algorithm as the cmp() built-in function. The algorithm basically works like this: the
elements of both lists are compared until there is a determination of a winner. For example, in our
example above, the output of 'abc' versus 'xyz' is determined immediately, with 'abc' < 'xyz',
resulting in list1 < list2 and list2 >= list3. Tuple comparisons are performed in the same manner as
lists.

6.12.2. Sequence Type Operators

Slices ([] and [:])

Slicing with lists is very similar to strings, but rather than using individual characters or substrings,
slices of lists pull out an object or a group of objects that are elements of the list operated on. Focusing
specifically on lists, we make the following definitions:

>>> num_list = [43, -1.23, -2, 6.19e5]
>>> str_list = ['jack', 'jumped', 'over', 'candlestick']
>>> mixup_list = [4.0, [1, 'x'], 'beef', -1.9+6j]

Slicing operators obey the same rules regarding positive and negative indexes, starting and ending
indexes, as well as missing indexes, which default to the beginning or to the end of a sequence.

>>> num_list[1]
-1.23
>>>
>>> num_list[1:]
[-1.23, -2, 619000.0]
>>>
>>> num_list[2:-1]
[-2]
>>>

file:///D|/1/0132269937/ch06lev1sec12.html (1 von 5) [13.11.2007 16:23:12]

Section 6.12. Operators

>>> str_list[2]
'over'
>>> str_list[:2]
['jack', 'jumped']
>>>
>>> mixup_list
[4.0, [1, 'x'], 'beef', (-1.9+6j)]
>>> mixup_list[1]
[1, 'x']

Unlike strings, an element of a list might also be a sequence, implying that you can perform all the
sequence operations or execute any sequence built-in functions on that element. In the example below,
we show that not only can we take a slice of a slice, but we can also change it, and even to an object of
a different type. You will also notice the similarity to multidimensional arrays.

>>> mixup_list[1][1]
'x'
>>> mixup_list[1][1] = -64.875
>>> mixup_list
[4.0, [1, -64.875], 'beef', (-1.9+6j)]

Here is another example using num_list:

>>> num_list
[43, -1.23, -2, 6.19e5]
>>>
>>> num_list[2:4] = [16.0, -49]
>>>
>>> num_list
[43, -1.23, 16.0, -49]
>>>
>>> num_list[0] = [65535L, 2e30, 76.45-1.3j]
>>>
>>> num_list
[[65535L, 2e+30, (76.45-1.3j)], -1.23, 16.0, -49]

Notice how, in the last example, we replaced only a single element of the list, but we replaced it with a
list. So as you can tell, removing, adding, and replacing things in lists are pretty freeform. Keep in mind
that in order to splice elements of a list into another list, you have to make sure that the left-hand side
of the assignment operator (=) is a slice, not just a single element.

Membership (in, not in)

With lists (and tuples), we can check whether an object is a member of a list (or tuple).

>>> mixup_list
[4.0, [1, 'x'], 'beef', (-1.9+6j)]
>>>
>>> 'beef' in mixup_list
True
>>>
>>> 'x' in mixup_list

file:///D|/1/0132269937/ch06lev1sec12.html (2 von 5) [13.11.2007 16:23:12]

Section 6.12. Operators

False
>>>
>>> 'x' in mixup_list[1]
True
>>> num_list

[[65535L, 2e+030, (76.45-1.3j)], -1.23, 16.0, -49]
>>>
>>> -49 in num_list
True
>>>
>>> 34 in num_list
False
>>>
>>> [65535L, 2e+030, (76.45-1.3j)] in num_list
True

Note how 'x' is not a member of mixup_list. That is because 'x' itself is not actually a member of
mixup_list. Rather, it is a member of mixup_uplist[1], which itself is a list. The membership operator is
applicable in the same manner for tuples.

Concatenation (+)

The concatenation operator allows us to join multiple lists together. Note in the examples below that
there is a restriction of concatenating like objects. In other words, you can concatenate only objects of
the same type. You cannot concatenate two different types even if both are sequences.

>>> num_list = [43, -1.23, -2, 6.19e5]
>>> str_list = ['jack', 'jumped', 'over', 'candlestick']
>>> mixup_list = [4.0, [1, 'x'], 'beef', -1.9+6j]
>>>
>>> num_list + mixup_list
[43, -1.23, -2, 619000.0, 4.0, [1, 'x'], 'beef', (-1.9+6j)]
>>>
>>> str_list + num_list
['jack', 'jumped', 'over', 'candlestick', 43, -1.23, -2, 619000.0]

As we will discover in Section 6.13, starting in Python 1.5.2, you can use the extend() method in place
of the concatenation operator to append the contents of a list to another. Using extend() is
advantageous over concatenation because it actually appends the elements of the new list to the
original, rather than creating a new list from scratch like + does. extend() is also the method used by the
augmented assignment or in-place concatenation operator (+=), which debuted in Python 2.0.

We would also like to point out that the concatenation operator does not facilitate adding individual
elements to a list. The upcoming example illustrates a case where attempting to add a new item to the
list results in failure.

>>> num_list + 'new item'

file:///D|/1/0132269937/ch06lev1sec12.html (3 von 5) [13.11.2007 16:23:12]

Section 6.12. Operators

Traceback (innermost last):
 File "<stdin>", line 1, in ?
TypeError: illegal argument type for built-in operation

This example fails because we had different types to the left and right of the concatenation operator. A
combination of (list + string) is not valid. Obviously, our intention was to add the 'new item' string to
the list, but we did not go about it the proper way. Fortunately, we have a solution:

Use the append() list built-in method (we will formally introduce append() and all other built-in methods
in Section 6.13):

>>> num_list.append('new item')

Repetition (*)

Use of the repetition operator may make more sense with strings, but as a sequence type, lists and
tuples can also benefit from this operation, if needed:

>>> num_list * 2
[43, -1.23, -2, 619000.0, 43, -1.23, -2, 619000.0]
>>>
>>> num_list * 3
[43, -1.23, -2, 619000.0, 43, -1.23, -2, 619000.0, 43,
-1.23, -2, 619000.0]

Augmented assignment also works, beginning in Python 2.0:

>>> hr = '-'
>>> hr *= 30
>>> hr
'------------------------------'

6.12.3. List Type Operators and List Comprehensions

There are really no special list-only operators in Python. Lists can be used with most object and
sequence operators. In addition, list objects have their own methods. One construct that lists do have
however, are list comprehensions. These are a combination of using list square brackets and a for-loop
inside, a piece of logic that dictates the contents of the list object to be created. We cover list
comprehensions in Chapter 8, but we present a simple example here as well as a few more throughout
the remainder of the the chapter:

>>> [i * 2 for i in [8, -2, 5]]
[16, -4, 10]
>>> [i for i in range(8) if i % 2 == 0]
[0, 2, 4, 6]

file:///D|/1/0132269937/ch06lev1sec12.html (4 von 5) [13.11.2007 16:23:12]

file:///D|/1/0132269937/14051536.html

Section 6.12. Operators

file:///D|/1/0132269937/ch06lev1sec12.html (5 von 5) [13.11.2007 16:23:12]

Section 6.13. Built-in Functions

6.13. Built-in Functions

6.13.1. Standard Type Functions

cmp()

In Section 4.6.1, we introduced the cmp() built-in function with examples of comparing numbers and
strings. But how would cmp() work with other objects such as lists and tuples, which can contain not
only numbers and strings, but other objects like lists, tuples, dictionaries, and even user-created objects?

>>> list1, list2 = [123, 'xyz'], [456, 'abc']
>>> cmp(list1, list2)
-1
>>>
>>> cmp(list2, list1)
1
>>> list3 = list2 + [789]
>>> list3
[456, 'abc', 789]
>>>
>>> cmp(list2, list3)
-1

Compares are straightforward if we are comparing two objects of the same type. For numbers and
strings, the direct values are compared, which is trivial. For sequence types, comparisons are somewhat
more complex, but similar in manner. Python tries its best to make a fair comparison when one cannot
be made, i.e., when there is no relationship between the objects or when types do not even have
compare functions, then all bets are off as far as obtaining a "logical" decision.

Before such a drastic state is arrived at, more safe-and-sane ways to determine an inequality are
attempted. How does the algorithm start? As we mentioned briefly above, elements of lists are iterated
over. If these elements are of the same type, the standard compare for that type is performed. As soon
as an inequality is determined in an element compare, that result becomes the result of the list
compare. Again, these element compares are for elements of the same type. As we explained earlier,
when the objects are different, performing an accurate or true comparison becomes a risky proposition.

When we compare list1 with list2, both lists are iterated over. The first true comparison takes place
between the first elements of both lists, i.e., 123 vs. 456. Since 123 < 456, list1 is deemed "smaller."

If both values are the same, then iteration through the sequences continues until either a mismatch is
found, or the end of the shorter sequence is reached. In the latter case, the sequence with more
elements is deemed "greater." That is the reason why we arrived above at list2 < list3. Tuples are
compared using the same algorithm. We leave this section with a summary of the algorithm highlights:

1.

Compare elements of both lists.

2.

file:///D|/1/0132269937/ch06lev1sec13.html (1 von 4) [13.11.2007 16:23:12]

Section 6.13. Built-in Functions

If elements are of the same type, perform the compare and return the result.

3.

If elements are different types, check to see if they are numbers.

a.

If numbers, perform numeric coercion if necessary and compare.

b.

If either element is a number, then the other element is "larger" (numbers are "smallest").

c.

Otherwise, types are sorted alphabetically by name.

4.

If we reach the end of one of the lists, the longer list is "larger."

5.

If we exhaust both lists and share the same data, the result is a tie, meaning that 0 is returned.

6.13.2. Sequence Type Functions

len()

For strings, len() gives the total length of the string, as in the number of characters. For lists (and
tuples), it will not surprise you that len() returns the number of elements in the list (or tuple).
Container objects found within count as a single item. Our examples below use some of the lists already
defined above in previous sections.

>>> len(num_list)
4
>>>
>>> len(num_list*2)
8

max() and min()

max() and min() did not have a significant amount of usage for strings since all they did was to find the
"largest" and "smallest" characters (lexicographically) in the string. For lists (and tuples), their
functionality is more defined. Given a list of like objects, i.e., numbers or strings only, max() and min()
could come in quite handy. Again, the quality of return values diminishes as mixed objects come into
play. However, more often than not, you will be using these functions in a situation where they will
provide the results you are seeking. We present a few examples using some of our earlier-defined lists.

file:///D|/1/0132269937/ch06lev1sec13.html (2 von 4) [13.11.2007 16:23:12]

Section 6.13. Built-in Functions

>>> max(str_list)
'park'
>>> max(num_list)
[65535L, 2e+30, (76.45-1.3j)]
>>> min(str_list)
'candlestick'
>>> min(num_list)
-49

sorted() and reversed()

>>> s = ['They', 'stamp', 'them', 'when', "they're", 'small']
>>> for t in reversed(s):
... print t,
...
small they're when them stamp They
>>> sorted(s)
['They', 'small', 'stamp', 'them', "they're", 'when']

For beginners using strings, notice how we are able to mix single and double quotes together in
harmony with the contraction "they're." Also to those new to strings, this is a note reminding you that
all string sorting is lexicographic and not alphabetic (the letter "T" comes before the letter "a" in the
ASCII table.)

enumerate() and zip()

>>> albums = ['tales', 'robot', 'pyramid']
>>> for i, album in enumerate(albums):
... print i, album
...
0 tales
1 robot
2 pyramid
>>>
>>> fn = ['ian', 'stuart', 'david']
>>> ln = ['bairnson', 'elliott', 'paton']
>>>
>>> for i, j in zip(fn, ln):
... print ('%s %s' % (i,j)).title()
...
Ian Bairnson
Stuart Elliott
David Paton

sum()

>>> a = [6, 4, 5]
>>> reduce(operator.add, a)
15
>>> sum(a)
15

file:///D|/1/0132269937/ch06lev1sec13.html (3 von 4) [13.11.2007 16:23:12]

Section 6.13. Built-in Functions

>>> sum(a, 5)
20
>>> a = [6., 4., 5.]
>>> sum(a)
15.0

list() and tuple()

The list() and tuple() factory functions take iterables like other sequences and make new lists and
tuples, respectively, out of the (just shallow-copied) data. Although strings are also sequence types,
they are not commonly used with list() and tuple(). These built-in functions are used more often to
convert from one type to the other, i.e., when you have a tuple that you need to make a list (so that
you can modify its elements) and vice versa.

>>> aList = ['tao', 93, 99, 'time']
>>> aTuple = tuple(aList)
>>> aList, aTuple
(['tao', 93, 99, 'time'], ('tao', 93, 99, 'time'))
>>> aList == aTuple
False
>>> anotherList = list(aTuple)
>>> aList == anotherList
True
>>> aList is anotherList
False
>>> [id(x) for x in aList, aTuple, anotherList]
[10903800, 11794448, 11721544]

As we already discussed at the beginning of the chapter, neither list() nor tuple() performs true
conversions (see also Section 6.1.2). In other words, the list you passed to tuple() does not turn into a
list, and the tuple you give to list() does not really become a list. Although the data set for both (the
original and new object) is the same (hence satisfying ==), neither variable points to the same object
(thus failing is). Also notice that, even though their values are the same, a list cannot "equal" a tuple.

6.13.3. List Type Built-in Functions

There are currently no special list-only built-in functions in Python unless you consider range() as oneits
sole function is to take numeric input and generate a list that matches the criteria. range() is covered in
Chapter 8. Lists can be used with most object and sequence built-in functions. In addition, list objects
have their own methods.

file:///D|/1/0132269937/ch06lev1sec13.html (4 von 4) [13.11.2007 16:23:12]

file:///D|/1/0132269937/14051536.html

Section 6.14. List Type Built-in Methods

6.14. List Type Built-in Methods

Lists in Python have methods. We will go over methods more formally in an introduction to object-
oriented programming in Chapter 13, but for now think of methods as functions or procedures that apply
only to specific objects. So the methods described in this section behave just like built-in functions
except that they operate only on lists. Since these functions involve the mutability (or updating) of lists,
none of them is applicable for tuples.

You may recall our earlier discussion of accessing object attributes using the dotted attribute notation:
object.attribute. List methods are no different, using list.method(). We use the dotted notation to
access the attribute (here it is a function), then use the function operators (()) in a functional
notation to invoke the methods.

We can use dir() on a list object to get its attributes including its methods:

>>> dir(list) # or dir([])
['__add__', '__class__', '__contains__', '__delattr__',
'__delitem__', '__delslice__', '__doc__', '__eq__',
'__ge__', '__getattribute__', '__getitem__',
'__getslice__', '__gt__', '__hash__', '__iadd__',
'__imul__', '__init__', '__iter__', '__le__', '__len__',
'__lt__', '__mul__', '__ne__', '__new__', '__reduce__',
'__reduce_ex__', '__repr__', '__reversed__', '__rmul__',
'__setattr__', '__setitem__', '__setslice__', '__str__',
'append', 'count', 'extend', 'index', 'insert', 'pop',
'remove', 'reverse', 'sort']

Table 6.11 shows all the methods currently available for lists. Some examples of using various list
methods are shown later.

Table 6.11. List Type Built-in Methods

List Method Operation

list.append(obj) Adds obj to the end of list

list.count(obj) Returns count of how many times obj occurs in
list

list.extend(seq)
[a] Appends contents of seq to list

list.index(obj, i=0, j=len(list)) Returns lowest index k where list[k]==obj and
i<= k<j; otherwise ValueError raised

list.insert(index, obj) Inserts obj into list at offset index

file:///D|/1/0132269937/ch06lev1sec14.html (1 von 4) [13.11.2007 16:23:13]

file:///D|/1/0132269937/14051536.html

Section 6.14. List Type Built-in Methods

list.pop(index=-1)
[a] Removes and returns obj at given or last index

from list

list.remove(obj) Removes object obj from list

list.reverse() Reverses objects of list in place

list.sort(func=None, key=None, reverse=False)
[b] Sorts list members with optional comparison

function; key is a callback when extracting
elements for sorting, and if reverse flag is true,
then list is sorted in reverse order

[a] New in Python 1.5.2.

[b] Support for key and reverse added in Python 2.4.

>>> music_media = [45]
>>> music_media
[45]
>>>
>>> music_media.insert(0, 'compact disc')
>>> music_media
['compact disc', 45]
>>>
>>> music_media.append('long playing record')
>>> music_media
['compact disc', 45, 'long playing record']
>>>
>>> music_media.insert(2, '8-track tape')
>>> music_media
['compact disc', 45, '8-track tape', 'long playing record']

In the preceding example, we initiated a list with a single element, then checked the list as we either
inserted elements within the list, or appended new items at the end. Let's now determine if elements are
in a list and how to find out the location of where items are in a list. We do this by using the in operator
and index() method.

>>> 'cassette' in music_media
False
>>> 'compact disc' in music_media
True
>>> music_media.index(45)
1
>>> music_media.index('8-track tape')
2
>>> music_media.index('cassette')
Traceback (innermost last):
 File "<interactive input>", line 0, in ?
ValueError: list.index(x): x not in list

Oops! What happened in that last example? Well, it looks like using index() to check if items are in a list
is not a good idea, because we get an error. It would be safer to check using the membership operator

file:///D|/1/0132269937/ch06lev1sec14.html (2 von 4) [13.11.2007 16:23:13]

Section 6.14. List Type Built-in Methods

in (or not in) first, and then using index() to find the element's location. We can put the last few calls
to index() in a single for loop like this:

for eachMediaType in (45, '8-track tape', 'cassette'):
 if eachMediaType in music_media:
 print music_media.index(eachMediaType)

This solution helps us avoid the error we encountered above because index() is not called unless the
object was found in the list. We will find out later how we can take charge if the error occurs, instead of
bombing out as we did above.

We will now test drive sort() and reverse(), methods that will sort and reverse the elements of a list,
respectively.

>>> music_media
['compact disc', 45, '8-track tape', 'long playing record']
>>> music_media.sort()
>>> music_media
[45, '8-track tape', 'compact disc', 'long playing record']
>>> music_media.reverse()
>>> music_media
['long playing record', 'compact disc', '8-track tape', 45]

Core Note: Mutable object methods that alter the object have no
return value!

One very obvious place where new Python programmers get caught is
when using methods that you think should return a value. The most
obvious one is sort():

>>> music_media.sort() # where is the output?!?
>>>

The caveat about mutable object methods like sort(), extend(), and
reverse() is that these will perform their operation on a list in place,
meaning that the contents of the existing list will be changed, but
return None! Yes, it does fly in the face of string methods that do
return values:

>>> 'leanna, silly girl!'.upper()
'LEANNA, SILLY GIRL!'

Recall that strings are immutablemethods of immutable objects cannot
modify them, so they do have to return a new object. If returning an
object is a necessity for you, then we recommend that you look at the
reversed() and sorted() built-in functions introduced in Python 2.4.

These work just like the list methods only they can be used in
expressions because they do return objects. However, obviously the

file:///D|/1/0132269937/ch06lev1sec14.html (3 von 4) [13.11.2007 16:23:13]

Section 6.14. List Type Built-in Methods

original list object is left as is, and you are getting a new object back.

Going back to the sort() method, the default sorting algorithm employed by the sort() method is a
derivative of MergeSort (modestly named "timsort"), which is O(lg(n!)). We defer all other explanation
to the build files where you can get all the detailssource code: Objects/listobject.c and algorithm
description: Objects/listsort.txt.

The extend() method will take the contents of one list and append its elements to another list:

>>> new_media = ['24/96 digital audio disc', 'DVD Audio
disc', 'Super Audio CD']
>>> music_media.extend(new_media)
>>> music_media
['long playing record', 'compact disc', '8-track tape',
45, '24/96 digital audio disc', 'DVD Audio disc', 'Super
Audio CD']

The argument to extend() can be any iterable, starting with 2.2. Prior to that, it had to be a sequence
object, and prior to 1.6, it had to be a list. With an iterable (instead of a sequence), you can do more
interesting things like:

>>> motd = []
>>> motd.append('MSG OF THE DAY')
>>> f = open('/etc/motd', 'r')
>>> motd.extend(f)
>>> f.close()
>>> motd
['MSG OF THE DAY', 'Welcome to Darwin!\n']

pop(), introduced in 1.5.2, will either return the last or requested item from a list and return it to the
caller. We will see the pop() method in Section 6.15.1 as well as in the Exercises.

file:///D|/1/0132269937/ch06lev1sec14.html (4 von 4) [13.11.2007 16:23:13]

file:///D|/1/0132269937/14051536.html

Section 6.15. Special Features of Lists

6.15. Special Features of Lists

6.15.1. Creating Other Data Structures Using Lists

Because of their container and mutable features, lists are fairly flexible and it is not very difficult to build
other kinds of data structures using lists. Two that we can come up with rather quickly are stacks and
queues.

Stack

A stack is a last-in-first-out (LIFO) data structure that works similarly to a cafeteria dining plate spring-
loading mechanism. Consider the plates as objects. The first object off the stack is the last one you put
in. Every new object gets "stacked" on top of the newest objects. To "push" an item on a stack is the
terminology used to mean you are adding onto a stack. Likewise, to remove an element, you "pop" it off
the stack. Example 6.3 shows a menu-driven program that implements a simple stack used to store
strings.

Example 6.3. Using Lists as a Stack (stack.py)

This simple script uses lists as a stack to store and retrieve strings entered through this
menu-driven text application using only the append() and pop() list methods.

1 #!/usr/bin/env python
2
3 stack = []
4
5 def pushit():
6 stack.append(raw_input('Enter new string: ').strip())
7
8 def popit():
9 if len(stack) == 0:
10 print 'Cannot pop from an empty stack!'
11 else:
12 print 'Removed [', 'stack.pop()', ']'
13
14 def viewstack():
15 print stack # calls str() internally
16
17 CMDs = {'u': pushit, 'o': popit, 'v': viewstack}
18
19 def showmenu():
20 pr = """
21 p(U)sh
22 p(O)p
23 (V)iew
24 (Q)uit
25
26 Enter choice: """
27

file:///D|/1/0132269937/ch06lev1sec15.html (1 von 7) [13.11.2007 16:23:14]

file:///D|/1/0132269937/14051536.html

Section 6.15. Special Features of Lists

28 while True:
29 while True:
30 try:
31 choice = raw_input(pr).strip()[0].lower()
32 except (EOFError,KeyboardInterrupt,IndexError):
33 choice = 'q'
34
35 print '\nYou picked: [%s]' % choice
36 if choice not in 'uovq':
37 print 'Invalid option, try again'
38 else:
39 break
40
41 if choice == 'q':
42 break
43 CMDs[choice]()
44
45 if __name__ == '__main__':
46 showmenu()

Line-by-Line Explanation

Lines 13

In addition to the Unix startup line, we take this opportunity to clear the stack (a list).

Lines 56

The pushit() function adds an element (a string prompted from the user) to the stack.

Lines 812

The popit() function removes an element from the stack (the more recent one). An error occurs when
trying to remove an element from an empty stack. In this case, a warning is sent back to the user.
When an object is popped from the stack, the user sees which element was removed. We use single
backquotes or backticks (') to symbolize the repr() command, showing the string complete with
quotes, not just the contents of the string.

Lines 1415

The viewstack() function displays the current contents of the stack.

Line 17

Although we cover dictionaries formally in the next chapter, we wanted to give you a really small
example of one here, a command vector (CMDs). The contents of the dictionary are the three "action"
functions defined above, and they are accessed through the letter that the user must type to execute
that command. For example, to push a string onto the stack, the user must enter 'u', so 'u' is how
access the pushit() from the dictionary. The chosen function is then executed on line 43.

file:///D|/1/0132269937/ch06lev1sec15.html (2 von 7) [13.11.2007 16:23:14]

Section 6.15. Special Features of Lists

Lines 1943

The entire menu-driven application is controlled from the showmenu() function. Here, the user is
prompted with the menu options. Once the user makes a valid choice, the proper function is called. We
have not covered exceptions and try-except statement in detail yet, but basically that section of the
code allows a user to type ^D (EOF, which generates an EOFError) or ^C (interrupt to quit, which
generates a KeyboardInterrupt error), both of which will be processed by our script in the same manner
as if the user had typed the 'q' to quit the application. This is one place where the exception-handling
feature of Python comes in extremely handy. The outer while loop lets the user continue to execute
commands until they quit the application while the inner one prompts the user until they enter a valid
command option.

Lines 4546

This part of the code starts up the program if invoked directly. If this script were imported as a module,
only the functions and variables would have been defined, but the menu would not show up. For more
information regarding line 45 and the __name__ variable, see Section 3.4.1.

Here is a sample execution of our script:

$ stack.py

p(U)sh
p(O)p
(V)iew
(Q)uit

Enter choice: u

You picked: [u]
Enter new string: Python

p(U)sh
p(O)p
(V)iew
(Q)uit

Enter choice: u

You picked: [u]
Enter new string: is

p(U)sh
p(O)p
(V)iew
(Q)uit

Enter choice: u

You picked: [u]
Enter new string: cool!

p(U)sh
p(O)p
(V)iew

file:///D|/1/0132269937/ch06lev1sec15.html (3 von 7) [13.11.2007 16:23:14]

Section 6.15. Special Features of Lists

(Q)uit

Enter choice: v

You picked: [v]
['Python', 'is', 'cool!']

p(U)sh
p(O)p
(V)iew
(Q)uit

Enter choice: o

You picked: [o]
Removed ['cool!']

p(U)sh
p(O)p
(V)iew
(Q)uit

Enter choice: o

You picked: [o]
Removed ['is']

p(U)sh
p(O)p
(V)iew
(Q)uit

Enter choice: o

You picked: [o]
Removed ['Python']

p(U)sh
p(O)p
(V)iew
(Q)uit

Enter choice: o

You picked: [o]
Cannot pop from an empty stack!

p(U)sh
p(O)p
(V)iew
(Q)uit

Enter choice: ^D

You picked: [q]

Queue

file:///D|/1/0132269937/ch06lev1sec15.html (4 von 7) [13.11.2007 16:23:14]

Section 6.15. Special Features of Lists

A queue is a first-in-first-out (FIFO) data structure, which works like a single-file supermarket or bank
teller line. The first person in line is the first one served (and hopefully the first one to exit). New
elements join by being "enqueued" at the end of the line, and elements are removed from the front by
being "dequeued." The following code shows how, with a little modification from our stack script, we can
implement a simple queue using lists.

Example 6.4. Using Lists as a Queue (queue.py)

This simple script uses lists as a queue to store and retrieve strings entered through this
menu-driven text application, using only the append() and pop() list methods.

1 #!/usr/bin/env python
2
3 queue = []
4
5 def enQ():
6 queue.append(raw_input('Enter new string: ').strip())
7
8 def deQ():
9 if len(queue) == 0:
10 print 'Cannot pop from an empty queue!'
11 else:
12 print 'Removed [', 'queue.pop(0)', ']'
13
14 def viewQ():
15 print queue # calls str() internally
16
17 CMDs = {'e': enQ, 'd': deQ, 'v': viewQ}
18
19 def showmenu():
20 pr = """
21 (E)nqueue
22 (D)equeue
23 (V)iew
24 (Q)uit
25
26 Enter choice: """
27
28 while True:
29 while True:
30 try:
31 choice = raw_input(pr).strip()[0].lower()
32 except (EOFError,KeyboardInterrupt,IndexError):
33 choice = 'q'
34
35 print '\nYou picked: [%s]' % choice
36 if choice not in 'devq':
37 print 'Invalid option, try again'
38 else:
39 break
40
41 if choice == 'q':
42 break
43 CMDs[choice]()
44
45 if __name__ == '__main__':
46 showmenu()

file:///D|/1/0132269937/ch06lev1sec15.html (5 von 7) [13.11.2007 16:23:14]

Section 6.15. Special Features of Lists

Line-by-Line Explanation

Because of the similarities of this script with the stack.py script, we will describe in detail only the lines
which have changed significantly:

Lines 17

The usual setup plus some constants for the rest of the script to use.

Lines 56

The enQ() function works exactly like pushit(), only the name has been changed.

Lines 812

The key difference between the two scripts lies here. The deQ() function, rather than taking the most
recent item as popit() did, takes the oldest item on the list, the first element.

Lines 17, 21-24, 36

The options have been changed, so we need to reflect that in the prompt string and our validator.

We present some output here as well:

$ queue.py
(E)nqueue
(D)equeue
(V)iew
(Q)uit

Enter choice: e

You picked: [e]
Enter new queue element: Bring out

(E)nqueue
(D)equeue
(V)iew
(Q)uit

Enter choice: e

You picked: [e]
Enter new queue element: your dead!

(E)nqueue
(D)equeue
(V)iew
(Q)uit

file:///D|/1/0132269937/ch06lev1sec15.html (6 von 7) [13.11.2007 16:23:14]

Section 6.15. Special Features of Lists

Enter choice: v

You picked: [v]
['Bring out', 'your dead!']

(E)nqueue
(D)equeue
(V)iew
(Q)uit

Enter choice: d

You picked: [d]
Removed ['Bring out']

(E)nqueue
(D)equeue
(V)iew
(Q)uit

Enter choice: d

You picked: [d]
 Removed ['your dead!']

(E)nqueue
(D)equeue
(V)iew
(Q)uit

Enter choice: d

You picked: [d]
Cannot dequeue from empty queue!

(E)nqueue
(D)equeue
(V)iew
(Q)uit

Enter choice: ^D
You picked: [q]

file:///D|/1/0132269937/ch06lev1sec15.html (7 von 7) [13.11.2007 16:23:14]

file:///D|/1/0132269937/14051536.html

Section 6.16. Tuples

6.16. Tuples

Tuples are another container type extremely similar in nature to lists. The only visible difference
between tuples and lists is that tuples use parentheses and lists use square brackets. Functionally, there
is a more significant difference, and that is the fact that tuples are immutable. Because of this, tuples
can do something that lists cannot do . . . be a dictionary key. Tuples are also the default when dealing
with a group of objects.

Our usual modus operandi is to present the operators and built-in functions for the more general
objects, followed by those for sequences and conclude with those applicable only for tuples, but because
tuples share so many characteristics with lists, we would be duplicating much of our description from the
previous section. Rather than providing much repeated information, we will differentiate tuples from lists
as they apply to each set of operators and functionality, then discuss immutability and other features
unique to tuples.

How to Create and Assign Tuples

Creating and assigning tuples are practically identical to creating and assigning lists, with the exception
of empty tuplesthese require a trailing comma (,) enclosed in the tuple delimiting parentheses (())
to prevent them from being confused with the natural grouping operation of parentheses. Do not forget
the factory function!

>>> aTuple = (123, 'abc', 4.56, ['inner', 'tuple'], 7-9j)
>>> anotherTuple = (None, 'something to see here')
>>> print aTuple
(123, 'abc', 4.56, ['inner', 'tuple'], (7-9j))
>>> print anotherTuple
(None, 'something to see here')
>>> emptiestPossibleTuple = (None,)
>>> print emptiestPossibleTuple
(None,)
>>> tuple('bar')
('b', 'a', 'r')

How to Access Values in Tuples

Slicing works similarly to lists. Use the square bracket slice operator ([]) along with the index or
indices.

>>> aTuple[1:4]
('abc', 4.56, ['inner', 'tuple'])

>>> aTuple[:3]
(123, 'abc', 4.56)
>>> aTuple[3][1]
'tuple'

How to Update Tuples

file:///D|/1/0132269937/ch06lev1sec16.html (1 von 2) [13.11.2007 16:23:14]

Section 6.16. Tuples

Like numbers and strings, tuples are immutable, which means you cannot update them or change values
of tuple elements. In Sections 6.2 and 6.3.2, we were able to take portions of an existing string to
create a new string. The same applies for tuples.

>>> aTuple = aTuple[0], aTuple[1], aTuple[-1]
>>> aTuple
(123, 'abc', (7-9j))
>>> tup1 = (12, 34.56)
>>> tup2 = ('abc', 'xyz')
>>> tup3 = tup1 + tup2
>>> tup3
(12, 34.56, 'abc', 'xyz')

How to Remove Tuple Elements and Tuples

Removing individual tuple elements is not possible. There is, of course, nothing wrong with putting
together another tuple with the undesired elements discarded.

To explicitly remove an entire tuple, just use the del statement to reduce an object's reference count. It
will be deallocated when that count is zero. Keep in mind that most of the time one will just let an object
go out of scope rather than using del, a rare occurrence in everyday Python programming.

del aTuple

file:///D|/1/0132269937/ch06lev1sec16.html (2 von 2) [13.11.2007 16:23:14]

file:///D|/1/0132269937/14051536.html

Section 6.17. Tuple Operators and Built-in Functions

6.17. Tuple Operators and Built-in Functions

6.17.1. Standard and Sequence Type Operators and Built-in Functions

Object and sequence operators and built-in functions act the exact same way toward tuples as they do
with lists. You can still take slices of tuples, concatenate and make multiple copies of tuples, validate
membership, and compare tuples.

Creation, Repetition, Concatenation

>>> t = (['xyz', 123], 23, -103.4)
>>> t
(['xyz', 123], 23, -103.4)
>>> t * 2
(['xyz', 123], 23, -103.4, ['xyz', 123], 23, -103.4)
>>> t = t + ('free', 'easy')
>>> t
(['xyz', 123], 23, -103.4, 'free', 'easy')

Membership, Slicing

>>> 23 in t
True
>>> 123 in t
False
>>> t[0][1]
123
>>> t[1:]
(23, -103.4, 'free', 'easy')

Built-in Functions

>>> str(t)
(['xyz', 123], 23, -103.4, 'free', 'easy')
>>> len(t)
5
>>> max(t)
'free'
>>> min(t)
-103.4
>>> cmp(t, (['xyz', 123], 23, -103.4, 'free', 'easy'))
0
>>> list(t)
[['xyz', 123], 23, -103.4, 'free', 'easy']

Operators

>>> (4, 2) < (3, 5)

file:///D|/1/0132269937/ch06lev1sec17.html (1 von 2) [13.11.2007 16:23:15]

Section 6.17. Tuple Operators and Built-in Functions

False
>>> (2, 4) < (3, -1)
True
>>> (2, 4) == (3, -1)
False
>>> (2, 4) == (2, 4)
True

6.17.2. Tuple Type Operators and Built-in Functions and Methods

Like lists, tuples have no operators or built-in functions for themselves. All of the list methods described
in the previous section were related to a list object's mutability, i.e., sorting, replacing, appending, etc.
Since tuples are immutable, those methods are rendered superfluous, thus unimplemented.

file:///D|/1/0132269937/ch06lev1sec17.html (2 von 2) [13.11.2007 16:23:15]

Section 6.18. Special Features of Tuples

6.18. Special Features of Tuples

6.18.1. How Are Tuples Affected by Immutability?

Okay, we have been throwing around this word "immutable" in many parts of the text. Aside from its
computer science definition and implications, what is the bottom line as far as applications are
concerned? What are all the consequences of an immutable data type?

Of the three standard types that are immutablenumbers, strings, and tuplestuples are the most
affected. A data type that is immutable simply means that once an object is defined, its value cannot be
updated, unless, of course, a completely new object is allocated. The impact on numbers and strings is
not as great since they are scalar types, and when the sole value they represent is changed, that is the
intended effect, and access occurs as desired. The story is different with tuples, however.

Because tuples are a container type, it is often desired to change single or multiple elements of that
container. Unfortunately, this is not possible. Slice operators cannot show up on the left-hand side of an
assignment. Recall this is no different for strings, and that slice access is used for read access only.

Immutability does not necessarily mean bad news. One bright spot is that if we pass in data to an API
with which we are not familiar, we can be certain that our data will not be changed by the function
called. Also, if we receive a tuple as a return argument from a function that we would like to manipulate,
we can use the list() built-in function to turn it into a mutable list.

6.18.2. Tuples Are Not Quite So "Immutable"

Although tuples are defined as immutable, this does not take away from their flexibility. Tuples are not
quite as immutable as we made them out to be. What do we mean by that? Tuples have certain
behavioral characteristics that make them seem not as immutable as we had first advertised.

For example, we can join strings together to form a larger string. Similarly, there is nothing wrong with
putting tuples together to form a larger tuple, so concatenation works. This process does not involve
changing the smaller individual tuples in any way. All we are doing is joining their elements together.
Some examples are presented here:

>>> s = 'first'
>>> s = s + ' second'
>>> s
'first second'
>>>
>>> t = ('third', 'fourth')
>>> t
('third', 'fourth')
>>>
>>> t = t + ('fifth', 'sixth')
>>> t
('third', 'fourth', 'fifth', 'sixth')

The same concept applies for repetition. Repetition is just concatenation of multiple copies of the same
elements. In addition, we mentioned in the previous section that one can turn a tuple into a mutable list
with a simple function call. Our final feature may surprise you the most. You can "modify" certain tuple
elements. Whoa. What does that mean?

file:///D|/1/0132269937/ch06lev1sec18.html (1 von 4) [13.11.2007 16:23:15]

Section 6.18. Special Features of Tuples

Although tuple objects themselves are immutable, this fact does not preclude tuples from containing
mutable objects that can be changed.

>>> t = (['xyz', 123], 23, -103.4)
>>> t
(['xyz', 123], 23, -103.4)
>>> t[0][1]
123
>>> t[0][1] = ['abc', 'def']
>>> t
(['xyz', ['abc', 'def']], 23, -103.4)

In the above example, although t is a tuple, we managed to "change" it by replacing an item in the first
tuple element (a list). We replaced t[0][1], formerly an integer, with a list ['abc', 'def']. Although we
modified only a mutable object, in some ways, we also "modified" our tuple.

6.18.3. Default Collection Type

Any set of multiple objects, comma-separated, written without identifying symbols, i.e., brackets for
lists, parentheses for tuples, etc., defaults to tuples, as indicated in these short examples:

>>> 'abc', -4.24e93, 18+6.6j, 'xyz'
('abc', -4.24e+093, (18+6.6j), 'xyz')
>>>
>>> x, y = 1, 2
>>> x, y
(1, 2)

Any function returning multiple objects (also no enclosing symbols) is a tuple. Note that enclosing
symbols change a set of multiple objects returned to a single container object. For example:

def foo1():
 :
 return obj1, obj2, obj3
def foo2():
 :
 return [obj1, obj2, obj3]
def foo3():
 :
 return (obj1, obj2, obj3)

In the above examples, foo1() calls for the return of three objects, which come back as a tuple of three
objects, foo2() returns a single object, a list containing three objects, and foo3() returns the same thing
as foo1(). The only difference is that the tuple grouping is explicit.

Explicit grouping of parentheses for expressions or tuple creation is always recommended to avoid
unpleasant side effects:

>>> 4, 2 < 3, 5 # int, comparison, int

file:///D|/1/0132269937/ch06lev1sec18.html (2 von 4) [13.11.2007 16:23:15]

Section 6.18. Special Features of Tuples

(4, True, 5)
>>> (4, 2) < (3, 5) # tuple comparison
False

In the first example, the less than (<) operator took precedence over the comma delimiter intended
for the tuples on each side of the less than sign. The result of the evaluation of 2 < 3 became the second
element of a tuple. Properly enclosing the tuples enables the desired result.

6.18.4. Single-Element Tuples

Ever try to create a tuple with a single element? You tried it with lists, and it worked, but then you tried
and tried with tuples, but you cannot seem to do it.

>>> ['abc']
['abc']

>>> type(['abc']) # a list
<type 'list'>
>>>
>>> ('xyz')
'xyz'
>>> type(('xyz')) # a string, not a tuple
<type 'str'>

It probably does not help your case that the parentheses are also overloaded as the expression grouping
operator. Parentheses around a single element take on that binding role rather than serving as a
delimiter for tuples. The workaround is to place a trailing comma (,) after the first element to indicate
that this is a tuple and not a grouping.

>>> ('xyz',)
('xyz',)

6.18.5. Dictionary Keys

Immutable objects have values that cannot be changed. That means that they will always hash to the
same value. That is the requirement for an object being a valid dictionary key. As we will find out in the
next chapter, keys must be hashable objects, and tuples meet that criteria. Lists are not eligible.

Core Note: Lists versus Tuples

file:///D|/1/0132269937/ch06lev1sec18.html (3 von 4) [13.11.2007 16:23:15]

Section 6.18. Special Features of Tuples

One of the questions in the Python FAQ asks, "Why are there separate
tuple and list data types?" That question can also be rephrased as, "Do
we really need two similar sequence types?" One reason why having
lists and tuples is a good thing occurs in situations where having one
is more advantageous than having the other.

One case in favor of an immutable data type is if you were
manipulating sensitive data and were passing a mutable object to an
unknown function (perhaps an API that you didn't even write!). As the
engineer developing your piece of the software, you would definitely
feel a lot more secure if you knew that the function you were calling
could not alter the data.

An argument for a mutable data type is where you are managing
dynamic data sets. You need to be able to create them on the fly,
slowly or arbitrarily adding to them, or from time to time, deleting
individual elements. This is definitely a case where the data type must
be mutable. The good news is that with the list() and tuple() built-in
conversion functions, you can convert from one type to the other
relatively painlessly.

list() and tuple() are functions that allow you to create a tuple from
a list and vice versa. When you have a tuple and want a list because
you need to update its objects, the list() function suddenly becomes
your best buddy. When you have a list and want to pass it into a
function, perhaps an API, and you do not want anyone to mess with
the data, the tuple() function comes in quite useful.

file:///D|/1/0132269937/ch06lev1sec18.html (4 von 4) [13.11.2007 16:23:15]

file:///D|/1/0132269937/14051536.html

Section 6.19. Related Modules

6.19. Related Modules

Table 6.12 lists the key related modules for sequence types. This list includes the array module to which
we briefly alluded earlier. These are similar to lists except for the restriction that all elements must be of
the same type. The copy module (see optional Section 6.20 below) performs shallow and deep copies of
objects. The operator module, in addition to the functional equivalents to numeric operators, also
contains the same four sequence types. The types module is a reference of type objects representing all
types that Python supports, including sequence types. Finally, the UserList module contains a full class
implementation of a list object. Because Python types cannot be subclassed, this module allows users to
obtain a class that is list-like in nature, and to derive new classes or functionality. If you are unfamiliar
with object-oriented programming, we highly recommend reading Chapter 13.

Table 6.12. Related Modules for Sequence Types

Module Contents

array Features the array restricted mutable sequence type, which requires all of its
elements to be of the same type

copy Provides functionality to perform shallow and deep copies of objects (see 6.20
below for more information)

operator Contains sequence operators available as function calls, e.g., operator.concat(m,
n) is equivalent to the concatenation (m + n) for sequences m and n

re Perl-style regular expression search (and match); see Chapter 15

StringIO/cStringIO Treats long strings just like a file object, i.e., read(), seek(), etc.; C-compiled
version is faster but cannot be subclassed

textwrap
[a] Utility functions for wrapping/filling text fields; also has a class

types Contains type objects for all supported Python types

collections
[b] High-performance container data types

[a] New in Python 2.3.

[b] New in Python 2.4.

file:///D|/1/0132269937/ch06lev1sec19.html [13.11.2007 16:23:16]

Section 6.20. *Copying Python Objects and Shallow and Deep Copies

6.20. *Copying Python Objects and Shallow and Deep Copies

Earlier in Section 3.5, we described how object assignments are simply object references. This means
that when you create an object, then assign that object to another variable, Python does not copy the
object. Instead, it copies only a reference to the object.

For example, let us say that you want to create a generic profile for a young couple; call it person. Then
you copy this object for both of them. In the example below, we show two ways of copying an object,
one uses slices and the other a factory function. To show we have three unrelated objects, we use the id
() built-in function to show you each object's identity. (We can also use the is operator to do the same
thing.)

>>> person = ['name', ['savings', 100.00]]
>>> hubby = person[:] # slice copy
>>> wifey = list(person) # fac func copy
>>> [id(x) for x in person, hubby, wifey]
[11826320, 12223552, 11850936]

Individual savings accounts are created for them with initial $100 deposits. The names are changed to
customize each person's object. But when the husband withdraws $50.00, his actions affected his wife's
account even though separate copies were made. (Of course, this is assuming that we want them to
have separate accounts and not a single, joint account.) Why is that?

>>> hubby[0] = 'joe'
>>> wifey[0] = 'jane'
>>> hubby, wifey
(['joe', ['savings', 100.0]], ['jane', ['savings', 100.0]])
>>> hubby[1][1] = 50.00
>>> hubby, wifey
(['joe', ['savings', 50.0]], ['jane', ['savings', 50.0]])

The reason is that we have only made a shallow copy. A shallow copy of an object is defined to be a
newly created object of the same type as the original object whose contents are references to the
elements in the original object. In other words, the copied object itself is new, but the contents are not.
Shallow copies of sequence objects are the default type of copy and can be made in any number of
ways: (1) taking a complete slice [:], (2) using a factory function, e.g., list(), dict(), etc., or (3)
using the copy() function of the copy module.

Your next question should be: When the wife's name is assigned, how come it did not affect the
husband's name? Shouldn't they both have the name 'jane' now? The reason why it worked and we
don't have duplicate names is because of the two objects in each of their lists, the first is immutable (a
string) and the second is mutable (a list). Because of this, when shallow copies are made, the string is
explicitly copied and a new (string) object created while the list only has its reference copied, not its
members. So changing the names is not an issue but altering any part of their banking information is.
Here, let us take a look at the object IDs for the elements of each list. Note that the banking object is
exactly the same and the reason why changes to one affects the other. Note how, after we change their
names, that the new name strings replace the original 'name' string:

BEFORE:

file:///D|/1/0132269937/ch06lev1sec20.html (1 von 3) [13.11.2007 16:23:16]

Section 6.20. *Copying Python Objects and Shallow and Deep Copies

>>> [id(x) for x in hubby]
[9919616, 11826320]
>>> [id(x) for x in wifey]
[9919616, 11826320]

AFTER:

>>> [id(x) for x in hubby]
[12092832, 11826320]
>>> [id(x) for x in wifey]
[12191712, 11826320]

If the intention was to create a joint account for the couple, then we have a great solution, but if we
want separate accounts, we need to change something. In order to obtain a full or deep copy of the
objectcreating a new container but containing references to completely new copies (references) of the
element in the original objectwe need to use the copy.deepcopy() function. Let us redo the entire
example but using deep copies instead:

>>> person = ['name', ['savings', 100.00]]
>>> hubby = person

>>> import copy
>>> wifey = copy.deepcopy(person)
>>> [id(x) for x in person, hubby, wifey]
[12242056, 12242056, 12224232]
>>> hubby[0] = 'joe'
>>> wifey[0] = 'jane'
>>> hubby, wifey
(['joe', ['savings', 100.0]], ['jane', ['savings', 100.0]])
>>> hubby[1][1] = 50.00
>>> hubby, wifey
(['joe', ['savings', 50.0]], ['jane', ['savings', 100.0]])

Now it is just the way we want it. For kickers, let us confirm that all four objects are different:

>>> [id(x) for x in hubby]
[12191712, 11826280]
>>> [id(x) for x in wifey]
[12114080, 12224792]

There are a few more caveats to object copying. The first is that non-container types (i.e., numbers,
strings, and other "atomic" objects like code, type, and xrange objects) are not copied. Shallow copies of
sequences are all done using complete slices. Finally, deep copies of tuples are not made if they contain
only atomic objects. If we changed the banking information to a tuple, we would get only a shallow copy
even though we asked for a deep copy:

>>> person = ['name', ('savings', 100.00)]
>>> newPerson = copy.deepcopy(person)
>>> [id(x) for x in person, newPerson]
[12225352, 12226112]
>>> [id(x) for x in person]

file:///D|/1/0132269937/ch06lev1sec20.html (2 von 3) [13.11.2007 16:23:16]

Section 6.20. *Copying Python Objects and Shallow and Deep Copies

[9919616, 11800088]
>>> [id(x) for x in newPerson]
[9919616, 11800088]

Core Module: copy

The shallow and deep copy operations that we just described are
found in the copy module. There are really only two functions to use
from this module: copy() creates shallow copy, and deepcopy() creates
a deep copy.

file:///D|/1/0132269937/ch06lev1sec20.html (3 von 3) [13.11.2007 16:23:16]

Section 6.21. Summary of Sequences

6.21. Summary of Sequences

Sequence types provide various mechanisms for ordered storage of data. Strings are a general medium
for carrying data, whether it be displayed to a user, stored on a disk, transmitted across the network, or
be a singular container for multiple sources of information. Lists and tuples provide container storage
that allows for simple manipulation and access of multiple objects, whether they be Python data types or
user-defined objects. Individual or groups of elements may be accessed as slices via sequentially
ordered index offsets. Together, these data types provide flexible and easy-to-use storage tools in your
Python development environment. We conclude this chapter with a summary of operators, built-in
functions and methods for sequence types given in Table 6.13.

Table 6.13. Sequence Type Operators, Built-in
Functions and Methods

Operator, Built-in Function or Method String List Tuple

[] (list creation) •

() •

"" •

append() •

capitalize() •

center() •

chr() •

cmp() • • •

count() • •

decode() •

encode() •

endswith() •

expandtabs() •

extend() •

find() •

hex() •

index() • •

insert() •

file:///D|/1/0132269937/ch06lev1sec21.html (1 von 3) [13.11.2007 16:23:17]

Section 6.21. Summary of Sequences

isdecimal() •

isdigit() •

islower() •

isnumeric() •

isspace() •

istitle() •

isupper() •

join() •

len() • • •

list() • • •

ljust() •

lower() •

lstrip() •

max() • • •

min() • • •

oct() •

ord() •

pop() •

raw_input() •

remove() •

replace() •

repr() • • •

reverse() •

rfind() •

rindex() •

rjust() •

rstrip() •

sort() •

split() •

splitlines() •

startswith() •

file:///D|/1/0132269937/ch06lev1sec21.html (2 von 3) [13.11.2007 16:23:17]

Section 6.21. Summary of Sequences

str() • • •

strip() •

swapcase() •

split() •

title() •

tuple() • • •

type() • • •

upper() •

zfill() •

.(attributes) • •

[] (slice) • • •

[:] • • •

* • • •

% •

+ • • •

in • • •

not in • • •

file:///D|/1/0132269937/ch06lev1sec21.html (3 von 3) [13.11.2007 16:23:17]

Section 6.22. Exercises

6.22. Exercises

6-1. Strings. Are there any string methods or functions in the string module that will help
me determine if a string is part of a larger string?

6-2. String Identifiers. Modify the idcheck.py script in Example 6-1 such that it will
determine the validity of identifiers of length 1 as well as be able to detect if an
identifier is a keyword. For the latter part of the exercise, you may use the keyword
module (specifically the keyword.kwlist list) to aid in your cause.

6-3. Sorting.

a.

Enter a list of numbers and sort the values in largest-to-smallest order.

b.

Do the same thing, but for strings and in reverse alphabetical (largest-to-
smallest lexicographic) order.

6-4. Arithmetic. Update your solution to the test score exercise in the previous chapter
such that the test scores are entered into a list. Your code should also be able to come
up with an average score. See Exercises 2-9 and 5-3.

6-5. Strings.

a.

Update your solution to Exercise 2-7 so that you display a string one character
at a time forward and backward.

b.

Determine if two strings match (without using comparison operators or the cmp
() built-in function) by scanning each string. Extra credit: Add case-
insensitivity to your solution.

c.

Determine if a string is palindromic (the same backward as it is forward). Extra
credit: Add code to suppress symbols and whitespace if you want to process
anything other than strict palindromes.

file:///D|/1/0132269937/ch06lev1sec22.html (1 von 6) [13.11.2007 16:23:18]

file:///D|/1/0132269937/14051536.html

Section 6.22. Exercises

d.

Take a string and append a backward copy of that string, making a palindrome.

6-6. Strings. Create the equivalent to string.strip(): Take a string and remove all leading
and trailing whitespace. (Use of string.*strip() defeats the purpose of this exercise.)

6-7. Debugging. Take a look at the code we present in Example 6.4 (buggy.py).

a.

Study the code and describe what this program does. Add a comment to every
place you see a comment sign (#). Run the program.

b.

This problem has a big bug in it. It fails on inputs of 6, 12, 20, 30, etc., not to
mention any even number in general. What is wrong with this program?

c.

Fix the bug in (b).

6-8. Lists. Given an integer value, return a string with the equivalent English text of each
digit. For example, an input of 89 results in "eight-nine" being returned. Extra credit:
Return English text with proper usage, i.e., "eighty-nine." For this part of the exercise,
restrict values to be between 0 and 1,000.

6-9. Conversion. Create a sister function to your solution for Exercise 5.13 to take the total
number of minutes and return the same time interval in hours and minutes,
maximizing on the total number of hours.

6-10. Strings. Create a function that will return another string similar to the input string, but
with its case inverted. For example, input of "Mr. Ed" will result in "mR. eD" as the
output string.

Example 6.4. Buggy Program (buggy.py)

file:///D|/1/0132269937/ch06lev1sec22.html (2 von 6) [13.11.2007 16:23:18]

Section 6.22. Exercises

This is the program listing for Exercise 6-7. You will determine what this program does, add
comments where you see "#"s, determine what is wrong with it, and provide a fix for it.

1 #!/usr/bin/env python
2
3 #
4 num_str = raw_input('Enter a number: ')
5
6 #
7 num_num = int(num_str)
8
9 #
10 fac_list = range(1, num_num+1)
11 print "BEFORE:", 'fac_list'
12
13 #
14 i = 0
15
16 #
17 while i < len(fac_list):
18
19 #
20 if num_num % fac_list[i] == 0:
21 del fac_list[i]
22 #
23 i = i + 1
25
26 #
27 print "AFTER:", 'fac_list'

6-11. Conversion.

a.

Create a program that will convert from an integer to an Internet Protocol (IP)
address in the four-octet format of WWW.XXX.YYY.ZZZ.

b.

Update your program to be able to do the vice versa of the above.

file:///D|/1/0132269937/ch06lev1sec22.html (3 von 6) [13.11.2007 16:23:18]

Section 6.22. Exercises

6-12. Strings.

a.

Create a function called findchr(), with the following declaration:

def findchr(string, char)

findchr() will look for character char in string and return the index of the first
occurrence of char, or -1 if that char is not part of string. You cannot use
string.*find() or string.*index() functions or methods.

b.

Create another function called rfindchr() that will find the last occurrence of a
character in a string. Naturally this works similarly to findchr(), but it starts its
search from the end of the input string.

c.

Create a third function called subchr() with the following declaration:

def subchr(string, origchar, newchar)

subchr() is similar to findchr() except that whenever origchar is found, it is
replaced by newchar. The modified string is the return value.

6-13. Strings. The string module contains three functions, atoi(), atol(), and atof(), that
convert strings to integers, long integers, and floating point numbers, respectively. As
of Python 1.5, the Python built-in functions int(), long(), and float() can also
perform the same tasks, in addition to complex(), which can turn a string into a
complex number. (Prior to 1.5, however, those built-in functions converted only
between numeric types.)

An atoc() was never implemented in the string module, so that is your task here. atoc
() takes a single string as input, a string representation of a complex number, e.g., '-
1.23e+4-5.67j', and returns the equivalent complex number object with the given
value. You cannot use eval(), but complex() is available. However, you can only use
complex() with the following restricted syntax: complex(real, imag) where real and
imag are floating point values.

file:///D|/1/0132269937/ch06lev1sec22.html (4 von 6) [13.11.2007 16:23:18]

Section 6.22. Exercises

6-14. *Random Numbers. Design a "rock, paper, scissors" game, sometimes called
"Rochambeau," a game you may have played as a kid. Here are the rules. At the same
time, using specified hand motions, both you and your opponent have to pick from
one of the following: rock, paper, or scissors. The winner is determined by these rules,
which form somewhat of a fun paradox:

a.

the paper covers the rock,

b.

the rock breaks the scissors,

c.

the scissors cut the paper. In your computerized version, the user enters his/
her guess, the computer randomly chooses, and your program should indicate
a winner or draw/tie. Note: The most algorithmic solutions use the fewest
number of if statements.

6-15. Conversion.

a.

Given a pair of dates in some recognizable standard format such as MM/DD/YY
or DD/MM/YY, determine the total number of days that fall between both dates.

b.

Given a person's birth date, determine the total number of days that person
has been alive, including all leap days.

c.

Armed with the same information from (b) above, determine the number of
days remaining until that person's next birthday.

6-16. Matrices. Process the addition and multiplication of a pair of M by N matrices.

6-17. Methods. Implement a function called myPop(), which is similar to the list pop()
method. Take a list as input, remove the last object from the list and return it.

6-18. In the zip() example of Section 6.12.2, what does zip(fn, ln) return?

file:///D|/1/0132269937/ch06lev1sec22.html (5 von 6) [13.11.2007 16:23:18]

Section 6.22. Exercises

6-19. Multi-Column Output. Given any number of items in a sequence or other container,
display them in equally-distributed number of columns. Let the caller provide the data
and the output format. For example, if you pass in a list of 100 items destined for
three columns, display the data in the requested format. In this case, two columns
would have 33 items while the last would have 34. You can also let the user choose
horizontal or vertical sorting.

file:///D|/1/0132269937/ch06lev1sec22.html (6 von 6) [13.11.2007 16:23:18]

file:///D|/1/0132269937/14051536.html

Chapter 7. Mapping and Set Types

Chapter 7. Mapping and Set Types

Chapter Topics

● Mapping Type: Dictionaries

�❍ Operators
�❍ Built-in Functions
�❍ Built-in Methods
�❍ Dictionary Keys

● Set Types

�❍ Operators
�❍ Built-in Functions
�❍ Built-in Methods

● Related Modules

In this chapter, we take a look at Python's mapping and set types. As in earlier chapters, an introduction
is followed by a discussion of the applicable operators and factory and built-in functions (BIFs) and
methods. We then go into more specific usage of each data type.

file:///D|/1/0132269937/ch07.html [13.11.2007 16:23:18]

Section 7.1. Mapping Type: Dictionaries

7.1. Mapping Type: Dictionaries

Dictionaries are the sole mapping type in Python. Mapping objects have a one-to-many correspondence
between hashable values (keys) and the objects they represent (values). They are similar to Perl hashes
and can be generally considered as mutable hash tables. A dictionary object itself is mutable and is yet
another container type that can store any number of Python objects, including other container types.
What makes dictionaries different from sequence type containers like lists and tuples is the way the data
are stored and accessed.

Sequence types use numeric keys only (numbered sequentially as indexed offsets from the beginning of
the sequence). Mapping types may use most other object types as keys; strings are the most common.
Unlike sequence type keys, mapping keys are often, if not directly, associated with the data value that is
stored. But because we are no longer using "sequentially ordered" keys with mapping types, we are left
with an unordered collection of data. As it turns out, this does not hinder our use because mapping
types do not require a numeric value to index into a container to obtain the desired item. With a key,
you are "mapped" directly to your value, hence the term "mapping type." The reason why they are
commonly referred to as hash tables is because that is the exact type of object that dictionaries are.
Dictionaries are one of Python's most powerful data types.

Core Note: What are hash tables and how do they relate to
dictionaries?

Sequence types use sequentially ordered numeric keys as index
offsets to store your data in an array format. The index number
usually has nothing to do with the data value that is being stored.
There should also be a way to store data based on another associated
value such as a string. We do this all the time in everyday living. You
file people's phone numbers in your address book based on last name,
you add events to your calendar or appointment book based on date
and time, etc. For each of these examples, an associated value to a
data item was your key.

Hash tables are a data structure that does exactly what we described.
They store each piece of data, called a value, based on an associated
data item, called a key. Together, these are known as key-value pairs.
The hash table algorithm takes your key, performs an operation on it,
called a hash function, and based on the result of the calculation,
chooses where in the data structure to store your value. Where any
one particular value is stored depends on what its key is. Because of
this randomness, there is no ordering of the values in the hash table.
You have an unordered collection of data.

The only kind of ordering you can obtain is by taking either a
dictionary's set of keys or values. The keys() or values() method
returns lists, which are sortable. You can also call items() to get a list
of keys and values as tuple pairs and sort that. Dictionaries
themselves have no implicit ordering because they are hashes.

Hash tables generally provide good performance because lookups
occur fairly quickly once you have a key.

file:///D|/1/0132269937/ch07lev1sec1.html (1 von 5) [13.11.2007 16:23:19]

Section 7.1. Mapping Type: Dictionaries

Python dictionaries are implemented as resizeable hash tables. If you are familiar with Perl, then we can
say that dictionaries are similar to Perl's associative arrays or hashes.

We will now take a closer look at Python dictionaries. The syntax of a dictionary entry is key:value Also,
dictionary entries are enclosed in braces ({ }).

How to Create and Assign Dictionaries

Creating dictionaries simply involves assigning a dictionary to a variable, regardless of whether the
dictionary has elements or not:

>>> dict1 = {}
>>> dict2 = {'name': 'earth', 'port': 80}
>>> dict1, dict2
({}, {'port': 80, 'name': 'earth'})

In Python versions 2.2 and newer, dictionaries may also be created using the factory function dict().
We discuss more examples later when we take a closer look at dict(), but here's a sneak peek for now:

>>> fdict = dict((['x', 1], ['y', 2]))
>>> fdict
{'y': 2, 'x': 1}

In Python versions 2.3 and newer, dictionaries may also be created using a very convenient built-in
method for creating a "default" dictionary whose elements all have the same value (defaulting to None if
not given), fromkeys():

>>> ddict = {}.fromkeys(('x', 'y'), -1)
>>> ddict
{'y': -1, 'x': -1}
>>>
>>> edict = {}.fromkeys(('foo', 'bar'))
>>> edict
{'foo': None, 'bar': None}

How to Access Values in Dictionaries

To traverse a dictionary (normally by key), you only need to cycle through its keys, like this:

file:///D|/1/0132269937/ch07lev1sec1.html (2 von 5) [13.11.2007 16:23:19]

Section 7.1. Mapping Type: Dictionaries

>>> dict2 = {'name': 'earth', 'port': 80}
>>>
>>>> for key in dict2.keys():
... print 'key=%s, value=%s' % (key, dict2[key])
...
key=name, value=earth
key=port, value=80

Beginning with Python 2.2, you no longer need to use the keys() method to extract a list of keys to loop
over. Iterators were created to simplify accessing of sequence-like objects such as dictionaries and files.
Using just the dictionary name itself will cause an iterator over that dictionary to be used in a for loop:

>>> dict2 = {'name': 'earth', 'port': 80}
>>>
>>>> for key in dict2:
... print 'key=%s, value=%s' % (key, dict2[key])
...
key=name, value=earth
key=port, value=80

To access individual dictionary elements, you use the familiar square brackets along with the key to
obtain its value:

>>> dict2['name']
'earth'
>>>
>>> print 'host %s is running on port %d' % \
... (dict2['name'], dict2['port'])
host earth is running on port 80

Dictionary dict1 defined above is empty while dict2 has two data items. The keys in dict2 are 'name'
and 'port', and their associated value items are 'earth' and 80, respectively. Access to the value is
through the key, as you can see from the explicit access to the 'name' key.

If we attempt to access a data item with a key that is not part of the dictionary, we get an error:

>>> dict2['server']
Traceback (innermost last):
 File "<stdin>", line 1, in ?
KeyError: server

In this example, we tried to access a value with the key 'server' which, as you know from the code
above, does not exist. The best way to check if a dictionary has a specific key is to use the dictionary's
has_key() method, or better yet, the in or not in operators starting with version 2.2. The has_key()
method will be obsoleted in future versions of Python, so it is best to just use in or not in.

file:///D|/1/0132269937/ch07lev1sec1.html (3 von 5) [13.11.2007 16:23:19]

Section 7.1. Mapping Type: Dictionaries

We will introduce all of a dictionary's methods below. The Boolean has_key() and the in and not in
operators are Boolean, returning true if a dictionary has that key and False otherwise. (In Python
versions preceding Boolean constants [older than 2.3], the values returned are 1 and 0, respectively.)

>>> 'server' in dict2 # or dict2.has_key('server')
False
>>> 'name' in dict # or dict2.has_key('name')
True
>>> dict2['name']
'earth'

Here is another dictionary example mixing the use of numbers and strings as keys:

>>> dict3 = {}
>>> dict3[1] = 'abc'
>>> dict3['1'] = 3.14159
>>> dict3[3.2] = 'xyz'
>>> dict3
{3.2: 'xyz', 1: 'abc', '1': 3.14159}

Rather than adding each key-value pair individually, we could have also entered all the data for dict3 at
the same time:

dict3 = {3.2: 'xyz', 1: 'abc', '1': 3.14159}

Creating the dictionary with a set key-value pair can be accomplished if all the data items are known in
advance (obviously). The goal of the examples using dict3 is to illustrate the variety of keys that you
can use. If we were to pose the question of whether a key for a particular value should be allowed to
change, you would probably say, "No." Right?

Not allowing keys to change during execution makes sense if you think of it this way: Let us say that
you created a dictionary element with a key and value. Somehow during execution of your program, the
key changed, perhaps due to an altered variable. When you went to retrieve that data value again with
the original key, you got a KeyError (since the key changed), and you had no idea how to obtain your
value now because the key had somehow been altered. For this reason, keys must be hashable, so
numbers and strings are fine, but lists and other dictionaries are not. (See Section 7.5.2 for why keys
must be hashable.)

How to Update Dictionaries

You can update a dictionary by adding a new entry or element (i.e., a key-value pair), modifying an
existing entry, or deleting an existing entry (see below for more details on removing an entry).

>>> dict2['name'] = 'venus' # update existing entry
>>> dict2['port'] = 6969 # update existing entry

file:///D|/1/0132269937/ch07lev1sec1.html (4 von 5) [13.11.2007 16:23:19]

Section 7.1. Mapping Type: Dictionaries

>>> dict2['arch'] = 'sunos5' # add new entry
>>>
>>> print 'host %(name)s is running on port %(port)d' %
dict2
host venus is running on port 6969

If the key does exist, then its previous value will be overridden by its new value. The print statement
above illustrates an alternative way of using the string format operator (%), specific to dictionaries.
Using the dictionary argument, you can shorten the print request somewhat because naming of the
dictionary occurs only once, as opposed to occurring for each element using a tuple argument.

You may also add the contents of an entire dictionary to another dictionary by using the update() built-
in method. We will introduce this method in Section 7.4.

How to Remove Dictionary Elements and Dictionaries

Removing an entire dictionary is not a typical operation. Generally, you either remove individual
dictionary elements or clear the entire contents of a dictionary. However, if you really want to "remove"
an entire dictionary, use the del statement (introduced in Section 3.5.5). Here are some deletion
examples for dictionaries and dictionary elements:

del dict2['name'] # remove entry with key 'name'
dict2.clear() # remove all entries in dict1
del dict2 # delete entire dictionary
dict2.pop('name') # remove & return entry w/key

Core Tip: Avoid using built-in object names as identifiers for
variables!

For those of you who began traveling in the Python universe before
version 2.3, you may have once used dict as an identifier for a
dictionary. However, because dict() is now a type and factory
function, overriding it may cause you headaches and potential bugs.
The interpreter will allow such overriding-hey, it thinks you seem
smart and look like you know what you are doing! So be careful. Do
NOT use variables named after built-in types like: dict, list, file,
bool, str, input, or len!

file:///D|/1/0132269937/ch07lev1sec1.html (5 von 5) [13.11.2007 16:23:19]

file:///D|/1/0132269937/14051536.html

Section 7.2. Mapping Type Operators

7.2. Mapping Type Operators

Dictionaries will work with all of the standard type operators but do not support operations such as
concatenation and repetition. Those operations, although they make sense for sequence types, do not
translate to mapping types. In the next two subsections, we introduce you to the operators you can use
with dictionaries.

7.2.1. Standard Type Operators

The standard type operators were introduced in Chapter 4. Here are some basic examples using some of
those operators:

>>> dict4 = {'abc': 123}
>>> dict5 = {'abc': 456}
>>> dict6 = {'abc': 123, 98.6: 37}
>>> dict7 = {'xyz': 123}
>>> dict4 < dict5
True
>>> (dict4 < dict6) and (dict4 < dict7)
True
>>> (dict5 < dict6) and (dict5 < dict7)
True
>>> dict6 < dict7
False

How are all these comparisons performed? Like lists and tuples, the process is a bit more complex than
it is for numbers and strings. The algorithm is detailed in Section 7.3.1.

7.2.2. Mapping Type Operators

Dictionary Key-Lookup Operator ([])

The only operator specific to dictionaries is the key-lookup operator, which works very similarly to the
single element slice operator for sequence types.

For sequence types, an index offset is the sole argument or subscript to access a single element of a
sequence. For a dictionary, lookups are by key, so that is the argument rather than an index. The key-
lookup operator is used for both assigning values to and retrieving values from a dictionary:

d[k] = v # set value 'v' in dictionary with key 'k'
d[k] # lookup value in dictionary with key 'k'

(Key) Membership (in, not in)

file:///D|/1/0132269937/ch07lev1sec2.html (1 von 2) [13.11.2007 16:23:19]

Section 7.2. Mapping Type Operators

Beginning with Python 2.2, programmers can use the in and not in operators to check key membership
instead of the has_key() method:

>>> 'name' in dict2
True
>>> 'phone' in dict2
False

file:///D|/1/0132269937/ch07lev1sec2.html (2 von 2) [13.11.2007 16:23:19]

Section 7.3. Mapping Type Built-in and Factory Functions

7.3. Mapping Type Built-in and Factory Functions

7.3.1. Standard Type Functions [type(), str(), and cmp()]

The type() factory function, when applied to a dict, returns, as you might expect, the dict type, "<type
'dict'>". The str() factory function will produce a printable string representation of a dictionary. These
are fairly straightforward.

In each of the last three chapters, we showed how the cmp() BIF worked with numbers, strings, lists,
and tuples. So how about dictionaries? Comparisons of dictionaries are based on an algorithm that starts
with sizes first, then keys, and finally values. However, using cmp() on dictionaries isn't usually very
useful.

The next subsection goes into further detail about the algorithm used to compare dictionaries, but this is
advanced reading, and definitely optional since comparing dictionaries is not very useful or very
common.

*Dictionary Comparison Algorithm

In the following example, we create two dictionaries and compare them, then slowly modify the
dictionaries to show how these changes affect their comparisons:

>>> dict1 = {}
>>> dict2 = {'host': 'earth', 'port': 80}
>>> cmp(dict1, dict2)
-1
>>> dict1['host'] = 'earth'
>>> cmp(dict1, dict2)
-1

In the first comparison, dict1 is deemed smaller because dict2 has more elements (2 items vs. 0
items). After adding one element to dict1, it is still smaller (2 vs. 1), even if the item added is also in
dict2.

>>> dict1['port'] = 8080
>>> cmp(dict1, dict2)
1
>>> dict1['port'] = 80
>>> cmp(dict1, dict2)
0

After we add the second element to dict1, both dictionaries have the same size, so their keys are then
compared. At this juncture, both sets of keys match, so comparison proceeds to checking their values.
The values for the 'host' keys are the same, but when we get to the 'port' key, dict2 is deemed larger
because its value is greater than that of dict1's 'port' key (8080 vs. 80). When resetting dict2's 'port'
key to the same value as dict1's 'port' key, then both dictionaries form equals: They have the same

file:///D|/1/0132269937/ch07lev1sec3.html (1 von 5) [13.11.2007 16:23:20]

file:///D|/1/0132269937/14051536.html

Section 7.3. Mapping Type Built-in and Factory Functions

size, their keys match, and so do their values, hence the reason that 0 is returned by cmp().

>>> dict1['prot'] = 'tcp'
>>> cmp(dict1, dict2)
1
>>> dict2['prot'] = 'udp'
>>> cmp(dict1, dict2)
-1

As soon as an element is added to one of the dictionaries, it immediately becomes the "larger one," as
in this case with dict1. Adding another key-value pair to dict2 can tip the scales again, as both
dictionaries' sizes match and comparison progresses to checking keys and values.

>>> cdict = {'fruits':1}
>>> ddict = {'fruits':1}
>>> cmp(cdict, ddict)
0
>>> cdict['oranges'] = 0
>>> ddict['apples'] = 0
>>> cmp(cdict, ddict)
14

Our final example reminds as that cmp() may return values other than -1, 0, or 1. The algorithm pursues
comparisons in the following order.

(1) Compare Dictionary Sizes

If the dictionary lengths are different, then for cmp (dict1, dict2), cmp() will return a positive number if
dict1 is longer and a negative number if dict2 is longer. In other words, the dictionary with more keys
is greater, i.e.,

len(dict1) > len(dict2) dict1 > dict2

(2) Compare Dictionary Keys

If both dictionaries are the same size, then their keys are compared; the order in which the keys are
checked is the same order as returned by the keys() method. (It is important to note here that keys
that are the same will map to the same locations in the hash table. This keeps key-checking consistent.)
At the point where keys from both do not match, they are directly compared and cmp() will return a
positive number if the first differing key for dict1 is greater than the first differing key of dict2.

(3) Compare Dictionary Values

If both dictionary lengths are the same and the keys match exactly, the values for each key in both
dictionaries are compared. Once the first key with non-matching values is found, those values are
compared directly. Then cmp() will return a positive number if, using the same key, the value in dict1 is
greater than the value in dict2.

(4) Exact Match

file:///D|/1/0132269937/ch07lev1sec3.html (2 von 5) [13.11.2007 16:23:20]

Section 7.3. Mapping Type Built-in and Factory Functions

If we have reached this point, i.e., the dictionaries have the same length, the same keys, and the same
values for each key, then the dictionaries are an exact match and 0 is returned.

Figure 7-1 illustrates the dictionary compare algorithm we just outlined.

Figure 7-1. How dictionaries are compared

[View full size image]

7.3.2. Mapping Type Related Functions

dict ()

The dict() factory function is used for creating dictionaries. If no argument is provided, then an empty
dictionary is created. The fun happens when a container object is passed in as an argument to dict().

If the argument is an iterable, i.e., a sequence, an iterator, or an object that supports iteration, then
each element of the iterable must come in pairs. For each pair, the first element will be a new key in the
dictionary with the second item as its value. Taking a cue from the official Python documentation for dict
():

file:///D|/1/0132269937/ch07lev1sec3.html (3 von 5) [13.11.2007 16:23:20]

file:///D|/1/0132269937/images/chun_fig07_01_alt.jpg

Section 7.3. Mapping Type Built-in and Factory Functions

>>> dict(zip(('x', 'y'), (1, 2)))
{'y': 2, 'x': 1}
>>> dict([['x', 1], ['y', 2]])
{'y': 2, 'x': 1}
>>> dict([('xy'[i-1], i) for i in range(1,3)])
{'y': 2, 'x': 1}

If it is a(nother) mapping object, i.e., a dictionary, then dict() will just create a new dictionary and copy
the contents of the existing one. The new dictionary is actually a shallow copy of the original one and
the same results can be accomplished by using a dictionary's copy() built-in method. Because creating a
new dictionary from an existing one using dict() is measurably slower than using copy(), we
recommend using the latter.

Starting in Python 2.3, it is possible to call dict() with an existing dictionary or keyword argument
dictionary (** function operator, covered in Chapter 11):

>>> dict(x=1, y=2)
{'y': 2, 'x': 1}
>>> dict8 = dict(x=1, y=2)
>>> dict8
{'y': 2, 'x': 1}
>>> dict9 = dict(**dict8)
>>> dict9
{'y': 2, 'x': 1}

We remind viewers that the dict9 example is only an exercise in understanding the calling semantics of
dict() and not a realistic example. It would be wiser (and better performance-wise) to execute
something more along the lines of:

>>> dict9 = dict8.copy()
>>> dict9
{'y': 2, 'x' : 1}

len()

The len() BIF is flexible. It works with sequences, mapping types, and sets (as we will find out later on
in this chapter). For a dictionary, it returns the total number of items, that is, key-value pairs:

>>> dict2 = {'name': 'earth', 'port': 80}
>>> dict2
{'port': 80, 'name': 'earth'}
>>> len(dict2)
2

We mentioned earlier that dictionary items are unordered. We can see that above, when referencing
dict2, the items are listed in reverse order from which they were entered into the dictionary.

hash()

file:///D|/1/0132269937/ch07lev1sec3.html (4 von 5) [13.11.2007 16:23:20]

Section 7.3. Mapping Type Built-in and Factory Functions

The hash() BIF is not really meant to be used for dictionaries per se, but it can be used to determine
whether an object is fit to be a dictionary key (or not). Given an object as its argument, hash() returns
the hash value of that object. The object can only be a dictionary key if it is hashable (meaning this
function returns a[n integer] value without errors or raising an exception). Numeric values that are
equal (when pitted against each other using a comparison operator) hash to the same value (even if
their types differ). A TypeError will occur if an unhashable type is given as the argument to hash() (and
consequently if an attempt is made to use such an object as the key when assigning a value to a
dictionary):

>>> hash([])
Traceback (innermost last):
 File "<stdin>", line 1, in ?
TypeError: list objects are unhashable
>>>
>>> dict2[{}] = 'foo'
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
TypeError: dict objects are unhashable

In Table 7.1, we summarize these three mapping type related functions.

Table 7.1. Mapping Type Related Functions

Function Operation

dict([container]) Factory function for creating a dictionary populated with items from container, if
provided; if not, an empty dict is created

len(mapping) Returns the length of mapping (number of key-value pairs)

hash(obj) Returns hash value of obj

file:///D|/1/0132269937/ch07lev1sec3.html (5 von 5) [13.11.2007 16:23:20]

file:///D|/1/0132269937/14051536.html

Section 7.4. Mapping Type Built-in Methods

7.4. Mapping Type Built-in Methods

Dictionaries have an abundance of methods to help you get the job done, as indicated in Table 7.2.

Table 7.2. Dictionary Type Methods

Method Name Operation

dict.clear
[a]

 ()
Removes all elements of dict

dict.clear
[a]

 () Returns a (shallow
[b]

) copy of dict

dict.fromkeys
[c]

 (seq, val=None)
Creates and returns a new dictionary with the elements of
seq as the keys and val as the initial value (defaults to None
if not given) for all keys

dict.get(key, default=None)
[a] For key key, returns value or default if key not in dict (note

that default's default is None)

dict.has_key (key) Returns TRue if key is in dict, False otherwise; partially
deprecated by the in and not in operators in 2.2 but still
provides a functional interface

dict.items() Returns a list of the (key, value) tuple pairs of dict

dict.keys() Returns a list of the keys of dict

dict.iter *
[d]

 ()
iteritems(), iterkeys(), itervalues() are all methods that
behave the same as their non-iterator counterparts but
return an iterator instead of a list

dict.pop
[c]

(key [, default])
Similar to get() but removes and returns dict[key] if key
present and raises KeyError if key not in dict and default
not given

dict.setdefault (key, default=None)
[e] Similar to get(), but sets dict[key]=default if key is not

already in dict

dict.update(dict2)
[a] Add the key-value pairs of dict2 to dict

dict.values() Returns a list of the values of dict

[a] New in Python 1.5.

[b] More information regarding shallow and deep copies can be found in Section 6.19.

[c] New in Python 2.3.

file:///D|/1/0132269937/ch07lev1sec4.html (1 von 4) [13.11.2007 16:23:21]

Section 7.4. Mapping Type Built-in Methods

[d] New in Python 2.2.

[e] New in Python 2.0.

Below, we showcase some of the more common dictionary methods. We have already seen has_key()
and its replacements in and not in at work above. Attempting to access a nonexistent key will result in
an exception (KeyError) as we saw in Section 7.1.

Basic dictionary methods focus on their keys and values. These are keys(), which returns a list of the
dictionary's keys, values(), which returns a list of the dictionary's values, and items(), which returns a
list of (key, value) tuple pairs. These are useful when you wish to iterate through a dictionary's keys or
values, albeit in no particular order.

>>> dict2.keys()
['port', 'name']
>>>
>>> dict2.values()
[80, 'earth']
>>>
>>> dict2.items()
[('port', 80), ('name', 'earth')]
>>>
>>> for eachKey in dict2.keys():
... print 'dict2 key', eachKey, 'has value', dict2[eachKey]
...
dict2 key port has value 80
dict2 key name has value earth

The keys() method is fairly useful when used in conjunction with a for loop to retrieve a dictionary's
values as it returns a list of a dictionary's keys. However, because its items (as with any keys of a hash
table) are unordered, imposing some type of order is usually desired.

In Python versions prior to 2.4, you would have to call a dictionary's keys() method to get the list of its
keys, then call that list's sort() method to get a sorted list to iterate over. Now a built-in function
named sorted(), made especially for iterators, exists, which returns a sorted iterator:

>>> for eachKey in sorted(dict2):
... print 'dict2 key', eachKey, 'has value',
dict2[eachKey]
...
dict2 key name has value earth
dict2 key port has value 80

The update() method can be used to add the contents of one directory to another. Any existing entries
with duplicate keys will be overridden by the new incoming entries. Nonexistent ones will be added. All
entries in a dictionary can be removed with the clear() method.

file:///D|/1/0132269937/ch07lev1sec4.html (2 von 4) [13.11.2007 16:23:21]

Section 7.4. Mapping Type Built-in Methods

>>> dict2= {'host':'earth', 'port':80}
>>> dict3= {'host':'venus', 'server':'http'}
>>> dict2.update(dict3)
>>> dict2
{'server': 'http', 'port': 80, 'host': 'venus'}
>>> dict3.clear()
>>> dict3
{}

The copy() method simply returns a copy of a dictionary. Note that this is a shallow copy only. Again,
see Section 6.19 regarding shallow and deep copies. Finally, the get() method is similar to using the
key-lookup operator ([]), but allows you to provide a default value returned if a key does not exist. If
a key does not exist and a default value is not given, then None is returned. This is a more flexible option
than just using key-lookup because you do not have to worry about an exception being raised if a key
does not exist.

>>> dict4 = dict2.copy()
>>> dict4
{'server': 'http', 'port': 80, 'host': 'venus'}
>>> dict4.get('host')
'venus'
>>> dict4.get('xxx')
>>> type(dict4.get('xxx'))
<type 'None'>
>>> dict4.get('xxx', 'no such key')
'no such key'

The built-in method, setdefault(), added in version 2.0, has the sole purpose of making code shorter by
collapsing a common idiom: you want to check if a dictionary has a key. If it does, you want its value. If
the dictionary does not have the key you are seeking, you want to set a default value and then return it.
That is precisely what setdefault() does:

>>> myDict = {'host': 'earth', 'port': 80}
>>> myDict.keys()
['host', 'port']
>>> myDict.items()
[('host', 'earth'), ('port', 80)]
>>> myDict.setdefault('port', 8080)
80
>>> myDict.setdefault('prot', 'tcp')
'tcp'
>>> myDict.items()
[('prot', 'tcp'), ('host', 'earth'), ('port', 80)]

Earlier, we took a brief look at the fromkeys() method, but here are a few more examples:

file:///D|/1/0132269937/ch07lev1sec4.html (3 von 4) [13.11.2007 16:23:21]

Section 7.4. Mapping Type Built-in Methods

>>> {}.fromkeys('xyz')
{'y': None, 'x': None, 'z': None}
>>>
>>> {}.fromkeys(('love', 'honor'), True)
{'love': True, 'honor': True}

Currently, the keys(), items(), and values() methods return lists. This can be unwieldy if such data
collections are large, and the main reason why iteritems(), iterkeys(), and itervalues() were added
to Python in 2.2. They function just like their list counterparts only they return iterators, which by lazier
evaluation, are more memory-friendly. In future versions of Python, even more flexible and powerful
objects will be returned, tentatively called views. Views are collection interfaces which give you access
to container objects. For example, you may be able to delete a key from a view, which would then alter
the corresponding dictionary accordingly.

file:///D|/1/0132269937/ch07lev1sec4.html (4 von 4) [13.11.2007 16:23:21]

Section 7.5. Dictionary Keys

7.5. Dictionary Keys

Dictionary values have no restrictions. They can be any arbitrary Python object, i.e., from standard
objects to user-defined objects. However, the same cannot be said of keys.

7.5.1. More Than One Entry per Key Not Allowed

One rule is that you are constrained to having only one entry per key. In other words, multiple values
per the same key are not allowed. (Container objects such as lists, tuples, and other dictionaries are
fine.) When key collisions are detected (meaning duplicate keys encountered during assignment), the
last (most recent) assignment wins.

>>> dict1 = {' foo':789, 'foo': 'xyz'}
>>> dict1
{'foo': 'xyz'}
>>>
>>> dict1['foo'] = 123
>>> dict1
{'foo': 123}

Rather than producing an error, Python does not check for key collisions because that would involve
taking up memory for each key-value pair assigned. In the above example where the key 'foo' is given
twice on the same line, Python applies the key-value pairs from left to right. The value 789 may have
been set at first, but is quickly replaced by the string 'xyz'. When assigning a value to a nonexistent
key, the key is created for the dictionary and value added, but if the key does exist (a collision), then its
current value is replaced. In the above example, the value for the key 'foo' is replaced twice; in the
final assignment, 'xyz' is replaced by 123.

7.5.2. Keys Must Be Hashable

As we mentioned earlier in Section 7.1, most Python objects can serve as keys; however they have to
be hashable objectsmutable types such as lists and dictionaries are disallowed because they cannot be
hashed.

All immutable types are hashable, so they can definitely be used as keys. One caveat is numbers:
Numbers of the same value represent the same key. In other words, the integer 1 and the float 1.0
hash to the same value, meaning that they are identical as keys.

Also, there are some mutable objects that are (barely) hashable, so they are eligible as keys, but there
are very few of them. One example would be a class that has implemented the __hash__() special
method. In the end, an immutable value is used anyway as __hash__() must return an integer.

Why must keys be hashable? The hash function used by the interpreter to calculate where to store your
data is based on the value of your key. If the key was a mutable object, its value could be changed. If a
key changes, the hash function will map to a different place to store the data. If that was the case, then
the hash function could never reliably store or retrieve the associated value. Hashable keys were chosen
for the very fact that their values cannot change. (This question can also be found in the Python FAQ.)

file:///D|/1/0132269937/ch07lev1sec5.html (1 von 4) [13.11.2007 16:23:21]

file:///D|/1/0132269937/14051536.html

Section 7.5. Dictionary Keys

We know that numbers and strings are allowed as keys, but what about tuples? We know they are
immutable, but in Section 6.17.2, we hinted that they might not be as immutable as they could be. The
clearest example of that was when we modified a list object that was one of our tuple elements. To
allow tuples as valid keys, one more restriction must be enacted: Tuples are valid keys only if they only
contain immutable arguments like numbers and strings.

We conclude this chapter on dictionaries by presenting a program (userpw.py as in Example 7.1) that
manages usernames and passwords in a mock login entry database system. This script accepts new
users given that they provide a login name and a password. Once an "account" has been set up, an
existing user can return as long as the user gives the login and correct password. New users cannot
create an entry with an existing login name.

Example 7.1. Dictionary Example (userpw.py)

This application manages a set of users who join the system with a login name and a
password. Once established, existing users can return as long as they remember their login
and password. New users cannot create an entry with someone else's login name.

1 #!/usr/bin/env python
2
3 db = {}
4
5 def newuser():
6 prompt = 'login desired: '
7 while True:
8 name = raw_input(prompt)
9 if db.has_key(name):
10 prompt = 'name taken, try another: '
11 continue
12 else:
13 break
14 pwd = raw_input('passwd: ')
15 db[name] = pwd
16
17 def olduser():
18 name = raw_input('login: ')
19 pwd = raw_input('passwd: ')
20 passwd = db.get(name)
21 if passwd == pwd:
22 print 'welcome back', name
23 else:
24 print 'login incorrect'
25
26 def showmenu():
27 prompt = """
28 (N)ew User Login
29 (E)xisting User Login
30 (Q)uit
31
32 Enter choice: """
33
34 done = False
35 while not done:
36
37 chosen = False
38 while not chosen:

file:///D|/1/0132269937/ch07lev1sec5.html (2 von 4) [13.11.2007 16:23:21]

Section 7.5. Dictionary Keys

39 try:
40 choice =
 raw_input(prompt).strip()[0].lower()
41 except (EOFError, KeyboardInterrupt):
42 choice = 'q'
43 print '\nYou picked: [%s]' % choice
44 if choice not in 'neq':
45 print 'invalid option, try again'
46 else:
47 chosen = True
48
49 if choice == 'q': done = True
50 if choice == 'n': newuser()
51 if choice == 'e': olduser()
52
53 if __name__ == '__main__':
54 showmenu()

Line-by-Line Explanation

Lines 13

After the Unix-startup line, we initialize the program with an empty user database. Because we are not
storing the data anywhere, a new user database is created every time this program is executed.

Lines 515

The newuser() function is the code that serves new users. It checks to see if a name has already been
taken, and once a new name is verified, the user is prompted for his or her password (no encryption
exists in our simple program), and his or her password is stored in the dictionary with his or her user
name as the key.

Lines 1724

The olduser() function handles returning users. If a user returns with the correct login and password, a
welcome message is issued. Otherwise, the user is notified of an invalid login and returned to the menu.
We do not want an infinite loop here to prompt for the correct password because the user may have
inadvertently entered the incorrect menu option.

Lines 2651

The real controller of this script is the showmenu() function. The user is presented with a friendly menu.
The prompt string is given using triple quotes because it takes place over multiple lines and is easier to
manage on multiple lines than on a single line with embedded '\n' symbols. Once the menu is
displayed, it waits for valid input from the user and chooses which mode of operation to follow based on
the menu choice. The try-except statements we describe here are the same as for the stack.py and
queue.py examples from the last chapter (see Section 6.14.1).

Lines 5354

file:///D|/1/0132269937/ch07lev1sec5.html (3 von 4) [13.11.2007 16:23:21]

Section 7.5. Dictionary Keys

This is the familiar code that will only call showmenu() to start the application if the script was involved
directly (not imported). Here is a sample execution of our script:

 $ userpw.py

 (N)ew User Login
 (E)xisting User Login
 (Q)uit

 Enter choice: n

 You picked: [n]
 login desired: king arthur
 passwd: grail

 (N)ew User Login
 (E)xisting User Login
 (Q)uit

 Enter choice: e

 You picked: [e]
 login: sir knight
 passwd: flesh wound
 login incorrect

 (N)ew User Login
 (E)xisting User Login
 (Q)uit

 Enter choice: e

 You picked: [e]
 login: king arthur
 passwd: grail
 welcome back king arthur

 (N)ew User Login
 (E)xisting User Login
 (Q)uit

 Enter choice: ^D
 You picked: [q]

file:///D|/1/0132269937/ch07lev1sec5.html (4 von 4) [13.11.2007 16:23:21]

file:///D|/1/0132269937/14051536.html

Section 7.6. Set Types

7.6. Set Types

In mathematics, a set is any collection of distinct items, and its members are often referred to as set
elements. Python captures this essence in its set type objects. A set object is an unordered collection of
hashable values. Yes, set members would make great dictionary keys. Mathematical sets translate to
Python set objects quite effectively and testing for set membership and operations such as union and
intersection work in Python as expected.

Like other container types, sets support membership testing via in and not in operators, cardinality
using the len() BIF, and iteration over the set membership using for loops. However, since sets are
unordered, you do not index into or slice them, and there are no keys used to access a value.

There are two different types of sets available, mutable (set) and immutable (frozenset). As you can
imagine, you are allowed to add and remove elements from the mutable form but not the immutable.
Note that mutable sets are not hashable and thus cannot be used as either a dictionary key or as an
element of another set. The reverse is true for frozen sets, i.e., they have a hash value and can be used
as a dictionary key or a member of a set.

Sets became available in Python 2.3 via the sets module and accessed via the ImmutableSet and Set
classes. However, it was decided that having them as built-in types was a better idea, so these classes
were then ported to C along with some improvements and integrated into Python 2.4. You can read
more about those improvements as well as set types in general in PEP 218 at http://python.org/peps/
pep-0218.html.

Although sets are now an official Python type, they have often been seen in many Python applications
(as user-defined classes), a wheel that has been reinvented many times over, similar to complex
numbers (which eventually became a Python type way back in 1.4). Until current versions of Python,
most users have tried to shoehorn set functionality into standard Python types like lists and dictionaries
as proxies to a real set type (even if they were not the perfect data structure for their applications). Now
users have more options, including a "real" set type.

Before we go into detail regarding Python set objects, we have to mentally translate the mathematical
symbols to Python (see Table 7.3) so that we are clear on terminology and functionality.

Table 7.3. Set Operation and Relation Symbols

Mathematical Symbol Python Symbol Description

• in Is a member of

not in Is not a member of

= == Is equal to

file:///D|/1/0132269937/ch07lev1sec6.html (1 von 3) [13.11.2007 16:23:22]

http://python.org/peps/pep-0218.html
http://python.org/peps/pep-0218.html

Section 7.6. Set Types

!= Is not equal to

< Is a (strict) subset of

<= Is a subset of (includes improper subsets)

> Is a (strict) superset of

>= Is a superset of (includes improper supersets)

& Intersection

| Union

- or \ - Difference or relative complement

Δ ^ Symmetric difference

How to Create and Assign Set Types

There is no special syntax for sets like there is for lists ([]) and dictionaries ({ }) for example. Lists
and dictionaries can also be created with their corresponding factory functions list() and dict(), and
that is also the only way sets can be created, using their factory functions set() and frozenset():

 >>> s = set('cheeseshop')
 >>> s
 set(['c', 'e', 'h', 'o', 'p', 's'])
 >>> t = frozenset('bookshop')
 >>> t
 frozenset(['b', 'h', 'k', 'o', 'p', 's'])
 >>> type(s)
 <type 'set'>
 >>> type(t)
 <type 'frozenset'>
 >>> len(s)
 6
 >>> len(s) == len(t)
 True
 >>> s == t
 False

How to Access Values in Sets

You are either going to iterate through set members or check if an item is a member (or not) of a set:

 >>> 'k' in s
 False
 >>> 'k' in t
 True
 >>> 'c' not in t
 True

 >>> for i in s:

file:///D|/1/0132269937/ch07lev1sec6.html (2 von 3) [13.11.2007 16:23:22]

Section 7.6. Set Types

 ... print i
 ...
 c
 e
 h
 o
 p
 s

How to Update Sets

You can add and remove members to and from a set using various built-in methods and operators:

 >>> s.add('z')
 >>> s
 set(['c', 'e', 'h', 'o', 'p', 's', 'z'])
 >>> s.update('pypi')
 >>> s
 set(['c', 'e', 'i', 'h', 'o', 'p', 's', 'y', 'z'])
 >>> s.remove('z')
 >>> s
 set(['c', 'e', 'i', 'h', 'o', 'p', 's', 'y'])
 >>> s -= set('pypi')
 >>> s
 set(['c', 'e', 'h', 'o', 's'])

As mentioned before, only mutable sets can be updated. Any attempt at such operations on immutable
sets is met with an exception:

 >>> t.add('z')
 Traceback (most recent call last):
 File "<stdin>", line 1, in ?
 AttributeError: 'frozenset' object has no attribute 'add'

How to Remove Set Members and Sets

We saw how to remove set members above. As far as removing sets themselves, like any Python object,
you can let them go out of scope or explicitly remove them from the current namespace with del. If the
reference count goes to zero, then it is tagged for garbage collection.

>>> del s
>>>

file:///D|/1/0132269937/ch07lev1sec6.html (3 von 3) [13.11.2007 16:23:22]

Section 7.7. Set Type Operators

7.7. Set Type Operators

7.7.1. Standard Type Operators (all set types)

Membership (in, not in)

As for sequences, Python's in and not in operators are used to determine whether an element is (or is
not) a member of a set.

 >>> s = set('cheeseshop')
 >>> t = frozenset('bookshop')
 >>> 'k' in s
 False
 >>> 'k' in t
 True
 >>> 'c' not in t
 True

Set Equality/Inequality

Equality (or inequality) may be checked between the same or different set types. Two sets are equal if
and only if every member of each set is a member of the other. You can also say that each set must be a
(n improper) subset of the other, e.g., both expressions s <= t and s >= t are true, or (s <= t and s >=
t) is TRue. Equality (or inequality) is independent of set type or ordering of members when the sets
were createdit is all based on the set membership.

 >>> s == t
 False
 >>> s != t
 True
 >>> u = frozenset(s)
 >>> s == u
 True
 >>> set('posh') == set('shop')
 True

Subset Of/Superset Of

Sets use the Python comparison operators to check whether sets are subsets or supersets of other sets.
The "less than" symbols (<, <=) are used for subsets while the "greater than" symbols (>, >=) are used
for supersets.

Less-than and greater-than imply strictness, meaning that the two sets being compared cannot be equal
to each other. The equal sign allows for less strict improper subsets and supersets.

Sets support both proper (<) and improper (<=) subsets as well as proper (>) and improper (>=)
supersets. A set is "less than" another set if and only if the first set is a proper subset of the second set
(is a subset but not equal), and a set is "greater than" another set if and only if the first set is a proper

file:///D|/1/0132269937/ch07lev1sec7.html (1 von 4) [13.11.2007 16:23:23]

Section 7.7. Set Type Operators

superset of the second set (is a superset but not equal).

 >>> set('shop') < set('cheeseshop')
 True
 >>> set('bookshop') >= set('shop')
 True

7.7.2. Set Type Operators (All Set Types)

Union (|)

The union operation is practically equivalent to the OR (or inclusive disjunction) of sets. The union of
two sets is another set where each element is a member of at least one of the sets, i.e., a member of
one set or the other. The union symbol has a method equivalent, union().

 >>> s | t
 set(['c', 'b', 'e', 'h', 'k', 'o', 'p', 's'])

Intersection (&)

You can think of the intersection operation as the AND (or conjunction) of sets. The intersection of two
sets is another set where each element must be a member of at both sets, i.e., a member of one set
and the other. The intersection symbol has a method equivalent, intersection().

 >>> s & t
 set(['h', 's', 'o', 'p']

Difference/Relative Complement (-)

The difference, or relative complement, between two sets is another set where each element is in one
set but not the other. The difference symbol has a method equivalent, difference().

 >>> s - t
 set(['c', 'e'])

Symmetric Difference (^)

Similar to the other Boolean set operations, symmetric difference is the XOR (or exclusive disjunction) of
sets. The symmetric difference between two sets is another set where each element is a member of one
set but not the other. The symmetric difference symbol has a method equivalent, symmetric_difference
().

 >>> s ^ t
 set(['k', 'b', 'e', 'c'])

Mixed Set Type Operations

file:///D|/1/0132269937/ch07lev1sec7.html (2 von 4) [13.11.2007 16:23:23]

Section 7.7. Set Type Operators

In the above examples, s is a set while t is a frozenset. Note that each of the resulting sets from using
the set operators above result in sets. However note that the resulting type is different when the
operands are reversed:

 >>> t | s
 frozenset(['c', 'b', 'e', 'h', 'k', 'o', 'p', 's'])
 >>> t ^ s
 frozenset(['c', 'b', 'e', 'k'])
 >>> t - s
 frozenset(['k', 'b'])

If both types are sets or frozensets, then the type of the result is the same type as each of the
operands, but if operations are performed on mixed types (set and frozenset, and vice versa), the type
of the resulting set is the same type as the left operand, which we can verify in the above.

And no, the plus sign is not an operator for the set types:

 >>> v = s + t
 Traceback (most recent call last):
 File "<stdin>", line 1, in ?
 TypeError: unsupported operand type(s) for +: 'set' and
 'set'
 >>> v = s | t
 >>> v
 set(['c', 'b', 'e', 'h', 'k', 'o', 'p', 's'])
 >>> len(v)
 8
 >>> s < v
 True

7.7.3. Set Type Operators (Mutable Sets Only)

(Union) Update (| =)

The update operation adds (possibly multiple) members from another set to the existing set. The
method equivalent is update().

 >>> s = set('cheeseshop')
 >>> u = frozenset(s)
 >>> s |= set('pypi')
 >>> s
 set(['c', 'e', 'i', 'h', 'o', 'p', 's', 'y'])

Retention/Intersection Update (& =)

The retention (or intersection update) operation keeps only the existing set members that are also
elements of the other set. The method equivalent is intersection_update().

 >>> s = set(u)

file:///D|/1/0132269937/ch07lev1sec7.html (3 von 4) [13.11.2007 16:23:23]

Section 7.7. Set Type Operators

 >>> s &= set('shop')
 >>> s
 set(['h', 's', 'o', 'p'])

Difference Update (- =)

The difference update operation returns a set whose elements are members of the original set after
removing elements that are (also) members of the other set. The method equivalent is
difference_update().

 >>> s = set(u)
 >>> s -= set('shop')
 >>> s
 set(['c', 'e'])

Symmetric Difference Update (^ =)

The symmetric difference update operation returns a set whose members are either elements of the
original or other set but not both. The method equivalent is symmetric_difference_update().

 >>> s = set(u)
 >>> t = frozenset('bookshop')
 >>> s ^= t
 >>> s
 set(['c', 'b', 'e', 'k'])

file:///D|/1/0132269937/ch07lev1sec7.html (4 von 4) [13.11.2007 16:23:23]

file:///D|/1/0132269937/14051536.html

Section 7.8. Built-in Functions

7.8. Built-in Functions

7.8.1. Standard Type Functions

len()

The len() BIF for sets returns cardinality (or the number of elements) of the set passed in as the
argument.

 >>> s = set(u)
 >>> s
 set(['p', 'c', 'e', 'h', 's', 'o'])
 >>> len(s)
 6

7.8.2. Set Type Factory Functions

set() and frozenset()

The set() and frozenset() factory functions generate mutable and immutable sets, respectively. If no
argument is provided, then an empty set is created. If one is provided, it must be an iterable, i.e., a
sequence, an iterator, or an object that supports iteration such as a file or a dictionary.

 >>> set()
 set([])
 >>> set([])
 set([])
 >>> set(())
 set([])
 >>> set('shop')
 set(['h', 's', 'o', 'p'])
 >>>
 >>> frozenset(['foo', 'bar'])
 frozenset(['foo', 'bar'])
 >>>
 >>> f = open('numbers', 'w')
 >>> for i in range(5):
 ... f.write('%d\n' % i)
 ...
 >>> f.close()
 >>> f = open('numbers', 'r')
 >>> set(f)
 set(['0\n', '3\n', '1\n', '4\n', '2\n'])
 >>> f.close()

file:///D|/1/0132269937/ch07lev1sec8.html [13.11.2007 16:23:23]

file:///D|/1/0132269937/14051536.html

Section 7.9. Set Type Built-in Methods

7.9. Set Type Built-in Methods

7.9.1. Methods (All Set Types)

We have seen the operator equivalents to most of the built-in methods, summarized in Table 7.4.

Table 7.4. Set Type Methods

Method Name Operation

s.issubset(t) Returns TRue if every member of s is in t, False otherwise

s.issuperset(t) Returns true if every member of s is in t, False otherwise

s.union(t) Returns a new set with the members of s or t

s.intersection(t) Returns a new set with members of s and t

s.difference(t) Returns a new set with members of s but not t

s.symmetric_difference(t) Returns a new set with members of s or t but not both

s.copy() Returns a new set that is a (shallow) copy of s

The one method without an operator equivalent is copy(). Like the dictionary method of the same name,
it is faster to create a copy of the object using copy() than it is using a factory function like set(),
frozenset(), or dict().

7.9.2. Methods (Mutable Sets Only)

Table 7.5 summarizes all of the built-in methods that only apply to mutable sets, and similar to the
methods above, we have already seen most of their operator equivalents.

Table 7.5. Mutable Set Type Methods

Method Name Operation

s.update(t) Updates s with elements added from t; in other words, s now has
members of either s or t

s.intersection_update(t) Updates s with members of both s and t

s.difference_update(t) Updates s with members of s without elements of t

file:///D|/1/0132269937/ch07lev1sec9.html (1 von 2) [13.11.2007 16:23:24]

Section 7.9. Set Type Built-in Methods

s.symmetric_difference_update(t) Updates s with members of s or t but not both

s.add(obj) Adds object obj to set s

s.remove(obj) Removes object obj from set s; KeyError raised if obj is not an
element of s (obj not in s)

s.discard(obj) Removes object obj if obj is an element of s (obj in s)

s.pop() Removes and returns an arbitrary object of s

s.clear() Removes all elements from s

The new methods here are add(), remove(), discard(), pop(), and clear(). For the methods that take
an object, the argument must be hashable.

7.9.3. Using Operators versus Built-in Methods

As you can see, there are many built-in methods that have near-equivalents when using operators. By
"near-equivalent," we mean that there is one major difference: when using the operators, both
operands must be sets while for the methods, objects can be iterables too. Why was it implemented this
way? The official Python documentation states that "[this] precludes error-prone constructions like set
('abc') [and] 'cbs' in favor of the more readable set('abc').intersection('cbs')."

file:///D|/1/0132269937/ch07lev1sec9.html (2 von 2) [13.11.2007 16:23:24]

Section 7.10. Operator, Function/Method Summary Table for Set Types

7.10. Operator, Function/Method Summary Table for Set Types

In Table 7.6, we summarize all of the set type operators, functions, and methods.

Table 7.6. Set Type Operators, Functions, and Methods

Function/Method Name Operator Equivalent Description

All Set Types

len(s) Set cardinality: number of elements in s

set([obj]) Mutable set factory function; if obj
given, it must be iterable, new set
elements taken from obj; if not, creates
an empty set

frozenset([obj]) Immutable set factory function;
operates the same as set() except
returns immutable set

 obj in s Membership test: is obj an element of s?

 obj not in s Non-membership test: is obj not an
element ofs?

 s == t Equality test: do s and t have exactly
the same elements?

 s != t Inequality test: opposite of ==

 s < t (Strict) subset test; s != t and all
elements of s are members of t

s.issubset(t) s <= t Subset test (allows improper subsets):
all elements of s are members of t

 s > t (Strict) superset test: s != t and all
elements of t are members of s

s.issuperset(t) s >= t Superset test (allows improper
supersets): all elements of t are
members of s

s.union(t) s | t Union operation: elements in s or t

s.intersection(t) s & t Intersection operation: elements in s
and t

s.difference(t) s - t Difference operation: elements in s that
are not elements of t

file:///D|/1/0132269937/ch07lev1sec10.html (1 von 2) [13.11.2007 16:23:24]

file:///D|/1/0132269937/14051536.html

Section 7.10. Operator, Function/Method Summary Table for Set Types

s.symmetric_ difference(t) s ^ t Symmetric difference operation:
elements of either s or t but not both

s.copy() Copy operation: return (shallow) copy of
s

Mutable Sets Only

s.update(t) s |= t (Union) update operation: members of t
added to s

s.intersection_update(t) s &= t Intersection update operation: s only
contains members of the original s and t

s.difference_ update(t) s -= t Difference update operation: s only
contains original members who are not
in t

s.symmetric_ difference_ update(t) s ^= t Symmetric difference update operation:
s only contains members of s or t but
not both

s.add(obj) Add operation: add obj to s

s.remove(obj) Remove operation: remove obj from s;
KeyError raised if obj not in s

s.discard(obj) Discard operation: friendlier version of
remove()remove obj from s if obj in s

s.pop() Pop operation: remove and return an
arbitrary element of s

s.clear() Clear operation: remove all elements of s

file:///D|/1/0132269937/ch07lev1sec10.html (2 von 2) [13.11.2007 16:23:24]

file:///D|/1/0132269937/14051536.html

Section 7.11. Related Modules

7.11. Related Modules

The sets module became available in 2.3 and may be useful if you wish to subclass the Set or
ImmutableSet classes. Although set types were integrated into Python 2.4, there are currently no plans to
deprecate the module.

Some general online references for sets which you may find useful include:

http://en.wikipedia.org/wiki/Set

http://www.geocities.com/basicmathsets/set.html

http://www.math.uah.edu/stat/foundations/Sets.xhtml

file:///D|/1/0132269937/ch07lev1sec11.html [13.11.2007 16:23:24]

http://en.wikipedia.org/wiki/Set
http://www.geocities.com/basicmathsets/set.html
http://www.math.uah.edu/stat/foundations/Sets.xhtml
file:///D|/1/0132269937/14051536.html

Section 7.12. Exercises

7.12. Exercises

7-1. Dictionary Methods. What dictionary method would we use to combine two dictionaries
together?

7-2. Dictionary Keys. We know that dictionary values can be arbitrary Python objects, but
what about the keys? Try using different types of objects as the key other than
numbers or strings. What worked for you and what didn't? As for the failures, why do
you think they didn't succeed?

7-3. Dictionary and List Methods.

a.

Create a dictionary and display its keys alphabetically.

b.

Now display both the keys and values sorted in alphabetical order by the key.

c.

Same as part (b), but sorted in alphabetical order by the value. (Note: This has
no practical purpose in dictionaries or hash tables in general because most
access and ordering [if any] is based on the keys. This is merely an exercise.)

7-4. Creating Dictionaries. Given a pair of identically sized lists, say, [1, 2, 3,...], and
['abc', 'def', 'ghi',...], process all that list data into a single dictionary that looks
like: { 1:'abc', 2:'def', 3:'ghi',...}.

file:///D|/1/0132269937/ch07lev1sec12.html (1 von 5) [13.11.2007 16:23:25]

Section 7.12. Exercises

7-5. userpw2.py. The following problems deal with the program in Example 7.1, a manager
of a database of name-password key-value pairs.

a.

Update the script so that a timestamp (see the time module) is also kept with
the password indicating date and time of last login. This interface should
prompt for login and password and indicate a successful or failed login as
before, but if successful, it should update the last login timestamp. If the login
occurs within four hours of the last login, tell the user, "You already logged in
at: <last_ login_timestamp>."

b.

Add an "administration" menu to include the following two menu options: (1)
remove a user and (2) display a list of all users in the system and their
passwords

c.

The passwords are currently not encrypted. Add password-encryption if so
desired (see the crypt, rotor, or other cryptographic modules).

d.

*Add a GUI interface, i.e., Tkinter, on top of this application.

e.

Allow usernames to be case-insensitive.

f.

Restrict usernames by not allowing symbols or whitespace.

g.

Merge the "new user" and "old user" options together. If a new user tries to log
in with a nonexistent username, prompt if they are new and if so, do the
proper setup. Otherwise, they are an existing user so log in as normal.

file:///D|/1/0132269937/ch07lev1sec12.html (2 von 5) [13.11.2007 16:23:25]

Section 7.12. Exercises

7-6. Lists and Dictionaries. Create a crude stock portfolio database system. There should
be at least four data columns: stock ticker symbol, number of shares, purchase price,
and current priceyou can add more if you wish, such as percentage gain(loss), 52-
week high/low, beta, etc.

Have the user input values for each column to create a single row. Each row should be
created as list. Another all-encompassing list will hold all these rows. Once the data is
entered, prompt the user for one column to use as the sort metric. Extract the data
values of that column into a dictionary as keys, with their corresponding values being
the row that contains that key. Be mindful that the sort metric must have non-
coincidental keys or else you will lose a row because dictionaries are not allowed to
have more than one value with the same key. You may also choose to have additional
calculated output, such as percentage gain/loss, current portfolio values, etc.

7-7. Inverting Dictionaries. Take a dictionary as input and return one as output, but the
values are now the keys and vice versa.

7-8. Human Resources. Create a simple name and employee number dictionary application.
Have the user enter a list of names and employee numbers. Your interface should
allow a sorted output (sorted by name) that displays employee names followed by
their employee numbers. Extra credit: Come up with an additional feature that allows
for output to be sorted by employee numbers.

7-9. Translations.

a.

Create a character translator (that works similar to the Unix tr command).
This function, which we will call TR(), takes three strings as arguments: source,
destination, and base strings, and has the following declaration:

def tr(srcstr, dststr, string)

srcstr contains the set of characters you want "translated," dststr contains
the set of characters to translate to, and string is the string to perform the
translation on. For example, if srcstr == 'abc', dststr == 'mno', and string ==
'abcdef', then tr() would output'mnodef'. Note that len(srcstr) == len(dststr).
For this exercise, you can use the chr() and ord() BIFs, but they are not
necessary to arrive at a solution.

b.

Add a new flag argument to this function to perform case-insensitive
translations.

c.

Update your solution so that it can process character deletions. Any extra

file:///D|/1/0132269937/ch07lev1sec12.html (3 von 5) [13.11.2007 16:23:25]

Section 7.12. Exercises

characters in srcstr that are beyond those that could be mapped to characters
in dststr should be filtered. In other words, these characters are mapped to no
characters in dststr, and are thus filtered from the modified string that is
returned. For example, if srcstr =='abcdef', dststr == 'mno', and string ==
'abcdefghi', then tr() would output 'mnoghi'. Note now that len(srcstr) >= len
(dststr).

7-10. Encryption. Using your solution to the previous problem, and create a "rot13"
translator. "rot13" is an old and fairly simplistic encryption routine whereby each letter
of the alphabet is rotated 13 characters. Letters in the first half of the alphabet will be
rotated to the equivalent letter in the second half and vice versa, retaining case. For
example, a goes to n and X goes to K. Obviously, numbers and symbols are immune
from translation.

(b) Add an application on top of your solution to prompt the user for strings to encrypt
(and decrypt on reapplication of the algorithm), as in the following examples:

 % rot13.py
 Enter string to rot13: This is a short sentence.
 Your string to en/decrypt was: [This is a short
 sentence.].
 The rot13 string is: [Guvf vf n fubeg fragrapr.].
 %
 % rot13.py
 Enter string to rot13: Guvf vf n fubeg fragrapr.
 Your string to en/decrypt was: [Guvf vf n fubeg
 fragrapr.].
 The rot13 string is: [This is a short sentence.].

7-11. Definitions. What constitutes valid dictionary keys? Give examples of valid and invalid
dictionary keys.

7-12. Definitions. (a) What is a set in the mathematical sense? (b) What is a set type as it
relates to Python?

7-13. Random Numbers. The next problems use a customization of Exercise 5-17: use
randint() or randrange() in the random module to generate a set of numbers: generate
between 1 to 10 random numbers numbered randomly between 0 and 9 (inclusive).
These values constitute a set A (A can be mutable or otherwise). Create another
random set B in a similar manner. Display A | B and A & B each time sets A and B are
generated.

file:///D|/1/0132269937/ch07lev1sec12.html (4 von 5) [13.11.2007 16:23:25]

Section 7.12. Exercises

7-14. User Validation. Alter the previous problem where instead of displaying A | B and A &
B, ask the user to input solutions to A | B and A & B, and let the user know if his or
her solution was right or wrong. If it is not correct, give the user the ability to correct
and revalidate his or her answers. Display the correct results if three incorrect answers
are submitted. Extra credit: Use your knowledge of sets to generate potential subsets
and ask the user whether they are indeed subsets (or not), and provide corrections
and answers as necessary as in the main part of this problem.

7-15. Set Calculator. This exercise is inspired by Exercise 12.2 in the free online Java
textbook located at http://math.hws.edu/javanotes. Create an application that allows
users to input a pair of sets, A and B, and allow users to give an operation symbol, i.
e., in, not in, &, |, ^, <, <=, >, >=, ==, !=, etc. (For sets, you define the input
syntaxthey do not have to be enclosed in brackets as the Java example.) Parse the
entire input string and execute the operation on the input sets as requested by the
user. Your solution should require fewer lines of Python than the one in Java.

file:///D|/1/0132269937/ch07lev1sec12.html (5 von 5) [13.11.2007 16:23:25]

http://math.hws.edu/javanotes

Chapter 8. Conditionals and Loops

Chapter 8. Conditionals and Loops

Chapter Topics

● if Statement

● else Statement

● elif Statement

● Conditional Expressions
● while Statement

● for Statement

● break Statement

● continue Statement

● pass Statement

● else Statement ... Take Two

● Iterators
● List Comprehensions
● Generator Expressions

The primary focus of this chapter are Python's conditional and looping statements, and all their related
components. We will take a close look at if, while, for, and their friends else, elif, break, continue,
and pass.

file:///D|/1/0132269937/ch08.html [13.11.2007 16:23:25]

file:///D|/1/0132269937/14051536.html

Section 8.1. if Statement

8.1. if Statement

The if statement for Python will seem amazingly familiar. It is made up of three main components: the
keyword itself, an expression that is tested for its truth value, and a code suite to execute if the
expression evaluates to non-zero or true. The syntax for an if statement is:

if expression:
 expr_true_suite

The suite of the if clause, expr_true_suite, will be executed only if the above conditional expression
results in a Boolean true value. Otherwise, execution resumes at the next statement following the suite.

8.4.1. Multiple Conditional Expressions

The Boolean operators and, or, and not can be used to provide multiple conditional expressions or
perform negation of expressions in the same if statement.

if not warn and (system_load >= 10):
 print "WARNING: losing resources"
 warn += 1

8.1.2. Single Statement Suites

If the suite of a compound statement, i.e., if clause, while or for loop, consists only of a single line, it
may go on the same line as the header statement:

if make_hard_copy: send_data_to_printer()

Single line statements such as the above are valid syntax-wise; however, although it may be
convenient, it may make your code more difficult to read, so we recommend you indent the suite on the
next line. Another good reason is that if you must add another line to the suite, you have to move that
line down anyway.

file:///D|/1/0132269937/ch08lev1sec1.html [13.11.2007 16:23:26]

Section 8.2. else Statement

8.2. else Statement

Like other languages, Python features an else statement that can be paired with an if statement. The
else statement identifies a block of code to be executed if the conditional expression of the if statement
resolves to a false Boolean value. The syntax is what you expect:

if expression:
 expr_true_suite
else:
 expr_false_suite

Now we have the obligatory usage example:

if passwd == user.passwd:
 ret_str = "password accepted"
 id = user.id
 valid = True
else:
 ret_str = "invalid password entered... try again!"
 valid = False

8.2.1. "Dangling else" Avoidance

Python's design of using indentation rather than braces for code block delimitation not only helps to
enforce code correctness, but it even aids implicitly in avoiding potential problems in code that is
syntactically correct. One of those such problems is the (in)famous "dangling else" problem, a semantic
optical illusion.

We present some C code here to illustrate our example (which is also illuminated by K&R and other
programming texts):

/* dangling-else in C */
if (balance > 0.00)
 if (((balance - amt) > min_bal) && (atm_cashout() == 1))
 printf("Here's your cash; please take all bills.\n");
else
 printf("Your balance is zero or negative.\n");

The question is, which if does the else belong to? In the C language, the rule is that the else stays with
the closest if. In our example above, although indented for the outer if statement, the else statement
really belongs to the inner if statement because the C compiler ignores superfluous white space. As a
result, if you have a positive balance but it is below the minimum, you will get the horrid (and
erroneous) message that your balance is either zero or negative.

Although solving this problem may be easy due to the simplistic nature of the example, any larger
sections of code embedded within this framework may be a hair-pulling experience to root out. Python
puts up guardrails not necessarily to prevent you from driving off the cliff, but to steer you away from
danger. The same example in Python will result in one of the following choices (one of which is correct):

file:///D|/1/0132269937/ch08lev1sec2.html (1 von 2) [13.11.2007 16:23:26]

Section 8.2. else Statement

if balance > 0.00:
 if balance - amt > min_bal and atm_cashout():
 print "Here's your cash; please take all bills."
else:
 print 'Your balance is zero or negative.'

or

if balance > 0.00:
 if balance - amt > min_bal and atm_cashout():
 print "Here's your cash; please take all bills."
 else:
 print 'Your balance is zero or negative.'

Python's use of indentation forces the proper alignment of code, giving the programmer the ability to
make a conscious decision as to which if an else statement belongs to. By limiting your choices and
thus reducing ambiguities, Python encourages you to develop correct code the first time. It is impossible
to create a dangling else problem in Python. Also, since parentheses are not required, Python code is
easier to read.

file:///D|/1/0132269937/ch08lev1sec2.html (2 von 2) [13.11.2007 16:23:26]

file:///D|/1/0132269937/14051536.html

Section 8.3. elif (aka else-if) Statement

8.3. elif (aka else-if) Statement

elif is the Python else-if statement. It allows one to check multiple expressions for truth value and
execute a block of code as soon as one of the conditions evaluates to true. Like the else, the elif
statement is optional. However, unlike else, for which there can be at most one statement, there can be
an arbitrary number of elif statements following an if.

if expression1:
 expr1_true_suite
elif expression2:
 expr2_true_suite
 :
elif expressionN:
 exprN_true_suite
else:
 none_of_the_above_suite

Proxy for switch/case Statement?

At some time in the future, Python may support the switch or case statement, but you can simulate it
with various Python constructs. But even a good number of if-elif statements are not that difficult to
read in Python:

if user.cmd == 'create':
 action = "create item"

elif user.cmd == 'delete':
 action = 'delete item'

elif user.cmd == 'update':
 action = 'update item'

else:
 action = 'invalid choice... try again!'

Although the above statements do work, you can simplify them with a sequence and the membership
operator:

if user.cmd in ('create', 'delete', 'update'):
 action = '%s item' % user.cmd
else:
 action = 'invalid choice... try again!'

We can create an even more elegant solution using Python dictionaries, which we learned about in
Chapter 7, "Mapping and Set Types."

file:///D|/1/0132269937/ch08lev1sec3.html (1 von 2) [13.11.2007 16:23:26]

Section 8.3. elif (aka else-if) Statement

msgs = {'create': 'create item',
 'delete': 'delete item',
 'update': 'update item'}
default = 'invalid choice... try again!'
action = msgs.get(user.cmd, default)

One well-known benefit of using mapping types such as dictionaries is that the searching is very fast
compared to a sequential lookup as in the above if-elif-else statements or using a for loop, both of
which have to scan the elements one at a time.

file:///D|/1/0132269937/ch08lev1sec3.html (2 von 2) [13.11.2007 16:23:26]

file:///D|/1/0132269937/14051536.html

Section 8.4. Conditional Expressions (aka "the Ternary Operator")

8.4. Conditional Expressions (aka "the Ternary Operator")

If you are coming from the C/C++ or Java world, it is difficult to ignore or get over the fact that Python
has not had a conditional or ternary operator (C ? X : Y) for the longest time. (C is the conditional
expression; X represents the resultant expression if C is true and Y if C is False.) van Rossum Guido has
resisted adding such a feature to Python because of his belief in keeping code simple and not giving
programmers easy ways to obfuscate their code.

However, after more than a decade, he has given in, mostly because of the error-prone ways in which
people have tried to simulate it using and and or, many times incorrectly. According to the FAQ, the one
way of getting it right is (C and [X] or [Y])[0]. The only problem was that the community could not
agree on the syntax. (You really have to take a look at PEP 308 to see all the different proposals.) This
is one of the areas of Python in which people have expressed strong feelings.

The final decision came down to van Rossum Guido choosing the most favored (and his most favorite) of
all the choices, then applying it to various modules in the standard library. According to the PEP, "this
review approximates a sampling of real-world use cases, across a variety of applications, written by a
number of programmers with diverse backgrounds." And this is the syntax that was finally chosen for
integration into Python 2.5: X if C else Y.

The main motivation for even having a ternary operator is to allow the setting of a value based on a
conditional all on a single line, as opposed to the standard way of using an if-else statement, as in this
min() example using numbers x and y:

>>> x, y = 4, 3
>>> if x < y:
... smaller = x
... else:
... smaller = y
...
>>> smaller
3

In versions prior to 2.5, Python programmers at best could do this:

>>> smaller = (x < y and [x] or [y])[0]
>>> smaller
3

In versions 2.5 and newer, this can be further simplified to:

>>> smaller = x if x < y else y
>>> smaller
3

file:///D|/1/0132269937/ch08lev1sec4.html (1 von 2) [13.11.2007 16:23:27]

Section 8.4. Conditional Expressions (aka "the Ternary Operator")

file:///D|/1/0132269937/ch08lev1sec4.html (2 von 2) [13.11.2007 16:23:27]

file:///D|/1/0132269937/14051536.html

Section 8.5. while Statement

8.5. while Statement

Python's while is the first looping statement we will look at in this chapter. In fact, it is a conditional
looping statement. In comparison with an if statement where a true expression will result in a single
execution of the if clause suite, the suite in a while clause will be executed continuously in a loop until
that condition is no longer satisfied.

8.5.1. General Syntax

Here is the syntax for a while loop:

while expression:
 suite_to_repeat

The suite_to_repeat clause of the while loop will be executed continuously in a loop until expression
evaluates to Boolean False. This type of looping mechanism is often used in a counting situation, such
as the example in the next subsection.

8.5.2. Counting Loops

count = 0
while (count < 9):
 print 'the index is:', count
 count += 1

The suite here, consisting of the print and increment statements, is executed repeatedly until count is
no longer less than 9. With each iteration, the current value of the index count is displayed and then
bumped up by 1. If we take this snippet of code to the Python interpreter, entering the source and
seeing the resulting execution would look something like:

>>> count = 0
>>> while (count < 9):
... print 'the index is:', count
... count += 1
...
the index is: 0
the index is: 1
the index is: 2
the index is: 3
the index is: 4
the index is: 5
the index is: 6
the index is: 7
the index is: 8

8.5.3. Infinite Loops

file:///D|/1/0132269937/ch08lev1sec5.html (1 von 2) [13.11.2007 16:23:27]

Section 8.5. while Statement

One must use caution when using while loops because of the possibility that the condition never
resolves to a false value. In such cases, we would have a loop that never ends on our hands. These
"infinite" loops are not necessarily bad thingsmany communications "servers" that are part of client/
server systems work exactly in that fashion. It all depends on whether or not the loop was meant to run
forever, and if not, whether the loop has the possibility of terminating; in other words, will the
expression ever be able to evaluate to false?

while True:
 handle, indata = wait_for_client_connect()
 outdata = process_request(indata)
 ack_result_to_client(handle, outdata)

For example, the piece of code above was set deliberately to never end because TRue is not going to
somehow change to False. The main point of this server code is to sit and wait for clients to connect,
presumably over a network link. These clients send requests which the server understands and
processes.

After the request has been serviced, a return value or data is returned to the client who may either drop
the connection altogether or send another request. As far as the server is concerned, it has performed
its duty to this one client and returns to the top of the loop to wait for the next client to come along. You
will find out more about client/server computing in Chapter 16, "Network Programming" and Chapter 17,
"Internet Client Programming."

file:///D|/1/0132269937/ch08lev1sec5.html (2 von 2) [13.11.2007 16:23:27]

Section 8.6. for Statement

8.6. for Statement

The other looping mechanism in Python comes to us in the form of the for statement. It represents the
single most powerful looping construct in Python. It can loop over sequence members, it is used in list
comprehensions and generator expressions, and it knows how to call an iterator's next() method and
gracefully ends by catching StopIteration exceptions (all under the covers). If you are new to Python,
we will tell you now that you will be using for statements a lot.

Unlike the traditional conditional looping for statement found in mainstream languages like C/C++,
Fortran, or Java, Python's for is more akin to a shell or scripting language's iterative foreach loop.

8.6.1. General Syntax

The for loop traverses through individual elements of an iterable (like a sequence or iterator) and
terminates when all the items are exhausted. Here is its syntax:

for iter_var in iterable:
 suite_to_repeat

With each loop, the iter_var iteration variable is set to the current element of the iterable (sequence,
iterator, or object that supports iteration), presumably for use in suite_to_repeat.

8.6.2. Used with Sequence Types

In this section, we will see how the for loop works with the different sequence types. The examples will
include string, list, and tuple types.

>>> for each Letter in 'Names':
... print 'current letter:', each Letter
...
current letter: N
current letter: a
current letter: m
current letter: e
current letter: s

When iterating over a string, the iteration variable will always consist of only single characters (strings
of length 1). Such constructs may not necessarily be useful. When seeking characters in a string, more
often than not, the programmer will either use in to test for membership, or one of the string module
functions or string methods to check for sub strings.

One place where seeing individual characters does come in handy is during the debugging of sequences
in a for loop in an application where you are expecting strings or entire objects to show up in your print
statements. If you see individual characters, this is usually a sign that you received a single string
rather than a sequence of objects.

There are three basic ways of iterating over a sequence:

file:///D|/1/0132269937/ch08lev1sec6.html (1 von 6) [13.11.2007 16:23:28]

Section 8.6. for Statement

Iterating by Sequence Item

>>> nameList = ['Walter', "Nicole", 'Steven', 'Henry']
>>> for eachName in nameList:
... print eachName, "Lim"
...
Walter Lim
Nicole Lim
Steven Lim
Henry Lim

In the above example, a list is iterated over, and for each iteration, the eachName variable contains the
list element that we are on for that particular iteration of the loop.

Iterating by Sequence Index

An alternative way of iterating through each item is by index offset into the sequence itself:

>>> nameList = ['Cathy', "Terry", 'Joe', 'Heather', 'Lucy']
>>> for nameIndex in range(len(nameList)):
... print "Liu,", nameList[nameIndex]
...
Liu, Cathy
Liu, Terry
Liu, Joe
Liu, Heather
Liu, Lucy

Rather than iterating through the elements themselves, we are iterating through the indices of the list.

We employ the assistance of the len() built-in function, which provides the total number of elements in
the tuple as well as the range() built-in function (which we will discuss in more detail below) to give us
the actual sequence to iterate over.

>>> len(nameList)
5
>>> range(len(nameList))
[0, 1, 2, 3, 4]

Using range(), we obtain a list of the indexes that nameIndex iterates over; and using the slice/subscript
operator ([]), we can obtain the corresponding sequence element.

Those of you who are performance pundits will no doubt recognize that iteration by sequence item wins
over iterating via index. If not, this is something to think about. (See Exercise 8-13.)

Iterating with Item and Index

file:///D|/1/0132269937/ch08lev1sec6.html (2 von 6) [13.11.2007 16:23:28]

Section 8.6. for Statement

The best of both worlds comes from using the enumerate() built-in function, which was added to Python
in version 2.3. Enough said ... here is some code:

>>> nameList = ['Donn', 'Shirley', 'Ben', 'Janice',
... 'David', 'Yen', 'Wendy']
>>> for i, eachLee in enumerate(nameList):
... print "%d %s Lee" % (i+1, eachLee)
...
1 Donn Lee
2 Shirley Lee

3 Ben Lee
4 Janice Lee
5 David Lee
6 Yen Lee
7 Wendy Lee

8.6.3. Used with Iterator Types

Using for loops with iterators is identical to using them with sequences. The only difference is that the
for statement must do a little bit of extra work on your behalf. An iterator does not represent a set of
items to loop over.

Instead, iterator objects have a next() method, which is called to get subsequent items. When the set of
items has been exhausted, the iterator raises the StopIteration exception to signal that it has finished.
Calling next() and catching StopIteration is built-in to the for statement.

When you are using a for loop with an iterator, the code is nearly identical to that of looping over
sequence items. In fact, for most cases, you cannot tell that you are iterating over a sequence or an
iterator, hence the reason why you will see us refer to iterating over an iterable, which could mean a
sequence, an iterator, or any object that supports iteration, e.g., has a next() method.

8.6.4. range() Built-in Function

We mentioned above during our introduction to Python's for loop that it is an iterative looping
mechanism. Python also provides a tool that will let us use the for statement in a traditional pseudo-
conditional setting, i.e., when counting from one number to another and quitting once the final number
has been reached or some condition is no longer satisfied.

The built-in function range() can turn your foreach-like for loop back into one that you are more familiar
with, i.e., counting from 0 to 10, or counting from 10 to 100 in increments of 5.

range() Full Syntax

Python presents two different ways to use range(). The full syntax requires that two or all three integer
arguments are present:

file:///D|/1/0132269937/ch08lev1sec6.html (3 von 6) [13.11.2007 16:23:28]

Section 8.6. for Statement

range(start, end, step=1)

range() will then return a list where for any k, start <= k < end and k iterates from start to end in
increments of step. step cannot be 0, or an error condition will occur.

>>> range(2, 19, 3)
[2, 5, 8, 11, 14, 17]

If step is omitted and only two arguments given, step takes a default value of 1.

>>> range(3, 7)
[3, 4, 5, 6]

Let's take a look at an example used in the interpreter environment:

>>> for eachVal in range(2, 19, 3):
... print "value is:", eachVal
...
value is: 2
value is: 5
value is: 8
value is: 11
value is: 14
value is: 17

Our for loop now "counts" from 2 to 19, incrementing by steps of 3. If you are familiar with C, then you
will notice the direct correlation between the arguments of range() and those of the variables in the C
for loop:

/* equivalent loop in C */
for (eachVal = 2; eachVal < 19; eachVal += 3) {
 printf("value is: %d\n", eachVal);
}

Although it seems like a conditional loop now (checking if eachVal < 19), reality tells us that range()
takes our conditions and generates a list that meets our criteria, which in turn is used by the same
Python for statement.

range() Abbreviated Syntax

range() also has two abbreviated syntax formats:

range(end)

range(start, end)

file:///D|/1/0132269937/ch08lev1sec6.html (4 von 6) [13.11.2007 16:23:28]

Section 8.6. for Statement

We saw the shortest syntax earlier in Chapter 2. Given only a single value, start defaults to 0, step
defaults to 1, and range() returns a list of numbers from zero up to the argument end:

>>> range(5)
[0, 1, 2, 3, 4]

Given two values, this midsized version of range() is exactly the same as the long version of range()
taking two parameters with step defaulting to 1. We will now take this to the Python interpreter and
plug in for and print statements to arrive at:

>>> for count in range(2, 5):
... print count
...
2
3
4

Core Note: Why not just one syntax for range()?

Now that you know both syntaxes for range(), one nagging question
you may have is, why not just combine the two into a single one that
looks like this?

range(start=0, end, step=1) # invalid

This syntax will work for a single argument or all three, but not two. It
is illegal because the presence of step requires start to be given. In
other words, you cannot provide end and step in a two-argument
version because they will be (mis)interpreted as start and end.

8.6.5. xrange() Built-in Function

xrange() is similar to range() except that if you have a really large range list, xrange() may come in
handier because it does not have to make a complete copy of the list in memory. This built-in was made
for exclusive use in for loops. It does not make sense outside a for loop. Also, as you can imagine, the
performance will not be as good because the entire list is not in memory. In future versions of Python,
range() will eventually become like xrange(), returing an iterable object (not a list nor an iterator
though)it will be similar to views as discussed in the previous chapter.

8.6.6. Sequence-Related Built-in Functions

sorted(), reversed(), enumerate(), zip()

Below are some examples of using these loop-oriented sequence-related functions. The reason why they

file:///D|/1/0132269937/ch08lev1sec6.html (5 von 6) [13.11.2007 16:23:28]

Section 8.6. for Statement

are "sequence-related" is that half of them (sorted() and zip()) return a real sequence (list), while the
other two (reversed() and enumerate()) return iterators (sequence-like).

>>> albums = ('Poe', 'Gaudi', 'Freud', 'Poe2')
>>> years = (1976, 1987, 1990, 2003)
>>> for album in sorted(albums):
... print album,
...
Freud Gaudi Poe Poe2
>>>
>>> for album in reversed(albums):
... print album,
...
Poe2 Freud Gaudi Poe
>>>
>>> for i, album in enumerate(albums):
... print i, album
...
0 Poe
1 Gaudi
2 Freud
3 Poe2
>>>
>>> for album, yr in zip(albums, years):
... print yr, album
...
1976 Poe
1987 Gaudi
1990 Freud
2003 Poe2

Now that we have covered all the loops Python has to offer, let us take a look at the peripheral
commands that typically go together with loops. These include statements to abandon the loop (break)
and to immediately begin the next iteration (continue).

file:///D|/1/0132269937/ch08lev1sec6.html (6 von 6) [13.11.2007 16:23:28]

file:///D|/1/0132269937/14051536.html

Section 8.7. break Statement

8.7. break Statement

The break statement in Python terminates the current loop and resumes execution at the next
statement, just like the traditional break found in C. The most common use for break is when some
external condition is triggered (usually by testing with an if statement), requiring a hasty exit from a
loop. The break statement can be used in both while and for loops.

count = num / 2
while count > 0:
 if num % count == 0:
 print count, 'is the largest factor of', num
 break
 count -= 1

The task of this piece of code is to find the largest divisor of a given number num. We iterate through all
possible numbers that could possibly be factors of num, using the count variable and decrementing for
every value that does not divide num. The first number that evenly divides num is the largest factor, and
once that number is found, we no longer need to continue and use break to terminate the loop.

phone2remove = '555-1212'
for eachPhone in phoneList:
 if eachPhone == phone2remove:
 print "found", phone2remove, '... deleting'
 deleteFromPhoneDB(phone2remove)
 break

The break statement here is used to interrupt the iteration of the list. The goal is to find a target
element in the list, and, if found, to remove it from the database and break out of the loop.

file:///D|/1/0132269937/ch08lev1sec7.html [13.11.2007 16:23:28]

Section 8.8. continue Statement

8.8. continue Statement

Core Note: continue statements

Whether in Python, C, Java, or any other structured language that
features the continue statement, there is a misconception among
some beginning programmers that the traditional continue statement
"immediately starts the next iteration of a loop." While this may seem
to be the apparent action, we would like to clarify this somewhat
invalid supposition. Rather than beginning the next iteration of the
loop when a continue statement is encountered, a continue statement
terminates or discards the remaining statements in the current loop
iteration and goes back to the top. If we are in a conditional loop, the
conditional expression is checked for validity before beginning the next
iteration of the loop. Once confirmed, then the next iteration begins.
Likewise, if the loop were iterative, a determination must be made as
to whether there are any more arguments to iterate over. Only when
that validation has completed successfully can we begin the next
iteration.

The continue statement in Python is not unlike the traditional continue found in other high-level
languages. The continue statement can be used in both while and for loops. The while loop is
conditional, and the for loop is iterative, so using continue is subject to the same requirements (as
highlighted in the Core Note above) before the next iteration of the loop can begin. Otherwise, the loop
will terminate normally.

valid = False
count = 3
while count > 0:
 input = raw_input("enter password")
 # check for valid passwd
 for eachPasswd in passwdList:
 if input == eachPasswd:
 valid = True
 break
 if not valid: # (or valid == 0)
 print "invalid input"
 count -= 1
 continue
 else:
 break

In this combined example using while, for, if, break, and continue, we are looking at validating user
input. The user is given three opportunities to enter the correct password; otherwise, the valid variable
remains a false value of 0, which presumably will result in appropriate action being taken soon after.

file:///D|/1/0132269937/ch08lev1sec8.html [13.11.2007 16:23:29]

Section 8.9. pass Statement

8.9. pass Statement

One Python statement not found in C is the pass statement. Because Python does not use curly braces
to delimit blocks of code, there are places where code is syntactically required. We do not have the
equivalent empty braces or single semicolon the way C does to indicate "do nothing." If you use a
Python statement that expects a sub-block of code or suite, and one is not present, you will get a syntax
error condition. For this reason, we have pass, a statement that does absolutely nothingit is a true NOP,
to steal the "No OPeration" assembly code jargon. Style- and development-wise, pass is also useful in
places where your code will eventually go, but has not been written yet (in stubs, for example):

def foo_func():
 pass

or

if user_choice == 'do_calc':
 pass
else:
 pass

This code structure is helpful during the development or debugging stages because you want the
structure to be there while the code is being created, but you do not want it to interfere with the other
parts of the code that have been completed already. In places where you want nothing to execute, pass
is a good tool to have in the box.

Another popular place is with exception handling, which we will take a look at in Chapter 10; this is
where you can track an error if it occurs, but take no action if it is not fatal (you just want to keep a
record of the event or perform an operation under the covers if an error occurs).

file:///D|/1/0132269937/ch08lev1sec9.html [13.11.2007 16:23:29]

file:///D|/1/0132269937/14051536.html

Section 8.10. else Statement ... Take Two

8.10. else Statement ... Take Two

In C (as well as in most other languages), you will not find an else statement outside the realm of
conditional statements, yet Python bucks the trend again by offering these in while and for loops. How
do they work? When used with loops, an else clause will be executed only if a loop finishes to
completion, meaning they were not abandoned by break.

One popular example of else usage in a while statement is in finding the largest factor of a number. We
have implemented a function that performs this task, using the else statement with our while loop. The
showMaxFactor() function in Example 8.1 (maxFact.py) utilizes the else statement as part of a while loop.

Example 8.1. while-else Loop Example (maxFact.py)

This program displays the largest factors for numbers between 10 and 20. If the number is
prime, the script will indicate that as well.

1 #!/usr/bin/env python
2
3 def showMaxFactor(num):
4 count = num / 2
5 while count > 1:
6 if num % count == 0:
7 print 'largest factor of %d is %d' % \
8 (num, count)
9 break
10 count -= 1
11 else:
12 print num, "is prime"
13
14 for eachNum in range(10, 21):
15 showMaxFactor(eachNum)

The loop beginning on line 3 in showMaxFactor() counts down from half the amount (starts checking if
two divides the number, which would give the largest factor). The loop decrements each time (line 10)
through until a divisor is found (lines 6-9). If a divisor has not been found by the time the loop
decrements to 1, then the original number must be prime. The else clause on lines 11-12 takes care of
this case. The main part of the program on lines 14-15 fires off the requests to showMaxFactor() with the
numeric argument.

Running our program results in the following output:

largest factor of 10 is 5
11 is prime
largest factor of 12 is 6
13 is prime

file:///D|/1/0132269937/ch08lev1sec10.html (1 von 2) [13.11.2007 16:23:29]

file:///D|/1/0132269937/14051536.html

Section 8.10. else Statement ... Take Two

largest factor of 14 is 7
largest factor of 15 is 5
largest factor of 16 is 8
17 is prime
largest factor of 18 is 9
19 is prime
largest factor of 20 is 10

Likewise, a for loop can have a post-processing else. It operates exactly the same way as for a while
loop. As long as the for loop exits normally (not via break), the else clause will be executed. We saw
such an example in Section 8.5.3.

Table 8.1 summarizes with which conditional or looping statements auxiliary statements can be used.

Table 8.1. Auxiliary Statements to
Loops and Conditionals

 Loops and Conditionals

Auxiliary Statements if while for

elif •

else • • •

break • •

continue • •

pass
[a] • • •

[a] pass is valid anywhere a suite (single or multiple statements) is required (also includes elif, else, class, def, TRy,
except, finally).

file:///D|/1/0132269937/ch08lev1sec10.html (2 von 2) [13.11.2007 16:23:29]

file:///D|/1/0132269937/14051536.html

Section 8.11. Iterators and the iter() Function

8.11. Iterators and the iter() Function

8.11.1. What Are Iterators?

Iterators were added to Python in version 2.2 to give sequence-like objects a sequence-like interface.
We formally introduced sequences back in Chapter 6. They are just data structures that you can
"iterate" over by using their index starting at 0 and continuing till the final item of the sequence.
Because you can do this "counting," iterating over sequences is trivial. Iteration support in Python works
seamlessly with sequences but now also allows programmers to iterate through non-sequence types,
including user-defined objects.

Iterators come in handy when you are iterating over something that is not a sequence but exhibits
behavior that makes it seem like a sequence, for example, keys of a dictionary, lines of a file, etc. When
you use loops to iterate over an object item, you will not be able to easily tell whether it is an iterator or
a sequence. The best part is that you do not have to care because Python makes it seem like a
sequence.

8.11.2. Why Iterators?

The defining PEP (234) cites that iterators:

● Provide an extensible iterator interface.
● Bring performance enhancements to list iteration.
● Allow for big performance improvements in dictionary iteration.
● Allow for the creation of a true iteration interface as opposed to overriding methods originally

meant for random element access.
● Be backward-compatible with all existing user-defined classes and extension objects that

emulate sequences and mappings.
● Result in more concise and readable code that iterates over non-sequence collections (mappings

and files, for instance).

8.11.3. How Do You Iterate?

Basically, instead of an index to count sequentially, an iterator is any item that has a next() method.
When the next item is desired, either you or a looping mechanism like for will call the iterators next()
method to get the next value. Once the items have been exhausted, a StopIteration exception is raised,
not to indicate an error, but to let folks know that we are done.

Iterators do have some restrictions, however. For example, you cannot move backward, go back to the
beginning, or copy an iterator. If you want to iterate over the same objects again (or simultaneously),
you have to create another iterator object. It isn't all that bad, however, as there are various tools to
help you with using iterators.

file:///D|/1/0132269937/ch08lev1sec11.html (1 von 4) [13.11.2007 16:23:30]

Section 8.11. Iterators and the iter() Function

There is a reversed() built-in function that returns an iterator that traverses an iterable in reverse order.
The enumerate() BIF also returns an iterator. Two new BIFs, any() and all(), made their debut in Python
2.5they will return true if any or all items traversed across an iterator have a Boolean true value,
respectively. We saw earlier in the chapter how you can use it in a for loop to iterate over both the
index and the item of an iterable. There is also an entire module called itertools that contains various
iterators you may find useful.

8.11.4. Using Iterators with ...

Sequences

As mentioned before, iterating through Python sequence types is as expected:

>>> myTuple = (123, 'xyz', 45.67)
>>> i = iter(myTuple)
>>> i.next()
123
>>> i.next()
'xyz'
>>> i.next()
45.67
>>> i.next()
Traceback (most recent call last):
 File "", line 1, in ?
StopIteration

If this had been an actual program, we would have enclosed the code inside a try-except block.
Sequences now automatically produce their own iterators, so a for loop:

for i in seq:
 do_something_to(i)

under the covers now really behaves like this:

fetch = iter(seq)
while True:
 try:
 i = fetch.next()
 except StopIteration:
 break
 do_something_to(i)

However, your code does not need to change because the for loop itself calls the iterator's next()
method (as well as monitors for StopIteration).

file:///D|/1/0132269937/ch08lev1sec11.html (2 von 4) [13.11.2007 16:23:30]

Section 8.11. Iterators and the iter() Function

Dictionaries

Dictionaries and files are two other Python data types that received the iteration makeover. A
dictionary's iterator traverses its keys. The idiom for eachKey in myDict.keys() can be shortened to for
eachKey in myDict as shown here:

>>> legends = { ('Poe', 'author'): (1809, 1849, 1976),
... ('Gaudi', 'architect'): (1852, 1906, 1987),
... ('Freud', 'psychoanalyst'): (1856, 1939, 1990)
... }
...
>>> for eachLegend in legends:
... print 'Name: %s\tOccupation: %s' % eachLegend
... print ' Birth: %s\tDeath: %s\tAlbum: %s\n' \
... % legends[eachLegend]
...
Name: Freud Occupation: psychoanalyst
 Birth: 1856 Death: 1939 Album: 1990

Name: Poe Occupation: author
 Birth: 1809 Death: 1849 Album: 1976

Name: Gaudi Occupation: architect
 Birth: 1852 Death: 1906 Album: 1987

In addition, three new built-in dictionary methods have been introduced to define the iteration: myDict.
iterkeys() (iterate through the keys), myDict.itervalues() (iterate through the values), and myDict.
iteritems() (iterate through key/value pairs). Note that the in operator has been modified to check a
dictionary's keys. This means the Boolean expression myDict.has_key(anyKey) can be simplified as anyKey
in myDict.

Files

File objects produce an iterator that calls the readline() method. Thus, they loop through all lines of a
text file, allowing the programmer to replace essentially for eachLine in myFile.readlines() with the
more simplistic for eachLine in myFile:

>>> myFile = open('config-win.txt')
>>> for eachLine in myFile:
... print eachLine, # comma suppresses extra \n
...
[EditorWindow]
font-name: courier new
font-size: 10
>>> myFile.close()

8.11.5. Mutable Objects and Iterators

Remember that interfering with mutable objects while you are iterating them is not a good idea. This
was a problem before iterators appeared. One popular example of this is to loop through a list and
remove items from it if certain criteria are met (or not):

file:///D|/1/0132269937/ch08lev1sec11.html (3 von 4) [13.11.2007 16:23:30]

Section 8.11. Iterators and the iter() Function

for eachURL in allURLs:
 if not eachURL.startswith('http://'):
 allURLs.remove(eachURL) # YIKES!!

All sequences are immutable except lists, so the danger occurs only there. A sequence's iterator only
keeps track of the Nth element you are on, so if you change elements around during iteration, those
updates will be reflected as you traverse through the items. If you run out, then StopIteration will be
raised.

When iterating through keys of a dictionary, you must not modify the dictionary. Using a dictionary's
keys() method is okay because keys() returns a list that is independent of the dictionary. But iterators
are tied much more intimately with the actual object and will not let us play that game anymore:

>>> myDict = {'a': 1, 'b': 2, 'c': 3, 'd': 4}
>>> for eachKey in myDict:
... print eachKey, myDict[eachKey]
... del myDict[eachKey]
...
a 1
Traceback (most recent call last):
 File "", line 1, in ?
RuntimeError: dictionary changed size during iteration

This will help prevent buggy code. For full details on iterators, see PEP 234.

8.11.6. How to Create an Iterator

You can take an item and call iter() on it to turn it into an iterator. Its syntax is one of the following:

iter(obj)
iter(func, sentinel)

If you call iter() with one object, it will check if it is just a sequence, for which the solution is simple: It
will just iterate through it by (integer) index from 0 to the end. Another way to create an iterator is with
a class. As we will see in Chapter 13, a class that implements the __iter__() and next() methods can be
used as an iterator.

If you call iter() with two arguments, it will repeatedly call func to obtain the next value of iteration
until that value is equal to sentinel.

file:///D|/1/0132269937/ch08lev1sec11.html (4 von 4) [13.11.2007 16:23:30]

file:///D|/1/0132269937/14051536.html

Section 8.12. List Comprehensions

8.12. List Comprehensions

List comprehensions (or "list comps" for short) come to us from the functional programming language
Haskell. They are an extremely valuable, simple, and flexible utility tool that helps us create lists on the
fly. They were added to Python in version 2.0.

Up ahead in Functions (Chapter 11), we will be discussing long-time Python functional programming
features like lambda, map(), and filter(). They have been around in Python for quite a while, but with
list comprehensions, they have simplified their use to only requiring a list comp instead. map() is a
function that applies an operation to list members, and filter() filters out list members based on a
conditional expression. Finally, lambda allows you to create one-line function objects on the fly. It is not
important that you learn them now, but you will see examples of them in this section because we are
discussing the merits of list comps. Let us take a look at the simpler list comprehension syntax first:

[expr for iter_var in iterable]

The core of this statement is the for loop, which iterates over each item of iterable. The prefixed expr is
applied for each member of the sequence, and the resulting values comprise the list that the expression
yields. The iteration variable need not be part of the expression.

Here is a sneak preview of some code from Chapter 11. It has a lambda function that squares the
members of a sequence:

>>> map(lambda x: x ** 2, range(6))
[0, 1, 4, 9, 16, 25]

We can replace this code with the following list comprehension statement:

>>> [x ** 2 for x in range(6)]
[0, 1, 4, 9, 16, 25]

In the new statement, only one function call (range()) is made (as opposed to threerange(), map(), and
the lambda function). You may also use parentheses around the expression if [(x ** 2) for x in range
(6)] is easier for you to read. This syntax for list comprehensions can be a substitute for and is more
efficient than using the map() built-in function along with lambda.

List comprehensions also support an extended syntax with the if statement:

[expr for iter_var in iterable if cond_expr]

file:///D|/1/0132269937/ch08lev1sec12.html (1 von 3) [13.11.2007 16:23:31]

Section 8.12. List Comprehensions

This syntax will filter or "capture" sequence members only if they meet the condition provided for in the
cond_expr conditional expression during iteration.

Recall the following odd() function below, which determines whether a numeric argument is odd or even
(returning 1 for odd numbers and 0 for even numbers):

def odd(n):
 return n % 2

We were able to take the core operation from this function, and use it with filter() and lambda to
obtain the set of odd numbers from a sequence:

>>> seq = [11, 10, 9, 9, 10, 10, 9, 8, 23, 9, 7, 18, 12, 11, 12]
>>> filter(lambda x: x % 2, seq)
[11, 9, 9, 9, 23, 9, 7, 11]

As in the previous example, we can bypass the use of filter() and lambda to obtain the desired set of
numbers with list comprehensions:

>>> [x for x in seq if x % 2]
[11, 9, 9, 9, 23, 9, 7, 11]

Let us end this section with a few more practical examples.

Matrix Example

Do you want to iterate through a matrix of three rows and five columns? It is as easy as:

>>> [(x+1,y+1) for x in range(3) for y in range(5)]
[(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 1), (2, 2), (2,
 3), (2, 4), (2, 5), (3, 1), (3, 2), (3, 3), (3, 4), (3, 5)]

Disk File Example

Now let us say we have the following data file and want to count the total number of non-whitespace
characters in the file hhga.txt:

And the Lord spake, saying, "First shalt thou take out the
Holy Pin. Then shalt thou count to three, no more, no less.
Three shall be the number thou shalt count, and the number of
the counting shall be three. Four shalt thou not count,
neither count thou two, excepting that thou then proceed to
three. Five is right out. Once the number three, being the
third number, be reached, then lobbest thou thy Holy Hand
Grenade of Antioch towards thy foe, who, being naughty in My
sight, shall snuff it."

We know that we can iterate through each line with for line in data, but more than that, we can also go

file:///D|/1/0132269937/ch08lev1sec12.html (2 von 3) [13.11.2007 16:23:31]

Section 8.12. List Comprehensions

and split each line up into words, and we can sum up the number of words to get a total like this:

>>> f = open('hhga.txt', 'r')
>>> len([word for line in f for word in line.split()])
91

Let us get a quick total file size:

 import os
 >>> os.stat('hhga.txt').st_size
 499L

Assuming that there is at least one whitespace character in the file, we know that there are fewer than
499 non-whitespace characters in the file. We can sum up the length of each word to arrive at our total:

>>> f.seek(0)
>>> sum([len(word) for line in f for word in line.split()])
408

Note we have to rewind back to the beginning of the file each time through because the iterator
exhausts it. But wow, a non-obfuscated one-liner now does something that used to take many lines of
code to accomplish!

As you can see, list comps support multiple nested for loops and more than one if clause. The full
syntax can be found in the official documentation. You can also read more about list comprehensions in
PEP 202.

file:///D|/1/0132269937/ch08lev1sec12.html (3 von 3) [13.11.2007 16:23:31]

file:///D|/1/0132269937/14051536.html

Section 8.13. Generator Expressions

8.13. Generator Expressions

Generator expressions extend naturally from list comprehensions ("list comps"). When list comps came
into being in Python 2.0, they revolutionized the language by giving users an extremely flexible and
expressive way to designate the contents of a list on a single line. Ask any long-time Python user what
new features have changed the way they program Python, and list comps should be near the top of the
list.

Another significant feature that was added to Python in version 2.2 was the generator. A generator is a
specialized function that allows you to return a value and "pause" the execution of that code and resume
it at a later time. We will discuss generators in Chapter 11.

The one weakness of list comps is that all of the data have to be made available in order to create the
entire list. This can have negative consequences if an iterator with a large dataset is involved. Generator
expressions resolve this issue by combining the syntax and flexibility of list comps with the power of
generators.

Introduced in Python 2.4, generator expressions are similar to list comprehensions in that the basic
syntax is nearly identical; however, instead of building a list with values, they return a generator that
"yields" after processing each item. Because of this, generator expressions are much more memory
efficient by performing "lazy evaluation." Take a look at how similar they appear to list comps:

LIST COMPREHENSION:

[expr for iter_var in iterable if cond_expr]

GENERATOR EXPRESSION:

(expr for iter_var in iterable if cond_expr)

Generator expressions do not make list comps obsolete. They are just a more memory-friendly
construct, and on top of that, are a great use case of generators. We now present a set of generator
expression examples, including a long-winded one at the end showing you how Python code has
changed over the years.

Disk File Example

In the previous section on list comprehensions, we took a look at finding the total number of non-
whitespace characters in a text file. In the final snippet of code, we showed you how to perform that in
one line of code using a list comprehension. If that file became unwieldy due to size, it would become
fairly unfriendly memory-wise because we would have to put together a very long list of word lengths.

Instead of creating that large list, we can use a generator expression to perform the summing. Instead

file:///D|/1/0132269937/ch08lev1sec13.html (1 von 4) [13.11.2007 16:23:31]

Section 8.13. Generator Expressions

of building up this long list, it will calculate individual lengths and feed it to the sum() function, which
takes not just lists but also iterables like generator expressions. We can then shorten our example
above to be even more optimal (code- and execution-wise):

>>> sum(len(word) for line in data for word in line.split())
408

All we did was remove the enclosing list comprehension square brackets: Two bytes shorter and it saves
memory ... very environmentally friendly!

Cross-Product Pairs Example

Generator expressions are like list comprehensions in that they are lazy, which is their main benefit.
They are also great ways of dealing with other lists and generators, like rows and cols here:

rows = [1, 2, 3, 17]

def cols(): # example of simple generator
 yield 56
 yield 2
 yield 1

We do not need to create a new list. We can piece together things on the fly. Let us create a generator
expression for rows and cols:

x_product_pairs = ((i, j) for i in rows for j in cols())

Now we can loop through x_product_pairs, and it will loop through rows and cols lazily:

>>> for pair in x_product_pairs:
... print pair
...
(1, 56)
(1, 2)
(1, 1)
(2, 56)
(2, 2)
(2, 1)
(3, 56)
(3, 2)
(3, 1)

(17, 56)
(17, 2)
(17, 1)

Refactoring Example

Let us look at some evolutionary code via an example that finds the longest line in a file. In the old

file:///D|/1/0132269937/ch08lev1sec13.html (2 von 4) [13.11.2007 16:23:31]

Section 8.13. Generator Expressions

days, the following was acceptable for reading a file:

f = open('/etc/motd', 'r')
longest = 0
while True:
 linelen = len(f.readline().strip())
 if not linelen: break
 if linelen > longest:
 longest = linelen
f.close()
return longest

Actually, this is not that old. If it were really old Python code, the Boolean constant TRue would be the
integer one, and instead of using the string strip() method, you would be using the string module:

import string
 :
 len(string.strip(f.readline()))

Since that time, we realized that we could release the (file) resource sooner if we read all the lines at
once. If this was a log file used by many processes, then it behooves us not to hold onto a (write) file
handle for an extended period of time. Yes, our example is for read, but you get the idea. So the
preferred way of reading in lines from a file changed slightly to reflect this preference:

f = open('/etc/motd', 'r')
longest = 0
allLines = f.readlines()
f.close()
for line in allLines:
 linelen = len(line.strip())
 if linelen > longest:
 longest = linelen
return longest

List comps allow us to simplify our code a little bit more and give us the ability to do more processing
before we get our set of lines. In the next snippet, in addition to reading in the lines from the file, we
call the string strip() method immediately instead of waiting until later.

f = open('/etc/motd', 'r')
longest = 0
allLines = [x.strip() for x in f.readlines()]
f.close()
for line in allLines:
 linelen = len(line)
 if linelen > longest:
 longest = linelen
return longest

Still, both examples above have a problem when dealing with a large file as readlines() reads in all its
lines. When iterators came around, and files became their own iterators, readlines() no longer needed
to be called. While we are at it, why can't we just make our data set the set of line lengths (instead of

file:///D|/1/0132269937/ch08lev1sec13.html (3 von 4) [13.11.2007 16:23:31]

Section 8.13. Generator Expressions

lines)? That way, we can use the max() built-in function to get the longest string length:

f = open('/etc/motd', 'r')
allLineLens = [len(x.strip()) for x in f]
f.close()
return max(allLineLens)

The only problem here is that even though you are iterating over f line by line, the list comprehension
itself needs all lines of the file read into memory in order to generate the list. Let us simplify our code
even more: we will replace the list comp with a generator expression and move it inside the call to max()
so that all of the complexity is on a single line:

f = open('/etc/motd', 'r')
longest = max(len(x.strip()) for x in f)
f.close()
return longest

One more refactoring, which we are not as much fans of, is dropping the file mode (defaulting to read)
and letting Python clean up the open file. It is not as bad as if it were a file open for write, however, but
it does work:

return max(len(x.strip()) for x in open('/etc/motd'))

We have come a long way, baby. Note that even a one-liner is not obfuscated enough in Python to make
it difficult to read. Generator expressions were added in Python 2.4, and you can read more about them
in PEP 289.

file:///D|/1/0132269937/ch08lev1sec13.html (4 von 4) [13.11.2007 16:23:31]

file:///D|/1/0132269937/14051536.html

Section 8.14. Related Modules

8.14. Related Modules

Iterators were introduced in Python 2.2, and the itertools module was added in the next release (2.3)
to aid developers who had discovered how useful iterators were but wanted some helper tools to aid in
their development. The interesting thing is that if you read the documentation for the various utilities in
itertools, you will discover generators. So there is a relationship between iterators and generators. You
can read more about this relationship in Chapter 11, "Functions".

file:///D|/1/0132269937/ch08lev1sec14.html [13.11.2007 16:23:32]

Section 8.15. Exercises

8.15. Exercises

8-1. Conditionals. Study the following code:

statement A
if x > 0:
 # statement B
 pass

elif x < 0:
 # statement C
 pass

else:
 # statement D
 pass

statement E

a.

Which of the statements above (A, B, C, D, E) will be executed if x < 0?

b.

Which of the statements above will be executed if x = = 0?

c.

Which of the statements above will be executed if x > 0?

8-2. Loops. Write a program to have the user input three (3) numbers: (f)rom, (t)o, and (i)
ncrement. Count from f to t in increments of i, inclusive of f and t. For example, if the
input is f == 2, t == 26, and i == 4, the program would output: 2, 6, 10, 14, 18, 22,
26.

file:///D|/1/0132269937/ch08lev1sec15.html (1 von 5) [13.11.2007 16:23:32]

Section 8.15. Exercises

8-3. range(). What argument(s) could we give to the range() built-in function if we wanted
the following lists to be generated?

a.

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

b.

[3, 6, 9, 12, 15, 18]

c.

[-20, 200, 420, 640, 860]

8-4. Prime Numbers. We presented some code in this chapter to determine a number's
largest factor or if it is prime. Turn this code into a Boolean function called isprime()
such that the input is a single value, and the result returned is true if the number is
prime and False otherwise.

8-5. Factors. Write a function called getfactors() that takes a single integer as an
argument and returns a list of all its factors, including 1 and itself.

8-6. Prime Factorization. Take your solutions for isprime() and getfactors() in the
previous problems and create a function that takes an integer as input and returns a
list of its prime factors. This process, known as prime factorization, should output a
list of factors such that if multiplied together, they will result in the original number.
Note that there could be repeats in the list. So if you gave an input of 20, the output
would be [2, 2, 5].

8-7. Perfect Numbers. A perfect number is one whose factors (except itself) sum to itself.
For example, the factors of 6 are 1, 2, 3, and 6. Since 1 + 2 + 3 is 6, it (6) is
considered a perfect number. Write a function called isperfect() which takes a single
integer input and outputs 1 if the number is perfect and 0 otherwise.

8-8. Factorial. The factorial of a number is defined as the product of all values from one to
that number. A shorthand for N factorial is N! where N! == factorial(N) == 1 * 2 * 3
* ... * (N-2) * (N-1) * N. So 4! == 1 * 2 * 3 * 4. Write a routine such that given N, the
value N! is returned.

file:///D|/1/0132269937/ch08lev1sec15.html (2 von 5) [13.11.2007 16:23:32]

Section 8.15. Exercises

8-9. Fibonacci Numbers. The Fibonacci number sequence is 1, 1, 2, 3, 5, 8, 13, 21, etc. In
other words, the next value of the sequence is the sum of the previous two values in
the sequence. Write a routine that, given N, displays the value of the Nth Fibonacci
number. For example, the first Fibonacci number is 1, the 6th is 8, and so on.

8-10. Text Processing. Determine the total number of vowels, consonants, and words
(separated by spaces) in a text sentence. Ignore special cases for vowels and
consonants such as "h," "y," "qu," etc. Extra credit: create code to handle those
special case.

8-11. Text Processing. Write a program to ask the user to input a list of names, in the
format "Last Name, First Name," i.e., last name, comma, first name. Write a function
that manages the input so that when/if the user types the names in the wrong order, i.
e., "First Name Last Name," the error is corrected, and the user is notified. This
function should also keep track of the number of input mistakes. When the user is
done, sort the list, and display the sorted names in "Last Name, First Name" order.

EXAMPLE input and output (you don't have to do it this way exactly):

% nametrack.py
Enter total number of names: 5

Please enter name 0: Smith, Joe
Please enter name 1: Mary Wong
>> Wrong format... should be Last, First.
>> You have done this 1 time(s) already. Fixing input. . .
Please enter name 2: Hamilton, Gerald
Please enter name 3: Royce, Linda
Please enter name 4: Winston Salem
>> Wrong format... should be Last, First.
>> You have done this 2 time(s) already. Fixing input. . .

The sorted list (by last name) is:
 Hamilton, Gerald
 Royce, Linda
 Salem, Winston
 Smith, Joe
 Wong, Mary

file:///D|/1/0132269937/ch08lev1sec15.html (3 von 5) [13.11.2007 16:23:32]

Section 8.15. Exercises

8-12. (Integer) Bit Operators. Write a program that takes begin and end values and prints
out a decimal, binary, octal, hexadecimal chart like the one shown below. If any of the
characters are printable ASCII characters, then print those, too. If none is, you may
omit the ASCII column header.

SAMPLE OUTPUT 1

Enter begin value: 9
Enter end value: 18
DEC BIN OCT HEX

9 01001 11 9
10 01010 12 a
11 01011 13 b
12 01100 14 c
13 01101 15 d
14 01110 16 e
15 01111 17 f
16 10000 20 10
17 10001 21 11
18 10010 22 12

SAMPLE OUTPUT 2

Enter begin value: 26
Enter end value: 41
DEC BIN OCT HEX ASCII
--
26 011010 32 1a
27 011011 33 1b
28 011100 34 1c
29 011101 35 1d
30 011110 36 1e
31 011111 37 1f
32 100000 40 20
33 100001 41 21 !
34 100010 42 22 '
35 100011 43 23 #
36 100100 44 24 $
37 100101 45 25 %
38 100110 46 26 &
39 100111 47 27 '
40 101000 50 28 (
41 101001 51 29)

8-13. Performance. In Section 8.5.2, we examined two basic ways of iterating over a
sequence: (1) by sequence item, and (2) via sequence index. We pointed out at the
end that the latter does not perform as well over the long haul (on my system here, a
test suite shows performance is nearly twice as bad [83% worse]). Why do you think
that is?

file:///D|/1/0132269937/ch08lev1sec15.html (4 von 5) [13.11.2007 16:23:32]

Section 8.15. Exercises

file:///D|/1/0132269937/ch08lev1sec15.html (5 von 5) [13.11.2007 16:23:32]

Chapter 9. Files and Input/Output

Chapter 9. Files and Input/Output

Chapter Topics

● File Objects

�❍ File Built-in Functions
�❍ File Built-in Methods
�❍ File Built-in Attributes

● Standard Files
● Command-Line Arguments
● File System
● File Execution
● Persistent Storage
● Related Modules

This chapter is intended to give you an in-depth introduction to the use of files and related input/output
capabilities of Python. We introduce the file object (its built-in function, and built-in methods and
attributes), review the standard files, discuss accessing the file system, hint at file execution, and briefly
mention persistent storage and modules in the standard library related to "file-mania."

file:///D|/1/0132269937/ch09.html [13.11.2007 16:23:33]

Section 9.1. File Objects

9.1. File Objects

File objects can be used to access not only normal disk files, but also any other type of "file" that uses
that abstraction. Once the proper "hooks" are installed, you can access other objects with file-style
interfaces in the same manner you would access normal files.

You will find many cases where you are dealing with "file-like" objects as you continue to develop your
Python experience. Some examples include "opening a URL" for reading a Web page in real-time and
launching a command in a separate process and communicating to and from it like a pair of
simultaneously open files, one for write and the other for read.

The open() built-in function (see below) returns a file object that is then used for all succeeding
operations on the file in question. There are a large number of other functions that return a file or file-
like object. One primary reason for this abstraction is that many input/output data structures prefer to
adhere to a common interface. It provides consistency in behavior as well as implementation. Operating
systems like Unix even feature files as an underlying and architectural interface for communication.
Remember, files are simply a contiguous sequence of bytes. Anywhere data need to be sent usually
involves a byte stream of some sort, whether the stream occurs as individual bytes or blocks of data.

file:///D|/1/0132269937/ch09lev1sec1.html [13.11.2007 16:23:33]

file:///D|/1/0132269937/14051536.html

Section 9.2. File Built-in Functions [open() and file()]

9.2. File Built-in Functions [open() and file()]

As the key to opening file doors, the open() [and file()] built-in function provides a general interface to
initiate the file input/output (I/O) process. The open() BIF returns a file object on a successful opening
of the file or else results in an error situation. When a failure occurs, Python generates or raises an
IOError exceptionwe will cover errors and exceptions in the next chapter. The basic syntax of the open()
built-in function is:

file_object = open(file_name, access_mode='r', buffering=-1)

The file_name is a string containing the name of the file to open. It can be a relative or absolute/full
pathname. The access_mode optional variable is also a string, consisting of a set of flags indicating which
mode to open the file with. Generally, files are opened with the modes 'r,' 'w,'or 'a,' representing
read, write, and append, respectively. A 'U' mode also exists for universal NEWLINE support (see
below).

Any file opened with mode 'r' or 'U' must exist. Any file opened with 'w' will be truncated first if it
exists, and then the file is (re)created. Any file opened with 'a' will be opened for append. All writes to
files opened with 'a' will be from end-of-file, even if you seek elsewhere during access. If the file does
not exist, it will be created, making it the same as if you opened the file in 'w' mode. If you are a C
programmer, these are the same file open modes used for the C library function fopen().

There are other modes supported by fopen() that will work with Python's open(). These include the '+'
for read-write access and 'b' for binary access. One note regarding the binary flag: 'b' is antiquated on
all Unix systems that are POSIX-compliant (including Linux) because they treat all files as binary files,
including text files. Here is an entry from the Linux manual page for fopen(), from which the Python open
() function is derived:

The mode string can also include the letter "b" either as a last character or as a character
between the characters in any of the two-character strings described above. This is
strictly for compatibility with ANSI C3.159-1989 ("ANSI C") and has no effect; the "b" is
ignored on all POSIX conforming systems, including Linux. (Other systems may treat text
files and binary files differently, and adding the "b" may be a good idea if you do I/O to a
binary file and expect that your program may be ported to non-Unix environments.)

You will find a complete list of file access modes, including the use of 'b' if you choose to use it, in Table
9.1. If access_mode is not given, it defaults automatically to 'r.'

Table 9.1. Access Modes for File Objects

File Mode Operation

r Open for read

file:///D|/1/0132269937/ch09lev1sec2.html (1 von 3) [13.11.2007 16:23:33]

file:///D|/1/0132269937/14051536.html

Section 9.2. File Built-in Functions [open() and file()]

rU or U
[a] Open for read with universal NEWLINE support (PEP 278)

w Open for write (truncate if necessary)

a Open for append (always works from EOF, create if necessary)

r+ Open for read and write

w+ Open for read and write (see w above)

a+ Open for read and write (see a above)

rb Open for binary read

wb Open for binary write (see w above)

ab Open for binary append (see a above)

rb+ Open for binary read and write (see r+ above)

wb+ Open for binary read and write (see w+ above)

ab+ Open for binary read and write (see a+ above)

[a] New in Python 2.5.

The other optional argument, buffering, is used to indicate the type of buffering that should be
performed when accessing the file. A value of 0 means no buffering should occur, a value of 1 signals
line buffering, and any value greater than 1 indicates buffered I/O with the given value as the buffer
size. The lack of or a negative value indicates that the system default buffering scheme should be used,
which is line buffering for any teletype or tty-like device and normal buffering for everything else. Under
normal circumstances, a buffering value is not given, thus using the system default.

Here are some examples for opening files:

fp = open('/etc/motd') #open file for read
fp = open('test', 'w') #open file for write
fp = open('data', 'r+') #open file for read/write
fp = open(r'c:\io.sys', 'rb') #open binary file for read

9.2.1. The file() Factory Function

The file() built-in function came into being in Python 2.2, during the types and classes unification. At
this time, many built-in types that did not have associated built-in functions were given factory functions
to create instances of those objects, i.e., dict(), bool(), file(), etc., to go along with those that did, i.
e., list(), str(), etc.

Both open() and file() do exactly the same thing and one can be used in place of the other. Anywhere

file:///D|/1/0132269937/ch09lev1sec2.html (2 von 3) [13.11.2007 16:23:33]

Section 9.2. File Built-in Functions [open() and file()]

you see references to open(), you can mentally substitute file() without any side effects whatsoever.

For foreseeable versions of Python, both open() and file() will exist side by side, performing the exact
same thing. Generally, the accepted style is that you use open() for reading/writing files, while file() is
best used when you want to show that you are dealing with file objects, i.e., if instance(f, file).

9.2.2. Universal NEWLINE Support (UNS)

In an upcoming Core Note sidebar, we describe how certain attributes of the os module can help you
navigate files across different platforms, all of which terminate lines with different endings, i.e., \n, \r,
or \r\n. Well, the Python interpreter has to do the same thing, toothe most critical place is when
importing modules. Wouldn't it be nicer if you just wanted Python to treat all files the same way?

That is the whole point of the UNS, introduced in Python 2.3, spurred by PEP 278. When you use the 'U'
flag to open a file, all line separators (or terminators) will be returned by Python via any file input
method, i.e., read*(), as a NEWLINE character (\n) regardless of what the line-endings are. (The 'rU'
mode is also supported to correlate with the 'rb' option.) This feature will also support files that have
multiple types of line-endings. A file.newlines attribute tracks the types of line separation characters
"seen."

If the file has just been opened and no line-endings seen, file.newlines is None. After the first line, it is
set to the terminator of the first line, and if one more type of line-ending is seen, then file.newlines
becomes a tuple containing each type seen. Note that UNS only applies to reading text files. There is no
equivalent handling of file output.

UNS is turned on by default when Python is built. If you do not wish to have this feature, you can
disable it by using the --without-universal-newlines switch when running Python's configure script. If
you must manage the line-endings yourself, then check out the Core Note and use those os module
attributes!

file:///D|/1/0132269937/ch09lev1sec2.html (3 von 3) [13.11.2007 16:23:33]

file:///D|/1/0132269937/14051536.html

Section 9.3. File Built-in Methods

9.3. File Built-in Methods

Once open() has completed successfully and returned a file object, all subsequent access to the file
transpires with that "handle." File methods come in four different categories: input, output, movement
within a file, which we will call "intra-file motion," and miscellaneous. A summary of all file methods can
be found in Table 9.3. We will now discuss each category.

9.3.1. Input

The read() method is used to read bytes directly into a string, reading at most the number of bytes
indicated. If no size is given (the default value is set to integer -1) or size is negative, the file will be
read to the end. It will be phased out and eventually removed in a future version of Python.

The readline() method reads one line of the open file (reads all bytes until a line-terminating character
like NEWLINE is encountered). The line, including termination character(s), is returned as a string. Like
read(), there is also an optional size option, which, if not provided, defaults to -1, meaning read until
the line-ending characters (or EOF) are found. If present, it is possible that an incomplete line is
returned if it exceeds size bytes.

The readlines() method does not return a string like the other two input methods. Instead, it reads all
(remaining) lines and returns them as a list of strings. Its optional argument, sizhint, is a hint on the
maximum size desired in bytes. If provided and greater than zero, approximately sizhint bytes in whole
lines are read (perhaps slightly more to round up to the next buffer size) and returned as a list.

In Python 2.1, a new type of object was used to efficiently iterate over a set of lines from a file: the
xreadlines object (found in the xreadlines module). Calling file.xreadlines() was equivalent to
xreadlines.xreadlines(file). Instead of reading all the lines in at once, xreadlines() reads in chunks at
a time, and thus were optimal for use with for loops in a memory-conscious way. However, with the
introduction of iterators and the new file iteration in Python 2.3, it was no longer necessary to have an
xreadlines() method because it is the same as using iter(file), or in a for loop, is replaced by for
eachLine in file. Easy come, easy go.

Another odd bird is the readinto() method, which reads the given number of bytes into a writable buffer
object, the same type of object returned by the unsupported buffer() built-in function. (Since buffer()
is not supported, neither is readinto().)

9.3.2. Output

The write() built-in method has the opposite functionality as read() and readline(). It takes a string
that can consist of one or more lines of text data or a block of bytes and writes the data to the file.

The writelines() method operates on a list just like readlines(), but takes a list of strings and writes
them out to a file. Line termination characters are not inserted between each line, so if desired, they
must be added to the end of each line before writelines() is called.

file:///D|/1/0132269937/ch09lev1sec3.html (1 von 7) [13.11.2007 16:23:35]

Section 9.3. File Built-in Methods

Note that there is no "writeline()" method since it would be equivalent to calling write() with a single
line string terminated with a NEWLINE character.

Core Note: Line separators are preserved

When reading lines in from a file using file input methods like read()
or readlines(), Python does not remove the line termination
characters. It is up to the programmer. For example, the following
code is fairly common to see in Python code:

f = open('myFile', 'r')
data = [line.strip() for line in f.readlines()]
f.close()

Similarly, output methods like write() or writelines() do not add line
terminators for the programmer... you have to do it yourself before
writing the data to the file.

9.3.3. Intra-file Motion

The seek() method (analogous to the fseek() function in C) moves the file pointer to different positions
within the file. The offset in bytes is given along with a relative offset location, whence. A value of 0, the
default, indicates distance from the beginning of a file (note that a position measured from the
beginning of a file is also known as the absolute offset), a value of 1 indicates movement from the
current location in the file, and a value of 2 indicates that the offset is from the end of the file. If you
have used fseek() as a C programmer, the values 0, 1, and 2 correspond directly to the constants
SEEK_SET, SEEK_CUR, and SEEK_END, respectively. Use of the seek() method comes into play when opening
a file for read and write access.

tell() is a complementary method to seek(); it tells you the current location of the filein bytes from the
beginning of the file.

9.3.4. File Iteration

Going through a file line by line is simple:

for eachLine in f:
 :

Inside this loop, you are welcome to do whatever you need to with eachLine, representing a single line
of the text file (which includes the trailing line separators).

Before Python 2.2, the best way to read in lines from a file was using file.readlines() to read in all the
data, giving the programmer the ability to free up the file resource as quickly as possible. If that was
not a concern, then programmers could call file.readline() to read in one line at a time. For a brief

file:///D|/1/0132269937/ch09lev1sec3.html (2 von 7) [13.11.2007 16:23:35]

Section 9.3. File Built-in Methods

time, file.xreadlines() was the most efficient way to read in a file.

Things all changed in 2.2 when Python introduced iterators and file iteration. In file iteration, file objects
became their own iterators, meaning that users could now iterate through lines of a file using a for loop
without having to call read*() methods. Alternatively, the iterator next method, file.next() could be
called as well to read in the next line in the file. Like all other iterators, Python will raise StopIteration
when no more lines are available.

So remember, if you see this type of code, this is the "old way of doing it," and you can safely remove
the call to readline().

for eachLine in f.readline():
 :

File iteration is more efficient, and the resulting Python code is easier to write (and read). Those of you
new to Python now are getting all the great new features and do not have to worry about the past.

9.3.5. Others

The close() method completes access to a file by closing it. The Python garbage collection routine will
also close a file when the file object reference has decreased to zero. One way this can happen is when
only one reference exists to a file, say, fp = open(...), and fp is reassigned to another file object before
the original file is explicitly closed. Good programming style suggests closing the file before
reassignment to another file object. It is possible to lose output data that is buffered if you do not
explicitly close a file.

The fileno() method passes back the file descriptor to the open file. This is an integer argument that
can be used in lower-level operations such as those featured in the os module, i.e., os.read().

Rather than waiting for the (contents of the) output buffer to be written to disk, calling the flush()
method will cause the contents of the internal buffer to be written (or flushed) to the file immediately.
isatty() is a Boolean built-in method that returns true if the file is a tty-like device and False otherwise.
The TRuncate() method truncates the file to the size at the current file position or the given size in bytes.

9.3.6. File Method Miscellany

We will now reprise our first file example from Chapter 2:

filename = raw_input('Enter file name: ')
f = open(filename, 'r')
allLines = f.readlines()
f.close()
for eachLine in allLines:
 print eachLine, # suppress print's NEWLINE

file:///D|/1/0132269937/ch09lev1sec3.html (3 von 7) [13.11.2007 16:23:35]

Section 9.3. File Built-in Methods

We originally described how this program differs from most standard file access in that all the lines are
read ahead of time before any display to the screen occurs. Obviously, this is not advantageous if the
file is large. In that case, it may be a good idea to go back to the tried-and-true way of reading and
displaying one line at a time using a file iterator:

filename = raw_input('Enter file name: ')
f = open(filename, 'r')
for eachLine in f:
 print eachLine,
f.close()

Core Note: Line separators and other file system inconsistencies

One of the inconsistencies of operating systems is the line separator
character that their file systems support. On POSIX (Unix family or
Mac OS X) systems, the line separator is the NEWLINE (\n)
character. For old MacOS, it is the RETURN (\r), and DOS and Win32
systems use both (\r\n). Check your operating system to determine
what your line separator(s) are.

Other differences include the file pathname separator (POSIX uses "/",
DOS and Windows use "\", and the old MacOS uses ":"), the separator
used to delimit a set of file pathnames, and the denotations for the
current and parent directories.

These inconsistencies generally add an irritating level of annoyance
when creating applications that run on all three platforms (and more if
more architectures and operating systems are supported).
Fortunately, the designers of the os module in Python have thought of
this for us. The os module has five attributes that you may find useful.
They are listed in Table 9.2.

Table 9.2. OS Module Attributes to Aid in Multi-
platform Development

os Module

Attribute Description

linesep String used to separate lines in a file

sep String used to separate file pathname components

pathsep String used to delimit a set of file pathnames

curdir String name for current working directory

pardir String name for parent (of current working directory)

file:///D|/1/0132269937/ch09lev1sec3.html (4 von 7) [13.11.2007 16:23:35]

Section 9.3. File Built-in Methods

Regardless of your platform, these variables will be set to the correct
values when you import the os module: One less headache to worry
about.

We would also like to remind you that the comma placed at the end of the print statement is to
suppress the NEWLINE character that print normally adds at the end of output. The reason for this is
because every line from the text file already contains a NEWLINE. readline() and readlines() do not
strip off any whitespace characters in your line (see exercises.) If we omitted the comma, then your text
file display would be doublespaced one NEWLINE which is part of the input and another added by the
print statement.

File objects also have a truncate() method, which takes one optional argument, size. If it is given, then
the file will be truncated to, at most, size bytes. If you call TRuncate() without passing in a size, it will
default to the current location in the file. For example, if you just opened the file and call TRuncate(),
your file will be effectively deleted, truncated to zero bytes because upon opening a file, the "read head"
is on byte 0, which is what tell() returns.

Before moving on to the next section, we will show two more examples, the first highlighting output to
files (rather than input), and the second performing both file input and output as well as using the seek
() and tell() methods for file positioning.

filename = raw_input('Enter file name: ')
fobj = open(filename, 'w')
while True:
 aLine = raw_input("Enter a line ('.' to quit): ")
 if aLine != ".":
 fobj.write('%s%s' % (aLine, os.linesep)
 else:
 break
fobj.close()

Here we ask the user for one line at a time, and send them out to the file. Our call to the write()
method must contain a NEWLINE because raw_input() does not preserve it from the user input. Because
it may not be easy to generate an end-of-file character from the keyboard, the program uses the period
(.) as its end-of-file character, which, when entered by the user, will terminate input and close the file.

The second example opens a file for read and write, creating the file from scratch (after perhaps
truncating an already existing file). After writing data to the file, we move around within the file using
seek(). We also use the tell() method to show our movement.

>>> f = open('/tmp/x', 'w+')
>>> f.tell()
0
>>> f.write('test line 1\n') # add 12-char string [0-11]
>>> f.tell()
12
>>> f.write('test line 2\n') # add 12-char string [12-23]
>>> f.tell() # tell us current file location (end))
24

file:///D|/1/0132269937/ch09lev1sec3.html (5 von 7) [13.11.2007 16:23:35]

Section 9.3. File Built-in Methods

>>> f.seek(-12, 1) # move back 12 bytes
>>> f.tell() # to beginning of line 2
12
>>> f.readline()
'test line 2\012'
>>> f.seek(0, 0) # move back to beginning
>>> f.readline()
'test line 1\012'
>>> f.tell() # back to line 2 again
12
>>> f.readline()
'test line 2\012'
>>> f.tell() # at the end again
24
>>> f.close() # close file

Table 9.3 lists all the built-in methods for file objects.

Table 9.3. Methods for File Objects

File Object Method Operation

file.close() Closes file

file.fileno() Returns integer file descriptor (FD) for file

file.flush() Flushes internal buffer for file

file.isatty() Returns true if file is a tty-like device and False otherwise

file.next
[a]

()
Returns the next line in the file [similar to file.readline()] or
raises StopIteration if no more lines are available

file.read(size=-1) Reads size bytes of file, or all remaining bytes if size not given or
is negative, as a string and return it

file.readinto
[b]

(buf, size)
Reads size bytes from file into buffer buf (unsupported)

file.readline(size=-1) Reads and returns one line from file(includes line-ending
characters), either one full line or a maximum of size characters

file.readlines(sizhint=0) Reads and returns all lines from file as a list (includes all line
termination characters); if sizhint given and > 0, whole lines are
returned consisting of approximately sizhint bytes (could be
rounded up to next buffer's worth)

file.xreadlines
[c]

()
Meant for iteration, returns lines in file read as chunks in a more
efficient way than readlines()

file.seek(off, whence=0) Moves to a location within file, off bytes offset from whence (0 ==
beginning of file, 1 == current location, or 2 == end of file)

file.tell() Returns current location within file

file:///D|/1/0132269937/ch09lev1sec3.html (6 von 7) [13.11.2007 16:23:35]

Section 9.3. File Built-in Methods

file.truncate(size=file.tell()) Truncates file to at most size bytes, the default being the current
file location

file.write(str) Writes string str to file

file.writelines(seq) Writes seq of strings to file; seq should be an iterable producing
strings; prior to 2.2, it was just a list of strings

[a] New in Python 2.2.

[b] New in Python 1.5.2 but unsupported.

[c] New in Python 2.1 but deprecated in Python 2.3.

file:///D|/1/0132269937/ch09lev1sec3.html (7 von 7) [13.11.2007 16:23:35]

Section 9.4. File Built-in Attributes

9.4. File Built-in Attributes

File objects also have data attributes in addition to methods. These attributes hold auxiliary data related
to the file object they belong to, such as the file name (file.name), the mode with which the file was
opened (file.mode), whether the file is closed (file.closed), and a flag indicating whether an additional
space character needs to be displayed before successive data items when using the print statement
(file.softspace). Table 9.4 lists these attributes along with a brief description of each.

Table 9.4. Attributes for File Objects

File Object Attribute Description

file.closed TRue if file is closed and False otherwise

file.encoding
[a] Encoding that this file useswhen Unicode strings are written to file, they will

be converted to byte strings using file.encoding; a value of None indicates
that the system default encoding for converting Unicode strings should be used

file.mode Access mode with which file was opened

file.name Name of file

file.newlines
[a]

.
None if no line separators have been read, a string consisting of one type of
line separator, or a tuple containing all types of line termination characters
read so far

file.softspace 0 if space explicitly required with print, 1 otherwise; rarely used by the
programmergenerally for internal use only

[a] New in Python 2.3.

file:///D|/1/0132269937/ch09lev1sec4.html [13.11.2007 16:23:35]

file:///D|/1/0132269937/14051536.html
file:///D|/1/0132269937/14051536.html

Section 9.5. Standard Files

9.5. Standard Files

There are generally three standard files that are made available to you when your program starts. These
are standard input (usually the keyboard), standard output (buffered output to the monitor or display),
and standard error (unbuffered output to the screen). (The "buffered" or "unbuffered" output refers to
that third argument to open()). These files are named stdin, stdout, and stderr and take their names
from the C language. When we say these files are "available to you when your program starts," that
means that these files are pre-opened for you, and access to these files may commence once you have
their file handles.

Python makes these file handles available to you from the sys module. Once you import sys, you have
access to these files as sys.stdin, sys.stdout, and sys.stderr. The print statement normally outputs to
sys.stdout while the raw_input() built-in function receives its input from sys.stdin.

Just remember that since sys.* are files, you have to manage the line separation characters. The print
statement has the built-in feature of automatically adding one to the end of a string to output.

file:///D|/1/0132269937/ch09lev1sec5.html [13.11.2007 16:23:35]

file:///D|/1/0132269937/14051536.html

Section 9.6. Command-Line Arguments

9.6. Command-Line Arguments

The sys module also provides access to any command-line arguments via sys.argv. Command-line
arguments are those arguments given to the program in addition to the script name on invocation.
Historically, of course, these arguments are so named because they are given on the command line
along with the program name in a text-based environment like a Unix- or DOS-shell. However, in an IDE
or GUI environment, this would not be the case. Most IDEs provide a separate window with which to
enter your "command-line arguments." These, in turn, will be passed into the program as if you started
your application from the command line.

Those of you familiar with C programming may ask, "Where is argc?" The names "argc" and "argv" stand
for "argument count" and "argument vector," respectively. The argv variable contains an array of strings
consisting of each argument from the command line while the argc variable contains the number of
arguments entered. In Python, the value for argc is simply the number of items in the sys.argv list, and
the first element of the list, sys.argv[0], is always the program name. Summary:

● sys.argv is the list of command-line arguments
● len(sys.argv) is the number of command-line arguments(aka argc)

Let us create a small test program called argv.py with the following lines:

import sys

print 'you entered', len(sys.argv), 'arguments...'
print 'they were:', str(sys.argv)

Here is an example invocation and output of this script:

$ argv.py 76 tales 85 hawk
you entered 5 arguments...
they were: ['argv.py', '76', 'tales', '85', 'hawk']

Are command-line arguments useful? Commands on Unix-based systems are typically programs that
take input, perform some function, and send output as a stream of data. These data are usually sent as
input directly to the next program, which does some other type of function or calculation and sends the
new output to another program, and so on. Rather than saving the output of each program and
potentially taking up a good amount of disk space, the output is usually "piped" into the next program
as its input.

This is accomplished by providing data on the command line or through standard input. When a program
displays or sends output to the standard output file, the result would be displayed on the screenunless
that program is also "piped" to another program, in which case that standard output file is really the
standard input file of the next program. I assume you get the drift by now!

Command-line arguments allow a programmer or administrator to start a program perhaps with
different behavioral characteristics. Much of the time, this execution takes place in the middle of the
night and runs as a batch job without human interaction. Command-line arguments and program
options enable this type of functionality. As long as there are computers sitting idle at night and plenty
of work to be done, there will always be a need to run programs in the background on our very

file:///D|/1/0132269937/ch09lev1sec6.html (1 von 2) [13.11.2007 16:23:36]

Section 9.6. Command-Line Arguments

expensive "calculators."

Python has two modules to help process command-line arguments. The first (and original), getopt is
easier but less sophisticated, while optparse, introduced in Python 2.3, is more powerful library and is
much more object-oriented than its predecessor. If you are just getting started, we recommend getopt,
but once you outgrow its feature set, then check out optparse.

file:///D|/1/0132269937/ch09lev1sec6.html (2 von 2) [13.11.2007 16:23:36]

Section 9.7. File System

9.7. File System

Access to your file system occurs mostly through the Python os module. This module serves as the
primary interface to your operating system facilities and services from Python. The os module is actually
a front-end to the real module that is loaded, a module that is clearly operating systemdependent. This
"real" module may be one of the following: posix (Unix-based, i.e., Linux, MacOS X, *BSD, Solaris,
etc.), nt (Win32), mac (old MacOS), dos (DOS), os2 (OS/2), etc. You should never import those modules
directly. Just import os and the appropriate module will be loaded, keeping all the underlying work
hidden from sight. Depending on what your system supports, you may not have access to some of the
attributes, which may be available in other operating system modules.

In addition to managing processes and the process execution environment, the os module performs
most of the major file system operations that the application developer may wish to take advantage of.
These features include removing and renaming files, traversing the directory tree, and managing file
accessibility. Table 9.5 lists some of the more common file or directory operations available to you from
the os module.

Table 9.5. os Module File/Directory Access Functions

Function Description

File Processing

mkfifo()/mknod()
[a] Create named pipe/create filesystem node

remove()/unlink() Delete file

rename()/renames()
[b] Rename file

*stat
[c]

()
Return file statistics

symlink() Create symbolic link

utime() Update timestamp

tmpfile() Create and open ('w+b') new temporary file

walk()
[a] Generate filenames in a directory tree

Directories/Folders

chdir()/fchdir()
[a] Change working directory/via a file descriptor

chroot()
[d] Change root directory of current process

listdir() List files in directory

Directories/Folders

file:///D|/1/0132269937/ch09lev1sec7.html (1 von 8) [13.11.2007 16:23:37]

Section 9.7. File System

getcwd()/getcwdu()
[a] Return current working directory/same but in Unicode

mkdir()/makedirs() Create directory(ies)

rmdir()/removedirs() Remove directory(ies)

Access/Permissions

access() Verify permission modes

chmod() Change permission modes

chown()/lchown()
[a] Change owner and group ID/same, but do not follow links

umask() Set default permission modes

File Descriptor Operations

open() Low-level operating system open [for files, use the standard open()
built-in functions

read()/write() Read/write data to a file descriptor

dup()/dup2() Duplicate file descriptor/same but to another FD

Device Numbers

makedev()
[a] Generate raw device number from major and minor device numbers

major()
[a]

/minor()
[a] Extract major/minor device number from raw device number

[a] New in Python 2.3.

[b] New in Python 1.5.2.

[c] Includes stat(), lstat(), xstat().

[d] New in Python 2.2.

A second module that performs specific pathname operations is also available. The os.path module is
accessible through the os module. Included with this module are functions to manage and manipulate
file pathname components, obtain file or directory information, and make file path inquiries. Table 9.6
outlines some of the more common functions in os.path.

Table 9.6. os.path Module Pathname Access
Functions

Function Description

file:///D|/1/0132269937/ch09lev1sec7.html (2 von 8) [13.11.2007 16:23:37]

Section 9.7. File System

Separation

basename() Remove directory path and return leaf name

dirname() Remove leaf name and return directory path

join() Join separate components into single pathname

split() Return (dirname(), basename()) tuple

splitdrive() Return (drivename, pathname) tuple

splitext() Return (filename, extension) tuple

Information

getatime() Return last file access time

getctime() Return file creation time

getmtime() Return last file modification time

getsize() Return file size (in bytes)

Inquiry

exists() Does pathname (file or directory) exist?

isabs() Is pathname absolute?

isdir() Does pathname exist and is a directory?

isfile() Does pathname exist and is a file?

islink() Does pathname exist and is a symbolic link?

ismount() Does pathname exist and is a mount point?

samefile() Do both pathnames point to the same file?

These two modules allow for consistent access to the file system regardless of platform or operating
system. The program in Example 9.1 (ospathex.py) test drives some of these functions from the os and
os.path modules.

Example 9.1. os & os.path Modules Example (ospathex.py)

file:///D|/1/0132269937/ch09lev1sec7.html (3 von 8) [13.11.2007 16:23:37]

Section 9.7. File System

This code exercises some of the functionality found in the os and os.path modules. It
creates a test file, populates a small amount of data in it, renames the file, and dumps its
contents. Other auxiliary file operations are performed as well, mostly pertaining to
directory tree traversal and file pathname manipulation.

1 #!/usr/bin/env python
2
3 import os
4 for tmpdir in ('/tmp', r'c:\temp'):
5 if os.path.isdir(tmpdir):
6 break
7 else:
8 print 'no temp directory available'
9 tmpdir = ''
10
11 if tmpdir:
12 os.chdir(tmpdir)
13 cwd = os.getcwd()
14 print '*** current temporary directory'
15 print cwd
16
17 print '*** creating example directory...'
18 os.mkdir('example')
19 os.chdir('example')
20 cwd = os.getcwd()
21 print '*** new working directory:'
22 print cwd
23 print '*** original directory listing:'
24 print os.listdir(cwd)
25
26 print '*** creating test file...'
27 fobj = open('test', 'w')
28 fobj.write('foo\n')
29 fobj.write('bar\n')
30 fobj.close()
31 print '*** updated directory listing:'
32 print os.listdir(cwd)
33
34 print "*** renaming 'test' to 'filetest.txt'"
35 os.rename('test', 'filetest.txt')
36 print '*** updated directory listing:'
37 print os.listdir(cwd)
38
39 path = os.path.join(cwd, os.listdir (cwd)[0])
40 print '*** full file pathname'
41 print path

42 print '*** (pathname, basename) =='
43 print os.path.split(path)
44 print '*** (filename, extension) =='
45 print os.path.splitext(os.path.basename(path))
46
47 print '*** displaying file contents:'
48 fobj = open(path)
49 for eachLine in fobj:
50 print eachLine,
51 fobj.close()
52

file:///D|/1/0132269937/ch09lev1sec7.html (4 von 8) [13.11.2007 16:23:37]

Section 9.7. File System

53 print '*** deleting test file'
54 os.remove(path)
55 print '*** updated directory listing:'
56 print os.listdir(cwd)
57 os.chdir(os.pardir)
58 print '*** deleting test directory'
59 os.rmdir('example')
60 print '*** DONE'

The os.path submodule to os focuses more on file pathnames. Some of the more commonly used
attributes are found in Table 9.6.

Running this program on a Unix platform, we get the following output:

$ ospathex.py
*** current temporary directory
/tmp
*** creating example directory...
*** new working directory:
/tmp/example
*** original directory listing:
[]
*** creating test file...
*** updated directory listing:
['test']
*** renaming 'test' to 'filetest.txt'
*** updated directory listing:
['filetest.txt']
*** full file pathname:
/tmp/example/filetest.txt
*** (pathname, basename) ==
('/tmp/example', 'filetest.txt')

*** (filename, extension) ==
('filetest', '.txt')
*** displaying file contents:
foo
bar
*** deleting test file
*** updated directory listing:
[]
*** deleting test directory
*** DONE

Running this example from a DOS window results in very similar execution:

C:\>python ospathex.py
*** current temporary directory
c:\windows\temp
*** creating example directory...
*** new working directory:
c:\windows\temp\example
*** original directory listing:

file:///D|/1/0132269937/ch09lev1sec7.html (5 von 8) [13.11.2007 16:23:37]

Section 9.7. File System

[]
*** creating test file...
*** updated directory listing:
['test']
*** renaming 'test' to 'filetest.txt'
*** updated directory listing:
['filetest.txt']
*** full file pathname:
c:\windows\temp\example\filetest.txt
*** (pathname, basename) ==
('c:\\windows\\temp\\example', 'filetest.txt')
*** (filename, extension) ==
('filetest', '.txt')
*** displaying file contents:
foo
bar
*** deleting test file
*** updated directory listing:
[]
*** deleting test directory
*** DONE

Rather than providing a line-by-line explanation here, we will leave it to the reader as an exercise.
However, we will walk through a similar interactive example (including errors) to give you a feel for
what it is like to execute this script one step at a time. We will break into the code every now and then
to describe the code we just encountered.

>>> import os
>>> os.path.isdir('/tmp')
True
>>> os.chdir('/tmp')
>>> cwd = os.getcwd()
>>> cwd
'/tmp'

This first block of code consists of importing the os module (which also grabs the os.path module). We
verify that '/tmp' is a valid directory and change to that temporary directory to do our work. When we
arrive, we call the getcwd() method to tell us where we are.

>>> os.mkdir('example')
>>> os.chdir('example')
>>> cwd = os.getcwd()
>>> cwd
'/tmp/example'
>>>
>>> os.listdir() # oops, forgot name
Traceback (innermost last):
 File "<stdin>", line 1, in ?
TypeError: function requires at least one argument
>>>
>>> os.listdir(cwd) # that's better :)
[]

Next, we create a subdirectory in our temporary directory, after which we will use the listdir() method

file:///D|/1/0132269937/ch09lev1sec7.html (6 von 8) [13.11.2007 16:23:37]

Section 9.7. File System

to confirm that the directory is indeed empty (since we just created it). The problem with our first call to
listdir() was that we forgot to give the name of the directory we want to list. That problem is quickly
remedied on the next line of input.

>>> fobj = open('test', 'w')
>>> fobj.write('foo\n')
>>> fobj.write('bar\n')
>>> fobj.close()
>>> os.listdir(cwd)
['test']

We then create a test file with two lines and verify that the file has been created by listing the directory
again afterward.

>>> os.rename('test', 'filetest.txt')
>>> os.listdir(cwd)
['filetest.txt']

>>>
>>> path = os.path.join(cwd, os.listdir(cwd)[0])
>>> path
'/tmp/example/filetest.txt'
>>>
>>> os.path.isfile(path)
True
>>> os.path.isdir(path)
False
>>>
>>> os.path.split(path)
('/tmp/example', 'filetest.txt')
>>>
>>> os.path.splitext(os.path.basename(path))
('filetest', '.ext')

This section is no doubt an exercise of os.path functionality, testing join(), isfile(), isdir() which we
have seen earlier, split(), basename(), and splitext(). We also call the rename() function from os. Next,
we display the file, and finally, we delete the temporary files and directories:

>>> fobj = open(path)
>>> for eachLine in fobj:
... print eachLine,
...
foo
bar
>>> fobj.close()
>>> os.remove(path)
>>> os.listdir(cwd)
[]
>>> os.chdir(os.pardir)
>>> os.rmdir('example')

Core Module(S): os (and os.path)

file:///D|/1/0132269937/ch09lev1sec7.html (7 von 8) [13.11.2007 16:23:37]

Section 9.7. File System

As you can tell from our lengthy discussion above, the os and os.path
modules provide different ways to access the file system on your
computer. Although our study in this chapter is restricted to file access
only, the os module can do much more. It lets you manage your
process environment, contains provisions for low-level file access,
allows you to create and manage new processes, and even enables
your running Python program to "talk" directly to another running
program. You may find yourself a common user of this module in no
time. Read more about the os module in Chapter 14.

file:///D|/1/0132269937/ch09lev1sec7.html (8 von 8) [13.11.2007 16:23:37]

Section 9.8. File Execution

9.8. File Execution

Whether we want to simply run an operating system command, invoke a binary executable, or another
type of script (perhaps a shell script, Perl, or Tcl/Tk), this involves executing another file somewhere
else on the system. Even running other Python code may call for starting up another Python interpreter,
although that may not always be the case. In any regard, we will defer this subject to Chapter 14,
"Execution Environment." Please proceed there if you are interested in how to start other programs,
perhaps even communicating with them, and for general information regarding Python's execution
environment.

file:///D|/1/0132269937/ch09lev1sec8.html [13.11.2007 16:23:37]

Section 9.9. Persistent Storage Modules

9.9. Persistent Storage Modules

In many of the exercises in this text, user input is required. After many iterations, it may be somewhat
frustrating being required to enter the same data repeatedly. The same may occur if you are entering a
significant amount of data for use in the future. This is where it becomes useful to have persistent
storage, or a way to archive your data so that you may access them at a later time instead of having to
re-enter all of that information. When simple disk files are no longer acceptable and full relational
database management systems (RDBMSs) are overkill, simple persistent storage fills the gap. The
majority of the persistent storage modules deals with storing strings of data, but there are ways to
archive Python objects as well.

9.9.1. pickle and marshal Modules

Python provides a variety of modules that implement minimal persistent storage. One set of modules
(marshal and pickle) allows for pickling of Python objects. Pickling is the process whereby objects more
complex than primitive types can be converted to a binary set of bytes that can be stored or transmitted
across the network, then be converted back to their original object forms. Pickling is also known as
flattening, serializing, or marshalling. Another set of modules (dbhash/bsddb, dbm, gdbm, dumbdbm) and
their "manager" (anydbm) can provide persistent storage of Python strings only. The last module (shelve)
can do both.

As we mentioned before, both marshal and pickle can flatten Python objects. These modules do not
provide "persistent storage" per se, since they do not provide a namespace for the objects, nor can they
provide concurrent write access to persistent objects. What they can do, however, is to pickle Python
objects to allow them to be stored or transmitted. Storage, of course, is sequential in nature (you store
or transmit objects one after another). The difference between marshal and pickle is that marshal can
handle only simple Python objects (numbers, sequences, mapping, and code) while pickle can
transform recursive objects, objects that are multi-referenced from different places, and user-defined
classes and instances. The pickle module is also available in a turbo version called cPickle, which
implements all functionality in C.

9.9.2. DBM-style Modules

The *db* series of modules writes data in the traditional DBM format. There are a large number of
different implementations: dbhash/bsddb, dbm, gdbm, and dumbdbm. If you are particular about any specific
DBM module, feel free to use your favorite, but if you are not sure or do not care, the generic anydbm
module detects which DBM-compatible modules are installed on your system and uses the "best" one at
its disposal. The dumbdbm module is the most limited one, and is the default used if none of the other
packages is available. These modules do provide a namespace for your objects, using objects that
behave similar to a combination of a dictionary object and a file object. The one limitation of these
systems is that they can store only strings. In other words, they do not serialize Python objects.

9.9.3. shelve Module

Finally, we have a somewhat more complete solution, the shelve module. The shelve module uses the
anydbm module to find a suitable DBM module, then uses cPickle to perform the pickling process. The
shelve module permits concurrent read access to the database file, but not shared read/write access.
This is about as close to persistent storage as you will find in the Python standard library. There may be

file:///D|/1/0132269937/ch09lev1sec9.html (1 von 3) [13.11.2007 16:23:38]

file:///D|/1/0132269937/14051536.html

Section 9.9. Persistent Storage Modules

other external extension modules that implement "true" persistent storage. The diagram in Figure 9-1
shows the relationship between the pickling modules and the persistent storage modules, and how the
shelve object appears to be the best of both worlds.

Figure 9-1. Python modules for serialization and persistency

Core Module: pickle and cPickle

file:///D|/1/0132269937/ch09lev1sec9.html (2 von 3) [13.11.2007 16:23:38]

Section 9.9. Persistent Storage Modules

The pickle module allows you to store Python objects directly to a file
without having to convert them to strings or to necessarily write them
out as binary files using low-level file access. Instead, the pickle
module creates a Python-only binary version that allows you to cleanly
read and write objects in their entirety without having to worry about
all the file details. All you need is a valid file handle, and you are ready
to read or write objects from or to disk.

The two main functions in the pickle module are dump() and load().
The dump() function takes a file handle and a data object and saves
the object in a format it understands to the given file. When a pickled
object is loaded from disk using load() , it knows exactly how to
restore that object to its original configuration before it was saved to
disk. We recommend you take a look at pickle and its "smarter"
brother, shelve, which gives you dictionary-like functionality so there
is even less file overhead on your part. cPickle is the faster C-
compiled version of pickle.

file:///D|/1/0132269937/ch09lev1sec9.html (3 von 3) [13.11.2007 16:23:38]

file:///D|/1/0132269937/14051536.html

Section 9.10. Related Modules

9.10. Related Modules

There are plenty of other modules related to files and input/output, all of which work on most of the
major platforms. Table 9.7 lists some of the filerelated modules.

Table 9.7. Related File Modules

Module(s) Contents

base64 Encoding/decoding of binary strings to/from text strings

binascii Encoding/decoding of binary and ASCII-encoded binary strings

bz2
[a] Allows access to BZ2 compressed files

csv
[a] Allows access to comma-separated value files

filecmp
[b]

.
Compares directories and files

fileinput Iterates over lines of multiple input text files

getopt/optparse
[a] Provides command-line argument parsing/manipulation

glob/fnmatch Provides Unix-style wildcard character matching

gzip/zlib Reads and writes GNU zip (gzip) files (needs zlib module for compression)

shutil Offers high-level file access functionality

c/StringIO Implements file-like interface on top of string objects

tarfile
[a] Reads and writes TAR archive files, even compressed ones

tempfile Generates temporary file names or files

uu uuencode and uudecode files

zipfile
[c] Tools and utilities to read and write ZIP archive files

[a] New in Python 2.3.

[b] New in Python 2.0.

[c] New in Python 1.6.

file:///D|/1/0132269937/ch09lev1sec10.html (1 von 3) [13.11.2007 16:23:38]

file:///D|/1/0132269937/14051536.html

Section 9.10. Related Modules

The fileinput module iterates over a set of input files and reads their contents one line at a time,
allowing you to iterate over each line, much like the way the Perl (< >) operator works without any
provided arguments. File names that are not explicitly given will be assumed to be provided from the
command-line.

The glob and fnmatch modules allow for file name pattern-matching in the good old-fashioned Unix shell-
style, for example, using the asterisk (*) wildcard character for all string matches and the (?) for
matching single characters.

Core Tip: Tilde (~) expansion via os.path.expanduser()

Although the glob and fnmatch allow for Unix-style pattern-matching,
they do not enable the expansion of the tilde (home directory)
character, ~ . This is handled by the os.path.expanduser() function.
You pass in a path containing a tilde, and it returns the equivalent
absolute file path. Here are two examples, in a Unix-based
environment and in Win32:

>>> os.path.expanduser('~;/py')
'/home/wesley/py'

>>> os.path.expanduser('~;/py')
'C:\\Documents and Settings\\wesley/py'

In addition, Unix-flavored systems also support the " ~user " notation
indicating the home directory for a specific user. Also, note that the
Win32 version does not change forward slashes to the DOS
backslashes in a directory path.

The gzip and zlib modules provide direct file access to the zlib compression library. The gzip module,
written on top of the zlib module, allows for standard file access, but provides for automatic gzip-
compatible compression and decompression. bz2 is like gzip but for bzipped files.

The zipfile module introduced in 1.6 allows the programmer to create, modify, and read zip archive
files. (The tarfile module serves as an equivalent for TAR archive files.) In 2.3, Python was given the
ability to import modules archived in zip files as well. See Section 12.5.7 for more information.

The shutil module furnishes high-level file access, performing such functions as copying files, copying
file permissions, and recursive directory tree copying, to name a few.

The tempfile module can be used to generate temporary filenames and files.

In our earlier chapter on strings, we described the StringIO module (and its C-compiled companion
cStringIO), and how it overlays a file interface on top of string objects. This interface includes all of the
standard methods available to regular file objects.

The modules we mentioned in the Persistent Storage section above (Section 9.9) include examples of a
hybrid file- and dictionary-like object.

file:///D|/1/0132269937/ch09lev1sec10.html (2 von 3) [13.11.2007 16:23:38]

Section 9.10. Related Modules

Some other Python modules that generate file-like objects include network and file socket objects
(socket module), the popen*() file objects that connect your application to other running processes (os
and popen2 modules), the fdopen() file object used in low-level file access (os module), and opening a
network connection to an Internet Web server via its Uniform Resource Locator (URL) address (urllib
module). Please be aware that not all standard file methods may be implemented for these objects.
Likewise, they may provide functionality in addition to what is available for regular files.

Refer to the documentation for more details on these file access-related modules. In addition, you can
find out more about file()/open(), files, file objects, and UNS at:

http://docs.python.org/lib/built-in-funcs.html

http://docs.python.org/lib/bltin-file-objects.html

http://www.python.org/doc/2.3/whatsnew/node7.html

http://www.python.org/doc/peps/pep-0278/

file:///D|/1/0132269937/ch09lev1sec10.html (3 von 3) [13.11.2007 16:23:38]

http://docs.python.org/lib/built-in-funcs.html
http://docs.python.org/lib/bltin-file-objects.html
http://www.python.org/doc/2.3/whatsnew/node7.html
http://www.python.org/doc/peps/pep-0278/
file:///D|/1/0132269937/14051536.html

Section 9.11. Exercises

9.11. Exercises

9-1. File Filtering. Display all lines of a file, except those that start with a pound sign (#),
the comment character for Python, Perl, Tcl, and most other scripting languages.

Extra credit: Also strip out comments that begin after the first character.

9-2. File Access. Prompt for a number N and file F, and display the first N lines of F.

9-3. File Information. Prompt for a filename and display the number of lines in that text file.

9-4. File Access. Write a "pager" program. Your solution should prompt for a filename, and
display the text file 25 lines at a time, pausing each time to ask the user to "press a
key to continue."

9-5. Test Scores. Update your solution to the test scores problems (Exercises 5-3 and 6-4)
by allowing a set of test scores be loaded from a file. We leave the file format to your
discretion.

9-6. File Comparison. Write a program to compare two text files. If they are different, give
the line and column numbers in the files where the first difference occurs.

9-7. Parsing Files. Win32 users: Create a program that parses a Windows .ini file. POSIX
users: Create a program that parses the /etc/services file. All other platforms: Create
a program that parses a system file with some kind of structure to it.

9-8. Module Introspection. Extract module attribute information. Prompt the user for a
module name (or accept it from the command line). Then, using dir() and other built-
in functions, extract all its attributes, and display their names, types, and values.

9-9. "PythonDoc." Go to the directory where your Python standard library modules are
located. Examine each .py file and determine whether a __doc__ string is available for
that module. If so, format it properly and catalog it. When your program has
completed, it should present a nice list of those modules that have documentation
strings and what they are. There should be a trailing list showing which modules do
not have documentation strings (the shame list). Extra credit: Extract documentation
for all classes and functions within the standard library modules.

file:///D|/1/0132269937/ch09lev1sec11.html (1 von 6) [13.11.2007 16:23:39]

Section 9.11. Exercises

9-10. Home Finances. Create a home finance manager. Your solution should be able to
manage savings, checking, money market, certificate of deposit (CD), and similar
accounts. Provide a menu-based interface to each account as well as operations such
as deposits, withdrawals, debits, and credits. An option should be given to a user to
remove transactions as well. The data should be stored to file when the user quits the
application (but randomly during execution for backup purposes).

9-11. Web site Addresses.

a.

Write a URL bookmark manager. Create a text-driven menu-based application
that allows the user to add, update, or delete entries. Entries include a site
name, Web site URL address, and perhaps a one-line description (optional).
Allow search functionality so that a search "word" looks through both names
and URLs for possible matches. Store the data to a disk file when the user
quits the application, and load up the data when the user restarts.

b.

(b) Upgrade your solution to part (a) by providing output of the bookmarks to
a legible and syntactically correct HTML file (.htm or .html) so that users can
then point their browsers to this output file and be presented with a list of their
bookmarks. Another feature to implement is allowing the creation of "folders"
to allow grouping of related bookmarks. Extra credit: Read the literature on
regular expressions and the Python re module. Add regular expression
validation of URLs that users enter into their databases.

9-12. Users and Passwords.

Do Exercise 7-5, which keeps track of usernames and passwords. Update your code to
support a "last login time" (7-5a). See the documentation for the time module to
obtain timestamps for when users "log in" to the system.

Also, create the concept of an "administrative" user that can dump a list of all the
users, their passwords (you can add encryption on top of the passwords if you wish [7-
5c]), and their last login times (7-5b).

a.

The data should be stored to disk, one line at a time, with fields delimited by
colons (:), e.g., "joe:boohoo:953176591.145", for each user. The number of
lines in the file will be the number of users that are part of your system.

b.

Further update your example such that instead of writing out one line at a
time, you pickle the entire data object and write that out instead. Read the
documentation on the pickle module to find out how to flatten or serialize your

file:///D|/1/0132269937/ch09lev1sec11.html (2 von 6) [13.11.2007 16:23:39]

Section 9.11. Exercises

object, as well as how to perform I/O using picked objects. With the addition of
this new code, your solution should take up fewer lines than your solution in
part (a).

c.

Replace your login database and explicit use of pickle by converting your code
to use shelve files. Your resulting source file should actually take up fewer lines
than your solution to part (b) because some of the maintenance work is gone.

9-13. Command-Line Arguments.

a.

What are they, and why might they be useful?

b.

Write code to display the command-line arguments which were entered.

9-14. Logging Results. Convert your calculator program

(Exercise 5-6) to take input from the command line, i.e.,

$ calc.py 1 + 2

Output the result only. Also, write each expression and result to a disk file. Issuing a
command of...

$ calc.py print

... will cause the entire contents of the "register tape" to be dumped to the screen and
file reset/truncated. Here is an example session:

$ calc.py 1 + 2
3
$ calc.py 3 ^ 3
27
$ calc.py print
1 + 2
3
3 ^ 3
27
$ calc.py print
$

Extra credit: Also strip out comments that begin after the first character.

file:///D|/1/0132269937/ch09lev1sec11.html (3 von 6) [13.11.2007 16:23:39]

Section 9.11. Exercises

9-15. Copying Files. Prompt for two filenames (or better yet, use command-line arguments).
The contents of the first file should be copied to the second file.

9-16. Text Processing. You are tired of seeing lines on your e-mail wrap because people type
lines that are too long for your mail reader application. Create a program to scan a
text file for all lines longer than 80 characters. For each of the offending lines, find the
closest word before 80 characters and break the line there, inserting the remaining
text to the next line (and pushing the previous next line down one). When you are
done, there should be no lines longer than 80 characters.

9-17. Text Processing. Create a crude and elementary text file editor. Your solution is menu-
driven, with the following options:

1.

create file [prompt for filename and any number of lines of input],

2.

display file [dump its contents to the screen],

3.

edit file (prompt for line to edit and allow user to make changes),

4.

save file, and

5.

quit.

9-18. Searching Files. Obtain a byte value (0-255) and a filename. Display the number of
times that byte appears in the file.

file:///D|/1/0132269937/ch09lev1sec11.html (4 von 6) [13.11.2007 16:23:39]

Section 9.11. Exercises

9-19. Generating Files. Create a sister program to the previous problem. Create a binary
data file with random bytes, but one particular byte will appear in that file a set
number of times. Obtain the following three values:

1.

a byte value (0-255),

2.

the number of times that byte should appear in the data file, and

3.

the total number of bytes that make up the data file.

Your job is to create that file, randomly scatter the requested byte across the file,
ensure that there are no duplicates, the file contains exactly the number of
occurrences that byte was requested for, and that the resulting data file is exactly the
size requested.

9-20. Compressed Files. Write a short piece of code that will compress and decompress
gzipped or bzipped files. Confirm your solution works by using the command-line gzip
or bzip2 programs or a GUI program like PowerArchiver, StuffIt, and/or WinZip.

9-21. ZIP Archive Files. Create a program that can extract files from or add files to, and
perhaps creating, a ZIP archive file.

9-22. ZIP Archive Files. The unzip -l command to dump the contents of ZIP archive is
boring. Create a Python script called lszip.py that gives additional information such
as: the compressed file size, the compressed percentage of each file (by comparing
the original and compressed file sizes), and a full time.ctime() timestamp instead of
the unzip output (of just the date and HH:MM). Hint: The date_time attribute of an
archived file does not contain enough information to feed to time.mktime()... it is up to
you!

9-23. TAR Archive Files. Repeat the previous problem for TAR archive files. One difference
between these two types of files is that ZIP files are generally compressed, but TAR
files are not and usually require the support of gzip or bzip2. Add either type of
compression support. Extra credit: Support both gzip and bzip2.

file:///D|/1/0132269937/ch09lev1sec11.html (5 von 6) [13.11.2007 16:23:39]

Section 9.11. Exercises

9-24. File Transfer Between Archive Files. Take your solutions from the previous two
problems and write a program that moves files between ZIP (.zip) and TAR/gzip (.
tgz/.tar.gz) or TAR/bzip2 (.tbz/.tar.bz2) archive files. The files may preexist; create
them if necessary.

9-25. Universal Extractor. Create an application that will take any number of files in an
archived and/or compression format, i.e., .zip, .tgz, .tar.gz, .gz, .bz2, .tar.bz2, .
tbz, and a target directory. The program will uncompress the standalone files to the
target while all archived files will be extracted into subdirectories named the same as
the archive file without the file extension. For example, if the target directory was
incoming, and the input files were header.txt.gz and data.tgz, header.txt will be
extracted to incoming while the files in data.tgz will be pulled out into incoming/data.

file:///D|/1/0132269937/ch09lev1sec11.html (6 von 6) [13.11.2007 16:23:39]

Chapter 10. Errors and Exceptions

Chapter 10. Errors and Exceptions

Chapter Topics

● What Are Exceptions?
● Exceptions in Python
● Detecting and Handling Exceptions
● Context Management
● Raising Exceptions
● Assertions
● Standard Exceptions
● Creating Exceptions
● Why Exceptions?
● Related Modules

Errors are an everyday occurrence in the life of a programmer. In days hopefully long since past, errors
were either fatal to the program (or perhaps the machine) or produced garbage output that was not
recognized as valid input by other computers or programs or by the humans who submitted the job to
be run. Any time an error occurred, execution was halted until the error was corrected and code was re-
executed. Over time, demand surged for a "softer" way of dealing with errors other than termination.
Programs evolved such that not every error was malignant, and when they did happen, more diagnostic
information was provided by either the compiler or the program during runtime to aid the programmer
in solving the problem as quickly as possible. However, errors are errors, and any resolution usually
took place after the program or compilation process was halted. There was never really anything a piece
of code could do but exit and perhaps leave some crumbs hinting at a possible causeuntil exceptions and
exception handling came along.

Although we have yet to cover classes and object-oriented programming in Python, many of the

concepts presented here involve classes and class instances.
[1]

 We conclude the chapter with an
optional section on how to create your own exception classes.

[1] As of Python 1.5, all standard exceptions are implemented as classes. If new to classes, instances, and other object-
oriented terminology, the reader should see Chapter 13 for clarification.

This chapter begins by exposing the reader to exceptions, exception handling, and how they are
supported in Python. We also describe how programmers can generate exceptions within their code.
Finally, we reveal how programmers can create their own exception classes.

file:///D|/1/0132269937/ch10.html [13.11.2007 16:23:39]

Section 10.1. What Are Exceptions?

10.1. What Are Exceptions?

10.1.1. Errors

Before we get into detail about what exceptions are, let us review what errors are. In the context of
software, errors are either syntactical or logical in nature. Syntax errors indicate errors with the
construct of the software and cannot be executed by the interpreter or compiled correctly. These errors
must be repaired before execution can occur.

Once programs are semantically correct, the only errors that remain are logical. Logical errors can either
be caused by lack of or invalid input, or, in other cases, by the inability of the logic to generate,
calculate, or otherwise produce the desired results based on the input. These errors are sometimes
known as domain and range failures, respectively.

When errors are detected by Python, the interpreter indicates that it has reached a point where
continuing to execute in the current flow is no longer possible. This is where exceptions come into the
picture.

10.1.2. Exceptions

Exceptions can best be described as action that is taken outside of the normal flow of control because of
errors. This action comes in two distinct phases: The first is the error that causes an exception to occur,
and the second is the detection (and possible resolution) phase.

The first phase takes place when an exception condition (sometimes referred to as exceptional
condition) occurs. Upon detection of an error and recognition of the exception condition, the interpreter
performs an operation called raising an exception. Raising is also known as triggering, throwing, or
generating, and is the process whereby the interpreter makes it known to the current control flow that
something is wrong. Python also supports the ability of the programmer to raise exceptions. Whether
triggered by the Python interpreter or the programmer, exceptions signal that an error has occurred.
The current flow of execution is interrupted to process this error and take appropriate action, which
happens to be the second phase.

The second phase is where exception handling takes place. Once an exception is raised, a variety of
actions can be invoked in response to that exception. These can range anywhere from ignoring the
error, to logging the error but otherwise taking no action, performing some corrective measures and
aborting the program, or alleviating the problem to allow for resumption of execution. Any of these
actions represents a continuation, or an alternative branch of control. The key is that the programmer
can dictate how the program operates when an error occurs.

As you may have already concluded, errors during runtime are primarily caused by external reasons,
such as poor input, a failure of some sort, etc. These causes are not under the direct control of the
programmer, who can anticipate only a few of the errors and code the most general remedies.

Languages like Python, which support the raising andmore importantlythe handling of exceptions,
empower the developer by placing them in a more direct line of control when errors occur. The
programmer not only has the ability to detect errors, but also to take more concrete and remedial
actions when they occur. Due to the ability to manage errors during runtime, application robustness is
increased.

Exceptions and exception handling are not new concepts. They are also present in Ada, Modula-3, C++,

file:///D|/1/0132269937/ch10lev1sec1.html (1 von 2) [13.11.2007 16:23:40]

Section 10.1. What Are Exceptions?

Eiffel, and Java. The origins of exceptions probably come from operating systems code that handles
exceptions such as system errors and hardware interruptions. Exception handling as a software tool
made its debut in the mid-1960s with PL/1 being the first major programming language that featured
exceptions. Like some of the other languages supporting exception handling, Python is endowed with
the concepts of a "try" block and "catching" exceptions and, in addition, provides for more "disciplined"
handling of exceptions. By this we mean that you can create different handlers for different exceptions,
as opposed to a general "catch-all" code where you may be able to detect the exception that occurred in
a post-mortem fashion.

file:///D|/1/0132269937/ch10lev1sec1.html (2 von 2) [13.11.2007 16:23:40]

Section 10.2. Exceptions in Python

10.2. Exceptions in Python

As you were going through some of the examples in the previous chapters, you no doubt noticed what
happens when your program "crashes" or terminates due to unresolved errors. A "traceback" notice
appears along with a notice containing as much diagnostic information as the interpreter can give you,
including the error name, reason, and perhaps even the line number near or exactly where the error
occurred. All errors have a similar format, regardless of whether running within the Python interpreter or
standard script execution, providing a consistent error interface. All errors, whether they be syntactical
or logical, result from behavior incompatible with the Python interpreter and cause exceptions to be
raised.

Let us take a look at some exceptions now.

NameError: attempt to access an undeclared variable

>>> foo
Traceback (innermost last):
 File "<stdin>", line 1, in ?
NameError: name 'foo' is not defined

NameError indicates access to an uninitialized variable. The offending identifier was not found in the
Python interpreter's symbol table. We will be discussing namespaces in the next two chapters, but as an
introduction, regard them as "address books" linking names to objects. Any object that is accessible
should be listed in a namespace. Accessing a variable entails a search by the interpreter, and if the
name requested is not found in any of the namespaces, a NameError exception will be generated.

ZeroDivisionError: division by any numeric zero

>>> 1/0
Traceback (innermost last):
 File "<stdin>", line 1, in ?
ZeroDivisionError: integer division or modulo by zero

Our example above used floats, but in general, any numeric division-by-zero will result in a
ZeroDivisionError exception.

SyntaxError: Python interpreter syntax error

>>> for
 File "<string>", line 1
 for
 ^
SyntaxError: invalid syntax

SyntaxError exceptions are the only ones that do not occur at run-time. They indicate an improperly
constructed piece of Python code which cannot execute until corrected. These errors are generated at
compile-time, when the interpreter loads and attempts to convert your script to Python bytecode. These
may also occur as a result of importing a faulty module.

file:///D|/1/0132269937/ch10lev1sec2.html (1 von 3) [13.11.2007 16:23:40]

Section 10.2. Exceptions in Python

IndexError: request for an out-of-range index for sequence

>>> aList = []
>>> aList[0]
Traceback (innermost last):
 File "<stdin>", line 1, in ?
IndexError: list index out of range

IndexError is raised when attempting to access an index that is outside the valid range of a sequence.

KeyError: request for a non-existent dictionary key

>>> aDict = {'host': 'earth', 'port': 80}
>>> print aDict['server']
Traceback (innermost last):
 File "<stdin>", line 1, in ?
KeyError: server

Mapping types such as dictionaries depend on keys to access data values. Such values are not retrieved
if an incorrect/nonexistent key is requested. In this case, a KeyErroris raised to indicate such an incident
has occurred.

IOError: input/output error

>>> f = open("blah")
Traceback (innermost last):
 File "<stdin>", line 1, in ?
IOError: [Errno 2] No such file or directory: 'blah'

Attempting to open a nonexistent disk file is one example of an operating system input/output (I/O)
error. Any type of I/O error raises an IOError exception.

AttributeError: attempt to access an unknown object attribute

>>> class myClass(object):
... pass
...
>>> myInst = myClass()
>>> myInst.bar = 'spam'
>>> myInst.bar
'spam'
>>> myInst.foo
Traceback (innermost last):
 File "<stdin>", line 1, in ?
AttributeError: foo

In our example, we stored a value in myInst.bar, the bar attribute of instance myInst. Once an attribute
has been defined, we can access it using the familiar dotted-attribute notation, but if it has not, as in

file:///D|/1/0132269937/ch10lev1sec2.html (2 von 3) [13.11.2007 16:23:40]

Section 10.2. Exceptions in Python

our case with the foo (non-)attribute, an AttributeError occurs.

file:///D|/1/0132269937/ch10lev1sec2.html (3 von 3) [13.11.2007 16:23:40]

file:///D|/1/0132269937/14051536.html

Section 10.3. Detecting and Handling Exceptions

10.3. Detecting and Handling Exceptions

Exceptions can be detected by incorporating them as part of a try statement. Any code suite of a TRy
statement will be monitored for exceptions.

There are two main forms of the TRy statement: TRy-except and try-finally. These statements are
mutually exclusive, meaning that you pick only one of them. A try statement can be accompanied by
one or more except clauses, exactly one finally clause, or a hybrid try-except-finally combination.

try-except statements allow one to detect and handle exceptions. There is even an optional else clause
for situations where code needs to run only when no exceptions are detected. Meanwhile, TRy-finally
statements allow only for detection and processing of any obligatory cleanup (whether or not exceptions
occur), but otherwise have no facility in dealing with exceptions. The combination, as you might
imagine, does both.

10.3.1. try-except Statement

The TRy-except statement (and more complicated versions of this statement) allows you to define a
section of code to monitor for exceptions and also provides the mechanism to execute handlers for
exceptions.

The syntax for the most general try-except statement is given below. It consists of the keywords along
with the try and except blocks (try_suite and except_suite) as well as optionally saving the reason of
failure:

try:
 try_suite # watch for exceptions here
except Exception[, reason]:
 except_suite # exception-handling code

Let us give one example, then explain how things work. We will use our IOError example from above.
We can make our code more robust by adding a try-except "wrapper" around the code:

>>> try:

... f = open('blah', 'r')

... except IOError, e:

... print 'could not open file:', e

...

could not open file: [Errno 2] No such file or directory

file:///D|/1/0132269937/ch10lev1sec3.html (1 von 17) [13.11.2007 16:23:43]

file:///D|/1/0132269937/14051536.html

Section 10.3. Detecting and Handling Exceptions

As you can see, our code now runs seemingly without errors. In actuality, the same IOError still
occurred when we attempted to open the nonexistent file. The difference? We added code to both detect
and handle the error. When the IOError exception was raised, all we told the interpreter to do was to
output a diagnostic message. The program continues and does not "bomb out" as our earlier examplea
minor illustration of the power of exception handling. So what is really happening codewise?

During runtime, the interpreter attempts to execute all the code within the try statement. If an
exception does not occur when the code block has completed, execution resumes past the except
statement. When the specified exception named on the except statement does occur, we save the
reason, and control flow immediately continues in the handler (all remaining code in the TRy clause is
skipped) where we display our error message along with the cause of the error.

In our example above, we are catching only IOError exceptions. Any other exception will not be caught
with the handler we specified. If, for example, you want to catch an OSError, you have to add a handler
for that particular exception. We will elaborate on the try-except syntax more as we progress further in
this chapter.

Core Note: Skipping code, continuation, and upward propagation

The remaining code in the try suite from the point of the exception is
never reached (hence never executed). Once an exception is raised,
the race is on to decide on the continuing flow of control. The
remaining code is skipped, and the search for a handler begins. If one
is found, the program continues in the handler.

If the search is exhausted without finding an appropriate handler, the
exception is then propagated to the caller's level for handling,
meaning the stack frame immediately preceding the current one. If
there is no handler at the next higher level, the exception is yet again
propagated to its caller. If the top level is reached without an
appropriate handler, the exception is considered unhandled, and the
Python interpreter will display the traceback and exit.

10.3.2. Wrapping a Built-in Function

We will now present an interactive examplestarting with the bare necessity of detecting an error, then
building continuously on what we have to further improve the robustness of our code. The premise is in
detecting errors while trying to convert a numeric string to a proper (numeric object) representation of
its value.

The float() built-in function has a primary purpose of converting any numeric type to a float. In Python
1.5, float() was given the added feature of being able to convert a number given in string
representation to an actual float value, obsoleting the use of the atof() function of the string module.
Readers with older versions of Python may still use string.atof(), replacing float(), in the examples
we use here.

>>> float(12345)
12345.0
>>> float('12345')
12345.0
>>> float('123.45e67')

file:///D|/1/0132269937/ch10lev1sec3.html (2 von 17) [13.11.2007 16:23:43]

Section 10.3. Detecting and Handling Exceptions

1.2345e+069

Unfortunately, float() is not very forgiving when it comes to bad input:

>>> float('foo')
Traceback (innermost last):
 File "<stdin>", line 1, in ?
 float('foo')
ValueError: invalid literal for float(): foo
>>>
>>> float(['this is', 1, 'list'])
Traceback (innermost last):
 File "<stdin>", line 1, in ?
 float(['this is', 1, 'list'])
TypeError: float() argument must be a string or a number

Notice in the errors above that float() does not take too kindly to strings that do not represent
numbers or non-strings. Specifically, if the correct argument type was given (string type) but that type
contained an invalid value, the exception raised would be ValueError because it was the value that was
improper, not the type. In contrast, a list is a bad argument altogether, not even being of the correct
type; hence, TypeErrorwas thrown.

Our exercise is to call float()"safely," or in a more "safe manner," meaning that we want to ignore error
situations because they do not apply to our task of converting numeric string values to floating point
numbers, yet are not severe enough errors that we feel the interpreter should abandon execution. To
accomplish this, we will create a "wrapper" function, and, with the help of TRy-except, create the
environment that we envisioned. We shall call it safe_float(). In our first iteration, we will scan and
ignore only ValueErrors, because they are the more likely culprit. TypeErrors rarely happen since
somehow a non-string must be given to float().

def safe_float(obj):
 try:
 return float(obj)
 except ValueError:
 pass

The first step we take is to just "stop the bleeding." In this case, we make the error go away by just
"swallowing it." In other words, the error will be detected, but since we have nothing in the except suite
(except the pass statement, which does nothing but serve as a syntactical placeholder for where code is
supposed to go), no handling takes place. We just ignore the error.

One obvious problem with this solution is that we did not explicitly return anything to the function caller
in the error situation. Even though None is returned (when a function does not return any value
explicitly, i.e., completing execution without encountering a return object statement), we give little or
no hint that anything wrong took place. The very least we should do is to explicitly return None so that
our function returns a value in both cases and makes our code somewhat easier to understand:

def safe_float(obj):
 try:
 retval = float(obj)
 except ValueError:

file:///D|/1/0132269937/ch10lev1sec3.html (3 von 17) [13.11.2007 16:23:43]

Section 10.3. Detecting and Handling Exceptions

 retval = None
 return retval

Bear in mind that with our change above, nothing about our code changed except that we used one
more local variable. In designing a well-written application programmer interface (API), you may have
kept the return value more flexible. Perhaps you documented that if a proper argument was passed to
safe_float(), then indeed, a floating point number would be returned, but in the case of an error, you
chose to return a string indicating the problem with the input value. We modify our code one more time
to reflect this change:

def safe_float(obj):
 try:
 retval = float(obj)
 except ValueError:
 retval = 'could not convert non-number to float'
 return retval

The only thing we changed in the example was to return an error string as opposed to just None. We
should take our function out for a test drive to see how well it works so far:

>>> safe_float('12.34')
12.34
>>> safe_float('bad input')
'could not convert non-number to float'

We made a good startnow we can detect invalid string input, but we are still vulnerable to invalid
objects being passed in:

>>> safe_float({'a': 'Dict'})
Traceback (innermost last):
 File "<stdin>", line 3, in ?
 retval = float(obj)
TypeError: float() argument must be a string or a number

We will address this final shortcoming momentarily, but before we further modify our example, we
would like to highlight the flexibility of the try-except syntax, especially the except statement, which
comes in a few more flavors.

10.3.3. try Statement with Multiple excepts

Earlier in this chapter, we introduced the following general syntax for except:

except Exception[, reason]:
 suite_for_exception_Exception

The except statement in such formats specifically detects exceptions named Exception. You can chain
multiple except statements together to handle different types of exceptions with the same TRy:

file:///D|/1/0132269937/ch10lev1sec3.html (4 von 17) [13.11.2007 16:23:43]

Section 10.3. Detecting and Handling Exceptions

except Exception1[, reason1]:
 suite_for_exception_Exception1
except Exception2[, reason2]:
 suite_for_exception_Exception2
 :

This same try clause is attempted, and if there is no error, execution continues, passing all the except
clauses. However, if an exception does occur, the interpreter will look through your list of handlers
attempting to match the exception with one of your handlers (except clauses). If one is found, execution
proceeds to that except suite.

Our safe_float()function has some brains now to detect specific exceptions. Even smarter code would
handle each appropriately. To do that, we have to have separate except statements, one for each
exception type. That is no problem as Python allows exceptstatements can be chained together. We will
now create separate messages for each error type, providing even more detail to the user as to the
cause of his or her problem:

def safe_float(obj):
 try:
 retval = float(obj)
 except ValueError:
 retval = 'could not convert non-number to float'
 except TypeError:
 retval = 'object type cannot be converted to float'
 return retval

Running the code above with erroneous input, we get the following:

>>> safe_float('xyz')
'could not convert non-number to float'
>>> safe_float(())
'argument must be a string'
>>> safe_float(200L)
200.0
>>> safe_float(45.67000)
45.67

10.3.4. except Statement with Multiple Exceptions

We can also use the same except clause to handle multiple exceptions. except statements that process
more than one exception require that the set of exceptions be contained in a tuple:

except (Exception1, Exception2)[, reason]:
 suite_for_Exception1_and_Exception2

The above syntax example illustrates how two exceptions can be handled by the same code. In general,
any number of exceptions can follow an except statement as long as they are all properly enclosed in a
tuple:

file:///D|/1/0132269937/ch10lev1sec3.html (5 von 17) [13.11.2007 16:23:43]

Section 10.3. Detecting and Handling Exceptions

except (Exc1[, Exc2[, ... ExcN]])[, reason]:
 suite_for_exceptions_Exc1_to_ExcN

If for some reason, perhaps due to memory constraints or dictated as part of the design that all
exceptions for our safe_float()function must be handled by the same code, we can now accommodate
that requirement:

def safe_float(obj):
 try:
 retval = float(obj)
 except (ValueError, TypeError):
 retval = 'argument must be a number or numeric string'
 return retval

Now there is only the single error string returned on erroneous input:

>>> safe_float('Spanish Inquisition')
'argument must be a number or numeric string'
>>> safe_float([])
'argument must be a number or numeric string'
>>> safe_float('1.6')
1.6
>>> safe_float(1.6)
1.6
>>> safe_float(932)
932.0

10.3.5. Catching All Exceptions

Using the code we saw in the previous section, we are able to catch any number of specific exceptions
and handle them. What about cases where we want to catch all exceptions? The short answer is yes, we
can definitely do it. The code for doing it was significantly improved in 1.5 when exceptions became
classes. Because of this, we now have an exception hierarchy to follow.

If we go all the way up the exception tree, we find Exception at the top, so our code will look like this:

try:
 :
except Exception, e:
 # error occurred, log 'e', etc.

Less preferred is the bare except clause:

try:
 :
except:
 # error occurred, etc.

This syntax is not as "Pythonic" as the other. Although this code catches the most exceptions, it does

file:///D|/1/0132269937/ch10lev1sec3.html (6 von 17) [13.11.2007 16:23:43]

Section 10.3. Detecting and Handling Exceptions

not promote good Python coding style. One of the chief reasons is that it does not take into account the
potential root causes of problems that may generate exceptions. Rather than investigating and
discovering what types of errors may occur and how they may be prevented from happening, we have a
catch-all that may not do the right thing.

We are not naming any specific exceptions to catchit does not give us any information about the
possible errors that could happen in our TRy block. Another thing is that by catching all errors, you may
be silently dropping important errors that really should be sent to the caller to properly take care of
them. Finally, we do not have the opportunity to save the reason for the exception. Yes, you can get it
through sys.exc_ info(), but then you would have to import sys and execute that functionboth of which
can be avoided, especially if all we wanted was the instance telling us why the exception occurred. It is
a distinct possibility that the bare exception clause will be deprecated in a future release of Python. (See
also Core Style note).

One aspect of catching all exceptions that you need to be aware of is that there are several exceptions
that are not due to an error condition. These two exceptions are SystemExit and KeyboardInterrupt.
SystemExit is for when the current Python application wants to quit, and KeyboardInterrupt is when a
user presses CTRL-C (^C) to terminate Python. These will be caught by both code snippets above when
we really want to pass them upward. A typical workaround code pattern will look like this:

try:
 :
except (KeyboardInterupt, SystemExit):
 # user wants to quit
 raise # reraise back to caller
except Exception:
 # handle real errors

A few things regarding exceptions did change in Python 2.5. Exceptions were moved to new-style
classes, a new "mother of all exception" classes named BaseException was installed, and the exception
hierarchy was switched around (very slightly) to get rid of that idiom of having to create two handlers.
Both KeyboardInterrupt and SystemExit have been pulled out from being children of Exception to being
its peers:

- BaseException
 |- KeyboardInterrupt
 |- SystemExit
 |- Exception
 |- (all other current built-in exceptions)

You can find the entire exception hierarchy (before and after these changes) in Table 10.2.

The end result is that now you do not have to write the extra handler for those two exceptions if you
have a handler for just Exception. This code will suffice:

try:
 :

file:///D|/1/0132269937/ch10lev1sec3.html (7 von 17) [13.11.2007 16:23:43]

Section 10.3. Detecting and Handling Exceptions

except Exception, e:
 # handle real errors

If you really want to catch all errors, you can still do that too, but use BaseException instead:

try:
 :
except BaseException, e:
 # handle all errors

And of course, there is the less preferred bare except.

Core Style: Do not handle and ignore all errors

The try-except statement has been included in Python to provide a
powerful mechanism for programmers to track down potential errors
and perhaps to provide logic within the code to handle situations
where it may not otherwise be possible, for example, in C. The main
idea is to minimize the number of errors and still maintain program
correctness. As with all tools, they must be used properly.

One incorrect use of TRy-except is to serve as a giant bandage over
large pieces of code. By that we mean putting large blocks, if not your
entire source code, within a try and/or have a large generic except to
"filter" any fatal errors by ignoring them:

this is really bad code
try:
 large_block_of_code # bandage of large piece of code
except Exception: # same as except:
 pass # blind eye ignoring all errors

Obviously, errors cannot be avoided, and the job of TRy-except is to
provide a mechanism whereby an acceptable problem can be remedied
or properly dealt with, and not be used as a filter. The construct above
will hide many errors, but this type of usage promotes a poor
engineering practice that we certainly cannot endorse.

Bottom line: Avoid using try-except around a large block of code with
a pass just to hide errors. Instead, either handle specific exceptions
and ignore them (pass), or handle all errors and take a specific action.
Do not do both (handle all errors, ignore all errors).

10.3.6. "Exceptional Arguments"

No, the title of this section has nothing to do with having a major fight. Instead, we are referring to the
fact that an exception may have an argument or reason passed along to the exception handler when
they are raised. When an exception is raised, parameters are generally provided as an additional aid for

file:///D|/1/0132269937/ch10lev1sec3.html (8 von 17) [13.11.2007 16:23:43]

Section 10.3. Detecting and Handling Exceptions

the exception handler. Although reasons for exceptions are optional, the standard built-in exceptions do
provide at least one argument, an error string indicating the cause of the exception.

Exception parameters can be ignored in the handler, but the Python provides syntax for saving this
value. We have already seen it in the syntax above: to access any provided exception reason, you must
reserve a variable to hold the argument. This argument is given on the except header line and follows
the exception type you are handling. The different syntaxes for the except statement can be extended to
the following:

single exception
except Exception[, reason]:
 suite_for_Exception_with_Argument

multiple exceptions
except (Exception1, Exception2, ..., ExceptionN)[, reason]:
 suite_for_Exception1_to_ExceptionN_with_Argument

reason is a class instance containing diagnostic information from the code raising the exception. The
exception arguments themselves go into a tuple that is stored as an attribute of the class instance, an
instance of the exception class from which it was instantiated. In the first alternate syntax above, reason
is an instance of the Exception class.

For most standard built-in exceptions, that is, exceptions derived from StandardError, the tuple consists
of a single string indicating the cause of the error. The actual exception name serves as a satisfactory
clue, but the error string enhances the meaning even more. Operating system or other environment
type errors, i.e., IOError, will also include an operating system error number that precedes the error
string in the tuple.

Whether a reason contains just a string or a combination of an error number and a string, calling str
(reason) should present a human-readable cause of an error. However, do not lose sight that reason is
really a class instanceyou are only getting the error information via that class's special method __str__
(). We have a complete treatment of special methods as we explore object-oriented programming in
Chapter 13.

The only caveat is that not all exceptions raised in third-party or otherwise external modules adhere to
this standard protocol of error string or error number and error string. We recommend you follow such a
standard when raising your own exceptions (see Core Style note).

Core Style: Follow exception argument protocol

When you raise built-in exceptions in your own code, try to follow the
protocol established by the existing Python code as far as the error
information that is part of the tuple passed as the exception
argument. In other words, if you raise a ValueError, provide the same
argument information as when the interpreter raises a ValueError
exception, and so on. This helps keep the code consistent and will
prevent other applications that use your module from breaking.

The example below is when an invalid object is passed to the float() built-in function, resulting in a
TypeError exception:

file:///D|/1/0132269937/ch10lev1sec3.html (9 von 17) [13.11.2007 16:23:43]

Section 10.3. Detecting and Handling Exceptions

>>> try:
... float(['float() does not', 'like lists', 2])
... except TypeError, diag:# capture diagnostic info
... pass
...
>>> type(diag)
<class 'exceptions.TypeError'>
>>>
>>> print diag
float() argument must be a string or a number

The first thing we did was cause an exception to be raised from within the try statement. Then we
passed cleanly through by ignoring but saving the error information. Calling the type() built-in function,
we were able to confirm that our exception was indeed an instance of the TypeError exception class.
Finally, we displayed the error by calling print with our diagnostic exception argument.

To obtain more information regarding the exception, we can use the special __class__ instance attribute,
which identifies which class an instance was instantiated from. Class objects also have attributes, such
as a documentation string and a string name that further illuminate the error type:

>>> diag # exception instance object
<exceptions.TypeError instance at 8121378>
>>> diag.__class__ # exception class object
<class exceptions.TypeError at 80f6d50>
>>> diag.__class__.__doc__ # exception class documentation string
'Inappropriate argument type.'
>>> diag.__class__.__name__ # exception class name
'TypeError'

As we will discover in Chapter 13Classes and OOP the special instance attribute __class__ exists for all
class instances, and the __doc__ class attribute is available for all classes that define their documentation
strings.

We will now update our safe_float() one more time to include the exception argument, which is passed
from the interpreter from within float()when exceptions are generated. In our last modification to
safe_float(), we merged both the handlers for the ValueError and TypeError exceptions into one
because we had to satisfy some requirement. The problem, if any, with this solution is that no clue is
given as to which exception was raised or what caused the error. The only thing returned is an error
string that indicated some form of invalid argument. Now that we have the exception argument, this no
longer has to be the case.

Because each exception will generate its own exception argument, if we chose to return this string
rather than a generic one we made up, it would provide a better clue as to the source of the problem. In
the following code snippet, we replace our single error string with the string representation of the
exception argument.

def safe_float(object):
 try:
 retval = float(object)
 except (ValueError, TypeError), diag:
 retval = str(diag)

file:///D|/1/0132269937/ch10lev1sec3.html (10 von 17) [13.11.2007 16:23:43]

Section 10.3. Detecting and Handling Exceptions

 return retval

Upon running our new code, we obtain the following (different) messages when providing improper input
to safe_float(), even if both exceptions are managed by the same handler:

>>> safe_float('xyz')
'invalid literal for float(): xyz'
>>> safe_float({})
'object can't be converted to float'

10.3.7. Using Our Wrapped Function in an Application

We will now feature safe_float() in a mini application that takes a credit card transaction data file
(carddata.txt) and reads in all transactions, including explanatory strings. Here are the contents of our
example carddata.txt file:

% cat carddata.txt
carddata.txt
previous balance
25
debits
21.64
541.24
25
credits
-25
-541.24
finance charge/late fees
7.30
5

Our program, cardrun.py, is given in Example 10.1.

Example 10.1. Credit Card Transactions (cardrun.py)

We use safe_float() to process a set of credit card transactions given in a file and read in as
strings. A log file tracks the processing.

1 #!/usr/bin/env python
2
3 def safe_float(obj):
4 'safe version of float()'
5 try:
6 retval = float(obj)
7 except (ValueError, TypeError), diag:
8 retval = str(diag)
9 return retval
10
11 def main():
12 'handles all the data processing'

file:///D|/1/0132269937/ch10lev1sec3.html (11 von 17) [13.11.2007 16:23:43]

Section 10.3. Detecting and Handling Exceptions

13 log = open('cardlog.txt', 'w')
14 try:
15 ccfile = open('carddata.txt', 'r')
16 except IOError, e:
17 log.write('no txns this month\n')
18 log.close()
19 return
20
21 txns = ccfile.readlines()
22 ccfile.close()
23 total = 0.00
24 log.write('account log:\n')
25
26 for eachTxn in txns:
27 result = safe_float(eachTxn)
28 if isinstance(result, float):
29 total += result
30 log.write('data... processed\n')
31 else:
32 log.write('ignored: %s' % result)
33 print '$%.2f (new balance)' % (total)
34 log.close()
35
36 if __name__ == '__main__':
37 main()

Line-by-Line Explanation

Lines 39

This chunk of code contains the body of our safe_float() function.

Lines 1134

The core part of our application performs three major tasks: (1) read the credit card data file, (2)
process the input, and (3) display the result. Lines 14-22 perform the extraction of data from the file.
You will notice that there is a TRy-except statement surrounding the file open.

A log file of the processing is also kept. In our example, we are assuming the log file can be opened for
write without any problems. You will find that our progress is kept by the log. If the credit card data file
cannot be accessed, we will assume there are no transactions for the month (lines 16-19).

The data are then read into the txns (transactions) list where it is iterated over in lines 26-32. After
every call to safe_float(), we check the result type using the isinstance() built-in function. In our
example, we check to see if safe_float() returns a string or float. Any string indicates an error situation
with a string that could not be converted to a number, while all other values are floats that can be
added to the running subtotal. The final new balance is then displayed as the final line of the main()
function.

Lines 3637

file:///D|/1/0132269937/ch10lev1sec3.html (12 von 17) [13.11.2007 16:23:43]

Section 10.3. Detecting and Handling Exceptions

These lines represent the general "start only if not imported" functionality.Upon running our program,
we get the following output:

$ cardrun.py
$58.94 (new balance)

Taking a peek at the resulting log file (cardlog.txt), we see that it contains the following log entries
after cardrun.py processed the transactions found in carddata.txt:

$ cat cardl og.txt
account log:
ignored: invalid literal for float(): # carddata.txt
ignored: invalid literal for float(): previous balance
data... processed
ignored: invalid literal for float(): debits
data... processed
data... processed
data... processed
ignored: invalid literal for float(): credits
data... processed

data... processed
ignored: invalid literal for float(): finance charge/
late fees
data... processed
data... processed

10.3.8. else Clause

We have seen the else statement with other Python constructs such as conditionals and loops. With
respect to try-except statements, its functionality is not that much different from anything else you
have seen: The else clause executes if no exceptions were detected in the preceding try suite.

All code within the try suite must have completed successfully (i.e., concluded with no exceptions
raised) before any code in the else suite begins execution. Here is a short example in Python
pseudocode:

import 3rd_party_module

log = open('logfile.txt', 'w')

try:
 3rd_party_module.function()
except:
 log.write("*** caught exception in module\n")
else:
 log.write("*** no exceptions caught\n")

log.close()

In the preceding example, we import an external module and test it for errors. A log file is used to

file:///D|/1/0132269937/ch10lev1sec3.html (13 von 17) [13.11.2007 16:23:43]

Section 10.3. Detecting and Handling Exceptions

determine whether there were defects in the third-party module code. Depending on whether an
exception occurred during execution of the external function, we write differing messages to the log.

10.3.9. finally Clause

A finally clause is one where its suite or block of code is executed regardless of whether an exception
occurred or whether it was caught (or not). You may use a finally clause with TRy by itself or with try-
except (with or without an else clause). The standalone try-finally is covered in the next section, so
we will just focus on the latter here.

Starting in Python 2.5, you can use the finally clause (again) with TRy-except or try-except-else. We
say "again" because believe it or not, it is not a new feature. This was a feature available in Python back
in the early days but was removed in Python 0.9.6 (April 1992). At the time, it helped simplify the
bytecode generation process and was easier to explain, and van Rossum believed that a unified try-
except (-else)-finally would not be very popular anyway. How things change well over a decade later!

Here is what the syntax would look like with try-except-else-finally:

try:
 A
except MyException:
 B
else:
 C
finally:
 D

The equivalent in Python 0.9.6 through 2.4.x. is the longer:

try:
 try:
 A
 except MyException:
 B
 else:
 C
finally:
 D

Of course, in either case, you can have more than one except clause, however the syntax requires at
least one except clause and both the else and finally clauses are optional. A,B,C, and D are suites (code
blocks). The suites will execute in that order as necessary. (Note the only flows possible are A-C-D
[normal] and A-B-D [exception].) The finally block will be executed whether exceptions occur in A,B,
and/or C. Code written with the older idiom will continue to run, so there are no backward-compatibility
problems.

file:///D|/1/0132269937/ch10lev1sec3.html (14 von 17) [13.11.2007 16:23:43]

Section 10.3. Detecting and Handling Exceptions

10.3.10. try-finally Statement

An alternative is to use finally alone with try. The try-finally statement differs from its try-except
brethren in that it is not used to handle exceptions. Instead it is used to maintain consistent behavior
regardless of whether or not exceptions occur. We know that the finally suite executes regardless of an
exception being triggered within the try suite.

try:
 try_suite
finally:
 finally_suite # executes regardless

When an exception does occur within the try suite, execution jumps immediately to the finally suite.
When all the code in the finally suite completes, the exception is reraised for handling at the next
higher layer. Thus it is common to see a try-finally nested as part of a TRy-except suite.

One place where we can add a TRy-finally statement is by improving our code in cardrun.py so that we
catch any problems that may arise from reading the data from the carddata.txt file. In the current code
in Example 10.1, we do not detect errors during the read phase (using readlines()):

try:
 ccfile = open('carddata.txt')
except IOError:
 log.write('no txns this month\n')

txns = ccfile.readlines()
ccfile.close()

It is possible for readlines() to fail for any number of reasons, one of which is if carddata.txt was a file
on the network (or a floppy) that became inaccessible. Regardless, we should improve this piece of code
so that the entire input of data is enclosed in the try clause:

try:
 ccfile = open('carddata.txt', 'r')
 txns = ccfile.readlines()
 ccfile.close()
except IOError:
 log.write('no txns this month\n')

All we did was to move the readlines() and close() method calls to the TRy suite. Although our code is
more robust now, there is still room for improvement. Notice what happens if there was an error of
some sort. If the open succeeds, but for some reason th readlines() call does not, the exception will
continue with the except clause. No attempt is made to close the file. Wouldn't it be nice if we closed the
file regardless of whether an error occurred or not? We can make it a reality using TRy-finally:

try:
 try:
 ccfile = open('carddata.txt', 'r')
 txns = ccfile.readlines()
 except IOError:

file:///D|/1/0132269937/ch10lev1sec3.html (15 von 17) [13.11.2007 16:23:43]

Section 10.3. Detecting and Handling Exceptions

 log.write('no txns this month\n')
finally:
 ccfile.close()

This code snippet will attempt to open the file and read in the data. If an error occurs during this step, it
is logged, and then the file is properly closed. If no errors occur, the file is still closed. (The same
functionality can be achieved using the unified try-except-finally statement above.) An alternative
implementation involves switching the try-except and try-finally clauses:

try:
 try:
 ccfile = open('carddata.txt', 'r')
 txns = ccfile.readlines()
 finally:
 ccfile.close()
except IOError:
 log.write('no txns this month\n')

The code works virtually the same with some differences. The most obvious one is that the closing of
the file happens before the exception handler writes out the error to the log. This is because finally
automatically reraises the exception.

One argument for doing it this way is that if an exception happens within the finally block, you are able
to create another handler at the same outer level as the one we have, so in essence, be able to handle
errors in both the original try block as well as the finally block. The only thing you lose when you do
this is that if the finally block does raise an exception, you have lost context of the original exception
unless you have saved it somewhere.

An argument against having the finally inside the except is that in many cases, the exception handler
needs to perform some cleanup tasks as well, and if you release those resources with a finally block
that comes before the exception handler, you have lost the ability to do so. In other words, the finally
block is not as "final" as one would think.

One final note: If the code in the finally suite raises another exception, or is aborted due to a return,
break, or continue statement, the original exception is lost and cannot be reraised.

10.3.11. try-except-else-finally: aka the Kitchen Sink

We can combine all the varying syntaxes that we have seen so far in this chapter to highlight all the
different ways you can handle exceptions:

try:
 try_suite
except Exception1:
 suite_for_Exception1

except (Exception2, Exception3, Exception4):
 suite_for_Exceptions_2_3_and_4

except Exception5, Argument5:
 suite_for_Exception5_plus_argument

file:///D|/1/0132269937/ch10lev1sec3.html (16 von 17) [13.11.2007 16:23:43]

Section 10.3. Detecting and Handling Exceptions

except (Exception6, Exception7), Argument67:
 suite_for_Exceptions6_and_7_plus_argument

except:
 suite_for_all_other_exceptions

else:
 no_exceptions_detected_suite
finally:
 always_execute_suite

Recall from above that using a finally clause combined with TRy-except or try-except-else is "new" as
of Python 2.5. The most important thing to take away from this section regarding the syntax is that you
must have at least one except clause; both the else and finally clauses are optional.

file:///D|/1/0132269937/ch10lev1sec3.html (17 von 17) [13.11.2007 16:23:43]

file:///D|/1/0132269937/14051536.html

Section 10.4. Context Management

10.4. Context Management

10.4.1. with Statement

The unification of TRy-except and TRy-finally as described above makes programs more "Pythonic,"
meaning, among many other characteristics, simpler to write and easier to read. Python already does a
great job at hiding things under the covers so all you have to do is worry about how to solve the
problem you have. (Can you imagine porting a complex Python application into C++ or Java?!?)

Another example of hiding lower layers of abstraction is the with statement, made official as of Python
2.6. (It was introduced in 2.5 as a preview and to serve warnings for those applications using with as an
identifier that it will become a keyword in 2.6. To use this feature in 2.5, you must import it with from
__future__ importwith_statement.)

Like try-except-finally, the with statement, has a purpose of simplifying code that features the
common idiom of using the TRy-except and try-finally pairs in tandem. The specific use that the with
statement targets is when TRy-except and try-finally are used together in order to achieve the sole
allocation of a shared resource for execution, then releasing it once the job is done. Examples include
files (data, logs, database, etc.), threading resources and synchronization primitives, database
connections, etc.

However, instead of just shortening the code and making it easier to use like try-except-finally, the
with statement's goal is to remove the TRy, except, and finally keywords and the allocation and release
code from the picture altogether. The basic syntax of the with statement looks like this:

with context_expr [as var]:
 with_suite

It looks quite simple, but making it work requires some work under the covers. The reason is it not as
simple as it looks is because you cannot use the with statement merely with any expression in Python.
It only works with objects that support what is called the context management protocol. This simply
means that only objects that are built with "context management" can be used with a with statement.
We will describe what that means soon.

Now, like any new video game hardware, when this feature was released, some folks out there took the
time to develop new games for it so that you can play when you open the box. Similarly, there were
already some Python objects that support the protocol. Here is a short list of the first set:

● file
● decimal.Context
● tHRead.LockType
● threading.Lock
● threading.RLock
● threading.Condition
● tHReading.Semaphore

file:///D|/1/0132269937/ch10lev1sec4.html (1 von 3) [13.11.2007 16:23:43]

Section 10.4. Context Management

● tHReading.BoundedSemaphore

Since files are first on the list and the simplest example, here is a code snippet of what it looks like to
use a with statement:

with open('/etc/passwd', 'r') as f:
 for eachLine in f:
 # ...do stuff with eachLine or f...

What this code snippet will do is... well, this is Python, so you can probably already guess. It will do
some preliminary work, such as attempt to open the file, and if all goes well, assign the file object to f.
Then it iterates over each line in the file and does whatever processing you need to do. Once the file has
been exhausted, it is closed. If an exception occurs either at the beginning, middle, or end of the block,
then some cleanup code must be done, but the file will still be closed automatically.

Now, because a lot of the details have been pushed down and away from you, there are really two levels
of processing that need to occur: First, the stuff at the user levelas in, the things you need to take care
of as the user of the objectand second, at the object level. Since this object supports the context
management protocol, it has to do some "context management."

10.4.2. *Context Management Protocol

Unless you will be designing objects for users of the with statement, i.e., programmers who will be using
your objects to design their applications with, most Python programmers are going to be just users of
the with statement and can skip this optional section.

We are not going into a full and deep discussion about context management here, but we will explain
the types of objects and the functionality that are necessary to be protocol-compliant and thus be
eligible to be used with the with statement.

Previously, we described a little of how the protocol works in our example with the file object. Let us
elaborate some more here.

Context Expression (context_expr), Context Manager

When the with statement is executed, the context expression is evaluated to obtain what is called a
context manager. The job of the context manager is to provide a context object. It does this by invoking
its required __context__() special method. The return value of this method is the context object that will
be used for this particular execution of the with_suite. One side note is that a context object itself can
be its own manager, so context_expr can really be either a real context manager or a context object
serving as its own manager. In the latter case, the context object also has a __context__() method,
which returns self, as expected.

Context Object, with_suite

Once we have a context object, its __enter__() special method is invoked. This does all the preliminary
stuff before the with_suite executes. You will notice in the syntax above that there is an optional as var
piece following context_expr on the with statement line. If var is provided, it is assigned the return value
of __enter__(). If not, the return value is thrown away. So for our file object example, its context
object's __enter__() returns the file object so it can be assigned to f.

file:///D|/1/0132269937/ch10lev1sec4.html (2 von 3) [13.11.2007 16:23:43]

Section 10.4. Context Management

Now the with_suite executes. When execution of with_suite terminates, whether "naturally" or via
exception, the context object's __exit__() special method is called.__exit__()takes three arguments. If
with_suite terminates normally, all three parameters passed in are None. If an exception occurred, then
the three arguments are the same three values returned when calling the sys.exc_info() function (see
section 10.12): type (exception class), value (this exception's instance), and traceback, the
corresponding traceback object.

It is up to you to decide how you want to handle the exception here in __exit__(). The usual thing to do
after you are done is not to return anything from __exit__() or return None or some other Boolean False
object. This will cause the exception to be reraised back to your user for handling. If you want to
explicitly silence the exception, then return any object that has a Boolean TRue value. If an exception did
not occur or you returned true after handling an exception, the program will continue on the next
statement after the with clause.

Since context management makes the most sense for shared resources, you can imagine that the
__enter__() and __exit__() methods will primarily be used for doing the lower-level work required to
allocate and release resources, i.e., database connections, lock allocation, semaphore decrement, state
management, opening/closing of files, exception handling, etc.

To help you with writing context managers for objects, there is the contextlib module, which contains
useful functions/decorators with which you can apply over your functions or objects and not have to
worry about implementing a class or separate __context__(), __enter__(), __exit__() special methods.

For more information or more examples of context management, check out the official Python
documentation on the with statement and contextlib module, class special methods (related to with
and contexts), PEP 343, and the "What's New in Python 2.5" document.

file:///D|/1/0132269937/ch10lev1sec4.html (3 von 3) [13.11.2007 16:23:43]

file:///D|/1/0132269937/14051536.html

Section 10.5. *Exceptions as Strings

10.5. *Exceptions as Strings

Prior to Python 1.5, standard exceptions were implemented as strings. However, this became limiting in
that it did not allow for exceptions to have relationships to each other. With the advent of exception
classes, this is no longer the case. As of 1.5, all standard exceptions are now classes. It is still possible
for programmers to generate their own exceptions as strings, but we recommend using exception
classes from now on.

For backward compatibility, it is possible to revert to string-based exceptions. Starting the Python
interpreter with the command-line option -Xwill provide you with the standard exceptions as strings.
This feature will be obsolete beginning with Python 1.6.

Python 2.5 begins the process of deprecating string exceptions from Python forever. In 2.5, raise of
string exceptions generates a warning. In 2.6, the catching of string exceptions results in a warning.
Since they are rarely used and are being deprecated, we will no longer consider string exceptions within
the scope of this book and have removed it. (You may find the original text in prior editions of this
book.) The only point of relevance and the final thought is a caution: You may use an external or third-
party module, which may still have string exceptions. String exceptions are a bad idea anyway. One
reader vividly recalls seeing Linux RPM exceptions with spelling errors in the exception text.

file:///D|/1/0132269937/ch10lev1sec5.html [13.11.2007 16:23:44]

Section 10.6. Raising Exceptions

10.6. Raising Exceptions

The interpreter was responsible for raising all of the exceptions we have seen so far. These exist as a
result of encountering an error during execution. A programmer writing an API may also wish to throw
an exception on erroneous input, for example, so Python provides a mechanism for the programmer to
explicitly generate an exception: the raise statement.

10.6.1. raise Statement

Syntax and Common Usage

The raise statement is quite flexible with the arguments it supports, translating to a large number of
different formats supported syntactically. The general syntax for raise is:

raise [SomeException [, args [, traceback]]]

The first argument, SomeException, is the name of the exception to raise. If present, it must either be a
string, class, or instance (more below). SomeException must be given if any of the other arguments (args
or traceback) are present. A list of all Python standard exceptions is given in Table 10.2.

The second expression contains optional args (aka parameters, values) for the exception. This value is
either a single object or a tuple of objects. When exceptions are detected, the exception arguments are
always returned as a tuple. If args is a tuple, then that tuple represents the same set of exception
arguments that are given to the handler. If args is a single object, then the tuple will consist solely of
this one object (i.e., a tuple with one element). In most cases, the single argument consists of a string
indicating the cause of the error. When a tuple is given, it usually equates to an error string, an error
number, and perhaps an error location, such as a file, etc.

The final argument, TRaceback, is also optional (and rarely used in practice), and, if present, is the
traceback object used for the exceptionnormally a traceback object is newly created when an exception
is raised. This third argument is useful if you want to reraise an exception (perhaps to point to the
previous location from the current). Arguments that are absent are represented by the value None.

The most common syntax used is when SomeException is a class. No additional parameters are ever
required, but in this case, if they are given, they can be a single object argument, a tuple of arguments,
or an exception class instance. If the argument is an instance, then it can be an instance of the given
class or a derived class (subclassed from a pre-existing exception class). No additional arguments (i.e.,
exception arguments) are permitted if the argument is an instance.

More Exotic/Less Common Usage

What happens if the argument is an instance? No problems arise if instance is an instance of the given
exception class. However, if instance is not an instance of the class or an instance of a subclass of the
class, then a new instance of the exception class will be created with exception arguments copied from
the given instance. If instanceis an instance of a subclass of the exception class, then the new exception
will be instantiated from the subclass, not the original exception class.

file:///D|/1/0132269937/ch10lev1sec6.html (1 von 3) [13.11.2007 16:23:44]

file:///D|/1/0132269937/14051536.html

Section 10.6. Raising Exceptions

If the additional parameter to the raise statement used with an exception class is not an
instanceinstead, it is a singleton or tuplethen the class is instantiated and args is used as the argument
list to the exception. If the second parameter is not present or None, then the argument list is empty.

If SomeException is an instance, then we do not need to instantiate anything. In this case, additional
parameters must not be given or must be None. The exception type is the class that instancebelongs to;
in other words, this is equivalent to raising the class with this instance, i.e., raise instance.__class__,
instance.

Use of string exceptions is deprecated in favor of exception classes, but if SomeException is a string, then
it raises the exception identified by string, with any optional parameters (args) as arguments.

Finally, the raise statement by itself without any parameters is a new construct, introduced in Python
1.5, and causes the last exception raised in the current code block to be reraised. If no exception was
previously raised, a TypeError exception will occur, because there was no previous exception to reraise.

Due to the many different valid syntax formats for raise (i.e., SomeException can be either a class,
instance, or a string), we provide Table 10.1 to illuminate all the different ways which raise can be used.

Table 10.1. Using the raise Statement

raise syntax Description

raise exclass Raise an exception, creating an instance of exclass (without any exception
arguments)

raise exclass() Same as above since classes are now exceptions; invoking the class name
with the function call operator instantiates an instance of exclass, also with
no arguments

raise exclass Same as above, but also providing exception arguments args, which can be
a single argument or a tuple

raiseexclass(args) Same as above

raise exclass,args, tb Same as above, but provides traceback object tbto use

raise exclass, instance Raise exception using instance (normally an instance of exclass); if instance
is an instance of a subclass of exclass, then the new exception will be of the
subclass type (not of exclass); if instance is not an instance of exclass or an
instance of a subclass of exclass, then a new instance of exclass will be
created with exception arguments copied from instance

raiseinstance Raise exception using instance: the exception type is the class that
instantiated instance; equivalent to raise instance.__ class__, instance
(same as above)

raise string (Archaic) Raises string exception

raise string, args Same as above, but raises exception with args

file:///D|/1/0132269937/ch10lev1sec6.html (2 von 3) [13.11.2007 16:23:44]

Section 10.6. Raising Exceptions

raise string, args, tb Same as above, but provides traceback object tb to use

raise (New in 1.5) Reraises previously raised exception; if no exception was
previously raised, a TypeErroris raised

file:///D|/1/0132269937/ch10lev1sec6.html (3 von 3) [13.11.2007 16:23:44]

file:///D|/1/0132269937/14051536.html

Section 10.7. Assertions

10.7. Assertions

Assertions are diagnostic predicates that must evaluate to Boolean true; otherwise, an exception is
raised to indicate that the expression is false. These work similarly to the assert macros, which are part
of the C language preprocessor, but in Python these are runtime constructs (as opposed to precompile
directives).

If you are new to the concept of assertions, no problem. The easiest way to think of an assertion is to
liken it to a raise-if statement (or to be more accurate, a raise-if-not statement). An expression is
tested, and if the result comes up false, an exception is raised.

Assertions are carried out by the assert statement, introduced back in version 1.5.

10.7.1. assert Statement

The assert statement evaluates a Python expression, taking no action if the assertion succeeds (similar
to a pass statement), but otherwise raising an AssertionError exception. The syntax for assert is:

assert expression [, arguments]

Here are some examples of the use of the assert statement:

assert 1 == 1
assert 2 + 2 == 2 * 2
assert len(['my list', 12]) < 10
assert range(3) == [0, 1, 2]

AssertionError exceptions can be caught and handled like any other exception using the TRy-except
statement, but if not handled, they will terminate the program and produce a traceback similar to the
following:

>>> assert 1 == 0
Traceback (innermost last):
 File "<stdin>", line 1, in ?
AssertionError

As with the raise statement we investigated in the previous section, we can provide an exception
argument to our assert command:

>>> assert 1 == 0, 'One does not equal zero silly!'
Traceback (innermost last):
 File "<stdin>", line 1, in ?
AssertionError: One does not equal zero silly!

Here is how we would use a TRy-except statement to catch an AssertionErrorexception:

file:///D|/1/0132269937/ch10lev1sec7.html (1 von 2) [13.11.2007 16:23:45]

Section 10.7. Assertions

try:
 assert 1 == 0, 'One does not equal zero silly!'
except AssertionError, args:
 print '%s: %s' % (args.__class__.__name__, args)

Executing the above code from the command line would result in the following output:

AssertionError: One does not equal zero silly!

To give you a better idea of how assert works, imagine how the assert statement may be implemented
in Python if written as a function. It would probably look something like this:

def assert(expr, args=None):
 if __debug__ and not expr:
 raise AssertionError, args

The first if statement confirms the appropriate syntax for the assert, meaning that expr should be an
expression. We compare the type of expr to a real expression to verify. The second part of the function
evaluates the expression and raises AssertionError, if necessary. The built-in variable __debug__ is 1
under normal circumstances, 0 when optimization is requested (command-line option -O).

file:///D|/1/0132269937/ch10lev1sec7.html (2 von 2) [13.11.2007 16:23:45]

file:///D|/1/0132269937/14051536.html

Section 10.8. Standard Exceptions

10.8. Standard Exceptions

Table 10.2 lists all of Python's current set of standard exceptions. All exceptions are loaded into the
interpreter as built-ins so they are ready before your script starts or by the time you receive the
interpreter prompt, if running interactively.

Table 10.2. Python Built-In Exceptions

Exception Name Description

BaseException
[a] Root class for

all exceptions

SystemExit
[b] Request

termination of
Python
interpreter

KeyboardInterrupt
[c] User

interrupted
execution
(usually by
typing ^C)

Exception
[d] Root class for

regular
exceptions

StopIteration
[e] Iteration has

no further
values

GeneratorExit
[a] Exception sent

to generator
to tell it to quit

SystemExit
[h] Request

termination of
Python
interpreter

StandardError
[g] Base class for

all standard
built-in excep
tions

ArithmeticError
[d] Base class for

all numeric
calculation
errors

file:///D|/1/0132269937/ch10lev1sec8.html (1 von 5) [13.11.2007 16:23:46]

file:///D|/1/0132269937/14051536.html

Section 10.8. Standard Exceptions

FloatingPointError
[d] Error in

floating point
calculation

OverflowError Calculation
exceeded
maximum limit
for numerical
type

ZeroDivisionError Division (or
modulus) by
zero error (all
numeric types)

AssertionError
[d] Failure of

assert
statement

AttributeError No such object
attribute

EOFError End-of-file
marker
reached
without input
from built-in

EnvironmentError
[d] Base class for

operating
system
environment
errors

IOError Failure of
input/output
operation

OSError
[d] Operating

system error

WindowsError

[h]
MS Windows
system call
failure

ImportError Failure to
import module
or object

KeyboardInterrupt
[f] User

interrupted
execution
(usually by
typing ^C)

LookupError
[d] Base class for

invalid data
lookup errors

file:///D|/1/0132269937/ch10lev1sec8.html (2 von 5) [13.11.2007 16:23:46]

Section 10.8. Standard Exceptions

IndexError No such index
in sequence

KeyError No such key in
mapping

MemoryError Out-of-
memory error
(non-fatal to
Python
interpreter)

NameError Undeclared/
uninitialized
object (non-
attribute)

UnboundLocalError
[h] Access of an

uninitialized
local variable

ReferenceError
[e] Weak

reference tried
to access a
garbage-
collected object

RuntimeError Generic
default error
during
execution

NotImplementedError
[d] Unimplemented

method

SyntaxError Error in
Python syntax

IndentationError
[g] Improper

indentation

TabError
[g] Improper

mixture of
TABs and
spaces

SystemError Generic
interpreter
system error

TypeError Invalid
operation for
type

ValueError Invalid
argument
given

file:///D|/1/0132269937/ch10lev1sec8.html (3 von 5) [13.11.2007 16:23:46]

Section 10.8. Standard Exceptions

UnicodeError
[h] Unicode-

related error

UnicodeDecodeError
[i] Unicode error

during
decoding

UnicodeEncodeError
[i] Unicode error

during
encoding

UnicodeTranslateError
[f] Unicode error

during
translation

Warning
[j] Root class for

all warnings

DeprecationWarning
[j] Warning about

deprecated
features

FutureWarning
[i] Warning about

constructs that
will change
semantically in
the future

OverflowWarning
[k] Old warning

for auto-long
upgrade

PendingDeprecationWarning
[i] Warning about

features that
will be dep
recated in the
future

RuntimeWarning
[j] Warning about

dubious
runtime
behavior

SyntaxWarning
[j] Warning about

dubious syntax

UserWarning
[j] Warning

generated by
user code

[a] New in Python 2.5.

[b] Prior to Python 2.5, SystemExit subclassed Exception.

file:///D|/1/0132269937/ch10lev1sec8.html (4 von 5) [13.11.2007 16:23:46]

Section 10.8. Standard Exceptions

[c] Prior to Python 2.5, KeyboardInterrupt subclassed StandardError.

[d] New in Python 1.5, the release when class-based exceptions replaced strings.

[e] New in Python 2.2.

[h] New in Python 1.6.

[g] New in Python 2.0.

[f] New in Python 1.6.

[i] New in Python 2.3.

[j] New in Python 2.1.

[k] New in Python 2.2 but removed in Python 2.4.

All standard/built-in exceptions are derived from the root class BaseException. There are currently three
immediate subclasses of BaseException: SystemExit, KeyboardInterrupt, and Exception. All other built-in
exceptions are subclasses of Exceptions. Every level of indentation of an exception listed in Table 10.2
indicates one level of exception class derivation.

As of Python 2.5, all exceptions are new-style classes and are ultimately subclassed from BaseException.
At this release, SystemExit and KeyboardInterrupt were taken out of the hierarchy for Exception and
moved up to being under BaseException. This is to allow statements like except Exception to catch all
errors and not program exit conditions.

From Python 1.5 through Python 2.4.x, exceptions were classic classes, and prior to that, they were
strings. String-based exceptions are no longer acceptable constructs and are officially deprecated
beginning with 2.5, where you will not be able to raise string exceptions. In 2.6, you cannot catch them.

There is also a requirement that all new exceptions be ultimately subclassed from BaseException so that
all exceptions will have a common interface. This will transition will begin with Python 2.7 and continue
through the remainder of the 2.x releases.

file:///D|/1/0132269937/ch10lev1sec8.html (5 von 5) [13.11.2007 16:23:46]

file:///D|/1/0132269937/14051536.html

Section 10.9. *Creating Exceptions

10.9. *Creating Exceptions

Although the set of standard exceptions is fairly wide-ranging, it may be advantageous to create your
own exceptions. One situation is where you would like additional information from what a standard or
module-specific exception provides. We will present two examples, both related to IOError.

IOError is a generic exception used for input/output problems, which may arise from invalid file access
or other forms of communication. Suppose we wanted to be more specific in terms of identifying the
source of the problem. For example, for file errors, we want to have a FileError exception that behaves
like IOError, but with a name that has more meaning when performing file operations.

Another exception we will look at is related to network programming with sockets. The exception
generated by the socket module is called socket.error and is not a built-in exception. It is subclassed
from the generic Exception exception. However, the exception arguments from socket.error closely
resemble those of IOError exceptions, so we are going to define a new exception called NetworkError,
which subclasses from IOError but contains at least the information provided by socket.error.

Like classes and object-oriented programming, we have not formally covered network programming at
this stage, but skip ahead to Chapter 16 if you need to.

We now present a module called myexc.py with our newly customized exceptions FileError and
NetworkError. The code is in Example 10.2.

Example 10.2. Creating Exceptions (myexc.py)

This module defines two new exceptions,FileError and NetworkError, as well as
reimplements more diagnostic versions of open() [myopen()] and socket.connect()
[myconnect()]. Also included is a test function [test()] that is run if this module is executed
directly.

1 #!/usr/bin/env python
2
3 import os, socket, errno, types, tempfile
4
5 class NetworkError(IOError):
6 pass
7
8 class FileError(IOError):
9 pass
10
11 def updArgs(args, newarg=None):
12 if isinstance(args, IOError):
13 myargs = []
14 myargs.extend([arg for arg in args])
15 else:
16 myargs = list(args)
17
18 if newarg:
19 myargs.append(newarg)
20

file:///D|/1/0132269937/ch10lev1sec9.html (1 von 6) [13.11.2007 16:23:47]

Section 10.9. *Creating Exceptions

21 return tuple(myargs)
22
23 def fileArgs(file, mode, args):
24 if args[0] == errno.EACCES and \
25 'access' in dir(os):
26 perms = ''
27 permd = { 'r': os.R_OK, 'w': os.W_OK,
28 'x': os.X_OK}
29 pkeys = permd.keys()
30 pkeys.sort()
31 pkeys.reverse()
32

33 for eachPerm in 'rwx':
34 if os.access(file, permd[eachPerm]):
35 perms += eachPerm
36 else:
37 perms += '-'
38
39 if isinstance(args, IOError):
40 myargs = []
41 myargs.extend([arg for arg in args])
42 else:
43 myargs = list(args)
44
45 myargs[1] = "'%s' %s (perms: '%s')" % \
46 (mode, myargs[1], perms)
47
48 myargs.append(args.filename)
49
50 else:
51 myargs = args
52
53 return tuple(myargs)
54
55 def myconnect(sock, host, port):
56 try:
57 sock.connect((host, port))
58
59 except socket.error, args:
60 myargs = updArgs(args) # conv inst2tuple
61 if len(myargs) == 1: # no #s on some errs
62 myargs = (errno.ENXIO, myargs[0])
63
64 raise NetworkError, \
65 updArgs(myargs, host + ':' + str(port))
66
67 def myopen(file, mode='r'):
68 try:
69 fo = open(file, mode)
70 except IOError, args:
71 raise FileError, fileArgs(file, mode, args)
72
73 return fo
74
75 def testfile():
76
77 file = mktemp()
78 f = open(file, 'w')

file:///D|/1/0132269937/ch10lev1sec9.html (2 von 6) [13.11.2007 16:23:47]

Section 10.9. *Creating Exceptions

79 f.close()
80

81 for eachTest in ((0, 'r'), (0100, 'r'),
82 (0400, 'w'), (0500, 'w')):
83 try:
84 os.chmod(file, eachTest[0])
85 f = myopen(file, eachTest[1])
86
87 except FileError, args:
88 print "%s: %s" % \
89 (args.__class__.__name__, args)
90 else:
91 print file, "opened ok... perm ignored"
92 f.close()
93
94 os.chmod(file, 0777) # enable all perms
95 os.unlink(file)
96
97 def testnet():
98 s = socket.socket(socket.AF_INET,
99 socket.SOCK_STREAM)
100
101 for eachHost in ('deli', 'www'):
102 try:
103 myconnect(s, 'deli', 8080)
104 except NetworkError, args:
105 print "%s: %s" % \
106 (args.__class__.__name__, args)
107
108 if __name__ == '__main__':
109 testfile()
110 testnet()

Lines 13

The Unix startup script and importation of the socket, os, errno, types, and tempfile modules help us
start this module.

Lines 59

Believe it or not, these five lines make up our new exceptions. Not just one, but both of them. Unless
new functionality is going to be introduced, creating a new exception is just a matter of subclassing from
an already existing exception. In our case, that would be IOError. EnvironmentError, from which IOError
is derived, would also work, but we wanted to convey that our exceptions were definitely I/O-related.

We chose IOError because it provides two arguments, an error number and an error string. File-related
[uses open()] IOError exceptions even support a third argument that is not part of the main set of
exception arguments, and that would be the filename. Special handling is done for this third argument,
which lives outside the main tuple pair and has the name filename.

Lines 1121

file:///D|/1/0132269937/ch10lev1sec9.html (3 von 6) [13.11.2007 16:23:47]

Section 10.9. *Creating Exceptions

The entire purpose of the updArgs() function is to "update" the exception arguments. What we mean
here is that the original exception is going to provide us a set of arguments. We want to take these
arguments and make them part of our new exception, perhaps embellishing or adding a third argument
(which is not added if nothing is givenNone is a default argument, which we will study in the next
chapter). Our goal is to provide the more informative details to the user so that if and when errors
occur, the problems can be tracked down as quickly as possible.

Lines 2353

The fileArgs() function is used only by myopen() (see below). In particular, we are seeking error EACCES,
which represents "permission denied." We pass all other IOError exceptions along without modification
(lines 54 - 55). If you are curious about ENXIO, EACCES, and other system error numbers, you can hunt
them down by starting at file /usr/include/sys/errno.h on a Unix system, or C:\Msdev\include\Errno.h if
you are using Visual C++ on Windows.

In line 27, we are also checking to make sure that the machine we are using supports the os.access()
function, which helps you check what kind of file permissions you have for any particular file. We do not
proceed unless we receive both a permission error as well as the ability to check what kind of
permissions we have. If all checks out, we set up a dictionary to help us build a string indicating the
permissions we have on our file.

The Unix file system uses explicit file permissions for the user, group (more than one user can belong to
a group), and other (any user other than the owner or someone in the same group as the owner) in
read, write, and execute (`r', `w', `x') order. Windows supports some of these permissions.

Now it is time to build the permission string. If the file has a permission, its corresponding letter shows
up in the string, otherwise a dash (-) appears. For example, a string of "rw-" means that you have read
and write access to it. If the string reads "r-x", you have only read and execute access; "---" means no
permission at all.

After the permission string has been constructed, we create a temporary argument list. We then alter
the error string to contain the permission string, something that standard IOError exception does not
provide. "Permission denied" sometimes seems silly if the system does not tell you what permissions
you have to correct the problem. The reason, of course, is security. When intruders do not have
permission to access something, the last thing you want them to see is what the file permissions are,
hence the dilemma. However, our example here is merely an exercise, so we allow for the temporary
"breach of security." The point is to verify whether or not the os.chmod()functions call affected file
permissions the way they are supposed to.

The final thing we do is to add the filename to our argument list and return the set of arguments as a
tuple.

Lines 5565

Our new myconnect() function simply wraps the standard socket method connect()to provide an IOError -
type exception if the network connection fails. Unlike the general socket.error exception, we also
provide the hostname and port number as an added value to the programmer.

For those new to network programming, a hostname and port number pair are analogous to an area
code and telephone number when you are trying to contact someone. In this case, we are trying to
contact a program running on the remote host, presumably a server of some sort; therefore, we require

file:///D|/1/0132269937/ch10lev1sec9.html (4 von 6) [13.11.2007 16:23:47]

Section 10.9. *Creating Exceptions

the host's name and the port number that the server is listening on.

When a failure occurs, the error number and error string are quite helpful, but it would be even more
helpful to have the exact host-port combination as well, since this pair may be dynamically generated or
retrieved from some database or name service. That is the value-add we are bestowing on our version
of connect(). Another issue arises when a host cannot be found. There is no direct error number given
to us by the socket.error exception, so to make it conform to the IOError protocol of providing an error
number-error string pair, we find the closest error number that matches. We choose ENXIO.

Lines 6773

Like its sibling myconnect(), myopen()also wraps around an existing piece of code. Here, we have the open
() function. Our handler catches only IOErrorexceptions. All others will pass through and on up to the
next level (when no handler is found for them). Once an IOError is caught, we raise our own error and
customized arguments as returned from fileArgs().

Lines 7595

We shall perform the file testing first, here using the testfile() function. In order to begin, we need to
create a test file that we can manipulate by changing its permissions to generate permission errors. The
tempfile module contains code to create temporary file names or temporary files themselves. We just
need the name for now and use our new myopen() function to create an empty file. Note that if an error
occurred here, there would be no handler, and our program would terminate fatallythe test program
should not continue if we cannot even create a test file.

Our test uses four different permission configurations. A zero means no permissions at all, 0100 means
execute-only, 0400 indicates read-only, and 0500 means read- and execute-only (0400 + 0100). In all
cases, we will attempt to open a file with an invalid mode. The os.chmod()function is responsible for
updating a file's permission modes. (Note: These permissions all have a leading zero in front, indicating
that they are octal [base 8] numbers.)

If an error occurs, we want to display diagnostic information similar to the way the Python interpreter
performs the same task when uncaught exceptions occur, and that is giving the exception name
followed by its arguments. The __class__ special variable represents the class object from which an
instance was created. Rather than displaying the entire class name here (myexc.FileError), we use the
class object's __name__ variable to just display the class name (FileError), which is also what you see
from the interpreter in an unhandled error situation. Then the arguments that we arduously put together
in our wrapper functions follow.

If the file opened successfully, that means the permissions were ignored for some reason. We indicate
this with a diagnostic message and close the file. Once all tests have been completed, we enable all
permissions for the file and remove it with the os.unlink() function. (os.remove() is equivalent to os.
unlink().)

Lines 97106

The next section of code (testnet()) tests our NetworkError exception. A socket is a communication
endpoint with which to establish contact with another host. We create such an object, then use it in an
attempt to connect to a host with no server to accept our connect request and a host not on our
network.

file:///D|/1/0132269937/ch10lev1sec9.html (5 von 6) [13.11.2007 16:23:47]

Section 10.9. *Creating Exceptions

Lines 108110

We want to execute our test*() functions only when invoking this script directly, and that is what the
code here does. Most of the scripts given in this text utilize the same format.

Running this script on a Unix-flavored box, we get the following output:

$myexc.py
FileError: [Errno 13] 'r' Permission denied (perms: '---'):
 '/usr/tmp/@18908.1'
FileError: [Errno 13] 'r' Permission denied (perms: '--x'):
 '/usr/tmp/@18908.1'
FileError: [Errno 13] 'w' Permission denied (perms: 'r--'):
 '/usr/tmp/@18908.1'
FileError: [Errno 13] 'w' Permission denied (perms: 'r-x'):
 '/usr/tmp/@18908.1'
NetworkError: [Errno 146] Connection refused: 'deli:8080'
NetworkError: [Errno 6] host not found: 'www:8080'

The results are slightly different on a Win32 machine:

D:\python> python myexc.py
C:\WINDOWS\TEMP\~-195619-1 opened ok... perms ignored
C:\WINDOWS\TEMP\~-195619-1 opened ok... perms ignored
FileError: [Errno 13] 'w' Permission denied (perms: 'r-x'):
 'C:\\WINDOWS\\TEMP\\~-195619-1'
FileError: [Errno 13] 'w' Permission denied (perms: 'r-x'):
 'C:\\WINDOWS\\TEMP\\~-195619-1'
NetworkError: [Errno 10061] winsock error: 'deli:8080'
NetworkError: [Errno 6] host not found: 'www:8080'

You will notice that Windows does not support read permissions on files, which is the reason why the
first two file open attempts succeeded. Your mileage may vary (YMMV) on your own machine and
operating system.

file:///D|/1/0132269937/ch10lev1sec9.html (6 von 6) [13.11.2007 16:23:47]

Section 10.10. Why Exceptions (Now)?

10.10. Why Exceptions (Now)?

There is no doubt that errors will be around as long as software is around. The difference in today's fast-
paced computing world is that our execution environments have changed, and so has our need to adapt
error-handling to accurately reflect the operating context of the software that we develop. Modern-day
applications generally run as self-contained graphical user interfaces (GUIs) or in a client/server
architecture such as the Web.

The ability to handle errors at the application level has become even more important recently in that
users are no longer the only ones directly running applications. As the Internet and online electronic
commerce become more pervasive, Web servers will be the primary users of application software. This
means that applications cannot just fail or crash outright anymore, because if they do, system errors
translate to browser errors, and these in turn lead to frustrated users. Losing eyeballs means losing
advertising revenue and potentially significant amounts of irrecoverable business.

If errors do occur, they are generally attributed to some invalid user input. The execution environment
must be robust enough to handle the application-level error and be able to produce a user-level error
message. This must translate to a "non-error" as far as the Web server is concerned because the
application must complete successfully, even if all it does is return an error message to present to the
user as a valid Hypertext Markup Language (HTML) Web page displaying the error.

If you are not familiar with what I am talking about, does a plain Web browser screen with the big black
words saying, "Internal Server Error" sound familiar? How about a fatal error that brings up a pop-up
that declares "Document contains no data"? As a user, do either of these phrases mean anything to
you? No, of course not (unless you are an Internet software engineer), and to the average user, they
are an endless source of confusion and frustration. These errors are a result of a failure in the execution
of an application. The application either returns invalid Hypertext Transfer Protocol (HTTP) data or
terminates fatally, resulting in the Web server throwing its hands up into the air, saying, "I give up!"

This type of faulty execution should not be allowed, if at all possible. As systems become more complex
and involve more apprentice users, additional care should be taken to ensure a smooth user application
experience. Even in the face of an error situation, an application should terminate successfully, as to not
affect its execution environment in a catastrophic way. Python's exception handling promotes mature
and correct programming.

file:///D|/1/0132269937/ch10lev1sec10.html [13.11.2007 16:23:47]

file:///D|/1/0132269937/14051536.html

Section 10.11. Why Exceptions at All?

10.11. Why Exceptions at All?

If the above section was not motivation enough, imagine what Python programming might be like
without program-level exception handling. The first thing that comes to mind is the loss of control client
programmers have over their code. For example, if you created an interactive application that allocates
and utilizes a large number of resources, if a user hit ^C or other keyboard interrupt, the application
would not have the opportunity to perform cleanup, resulting in perhaps loss of data or data corruption.
There is also no mechanism to take alternative action such as prompting the users to confirm whether
they really want to quit or if they hit the Control key accidentally.

Another drawback would be that functions would have to be rewritten to return a "special" value in the
face of an error situation, for example, None. The engineer would be responsible for checking each and
every return value from a function call. This may be cumbersome because you may have to check return
values, which may not be of the same type as the object you are expecting if no errors occurred. And
what if your function wants to return None as a valid data value? Then you would have to come up with
another return value, perhaps a negative number. We probably do not need to remind you that negative
numbers may be valid in a Python context, such as an index into a sequence. As a programmer of
application programmer interfaces (APIs), you would then have to document every single return error
your users may encounter based on the input received. Also, it is difficult (and tedious) to propagate
errors (and reasons) of multiple layers of code.

There is no simple propagation like the way exceptions do it. Because error data needs to be transmitted
upwards in the call hierarchy, it is possible to misinterpret the errors along the way. A totally unrelated
error may be stated as the cause when in fact it had nothing to do with the original problem to begin
with. We lose the bottling-up and safekeeping of the original error that exceptions provide as they are
passed from layer to layer, not to mention completely losing track of the data we were originally
concerned about! Exceptions simplify not only the code, but the entire error management scheme,
which should not play such a significant role in application development. And with Python's exception
handling capabilities, it does not have to.

file:///D|/1/0132269937/ch10lev1sec11.html [13.11.2007 16:23:47]

Section 10.12. Exceptions and the sys Module

10.12. Exceptions and the sys Module

An alternative way of obtaining exception information is by accessing the exc_info() function in the sys
module. This function provides a 3-tuple of information, more than what we can achieve by simply using
only the exception argument. Let us see what we get using sys.exc_info():

>>> try:
... float('abc123')
... except:
... import sys
... exc_tuple = sys.exc_info()
...
>>> print exc_tuple
(<class exceptions.ValueError at f9838>, <exceptions.
ValueError instance at 122fa8>,
<traceback object at 10de18>)
>>>

>>> for eachItem in exc_tuple:
... print eachItem
...
exceptions.ValueError
invalid literal for float(): abc123
<traceback object at 10de18>

What we get from sys.exc_info() in a tuple are:

● exc_type: exception class object
● exc_value: (this) exception class instance object
● exc_traceback: traceback object

The first two items we are familiar with: the actual exception class and this particular exception's
instance (which is the same as the exception argument which we discussed in the previous section). The
third item, a traceback object, is new. This object provides the execution context of where the exception
occurred. It contains information such as the execution frame of the code that was running and the line
number where the exception occurred.

In older versions of Python, these three values were available in the sys module as sys.exc_type, sys.
exc_value, and sys.exc_traceback. Unfortunately, these three are global variables and not thread-safe.
We recommend using sys.exc_info() instead. All three will be phased out and eventually removed in a
future version of Python.

file:///D|/1/0132269937/ch10lev1sec12.html [13.11.2007 16:23:48]

Section 10.13. Related Modules

10.13. Related Modules

Table 10.3 lists some of the modules related to this chapter.

Table 10.3. Exception-Related Standard Library Modules

Module Description

exceptions Built-in exceptions (never need to import this module)

contextlib
[a] Context object utilities for use with the with statement

sys Contains various exception-related objects and functions (see sys.ex*)

[a] New in Python 2.5.

file:///D|/1/0132269937/ch10lev1sec13.html [13.11.2007 16:23:48]

Section 10.14. Exercises

10.14. Exercises

10-1. Raising Exceptions. Which of the following can raise exceptions during program
execution? Note that this question does not ask what may cause exceptions.

a.

The user (of your program)

b.

The interpreter

c.

The program(er)

d.

All of the above

e.

Only (b) and (c)

f.

Only (a) and (c)

10-2. Raising Exceptions. Referring to the list in the problem above, which could raise
exceptions while running within the interactive interpreter?

10-3. Keywords. Name the keyword(s) which is (are) used to raise exceptions.

10-4. Keywords. What is the difference between try-except and TRy-finally?

file:///D|/1/0132269937/ch10lev1sec14.html (1 von 3) [13.11.2007 16:23:48]

Section 10.14. Exercises

10-5. Exceptions. Name the exception that would result from executing the following pieces
of Python code from within the interactive interpreter (refer back to Table 10.2 for a
list of all built-in exceptions):

(a) >>> if 3 < 4 then: print '3 IS less than 4!'

(b) >>> aList = ['Hello', 'World!', 'Anyone',
'Home?']
 >>> print 'the last string in aList is:', aList
 [len(aList)]

(c) >>> x

(d) >>> x = 4 % 0

(e) >>> import math
 >>> i = math.sqrt(-1)

10-6. Improving open(). Create a wrapper for the open() function. When a program opens a
file successfully, a file handle will be returned. If the file open fails, rather than
generating an error, return None to the callers so that they can open files without an
exception handler.

10-7. Exceptions. What is the difference between Python pseudocode snippets (a) and (b)?
Answer in the context of statements A and B, which are part of both pieces of code.
(Thanks to Guido for this teaser!)

(a) try:
 statement_A
 except . . .:
 . . .
 else:
 statement_B

(b) try:
 statement_A
 statement_B
 except . . .:
 . . .

10-8. Improving raw_input(). At the beginning of this chapter, we presented a "safe" version
of the float() built-in function to detect and handle two different types of exceptions
that float() generates. Likewise, the raw_input() function can generate two different
exceptions, either EOFError or KeyboardInterrupt on end-of-file (EOF) or cancelled
input, respectively. Create a wrapper function, perhaps safe_ input(); rather than
raising an exception if the user entered EOF (^D in Unix or ^Z in DOS) or attempted
to break out using ^C, have your function return None that the calling function can
check for.

file:///D|/1/0132269937/ch10lev1sec14.html (2 von 3) [13.11.2007 16:23:48]

Section 10.14. Exercises

10-9. Improving math.sqrt(). The math module contains many functions and some constants
for performing various mathematics-related operations. Unfortunately, this module
does not recognize or operate on complex numbers, which is the reason why the cmath
module was developed. Create a function, perhaps safe_sqrt(), which wraps math.sqrt
(), but is smart enough to handle a negative parameter and return a complex number
with the correct value back to the caller.

file:///D|/1/0132269937/ch10lev1sec14.html (3 von 3) [13.11.2007 16:23:48]

file:///D|/1/0132269937/14051536.html

Chapter 11. Functions and Functional Programming

Chapter 11. Functions and Functional Programming

Chapter Topics

● What Are Functions?
● Calling Functions
● Creating Functions
● Passing Functions
● Formal Arguments
● Variable-Length Arguments
● Functional Programming
● Variable Scope
● Recursion
● Generators

We were introduced to functions in Chapter 2, and we have seen them created and called throughout
the text. In this chapter, we will look beyond the basics and give you a full treatment of all the other
features associated with functions. In addition to the expected behavior, functions in Python support a
variety of invocation styles and argument types, including some functional programming interfaces. We
conclude this chapter with a look at Python's scoping and take an optional side trip into the world of
recursion.

file:///D|/1/0132269937/ch11.html [13.11.2007 16:23:49]

file:///D|/1/0132269937/14051536.html

Section 11.1. What Are Functions?

11.1. What Are Functions?

Functions are the structured or procedural programming way of organizing the logic in your programs.
Large blocks of code can be neatly segregated into manageable chunks, and space is saved by putting
oft-repeated code in functions as opposed to multiple copies everywherethis also helps with consistency
because changing the single copy means you do not have to hunt for and make changes to multiple
copies of duplicated code. The basics of functions in Python are not much different from those of other
languages with which you may be familiar. After a bit of review here in the early part of this chapter, we
will focus on what else Python brings to the table.

Functions can appear in different ways ... here is a sampling profile of how you will see functions
created, used, or otherwise referenced:

declaration/definition def foo(): print 'bar'

function object/reference foo

function call/invocation foo()

11.1.1. Functions versus Procedures

Functions are often compared to procedures. Both are entities that can be invoked, but the traditional
function or "black box," perhaps taking some or no input parameters, performs some amount of
processing, and concludes by sending back a return value to the caller. Some functions are Boolean in
nature, returning a "yes" or "no" answer, or, more appropriately, a non-zero or zero value, respectively.
Procedures are simply special cases, functions that do not return a value. As you will see below, Python
procedures are implied functions because the interpreter implicitly returns a default value of None.

11.1.2. Return Values and Function Types

Functions may return a value back to their callers and those that are more procedural in nature do not
explicitly return anything at all. Languages that treat procedures as functions usually have a special type
or value name for functions that "return nothing." These functions default to a return type of "void" in
C, meaning no value returned. In Python, the equivalent return object type is None.

The hello() function acts as a procedure in the code below, returning no value. If the return value is
saved, you will see that its value is None:

>>> def hello():
... print 'hello world'
>>>
>>> res = hello()
hello world
>>> res
>>> print res
None
>>> type(res)
<type 'None'>

file:///D|/1/0132269937/ch11lev1sec1.html (1 von 3) [13.11.2007 16:23:49]

Section 11.1. What Are Functions?

Also, like most other languages, you may return only one value/object from a function in Python. One
difference is that in returning a container type, it will seem as if you can actually return more than a
single object. In other words, you cannot leave the grocery store with multiple items, but you can throw
them all in a single shopping bag, which you walk out of the store with, perfectly legal.

def foo():
 return ['xyz', 1000000, -98.6]

def bar():
 return 'abc', [42, 'python'], "Guido"

The foo() function returns a list, and the bar() function returns a tuple. Because of the tuple's syntax of
not requiring the enclosing parentheses, it creates the perfect illusion of returning multiple items. If we
were to properly enclose the tuple items, the definition of bar() would look like this:

def bar():
 return ('abc', [4-2j, 'python'], "Guido")

As far as return values are concerned, tuples can be saved in a number of ways. The following three
ways of saving the return values are equivalent:

>>> aTuple = bar()
>>> x, y, z = bar()
>>> (a, b, c) = bar()
>>>
>>> aTuple
('abc', [(4-2j), 'python'], 'Guido')
>>> x, y, z
('abc', [(4-2j), 'python'], 'Guido')
>>> (a, b, c)
('abc', [(4-2j), 'python'], 'Guido')

In the assignments for x, y, z, and a, b, c, each variable will receive its corresponding return value in the
order the values are returned. The aTuple assignment takes the entire implied tuple returned from the
function. Recall that a tuple can be "unpacked" into individual variables or not at all and its reference
assigned directly to a single variable. (Refer back to Section 6.18.3 for a review.)

In short, when no items are explicitly returned or if None is returned, then Python returns None. If the
function returns exactly one object, then that is the object that Python returns and the type of that
object stays the same. If the function returns multiple objects, Python gathers them all together and
returns them in a tuple. Yes, we claim that Python is more flexible than languages like C where only one
return value is allowed, but in all honesty, Python follows the same tradition. The programmer is just
given the impression that he or she can return more than one object. Table 11.1 summarizes the
number of items "returned" from a function, and the object that Python actually returns.

Table 11.1. Return Values and Types

file:///D|/1/0132269937/ch11lev1sec1.html (2 von 3) [13.11.2007 16:23:49]

Section 11.1. What Are Functions?

Stated Number of Objects to Return Type of Object That Python Returns

0 None

1 object

>1 tuple

Many languages that support functions maintain the notion that a function's type is the type of its return
value. In Python, no direct type correlation can be made since Python is dynamically typed and functions
can return values of different types. Because overloading is not a feature, the programmer can use the
type() built-in function as a proxy for multiple declarations with different signatures (multiple prototypes
of the same overloaded function that differ based on its arguments).

file:///D|/1/0132269937/ch11lev1sec1.html (3 von 3) [13.11.2007 16:23:49]

Section 11.2. Calling Functions

11.2. Calling Functions

11.2.1. Function Operator

Functions are called using the same pair of parentheses that you are used to. In fact, some consider
(()) to be a two-character operator, the function operator. As you are probably aware, any input
parameters or arguments must be placed between these calling parentheses. Parentheses are also used
as part of function declarations to define those arguments. Although we have yet to formally study
classes and object-oriented programming, you will discover that the function operator is also used in
Python for class instantiation.

11.2.2. Keyword Arguments

The concept of keyword arguments applies only to function invocation. The idea here is for the caller to
identify the arguments by parameter name in a function call. This specification allows for arguments to
be missing or out-of-order because the interpreter is able to use the provided keywords to match values
to parameters.

For a simple example, imagine a function foo(), which has the following pseudocode definition:

 def foo(x):
 foo_suite # presumably does some processing with 'x'

Standard calls to foo(): foo(42) foo('bar') foo(y)
Keyword calls to foo(): foo(x=42) foo(x='bar') foo(x=y)

For a more realistic example, let us assume you have a function called net_conn() and you know that it
takes two parameters, say, host and port:

def net_conn(host, port):
 net_conn_suite

Naturally, we can call the function, giving the proper arguments in the correct positional order in which
they were declared:

net_conn('kappa', 8080)

The host parameter gets the string 'kappa' and port gets integer 8080. Keyword arguments allow out-of-
order parameters, but you must provide the name of the parameter as a "keyword" to have your
arguments match up to their corresponding argument names, as in the following:

net_conn(port=8080, host='chino')

file:///D|/1/0132269937/ch11lev1sec2.html (1 von 5) [13.11.2007 16:23:50]

file:///D|/1/0132269937/14051536.html

Section 11.2. Calling Functions

Keyword arguments may also be used when arguments are allowed to be "missing." These are related
to functions that have default arguments, which we will introduce in the next section.

11.2.3. Default Arguments

Default arguments are those that are declared with default values. Parameters that are not passed on a
function call are thus allowed and are assigned the default value. We will cover default arguments more
formally in Section 11.5.2.

11.2.4. Grouped Arguments

Python also allows the programmer to execute a function without explicitly specifying individual
arguments in the call as long as you have grouped the arguments in either a tuple (non-keyword
arguments) or a dictionary (keyword arguments), both of which we will explore in this chapter.
Basically, you can put all the arguments in either a tuple or a dictionary (or both), and just call a
function with those buckets of arguments and not have to explicitly put them in the function call:

func(*tuple_grp_nonkw_args, **dict_grp_kw_args)

The tuple_grp_nonkw_args are the group of non-keyword arguments as a tuple, and the
dict_grp_kw_args are a dictionary of keyword arguments. As we already mentioned, we will cover all of
these in this chapter, but just be aware of this feature that allows you to stick arguments in tuples and/
or dictionaries and be able to call functions without explicitly stating each one by itself in the function
call.

In fact, you can give formal arguments, too! These include the standard positional parameters as well as
keyword argument, so the full syntax allowed in Python for making a function call is:

func(positional_args, keyword_args,
*tuple_grp_nonkw_args, **dict_grp_kw_args)

All arguments in this syntax are optionaleverything is dependent on the individual function call as far as
which parameters to pass to the function. This syntax has effectively deprecated the apply() built-in
function. (Prior to Python 1.6, such argument objects could only be passed to apply() with the function
object for invocation.)

Example

In our math game in Example 11.1 (easyMath.py), we will use the current function calling convention to
generate a two-item argument list to send to the appropriate arithmetic function. (We will also show
where apply() would have come in if it had been used.)

Example 11.1. Arithmetic Game (easyMath.py)

file:///D|/1/0132269937/ch11lev1sec2.html (2 von 5) [13.11.2007 16:23:50]

Section 11.2. Calling Functions

Randomly chooses numbers and an arithmetic function, displays the question, and verifies
the results. Shows answer after three wrong tries and does not continue until the user
enters the correct answer.

1 #!/usr/bin/env python
2
3 from operator import add, sub
4 from random import randint, choice
5
6 ops = {'+': add, '-': sub}
7 MAXTRIES = 2
8
9 def doprob():
10 op = choice('+-')
11 nums = [randint(1,10) for i in range(2)]
12 nums.sort(reverse=True)
13 ans = ops[op](*nums)
14 pr = '%d %s %d = ' % (nums[0], op, nums[1])
15 oops = 0
16 while True:
17 try:
18 if int(raw_input(pr)) == ans:
19 print 'correct'
20 break
21 if oops == MAXTRIES:
22 print 'answer\n%s%d'%(pr, ans)
23 else:
24 print 'incorrect... try again'
25 oops += 1
26 except (KeyboardInterrupt, \
27 EOFError, ValueError):
28 print 'invalid input... try again'
29
30 def main():
31 while True:
32 doprob()
33 try:
34 opt = raw_input('Again? [y]').lower()
35 if opt and opt[0] == 'n':
36 break
37 except (KeyboardInterrupt, EOFError):
38 break
39
40 if __name__ == '__main__':
41 main()

The easyMath.py application is basically an arithmetic math quiz game for children where an arithmetic
operationaddition or subtractionis randomly chosen. We use the functional equivalents of these
operators, add() and sub(), both found in the operator module. We then generate the list of arguments
(two, since these are binary operators/ operations). Then random numbers are chosen as the operands.
Since we do not want to support negative numbers in this more elementary edition of this application,
we sort our list of two numbers in largest-to-smallest order, then call the corresponding function with
this argument list and the randomly chosen arithmetic operator to obtain the correct solution to the
posed problem.

file:///D|/1/0132269937/ch11lev1sec2.html (3 von 5) [13.11.2007 16:23:50]

Section 11.2. Calling Functions

Line-by-Line Explanation

Lines 14

Our code begins with the usual Unix startup line followed by various imports of the functions that we will
be using from the operator and random modules.

Lines 67

The global variables we use in this application are a set of operations and their corresponding functions,
and a value indicating how many times (three: 0, 1, 2) we allow the user to enter an incorrect answer
before we reveal the solution. The function dictionary uses the operator's symbol to index into the
dictionary, pulling out the appropriate arithmetic function.

Lines 928

The doprob() function is the core engine of the application. It randomly picks an operation and
generates the two operands, sorting them from largest-to-smallest order in order to avoid negative
numbers for subtraction problems. It then invokes the math function with the values, calculating the
correct solution. The user is then prompted with the equation and given three opportunities to enter the
correct answer.

Line 10 uses the random.choice() function. Its job is to take a sequencea string of operation symbols in
our caseand randomly choose one item and return it.

Line 11 uses a list comprehension to randomly choose two numbers for our exercise. This example is
simple enough such that we could have just called randint() twice to get our operands, i.e., nums =
[randint (1,10), randint(1,10)], but we wanted to use a list comprehension so that you could see
another example of its use as well as in case we wanted to upgrade this problem to take on more than
just two numbers, similar to the reason why instead of cutting and pasting the same piece of code, we
put it into a for loop.

Line 12 will only work in Python 2.4 and newer because that is when the reverse flag was added to the
list.sort() method (as well as the new sorted() built-in function). If you are using an earlier Python
version, you need to either:

● Add an inverse comparison function to get a reverse sort, i.e., lambda x,y: cmp(y, x), or
● Call nums.sort() followed by nums.reverse()

Don't be afraid of lambda if you have not seen it before. We will cover it in this chapter, but for now, you
can think of it as a one-line anonymous function.

Line 13 is where apply() would have been used if you are using Python before 1.6. This call to the
appropriate operation function would have been coded as apply(ops[op], nums) instead of ops[op]
(*nums).

file:///D|/1/0132269937/ch11lev1sec2.html (4 von 5) [13.11.2007 16:23:50]

Section 11.2. Calling Functions

Lines 16-28 represent the controlling loop handling valid and invalid user input. The while loop is
"infinite," running until either the correct answer is given or the number of allowed attempts is
exhausted, three in our case. It allows the program to accept erroneous input such as non-numbers, or
various keyboard control characters. Once the user exceeds the maximum number of tries, the answer
is presented, and the user is "forced" to enter the correct value, not proceeding until that has been done.

Lines 3041

The main driver of the application is main(), called from the top level if the script is invoked directly. If
imported, the importing function either manages the execution by calling doprob(), or calls main() for
program control. main() simply calls doprob() to engage the user in the main functionality of the script
and prompts the user to quit or to try another problem.

Since the values and operators are chosen randomly, each execution of easyMath.py should be different.
Here is what we got today (oh, and your answers may vary as well!):

$ easyMath.py
7 - 2 = 5
correct
Again? [y]
7 * 6 = 42
correct
Again? [y]
7 * 3 = 20
incorrect... try again
7 * 3 = 22
incorrect... try again
7 * 3 = 23
sorry... the answer is
7 * 3 = 21
7 * 3 = 21
correct
Again? [y]
7 - 5 = 2
correct
Again? [y] n

file:///D|/1/0132269937/ch11lev1sec2.html (5 von 5) [13.11.2007 16:23:50]

file:///D|/1/0132269937/14051536.html

Section 11.3. Creating Functions

11.3. Creating Functions

11.3.1. def Statement

Functions are created using the def statement, with a syntax like the following:

def function_name(arguments):
 "function_documentation_string"
 function_body_suite

The header line consists of the def keyword, the function name, and a set of arguments (if any). The
remainder of the def clause consists of an optional but highly recommended documentation string and
the required function body suite. We have seen many function declarations throughout this text, and
here is another:

def helloSomeone(who):
 'returns a salutory string customized with the input'
 return "Hello " + str(who)

11.3.2. Declaration versus Definition

Some programming languages differentiate between function declarations and function definitions. A
function declaration consists of providing the parser with the function name, and the names (and
traditionally the types) of its arguments, without necessarily giving any lines of code for the function,
which is usually referred to as the function definition.

In languages where there is a distinction, it is usually because the function definition may belong in a
physically different location in the code from the function declaration. Python does not make a
distinction between the two, as a function clause is made up of a declarative header line immediately
followed by its defining suite.

11.3.3. Forward References

Like some other high-level languages, Python does not permit you to reference or call a function before
it has been declared. We can try a few examples to illustrate this:

def foo():
 print 'in foo()'
 bar()

If we were to call foo() here, it would fail because bar() has not been declared yet:

>>> foo()
in foo()
Traceback (innermost last):
 File "<stdin>", line 1, in ?

file:///D|/1/0132269937/ch11lev1sec3.html (1 von 8) [13.11.2007 16:23:52]

Section 11.3. Creating Functions

 File "<stdin>", line 3, in foo
NameError: bar

We will now define bar(), placing its declaration before foo() 's declaration:

def bar():
 print 'in bar()'

def foo():
 print 'in foo()'
 bar()

Now we can safely call foo() with no problems:

>>> foo()
in foo()
in bar()

In fact, we can even declare foo() before bar():

def foo():
 print 'in foo()'
 bar()

def bar():
 print 'in bar()'

Amazingly enough, this code still works fine with no forward referencing problems:

>>> foo()
in foo()
in bar()

This piece of code is fine because even though a call to bar() (from foo()) appears before bar() 's
definition, foo() itself is not called before bar() is declared. In other words, we declared foo(), then bar
(), and then called foo(), but by that time, bar() existed already, so the call succeeds.

Notice that the output of foo() succeeded before the error came about. NameError is the exception that
is always raised when any uninitialized identifiers are accessed.

11.3.4. Function Attributes

We will briefly discuss namespaces later on in this chapter, especially their relationship to variable
scope. There will be a more in-depth treatment of namespaces in the next chapter; however, here we
want to point out a basic feature of Python namespaces.

You get a free one with every Python module, class, and function. You can have a variable named x in

file:///D|/1/0132269937/ch11lev1sec3.html (2 von 8) [13.11.2007 16:23:52]

Section 11.3. Creating Functions

modules foo and bar, but can use them in your current application upon importing both modules. So
even though the same variable name is used in both modules, you are safe because the dotted attribute
notation implies a separate namespace for both, i.e., there is no naming conflict in this snippet of code:

import foo, bar
print foo.x + bar.x

Function attributes are another area of Python to use the dotted-attribute notation and have a
namespace. (More on namespaces later on in this chapter as well as Chapter 12 on Python modules.)

def foo():
 'foo() -- properly created doc string'

def bar():
 pass

bar.__doc__ = 'Oops, forgot the doc str above'
bar.version = 0.1

In foo() above, we create our documentation string as normal, e.g., the first unassigned string after the
function declaration. When declaring bar(), we left everything out and just used the dotted-attribute
notation to add its doc string as well as another attribute. We can then access the attributes freely.
Below is an example with the interactive interpreter. (As you may already be aware, using the built-in
function help() gives more of a pretty-printing format than just using the vanilla print of the __doc__
attribute, but you can use either one you wish.)

>>> help(foo)
Help on function foo in module __main__:

foo()
 foo() -- properly created doc string
>>> print bar.version

0.1

>>> print foo.__doc__
foo() -- properly created doc string
>>> print bar.__doc__
Oops, forgot the doc str above

Notice how we can define the documentation string outside of the function declaration. Yet we can still
access it at runtime just like normal. One thing that you cannot do, however, is get access to the
attributes in the function declaration. In other words, there is no such thing as a "self" inside a function
declaration so that you can make an assignment like __dict__['version'] = 0.1. The reason for this is
because the function object has not even been created yet, but afterward you have the function object
and can add to its dictionary in the way we described above ... another free namespace!

file:///D|/1/0132269937/ch11lev1sec3.html (3 von 8) [13.11.2007 16:23:52]

Section 11.3. Creating Functions

Function attributes were added to Python in 2.1, and you can read more about them in PEP 232.

11.3.5. Inner or Nested Functions

It is perfectly legitimate to create function (object)s inside other functions. That is the definition of an
inner or nested function. Because Python now supports statically nested scoping (introduced in 2.1 but
standard as of 2.2), inner functions are actually useful now. It made no sense for older versions of
Python, which only supported the global and one local scope. So how does one create a nested function?

The (obvious) way to create an inner function is to define a function from within an outer function's
definition (using the def keyword), as in:

def foo():
 def bar():
 print 'bar() called'

 print 'foo() called'
 bar()

foo()
bar()

If we stick this code in a module, say inner.py, and run it, we get the following output:

foo() called
bar() called
Traceback (most recent call last):
 File "inner.py", line 11, in ?
 bar()
NameError: name 'bar' is not defined

One interesting aspect of inner functions is that they are wholly contained inside the outer function's
scope (the places where you can access an object; more on scope later on in this chapter). If there are
no outside references to bar(), it cannot be called from anywhere else except inside the outer function,
hence the reason for the exception you see at the end of execution in the above code snippet.

Another way of creating a function object while inside a(nother) function is by using the lambda
statement. We will cover this later on in Section 11.7.1.

Inner functions turn into something special called closures if the definition of an inner function contains
a reference to an object defined in an outer function. (It can even be beyond the immediately enclosing
outer function too.) We will learn more about closures coming up in Section 11.8.4. In the next section,
we will introduce decorators, but the example application also includes a preview of a closure.

11.3.6. *Function (and Method) Decorators

file:///D|/1/0132269937/ch11lev1sec3.html (4 von 8) [13.11.2007 16:23:52]

Section 11.3. Creating Functions

The main motivation behind decorators came from Python object-oriented programming (OOP).
Decorators are just "overlays" on top of function calls. These overlays are just additional calls that are
applied when a function or method is declared.

The syntax for decorators uses a leading "at-sign" (@) followed by the decorator function name and
optional arguments. The line following the decorator declaration is the function being decorated, along
with its optional arguments. It looks something like this:

@decorator(dec_opt_args)
def func2Bdecorated(func_opt_args):
 :

So how (and why) did this syntax come into being? What was the inspiration behind decorators? Well,
when static and class methods were added to Python in 2.2, the idiom required to realize them was
clumsy, confusing, and makes code less readable, i.e.,

class MyClass(object):
 def staticFoo():
 :
 staticFoo = staticmethod(staticFoo)
 :

(It was clearly stated for that release that this was not the final syntax anyway.) Within this class
declaration, we define a method named staticFoo(). Now since this is intended to become a static
method, we leave out the self argument, which is required for standard class methods, as you will see
in Chapter 12. The staticmethod() built-in function is then used to "convert" the function into a static
method, but note how "sloppy" it looks with def staticFoo() followed by staticFoo = staticmethod
(staticFoo). With decorators, you can now replace that piece of code with the following:

class MyClass(object):
 @staticmethod
 def staticFoo():
 :

Furthermore, decorators can be "stacked" like function calls, so here is a more general example with
multiple decorators:

@deco2
@deco1
def func(arg1, arg2, ...): pass

This is equivalent to creating a composite function:

def func(arg1, arg2, ...): pass

file:///D|/1/0132269937/ch11lev1sec3.html (5 von 8) [13.11.2007 16:23:52]

Section 11.3. Creating Functions

func = deco2(deco1(func))

Function composition in math is defined like this: (g · f)(x) = g(f(x)). For consistency in Python:

@g
@f
def foo():
 :

... is the same as foo = g(f(foo)).

Decorators With and Without Arguments

Yes the syntax is slightly mind-bending at first, but once you are comfortable with it, the only twist on
top of that is when you use decorators with arguments. Without arguments, a decorator like:

@deco
def foo(): pass

... is pretty straightforward:

foo = deco(foo)

Function composition without arguments (as seen above) follows. However, a decorator decomaker()
with arguments:

@decomaker(deco_args)
def foo(): pass

... needs to itself return a decorator that takes the function as an argument. In other words, decomaker()
does something with deco_args and returns a function object that is a decorator that takes foo as its
argument. To put it simply:

foo = decomaker(deco_args)(foo)

Here is an example featuring multiple decorators in which one takes an argument:

@deco1(deco_arg)
@deco2
def func(): pass

This is equivalent to:

file:///D|/1/0132269937/ch11lev1sec3.html (6 von 8) [13.11.2007 16:23:52]

Section 11.3. Creating Functions

func = deco1(deco_arg)(deco2(func))

We hope that if you understand these examples here, things will become much clearer. We present a
more useful yet still simple script below where the decorator does not take an argument. Example 11.8
is an intermediate script with a decorator that does take an argument.

So What Are Decorators?

We know that decorators are really functions now. We also know that they take function objects. But
what will they do with those functions? Generally, when you wrap a function, you eventually call it. The
nice thing is that we can do that whenever it is appropriate for our wrapper. We can run some
preliminary code before executing the function or some cleanup code afterward, like postmortem
analysis. It is up to the programmer. So when you see a decorator function, be prepared to find some
code in it, and somewhere embedded within its definition, a call or at least some reference, to the target
function.

This feature essentially introduces the concept that Java developers call AOP, or aspect-oriented
programming. You can place code in your decorators for concerns that cut across your application. For
example, you can use decorators to:

● Introduce logging
● Insert timing logic (aka instrumentation) for monitoring performance
● Add transactional capabilities to functions

The ability to support decorators is very important for creating enterprise applications in Python. You will
see that the bullet points above correspond quite closely to our example below as well as Example 11.2.

Decorator Example

We have an extremely simple example below, but it should get you started in really understanding how
decorators work. This example "decorates" a (useless) function by displaying the time that it was
executed. It is a "timestamp decoration" similar to the timestamp server that we discuss in Chapter 16.

Example 11.2. Example of Using a Function Decorator (deco.py)

This demonstration of a decorator (and closures) shows that it is merely a "wrapper" with
which to "decorate" (or overlay) a function, returning the altered function object and
reassigning it to the original identifier, forever losing access to the original function object.

1 #!/usr/bin/env python
2
3 from time import ctime, sleep
4
5 def tsfunc(func):
6 def wrappedFunc():
7 print '[%s] %s() called' % (
8 ctime(), func.__name__)
9 return func()
10 return wrappedFunc
11
12 @tsfunc
13 def foo():

file:///D|/1/0132269937/ch11lev1sec3.html (7 von 8) [13.11.2007 16:23:52]

Section 11.3. Creating Functions

14 pass
15
16 foo()
17 sleep(4)
18
19 for i in range(2):
20 sleep(1)
21 foo()

Running this script, we get the following output:

[Sun Mar 19 22:50:28 2006] foo() called
[Sun Mar 19 22:50:33 2006] foo() called
[Sun Mar 19 22:50:34 2006] foo() called

Line-by-Line Explanation

Lines 510

Following the startup and module import lines, the tsfunc() function is a decorator that displays a
timestamp (to standard output) of when a function is called. It defines an inner function wrappedFunc(),
which adds the timestamp and calls the target function. The return value of the decorator is the
"wrapped" function.

Lines 1221

We define function foo() with an empty body (which does nothing) and decorate it with tsfunc(). We
then call it once as a proof-of-concept, wait four seconds, then call it twice more, pausing one second
before each invocation.

As a result, after it has been called once, the second time it is called should be five (4 + 1) seconds after
the first call, and the third time around should only be one second after that. This corresponds perfectly
to the program output seen above.

You can read more about decorators in the Python Language Reference, the "What's New in Python 2.4"
document, and the defining PEP 318.

file:///D|/1/0132269937/ch11lev1sec3.html (8 von 8) [13.11.2007 16:23:52]

Section 11.4. Passing Functions

11.4. Passing Functions

The concept of function pointers is an advanced topic when learning a language such as C, but not
Python where functions are like any other object. They can be referenced (accessed or aliased to other
variables), passed as arguments to functions, be elements of container objects such as lists and
dictionaries, etc. The one unique characteristic of functions which may set them apart from other objects
is that they are callable, i.e., they can be invoked via the function operator. (There are other callables in
Python. For more information, see Chapter 14.)

In the description above, we noted that functions can be aliases to other variables. Because all objects
are passed by reference, functions are no different. When assigning to another variable, you are
assigning the reference to the same object; and if that object is a function, then all aliases to that same
object are callable:

>>> def foo():
... print 'in foo()'
...
>>> bar = foo
>>> bar()
in foo()

When we assigned foo to bar, we are assigning the same function object to bar, thus we can invoke bar
() in the same way we call foo(). Be sure you understand the difference between "foo" (reference of the
function object) and "foo()" (invocation of the function object).

Taking our reference example a bit further, we can even pass functions in as arguments to other
functions for invocation:

>>> def bar(argfunc):
... argfunc()
...
>>> bar(foo)
in foo()

Note that it is the function object foo that is being passed to bar(). bar() is the function that actually
calls foo() (which has been aliased to the local variable argfunc in the same way that we assigned foo to
bar in the previous example). Now let us examine a more realistic example, numconv.py, whose code is
given in Example 11.3.

Example 11.3. Passing and Calling (Built-in) Functions (numConv.py)

file:///D|/1/0132269937/ch11lev1sec4.html (1 von 2) [13.11.2007 16:23:52]

file:///D|/1/0132269937/14051536.html

Section 11.4. Passing Functions

A more realistic example of passing functions as arguments and invoking them from within
the function. This script simply converts a sequence of numbers to the same type using the
conversion function that is passed in. In particular, the test() function passes in a built-in
function int(), long(), or float() to perform the conversion.

1 #!/usr/bin/env python
2
3 def convert(func, seq):
4 'conv. sequence of numbers to same type'
5 return [func(eachNum) for eachNum in seq]
6
7 myseq = (123, 45.67, -6.2e8, 999999999L)
8 print convert(int, myseq)
9 print convert(long, myseq)
10 print convert(float, myseq)

If we were to run this program, we would get the following output:

$ numconv.py
[123, 45, -620000000, 999999999]
[123L, 45L, -620000000L, 999999999L]
[123.0, 45.67, -620000000.0, 999999999.0]

file:///D|/1/0132269937/ch11lev1sec4.html (2 von 2) [13.11.2007 16:23:52]

file:///D|/1/0132269937/14051536.html

Section 11.5. Formal Arguments

11.5. Formal Arguments

A Python function's set of formal arguments consists of all parameters passed to the function on
invocation for which there is an exact correspondence to those of the argument list in the function
declaration. These arguments include all required arguments (passed to the function in correct positional
order), keyword arguments (passed in or out of order, but which have keywords present to match their
values to their proper positions in the argument list), and all arguments that have default values that
may or may not be part of the function call. For all of these cases, a name is created for that value in
the (newly created) local namespace and it can be accessed as soon as the function begins execution.

11.5.1. Positional Arguments

These are the standard vanilla parameters that we are all familiar with. Positional arguments must be
passed in the exact order in which they are defined for the functions that are called. Also, without the
presence of any default arguments (see next section), the exact number of arguments passed to a
function (call) must be exactly the number declared:

>>> def foo(who): # defined for only 1 argument
... print 'Hello', who
...
>>> foo() # 0 arguments... BAD
Traceback (innermost last):
 File "<stdin>", line 1, in ?
TypeError: not enough arguments; expected 1, got 0
>>>
>>> foo('World!') # 1 argument... WORKS
Hello World!
>>>
>>> foo('Mr.', 'World!')# 2 arguments... BAD
Traceback (innermost last):
 File "<stdin>", line 1, in ?
TypeError: too many arguments; expected 1, got 2

The foo() function has one positional argument. That means that any call to foo() must have exactly
one argument, no more, no less. You will become extremely familiar with TypeError otherwise. Note how
informative the Python errors are. As a general rule, all positional arguments for a function must be
provided whenever you call it. They may be passed into the function call in position or out of position,
granted that a keyword argument is provided to match it to its proper position in the argument list
(review Section 11.2.2). Default arguments, however, do not have to be provided because of their
nature.

11.5.2. Default Arguments

Default arguments are parameters that are defined to have a default value if one is not provided in the
function call for that argument. Such definitions are given in the function declaration header line. C++
supports default arguments too and has the same syntax as Python: the argument name is followed by
an "assignment" of its default value. This assignment is merely a syntactical way of indicating that this
assignment will occur if no value is passed in for that argument.

file:///D|/1/0132269937/ch11lev1sec5.html (1 von 5) [13.11.2007 16:23:53]

file:///D|/1/0132269937/14051536.html

Section 11.5. Formal Arguments

The syntax for declaring variables with default values in Python is such that all positional arguments
must come before any default arguments:

def func(posargs, defarg1=dval1, defarg2=dval2,...):
 "function_documentation_string"
 function_body_suite

Each default argument is followed by an assignment statement of its default value. If no value is given
during a function call, then this assignment is realized.

Why Default Arguments?

Default arguments add a wonderful level of robustness to applications because they allow for some
flexibility that is not offered by the standard positional parameters. That gift comes in the form of
simplicity for the applications programmer. Life is not as complicated when there are a fewer number of
parameters that one needs to worry about. This is especially helpful when one is new to an API interface
and does not have enough knowledge to provide more targeted values as arguments.

The concept of using default arguments is analogous to the process of installing software on your
computer. How often does one choose the "default install" over the "custom install?" I would say
probably almost always. It is a matter of convenience and know-how, not to mention a time-saver. And
if you are one of those gurus who always chooses the custom install, please keep in mind that you are
one of the minority.

Another advantage goes to the developers, who are given more control over the software they create for
their consumers. When providing default values, they can selectively choose the "best" default value
possible, thereby hoping to give the user some freedom of not having to make that choice. Over time,
as the users becomes more familiar with the system or API, they may eventually be able to provide their
own parameter values, no longer requiring the use of "training wheels."

Here is one example where a default argument comes in handy and has some usefulness in the growing
electronic commerce industry:

>>> def taxMe(cost, rate=0.0825):
... return cost + (cost * rate)
...
>>> taxMe(100)
108.25
>>>
>>> taxMe(100, 0.05)
105.0

In the example above, the taxMe() function takes the cost of an item and produces a total sale amount
with sales tax added. The cost is a required parameter while the tax rate is a default argument (in our
example, 8.25%). Perhaps you are an online retail merchant, with most of your customers coming from
the same state or county as your business. Consumers from locations with different tax rates would like
to see their purchase totals with their corresponding sales tax rates. To override the default, all you
have to do is provide your argument value, such as the case with taxMe(100, 0.05) in the above
example. By specifying a rate of 5%, you provided an argument as the rate parameter, thereby
overriding or bypassing its default value of 0.0825.

All required parameters must be placed before any default arguments. Why? Simply because they are

file:///D|/1/0132269937/ch11lev1sec5.html (2 von 5) [13.11.2007 16:23:53]

Section 11.5. Formal Arguments

mandatory, whereas default arguments are not. Syntactically, it would be impossible for the interpreter
to decide which values match which arguments if mixed modes were allowed. A SyntaxError is raised if
the arguments are not given in the correct order:

>>> def taxMe2(rate=0.0825, cost):
... return cost * (1.0 + rate)
...
SyntaxError: non-default argument follows default argument

Let us take a look at keyword arguments again, using our old friend net_conn().

def net_conn(host, port):
 net_conn_suite

As you will recall, this is where you can provide your arguments out of order (positionally) if you name
the arguments. With the above declarations, we can make the following (regular) positional or keyword
argument calls:

● net_conn('kappa', 8000)
● net_conn(port=8080, host='chino')

However, if we bring default arguments into the equation, things change, although the above calls are
still valid. Let us modify the declaration of net_conn() such that the port parameter has a default value
of 80 and add another argument named stype (for server type) with a default value of 'tcp':

def net_conn(host, port=80, stype='tcp'):
 net_conn_suite

We have just expanded the number of ways we can call net_conn(). The following are all valid calls to
net_conn():

• net_conn('phaze', 8000, 'udp') # no def args used
• net_conn('kappa') # both def args used
• net_conn('chino', stype='icmp') # use port def arg
• net_conn(stype='udp', host='solo') # use port def arg
• net_conn('deli', 8080) # use stype def arg
• net_conn(port=81, host='chino') # use stype def arg

What is the one constant we see in all of the above examples? The sole required parameter, host. There
is no default value for host, thus it is expected in all calls to net_conn().

Keyword arguments prove useful for providing for out-of-order positional arguments, but, coupled with
default arguments, they can also be used to "skip over" missing arguments as well, as evidenced from
our examples above.

Default Function Object Argument Example

We will now present yet another example of where a default argument may prove beneficial. The

file:///D|/1/0132269937/ch11lev1sec5.html (3 von 5) [13.11.2007 16:23:53]

Section 11.5. Formal Arguments

grabWeb.py script, given in Example 11.4, is a simple script whose main purpose is to grab a Web page
from the Internet and temporarily store it to a local file for analysis. This type of application can be used
to test the integrity of a Web site's pages or to monitor the load on a server (by measuring
connectability or download speed). The process() function can be anything we want, presenting an
infinite number of uses. The one we chose for this exercise displays the first and last non-blank lines of
the retrieved Web page. Although this particular example may not prove too useful in the real world,
you can imagine what kinds of applications you can build on top of this code.

Example 11.4. Grabbing Web Pages (grabWeb.py)

This script downloads a Web page (defaults to local www server) and displays the first and
last non-blank lines of the HTML file. Flexibility is added due to both default arguments of
the download() function, which will allow overriding with different URLs or specification of a
different processing function.

1 #!/usr/bin/env python
2
3 from urllib import urlretrieve
4
5 def firstNonBlank(lines):
6 for eachLine in lines:
7 if not eachLine.strip():
8 continue
9 else:
10 return eachLine
11
12 def firstLast(webpage):
13 f = open(webpage)
14 lines = f.readlines()
15 f.close()
16 print firstNonBlank(lines),
17 lines.reverse()
18 print firstNonBlank(lines),
19
20 def download(url='http://www',
21 process=firstLast):
22 try:
23 retval = urlretrieve(url)[0]
24 except IOError:
25 retval = None
26 if retval: # do some processing
27 process(retval)
28
29 if __name__ == '__main__':
30 download()

Running this script in our environment gives the following output, although your mileage will definitely
vary since you will be viewing a completely different Web page altogether.

$ grabWeb.py
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
</HTML>

file:///D|/1/0132269937/ch11lev1sec5.html (4 von 5) [13.11.2007 16:23:53]

Section 11.5. Formal Arguments

file:///D|/1/0132269937/ch11lev1sec5.html (5 von 5) [13.11.2007 16:23:53]

file:///D|/1/0132269937/14051536.html

Section 11.6. Variable-Length Arguments

11.6. Variable-Length Arguments

There may be situations where your function is required to process an unknown number of arguments.
These are called variable-length argument lists. Variable-length arguments are not named explicitly in
function declarations because the number of arguments is unknown before runtime (and even during
execution, the number of arguments may be different on successive calls), an obvious difference from
formal arguments (positional and default), which are named in function declarations. Python supports
variable-length arguments in two ways because function calls provide for both keyword and non-
keyword argument types.

In Section 11.2.4, we looked at how you can use the * and ** characters in function calls to specify
grouped sets of arguments, non-keyword and keyword arguments. In this section, we will see the same
symbols again, but this time in function declarations, to signify the receipt of such arguments when
functions are called. This syntax allows functions to accept more than just the declared formal
arguments as defined in the function declaration.

11.6.1. Non-keyword Variable Arguments (Tuple)

When a function is invoked, all formal (required and default) arguments are assigned to their
corresponding local variables as given in the function declaration. The remaining non-keyword variable
arguments are inserted in order into a tuple for access. Perhaps you are familiar with "varargs" in C (i.
e., va_list, va_arg, and the ellipsis [...]). Python provides equivalent supportiterating over the tuple
elements is the same as using va_arg in C. For those who are not familiar with C or varargs, they just
represent the syntax for accepting a variable (not fixed) number of arguments passed in a function call.

The variable-length argument tuple must follow all positional and default parameters, and the general
syntax for functions with tuple or non-keyword variable arguments is as follows:

def function_name([formal_args,] *vargs_tuple):
 "function_documentation_string"
 function_body_suite

The asterisk operator (*) is placed in front of the variable that will hold all remaining arguments once
all the formal parameters if have been exhausted. The tuple is empty if there are no additional
arguments given.

As we saw earlier, a TypeError exception is generated whenever an incorrect number of arguments is
given in the function invocation. By adding a variable argument list variable at the end, we can handle
the situation when more than enough arguments are passed to the function because all the extra (non-
keyword) ones will be added to the variable argument tuple. (Extra keyword arguments require a
keyword variable argument parameter [see the next section].)

As expected, all formal arguments must precede informal arguments for the same reason that positional
arguments must come before keyword arguments.

def tupleVarArgs(arg1, arg2='defaultB', *theRest):
 'display regular args and non-keyword variable args'

file:///D|/1/0132269937/ch11lev1sec6.html (1 von 6) [13.11.2007 16:23:54]

file:///D|/1/0132269937/14051536.html

Section 11.6. Variable-Length Arguments

 print 'formal arg 1:', arg1
 print 'formal arg 2:', arg1
 for eachXtrArg in theRest:
 print 'another arg:', eachXtrArg

We will now invoke this function to show how variable argument tuples work:

>>> tupleVarArgs('abc')
formal arg 1: abc
formal arg 2: defaultB
>>>
>>> tupleVarArgs(23, 4.56)
formal arg 1: 23
formal arg 2: 4.56
>>>
>>> tupleVarArgs('abc', 123, 'xyz', 456.789)
formal arg 1: abc
formal arg 2: 123
another arg: xyz
another arg: 456.789

11.6.2. Keyword Variable Arguments (Dictionary)

In the case where we have a variable number or extra set of keyword arguments, these are placed into
a dictionary where the "keyworded" argument variable names are the keys, and the arguments are their
corresponding values. Why must it be a dictionary? Because a pair of items is given for every
argumentthe name of the argument and its valueit is a natural fit to use a dictionary to hold these
arguments. Here is the syntax of function definitions that use the variable argument dictionary for extra
keyword arguments:

def function_name([formal_args,][*vargst,] **vargsd):
 function_documentation_string
 function_body_suite

To differentiate keyword variable arguments from non-keyword informal arguments, a double asterisk
(**) is used. The ** is overloaded so as not to be confused with exponentiation. The keyword variable
argument dictionary should be the last parameter of the function definition prepended with the '**'. We
now present an example of how to use such a dictionary:

def dictVarArgs(arg1, arg2='defaultB', **theRest):
 'display 2 regular args and keyword variable args'
 print 'formal arg1:', arg1
 print 'formal arg2:', arg2
 for eachXtrArg in theRest.keys():
 print 'Xtra arg %s: %s' % \
 (eachXtrArg, str(theRest[eachXtrArg]))

Executing this code in the interpreter, we get the following output:

>>> dictVarArgs(1220, 740.0, c='grail')

file:///D|/1/0132269937/ch11lev1sec6.html (2 von 6) [13.11.2007 16:23:54]

Section 11.6. Variable-Length Arguments

formal arg1: 1220
formal arg2: 740.0
Xtra arg c: grail
>>>
>>> dictVarArgs(arg2='tales', c=123, d='poe', arg1='mystery')
formal arg1: mystery
formal arg2: tales
Xtra arg c: 123
Xtra arg d: poe
>>>
>>> dictVarArgs('one', d=10, e='zoo', men=('freud', 'gaudi'))
formal arg1: one
formal arg2: defaultB
Xtra arg men: ('freud', 'gaudi')
Xtra arg d: 10
Xtra arg e: zoo

Both keyword and non-keyword variable arguments may be used in the same function as long as the
keyword dictionary is last and is preceded by the non-keyword tuple, as in the following example:

def newfoo(arg1, arg2, *nkw, **kw):
 display regular args and all variable args'
 print 'arg1 is:', arg1
 print 'arg2 is:', arg2
 for eachNKW in nkw:
 print 'additional non-keyword arg:', eachNKW
 for eachKW in kw.keys():
 print "additional keyword arg '%s': %s" % \
 (eachKW, kw[eachKW])

Calling our function within the interpreter, we get the following output:

>>> newfoo('wolf', 3, 'projects', freud=90, gamble=96)
arg1 is: wolf
arg2 is: 3
additional non-keyword arg: projects
additional keyword arg 'freud': 90
additional keyword arg 'gamble': 96

11.6.3. Calling Functions with Variable Argument Objects

Above in Section 11.2.4, we introduced the use of * and ** to specify sets of arguments in a function
call. Here we will show you more examples of that syntax, with a slight bias toward functions accepting
variable arguments.

We will now use our friend newfoo(), defined in the previous section, to test the new calling syntax. Our
first call to newfoo() will use the old-style method of listing all arguments individually, even the variable
arguments that follow all the formal arguments:

>>> newfoo(10, 20, 30, 40, foo=50, bar=60)
arg1 is: 10
arg2 is: 20

file:///D|/1/0132269937/ch11lev1sec6.html (3 von 6) [13.11.2007 16:23:54]

Section 11.6. Variable-Length Arguments

additional non-keyword arg: 30
additional non-keyword arg: 40
additional keyword arg 'foo': 50
additional keyword arg 'bar': 60

We will now make a similar call; however, instead of listing the variable arguments individually, we will
put the non-keyword arguments in a tuple and the keyword arguments in a dictionary to make the call:

>>> newfoo(2, 4, *(6, 8), **{'foo': 10, 'bar': 12})
arg1 is: 2
arg2 is: 4
additional non-keyword arg: 6
additional non-keyword arg: 8
additional keyword arg 'foo': 10
additional keyword arg 'bar': 12

Finally, we will make another call but build our tuple and dictionary outside of the function invocation:

>>> aTuple = (6, 7, 8)
>>> aDict = {'z': 9}
>>> newfoo(1, 2, 3, x=4, y=5, *aTuple, **aDict)
 arg1 is: 1
arg2 is: 2
additional non-keyword arg: 3
additional non-keyword arg: 6
additional non-keyword arg: 7
additional non-keyword arg: 8
additional keyword arg 'z': 9
additional keyword arg 'x': 4
additional keyword arg 'y': 5

Notice how our tuple and dictionary arguments make only a subset of the final tuple and dictionary
received within the function call. The additional non-keyword value '3' and keyword pairs for 'x' and
'y' were also included in the final argument lists even though they were not part of the '*' and '**'
variable argument parameters.

Prior to 1.6, variable objects could only be passed to apply() with the function object for invocation. This
current calling syntax effectively obsoletes the use of apply(). Below is an example of using these
symbols to call any function object with any type of parameter set.

Functional Programming Example

Another useful application of functional programming comes in terms of debugging or performance
measurement. You are working on functions that need to be fully tested or run through regressions
every night, or that need to be timed over many iterations for potential improvements. All you need to
do is to create a diagnostic function that sets up the test environment, then calls the function in
question. Because this system should be flexible, you want to allow the testee function to be passed in
as an argument. So a pair of such functions, timeit() and testit(), would probably be useful to the
software developer today.

We will now present the source code to one such example of a testit() function (see Example 11.5).

file:///D|/1/0132269937/ch11lev1sec6.html (4 von 6) [13.11.2007 16:23:54]

Section 11.6. Variable-Length Arguments

We will leave a timeit() function as an exercise for the reader (see Exercise 11-12).

This module provides an execution test environment for functions. The testit() function takes a
function and arguments, then invokes that function with the given arguments under the watch of an
exception handler. If the function completes successfully, a true return value packaged with the return
value of the function is sent back to the caller. Any failure causes False to be returned along with the
reason for the exception. (Exception is the root class for all runtime exceptions; review Chapter 10 for
details.)

Example 11.5. Testing Functions (testit.py)

testit() invokes a given function with its arguments, returning TRue packaged with the
return value of the function on success or False with the cause of failure.

1 #!/usr/bin/env python
2
3 def testit(func, *nkwargs, **kwargs):
4
5 try:
6 retval = func(*nkwargs, **kwargs)
7 result = (True, retval)
8 except Exception, diag:
9 result = (False, str(diag))
10 return result
11
12 def test():
13 funcs = (int, long, float)
14 vals = (1234, 12.34, '1234', '12.34')
15
16 for eachFunc in funcs:
17 print '-' * 20
18 for eachVal in vals:
19 retval = testit(eachFunc,
20 eachVal)
21 if retval[0]:
22 print '%s(%s) =' % \
23 (eachFunc.__name__, `eachVal`), retval[1]
24 else:
25 print '%s(%s) = FAILED:' % \
26 (eachFunc.__name__, `eachVal`), retval[1]
27
28 if __name__ == '__main__':
29 test()

The unit tester function test() runs a set of numeric conversion functions on an input set of four
numbers. There are two failure cases in this test set to confirm such functionality. Here is the output of
running the script:

$ testit.py

int(1234) = 1234
int(12.34) = 12

file:///D|/1/0132269937/ch11lev1sec6.html (5 von 6) [13.11.2007 16:23:54]

Section 11.6. Variable-Length Arguments

int('1234') = 1234
int('12.34') = FAILED: invalid literal for int(): 12.34

long(1234) = 1234L
long(12.34) = 12L
long('1234') = 1234L
long('12.34') = FAILED: invalid literal for long(): 12.34

float(1234) = 1234.0
float(12.34) = 12.34
float('1234') = 1234.0
float('12.34') = 12.34

file:///D|/1/0132269937/ch11lev1sec6.html (6 von 6) [13.11.2007 16:23:54]

file:///D|/1/0132269937/14051536.html

Section 11.7. Functional Programming

11.7. Functional Programming

Python is not and will probably not ever claim to be a functional programming language, but it does
support a number of valuable functional programming constructs. There are also some that behave like
functional programming mechanisms but may not be traditionally considered as such. What Python does
provide comes in the form of four built-in functions and lambda expressions.

11.7.1. Anonymous Functions and lambda

Python allows one to create anonymous functions using the lambda keyword. They are "anonymous"
because they are not declared in the standard manner, i.e., using the def statement. (Unless assigned
to a local variable, such objects do not create a name in any namespace either.) However, as functions,
they may also have arguments. An entire lambda "statement" represents an expression, and the body of
that expression must also be given on the same line as the declaration. We now present the syntax for
anonymous functions:

lambda [arg1[, arg2, ... argN]]: expression

Arguments are optional, and if used, are usually part of the expression as well.

Core Note: lambda expression returns callable function object

Calling lambda with an appropriate expression yields a function object
that can be used like any other function. They can be passed to other
functions, aliased with additional references, be members of container
objects, and as callable objects, be invoked (with any arguments, if
necessary). When called, these objects will yield a result equivalent to
the same expression if given the same arguments. They are
indistinguishable from functions that return the evaluation of an
equivalent expression.

Before we look at any examples using lambda, we would like to review single-line statements and then
show the resemblances to lambda expressions.

def true():
 return True

The above function takes no arguments and always returns true. Single line functions in Python may be
written on the same line as the header. Given that, we can rewrite our TRue() function so that it looks
something like the following:

def true(): return True

We will present the named functions in this manner for the duration of this chapter because it helps one

file:///D|/1/0132269937/ch11lev1sec7.html (1 von 14) [13.11.2007 16:23:56]

Section 11.7. Functional Programming

visualize their lambda equivalents. For our TRue() function, the equivalent expression (no arguments,
returns true) using lambda is:

lambda :True

Usage of the named TRue() function is fairly obvious, but not for lambda. Do we just use it as is, or do we
need to assign it somewhere? A lambda function by itself serves no purpose, as we see here:

>>> lambda :True
<function <lambda> at f09ba0>

In the above example, we simply used lambda to create a function (object), but did not save it anywhere
nor did we call it. The reference count for this function object is set to True on creation of the function
object, but because no reference is saved, goes back down to zero and is garbage-collected. To keep the
object around, we can save it into a variable and invoke it any time after. Perhaps now is a good
opportunity:

>>> true = lambda :True
>>> true()
True

Assigning it looks much more useful here. Likewise, we can assign lambda expressions to a data
structure such as a list or tuple where, based on some input criteria, we can choose which function to
execute as well as what the arguments would be. (In the next section, we will show how to use lambda
expressions with functional programming constructs.)

Let us now design a function that takes two numeric or string arguments and returns the sum for
numbers or the concatenated string. We will show the standard function first, followed by its unnamed
equivalent.

def add(x, y): return x + y lambda x, y: x + y

Default and variable arguments are permitted as well, as indicated in the following examples:

def usuallyAdd2(x, y=2): return x+y lambda x, y=2: x+y

def showAllAsTuple(*z): return z lambda *z: z

Seeing is one thing, so we will now try to make you believe by showing how you can try them in the
interpreter:

>>> a = lambda x, y=2: x + y
>>> a(3)
5
>>> a(3,5)
8
>>> a(0)
2

file:///D|/1/0132269937/ch11lev1sec7.html (2 von 14) [13.11.2007 16:23:56]

Section 11.7. Functional Programming

>>> a(0,9)
9
>>>
>>> b = lambda *z: z
>>> b(23, 'zyx')
(23, 'zyx')
>>> b(42)
(42,)

One final word on lambda: Although it appears that lambda is a one-line version of a function, it is not
equivalent to an "inline" statement in C++, whose purpose is bypassing function stack allocation during
invocation for performance reasons. A lambda expression works just like a function, creating a frame
object when called.

11.7.2. Built-in Functions: apply(), filter(), map(), reduce()

In this section, we will look at the apply(), filter(), map(), and reduce() built-in functions as well as
give some examples to show how they can be used. These functions provide the functional programming
features found in Python. A summary of these functions is given in Table 11.2. All take a function object
to somehow invoke.

Table 11.2. Functional Programming Built-in Functions

Built-in Function Description

apply(func[, nkw][, kw])
[a] Calls func with optional arguments, nkw for non-keyword arguments

and kw for keyword arguments; the return value is the return value of
the function call

filter(func, seq)
[b] Invokes Boolean function func iteratively over each element of seq;

returns a sequence for those elements for which func returned true

map(func, seq1[, seq2...])
[b] Applies function func to each element of given sequence(s) and

provides return values in a list; if func is None, func behaves as the
identity function, returning a list consisting of n-tuples for sets of
elements of each sequence

reduce(func, seq[, init]) Applies binary function func to elements of sequence seq, taking a pair
at a time (previous result and next sequence item), continually
applying the current result with the next value to obtain the
succeeding result, finally reducing our sequence to a single return
value; if initial value init given, first compare will be of init and first
sequence element rather than the first two sequence elements

[a] Effectively deprecated in 1.6 to be phased out in future versions of Python.

[b] Partially deprecated by list comprehensions introduced in Python 2.0.

As you may imagine, lambda functions fit nicely into applications using any of these functions because

file:///D|/1/0132269937/ch11lev1sec7.html (3 von 14) [13.11.2007 16:23:56]

Section 11.7. Functional Programming

all of them take a function object with which to execute, and lambda provides a mechanism for creating
functions on the fly.

*apply()

As mentioned before, the calling syntax for functions, which now allow for a tuple of variable arguments
as well as a dictionary of keyword variable arguments, effectively deprecates apply() as of Python 1.6.
The function will be phased out and eventually removed in a future version of Python. We mention it
here for historical purposes as well as for those maintaining code that uses apply().

filter()

The second built-in function we examine in this chapter is filter(). Imagine going to an orchard and
leaving with a bag of apples you picked off the trees. Wouldn't it be nice if you could run the entire bag
through a filter to keep just the good ones? That is the main premise of the filter() function.

Given a sequence of objects and a "filtering" function, run each item of the sequence through the filter,
and keep only the ones that the function returns true for. The filter() function calls the given Boolean
function for each item of the provided sequence. Each item for which filter() returns a non-zero (true)
value is appended to a list. The object that is returned is a "filtered" sequence of the original.

If we were to code filter() in pure Python, it might look something like this:

def filter(bool_func, seq):
 filtered_seq = []
 for eachItem in seq:
 if bool_func(eachItem):
 filtered_seq.append(eachItem)
 return filtered_seq

One way to understand filter() better is by visualizing its behavior. Figure 11-1 attempts to do just
that.

Figure 11-1. How the filter() built-in function works

file:///D|/1/0132269937/ch11lev1sec7.html (4 von 14) [13.11.2007 16:23:56]

Section 11.7. Functional Programming

In Figure 11-1, we observe our original sequence at the top, items seq[0], seq[1], ... seq[N-1] for a
sequence of size N. For each call to bool_func(), i.e., bool_func (seq [0]), bool_func (seq [1]), etc., a
return value of False or true comes back (as per the definition of a Boolean functionensure that indeed
your function does return one or the other). If bool_func() returns TRue for any sequence item, that
element is inserted into the return sequence. When iteration over the entire sequence has been
completed, filter() returns the newly created sequence.

We present below a script that shows one way to use filter() to obtain a short list of random odd
numbers. The script generates a larger set of random numbers first, then filters out all the even
numbers, leaving us with the desired dataset. When we first coded this example, oddnogen.py looked like
the following:

from random import randint

def odd(n):
 return n % 2

allNums = []
for eachNum in range(9):
 allNums.append(randint(1, 99))
print filter(odd, allNums)

This code consists of two functions: odd(), a Boolean function that determined if an integer was odd
(true) or even (false), and main(), the primary driving component. The purpose of main() is to generate
ten random numbers between 1 and 100; then filter() is called to remove all the even numbers.
Finally, the set of odd numbers is displayed, preceded by the size of our filtered list.

Importing and running this module several times, we get the following output:

$ python oddnogen.py
[9, 33, 55, 65]

file:///D|/1/0132269937/ch11lev1sec7.html (5 von 14) [13.11.2007 16:23:56]

Section 11.7. Functional Programming

$ python oddnogen.py
[39, 77, 39, 71, 1]

$ python oddnogen.py
[23, 39, 9, 1, 63, 91]

$ python oddnogen.py
[41, 85, 93, 53, 3]

Refactoring Pass 1

We notice on second glance that odd() is simple enough to be replaced by a lambda expression:

from random import randint

allNums = []
for eachNum in range(9):
 allNums.append(randint(1, 99))
print filter(lambda n: n%2, allNums)

Refactoring Pass 2

We have already mentioned how list comprehensions can be a suitable replacement for filter() so here
it is:

from random import randint

allNums = []
for eachNum in range(9):
 allNums.append(randint(1, 99))
print [n for n in allNums if n%2]

Refactoring Pass 3

We can further simplify our code by integrating another list comprehension to put together our final list.
As you can see below, because of the flexible syntax of list comps, there is no longer a need for
intermediate variables. (To make things fit, we import randint() with a shorter name into our code.)

from random import randint as ri
print [n for n in [ri(1,99) for i in range(9)] if n%2]

Although longer than it should be, the line of code making up the core part of this example is not as
obfuscated as one might think.

map()

The map() built-in function is similar to filter() in that it can process a sequence through a function.
However, unlike filter(), map() "maps" the function call to each sequence item and returns a list

file:///D|/1/0132269937/ch11lev1sec7.html (6 von 14) [13.11.2007 16:23:56]

Section 11.7. Functional Programming

consisting of all the return values.

In its simplest form, map() takes a function and sequence, applies the function to each item of the
sequence, and creates a return value list that is comprised of each application of the function. So if your
mapping function is to add 2 to each number that comes in and you feed that function to map() along
with a list of numbers, the resulting list returned is the same set of numbers as the original, but with 2
added to each number. If we were to code how this simple form of map() works in Python, it might look
something like the code below that is illustrated in Figure 11.2.

Figure 11-2. How the map() built-in function works

def map(func, seq):
 mapped_seq = []
 for eachItem in seq:
 mapped_seq.append(func(eachItem))
 return mapped_seq

We can whip up a few quick lambda functions to show you how map() works on real data:

>>> map((lambda x: x+2), [0, 1, 2, 3, 4, 5])
[2, 3, 4, 5, 6, 7]
>>>
>>> map(lambda x: x**2, range(6))
[0, 1, 4, 9, 16, 25]
>>> [x+2 for x in range(6)]
[2, 3, 4, 5, 6, 7]
>>>
>>>[x**2 for x in range(6)]
[0, 1, 4, 9, 16, 25]

file:///D|/1/0132269937/ch11lev1sec7.html (7 von 14) [13.11.2007 16:23:56]

Section 11.7. Functional Programming

We have also discussed how map () can sometimes can be replaced by list comprehensions, so here we
refactor our two examples above.

The more general form of map() can take more than a single sequence as its input. If this is the case,
then map() will iterate through each sequence in parallel. On the first invocation, it will bundle the first
element of each sequence into a tuple, apply the func function to it, and return the result as a tuple into
the mapped_seq mapped sequence that is finally returned as a whole when map() has completed
execution.

Figure 11-2 illustrated how map() works with a single sequence. If we used map() with M sequences of N
objects each, our previous diagram would be converted to something like the diagram presented in
Figure 11-3.

Figure 11-3. How the map() built-in function works with > 1 sequence

Here are several examples using map() with multiple sequences:

>>> map(lambda x, y: x + y, [1,3,5], [2,4,6])
[3, 7, 11]
>>>
>>> map(lambda x, y: (x+y, x-y), [1,3,5], [2,4,6])
[(3, -1), (7, -1), (11, -1)]
>>>
>>> map(None, [1,3,5], [2,4,6])
[(1, 2), (3, 4), (5, 6)]

The last example above uses map() and a function object of None to merge elements of unrelated

file:///D|/1/0132269937/ch11lev1sec7.html (8 von 14) [13.11.2007 16:23:56]

Section 11.7. Functional Programming

sequences together. This idiom was so commonly used prior to Python 2.0 that a new built-in function,
zip(), was added just to address it:

>>> zip([1,3,5], [2,4,6])
[(1, 2), (3, 4), (5, 6)]

reduce()

The final functional programming piece is reduce(), which takes a binary function (a function that takes
two values, performs some calculation and returns one value as output), a sequence, and an optional
initializer, and methodologically "reduces" the contents of that list down to a single value, hence its
name. In other languages, this concept is known as folding.

It does this by taking the first two elements of the sequence and passing them to the binary function to
obtain a single value. It then takes this value and the next item of the sequence to get yet another
value, and so on until the sequence is exhausted and one final value is computed.

You may try to visualize reduce() as the following equivalence example:

reduce(func, [1, 2, 3]) func(func(1, 2), 3)

Some argue that the "proper functional" use of reduce() requires only one item to be taken at a time for
reduce(). In our first iteration above, we took two items because we did not have a "result" from the
previous values (because we did not have any previous values). This is where the optional initializer
comes in (see the init variable below). If the initializer is given, then the first iteration is performed on
the initializer and the first item of the sequence, and follows normally from there.

If we were to try to implement reduce() in pure Python, it might look something like this:

def reduce(bin_func, seq, init=None):
 lseq = list(seq) # convert to list
 if init is None: # initializer?
 res = lseq.pop(0) # no
 else:
 res = init # yes
 for item in lseq: # reduce sequence
 res = bin_func(res, item) # apply function
 return res # return result

This may be the most difficult of the four conceptually, so we should again show you an example as well
as a functional diagram (see Figure 11-4). The "hello world" of reduce() is its use of a simple addition
function or its lambda equivalent seen earlier in this chapter:

Figure 11-4. How the reduce() built-in function works

file:///D|/1/0132269937/ch11lev1sec7.html (9 von 14) [13.11.2007 16:23:56]

Section 11.7. Functional Programming

· def mySum(x,y): return x+y
· lambda x,y: x+y

Given a list, we can get the sum of all the values by simply creating a loop, iteratively going through the
list, adding the current element to a running subtotal, and being presented with the result once the loop
has completed:

>>> def mySum(x,y): return x+y
>>> allNums = range(5) # [0, 1, 2, 3, 4]
>>> total = 0

>>> for eachNum in allNums:
... total = mySum(total, eachNum)
...
>>> print 'the total is:', total
the total is: 10

Using lambda and reduce(), we can do the same thing on a single line:

file:///D|/1/0132269937/ch11lev1sec7.html (10 von 14) [13.11.2007 16:23:56]

Section 11.7. Functional Programming

>>> print 'the total is:', reduce((lambda x,y: x+y), range(5))
the total is: 10

The reduce() function performs the following mathematical operations given the input above:

((((0 + 1) + 2) + 3) + 4) 10

It takes the first two elements of the list (0 and 1), calls mySum() to get 1, then calls mySum() again with
that result and the next item 2, gets the result from that, pairs it with the next item 3 and calls mySum(),
and finally takes the entire subtotal and calls mySum() with 4 to obtain 10, which is the final return value.

11.7.3. Partial Function Application

The notion of currying combines the concepts of functional programming and default and variable
arguments together. A function taking N arguments that is "curried" embalms the first argument as a
fixed parameter and returns another function object taking (the remaining) N-1 arguments, akin to the
actions of the LISP primitive functions car and cdr, respectively. Currying can be generalized into partial
function application (PFA), in which any number (and order) of arguments is parlayed into another
function object with the remainder of the arguments to be supplied later.

In a way, this seems similar to default arguments where if arguments are not provided, they take on a
"default" value. In the case of PFAs, the arguments do not have a default value for all calls to a function,
only to a specific set of calls. You can have multiple partial function calls, each of which may pass in
different arguments to the function, hence the reason why default arguments cannot be used.

This feature was introduced in Python 2.5 and made available to users via the functools module.

Simple Functional Example

How about creating a simple little example? Let us take two simple functions add() and mul(), both
found in the operator module. These are just functional interfaces to the + and * operators that we are
already familiar with, e.g., add(x, y) is the same as x + y. Say that we wanted to add one to a number
or multiply another by 100 quite often in our applications.

Rather than having multiple calls like add(1, foo), add(1, bar), mul(100, foo), mul(100, bar), would it
not be nice to just have existing functions that simplify the function call, i.e., add1(foo), add1(bar),
mul100(foo), mul100(bar), but without having to write functions add1() and mul100()? Well, now you can
with PFAs. You can create a PFA by using the partial() function found in the functional module:

>>> from operator import add, mul
>>> from functools import partial
>>> add1 = partial(add, 1) # add1(x) == add(1, x)
>>> mul100 = partial(mul, 100) # mul100(x) == mul(100, x)

file:///D|/1/0132269937/ch11lev1sec7.html (11 von 14) [13.11.2007 16:23:56]

Section 11.7. Functional Programming

>>>
>>> add1(10)
11
>>> add1(1)
2

>>> mul100(10)
1000
>>> mul100(500)
50000

This example may or may not open your eyes to the power of PFAs, but we have to start somewhere.
PFAs are best used when calling functions that take many parameters. It is also easier to use PFAs with
keyword arguments, because specific arguments can be given explicitly, either as curried arguments, or
those more "variable" that are passed in at runtime, and we do not have to worry about ordering. Below
is an example from the Python documentation for use in applications where binary data (as strings)
need to be converted to integers fairly often:

>>> baseTwo = partial(int, base=2)
>>> baseTwo.__doc__ = 'Convert base 2 string to an int.'
>>> baseTwo('10010')
18

This example uses the int() built-in function and fixes the base to 2 specifically for binary string
conversion. Now instead of multiple calls to int() all with the same second parameter (of 2), e.g., int
('10010', 2), we can simply use our new baseTwo() function with a single argument. Good style is also
followed because it adds a documentation string to the "new (partial) function," and it is also another
good use of "function attributes" (see Section 11.3.4 above). One important thing to note is that the
keyword argument base is required here.

Be Wary of Keywords

If you create the partial function without the base keyword, e.g., baseTwoBAD = partial(int, 2), it would
pass the arguments to int() in the wrong order because the fixed arguments are always placed to the
left of the runtime arguments, meaning that baseTwoBAD(x) == int(2, x). If you call it, it would pass in 2
as the number to convert and the base as '10010', resulting in an exception:

>>> baseTwoBAD = partial(int, 2)
>>> baseTwoBAD('10010')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: an integer is required

With the keyword in place, the order is preserved properly since, as you know, keyword arguments
always come after the formal arguments, so baseTwo(x) == int(x, base=2).

Simple GUI Class Example

PFAs also extended to all callables like classes and methods. An excellent example of using PFAs is in
providing "partial-GUI templating." GUI widgets often have many parameters, such as text, length,
maximum size, background and foreground colors, both active and otherwise, etc. If we wanted to "fix"

file:///D|/1/0132269937/ch11lev1sec7.html (12 von 14) [13.11.2007 16:23:56]

Section 11.7. Functional Programming

some of those arguments, such as making all text labels be in white letters on a blue background, you
can customize it exactly that way into a pseudo template for similar objects.

Example 11.6. Partial Function Application GUI (pfaGUI.py)

This a more useful example of partial function application, or more accurately, "partial class
instantiation" in this case . . . why?

1 #!/usr/bin/env python
2
3 from functools import partial
4 import Tkinter
5
6 root = Tkinter.Tk()
7 MyButton = partial(Tkinter.Button, root,
8 fg='white', bg='blue')
9 b1 = MyButton(text='Button 1')
10 b2 = MyButton(text='Button 2')
11 qb = MyButton(text='QUIT', bg='red',
12 command=root.quit)
13 b1.pack()
14 b2.pack()
15 qb.pack(fill=Tkinter.X, expand=True)
16 root.title('PFAs!')
17 root.mainloop()

In lines 7-8, we create the "partial class instantiator" (because that is what it is instead of a partial
function) for Tkinter.Button, fixing the parent window argument root and both foreground and
background colors. We create two buttons b1 and b2 matching this template providing only the text label
as unique to each. The quit button (lines 11-12) is slightly more customized, taking on a different
background color (red, which overrides the blue default) and installing a callback to close the window
when it is pressed. (The other two buttons have no function when they are pressed.)

Without the MyButton "template," you would have to use the "full" syntax each time (because you are
still not giving all the arguments as there are plenty of parameters you are not passing that have default
values):

b1 = Tkinter.Button(root, fg='white', bg='blue', text='Button 1')
b2 = Tkinter.Button(root, fg='white', bg='blue', text='Button 2')
qb = Tkinter.Button(root, fg='white', text='QUIT', bg='red',
 command=root.quit)

Here is a snapshot of what this simple GUI looks like:

file:///D|/1/0132269937/ch11lev1sec7.html (13 von 14) [13.11.2007 16:23:56]

Section 11.7. Functional Programming

Why bother with so much repetition when your code can be more compact and easy to read? You can
find out more about GUI programming in Chapter 18 (Section 18.3.5), where we feature a longer
example of using PFAs.

From what you have seen so far, you can see that PFA takes on the flavors of templating and "style-
sheeting" in terms of providing defaults in a more functional programming environment. You can read
more about them in the documentation for the functools module documentation found in the Python
Library Reference, the "What's New in Python 2.5" document, and the specifying PEP 309.

file:///D|/1/0132269937/ch11lev1sec7.html (14 von 14) [13.11.2007 16:23:56]

Section 11.8. Variable Scope

11.8. Variable Scope

The scope of an identifier is defined to be the portion of the program where its declaration applies, or
what we refer to as "variable visibility." In other words, it is like asking yourself in which parts of a
program do you have access to a specific identifier. Variables either have local or global scope.

11.8.1. Global versus Local Variables

Variables defined within a function have local scope, and those at the highest level in a module have
global scope. In their famous "dragon" book on compiler theory, Aho, Sethi, and Ullman summarize it
this way:

"The portion of the program to which a declaration applies is called the scope of that declaration. An
occurrence of a name in a procedure is said to be local to the procedure if it is in the scope of a
declaration within the procedure; otherwise, the occurrence is said to be nonlocal."

One characteristic of global variables is that unless deleted, they have a lifespan that lasts as long as the
script that is running and whose values are accessible to all functions, whereas local variables, like the
stack frame they reside in, live temporarily, only as long as the functions they are defined in are
currently active. When a function call is made, its local variables come into scope as they are declared.
At that time, a new local name is created for that object, and once that function has completed and the
frame deallocated, that variable will go out of scope.

global_str = 'foo'
def foo():
 local_str = 'bar'
 return global_str + local_str

In the above example, global_str is a global variable while local_str is a local variable. The foo()
function has access to both global and local variables while the main block of code has access only to
global variables.

Core Note: Searching for identifiers (aka variables, names, etc.)

When searching for an identifier, Python searches the local scope first.
If the name is not found within the local scope, then an identifier must
be found in the global scope or else a NameError exception is raised.

A variable's scope is related to the namespace in which it resides. We
will cover namespaces formally in Chapter 12; suffice it to say for now
that namespaces are just naming domains that map names to objects,
a virtual set of what variable names are currently in use, if you will.
The concept of scope relates to the namespace search order that is
used to find a variable. All names in the local namespace are within
the local scope when a function is executing. That is the first
namespace searched when looking for a variable. If it is not found
there, then perhaps a globally scoped variable with that name can be
found. These variables are stored (and searched) in the global and
built-in namespaces.

file:///D|/1/0132269937/ch11lev1sec8.html (1 von 12) [13.11.2007 16:23:57]

Section 11.8. Variable Scope

It is possible to "hide" or override a global variable just by creating a
local one. Recall that the local namespace is searched first, being in its
local scope. If the name is found, the search does not continue to
search for a globally scoped variable, hence overriding any matching
name in either the global or built-in namespaces.

Also, be careful when using local variables with the same names as global variables. If you use such
names in a function (to access the global value) before you assign the local value, you will get an
exception (NameError or UnboundLocalError), depending on which version of Python you are using.

11.8.2. global Statement

Global variable names can be overridden by local variables if they are declared within the function. Here
is another example, similar to the first, but the global and local nature of the variable are not as clear.

def foo():
 print "\ncalling foo()..."
 bar = 200
 print "in foo(), bar is", bar
bar = 100
print "in __main__, bar is", bar
foo()
print "\nin __main__, bar is (still)", bar

It gave the following output:

in __main__, bar is 100
calling foo()...
in foo(), bar is 200
in __main__, bar is (still) 100

Our local bar pushed the global bar out of the local scope. To specifically reference a named global
variable, one must use the global statement. The syntax for global is:

global var1[, var2[, ... varN]]]

Modifying the example above, we can update our code so that we use the global version of
is_this_global rather than create a new local variable.

>>> is_this_global = 'xyz'
>>> def foo():
... global is_this_global
... this_is_local = 'abc'
... is_this_global = 'def'
... print this_is_local + is_this_global
...
>>> foo()
abcdef

file:///D|/1/0132269937/ch11lev1sec8.html (2 von 12) [13.11.2007 16:23:57]

Section 11.8. Variable Scope

>>> print is_this_global
def

11.8.3. Number of Scopes

Python syntactically supports multiple levels of functional nesting, and as of Python 2.1, matching
statically nested scoping. However, in versions prior to 2.1, a maximum of two scopes was imposed: a
function's local scope and the global scope. Even though more levels of functional nesting exist, you
could not access more than two scopes:

def foo():
 m = 3
 def bar():
 n = 4
 print m + n
 print m
 bar()

Although this code executes perfectly fine today ...

>>> foo()
3
7

... executing it resulted in errors in Python before 2.1:

>>> foo()
Traceback (innermost last):
 File "<stdin>", line 1, in ?
 File "<stdin>", line 7, in foo
 File "<stdin>", line 5, in bar
NameError: m

The access to foo()'s local variable m within function bar() is illegal because m is declared local to foo().
The only scopes accessible from bar() are bar()'s local scope and the global scope. foo()'s local scope is
not included in that short list of two. Note that the output for the "print m" statement succeeded, and it
is the function call to bar() that fails. Fortunately with Python's current nested scoping rules, this is not
a problem today.

11.8.4. Closures

With Python's statically nested scoping, it becomes useful to define inner functions as we have seen
earlier. In the next section, we will focus on scope and lambda, but inner functions also suffered the
same problem before Python 2.1 when the scoping rules changed to what they are today.

file:///D|/1/0132269937/ch11lev1sec8.html (3 von 12) [13.11.2007 16:23:57]

Section 11.8. Variable Scope

If references are made from inside an inner function to an object defined in any outer scope (but not in
the global scope), the inner function then is known as a closure. The variables defined in the outer
function but used or referred to by the inner function are called free variables. Closures are an important
concept in functional programming languages, with Scheme and Haskell being two of them. Closures are
syntactically simple (as simple as inner functions) yet still very powerful.

A closure combines an inner function's own code and scope along with the scope of an outer function.
Closure lexical variables do not belong to the global namespace scope or the local onethey belong to
someone else's namespace and carry an "on the road" kind of scope. (Note that they differ from objects
in that those variables live in an object's namespace while closure variables live in a function's
namespace and scope.) So why would you want to use closures?

Closures are useful for setting up calculations, hiding state, letting you move around function objects
and scope at will. Closures come in handy in GUI or event-driven programming where a lot of APIs
support callbacks. The same applies for retrieving database rows and processing the data in the exact
same manner. Callbacks are just functions. Closures are functions, too, but they carry some additional
scope with them. They are just functions with an extra feature ... another scope.

You will probably feel that the use of closures draws a strong parallel to partial function application as
introduced earlier in this chapter, but PFA is really more like currying than the use of closures because it
is not as much as about function calling as it is about using variables defined in another scope.

Simple Closure Example

Below is a short example of using closures. We will simulate a counter and also simulate making an
integer mutable by enclosing it as a single element of a list.

def counter(start_at=0):
 count = [start_at]
 def incr():
 count[0] += 1
 return count[0]
 return incr

The only thing counter() does is to accept an initial value to start counting at and assigns it as the sole
member of the list count. Then an incr() inner function is defined. By using the variable count inside it,
we have created a closure because it now carries with it the scope of counter(). incr() increments the
running count and returns it. Then the final magic is that counter() returns incr, a (callable) function
object.

If we run this interactively, we get the output belownote how similar it looks to instantiating a counter
object and executing the instance:

>>> count = counter(5)
>>> print count()
6
>>> print count()
7

file:///D|/1/0132269937/ch11lev1sec8.html (4 von 12) [13.11.2007 16:23:57]

Section 11.8. Variable Scope

>>> count2 = counter(100)
>>> print count2()
101
>>> print count()
8

The one difference is that we were able to do something that previously required us to write a class, and
not only that, but to have to override the __call__() special method of that class to make its instances
callable. Here we were able to do it with a pair of functions.

Now, in many cases, a class is the right thing to use. Closures are more appropriate in cases whenever
you need a callback that has to have its own scope, especially if it is something small and simple, and
often, clever. As usual, if you use a closure, it is a good idea to comment your code and/or use doc
strings to explain what you are doing.

*Chasing Down Closure Lexical Variables

The next two sections contain material for advanced readers ... feel free to skip it if you wish. We will
discuss how you can track down free variables with a function's func_closure attribute. Here is a code
snippet that demonstrates it.

If we run this piece of code, we get the following output:

no f1 closure vars
f2 closure vars: ['<cell at 0x5ee30: int object at
 0x200377c>']
f3 closure vars: ['<cell at 0x5ee90: int object at
 0x2003770>', '<cell at 0x5ee30: int object at
 0x200377c>']
<int 'w' id=0x2003788 val=1>
<int 'x' id=0x200377c val=2>
<int 'y' id=0x2003770 val=3>
<int 'z' id=0x2003764 val=4>

Example 11.7. Tracking Closure Variables (closureVars.py)

This example shows how we can track closure variables by using a function's func_closure
variable.

1 #!/usr/bin/env python
2
3 output = '<int %r id=%#0x val=%d>'
4 w = x = y = z = 1
5
6 def f1():
7 x = y = z = 2
8
9 def f2():
10 y = z = 3
11
12 def f3():
13 z = 4

file:///D|/1/0132269937/ch11lev1sec8.html (5 von 12) [13.11.2007 16:23:57]

Section 11.8. Variable Scope

14 print output % ('w', id(w), w)
15 print output % ('x', id(x), x)
16 print output % ('y', id(y), y)
17 print output % ('z', id(z), z)
18
19 clo = f3.func_closure
20 if clo:
21 print "f3 closure vars:", [str(c) for c in clo]
22 else:
23 print "no f3 closure vars"
24 f3()
25
26 clo = f2.func_closure
27 if clo:
28 print "f2 closure vars:", [str(c) for c in clo]
29 else:
30 print "no f2 closure vars"
31 f2()
32
33 clo = f1.func_closure
34 if clo:
35 print "f1 closure vars:", [str(c) for c in clo]
36 else:
37 print "no f1 closure vars"
38 f1()

Line-by-Line Explanation

Lines 14

This script starts by creating a template to output a variable: its name, ID, and value, and then sets
global variables w, x, y, and z. We define the template so that we do not have to copy the same output
format string multiple times.

Lines 69, 2631

The definition of the f1() function includes a creating local variables x, y, and z plus the definition of an
inner function f2(). (Note that all local variables shadow or hide accessing their equivalently named
global variables.) If f2() uses any variables that are defined in f1()'s scope, i.e., not global and not local
to f2(), those represent free variables, and they will be tracked by f1.func_closure.

Lines 910, 1924

Practically duplicating the code for f1(), these lines do the same for f2(), which defines locals y and z
plus an inner function f3(). Again, note that the locals here shadow globals as well as those in
intermediate localized scopes, e.g., f1()'s. If there are any free variables for f3(), they will be displayed
here.

You will no doubt notice that references to free variables are stored in cell objects, or simply, cells. What
are these guys? Cells are basically a way to keep references to free variables alive after their defining
scope(s) have completed (and are no longer on the stack).

file:///D|/1/0132269937/ch11lev1sec8.html (6 von 12) [13.11.2007 16:23:57]

Section 11.8. Variable Scope

For example, let us assume that function f3() has been passed to some other function so that it can be
called later, even after f2() has completed. You do not want to have f2()'s stack frame around because
that will keep all of f2()'s variables alive even if we are only interested in the free variables used by f3
(). Cells hold on to the free variables so that the rest of f2() can be deallocated.

Lines 1217

This block represents the definition of f3(), which creates a local variable z. We then display w, x, y, z,
all chased down from the innermost scope outward. The variable w cannot be found in f3(), f2(), or f1
(), therefore, it is a global. The variable x is not found in f3() or f2(), so it is a closure variable from f1
(). Similarly, y is a closure variable from f2(), and finally, z is local to f3().

Lines 3338

The rest of main() attempts to display closure variables for f1(), but it will never happen since there are
no scopes in between the global scope and f1()'sthere is no scope that f1() can borrow from, ergo no
closure can be createdso the conditional expression on line 34 will never evaluate to true. This code is
just here for decorative purposes.

*Advanced Closures and Decorators Example

We saw a simple example of using closures and decorators in back in Section 11.3.6, deco.py. The
following is a slightly more advanced example, to show you the real power of closures. The application
"logs" function calls. The user chooses whether they want to log a function call before or after it has
been invoked. If post-log is chosen, the execution time is also displayed.

Example 11.8. Logging Function Calls with Closures (funcLog.py)

This example shows a decorator that takes an argument that ultimately determines which
closure will be used. Also featured is the power of closures.

1 #!/usr/bin/env python
2
3 from time import time
4
5 def logged(when):
6 def log(f, *args, **kargs):
7 print '''Called:
8 function: %s
9 args: %r
10 kargs: %r''' % (f, args, kargs)
11
12 def pre_logged(f):
13 def wrapper(*args, **kargs):
14 log(f, *args, **kargs)
15 return f(*args, **kargs)
16 return wrapper
17
18 def post_logged(f):
19 def wrapper(*args, **kargs):
20 now = time()

file:///D|/1/0132269937/ch11lev1sec8.html (7 von 12) [13.11.2007 16:23:57]

Section 11.8. Variable Scope

21 try:
22 return f(*args, **kargs)
23 finally:
24 log(f, *args, **kargs)
25 print "time delta: %s" % (time()-now)
26 return wrapper
27
28 try:
29 return {"pre": pre_logged,
30 "post": post_logged}[when]
31 except KeyError, e:
32 raise ValueError(e), 'must be "pre" or "post"'
33
34 @logged("post")
35 def hello(name):
36 print "Hello,", name
37
38 hello("World!")

If you execute this script, you will get output similar to the following:

$ funcLog.py
Hello, World!
Called:
 function: <function hello at 0x555f0>
 args: ('World!',)
 kargs: {}
 time delta: 0.000471115112305

Line-by-Line Explanation

Lines 510, 2832

This body of code represents the core part of the logged() function, whose responsibility it is to take the
user's request as to when the function call should be logged. Should it be before the target function is
called or after? logged() has three helper inner functions defined within its definition: log(), pre_logged
(), and post_logged().

log() is the function that does the actual logging. It just displays to standard output the name of the
function and its arguments. If you were to use this function "in the real world," you would most likely
send this output to a file, a database, or perhaps standard error (sys.stderr).

The last part of logged() in lines 28-32 is actually the first lines of code in the function that are not
function declarations. It reads the user's selection when, and returns one of the *logged() functions so
that it can then be called with the target function to wrap it.

Lines 1226

pre_logged() and post_logged() will both wrap the target function and log it in accordance with its

file:///D|/1/0132269937/ch11lev1sec8.html (8 von 12) [13.11.2007 16:23:57]

Section 11.8. Variable Scope

name, e.g., post_logged() will log the function call after the target function has executed while
pre_logged() does it before execution.

Depending on the user's selection, one of pre_logged() and post_logged() will be returned. When the
decorator is called, it evaluates the decorator function first along with its argument. e.g., logged(when).
Then the returned function object is called with the target function as its parameter, e.g., pre_logged(f)
or post_logged(f).

Both *logged() functions include a closure named wrapper(). It calls the target function while logging it
as appropriate. The functions return the wrapped function object, which then is reassigned to the
original target function identifier.

Lines 3438

The main part of this script simply decorates the hello() function and executes it with the modified
function object. When you call hello() on line 38, it is not the same as the function object that was
created on line 35. The decorator on line 34 wraps the original function object with the specified
decoration and returns a wrapped version of hello().

11.8.5. Scope and lambda

Python's lambda anonymous functions follow the same scoping rules as standard functions. A lambda
expression defines a new scope, just like a function definition, so the scope is inaccessible to any other
part of the program except for that local lambda/function.

Those lambda expressions declared local to a function are accessible only within that function; however,
the expression in the lambda statement has the same scope access as the function. You can also think of
a function and a lambda expression as siblings.

x = 10
def foo():
 y = 5
 bar = lambda :x+y
 print bar()

We know that this code works fine now ...

>>> foo()
15

... however, we must again look to the past to see an extremely common idiom that was necessary to
get code to work in older versions of Python. Before 2.1, we would get an error like what you see below
because while the function and lambda have access to global variables, neither has access to the other's
local scopes:

>>> foo()
Traceback (innermost last):
 File "<stdin>", line 1, in ?
 File "<stdin>", line 4, in foo

file:///D|/1/0132269937/ch11lev1sec8.html (9 von 12) [13.11.2007 16:23:57]

Section 11.8. Variable Scope

 File "<stdin>", line 3, in <lambda>
NameError: y

In the example above, although the lambda expression was created in the local scope of foo(), it has
access to only two scopes: its local scope and the global scope (also see Section 11.8.3). The solution
was to add a variable with a default argument so that we could pass in a variable from an outer local
scope to an inner one. In our example above, we would change the line with the lambda to look like this:

bar = lambda y=y: x+y

With this change, it now works. The outer y's value will be passed in as an argument and hence the local
y (local to the lambda function). You will see this common idiom all over Python code that you will come
across; however, it still does not address the possibility of the outer y changing values, such as:

x = 10
def foo():
 y = 5
 bar = lambda y=y: x+y
 print bar()
 y = 8
 print bar()

The output is "totally wrong":

>>> foo()
15
15

The reason for this is that the value of the outer y was passed in and "set" in the lambda, so even though
its value changed later on, the lambda definition did not. The only other alternative back then was to add
a local variable z within the lambda expression that references the function local variable y.

x = 10
def foo():
 y = 5
 bar = lambda z:x+z
 print bar(y)
 y = 8
 print bar(y)

All of this was necessary in order to get the correct output:

>>> foo()
15
18

This was also not preferred as now all places that call bar() would have to be changed to pass in a

file:///D|/1/0132269937/ch11lev1sec8.html (10 von 12) [13.11.2007 16:23:57]

Section 11.8. Variable Scope

variable. Beginning in 2.1, the entire thing works perfectly without any modification:

x = 10
def foo():
 y = 5
 bar = lambda :x+y
 print bar(y)
 y = 8
 print bar(y)
>>> foo()
15
18

Are you not glad that "correct" statically nested scoping was (finally) added to Python? Many of the "old-
timers" certainly are. You can read more about this important change in PEP 227.

11.8.6. Variable Scope and Namespaces

From our study in this chapter, we can see that at any given time, there are either one or two active
scopesno more, no less. Either we are at the top-level of a module where we have access only to the
global scope, or we are executing in a function where we have access to its local scope as well as the
global scope. How do namespaces relate to scope?

From the Core Note in Section 11.8.1 we can also see that, at any given time, there are either two or
three active namespaces. From within a function, the local scope encompasses the local namespace, the
first place a name is searched for. If the name exists here, then checking the global scope (global and
built-in namespaces) is skipped. From the global scope (outside of any function), a name lookup begins
with the global namespace. If no match is found, the search proceeds to the built-in namespace.

We will now present Example 11.9, a script with mixed scope everywhere. We leave it as an exercise to
the reader to determine the output of the program.

Example 11.9. Variable Scope (scope.py)

Local variables hide global variables, as indicated in this variable scope program. What is
the output of this program? (And why?)

1 #!/usr/bin/env python
2 j, k = 1, 2
3
4 def proc1():
5
6 j, k = 3, 4
7 print "j == %d and k == %d" % (j, k)
8 k = 5
9
10 def proc2():
11
12 j = 6
13 proc1()
14 print "j == %d and k == %d" % (j, k)
15
16

file:///D|/1/0132269937/ch11lev1sec8.html (11 von 12) [13.11.2007 16:23:57]

Section 11.8. Variable Scope

17 k = 7
18 proc1()
19 print "j == %d and k == %d" % (j, k)
20
21 j = 8
22 proc2()
23 print "j == %d and k == %d" % (j, k)

Also see Section 12.3.1 for more on namespaces and variable scope.

file:///D|/1/0132269937/ch11lev1sec8.html (12 von 12) [13.11.2007 16:23:57]

Section 11.9. *Recursion

11.9. *Recursion

A function is recursive if it contains a call to itself. According to Aho, Sethi, and Ullman, "[a] procedure is
recursive if a new activation can begin before an earlier activation of the same procedure has ended." In
other words, a new invocation of the same function occurs within that function before it finished.

Recursion is used extensively in language recognition as well as in mathematical applications that use
recursive functions. Earlier in this text, we took a first look at the factorial function where we defined:

N! factorial(N) 1 * 2 * 3 ... * N

We can also look at factorial this way:

factorial(N) = N!
 = N * (N-1)!
 = N * (N-1) * (N-2)!
 :
 = N * (N-1) * (N-2) ... * 3 * 2 * 1

We can now see that factorial is recursive because factorial(N) = N * factorial(N-1). In other words,
to get the value of factorial(N), one needs to calculate factorial(N-1). Furthermore, to find factorial
(N-1), one needs to computer factorial(N-2), and so on.

We now present the recursive version of the factorial function:

def factorial(n):
 if n == 0 or n == 1: # 0! = 1! = 1
 return 1
 else:
 return (n * factorial(n-1))

file:///D|/1/0132269937/ch11lev1sec9.html [13.11.2007 16:23:58]

Section 11.10. Generators

11.10. Generators

Earlier in Chapter 8, we discussed the usefulness behind iterators and how they give non-sequence
objects a sequence-like iteration interface. They are simple to understand because they only have one
method, a next() that is called to get the next item.

However, unless you implement a class as an iterator, iterators really do not have much "intelligence."
Would it not be much more powerful to call a function that somehow "generated" the next value in the
iteration and returned with something as simple as a next() call? That is one motivation for generators.

Another aspect of generators is even more powerful ... the concept of coroutines. A coroutine is an
independent function call that can run, be paused or suspended, and be continued or resumed where it
left off. There is also communication between the caller and the (called) coroutine. For example, when a
coroutine pauses, we can receive an intermediate return value from it, and when calling back into one,
to be able to pass in additional or altered parameters, yet still be able to pick up where we last left it,
with all state still intact.

Coroutines that are suspended yielding intermediate values and resumed multiple times are called
generators, and that is exactly what Python generators do. Generators were added to Python in 2.2 and
made standard in 2.3 (see PEP 255), and although powerful enough, they were significantly enhanced in
Python 2.5 (see PEP 342). These enhancements bring generators even closer to being full coroutines
because values (and exceptions) are allowed to be passed back into a resumed function. Also,
generators can now yield control while waiting for a generator it has called to yield a result instead of
blocking to wait for that result to come back before the calling generator can suspend (and yield a
result). Let us take a closer look at generators starting from the top.

What is a generator Python-wise? Syntactically, a generator is a function with a yield statement. A
function or subroutine only returns once, but a generator can pause execution and yield intermediate
resultsthat is the functionality of the yield statement, to return a value to the caller and to pause
execution. When the next() method of a generator is invoked, it resumes right where it left off (when it
yielded [a value and] control back to the caller).

When generators were added back in 2.2, because it introduced a new keyword, yield, for backward
compatibility, you needed to import generators from the __future__ module in order to use them. This
was no longer necessary when generators became standard beginning with 2.3.

11.10.1. Simple Generator Features

Generators behave in another manner similar to iterators: when a real return or end-of-function is
reached and there are no more values to yield (when calling next()), a StopIteration exception is
raised. Here is an example, the simplest of generators:

def simpleGen():
 yield 1
 yield '2 --> punch!'

file:///D|/1/0132269937/ch11lev1sec10.html (1 von 4) [13.11.2007 16:23:58]

Section 11.10. Generators

Now that we have our generator function, let us call it to get and save a generator object (so that we
can call its next() method to get successive intermediate values from it):

>>> myG = simpleGen()
>>> myG.next()
1
>>> myG.next()
'2 --> punch!'
>>> myG.next()
Traceback (most recent call last):
 File "", line 1, in ?
 myG.next()
StopIteration

Since Python's for loops have next() calls and a handler for StopIteration, it is almost always more
elegant to use a for loop instead of manually iterating through a generator (or an iterator for that
matter):

>>> for eachItem in simpleGen():
... print eachItem
...
1
'2 --> punch!'

Of course that was a silly example: why not use a real iterator for that? More motivation comes from
being able to iterate through a sequence that requires the power of a function rather than static objects
already sitting in some sequence.

In the following example, we are going to create a random iterator that takes a sequence and returns a
random item from that sequence:

from random import randint
def randGen(aList):
 while len(aList) > 0:
 yield aList.pop(randint(0, len(aList)))

The difference is that each item returned is also consumed from that sequence, sort of like a
combination of list.pop() and random. choice():

>>> for item in randGen(['rock', 'paper', 'scissors']):
... print item
...
scissors
rock
paper

We will see a simpler (and infinite) version of this generator as a class iterator coming up in a few
chapters when we cover Object-Oriented Programming. Several chapters ago in Section 8.12, we
discussed the syntax of generator expressions. The object returned from using this syntax is a

file:///D|/1/0132269937/ch11lev1sec10.html (2 von 4) [13.11.2007 16:23:58]

Section 11.10. Generators

generator, but serves as a short form, allowing for the simplistic syntax of a list comprehension.

These simple examples should give you an idea of how generators work, but you may be asking, "Where
can I use generators in my application?" Or perhaps, you may be asking, "What are the most
appropriate places for using this powerful construct?"

The "best" places to use generators are when you are iterating through a large dataset that is
cumbersome to repeat or reiterate over, such as a large disk file, or a complex database query. For
every row of data, you wish to perform non-elementary operations and processing, but you "do not want
to lose your place" as you are cursoring or iterating over it.

You want to grab a wad of data, yield it back to the caller for processing and possible insertion into a
(nother) database for example, and then you want to do a next() to get the next wad of data, and so
forth. The state is preserved across suspends and resumptions, so you are more comfortable that you
have a safe environment in which to process your data. Without generators, you application code will
likely have a very long function, with a very lengthy for loop inside of it.

Of course, just because a language has a feature does not mean you have to use it. If there does not
appear to be an obvious fit in your application, then do not add any more complexity! You will know
when generators are the right thing to use when you come across an appropriate situation.

11.10.2. Enhanced Generator Features

A few enhancements were made to generators in Python 2.5, so in addition to next() to get the next
value generated, users can now send values back into generators [send()], they can raise exceptions in
generators [tHRow()], and request that a generator quit [close()].

Due to the two-way action involved with code calling send() to send values to a generator (and the
generator yielding values back out), the yield statement now must be an expression since you may be
receiving an incoming object when resuming execution back in the generator. Below is a simple example
demonstrating some of these features. Let us take our simple closure example, the counter:

def counter(start_at=0):
 count = start_at
 while True:
 val = (yield count)
 if val is not None:
 count = val
 else:
 count += 1

This generator takes an initial value, and counts up by one for each call to continue the generator [next
()]. Users also have the option to reset this value if they so desire by calling send() with the new
counter value instead of calling next(). This generator runs forever, so if you wish to terminate it, call
the close() method. If we run this code interactively, we get the following output:

>>> count = counter(5)

file:///D|/1/0132269937/ch11lev1sec10.html (3 von 4) [13.11.2007 16:23:58]

Section 11.10. Generators

>>> count.next()
5
>>> count.next()
6
>>> count.send(9)
9
>>> count.next()
10
>>> count.close()
>>> count.next()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
StopIteration

You can read more about generators in PEPs 255 and 342, as well as in this Linux Journal article
introducing readers to the new features in Python 2.2:

http://www.linuxjournal.com/article/5597

file:///D|/1/0132269937/ch11lev1sec10.html (4 von 4) [13.11.2007 16:23:58]

http://www.linuxjournal.com/article/5597
file:///D|/1/0132269937/14051536.html

Section 11.11. Exercises

11.11. Exercises

11-1. Arguments. Compare the following three functions:

def countToFour1():
 for eachNum in range(5):
 print eachNum,
def countToFour2(n):
 for eachNum in range(n, 5):
 print eachNum,
def countToFour3(n=1):
 for eachNum in range(n, 5):
 print eachNum,

What do you think will happen as far as output from the program, given the following
input values? Enter the output into Table 11.2 below. Write in "ERROR" if you think
one will occur with the given input or "NONE" if there is no output.

11-2. Functions. Combine your solutions for Exercise 5-2 such that you create a combination
function that takes the same pair of numbers and returns both their sum and product
at the same time.

Table 11.2. Output Chart for Problem
11-1

Input countToFour1 countToFour2 countToFour3

2
4
5

(nothing)

file:///D|/1/0132269937/ch11lev1sec11.html (1 von 4) [13.11.2007 16:23:59]

file:///D|/1/0132269937/14051536.html

Section 11.11. Exercises

11-3. Functions. In this exercise, we will be implementing the max() and min() built-in
functions.

a.

Write simple functions max2() and min2() that take two items and return the
larger and smaller item, respectively. They should work on arbitrary Python
objects. For example, max2(4, 8) and min2(4, 8) would each return 8 and 4,
respectively.

b.

Create new functions my_max() and my_min() that use your solutions in part (a)
to recreate max() and min(). These functions return the largest and smallest
item of non-empty sequences, respectively. They can also take a set of
arguments as input. Test your solutions for numbers and strings.

11-4. Return Values. Create a complementary function to your solution for Exercise 5-13.
Create a function that takes a total time in minutes and returns the equivalent in
hours and minutes.

11-5. Default Arguments. Update the sales tax script you created in Exercise 5-7 such that a
sales tax rate is no longer required as input to the function. Create a default argument
using your local tax rate if one is not passed in on invocation.

11-6. Variable-Length Arguments. Write a function called printf(). There is one positional
argument, a format string. The rest are variable arguments that need to be displayed
to standard output based on the values in the format string, which allows the special
string format operator directives such as %d, %f, etc. Hint: The solution is trivialthere is
no need to implement the string operator functionality, but you do need to use the
string format operator (%) explicitly.

11-7. Functional Programming with map(). Given a pair of identically sized lists, say [1, 2,
3, ...], and ['abc', 'def', 'ghi', ...], merge both lists into a single list consisting
of tuples of elements of each list so that our result looks like: {[(1, 'abc'), (2,
'def'), (3, 'ghi'), ...}. (Although this problem is similar in nature to a problem in
Chapter 6, there is no direct correlation between their solutions.) Then create another
solution using the zip() built-in function.

11-8. Functional Programming with filter(). Use the code you created for Exercise 5-4 to
determine leap years. Update your code so that it is a function if you have not done so
already. Then write some code to take a list of years and return a list of only leap
years. Then convert it to using list comprehensions.

11-9. Functional Programming with reduce(). Review the code in Section 11.7.2 that
illustrated how to sum up a set of numbers using reduce(). Modify it to create a new
function called average() that calculates the simple average of a set of numbers.

file:///D|/1/0132269937/ch11lev1sec11.html (2 von 4) [13.11.2007 16:23:59]

Section 11.11. Exercises

11-10. Functional Programming with filter(). In the Unix file system, there are always two
special files in each folder/directory: '.' indicates the current directory and '..'
represents the parent directory. Given this knowledge, take a look at the
documentation for the os.listdir() function and describe what this code snippet does:

files = filter(lambda x: x and x[0] != '.', os.
listdir(folder))

11-11. Functional Programming with map(). Write a program that takes a filename and
"cleans" the file by removing all leading and trailing whitespace from each line. Read
in the original file and write out a new one, either creating a new file or overwriting
the existing one. Give your user the option to pick which of the two to perform.
Convert your solution to using list comprehensions.

11-12. Passing Functions. Write a sister function to the testit() function described in this
chapter. Rather than testing execution for errors, timeit() will take a function object
(along with any arguments) and time how long it takes to execute the function. Return
the following values: function return value, time elapsed. You can use time.clock() or
time. time(), whichever provides you with greater accuracy. (The general consensus
is to use time.time() on POSIX and time.clock() on Win32 systems.) Note: The timeit
() function is not related to the timeit module (introduced in Python 2.3).

11-13. Functional Programming with reduce() and Recursion. In Chapter 8, we looked at N
factorial or N! as the product of all numbers from 1 to N.

a.

Take a minute to write a small, simple function called mult(x, y) that takes x
and y and returns their product.

b.

Use the mult() function you created in part (a) along with reduce() to calculate
factorials.

c.

Discard the use of mult() completely and use a lambda expression instead.

d.

In this chapter, we presented a recursive solution to finding N! Use the timeit
() function you completed in the problem above and time all three versions of
your factorial function (iterative, reduce(), and recursive). Explain any
differences in performance, anticipated and actual.

file:///D|/1/0132269937/ch11lev1sec11.html (3 von 4) [13.11.2007 16:23:59]

Section 11.11. Exercises

11-14. *Recursion. We also looked at Fibonacci numbers in Chapter 8. Rewrite your previous
solution for calculating Fibonacci numbers (Exercise 8-9) so that it now uses recursion.

11-15. *Recursion. Rewrite your solution to Exercise 6-5, which prints a string backwards to
use recursion. Use recursion to print a string forward and backward.

11-16. Upgrading easyMath.py. This script, presented as Example 11.1, served as the
beginnings of a program to help young people develop their math skills. Further
enhance this program by adding multiplication as a supported operation. Extra credit:
Add division as well; this is more difficult as you must find valid integer divisors.
Fortunately for you, there is already code to ensure the numerator is greater than the
denominator so you do not need to support fractions.

11-17. Definitions.

a.

Describe the differences between partial function application and currying.

b.

What are the differences between partial function application and closures?

c.

Finally, how do iterators and generators differ?

11-18. *Synchronized Function Calling. Go back and review the husband and wife situation
presented in Chapter 6 (Section 6.20) when introducing shallow and deep copies. They
shared a common account where simultaneous access to their bank account might
have adverse effects.

Create an application where calls to functions that change the account balance must
be synchronized. In other words, only one process or thread can execute the function
(s) at any given time. Your first attempt may use files, but a real solution will use
decorators and synchronization primitives found in either the threading or mutex
modules. You may look ahead to Chapter 17 for more inspiration.

file:///D|/1/0132269937/ch11lev1sec11.html (4 von 4) [13.11.2007 16:23:59]

file:///D|/1/0132269937/14051536.html

Chapter 12. Modules

Chapter 12. Modules

Chapter Topics

● What Are Modules?
● Modules and Files
● Namespaces
● Importing Modules
● Importing Module Attributes
● Module Built-in Functions
● Packages
● Other Features of Modules

This chapter focuses on Python modules and how data are imported from modules into your
programming environment. We will also take a look at packages. Modules are a means to organize
Python code, and packages help you organize modules. We conclude this chapter with a look at other
related aspects of modules.

file:///D|/1/0132269937/ch12.html [13.11.2007 16:23:59]

Section 12.1. What Are Modules?

12.1. What Are Modules?

A module allows you to logically organize your Python code. When code gets to be large enough, the
tendency is to break it up into organized pieces that can still interact with one another at a functioning
level. These pieces generally have attributes that have some relation to one another, perhaps a single
class with its member data variables and methods, or maybe a group of related, yet independently
operating functions. These pieces should be shared, so Python allows a module the ability to "bring in"
and use attributes from other modules to take advantage of work that has been done, maximizing code
reusability. This process of associating attributes from other modules with your module is called
importing. In a nutshell, modules are self-contained and organized pieces of Python code that can be
shared.

file:///D|/1/0132269937/ch12lev1sec1.html [13.11.2007 16:24:00]

file:///D|/1/0132269937/14051536.html

Section 12.2. Modules and Files

12.2. Modules and Files

If modules represent a logical way to organize your Python code, then files are a way to physically
organize modules. To that end, each file is considered an individual module, and vice versa. The
filename of a module is the module name appended with the .py file extension. There are several
aspects we need to discuss with regard to what the file structure means to modules. Unlike other
languages in which you import classes, in Python you import modules or module attributes.

12.2.1. Module Namespaces

We will discuss namespaces in detail later in this chapter, but the basic concept of a namespace is an
individual set of mappings from names to objects. As you are no doubt aware, module names play an
important part in the naming of their attributes. The name of the attribute is always prepended with the
module name. For example, the atoi() function in the string module is called string.atoi(). Because
only one module with a given name can be loaded into the Python interpreter, there is no intersection of
names from different modules; hence, each module defines its own unique namespace. If I created a
function called atoi() in my own module, perhaps mymodule, its name would be mymodule.atoi(). So
even if there is a name conflict for an attribute, the fully qualified namereferring to an object via dotted
attribute notationprevents an exact and conflicting match.

12.2.2. Search Path and Path Search

The process of importing a module requires a process called a path search. This is the procedure of
checking "predefined areas" of the file system to look for your mymodule.py file in order to load the
mymodule module. These predefined areas are no more than a set of directories that are part of your
Python search path. To avoid the confusion between the two, think of a path search as the pursuit of a
file through a set of directories, the search path.

There may be times where importing a module fails:

>>> import xxx
Traceback (innermost last):
 File "<interactive input>", line 1, in ?
ImportError: No module named xxx

When this error occurs, the interpreter is telling you it cannot access the requested module, and the
likely reason is that the module you desire is not in the search path, leading to a path search failure.

A default search path is automatically defined either in the compilation or installation process. This
search path may be modified in one of two places.

One is the PYTHONPATH environment variable set in the shell or command-line interpreter that invokes
Python. The contents of this variable consist of a colon-delimited set of directory paths. If you want the
interpreter to use the contents of this variable, make sure you set or update it before you start the
interpreter or run a Python script.

Once the interpreter has started, you can access the path itself, which is stored in the sys module as the
sys.path variable. Rather than a single string that is colon-delimited, the path has been "split" into a list
of individual directory strings. Below is an example search path for a Unix machine. Your mileage will

file:///D|/1/0132269937/ch12lev1sec2.html (1 von 2) [13.11.2007 16:24:00]

Section 12.2. Modules and Files

definitely vary as you go from system to system.

>>> sys.path
['', '/usr/local/lib/python2.x/', '/usr/local/lib/
python2.x/plat-sunos5', '/usr/local/lib/python2.x/
lib-tk', '/usr/local/lib/python2.x/lib-dynload', '/
usr/local/lib/Python2.x/site-packages',]

Bearing in mind that this is just a list, we can definitely take liberty with it and modify it at our leisure. If
you know of a module you want to import, yet its directory is not in the search path, by all means use
the list's append() method to add it to the path, like so:

sys.path.append('/home/wesc/py/lib')

Once this is accomplished, you can then load your module. As long as one of the directories in the
search path contains the file, then it will be imported. Of course, this adds the directory only to the end
of your search path. If you want to add it elsewhere, such as in the beginning or middle, then you have
to use the insert() list method for those. In our examples above, we are updating the sys.path
attribute interactively, but it will work the same way if run as a script.

Here is what it would look like if we ran into this problem interactively:

>>> import sys
>>> import mymodule
Traceback (innermost last):
 File "<stdin>", line 1, in ?
ImportError: No module named mymodule
>>>
>>> sys.path.append('/home/wesc/py/lib')
>>> sys.path
['', '/usr/local/lib/python2.x/', '/usr/local/lib/
python2.x/plat-sunos5', '/usr/local/lib/python2.x/
lib-tk', '/usr/local/lib/python2.x/lib-dynload', '/usr/
local/lib/python2.x/site-packages','/home/wesc/py/lib']
>>>
>>> import mymodule
>>>

On the flip side, you may have too many copies of a module. In the case of duplicates, the interpreter
will load the first module it finds with the given name while rummaging through the search path in
sequential order.

To find out what modules have been successfully imported (and loaded) as well as from where, take a
look at sys.modules. Unlike sys.path, which is a list of modules, sys.modules is a dictionary where the
keys are the module names with their physical location as the values.

file:///D|/1/0132269937/ch12lev1sec2.html (2 von 2) [13.11.2007 16:24:00]

file:///D|/1/0132269937/14051536.html

Section 12.3. Namespaces

12.3. Namespaces

A namespace is a mapping of names (identifiers) to objects. The process of adding a name to a
namespace consists of binding the identifier to the object (and increasing the reference count to the
object by one). The Python Language Reference also includes the following definitions: "changing the
mapping of a name is called rebinding [, and] removing a name is unbinding."

As briefly introduced in Chapter 11, there are either two or three active namespaces at any given time
during execution. These three namespaces are the local, global, and built-ins namespaces, but local
name-spaces come and go during execution, hence the "two or three" we just alluded to. The names
accessible from these namespaces are dependent on their loading order, or the order in which the
namespaces are brought into the system.

The Python interpreter loads the built-ins namespace first. This consists of the names in the
__builtins__ module. Then the global namespace for the executing module is loaded, which then
becomes the active namespace when the module begins execution. Thus we have our two active
namespaces.

Core Note: __builtins__ versus __builtin__

The __builtins__ module should not be confused with the __builtin__ module. The
names, of course, are so similar that it tends to lead to some confusion among new Python
programmers who have gotten this far. The __builtins__ module consists of a set of built-
in names for the built-ins namespace. Most, if not all, of these names come from the
__builtin__ module, which is a module of the built-in functions, exceptions, and other
attributes. In standard Python execution, __builtins__ contains all the names from
__builtin__. Python used to have a restricted execution model that allowed modification of
__builtins__ where key pieces from __builtin__ were left out to create a sandbox
environment. However, due its security flaws and the difficulty involved with repairing it,
restricted execution is no longer supported in Python (as of 2.3).

When a function call is made during execution, the third, a local, namespace is created. We can use the
globals() and locals() built-in functions to tell us which names are in which namespaces. We will
discuss both functions in more detail later on in this chapter.

12.3.1. Namespaces versus Variable Scope

Okay, now that we know what namespaces are, how do they relate to variable scope again? They seem
extremely similar. The truth is, you are quite correct.

Namespaces are purely mappings between names and objects, but scope dictates how, or rather where,
one can access these names based on the physical location from within your code. We illustrate the
relationship between namespaces and variable scope in Figure 12-1.

Figure 12-1. Namespaces versus variable scope

file:///D|/1/0132269937/ch12lev1sec3.html (1 von 4) [13.11.2007 16:24:01]

Section 12.3. Namespaces

Notice that each of the namespaces is a self-contained unit. But looking at the namespaces from the
scoping point of view, things appear different. All names within the local namespace are within my local
scope. Any name outside my local scope is in my global scope.

Also keep in mind that during the execution of the program, the local namespaces and scope are
transient because function calls come and go, but the global and built-ins namespaces remain.

Our final thought to you in this section is, when it comes to namespaces, ask yourself the question,
"Does it have it?" And for variable scope, ask, "Can I see it?"

12.3.2. Name Lookup, Scoping,
and Overriding

So how do scoping rules work in relationship to namespaces? It all has to do with name lookup. When
accessing an attribute, the interpreter must find it in one of the three namespaces. The search begins
with the local namespace. If the attribute is not found there, then the global namespace is searched. If
that is also unsuccessful, the final frontier is the built-ins namespace. If the exhaustive search fails, you
get the familiar:

>>> foo
Traceback (innermost last):
 File "<stdin>", line 1, in ?
NameError: foo

Notice how the figure features the foremost-searched namespaces "shadowing" namespaces, which are
searched afterward. This is to try to convey the effect of overriding. This shadowing effect is illustrated
by the gray boxes in Figure 12-1. For example, names found in the local namespace will hide access to
objects in the global or built-ins namespaces. This is the process whereby names may be taken out of
scope because a more local namespace contains a name. Take a look at the following piece of code that
was introduced in the previous chapter:

def foo():
 print "\ncalling foo()..."
 bar = 200
 print "in foo(), bar is", bar

file:///D|/1/0132269937/ch12lev1sec3.html (2 von 4) [13.11.2007 16:24:01]

Section 12.3. Namespaces

bar = 100
print "in __main__, bar is", bar
foo()

When we execute this code, we get the following output:

in __main__, bar is 100

calling foo()...
in foo(), bar is 200

The bar variable in the local namespace of foo() overrode the global bar variable. Although bar exists in
the global namespace, the lookup found the one in the local namespace first, hence "overriding" the
global one. For more information regarding scope, see Section 11.8 of Chapter 11.

12.3.3. Namespaces for Free!

One of Python's most useful features is the ability to get a namespace almost anywhere you need a
place to put things. We have seen in the previous chapter how you can just add attributes to functions
at whim (using the familiar dotted-attribute notation):

def foo():
 pass
foo.__doc__ = 'Oops, forgot to add doc str above!'
foo.version = 0.2

In this chapter, we have shown how modules themselves make namespaces and how you access them
in the same way:

mymodule.foo()
mymodule.version

Although we will discuss object-oriented programming (OOP) in Chapter 13, how about an example even
simpler than a "Hello World!" to introduce you to Python classes?

class MyUltimatePythonStorageDevice(object):
 pass

bag = MyUltimatePythonStorageDevice()
bag.x = 100
bag.y = 200
bag.version = 0.1
bag.completed = False

You can throw just about anything you want in a namespace. This use of a class (instance) is perfectly
fine, and you don't even have to know much about OOP to be able to use a class! (Note: These guys are
called instance attributes.) Fancy names aside, the instance is just used as a namespace.

file:///D|/1/0132269937/ch12lev1sec3.html (3 von 4) [13.11.2007 16:24:01]

Section 12.3. Namespaces

You will see just how useful they are as you delve deeper into OOP and discover what a convenience it is
during runtime just to be able to store temporary (but important) values! As stated in the final tenet of
the Zen of Python:

"Namespaces are one honking great idealet's do more of those!"

(To see the complete Zen, just import the this module within the interactive interpreter.)

file:///D|/1/0132269937/ch12lev1sec3.html (4 von 4) [13.11.2007 16:24:01]

Section 12.4. Importing Modules

12.4. Importing Modules

12.4.1. The import Statement

Importing a module requires the use of the import statement, whose syntax is:

import module1

import module2[
 :
import moduleN

It is also possible to import multiple modules on the same line like this ...

import module1[, module2[,... moduleN]]

... but the resulting code is not as readable as having multiple import statements. Also, there is no
performance hit and no change in the way that the Python bytecode is generated, so by all means, use
the first form, which is the preferred form.

Core Style: Module ordering for import statements

It is recommended that all module imports happen at the top of
Python modules. Furthermore, imports should follow this ordering:

● Python Standard Library modules
● Python third party modules
● Application-specific modules

Separate these groups with an empty line between the imports of
these three types of modules. This helps ensure that modules are
imported in a consistent manner and helps minimize the number of
import statements required in each of the modules. You can read more
about this and other import tips in Python's Style Guide, written up as
PEP 8.

When this statement is encountered by the interpreter, the module is imported if found in the search
path. Scoping rules apply, so if imported from the top level of a module, it has global scope; if imported
from a function, it has local scope.

When a module is imported the first time, it is loaded and executed.

12.4.2. The from-import Statement

file:///D|/1/0132269937/ch12lev1sec4.html (1 von 3) [13.11.2007 16:24:01]

Section 12.4. Importing Modules

It is possible to import specific module elements into your own module. By this, we really mean
importing specific names from the module into the current namespace. For this purpose, we can use the
from-import statement, whose syntax is:

from module import name1[, name2[,... nameN]]

12.4.3. Multi-Line Import

The multi-line import feature was added in Python 2.4 specifically for long from-import statements.
When importing many attributes from the same module, import lines of code tend to get long and wrap,
requiring a NEWLINE-escaping backslash. Here is the example imported (pun intended) directly from
PEP 328:

from Tkinter import Tk, Frame, Button, Entry, Canvas, \
 Text, LEFT, DISABLED, NORMAL, RIDGE, END

Your other option is to have multiple from-import statements:

from Tkinter import Tk, Frame, Button, Entry, Canvas, Text
from Tkinter import LEFT, DISABLED, NORMAL, RIDGE, END

We are also trying to stem usage on the unfavored from Tkinter import * (see the Core Style sidebar in
Section 12.5.3). Instead, programmers should be free to use Python's standard grouping mechanism
(parentheses) to create a more reasonable multi-line import statement:

from Tkinter import (Tk, Frame, Button, Entry, Canvas,
 Text, LEFT, DISABLED, NORMAL, RIDGE, END)

You can find out more about multi-line imports in the documentation or in PEP 328.

12.4.4. Extended Import Statement (as)

There are times when you are importing either a module or module attribute with a name that you are
already using in your application, or perhaps it is a name that you do not want to use. Maybe the name
is too long to type everywhere, or more subjectively, perhaps it is a name that you just plain do not like.

This had been a fairly common request from Python programmers: the ability to import modules and
module attributes into a program using names other than their original given names. One common

file:///D|/1/0132269937/ch12lev1sec4.html (2 von 3) [13.11.2007 16:24:01]

Section 12.4. Importing Modules

workaround is to assign the module name to a variable:

>>> import longmodulename
>>> short = longmodulename
>>> del longmodulename

In the example above, rather than using longmodulename.attribute, you would use the short.attribute
to access the same object. (A similar analogy can be made with importing module attributes using from-
import, see below.) However, to do this over and over again and in multiple modules can be annoying
and seem wasteful. Using extended import, you can change the locally bound name for what you are
importing. Statements like ...

 import Tkinter
 from cgi import FieldStorage

. . . can be replaced by . . .

 import Tkinter as tk
 from cgi import FieldStorage as form

This feature was added in Python 2.0. At that time, "as" was not implemented as a keyword; it finally
became one in Python 2.6. For more information on extended import, see the Python Language
Reference Manual and PEP 221.

file:///D|/1/0132269937/ch12lev1sec4.html (3 von 3) [13.11.2007 16:24:01]

file:///D|/1/0132269937/14051536.html

Section 12.5. Features of Module Import

12.5. Features of Module Import

12.5.1. Module "Executed" When Loaded

One effect of loading a module is that the imported module is "executed," that is, the top-level portion
of the imported module is directly executed. This usually includes setting up of global variables as well
as performing the class and function declarations. If there is a check for __name__ to do more on direct
script invocation, that is executed, too.

Of course, this type of execution may or may not be the desired effect. If not, you will have to put as
much code as possible into functions. Suffice it to say that good module programming style dictates that
only function and/or class definitions should be at the top level of a module.

For more information see Section 14.1.1 and the Core Note contained therein.

A new feature was added to Python which allows you to execute an installed module as a script. (Sure,
running your own script is easy [$ foo.py], but executing a module in the standard library or third party
package is trickier.) You can read more about how to do this in Section 14.4.3.

12.5.2. Importing versus Loading

A module is loaded only once, regardless of the number of times it is imported. This prevents the
module "execution" from happening over and over again if multiple imports occur. If your module
imports the sys module, and so do five of the other modules you import, it would not be wise to load sys
(or any other module) each time! So rest assured, loading happens only once, on first import.

12.5.3. Names Imported into Current
Namespace

Calling from-import brings the name into the current namespace, meaning that you do not use the
attribute/dotted notation to access the module identifier. For example, to access a variable named var in
module module that was imported with:

from module import var

we would use "var" by itself. There is no need to reference the module since you imported var into your
namespace. It is also possible to import all the names from the module into the current namespace
using the following from-import statement:

from module import *

Core Style: Restrict your use of "from module import *"

file:///D|/1/0132269937/ch12lev1sec5.html (1 von 5) [13.11.2007 16:24:02]

Section 12.5. Features of Module Import

In practice, using from module import * is considered poor style
because it "pollutes" the current namespace and has the potential of
overriding names in the current namespace; however, it is extremely
convenient if a module has many variables that are often accessed, or
if the module has a very long name.

We recommend using this form in only two situations. The first is
where the target module has many attributes that would make it
inconvenient to type in the module name over and over again. Two
prime examples of this are the Tkinter (Python/Tk) and NumPy
(Numeric Python) modules, and perhaps the socket module. The other
place where it is acceptable to use from module import * is within the
interactive interpreter, to save on the amount of typing.

12.5.4. Names Imported into Importer's Scope

Another side effect of importing just names from modules is that those names are now part of the local
namespace. A side effect is possibly hiding or overriding an existing object or built-in with the same
name. Also, changes to the variable affect only the local copy and not the original in the imported
module's namespace. In other words, the binding is now local rather than across namespaces.

Here we present the code to two modules: an importer, impter.py, and an importee, imptee.py.
Currently, imptr.py uses the from-import statement, which creates only local bindings.

#############
imptee.py
#############
foo = 'abc'
def show():
 print 'foo from imptee:', foo

#############
impter.py
#############
from imptee import foo, show
show()
foo = 123
print 'foo from impter:', foo
show()

Upon running the importer, we discover that the importee's view of its foo variable has not changed
even though we modified it in the importer.

foo from imptee: abc
foo from impter: 123
foo from imptee: abc

The only solution is to use import and fully qualified identifier names using the attribute/dotted notation.

#############

file:///D|/1/0132269937/ch12lev1sec5.html (2 von 5) [13.11.2007 16:24:02]

Section 12.5. Features of Module Import

impter.py
#############
import imptee
imptee.show()
imptee.foo = 123
print 'foo from impter:', imptee.foo
imptee.show()

Once we make the update and change our references accordingly, we now have achieved the desired
effect.

foo from imptee: abc
foo from impter: 123
foo from imptee: 123

12.5.5. Back to the __future__

Back in the days of Python 2.0, it was recognized that due to improvements, new features, and current
feature enhancements, certain significant changes could not be implemented without affecting some
existing functionality. To better prepare Python programmers for what was coming down the line, the
__future__ directives were implemented.

By using the from-import statement and "importing" future functionality, users can get a taste of new
features or feature changes enabling them to port their applications correctly by the time the feature
becomes permanent. The syntax is:

from __future__ import new_feature

It does not make sense to import __future__ so that is disallowed. (Actually, it is allowed but does not
do what you want it to do, which is enable all future features.) You have to import specific features
explicitly. You can read more about __future__ directives in PEP 236.

12.5.6. Warning Framework

Similar to the __future__ directive, it is also necessary to warn users when a feature is about to be
changed or deprecated so that they can take action based on the notice received. There are multiple
pieces to this feature, so we will break it down into components.

The first piece is the application programmer's interface (API). Programmers have the ability to issue
warnings from both Python programs (via the warnings module) as well as from C [via a call to
PyErr_Warn()].

Another part of the framework is a new set of warning exception classes. Warning is subclassed directly
from Exception and serves as the root of all warnings: UserWarning, DeprecationWarning, SyntaxWarning,

file:///D|/1/0132269937/ch12lev1sec5.html (3 von 5) [13.11.2007 16:24:02]

Section 12.5. Features of Module Import

and RuntimeWarning. These are described in further detail in Chapter 10.

The next component is the warnings filter. There are different warnings of different levels and severities,
and somehow the number and type of warnings should be controllable. The warnings filter not only
collects information about the warning, such as line number, cause of the warning, etc., but it also
controls whether warnings are ignored, displayedthey can be custom-formattedor turned into errors
(generating an exception).

Warnings have a default output to sys.stderr, but there are hooks to be able to change that, for
example, to log it instead of displaying it to the end-user while running Python scripts subject to issued
warnings. There is also an API to manipulate warning filters.

Finally, there are the command-line arguments that control the warning filters. These come in the form
of options to the Python interpreter upon startup via the -W option. See the Python documentation or
PEP 230 for the specific switches for your version of Python. The warning framework first appeared in
Python 2.1.

12.5.7. Importing Modules from ZIP Files

In version 2.3, the feature that allows the import of modules contained inside ZIP archives was added to
Python. If you add a .zip file containing Python modules (.py, .pyc, or .pyo files) to your search path, i.
e., PYTHONPATH or sys.path, the importer will search that archive for the module as if the ZIP file was a
directory.

If a ZIP file contains just a .py for any imported module, Python will not attempt to modify the archive
by adding the corresponding .pyc file, meaning that if a ZIP archive does not contain a matching .pyc
file, import speed should be expected to be slower than if they were present.

You are also allowed to add specific (sub)directories "under" a .zip file, i.e., /tmp/yolk.zip/lib/ would
only import from the lib/ subdirectory within the yolk archive. Although this feature is specified in PEP
273, the actual implementation uses the import hooks provided by PEP 302.

12.5.8. "New" Import Hooks

The import of modules inside ZIP archives was "the first customer" of the new import hooks specified by
PEP 302. Although we use the word "new," that is relative considering that it has been difficult to create
custom importers because the only way to accomplish this before was to use the other modules that
were either really old or didn't simplify writing importers. Another solution is to override __import__(),
but that is not an easy thing to do because you have to pretty much (re)implement the entire import
mechanism.

The new import hooks, introduced in Python 2.3, simplify it down to writing callable import classes, and

file:///D|/1/0132269937/ch12lev1sec5.html (4 von 5) [13.11.2007 16:24:02]

Section 12.5. Features of Module Import

getting them "registered" (or rather, "installed") with the Python interpreter via the sys module.

There are two classes that you need: a finder and a loader. An instance of these classes takes an
argumentthe full name of any module or package. A finder instance will look for your module, and if it
finds it, return a loader object. The finder can also take a path for finding subpackages. The loader is
what eventually brings the module into memory, doing whatever it needs to do to make a real Python
module object, which is eventually returned by the loader.

These instances are added to sys.path_hooks. The sys.path_importer_ cache just holds the instances so
that path_hooks is traversed only once. Finally, sys.meta_path is a list of instances that should be
traversed before looking at sys.path, for modules whose location you know and do not need to find. The
meta-path already has the loader objects reader to execute for specific modules or packages.

file:///D|/1/0132269937/ch12lev1sec5.html (5 von 5) [13.11.2007 16:24:02]

Section 12.6. Module Built-in Functions

12.6. Module Built-in Functions

The importation of modules has some functional support from the system. We will look at those now.

12.6.1. __import__ ()

The __import__() function is new as of Python 1.5, and it is the function that actually does the
importing, meaning that the import statement invokes the __import__() function to do its work. The
purpose of making this a function is to allow for overriding it if the user is inclined to develop his or her
own importation algorithm.

The syntax of __import__() is:

__import__(module_name[, globals[, locals[, fromlist]]])

The module_name variable is the name of the module to import, globals is the dictionary of current names
in the global symbol table, locals is the dictionary of current names in the local symbol table, and
fromlist is a list of symbols to import the way they would be imported using the from-import statement.

The globals, locals, and fromlist arguments are optional, and if not provided, default to globals(),
locals(), and [], respectively.

Calling import sys can be accomplished with

sys = __import__('sys')

12.6.2. globals() and locals()

The globals() and locals() built-in functions return dictionaries of the global and local namespaces,
respectively, of the caller. From within a function, the local namespace represents all names defined for
execution of that function, which is what locals() will return. globals(), of course, will return those
names globally accessible to that function.

From the global namespace, however, globals() and locals() return the same dictionary because the
global namespace is as local as you can get while executing there. Here is a little snippet of code that
calls both functions from both namespaces:

def foo():
 print '\ncalling foo()...'
 aString = 'bar'
 anInt = 42
 print "foo()'s globals:", globals().keys()
 print "foo()'s locals:", locals().keys()

print "__main__'s globals:", globals().keys()
print "__main__'s locals:", locals().keys()

file:///D|/1/0132269937/ch12lev1sec6.html (1 von 2) [13.11.2007 16:24:03]

Section 12.6. Module Built-in Functions

foo()

We are going to ask for the dictionary keys only because the values are of no consequence here (plus
they make the lines wrap even more in this text). Executing this script, we get the following output:

$ namespaces.py
__main__'s globals: ['__doc__', 'foo', '__name__',
'__builtins__']
__main__'s locals: ['__doc__', 'foo', '__name__',
'__builtins__']

calling foo()...
foo()'s globals: ['__doc__', 'foo', '__name__',
'__builtins__']
foo()'s locals: ['anInt', 'aString']

12.6.3. reload()

The reload() built-in function performs another import on a previously imported module. The syntax of
reload() is:

reload(module)

module is the actual module you want to reload. There are some criteria for using the reload() module.
The first is that the module must have been imported in full (not by using from-import), and it must
have loaded successfully. The second rule follows from the first, and that is the argument to reload()
the module itself and not a string containing the module name, i.e., it must be something like reload
(sys) instead of reload('sys').

Also, code in a module is executed when it is imported, but only once. A second import does not re-
execute the code, it just binds the module name. Thus reload() makes sense, as it overrides this default
behavior.

file:///D|/1/0132269937/ch12lev1sec6.html (2 von 2) [13.11.2007 16:24:03]

file:///D|/1/0132269937/14051536.html

Section 12.7. Packages

12.7. Packages

A package is a hierarchical file directory structure that defines a single Python application environment
that consists of modules and subpackages. Packages were added to Python 1.5 to aid with a variety of
problems including:

● Adding hierarchical organization to flat namespace
● Allowing developers to group related modules
● Allowing distributors to ship directories vs. bunch of files
● Helping resolve conflicting module names

Along with classes and modules, packages use the familiar attribute/dotted attribute notation to access
their elements. Importing modules within packages use the standard import and from-import statements.

12.7.1. Directory Structure

For our package examples, we will assume the directory structure below:

Phone/
 __init__.py
 common_util.py
 Voicedta/
 __init__.py
 Pots.py
 Isdn.py
 Fax/
 __init__.py
 G3.py
 Mobile/
 __init__.py
 Analog.py
 Digital.py
 Pager/
 __init__.py
 Numeric.py

Phone is a top-level package and Voicedta, etc., are subpackages. Import subpackages by using import
like this:

import Phone.Mobile.Analog
Phone.Mobile.Analog.dial()

Alternatively, you can use from-import in a variety of ways:

The first way is importing just the top-level subpackage and referencing down the subpackage tree
using the attribute/dotted notation:

from Phone import Mobile
Mobile.Analog.dial('555-1212')

file:///D|/1/0132269937/ch12lev1sec7.html (1 von 4) [13.11.2007 16:24:03]

Section 12.7. Packages

Furthermore, we can go down one more subpackage for referencing:

from Phone.Mobile import Analog
Analog.dial('555-1212')

In fact, you can go all the way down in the subpackage tree structure:

from Phone.Mobile.Analog import dial
dial('555-1212')

In our above directory structure hierarchy, we observe a number of __init__.py files. These are
initializer modules that are required when using from-import to import subpackages but they can be
empty if not used. Quite often, developers forget to add _inti_.py files to their package directories, so
starting in Python 2.5, this triggers an ImportWarning message.

However, it is silently ignored unless the -Wd option is given when launching the interpreter.

12.7.2. Using from-import with Packages

Packages also support the from-import all statement:

from package.module import *

However, such a statement is dependent on the operating system's filesystem for Python to determine
which files to import. Thus the __all__ variable in __init__.py is required. This variable contains all the
module names that should be imported when the above statement is invoked if there is such a thing. It
consists of a list of module names as strings.

12.7.3. Absolute Import

As the use of packages becomes more pervasive, there have been more cases of the import of
subpackages that end up clashing with (and hiding or shadowing) "real" or standard library modules
(actually their names). Package modules will hide any equivalently-named standard library module
because it will look inside the package first to perform a relative import, thus hiding access to the
standard library module.

Because of this, all imports are now classified as absolute, meaning that names must be packages or
modules accessible via the Python path (sys.path or PYTHONPATH).

file:///D|/1/0132269937/ch12lev1sec7.html (2 von 4) [13.11.2007 16:24:03]

Section 12.7. Packages

The rationale behind this decision is that subpackages can still be accessed via sys.path, i.e., import
Phone.Mobile.Analog. Prior to this change, it was legal to have just import Analog from modules inside
the Mobile subpackage.

As a compromise, Python allows relative importing where programmers can indicate the location of a
subpackage to be imported by using leader dots in front of the module or package name. For more
information, please see Section 12.7.4.

The absolute import feature is the default starting in Python 2.7. (This feature, absolute_import, can be
imported from __future__ starting in version 2.5.) You can read more about absolute import in PEP 328.

12.7.4. Relative Import

As described previously, the absolute import feature takes away certain privileges of the module writer
of packages. With this loss of freedom in import statements, something must be made available to proxy
for that loss. This is where a relative import comes in. The relative import feature alters the import
syntax slightly to let programmers tell the importer where to find a module in a subpackage. Because
the import statements are always absolute, relative imports only apply to from-import statements.

The first part of the syntax is a leader dot to indicate a relative import. From there, any additional dot
represents a single level above the current from where to start looking for the modules being imported.

Let us look at our example above again. From within Analog.Mobile. Digital, i.e., the Digital.py
module, we cannot simply use this syntax anymore. The following will either still work in older versions
of Python, generate a warning, or will not work in more contemporary versions of Python:

import Analog
from Analog import dial

This is due to the absolute import limitation. You have to use either the absolute or relative imports.
Below are some valid imports:

from Phone.Mobile.Analog import dial
from .Analog import dial
from ..common_util import setup
from ..Fax import G3.dial.

Relative imports can be used starting in Python 2.5. In Python 2.6, a deprecation warning will appear for
all intra-package imports not using the relative import syntax. You can read more about relative import
in the Python documentation and in PEP 328.

file:///D|/1/0132269937/ch12lev1sec7.html (3 von 4) [13.11.2007 16:24:03]

Section 12.7. Packages

file:///D|/1/0132269937/ch12lev1sec7.html (4 von 4) [13.11.2007 16:24:03]

file:///D|/1/0132269937/14051536.html

Section 12.8. Other Features of Modules

12.8. Other Features of Modules

12.8.1. Auto-Loaded Modules

When the Python interpreter starts up in standard mode, some modules are loaded by the interpreter
for system use. The only one that affects you is the __builtin__ module, which normally gets loaded in
as the __builtins__ module.

The sys.modules variable consists of a dictionary of modules that the interpreter has currently loaded (in
full and successfully) into the interpreter. The module names are the keys, and the location from which
they were imported are the values.

For example, in Windows, the sys.modules variable contains a large number of loaded modules, so we
will shorten the list by requesting only the module names. This is accomplished by using the dictionary's
keys() method:

>>> import sys
>>> sys.modules.keys()
['os.path', 'os', 'exceptions', '__main__', 'ntpath',
'strop', 'nt', 'sys', '__builtin__', 'site',
'signal', 'UserDict', 'string', 'stat']

The loaded modules for Unix are quite similar:

>>> import sys
>>> sys.modules.keys()
['os.path', 'os', 'readline', 'exceptions',
'__main__', 'posix', 'sys', '__builtin__', 'site',
'signal', 'UserDict', 'posixpath', 'stat']

12.8.2. Preventing Attribute Import

If you do not want module attributes imported when a module is imported with "from module import *",
prepend an underscore (_) to those attribute names (you do not want imported). This minimal level of
data hiding does not apply if the entire module is imported or if you explicitly import a "hidden"
attribute, e.g., import foo._bar.

12.8.3. Case-Insensitive Import

There are various operating systems with case-insensitive file systems. Prior to version 2.1, Python
attempted to "do the right thing" when importing modules on the various supported platforms, but with
the growing popularity of the MacOS X and Cygwin platforms, certain deficiencies could no longer be
ignored, and support needed to be cleaned up.

file:///D|/1/0132269937/ch12lev1sec8.html (1 von 4) [13.11.2007 16:24:04]

Section 12.8. Other Features of Modules

The world was pretty clean-cut when it was just Unix (case-sensitive) and Win32 (case-insensitive), but
these new case-insensitive systems coming online were not ported with the case-insensitive features.
PEP 235, which specifies this feature, attempts to address this weakness as well as taking away some
"hacks" that had existed for other systems to make importing modules more consistent.

The bottom line is that for case-insensitive imports to work properly, an environment variable named
PYTHONCASEOK must be defined. Python will then import the first module name that is found (in a case-
insensitive manner) that matches. Otherwise Python will perform its native case-sensitive module name
matching and import the first matching one it finds.

12.8.4. Source Code Encoding

Starting in Python 2.3, it is now possible to create your Python module file in a native encoding other
than 7-bit ASCII. Of course ASCII is the default, but with an additional encoding directive at the top of
your Python modules, it will enable the importer to parse your modules using the specified encoding and
designate natively encoded Unicode strings correctly so you do not have to worry about editing your
source files in a plain ASCII text editor and have to individually "Unicode-tag" each string literal.

An example directive specifying a UTF-8 file can be declared like this:

#!/usr/bin/env python
-*- coding: UTF-8 -*-

If you execute or import modules that contain non-ASCII Unicode string literals and do not have an
encoding directive at the top, this will result in a DeprecationWarning in Python 2.3 and a syntax error
starting in 2.5. You can read more about source code encoding in PEP 263.

12.8.5. Import Cycles

Working with Python in real-life situations, you discover that it is possible to have import loops. If you
have ever worked on any large Python project, you are likely to have run into this situation.

Let us take a look at an example. Assume we have a very large product with a very complex command-
line interface (CLI). There are a million commands for your product, and as a result, you have an overly
massive handler (OMH) set. Every time a new feature is added, from one to three new commands must
be added to support the new feature. This will be our omh4cli.py script:

from cli4vof import cli4vof

command line interface utility function
def cli_util():
 pass

file:///D|/1/0132269937/ch12lev1sec8.html (2 von 4) [13.11.2007 16:24:04]

Section 12.8. Other Features of Modules

overly massive handlers for the command line interface
def omh4cli():
 :
 cli4vof()
 :
omh4cli()

You can pretend that the (empty) utility function is a very popular piece of code that most handlers
must use. The overly massive handlers for the command-line interface are all in the omh4cli() function.
If we have to add a new command, it would be called from here.

Now, as this module grows in a boundless fashion, certain smarter engineers decide to split off their new
commands into a separate module and just provide hooks in the original module to access the new stuff.
Therefore, the code is easier to maintain, and if bugs were found in the new stuff, one would not have to
search through a one-megabyte-plus-sized Python file.

In our case, we have an excited product manager asking us to add a "very outstanding feature" (VOF).
Instead of integrating our stuff into omh4cli.py, we create a new script, cli4vof.py:

import omh4cli

command-line interface for a very outstanding feature
def cli4vof():
 omh4cli.cli_util()

As mentioned before, the utility function is a must for every command, and because we do not want to
cut and paste its code from the main handler, we import the main module and call it that way. To finish
off our integration, we add a call to our handler into the main overly massive handler, omh4cli().

The problem occurs when the main handler omh4cli imports our new little module cli4vof (to get the
new command function) because cli4vof imports omh4cli (to get the utility function). Our module
import fails because Python is trying to import a module that was not previously fully imported the first
time:

$ python omh4cli.py
Traceback (most recent call last):
 File "omh4cli.py", line 3, in ?
 from cli4vof import cli4vof
 File "/usr/prod/cli4vof.py", line 3, in ?
 import omh4cli
 File "/usr/prod/omh4cli.py", line 3, in ?
 from cli4vof import cli4vof
ImportError: cannot import name cli4vof

Notice the circular import of cli4vof in the traceback. The problem is that in order to call the utility
function, cli4vof has to import omh4cli. If it did not have to do that, then omh4cli would have completed
its import of cli4vof successfully and there would be no problem. The issue is that when omh4cli is
attempting to import cli4vof, cli4vof is trying to import omh4cli. No one finishes an import, hence the
error. This is just one example of an import cycle. There are much more complicated ones out in the real
world.

file:///D|/1/0132269937/ch12lev1sec8.html (3 von 4) [13.11.2007 16:24:04]

Section 12.8. Other Features of Modules

The workaround for this problem is almost always to move one of the import statements, e.g., the
offending one. You will commonly see import statements at the bottom of modules. As a beginning
Python programmer, you are used to seeing them in the beginning, but if you ever run across import
statements at the end of modules, you will now know why. In our case, we cannot move the import of
omh4cli to the end, because if cli4vof() is called, it will not have the omh4cli name loaded yet:

$ python omh4cli.py
Traceback (most recent call last):
 File "omh4cli.py", line 3, in ?
 from cli4vof import cli4vof
 File "/usr/prod/cli4vof.py", line 7, in ?
 import omh4cli
 File "/usr/prod/omh4cli.py", line 13, in ?
 omh4cli()
 File "/usr/prod/omh4cli.py", line 11, in omh4cli
 cli4vof()
 File "/usr/prod/cli4vof.py", line 5, in cli4vof
 omh4cli.cli_util()
NameError: global name 'omh4cli' is not defined

No, our solution here is to just move the import statement into the cli4vof() function declaration:

def cli4vof():
 import omh4cli
 omh4cli.cli_util()

This way, the import of the cli4vof module from omh4cli completes successfully, and on the tail end,
calling the utility function is successful because the omh4cli name is imported before it is called. As far
as execution goes, the only difference is that from cli4vof, the import of omh4cli is performed when
cli4vof.cli4vof() is called and not when the cli4vof module is imported.

12.8.6. Module Execution

There are many ways to execute a Python module: script invocation via the command-line or shell,
execfile(), module import, interpreter -m option, etc. These are out of the scope of this chapter. We
refer you to Chapter 14, "Execution Environment," which covers all of these features in full detail.

file:///D|/1/0132269937/ch12lev1sec8.html (4 von 4) [13.11.2007 16:24:04]

file:///D|/1/0132269937/14051536.html

Section 12.9. Related Modules

12.9. Related Modules

The following are auxiliary modules that you may use when dealing with the import of Python modules.
Of these listed below, modulefinder, pkgutil, and zipimport are new as of Python 2.3, and the
distutils package was introduced back in version 2.0.

● imp this module gives you access to some lower-level importer functionality.
● modulefinder this is a module that lets you find all the modules that are used by a Python script.

You can either use the ModuleFinder class or just run it as a script giving it the filename of a
(nother) Python module with which to do module analysis on.

● pkgutil this module gives those putting together Python packages for distribution a way to place
package files in various places yet maintain the abstraction of a single "package" file hierarchy. It
uses *.pkg files in a manner similar to the way the site module uses *.pth files to help define the
package path.

● site using this module along with *.pth files gives you the ability to specify the order in which
packages are added to your Python path, i.e., sys.path, PYTHONPATH. You do not have to import it
explicitly as the importer already uses it by defaultyou need to use the -S switch when starting
up Python to turn it off. Also, you can perform further arbitrary site-specific customizations by
adding a sitecustomize module whose import is attempted after the path manipulations have
been completed.

● zipimport this module allows you to be able to import Python modules that are archived in ZIP
files. Note that the functionality in this file is "automagically" called by the importer so there is no
need to import this file for use in any application. We mention it here solely as a reference.

● distutils this package provides support for building, installing, and distributing Python modules
and packages. It also aids in building Python extensions written in C/C++. More information on
distutils can be found in the Python documentation available at these links:

http://docs.python.org/dist/dist.html

http://docs.python.org/inst/inst.html

file:///D|/1/0132269937/ch12lev1sec9.html [13.11.2007 16:24:04]

http://docs.python.org/dist/dist.html
http://docs.python.org/inst/inst.html

Section 12.10. Exercises

12.10. Exercises

12-1. PathSearch versus SearchPath. What is the difference between a path search and a
search path?

12-2. Importing Attributes. Assume you have a function called foo() in your module
mymodule.

a.

What are the two ways of importing this function into your namespace for
invocation?

b.

What are the namespace implications when choosing one over the other?

12-3. Importing. What are the differences between using "import module" and "from module
import *"?

12-4. Namespaces versus Variable Scope. How are namespaces and variable scopes
different from each other?

12-5. Using __import__().

a.

Use __import__() to import a module into your namespace. What is the correct
syntax you finally used to get it working?

b.

Same as above, but use __import__() to import only specific names from
modules.

file:///D|/1/0132269937/ch12lev1sec10.html (1 von 2) [13.11.2007 16:24:05]

Section 12.10. Exercises

12-6. Extended Import. Create a new function called importAs(). This function will import a
module into your namespace, but with a name you specify, not its original name. For
example, calling newname=importAs ('mymodule') will import the module mymodule, but
the module and all its elements are accessible only as newname or newname.attr. This is
the exact functionality provided by the new extended import syntax introduced in
Python 2.0.

12-7. Import Hooks. Study the import hooks mechanism provided for by the implementation
of PEP 302. Implement your own import mechanism, which allows you to obfuscate
your Python modules (encryption, bzip2, rot13, etc.) so that the interpreter can
decode them properly and import them properly. You may wish to look at how it works
with importing zip files (see Section 12.5.7).

file:///D|/1/0132269937/ch12lev1sec10.html (2 von 2) [13.11.2007 16:24:05]

Chapter 13. Object-Oriented Programming

Chapter 13. Object-Oriented Programming

Chapter Topics

● Introduction
● Object-Oriented Programming
● Classes
● Instances
● Binding and Method Invocation
● Subclassing, Derivation, and Inheritance
● Built-in Functions
● Customizing Classes
● Privacy
● Delegation and Wrapping
● Advanced Features of New-Style Classes
● Related Modules

Classes finally introduce the notion of object-oriented programming (OOP) to our picture. We will first
present a high-level overview, covering all the main aspects of using classes and OOP in Python. The
remainder of the chapter examines details on classes, class instances, and methods. We will also
describe derivation or subclassing in Python and what its inheritance model is. Finally, Python gives
programmers the ability to customize classes with special functionality, including those that overload
operators and emulate Python types. We will show you how to implement some of these special
methods to customize your classes so that they behave more like Python's built-in types.

With this said, however, we would like to add that there have been some exciting changes with regard
to Python OOP. In version 2.2, the Python community finally saw the unification of types and classes,
and with the new-style classes come much more advanced OOP features. New-style classes represent a
superset of features from classic (or old-style) classes, the original class objects since Python was born.

We will first present the core features common to both types of classes, and then introduce those more
advanced features found only in Python's new-style classes.

file:///D|/1/0132269937/ch13.html [13.11.2007 16:24:05]

file:///D|/1/0132269937/14051536.html

Section 13.1. Introduction

13.1. Introduction

Before we get into the nitty-gritty of OOP and classes, we begin with a high-level overview, then present
some simple examples to get you warmed up. If you are new to object-oriented programming, you may
wish to skim this section first, then begin the formal reading in Section 13.2. If you are already familiar
with object-oriented programming and want to see how it is done in Python, finish this section and go
straight to Section 13.3 for more details.

The main two entities in Python object-oriented programming are classes and class instances (see
Figure 13-1).

Figure 13-1. The factory manufacturing machines on the left are analogous to
classes, while the toys produced are instances of their respective classes.

Although each instance has the basic underlying structure, individual
attributes like color or feet can be changedthese are similar to instance

attributes.

file:///D|/1/0132269937/ch13lev1sec1.html (1 von 8) [13.11.2007 16:24:06]

file:///D|/1/0132269937/14051536.html

Section 13.1. Introduction

Classes and Instances

Classes and instances are related to each other: classes provide the definition of an object, and
instances are "the real McCoy," the objects specified in the class definition brought to life.

Here is an example of how to create a class:

class MyNewObjectType(bases):
 'define MyNewObjectType class'
 class_suite

The keyword is class, followed by the class name. What follows is the suite of code that defines the
class. This usually consists of various definitions and declarations. The biggest difference between
declaring new-style classes and classic classes is that all new-style classes must inherit from at least one
parent class. The bases argument is one (single inheritance) or more (multiple inheritance) parent
classes to derive from.

The "mother of all classes" is object. If you do not have any ancestor classes to inherit from, use object
as your default. It must exist at the top of every class hierarchy. If you do not subclass object or a class
that subclasses object, then you have defined a classic class:

file:///D|/1/0132269937/ch13lev1sec1.html (2 von 8) [13.11.2007 16:24:06]

Section 13.1. Introduction

class MyNewObjectType:
 'define MyNewObjectType classic class'
 class_suite

Conversely, if you do not specify a parent class, or if you subclass a base class without a parent class,
you have created a classic class. Most Python classes are still classic classes. There really is no problem
with using them until they become obsolete in some future version of Python. We do recommend that
you use new-style classes whenever possible, but for learning purposes, either type will suffice.

The process of creating an instance is called instantiation, and it is carried out like this (note the
conspicuous absence of a new keyword):

 myFirstObject = MyNewObjectType()

The class name is given as an "invocation," using the familiar function operators (()). You then
typically assign that newly created instance to a variable. The assignment is not required syntactically,
but if you do not save your instance to a variable, it will be of no use and will be automatically garbage-
collected because there would no references to that instance. What you would be doing is allocating
memory, then immediately deallocating it.

Classes can be as simple or as complicated as you wish them to be. At a very minimum, classes can be
used as namespaces (see Chapter 11 for more on these). By this, we mean that you can store data into
variables and group them in such a way that they all share the same relationshipa named relationship
using the standard Python dotted-attribute notation. For example, you may have a class without any
inherent attributes and merely use such a class to provide a namespace for data, giving your class
characteristics similar to records in Pascal or structures in C, or, in other words, use the class simply as
a container object with shared naming.

Here is an example:

class MyData(object):
 pass

Recall that the pass statement is used where code is required syntactically, but no operation is desired.
In this case, the required code is the class suite, but we do not wish to provide one. The class we just
defined has no methods or any other attributes. We will now create an instance to use the class simply
as a namespace container.

 >>> mathObj = MyData()
 >>> mathObj.x = 4
 >>> mathObj.y = 5
 >>> mathObj.x + mathObj.y
 9
 >>> mathObj.x * mathObj.y
 20

We could have used variables "x" and "y" to accomplish the same thing, but in our case, mathObj.x and
mathObj.y are related by the instance name, mathObj. This is what we mean by using classes as
namespace containers. mathObj.x and mathObj.y are known as instance attributes because they are only
attributes of their instance object (mathObj), not of the class (MyData). As we will see later on in this

file:///D|/1/0132269937/ch13lev1sec1.html (3 von 8) [13.11.2007 16:24:06]

Section 13.1. Introduction

chapter, these attributes really are dynamic in nature: you do not need to pre-declare or pre-assign
them in the constructor or anywhere else.

Methods

One way we can improve our use of classes is to add functions to them. These class functions are known
by their more common name, methods. In Python, methods are defined as part of the class definition,
but can be invoked only on an instance. In other words, the path one must take to finally be able to call
a method goes like this: (1) define the class (and the methods), (2) create an instance, and finally, (3)
invoke the method on that instance. Here is an example class with a method:

class MyDataWithMethod(object): # define the class
 def printFoo(self): # define the method
 print 'You invoked printFoo()!'

You will notice the self argument, which must be present in all method declarations. That argument,
representing the instance object, is passed to the method implicitly by the interpreter when you invoke
a method on an instance, so you, yourself, do not have to worry about passing anything in (specifically
self, which is automatically passed in for you).

For example, if you have a method that takes two arguments, all of your calls should only pass in the
second argument. Python passes in self for you as the first. If you make a mistake, do not worry about
it. When an error occurs, Python will tell you that you have passed in the wrong number of arguments.
You may make this mistake only once anyway... you'll certainly remember each time after that!

The requirement of the instance (self) in each method's signature will be something new to those of
you coming from C++ or Java, so be aware of that. It is all part of Python's philosophy of being
explicitly clear. In those other languages, self is called "this." You can find out more about self in the
Core Note in Section 13.7 on page 540. Requiring the instance only applies to regular methods and not
static or class methods, although the latter requires the class rather than the instance. You can find out
more about static and class methods in Section 13.8 on page 542.

Now we will instantiate the class and invoke the method once we have an instance:

 >>> myObj = MyDataWithMethod() # create the instance
 >>> myObj.printFoo() # now invoke the method
 You invoked printFoo()!

We conclude this introductory section by giving you a slightly more complex example of what you can do
with classes (and instances) and also introducing you to the special method __init__() as well as
subclassing and inheritance.

For those of you who are already familiar with object-oriented programming, __init__() is similar to the
class constructor. If you are new to the world of OOP, a constructor is simply a special method that is
typically called to create a new object. In Python, __init__() is not really the constructor. You do not
call "new" to create a new object. (Python does not even have a keyword called "new" anyway.) Instead,
Python creates the instance for you and then calls __init__() during instantiation to define additional
behavior that should occur when a class is instantiated, i.e., setting up initial values or running some
preliminary diagnostic codebasically performing any special tasks or setup after the instance is created
but before the new instance is returned from the instantiation call.

file:///D|/1/0132269937/ch13lev1sec1.html (4 von 8) [13.11.2007 16:24:06]

Section 13.1. Introduction

(We will add print statements to our methods to better illustrate when certain methods are called. It is
generally not typical to have input or output statements in functions unless output is a predetermined
characteristic of the body of code.)

Creating a Class (Class Definition)

class AddrBookEntry(object): # class definition
 'address book entry class'
 def __init__(self, nm, ph): # define constructor
 self.name = nm # set name
 self.phone = ph # set phone#
 print 'Created instance for:', self.name
 def updatePhone(self, newph): # define method
 self.phone = newph
 print 'Updated phone# for:', self.name

In the definition for the AddrBookEntry class, we define two methods: __init__() and updatePhone().
__init__() is called when instantiation occurs, that is, when AddrBookEntry() is invoked. You can think of
instantiation as an implicit call to __init__() because the arguments given to AddrBookEntry() are
exactly the same as those that are received by __init__() (except for self, which is passed
automatically for you).

Recall that the self (instance object) argument is passed in automatically by the interpreter when the
method is invoked on an instance, so in our __init__() above, the only required arguments are nm and
ph, representing the name and telephone number, respectively. __init__() sets these two instance
attributes on instantiation so that they are available to the programmer by the time the instance is
returned from the instantiation call.

As you may have surmised, the purpose of the updatePhone() method is to replace an address book
entry's telephone number attribute.

Creating Instances (Instantiation)

 >>> john = AddrBookEntry('John Doe', '408-555-1212')
 Created instance for: John Doe
 >>> jane = AddrBookEntry('Jane Doe', '650-555-1212')
 Created instance for: Jane Doe

These are our instantiation calls, which, in turn, invoke __init__(). Recall that an instance object is
passed in automatically as self. So, in your head, you can replace self in methods with the name of the
instance. In the first case, when object john is instantiated, it is john.name that is set, as you can confirm
below.

Also, without the presence of default arguments, both parameters to __init__() are required as part of
the instantiation.

Accessing Instance Attributes

 >>> john

file:///D|/1/0132269937/ch13lev1sec1.html (5 von 8) [13.11.2007 16:24:06]

Section 13.1. Introduction

 <__main__.AddrBookEntry instance at 80ee610>
 >>> john.name
 'John Doe'
 >>> john.phone
 '408-555-1212'
 >>> jane.name
 'Jane Doe'
 >>> jane.phone
 '650-555-1212'

Once our instance was created, we can confirm that our instance attributes were indeed set by __init__
() during instantiation. "Dumping" the instance within the interpreter tells us what kind of object it is.
(We will discover later how we can customize our class so that rather than seeing the default <...>
Python object string, a more desired output can be customized.)

Method Invocation (via Instance)

 >>> john.updatePhone('415-555-1212')
 Updated phone# for: John Doe
 >>> john.phone
 '415-555-1212'

The updatePhone() method requires one argument (in addition to self): the new phone number. We
check our instance attribute right after the call to updatePhone(), making sure that it did what was
advertised.

Creating a Subclass

Subclassing with inheritance is a way to create and customize a new class type with all the features of
an existing class but without modifying the original class definition. The new subclass can be customized
with special functionality unique only to that new class type. Aside from its relationship to its parent or
base class, a subclass has all the same features as any regular class and is instantiated in the same way
as all other classes. Note below that a parent class is part of the subclass declaration:

class EmplAddrBookEntry(AddrBookEntry):
 'Employee Address Book Entry class'
 def __init__(self, nm, ph, id, em):
 AddrBookEntry.__init__(self, nm, ph)
 self.empid = id
 self.email = em

 def updateEmail(self, newem):
 self.email = newem
 print 'Updated e-mail address for:', self.name

We will now create our first subclass, EmplAddrBookEntry. In Python, when classes are derived,
subclasses inherit the base class attributes, so in our case, we will not only define the methods __init__
() and updateEmail(), but EmplAddrBookEntry will also inherit the updatePhone() method from
AddrBookEntry.

file:///D|/1/0132269937/ch13lev1sec1.html (6 von 8) [13.11.2007 16:24:06]

Section 13.1. Introduction

Each subclass must define its own constructor if desired, otherwise the base class constructor will be
called. However, if a subclass overrides a base class constructor, the base class constructor will not be
called automaticallysuch a request must be made explicitly as we have above. For our subclass, we
make an initial call to the base class constructor before performing any "local" tasks, hence the call to
AddrBookEntry. __init__() to set the name and phone number. Our subclass sets two additional instance
attributes, the employee ID and e-mail address, which are set by the remaining lines of our constructor.

Note how we have to explicitly pass the self instance object to the base class constructor because we
are not invoking that method on an instance. We are invoking that method on an instance of a subclass.
Because we are not invoking it via an instance, this unbound method call requires us to pass an
acceptable instance (self) to the method.

We close this section with examples of how to create an instance of the subclass, accessing its attributes
and invoking its methods, including those inherited from the parent class.

Using a Subclass

 >>> john = EmplAddrBookEntry('John Doe', '408-555-1212',
 42, 'john@spam.doe')
 Created instance for: John Doe
 >>> john
 <__main__.EmplAddrBookEntry object at 0x62030>
 >>> john.name
 'John Doe'
 >>> john.phone
 '408-555-1212'
 >>> john.email
 'john@spam.doe'
 >>> john.updatePhone('415-555-1212')
 Updated phone# for: John Doe
 >>> john.phone
 '415-555-1212'
 >>> john.updateEmail('john@doe.spam')
 Updated e-mail address for: John Doe
 >>> john.email
 'john@doe.spam'

Core Style: Naming classes, attributes, and methods

Class names traditionally begin with a capital letter. This is the
standard convention that will help you identify classes, especially
during instantiation (which would look like a function call otherwise).
In particular, data attributes should sound like data value names, and
method names should indicate action toward a specific object or value.
Another way to phrase this is: Use nouns for data value names and
predicates (verbs plus direct objects) for methods. The data items are
the objects acted upon, and the methods should indicate what action
the programmer wants to perform on the object.

In the classes we defined above, we attempted to follow this guideline,
with data values such as "name," "phone," and "email," and actions
such as "updatePhone" and "updateEmail." This is known as
"mixedCase" or "camelCase." The Python Style Guide favors using
underscores over camelCase, i.e,. "update_phone," "update_email."
Classes should also be well named; some of those good names include

file:///D|/1/0132269937/ch13lev1sec1.html (7 von 8) [13.11.2007 16:24:06]

Section 13.1. Introduction

"AddrBookEntry," "RepairShop," etc.

We hope that you now have some understanding of how object-oriented programming is accomplished
using Python. The remaining sections of this chapter will take you deeper into all the facets of object-
oriented programming and Python classes and instances.

file:///D|/1/0132269937/ch13lev1sec1.html (8 von 8) [13.11.2007 16:24:06]

file:///D|/1/0132269937/14051536.html

Section 13.2. Object-Oriented Programming

13.2. Object-Oriented Programming

The evolution of programming has taken us from a sequence of step-by-step instructions in a single flow
of control to a more organized approach whereby blocks of code could be cordoned off into named
subroutines and defined functionality. Structured or procedural programming lets us organize our
programs into logical blocks, often repeated or reused. Creating applications becomes a more logical
process; actions are chosen which meet the specifications, then data are created to be subjected to
those actions. Deitel and Deitel refer to structured programming as "action-oriented" due to the fact that
logic must be "enacted" on data that have no associated behaviors.

However, what if we could impose behavior on data? What if we were able to create or program a piece
of data modeled after real-life entities that embody both data characteristics along with behaviors? If we
were then able to access the data attributes via a set of defined interfaces (aka a set of accessor
functions), such as an automated teller machine (ATM) card or a personal check to access your bank
account, then we would have a system of "objects" where each could interact not only with itself, but
also with other objects in a larger picture.

Object-oriented programming takes this evolutionary step by enhancing structured programming to
enable a data/behavior relationship: data and logic are now described by a single abstraction with which
to create these objects. Real-world problems and entities are stripped down to their bare essentials,
providing an abstraction from which they can be coded similarly or into objects that can interact with
objects in the system. Classes provide the definitions of such objects, and instances are realizations of
such definitions. Both are vital components for object-oriented design (OOD), which simply means to
build your system architected in an object-oriented fashion.

13.2.1. Relationship between OOD and OOP

Object-oriented design does not specifically require an object-oriented programming language. Indeed,
OOD can be performed in purely structural languages such as C, but this requires more effort on the
part of the programmer who must build data types with object qualities and characteristics. Naturally,
OOP is simplified when a language has built-in OO properties that enable smoother and more rapid
development of OO programs.

Conversely, an object-oriented language may not necessarily force one to write OO programs. C++ can
be used simply as a "better C." Java, on the other hand, requires everything to be a class, and further
dictates only one class definition per source file. In Python, however, neither classes nor OOP are
required for everyday programming. Even though it is a language that is object-oriented by design and
that has constructs to support OOP, Python does not restrict or require you to write OO code for your
application. Rather, OOP is a powerful tool that is at your disposal when you are ready to evolve, learn,
transition, or otherwise move toward OOP. The creator of Python often refers to this phenomenon as
being able to "see the forest through the trees."

13.2.2. Real-World Problems

One of the most important reasons to consider working in OOD is that it provides a direct approach to
modeling and solving real-world problems and situations. For example, let us attempt to model an
automobile mechanic shop where you would take your car in for repair. There are two general entities
we would have to create: humans who interact with and in such a "system," and a physical location for
the activities that define a mechanic shop. Since there are more and different types of the former, we
will describe them first, then conclude with the latter.

A class called Person would be created to represent all humans involved in such an activity. Instances of

file:///D|/1/0132269937/ch13lev1sec2.html (1 von 3) [13.11.2007 16:24:07]

Section 13.2. Object-Oriented Programming

Person would include the Customer, the Mechanic, and perhaps the Cashier. Each of these instances would
have similar as well as unique behaviors. For example, all would have the talk() method as a means of
vocal communication as well as a drive_car() method. Only the Mechanic would have the repair_car()
method and only the Cashier would have a ring_sale() method. The Mechanic will have a
repair_certification attribute while all Persons would have a drivers_license attribute.

Finally, all of these instances would be participants in one overseeing class, called the RepairShop, which
would have operating_hours, a data attribute that accesses time functionality to determine when
Customers can bring in their vehicles and when Employees such as Mechanics and Cashiers show up for
work. The RepairShop might also have a AutoBay class that would have instances such as SmogZone,
TireBrakeZone, and perhaps one called GeneralRepair.

The point of our fictitious RepairShop is to show one example of how classes and instances plus their
behaviors can be used to model a true-to-life scenario. You can probably also imagine classes such as
an Airport, a Restaurant, a ChipFabPlant, a Hospital, or even a MailOrderMusic business, all complete
with their own participants and functionality.

13.2.3. *Buzzword-Compliance

For those of you who are already familiar with all the lingo associated with OOP, here is how Python
stacks up:

Abstraction/Implementation

Abstraction refers to the modeling of essential aspects, behavior, and characteristics of real-world
problems and entities, providing a relevant subset as the definition of a programmatic structure that can
realize such models. Abstractions not only contain the data attributes of such a model, but also define
interfaces with that data. An implementation of such an abstraction is the realization of that data and
the interfaces that go along with it. Such a realization should remain hidden from and irrelevant to the
client programmer.

Encapsulation/Interfaces

Encapsulation describes the concept of data/information hiding and providing interfaces or accessor
functions to the data attributes. Direct access to data by any client, bypassing the interfaces, goes
against the principles of encapsulation, but the programmer is free to allow such access. As part of the
implementation, the client should not even know how the data attributes are architected within the
abstraction. In Python, all class attributes are public, but names may be "mangled" to discourage
unauthorized access, but otherwise not prevented. It is up to the designer to provide the appropriate
interfaces to the data so that the client programmer does not have to resort to manipulating the
encapsulated data attributes.

Composition

Composition extends our description of classes, enabling multiple yet distinct classes to be combined
into a larger entity to solve a real-world problem. Composition describes a singular, complex system
such as a class made up of other, smaller components such as other classes, data attributes, and
behaviors, all of which are combined, embodying "has-a" relationships. For example, the RepairShop
"has a" Mechanic (hopefully at least one) and also "has a" Customer (again, hopefully at least one).

These components are composed either via association, meaning that access to subcomponents is
granted (for the RepairShop, a customer may enter and request a SmogCheck, the client programmer

file:///D|/1/0132269937/ch13lev1sec2.html (2 von 3) [13.11.2007 16:24:07]

Section 13.2. Object-Oriented Programming

interfacing with components of the RepairShop), or aggregation, encapsulating components that are then
accessed only via defined interfaces, and again, hidden from the client programmer. Continuing our
example, the client programmer may be able to make a SmogCheck request on behalf of the Customer, but
has no ability to interact with the SmogZone part of the RepairShop, which is accessed only via internal
controls of the RepairShop when the smogCheckCar() method is called. Both forms of composition are
supported in Python.

Derivation/Inheritance/Hierarchy

Derivation describes the creation of subclasses, new classes that retain all desired data and behavior of
the existing class type but permit modification or other customization, all without having to modify the
original class definition. Inheritance describes the means by which attributes of a subclass are
"bequeathed from" an ancestor class. From our earlier example, a Mechanic may have more car skill
attributes than a Customer, but individually, each "is a" Person, so it is valid to invoke the talk() method,
which is common to all instances of Person, for either of them. Hierarchy describes multiple
"generations" of derivation which can be depicted graphically as a "family tree," with successive
subclasses having relationships with ancestor classes.

Generalization/Specialization

Generalization describes all the traits a subclass has with its parent and ancestor classes, so subclasses
are considered to have an "is-a" relationship with ancestor classes because a derived object (instance) is
an "example" of an ancestor class. For example, a Mechanic "is a" Person, a Car "is a" Vehicle, etc. In the
family tree diagram we alluded to above, we can draw lines from subclasses to ancestors indicating "is-
a" relationships. Specialization is the term that describes all the customization of a subclass, i.e., what
attributes make it differ from its ancestor classes.

Polymorphism

The concept of polymorphism describes how objects can be manipulated and accessed using attributes
and behaviors they have in common without regard to their specific class. Polymorphism indicates the
presence of dynamic (aka late, runtime) binding, allowing for overriding and runtime type determination
and verification.

Introspection/Reflection

Introspection is what gives you, the programmer, the ability to perform an activity such as "manual type
checking." Also called reflection, this property describes how information about a particular object can
be accessed by itself during runtime. Would it not be great to have the ability to take an object passed
to you and be able to find out what it is capable of? This is a powerful feature that you will encounter
frequently in this chapter. The dir() and type() built-in functions would have a very difficult time
working if Python did not support some sort of introspection capability. Keep an eye out for these calls
as well as for special attributes like __dict__, __name__, and __doc__. You may even be familiar with
some of them already!

file:///D|/1/0132269937/ch13lev1sec2.html (3 von 3) [13.11.2007 16:24:07]

Section 13.3. Classes

13.3. Classes

Recall that a class is a data structure that we can use to define objects that hold together data values
and behavioral characteristics. Classes are entities that are the programmatic form of an abstraction for
a real-world problem, and instances are realizations of such objects. One analogy is to liken classes to
blueprints or molds with which to make real objects (instances). So why the term "class"? The term
most likely originates from using classes to identify and categorize biological families of species to which
specific creatures belong and can be derived into similar yet distinct subclasses. Many of these features
apply to the concept of classes in programming.

In Python, class declarations are very similar to function declarations, a header line with the appropriate
keyword followed by a suite as its definition, as indicated below:

def functionName(args):
 'function documentation string'
 function_suite

class ClassName(object):
 'class documentation string'
 class_suite

Both allow you to create functions within their declaration, closures or inner functions for functions
within functions, and methods for functions defined in classes. The biggest difference is that you run
functions but create objects with classes. A class is like a Python container type on steroids. In this
section, we will take a close look at classes and what types of attributes they have. Just remember to
keep in mind that even though classes are objects (everything in Python is an object), they are not
realizations of the objects they are defining. We will look at instances in the next section, so stay tuned
for that. For now, the limelight is beamed strictly on class objects.

When you create a class, you are practically creating your own kind of data type. All instances of that
class are similar, but classes differ from one another (and so will instances of different classes by
nature). Rather than playing with toys that came from the manufacturer and were bestowed upon you
as gifts, why not design and build your own toys to play with?

Classes also allow for derivation. You can create subclasses that are classes but inherit all of the
features and attributes of the "parent" class. Starting in Python 2.2, you can subclass built-in types
instead of just other classes.

13.3.1. Creating Classes

Python classes are created using the class keyword. In the simple form of class declarations, the name
of the class immediately follows the keyword:

class ClassName(bases):
 'class documentation string'
 class_suite

As outlined briefly earlier in this chapter, bases is the set of one or more parent classes from which to

file:///D|/1/0132269937/ch13lev1sec3.html (1 von 2) [13.11.2007 16:24:07]

Section 13.3. Classes

derive; and class_suite consists of all the component statements, defining class members, data
attributes, and functions. Classes are generally defined at the top-level of a module so that instances of
a class can be created anywhere in a piece of source code where the class is defined.

13.3.2. Declaration versus Definition

As with Python functions, there is no distinction between declaring and defining classes because they
occur simultaneously, i.e., the definition (the class suite) immediately follows the declaration (header
line with the class keyword) and the always recommended, but optional, documentation string.
Likewise, all methods must also be defined at this time. If you are familiar with the OOP terms, Python
does not support pure virtual functions (à la C++) or abstract methods (as in Java), which coerce the
programmer to define a method in a subclass. As a proxy, you can simply raise the NotImplementedError
exception in the base class method to get the same effect.

file:///D|/1/0132269937/ch13lev1sec3.html (2 von 2) [13.11.2007 16:24:07]

file:///D|/1/0132269937/14051536.html

Section 13.4. Class Attributes

13.4. Class Attributes

What is an attribute? An attribute is a data or functional element that belongs to another object and is
accessed via the familiar dotted-attribute notation. Some Python types such as complex numbers have
data attributes (real and imag), while others such as lists and dictionaries have methods (functional
attributes).

One interesting side note about attributes is that when you are accessing an attribute, it is also an
object and may have attributes of its own which you can then access, leading to a chain of attributes, i.
e., myThing.subThing.subSubThing, etc. Some familiar examples are:

● sys.stdout.write('foo')

● print myModule.myClass.__doc__
● myList.extend(map(upper, open('x').readlines()))

Class attributes are tied only to the classes in which they are defined, and since instance objects are the
most commonly used objects in everyday OOP, instance data attributes are the primary data attributes
you will be using. Class data attributes are useful only when a more "static" data type is required which
is independent of any instances, hence the reason we are making the next section advanced, optional
reading. (If you are unfamiliar with static, it just means a value that hangs around a function for each
call, or a piece of data in a class that is the same across all instances. More about static data in the next
subsection.)

In the succeeding subsection, we will briefly describe how methods in Python are implemented and
invoked. In general, all methods in Python have the same restriction: they require an instance before
they can be called.

13.4.1. Class Data Attributes

Data attributes are simply variables of the class we are defining. They can be used like any other
variable in that they are set when the class is created and can be updated either by methods within the
class or elsewhere in the main part of the program.

Such attributes are better known to OO programmers as static members, class variables, or static data.
They represent data that is tied to the class object they belong to and are independent of any class
instances. If you are a Java or C++ programmer, this type of data is the same as placing the static
keyword in front of a variable declaration.

Static members are generally used only to track values associated with classes. In most circumstances,
you would be using instance attributes rather than class attributes. We will compare the differences
between class and instance attributes when we formally introduce instances.

Here is an example of using a class data attribute (foo):

 >>> class C(object):
 ... foo = 100

 >>> print C.foo

file:///D|/1/0132269937/ch13lev1sec4.html (1 von 6) [13.11.2007 16:24:08]

file:///D|/1/0132269937/14051536.html

Section 13.4. Class Attributes

 100
 >>> C.foo = C.foo + 1
 >>> print C.foo
 101

Note that nowhere in the code above do you see any references to class instances.

13.4.2. Methods

A method, such as the myNoActionMethod method of the MyClass class in the example below, is simply a
function defined as part of a class definition (thus making methods class attributes). This means that
myNoActionMethod applies only to objects (instances) of MyClass type. Note how myNoActionMethod is tied
to its instance because invocation requires both names in the dotted attribute notation:

>>> class MyClass(object):
 def myNoActionMethod(self):
 pass

>>> mc = MyClass()
>>> mc.myNoActionMethod()

Any call to myNoActionMethod by itself as a function fails:

 >>> myNoActionMethod()
 Traceback (innermost last):
 File "<stdin>", line 1, in ?
 myNoActionMethod()
 NameError: myNoActionMethod

A NameError exception is raised because there is no such function in the global namespace. The point is
to show you that myNoActionMethod is a method, meaning that it belongs to the class and is not a name
in the global namespace. If myNoActionMethod was defined as a function at the top-level, then our call
would have succeeded.

We show you below that even calling the method with the class object fails.

 >>> MyClass.myNoActionMethod()
 Traceback (innermost last):
 File "<stdin>", line 1, in ?
 MyClass.myNoActionMethod()
 TypeError: unbound method must be called with class
 instance 1st argument

This TypeError exception may seem perplexing at first because you know that the method is an attribute
of the class and so are wondering why there is a failure. We will explain this next.

Binding (Bound and Unbound Methods)

file:///D|/1/0132269937/ch13lev1sec4.html (2 von 6) [13.11.2007 16:24:08]

Section 13.4. Class Attributes

In keeping with OOP tradition, Python imposes the restriction that methods cannot be invoked without
instances. An instance must be used to perform method calls. This restriction describes Python's concept
of binding, where methods must be bound (to an instance) in order to be invoked directly. Unbound
methods may also be called, but an instance object must be provided explicitly in order for the
invocation to succeed. However, regardless of binding, methods are inherently attributes of the class
they are defined in, even if they are almost always invoked via an instance. We will further explore
bound and unbound methods later in Section 13.7.

13.4.3. Determining Class Attributes

There are two ways to determine what attributes a class has. The simplest way is to use the dir() built-
in function. An alternative is to access the class dictionary attribute __dict__, one of a number of special
attributes that is common to all classes. Let us take a look at an example:

 >>> class MyClass(object):
 ... 'MyClass class definition'
 ... myVersion = '1.1' # static data
 ... def showMyVersion(self): # method
 ... print MyClass.myVersion
 ...

Using the class defined above, let us use dir() and the special class attribute __dict__ to see this class's
attributes:

 >>> dir(MyClass)

 ['__class__', '__delattr__', '__dict__', '__doc__',
 '__getattribute__', '__hash__', '__init__', '__module__',
 '__new__', '__reduce__', '__reduce_ex__', '__repr__',
 '__setattr__', '__str__', '__weakref__', 'myVersion',
 'showMyVersion']

 >>> MyClass.__dict__

 <dictproxy object at 0x62090>

 >>> print MyClass.__dict__
 {'showMyVersion': <function showMyVersion at 0x59370>,
 '__dict__': <attribute '__dict__' of 'MyClass' objects>,
 'myVersion': '1.1', '__weakref__': <attribute
 '__weakref__' of 'MyClass' objects>, '__doc__':
 'MyClass class definition'}

There are a few more attributes added for new-style classes as well as a more robust dir() function.
Just for comparison, here is what you would see for classic classes:

 >>> dir(MyClass)
 ['__doc__', '__module__', 'showMyVersion', 'myVersion']
 >>>
 >>> MyClass.__dict__
 {'__doc__': None, 'myVersion': 1, 'showMyVersion':
 <function showMyVersion at 950ed0>, '__module__':
 '__main__'}

file:///D|/1/0132269937/ch13lev1sec4.html (3 von 6) [13.11.2007 16:24:08]

Section 13.4. Class Attributes

As you can tell, dir() returns a list of (just the) names of an object's attributes while __dict__ is a
dictionary whose attribute names are the keys and whose values are the data values of the
corresponding attribute objects.

The output also reveals two familiar attributes of our class MyClass, showMyVersion and myVersion, as well
as a couple of new ones. These attributes, __doc__ and __module__, are special class attributes that all
classes have (in addition to __dict__). The vars() built-in function returns the contents of a class's
__dict__ attribute when passed the class object as its argument.

13.4.4. Special Class Attributes

For any class C, Table 13.1 represents a list of all the special attributes of C:

Table 13.1. Special Class Attributes

C.__name__ String name of class C

C.__doc__ Documentation string for class C

C.__bases__ Tuple of class C's parent classes

C.__dict__ Attributes of C

C.__module__ Module where C is defined (new in 1.5)

C.__class__ Class of which C is an instance (new-style classes only)

Using the class MyClass we just defined above, we have the following:

 >>> MyClass.__name__
 'MyClass'
 >>> MyClass.__doc__
 'MyClass class definition'
 >>> MyClass.__bases__
 (<type 'object'>,)
 >>> print MyClass.__dict__
 {'__doc__': None, 'myVersion': 1, 'showMyVersion':
 <function showMyVersion at 950ed0>, '__module__': '__main__'}
 >>> MyClass.__module__
 '__main__'
 >>> MyClass.__class__
 <type 'type'>

__name__ is the string name for a given class. This may come in handy in cases where a string is desired
rather than a class object. Even some built-in types have this attribute, and we will use one of them to
showcase the usefulness of the __name__ string.

The type object is an example of one built-in type that has a __name__ attribute. Recall that type()

file:///D|/1/0132269937/ch13lev1sec4.html (4 von 6) [13.11.2007 16:24:08]

Section 13.4. Class Attributes

returns a type object when invoked. There may be cases where we just want the string indicating the
type rather than an object. We can use the __name__ attribute of the type object to obtain the string
name. Here is an example:

 >>> stype = type('What is your quest?')
 >>> stype # stype is a type object
 <type 'string'>
 >>> stype.__name__ # get type as a string
 'string'
 >>>
 >>> type(3.14159265) # also a type object
 <type 'float'>
 >>> type(3.14159265).__name__ # get type as a string
 'float'

__doc__ is the documentation string for the class, similar to the documentation string for functions and
modules, and must be the first unassigned string succeeding the header line. The documentation string
is not inherited by derived classes, an indication that they must contain their own documentation strings.

__bases__ deals with inheritance, which we will cover later in this chapter; it contains a tuple that
consists of a class's parent classes.

The aforementioned __dict__ attribute consists of a dictionary containing the data attributes of a class.
When accessing a class attribute, this dictionary is searched for the attribute in question. If it is not
found in __dict__, the hunt continues in the dictionary of base classes, in "depth-first search" order. The
set of base classes is searched in sequential order, left-to-right in the same order as they are defined as
parent classes in a class declaration. Modification of a class attribute affects only the current class's
dictionary; no base class __dict__ attributes are ever modified.

Python supports class inheritance across modules. To better clarify a class's description, the __module__
was introduced in version 1.5 so that a class name is fully qualified with its module. We present the
following example:

 >>> class C(object):
 ... pass
 ...
 >>> C
 <class __main__.C at 0x53f90>
 >>> C.__module__
 '__main__'

The fully qualified name of class C is "__main__.C", i.e., source_ module.class_name. If class C was located
in an imported module, such as mymod, we would see the following:

 >>> from mymod import C
 >>> C
 <class mymod.C at 0x53ea0>
 >>> C.__module__
 'mymod'

In previous versions of Python without the special attribute __module__, it was much more difficult to

file:///D|/1/0132269937/ch13lev1sec4.html (5 von 6) [13.11.2007 16:24:08]

Section 13.4. Class Attributes

ascertain the location of a class simply because classes did not use their fully qualified names.

Finally, because of the unification of types and classes, when you access the __class__ attribute of any
class, you will find that it is indeed an instance of a type object. In other words, a class is a type now!
Because classic classes do not share in this equality (a classic class is a class object, and a type is a type
object), this attribute is undefined for those objects.

file:///D|/1/0132269937/ch13lev1sec4.html (6 von 6) [13.11.2007 16:24:08]

file:///D|/1/0132269937/14051536.html

Section 13.5. Instances

13.5. Instances

Whereas a class is a data structure definition type, an instance is a declaration of a variable of that type.
In other words, instances are classes brought to life. Once a blueprint is provided, the next step to bring
them to fruition. Instances are the objects that are used primarily during execution, and the types of all
instances are the class from which they were instantiated. Prior to Python 2.2, instances were "instance
types," regardless of which class they came from.

13.5.1. Instantiation: Creating Instances by Invoking Class Object

Many other OO languages provide a new keyword with which to create an instance of a class. Python's
approach is much simpler. Once a class has been defined, creating an instance is no more difficult than
calling a functionliterally. Instantiation is realized with use of the function operator, as in the following
example:

 >>> class MyClass(object): # define class
 ... pass
 >>> mc = MyClass() # instantiate class

As you can see, creating instance mc of class MyClass consists of "calling" the class: MyClass(). The
returned object is an instance of the class you called. When you "call" a class using the functional
notation, the interpreter instantiates the object, and calls the closest thing Python has to a constructor
(if you have written one [see the next section]) to perform any final customization such as setting
instance attributes, and finally returns the instance to you.

Core Note: Classes and instances before and after Python 2.2

Classes and types were unified in 2.2, making Python behave more
like other object-oriented languages. Instances of any class or type
are objects of those types. For example, if you ask Python to tell you,
it will say that an instance mc of the MyClass class is an instance of the
MyClass class. Redundant yes, but the interpreter will not lie. Likewise,
it will tell you that 0 is an instance of the integer type:

 >>> mc = MyClass()
 >>> type(mc)
 <class '__main__.MyClass'>
 >>> type(0)
 <type 'int'>

But if you look carefully and compare MyClass with int, you will find
that both are indeed types:

 >>> type(MyClass)
 <type 'type'>
 >>> type(int)
 <type 'type'>

file:///D|/1/0132269937/ch13lev1sec5.html (1 von 5) [13.11.2007 16:24:09]

Section 13.5. Instances

In contrast for those of you using classic classes and Python versions
earlier than 2.2, classes are class objects and instances are instance
objects. There is no further relationship between the two object types
other than an instance's __class__ attribute refers to the class from
which it was instantiated. Redefining MyClass as a classic class and
running the same calls in Python 2.1 (note that int() has not been
turned into a factory function yet... it was still only a regular built-in
function):

 >>> type(mc)
 <type 'instance'>
 >>> type(0)
 <type 'int'>
 >>>
 >>> type(MyClass)
 <type 'class'>
 >>> type(int)
 <type 'builtin_function_or_method'>

To avoid any confusion, just keep in mind that when you define a
class, you are not creating a new type, just a new class object; and for
2.2 and after, when you define a (new-style) class you are creating a
new type.

13.5.2. __init__() "Constructor" Method

When the class is invoked, the first step in the instantiation process is to create the instance object.
Once the object is available, Python checks if an __init__() method has been implemented. By default,
no special actions are enacted on the instance without the definition of (or the overriding) of the special
method __init__(). Any special action desired requires the programmer to implement __init__(),
overriding its default behavior. If __init__() has not been implemented, the object is then returned and
the instantiation process is complete.

However, if __init__() has been implemented, then that special method is invoked and the instance
object passed in as the first argument (self), just like a standard method call. Any arguments passed to
the class invocation call are passed on to __init__(). You can practically envision the call to create the
instance as a call to the constructor.

In summary, (a) you do not call new to create an instance, and you do not define a constructor: Python
creates the object for you; and (b) __init__(), is simply the first method that is called after the
interpreter creates an instance for you in case you want to prep the object a little bit more before
putting it to use.

__init__() is one of many special methods that can be defined for classes. Some of these special
methods are predefined with inaction as their default behavior, such as __init__(), and must be
overridden for customization while others should be implemented on an as-needed basis. We will cover
many more of these special methods throughout this chapter. You will find use of __init__()
everywhere, so we will not present an example here.

file:///D|/1/0132269937/ch13lev1sec5.html (2 von 5) [13.11.2007 16:24:09]

Section 13.5. Instances

13.5.3. __new__() "Constructor" Method

The __new__() special method bears a much closer resemblance to a real constructor than __init__().
With the unification of types and classes in 2.2, Python users now have the ability to subclass built-in
types, and so there needed to be a way to instantiate immutable objects, e.g., subclassing strings,
numbers, etc.

In such cases, the interpreter calls __new__(), a static method, with the class and passing in the
arguments made in the class instantiation call. It is the responsibility of __new__() to call a superclass
__new__() to create the object (delegating upward).

The reason why we say that __new__() is more like a constructor than __init__() is that it has to return
a valid instance so that the interpreter can then call __init__() with that instance as self. Calling a
superclass __new__() to create the object is just like using a new keyword to create an object in other
languages.

__new__() and __init__() are both passed the (same) arguments as in the class creation call. For an
example of using __new__(), see Section 13.11.3.

13.5.4. __del__() "Destructor" Method

Likewise, there is an equivalent destructor special method called __del__(). However, due to the way
Python manages garbage collection of objects (by reference counting), this function is not executed until
all references to an instance object have been removed. Destructors in Python are methods that provide
special processing before instances are deallocated and are not commonly implemented since instances
are seldom deallocated explicitly. If you do override __del__(), be sure to call any parent class __del__()
first so those pieces can be adequately deallocated.

Example

In the following example, we create (and override) both the __init__() and __del__() constructor and
destructor functions, respectively, then instantiate the class and assign more aliases to the same object.
The id() built-in function is then used to confirm that all three aliases reference the same object. The
final step is to remove all the aliases by using the del statement and discovering when and how many
times the destructor is called.

class C(P): # class declaration
 def __init__(self): # "constructor"
 print 'initialized'
 def __del__(self): # "destructor"
 P.__del__(self) # call parent destructor
 print 'deleted'

>>> c1 = C() # instantiation
initialized
>>> c2 = c1 # create additional alias
>>> c3 = c1 # create a third alias

file:///D|/1/0132269937/ch13lev1sec5.html (3 von 5) [13.11.2007 16:24:09]

Section 13.5. Instances

>>> id(c1), id(c2), id(c3) # all refer to same object
(11938912, 11938912, 11938912)
>>> del c1 # remove one reference
>>> del c2 # remove another reference
>>> del c3 # remove final reference
deleted # destructor finally invoked

Notice how, in the above example, the destructor was not called until all references to the instance of
class C were removed, e.g., when the reference count has decreased to zero. If for some reason your
__del__() method is not being called when you are expecting it to be invoked, this means that somehow
your instance object's reference count is not zero, and there may be some other reference to it that you
are not aware of that is keeping your object around.

Also note that the destructor is called exactly once, the first time the reference count goes to zero and
the object deallocated. This makes sense because any object in the system is allocated and deallocated
only once. Summary:

● Do not forget to call a superclass __del__() first.
● Invoking del x does not call x.__del__()as you saw above, it just decrements the reference count

of x.
● If you have a cycle or some other cause of lingering references to an instance, an object's __del__

() may never be called.
● Uncaught exceptions in __del__() are ignored (because some variables used in __del__() may

have already been deleted). Try not to do anything in __del__() not related to an instance.
● Implementing __del__() is not a common occurrenceonly do it if you really know what you are

doing.
● If you define __del__, and instance is part of a cycle, the garbage collector will not break the

cycleyou have to do it yourself by explicitly using del.

Core Note: Keeping track of instances

Python does not provide any internal mechanism to track how many
instances of a class have been created or to keep tabs on what they
are. You can explicitly add some code to the class definition and
perhaps __init__() and __del__() if such functionality is desired. The
best way is to keep track of the number of instances using a static
member. It would be dangerous to keep track of instance objects by
saving references to them, because you must manage these
references properly or else your instances will never be deallocated
(because of your extra reference to them)! An example follows:

class InstCt(object):
 count = 0 # count is class attr

 def __init__(self): # increment count
 InstCt.count += 1

 def __del__(self): # decrement count
 InstCt.count -= 1

 def howMany(self): # return count
 return InstCt.count

>>> a = InstTrack()

file:///D|/1/0132269937/ch13lev1sec5.html (4 von 5) [13.11.2007 16:24:09]

Section 13.5. Instances

>>> b = InstTrack()
>>> b.howMany()
2
>>> a.howMany()
2
>>> del b
>>> a.howMany()
1
>>> del a
>>> InstTrack.count
0

file:///D|/1/0132269937/ch13lev1sec5.html (5 von 5) [13.11.2007 16:24:09]

file:///D|/1/0132269937/14051536.html

Section 13.6. Instance Attributes

13.6. Instance Attributes

Instances have only data attributes (methods are strictly class attributes) and are simply data values
that you want to be associated with a particular instance of any class and are accessible via the familiar
dotted-attribute notation. These values are independent of any other instance or of the class it was
instantiated from. When an instance is deallocated, so are its attributes.

13.6.1. "Instantiating" Instance Attributes (or Creating a Better Constructor)

Instance attributes can be set any time after an instance has been created, in any piece of code that has
access to the instance. However, one of the key places where such attributes are set is in the
constructor, __init__().

Core Note: Instance attributes

Being able to create an instance attribute "on-the-fly" is one of the
great features of Python classes, initially (but gently) shocking those
coming from C++ or Java in which all attributes must be explicitly
defined/ declared first.

Python is not only dynamically typed but also allows for such dynamic
creation of object attributes during run-time. It is a feature that once
used may be difficult to live without. Of course, we should mention to
the reader that one much be cautious when creating such attributes.

One pitfall is when such attributes are created in conditional clauses: if
you attempt to access such an attribute later on in your code, that
attribute may not exist if the flow had not entered that conditional
suite. The moral of the story is that Python gives you a new feature
you were not used to before, but if you use it, you need to be more
careful, too.

Constructor First Place to Set Instance Attributes

The constructor is the earliest place that instance attributes can be set because __init__() is the first
method called after instance objects have been created. There is no earlier opportunity to set instance
attributes. Once __init__() has finished execution, the instance object is returned, completing the
instantiation process.

Default Arguments Provide Default Instance Setup

One can also use __init__() along with default arguments to provide an effective way of preparing an
instance for use in the real world. In many situations, the default values represent the most common
cases for setting up instance attributes, and such use of default values precludes them from having to
be given explicitly to the constructor. We also outlined some of the general benefits of default

file:///D|/1/0132269937/ch13lev1sec6.html (1 von 9) [13.11.2007 16:24:11]

file:///D|/1/0132269937/14051536.html

Section 13.6. Instance Attributes

arguments in Section 11.5.2. One caveat is that default arguments should be immutable objects;
mutable objects like lists and dictionaries act like static data, maintaining their contents with each
method call.

Example 13.1 shows how we can use the default constructor behavior to help us calculate some sample
total room costs for lodging at hotels in some of America's large metropolitan areas.

Example 13.1. Using Default Arguments with Instantiation (hotel.py)

Class definition for a fictitious hotel room rate calculator. The __init__() constructor
method initializes several instance attributes. A calcTotal() method is used to determine
either a total daily room rate or the total room cost for an entire stay.

1 class HotelRoomCalc(object):
2 'Hotel room rate calculator'
3
4 def __init__(self, rt, sales=0.085, rm=0.1):
5 '''HotelRoomCalc default arguments:
6 sales tax == 8.5% and room tax == 10%'''
7 self.salesTax = sales
8 self.roomTax = rm
9 self.roomRate = rt
10
11 def calcTotal(self, days=1):
12 'Calculate total; default to daily rate'
13 daily = round((self.roomRate *
14 (1 + self.roomTax + self.salesTax)), 2)
15 return float(days) * daily

The main purpose of our code is to help someone figure out the daily hotel room rate, including any
state sales and room taxes. The default is for the general area around San Francisco, which has an
8.5% sales tax and a 10% room tax. The daily room rate has no default value, thus it is required for any
instance to be created.

The setup work is done after instantiation by __init__() in lines 4-8, and the other core part of our code
is the calcTotal() method, lines 10-14. The job of __init__() is to set the values needed to determine
the total base room rate of a hotel room (not counting room service, phone calls, or other incidental
items). calcTotal() is then used to either determine the total daily rate or the cost of an entire stay if
the number of days is provided. The round() built-in function is used to round the calculation to the
closest penny (two decimal places). Here is some sample usage of this class:

 >>> sfo = HotelRoomCalc(299) # new instance
 >>> sfo.calcTotal() # daily rate
 354.32
 >>> sfo.calcTotal(2) # 2-day rate
 708.64
 >>> sea = HotelRoomCalc(189, 0.086, 0.058) # new instance
 >>> sea.calcTotal()
 216.22
 >>> sea.calcTotal(4)
 864.88
 >>> wasWkDay = HotelRoomCalc(169, 0.045, 0.02) # new instance

file:///D|/1/0132269937/ch13lev1sec6.html (2 von 9) [13.11.2007 16:24:11]

Section 13.6. Instance Attributes

 >>> wasWkEnd = HotelRoomCalc(119, 0.045, 0.02) # new instance
 >>> wasWkDay.calcTotal(5) + wasWkEnd.calcTotal() # 7-day rate
 1026.69

The first two hypothetical examples were San Francisco, which used the defaults, and then Seattle,
where we provided different sales tax and room tax rates. The final example, Washington, D.C.,
extended the general usage by calculating a hypothetical longer stay: a five-day weekday stay plus a
special rate for one weekend day, assuming a Sunday departure to return home.

Do not forget that all the flexibility you get with functions, such as default arguments, applies to
methods as well. The use of variable-length arguments is another good feature to use with instantiation
(based on an application's needs, of course).

__init__() Should Return None

As you are now aware, invoking a class object with the function operator creates a class instance, which
is the object returned on such an invocation, as in the following example:

 >>> class MyClass(object):
 ... pass
 >>> mc = MyClass()
 >>> mc
 <__main__.MyClass instance at 95d390>

If a constructor is defined, it should not return any object because the instance object is automatically
returned after the instantiation call. Correspondingly, __init__() should not return any object (or return
None); otherwise, there is a conflict of interest because only the instance should be returned. Attempting
to return any object other than None will result in a TypeError exception:

 >>> class MyClass:
 ... def __init__(self):
 ... print 'initialized'
 ... return 1
 ...
 >>> mc = MyClass()
 initialized
 Traceback (innermost last):
 File "<stdin>", line 1, in ?
 mc = MyClass()
 TypeError: __init__() should return None

13.6.2. Determining Instance Attributes

The dir() built-in function can be used to show all instance attributes in the same manner that it can
reveal class attributes:

 >>> class C(object):
 ... pass
 >>> c = C()
 >>> c.foo = 'roger'
 >>> c.bar = 'shrubber'

file:///D|/1/0132269937/ch13lev1sec6.html (3 von 9) [13.11.2007 16:24:11]

Section 13.6. Instance Attributes

 >>> dir(c)
 ['__class__', '__delattr__', '__dict__', '__doc__',
 '__getattribute__', '__hash__', '__init__', '__module__',
 '__new__', '__reduce__', '__reduce_ex__', '__repr__',
 '__setattr__', '__str__', '__weakref__', 'bar', 'foo']

Similar to classes, instances also have a __dict__ special attribute (also accessible by calling vars() and
passing it an instance), which is a dictionary representing its attributes:

 >>> c.__dict__
 {'foo': 'roger', 'bar': 'shrubber'}

13.6.3. Special Instance Attributes

Instances have only two special attributes (see Table 13.2). For any instance I:

Table 13.2. Special Instance
Attributes

I.__class__ Class from which I is instantiated

I.__dict__ Attributes of I

We will now take a look at these special instance attributes using the class C and its instance c:

 >>> class C(object): # define class
 ... pass
 ...
 >>> c = C() # create instance
 >>> dir(c) # instance has no attributes
 []
 >>> c.__dict__ # yep, definitely no attributes
 {}
 >>> c.__class__ # class that instantiated us
 <class '__main__.C'>

As you can see, c currently has no data attributes, but we can add some and recheck the __dict__
attribute to make sure they have been added properly:

 >>> c.foo = 1
 >>> c.bar = 'SPAM'
 >>> '%d can of %s please' % (c.foo, c.bar)
 '1 can of SPAM please'
 >>> c.__dict__
 {'foo': 1, 'bar': 'SPAM'}

file:///D|/1/0132269937/ch13lev1sec6.html (4 von 9) [13.11.2007 16:24:11]

Section 13.6. Instance Attributes

The __dict__ attribute consists of a dictionary containing the attributes of an instance. The keys are the
attribute names, and the values are the attributes' corresponding data values. You will only find instance
attributes in this dictionaryno class attributes or special attributes.

Core Style: Modifying __dict__

Although the __dict__ attributes for both classes and instances are
mutable, it is recommended that you not modify these dictionaries
unless or until you know exactly what you are doing. Such
modification contaminates your OOP and may have unexpected side
effects. It is more acceptable to access and manipulate attributes
using the familiar dotted-attribute notation. One of the few cases
where you would modify the __dict__ attribute directly is when you
are overriding the __setattr__ special method. Implementing
__setattr__() is another adventure story on its own, full of traps and
pitfalls such as infinite recursion and corrupted instance objectsbut
that is another tale for another time.

13.6.4. Built-in Type Attributes

Built-in types are classes, too... do they have the same attributes as classes? (The same goes for
instances.) We can use dir() on built-in types just like for any other object to get a list of their attribute
names:

 >>> x = 3+0.14j

 >>> x.__class__
 <type 'complex'>
 >>> dir(x)
 ['__abs__', '__add__', '__class__', '__coerce__',
 '__delattr__', '__div__', '__divmod__', '__doc__', '__eq__',
 '__float__', '__floordiv__', '__ge__', '__getattribute__',
 '__getnewargs__', '__gt__', '__hash__', '__init__',
 '__int__', '__le__', '__long__', '__lt__', '__mod__',
 '__mul__', '__ne__', '__neg__', '__new__', '__nonzero__',
 '__pos__', '__pow__', '__radd__', '__rdiv__', '__rdivmod__',
 '__reduce__', '__reduce_ex__', '__repr__', '__rfloordiv__',
 '__rmod__', '__rmul__', '__rpow__', '__rsub__',
 '__rtruediv__', '__setattr__', '__str__', '__sub__',
 '__truediv__', 'conjugate', 'imag', 'real']
 >>>
 >>> [type(getattr(x, i)) for i in ('conjugate', 'imag',
 'real')]
 [<type 'builtin_function_or_method'>, <type 'float'>,
 <type 'float'>]

Now that we know what kind of attributes a complex number has, we can access the data attributes and
call its methods:

 >>> x.imag
 2.0
 >>> x.real

file:///D|/1/0132269937/ch13lev1sec6.html (5 von 9) [13.11.2007 16:24:11]

Section 13.6. Instance Attributes

 1.0
 >>> x.conjugate()
 (1-2j)

Attempting to access __dict__ will fail because that attribute does not exist for built-in types:

 >>> x.__dict__
 Traceback (innermost last):
 File "<stdin>", line 1, in ?
 AttributeError: __dict__

13.6.5. Instance Attributes versus Class Attributes

We first described class data attributes in Section 13.4.1. As a brief reminder, class attributes are simply
data values associated with a class and not any particular instances like instance attributes are. Such
values are also referred to as static members because their values stay constant, even if a class is
invoked due to instantiation multiple times. No matter what, static members maintain their values
independent of instances unless explicitly changed. (Comparing instance attributes to class attributes is
barely like that of automatic vs. static variables, but this is just a vague analogy . . . do not read too
much into it, especially if you are not familiar with auto and static variables.)

Classes and instances are both namespaces. Classes are namespaces for class attributes. Instances are
namespaces for instance attributes.

There are a few aspects of class attributes and instance attributes that should be brought to light. The
first is that you can access a class attribute with either the class or an instance, provided that the
instance does not have an attribute with the same name.

Access to Class Attributes

Class attributes can be accessed via a class or an instance. In the example below, when class C is
created with the version class attribute, naturally access is allowed using the class object, i.e., C.
version. When instance c is created, access to c.version fails for the instance, and then Python initiates
a search for the name version first in the instance, then the class, and then the base classes in the
inheritance free. In this case, it is found in the class:

 >>> class C(object): # define class
 ... version = 1.2 # static member
 ...
 >>> c = C() # instantiation
 >>> C.version # access via class
 1.2
 >>> c.version # access via instance
 1.2
 >>> C.version += 0.1 # update (only) via class
 >>> C.version # class access
 1.3
 >>> c.version # instance access, which
 1.3 # also reflected change

file:///D|/1/0132269937/ch13lev1sec6.html (6 von 9) [13.11.2007 16:24:11]

Section 13.6. Instance Attributes

However, we can only update the value when referring to it using the class, as in the C.version
increment statement above. Attempting to set or update the class attribute using the instance name will
create an instance attribute that "shadows" access to the class attribute, effectively hiding it from scope
until or unless that shadow is removed.

Use Caution When Accessing Class Attribute with Instance

Any type of assignment of a local attribute will result in the creation and assignment of an instance
attribute, just like a regular Python variable. If a class attribute exists with the same name, interesting
side effects can occur. (This is true for both classic and new-style classes.)

 >>> class Foo(object):
 ... x = 1.5
 ...
 >>> foo = Foo()
 >>> foo.x
 1.5
 >>> foo.x = 1.7 # try to update class attr
 >>> foo.x # looks good so far...
 1.7
 >>> Foo.x # nope, just created a new inst attr
 1.5

In the above code snippet, a new instance attribute named version is created, overriding the reference
to the class attribute. However, the class attribute itself is unscathed and still exists in the class domain
and can still be accessed as a class attribute, as we can see above. What would happen if we delete this
new reference? To find out, we will use the del statement on c.version.

 >>> del foo.x # delete instance attribute
 >>> foo.x # can now access class attr again
 1.5

So by assigning an instance attribute with the same name as a class attribute, we effectively "hide" the
class attribute, but once we remove the instance attribute, we can "see" the class one again. Now let us
try to update the class attribute again, but this time, we will just try an innocent increment:

 >>> foo.x += .2 # try to increment class attr
 >>> foo.x
 1.7
 >>> Foo.x # nope, same thing
 1.5

It is still a "no go." We again created a new instance attribute while leaving the original class attribute
intact. (For those who have or want a deeper understanding of Python: the attribute was already in the
class's dictionary [__dict__]. With the assignment, one is now added to the instance's __dict__.) The
expression on the right-hand side of the assignment evaluates the original class variable, adds 0.2 to it,
and assigns it to a newly created instance attribute. Note that the following is an equivalent assignment,
but it may provide more clarification:

 foo.x = Foo.x + 0.2

file:///D|/1/0132269937/ch13lev1sec6.html (7 von 9) [13.11.2007 16:24:11]

Section 13.6. Instance Attributes

But... all of this changes if the class attribute is mutable:

 >>> class Foo(object):
 ... x = {2003: 'poe2'}
 ...
 >>> foo = Foo()
 >>> foo.x
 {2003: 'poe2'}
 >>> foo.x[2004] = 'valid path'
 >>> foo.x
 {2003: 'poe2', 2004: 'valid path'}
 >>> Foo.x # it works!!!
 {2003: 'poe2', 2004: 'valid path'}
 >>> del foo.x # no shadow so cannot delete
 Traceback (most recent call last):
 File "<stdin>", line 1, in ?
 del foo.x
 AttributeError: x
 >>>

Class Attributes More Persistent

Static members, true to their name, hang around while instances (and their attributes) come and go
(hence independent of instances). Also, if a new instance is created after a class attribute has been
modified, the updated value will be reflected. Class attribute changes are reflected across all instances:

 >>> class C(object):
 ... spam = 100 # class attribute
 ...
 >>> c1 = C() # create an instance
 >>> c1.spam # access class attr thru inst.
 100
 >>> C.spam += 100 # update class attribute
 >>> C.spam # see change in attribute
 200
 >>> c1.spam # confirm change in attribute
 200
 >>> c2 = C() # create another instance
 >>> c2.spam # verify class attribute
 200
 >>> del c1 # remove one instance
 >>> C.spam += 200 # update class attribute again
 >>> c2.spam # verify that attribute changed
 400

Core Tip: Use a class attribute to modify itself (not an instance
attribute)

file:///D|/1/0132269937/ch13lev1sec6.html (8 von 9) [13.11.2007 16:24:11]

Section 13.6. Instance Attributes

As we have seen above, it is perilous to try and modify a class
attribute by using an instance attribute. The reason is because
instances have their own set of attributes, and there is no clear way in
Python to indicate that you want to modify the class attribute of the
same name, e.g., there is no global keyword like there is when
setting a global inside a function (instead of a local variable of the
same name). Always modify a class attribute with the class name, not
an instance.

file:///D|/1/0132269937/ch13lev1sec6.html (9 von 9) [13.11.2007 16:24:11]

file:///D|/1/0132269937/14051536.html

Section 13.7. Binding and Method Invocation

13.7. Binding and Method Invocation

Now we need to readdress the Python concept of binding, which is associated primarily with method
invocation. We will first review some facts regarding methods. First, a method is simply a function
defined as part of a class. (This means that methods are class attributes and not instance attributes).

Second, methods can be called only when there is an instance of the class upon which the method was
invoked. When there is an instance present, the method is considered bound (to that instance). Without
an instance, a method is considered unbound.

And finally, the first argument in any method definition is the variable self, which represents the
instance object invoking the method.

Core Note: What is self?

The variable self is used in class instance methods to reference the
instance to which the method is bound. Because a method's instance
is always passed as the first argument in any method call, self is the
name that was chosen to represent the instance. You are required to
put self in the method declaration (you may have noticed this
already) but do not need to actually use the instance (self) within the
method.

If you do not use self in your method, you might consider creating a
regular function instead, unless you have a particular reason not to.
After all, your code, because it does not use the instance object in any
way, "unlinks" its functionality from the class, making it seem more
like a general function.

In other object-oriented languages, self may be named this.

13.7.1. Invoking Bound Methods

Methods, whether bound or not, are made up of the same code. The only difference is whether there is
an instance present so that the method can be invoked. In most cases, you the programmer will be
calling a bound method. Let us say that you have a class MyClass and an instance of it called mc, and you
want to call the MyClass.foo() method. Since you already have an instance, you can just call the method
with mc.foo(). Recall that self is required to be declared as the first argument in every method
declaration. Well, when you call a bound method, self never needs to be passed explicitly when you
invoke it with an instance. That is your bonus for being "required" to declare self as the first argument.
The only time when you have to pass it in is when you do not have an instance and need to call a
method unbound.

13.7.2. Invoking Unbound Methods

Calling an unbound method happens less frequently. The main use case for calling a method belonging
to a class that you do not have an instance for is the case where you are deriving a child class and

file:///D|/1/0132269937/ch13lev1sec7.html (1 von 2) [13.11.2007 16:24:11]

Section 13.7. Binding and Method Invocation

override a parent method where you need to call the parent's constructor you are overriding. Let us look
at an example back in the chapter introduction:

class EmplAddrBookEntry(AddrBookEntry):
 'Employee Address Book Entry class'
 def __init__(self, nm, ph, em):
 AddrBookEntry.__init__(self, nm, ph)
 self.empid = id
 self.email = em

EmplAddrBookEntry is a subclass of AddrBookEntry, and we are overriding the constructor __init__().
Rather than cutting and pasting code from the parent constructor, we want to have as much code reuse
as possible. This will also prevent bugs from being propagated because any fixes made would be
propagated to us here in the child. This is exactly what we wantthere is no need to copy lines of code.
This all hinges on somehow being able to call the parent constructor, but how?

We would not have an instance of AddrBookEntry at runtime. What do we have? Well, we will have an
instance of EmplAddrBookEntry, and it is so similar to AddrBookEntry, can't we somehow use it instead?
The answer is yes!

When an EmplAddrBookEntry is instantiated and __init__() called, there is very little difference between
it and an instance of AddrBookEntry, mainly because we have not yet had a chance to customize our
EmplAddrBookEntry instance to really make it different from AddrBookEntry.

This is the perfect place to call an unbound method. We will call the parent class constructor from the
child class constructor and explicitly pass in the self argument as required by the (parent class)
constructor (since we are without a parent class instance). The first line of __init__() in the child
consists of a call to __init__() of the parent. We call it via the parent class name and pass in self plus
its required arguments. Once that call returns, we can perform the (instance) customization that is
unique to our (child) class.

file:///D|/1/0132269937/ch13lev1sec7.html (2 von 2) [13.11.2007 16:24:11]

Section 13.8. Static Methods and Class Methods

13.8. Static Methods and Class Methods

Static methods and class methods were introduced in Python 2.2. They can be used with both classic
classes and new-style classes. A pair of built-in functions were added to "tag," "cast," or "convert"
methods declared as part of class definitions as either one of these two types of methods.

Static methods are exactly what they are if you are coming from C++ or Java. They are simply functions
(no instance required) that are part of class definitions. In fact, before static methods were added to
Python, users just created functions in the global namespace as a proxy for this missing
featuresometimes using a class object inside such functions to manipulate the class (or rather, class
attributes). Using module functions is still far more common than using static class methods.

Recall that regular methods require an instance (self) as the first argument, and upon (bound) method
invocation, self is automagically passed to the method. Well, for class methods, instead of the instance,
the class is required as the first argument, and it is passed in to the method by the interpreter. The
class does not need to be specifically named like self, but most people use cls as the variable name.

13.8.1. staticmethod() and classmethod() Built-in Functions

Now let us look at some examples of these types of methods using classic classes (you can also use new-
style classes if you want to):

 class TestStaticMethod:
 def foo():
 print 'calling static method foo()'

 foo = staticmethod(foo)

class TestClassMethod:
 def foo(cls):
 print 'calling class method foo()'
 print 'foo() is part of class:', cls.__name__

 foo = classmethod(foo)

The corresponding built-in functions are converted into their respective types and are reassigned back to
the same variable name. Without the function calls, both would generate errors from the Python
compiler, which is expecting regular method declarations with self. We can then call these functions
from either the class or an instance... it makes no difference:

 >>> tsm = TestStaticMethod()
 >>> TestStaticMethod.foo()
 calling static method foo()
 >>> tsm.foo()
 calling static method foo()
 >>>

file:///D|/1/0132269937/ch13lev1sec8.html (1 von 2) [13.11.2007 16:24:12]

Section 13.8. Static Methods and Class Methods

 >>> tcm = TestClassMethod()
 >>> TestClassMethod.foo()
 calling class method foo()
 foo() is part of class: TestClassMethod
 >>> tcm.foo()
 calling class method foo()
 foo() is part of class: TestClassMethod

13.8.2. Using Decorators

Now, seeing code like foo = staticmethod(foo) can irritate some programmers. There is something
unsettling about it, and many folks were upset with such a flimsy syntax, although van Rossum had
pointed out that it was to be temporary until the semantics were worked out with the community. In
Section 11.3.6 of Chapter 11, "Functions," we looked at decorators, a new feature introduced in Python
2.4. They are used in places where you want to apply a function to a function object but want to rebind
the new function object to the original variable. This is a perfect place to use them to partially clean up
the syntax. By using decorators, we can avoid the reassignment above:

class TestStaticMethod:
 @staticmethod
 def foo():
 print 'calling static method foo()'

class TestClassMethod:
 @classmethod
 def foo(cls):
 print 'calling class method foo()'
 print 'foo() is part of class:', cls.__name__

file:///D|/1/0132269937/ch13lev1sec8.html (2 von 2) [13.11.2007 16:24:12]

file:///D|/1/0132269937/14051536.html

Section 13.9. Composition

13.9. Composition

Once a class is defined, the goal is to use it as a model programmatically, embedding this object
throughout your code, intermixing use with other data types and the logical flow of execution. There are
two ways of utilizing classes in your code. The first is composition. This is where different classes are
mingled with and into other classes for added functionality and code reusability. You may create
instances of your class inside a larger class, containing other attributes and methods enhancing the use
of the original class object. The other way is with derivation, discussed in the next section.

For example, let us imagine an enhanced design of the address book class we created at the beginning
of the chapter. If, during the course of our design, we created separate classes for names, addresses,
etc., we would want to integrate that work into our AddrBookEntry class, rather than have to redesign
each of those supporting classes. We have the added advantages of time and effort saved, as well as
more consistent codewhen bugs are fixed in that same piece of code, that change is reflected in all the
applications that reuse that code.

Such a class would perhaps contain a Name instance, not to mention others like StreetAddress, Phone
(home, work, telefacsimile, pager, mobile, etc.), Email (home, work, etc.), and possibly a few Date
instances (birthday, wedding, anniversary, etc.). Here is a simple example with some of the classes
mentioned above:

class NewAddrBookEntry(object): # class definition
 'new address book entry class'
 def __init__(self, nm, ph): # define constructor
 self.name = Name(nm) # create Name instance
 self.phone = Phone(ph) # create Phone instance
 print 'Created instance for:', self.name

The NewAddrBookEntry class is a composition of itself and other classes. This defines a "has-a"
relationship between a class and other classes it is composed of. For example, our NewAddrBookEntry
class "has a" Name class instance and a Phone instance, too.

Creating composite objects enables such additional functionality and makes sense because the classes
have nothing in common. Each class manages its own namespace and behavior. When there are more
intimate relationships between objects, the concept of derivation may make more sense in your
application, especially if you require like objects, with slightly different functionality.

file:///D|/1/0132269937/ch13lev1sec9.html [13.11.2007 16:24:12]

Section 13.10. Subclassing and Derivation

13.10. Subclassing and Derivation

Composition works fine when classes are distinct and are a required component of larger classes, but
when you desire "the same class but with some tweaking," derivation is a more logical option.

One of the more powerful aspects of OOP is the ability to take an already defined class and extend it or
make modifications to it without affecting other pieces of code in the system that use the currently
existing classes. OOD allows for class features to be inherited by descendant classes or subclasses.
These subclasses derive the core of their attributes from base (aka ancestor, super) classes. In addition,
this derivation may be extended for multiple generations. Classes involved in a one-level derivation (or
that are adjacent vertically in a class tree diagram) have a parent and child class relationship. Those
classes that derive from the same parent (or that are adjacent horizontally in a class tree diagram) have
a sibling relationship. Parent and all higher-level classes are considered ancestors.

Using our example from the previous section, let us imagine having to create different types of address
books. We are talking about more than just creating multiple instances of address booksin this case, all
objects have everything in common. What if we wanted a EmplAddrBookEntry class whose entries would
contain more work-related attributes such as employee ID and e-mail address? This would differ from a
PersonalAddrBookEntry class, which would contain more family-oriented information such as home
address, relationship, birthday, etc.

For both of these cases, we do not want to design these classes from scratch, because it would duplicate
the work already accomplished to create the generic AddressBook class. Wouldn't it be nice to subsume
all the features and characteristics of the AddressBook class and add specialized customization for your
new, yet related, classes? This is the entire motivation and desire for class derivation.

13.10.1. Creating Subclasses

The syntax for creating a subclass looks just like that for a regular (new-style) class, a class name
followed by one or more parent classes to inherit from:

 class SubClassName (ParentClass1[, ParentClass2, ...]):
 'optional class documentation string'
 class_suite

If your class does not derive from any ancestor class, use object as the name of the parent class. The
only example that differs is the declaration of a classic class that does not derive from ancestor classesin
this case, there are no parentheses:

class ClassicClassWithoutSuperclasses:
 pass

We have already seen some examples of classes and subclasses so far, but here is another simple
example:

class Parent(object): # define parent class
 def parentMethod(self):

file:///D|/1/0132269937/ch13lev1sec10.html (1 von 2) [13.11.2007 16:24:12]

Section 13.10. Subclassing and Derivation

 print 'calling parent method'
class Child(Parent): # define child class
 def childMethod(self):
 print 'calling child method'
>>> p = Parent() # instance of parent
>>> p.parentMethod()
calling parent method
>>>
>>> c = Child() # instance of child
>>> c.childMethod() # child calls its method
calling child method
>>> c.parentMethod() # calls parent's method
calling parent method

file:///D|/1/0132269937/ch13lev1sec10.html (2 von 2) [13.11.2007 16:24:12]

file:///D|/1/0132269937/14051536.html

Section 13.11. Inheritance

13.11. Inheritance

Inheritance describes how the attributes of base classes are "bequeathed" to a derived class. A subclass
inherits attributes of any of its base classes whether they be data attributes or methods.

We present an example below. P is a simple class with no attributes. C is a class with no attributes that
derives from (and therefore is a subclass of) P:

class P(object): # parent class
 pass
class C(P): # child class
 pass

>>> c = C() # instantiate child
>>> c.__class__ # child "is a" parent
<class '__main__.C'>
>>> C.__bases__ # child's parent class(es)
(<class '__main__.P'>,)

Because P has no attributes, nothing was inherited by C. Let us make our example more useful by giving
P some attributes:

class P: # parent class
 'P class'
 def __init__(self):
 print 'created an instance of', \
 self.__class__.__name__

class C(P): # child class
 pass

We now create P with a documentation string (__doc__) and a constructor that will execute when we
instantiate P, as in this interactive session:

 >>> p = P() # parent instance
 created an instance of P
 >>> p.__class__ # class that created us
 <class '__main__.P'>
 >>> P.__bases__ # parent's parent class(es)
 (<type 'object'>,)
 >>> P.__doc__ # parent's doc string
 'P class'

The "created an instance" output comes directly from __init__(). We also display some more about the
parent class P for your information. We will now instantiate C, showing you how the __init__()
(constructor) method is inherited with its execution:

 >>> c = C() # child instance

file:///D|/1/0132269937/ch13lev1sec11.html (1 von 11) [13.11.2007 16:24:14]

Section 13.11. Inheritance

 created an instance of C
 >>> c.__class__ # class that created us
 <class '__main__.C'>
 >>> C.__bases__ # child's parent class(es)
 (<class '__main__.P'>,)
 >>> C.__doc__ # child's doc string
 >>>

C has no declared method __init__(), yet there is still output when instance c of class C is created. The
reason is that C inherits __init__() from P. The __bases__ tuple now lists P as its parent class. Note that
documentation strings are unique to classes, functions/methods, and modules, so a special attribute like
__doc__ is not inherited by its derived classes.

13.11.1. __bases__ Class Attribute

In Section 13.4.4, we briefly introduced the __bases__ class attribute, which is a tuple containing the set
of parent classes for any (sub)class. Note that we specifically state "parents" as opposed to all base
classes (which includes all ancestor classes). Classes that are not derived will have an empty __bases__
attribute. Let us look at an example of how to make use of __bases__.

 >>> class A(object): pass # define class A
 ...
 >>> class B(A): pass # subclass of A
 ...
 >>> class C(B): pass # subclass of B (and indirectly, A)
 ...
 >>> class D(A, B): pass # subclass of A and B
 ...
 >>> A.__bases__
 (<type 'object'>,)
 >>> C.__bases__
 (<class __main__.B at 8120c90>,)
 >>> D.__bases__
 (<class __main__.A at 811fc90>, <class __main__.B at 8120c90>)

In the example above, although C is a derived class of both A (tHRough B) and B, C's parent is B, as
indicated in its declaration, so only B will show up in C.__bases__. On the other hand, D inherits from two
classes, A and B. (Multiple inheritance is covered in Section 13.11.4.)

13.11.2. Overriding Methods through Inheritance

Let us create another function in P that we will override in its child class:

class P(object):
 def foo(self):
 print 'Hi, I am P-foo()'

>>> p = P()
>>> p.foo()
Hi, I am P-foo()

file:///D|/1/0132269937/ch13lev1sec11.html (2 von 11) [13.11.2007 16:24:14]

Section 13.11. Inheritance

Now let us create the child class C, subclassed from parent P:

class C(P):
 def foo(self):
 print 'Hi, I am C-foo()'

>>> c = C()
>>> c.foo()
Hi, I am C-foo()

Although C inherits P's foo() method, it is overridden because C defines its own foo() method. One
reason for overriding methods is because you may want special or different functionality in your
subclass. Your next obvious question then must be, "Can I call a base class method that I overrode in
my subclass?"

The answer is yes, but this is where you will have to invoke an unbound base class method, explicitly
providing the instance of the subclass, as we do here:

 >>> P.foo(c)
 Hi, I am P-foo()

Notice that we already had an instance of P called p from above, but that is nowhere to be found in this
example. We do not need an instance of P to call a method of P because we have an instance of a
subclass of P which we can use, c. You would not typically call the parent class method this way.
Instead, you would do it in the overridden method and call the base class method explicitly:

class C(P):
 def foo(self):
 P.foo(self)
 print 'Hi, I am C-foo()'

Note how we pass in self explicitly in this (unbound) method call. A better way to make this call would
be to use the super() built-in method:

class C(P):
 def foo(self):
 super(C, self).foo()
 print 'Hi, I am C-foo()'

super() will not only find the base class method, but pass in self for us so we do not have to as in the
previous example. Now when we call the child class method, it does exactly what you think it should do:

 >>> c = C()
 >>> c.foo()
 Hi, I am P-foo()
 Hi, I am C-foo()

file:///D|/1/0132269937/ch13lev1sec11.html (3 von 11) [13.11.2007 16:24:14]

Section 13.11. Inheritance

Core Note: Overriding __init__ does not invoke base class __init__

Similar to overriding non-special methods above, when deriving a
class with a constructor __init__(), if you do not override __init__(),
it will be inherited and automatically invoked. But if you do override
__init__() in a subclass, the base class __init__() method is not
invoked automatically when the subclass is instantiated. This may be
surprising to those of you who know Java.

class P(object):
 def __init__(self):
 print "calling P's constructor"

class C(P):
 def __init__(self):
 print "calling C's constructor"

>>> c = C()
calling C's constructor

If you want the base class __init__() invoked, you need to do that
explicitly in the same manner as we just described, calling the base
class (unbound) method with an instance of the subclass. Updating
our class C appropriately results in the following desired execution:

class C(P):
 def __init__(self):
 P.__init__(self)
 print "calling C's constructor"

>>> c = C()
calling P's constructor
calling C's constructor

In the above example, we call the base class __init__() method
before the rest of the code in our own __init__() method. It is fairly
common practice (if not mandatory) to initialize base classes for setup
purposes, then proceed with any local setup. This rule makes sense
because you want the inherited object properly initialized and "ready"
by the time the code for the derived class constructor runs because it
may require or set inherited attributes.

Those of you familiar with C++ would call base class constructors in a
derived class constructor declaration by appending a colon to the
declaration followed by calls to any base class constructors. Whether
the programmer does it or not, in Java, the base class constructor
always gets called (first) in derived class constructors.

Python's use of the base class name to invoke a base class method is
directly comparable to Java's when using the keyword super, and that
is why the super() built-in function was eventually added to Python,
so you could "do the correct thing" functionally:

file:///D|/1/0132269937/ch13lev1sec11.html (4 von 11) [13.11.2007 16:24:14]

Section 13.11. Inheritance

class C(P):
 def __init__(self):
 super(C, self).__init__()
 print "calling C's constructor"

The nice thing about using super() is that you do not need to give any
base class name explicitly... it does all the legwork for you! The
importance of using super() is that you are not explicitly specifying
the parent class. This means that if you change the class hierarchy,
you only need to change one line (the class statement itself) rather
than tracking through what could be a large amount of code in a class
to find all mentions of what is now the old class name.

13.11.3. Deriving Standard Types

Not being able to subclass a standard data type was one of the most significant problems of classic
classes. Fortunately that was remedied back in 2.2 with the unification of types and classes and the
introduction of new-style classes. Below we present two examples of subclassing a Python type, one
mutable and the other not.

Immutable Type Example

Let us assume you wanted to work on a subclass of floating point numbers to be used for financial
applications. Any time you get a monetary value (as a float), you always want to round evenly to two
decimal places. (Yes, the Decimal class is a better solution than standard floats to accurately store
floating point values, but you still need to round them [occasionally] to two digits!) The beginnings of
your class can look like this:

class RoundFloat(float):
 def __new__(cls, val):
 return float.__new__(cls, round(val, 2))

We override the __new__() special method, which customizes our object to be just a little bit different
from the standard Python float: we round the original floating point number using the round() built-in
function and then instantiate our float, RoundFloat. We create the actual object by calling our parent
class constructor, float.__new__(). Note that all __new__() methods are class methods, and we have to
explicitly pass in the class as the first argument, similar to how self is required for regular methods like
__init__().

While our example is simple enough, i.e., we know we have a float, we are only subclassing from one
type, etc., for general cases, it is better to use the super() built-in function to go and hunt down the
appropriate superclass __new__() method to call. Below, we have modified our example with this change:

file:///D|/1/0132269937/ch13lev1sec11.html (5 von 11) [13.11.2007 16:24:14]

Section 13.11. Inheritance

class RoundFloat(float):
 def __new__(cls, val):
 return super(RoundFloat, cls).__new__(
 cls, round(val, 2))

This example is far from complete, so keep an eye out for getting it in better shape as we progress
through this chapter. Here is some sample output:

 >>> RoundFloat(1.5955)
 1.6
 >>> RoundFloat(1.5945)
 1.59
 >>> RoundFloat(-1.9955)
 -2.0

Mutable Type Example

Subclassing a mutable type is similar, and you probably do not need to use __new__() (or even __init__
()) because there is typically not as much setup required. Usually the default behavior of the type you
are deriving is what you want. In this simple example, we create a new dictionary type where its keys
are returned sorted by the keys() method:

class SortedKeyDict(dict):
 def keys(self):
 return sorted(super(
 SortedKeyDict, self).keys())

Recall that a dictionary can be created with dict(), dict(mapping), dict(sequence_of_2_tuples), or dict
(**kwargs). Below is an example of using our new class:

d = SortedKeyDict((('zheng-cai', 67), ('hui-jun', 68),
 ('xin-yi', 2)))
print 'By iterator:'.ljust(12), [key for key in d]
print 'By keys():'.ljust(12), d.keys()

If we put all the code in a script and run it, we get the following output:

 By iterator: ['zheng-cai', 'xin-yi', 'hui-jun']
 By keys(): ['xin-yi', 'hui-jun', 'zheng-cai']

For our example, the iterator progresses through the keys in the hashed order while using our
(overridden) keys() method gives the keys in lexicographically sorted order.

Always be cautious and conscious of what you are doing. What if, you say, "Your method is overly
complicated with the call to super()," and instead, you prefer keys() to be simpler (and easier to
understand)... like this:

file:///D|/1/0132269937/ch13lev1sec11.html (6 von 11) [13.11.2007 16:24:14]

Section 13.11. Inheritance

def keys(self):
 return sorted(self.keys())

This is Exercise 13-19 at the end of the chapter.

13.11.4. Multiple Inheritance

Like C++, Python allows for subclassing from multiple base classes. This feature is commonly known as
multiple inheritance. The concept is easy, but the hard work is in how to find the correct attribute when
it is not defined in the current (sub)class. There are two different aspects to remember when using
multiple inheritance. The first is, again, being able to find the correct attribute. Another is when you
have overridden methods, all of which call parent class methods to "take care of their responsibilities"
while the child class takes care of its own obligations. We will discuss both simultaneously but focus on
the latter as we describe the method resolution order.

Method Resolution Order (MRO)

In Python versions before 2.2, the algorithm was simple enough: a depth-first left-to-right search to
obtain the attribute to use with the derived class. Unlike other Python algorithms that override names as
they are found, multiple inheritance takes the first name that is found.

Because of the entirely new structure of classes and types and the subclassing of built-in types, this
algorithm was no longer feasible, so a new MRO algorithm had to be developed. The initial one debuting
in 2.2 was a good attempt but had a flaw (see Core Note below). It was immediately replaced in 2.3,
which is the current one that is in use today.

The exact resolution order is complex and is beyond the scope of this text, but you can read about it in
the references given later on in this section. We can say that the new resolution method is more
breadth-first than it is depth-first.

Core Note: Python 2.2 uses a unique yet faulty MRO

Python 2.2 was the first release using a new-style MRO that had to
replace the algorithm from classic classes due to the reasons outlined
above.

For 2.2, the algorithm had the basic idea of following the hierarchy of
each ancestor class and building a list of classes encountered,
strategically removing duplicates. However, it was pointed out on the
core Python developers mailing list that it fails to maintain
monotonicity (order preservation), and had to be replaced by the new
C3 algorithm that has been in place since 2.3.

Let us give you an example to see how the method resolution order differs between classic and new-
style classes.

file:///D|/1/0132269937/ch13lev1sec11.html (7 von 11) [13.11.2007 16:24:14]

Section 13.11. Inheritance

Simple Attribute Lookup Example

The simple example below will highlight the differences between the old and new styles of resolution.
The script consists of a pair of parent classes, a pair of child classes, and one grandchild class.

class P1: #(object): # parent class 1
 def foo(self):
 print 'called P1-foo()'

class P2: #(object): # parent class 2
 def foo(self):
 print 'called P2-foo()'
 def bar(self):
 print 'called P2-bar()'

class C1(P1, P2): # child 1 der. from P1, P2
 pass

class C2(P1, P2): # child 2 der. from P1, P2
 def bar(self):
 print 'called C2-bar()'

class GC(C1, C2): # define grandchild class
 pass # derived from C1 and C2

In Figure 13-2, we see the class relationships between the parent, children, and grandchildren classes.
P1 defines foo(), P2 defines foo() and bar(), and C2 defines bar(). Let us now demonstrate the behavior
of both classic and new-style classes.

Figure 13-2. Relationships between parent, children, and grandchild classes
as well as the methods they define.

Classic Classes

We are going to use classic classes first. Upon executing the above declarations in the interactive
interpreter, we can confirm the resolution order that classic classes use, depth-first, left to right:

file:///D|/1/0132269937/ch13lev1sec11.html (8 von 11) [13.11.2007 16:24:14]

Section 13.11. Inheritance

 >>> gc = GC()

 >>> gc.foo() # GC C1 P1
 called P1-foo()

 >>> gc.bar() # GC C1 P1 P2
 called P2-bar()

When calling foo(), it looks in the current class (GC) first. If it cannot be found, it goes up to its
immediate parent, C1. The search fails there so it continues up the tree to its parent, P1, which is where
foo() is found.

Likewise for bar(), it searches through GC, C1, and P1 before then finding it in P2. C2.bar() is never found
because of the resolution order used. Now, you may be thinking, "I would prefer to call C2's bar()
because it is closer to me in the inheritance tree, thus more relevant." In this case, you can still use it,
but you have to do it in the typical unbound fashion by invoking its fully qualified name and providing a
valid instance:

 >>> C2.bar(gc)
 called C2-bar()

New-Style Classes

Now uncomment the (object) next to the class declarations for P1 and P2 and reexecute. The new-style
method resolution gives us something different:

 >>> gc = GC()

 >>> gc.foo() # GC C1 C2 P1
 called P1-foo()

 >>> gc.bar() # GC C1 C2
 called C2-bar()

Instead of following the tree up each step, it looks at the siblings first, giving it more of a breadth-first
flavor. When looking for foo(), it checks GC, followed by C1 and C2, and then finds it in P1. If P1 did not
have it, it would have gone to P2. The bottom line for foo() is that both classic and new-style classes
would have found it in P1, but they took different paths to get there.

The result for bar() is different, though. It searches GC and C1, and finds it next in C2 and uses it there.
It does not continue up to the grandparents P1 and P2. In this case, the new-style resolution fit into the
scheme better if you did prefer to call the "closest" bar() from GC. And of course, if you still need to call
one higher up, just do it in an unbound manner as before:

 >>> P2.bar(gc)
 called P2-bar()

New-style classes also have an __mro__ attribute that tells you what the search order is:

 >>> GC.__mro__

file:///D|/1/0132269937/ch13lev1sec11.html (9 von 11) [13.11.2007 16:24:14]

Section 13.11. Inheritance

 (<class '__main__.GC'>, <class '__main__.C1'>, <class
 '__main__.C2'>, <class '__main__.P1'>, <class
 '__main__.P2'>, <type 'object'>)

*MRO Problems Caused by Diamonds

The classic class method resolution never gave folks too many problems. It was simple to explain and
easy to understand. Most classes were single inheritance, and multiple inheritance was usually limited to
mixing two completely discrete classes together. This is where the term mix-in classes (or "mix-ins")
comes from.

Why the Classic Classes MRO Fails

The unification of types and classes in 2.2 brought about a new "problem," and that is related to all
(root) classes inheriting from object, the mother of all types. The diagram of a simple multiple
inheritance hierarchy now formed a diamond. Taking some inspiration from Guido van Rossum's essay,
let us say that you have classic classes B and C, as defined below where C overrides its constructor but
B does not, and D inherits from both B and C:

class B:
 pass

class C:
 def __init__(self):
 print "the default constructor"

class D(B, C):
 pass

When we instantiate D, we get:

 >>> d = D()
 the default constructor

Figure 13-3 illustrates the class hierarchy for B, C, and D, as well as the problem introduced when we
change the code to use new-style classes:

Figure 13-3. Inheritance problems are caused by the appearance of the base
class required by new-style classes, forming a diamond shape in the

inheritance hierarchy. An instance of D should not miss an upcall to C nor
should it upcall to A twice (since both B and C derive from A). Be sure to read
the "Cooperative Methods" section of Guido van Rossum's essay for further

clarification.

file:///D|/1/0132269937/ch13lev1sec11.html (10 von 11) [13.11.2007 16:24:14]

Section 13.11. Inheritance

class B(object):
 pass

class C(object):
 def __init__(self):
 print "the default constructor"

Not much change here other than adding (object) to both class declarations, right? That is true, but as
you can see in the diagram, the hierarchy is now a diamond; the real problem is in the MRO now. If we
used the classic class MRO, when instantiating D, we no longer get C.__init__()... we get object.
__init__()! This is the exact reason why the MRO needed to be changed.

Although we saw that it does change the way attributes are looked up in our example above with the GC
class, you do not have to worry about lots of code breaking. Classic classes will still use the old MRO
while new-style classes will use its MRO. Again, if you do not need all of the features of the new-style
classes, there is nothing wrong with continuing to develop using classic classes.

Summary

Classic classes have a depth-first MRO algorithm. Because new-style classes inherit from object, a new
MRO had to be created because of problems ensuing from the now-diamond-shaped class hierarchy.

You can read more about new-style classes, the MROs, and more in:

● Guido van Rossum's essay on the unification of types and classes: http://www.python.org/
download/releases/2.2.3/descrintro

● PEP 252: Making Types Look More Like Classes http://www.python.org/doc/peps/pep-0252
● "What's New in Python 2.2" document http://www.python.org/doc/2.2.3/whatsnew
● Python 2.3 Method Resolution order paper http://python.org/download/releases/2.3/mro/

file:///D|/1/0132269937/ch13lev1sec11.html (11 von 11) [13.11.2007 16:24:14]

http://www.python.org/download/releases/2.2.3/descrintro
http://www.python.org/download/releases/2.2.3/descrintro
http://www.python.org/doc/peps/pep-0252
http://www.python.org/doc/2.2.3/whatsnew
http://python.org/download/releases/2.3/mro/

Section 13.12. Built-in Functions for Classes, Instances, and Other Objects

13.12. Built-in Functions for Classes, Instances, and Other Objects

13.12.1. issubclass()

The issubclass() Boolean function determines if one class is a subclass or descendant of another class.
It has the following syntax:

 issubclass(sub, sup)

issubclass() returns TRue if the given subclass sub is indeed a subclass of the superclass sup (and False
otherwise). This function allows for an "improper" subclass, meaning that a class is viewed as a subclass
of itself, so the function returns true if sub is either the same class as sup or derived from sup. (A
"proper" subclass is strictly a derived subclass of a class.)

Beginning with Python 2.3, the second argument of issubclass() can be tuple of possible parent classes
for which it will return true if the first argument is a subclass of any of the candidate classes in the given
tuple.

13.12.2. isinstance()

The isinstance() Boolean function is useful for determining if an object is an instance of a given class. It
has the following syntax:

 isinstance(obj1, obj2)

isinstance() returns TRue if obj1 is an instance of class obj2 or is an instance of a subclass of obj2 (and
False otherwise), as indicated in the following examples:

 >>> class C1(object): pass
 ...
 >>> class C2(object): pass
 ...
 >>> c1 = C1()
 >>> c2 = C2()
 >>> isinstance(c1, C1)
 True
 >>> isinstance(c2, C1)
 False
 >>> isinstance(c1, C2)
 False

file:///D|/1/0132269937/ch13lev1sec12.html (1 von 5) [13.11.2007 16:24:15]

file:///D|/1/0132269937/14051536.html

Section 13.12. Built-in Functions for Classes, Instances, and Other Objects

 >>> isinstance(c2, C2)
 True
 >>> isinstance(C2, c2)
 Traceback (innermost last):
 File "<stdin>", line 1, in ?
 isinstance(C2, c2)
 TypeError: second argument must be a class

Note that the second argument should be a class; otherwise, you get a TypeError. The only exception is
if the second argument is a type object. This is allowed because you can also use isinstance() to check
if an object obj1 is of the type obj2, i.e.,

 >>> isinstance(4, int)
 True
 >>> isinstance(4, str)
 False
 >>> isinstance('4', str)
 True

If you are coming from Java, you may be aware of the warning against using its equivalent, instanceof
(), due to performance reasons. A call to Python's isinstance() will not have the same performance hit
primarily because it only needs it to perform a quick search up the class hierarchy to determine what
classes it is an instance of, and even more importantly, it is written in C!

Like issubclass(), isinstance() can also take a tuple as its second argument. This feature was added in
Python 2.2. It will return TRue if the first argument is an instance of any of the candidate types and
classes in the given tuple. Also be sure to read more about isinstance() in Section 13.16.1 on page 595.

13.12.3. hasattr(), getattr(), setattr(), delattr()

The *attr() functions can work with all kinds of objects, not just classes and instances. However, since
they are most often used with those objects, we present them here. One thing that might throw you off
is that when using these functions, you pass in the object you are working on as the first argument, but
the attribute name, the second argument to these functions, is the string name of the attribute. In other
words, when operating with obj.attr, the function call will be like *attr(obj, 'attr'...)this will be clear
in the examples that follow.

The hasattr() function is Boolean and its only purpose is to determine whether or not an object has a
particular attribute, presumably used as a check before actually trying to access that attribute. The
getattr() and setattr() functions retrieve and assign values to object attributes, respectively. getattr
() will raise an AttributeError exception if you attempt to read an object that does not have the
requested attribute, unless a third, optional default argument is given. setattr() will either add a new
attribute to the object or replace a pre-existing one. The delattr() function removes an attribute from
an object.

Here are some examples using all the *attr() BIFs:

file:///D|/1/0132269937/ch13lev1sec12.html (2 von 5) [13.11.2007 16:24:15]

Section 13.12. Built-in Functions for Classes, Instances, and Other Objects

 >>> class myClass(object):
 ... def __init__(self):
 ... self.foo = 100
 ...
 >>> myInst = myClass()
 >>> hasattr(myInst, 'foo')
 True
 >>> getattr(myInst, 'foo')
 100
 >>> hasattr(myInst, 'bar')
 False
 >>> getattr(myInst, 'bar')
 Traceback (most recent call last):
 File "<stdin>", line 1, in ?
 getattr(myInst, 'bar')
 AttributeError: myClass instance has no attribute 'bar'
 >>> getattr(c, 'bar', 'oops!')
 'oops!'
 >>> setattr(myInst, 'bar', 'my attr')
 >>> dir(myInst)
 ['__doc__', '__module__', 'bar', 'foo']
 >>> getattr(myInst, 'bar') # same as myInst.bar
 'my attr'
 >>> delattr(myInst, 'foo')
 >>> dir(myInst)
 ['__doc__', '__module__', 'bar']
 >>> hasattr(myInst, 'foo')
 False

13.12.4. dir()

We first experienced dir() in Exercises 2-12, 2-13, and 4-7. In those exercises, we used dir() to give
us information about all the attributes of a module. We now know that dir() can be applied to objects
as well.

In Python 2.2, dir() received a significant upgrade. Because of these changes, the voluntarily
implemented __members__ and __methods__ data attributes have been deprecated. dir() provides more
details than the old one. According to the documentation, "In addition to the names of instance variables
and regular methods, it also shows the methods that are normally invoked through special notations,
like __iadd__ (+=), __len__ (len()), __ne__ (!=)." Here are more specifics from the Python documentation:

● dir() on an instance (classic or new-style) shows the instance variables as well as the methods
and class attributes defined by the instance's class and all its base classes.

● dir() on a class (classic or new-style) shows the contents of the __dict__ of the class and all its
base classes. It does not show class attributes that are defined by a metaclass.

● dir() on a module shows the contents of the module's __dict__. (This is unchanged.)
● dir() without arguments shows the caller's local variables. (Again, unchanged.)
● There are more details; in particular, for objects that override __dict__ or __class__, these are

honored, and for backwards compatibility, __members__ and __methods__ are honored if they are
defined.

13.12.5. super()

file:///D|/1/0132269937/ch13lev1sec12.html (3 von 5) [13.11.2007 16:24:15]

Section 13.12. Built-in Functions for Classes, Instances, and Other Objects

The super() function was added in 2.2 for new-style classes. The purpose of this function is to help the
programmer chase down the appropriate superclass with which the proper method can be invoked. In
simple cases, the programmer will likely just call the ancestor class method in an unbound fashion.
Using super() simplifies the task of search for a suitable ancestor and passes in the instance or type
object on your behalf when you call it.

In Section 13.11.4, we described the method resolution order (MRO) that is used to chase down
attributes in ancestor classes. For each class defined, an attribute named __mro__ is created as a tuple
that lists the classes that need to be searched, in the order they are searched. Here is its syntax:

 super(type[, obj])

Given type, super() "returns the superclass" of type. You may also pass in obj, which should be of the
type type if you want the superclass to be bound, otherwise it will be unbound. The obj argument can
also be a type, but it needs to be a subclass of type. In summary, when obj is given:

● If obj is an instance, then isinstance(obj, type) must be true
● If obj is a class or type, then issubclass(obj, type) must be TRue

Actually, super() is a factory function that makes a super object that uses the __mro__ attribute for a
given class to find the appropriate superclass. Most notably, it searches that MRO starting from the point
where the current class is found. For more details, again please see Guido van Rossum's essay on type
and class unification, where he even gives a pure Python implementation of super() so you can get a
better idea of how it works!

Final thought... super()'s primary use is in the lookup of a superclass attribute, e.g., super(MyClass,
self).__init__(). If you are not performing such a lookup, you probably do not need to be using super
().

There are various examples how to use super() scattered throughout this chapter. Also be sure to read
the important notes about super() in Section 13.11.2, especially the Core Note in that section.

13.12.6. vars()

The vars() built-in function is similar to dir() except that any object given as the argument must have a
__dict__ attribute. vars() will return a dictionary of the attributes (keys) and values of the given object
based on the values in its __dict__ attribute. If the object provided does not have such an attribute, an
TypeError exception is raised. If no object is provided as an argument to vars(), it will display the
dictionary of attributes (keys) and the values of the local namespace, i.e., locals(). We present an
example of calling vars() with a class instance:

class C(object):
 pass

>>> c = C()

file:///D|/1/0132269937/ch13lev1sec12.html (4 von 5) [13.11.2007 16:24:15]

Section 13.12. Built-in Functions for Classes, Instances, and Other Objects

>>> c.foo = 100
>>> c.bar = 'Python'
>>> c.__dict__
{'foo': 100, 'bar': 'Python'}
>>> vars(c)
{'foo': 100, 'bar': 'Python'}

Table 13.3 summarizes the built-in functions for classes and class instances.

Table 13.3. Built-in Functions for Classes, Instances, and Other Objects

Built-in Function Description

issubclass(sub, sup) Returns true if class sub is a subclass of class sup, False otherwise

isinstance(obj1, obj2) Returns true if instance obj1 is an instance of class obj2 or is an
instance of a subclass of obj2; will also return TRue if obj1 is of type
obj2; otherwise it returns False

hasattr(obj, attr) Returns TRue if obj has attribute attr (given as a string), False otherwise

getattr(obj, attr[, default]) Retrieves attribute attr of obj; same as return obj.attr; if attr is not
an attribute of obj, default returned if given; else AttributeError
exception raised

setattr(obj, attr, val) Sets attribute attr of obj to value val, over riding any previously
existing attribute value; otherwise, attribute is created; same as obj.
attr = val

delattr(obj, attr) Removes attribute attr (given as a string) from obj; same as del obj.
attr

dir(obj=None) Returns a list of the attributes of obj; if obj not given, dir() displays
local namespace attributes, i.e., locals().keys()

super(type, obj=None)
[a] Returns a proxy object representing the super class of type; if obj is not

passed in, the super object returned is unbound; otherwise if obj is a
type issubclass(obj, type) must be TRue; otherwise isinstance(obj,
type) must be TRue

vars(obj=None) Returns a dictionary of the attributes and values of obj; if obj not given,
vars() displays local namespace dictionary (attributes and values), i.e.,
locals()

[a] New in Python 2.2; only works with new-style classes.

file:///D|/1/0132269937/ch13lev1sec12.html (5 von 5) [13.11.2007 16:24:15]

file:///D|/1/0132269937/14051536.html

Section 13.13. Customizing Classes with Special Methods

13.13. Customizing Classes with Special Methods

We covered two important aspects of methods in preceding sections of this chapter: first, that methods
must be bound (to an instance of their corresponding class) before they can be invoked; and second,
that there are two special methods which provide the functionality of constructors and destructors,
namely __init__() and __del__() respectively.

In fact, __init__() and __del__() are part of a set of special methods which can be implemented. Some
have the predefined default behavior of inaction while others do not and should be implemented where
needed. These special methods allow for a powerful form of extending classes in Python. In particular,
they allow for:

● Emulating standard types
● Overloading operators

Special methods enable classes to emulate standard types by overloading standard operators such as +,
*, and even the slicing subscript and mapping operator []. As with most other special reserved
identifiers, these methods begin and end with a double underscore (__). Table 13.4 presents a list of
all special methods and their descriptions.

Table 13.4. Special Methods for Customizing Classes

Special Method Description

Basic Customization

C.__init__(self[, arg1, ...]) Constructor (with any optional arguments)

C.__new__(self[, arg1, ...])
[a] Constructor (with any optional argu ments); usually

used for setting up subclassing of immutable data types

C.__del__(self) Destructor

C.__str__(self) Printable string representation; str() built-in and print
statement

C.__repr__(self) Evaluatable string representation; repr() built-in and
'' operator

C.__unicode__(self)
[b] Unicode string representation; unicode() built-in

C.__call__(self, *args) Denote callable instances

C.__nonzero__(self) Define False value for object; bool() built-in (as of 2.2)

C.__len__(self) "Length" (appropriate for class); len() built-in

file:///D|/1/0132269937/ch13lev1sec13.html (1 von 19) [13.11.2007 16:24:18]

file:///D|/1/0132269937/14051536.html

Section 13.13. Customizing Classes with Special Methods

Object (Value) Comparison
[c]

C.__cmp__(self, obj) object comparison; cmp() built-in

C.__lt__(self, obj) and C.__le__(self, obj) less than/less than or equal to; < and <= operators

C.__gt__(self, obj) and C.__ge__(self, obj) greater than/greater than or equal to; > and >=
operators

C.__eq__(self, obj) and C.__ne__(self, obj) equal/not equal to; ==,!= and <> operators

Attributes

C.__getattr__(self, attr) Get attribute; getattr() built-in; called only if
attributes not found

C.__setattr__(self, attr, val) Set attribute;

C.__delattr__(self, attr) Delete attribute;

C.__getattribute__(self, attr)
[a] Get attribute; getattr() built-in; always called

C.__get__(self, attr)
[a] (descriptor) Get attribute

C.__set__(self, attr, val)
[a] (descriptor) Set attribute

C.__delete__(self, attr)
[a] (descriptor) Delete attribute

Customizing Classes / Emulating Types

Numeric Types: Binary Operators
[d]

C.__*add__(self, obj) Addition; + operator

C.__*sub__(self, obj) Subtraction; - operator

C.__*mul__(self, obj) Multiplication; * operator

C.__*div__(self, obj) Division; / operator

C.__*truediv__(self, obj)
[e] True division; / operator

C.__*floordiv__(self, obj)
[e] Floor division; // operator

C.__*mod__(self, obj) Modulo/remainder; % operator

C.__*divmod__(self, obj) Division and modulo; divmod() built-in

C.__*pow__(self, obj[, mod]) Exponentiation; pow() built-in; ** operator

C.__*lshift__(self, obj) Left shift; << operator

Customizing Classes / Emulating Types

Numeric Types: Binary Operators
[f]

file:///D|/1/0132269937/ch13lev1sec13.html (2 von 19) [13.11.2007 16:24:18]

Section 13.13. Customizing Classes with Special Methods

C.__*rshift__(self, obj) Right shift; >> operator

C.__*and__(self, obj) Bitwise AND; & operator

C.__*or__(self, obj) Bitwise OR; | operator

C.__*xor__(self, obj) Bitwise XOR; ^ operator

Numeric Types: Unary Operators

C.__neg__(self) Unary negation

C.__pos__(self) Unary no-change

C.__abs__(self) Absolute value; abs() built-in

C.__invert__(self) Bit inversion; ~ operator

Numeric Types: Numeric Conversion

C.__complex__(self, com) Convert to complex; complex() built-in

C.__int__(self) Convert to int; int() built-in

C.__long__(self) Convert to long; long() built-in

C.__float__(self) Convert to float; float() built-in

Numeric Types: Base Representation
(String)

C.__oct__(self) Octal representation; oct() built-in

C.__hex__(self) Hexadecimal representation; hex() built-in

Numeric Types: numeric coercion

C.__coerce__(self, num) Coerce to same numeric type; coerce() built-in

C.__index__(self)
[g] Coerce alternate numeric type to integer if/when

necessary (e.g., for slice indexes, etc.)

Sequence Types
[e]

C.__len__(self) Number of items in sequence

C.__getitem__(self, ind) Get single sequence element

C.__setitem__(self, ind, val) Set single sequence element

C.__delitem__(self, ind) Delete single sequence element

Special Method Description

Sequence Types
[e]

C.__getslice__(self, ind1, ind2) Get sequence slice

C.__setslice__(self, i1, i2, val) Set sequence slice

C.__delslice__(self, ind1, ind2) Delete sequence slice

file:///D|/1/0132269937/ch13lev1sec13.html (3 von 19) [13.11.2007 16:24:18]

Section 13.13. Customizing Classes with Special Methods

C.__contains__(self, val)
[f] Test sequence membership; in keyword

C.__*add__(self, obj) Concatenation; + operator

C.__*mul__(self, obj) Repetition; * operator

C.__iter__(self)
[e] Create iterator class; iter() built-in

Mapping Types

C.__len__(self) Number of items in mapping

C.__hash__(self) Hash function value

C.__getitem__(self, key) Get value with given key

C.__setitem__(self, key, val) Set value with given key

C.__delitem__(self, key) Delete value with given key

C.__missing__(self, key)
[g] Provides default value when dictionary does not have

given key

[a] New in Python 2.2; for use with new-style classes only.

[b] New in Python 2.3.

[c] All except cmp() new in Python 2.1.

[d] "*"either nothing (self OP obj), "r" (obj OP self), or "i" for in-place operation (new in Python 2.0), i.e., __add__,
__radd__, or __iadd__.

[e] New in Python 2.2.

[f] "*" either nothing (self OP obj), "r" (obj OP self), or "i" for in-place operation (new in Python 1.6), i.e., __add__,
__radd__, or __iadd__.

[g] New in Pathon 2.5.

The Basic Customization and Object (Value) Comparison special methods can be implemented for most
classes and are not tied to emulation of any specific types. The latter set, also known as Rich
Comparisons, was added in Python 2.1.

The Attributes group helps manage instance attributes of your class. This is also independent of
emulation. There is also one more, __getattribute__(), which applies to new-style classes only, so we
will describe it in an upcoming section.

file:///D|/1/0132269937/ch13lev1sec13.html (4 von 19) [13.11.2007 16:24:18]

Section 13.13. Customizing Classes with Special Methods

The Numeric Types set of special methods can be used to emulate various numeric operations, including
those of the standard (unary and binary) operators, conversion, base representation, and coercion.
There are also special methods to emulate sequence and mapping types. Implementation of some of
these special methods will overload operators so that they work with instances of your class type.

The additional division operators __*truediv__() and __*floordiv__() were added in Python 2.2 to
support the pending change to the Python division operatoralso see Section 5.5.3. Basically, if the
interpreter has the new division enabled, either via a switch when starting up Python or via the import
of division from __future__, the single slash division operator (/) will represent true division, meaning
that it will always return a floating point value, regardless of whether floats or integers make up the
operands (complex division stays the same). The double slash division operator (//) will provide the
familiar floor division with which most engineers who come from the standard compiled languages like C/
C++ and Java are familiar. Similarly, these methods will only work with these symbols applied to classes
that implement these methods and when new division is enabled.

Numeric binary operators in the table annotated with a wildcard asterisk in their names are so denoted
to indicate that there are multiple versions of those methods with slight differences in their name. The
asterisk either symbolizes no additional character in the string, or a single "r" to indicate a right-hand
operation. Without the "r," the operation occurs for cases that are of the format self OP obj; the
presence of the "r" indicates the format obj OP self. For example, __add__(self, obj) is called for self +
obj, and __radd__(self, obj) would be invoked for obj + self.

Augmented assignment, new in Python 2.0, introduces the notion of "in-place" operations. An "i" in
place of the asterisk implies a combination left-hand operation plus an assignment, as in self = self OP
obj. For example, __iadd__(self, obj) is called for self = self + obj.

With the arrival of new-style classes in Python 2.2, several more special methods have been added for
overriding. However, as we mentioned at the beginning of the chapter, we are now focusing only on the
core portion of material applicable to both classic classes as well as new-style classes, and then later on
in the chapter, we address the advanced features of new-style classes.

13.13.1. Simple Customization (RoundFloat2)

Our first example is totally trivial. It is based to some extent on the RoundFloat class we saw earlier in
the section on subclassing Python types. This example is simpler. In fact, we are not even going to

file:///D|/1/0132269937/ch13lev1sec13.html (5 von 19) [13.11.2007 16:24:18]

Section 13.13. Customizing Classes with Special Methods

subclass anything (except object of course)... we do not want to "take advantage" of all the "goodies"
that come with floats. No, this time, we want to create a barebones example so that you have a better
idea of how class customization works. The premise of this class is still the same as the other one: we
just want a class to save a floating point number rounded to two decimal places.

class RoundFloatManual(object):
 def __init__(self, val):
 assert isinstance(val, float), \
 "Value must be a float!"
 self.value = round(val, 2)

This class takes a single floating point valueit asserts that the type must be a float as it is passed to the
constructorand saves it as the instance attribute value. Let us try to execute it and create an instance of
this class:

>>> rfm = RoundFloatManual(42)
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
 File "roundFloat2.py", line 5, in __init__
 assert isinstance(val, float), \
AssertionError: Value must be a float!
>>> rfm = RoundFloatManual(4.2)
>>> rfm
<roundFloat2.RoundFloatManual object at 0x63030>
>>> print rfm
<roundFloat2.RoundFloatManual object at 0x63030>

As you can see, it chokes on invalid input, but provides no output if input was valid. But look what
happens when we try to dump the object in the interactive interpreter. We get some information, but
this is not what we were looking for. (We wanted to see the numeric value, right?) And calling print
does not apparently help, either.

Unfortunately, neither print (using str()) nor the actual object's string representation (using repr())
reveals much about our object. One good idea would be to implement either __str__() or __repr__(), or
both so that we can "see" what our object looks like. In other words, when you want to display your
object, you actually want to see something meaningful rather than the generic Python object string
(<object object at id>). Let us add a __str__() method, overriding the default behavior:

def __str__(self):
 return str(self.value)

Now we get the following:

 >>> rfm = RoundFloatManual(5.590464)
 >>> rfm
 <roundFloat2.RoundFloatManual object at 0x5eff0>
 >>> print rfm
 5.59
 >>> rfm = RoundFloatManual(5.5964)
 >>> print rfm
 5.6

file:///D|/1/0132269937/ch13lev1sec13.html (6 von 19) [13.11.2007 16:24:18]

Section 13.13. Customizing Classes with Special Methods

We still have a few problems ... one is that just dumping the object in the interpreter still shows the
default object notation, but that is not so bad. If we wanted to fix it, we would just override __repr__().
Since our string representation is also a Python object, we can make the output of __repr__() the same
as __str__().

To accomplish this, we can just copy the code from __str__() to __repr__(). This is a simple example,
so it cannot really hurt us, but as a programmer, you know that is not the best thing to do. If a bug
existed in __str__(), then we will copy that bug to __repr__().

The best solution is to recall that the code represented by __str__() is an object too, and like all objects,
references can be made to them, so let us just make __repr__() an alias to __str__():

 __repr__ = __str__

In the second example with 5.5964, we see that it rounds the value correctly to 5.6, but we still wanted
two decimal places to be displayed. One more tweak, and we should be done. Here is the fix:

def __str__(self):
 return '%.2f' % self.value

And here is the resulting output with both str() and repr() output:

 >>> rfm = RoundFloatManual(5.5964)
 >>> rfm
 5.60
 >>> print rfm
 5.60

In our original RoundFloat example at the beginning of this chapter, we did not have to worry about all
the fine-grained object display stuff; the reason is that __str__() and __repr__() have already been
defined for us as part of the float class. All we did was inherit them. Our more "manual" version required
additional work from us. Do you see how useful derivation is? You do not even need to know how far up
the inheritance tree the interpreter needs to go to find a declared method that you are using without
guilt. We present the full code of this class in Example 13.2.

Example 13.2. Basic Customization (roundFloat2.py)

file:///D|/1/0132269937/ch13lev1sec13.html (7 von 19) [13.11.2007 16:24:18]

Section 13.13. Customizing Classes with Special Methods

1 #!/usr/bin/env python
2
3 class RoundFloatManual(object):
4 def __init__(self, val):
5 assert isinstance(val, float), \
6 "Value must be a float!"
7 self.value = round(val, 2)
8
9 def __str__(self):
10 return '%.2f' % self.value
11
12 __repr__ = __str__

Now let us try a slightly more complex example.

13.13.2. Numeric Customization (Time60)

For our first realistic example, let us say we wanted to create a simple application that manipulated time
as measured in hours and minutes. The class we are going to create can be used to track the time
worked by an employee, the amount of time spent online by an ISP (Internet service provider)
subscriber, the amount of total uptime for a database (not inclusive of downtime for backups and
upgrades), the total amount of time played in a poker tournament, etc.

For our Time60 class, we will take integers as hours and minutes as input to our constructor.

class Time60(object): # ordered pair
 def __init__(self, hr, min): # constructor
 self.hr = hr # assign hours
 self.min = min # assign minutes

Display

Also, as seen in the previous example, we want meaningful output if we display our instances, so we
need to override __str__() (and __repr__() if so desired). As humans, we are used to seeing hours and
minutes in colon-delimited format, e.g. "4:30," representing four and a half hours (four hours and thirty
minutes):

def __str__(self):
 return '%d:%d' % (self.hr, self.min)

Using this class, we can instantiate some objects. In the example below, we are starting a timesheet to
track the number of billable hours for a contractor:

 >>> mon = Time60(10, 30)
 >>> tue = Time60(11, 15)
 >>>
 >>> print mon, tue
 10:30 11:15

file:///D|/1/0132269937/ch13lev1sec13.html (8 von 19) [13.11.2007 16:24:18]

Section 13.13. Customizing Classes with Special Methods

The output is very nice, exactly what we wanted to see. What is the next step? Let us say we want our
objects to interact. In particular, for our timesheet application, it is a necessity to be able to add Time60
instances together and have our objects do all meaningful operations. We would love to see something
like this:

 >>> mon + tue
 21:45

Addition

With Python, overloading operators is simple. For the plus sign (+), we need to overload the __add__()
special method, and perhaps __radd__() and __iadd__(), if applicable. More on those in a little while.
Implementing __add__() does not sound too difficultwe just add the hours together followed by the
minutes. Most of the complexity lies in what we do with the new totals. If we want to see "21:45," we
have to realize that that is another Time60 object. We are not modifying mon or tue, so our method would
have to create another object and fill it in with the sums we calculated.

We implement the __add__() special method in such a way that we calculate the individual sums first,
then call the class constructor to return a new object:

def __add__(self, other):
 return self.__class__(self.hr + other.hr,
 self.min + other.min)

The new object is created by invoking the class as in any normal situation. The only difference is that
from within the class, you typically would not invoke the class name directly. Rather, you take the
__class__ attribute of self, which is the class from which self was instantiated, and invoke that.
Because self.__class__ is the same as Time60, calling self.__class__() is the same as calling Time60().

This is the more object-oriented approach anyway. The other reason is that if we used the real class
name everywhere we create a new object and later on decided to change the class name to something
else, we would have to perform very careful global search-and-replace. By using self.__class__, we do
not have to do anything other than change the name in the class directive.

With our plus sign overloading, we can now "add" Time60 objects:

 >>> mon = Time60(10, 30)
 >>> tue = Time60(11, 15)
 >>> mon + tue
 <time60.Time60 object at 0x62190>
 >>> print mon + tue
 21:45

Oops, we forgot to add an __repr__ alias to __str__, which is easily fixable.

One question you may have is, "What happens when I try to use an operator in an overload situation
where I do not have the appropriate special methods defined?" The answer is a TypeError exception:

file:///D|/1/0132269937/ch13lev1sec13.html (9 von 19) [13.11.2007 16:24:18]

Section 13.13. Customizing Classes with Special Methods

 >>> mon - tue
 Traceback (most recent call last):
 File "<stdin>", line 1, in ?

 TypeError: unsupported operand type(s) for -: 'Time60'
 and 'Time60'

In-Place Addition

With augmented assignment (introduced back in Python 2.0), we may also wish to override the "in-
place" operators, for example, __iadd__(). This is for supporting an operation like mon += tue and having
the correct result placed in mon. The only trick with overriding an __i*__() method is that it has to return
self. Let us add the following bits of code to our example, fixing our repr() issue above as well as
supporting augmented assignment:

__repr__ = __str__

def __iadd__(self, other):
 self.hr += other.hr
 self.min += other.min
 return self

Here is our resulting output:

 >>> mon = Time60(10, 30)
 >>> tue = Time60(11, 15)
 >>> mon
 10:30
 >>> id(mon)
 401872
 >>> mon += tue
 >>> id(mon)
 401872
 >>> mon
 21:45

Note the use of the id() built-in function to confirm that before and after the in-place addition we are
indeed modifying the same object and not creating a new one. This is a great start at a class that has a
lot of potential. The complete class definition for Time60 is given in Example 13.3.

Example 13.3. Intermediate Customization (time60.py)

file:///D|/1/0132269937/ch13lev1sec13.html (10 von 19) [13.11.2007 16:24:18]

Section 13.13. Customizing Classes with Special Methods

1 #!/usr/bin/env python
2
3 class Time60(object):
4 'Time60 - track hours and minutes'
5
6 def __init__(self, hr, min):
7 'Time60 constructor - takes hours and minutes'
8 self.hr = hr
9 self.min = min
10
11 def __str__(self):
12 'Time60 - string representation'
13 return '%d:%d' % (self.hr, self.min)
14
15 __repr__ = __str__
16
17 def __add__(self, other):
18 'Time60 - overloading the addition operator'
19 return self.__class__(self.hr + other.hr,
20 self.min + other.min)
21
22 def __iadd__(self, other):
23 'Time60 - overloading in-place addition'
24 self.hr += other.hr
25 self.min += other.min
26 return self

Example 13.4. Random Sequence Iterator (randSeq.py)

1 #!/usr/bin/env python
2
3 from random import choice
4
5 class RandSeq(object):
6 def __init__(self, seq):
7 self.data = seq
8
9 def __iter__(self):
10 return self
11
12 def next(self):
13 return choice(self.data)

Further Refinements

We will leave it here, but there is plenty of optimization and significant improvements that can be made
to this class. For example, wouldn't it be nice if we could just feed a 2-tuple (10, 30) into our
constructor rather than having to pass in two separate arguments? What about a string like "10:30"?

file:///D|/1/0132269937/ch13lev1sec13.html (11 von 19) [13.11.2007 16:24:18]

Section 13.13. Customizing Classes with Special Methods

The answer is yes, you can, and it is easy to do in Python but not by overloading the constructor as the
case may be with other object-oriented programming languages. Python does not allow overloading
callables with multiple signatures, so the only way to make it happen is with a single constructor and
performing self-introspection with the isinstance() and (perhaps) type() built-in functions.

Supporting multiple forms of input makes our application more robust and flexible. The same is true for
the ability to perform other operations like subtraction. Of course these are optional and serve as icing
on the cake, but what we should be worried about first are two moderate flaws: undesired formatting

when there are fewer than ten minutes and the lack of support of sexagesimal
[1]

 (base 60) operations:

[1] Latin-originated name for base 60; sometimes hexagesimal is used, a hybrid combining the Greek root "hexe" with the
Latin "gesimal."

 >>> wed = Time60(12, 5)
 >>> wed
 12:5
 >>> thu = Time60(10, 30)
 >>> fri = Time60(8, 45)
 >>> thu + fri
 18:75

Displaying wed should have resulted in "12:05," and summing thu and fri should have given an output
of "19:15." The fixes for these flaws and the improvements suggested just above are great practice
building your class customization skills. You can get a more complete description of these upgrades in
Exercise 13-20 at the end of the chapter.

Hopefully, you now have a better understanding of operator overloading, why you would want to do it,
and how you can implement special methods to accomplish that task. Let's look at more complex
customizations, continuing with the optional section that follows.

13.13.3. Iterators (RandSeq and AnyIter)

RandSeq

We were introduced to iterators formally in Chapter 8 but we have been using them throughout this
text. They are simply a mechanism to go through items of a sequence (or sequence-like object) one at a
time. In Chapter 8 we described how implementing the __iter__() and next() methods of a class can be
used to create an iterator. We will demonstrate that with two examples here.

The first example is a RandSeq (short for RANDom SEQuence). We feed an initial sequence to our class,
then let the user iterate (infinitely) through it via next().

The __init__() method does the aforementioned assignment. The __iter__() just returns self, which is
how you declare an object is an iterator, and finally, next() is called to get successive values of
iteration. The only catch with this iterator is that it never ends.

This example demonstrates some unusual things we can do with custom class iterations. One is infinite
iteration. Because we read the sequence nondestructively, we never run out of elements. Each time the
user calls next(), it gets the next value, but our object never raises StopIteration. If we run it, we will
get output similar to the following:

file:///D|/1/0132269937/ch13lev1sec13.html (12 von 19) [13.11.2007 16:24:18]

Section 13.13. Customizing Classes with Special Methods

 >>> from randseq import RandSeq
 >>> for eachItem in RandSeq(
 ... ('rock', 'paper', 'scissors')):
 ... print eachItem
 ...
 scissors
 scissors
 rock
 paper
 paper
 scissors
 :

Example 13.5. Any Number of Items Iterator (anyIter.py)

1 #!/usr/bin/env python
2
3 class AnyIter(object):
4 def __init__(self, data, safe=False):
5 self.safe = safe
6 self.iter = iter(data)
7
8 def __iter__(self):
9 return self
10
11 def next(self, howmany=1):
12 retval = []
13 for eachItem in range(howmany):
14 try:
15 retval.append(self.iter.next())
16 except StopIteration:
17 if self.safe:
18 break
19 else:
20 raise
21 return retval

AnyIter

In the second example, we do create an iterator object, but rather than iterating through one item at a
time, we give the next() method an argument telling how many items to return. Here is the code for our
(ANY number of items ITERator):

Like RandSeq, the AnyIter class should be fairly simple to figure out. We described the basic operation
above... it works just like any other iterator except that users can request the next N items of the
iterable instead of only one.

We create the object by being given an iterable and a safe flag. If the flag is TRue, we will return any
items retrieved before exhausting the iterable, but if the flag is False, we will reraise the exception if the
user asked for too many items. The core of any complexity lies in next(), specifically how it quits (lines

file:///D|/1/0132269937/ch13lev1sec13.html (13 von 19) [13.11.2007 16:24:18]

Section 13.13. Customizing Classes with Special Methods

14-21).

In the last part of next(), we create a list of items to return and call the object's next() for each item. If
we exhaust the list and get a StopIteration exception, we check the safe flag. If unsafe, we throw the
exception back to the caller (raise); otherwise, we return whatever items we have saved up (break and
return).

 >>> a = AnyIter(range(10))
 >>> i = iter(a)
 >>> for j in range(1,5):
 >>> print j, ':', i.next(j)
 1 : [0]
 2 : [1, 2]
 3 : [3, 4, 5]
 4 : [6, 7, 8, 9]

The execution above ran fine because the iteration fit the number of items perfectly. What happens
when things go awry? Let us try "unsafe" mode first, which is how we created our iterator to begin with
from above:

 >>> i = iter(a)
 >>> i.next(14)
 Traceback (most recent call last):
 File "<stdin>", line 1, in ?
 File "anyIter.py", line 15, in next
 retval.append(self.iter.next())
 StopIteration

The StopIteration exception was raised because we exceeded our supply of items, and that exception
was reraised back to the caller (line 20). If we were to recreate the iterator in "safe" mode and run it
with the same example, we get back whatever the iterator could get us before running out of items:

 >>> a = AnyIter(range(10), True)
 >>> i = iter(a)
 >>> i.next(14)
 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

13.13.4. *Multi-type Customization (NumStr)

Let us create another new class, NumStr, consisting of a number-string ordered pair, called n and s,
respectively, using integers as our number type. Although the "proper" notation of an ordered pair is
(n, s), we choose to represent our pair as [n :: s] just to be different. Regardless of the notation,
these two data elements are inseparable as far as our model is concerned. We want to set up our new
class, called NumStr, with the following characteristics:

Initialization

The class should be initialized with both the number and string; if either (or both) is missing, then 0 and
the empty string should be used, i.e., n=0 and s='', as defaults.

file:///D|/1/0132269937/ch13lev1sec13.html (14 von 19) [13.11.2007 16:24:18]

Section 13.13. Customizing Classes with Special Methods

Addition

We define the addition operator functionality as adding the numbers together and concatenating the
strings; the tricky part is that the strings must be concatenated in the correct order. For example, let
NumStr1 = [n1 :: s1] and NumStr2 = [n2 :: s2]. Then NumStr1 + NumStr2 is performed as [n1 + n2 ::
s1 + s2] where + represents addition for numbers and concatenation for strings.

Multiplication

Similarly, we define the multiplication operator functionality as multiplying the numbers together and
repeating or concatenating the strings, i.e., NumStr1 * NumStr2 = [n1 * n :: s1 * n].

False Value

This entity has a false value when the number has a numeric value of zero and the string is empty, i.e.,
when NumStr = [0 :: ''].

Comparisons

Comparing a pair of NumStr objects, i.e., [n1 :: s1] vs. [n2 :: s2], we find nine different combinations
(i.e., n1 > n2 and s1 < s2, n1 == n2 and s1 > s2, etc.). We use the normal numeric and lexicographic
compares for numbers and strings, respectively, i.e., the ordinary comparison of cmp(obj1, obj2) will
return an integer less than zero if obj1 < obj2, greater than zero if obj1 > obj2, or equal to zero if the
objects have the same value.

The solution for our class is to add both of these values and return the result. The interesting thing is
that cmp() does not always return -1, 0, or 1 for us. It is, as described above, an integer less than, equal
to, or greater than zero.

In order to correctly compare our objects, we need __cmp__() to return a value of 1 if (n1 > n2) and (s1
> s2), -1 if (n1 < n2) and (s1 < s2), and 0 if both sets of numbers and strings are the same, or if the
comparisons offset each other, i.e., (n1 < n2) and (s1 > s2), or vice versa.

Example 13.6. Multi-Type Class Customization (numstr.py)

1 #!/usr/bin/env python
2
3 class NumStr(object):
4
5 def __init__(self, num=0, string=''):
6 self.__num = num
7 self.__string = string
8
9 def __str__(self): # define for str()
10 return '[%d :: %r]' % \
11 self.__num, self.__string)
12 __repr__ = __str__
13
14 def __add__(self, other): # define for s+o
15 if isinstance(other, NumStr):
16 return self.__class__(self.__num + \

file:///D|/1/0132269937/ch13lev1sec13.html (15 von 19) [13.11.2007 16:24:18]

Section 13.13. Customizing Classes with Special Methods

17 other.__num, \
18 self.__string + other.__string)
19 else:
20 raise TypeError, \
21 'Illegal argument type for built-in operation'
22
23 def __mul__(self, num): # define for o*n
24 if isinstance(num, int):
25 return self.__class__(self.__num * num
26 self.__string * num)
27 else:
28 raise TypeError, \
29 'Illegal argument type for built-in operation'
30
31 def __nonzero__(self): # False if both are
32 return self.__num or len(self.__string)
33
34 def __norm_cval(self, cmpres):# normalize cmp()
35 return cmp(cmpres, 0)
36
37 def __cmp__(self, other): # define for cmp()
38 return self.__norm_cval(
39 cmp(self.__num, other.__num)) + \
40 self.__norm_cval(
41 cmp(self.__string, other.__string))

Given the above criteria, we present the code below for numStr.py, with some sample execution:

 >>> a = NumStr(3, 'foo')
 >>> b = NumStr(3, 'goo')
 >>> c = NumStr(2, 'foo')
 >>> d = NumStr()
 >>> e = NumStr(string='boo')
 >>> f = NumStr(1)
 >>> a
 [3 :: 'foo']
 >>> b
 [3 :: 'goo']
 >>> c
 [2 :: 'foo']
 >>> d
 [0 :: '']
 >>> e
 [0 :: 'boo']
 >>> f
 [1 :: '']
 >>> a < b
 True
 >>> b < c
 False
 >>> a == a
 True
 >>> b * 2
 [6 :: 'googoo']
 >>> a * 3

file:///D|/1/0132269937/ch13lev1sec13.html (16 von 19) [13.11.2007 16:24:18]

Section 13.13. Customizing Classes with Special Methods

 [9 :: 'foofoofoo']
 >>> b + e
 [3 :: 'gooboo']
 >>> e + b
 [3 :: 'boogoo']
 >>> if d: 'not false' # also bool(d)
 ...
 >>> if e: 'not false' # also bool(e)
 ...
 'not false'
 >>> cmp(a,b)
 -1
 >>> cmp(a,c)
 1
 >>> cmp(a,a)
 0

Line-by-Line Explanation

Lines 17

The top of our script features the constructor __init__() setting up our instance initializing itself with
the values passed via the class instantiator call NumStr(). If either value is missing, the attribute takes
on the default false value of either zero or the empty string, depending on the argument.

One significant oddity is the use of double underscores to name our attributes. As we will find out in the
next section, this is used to enforce a level, albeit elementary, of privacy. Programmers importing our
module will not have straightforward access to our data elements. We are attempting to enforce one of
the encapsulation properties of OO design by permitting access only through accessor functionality. If
this syntax appears odd or uncomfortable to you, you can remove all double underscores from the
instance attributes, and the examples will still work in the exact same manner.

All attributes that begin with a double underscore (__) are "mangled" so that these names are not as
easily accessible during runtime. They are not, however, mangled in such a way so that it cannot be
easily reverse-engineered. In fact, the mangling pattern is fairly well known and easy to spot. The main
point is to prevent the name from being accidentally used when it is imported by an external module
where conflicts may arise. The name is changed to a new identifier name containing the class name to
ensure that it does not get "stepped on" unintentionally. For more information, check out Section 13.14
on privacy.

Lines 912

We choose the string representation of our ordered pair to be "[num :: 'str']" so it is up to __str__()
to provide that representation whenever str() is applied to our instance and when the instance appears
in a print statement. Because we want to emphasize that the second element is a string, it is more
visually convincing if the users view the string surrounded by quotation marks. To that end, we use the
"repr()" representation format conversion code "%r" instead of "%s." It is equivalent to calling repr() or
using the single back quotation marks to give the evaluatable version of a string, which does have
quotation marks:

 >>> print a
 [3 :: 'foo']

file:///D|/1/0132269937/ch13lev1sec13.html (17 von 19) [13.11.2007 16:24:18]

Section 13.13. Customizing Classes with Special Methods

Not calling repr() on self.__string (leaving the backquotes off or using "%s") would result in the string
quotations being absent:

 return '[%d :: %s]' % (self.__num, self.__string)

Now calling print again on an instance results in:

 >>> print a
 [3 :: foo]

How does that look without the quotations? Not as convincing that "foo" is a string, is it? It looks more
like a variable. The author is not as convinced either. (We quickly and quietly back out of that change
and pretend we never even touched it.)

The first line of code after the __str__() function is the assignment of that function to another special
method name, __repr__. We made a decision that an evaluatable string representation of our instance
should be the same as the printable string representation. Rather than defining an entirely new function
that is a duplicate of __str__(), we just create an alias, copying the reference.

When you implement __str__(), it is the code that is called by the interpreter if you ever apply the str()
built-in function using that object as an argument. The same goes for __repr__() and repr().

How would our execution differ if we chose not to implement __repr__()? If the assignment is removed,
only the print statement that calls str() will show us the contents of our object. The evaluatable string
representation defaults to the Python standard of <...some_object_ information...>.

 >>> print a # calls str(a)
 [3 :: 'foo']
 >>> a # calls repr(a)
 <NumStr.NumStr instance at 122640>

Lines 1421

One feature we would like to add to our class is the addition operation, which we described earlier. One
of Python's features for customizing classes is that we can overload operators to make these types of
customizations more "realistic." Invoking a function such as "add(obj1, obj2)" to "add" objects obj1 and
obj2 may seem like addition, but is it not more compelling to be able to invoke that same operation

using the plus sign (+) like this? obj1 + obj2

Overloading the plus sign requires the implementation of __add__() for self (SELF) and the other
operand (OTHER). The __add__() function takes care of the Self + Other case, but we do not need to
define __radd__() to handle the Other + Self because that is taken care of by the __add__() for Other.
The numeric addition is not affected as much as the string concatenation because order matters.

The addition operation adds each of the two components, with the pair of results forming a new
objectcreated as the results are passed to a call for instantiation as calling self.__class__() (again, also
previously explained above). Any object other than a like type should result in a TypeError exception,

file:///D|/1/0132269937/ch13lev1sec13.html (18 von 19) [13.11.2007 16:24:18]

Section 13.13. Customizing Classes with Special Methods

which we raise in such cases.

Lines 2329

We also overload the asterisk [by implementing __mul__()] so that both numeric multiplication and
string repetition are performed, resulting in a new object, again created via instantiation. Since
repetition allows only an integer to the right of the operator, we must enforce this restriction as well. We
also do not define __rmul__() for the same reason.

Lines 3132

Python objects have a Boolean value at any time. For the standard types, objects have a false value
when they are either a numeric equivalent of zero or an empty sequence or mapping. For our class, we
have chosen both that its numeric value must be zero and that the string be empty in order for any such
instance to have a false value. We override the __nonzero__() method for this purpose. Other objects
such as those that strictly emulate sequence or mapping types use a length of zero as a false value. In
those cases, you would implement the __len__() method to effect that functionality.

Lines 3441

__norm_cval() (short for "normalize cmp() value") is not a special method. Rather, it is a helper function
to our overriding of __cmp__(); its sole purpose is to convert all positive return values of cmp() to 1, and
all negative values to -1. cmp() normally returns arbitrary positive or negative values (or zero) based on
the result of the comparison, but for our purposes, we need to restrict the return values to only -1, 0,
and 1. Calling cmp() with integers and comparing to zero will give us the result we need, being
equivalent to the following snippet of code:

def __norm_cval(self, cmpres):
 if cmpres < 0:
 return -1
 elif cmpres > 0:
 return 1
 else:
 return 0

The actual comparison of two like objects consists of comparing the numbers and the strings, and
returning the sum of the comparisons.

file:///D|/1/0132269937/ch13lev1sec13.html (19 von 19) [13.11.2007 16:24:18]

file:///D|/1/0132269937/14051536.html

Section 13.14. Privacy

13.14. Privacy

Attributes in Python are, by default, "public" all the time, accessible by both code within the module and
modules that import the module containing the class.

Many OO languages provide some level of privacy for the data and provide only accessor functions to
provide access to the values. This is known as implementation hiding and is a key component to the
encapsulation of the object. Most OO languages provide "access specifiers" to restrict access to member
functions.

Double Underscore (__)

Python provides an elementary form of privacy for class elements (attributes or methods). Attributes
that begin with a double underscore (__) are mangled during runtime so direct access is thwarted. In
actuality, the name is prepended with an underscore followed by the class name. For example, let us
take the self.__num attribute found in Example 13.6 (numstr.py). After the mangling process, the
identifier used to access that data value is now self._NumStr__num. Adding the class name to the newly
mangled result will prevent it from clashing with the same name in either ancestor or descendant
classes.

Although this provides some level of privacy, the algorithm is also in the public domain and can be
defeated easily. It is more of a protective mechanism for importing modules that do not have direct
access to the source code or for other code within the same module.

The other purpose of this type of name-mangling is to protect __XXX variables from conflicting with
derived class namespaces. If you have an __XXX attribute in a class, it will not be overridden by a child
class's ___XXX attribute. (Recall that if a parent has just an XXX attribute and a child defines one, then
the child's XXX overrides the parents, and the reason why you have to do PARENT.XXX to call the base
class method of the same name.) By using __XXX, the code for the child class can safely use __XXX
without worrying that it will use or affect __XXX in the parent.

Single Underscore (_)

As we discovered in Chapter 12, simple module-level privacy is provided by using a single underscore
(_) character prefixing an attribute name. This prevents a module attribute from being imported with
"from mymodule import *". This is strictly scope-based, so it will work with functions too.

With Python's new-style classes introduced in 2.2, a whole new set of features was added to give
programmers a significant amount of control over how much protection is offered class and instance
attributes. Although Python does not have syntax built into the language that has the flavors of private,
protected, friend, or protected friend, you can customize access in the exact way that fits your needs.
We cannot cover all of those possibilities but will give you an idea of the new-style we attribute access
later in this chapter.

file:///D|/1/0132269937/ch13lev1sec14.html [13.11.2007 16:24:18]

Section 13.15. *Delegation

13.15. *Delegation

13.15.1. Wrapping

"Wrapping" is a term you will hear often in the Python programming world. It is a generic moniker to
describe the packaging of an existing object, whether it be a data type or a piece of code, adding new,
removing undesired, or otherwise modifying existing functionality to the existing object.

Before Python 2.2, the subclassing or derivation of a standard type in Python was not allowed. Even
though you can do that now with the new-style classes, there is a concept that is still popular. You can
always wrap any type as the core member of a class so that the new object's behavior mimics all
existing behavior of the data type that you want and does not do what you do not want it to do; and
perhaps it will do something a little extra. This is called "wrapping a type." In the Appendix, we will
discuss how to extend Python, another form of wrapping.

Wrapping consists of defining a class whose instances have the core behavior of a standard type. In
other words, it not only sings and dances now, but also walks and talks like our original type. Figure 15-
4 illustrates what a type wrapped in a class looks like. The core behavior of a standard type is in the
center of the figure, but it is also enhanced by new or updated functionality, and perhaps even by
different methods of accessing the actual data.

Class Object (Which Behaves Like a Type)

You may also wrap classes, but this does not make as much sense because there is already a
mechanism for taking an object and wrapping it in a manner as described above for a standard type.
How would you take an existing class, mimic the behavior you desire, remove what you do not like, and
perhaps tweak something to make the class perform differently from the original class? That process, as
we discussed recently, is derivation.

Figure 13-4. Wrapping a Type

13.15.2. Implementing Delegation

file:///D|/1/0132269937/ch13lev1sec15.html (1 von 8) [13.11.2007 16:24:20]

Section 13.15. *Delegation

Delegation is a characteristic of wrapping that simplifies the process with regard to dictating
functionality by taking advantage of pre-existing functionality to maximize code reuse.

Wrapping a type generally consists of some sort of customization to the existing type. As we mentioned
before, this tweaking comes in the form of new, modified, or removed functionality compared to the
original product. Everything else should remain the same, or keep its existing functionality and behavior.
Delegation is the process whereby all the updated functionality is handled as part of the new class, but
the existing functionality is delegated to the default attributes of the object.

The key to implementing delegation is to override the __getattr__() method with code containing a call
to the built-in getattr() function. Specifically, getattr() is invoked to obtain the default object attribute
(data attribute or method) and return it for access or invocation. The way the special method
__getattr__() works is that when an attribute is searched for, any local ones are found first (the
customized ones). If the search fails, then __getattr__() is invoked, which then calls getattr() to obtain
an object's default behavior.

In other words, when an attribute is referenced, the Python interpreter will attempt to find that name in
the local namespace, such as a customized method or local instance attribute. If it is not found in the
local dictionary, then the class namespace is searched, just in case a class attribute was accessed.
Finally, if both searches fail, the hunt begins to delegate the request to the original object, and that is
when __getattr__() is invoked.

Simple Example Wrapping Any Object

Let us take a look at an example. Here we present a class that wraps nearly any object, providing such
basic functionality as string representations with repr() and str(). Additional customization comes in
the form of the get() method, which removes the wrapping and returns the raw object. All remaining
functionality is delegated to the object's native attributes as retrieved by __getattr__() when necessary.

Here is an example of a wrapping class:

class WrapMe(object):
 def __init__(self, obj):
 self.__data = obj
 def get(self):
 return self.__data
 def __repr__(self):
 return 'self.__data'
 def __str__(self):
 return str(self.__data)
 def __getattr__(self, attr):
 return getattr(self.__data, attr)

In our first example, we will use complex numbers, because of all Python's numeric types, complex
numbers are the only one with attributes: data attributes as well as its conjugate() built-in method.
Remember that attributes can be both data attributes as well as functions or methods:

 >>> wrappedComplex = WrapMe(3.5+4.2j)
 >>> wrappedComplex # wrapped object: repr()
 (3.5+4.2j)
 >>> wrappedComplex.real # real attribute
 3.5

file:///D|/1/0132269937/ch13lev1sec15.html (2 von 8) [13.11.2007 16:24:20]

Section 13.15. *Delegation

 >>> wrappedComplex.imag # imaginary attribute
 42.2
 >>> wrappedComplex.conjugate() # conjugate() method
 (3.5-4.2j)
 >>> wrappedComplex.get() # actual object
 (3.5+4.2j)

Once we create our wrapped object type, we obtain a string representation, silently using the call to repr
() by the interactive interpreter. We then proceed to access all three complex number attributes, none
of which is defined for our class. Confirm this by looking for real, imag, and conjugate in our class
definition ... they are not there!

The accessing of these attributes is delegated to the object via the getattr() method. The final call to get
() is not delegated because it is defined for our objectit returns the actual data object that we wrapped.

Our next example using our wrapping class uses a list. We will create the object, then perform multiple
operations, delegating each time to list methods.

 >>> wrappedList = WrapMe([123, 'foo', 45.67])
 >>> wrappedList.append('bar')
 >>> wrappedList.append(123)
 >>> wrappedList
 [123, 'foo', 45.67, 'bar', 123]
 >>> wrappedList.index(45.67)
 2
 >>> wrappedList.count(123)
 2
 >>> wrappedList.pop()
 123
 >>> wrappedList
 [123, 'foo', 45.67, 'bar']

Notice that although we are using a class instance for our examples, they exhibit behavior extremely
similar to the data types they wrap. Be aware, however, that only existing attributes are delegated in
this code.

Special behaviors that are not in a type's method list will not be accessible since they are not attributes.
One example is the slicing operations of lists which are built-in to the type and not available as an
attribute like the append() method, for example. Another way of putting it is that the slice operator
([]) is part of the sequence type and is not implemented through the __getitem__() special method.

 >>> wrappedList[3]
 Traceback (innermost last):
 File "<stdin>", line 1, in ?
 File "wrapme.py", line 21, in __getattr__
 return getattr(self.data, attr)
 AttributeError: __getitem__

The AttributeError exception results from the fact that the slice operator invokes the __getitem__()
method, and __getitem__() is not defined as a class instance method nor is it a method of list objects.
Recall that getattr() is called only when an exhaustive search through an instance's or class's

file:///D|/1/0132269937/ch13lev1sec15.html (3 von 8) [13.11.2007 16:24:20]

Section 13.15. *Delegation

dictionaries fails to find a successful match. As you can see above, the call to getattr() is the one that
fails, triggering the exception.

However, we can always cheat by accessing the real object [with our get() method] and its slicing
ability instead:

 >>> realList = wrappedList.get()
 >>> realList[3]
 'bar'

You probably have a good idea now why we implemented the get() methodjust for cases like this where
we need to obtain access to the original object. We can bypass assigning local variable (realList) by
accessing the attribute of the object directly from the access call:

 >>> wrappedList.get()[3]
 'bar'

The get() method returns the object, which is then immediately indexed to obtain the sliced subset.

 >>> f = WrapMe(open('/etc/motd'))
 >>> f
 <wrapMe.WrapMe object at 0x40215dac>
 >>> f.get()
 <open file '/etc/motd', mode 'r' at 0x40204ca0>
 >>> f.readline()
 'Have a lot of fun...\012'
 >>> f.tell()
 21
 >>> f.seek(0)
 >>> print f.readline(),
 Have a lot of fun...
 >>> f.close()
 >>> f.get()
 <closed file '/etc/motd', mode 'r' at 0x40204ca0>

Once you become familiar with an object's attributes, you begin to understand where certain pieces of
information originate and are able to duplicate functionality with your newfound knowledge:

 >>> print "<%s file %s, mode %s at %x>" % \
 ... (f.closed and 'closed' or 'open', 'f.name',
 'f.mode', id(f.get()))
 <closed file '/etc/motd', mode 'r' at 80e95e0>

This concludes the sampling of our simple wrapping class. We have only just begun to touch on class
customization with type emulation. You will discover that you can an infinite number of enhancements
make to further increase the usefulness of your code. One such enhancement is to add timestamps to
objects. In the next subsection, we will add another dimension to our wrapping class: time.

Updating Our Simple Wrapping Class

file:///D|/1/0132269937/ch13lev1sec15.html (4 von 8) [13.11.2007 16:24:20]

Section 13.15. *Delegation

Creation time, modification time, and access time are familiar attributes of files, but nothing says that
you cannot add this type of information to objects. After all, certain applications may benefit from these
additional pieces of information.

If you are unfamiliar with using these three pieces of chronological data, we will attempt to clarify them.
The creation time (or "ctime") is the time of instantiation, the modification time (or "mtime") refers to
the time that the core data was updated [accomplished by calling the new set() method], and the
access time (or "atime") is the timestamp of when the data value of the object was last retrieved or an
attribute was accessed.

Proceeding to updating the class we defined earlier, we create the module twrapme.py, given in Example
13.7.

Example 13.7. Wrapping Standard Types (twrapme.py)

Class definition that wraps any built-in type, adding time attributes; get(), set(), and string
representation methods; and delegating all remaining attribute access to those of the
standard type.

1 #!/usr/bin/env python
2
3 from time import time, ctime
4
5 class TimedWrapMe(object):
6
7 def __init__(self, obj):
8 self.__data = obj
9 self.__ctime = self.__mtime = \
10 self.__atime = time()
11
12 def get(self):
13 self.__atime = time()
14 return self.__data
15
16 def gettimeval(self, t_type):
17 if not isinstance(t_type, str) or \
18 t_type[0] not in 'cma':
19 raise TypeError, \
20 "argument of 'c', 'm', or 'a' req'd"
21 return getattr(self, '_%s__%stime' % \
22 (self.__class__.__name__, t_type[0]))
23
24 def gettimestr(self, t_type):
25 return ctime(self.gettimeval(t_type))
26
27 def set(self, obj):
28 self.__data = obj
29 self.__mtime = self.__atime = time()
30
31 def __repr__(self): # repr()
32 self.__atime = time()
33 return 'self.__data'
34
35 def __str__(self): # str()
36 self.__atime = time()
37 return str(self.__data)

file:///D|/1/0132269937/ch13lev1sec15.html (5 von 8) [13.11.2007 16:24:20]

Section 13.15. *Delegation

38
39 def __getattr__(self, attr): # delegate
40 self.__atime = time()
41 return getattr(self.__data, attr)

How did we update the code? Well, first, you will notice the addition of three new methods: gettimeval
(), gettimestr(), and set(). We also added lines of code throughout which update the appropriate
timestamps based on the type of access performed.

The gettimeval() method takes a single character argument, either "c," "m," or "a," for create, modify,
or access time, respectively, and returns the corresponding time that is stored as a float value.
gettimestr() simply returns a pretty-printable string version of the time as formatted by the time.ctime
() function.

Let us take a test drive of our new module. We have already seen how delegation works, so we are
going to wrap objects without attributes to highlight the new functionality we just added. In our
example, we will wrap an integer, then change it to a string.

 >>> timeWrappedObj = TimedWrapMe(932)
 >>> timeWrappedObj.gettimestr('c')
 ' Wed Apr 26 20:47:41 2006'
 >>> timeWrappedObj.gettimestr('m')
 'Wed Apr 26 20:47:41 2006'
 >>> timeWrappedObj.gettimestr('a')
 'Wed Apr 26 20:47:41 2006'
 >>> timeWrappedObj
 932
 >>> timeWrappedObj.gettimestr('c')
 'Wed Apr 26 20:47:41 2006'
 >>> timeWrappedObj.gettimestr('m')
 'Wed Apr 26 20:47:41 2006'
 >>> timeWrappedObj.gettimestr('a')
 'Wed Apr 26 20:48:05 2006'

You will notice that when an object is first wrapped, the creation, modification, and last access times are
all the same. Once we access the object, the access time is updated, but not the others. If we use set()
to replace the object, the modification and last access times are updated. One final read access to our
object concludes our example.

 >>> timeWrappedObj.set('time is up!')
 >>> timeWrappedObj.gettimestr('m')
 'Wed Apr 26 20:48:35 2006'
 >>> timeWrappedObj
 'time is up!'
 >>> timeWrappedObj.gettimestr('c')
 'Wed Apr 26 20:47:41 2006'
 >>> timeWrappedObj.gettimestr('m')
 'Wed Apr 26 20:48:35 2006'
 >>> timeWrappedObj.gettimestr('a')
 'Wed Apr 26 20:48:46 2006'

file:///D|/1/0132269937/ch13lev1sec15.html (6 von 8) [13.11.2007 16:24:20]

Section 13.15. *Delegation

Wrapping a Specific Object with Enhancements

The next example represents a class that wraps a file object. Our class will behave in the exact same
manner as a regular file object with one exception: in write mode, only strings in all capital letters are
written to the file.

The problem we are trying to solve here is for a case where you are writing text files whose data is to be
read by an old mainframe computer. Many older style machines are restricted to uppercase letters for
processing, so we want to implement a file object where all text written to the file is automatically
converted to uppercase without the programmer's having to worry about it. In fact, the only noticeable
difference is that rather than using the open() built-in function, a call is made to instantiate the CapOpen
class. Even the parameters are exactly the same as for open().

Example 13.8 represents that code, written as capOpen.py. Let us take a look at an example of how to
use this class:

 >>> f = CapOpen('/tmp/xxx', 'w')
 >>> f.write('delegation example\n')
 >>> f.write('faye is good\n')
 >>> f.write('at delegating\n')
 >>> f.close()
 >>> f
 <closed file '/tmp/xxx', mode 'w' at 12c230>

Example 13.8. Wrapping a File Object (capOpen.py)

This class extends on the example from one of the Python FAQs, providing a file like object
that customizes the write () method while delegating the rest of the functionality to the file
object.

1 #!/usr/bin/env python
2
3 class CapOpen(object):
4 def __init__(self, fn, mode='r', buf=-1):
5 self.file = open(fn, mode, buf)
6
7 def __str__(self):
8 return str(self.file)
9
10 def __repr__(self):
11 return 'self.file'
12
13 def write(self, line):
14 self.file.write(line.upper())
15
16 def __getattr__(self, attr):
17 return getattr(self.file, attr)

As you can see, the only call out of the ordinary is the first one to CapOpen() rather than open(). All other

file:///D|/1/0132269937/ch13lev1sec15.html (7 von 8) [13.11.2007 16:24:20]

Section 13.15. *Delegation

code is identical to what you would do if you were interacting with a real file object rather than a class
instance that behaves like a file object. All attributes other than write() have been delegated to the file
object. To confirm the success of our code, we load up the file and display its contents. (Note that we
can use either open() or CapOpen(), but chose only CapOpen() because we have been working with it here
in this example.)

 >>> f = CapOpen('/tmp/xxx', 'r')
 >>> for eachLine in f:
 ... print eachLine,
 ...
 DELEGATION EXAMPLE
 FAYE IS GOOD
 AT DELEGATING

file:///D|/1/0132269937/ch13lev1sec15.html (8 von 8) [13.11.2007 16:24:20]

Section 13.16. Advanced Features of New-Style Classes (Python 2.2+)

13.16. Advanced Features of New-Style Classes (Python 2.2+)

13.16.1. General Features of New-Style Classes

We have already discussed some of the features tied to new-style classes. With the unification of types
and classes, the most significant of these features is the ability to subclass Python data types. One side
effect of this is that all of the Python "casting" or conversion built-in functions are now factory functions.
When you call them, you are really instantiating an instance of the corresponding type.

The following built-in function, which have been around Python for a while, have been quietly (or
perhaps not) converted to factory functions:

● int(), long(), float(), complex()
● str(), unicode()
● list(), tuple()
● type()

In addition, several new ones have been added to round out the posse:

● basestring()
[1]

[1] New in Python 2.3.

● dict()
● bool()

● set(),
[2]

 frozenset()
[2]

[2] New in Python 2.4.

● object()
● classmethod()
● staticmethod()
● super()
● property()
● file()

These class names and factory functions have flexible usage. In addition to creating new objects of
those types, they can be used as base classes when subclassing types, and they can now be used with
the isinstance() built-in function. Using isinstance() can help replace tired old idioms with one that
requires fewer functions calls resulting in cleaner code. For example, to test if an object is an integer,
we had to call type() twice or import the types module and use its attributes; but now we can just use
isinstance() and even gain in performance:

file:///D|/1/0132269937/ch13lev1sec16.html (1 von 17) [13.11.2007 16:24:22]

file:///D|/1/0132269937/14051536.html

Section 13.16. Advanced Features of New-Style Classes (Python 2.2+)

OLD (not as good):

● if type(obj) == type(0)...

● if type(obj) == types.IntType...

BETTER:

● if type(obj) is type(0)...

EVEN BETTER:

● if isinstance(obj, int)...
● if isinstance(obj, (int, long))...
● if type(obj) is int...

Keep in mind that although isinstance() is flexible, it does not perform an "exact match" comparisonit
will also return true if obj is an instance of the given type or an instance of a subclass of the given type.
You will still need to use the is operator if you want an exact class match.

Please review Section 13.12.2 above for a deeper explanation of isinstance() as well as its introduction
in Chapter 4 and how these calls evolved along with Python.

13.16.2. __slots__ Class Attribute

A dictionary is at the heart of all instances. The __dict__ attribute keeps track of all instance attributes.
For example, when you have an instance inst with an attribute foo, recognize that accessing it with
inst.foo is the same as doing it with inst.__dict__['foo'].

This dictionary takes up a good amount of memory, and if you have a class with very few attributes but
a significant number of instances of this object, then you are taking a substantial hit. To combat this,
users are now able to use the __slots__ attribute to substitute for __dict__.

Basically, __slots__ is a class variable consisting of a sequence-like object representing the set of valid
identifiers that make up all of an instance's attributes. This can be a list, tuple, or iterable. It can also be
a single string identifying the single attribute that an instance can have. Any attempt to create an
instance attribute with a name not in __slots__ will result in an AttributeError exception:

class SlottedClass(object):
 __slots__ = ('foo', 'bar')
>>> c = SlottedClass()
>>>
>>> c.foo = 42
>>> c.xxx = "don't think so"
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
AttributeError: 'SlottedClass' object has no attribute
'xxx'

The primary reason for this feature is the conservation of memory. A side effect is a type of security

file:///D|/1/0132269937/ch13lev1sec16.html (2 von 17) [13.11.2007 16:24:22]

Section 13.16. Advanced Features of New-Style Classes (Python 2.2+)

preventing users from adding instances attributes dynamically in an ad hoc manner. A class defined with
a __slots__ attribute will not have a __dict__ (unless you add '__dict__' as an element of __slots__).
For more information on __slots__, see the Data Model chapter of the Python (Language) Reference
Manual.

13.16.3. __getattribute__() Special Method

Python classes have a special method named __getattr__(), which is called only when an attribute
cannot be found in an instance's __dict__ or its class (class's __dict__), or ancestor class (its __dict__).
One place where we saw __getattr__() used was for implementing delegation.

The problem that many users encountered was that they wanted a certain function to execute for every
attribute access, not just when one cannot be found. This is where __getattribute__() comes in. It
works just like __getattr__() except that it is always called when an attribute is accessed, not just when
it cannot be found.

If a class has both __getattribute__() and __getattr__() defined, the latter will not be called unless
explicitly called from __getattribute__() or if __getattribute__() raises AttributeError.

Be very careful if you are going to access attributes in here... attributes of this class or an ancestor. If
you cause __getattribute__() to somehow call __getattribute__()again, you will have infinite recursion.
To avoid infinite recursion using this method, you should always call an ancestor class method that
shares the same name in order to access any attributes it needs safely; for example, super(obj, self).
__getattribute__(attr). This special method is only valid with new-style classes. As with __slots__, you
can get more information on __getattribute__() by referring to the Data Model chapter of the Python
(Language) Reference Manual.

13.16.4. Descriptors

Descriptors are one of the keys behind Python's new-style classes. They provide a powerful API to object
attributes. You can think of a descriptor as an agent that presents object attributes. Depending on which
situation you encounter when you need an attribute, you can get to it via its descriptor (if there is one
for it) or in the normal way (dotted attribute notation).

If there is an agent for your object and it has a "get" attribute (really spelled __get__), it is invoked, and
you get back all you need to access the object in question. The same thing applies if you are attempting
to assign a value to an object with a descriptor (set) or removing an attribute (delete).

__get__(), __set__(), __delete__() Special Methods

Strictly speaking, a descriptor is really any (new-style) class that implements at least one of three
special methods that serve as the descriptor protocol: __get__(), __set__(), and __delete__(). As
mentioned just above, __get__() is used to get the value of an attribute, __set__() is used to assign a
value to an attribute, and __delete__() is called when an attribute is explicitly removed using the del
statement (or rather, its reference count decremented). Of the three, the latter is rarely implemented.

Also, not all descriptors implement the __set__() method either. These are referred to as method
descriptors, or more accurately, non-data descriptors. Those that override both __get__() and __set__()
are called data descriptors, and they are more powerful than non-data descriptors.

file:///D|/1/0132269937/ch13lev1sec16.html (3 von 17) [13.11.2007 16:24:22]

Section 13.16. Advanced Features of New-Style Classes (Python 2.2+)

The signatures for __get__(), __set__(), and __delete__() look like this:

● def __get__(self, obj, typ=None) value

● def __set__(self, obj, val) None

● def __delete__(self, obj) None

When you want to use an agent for an attribute, you install it as a class attribute, and let the agent
handle all the dirty work. Anytime you try to do something to an attribute with that name, you will get
the descriptor that proxies all functionality. We covered wrapping in the previous section. This is just
more wrapping going on. Instead of just delegating everything to objects in your class, we are
delegating slightly more complex attribute access here.

__getattribute__() Special Method (again)

Ordering matters when using descriptors, and certain aspects have precedence over others. The heart of
the entire system is __getattribute__() since that special method is called for every attribute instance.
It is the one that finds a class attribute or an agent to call on your behalf to access an attribute, etc.

Reviewing the signatures just above, if __get__() is called for an instance, the object is passed in and
perhaps a type or class. For example, given a class X and an instance x, x.foo is translated by
__getattribute__() to:

 type(x).__dict__['foo'].__get__(x, type(x))

If __get__() is called for a class, then None is passed in as the object (which would be self for an
instance):

 X.__dict__['foo'].__get__(None, X)

Finally, if super() is called, for example given Y as a subclass of X, then super(Y, obj).foo looks in obj.
__class__.__mro__ for the class right next to Y going up the tree to find class X, and then calls:

 X.__dict__['foo'].__get__(obj, X)

Then it is up to that descriptor to return the desired object.

Precedence

The way __getattribute__() works needs to be covered, as it was implemented to behave in a very
specific way. Thus it is very important to recognize this ordering:

● Class attributes
● Data descriptors
● Instance attributes
● Non-data descriptors
● Defaulting to __getattr__()

file:///D|/1/0132269937/ch13lev1sec16.html (4 von 17) [13.11.2007 16:24:22]

Section 13.16. Advanced Features of New-Style Classes (Python 2.2+)

A descriptor is a class attribute, so all class attributes have the highest priority. You can even replace a
descriptor by simply reassigning its original reference to other objects. They are followed closely behind
by descriptors with __get__() and __set__() implemented. If you have an agent, it will do all your work
for you!

Otherwise, it should just default to the local object's __dict__, meaning that it will be an instance
attribute. The non-data descriptors come next. This may sound surprising because on first glance, one
would think that these should be higher up in the food chain than instance attributes, but that is not the
case. The purpose of non-data descriptors is only to provide a value if one is not already part of an
instance, sort of how __getattr__() is only called if an attribute cannot be found in an instance's
__dict__!

Speaking of __getattr__(), if no non-data descriptor is found, then __getattribute__() raises an
AttributeError, and that in turn causes __getattr__() to be invoked as the last stand before
AttributeError is raised to the user.

Descriptor Examples

Let us start with a very boring example... a descriptor that just discards any attempt to retrieve or set a
value from and to an attribute, respectively. Actually, all of the examples here just ignore all requests,
but they are incremental, and we hope that you can figure out a little more about descriptors for each
one:

class DevNull1(object):
 def __get__(self, obj, typ=None):
 pass
 def __set__(self, obj, val):
 pass

We create a class that uses this descriptor and try to assign something to it as well as display its value:

 >>> class C1(object):
 ... foo = DevNull1()
 ...
 >>> c1 = C1()
 >>> c1.foo = 'bar'
 >>> print 'c1.foo contains:', c1.foo
 c1.foo contains: None

That was not too terribly exciting... how about one where the descriptor methods at least give some
output to show what is going on?

class DevNull2(object):
 def __get__(self, obj, typ=None):
 print 'Accessing attribute... ignoring'
 def __set__(self, obj, val):
 print 'Attempt to assign %r... ignoring' % (val)

Now let us see this one in action:

file:///D|/1/0132269937/ch13lev1sec16.html (5 von 17) [13.11.2007 16:24:22]

Section 13.16. Advanced Features of New-Style Classes (Python 2.2+)

 >>> class C2(object):
 ... foo = DevNull2()
 ...
 >>> c2 = C2()
 >>> c2.foo = 'bar'
 Attempt to assign 'bar'... ignoring
 >>> x = c2.foo
 Accessing attribute... ignoring
 >>> print 'c2.foo contains:', x
 c2.foo contains: None

For our final example, let us add a placeholder in our descriptor class that holds some useful information
about the descriptor:

class DevNull3(object):
 def __init__(self, name=None):
 self.name = name
 def __get__(self, obj, typ=None):
 print 'Accessing [%s]... ignoring' %
 self.name)
 def __set__(self, obj, val):
 print 'Assigning %r to [%s]... ignoring' %
 val, self.name)

In the output below, we show you the importance of the hierarchy mentioned above, especially where
we state that a full data descriptor has precedence over an instance attribute:

 >>> class C3(object):
 ... foo = DevNull3('foo')
 ...
 >>> c3 = C3()
 >>> c3.foo = 'bar'
 Assigning 'bar' to [foo]... ignoring
 >>> x = c3.foo
 Accessing [foo]... ignoring
 >>> print 'c3.foo contains:', x
 c3.foo contains: None
 >>> print 'Let us try to sneak it into c3 instance...'
 Let us try to sneak it into c3 instance...
 >>> c3.__dict__['foo'] = 'bar'
 >>> x = c3.foo
 Accessing [foo]... ignoring
 >>> print 'c3.foo contains:', x
 c3.foo contains: None
 >>> print "c3.__dict__['foo'] contains: %r" % \
 c3.__dict__['foo'], "... why?!?"
 c3.__dict__['foo'] contains: 'bar' ... why?!?

Notice how we were able to sneak in an attribute to our instance. We were able to assign the string
"bar" to c3.foo, but because the data descriptor is more important, it overrides or effectively hides our
assignment.

Likewise, because instance attributes have a higher precedence than non-data attributes, you can also

file:///D|/1/0132269937/ch13lev1sec16.html (6 von 17) [13.11.2007 16:24:22]

Section 13.16. Advanced Features of New-Style Classes (Python 2.2+)

hide such a descriptor, just as you can hide a class attribute, by assigning an instance attribute with the
same name:

 >>> class FooFoo(object):
 ... def foo(self):
 ... print 'Very important foo() method.'
 ...
 >>>
 >>> bar = FooFoo()
 >>> bar.foo()
 Very important foo() method.
 >>>
 >>> bar.foo = 'It is no longer here.'
 >>> bar.foo
 'It is no longer here.'
 >>>
 >>> del bar.foo
 >>> bar.foo()
 Very important foo() method.

This was a pretty transparent example because we called it as a function, then accessed it as a string,
but we could have used another function and kept the same calling mechanism, too:

 >>> def barBar():
 ... print 'foo() hidden by barBar()'
 ...
 >>> bar.foo = barBar
 >>> bar.foo()
 foo() hidden by barBar()
 >>>
 >>> del bar.foo
 >>> bar.foo()
 Very important foo() method.

The point was to emphasize that because functions are non-data descriptors, instance attributes are
ranked higher, and we can shadow any non-data descriptor simply by assigning an object to the
instance (of the same name).

Our final example does a little bit more. It is a crude attempt at using the filesystem as a means of
storing the contents of an attribute.

Lines 110

After the usual setup, we create our descriptor class with a class attribute (saved) that keeps track of all
attributes with descriptor access. When a descriptor is created, it registers and saves the name of the
attribute (passed in from the user).

Lines 1226

When fetching an attribute, we need to ensure that users do not use it before they have even assigned a
value to it. If it passes that test, then we attempt to open the pickle file to read in the saved value. An
exception is raised if somehow the file cannot be opened, either because it was erased (or never
created), or if it was corrupted or somehow cannot be unserialized by the pickle module.

file:///D|/1/0132269937/ch13lev1sec16.html (7 von 17) [13.11.2007 16:24:22]

Section 13.16. Advanced Features of New-Style Classes (Python 2.2+)

Lines 2838

Saving the attribute takes several steps: open the pickle file for write (either creating it for the first time
or wiping out one that was already there), serializing the object to disk, and registering the name so
users can retrieve the value. An exception is thrown if the object cannot be pickled. Note that if you are
using Python 2.5 you can never merge the TRy-except and try finally statements (lines 30-38)
together.

Example 13.9. Using a File to Store an Attribute (descr.py)

This class is crude but represents an interesting use of descriptorsbeing able to store the
contents of an attribute on the filesystem.

1 #!/usr/bin/env python
2
3 import os
4 import pickle
5
6 class FileDescr(object):
7 saved = []
8
9 def __init__(self, name=None):
10 self.name = name
11
12 def __get__(self, obj, typ=None):
13 if self.name not in FileDescr.saved:
14 raise AttributeError, \
15 "%r used before assignment" % self.name
16
17 try:
18 f = open(self.name, 'r')
19 val = pickle.load(f)
20 f.close()
21 return val
22 except (pickle.UnpicklingError, IOError,
23 EOFError, AttributeError,
24 ImportError, IndexError), e:
25 raise AttributeError, \
26 "could not read %r: %s" % self.name
27
28 def __set__(self, obj, val):
29 f = open(self.name, 'w')
30 try:
31 try:
32 pickle.dump(val, f)
33 FileDescr.saved.append(self.name)
34 except (TypeError, pickle.PicklingError), e:
35 raise AttributeError, \
36 "could not pickle %r" % self.name
37 finally:
38 f.close()
39
40 def __delete__(self, obj):
41 try:
42 os.unlink(self.name)

file:///D|/1/0132269937/ch13lev1sec16.html (8 von 17) [13.11.2007 16:24:22]

Section 13.16. Advanced Features of New-Style Classes (Python 2.2+)

43 FileDescr.saved.remove(self.name)
44 except (OSError, ValueError), e:
45 pass

Lines 4045

Finally, if the attribute is explicitly deleted, the file is removed, and the name unregistered.

Here is some sample usage of this class:

 >>> class MyFileVarClass(object):
 ... foo = FileDescr('foo')
 ... bar = FileDescr('bar')
 ...
 >>> fvc = MyFileVarClass()
 >>> print fvc.foo
 Traceback (most recent call last):
 File "<stdin>", line 1, in ?
 File "descr.py", line 14, in __get__
 raise AttributeError, \
 AttributeError: 'foo' used before assignment
 >>>
 >>> fvc.foo = 42
 >>> fvc.bar = 'leanna'
 >>>
 >>> print fvc.foo, fvc.bar
 42 leanna
 >>>
 >>> del fvc.foo
 >>> print fvc.foo, fvc.bar
 Traceback (most recent call last):
 File "<stdin>", line 1, in ?
 File "descr.py", line 14, in __get__
 raise AttributeError, \
 AttributeError: 'foo' used before assignment
 >>>
 >>> fvc.foo = __builtins__
 Traceback (most recent call last):
 File "<stdin>", line 1, in ?
 File "descr.py", line 35, in __set__
 raise AttributeError, \
 AttributeError: could not pickle 'foo'

Attribute access appears normal, and the programmer cannot really tell that an object is pickled and
stored to the filesystem (except in the last example where we tried to pickle a module, a no-no). We
also put in a handler for cases when the pickle file gets corrupted. This is also the first descriptor where
we have implemented __delete__().

One thing to keep in mind with all of our examples is that we did not use the instance obj at all. Do not
confuse obj with self as the latter is the instance of the descriptor, not the instance of the original class.

Descriptor Summary

file:///D|/1/0132269937/ch13lev1sec16.html (9 von 17) [13.11.2007 16:24:22]

Section 13.16. Advanced Features of New-Style Classes (Python 2.2+)

Believe it or not, you have already seen descriptors at work. Static methods, class methods, properties
(see next section below), and even functions themselves are all descriptors. Think about this: functions
are very generic objects in Python. There are built-in ones, user-defined ones, methods defined in
classes, static methods, and class methods. Those are all examples of functions. The only difference
between them is how they are called.

Functions are normally unbound. So are static methods, even though they are defined in classes. But
methods need to be bound to an instance, and class methods need to be bound to a class, right? The
descriptor for a function object knows all this, so depending on what type of function it is, a descriptor
can "wrap up" a function object along with whatever it needs to be bound to, if applicable, and then
returns that back to the caller. The way it works is that the function itself is a descriptor, and its __get__
() method is what puts together the callable that it returns for you. It is quite an amazing generality,
which does not break the way Python has been working all this time!

Properties and property() Built-in Function

Properties are a very useful and specific type of descriptor. They were meant to handle all accesses to
instance attributes in a similar manner that we described for descriptors, above. When you access an
instance attribute "normally," you use the dotted-attribute notation. You were updating an instance's
__dict__ attribute.

With properties, although your usage resembles normal attribute access, the actual implementation of
such access uses function (or method) calls. In earlier versions of Python, as seen earlier this chapter,
you could use __getattr__() and __setattr__() to play with attributes in general. The problem is that all
attribute access goes through those special methods (and __getattribute__()), but with properties, you
can give a property specific functions to execute for getting, setting, and deleting instance attributes, so
you no longer have to use those other special methods (which became quite large actually if you had
many instance attributes you were trying to manage).

The property() built-in function can take up to four arguments. Its signature is:

 property(fget=None, fset=None, fdel=None, doc=None)

Keep in mind that although normal usage of property() is within a class definition where the functions
passed in are actually methods, property() can accept functions. In fact, at the time that property() is
called when a class is declared, those methods are unbound and thus really are functions!

Here is a simple example that creates a read-only integer attribute but hides it within the class by barely
encrypting it using the bitwise XOR operator:

class ProtectAndHideX(object):
 def __init__(self, x):
 assert isinstance(x, int), \
 '"x" must be an integer!'
 self.__x = ~x

 def get_x(self):
 return ~self.__x

 x = property(get_x)

file:///D|/1/0132269937/ch13lev1sec16.html (10 von 17) [13.11.2007 16:24:22]

Section 13.16. Advanced Features of New-Style Classes (Python 2.2+)

If we try it out, we see that it saves the first value we give it but does not allow us to set it again:

 >>> inst = ProtectAndHideX('foo')
 Traceback (most recent call last):
 File "<stdin>", line 1, in ?
 File "prop.py", line 5, in __init__
 assert isinstance(x, int), \
 AssertionError: "x" must be an integer!
 >>> inst = ProtectAndHideX(10)
 >>> print 'inst.x =', inst.x
 inst.x = 10
 >>> inst.x = 20
 Traceback (most recent call last):
 File "<stdin>", line 1, in ?
 AttributeError: can't set attribute

Here is another example, but with a setter:

class HideX(object):
 def __init__(self, x):
 self.x = x

 def get_x(self):
 return ~self.__x

 def set_x(self, x):
 assert isinstance(x, int), \
 '"x" must be an integer!'
 self.__x = ~x

 x = property(get_x, set_x)

Here is the output of this example:

 >>> inst = HideX(20)
 >>> print inst.x
 20
 >>> inst.x = 30
 >>> print inst.x
 30

This property works because by the time the constructor is called to set the initial value of x, the getter
already saves it as ~x to self.__x.

You can even stick in a documentation string for your attribute, as shown here in this next example:

from math import pi

def get_pi(dummy):
 return pi

file:///D|/1/0132269937/ch13lev1sec16.html (11 von 17) [13.11.2007 16:24:22]

Section 13.16. Advanced Features of New-Style Classes (Python 2.2+)

class PI(object):
 pi = property(get_pi, doc='Constant "pi"')

Here we are using a function instead of a method for our property, just to show it can be done. When it
is called, however, we have to keep in mind that self is going to be passed in as the first (and only)
argument, so we still need to have a dummy variable to discard it. Here is the corresponding output:

 >>> inst = PI()
 >>> inst.pi
 3.1415926535897931
 >>> print PI.pi.__doc__
 Constant "pi"

Can you see how properties take your functions (fget, fset, and fdel) and map them as descriptor
methods __get__(), __set__(), and __delete__()? You did not have to create a descriptor class and
define these callables as methods of your descriptor class. You just created functions (or methods) and
gave them all to property().

One drawback to creating your descriptor methods inside your class definition is that it clutters up the
class namespace. Not only that, but isn't the point of having a property to control access to an attribute?
But this control does not exist if they are not forced to use the property. Our second example does not
enforce this because it allows access to our property methods (since they are part of the class
definition):

 >>> inst.set_x(40) # can we require inst.x = 40?
 >>> print inst.x
 40

A clever idiom in a recipe in the ActiveState Programmer Network Python Cookbook (http://aspn.
activestate.com/ASPN/Cookbook/Python/Recipe/205183) solves both of these problems by:

● "Borrowing" a function's namespace,
● Creating the methods as inner functions intentionally named as (keyword) arguments to property

(),
● Returning all the (function/method) names and corresponding objects in a dictionary (via locals

()),
● Feeding it directly to property(), and
● Blowing away that temporary namespace

There is no method clutter in the class's namespace because the methods were defined as inner
functions in someone else's namespace. The user has no access to the methods because the namespace
in which they were defined was destroyed (by going out-of-scope), thus they are compelled to use the
property as that is now the one and only way for them to access the attribute. Here is our modified class
inspired by the recipe:

class HideX(object):
 def __init__(self, x):
 self.x = x

 @property
 def x():

file:///D|/1/0132269937/ch13lev1sec16.html (12 von 17) [13.11.2007 16:24:22]

http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/205183
http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/205183

Section 13.16. Advanced Features of New-Style Classes (Python 2.2+)

 def fget(self):
 return ~self.__x

 def fset(self, x):
 assert isinstance(x, int), \
 '"x" must be an integer!'
 self.__x = ~x

 return locals()

Our code works exactly as before, but there two big differences: (1) the namespace for the class is
much smaller and consists (only) of ['__doc__', '__init__', '__module__', 'x'], and (2), the user can no
longer use inst.set_x(40) to set the attribute ... they have to use init.x = 40. We also use a function
decorator (@property) to reassign x from a function to a property object. Since decorators were
introduced in Python 2.4, those of you using 2.2.x or 2.3.x need to replace the decorator with the
following assignment after the x() function declaration with x = property(**x()).

13.16.5. Metaclasses and __metaclass__

What Are Metaclasses?

Metaclasses are probably the most mind-bending feature that was added with new-style classes.
Metaclasses are classes that let you define how certain classes can be constructed, basically giving you a
level of control over how classes are created. (You do not even need to think at the instance level.) They
have been talked about since before the days of Python 1.5 (when many minds were bent), but they are
finally a reality.

Basically, you can think of a metaclass as the class of a class, or rather, a class whose instances are
other classes. Believe it or not, whenever you create a class now, you are actually employing the default
metaclass, which is a (or rather, the) type object. (If classic classes are used, the metaclasses for those
are types.ClassType.) Take any class and call type() on it, and you will see what it is an instance of:

class C(object):
 pass

class CC:
 pass

>>> type(C)
<type 'type'>
>>>
>>> type(CC)
<type 'classobj'>
>>>
>>> import types
>>> type(CC) is types.ClassType
True

When Are Metaclasses Used?

Metaclasses are always used when creating classes. When executing a class definition, the interpreter
has to know the correct metaclass to use. It will look for a class attribute named __metaclass__ first, and

file:///D|/1/0132269937/ch13lev1sec16.html (13 von 17) [13.11.2007 16:24:22]

Section 13.16. Advanced Features of New-Style Classes (Python 2.2+)

if it is there, it will use the class that is assigned to that attribute as the metaclass.

If that attribute has not been defined, it will go up and search an ancestor class for __metaclass__. All
new-style classes must inherit from object or type if there are no other base classes (type (object) is
type anyway). If that is not found, it checks for a global variable named __metaclass__ and uses it if it
exists. Otherwise, the class is a classic class, and types.ClassType is used as the metaclass. (Note you
can do some trickery here... if you define a classic class and set __metaclass__ = type, you have
parlayed it into a new-style class!)

Any time a class declaration is executed, the correct (and usually default) metaclass is determined, and
that metaclass (always) passes three arguments (to its constructor): the class name, the tuple of base
classes to inherit from, and the (class) attribute dictionary.

Who Are Metaclass Users?

To many, the subject of metaclasses belongs in the realm of the theoretical or pure object-oriented
thinking and has no place in everyday programming. To some extent that is true; however, the most
important thing to keep in mind is that the end consumers of metaclasses are programmers themselves,
not application users. You can define metaclasses that "force" programmers to implement solution
classes in specific ways, which can either simplify their work or make them program to a target
specification.

When Are Metaclasses Created?

Metaclasses are created for the situations described just above, when you want to change the default
behavior of how classes can and are created. Most Python users will not be creating or explicitly using
metaclasses. The standard behavior in creating new-style or classic classes is to just take the default
behavior by using the system-supplied metaclasses.

In most cases, users will not even be aware that metaclasses are providing the templated default
behavior of class creation (or metaclass instantiation). Although metaclasses will not be created on a
regular basis, let us take a look at a simple example below. (More examples can be found in the
documents listed at the end of this subsection.)

Metaclass Example 1

The first example of metaclasses we are presenting here is (hopefully) very simple. It does not do
anything at all except timestamp when a class is created using the metaclass. (As you know now, it
happens when the class is created.)

Take a look at the following script. It contains print statements scattered throughout so that you can
track the events as they occur:

#!/usr/bin/env python

from time import ctime

print '*** Welcome to Metaclasses!'
print '\tMetaclass declaration first.'

class MetaC(type):
 def __init__(cls, name, bases, attrd):
 super(MetaC, cls).__init__(name, bases, attrd)

file:///D|/1/0132269937/ch13lev1sec16.html (14 von 17) [13.11.2007 16:24:22]

Section 13.16. Advanced Features of New-Style Classes (Python 2.2+)

 print '*** Created class %r at: %s' % (
 name, ctime())

print '\tClass "Foo" declaration next.'

class Foo(object):
 __metaclass__ = MetaC
 def __init__(self):
 print '*** Instantiated class %r at: %s' % (
 self.__class__.__name__, ctime())

print '\tClass "Foo" instantiation next.'
f = Foo()
print '\tDONE'

If we run this script, we get the following output:

 *** Welcome to Metaclasses!
 Metaclass declaration first.
 Class "Foo" declaration next.
 *** Created class 'Foo' at: Tue May 16 14:25:53 2006
 Class "Foo" instantiation next.
 *** Instantiated class 'Foo' at: Tue May 16 14:25:53 2006
 DONE

Once you are comfortable with the fact that a class declaration actually causes some work to be done,
then you are well under way.

Metaclass Example 2

In this second example, we are going to create a metaclass that forces programmers to supply a __str__
() method in their classes so that their users can see something more useful than the generic Python
object string (< object object at id>) we saw earlier in this chapter.

Our metaclass will also (strongly) suggest users override __repr__() if they have not done that either,
but it is only a warning. Not implementing __str__() will result in a TypeError exception being thrown,
forcing users to create a special method with that name. Here is the code for the metaclass:

from warnings import warn

class ReqStrSugRepr(type):

 def __init__(cls, name, bases, attrd):
 super(ReqStrSugRepr, cls).__init__(
 name, bases, attrd)

 if '__str__' not in attrd:
 raise TypeError(
"Class requires overriding of __str__()")

 if '__repr__' not in attrd:
 warn(
'Class suggests overriding of __repr__()\n',

file:///D|/1/0132269937/ch13lev1sec16.html (15 von 17) [13.11.2007 16:24:22]

Section 13.16. Advanced Features of New-Style Classes (Python 2.2+)

 stacklevel=3)

We will create three example classes that use our metaclass, one that overrides both __str__() and
__repr__() special methods (Foo), one that only implements the __str__() special method (Bar), and
one that implements neither (FooBar), an error situation. The full application is presented here as
Example 13.10.

Example 13.10. Metaclass Example (meta.py)

This module features a metaclass and three classes under the jurisdiction of the metaclass.
After each class is created, you will see a print statement.

1 #!/usr/bin/env python
2
3 from warnings import warn
4
5 class ReqStrSugRepr(type):
6
7 def __init__(cls, name, bases, attrd):
8 super(ReqStrSugRepr, cls).__init__(
9 name, bases, attrd)
10
11 if '__str__' not in attrd:
12 raise TypeError(
13 "Class requires overriding of __str__()")
14
15 if '__repr__' not in attrd:
16 warn(
17 'Class suggests overriding of __repr__()\n',
18 stacklevel=3)
19
20 print '*** Defined ReqStrSugRepr (meta)class\n'
21
22 class Foo(object):
23 __metaclass__ = ReqStrSugRepr
24
25 def __str__(self):
26 return 'Instance of class:', \
27 self.__class__.__name__
28
29 def __repr__(self):
30 return self.__class__.__name__
31
32 print '*** Defined Foo class\n'
33
34 class Bar(object):
35 __metaclass__ = ReqStrSugRepr
36
37 def __str__(self):
38 return 'Instance of class:', \
39 self.__class__.__name__
40
41 print '*** Defined Bar class\n'
42
43 class FooBar(object):

file:///D|/1/0132269937/ch13lev1sec16.html (16 von 17) [13.11.2007 16:24:22]

Section 13.16. Advanced Features of New-Style Classes (Python 2.2+)

44 __metaclass__ = ReqStrSugRepr
45
46 print '*** Defined FooBar class\n'

Running this script, we get the following output:

 $ python meta.py
 *** Defined ReqStrSugRepr (meta)class

 *** Defined Foo class

 sys:1: UserWarning: Class suggests overriding of
 __repr__()

 *** Defined Bar class

 Traceback (most recent call last):
 File "meta.py", line 43, in ?
 class FooBar(object):
 File "meta.py", line 12, in __init__
 raise TypeError(
 TypeError: Class requires overriding of __str__()

Note how we got past declaring Foo without incident. With Bar, we received the warning for not
implementing __repr__(), and FooBar did not pass the security check, hence the reason why the
application failed to make it to the (final) print statement. Another important thing to note is that we
did not even create any instances of the test classes... they are not even part of our picture. However,
keep in mind that those classes themselves are instances of our metaclass. This is but one example of
the power of metaclasses.

There are many more examples online and in the Python documentation, PEPs 252 and 253, the What's
New in Python 2.2 document, and Guido van Rossum's essay entitled, "Unifying Types and Classes in
Python 2.2." You can find a link to that document from the main Python release page for 2.2.3.

file:///D|/1/0132269937/ch13lev1sec16.html (17 von 17) [13.11.2007 16:24:22]

file:///D|/1/0132269937/14051536.html

Section 13.17. Related Modules and Documentation

13.17. Related Modules and Documentation

Python has several classic classes that extend the existing functionality of the core language that we
have described in this chapter. These classes were provided as a convenience before it was possible to
subclass Python data types.

The User* modules are like precooked meals, ready to eat. We mentioned how classes have special
methods that, if implemented, can customize classes so that when wrapped around a standard type,
they can give instances type-like qualities.

UserList and UserDict, along with the new UserString (introduced in Python 1.6), represent modules
that define classes that act as wrappers around list, dictionary, and string objects, respectively. The
primary objective of these modules is to provide the desired functionality for you so that you do not
have to implement them yourself, and to serve as base classes that are appropriate for subclassing and
further customization. Python already provides an abundance of useful built-in types, but the added
ability to perform "build it yourself" typing makes it an even more powerful language.

In Chapter 4, we introduced Python's standard as well as other built-in types. The types module is a
great place to learn more about Python's types as well as those that are beyond the scope of this text.
The types module also defines type objects that can be used to make comparisons. (Such comparisons
are popular in Python because they do not support method overloadingthis keeps the language simple,
yet there are tools that add functionality to a part of the language where it had appeared to be lacking.)

The following piece of code checks to see if the object data is passed into the Foo function as an integer
or string, and does not allow any other type (raises an exception):

def foo(data):
 if isinstance(data, int):
 print 'you entered an integer'
 elif isinstance(data, str):
 print 'you entered a string'
 else:
 raise TypeError, 'only integers or strings!'

The last related module is the operator module. This module provides functional versions of most of
Python's standard operators. There may be occasions where this type of interface proves more versatile
than hard-coding use of the standard operators.

Given below is one example. As you look through the code, imagine the extra lines of code that would
have been required if individual operators had been part of the implementation:

 >>> from operator import * # import all operators
 >>> vec1 = [12, 24]
 >>> vec2 = [2, 3, 4]
 >>> opvec = (add, sub, mul, div) # using +, -, *, /
 >>> for eachOp in opvec: # loop thru operators
 ... for i in vec1:
 ... for j in vec2:

file:///D|/1/0132269937/ch13lev1sec17.html (1 von 3) [13.11.2007 16:24:23]

file:///D|/1/0132269937/14051536.html

Section 13.17. Related Modules and Documentation

 ... print '%s(%d, %d) = %d' % \
 ... (eachOp.__name__, i, j, eachOp(i, j))
 ...
 add(12, 2) = 14
 add(12, 3) = 15
 add(12, 4) = 16
 add(24, 2) = 26
 add(24, 3) = 27
 add(24, 4) = 28
 sub(12, 2) = 10
 sub(12, 3) = 9
 sub(12, 4) = 8
 sub(24, 2) = 22
 sub(24, 3) = 21
 sub(24, 4) = 20
 mul(12, 2) = 24
 mul(12, 3) = 36
 mul(12, 4) = 48
 mul(24, 2) = 48
 mul(24, 3) = 72
 mul(24, 4) = 96
 div(12, 2) = 6
 div(12, 3) = 4
 div(12, 4) = 3
 div(24, 2) = 12
 div(24, 3) = 8
 div(24, 4) = 6

The code snippet above defines three vectors, two containing operands and the last representing the set
of operations the programmer wants to perform on each pair of available operands. The outermost loop
iterates through each operation while the inner pair of loops creates every possible combination of
ordered pairs from elements of each operand vector. Finally, the print statement simply applies the
current operator with the given arguments.

A list of the modules we described above is given in Table 13.5.

Table 13.5. Class Related Modules

Module Description

UserList Provides a class wrapper around list objects

UserDict Provides a class wrapper around dictionary objects

UserString
[a] Provides a class wrapper around string objects; also included is a MutableString

subclass, which provides that kind of functionality, if so desired

types Defines names for all Python object types as used by the standard Python interpreter

operator Functional interface to the standard operators

[a] New in Python 1.6.

file:///D|/1/0132269937/ch13lev1sec17.html (2 von 3) [13.11.2007 16:24:23]

Section 13.17. Related Modules and Documentation

There are plenty of class, and object-oriented, programming-related questions in the Python FAQ. It
makes excellent supplementary material to the Python Library and Language Reference manual. For
new-style classes, see PEPs 252 and 253, and the related documents from the Python 2.2 release.

file:///D|/1/0132269937/ch13lev1sec17.html (3 von 3) [13.11.2007 16:24:23]

file:///D|/1/0132269937/14051536.html

Section 13.18. Exercises

13.18. Exercises

13-1. Programming. Name some benefits of object-oriented programming over older forms
of programming.

13-2. Functions versus Methods. What are the differences between functions and methods?

13-3. Customizing Classes. Create a class to format floating point values to monetary
amounts. In this exercise, we will use United States currency, but feel free to
implement your own.

Preliminary work: Create a function called dollarize() which takes a floating point
value and returns that value as a string properly formatted with symbols and rounded

to obtain a financial amount. For example: dollarize(1234567.8901)
'$1,234,567.89. The dollarize() function should allow for commas, such as
1,000,000, and dollar signs. Any negative sign should appear to the left of the dollar
sign. Once you have completed this task, then you are ready to convert it into a useful
class called MoneyFmt.

The MoneyFmt class contains a single data value, the monetary amount, and has five
methods (feel free to create your own outside of this exercise). The __init__()
constructor method initializes the data value, the update() method replaces the data
value with a new one, the __nonzero__() method is Boolean, returning true if the data
value is non-zero, the __repr__() method returns the amount as a float, and the
__str__() method displays the value in the string-formatted manner that dollarize()
does.

a.

Fill in the code to the update() method so that it will update the data value.

b.

Use the work you completed for dollarize() to fill in the code for the __str__()
method.

c.

Fix the bug in the __nonzero__() method, which currently thinks that any value
less than one, i.e., fifty cents ($0.50), has a false value.

d.

file:///D|/1/0132269937/ch13lev1sec18.html (1 von 8) [13.11.2007 16:24:24]

file:///D|/1/0132269937/14051536.html

Section 13.18. Exercises

Extra credit: Allow the user to optionally specify an argument indicating the
desire to see less-than and greater-than pairs for negative values rather than
the negative sign. The default argument should use the standard negative sign.

You will find the code skeleton for moneyfmt.py presented as Example 13.11. You will
find a fully documented (yet incomplete) version of moneyfmt.py on the Web site. If we
were to import the completed class within the interpreter, execution should behave
similar to the following:

Example 13.11. Money Formatter (moneyFmt.py)

String format class designed to "wrap" floating point values to appear as
monetary amounts with the appropriate symbols.

1 #!/usr/bin/env python
2
3 class MoneyFmt(object):
4 def __init__(self, value=0.0) : # constructor
5 self.value = float(value)
6
7 def update(self, value=None): # allow updates
8 ###
9 ### (a) complete this function
10 ###
11
12 def __repr__(self): # display as a float
13 return 'self.value'
14
15 def __str__(self): # formatted display
16 val = ''
17
18 ###
19 ### (b) complete this function... do NOT
20 ### forget about negative numbers!!
21 ###
22
23 return val
24
25 def __nonzero__(self): # boolean test
26 ###
27 ### (c) find and fix the bug
28 ###
29
30 return int(self.value)

 >>> import moneyfmt
 >>>
 >>> cash = moneyfmt.MoneyFmt(123.45)
 >>> cash
 123.45
 >>> print cash
 $123.45
 >>>

file:///D|/1/0132269937/ch13lev1sec18.html (2 von 8) [13.11.2007 16:24:24]

Section 13.18. Exercises

 >>> cash.update(100000.4567)
 >>> cash
 100000.4567
 >>> print cash
 $100,000.46
 >>>
 >>> cash.update(-0.3)
 >>> cash
 -0.3
 >>> print cash
 -$0.30
 >>> repr(cash)
 '-0.3'
 >>> 'cash'
 '-0.3'
 >>> str(cash)
 '-$0.30'

13-4. User Registration. Create a user database (login, password, and last login timestamp)
class (see problems 7-5 and 9-12) that manages a system requiring users to log in
before access to resources is allowed. This database class manages its users, loading
any previously saved user information on instantiation and providing accessor
functions to add or update database information. If updated, the database will save
the new information to disk as part of its deallocation (see __del__()).

13-5. Geometry. Create a Point class that consists of an ordered pair (x, y) representing a
point's location on the X and Y axes. X and Y coordinates are passed to the constructor
on instantiation and default to the origin for any missing coordinate.

13-6. Geometry. Create a line/line segment class that has length and slope behaviors in
addition to the main data attributes: a pair of points (see previous problem). You
should override the __repr__() method (and __str__(), if you want) so that the string
representing a line (or line segment) is a pair of tuples, ((x1, y1), (x2, y2)).
Summary:

__repr__ Display points as pair of tuples

length Return length of line segmentdo not use "len" since that is supposed to be
an integer

slope Return slope of line segment (or None if applicable)

file:///D|/1/0132269937/ch13lev1sec18.html (3 von 8) [13.11.2007 16:24:24]

Section 13.18. Exercises

13-7. Date Class. Provide an interface to a time module where users can request dates in a
few (given) date formats such as "MM/DD/YY," "MM/DD/YYYY," "DD/MM/YY," "DD/MM/
YYYY," "Mon DD, YYYY," or the standard Unix date of "Day Mon DD, HH:MM:SS YYYY."
Your class should maintain a single value of date and create an instance with the given
time. If not given, default to the current time at execution. Additional methods:

update() changes the data value to reflect time given or current time as a default

display() takes format indicator and displays date in requested format:

 'MDY' MM/DD/YY

 'MDYY' MM/DD/YYYY

 'DMY' DD/MM/YY

 'DMYY' DD/MM/YYYY

 'MODYY' Mon DD, YYYY

If no format is given, default to system/ctime() format. Extra Credit: Merge the use of
this class into Exercise 6-15.

13-8. Stack Class. A stack is a data structure with last-in-first-out (LIFO) characteristics.
Think of a stack of cafeteria trays. The first one in the spring-loaded device is the last
one out, and the last one in is the first one out. Your class will have the expected push
() (add an item to the stack) and pop() (remove an item from the stack) methods.
Add an isempty() Boolean method that returns TRue if the stack is empty and False
otherwise, and a peek() method that returns the item at the top of the stack without
popping it off.

Note that if you are using a list to implement your stacks, the pop() method is already
available as of Python 1.5.2. Create your new class so that it contains code to detect if
the pop() method is available. If so, call the built-in one; otherwise, it should execute
your implementation of pop(). You should probably use a list object; if you do, do not
worry about implementing any list functionality (i.e., slicing). Just make sure that your
Stack class can perform both of the operations above correctly. You may subclass a
real list object or come up with your own list-like object, as in Example 6.2.

file:///D|/1/0132269937/ch13lev1sec18.html (4 von 8) [13.11.2007 16:24:24]

Section 13.18. Exercises

13-9. Queue Class. A queue is a data structure that has first-in-first-out (FIFO)
characteristics. A queue is like a line where items are removed from the front and
added to the rear. The class should support the following methods:

enqueue() adds a new element to the end of a list

dequeue() returns the first element and removes it from the list.

See the previous problem and Example 6.3 for motivation.

13-10. Stacks and Queues. Write a class which defines a data structure that can behave as
both a queue (FIFO) or a stack (LIFO), somewhat similar in nature to arrays in PERL.
There are four methods that should be implemented:

shift() returns the first element and removes it from the list, similar to the
earlier dequeue() function

unshift() "pushes" a new element to the front or head of the list

push() adds a new element to the end of a list, similar to the enqueue() and push
() methods from previous problems

pop() returns the last element and removes it from the list; it works exactly
the same way as pop() from before

See also Exercises 13-8 and 13-9.

13-11. Electronic Commerce. You need to create the foundations of an e-commerce engine
for a B2C (business-to-consumer) retailer. You need to have a class for a customer
called User, a class for items in inventory called Item, and a shopping cart class called
Cart. Items go in Carts, and Users can have multiple Carts. Also, multiple items can
go into Carts, including more than one of any single item.

file:///D|/1/0132269937/ch13lev1sec18.html (5 von 8) [13.11.2007 16:24:24]

Section 13.18. Exercises

13-12. Chat Rooms. You have been pretty disappointed at the current quality of chat room
applications and vow to create your own, start up a new Internet company, obtain
venture capital funding, integrate advertisement into your chat program, quintuple
revenues in a six-month period, go public, and retire. However, none of this will
happen if you do not have a pretty cool chat application.

There are three classes you will need: a Message class containing a message string and
any additional information such as broadcast or single recipient, and a User class that
contains all the information for a person entering your chat rooms. To really wow the
VCs to get your start-up capital, you add a class Room that represents a more
sophisticated chat system where users can create separate "rooms" within the chat
area and invite others to join. Extra credit: Develop graphical user interface (GUI)
applications for the users.

13-13. Stock Portfolio Class. For each company, your database tracks the name, ticker
symbol, purchase date, purchase price, and number of shares. Methods include: add
new symbol (new purchase), remove symbol (all shares sold), and YTD or Annual
Return performance for any or all symbols given a current price (and date). See also
Exercise 7-6.

13-14. DOS. Write a Unix interface shell for DOS machines. You present the user a command
line where he or she can type in Unix commands, and you interpret them and output
accordingly, i.e., the "ls" command calls "dir" to give a list of filenames in a directory,
"more" uses the same command (paginating through a text file), "cat" calls "type,"
"cp" calls "copy," "mv" calls "ren," and "rm" invokes "del," etc.

13-15. Delegation. In our final comments regarding the CapOpen class of Example 13.8 where
we proved that our class wrote out the data successfully, we noted that we could use
either CapOpen() or open() to read the file text. Why? Would anything change if we
used one or the other?

13-16. Delegation and Functional Programming.

a.

Implement a writelines() method for the CapOpen class of Example 13.8. Your
new function will take a list of lines and write them out converted to
uppercase, similar to the way the regular writelines() method differs from
write(). Note that once you are done, writelines() is no longer "delegated" to
the file object.

b.

Add an argument to the writelines() method that determines whether a
NEWLINE should be added to every line of the list. This argument should
default to a value of False for no NEWLINEs.

file:///D|/1/0132269937/ch13lev1sec18.html (6 von 8) [13.11.2007 16:24:24]

Section 13.18. Exercises

13-17. Subclassing Numeric Types. Take your final moneyfmt.py script as seen in Example
13.3 as Example 13.8 and recast it so that it extends Python's float type. Be sure all
operations are supported, but that it is still immutable.

13-18. Subclassing Sequence Types. Create a subclass similar to your solution of the previous
problem to your user registration class as seen earlier in Exercise 13-4. Allow users to
change their passwords, but do not allow them to reuse the same password within a
12-month period. Extra credit: Add support for determining "similar passwords" (any
algorithm is fine) and do not even allow passwords similar to any used within the last
12 months.

13-19. Subclassing Mapping Types. As speculated for the dictionary subclass in Section
13.11.3, what if the keys() method were (re)written as:

def keys(self):
 return sorted(self.keys())

a.

What happens when keys() is called for a method?

b.

Why is this, and what makes our original solution work?

13-20. Class Customization. Improve on the time60.py script as seen in Section 13.13.2,
Example 13.3.

a.

Allow "empty" instantiation: If hours and minutes are not passed in, then
default to zero hours and zero minutes.

b.

Zero-fill values to two digits because the current formatting is undesirable. In
the case below, displaying wed should output "12:05."

>>> wed = Time60(12, 5)
>>> wed
12:5

c.

file:///D|/1/0132269937/ch13lev1sec18.html (7 von 8) [13.11.2007 16:24:24]

Section 13.18. Exercises

In addition to instantiating with hours (HR) and minutes (min), also support
time entered as:

�❍ A tuple of hours and minutes (10, 30)
�❍ A dictionary of hours and minutes ({'HR' : 10, 'min': 30})
�❍ A string representing hours and minutes ("10:30") Extra Credit: Allow

for improperly formatted strings like "12:5" as well.
d.

Do we need to implement __radd__()? Why or why not? If not, when would or
should we override it?

e.

The implementation of __repr__() is flawed and misguided. We only overrode
this function so that it displays nicely in the interactive interpreter without
having to use the print statement. However, this breaks the charter that repr
() should always give a (valid) string representation of an evaluatable Python
expression. 12:05 is not a valid Python expression, but Time60('12:05') is.
Make it so.

f.

Add support for sexagesimal (base 60) operations. The output for the following
example should be 19:15 not 18:75:

>>> thu = Time60(10, 30)
>>> fri = Time60(8, 45)
>>> thu + fri
18:75

13-21. Decorators and Function Call Syntax. Toward the end of Section 13.16.4, we used a
function decorator to turn x into a property object, but because decorators were not
available until Python 2.4, we gave an alternate syntax for older releases:

X = property (**x()).

Exactly what happens when this assignment is executed, and why is it equivalent to
using a decorator?

file:///D|/1/0132269937/ch13lev1sec18.html (8 von 8) [13.11.2007 16:24:24]

file:///D|/1/0132269937/14051536.html

Chapter 14. Execution Environment

Chapter 14. Execution Environment

Chapter Topics

● Callable Objects
● Code Objects
● Statements and Built-in Functions
● Executing Other Programs
● Terminating Execution
● Miscellaneous Operating System Interface
● Related Modules

There are multiple ways in Python to run other pieces of code outside of the currently executing
program, i.e., run an operating system command or another Python script, or execute a file on disk or
across the network. It all depends on what you are trying to accomplish. Some specific execution
scenarios could include:

● Remain executing within our current script
● Create and manage a subprocess
● Execute an external command or program
● Execute a command that requires input
● Invoke a command across the network
● Execute a command creating output that requires processing
● Execute another Python script
● Execute a set of dynamically generated Python statements
● Import a Python module (and executing its top-level code)

There are built-ins and external modules that can provide any of the functionality described above. The
programmer must decide which tool to pick from the box based on the application that requires
implementation. This chapter sketches a potpourri of many of the aspects of the execution environment
within Python; however, we will not discuss how to start the Python interpreter or the different
command-line options. Readers seeking information on invoking or starting the Python interpreter
should review Chapter 2.

Our tour of Python's execution environment consists of looking at "callable" objects and following up
with a lower-level peek at code objects. We will then take a look at what Python statements and built-in
functions are available to support the functionality we desire. The ability to execute other programs
gives our Python script even more power, as well as being a resource-saver because certainly it is
illogical toreimplement all this code, not to mention the loss of time and manpower. Python provides
many mechanisms to execute programs or commands external to the current script environment, and
we will run through the most common options. Next, we give a brief overview of Python's restricted
execution environment, and finally, the different ways of terminating execution (other than letting a
program run to completion). We begin our tour of Python's execution environment by looking at
"callable" objects.

file:///D|/1/0132269937/ch14.html [13.11.2007 16:24:25]

file:///D|/1/0132269937/14051536.html

Section 14.1. Callable Objects

14.1. Callable Objects

A number of Python objects are what we describe as "callable," meaning any object that can be invoked
with the function operator "()". The function operator is placed immediately following the name of the
callable to invoke it. For example, the function "foo" is called with "foo()". You already know this.
Callables may also be invoked via functional programming interfaces such as apply(), filter(), map(),
and reduce(), all of which we discussed Chapter 11. Python has four callable objects: functions,
methods, classes, and some class instances. Keep in mind that any additional references or aliases of
these objects are callable, too.

14.1.1. Functions

The first callable object we introduced was the function. There are three different types of function
objects. The first is the Python built-in functions.

Built-in Functions (BIFs)

BIFs are functions written in C/C++, compiled into the Python interpreter, and loaded into the system as
part of the first (built-in) namespace. As mentioned in previous chapters, these functions are found in
the __builtin__ module and are imported into the interpreter as the __builtins__ module.

BIFs have the basic type attributes, but some of the more interesting unique ones are listed in Table
14.1.

Table 14.1. Built-in Function Attributes

BIF Attribute Description

bif.__doc__ Documentation string (or None)

bif.__name__ Function name as a string

bif.__self__ Set to None (reserved for built-in methods)

bif.__module__ Name of the module where bif is defined (or None)

You can list all attributes of a function by using dir():

 >>> dir(type)
 ['__call__', '__class__', '__cmp__', '__delattr__', '__doc__',
 '__getattribute__', '__hash__', '__init__', '__module__',
 '__name__', '__new__', '__reduce__', '__reduce_ex__',
 '__repr__', '__self__', '__setattr__', '__str__']

file:///D|/1/0132269937/ch14lev1sec1.html (1 von 7) [13.11.2007 16:24:26]

file:///D|/1/0132269937/14051536.html

Section 14.1. Callable Objects

Internally, BIFs are represented as the same type as built-in methods (BIMs), so invoking type() on a
BIF or BIM results in:

 >>> type(dir)
 <type 'builtin_function_or_method'>

Note that this does not apply to factory functions, where type() correctly returns the type of object
produced:

 >>> type(int)
 <type 'type'>
 >>> type(type)
 <type 'type'>

User-Defined Functions (UDFs)

UDFs are generally written in Python and defined at the top-level part of a module and hence are loaded
as part of the global namespace (once the built-in namespace has been established). Functions may also
be defined in other functions, and due to the nested scopes improvement in 2.2, we now have access to
attributes in multiply-nested scopes. Hooks to attributes defined elsewhere are provided by the
func_closure attribute.

Like the BIFs above, UDFs also have many attributes. The more interesting and specific ones to UDFs
are listed below in Table 14.2.

Table 14.2. User-Defined Function Attributes

UDF Attribute Description

udf.__doc__ Documentation string (also udf.func_doc)

udf.__name__ Function name as a string (also udf.func_name)

udf.func_code Byte-compiled code object

udf.func_defaults Default argument tuple

udf.func_globals Global namespace dictionary; same as calling globals(x) from within function

udf.func_dict Namespace for function attributes

udf.func_doc (See udf.__doc__above)

udf.func_name (See udf.__name__above)

udf.func_closure Tuple of Cell objects (see the Python/C API Reference Manual) that contains
references to free variables (those used in udf but defined elsewhere; see the
Python [Language] Reference Manual)

file:///D|/1/0132269937/ch14lev1sec1.html (2 von 7) [13.11.2007 16:24:26]

Section 14.1. Callable Objects

Internally, user-defined functions are of the type "function," as indicated in the following example by
using type():

 >>> def foo(): pass
 >>> type(foo)
 <type 'function'>

lambda Expressions (Functions Named "<lambda>")

Lambda expressions are the same as user-defined functions with some minor differences. Although they
yield function objects, lambda expressions are not created with the def statement and instead are
created using the lambda keyword.

Because lambda expressions do not provide the infrastructure for naming the codes that are tied to
them, lambda expressions must be called either through functional programming interfaces or have
their reference be assigned to a variable, and then they can be invoked directly or again via functional
programming. This variable is merely an alias and is not the function object's name.

Function objects created by lambda also share all the same attributes as user-defined functions, with the
only exception resulting from the fact that they are not named; the __name__ or func_name attribute is
given the string "<lambda>".

Using the type() factory function, we show that lambda expressions yield the same function objects as
user-defined functions:

 >>> lambdaFunc = lambda x: x * 2
 >>> lambdaFunc(100)
 200
 >>> type(lambdaFunc)
 <type 'function'>

In the example above, we assign the expression to an alias. We can also invoke type() directly on a
lambda expression:

 >>> type(lambda:1)
 <type 'function'>

Let us take a quick look at UDF names, using lambdaFunc above and foo from the preceding subsection:

 >>> foo.__name__
 'foo'
 >>> lambdaFunc.__name__
 '<lambda>'

As we noted back in Section 11.9, programmers can also define function attributes once the function has
been declared (and a function object available). All of the new attributes become part of the udf.

file:///D|/1/0132269937/ch14lev1sec1.html (3 von 7) [13.11.2007 16:24:26]

Section 14.1. Callable Objects

__dict__ object. Later on in this chapter, we will discuss taking strings of Python code and executing it.
There will be a combined example toward the end of the chapter highlighting function attributes and
dynamic evaluation of Python code (from strings) and executing those statements.

14.1.2. Methods

In Chapter 13 we discovered methods, functions that are defined as part of a classthese are user-
defined methods. Many Python data types such as lists and dictionaries also have methods, known as
built-in methods. To further show this type of "ownership," methods are named with or represented
alongside the object's name via the dotted-attribute notation.

Table 14.3. Built-in Method
Attributes

BIM Attribute Description

bim.__doc__ Documentation string

bim.__name__ Function name as a string

bim.__self__ Object the method is bound to

Built-in Methods (BIMs)

We discussed in the previous section how built-in methods are similar to built-in functions. Only builtin
types (BITs) have BIMs. As you can see below, the type() factory function gives the same output for
built-in methods as it does for BIFsnote how we have to provide a built-in type (object or reference) in
order to access a BIM:

 >>> type([].append)
 <type 'builtin_function_or_method'>

Furthermore, both BIMs and BIFs share the same attributes, too. The only exception is that now the
__self__ attribute points to a Python object (for BIMs) as opposed to None (for BIFs):

Recall that for classes and instances, their data and method attributes can be obtained by using the dir
() BIF with that object as the argument to dir(). It can also be used with BIMs:

 >>> dir([].append)
 ['__call__', '__class__', '__cmp__', '__delattr__', '__doc__',
 '__getattribute__', '__hash__', '__init__', '__module__',
 '__name__', '__new__', '__reduce__', '__reduce_ex__',
 '__repr__', '__self__', '__setattr__', '__str__']

It does not take too long to discover, however, that using an actual object to access its methods does
not prove very useful functionally, as in the last example. No reference is saved to the object, so it is

file:///D|/1/0132269937/ch14lev1sec1.html (4 von 7) [13.11.2007 16:24:26]

Section 14.1. Callable Objects

immediately garbage-collected. The only thing useful you can do with this type of access is to use it to
display what methods (or members) a BIT has.

User-Defined Methods (UDMs)

User-defined methods are contained in class definitions and are merely "wrappers" around standard
functions, applicable only to the class they are defined for. They may also be called by subclass
instances if not overridden in the subclass definition.

As explained in Chapter 13, UDMs are associated with class objects (unbound methods), but can be
invoked only with class instances (bound methods). Regardless of whether they are bound or not, all
UDMs are of the same type, "instance method," as seen in the following calls to type():

 >>> class C(object): # define class
 ... def foo(self): pass # define UDM
 ...
 >>> c = C() # instantiation
 >>> type(C) # type of class
 <type 'type'>
 >>> type(c) # type of instance
 <class '__main__.C'>
 >>> type(C.foo) # type of unbound method
 <type 'instancemethod'>
 >>> type(c.foo) # type of bound method
 <type 'instancemethod'>

UDMs have attributes as shown in Table 14.4.

Table 14.4. User-Defined Method Attributes

UDM Attribute Description

udm.__doc__ Documentation string (same as udm.im_func.__doc__)

udm.__name__ Method name as a string (same as udm.im_func.__name__)

udm.__module__ Name of the module where udm is defined (or None)

udm.im_class Class that method is associated with (for bound methods; if unbound, then the class
that requested udm)

udm.im_func Function object for method (see UDFs)

udm.im_self Associated instance if bound, None if unbound

Accessing the object itself will reveal whether you are referring to a bound or an unbound method. As
you can also see below, a bound method reveals to which instance object a method is bound:

 >>> C.foo # unbound method object
 <unbound method C.foo>

file:///D|/1/0132269937/ch14lev1sec1.html (5 von 7) [13.11.2007 16:24:26]

Section 14.1. Callable Objects

 >>>
 >>> c.foo # bound method object
 <bound method C.foo of <__main__.C object at 0x00B42DD0>
 >>> c # instance foo()'s bound to
 <__main__.C object at 0x00B42DD0>

14.1.3. Classes

The callable property of classes allows instances to be created. "Invoking" a class has the effect of
creating an instance, better known as instantiation. Classes have default constructors that perform no
action, basically consisting of a pass statement. The programmer may choose to customize the
instantiation process by implementing an __init__() method. Any arguments to an instantiation call are
passed on to the constructor:

 >>> class C(object):
 def__init__(self, *args):
 print'Instantiated with these arguments:\n', args

 >>> c1 = C() # invoking class to instantiate c1
 Instantiated with these arguments:
 ()
 >>> c2 = C('The number of the counting shall be', 3)
 Instantiated with these arguments:
 ('The number of the counting shall be', 3)

We are already familiar with the instantiation process and how it is accomplished, so we will keep this
section brief. What is new, however, is how to make instances callable.

14.1.4. Class Instances

Python provides the __call__() special method for classes, which allows a programmer to create objects
(instances) that are callable. By default, the __call__() method is not implemented, meaning that most
instances are not callable. However, if this method is overridden in a class definition, instances of such a
class are made callable. Calling such instance objects is equivalent to invoking the __call__() method.
Naturally, any arguments given in the instance call are passed as arguments to __call__().

You also have to keep in mind that __call__() is still a method, so the instance object itself is passed in
as the first argument to __call__() as self. In other words, if foo is an instance, then foo() has the
same effect as foo.__call__(foo)the occurrence of foo as an argumentsimply the reference to self that
is automatically part of every method call. If __call__() has arguments, i.e., __call__(self,arg), then
foo(arg) is the same as invoking foo.__call__(foo,arg). Here we present an example of a callable
instance, using a similar example as in the previous section:

 >>> class C(object):
 ... def __call__(self, *args):
 ... print "I'm callable! Called with args:\n", args
 ...

 >>> c = C() # instantiation
 >>> c # our instance
 <__main__.C instance at 0x00B42DD0>

file:///D|/1/0132269937/ch14lev1sec1.html (6 von 7) [13.11.2007 16:24:26]

Section 14.1. Callable Objects

 >>> callable(c) # instance is callable
 True
 >>> c() # instance invoked
 I'm callable! Called with arguments:
 ()
 >>> c(3) # invoked with 1 arg
 I'm callable! Called with arguments:
 (3,)
 >>> c(3, 'no more, no less') # invoked with 2 args
 I'm callable! Called with arguments:
 (3, 'no more, no less')

We close this subsection with a note that class instances cannot be made callable unless the __call__()
method is implemented as part of the class definition.

file:///D|/1/0132269937/ch14lev1sec1.html (7 von 7) [13.11.2007 16:24:26]

file:///D|/1/0132269937/14051536.html

Section 14.2. Code Objects

14.2. Code Objects

Callables are a crucial part of the Python execution environment, yet they are only one element of a
larger landscape. The grander picture consists of Python statements, assignments, expressions, and
even modules. These other "executable objects" do not have the ability to be invoked like callables.
Rather, these objects are the smaller pieces of the puzzle that make up executable blocks of code called
code objects.

At the heart of every callable is a code object, which consists of statements, assignments, expressions,
and other callables. Looking at a module means viewing one large code object that contains all the code
found in the module. Then it can be dissected into statements, assignments, expressions, and callables,
which recurse to another layer as they contain their own code objects.

In general, code objects can be executed as part of function or method invocations or using either the
exec statement or eval() BIF. A bird's eye view of a Python module also reveals a single code object
representing all lines of code that make up that module.

If any Python code is to be executed, that code must first be converted to byte-compiled code (aka
bytecode). This is precisely what code objects are.

They do not contain any information about their execution environment, however, and that is why
callables exist, to "wrap" a code object and provide that extra information.

Recall, from the previous section, the udf.func_code attribute for a UDFs? Well, guess what? That is a
code object. Or how about the udm.im_func function object for UDMs? Since that is also a function object,
it also has its own udm.im_func.func_code code object. So you can see that function objects are merely
wrappers for code objects, and methods are wrappers for function objects. You can start anywhere and
dig. When you get to the bottom, you will have arrived at a code object.

file:///D|/1/0132269937/ch14lev1sec2.html [13.11.2007 16:24:26]

Section 14.3. Executable Object Statements and Built-in Functions

14.3. Executable Object Statements and Built-in Functions

Python provides a number of BIFs supporting callables and executable objects, including the exec
statement. These functions let the programmer execute code objects as well as generate them using the
compile() BIF. They are listed in Table 14.5.

Table 14.5. Executable Object Statements and Built-in Functions

Built-in Function or Statement Description

callable(obj) Returns true if obj is callable and False otherwise

compile(string, file, type) Creates a code object from string of type type; file
is where the code originates from (usually set to "")

eval(obj, globals=globals(), locals=locals()) Evaluates obj, which is either an expression compiled
into a code object or a string expression; global and/
or local namespace may also be provided

exec obj Executes obj,a single Python statement or set of
statements, either in code object or string format;
obj may also be a file object (opened to a valid
Python script)

input(prompt='') Equivalent to eval(raw_input(prompt=''))

14.3.1. callable()

callable() is a Boolean function that determines if an object type can be invoked via the function
operator (()). It returns true if the object is callable and False otherwise (1 and 0, respectively, for
Python 2.2 and earlier). Here are some sample objects and what callable returns for each type:

 >>> callable(dir) # built-in function
 True
 >>> callable(1) # integer
 False
 >>> def foo(): pass
 ...
 >>> callable(foo) # user-defined function
 True
 >>> callable('bar') # string
 False
 >>> class C(object): pass
 ...
 >>> callable(C) # class
 True

file:///D|/1/0132269937/ch14lev1sec3.html (1 von 12) [13.11.2007 16:24:28]

Section 14.3. Executable Object Statements and Built-in Functions

14.3.2. compile()

compile() is a function that allows the programmer to generate a code object on the fly, that is, during
runtime. These objects can then be executed or evaluated using the exec statement or eval() BIF. It is
important to bring up the point that both exec and eval() can take string representations of Python code
to execute. When executing code given as strings, the process of byte-compiling such code must occur
every time. The compile() function provides a one-time byte-code compilation of code so that the
precompile does not have to take place with each invocation. Naturally, this is an advantage only if the
same pieces of code are executed more than once. In these cases, it is definitely better to precompile
the code.

All three arguments to compile() are required, with the first being a string representing the Python code
to compile. The second string, although required, is usually set to the empty string. This parameter
represents the file name (as a string) where this code object is located or can be found. Normal usage is
for compile() to generate a code object from a dynamically generated string of Python codecode that
obviously does not originate from an existing file.

The last argument is a string indicating the code object type. There are three possible values:

'eval' Evaluatable expression [to be used with eval()]

'single' Single executable statement [to be used with exec]

'exec' Group of executable statements [to be used with exec]

Evaluatable Expression

>>> eval_code = compile('100 + 200', '', 'eval')
>>> eval(eval_code)
300

Single Executable Statement

>>> single_code = compile('print"Hello world!"', '', 'single')
>>> single_code
<code object ? at 120998, file "", line 0>
>>> exec single_code
Hello world!

Group of Executable Statements

>>> exec_code = compile("""
... req = input('Count how many numbers? ')
... for eachNum in range(req):
... print eachNum
... """, '', 'exec')
>>> exec exec_code
Count how many numbers? 6
0

file:///D|/1/0132269937/ch14lev1sec3.html (2 von 12) [13.11.2007 16:24:28]

Section 14.3. Executable Object Statements and Built-in Functions

1
2
3
4
5

In the final example, we see input() for the first time. Since the beginning, we have been reading input
from the user using raw_input(). The input() BIF is a shortcut function that we will discuss later in this
chapter. We just wanted to tease you with a sneak preview.

14.3.3. eval()

eval() evaluates an expression, either as a string representation or a pre-compiled code object created
via the compile() built-in. This is the first and most important argument to eval()... it is what you want
to execute.

The second and third parameters, both optional, represent the objects in the global and local
namespaces, respectively. If provided, globals must be a dictionary. If provided, locals can be any
mapping object, e.g., one that implements the __getitem__() special method. (Before 2.4, locals was
required to be a dictionary.) If neither of these are given, they default to objects returned by globals()
and locals(), respectively. If only a globals dictionary is passed in, then it is also passed in as locals.

Okay, now let us take a look at eval():

 >>> eval('932')
 932
 >>> int('932')
 932

We see that in this case, both eval() and int() yield the same result: an integer with the value 932.
The paths they take are somewhat different, however. The eval() BIF takes the string in quotes and
evaluates it as a Python expression. The int() BIF takes a string representation of an integer and
converts it to an integer. It just so happens that the string consists exactly of the string 932, which as
an expression yields the value 932, and that 932 is also the integer represented by the string "932."
Things are not the same, however, when we use a pure string expression:

 >>> eval('100 + 200')
 300
 >>> int('100 + 200')
 Traceback (innermost last):
 File "<stdin>", line 1, in ?
 ValueError: invalid literal for int(): 100 + 200

In this case, eval() takes the string and evaluates "100 + 200" as an expression, which, after
performing integer addition, yields the value 300. The call to int() fails because the string argument is

file:///D|/1/0132269937/ch14lev1sec3.html (3 von 12) [13.11.2007 16:24:28]

Section 14.3. Executable Object Statements and Built-in Functions

not a string representation of an integerthere are invalid literals in the string, namely, the spaces and
"+" character.

One simple way to envision how the eval() function works is to imagine that the quotation marks
around the expression are invisible and think, "If I were the Python interpreter, how would I view this
expression?" In other words, how would the interpreter react if the same expression were entered
interactively? The output after pressing the RETURN or ENTER key should be the same as what eval()
will yield.

14.3.4. exec

Like eval(), the exec statement also executes either a code object or a string representing Python code.
Similarly, precompiling oft-repeated code with compile() helps improve performance by not having to go
through the byte-code compilation process for each invocation. The exec statement takes exactly one
argument, as indicated here with its general syntax:

execobj

The executed object (obj) can be either a single statement or a group of statements, and either may be
compiled into a code object (with "single" or "exec," respectively) or it can be just the raw string. Below
is an example of multiple statements being sent to exec as a single string:

 >>> exec """
 ...x = 0
 ...print 'x is currently:', x
 ...while x < 5:
 ... x += 1
 ... print 'incrementing x to:', x
 ..."""
 x is currently: 0
 incrementing x to: 1
 incrementing x to: 2
 incrementing x to: 3
 incrementing x to: 4
 incrementing x to: 5

Finally, exec can also accept a valid file object to a (valid) Python file. If we take the code in the multi-
line string above and create a file called xcount.py, then we could also execute the same code with the
following:

 >>> f = open('xcount.py') # open the file
 >>> exec f # execute the file
 x is currently: 0
 incrementing x to: 1
 incrementing x to: 2
 incrementing x to: 3
 incrementing x to: 4
 incrementing x to: 5
 >>> exec f # try execution again
 >>> # oops, it failed... why?

file:///D|/1/0132269937/ch14lev1sec3.html (4 von 12) [13.11.2007 16:24:28]

Section 14.3. Executable Object Statements and Built-in Functions

Note that once execution has completed, a successive call to exec fails. Well, it doesn't really fail ... it
just doesn't do anything, which may have caught you by surprise. In reality, exec has read all the data
in the file and is sitting at the end-of-file (EOF). When exec is called again with the same file object,
there is no more code to execute, so it does not do anything, hence the behavior seen above. How do
we know that it is at EOF?

We use the file object's tell() method to tell us where we are in the file and then use os.path.getsize()
to tell us how large our xcount.py script was. As you can see, there is an exact match:

 >>> f.tell() # where are we in the file?
 116
 >>> f.close() # close the file
 >>> from os.path import getsize
 >>> getsize('xcount.py') # what is the file size?
 116

If we really want to run it again without closing and reopening the file, you can just seek() to the
beginning of the file and call exec again. For example, let us assume that we did not call f.close() yet.
Then we can do the following:

 >>> f.seek(0) # rewind to beginning
 >>> exec f
 x is currently: 0
 incrementing x to: 1
 incrementing x to: 2
 incrementing x to: 3
 incrementing x to: 4
 incrementing x to: 5
 >>> f.close()

14.3.5. input()

The input() BIF is the same as the composite of eval() and raw_input(), equivalent to eval(raw_input
()). Like raw_input(), input() has an optional parameter, which represents a string prompt to display to
the user. If not provided, the string has a default value of the empty string.

Functionally, input() differs from raw_input() because raw_input() always returns a string containing
the user's input, verbatim. input() performs the same task of obtaining user input; however, it takes
things one step further by evaluating the input as a Python expression. This means that the data
returned by input() are a Python object, the result of performing the evaluation of the input expression.

One clear example is when the user inputs a list. raw_input() returns the string representation of a list,
while input() returns the actual list:

 >>> aString = raw_input('Enter a list: ')
 Enter a list: [123, 'xyz', 45.67]
 >>> aString
 "[123, 'xyz', 45.67]"
 >>> type(aString)
 <type 'str'>

file:///D|/1/0132269937/ch14lev1sec3.html (5 von 12) [13.11.2007 16:24:28]

Section 14.3. Executable Object Statements and Built-in Functions

The above was performed with raw_input(). As you can see, everything is a string. Now let us see what
happens when we use input() instead:

 >>> aList = input('Enter a list: ')
 Enter a list: [123, 'xyz', 45.67]
 >>> aList
 [123, 'xyz', 45.67]
 >>> type(aList)
 <type 'list'>

Although the user input a string, input() evaluates that input as a Python object and returns the result
of that expression.

14.3.6. Using Python to Generate and Execute Python Code at Runtime

In this section, we will look at two examples of Python scripts that take Python code as strings and
execute them at runtime. The first example is more dynamic, but the second shows off function
attributes at the same time.

Creating Code at Runtime and Executing It

The first example is loopmake.py script, which is a simple computer-aided software engineering (CASE)
that generates and executes loops on-the-fly. It prompts the user for the various parameters (i.e., loop
type (while or for), type of data to iterate over [numbers or sequences]), generates the code string,
and executes it.

Example 14.1. Dynamically Generating and Executing Python Code (loopmake.
py)

1 #!/usr/bin/env python
2
3 dashes = '\n' + '-' * 50 # dashed line
4 exec_dict = {
5
6 'f': """ # for loop
7 for %s in %s:
8 print %s
9 """,
10
11 's': """ # sequence while loop
12 %s = 0
13 %s = %s
14 while %s < len(%s):
15 print %s[%s]
16 %s = %s + 1
17 """,
18
19 'n': """ # counting while loop
20 %s = %d
21 while %s < %d:

file:///D|/1/0132269937/ch14lev1sec3.html (6 von 12) [13.11.2007 16:24:28]

Section 14.3. Executable Object Statements and Built-in Functions

22 print %s
23 %s = %s + %d
24 """
25 }
26
27 def main():
28
29 ltype = raw_input('Loop type? (For/While) ')
30 dtype = raw_input('Data type? (Number/Seq) ')
31
32 if dtype == 'n':
33 start = input('Starting value? ')
34 stop = input('Ending value (non-inclusive)? ')
35 step = input('Stepping value? ')
36 seq = str(range(start, stop, step))
37
38 else:
39 seq = raw_input('Enter sequence: ')
40
41 var = raw_input('Iterative variable name? ')
42
43 if ltype == 'f':
44 exec_str = exec_dict['f'] % (var, seq, var)
45
46 elif ltype == 'w':
47 if dtype == 's':
48 svar = raw_input('Enter sequence name? ')
49 exec_str = exec_dict['s'] % \
50 (var, svar, seq, var, svar, svar, var, var, var)
51

52 elif dtype == 'n':
53 exec_str = exec_dict['n'] % \
54 (var, start, var, stop, var, var, var, step)
55
56 print dashes
57 print 'Your custom-generated code:' + dashes
58 print exec_str + dashes
59 print 'Test execution of the code:' + dashes
60 exec exec_str
61 print dashes
62
63 if __name__ == '__main__':
64 main()

Here are a few example executions of this script:

 % loopmake.py
 Loop type? (For/While) f
 Data type? (Number/Sequence) n
 Starting value? 0
 Ending value (non-inclusive)? 4

 Stepping value? 1
 Iterative variable name? counter

file:///D|/1/0132269937/ch14lev1sec3.html (7 von 12) [13.11.2007 16:24:28]

Section 14.3. Executable Object Statements and Built-in Functions

 --
 The custom-generated code for you is:
 --

 for counter in [0, 1, 2, 3]:
 print counter

 --
 Test execution of the code:
 --
 0
 1
 2
 3

 --

 % loopmake.py
 Loop type? (For/While) w
 Data type? (Number/Sequence) n
 Starting value? 0
 Ending value (non-inclusive)? 4
 Stepping value? 1
 Iterative variable name? counter

 --
 Your custom-generated code:
 --

 counter = 0
 while counter < 4:
 print counter
 counter = counter + 1

 --
 Test execution of the code:
 --

 0
 1
 2
 3
 --
 % loopmake.py
 Loop type? (For/While) f
 Data type? (Number/Sequence) s
 Enter sequence: [932, 'grail', 3.0, 'arrrghhh']
 Iterative variable name? eachItem
 --
 Your custom-generated code:
 --
 for eachItem in [932, 'grail', 3.0, 'arrrghhh']:
 print eachItem

--
Test execution of the code:
--

932
grail

file:///D|/1/0132269937/ch14lev1sec3.html (8 von 12) [13.11.2007 16:24:28]

Section 14.3. Executable Object Statements and Built-in Functions

3.0
arrrghhh

--
% loopmake.py
Loop type? (For/While) w
Data type? (Number/Sequence) s

Enter sequence: [932, 'grail', 3.0, 'arrrghhh']
Iterative variable name? eachIndex
Enter sequence name? myList

Your custom-generated code:
--

eachIndex = 0
myList = [932, 'grail', 3.0, 'arrrghhh']
while eachIndex < len(myList):
 print myList[eachIndex]
 eachIndex = eachIndex + 1

--
Test execution of the code:
--
932
grail
3.0
arrrghhh

--

Line-by-Line Explanation

Lines 125

In this first part of the script, we are setting up two global variables. The first is a static string consisting
of a line of dashes (hence the name) and the second is a dictionary of the skeleton code we will need to
use for the loops we are going to generate. The keys are "f" for a for loop, "s" for a while loop iterating
through a sequence, and "n" for a counting while loop.

Lines 2730

Here we prompt the user for the type of loop he or she wants and what data types to use.

Lines 3236

Numbers have been chosen; they provide the starting, stopping, and incremental values. In this section
of code, we are introduced to the input() BIF for the first time. As we shall see in Section 14.3.5, input
() is similar to raw_input() in that it prompts the user for string input, but unlike raw_input(), input()
also evaluates the input as a Python expression, rendering a Python object even if the user typed it in as
a string.

Lines 3839

file:///D|/1/0132269937/ch14lev1sec3.html (9 von 12) [13.11.2007 16:24:28]

Section 14.3. Executable Object Statements and Built-in Functions

A sequence was chosen; enter the sequence here as a string.

Line 41

Get the name of the iterative loop variable that the user wants to use.

Lines 4344

Generate the for loop, filling in all the customized details.

Lines 4650

Generate a while loop which iterates through a sequence.

Lines 5254

Generate a counting while loop.

Lines 5661

Output the generated source code as well as the resulting output from execution of the aforementioned
generated code.

Lines 6364

Execute main() only if this module was invoked directly.

To keep the size of this script to a manageable size, we had to trim all the comments and error checking
from the original script. You can find both the original as well as an alternate version of this script on the
book's Web site.

The extended version includes extra features such as not requiring enclosing quotation marks for string
input, default values for input data, and detection of invalid ranges and identifiers; it also does not
permit built-in names or keywords as variable names.

Conditionally Executing Code

Our second example highlights the usefulness of function attributes introduced back in Chapter 11,
"Functions", inspired by the example in PEP 232. Let us assume that you are a software QA developer
encouraging your engineers to install either regression testers or regression instruction code into the
main source but do not want the testing code mixed with the production code. You can tell your
engineers to create a string representing the testing code. When your test framework executes, it
checks to see if that function has defined a test body, and if so, (evaluates and) executes it. If not, it
will skip and continue as normal.

Example 14.2. Function Attributes (funcAttrs.py)

file:///D|/1/0132269937/ch14lev1sec3.html (10 von 12) [13.11.2007 16:24:28]

Section 14.3. Executable Object Statements and Built-in Functions

Calling sys.exit() causes the Python interpreter to quit. Any integer argument to exit()
will be returned to the caller as the exit status, which has a default value of 0.

1 #!/usr/bin/env python
2
3 def foo():
4 return True
5
6 def bar():
7 'bar() does not do much'
8 return True
9
10 foo.__doc__ = 'foo() does not do much'
11 foo.tester = '''
12 if foo():
13 print 'PASSED'
14 else:
15 print 'FAILED'
16 '''
17
18 for eachAttr in dir():
19 obj = eval(eachAttr)
20 if isinstance(obj, type(foo)):
21 if hasattr(obj, '__doc__'):
22 print '\nFunction "%s" has a doc
 string:\n\t%s' % (eachAttr, obj.__doc__)
23 if hasattr(obj, 'tester'):
24 print 'Function "%s" has a tester... execut
 ing' % eachAttr
25 exec obj.tester
26 else:
27 print 'Function "%s" has no tester... skip
 ping' % eachAttr
28 else:
29 print '"%s" is not a function' % eachAttr

Lines 18

We define foo() and bar() in the first part of this script. Neither function does anything other than
return true. The one difference between the two is that foo() has no attributes while bar() gets a
documentation string.

Lines 1016

Using function attributes, we add a doc string and a regression or unit tester string to foo(). Note that
the tester string is actually comprised of real lines of Python code.

Lines 1829

Okay, the real work happens here. We start by iterating through the current (global) namespace using
the dir() BIF. It returns a list of the object names. Since these are all strings, we need line 19 to turn

file:///D|/1/0132269937/ch14lev1sec3.html (11 von 12) [13.11.2007 16:24:28]

Section 14.3. Executable Object Statements and Built-in Functions

them into real Python objects.

Other than the expected system variables, i.e., __builtins__, we expect our functions to show up. We
are only interested in functions; the code in line 20 will let us skip any non-function objects
encountered. Once we know we have a function, we check to see if it has a doc string, and if so, we
display it.

Lines 2327 perform some magic. If the function has a tester attribute, then execute it, otherwise let the
user know that no unit tester is available. The last few lines display the names of non-function objects
encountered.

Upon executing the script, we get the following output:

 $ python funcAttr.py
 "__builtins__" is not a function
 "__doc__" is not a function
 "__file__" is not a function
 "__name__" is not a function

 Function "bar" has a doc string:
 bar() does not do much
 Function "bar" has no tester... skipping

 Function "foo" has a doc string:
 foo() does not do much
 Function "foo" has a tester... executing
 PASSED

file:///D|/1/0132269937/ch14lev1sec3.html (12 von 12) [13.11.2007 16:24:28]

Section 14.4. Executing Other (Python) Programs

14.4. Executing Other (Python) Programs

When we discuss the execution of other programs, we distinguish between Python programs and all
other non-Python programs, which include binary executables or other scripting language source code.
We will cover how to run other Python programs first, then how to use the os module to invoke external
programs.

14.4.1. Import

During runtime, there are a number of ways to execute another Python script. As we discussed earlier,
importing a module the first time will cause the code at the top level of that module to execute. This is
the behavior of Python importing, whether desired or not. We remind you that the only code that
belongs to the top level of a module are global variables, and class and function declarations.

Core Note: All modules executed when imported

This is just a friendly reminder: As already alluded to earlier in
Chapters 3 and 12, we will tell you one more time that Python
modules are executed when they are imported! When you import the
foo module, it runs all of the top-level (not indented) Python code, i.
e., "main()". If foo contains a declaration for the bar function, then def
foo(...) is executed. Why is that again?

Well, just think what needs to be done in order for the call foo.bar()
to succeed. Somehow bar has to be recognized as a valid name in the
foo module (and in foo 's namespace), and second, the interpreter
needs to know it is a declared function, just like any other function in
your local module.

Now that we know what we need to do, what do we do with code that
we do not want executed every time our module is imported? Indent it
and put it in the suite for the if __name__ == '__main__'.

These should be followed by an if statement that checks __name__ to determine if a script is invoked, i.
e., "if__name__ == '__main__'". In these cases, your script can then execute the main body of code, or,
if this script was meant to be imported, it can run a test suite for the code in this module.

One complication arises when the imported module itself contains import statements. If the modules in
these import statements have not been loaded yet, they will be loaded and their top-level code
executed, resulting in recursive import behavior. We present a simple example below. We have two
modules import1 and import2, both with print statements at their outermost level. import1 imports
import2 so that when we import import1 from within Python, it imports and "executes" import2 as well.

Here are the contents of import1.py:

 # import1.py
 print 'loaded import1'

file:///D|/1/0132269937/ch14lev1sec4.html (1 von 4) [13.11.2007 16:24:29]

Section 14.4. Executing Other (Python) Programs

 import import2

And here are the contents of import2.py:

 # import2.py
 print 'loaded import2'

Here is the output when we import import1 from Python:

 >>> import import1
 loaded import1
 loaded import2
 >>>

Following our suggested workaround of checking the value of __name__, we can change the code in
import1.py and import2.py so that this behavior does not occur.

Here is the modified version of import1.py:

 # import1.py
 import import2
 if __name__ == '__main__':
 print 'loaded import1'

The following is the code for import2.py, changed in the same manner:

 # import2.py
 if __name__ == '__main__'
 print 'loaded import2'

We no longer get any output when we import import1 from Python:

 >>>import import1
 >>>

Now it does not necessarily mean that this is the behavior you should code for all situations. There may
be cases where you want to display output to confirm a module import. It all depends on your situation.
Our goal is to provide pragmatic programming examples to prevent unintended side effects.

14.4.2. execfile()

It should seem apparent that importing a module is not the preferred method of executing a Python
script from within another Python script; that is not what the importing process is. One side effect of
importing a module is the execution of the top-level code.

file:///D|/1/0132269937/ch14lev1sec4.html (2 von 4) [13.11.2007 16:24:29]

Section 14.4. Executing Other (Python) Programs

Earlier in this chapter, we described how the exec statement can be used with a file object argument to
read the contents of a Python script and execute it. This can be accomplished with the following code
segment:

 f = open(filename, 'r')
 exec f
 f.close()

The three lines can be replaced by a single call to execfile():

 execfile(filename)

Although the code above does execute a module, it does so only in its current execution environment (i.
e., its global and local namespace). There may be a desire to execute a module with a different set of
global and local namespaces instead of the default ones. The full syntax of execfile() is very similar to
that of eval():

 execfile(filename, globals=globals(), locals=locals())

Like eval(), both globals and locals are optional and default to the executing environments'
namespaces if not given. If only globals is given, then locals defaults to globals. If provided, locals
can be any mapping object [an object defining/overriding __getitem__()], although before 2.4, it was
required to be a dictionary. Warning: be very careful with your local namespace (in terms of modifying
it). It is much safer to pass in a dummy "locals" dictionary and check for any side effects. Altering the
local namespace is not guaranteed by execfile()! See the Python Library Reference Manual's entry for
execfile() for more details.

14.4.3. Executing Modules as Scripts

A new command-line option (or switch) was added in Python 2.4 that allows you to directly execute a
module as a script from your shell or DOS prompt. When you are writing your own modules as scripts, it
is easy to execute them. From your working directory, you would just call your script on the command
line:

 $ myScript.py # or $ python myScript.py

This is not as easy if you are dealing with modules that are part of the standard library, installed in site-
packages, or just modules in packages, especially if they also share the same name as an existing
Python module. For example, let us say you wanted to run the free Web server that comes with Python
so that you can create and test Web pages and CGI scripts you wrote.

You would have to type something like the following at the command line:

file:///D|/1/0132269937/ch14lev1sec4.html (3 von 4) [13.11.2007 16:24:29]

Section 14.4. Executing Other (Python) Programs

 $ python /usr/local/lib/python2x/CGIHTTPServer.py
 Serving HTTP on 0.0.0.0 port 8000 ...

That is a long line to type, and if it is a third-party, you would have to dig into site-packages to find
exactly where it is located, etc. Can we run a module from the command line without the full pathname
and let Python's import mechanism do the legwork for us?

That answer is yes. We can use the Python -c command-line switch:

 $ python -c "import CGIHTTPServer; CGIHTTPServer.test()"

This option allows you to specify a Python statement you wish to run. So it does work, but the problem
is that the __name__ module is not '__main__'... it is whatever module name you are using. (You can
refer back to Section 3.4.1 for a review of __name__ if you need to.) The bottom line is that the
interpreter has loaded your module by import and not as a script. Because of this, all of the code under
if__name__=='__main__' will not execute, so you have to do it manually like we did above calling the test
() function of the module.

So what we really want is the best of both worldsbeing able to execute a module in your library but as a
script and not as an imported module. That is the main motivation behind the -m option. Now you can
run a script like this:

 $ python -m CGIHTTPServer

That is quite an improvement. Still, the feature was not as fully complete as some would have liked. So
in Python 2.5, the -m switch was given even more capability. Starting with 2.5, you can use the same
option to run modules inside packages or modules that need special loading, such as those inside ZIP
files, a feature added in 2.3 (see Section 12.5.7 on page 396). Python 2.4 only lets you execute
standard library modules. So running special modules like PyChecker (Python's "lint"), the debugger
(pdb), or any of the profilers (note that these are modules that load and run other modules) was not
solved with the initial -m solution but is fixed in 2.5.

file:///D|/1/0132269937/ch14lev1sec4.html (4 von 4) [13.11.2007 16:24:29]

file:///D|/1/0132269937/14051536.html

Section 14.5. Executing Other (Non-Python) Programs

14.5. Executing Other (Non-Python) Programs

We can also execute non-Python programs from within Python. These include binary executables, other
shell scripts, etc. All that is required is a valid execution environment, i.e., permissions for file access
and execution must be granted, shell scripts must be able to access their interpreter (Perl, bash, etc.),
binaries must be accessible (and be of the local machine's architecture).

Finally, the programmer must bear in mind whether our Python script is required to communicate with
the other program that is to be executed. Some programs require input, others return output as well as
an error code upon completion (or both). Depending on the circumstances, Python provides a variety of
ways to execute non-Python programs. All of the functions discussed in this section can be found in the
os module. We provide a summary for you in Table 14.6 (where appropriate, we annotate those that are
available only for certain platforms) as an introduction to the remainder of this section.

Table 14.6. os Module Functions for External Program Execution (Unix
only, Windows only)

os Module Function Description

system(cmd) Execute program cmd given as string, wait for program
completion, and return the exit code (on Windows, the exit code
is always 0)

fork() Create a child process that runs in parallel to the parent process
[usually used with exec*()]; return twice... once for the parent

and once for the child

execl(file, arg0, arg1, ...) Execute file with argument list arg0, arg1, etc.

execv(file, arglist) Same as execl() except with argument vector (list or tuple)
arglist

execle(file, arg0, arg1, ...env) Same as execl() but also providing environment variable
dictionary env

execve(file, arglist, env) Same as execle() except with argument vector arglist

execlp(cmd, arg0, arg1,...) Same as execl() but search for full file pathname of cmd in user
search path

execvp(cmd, arglist) Same as execlp() except with argument vector arglist

execlpe(cmd, arg0, arg1,...env) Same as execlp() but also providing environment variable
dictionary env

execvpe(cmd, arglist, env) Same as execvp() but also providing environment variable
dictionary env

spawn*
[a]

(mode, file, args[, env])
spawn*() family executes path in a new process given args as
arguments and possibly an environment variable dictionary env;
mode is a magic number indicating various modes of operation

file:///D|/1/0132269937/ch14lev1sec5.html (1 von 7) [13.11.2007 16:24:30]

Section 14.5. Executing Other (Non-Python) Programs

wait() Wait for child process to complete [usually used with fork() and

exec*()]

waitpid(pid, options) Wait for specific child process to complete [usually used with

fork() and exec*()]

popen(cmd, mode='r ', buffering=-1) Execute cmd string, returning a file-like object as a
communication handle to the running program, defaulting to
read mode and default system buffering

startfile
[b]

 (path) Execute path with its associated application

[a] spawn*() functions named similarly to exec*() (both families have eight members); spawnv() and spawnve()
new in Python 1.5.2 and the other six spawn*() functions new in Python 1.6; also spawnlp(), spawnlpe(), spawnvp
() and spawnvpe() are Unix-only.

[b] New in Python 2.0.

As we get closer to the operating system layer of software, you will notice that the consistency of
executing programs, even Python scripts, across platforms starts to get a little dicey. We mentioned
above that the functions described in this section are in the os module. Truth is, there are multiple os
modules. For example, the one for Unix-based systems (i.e., Linux, MacOS X, Solaris, *BSD, etc.) is the
posix module. The one for Windows is nt (regardless of which version of Windows you are running; DOS
users get the dos module), and the one for old MacOS is the mac module. Do not worry, Python will load
the correct module when you call import os. You should never need to import a specific operating
system module directly.

Before we take a look at each of these module functions, we want to point out for those of you using
Python 2.4 and newer, there is a subprocess module that pretty much can substitute for all of these
functions. We will show you later on in this chapter how to use some of these functions, then at the end
give the equivalent using the subprocess.Popen class and subprocess.call() function.

14.5.1. os.system()

The first function on our list is system(), a rather simplistic function that takes a system command as a
string name and executes it. Python execution is suspended while the command is being executed.
When execution has completed, the exit status will be given as the return value from system() and
Python execution resumes.

system() preserves the current standard files, including standard output, meaning that executing any
program or command displaying output will be passed on to standard output. Be cautious here because
certain applications such as common gateway interface (CGI) programs will cause Web browser errors if
output other than valid Hypertext Markup Language (HTML) strings are sent back to the client via
standard output. system() is generally used with commands producing no output, some of which include
programs to compress or convert files, mount disks to the system, or any other command to perform a
specific task that indicates success or failure via its exit status rather than communicating via input and/
or output. The convention adopted is an exit status of 0 indicating success and non-zero for some sort of
failure.

For the purpose of providing an example, we will execute two commands that do have program output

file:///D|/1/0132269937/ch14lev1sec5.html (2 von 7) [13.11.2007 16:24:30]

Section 14.5. Executing Other (Non-Python) Programs

from the interactive interpreter so that you can observe how system() works.

 >>> import os
 >>> result = os.system('cat /etc/motd')
 Have a lot of fun...
 >>> result
 0
 >>> result = os.system('uname -a')
 Linux solo 2.2.13 #1 Mon Nov 8 15:08:22 CET 1999 i586 unknown
 >>> result
 0

You will notice the output of both commands as well as the exit status of their execution, which we
saved in the result variable. Here is an example executing a DOS command:

>>> import os
>>> result = os.system('dir')

Volume in drive C has no label
Volume Serial Number is 43D1-6C8A
Directory of C:\WINDOWS\TEMP

. <DIR> 01-08-98 8:39a .

.. <DIR> 01-08-98 8:39a ..
 0 file(s) 0 bytes
 2 dir(s) 572,588,032 bytes free
>>> result
0

14.5.2. os.popen()

The popen() function is a combination of a file object and the system() function. It works in the same
way as system() does, but in addition, it has the ability to establish a one-way connection to that
program and then to access it like a file. If the program requires input, then you would call popen() with
a mode of 'w' to "write" to that command. The data that you send to the program will then be received
through its standard input. Likewise, a mode of 'r' will allow you to spawn a command, then as it writes
to standard output, you can read that through your file-like handle using the familiar read*() methods of
file object. And just like for files, you will be a good citizen and close() the connection when you are
finished.

In one of the system() examples we used above, we called the Unix uname program to give us some
information about the machine and operating system we are using. That command produced a line of
output that went directly to the screen. If we wanted to read that string into a variable and perform
internal manipulation or store that string to a log file, we could, using popen(). In fact, the code would
look like the following:

 >>> import os
 >>> f = os.popen('uname -a')
 >>> data = f.readline()
 >>> f.close()
 >>> print data,
 Linux solo 2.2.13 #1 Mon Nov 8 15:08:22 CET 1999 i586 unknown

file:///D|/1/0132269937/ch14lev1sec5.html (3 von 7) [13.11.2007 16:24:30]

Section 14.5. Executing Other (Non-Python) Programs

As you can see, popen() returns a file-like object; also notice that readline(), as always, preserves the
NEWLINE character found at the end of a line of input text.

14.5.3. os.fork(),os.exec*(),os.wait*()

Without a detailed introduction to operating systems theory, we present a light introduction to processes
in this section. fork() takes your single executing flow of control known as a process and creates a "fork
in the road," if you will. The interesting thing is that your system takes both forksmeaning that you will
have two consecutive and parallel running programs (running the same code no less because both
processes resume at the next line of code immediately succeeding the fork() call).

The original process that called fork() is called the parent process, and the new process created as a
result of the call is known as the child process. When the child process returns, its return value is always
zero; when the parent process returns, its return value is always the process identifier (aka process ID,
or PID) of the child process (so the parent can keep tabs on all its children). The PIDs are the only way
to tell them apart, too!

We mentioned that both processes will resume immediately after the call to fork(). Because the code is
the same, we are looking at identical execution if no other action is taken at this time. This is usually not
the intention. The main purpose for creating another process is to run another program, so we need to
take divergent action as soon as parent and child return. As we stated above, the PIDs differ, so this is
how we tell them apart.

The following snippet of code will look familiar to those who have experience managing processes.
However, if you are new, it may be difficult to see how it works at first, but once you get it, you get it.

ret = os.fork() # spawn 2 processes, both return
if ret == 0: # child returns with PID of 0
 child_suite # child code
else: # parent returns with child's PID
 parent_suite # parent code

The call to fork() is made in the first line of code. Now both child and parent processes exist running
simultaneously. The child process has its own copy of the virtual memory address space and contains an
exact replica of the parent's address spaceyes, both processes are nearly identical. Recall that fork()
returns twice, meaning that both the parent and the child return. You might ask, how can you tell them
apart if they both return? When the parent returns, it comes back with the PID of the child process.
When the child returns, it has a return value of 0. This is how we can differentiate the two processes.

Using an if-else statement, we can direct code for the child to execute (i.e., the if clause) as well as
the parent (the else clause). The code for the child is where we can make a call to any of the exec*()
functions to run a completely different program or some function in the same program (as long as both
child and parent take divergent paths of execution). The general convention is to let the children do all
the dirty work while the parent either waits patiently for the child to complete its task or continues
execution and checks later to see if the child finished properly.

All of the exec*() functions load a file or command and execute it with an argument list (either
individually given or as part of an argument list). If applicable, an environment variable dictionary can
be provided for the command. These variables are generally made available to programs to provide a
more accurate description of the user's current execution environment. Some of the more well-known
variables include the user name, search path, current shell, terminal type, localized language, machine

file:///D|/1/0132269937/ch14lev1sec5.html (4 von 7) [13.11.2007 16:24:30]

Section 14.5. Executing Other (Non-Python) Programs

type, operating system name, etc.

All versions of exec*() will replace the Python interpreter running in the current (child) process with the
given file as the program to execute now. Unlike system(), there is no return to Python (since Python
was replaced). An exception will be raised if exec*() fails because the program cannot execute for some
reason.

The following code starts up a cute little game called "xbill" in the child process while the parent
continues running the Python interpreter. Because the child process never returns, we do not have to
worry about any code for the child after calling exec*(). Note that the command is also a required first
argument of the argument list.

ret = os.fork()
if ret == 0: # child code
 execvp('xbill', ['xbill'])
else: # parent code
 os.wait()

In this code, you also find a call to wait(). When children processes have completed, they need their
parents to clean up after them. This task, known as "reaping a child," can be accomplished with the
wait*() functions. Immediately following a fork(), a parent can wait for the child to complete and do the
clean-up then and there. A parent can also continue processing and reap the child later, also using one
of the wait*() functions.

Regardless of which method a parent chooses, it must be performed. When a child has finished
execution but has not been reaped yet, it enters a limbo state and becomes known as a zombie process.
It is a good idea to minimize the number of zombie processes in your system because children in this
state retain all the system resources allocated in their lifetimes, which do not get freed or released until
they have been reaped by the parent.

A call to wait() suspends execution (i.e., waits) until a child process (any child process) has completed,
terminating either normally or via a signal. wait() will then reap the child, releasing any resources. If
the child has already completed, then wait() just performs the reaping procedure. waitpid() performs
the same functionality as wait() with the additional arguments' PID to specify the process identifier of a
specific child process to wait for plus options (normally zero or a set of optional flags logically OR'd
together).

14.5.4. os.spawn*()

The spawn*() family of functions are similar to fork() and exec*() in that they execute a command in a
new process; however, you do not need to call two separate functions to create a new process and
cause it to execute a command. You only need to make one call with the spawn*() family. With its
simplicity, you give up the ability to "track" the execution of the parent and child processes; its model is
more similar to that of starting a function in a thread. Another difference is that you have to know the
magic mode parameter to pass to spawn*().

On some operating systems (especially embedded real-time operating systems [RTOs]), spawn*() is
much faster than fork(). (Those where this is not the case usually use copy-on-write tricks.) Refer to
the Python Library Reference Manual for more details (see the Process Management section of the
manual on the os module) on the spawn*() functions. Various members of the spawn*() family were
added to Python between 1.5 and 1.6 (inclusive).

file:///D|/1/0132269937/ch14lev1sec5.html (5 von 7) [13.11.2007 16:24:30]

Section 14.5. Executing Other (Non-Python) Programs

14.5.5. subprocess Module

After Python 2.3 came out, work was begun on a module named popen5. The naming continued the
tradition of all the previous popen*() functions that came before, but rather than continuing this ominous
trend, the module was eventually named subprocess, with a class named Popen that has functionality to
centralize most of the process-oriented functions we have discussed so far in this chapter. There is also
a convenience function named call() that can easily slide into where os.system () lives. The subprocess
module made its debut in Python 2.4. Below is an example of what it can do:

Replacing os.system()

Linux Example:

 >>> from subprocess import call
 >>> import os
 >>> res = call(('cat', '/etc/motd'))
 Linux starship 2.4.18-1-686 #4 Sat Nov 29 10:18:26 EST 2003 i686 GNU/Linux
 >>> res
 0

Win32 Example:

 >>> res = call(('dir', r'c:\windows\temp'), shell=True)
 Volume in drive C has no label.
 Volume Serial Number is F4C9-1C38

 Directory of c:\windows\temp

 03/11/2006 02:08 AM <DIR> .
 03/11/2006 02:08 AM <DIR> ..
 02/21/2006 08:45 PM 851 install.log
 02/21/2006 07:02 PM 444 tmp.txt
 2 File(s) 1,295 bytes
 3 Dir(s) 55,001,104,384 bytes free

Replacing os.popen()

The syntax for creating an instance of Popen is only slightly more complex than calling the os.popen()
function:

 >>> from subprocess import Popen, PIPE
 >>> f = Popen(('uname', '-a'), stdout=PIPE).stdout
 >>> data = f.readline()
 >>> f.close()
 >>> print data,
 Linux starship 2.4.18-1-686 #4 Sat Nov 29 10:18:26 EST 2003 i686

file:///D|/1/0132269937/ch14lev1sec5.html (6 von 7) [13.11.2007 16:24:30]

Section 14.5. Executing Other (Non-Python) Programs

 GNU/Linux
 >>> f = Popen('who', stdout=PIPE).stdout
 >>> data = [eachLine.strip() for eachLine in f]
 >>> f.close()
 >>> for eachLine in data:
 ... print eachLine
 ...
 wesc console Mar 11 12:44
 wesc ttyp1 Mar 11 16:29
 wesc ttyp2 Mar 11 16:40 (192.168.1.37)
 wesc ttyp3 Mar 11 16:49 (192.168.1.37)
 wesc ttyp4 Mar 11 17:51 (192.168.1.34)

14.5.6. Related Functions

Table 14.7 lists some of the functions (and their modules) that can perform some of the tasks described.

Table 14.7. Various Functions for File Execution

File Object Attribute Description

os/popen2.popen2
[a]

()
Executes a file and open file read and write access from (stdout) and to
(stdin) the newly created running program

os/popen2.popen3
[a]

()
Executes a file and open file read and write access from (stdout and stderr)
and (stdin) to the newly created running program

os/popen2.popen4
[b]

()
Executes a file and open file read and write access from (stdoutand stderr
combined) and (stdin) to the newlycreated running program

commands.getoutput()
Executes a file in a subprocess, returns all output as a string

subprocess.call
[c]

()
Convenience function that creates a subprocess.Popen, waits for the command
to complete, then returns the status code; like os.system() but is a more
flexible alternative

[a] New to os module in Python 2.0.

[b] New (to os and popen2 modules) in Python 2.0.

[c] New in Python 2.4

file:///D|/1/0132269937/ch14lev1sec5.html (7 von 7) [13.11.2007 16:24:30]

Section 14.6. Restricted Execution

14.6. Restricted Execution

At one time in Python's history, there was the concept of restricted execution using the rexec and
Bastion modules. The first allowed you to modify the built-in objects that were made available to code
executing in a sandbox. The second served as an attribute filter and wrapper around your classes.
However, due to a well-known vulnerability and the difficulty in fixing the security hole, these modules
are no longer used or accessible; their documentation serves only those maintaining old code using
these modules.

file:///D|/1/0132269937/ch14lev1sec6.html [13.11.2007 16:24:30]

file:///D|/1/0132269937/14051536.html

Section 14.7. Terminating Execution

14.7. Terminating Execution

Clean execution occurs when a program runs to completion, where all statements in the top level of
your module finish execution and your program exits. There may be cases where you may want to exit
from Python sooner, such as a fatal error of some sort. Another case is when conditions are not
sufficient to continue execution.

In Python, there are varying ways to respond to errors. One is via exceptions and exception handling.
Another way is to construct a "cleaner" approach so that the main portions of code are cordoned off with
if statements to execute only in non-error situations, thus letting error scenarios terminate "normally."
However, you may also desire to exit the calling program with an error code to indicate that such an
event has occurred.

14.7.1. sys.exit() and SystemExit

The primary way to exit a program immediately and return to the calling program is the exit() function
found in the sys module. The syntax for sys.exit() is:

 sys.exit(status=0)

When sys.exit() is called, a SystemExit exception is raised. Unless monitored (in a try statement with
an appropriate except clause), this exception is generally not caught or handled, and the interpreter
exits with the given status argument, which defaults to zero if not provided. System Exit is the only
exception that is not viewed as an error. It simply indicates the desire to exit Python.

One popular place to use sys.exit() is after an error is discovered in the way a command was invoked,
in particular, if the arguments are incorrect, invalid, or if there are an incorrect number of them. The
following Example 14.4 (args.py) is just a test script we created to require that a certain number of
arguments be given to the program before it can execute properly.

Executing this script we get the following output:

 $ args.py
 At least 2 arguments required (incl. cmd name).
 usage: args.py arg1 arg2 [arg3...]
 $ args.py XXX
 At least 2 arguments required (incl. cmd name).
 usage: args.py arg1 arg2 [arg3...]
 $ args.py 123 abc
 number of args entered: 3
 args (incl. cmd name) were: ['args.py', '123', 'abc']
 $ args.py -x -2 foo
 number of args entered: 4
 args (incl. cmd name) were: ['args.py', '-x', '-2',
 'foo']

Example 14.4. Exiting Immediately (args.py)

file:///D|/1/0132269937/ch14lev1sec7.html (1 von 3) [13.11.2007 16:24:31]

Section 14.7. Terminating Execution

Calling sys.exit() causes the Python interpreter to quit. Any integer argument to exit() will
be returned to the caller as the exit status, which has a default value of 0.

1 #!/usr/bin/env python
2
3 import sys
4
5 def usage():
6 print 'At least 2 arguments (incl. cmd name).'
7 print 'usage: args.py arg1 arg2 [arg3...]'
8 sys.exit(1)
9
10 argc = len(sys.argv)
11 if argc < 3:
12 usage()
13 print "number of args entered:", argc
14 print "args (incl. cmd name) were:", sys.argv

Many command-line-driven programs test the validity of the input before proceeding with the core
functionality of the script. If the validation fails at any point, a call is made to a usage() function to
inform the user what problem caused the error as well as a usage "hint" to aid the user so that he or
she will invoke the script properly the next time.

14.7.2. sys.exitfunc()

sys.exitfunc() is disabled by default, but can be overridden to provide additional functionality, which
takes place when sys.exit() is called and before the interpreter exits. This function will not be passed
any arguments, so you should create your function to take no arguments.

If sys.exitfunc has already been overridden by a previously defined exit function, it is good practice to
also execute that code as part of your exit function. Generally, exit functions are used to perform some
type of shutdown activity, such as closing a file or network connection, and it is always a good idea to
complete these maintenance tasks, such as releasing previously held system resources.

Here is an example of how to set up an exit function, being sure to execute one if one has already been
set:

 import sys

 prev_exit_func = getattr(sys, 'exitfunc', None)

 def my_exit_func(old_exit = prev_exit_func):
 # :
 # perform cleanup
 # :
 if old_exit is not None and callable(old_exit):
 old_exit()

 sys.exitfunc = my_exit_func

file:///D|/1/0132269937/ch14lev1sec7.html (2 von 3) [13.11.2007 16:24:31]

Section 14.7. Terminating Execution

We execute the old exit function after our cleanup has been performed. The getattr() call simply checks
to see whether a previous exitfunc has been defined. If not, then None is assigned to prev_exit_func;
otherwise, prev_exit_func becomes a new alias to the exiting function, which is then passed as a default
argument to our new exit function, my_exit_func.

The call to getattr() could have been rewritten as:

 if hasattr(sys, 'exitfunc'):
 prev_exit_func = sys.exitfunc # getattr(sys, 'exitfunc')
else:
 prev_exit_func = None

14.7.3. os._exit() Function

The _exit() function of the os module should not be used in general practice. (It is platform-dependent
and available only on certain platforms, i.e., Unix-based and Win32.) Its syntax is:

 os._exit(status)

This function provides functionality opposite to that of sys.exit() and sys.exitfunc(), exiting Python
immediately without performing any cleanup (Python or programmer-defined) at all. Unlike sys.exit(),
the status argument is required. Exiting via sys.exit() is the preferred method of quitting the
interpreter.

14.7.4. os.kill() Function

The kill() function of the os module performs the traditional Unix function of sending a signal to a
process. The arguments to kill() are the process identification number (PID) and the signal you wish to
send to that process. The typical signal that is sent is either SIGINT, SIGQUIT, or more drastically,
SIGKILL, to cause a process to terminate.

file:///D|/1/0132269937/ch14lev1sec7.html (3 von 3) [13.11.2007 16:24:31]

Section 14.8. Miscellaneous Operating System Interface

14.8. Miscellaneous Operating System Interface

In this chapter, we have seen various ways to interact with your operating system (OS) via the os
module. Most of the functions we looked at dealt with either files or external process execution. There
are a few more that allow for more specific actions for the current user and process, and we will look at
them briefly here. Most of the functions described in Table 14.8 work on POSIX systems only, unless
also denoted for Windows environment.

Table 14.8. Various os Module Attributes (Also available for Win32)

os Module Attribute Description

uname() Obtains system information (hostname, operating system
version, patch level, system architecture, etc.)

getuid()/setuid(uid) Gets/sets the real user ID of the current process

getpid()/getppid() Gets real process ID (PID) of current/parent process

getgid()/setgid(gid)
Gets/sets real group ID (GID) of current process

getsid()/setsid() Gets session ID (SID) or create and return a new one

umask(mask) Sets the current numeric umask while returning the previous

one (mask is used for file permissions)

getenv(ev)/putenv(ev, value),
environ

Gets/sets value of environment variable ev; the attribute os.
environ is a dictionary representing all current environment

variables

geteuid()/setegid() Gets/sets effective user ID (UID) of current process

getegid()/setegid() Gets/sets effective group ID (GID) of current process

getpgid(pid)/setpgid(pid, pgrp) Gets/sets process GID process pid; for get, if pid is 0, the
process GID of the current process is returned

getlogin() Returns login of user running current process

times()
Returns tuple of various process times

strerror(code)
Returns error message corresponding to error code

getloadavg()
[a] Returns tuple of values representing the system load average

during the past 1, 5, and 15 minutes

file:///D|/1/0132269937/ch14lev1sec8.html (1 von 2) [13.11.2007 16:24:31]

file:///D|/1/0132269937/14051536.html

Section 14.8. Miscellaneous Operating System Interface

[a] New in Python 2.3.

file:///D|/1/0132269937/ch14lev1sec8.html (2 von 2) [13.11.2007 16:24:31]

file:///D|/1/0132269937/14051536.html

Section 14.9. Related Modules

14.9. Related Modules

In Table 14.9 you will find a list of modules other than os and sys that relate to the execution
environment theme of this chapter.

Table 14.9. Execution Environment Related Modules

Module Description

atexit
[a] Registers handlers to execute when Python interpreter exits

popen2 Provides additional functionality on top of os.popen(): provides ability to communicate

via standard files to the other process; use subprocess for Python 2.4 and newer)

commands Provides additional functionality on top of os.system(): saves all program output in a
string which is returned (as opposed to just dumping output to the screen); use
subprocess for Python 2.4 and newer)

getopt Processes options and command-line arguments in such applications

site Processes site-specific modules or packages

platform
[b] Attributes of the underlying platform and architecture

subprocess
[c] Subprocess management (intended to replace old functions and modules such as os.

system(), os.spawn*(), os.popen*(), popen2.*, commands.*)

[a] New in Python 2.0.

[b] New in Python 2.3.

[c] New in Python 2.4.

file:///D|/1/0132269937/ch14lev1sec9.html [13.11.2007 16:24:32]

file:///D|/1/0132269937/14051536.html
file:///D|/1/0132269937/14051536.html

Section 14.10. Exercises

14.10. Exercises

14-1. Callable Objects. Name Python's callable objects.exec versus eval(). What is the
difference between the exec statement and the eval() BIF?

14-2. input() versus raw.input(). What is the difference between the BIFs input() and
raw_input()?

14-3. Execution Environment. Create a Python script that runs other Python scripts.

14-4. os.system(). Choose a familiar system command that performs a task without
requiring input and either outputs to the screen or does not output at all. Use the os.
system() call to run that program. Extra credit: Port your solution to subprocess.call().

14-5. commands.getoutput(). Solve the previous problem using commands.getoutput().

14-6. popen() Family. Choose another familiar system command that takes text from
standard input and manipulates or otherwise outputs the data. Use os.popen() to
communicate with this program. Where does the output go? Try using popen2.popen2()
instead.

14-7. subprocess Module. Take your solutions from the previous problem and port them to
the subprocess module.

14-8. Exit Function. Design a function to be called when your program exits. Install it as sys.
exitfunc(), run your program, and show that your exit function was indeed called.

file:///D|/1/0132269937/ch14lev1sec10.html (1 von 2) [13.11.2007 16:24:32]

Section 14.10. Exercises

14-9. Shells. Create a shell (operating system interface) program. Present a command-line
interface that accepts operating system commands for execution (any platform).

Extra credit 1: Support pipes (see the dup(), dup2(), and pipe() functions in the os
module). This piping procedure allows the standard output of one process to be
connected to the standard input of another.

Extra credit 2: Support inverse pipes using parentheses, giving your shell a functional
programming-like interface. In other words, instead of piping commands like ...

ps -ef | grep root | sort -n +1

... support a more functional style like...

sort(grep(ps -ef, root), -n, +1)

14-10. fork()/exec*() versus spawn*(). What is the difference between using the fork()-exec*
() pairs vs. the spawn*() family of functions? Do you get more with one over the other?

14-11. Generating and Executing Python Code. Take the funcAttrs.py script (Example 14.4)
and use it to add testing code to functions that you have in some of your existing
programs. Build a testing framework that runs your test code every time it encounters
your special function attributes.

file:///D|/1/0132269937/ch14lev1sec10.html (2 von 2) [13.11.2007 16:24:32]

file:///D|/1/0132269937/14051536.html

Part II: Advanced Topics

Part II: Advanced Topics

Chapter 15. Regular Expressions

Chapter 16. Network Programming

Chapter 17. Internet Client Programming

Chapter 18. Multithreaded Programming

Chapter 19. GUI Programming

Chapter 20. Web Programming

Chapter 21. Database Programming

Chapter 22. Extending Python

Chapter 23. Miscellaneous

Appendix A. Answers to Selected Exercises

Appendix B. Reference Tables

Appendix 3. About the Author

file:///D|/1/0132269937/part02.html [13.11.2007 16:24:32]

Chapter 15. Regular Expressions

Chapter 15. Regular Expressions

Chapter Topics

● Introduction/Motivation
● Special Characters and Symbols
● Regular Expressions and Python
● re Module

file:///D|/1/0132269937/ch15.html [13.11.2007 16:24:33]

file:///D|/1/0132269937/14051536.html

Section 15.1. Introduction/Motivation

15.1. Introduction/Motivation

Manipulating text/data is a big thing. If you don't believe me, look very carefully at what computers
primarily do today. Word processing, "fill-out-form" Web pages, streams of information coming from a
database dump, stock quote information, news feedsthe list goes on and on. Because we may not know
the exact text or data that we have programmed our machines to process, it becomes advantageous to
be able to express this text or data in patterns that a machine can recognize and take action upon.

If I were running an electronic mail (e-mail) archiving company, and you were one of my customers who
requested all his or her e-mail sent and received last February, for example, it would be nice if I could
set a computer program to collate and forward that information to you, rather than having a human
being read through your e-mail and process your request manually. You would be horrified (and
infuriated) that someone would be rummaging through your messages, even if his or her eyes were
supposed to be looking only at time-stamp. Another example request might be to look for a subject line
like "ILOVEYOU" indicating a virus-infected message and remove those e-mail messages from your
personal archive. So this begs the question of how we can program machines with the ability to look for
patterns in text.

Regular expressions (REs) provide such an infrastructure for advanced text pattern matching,
extraction, and/or search-and-replace functionality. REs are simply strings that use special symbols and
characters to indicate pattern repetition or to represent multiple characters so that they can "match" a
set of strings with similar characteristics described by the pattern (Figure 15-1). In other words, they
enable matching of multiple stringsan RE pattern that matched only one string would be rather boring
and ineffective, wouldn't you say?

Figure 15-1. You can use regular expressions, such as the one here, which
recognizes valid Python identifiers. "[A-Za-z]\w+" means the first character
should be alphabetic, i.e., either A-Z or a-z, followed by at least one (+)

alphanumeric character (\w). In our filter, notice how many strings go into
the filter, but the only ones to come out are the ones we asked for via the RE.
One example that did not make it was "4xZ" because it starts with a number.

file:///D|/1/0132269937/ch15lev1sec1.html (1 von 3) [13.11.2007 16:24:33]

Section 15.1. Introduction/Motivation

Python supports REs through the standard library re module. In this introductory subsection, we will
give you a brief and concise introduction. Due to its brevity, only the most common aspects of REs used
in everyday Python programming will be covered. Your experience will, of course, vary. We highly
recommend reading any of the official supporting documentation as well as external texts on this
interesting subject. You will never look at strings the same way again!

Core Note: Searching versus matching

Throughout this chapter, you will find references to searching and
matching. When we are strictly discussing regular expressions with
respect to patterns in strings, we will say "matching," referring to the
term pattern-matching. In Python terminology, there are two main
ways to accomplish pattern-matching: searching, i.e., looking for a
pattern match in any part of a string, and matching, i.e., attempting
to match a pattern to an entire string (starting from the beginning).
Searches are accomplished using the search() function or method, and
matching is done with the match() function or method. In summary,
we keep the term "matching" universal when referencing patterns, and
we differentiate between "searching" and "matching" in terms of how
Python accomplishes pattern-matching.

15.1.1. Your First Regular Expression

As we mentioned above, REs are strings containing text and special characters that describe a pattern

file:///D|/1/0132269937/ch15lev1sec1.html (2 von 3) [13.11.2007 16:24:33]

Section 15.1. Introduction/Motivation

with which to recognize multiple strings. We also briefly discussed a regular expression alphabet and for
general text, the alphabet used for regular expressions is the set of all uppercase and lowercase letters
plus numeric digits. Specialized alphabets are also possible, for instance, one consisting of only the
characters "0" and "1". The set of all strings over this alphabet describes all binary strings, i.e., "0," "1,"
"00," "01," "10," "11," "100," etc.

Let us look at the most basic of regular expressions now to show you that although REs are sometimes
considered an "advanced topic," they can also be rather simplistic. Using the standard alphabet for
general text, we present some simple REs and the strings that their patterns describe. The following
regular expressions are the most basic, "true vanilla," as it were. They simply consist of a string pattern
that matches only one string, the string defined by the regular expression. We now present the REs
followed by the strings that match them:

RE Pattern String(s) Matched

foo foo

Python Python

abc123 abc123

The first regular expression pattern from the above chart is "foo." This pattern has no special symbols to
match any other symbol other than those described, so the only string that matches this pattern is the
string "foo." The same thing applies to "Python" and "abc123." The power of regular expressions comes
in when special characters are used to define character sets, subgroup matching, and pattern repetition.
It is these special symbols that allow an RE to match a set of strings rather than a single one.

file:///D|/1/0132269937/ch15lev1sec1.html (3 von 3) [13.11.2007 16:24:33]

Section 15.2. Special Symbols and Characters

15.2. Special Symbols and Characters

We will now introduce the most popular of the metacharacters, special characters and symbols, which
give regular expressions their power and flexibility. You will find the most common of these symbols and
characters in Table 15.1.

Table 15.1. Common Regular Expression Symbols and Special Characters

Notation Description Example RE

Symbols

literal Match literal string value literal foo

re1|re2 Match regular expressions re1 or re2 foo|bar

. Match any character (except NEWLINE) b.b

^ Match start of string ^Dear

$ Match end of string /bin/*sh$

* Match 0 or more occurrences of preceding RE [A-Za-z0-9]*

+ Match 1 or more occurrences of preceding RE [a-z]+\.com

? Match 0 or 1 occurrence(s) of preceding RE goo?

{N} Match N occurrences of preceding RE [0-9]{3}

{M,N} Match from M to N occurrences of preceding RE [0-9]{5,9}

[...] Match any single character from character class [aeiou]

[..x-y..] Match any single character in the range from x to y [0-9],[A-Za-z]

[^...] Do not match any character from character class,
including any ranges, if present

[^aeiou], [^A-Za-z0-9_]

(*|+|?| {})? Apply "non-greedy" versions of above occurrence/
repetition symbols (*, +, ?, {})

.*?[a-z]

(...) Match enclosed RE and save as subgroup ([0-9]{3})?, f(oo|u)bar

Special Characters

\d Match any decimal digit, same as [0-9](\D is inverse
of \d: do not match any numeric digit)

data\d+.txt

\w Match any alphanumeric character, same as [A-Za-z0-
9_] (\W is inverse of \w)

[A-Za-z_]\w+

file:///D|/1/0132269937/ch15lev1sec2.html (1 von 7) [13.11.2007 16:24:34]

file:///D|/1/0132269937/14051536.html

Section 15.2. Special Symbols and Characters

\s Match any whitespace character, same as [\n\t\r\v
\f] (\S is inverse of \s)

of\sthe

\b Match any word boundary (\B is inverse of \b) \bThe\b

\nn Match saved subgroup nn (see (...) above) price: \16

\c Match any special character c verbatim (i.e., with out
its special meaning, literal)

\., \\, *

\A (\Z) Match start (end) of string (also see ^ and $ above) \ADear

15.2.1. Matching More Than One RE Pattern with Alternation (|)

The pipe symbol (|), a vertical bar on your keyboard, indicates an alternation operation, meaning that
it is used to choose from one of the different regular expressions, which are separated by the pipe
symbol. For example, below are some patterns that employ alternation, along with the strings they
match:

RE Pattern Strings Matched

at|home at, home

r2d2|c3po r2d2, c3po

bat|bet|bit bat, bet, bit

With this one symbol, we have just increased the flexibility of our regular expressions, enabling the
matching of more than just one string. Alternation is also sometimes called union or logical OR.

15.2.2. Matching Any Single Character (.)

The dot or period (.) symbol matches any single character except for NEWLINE (Python REs have a
compilation flag [S or DOTALL], which can override this to include NEWLINEs.). Whether letter, number,
whitespace not including "\n," printable, non-printable, or a symbol, the dot can match them all.

RE Pattern Strings Matched

f.o Any character between "f" and "o", e.g., fao, f9o, f#o, etc.

.. Any pair of characters

.end Any character before the string end

Q: What if I want to match the dot or period character?

A: In order to specify a dot character explicitly, you must escape its functionality with a backslash, as in

file:///D|/1/0132269937/ch15lev1sec2.html (2 von 7) [13.11.2007 16:24:34]

Section 15.2. Special Symbols and Characters

"\.".

15.2.3. Matching from the Beginning or End of Strings or Word Boundaries (^/$ /\b /
\B)

There are also symbols and related special characters to specify searching for patterns at the beginning
and ending of strings. To match a pattern starting from the beginning, you must use the carat symbol
(^) or the special character \A (backslash-capital "A"). The latter is primarily for keyboards that do not
have the carat symbol, i.e., international. Similarly, the dollar sign ($) or \Z will match a pattern from
the end of a string.

Patterns that use these symbols differ from most of the others we describe in this chapter since they
dictate location or position. In the Core Note above, we noted that a distinction is made between
"matching," attempting matches of entire strings starting at the beginning, and "searching," attempting
matches from anywhere within a string. With that said, here are some examples of "edge-bound" RE
search patterns:

RE Pattern Strings Matched

^From Any string that starts with From

/bin/tcsh$ Any string that ends with /bin/tcsh

^Subject: hi$ Any string consisting solely of the string Subject: hi

Again, if you want to match either (or both) of these characters verbatim, you must use an escaping
backslash. For example, if you wanted to match any string that ended with a dollar sign, one possible RE
solution would be the pattern ".*\$$".

The \b and \B special characters pertain to word boundary matches. The difference between them is that
\b will match a pattern to a word boundary, meaning that a pattern must be at the beginning of a word,
whether there are any characters in front of it (word in the middle of a string) or not (word at the
beginning of a line). And likewise, \B will match a pattern only if it appears starting in the middle of a
word (i.e., not at a word boundary). Here are some examples:

RE Pattern Strings Matched

the Any string containing the

\bthe Any word that starts with the

\bthe\b Matches only the word the

\Bthe Any string that contains but does not begin with the

15.2.4. Creating Character Classes ([])

file:///D|/1/0132269937/ch15lev1sec2.html (3 von 7) [13.11.2007 16:24:34]

Section 15.2. Special Symbols and Characters

While the dot is good for allowing matches of any symbols, there may be occasions where there are
specific characters you want to match. For this reason, the bracket symbols ([]) were invented. The
regular expression will match any of the enclosed characters. Here are some examples:

RE Pattern Strings Matched

b[aeiu]t bat, bet, bit, but

[cr][23][dp][o2] A string of 4 characters: first is "r" or "c," then "2" or "3," followed by "d" or "p,"
and finally, either "o" or "2," e.g., c2do, r3p2, r2d2, c3po, etc.

One side note regarding the RE "[cr][23][dp][o2]"a more restrictive version of this RE would be
required to allow only "r2d2" or "c3po" as valid strings. Because brackets merely imply "logical OR"
functionality, it is not possible to use brackets to enforce such a requirement. The only solution is to use
the pipe, as in "r2d2|c3po".

For single-character REs, though, the pipe and brackets are equivalent. For example, let's start with the
regular expression "ab," which matches only the string with an "a" followed by a "b". If we wanted
either a one-letter string, i.e., either "a" or a "b," we could use the RE "[ab]." Because "a" and "b" are
individual strings, we can also choose the RE "a|b". However, if we wanted to match the string with the
pattern "ab" followed by "cd," we cannot use the brackets because they work only for single characters.
In this case, the only solution is "ab|cd," similar to the "r2d2/c3po" problem just mentioned.

15.2.5. Denoting Ranges (-) and Negation (^)

In addition to single characters, the brackets also support ranges of characters. A hyphen between a
pair of symbols enclosed in brackets is used to indicate a range of characters, e.g., A-Z, a-z, or 0-9 for
uppercase letters, lowercase letters, and numeric digits, respectively. This is a lexicographic range, so
you are not restricted to using just alphanumeric characters. Additionally, if a caret (^) is the first
character immediately inside the open left bracket, this symbolizes a directive not to match any of the
characters in the given character set.

RE Pattern Strings Matched

z.[0-9] "z" followed by any character then followed by a single digit

[r-u][env-y] "r" "s," "t" or "u" followed by "e," "n," "v," "w," "x," or "y"

[us] followed by "u" or "s"

[^aeiou] A non-vowel character (Exercise: Why do we say "non-vowels" rather than
"consonants"?)

[^\t\n] Not a TAB or NEWLINE

["-a] In an ASCII system, all characters that fall between '"' and "a," i.e., between ordinals
34 and 97

15.2.6. Multiple Occurrence/Repetition Using Closure Operators (*, +, ?, { })

file:///D|/1/0132269937/ch15lev1sec2.html (4 von 7) [13.11.2007 16:24:34]

Section 15.2. Special Symbols and Characters

We will now introduce the most common RE notations, namely, the special symbols *, +, and ?, all of
which can be used to match single, multiple, or no occurrences of string patterns. The asterisk or star
operator (*) will match zero or more occurrences of the RE immediately to its left (in language and
compiler theory, this operation is known as the Kleene Closure). The plus operator (+) will match one
or more occurrences of an RE (known as Positive Closure), and the question mark operator (?) will
match exactly 0 or 1 occurrences of an RE.

There are also brace operators ({ }) with either a single value or a comma-separated pair of values.
These indicate a match of exactly N occurrences (for {N}) or a range of occurrences, i.e., {M,N} will match
from M to N occurrences. These symbols may also be escaped with the backslash, i.e., "*" matches the
asterisk, etc.

In the table above, we notice the question mark is used more than once (overloaded), meaning either
matching 0 or 1 occurrences, or its other meaning: if it follows any matching using the close operators,
it will direct the regular expression engine to match as few repetitions as possible.

What does that last part mean, "as few ... as possible?" When pattern-matching is employed using the
grouping operators, the regular expression engine will try to "absorb" as many characters as possible
which match the pattern. This is known as being greedy. The question mark tells the engine to lay off
and if possible, take as few characters as possible in the current match, leaving the rest to match as
many of succeeding characters of the next pattern (if applicable). We will show you a great example
where non-greediness is required toward the end of the chapter. For now, let us continue to look at the
closure operators:

RE Pattern Strings Matched

[dn]ot? "d" or "n," followed by an "o" and, at most, one "t" after that, i.e., do,
no, dot, not

0?[1-9] Any numeric digit, possibly prepended with a "0," e.g., the set of
numeric representations of the months January to September,
whether single- or double-digits

[0-9]{15,16} Fifteen or sixteen digits, e.g., credit card numbers

</?[^>]+> Strings that match all valid (and invalid) HTML tags

[KQRBNP][a-h][1-8]-[a-h][1-8] Legal chess move in "long algebraic" notation (move only, no capture,
check, etc.), i.e., strings which start with any of "K," "Q," "R," "B,"
"N," or "P" followed by a hyphenated-pair of chess board grid
locations from "a1" to "h8" (and everything in between), with the first
coordinate indicating the former position and the second being the
new position.

15.2.7. Special Characters Representing Character Sets

We also mentioned that there are special characters that may represent character sets. Rather than
using a range of "0-9," you may simply use "\d" to indicate the match of any decimal digit. Another
special character "\w" can be used to denote the entire alphanumeric character class, serving as a
shortcut for "A-Za-z0-9_", and "\s" for whitespace characters. Uppercase versions of these strings
symbolize non-matches, i.e., "\D" matches any non-decimal digit (same as "[^0-9]"), etc.

file:///D|/1/0132269937/ch15lev1sec2.html (5 von 7) [13.11.2007 16:24:34]

Section 15.2. Special Symbols and Characters

Using these shortcuts, we will present a few more complex examples:

RE Pattern Strings Matched

\w+-\d+ Alphanumeric string and number separated by a hyphen

[A-Za-z]\w* Alphabetic first character, additional characters (if present) can be alphanumeric
(almost equivalent to the set of valid Python identifiers [see exercises])

\d{3}-\d{3}-\d{4} (American) telephone numbers with an area code prefix, as in 800-555-1212

\w+@\w+\.com Simple e-mail addresses of the form XXX@YYY.com

15.2.8. Designating Groups with Parentheses (())

Now, perhaps we have achieved the goal of matching a string and discarding non-matches, but in some
cases, we may also be more interested in the data that we did match. Not only do we want to know
whether the entire string matched our criteria, but also whether we can extract any specific strings or
substrings that were part of a successful match. The answer is yes. To accomplish this, surround any RE
with a pair of parentheses.

A pair of parentheses (()) can accomplish either (or both) of the below when used with regular
expressions:

● Grouping regular expressions
● Matching subgroups

One good example for wanting to group regular expressions is when you have two different REs with
which you want to compare a string. Another reason is to group an RE in order to use a repetition
operator on the entire RE (as opposed to an individual character or character class).

One side effect of using parentheses is that the substring that matched the pattern is saved for future
use. These subgroups can be recalled for the same match or search, or extracted for post-processing.
You will see some examples of pulling out subgroups at the end of Section 15.3.9.

Why are matches of subgroups important? The main reason is that there are times where you want to
extract the patterns you match, in addition to making a match. For example, what if we decided to
match the pattern "\w+-\d+" but wanted save the alphabetic first part and the numeric second part
individually? This may be desired because with any successful match, we may want to see just what
those strings were that matched our RE patterns.

If we add parentheses to both subpatterns, i.e., "(\w+)-(\d+)," then we can access each of the matched
subgroups individually. Subgrouping is preferred because the alternative is to write code to determine
we have a match, then execute another separate routine (which we also had to create) to parse the
entire match just to extract both parts. Why not let Python do it, since it is a supported feature of the re
module, instead of reinventing the wheel?

RE Pattern Strings Matched

file:///D|/1/0132269937/ch15lev1sec2.html (6 von 7) [13.11.2007 16:24:34]

Section 15.2. Special Symbols and Characters

\d+(\.\d*)? Strings representing simple floating point number, that is, any
number of digits followed optionally by a single decimal point
and zero or more numeric digits, as in "0.004," "2," "75.," etc.

(Mr?s?\.)?[A-Z][a-z]* [A-Za-z-]+ First name and last name, with a restricted first name (must
start with uppercase; lowercase only for remaining letters, if
any), the full name prepended by an optional title of "Mr.,"
"Mrs.," "Ms.," or "M.," and a flexible last name, allowing for
multiple words, dashes, and uppercase letters

file:///D|/1/0132269937/ch15lev1sec2.html (7 von 7) [13.11.2007 16:24:34]

file:///D|/1/0132269937/14051536.html

Section 15.3. REs and Python

15.3. REs and Python

Now that we know all about regular expressions, we can examine how Python currently supports regular
expressions through the re module. The re module was introduced to Python in version 1.5. If you are
using an older version of Python, you will have to use the now-obsolete regex and regsub modulesthese
older modules are more Emacs-flavored, are not as full-featured, and are in many ways incompatible
with the current re module. Both modules were removed from Python in 2.5, and import either of the
modules from 2.5 and above triggers Import Error exception.

However, regular expressions are still regular expressions, so most of the basic concepts from this
section can be used with the old regex and regsub software. In contrast, the new re module supports the
more powerful and regular Perl-style (Perl5) REs, allows multiple threads to share the same compiled RE
objects, and supports named subgroups. In addition, there is a transition module called reconvert to
help developers move from regex/regsub to re. However, be aware that although there are different
flavors of regular expressions, we will primarily focus on the current incarnation for Python.

The re engine was rewritten in 1.6 for performance enhancements as well as adding Unicode support.
The interface was not changed, hence the reason the module name was left alone. The new re
engineknown internally as sre thus replaces the existing 1.5 engineinternally called pcre.

15.3.1. re Module: Core Functions and Methods

The chart in Table 15.2 lists the more popular functions and methods from the re module. Many of these
functions are also available as methods of compiled regular expression objects "regex objects" and RE
"match objects." In this subsection, we will look at the two main functions/methods, match() and search
(), as well as the compile() function. We will introduce several more in the next section, but for more
information on all these and the others that we do not cover, we refer you to the Python documentation.

Table 15.2. Common Regular Expression Functions and Methods

Function/Method Description

re Module Function Only

compile(pattern, flags=0) Compile RE pattern with any optional flags and return a
regex object

re Module Functions and regex Object Methods

file:///D|/1/0132269937/ch15lev1sec3.html (1 von 13) [13.11.2007 16:24:37]

file:///D|/1/0132269937/14051536.html

Section 15.3. REs and Python

match(pattern, string, flags=0) Attempt to match RE pattern to string with optional flags;
return match object on success, None on failure

search(pattern, string, flags=0) Search for first occurrence of RE pattern within string with
optional flags; return match object on success, None on
failure

findall(pattern, string[,flags])
[a] Look for all (non-overlapping) occurrences of pattern in

string; return a list of matches

finditer(pattern, string[, flags])
[b] Same as findall() except returns an iterator instead of a

list; for each match, the iterator returns a match object

split(pattern, string, max=0) Split string into a list according to RE pattern delimiter and
return list of successful matches, splitting at most max times
(split all occurrences is the default)

sub(pattern, repl, string, max=0) Replace all occurrences of the RE pattern in string with repl,
substituting all occurrences unless max provided (also see subn
() which, in addition, returns the number of substitutions
made)

Match Object Methods

group(num=0) Return entire match (or specific subgroup num)

groups() Return all matching subgroups in a tuple (empty if there
weren't any)

[a] New in Python 1.5.2; flags parameter added in 2.4.

[b] New in Python 2.2; flags parameter added in 2.4.

Core Note: RE compilation (to compile or not to compile?)

In Chapter 14, we described how Python code is eventually compiled
into bytecode, which is then executed by the interpreter. In particular,
we mentioned that calling eval() or exec with a code object rather
than a string provides a significant performance improvement due to
the fact that the compilation process does not have to be performed.
In other words, using precompiled code objects is faster than using
strings because the interpreter will have to compile it into a code
object (anyway) before execution.

The same concept applies to REsregular expression patterns must be
compiled into regex objects before any pattern matching can occur.
For REs, which are compared many times during the course of
execution, we highly recommend using precompilation first because,
again, REs have to be compiled anyway, so doing it ahead of time is
prudent for performance reasons. re.compile() provides this
functionality.

The module functions do cache the compiled objects, though, so it's
not as if every search() and match() with the same RE pattern requires
compilation. Still, you save the cache lookups and do not have to

file:///D|/1/0132269937/ch15lev1sec3.html (2 von 13) [13.11.2007 16:24:37]

Section 15.3. REs and Python

make function calls with the same string over and over. In Python
1.5.2, this cache held up to 20 compiled RE objects, but in 1.6, due to
the additional overhead of Unicode awareness, the compilation engine
is a bit slower, so the cache has been extended to 100 compiled regex
objects.

15.3.2. Compiling REs with compile()

Almost all of the re module functions we will be describing shortly are available as methods for regex
objects. Remember, even with our recommendation, precompilation is not required. If you compile, you
will use methods; if you don't, you will just use functions. The good news is that either way, the names
are the same whether a function or a method. (This is the reason why there are module functions and
methods that are identical, e.g., search(), match(), etc., in case you were wondering.) Since it saves
one small step for most of our examples, we will use strings instead. We will throw in a few with
compilation, though, just so you know how it is done.

Optional flags may be given as arguments for specialized compilation. These flags allow for case-
insensitive matching, using system locale settings for matching alphanumeric characters, etc. Please
refer to the documentation for more details. These flags, some of which have been briefly mentioned (i.
e., DOTALL, LOCALE), may also be given to the module versions of match() and search() for a specific
pattern match attemptthese flags are mostly for compilation reasons, hence the reason why they can be
passed to the module versions of match() and search(), which do compile an RE pattern once. If you
want to use these flags with the methods, they must already be integrated into the compiled regex
objects.

In addition to the methods below, regex objects also have some data attributes, two of which include
any compilation flags given as well as the regular expression pattern compiled.

15.3.3. Match Objects and the group() and groups () Methods

There is another object type in addition to the regex object when dealing with regular expressions, the
match object. These are the objects returned on successful calls to match() or search(). Match objects
have two primary methods, group() and groups().

group() will either return the entire match, or a specific subgroup, if requested. groups() will simply
return a tuple consisting of only/all the subgroups. If there are no subgroups requested, then groups()
returns an empty tuple while group() still returns the entire match.

Python REs also allow for named matches, which are beyond the scope of this introductory section on
REs. We refer you to the complete re module documentation regarding all the more advanced details we
have omitted here.

15.3.4. Matching Strings with match()

match() is the first re module function and RE object (regex object) method we will look at. The match()
function attempts to match the pattern to the string, starting at the beginning. If the match is
successful, a match object is returned, but on failure, None is returned. The group() method of a match
object can be used to show the successful match. Here is an example of how to use match() [and group
()]:

file:///D|/1/0132269937/ch15lev1sec3.html (3 von 13) [13.11.2007 16:24:37]

Section 15.3. REs and Python

>>> m = re.match('foo', 'foo') # pattern matches string
>>> if m is not None: # show match if successful
... m.group()
...
'foo'

The pattern "foo" matches exactly the string "foo." We can also confirm that m is an example of a match
object from within the interactive interpreter:

>>> m # confirm match object returned
<re.MatchObject instance at 80ebf48>

Here is an example of a failed match where None is returned:

>>> m = re.match('foo', 'bar')# pattern does not match string
>>> if m is not None: m.group()# (1-line version of if
clause)
...
>>>

The match above fails, thus None is assigned to m, and no action is taken due to the way we constructed
our if statement. For the remaining examples, we will try to leave out the if check for brevity, if
possible, but in practice it is a good idea to have it there to prevent AttributeError exceptions (None is
returned on failures, which does not have a group() attribute [method].)

A match will still succeed even if the string is longer than the pattern as long as the pattern matches
from the beginning of the string. For example, the pattern "foo" will find a match in the string "food on
the table" because it matches the pattern from the beginning:

>>> m = re.match('foo', 'food on the table') # match succeeds
>>> m.group()
'foo'

As you can see, although the string is longer than the pattern, a successful match was made from the
beginning of the string. The substring "foo" represents the match, which was extracted from the larger
string.

We can even sometimes bypass saving the result altogether, taking advantage of Python's object-
oriented nature:

>>> re.match('foo', 'food on the table').group()
'foo'

Note from a few paragraphs above that an AttributeError will be generated on a non-match.

15.3.5. Looking for a Pattern within a String with search() (Searching versus
Matching)

file:///D|/1/0132269937/ch15lev1sec3.html (4 von 13) [13.11.2007 16:24:37]

Section 15.3. REs and Python

The chances are greater that the pattern you seek is somewhere in the middle of a string, rather than at
the beginning. This is where search() comes in handy. It works exactly in the same way as match
except that it searches for the first occurrence of the given RE pattern anywhere with its string
argument. Again, a match object is returned on success and None otherwise.

We will now illustrate the difference between match() and search(). Let us try a longer string match
attempt. This time, we will try to match our string "foo" to "seafood":

>>> m = re.match('foo', 'seafood') # no match
>>> if m is not None: m.group()
...
>>>

As you can see, there is no match here. match() attempts to match the pattern to the string from the
beginning, i.e., the "f" in the pattern is matched against the "s" in the string, which fails immediately.
However, the string "foo" does appear (elsewhere) in "seafood," so how do we get Python to say "yes"?
The answer is by using the search() function. Rather than attempting a match, search() looks for the
first occurrence of the pattern within the string. search() searches strictly from left to right.

>>> m = re.search('foo', 'seafood') # use search() instead
>>> if m is not None: m.group()
...
'foo' # search succeeds where match failed
>>>

We will be using the match() and search() regex object methods and the group() and groups() match
object methods for the remainder of this subsection, exhibiting a broad range of examples of how to use
regular expressions with Python. We will be using almost all of the special characters and symbols that
are part of the regular expression syntax.

15.3.6. Matching More than One String (|)

In Section 15.2, we used the pipe in the RE "bat|bet|bit." Here is how we would use that RE with
Python:

>>> bt = 'bat|bet|bit' # RE pattern: bat, bet, bit
>>> m = re.match(bt, 'bat') # 'bat' is a match
>>> if m is not None: m.group()
...
'bat'
>>> m = re.match(bt, 'blt') # no match for 'blt'
>>> if m is not None: m.group()
...
>>> m = re.match(bt, 'He bit me!') # does not match string
>>> if m is not None: m.group()
...
>>> m = re.search(bt, 'He bit me!') # found 'bit' via search
>>> if m is not None: m.group()
...
'bit'

file:///D|/1/0132269937/ch15lev1sec3.html (5 von 13) [13.11.2007 16:24:37]

Section 15.3. REs and Python

15.3.7. Matching Any Single Character (.)

In the examples below, we show that a dot cannot match a NEWLINE or a non-character, i.e., the empty
string:

>>> anyend = '.end'
>>> m = re.match(anyend, 'bend') # dot matches 'b'
>>> if m is not None: m.group()
...
'bend'
>>> m = re.match(anyend, 'end') # no char to match
>>> if m is not None: m.group()
...
>>> m = re.match(anyend, '\nend') # any char except \n
>>> if m is not None: m.group()
...
>>> m = re.search('.end', 'The end.') # matches ' ' in search
>>> if m is not None: m.group()
...
' end'

The following is an example of searching for a real dot (decimal point) in a regular expression where we
escape its functionality with a backslash:

 >>> patt314 = '3.14' # RE dot
 >>> pi_patt = '3\.14' # literal dot (dec. point)
>>> m = re.match(pi_patt, '3.14') # exact match
>>> if m is not None: m.group()
...
'3.14'
>>> m = re.match(patt314, '3014') # dot matches '0'
>>> if m is not None: m.group()
...
'3014'
>>> m = re.match(patt314, '3.14') # dot matches '.'
>>> if m is not None: m.group()
...
'3.14'

15.3.8. Creating Character Classes ([])

Earlier, we had a long discussion about "[cr][23][dp][o2]" and how it differs from "r2d2|c3po." With the
examples below, we will show that "r2d2|c3po" is more restrictive than "[cr][23][dp][o2]":

>>> m = re.match('[cr][23][dp][o2]', 'c3po') # matches 'c3po'
>>> if m is not None: m.group()
...
'c3po'
>>> m = re.match('[cr][23][dp][o2]', 'c2do') # matches 'c2do'
>>> if m is not None: m.group()
...
'c2do'

file:///D|/1/0132269937/ch15lev1sec3.html (6 von 13) [13.11.2007 16:24:37]

Section 15.3. REs and Python

>>> m = re.match('r2d2|c3po', 'c2do') # does not match 'c2do'
>>> if m is not None: m.group()
...
>>> m = re.match('r2d2|c3po', 'r2d2') # matches 'r2d2'
>>> if m is not None: m.group()
...
'r2d2'

15.3.9. Repetition, Special Characters, and Grouping

The most common aspects of REs involve the use of special characters, multiple occurrences of RE
patterns, and using parentheses to group and extract submatch patterns. One particular RE we looked
at related to simple e-mail addresses ("\w+@\w+\.com"). Perhaps we want to match more e-mail
addresses than this RE allows. In order to support an additional hostname in front of the domain, i.e.,
"www.xxx.com" as opposed to accepting only "xxx.com" as the entire domain, we have to modify our
existing RE. To indicate that the hostname is optional, we create a pattern that matches the hostname
(followed by a dot), use the ? operator indicating zero or one copy of this pattern, and insert the
optional RE into our previous RE as follows: "\w+@(\w+\.)?\w+\.com." As you can see from the examples
below, either one or two names are now accepted in front of the ".com":

>>> patt = '\w+@(\w+\.)?\w+\.com'
>>> re.match(patt, 'nobody@xxx.com').group()
'nobody@xxx.com'
>>> re.match(patt, 'nobody@www.xxx.com').group()
'nobody@www.xxx.com'

Furthermore, we can even extend our example to allow any number of intermediate subdomain names
with the pattern below. Take special note of our slight change from using ? to *.: "\w+@(\w+\.)*\w+\.
com":

>>> patt = '\w+@(\w+\.)*\w+\.com'
>>> re.match(patt, 'nobody@www.xxx.yyy.zzz.com').group()
'nobody@www.xxx.yyy.zzz.com'

However, we must add the disclaimer that using solely alphanumeric characters does not match all the
possible characters that may make up e-mail addresses. The above RE patterns would not match a
domain such as "xxx-yyy.com" or other domains with "\W" characters.

Earlier, we discussed the merits of using parentheses to match and save subgroups for further
processing rather than coding a separate routine to manually parse a string after an RE match had been
determined. In particular, we discussed a simple RE pattern of an alphanumeric string and a number
separated by a hyphen, "\w+-\d+," and how adding subgrouping to form a new RE, "(\w+)-(\d+)," would
do the job. Here is how the original RE works:

>>> m = re.match('\w\w\w-\d\d\d', 'abc-123')
>>> if m is not None: m.group()
...
'abc-123'

>>> m = re.match('\w\w\w-\d\d\d', 'abc-xyz')
>>> if m is not None: m.group()

file:///D|/1/0132269937/ch15lev1sec3.html (7 von 13) [13.11.2007 16:24:37]

Section 15.3. REs and Python

...
>>>

In the above code, we created an RE to recognize three alphanumeric characters followed by three
digits. Testing this RE on "abc-123," we obtained positive results while "abc-xyz" fails. We will now
modify our RE as discussed before to be able to extract the alphanumeric string and number. Note how
we can now use the group() method to access individual subgroups or the groups() method to obtain a
tuple of all the subgroups matched:

>>> m = re.match('(\w\w\w)-(\d\d\d)', 'abc-123')
>>> m.group() # entire match
'abc-123'
>>> m.group(1) # subgroup 1
'abc'
>>> m.group(2) # subgroup 2
'123'
>>> m.groups() # all subgroups
('abc', '123')

As you can see, group() is used in the normal way to show the entire match, but can also be used to
grab individual subgroup matches. We can also use the groups() method to obtain a tuple of all the
substring matches.

Here is a simpler example showing different group permutations, which will hopefully make things even
more clear:

>>> m = re.match('ab', 'ab') # no subgroups
>>> m.group() # entire match
'ab'
>>> m.groups() # all subgroups
()
>>>
>>> m = re.match('(ab)', 'ab') # one subgroup
>>> m.group() # entire match
'ab'
>>> m.group(1) # subgroup 1
'ab'
>>> m.groups() # all subgroups
('ab',)
>>>
>>> m = re.match('(a)(b)', 'ab') # two subgroups
>>> m.group() # entire match
'ab'
>>> m.group(1) # subgroup 1
'a'
>>> m.group(2) # subgroup 2
'b'
>>> m.groups() # all subgroups

('a', 'b')
>>>
>>> m = re.match('(a(b))', 'ab') # two subgroups
>>> m.group() # entire match
'ab'
>>> m.group(1) # subgroup 1

file:///D|/1/0132269937/ch15lev1sec3.html (8 von 13) [13.11.2007 16:24:37]

Section 15.3. REs and Python

'ab'
>>> m.group(2) # subgroup 2
'b'
>>> m.groups() # all subgroups
('ab', 'b')

15.3.10. Matching from the Beginning and End of Strings and on Word Boundaries

The following examples highlight the positional RE operators. These apply more for searching than
matching because match() always starts at the beginning of a string.

>>> m = re.search('^The', 'The end.') # match
>>> if m is not None: m.group()
...
'The'
>>> m = re.search('^The', 'end. The') # not at beginning
>>> if m is not None: m.group()
...
>>> m = re.search(r'\bthe', 'bite the dog') # at a boundary
>>> if m is not None: m.group()
...
'the'
>>> m = re.search(r'\bthe', 'bitethe dog') # no boundary
>>> if m is not None: m.group()
...
>>> m = re.search(r'\Bthe', 'bitethe dog') # no boundary

>>> if m is not None: m.group()
...
'the'

You will notice the appearance of raw strings here. You may want to take a look at the Core Note toward
the end of the chapter for clarification on why they are here. In general, it is a good idea to use raw
strings with regular expressions.

There are four other re module functions and regex object methods we think you should be aware of:
findall(), sub(), subn(), and split().

15.3.11. Finding Every Occurrence with findall()

findall() is new to Python as of version 1.5.2. It looks for all non-overlapping occurrences of an RE
pattern in a string. It is similar to search() in that it performs a string search, but it differs from match()
and search() in that findall() always returns a list. The list will be empty if no occurrences are found
but if successful, the list will consist of all matches found (grouped in left-to-right order of occurrence).

>>> re.findall('car', 'car')
['car']
>>> re.findall('car', 'scary')
['car']
>>> re.findall('car', 'carry the barcardi to the car')
['car', 'car', 'car']

file:///D|/1/0132269937/ch15lev1sec3.html (9 von 13) [13.11.2007 16:24:37]

Section 15.3. REs and Python

Subgroup searches result in a more complex list returned, and that makes sense, because subgroups
are a mechanism that allow you to extract specific patterns from within your single regular expression,
such as matching an area code that is part of a complete telephone number, or a login name that is part
of an entire e-mail address.

For a single successful match, each subgroup match is a single element of the resulting list returned by
findall(); for multiple successful matches, each subgroup match is a single element in a tuple, and
such tuples (one for each successful match) are the elements of the resulting list. This part may sound
confusing at first, but if you try different examples, it will help clarify things.

15.3.12. Searching and Replacing with sub() [and subn()]

There are two functions/methods for search-and-replace functionality: sub() and subn(). They are
almost identical and replace all matched occurrences of the RE pattern in a string with some sort of
replacement. The replacement is usually a string, but it can also be a function that returns a
replacement string. subn() is exactly the same as sub(), but it also returns the total number of
substitutions madeboth the newly substituted string and the substitution count are returned as a 2-tuple.

>>> re.sub('X', 'Mr. Smith', 'attn: X\n\nDear X,\n')
'attn: Mr. Smith\012\012Dear Mr. Smith,\012'
>>>
>>> re.subn('X', 'Mr. Smith', 'attn: X\n\nDear X,\n')

('attn: Mr. Smith\012\012Dear Mr. Smith,\012', 2)
>>>
>>> print re.sub('X', 'Mr. Smith', 'attn: X\n\nDear X,\n')
attn: Mr. Smith

Dear Mr. Smith,

>>> re.sub('[ae]', 'X', 'abcdef')
'XbcdXf'
>>> re.subn('[ae]', 'X', 'abcdef')
('XbcdXf', 2)

15.3.13. Splitting (on Delimiting Pattern) with split()

The re module and RE object method split() work similarly to its string counterpart, but rather than
splitting on a fixed string, they split a string based on an RE pattern, adding some significant power to
string splitting capabilities. If you do not want the string split for every occurrence of the pattern, you
can specify the maximum number of splits by setting a value (other than zero) to the max argument.

If the delimiter given is not a regular expression that uses special symbols to match multiple patterns,
then re.split() works in exactly the same manner as string.split(), as illustrated in the example
below (which splits on a single colon):

>>> re.split(':', 'str1:str2:str3')
['str1', 'str2', 'str3']

But with regular expressions involved, we have an even more powerful tool. Take, for example, the
output from the Unix who command, which lists all the users logged into a system:

file:///D|/1/0132269937/ch15lev1sec3.html (10 von 13) [13.11.2007 16:24:37]

Section 15.3. REs and Python

% who
wesc console Jun 20 20:33
wesc pts/9 Jun 22 01:38 (192.168.0.6)
wesc pts/1 Jun 20 20:33 (:0.0)
wesc pts/2 Jun 20 20:33 (:0.0)
wesc pts/4 Jun 20 20:33 (:0.0)
wesc pts/3 Jun 20 20:33 (:0.0)
wesc pts/5 Jun 20 20:33 (:0.0)
wesc pts/6 Jun 20 20:33 (:0.0)
wesc pts/7 Jun 20 20:33 (:0.0)
wesc pts/8 Jun 20 20:33 (:0.0)

Perhaps we want to save some user login information such as login name, teletype they logged in at,
when they logged in, and from where. Using string.split() on the above would not be effective, since
the spacing is erratic and inconsistent. The other problem is that there is a space between the month,
day, and time for the login timestamps. We would probably want to keep these fields together.

You need some way to describe a pattern such as, "split on two or more spaces." This is easily done with
regular expressions. In no time, we whip up the RE pattern "\s\s+," which does mean at least two
whitespace characters. Let's create a program called rewho.py that reads the output of the who
command, presumably saved into a file called whodata.txt. Our rewho.py script initially looks something
like this:

import re
f = open('whodata.txt', 'r')
for eachLine in f.readlines():
 print re.split('\s\s+', eachLine)
f.close()

We will now execute the who command, saving the output into whodata.txt, and then call rewho.py and
take a look at the results:

% who > whodata.txt
% rewho.py
['wesc', 'console', 'Jun 20 20:33\012']
['wesc', 'pts/9', 'Jun 22 01:38\011(192.168.0.6)\012']
['wesc', 'pts/1', 'Jun 20 20:33\011(:0.0)\012']
['wesc', 'pts/2', 'Jun 20 20:33\011(:0.0)\012']
['wesc', 'pts/4', 'Jun 20 20:33\011(:0.0)\012']
['wesc', 'pts/3', 'Jun 20 20:33\011(:0.0)\012']
['wesc', 'pts/5', 'Jun 20 20:33\011(:0.0)\012']
['wesc', 'pts/6', 'Jun 20 20:33\011(:0.0)\012']
['wesc', 'pts/7', 'Jun 20 20:33\011(:0.0)\012']
['wesc', 'pts/8', 'Jun 20 20:33\011(:0.0)\012']

It was a good first try, but not quite correct. For one thing, we did not anticipate a single TAB (ASCII
\011) as part of the output (which looked like at least two spaces, right?), and perhaps we aren't really
keen on saving the NEWLINE (ASCII \012), which terminates each line. We are now going to fix those
problems as well as improve the overall quality of our application by making a few more changes.

First, we would rather run the who command from within the script, instead of doing it externally and

file:///D|/1/0132269937/ch15lev1sec3.html (11 von 13) [13.11.2007 16:24:37]

Section 15.3. REs and Python

saving the output to a whodata.txt filedoing this repeatedly gets tiring rather quickly. To accomplish
invoking another program from within ours, we call upon the os.popen() command, discussed briefly in
Section 14.5.2. Although os.popen() is available only on Unix systems, the point is to illustrate the
functionality of re.split(), which is available on all platforms.

We get rid of the trailing NEWLINEs and add the detection of a single TAB as an additional, alternative
re.split() delimiter. Presented in Example 15.1 is the final version of our rewho.py script:

Example 15.1. Split Output of Unix who Command (rewho.py)

This script calls the who command and parses the input by splitting up its data along
various types of whitespace characters.

1 #!/usr/bin/env python
2
3 from os import popen
4 from re import split
5
6 f = popen('who', 'r')
7 for eachLine in f.readlines():
8 print split('\s\s+|\t', eachLine.strip())
9 f.close()

Running this script, we now get the following (correct) output:

% rewho.py
['wesc', 'console', 'Jun 20 20:33']
['wesc', 'pts/9', 'Jun 22 01:38', '(192.168.0.6)']
['wesc', 'pts/1', 'Jun 20 20:33', '(:0.0)']
['wesc', 'pts/2', 'Jun 20 20:33', '(:0.0)']
['wesc', 'pts/4', 'Jun 20 20:33', '(:0.0)']
['wesc', 'pts/3', 'Jun 20 20:33', '(:0.0)']
['wesc', 'pts/5', 'Jun 20 20:33', '(:0.0)']
['wesc', 'pts/6', 'Jun 20 20:33', '(:0.0)']
['wesc', 'pts/7', 'Jun 20 20:33', '(:0.0)']
['wesc', 'pts/8', 'Jun 20 20:33', '(:0.0)']

A similar exercise can be achieved in a DOS/Windows environment using the dir command in place of
who.

While the subject of ASCII characters is still warm, we would like to note that there can be confusion
between regular expression special characters and special ASCII symbols. We may use \n to represent
an ASCII NEWLINE character, but we may use \d meaning a regular expression match of a single
numeric digit. Problems may occur if there is a symbol used by both ASCII and regular expressions, so
in the Core Note on the following page, we recommend the use of Python raw strings to prevent any
problems. One more caution: the "\w" and "\W" alphanumeric character sets are affected by the L or
LOCALE compilation flag and in Python 1.6 and newer, by Unicode flags starting in 2.0 (U or UNICODE).

Core Note: Use of Python raw strings

file:///D|/1/0132269937/ch15lev1sec3.html (12 von 13) [13.11.2007 16:24:37]

Section 15.3. REs and Python

You may have seen the use of raw strings in some of the examples
above. Regular expressions were a strong motivation for the advent of
raw strings. The reason is because of conflicts between ASCII characters
and regular expression special characters. As a special symbol, "\b"
represents the ASCII character for backspace, but "\b" is also a regular
expression special symbol, meaning "match" on a word boundary. In
order for the RE compiler to see the two characters "\b" as your string
and not a (single) backspace, you need to escape the backslash in the
string by using another backslash, resulting in "\\b."

This can get messy, especially if you have a lot of special characters in
your string, adding to the confusion. We were introduced to raw strings
back in Chapter 6, and they can be (and are often) used to help keep
REs looking somewhat manageable. In fact, many Python programmers
swear by these and only use raw strings when defining regular
expressions.

Here are some examples of differentiating between the backspace "\b"
and the regular expression "\b," with and without raw strings:

>>> m = re.match('\bblow', 'blow') # backspace, no match
>>> if m is not None: m.group()
...
>>> m = re.match('\\bblow', 'blow') # escaped \, now it works
>>> if m is not None: m.group()
...
'blow'
>>> m = re.match(r'\bblow', 'blow') # use raw string instead
>>> if m is not None: m.group()
...
'blow'

You may have recalled that we had no trouble using "\d" in our regular
expressions without using raw strings. That is because there is no ASCII
equivalent special character, so the regular expression compiler already
knew you meant a decimal digit.

file:///D|/1/0132269937/ch15lev1sec3.html (13 von 13) [13.11.2007 16:24:37]

file:///D|/1/0132269937/14051536.html

Section 15.4. Regular Expressions Example

15.4. Regular Expressions Example

We will now run through an in-depth example of the different ways of using regular expressions for
string manipulation. The first step is to come up with some code that actually generates some random
(but-not-so-random) data on which to operate. In Example 15.2, we present gendata.py, a script that
generates a data set. Although this program simply displays the generated set of strings to standard
output, this output may very well be redirected to a test file.

Example 15.2. Data Generator for RE Exercises (gendata.py)

Create random data for regular expressions practice and output the generated data to the
screen.

1 #!/usr/bin/env python
2
3 from random import randint, choice
4 from string import lowercase
5 from sys import maxint
6 from time import ctime
7
8 doms = ('com', 'edu', 'net', 'org', 'gov')
9
10 for i in range(randint(5, 10)):
11 dtint = randint(0, maxint-1) # pick date
12 dtstr = ctime(dtint) # date string
13
14 shorter = randint(4, 7) # login shorter
15 em = ''
16 for j in range(shorter): # generate login
17 em += choice(lowercase)
18
19 longer = randint(shorter, 12) # domain longer
20 dn = ''
21 for j in range(longer): # create domain
22 dn += choice(lowercase)
23
24 print '%s::%s@%s.%s::%d-%d-%d' % (dtstr, em,
25 dn, choice(doms), dtint, shorter, longer)

This script generates strings with three fields, delimited by a pair of colons, or a double-colon. The first
field is a random (32-bit) integer, which is converted to a date (see the accompanying Core Note). The
next field is a randomly generated electronic mail (e-mail) address, and the final field is a set of integers
separated by a single dash (-).

Running this code, we get the following output (your mileage will definitely vary) and store it locally as
the file redata.txt:

Thu Jul 22 19:21:19 2004::izsp@dicqdhytvhv.edu::1090549279-4-11
Sun Jul 13 22:42:11 2008::zqeu@dxaibjgkniy.com::1216014131-4-11

file:///D|/1/0132269937/ch15lev1sec4.html (1 von 6) [13.11.2007 16:24:38]

Section 15.4. Regular Expressions Example

Sat May 5 16:36:23 1990::fclihw@alwdbzpsdg.edu::641950583-6-10
Thu Feb 15 17:46:04 2007::uzifzf@dpyivihw.gov::1171590364-6-8
Thu Jun 26 19:08:59 2036::ugxfugt@jkhuqhs.net::2098145339-7-7
Tue Apr 10 01:04:45 2012::zkwaq@rpxwmtikse.com::1334045085-5-10

You may or may not be able to tell, but the output from this program is ripe for regular expression
processing. Following our line-by-line explanation, we will implement several REs to operate on these
data, as well as leave plenty for the end-of-chapter exercises.

Line-by-Line Explanation

Lines 16

In our example script, we require the use of multiple modules. But since we are utilizing only one or two
functions from these modules, rather than importing the entire module, we choose in this case to import
only specific attributes from these modules. Our decision to use from-import rather than import was
based solely on this reasoning. The from-import lines follow the Unix startup directive on line 1.

Line 8

doms is simply a set of higher-level domain names from which we will randomly pick for each randomly
generated e-mail address.

Lines 1012

Each time gendata.py executes, between 5 and 10 lines of output are generated. (Our script uses the
random.randint() function for all cases where we desire a random integer.) For each line, we choose a
random integer from the entire possible range (0 to 231 - 1 [sys.maxint]), then convert that integer to a
date using time.ctime(). System time in Python and most Unix-based computers is based on the
number of seconds that have elapsed since the "epoch," midnight UTC/GMT on January 1, 1970. If we
choose a 32-bit integer, that represents one moment in time from the epoch to the maximum possible
time, 232 seconds after the epoch.

Lines 1422

The login name for the fake e-mail address should be between 4 and 7 characters in length. To put it
together, we randomly choose between 4 and 7 random lowercase letters, concatenating each letter to
our string one at a time. The functionality of the random.choice() function is given a sequence, return a
random element of that sequence. In our case, the sequence is the set of all 26 lowercase letters of the
alphabet, string.lowercase.

We decided that the main domain name for the fake e-mail address should be between 4 and 12
characters in length, but at least as long as the login name. Again, we use random lowercase letters to
put this name together letter by letter.

Lines 2425

The key component of our script puts together all of the random data into the output line. The date
string comes first, followed by the delimiter. We then put together the random e-mail address by
concatenating the login name, the "@" symbol, the domain name, and a randomly chosen high-level

file:///D|/1/0132269937/ch15lev1sec4.html (2 von 6) [13.11.2007 16:24:38]

Section 15.4. Regular Expressions Example

domain. After the final double-colon, we put together a random integer string using the original time
chosen (for the date string), followed by the lengths of the login and domain names, all separated by a
single hyphen.

15.4.1. Matching a String

For the following exercises, create both permissive and restrictive versions of your REs. We recommend
you test these REs in a short application that utilizes our sample redata.txt file above (or use your own
generated data from running gendata.py). You will need to use it again when you do the exercises.

To test the RE before putting it into our little application, we will import the re module and assign one
sample line from redata.txt to a string variable data. These statements are constant across both
illustrated examples.

>>> import re
>>> data = 'Thu Feb 15 17:46:04 2007::uzifzf@dpyivihw.gov::1171590364-6-8'

In our first example, we will create a regular expression to extract (only) the days of the week from the
timestamps from each line of the data file redata.txt. We will use the following RE:

"^Mon|^Tue|^Wed|^Thu|^Fri|^Sat|^Sun"

This example requires that the string start with ("^" RE operator) any of the seven strings listed. If we
were to "translate" the above RE to English, it would read something like, "the string should start with
"Mon," "Tue,"..., "Sat," or "Sun."

Alternatively, we can bypass all the carat operators with a single carat if we group the day strings like
this:

"^(Mon|Tue|Wed|Thu|Fri|Sat|Sun)"

The parentheses around the set of strings mean that one of these strings must be encountered for a
match to succeed. This is a "friendlier" version of the original RE we came up with, which did not have
the parentheses. Using our modified RE, we can take advantage of the fact that we can access the
matched string as a subgroup:

>>> patt = '^(Mon|Tue|Wed|Thu|Fri|Sat|Sun)'
>>> m = re.match(patt, data)
>>> m.group() # entire match
'Thu'
>>> m.group(1) # subgroup 1
'Thu'
>>> m.groups() # all subgroups
('Thu',)

This feature may not seem as revolutionary as we have made it out to be for this example, but it is
definitely advantageous in the next example or anywhere you provide extra data as part of the RE to
help in the string matching process, even though those characters may not be part of the string you are
interested in.

file:///D|/1/0132269937/ch15lev1sec4.html (3 von 6) [13.11.2007 16:24:38]

Section 15.4. Regular Expressions Example

Both of the above REs are the most restrictive, specifically requiring a set number of strings. This may
not work well in an internationalization environment where localized days and abbreviations are used. A
looser RE would be: "^\w{3}." This one requires only that a string begin with three consecutive
alphanumeric characters. Again, to translate the RE into English, the carat indicates "begins with," the
"\w" means any single alphanumeric character, and the "{3}" means that there should be 3 consecutive
copies of the RE which the "{3}" embellishes. Again, if you want grouping, parentheses should be used, i.
e., "^(\w{3})":

>>> patt = '^(\w{3})'
>>> m = re.match(patt, data)
>>> if m is not None: m.group()
...
'Thu'
>>> m.group(1)
'Thu'

Note that an RE of "^(\w){3}" is not correct. When the "{3}" was inside the parentheses, the match for
three consecutive alphanumeric characters was made first, then represented as a group. But by moving
the "{3}" outside, it is now equivalent to three consecutive single alphanumeric characters:

>>> patt = '^(\w){3}'
>>> m = re.match(patt, data)
>>> if m is not None: m.group()
...
'Thu'
>>> m.group(1)
'u'

The reason why only the "u" shows up when accessing subgroup 1 is that subgroup 1 was being
continually replaced by the next character. In other words, m.group(1) started out as "T," then changed
to "h," then finally was replaced by "u." These are three individual (and overlapping) groups of a single
alphanumeric character, as opposed to a single group consisting of three consecutive alphanumeric
characters.

In our next (and final) example, we will create a regular expression to extract the numeric fields found
at the end of each line of redata.txt.

15.4.2. Search versus Match, and Greediness too

Before we create any REs, however, we realize that these integer data items are at the end of the data
strings. This means that we have a choice of using either search or match. Initiating a search makes
more sense because we know exactly what we are looking for (set of three integers), that what we seek
is not at the beginning of the string, and that it does not make up the entire string. If we were to
perform a match, we would have to create an RE to match the entire line and use subgroups to save the
data we are interested in. To illustrate the differences, we will perform a search first, then do a match to
show you that searching is more appropriate.

Since we are looking for three integers delimited by hyphens, we create our RE to indicate as such: "\d+-
\d+-\d+". This regular expression means, "any number of digits (at least one, though) followed by a
hyphen, then more digits, another hyphen, and finally, a final set of digits." We test our RE now using
search():

file:///D|/1/0132269937/ch15lev1sec4.html (4 von 6) [13.11.2007 16:24:38]

Section 15.4. Regular Expressions Example

>>> patt = '\d+-\d+-\d+'
>>> re.search(patt, data).group() # entire match
'1171590364-6-8'

A match attempt, however, would fail. Why? Because matches start at the beginning of the string, the
numeric strings are at the rear. We would have to create another RE to match the entire string. We can
be lazy though, by using ".+" to indicate just an arbitrary set of characters followed by what we are
really interested in:

patt = '.+\d+-\d+-\d+'
>>> re.match(patt, data).group() # entire match
'Thu Feb 15 17:46:04 2007::uzifzf@dpyivihw.gov::1171590364-
6-8'

This works great, but we really want the number fields at the end, not the entire string, so we have to
use parentheses to group what we want:

>>> patt = '.+(\d+-\d+-\d+)'
>>> re.match(patt, data).group(1) # subgroup 1
'4-6-8'

What happened? We should have extracted "1171590364-6-8," not just "4-6-8." Where is the rest of the
first integer? The problem is that regular expressions are inherently greedy. That means that with
wildcard patterns, regular expressions are evaluated in left-to-right order and try to "grab" as many
characters as possible which match the pattern. In our case above, the ".+" grabbed every single
character from the beginning of the string, including most of the first integer field we wanted. The "\d+"
needed only a single digit, so it got "4", while the ".+" matched everything from the beginning of the
string up to that first digit: "Thu Feb 15 17:46:04 2007::uzifzf@dpyivihw.gov::117159036", as indicated
below in Figure 15-2.

Figure 15-2. Why our match went awry: + is a greedy operator

[View full size image]

One solution is to use the "don't be greedy" operator, "?". It can be used after "*", "+", or "?". This
directs the regular expression engine to match as few characters as possible. So if we place a "?" after
the ".+", we obtain the desired result illustrated in Figure 15-3.

file:///D|/1/0132269937/ch15lev1sec4.html (5 von 6) [13.11.2007 16:24:38]

file:///D|/1/0132269937/images/chun_fig15_02_alt.jpg

Section 15.4. Regular Expressions Example

>>> patt = '.+?(\d+-\d+-\d+)'
>>> re.match(patt, data).group(1) # subgroup 1
'1171590364-6-8'

Figure 15-3. Solving the greedy problem: ? requests non-greediness

[View full size image]

Another solution, which is actually easier, is to recognize that "::" is our field separator. You can then
just use the regular string strip('::') method and get all the parts, then take another split on the dash
with strip('-') to obtain the three integers you were originally seeking. Now, we did not choose this
solution first because this is how we put the strings together to begin with using gendata.py!

One final example: let us say we want to pull out only the middle integer of the three-integer field. Here
is how we would do it (using a search so we don't have to match the entire string): "-(\d+)-". Trying out
this pattern, we get:

>>> patt = '-(\d+)-'
>>> m = re.search(patt, data)
>>> m.group() # entire match
'-6-'
>>> m.group(1) # subgroup 1
'6'

We barely touched upon the power of regular expressions, and in this limited space we have not been
able to do them justice. However, we hope that we have given an informative introduction so that you
can add this powerful tool to your programming skills. We suggest you refer to the documentation for
more details on how to use REs with Python. For more complete immersion into the world of regular
expressions, we recommend Mastering Regular Expressions by Jeffrey E. F. Friedl.

file:///D|/1/0132269937/ch15lev1sec4.html (6 von 6) [13.11.2007 16:24:38]

file:///D|/1/0132269937/images/chun_fig15_03_alt.jpg

Section 15.5. Exercises

15.5. Exercises

Regular Expressions. Create regular expressions in Exercises 15-1 to 15-12 to:

15-1. Recognize the following strings: "bat," "bit," "but," "hat," "hit," or "hut."

15-2. Match any pair of words separated by a single space, i.e., first and last names.

15-3. Match any word and single letter separated by a comma and single space, as in last
name, first initial.

15-4. Match the set of all valid Python identifiers.

15-5. Match a street address according to your local format (keep your RE general enough
to match any number of street words, including the type designation). For example,
American street addresses use the format: 1180 Bordeaux Drive. Make your RE
general enough to support multi-word street names like: 3120 De la Cruz Boulevard.

15-6. Match simple Web domain names that begin with "www." and end with a ".com"
suffix, e.g., www.yahoo.com. Extra credit if your RE also supports other high-level
domain names: .edu, .net, etc., e.g., www.ucsc.edu.

15-7. Match the set of the string representations of all Python integers.

15-8. Match the set of the string representations of all Python longs.

15-9. Match the set of the string representations of all Python floats.

15-10. Match the set of the string representations of all Python complex numbers.

15-11. Match the set of all valid e-mail addresses (start with a loose RE, then try to tighten it
as much as you can, yet maintain correct functionality).

15-12. Match the set of all valid Web site addresses (URLs) (start with a loose RE, then try to
tighten it as much as you can, yet maintain correct functionality).

file:///D|/1/0132269937/ch15lev1sec5.html (1 von 3) [13.11.2007 16:24:38]

Section 15.5. Exercises

15-13. type(). The type() built-in function returns a type object, which is displayed as a
Pythonic-looking string:

>>> type(0)
<type
'int'>
>>> type(.34)
<type
'float'>
>>> type(dir)
<type 'builtin_function_or_method'>

Create an RE that would extract out the actual type name from the string. Your
function should take a string like this "<type 'int'>" and return "int". (Ditto for all
other types, i.e., 'float', 'builtin_function_or_method', etc.) Note: You are
implementing the value that is stored in the __name__ attribute for classes and some
built-in types.

15-14. Regular Expressions. In Section 15.2, we gave you the RE pattern that matched the
single- or double-digit string representations of the months January to September ("0?
[1-9]"). Create the RE that represents the remaining three months in the standard
calendar.

15-15. Regular Expressions. Also in Section 15.2, we gave you the RE pattern that matched
credit card (CC) numbers ("[0-9]{15,16}"). However, this pattern does not allow for
hyphens separating blocks of numbers. Create the RE that allows hyphens, but only in
the correct locations. For example, 15-digit CC numbers have a pattern of 4-6-5,
indicating four digits-hyphen-six digits-hyphen-five digits, and 16-digit CC numbers
have a 4-4-4-4 pattern. Remember to "balloon" the size of the entire string correctly.
Extra credit: There is a standard algorithm for determining whether a CC number is
valid. Write some code not only to recognize a correctly formatted CC number, but
also a valid one.

The next set of problems (15-16 through 15-27) deal specifically with the data that are generated by
gendata.py. Before approaching problems 15-17 and 15-18, you may wish to do 15-16 and all the
regular expressions first.

15-16. Update the code for gendata.py so that the data are written directly to redata.txt
rather than output to the screen.

15-17. Determine how many times each day of the week shows up for any incarnation of
redata.txt. (Alternatively, you can also count how many times each month of the year
was chosen.)

15-18. Ensure there is no data corruption in redata.txt by confirming that the first integer of
the integer field matches the timestamp given at the front of each output line.

Create regular expressions to:

file:///D|/1/0132269937/ch15lev1sec5.html (2 von 3) [13.11.2007 16:24:38]

Section 15.5. Exercises

15-19. Extract the complete timestamps from each line.

15-20. Extract the complete e-mail address from each line.

15-21. Extract only the months from the timestamps.

15-22. Extract only the years from the timestamps.

15-23. Extract only the time (HH:MM:SS) from the timestamps.

15-24. Extract only the login and domain names (both the main domain name and the high-
level domain together) from the e-mail address.

15-25. Extract only the login and domain names (both the main domain name and the high-
level domain) from the e-mail address.

15-26. Replace the e-mail address from each line of data with your e-mail address.

15-27. Extract the months, days, and years from the timestamps and output them in "Mon
Day, Year" format, iterating over each line only once.

For problems 15-28 and 15-29, recall the regular expression introduced in Section 15.2, which matched
telephone numbers but allowed for an optional area code prefix: \d{3}-\d{3}-\d{4}. Update this regular
expression so that:

15-28. Area codes (the first set of three-digits and the accompanying hyphen) are optional, i.
e., your RE should match both 800-555-1212 as well as just 555-1212.

15-29. Either parenthesized or hyphenated area codes are supported, not to mention
optional; make your RE match 800-555-1212, 555-1212, and also (800) 555-1212.

file:///D|/1/0132269937/ch15lev1sec5.html (3 von 3) [13.11.2007 16:24:38]

file:///D|/1/0132269937/14051536.html

Chapter 16. Network Programming

Chapter 16. Network Programming

Chapter Topics

● Introduction: Client/Server Architecture
● Sockets: Communication Endpoints

�❍ Socket Addresses
�❍ Connection-Oriented versus Connectionless Sockets

● Network Programming in Python

�❍ socket Module

�❍ Socket Object Methods
�❍ TCP/IP Client and Server
�❍ UDP/IP Client and Server

● SocketServer Module

● *Introduction to the Twisted Framework
● Related Modules

In this section, we will take a brief look at network programming using sockets. We will first present
some background information on network programming, how sockets apply to Python, and then show
you how to use some of Python's modules to build networked applications.

file:///D|/1/0132269937/ch16.html [13.11.2007 16:24:39]

file:///D|/1/0132269937/14051536.html

Section 16.1. Introduction

16.1. Introduction

16.1.1. What Is Client/Server Architecture?

What is client/server architecture? It means different things to different people, depending on whom you
ask as well as whether you are describing a software or a hardware system. In either case, the premise
is simple: The server, a piece of hardware or software, is providing a "service" that is needed by one or
more clients, users of the service. Its sole purpose of existence is to wait for (client) requests, service
those clients, then wait for more requests.

Clients, on the other hand, contact a (predetermined) server for a particular request, send over any
necessary data, and wait for the server to reply, either completing the request or indicating the cause of
failure. While the server runs indefinitely processing requests, clients make a one-time request for
service, receive that service, and thus conclude their transaction. A client may make additional requests
at some later time, but these are considered separate transactions.

The most common notion of "client/server" today is illustrated in Figure 16-1. A user or client computer
is retrieving information from a server across the Internet. Although such a system is indeed an
example of a client/server architecture, it isn't the only one. Furthermore, client/server architecture can
be applied to computer hardware as well as software.

Figure 16-1. Typical conception of a client/server system on the Internet

Hardware Client/Server Architecture

Print(er) servers are examples of hardware servers. They process incoming print jobs and send them to
a printer (or some other printing device) attached to such a system. Such a computer is generally
network-accessible and client machines would send print requests.

Another example of a hardware server is a file server. These are typically machines with large,
generalized storage capacity, which is remotely accessible to clients. Client machines "mount" the disks
from the server machine onto their local machine as if the disk itself were on the local machine. One of
the most popular network operating systems that support file servers is Sun Microsystems' Network File

file:///D|/1/0132269937/ch16lev1sec1.html (1 von 4) [13.11.2007 16:24:39]

file:///D|/1/0132269937/14051536.html

Section 16.1. Introduction

System (NFS). If you are accessing a networked disk drive and cannot tell whether it is local or on the
network, then the client/server system has done its job. The goal is for the user experience to be
exactly the same as a local diskthe "abstraction" is normal disk access. It is up to the programmed
"implementation" to make it behave in such a manner.

Software Client/Server Architecture

Software servers also run on a piece of hardware but do not have dedicated peripheral devices as
hardware servers do, i.e., printers, disk drives, etc. The primary services provided by software servers
include program execution, data transfer retrieval, aggregation, update, or other types of programmed
or data manipulation.

One of the more common software servers today is the Web server. A corporate machine is set up with
Web pages and/or Web applications, then the Web server is started. The job of such a server is to
accept client requests, send back Web pages to (Web) clients, i.e., browsers on users' computers, and
wait for the next client request. These servers are started with the expectation of "running forever."
Although they do not achieve that goal, they go for as long as possible unless stopped by some external
force, i.e., explicitly shut down or catastrophically due to hardware failure.

Database servers are another kind of software server. They take client requests for either storage or
retrieval, perform that service, then wait for more business. They are also designed to run "forever."

The last type of software server we will discuss are windows servers. These servers can almost be
considered hardware servers. They run on a machine with an attached display, such as a monitor of
some sort. Windows clients are actually programs that require a windowing environment with which to
execute. These are generally considered graphical user interface (GUI) applications. If they are executed
without a window server, i.e., in a text-based environment such as a DOS window or a Unix shell, they
are unable to start. Once a windows server is accessible, then things are fine.

Such an environment becomes even more interesting when networking comes into play. The usual
display for a windows client is the server on the local machine, but it is possible in some networked
windowing environments, such as the X Window system, to choose another machine's window server as
a display. In such situations, you can be running a GUI program on one machine, but have it displayed
at another!

Bank Tellers as Servers?

One way to imagine how client/server architecture works is to create in your mind the image of a bank
teller who neither eats, sleeps, nor rests, serving one customer after another in a line that never seems
to end (see Figure 16-2). The line may be long or it may be empty on occasion, but at any given
moment, a customer may show up. Of course, such a teller was fantasy years ago, but automated teller
machines (ATMs) seem to come close to such a model now.

Figure 16-2. The bank teller in this diagram works "forever" serving client
requests. The teller runs in an infinite loop receiving requests, servicing them,
and going back to serve or wait for another client. There may be a long line of

clients, or there may be none at all, but in either case, a server's work is
never done.

file:///D|/1/0132269937/ch16lev1sec1.html (2 von 4) [13.11.2007 16:24:39]

Section 16.1. Introduction

The teller is, of course, the server that runs in an infinite loop. Each customer is a client with a need that
requires servicing. Customers arrive and are serviced by the teller in a first-come-first-served manner.
Once a transaction has been completed, the client goes away while the server either serves the next
customer or sits and waits until one comes along.

Why is all this important? The reason is that this style of execution is how client/server architecture
works in a general sense. Now that you have the basic idea, let us adapt it to network programming,
which follows the software client/ server architecture model.

16.1.2. Client/Server Network Programming

Before any servicing can be accomplished, a server must perform some preliminary setup procedures to
prepare for the work that lies ahead. A communication endpoint is created which allows a server to
"listen" for requests. One can liken our server to a company receptionist or switchboard operator who
answers calls on the main corporate line. Once the phone number and equipment are installed and the
operator arrives, the service can begin.

This process is the same in the networked worldonce a communication endpoint has been established,
our listening server can now enter its infinite loop to wait for clients to connect and be serviced. Of
course, we must not forget to put that phone number on company letterhead, in advertisements, or
some sort of press release; otherwise, no one will ever call!

On a related note, potential clients must be made aware that this server exists to handle their
needsotherwise, the server will never get a single request. Imagine creating a brand new Web site. It
may be the most super-duper, awesome, amazing, useful, and coolest Web site of all, but if the Web
address or Uniform Resource Locator (URL) is never broadcast or advertised in any way, no one will ever
know about it, and it will never see the light of day. The same thing applies for the new telephone
number of corporate headquarters. No calls will ever be received if the number is not made known to
the public.

Now you have a good idea as to how the server works. You have gotten past the difficult part. The client
side stuff is much more simple than on the server side. All the client has to do is to create its single
communication endpoint, establish a connection to the server. The client can now make a request, which

file:///D|/1/0132269937/ch16lev1sec1.html (3 von 4) [13.11.2007 16:24:39]

Section 16.1. Introduction

includes any necessary exchange of data. Once the request has been serviced and the client has
received the result or some sort of acknowledgement, communication is terminated.

file:///D|/1/0132269937/ch16lev1sec1.html (4 von 4) [13.11.2007 16:24:39]

file:///D|/1/0132269937/14051536.html

Section 16.2. Sockets: Communication Endpoints

16.2. Sockets: Communication Endpoints

16.2.1. What Are Sockets?

Sockets are computer networking data structures that embody the concept of the "communication
endpoint" described in the previous section. Networked applications must create sockets before any type
of communication can commence. They can be likened to telephone jacks, without which engaging in
communication is impossible.

Sockets originated in the 1970s from the University of California, Berkeley version of Unix, known as
BSD Unix. Therefore, you will sometimes hear these sockets referred to as "Berkeley sockets" or "BSD
sockets." Sockets were originally created for same-host applications where they would enable one
running program (aka a process) to communicate with another running program. This is known as
interprocess communication, or IPC. There are two types of sockets, file-based and network-oriented.

Unix sockets are the first family of sockets we are looking at and have a "family name" of AF_UNIX (aka
AF_LOCAL, as specified in the POSIX1.g standard), which stands for "address family: UNIX." Most
popular platforms, including Python, use the term "address families" and "AF" abbreviation while other
perhaps older systems may refer to address families as "domains" or "protocol families" and use "PF"
rather than "AF." Similarly, AF_LOCAL (standardized in 2000-2001) is supposed to replace AF_UNIX,
however, for backward-compatibility, many systems use both and just make them aliases to the same
constant. Python itself still uses AF_UNIX.

Because both processes run on the same machine, these sockets are file-based, meaning that their
underlying infrastructure is supported by the file system. This makes sense because the file system is a
shared constant between processes running on the same host.

The second type of socket is networked-based and has its own family name, AF_INET, or "address
family: Internet." Another address family, AF_INET6, is used for Internet Protocol version 6 (IPv6)
addressing. There are other address families, all of which are either specialized, antiquated, seldom
used, or remain unimplemented. Of all address families, AF_INET is now the most widely used. Support
for a special type of Linux socket was introduced in Python 2.5. The AF_NETLINK family of
(connectionless [see below]) sockets allow for IPC between user- and kernel-level code using the
standard BSD socket interface and is seen as an elegant and less risky solution over previous and more
cumbersome solutions such as adding new system calls, /proc support, or "IOCTL"s to an operating
system.

Python supports only the AF_UNIX, AF_NETLINK, and AF_INET* families. Because of our focus on
network programming, we will be using AF_INET for most of the remaining part of this chapter.

16.2.2. Socket Addresses: Host-Port Pairs

If a socket is like a telephone jack, a piece of infrastructure that enables communication, then a
hostname and port number are like an area code and telephone number combination. Having the
hardware and ability to communicate doesn't do any good unless you know whom and where to "dial."
An Internet address is comprised of a hostname and port number pair, and such an address is required
for networked communication. It goes without saying that there should also be someone listening at the

file:///D|/1/0132269937/ch16lev1sec2.html (1 von 3) [13.11.2007 16:24:40]

Section 16.2. Sockets: Communication Endpoints

other end; otherwise, you get the familiar tones followed by "I'm sorry, that number is no longer in
service. Please check the number and try your call again." You have probably seen one networking
analogy during Web surfing, for example, "Unable to contact server. Server is not responding or is
unreachable."

Valid port numbers range from 0-65535, although those less than 1024 are reserved for the system. If
you are using a Unix system, the list of reserved port numbers (along with servers/protocols and socket
types) is found in the /etc/ services file. A list of well-known port numbers is accessible at this Web
site:

http://www.iana.org/assignments/port-numbers

16.2.3. Connection-Oriented versus Connectionless

Connection-Oriented

Regardless of which address family you are using, there are two different styles of socket connections.
The first type is connection-oriented. What this basically means is that a connection must be established
before communication can occur, such as calling a friend using the telephone system. This type of
communication is also referred to as a "virtual circuit" or "stream socket."

Connection-oriented communication offers sequenced, reliable, and unduplicated delivery of data, and
without record boundaries. That basically means that each message may be broken up into multiple
pieces, which are all guaranteed to arrive ("exactly once" semantics means no loss or duplication of
data) at their destination, to be put back together and in order, and delivered to the waiting application.

The primary protocol that implements such connection types is the Transmission Control Protocol (better
known by its acronym TCP). To create TCP sockets, one must use SOCK_STREAM as the type of socket
one wants to create. The SOCK_STREAM name for a TCP socket is based on one of its denotations as
stream socket. Because these sockets use the Internet Protocol (IP) to find hosts in the network, the
entire system generally goes by the combined names of both protocols (TCP and IP) or TCP/IP.

Connectionless

In stark contrast to virtual circuits is the datagram type of socket, which is connectionless. This means
that no connection is necessary before communication can begin. Here, there are no guarantees of
sequencing, reliability, or non-duplication in the process of data delivery. Datagrams do preserve record
boundaries, however, meaning that entire messages are sent rather than being broken into pieces first,
like connection-oriented protocols.

Message delivery using datagrams can be compared to the postal service. Letters and packages may not
arrive in the order they were sent. In fact, they might not arrive at all! To add to the complication, in
the land of networking, duplication of messages is even possible.

So with all this negativity, why use datagrams at all? (There must be some advantage over using stream
sockets!) Because of the guarantees provided by connection-oriented sockets, a good amount of
overhead is required for their setup as well as in maintaining the virtual circuit connection. Datagrams
do not have this overhead and thus are "less expensive." They usually provide better performance and
may be suitable for some types of applications.

The primary protocol that implements such connection types is the User Datagram Protocol (better
known by its acronym UDP). To create UDP sockets, we must use SOCK_DGRAM as the type of socket
we want to create. The SOCK_DGRAM name for a UDP socket, as you can probably tell, comes from the

file:///D|/1/0132269937/ch16lev1sec2.html (2 von 3) [13.11.2007 16:24:40]

http://www.iana.org/assignments/port-numbers

Section 16.2. Sockets: Communication Endpoints

word "datagram." Because these sockets also use the Internet Protocol to find hosts in the network, this
system also has a more general name, going by the combined names of both of these protocols (UDP
and IP), or UDP/IP.

file:///D|/1/0132269937/ch16lev1sec2.html (3 von 3) [13.11.2007 16:24:40]

file:///D|/1/0132269937/14051536.html

Section 16.3. Network Programming in Python

16.3. Network Programming in Python

Now that you know all about client/server architecture, sockets, and networking, let us try to bring this
concept to Python. The primary module we will be using in this section is the socket module. Found
within this module is the socket() function, which is used to create socket objects. Sockets also have
their own set of methods, which enable socket-based network communication.

16.3.1. socket() Module Function

To create a socket, you must use the socket.socket() function, which has the general syntax:

socket(socket_family, socket_type, protocol=0)

The socket_family is either AF_UNIX or AF_INET, as explained earlier, and the socket_type is either
SOCK_STREAM or SOCK_ DGRAM, also explained earlier. The protocol is usually left out, defaulting to 0.

So to create a TCP/IP socket, you call socket.socket() like this:

tcpSock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

Likewise, to create a UDP/IP socket you perform:

udpSock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

Since there are numerous socket module attributes, this is one of the exceptions where using "from
module import *" is somewhat acceptable because of the number of module attributes. If we applied
"from socket import *", we bring the socket attributes into our namespace, but our code is shortened
considerably, i.e.,

tcpSock = socket(AF_INET, SOCK_STREAM)

Once we have a socket object, all further interaction will occur using that socket object's methods.

16.3.2. Socket Object (Built-in) Methods

In Table 16.1, we present a list of the most common socket methods. In the next subsection, we will
create both TCP and UDP clients and servers, all of which use these methods. Although we are focusing
on Internet sockets, these methods have similar meanings when using Unix sockets.

file:///D|/1/0132269937/ch16lev1sec3.html (1 von 13) [13.11.2007 16:24:42]

file:///D|/1/0132269937/14051536.html

Section 16.3. Network Programming in Python

Table 16.1. Common Socket Object Methods

Method Description

Server Socket Methods

s.bind() Bind address (hostname, port number pair) to socket

s.listen() Set up and start TCP listener

s.accept() Passively accept TCP client connection, waiting until connection arrives (blocking)

Client Socket Methods

s.connect() Actively initiate TCP server connection

s.connect_ex() Extended version of connect() where problems are returned as error codes rather
than an exception being thrown

General Socket Methods

s.recv() Receive TCP message

s.send() Transmit TCP message

s.sendall() Transmit TCP message completely

s.recvfrom() Receive UDP message

s.sendto() Transmit UDP message

s.getpeername() Remote address connected to socket (TCP)

s.getsockname() Address of current socket

s.getsockopt() Return value of given socket option

s.setsockopt() Set value for given socket option

s.close() Close socket

Blocking-Oriented Socket Methods

s.setblocking() Set blocking or non-blocking mode of socket

s.settimeout()
[a] Set timeout for blocking socket operations

s.gettimeout()
[a] Get timeout for blocking socket operations

File-Oriented Socket Methods

s.fileno() File descriptor of socket

s.makefile() Create a file object associated with socket

[a] New in Python 2.3.

Core Tip: Install clients and servers on different computers to run

file:///D|/1/0132269937/ch16lev1sec3.html (2 von 13) [13.11.2007 16:24:42]

Section 16.3. Network Programming in Python

networked applications

In our multitude of examples in this chapter, you will often see code
and output referring to host "localhost" or see an IP address of
127.0.0.1. Our examples are running the client(s) and server(s) on
the same machine. We encourage the reader to change the hostnames
and copy the code to different computers as it is much more fun
developing and playing around with code that lets machines talk to
one another across the network, and to see network programs that
really do work!

16.3.3. Creating a TCP Server

We will first present some general pseudocode involved with creating a generic TCP server, then
describe in general what is going on. Keep in mind that this is only one way of designing your server.
Once you become comfortable with server design, you will be able to modify the pseudocode to operate
the way you want it to:

 ss = socket() # create server socket
 ss.bind() # bind socket to address
 ss.listen() # listen for connections
 inf_loop: # server infinite loop
 cs = ss.accept() # accept client connection
 comm_loop: # communication loop
 cs.recv()/cs.send() # dialog (receive/send)
 cs.close() # close client socket
ss.close() # close server socket # (opt)

All sockets are created using the socket.socket() function. Servers need to "sit on a port" and wait for
requests, so they all must "bind" to a local address. Because TCP is a connection-oriented
communication system, some infrastructure must be set up before a TCP server can begin operation. In
particular, TCP servers must "listen" for (incoming) connections. Once this setup process is complete, a
server can start its infinite loop.

A simple (single-threaded) server will then sit on an accept() call waiting for a connection. By default,
accept() is blocking, meaning that execution is suspended until a connection arrives. Sockets do support
a non-blocking mode; refer to the documentation or operating systems textbooks for more details on
why and how you would use non-blocking sockets.

Once a connection is accepted, a separate client socket is returned [by accept()] for the upcoming
message interchange. Using the new client socket is similar to handing off a customer call to a service
representative. When a client eventually does come in, the main switchboard operator takes the
incoming call and patches it through, using another line to the right person to handle their needs.

This frees up the main line, i.e., the original server socket, so that the operator can resume waiting for
new calls (client requests) while the customer and the service representative he or she was connected to
carry on their own conversation. Likewise, when an incoming request arrives, a new communication port
is created to converse directly with that client while the main one is free to accept new client
connections.

Core Tip: Spawning threads to handle client requests

file:///D|/1/0132269937/ch16lev1sec3.html (3 von 13) [13.11.2007 16:24:42]

Section 16.3. Network Programming in Python

We do not implement this in our examples, but it is also fairly common
to hand a client request off to a new thread or process to complete the
client processing. The SocketServer module, a high-level socket
communication module written on top of socket, supports both
threaded and spawned process handling of client requests. We refer
the reader to the documentation to obtain more information about the
SocketServer module as well as the exercises in Chapter 17,
Multithreaded Programming.

Once the temporary socket is created, communication can commence, and both client and server
proceed to engage in a dialog of sending and receiving using this new socket until the connection is
terminated. This usually happens when one of the parties either closes its connection or sends an empty
string to its partner.

In our code, after a client connection is closed, the server goes back to wait for another client
connection. The final line of code, where we close the server socket, is optional. It is never encountered
since the server is supposed to run in an infinite loop. We leave this code in our example as a reminder
to the reader that calling the close() method is recommended when implementing an intelligent exit
scheme for the server, for example, a handler that detects some external condition whereby the server
should be shut down. In those cases, a close() method call is warranted.

In Example 16.1, we present tsTserv.py, a TCP server program that takes the data string sent from a
client and returns it timestamped (format: "[timestamp]data") back to the client. ("tsTserv" stands for
timestamp TCP server. The other files are named in a similar manner.)

Example 16.1. TCP Timestamp Server (tsTserv.py)

Creates a TCP server that accepts messages from clients and returns them with a
timestamp prefix.

 1 #!/usr/bin/env python
 2
 3 from socket import *
 4 from time import ctime
 5
 6 HOST = ''
 7 PORT = 21567
 8 BUFSIZ = 1024
 9 ADDR = (HOST, PORT)
 10
 11 tcpSerSock = socket(AF_INET, SOCK_STREAM)
 12 tcpSerSock.bind(ADDR)
 13 tcpSerSock.listen(5)
 14
 15 while True:
 16 print 'waiting for connection...'
 17 tcpCliSock, addr = tcpSerSock.accept()
 18 print '...connected from:', addr
 19
 20 while True:
 21 data = tcpCliSock.recv(BUFSIZ)

file:///D|/1/0132269937/ch16lev1sec3.html (4 von 13) [13.11.2007 16:24:42]

Section 16.3. Network Programming in Python

 22 if not data:
 23 break
 24 tcpCliSock.send('[%s] %s' % (
 25 ctime(), data))
 26
 27 tcpCliSock.close()
 28 tcpSerSock.close()

Line-by-Line Explanation

Lines 14

After the Unix start-up line, we import time.ctime() and all the attributes from the socket module.

Lines 613

The HOST variable is blank, an indication to the bind() method that it can use any address that is
available. We also choose an arbitrarily random port number, which does not appear to be used or
reserved by the system. For our application, we set the buffer size to 1K. You may vary this size based
on your networking capability and application needs. The argument for the listen() method is simply a
maximum number of incoming connection requests to accept before connections are turned away or
refused.

The TCP server socket (tcpSerSock) is allocated on line 11, followed by the calls to bind the socket to the
server's address and to start the TCP listener.

Lines 1528

Once we are inside the server's infinite loop, we (passively) wait for a connection. When one comes in,
we enter the dialog loop where we wait for the client to send its message. If the message is blank, that
means that the client has quit, so we would break from the dialog loop, close the client connection, and
go back to wait for another client. If we did get a message from the client, then we format and return
the same data but prepended with the current timestamp. The final line is never executed, but is there
as a reminder to the reader that a close() call should be made if a handler is written to allow for a more
graceful exit, as we discussed before.

16.3.4. Creating a TCP Client

Creating a client is much simpler than a server. Similar to our description of the TCP server, we will
present the pseudocode with explanations first, then show you the real thing.

cs = socket() # create client socket
cs.connect() # attempt server connection
comm_loop: # communication loop
 cs.send()/cs.recv() # dialog (send/receive)
cs.close() # close client socket

As we noted before, all sockets are created using socket.socket(). Once a client has a socket, however,

file:///D|/1/0132269937/ch16lev1sec3.html (5 von 13) [13.11.2007 16:24:42]

Section 16.3. Network Programming in Python

it can immediately make a connection to a server by using the socket's connect() method. When the
connection has been established, then it can participate in a dialog with the server. Once the client has
completed its transaction, it may close its socket, terminating the connection.

We present the code for tsTclnt.py in Example 16.2; it connects to the server and prompts the user for
line after line of data. The server returns this data timestamped, which is presented to the user by the
client code.

Example 16.2. TCP Timestamp Client (tsTclnt.py)

Creates a TCP client that prompts the user for messages to send to the server, gets them
back with a timestamp prefix, and displays the results to the user.

 1 #!/usr/bin/env python
 2
 3 from socket import *
 4
 5 HOST = 'localhost'
 6 PORT = 21567
 7 BUFSIZ = 1024
 8 ADDR = (HOST, PORT)
 9
 10 tcpCliSock = socket(AF_INET, SOCK_STREAM)
 11 tcpCliSock.connect(ADDR)
 12
 13 while True:
 14 data = raw_input('> ')
 15 if not data:
 16 break
 17 tcpCliSock.send(data)
 18 data = tcpCliSock.recv(BUFSIZ)
 19 if not data:
 20 break
 21 print data
 22
 23 tcpCliSock.close()

Line-by-Line Explanation

Lines 13

After the Unix startup line, we import all the attributes from the socket module.

Lines 511

The HOST and PORT variables refer to the server's hostname and port number. Since we are running our
test (in this case) on the same machine, HOST contains the local hostname (change it accordingly if you
are running your server on a different host). The port number PORT should be exactly the same as what
you set for your server (otherwise there won't be much communication[!]). We also choose the same
buffer size, 1K.

file:///D|/1/0132269937/ch16lev1sec3.html (6 von 13) [13.11.2007 16:24:42]

Section 16.3. Network Programming in Python

The TCP client socket (tcpCliSock) is allocated on line 10, followed by (an active) call to connect to the
server.

Lines 1323

The client also has an infinite loop, but it is not meant to run forever like the server's loop. The client
loop will exit on either of two conditions: the user enters no input (lines 14-16), or the server somehow
quit and our call to the recv() method fails (lines 18-20). Otherwise, in a normal situation, the user
enters in some string data, which is sent to the server for processing. The newly timestamped input
string is then received and displayed to the screen.

16.3.5. Executing Our TCP Server and Client(s)

Now let us run the server and client programs to see how they work. Should we run the server first or
the client first? Naturally, if we ran the client first, no connection would be possible because there is no
server waiting to accept the request. The server is considered a passive partner because it has to
establish itself first and passively wait for a connection. A client, on the other hand, is an active partner
because it actively initiates a connection. In other words:

Start the Server First (Before Any Clients Try to Connect).

In our example running of the client and server, we use the same machine, but there is nothing to stop
us from using another host for the server. If this is the case, then just change the hostname. (It is
rather exciting when you get your first networked application running the server and client from
different machines!)

We now present the corresponding (input and) output from the client program, which exits with a simple
RETURN (or Enter key) keystroke with no data entered:

 $ tsTclnt.py
 > hi
 [Sat Jun 17 17:27:21 2006] hi
 > spanish inquisition
 [Sat Jun 17 17:27:37 2006] spanish inquisition
 >
 $

The server's output is mainly diagnostic:

 $ tsTserv.py
 waiting for connection...
 ...connected from: ('127.0.0.1', 1040)
 waiting for connection...

The "... connected from ..." message was received when our client made its connection. The server went
back to wait for new clients while we continued receiving "service." When we exited from the server, we
had to break out of it, resulting in an exception. The best way to avoid such an error is to create a more
graceful exit, as we have been discussing.

Core Tip: Exit gracefully and call server close() method

file:///D|/1/0132269937/ch16lev1sec3.html (7 von 13) [13.11.2007 16:24:42]

Section 16.3. Network Programming in Python

One way to create this "friendly" exit is to put the server's while loop
inside the except clause of a TRy-except statement and monitor for
EOFError or KeyboardInterrupt exceptions. Then in the except clause,
you can make a call to close the server's socket.

The interesting thing about this simple networked application is that we are not only showing how our
data take a round trip from the client to the server and back to the client, but we also use the server as
a sort of "time server," because the timestamp we receive is purely from the server.

16.3.6. Creating a UDP Server

UDP servers do not require as much setup as TCP servers because they are not connection-oriented.
There is virtually no work that needs to be done other than just waiting for incoming connections.

ss = socket() # create server socket
ss.bind() # bind server socket
inf_loop: # server infinite loop
 cs = ss.recvfrom()/ss.sendto()# dialog (receive/send)
ss.close() # close server socket

As you can see from the pseudocode, there is nothing extra other than the usual create-the-socket and
bind it to the local address (host/port pair). The infinite loop consists of receiving a message from a
client, returning a timestamped one, then going back to wait for another message. Again, the close()
call is optional and will not be reached due to the infinite loop, but it serves as a reminder that it should
be part of the graceful or intelligent exit scheme we've been mentioning.

One other significant different between UDP and TCP servers is that because datagram sockets are
connectionless, there is no "handing off" of a client connection to a separate socket for succeeding
communication. These servers just accept messages and perhaps reply.

You will find the code to tsUserv.py in Example 16.3, a UDP version of the TCP server seen earlier. It
accepts a client message and returns it to the client timestamped.

Example 16.3. UDP Timestamp Server (tsUserv.py)

file:///D|/1/0132269937/ch16lev1sec3.html (8 von 13) [13.11.2007 16:24:42]

Section 16.3. Network Programming in Python

Creates a UDP server that accepts messages from clients and returns them with a
timestamp prefix.

 1 #!/usr/bin/env python
 2
 3 from socket import *
 4 from time import ctime
 5
 6 HOST = ''
 7 PORT = 21567
 8 BUFSIZ = 1024
 9 ADDR = (HOST, PORT)
 10
 11 udpSerSock = socket(AF_INET, SOCK_DGRAM)
 12 udpSerSock.bind(ADDR)
 13
 14 while True:
 15 print 'waiting for message...'
 16 data, addr = udpSerSock.recvfrom(BUFSIZ)
 17 udpSerSock.sendto('[%s] %s' % (
 18 ctime(), data), addr)
 19 print '...received from and returned to:', addr
 20
 21 udpSerSock.close()

Line-by-Line Explanation

Lines 14

After the Unix startup line, we import time.ctime() and all the attributes from the socket module, just
like the TCP server setup.

Lines 612

The HOST and PORT variables are the same as before, and for all the same reasons. The call socket()
differs only in that we are now requesting a datagram/UDP socket type, but bind() is invoked in the
same way as in the TCP server version. Again, because UDP is connectionless, no call to "listen() for
incoming connections" is made here.

Lines 1421

Once we are inside the server's infinite loop, we (passively) wait for a message (a datagram). When one
comes in, we process it (by adding a timestamp to it), then send it right back and go back to wait for
another message. The socket close() method is there for show only, as indicated before.

16.3.7. Creating a UDP Client

Of the four highlighted here in this section, the UDP client is the shortest bit of code that we will look at.
The pseudocode looks like this:

file:///D|/1/0132269937/ch16lev1sec3.html (9 von 13) [13.11.2007 16:24:42]

Section 16.3. Network Programming in Python

cs = socket() # create client socket
comm_loop: # communication loop
 cs.sendto()/cs.recvfrom() # dialog (send/receive)
cs.close() # close client socket

Once a socket object is created, we enter the dialog loop of exchanging messages with the server. When
communication is complete, the socket is closed.

The real client code, tsUclnt.py, is presented in Example 16.4.

Example 16.4. UDP Timestamp Client (tsUclnt.py)

Creates a UDP client that prompts the user for messages to send to the server, gets them
back with a timestamp prefix, and displays them back to the user.

 1 #!/usr/bin/env python
 2
 3 from socket import *
 4
 5 HOST = 'localhost'
 6 PORT = 21567
 7 BUFSIZ = 1024
 8 ADDR = (HOST, PORT)
 9
 10 udpCliSock = socket(AF_INET, SOCK_DGRAM)
 11
 12 while True:
 13 data = raw_input('> ')
 14 if not data:
 15 break
 16 udpCliSock.sendto(data, ADDR)
 17 data, ADDR = udpCliSock.recvfrom(BUFSIZ)
 18 if not data:
 19 break
 20 print dataudpCliSock.close()
 21
 22 udpCliSock.close()

Line-by-Line Explanation

Lines 13

After the Unix startup line, we import all the attributes from the socket module, again, just like in the
TCP version of the client.

Lines 510

Because we are running the server on our local machine again, we use "localhost" and the same port
number on the client side, not to mention the same 1K buffer. We allocate our socket object in the same

file:///D|/1/0132269937/ch16lev1sec3.html (10 von 13) [13.11.2007 16:24:42]

Section 16.3. Network Programming in Python

way as the UDP server.

Lines 1222

Our UDP client loop works in almost the exact manner as the TCP client. The only difference is that we
do not have to establish a connection to the UDP server first; we simply send a message to it and await
the reply. After the timestamped string is returned, we display it to the screen and go back for more.
When the input is complete, we break out of the loop and close the socket.

16.3.8. Executing Our UDP Server and Client(s)

The UDP client behaves the same as the TCP client:

 $ tsUclnt.py
 > hi
 [Sat Jun 17 19:55:36 2006] hi
 > spam! spam! spam!
 [Sat Jun 17 19:55:40 2006] spam! spam! spam!
 >
 $

Likewise for the server:

 $ tsUserv.py
 waiting for message...
 ...received from and returned to: ('127.0.0.1', 1025)
 waiting for message...

In fact, we output the client's information because we can be receiving messages from multiple clients
and sending replies, and such output helps by telling us where messages came from. With the TCP
server, we know where messages come from because each client makes a connection. Note how the
messages says, "waiting for message" as opposed to "waiting for connection."

16.3.9. socket Module Attributes

In addition to the socket.socket() function which we are now familiar with, the socket module features
many more attributes that are used in network application development. Some of the most popular ones
are shown in Table 16.2.

For more information, we refer you to the socket Module documentation in the Python Library Reference.

Table 16.2. socket Module Attributes

Attribute Name Description

Data Attributes

file:///D|/1/0132269937/ch16lev1sec3.html (11 von 13) [13.11.2007 16:24:42]

Section 16.3. Network Programming in Python

AF_UNIX, AF_INET, AF_INET6
[a] Socket address families supported by Python

SO_STREAM, SO_DGRAM Socket types (TCP = stream, UDP = datagram)

has_ipv6
[b] Boolean flag indicating whether IPv6 is supported

Exceptions

error Socket-related error

herror
[a] Host and address-related error

gaierror
[a] Address-related error

timeout
[b] Timeout expiration

Functions

socket() Create a socket object from the given address family,
socket type, and protocol type (optional)

socketpair()
[c] Create a pair of socket objects from the given

address family, socket type, and protocol type
(optional)

fromfd() Create a socket object from an open file descriptor

Data Attributes

ssl()
[d] Initiates a Secure Socket Layer connection over

socket; does not perform certificate validation

getaddrinfo()
[a] Gets address information

getfqdn()
[e] Returns fully qualified domain name

gethostname() Returns current hostname

gethostbyname() Maps a hostname to its IP address

gethostbyname_ex() Extended version of gethostbyname() returning
hostname, set of alias hostnames, and list of IP
addresses

gethostbyaddr() Maps an IP address to DNS info; returns same 3-
tuple as gethostbyname_ex()

getprotobyname() Maps a protocol name (e.g. 'tcp') to a number

getservbyname()/getservbyport() Maps a service name to a port number or vice-versa;
a protocol name is optional for either function

ntohl()/ntohs() Converts integers from network to host byte order

htonl()/htons() Converts integers from host to network byte order

inet_aton()/inet_ntoa() Convert IP address octet string to 32-bit packed
format or vice versa (for IPv4 addresses only)

file:///D|/1/0132269937/ch16lev1sec3.html (12 von 13) [13.11.2007 16:24:42]

Section 16.3. Network Programming in Python

inet_pton()/inet_ntop()
[b] Convert IP address string to packed binary format or

vice versa (for both IPv4 and IPv6 addresses)

geTDefaulttimeout()/setdefaulttimeout()
[b] Return default socket timeout in seconds (float); set

default socket timeout in seconds (float)

[a] New in Python 2.2.

[b] New in Python 2.3.

[c] New in Python 2.4.

[d] New in Python 1.6.

[e] New in Python 2.0.

file:///D|/1/0132269937/ch16lev1sec3.html (13 von 13) [13.11.2007 16:24:42]

file:///D|/1/0132269937/14051536.html

Section 16.4. *SocketServer Module

16.4. *SocketServer Module

SocketServer is a higher-level module in the standard library. Its goal is to simplify a lot of the
boilerplate code that is necessary to create networked clients and servers. In this module are various
classes created on your behalf:

Table 16.3. SocketServer Module Classes

Class Description

BaseServer Contains core server functionality and hooks for mix-
in classes; used only for derivation so you will not
create instances of this class; use TCPServer or
UDPServer instead

TCPServer/UDPServer Basic networked synchronous TCP/UDP server

UnixStreamServer/UnixDatagramServer Basic file-based synchronous TCP/UDP server

ForkingMixIn/Threading MixIn Core forking or threading functionality; used only as
mix-in classes with one of the server classes to
achieve some asynchronicity; you will not instantiate
this class directly

ForkingTCPServer/ForkingUDPServer Combination of ForkingMixIn and TCPServer/UDPServer

THReadingTCPServer/ThreadingUDPServer Combination of ThreadingMixIn and TCPServer/
UDPServer

BaseRequestHandler Contains core functionality for handling service
requests; used only for derivation so you will not
create instances of this class; use
StreamRequestHandler or DatagramRequestHandler
instead

StreamRequest Handler/DatagramRequest-
Handler

Implement service handler for TCP/UDP servers

We will create a TCP client and server that duplicates the base TCP example shown earlier. You will
notice the immediate similarities but should recognize how some of the dirty work is now taken care of
so you do not have to worry about that boilerplate code. These represent the simplest synchronous
server you can write. Please check out the exercises at the end of the chapter to turn your server into
an asynchronous one.

In addition to hiding implementation details from you, another difference is that we are now writing our
applications using classes. Doing things in an object-oriented way helps us organize our data and
logically direct functionality to the right places. You will also notice that our applications are now "event-
driven," meaning they only work when "reacting to" an occurrence of an event in our system.

Events include the sending and receiving of messages. In fact, you will see that our class definition only

file:///D|/1/0132269937/ch16lev1sec4.html (1 von 5) [13.11.2007 16:24:43]

Section 16.4. *SocketServer Module

consists of an event handler for the receiving of a client message. All other functionality is taken from
the SocketServer classes we use. GUI programming (Chapter 18) is also event-driven. You will notice
the similarity immediately as the final line of our code is usually a server's infinite loop waiting for and
responding to client service requests. It works almost the same as our infinite while loop in the original
base TCP server we create earlier in the chapter.

In our original server loop, we block waiting for a request, then service it when something comes in, and
then go back to waiting. In the server loop here, instead of building your code in the server, you define
a handler that the server can just call your function when it receives an incoming request.

16.4.1. Creating a SocketServer TCP Server

In our code, we first import our server classes, then define the same host constants as before. That is
followed by our request handler class, and then startup. More details follow our code snippet.

Line-by-Line Explanation

Lines 19

The initial stuff consists of importing the right classes from SocketServer. Note that we are using the
Python 2.4 multi-line import. If you are using an earlier version of Python, then you will have use the
fully-qualified module.attribute names or put both attribute imports on the same line:

from SocketServer import TCPServer as TCP, StreamRequestHandler as SRH

Example 16.5. SocketServer Timestamp TCP Server (tsTservSS.py)

Creates a timestamp TCP server using SocketServer classes TCPServer and
StreamRequestHandler.

 1 #!/usr/bin/env python
 2
 3 from SocketServer import (TCPServer as TCP,
 4 StreamRequestHandler as SRH)
 5 from time import ctime
 6
 7 HOST = ''
 8 PORT = 21567
 9 ADDR = (HOST, PORT)
 10
 11 class MyRequestHandler(SRH):
 12 def handle(self):
 13 print '...connected from:', self.client_address
 14 self.wfile.write('[%s] %s' % (ctime(),
 15 self.rfile.readline()))
 16
 17 tcpServ = TCP(ADDR, MyRequestHandler)

file:///D|/1/0132269937/ch16lev1sec4.html (2 von 5) [13.11.2007 16:24:43]

Section 16.4. *SocketServer Module

 18 print 'waiting for connection...'
 19 tcpServ.serve_forever()

Lines 1115

The bulk of the work happens here. We derive our request handler MyRequestHandler as a subclass of
SocketServer's StreamRequestHandler and override its handle() method, which is stubbed out in the Base
Request class with no default action as:

def handle(self):
 pass

The handle() method is called when an incoming message is received from a client. The
StreamRequestHandler class treats input and output sockets as file-like objects, so we will use readline()
to get the client message and write() to send a string back to the client.

In accordance, we need additional carriage return and NEWLINE characters in both the client and server
code. Actually, you will not see it in the code because we are just reusing those which come from the
client. Other than these minor differences we have mentioned, it should look just like our earlier server.

Lines 1719

The final bits of code create the TCP server with the given host information and request handler class.
We then have our entire infinite loop waiting for and servicing client requests.

16.4.2. Creating a SocketServer TCP Client

Our client will naturally resemble our original client, much more so than the server, but it has to be
tweaked a bit to work well with our new server.

Line-by-Line Explanation

Lines 18

Nothing special here ... this is an exact replica of our original client code.

Example 16.6. SocketServer Timestamp TCP Client (tsTclntSS.py)

file:///D|/1/0132269937/ch16lev1sec4.html (3 von 5) [13.11.2007 16:24:43]

Section 16.4. *SocketServer Module

This is a timestamp TCP client that knows how to speak to the file-like Socket Server class
StreamRequestHandler objects.

 1 #!/usr/bin/env python
 2
 3 from socket import *
 4
 5 HOST = 'localhost'
 6 PORT = 21567
 7 BUFSIZ = 1024
 8 ADDR = (HOST, PORT)
 9
 10 while True:
 11 tcpCliSock = socket(AF_INET, SOCK_STREAM)
 12 tcpCliSock.connect(ADDR)
 13 data = raw_input('> ')
 14 if not data:
 15 break
 16 tcpCliSock.send('%s\r\n' % data)
 17 data = tcpCliSock.recv(BUFSIZ)
 18 if not data:
 19 break
 20 print data.strip()
 21 tcpCliSock.close()

Lines 1021

The default behavior of the SocketServer request handlers is to accept a connection, get the request,
and close the connection. This makes it so that we cannot keep our connection throughout the execution
of our application, so we need to create a new socket each time we send a message to the server.

This behavior makes the TCP server act more like a UDP server; however, this can be changed by
overriding the appropriate methods in our request handler classes. We leave this as an exercise at the
end of this chapter.

Other than the fact that our client is somewhat "inside-out" now (because we have to create a
connection each time), the only other minor difference was previewed in the line-by-line explanation for
the server code: the handler class we are using treats socket communication like a file, so we have to
send line-termination characters (carriage return and NEWLINE) each way. The server just retains and
reuses the ones we send here. When we get a message back from the server, we strip() them and just
use the NEWLINE automatically provided by the print statement.

16.4.3. Executing our TCP Server and Client(s)

Here is the output of our SocketServer TCP client:

 $ tsTclntSS.py
 > 'Tis but a scratch.
 [Tue Apr 18 20:55:49 2006] 'Tis but a scratch.
 > Just a flesh wound.
 [Tue Apr 18 20:55:56 2006] Just a flesh wound.

file:///D|/1/0132269937/ch16lev1sec4.html (4 von 5) [13.11.2007 16:24:43]

Section 16.4. *SocketServer Module

 >
 $

And here is the server's:

 $ tsTservSS.py
 waiting for connection...
 ...connected from: ('127.0.0.1', 53476)
 ...connected from: ('127.0.0.1', 53477)

The output is similar to that of our original TCP client and servers, however, you will notice that we
connected to the server twice.

file:///D|/1/0132269937/ch16lev1sec4.html (5 von 5) [13.11.2007 16:24:43]

Section 16.5. *Introduction to the Twisted Framework

16.5. *Introduction to the Twisted Framework

Twisted is a complete event-driven networking framework that allows you to both use and develop
complete asynchronous networked applications and protocols. It is not part of the Python Standard
library at the time of writing and must be downloaded and installed separately (see link at the end of the
chapter). It provides a significant amount of support for you to build complete systems with: network
protocols, threading, security and authentication, chat/IM, DBM and RDBMS database integration, Web/
Internet, e-mail, command-line arguments, GUI toolkit integration, etc.

Using Twisted to implement our tiny simplistic example is like using a sledgehammer to pound a
thumbtack, but you have to get started somehow, and our application is the equivalent to the "hello
world" of networked applications.

Like SocketServer, most of the functionality of Twisted lies in its classes. In particular for our examples,
we will be using the classes found in the reactor and protocol subpackages of Twisted's Internet
component.

16.5.1. Creating a Twisted Reactor TCP Server

You will find our code similar to that of the SocketServer example. Instead of a handler class, we create
a protocol class and override several methods in the same manner as installing callbacks. Also, this
example is asynchronous. Let us take a look at the server now.

Line-by-Line Explanation

Lines 16

The setup lines of code include the usual module imports, most notably the protocol and reactor
subpackages of twisted.internet and our constant port number.

Lines 814

We derive the Protocol class and call ours TSServProtocol for our timestamp server. We then override
connectionMade(), a method that is executed when a client connects to us, and dataReceived(), called
when a client sends a piece of data across the network. The reactor passes in the data as an argument
to this method so we can get access to it right away without having to extract it ourselves.

Example 16.7. Twisted Reactor Timestamp TCP Server (tsTservTW.py)

file:///D|/1/0132269937/ch16lev1sec5.html (1 von 4) [13.11.2007 16:24:44]

file:///D|/1/0132269937/14051536.html

Section 16.5. *Introduction to the Twisted Framework

This is a timestamp TCP server using Twisted Internet classes.

 1 #!/usr/bin/env python
 2
 3 from twisted.internet import protocol, reactor
 4 from time import ctime
 5
 6 PORT = 21567
 7
 8 class TSServProtocol(protocol.Protocol):
 9 def connectionMade(self):
 10 clnt = self.clnt = self.transport.getPeer().host
 11 print '...connected from:', clnt
 12 def dataReceived(self, data):
 13 self.transport.write('[%s] %s' % (
 14 ctime(), data))
 15
 16 factory = protocol.Factory()
 17 factory.protocol = TSServProtocol
 18 print 'waiting for connection...'
 19 reactor.listenTCP(PORT, factory)
 20 reactor.run()

The transport instance object is how we can communicate with the client. You can see how we use it in
connectionMade() to get the host information about who is connecting to us as well as in dataReceived()
to return data back to the client.

Lines 1620

In the final part of our server, we create a protocol Factory. It is called a "factory" so that an instance of
our protocol is "manufactured" every time we get an incoming connection. We then install a TCP listener
in our reactor to check for service requests and when it gets one, to create a TSServProtocol instance to
take care of that client.

16.5.2. Creating a Twisted Reactor TCP Client

Unlike the SocketServer TCP client, this one will not look like all the other clients. This one is distinctly
Twisted.

Example 16.8. Twisted Reactor Timestamp TCP Client (tsTclntTW.py)

file:///D|/1/0132269937/ch16lev1sec5.html (2 von 4) [13.11.2007 16:24:44]

Section 16.5. *Introduction to the Twisted Framework

Our familiar timestamp TCP client written from a Twisted point of view.

 1 #!/usr/bin/env python
 2
 3 from twisted.internet import protocol, reactor
 4
 5 HOST = 'localhost'
 6 PORT = 21567
 7
 8 class TSClntProtocol(protocol.Protocol):
 9 def sendData(self):
 10 data = raw_input('> ')
 11 if data:
 12 print '...sending %s...' % data
 13 self.transport.write(data)
 14 else:
 15 self.transport.loseConnection()
 16
 17 def connectionMade(self):
 18 self.sendData()
 19
 20 def dataReceived(self, data):
 21 print data
 22 self.sendData()
 23
 24 class TSClntFactory(protocol.ClientFactory):
 25 protocol = TSClntProtocol
 26 clientConnectionLost = clientConnectionFailed = \
 27 lambda self, connector, reason: reactor.stop()
 28
 29 reactor.connectTCP(HOST, PORT, TSClntFactory())
 30 reactor.run()

Line-by-Line Explanation

Lines 16

Again, nothing really new here other than the import of Twisted components. It is very similar to all of
our other clients.

Lines 822

Like the server, we extend Protocol by overriding the same methods, connectionMade() and dataReceived
(). Both execute for the same reason as the server. We also add our own method for when data need to
be sent and call it sendData().

Since we are the client this time, we are the ones initiating a conversation with the server. Once that
connection has been established, we take the first step and send a message. The server replies, and we
handle it by displaying it to the screen and sending another message to the server.

This continues in a loop until we terminate the connection by giving no input when prompted. Instead of

file:///D|/1/0132269937/ch16lev1sec5.html (3 von 4) [13.11.2007 16:24:44]

Section 16.5. *Introduction to the Twisted Framework

calling the write() method of the transport object to send another message to the server,
loseConnection() is executed, closing the socket. When this occurs, the factory's clientConnection-Lost
() method will be called, and our reactor is stopped, completing execution of our script. We also stop
the reactor if a clientConnection-Failed() for some other reason.

The final part of the script is where we create a client factory and make a connection to the server and
run the reactor. Note that we instantiate the client factory here instead of passing it in to the reactor like
in the server. This is because we are not the server waiting for clients to talk to us, and its factory
makes a new protocol object for each connection. We are one client, so we make a single protocol object
that connects to the server whose factory makes one to talk to ours.

16.5.3. Executing Our TCP Server and Client(s)

The Twisted client displays output similar to all our other clients:

 $ tsTclntTW.py
 > Where is hope
 ...sending Where is hope...
 [Tue Apr 18 23:53:09 2006] Where is hope
 > When words fail
 ...sending When words fail...
 [Tue Apr 18 23:53:14 2006] When words fail
 >
 $

The server is back to a single connection. Twisted maintains the connection and does not close the
transport after every message:

 $ tsTservTW.py
 waiting for connection...
 ...connected from: 127.0.0.1

The "connection from" output does not have the other information because we only asked for the host/
address from the getPeer() method of the server's transport object.

file:///D|/1/0132269937/ch16lev1sec5.html (4 von 4) [13.11.2007 16:24:44]

file:///D|/1/0132269937/14051536.html

Section 16.6. Related Modules

16.6. Related Modules

Table 16.4 lists some of the other Python modules that are related to network and socket programming.
The select module is usually used in conjunction with the socket module when developing lower-level
socket applications. It provides the select() function, which manages sets of socket objects. One of the
most useful things it does is to take a set of sockets and listen for active connections on them. The
select() function will block until at least one socket is ready for communication, and when that
happens, it provides you with a set of which ones are ready for reading. (It can also determine which
are ready for writing, although that is not as common as the former operation.)

Table 16.4. Network/Socket Programming Related Modules

Module Description

socket Lower-level networking interface as discussed in this chapter

asyncore/asynchat Provide infrastructure to create networked applications that process clients
asynchronously

select Manages multiple socket connections in a single-threaded network server
application

SocketServer High-level module that provides server classes for networked applications,
complete with forking or threading varieties

The async* and SocketServer modules both provide higher-level functionality as far as creating servers is
concerned. Written on top of the socket and/or select modules, they enable more rapid development of
client/server systems because all the lower-level code is handled for you. All you have to do is to create
or subclass the appropriate base classes, and you are on your way. As we mentioned earlier,
SocketServer even provides the capability of integrating threading or new processes into the server for
more parallelized processing of client requests.

Although async* provide the only asynchronous development support in the standard library, we have
seen a third-party package that is much more contemporary and powerful than those older modules,
Twisted. Although the example code we have seen in this chapter is slightly longer than the barebones
scripts, Twisted provides a much more powerful and flexible framework and has implemented many
protocols for you already. You can find out more about Twisted at its Web site:

http://twistedmatrix.com

The topics we have covered in this chapter deal with network programming with sockets in Python and
how to create custom applications using lower-level protocol suites such as TCP/IP and UDP/IP. If you
want to develop higher-level Web and Internet applications, we strongly encourage you to head to
Chapter 20.

file:///D|/1/0132269937/ch16lev1sec6.html (1 von 2) [13.11.2007 16:24:44]

file:///D|/1/0132269937/14051536.html
http://twistedmatrix.com/
file:///D|/1/0132269937/14051536.html

Section 16.6. Related Modules

file:///D|/1/0132269937/ch16lev1sec6.html (2 von 2) [13.11.2007 16:24:44]

Section 16.7. Exercises

16.7. Exercises

16-1. Sockets. What is the difference between connection-oriented versus connectionless?

16-2. Client/Server Architecture. Describe in your own words what this term means and give
several examples.

16-3. Sockets. Between TCP and UDP, which type of servers accept connections and hands
them off to separate sockets for client communication?

16-4. Clients. Update the TCP (tsTclnt.py) and UDP (tsUclnt.py) clients so that the server
name is not hard-coded into the application. Allow the user to specify a hostname and
port number, and only use the default values if either or both parameters are missing.

16-5. Internetworking and Sockets. Implement Guido van Rossum's sample TCP client/
server programs found in Section 7.2.2 of the Python Library Reference and get them
to work. Set up the server, then the client. An online version of the source is also
available here:

http://www.python.org/doc/current/lib/
 Socket_Example.html

You decide the server is too boring. Update the server so that it can do much more,
recognizing the following commands:

date Server will return its current date/timestamp, i.e., time.ctime(time.time())

os Get OS info (os.name)

ls Give a listing of the current directory (HINTS: os.listdir() lists a directory,
os.curdir is the current directory.) Extra credit: Accept "lsdir" and return
dir's file listing.

You do not need a network to do this assignmentyour machine can talk to itself. Note:
After the server exits, the binding must be cleared before you can run it again. You
may experience "port already bound" errors. The operating system usually clears the
binding within 5 minutes, so be patient!

16-6. Daytime Service. Use the socket.getservbyname() to determine the port number for
the "daytime" service under the UDP protocol. Check the documentation for
getservbyname() to get the exact usage syntax (i.e., socket.getservbyname.__doc__).
Now write an application that sends a dummy message over and wait for the reply.
Once you have received a reply from the server, display it to the screen.

file:///D|/1/0132269937/ch16lev1sec7.html (1 von 3) [13.11.2007 16:24:45]

Section 16.7. Exercises

16-7. Half-Duplex Chat. Create a simple, half-duplex chat program. By "half-duplex," we
mean that when a connection is made and the service starts, only one person can
type. The other participant must wait to get a message before he or she is prompted
to enter a message. Once a message is sent, then the sender must wait for a reply
before being allowed to send another message. One participant will be on the server
side, while the other will be on the client side.

16-8. Full-Duplex Chat. Update your solution to the previous problem so that your chat
service is now full-duplex, meaning that both parties can send and receive
independently of each other.

16-9. Multi-User Full Duplex Chat. Further update your solution so that your chat service is
multi-user.

16-10. Multi-User Multi-Room Full Duplex Chat. Now make your chat service multi-user and
multi-room.

16-11. Web Client. Write a TCP client that connects to port 80 of your favorite Web site
(remove the "http://" and any trailing info; use only the hostname). Once a
connection has been established, send the HTTP command string "GET /\n" and write
all the data that the server returns to a file. (The GET command retrieves a Web page,
the "/" file indicates the file to get, and the "\n" sends the command to the server.)
Examine the contents of the retrieved file. What is it? How can you check to make
sure the data you received is correct? (Note: You may have to give one or two
NEWLINEs after the command string. One usually works.)

16-12. Sleep Server. Create a "sleep" server. A client will request to be "put to sleep" for a
number of seconds. The server will issue the command on behalf of the client, then
return a message to the client indicating success. The client should have slept or
should have been idle for the exact time requested. This is a simple implementation of
a "remote procedure call" where a client's request invokes commands on another
machine across the network.

16-13. Name Server. Design and implement a name server. Such a server is responsible for
maintaining a database of hostname-port number pairs, perhaps along with the string
description of the service that the corresponding servers provide. Take one or more
existing servers and have them "register" their service with your name server. (Note
that these servers are, in this case, clients of the name server.)

Every client that starts up has no idea where the server is that it is looking for. Also as
clients of the name server, these clients should send a request to the name server
indicating what type of service they are seeking. The name server, in reply, returns a
hostname-port number pair to this client, which then connects to the appropriate
server to process its request.

Extra credit:

1.

Add caching to your name server for popular requests;

2.

file:///D|/1/0132269937/ch16lev1sec7.html (2 von 3) [13.11.2007 16:24:45]

Section 16.7. Exercises

Add logging capability to your name server, keeping track of which servers
have registered and which services clients are requesting;

3.

Your name server should periodically "ping" the registered hosts at their
respective port numbers to ensure that the service is indeed up. Repeated
failures will cause a server to be delisted from the list of services.

You may implement real services for the servers that register for your name service,
or just use dummy servers (which merely acknowledge a request).

16-14. Error Checking and Graceful Shutdown. All of our sample client/server code in this
chapter is poor in terms of error-checking. We do not handle when users press ^C to
exit out of a server or ^D to terminate client input, nor do we check other improper
input to raw_input() or handle network errors. Because of this weakness, quite often
we terminate an application without closing our sockets, potentially losing data.
Choose a client/server pair of one of our examples, and add enough error-checking so
that each application properly shuts down, i.e., closes network connections.

16-15. Asynchronicity and SocketServer. Take the example TCP server example and use
either mix-in class to support an asynchronous server. To test your server, create and
run multiple clients simultaneously and show output that your server is serving
requests from both interleaved.

16-16. *Extending SocketServer Classes. In the SocketServer TCP server code, we had to
change our client from the original base TCP client because the SocketServer class
does not maintain the connection between requests.

a.

Subclass the TCPServer and StreamRequestHandler classes and rearchitect the
server so that it maintains and uses a single connection for each client (not
one per request).

b.

Integrate your solution for the previous problem with your solution to part (a)
such that multiple clients are being serviced in parallel.

file:///D|/1/0132269937/ch16lev1sec7.html (3 von 3) [13.11.2007 16:24:45]

file:///D|/1/0132269937/14051536.html

Chapter 17. Internet Client Programming

Chapter 17. Internet Client Programming

Chapter Topics

● Introduction
● Transferring Files

�❍ File Transfer Protocol(FTP)
● Network News, Usenet, and Newsgroups

�❍ Network News Transfer Protocol (NNTP)
● Electronic Mail

�❍ Simple Mail Transfer Protocol (SMTP)
�❍ Post Office Protocol version 3 (POP3)

● Related Modules

In an earlier chapter, we took a look at low-level networking communication protocols using sockets.
This type of networking is at the heart of most of the client/server protocols which exist on the Internet
today. These protocols include those for transferring files (FTP, SCP, etc.), reading Usenet newsgroups
(NNTP), sending e-mail (SMTP), and downloading e-mail from a server (POP3, IMAP), etc. These
protocols work in a way much like the client/server examples in the earlier chapter on socket
programming. The only thing that is different is that now we have taken lower-level protocols like TCP/
IP and created newer, more specific protocols on top of it to implement the higher-level services we just
described.

file:///D|/1/0132269937/ch17.html [13.11.2007 16:24:45]

Section 17.1. What Are Internet Clients?

17.1. What Are Internet Clients?

Before we take a look at these protocols, we first must ask, "What is an Internet client?" To answer this
question, we simplify the Internet to a place where data are exchanged, and this interchange is made up
of someone offering a service and a user of such services. You will hear the term "producer-consumer"
in some circles (although this phrase is generally reserved for conversations on operating systems).
Servers are the producers, providing the services, and clients consume the offered services. For any one
particular service, there is usually only one server (process, host, etc.) and more than one consumer.
We previously examined the client/server model, and although we do not need to create Internet clients
with the low-level socket operations seen earlier, the model is an accurate match.

Here, we will look specifically at three of these Internet protocolsFTP, NNTP, and POP3and write clients
for each. What you should take away afterward are being able to recognize how similar the APIs of all of
these protocols arethis is done by design, as keeping interfaces consistent is a worthy causeand most
importantly, the ability to create real clients of these and other Internet protocols. And even though we
are only highlighting these three specific protocols, at the end of this chapter, you should feel confident
enough to write clients for just about any Internet protocol.

file:///D|/1/0132269937/ch17lev1sec1.html [13.11.2007 16:24:45]

file:///D|/1/0132269937/14051536.html

Section 17.2. Transferring Files

17.2. Transferring Files

17.2.1. File Transfer Internet Protocols

One of the most popular Internet activities is file exchange. It happens all the time. There have been
many protocols to transfer files over the Internet, with some of the most popular including the File
Transfer Protocol (FTP), the Unix-to-Unix Copy Protocol (UUCP), and of course, the Web's Hypertext
Transfer Protocol (HTTP). We should also include the remote (Unix) file copy command rcp (and now its
more secure and flexible cousins scp and rsync).

HTTP, FTP, and scp/rsync are still quite popular today. HTTP is primarily used for Web-based file
download and accessing Web services. It generally doesn't require clients to have a login and/or
password on the server host to obtain documents or service. The majority of all HTTP file transfer
requests are for Web page retrieval (file downloads).

On the other hand, scp and rsync require a user login on the server host. Clients must be authenticated
before file transfers can occur, and files can be sent(upload) or retrieved (download). Finally, we have
FTP. Like scp/rsync, FTP can be used for file upload or download; and like scp/rsync, it employs the Unix
multi-user concepts of usernames and passwords: FTP clients must use the login/password of existing
users. However, FTP also allows anonymous logins. Let us now take a closer look at FTP.

17.2.2. File Transfer Protocol (FTP)

The File Transfer Protocol was developed by the late Jon Postel and Joyce Reynolds in the Internet
Request for Comment (RFC) 959 document and published in October 1985. It is primarily used to
download publicly accessible files in an anonymous fashion. It can also be used by users to transfer files
between two machines, especially in cases where you're using a Unix system as for file storage or
archiving and a desktop or laptop PC for work. Before the Web became popular, FTP was one of the
primary methods of transferring files on the Internet, and one of the only ways to download software
and/or source code.

As described previously, one must have a login/password for accessing the remote host running the FTP
server. The exception is anonymous logins, which are designed for guest downloads. These permit
clients who do NOT have accounts to download files. The server's administrator must set up an FTP
server with anonymous logins in order for these to occur. In these cases, the "login" of an unregistered
user is called "anonymous," and the password is generally the e-mail address of the client. This is akin
to a public login and access to directories that were designed for general consumption as opposed to
logging in and transferring files as a particular user. The list of available commands via the FTP protocol
is also generally more restrictive than that for real users.

The protocol is diagrammed below in Figure 17-1 and works as follows:

1.

Client contacts the FTP server on the remote host

2.

file:///D|/1/0132269937/ch17lev1sec2.html (1 von 8) [13.11.2007 16:24:47]

file:///D|/1/0132269937/14051536.html

Section 17.2. Transferring Files

Client logs in with username and password (or "anonymous" and e-mail address)

3.

Client performs various file transfers or information requests

4.

Client completes the transaction by logging out of the remote host and FTP server

Figure 17-1. FTP Clients and Servers on the Internet. The client and server
communicate using the FTP protocol on the command or control port while

data is transferred using the data port.

[View full size image]

Of course, this is generally how it works. Sometimes there are circumstances whereby the entire
transaction is terminated before it's completed. These include being disconnected from the network if
one of the two hosts crash or because of some other network connectivity issue. For inactive clients, FTP
connections will generally time out after 15 minutes (900 seconds) of inactivity.

Under the covers, it is good to know that FTP uses only TCP (see earlier chapter on network
programming)it does not use UDP in any way. Also, FTP may be seen as a more "unusual" example of
client/server programming because both the clients and the servers use a pair of sockets for
communication: one is the control or command port (port 21), and the other is the data port(sometimes
port 20).

We say "sometimes" because there are two FTP modes, Active and Passive, and the server's data port is
only 20 for Active mode. After the server sets up 20 as its data port, it "actively" initiates the connection
to the client's data port. For Passive mode, the server is only responsible for letting the client know
where its random data port is, and the client must initiate the data connection. As you can see in this
mode, the FTP server is taking a more "passive" role in setting up the data connection. Finally, there is
now support for a new Extended Passive Mode to support version 6 Internet Protocol (IPv6)
addressessee RFC 2428.

Python has support for most Internet protocols, including FTP. Other supported client libraries can be
found at http://docs.python.org/lib/internet.html. Now let's take a look at just how easy it is to create
an Internet client with Python.

17.2.3. Python and FTP

file:///D|/1/0132269937/ch17lev1sec2.html (2 von 8) [13.11.2007 16:24:47]

file:///D|/1/0132269937/images/chun_fig17_01_alt.jpg
http://docs.python.org/lib/internet.html

Section 17.2. Transferring Files

So how do we write an FTP client using Python? What we just described in the previous section covers it
pretty much. The only additional work required is to import the appropriate Python module and make
the appropriate calls in Python. So let us review the protocol briefly:

1.

Connect to server

2.

Log in

3.

Make service request(s) (and hopefully get reply[ies])

4.

Quit

When using Python's FTP support, all you do is import the ftplib module and instantiate the ftplib.FTP
class. All FTP activity will be accomplished using your object, i.e., logging in, transferring files, and
logging out.

Here is some Python pseudocode:

from ftplib import FTP
f= FTP('ftp.python.org')
f.login('anonymous','guess@who.org')
 :
f.quit()

Soon we will look at a real example, but for now, let us familiarize ourselves with methods from the
ftplib.FTP class, which you will likely use in your code.

17.2.4. ftplib.FTP Class Methods

We outline the most popular methods in Table 17.1. The list is not comprehensive see the source code
for the class itself for all methodsbut the ones presented here are those that make up the "API" for FTP
client programming in Python. In other words, you don't really need to use the others as they are either
utility or administrative functions or are used by the API methods later.

Table 17.1. Methods for FTP Objects

Method Description

login (user ='anonymous', passwd ='', acct='') Log in to FTP server; all arguments are optional

file:///D|/1/0132269937/ch17lev1sec2.html (3 von 8) [13.11.2007 16:24:47]

Section 17.2. Transferring Files

pwd() Current working directory

cwd(path) Change current working directory to path

dir ([path [,...[,cb]]) Displays directory listing of path; optional callback cb
passed to retrlines()

nlst([path [,...]) Like dir() but returns a list of filenames instead of
displaying

retrlines(cmd [,cb]) Download text file given FTP cmd e.g., "RETR
filename"; optional callback cb for processing each
line of file

retrbinary (cmd, cb [, bs =8192[,ra]]) Similar to retrlines() except for binary file; callback
cb for processing each block (size bs defaults to 8K)
downloaded required

storlines (cmd, f) Upload text file given FTP cmd e.g., "STOR filename";
open file object f required

storbinary (cmd, f [, bs= 8192]) Similar to storlines() but for binary file; open file
object f required, upload blocksize bs defaults to 8K

rename (old, new) Rename remote file from old to new

delete (path) Delete remote file located at path

mkd (directory) Create remote directory

rmd (directory) Remove remote directory

quit() Close connection and quit

The methods you will most likely use in a normal FTP transaction include login(), cwd(), dir(), pwd(),
stor*(), retr*(), and quit(). There are more FTP object methods not listed in the table which you may
find useful. Please see the Python documentation for detailed information on FTP objects:

http://python.org/docs/current/lib/ftp-objects.html

17.2.5. Interactive FTP Example

An example of using FTP with Python is so simple to use that you do not even have to write a script. You
can just do it all from the interactive interpreter and see the action and output in real time. This is a
sample session we did years ago when there was still an FTP server running at python.org:

>>> from ftplib import FTP
>>> f = FTP('ftp.python.org')
>>> f.login('anonymous', '-help@python.org')
'230 Guest login ok, access restrictions apply.'
>>> f.dir()
total 38
drwxrwxr-x 10 1075 4127 512 May 17 2000 .
drwxrwxr-x 10 1075 4127 512 May 17 2000 ..
drwxr-xr-x 3 root wheel 512 May 19 1998 bin
drwxr-sr-x 3 root 1400 512 Jun 9 1997 dev

file:///D|/1/0132269937/ch17lev1sec2.html (4 von 8) [13.11.2007 16:24:47]

Section 17.2. Transferring Files

drwxr-xr-x 3 root wheel 512 May 19 1998 etc
lrwxrwxrwx 1 root bin 7 Jun 29 1999 lib -> usr/lib
-r--r--r-- 1 guido 4127 52 Mar 24 2000 motd
drwxrwsr-x 8 1122 4127 512 May 17 2000 pub
drwxr-xr-x 5 root wheel 512 May 19 1998 usr
>>> f.retrlines('RETR motd')
Sun Microsystems Inc. SunOS 5.6 Generic August 1997
'226 Transfer complete.
>>> f.quit()
'221 Goodbye.'

17.2.6. Client Program FTP Example

We mentioned previously that an example script is not even necessary since you can run one
interactively and not get lost in any code. We will try anyway. For example, let us say you wanted a
piece of code that goes to download the latest copy of Bugzilla from the Mozilla Web site. Example 17.1
is what we came up with. We are attempting an application here, but even so, you can probably run this
one interactively, too. Our application uses the FTP library to download the file and built it with some
error-checking.

Example 17.1. FTP Download Example (getLatestFTP.py)

This program is used to download the latest version of a file from a Web site. You can
tweak it to download your favorite application.

1 #!/usr/bin/env python
2
3 import ftplib
4 import os
5 import socket
6
7 HOST = 'ftp.mozilla.org'
8 DIRN = 'pub/mozilla.org/webtools'
9 FILE = 'bugzilla-LATEST.tar.gz'
10
11 def main():
12 try:
13 f = ftplib.FTP(HOST)
14 except (socket.error, socket.gaierror), e:
15 print 'ERROR: cannot reach "%s"' % HOST
16 return
17 print '*** Connected to host "%s"' % HOST
18
19 try:
20 f.login()
21 except ftplib.error_perm:
22 print 'ERROR: cannot login anonymously'
23 f.quit()
24 return
25 print '*** Logged in as "anonymous"'
26
27 try:
28 f.cwd(DIRN)
29 except ftplib.error_perm:
30 print 'ERROR: cannot CD to "%s"' % DIRN

file:///D|/1/0132269937/ch17lev1sec2.html (5 von 8) [13.11.2007 16:24:47]

Section 17.2. Transferring Files

31 f.quit()
32 return
33 print '*** Changed to "%s" folder' % DIRN
34
35 try:
36 f.retrbinary('RETR %s' % FILE,
37 open(FILE, 'wb').write)
38 except ftplib.error_perm:
39 print 'ERROR: cannot read file "%s"' % FILE
40 os.unlink(FILE)
41 else:
42 print '*** Downloaded "%s" to CWD' % FILE
43 f.quit()
44 return
45
46 if __name__ == '__main__':
47 main()

It is not automated, however; it is up to you to run it whenever you want to perform the download, or if
you are on a Unix-based system, you can set up a "cron" job to automate it for you. Another issue is
that it will break if either the file or directory names change.

If no errors occur when we run our script, we get the following output:

$ getLatestFTP.py
*** Connected to host "ftp.mozilla.org"
*** Logged in as "anonymous"
*** Changed to "pub/mozilla.org/webtools" folder
*** Downloaded "bugzilla-LATEST.tar.gz" to CWD
$

Line-by-Line Explanation

Lines 19

The initial lines of code import the necessary modules (mainly to grab exception objects) and set a few
constants.

Lines 1144

The main() function consists of various steps of operation: create an FTP object and attempt to connect
to the FTPs server (lines 12-17) and (return and) quit on any failure. We attempt to login as
"anonymous" and bail if it fails (lines 19-25). The next step is to change to the distribution directory
(lines 27-33), and finally, we try to download the file (lines 35-44).

On lines 35-36, we pass a callback to retrbinary() that should be executed for every block of binary
data downloaded. This is the write() method of a file object we create to write out the local version of
the file. We are depending on the Python interpreter to adequately close our file after the transfer is
done and not to lose any of our data. Although more convenient, your author tries to not use this style
as much as possible because the programmer should be responsible for freeing resources directly

file:///D|/1/0132269937/ch17lev1sec2.html (6 von 8) [13.11.2007 16:24:47]

Section 17.2. Transferring Files

allocated rather than depending on other code. In this case, we should save the open file object to a
variable, say loc, and then pass loc.write in the call to ftp.retrbinary().

Also in this block of code, if for some reason we are not able to save the file, we remove the empty file if
it is there to avoid cluttering up the file system (line 40). Finally, to avoid another pair of lines that close
the FTP connection and return, we use a TRy-except-else clause (lines 35-42).

Lines 4647

This is the usual idiom for running a standalone script.

17.2.7. Miscellaneous FTP

Python supports both Active and Passive modes. Note, however, that in Python 2.0 and before, Passive
mode was off by default; in Python 2.1 and later, it is on by default.

Here is a list of typical FTP clients:

● Command-line client program: This is where you execute FTP transfers by running an FTP
client program such as /bin/ftp, or NcFTP, which allows users to interactively participate in an
FTP transaction via the command line.

● GUI client program: Similar to a command-line client program except it is a GUI application
like WsFTP and Fetch.

● Web browser: In addition to using HTTP, most Web browsers (also referred to as a client) can
also speak FTP. The first directive in a URL/URI is the protocol, i.e., "http://blahblah." This tells
the browser to use HTTP as a means of transferring data from the given Web site. By changing
the protocol, one can make a request using FTP, as in "ftp://blahblah." It looks pretty much
exactly the same as an URL, which uses HTTP. (Of course, the "blahblah" can expand to the
expected "host/path?attributes" after the protocol directive "ftp://". Because of the login
requirement, users can add their logins and passwords (in clear text) into their URL, i.e., "ftp://
user:passwd@host/path?attr1=val1&attr2=val2...".

● Custom application: A program you write that uses FTP to transfer files. It generally does not
allow the user to interact with the server as the application was created for specific purposes.

All four types of clients can be creating using Python. We used ftplib above to create our custom
application, but you can just as well create an interactive command-line application. On top of that, you
can even bring a GUI toolkit such as Tk, wxWidgets, GTK+, Qt, MFC, and even Swing into the mix (by
importing their respective Python [or Jython] interface modules) and build a full GUI application on top
of your command-line client code. Finally, you can use Python's urllib module to parse and perform FTP
transfers using FTP URLs. At its heart, urllib imports and uses ftplib making urllib another client of
ftplib.

FTP is not only useful for downloading client applications to build and/or use, but it can also be helpful in
your everyday job if it involves moving files between systems. For example, let us say you are an
engineer or a system administrator needing to transfer files. It is an obvious choice to use the scp or
rsync commands when crossing the Internet boundary or pushing files to an externally visible server.
However, there is a penalty when moving extremely large logs or database files between internal
machines on a secure network in that manner: security, encryption, compression/decompression, etc. If
what you want to do is just build a simple FTP application that moves files for you quickly during the

file:///D|/1/0132269937/ch17lev1sec2.html (7 von 8) [13.11.2007 16:24:47]

Section 17.2. Transferring Files

after-hours, using Python is a great way to do it!

You can read more about FTP in the FTP Protocol Definition/Specification (RFC 959) at ftp://ftp.isi.edu/in-
notes/rfc959.txt as well as on the http://www.networksorcery.com/enp/protocol/ftp.htm Web page.
Other related RFCs include 2228, 2389, 2428, 2577, 2640, and 4217. To find out more about Python's
FTP support, you can start here: http://python.org/docs/current/lib/module-ftplib.html.

file:///D|/1/0132269937/ch17lev1sec2.html (8 von 8) [13.11.2007 16:24:47]

http://www.networksorcery.com/enp/protocol/ftp.htm
file:///D|/1/0132269937/14051536.html

Section 17.3. Network News

17.3. Network News

17.3.1. Usenet and Newsgroups

The Usenet News System is a global archival "bulletin board." There are newsgroups for just about any
topic, from poems to politics, linguistics to computer languages, software to hardware, planting to
cooking, finding or announcing employment opportunities, music and magic, breaking up or finding love.
Newsgroups can be general and worldwide or targeted toward a specific geographic region.

The entire system is a large global network of computers that participate in sharing Usenet postings.
Once a user uploads a message to his or her local Usenet computer, it will then be propagated to other
adjoining Usenet computers, and then to the neighbors of those systems, until it's gone around the
world and everyone has received the posting. Postings will live on Usenet for a finite period of time,
either dictated by a Usenet system administrator or the posting itself via an expiration date/time.

Each system has a list of newsgroups that it "subscribes" to and only accepts postings of interestnot all
newsgroups may be archived on a server. Usenet news service is dependent on which provider you use.
Many are open to the public while others only allow access to specific users, such as paying subscribers,
or students of a particular university, etc. A login and password are optional, configurable by the Usenet
system administrator. The ability to post or download-only is another parameter configurable by the
administrator.

17.3.2. Network News Transfer Protocol (NNTP)

The method by which users can download newsgroup postings or "articles" or perhaps post new articles
is called the Network News Transfer Protocol (NNTP). It was authored by Brian Kantor (UC San Diego)
and Phil Lapsley (UC Berkeley) in RFC 977, published in February 1986. The protocol has since then
been updated in RFC 2980, published in October 2000.

As another example of client/server architecture, NNTP operates in a fashion similar to FTP; however, it
is much simpler. Rather than having a whole set of different port numbers for logging in, data, and
control, NNTP uses only one standard port for communication, 119. You give the server a request, and it
responds appropriately, as shown in Figure 17-2.

Figure 17-2. NNTP Clients and Servers on the Internet. Clients mostly read
news but may also post. Articles are then distributed as servers update each

other.

file:///D|/1/0132269937/ch17lev1sec3.html (1 von 9) [13.11.2007 16:24:48]

file:///D|/1/0132269937/14051536.html

Section 17.3. Network News

17.3.3. Python and NNTP

Based on your experience with Python and FTP above, you can probably guess that there is an nntplib
and an nntplib.NNTP class that you need to instantiate, and you would be right. As with FTP, all we need
to do is to import that Python module and make the appropriate calls in Python. So let us review the
protocol briefly:

1.

Connect to server

2.

Log in (if applicable)

3.

Make service request(s)

4.

Quit

Look somewhat familiar? It should, because it's practically a carbon copy of the FTP protocol. The only
change is that the login step is optional, depending on how an NNTP server is configured.

Here is some Python pseudocode to get started:

file:///D|/1/0132269937/ch17lev1sec3.html (2 von 9) [13.11.2007 16:24:48]

Section 17.3. Network News

from nntplib import NNTP
n = NNTP('your.nntp.server')
r,c,f,l,g = n.group('comp.lang.python')
...
n.quit()

Typically, once you log in, you will choose a newsgroup of interest and call the group() method. It
returns the server reply, a count of the number of articles, the ID of the first and last articles, and
superfluously, the group name again. Once you have this information, you will then perform some sort
of action such as scroll through and browse articles, download entire postings (headers and body of
article), or perhaps post an article.

Before we take a look at a real example, let's introduce some of the more popular methods of the
nntplib.NNTP class.

17.3.4. nntplib.NNTP Class Methods

As in the previous section outlining the ftplib.FTP class methods, we will not show you all methods of
nntplib.NNTP, just the ones you need in order to create an NNTP client application.

As with the FTP objects table in the previous segment, there are more NNTP object methods not
described here. To avoid clutter, we list only the ones we think you would most likely use. For the rest,
we again refer you to the Python Library Reference.

17.3.5. Interactive NNTP Example

Here is an interactive example of how to use Python's NNTP library. It should look similar to the
interactive FTP example. (The e-mail addresses have been changed for privacy reasons.)

When connecting to a group, you get a 5-tuple back from the group() method as described in Table 17.2.

Table 17.2. Methods for NNTP Objects

Method Description

group(name) Select newsgroup name and return a tuple (rsp, ct, fst, lst, group):
server response, number of articles, first and last article numbers and
group name, all of which are strings (name == group)

xhdr (hdr, artrg, [ofile]) Returns list of hdr headers for article range artrg ("first-last" format) or
outputs data to file ofile

body (id [, ofile]) Get article body given its id, which is either a message ID (enclosed in
<...> or an article number (as a string); returns tuple (rsp ,anum, mid,
data): server response, article number (as a string), message ID
(enclosed in <...>), and list of article lines or outputs data to file ofile

head (id) Similar to body()... same tuple returned except lines only contain article
headers

file:///D|/1/0132269937/ch17lev1sec3.html (3 von 9) [13.11.2007 16:24:48]

Section 17.3. Network News

article (id) Also similar to body()... same tuple returned except lines contain both
headers and article body

stat (id) Set article "pointer" to id (message ID or article number as above);
returns tuple similar to body (rsp, anum, mid) but contains no data from
article

next() Used with stat(), moves article pointer to "next" article and returns
similar tuple

last() Also used with stat(), moves article pointer to "last" article and returns
similar tuple

post (ufile) Upload data from ufile file object (using ufile.readline()) and post to
current newsgroup

quit() Close connection and quit

>>> from nntplib import NNTP
>>> n = NNTP('your.nntp.server')
>>> rsp, ct, fst, lst, grp = n.group('comp.lang.python')
>>> rsp, anum, mid, data = n.article('110457')
>>> for eachLine in data:
... print eachLine
From:"Alex Martelli" <alex@...>
Subject: Re: Rounding Question
Date: Wed, 21 Feb 2001 17:05:36 +0100
"Remco Gerlich" <remco@...> wrote:
> Jacob Kaplan-Moss <jacob@...> wrote in comp.lang.python:
>> So I've got a number between 40 and 130 that I want to round up to
>> the nearest 10. That is:
>>
>> 40 --> 40, 41 --> 50, ..., 49 --> 50, 50 --> 50, 51 --> 60
>> Rounding like this is the same as adding 5 to the number and then
> rounding down. Rounding down is substracting the remainder if you were
> to divide by 10, for which we use the % operator in Python.

This will work if you use +9 in each case rather than +5 (note that he
doesn't really want rounding -- he wants 41 to 'round' to 50, for ex).

Alex
>>> n.quit()
'205 closing connection - goodbye!'
>>>

17.3.6. Client Program NNTP Example

For our NNTP client example, we are going to try to be more adventurous. It will be similar to the FTP
client example in that we are going to download the latest of somethingthis time it will be the latest
article available in the Python language newsgroup, comp.lang.python.

Once we have it, we will display (up to) the first 20 lines in the article, and on top of that, (up to) the
first 20 meaningful lines of the article. By that, we mean lines of real data, not quoted text (which begin
with ">" or "|") or even quoted text introductions like "In article <...>, soAndSo@some.domain wrote:".

file:///D|/1/0132269937/ch17lev1sec3.html (4 von 9) [13.11.2007 16:24:48]

Section 17.3. Network News

Finally, we are going to do blank lines intelligently. We will display one blank line when we see one in
the article, but if there are more than one consecutive blank, we only show the first blank line of the set.
Only lines with real data are counted toward the "first 20 lines," so it is possible to display a maximum
of 39 lines of output, 20 real lines of data interleaved with 19 blank ones.

If no errors occur when we run our script, we may see something like this:

$ getLatestNNTP.py
*** Connected to host "your.nntp.server"
*** Found newsgroup "comp.lang.python"
*** Found last article (#471526):

 From: "Gerard Flanagan" <grflanagan@...>
 Subject: Re: Generate a sequence of random numbers that sum up to 1?
 Date: Sat Apr 22 10:48:20 CEST 2006

*** First (<= 20) meaningful lines:

 def partition(N=5):
 vals = sorted(random.random() for _ in range(2*N))
 vals = [0] + vals + [1]
 for j in range(2*N+1):
 yield vals[j:j+2]
 deltas = [x[1]-x[0] for x in partition()]

 print deltas

 print sum(deltas)

 [0.10271966686994982, 0.13826576491042208, 0.064146913555132801,
 0.11906452454467387, 0.10501198456091299, 0.011732423830768779,
 0.11785369256442912, 0.065927165520102249, 0.098351305878176198,
 0.077786747076205365, 0.099139810689226726]
 1.0
$

Example 17.2. NNTP Download Example (getFirstNNTP.py)

This downloads and displays the first "meaningful" (up to 20) lines of the most recently
available article in comp.lang.python, the Python newsgroup.

1 #!/usr/bin/env python
2
3 import nntplib
4 import socket
5
6 HOST = 'your.nntp.server'
7 GRNM = 'comp.lang.python'
8 USER = 'wesley'
9 PASS = "you'llNeverGuess"
10
11 def main():
12
13 try:
14 n = nntplib.NNTP(HOST)
15 #, user=USER, password=PASS)

file:///D|/1/0132269937/ch17lev1sec3.html (5 von 9) [13.11.2007 16:24:48]

Section 17.3. Network News

16 except socket.gaierror, e:
17 print 'ERROR: cannot reach host "%s"' % HOST
18 print ' ("%s")' % eval(str(e))[1]
19 return
20 except nntplib.NNTPPermanentError, e:
21 print 'ERROR: access denied on "%s"' % HOST
22 print ' ("%s")' % str(e)
23 return
24 print '*** Connected to host "%s"' % HOST
25
26 try:
27 rsp, ct, fst, lst, grp = n.group(GRNM)
28 except nntplib.NNTPTemporaryError, e:
29 print 'ERROR: cannot load group "%s"' % GRNM
30 print ' ("%s")' % str(e)
31 print ' Server may require authentication'
32 print ' Uncomment/edit login line above'
33 n.quit()
34 return
35 except nntplib.NNTPTemporaryError, e:
36 print 'ERROR: group "%s" unavailable' % GRNM
37 print ' ("%s")' % str(e)
38 n.quit()
39 return
40 print '*** Found newsgroup "%s"' % GRNM
41
42 rng = '%s-%s' % (lst, lst)
43 rsp, frm = n.xhdr('from', rng)
44 rsp, sub = n.xhdr('subject', rng)
45 rsp, dat = n.xhdr('date', rng)
46 print '''*** Found last article (#%s):
47
48 From: %s
49 Subject: %s
50 Date: %s
51 '''% (lst, frm[0][1], sub[0][1], dat[0][1])
52
53 rsp, anum, mid, data = n.body(lst)
54 displayFirst20(data)
55 n.quit()
56
57 def displayFirst20(data):
58 print '*** First (<= 20) meaningful lines:\n'
59 count = 0
60 lines = (line.rstrip() for line in data)
61 lastBlank = True
62 for line in lines:
63 if line:
64 lower = line.lower()
65 if (lower.startswith('>') and not \
66 lower.startswith('>>>')) or \
67 lower.startswith('|') or \
68 lower.startswith('in article') or \
69 lower.endswith('writes:') or \
70 lower.endswith('wrote:'):
71 continue
72 if not lastBlank or (lastBlank and line):
73 print ' %s' % line
74 if line:

file:///D|/1/0132269937/ch17lev1sec3.html (6 von 9) [13.11.2007 16:24:48]

Section 17.3. Network News

75 count += 1
76 lastBlank = False
77 else:
78 lastBlank = True
79 if count == 20:
80 break
81
82 if __name__ == '__main__':
83 main()

This output is given the original newsgroup posting, which looks like this:

From: "Gerard Flanagan" <grflanagan@...>
Subject: Re: Generate a sequence of random numbers that sum up to 1?
Date: Sat Apr 22 10:48:20 CEST 2006
Groups: comp.lang.python

Gerard Flanagan wrote:
> Anthony Liu wrote:
> > I am at my wit's end.
> > I want to generate a certain number of random numbers.
> > This is easy, I can repeatedly do uniform(0, 1) for
> > example.

> > But, I want the random numbers just generated sum up
> > to 1 .

> > I am not sure how to do this. Any idea? Thanks.

> --
> import random

> def partition(start=0,stop=1,eps=5):
> d = stop - start
> vals = [start + d * random.random() for _ in range(2*eps)]
> vals = [start] + vals + [stop]
> vals.sort()
> return vals

> P = partition()

> intervals = [P[i:i+2] for i in range(len(P)-1)]

> deltas = [x[1] - x[0] for x in intervals]

> print deltas

> print sum(deltas)
> ---

def partition(N=5):
 vals = sorted(random.random() for _ in range(2*N))
 vals = [0] + vals + [1]
 for j in range(2*N+1):
 yield vals[j:j+2]

file:///D|/1/0132269937/ch17lev1sec3.html (7 von 9) [13.11.2007 16:24:48]

Section 17.3. Network News

deltas = [x[1]-x[0] for x in partition()]

print deltas

print sum(deltas)

[0.10271966686994982, 0.13826576491042208, 0.064146913555132801,
0.11906452454467387, 0.10501198456091299, 0.011732423830768779,
0.11785369256442912, 0.065927165520102249, 0.098351305878176198,
0.077786747076205365, 0.099139810689226726]
1.0

Of course, the output will always be different since articles are always being posted. No two executions
will result in the same output unless your news server has not been updated with another article since
you last ran the script.

Line-by-Line Explanation

Lines 19

This application starts with a few import statements and some constants, much like the FTP client
example.

Lines 1140

In the first section, we attempt to connect to the NNTP host server and bail if it tails (lines 13-24). Line
15 is commented out deliberately in case your server requires authentication (with login and password)if
so, uncomment this line and edit it in with line 14. This is followed by trying to load up the specific
newsgroup. Again, it will quit if that newsgroup does not exist, is not archived by this server, or if
authentication is required (lines 26-40).

Lines 4255

In the next part we get some headers to display (lines 42-51). The ones that have the most meaning
are the author, subject, and date. This data is retrieved and displayed to the user. Each call to the xhdr
() method requires us to give the range of articles to extract the headers from. We are only interested
in a single message, so the range is "X-X" where X is the last message number.

xhdr() returns a 2-tuple consisting of a server response (rsp) and a list of the headers in the range we
specify. Since we are only requesting this information for one message (the last one), we just take the
first element of the list (hdr [0]). That data item is a 2-tuple consisting of the article number and the
data string. Since we already know the article number (because we give it in our range request), we are
only interested in the second item, the data string (hdr [0][1]).

The last part is to download the body of the article itself (lines 53-55). It consists of a call to the body()
method, a display the first 20 or fewer meaningful lines (as defined at the beginning of this section), a
logout of the server, and complete execution.

Lines 5780

The core piece of processing is done by the displayFirst20() function (lines 57-80). It takes the set of

file:///D|/1/0132269937/ch17lev1sec3.html (8 von 9) [13.11.2007 16:24:48]

Section 17.3. Network News

lines making up the article body and does some preprocessing like setting our counter to 0, creating a
generator expression that lazily iterates through our (possibly large) set of lines making up the body,
and "pretends" that we have just seen and displayed a blank line (more on this later; lines 59-61).
When we strip the line of data, we only remove the trailing whitespace (rstrip()) because leading
spaces may be intended lines of Python code.

One criterion we have is that we should not show any quoted text or quoted text introductions. That is
what the big if statement is for on lines 65-71 (also include line 64). We do this checking if the line is
not blank (line 63). We lowercase the line so that our comparisons are case-insensitive (line 64).

If a line begins with ">" or "|," it means it is usually a quote. We make an exception for lines that start
with ">>>" since it may be an interactive interpreter line, although this does introduce a flaw that a
triply-old message (one quoted three times for the fourth responder) is displayed. (One of the exercises
at the end of the chapter is to remove this flaw.) Lines that begin with "in article ...", and/or end with
"writes:" or "wrote:", both with trailing colons (:), are also quoted text introductions. We skip all these
with the continue statement.

Now to address the blank lines. We want our application to be smart. It should show blank lines as seen
in the article, but it should be smart about it. If there is more than one blank line consecutively, only
show the first one so the user does not see unnecessarily excessive lines, scrolling useful information off
the screen. We should also not count any blank lines in our set of 20 meaningful lines. All of these
requirements are taken care of in lines 72-78.

The if statement on line 72 says to only display the line if the last line was not blank, or if the last line
was blank but now we have a non-blank line. In other words, if we fall through and we print the current
line, it is because it is either a line with data or a blank line as long as the previous line was not blank.
Now the other tricky part: if we have a non-blank line, count it and set the lastBlank flag to False since
this line was not empty (lines 74-76). Otherwise, we have just seen a blank line so set the flag to true.

Now back to the business on line 61 ... we set the lastBlank flag to true because if the first real (non-
introductory or quoted) line of the body is a blank, we do not want to display it ... we want to show the
first real data line!

Finally, if we have seen 20 non-blank lines, then we quit and discard the remaining lines (lines 79-80).
Otherwise we would have exhausted all the lines and the for loop terminates normally.

17.3.7. Miscellaneous NNTP

You can read more about NNTP in the NNTP Protocol Definition/Specification (RFC 977) at ftp://ftp.isi.
edu/in-notes/rfc977.txt as well as on the http://www.networksorcery.com/enp/protocol/nntp.htm Web
page. Other related RFCs include 1036 and 2980. To find out more about Python's NNTP support, you
can start here: http://python.org/docs/current/lib/module-nntplib.html.

file:///D|/1/0132269937/ch17lev1sec3.html (9 von 9) [13.11.2007 16:24:48]

http://www.networksorcery.com/enp/protocol/nntp.htm
file:///D|/1/0132269937/14051536.html

Section 17.4. Electronic Mail

17.4. Electronic Mail

Electronic mail is both archaic and modern at the same time. For those of us who have been using the
Internet since the early days, e-mail seems so "old," especially compared to newer and more immediate
communication mechanisms such as Web-based online chat, instant messaging (IM), and digital
telephony, i.e., Voice Over Internet Protocol (VOIP), applications. The next section gives a high-level
overview of how e-mail works. If you are already familiar with this and just want to move on to
developing e-mail-related clients in Python, skip to the succeeding sections.

Before we take a look at the e-mail infrastructure, have you ever asked yourself what is the exact
definition of an e-mail message? Well, according to RFC 2822, "[a] message consists of header fields
(collectively called 'the header of the message') followed, optionally, by a body." When we think of e-
mail as users, we immediately think of its contents, whether it be a real message or an unsolicited
commercial advertisement (aka spam). However, the RFC states that the body itself is optional and that
only the headers are required. Imagine that!

17.4.1. E-mail System Components and Protocols

Despite what you may think, electronic mail (e-mail) actually existed before the modern Internet came
around. It actually started as a simple message exchange between mainframe users ... note that there
wasn't even any networking involved as they all used the same computer. Then when networking
became a reality, it was possible for users on different hosts to exchange messages. This, of course, was
a complicated concept as people used different computers, which used different networking protocols. It
was not until the early 1980s that message exchange settled on a single de facto standard for moving e-
mail around the Internet.

Before we get into the details, let's first ask ourselves, how does e-mail work? How does a message get
from sender to recipient across the vastness of all the computers accessible on the Internet? To put it
simply, there are the originating computer (the sender's message departs from here) and the
destination computer (recipient's mail server). The optimal solution is if the sending machine knows
exactly how to reach the receiving host because then it can make a direct connection to deliver the
message. However, this is usually not the case.

The sending computer queries to find another intermediate host who can pass the message along its
way to the final recipient host. Then that host searches for the next host who is another step closer to
the destination. So in between the originating and final destination hosts are any number of machines
called "hops." If you look carefully at the full e-mail headers of any message you receive, you will see a
"passport" stamped with all the places your message bounced to before it finally reached you.

To get a clearer picture, let's take a look at the components of the e-mail system. The foremost
component is the message transport agent (MTA). This is a server process running on a mail exchange
host which is responsible for the routing, queuing, and sending of e-mail. These represent all the hosts
that an e-mail message bounces from beginning at the source host all the way to the final destination
host and all hops in between. Thus they are "agents" of "message transport."

In order for all this to work, MTAs need to know two things: 1) how to find out the next MTA to forward
a message to, and 2) how to talk to another MTA. The first is solved by using a domain name service
(DNS) lookup to find the MX (Mail eXchange) of the destination domain. This is not necessarily the final
recipient, but rather, the next recipient who can eventually get the message to its final destination.
Next, how do MTAs forward messages to other MTAs?

17.4.2. Sending E-mail

file:///D|/1/0132269937/ch17lev1sec4.html (1 von 10) [13.11.2007 16:24:50]

Section 17.4. Electronic Mail

In order to send e-mail, your mail client must connect to an MTA, and the only language they
understand is a communication protocol. The way MTAs communicate with one another is by using a
message transport system (MTS). This protocol must be "known" by a pair of MTAs before they can
communicate. As we described at the beginning of this section, such communication was dicey and
unpredictable in the early days as there were so many different types of computer systems, each
running different networking software. With the added complexity that computers were using both
networked transmission as well as dial-up modem, delivery times were unpredictable. In fact, this
author has had a message not show up until almost nine months after the message was originally sent!
How is that for Internet speed? Out of this complexity rose the Simple Mail Transfer Protocol (SMTP) in
1982, one of the foundations of modern e-mail.

SMTP

SMTP was authored by the late Jonathan Postel (ISI) in RFC 821, published in August 1982. The protocol
has since been updated in RFC 2821, published in April 2001. Some well-known MTAs that have
implemented SMTP include:

Open Source MTAs

● Sendmail
● Postfix
● Exim
● qmail (freely distributed but not Open Source)

Commercial MTAs

● Microsoft Exchange
● Lotus Notes Domino Mail Server

Note that while they have all implemented the minimum SMTP protocol requirements as specified in RFC
2821, most of them, especially the commercial MTAs, have added even more features to their servers,
which goes above and beyond the protocol definition.

SMTP is the MTS that is used by most of the MTAs on the Internet for message exchange. It is the
protocol used by MTAs to transfer e-mail from (MTA) host to (MTA) host. When you send e-mail, you
must connect to an outgoing SMTP server where your mail application acts as an SMTP client. Your
SMTP server, therefore, is the first hop for your message.

17.4.3. Python and SMTP

Yes, there is an smtplib and an smtplib.SMTP class to instantiate. Review this familiar story:

1.

Connect to server

2.

Log in (if applicable)

3.

file:///D|/1/0132269937/ch17lev1sec4.html (2 von 10) [13.11.2007 16:24:50]

Section 17.4. Electronic Mail

Make service request(s)

4.

Quit

As with NNTP, the login step is optional and only required if the server has SMTP authentication (SMTP-
AUTH) enabled. SMTP-AUTH is defined in RFC 2554. And also like NNTP, speaking SMTP only requires
communicating with one port on the server; this time, it's port 25.

Here is some Python pseudocode to get started:

from smtplib import SMTP
n = SMTP('smtp.yourdomain.com')
...
n.quit()

Before we take a look at a real example, let's introduce some of the more popular methods of the
smtplib.SMTP class.

17.4.4. smtplib.SMTP Class Methods

As in the previous section outlining the smtplib.SMTP class methods, we won't show you all methods,
just the ones you need in order to create an SMTP client application. For most e-mail sending
applications, only two are required: sendmail() and quit().

All arguments to sendmail() should conform to RFC 2822, i.e., e-mail addresses must be properly
formatted, and the message body should have appropriate leading headers and contain lines that must
be delimited by carriage-return and NEWLINE \r\n pairs.

Note that an actual message body is not required. According to RFC 2822, "[the] only required header
fields are the origination date field and the originator address field(s)," i.e., "Date:" and "From:": (MAIL
FROM, RCPT TO, DATA).

There are a few more methods not described here, but they are not normally required to send an e-mail
message. Please see the Python documentation for information on all the SMTP object methods.

Table 17.3. Methods for SMTP Objects

Method Description

sendmail (from, to, msg [, mopts,
ropts])

Send msg from from to to (list or tuple) and optional
ESMTP mail (mopts) and recipient (ropts options

quit() Close connection and quit

login (user, passwd)
[a] Log in to SMTP server with user name and passwd

file:///D|/1/0132269937/ch17lev1sec4.html (3 von 10) [13.11.2007 16:24:50]

Section 17.4. Electronic Mail

[a] SMTP-AUTH only.

17.4.5. Interactive SMTP Example

Once again, we present an interactive example:

>>> from smtplib import SMTP as smtp
>>> s = smtp('smtp.python.is.cool')
>>> s.set_debuglevel(1)
>>> s.sendmail('wesley@python.is.cool', ('wesley@python.is.cool',
'chun@python.is.cool'), ''' From: wesley@python.is.cool\r\nTo:
wesley@python.is.cool, chun@python.is.cool\r\nSubject: test
msg\r\n\r\nxxx\r\n.''')
send: 'ehlo myMac.local\r\n'
reply: '250-python.is.cool\r\n'
reply: '250-7BIT\r\n'
reply: '250-8BITMIME\r\n'
reply: '250-AUTH CRAM-MD5 LOGIN PLAIN\r\n'
reply: '250-DSN\r\n'
reply: '250-EXPN\r\n'
reply: '250-HELP\r\n'
reply: '250-NOOP\r\n'
reply: '250-PIPELINING\r\n'
reply: '250-SIZE 15728640\r\n'
reply: '250-STARTTLS\r\n'
reply: '250-VERS V05.00c++\r\n'
reply: '250 XMVP 2\r\n'
reply: retcode (250); Msg: python.is.cool
7BIT
8BITMIME
AUTH CRAM-MD5 LOGIN PLAIN
DSN
EXPN
HELP
NOOP
PIPELINING
SIZE 15728640
STARTTLS
VERS V05.00c++
XMVP 2
send: 'mail FROM:<wesley@python.is.cool> size=108\r\n'
reply: '250 ok\r\n'
reply: retcode (250); Msg: ok
send: 'rcpt TO:<wesley@python.is.cool>\r\n'
reply: '250 ok\r\n'
reply: retcode (250); Msg: ok
send: 'data\r\n'
reply: '354 ok\r\n'
reply: retcode (354); Msg: ok
data: (354, 'ok')

send: 'From: wesley@python.is.cool\r\nTo:
wesley@python.is.cool\r\nSubject: test
msg\r\n\r\nxxx\r\n..\r\n.\r\n'
reply: '250 ok ; id=2005122623583701300or7hhe\r\n'
reply: retcode (250); Msg: ok ; id=2005122623583701300or7hhe

file:///D|/1/0132269937/ch17lev1sec4.html (4 von 10) [13.11.2007 16:24:50]

Section 17.4. Electronic Mail

data: (250, 'ok ; id=2005122623583701300or7hhe')
{}
>>> s.quit()
send: 'quit\r\n'
reply: '221 python.is.cool\r\n'
reply: retcode (221); Msg: python.is.cool

17.4.6. Miscellaneous SMTP

You can read more about SMTP in the SMTP Protocol Definition/Specification (RFC 2821) at ftp://ftp.isi.
edu/in-notes/rfc2821.txt as well as on the http://www.networksorcery.com/enp/protocol/smtp.htm Web
page. To find out more about Python's SMTP support, you can start here: http://python.org/docs/
current/lib/module-smtplib.html

One of the more important aspects of e-mail which we have not discussed yet is how to properly format
Internet addresses as well as e-mail messages themselves. This information is detailed in the Internet
Message Format RFC, 2822, and can be downloaded at ftp://ftp.isi.edu/in-notes/rfc2822.txt.

17.4.7. Receiving E-mail

Back in the day, communicating by e-mail on the Internet was relegated to university students,
researchers, and employees of private industry and commercial corporations. Desktop computers were
predominantly still Unix-based workstations. Home users just dialed-up on PCs and really didn't use e-
mail. When the Internet began to explode in the mid-1990s, e-mail came home to everyone.

Because it was not feasible for home users to have workstations in their dens running SMTP, a new type
of system had to be devised to leave e-mail on an incoming mail host while periodically downloading
mail for offline reading. Such a system consists of both a new application and a new protocol to
communicate with the mail server.

The application, which runs on a home computer, is called a mail user agent (MUA). An MUA will
download mail from a server, perhaps automatically deleting it in the process (or not, leaving the mail
on the server to be deleted manually by the user). However, an MUA must also be able to send mail ...
in other words, it should also be able to speak SMTP to communicate directly to an MTA when sending
mail. We have already seen this type of client, in the previous section when we looked at SMTP. How
about downloading mail then?

17.4.8. POP and IMAP

The first protocol developed for downloading was the Post Office Protocol. As stated in the original RFC
document, RFC 918 published in October 1984, "The intent of the Post Office Protocol (POP) is to allow a
user's workstation to access mail from a mailbox server. It is expected that mail will be posted from the
workstation to the mailbox server via the Simple Mail Transfer Protocol (SMTP)." The most recent
version of POP is version 3, otherwise known as POP3. POP3, defined in RFC 1939, is still widely used
today, and is the basis of our example client below.

Another protocol came a few years after POP, known as the Interactive Mail Access Protocol, or IMAP.
The first version was experimental, and it was not until version 2 that its RFC was published, RFC 1064
in July 1988. The current version of IMAP in use today is IMAP4rev1, and it, too, is widely used. In fact,
Microsoft Exchange, one of the predominant mail servers in the world today, uses IMAP as its download
mechanism. The IMAP4rev1 protocol definition is spelled out in RFC 3501, published in March 2003. The
intent of IMAP is to provide a more complete solution to the problem; however, it is more complex than
POP. Further discussion of IMAP is beyond the scope of the remainder of this chapter. We refer the

file:///D|/1/0132269937/ch17lev1sec4.html (5 von 10) [13.11.2007 16:24:50]

http://www.networksorcery.com/enp/protocol/smtp.htm

Section 17.4. Electronic Mail

interested reader to the aforementioned RFC documents. The diagram in Figure 17-3 illustrates this
complex system we know simply as e-mail.

Figure 17-3. E-Mail Senders and Recipients on the Internet. Clients download
and send mail via their MUAs, which talk to their corresponding MTAs. E-Mail

"hops" from MTA to MTA until it reaches the correct destination.

[View full size image]

17.4.9. Python and POP3

No surprises here: import poplib and instantiate the poplib.POP3 class; the standard conversation is as
expected:

1.

Connect to server

2.

Log in

3.

Make service request(s)

4.

Quit

And the expected Python pseudocode:

from poplib import POP3
p = POP3('pop.python.is.cool')
p.user(...)
p.pass_(...)

file:///D|/1/0132269937/ch17lev1sec4.html (6 von 10) [13.11.2007 16:24:50]

file:///D|/1/0132269937/images/chun_fig17_03_alt.jpg

Section 17.4. Electronic Mail

...
p.quit()

Before we take a look at a real example, let's take a look at an interactive example as well as introduce
the basic methods of the poplib.POP3 class.

17.4.10. Interactive POP3 Example

Here is an interactive example of using Python's poplib:

>>> from poplib import POP3
>>> p = POP3('pop.python.is.cool')
>>> p.user('techNstuff4U')
'+OK'
>>> p.pass_('notMyPasswd')
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
 File "/usr/local/lib/python2.4/poplib.py", line 202,
in pass_
 return self._shortcmd('PASS %s' % pswd)
 File "/usr/local/lib/python2.4/poplib.py", line 165,
in _shortcmd
 return self._getresp()
 File "/usr/local/lib/python2.4/poplib.py", line 141,
in _getresp
 raise error_proto(resp)
poplib.error_proto: -ERR directory status: BAD PASSWORD
>>> p.user('techNstuff4U')
'+OK'
>>> p.pass_('youllNeverGuess')
'+OK ready'
>>> p.stat()

(102, 2023455)
>>> rsp, msg, siz = p.retr(102)
>>> rsp, siz
('+OK', 480)
>>> for eachLine in msg:
... print eachLine
...
Date: Mon, 26 Dec 2005 23:58:38 +0000 (GMT)
Received: from c-42-32-25-43.smtp.python.is.cool
 by python.is.cool (scmrch31) with ESMTP
 id <2005122623583701300or7hhe>; Mon, 26 Dec 2005
23:58:37 +0000
From: wesley@python.is.cool
To: wesley@python.is.cool
Subject: test msg

xxx
.
>>> p.quit()
'+OK python.is.cool'

file:///D|/1/0132269937/ch17lev1sec4.html (7 von 10) [13.11.2007 16:24:50]

Section 17.4. Electronic Mail

17.4.11. poplib.POP3 Class Methods

The POP3 class has numerous methods to help you download and manage your inbox offline. The most
widely used ones are included in Table 17.4.

Table 17.4. Methods for POP3 Objects

Method Description

user(login) Sends the login name to the server; awaits reply indicating the server is waiting
for user's password

pass_(passwd) Sends passwd (after user logs in with user()); an exception occurs on login/passwd
failure

stat() Returns mailbox status, a 2-tuple (msg_ct, mbox_siz): the total message count and
total message size, aka octets

list ([msgnum]) Superset of stat()... returns entire message list from server as a 3-tuple (rsp,
msg_list, rsp_siz): server response, message list, response message size; if
msgnum given, return data for that message only

retr (msgnum) Retrieves message msgnum from server and sets its 'seen' flag; returns a 3-
tuple (rsp, msglines, msgsiz): server response, all lines of message msgnum, and
message size in bytes/ octets

dele (msgnum) Tag message number msgnum for deletion; most servers process deletes upon
quit()

quit() Logs out, commits changes (e.g., process "seen," "delete" flags, etc.), unlocks
mailbox, terminates connection, and quits

When logging in, the user() method not only sends the login name to the server, but it also awaits the
reply indicating the server is waiting for user's password. If pass_() fails due to authentication issues,
the exception raised is poplib.error_proto. If it is successful, it gets back a positive reply, e.g., '+OK
ready', and the mailbox on the server is locked until quit() is called.

For the list() method, the msg_list is of the form ['msgnum msgsiz',...] where msgnum and msgsiz are the
message number and message sizes, respectively, of each message.

There are a few other methods not listed here. For the full details, check out the documentation for
poplib in the Python Library Reference.

17.4.12. Client Program SMTP and POP3 Example

The example below shows how to use both SMTP and POP3 to create a client that both receives and
downloads e-mail as well as one that uploads and sends e-mail. What we are going to do is send an e-
mail message to ourselves (or some test account) via SMTP, wait for a bitwe arbitrarily chose ten
secondsand then use POP3 to download our message and assert that the messages are identical. Our
operation will be a success if the program completes silently, meaning that there should be no output or

file:///D|/1/0132269937/ch17lev1sec4.html (8 von 10) [13.11.2007 16:24:50]

Section 17.4. Electronic Mail

any errors.

Example 17.3. SMTP and POP3 Example (myMail.py)

This script sends a test e-mail message to the destination address (via the outgoing/SMTP
mail server) and retrieves it immediately from the (incoming mail/ POP) server. You must
change the server names and e-mail addresses to make it work properly.

1 #!/usr/bin/env python
2
3 from smtplib import SMTP
4 from poplib import POP3
5 from time import sleep
6
7 SMTPSVR = 'smtp.python.is.cool'
8 POP3SVR = 'pop.python.is.cool'
9
10 origHdrs = ['From: wesley@python.is.cool',
11 'To: wesley@python.is.cool',
12 'Subject: test msg']
13 origBody = ['xxx', 'yyy', 'zzz']
14 origMsg = '\r\n\r\n'.join(['\r\n'.join(origHdrs),
 '\r\n'.join(origBody)])
15
16 sendSvr = SMTP(SMTPSVR)
17 errs = sendSvr.sendmail('wesley@python.is.cool',
18 ('wesley@python.is.cool',), origMsg)
19 sendSvr.quit()
20 assert len(errs) == 0, errs
21 sleep(10) # wait for mail to be delivered
22
23 recvSvr = POP3(POP3SVR)
24 recvSvr.user('wesley')
25 recvSvr.pass_('youllNeverGuess')
26 rsp, msg, siz = recvSvr.retr(recvSvr.stat()[0])
27 # strip headers and compare to orig msg
28 sep = msg.index('')
29 recvBody = msg[sep+1:]
30 assert origBody == recvBody # assert identical

Line-by-Line Explanation

Lines 18

This application starts with a few import statements and some constants, much like the other examples
in this chapter. The constants here are the outgoing (SMTP) and incoming (POP3) mail servers.

Lines 1014

These lines represent the preparation of the message contents. We have some mail headers followed by
three lines for the message body. The From and To headers represent the message sender and recipient

file:///D|/1/0132269937/ch17lev1sec4.html (9 von 10) [13.11.2007 16:24:50]

Section 17.4. Electronic Mail

(s). Line 14 puts everything together into a sendable message of headers followed by a message body,
all delimited by the RFC 2822-required line delimiters with a blank line separating the two sections.

Lines 1621

We connect to the outgoing (SMTP) server and send our message. There is another pair of From and To
addresses here. These are the "real" e-mail addresses, or the envelope sender and recipient(s). The
recipient field should be an iterable. If a string is passed in, it will be transformed into a list of one
element. For unsolicited spam e-mail, there is usually a discrepancy between the message headers and
the envelope headers.

The third argument to sendmail() is the e-mail message itself. Once it has returned, we log out of the
SMTP server and check that no errors have occurred. Then we give the servers some time to send and
receive the message.

Lines 2330

The final part of our application downloads the just-sent message and asserts that both it and the
received messages are identical. A connection is made to the POP3 server with a username and
password. After successful login, a stat() call is made to get a list of available messages. The first
message is chosen ([0]), and retr() is told to download it.

We look for the blank line separating the headers and message, discard the headers, and compare the
original message body with the incoming message body. If they are identical, nothing is displayed and
the program ends successfully. Otherwise, an assertion is made.

Due to the numerous errors, we left out all the error-checking for this script so that it is easy on the
eyes. One of the exercises at the end of the chapter is to add the error-checking.

Now you have a very good idea of how sending and receiving e-mail works in today's environment. If
you wish to continue exploring this realm of programming expertise, see the next section for other e-
mail-related Python modules, which will prove valuable in application development.

file:///D|/1/0132269937/ch17lev1sec4.html (10 von 10) [13.11.2007 16:24:50]

Section 17.5. Related Modules

17.5. Related Modules

One of Python's greatest assets is the strength of its networking support in the standard library,
particularly those oriented toward Internet protocols and client development. Listed below are related
modules, first focusing on electronic mail followed by Internet protocols in general.

17.5.1. E-mail

Python features numerous e-mail modules and packages to help you with building an application. Some
of them are listed in Table 17.5.

Table 17.5. E-Mail-Related Modules

Module/Package Description

email Package for processing e-mail (also supports MIME)

rfc822 RFC2822 mail header parsers

smtpd SMTP server

base64 Base 16, 32, and 64 data encodings (RFC 3548)

mhlib Classes for handling MH folders and messages

mailbox Classes to support parsing mailbox file formats

mailcap Support for handling "mailcap" files

mimetools (deprecated) MIME message parsing tools (use email above)

mimetypes Converts between filenames/URLs and associated MIME types

MimeWriter (deprecated) MIME message processing (use email above)

mimify (deprecated) Tools to MIME-process messages with (use email above)

binascii Binary and ASCII conversion

binhex Binhex4 encoding and decoding support

17.5.2. Other Internet Protocols

Table 17.6. Internet Protocol-
Related Modules

file:///D|/1/0132269937/ch17lev1sec5.html (1 von 2) [13.11.2007 16:24:50]

Section 17.5. Related Modules

Module Description

ftplib FTP protocol client

gopherlib Gopher protocol client

httplib HTTP and HTTPS protocol client

imaplib IMAP4 protocol client

nntplib NNTP protocol client

poplib POP3 protocol client

smtplib SMTP protocol client

telnetlib Telnet client class

file:///D|/1/0132269937/ch17lev1sec5.html (2 von 2) [13.11.2007 16:24:50]

Section 17.6. Exercises

17.6. Exercises

FTP

17-1. Simple FTP Client. Given the FTP examples from this chapter, write a small FTP client
program that goes to your favorite Web sites and downloads the latest versions of the
applications you use. This may be a script that you run every few months to make
sure you're using the "latest and greatest." You should probably keep some sort of
table with FTP location, login, and password for your convenience.

17-2. Simple FTP Client and Pattern-Matching. Use your solution to the previous exercise as
a starting point for creating another simple FTP client that either pushes or pulls a set
of files from a remote host using patterns. For example, if you want to move a set of
Python or PDF files from one host to another, allow users to enter "*.py" or "doc*.pdf"
and only transfer those files whose names match.

17-3. Smart FTP Command-Line Client. Create a command-line FTP application similar to the
vanilla Unix /bin/ftp program, however, make it a "better FTP client," meaning it
should have additional useful features. You can take a look at the ncFTP application as
motivation. It can be found at http://ncftp.com. For example, it has the following
features: history, bookmarks (saving FTP locations with log in and password),
download progress, etc. You may have to implement readline functionality for history
and curses for screen control.

17-4. FTP and Multithreading. Create an FTP client that uses Python threads to download
files. You can either upgrade your existing Smart FTP client as in the previous
problem, or just write a more simple client to download files. This can be either a
command-line program where you enter multiple files as arguments to the program,
or a GUI where you let the user select 1+ file(s) to transfer. Extra credit: Allow
patterns, i.e., *.exe. Use individual threads to download each file.

17-5. FTP and GUI. Take your smart FTP client developed above and add a GUI layer on top
of it to form a complete FTP application. You may choose from any of the modern
Python GUI toolkits.

17-6. Subclassing. Derive ftplib.FTP and make a new class FTP2 where you do not need to
give "STOR filename" and "RETR filename" commands with all four (4) retr*() and
stor*() methods ... you only need to pass in the filename. You may choose to either
override the existing methods or create new ones with a '2' suffix, i.e., retrlines2().

The file Tools/scripts/ftpmirror.py in the Python source distribution is a script that
can mirror FTP sites, or portions thereof, using the ftplib module. It can be used as
an extended example that applies to this module. The next five problems feature
creating solutions that revolve around code like ftpmirror.py. You may use code in
ftpmirror.py or implement your own solution with its code as your motivation.

file:///D|/1/0132269937/ch17lev1sec6.html (1 von 6) [13.11.2007 16:24:51]

http://ncftp.com/

Section 17.6. Exercises

17-7. Recursion. The ftpmirror.py script copies a remote directory recursively. Create a
simpler FTP client in the spirit of ftpmirror.py but one that does not recurse by
default. Create an "-r" option that tells the application to recursively copy
subdirectories to the local filesystem.

17-8. Pattern-Matching. The ftpmirror.py script has an "-s" option that lets users skip files
that match the given pattern, i.e., ".exe." Create your own simpler FTP client or
update your solution to the previous exercise so that it lets the user supply a pattern
and only copy those files matching that pattern. Use your solution to an earlier
problem above as a starting point.

17-9. Recursion and Pattern-Matching. Create an FTP client that integrates both of the
previous exercises.

17-10. Recursion and ZIP files. This problem is similar to the first recursion exercise
aboveinstead of copying the remote files to the local filesystem, either update your
existing FTP client or create a new one to download remote files and compress them
into a ZIP (or TGZ or BZ2) file. This "-z" option allows your users to back up an FTP
site in an automated manner.

17-11. Kitchen Sink. Implement a single, final, all-encompassing FTP application that has all
the solutions to the exercises above, i.e., "-r", "-s", and "-z" options.

NNTP

17-12. Introduction to NNTP. Change Example 17.2 (getLatestNNTP.py) so that instead of the
most recent article, it displays the first available article meaningfully.

17-13. Improving Code. Fix the flaw in getLatestNNTP.py where triple-quoted lines show up in
the output. This is because we want to display Python interactive interpreter lines but
not triple-quoted text. Solve this problem by checking whether the stuff that comes
after the ">>>" is real Python code. If so, display it as a line of data; if not, do not
display this quoted text. Extra credit: Use your solution to solve another minor
problem: leading whitespace is not stripped from the body because it may represent
indented Python code. If it really is code, display it; otherwise, it is text so lstrip()
that before displaying.

17-14. Finding Articles. Create an NNTP client application that lets the user log in and choose
a newsgroup of interest. Once that has been accomplished, prompt the user for
keywords to search article Subject lines for. Bring up the list of articles that match the
requirement and display them to the user. The user should then be allowed to choose
an article to read from that listdisplay them and provide simple navigation like
pagination, etc. If no search field is entered, bring up all current articles.

17-15. Searching Bodies. Upgrade your solution to the previous problem by searching both
Subject lines and article bodies. Allow for AND or OR searching of keywords. Also allow
for AND or OR searching of Subject lines and article bodies, i.e., keyword(s) must be
in Subject lines only, article bodies only, either, or both.

file:///D|/1/0132269937/ch17lev1sec6.html (2 von 6) [13.11.2007 16:24:51]

Section 17.6. Exercises

17-16. Threaded Newsreader. This doesn't mean write a multithreaded newsreaderit means
organize related postings into "article threads." In other words, group related articles
together, independent of when the individual articles were posted. All the articles
belonging to individual threads should be listed chronologically though. Allow the user
to:

a.

select individual articles (bodies) to view, then have the option to go back to
the list view or to previous or next article either sequentially or related to the
current thread.

b.

allow replies to threads, option to copy and quote previous article, reply to the
entire newsgroup via another post. Extra credit: Allow personal reply to
individual via e-mail.

c.

permanently delete threadsno future related articles should show up in the
article list. For this, you will have to temporarily keep a persistent list of
deleted threads so that they don't show up again. You can assume a thread is
dead if no one posts an article with the same Subject line after several months.

17-17. GUI Newsreader. Similar to an FTP exercise above, choose a Python GUI toolkit to
implement a complete standalone GUI newsreader application.

17-18. Refactoring. Like ftpmirror.py for FTP, there is a demo script for NNTP: Demo/scripts/
newslist.py. Run it. This script was written a long time ago and can use a facelift. For
this exercise, you are to refactor this program using features of the latest versions of
Python as well as your developing skills in Python to perform the same task but run
and complete in less time. This can include using list comprehensions or generator
expressions, using smarter string concatenation, not calling unnecessary functions, etc.

17-19. Caching. Another problem with newslist.py is that, according to its author, "I should
really keep a list of ignored empty groups and re-check them for articles on every run,
but I haven't got around to it yet." Make this improvement a reality. You may use the
default version as-is or your newly improved one from the previous exercise.

E-MAIL

17-20. Identifiers. The POP3 method pass_() is used to send the password to the server after
giving it the login name using login(). Can you give any reasons why you believe this
method was named with a trailing underscore, i.e., "pass_()", instead of just plain old
"pass()"?

file:///D|/1/0132269937/ch17lev1sec6.html (3 von 6) [13.11.2007 16:24:51]

Section 17.6. Exercises

17-21. IMAP. Now that you are familiar with how POP works, your experience will help you
with an IMAP client. Study the IMAP protocol RFC document, and use the Python
imaplib module to help you.

The next set of exercises deal with the myMail.py application found in this chapter
(Example 17.3).

17-22. E-mail Headers. In myMail.py, the last few lines compared the originally sent body with
the body in the received e-mail. Create similar code to assert the original headers.
Hint: Ignore newly added headers.

17-23. Error Checking. Add SMTP and POP3 error-checking.

17-24. SMTP and IMAP. Take our simple myMail.py, and added support for IMAP. Extra credit:
Support both mail download protocols, letting the user choose which to use.

17-25. E-mail Composition. Further develop your solution to the previous problem by giving
the users of your application the ability to compose and send e-mail.

17-26. E-mail Application. Further develop your e-mail application, turning it into something
more useful by adding in mailbox management. Your application should be able to
read in the current set of e-mail messages in a user's imbeds and display their Subject
lines. Users should be able to select messages to view. Extra credit: Add support to
view attachments via external applications.

17-27. GUI. Add a GUI layer on top of your solution to the previous problem to make it
practically a full e-mail application.

17-28. Elements of SPAM. Unsolicited junk e-mail, or spam, is a very real and significant
problem today. There are many good solutions out there, validating this market. We
do not want you to (necessarily) reinvent the wheel but we would like you to get a
taste of some of the elements of spam.

a.

"mbox" format. Before we can get started, we should convert any e-mail
messages you want to work on to a common format, such as the "mbox"
format. (There are others that you can use if you prefer. Once you have
several (or all) work messages in mbox format, merge them all into a single
file.

b.

Headers. Most of the clues of spam lie in the e-mail headers. (You may wish to
use the email package or parse them manually yourself.) Write code that
answers questions such as:

- What e-mail client appears to have originated this message? (Check
out the X-Mailer header.)

file:///D|/1/0132269937/ch17lev1sec6.html (4 von 6) [13.11.2007 16:24:51]

Section 17.6. Exercises

- Is the message ID (Message-ID header) format valid?

- Are there domain name mismatches between the From, Received, and
perhaps Return-Path headers? What about domain name and IP address
mismatches? Is there an X-Authentication-Warning header? If so, what
does it report?

c.

Information Servers. Based on an IP address or domain, servers such as
WHOIS, SenderBase.org, etc., may be able to help you identify the location
where a piece of bulk e-mail originated. Find one or more of these services and
build code to the find the country of origin, and optionally the city, network
owner name, contact info, etc.

d.

Keywords. Certain words keep popping up in spam. You have no doubt seen
them before, and in all of their variations, including using a number resembling
a letter, capitalizing random letters, etc. Build a list of frequent words that you
have seen definitely tied to spam, and quarantine such messages as possible
spam. Extra credit: Develop an algorithm or add keyword variations to spot
such trickery in messages.

e.

Phishing. These spam messages attempt to disguise themselves as valid e-mail
from major banking institutions or well-known Internet Web sites. They contain
links that lure readers to Web sites in an attempt to harvest private and
extremely sensitive information such as login names, passwords, and credit
card numbers. These fakers do a pretty good job of giving their fraudulent
messages an accurate look-and-feel. However, they cannot hide the fact that
the actual link that they direct users to does not belong to the company they
are masquerading as. Many of them are obvious giveaways, i.e., horrible-
looking domain names, raw IP addresses, and even IP addresses in 32-bit
integer format rather than in octets. Develop code that can determine whether
e-mail that looks like official communication is real or bogus.

Miscellaneous

A list of various Internet protocols, including the three highlighted in this chapter, can be found at http://
www.networksorcery.com/enp/topic/ipsuite.htm# Application%20layer%20protocols. A list of specific
Internet protocols supported by Python (currently), can be found at http://docs.python.org/lib/internet.
html

17-29. Developing Alternate Internet Clients. Now that you have seen four examples of how
Python can help you develop Internet clients, choose another protocol with client
support in a Python standard library module and write a client application for it.

file:///D|/1/0132269937/ch17lev1sec6.html (5 von 6) [13.11.2007 16:24:51]

http://www.networksorcery.com/enp/topic/ipsuite.htm#
http://www.networksorcery.com/enp/topic/ipsuite.htm#
http://docs.python.org/lib/internet.html
http://docs.python.org/lib/internet.html

Section 17.6. Exercises

17-30. *Developing New Internet Clients. Much more difficult: find an uncommon or
upcoming protocol without Python support and implement it. Be serious enough that
you will consider writing and submitting a PEP to have your module included in the
standard library distribution of a future Python release.

file:///D|/1/0132269937/ch17lev1sec6.html (6 von 6) [13.11.2007 16:24:51]

Chapter 18. Multithreaded Programming

Chapter 18. Multithreaded Programming

Chapter Topics

● Introduction/Motivation
● Threads and Processes
● Threads and Python
● thread Module

● tHReading Module

● Producer-Consumer Problem and the Queue Module

● Related Modules

In this section, we will explore the different ways you can achieve more parallelism in your code by
using the multithreaded (MT) programming features found in Python. We will begin by differentiating
between processes and threads in the first few of sections of this chapter. We will then introduce the
notion of multithreaded programming. (Those of you already familiar with MT programming can skip
directly to Section 18.3.5.) The final sections of this chapter present some examples of how to use the
threading and Queue modules to accomplish MT programming with Python.

file:///D|/1/0132269937/ch18.html [13.11.2007 16:24:52]

Section 18.1. Introduction/Motivation

18.1. Introduction/Motivation

Before the advent of multithreaded (MT) programming, running of computer programs consisted of a
single sequence of steps that were executed in synchronous order by the host's central processing unit
(CPU). This style of execution was the norm whether the task itself required the sequential ordering of
steps or if the entire program was actually an aggregation of multiple subtasks. What if these subtasks
were independent, having no causal relationship (meaning that results of subtasks do not affect other
subtask outcomes)? Is it not logical, then, to want to run these independent tasks all at the same time?
Such parallel processing could significantly improve the performance of the overall task. This is what MT
programming is all about.

MT programming is ideal for programming tasks that are asynchronous in nature, require multiple
concurrent activities, and where the processing of each activity may be nondeterministic, i.e., random
and unpredictable. Such programming tasks can be organized or partitioned into multiple streams of
execution where each has a specific task to accomplish. Depending on the application, these subtasks
may calculate intermediate results that could be merged into a final piece of output.

While CPU-bound tasks may be fairly straightforward to divide into subtasks and executed sequentially
or in a multithreaded manner, the task of managing a single-threaded process with multiple external
sources of input is not as trivial. To achieve such a programming task without multithreading, a
sequential program must use one or more timers and implement a multiplexing scheme.

A sequential program will need to sample each I/O (input/output) terminal channel to check for user
input; however, it is important that the program does not block when reading the I/O terminal channel
because the arrival of user input is nondeterministic, and blocking would prevent processing of other I/O
channels. The sequential program must use non-blocked I/O or blocked I/O with a timer (so that
blocking is only temporary).

Because the sequential program is a single thread of execution, it must juggle the multiple tasks that it
needs to perform, making sure that it does not spend too much time on any one task, and it must
ensure that user response time is appropriately distributed. The use of a sequential program for this
type of task often results in a complicated flow of control that is difficult to understand and maintain.

Using an MT program with a shared data structure such as a Queue (a multithreaded queue data
structure discussed later in this chapter), this programming task can be organized with a few threads
that have specific functions to perform:

● UserRequestThread: Responsible for reading client input, perhaps from an I/O channel. A number
of threads would be created by the program, one for each current client, with requests being
entered into the queue.

● RequestProcessor: A thread that is responsible for retrieving requests from the queue and
processing them, providing output for yet a third thread.

● ReplyThread: Responsible for taking output destined for the user and either sending it back, if in
a networked application, or writing data to the local file system or database.

Organizing this programming task with multiple threads reduces the complexity of the program and
enables an implementation that is clean, efficient, and well organized. The logic in each thread is
typically less complex because it has a specific job to do. For example, the UserRequestThread simply
reads input from a user and places the data into a queue for further processing by another thread, etc.
Each thread has its own job to do; you merely have to design each type of thread to do one thing and
do it well. Use of threads for specific tasks is not unlike Henry Ford's assembly line model for
manufacturing automobiles.

file:///D|/1/0132269937/ch18lev1sec1.html (1 von 2) [13.11.2007 16:24:52]

Section 18.1. Introduction/Motivation

file:///D|/1/0132269937/ch18lev1sec1.html (2 von 2) [13.11.2007 16:24:52]

Section 18.2. Threads and Processes

18.2. Threads and Processes

18.2.1. What Are Processes?

Computer programs are merely executables, binary (or otherwise), which reside on disk. They do not
take on a life of their own until loaded into memory and invoked by the operating system. A process
(sometimes called a heavyweight process) is a program in execution. Each process has its own address
space, memory, a data stack, and other auxiliary data to keep track of execution. The operating system
manages the execution of all processes on the system, dividing the time fairly between all processes.
Processes can also fork or spawn new processes to perform other tasks, but each new process has its
own memory, data stack, etc., and cannot generally share information unless interprocess
communication (IPC) is employed.

18.2.2. What Are Threads?

Threads (sometimes called lightweight processes) are similar to processes except that they all execute
within the same process, and thus all share the same context. They can be thought of as "mini-
processes" running in parallel within a main process or "main thread."

A thread has a beginning, an execution sequence, and a conclusion. It has an instruction pointer that
keeps track of where within its context it is currently running. It can be preempted (interrupted) and
temporarily put on hold (also known as sleeping) while other threads are runningthis is called yielding.

Multiple threads within a process share the same data space with the main thread and can therefore
share information or communicate with one another more easily than if they were separate processes.
Threads are generally executed in a concurrent fashion, and it is this parallelism and data sharing that
enable the coordination of multiple tasks. Naturally, it is impossible to run truly in a concurrent manner
in a single CPU system, so threads are scheduled in such a way that they run for a little bit, then yield to
other threads (going to the proverbial "back of the line" to await more CPU time again). Throughout the
execution of the entire process, each thread performs its own, separate tasks, and communicates the
results with other threads as necessary.

Of course, such sharing is not without its dangers. If two or more threads access the same piece of
data, inconsistent results may arise because of the ordering of data access. This is commonly known as
a race condition. Fortunately, most thread libraries come with some sort of synchronization primitives
that allow the thread manager to control execution and access.

Another caveat is that threads may not be given equal and fair execution time. This is because some
functions block until they have completed. If not written specifically to take threads into account, this
skews the amount of CPU time in favor of such greedy functions.

file:///D|/1/0132269937/ch18lev1sec2.html [13.11.2007 16:24:52]

file:///D|/1/0132269937/14051536.html

Section 18.3. Python, Threads, and the Global Interpreter Lock

18.3. Python, Threads, and the Global Interpreter Lock

18.3.1. Global Interpreter Lock (GIL)

Execution of Python code is controlled by the Python Virtual Machine (aka the interpreter main loop).
Python was designed in such a way that only one thread of control may be executing in this main loop,
similar to how multiple processes in a system share a single CPU. Many programs may be in memory,
but only one is live on the CPU at any given moment. Likewise, although multiple threads may be
"running" within the Python interpreter, only one thread is being executed by the interpreter at any
given time.

Access to the Python Virtual Machine is controlled by the global interpreter lock (GIL). This lock is what
ensures that exactly one thread is running. The Python Virtual Machine executes in the following manner
in an MT environment:

1. Set the GIL

2. Switch in a thread to run

3. Execute either ...

a.

For a specified number of bytecode instructions, or

b.

If the thread voluntarily yields control (can be accomplished time.sleep(0))

4. Put the thread back to sleep (switch out thread)

5. Unlock the GIL, and ...

6. Do it all over again (lather, rinse, repeat)

When a call is made to external code, i.e., any C/C++ extension built-in function, the GIL will be locked
until it has completed (since there are no Python bytecodes to count as the interval). Extension
programmers do have the ability to unlock the GIL, however, so you being the Python developer
shouldn't have to worry about your Python code locking up in those situations.

As an example, for any Python I/O-oriented routines (which invoke built-in operating system C code),
the GIL is released before the I/O call is made, allowing other threads to run while the I/O is being
performed. Code that doesn't have much I/O will tend to keep the processor (and GIL) for the full
interval a thread is allowed before it yields. In other words, I/O-bound Python programs stand a much
better chance of being able to take advantage of a multithreaded environment than CPU-bound code.

file:///D|/1/0132269937/ch18lev1sec3.html (1 von 4) [13.11.2007 16:24:53]

file:///D|/1/0132269937/14051536.html

Section 18.3. Python, Threads, and the Global Interpreter Lock

Those of you interested in the source code, the interpreter main loop, and the GIL can take a look at the
Python/ceval.c file.

18.3.2. Exiting Threads

When a thread completes execution of the function it was created for, it exits. Threads may also quit by
calling an exit function such as tHRead. exit(), or any of the standard ways of exiting a Python process, i.
e., sys.exit() or raising the SystemExit exception. You cannot, however, go and "kill" a thread.

We will discuss in detail the two Python modules related to threads in the next section, but of the two,
the thread module is the one we do not recommend. There are many reasons for this, but an obvious
one is that when the main thread exits, all other threads die without cleanup. The other module,
threading, ensures that the whole process stays alive until all "important" child threads have exited. (We
will clarify what "important" means soon. Look for the daemon threads Core Tip sidebar.)

Main threads should always be good managers, though, and perform the task of knowing what needs to
be executed by individual threads, what data or arguments each of the spawned threads requires, when
they complete execution, and what results they provide. In so doing, those main threads can collate the
individual results into a final, meaningful conclusion.

18.3.3. Accessing Threads from Python

Python supports multithreaded programming, depending on the operating system that it is running on.
It is supported on most Unix-based platforms, i.e., Linux, Solaris, MacOS X, *BSD, as well as Win32
systems. Python uses POSIX-compliant threads, or "pthreads," as they are commonly known.

By default, threads are enabled when building Python from source (since Python 2.0) or the Win32
installed binary. To tell whether threads are available for your interpreter, simply attempt to import the
thread module from the interactive interpreter. No errors occur when threads are available:

>>> import thread
>>>

If your Python interpreter was not compiled with threads enabled, the module import fails:

>>> import thread
Traceback (innermost last):
 File "<stdin>", line 1, in ?
ImportError: No module named thread

In such cases, you may have to recompile your Python interpreter to get access to threads. This usually
involves invoking the configure script with the "--with-thread" option. Check the README file for your
distribution to obtain specific instructions on how to compile Python with threads for your system.

18.3.4. Life Without Threads

For our first set of examples, we are going to use the time.sleep() function to show how threads work.
time.sleep() takes a floating point argument and "sleeps" for the given number of seconds, meaning
that execution is temporarily halted for the amount of time specified.

file:///D|/1/0132269937/ch18lev1sec3.html (2 von 4) [13.11.2007 16:24:53]

Section 18.3. Python, Threads, and the Global Interpreter Lock

Let us create two "time loops," one that sleeps for 4 seconds and one that sleeps for 2 seconds, loop0()
and loop1(), respectively. (We use the names "loop0" and "loop1" as a hint that we will eventually have
a sequence of loops.) If we were to execute loop0() and loop1() sequentially in a one-process or single-
threaded program, as onethr.py does in Example 18.1, the total execution time would be at least 6
seconds. There may or may not be a 1-second gap between the starting of loop0() and loop1(), and
other execution overhead which may cause the overall time to be bumped to 7 seconds.

Example 18.1. Loops Executed by a Single Thread (onethr.py)

Executes two loops consecutively in a single-threaded program. One loop must complete
before the other can begin. The total elapsed time is the sum of times taken by each loop.

1 #!/usr/bin/env python
2
3 from time import sleep, ctime
4
5 def loop0():
6 print 'start loop 0 at:', ctime()
7 sleep(4)
8 print 'loop 0 done at:', ctime()
9
10 def loop1():
11 print 'start loop 1 at:', ctime()
12 sleep(2)
13 print 'loop 1 done at:', ctime()
14
15 def main():
16 print 'starting at:', ctime()
17 loop0()
18 loop1()
19 print 'all DONE at:', ctime()
20
21 if __name__ == '__main__':
22 main()

We can verify this by executing onethr.py, which gives the following output:

$ onethr.py
starting at: Sun Aug 13 05:03:34 2006
start loop 0 at: Sun Aug 13 05:03:34 2006
loop 0 done at: Sun Aug 13 05:03:38 2006
start loop 1 at: Sun Aug 13 05:03:38 2006
loop 1 done at: Sun Aug 13 05:03:40 2006
all DONE at: Sun Aug 13 05:03:40 2006

Now, pretend that rather than sleeping, loop0() and loop1() were separate functions that performed
individual and independent computations, all working to arrive at a common solution. Wouldn't it be
useful to have them run in parallel to cut down on the overall running time? That is the premise behind
MT that we now introduce to you.

file:///D|/1/0132269937/ch18lev1sec3.html (3 von 4) [13.11.2007 16:24:53]

Section 18.3. Python, Threads, and the Global Interpreter Lock

18.3.5. Python Threading Modules

Python provides several modules to support MT programming, including the tHRead, tHReading, and
Queue modules. The thread and threading modules allow the programmer to create and manage threads.
The thread module provides basic thread and locking support, while threading provides higher-level,
fully featured thread management. The Queue module allows the user to create a queue data structure
that can be shared across multiple threads. We will take a look at these modules individually and
present examples and intermediate-sized applications.

Core Tip: Avoid use of thread module

We recommend avoiding the tHRead module for many reasons. The
first is that the high-level threading module is more contemporary, not
to mention the fact that thread support in the threading module is
much improved and the use of attributes of the thread module may
conflict with using the threading module. Another reason is that the
lower-level thread module has few synchronization primitives (actually
only one) while threading has many.

However, in the interest of learning Python and threading in general,
we do present some code that uses the thread module. These pieces
of code should be used for learning purposes only and will give you a
much better insight as to why you would want to avoid using the
thread module. These examples also show how our applications and
thread programming improve as we migrate to using more appropriate
tools such as those available in the threading and Queue modules.

Another reason to avoid using thread is because there is no control of
when your process exits. When the main thread finishes, all threads
will also die, without warning or proper cleanup. As mentioned earlier,
at least tHReading allows the important child threads to finish first
before exiting.

Use of the tHRead module is recommended only for experts desiring
lower-level thread access. Those of you new to threads should look at
the code samples to see how we can overlay threads onto our time
loop application and to gain a better understanding as to how these
first examples evolve to the main code samples of this chapter. Your
first multithreaded application should utilize threading and perhaps
other high-level thread modules, if applicable.

file:///D|/1/0132269937/ch18lev1sec3.html (4 von 4) [13.11.2007 16:24:53]

file:///D|/1/0132269937/14051536.html

Section 18.4. thread Module

18.4. tHRead Module

Let's take a look at what the tHRead module has to offer. In addition to being able to spawn threads, the
tHRead module also provides a basic synchronization data structure called a lock object (aka primitive
lock, simple lock, mutual exclusion lock, mutex, binary semaphore). As we mentioned earlier, such
synchronization primitives go hand in hand with thread management.

Listed in Table 18.1 are the more commonly used thread functions and LockType lock object methods.

Table 18.1. thread Module and Lock Objects

Function/Method Description

tHRead Module Functions

start_new_thread(function, args, kwargs=None) Spawns a new thread and execute function with the
given args and optional kwargs

allocate_lock() Allocates LockType lock object

exit() Instructs a thread to exit

LockType Lock Object Methods

acquire(wait=None) Attempts to acquire lock object

locked() Returns True if lock acquired, False otherwise

release() Releases lock

The key function of the thread module is start_new_thread(). Its syntax is exactly that of the apply()
built-in function, taking a function along with arguments and optional keyword arguments. The
difference is that instead of the main thread executing the function, a new thread is spawned to invoke
the function.

Let's take our onethr.py example and integrate threading into it. By slightly changing the call to the
loop*() functions, we now present mtsleep1.py in Example 18.2.

Example 18.2. Using the thread Module (mtsleep1.py)

file:///D|/1/0132269937/ch18lev1sec4.html (1 von 5) [13.11.2007 16:24:54]

file:///D|/1/0132269937/14051536.html

Section 18.4. thread Module

The same loops from onethr.py are executed, but this time using the simple multithreaded
mechanism provided by the thread module. The two loops are executed concurrently (with
the shorter one finishing first, obviously), and the total elapsed time is only as long as the
slowest thread rather than the total time for each separately.

1 #!/usr/bin/env python
2
3 import thread
4 from time import sleep, ctime
5
6 def loop0():
7 print 'start loop 0 at:', ctime()
8 sleep(4)
9 print 'loop 0 done at:', ctime()
10
11 def loop1():
12 print 'start loop 1 at:', ctime()
13 sleep(2)
14 print 'loop 1 done at:', ctime()
15
16 def main():
17 print 'starting at:', ctime()
18 thread.start_new_thread(loop0, ())
19 thread.start_new_thread(loop1, ())
20 sleep(6)
21 print 'all DONE at:', ctime()
22
23 if __name__ == '__main__':
24 main()

start_new_thread() requires the first two arguments, so that is the reason for passing in an empty tuple
even if the executing function requires no arguments.

Upon execution of this program, our output changes drastically. Rather than taking a full 6 or 7 seconds,
our script now runs in 4, the length of time of our longest loop, plus any overhead.

$ mtsleep1.py
starting at: Sun Aug 13 05:04:50 2006
start loop 0 at: Sun Aug 13 05:04:50 2006
start loop 1 at: Sun Aug 13 05:04:50 2006
loop 1 done at: Sun Aug 13 05:04:52 2006
loop 0 done at: Sun Aug 13 05:04:54 2006
all DONE at: Sun Aug 13 05:04:56 2006

The pieces of code that sleep for 4 and 2 seconds now occur concurrently, contributing to the lower
overall runtime. You can even see how loop 1 finishes before loop 0.

The only other major change to our application is the addition of the "sleep(6)" call. Why is this
necessary? The reason is that if we did not stop the main thread from continuing, it would proceed to
the next statement, displaying "all done" and exit, killing both threads running loop0() and loop1().

file:///D|/1/0132269937/ch18lev1sec4.html (2 von 5) [13.11.2007 16:24:54]

Section 18.4. thread Module

We did not have any code that told the main thread to wait for the child threads to complete before
continuing. This is what we mean by threads requiring some sort of synchronization. In our case, we
used another sleep() call as our synchronization mechanism. We used a value of 6 seconds because we
know that both threads (which take 4 and 2 seconds, as you know) should have completed by the time
the main thread has counted to 6.

You are probably thinking that there should be a better way of managing threads than creating that
extra delay of 6 seconds in the main thread. Because of this delay, the overall runtime is no better than
in our single-threaded version. Using sleep() for thread synchronization as we did is not reliable. What if
our loops had independent and varying execution times? We may be exiting the main thread too early or
too late. This is where locks come in.

Making yet another update to our code to include locks as well as getting rid of separate loop functions,
we get mtsleep2.py, presented in Example 18.3. Running it, we see that the output is similar to mtsleep1.
py. The only difference is that we did not have to wait the extra time for mtsleep1.py to conclude. By
using locks, we were able to exit as soon as both threads had completed execution.

$ mtsleep2.py
starting at: Sun Aug 13 16:34:41 2006
start loop 0 at: Sun Aug 13 16:34:41 2006
start loop 1 at: Sun Aug 13 16:34:41 2006
loop 1 done at: Sun Aug 13 16:34:43 2006
loop 0 done at: Sun Aug 13 16:34:45 2006
all DONE at: Sun Aug 13 16:34:45 2006

Example 18.3. Using tHRead and Locks (mtsleep2.py)

Rather than using a call to sleep() to hold up the main thread as in mtsleep1.py, the use of
locks makes more sense.

1 #!/usr/bin/env python
2
3 import thread
4 from time import sleep, ctime
5
6 loops = [4,2]
7
8 def loop(nloop, nsec, lock):
9 print 'start loop', nloop, 'at:', ctime()
10 sleep(nsec)
11 print 'loop', nloop, 'done at:', ctime()
12 lock.release()
13
14 def main():
15 print 'starting at:', ctime()
16 locks = []
17 nloops = range(len(loops))
18
19 for i in nloops:
20 lock = thread.allocate_lock()
21 lock.acquire()
22 locks.append(lock)
23
24 for i in nloops:

file:///D|/1/0132269937/ch18lev1sec4.html (3 von 5) [13.11.2007 16:24:54]

Section 18.4. thread Module

25 thread.start_new_thread(loop,
26 (i, loops[i], locks[i]))
27
28 for i in nloops:
29 while locks[i].locked(): pass
30
31 print 'all DONE at:', ctime()
32
33 if __name__ == '__main__':
34 main()

So how did we accomplish our task with locks? Let us take a look at the source code.

Line-by-Line Explanation

Lines 16

After the Unix startup line, we import the thread module and a few familiar attributes of the time
module. Rather than hardcoding separate functions to count to 4 and 2 seconds, we will use a single loop
() function and place these constants in a list, loops.

Lines 812

The loop() function will proxy for the now-removed loop*() functions from our earlier examples. We had
to make some cosmetic changes to loop() so that it can now perform its duties using locks. The obvious
changes are that we need to be told which loop number we are as well as how long to sleep for. The last
piece of new information is the lock itself. Each thread will be allocated an acquired lock. When the sleep
() time has concluded, we will release the corresponding lock, indicating to the main thread that this
thread has completed.

Lines 1434

The bulk of the work is done here in main() using three separate for loops. We first create a list of locks,
which we obtain using the thread.allocate_lock() function and acquire (each lock) with the acquire()
method. Acquiring a lock has the effect of "locking the lock." Once it is locked, we add the lock to the
lock list, locks. The next loop actually spawns the threads, invoking the loop() function per thread, and
for each thread, provides it with the loop number, the time to sleep for, and the acquired lock for that
thread. So why didn't we start the threads in the lock acquisition loop? There are several reasons: (1)
we wanted to synchronize the threads, so that "all the horses started out the gate" around the same
time, and (2) locks take a little bit of time to be acquired. If your thread executes "too fast," it is
possible that it completes before the lock has a chance to be acquired.

It is up to each thread to unlock its lock object when it has completed execution. The final loop just sits
and spins (pausing the main thread) until both locks have been released before continuing execution.
Since we are checking each lock sequentially, we may be at the mercy of all the slower loops if they are
more toward the beginning of the set of loops. In such cases, the majority of the wait time may be for
the first loop(s). When that lock is released, remaining locks may have already been unlocked (meaning
that corresponding threads have completed execution). The result is that the main thread will fly
through those lock checks without pause. Finally, you should be well aware that the final pair of lines
will execute main() only if we are invoking this script directly.

file:///D|/1/0132269937/ch18lev1sec4.html (4 von 5) [13.11.2007 16:24:54]

Section 18.4. thread Module

As hinted in the earlier Core Note, we presented the tHRead module only to introduce the reader to
threaded programming. Your MT application should use higher-level modules such as the threading
module, which we will now discuss.

file:///D|/1/0132269937/ch18lev1sec4.html (5 von 5) [13.11.2007 16:24:54]

file:///D|/1/0132269937/14051536.html

Section 18.5. threading Module

18.5. tHReading Module

We will now introduce the higher-level tHReading module, which gives you not only a THRead class but
also a wide variety of synchronization mechanisms to use to your heart's content. Table 18.2 represents
a list of all the objects available in the tHReading module.

Table 18.2. threading Module Objects

tHReading Module Objects Description

Thread Object that represents a single thread of execution

Lock Primitive lock object (same lock object as in the tHRead module)

RLock Re-entrant lock object provides ability for a single thread to (re)acquire
an already-held lock (recursive locking)

Condition Condition variable object causes one thread to wait until a certain
"condition" has been satisfied by another thread, such as changing of
state or of some data value EventGeneral version of condition variables
whereby any number of threads are waiting for some event to occur and
all will awaken when the event happens

Semaphore Provides a "waiting area"-like structure for threads waiting on a lock

BoundedSemaphore Similar to a Semaphore but ensures it never exceeds its initial value

Timer Similar to Thread except that it waits for an allotted period of time before
running

In this section, we will examine how to use the THRead class to implement threading. Since we have
already covered the basics of locking, we will not cover the locking primitives here. The THRead() class
also contains a form of synchronization, so explicit use of locking primitives is not necessary.

Core Tip: Daemon threads

file:///D|/1/0132269937/ch18lev1sec5.html (1 von 13) [13.11.2007 16:24:56]

file:///D|/1/0132269937/14051536.html

Section 18.5. threading Module

Another reason to avoid using the thread module is that it does not
support the concept of daemon (or daemonic) threads. When the main
thread exits, all child threads will be killed regardless of whether they
are doing work. The concept of daemon threads comes into play here
if you do not want this behavior.

Support for daemon threads is available in the threading module, and
here is how they work: a daemon is typically a server that waits for
client requests to service. If there is no client work to be done, the
daemon just sits around idle. If you set the daemon flag for a thread,
you are basically saying that it is non-critical, and it is okay for the
process to exit without waiting for it to "finish." As you have seen in
Chapter 16, "Network Programming" server threads run in an infinite
loop and do not exit in normal situations.

If your main thread is ready to exit and you do not care to wait for the
child threads to finish, then set their daemon flag. Think of setting this
flag as denoting a thread to be "not important." You do this by calling
each thread's setDaemon() method, e.g., thread.setDae-mon(True),
before it begins running (tHRead.start().)

If you want to wait for child threads to finish, just leave them as-is, or
ensure that their daemon flags are off by explicitly calling tHRead.
setDaemon (False) before starting them. You can check a thread's
daemonic status with thread.isDaemon(). A new child thread inherits
its daemonic flag from its parent. The entire Python program will stay
alive until all non-daemonic threads have exited, in other words, when
no active non-daemonic threads are left).

18.5.1. Thread Class

The THRead class of the threading is your primary executive object. It has a variety of functions not
available to the thread module, and are outlined in Table 18.3.

Table 18.3. Thread Object Methods

Method Description

start() Begin thread execution

run() Method defining thread functionality (usually overridden by application writer in
a subclass)

join(timeout = None) Suspend until the started thread terminates; blocks unless timeout (in seconds)
is given

getName() Return name of thread

setName(name) Set name of thread

isAlive() Boolean flag indicating whether thread is still running

file:///D|/1/0132269937/ch18lev1sec5.html (2 von 13) [13.11.2007 16:24:56]

Section 18.5. threading Module

isDaemon() Return daemon flag of thread

setDaemon(daemonic) Set the daemon flag of thread as per the Boolean daemonic (must be called
before thread start()ed)

There are a variety of ways you can create threads using the Thread class. We cover three of them here,
all quite similar. Pick the one you feel most comfortable with, not to mention the most appropriate for
your application and future scalability (we like the final choice the best):

● Create Thread instance, passing in function
● Create THRead instance, passing in callable class instance
● Subclass THRead and create subclass instance

Create THRead Instance, Passing in Function

In our first example, we will just instantiate THRead, passing in our function (and its arguments) in a
manner similar to our previous examples. This function is what will be executed when we direct the
thread to begin execution. Taking our mtsleep2.py script and tweaking it, adding the use of Thread
objects, we have mtsleep3.py, shown in Example 18.4.

Example 18.4. Using the tHReading Module (mtsleep3.py)

The Thread class from the threading module has a join() method that lets the main thread
wait for thread completion.

1 #!/usr/bin/env python
2
3 import threading
4 from time import sleep, ctime
5
6 loops = [4,2]
7
8 def loop(nloop, nsec):
9 print 'start loop', nloop, 'at:', ctime()
10 sleep(nsec)
11 print 'loop', nloop, 'done at:', ctime()
12
13 def main():
14 print 'starting at:', ctime()
15 threads = []
16 nloops = range(len(loops))
17
18 for i in nloops:
19 t = threading.Thread(target=loop,
20 args=(i, loops[i]))
21 threads.append(t)
22
23 for i in nloops: # start threads
24 threads[i].start()
25
26 for i in nloops: # wait for all
27 threads[i].join() # threads to finish

file:///D|/1/0132269937/ch18lev1sec5.html (3 von 13) [13.11.2007 16:24:56]

Section 18.5. threading Module

28
29 print 'all DONE at:', ctime()
30
31 if __name__ == '__main__':
32 main()

When we run it, we see output similar to its predecessors' output:

$ mtsleep3.py
starting at: Sun Aug 13 18:16:38 2006
start loop 0 at: Sun Aug 13 18:16:38 2006
start loop 1 at: Sun Aug 13 18:16:38 2006
loop 1 done at: Sun Aug 13 18:16:40 2006
loop 0 done at: Sun Aug 13 18:16:42 2006
all DONE at: Sun Aug 13 18:16:42 2006

So what did change? Gone are the locks that we had to implement when using the tHRead module.
Instead, we create a set of Thread objects. When each Thread is instantiated, we dutifully pass in the
function (target) and arguments (args) and receive a THRead instance in return. The biggest difference
between instantiating Thread [calling Thread()] and invoking thread.start_new_thread() is that the new
thread does not begin execution right away. This is a useful synchronization feature, especially when
you don't want the threads to start immediately.

Once all the threads have been allocated, we let them go off to the races by invoking each thread's start
() method, but not a moment before that. And rather than having to manage a set of locks (allocating,
acquiring, releasing, checking lock state, etc.), we simply call the join() method for each thread. join()
will wait until a thread terminates, or, if provided, a timeout occurs. Use of join() appears much cleaner
than an infinite loop waiting for locks to be released (causing these locks to sometimes be known as
"spin locks").

One other important aspect of join() is that it does not need to be called at all. Once threads are
started, they will execute until their given function completes, whereby they will exit. If your main
thread has things to do other than wait for threads to complete (such as other processing or waiting for
new client requests), it should by all means do so. join() is useful only when you want to wait for
thread completion.

Create Thread Instance, Passing in Callable Class Instance

A similar offshoot to passing in a function when creating a thread is to have a callable class and passing
in an instance for executionthis is the more OO approach to MT programming. Such a callable class
embodies an execution environment that is much more flexible than a function or choosing from a set of
functions. You now have the power of a class object behind you, as opposed to a single function or a list/
tuple of functions.

Adding our new class ThreadFunc to the code and making other slight modifications to mtsleep3.py, we
get mtsleep4.py, given in Example 18.5.

Example 18.5. Using Callable classes (mtsleep4.py)

file:///D|/1/0132269937/ch18lev1sec5.html (4 von 13) [13.11.2007 16:24:56]

Section 18.5. threading Module

In this example we pass in a callable class (instance) as opposed to just a function. It
presents more of an OO approach than mtsleep3.py.

1 #!/usr/bin/env python
2
3 import threading
4 from time import sleep, ctime
5
6 loops = [4,2]
7
8 class ThreadFunc(object):
9
10 def __init__(self, func, args, name=''):
11 self.name = name
12 self.func = func
13 self.args = args
14
15 def __call__(self):
16 apply(self.func, self.args)
17
18 def loop(nloop, nsec):
19 print 'start loop', nloop, 'at:', ctime()
20 sleep(nsec)
21 print 'loop', nloop, 'done at:', ctime()
22
23 def main():
24 print 'starting at:', ctime()
25 threads = []
26 nloops = range(len(loops))
27
28 for i in nloops: # create all threads
29 t = threading.Thread(
30 target=ThreadFunc(loop, (i, loops[i]),
31 loop.__name__))
32 threads.append(t)
33
34 for i in nloops: # start all threads
35 threads[i].start()
36
37 for i in nloops: # wait for completion
38 threads[i].join()
39
40 print 'all DONE at:', ctime()
41
42 if __name__ == '__main__':
43 main()

If we run mtsleep4.py, we get the expected output:

$ mtsleep4.py
starting at: Sun Aug 13 18:49:17 2006
start loop 0 at: Sun Aug 13 18:49:17 2006
start loop 1 at: Sun Aug 13 18:49:17 2006
loop 1 done at: Sun Aug 13 18:49:19 2006

file:///D|/1/0132269937/ch18lev1sec5.html (5 von 13) [13.11.2007 16:24:56]

Section 18.5. threading Module

loop 0 done at: Sun Aug 13 18:49:21 2006
all DONE at: Sun Aug 13 18:49:21 2006

So what are the changes this time? The addition of the ThreadFunc class and a minor change to
instantiate the THRead object, which also instantiates THReadFunc, our callable class. In effect, we have a
double instantiation going on here. Let's take a closer look at our THReadFunc class.

We want to make this class general enough to use with functions other than our loop() function, so we
added some new infrastructure, such as having this class hold the arguments for the function, the
function itself, and also a function name string. The constructor __init__() just sets all the values.

When the Thread code calls our ThreadFuncobject when a new thread is created, it will invoke the
__call__() special method. Because we already have our set of arguments, we do not need to pass it to
the THRead() constructor, but do have to use apply() in our code now because we have an argument
tuple. Those of you who have Python 1.6 and higher can use the new function invocation syntax
described in Section 11.6.3 instead of using apply() on line 16:

self.res = self.func(*self.args)

Subclass THRead and Create Subclass Instance

The final introductory example involves subclassing THRead(), which turns out to be extremely similar to
creating a callable class as in the previous example. Subclassing is a bit easier to read when you are
creating your threads (lines 29-30). We will present the code for mtsleep5.py in Example 18.6 as well as
the output obtained from its execution, and leave it as an exercise for the reader to compare mtsleep5.
py to mtsleep4.py.

Example 18.6. Subclassing Thread (mtsleep5.py)

Rather than instantiating the Thread class, we subclass it. This gives us more flexibility in
customizing our threading objects and simplifies the thread creation call.

1 #!/usr/bin/env python
2
3 import threading
4 from time import sleep, ctime
5
6 loops = (4, 2)
7
8 class MyThread(threading.Thread):
9 def __init__(self, func, args, name=''):
10 threading.Thread.__init__(self)
11 self.name = name
12 self.func = func
13 self.args = args
14
15 def run(self):
16 apply(self.func, self.args)
17
18 def loop(nloop, nsec):

file:///D|/1/0132269937/ch18lev1sec5.html (6 von 13) [13.11.2007 16:24:56]

Section 18.5. threading Module

19 print 'start loop', nloop, 'at:', ctime()
20 sleep(nsec)
21 print 'loop', nloop, 'done at:', ctime()
22
23 def main():
24 print 'starting at:', ctime()
25 threads = []
26 nloops = range(len(loops))
27
28 for i in nloops:
29 t = MyThread(loop, (i, loops[i]),
30 loop.__name__)
31 threads.append(t)
32
33 for i in nloops:
34 threads[i].start()
35
36 for i in nloops:
37 threads[i].join()
38
39 print 'all DONE at:', ctime()'
40
41 if __name__ == '__main__':
42 main()

Here is the output for mtsleep5.py, again, just what we expected:

$ mtsleep5.py
starting at: Sun Aug 13 19:14:26 2006
start loop 0 at: Sun Aug 13 19:14:26 2006
start loop 1 at: Sun Aug 13 19:14:26 2006
loop 1 done at: Sun Aug 13 19:14:28 2006
loop 0 done at: Sun Aug 13 19:14:30 2006
all DONE at: Sun Aug 13 19:14:30 2006

While the reader compares the source between the mtsleep4 and mtsleep5 modules, we want to point
out the most significant changes: (1) our MyThread subclass constructor must first invoke the base class
constructor (line 9), and (2) the former special method __call__() must be called run() in the subclass.

We now modify our MyThread class with some diagnostic output and store it in a separate module called
myThread (see Example 18.7) and import this class for the upcoming examples. Rather than simply
calling apply() to run our functions, we also save the result to instance attribute self.res, and create a
new method to retrieve that value, getresult().

Example 18.7. MyThread Subclass of Thread (myThread.py)

file:///D|/1/0132269937/ch18lev1sec5.html (7 von 13) [13.11.2007 16:24:56]

Section 18.5. threading Module

To generalize our subclass of Thread from mtsleep5.py, we move the subclass to a
separate module and add a getResult() method for callables that produce return values.

1 #!/usr/bin/env python
2
3 import threading
4 from time import ctime
5
6 class MyThread(threading.Thread):
7 def __init__(self, func, args, name=''):
8 threading.Thread.__init__(self)
9 self.name = name
10 self.func = func
11 self.args = args
12
13 def getResult(self):
14 return self.res
15
16 def run(self):
17 print 'starting', self.name, 'at:', \
18 ctime()
19 self.res = apply(self.func, self.args)
20 print self.name, 'finished at:', \
21 ctime()

18.5.4. Fibonacci and Factorial ... Take Two, Plus Summation

The mtfacfib.py script, given in Example 18.8, compares execution of the recursive Fibonacci, factorial,
and summation functions. This script runs all three functions in a single-threaded manner, then
performs the same task using threads to illustrate one of the advantages of having a threading
environment.

Example 18.8. Fibonacci, Factorial, Summation (mtfacfib.py)

In this MT application, we execute three separate recursive functionsfirst in a single-
threaded fashion, followed by the alternative with multiple threads.

1 #!/usr/bin/env python
2
3 from myThread import MyThread
4 from time import ctime, sleep
5
6 def fib(x):
7 sleep(0.005)
8 if x < 2: return 1
9 return (fib(x-2) + fib(x-1))
10
11 def fac(x):
12 sleep(0.1)
13 if x < 2: return 1
14 return (x * fac(x-1))
15

file:///D|/1/0132269937/ch18lev1sec5.html (8 von 13) [13.11.2007 16:24:56]

Section 18.5. threading Module

16 def sum(x):
17 sleep(0.1)
18 if x < 2: return 1
19 return (x + sum(x-1))
20
21 funcs = [fib, fac, sum]
22 n = 12
23
24 def main():
25 nfuncs = range(len(funcs))
26
27 print '*** SINGLE THREAD'
28 for i in nfuncs:
29 print 'starting', funcs[i].__name__, 'at:', \
30 ctime()
31 print funcs[i](n)
32 print funcs[i].__name__, 'finished at:', \
33 ctime()
34
35 print '\n*** MULTIPLE THREADS'
36 threads = []
37 for i in nfuncs:
38 t = MyThread(funcs[i], (n,),
39 funcs[i].__name__)
40 threads.append(t)
41
42 for i in nfuncs:
43 threads[i].start()
44
45 for i in nfuncs:
46 threads[i].join()
47 print threads[i].getResult()
48
49 print 'all DONE'
50
51 if __name__ == '__main__':
52 main()

Running in single-threaded mode simply involves calling the functions one at a time and displaying the
corresponding results right after the function call.

When running in multithreaded mode, we do not display the result right away. Because we want to keep
our MyThread class as general as possible (being able to execute callables that do and do not produce
output), we wait until the end to call the geTResult() method to finally show you the return values of
each function call.

Because these functions execute so quickly (well, maybe except for the Fibonacci function), you will
notice that we had to add calls to sleep() to each function to slow things down so that we can see how
threading may improve performance, if indeed the actual work had varying execution times you
certainly wouldn't pad your work with calls to sleep(). Anyway, here is the output:

$ mtfacfib.py
*** SINGLE THREAD
starting fib at: Sun Jun 18 19:52:20 2006

file:///D|/1/0132269937/ch18lev1sec5.html (9 von 13) [13.11.2007 16:24:56]

Section 18.5. threading Module

233
fib finished at: Sun Jun 18 19:52:24 2006
starting fac at: Sun Jun 18 19:52:24 2006
479001600
fac finished at: Sun Jun 18 19:52:26 2006
starting sum at: Sun Jun 18 19:52:26 2006
78
sum finished at: Sun Jun 18 19:52:27 2006

*** MULTIPLE THREADS
starting fib at: Sun Jun 18 19:52:27 2006
starting fac at: Sun Jun 18 19:52:27 2006
starting sum at: Sun Jun 18 19:52:27 2006
fac finished at: Sun Jun 18 19:52:28 2006
sum finished at: Sun Jun 18 19:52:28 2006
fib finished at: Sun Jun 18 19:52:31 2006
233
479001600
78
all DONE

18.5.5. Other Threading Module Functions

In addition to the various synchronization and threading objects, the Threading module also has some
supporting functions, detailed in Table 18.4.

Table 18.4. threading Module Functions

Function Description

activeCount() Number of currently active Thread objects

currentThread() Returns the current THRead object

enumerate() Returns list of all currently active Threads

settrace(func)
[a] Sets a trace function for all threads

setprofile(func)
[a] Sets a profile function for all threads

[a] New in Python 2.3.

18.5.6. Producer-Consumer Problem and the Queue Module

The final example illustrates the producer-consumer scenario where a producer of goods or services
creates goods and places it in a data structure such as a queue. The amount of time between producing
goods is non-deterministic, as is the consumer consuming the goods produced by the producer.

file:///D|/1/0132269937/ch18lev1sec5.html (10 von 13) [13.11.2007 16:24:56]

Section 18.5. threading Module

We use the Queue module to provide an interthread communication mechanism that allows threads to
share data with each other. In particular, we create a queue into which the producer (thread) places
new goods and the consumer (thread) consumes them. To do this, we will use the following attributes
from the Queue module (see Table 18.5).

Table 18.5. Common Queue Module Attributes

Function/Method Description

Queue Module Function

queue(size) Creates a Queue object of given size

Queue Object Methods

qsize() Returns queue size (approximate, since queue may be getting updated by other
threads)

empty() Returns TRue if queue empty, False otherwise

full() Returns true if queue full, False otherwise

put(item, block=0) Puts item in queue, if block given (not 0), block until room is available

get(block=0) Gets item from queue, if block given (not 0), block until an item is available

Without further ado, we present the code for prodcons.py, shown in Example 18.9.

Example 18.9. Producer-Consumer Problem (prodcons.py)

We feature an implementation of the Producer-Consumer problem using Queue objects and
a random number of goods produced (and consumed). The producer and consumer are
individuallyand concurrentlyexecuting threads.

1 #!/usr/bin/env python
2
3 from random import randint
4 from time import sleep
5 from Queue import Queue
6 from myThread import MyThread
7
8 def writeQ(queue):
9 print 'producing object for Q...',
10 queue.put('xxx', 1)
11 print "size now", queue.qsize()
12
13 def readQ(queue):
14 val = queue.get(1)
15 print 'consumed object from Q... size now', \
16 queue.qsize()
17

file:///D|/1/0132269937/ch18lev1sec5.html (11 von 13) [13.11.2007 16:24:56]

Section 18.5. threading Module

18 def writer(queue, loops):
19 for i in range(loops):
20 writeQ(queue)
21 sleep(randint(1, 3))
22
23 def reader(queue, loops):
24 for i in range(loops):
25 readQ(queue)
26 sleep(randint(2, 5))
27
28 funcs = [writer, reader]
29 nfuncs = range(len(funcs))
30
31 def main():
32 nloops = randint(2, 5)
33 q = Queue(32)
34
35 threads = []
36 for i in nfuncs:
37 t = MyThread(funcs[i], (q, nloops),
38 funcs[i].__name__)
39 threads.append(t)
40
41 for i in nfuncs:
42 threads[i].start()
43
44 for i in nfuncs:
45 threads[i].join()
46
47 print 'all DONE'
48
49 if __name__ == '__main__':
50 main()

Here is the output from one execution of this script:

$ prodcons.py
starting writer at: Sun Jun 18 20:27:07 2006
producing object for Q... size now 1
starting reader at: Sun Jun 18 20:27:07 2006
consumed object from Q... size now 0
producing object for Q... size now 1
consumed object from Q... size now 0
producing object for Q... size now 1
producing object for Q... size now 2
producing object for Q... size now 3
consumed object from Q... size now 2
consumed object from Q... size now 1
writer finished at: Sun Jun 18 20:27:17 2006
consumed object from Q... size now 0
reader finished at: Sun Jun 18 20:27:25 2006
all DONE

As you can see, the producer and consumer do not necessarily alternate in execution. (Thank goodness

file:///D|/1/0132269937/ch18lev1sec5.html (12 von 13) [13.11.2007 16:24:56]

Section 18.5. threading Module

for random numbers!) Seriously, though, real life is generally random and non-deterministic.

Line-by-Line Explanation

Lines 16

In this module, we will use the Queue.Queue object as well as our thread class myThread.MyThread, which
we gave in Example 18.7. We will use random.randint() to make production and consumption somewhat
varied, and also grab the usual suspects from the time module.

Lines 816

The writeQ() and readQ() functions each have a specific purpose, to place an object in the queuewe are
using the string 'xxx', for exampleand to consume a queued object, respectively. Notice that we are
producing one object and reading one object each time.

Lines 1826

The writer() is going to run as a single thread whose sole purpose is to produce an item for the queue,
wait for a bit, then do it again, up to the specified number of times, chosen randomly per script
execution. The reader() will do likewise, with the exception of consuming an item, of course.

You will notice that the random number of seconds that the writer sleeps is in general shorter than the
amount of time the reader sleeps. This is to discourage the reader from trying to take items from an
empty queue. By giving the writer a shorter time period of waiting, it is more likely that there will
already be an object for the reader to consume by the time their turn rolls around again.

Lines 2829

These are just setup lines to set the total number of threads that are to be spawned and executed.

Lines 3147

Finally, we have our main() function, which should look quite similar to the main() in all of the other
scripts in this chapter. We create the appropriate threads and send them on their way, finishing up when
both threads have concluded execution.

We infer from this example that a program that has multiple tasks to perform can be organized to use
separate threads for each of the tasks. This can result in a much cleaner program design than a single
threaded program that attempts to do all of the tasks.

In this chapter, we illustrated how a single-threaded process may limit an application's performance. In
particular, programs with independent, non-deterministic, and non-causal tasks that execute
sequentially can be improved by division into separate tasks executed by individual threads. Not all
applications may benefit from multithreading due to overhead and the fact that the Python interpreter is
a single-threaded application, but now you are more cognizant of Python's threading capabilities and can
use this tool to your advantage when appropriate.

file:///D|/1/0132269937/ch18lev1sec5.html (13 von 13) [13.11.2007 16:24:56]

file:///D|/1/0132269937/14051536.html

Section 18.6. Related Modules

18.6. Related Modules

The table below lists some of the modules you may use when programming multithreaded applications.

Table 18.6. Threading-Related Standard Library
Modules

Module Description

tHRead Basic, lower-level thread module

threading Higher-level threading and synchronization objects

Queue Synchronized FIFO queue for multiple threads

mutex Mutual exclusion objects

SocketServer TCP and UDP managers with some threading control

file:///D|/1/0132269937/ch18lev1sec6.html [13.11.2007 16:24:57]

Section 18.7. Exercises

18.7. Exercises

18-1. Processes versus Threads. What are the differences between processes and threads?

18-2. Python Threads. Which type of multithreaded application will tend to fare better in
Python, I/O-bound or CPU-bound?

18-3. Threads. Do you think anything significant happens if you have multiple threads on a
multiple CPU system? How do you think multiple threads run on these systems?

18-4. Threads and Files. Update your solution to Exercise 9-19, which obtains a byte value
and a file name, displaying the number of times that byte appears in the file. Let's
suppose this is a really big file. Multiple readers in a file is acceptable, so create
multiple threads that count in different parts of the file so that each thread is
responsible for a certain part of the file. Collate the data from each thread and provide
the summed-up result. Use your timeit() code to time both the single threaded
version and your new multithreaded version and say something about the
performance improvement.

18-5. Threads, Files, and Regular Expressions. You have a very large mailbox fileif you don't
have one, put all of your e-mail messages together into a single text file. Your job is to
take the regular expressions you designed in Chapter 15 that recognize e-mail
addresses and Web site URLs, and use them to convert all e-mail addresses and URLs
in this large file into live links so that when the new file is saved as an .html (or .htm)
file, will show up in a Web browser as live and clickable. Use threads to segregate the
conversion process across the large text file and collate the results into a single new .
html file. Test the results on your Web browser to ensure the links are indeed working.

18-6. Threads and Networking. Your solution to the chat service application in the previous
chapter (Exercises 16-7 to 16-10) may have required you to use heavyweight threads
or processes as part of your solution. Convert that to be multithreaded code.

18-7. *Threads and Web Programming. The Crawler up ahead in Example 19.1 is a single-
threaded application that downloads Web pages that would benefit from MT
programming. Update crawl.py (you could call it mtcrawl.py) such that independent
threads are used to download pages. Be sure to use some kind of locking mechanism
to prevent conflicting access to the links queue.

18-8. Thread Pools. Instead of a producer thread and a consumer thread, change the code
in Example 18.9, prodcons.py, so that you have any number of consumer threads (a
thread pool) which can process or consume more than one item from the Queue at any
given moment.

18-9. Files. Create a set of threads to count how many lines there are in a set of
(presumably large) text files. You may choose the number of threads to use. Compare
the performance against a single-threaded version of this code. Hint: Review Chapter
9 (Files and I/O) exercises.

file:///D|/1/0132269937/ch18lev1sec7.html (1 von 2) [13.11.2007 16:24:57]

Section 18.7. Exercises

18-10. Take your solution to the previous exercise and adopt it to a task of your selection, i.
e., processing a set of e-mail messages, downloading Web pages, processing RSS or
Atom feeds, enhancing message processing as part of a chat server, solving a puzzle,
etc.

file:///D|/1/0132269937/ch18lev1sec7.html (2 von 2) [13.11.2007 16:24:57]

Chapter 19. GUI Programming

Chapter 19. GUI Programming

Chapter Topics

● Introduction
● Tkinter and Python Programming

�❍ Tkinter Module

�❍ Tk Widgets
● Tkinter Examples

�❍ Label, Button and Scale Widgets
�❍ An Intermediate Tk Example

● Brief Tour of Other GUIs (Tix, Pmw, wxPython, PyGTK)
● Related Modules and Other GUIs

In this chapter, we will give you a brief introduction to the subject of graphical user interface (GUI)
programming. If you are somewhat new to this area or want to learn more about it, or if you want to
see how it is done in Python, then this chapter is for you. We cannot show you everything about GUI
application development here in this one chapter, but we will give you a very solid introduction to it. The
primary GUI toolkit we will be using is Tk, Python's default GUI, and we will access Tk from its Python
interface called Tkinter (short for "Tk interface").

Tk is not the "latest and greatest" nor does it have the most robust set of GUI building blocks, but it is
fairly simple to use and will allow you to build GUIs that run on most platforms. We will present several
simple and intermediate examples using Tkinter, followed by a few examples using other toolkits. Once
you have completed this chapter, you will have the skills to build more complex applications and/or
move to a more modern graphical toolkit. Python has bindings or adapters to most of the major toolkits
out there, including commercial systems.

file:///D|/1/0132269937/ch19.html [13.11.2007 16:24:57]

file:///D|/1/0132269937/14051536.html

Section 19.1. Introduction

19.1. Introduction

19.1.1. What Are Tcl, Tk, and Tkinter?

Tkinter is Python's default GUI library. It is based on the Tk toolkit, originally designed for the Tool
Command Language (Tcl). Due to Tk's popularity, it has been ported to a variety of other scripting
languages, including Perl (Perl/Tk), Ruby (Ruby/Tk), and Python (Tkinter). With the GUI development
portability and flexibility of Tk, along with the simplicity of scripting language integrated with the power
of systems language, you are given the tools to rapidly design and implement a wide variety of
commercial-quality GUI applications.

If you are new to GUI programming, you will be pleasantly surprised at how easy it is. You will also find
that Python, along with Tkinter, provides a fast and exciting way to build applications that are fun (and
perhaps useful) and that would have taken much longer if you had had to program directly in C/C++
with the native windowing system's libraries. Once you have designed the application and the look and
feel that goes along with your program, you will use basic building blocks known as widgets to piece
together the desired components, and finally, to attach functionality to "make it real."

If you are an old hand at using Tk, either with Tcl or Perl, you will find Python a refreshing way to
program GUIs. On top of that, it provides an even faster rapid prototyping system for building them.
Remember that you also have Python's system accessibility, networking functionality, XML, numerical
and visual processing, database access, and all the other standard library and third-party extension
modules.

Once you get Tkinter up on your system, it will take less than 15 minutes to get your first GUI
application running.

19.1.2. Getting Tkinter Installed and Working

Like threading, Tkinter is not necessarily turned on by default on your system. You can tell whether
Tkinter is available for your Python interpreter by attempting to import the Tkinter module. If Tkinter is
available, then no errors occur:

>>> import Tkinter
>>>

If your Python interpreter was not compiled with Tkinter enabled, the module import fails:

>>> import Tkinter
Traceback (innermost last):
 File "<stdin>", line 1, in ?
 File "/usr/lib/python1.5/lib-tk/Tkinter.py", line 8, in ?
 import _tkinter # If this fails your Python may not
be configured for Tk
ImportError: No module named _tkinter

You may have to recompile your Python interpreter to get access to Tkinter. This usually involves editing
the Modules/Setup file and enabling all the correct settings to compile your Python interpreter with hooks
to Tkinter or choosing to have Tk installed on your system. Check the README file for your Python

file:///D|/1/0132269937/ch19lev1sec1.html (1 von 2) [13.11.2007 16:24:58]

Section 19.1. Introduction

distribution for specific instructions on getting Tkinter to compile on your system. Be sure, after your
compilation, that you start the new Python interpreter you just created; otherwise, it will act just like
your old one without Tkinter (and in fact, it is your old one).

19.1.3. Client/Server ArchitectureTake Two

In the earlier chapter on network programming, we introduced the notion of client/server computing. A
windowing system is another example of a software server. These run on a machine with an attached
display, such as a monitor of some sort. There are clients, tooprograms that require a windowing
environment to execute, also known as GUI applications. Such applications cannot run without a
windows system.

The architecture becomes even more interesting when networking comes into play. Usually when a GUI
application is executed, it displays to the machine that it started on (via the windowing server), but it is
possible in some networked windowing environments, such as the X Window system on Unix, to choose
another machine's window server to display to. In such situations, you can be running a GUI program on
one machine, but have it displayed on another!

file:///D|/1/0132269937/ch19lev1sec1.html (2 von 2) [13.11.2007 16:24:58]

Section 19.2. Tkinter and Python Programming

19.2. Tkinter and Python Programming

19.2.1. Tkinter Module: Adding Tk to your Applications

So what do you need to do to have Tkinter as part of your application? Well, first of all, it is not
necessary to have an application already. You can create a pure GUI if you want, but it probably isn't
too useful without some underlying software that does something interesting.

There are basically five main steps that are required to get your GUI up and running:

1. Import the Tkinter module (or from Tkinter import *).

2. Create a top-level windowing object that contains your entire GUI application.

3. Build all your GUI components (and functionality) on top (or "inside") of your top-level windowing
object.

4. Connect these GUI components to the underlying application code.

5. Enter the main event loop.

The first step is trivial: All GUIs that use Tkinter must import the Tkinter module. Getting access to
Tkinter is the first step (see Section 19.1.2).

19.2.2. Introduction to GUI Programming

Before going to the examples, we will give you a brief introduction to GUI application development in
general. This will provide you with some of the background you need to move forward.

Setting up a GUI application is similar to an artist's producing a painting. Conventionally, there is a
single canvas onto which the artist must put all the work. The way it works is like this: You start with a
clean slate, a "top-level" windowing object on which you build the rest of your components. Think of it
as a foundation to a house or the easel for an artist. In other words, you have to pour the concrete or
set up your easel before putting together the actual structure or canvas on top of it. In Tkinter, this
foundation is known as the top-level window object.

In GUI programming, a top-level root windowing object contains all of the little windowing objects that
will be part of your complete GUI application. These can be text labels, buttons, list boxes, etc. These
individual little GUI components are known as widgets. So when we say create a top-level window, we
just mean that you need such a thing as a place where you put all your widgets. In Python, this would
typically look like this line:

top = Tkinter.Tk() # or just Tk() with "from Tkinter import *"

The object returned by Tkinter.Tk() is usually referred to as the root window, hence the reason why

file:///D|/1/0132269937/ch19lev1sec2.html (1 von 4) [13.11.2007 16:24:59]

file:///D|/1/0132269937/14051536.html

Section 19.2. Tkinter and Python Programming

some applications use root rather than top to indicate as such. Top-level windows are those that show
up standalone as part of your application. You may have more than one top-level window for your GUI,
but only one of them should be your root window. You may choose to completely design all your widgets
first, then add the real functionality, or do a little of this and a little of that along the way. (This means
mixing and matching steps 3 and 4 from our list.)

Widgets may be standalone or be containers. If a widget "contains" other widgets, it is considered the
parent of those widgets. Accordingly, if a widget is "contained" in another widget, it's considered a child
of the parent, the parent being the next immediate enclosing container widget.

Usually, widgets have some associated behaviors, such as when a button is pressed, or text is filled into
a text field. These types of user behaviors are called events, and the actions that the GUI takes to
respond to such events are known as callbacks.

Actions may include the actual button press (and release), mouse movement, hitting the RETURN or
Enter key, etc. All of these are known to the system literally as events. The entire system of events that
occurs from the beginning to the end of a GUI application is what drives it. This is known as event-
driven processing.

One example of an event with a callback is a simple mouse move. Let's say the mouse pointer is sitting
somewhere on top of your GUI application. If the mouse is moved to another part of your application,
something has to cause the movement of the mouse on your screen so that it looks as if it is moving to
another location. These are mouse move events that the system must process to give you the illusion
(and reality) that your mouse is moving across the window. When you release the mouse, there are no
more events to process, so everything just sits there quietly on the screen again.

The event-driven processing nature of GUIs fits right in with client/server architecture. When you start a
GUI application, it must perform some setup procedures to prepare for the core execution, just as when
a network server has to allocate a socket and bind it to a local address. The GUI application must
establish all the GUI components, then draw (aka render or paint) them to the screen. Tk has a couple
of geometry managers that help position the widget in the right place; the main one that you will use is
called Pack, aka the packer. Another geometry manager is Gridthis is where you specify GUI widgets to
be placed in grid coordinates, and Grid will render each object in the GUI in their grid position. For us,
we will stick with the packer.

Once the packer has determined the sizes and alignments of all your widgets, it will then place them on
the screen for you. When all of the widgets, including the top-level window, finally appear on your
screen, your GUI application then enters a "server-like" infinite loop. This infinite loop involves waiting
for a GUI event, processing it, then going back to wait for the next event.

The final step we described above says to enter the main loop once all the widgets are ready. This is the
"server" infinite loop we have been referring to. In Tkinter, the code that does this is:

Tkinter.mainloop()

This is normally the last piece of sequential code your program runs. When the main loop is entered, the
GUI takes over execution from there. All other action is via callbacks, even exiting your application.
When you pull down the File menu to click on the Exit menu option or close the window directly, a
callback must be invoked to end your GUI application.

19.2.3. Top-Level Window: Tkinter.Tk()

We mentioned above that all main widgets are built into the top-level window object. This object is

file:///D|/1/0132269937/ch19lev1sec2.html (2 von 4) [13.11.2007 16:24:59]

Section 19.2. Tkinter and Python Programming

created by the Tk class in Tkinter and is created via the normal instantiation:

>>> import Tkinter
>>> top = Tkinter.Tk()

Within this window, you place individual widgets or multiple-component pieces together to form your
GUI. So what kinds of widgets are there? We will now introduce the Tk widgets.

19.2.4. Tk Widgets

There are currently 15 types of widgets in Tk. We describe these widgets in Table 19.1.

Table 19.1. Tk Widgets

Widget Description

Button Similar to a Label but provides additional functionality for mouse overs, presses, and
releases as well as keyboard activity/events

Canvas Provides ability to draw shapes (lines, ovals, polygons, rectangles); can contain images
or bitmaps

Checkbutton Set of boxes of which any number can be "checked" (similar to HTML checkbox input)

Entry Single-line text field with which to collect keyboard input (similar to HTML text input)

Frame Pure container for other widgets

Label Used to contain text or images

Listbox Presents user list of choices to pick from

Menu Actual list of choices "hanging" from a Menubutton that the user can choose from

Menubutton Provides infrastructure to contain menus (pulldown, cascading, etc.)

Message Similar to a Label, but displays multi-line text

Radiobutton Set of buttons of which only one can be "pressed" (similar to HTML radio input)

Scale Linear "slider" widget providing an exact value at current setting; with defined starting
and ending values

Scrollbar Provides scrolling functionality to supporting widgets, i.e., Text, Canvas, Listbox, and
EnTRy

Text Multi-line text field with which to collect (or display) text from user (similar to HTML
textarea)

Toplevel Similar to a Frame, but provides a separate window container

We won't go over the Tk widgets in detail as there is plenty of good documentation available on them,

file:///D|/1/0132269937/ch19lev1sec2.html (3 von 4) [13.11.2007 16:24:59]

Section 19.2. Tkinter and Python Programming

either from the Tkinter topics page at the main Python Web site or the abundant number of Tcl/Tk
printed and online resources (some of which are available in AppendixB). However, we will present
several simple examples to help you get started.

Core Note: Default arguments are your friend

GUI development really takes advantage of default arguments in
Python because there are numerous default actions in Tkinter widgets.
Unless you know every single option available to you for every single
widget you are using, it's best to start out by setting only the
parameters you are aware of and letting the system handle the rest.
These defaults were chosen carefully. If you do not provide these
values, do not worry about your applications appearing odd on the
screen. They were created with an optimized set of default arguments
as a general rule, and only when you know how to exactly customize
your widgets should you use values other than the default.

file:///D|/1/0132269937/ch19lev1sec2.html (4 von 4) [13.11.2007 16:24:59]

file:///D|/1/0132269937/14051536.html

Section 19.3. Tkinter Examples

19.3. Tkinter Examples

19.3.1. Label Widget

In Example 19.1, we present tkhello1.py, the Tkinter version of "Hello World!" In particular, it shows
you how a Tkinter application is set up and highlights the Label widget.

Example 19.1. Label Widget Demo (tkhello1.py)

Our first Tkinter example is ... what else? "Hello World!"In particular, we introduce our first
widget, the Label.

1 #!/usr/bin/env python
2
3 import Tkinter
4
5 top = Tkinter.Tk()
6 label = Tkinter.Label(top, text='Hello World!')
7 label.pack()
8 Tkinter.mainloop()

In the first line, we create our top-level window. That is followed by our Label widget containing the all-
too-famous string. We instruct the packer to manage and display our widget, and finally call mainloop()
to run our GUI application. Figure 19-1 shows what you will see when you run this GUI application.

Figure 19-1. Tkinter Label widget (tkhello1.py)

19.3.2. Button Widget

The next example is pretty much the same as the first. However, instead of a simple text label, we will
create a button instead. In Example 19-2 is the source code for tkhello2.py.

file:///D|/1/0132269937/ch19lev1sec3.html (1 von 14) [13.11.2007 16:25:00]

file:///D|/1/0132269937/14051536.html

Section 19.3. Tkinter Examples

Example 19.2. Button Widget Demo (tkhello2.py)

This example is exactly the same as tkhello1.py except that rather than using a Label
widget, we create a Button widget.

1 #!/usr/bin/env python
2
3 import Tkinter
4
5 top = Tkinter.Tk()
6 quit = Tkinter.Button(top, text='Hello World!',
7 command=top.quit)
8 quit.pack()
9 Tkinter.mainloop()

The first few lines are identical. Things differ only when we create the Button widget. Our button has one
additional parameter, the Tkinter.quit() method. This installs a callback to our button so that if it is
pressed (and released), the entire application will exit. The final two lines are the usual pack() and
entering of the mainloop(). This simple button application is shown in Figure 19-2.

Figure 19-2. Tkinter Label widget (tkhello1.py)

19.3.3. Label and Button Widgets

We combine tkhello1.py and tkhello2.py into tkhello3.py, a script that has both a label and a button.
In addition, we are providing more parameters now than before when we were comfortable using all the
default arguments that are automatically set for us. The source for tkhello3.py is given in Example 19.3.

Example 19.3. Label and Button Widget Demo (tkhello3.py)

file:///D|/1/0132269937/ch19lev1sec3.html (2 von 14) [13.11.2007 16:25:00]

Section 19.3. Tkinter Examples

This example features both a Label and a Button widget. Rather than primarily using
default arguments when creating the widget, we are able to specify more now that we
know more about Button widgets and how to configure them.

1 #!/usr/bin/env python
2
3 import Tkinter
4 top = Tkinter.Tk()
5
6 hello = Tkinter.Label(top, text='Hello World!')
7 hello.pack()
8
9 quit = Tkinter.Button(top, text='QUIT',
10 command=top.quit, bg='red', fg='white')
11 quit.pack(fill=Tkinter.X, expand=1)
12
13 Tkinter.mainloop()

Besides additional parameters for the widgets, we also see some arguments for the packer. The fill
parameter tells the packer to let the QUIT button take up the rest of the horizontal real estate, and the
expand parameter directs the packer to visually fill out the entire horizontal landscape, stretching the
button to the left and right sides of the window.

As you can see in Figure 19-3, without any other instructions to the packer, the widgets are placed
vertically (on top of each other). Horizontal placement requires creating a new Frame object with which
to add the buttons. That frame will take the place of the parent object as a single child object (see the
buttons in the listdir.py module, Example 19.6 in Section 19.3.6).

Figure 19-3. Tkinter Label and Button widgets (tkhello3.py)

19.3.4. Label, Button, and Scale Widgets

Our final trivial example, tkhello4.py, involves the addition of a Scale widget. In particular, the Scale is
used to interact with the Label widget. The Scale slider is a tool which controls the size of the text font

file:///D|/1/0132269937/ch19lev1sec3.html (3 von 14) [13.11.2007 16:25:00]

Section 19.3. Tkinter Examples

in the Label widget. The greater the slider position, the larger the font, and the same goes for a lesser
position, meaning a smaller font. The code for Example 19.4

Example 19.4. Label, Button, and Scale Demo (tkhello4.py)

Our final introductory widget example introduces the Scale widget and highlights how
widgets can "communicate" with each other using callbacks [such as resize()]. The text in
the Label widget is affected by actions taken on the Scale widget.

1 #!/usr/bin/env python
2
3 from Tkinter import *
4
5 def resize(ev=None):
6 label.config(font='Helvetica -%d bold' % \
7 scale.get())
8
9 top = Tk()
10 top.geometry('250x150')
11
12 label = Label(top, text='Hello World!',
13 font='Helvetica -12 bold')
14 label.pack(fill=Y, expand=1)
15
16 scale = Scale(top, from_=10, to=40,
17 orient=HORIZONTAL, command=resize)
18 scale.set(12)
19 scale.pack(fill=X, expand=1)
20
21 quit = Button(top, text='QUIT',
22 command=top.quit, activeforeground='white',
23 activebackground='red')
24 quit.pack()
25
26 mainloop()

New features of this script include a resize() callback function (lines 5-7), which is attached to the
Scale. This is the code that is activated when the slider on the Scale is moved, resizing the size of the
text in the Label.

We also define the size (250 x 150) of the top-level window (line 10). The final difference between this
script and the first three is that we import the attributes from the Tkinter module into our namespace
with "from Tkinter import *." Although not recommended because it "pollutes" your namespace, we do it
here mainly because this application involves a great number of references to Tkinter attributes. This
would require use of their fully qualified names for each and every attribute access. By using the
undesired shortcut, we are able to access attributes with less typing and have code that is easier to
read, at some cost.

As you can see from Figure 19-4, both the slider mechanism as well as the current set value show up in
the main part of the window. Figure 19-4 shows the state of the GUI after the user moves the scale/
slider to avalue of 36.

file:///D|/1/0132269937/ch19lev1sec3.html (4 von 14) [13.11.2007 16:25:00]

Section 19.3. Tkinter Examples

Figure 19-4. Tkinter Label, Button, and Scale widgets (tkhello4.py)

As you can see from the code, the initial setting for the scale when the application starts is 12 (line 18).

19.3.5. Partial Function Application Example

Before looking a longer GUI application, we wanted to review the Partial Function Application (PFA) as
introduced back in Section 11.7.3 of Chapter 11.

PFAs were added to Python in version 2.5 and are one piece in a series of significant improvements in
functional programming.

PFAs allow you to "cache" function parameters by effectively "freezing" those predetermined arguments,
and then at runtime, when you have the remaining arguments you need, you can thaw them out, send
in the final arguments, and have that function called with all parameters.

Best of all, PFAs are not limited to just functions. They will work with any "callable," any object that has
a functional interface just by using parentheses, i.e., classes, methods, or callable instances. The use of

file:///D|/1/0132269937/ch19lev1sec3.html (5 von 14) [13.11.2007 16:25:00]

Section 19.3. Tkinter Examples

PFAs fits perfectly into a situation where there are many callables and many of the calls feature the
same arguments over and over again.

GUI programming makes a great use case because there is good probability that you want some
consistency in GUI widget look-and-feel, and this consistency comes about when the same parameters
are used to create like objects. We are now going to present an application where multiple buttons will
have the same foreground and background colors. It would be a waste of typing to give the same
arguments to the same instantiators every time we wanted a slightly different button: the foreground
and background colors are the same, but only the text is slightly different.

We are going to use traffic road signs as our example with our application attempts creating textual
versions of road signs by dividing them up into various categories of sign types like critical, warning, or
informational (just like logging levels). The type of the sign determines their color layout when the signs
are created. For example, critical signs have the text in bright red with a white backdrop, warning signs
are in black text on a goldenrod background, and informational or regulatory signs feature black text on
a white background. We have the "Do Not Enter" and "Wrong Way" signs, which are both "critical," plus
"Merging Traffic" and "Railroad Crossing," both of which are warnings. Finally, we have the regulatory
"Speed Limit" and "One Way" signs.

The application creates the "signs," which are just buttons. When users press the buttons, they just pop
up the corresponding Tk dialog, critical/error, warning, or informational. It is not too exciting, but how
the buttons are built is. You will find our application featured here in Example 19.5.

Example 19.5. Road Signs PFA GUI Application (pfaGUI2.py)

Create road signs with the appropriate foreground and background colors based on sign
type. Use PFAs to help "templatize" common GUI parameters.

1 #!/usr/bin/env python
2
3 from functools import partial as pto
4 from Tkinter import Tk, Button, X
5 from tkMessageBox import showinfo, showwarning, showerror
6
7 WARN = 'warn'
8 CRIT = 'crit'
9 REGU = 'regu'
10
11 SIGNS = {
12 'do not enter': CRIT,
13 'railroad crossing': WARN,
14 '55\nspeed limit': REGU,
15 'wrong way': CRIT,
16 'merging traffic': WARN,
17 'one way': REGU,
18 }
19
20 critCB = lambda: showerror('Error', 'Error Button Pressed!')
21 warnCB = lambda: showwarning('Warning',
22 'Warning Button Pressed!')
23 infoCB = lambda: showinfo('Info', 'Info Button Pressed!')
24
25 top = Tk()
26 top.title('Road Signs')
27 Button(top, text='QUIT', command=top.quit,
28 bg='red', fg='white').pack()

file:///D|/1/0132269937/ch19lev1sec3.html (6 von 14) [13.11.2007 16:25:00]

Section 19.3. Tkinter Examples

29
30 MyButton = pto(Button, top)
31 CritButton = pto(MyButton, command=critCB, bg='white', fg='red')
32 WarnButton = pto(MyButton, command=warnCB, bg='goldenrod1')
33 ReguButton = pto(MyButton, command=infoCB, bg='white')
34
35 for eachSign in SIGNS:
36 signType = SIGNS[eachSign]
37 cmd = '%sButton(text=%r%s).pack(fill=X, expand=True)' % (
38 signType.title(), eachSign,
39 '.upper()' if signType == CRIT else '.title()')
40 eval(cmd)
41
42 top.mainloop()

When you execute this application, you will get a GUI that will look something like Figure 19.5.

Figure 19-5. Road signs PFA GUI application on XDarwin in MacOS X (pfaGUI2.
py)

Line-by-Line Explanation

Lines 118

We begin our application by importing functional.partial(), a few Tkinter attributes, and the Tk
dialogs (lines 1-5). Next, we define some signs along with their categories (lines 7-18).

Lines 2028

The Tk dialogs are assigned as button callbacks, which we will use for each button created (lines 20-23).
We then launch Tk, set the title, and create a QUIT button (lines 25-28).

file:///D|/1/0132269937/ch19lev1sec3.html (7 von 14) [13.11.2007 16:25:00]

Section 19.3. Tkinter Examples

Lines 3033

These lines represent our PFA magic. We use two levels of PFA. The first templatizes the Button class
and the root window top. What this does is that every time we call MyButton, it will call Button (Tkinter.
Button() creates a button.) with top as its first argument. We have "frozen" this into MyButton.

The second level of PFA is where we use our first one, MyButton, and templatize that. We create separate
button types for each of our sign categories. When users create a critical button CritButton (by calling
it, e.g., CritButton()), it will then call MyButton along with the appropriate button callback and
background and foreground colors, which means calling Button with top, callback, and colors. Do you
see how it unwinds and goes down the layers until at the very bottom, it has the call that you would
have originally had to make if this feature did not exist yet? We repeat with Warn-Button and ReguButton.

Lines 3542

With the setup completed, we look at our list of signs and create them. We put together a Python
evaluatable string consisting of the correct button name, pass in the button label as the text argument,
and pack() it. If it is a critical sign, then we CAPITALIZE the button text, otherwise we titlecase it. This
last bit is done in line 39, demonstrating another feature introduced in Python 2.5, the temporary
operator. Then we take each button creation string and execute it with eval(), creating the buttons one
at a time and resulting in the graphic seen previously. Finally, we start the GUI by entering the main
event loop.

This application uses several Python 2.5 features, so you will not be able to run this with an older
version.

19.3.6. Intermediate Tkinter Example

We conclude this section with a larger example, listdir.py. This application is a directory tree traversal
tool. It starts in the current directory and provides a file listing. Double-clicking on any other directory in
the list causes the tool to change to the new directory as well as replace the original file listing with the
files from the new directory. The source code is given as Example 19.6.

Example 19.6. File System Traversal GUI (listdir.py)

This slightly more advanced GUI expands on the use of widgets, adding listboxes, text
entry fields, and scrollbars to our repertoire. There are also a good number of callbacks
such as mouse clicks, key presses, and scrollbar action.

1 #!/usr/bin/env python
2
3 import os
4 from time import sleep
5 from Tkinter import *
6
7 class DirList(object):
8
9 def __init__(self, initdir=None):
10 self.top = Tk()
11 self.label = Label(self.top,
12 text='Directory Lister v1.1')

file:///D|/1/0132269937/ch19lev1sec3.html (8 von 14) [13.11.2007 16:25:00]

Section 19.3. Tkinter Examples

13 self.label.pack()
14
15 self.cwd = StringVar(self.top)
16

17 self.dirl = Label(self.top, fg='blue',
18 font=('Helvetica', 12, 'bold'))
19 self.dirl.pack()
20
21 self.dirfm = Frame(self.top)
22 self.dirsb = Scrollbar(self.dirfm)
23 self.dirsb.pack(side=RIGHT, fill=Y)
24 self.dirs = Listbox(self.dirfm, height=15,
25 width=50, yscrollcommand=self.dirsb.set)
26 self.dirs.bind('<Double-1>', self.setDirAndGo)
27 self.dirsb.config(command=self.dirs.yview)
28 self.dirs.pack(side=LEFT, fill=BOTH)
29 self.dirfm.pack()
30
31 self.dirn = Entry(self.top, width=50,
32 textvariable=self.cwd)
33 self.dirn.bind('<Return>', self.doLS)
34 self.dirn.pack()
35
36 self.bfm = Frame(self.top)
37 self.clr = Button(self.bfm, text='Clear',
38 command=self.clrDir,
39 activeforeground='white',
40 activebackground='blue')
41 self.ls = Button(self.bfm,
42 text='List Directory',
43 command=self.doLS,
44 activeforeground='white',
45 activebackground='green')
46 self.quit = Button(self.bfm, text='Quit',
47 command=self.top.quit,
48 activeforeground='white',
49 activebackground='red')
50 self.clr.pack(side=LEFT)
51 self.ls.pack(side=LEFT)
52 self.quit.pack(side=LEFT)
53 self.bfm.pack()
54
55 if initdir:
56 self.cwd.set(os.curdir)
57 self.doLS()
58
59 def clrDir(self, ev=None):
60 self.cwd.set('')
61
62 def setDirAndGo(self, ev=None):
63 self.last = self.cwd.get()
64 self.dirs.config(selectbackground='red')
65 check = self.dirs.get(self.dirs.curselection())
66 if not check:

67 check = os.curdir
68 self.cwd.set(check)
69 self.doLS()
70

file:///D|/1/0132269937/ch19lev1sec3.html (9 von 14) [13.11.2007 16:25:00]

Section 19.3. Tkinter Examples

71 def doLS(self, ev=None):
72 error = ''
73 tdir = self.cwd.get()
74 if not tdir: tdir = os.curdir
75
76 if not os.path.exists(tdir):
77 error = tdir + ': no such file'
78 elif not os.path.isdir(tdir):
79 error = tdir + ': not a directory'
80
81 if error:
82 self.cwd.set(error)
83 self.top.update()
84 sleep(2)
85 if not (hasattr(self, 'last') \
86 and self.last):
87 self.last = os.curdir
88 self.cwd.set(self.last)
89 self.dirs.config(\
90 selectbackground='LightSkyBlue')
91 self.top.update()
92 return
93
94 self.cwd.set(\
95 'FETCHING DIRECTORY CONTENTS...')
96 self.top.update()
97 dirlist = os.listdir(tdir)
98 dirlist.sort()
99 os.chdir(tdir)
100 self.dirl.config(text=os.getcwd())
101 self.dirs.delete(0, END)
102 self.dirs.insert(END, os.curdir)
103 self.dirs.insert(END, os.pardir)
104 for eachFile in dirlist:
105 self.dirs.insert(END, eachFile)
106 self.cwd.set(os.curdir)
107 self.dirs.config(\
108 selectbackground='LightSkyBlue')
109
110 def main():
111 d = DirList(os.curdir)
112 mainloop()
113
114 if __name__ == '__main__':
115 main()

In Figure 19-6, we present what this GUI looks like in a Windows environment.

Figure 19-6. List directory GUI application in Windows (listdir.py)

file:///D|/1/0132269937/ch19lev1sec3.html (10 von 14) [13.11.2007 16:25:00]

Section 19.3. Tkinter Examples

The Unix version of this application is given in Figure 19-7.

Figure 19-7. List directory GUI application in Unix (listdir.py)

file:///D|/1/0132269937/ch19lev1sec3.html (11 von 14) [13.11.2007 16:25:00]

Section 19.3. Tkinter Examples

Line-by-Line Explanation

Lines 15

These first few lines contain the usual Unix startup line and importation of the os module, the time.sleep
() function, and all attributes of the Tkinter module.

Lines 913

These lines define the constructor for the DirList class, an object that represents our application. The
first Label we create contains the main title of the application and the version number.

Lines 1519

We declare a Tk variable named cwd to hold the name of the directory we are onwe will see where this
comes in handy later. Another Label is created to display the name of the current directory.

Lines 2129

This section defines the core part of our GUI, (the Listbox) dirs, which contain the list of files of the
directory that is being listed. A Scrollbar is employed to allow the user to move through a listing if the

file:///D|/1/0132269937/ch19lev1sec3.html (12 von 14) [13.11.2007 16:25:00]

Section 19.3. Tkinter Examples

number of files exceeds the size of the Listbox. Both of these widgets are contained in a Frame widget.
Listbox entries have a callback (setDirAndGo) tied to them using the Listbox bind() method.

Binding means to tie a keystroke, mouse action, or some other event to a callback to be executed when
such an event is generated by the user. setDirAndGo() will be called if any item in the Listbox is
doubleclicked. The Scrollbar is tied to the Listbox by calling the Scrollbar.config() method.

Lines 3134

We then create a text Entry field for the user to enter the name of the directory he or she wants to
traverse and see its files listed in the Listbox. We add a RETURN or Enter key binding to this text entry
field so that the user can hit RETURN as an alternative to pressing a button. The same applies for the
mouse binding we saw above in the Listbox. When the user doubleclicks on a Listbox item, it has the
same effect as the user's entering the directory name manually into the text Entry field and pressing the
"go" button.

Lines 3653

We then define a Button frame (bfm) to hold our three buttons, a "clear" button (clr), a "go" button (ls),
and a "quit" button (quit). Each button has its own different configuration and callbacks, if pressed.

Lines 5557

The final part of the constructor initializes the GUI program, starting with the current working directory.

Lines 5960

The clrDir() method clears the cwd Tk string variable, which contains the current directory that is
"active." This variable is used to keep track of what directory we are in and, more important, helps keep
track of the previous directory in case errors arise. You will notice the ev variables in the callback
functions with a default value of None. Any such values would be passed in by the windowing system.
They may or may not be used in your callback.

Lines 6269

The setDirAndGo() method sets the directory to traverse to and issues the call to the method that makes
it all happen, doLS().

Lines 71108

doLS() is, by far, the key to this entire GUI application. It performs all the safety checks (e.g., is the
destination a directory and does it exist?). If there is an error, the last directory is reset to be the
current directory. If all goes well, it calls os.listdir() to get the actual set of files and replaces the
listing in the Listbox. While the background work is going on to pull in the new directory's information,
the highlighted blue bar becomes bright red. When the new directory has been installed, it reverts to
blue.

Lines 110115

file:///D|/1/0132269937/ch19lev1sec3.html (13 von 14) [13.11.2007 16:25:00]

Section 19.3. Tkinter Examples

The last pieces of code in listdir.py represent the main part of the code. main() is executed only if this
script is invoked directly, and when main() runs, it creates the GUI application, then calls mainloop() to
start the GUI, which is passed control of the application.

We leave all other aspects of the application as an exercise to the reader, recommending that it is easier
to view the entire application as a combination of a set of widgets and functionality. If you see the
individual pieces clearly, then the entire script will not appear as daunting.

We hope that we have given you a good introduction to GUI programming with Python and Tkinter.
Remember that the best way to get familiar with Tkinter programming is by practicing and stealing a
few examples! The Python distribution comes with a large number of demonstration applications that
you can study.

If you download the source code, you will find Tkinter demo code in Lib/lib-tk, Lib/idlelib, and Demo/
tkinter. If you have installed the Win32 version of Python and C:\Python2x, then you can get access to
the demo code in Lib\lib-tk and Lib\idlelib. The latter directory contains the most significant sample
Tkinter application: the IDLE IDE itself. For further reference, there are several books on Tk
programming, one specifically on Tkinter.

file:///D|/1/0132269937/ch19lev1sec3.html (14 von 14) [13.11.2007 16:25:00]

file:///D|/1/0132269937/14051536.html

Section 19.4. Brief Tour of Other GUIs

19.4. Brief Tour of Other GUIs

We hope to eventually develop an independent chapter on general GUI development using many of the
abundant number of graphical toolkits that exist under Python, but alas, that is for the future. As a
proxy, we would like to present a single simple GUI application written using four of the more popular
and available toolkits out there: Tix (Tk Interface eXtensions), Pmw (Python MegaWidgets Tkinter
extension), wxPython (Python binding to wxWidgets), and PyGTK (Python binding to GTK+). Links to
where you can get more information and/or download these toolkits can be found in the reference
section at the end of this chapter.

The Tix module is already available in the Python standard library. You must download the others, which
are third party. Since Pmw is just an extension to Tkinter, it is the easiest to install (just extract into
your site packages). wxPython and PyGTK involve the download of more than one file and building
(unless you opt for the Win32 versions where binaries are usually available). Once the toolkits are
installed and verified, we can begin. Rather than just sticking with the widgets we've already seen in this
chapter, we'd like to introduce a few more complex widgets for these examples.

In addition to the Label and Button widgets we have seen before, we would like to introduce the Control
or SpinButton and ComboBox. The Control widget is a combination of a text widget with a value inside
being "controlled" or "spun up or down" by a set of arrow buttons close by, and the ComboBox is usually a
text widget and a pulldown menu of options where the currently active or selected item in the list is
displayed in the text widget.

Our application is fairly basic: pairs of animals are being moved around, and the number of total animals
can range from a pair to a dozen max. The Control is used to keep track of the total number while the
ComboBox is a menu containing the various types of animals that can be selected. In Figure 19-8, each
image shows the state of the GUI application immediately after launching. Note that the default number
of animals is two, and no animal type has been selected yet.

Figure 19-8. Application using various GUIs under Win32 (animal*.pyw)

file:///D|/1/0132269937/ch19lev1sec4.html (1 von 8) [13.11.2007 16:25:01]

Section 19.4. Brief Tour of Other GUIs

Things are different once we start to play around with the application, as evidenced in Figure 19-9 after
we have modified some of the elements in the Tix application.

Figure 19-9. After modifying the Tix GUI version of our application (animalTix.
pyw)

Below, you will find the code for all four versions of our GUI. You will note that although relatively
similar, each one differs in its own special way. Also, we use the .pyw extension to suppress the popping
up of the Dos command or terminal window.

19.4.1. Tk Interface eXtensions (Tix)

We start with an example (Example 19.7) of using the Tix module. Tix is an extension library for Td/T
that adds many new widgets, image types, and other commands that keep Tk a viable GUI development
todkit. Let's take look at how to use Tix with Python.

Example 19.7. Tix GUI Demo (animalTix.pyw)

file:///D|/1/0132269937/ch19lev1sec4.html (2 von 8) [13.11.2007 16:25:01]

Section 19.4. Brief Tour of Other GUIs

Our first example uses the Tix module. Tix comes with Python!

1 #!/usr/bin/env python
2
3 from Tkinter import Label, Button, END
4 from Tix import Tk, Control, ComboBox
5
6 top = Tk()
7 top.tk.eval('package require Tix')
8
9 lb = Label(top,
10 text='Animals (in pairs; min: pair, max: dozen)')
11 lb.pack()
12
13 ct = Control(top, label='Number:',
14 integer=True, max=12, min=2, value=2, step=2)
15 ct.label.config(font='Helvetica -14 bold')
16 ct.pack()
17
18 cb = ComboBox(top, label='Type:', editable=True)
19 for animal in ('dog', 'cat', 'hamster', 'python'):
20 cb.insert(END, animal)
21 cb.pack()
22
23 qb = Button(top, text='QUIT',
24 command=top.quit, bg='red', fg='white')
25 qb.pack()
26
27 top.mainloop()

Line-by-Line Explanation

Lines 17

This is all the setup code, module imports, and basic GUI infrastructure. Line 7 asserts that the Tix
module is available to the application.

Lines 827

These lines create all the widgets: Label (lines 9-11), Control (lines 13- 16), ComboBox (lines 18-21), and
quit Button (lines 23-25). The constructors and arguments for the widgets are fairly self-explanatory and
do not require elaboration. Finally, we enter the main GUI event loop in line 27.

19.4.2. Python MegaWidgets (PMW)

Next we take a look at Python MegaWidgets as shown in Example 19.8. This module was created to
address the aging Tkinter. It basically helps the extend its longevity by adding more modern widgets to
the GUI palette.

Example 19.8. Pmw GUI Demo (animalPmw.pyw)

file:///D|/1/0132269937/ch19lev1sec4.html (3 von 8) [13.11.2007 16:25:01]

Section 19.4. Brief Tour of Other GUIs

Our second example uses the Python MegaWidgets package.

1 #!/usr/bin/env python
2
3 from Tkinter import Button, END, Label, W
4 from Pmw import initialise, ComboBox, Counter
5
6 top = initialise()
7
8 lb = Label(top,
9 text='Animals (in pairs; min: pair, max: dozen)')
10 lb.pack()
11
12 ct = Counter(top, labelpos=W, label_text='Number:',
13 datatype='integer', entryfield_value=2,
14 increment=2, entryfield_validate={'validator':
15 'integer', 'min': 2, 'max': 12})
16 ct.pack()
17
18 cb = ComboBox(top, labelpos=W, label_text='Type:')
19 for animal in ('dog', 'cat', 'hamster', 'python'):
20 cb.insert(end, animal)
21 cb.pack()
22
23 qb = Button(top, text='QUIT',
24 command=top.quit, bg='red', fg='white')
25 qb.pack()
26
27 top.mainloop()

The Pmw example is so similar to our Tix example that we leave line-by-line analysis to the reader. The
line of code that differs the most is the constructor for the control widget, the Pmw Counter. It provides
for entry validation. Instead of specifying the smallest and largest possible values as keyword
arguments to the widget constructor, Pmw uses a "validator" to ensure that the values do not fall
outside our accepted range.

Now, we are finally going to leave the Tk world behind. Tix and Pmw are extensions to Tk and Tkinter,
respectively, but now we are going to change gears to look at completely different toolkits, wxWidgets
and GTK+. You will notice that the number of lines of code starts to increase as we start programming in
a more object-oriented way when using these more modern and robust GUI toolkits.

19.4.3. wxWidgets and wxPython

wxWidgets (formerly known as wxWindows) is a cross-platform toolkit used to build graphical user
applications. It is implemented using C++ and is available on a wide number of platforms to which
wxWidgets defines a consistent and common API. The best part of all is that wxWidgets uses the native
GUI on each platform, so your program will have the same look-and-feel as all the other applications on
your desktop. Another feature is that you are not restricted to developing wxWidgets applications in C+
+. There are interfaces to both Python and Perl. Example 19.9 shows our animal application using
wxPython.

Example 19.9. wxPython GUI Demo (animalWx.pyw)

file:///D|/1/0132269937/ch19lev1sec4.html (4 von 8) [13.11.2007 16:25:01]

Section 19.4. Brief Tour of Other GUIs

Our third example uses wxPython (and wxWidgets). Note that we have placed all our
widgets inside a "sizer" for organization and the more object-oriented nature of this
application.

1 #!/usr/bin/env python
2
3 import wx
4
5 class MyFrame(wx.Frame):
6 def __init__(self, parent=None, id=-1, title=''):
7 wx.Frame.__init__(self, parent, id, title,
8 size=(200, 140))
9 top = wx.Panel(self)
10 sizer = wx.BoxSizer(wx.VERTICAL)
11 font = wx.Font(9, wx.SWISS, wx.NORMAL, wx.BOLD)
12 lb = wx.StaticText(top, -1,
13 'Animals (in pairs; min: pair, max: dozen)')
14 sizer.Add(lb)
15
16 c1 = wx.StaticText(top, -1, 'Number:')
17 c1.SetFont(font)
18 ct = wx.SpinCtrl(top, -1, '2', min=2, max=12)
19 sizer.Add(c1)
20 sizer.Add(ct)
21
22 c2 = wx.StaticText(top, -1, 'Type:')
23 c2.SetFont(font)
24 cb = wx.ComboBox(top, -1, '',
25 choices=('dog', 'cat', 'hamster','python'))
26 sizer.Add(c2)
27 sizer.Add(cb)
28
29 qb = wx.Button(top, -1, "QUIT")
30 qb.SetBackgroundColour('red')
31 qb.SetForegroundColour('white')
32 self.Bind(wx.EVT_BUTTON,
33 lambda e: self.Close(True), qb)
34 sizer.Add(qb)
35
36 top.SetSizer(sizer)
37 self.Layout()
38
39 class MyApp(wx.App):
40 def OnInit(self):
41 frame = MyFrame(title="wxWidgets")
42 frame.Show(True)
43 self.SetTopWindow(frame)
44 return True
45

46 def main():
47 app = MyApp()
48 app.MainLoop()
49
50 if __name__ == '__main__':
51 main()

file:///D|/1/0132269937/ch19lev1sec4.html (5 von 8) [13.11.2007 16:25:01]

Section 19.4. Brief Tour of Other GUIs

Lines 537

Here we instantiate a Frame class (lines 5-8), of which the sole member is the constructor. This method's
only purpose in life is to create our widgets. Inside the frame, we have a Panel. Inside the panel we use
a BoxSizer to contain and layout all of our widgets (lines 10, 36), which consist of a Label (lines 12-14),
SpinCtrl (lines 16-20), ComboBox (lines 22-27), and quit Button (lines 29-34).

We have to manually add Labels to the SpinCtrl and ComboBox widgets because they apparently do not
come with them. Once we have them all, we add them to the sizer, set the sizer to our panel, and lay
everything out. On line 10, you will note that the sizer is vertically oriented, meaning that our widgets
will be placed top to bottom.

One weakness of the SpinCtrl widget is that it does not support "step" functionality. With the other
three examples, we are able to click an arrow selector and have it increment or decrement by units of
two, but that is not possible with this widget.

Lines 3951

Our application class instantiates the Frame object we just designed, renders it to the screen, and sets it
as the top-most window of our application. Finally, the setup lines just instantiate our GUI application
and start it running.

19.4.4. GTK+ and PyGTK

Finally, we have the PyGTK version, which is quite similar to the wxPython GUI (See Example 19.10).
The biggest difference is that we use only one class, and it seems more tedious to set the foreground
and background colors of objects, buttons in particular.

Example 19.10. PyGTK GUI Demo (animalGtk.pyw)

Our final example uses PyGTK (and GTK+). Like the wxPython example, this one also uses
a class for our application. It is interesting to note how similar yet different all of our GUI
applications are. This is not surprising and allows programmers to switch between toolkits
with relative ease.

1 #!/usr/bin/env python
2
3 import pygtk
4 pygtk.require('2.0')
5 import gtk
6 import pango
7
8 class GTKapp(object):
9 def __init__(self):
10 top = gtk.Window(gtk.WINDOW_TOPLEVEL)
11 top.connect("delete_event", gtk.main_quit)
12 top.connect("destroy", gtk.main_quit)
13 box = gtk.VBox(False, 0)
14 lb = gtk.Label(

file:///D|/1/0132269937/ch19lev1sec4.html (6 von 8) [13.11.2007 16:25:01]

Section 19.4. Brief Tour of Other GUIs

15 'Animals (in pairs; min: pair, max: dozen)')
16 box.pack_start(lb)
17
18 sb = gtk.HBox(False, 0)
19 adj = gtk.Adjustment(2, 2, 12, 2, 4, 0)
20 sl = gtk.Label('Number:')
21 sl.modify_font(
22 pango.FontDescription("Arial Bold 10"))
23 sb.pack_start(sl)
24 ct = gtk.SpinButton(adj, 0, 0)
25 sb.pack_start(ct)
26 box.pack_start(sb)
27
28 cb = gtk.HBox(False, 0)
29 c2 = gtk.Label('Type:')
30 cb.pack_start(c2)
31 ce = gtk.combo_box_entry_new_text()
32 for animal in ('dog', 'cat','hamster', 'python'):
33 ce.append_text(animal)
34 cb.pack_start(ce)
35 box.pack_start(cb)
36
37 qb = gtk.Button("")
38 red = gtk.gdk.color_parse('red')
39 sty = qb.get_style()
40 for st in (gtk.STATE_NORMAL,

41 gtk.STATE_PRELIGHT, gtk.STATE_ACTIVE):
42 sty.bg[st] = red
43 qb.set_style(sty)
44 ql = qb.child
45 ql.set_markup('QUIT')
46 qb.connect_object("clicked",
47 gtk.Widget.destroy, top)
48 box.pack_start(qb)
49 top.add(box)
50 top.show_all()
51
52 if __name__ == '__main__':
53 animal = GTKapp()
54 gtk.main()

Line-by-Line Explanation

Lines 16

We import three different modules and packages, PyGTK, GTK, and Pango, a library for layout and
rendering of text, specifically for I18N purposes. We need it here because it represents the core of text
and font handling for GTK+ (2.x).

Lines 851

The GTKapp class represents all the widgets of our application. The topmost window is created (with
handlers for closing it via the window manager), and a vertically oriented sizer (VBox) is created to hold

file:///D|/1/0132269937/ch19lev1sec4.html (7 von 8) [13.11.2007 16:25:01]

Section 19.4. Brief Tour of Other GUIs

our primary widgets. This is exactly what we did in the wxPython GUI.

However, wanting the static labels for the SpinButton and ComboBox-Entry to be next to them (unlike
above them for the wxPython example), we create little horizontally oriented boxes to contain the label-
widget pairs (lines 18-36), and placed those HBoxes into the all-encompassing VBox.

After creating the quit Button and adding the VBox to our topmost window, we render everything on-
screen. You will notice that we create the button with an empty label at first. We do this so that a Label
(child) object will be created as part of the button. Then on lines 45-46, we get access to the label and
set the text with white font color.

The reason why we do this is because if you set the style foreground, i.e., in the loop and auxiliary code
on lines 41-44, the foreground only affects the button's foreground and not the labelfor example, if you
set the foreground style to white and highlight the button (by pressing TAB until it is "selected") you will
see that the inside dotted box identifying the selected widget is white, but the label text would still be
black if you did not alter it like we did with the markup on line 46.

Lines 5355

Here we create our application and enter the main event loop.

file:///D|/1/0132269937/ch19lev1sec4.html (8 von 8) [13.11.2007 16:25:01]

Section 19.5. Related Modules and Other GUIs

19.5. Related Modules and Other GUIs

There are other GUI development systems that can be used with Python. We present the appropriate
modules along with their corresponding window systems in Table 19.2.

Table 19.2. GUI Systems Available for Python

GUI Module or System Description

Tk-Related Modules

Tkinter TK INTERface: Python's default GUI toolkit http://wiki.python.org/moin/
TkInter

Pmw Python MegaWidgets (Tkinter extension) http://pmw.sf.net

Tix Tk Interface eXtension (Tk extension) http://tix.sf.net

TkZinc (Zinc) Extended Tk canvas type (Tk extension) http://www.tkzinc.org

EasyGUI (easygui) Very simple non-event-driven GUIs (Tkinter extension) http://ferg.org/
easygui

TIDE + (IDE Studio) Tix Integrated Development Environment (including IDE Studio, a Tix-
enhanced version of the standard IDLE IDE) http://starship.python.net/
crew/mike

wxWidgets-Related Modules

wxPython Python binding to wxWidgets, a cross-platform GUI framework (formerly
known as wxWindows)http://wxpython.org

Boa Constructor Python IDE and wxPython GUI builder http://boa-constructor.sf.net

PythonCard wxPython-based desktop application GUI construction kit (inspired by
HyperCard) http://pythoncard.sf.net

wxGlade another wxPython GUI designer (inspired by Glade, the GTK+/GNOME GUI
builder) http://wxglade.sf.net

GTK+/GNOME-Related Modules

PyGTK Python wrapper for the GIMP Toolkit (GTK+) library http://pygtk.org

GNOME-Python Python binding to GNOME desktop and development libraries http://gnome.
org/start/unstable/bindings http://download.gnome.org/sources/gnome-
python

Glade a GUI builder for GTK+ and GNOME http://glade.gnome.org

PyGUI(GUI) cross-platform "Pythonic" GUI API (built on Cocoa [MacOS X] and GTK+
[POSIX/X11 and Win32]) http://www.cosc.canterbury.ac.nz/~greg/
python_gui

file:///D|/1/0132269937/ch19lev1sec5.html (1 von 2) [13.11.2007 16:25:02]

http://wiki.python.org/
http://pmw.sf.net/
http://tix.sf.net/
http://www.tkzinc.org/
http://ferg.org/
http://starship.python.net/
http://wxpython.org/
http://boa-constructor.sf.net/
http://pythoncard.sf.net/
http://wxglade.sf.net/
http://pygtk.org/
http://gnome.org/
http://gnome.org/
http://download.gnome.org/
http://glade.gnome.org/
http://www.cosc.canterbury.ac.nz/

Section 19.5. Related Modules and Other GUIs

Qt/KDE-Related Modules

PyQt Python binding for the Qt GUI/XML/SQL C++ toolkit from Trolltech (partially
open source [dual-license]) http://riverbankcomputing.co.uk/pyqt

PyKDE Python binding for the KDE desktop environment http://riverbankcomputing.
co.uk/pykde

eric Python IDE written in PyQt using QScintilla editor widget http://die-
offenbachs.de/detlev/eric3 http://ericide.python-hosting.com/

PyQtGPL Qt (Win32 Cygwin port), Sip, QScintilla, PyQt bundle http://pythonqt.
vanrietpaap.nl

Other Open Source GUI Toolkits

FXPy Python binding to FOX toolkit (http://fox-toolkit.org) http://fxpy.sf.net

pyFLTK (fltk) Python binding to FLTK toolkit (http://fltk.org) http://pyfltk.sf.net

PyOpenGL (OpenGL) Python binding to OpenGL (http://opengl.org) http://pyopengl.sf.net

Commercial

win32ui Microsoft MFC (via Python for Windows Extensions) http://starship.python.
net/crew/mhammond/win32

swing Sun Microsystems Java/Swing (via Jython) http://jython.org

You can find out more about all GUIs related to Python from the general GUI Programming page on the
Python wiki at http://wiki.python.org/moin/GuiProgramming.

file:///D|/1/0132269937/ch19lev1sec5.html (2 von 2) [13.11.2007 16:25:02]

http://riverbankcomputing.co.uk/
http://riverbankcomputing.co.uk/
http://riverbankcomputing.co.uk/
http://die-offenbachs.de/
http://die-offenbachs.de/
http://ericide.python-hosting.com/
http://pythonqt.vanrietpaap.nl/
http://pythonqt.vanrietpaap.nl/
http://fox-toolkit.org/
http://fxpy.sf.net/
http://fltk.org/
http://pyfltk.sf.net/
http://opengl.org/
http://pyopengl.sf.net/
http://starship.python.net/crew/mhammond/win32
http://starship.python.net/crew/mhammond/win32
http://jython.org/
http://wiki.python.org/moin/GuiProgramming

Section 19.6. Exercises

19.6. Exercises

19-1. Client/Server Architecture. Describe the roles of a windows (or windowing) server and
a windows client.

19-2. Object-Oriented Programming. Describe the relationship between child and parent
windows.

19-3. Label Widgets. Update the tkhello1.py script to display your own message instead of
"Hello World!"

19-4. Label and Button Widgets. Update the tkhello3.py script so that there are three new
buttons in addition to the QUIT button. Pressing any of the three buttons will result in
changing the text label so that it will then contain the text of the Button (widget) that
was pressed.

19-5. Label, Button, and Radiobutton Widgets. Modify your solution to the previous problem
so that there are three Radiobuttons presenting the choices of text for the Label.
There are two buttons: the QUIT button and an "Update" button. When the Update
button is pressed, the text label will then be changed to contain the text of the
selected Radiobutton. If no Radiobutton has been checked, the Label will remain
unchanged.

19-6. Label, Button, and EnTRy Widgets. Modify your solution to the previous problem so that
the three Radiobuttons are replaced by a single Entry text field widget with a default
value of "Hello World!" (to reflect the initial string in the Label). The Entry field can be
edited by the user with a new text string for the Label which will be updated if the
Update button is pressed.

19-7. Label and EnTRy Widgets and Python I/O. Create a GUI application that provides an
Entry field where the user can provide the name of a text file. Open the file and read
it, displaying its contents in a Label.

Extra Credit (Menus): Replace the Entry widget with a menu that has a File Open
option that pops up a window to allow the user to specify the file to read. Also add an
Exit or Quit option to the menu rather than having a QUIT button.

19-8. Simple Text Editor. Use your solution to the previous problem to create a simple text
editor. A file can be created from scratch or read and displayed into a Text widget that
can be edited by the user. When the user quits the application (either with the QUIT
button or the Quit/Exit menu option), the user is prompted whether to save the
changes.

Extra Credit: Interface your script to a spellchecker and add a button or menu option
to spellcheck the file. The words that are misspelled should be highlighted by using a
different foreground or background color in the Text widget.

file:///D|/1/0132269937/ch19lev1sec6.html (1 von 2) [13.11.2007 16:25:02]

Section 19.6. Exercises

19-9. Multithreaded Chat Applications. The chat programs from Chapters 13, 16, and 17
need completion. Create a fully-functional multithreaded chat server. A GUI is not
really necessary for the server unless you want to create one as a front-end to its
configuration, i.e., port number, name, connection to a name server, etc. Create a
multithreaded chat client that has separate threads to monitor user input (and sends
the message to the server for broadcast) and another thread to accept incoming
messages to display to the user. The client front-end GUI should have two portions of
the chat window: a larger section with multiple lines to hold all the dialog, and a
smaller text entry field to accept input from the user.

19-10. Using Other GUIs. The example GUI applications using the various toolkits in Chapter
18.4 are very similar; however, they are not the same. Although it is impossible to
make them all look exactly alike, tweak them so that they are more consistent than
they are now.

19-11. Using GUI builders. Download either Boa Constructor (for wxWidgets) or Glade (for
GTK+) [or both!], and implement the "animal" GUI by just dragging and dropping the
widgets from the corresponding palette. Hook up your new GUIs with callbacks so that
they behave just like the sample applications we looked at in that chapter.

file:///D|/1/0132269937/ch19lev1sec6.html (2 von 2) [13.11.2007 16:25:02]

file:///D|/1/0132269937/14051536.html

Chapter 20. Web Programming

Chapter 20. Web Programming

Chapter Topics

● Introduction
● Web Surfing with Python: Simple Web Clients

�❍ urlparse and urllib Modules
● Advanced Web Clients

�❍ Crawler/Spider/Robot
● CGI: Helping Web Servers Process Client Data
● Building CGI Applications
● Using Unicode with CGI
● Advanced CGI
● Creating Web Servers
● Related Modules

file:///D|/1/0132269937/ch20.html [13.11.2007 16:25:03]

Section 20.1. Introduction

20.1. Introduction

This introductory chapter on Web programming will give you a quick and high-level overview of the
kinds of things you can do with Python on the Internet, from Web surfing to creating user feedback
forms, from recognizing Uniform Resource Locators to generating dynamic Web page output.

20.1.1. Web Surfing: Client/Server Computing (Again?!?)

Web surfing falls under the same client/server architecture umbrella that we have seen repeatedly. This
time, Web clients are browsers, applications that allow users to seek documents on the World Wide
Web. On the other side are Web servers, processes that run on an information provider's host
computers. These servers wait for clients and their document requests, process them, and return the
requested data. As with most servers in a client/server system, Web servers are designed to run
"forever." The Web surfing experience is best illustrated by Figure 20-1. Here, a user runs a Web client
program such as a browser and makes a connection to a Web server elsewhere on the Internet to obtain
information.

Figure 20-1. Web client and Web server on the Internet. A client sends a
request out over the Internet to the server, which then responds with the

requested data back to the client.

Clients may issue a variety of requests to Web servers. Such requests may include obtaining a Web
page for viewing or submitting a form with data for processing. The request is then serviced by the Web
server, and the reply comes back to the client in a special format for display purposes.

The "language" that is spoken by Web clients and servers, the standard protocol used for Web
communication, is called HTTP, which stands for HyperText Transfer Protocol. HTTP is written "on top of"
the TCP and IP protocol suite, meaning that it relies on TCP and IP to carry out its lower-level
communication functionality. Its responsibility is not to route or deliver messagesTCP and IP handle
thatbut to respond to client requests (by sending and receiving HTTP messages).

HTTP is known as a "stateless" protocol because it does not keep track of information from one client
request to the next, similar to the client/server architecture we have seen so far. The server stays
running, but client interactions are singular events structured in such a way that once a client request is
serviced, it quits. New requests can always be sent, but they are considered separate service requests.
Because of the lack of context per request, you may notice that some URLs have a long set of variables

file:///D|/1/0132269937/ch20lev1sec1.html (1 von 3) [13.11.2007 16:25:03]

Section 20.1. Introduction

and values chained as part of the request to provide some sort of state information. Another alternative
is the use of "cookies"static data stored on the client side which generally contain state information as
well. In later parts of this chapter, we will look at how to use both long URLs and cookies to maintain
state information.

20.1.2. The Internet

The Internet is a moving and fluctuating "cloud" or "pond" of interconnected clients and servers
scattered around the globe. Communication between client and server consists of a series of connections
from one lily pad on the pond to another, with the last step connecting to the server. As a client user, all
this detail is kept hidden from your view. The abstraction is to have a direct connection between you the
client and the server you are "visiting," but the underlying HTTP, TCP, and IP protocols are hidden
underneath, doing all of the dirty work. Information regarding the intermediate "nodes" is of no concern
or consequence to the general user anyway, so it's good that the implementation is hidden. Figure 20-2
shows an expanded view of the Internet.

Figure 20-2. A grand view of the Internet. The left side illustrates where you
would find Web clients while the right side hints as to where Web servers are

typically located.

[View full size image]

file:///D|/1/0132269937/ch20lev1sec1.html (2 von 3) [13.11.2007 16:25:03]

file:///D|/1/0132269937/images/chun_fig20_02_alt.jpg

Section 20.1. Introduction

As you can see from the figure, the Internet is made up of multiply-interconnected networks, all working
with some sense of (perhaps disjointed) harmony. The left half of the diagram is focused on the Web
clients, users who are either at home dialed-in to their ISP (Internet Service Provider) or at work on
their company's LAN (Local Area Network).

The right-hand side of the diagram concentrates more on Web servers and where they can be found.
Corporations with larger Web sites will typically have an entire "Web server farm" located at their ISPs.
Such physical placement is called colocation, meaning that a company's servers are "co-located" at an
ISP along with machines from other corporate customers. These servers are either all providing different
data to clients or are part of a redundant system with duplicated information designed for heavy
demand (high number of clients). Smaller corporate Web sites may not require as much hardware and
networking gear, and hence, may only have one or several colocated servers at their ISP.

In either case, most colocated servers are stored with a larger ISP sitting on a network backbone,
meaning that they have a "fatter" (meaning wider) and presumably faster connection to the
Internetcloser to the "core" of the Internet, if you will. This permits clients to access the servers
quicklybeing on a backbone means clients do not have to hop across as many networks to access a
server, thus allowing more clients to be serviced within a given time period.

One should also keep in mind that although Web surfing is the most common Internet application, it is
not the only one and is certainly not the oldest. The Internet predates the Web by almost three decades.
Before the Web, the Internet was mainly used for educational and research purposes. Most of the
systems on the Internet run Unix, a multi-user operating system, and many of the original Internet
protocols are still around today.

Such protocols include telnet (allows users to log in to a remote host on the Internet and still in use
today), FTP (the File Transfer Protocol that enables users to share files and data via uploading or
downloading and also still in use today), Gopher (the precursor to the Web search enginea "gopher"-like
piece of software that "tunneled the Internet" looking for the data that you were interested in), SMTP or
Simple Mail Transfer Protocol (the protocol used for one of the oldest and most widely used Internet
applications: electronic mail), and NNTP (News-to-News Transfer Protocol).

Since one of Python's initial strengths was Internet programming, you will find support for all of the
protocols discussed above in addition to many others. We differentiate between "Internet programming"
and "Web programming" by stating that the latter pertains only to applications developed specifically for
Web applications, i.e., Web clients and servers, our focus for this chapter. Internet programming covers
a wider range of applications, including some of the Internet protocols we previously mentioned, such as
FTP, SMTP, etc., as well as network and socket programming in general, as we discussed in a previous
chapter.

file:///D|/1/0132269937/ch20lev1sec1.html (3 von 3) [13.11.2007 16:25:03]

Section 20.2. Web Surfing with Python: Creating Simple Web Clients

20.2. Web Surfing with Python: Creating Simple Web Clients

One thing to keep in mind is that a browser is only one type of Web client. Any application that makes a
request for data from a Web server is considered a "client." Yes, it is possible to create other clients that
retrieve documents or data off the Internet. One important reason to do this is that a browser provides
only limited capacity, i.e., it is used primarily for viewing and interacting with Web sites. A client
program, on the other hand, has the ability to do moreit can not only download data, but it can also
store it, manipulate it, or perhaps even transmit it to another location or application.

Applications that use the urllib module to download or access information on the Web [using either
urllib.urlopen() or urllib.urlretrieve()] can be considered a simple Web client. All you need to do is
provide a valid Web address.

20.2.1. Uniform Resource Locators

Simple Web surfing involves using Web addresses called URLs (Uniform Resource Locators). Such
addresses are used to locate a document on the Web or to call a CGI program to generate a document
for your client. URLs are part of a larger set of identifiers known as URIs (Uniform Resource Identifiers).
This superset was created in anticipation of other naming conventions that have yet to be developed. A
URL is simply a URI which uses an existing protocol or scheme (i.e., http, ftp, etc.) as part of its
addressing. To complete this picture, we'll add that non-URL URIs are sometimes known as URNs
(Uniform Resource Names), but because URLs are the only URIs in use today, you really don't hear
much about URIs or URNs, save perhaps as XML identifiers.

Like street addresses, Web addresses have some structure. An American street address usually is of the
form "number street designation," i.e., 123 Main Street. It differs from other countries, which have their
own rules. A URL uses the format:

 prot_sch://net_loc/path;params?query#frag

Table 20.1 describes each of the components.

Table 20.1. Web Address Components

URL Component Description

prot_sch Network protocol or download scheme

net_loc Location of server (and perhaps user information)

path Slash (/) delimited path to file or CGI application

params Optional parameters

query Ampersand (&) delimited set of "key=value" pairs

frag Fragment to a specific anchor within document

file:///D|/1/0132269937/ch20lev1sec2.html (1 von 12) [13.11.2007 16:25:05]

Section 20.2. Web Surfing with Python: Creating Simple Web Clients

net_loc can be broken down into several more components, some required, others optional. The net_loc
string looks like this:

 user:passwd@host:port

These individual components are described in Table 20.2.

Table 20.2. Network Location Components

net_loc Component Description

user User name or login

passwd User password

host Name or address of machine running Web server [required]

port Port number (if not 80, the default)

Of the four, the host name is the most important. The port number is necessary only if the Web server
is running on a different port number from the default. (If you aren't sure what a port number is, go
back to Chapter 16.)

User names and perhaps passwords are used only when making FTP connections, and even then they
usually aren't necessary because the majority of such connections are "anonymous."

Python supplies two different modules, each dealing with URLs in completely different functionality and
capacities. One is urlparse, and the other is urllib. We will briefly introduce some of their functions
here.

20.2.2. urlparse Module

The urlparse module provides basic functionality with which to manipulate URL strings. These functions
include urlparse(), urlunparse(), and urljoin().

urlparse.urlparse()

urlparse() breaks up a URL string into some of the major components described above. It has the
following syntax:

 urlparse(urlstr, defProtSch=None, allowFrag=None)

urlparse() parses urlstr into a 6-tuple (prot_sch, net_loc, path, params, query, frag). Each of these
components has been described above. defProtSch indicates a default network protocol or download

file:///D|/1/0132269937/ch20lev1sec2.html (2 von 12) [13.11.2007 16:25:05]

Section 20.2. Web Surfing with Python: Creating Simple Web Clients

scheme in case one is not provided in urlstr.allowFrag is a flag that signals whether or not a fragment
part of a URL is allowed. Here is what urlparse() outputs when given a URL:

 >>> urlparse.urlparse('http://www.python.org/doc/FAQ.html')
 ('http', 'www.python.org', '/doc/FAQ.html', '', '', '')

urlparse.urlunparse()

urlunparse() does the exact opposite of urlparse()it merges a 6-tuple (prot_sch, net_loc, path, params,
query, frag)urltup, which could be the output of urlparse(), into a single URL string and returns it.
Accordingly, we state the following equivalence:

 urlunparse(urlparse(urlstr)) urlstr

You may have already surmised that the syntax of urlunparse() is as follows:

 urlunparse(urltup)

urlparse.urljoin()

The urljoin() function is useful in cases where many related URLs are needed, for example, the URLs
for a set of pages to be generated for a Web site. The syntax for urljoin() is:

 urljoin(baseurl, newurl, allowFrag=None)

urljoin() takes baseurl and joins its base path (net_loc plus the full path up to, but not including, a file
at the end) with newurl. For example:

 >>> urlparse.urljoin('http://www.python.org/doc/FAQ.html', \
 ... 'current/lib/lib.htm')
 'http://www.python.org/doc/current/lib/lib.html'

A summary of the functions in urlparse can be found in Table 20.3.

Table 20.3. Core urlparse Module Functions

urlparse Functions Description

urlparse(urlstr, defProtSch=None, allowFrag=None) Parses urlstr into separate components, using
defProtSch if the protocol or scheme is not given
in urlstr; allowFrag determines whether a URL
fragment is allowed

file:///D|/1/0132269937/ch20lev1sec2.html (3 von 12) [13.11.2007 16:25:05]

Section 20.2. Web Surfing with Python: Creating Simple Web Clients

urlunparse(urltup) Unparses a tuple of URL data (urltup) into a
single URL string

urljoin(baseurl,newurl,allowFrag=None) Merges the base part of the baseurl URL with
newurl to form a complete URL; allowFrag is the
same as for urlparse()

20.2.3. urllib Module

Core Module: urllib

Unless you are planning on writing a more lower-level network client,
the urllib module provides all the functionality you need. urllib
provides a high-level Web communication library, supporting the basic
Web protocols, HTTP, FTP, and Gopher, as well as providing access to
local files. Specifically, the functions of the urllib module are
designed to download data (from the Internet, local network, or local
host) using the aforementioned protocols. Use of this module generally
obviates the need for using the httplib, ftplib, and gopherlib
modules unless you desire their lower-level functionality. In those
cases, such modules can be considered as alternatives. (Note: Most
modules named *lib are generally for developing clients of the
corresponding protocols. This is not always the case, however, as
perhaps urllib should then be renamed "internetlib" or something
similar!)

The urllib module provides functions to download data from given URLs as well as encoding and
decoding strings to make them suitable for including as part of valid URL strings. The functions we will
be looking at in this upcoming section include: urlopen(), urlretrieve(), quote(), unquote(), quote_plus
(), unquote_plus(), and urlencode(). We will also look at some of the methods available to the file-like
object returned by urlopen(). They will be familiar to you because you have already learned to work
with files back in Chapter 9.

urllib.urlopen()

urlopen() opens a Web connection to the given URL string and returns a file-like object. It has the
following syntax:

 urlopen(urlstr, postQueryData=None)

urlopen() opens the URL pointed to by urlstr. If no protocol or download scheme is given, or if a "file"
scheme is passed in, urlopen() will open a local file.

For all HTTP requests, the normal request type is "GET." In these cases, the query string provided to the
Web server (key-value pairs encoded or "quoted," such as the string output of the urlencode() function
[see below]), should be given as part of urlstr.

file:///D|/1/0132269937/ch20lev1sec2.html (4 von 12) [13.11.2007 16:25:05]

Section 20.2. Web Surfing with Python: Creating Simple Web Clients

If the "POST" request method is desired, then the query string (again encoded) should be placed in the
postQueryData variable. (For more information regarding the GET and POST request methods, refer to
any general documentation or texts on programming CGI applicationswhich we will also discuss below.
GET and POST requests are the two ways to "upload" data to a Web server.

When a successful connection is made, urlopen() returns a file-like object as if the destination was a file
opened in read mode. If our file object is f, for example, then our "handle" would support the expected
read methods such as f.read(), f.readline(), f.readlines(), f.close(), and f.fileno().

In addition, a f.info() method is available which returns the MIME (Multipurpose Internet Mail
Extension) headers. Such headers give the browser information regarding which application can view
returned file types. For example, the browser itself can view HTML (HyperText Markup Language), plain
text files, and render PNG (Portable Network Graphics) and JPEG (Joint Photographic Experts Group) or
the old GIF (Graphics Interchange Format) graphics files. Other files such as multimedia or specific
document types require external applications in order to view.

Finally, a geturl() method exists to obtain the true URL of the final opened destination, taking into
consideration any redirection that may have occurred. A summary of these file-like object methods is
given in Table 20.4.

Table 20.4. urllib.urlopen() File-like Object
Methods

urlopen() Object Methods Description

f.read([bytes]) Reads all or bytes bytes from f

f.readline() Reads a single line from f

f.readlines() Reads a all lines from f into a list

f.close() Closes URL connection for f

f.fileno() Returns file number of f

f.info() Gets MIME headers of f

f.geturl() Returns true URL opened for f

If you expect to be accessing more complex URLs or want to be able to handle more complex situations
such as basic and digest authentication, redirections, cookies, etc., then we suggest using the urllib2
module, introduced back in the 1.6 days (mostly as an experimental module). It too, has a urlopen()
function, but also provides other functions and classes for opening a variety of URLs. For more on
urllib2, see the next section of this chapter.

urllib.urlretrieve()

urlretrieve() will do some quick and dirty work for you if you are interested in working with a URL
document as a whole. Here is the syntax for urlretrieve():

file:///D|/1/0132269937/ch20lev1sec2.html (5 von 12) [13.11.2007 16:25:05]

Section 20.2. Web Surfing with Python: Creating Simple Web Clients

 urlretrieve(urlstr, localfile=None, downloadSta-
 tusHook=None)

Rather than reading from the URL like urlopen() does, urlretrieve() will simply download the entire
HTML file located at urlstr to your local disk. It will store the downloaded data into localfile if given or
a temporary file if not. If the file has already been copied from the Internet or if the file is local, no
subsequent downloading will occur.

The downloadStatusHook, if provided, is a function that is called after each block of data has been
downloaded and delivered. It is called with the following three arguments: number of blocks read so far,
the block size in bytes, and the total (byte) size of the file. This is very useful if you are implementing
"download status" information to the user in a text-based or graphical display.

urlretrieve() returns a 2-tuple, (filename, mime_hdrs). filename is the name of the local file containing
the downloaded data. mime_hdrs is the set of MIME headers returned by the responding Web server. For
more information, see the Message class of the mimetools module. mime_hdrs is None for local files.

For a simple example using urlretrieve(), take a look at Example 11.4 (grabweb.py). A larger piece of
code using urlretrieve() can be found later in this chapter in Example 20.2.

Example 20.2. Advanced Web Client: a Web Crawler (crawl.py)

The crawler consists of two classes, one to manage the entire crawling process (Crawler),
and one to retrieve and parse each downloaded Web page (Retriever).

 1 #!/usr/bin/env python
 2
 3 from sys import argv
 4 from os import makedirs, unlink, sep
 5 from os.path import dirname, exists, isdir, splitext
 6 from string import replace, find, lower
 7 from htmllib import HTMLParser
 8 from urllib import urlretrieve
 9 from urlparse import urlparse, urljoin
 10 from formatter import DumbWriter, AbstractFormatter
 11 from cStringIO import StringIO
 12
 13 class Retriever(object):# download Web pages
 14
 15 def __init__(self, url):
 16 self.url = url
 17 self.file = self.filename(url)
 18
 19 def filename(self, url, deffile='index.htm'):
 20 parsedurl = urlparse(url, 'http:', 0) ## parse path
 21 path = parsedurl[1] + parsedurl[2]
 22 ext = splitext(path)
 23 if ext[1] == '': # no file, use default
 24 if path[-1] == '/':
 25 path += deffile
 26 else:
 27 path += '/' + deffile

file:///D|/1/0132269937/ch20lev1sec2.html (6 von 12) [13.11.2007 16:25:05]

Section 20.2. Web Surfing with Python: Creating Simple Web Clients

 28 ldir = dirname(path) # local directory
 29 if sep != '/': # os-indep. path separator
 30 ldir = replace(ldir, '/', sep)
 31 if not isdir(ldir): # create archive dir if nec
 32 if exists(ldir): unlink(ldir)
 33 makedirs(ldir)
 34 return path
 35
 36 def download(self): # download Web page
 37 try:
 38 retval = urlretrieve(self.url, self.file)
 39 except IOError:
 40 retval = ('*** ERROR: invalid URL "%s"' %\
 41 self.url,)
 42 return retval
 43
 44 def parseAndGetLinks(self):# parse HTML, save links
 45 self.parser = HTMLParser(AbstractFormatter(\
 46 DumbWriter(StringIO())))
 47 self.parser.feed(open(self.file).read())
 48 self.parser.close()
 49 return self.parser.anchorlist
 50
 51 class Crawler(object):# manage entire crawling process
 52
 53 count = 0 # static downloaded page counter
 54
 55 def __init__(self, url):
 56 self.q = [url]
 57 self.seen = []
 58 self.dom = urlparse(url)[1]
 59
 60 def getPage(self, url):
 61 r = Retriever(url)
 62 retval = r.download()
 63 if retval[0] == '*': # error situation, do not parse
 64 print retval, '... skipping parse'
 65 return
 66 Crawler.count += 1
 67 print '\n(', Crawler.count, ')'
 68 print 'URL:', url
 69 print 'FILE:', retval[0]
 70 self.seen.append(url)
 71
 72 links = r.parseAndGetLinks() # get and process links
 73 for eachLink in links:
 74 if eachLink[:4] != 'http' and \
 75 find(eachLink, '://') == -1:
 76 eachLink = urljoin(url, eachLink)
 77 print '* ', eachLink,
 78
 79 if find(lower(eachLink), 'mailto:') != -1:
 80 print '... discarded, mailto link'
 81 continue
 82
 83 if eachLink not in self.seen:
 84 if find(eachLink, self.dom) == -1:
 85 print '... discarded, not in domain'
 86 else:

file:///D|/1/0132269937/ch20lev1sec2.html (7 von 12) [13.11.2007 16:25:05]

Section 20.2. Web Surfing with Python: Creating Simple Web Clients

 87 if eachLink not in self.q:
 88 self.q.append(eachLink)
 89 print '... new, added to Q'
 90 else:
 91 print '... discarded, already in Q'
 92 else:
 93 print '... discarded, already processed'
 94
 95 def go(self):# process links in queue
 96 while self.q:
 97 url = self.q.pop()
 98 self.getPage(url)
 99
 100 def main():
 101 if len(argv) > 1:
 102 url = argv[1]
 103 else:
 104 try:
 105 url = raw_input('Enter starting URL: ')
 106 except (KeyboardInterrupt, EOFError):
 107 url = ''
 108
 109 if not url: return
 110 robot = Crawler(url)
 111 robot.go()
 112
 113 if __name__ == '__main__':
 114 main()

urllib.quote() and urllib.quote_plus()

The quote*() functions take URL data and "encodes" them so that they are "fit" for inclusion as part of a
URL string. In particular, certain special characters that are unprintable or cannot be part of valid URLs
acceptable to a Web server must be converted. This is what the quote*() functions do for you. Both
quote*() functions have the following syntax:

 quote(urldata, safe='/')

Characters that are never converted include commas, underscores, periods, and dashes, as well as
alphanumerics. All others are subject to conversion. In particular, the disallowed characters are changed
to their hexadecimal ordinal equivalents prepended with a percent sign (%), i.e., "%xx" where "xx" is the
hexadecimal representation of a character's ASCII value. When calling quote*(), the urldata string is
converted to an equivalent string that can be part of a URL string. The safe string should contain a set
of characters which should also not be converted. The default is the slash (/).

quote_plus() is similar to quote() except that it also encodes spaces to plus signs (+). Here is an
example using quote() vs. quote_plus():

 >>> name = 'joe mama'
 >>> number = 6
 >>> base = 'http://www/~foo/cgi-bin/s.py'

file:///D|/1/0132269937/ch20lev1sec2.html (8 von 12) [13.11.2007 16:25:05]

Section 20.2. Web Surfing with Python: Creating Simple Web Clients

 >>> final = '%s?name=%s&num=%d' % (base, name, number)
 >>> final
 'http://www/~foo/cgi-bin/s.py?name=joe mama&num=6'
 >>>
 >>> urllib.quote(final)
 'http:%3a//www/%7efoo/cgi-bin/s.py%3fname%3djoe%20mama%26num%3d6'
 >>>
 >>> urllib.quote_plus(final)
 'http%3a//www/%7efoo/cgi-bin/s.py%3fname%3dj oe+mama%26num%3d6'

urllib.unquote() and urllib.unquote_plus()

As you have probably guessed, the unquote*() functions do the exact opposite of the quote*()
functionsthey convert all characters encoded in the "%xx" fashion to their ASCII equivalents. The syntax
of unquote*() is as follows:

 unquote*(urldata)

Calling unquote() will decode all URL-encoded characters in urldata and return the resulting string.
unquote_plus() will also convert plus signs back to space characters.

urllib.urlencode()

urlencode(), added to Python back in 1.5.2, takes a dictionary of key-value pairs and encodes them to
be included as part of a query in a CGI request URL string. The pairs are in "key=value" format and are
delimited by ampersands (&). Furthermore, the keys and their values are sent to quote_plus() for
proper encoding. Here is an example output from urlencode():

 >>> aDict = { 'name': 'Georgina Garcia', 'hmdir': '~ggarcia' }
 >>> urllib.urlencode(aDict)
 'name=Georgina+Garcia&hmdir=%7eggarcia'

There are other functions in urllib and urlparse which we did not have the opportunity to cover here.
Refer to the documentation for more information.

Secure Socket Layer support

The urllib module was given support for opening HTTP connections using the Secure Socket Layer
(SSL) in 1.6. The core change to add SSL is implemented in the socket module. Consequently, the
urllib and httplib modules were updated to support URLs using the "https" connection scheme. In
addition to those two modules, other protocol client modules with SSL support include: imaplib, poplib,
and smtplib.

A summary of the urllib functions discussed in this section can be found in Table 20.5.

Table 20.5. Core urllib Module Functions

file:///D|/1/0132269937/ch20lev1sec2.html (9 von 12) [13.11.2007 16:25:05]

Section 20.2. Web Surfing with Python: Creating Simple Web Clients

urllib Functions Description

urlopen(urlstr, postQueryData=None) Opens the URL urlstr, sending the query
data in postQueryData if a POST request

urlretrieve(urlstr, localfile=None,
downloadStatusHook=None)

Downloads the file located at the urlstr
URL to localfile or a temporary file if
localfile not given; if present,
downloaStatusHook is a function that can
receive download statistics

quote(urldata, safe='/') Encodes invalid URL characters of
urldata; characters in safe string are not
encoded

quote_plus(urldata, safe='/') Same as quote() except encodes spaces
as plus (+) signs (rather than as %20)

unquote(urldata) Decodes encoded characters of urldata

unquote_plus(urldata) Same as unquote() but converts plus
signs to spaces

urlencode(dict) Encodes the key-value pairs of dict into
a valid string for CGI queries and encodes
the key and value strings with quote_plus
()

20.2.4. urllib2 Module

As mentioned in the previous section, urllib2 can handle more complex URL opening. One example is
for Web sites with basic authentication (login and password) requirements. The most straightforward
solution to "getting past security" is to use the extended net_loc URL component as described earlier in
this chapter, i.e., http://user:passwd@www.python.org. The problem with this solution is that it is not
programmatic. Using urllib2, however, we can tackle this problem in two different ways.

We can create a basic authentication handler (urllib2.HTTPBasicAuthHandler) and "register" a login
password given the base URL and perhaps a realm, meaning a string defining the secure area of the
Web site. (For more on realms, see RFC 2617 [HTTP Authentication: Basic and Digest Access
Authentication]). Once this is done, you can "install" a URL-opener with this handler so that all URLs
opened will use our handler.

The other alternative is to simulate typing the username and password when prompted by a browser
and that is to send an HTTP client request with the appropriate authorization headers. In Example 20.1
we can easily identify each of these two methods.

Example 20.1. HTTP Auth Client (urlopen-auth.py)

file:///D|/1/0132269937/ch20lev1sec2.html (10 von 12) [13.11.2007 16:25:05]

Section 20.2. Web Surfing with Python: Creating Simple Web Clients

This script uses both techniques described above for basic authentication.

 1 #!/usr/bin/env python
 2
 3 import urllib2
 4
 5 LOGIN = 'wesc'
 6 PASSWD = "you'llNeverGuess"
 7 URL = 'http://localhost'
 8
 9 def handler_version(url):
 10 from urlparse import urlparse as up
 11 hdlr = urllib2.HTTPBasicAuthHandler()
 12 hdlr.add_password('Archives', up(url)[1], LOGIN, PASSWD)
 13 opener = urllib2.build_opener(hdlr)
 14 urllib2.install_opener(opener)
 15 return url
 16
 17 def request_version(url):
 18 from base64 import encodestring
 19 req = urllib2.Request(url)
 20 b64str = encodestring('%s:%s' % (LOGIN, PASSWD))[:-1]
 21 req.add_header("Authorization", "Basic %s" % b64str)
 22 return req
 23
 24 for funcType in ('handler', 'request'):
 25 print '*** Using %s:' % funcType.upper()
 26 url = eval('%s_version')(URL)
 27 f = urllib2.urlopen(url)
 28 print f.readline()
 29 f.close()

Line-by-Line Explanation

Lines 17

The usual setup plus some constants for the rest of the script to use.

Lines 915

The "handler" version of the code allocates a basic handler class as described earlier, then adds the
authentication information. The handler is then used to create a URL-opener that is then installed so
that all URLs opened will use the given authentication. This code was adapted from the official Python
documentation for the urllib2 module.

Lines 1722

The "request" version of our code just builds a Request object and adds the simple base64-encoded
authentication header into our HTTP request. This request is then used to substitute the URL string when
calling urlopen() upon returning back to "main." Note that the original URL was built into the Request
object, hence the reason why it was not a problem to replace it in the subsequent call to urllib2.urlopen

file:///D|/1/0132269937/ch20lev1sec2.html (11 von 12) [13.11.2007 16:25:05]

Section 20.2. Web Surfing with Python: Creating Simple Web Clients

(). This code was inspired by Mike Foord's and Lee Harr's recipes in the Python Cookbook located at:

http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/305288

http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/267197

It would have been great to have been able to use Harr's HTTPRealmFinder class so that we do not need
to hardcode it in our example.

Lines 2429

The rest of this script just opens the given URL using both techniques and displays the first line
(dumping the others) of the resulting HTML page returned by the server once authentication has been
validated. Note that an HTTP error (and no HTML) would be returned if the authentication information is
invalid.

The output should look something like this:

 $ python urlopen-auth.py
 Using handler:
 <html>

 Using request:
 <html>

In addition to the official Python documentation for urllib2, you may find this companion piece useful:
http://www.voidspace.org.uk/python/articles/urllib2.shtml.

file:///D|/1/0132269937/ch20lev1sec2.html (12 von 12) [13.11.2007 16:25:05]

http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/305288
http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/267197
http://www.voidspace.org.uk/python/articles/urllib2.shtml

Section 20.3. Advanced Web Clients

20.3. Advanced Web Clients

Web browsers are basic Web clients. They are used primarily for searching and downloading documents
from the Web. Advanced clients of the Web are those applications that do more than download single
documents from the Internet.

One example of an advanced Web client is a crawler (aka spider, robot). These are programs that
explore and download pages from the Internet for different reasons, some of which include:

● Indexing into a large search engine such as Google or Yahoo!
● Offline browsingdownloading documents onto a local hard disk and rearranging hyperlinks to

create almost a mirror image for local browsing
● Downloading and storing for historical or archival purposes, or
● Web page caching to save superfluous downloading time on Web site revisits.

The crawler we present below, crawl.py, takes a starting Web address (URL), downloads that page and
all other pages whose links appear in succeeding pages, but only those that are in the same domain as
the starting page. Without such limitations, you will run out of disk space! The source for crawl.py
appears in Example 20.2.

Line-by-Line (Class-by-Class) Explanation

Lines 111

The top part of the script consists of the standard Python Unix start-up line and the importation of
various module attributes that are employed in this application.

Lines 1349

The Retriever class has the responsibility of downloading pages from the Web and parsing the links
located within each document, adding them to the "to-do" queue if necessary. A Retriever instance
object is created for each page that is downloaded from the net. Retriever consists of several methods
to aid in its functionality: a constructor (__init__()), filename(), download(), and parseAndGetLinks().

The filename() method takes the given URL and comes up with a safe and sane corresponding filename
to store locally. Basically, it removes the "http://" prefix from the URL and uses the remaining part as
the filename, creating any directory paths necessary. URLs without trailing file-names will be given a
default filename of "index.htm". (This name can be overridden in the call to filename()).

The constructor instantiates a Retriever object and stores both the URL string and the corresponding file
name returned by filename() as local attributes.

The download() method, as you may imagine, actually goes out to the net to download the page with the
given link. It calls urllib.urlretrieve() with the URL and saves it to the filename (the one returned by
filename()). If the download was successful, the parse() method is called to parse the page just copied
from the network; otherwise an error string is returned.

If the Crawler determines that no error has occurred, it will invoke the parseAndGetLinks() method to

file:///D|/1/0132269937/ch20lev1sec3.html (1 von 3) [13.11.2007 16:25:06]

Section 20.3. Advanced Web Clients

parse the newly downloaded page and determine the course of action for each link located on that page.

Lines 5198

The Crawler class is the "star" of the show, managing the entire crawling process for one Web site. If we
added threading to our application, we would create separate instances for each site crawled. The
Crawler consists of three items stored by the constructor during the instantiation phase, the first of
which is q, a queue of links to download. Such a list will fluctuate during execution, shrinking as each
page is processed and grown as new links are discovered within each downloaded page.

The other two data values for the Crawler include seen, a list of all the links that "we have
seen" (downloaded) already. And finally, we store the domain name for the main link, dom, and use that
value to determine whether any succeeding links are part of the same domain.

Crawler also has a static data item named count. The purpose of this counter is just to keep track of the
number of objects we have downloaded from the net. It is incremented for every page successfully
download.

Crawler has a pair of other methods in addition to its constructor, getPage() and go(). go() is simply the
method that is used to start the Crawler and is called from the main body of code. go() consists of a
loop that will continue to execute as long as there are new links in the queue that need to be
downloaded. The workhorse of this class, though, is the getPage() method.

getPage() instantiates a Retriever object with the first link and lets it go off to the races. If the page
was downloaded successfully, the counter is incremented and the link added to the "already seen" list. It
looks recursively at all the links featured inside each downloaded page and determines whether any
more links should be added to the queue. The main loop in go() will continue to process links until the
queue is empty, at which time victory is declared.

Links that are part of another domain, have already been downloaded, are already in the queue waiting
to be processed, or are "mailto:" links are ignored and not added to the queue.

Lines 100114

main() is executed if this script is invoked directly and is the starting point of execution. Other modules
that import crawl.py will need to invoke main() to begin processing. main() needs a URL to begin
processing. If one is given on the command line (for example, when this script is invoked directly), it will
just go with the one given. Otherwise, the script enters interactive mode, prompting the user for a
starting URL. With a starting link in hand, the Crawler is instantiated and away we go.

One sample invocation of crawl.py may look like this:

 % crawl.py
 Enter starting URL: http://www.null.com/home/index.html

 (1)
 URL: http://www.null.com/home/index.html
 FILE: www.null.com/home/index.html
 * http://www.null.com/home/overview.html ... new, added to Q
 * http://www.null.com/home/synopsis.html ... new, added to Q
 * http://www.null.com/home/order.html ... new, added to Q
 * mailto:postmaster@null.com ... discarded, mailto link

file:///D|/1/0132269937/ch20lev1sec3.html (2 von 3) [13.11.2007 16:25:06]

Section 20.3. Advanced Web Clients

 * http://www.null.com/home/overview.html ... discarded, already in Q
 * http://www.null.com/home/synopsis.html ... discarded, already in Q
 * http://www.null.com/home/order.html ... discarded, already in Q
 * mailto:postmaster@null.com ... discarded, mailto link
 * http://bogus.com/index.html ... discarded, not in domain

 (2)
 URL: http://www.null.com/home/order.html
 FILE: www.null.com/home/order.html
 * mailto:postmaster@null.com ... discarded, mailto link
 * http://www.null.com/home/index.html ... discarded, already processed
 * http://www.null.com/home/synopsis.html ... discarded, already in Q
 * http://www.null.com/home/overview.html ... discarded, already in Q

 (3)
 URL: http://www.null.com/home/synopsis.html
 FILE: www.null.com/home/synopsis.html
 * http://www.null.com/home/index.html ... discarded, already processed
 * http://www.null.com/home/order.html ... discarded, already processed
 * http://www.null.com/home/overview.html ... discarded, already in Q

 (4)
 URL: http://www.null.com/home/overview.html
 FILE: www.null.com/home/overview.html
 * http://www.null.com/home/synopsis.html ... discarded, already processed
 * http://www.null.com/home/index.html ... discarded, already processed
 * http://www.null.com/home/synopsis.html ... discarded, already processed
 * http://www.null.com/home/order.html ... discarded, already processed

After execution, a www.null.com directory would be created in the local file system, with a home

subdirectory. Within home, all the HTML files processed will be found.

file:///D|/1/0132269937/ch20lev1sec3.html (3 von 3) [13.11.2007 16:25:06]

http://www.null.com/

Section 20.4. CGI: Helping Web Servers Process Client Data

20.4. CGI: Helping Web Servers Process Client Data

20.4.1. Introduction to CGI

The Web was initially developed to be a global online repository or archive of (mostly educational and
research-oriented) documents. Such pieces of information generally come in the form of static text and
usually in HTML.

HTML is not as much a language as it is a text formatter, indicating changes in font types, sizes, and
styles. The main feature of HTML is in its hypertext capability, text that is in one way or another
highlighted to point to another document in a related context to the original. Such a document can be
accessed by a mouse click or other user selection mechanism. These (static) HTML documents live on
the Web server and are sent to clients when and if requested.

As the Internet and Web services evolved, there grew a need to process user input. Online retailers
needed to be able to take individual orders, and online banks and search engine portals needed to
create accounts for individual users. Thus fill-out forms were invented, and became the only way a Web
site can get specific information from users (until Java applets came along). This, in turn, required the
HTML now be generated on the fly, for each client submitting user-specific data.

Now, Web servers are only really good at one thing, getting a user request for a file and returning that
file (i.e., an HTML file) to the client. They do not have the "brains" to be able to deal with user-specific
data such as those which come from fields. Not being their responsibility, Web servers farm out such
requests to external applications which create the dynamically generated HTML that is returned to the
client.

The entire process begins when the Web server receives a client request (i.e., GET or POST) and calls
the appropriate application. It then waits for the resulting HTMLmeanwhile, the client also waits. Once
the application has completed, it passes the dynamically generated HTML back to the server, who then
(finally) forwards it back to the user. This process of the server receiving a form, contacting an external
application, and receiving and returning the newly-generated HTML takes place through what is called
the Web server's CGI (Common Gateway Interface). An overview of how CGI works is illustrated in
Figure 20-3, which shows you the execution and data flow, step-by-step, from when a user submits a
form until the resulting Web page is returned.

Figure 20-3. Overview of how CGI works. CGI represents the interaction
between a Web server and the application that is required to process a user's

form and generate the dynamic HTML that is eventually returned.

[View full size image]

file:///D|/1/0132269937/ch20lev1sec4.html (1 von 3) [13.11.2007 16:25:07]

file:///D|/1/0132269937/14051536.html
file:///D|/1/0132269937/images/chun_fig20_03_alt.jpg

Section 20.4. CGI: Helping Web Servers Process Client Data

Forms input from the client sent to a Web server may include processing and perhaps some form of
storage in a backend database. Just keep in mind that any time there are any user-filled fields and/or a
Submit button or image, it most likely involves some sort of CGI activity.

CGI applications that create the HTML are usually written in one of many higher-level programming
languages that have the ability to accept user data, process it, and return HTML back to the server.
Currently used programming languages include Perl, PHP, C/C++, or Python, to name a few. Before we
take a look at CGI, we have to provide the caveat that the typical production Web application is no
longer being done in CGI anymore.

Because of its significant limitations and limited ability to allow Web servers to process an abundant
number of simultaneous clients, CGI is a dinosaur. Mission-critical Web services rely on compiled
languages like C/C++ to scale. A modern-day Web server is typically composed of Apache and
integrated components for database access (MySQL or PostgreSQL), Java (Tomcat), PHP, and various
modules for Perl, Python, and SSL/security. However, if you are working on small personal Web sites or
ones for small organizations and do not need the power and complexity required by mission critical Web
services, CGI is the perfect tool for your simple Web sites.

Furthermore, there are a good number of Web application development frameworks out there as well as
content management systems, all of which make building CGI a relic of past. However, beneath all the
fluff and abstraction, they must still, in the end, follow the same model that CGI originally provided, and
that is being able to take user input, execute code based on that input, and provide valid HTML as its
final output for the client. Therefore, the exercise in learning CGI is well worth it in terms of
understanding the fundamentals in order to develop effective Web services.

In this next section, we will look at how to create CGI applications in Python, with the help of the cgi
module.

20.4.2. CGI Applications

A CGI application is slightly different from a typical program. The primary differences are in the input,
output, and user interaction aspects of a computer program. When a CGI script starts, it needs to
retrieve the user-supplied form data, but it has to obtain this data from the Web client, not a user on
the server machine nor a disk file.

The output differs in that any data sent to standard output will be sent back to the connected Web client
rather than to the screen, GUI window, or disk file. The data sent back must be a set of valid headers
followed by HTML. If it is not and the Web client is a browser, an error (specifically, an Internal Server
Error) will occur because Web clients such as browsers understand only valid HTTP data (i.e., MIME
headers and HTML).

file:///D|/1/0132269937/ch20lev1sec4.html (2 von 3) [13.11.2007 16:25:07]

Section 20.4. CGI: Helping Web Servers Process Client Data

Finally, as you can probably guess, there is no user interaction with the script. All communication occurs
among the Web client (on behalf of a user), the Web server, and the CGI application.

20.4.3. cgi Module

There is one primary class in the cgi module that does all the work: the FieldStorage class. This class
should be instantiated when a Python CGI script begins, as it will read in all the pertinent user
information from the Web client (via the Web server). Once this object has been instantiated, it will
consist of a dictionary-like object that has a set of key-value pairs. The keys are the names of the form
items that were passed in through the form while the values contain the corresponding data.

These values themselves can be one of three objects. They can be FieldStorage objects (instances) as
well as instances of a similar class called MiniFieldStorage, which is used in cases where no file uploads
or multiple-part form data is involved. MiniFieldStorage instances contain only the key-value pair of the
name and the data. Lastly, they can be a list of such objects. This occurs when a form contains more
than one input item with the same field name.

For simple Web forms, you will usually find all MiniFieldStorage instances. All of our examples below
pertain only to this general case.

file:///D|/1/0132269937/ch20lev1sec4.html (3 von 3) [13.11.2007 16:25:07]

file:///D|/1/0132269937/14051536.html

Section 20.5. Building CGI Applications

20.5. Building CGI Applications

20.5.1. Setting Up a Web Server

In order to play around with CGI development in Python, you need to first install a Web server,
configure it for handling Python CGI requests, and then give the Web server access to your CGI scripts.
Some of these tasks may require assistance from your system administrator.

If you want a real Web server, you will likely download and install Apache. There are Apache plug-ins or
modules for handling Python CGI, but they are not required for our examples. You may wish to install
those if you are planning on "going live" to the world with your service. Even this may be overkill.

For learning purposes or for simple Web sites, it may suffice to just use the Web servers that come with
Python. In Section 20.8, you will actually learn how to build and configure simple Python-based Web
servers. You may read ahead now if you wish to find out more about it at this stage. However, that is
not what this section is about.

If you want to just start up the most basic Web server, just execute it directly with Python:

 $ python -m CGIHTTPServer

The -m option is new in 2.4, so if you are using an older version of Python or want to see alternative
ways of running it, see section 14.4.3. Anyway, if you eventually get it working. ...

This will start a Web server on port 8000 on your current machine from the current directory. Then you
can just create a Cgi-bin right underneath the directory from which you started the server and put your
Python CGI scripts in there. Put some HTML files in that directory and perhaps some .py CGI scripts in
Cgi-bin, and you are ready to "surf" directly to this Web site with addresses looking something like
these:

http://localhost:8000/friends.htm

http://localhost:8000/cgi-bin/friends2.py

20.5.2. Creating the Form Page

In Example 20.3, we present the code for a simple Web form, friends.htm.

Example 20.3. Static Form Web Page (friends.htm)

file:///D|/1/0132269937/ch20lev1sec5.html (1 von 14) [13.11.2007 16:25:08]

file:///D|/1/0132269937/14051536.html

Section 20.5. Building CGI Applications

This HTML file presents a form to the user with an empty field for the user's name and a
set of radio buttons for the user to choose from.

1 <HTML><HEAD><TITLE>
2 Friends CGI Demo (static screen)
3 </TITLE></HEAD>
4 <BODY><H3>Friends list for: <I>NEW USER</I></H3>
5 <FORM ACTION="/cgi-bin/friends1.py">
6 Enter your Name:
7 <INPUT TYPE=text NAME=person VALUE="NEW USER" SIZE=15>
8 <P>How many friends do you have?
9 <INPUT TYPE=radio NAME=howmany VALUE="0" CHECKED> 0
10 <INPUT TYPE=radio NAME=howmany VALUE="10"> 10
11 <INPUT TYPE=radio NAME=howmany VALUE="25"> 25
12 <INPUT TYPE=radio NAME=howmany VALUE="50"> 50
13 <INPUT TYPE=radio NAME=howmany VALUE="100"> 100
14 <P><INPUT TYPE=submit></FORM></BODY></HTML>

As you can see in the code, the form contains two input variables: person and howmany. The values of
these two fields will be passed to our CGI script, friends1.py.

You will notice in our example that we install our CGI script into the default cgi-bin directory (see the
"Action" link) on the local host. (If this information does not correspond with your development
environment, update the form action before attempting to test the Web page and CGI script.) Also,
because a METHOD subtag is missing from the form action all requests will be of the default type, GET.
We choose the GET method because we do not have very many form fields, and also, we want our query
string to show up in the "Location" (aka "Address", "Go To") bar so that you can see what URL is sent to
the server.

Let us take a look at the screen that is rendered by friends.htm in a client (see Figure 20-4 for Safari on
MacOS and Figure 20-5 for IE6). Throughout this chapter, we will feature screenshots from various Web
browsers and operating systems over the past few years.

Figure 20-4. Friends form page in Safari on MacOS X (friends.htm)

file:///D|/1/0132269937/ch20lev1sec5.html (2 von 14) [13.11.2007 16:25:08]

Section 20.5. Building CGI Applications

Figure 20-5. Friends form page in IE6 on Win32 (friends.htm)

20.5.3. Generating the Results Page

The input is entered by the user and the "Submit" button is pressed. (Alternatively, the user can also
press the RETURN or Enter key within the text field to cause a similar effect.) When this occurs, the
script in Example 20.4, friends1.py, is executed via CGI.

file:///D|/1/0132269937/ch20lev1sec5.html (3 von 14) [13.11.2007 16:25:08]

Section 20.5. Building CGI Applications

Example 20.4. Results Screen CGI code (friends1.py)

This CGI script grabs the person and howmany fields from the form and uses that data to
create the dynamically generated results screen.

1 #!/usr/bin/env python
2
3 import cgi
4
5 reshtml = '''Content-Type: text/html\n
6 <HTML><HEAD><TITLE>
7 Friends CGI Demo (dynamic screen)
8 </TITLE></HEAD>
9 <BODY><H3>Friends list for: <I>%s</I></H3>
10 Your name is: %s<P>
11 You have %s friends.
12 </BODY></HTML>'''
13
14 form = cgi.FieldStorage()
15 who = form['person'].value
16 howmany = form['howmany'].value
17 print reshtml % (who, who, howmany)

This script contains all the programming power to read the form input and process it, as well as return
the resulting HTML page back to the user. All the "real" work in this script takes place in only four lines
of Python code (Lines 1417).

The form variable is our FieldStorage instance, containing the values of the person and howmany fields.
We read these into the Python who and howmany variables, respectively. The reshtml variable contains the
general body of HTML text to return, with a few fields filled in dynamically, the data just read in from the
form.

Core Tip: HTTP headers separate from HTML

One thing that always nails CGI beginners is that when sending results
back to a CGI script, it must return the appropriate HTTP headers first
before any HTML. Furthermore, to distinguish between these headers
and the resulting HTML, several NEWLINE characters must be inserted
between both sets of data, as in line 5 of our friends1.py example, as
well as for the code in the remaining part of the chapter.

One possible resulting screen appears in Figure 20-6, assuming the user typed in "erick allen" as the
name and clicked on the "10 friends" radio button. The screen snapshot this time is represented by the
older IE3 browser in a Windows environment.

Figure 20-6. Friends results page in IE3 on Win32

file:///D|/1/0132269937/ch20lev1sec5.html (4 von 14) [13.11.2007 16:25:08]

Section 20.5. Building CGI Applications

If you are a Web site producer, you may be thinking, "Gee, wouldn't it be nice if I could automatically
capitalize this person's name, especially if they forgot?" This can easily be accomplished using Python
CGI. (And we shall do so soon!)

Notice how on a GET request that our form variables and their values are added to the form action URL
in the "Address" bar. Also, did you observe that the title for the friends.htm page has the word "static"
in it while the output screen from friends.py has the work "dynamic" in its title? We did that for a
reason: to indicate that the friends.htm file is a static text file while the results page is dynamically
generated. In other words, the HTML for the results page did not exist on disk as a text file; rather, it
was generated by our CGI script, which returned it as if it was a local file.

In our next example, we will bypass static files altogether by updating our CGI script to be somewhat
more multifaceted.

20.5.4. Generating Form and Results Pages

We obsolete friends.html and merge it into friends2.py. The script will now generate both the form
page as well as the results page. But how can we tell which page to generate? Well, if there is form data
being sent to us, that means that we should be creating a results page. If we do not get any information
at all, that tells us that we should generate a form page for the user to enter his or her data.

Our new friends2.py script is shown in Example 20.5.

Example 20.5. Generating Form and Results Pages (friends2.py)

file:///D|/1/0132269937/ch20lev1sec5.html (5 von 14) [13.11.2007 16:25:08]

Section 20.5. Building CGI Applications

Both friends.html and friends1.py are merged together as friends2.py. The resulting
script can now output both form and results pages as dynamically generated HTML and has
the smarts to know which page to output.

1 #!/usr/bin/env python
2
3 import cgi
4
5 header = 'Content-Type: text/html\n\n'
6
7 formhtml = '''<HTML><HEAD><TITLE>
8 Friends CGI Demo</TITLE></HEAD>
9 <BODY><H3>Friends list for: <I>NEW USER</I></H3>
10 <FORM ACTION="/cgi-bin/friends2.py">
11 Enter your Name:
12 <INPUT TYPE=hidden NAME=action VALUE=edit>
13 <INPUT TYPE=text NAME=person VALUE="NEW USER" SIZE=15>
14 <P>How many friends do you have?
15 %s
16 <P><INPUT TYPE=submit></FORM></BODY></HTML>'''
17
18 fradio = '<INPUT TYPE=radio NAME=howmany VALUE="%s" %s> %s\n'
19
20 def showForm():
21 friends = ''
22 for i in [0, 10, 25, 50, 100]:
23 checked = ''
24 if i == 0:
25 checked = 'CHECKED'
26 friends = friends + fradio % \
27 (str(i), checked, str(i))
28
29 print header + formhtml % (friends)
30
31 reshtml = '''<HTML><HEAD><TITLE>
32 Friends CGI Demo</TITLE></HEAD>
33 <BODY><H3>Friends list for: <I>%s</I></H3>
34 Your name is: %s<P>
35 You have %s friends.
36 </BODY></HTML>'''
37
38 def doResults(who, howmany):
39 print header + reshtml % (who, who, howmany)
40
41 def process():
42 form = cgi.FieldStorage()
43 if form.has_key('person'):
44 who = form['person'].value
45 else:
46 who = 'NEW USER'
47
48 if form.has_key('howmany'):
49 howmany = form['howmany'].value
50 else:
51 howmany = 0
52
53 if form.has_key('action'):
54 doResults(who, howmany)

file:///D|/1/0132269937/ch20lev1sec5.html (6 von 14) [13.11.2007 16:25:08]

Section 20.5. Building CGI Applications

55 else:
56 showForm()
57
58 if __name__ == '__main__':
59 process()

So what did we change in our script? Let's take a look at some of the blocks of code in this script.

Line-by-Line Explanation

Lines 15

In addition to the usual startup and module import lines, we separate the HTTP MIME header from the
rest of the HTML body because we will use it for both types of pages (form page and results page)
returned and we don't want to duplicate the text. We will add this header string to the corresponding
HTML body when it comes time for output to occur.

Lines 729

All of this code is related to the now-integrated friends.htm form page in our CGI script. We have a
variable for the form page text, formhtml, and we also have a string to build the list of radio buttons,
fradio. We could have duplicated this radio button HTML text as it is in friends.htm, but we wanted to
show how we could use Python to generate more dynamic outputsee the for-loop on Lines 2227.

The showForm() function has the responsibility of generating a form for user input. It builds a set of text
for the radio buttons, merges those lines of HTML into the main body of formhtml, prepends the header
to the form, and then returns the entire wad of data back to the client by sending the entire string to
standard output.

There are a couple of interesting things to note about this code. The first is the "hidden" variable in the
form called action, containing the value "edit" on line 12. This field is the only way we can tell which
screen to display (i.e., the form page or the results page). We will see this field come into play in Lines
5356.

Also, observe that we set the 0 radio button as the default by "checking" it within the loop that
generates all the buttons. This will also allow us to update the layout of the radio buttons and/or their
values on a single line of code (line 18) rather than over multiple lines of text. It will also offer some
more flexibility in letting the logic determine which radio button is checkedsee the next update to our
script, friends3.py coming up.

Now you may be thinking, "Why do we need an action variable when I could just as well be checking for
the presence of person or howmany?" That is a valid question because yes, you could have just used
person or howmany in this situation.

However, the action variable is a more conspicuous presence, insofar as its name as well as what it
doesthe code is easier to understand. The person and howmany variables are used for their values while
the action variable is used as a flag.

file:///D|/1/0132269937/ch20lev1sec5.html (7 von 14) [13.11.2007 16:25:08]

Section 20.5. Building CGI Applications

The other reason for creating action is that we will be using it again to help us determine which page to
generate. In particular, we will need to display a form with the presence of a person variable (rather
than a results page)this will break your code if you are solely relying on there being a person variable.

Lines 3139

The code to display the results page is practically identical to that of friends1.py.

Lines 4156

Since there are different pages that can result from this one script, we created an overall process()
function to get the form data and decide which action to take. The main portion of process() will also
look familiar to the main body of code in friends1.py. There are two major differences, however.

Since the script may or may not be getting the expected fields (invoking the script the first time to
generate a form page, for example, will not pass any fields to the server), we need to "bracket" our
retrieval of the form fields with if statements to check if they are even there. Also, we mentioned the
action field above, which helps us decide which page to bring up. The code that performs this
determination is in Lines 5356.

In Figures 20-7 and 20-8, you will see first the form screen generated by our script (with a name
entered and radio button chosen), followed by the results page, also generated by our script.

Figure 20-7. Friends form page in Firefox I.x on Win32 (friends2.py)

Figure 20-8. Friends results page in Firefox on Win32 (friends2.py)

file:///D|/1/0132269937/ch20lev1sec5.html (8 von 14) [13.11.2007 16:25:08]

Section 20.5. Building CGI Applications

If you look at the location or "Go to" bar, you will not see a URL referring to a static friends.htm file as
you did in Figure 20-4 or Figure 20-5.

20.5.5. Fully Interactive Web sites

Our final example will complete the circle. As in the past, a user enters his or her information from the
form page. We then process the data and output a results page. Now we will add a link to the results
page that will allow the user to go back to the form page, but rather than presenting a blank form, we
will fill in the data that the user has already provided. We will also add some error processing to give
you an example of how it can be accomplished.

We now present our final update, friends3.py in Example 20.6.

Example 20.6. Full User Interaction and Error Processing (friends3.py)

By adding a link to return to the form page with information already provided, we have
come "full circle," giving the user a fully interactive Web surfing experience. Our application
also now performs simple error checking, which notifies the user if no radio button was
selected.

1 #!/usr/bin/env python
2
3 import cgi
4 from urllib import quote_plus
5 from string import capwords
6
7 header = 'Content-Type: text/html\n\n'
8 url = '/cgi-bin/friends3.py'
9
10 errhtml = '''<HTML><HEAD><TITLE>
11 Friends CGI Demo</TITLE></HEAD>

file:///D|/1/0132269937/ch20lev1sec5.html (9 von 14) [13.11.2007 16:25:08]

Section 20.5. Building CGI Applications

12 <BODY><H3>ERROR</H3>
13 %s<P>
14 <FORM><INPUT TYPE=button VALUE=Back
15 ONCLICK="window.history.back()"></FORM>
16 </BODY></HTML>'''
17
18 def showError(error_str):
19 print header + errhtml % (error_str)
20
21 formhtml = '''<HTML><HEAD><TITLE>
22 Friends CGI Demo</TITLE></HEAD>
23 <BODY><H3>Friends list for: <I>%s</I></H3>
24 <FORM ACTION="%s">
25 Your Name:
26 <INPUT TYPE=hidden NAME=action VALUE=edit>
27 <INPUT TYPE=text NAME=person VALUE="%s" SIZE=15>
28 <P>How many friends do you have?
29 %s
30 <P><INPUT TYPE=submit></FORM></BODY></HTML>'''
31
32 fradio = '<INPUT TYPE=radio NAME=howmany VALUE="%s" %s> %s\n'
33
34 def showForm(who, howmany):
35 friends = ''
36 for i in [0, 10, 25, 50, 100]:
37 checked = ''
38 if str(i) == howmany:
39 checked = 'CHECKED'
40 friends = friends + fradio % \
41 (str(i), checked, str(i))
42 print header + formhtml % (who, url, who, friends)
43
44 reshtml = '''<HTML><HEAD><TITLE>
45 Friends CGI Demo</TITLE></HEAD>
46 <BODY><H3>Friends list for: <I>%s</I></H3>
47 Your name is: %s<P>
48 You have %s friends.
49 <P>Click here to edit your data again.
50 </BODY></HTML>'''
51
52 def doResults(who, howmany):
53 newurl = url + '?action=reedit&person=%s&howmany=%s'%\
54 (quote_plus(who), howmany)
55 print header + reshtml % (who, who, howmany, newurl)
56
57 def process():
58 error = ''
59 form = cgi.FieldStorage()
60
61 if form.has_key('person'):
62 who = capwords(form['person'].value)
63 else:
64 who = 'NEW USER'
65
66 if form.has_key('howmany'):
67 howmany = form['howmany'].value
68 else:
69 if form.has_key('action') and \
70 form['action'].value == 'edit':

file:///D|/1/0132269937/ch20lev1sec5.html (10 von 14) [13.11.2007 16:25:08]

Section 20.5. Building CGI Applications

71 error = 'Please select number of friends.'
72 else:
73 howmany = 0
74
75 if not error:
76 if form.has_key('action') and \
77 form['action'].value != 'reedit':
78 doResults(who, howmany)
79 else:
80 showForm(who, howmany)
81 else:
82 showError(error)
83
84 if __name__ == '__main__':
85 process()

friends3.py is not too unlike friends2.py. We invite the reader to compare the differences; we present a
brief summary of the major changes for you here.

Abridged Line-by-Line Explanation

Line 8

We take the URL out of the form because we now need it in two places, the results page being the new
customer.

Lines 1019, 6971, 7582

All of these lines deal with the new feature of having an error screen. If the user does not select a radio
button indicating the number of friends, the howmany field is not passed to the server. In such a case, the
show-Error() function returns the error page to the user.

The error page also features a JavaScript "Back" button. Because buttons are input types, we need a
form, but no action is needed because we are simply just going back one page in the browsing history.
Although our script currently supports (aka detects, tests for) only one type of error, we still use a
generic error variable in case we wanted to continue development of this script to add more error
detection in the future.

Lines 27, 38-41, 49, and 52-55

One goal for this script is to create a meaningful link back to the form page from the results page. This
is implemented as a link to give the user the ability to return to a form page to update the data he or
she entered, in case it was erroneous. The new form page makes sense only if it contains information
pertaining to the data that have already been entered by the user. (It is frustrating for users to reenter
their information from scratch!)

To accomplish this, we need to embed the current values into the updated form. In line 27, we add a
value for the name. This value will be inserted into the name field, if given. Obviously, it will be blank on
the initial form page. In Lines 3841, we set the radio box corresponding to the number of friends
currently chosen. Finally, on lines 49 and the updated doResults() function on lines 5255, we create the

file:///D|/1/0132269937/ch20lev1sec5.html (11 von 14) [13.11.2007 16:25:08]

Section 20.5. Building CGI Applications

link with all the existing information, which "returns" the user to our modified form page.

Line 62

Finally, we added a simple feature that we thought would be a nice aesthetic touch. In the screens for
friends1.py and friends2.py, the text entered by the user as his or her name is taken verbatim. You will
notice in the screens above that if the user does not capitalize his or her names, that is reflected in the
results page. We added a call to the string.capwords() function to automatically capitalize a user's
name. The capwords() function will capitalize the first letter of each word in the string that is passed in.
This may or may not be a desired feature, but we thought that we would share it with you so that you
know that such functionality exists.

We will now present four screens that show the progression of user interaction with this CGI form and
script.

In the first screen, shown in Figure 20-9, we invoke friends3.py to bring up the now-familiar form page.
We enter a name "foo bar," but deliberately avoid checking any of the radio buttons. The resulting error
after submitting the form can be seen in the second screen (Figure 20-10).

Figure 20-9. Friends initial form page in Camino on MacOS X (friends3.py)

Figure 20-10. Friends error page (invalid user input), also in Camino (friends3.

py)

file:///D|/1/0132269937/ch20lev1sec5.html (12 von 14) [13.11.2007 16:25:08]

Section 20.5. Building CGI Applications

We click on the "Back" button, check the "50" radio button, and resubmit our form. The results page,
shown in Figure 20-11, is also familiar, but now has an extra link at the bottom. This link will take us
back to the form page. The only difference between the new form page and our original is that all the
data filled in by the user are now set as the "default" settings, meaning that the values are already
available in the form. We can see this in Figure 20-12.

Figure 20-11. Friends updated form page with current information

Figure 20-12. Friends results page (valid input) (friends3.py)

file:///D|/1/0132269937/ch20lev1sec5.html (13 von 14) [13.11.2007 16:25:08]

Section 20.5. Building CGI Applications

Now the user is able to make changes to either of the fields and resubmit his or her form.

You will no doubt begin to notice that as our forms and data get more complicated, so does the
generated HTML, especially for complex results pages. If you ever get to a point where generating the
HTML text is interfering with your application, you may consider connecting with a Python module such
as HTMLgen, an external Python module which specializes in HTML generation.

file:///D|/1/0132269937/ch20lev1sec5.html (14 von 14) [13.11.2007 16:25:09]

file:///D|/1/0132269937/14051536.html

Section 20.6. Using Unicode with CGI

20.6. Using Unicode with CGI

In Chapter 6, "Sequences," we introduced the use of Unicode strings. In Section 6.8.5, we gave a simple
example of a script that takes a Unicode string, writing it out to a file and reading it back in. In this
section, we will demonstrate a simple CGI script that has Unicode output and how to give your browser
enough clues to be able to render the characters properly. The one requirement is that you must have
East Asian fonts installed on your computer so that the browser can display them.

To see Unicode in action we will build a CGI script to generate a multilingual Web page. First of all we
define the message in a Unicode string. We assume your text editor can only enter ASCII. Therefore the
non-ASCII characters are input using the \u escape. In practice the message can also be read from a file
or from database.

 # Greeting in English, Spanish,
 # Chinese and Japanese.
 UNICODE_HELLO = u"""
 Hello!
 \u00A1Hola!
 \u4F60\u597D!
 \u3053\u3093\u306B\u3061\u306F!
 """

The first output the CGI generates is the content-type HTTP header. It is very important to declare here
that the content is transmitted in the UTF-8 encoding so that the browser can correctly interpret it.

 print 'Content-type: text/html; charset=UTF-8\r'
 print '\r'

Then output the actual message. Use the string's encode() method to translate the string into UTF-8
sequences first.

 print UNICODE_HELLO.encode('UTF-8')

Example 20.7 shows the complete program.

Example 20.7. Simple Unicode CGI Example (uniCGI.py)

file:///D|/1/0132269937/ch20lev1sec6.html (1 von 2) [13.11.2007 16:25:09]

file:///D|/1/0132269937/14051536.html

Section 20.6. Using Unicode with CGI

This script outputs Unicode strings to your Web browser.

1 #!/usr/bin/env python
2
3 CODEC = 'UTF-8'
4 UNICODE_HELLO = u'''
5 Hello!
6 \u00A1Hola!
7 \u4F60\u597D!
8 \u3053\u3093\u306B\u3061\u306F!
9 '''
10
11 print 'Content-Type: text/html; charset=%s\r' % CODEC
12 print '\r'13print '<HTML><HEAD><TITLE>Unicode CGI Demo</TITLE></HEAD>'
14 print '<BODY>'
15 print UNICODE_HELLO.encode(CODEC)
16 print '</BODY></HTML>'

If you run the CGI code from your browser, you will get output like that shown in Figure 20-13.

Figure 20-13. Simple Unicode CGI demo output in Firefox (uniCGI.py)

[View full size image]

file:///D|/1/0132269937/ch20lev1sec6.html (2 von 2) [13.11.2007 16:25:09]

file:///D|/1/0132269937/images/chun_fig20_13_alt.jpg
file:///D|/1/0132269937/14051536.html

Section 20.7. Advanced CGI

20.7. Advanced CGI

We will now take a look at some of the more advanced aspects of CGI programming. These include the
use of cookiescached data saved on the client sidemultiple values for the same CGI field and file upload
using multipart form submissions. To save space, we will show you all three of these features with a
single application. Let's take a look at multipart submissions first.

20.7.1. Multipart Form Submission and File Uploading

Currently, the CGI specifications only allow two types of form encodings, "application/x-www-form-
urlencoded" and "multipart/form-data." Because the former is the default, there is never a need to state
the encoding in the FORM tag like this:

 <FORM enctype="application/x-www-form-urlencoded" ...>

But for multipart forms, you must explicitly give the encoding as:

 <FORM enctype="multipart/form-data" ...>

You can use either type of encoding for form submissions, but at this time, file uploads can only be
performed with the multipart encoding. Multipart encoding was invented by Netscape in the early days
but has since been adopted by Microsoft (starting with version 4 of Internet Explorer) as well as other
browsers.

File uploads are accomplished using the file input type:

 <INPUT type=file name=...>

This directive presents an empty text field with a button on the side which allows you to browse your file
directory structure for a file to upload. When using multipart, your Web client's form submission to the
server will look amazingly like (multipart) e-mail messages with attachments. A separate encoding was
needed because it just would not be necessarily wise to "urlencode" a file, especially a binary file. The
information still gets to the server, but it is just "packaged" in a different way.

Regardless of whether you use the default encoding or the multipart, the cgi module will process them
in the same manner, providing keys and corresponding values in the form submission. You will simply
access the data through your FieldStorage instance as before.

20.7.2. Multivalued Fields

In addition to file uploads, we are going to show you how to process fields with multiple values. The
most common case is when you have a set of checkboxes allowing a user to select from various choices.
Each of the checkboxes is labeled with the same field name, but to differentiate them, each will have a
different value associated with a particular checkbox.

As you know, the data from the user are sent to the server in key-value pairs during form submission.

file:///D|/1/0132269937/ch20lev1sec7.html (1 von 13) [13.11.2007 16:25:11]

Section 20.7. Advanced CGI

When more than one checkbox is submitted, you will have multiple values associated with the same
key. In these cases, rather than being given a single MiniFieldStorage instance for your data, the cgi
module will create a list of such instances that you will iterate over to obtain the different values. Not
too painful at all.

20.7.3. Cookies

Finally, we will use cookies in our example. If you are not familiar with cookies, they are just bits of data
information which a server at a Web site will request to be saved on the client side, e.g., the browser.

Because HTTP is a "stateless" protocol, information that has to be carried from one page to another can
be accomplished by using key-value pairs in the request as you have seen in the GET requests and
screens earlier in this chapter. Another way of doing it, as we have also seen before, is using hidden
form fields, such as the action variable in some of the later friends*.py scripts. These variables and
their values are managed by the server because the pages they return to the client must embed these
in generated pages.

One alternative to maintaining persistency in state across multiple page views is to save the data on the
client side instead. This is where cookies come in. Rather than embedding data to be saved in the
returned Web pages, a server will make a request to the client to save a cookie. The cookie is linked to
the domain of the originating server (so a server cannot set or override cookies from other Web sites)
and has an expiration date (so your browser doesn't become cluttered with cookies).

These two characteristics are tied to a cookie along with the key-value pair representing the data item of
interest. There are other attributes of cookies such as a domain subpath or a request that a cookie
should only be delivered in a secure environment.

By using cookies, we no longer have to pass the data from page to page to track a user. Although they
have been subject to a good amount of controversy over the privacy issue, most Web sites use cookies
responsibly. To prepare you for the code, a Web server requests a client store a cookie by sending the
"Set-Cookie" header immediately before the requested file.

Once cookies are set on the client side, requests to the server will automatically have those cookies sent
to the server using the HTTP_COOKIE environment variable. The cookies are delimited by semicolons and
come in "key=value" pairs. All your application needs to do to access the data values is to split the
string several times (i.e., using string.split() or manual parsing). The cookies are delimited by
semicolons (;), and each key-value pair is separated by equal signs (=).

Like multipart encoding, cookies originated from Netscape, which implemented cookies and wrote up the
first specification, which is still valid today. You can access this document at the following Web site:

http://www.netscape.com/newsref/std/cookie_spec.html

Once cookies are standardized and this document finally obsoleted, you will be able to get more current
information from Request for Comment documents (RFCs). The most current one for cookies at the time
of publication is RFC 2109.

20.7.4. Using Advanced CGI

We now present our CGI application, advcgi.py, which has code and functionality not too unlike the
friends3.py script seen earlier in this chapter. The default first page is a user fill-out form consisting of
four main parts: user-set cookie string, name field, checkbox list of programming languages, and file
submission box. An image of this screen can be seen in Figure 20-14.

file:///D|/1/0132269937/ch20lev1sec7.html (2 von 13) [13.11.2007 16:25:11]

http://www.netscape.com/newsref/std/cookie_spec.html

Section 20.7. Advanced CGI

Figure 20-14. Upload and multivalue form page in IE5 on MacOS X

[View full size image]

Figure 20-15 shows another look at the form from another browser. From this form, we can enter our
information, such as the sample data given in Figure 20-16. Notice how the text in the button to search
for files differs between browsers, i.e., "Browse ...", "Choose", "...", etc.

Figure 20-15. The same advanced CGI form but in Netscape4 on Linux

file:///D|/1/0132269937/ch20lev1sec7.html (3 von 13) [13.11.2007 16:25:11]

file:///D|/1/0132269937/images/chun_fig20_14_alt.jpg

Section 20.7. Advanced CGI

Figure 20-16. Submitting our advanced CGI demo form in Opera8 on Win32

[View full size image]

file:///D|/1/0132269937/ch20lev1sec7.html (4 von 13) [13.11.2007 16:25:11]

file:///D|/1/0132269937/images/chun_fig20_16_alt.jpg

Section 20.7. Advanced CGI

The data are submitted to the server using multipart encoding and retrieved in the same manner on the
server side using the FieldStorage instance. The only tricky part is in retrieving the uploaded file. In our
application, we choose to iterate over the file, reading it line by line. It is also possible to read in the
entire contents of the file if you are not wary of its size.

Since this is the first occasion data are received by the server, it is at this time, when returning the
results page back to the client, that we use the "Set-Cookie:" header to cache our data in browser
cookies.

In Figure 20-17, you will see the results after submitting our form data. All the fields the user entered
are shown on the page. The given file in the final dialog box was uploaded to the server and displayed
as well.

file:///D|/1/0132269937/ch20lev1sec7.html (5 von 13) [13.11.2007 16:25:11]

Section 20.7. Advanced CGI

Figure 20-17. Results page generated and returned by the Web server in
Opera4 on Win32

You will also notice the link at the bottom of the results page, which returns us to the form page, again
using the same CGI script.

If we click on that link at the bottom, no form data is submitted to our script, causing a form page to be
displayed. Yet, as you can see from Figure 20-17, what shows up is anything but an empty form!
Information previously entered by the user shows up! How did we accomplish this with no form data
(either hidden or as query arguments in the URL)? The secret is that the data are stored on the client
side in cookies, two in fact.

The user cookie holds the string of data typed in by the user in the "Enter cookie value" form field, and
the user's name, languages they are familiar with, and uploaded files are stored in the info cookie.

file:///D|/1/0132269937/ch20lev1sec7.html (6 von 13) [13.11.2007 16:25:11]

Section 20.7. Advanced CGI

When the script detects no form data, it shows the form page, but before the form page has been
created, it grabs the cookies from the client (which are automatically transmitted by the client when the
user clicks on the link) and fills out the form accordingly. So when the form is finally displayed, all the
previously entered information appears to the user like magic (see Figure 20-18).

Figure 20-18. Form page with data loaded from the Client cookies

We are certain you are eager to take a look at this application, so here it is, in Example 20.8.

Example 20.8. Advanced CGI Application (advcgi.py)

file:///D|/1/0132269937/ch20lev1sec7.html (7 von 13) [13.11.2007 16:25:11]

Section 20.7. Advanced CGI

This script has one main class that does everything, AdvCGI. It has methods to show either
form, error, or results pages as well as those that read or write cookies from/to the client
(a Web browser).

1 #!/usr/bin/env python
2
3 from cgi import FieldStorage
4 from os import environ
5 from cStringIO import StringIO
6 from urllib import quote, unquote
7 from string import capwords, strip, split, join
8
9 class AdvCGI(object):
10
11 header = 'Content-Type: text/html\n\n'
12 url = '/py/advcgi.py'
13
14 formhtml = '''<HTML><HEAD><TITLE>
15 Advanced CGI Demo</TITLE></HEAD>
16 <BODY><H2>Advanced CGI Demo Form</H2>
17 <FORM METHOD=post ACTION="%s" ENCTYPE="multipart/form-data">
18 <H3>My Cookie Setting</H3>
19 <CODE>CPPuser = %s</CODE>
20 <H3>Enter cookie value

21 <INPUT NAME=cookie value="%s"> (<I>optional</I>)</H3>
22 <H3>Enter your name

23 <INPUT NAME=person VALUE="%s"> (<I>required</I>)</H3>
24 <H3>What languages can you program in?
25 (<I>at least one required</I>)</H3>
26 %s
27 <H3>Enter file to upload</H3>
28 <INPUT TYPE=file NAME=upfile VALUE="%s" SIZE=45>
29 <P><INPUT TYPE=submit>
30 </FORM></BODY></HTML>'''
31
32 langSet = ('Python', 'PERL', 'Java', 'C++', 'PHP',
33 'C', 'JavaScript')
34 langItem = \
35 '<INPUT TYPE=checkbox NAME=lang VALUE="%s"%s> %s\n'
36
37 def getCPPCookies(self): # read cookies from client
38 if environ.has_key('HTTP_COOKIE'):
39 for eachCookie in map(strip, \
40 split(environ['HTTP_COOKIE'], ';')):
41 if len(eachCookie) > 6 and \
42 eachCookie[:3] == 'CPP':
43 tag = eachCookie[3:7]
44 try:
45 self.cookies[tag] = \
46 eval(unquote(eachCookie[8:]))
47 except (NameError, SyntaxError):
48 self.cookies[tag] = \
49 unquote(eachCookie[8:])
50 else:
51 self.cookies['info'] = self.cookies['user'] = ''
52
53 if self.cookies['info'] != '':
54 self.who, langStr, self.fn = \

file:///D|/1/0132269937/ch20lev1sec7.html (8 von 13) [13.11.2007 16:25:11]

Section 20.7. Advanced CGI

55 split(self.cookies['info'], ':')
56 self.langs = split(langStr, ',')
57 else:
58 self.who = self.fn = ' '
59 self.langs = ['Python']
60
61 def showForm(self): # show fill-out form
62 self.getCPPCookies()
63 langStr = ''
64 for eachLang in AdvCGI.langSet:
65 if eachLang in self.langs:
66 langStr += AdvCGI.langItem % \
67 (eachLang, ' CHECKED', eachLang)
68 else:
69 langStr += AdvCGI.langItem % \
70 (eachLang, '', eachLang)
71
72 if not self.cookies.has_key('user') or \
73 self.cookies['user'] == '':
74 cookStatus = '<I>(cookie has not been set yet)</I>'
75 userCook = ''
76 else:
77 userCook = cookStatus = self.cookies['user']
78
79 print AdvCGI.header + AdvCGI.formhtml % (AdvCGI.url,
80 cookStatus, userCook, self.who, langStr, self.fn)
81
82 errhtml = '''<HTML><HEAD><TITLE>
83 Advanced CGI Demo</TITLE></HEAD>
84 <BODY><H3>ERROR</H3>
85 %s<P>
86 <FORM><INPUT TYPE=button VALUE=Back
87 ONCLICK="window.history.back()"></FORM>
88 </BODY></HTML>'''
89
90 def showError(self):
91 print AdvCGI.header + AdvCGI.errhtml % (self.error)
92
93 reshtml = '''<HTML><HEAD><TITLE>
94 Advanced CGI Demo</TITLE></HEAD>
95 <BODY><H2>Your Uploaded Data</H2>
96 <H3>Your cookie value is: %s</H3>
97 <H3>Your name is: %s</H3>
98 <H3>You can program in the following languages:</H3>
99 %s
100 <H3>Your uploaded file...

101 Name: <I>%s</I>

102 Contents:</H3>
103 <PRE>%s</PRE>
104 Click here to return to form.
105 </BODY></HTML>'''
106
107 def setCPPCookies(self): # tell client to store cookies
108 for eachCookie in self.cookies.keys():
109 print 'Set-Cookie: CPP%s=%s; path=/' % \
110 (eachCookie, quote(self.cookies[eachCookie]))
111

112 def doResults(self):# display results page

file:///D|/1/0132269937/ch20lev1sec7.html (9 von 13) [13.11.2007 16:25:11]

Section 20.7. Advanced CGI

113 MAXBYTES = 1024
114 langlist = ''
115 for eachLang in self.langs:
116 langlist = langlist + '%s
' % eachLang
117
118 filedata = ''
119 while len(filedata) < MAXBYTES:# read file chunks
120 data = self.fp.readline()
121 if data == '': break
122 filedata += data
123 else: # truncate if too long
124 filedata += \
125 '... <I>(file truncated due to size)</I>'
126 self.fp.close()
127 if filedata == '':
128 filedata = \
129 <I>(file upload error or file not given)</I>'
130 filename = self.fn
131
132 if not self.cookies.has_key('user') or \
133 self.cookies['user'] == '':
134 cookStatus = '<I>(cookie has not been set yet)</I>'
135 userCook = ''
136 else:
137 userCook = cookStatus = self.cookies['user']
138
139 self.cookies['info'] = join([self.who, \
140 join(self.langs, ','), filename], ':')
141 self.setCPPCookies()
142 print AdvCGI.header + AdvCGI.reshtml % \
143 (cookStatus, self.who, langlist,
144 filename, filedata, AdvCGI.url)
145
146 def go(self): # determine which page to return
147 self.cookies = {}
148 self.error = ''
149 form = FieldStorage()
150 if form.keys() == []:
151 self.showForm()
152 return
153
154 if form.has_key('person'):
155 self.who = capwords(strip(form['person'].value))
156 if self.who == '':
157 self.error = 'Your name is required. (blank)'
158 else:
159 self.error = 'Your name is required. (missing)'
160
161 if form.has_key('cookie'):
162 self.cookies['user'] = unquote(strip(\
163 form['cookie'].value))
164 else:
165 self.cookies['user'] = ''
166
167 self.langs = []
168 if form.has_key('lang'):
169 langdata = form['lang']
170 if type(langdata) == type([]):
171 for eachLang in langdata:

file:///D|/1/0132269937/ch20lev1sec7.html (10 von 13) [13.11.2007 16:25:11]

Section 20.7. Advanced CGI

172 self.langs.append(eachLang.value)
173 else:
174 self.langs.append(langdata.value)
175 else:
176 self.error = 'At least one language required.'
177
178 if form.has_key('upfile'):
179 upfile = form["upfile"]
180 self.fn = upfile.filename or ''
181 if upfile.file:
182 self.fp = upfile.file
183 else:
184 self.fp = StringIO('(no data)')
185 else:
186 self.fp = StringIO('(no file)')
187 self.fn = ''
188
189 if not self.error:
190 self.doResults()
191 else:
192 self.showError()
193
194 if __name__ == '__main__':
195 page = AdvCGI()
196 page.go()

advcgi.py looks strikingly similar to our friends3.py CGI scripts seen earlier in this chapter. It has a
form, results, and error pages to return. In addition to all of the advanced CGI features that are part of
our new script, we are also using more of an object-oriented feel to our script by using a class with
methods instead of just a set of functions. The HTML text for our pages is now static data for our class,
meaning that they will remain constant across all instanceseven though there is actually only one
instance in our case.

Line-by-Line (Block-by-Block) Explanation

Lines 17

The usual startup and import lines appear here. The only module you may not be familiar with is
cStringIO, which we briefly introduced at the end of Chapter 10 and also used in Example 20.1.
cStringIO.StringIO() creates a file-like object out of a string so that access to the string is similar to
opening a file and using the handle to access the data.

Lines 912

After the AdvCGI class is declared, the header and url (static class) variables are created for use by the
methods displaying all the different pages.

Lines 1480

All the code in this block is used to generate and display the form page. The data attributes speak for
themselves. getCPPCookies() obtains cookie information sent by the Web client, and showForm() collates

file:///D|/1/0132269937/ch20lev1sec7.html (11 von 13) [13.11.2007 16:25:11]

Section 20.7. Advanced CGI

all the information and sends the form page back to the client.

Lines 8291

This block of code is responsible for the error page.

Lines 93144

The results page is created using this block of code. The setCPPCookies() method requests that a client
store the cookies for our application, and the doResults() method puts together all the data and sends
the output back to the client.

Lines 146196

The script begins by instantiating an AdvCGI page object, then calls its go() method to start the ball
rolling, in contrast to a strictly procedural programming process. The go() method contains the logic that
reads all incoming data and decides which page to show.

The error page will be displayed if no name was given or if no languages were checked. The showForm()
method is called to output the form if no input data were received, and the doResults() method is
invoked otherwise to display the results page. Error situations are created by setting the self.error
variable, which serves two purposes. It lets you set an error reason as a string and also serves as a flag
to indicate that an error has occurred. If this value is not blank, the user will be forwarded to the error
page.

Handling the person field (lines 154159) is the same as we have seen in the past, a single key-value
pair; however, collecting the language information is a bit trickier since we must check for either a (Mini)
FieldStorage instance or a list of such instances. We will employ the familiar type() built-in function for
this purpose. In the end, we will have a list of a single language name or many, depending on the user's
selections.

The use of cookies (lines 161165) to contain data illustrates how they can be used to avoid using any
kind of CGI field pass-through. You will notice in the code that obtains such data that no CGI processing
is invoked, meaning that the data do not come from the FieldStorage object. The data are passed to us
by the Web client with each request and the values (user's chosen data as well as information to fill in a
succeeding form with pre-existing information) are obtained from cookies.

Because the showResults() method receives the new input from the user, it has the responsibility of
setting the cookies, i.e., by calling setCPPCookies(). showForm(), however, must read in the cookies'
values in order to display a form page with the current user selections. This is done by its invocation of
the getCPPCookies() method.

Finally, we get to the file upload processing (lines 178187). Regardless of whether a file was actually
uploaded, FieldStorage is given a file handle in the file attribute. On line 180, if there was no filename
given, then we just set it to a blank string. If the value attribute is accessed, the entire contents of the
file will be placed into value. As a better alternative, you can access the file pointerthe file attributeand
perhaps read only one line at a time or other kind of slower processing.

In our case, file uploads are only part of user submissions, so we simply pass on the file pointer to the
doResults() function to extract the data from the file. doResults() will display only the first 1K of the file
for space reasons and to show you that it is not necessary (or necessarily productive/useful) to display a

file:///D|/1/0132269937/ch20lev1sec7.html (12 von 13) [13.11.2007 16:25:11]

Section 20.7. Advanced CGI

four-megabyte binary file.

file:///D|/1/0132269937/ch20lev1sec7.html (13 von 13) [13.11.2007 16:25:11]

Section 20.8. Web (HTTP) Servers

20.8. Web (HTTP) Servers

Until now, we have been discussing the use of Python in creating Web clients and performing tasks to
aid Web servers in CGI request processing. We know (and saw earlier in Sections 20.2 and 20.3) that
Python can be used to create both simple and complex Web clients. Complexity of CGI requests goes
without saying.

However, we have yet to explore the creation of Web servers, and that is the focus of this section. If the
Firefox, Mozilla, IE, Opera, Netscape, AOL, Safari, Camino, Epiphany, Galeon, and Lynx browsers are
among the most popular Web clients, then what are the most common Web servers? They are Apache,
Netscape, IIS, thttpd, Zeus, and Zope. In situations where these servers may be overkill for your
desired application, Python can be used to create simple yet useful Web servers.

20.8.1. Creating Web Servers in Python

Since you have decided on building such an application, you will naturally be creating all the custom
stuff, but all the base code you will need is already available in the Python Standard Library. To create a
Web server, a base server and a "handler" are required.

The base (Web) server is a boilerplate item, a must have. Its role is to perform the necessary HTTP
communication between client and server. The base server class is (appropriately) named HTTPServer
and is found in the BaseHTTPServer module.

The handler is the piece of software that does the majority of the "Web serving." It processes the client
request and returns the appropriate file, whether static or dynamically generated by CGI. The
complexity of the handler determines the complexity of your Web server. The Python standard library
provides three different handlers.

The most basic, plain, vanilla handler, named BaseHTTPRequestHandler, is found in the BaseHTTPServer
module, along with the base Web server. Other than taking a client request, no other handling is
implemented at all, so you have to do it all yourself, such as in our myhttpd.py server coming up.

The SimpleHTTPRequestHandler, available in the SimpleHTTP-Server module, builds on
BaseHTTPRequestHandler by implementing the standard GET and HEAD requests in a fairly straightforward
manner. Still nothing sexy, but it gets the simple jobs done.

Finally, we have the CGIHTTPRequestHandler, available in the CGIHTTPServer module, which takes the
SimpleHTTPRequestHandler and adds support for POST requests. It has the ability to call CGI scripts to
perform the requested processing and can send the generated HTML back to the client.

The three modules and their classes are summarized in Table 20.6.

Table 20.6. Web Server Modules and Classes

file:///D|/1/0132269937/ch20lev1sec8.html (1 von 3) [13.11.2007 16:25:11]

file:///D|/1/0132269937/14051536.html

Section 20.8. Web (HTTP) Servers

Module Description

BaseHTTPServer Provides the base Web server and base handler classes, HTTPServer and
BaseHTTPRequestHandler, respectively

SimpleHTTPServer Contains the SimpleHTTPRequestHandler class to perform GET and HEAD requests

CGIHTTPServer Contains the CGIHTTPRequestHandler class to process POST requests and perform
CGI execution

To be able to understand how the more advanced handlers found in the SimpleHTTPServer and
CGIHTTPServer modules work, we will implement simple GET processing for a BaseHTTPRequestHandler.

In Example 20.9, we present the code for a fully working Web server, myhttpd.py.

Example 20.9. Simple Web Server (myhttpd.py)

This simple Web server can read GET requests, fetch a Web page (.html file) and return it
to the calling client. It uses the BaseHTTPRequestHandler found in BaseHTTPServer and
implements the do_GET() method to enable processing of GET requests.

 1 #!/usr/bin/env python
 2
 3 from os import curdir, sep
 4 from BaseHTTPServer import \
 5 BaseHTTPRequestHandler, HTTPServer
 6
 7 class MyHandler(BaseHTTPRequestHandler):
 8
 9 def do_GET(self):
 10 try:
 11 f = open(curdir + sep + self.path)
 12 self.send_response(200)
 13 self.send_header('Content-type',
 14 'text/html')
 15 self.end_headers()
 16 self.wfile.write(f.read())
 17 f.close()
 18 except IOError:
 19 self.send_error(404,
 20 'File Not Found: %s' % self.path)
 21
 22 def main():
 23 try:
 24 server = HTTPServer(('', 80), MyHandler)
 25 print 'Welcome to the machine...',
 26 print 'Press ^C once or twice to quit.'
 27 server.serve_forever()
 28 except KeyboardInterrupt:
 29 print '^C received, shutting down server'
 30 server.socket.close()
 31
 32 if __name__ == '__main__':

file:///D|/1/0132269937/ch20lev1sec8.html (2 von 3) [13.11.2007 16:25:11]

Section 20.8. Web (HTTP) Servers

 33 main()

This server subclasses BaseHTTPRequestHandler and consists of a single do_GET() method, which is called
when the base server receives a GET request. We attempt to open the path passed in by the client and
if present, return an "OK" status (200) and forward the downloaded Web page. If the file was not found,
it returns a 404 status.

The main() function simply instantiates our Web server class and invokes it to run our familiar infinite
server loop, shutting it down if interrupted by ^C or similar keystroke. If you have appropriate access
and can run this server, you will notice that it displays loggable output, which will look something like
this:

myhttpd.py
Welcome to the machine... Press ^C once or twice to quit
localhost - - [26/Aug/2000 03:01:35] "GET /index.html HTTP/1.0" 200 -
localhost - - [26/Aug/2000 03:01:29] code 404, message File Not Found: /x.html
localhost - - [26/Aug/2000 03:01:29] "GET /dummy.html HTTP/1.0" 404 -
localhost - - [26/Aug/2000 03:02:03] "GET /hotlist.htm HTTP/1.0" 200 -

Of course, our simple little Web server is so simple, it cannot even process plain text files. We leave that
as an exercise for the reader, which can be found at the end of the chapter.

As you can see, it doesn't take much to have a Web server up and running in pure Python. There is
plenty more you can do to enhance the handlers to customize it to your specific application. Please
review the Library Reference for more information on the modules (and their classes) discussed in this
section.

file:///D|/1/0132269937/ch20lev1sec8.html (3 von 3) [13.11.2007 16:25:11]

file:///D|/1/0132269937/14051536.html

Section 20.9. Related Modules

20.9. Related Modules

In Table 20.7, we present a list of modules which you may find useful for Web development. You may
also wish to look at the Internet Client Programming in Chapter 17, as well as the Web services section
of Chapter 23 for other modules that may be useful for Web applications.

Table 20.7. Web Programming Related Modules

Module/Package Description

Web Applications

cgi Gets Common Gateway Interface (CGI) form data

cgitb
[c] Handles CGI tracebacks

htmllib Older HTML parser for simple HTML files; HTML-Parser class extends from
sgmllib.SGMLParser

HTMLparser
[c] Newer non-SGML-based parser for HTML and XHTML

htmlentitydefs HTML general entity definitions

Cookie Server-side cookies for HTTP state management

cookielib
[e] Cookie-handling classes for HTTP clients

webbrowser
[b] Controller: launches Web documents in a browser

sgmllib Parses simple SGML files

robotparser
[a] Parses robots.txt files for URL "fetchability" analysis

httplib
[a] Used to create HTTP clients

XML Processing

xmllib (Outdated/deprecated) original simple XML parser

xml
[b] XML package featuring various parsers (some below)

xml.sax
[b] Simple API for XML (SAX) SAX2-compliant XML parser

xml.dom
[b] Document Object Model [DOM] XML parser

xml.etree
[f] Tree-oriented XML parser based on the Element flexible container object

file:///D|/1/0132269937/ch20lev1sec9.html (1 von 3) [13.11.2007 16:25:12]

Section 20.9. Related Modules

xml.parsers.expat
[b] Interface to the non-validating Expat XML parser

xmlrpclib
[c] Client support for XML Remote Procedure Call (RPC) via HTTP

XML Processing

SimpleXMLRPCServer
[c] Basic framework for Python XML-RPC servers

DocXMLRPCServer
[d] Framework for self-documenting XML-RPC servers

Web Servers

BaseHTTPServer Abstract class with which to develop Web servers

SimpleHTTPServer Serve the simplest HTTP requests (HEAD and GET)

CGIHTTPServer In addition to serving Web files like SimpleHTTPServers, can also process CGI
(HTTP POST) requests

wsgiref
[f] Standard interface between Web servers and Python Web application

3rd party packages (not in standard library)

HTMLgen CGI helper converts Python objects into valid HTML http://starship.python.
net/crew/friedrich/HTMLgen/html/main.html

BeautifulSoup HTML and XML parser and screen-scraper http://crummy.com/software/
BeautifulSoup

Mail Client Protocols

poplib Use to create POP3 clients

imaplib Use to create IMAP4 clients

Mail and MIME Processing and Data Encoding Formats

email
[c] Package for managing e-mail messages, including MIME and other RFC2822-

based message

mailbox Classes for mailboxes of e-mail messages

mailcap Parses mailcap files to obtain MIME application delegations

Mail and MIME Processing and Data Encoding Formats

mimetools Provides functions for manipulating MIME-encoded messages

mimetypes Provides MIME-type associations

MimeWriter Generates MIME-encoded multipart files

multifile Can parse multipart MIME-encoded files

quopri En-/decodes data using quoted-printable encoding

rfc822 Parses RFC822-compliant e-mail headers

smtplib Uses to create SMTP (Simple Mail Transfer Protocol) clients

base64 En-/decodes data using base64 encoding

file:///D|/1/0132269937/ch20lev1sec9.html (2 von 3) [13.11.2007 16:25:12]

http://starship.python.net/crew/friedrich/HTMLgen/html/main.html
http://starship.python.net/crew/friedrich/HTMLgen/html/main.html
http://crummy.com/software/BeautifulSoup
http://crummy.com/software/BeautifulSoup

Section 20.9. Related Modules

binascii En-/decodes data using base64, binhex, or uu (modules)

binhex En-/decodes data using binhex4 encoding

uu En-/decodes data using uuencode encoding

Internet Protocols

httplib
[a] Used to create HTTP clients

ftplib Used to create FTP (File Transfer Protocol) clients

gopherlib Used to create Gopher clients

telnetlib Used to create Telnet clients

nntplib Used to create NNTP (Network News Transfer Protocol [Usenet]) clients

[c] New in Python 2.2.

[e] New in Python 2.4.

[b] New in Python 2.0.

[a] New in Python 1.6.

[f] New in Python 2.5.

[d] New in Python 2.3.

file:///D|/1/0132269937/ch20lev1sec9.html (3 von 3) [13.11.2007 16:25:12]

Section 20.10. Exercises

20.10. Exercises

20-1. urllib Module and Files. Update the friends3.py script so that it stores names and
corresponding number of friends into a two-column text file on disk and continues to
add names each time the script is run.

Extra Credit: Add code to dump the contents of such a file to the Web browser (in
HTML format). Additional Extra Credit: Create a link that clears all the names in this
file.

20-2. urllib Module. Write a program that takes a user-input URL (either a Web page or an
FTP file, i.e., http://python.org or ftp://ftp.python.org/pub/python/README), and

downloads it to your machine with the same filename (or modified name similar to the
original if it is invalid on your system). Web pages (HTTP) should be saved as .htm or .
html files, and FTP'd files should retain their extension.

20-3. urllib Module. Rewrite the grabWeb.py script of Example 11.,4, which downloads a
Web page and displays the first and last non-blank lines of the resulting HTML file so
that you use urlopen() instead of urlretrieve() to process the data directly (as
opposed to downloading the entire file first before processing it).

20-4. URLs and Regular Expressions. Your browser may save your favorite Web site URLs as
a "bookmarks" HTML file (Mozilla-flavored browsers do this) or as a set of .URL files in
a "favorites" directory (IE does this). Find your browser's method of recording your
"hot links" and the location of where and how they stored. Without altering any of the
files, strip the URLs and names of the corresponding Web sites (if given) and produce
a two-column list of names and links as output, and storing this data into a disk file.
Truncate site names or URLs to keep each line of output within 80 columns in size.

20-5. URLs, urllib Module, Exceptions, and REs. As a follow-up problem to the previous
one, add code to your script to test each of your favorite links. Report back a list of
dead links (and their names), i.e., Web sites that are no longer active or a Web page
that has been removed. Only output and save to disk the still-valid links.

20-6. Error Checking. The friends3.py script reports an error if no radio button was selected
to indicate the number of friends. Update the CGI script to also report an error if no
name (e.g., blank or whitespace) is entered.

Extra Credit: We have so far explored only server-side error checking. Explore
JavaScript programming and implement client-side error checking by creating
JavaScript code to check for both error situations so that these errors are stopped
before they reach the server.

Problems 20-7 to 20-10 below pertain to Web server access log files and regular
expressions. Web servers (and their administrators) generally have to maintain an
access log file (usually logs/access_log from the main Web, server directory) which
tracks requests file. Over a period of time, such files get large and either need to be
stored or truncated. Why not save only the pertinent information and delete the files
to conserve disk space? The exercises below are designed to give you some exercise
with REs and how they can be used to help archive and analyze Web server data.

file:///D|/1/0132269937/ch20lev1sec10.html (1 von 4) [13.11.2007 16:25:13]

http://python.org/

Section 20.10. Exercises

20-7. Count how many of each type of request (GET versus POST) exist in the log file.

20-8. Count the successful page/data downloads: Display all links that resulted in a return
code of 200 (OK [no error]) and how many times each link was accessed.

20-9. Count the errors: Show all links that resulted in errors (return codes in the 400s or
500s) and how many times each link was accessed.

20-10. Track IP addresses: For each IP address, output a list of each page/data downloaded
and how many times that link was accessed.

20-11. Simple CGI. Create a "Comments" or "Feedback" page for a Web site. Take user
feedback via a form, process the data in your script, and return a "thank you" screen.

20-12. Simple CGI. Create a Web guestbook. Accept a name, an e-mail address, and a
journal entry from a user and log it to a file (format of your choice). Like the previous
problem, return a "thanks for filling out a guestbook entry" page. Also provide a link
that allows users to view guestbooks.

20-13. Web Browser Cookies and Web site Registration. Update your solution to Exercise 20-
4. So your user-password information should now pertain to Web site registration
instead of a simple text-based menu system.

Extra Credit: familiarize yourself with setting Web browser cookies and maintain a
login session for 4 hours from the last successful login.

20-14. Web Clients. Port Example 20.1, crawl.py, the Web crawler, to using the HTMLParser
module or the BeautifulSoup parsing system.

20-15. Errors. What happens when a CGI script crashses? How can the cgitb module be
helpful?

20-16. CGI, File Updates, and Zip Files. Create a CGI application that not only saves files to
the server's disk, but also intelligently unpacks Zip files (or other archive) into a
subdirectory named after the archive file.

20-17. Zope, Plone, TurboGears, Django. Investigate each of these complex Web
development platforms and create one simple application in each.

20-18. Web Database Application. Think of a database schema you want to provide as part of
a Web database application. For this multi-user application, you want to provide
everyone read access to the entire contents of the database, but perhaps only write
access to each individual. One example may be an "address book" for your family and
relatives. Each family member, once successfully logged in, is presented with a Web
page with several options, add an entry, view my entry, update my entry, remove or
delete my entry, and view all entries (entire database).

Design a UserEntry class and create a database entry for each instance of this class.
You may use any solution created for any previous problem to implement the
registration framework. Finally, you may use any type of storage mechanism for your
database, either a relational database such as MySQL or some of the simpler Python
persistent storage modules such as anydbm or shelve.

file:///D|/1/0132269937/ch20lev1sec10.html (2 von 4) [13.11.2007 16:25:13]

Section 20.10. Exercises

20-19. Electronic Commerce Engine. Use the classes created for your solution to Exercise 13-
11 and add some product inventory to create a potential electronic commerce Web
site. Be sure your Web application also supports multiple customers and provides
registration for each user.

20-20. Dictionaries and cgi module. As you know, the cgi.FieldStorage() method returns a
dictionary-like object containing the key-value pairs of the submitted CGI variables.
You can use methods such as keys() and has_key() for such objects. In Python 1.5, a
get() method was added to dictionaries which returned the value of the requested
key, or the default value for a non-existent key. FieldStorage objects do not have
such a method. Let's say we grab the form in the usual manner of:

form = cgi.FieldStorage()

Add a similar get() method to class definition in cgi.py (you can rename it to mycgi.py
or something like that) such that code that looks like this:

if form.has_key('who'):
 who = form['who'].value
else:
 who = '(no name submitted)'

... can be replaced by a single line which makes forms even more like a dictionary:

howmany = form.get('who', '(no name submitted)')

20-21. Creating Web Servers. Our code for myhttpd.py in Section 20.7 is only able to read
HTML files and return them to the calling client. Add support for plain text files with
the ".txt" ending. Be sure that you return the correct MIME type of "text/plain."

Extra credit: add support for JPEG files ending with either ".jpg" or ".jpeg" and having
a MIME type of "image/jpeg."

20-22. Advanced Web Clients. URLs given as input to crawl.py must have the leading
"http://" protocol indicator and top-level URLs must contain a trailing slash, i.e.,
http://www.prenhallprofessional.com/. Make crawl.py more robust by allowing the

user to input just the hostname (without the protocol part [make it assume HTTP])
and also make the trailing slash optional. For example, www.prenhallprofessional.com

should now be acceptable input.

20-23. Advanced Web Clients. Update the crawl.py script in Section 20.3 to also download
links that use the "ftp:" scheme. All "mailto:" links are ignored by crawl.py. Add
support to ensure that it also ignores "telnet:", "news:", "gopher:", and "about:" links.

file:///D|/1/0132269937/ch20lev1sec10.html (3 von 4) [13.11.2007 16:25:13]

http://www.prenhallprofessional.com/
http://www.prenhallprofessional.com/

Section 20.10. Exercises

20-24. Advanced Web Clients. The crawl.py script in Section 20.3 only downloads .html files
via links found in Web pages at the same site and does not handle/save images that
are also valid "files" for those pages. It also does not handle servers that are
susceptible to URLs that are missing the trailing slash (/). Add a pair of classes to
crawl.py to deal with these problems.

A My404UrlOpener class should subclass urllib.FancyURLOpener and consist of a single
method, http_error_404() which determines if a 404 error was reached using a URL
without a trailing slash. If so, it adds the slash and retries the request again (and only
once). If it still fails, return a real 404 error. You must set urllib._urlopener with an
instance of this class so that urllib uses it.

Create another class called LinkImageParser, which derives from htmllib.HTMLParser.
This class should contain a constructor to call the base class constructor as well as
initialize a list for the image files parsed from Web pages. The handle_image() method
should be overridden to add image filenames to the image list (instead of discarding
them like the current base class method does).

file:///D|/1/0132269937/ch20lev1sec10.html (4 von 4) [13.11.2007 16:25:13]

Chapter 21. Database Programming

Chapter 21. Database Programming

Chapter Topics

● Introduction
● Databases and Python RDBMSs, ORMs, and Python
● Database Application Programmer's Interface (DB-API)
● Relational Databases (RDBMSs)
● Object-Relational Mappers (ORMs)
● Related Modules
● Exercises

In this chapter, we discuss how to communicate with databases from Python. Earlier, we discussed
simplistic persistent storage, but in many cases, a full-fledged relational database management system
(RDBMS) is required for your application.

file:///D|/1/0132269937/ch21.html [13.11.2007 16:25:13]

file:///D|/1/0132269937/14051536.html

Section 21.1. Introduction

21.1. Introduction

21.1.1. Persistent Storage

In any application, there is a need for persistent storage. Generally, there are three basic storage
mechanisms: files, a relational database system (RDBMS), or some sort of hybrid, i.e., an API
(application programmer interface) that "sits on top of" one of those existing systems, an object
relational mapper (ORM), file manager, spreadsheet, configuration file, etc.

In an earlier chapter, we discussed persistent storage using both plain file access as well as a Python
and DBM overlay on top of files, i.e., *dbm, dbhash/bsddb files, shelve (combination of pickle and
DBM), and using their dictionary-like object interface. This chapter will focus on using RDBMSs for the
times when files or writing your own system does not suffice for larger projects.

21.1.2. Basic Database Operations and SQL

Before we dig into databases and how to use them with Python, we want to present a quick introduction
(or review if you have some experience) to some elementary database concepts and the Structured
Query Language (SQL).

Underlying Storage

Databases usually have a fundamental persistent storage using the file system, i.e., normal operating
system files, special operating system files, and even raw disk partitions.

User Interface

Most database systems provide a command-line tool with which to issue SQL commands or queries.
There are also some GUI tools that use the command-line clients or the database client library, giving
users a much nicer interface.

Databases

An RDBMS can usually manage multiple databases, e.g., sales, marketing, customer support, etc., all on
the same server (if the RDBMS is server-based; simpler systems are usually not). In the examples we
will look at in this chapter, MySQL is an example of a server-based RDBMS because there is a server
process running continuously waiting for commands while neither SQLite nor Gadfly have running
servers.

Components

The table is the storage abstraction for databases. Each row of data will have fields that correspond to
database columns. The set of table definitions of columns and data types per table all put together
define the database schema.

Databases are created and dropped. The same is true for tables. Adding new rows to a database is
called inserting, changing existing rows in a table is called updating, and removing existing rows in a
table is called deleting. These actions are usually referred to as database commands or operations.
Requesting rows from a database with optional criteria is called querying.

file:///D|/1/0132269937/ch21lev1sec1.html (1 von 4) [13.11.2007 16:25:14]

Section 21.1. Introduction

When you query a database, you can fetch all of the results (rows) at once, or just iterate slowly over
each resulting row. Some databases use the concept of a cursor for issuing SQL commands, queries,
and grabbing results, either all at once or one row at a time.

SQL

Database commands and queries are given to a database by SQL. Not all databases use SQL, but the
majority of relational databases do. Here are some examples of SQL commands. Most databases are
configured to be case-insensitive, especially database commands. The accepted style is to use CAPS for
database keywords. Most command-line programs require a trailing semicolon (;) to terminate a SQL
statement.

Creating a Database

 CREATE DATABASE test;
 GRANT ALL ON test.* to user(s);

The first line creates a database named "test," and assuming that you are a database administrator, the
second line can be used to grant permissions to specific users (or all of them) so that they can perform
the database operations below.

Using a Database

 USE test;

If you logged into a database system without choosing which database you want to use, this simple
statement allows you to specify one with which to perform database operations.

Dropping a Database

 DROP DATABASE test;

This simple statement removes all the tables and data from the database and deletes it from the system.

Creating a Table

 CREATE TABLE users (login VARCHAR(8), uid INT, prid INT);

This statement creates a new table with a string column login and a pair of integer fields uid and prid.

Dropping a Table

 DROP TABLE users;

This simple statement drops a database table along with all its data.

file:///D|/1/0132269937/ch21lev1sec1.html (2 von 4) [13.11.2007 16:25:14]

Section 21.1. Introduction

Inserting a Row

 INSERT INTO users VALUES('leanna', 311, 1);

You can insert a new row in a database with the INSERT statement. Specify the table and the values that
go into each field. For our example, the string 'leanna' goes into the login field, and 311 and 1 to uid
and prid, respectively.

Updating a Row

 UPDATE users SET prid=4 WHERE prid=2;
 UPDATE users SET prid=1 WHERE uid=311;

To change existing table rows, you use the UPDATE statement. Use SET for the columns that are changing
and provide any criteria for determining which rows should change. In the first example, all users with a
"project ID" or prid of 2 will be moved to project #4. In the second example, we take one user (with a
UID of 311) and move them to project #1.

Deleting a Row

 DELETE FROM users WHERE prid=%d;
 DELETE FROM users;

To delete a table row, use the DELETE FROM command, give the table you want to delete rows from, and
any optional criteria. Without it, as in the second example, all rows will be deleted.

Now that you are up to speed on basic database concepts, it should make following the rest of the
chapter and its examples much easier. If you need additional help, there are plenty of database books
out in the market that you can check out.

21.1.3. Databases and Python

We are going to cover the Python database API and look at how to access relational databases from
Python, either directly through a database interface, or via an ORM, and how you can accomplish the
same task but without necessarily having to give explicitly commands in SQL.

Topics such as database principles, concurrency, schema, atomicity, integrity, recovery, proper complex
left JOINs, triggers, query optimization, transactions, stored procedures, etc., are all outside the scope
of this text, and we will not be discussing these in this chapter other than direct use from a Python
application. There are plenty of resources you can refer to for general information. Rather, we will
present how to store and retrieve data to/from RDBMSs while playing within a Python framework. You
can then decide which is best for your current project or application and be able to study sample code
that can get you started instantly. The goal is to get you up to speed as quickly as possible if you need
to integrate your Python application with some sort of database system.

We are also breaking out of our mode of covering only the "batteries included" features of the Python
standard library. While our original goal was to play only in that arena, it has become clear that being
able to work with databases is really a core component of everyday application development in the

file:///D|/1/0132269937/ch21lev1sec1.html (3 von 4) [13.11.2007 16:25:14]

Section 21.1. Introduction

Python world.

As a software engineer, you can probably only make it so far in your career without having to learn
something about databases: how to use one (command-line and/or GUI interfaces), how to pull data out
of one using the Structured Query Language (SQL), perhaps how to add or update information in a
database, etc. If Python is your programming tool, then a lot of the hard work has already been done for
you as you add database access to your Python universe. We first describe what the Python "DB-API" is,
then give examples of database interfaces that conform to this standard.

We will give some examples using popular open source relational database management systems
(RDBMSs). However, we will not include discussions of open source vs. commercial products, etc.
Adapting to those other RDBMS systems should be fairly straightforward. A special mention will be given
to Aaron Watters's Gadfly database, a simple RDBMS written completely in Python.

The way to access a database from Python is via an adapter. An adapter is basically a Python module
that allows you to interface to a relational database's client library, usually in C. It is recommended that
all Python adapters conform to the Python DB-SIG's Application Programmer Interface (API). This is the
first major topic of this chapter.

Figure 21.1 illustrates the layers involved in writing a Python database application, with and without an
ORM. As you can see, the DB-API is your interface to the C libraries of the database client.

Figure 21-1. Multitiered communication between application and database.
The first box is generally a C/C++ program while DB-API compliant adapters
let you program applications in Python. ORMs can simplify an application by

handling all of the database-specific details.

file:///D|/1/0132269937/ch21lev1sec1.html (4 von 4) [13.11.2007 16:25:14]

Section 21.2. Python Database Application Programmer's Interface (DB-API)

21.2. Python Database Application Programmer's Interface (DB-API)

Where can one find the interfaces necessary to talk to a database? Simple. Just go to the database
topics section at the main Python Web site. There you will find links to the full and current DB-API
(version 2.0), existing database modules, documentation, the special interest group, etc. Since its
inception, the DB-API has been moved into PEP 249. (This PEP obsoletes the old DB-API 1.0
specification which is PEP 248.) What is the DB-API?

The API is a specification that states a set of required objects and database access mechanisms to
provide consistent access across the various database adapters and underlying database systems. Like
most community-based efforts, the API was driven by strong need.

In the "old days," we had a scenario of many databases and many people implementing their own
database adapters. It was a wheel that was being reinvented over and over again. These databases and
adapters were implemented at different times by different people without any consistency of
functionality. Unfortunately, this meant that application code using such interfaces also had to be
customized to which database module they chose to use, and any changes to that interface also meant
updates were needed in the application code.

A special interest group (SIG) for Python database connectivity was formed, and eventually, an API was
born ... the DB-API version 1.0. The API provides for a consistent interface to a variety of relational
databases, and porting code between different databases is much simpler, usually only requiring
tweaking several lines of code. You will see an example of this later on in this chapter.

21.2.1. Module Attributes

The DB-API specification mandates that the features and attributes listed below must be supplied. A DB-
API-compliant module must define the global attributes as shown in Table 21.1.

Table 21.1. DB-API Module Attributes

Attribute Description

apilevel Version of DB-API module is compliant with

threadsafety Level of thread safety of this module

paramstyle SQL statement parameter style of this module

Connect() Connect() function

(Various exceptions) (See Table 21.4)

Data Attributes

apilevel

file:///D|/1/0132269937/ch21lev1sec2.html (1 von 19) [13.11.2007 16:25:17]

Section 21.2. Python Database Application Programmer's Interface (DB-API)

This string (not float) indicates the highest version of the DB-API the module is compliant with, i.e.,
"1.0", "2.0", etc. If absent, "1.0" should be assumed as the default value.

threadsafety

This an integer with these possible values:

● 0: Not threadsafe, so threads should not share the module at all
● 1: Minimally threadsafe: threads can share the module but not connections
● 2: Moderately threadsafe: threads can share the module and connections but not cursors
● 3: Fully threadsafe: threads can share the module, connections, and cursors

If a resource is shared, a synchronization primitive such as a spin lock or semaphore is required for
atomic-locking purposes. Disk files and global variables are not reliable for this purpose and may
interfere with standard mutex operation. See the threading module or the chapter on multithreaded
programming (Chapter 16) on how to use a lock.

paramstyle

The API supports a variety of ways to indicate how parameters should be integrated into an SQL
statement that is eventually sent to the server for execution. This argument is just a string that specifies
the form of string substitution you will use when building rows for a query or command (see Table 21.2).

Table 21.2. paramstyle Database Parameter Styles

Parameter Style Description Example

numeric Numeric positional style WHERE name=:1

named Named style WHERE name=:name

pyformat Python dictionary printf() format conversion WHERE name=%(name)s

qmark Question mark style WHERE name=?

format ANSI C printf() format conversion WHERE name=%s

Function Attribute(s)

connect() Function access to the database is made available through Connection objects. A compliant
module has to implement a connect() function, which creates and returns a Connection object. Table
21.3 shows the arguments to connect().

Table 21.3. connect()
Function Attributes

file:///D|/1/0132269937/ch21lev1sec2.html (2 von 19) [13.11.2007 16:25:17]

Section 21.2. Python Database Application Programmer's Interface (DB-API)

Parameter Description

user Username

password Password

host Hostname

database Database name

dsn Data source name

You can pass in database connection information as a string with multiple parameters (DSN) or
individual parameters passed as positional arguments (if you know the exact order), or more likely,
keyworded arguments. Here is an example of using connect() from PEP 249:

 connect(dsn='myhost:MYDB',user='guido',password='234$')

The use of DSN versus individual parameters is based primarily on the system you are connecting to.
For example, if you are using an API like ODBC or JDBC, you would likely be using a DSN, whereas if
you are working directly with a database, then you are more likely to issue separate login parameters.
Another reason for this is that most database adapters have not implemented support for DSN. Below
are some examples of non-DSN connect() calls. Note that not all adapters have implemented the
specification exactly, e.g., MySQLdb uses db instead of database.

• MySQLdb.connect(host='dbserv', db='inv', user='smith')
• PgSQL.connect(database='sales')
• psycopg.connect(database='template1', user='pgsql')
• gadfly.dbapi20.connect('csrDB', '/usr/local/database')
• sqlite3.connect('marketing/test')

Exceptions

Exceptions that should also be included in the compliant module as globals are shown in Table 21.4.

Table 21.4. DB-API Exception Classes

Exception Description

Warning Root warning exception class

Error Root error exception class

InterfaceError Database interface (not database) error

file:///D|/1/0132269937/ch21lev1sec2.html (3 von 19) [13.11.2007 16:25:17]

Section 21.2. Python Database Application Programmer's Interface (DB-API)

DatabaseError Database error

DataError Problems with the processed data

OperationalError Error during database operation execution

IntegrityError Database relational integrity error

InternalError Error that occurs within the database

ProgrammingError SQL command failed

NotSupportedError Unsupported operation occurred

21.2.2. Connection Objects

Connections are how your application gets to talk to the database. They represent the fundamental
communication mechanism by which commands are sent to the server and results returned. Once a
connection has been established (or a pool of connections), you create cursors to send requests to and
receive replies from the database.

Methods

Connection objects are not required to have any data attributes but should define the methods shown in
Table 21.5.

Table 21.5. Connection Object Methods

Method Name Description

close() Close database connection

commit() Commit current transaction

rollback() Cancel current transaction

cursor() Create (and return) a cursor or cursor-like object using this
connection

errorhandler(cxn, cur, errcls, errval) Serves as a handler for given connection cursor

When close() is used, the same connection cannot be used again without running into an exception.

file:///D|/1/0132269937/ch21lev1sec2.html (4 von 19) [13.11.2007 16:25:17]

Section 21.2. Python Database Application Programmer's Interface (DB-API)

The commit() method is irrelevant if the database does not support transactions or if it has an auto-
commit feature that has been enabled. You can implement separate methods to turn auto-commit off or
on if you wish. Since this method is required as part of the API, databases that do not have the concept
of transactions should just implement "pass" for this method.

Like commit(), rollback() only makes sense if transactions are supported in the database. After
execution, rollback() should leave the database in the same state as it was when the transaction
began. According to PEP 249, "Closing a connection without committing the changes first will cause an
implicit rollback to be performed."

If the RDBMS does not support cursors, cursor() should still return an object that faithfully emulates or
imitates a real cursor object. These are just the minimum requirements. Each individual adapter
developer can always add special attributes specifically for their interface or database.

It is also recommended but not required for adapter writers to make all database module exceptions
(see above) available via a connection. If not, then it is assumed that Connection objects will throw the
corresponding module-level exception. Once you have completed using your connection and cursors
closed, you should commit() any operations and close() your connection.

21.2.3. Cursor Objects

Once you have a connection, you can start talking to the database. As we mentioned above in the
introductory section, a cursor lets a user issue database commands and retrieve rows resulting from
queries. A Python DB-API cursor object functions as a cursor for you, even if cursors are not supported
in the database. In this case, the database adapter creator must implement CURSOR objects so that they
act like cursors. This keeps your Python code consistent when you switch between database systems
that have or do not have cursor support.

Once you have created a cursor, you can execute a query or command (or multiple queries and
commands) and retrieve one or more rows from the results set. Table 21.6 shows data attributes and
methods that cursor objects have.

Table 21.6. Cursor Object Attributes

Object Attribute Description

arraysize Number of rows to fetch at a time with fetch many(); defaults
to 1

connection Connection that created this cursor (optional)

description Returns cursor activity (7-item tuples): (name, type_code,
display_size, internal_ size, precision, scale, null_ok);
only name and type_code are required

lastrowid Row ID of last modified row (optional; if row IDs not
supported, default to None)

rowcount Number of rows that the last execute*() produced or affected

file:///D|/1/0132269937/ch21lev1sec2.html (5 von 19) [13.11.2007 16:25:17]

Section 21.2. Python Database Application Programmer's Interface (DB-API)

callproc(func[, args]) Call a stored procedure

close() Close cursor

execute(op[, args]) Execute a database query or command

executemany(op, args) Like execute() and map() combined; prepare and execute a
database query or command over given arguments

fetchone() Fetch next row of query result

fetchmany ([size=cursor.arraysize]) Fetch next size rows of query result

fetchall() Fetch all (remaining) rows of a query result

__iter__() Create iterator object from this cursor (optional; also see next
())

messages List of messages (set of tuples) received from the database for
cursor execution (optional)

next() Used by iterator to fetch next row of query result (optional;
like fetchone(), also see __iter__())

nextset() Move to next results set (if supported)

rownumber Index of cursor (by row, 0-based) in current result set
(optional)

setinput-sizes(sizes) Set maximum input-size allowed (required but implementation
optional)

setoutput size(size[, col]) Set maximum buffer size for large column fetches (required
but implementation optional)

The most critical attributes of cursor objects are the execute*() and the fetch*() methods ... all the
service requests to the database are performed by these. The arraysize data attribute is useful in
setting a default size for fetchmany(). Of course, closing the cursor is a good thing, and if your database
supports stored procedures, then you will be using callproc().

21.2.4. Type Objects and Constructors

Oftentimes, the interface between two different systems are the most fragile. This is seen when
converting Python objects to C types and vice versa. Similarly, there is also a fine line between Python
objects and native database objects. As a programmer writing to Python's DB-API, the parameters you
send to a database are given as strings, but the database may need to convert it to a variety of
different, supported data types that are correct for any particular query.

For example, should the Python string be converted to a VARCHAR, a TEXT, a BLOB, or a raw BINARY
object, or perhaps a DATE or TIME object if that is what the string is supposed to be? Care must be
taken to provide database input in the expected format, so because of this another requirement of the
DB-API is to create constructors that build special objects that can easily be converted to the
appropriate database objects. Table 21.7 describes classes that can be used for this purpose. SQL NULL
values are mapped to and from Python's NULL object, None.

file:///D|/1/0132269937/ch21lev1sec2.html (6 von 19) [13.11.2007 16:25:17]

Section 21.2. Python Database Application Programmer's Interface (DB-API)

Table 21.7. Type Objects and Constructors

Type Object Description

Date(yr, mo, dy) Object for a date value

Time(hr, min, sec) Object for a time value

Timestamp(yr, mo, dy, hr, min, sec) Object for a timestamp value

DateFromTicks(ticks) Date object given number of seconds since the epoch

TimeFromTicks(ticks) Time object given number of seconds since the epoch

TimestampFromTicks(ticks) Timestamp object given number of seconds since the epoch

Binary(string) Object for a binary (long) string value

STRING Object describing string-based columns, e.g., VARCHAR

BINARY Object describing (long) binary columns, i.e., RAW, BLOB

NUMBER Object describing numeric columns

DATETIME Object describing date/time columns

ROWID Object describing "row ID" columns

Changes to API Between Versions

Several important changes were made when the DB-API was revised from version 1.0 (1996) to 2.0
(1999):

● Required dbi module removed from API
● Type objects were updated
● New attributes added to provide better database bindings
● callproc() semantics and return value of execute() redefined
● Conversion to class-based exceptions

Since version 2.0 was published, some of the additional optional DB-API extensions that you read about
above were added in 2002. There have been no other significant changes to the API since it was
published. Continuing discussions of the API occur on the DB-SIG mailing list. Among the topics brought
up over the last 5 years include the possibilities for the next version of the DB-API, tentatively named
DB-API 3.0. These include the following:

● Better return value for nextset() when there is a new result set
● Switch from float to Decimal
● Improved flexibility and support for parameter styles
● Prepared statements or statement caching
● Refine the transaction model
● State the role of API with respect to portability
● Add unit testing

If you have strong feelings about the API, feel free to participate and join in the discussion. Here are
some references you may find handy.

file:///D|/1/0132269937/ch21lev1sec2.html (7 von 19) [13.11.2007 16:25:17]

Section 21.2. Python Database Application Programmer's Interface (DB-API)

● http://python.org/topics/database
● http://www.linuxjournal.com/article/2605
● http://wiki.python.org/moin/DbApi3

21.2.5. Relational Databases

So, you are now ready to go. A burning question must be, "Interfaces to which database systems are
available to me in Python?" That inquiry is similar to, "Which platforms is Python available for?" The
answer is, "Pretty much all of them." Following is a list that is comprehensive but not exhaustive:

Commercial RDBMSs

● Informix
● Sybase
● Oracle
● MS SQL Server
● DB/2
● SAP
● Interbase
● Ingres

Open Source RDBMSs

● MySQL
● PostgreSQL
● SQLite
● Gadfly

Database APIs

● JDBC
● ODBC

To find a current list of what databases are supported, check out:

http://python.org/topics/database/modules.html

21.2.6. Databases and Python: Adapters

For each of the databases supported, there exists one or more adapters that let you connect to the
target database system from Python. Some databases, such as Sybase, SAP, Oracle, and SQLServer,
have more than one adapter available. The best thing to do is to find out which ones fit your needs best.
Your questions for each candidate may include: how good its performance is, how useful is its
documentation and/or Web site, whether it has an active community or not, what the overall quality and
stability of the driver is, etc. You have to keep in mind that most adapters provide just the basic
necessities to get you connected to the database. It is the extras that you may be looking for. Keep in
mind that you are responsible for higher-level code like threading and thread management as well as
management of database connection pools, etc.

If you are squeamish and want less hands-onfor example, if you wish to do as little SQL or database
administration as much as possiblethen you may wish to consider object-relational mappers, covered

file:///D|/1/0132269937/ch21lev1sec2.html (8 von 19) [13.11.2007 16:25:17]

http://python.org/topics/database
http://www.linuxjournal.com/article/2605
http://wiki.python.org/moin/DbApi3
http://python.org/topics/database/modules.html

Section 21.2. Python Database Application Programmer's Interface (DB-API)

later on in this chapter.

Let us now look at some examples of how to use an adapter module to talk to a relational database. The
real secret is in setting up the connection. Once you have this and use the DB-API objects, attributes,
and object methods, your core code should be pretty much the same regardless of which adapter and
RDBMS you use.

21.2.7. Examples of Using Database Adapters

First, let us look at a some sample code, from creating a database to creating a table and using it. We
present examples using MySQL, PostgreSQL, and SQLite.

MySQL

We will use MySQL as the example here, along with the only MySQL Python adapter: MySQLdb, aka
MySQL-python. In the various bits of code, we will also show you (deliberately) examples of error
situations so that you have an idea of what to expect, and what you may wish to create handlers for.

We first log in as an administrator to create a database and grant permissions, then log back in as a
normal client.

 >>> import MySQLdb
 >>> cxn = MySQLdb.connect(user='root')
 >>> cxn.query('DROP DATABASE test')
 Traceback (most recent call last):
 File "<stdin>", line 1, in ?
 _mysql_exceptions.OperationalError: (1008, "Can't drop
 database 'test'; database doesn't exist")
 >>> cxn.query('CREATE DATABASE test')
 >>> cxn.query("GRANT ALL ON test.* to ''@'localhost'")
 >>> cxn.commit()
 >>> cxn.close()

In the code above, we did not use a cursor. Some adapters have Connection objects, which can execute
SQL queries with the query() method, but not all. We recommend you either not use it or check your
adapter to make sure it is available.

The commit() was optional for us as auto-commit is turned on by default in MySQL. We then connect
back to the new database as a regular user, create a table, and perform the usual queries and
commands using SQL to get our job done via Python. This time we use cursors and their execute()
method.

The next set of interactions shows us creating a table. An attempt to create it again (without first
dropping it) results in an error.

 >>> cxn = MySQLdb.connect(db='test')
 >>> cur = cxn.cursor()
 >>> cur.execute('CREATE TABLE users(login VARCHAR(8), uid INT)')
 0L

Now we will insert a few rows into the database and query them out.

file:///D|/1/0132269937/ch21lev1sec2.html (9 von 19) [13.11.2007 16:25:17]

Section 21.2. Python Database Application Programmer's Interface (DB-API)

 >>> cur.execute("INSERT INTO users VALUES('john', 7000)")
 1L
 >>> cur.execute("INSERT INTO users VALUES('jane', 7001)")
 1L
 >>> cur.execute("INSERT INTO users VALUES('bob', 7200)")
 1L
 >>> cur.execute("SELECT * FROM users WHERE login LIKE 'j%'")
 2L
 >>> for data in cur.fetchall():
 ... print '%s\t%s' % data
 ...
 john 7000
 jane 7001

The last bit features updating the table, either updating or deleting rows.

 >>> cur.execute("UPDATE users SET uid=7100 WHERE uid=7001")
 1L
 >>> cur.execute("SELECT * FROM users")
 3L
 >>> for data in cur.fetchall():
 ... print '%s\t%s' % data
 ...
 john 7000
 jane 7100
 bob 7200
 >>> cur.execute('DELETE FROM users WHERE login="bob"')
 1L
 >>> cur.execute('DROP TABLE users')
 0L
 >>> cur.close()
 >>> cxn.commit()
 >>> cxn.close()

MySQL is one of the most popular open source databases in the world, and it is no surprise that a
Python adapter is available for it. Keep in mind that no database modules are available in the Python
standard libraryall adapters are third-party packages that have to be downloaded and installed
separately from Python. Please see the References section toward the end of the chapter to find out how
to download it.

PostgreSQL

Another popular open source database is PostgreSQL. Unlike MySQL, there are no less than three
current Python adapters available for Postgres: psycopg, PyPgSQL, and PyGreSQL. A fourth, PoPy, is now
defunct, having contributed its project to combine with that of PyGreSQL back in 2003. Each of the three
remaining adapters has its own characteristics, strengths, and weaknesses, so it would be a good idea
to practice due diligence to determine which is right for you.

The good news is that the interfaces are similar enough that you can create an application that, say,
measures the performance between all three (if that is a metric that is important to you). Here we show
you the setup code to get a Connection object for each:

psycopg

file:///D|/1/0132269937/ch21lev1sec2.html (10 von 19) [13.11.2007 16:25:17]

Section 21.2. Python Database Application Programmer's Interface (DB-API)

 >>> import psycopg
 >>> cxn = psycopg.connect(user='pgsql')

PyPgSQL

 >>> from pyPgSQL import PgSQL
 >>> cxn = PgSQL.connect(user='pgsql')

PyGreSQL

 >>> import pgdb
 >>> cxn = pgdb.connect(user='pgsql')

Now comes some generic code that will work for all three adapters.

 >>> cur = cxn.cursor()
 >>> cur.execute('SELECT * FROM pg_database')
 >>> rows = cur.fetchall()
 >>> for i in rows:
 ... print i
 >>> cur.close()
 >>> cxn.commit()
 >>> cxn.close()

Finally, you can see how their outputs are slightly different from one another.

PyPgSQL

 sales
 template1
 template0

psycopg

 ('sales', 1, 0, 0, 1, 17140, '140626', '3221366099',
 '', None, None)
 ('template1', 1, 0, 1, 1, 17140, '462', '462', '', None,
 '{pgsql=C*T*/pgsql}')
 ('template0', 1, 0, 1, 0, 17140, '462', '462', '', None,
 '{pgsql=C*T*/pgsql}')

PyGreSQL

 ['sales', 1, 0, False, True, 17140L, '140626',
 '3221366099', '', None, None]
 ['template1', 1, 0, True, True, 17140L, '462', '462',

file:///D|/1/0132269937/ch21lev1sec2.html (11 von 19) [13.11.2007 16:25:17]

Section 21.2. Python Database Application Programmer's Interface (DB-API)

 '', None, '{pgsql=C*T*/pgsql}']
 ['template0', 1, 0, True, False, 17140L, '462',
 '462', '', None, '{pgsql=C*T*/pgsql}']

SQLite

For extremely simple applications, using files for persistent storage usually suffices, but the most
complex and data-driven applications demand a full relational database. SQLite targets the intermediate
systems and indeed is a hybrid of the two. It is extremely lightweight and fast, plus it is serverless and
requires little or no administration.

SQLite has seen a rapid growth in popularity, and it is available on many platforms. With the
introduction of the pysqlite database adapter in Python 2.5 as the sqlite3 module, this marks the first
time that the Python standard library has featured a database adapter in any release.

It was bundled with Python not because it was favored over other databases and adapters, but because
it is simple, uses files (or memory) as its backend store like the DBM modules do, does not require a
server, and does not have licensing issues. It is simply an alternative to other similar persistent storage
solutions included with Python but which happens to have a SQL interface.

Having a module like this in the standard library allows users to develop rapidly in Python using SQLite,
then migrate to a more powerful RDBMS such as MySQL, PostgreSQL, Oracle, or SQL Server for
production purposes if this is their intention. Otherwise, it makes a great solution to stay with for those
who do not need all that horsepower.

Although the database adapter is now provided in the standard library, you still have to download the
actual database software yourself. However, once you have installed it, all you need to do is start up
Python (and import the adapter) to gain immediate access:

 >>> import sqlite3
 >>> cxn = sqlite3.connect('sqlite_test/test')
 >>> cur = cxn.cursor()
 >>> cur.execute('CREATE TABLE users(login VARCHAR(8), uid
 INTEGER)')
 >>> cur.execute('INSERT INTO users VALUES("john", 100)')
 >>> cur.execute('INSERT INTO users VALUES("jane", 110)')
 >>> cur.execute('SELECT * FROM users')
 >>> for eachUser in cur.fetchall():
 ... print eachUser
 ...
 (u'john', 100)
 (u'jane', 110)
 >>> cur.execute('DROP TABLE users')
 <sqlite3.Cursor object at 0x3d4320>
 >>> cur.close()
 >>> cxn.commit()
 >>> cxn.close()

Okay, enough of the small examples. Next, we look at an application similar to our earlier example with

file:///D|/1/0132269937/ch21lev1sec2.html (12 von 19) [13.11.2007 16:25:17]

Section 21.2. Python Database Application Programmer's Interface (DB-API)

MySQL, but which does a few more things:

● Creates a database (if necessary)
● Creates a table
● Inserts rows into the table
● Updates rows in the table
● Deletes rows from the table
● Drops the table

For this example, we will use two other open source databases. SQLite has become quite popular of late.
It is very small, lightweight, and extremely fast for all the most common database functions. Another
database involved in this example is Gadfly, a mostly SQL-compliant RDBMS written entirely in Python.
(Some of the key data structures have a C module available, but Gadfly can run without it [slower, of
course].)

Some notes before we get to the code. Both SQLite and Gadfly require the user to give the location to
store database files (while MySQL has a default area and does not require this information from the
use). The most current incarnation of Gadfly is not yet fully DB-API 2.0 compliant, and as a result, is
missing some functionality, most notably the cursor attribute rowcount in our example.

Database Adapter Example Application

In the example below, we want to demonstrate how to use Python to access a database. In fact, for
variety, we added support for three different database systems: Gadfly, SQLite, and MySQL. We are
going to create a database (if one does not already exist), then run through various database operations
such as creating and dropping tables, and inserting, updating, and deleting rows. Example 21.1 will be
duplicated for the upcoming section on ORMs as well.

Example 21.1. Database Adapter Example (ushuffle_db.py)

This script performs some basic operations using a variety of databases (MySQL, SQLite,
Gadfly) and a corresponding Python database adapter.

1 #!/usr/bin/env python
2
3 import os
4 from random import randrange as rrange
5
6 COLSIZ = 10
7 RDBMSs = {'s': 'sqlite', 'm': 'mysql', 'g': 'gadfly'}
8 DB_EXC = None
9
10 def setup():
11 return RDBMSs[raw_input('''
12 Choose a database system:
13
14 (M)ySQL
15 (G)adfly
16 (S)QLite
17
18 Enter choice: ''').strip().lower()[0]]
19
20 def connect(db, dbName):
21 global DB_EXC
22 dbDir = '%s_%s' % (db, dbName)

file:///D|/1/0132269937/ch21lev1sec2.html (13 von 19) [13.11.2007 16:25:17]

Section 21.2. Python Database Application Programmer's Interface (DB-API)

23
24 if db == 'sqlite':
25 try:
26 import sqlite3
27 except ImportError, e:
28 try:
29 from pysqlite2 import dbapi2 as sqlite3
30 except ImportError, e:
31 return None
32
33 DB_EXC = sqlite3
34 if not os.path.isdir(dbDir):
35 os.mkdir(dbDir)
36 cxn = sqlite.connect(os.path.join(dbDir, dbName))
37
38 elif db == 'mysql':
39 try:
40 import MySQLdb
41 import _mysql_exceptions as DB_EXC
42 except ImportError, e:
43 return None
44
45 try:
46 cxn = MySQLdb.connect(db=dbName)
47 except _mysql_exceptions.OperationalError, e:
48 cxn = MySQLdb.connect(user='root')
49 try:
50 cxn.query('DROP DATABASE %s' % dbName)
51 except DB_EXC.OperationalError, e:
52 pass
53 cxn.query('CREATE DATABASE %s' % dbName)
54 cxn.query("GRANT ALL ON %s.* to ''@'localhost'" % dbName)
55 cxn.commit()
56 cxn.close()
57 cxn = MySQLdb.connect(db=dbName)
58
59 elif db == 'gadfly':
60 try:
61 from gadfly import gadfly
62 DB_EXC = gadfly
63 except ImportError, e:
64 return None
65
66 try:
67 cxn = gadfly(dbName, dbDir)
68 except IOError, e:
69 cxn = gadfly()
70 if not os.path.isdir(dbDir):
71 os.mkdir(dbDir)
72 cxn.startup(dbName, dbDir)
73 else:
74 return None
75 return cxn
76
77 def create(cur):
78 try
79 cur.execute('''
80 CREATE TABLE users (
81 login VARCHAR(8),

file:///D|/1/0132269937/ch21lev1sec2.html (14 von 19) [13.11.2007 16:25:17]

Section 21.2. Python Database Application Programmer's Interface (DB-API)

82 uid INTEGER,
83 prid INTEGER)
84 ''')
85 except DB_EXC.OperationalError, e:
86 drop(cur)
87 create(cur)
88
89 drop = lambda cur: cur.execute('DROP TABLE users')
90
91 NAMES = (
92 ('aaron', 8312), ('angela', 7603), ('dave', 7306),
93 ('davina',7902), ('elliot', 7911), ('ernie', 7410),
94 ('jess', 7912), ('jim', 7512), ('larry', 7311),
95 ('leslie', 7808), ('melissa', 8602), ('pat', 7711),
96 ('serena', 7003), ('stan', 7607), ('faye', 6812),
97 ('amy', 7209),
98)
99
100 def randName():
101 pick = list(NAMES)
102 while len(pick) > 0:
103 yield pick.pop(rrange(len(pick)))
104
105 def insert(cur, db):
106 if db == 'sqlite':
107 cur.executemany("INSERT INTO users VALUES(?, ?, ?)",
108 [(who, uid, rrange(1,5)) for who, uid in randName()])
109 elif db == 'gadfly':
110 for who, uid in randName():
111 cur.execute("INSERT INTO users VALUES(?, ?, ?)",
112 (who, uid, rrange(1,5)))
113 elif db == 'mysql':
114 cur.executemany("INSERT INTO users VALUES(%s, %s, %s)",
115 [(who, uid, rrange(1,5)) for who, uid in randName()])
116
117 getRC = lambda cur: cur.rowcount if hasattr(cur,
 'rowcount') else -1
118
119 def update(cur):
120 fr = rrange(1,5)
121 to = rrange(1,5)
122 cur.execute(
123 "UPDATE users SET prid=%d WHERE prid=%d" % (to, fr))
124 return fr, to, getRC(cur)
125
126 def delete(cur):
127 rm = rrange(1,5)
128 cur.execute('DELETE FROM users WHERE prid=%d' % rm)
129 return rm, getRC(cur)
130
131 def dbDump(cur):
132 cur.execute('SELECT * FROM users')
133 print '\n%s%s%s' % ('LOGIN'.ljust(COLSIZ),
134 'USERID'.ljust(COLSIZ), 'PROJ#'.ljust(COLSIZ))
135 for data in cur.fetchall():
136 print '%s%s%s' % tuple([str(s).title().ljust(COLSIZ) \
137 for s in data])
138
139 def main():

file:///D|/1/0132269937/ch21lev1sec2.html (15 von 19) [13.11.2007 16:25:17]

Section 21.2. Python Database Application Programmer's Interface (DB-API)

140 db = setup()
141 print '*** Connecting to %r database' % db
142 cxn = connect(db, 'test')
143 if not cxn:
144 print 'ERROR: %r not supported, exiting' % db
145 return
146 cur = cxn.cursor()
147
148 print '\n*** Creating users table'
149 create(cur)
150
151 print '\n*** Inserting names into table'
152 insert(cur, db)
153 dbDump(cur)
154
155 print '\n*** Randomly moving folks',
156 fr, to, num = update(cur)
157 print 'from one group (%d) to another (%d)' % (fr, to)
158 print '\t(%d users moved)' % num
159 dbDump(cur)
160
161 print '\n*** Randomly choosing group',
162 rm, num = delete(cur)
163 print '(%d) to delete' % rm
164 print '\t(%d users removed)' % num
165 dbDump(cur)
166
167 print '\n*** Dropping users table'
168 drop(cur)
169 cur.close()
170 cxn.commit()
171 cxn.close()
172
173 if__name__ == '__main__':
174 main()

Line-by-Line Explanation

Lines 118

The first part of this script imports the necessary modules, creates some global "constants" (the column
size for display and the set of databases we are supporting), and features the setup() function, which
prompts the user to select the RDBMS to use for any particular execution of this script.

The most notable constant here is DB_EXC, which stands for DataBase EXCeption. This variable will
eventually be assigned the database exception module for the specific database system that the users
chooses to use to run this application with. In other words, if users choose MySQL, DB_EXC will be
_mysql_exceptions, etc. If we developed this application in more of an object-oriented fashion, this
would simply be an instance attribute, i.e., self.db_exc_module or something like that.

Lines 2075

file:///D|/1/0132269937/ch21lev1sec2.html (16 von 19) [13.11.2007 16:25:17]

Section 21.2. Python Database Application Programmer's Interface (DB-API)

The guts of consistent database access happens here in the connect() function. At the beginning of each
section, we attempt to load the requested database modules. If a suitable one is not found, None is
returned to indicate that the database system is not supported.

Once a connection is made, then all other code is database and adapter independent and should work
across all connections. (The only exception in our script is insert().) In all three subsections of this set
of code, you will notice that a valid connection should be passed back as cxn.

If SQLite is chosen (lines 24-36), we attempt to load a database adapter. We first try to load the
standard library's sqlite3 module (Python 2.5+). If that fails, we look for the third-party pysqlite2
package. This is to support 2.4.x and older systems with the pysqlite adapter installed. If a suitable
adapter is found, we then check to ensure that the directory exists because the database is file based.
(You may also choose to create an in-memory database.) When the connect() call is made to SQLite, it
will either use one that already exists or make a new one using that path if it does not.

MySQL (lines 38-57) uses a default area for its database files and does not require this to come from the
user. Our code attempts to connect to the specified database. If an error occurs, it could mean either
that the database does not exist or that it does exist but we do not have permission to see it. Since this
is just a test application, we elect to drop the database altogether (ignoring any error if the database
does not exist), and re-create it, granting all permissions after that.

The last database supported by our application is Gadfly (lines 59-75). (At the time of writing, this
database is mostly but not fully DB-API-compliant, and you will see this in this application.) It uses a
startup mechanism similar to that of SQLite: it starts up with the directory where the database files
should be. If it is there, fine, but if not, you have to take a roundabout way to start up a new database.
(Why this is, we are not sure. We believe that the startup() functionality should be merged into that of
the constructor gadfly.gadfly().)

Lines 7789

The create() function creates a new users table in our database. If there is an error, that is almost
always because the table already exists. If this is the case, drop the table and re-create it by recursively
calling this function again. This code is dangerous in that if the recreation of the table still fails, you will
have infinite recursion until your application runs out of memory. You will fix this problem in one of the
exercises at the end of the chapter.

The table is dropped from the database with the one-liner drop().

Lines 91103

This is probably the most interesting part of the code outside of database activity. It consists of a
constant set of names and user IDs followed by the generator randName() whose code can be found in
Chapter 11 (Functions) in Section 11.10. The NAMES constant is a tuple that must be converted to a list
for use with randName() because we alter it in the generator, randomly removing one name at a time
until the list is exhausted. Well, if NAMES was a list, we would only use it once. Instead, we make it a
tuple and copy it to a list to be destroyed each time the generator is used.

Lines 105115

The insert() function is the only other place where database-dependent code lives, and the reason is
that each database is slightly different in one way or another. For example, both the adapters for SQLite
and MySQL are DB-API-compliant, so both of their cursor objects have an executemany() function,

file:///D|/1/0132269937/ch21lev1sec2.html (17 von 19) [13.11.2007 16:25:17]

Section 21.2. Python Database Application Programmer's Interface (DB-API)

whereas Gadfly does not, so rows have to be inserted one at a time.

Another quirk is that both SQLite and Gadfly use the qmark parameter style while MySQL uses format.
Because of this, the format strings are different. If you look carefully, however, you will see that the
arguments themselves are created in a very similar fashion.

What the code does is this: for each name-userID pair, it assigns that individual to a project group
(given by its project ID or prid). The project ID is chosen randomly out of four different groups
(randrange(1,5)).

Line 117

This single line represents a conditional expression (read as: Python ternary operator) that returns the
rowcount of the last operation (in terms of rows altered), or if the cursor object does not support this
attribute (meaning it is not DB-API-compliant), it returns -1.

Conditional expressions were added in Python 2.5, so if you are using 2.4.x or older, you will need to
convert it back to the "old-style" way of doing it:

 getRC = lambda cur: (hasattr(cur, 'rowcount') \
 and [cur.rowcount] or [-1])[0]

If you are confused by this line of code, don't worry about it. Check the FAQ to see why this is, and get
a taste of why conditional expressions were finally added to Python in 2.5. If you are able to figure it
out, then you have developed a solid understanding of Python objects and their Boolean values.

Lines 119129

The update() and delete() functions randomly choose folks from one group. If the operation is update,
move them from their current group to another (also randomly chosen); if it is delete, remove them
altogether.

Lines 131137

The dbDump() function pulls all rows from the database, formats them for printing, and displays them to
the user. The print statement to display each user is the most obfuscated, so let us take it apart.

First, you should see that the data were extracted after the SELECT by the fetchall() method. So as we
iterate each user, take the three columns (login, uid, prid), convert them to strings (if they are not
already), titlecase it, and format the complete string to be COLSIZ columns left-justified (right-hand
space padding). Since the code to generate these three strings is a list (via the list comprehension), we
need to convert it to a tuple for the format operator (%).

Lines 139174

file:///D|/1/0132269937/ch21lev1sec2.html (18 von 19) [13.11.2007 16:25:17]

Section 21.2. Python Database Application Programmer's Interface (DB-API)

The director of this movie is main(). It makes the individual functions to each function described above
that defines how this script works (assuming that it does not exit due to either not finding a database
adapter or not being able to obtain a connection [lines 143-145]). The bulk of it should be fairly self-
explanatory given the proximity of the print statements. The last bits of main() close the cursor, and
commit and close the connection. The final lines of the script are the usual to start the script.

file:///D|/1/0132269937/ch21lev1sec2.html (19 von 19) [13.11.2007 16:25:17]

Section 21.3. Object-Relational Managers (ORMs)

21.3. Object-Relational Managers (ORMs)

As seen in the previous section, a variety of different database systems are available today, and most of
them have Python interfaces to allow you to harness their power. The only drawback to those systems is
the need to know SQL. If you are a programmer who feels more comfortable with manipulating Python
objects instead of SQL queries, yet still want to use a relational database as your data backend, then
you are a great candidate to be a user of ORMs.

21.3.1. Think Objects, Not SQL

Creators of these systems have abstracted away much of the pure SQL layer and implemented objects
in Python that you can manipulate to accomplish the same tasks without having to generate the
required lines of SQL. Some systems allow for more flexibility if you do have to slip in a few lines of SQL,
but for the most part, you can avoid almost all the general SQL required.

Database tables are magically converted to Python classes with columns and features as attributes and
methods responsible for database operations. Setting up your application to an ORM is somewhat similar
to that of a standard database adapter. Because of the amount of work that ORMs perform on your
behalf, some things are actually more complex or require more lines of code than using an adapter
directly. Hopefully, the gains you achieve in productivity make up for a little bit of extra work.

21.3.2. Python and ORMs

The most well-known Python ORMs today are SQLAlchemy and SQLObject. We will give you examples of
SQLAlchemy and SQLObject because the systems are somewhat disparate due to different philosophies,
but once you figure these out, moving on to other ORMs is much simpler.

Some other Python ORMs include PyDO/PyDO2, PDO, Dejavu, PDO, Durus, QLime, and ForgetSQL.
Larger Web-based systems can also have their own ORM component, i.e., WebWare MiddleKit and
Django's Database API. Note that "well-known" does not mean "best for your application." Although
these others were not included in our discussion, that does not mean that they would not be right for
your application.

21.3.3. Employee Role Database Example

We will port our user shuffle application ushuffle_db.py to both SQLAlchemy and SQLObject below.
MySQL will be the backend database server for both. You will note that we implement these as classes
because there is more of an object "feel" to using ORMs as opposed to using raw SQL in a database
adapter. Both examples import the set of NAMES and the random name chooser from ushuffle_db.py.
This is to avoid copying-and-pasting the same code everywhere as code reuse is a good thing.

SQLAlchemy

We start with SQLAlchemy because its interface is somewhat closer to SQL than SQLObject's interface.
SQLAlchemy abstracts really well to the object world but does give you more flexibility in issuing SQL if
you have to. You will find both of these ORMs (Examples 21.2 and 21.3) very similar in terms of setup
and access, as well as being of similar size, and both shorter than ushuffle_db.py (including the sharing
of the names list and generator used to randomly iterate through that list).

file:///D|/1/0132269937/ch21lev1sec3.html (1 von 11) [13.11.2007 16:25:19]

Section 21.3. Object-Relational Managers (ORMs)

Example 21.2. SQLAlchemy ORM Example (ushuffle_sa.py)

This "user shuffle" application features SQLAlchemy paired up with the MySQL database as
its backend.

 1 #!/usr/bin/env python
 2
 3 import os
 4 from random import randrange as rrange
 5 from sqlalchemy import *
 6 from ushuffle_db import NAMES, randName
 7
 8 FIELDS = ('login', 'uid', 'prid')
 9 DBNAME = 'test'
 10 COLSIZ = 10
 11
 12 class MySQLAlchemy(object):
 13 def __init__(self, db, dbName):
 14 import MySQLdb
 15 import _mysql_exceptions
 16 MySQLdb = pool.manage(MySQLdb)
 17 url = 'mysql://db=%s' % DBNAME
 18 eng = create_engine(url)
 19 try:
 20 cxn = eng.connection()
 21 except _mysql_exceptions.OperationalError, e:
 22 eng1 = create_engine('mysql://user=root')
 23 try:
 24 eng1.execute('DROP DATABASE %s' % DBNAME)
 25 except _mysql_exceptions.OperationalError, e:
 26 pass
 27 eng1.execute('CREATE DATABASE %s' % DBNAME)
 28 eng1.execute(
 29 "GRANT ALL ON %s.* TO ''@'localhost'" % DBNAME)
 30 eng1.commit()
 31 cxn = eng.connection()
 32
 33 try:
 34 users = Table('users', eng, autoload=True)
 35 except exceptions.SQLError, e:
 36 users = Table('users', eng,
 37 Column('login', String(8)),
 38 Column('uid', Integer),
 39 Column('prid', Integer),
 40 redefine=True)
 41
 42 self.eng = eng
 43 self.cxn = cxn
 44 self.users = users
 45
 46 def create(self):
 47 users = self.users
 48 try:
 49 users.drop()
 50 except exceptions.SQLError, e:
 51 pass
 52 users.create()
 53

file:///D|/1/0132269937/ch21lev1sec3.html (2 von 11) [13.11.2007 16:25:19]

Section 21.3. Object-Relational Managers (ORMs)

 54 def insert(self):
 55 d = [dict(zip(FIELDS,
 56 [who, uid, rrange(1,5)])) for who, uid in randName()]
 57 return self.users.insert().execute(*d).rowcount
 58
 59 def update(self):
 60 users = self.users
 61 fr = rrange(1,5)
 62 to = rrange(1,5)
 63 return fr, to, \
 64 users.update(users.c.prid==fr).execute(prid=to).rowcount
 65
 66 def delete(self):
 67 users = self.users
 68 rm = rrange(1,5)
 69 return rm, \
 70 users.delete(users.c.prid==rm).execute().rowcount
 71
 72 def dbDump(self):
 73 res = self.users.select().execute()
 74 print '\n%s%s%s' % ('LOGIN'.ljust(COLSIZ),
 75 'USERID'.ljust(COLSIZ), 'PROJ#'.ljust(COLSIZ))
 76 for data in res.fetchall():
 77 print '%s%s%s' % tuple([str(s).title().ljust
(COLSIZ) for s in data])
 78
 79 def __getattr__(self, attr):
 80 return getattr(self.users, attr)
 81
 82 def finish(self):
 83 self.cxn.commit()
 84 self.eng.commit()
 85
 86 def main():
 87 print '*** Connecting to %r database' % DBNAME
 88 orm = MySQLAlchemy('mysql', DBNAME)
 89
 90 print '\n*** Creating users table'
 91 orm.create()
 92
 93 print '\n*** Inserting names into table'
 94 orm.insert()
 95 orm.dbDump()
 96
 97 print '\n*** Randomly moving folks',
 98 fr, to, num = orm.update()
 99 print 'from one group (%d) to another (%d)' % (fr, to)
 100 print '\t(%d users moved)' % num
 101 orm.dbDump()
 102
 103 print '\n*** Randomly choosing group',
 104 rm, num = orm.delete()
 105 print '(%d) to delete' % rm
 106 print '\t(%d users removed)' % num
 107 orm.dbDump()
 108
 109 print '\n*** Dropping users table'
 110 orm.drop()
 111 orm.finish()

file:///D|/1/0132269937/ch21lev1sec3.html (3 von 11) [13.11.2007 16:25:19]

Section 21.3. Object-Relational Managers (ORMs)

 112
 113 if__name__ == '__main__':
 114 main()

Example 21.3. SQLObject ORM Example (ushuffle_so.py)

This "user shuffle" application features SQLObject paired up with the MySQL database as its
backend.

 1 #!/usr/bin/env python
 2
 3 import os
 4 from random import randrange as rrange
 5 from sqlobject import *
 6 from ushuffle_db import NAMES, randName
 7
 8 DBNAME = 'test'
 9 COLSIZ = 10
 10 FIELDS = ('login', 'uid', 'prid')
 11
 12 class MySQLObject(object):
 13 def __init__(self, db, dbName):
 14 import MySQLdb
 15 import _mysql_exceptions
 16 url = 'mysql://localhost/%s' % DBNAME
 17
 18 while True:
 19 cxn = connectionForURI(url)
 20 sqlhub.processConnection = cxn
 21 #cxn.debug = True
 22 try:
 23 class Users(SQLObject):
 24 class sqlmeta:
 25 fromDatabase = True
 26 login = StringCol(length=8)
 27 uid = IntCol()
 28 prid = IntCol()
 29 break
 30 except _mysql_exceptions.ProgrammingError, e:
 31 class Users(SQLObject):
 32 login = StringCol(length=8)
 33 uid = IntCol()
 34 prid = IntCol()
 35 break
 36 except _mysql_exceptions.OperationalError, e:
 37 cxn1 = sqlhub.processConnection=
connectionForURI('mysql://root@localhost')
 38 cxn1.query("CREATE DATABASE %s" % DBNAME)
 39 cxn1.query("GRANT ALL ON %s.* TO ''@'
 localhost'" % DBNAME)
 40 cxn1.close()
 41 self.users = Users
 42 self.cxn = cxn
 43

file:///D|/1/0132269937/ch21lev1sec3.html (4 von 11) [13.11.2007 16:25:19]

Section 21.3. Object-Relational Managers (ORMs)

 44 def create(self):
 45 Users = self.users
 46 Users.dropTable(True)
 47 Users.createTable()
 48
 49 def insert(self):
 50 for who, uid in randName():
 51 self.users(**dict(zip(FIELDS,
 52 [who, uid, rrange(1,5)])))
 53
 54 def update(self):
 55 fr = rrange(1,5)
 56 to = rrange(1,5)
 57 users = self.users.selectBy(prid=fr)
 58 for i, user in enumerate(users):
 59 user.prid = to
 60 return fr, to, i+1
 61
 62 def delete(self):
 63 rm = rrange(1,5)
 64 users = self.users.selectBy(prid=rm)
 65 for i, user in enumerate(users):
 66 user.destroySelf()
 67 return rm, i+1
 68
 69 def dbDump(self):
 70 print '\n%s%s%s' % ('LOGIN'.ljust(COLSIZ),
 71 'USERID'.ljust(COLSIZ), 'PROJ#'.ljust(COLSIZ))
 72 for usr in self.users.select():
 73 print '%s%s%s' % (tuple([str(getattr(usr,
 74 field)).title().ljust(COLSIZ) \
 75 for field in FIELDS]))
 76
 77 drop = lambda self: self.users.dropTable()
 78 finish = lambda self: self.cxn.close()
 79
 80 def main():
 81 print '*** Connecting to %r database' % DBNAME
 82 orm = MySQLObject('mysql', DBNAME)
 83
 84 print '\n*** Creating users table'
 85 orm.create()
 86
 87 print '\n*** Inserting names into table'
 88 orm.insert()
 89 orm.dbDump()
 90
 91 print '\n*** Randomly moving folks',
 92 fr, to, num = orm.update()
 93 print 'from one group (%d) to another (%d)' % (fr, to)
 94 print '\t(%d users moved)' % num
 95 orm.dbDump()
 96
 97 print '\n*** Randomly choosing group',
 98 rm, num = orm.delete()
 99 print '(%d) to delete' % rm
 100 print '\t(%d users removed)' % num
 101 orm.dbDump()
 102

file:///D|/1/0132269937/ch21lev1sec3.html (5 von 11) [13.11.2007 16:25:19]

Section 21.3. Object-Relational Managers (ORMs)

 103 print '\n*** Dropping users table'
 104 orm.drop()
 105 orm.finish()
 106
 107 if__name__ == '__main__':
 108 main()

Line-by-Line Explanation

Lines 110

As expected, we begin with module imports and constants. We follow the suggested style guideline of
importing Python Standard Library modules first, followed by third-party or external modules, and
finally, local modules to our application. The constants should be fairly self-explanatory.

Lines 1231

The constructor for our class, like ushuffle_db.connect(), does everything it can to make sure that there
is a database available and returns a connection to it (lines 18-31). This is the only place you will see
real SQL, as such activity is typically an operational task, not application-oriented.

Lines 3344

The TRy-except clause (lines 33-40) is used to reload an existing table or make a new one if it does not
exist yet. Finally, we attach the relevant objects to our instance.

Lines 4670

These next four methods represent the core database functionality of table creation (lines 46-52),
insertion (lines 54-57), update (lines 59-64), and deletion (lines 66-70). We should also have a method
for dropping the table:

 def drop(self):
 self.users.drop()

or

 drop = lambda self: self.users.drop()

However, we made a decision to give another demonstration of delegation (as introduced in Chapter 13,
Object-Oriented Programming). Delegation is where missing functionality (method call) is passed to
another object in our instance which has it. See the explanation of lines 79-80.

Lines 7277

The responsibility of displaying proper output to the screen belongs to the dbDump() method. It extracts

file:///D|/1/0132269937/ch21lev1sec3.html (6 von 11) [13.11.2007 16:25:19]

Section 21.3. Object-Relational Managers (ORMs)

the rows from the database and pretty-prints the data just like its equivalent in ushuffle_db.py. In fact,
they are nearly identical.

Lines 7980

We deliberately avoided creating a drop() method for the table since it would just call the table's drop
method anyway. Also, there is no added functionality, so why create yet another function to have to
maintain? The __getattr__() special method is called whenever an attribute lookup fails.

If our object calls orm.drop() and finds no such method, getattr (orm, 'drop') is invoked. When that
happens, __getattr__() is called and delegates the attribute name to self.users. The interpreter will
find that self.users has a drop attribute and pass that method call to it: self. users.drop()!

Lines 8284

The last method is finish(), which commits the transaction.

Lines 86114

The main() function drives our application. It creates a MySQLAlchemy object and uses that for all
database operations. The script is the same as for our original application, ushuffle_db.py. You will
notice that the database parameter db is optional and does not serve any purpose here in ushuffle_sa.
py or the upcoming SQLobject version ushuffle_so.py. This is a placeholder for you to add support for
other RDBMSs in these applications (see Exercises at the end of the chapter).

Upon running this script, you may get output that looks like this:

$ ushuffle_sa.py
*** Connecting to 'test' database

*** Creating users table

*** Inserting names into table

LOGIN USERID PROJ#
Serena 7003 4
Faye 6812 4
Leslie 7808 3
Ernie 7410 1
Dave 7306 2
Melissa 8602 1
Amy 7209 3
Angela 7603 4
Jess 7912 2
Larry 7311 1
Jim 7512 2
Davina 7902 3
Stan 7607 4
Pat 7711 2
Aaron 8312 2
Elliot 7911 3

*** Randomly moving folks from one group (1) to another (3)

file:///D|/1/0132269937/ch21lev1sec3.html (7 von 11) [13.11.2007 16:25:19]

Section 21.3. Object-Relational Managers (ORMs)

 (3 users moved)

LOGIN USERID PROJ#
Serena 7003 4
Faye 6812 4
Leslie 7808 3
Ernie 7410 3
Dave 7306 2
Melissa 8602 3
Amy 7209 3
Angela 7603 4
Jess 7912 2
Larry 7311 3
Jim 7512 2
Davina 7902 3
Stan 7607 4
Pat 7711 2
Aaron 8312 2
Elliot 7911 3
*** Randomly choosing group (2) to delete
 (5 users removed)

LOGIN USERID PROJ#
Serena 7003 4
Faye 6812 4
Leslie 7808 3
Ernie 7410 3
Melissa 8602 3
Amy 7209 3
Angela 7603 4
Larry 7311 3
Davina 7902 3
Stan 7607 4
Elliot 7911 3

*** Dropping users table
$

Line-by-Line Explanation

Lines 110

This modules imports and constant declarations are practically identical to those of ushuffle_sa.py
except that we are using SQLObject instead of SQLAlchemy.

Lines 1242

The constructor for our class does everything it can to make sure that there is a database available and
returns a connection to it, just like our SQLAlchemy example. Similarly, this is the only place you will
see real SQL. Our application, as coded here, will result in an infinite loop if for some reason a Users
table cannot be created in SQLObject.

We are trying to be clever in handling errors by fixing the problem and retrying the table (re)create.
Since SQLobject uses metaclasses, we know that special magic is happening under the covers, so we
have to define two different classesone for if the table already exists and another if it does not.

file:///D|/1/0132269937/ch21lev1sec3.html (8 von 11) [13.11.2007 16:25:19]

Section 21.3. Object-Relational Managers (ORMs)

The code works something like this:

1.

Try and establish a connection to an existing table; if it works, we are done (lines 23-29)

2.

Otherwise, create the class from scratch for the table; if so, we are done (lines 31-36)

3.

Otherwise, we have a database issue, so try and make a new database (lines 37-40)

4.

Loop back up and try all this again

Hopefully it (eventually) succeeds in one of the first two places. When the loop is terminated, we attach
the relevant objects to our instance as we did in ushuffle_sa.py.

Lines 4467, 7778

The database operations happen in these lines. We have table create (lines 44-47) and drop (line 77),
insert (lines 49-52), update (lines 54-60), and delete (lines 62-67). The finish() method on line 78 is to
close the connection. We could not use delegation for table drop like we did for the SQLAlchemy
example because the would-be delegated method for it is called dropTable() not drop().

Lines 6975

This is the same and expected dbDump() method, which pulls the rows from the database and displays
things nicely to the screen.

Lines 80108

This is the main() function again. It works just like the one in ushuffle_sa.py. Also, the db argument to
the constructor is a placeholder for you to add support for other RDBMSs in these applications (see
Exercises at the end of the chapter).

Here is what your output may look like if you run this script:

$ ushuffle_so.py

*** Connecting to 'test' database

*** Creating users table

*** Inserting names into table

LOGIN USERID PROJ#

file:///D|/1/0132269937/ch21lev1sec3.html (9 von 11) [13.11.2007 16:25:19]

Section 21.3. Object-Relational Managers (ORMs)

Jess 7912 1
Amy 7209 4
Melissa 8602 2
Dave 7306 4
Angela 7603 4
Serena 7003 2
Aaron 8312 1
Leslie 7808 1
Stan 7607 3
Pat 7711 3
Jim 7512 4
Larry 7311 3
Ernie 7410 2
Faye 6812 4
Davina 7902 1
Elliot 7911 4

*** Randomly moving folks from one group (2) to another (3)
 (3 users moved)

LOGIN USERID PROJ#
Jess 7912 1
Amy 7209 4
Melissa 8602 3
Dave 7306 4
Angela 7603 4
Serena 7003 3
Aaron 8312 1
Leslie 7808 1
Stan 7607 3
Pat 7711 3
Jim 7512 4
Larry 7311 3
Ernie 7410 3
Faye 6812 4
Davina 7902 1
Elliot 7911 4

*** Randomly choosing group (3) to delete
 (6 users removed)

LOGIN USERID PROJ#
Jess 7912 1
Amy 7209 4
Dave 7306 4
Angela 7603 4
Aaron 8312 1
Leslie 7808 1
Jim 7512 4
Faye 6812 4
Davina 7902 1
Elliot 7911 4

*** Dropping users table
$

21.3.4. Summary

file:///D|/1/0132269937/ch21lev1sec3.html (10 von 11) [13.11.2007 16:25:19]

Section 21.3. Object-Relational Managers (ORMs)

We hope that we have provided you with a good introduction to using relational databases with Python.
When your application's needs go beyond those offered by plain files, or specialized files like DBM,
pickled, etc., you have many options. There are a good number of RDBMSs out there, not to mention
one completely implemented in Python, freeing one from having to install, maintain, or administer a real
database system. Below, you will find information on many of the Python adapters plus database and
ORM systems out there. We also suggest checking out the DB-SIG pages as well as the Web pages and
mailing lists of all systems of interest. Like all other areas of software development, Python makes
things easy to learn and simple to experiment with.

file:///D|/1/0132269937/ch21lev1sec3.html (11 von 11) [13.11.2007 16:25:19]

Section 21.4. Related Modules

21.4. Related Modules

Table 21.8 lists most of the common databases out there along with working Python modules and
packages that serve as adapters to those database systems. Note that not all adapters are DB-API-
compliant.

Table 21.8. Database-Related Modules and Websites

Name Online Reference or Description

Databases

Gadfly http://gadfly.sf.net

MySQL http://mysql.com or http://mysql.org

MySQLdb a.k.a. MySQL-python http://sf.net/projects/mysql-python

PostgreSQL http://postgresql.org

psycopg http://initd.org/projects/psycopg1

psycopg2 http://initd.org/software/initd/psycopg/

PyPgSQL http://pypgsql.sf.net

PyGreSQL http://pygresql.org

PoPy Deprecated; merged into PyGreSQL project

SQLite http://sqlite.org

pysqlite http://initd.org/projects/pysqlite

sqlite3
[a] pysqlite integrated into Python Standard Library; use this one unless

you want to download the latest patch

APSW http://rogerbinns.com/apsw.html

MaxDB (SAP) http://mysql.com/products/maxdb

sdb http://dev.mysql.com/downloads/maxdb/7.6.00.html#Python

sapdb http://sapdb.org/sapdbPython.html

Firebird (InterBase) http://firebird.sf.net

KInterbasDB http://kinterbasdb.sf.net

SQL Server http://microsoft.com/sql

pymssql http://pymssql.sf.net (requires FreeTDS [http://freetds.org])

file:///D|/1/0132269937/ch21lev1sec4.html (1 von 2) [13.11.2007 16:25:19]

http://gadfly.sf.net/
http://mysql.com/
http://mysql.org/
http://sf.net/projects/mysql-python
http://postgresql.org/
http://initd.org/projects/psycopg1
http://initd.org/software/initd/psycopg/
http://pypgsql.sf.net/
http://pygresql.org/
http://sqlite.org/
http://initd.org/projects/pysqlite
http://rogerbinns.com/apsw.html
http://mysql.com/products/maxdb
http://dev.mysql.com/downloads/maxdb/
http://sapdb.org/sapdbPython.html
http://firebird.sf.net/
http://kinterbasdb.sf.net/
http://microsoft.com/sql

Section 21.4. Related Modules

adodbapi http://adodbapi.sf.net

Sybase http://sybase.com

sybase http://object-craft.com.au/projects/sybase

Oracle http://oracle.com

cx_Oracle http://starship.python.net/crew/atuining/cx_Oracle

DCOracle2 http://zope.org/Members/matt/dco2 (older, for Oracle8 only)

Ingres http://ingres.com

Ingres DBI http://ingres.com/products/ Prod_Download_Python_DBI.html

ingmod http://www.informatik.uni-rostock.de/~hme/software/

ORMs

SQLObject http://sqlobject.org

SQLAlchemy http://sqlalchemy.org

PyDO/PyDO2 http://skunkweb.sf.net/pydo.html

[a] pysqlite added to Python 2.5 as sqlite3 module.

file:///D|/1/0132269937/ch21lev1sec4.html (2 von 2) [13.11.2007 16:25:19]

http://adodbapi.sf.net/
http://sybase.com/
http://object-craft.com.au/projects/sybase
http://oracle.com/
http://starship.python.net/crew/atuining/cx_Oracle
http://zope.org/Members/matt/dco2
http://ingres.com/
http://ingres.com/products/
http://www.informatik.uni-rostock.de/~hme/software/
http://sqlobject.org/
http://sqlalchemy.org/
http://skunkweb.sf.net/pydo.html

Section 21.5. Exercises

21.5. Exercises

21-1. Database API. What is the Python DB-API? Is it a good thing? Why (or why not)?

21-2. Database API. Describe the differences between the database module parameter
styles (see the paramstyle module attribute).

21-3. Cursor Objects. What are the differences between the cursor execute*() methods?

21-4. Cursor Objects. What are the differences between the cursor fetch*() methods?

21-5. Database Adapters. Research your RDBMS and its Python module. Is it DB-API
compliant? What additional features are available for that module that are extras not
required by the API?

21-6. Type Objects. Study using Type objects for your database and DB-API adapter and
write a small script that uses at least one of those objects.

21-7. Refactoring. In the create() function of Example 21.1 (ushuffle_db.py), a table that
already exists is dropped and re-created by recursively calling create() again. This is
dangerous in case the re-creation of the table fails (again) because you will then have
infinite recursion. Fix this problem by creating a more practical solution that does not
involve copying the create query (cur.execute()) again in the exception handler. Extra
Credit: Try to recreate the table a maximum of three times before returning failure
back to the caller.

21-8. Database and HTML. Take any existing database table, and use the knowledge you
developed from Chapter 20 and output the contents of a database table into an HTML
table.

21-9. Web Programming and Databases. Take our "user shuffle" example (ushuffle_db.py),
and create a Web interface for it.

21-10. GUI Programming and Databases. Take our "user shuffle" example (ushuffle_db.py),
and throw a GUI for it.

21-11. Stock Portfolio Class. Update the stock database example from Chapter 13 to use a
relational database.

21-12. Switching ORMs to a Different RDBMS. Take either the SQLAlchemy (ushuffle_sa.py)
or SQLObject (ushuffle_so.py) application and swap out MySQL as the back-end
RDBMS for another one of your choice.

file:///D|/1/0132269937/ch21lev1sec5.html [13.11.2007 16:25:19]

Chapter 22. Extending Python

Chapter 22. Extending Python

Chapter Topics

● Introduction/Motivation
● Extending Python

�❍ Create Application Code
�❍ Wrap Code in Boilerplate
�❍ Compile
�❍ Import and Test
�❍ Reference Counting
�❍ Threading and the GIL

● Related Topics

In this chapter, we will discuss how to take code written externally and integrate that functionality into
the Python programming environment. We will first give you motivation for doing this, then take you
through the step-by-step process on how to do it. We should point out, though, that because extensions
are primarily done in the C language, all of the example code you will see in this section is pure C but is
easily portable to C++.

file:///D|/1/0132269937/ch22.html [13.11.2007 16:25:20]

Section 22.1. Introduction/Motivation

22.1. Introduction/Motivation

22.1.1. What Are Extensions?

In general, any code that you write that can be integrated or imported into another Python script can be
considered an extension. This new code can be written in pure Python or in a compiled language like C
and C++ (or Java for Jython and C# or VisualBasic.NET for IronPython).

One great feature of Python is that its extensions interact with the interpreter in exactly the same way
as the regular Python modules. Python was designed so that the abstraction of module import hides the
underlying implementation details from the code that uses such extensions. Unless the client
programmer searches the file system, he or she simply cannot tell whether a module is written in
Python or in a compiled language.

Core Note: Creating extensions on different platforms

We will note here that extensions are generally available in a development environment
where you compile your own Python interpreter. There is a subtle relationship between
manual compilation versus obtaining the binaries. Although compilation may be a bit
trickier than just downloading and installing binaries, you have the most flexibility in
customizing the version of Python you are using. If you intend to create extensions, you
should perform this task in a similar environment.

The examples in this chapter are built on a Unix-based system (which usually comes with a
compilers), but, assuming you do have access to a C/C++ (or Java) compiler and a Python
development environment in C/C++ (or Java), the only differences are in your compilation
method. The actual code to make your extensions usable in the Python world is the same
on any platform.

If you are developing on a Win32 platform, you will need Visual C++ "Developer Studio."
The Python distribution comes with project files for version 7.1, but you may use older
versions of VC++. More information on building extensions on Win32 can be found at:

http://docs.python.org/ext/building-on-windows.html

Caution:Although we know enough not to move binaries between different hosts, it is also a
good idea just to compile on the same box and not move extensions between boxes either,
even if they are of the same architecture. Sometimes slight differences of compiler or CPU
will cause code not to work consistently.

22.1.2. Why Extend Python?

Throughout the brief history of software engineering, programming languages have always been taken
at face value. What you see is what you get; it was impossible to add new functionality to an existing
language. In today's programming environment, however, the ability to customize one's programming
environment is now a desired feature; it also promotes code reuse. Languages such as TCL and Python
are among the first languages to provide the ability to extend the base language. So why would you
want to extend a language like Python, which is already feature-rich? There are several good reasons:

file:///D|/1/0132269937/ch22lev1sec1.html (1 von 2) [13.11.2007 16:25:20]

http://docs.python.org/ext/building-on-windows.html

Section 22.1. Introduction/Motivation

● Added/extra (non-Python) functionality

One reason for extending Python is the need to have new functionality not provided by the core
part of the language. This can be accomplished in either pure Python or as a compiled extension,
but there are certain things such as creating new data types or embedding Python in an existing
application which must be compiled.

● Bottleneck performance improvement

It is well known that interpreted languages do not perform as fast as compiled languages due to
the fact that translation must happen on the fly and during runtime. In general, moving a body
of code into an extension will improve overall performance. The problem is that it is sometimes
not advantageous if the cost is high in terms of resources.

Percentage-wise, it is a wiser bet to do some simple profiling of the code to identify what the
bottlenecks are, and move those pieces of code out to an extension. The gain can be seen more
quickly and without expending as much in terms of resources.

● Keep proprietary source code private

Another important reason to create extensions is due to one side effect of having a scripting
language. For all the ease-of-use such languages bring to the table, there really is no privacy as
far as source code is concerned because the executable is the source code.

Code that is moved out of Python and into a compiled language helps keep proprietary code
private because you ship a binary object. Because these objects are compiled, they are not as
easily reverse-engineered; thus, the source remains more private. This is key when it involves
special algorithms, encryption or software security, etc.

Another alternative to keeping code private is to ship pre-compiled .pyc files only. It serves as a
good middle ground between releasing the actual source (.py files) and having to migrate that
code to extensions.

file:///D|/1/0132269937/ch22lev1sec1.html (2 von 2) [13.11.2007 16:25:20]

file:///D|/1/0132269937/14051536.html

Section 22.2. Extending Python by Writing Extensions

22.2. Extending Python by Writing Extensions

Creating extensions for Python involves three main steps:

1.

Creating application code

2.

Wrapping code with boilerplates

3.

Compilation and testing

In this section, we will break out all three pieces and expose them all to you.

22.2.1. Create Your Application Code

First, before any code becomes an extension, create a standalone "library." In other words, create your
code keeping in mind that it is going to turn into a Python module. Design your functions and objects
with the vision that Python code will be communicating and sharing data with your C code and vice
versa.

Next, create test code to bulletproof your software. You may even use the "Pythonic" development
method of designating your main() function in C as the testing application so that if your code is
compiled, linked, and loaded into an executable (as opposed to just a shared object), invocation of such
an executable will result in a regression test of your software library. For our extension example below,
this is exactly what we do.

The test case involves two C functions that we want to bring to the world of Python programming. The
first is the recursive factorial function, fac(). The second, reverse(), is a simple string reverse
algorithm, whose main purpose is to reverse a string "in place," that is, to return a string whose
characters are all reversed from their original positions, all without allocating a separate string to copy in
reverse order. Because this involves the use of pointers, we need to carefully design and debug our code
before bringing Python into the picture.

Our first version, Extest1.c, is presented in Example 22.1.

This code consists of a pair of functions, fac() and reverse(), which are implementations of the
functionality we described above. fac() takes a single integer argument and recursively calculates the
result, which is eventually returned to the caller once it exits the outermost call.

Example 22.1. Pure C Version of Library (Extest1.c)

file:///D|/1/0132269937/ch22lev1sec2.html (1 von 15) [13.11.2007 16:25:22]

Section 22.2. Extending Python by Writing Extensions

The following code represents our library of C functions which we want to wrap so that we
can use this code from within the Python interpreter. main() is our tester function.

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <string.h>
4
5 int fac(int n)
6 {
7 if (n < 2) return(1); /* 0! == 1! == 1 */
8 return (n)*fac(n-1); /* n! == n*(n-1)! */
9 }
10
11 char *reverse(char *s)
12 {
13 register char t, /* tmp */
14 *p = s, /* fwd */
15 *q = (s + (strlen(s)-1)); /* bwd */
16
17 while (p < q) /* if p < q */
18 { /*swap & mv ptrs */
19 t = *p;
20 *p++ = *q;
21 *q-- = t;
22 }
23 return s;
24 }
25
26 int main()
27 {
28 char s[BUFSIZ];
29 printf("4! == %d\n", fac(4));
30 printf("8! == %d\n", fac(8));
31 printf("12! == %d\n", fac(12));
32 strcpy(s, "abcdef");
33 printf("reversing 'abcdef', we get '%s'\n", \
34 reverse(s));
35 strcpy(s, "madam");
36 printf("reversing 'madam', we get '%s'\n", \
37 reverse(s));
38 return 0;
39 }

The last piece of code is the required main() function. We use it to be our tester, sending various
arguments to fac() and reverse() . With this function, we can actual tell whether our code works (or
not).

Now we should compile the code. For many versions of Unix with the gcc compiler, we can use the
following command:

$ gcc Extest1.c -o Extest
$

file:///D|/1/0132269937/ch22lev1sec2.html (2 von 15) [13.11.2007 16:25:22]

Section 22.2. Extending Python by Writing Extensions

To run our program, we issue the following command and get the output:

$ Extest
4! == 24
8! == 40320
12! == 479001600
reversing 'abcdef', we get 'fedcba'
reversing 'madam', we get 'madam'
$

We stress again that you should try to complete your code as much as possible, because you do not
want to mix debugging of your library with potential bugs when integrating with Python. In other words,
keep the debugging of your core code separate from the debugging of the integration. The closer you
write your code to Python interfaces, the sooner your code will be integrated and work correctly.

Each of our functions takes a single value and returns a single value. It's pretty cut and dried, so there
shouldn't be a problem integrating with Python. Note that, so far, we have not seen any connection or
relationship with Python. We are simply creating a standard C or C++ application.

22.2.2. Wrap Your Code in Boilerplate

The entire implementation of an extension primarily revolves around the "wrapping" concept that we
introduced earlier in Section 13.15.1. You should design your code in such a way that there is a smooth
transition between the world of Python and your implementing language. This interfacing code is
commonly called "boilerplate" code because it is a necessity if your code is to talk to the Python
interpreter.

There are four main pieces to the boilerplate software:

1.

Include Python header file

2.

Add PyObject* Module_func() Python wrappers for each module function

3.

Add PyMethodDef Module Methods[] array/table for each module function

4.

Add void init Module() module initializer function

Include Python Header File

The first thing you should do is to find your Python include files and make sure your compiler has access
to that directory. On most Unix-based systems, this would be either /usr/local/include/python2.x or /

file:///D|/1/0132269937/ch22lev1sec2.html (3 von 15) [13.11.2007 16:25:22]

Section 22.2. Extending Python by Writing Extensions

usr/include/python2.x, where the "2.x" is your version of Python. If you compiled and installed your
Python interpreter, you should not have a problem because the system generally knows where your files
are installed.

Add the inclusion of the Python.h header file to your source. The line will look something like:

 #include "Python.h"

That is the easy part. Now you have to add the rest of the boilerplate software.

Add PyObject* Module _func() Python Wrappers for Each Function

This part is the trickiest. For each function you want accessible to the Python environment, you will
create a static PyObject* function with the module name along with an underscore (_) prepended to it.

For example, we want fac() to be one of the functions available for import from Python and we will use
Extest as the name of our final module, so we create a "wrapper" called Extest_fac(). In the client
Python script, there will be an "import Extest" and an "Extest.fac()" call somewhere (or just "fac()" for
"from Extest import fac").

The job of the wrapper is to take Python values, convert them to C, then make a call to the appropriate
function with what we want. When our function has completed, and it is time to return to the world of
Python, it is also the job of this wrapper to take whatever return values we designate, convert them to
Python, and then perform the return, passing back any values as necessary.

In the case of fac(), when the client program invokes Extest.fac(), our wrapper will be called. We will
accept a Python integer, convert it to a C integer, call our C function fac() and obtain another integer
result. We then have to take that return value, convert it back to a Python integer, then return from the
call. (In your head, try to keep in mind that you are writing the code that will proxy for a "def fac(n)"
declaration. When you are returning, it is as if that imaginary Python fac() function is completing.)

So, you're asking, how does this conversion take place? The answer is with the PyArg_Parse*() functions
when going from Python to C, and Py_BuildValue() when returning from C to Python.

The PyArg_Parse*() functions are similar to the C sscanf() function. It takes a stream of bytes, and,
according to some format string, parcels them off to corresponding container variables, which, as
expected, take pointer addresses. They both return 1 on successful parsing and 0 otherwise.

Py_BuildValue() works like sprintf(), taking a format string and converting all arguments to a single
returned object containing those values in the formats that you requested.

You will find a summary of these functions in Table 22.1.

Table 22.1. Converting Data Between Python and C/C++

Function Description

file:///D|/1/0132269937/ch22lev1sec2.html (4 von 15) [13.11.2007 16:25:22]

Section 22.2. Extending Python by Writing Extensions

Python to C

int PyArg_ParseTuple() Converts (a tuple of) arguments passed from Python to C

int PyArg_ParseTupleAndKeywords() Same as PyArg_ParseTuple() but also parses keyword arguments

C to Python

PyObject* Py_BuildValue() Converts C data values into a Python return object, either a single
object or a single tuple of objects

A set of conversion codes is used to convert data objects between C and Python; they are given in Table
22.2.

Table 22.2. Common Codes to
Convert Data Between Python and

C/C++

Format Code Python Type C/C++ Type

s str char*

z str/None char* /NULL

i int int

l long long

c str char

d float double

D complex Py_Complex*

O (any) PyObject*

S str PyStringObject

These conversion codes are the ones given in the respective format strings that dictate how the values
should be converted when moving between both languages. Note: The conversion types are different for
Java since all data types are classes. Consult the Jython documentation to obtain the corresponding Java
types for Python objects. The same applies for C# and VB.NET.

Here we show you our completed Extest_fac() wrapper function:

static PyObject *
Extest_fac(PyObject *self, PyObject *args) {

 int res; // parse result
 int num; // arg for fac()
 PyObject* retval; // return value

file:///D|/1/0132269937/ch22lev1sec2.html (5 von 15) [13.11.2007 16:25:22]

Section 22.2. Extending Python by Writing Extensions

 res = PyArg_ParseTuple(args, "i", &num);
 if (!res) { // TypeError
 return NULL;
 }
 res = fac(num);
 retval = (PyObject*)Py_BuildValue("i", res);
 return retval;
}

The first step is to parse the data received from Python. It should be a regular integer, so we use the "i"
conversion code to indicate as such. If the value was indeed an integer, then it gets stored in the num
variable. Otherwise, PyArg_ParseTuple() will return a NULL, in which case we also return one. In our
case, it will generate a TypeError exception that tells the client user that we are expecting an integer.

We then call fac() with the value stored in num and put the result in res, reusing that variable. Now we
build our return object, a Python integer, again using a conversion code of "i." Py_BuildValue() creates
an integer Python object which we then return. That's all there is to it!

In fact, once you have created wrapper after wrapper, you tend to shorten your code somewhat to avoid
extraneous use of variables. Try to keep your code legible, though. We take our Extest_fac() function
and reduce it to its smaller version given here, using only one variable, num:

static PyObject *
Extest_fac(PyObject *self, PyObject *args) {
 int num;
 if (!PyArg_ParseTuple(args, "i", &num))
 return NULL;
 return (PyObject*)Py_BuildValue("i", fac(num));
}

What about reverse()? Well, since you already know how to return a single value, we are going to
change our reverse() example somewhat, returning two values instead of one. We will return a pair of
strings as a tuple, the first element being the string as passed in to us, and the second being the newly
reversed string.

To show you that there is some flexibility, we will call this function Extest.doppel() to indicate that its
behavior differs from reverse(). Wrapping our code into an Extest_doppel() function, we get:

static PyObject *
Extest_doppel(PyObject *self, PyObject *args) {
 char *orig_str;
 if (!PyArg_ParseTuple(args, "s", &orig_str)) return NULL;
 return (PyObject*)Py_BuildValue("ss", orig_str, \
 reverse(strdup(orig_str)));
}

As in Extest_fac(), we take a single input value, this time a string, and store it into orig_str. Notice
that we use the "s" conversion code now. We then call strdup() to create a copy of the string. (Since we
want to return the original one as well, we need a string to reverse, so the best candidate is just a copy

file:///D|/1/0132269937/ch22lev1sec2.html (6 von 15) [13.11.2007 16:25:22]

Section 22.2. Extending Python by Writing Extensions

of the string.) strdup() creates and returns a copy, which we immediate dispatch to reverse(). We get
back a reversed string.

As you can see, Py_BuildValue() puts together both strings using a conversion string of "ss." This
creates a tuple of two strings, the original string and the reversed one. End of story, right?
Unfortunately, no.

We got caught by one of the perils of C programming: the memory leak, that is, when memory is
allocated but not freed. Memory leaks are analogous to borrowing books from the library but not
returning them. You should always release resources that you have acquired when you no longer require
them. How did we commit such a crime with our code (which looks innocent enough)?

When Py_BuildValue() puts together the Python object to return, it makes copies of the data it has been
passed. In our case here, that would be a pair of strings. The problem is that we allocated the memory
for the second string, but we did not release that memory when we finished, leaking it. What we really
want to do is to build the return object and then free the memory that we allocated in our wrapper. We
have no choice but to lengthen our code to:

static PyObject *
Extest_doppel(PyObject *self, PyObject *args) {
 char *orig_str; // original string
 char *dupe_str; // reversed string
 PyObject* retval;
 if (!PyArg_ParseTuple(args, "s", &orig_str)) return NULL;
 retval = (PyObject*)Py_BuildValue("ss", orig_str, \
 dupe_str=reverse(strdup(orig_str)));
 free(dupe_str);
 return retval;
}

We introduce the dupe_str variable to point to the newly allocated string and build the return object.
Then we free() the memory allocated and finally return back to the caller. Now we are done.

Add PyMethodDef ModuleMethods[] Array/Table for Each Module Function

Now that both of our wrappers are complete, we want to list them somewhere so that the Python
interpreter knows how to import and access them. This is the job of theModuleMethods[] array.

It is made up of an array of arrays, with each individual array containing information about each
function, terminated by a NULL array marking the end of the list. For our Extest module, we create the
following ExtestMethods[] array:

static PyMethodDef
ExtestMethods[] = {
 { "fac", Extest_fac, METH_VARARGS },
 { "doppel", Extest_doppel, METH_VARARGS },
 { NULL, NULL },
};

The Python-accessible names are given, followed by the corresponding wrapping functions. The constant
METH_VARARGS is given, indicating a set of arguments in the form of a tuple. If we are using

file:///D|/1/0132269937/ch22lev1sec2.html (7 von 15) [13.11.2007 16:25:22]

Section 22.2. Extending Python by Writing Extensions

PyArg_ParseTupleAndKeywords() with keyworded arguments, we would logically OR this flag with the
METH_KEYWORDS constant. Finally, a pair of NULLs properly terminates our list of two functions.

Add void initModule() Module Initializer Function

The final piece to our puzzle is the module initializer function. This code is called when our module is
imported for use by the interpreter. In this code, we make one call to Py_InitModule () along with the
module name and the name of the ModuleMethods[] array so that the interpreter can access our module
functions. For our Extest module, our initExtest() procedure looks like this:

void initExtest() {
 Py_InitModule("Extest", ExtestMethods);
}

We are now done with all our wrapping. We add all this code to our original code from Extest1.c and
merge the results into a new file called Extest2.c, concluding the development phase of our example.

Another approach to creating an extension would be to make your wrapping code first, using "stubs" or
test or dummy functions which will, during the course of development, be replaced by the fully
functional pieces of implemented code. That way you can ensure that your interface between Python
and C is correct, and then use Python to test your C code.

22.2.3. Compilation

Now we are on to the compilation phase. In order to get your new wrapper Python extension to build,
you need to get it to compile with the Python library. This task has been standardized (since 30) across
platforms to make life a lot easier for extension writers. The distutils package is used to build, install,
and distribute modules, extensions, and packages. It came about back in Python 2.0 and replaced the
old 1.x way of building extensions using "makefiles." Using distutils, we can follow this easy recipe:

1.

Create setup.py

2.

Compile and link your code by running setup.py

3.

Import your module from Python

4.

Test function

Create setup.py

file:///D|/1/0132269937/ch22lev1sec2.html (8 von 15) [13.11.2007 16:25:22]

Section 22.2. Extending Python by Writing Extensions

The next step is to create a setup.py file. The bulk of the work will be done by the setup() function. All
the lines of code that come before that call are preparatory steps. For building extension modules, you
need to create an Extension instance per extension. Since we only have one, we only need one
Extension instance:

 Extension('Extest', sources=['Extest2.c'])

The first argument is the (full) extension name, including any high-level packages if necessary. The
name should be in full dotted-attribute notation. Ours is standalone, hence the name "Extest." sources is
a list of all the source files. Again, we only have the one, Extest2.c.

Now we are ready to call setup(). It takes a name argument for what it is building and a list of the items
to build. Since we are creating an extension, we set it a list of extension modules to build as
ext_modules. The syntax will be like this:

 setup('Extest', ext_modules=[...])

Since we only have one module, we combine the instantiation of our extension module into our call to
setup(), setting the module name as "constant" MOD on the preceding line:

 MOD = 'Extest'
 setup(name=MOD, ext_modules=[
 Extension(MOD, sources=['Extest2.c'])])

There are many more options to setup(), which are too numerous to list here. You can find out more
about creating setup.py and calling setup() in the official Python documentation that we refer to at the
end of this chapter. Example 22.2 shows the complete script that we are using for our example.

Example 22.2. The Build Script (setup.py)

This script compiles our extension into the build/lib.* subdirectory.

 1 #!/usr/bin/env python
 2
 3 from distutils.core import setup, Extension
 4
 5 MOD = 'Extest'
 6 setup(name=MOD, ext_modules=[
 7 Extension(MOD, sources=['Extest2.c'])])

Compile and Link Your Code by Running setup.py

Now that we have our setup.py file, we can build our extension by running it with the "build" directive,
as we have done here on our Mac (your output will differ based on the version of the operating system
you are running as well as the version of Python you are using):

file:///D|/1/0132269937/ch22lev1sec2.html (9 von 15) [13.11.2007 16:25:22]

Section 22.2. Extending Python by Writing Extensions

 $ python setup.py build
 running build
 running build_ext
 building 'Extest' extension
 creating build
 creating build/temp.macosx-10.x-fat-2.x
 gcc -fno-strict-aliasing -Wno-long-double -no-cpp-
 precomp -mno-fused-madd -fno-common -dynamic -DNDEBUG -g
 -I/usr/include -I/usr/local/include -I/sw/include -I/
 usr/local/include/python2.x -c Extest2.c -o build/
 temp.macosx-10.x-fat-2.x/Extest2.o
 creating build/lib.macosx-10.x-fat-2.x
 gcc -g -bundle -undefined dynamic_lookup -L/usr/lib -L/
 usr/local/lib -L/sw/lib -I/usr/include -I/usr/local/
 include -I/sw/include build/temp.macosx-10.x-fat-2.x/
 Extest2.o -o build/lib.macosx-10.x-fat-2.x/Extest.so

22.2.4. Import and Test

Import Your Module from Python

Your extension module will be created in the build/lib.* directory from where you ran your setup.py
script. You can either change to that directory to test your module or install it into your Python
distribution with:

 $ python setup.py install

If you do install it, you will get the following output:

 running install
 running build
 running build_ext
 running install_lib
 copying build/lib.macosx-10.x-fat-2.x/Extest.so ->
 /usr/local/lib/python2.x/site-packages

Now we can test out our module from the interpreter:

 >>> import Extest
 >>> Extest.fac(5)
 120
 >>> Extest.fac(9)
 362880
 >>> Extest.doppel('abcdefgh')
 ('abcdefgh', 'hgfedcba')
 >>> Extest.doppel("Madam, I'm Adam.")
 ("Madam, I'm Adam.", ".madA m'I, madaM")

file:///D|/1/0132269937/ch22lev1sec2.html (10 von 15) [13.11.2007 16:25:22]

Section 22.2. Extending Python by Writing Extensions

Test Function

The one last thing we want to do is to add a test function. In fact, we already have one, in the form of
the main() function. Now, it is potentially dangerous to have a main() function in our code because there
should only be one main() in the system. We remove this danger by changing the name of our main() to
test() and wrapping it, adding Extest_test() and updating the ExtestMethods array so that they both
look like this:

static PyObject *
Extest_test(PyObject *self, PyObject *args) {
 test();
 return (PyObject*)Py_BuildValue("");
}
static PyMethodDef
ExtestMethods[] = {
 { "fac", Extest_fac, METH_VARARGS },
 { "doppel", Extest_doppel, METH_VARARGS },
 { "test", Extest_test, METH_VARARGS },
 { NULL, NULL },
};

The Extest_test() module function just runs test() and returns an empty string, resulting in a Python
value of None being returned to the caller.

Now we can run the same test from Python:

 >>> Extest.test()
 4! == 24
 8! == 40320
 12! == 479001600
 reversing 'abcdef', we get 'fedcba'
 reversing 'madam', we get 'madam'
 >>>

In Example 22.3, we present the final version of Extest2.c that was used to generate the output we just
witnessed.

Example 22.3. Python-Wrapped Version of C Library (Extest2.c)

file:///D|/1/0132269937/ch22lev1sec2.html (11 von 15) [13.11.2007 16:25:22]

Section 22.2. Extending Python by Writing Extensions

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <string.h>
4
5 int fac(int n)
6 {
7 if (n < 2) return(1);
8 return (n)*fac(n-1);
9 }
10
11 char *reverse(char *s)
12 {
13 register char t,
14 *p = s,
15 *q = (s + (strlen(s) - 1));
16
17 while (s && (p < q))
18 {
19 t = *p;
20 *p++ = *q;
21 *q-- = t;
22 }
23 return s;
24 }
25
26 int test()
27 {
28 char s[BUFSIZ];
29 printf("4! == %d\n", fac(4));
30 printf("8! == %d\n", fac(8));
31 printf("12! == %d\n", fac(12));
32 strcpy(s, "abcdef");
33 printf("reversing 'abcdef', we get '%s'\n", \
34 reverse(s));
35 strcpy(s, "madam");
36 printf("reversing 'madam', we get '%s'\n", \
37 reverse(s));
38 return 0;
39 }
40
41 #include "Python.h"
42
43 static PyObject *
44 Extest_fac(PyObject *self, PyObject *args)
45 {
46 int num;
47 if (!PyArg_ParseTuple(args, "i", &num))
48 return NULL;
49 return (PyObject*)Py_BuildValue("i", fac(num));}
50 }
51
52 static PyObject *

53 Extest_doppel(PyObject *self, PyObject *args)
54 {
55 char *orig_str;
56 char *dupe_str;
57 PyObject* retval;
58

file:///D|/1/0132269937/ch22lev1sec2.html (12 von 15) [13.11.2007 16:25:22]

Section 22.2. Extending Python by Writing Extensions

59 if (!PyArg_ParseTuple(args, "s", &orig_str))
60 return NULL;
61 retval = (PyObject*)Py_BuildValue("ss", orig_str, \
62 dupe_str=reverse(strdup(orig_str)));
63 free(dupe_str);
64 return retval;
65 }
66
67 static PyObject *
68 Extest_test(PyObject *self, PyObject *args)
69 {
70 test();
71 return (PyObject*)Py_BuildValue("");
72 }
73
74 static PyMethodDef
75 ExtestMethods[] =
76 {
77 { "fac", Extest_fac, METH_VARARGS },
78 { "doppel", Extest_doppel, METH_VARARGS },
79 { "test", Extest_test, METH_VARARGS },
80 { NULL, NULL },
81 };
82
83 void initExtest()
84 {
85 Py_InitModule("Extest", ExtestMethods);
86 }

In this example, we chose to segregate our C code from our Python code. It just kept things easier to
read and is no problem with our short example. In practice, these source files tend to get large, and
some choose to implement their wrappers completely in a different source file, i.e., ExtestWrappers.c or
something of that nature.

22.2.5. Reference Counting

You may recall that Python uses reference counting as a means of keeping track of objects and
deallocating objects no longer referenced as part of the garbage collection mechanism. When creating
extensions, you must pay extra special attention to how you manipulate Python objects because you
must be mindful of whether or not you need to change the reference count for such objects.

There are two types of references you may have to an object, one of which is an owned reference,
meaning that the reference count to the object is incremented by one to indicate your ownership. One
place where you would definitely have an owned reference is where you create a Python object from
scratch.

When you are done with a Python object, you must dispose of your ownership, either by decrementing
the reference count, transferring your ownership by passing it on, or storing the object. Failure to
dispose of an owned reference creates a memory leak.

You may also have a borrowed reference to an object. Somewhat lower on the responsibility ladder, this
is where you are passed the reference of an object, but otherwise do not manipulate the data in any
way. Nor do you have to worry about its reference count, as long as you do not hold on to this reference

file:///D|/1/0132269937/ch22lev1sec2.html (13 von 15) [13.11.2007 16:25:22]

Section 22.2. Extending Python by Writing Extensions

after its reference count has decreased to zero. You may convert your borrowed reference to an owned
reference simply by incrementing an object's reference count.

Python provides a pair of C macros which are used to change the reference count to a Python object.
They are given in Table 22.3.

Table 22.3. Macros for Performing
Python Object Reference Counting

Function Description

Py_INCREF(obj) Increment the reference count to obj

Py_DECREF(obj) Decrement the reference count to obj

In our above Extest_test() function, we return None by building a PyObject with an empty string;
however, it can also be accomplished by becoming an owner of the None object, PyNone, incrementing
your reference count to it, and returning it explicitly, as in the following alternative piece of code:

 static PyObject *
 Extest_test(PyObject *self, PyObject *args) {
 test();
 Py_INCREF(Py_None);
 return PyNone;
 }

Py_INCREF() and Py_DECREF() also have versions that check for NULL objects. They are Py_XINCREF() and
Py_XDECREF(), respectively.

We strongly urge the reader to consult the Python documentation regarding extending and embedding
Python for all the details with regard to reference counting (see the documentation reference in the
Appendix).

22.2.6. Threading and the GIL

Extension writers must be aware that their code may be executed in a multithreaded Python
environment. Back in Section 18.3.1, we introduced the Python Virtual Machine (PVM) and the Global
Interpreter Lock (GIL) and described how only one thread of execution can be running at any given time
in the PVM and that the GIL is responsible for keeping other threads from running. Furthermore, we
indicated that code calling external functions such as in extension code would keep the GIL locked until
the call returns.

We also hinted that there was a remedy, a way for the extension programmer to release the GIL, for
example before performing a system call. This is accomplished by "blocking" your code off to where
threads may (and may not) run safely using another pair of C macros, Py_BEGIN_ALLOW_THREADS and
Py_END_ALLOW_THREADS. A block of code bounded by these macros will permit other threads to run.

file:///D|/1/0132269937/ch22lev1sec2.html (14 von 15) [13.11.2007 16:25:22]

Section 22.2. Extending Python by Writing Extensions

As with the reference counting macros, we urge you to consult with the documentation regarding
extending and embedding Python as well as the Python/C API reference manual.

file:///D|/1/0132269937/ch22lev1sec2.html (15 von 15) [13.11.2007 16:25:22]

Section 22.3. Related Topics

22.3. Related Topics

SWIG

There is an external tool available called SWIG, which stands for Simplified Wrapper and Interface
Generator. It was written by David Beazley, also the author of Python Essential Reference. It is a
software tool that can take annotated C/C++ header files and generate wrapped code, ready to compile
for Python, Tcl, and Perl. Using SWIG will free you from having to write the boilerplate code we've seen
in this chapter. You only need to worry about coding the solution part of your project in C/C++. All you
have to do is create your files in the SWIG format, and it will do the background work on your behalf.
You can find out more information about SWIG from its main Web site located at the following Web
address (URL):

http://swig.org

Pyrex

One obvious weakness of creating C/C++ extensions (raw or with SWIG) is that you have to write C/C+
+ (surprise, surprise), with all of its strengths, and, more importantly, its pitfalls. Pyrex gives you
practically all of the gains of writing extensions but not the headache. Pyrex is a new language created
specifically for writing Python extensions. It is a hybrid of C and Python, leaning much more toward
Python: in fact, the Pyrex Web site goes as far as saying that, "Pyrex is Python with C data types." You
only need to write code in the Pyrex syntax and run the Pyrex compiler on the source. Pyrex creates C
files, which can then be compiled and used as a normal extension would. Some have sworn off C
programming forever upon discovering Pyrex. You can get Pyrex at its home page:

http://cosc.canterbury.ac.nz/~greg/python/Pyrex

Psyco

Pyrex gives us the advantage that you no longer have to write pure C; however, do you need to learn its
syntax, "yet another language." In the end, your Pyrex code turns into C anyway. You use C/C++, C/C+
+ with SWIG, or Pyrex because you still want that performance boost you are looking for. What if you
can obtain performance gains without changing your Python code?

Psyco's concept is quite different from those other approaches. Rather than writing C code, why not just
make your existing Python code run faster? Psyco serves as a just-in-time (JIT) compiler so you do not
have to change to your source other than importing the Psyco module and telling it to start optimizing
your code (during runtime).

Psyco can also profile your code to see where it can make the most significant improvements. You can
even enable logging to see what Psyco does while optimizing your code. For more information, go to its
main Web site:

http://psyco.sf.net

Embedding

Embedding is another feature available in Python. It is the inverse of an extension. Rather than taking C
code and wrapping it into Python, you take a C application and wrap a Python interpreter inside it. This

file:///D|/1/0132269937/ch22lev1sec3.html (1 von 2) [13.11.2007 16:25:23]

http://swig.org/
http://psyco.sf.net/

Section 22.3. Related Topics

has the effect of giving a potentially large, monolithic, and perhaps rigid, proprietary, and/or mission-
critical application the power of having an embedded Python interpreter. Once you have Python, well,
it's like a whole new ball game.

For extension writer, there is a set of official docs that you should refer to for additional information.

Here are links to some of the Python documentation related to this chapter's topics:

Extending and Embedding

http://docs.python.org/ext

Python/C API

http://docs.python.org/api

Distributing Python Modules

http://docs.python.org/dist

file:///D|/1/0132269937/ch22lev1sec3.html (2 von 2) [13.11.2007 16:25:23]

http://docs.python.org/ext
http://docs.python.org/api
http://docs.python.org/dist
file:///D|/1/0132269937/14051536.html

Section 22.4. Exercises

22.4. Exercises

22-1. Extending Python. What are some of the advantages of Python extensions?

22-2. Extending Python. Can you see any disadvantages or dangers of using extensions?

22-3. Writing Extensions. Obtain or find a C/C++ compiler and write a small program with it
to (re)familiarize yourself with C/C++ programming. Find your Python distribution
directory and locate the Misc/Makefile.pre.in file. Take the program you just wrote
and wrap it in Python. Go through the steps necessary to create a shared object.
Access that module from Python and test it.

22-4. Porting from Python to C. Take several of the exercises you did in earlier chapters and
port them to C/C++ as extension modules.

22-5. Wrapping C Code. Find a piece of C/C++ code, which you may have done a long time
ago, but want to port to Python. Instead of porting, make it an extension module.

22-6. Writing Extensions. In Exercise 13-3, you created a dollarize() function as part of a
class to convert a floating point value to a financial numeric string with embedded
dollar signs and commas. Create an extension featuring a wrapped dollarize()
function and integrate a regression testing function, i.e., test(), into the module.
Extra credit: In addition to creating a C extension, also rewrite dollarize() in Pyrex.

22-7. Extending versus Embedding. What is the difference between extending and
embedding?

file:///D|/1/0132269937/ch22lev1sec4.html [13.11.2007 16:25:23]

file:///D|/1/0132269937/14051536.html

Chapter 23. Miscellaneous

Chapter 23. Miscellaneous

Chapter Topics

● Introduction
● Web Services
● Programming Microsoft Office with Win32 COM
● Python and Java Programming with Jython
● Exercises

In this chapter, we will give brief preview introductions to miscellaneous areas of Python programming
we did not have time to explore more fully. We hope to eventually develop these into full chapters for
future editions of this book.

file:///D|/1/0132269937/ch23.html [13.11.2007 16:25:23]

Section 23.1. Web Services

23.1. Web Services

There are many Web services and applications on the Net, providing a wide variety of services. You will
find application programmer interfaces (APIs) from most of the big players today, i.e., Yahoo!, Google,
eBay, and Amazon, to name a few. In the past, APIs have been used just to access data using these
services; however, today's APIs are different. They are rich and fully featured, and you are able to
actually integrate services into your own personal Web sites and Web pages, commonly known as "Mash-
ups."

This is an area of active interest that we will continue to explore (REST, XML, RSS, etc.), but for now,
we are going to take a trip back in time to play around with an older interface that is both useful and
has longevity, the stock quote server from Yahoo! at http://finance.yahoo.com.

 23.1.1. Yahoo! Finance Stock Quote Server

If you visit the Web site and pull up a quotation for any stock, you will find a Uniform Resource Locator
(URL) link under the basic quote data labeled "Download Data," which lets users download a CSV file
suitable for importing into Microsoft Excel or Intuit Quicken:

http://finance.yahoo.com/d/quotes.csv?s=GOOG&f=sl1d1t1c1ohgv&e=.csv

If your browser's MIME settings are set correctly, your browser will actually launch Excel with the
resulting data. This is due primarily to the final variable (key-value) pair found in the link, e=.csv. This
variable is actually not used by the server as it always sends back data in CSV format anyway.

If we use our friend urllib.urlopen(), we see that for any stock ticker symbol, one CSV string is
returned:

>>> from urllib import urlopen
>>> u = urlopen('http://quote.yahoo.com/d/
 quotes.csv?s=YHOO&f=sl1d1t1c1ohgv')
>>> for row in u:
... print 'row'
...
'"YHOO",30.76,"5/23/
 2006","4:00pm",+0.30,31.07,31.63,30.76,28594020\r\n'
>>> f.close()

The string would then have to be manually parsed (by stripping the trailing whitespace and splitting on
the comma delimiter). As an alternative to parsing the data string ourselves, we can use the csv
module, introduced in Python 2.3, which does both the string split and the whitespace strip. Using csv,
we can replace the for loop above with the following assuming all other lines are left intact:

>>> import csv
>>> for row in csv.reader(u):
... print row
...

file:///D|/1/0132269937/ch23lev1sec1.html (1 von 4) [13.11.2007 16:25:24]

http://finance.yahoo.com/
http://finance.yahoo.com/d/

Section 23.1. Web Services

['YHOO', '30.76', '5/23/2006', '4:00pm', '+0.30',
 '31.07', '31.63', '30.76', '28594020']

By analyzing the argument field f passed to the server and from reading Yahoo!'s online help for this
service, you will see that the symbols (sl1d1t1c1ohgv) correspond to: ticker symbol, last price, date,
time, change, open price, daily high, daily low, and volume.

You can get more information by checking the Yahoo! Finance Help pagesjust search for "download
data" or "download spreadsheet format." Further analysis of the API reveals a few more options such as
the previous closing price, the percentage change of the current price to the previous close, the 52-week
high and low, etc. All in all, the options can be summarized in Table 23.1 along with the formats of the
returned components.

Table 23.1. Yahoo! Finance Stock Quote Server Parameters

Stock Quotation Data
Field Name

[a]
Format Returned

[b]

Stock ticker symbol s "YHOO"

Price of last trade l1 328

Last trade date d1 "2/2/2000"

Time of last trade t1 "4:00pm"

Change from previous close c1 +10.625

Percentage change from previous close p2 "+3.35%"

Previous closing price p 317.375

Last opening price o 321.484375

Daily high price h 337

Daily low price g 317

52-week range w "110 - 500.125"

Volume for the day v 6703300

Market capitalization j1 86.343B

Earnings per share e 0.20

Price-to-earnings ratio r 1586.88

Company name n "YAHOO INC"

[a] First character of field name is alphabetic; the second, if any, is numeric.

[b] Some values returned quoted although all are returned in one CSV string.

file:///D|/1/0132269937/ch23lev1sec1.html (2 von 4) [13.11.2007 16:25:24]

Section 23.1. Web Services

The field names are given in the order you want them from the server. Just concatenate them together
as a single argument to the field parameter f as part of the requesting URL. As mentioned in the
returned value footnote, some of components returned are quoted separately. It is up to the parser to
properly extract the data. Observe the resulting (sub)strings when parsed manually vs. using the csv
module in our example above. If a value is not available, the quote server returns "N/A" (separately
quoted since that field is, which makes it consistent ... a good thing).

For example, if we give the server a field request of f=sl1d1c1p2, we get a string like the following
returned for a valid stock ticker:

"YHOO",166.203125,"2/23/2000",+12.390625,"+8.06%"

For the case where the stock is no longer publicly traded, we get something like this instead (note again
how fields that come back quoted still do, even if N/A):

"PBLS.OB",0.00,"N/A",N/A,"N/A"

The quote server will also allow you to specify multiple stock ticker symbols, as in s=YHOO,GOOG,EBAY,
AMZN. You will get back one row of data like the above for each company. Just keep in mind that "[any]
redistribution of quotes data displayed on Yahoo! is strictly prohibited," as quoted in the Yahoo! Finance
Help pages, so you should only be using these data for personal reasons. Also be aware that all of the
quotes you download are delayed.

Using what we know now, let us build an example (Example 23.1) application that will read and display
some stock quote data for some of our favorite Internet companies.

Example 23.1. Yahoo! Finance Stock Quote Example (stock.py)

This script downloads and displays stock prices from the Yahoo! quote server.

1 #!/usr/bin/env python
2
3 from time import ctime
4 from urllib import urlopen
5
6 ticks = ('YHOO', 'GOOG', 'EBAY', 'AMZN')
7 URL = 'http://quote.yahoo.com/d/quotes.csv?s=%s&f=sl1c1p2'
8
9 print '\nPrices quoted as of:', ctime()
10 print '\nTICKER'.ljust(9), 'PRICE'.ljust(8), 'CHG'.ljust(5), '%AGE'
11 print '------'.ljust(8), '-----'.ljust(8), '---'.ljust(5), '----'
12 u = urlopen(URL % ','.join(ticks))
13
14 for row in u:
15 tick, price, chg, per = row.split(',')
16 print eval(tick).ljust(7), \
17 ('%.2f' % round(float(price), 2)).rjust(6), \
18 chg.rjust(6), eval(per.rstrip()).rjust(6)
19
20 f.close()

file:///D|/1/0132269937/ch23lev1sec1.html (3 von 4) [13.11.2007 16:25:24]

Section 23.1. Web Services

If we run this script, we will get output that looks like the following:

$ stock.py

Prices quoted as of: Sat May 27 03:25:56 2006

TICKER PRICE CHG %AGE
------ ----- --- ----
YHOO 33.02 +0.10 +0.30%
GOOG 381.35 -1.64 -0.43%
EBAY 34.20 +0.32 +0.94%
AMZN 36.07 +0.44 +1.23%

file:///D|/1/0132269937/ch23lev1sec1.html (4 von 4) [13.11.2007 16:25:24]

Section 23.2. Programming Microsoft Office with Win32 COM

23.2. Programming Microsoft Office with Win32 COM

One of the most useful things that you can do in an everyday business environment is to integrate
support for Win32 applications. Being able to read data from and write data to such applications can
often be very handy. Your department may not be necessarily be running in a Win32 environment, but
chances are, your management and other project teams are. Mark Hammond's Windows Extensions for
Python allows programmers to interact natively with Win32 applications in their native environment. (It
can be downloaded at the book's Web site.)

The Win32 programming universe is expansive. Most of it available from the Windows Extensions for
Python package, i.e., Windows API, processes, Microsoft Foundation Classes (MFC) Graphical User
Interface (GUI) development, Windows multithreaded programming, services, remote access, pipes,
server-side COM programming, and events. And don't forget about IronPython (http://codeplex.com/
Wiki/View.aspx?ProjectName=IronPython), an implementation of the Python language in C# for the .
NET/Mono development environment. In this section, we are going to focus on one part of the Win32
programming universe, which easily has practical applications for client-side, COM programming.

23.2.1. Client-Side COM Programming

We can use Component Object Model, better known as COM (or its marketing name, ActiveX), to
communicate with tools such as Outlook and Excel. For programmers, the pleasure comes with being
able to "control" a native Office application directly from their Python code.

Specifically, when discussing the use of a COM object, e.g., launching of an application and allowing
code to access methods and data of that applications, this is referred to as COM client-side
programming. Server-side COM programming is where you are implementing a COM object for clients to
access.

Core Note: Python and Microsoft COM (Client-Side) Programming

Python on the Windows 32-bit platform contains connectivity to COM,
a Microsoft interfacing technology that allows objects to talk to one
another, or more higher-level applications to talk to one another,
without any language- or format-dependence. We will see in this
section how the combination of Python and COM (client programming)
presents a unique opportunity to create scripts that can communicate
directly with Microsoft Office applications such as Word, Excel,
PowerPoint, and Outlook.

The prerequisites to this section include running on a Win32 platform with both Python and the Windows
Extensions for Python installed. You must also have one or more Microsoft applications available to try
the examples with. The download instructions for the Windows Extensions should be adequate to get
your system ready to go. Since PythonWin comes with the Extensions distribution, we recommend IDE
for building and testing your Win32 scripts.

In this section, we will show you how you can interact with an Office application. We will present a few
examples, some of them quite useful, and describe how they work in detail. You will also find several of
these at the "Python Cookbook" Web site. We confess to readers that we are not COM or VisualBasic
experts and we are well aware that our examples can be vastly improved. We would like to solicit the
readership to drop us a line and send us any comments, suggestions, or improvements that you would

file:///D|/1/0132269937/ch23lev1sec2.html (1 von 14) [13.11.2007 16:25:26]

http://codeplex.com/Wiki/View.aspx?ProjectName=IronPython
http://codeplex.com/Wiki/View.aspx?ProjectName=IronPython

Section 23.2. Programming Microsoft Office with Win32 COM

consider for the general audience.

Let us start with very simple examples of how to launch and interact with Microsoft Excel, Word,
PowerPoint, and Outlook. Before we show you examples of all we have discussed, we want to point out
that client-side COM applications all follow similar steps in execution. The typical way in which you would
interact with these applications is something like this:

1.

Launch application

2.

Add appropriate document to work on (or load one from disk)

3.

Make application visible (if desired)

4.

Perform all desired work on document

5.

Save or discard document

6.

Quit

Enough talking ... let us take a look at some code. Below are a series of scripts that control a different
Microsoft application. All import the win32com. client module as well as a couple of Tk modules to
control the launching (and completion) of each application. Also like we did in Chapter 19, we use the .
pyw file extension to suppress the unneeded DOS command window.

23.2.2. Microsoft Excel

Our first example is a demonstration using Excel. Of the entire Office suite, we find Excel to be the most
programmable. It is quite useful to pass data to Excel so that you can both take advantage of the
spreadsheet's features as well as viewing data in a nice printable format. It is also useful to be able to
read data from a spreadsheet and process data with the power of a real programming language like
Python. We will present a more complex example using Excel at the end of this section, but we have to
start somewhere. So, we start with Example 23.2.

Example 23.2. Excel Example (excel.pyw)

file:///D|/1/0132269937/ch23lev1sec2.html (2 von 14) [13.11.2007 16:25:26]

Section 23.2. Programming Microsoft Office with Win32 COM

This script launches Excel and writes data to spreadsheet cells.

1 #!/usr/bin/env python
2
3 from Tkinter import Tk
4 from time import sleep
5 from tkMessageBox import showwarning
6 import win32com.client as win32
7
8 warn = lambda app: showwarning(app, 'Exit?')
9 RANGE = range(3, 8)
10
11 def excel():
12 app = 'Excel'
13 xl = win32.gencache.EnsureDispatch('%s.Application' % app)
14 ss = xl.Workbooks.Add()
15 sh = ss.ActiveSheet
16 xl.Visible = True
17 sleep(1)
18
19 sh.Cells(1,1).Value = 'Python-to-%s Demo' % app
20 sleep(1)
21 for i in RANGE:
22 sh.Cells(i,1).Value = 'Line %d' % i
23 sleep(1)
24 sh.Cells(i+2,1).Value = "Th-th-th-that's all folks!"
25
26 warn(app)
27 ss.Close(False)
28 xl.Application.Quit()
29
30 if __name__=='__main__':
31 Tk().withdraw()
32 excel()

Line-by-Line Explanation

Lines 16, 31

We import Tkinter and tkMessageBox only to use the showwarning message box upon termination of the
demonstration. We withdraw() the Tk top-level window to suppress it (line 31) before bringing up the
dialog box (line 26). If you do not initialize the top level beforehand, one will automatically be created
for you; it won't be withdrawn and will be an annoyance on-screen.

Lines 1117

After the code starts (or "dispatches") Excel (an application), we add a workbook (a spreadsheet that
contains sheets that the data are written to; these sheets are organized as tabs in a workbook), and
grab a handle to the active sheet, meaning the sheet that is displayed. Do not get all worked up about
the terminology, which may be confusing mostly because a "spreadsheet contains sheets."

Core Note: Static and dynamic dispatch

file:///D|/1/0132269937/ch23lev1sec2.html (3 von 14) [13.11.2007 16:25:26]

Section 23.2. Programming Microsoft Office with Win32 COM

On line 13, we use what is known as static dispatch. Before starting up
the script, we ran the Makepy utility from PythonWin. (Start the IDE,

select Tools COM Makepy utility and choose the appropriate
application object library.) This utility program creates and caches the
objects that are needed for the application. Without this prep work,
the objects and attributes will have to be built during runtime; this is
known as dynamic dispatch. If you want to run dynamically, then use
the regular Dispatch() function:

xl = win32com.client.Dispatch('%s.Application' % app)

The Visible flag must be set to true to make the application visible on your desktop, then pause so that
the user can see each step in the demonstration (line 16). For an explanation of the sleep() call on line
17, just read the next paragraph.

Lines 1924

In the application portion of the script, we write out the title of our demonstration to the first and upper
leftmost cell, (A1) or (1, 1). We then skip a row and then write "Line N" where N is numbered from 3 to
7, pausing 1 second in between each row so that users can see our updates happening live. (The cell
updates would occur too quickly without the delay.)

Lines 2632

A warning dialog box comes up after the demo letting the user know that he or she can quit this demo
once they have observed the output. The spreadsheet is closed without saving, ss.Close([SaveChanges=]
False), and the application exits. Finally, the "main" part of the script just initializes Tk and runs the
core part of the application.

Running this script results in an Excel application window, which should look similar to Figure 23-1.

Figure 23-1. Python-to-Excel demonstration script (excel.pyw)

file:///D|/1/0132269937/ch23lev1sec2.html (4 von 14) [13.11.2007 16:25:26]

Section 23.2. Programming Microsoft Office with Win32 COM

23.2.3. Microsoft Word

The next demonstration is with Word. Using Word for documents is not as applicable to the
programming world as there is not much data involved. One could consider using Word for generating
form letters, however. In Example 23.3, we create a document by simply writing one line of text after
another.

Example 23.3. Word Example (word.pyw)

This script launches Word and writes data to the document.

1 #!/usr/bin/env python
2
3 from Tkinter import Tk
4 from time import sleep
5 from tkMessageBox import showwarning
6 import win32com.client as win32
7
8 warn = lambda app: showwarning(app, 'Exit?')
9 RANGE = range(3, 8)
10
11 def word():
12 app = 'Word'
13 word = win32.gencache.EnsureDispatch('%s.Application' % app)
14 doc = word.Documents.Add()
15 word.Visible = True
16 sleep(1)
17
18 rng = doc.Range(0,0)
19 rng.InsertAfter('Python-to-%s Test\r\n\r\n' % app)

file:///D|/1/0132269937/ch23lev1sec2.html (5 von 14) [13.11.2007 16:25:26]

Section 23.2. Programming Microsoft Office with Win32 COM

20 sleep(1)
21 for i in RANGE:
22 rng.InsertAfter('Line %d\r\n' % i)
23 sleep(1)
24 rng.InsertAfter("\r\nTh-th-th-that's all folks!\r\n")
25
26 warn(app)
27 doc.Close(False)
28 word.Application.Quit()
29
30 if __name__=='__main__':
31 Tk().withdraw()
32 word()

The Word example follows pretty much the same script as the Excel example. The only difference is that
instead of writing in cells, we have to insert the strings into the text "range" of our document and move
the cursor forward after each write. We also have to manually provide the line termination characters of
carriage RETURN following by NEWLINE (\r\n).

If we run this script, a resulting screen might look like Figure 23-2.

Figure 23-2. Python-to-Word demonstration script (word.pyw)

23.2.4. Microsoft PowerPoint

file:///D|/1/0132269937/ch23lev1sec2.html (6 von 14) [13.11.2007 16:25:26]

Section 23.2. Programming Microsoft Office with Win32 COM

Applying PowerPoint in an application may not seem commonplace, but you could consider using it when
you are rushed to make a presentation. You can create your bullet points in a text file on the plane, then
upon arrival at the hotel that evening, use a script that parses the file and auto-generates a set of
slides. You can further enhance those slides by adding in a background, animation, etc., all of which are
possible through the COM interface. Another use case would be if you had to auto-generate or modify
new or existing presentations. You can create a COM script controlled via a shell script to create and
tweak each presentation generated. Okay, enough speculation ... now let us take a look at our
PowerPoint example (i.e., Example 23.4).

Example 23.4. PowerPoint Example (ppoint.pyw)

This script launches PowerPoint and writes data to the "shapes" on a slide.

1 #!/usr/bin/env python
2
3 from Tkinter import Tk
4 from time import sleep
5 from tkMessageBox import showwarning
6 import win32com.client as win32
7
8 warn = lambda app: showwarning(app, 'Exit?')
9 RANGE = range(3, 8)
10
11 def ppoint():
12 app = 'PowerPoint'
13 ppoint = win32.gencache.EnsureDispatch('%s.Application' % app)
14 pres = ppoint.Presentations.Add()
15 ppoint.Visible = True
16
17 s1 = pres.Slides.Add(1, win32.constants.ppLayoutText)
18 sleep(1)
19 s1a = s1.Shapes[0].TextFrame.TextRange
20 s1a.Text = 'Python-to-%s Demo' % app
21 sleep(1)
22 s1b = s1.Shapes[1].TextFrame.TextRange
23 for i in RANGE:
24 s1b.InsertAfter("Line %d\r\n" % i)
25 sleep(1)
26 s1b.InsertAfter("\r\nTh-th-th-that's all folks!")
27
28 warn(app)
29 pres.Close()
30 ppoint.Quit()
31
32 if __name__=='__main__':
33 Tk().withdraw()
34 ppoint()

Again, you will notice similarities to both the Excel and Word demonstrations above. Where PowerPoint
differs is in the objects you write data to. Instead of a single active sheet or document, PowerPoint is
somewhat trickier because each presentation slide can have a different layout. With a presentation, you
have multiple slides, and each slide can have a different layout. (Recent versions of PowerPoint have 30
different layouts!) The actions you can perform on a slide depend on which layout you have chosen for
each page.

file:///D|/1/0132269937/ch23lev1sec2.html (7 von 14) [13.11.2007 16:25:26]

Section 23.2. Programming Microsoft Office with Win32 COM

In our example, we just use a (title and) text layout (line 17) and fill in the main title (lines 1920), Shape
[0] or Shape(1)Python sequences begin at index 0 while Microsoft software starts at 1, and the text
portion (lines 2226), Shape[1] or Shape(2). To figure out which constant to use, you will need a list of all
the ones available to you. For example, ppLayoutText is defined as a constant with a value of 2 (integer),
ppLayoutTitle is 1, etc. You can find the constants in most Microsoft VB/Office programming books or
online by just searching on the names. Alternatively, you can just use the integer constants without
having to name them via win32.constants.

The PowerPoint screenshot is shown in Figure 23-3.

Figure 23-3. Python-to-PowerPoint demonstration script (ppoint.pyw)

23.2.5. Microsoft Outlook

Finally, we give an Outlook demonstration, which uses even more constants than PowerPoint. As a fairly
common and versatile tool, use of Outlook in an application makes sense, like it does for Excel. There
are always e-mail addresses, messages, and other data that can be easily manipulated in a Python
program. Example 23.5 is an Outlook example that does a little bit more than our previous examples.

Example 23.5. Outlook Example (olook.pyw)

file:///D|/1/0132269937/ch23lev1sec2.html (8 von 14) [13.11.2007 16:25:26]

Section 23.2. Programming Microsoft Office with Win32 COM

This script launches Outlook, creates a new message, "sends" it, and lets you view it by
opening and displaying both the Outbox and the message itself.

1 #!/usr/bin/env python
2
3 from Tkinter import Tk
4 from time import sleep
5 from tkMessageBox import showwarning
6 import win32com.client as win32
7
8 warn = lambda app: showwarning(app, 'Exit?')
9 RANGE = range(3, 8)
10
11 def outlook():
12 app = 'Outlook'
13 olook = win32.gencache.EnsureDispatch('%s.Application' % app)
14
15 mail = olook.CreateItem(win32.constants.olMailItem)
16 recip = mail.Recipients.Add('you@127.0.0.1')
17 subj = mail.Subject = 'Python-to-%s Demo' % app
18 body = ["Line %d" % i for i in RANGE]
19 body.insert(0, '%s\r\n' % subj)
20 body.append("\r\nTh-th-th-that's all folks!")
21 mail.Body = '\r\n'.join(body)
22 mail.Send()
23
24 ns = olook.GetNamespace("MAPI")
25 obox = ns.GetDefaultFolder(win32.constants.olFolderOutbox)
26 obox.Display()
27 obox.Items.Item(1).Display()
28
29 warn(app)
30 olook.Quit()
31
32 if __name__=='__main__':
33 Tk().withdraw()
34 outlook()

In this example, we use Outlook to send an e-mail to ourselves. In order to make the demonstration
work, you need to turn off your network access so that you do not really send the message, and thus
are able to view it in your Outbox folder (and delete it if desired after viewing it). After launching
Outlook, we create a new mail message and fill out the various fields such as recipient, subject, and
body (lines 1521). We then call the send() method (line 22) to spool the message to the Outbox where it
will be moved to "Sent Mail" once the message has actually been transmitted to the mail server.

Like PowerPoint, there are many constants available ... olMailItem (with a constant value of 0) is the
one used for e-mail messages. Other popular Outlook items include olAppointmentItem (1),
olContactItem (2), and olTaskItem (3). Of course, there are more, so you will have to find a VB/Office
programming book or search for the constants and their values online.

In the next section (lines 2427), we use another constant,olFolderOutbox (4), to open the Outbox folder
and bring it up for display. We find the most recent item (hopefully the one we just created) and display
it as well. Other popular folders include: olFolderInbox (6), olFolderCalendar (9), olFolderContacts (10),

file:///D|/1/0132269937/ch23lev1sec2.html (9 von 14) [13.11.2007 16:25:26]

Section 23.2. Programming Microsoft Office with Win32 COM

olFolderDrafts (16), olFolderSentMail (5), and olFolderTasks (13). If you use dynamic dispatch, you
will likely have to use the numeric values instead of the constants' names (see previous Core Note).

Figure 23-4 shows a screen capture of just the message window.

Figure 23-4. Python-to-Outlook demonstration script (olook.pyw)

Before we get this far, however, from its history we know that Outlook has been vulnerable to all kinds
of attacks, so Microsoft has built some protection into Outlook for restricting access to your address
book and being able to send mail on your behalf. When attempting to access your Outlook data, the
screen shown in Figure 23-5 pops up where you must explicitly give permission to an outside program.

Figure 23-5. Outlook address book access warning

file:///D|/1/0132269937/ch23lev1sec2.html (10 von 14) [13.11.2007 16:25:26]

Section 23.2. Programming Microsoft Office with Win32 COM

Then when you are trying to send a message from an external program, you get the warning dialog
shown in Figure 23-6, where you have to wait until the timer expires before you are allowed to select
"Yes".

Figure 23-6. Outlook e-mail transmission warning

Once you pass all the security checks, everything else should work smoothly. There is software available
to help get you around these checks but they have to be downloaded and installed separately.

On this book's Web site at http://corepython.com, you will find an alternative script that combines these
four smaller ones into a single application that lets users choose which of these demonstrations to run.

23.2.6. Intermediate Example

Now that we have gotten a good taste of Office programming, let us build a more useful application by
combining the material from this section with that of the Web Services section. If we were to combine
the stock quote example with our Excel demonstration script, we would get an application that would
download stock quotes from the net and pop them directly into Excel without having to create or use
CSV files as a medium (see Example 23.6).

Example 23.6. Stock Quote and Excel Example (estock.pyw)

file:///D|/1/0132269937/ch23lev1sec2.html (11 von 14) [13.11.2007 16:25:26]

http://corepython.com/

Section 23.2. Programming Microsoft Office with Win32 COM

This script downloads stock quotes from Yahoo! and writes the data to Excel.

1 #!/usr/bin/env python
2
3 from Tkinter import Tk
4 from time import sleep, ctime
5 from tkMessageBox import showwarning
6 from urllib import urlopen
7 import win32com.client as win32
8
9 warn = lambda app: showwarning(app, 'Exit?')
10 RANGE = range(3, 8)
11 TICKS = ('YHOO', 'GOOG', 'EBAY', 'AMZN')
12 COLS = ('TICKER', 'PRICE', 'CHG', '%AGE')
13 URL = 'http://quote.yahoo.com/d/quotes.csv?s=%s&f=sl1c1p2'
14
15 def excel():
16 app = 'Excel'
17 xl = win32.gencache.EnsureDispatch('%s.Application' % app)
18 ss = xl.Workbooks.Add()
19 sh = ss.ActiveSheet
20 xl.Visible = True
21 sleep(1)
22
23 sh.Cells(1, 1).Value = 'Python-to-%s Stock Quote Demo' % app
24 sleep(1)
25 sh.Cells(3, 1).Value = 'Prices quoted as of: %s' % ctime()
26 sleep(1)
27 for i in range(4):
28 sh.Cells(5, i+1).Value = COLS[i]
29 sleep(1)
30 sh.Range(sh.Cells(5, 1), sh.Cells(5, 4)).Font.Bold = True
31 sleep(1)
32 row = 6
33
34 u = urlopen(URL % ','.join(TICKS))
35 for data in u:
36 tick, price, chg, per = data.split(',')
37 sh.Cells(row, 1).Value = eval(tick)
38 sh.Cells(row, 2).Value = ('%.2f' % round(float(price), 2))
39 sh.Cells(row, 3).Value = chg
40 sh.Cells(row, 4).Value = eval(per.rstrip())
41 row += 1
42 sleep(1)
43 f.close()
44
45 warn(app)
46 ss.Close(False)
47 xl.Application.Quit()
48
49 if __name__=='__main__':
50 Tk().withdraw()
51 excel()

Line-by-Line Explanation

file:///D|/1/0132269937/ch23lev1sec2.html (12 von 14) [13.11.2007 16:25:26]

Section 23.2. Programming Microsoft Office with Win32 COM

Lines 113

We import all of the attributes from both the original Web services stock quote (stock.py) above and
Excel scripts here as well as define the same constants.

Lines 1532

The first part of the core function launches Excel as seen earlier (lines 1721). The title and timestamp
are then written to cells (lines 2329), along with the column headings, which are then bolded (line 30).
The remaining cells are dedicated to writing the actual stock quote data, starting in row 6 (line 32).

Lines 3443

We open the URL as before (line 34), but instead of just writing the data to standard output, we fill in
the spreadsheet cells, one column of data at a time, and one company per row (lines 3542).

Lines 4551

The remaining lines of our script mirror code that we have seen before.

Figure 23-7 shows a window with real data after executing our script.

Figure 23-7. Python-to-Excel stock quote demonstration script (estock.pyw)

Note that the data columns lose the original formatting of the numeric strings because Excel stores them
as numbers using the default cell format. We lose the formatting of the numbers to two places after the

file:///D|/1/0132269937/ch23lev1sec2.html (13 von 14) [13.11.2007 16:25:26]

Section 23.2. Programming Microsoft Office with Win32 COM

decimal point, e.g., "34.2" is displayed even though Python passed in "34.20"; and for the "change from
previous close column," we lose not only the decimal places but also the plus sign (+) indicating a
positive change in value. (Compare the output in Excel to the output from the original text version
[stock.py]. These problems will be addressed by an exercise at chapter's end.)

file:///D|/1/0132269937/ch23lev1sec2.html (14 von 14) [13.11.2007 16:25:26]

Section 23.3. Python and Java Programming with Jython

23.3. Python and Java Programming with Jython

23.3.1. What Is Jython?

Jython is one of those tools that can unite two diverse programming populations. For one, it caters to
Python programmers embedded in a Java development environment and gives them the ability to
rapidly prototype solutions that seamlessly integrate into an existing Java platform. Another reason is
that it helps simplify the lives of millions of Java programmers out there by giving Java a scripting
language environment. No longer do Java programmers have to write a test harness or driver
application to simply test a class they have just written.

Jython gives you most of what Python has to offer along with the ability to instantiate and interact with
Java classes too! Jython code is dynamically compiled into Java bytecode, plus you can extend Java
classes in Jython. You can also extend Python using Java. It is quite easy to write a class in Python and
then use it as a Java class. You can always statically compile a Jython script into Java bytecode.

Jython can be downloaded from the book's Web site or at http://jython.org. After installation and seeing
some default startup notices of processing new .jar files, starting up Jython's interactive interpreter
looks eerily like you're using Python. And yes, Virginia, you can still do the same old "Hello World!" in
Python:

$ jython
Jython 2.2a1 on java1.4.2_09 (JIT: null)
Type "copyright", "credits" or "license" for more
 information.
>>> print 'Hello World!'
Hello World!
>>>
>>> import sys
>>> sys.stdout.write('Hello World!\n')
Hello World!

The only difference is that you now have (to wait for) Java's long startup time. Once you have accepted
that inevitability, you can move on to greater things. The more interesting thing about the Jython
interactive interpreter is that now you can do "Hello World!" using Java(!):

>>> from java.lang import System
>>> System.out.write('Hello World!\n')
Hello World!

Java gives Python users the added bonuses of native exception handling (not available in standard
Python, or "CPython" as it is called, when being referred to among other implementations) as well as
use of Java's own garbage collector (so Python's did not have to be [re]implemented for Java).

23.3.2. Swing GUI Development (Java or Python!)

By having access to all Java classes, we have a much broader universe of what is possible. One example
is GUI development. In Python, we have the default GUI of Tk via the Tkinter module, but Tk is not a
native Python toolkit. However, Java does have Swing, and it is native. With Jython, we can actually

file:///D|/1/0132269937/ch23lev1sec3.html (1 von 4) [13.11.2007 16:25:26]

http://jython.org/

Section 23.3. Python and Java Programming with Jython

write a GUI application using Swing components ... not with Java, but using Python.

A simple "Hello World!" GUI written in Java followed by its equivalent in Python is given in Examples
23.7 and 23.8, respectively, both of which mimic the Tk examples tkhello3.py found earlier in the GUI
programming chapter. These programs are called swhello.java and swhello.py, respectively.

Example 23.7. Swing "Hello World" in Java (swhello.java)

This program creates a GUI just like tkhello3.py but uses Swing instead of Tk. It is written
in Java.

1 import java.awt.*;
2 import java.awt.event.*;
3 import javax.swing.*;
4 import java.lang.*;
5
6 public class swhello extends JFrame {
7 JPanel box;
8 JLabel hello;
9 JButton quit;
10
11 public swhello() {
12 super("JSwing");
13 JPanel box = new JPanel(new BorderLayout());
14 JLabel hello = new JLabel("Hello World!");
15 JButton quit = new JButton("QUIT");
16
17 ActionListener quitAction = new ActionListener() {
18 public void actionPerformed(ActionEvent e) {
19 System.exit(0);
20 }
21 };
22 quit.setBackground(Color.red);
23 quit.setForeground(Color.white);
24 quit.addActionListener(quitAction);
25 box.add(hello, BorderLayout.NORTH);
26 box.add(quit, BorderLayout.SOUTH);
27
28 addWindowListener(new WindowAdapter() {
29 public void windowClosing(WindowEvent e) {
30 System.exit(0);
31 }
32 });
33 getContentPane().add(box);
34 pack();
35 setVisible(true);
36 }
37
38 public static void main(String args[]) {
39 swhello app = new swhello();
40 }
41 }

file:///D|/1/0132269937/ch23lev1sec3.html (2 von 4) [13.11.2007 16:25:26]

Section 23.3. Python and Java Programming with Jython

Example 23.8. Swing "Hello World" in Python (swhello.py)

This is an equivalent Python script to the above Java program and executed with the
Jython interpreter.

1 #!/usr/bin/env jython
2
3 from pawt import swing
4 import sys
5 from java.awt import Color, BorderLayout
6
7 def quit(e):
8 sys.exit()
9
10 top = swing.JFrame("PySwing")
11 box = swing.JPanel()
12 hello = swing.JLabel("Hello World!")
13 quit = swing.JButton("QUIT", actionPerformed=quit,
14 background=Color.red, foreground=Color.white)
15
16 box.add("North", hello)
17 box.add("South", quit)
18 top.contentPane.add(box)
19 top.pack()
20 top.visible = 1 # or True for Jython 2.2+

The code for both matches that of tkhello3.py except they use Swing instead of Tk. The hallmark of the
Python version is the significant reduction in the number of lines of code necessary to do the same thing
in Java. The Python code is more expressive, with each line of code having more significance. In short,
there is less "white noise." Java code tends to have a lot more boilerplate code to get work done, while
Python lets you concentrate on the important parts of your application: the solution to the problem you
are trying to solve.

Since both applications are compiled to Java bytecode, it is no surprise that both applications look
exactly alike when executing on the same platform (see Figure 23-8).

Figure 23-8. Swing Hello World Demonstration Scripts (swhello.{java,py})

file:///D|/1/0132269937/ch23lev1sec3.html (3 von 4) [13.11.2007 16:25:26]

Section 23.3. Python and Java Programming with Jython

Jython is a great development tool because you get the expressiveness of Python plus the rich API in the
Java libraries. If you are a current Java developer, we hope that we have whet your appetite in terms of
what you can now do with the power of Python behind you. If you are new to Java, Jython will be able to
ease you in gently. You can prototype in Jython, then port easily to Java as necessary.

file:///D|/1/0132269937/ch23lev1sec3.html (4 von 4) [13.11.2007 16:25:26]

Section 23.4. Exercises

23.4. Exercises

Web Services

23-1. Web Services. Take the Yahoo! stock quote example (stock.py) and change the
application to save the quote data to a file instead of displaying it to the screen.
Optional: You may change the script so that users can choose to display the quote
data or save it to a file.

23-2. Web Services. Update the Yahoo! stock quote example (stock.py) to download other
stock quote data given the additional parameters listed above. Optional: You may add
this feature to your solution to the above exercise.

23-3. Web Services and the csv Module. Convert stock.py to using the csv module to parse
the incoming data, like we did in the example code snippet. Extra Credit: Do the same
thing to the Excel version of this script (estock.py).

23-4. REST and Web Services. Study how REST and XML are used in more modern-day Web
services APIs and applications. Describe the additional functionality you get over older
systems like the Yahoo! quote server, which uses URL parameters.

23-5. REST and Web Services. Build an application framework using Python's support for
REST and XML that will allow you to share and reuse this code when writing
applications that use any of the newer Web services and APIs available today. Display
your code using APIs from Yahoo!, Google, eBay, and/or Amazon.

Microsoft Office Programming

23-6. Microsoft Excel and Web Pages. Create an application that will read data from an Excel
spreadsheet and map all of it to an equivalent HTML table. (You may use the third-
party HTMLgen module if desired.)

23-7. Microsoft Office Applications and Web Services. Interface to any existing Web service,
whether REST- or URL-based, and write data to an Excel spreadsheet or format the
data nicely into a Word document. Format them properly for printing. Extra Credit:
Support both Excel and Word.

file:///D|/1/0132269937/ch23lev1sec4.html (1 von 5) [13.11.2007 16:25:27]

Section 23.4. Exercises

23-8. Microsoft Outlook and Web Services. Similar to the previous problem, do the same
thing, but put the data into a new e-mail message that you send with Outlook. Extra
Credit: Do the same thing but send the e-mail with regular SMTP instead. (You may
wish to refer to Chapter 17 on Internet Client Programming.)

23-9. Microsoft PowerPoint. Design a presentation slide creator. Design the specification of a
text file that users will create with Word or a normal text editor. Using the
specification format, read in the presentation data and create the appropriate
PowerPoint slides all as part of a single presentation.

23-10. Microsoft Outlook, Databases, and Your Address Book.Write a program that will
extract the contents of an Outlook address book and store the desired fields into a
database. The database can be a text file, DBM file, or even an RDBMS. (You may
wish to refer to Chapter 21, Database Programming.) Extra Credit: Do the reverse ...
read in contact information from a database (or allow for direct user input) and create
or update records in Outlook.

23-11. Microsoft Outlook and E-mail. Develop a program that backs up your e-mail by taking
the contents of your Inbox and/or other important folders and saves them in (as close
to) regular "box" format to disk.

23-12. Microsoft Outlook Calendar. Write a simple script that creates new Outlook
appointments. Take at least the following as user input: start date and time,
appointment name or subject, and duration of appointment.

23-13. Microsoft Outlook Calendar. Build an application that dumps the contents of your
appointments to a destination of your choice, i.e., to the screen, to a database, to
Excel, etc. Extra Credit: Do the same thing to your set of Outlook tasks.

23-14. Multithreading. Update the Excel version of the stock quote download script (estock.
pyw) so that the downloads of data happen "concurrently" using multiple Python
threads. Optional: You may also try this exercise with Visual C++ threads using
win32process.beginthreadex().

file:///D|/1/0132269937/ch23lev1sec4.html (2 von 5) [13.11.2007 16:25:27]

Section 23.4. Exercises

23-15. Excel Cell Formatting. In the spreadsheet version of the stock quote download script
(estock.pyw), we saw in Figure 23-7 how the stock price does not default to two places
after the decimal point even if we pass in a string with the trailing zero(s). When Excel
converts it to a number, it uses the default setting for the number format.

a.

Change the numeric format to correctly go out to two decimal places by
changing the cell's NumberFormat attribute to "0.00."

b.

We can also saw that the "change from previous close" column loses the "+" in
addition to the decimal point formatting. However, we discover that making
the correction in part (a) to both columns only solves the decimal place
problem... the plus sign is automatically dropped for any number. The solution
here is to change this column to be text instead of a number. You can do this
by changing the cell's NumberFormat attribute to "@."

c.

By changing the cell's numeric format to text, however, we lose the right
alignment that comes automatically with numbers. In addition to your solution
to part (b), you must also now set the cell's HorizontalAlignment attribute to
the Win32 Excel constant xlRight. After you come up with the solutions to all
three parts, your output will now look more acceptable, as shown in Figure 23-
9.

Figure 23-9. Improving the Python-to-Excel stock quote
script (estock.pyw)

file:///D|/1/0132269937/ch23lev1sec4.html (3 von 5) [13.11.2007 16:25:27]

Section 23.4. Exercises

Java, Python, Jython

23-16. Jython. What is the difference between Jython and CPython?

23-17. Java and Python. Take an existing Java application and port it to Python. Write down
your experience in a journal. When complete, give an executive summary of what has
to be accomplished, what some of the important steps are, and what common
operations you have to perform to make it happen.

23-18. Java and Python. Study the Jython source code. Describe how some of Python
standard types are implemented in Java.

23-19. Java and Python. Extend Python by writing an extension in Java. What are the
necessary steps? Demonstrate your working solution by showing how it works in with
the Jython interactive interpreter.

23-20. Jython and Databases. Find an interesting exercise from the Chapter 21 and port it to
Jython. One of the best things about Jython is that starting in 2.1, it now comes with a
JDBC database module called zxJDBC that is nearly Python DB-API 2.0-compliant.

file:///D|/1/0132269937/ch23lev1sec4.html (4 von 5) [13.11.2007 16:25:27]

Section 23.4. Exercises

23-21. Python and Jython. Find a Python module not available in Jython (yet) and port it.
Consider submitting it as a patch to the Jython distribution.

file:///D|/1/0132269937/ch23lev1sec4.html (5 von 5) [13.11.2007 16:25:27]

Appendix A. Answers to Selected Exercises

Appendix A. Answers to Selected Exercises

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Chapter 10

Chapter 11

Chapter 12

Chapter 13

Chapter 14

Chapter 15

Chapter 16

Chapter 17

Chapter 18

Chapter 19

Chapter 20

Chapter 21

file:///D|/1/0132269937/app01.html (1 von 2) [13.11.2007 16:25:27]

file:///D|/1/0132269937/14051536.html

Appendix A. Answers to Selected Exercises

Chapter 22

Chapter 23

file:///D|/1/0132269937/app01.html (2 von 2) [13.11.2007 16:25:27]

Chapter 2

Chapter 2

5. Loops and numbers

a.

i = 0
while i < 11:
 i += 1

b.

for i in range(11):
 pass

6. Conditionals

n = int(raw_input('enter a number: '))
if n < 0:
 print 'negative'
elif n > 0:
 print 'positive'
else:
 print 'zero'

7. Loops and strings

s = raw_input('enter a string: ')

for eachChar in s:
 print eachChar # (does not print index)

or

for i in range(len(s)):
 print i, s[i]

or

i = 0
slen = len(s)
while i < slen:

file:///D|/1/0132269937/app01lev1sec1.html (1 von 2) [13.11.2007 16:25:28]

Chapter 2

 print i, s[i]

or

for i, x in enumerate(s):
 print i, x

8. Loops and operators

subtot = 0
for i in range(5):
 subtot += int(raw_input('enter a number: '))
print subtot

or

uses sum() BIF and generator expressions
print sum(int(raw_input('enter a number: ')) for i in range(5))

file:///D|/1/0132269937/app01lev1sec1.html (2 von 2) [13.11.2007 16:25:28]

Chapter 3

Chapter 3

4. Statements

Use;

5. Statements

Use \ (unless part of a comma-separated sequence in which case \ is optional)

7. Identifiers

40XL number

$saving$ symbol

print keyword

0x40L number

big-daddy symbol

2hot2touch number

thisIsn'tAVar symbol

if keyword

counter-1 symbol

file:///D|/1/0132269937/app01lev1sec2.html [13.11.2007 16:25:29]

file:///D|/1/0132269937/14051536.html

Chapter 4

Chapter 4

1. Python objects

All Python objects have three attributes: type, ID, and value. All are read-only with a
possible exception of the value (which can be changed only if the object is mutable).

5. str() vs. repr()

repr() is a built-in function while str() was a built-in function that changed to a
factory function in Python 2.2. They will both return a string representation of an
object; however, str() returns a printable string representation while repr() (and the
backquote operator '') return an evaluatable string representation of an object,
meaning that it is a string that represents a (valid) Python object that would be
created if passed to eval().

6. Object equality

type(a) == type(b) whether the value of type(a) is the same as the value of type
(b)... == is a value compare

type(a) is type(b) whether the type objects returned by type(a) and type(b) are
the same object

Since there exists only one (type) object for each built-in type, there is no need to
check their values; hence, only the latter form should be used.

file:///D|/1/0132269937/app01lev1sec3.html [13.11.2007 16:25:29]

Chapter 5

Chapter 5

8. Geometry

import math

def sqcube():
 s = float(raw_input('enter length of one side: '))
 print 'the area is:', s ** 2., '(units squared)'
 print 'the volume is:', s ** 3., '(cubic units)'

def cirsph():
 r = float(raw_input('enter length of radius: '))
 print 'the area is:', math.pi * (r ** 2.),
 '(units squared)'
 print 'the volume is:', (4. / 3.) * math.pi * (r **
3.), '(cubic units)'
sqcube()
cirsph()

11. Modulus

a.

for i in range(0, 22, 2): # range(0, 21, 2) okay too
 print i

or

for i in range(22): # range(21) okay too
 if i % 2 == 0:
 print i

b.

for i in range(1, 20, 2): # range(1, 21, 2) okay too
 print i

or

for i in range(20): # range(21) okay too
 if i % 2 != 0:
 print i

c.

file:///D|/1/0132269937/app01lev1sec4.html (1 von 2) [13.11.2007 16:25:29]

Chapter 5

When i % 2 == 0, it's even (divisible by 2), otherwise it's odd.

file:///D|/1/0132269937/app01lev1sec4.html (2 von 2) [13.11.2007 16:25:29]

file:///D|/1/0132269937/14051536.html

Chapter 6

Chapter 6

1. Strings

find(), rfind(), index(), rindex(); can also use the in operator.

2. Identifiers

import string
alphas = string.letters + '_'
alnums = alphas + string.digits
iden = raw_input('Identifier to check? ')
if len(iden) > 0:
 if iden[0] not in alphas:
 print "Error: first char must be alphabetic"
 else:
 if len(iden) > 1:
 for eachChar in iden[1:]:
 if eachChar not in alnums:
 print "Error: others must be alnum"
 break
 else:
 import keyword
 if iden not in keyword.kwlist:
 print 'ok'
 else:
 print 'Error: keyword name'
else:
 print 'Error: no identifier entered'

file:///D|/1/0132269937/app01lev1sec5.html [13.11.2007 16:25:30]

file:///D|/1/0132269937/14051536.html

Chapter 7

Chapter 7

1. Dictionary methods

dict.update()

3. Dictionary methods

a.

keys = dict.keys()
keys.sort()

or

sorted(dict.keys())

4. Creating dictionaries

assumes and list2 are the same length
d = {}
for i in range(len(list1)):
 d[list1[i]] = list2[i]

or

d = {}
for i, x in enumerate(list1):
 d[x] = list2[i]

or

d = dict(map(None, list1, list2))

or

d = dict(zip(list1, list2))

file:///D|/1/0132269937/app01lev1sec6.html (1 von 2) [13.11.2007 16:25:30]

Chapter 7

7. Inverting dictionaries

list1 = oldDict.values()
list2 = oldDict.keys()

Now apply the solutions to Problem 4.

Note that these solutions are destructive, meaning that for one-to-many dictionaries,
keys that share the same values will only have the latest installed value for the value
that is now a key. Extra Credit: Come up with a non-destructive solution where keys
that share the same values in the old dictionary are now stored inside a list as the
value for the corresponding key in the new dictionary.

file:///D|/1/0132269937/app01lev1sec6.html (2 von 2) [13.11.2007 16:25:30]

Chapter 8

Chapter 8

3. range() built-in function

a.

range(10)

4. Prime numbers

import math
def isprime(num):
 count = int(math.sqrt(num))
 while count > 1:
 if num % count == 0:
 return False
 count -= 1
 else:
 return True

file:///D|/1/0132269937/app01lev1sec7.html [13.11.2007 16:25:30]

file:///D|/1/0132269937/14051536.html

Chapter 9

Chapter 9

2. File access

f = open(raw_input('enter filename: '))
i = 0
num = int(raw_input('enter number of lines: '))
for eachLine in f:
 if i == num:
 break
 print eachLine, # suppress NEWLINE
 i += 1
f.close()

13. Command-line arguments

a.

b)

import sys
print "# of args", len(sys.argv) # argc
print "args:", sys.argv # argv

file:///D|/1/0132269937/app01lev1sec8.html [13.11.2007 16:25:30]

file:///D|/1/0132269937/14051536.html

Chapter 10

Chapter 10

1. Raising exceptions

e)

2. Raising exceptions

d)

4. Keywords

try-except monitors the try clause for exceptions and execution jumps to the
matching except clause. However, the finally clause of a try-finally will be executed
regardless of whether or not an exception occurred. How does the try-except-finally
statement work?

5. Exceptions (we'll provide the solution, but you have to determine why):

a.

SyntaxError

b.

IndexError

c.

NameError

d.

ZeroDivisionError

e.

ValueError

f.

TypeError

file:///D|/1/0132269937/app01lev1sec9.html (1 von 2) [13.11.2007 16:25:31]

Chapter 10

file:///D|/1/0132269937/app01lev1sec9.html (2 von 2) [13.11.2007 16:25:31]

file:///D|/1/0132269937/14051536.html

Chapter 11

Chapter 11

2. Functions

def sumtimes(x, y):
 return (x+y, x*y)

6. Variable-length arguments

def printf(string, *args):
 print string % args

file:///D|/1/0132269937/app01lev1sec10.html [13.11.2007 16:25:31]

Chapter 12

Chapter 12

2. Importing attributes

a.

import mymodule mymodule.foo()

and

from mymodule import foo foo()

b.

If you use the import statement, the module name is brought into the local
namespace, and foo() is only accessible from the module's namespace.

If you use the from-import statement, "foo()" itself is brought into the local
namespace. In this case, you do not need to use the module's namespace to
access it.

file:///D|/1/0132269937/app01lev1sec11.html [13.11.2007 16:25:31]

file:///D|/1/0132269937/14051536.html

Chapter 13

Chapter 13

2. Functions versus methods

Methods are basically functions but tied to a specific class object type. They are
defined as part of a class and are executed as part of an instance of that class.

15. Delegation

It makes no difference whether we use open() or capOpen() to read our file because in
capOpen.py, we delegated all of the reading functionality to the Python system
defaults, meaning that no special action is ever taken on reads. The same code would
be executed, i.e., none of read(), readline(), or readlines() are overridden with any
special functionality.

file:///D|/1/0132269937/app01lev1sec12.html [13.11.2007 16:25:32]

file:///D|/1/0132269937/14051536.html

Chapter 14

Chapter 14

1. Callable objects

Functions, methods, classes, callable class instances

3. input() vs. raw_input()

raw_input() returns user input as a string; input() returns the evaluation of the user
input as a Python expression. In other words:

input() eval(raw_input())

file:///D|/1/0132269937/app01lev1sec13.html [13.11.2007 16:25:32]

file:///D|/1/0132269937/14051536.html

Chapter 15

Chapter 15

1. Matching strings

bat, hat, bit, etc.

[bh][aiu]t

2. First name last

[A-Za-z-]+ [A-Za-z-]+

(Any pair of words separated by a single space, e.g., first and last names, hyphens
allowed)

3. Last name first

[A-Za-z-]+, [A-Za-z]

(Any word and single letter separated by a comma and single space, e.g., last name,
first initial)

[A-Za-z-]+, [A-Za-z-]+

(Any pair of words separated by a comma and single space, e.g., last, first names,
hyphens allowed)

8. Python longs

\d+[lL]

(Decimal [base 10] integers only)

file:///D|/1/0132269937/app01lev1sec14.html (1 von 2) [13.11.2007 16:25:32]

Chapter 15

9. Python floats

[0-9]+(\.[0-9]*)?

(Describes a simple floating point number, that is, any number of digits followed
optionally by a single decimal point and zero or more numeric digits, as in "0.004,"
"2," "75.," etc.)

file:///D|/1/0132269937/app01lev1sec14.html (2 von 2) [13.11.2007 16:25:32]

Chapter 16

Chapter 16

3. Sockets

TCP

6. Daytime service

>>> import socket
>>> socket.getservbyname('daytime', 'udp')
13

file:///D|/1/0132269937/app01lev1sec15.html [13.11.2007 16:25:32]

file:///D|/1/0132269937/14051536.html

Chapter 17

Chapter 17

20. Identifiers

pass is a keyword, so it cannot be used as an identifier. The common idiom in all such
cases is to append an underscore (_) to the name of the offending variable.

file:///D|/1/0132269937/app01lev1sec16.html [13.11.2007 16:25:33]

file:///D|/1/0132269937/14051536.html

Chapter 18

Chapter 18

2. Python threads

I/O-bound . . . why?

file:///D|/1/0132269937/app01lev1sec17.html [13.11.2007 16:25:33]

file:///D|/1/0132269937/14051536.html

Chapter 19

Chapter 19

1. Client/server architecture

Window(ing) clients are GUI events generated usually by users which must be
processed by the window(ing) system that acts as the server; it is responsible for
making timely updates to the display as to be apparent to the user.

file:///D|/1/0132269937/app01lev1sec18.html [13.11.2007 16:25:33]

Chapter 20

Chapter 20

15. CGI errors

The Web server returns either no data or error text, which results in an HTTP 500 or
Internal Server Error in your browser because that (returned data) is not valid HTTP or
HTML data. The cgitb module captures the Python traceback and returns it as valid
data through CGI, which gets displayed to the user . . . a great debugging tool.

file:///D|/1/0132269937/app01lev1sec19.html [13.11.2007 16:25:33]

file:///D|/1/0132269937/14051536.html

Chapter 21

Chapter 21

1. Extending Python

● Performance improvement
● Protecting source code
● New or desired change of functionality
● And more!

file:///D|/1/0132269937/app01lev1sec20.html [13.11.2007 16:25:34]

file:///D|/1/0132269937/14051536.html

Chapter 22

Chapter 22

1. DB-API

The DB-API is a common interface specification for all Python database adapters. It is
good in that it forces all adapter writers to code to the same specification so that end-
user programmers can write consistent code that can be (more) easily ported to other
databases with the minimum amount of effort.

file:///D|/1/0132269937/app01lev1sec21.html [13.11.2007 16:25:34]

file:///D|/1/0132269937/14051536.html

Chapter 23

Chapter 23

3. Web services and the csv module

Replace the for loop in stock.py with the following:

import csv
for tick, price, chg, per in csv.reader(f):
 print tick.ljust(7), ('%.2f' % round(float(price),
2)).rjust(6), chg.rjust(6), per.rjust(6)

file:///D|/1/0132269937/app01lev1sec22.html [13.11.2007 16:25:34]

Appendix B. Reference Tables

Appendix B. Reference Tables

Python Keywords

Python Standard Operators and Functions

Numeric Type Operators and Functions

Sequence Type Operators and Functions

String Format Operator Conversion Symbols

String Format Operator Directives

String Type Built-in Methods

List Type Built-in Methods

Dictionary Type Built-in Methods

Set Types Operators and Functions

File Object Methods and Data Attriobutes

Python Exceptions

Special Methods for Classes

Python Operator Summary

file:///D|/1/0132269937/app02.html [13.11.2007 16:25:34]

file:///D|/1/0132269937/14051536.html

Python Keywords

Python Keywords

Table B.1 lists Python's keywords.

Table B.1. Python Keywords[a]

and
as

[b]
assert

[c] break

class continue def del

elif else except exec

finally for from global

if import in is

lambda not or pass

print raise return TRy

while
with

[b]
yield

[d]
None

[e]

[a] access keyword obsoleted in Python 1.4.

[b] New in Python 2.6.

[c] New in Python 1.5.

[d] New in Python 2.3.

[e] Not a keyword but made a constant in Python 2.4.

file:///D|/1/0132269937/app02lev1sec1.html [13.11.2007 16:25:35]

file:///D|/1/0132269937/14051536.html
file:///D|/1/0132269937/14051536.html

Python Standard Operators and Functions

Python Standard Operators and Functions

Table B.2 represents the operators and (built-in and factory) functions that can be used with most
standard Python objects as well as user-defined objects in which you have implemented their
corresponding special methods.

Table B.2. Standard Type Operators and Functions

Operator/function Description
Result

[a]

String representation

'' Evaluatable string representation str

Built-in and factory functions

cmp(obj1, obj2) Compares two objects int

repr(obj) Evaluatable string representation str

str(obj) Printable string representation str

type(obj) Object type type

Value comparisons

< Less than bool

> Greater than bool

<= Less than or equal to bool

>= Greater than or equal to bool

== Equal to bool

!= Not equal to bool

<> Not equal to bool

Object comparisons

is The same as bool

is not Not the same as bool

Boolean operators

not Logical negation bool

and Logical conjunction bool

or Logical disjunction bool

file:///D|/1/0132269937/app02lev1sec2.html (1 von 2) [13.11.2007 16:25:35]

Python Standard Operators and Functions

[a] Boolean comparisons return either true or False.

file:///D|/1/0132269937/app02lev1sec2.html (2 von 2) [13.11.2007 16:25:35]

Numeric Type Operators and Functions

Numeric Type Operators and Functions

Table B.3 represents the operators and (built-in and factory) functions that apply to Python's numeric
objects.

Table B.3. Operators and Built-in Functions for All Numeric Types

Operator/built-in Description int long float complex
Result

[a]

abs() Absolute value • • • •
number

[a]

chr() Character • • str

coerce() Numeric coercion • • • • tuple

complex() Complex factory function • • • • complex

divmod() Division/modulo • • • • tuple

float() Float factory function • • • • float

hex() Hexadecimal string • • str

int() Int factory function • • • • int

long() Long factory function • • • • long

oct() Octal string • • str

ord() Ordinal (string) int

pow() Exponentiation • • • • number

round() Float rounding • float

**
[b] Exponentiation • • • • number

+
[c] No change • • • • number

-
[c] Negation • • • • number

~
[c] Bit inversion • • int/long

**
[b] Exponentiation • • • • number

* Multiplication • • • • number

/ Classic or true division • • • • number

// Floor division • • • • number

file:///D|/1/0132269937/app02lev1sec3.html (1 von 2) [13.11.2007 16:25:36]

Numeric Type Operators and Functions

% Modulo/remainder • • • • number

+ Addition • • • • number

- Subtraction • • • • number

<< Bit left shift • • int/long

>> Bit right shift • • int/long

& Bitwise AND • • int/long

^ Bitwise XOR • • int/long

| Bitwise OR • • int/long

[a] A result of "number" indicates any of the numeric types, perhaps the same as the operands.

[b] ** has a unique relationship with unary operators; see Section 5.5.3 and Table 5.2.

[c] Unary operator.

file:///D|/1/0132269937/app02lev1sec3.html (2 von 2) [13.11.2007 16:25:36]

Sequence Type Operators and Functions

Sequence Type Operators and Functions

Table B.4 contains the set of operators, (built-in and factory) functions, and built-in methods that can be
used with sequence types.

Table B.4. Sequence Type Operators, Built-in
Functions, and Methods

Operator, built-in function or method str list tuple

[] (list creation) •

() •

"" •

append() •

capitalize() •

center() •

chr() •

cmp() • • •

count() • •

decode() •

encode() •

endswith() •

expandtabs() •

extend() •

find() •

hex() •

index() • •

insert() •

isdecimal() •

isdigit() •

islower() •

file:///D|/1/0132269937/app02lev1sec4.html (1 von 3) [13.11.2007 16:25:36]

Sequence Type Operators and Functions

isnumeric() •

isspace() •

istitle() •

isupper() •

join() •

len() • • •

list() • • •

ljust() •

lower() •

lstrip() •

max() • • •

min() • • •

oct() •

ord() •

pop() •

raw_input() •

remove() •

replace() •

repr() • • •

reverse() •

rfind() •

rindex() •

rjust() •

rstrip() •

sort() •

split() •

splitlines() •

startswith() •

str() • • •

strip() •

swapcase() •

file:///D|/1/0132269937/app02lev1sec4.html (2 von 3) [13.11.2007 16:25:36]

Sequence Type Operators and Functions

split() •

title() •

tuple() • • •

type() • • •

upper() •

zfill() •

. (attributes) • •

[] (slice) • • •

[:] • • •

* • • •

% •

+ • • •

in • • •

not in • • •

file:///D|/1/0132269937/app02lev1sec4.html (3 von 3) [13.11.2007 16:25:36]

String Format Operator Conversion Symbols

String Format Operator Conversion Symbols

Table B.5 lists the formatting symbols that can be used with the string format operator (%).

file:///D|/1/0132269937/app02lev1sec5.html [13.11.2007 16:25:37]

String Format Operator Directives

String Format Operator Directives

When using the string format operator (see Table B.5), you may enhance or fine-tune the object display
with the directives shown in

Table B.5. String Format Operator Conversion Symbols

Format Symbol Conversion

%c Character (integer [ASCII value] or string of length 1)

%r
[a] String conversion via repr() prior to formatting

%s String conversion via str() prior to formatting

%d / %i Signed decimal integer

%u
[b] Unsigned decimal integer

%o
[b] (Unsigned) octal integer

%x
[b]

 / %X
[b] (Unsigned) hexadecimal integer (lower/UPPERcase letters)

%e / %E Exponential notation (with lowercase 'e'/UPPERcase 'E')

%f / %F Floating point real number (fraction truncates naturally)

%g / %G The shorter of %e and %f/%E% and %F%

%% Percent character (%) unescaped

[a] New in Python 2.0; likely unique only to Python.

[b] %u/%o/%x/%X of negative int will return a signed string in Python 2.4+.

Table B.6. Format Operator Auxiliary Directives

Symbol Functionality

* Argument specifies width or precision

file:///D|/1/0132269937/app02lev1sec6.html (1 von 2) [13.11.2007 16:25:37]

file:///D|/1/0132269937/14051536.html

String Format Operator Directives

- Use left justification

+ Use a plus sign (+) for positive numbers

<sp> Use space-padding for positive numbers

Add the octal leading zero ('0') or hexadecimal leading '0x'

or '0X', depending on whether 'x' or 'X' were used

0 Use zero-padding (instead of spaces) when formatting numbers

% '%%' leaves you with a single literal '%'

(var) Mapping variable (dictionary arguments)

m.n m is the minimum total width and n is the number of digits to display after the decimal point
(if applicable)

file:///D|/1/0132269937/app02lev1sec6.html (2 von 2) [13.11.2007 16:25:37]

file:///D|/1/0132269937/14051536.html

String Type Built-in Methods

String Type Built-in Methods

The descriptions for the string built-in methods listed above are given in Table B.7.

Table B.7. String Type Built-in Methods (continued)

Method Name Description

string.capitalize() Capitalizes first letter of string

string.center(width) Returns a space-padded string with the original
string centered to a total of width columns

string.count(str, beg=0, end=len(string)) Counts how many times str occurs in string, or
in a substring of string if starting index beg and
ending index end are given

string.decode(encoding='UTF-8', errors='strict')
[** ed. add FN: New in Python 2.2]

Returns decoded string version of string; on
error, default is to raise a ValueError unless
errors is given with 'ignore' or 'replace'

string.encode(encoding='UTF-8', errors='strict')

[a]
Returns encoded string version of string; on
error, default is to raise a ValueError unless
errors is given with 'ignore' or 'replace'

string.endswith(str, beg=0, end=len(string))
[b] Determines if string or a substring of string (if

starting index beg and ending index end are
given) ends with str; returns true if so, and
False otherwise

string.expandtabs(tabsize=8) Expands tabs in string to multiple spaces;
defaults to 8 spaces per tab if tabsize not
provided

string.find(str, beg=0 end=len(string)) Determines if str occurs in string, or in a
substring of string if starting index beg and
ending index end are given; returns index if
found and -1 otherwise

string.index(str, beg=0, end=len(string)) Same as find(), but raises an exception if str
not found

string.isalnum()
[a]

,
[b]

,
[c] Returns true if string has at least 1 character

and all characters are alphanumeric and False
otherwise

string.isalpha()
[a]

,
[b]

,
[c] Returns TRue if string has at least 1 character

and all characters are alphabetic and False
otherwise

string.isdecimal()
[b]

,
[c]

,
[d] Returns TRue if string contains only decimal

digits and False otherwise

file:///D|/1/0132269937/app02lev1sec7.html (1 von 3) [13.11.2007 16:25:38]

String Type Built-in Methods

string.isdigit()
[b]

,
[c] Returns true if string contains only digits and

False otherwise

string.islower()
[b]

,
[c] Returns true if string has at least 1 cased

character and all cased characters are in
lowercase and False otherwise

string.isnumeric()
[b]

,
[c][d] Returns true if string contains only numeric

characters and False otherwise

string.isspace()
[b]

,
[c] Returns true if string contains only whitespace

characters and False otherwise

string.istitle()
[b]

,
[c] Returns true if string is properly

"titlecased" (see title()) and False otherwise

string.isupper()
[b]

,
[c] Returns TRue if string has at least one cased

character and all cased characters are in
uppercase and False otherwise

string.join(seq) Merges (concatenates) the string
representations of elements in sequence seq into
a string, with separator string

string.ljust(width) Returns a space-padded string with the original
string left-justified to a total of width columns

string.lower() Converts all uppercase letters in string to
lowercase

string.lstrip() Removes all leading whitespace in string

string.replace(str1, str2, num=string.count
(str1))

Replaces all occurrences of str1 in string with
str2, or at most num occurrences if num given

string.rfind(str, beg=0, end=len(string)) Same as find(), but search backwards in string

string.rindex(str, beg=0, end=len(string)) Same as index(), but search backwards in string

string.rjust(width) Returns a space-padded string with the original
string right-justified to a total of width columns

string.rstrip() Removes all trailing whitespace of string

string.split(str="", num=string.count(str)) Splits string according to delimiter str (space if
not provided) and returns list of substrings; split
into at most num substrings if given

string.splitlines(num=string.count('\n'))
[b]

,
[c] Splits string at all (or num) NEWLINEs and

returns a list of each line with NEWLINEs
removed

string.startswith(str, beg=0, end=len(string))

[b]
Determines if string or a substring of string (if
starting index beg and ending index end are
given) starts with substring str; returns TRue if
so, and False otherwise

string.strip([obj]) Performs both lstrip() and rstrip() on string

string.swapcase() Inverts case for all letters in string

file:///D|/1/0132269937/app02lev1sec7.html (2 von 3) [13.11.2007 16:25:38]

String Type Built-in Methods

string.title()
[b]

,
[c] Returns "titlecased" version of string, that is, all

words begin with uppercase, and the rest are
lowercase (also see istitle())

string.TRanslate(str, del=" ") Translates string according to translation table
str (256 chars), removing those in the del string

string.upper() Converts lowercase letters in string to uppercase

string.zfill(width) Returns original string left-padded with zeros to
a total of width characters; intended for
numbers, zfill() retains any sign given (less
one zero)

[a] Applicable to Unicode strings only in 1.6, but to all string types in 2.0.

[b] Not available as a string module function in 1.5.2.

[c] New in Python 2.1.

[d] Applicable to Unicode strings only.

file:///D|/1/0132269937/app02lev1sec7.html (3 von 3) [13.11.2007 16:25:38]

List Type Built-in Methods

List Type Built-in Methods

In Table B.8, we present full descriptions and usage syntax for the list built-in methods given above.

Table B.8. List Type Built-in Methods

List Method Operation

list.append(obj) Adds obj to the end of list

list.count(obj) Returns count of how many times obj occurs in list

list.extend(seq)
[a] Appends contents of seq to list

list.index(obj, i=0, j=len(list)) Returns lowest index k where list[k] == obj and i
<= k < j; otherwise ValueError raised

list.insert(index, obj) Inserts obj into list at offset index

list.pop(index=-1)
[a] Removes and returns obj at given or last index from

list

list.remove(obj) Removes object obj from list

list.reverse() Reverses objects of list in place

list.sort(func=None, key=None, reverse=False) Sorts list members with optional comparison
function; key is a callback when extracting elements
for sorting, and if reverse flag is true, then list is
sorted in reverse order

[a] New in Python 1.5.2.

file:///D|/1/0132269937/app02lev1sec8.html [13.11.2007 16:25:38]

Dictionary Type Built-in Methods

Dictionary Type Built-in Methods

In Table B.9, we list the full description and usage syntax for the dictionary built-in methods listed below.

Table B.9. Dictionary Type Methods

Method Name Operation

dict.clear
[a]

()
Removes all elements of dict

dict.copy
[a]

() Returns a (shallow
[b]

) copy of dict

dict.fromkeys
[c]

(seq, val=None)
Creates and returns a new dictionary with the elements of
seq as the keys and val as the initial value (defaults to None if
not given) for all keys

dict.get(key, default=None)
[a] For key key, returns value or default if key not in dict (note

that default's default is None)

dict.has_key(key) Returns true if key is in dict, False otherwise; partially
deprecated by the in and not in operators in 2.2 but still
provides a functional interface

dict.items() Returns a list of the (key, value) tuple pairs of dict

dict.keys() Returns a list of the keys of dict

dict.iter*
[d]

()
iteritems(), iterkeys(), itervalues() are all methods that
behave the same as their non-iterator counterparts but
return an iterator instead of a list

dict.pop
[c]

(key[, default])
Similar to get() but removes and returns dict[key] if key
present and raises KeyError if key not in dict and default not
given

dict.setdefault(key, default=None)
[e] Similar to get(), but sets dict[key]=default if key is not

already in dict

dict.update(dict2)
[a] Adds the key-value pairs of dict2 to dict

dict.values() Returns a list of the values of dict

[a] New in Python 1.5

[b] More information regarding shallow and deep copies can be found in Section 6.19.

file:///D|/1/0132269937/app02lev1sec9.html (1 von 2) [13.11.2007 16:25:39]

file:///D|/1/0132269937/14051536.html

Dictionary Type Built-in Methods

[c] New in Python 2.3.

[d] New in Python 2.2.

[e] New in Python 2.0.

file:///D|/1/0132269937/app02lev1sec9.html (2 von 2) [13.11.2007 16:25:39]

file:///D|/1/0132269937/14051536.html

Set Types Operators and Functions

Set Types Operators and Functions

Table B.10 outlines the various operators, (built-in and factory) functions, and built-in methods that
apply to both set types (set [mutable] and frozenset [immutable]).

Table B.10. Set Type Operators, Functions, and Methods

Function/Method Name Operator Equivalent Description

All Set Types

len(s) Set cardinality: number of elements in s

set([obj]) Mutable set factory function; if obj given,
it must be iterable, new set elements
taken from obj; if not, creates an empty
set

frozenset ([obj]) Immutable set factory function; operates
the same as set() except returns
immutable set

 obj in s Membership test: is obj an element of s?

 obj not in s Non-membership test: is obj not an
element of s?

 s == t Equality test: do s and t have exactly the
same elements?

 s != t Inequality test: opposite of ==

 s < t (Strict) subset test; s !=t and all elements
of s are members of t

s.issubset(t) s <= t Subset test (allows improper subsets): all
elements of s are members of t

 s > t (Strict) superset test: s != t and all
elements of t are members of s

s.issuperset(t) s >= t Superset test (allows improper supersets):
all elements of t are members of s

s.union(t) s | t Union operation: elements in s or t

s.intersection(t) s & t Intersection operation: elements in s and t

s.difference(t) s - t Difference operation: elements in s that
are not elements of t

s.symmetric_difference(t) s ^ t Symmetric difference operation: elements
of either s or t but not both

file:///D|/1/0132269937/app02lev1sec10.html (1 von 2) [13.11.2007 16:25:39]

Set Types Operators and Functions

s.copy() Copy operation: return (shallow) copy of s

Mutable Sets Only

s.update(t) s |= t (Union) update operation: members of t
added to s

s.intersection_update(t) s &= t Intersection update operation: s only
contains members of the original s and t

s.difference_update(t) s -= t Difference update operation: s only
contains original members who are not in t

s.symmetric_difference_update(t) s ^= t Symmetric difference update operation: s
only contains members of s or t but not
both

s.add(obj) Add operation: add obj to s

s.remove(obj) Remove operation: remove obj from s;
Key-Error raised if obj not in s

s.discard(obj) Discard operation: friendlier version of
remove()remove obj from s if obj in s

s.pop() Pop operation: remove and return an
arbitrary element of s

s.clear() Clear operation: remove all elements of s

file:///D|/1/0132269937/app02lev1sec10.html (2 von 2) [13.11.2007 16:25:39]

File Object Methods and Data Attriobutes

File Object Methods and Data Attriobutes

Table B.11 lists the built-in methods and data attributes of file objects.

Table B.11. Methods for File Objects

File Object Attribute Description

file.close() Closes file

file.fileno() Returns integer file descriptor (FD) for file

file.flush() Flushes internal buffer for file

file.isatty() Returns true if file is a tty-like device and False otherwise

file.next
[a]

()
Returns the next line in the file [similar to file.readline()] or
raises Stop Iteration if no more lines are available

file.read(size=-1) Reads size bytes of file, or all remaining bytes if size not given or
is negative, as a string and return it

file.readinto
[b]

(buf, size)
Reads size bytes from file into buffer buf (unsupported)

file.readline(size=-1) Reads and returns one line from file (includes line-ending
characters), either one full line or a maximum of size characters

file.readlines(sizhint=0) Reads and returns all lines from file as a list (includes all line
termination characters); if sizhint given and > 0, whole lines are
returned consisting of approximately sizhint bytes (could be
rounded up to next buffer's worth)

file.xreadlines
[c]

()
Meant for iteration, returns lines in file read as chunks in a more
efficient way than readlines()

file.seek(off, whence=0) Moves to a location within file, off bytes offset from whence (0 ==
beginning of file, 1 == current location, or 2 == end of file)

file.tell() Returns current location within file

file.truncate(size=file.tell()) Truncates file to at most size bytes, the default being the current
file location

file.write(str) Writes string str to file

file.writelines(seq) Writes seq of strings to file; seq should be an iterable producing
strings; prior to 2.2, it was just a list of strings

file.closed true if file is closed and False otherwise

file:///D|/1/0132269937/app02lev1sec11.html (1 von 2) [13.11.2007 16:25:40]

File Object Methods and Data Attriobutes

file.encoding
[d] Encoding that this file useswhen Unicode strings are written to file,

they will be converted to byte strings using file.encoding; a value
of None indicates that the system default encoding for converting
Unicode strings should be used

file.mode Access mode with which file was opened

file.name Name of file

file.newlines
[d] None if no line separators have been read, a string consisting of one

type of line separator, or a tuple containing all types of line
termination characters read so far

file.softspace 0 if space explicitly required with print, 1 otherwise; rarely used by
the programmergenerally for internal use only

[a] New in Python 2.2.

[b] New in Python 1.5.2 but unsupported.

[c] New in Python 2.1 but deprecated in Python 2.3.

[d] New in Python 2.3.

file:///D|/1/0132269937/app02lev1sec11.html (2 von 2) [13.11.2007 16:25:40]

Python Exceptions

Python Exceptions

Table B.12 lists exceptions in Python.

Table B.12. Python Built-In Exceptions

Exception Name Description

BaseException
[a] Root class for all

exceptions

SystemExit
[b] Request termination

of Python interpreter

KeyboardInterrupt
[c] User interrupted

execution (usually
by typing ^C)

Exception
[d] Root class for

regular exceptions

StopIteration
[e] Iteration has no

further values

GeneratorExit
[a] Exception sent to

generator to tell it
to quit

SystemExit
[f] Request termination

of Python interpreter

StandardError
[d] Base class for all

standard built-in
exceptions

ArithmeticError
[d] Base class for all

numeric calculation
errors

FloatingPointError
[d] Error in floating

point calculation

file:///D|/1/0132269937/app02lev1sec12.html (1 von 5) [13.11.2007 16:25:40]

file:///D|/1/0132269937/14051536.html

Python Exceptions

OverflowError Calculation
exceeded maximum
limit for numerical
type

ZeroDivisionError Division (or
modulus) by zero
error (all numeric
types)

AssertionError
[d] Failure of assert

statement

AttributeError No such object
attribute

EOFError End-of-file marker
reached without
input from built-in

EnvironmentError Base class for
operating system
environment errors

IOError Failure of input/
output operation

OSError Operating system
error

WindowsError MS Windows
system call failure

ImportError Failure to import
module or object

KeyboardInterrupt
[f] User interrupted

execution (usually
by typing ^C)

LookupError
[d] Base class for

invalid data lookup
errors

IndexError No such index in
sequence

KeyError No such key in
mapping

MemoryError Out-of-memory
error (non-fatal to
Python interpreter)

NameError Undeclared/
uninitialized object
(non-attribute)

file:///D|/1/0132269937/app02lev1sec12.html (2 von 5) [13.11.2007 16:25:40]

Python Exceptions

UnboundLocalError Access of an
uninitialized local
variable

ReferenceError Weak reference
tried to access a
garbage-collected
object

RuntimeError Generic default
error during
execution

NotImplementedError Unimplemented
method

SyntaxError Error in Python
syntax

IndentationError Improper
indentation

TabError
[g] Improper mixture

of TABs and spaces

SystemError Generic interpreter
system error

TypeError Invalid operation
for type

ValueError Invalid argument
given

UnicodeError
[h] Unicode-related

error

UnicodeDecodeError Unicode error
during decoding

UnicodeEncodeError Unicode error
during encoding

UnicodeTranslate Unicode error
during translation

Error
[i]

Warning
[j] Root class for all

warnings

DeprecationWarning
[j] Warning about

deprecated features

file:///D|/1/0132269937/app02lev1sec12.html (3 von 5) [13.11.2007 16:25:40]

Python Exceptions

FutureWarning
[i] Warning about

constructs that will
change semantically
in the future

OverflowWarning
[k] Old warning for

auto-long upgrade

PendingDeprecationWarning
[i] Warning about

features that will be
deprecated in the
future

RuntimeWarning
[j] Warning about

dubious runtime
behavior

SyntaxWarning
[j] Warning about

dubious syntax

UserWarning
[j] Warning generated

by user code

[a] New in Python 2.5.

[b] Prior to Python 2.5, SystemExit subclassed Exception .

[c] Prior to Python 2.5, KeyboardInterrupt subclassed StandardError.

[d] New in Python 1.5, the release when class-based exceptions replaced strings.

[e] New in Python 2.2.

[f] Only for Python 1.5 through 2.4.x.

[g] New in Python 2.0.

[h] New in Python 1.6.

[i] New in Python 2.3.

[j] New in Python 2.1.

[k] New in Python 2.2 but removed in Python 2.4.

file:///D|/1/0132269937/app02lev1sec12.html (4 von 5) [13.11.2007 16:25:40]

file:///D|/1/0132269937/14051536.html

Python Exceptions

file:///D|/1/0132269937/app02lev1sec12.html (5 von 5) [13.11.2007 16:25:40]

Special Methods for Classes

Special Methods for Classes

Table B.13 represents the set of special methods that can be implemented to allow user-defined objects
to take on behaviors and functionality of Python standard types.

Table B.13. Special Methods for Customizing Classes

Special Method Description

Basic Customization

C.__init__(self[, arg1, ...]) Constructor (with any optional arguments)

C.__new__(self[, arg1, ...])
[a] Constructor (with any optional arguments); usually

used for setting up subclassing of immutable data types

C.__del__(self) Destructor

C.__str__(self) Printable string representation; str() built-in and print
statement

C.__repr__(self) Evaluatable string representation; repr() built-in and
'' operator

C.__unicode__(self)
[b] Unicode string representation; unicode() built-in

C.__call__(self, *args) Denote callable instances

C.__nonzero__(self) Define False value for object; bool() built-in (as of 2.2)

C.__len__(self) "Length" (appropriate for class); len() built-in

Object (Value) Comparison
[c]

C.__cmp__(self, obj) Object comparison; cmp() built-in

C.__lt__(self, obj) and C.__le__(self,
obj)

Less than/less than or equal to; < and <= operators

C.__gt__(self, obj) and C.__ge__(self,
obj)

Greater than/greater than or equal to; > and >=
operators

C.__eq__(self, obj) and Equal/not equal to;

C.__ne__(self, obj) ==,!= and <> operators

Attributes

C.__getattr__(self, attr) Get attribute; getattr() built-in

C.__setattr__(self, attr, val) Set attribute; setattr() built-in

C.__delattr__(self, attr) Delete attribute; del statement

file:///D|/1/0132269937/app02lev1sec13.html (1 von 4) [13.11.2007 16:25:41]

Special Methods for Classes

C.__getattribute__(self, attr)
[a] Get attribute; getattr() built-in

C.__get__(self, attr) Get attribute; getattr() built-in

C.__set__(self, attr, val) Set attribute; setattr() built-in

C.__delete__(self, attr) Delete attribute; del statement

Customizing Classes/Emulating Types

Numeric Types: binary operators
[d]

C.__*add__(self, obj) Addition; + operator

C.__*sub__(self, obj) Subtraction; - operator

C.__*mul__(self, obj) Multiplication; * operator

C.__*div__(self, obj) Division; / operator

C.__*TRuediv__(self, obj)
[f] True division; / operator

C.__*floordiv__(self, obj)
[e] Floor division; // operator

C.__*mod__(self, obj) Modulo/remainder; % operator

C.__*divmod__(self, obj) Division and modulo; divmod() built-in

C.__*pow__(self, obj[, mod]) Exponentiation; pow() built-in; ** operator

C.__*lshift__(self, obj) Left shift; << operator

C.__*rshift__(self, obj) Right shift; >> operator

C.__*and__(self, obj) Bitwise AND; & operator

C.__*or__(self, obj) Bitwise OR; | operator

C.__*xor__(self, obj) Bitwise XOR; ^ operator

Numeric Types: unary operators

C.__neg__(self) Unary negation

C.__pos__(self) Unary no-change

C.__abs__(self) Absolute value; abs() built-in

C.__invert__(self) Bit inversion; ~ operator

Numeric Types: numeric conversion

C.__complex__(self, com) Convert to complex; complex() built-in

C.__int__(self) Convert to int; int() built-in

C.__long__(self) Convert to long; long() built-in

C.__float__(self) Convert to float; float() built-in

file:///D|/1/0132269937/app02lev1sec13.html (2 von 4) [13.11.2007 16:25:41]

Special Methods for Classes

Numeric Types: base representation
(string)

C.__oct__(self) Octal representation; oct() built-in

C.__hex__(self) Hexadecimal representation; hex() built-in

Numeric Types: numeric coercion

C.__coerce__(self, num) Coerce to same numeric type; coerce() built-in

Sequence Types
[d]

C.__len__(self) Number of items in sequence

C.__getitem__(self, ind) Get single sequence element

C.__setitem__(self, ind, val) Set single sequence element

C.__delitem__(self, ind) Delete single sequence element

C.__getslice__(self, ind1, ind2) Get sequence slice

C.__setslice__(self, i1, i2, val) Get sequence slice

C.__delslice__(self, ind1, ind2) Delete sequence slice

C.__contains__(self, val)
[f] Test sequence membership; in keyword

C.__*add__(self, obj) Concatenation; + operator

Sequence Types
[d]

C.__*mul__(self, obj) Repetition; * operator

C.__iter__(self)
[e] Create iterator class; iter() built-in

Mapping Types

C.__len__(self) Number of items in mapping

C.__hash__(self) Hash function value

C.__getitem__(self, key) Get value with given key

C.__setitem__(self, key, val) Set value with given key

C.__delitem__(self, key) Delete value with given key

[a] New in Python 2.2; for use with new-style classes only.

[b] New in Python 2.3.

[c] All except cmp() new in Python 2.1.

[d] "* " either nothing (self OP obj), "r " (obj OP self), or "i " for in-place operation (new in Python 2.0), i.e., __add__,

file:///D|/1/0132269937/app02lev1sec13.html (3 von 4) [13.11.2007 16:25:41]

Special Methods for Classes

__radd__, or __iadd__.

[f] New in Python 1.6.

[e] New in Python 2.2.

file:///D|/1/0132269937/app02lev1sec13.html (4 von 4) [13.11.2007 16:25:41]

Python Operator Summary

Python Operator Summary

Table B.14 represents the complete set of Python operators and to which standard types they apply. The
operators are sorted from highest-to-lowest precedence, with those sharing the same shaded group
having the same priority.

Table B.14. Python Operators (- unary)

Operator
[a]

int
[b] long float complex str list tuple dict set, frozenset

[c]

[] • • •

[:] • • •

** • • • •

+
• • • •

-
• • • •

~
• •

* • • • • • • •

/ • • • •

// • • • •

% • • • • •

+ • • • • • • •

- • • • • •

<< • •

>> • •

& • • •

^ • • •

| • • •

< • • • • • • • • •

> • • • • • • • • •

file:///D|/1/0132269937/app02lev1sec14.html (1 von 2) [13.11.2007 16:25:42]

file:///D|/1/0132269937/14051536.html

Python Operator Summary

<= • • • • • • • • •

>= • • • • • • • • •

== • • • • • • • • •

!= • • • • • • • • •

<> • • • • • • • • •

is • • • • • • • • •

is not • • • • • • • • •

in • • • •

not in • • • •

not
• • • • • • • • •

and • • • • • • • • •

or • • • • • • • • •

[a] May also include corresponding augmented assignment operators.

[b] Operations involving Boolean types will be performed on the operands as ints.

[c] (Both) set types new in Python 2.4.

file:///D|/1/0132269937/app02lev1sec14.html (2 von 2) [13.11.2007 16:25:42]

file:///D|/1/0132269937/14051536.html

Appendix 3. About the Author

Appendix 3. About the Author

Wesley Chun was initiated into the world of computing in high school. There he learned BASIC and 6502
Assembly on Commodore PET/CBM systems, Pascal on the Apple IIe, and FORTRAN on punch cards. He
also helped the journalism department convert from typewriters to CP/M-based Osborne 1s running
MicroPro WordStar and served as a student-instructor teaching BASIC programming to 4th, 5th, and 6th
graders, and their parents.

Wesley then went on to the University of California, Berkeley, as a California Alumni Scholar. He nearly
completed a triple major, finally graduating with an A.B. in applied math (computer science) and a
minor in music (classical piano). While at Cal he coded in Pascal, Logo, and C. One of his summer
internships involved programming in a 4GL and writing an entire "Getting Started" user manual. Also at
Cal, he took a course on tutoring undergraduates that featured videotape training and psychological
counseling. Several years later at the University of California, Santa Barbara, Wesley continued his
studies in computer science (networking) and taught C programming for UCSB Extension. A paper based
on his master's thesis was nominated for the Best Paper award at the 29th HICSS conference and a later
version appeared in the University of Singapore's Journal of High Performance Computing.

After graduation, Wesley went on to Sun Microsystems where he worked on the Solaris operating
system. He also continued to teach for UC Extension, this time for the Santa Cruz campus in Silicon
Valley, instructing courses in Unix and C (and later, Python). When the Internet finally went
mainstream, he joined a start-up named Four11 (later acquired by Yahoo!) where he was exposed to
Python. He was on the Yahoo!Mail development team, rearchitecting the original spellchecker and
address book, and was also the lead engineer for Yahoo! People Search. After leaving Yahoo!, he wrote
the first edition of this book, then traveled around the world. He then came back to do something
(almost) completely different for Synarc: spinal fracture radiology software for doctors in a clinical trials
setting. Then he went to IronPort to help keep spam and viruses out of your inbox.

Wesley is now an independent Python consultant and technical trainer (www.cyberwebconsulting.com).
In his spare time, his non-computer-related hobbies include: bowling, basketball, bicycling, yoga,
ultimate frisbee, playing poker online and with friends, traveling, playing the piano, and spending time
with his wife and kids. He is a coordinator for the Silicon Valley-San Francisco Bay Area Python users
group (www.baypiggies.net) and a volunteer for the Python Tutor mailing list. He is also responsible for
creating and maintaining the online "Monster Discography" for musical artists, including, The Alan
Parsons Project, Alan Parsons (solo band), Eric Woolfson (and his projects), and Andrew Powell and the
Philharmonia Orchestra. (If you think you're a fan but don't have Freudiana, you had better find it.)

file:///D|/1/0132269937/app03.html [13.11.2007 16:25:42]

http://www.cyberwebconsulting.com/
http://www.baypiggies.net/

Index

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

file:///D|/1/0132269937/index.html [13.11.2007 16:25:43]

SYMBOL

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

(pound sign) 2nd

$ (dollar sign) 2nd

& (ampersand)

&= (ampersand equal sign)

* (asterisk) 2nd

** (double asterisk) 2nd 3rd

+ (plus sign) 2nd 3rd 4th 5th 6th

- (hyphen)

- (minus sign)

. (dot) 2nd

. (period) 2nd

/ (slash) 2nd 3rd

<, <= (less than)

<>, != ("not equals" comparison operators)

>, >= (greater than)

@ ("at-sign")
[] (brackets) 2nd 3rd

\ (backslash)
^ (caret) 2nd 3rd

__hash__() method

__import__() built-in function

__init__() method
 and tracking instances
 as constructor 2nd 3rd
 customizing classes with 2nd
 instantiation 2nd 3rd
 overriding
 return value
 setting instance attributes in
__iter__() built-in method

__new__() method 2nd

__set__() special method 2nd

`` (double single quotes)

{} (braces)

file:///D|/1/0132269937/SYMBOL.html (1 von 2) [13.11.2007 16:25:43]

SYMBOL

| (pipe symbol) 2nd 3rd

|= (pipe equals)

file:///D|/1/0132269937/SYMBOL.html (2 von 2) [13.11.2007 16:25:43]

A

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

\A (special character)

abs() built-in function

absolute import statement

abstract methods
abstraction 2nd
access models
access modes 2nd
ActiveX [See also COM (Component Object Model).]
adapters (database)
 about
 definition of
 examples of
 Gadfly
 MySQL 2nd
 ORMs
 PostgreSQL
 related modules
 SQLite
add() method 2nd 3rd

addition (+) operator

AF_INET (socket family name) 2nd 3rd
AF_UNIX (socket family name) 2nd 3rd
aggregation
all() built-in function

alternation (|)
American Standard Code for Information Interchange [See ASCII.]
ancestors 2nd
and keyword 2nd 3rd
anonymous functions
any() built-in function

AOP (aspect-oriented programming)
API (Application Programming Interface) 2nd 3rd
apilevel
Application Programming Interface [See API (Application Programming Interface).]
apply() built-in function 2nd 3rd

file:///D|/1/0132269937/A.html (1 von 3) [13.11.2007 16:25:43]

A

arguments
 class methods
 command-line
 for exceptions
arguments (default)
 functions 2nd 3rd
 GUI development
 Tkinter widgets
 using with instantiation
arguments (function)
 decorators with/without
 default 2nd 3rd
 dictionary, keyword variable
 formal
 grouped
 keyword 2nd
 optional
 positional
 variable argument objects
 variable-length
arguments (method)
arithmetic game (example)
arithmetic operators [See mathematical operators.]
arrays [See lists ; tuples.]
ASCII 2nd 3rd 4th
aspect-oriented programming (AOP)
assert statement

AssertionError exceptions 2nd

assigning/assignment
 augmented 2nd
 dictionaries
 lists
 multiple
 "multuple,"
 numbers
 operators
 set types 2nd
 strings
 tuples
 variables 2nd
association (classes)
asterisk operator (*)

file:///D|/1/0132269937/A.html (2 von 3) [13.11.2007 16:25:43]

A

async* module
"at-sign" (@)
atomic storage
attr() built-in functions

attribute(s)
 __metaclass__
 built-in functions
 built-in methods
 built-in types
 class
 complex number, built-in
 definition of
 double underscore (__)
 file
 functions 2nd 3rd
 importing
 interfaces to data
 methods 2nd
 module
 multi-platform development
 naming 2nd
 object
 privacy
 Queue module

 simple lookup example
 socket module

 special class
 special methods for customizing classes
 user-defined function
 user-defined methods
 using files to store
 using local to substitute for module
AttributeError exception 2nd 3rd 4th

augmented assignment 2nd 3rd 4th
authentication handler for HTTP
auto-loaded modules

file:///D|/1/0132269937/A.html (3 von 3) [13.11.2007 16:25:43]

B

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

\b, \B (special characters)

backbone (network)
backslash (\)

bank tellers server example
base class [See also parent/parent class.]
base representation
BaseException 2nd 3rd 4th
BaseHTTPServer module 2nd

bases argument
__bases__ attribute 2nd 3rd
BASIC language
Beazley, David
BIFs [See functions (built-in) (BIFs).]
BIMs [See methods (built-in).]
binary function
binding
 methods
 namespaces
bit operators (integer-only)
Boa Constructor
boilerplate
bool() factory function 2nd

Boolean operators (and, or, not) 2nd 3rd
Boolean types 2nd 3rd
bound methods 2nd
brace operators ({ })

bracket symbols ([]) 2nd

break statement 2nd

BSD Unix 2nd 3rd 4th
buffering (file) 2nd
building Python
built-in attributes 2nd
built-in exceptions 2nd
built-in functions [See functions (built-in) (BIFs).]
built-in methods (BIMs) [See methods (built-in).]

file:///D|/1/0132269937/B.html (1 von 2) [13.11.2007 16:25:44]

B

built-in types 2nd
"built-in" names
__builtin__ 2nd
__builtins__ 2nd 3rd
Button widget (Tk)
byte type

file:///D|/1/0132269937/B.html (2 von 2) [13.11.2007 16:25:44]

C

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

C language
 conversion to/from 2nd
 "dangling else" statements

 extensions written in
 fopen()

 Python and 2nd 3rd 4th
 varargs
C# language 2nd [See also IronPython.]
C++ language 2nd 3rd 4th 5th 6th
"call by reference,"
__call__() special method

callable class
callable() built-in function 2nd 3rd

callbacks 2nd
calling functions 2nd
 arguments 2nd
 built-in
 default arguments
 example
 function operator
 grouped arguments
 keyword arguments
 logging with closures
 with variable argument objects
calling modules
Canvas widget (Tk)
caret symbol (^)

case statement, proxy for
case-insensitive import
case-sensitive identifiers
casting of sequences
CGI (Common Gateway Interface)
 about
 advanced example of
 applications

file:///D|/1/0132269937/C.html (1 von 6) [13.11.2007 16:25:45]

C

 building applications
 cgi module
 cookies 2nd 3rd
 creating static form Web page
 file uploading
 generating form page
 generating results page
 HTTP headers
 multipart form submission
 multivalued fields
 setting up a Web server
 Unicode
 user inputs/error processing
 Web servers 2nd
cgi module

CGIHTTPServer module 2nd 3rd

char type (unsupported) 2nd
character classes ([]) 2nd
character(s)
 accessing, in strings
 matching any single (.) 2nd
 removing
characters, special
 and ASCII characters
 escaping using triple quotes 2nd
 regular expressions 2nd 3rd
 repetition/grouping and
 representing character sets
 strings
Checkbutton widget (Tk)
child/child class 2nd 3rd 4th 5th
chr() built-in function 2nd 3rd

class attributes
 __bases__ 2nd 3rd
 __class__ 2nd
 __dict__
 __doc__ 2nd
 __module__ attribute 2nd
 __slots__
 accessing
 data
 determining

file:///D|/1/0132269937/C.html (2 von 6) [13.11.2007 16:25:45]

C

 instance attributes vs.
 methods
 modifying
 persistence
 privacy of
 special
class definition
class keyword 2nd
class variables
classes
 about 2nd
 as namespace containers
 built-in functions
 callable objects
 composition
 creating 2nd 3rd
 customizing with special methods
 declaring 2nd 3rd
 definition vs. declaration of
 methods 2nd
 mix-in
 naming
 related modules
 Web server
 wrapping
classic classes 2nd 3rd 4th [See also new-style classes.]
classic division operator (/) 2nd 3rd
classmethod() built-in function

clause
clear() method 2nd 3rd

client data
client-side programming
client/server architecture 2nd 3rd
clients
 FTP
 GUI applications as
 Internet
 NNTP
 POP3
 SMTP
 TCP 2nd 3rd
 twisted reactor TCP

file:///D|/1/0132269937/C.html (3 von 6) [13.11.2007 16:25:45]

C

 UDP
 Web 2nd
 Windows
close() built-in method 2nd

closures 2nd 3rd
cmp() built-in function 2nd 3rd 4th 5th 6th 7th

code
 commenting
 indenting
 integration of
 interpreted/byte-compiled
 profiling of 2nd 3rd
 running example
 runtime generation/execution of
 skipping
 wrapping, in boilerplate
code objects 2nd
code reuse 2nd
codecs 2nd
coerce() built-in function 2nd

collisions (key)
colocated servers 2nd
columns (database)
COM (Component Object Model)
command line
 arguments 2nd
 FTP client program
 options
 running Python from
 switches
commands (database)
comments 2nd 3rd
Common Gateway Interface [See CGI (Common Gateway Interface).]
compile() function 2nd 3rd 4th

compiling 2nd 3rd 4th 5th
complex numbers 2nd 3rd
complex statements
complex() factory function 2nd

Component Object Model [See COM (Component Object Model).]
composite objects
composition 2nd
compound objects

file:///D|/1/0132269937/C.html (4 von 6) [13.11.2007 16:25:45]

C

compound statements
concatenation (+) sequence operator 2nd 3rd 4th

conditional code execution
conditional statements [See also while statement (loops) ; loops.]

 and pass statement

 auxiliary statements for
 conditional expressions
 elif (aka else-if) statement 2nd

 else statement 2nd 3rd

 if statement
 if statement

 multiple
 single statements suites
 switch/case statement proxy
connect() function

connection objects
connection-oriented sockets
connectionless sockets
constructors 2nd 3rd 4th 5th
container storage
context expression (context_expr)
context management (for exceptions)
continuation (\) statements
continuation (exception handling)
continue statement 2nd

conversion
 ASCII functions for
 codes 2nd
 factory functions
 sequences
 symbols 2nd
cookies 2nd 3rd 4th
copy() function/method 2nd 3rd

counting loops
couroutines
cPickle 2nd

cProfile module

CPython 2nd
credit card transaction data example 2nd
cross-product generator expressions example
currying

file:///D|/1/0132269937/C.html (5 von 6) [13.11.2007 16:25:45]

C

cursor (database)
cursor objects
customizing and extensions
CWI (Centrum voor Wiskunde en Informatica)
cycles (import)
cyclic reference

file:///D|/1/0132269937/C.html (6 von 6) [13.11.2007 16:25:45]

D

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

daemon threads
"dangling else", avoiding 2nd

data attributes [See attribute(s).]
data descriptors
data hiding
data structures
database programming [See also DB-API (Python Database Application Programmer's Interface).]
 about
 adapter examples
 components of databases
 Gadfly 2nd
 MySQL 2nd 3rd
 operations/SQL
 ORMs 2nd
 persistent storage
 PostgreSQL adapter example
 Python interfaces for relational databases
 related modules
 SQL 2nd
 SQLAlchemy 2nd 3rd
 SQLite
 SQLObject 2nd 3rd
 storage mechanisms
 supported
 Unicode
database servers
datagrams 2nd
DB-API (Python Database Application Programmer's Interface)
 about
 apilevel
 changes in versions of
 connect()

 connection objects
 cursor objects
 exceptions

file:///D|/1/0132269937/D.html (1 von 5) [13.11.2007 16:25:46]

D

 function attributes
 layers in
 module attributes
 paramstyle 2nd
 thread safety
 type objects and constructors
DBM-style modules
debugging 2nd 3rd 4th
decimal floating point numbers
decode() built-in method 2nd

decorators 2nd 3rd
deep copy
def keyword (statement) 2nd 3rd
default arguments [See arguments (default).]
del statement 2nd 3rd 4th 5th

__del__() method 2nd

delattr() built-in function 2nd

delegation
__delete__() special method 2nd

derivation 2nd
descriptors
destructor (class)
developer tools
diamond shape inheritance hierarchy
dict() factory function

__dict__ attribute
 __slots__ attribute vs.
 built-in types
 class attributes
 instance attributes
 modifying
 vars()

dictionaries
 accessing values in
 and hash tables
 as mapping type
 as Python feature
 assigning
 built-in functions 2nd 3rd
 built-in methods 2nd 3rd 4th 5th
 cmp()

 comparing

file:///D|/1/0132269937/D.html (2 von 5) [13.11.2007 16:25:46]

D

 copy()

 creating 2nd
 dict()

 exact match of
 fromkeys() 2nd

 functions for
 hash() 2nd

 items() 2nd

 iteration
 key-lookup operator ([])

 keys 2nd
 keyword variable arguments
 len() 2nd

 login/password programming example
 membership operator
 operators for
 related functions
 removing elements of/dictionaries
 setdefault()

 sorted()

 str()

 type()

 updating
 values() 2nd

difference (-) operator

difference update (-=) operator

dir() built-in function
 built-in types
 class attributes 2nd
 classes 2nd
 instance attributes
 instances
 lists
 local variables
 modules
 objects
direct access model type
directory structure
discard() method 2nd 3rd

disk files
dispatch, static vs. dynamic

file:///D|/1/0132269937/D.html (3 von 5) [13.11.2007 16:25:46]

D

distutils package
division operators 2nd 3rd
divmod() built-in function 2nd

__doc__ attribute 2nd 3rd 4th 5th 6th
document "doc" strings
documentation
 classes
 extended import
 extensions to Python
 file-access related modules
 FTP
 generator expressions 2nd
 GUI programming
 list comprehensions
 method resolution order
 module 2nd
 NNTP
 OOP
 Python
 set types
 SMTP
 style guidelines for
dollar sign symbol ($) 2nd

DOS window 2nd
dot symbol (.) 2nd

double precision floating point numbers
double quotation mark (")

double type
double underscore (__) attributes
downloading
 IMAP
 POP3
 protocols for
 Python 2nd 3rd
 SMTP
 Yahoo! stock quote data
dropping (dropped) databases 2nd
dumbdbm module

dummy functions
dump() function

dynamic dispatch
dynamic typing

file:///D|/1/0132269937/D.html (4 von 5) [13.11.2007 16:25:46]

D

file:///D|/1/0132269937/D.html (5 von 5) [13.11.2007 16:25:46]

E

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

e-mail (electronic mail)
 components/protocols
 IMAP
 POP3
 receiving
 related modules
 sending
 SMTP 2nd
EasyGUI
electronic mail [See e-mail (electronic mail).]
elif (aka else-if) statement 2nd

ellipsis objects
else statement [See also if statement.]

 "dangling else"

else statement
 exceptions
else statement
 for loops

else statement
 try-except statement

else statement
 usage of, loops/conditionals
embedding, extensions vs.
encapsulation 2nd
encode() built-in methods 2nd

encoding 2nd
__enter__() method

Entry widget (Tk)
enumerate() built-in function
 for loops 2nd 3rd 4th
 iterators
 lists
 sequences
 strings
equal sign (=)

file:///D|/1/0132269937/E.html (1 von 4) [13.11.2007 16:25:46]

E

equality for sets
eric3
errors/error processing
 about
 "cleaner" approach
 DB-API
 definition of
 hiding
 runtime
 "safe and sane,"
 standard error
 try-except statement

 using CGI for
eval() built-in function 2nd

events
Excel 2nd
except statement

Exception (root class) 2nd 3rd 4th 5th 6th
exception condition
exceptions/exception handling [See also specific headings, e.g., ; TryError ; exception.]
 about 2nd
 and os.path.exists() 2nd

 and wrapping a built-in function 2nd
 arguments for
 assert statement

 built-in 2nd
 catching all
 context management for
 creating
 DB-API
 detecting/handling 2nd 3rd
 else clause
 examples of 2nd
 except statement with multiple

 finally clause
 in Python
 raise statement 2nd

 related modules
 robustness of
 skipping code
 standard
 strings

file:///D|/1/0132269937/E.html (2 von 4) [13.11.2007 16:25:46]

E

 sys module
 try statement with multiple

 try-except statement 2nd 3rd

 try-except-else-finally statement

 try-finally statement

 unhandled
 Unicode
 upward propagation
 warnings
 Web servers
 with statement

exec statement

exec() built-in function

execfile() built-in function

executable object statement
 built-in functions
 callable()

 compile()

 conditional code execution
 eval()

 exec()

 generating/executing code at runtime
 input()

executing/execution
 callable objects
 code at runtime
 code conditionally
 code objects
 current process/user related functions
 file 2nd
 imported modules 2nd 3rd 4th
 non-Python programs
 operating system interface functions
 other Python programs
 related modules
 restricted
 TCP server/clients 2nd 3rd
 terminating
 UPD server/clients
__exit__() method

exiting

file:///D|/1/0132269937/E.html (3 von 4) [13.11.2007 16:25:46]

E

exponentiatial notation output
exponentiation operator (**) 2nd 3rd

extend() method 2nd

extended import statement (as)

extended slicing
extensions to Python
 about 2nd
 compilation of 2nd
 creating application code
 documentation
 embedding vs.
 Global Interpreter Lock
 importing
 main steps of
 multithreaded
 Psyco
 Pyrex
 reasons for creating
 reference counting 2nd
 SWIG
 testing of
 Win32 2nd
 wrapping code
 writing

file:///D|/1/0132269937/E.html (4 von 4) [13.11.2007 16:25:46]

F

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

factorial functions
factory functions
 built-in functions conversion to
 conversion
 definition of
 dict()

 list()

 numeric types
 sequence type operators
 set types 2nd 3rd
 standard type
 str()

 super()

 tuple()

 type
 type() as

fetching rows
Fibonacci functions
FIFO (first-in-first-out) data structure
file extensions
file objects
 access modes for
 built-in attributes 2nd
 built-in functions
 built-in methods
 close()

 file() 2nd 3rd

 fileinput() 2nd

 fileno()

 flush()

 fnmatch() 2nd

 glob() 2nd

 input
 intra-file motion

file:///D|/1/0132269937/F.html (1 von 5) [13.11.2007 16:25:47]

F

 isatty()

 iterating through 2nd 3rd
 line separators 2nd
 methods 2nd
 modules
 multi-platform development
 open() 2nd

 output
 read()

 readline()

 readlines()

 related modules
 seek()

 standard
 truncate()

 Universal NEWLINE Support
 using to store attributes
 wrapping a
 write()

 writelines()

file system, accessing
File Transfer Protocol [See FTP (File Transfer Protocol).]
file() built-in function 2nd 3rd

"file-like" objects 2nd
fileinput() module 2nd

files [See also persistent storage.]
 as storage mechanism
 command-line arguments
 example code for reading
 execution of
 text file manipulation example programs
 transferring 2nd
 uploading
 using to store attributes
filter (warnings)
filter() built-in function 2nd 3rd

finally clause
findall() function 2nd

first-in-first-out (FIFO) data structure
flattening
float type

file:///D|/1/0132269937/F.html (2 von 5) [13.11.2007 16:25:47]

F

float() built-in function 2nd

float() factory function 2nd

floating point numbers 2nd 3rd 4th 5th
floor division (/ /) 2nd 3rd
floor() built-in function 2nd

flush() built-in method 2nd

fnmatch() module 2nd

folding
for statement (loops) 2nd

 and pass statement

 break statement 2nd

 continue statement

 else statement for

 file iteration
 range()

 sequence-related built-in functions for
 syntax for
 with iterator types
 with sequence types
 xrange()

forking processes
form Web page 2nd
formal arguments (functions)
format operator 2nd 3rd 4th
forms
forward references
FP [See functional programming (FP).]
frame objects
Frame widget (Tk)
free variables 2nd
"from module import *" 2nd

from-import statement 2nd 3rd 4th

fromkeys() method 2nd

frozenset() factory function 2nd

FTP (File Transfer Protocol) 2nd
function pointers
functional nesting
functional programming (FP)
 anonymous functions/lambda
 apply() 2nd

 built-in functions

file:///D|/1/0132269937/F.html (3 von 5) [13.11.2007 16:25:47]

F

 constructs
 debugging/performance measurement example
 examples 2nd
 filter()

 map() 2nd 3rd

 partial function application
 reduce() 2nd 3rd

functions 2nd [See also functional programming (FP) ; methods ; scope.]
 about
 accessing pathname
 arguments 2nd 3rd 4th 5th
 attributes
 callable objects
 calling 2nd 3rd
 classes vs.
 closures
 creating
 declaring 2nd 3rd 4th
 declaring vs. definition
 decorators
 def statement

 default arguments 2nd 3rd
 descriptors
 directory access
 examples 2nd 3rd 4th
 file access
 for re module

 formal arguments
 forward references
 global vs. local variables
 grabbing Web pages example
 grouped arguments
 inner/nested
 integer-only
 keyword arguments
 lambda
 logging calls to, with closures
 numeric type 2nd
 operator
 passing
 positional arguments
 procedures vs.

file:///D|/1/0132269937/F.html (4 von 5) [13.11.2007 16:25:47]

F

 return values
 standard type 2nd
 variable argument objects
 variable-length arguments
functions (built-in) (BIFs)
 attributes
 callable 2nd
 classes
 conversion to factory functions
 executable objects
 file objects
 functional programming
 instances
 integer-only
 lists 2nd 3rd 4th
 mapping types
 module
 new-style classes
 numbers
 numeric types 2nd 3rd
 objects
 operational 2nd
 sequence types 2nd 3rd 4th 5th
 sequence-related
 set types 2nd 3rd
 standard types 2nd 3rd 4th
 string types 2nd
 tuples 2nd 3rd 4th
 wrapping, for exceptions
functions (user-defined) (UDFs)
__future__ directives
FXPy

file:///D|/1/0132269937/F.html (5 von 5) [13.11.2007 16:25:47]

G

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Gadfly database 2nd
garbage collection
generalization, definition of
generator expressions
 cross-product example
 disk file example
 refactoring example
generators
 enhanced
 simple
 yield statement

geometry managers
GET method 2nd 3rd
__get__() method 2nd

getattr() built-in function 2nd 3rd

__getattr__() method 2nd 3rd 4th

__getattribute__() special method

getopt module

GIL [See Global Interpreter Lock (GIL).]
Glade
glob() module 2nd

Global Interpreter Lock (GIL) 2nd
global statement

global variables
globals() built-in function

GNOME-Python
Gopher
grandchild class 2nd
graphical user interface programming [See GUI (graphical user interface) programming.]
greater than symbols (> , >=)

Greenlets
Grid (geometry manager)
group() method 2nd

grouped arguments (functions)

file:///D|/1/0132269937/G.html (1 von 2) [13.11.2007 16:25:47]

G

grouping 2nd
groups() method

GTK+ 2nd 3rd
GUI (graphical user interface) programming
 about
 class example
 documentation
 file system traversal example
 FTP client program
 GTK+/PyGTK 2nd
 other GUIs for
 partial function application example
 Python MegaWidgets 2nd
 related modules
 Swing
 Tcl/Tk/Tkinter
 Tix 2nd
 Windows clients as
 wxWidgets/wxPython 2nd
gzip module 2nd

file:///D|/1/0132269937/G.html (2 von 2) [13.11.2007 16:25:47]

H

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

hardware
has_key() method

hasattr() built-in function 2nd

hash tables (dictionaries)
hash() built-in function 2nd

hashable objects 2nd 3rd 4th
Haskell language
header file, including
heavyweight processes
"Hello World!" program 2nd 3rd 4th
help() built-in function 2nd

hex() built-in function

hexadecimal output
hierarchy, definition of
host-port pairs
hotshot module

HTML (Hyper-Text Markup Language)
HTTP (HyperText Transfer Protocol) 2nd 3rd
HTTP_COOKIE environment variable
Hyper-Text Markup Language [See HTML (Hyper-Text Markup Language).]
HyperText Transfer Protocol [See HTTP (HyperText Transfer Protocol).]

file:///D|/1/0132269937/H.html [13.11.2007 16:25:48]

I

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

id() built-in function 2nd 3rd

identifiers
 names
 objects
 scope 2nd
 special with underscores
 style guidelines for names
identity comparison of objects 2nd
IDEs (Integrated Development Environments) 2nd
IDLE (Integrated DeveLopment Environment) (Unix IDE) 2nd
if statement 2nd [See also elif (aka else-if) statement ; else statement.]

IMAP (Internet Mail Access Protocol)
immutability 2nd 3rd 4th 5th 6th
implementation
 hiding
 of an abstraction
import statement

 absolute import statement

 at end of modules
 extended import statement (as)

 from-import statement 2nd 3rd 4th

 loading of
importing attributes
importing modules 2nd
 __future__
 __import__()

 attributes for
 built-in functions
 case-insensitive
 definition of
 execution on 2nd
 extension module
 features of
 from zip files
 globals()

file:///D|/1/0132269937/I.html (1 von 5) [13.11.2007 16:25:48]

I

 import cycles
 loading vs.
 locals()

 multi-line import
 names imported into current namespace
 names imported into importer's scope
 new import hooks
 packages
 path search/search path
 related modules
 relative import
 reload()

 search path/path search
 style guidelines for
 Tkinter module
"in-place" operations 2nd
indentation
 "dangling else" statements

 for code blocks
 of suites
 style guidelines for
IndexError exception

indexing slices
inequality sets
infinite loops
inheritance
 __bases__ class attribute
 definition of
 diamond shape hierarchy
 multiple
 overriding methods via
 subclassing with
init Module () module initializer function

inner/nested functions 2nd
input
 file built-in methods
 raw_input() 2nd 3rd 4th

 standard
 user 2nd
input() built-in function 2nd

inserting rows

file:///D|/1/0132269937/I.html (2 von 5) [13.11.2007 16:25:48]

I

installing Python
instance attributes
 accessing
 class attributes vs.
 definition of
 determining
 instantiation of
 "on-the-fly,"
 setting 2nd
 special
instances
 __del__()

 about
 binding methods to
 built-in functions
 callable objects 2nd
 creating 2nd 3rd
 default values for
 definition of
 invoking methods via
 keeping track of
instantiation
 __init__() 2nd 3rd

 __new__()

 creating instances 2nd
 default arguments with
 definition of
 instance attributes
 Thread class
int type (unsupported)
int() built-in function 2nd

int() factory function 2nd 3rd

integer-only functions
integers
 bit operators
 Boolean
 format operator output
 long 2nd 3rd
 standard 2nd
 unification of long integers/integers 2nd
 unsupported types
Integrated DeveLopment Environment [See IDLE (Integrated DeveLopment Environment) (Unix IDE).]

file:///D|/1/0132269937/I.html (3 von 5) [13.11.2007 16:25:48]

I

Integrated Development Environments [See IDEs (Integrated Development Environments).]
integration of code (Python/non-Python)
interfaces to data attributes
internal types
Internet client programming [See also Web programming.]
 about
 electronic mail
 FTP 2nd
 newsgroups
 NNTP 2nd
 related modules
 SMTP 2nd 3rd
 transferring files
 Usenet
 Web programming vs.
Internet Mail Access Protocol (IMAP)
Internet protocols 2nd [See also specific headings, e.g., NNTP (Network News Transfer Protocol).]
Internet Service Provider [See ISP (Internet Service Provider).]
Internet, architecture of
interning
interpreted languages 2nd 3rd 4th
interprocess communications (IPC)
intersection (&) operator

intersection update (&=) operator

Intranet
introspection
IOError exception 2nd 3rd 4th 5th 6th 7th

IPC (interprocess communications)
IronPython 2nd 3rd
is keyword
isatty() built-in method 2nd

isinstance() built-in function 2nd 3rd

ISP (Internet Service Provider) 2nd
issubclass() built-in function

items() built-in methods (dictionaries) 2nd

iter() function

iterating/iteration
 by sequence item/index
 file
 mechanics of
 through a matrix

file:///D|/1/0132269937/I.html (4 von 5) [13.11.2007 16:25:48]

I

 through files
iterators
 about
 any number of terms example
 creating
 dictionaries
 files
 for loops 2nd 3rd
 mutable objects
 related modules
 sequences
itertools module

file:///D|/1/0132269937/I.html (5 von 5) [13.11.2007 16:25:48]

J

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Java 2nd 3rd 4th 5th
JavaScript 2nd
JIT (just-in-time) compiler
join() method 2nd 3rd 4th

just-in-time (JIT) compiler
Jython 2nd 3rd 4th

file:///D|/1/0132269937/J.html [13.11.2007 16:25:49]

K

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Kanter, Brian
KDE desktop environment
key-lookup operator ([])

key-value pairs 2nd 3rd
KeyboardInterrupt exception 2nd 3rd
KeyError 2nd

keys (dictionary)
 as hashable object 2nd 3rd
 collisions
 comparing
 mapping type 2nd
 restrictions on
keys() built-in method 2nd 3rd 4th

keyword arguments (functions)
keyword variable arguments (dictionary)
keywords
 and, or, not 2nd
 class 2nd
 def 2nd 3rd
 identifiers
 is
 partial function application
 tables of 2nd

file:///D|/1/0132269937/K.html [13.11.2007 16:25:49]

L

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Label widget (Tk)
lambda
 and Lisp
 anonymous functions
 callable objects
 inner functions
 list comprehensions
 map()

 reduce() 2nd

 return value
 scope
LAN (Local Area Network) 2nd
languages
 comparisons of
 compiles
 high-level
 interpreted 2nd 3rd 4th
Lapsley, Phil
last-in-first-out (LIFO) data structure
len() built-in function

 and range()

 dictionaries 2nd
 lists
 sequences 2nd 3rd
 set types 2nd
 strings
less than symbols (< , <=)

lexical variables
LIFO (last-in-first-out) data structure
lightweight processes [See also threads.]
line separators (terminators) 2nd
linking wrapper extensions
Linux 2nd 3rd
Lisp 2nd
list comprehensions 2nd 3rd 4th [See also generator expressions.]

file:///D|/1/0132269937/L.html (1 von 3) [13.11.2007 16:25:49]

L

list() built-in function 2nd

list() factory function

Listbox widget (Tk)
lists 2nd
 accessing values in
 as building blocks
 assigning
 building data structures with
 built-in functions 2nd 3rd 4th
 built-in methods 2nd 3rd
 concatenation of
 creating 2nd
 membership operators
 operators for 2nd
 other data structures, creating with
 queues using
 removing elements/lists
 repetition in
 sequence type functions 2nd
 sequence type operators 2nd
 slices of
 special features of
 stacks using
 standard type functions
 standard type operators
 tables of
 tuples vs.
 updating
load() function

loading modules 2nd 3rd
Local Area Network [See LAN (Local Area Network).]
local variables 2nd 3rd
localhost
locals() built-in function

lock objects
logging function calls (with closures)
logging module

logical errors
login/password programming example
long integers 2nd 3rd
long type (unsupported)
long() factory function 2nd

file:///D|/1/0132269937/L.html (2 von 3) [13.11.2007 16:25:49]

L

loops [See also iterators.]
 and iterators 2nd 3rd
 and pass statement

 auxiliary statements
 break statement 2nd

 continue statement

 counting
 else statement

 for statement 2nd 3rd

 infinite
 performance enhancement for
 range()

 while statement 2nd 3rd

file:///D|/1/0132269937/L.html (3 von 3) [13.11.2007 16:25:49]

M

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

MacOS X 2nd 3rd
macros (for reference counting)
mail user agent (MUA)
main()

maintainability
makefiles
mangled names [See name-mangling.]
map() built-in function 2nd 3rd 4th 5th

mapping types
 access model category
 built-in functions/factory functions
 built-in methods
 dictionaries
 keys for
 operators for
 related functions
 special methods for customizing classes
marshal module

"Mash-ups,"
match objects
match() re module function 2nd

matching [See also regular expressions (REs).]
 any single character (.) 2nd
 beginning/end of strings
 closure operators
 "greedy" operators
 grouping 2nd
 more than one pattern, with alternation (|)
 more than one string
 multiple occurrence/repetition using closure operators
 negation (^)
 parentheses (())

 ranges (-), denoting
 re module

 regular expressions

file:///D|/1/0132269937/M.html (1 von 5) [13.11.2007 16:25:50]

M

 repetition 2nd
 searching vs. 2nd 3rd
 special characters/symbols 2nd 3rd
 strings 2nd 3rd 4th
 word boundaries
mathematical operators 2nd
matrix iteration
max() built-in function 2nd 3rd 4th

membership (in, not in) operators
 dictionaries
 for loops
 lists
 sequences 2nd
 set types 2nd
 strings
 tuples
memory management
 dynamic typing
 garbage collection
 interpreter performing
 memory allocation
 reference counting 2nd 3rd 4th
 variables declarations
Menu widget (Tk)
message transport agent (MTA) 2nd 3rd
message transport system (MTS)
Message widget (Tk)
metacharacters
__metaclass__
metaclasses
method descriptors
method resolution order (MRO) 2nd
methods
 about
 arguments
 binding 2nd
 callable objects
 class
 connection objects
 decorators
 file object 2nd
 for new-style classes

file:///D|/1/0132269937/M.html (2 von 5) [13.11.2007 16:25:50]

M

 for re module

 group(s)
 invoking 2nd
 naming
 overriding, via inheritance
 privacy
 static
 strings
methods (built-in)
 attributes
 dictionaries 2nd 3rd 4th 5th
 files
 lists 2nd 3rd
 mapping types
 sequences 2nd
 set types 2nd
 strings 2nd 3rd
 tuples
methods (special) (for customizing classes)
 any number of terms iterator example
 iterators
 multi-type example
 numeric customization (Time62) example
 Random Sequence iterator example
 RoundFloat2 simple example
 special 2nd
 tables of 2nd
methods (special) (new-style classes)
methods (user-defined) (UDMs)
Microsoft Office
 Excel 2nd
 Outlook
 PowerPoint
 programming, with Win32 COM
 Word
MIME (Multipurpose Internet Mail Extension) headers 2nd
min() built-in function 2nd 3rd 4th

mix-in classes
mixed mode operations 2nd 3rd
modeling (OOD)
Module Methods [] array
__module__ attribute 2nd 3rd 4th

file:///D|/1/0132269937/M.html (3 von 5) [13.11.2007 16:25:50]

M

modulefinder
modules [See also importing modules.]
 __builtins__ vs. __builtin__
 __future__
 about 2nd
 accessing module variables
 and files
 auto-loaded
 built-in functions
 calling
 case-insensitive import
 cProfile
 debugging
 developer tools
 "executed" when loaded
 executing as scripts
 executing on import
 extended import statement (as)

 hotshot
 import cycles
 importing vs. loading
 logging
 multi-line import
 names imported into importer's scope
 namespaces 2nd
 new import hooks
 numeric types
 packages
 pdb
 persistent storage
 preventing attribute import
 profile
 search path/path search
 separating
 sequence types
 source code encoding
 standard library 2nd
 strings
 structure/layout for
 subprocess
 warning framework
 Web server

file:///D|/1/0132269937/M.html (4 von 5) [13.11.2007 16:25:50]

M

modulus operator
MRO [See method resolution order (MRO).]
MTA [See message transport agent (MTA).]
MTS (message transport system)
MUA [See mail user agent (MUA).]
multi-line import
multi-platform development 2nd 3rd
multi-type customization example
multipart form submission
multiple assignment
multiple inheritance
multiplication (*) operator

Multipurpose Internet Mail Extension headers [See MIME (Multipurpose Internet Mail Extension) headers.]
multithreaded programming (MT)
 about
 accessing threads
 examples
 exiting threads
 extensions to Python
 global interpreter lock 2nd
 processes
 related modules
 thread module 2nd

 threading module 2nd 3rd

 threads 2nd 3rd
"multuple" assignment
mutable hash tables
mutable objects 2nd 3rd 4th 5th
mutable sets 2nd 3rd 4th
mutable types, subclassing
mutex module

MySQL 2nd 3rd

file:///D|/1/0132269937/M.html (5 von 5) [13.11.2007 16:25:50]

N

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

name lookup
name-mangling 2nd
__name__ attribute 2nd 3rd 4th 5th
__name__ system variable 2nd
NameError exception 2nd 3rd 4th

namespace(s)
 __builtins__
 classes as containers for
 "Hello World!" example
 importing names into current
 modules 2nd
 name lookup/scoping/overriding
 overriding
 scope
 types of
 useful features of
 variable scope 2nd
negation symbol (^)

.NET/Mono implementation
network location components
Network News Transfer Protocol [See NNTP (Network News Transfer Protocol).]
network programming
 client/server architecture
 functions/modules for
 related modules
 sockets 2nd
 SocketServer module

 TCP clients/servers 2nd
 twisted framework
 UDP clients/servers
new import hooks
new-style classes [See also classic classes.]
 __getattribute__()

 __slots__ class attributes
 advanced features of

file:///D|/1/0132269937/N.html (1 von 3) [13.11.2007 16:25:51]

N

 and OOP
 classic classes vs.
 descriptors
 documentation
 general features
 metaclasses
 method resolution order
 privacy
 super()

NEWLINE character(s)
 continuation (\)
 escaping
 POSIX systems
 print statement

 suppression of
 universal support for 2nd
 write()

newsgroups
next() built-in method 2nd 3rd

NNTP (Network News Transfer Protocol)
 as original Internet protocol
 client program
 documentation
 examples
 interactive
 nntplib.NNTP class methods
 object methods
 Python and
non-data descriptors
non-keyword variable-length arguments (tuple)
non-Python programs
None type 2nd
"not equals" comparison operators (!= , <>)
not keyword 2nd
NotImplementedError exception

NUL characters 2nd
Null object
numbers
 assignment
 bit operators
 Boolean
 built-in/factory functions

file:///D|/1/0132269937/N.html (2 von 3) [13.11.2007 16:25:51]

N

 complex
 creating
 double precision
 floating point 2nd 3rd 4th 5th
 integers
 introduction to
 mathematical operators 2nd
 mixed-mode operations
 numeric type functions 2nd 3rd
 numeric type operators 2nd 3rd
 operators 2nd 3rd 4th
 removing
 standard type functions
 standard type operators
 types
 updating
numeric coercion 2nd
numeric customization (Time62) customization example
numeric type(s)
 Boolean "numbers,"
 functions 2nd 3rd
 operators 2nd 3rd
 related modules for
 special methods for customizing classes 2nd

file:///D|/1/0132269937/N.html (3 von 3) [13.11.2007 16:25:51]

O

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

object(s) [See also specific types.]
 as default class
 assignment of
 attributes
 Boolean operators
 Boolean values of 2nd
 built-in functions
 built-in types
 calling functions with variable arguments
 characteristics of
 classes/instances
 code 2nd
 composite/compound
 connection
 copying
 cursor
 ellipsis
 executable
 "file-like," 2nd
 frame
 hashable 2nd 3rd 4th
 identity comparison of 2nd
 internal types
 invoking
 mutable 2nd 3rd 4th 5th
 Null
 removing single reference to
 slice
 standard type operators
 standard types 2nd
 traceback
 value comparison of 2nd 3rd
 wrapping
 XRange
object-oriented design [See OOD (object-oriented design).]

file:///D|/1/0132269937/O.html (1 von 4) [13.11.2007 16:25:51]

O

object-oriented language
object-oriented programming [See OOP (object-oriented programming).]
object-relational managers [See ORMs (object-relational managers).]
objects (callable)
 class instances
 classes
 functions
 lambda
 methods
oct() built-in function

OOD (object-oriented design) 2nd
OOP (object-oriented programming) 2nd
 about
 and real-world problems
 buzzwords
 classes
 languages
 new-style classes
 relationship OOD and
open() built-in function 2nd 3rd

operational built-in functions 2nd
operations (database)
operator module

operator(s)
 and mixed mode operations
 assignment (=)

 asterisk (*)

 augmented assignment
 bit
 Boolean 2nd
 brace ({ })

 closure
 dictionaries
 difference (-)

 difference update (-=)

 division 2nd 3rd
 exponentiation (**) 2nd 3rd

 format 2nd 3rd 4th
 function
 "greedy,"
 intersection (&)

file:///D|/1/0132269937/O.html (2 von 4) [13.11.2007 16:25:51]

O

 intersection update (&=)

 key-lookup ([])

 lists 2nd
 mapping types
 mathematical operators 2nd
 membership 2nd 3rd 4th 5th 6th 7th 8th
 modulus
 multiple assignment
 "multuple" assignment
 "not equals" comparison (!=,<>)

 numeric type 2nd 3rd
 overloading addition
 parentheses and
 plus (+)

 question mark (?)
 raw string 2nd
 repetition (*) sequence

 retention update (&=)

 reverse quote (``)

 sequence type 2nd 3rd 4th 5th 6th
 set type 2nd 3rd 4th 5th
 standard type 2nd
 string format 2nd 3rd 4th 5th
 strings 2nd 3rd 4th
 symmetric difference (^)
 symmetric difference update (^=)
 table of
 ternary
 tuples 2nd
 Unicode string (u /U)
 union (|) 2nd
 update (|=)
optparse module

or keyword 2nd 3rd
ord() built-in function 2nd 3rd 4th

ORMs (object-relational managers)
 and SQL
 as storage mechanism
 employee role database example
 related modules
 SQLAlchemy 2nd

file:///D|/1/0132269937/O.html (3 von 4) [13.11.2007 16:25:51]

O

 SQLObject 2nd 3rd
os module
 additional functionality of
 attributes
 examples
 external program execution functions
 file/directory access functions
 os. exec*() 2nd

 os. wait*() 2nd

 os._exit()

 os.fork() 2nd

 os.kill()

 os.popen() 2nd 3rd

 os.spawn*() 2nd

 os.system() 2nd 3rd

os.path module 2nd 3rd 4th

OSError exception

Outlook
output (program)
output (standard)
output built-in methods
overriding (overloading)
 and mixed-mode operation
 built-in names
 global variable
 methods via inheritance
 namespaces

file:///D|/1/0132269937/O.html (4 von 4) [13.11.2007 16:25:51]

P

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

packages
packer (geometry manager)
Pango
paramstyle 2nd
parent/parent class 2nd 3rd 4th 5th 6th 7th
parentheses (()) 2nd

partial function application (PFA) 2nd
pass statement 2nd

passing functions
path search
pathname 2nd 3rd
pattern matching [See regular expressions (REs).]
pdb debugging module

PEPs (Python Enhancement Proposals) 2nd 3rd
performance enhancement 2nd 3rd
performance measurement example
period symbol (.) 2nd

Perl 2nd 3rd
persistent storage 2nd 3rd
PFA [See partial function application (PFA).]
PHP
pickle module 2nd

pipe symbol (|) 2nd

pkgutil
plain integers
plus operator (+)

PMW [See Python MegaWidgets (PMW).]
Pmw (Python MegaWidgets)
pointer type
polymorphism
POP (Post Office Protocols)
pop() method 2nd 3rd

POP3
port numbers
portability

file:///D|/1/0132269937/P.html (1 von 3) [13.11.2007 16:25:52]

P

positional arguments (functions)
POSIX systems 2nd
Post Office Protocols [See POP (Post Office Protocols) ; POP3.]
Postel, Jonathan
PostgreSQL
pound sign (#) (hash symbol) 2nd

pow() built-in function 2nd

PowerPoint
precedence 2nd 3rd
precision
print statement

printf()-like functionality

privacy 2nd
procedures, functions vs.
processes, definition of
producer-consumer problem
profile module

profiling of code 2nd 3rd
programmers
programs
 executing other non-Python
 executing other Python
prompts (primary/secondary)
property() built-in function

proprietary source code
protocols (Internet)
Psyco
"public" attributes
pure virtual functions
.py file extension 2nd
Py_BuildValue() function 2nd 3rd

Py_Init Module()

PyArg_Parse*() function

PyArg_ParseTuple() function

.pyc files 2nd
pyFLTK
PyGTK 2nd 3rd
PyGUI
.pyo file extension
PyObject
PyOpenGL

file:///D|/1/0132269937/P.html (2 von 3) [13.11.2007 16:25:52]

P

PyQt
PyQtGPL
Pyrex
Python Enhancement Proposals [See PEPs (Python Enhancement Proposals).]
Python FAQ
Python Library and Language Reference manual
Python MegaWidgets (PMW) 2nd
Python version 2.0
Python version 2.2 2nd
Python version 2.4
Python Virtual Machine
PythonCard
PYTHONCASEOK environment variable
PYTHONPATH environment variable 2nd
PythonWin IDE

file:///D|/1/0132269937/P.html (3 von 3) [13.11.2007 16:25:52]

Q

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Qt GUI
querying (databases)
question mark operator (?)

Queue module 2nd

queue, using lists to build
quotation marks
quote*() functions

file:///D|/1/0132269937/Q.html [13.11.2007 16:25:52]

R

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

race condition
Radiobutton widget (Tk)
raise statement 2nd

raising an exception 2nd
random module

Random Sequence iterator example
range symbol (-)

range() built-in function 2nd 3rd 4th 5th

ranges (-) 2nd
rapid prototyping
raw strings 2nd 3rd 4th
raw_input() built-in function 2nd 3rd 4th

RDBMS (relational database systems) 2nd 3rd
re module 2nd

read() built-in method 2nd

readinto() method 2nd

readline() built-in method 2nd 3rd

readlines() built-in method 2nd

realm
reason (exceptions)
rebinding
receiving e-mail
recursion
redirecting output
reduce() built-in function 2nd 3rd

refactoring
refcount
reference 2nd 3rd
reference counting 2nd 3rd 4th
reflection, definition of
regular expression engine 2nd
regular expressions (REs)
 about
 and "greedy" operators

file:///D|/1/0132269937/R.html (1 von 3) [13.11.2007 16:25:53]

R

 any single character (.) 2nd
 ASCII characters
 beginning/end of strings
 character classes ([]), creating 2nd
 compiling
 example
 finding every occurrence
 grouping 2nd
 match objects/group(s) methods
 match() 2nd

 matching more than one pattern, with alternation (|)
 matching more than one string
 matching strings
 matching word boundaries
 multiple occurrence/repetition using closure operators
 negation (^)
 parentheses (())

 ranges (-), denoting
 raw strings 2nd
 re module 2nd

 repetition 2nd
 search() re module

 searching vs. matching 2nd 3rd
 searching/replacing
 special characters/symbols 2nd 3rd
 splitting on delimiting pattern with
 strings
 sub()/ subn()

 word boundaries
regular integers
relational database systems [See RDBMS (relational database systems).]
relative complement (-) operator [See difference (-) operator.]

relative import (packages)
reload() built-in function

remove() method 2nd 3rd

removing
 dictionary elements/dictionaries
 lists/list elements
 numbers
 set members/sets
 single object reference
 strings/characters

file:///D|/1/0132269937/R.html (2 von 3) [13.11.2007 16:25:53]

R

 tuple elements/tuples
repetition
 lists
 regular expressions 2nd
 special characters/grouping and
 strings
 tuples
repetition (*) sequence operator

repr() built-in function

REs [See regular expressions (REs).]
restricted execution
retention update (&=) operator

return value(s) 2nd 3rd 4th
reverse quote operator (' ')

reversed() built-in function 2nd 3rd 4th 5th 6th 7th

Rexx
robustness
root window
round() built-in function

RoundFloat2 customization example
rows
Ruby 2nd
running Python
 as a script from command line
 code examples
 in an IDE
 interactive interpreter from command line
runtime errors
runtime generation/execution of code
RuntimeError exception

file:///D|/1/0132269937/R.html (3 von 3) [13.11.2007 16:25:53]

S

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

scability
scalar storage
Scale widget (Tk) 2nd
scope
 closures
 global statement
 global vs. local
 lambda
 name lookup
 names imported into importer's
 namespaces 2nd
 number of
 overriding
scripts
 as modules
 communicating with MS Office using
 generating/executing code with
 running Python as
Scrollbar widget (Tk)
search path 2nd
search() re module 2nd

searching 2nd 3rd 4th
Secure Socket Layer (SSL)
seek() built-in method 2nd 3rd

select() function

self argument 2nd 3rd 4th 5th 6th
__self__ attribute 2nd
semicolon (;) (multiple statements)
sending e-mail
sequence(s) [See also lists ; strings ; tuples.]
 access model type
 and iterators
 built-in functions 2nd 3rd 4th 5th
 concatenation of
 conversion/casting of

file:///D|/1/0132269937/S.html (1 von 8) [13.11.2007 16:25:54]

S

 for statement used with

 keys for 2nd
 membership operators 2nd
 methods
 operational built-in functions for
 operators 2nd 3rd 4th 5th 6th
 related modules for
 repetition of
 sequence-related built-in functions
 slicing
 special methods for customizing classes
 standard type operators
 stride indices
 strings
 table of
server-side COM programming
servers
 bank tellers as example of
 infinite loop for
 TCP 2nd 3rd 4th
 twisted reactor TCP
 UDP
 Web 2nd 3rd 4th 5th 6th
 window system as
set types
 accessing values in
 assigning 2nd
 built-in functions 2nd 3rd
 built-in methods 2nd
 creating 2nd
 difference (-) operator

 difference update (-=) operator

 equality/inequality
 factory functions 2nd
 frozenset() factory function

 intersection (&) operator

 intersection update (&=) operator

 len() built-in function

 membership operator 2nd
 mixed operations
 operation/relation symbols
 operators 2nd 3rd

file:///D|/1/0132269937/S.html (2 von 8) [13.11.2007 16:25:54]

S

 related modules
 removing set members/sets
 retention update (&=) operator

 set() factory function

 subsets/supersets
 symmetric difference (^) operator

 symmetric difference update (^=) operator

 table of
 types of sets
 union (|) operator 2nd

 update (|=) operator

 updating
 using operators vs. built-in methods
set() factory function

setattr() built-in function 2nd 3rd

setdefault() built-in method

shallow copy
shell scripting
shelve module

short type (unsupported)
showname() method

shutil module 2nd

Simple Mail Transfer Protocol [See SMTP (Simple Mail Transfer Protocol).]
SimpleHTTPServer module 2nd 3rd
Simplified Wrapper and Interface Generator (SWIG)
single character (.) 2nd
single element tuples
single quotation mark (')
single underscore (_) attributes
site module

sizes, comparing dictionary
sleeping (threads) 2nd 3rd 4th
slice objects
slices ([], [:], [: :]) sequence operators (slicing)

 indexing
 lists
 stride indices
 strings 2nd
 tuples 2nd
__slots__ class attributes
SMTP (Simple Mail Transfer Protocol)

file:///D|/1/0132269937/S.html (3 von 8) [13.11.2007 16:25:54]

S

 about
 as original Internet protocol
 clients
 documentation
 e-mail 2nd
 example 2nd
 interactive
 object methods for
 Python and
 smtplib.SMTP class modules
smtplib.SMTP class modules
SOCK_STREAM type
socket() module function 2nd 3rd

socket(s)
 about
 addresses
 built-in methods
 connection-oriented vs. connectionless
 creating 2nd
SocketServer module 2nd 3rd 4th

software (client/server architecture)
Solaris 2nd 3rd
sorted() built-in function 2nd 3rd 4th 5th 6th

source code (encoding)
spacing and block delimitation
spawning
 processes
 threads
special symbols
specialization
split() method 2nd

split() re module 2nd

SQL (Structured Query Language) 2nd
SQLAlchemy 2nd 3rd
SQLite
SQLObject 2nd 3rd
SSL (Secure Socket Layer)
"stack trace,"
stack, building using lists
stackless Python implementation 2nd
standard error
standard exceptions

file:///D|/1/0132269937/S.html (4 von 8) [13.11.2007 16:25:54]

S

standard files
standard input
standard integers 2nd
standard output
standard type functions
 built-in
 dictionaries
 lists
 mapping type
 numeric
 set types
 strings
 table of
standard type operators
 Boolean
 dictionaries
 lists
 mapping type
 numeric
 objects
 sequence types
 set types
 strings
 tables of 2nd
 tuples
standard types
 about
 by access model
 by storage model
 by update model
 categorizing
 deriving
 unsupported types
 wrapping
StandardError exception 2nd

star operator (*)

"stateless" protocol 2nd
statements (Python)
 comments 2nd 3rd
 continuation
 grouping multiple
 multiple, on single line

file:///D|/1/0132269937/S.html (5 von 8) [13.11.2007 16:25:54]

S

 rules for
 suites
static data
static dispatch
static members 2nd
static methods
staticmethod() built-in function

stderr
stdin
stdout
stock quote server 2nd
StopIteration exception 2nd 3rd
storage (attributes)
storage model 2nd
str() built-in function 2nd 3rd 4th 5th 6th 7th

str() factory function

stride indices
string format operator 2nd 3rd 4th
string templates
StringIO module 2nd

strings 2nd
 accessing values of
 assigning
 built-in functions 2nd
 built-in methods 2nd 3rd
 chr()

 concatenation 2nd
 creating
 debugging
 ending of
 enumerate()

 exceptions
 identifiers
 immutability of
 len()

 matching
 matching beginning/end of 2nd
 matching more than one
 matching within
 max()

 membership

file:///D|/1/0132269937/S.html (6 von 8) [13.11.2007 16:25:54]

S

 min()

 no char type for
 non-NUL/ '0' ending of 2nd
 NUL characters 2nd
 operators 2nd
 ord()

 quotation mark delimited
 raw strings 2nd 3rd 4th
 raw_input()

 regular expressions 2nd 3rd 4th 5th 6th
 removing
 repetition of 2nd
 sequence operators 2nd
 slices of
 special/control characters 2nd
 standard library modules for
 standard type operators
 str()

 string templates
 string-only operators
 summary of
 tables of
 triple quotes 2nd 3rd
 unichr()

 Unicode 2nd 3rd 4th
 updating
 zip()

Structured Query Language [See SQL (Structured Query Language).]
"stubs,"
style guidelines 2nd
sub() function/method 2nd

subclasses/subclassing
 creating 2nd 3rd
 derivation
 multiple inheritance
 standard types
 using
subn() function/method

subprocess module

subsets
substrings, accessing

file:///D|/1/0132269937/S.html (7 von 8) [13.11.2007 16:25:54]

S

subtraction (-) operator

suites 2nd 3rd
sum() built-in function 2nd 3rd

summation functions
super() built-in function

supersets
SWIG (Simplified Wrapper and Interface Generator)
swing
Swing GUI development
switch statement
symmetric difference (^) operator

symmetric difference update (^=) operator

syntax
 comments
 continuation of lines
 decorators
 dictionaries
 ease of reading
 errors 2nd
 identifiers
 mandatory symbols
 statement
SyntaxError exception 2nd 3rd

sys module 2nd 3rd 4th

sys.argv
sys.exit function
sys.exit() function

sys.exitfunc() function

SystemError exception

SystemExit 2nd 3rd 4th 5th

file:///D|/1/0132269937/S.html (8 von 8) [13.11.2007 16:25:54]

T

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

tables 2nd 3rd
tabs
Tcl
TCP (Transmission Control Protocol)
 clients 2nd 3rd
 servers 2nd 3rd 4th
TCP/IP (Transmission Control Protocol/Internet Protocol)
tell() built-in method 2nd 3rd 4th

telnet protocol
tempfile module 2nd

templates (string)
terminating execution
 os._exit()

 os.kill()

 sys.exit()
 sys.exitfunc()

 SystemExit
ternary operator
testing 2nd 3rd
text file manipulation example programs
Text widget (Tk)
thread module 2nd

threading module 2nd 3rd

 daemon threads
 examples
 Fibonacci/factorial/summation functions
 objects
 other functions for
 producer-consumer problem
 Queue module
 thread class
 thread module vs.
threads
 accessing
 creating

file:///D|/1/0132269937/T.html (1 von 4) [13.11.2007 16:25:55]

T

 definition of
 examples
 exiting
 global interpreter lock
 modules for
 passing in callable class instance
 passing in function
 safety
 spawning
TIDE + IDEStudio (Tix Integrated Development Environment)
tilde () expansion
"timestamp decoration" example
Tix (Tk Interface eXtensions) 2nd 3rd
Tk 2nd 3rd 4th
Tkinter
 about 2nd
 adding Tk to applications
 as Tk port
 examples
 file system traversal GUI example
 installing/working with
 partial function application example
 top-level window
TkZinc
Tool Command Language (Tcl)
Toplevel widget (Tk) 2nd
traceback objects
"traceback" notice
transferring files
 about
 client example
 documentation
 examples 2nd
 FTP
 ftplib.FTP class methods
 interactive example
 Python FTP support
 typical FTP clients
Transmission Control Protocol [See TCP (Transmission Control Protocol).]
Transmission Control Protocol/Internet Protocol [See TCP/IP (Transmission Control Protocol/Internet Protocol).]
triple quotes 2nd 3rd
true division (/) 2nd 3rd

file:///D|/1/0132269937/T.html (2 von 4) [13.11.2007 16:25:55]

T

truncate() built-in method 2nd 3rd

try statement 2nd

try-except statement 2nd 3rd 4th 5th 6th

try-except-else-finally statement

try-finally statement

tuple() built-in/factory function 2nd 3rd

tuples 2nd
 as keys
 assessing values of
 assigning 2nd
 built-in functions 2nd 3rd 4th
 built-in methods
 concatenation of
 creating 2nd
 default collection type
 dictionary keys for
 flexibility of
 immutability of
 lists vs.
 membership
 non-keyword variable-length arguments
 operators 2nd
 removing tuple elements/tuples
 repetition
 sequence operators 2nd
 single element
 slicing
 special features of
 standard operators
 tables of
 updating
twisted framework
twisted reactor TCP
type() built-in functions 2nd

 checking types with
 finding object types with
 numbers 2nd
 table of
type() factory functions 2nd 3rd

type(s) [See also standard types.]
 built-in
 built-in functions 2nd 3rd 4th 5th 6th

file:///D|/1/0132269937/T.html (3 von 4) [13.11.2007 16:25:55]

T

 categorizing standard
 function to check
 internal
 module
 None
 object
 return values and function
 Unicode
 unsupported
 "wrapping a type,"
TypeError exception 2nd 3rd 4th 5th 6th 7th

typing, dynamic

file:///D|/1/0132269937/T.html (4 von 4) [13.11.2007 16:25:55]

U

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

'U' access mode

'U' access mode

UDFs [See functions (user-defined) (UDFs).]
UDMs [See methods (built-in).]
UDP (User Datagram Protocol)
 clients
 servers
unbinding
unbound methods 2nd 3rd
UnboundLocalError

underscores (_, __)
unhandled exceptions
unichr() function 2nd

Unicode
 CGI
 codecs
 coercion for
 common codecs/encodings
 decoding
 definition of
 encoding
 exceptions
 ordinals
 regular expression engine
 rules for
 source code encoding
 standard encodings 2nd
 strings 2nd 3rd 4th
 terminology for
 using 2nd
unicode() built-in function

unicode() factory function

UnicodeError exception

Uniform Resource Locators [See URLs (Uniform Resource Locators).]
union (|) operator 2nd [See also difference update (-=) operator.]

file:///D|/1/0132269937/U.html (1 von 3) [13.11.2007 16:25:55]

U

Universal NEWLINE Support (UNS) 2nd
Unix
 availability of Python on
 compiling extensions on
 IDE for
 installing Python on
 Internet systems running
 line separators
 multithreaded programming
 running Python on 2nd
 shell scripting languages
UNS [See Universal NEWLINE Support (UNS).]
update (|=) operator

update model 2nd
updating
 dictionaries
 lists
 numbers
 rows 2nd
 set types
 strings
 tuples
uploading files
upward propagation (of exceptions)
urllib module

urllib2 module

urlparse module

URLs (Uniform Resource Locators) 2nd
Usenet
User Datagram Protocol [See UDP (User Datagram Protocol).]
user input 2nd
user interface
user-defined functions [See functions (user-defined) (UDFs).]
user-defined methods [See methods (user-defined) (UDMs).]
UserDict module 2nd

UserList module 2nd

users (application)
UserString module 2nd

UTF-16 encoding 2nd
UTF-8 encoding 2nd

file:///D|/1/0132269937/U.html (2 von 3) [13.11.2007 16:25:55]

U

file:///D|/1/0132269937/U.html (3 von 3) [13.11.2007 16:25:55]

V

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

value(s)
 accessing dictionary
 Boolean
 comparing dictionary
 comparison of object 2nd 3rd
 list
 object 2nd 3rd 4th
 set type
 string
 tuple
ValueError exception 2nd 3rd

values() built-in method 2nd

van Rossum, Guido 2nd 3rd 4th 5th 6th
variable-length arguments (functions)
variables
 accessing module
 assignment of 2nd
 declarations for 2nd
 global vs. local
 multiple assignment
 "multuple" assignment
 naming
 scope
 underscores in naming
 using local to substitute for module attributes
vars() built-in function

versions of Python
VisualBasic.NET 2nd

file:///D|/1/0132269937/V.html [13.11.2007 16:25:55]

W

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

warning(s) 2nd 3rd
Watters, Aaron
Web addresses
Web applications
Web browsers 2nd 3rd
Web clients 2nd
Web crawlers
Web pages 2nd
Web programming [See also CGI (Common Gateway Interface) ; Internet client programming.]
 advanced Web clients
 cookies 2nd
 crawlers
 fully interactive sites
 Internet architecture
 Internet programming vs.
 multipart form submission/file uploading
 multivalued fields
 related modules
 Unicode 2nd
 urllib module

 urllib2 module

 urlparse module

 URLs
 user input/error processing
 Web clients
Web servers
 about
 as common software server
 CGI 2nd
 exception handling
 processing client data with
 related modules
 setting up
Web services 2nd
Web sites, fully interactive

file:///D|/1/0132269937/W.html (1 von 3) [13.11.2007 16:25:56]

W

Web surfing 2nd 3rd
while statement (loops) 2nd

 and pass statement

 break statement

 continue statement

 counting loops
 else statement

 infinite loops
 syntax for
while_suite
who command (Unix)
widgets
Win32 platforms/systems
 availability of Python on
 compiling extensions on
 multithreaded programming
win32ui
Windows clients
windows servers
Windows/DOS platforms
 IDE for
 installing Python on
 line separators
 running Python on 2nd
with statement

with_suite (context object)
without-universal-newlines switch
Word (Microsoft)
word boundaries, matching 2nd
wrapping/wrappers
 adding initModule() module initializer function

 adding MethodDef ModuleMethods [] array/ table
 an object with enhancements
 any object example
 built-in function (exceptions)
 compilation of
 PyObject* function
 try-except
 using "stubs"/dummy functions
 "wrapping a type,"
write() built-in method 2nd 3rd

writelines() built-in method 2nd

file:///D|/1/0132269937/W.html (2 von 3) [13.11.2007 16:25:56]

W

wxGlade
wxPython 2nd 3rd
wxWidgets 2nd 3rd

file:///D|/1/0132269937/W.html (3 von 3) [13.11.2007 16:25:56]

X

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

X Window System
XML processing
xrange() built-in function 2nd

xreadlines() method 2nd

file:///D|/1/0132269937/X.html [13.11.2007 16:25:56]

Y

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Yahoo! Finance Stock Quote server 2nd
yield statement 2nd

yielding (threads)

file:///D|/1/0132269937/Y.html [13.11.2007 16:25:56]

Z

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

\Z (special character)

ZeroDivisionError exception 2nd

zip files
zip() built-in function 2nd 3rd 4th 5th

zipfile module 2nd

zipimport 2nd
zlib module 2nd

file:///D|/1/0132269937/Z.html [13.11.2007 16:25:57]

	0132269937
	Core Python Programming, Second Edition
	Table of Contents
	Copyright
	Praise for Core Python Programming
	Prentice Hall Core Series
	Preface
	Acknowledgments

	Part I: Core Python
	Chapter 1. Welcome to Python!
	Section 1.1. What Is Python?
	Section 1.2. Origins
	Section 1.3. Features
	Section 1.4. Downloading and Installing Python
	Section 1.5. Running Python
	Section 1.6. Python Documentation
	Section 1.7. Comparing Python
	Section 1.8. Other Implementations
	Section 1.9. Exercises

	Chapter 2. Getting Started
	Section 2.1. Program Output, the print Statement, and "Hello World!"
	Section 2.2. Program Input and the raw_input()Built-in Function
	Section 2.3. Comments
	Section 2.4. Operators
	Section 2.5. Variables and Assignment
	Section 2.6. Numbers
	Section 2.7. Strings
	Section 2.8. Lists and Tuples
	Section 2.9. Dictionaries
	Section 2.10. Code Blocks Use Indentation
	Section 2.11. if Statement
	Section 2.12. while Loop
	Section 2.13. for Loop and the range() Built-in Function
	Section 2.14. List Comprehensions
	Section 2.15. Files and the open() and file() Built-in Functions
	Section 2.16. Errors and Exceptions
	Section 2.17. Functions
	Section 2.18. Classes
	Section 2.19. Modules
	Section 2.20. Useful Functions
	Section 2.21. Exercises

	Chapter 3. Python Basics
	Section 3.1. Statements and Syntax
	Section 3.2. Variable Assignment
	Section 3.3. Identifiers
	Section 3.4. Basic Style Guidelines
	Section 3.5. Memory Management
	Section 3.6. First Python Programs
	Section 3.7. Related Modules/Developer Tools
	Section 3.8. Exercises

	Chapter 4. Python Objects
	Section 4.1. Python Objects
	Section 4.2. Standard Types
	Section 4.3. Other Built-in Types
	Section 4.4. Internal Types
	Section 4.5. Standard Type Operators
	Section 4.6. Standard Type Built-in Functions
	Section 4.7. Type Factory Functions
	Section 4.8. Categorizing the Standard Types
	Section 4.9. Unsupported Types
	Section 4.10. Exercises

	Chapter 5. Numbers
	Section 5.1. Introduction to Numbers
	Section 5.2. Integers
	Section 5.3. Double Precision Floating Point Numbers
	Section 5.4. Complex Numbers
	Section 5.5. Operators
	Section 5.6. Built-in and Factory Functions
	Section 5.7. Other Numeric Types
	Section 5.8. Related Modules
	Section 5.9. Exercises

	Chapter 6. Sequences: Strings, Lists, and Tuples
	Section 6.1. Sequences
	Section 6.2. Strings
	Section 6.3. Strings and Operators
	Section 6.4. String-Only Operators
	Section 6.5. Built-in Functions
	Section 6.6. String Built-in Methods
	Section 6.7. Special Features of Strings
	Section 6.8. Unicode
	Section 6.9. Related Modules
	Section 6.10. Summary of String Highlights
	Section 6.11. Lists
	Section 6.12. Operators
	Section 6.13. Built-in Functions
	Section 6.14. List Type Built-in Methods
	Section 6.15. Special Features of Lists
	Section 6.16. Tuples
	Section 6.17. Tuple Operators and Built-in Functions
	Section 6.18. Special Features of Tuples
	Section 6.19. Related Modules
	Section 6.20. *Copying Python Objects and Shallow and Deep Copies
	Section 6.21. Summary of Sequences
	Section 6.22. Exercises

	Chapter 7. Mapping and Set Types
	Section 7.1. Mapping Type: Dictionaries
	Section 7.2. Mapping Type Operators
	Section 7.3. Mapping Type Built-in and Factory Functions
	Section 7.4. Mapping Type Built-in Methods
	Section 7.5. Dictionary Keys
	Section 7.6. Set Types
	Section 7.7. Set Type Operators
	Section 7.8. Built-in Functions
	Section 7.9. Set Type Built-in Methods
	Section 7.10. Operator, Function/Method Summary Table for Set Types
	Section 7.11. Related Modules
	Section 7.12. Exercises

	Chapter 8. Conditionals and Loops
	Section 8.1. if Statement
	Section 8.2. else Statement
	Section 8.3. elif (aka else-if) Statement
	Section 8.4. Conditional Expressions (aka "the Ternary Operator")
	Section 8.5. while Statement
	Section 8.6. for Statement
	Section 8.7. break Statement
	Section 8.8. continue Statement
	Section 8.9. pass Statement
	Section 8.10. else Statement ... Take Two
	Section 8.11. Iterators and the iter() Function
	Section 8.12. List Comprehensions
	Section 8.13. Generator Expressions
	Section 8.14. Related Modules
	Section 8.15. Exercises

	Chapter 9. Files and Input/Output
	Section 9.1. File Objects
	Section 9.2. File Built-in Functions [open() and file()]
	Section 9.3. File Built-in Methods
	Section 9.4. File Built-in Attributes
	Section 9.5. Standard Files
	Section 9.6. Command-Line Arguments
	Section 9.7. File System
	Section 9.8. File Execution
	Section 9.9. Persistent Storage Modules
	Section 9.10. Related Modules
	Section 9.11. Exercises

	Chapter 10. Errors and Exceptions
	Section 10.1. What Are Exceptions?
	Section 10.2. Exceptions in Python
	Section 10.3. Detecting and Handling Exceptions
	Section 10.4. Context Management
	Section 10.5. *Exceptions as Strings
	Section 10.6. Raising Exceptions
	Section 10.7. Assertions
	Section 10.8. Standard Exceptions
	Section 10.9. *Creating Exceptions
	Section 10.10. Why Exceptions (Now)?
	Section 10.11. Why Exceptions at All?
	Section 10.12. Exceptions and the sys Module
	Section 10.13. Related Modules
	Section 10.14. Exercises

	Chapter 11. Functions and Functional Programming
	Section 11.1. What Are Functions?
	Section 11.2. Calling Functions
	Section 11.3. Creating Functions
	Section 11.4. Passing Functions
	Section 11.5. Formal Arguments
	Section 11.6. Variable-Length Arguments
	Section 11.7. Functional Programming
	Section 11.8. Variable Scope
	Section 11.9. *Recursion
	Section 11.10. Generators
	Section 11.11. Exercises

	Chapter 12. Modules
	Section 12.1. What Are Modules?
	Section 12.2. Modules and Files
	Section 12.3. Namespaces
	Section 12.4. Importing Modules
	Section 12.5. Features of Module Import
	Section 12.6. Module Built-in Functions
	Section 12.7. Packages
	Section 12.8. Other Features of Modules
	Section 12.9. Related Modules
	Section 12.10. Exercises

	Chapter 13. Object-Oriented Programming
	Section 13.1. Introduction
	Section 13.2. Object-Oriented Programming
	Section 13.3. Classes
	Section 13.4. Class Attributes
	Section 13.5. Instances
	Section 13.6. Instance Attributes
	Section 13.7. Binding and Method Invocation
	Section 13.8. Static Methods and Class Methods
	Section 13.9. Composition
	Section 13.10. Subclassing and Derivation
	Section 13.11. Inheritance
	Section 13.12. Built-in Functions for Classes, Instances, and Other Objects
	Section 13.13. Customizing Classes with Special Methods
	Section 13.14. Privacy
	Section 13.15. *Delegation
	Section 13.16. Advanced Features of New-Style Classes (Python 2.2+)
	Section 13.17. Related Modules and Documentation
	Section 13.18. Exercises

	Chapter 14. Execution Environment
	Section 14.1. Callable Objects
	Section 14.2. Code Objects
	Section 14.3. Executable Object Statements and Built-in Functions
	Section 14.4. Executing Other (Python) Programs
	Section 14.5. Executing Other (Non-Python) Programs
	Section 14.6. Restricted Execution
	Section 14.7. Terminating Execution
	Section 14.8. Miscellaneous Operating System Interface
	Section 14.9. Related Modules
	Section 14.10. Exercises

	Part II: Advanced Topics
	Chapter 15. Regular Expressions
	Section 15.1. Introduction/Motivation
	Section 15.2. Special Symbols and Characters
	Section 15.3. REs and Python
	Section 15.4. Regular Expressions Example
	Section 15.5. Exercises

	Chapter 16. Network Programming
	Section 16.1. Introduction
	Section 16.2. Sockets: Communication Endpoints
	Section 16.3. Network Programming in Python
	Section 16.4. *SocketServer Module
	Section 16.5. *Introduction to the Twisted Framework
	Section 16.6. Related Modules
	Section 16.7. Exercises

	Chapter 17. Internet Client Programming
	Section 17.1. What Are Internet Clients?
	Section 17.2. Transferring Files
	Section 17.3. Network News
	Section 17.4. Electronic Mail
	Section 17.5. Related Modules
	Section 17.6. Exercises

	Chapter 18. Multithreaded Programming
	Section 18.1. Introduction/Motivation
	Section 18.2. Threads and Processes
	Section 18.3. Python, Threads, and the Global Interpreter Lock
	Section 18.4. thread Module
	Section 18.5. threading Module
	Section 18.6. Related Modules
	Section 18.7. Exercises

	Chapter 19. GUI Programming
	Section 19.1. Introduction
	Section 19.2. Tkinter and Python Programming
	Section 19.3. Tkinter Examples
	Section 19.4. Brief Tour of Other GUIs
	Section 19.5. Related Modules and Other GUIs
	Section 19.6. Exercises

	Chapter 20. Web Programming
	Section 20.1. Introduction
	Section 20.2. Web Surfing with Python: Creating Simple Web Clients
	Section 20.3. Advanced Web Clients
	Section 20.4. CGI: Helping Web Servers Process Client Data
	Section 20.5. Building CGI Applications
	Section 20.6. Using Unicode with CGI
	Section 20.7. Advanced CGI
	Section 20.8. Web (HTTP) Servers
	Section 20.9. Related Modules
	Section 20.10. Exercises

	Chapter 21. Database Programming
	Section 21.1. Introduction
	Section 21.2. Python Database Application Programmer's Interface (DB-API)
	Section 21.3. Object-Relational Managers (ORMs)
	Section 21.4. Related Modules
	Section 21.5. Exercises

	Chapter 22. Extending Python
	Section 22.1. Introduction/Motivation
	Section 22.2. Extending Python by Writing Extensions
	Section 22.3. Related Topics
	Section 22.4. Exercises

	Chapter 23. Miscellaneous
	Section 23.1. Web Services
	Section 23.2. Programming Microsoft Office with Win32 COM
	Section 23.3. Python and Java Programming with Jython
	Section 23.4. Exercises

	Appendix A. Answers to Selected Exercises
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Chapter 15
	Chapter 16
	Chapter 17
	Chapter 18
	Chapter 19
	Chapter 20
	Chapter 21
	Chapter 22
	Chapter 23

	Appendix B. Reference Tables
	Python Keywords
	Python Standard Operators and Functions
	Numeric Type Operators and Functions
	Sequence Type Operators and Functions
	String Format Operator Conversion Symbols
	String Format Operator Directives
	String Type Built-in Methods
	List Type Built-in Methods
	Dictionary Type Built-in Methods
	Set Types Operators and Functions
	File Object Methods and Data Attriobutes
	Python Exceptions
	Special Methods for Classes
	Python Operator Summary

	Appendix 3. About the Author
	Index
	SYMBOL
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

